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EXTREMAL LORENTZIAN SURFACES WITH

NULL R-PLANAR GEODESICS IN SPACE FORMS

Kazuyuki Hasegawa∗ and Kouhei Miura

Abstract

We show a congruence theorem for oriented Lorentzian surfaces with horizontal

reflector lifts in pseudo-Riemannian space forms of neutral signature. As a corollary,

a characterization theorem can be obtained for the Lorentzian Boruvka spheres,

that is, a full real analytic null r-planar geodesic immersion with vanishing mean

curvature vector field is locally congruent to the Lorentzian Boruvka sphere in a

2r-dimensional space form of neutral signature.

1 Introduction.

To study minimal surfaces in a unit sphere, the twistor lift plays an important role. For

instance, Calabi [2] proves a rigidity theorem for minimal immersions of surfaces with

genus zero in Euclidean spheres using twistor lifts. An application of the rigidity result

shows that a minimal isometric immersion of the 2-sphere into a unit sphere is congruent

to the d-th standard immersion (also called the Boruvka sphere in the unit 2d-sphere) for

a positive integer d. As a result, Boruvka spheres have horizontal twistor lifts. Chern [4]

reinterprets Calabi’s work and investigates minimal 2-spheres in a unit sphere by using

the higher order osculating spaces and higher fundamental forms. We refer to Bryant

[1] also. One of the aims in this paper is to characterize Boruvka spheres in indefinite

pseudo-Riemannian geometry, using an indefinite version of twistor lifts.
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The Boruvka spheres with Lorentzian metric, a family of isometric immersions of

Lorentzian 2-sphere into the pseudo-Riemannian spheres are, via Wick rotations, con-

structed from the standard immersions of Riemannian 2-sphere in Ding and Wang [5] and

Miura [10]. These immersions have vanishing mean curvature vector fields, thus, these

are extremal. In this paper, we call these immersions the Lorentzian Boruvka spheres

(LBSs). We focus on the fact that the target spaces of the LBSs are always neutral.

Then it is natural that we use reflector lifts instead of twistor lifts. The notion of reflec-

tor lifts established on neutral pseudo-Riemannian manifolds is corresponding to that of

twistor lifts in Riemannian geometry. See Jensen and Rigoli [7] for details. We see that

extremal helical geodesic immersions (HGIs) from Lorentzian surfaces into a space form

have horizontal reflector lifts. Note that the LBSs have helical geodesics. As a property

of HGIs, we propose a notion of null r-planar geodesic immersions (PGIs). For a precise

definition, see Definition 4.1. We provide a congruence theorem for oriented Lorentzian

surfaces with horizontal reflector lifts. As an application of our congruence theorem, we

characterize the Lorentzian Boruvka spheres as extremal Lorentzian surfaces with null

r-planar geodesic.

The paper is organized as follows. In Section 2, we prepare a general theoretical

setting and basic equations for Lorentzian surfaces. Furthermore, we investigate extremal

Lorentzian surfaces by using their isotropic higher fundamental forms and furnish several

lemmas. In Section 3, we introduce the notion of reflector lifts. A congruence theorem

for oriented Lorentzian surfaces with horizontal reflector lifts is proved. In Section 4,

the definitions of HGIs and null r-PGIs are clearly stated. Moreover, based on [10], we

explain the construction of LBSs briefly. Finally, in Section 5, we investigate extremal

null r-planar geodesic immersions from Lorentzian surfaces of constant Gaussian curvature

and provide our main theorem.

2 Preliminaries.

Throughout this paper, all manifolds and maps are assumed to be smooth unless otherwise

mentioned. Let E be a vector bundle over a manifold M and Ep the fiber of E over a

point p ∈M . We write TM (resp. T ∗M) for the tangent (resp. cotangent) bundle of M .

For vector bundles E, E ′ overM , we denote the homomorphism bundle whose fiber is the

space of linear mappings Ep to E ′
p by Hom(E,E ′), and set End(E) := Hom(E,E). The

space of all sections of a vector bundle E is denoted by Γ(E). We denote the space of

E-valued 1-forms onM by ∧1(E) := Γ(T ∗M⊗E). Let φ : N →M be a smooth map and

E a vector bundle over M . The pull back bundle of E by φ is denoted by φ#E. In this

paper, a pair (E, gE) is a pseudo-Riemannian vector bundle if the bundle metric gE of E
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is nondegenerate of constant index. The set of all metric connections of E with respect

to gE is denoted by C(E, gE).

2.1 Basic definitions and equations.

In this subsection, we recall some basic definitions and equations for pseudo-Riemannian

manifolds and submanifolds. Let (M̃n
t , g̃) be an n-dimensional pseudo-Riemannian man-

ifold with nondegenerate metric g̃ of constant index t. We may denote (M̃n
t , g̃) by M̃n

t

for short. We say that M̃n
t is of neutral signature if n = 2t, and Lorentzian if n > 1

and t = 1. If there is no confusion, we omit the dimension and index, i.e., M̃ = M̃n
t . A

tangent vector X to M̃ is called spacelike if g̃(X,X) > 0 or X = 0, null if g̃(X,X) = 0

and X ̸= 0, and timelike if g̃(X,X) < 0.

Let Rn
t be the n-dimensional pseudo-Euclidean space of the index t with the flat stan-

dard metric. Let (x1, . . . , xn+1) be the standard coordinate on Rn+1. The n-dimensional

pseudosphere Sn
t (r) of the index t and the radius r > 0 is defined by

Sn
t (r) =

{
p ∈ Rn+1

t | −
t∑

i=1

(xi(p))2 +
n+1∑

j=t+1

(xj(p))2 = r2

}
.

Similarly, the n-dimensional pseudohyperbolic space Hn
t (r) of the index t and the radius

r > 0 is defined by

Hn
t (r) =

{
p ∈ Rn+1

t+1 | −
t+1∑
i=1

(xi(p))2 +
n+1∑

j=t+2

(xj(p))2 = −r2
}
.

The spaces Rn
t , S

n
t (r) and H

n
t (r) are of constant curvature 0, 1/r

2 and −1/r2 respectively.

We denote the space form of constant curvature c by Qn
t (c) which is one of Rn

t , S
n
t (r) or

Hn
t (r).

From now on, we provide the basic equations for isometric immersions in pseudo-

Riemannian geometry. For more details, we refer to [15, IV, pp.163–188] in the case

of Riemannian geometry. Let (M, g) be a pseudo-Riemannian submanifold in (M̃, g̃)

isometrically immersed by f . We denote the Levi-Civita connection of g̃ (resp. g) by ∇̃
(resp. ∇). The mean curvature vector field of M is denoted by H. If H = 0, then M

is called an extremal submanifold ([12, p. 299]). We often omit the symbol “f” for the

induced objects of the immersion f if there is no confusion for the simplicity. We define

∇̃(X1) := X1, ∇̃(X1, X2) := ∇̃X1X2 and inductively for i ≥ 3

∇̃(X1, X2, . . . , Xi) := ∇̃X1∇̃(X2, . . . , Xi), and

∇̃(X1, X2, . . . , Xi)(p) := ∇̃X1p∇̃(X2, . . . , Xi),
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where Xk ∈ Γ(TM) (1 ≤ k ≤ i) and p ∈ M . We define the ith osculating space of f by

Osc0(f) :=M × {0} ⊂ f#TM̃ and for any positive integer i,

Osci(f) :=
∪
p∈M

Oscip(f), where

Oscip(f) := Span{∇̃(X1, . . . , Xk)(p) | Xl ∈ Γ(TM), 1 ≤ l ≤ k ≤ i}.

Since f is an immersion, Osc1(f) = TM . Therefore, there is the unique integer d ≥ 1

such that

• Osc0(f) ⫋ Osc1(f) ⫋ Osc2(f) ⫋ · · · ⫋ Oscd(f),

• Osci(f) is a smooth subbundle of f#TM̃ and the induced metric is nondegenerate

of constant index for each i = 1, 2, . . . , d,

• Oscd+1(f) = Oscd(f) or Oscd+1(f) is not a pseudo-Riemannian subbundle (i.e., the

induced symmetric tensor in Oscd+1(f) from TM̃ is degenerate or Oscd+1(f) is not

a smooth subbundle of f#TM̃).

If f satisfies the three conditions above, we say that f is nicely curved of order d. For

i = 0, 1, . . . , d− 1, we can take the ith normal space N i(f) such that

Osci+1(f) = Osci(f)⊕N i(f),

where N i(f) is the orthogonal complement subbundle of Osci(f) in Osci+1(f). We denote

N i(f) by N i for short. Because of Osc0(f) = M × {0} and Osc1(f) = TM , we have

N0 = TM . Moreover we put Nd := Oscd(f)⊥ which is the orthogonal complement

subbundle of Oscd(f) in f#TM̃ . Notice that Nd need not be contained in the osculating

space Osck(f) for an integer k > 0. Therefore we often need separate arguments for

objects related to the highest normal bundle. Then we obtain

f#TM̃ =
d⊕

i=0

N i.

We denote the induced symmetric tensor in N i from g̃ by gi. Note that g = g0, g1, . . . , gd

are pseudo-Riemannian, since f is nicely curved of order d.

For a vector ζ ∈ f#TM̃ , we denote theN i-component of ζ by (ζ)N
i
. For i = 0, 1, . . . , d,

we define the (i+ 1)st fundamental form αi+1 by

αi+1(X1, . . . , Xi+1) := (∇̃(X1, . . . , Xi+1))
N i

.

