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ABSTRACT 

 

The authors present the detailed theory and the new results associated with 

the triple quantum (TQ) nutation and the line narrowing effect of the TQ 

resonance in the two-level NMR system which we reported previously.  The TQ 

resonance is induced in the spin-locked system by the oscillating field produced 

by the sinusoidal phase modulation (PM) of the RF field.  The theory predicts 

that the TQ nutation is accompanied by several higher frequency oscillations, 

and we detected them experimentally by improving the detection system.  

These higher frequency oscillations are due to the fluctuation of the angle 

between the transverse or effective field causing the TQ nutation and the RF 

field.  We obtain the result that the modulation index mϕ2

m

 of the PM is the key 

parameter that essentially controls the conditions of the TQ resonance and the 

narrowing effect.  Under the exact TQ resonance, the ratio of the TQ resonance 

frequency to the Larmor frequency of the RF field depends only on ϕ , and the 

secular part of the magnetic dipole Hamiltonian of a like spin system in the 

triply rotating frame disappears at a particular value of mϕ .  The condition is 

different from that of the well-known magic angle condition.     

 

 

Key Words: multiple quantum NMR; line narrowing; double resonance; magic 

angle nutation; 19F resonance in Teflon. 
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1.  INTRODUCTION 

 

The development of line narrowing method is one of the subjects of study 

which have been attracting large interest in solid NMR.  So far, various artificial 

line narrowing phenomena have been reported, such as magic angle nutation (1), 

magic angle spinning (2), and the phenomena produced by multiple pulse 

methods (3).   

Recently, we found another type of line narrowing that is produced by a 

triple quantum (TQ) resonance in a two-level NMR system (4).  The TQ 

resonance is caused by the cooperation of the rotating and the counter-rotating 

components of the oscillating field as illustrated in Fig.1.  The TQ resonance 

induced by the oscillating field at a particular frequency and a particular 

intensity produces a TQ transient nutation of an extraordinary long decay time.  

The theory that we have developed to explain the narrowing effect shows that 

the long decay time is explained by the disappearance of the secular part and 

the very small nonsecular parts of the magnetic dipole Hamiltonian. (4)   This 

type of narrowing is not a straightforward TQ analog of the usual magic angle 

narrowing (1). 

The theory also shows that the TQ nutation signal is accompanied by some 

higher frequency oscillations.  However, the higher frequency oscillations were 

not observed in a previous work,(4) and also, no observation of such higher 

frequency oscillations has so far been reported, to our knowledge.  The present 

paper is the first and detailed report on the theoretical and the experimental 

investigations of the higher frequency oscillations.  We succeed in the 

observation of the higher frequency oscillations by improving the detection 
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system. 

The situation that we consider is the TQ resonance of a like nuclear spin 

1/2 system which is spin-locked (5,6) by an RF field at exact resonance.  The 

TQ resonance is caused in the rotating frame by the oscillating field induced 

perpendicular to the RF field by the sinusoidal modulation of the RF phase.  

Under the usual experimental condition, the frequency of the oscillating field is 

in the range of low frequency (LF), and therefore, we refer to the oscillating field 

as an LF field.  Since the intensity of the LF field is not so small compared with 

that of the RF field, the rotating wave approximation is invalid for the LF field; in 

other words, the counter-rotating component of the LF field becomes effective.   

We developed the theory of the TQ resonance with transformations of the 

density matrix equation of motion to a multiple-rotating frame, which enables 

us to pictorially understand the spin behaviors in the presence of the LF field.  

The higher frequency oscillations are interpreted as a result of the fluctuation of 

the angle between the transverse or effective field causing the TQ nutation and 

the RF field.  Although many theories on the multiple quantum resonance in 

the two-level system have so far been developed using various approaches, (7-9) 

there are few theoretical developments with several successive transformations 

to rotating reference frames, to our knowledge.  Boscaino et al. used such a 

kind of transformation method to explain double quantum nutation phenomena 

(10).  However, our theory is not an extension of theirs because the mechanism 

of the TQ resonance is different from that of the double quantum resonance, 

which requires an oscillating field parallel to the predominant static field.   

In Sec.2, we explain the theoretical approach of the TQ resonance in detail.  

We obtain the result that the modulation index of the phase modulation (PM) of 

 - 4 - 



the RF field is the key parameter that essentially controls the TQ resonance 

condition and the narrowing condition.  In Sec.3, the experimental method for 

the verification of the theoretical approach is described.  We use two kinds of 

methods of settling down of the RF phase after the PM; the one, which is an 

improved method, is used to verify the present theory, and the other for 

measuring the decay time of the TQ nutation.  The experiments were carried 

out on 19F nuclei in Teflon.  Finally, we present the experimental verifications 

with some discussions and some comments on the contribution of the magnetic 

dipole interaction to the TQ nutation decay in Sec.4.  

 

 

2. BASIC THEORY OF THE TQ RESONANCE 

 

We assume that the spin system ∑= )(  jII  is spin-locked by the RF field 

)sincos()/( βϕωγω mt 22 01 −  applied perpendicular to the static magnetic field 

γω /0 , where γ  is the gyromagnetic ratio of the nuclei and ϕωβ += t2 .  The 

total Hamiltonian in the laboratory frame is 

 

(0)
dm )sincos()( HH +−−−= βϕωωω 22 0100 tIIt xz ,          [1] 

 

with 

 

∑ −= )((0)
d kjkzjzjk IIIID 31H

h
,                [2] 

where Djk is a geometrical factor of a well-known form. (11)  We neglect the 
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counter-rotating component of the RF field and the nonsecular part of the 

magnetic dipolar Hamiltonian as usual under the condition that the static field 

ω0/γ is much larger than 2ω1/γ and the local field.  To make the normal 

rotating component of the RF field time-independent, we transform the 

Hamiltonian ℋ0(t) to that in the phase-modulated rotating frame using the 

unitary operator 

 

    })sin(exp{ m zItiU βϕω 200 −−= ,                  [3] 

 

and obtain 

 

    ,             [4] (1)
dm cos)( HH +−−= βωϕω zx IIt 211 2

 

where 

 

                  [5] ....,      ,1)-(
d

)(
d 211

11 == −
−− nUU n

n
n

n HH

 

The PM produces the LF field of the intensity γωϕ /m 22  at ω2 perpendicular to 

the static field ω1/γ in this rotating frame.  Next, we tilt the rotating frame 

using the operator )exp( yIiU 21
π= , and obtain the Hamiltonian in the tilted 

and phase-modulated rotating frame as 

 

)(
m2 cos)( 2

21 2 dxz IIt HH ++−= βωϕω .      [6] 

 

We refer to the tilted and phase-modulated rotating frame as an original rotating 
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frame.  The spin-locked magnetization is along the z-axis in the original 

rotating frame. 

     Starting from the Hamiltonian ℋ2(t), we perform the following series of 

unitary transformations of the total Hamiltonians.  The first transformation is 

made using )exp( zIiU β=2  in order to take into account the counter-rotating 

component of the LF field.  The obtained Hamiltonian is 

 

     ,         [7] )(
dmm)()( 322

22213 HH ++++−= − zz Ii
x

Ii
xz eIeIIt ββωϕωϕωω

 

which is the Hamiltonian in the first rotating frame with respect to the original 

rotating frame.  The first rotating frame rotates at 2ω− , namely at 2ω  in the 

reverse sense to the nuclear precession around the spin-locking field γω /1 , in 

which the effective field ωe/γat an angle θ to the field γω /1  exists together 

with the transverse field of the intensity γωϕ /m 2  rotating at 22ω , where 

 

,)()( me
2

2
2

21 ωϕωωω ++=                            [8] 

 

and 

 

      
21

2

ωω
ωϕ

θ
+

= mtan .                                  [9] 

 

We tilt the first rotating frame using )exp( yIiU θ−=3 , and obtain 

     
[10]                        .cossin          

sin coscos)(
(4)

dm

mme

H

H

+−

−+−=

βθωϕ

βωϕβθωϕω

2

22

2

224

z

yxz

I

IIIt
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If eωω ≅22 , the oscillating transverse fields (in the second and the third terms) 

cause a resonance in the first rotating frame, which corresponds to the single 

quantum (SQ) resonance (12) with the Bloch-Siegert shift.(13)  However, the 

angular frequency 2ω2 is sufficiently small compared with ωe in this case. 

We continue the transformation with the operator )exp( zIiU β24 −= , 

which transforms ℋ4(t) to that in the second rotating frame rotating at 2ω2 in 

the same sense to the nuclear precession around the effective field ωe/γ.  The 

transformed Hamiltonian is 

     

[11]                                ,cossin          

)cos( )cos()()(

(5)
dm

mm

H

H

+−

−−++−−= −

βθωϕ

θωϕθωϕωω ββ

2

112

2

44
22

1
22

1
25

z

Ii
x

Ii
xze

I

eIeIIt zz

 

 

which indicates that, in the second rotating frame, there exists the second 

effective field  at an angle α to the effective field ωγω /*
e e/γ accompanied by 

the rotating and the oscillating fields, where  and α are respectively given 

by 

*
eω

 

   ,)]cos([)( me
*
e

2
2

12
2 12 θωϕωωω ++−= 2      [12] 

 

and 

       
2

22
1

2
1

ωω
θωϕ

α
−
+

=
e

m )cos(
tan .                  [13] 
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The Hamiltonian ℋ5(t) is furthermore transformed by the operator 

)exp( yIiU α−=5  to 

    

[14]                        , sin)cos)(cos(          

cos)cos(cossin)cos(          

coscossincos)(

(6)
dm

mm

m
*
e

H

H

+−−−

−−−+

−−−=
−

βαθωϕ

αθωϕβαθωϕ

βαθωϕβωω
ββ

411

141

222

22
1

44
22

1
22

1
236

y

Ii
x

Ii
z

zxz

I

eIeI

IIIt
zz

 

where 

 

    αθωϕω sinsinm 22
1

3 = .                    [15] 

 