By definitions, we can see that α1 = idTM ∈ Γ(EndTM), N i = Span (Imαi+1) for

i = 0, 1, . . . , d− 1 and Nd ⊃ Span (Imαd+1). We note that α(X,Y ) = α2(X, Y ), where α

is the usual second fundamental form and X,Y ∈ Γ(TM). The following lemma is proved

in a way similar to that in [15, pp.171–172].
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Lemma 2.1. For a section ζi ∈ Γ(N i) (i = 0, 1, . . . , d) and X ∈ TpM ,

∇̃Xζ0 ∈ N0
p ⊕N1

p ,

∇̃Xζi ∈ N i−1
p ⊕N i

p ⊕N i+1
p (i = 1, . . . , d− 1),

∇̃Xζd ∈ Nd−1
p ⊕Nd

p .

By Lemma 2.1, we can define for ζi ∈ Γ(N i) and X ∈ Γ(TM),

Si
Xζi := −(∇̃Xζi)

N i−1

(i = 1, 2, . . . , d),

∇i
Xζi := (∇̃Xζi)

N i

(i = 0, 1, . . . , d),

T i
Xζi := (∇̃Xζi)

N i+1

(i = 0, 1, . . . , d− 1).

It is easy to check that ∇0 = ∇, T 0
XY = α2(X, Y ) for any X, Y ∈ Γ(TM) and

Si ∈ ∧1(Hom(N i, N i−1)), ∇i ∈ C(N i, gi), T i−1 ∈ ∧1(Hom(N i−1, N i))

for i = 1, 2, . . . , d. Consequently we obtain the Frenet formulas of f :

∇̃XY = ∇0
XY + T 0

XY,(2.1)

∇̃Xζi = −Si
Xζi +∇i

Xζi + T i
Xζi (i = 1, 2, . . . , d− 1),(2.2)

∇̃Xζd = −Sd
Xζd +∇d

Xζd,(2.3)

whereX, Y ∈ Γ(TM) = Γ(N0) and ζi ∈ Γ(N i) for i = 1, 2, . . . , d. We note that (2.1) is the

(usual) Gauss formula, and S1 is the (usual) shape operator restricted to the first normal

space N1. We denote the normal connection by∇⊥. Then we obtain∇⊥
Xζ1 = ∇1

Xζ1+T
1
Xζ1

for any X ∈ Γ(TM) and ζ1 ∈ Γ(N1). Moreover we have gi−1(ζi−1, S
i
Xζi) = gi(T i−1

X ζi−1, ζi)

for i = 1, 2, . . . , d. We define the differentiation of N i-valued (0, k)-tensor field P by

(Di
XP )(X1, . . . , Xk) := ∇i

X(P (X1, . . . , Xk))−
k∑

j=1

P (X1, . . . ,∇XXj, . . . , Xk).

By a straightforward calculation, we can see the following lemma.

Lemma 2.2. Let f : M → Qn
t (c) be an isometric immersion into a space of constant

curvature c. If f is nicely curved of order d, then the following equations hold.

R(X, Y )Z = c (⟨Y, Z⟩X − ⟨X,Z⟩Y ) + S1
XT

0
YZ − S1

Y T
0
XZ,(2.4)

Ri(X, Y )ζi = T i−1
X Si

Y ζi − T i−1
Y Si

Xζi + Si+1
X T i

Y ζi − Si+1
Y T i

Xζi(2.5)

(i = 1, 2 . . . , d− 1),

Rd(X,Y )ζd = T d−1
X Sd

Y ζd − T d−1
Y Sd

Xζd,(2.6)

(Di−1
X Si)Y ζi = (Di−1

Y Si)Xζi (i = 1, 2, . . . , d),(2.7)

(Di+1
X T i)Y ζi = (Di+1

Y T i)Xζi (i = 0, 1 . . . , d− 1),(2.8)

Si−1
X Si

Y ζi = Si−1
Y Si

Xζi (i = 2, 3, . . . , d),(2.9)

T i+1
X T i

Y ζi = T i+1
Y T i

Xζi (i = 0, 1, . . . , d− 2),(2.10)
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where X, Y, Z ∈ Γ(TM), ζi ∈ Γ(N i), and R(= R0) and Ri are the curvature tensor of the

Levi-Civita connection ∇(= ∇0) of M and ∇i respectively.

Lemma 2.1, (2.10) and the symmetry of T 0 show the following corollary.

Corollary 2.3. Under the same assumption as in Lemma 2.2, we have

(2.11) αi+1(X1, . . . , Xi+1) = T i−1
X1

αi(X2, . . . , Xi+1) = T i−1
X1

T i−2
X2

· · ·T 0
Xi
Xi+1,

where Xj ∈ Γ(TM) for j ≤ i+ 1. Moreover, αi+1 is (i+ 1)-symmetric for i ≤ d.

By virtue of Corollary 2.3, for the simplicity, we are allowed to write

αi+1(Xk, Y l) := αi+1(X, . . . , X︸ ︷︷ ︸
k

, Y, . . . Y︸ ︷︷ ︸
l

)

for X, Y ∈ Γ(TM) and k + l = i+ 1.

The tensor field T d−1 ∈ ∧1(Hom(Nd−1, Nd)) closely relates to the reduction of the

codimension of isometric immersions which are nicely curved of order d.

Lemma 2.4. Let f :M → Qn
t (c) be an isometric immersion which is nicely curved of

order d. If there exists an open piece U of M such that T d−1 is vanishing on U , then there

exists a totally geodesic pseudo-Riemannian submanifold P of Qn
t (c) such that f(U) ⊂ P .

Proof. By the assumption, the subbundle ⊕d−1
i=0N

i of f#TQ is parallel with respect

to ∇̃ on U , where TQ is the tangent bundle of Qn
t (c). Putting P := expQ (⊕d−1

i=0N
i|U), we

get this lemma, where expQ is the exponential map of Qn
t (c).

2.2 Extremal Lorentzian surfaces.

Let (V, ⟨ , ⟩) be a Lorentzian vector 2-space and (ξ, η) a null basis of V such that ⟨ξ, ξ⟩ =
⟨η, η⟩ = 0 and ⟨ξ, η⟩ = µ ̸= 0. In this paper, we say that the signature of the null basis

(ξ, η) is positive (resp. negative), if µ > 0 (resp. µ < 0). For any vector v ∈ V , we have

(2.12) v =
1

µ
⟨v, η⟩ξ + 1

µ
⟨v, ξ⟩η.

It is easy to show the following lemma.

Lemma 2.5. Let (E, gE) be a Lorentzian plane bundle over a manifold M and ∇E ∈
C(E, gE). Let (ξ, η) be a local frame field of E such that gE(ξ, ξ) = gE(η, η) = 0 and

gE(ξ, η) is nonzero constant. Then there exists a local 1-form ρE on M such that

∇Eξ = ρE ⊗ ξ, R∇E

(X,Y )ξ = dρE(X, Y )ξ,

∇Eη = −ρE ⊗ η, R∇E

(X, Y )η = −dρE(X, Y )η.
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Proof. Put λ := gE(ξ, η) ∈ R and ρE(X) := (1/λ)gE(∇E
Xξ, η). Using (2.12), we have

∇E
Xξ =

1

λ
gE(∇E

Xξ, η)ξ +
1

λ
gE(∇E

Xξ, ξ)η = ρE(X)ξ.

It is easy to obtain the other equations.

An endomorphism JE ∈ Γ(End (E)) is called a parahermitian structure of (E, gE), if

JE satisfies (JE)2 = idE and gE(JE(ζ1), J
E(ζ2)) = −gE(ζ1, ζ2) for any ζ1, ζ2 ∈ Γ(E).

Local null frames (ξ, η) on U and (ξ′, η′) on U ′ have the same signature, if ⟨ξ, η⟩⟨ξ′, η′⟩ >
0 on U ∩ U ′ ̸= ∅. Moreover we assume that (ξ, η) and (ξ′, η′) have the same orientation.

Then we note that(
ξ′ η′

)
=
(
ξ η

)[√⟨ξ′, η′⟩/⟨ξ, η⟩eθ 0

0
√
⟨ξ′, η′⟩/⟨ξ, η⟩e−θ

]
on U ∩ U ′,

where θ is a smooth function on U ∩ U ′.

Lemma 2.6. Let (E, gE) be a Lorentzian plane bundle over a manifold M and ∇E ∈
C(E, gE). If E is orientable, then E admits a ∇E-parallel parahermitian structure of

(E, gE).

Proof. Let (ξ, η) be an oriented local null frame on U ⊂M of (E, gE). We can define

JE ∈ Γ(End (E)) by JE(ξ) := ξ, JE(η) := −η. Let (ξ′, η′) be another oriented local null

frame on U ′ (U ∩ U ′ ̸= ∅) with the same signature of (ξ, η). Defining the endomorphism

JE′
of E on U ′ by JE′

(ξ′) := ξ′, JE′
(η′) := −η′, we can see that JE = JE′

on U ∩ U ′.

Since E is orientable, JE is well-defined onM . Taking a connection form ρE as in Lemma

2.5, we see that JE is a ∇E-parallel parahermitian structure of (E, gE).

From the proof above, we note that oriented null frames with the same signature define

the same parahermitian structure JE. In particular, when the parahermitian structure

JE is defined by oriented null frames with positive (resp. negative) signature, we call JE

positive (resp. negative).