Now, we make some approximations as follows under the condition that 

the angles θ and α are small.  Since the static term  is regarded as an 

unperturbed Hamiltonian in this reference frame, the third and the fourth terms 

showing the interactions of the spin system with the oscillating fields along the 

static field can be neglected.  The fifth and the sixth terms indicate the 

interactions with the field that rotates inversely with respect to the nuclear 

precession around the second effective field  and with a very weak 

oscillating field, respectively.  Therefore, these time-dependent terms are 

negligible even if ,  Thus, the most probable resonance is produced 

by the second term when . 

zI*
eω−

γω /*
e

γω /*
e

*
eωω ≅24

*
eωω ≅22

  We mainly consider the case 

*
eωω =22 .                         [16] 

 

We may call the resonance a TQ resonance because ω2 satisfying Eq.[16] 
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becomes 13
1ω  at the limit of 0=mϕ .  Hereafter, ω2 satisfying Eq.[16] is 

denoted by ω20.  The explicit expression of ω20 is complicated.  The ratio 

201 ωω /  is obtained approximately from Eq.[16], using a mathematical 

computer program “maple 7”, as 

 

421

512
9

8
33 mm ϕϕ

ω20

ω
−−= .             [17] 

 

The second and the third terms in Eq.[17] present the shift of ω20 from ω1/3 

(corresponds to Δ/3 in Fig.1).  Equation [17] is consistent with theoretical 

results derived by Ahmad and Bullough (8) and Swain (9).   

    The effects of the TQ resonance are described with the following static 

Hamiltonian in the third reference frame rotating at 202ω  around the second 

effective field ,  γω /*
e

 

)(
d7

7
3 HH +−= xIω ,             [18] 

 

which is obtained by transforming with )exp( zIiU β26 −= , where (7)
dH is the 

time-independent part of .  We neglect the counter rotating component of 

the resonant oscillating field in the second term in Eq.[14] and the oscillating 

terms of .  The third rotating frame rotates triply with respect to the 

original rotating frame as illustrated in Fig.2.  We here consider the angles   

ξ

(7)
dH

(7)
dH

x  , ξy and ξz that the x-, the y- and the z-axes of the triply rotating frame 

make with the field ω1/γ, where the x- and the z-axes are taken along the 

transverse field γω /3  and the second effective field , respectively.  γω /*
e
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(These axes are denoted by x3, y3 and z3 in Fig.2).  The field ω1/γ is parallel to 

the z-axis of the original rotating frame (denoted by z1).  Since the angle ξx is 

not so different from π/2 for the small values of θ and α, the nutation of the 

magnetization initially along the field ω1/γcan be sufficiently caused around 

the transverse field 3ω /γ(the TQ nutation) and observed through the oscillation 

of the component Mz of the magnetization along the field ω1/γ in the original 

rotating frame, if the field γω /3  is large enough compared with the local field 

due to (7)
dH .  

 However, the time development of  Mz (t) includes higher frequency 

oscillations because the anglesξr’s (r=x,y,z) depend on time as seen from Fig.2.  

The angle ξz fluctuates at the frequency 2ω20 owing to the rotation of the 

second effective field , where the rotation of the first effective field ωγω /*
e e/γ 

does not affect on the fluctuation of ξz because it rotates at the constant angle 

θaround the z1-axis.  Therefore, the angleξx fluctuates by virtue of the 

fluctuation ofξz and the rotation of the field γω /3  at 2ω20 around , and 

as a result,  M

γω /*
e

z (t) oscillating at ω3 fluctuates with frequencies 2ω20 and 4ω20.   

The time development of Mz (t) is calculated with 

 

         [19] )},()()()()({Tr)( tVeVVetVItM titi
zz 77 11 000 HH −−−= ρ

 

where , and 23456 UUUUUtV =)(

 

     ,                          [20] )(Tr/)()( 2010 zzz IMI+=ρ

 

which is the initial density matrix of the spin system in the original rotating 
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frame under the high temperature approximation.  In the calculation of Mz (t), 

we replace )(
d

7H  by its secular part  as usual, which is the static part of †
dH

tIitIi xx ee 33 7 ωω )(
dH− .  Although the explicit expression of Mz (t) is complicated, 

we can express it in a compact form as  

 

[21]     )],sin()(cos)cos()()[cos()(sin)(        
        )(cos)(cos)()(

ψωξψωξξ
ξξ

+++Γ+

=

tttttM
tMtM

yzxz

xxzz

3300
00

 

 

using the relation, 

 

zzyyxxz ItItIttVItV )(cos)(cos)(cos)()( ξξξ ++=−1 ,      [22] 

 

where, 

 

                   [23] 
).(cos/)(costan

),(Tr/}{Tr)( dd

00

2

zy

zz
ti

z
ti IIeIet

ξξψ =
=Γ − †† HH

 

The validity of Eq.[22] is understood by noting that Ir ’s (r=x,y,z) in the right- 

hand side of Eq.[22] are the spin operators in the triply rotating frame, whereas 

Iz between the operators V and V-1 in the left-hand side is in the original rotating 

frame.  

The first term in Eq.[21] shows the behavior of the component of the 

magnetization )(cos)( 00 xzM ξ  along the transverse field γω /3  (the TQ 

spin-locked magnetization) and the second one that of the component 

perpendicular to γω /3  ])(sin)([ 00 xzM ξ .  The values of )(cos 0rξ ’s (r=x,y,z) 
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obtained from Eq.[22] depend onθ, α and ϕ .  The angles θ and α depend 

on mϕ  and ω1/ω20 as seen from Eqs. [9] and [13], and the resonance condition 

[16] presents the relation between mϕ  and ω1/ω20 (see Eq.[17]).  Therefore, 

the angles θ and α at the exact resonance depend only on mϕ , and the 

values of cosξr(0)’s are determined only by mϕ  and ϕ .  Rearranging the right- 

hand side of Eq.[21] with the explicit expressions of cosξr(t)’s, we can see that 

the time development of  Mz (t) consists of seven simple harmonic oscillations 

and a static term.  An example of the theoretical time development of Mz (t) is 

shown in Figs.3, which is obtained at 0=ϕ .  The leftmost line of the Fourier 

spectrum in the lower figure corresponds to the TQ nutation and the other ones 

the higher frequency oscillations.  The oscillations corresponding to the 

leftmost line (at ω3) and four weak lines (at 2ω20±ω3 and 4ω20±ω3) come from 

the second term of Eq.[21], and therefore, decay according to Γ(t).  On the 

other hands, the oscillations corresponding to the strong lines at 2ω20 and 4ω20 

originate in the first term of Eq.[21], which do not show the decay due to Γ(t).  

Although the oscillation signal in Figs.3 is at the exact resonance, Mz (t) includes 

a small static magnitude due to the static term in the first term of Eq.[21]. 

We next comment on the dipole Hamiltonian (7)
dH .  The calculation of 

(7)
dH  with the well known tensor operators T2q (q=-2～2) (3) leads to the result 

 

∑ ++−+−= )]()()([(7)
d kxjzkzjxkyjykxjxkjkzjzjk IIIICIIIIBIIIIAD 3H ,  [24] 

 

with 
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).cos(cossin        

)sin(sin)cos(sin)cos(

),sin)(sinsin(sin)cos)(cos(

,sin)sin(sin)cos)(cos(

ααθ

ααθαθ

ααθθαθ

αθθαθ

−−

−+−−+=

−−−−−−=

++++−=

22
8
3

221
32
3221

32
9

2222
32
3121

32
3

222
16
3231231

32
1

2

2

C

B

A

  [25] 

 

The secular part of †
dH (7)

dH  and the nonsecular part †‡
d

)(
dd HHH −≡ 7  are 

given by 

 

 ∑ −−= )()(d kjkxjxjk IIIIDAB 32
1†H ,    [26] 

 

and 

 

    ∑ ++−+−= )]())(([d kxjzkzjxkzjzkyjyjk IIIICIIIIBAD 32
1‡H .   [27] 

 

The coefficient (B-A)/2 is equivalent to K in a previous work.(4)  The coefficients 

A, B and C are also determined only by mϕ under the condition of the exact 

resonance.  At rad .m 163221≅ϕ , A = B, namely the secular part vanishes, where  

mϕ  at which A = B is denoted by m0ϕ .  The value of B is almost 0 in the range of 

mϕ =0 to 1.5 rad.  Therefore, at m0ϕ , the value of |3A+B|/2 is also nearly equal 

to 0 ( ) and the nutation decay is essentially due only to the second 

term of  with the coefficient |C|=0.23079. 

310442 −×≅ .

‡
dH

 

3.  EXPERIMENTAL METHOD 
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 The experiment was performed with the RF field at the frequency ω0/2π = 

27 MHz on 19F nuclei in Teflon at room temperature, using home-made NMR 

equipment.  After the nuclear magnetization was aligned along the RF field by a 

standard spin-locking procedure (6), we applied the PM to the RF field using an 

LF oscillator (HP 33120A) with a function of burst modulation as illustrated in 

Fig.4.  The LF signal generated by the LF oscillator was fed to the phase 

modulator of the RF oscillator (ANRITSU MG443B) through the gated LF 

amplifier.  When the sample coil was tuned best, the smallest amplitude 

modulation (AM) at the frequency 2ω2 was produced in the RF field.  The 

amplitude of the AM was 5% or less of that of the RF field, but its effect on the 

TQ resonance phenomena could be quite neglected.  The degree of modulation 

index 2 mϕ was measured from an oscillation pattern observed by mixing two 

RF’s at the same frequency with and without the PM through a double balanced 

mixer (DBM).  