Let (M2
1 (K), g) be an oriented 2-dimensional Lorentzian surface of the Gaussian cur-

vature K. Let (e1, e2) be an oriented local orthonormal frame of M such that g(ei, ej) =

(−1)iδij, where δij is the Kronecker delta. We put

(2.13) e+ :=
1√
2
(e1 + e2), e− :=

1√
2
(−e1 + e2),

which satisfy g(e±, e±) = 0 and g(e+, e−) = 1, hence (e+, e−) is a local null frame with

positive signature and the same orientation to (e1, e2). Then, by Lemma 2.5, there exists

a local 1-form ρ on M such that

(2.14) ∇e± = ±ρ⊗ e±, dρ(e+, e−) = K,
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where ∇ is the Levi-Civita connection of M . By virtue of Lemma 2.6, we can take a

∇-parallel parahermitian structure J ∈ Γ(End(TM)) such that J(e±) = ±e±. We call

this endomorphism J the canonical paraKähler structure on (M2
1 (K), g).

Let f :M2
1 (K) → Qn

t (c) be an isometric immersion. Then the mean curvature vector

field H of f is

H =
1

2
(−α(e1, e1) + α(e2, e2)) = α(e+, e−),

where (e1, e2) and (e+, e−) are local frames on M in (2.13). Thus, f is extremal if and

only if α(e+, e−) = 0.

Lemma 2.7. Let f :M2
1 (K) → Qn

t (c) be an extremal isometric immersion. Then,

(2.15) (D1
e−α

2)(e2+) = 0, (D1
e+
α2)(e2−) = 0.

Moreover, if f is nicely curved of order d, then we have

(2.16) αi+1(ek+, e
l
−) = 0 (i = 1, 2, . . . , d, k + l = i+ 1, k, l ≥ 1).

Proof. By (2.8), we have

(D1
e−α

2)(e2+) = ∇1
e−α

2(e2+)− 2ρ(e−)α
2(e2+) = (D1

e−T
0)e+(e+)

= (D1
e+
T 0)e−(e+) = ∇1

e+
T 0
e−e+ = ∇1

e+
α2(e+, e−) = 0.

By a similar calculation, we obtain (D1
e+
α2)(e2−) = 0. If k, l ≥ 1,

αi+1(ek+, e
l
−) = T i−1

e+
· · ·T i−k+1

e+
T i−k
e− · · ·T 1

e−α
2(e+, e−) = 0.

This completes the proof.

For an extremal isometric immersion f : M2
1 (K) → Qn

t (c) which is nicely curved of

order d, using (2.13) and (2.16), by the equation α2(e1, e1) = α2(e2, e2) and arguments

similar to that in the proof of Lemma 2.7, we have

(2.17)

 αi+1(ei+1
+ ) = (

√
2)i−1

(
αi+1(e1, e

i
2) + αi+1(ei+1

2 )
)
,

αi+1(ei+1
− ) = (

√
2)i−1

(
−αi+1(e1, e

i
2) + αi+1(ei+1

2 )
)
.

Noting N i is nonzero for i = 1, 2, . . . , d− 1, by (2.17), we have

N i = Span{αi+1(e1, e
i
2), α

i+1(ei+1
2 )} = Span{αi+1(ei+1

+ ), αi+1(ei+1
− )},(2.18)

rankN i = 1 or 2.(2.19)
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2.3 Surfaces with isotropic higher fundamental forms.

In this subsection, we study extremal isometric immersions of Lorentzian surfaces with

isotropic higher fundamental forms. The property that higher fundamental forms are

isotropic is closely related to horizontal reflector lifts mentioned in the next section. We

provide several lemmas which are often used in the following sections.

Let V and W be vector spaces with inner products and β : V × · · · × V → W a k-

multilinear map intoW . We say that β is spacelike (resp. timelike) isotropic if there exists

a constant λ such that ⟨β(uk), β(uk)⟩ = λ for any spacelike (resp. timelike) unit vectors

u. For the simplicity, we say that such a map is spacelike (resp. timelike) λ-isotropic.

Then we note the following lemma.

Lemma 2.8. Under the notation above, a k-multilinear map β is spacelike λ-isotropic

if and only if β is timelike (−1)kλ-isotropic. Moreover, if β is spacelike isotropic, then

⟨β(ek), β(ek)⟩ = 0 for all null vector e ∈ V .

Proof. If β is spacelike λ-isotropic, then we have

⟨β((v/∥v∥)k), β((v/∥v∥)k)⟩ = λ for any spacelike vector 0 ̸= v ∈ V .

Hence we obtain the equation (∗) ⟨β(vk), β(vk)⟩ = λ ⟨v, v⟩k on the set of all spacelike

vectors of V , which forms nonempty open subset in V . This equation (∗) holds on V ,

since the function V ∋ w 7→ ⟨β(wk), β(wk)⟩−λ ⟨w,w⟩k ∈ R is real analytic (more precisely,

it is a polynomial in n variables w = (w1, . . . , wn), where n = dimV ). So, we have

⟨β(vk), β(vk)⟩ = (−1)k λ for any unit timelike vector v ∈ V .

We can similarly see the converse and the statement for null vectors.

By Lemma 2.8, in the case that V is indefinite, we use the term “isotropic” as “spacelike

isotropic”.

We say that the (k+ 1)st fundamental form αk+1 of an isometric immersion f :M →
M̃ is (spacelike) isotropic if αk+1

p is λk,p-isotropic at each point p ∈ M . The function

λk : M → R defined by λk(p) := λk,p is called the (spacelike) isotropic function. If the

isotropic function λk is constant on M , then αk+1 is called constant λk-isotropic. We note

that αk+1 is λk-isotropic if and only if

(2.20) gk(αk+1(e1, e
k
2), α

k+1(ek+1
2 )) = 0

for any orthonormal tangent vectors e1, e2 to M (e.g. [8, Lemma 1.1]). Moreover, in the

case that f :M2
1 (K) → Qn

t (c) is extremal, by (2.17), we obtain

(2.21) gk(αk+1(ek+1
2 ), αk+1(ek+1

2 )) = −gk(αk+1(e1, e
k
2), α

k+1(e1, e
k
2)) = λk,

where (e1, e2) is an orthonormal basis of TpM such that g(ei, ej) = (−1)iδij.
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Lemma 2.9. Let f : M2
1 (K) → Qn

t (c) be an extremal isometric immersion which is

nicely curved of order d. We assume that there exists a positive integer i(≤ d) such that

αi+1 is λi-isotropic. Then λi is everywhere nonzero on M if and only if i < d. In the case

of i < d, N i is a Lorentzian plane bundle over M . Moreover if M is oriented, then N i is

orientable and (N i, gi) admits a ∇i-parallel parahermitian structure J i.

Proof. Let (e1, e2) be an orthonormal basis of TpM such that g(ei, ej) = (−1)iδij.

Noting (2.18), (2.20) and (2.21), we see that λi is equal to zero at p if and only if N i
p is a

degenerate plane, a null line or zero at p. Since f is nicely curved of order d, we can see

that λi is everywhere nonzero if and only if i < d. Then N i is a Lorentzian plane bundle

over M , since the normal vectors αi+1(e1, e
i
2), α

i+1(ei+1
2 ) span a Lorentzian plane.

When M is oriented, taking oriented local orthonormal frames (e1, e2) and (e′1, e
′
2) on

an open set U ofM , we can get a function θ ∈ C∞(U) such that e′1 = (cosh θ)e1+(sinh θ)e2

and e′2 = (sinh θ)e1+(cosh θ)e2 on U . The following local frames (αi+1(e1, e
i
2), α

i+1(ei+1
2 ))

and (αi+1(e′1, e
′i
2 ), α

i+1(e′i+1
2 )) of N i are local orthogonal frames with same orientation of

N i. In fact, we have

(
αi+1(e′1, e

′i
2 ) αi+1(e′i+1

2 )
)
=
(
αi+1(e1, e

i
2) αi+1(ei+1

2 )
)[cosh((i+ 1)θ) sinh((i+ 1)θ)

sinh((i+ 1)θ) cosh((i+ 1)θ)

]
.

Thus N i is orientable. From Lemma 2.6, we obtain a ∇i-parallel parahermitian structure

J i of (N i, gi).

When f : M2
1 (K) → Qn

t (c) is extremal and nicely curved of order d, and there exists

a positive integer i(< d) such that αi+1 is λi-isotropic, by Lemma 2.9, we can take the

following local orthonormal frame (e2i+1, e2i+2) of N
i defined by

e2i+1 :=
1√
|λi|

αi+1(e1, e
i
2), e2i+2 :=

1√
|λi|

αi+1(ei+1
2 ),

where (e1, e2) is a local oriented orthonormal frame on M such that g(ei, ej) = (−1)iδij.

Moreover, noting (2.17), we put the signature εi := λi/|λi| ∈ {1,−1},

ξi :=
1√
2
(e2i+1 + e2i+2) =

1

(
√
2)i
√

|λi|
αi+1(ei+1

+ ),(2.22)

ηi :=
1√
2
(−e2i+1 + e2i+2) =

1

(
√
2)i
√

|λi|
αi+1(ei+1

− ),(2.23)

which satisfy

gi(e2i+1, e2i+1) = −εi, gi(e2i+1, e2i+2) = 0, gi(e2i+2, e2i+2) = εi,

gi(ξi, ξi) = 0, gi(ξi, ηi) = εi, gi(ηi, ηi) = 0.
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Lemma 2.10. Let f : M2
1 (K) → Qn

t (c) be an extremal isometric immersion which is

nicely curved of order d. We assume that there exists a positive integer i < d such that

αi+1 is λi-isotropic. Then we obtain

(2.24) ∇i
Xα

i+1(ei+1
± ) =

(
±ρi(X) +

1

2
d(log |λi|)(X)

)
αi+1(ei+1

± ),

where (e+, e−) is a local null frame on M2
1 (K) and ρi is the connection form of ∇i with

respect to (ξi, ηi) defined by (2.22) and (2.23).

Proof. We obtain (2.24) by a simple calculation.

Lemma 2.11. Let f : M2
1 (K) → Qn

t (c) be an extremal isometric immersion which is

nicely curved of order d. We assume that there exists a positive integer i < d such that

αi+1 is λi-isotropic and (Diαi+1) is (i+2)-symmetric, that is, (Di
e∓α

i+1)(ei+1
± ) = 0. Then

we have

(Di+1
e− αi+2)(ei+2

+ ) = 0, (Di+1
e+
αi+2)(ei+2

− ) = 0.

Thus (Di+1αi+2) is (i+ 3)-symmetric.

Proof. We can prove this lemma by a simple calculation. In fact, we have

(Di+1
e− αi+2)(ei+2

+ )

=∇i+1
e− αi+2(ei+2

+ )− (i+ 2)ρ(e−)α
i+2(ei+2

+ )

=∇i+1
e− T i

e+
αi+1(ei+1

+ )− (i+ 2)ρ(e−)α
i+2(ei+2

+ )

=(Di+1
e− T i)e+α

i+1(ei+1
+ ) + T i

e+
(Di

e−α
i+1)(ei+1

+ )

using the Codazzi equation (2.8) for T i, (2.11) and (2.24)

=(Di+1
e+
T i)e−α

i+1(ei+1
+ )

=∇i+1
e+
αi+2(e−, e

i+1
+ ) + ρ(e+)α

i+2(e−, e
i+1
+ )− T i

e−∇
i
e+
αi+1(ei+1

+ )

=− T i
e−

(
ρi(e+) +

1

2
d(log |λi|)(e+)

)
αi+1(ei+1

+ )

=−
(
ρi(e+) +

1

2
d(log |λi|)(e+)

)
αi+2(e−, e

i+1
+ ) = 0.

In a similar way, we have (Di+1
e+
αi+2)(ei+2

− ) = 0.

Lemma 2.12. Under the same assumptions as in Lemma 2.11, if αi+1 is constant

λi-isotropic, then α
i+1 is ∇i-parallel, that is, (Diαi+1) = 0.
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Proof. Since αi+1 is isotropic, gi(αi+1(ei+1
+ ), αi+1(ei+1

+ )) = 0. Thus we see

gi((Di
e+
αi+1)(ei+1

+ ), αi+1(ei+1
+ )) =

1

2
e+g

i(αi+1(ei+1
+ ), αi+1(ei+1

+ ))

− (i+ 1)ρ(e+)g
i(αi+1(ei+1

+ ), αi+1(ei+1
+ )) = 0.

Using Lemma 2.11, we obtain

gi((Di
e+
αi+1)(ei+1

+ ), αi+1(ei+1
− )) =e+g

i(αi+1(ei+1
+ ), αi+1(ei+1

− ))

− gi(αi+1(ei+1
+ ),∇i

e+
αi+1(ei+1

− ))

− (i+ 1)ρ(e+)g
i(αi+1(ei+1

+ ), αi+1(ei+1
− )).

By Lemma 2.10, we have

gi(αi+1(ei+1
+ ),∇i

e+
αi+1(ei+1

− )) = −(i+ 1)ρ(e+)g
i(αi+1(ei+1

+ ), αi+1(ei+1
− )),

and hence, gi((Di
e+
αi+1)(ei+1

+ ), αi+1(ei+1
− )) = e+(2

iλi) = 0. Because of i < d, (αi+1(ei+1
+ ),

αi+1(ei+1
− )) is a local frame of N i. Hence, (Di

e+
αi+1)(ei+1

+ ) = 0. In a similar way, we have

(Di
e−α

i+1)(ei+1
− ) = 0, thus (Diαi+1) = 0.

Lemma 2.13. Under the same assumptions as in Lemma 2.11, we have

ρi(X) =
1

2
(d log |λi|)(JX) + (i+ 1)ρ(X),(2.25)

(dρi)(e+, e−) =
1

2
△ log |λi|+ (i+ 1)K,(2.26)

where ρi (resp. ρ) is the connection form of ∇i (resp. ∇) with respect to (ξi, ηi) defined

by (2.22) and (2.23) (resp. (e+, e−)), and △ is the Laplace operator of M2
1 (K).

Proof. Using Lemma 2.11 and (2.23), we have

∇i
e+
ηi =

√
|λi|

(
e+

(
1√
|λi|

)
− 1√

|λi|
(i+ 1)ρ(e+)

)
ηi

= −
(
1

2
d(log |λi|(Je+)) + (i+ 1)ρ(e+)

)
ηi.

Noting ∇i
Xηi = −ρi(X)ηi, we have

ρi(e+) =
1

2
d(log |λi|)(Je+) + (i+ 1)ρ(e+).

In a similar way, we get ρi(e−) = (1/2)d(log |λi|)(Je−) + (i + 1)ρ(e−). These equations

show (2.25). Using (2.25) and (dρ)(e+, e−) = K, we have (2.26).
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Lemma 2.14. Let f : M2
1 (K) → Qn

t (c) be an extremal isometric immersion which is

nicely curved of order d. We assume that there exists a positive integer i ≤ d such that

αi and αi+1 are isotropic with isotropic functions λi−1 and λi respectively. In the case of

i < d,  T i−1
e+

ξi−1 =
√
|2λi/λi−1|ξi, T i−1

e− ξi−1 = 0,

T i−1
e+

ηi = 0, T i−1
e− ηi−1 =

√
|2λi/λi−1|ηi,

(2.27)

 Si
e+
ξi = 0, Si

e−ξi = εi−1εi
√
|2λi/λi−1|ξi−1,

Si
e+
ηi = εi−1εi

√
|2λi/λi−1|ηi−1, Si

e−ηi = 0,
(2.28)

where εj := λj/|λj| (j = i− 1, i) and λ0 := 1. In the case of i = d, we have

(2.29)


Sd
e+
αd+1(ed+1

+ ) = 0, Sd
e−α

d+1(ed+1
+ ) = εd−1

(
√
2)d+1λd√
|λd−1|

ξd−1,

Sd
e+
αd+1(ed+1

− ) = εd−1
(
√
2)d+1λd√
|λd−1|

ηd−1, Sd
e−α

d+1(ed+1
− ) = 0.

Proof. We can simply prove these equations by (2.22) and (2.23).

For the later use, when αi and αi+1 are isotropic, we rewrite (2.28) as follows.

(2.30) Si
e2
αi+1(ei+1

2 ) =
λi
λi−1

αi(ei2),

where e2 is a spacelike tangent vector to M2
1 (K).

Since (2.15) in Lemma 2.7 holds, we can repeatedly use Lemma 2.11 under the as-

sumption: α2, α3, . . . , αk+1 are isotropic. Hence, Lemma 2.11, and equations (2.25) and

(2.26) are available for any i = 1, 2, . . . , k, and also Lemmas 2.12 and 2.14.

Lemma 2.15. Let f : M2
1 (K) → Qn

t (c) be an extremal isometric immersion which

is nicely curved of order d. If there exists a positive integer k ≤ d such that αi+1 is

λi-isotropic for any i = 1, 2, . . . , k, then we have λ1 = (c−K)/2 and, when k > 1,

λi+1 =
1

2

(
c−

(
i+ 2

2

)
K − 1

2
△ log |λ1 · · ·λi|

)
λi (i = 1, 2, . . . , k − 1).

Therefore isotropic functions λ1, . . . , λk depend only on c, K and higher derivatives of K.

Proof. By the Gauss equation (2.4), (2.27), (2.28), and λ0 = 1, we have

Ke+ = R(e+, e−)e+ = c (g(e−, e+)e+ − g(e+, e+)e−) + S1
e+
T 0
e−e+ − S1

e−T
0
e+
e+

= ce+ − ε0ε12|λ1|ξ0,
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hence λ1 = (c −K)/2, where ε0 = g(e+, e−) = 1 and ξ0 = e+. For i = 1, 2, . . . , k − 1 if

k < d, or i = 1, 2, . . . , k − 2 if k = d, by the equation (2.5) on N i, (2.27) and (2.28),

Ri(e+, e−)ξi = T i−1
e+

Si
e−ξi − T i−1

e− Si
e+
ξi + Si+1

e+
T i
e−ξi − Si+1

e− T i
e+
ξi = 2

(
λi
λi−1

− λi+1

λi

)
ξi.

In the case of k = d, using (2.5) on Nd−1 and (2.29), we can see that the equation above

holds for i = k − 1. On the other hand, from (2.26), we have

Ri(e+, e−)ξi =

(
1

2
△ log |λi|+ (i+ 1)K

)
ξi (i = 1, 2, . . . , k − 1).