The TQ resonance phenomena were observed by plotting the magnitude of 

the Mz detected after the spin-locking pulse as a function of ω2 or the duration 

of the PM pulse.  The spin locking pulse is followed by a π/2 pulse with the 

same RF phase, after which a solid echo is induced.(14)  The magnitude of Mz is 

measured from the defocusing part of the solid echo signal.  When we change 

the duration of the PM, the delay time td of the PM pulse and the time margin tm 

of the RF field after the PM pulse are kept constant.  The durations of td and tm 

are about 300μs and 500μs, respectively, which are sufficiently long compared 

with the decay time of the conventional nutation around the RF field.  We 

applied the PM not only to the RF field but also to the reference signal for the 

phase sensitive detection.  We adopted two kinds of the methods for settling 
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down the RF phase after the PM pulse (see Fig.4).  In the method I [PM(I)], the 

RF phase is kept constant in order to detect the solid echo signal at the RF 

phase just after the PM pulse.  By this method, the time developments of Mz(t) 

are observed in the original rotating frame and can be compared with the 

theoretical results.  In the method II [PM(II)], we gradually change the RF phase 

to zero in a duration of about 100 μs.  We used the method II for the 

measurements of nutation decay times because it considerably decreases the 

higher frequency oscillations superposed on the nutation signal.   

The intensity of the RF field was adjusted mainly so that kHz / 6521 =πω  

by measuring the center frequency of the usual rotary saturation curve (15) with 

a weak LF field, where ω2 was varied under the conditions of the constant 

amplitude of the LF field γωϕ /m 22  and the constant duration of the PM pulse 

( 3ms).  The resonance frequency ω≅ 20/2π  was measured from the TQ 

saturation curve observed for the relevant amplitude of the LF field with a PM 

pulse of the duration of about 4ms.  We used an averaging method similar to 

that used in a previous work (16) to reduce the contribution of the higher 

frequency oscillations to the TQ saturation curve.  In case a small fluctuation 

appeared on the saturation curve due to the higher frequency oscillations and 

the tail of the transient nutation signal, we removed it with a computer program 

of an FFT filter.  The circles in Fig.5 show the experimental values of ω20 thus 

obtained for ω1/2π=65 kHz, which are in good agreement with the theoretical 

ones (solid line) calculated with Eq.[16] or Eq.[17].  

  A 300-W RF amplifier (THAMWAY A55-3602MR) produced a strong RF 

field in the sample coil of 15-mm diameter and 18-mm length.  A sample whose 

volume was about 1/80 of that of the sample coil was used to reduce the effect of 

 - 16 - 



the inhomogeneity of the RF field.   

 

 

4.  EXPERIMENTAL VERIFICATIONS AND DISCUSSION 

(1) TQ nutation 

 

  The experimental verification of the time development of  Mz (t) in Figs.3 is 

shown by the top and middle figures of Figs.6.  The Fourier spectrum of time 

development (the middle figure) is in good agreement with the theoretical one if 

the lines near ω20 and 3ω20 are ignored.  However, these unexpected lines are 

not negligibly small.  It cannot be considered that these lines are due to the 

oscillating terms neglected in Eq.[14], because their frequencies are 2ω20 or 4

ω20.  The most probable cause of these lines is the mixing of Mz with the 

transverse component (perpendicular to Mz) in the original rotating frame.  The 

time development of Mx, for example, is described by the equation modified from 

Eq.[21] by replacing only the time-dependent angles ξr(t)’s (r=x,y,z) by the 

angles σr(t)’s defined by  

 

zzyyxxx ItItIttVItV )(cos)(cos)(cos)()( σσσ ++=−1 .       [28] 

 

The angleσr(t), which is the angle between the r-axis in the triply rotating frame 

and the x-axis in the original rotating frame, is under the influence of the 

rotation of the first effective field ωe/γ.  Therefore, the time development of Mx 

consists of the oscillations around ω20, 3ω20 and 5ω20.  The same holds for My.  

However, the transverse component should almost disappear during the time 
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margin tm of the RF pulse.  Probably, Mz is mixed with a part of the transverse 

component by a momentary turbulence of the RF phase at the end of the PM 

pulse.  The bottom figure of Figs.6 is the Fourier spectrum of the theoretical 

time development of Mz mixed with the magnitude of 0.2Mｘ, the pattern of which 

resembles the experimental one very well.  

Equation [21] and also the corresponding equations for Mx and My indicate 

that the initial phase ϕ  affects largely the amplitudes of the respective simple 

harmonic oscillations through the angleξx(0).  From Eq.[22], the 

representative values of ξx (0) are obtained as )(/ αθπ +−2 at 0=ϕ , 

θπ +2/  at 4/πϕ =  and )(/ θαπ −+2  at 2/πϕ = .  At 0=ϕ , the value of 

cosξx (0) is the largest, and therefore, the amplitudes of the oscillations exactly 

at nω20 (n=1～5) are maximum.  Actually, the intensities of the center lines at  

2ω20, 3ω20 and 4ω20 in Figs.6 were larger than those observed for any other 

degree of ϕ .  (We could not confirm such ϕ  dependences for the lines at ω20 

and 5ω20 because of their weak intensities.)  As expected from the 

representative values of ξx (0), ξx (0) becomes π/2 at a value of ϕ  between 0 

and π/4.  The disappearances of the higher frequency oscillations exactly at n

ω20 (n=1～4), indicating that ξx (0)=π/2, were observed at about 6/πϕ =  for 

=mϕ 1.07 rad.  The other characteristics of the higher frequency oscillations 

were also experimentally confirmed.  For example, when the lines exactly at n

ω20 (n=1～4) became strong, the other ones, including that at ω3, became 

weak.     

The ϕ  dependence of ξx (0) enables us to reduce the higher frequency 

oscillations by averaging the several magnitudes of  Mz (t) obtained at different 

values of ϕ .(16)  However, any averaging method with the phase change 
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cannot completely eliminate them because the time development of Mz (t) 

includes the components of the oscillations independent of ϕ  as is recognized 

by a more detailed analysis of Eq.[21].  When we pay attention to the TQ 

nutation itself, it is convenient to use the PM(II).  The upper figure of Figs. 7 

shows an example of the TQ nutation signal observed by the PM(II).  We cannot 

show how the PM(II) considerably decreases the higher frequency oscillations, 

but can infer that the component of the magnetization along the second effective 

field  changes into that along the RF field fairly smoothly owing to the tail 

of the PM pulse. 

γω /*
e

When the frequency ω２ slightly shifts from ω20, the Hamiltonian  is 

modified as  

7H

 

)(
d7

7
3 HH +−−= xz II ωδ ,           [29] 

 

with .  In this case, the TQ nutation is caused around the effective 

field 

22ωωδ −= *
e

γωδ /2
3

2 +  at the angle η with the transverse field ω3/γ

( 3ωδη /tan = ).  If the frequency ω2 varies under the condition of the constant 

amplitude of the LF field, δ is approximately given by ))(/( 2202012
1 3 ωωωω −+ , 

which is roughly three times as large as the difference ω20-ω2.  The time 

development of Mz (t) produced under the Hamiltonian in Eq.[29] is also 

described by Eq.[21] by replacing ξr (r=x,y,z) byξ#r, ω3 by 2
3

2 ωδ +  and 

by the secular part of †
dH )exp()exp( (7)

d
(7)#

d yy IiIi ηη HH −= , where the angles 

ξ#r(t)’s satisfy the relation 

zzyyxxyzy ItItItIitVItVIi )(cos)(cos)(cos)exp()()()exp( ### ξξξηη ++=− −1 .  [30] 
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We here ignore the higher frequency oscillations around ω2 , 3ω2 and 5ω2 for 

simplicity.  The dependences of the initial angleξ#x(0) on ηϕ  and  indicate that

ξ#x(0) can vary almost over the range of π rad by changing ηϕ  and .  At 0=ϕ , 

, and therefore, ξηθαπξ −−−= 20 /)(#
x #x(0) can be zero for a certain value of η.  

The upper figure of Figs.8 shows the experimental time development of  Mz (t) 

observed for , which indicates that almost the whole magnetization is 

along the field 

00 ≅)(#
xξ

γωδ /2
3

2 +  in the triply rotating frame, where δ is comparable 

to ω3 (see the figure caption of Figs.8).  It is possible to measure the relaxation 

time in the quadruply rotating frame by eliminating the higher frequency 

oscillations with a low pass filter for example.  The lower figure of Figs.8 

indicates the experimental result obtained for .  The oscillation 

appears to be a nutation signal at exact resonance though it is the phenomenon 

at the TQ off-resonance.   

20 /)(# πξ ≅x

 

 

(2) Contribution of the dipole interaction to the TQ nutation decay 

 

For this study, the nutation was observed by averaging four magnitudes of 

Mz (t) observed at 8/πϕ n=  (n=0,1,2,3) by the PM(II), by which the higher 

frequency oscillations were almost eliminated.  We measured the decay times T 

for various values of mϕ  at ω1/2π= 60, 65 and 70 kHz by assuming an 

exponential decay ( ) as shown in Fig.9, and confirmed that the Tte /−
mϕ  

dependence of T is consistent with that of the coefficient |B-A|/2 independent 

of ω1/γ, and also, with the experimental result in Fig.2 in Ref(4).  The decay 

times T around m0ϕ  were much longer than those of the SQ magic angle rotary 
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echo observed in the laboratory frame (17) and of the SQ magic angle nutation 

observed in the same original rotating frame as that of the TQ nutation.  The 

longer decay time of the TQ nutation is explained by the differences in the 

coefficients of the nonsecular parts of the dipole Hamiltonian (4).  The 

corresponding dipole Hamiltonians in the SQ resonances under the rotating 

wave approximation are also of the same forms as the right-hand sides of 

Eqs.[24], [26] and [27].  The coefficients BA +32
1  and C  of the nonsecular 

parts are 1 and 2  for the laboratory frame, and 1/2 and 21/  for the 

rotating frame, which are larger than the corresponding values ( nd 

0.23079 ) of the TQ resonance. 

310442 −×.  a

We finally consider the more general case including TQ off-resonance with 

(7)#
dH .  The Hamiltonian (7)#

dH  is also written in the same form as Eq.[24] 

with the coefficients A#, B# and C# corresponding to A, B and C in (7)
dH .  