Since ξi is everywhere nonzero for i = 1, 2, . . . , k < d,

1

2
△ log |λi|+ (i+ 1)K = 2

(
λi
λi−1

− λi+1

λi

)
.

From these equations and λ1 = (c−K)/2, we obtain for i = 1, 2, . . . , k − 1

λi+1 =
1

2

(
c− (i+ 1)(i+ 2)

2
K − 1

2
△ log |λ1 · · ·λi|

)
λi.

Thus we complete the proof.

Corollary 2.16. Let f :M2
1 (K) → Qn

t (c) be an extremal isometric immersion which

is nicely curved of order d. We assume that there exists a positive integer k(≤ d) such

that αi+1 is λi-isotropic for any i = 1, 2, . . . , k. If K is constant, then we have

λi =
1

2

(
c− i(i+ 1)

2
K

)
λi−1 (i = 1, 2, . . . , k ≤ d).

Therefore α2, α3, . . . , αk+1 are constant isotropic, moreover, n ≥ 2k and t ≥ k. In the

case of k = d, we see that αd+1 is 0-isotropic and K = 2c/d(d+ 1).

We furnish a nonexistence result on extremal Lorentzian surfaces by virtue of the

corollary above.

Theorem 2.17. There are no extremal isometric immersions from M2
1 (K) into Qn

t (c)

of which all higher fundamental forms are isotropic if the constant Gaussian curvature

K ̸= 2c/i(i+ 1) for any integer i.

Proof. For any isometric immersion f : M2
1 (K) → Qn

t (c), there exists a positive

integer d such that f is nicely curved of order d. Then, by the assumptions and Lemma

2.9, the constant isotropic function λd−1 is nonzero and λd is zero. From Corollary 2.16,

we obtain K = 2c/d(d+ 1) and the proof of the theorem is completed.
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Remark 2.18. Bryant [1] proves the nonexistence of minimal immersions from surfaces

of constant positive Gaussian curvature K ̸= 2c/i(i+ 1) (i ∈ N) into Sn
0 (1/

√
c) (without

the isometry condition). See Calabi [2] and Wallach [16] also. The theorem above is a

pseudo-Riemannian version of [1, Theorem 1.5]. It is natural to ask whether the condition

“isotropicity” of higher fundamental forms is needed or not. We can find an extremal

surface of K = 1 (c = 1 and i = 1) whose second fundamental form is not isotropic (See

the last paragraph in Section 5).

3 Congruence theorem for immersions with horizon-

tal reflector lifts.

Let V be a 2m-dimensional vector space V with inner product ⟨ , ⟩ of neutral signature.
A parahermitian structure on V is an endomorphism J : V → V such that J2 = idV

and ⟨JX, JY ⟩ = −⟨X,Y ⟩ for all X and Y ∈ V . The eigenspaces V± := Ker (J ∓ idV )

of a parahermitian structure J are m-dimensional totally isotropic in V , which satisfy

V = V+ ⊕ V−. We denote the space of all parahermitian structures on V by Z(V ).

Let (M̃, g̃) be a 2m-dimensional manifold of neutral signature. The reflector space

Z(M̃) is defined by

Z := Z(M̃) :=
∪
p∈M̃

Z(TpM̃).

Note that the reflector space is a subbundle of End(TM̃). The bundle projection p : Z →
M̃ and the Levi-Civita connection ∇̃ on M̃ induce the decomposition TZ = T hZ ⊕ T vZ
into the horizontal subbundle T hZ and the vertical subbundle T vZ.

Let f : (M2
1 , g) → (M̃2m

m , g̃) be an isometric immersion. A section of J̃ ∈ Γ(f#Z) is a

reflector lift of f (or M), if J̃ |TM = J , where J is the canonical paraKähler structure on

M . Then, putting J⊥ := J̃ |T⊥M , we have a parahermitian structure of the normal bundle

T⊥M . An isometric immersion f admits a horizontal reflector lift if J̃ is ∇̃-parallel, that

is, ∇̃J̃ = 0, where ∇̃ is the induced connection from the Levi-Civita connection of M̃ . By

a straightforward calculation, we have

Lemma 3.1. The reflector lift J̃ is horizontal if and only if the (usual) second funda-

mental form α satisfies α(X, JY ) = J⊥α(X,Y ) for all X, Y ∈ TM and ∇⊥J⊥ = 0.

In Riemannian geometry, a surface with horizontal twistor lift is called superminimal.

Indeed, superminimal surfaces are minimal. The following proposition is a corresponding

result to neutral geometry.

Proposition 3.2. An isometric immersion with horizontal reflector lift is extremal.
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Proof. By Lemma 3.1, α(e+, e−) = α(Je+, e−) = α(e+, Je−) = −α(e+, e−), which
gives H = α(e+, e−) = 0.

In this section, we give a congruence theorem for isometric immersions with horizontal

reflector lifts.

Lemma 3.3. Let f : M2
1 (K) → Q2m

m (c) be an isometric immersion which is nicely

curved of order d. If f has a horizontal reflector lift J̃ , then J̃ is N i-preserving. Moreover

J i := J̃ |N i ∈ End (N i) is ∇i-parallel and J iT i−1
X ζi−1 = T i−1

JX ζi−1 for any ζi−1 ∈ Γ(N i−1)

and i = 1, 2 . . . , d. In particular, we obtain

αi+1(X1, . . . , Xi, JXi+1) = J iαi+1(X1, . . . , Xi+1).

Proof. From Lemma 3.1, J̃ is N1-preserving. Putting J1 := J̃ |N1 , we have

(∇1
XJ

1)(ζ1) = S1
X(J

1ζ1)− J(S1
Xζ1)− T 1

X(J
1ζ1) + J⊥(T 1

Xζ1).

Since J⊥ is (N1)⊥-preserving, we see that J1 is ∇1-parallel, S1
X(J

1ζ1) = J(S1
Xζ1) and J̃

is N2-preserving. If there exists a positive integer k(< d) such that Jk is ∇k-parallel and

J̃ is Nk-preserving, then we can put Jk := J̃ |Nk ∈ Γ(End (Nk)). Moreover,

(∇k
XJ

k)(ζk) = Sk
X(J

kζk)− Jk−1(Sk
Xζk)− T k

X(J
kζk) + J⊥(T k

Xζk).

Since J⊥ is (Nk)⊥-preserving, we see that Jk is ∇k-parallel, Sk
X(J

kζk) = Jk−1(Sk
Xζk) and

J̃ is Nk+1-preserving. By the inductive method, we have the lemma.

Lemma 3.4. Let f : M2
1 (K) → Q2m

m (c) be an isometric immersion which is nicely

curved of order d. If f has a horizontal reflector lift J̃ , then the ith normal bundle

N i is a Lorentzian plane bundle, and the (i + 1)st fundamental form αi+1 is isotropic

and the isotropic function λi is everywhere nonzero for any i (i = 1, 2, . . . , d − 1), thus

rankNd = 2(m− d).

Proof. Let (e1, e2) be a local oriented orthonormal frame on M . Then we have

gi(αi+1(e1, e
i
2), α

i+1(ei+1
2 )) = gi(αi+1(Je2, e

i
2), α

i+1(ei+1
2 ))

= gi(J iαi+1(ei+1
2 ), αi+1(ei+1

2 )) = 0.

Hence, αi+1 is isotropic. Thus, from Lemma 2.9, we can see that its spacelike isotropic

function is everywhere nonzero and N i is a Lorentzian plane bundle over M .

Let f : M2
1 (K) → Q2m

m (c) be an isometric immersion which is nicely curved of order

d. By Lemma 3.4, we can consider the local null frame (ξi, ηi) of N
i defined by (2.22) and

(2.23) for i = 1, 2, . . . , d− 1. We see that ξi (resp. ηi) is a (+1)- (resp. (−1)-) eigenvector

of J i by Lemma 3.3.

We obtain a congruence result on isometric immersions with horizontal reflector lift

into a space of constant curvature.
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Theorem 3.5. Let f , f : M2
1 (K) → Q2d

d (c) be isometric immersions with horizontal

reflector lifts from a connected oriented Lorentzian surface. If both immersions f and f

are nicely curved of order d, then there exists an isometry Φ of Q2d
d (c) such that f = Φ◦f .

Proof. The corresponding objects associated with f are denoted by the symbol with

“−”, for example, T⊥M is the normal bundle of f . Let (e+, e−) be a local frame field

such that g(e±, e±) = 0, g(e+, e−) = 1 and Je± = ±e±. We take a local frame (ξi, ηi)

for any i = 1, 2, . . . , d − 1. We define Φ : T⊥M → T⊥M by Φ(ξi) = ξi and Φ(ηi) = ηi

for i = 1, 2, . . . , d − 1. Since the reflector lifts of f and f are horizontal, Φ preserves the

higher fundamental forms. From Lemma 2.15, λi = λi for i = 1, 2, . . . , d− 1. By Lemma

2.10 and (2.25), all coefficients of ∇⊥ with respect to (ξ1, η1, . . . , ξd−1, ηd−1) depend only

on c, K (and i). Then we see that

Φ(∇⊥
Xξi) = ∇⊥

X ξ̄i, Φ(∇⊥
Xηi) = ∇⊥

X η̄i,

that is, Φ preserves the normal connections. By the congruence theorem for isometric

immersions into a space form (see [6], for example), we see that there exists an isometry

Φ of Q2d
d (c) such that f = Φ ◦ f .