Therefore, the secular and the nonsecular parts of (7)#
dH  are given by the 

expressions similar to Eqs.[26] and [27].  The coefficient of the secular part is  

 

    .sincos)()()( ## ηη 223 2
1

4
1

4
1

2
1 CABBAAB +−++=−        [31] 

 

We define the average angle #
xξ of  by )(# txξ

 

 
.sincoscoscos)(cossin           

)(coscos av
##

ηαθηαθ

ξξ

+−=

>≡<

12
1

txx      [32] 

 

We assume that δ＜0 at an infinitesimal value mϕΔ of mϕ .  Since the value of 

#cos xξ  is a function only of ω1/ω2 and mϕ , and the condition of A# = B# gives a 
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relation betweenω1/ω2 and mϕ , the angle #
xξ  is determined only by mϕ  

under the condition that A# = B#, which is denoted by ξ*x,.  We here call the 

angleξ*x  a magic angle in the triply rotating frame.  We can easily see from 

the Eqs.[25], [31] and [32] that at mm ϕϕ Δ= , the coefficients B and C are zero, 

and the magic angleξ*x becomes equal to the well-known magic angle 

)/(cos 311 −− , where θθ ≅sin  and αα ≅sin .  As mϕ  increases, the magic 

angle varies as shown in the top of Figs.10.  The middle and the bottom parts of 

Figs.10 indicate that the longest decay time of the TQ nutation is expected 

almost at the exact resonance (δ=0), and then, the magic angle is near π/2.   

In the case ofδ＞0 at mϕΔ , the magic angle becomes )/(cos 311−  at 

mϕΔ .  However, this kind of magic angle is not so important for the narrowing 

because the value of δ/2π in this case monotonously increases as mϕ  

increases, and is more than 5 kHz even in the range of mϕ  in which the 

coefficients of the nonsecular parts become comparably small.  

 

 

5. CONCLUDING REMARKS 

 

The present paper verifies the theory in Sec.2 describing the TQ nutation 

and the narrowing effect in the two-level spin system.  The time development of 

the spin-locked magnetization Mz (t) indicates the TQ nutation signal 

accompanied by the higher frequency oscillations generally consisting of the six 

simple harmonic oscillations.  The higher frequency oscillations owe to the 

fluctuation of the angleξ#x(t) between the transverse field γωδ /2
3

2 +  and the 

RF field.  The initial angle ξ#x(0) at ϕ =0 can become 0 for an appropriate value 
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of δ, and then, the whole magnetization is spin-locked by the field γωδ /2
3

2 +  

in the triply rotating frame.  It is expected that the decay of the magnetization 

along γωδ /2
3

2 +  presents the relaxation time in the quadruply rotating frame. 

The modulation index mϕ2  of the PM is the key parameter controlling the 

conditions of the TQ resonance and the TQ nutation decay.  At the exact 

resonance, the value of mϕ  determines alone the angles θ and α, the ratios 

201 ωω / and 203 ωω / , and the coefficients A, B and C in (7)
dH .  Therefore, the 

secular part of (7)
dH  vanishes at the particular value of m0m ϕϕ = , which is 

about 1.16322 rad.  The decay time measured around m0ϕ  is much longer 

than those of the SQ magic angle rotary echo observed in the laboratory frame 

and of the SQ magic angle nutation observed in the same rotating frame as that 

of the TQ nutation under the condition that the rotating wave approximation is 

valid.  The longer decay time of the TQ nutation is explained by the differences 

in the coefficients of the nonsecular parts of the dipole Hamiltonian.   

The disappearance of the secular part is also possible at TQ off-resonance.  

We can define the magic angle in the triply rotating frame with the average angle 

ξ*x at which the secular part vanishes.  At mm ϕϕ Δ= , the magic angle ξ*x is 

equal to the well-known value )/(cos 311 −−  for δ＜0 at mϕΔ  or 

)/(cos 311−  for δ＞0 at mϕΔ .  The magic angle in the case of δ＜0 at mϕΔ  

is nearly equal to π/2 at the TQ exact resonance and important for the 

narrowing, but the other case is not so important.   

The magic angle is in principle possible in the SQ exact resonance under 

the influence of the counter-rotating component.  A theoretical mϕ  

dependence of the coefficient of the secular part of the relevant dipole 

Hamiltonian under the SQ exact resonance shows that the secular part 
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disappears at 6331.m ≅ϕ  rad.  However, this is not practical because the 

strength of the LF field γωϕ /m 2  for this value of mϕ  becomes about ten times 

as large as that of the RF field. 

The narrowing effect of the TQ nutation will be useful if the TQ nutation 

signal is observed by one shot with a multiple pulse method, for example. 
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FIGURE CAPTIONS 

 

FIG.1.  Energy level diagram of I=1/2 spin system illustrating the mechanism 

of the TQ resonance.  The TQ resonance is induced by three circularly polarized 

photons of the energy ω2 (in frequency units) which is nearly equal to one-third 

of the level spacing ω1.  Each of two photons corresponds to the normal 

rotating component of the oscillating field and the other to the counter-rotating 

component, in this case.  Δ indicates the amount of the resultant level shift, 

which is obtained from Eq.[17].  The right arrow means a single quantum 

transition by a circularly polarized photon ofω1. 