Remark 3.6. An existence theorem for an extremal isometric immersion from a simply

connected Lorentzian surface into Q2d
d (c) can be found in [13]. The integrability condition

is described by the functions λ1, . . . , λd−1 in Lemma 2.15.

4 Lorentzian Boruvka spheres.

Hereafter, we provide examples of isometric immersions with horizontal reflector lifts.

First of all, we recall a notion of helical geodesic immersions in pseudo-Riemannian ge-

ometry.

Let c be a unit speed spacelike curve of a pseudo-Riemannian manifold N . For a

positive integer d and positive constants κ1, . . . , κd−1, the curve c is a helix of type Λ =

(d;κ1, . . . , κd−1; ε1, . . . , εd), if c satisfies the Frenet-Serre formula:

∇c′ci = −εi−1εiκi−1ci−1 + κici+1 (i = 1, 2, . . . , d),

where ∇ is the Levi-Civita connection of N , c1, . . . , cd is an orthonomal frame field along

c, εi = ⟨ci, ci⟩ ∈ {1,−1}, ε0 = κ0 = κd = 0 and c0 = cd+1 = 0. We call the integer d the

order of c. A helix of order one is a spacelike (resp. timelike) geodesic of N , if ε1 = +1

(resp. ε1 = −1).

Let f : M → N be an isometric immersion between pseudo-Riemannian manifolds.

The immersion f is a spacelike (resp. timelike) helical geodesic immersion (HGI) of type
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Λ, if f maps arbitrary unit speed spacelike (resp. timelike) geodesic γ of M into a

helix of type Λ which is independent of γ. This notion is a generalization in pseudo-

Riemannian geometry of that in Sakamoto [14]. In [9], the second author proves the

following conditions are equivalent in the case that the domain of f is indefinite.

(1) f is a spacelike HGI of type Λ = (d;κ1, . . . , κd−1; ε1, . . . , εd).

(2) f is a timelike HGI of type Λ = (d;κ1, . . . , κd−1; (−1)1ε1, . . . , (−1)dεd).

Hence we call such immersions HGIs for short. We shall introduce the following notions.

Definition 4.1. An submanifold L of a space form (Qn
t (c), g̃) is said to be totally

geodesic if the Levi-Civita connection ∇̃ of Qn
t (c) naturally induces an affine connection

on L, that is, ∇̃XY ∈ Γ(TL) for any X, Y ∈ Γ(TL). Furthermore, if the pullback j∗g̃

is identically vanishing on L, it makes L a null r-plane of Qn
t (c), where r = dimL and

j : L ↪→ Qn
t (c) is the inclusion map. A null curve c on Qn

t (c) is null r-planar, if there is

a null r-plane L of Qn
t (c) such that Im (c) ⊂ L. An isometric immersion f : M → Qn

t (c)

between indefinite pseudo-Riemannian manifolds is a null r-planar geodesic immersion

(PGI), if there exists a positive integer r such that, for each null geodesic γ ofM , the null

curve f ◦ γ is null r-planar in Qn
t (c). If a null r-PGI f is not a null q-PGI for any q < r,

we say that f is a null proper r-PGI.

Notice that a null r-plane L inQn
t (c) is contained a null r0-plane L (r0 := min{n−t, t}).

Therefore any null r-PGI is null r0-planar geodesic. For example, any HGIs f : M →
Qn

t (c) are null r0-planar geodesic([9, Theorem D]). In general, the converse is not held.

See [11] for details. Simpler examples are totally umbilic isometric immersions, which

are null proper 1-PGIs, since the immersions map null geodesics of submanifolds to null

geodesics in the ambient space. We deal with this notion in the last section.

In Riemannian geometry, typical examples of HGIs are the standard minimal immer-

sion of compact rank one symmetric spaces. In the case of the n-dimensional sphere,

associated with each positive integer d, there exists an isometric minimal immersion

ψn,d : Sn(r(d)) → Sm(d), where Sn(r(d)) := Sn
0 (r(d)), S

m(d) := Sm(d)(1), and the ra-

dius r(d) and the dimension m(d) are given as follows.

r(d) =

√
d(d+ n− 1)

n
, m(d) = (2d+ n− 1)

(d+ n− 2)!

d!(n− 1)!
− 1.

The immersion ψn,d is called the d-th standard minimal immersion of Sn(r(d)) and (space-

like) HGI of type Λn,d := (d;κ1, . . . , κd−1; +1, . . . ,+1), where κ1, . . . , κd−1 are certain

positive constants. In the case of n = 2, these immersions are called the Boruvka spheres.

In [10], the second author constructs, associated with each the d-th standard minimal

immersion of Sn(r(d)), an extremal isometric immersion ψn,d,t of S
n
t (r(d)) into S

m(d)
l(d) :=
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S
m(d)
l(d) (1) for arbitrary t = 1, . . . , n, where the index l(d) is a certain integer (see [10] for

details). In the case of (n, t) = (2, 1), the integer l(d) is equal to d. The constructed

immersion ψn,d,t (t = 1, . . . , n− 1) is a spacelike HGI of type Λn,d and ψn,d,n is a timelike

HGI of type Λn,d ([10]). See also [5] for a construction of harmonic maps of S2
1 into a

space of constant sectional curvature one.

We recall the d-th standard minimal immersions of S2(r(d)) into the unit sphere. Let

△S2 be the Laplacian on S2. It is well-known that all eigenvalues are given by µd = d(d+1)

for any nonnegative integer d and the dimension of the eigenspace Vd of△S2 corresponding

to the eigenvalue µd is 2d+1. Taking an orthonormal basis f1, . . . , f2d+1 of Vd with respect

to the L2-inner product:

g(f1, f2) :=

∫
S2

f1 f2 dνS2 , f1, f2 ∈ Vd,

where dνS2 is proportional to the volume element of S2 and normalized in such a way

that
∫
S2 dνS2 = dimVd = 2d+ 1, we can see (f1)

2 + · · ·+ (f2d+1)
2 = 1 on S2, and identify

Vd ∼= R2d+1. Then the d-th standard minimal immersion ψ2,d : S
2(r(d)) → S2d ⊂ R2d+1 is

given by

ψ2,d := (f1, . . . , f2d+1) ◦ χ1/r(d),

where χk is the homothetic transformation in Rn defined by χk(v) := kv for v ∈ Rn. We

remark that the d-th eigenspace Vd of S2 ⊂ R3 is given by

Vd = {P |S2 | P ∈ Hd(R3)},

where Hd(R3) is the space of homogeneous harmonic polynomials of degree d on R3 and

P |S2 is the restriction of P to S2 ⊂ R3.

We summarize the construction of extremal immersions obtained in [10] as follows. Let

F[x] := F[x1, x2, x3] be the polynomial algebra in variables x1, x2, x3, where F is the set of

all complex numbers C or real numbers R, Fd[x] the space of homogeneous polynomials

of degree d, and △R3
1
:= −∂21 + ∂22 + ∂23 the Laplacian on R3

1. Putting

Hd(R3
1) := {P ∈ Rd[x] | △R3

1
P = 0},

we see dimHd(R3
1) = 2d + 1. Moreover, we can see that △S2

1
(P |S2

1
) = d(d + 1)P |S2

1
for

P ∈ Hd(R3
1), where S

2
1 ⊂ R3

1 is the unit Lorentzian 2-sphere, and △S2
1
is the Laplacian of

S2
1 . Let ρ1 be the ring endomorphism on C[x] defined by ρ1(1) := 1, ρ1(x1) :=

√
−1 x1,

ρ1(xi) := xi (i = 2, 3). We call ρ1 a (1-)Wick rotation, which satisfies ρ1(P ) ∈ Hd(R3
1)⊕√

−1Hd(R3
1) for any P ∈ Hd(R3). We can take a basis P−d, . . . , Pd of Hd(R3) such that

(P−d)
2 + · · ·+ (Pd)

2 = (x21 + x22 + x23)
d,
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ρ1(Pi) ∈
√
−1Hd(R3

1) (i < 0) and ρ1(Pi) ∈ Hd(R3
1) (i ≥ 0). We note that (ρ1(P−d))

2 +

· · ·+(ρ1(Pd))
2 = (−x21+x22+x23)d. Putting Qi := −

√
−1ρ1(Pi) (i < 0) and ρ1(Pi) (i ≥ 0),

we have a basis Q−d, . . . , Qd of Hd(R3
1) such that

−(Q−d)
2 − · · · − (Q−1)

2 + (Q0)
2 + (Q1)

2 + · · ·+ (Qd)
2 = (−x21 + x22 + x23)

d.

We define the indefinite scalar product g1 on Hd(R3
1) by

g1(Qi, Qj) := εiδij,

where εi = −1 (d < 0), εi = +1 (d ≥ 0) and identify Hd(R3
1)

∼= R2d+1
d . Then we can

obtain the extremal isometric immersion into the unit neutral 2d-sphere:

ψ2,d,1 := (Q−d|S2
1
, . . . , Qd|S2

1
) ◦ χ1/r(d) : S

2
1(r(d)) → S2d

d ⊂ R2d+1
d .

The immersion ψ2,d,1 is called the Lorentzian Boruvka sphere (LBS) in S2d
d throughout

this paper. We can see explicite representations for ψ2,d,1 (d = 2, 3) in [9, Examples 3.5,

3.6].