 

FIG.2.  Schematic illustration of the triply rotating frame.  The first effective 

field ωe/γ at the angle θ to the RF field along the z1 axis rotates at an 

angular frequency –ω20 around the RF field in the original rotating frame.  The 

second effective field ω＊
e/γ at an angle α to the field ωe/γrotates at 2ω20 

aroundωe/γ, and the transverse field ω3/γ causing the TQ nutation rotates 

at 2ω20 around ω＊
e/γ.  The notations ξx, ξy and ξz mean the angles that 

the x3, y3 and z3 axes of the triply rotating frame make with the RF field. 

 

FIGS.3.  Theoretical time development of Mz(t) produced during the PM and its 

Fourier spectrum.  The time development is obtained under the condition that

ω1/2π=65kHz, ω20/2π=25.41kHz, mϕ =1.057 rad and ϕ =0, using the 

exponential decay function with T=1.1ms.  The leftmost line in the lower figure 

corresponds to the TQ nutation frequency ω3/2π=1.98kHz.  Three lines 

around 50kHz are at the frequencies 2ω20 and 2ω20±ω3, and those around 
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100kHz at 4ω20 and 4ω20±ω3. 

 

FIG.4.  Operation for the experiments on the TQ resonance.  The top trace 

illustrates the standard pulse sequence for the spin locking followed by the π

/2 pulse with the same phase as the second pulse.  The last pulse is applied to 

detect a kind of solid echo signal.  The defocusing part of the echo signal is 

adopted as the magnitude of Mz.  The separation between the second and the 

last pulses corresponds to the dead time of the receiver amplifier (about 15μs).  

The middle and the bottom traces indicate the PM’s of the RF field.  The PM(I) 

and the PM(II) are used for the verification of the theory and the measurements 

of the decay times of the TQ nutation, respectively.   

 

FIG.5.  Dependences of the TQ resonance frequency ω20 on mϕ .  The circles 

show the experimental values of ω20.  The solid line is our theoretical result 

obtained with Eq.[17] for ω1/2π=65 kHz.  The curve is almost the same as 

that obtained from Eq.[16].  The broken and the dotted lines are the theoretical 

results by Ahmad and Bullough and by Swain, respectively.   

 

FIGS.6.  Experimental time development of Mz (top) and its Fourier spectrum 

(middle) corresponding to those in Figs. 3.  The leftmost line and the other lines 

in the middle figure indicate the TQ nutation frequency (1.95 kHz) and the 

frequencies of the higher frequency oscillations.  The experimental condition is 

ω1/2π=65kHz, ω20/2π=25.41kHz, ϕ =0 and mϕ =1.071 rad.  The lines 

around ω20 and 3ω20 that are not seen in Figs.3 are explained to be due to the 

oscillations of transverse magnetization.  The bottom figure shows the 
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theoretical Fourier spectrum corresponding to the experimental one, which is 

obtained by assuming that Mz is mixed with the magnitude of 0.2Mx in the 

original rotating frame at the end of the PM pulse. 

 

FIGS.7.  Experimental time development of Mz at the exact TQ resonance 

observed with PM( II) and its Fourier spectrum.  The experimental condition is 

ω1/2π=65.0kHz, ω20/2π=25.45kHz, ϕ =0 and mϕ =1.058 rad.  The nutation 

frequency measured is 2.02 kHz. 

 

FIGS.8.  Experimental time developments of Mz at TQ off-resonance.  The 

upper trace is the behavior of Mz observed under , where the 

experimental condition is ω

00 ≅)(#
xξ

1/2π=65.0kHz, ω20/2π=26.2kHz, ω2/2π=25.4 

kHz, ϕ =0 and mϕ =1.17 rad (at ω2/2π=25.4kHz).  The theoretically 

estimated values of δ/2π andω3/2π are 2.01 kHz and 2.57 kHz, respectively.  

The lower one is that under .  The experimental condition is ω20 /)(# πξ ≅x 1/2

π=65.0kHz, ω20/2π=26.26kHz, ω2/2π=25.80 kHz, ϕ =55 deg. and 

mϕ =1.15 rad (at ω2/2π=25.80 kHz).  The estimated values of δ/2π and ω

3/2π are 1.32 kHz and 2.62 kHz, respectively. 

 

FIG.9.  mϕ  dependences of the decay times T of the TQ nutations.  The circles, 

the triangles and the squares show the experimental values of T-1 measured at 

ω1/2π= 60, 65 and 70 kHz.  The solid line is the theoretical curve of |B-A|/2. 

The result that the decay times T around 0mm ϕϕ = (≅ 1.16322 rad) are not as 

long as is expected from the theoretical curve is mainly due to the influence of 

the dipole interaction represented by the nonsecualr part .   ‡
dH
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FIGS.10.  Theoretical mϕ  dependences of  and the coefficients of the 

nonsecular parts obtained under the condition that A

δξ   ,*
x

#=B# in the case of δ＜0 at 

mϕΔ .   The top and the middle figures indicate that at δ=0, 91.6 deg.  

The solid and the dashed lines in the bottom figure are the curves of |3A

≅*
xξ

#+B#|/2 

and |C#|, respectively.  
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