Composing homotheties and anti-isometries of S2
1(r(d)) and S2d

d , we can obtain ex-

tremal immersions from Q2
1(Kd) to Q2d

d (c), where Kd := 2c/d(d + 1) and c ̸= 0. We

denote this immersion by ϕd,c. This immersion also is referred to as LBS in Q2d
d (c).

An isometric immersion f : M → Qn
t (c) is said to be full in Qn

t (c), if there exist no

totally geodesic submanifolds N of Qn
t (c) such that f(M) ⊂ N and dimN < n. We can

give the following.

Proposition 4.2. Let f : M2
1 (K) → Qn

t (c) be a HGI of order d of an oriented

Lorentzian surface. If f is extremal, then f is nicely curved of order d and there exists a

totally geodesic submanifold P of Qn
t (c) such that P is isometric to Q2d

d (c) and f(M) is

full in P . Let f ′ be the isometric immersion such that f = ι ◦ f ′, where ι is the inclusion

P ↪→ Qn
t (c). Then, f

′ :M2
1 (K) → P admits a horizontal reflector lift, and K is constant.

Moreover αi+1 is nonzero constant isotropic for i = 1, . . . , d − 1, and αd+1 is identically

vanishing.

Proof. Let f : M2
1 (K) → Qn

t (c) be a HGI of type (d;κ1, . . . , κd−1; ε1, . . . , εd) and

nicely curved of order m. In the case of d = 1, since f is totally geodesic, the assertion

follows. Thus we may assume that d ≥ 2.

Let u ∈ TpM be a spacelike unit tangent vector to M at p ∈M and γ a geodesic such

that γ(0) = p and γ′(0) = u. From the Frenet-Serre formula of c := f ◦ γ, ∇̃Uc1 = κ1c2,

where U := c′. From the Frenet formula of f ,

∇̃Uc1 = ∇Uc1 + T 0
Uc1 = α2(U2).
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Thus we have κ1c2 = α2(U2). So α2 is nonzero (ε2κ
2
1)-constant isotropic by the arbitrarity

of spacelike unit tangent vector u. From Lemma 2.9, we see that N1 is a Lorentzian plane

bundle over M , therefore, m ≥ 2.

We assume that there exists an integer k (2 ≤ k ≤ min{d,m}) such that κ1 · · ·κi−1ci =

αi(U i) for any i (2 ≤ i ≤ k). Then αi is nonzero (εiκ
2
1 · · ·κ2i−1)-constant isotropic by the

arbitrarity of spacelike unit tangent vector u and ci ∈ N i−1. Thus, by virtue of Lemma

2.9, N i−1 is a Lorentzian plane bundles on M and admit a parahermitian structure J i−1.

Furthermore, from the Frenet-Serre formula of c,

∇̃Uci = −εi−1εiκi−1ci−1 + κici+1,

and, from the Frenet formula of f ,

∇̃Uci = −Si−1
U ci +∇i−1

U ci + T i−1
U ci.

Since αi is constant isotropic for i = 2, . . . , k, using Lemma 2.12, we obtain ∇i−1
U ci = 0.

Moreover, the equation (2.30) gives Si−1
U ci = εi−1εiκi−1ci−1, thus we have T

i−1
U ci = κici+1,

hence αi+1(U i+1) = κ1 · · ·κici+1.

In the case of k = min{d,m} = d, by definition, κd = 0. Thus, we can see αd+1 = 0,

that is, T d = 0, which implies that m = d and, using Lemma 2.4, there exists the totally

geodesic submanifold P such that P is isometric to Q2d
d (c) and f(M) is full in P . On the

other hand, if k = min{d,m} = m, then κm has zeros by Lemma 2.9, hence κm = 0. By

a similar way, we obtain the same conclusion. Since P is totally geodesic in Qn
t (c), the

∇i-parallel parahermitian structure J i on N i is also one on the ith normal bundle N i′ of

f ′ for any i (i = 1, 2, . . . , d− 1). We can define J⊥ ∈ Γ(End(T⊥M)) by

J⊥ :=
d−1⊕
i=1

J i.

Then we can check α(X, JY ) = J⊥α(X, Y ) and ∇⊥J⊥ = 0. By Lemma 3.1, f ′ admits

horizontal reflector lift J̃ := J ⊕ J⊥.

Since the second fundamental form α2 is (ε2κ
2
1)-constant isotropic, using Lemma 2.15,

we see that M is of constant Gaussian curvature.

In Riemannian case, the Boruvka spheres ψ2,d : S2(r(d)) → S2d are superminimal,

that is, these have horizontal twistor lifts. Note that the LBS ϕd,c : Q2
1(Kd) → Q2d

d (c)

is an extremal HGI of order d ([10, Proposition 3.8.]) and nicely curved of order d from

Proposition 4.2. Therefore, Proposition 4.2 for the LBSs corresponds to the result above

for Boruvka spheres. We summarize as follows.

Corollary 4.3. The Lorentzian Boruvka sphere ϕd,c : Q2
1(Kd) → Q2d

d (c) is nicely

curved of order d and has a horizontal reflector lift.
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5 Extremal surfaces with null r-planar geodesics.

In this section, we prove our main result in this paper:

Theorem 5.1. Let f : M2
1 (K) → Qn

t (c) be an extremal null r-planar geodesic im-

mersion from an oriented connected Lorentzian surface of constant Gaussian curvature K

and c nonzero. If f is real analytic and full, then f is locally congruent to the Lorentzian

Boruvka sphere ϕr,c with K = 2c/r(r + 1), n = 2r and t = r. Moreover the order r is

proper.

The proof requires a few technical steps which show that the highest normal bundle

is zero. Notice that, in general, the highest normal bundle need not be contained in the

ith osculating space of an isometric immersion for a positive integer i.

Let f :M2
1 (K) → Qn

t (c) be an extremal isometric immersion which is nicely curved of

order d. Thus, we obtain the decomposition f#TQ = ⊕d
i=0N

i, where N0 = TM and N i

is the ith normal bundle for i > 0. Put, for i = 0, 1, . . . , d,

ξ̂i := αi+1(ei+1
+ ), η̂i := αi+1(ei+1

− ),

where e± = (±e1 + e2)/
√
2 and (e1, e2) is a local oriented orthonormal frame such that

g(ei, ej) = (−1)iδij. Then we see N i = Span {ξ̂i, η̂i} for i = 1, . . . , d− 1 from (2.18) and

note that Span {ξ̂d, η̂d} ⊂ Nd = (Oscd(f))⊥. We inductively define higher derivatives of

αd+1 with respect to ∇d by

(Dd(1)αd+1)(X1, X2, . . . , Xd+2) := (Dd
X1
αd+1)(X2, . . . , Xd+2),

(Dd(k)αd+1)(X1, X2, . . . , Xd+k+1) := (Dd
X1
(Dd(k−1)αd+1))(X2, . . . , Xd+k+1)

for any positive integer k.

Set c := f ◦ γ for a null geodesic γ of M . Then we get

∇̃(ċ1) = ċ, ∇̃(ċ2) = α2(ċ2), ∇̃(ċ3) = f 3
c,2∇̃(ċ2) + α3(ċ3),

where ċ is the tangent vector field of c and f 3
c,2 = ρ1(ċ) is a function along c. We inductively

obtain

(5.1) ∇̃(ċk+1) =
k∑

i=2

fk+1
c,i ∇̃(ċi) + αk+1(ċk+1) (k = 0, 1, . . . , d),

where fk+1
c,i is a function along c. By a simple calculation, we have

Lemma 5.2. For any nonnegative integer k,

∇̃(ċd+k+1) =
d+k∑
i=2

fd+k+1
c,i ∇̃(ċi) + (Dd(k)αd+1)(ċd+k+1),

where fd+k+1
c,i is a function along a null curve c = f ◦ γ as above.
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Hereafter, when not specified otherwise, we work under the assumption that f :

M2
1 (K) → Qn

t (c) is an extremal null r-PGI which is nicely curved of order d.

Lemma 5.3. For any nonnegative integers i, j,

g̃(ξ̂i, ξ̂j) = 0, g̃(η̂i, η̂j) = 0.

Proof. By Lemma 5.2, (5.1) and the definition of null r-PGI, this lemma holds.

Proposition 5.4. If M2
1 (K) is oriented, then N i is an orientable Lorentzian plane

bundle, thus N i admits a ∇i-parallel parahermitian structure J i of (N i, gi) for i = 1, . . . , d−
1. Moreover, the (i + 1)st fundamental form αi+1 is λi-isotropic for i = 1, . . . , d, where

λi := gi(ξ̂i, η̂i)/2
i. In particular, λ1, . . . , λd−1 are non-vanishing and λd has zeros on M .

Proof. From (2.18) and (2.19), we can see that rankN i = 1 or 2 for i = 1, 2, . . . , d−1.

Thus, by virtue of Lemma 5.3, µi := gi(ξ̂i, η̂i) must be nonvanishing on M for i =

1, . . . , d − 1. Therefore we can see that N i is an orientable Lorentzian plane bundle

and, using Lemma 2.6, admits a ∇i-parallel parahermitian structure J i of (N i, gi) for

i = 1, . . . , d − 1. Note that µd := gd(ξ̂d, η̂d) has zeros on M . We can see that αi+1 is

(µi/2
i)-isotropic for i = 1, . . . , d. In fact, from

ξ̂i = (
√
2)i−1

(
αi+1(e1, e

i
2) + αi+1(ei+1

2 )
)
,

η̂i = (
√
2)i−1

(
−αi+1(e1, e

i
2) + αi+1(ei+1

2 )
)

and Lemma 5.3 again, we obtain gi(αi+1(e1, e
i
2), α

i+1(ei+1
2 )) = 0. By the arbitrarity of

a local oriented orthonormal frame (e1, e2), α
i+1 is spacelike (µi/2

i)-isotropic for i =

1, . . . , d.

For a vector bundle E with a bundle connection ∇E over M2
1 (K) and an E-valued

(0, l)-tensor field Q, we note the Ricci identity

(DE(DEQ))(X, Y,X1, . . . , Xl)− (DE(DEQ))(Y,X,X1, . . . , Xl)

=RE(X, Y )Q(X1, . . . , Xl)−
l∑

i=1

Q(X1, . . . , R(X, Y )Xi, . . . , Xl),

where an E-valued (0, l + 1)-tensor field (DEQ) is defined by

(DEQ)(X,X1 . . . , Xl) : = ∇E
X(Q(X1, . . . , Xl))−

l∑
i=1

Q(X1, . . . ,∇XXi, . . . , Xl).

We put for any positive integer k

ξ̂d+k := (Dd(k)αd+1)(ed+k+1
+ ), η̂d+k := (Dd(k)αd+1)(ed+k+1

− ),

which are in Oscd+k+1(f) ∩Nd. Then we have
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Lemma 5.5. For any positive integer k,

(Dd(k)αd+1)(e∓, e
d+k
± ) ∈ Oscd+k−1(f).

Proof. In the case of k = 1, we see, in Lemma 2.11,

(Dd(1)αd+1)(e∓, e
d+1
± ) = (Dd

e∓α
d+1)(ed+1

± ) = 0 ∈ Oscd(f).

For k ≥ 2, we assume that

(Dd(k−1)αd+1)(e∓, e
d+k−1
± ) ∈ Oscd+k−2(f).

By the Ricci identity,

(Dd(k)αd+1)(e−, e
d+k
+ ) =(Dd(k)αd+1)(e+, e−, e

d+k−1
+ )

+Rd(e−, e+)(D
d(k−2)αd+1)(ed+k−1

+ )

− (d+ k − 1)(dρ)(e−, e+)(D
d(k−2)αd+1)(ed+k−1

+ ).

On the R.H.S. in the equation above, we get, using (2.6) for the 2nd term,

(the 1st term) =∇d
e+
(Dd(k−1)αd−1)(e−, e

d+k−1
+ )

− (d+ k − 2)ρ(e+)(D
d(k−1)αd−1)(e−, e

d+k−1
+ ) ∈ Oscd+k−1(f),

(the 2nd term) =T d−1
e− Sd

e+
ξ̂d+k−2 − T d−1

e+
Sd
e− ξ̂d+k−2 ∈ Oscd(f),

(the 3rd term) =(d+ k − 1)Kξd+k−2 ∈ Oscd+k−1(f).

So we have (Dd(k)αd+1)(e−, e
d+k
+ ) ∈ Oscd+k−1(f). By a similar calculation, we obtain

(Dd(k)αd+1)(e+, e
d+k
− ) ∈ Oscd+k−1(f). We finish the proof of this lemma.

From the lemma above, we have

Lemma 5.6. For any nonnegative integer k,

Osck(f) = Span {ξ̂l, η̂l | l = 0, 1, . . . , k}.

Differentiating sections ξ̂d+k, η̂d+k of Nd, we obtain some lemmas on Nd.

Lemma 5.7. For any nonnegative integer k,

∇d
e+
ξ̂d+k = ξ̂d+k+1 + (d+ k + 1)ρ(e+)ξ̂d+k,

∇d
e− η̂d+k = η̂d+k+1 − (d+ k + 1)ρ(e−)η̂d+k.

Proof. By definition and a simple calculation, we can prove this lemma.
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Lemma 5.8. If g̃(ζd, ξ̂d) = g̃(ζd, η̂d) = 0 for a vector ζd ∈ Nd, then Sd
Xζd = 0 for any

X ∈ TM .

Proof. We note that Sd ∈ ∧1Hom (Nd, Nd−1) and (ξ̂d−1, η̂d−1) is a local null frame

of Nd−1 with gd−1(ξ̂d−1, η̂d−1) = µd−1 ̸= 0. Using αd+1(e±, e
d
∓) = 0, we have

Sd
e+
ζd = µ−1

d−1

(
gd−1(Sd

e+
ζd, η̂d−1)ξ̂d−1 + gd−1(Sd

e+
ζd, ξ̂d−1)η̂d−1

)
= µ−1

d−1g
d−1(ζd, ξ̂d)η̂d−1.

We similarly get Sd
e−ζd = µ−1

d−1g
d−1(ζd, η̂d)ξ̂d−1 which shows Sd

Xζd = 0 for anyX ∈ TM .

Lemma 5.9. If M2
1 (K) is of constant curvature K, then we obtain for any nonnegative

integer k,

gd(ξ̂d, η̂d+k) = gd(η̂d, ξ̂d+k) = 0.

Proof. Since K is constant, we obtain λd = 0 by Corollary 2.16. Thus we see

g̃(ξ̂d, η̂d) = 0. For a positive integer k, we assume that

gd(ξ̂d, η̂d+k−1) = gd(η̂d, ξ̂d+k−1) = 0.

Then we have

gd(ξ̂d, η̂d+k) = gd(ξ̂d,∇d
e− η̂d+k−1 + (d+ k)ρ(e−)η̂d+k−1)

= e−g
d(ξ̂d, η̂d+k−1)− gd(∇d

e− ξ̂d, η̂d+k−1)

= −gd(∇d
e− ξ̂d, η̂d+k−1),

noting that ∇d
e− ξ̂d = (d+ 1)ρ(e−)ξ̂d from Lemma 2.11,

= −(d+ 1)ρ(e−)g
d(ξ̂d, η̂d+k−1) = 0.

Hence we prove gd(ξ̂d, η̂d+k) = 0 for any k ≥ 0. In a similar way, we get gd(η̂d, ξ̂d+k) = 0

for any k ≥ 0.

Put, for any point p of M2
1 (K),

Wp := Span {(ξ̂d+k)p, (η̂d+k)p | k is any nonnegative integer} ⊂ Nd
p .

From Lemmas 5.3, 5.8 and 5.9, we have

Lemma 5.10. If K is constant, then Sd
X ξ̂d+k = Sd

X η̂d+k = 0 for any nonnegative integer

k and X ∈ TpM (p ∈M).
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For an isometric immersion f :M → Qn
t (c) and p ∈M , we put

Osc∞p (f) :=
∞∪
i=0

Oscip(f) ⊂ (f#TQ)p.

Proof of Theorem 5.1. Let f : M2
1 (K) → Qn

t (c) be nicely curved of order d. From

Proposition 5.4, we see that N1, . . . , Nd−1 are orientable Lorentzian subbundles of f#TQ.

Since f is full and real analytic, there exists a point p ∈ M such that Osc∞p (f) =

(f#TQ)p. Thus, we can take a open subset U around p in M such that

Osc∞(f)|U = f#TQ|U .

On U , from Lemma 5.6, we can seeNd = Span {ξd+k, ηd+k | k ≥ 0}. Using Lemma 5.10, we

have Sd = 0 on U , if and only if αd+1 = 0 on U . Thus⊕d−1
i=0N

i = Oscd(f) = Osc∞(f) = TQ

on U . So, rankNd = n − 2d = 0, that is, n = 2d. Then, since all vector bundle

N0(= TM), N1, . . . , Nd−1 are Lorentzian plane bundles, we also get t = d. Hence we have

r ≤ min{n− t, t} = d.

Taking a null geodesic γ of M such that γ(0) = p ∈ M and γ̇(0) = e+,p = (ξ0)p and

putting c+ := f ◦ γ, we obtain by (5.1) and αd+1 = 0

Span{∇( ˙c+
i)p | i ≥ 1} = Span{(ξ̂0)p, (ξ̂1)p, . . . , (ξ̂d−1)p}

and its dimension is equal to d. It implies that c+ is proper d-planar, hence r ≥ d. So we

have r = d. Since we can similarly see that any null geodesic of M is proper r-planar in

Qn
t (c), f is null proper r-PG.

By virtue of Corollary 2.16, α2, . . . , αr are (nonzero) isotropic and K = 2c/r(r + 1).

From Proposition 5.4, we can put the reflector lift J̃ := ⊕r−1
i=0J

i of f . Using (2.1)–(2.3),

(2.27) and (2.28), we get (∇̃e± J̃)(ξi) = (∇̃e± J̃)(ηi) = 0 for i = 0, 1, . . . , r − 1, that is,

J̃ is horizontal. By virtue of Theorem 3.5 and Corollary 4.3 , we complete the proof of

Theorem 5.1. □

In Riemannian geometry, Calabi shows that a full minimal isometric immersion f :

M2(K) → Sn satisfies n = 2d and is congruent to the Boruvka sphere ψ2,d, in the case

that M is of genus zero and of constant Gaussian curvature. As we see in Theorem 5.1,

to obtain a corresponding result in pseudo-Riemannian geometry, we need the additional

assumption “null r-PG”. There exist extremal isometric immersions which are not null

r-PG for any r > 0. For example, see [3, Theorem 5.1.(b)].
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