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A new type of rotary echo which is due to magnetic dipolar 

interaction has been observed in a multi-level NMR system.  From the 

echo-envelope decay we can estimate a second moment due to a part of 

dipolar interaction participating only in the resonant transition. 
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Rotary echoes [1] are known as recovery phenomena of transient 

nutation [2] damped owing to an intensity distribution of the effective 

field.  In the present paper, we report a new type of rotary echo 

produced by reversing the contribution of magnetic dipolar interaction 

in a multi-level NMR system.  The non-resonant levels contribute to the 

echo formation. 

In order to illustrate the mechanism of the echo formation, we 

consider the same NMR system as in a previous work [3], that is, a 

multi-level system of quadrupolar nuclei which is subjected to a static 

magnetic field H0 applied along the principal axis (z-axis) of the electric 

field gradient tensor.  The electric quadrupole coupling energy is much 

smaller than the Zeeman energy hγH0 ,   where γ is the gyromagnetic 

ratio. 

Let us assume that an rf field 2H1cosΩt, which is applied along the 

x-axis, selectively excites one transition Iz = m←→m-1 with resonance 

frequency ω, where the angular frequency Ω is slightly different from

ωby δ (δ=Ω-ω).  While the rf field is on, the resonant spins are 

subjected to the effective field γβδ /22
e +=H  which makes an angle 

 with the z-axis in the reference frame rotating with the 

angular frequency Ω, where 

)/(cos e
1 Hγδθ −=

>−<= + 11 mImHγβ .  If the effective field 

is much larger than the local field due to the magnetic dipolar 

interaction, the decay of the transient nutation is governed by the 

time-independent part Hd
† of the dipolar interaction Hamiltonian in the 

doubly rotating frame, the frame rotating about the effective field with 

angular  frequency γHe [4].  The Hamiltonian Hd
† is derived from the 
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truncated dipolar interaction Hamiltonian in the multi-level system [5].  

As shown in the previous paper [3],  Hd
† is complicated but is divided 

into three parts as 

 

Hd
† = Hd1

† + Hd2
† + Hd3

†                     (1) 

 

Hd1
† participates only in the resonant transition m←→m-1.  Hd2

† and 

Hd3
† show the contributions from the non-resonant levels, and Hd3

† 

commutes with fictitious spin-1/2 operators SX , SY and SZ associated 

with the transition m←→m-1 [3,6], where ∑=
k

kSS
rr

, and X, Y and Z 

indicate the axes in the tilted rotating frame with the Z-axis along the 

effective field and the Y-axis which coincides with the y-axis.  

If the fictitious spins are rotated about the X-axis through an angle 

π, the Hamiltonian Hd
† is transformed to 

 

UHd
†U-1 = Hd1

† - Hd2
† + Hd3

†              (2) 

 

where U = exp(iπSX).  It is noted that the sign of Hd2
† is changed.  

Therefore, it is expected that the π-rotation of the fictitious spins 

recovers the decay of the transverse magnetization due to  Hd2
† in the 

tilted rotating frame and gives rise to a rotary echo, though the recovery 

is not complete.  If the π-rotation is carried out at t = τ, the time 

development of the normalized magnitude of the transverse 

magnetization becomes 
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where M2(1)  and M2(2)  represent the second moments of the absorption 

lines in the rotating frame which are broadened by Hd1
† and Hd2

†, 

respectively.  As is expected the effect of M2(2) is cancelled at t = 2τ.  

This type of echo is not expected to be observed at exact resonance since 

Hd2
† vanishes at δ = 0. 

The experiment was carried out at 13 MHz on 27Al nuclei (I = 5/2) in 

a single crystal of Al203 at room temperature.  The echo formation was 

confirmed by observing the oscillatory behavior of the population 

difference in the transition (-3/2) to (-1/2) under the condition of δ = 

β, where the effective field tilts from the z-axis by an angle π/4.  The 

pulse sequence used for this experiment is illustrated in Fig. 1.  An rf 

pulse with frequency Ω is applied along the x-axis at t = 0.  Theπ

-rotation about the X-axis is achieved by a π-phase shift of the rf carrier 

persisting for a time π/γHe .  The population difference w(t) is   

measured by applying a π/2-pulse with frequency ω after the first 

pulse is turned off at time t.  The time interval of 500 μs is introduced 

between the pulses to remove transients caused by the first pulse.  The 

effect of spin-lattice relaxation can be neglected since the duration of the 

pulse sequence is very short compared with the relaxation time. 

The experimental result is shown in Fig. 2.  The upper trace was 

observed without the π-rotation, showing the usual transient nutation.  

The lower trace shows the echo signal obtained by making theπ-rotation 

at t = τ = 200 μs.  The duration of the π- rotation is eliminated in 
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the figure.  The downward shift of the base line of the oscillation is due 

to the inversion of the nutation cone.  The large shift of the echo-peak 

from t = 2τ is understood as a result of the incomplete recovery of the 

transverse magnetization. 

Open circles in Fig. 3 show the echo-envelope decay obtained by 

plotting the oscillation-amplitude of w(t) at t = 2τ as a function of τ.  

Closed circles in the figure indicate the nutation decay Γ(t). 

The π-rotation may also produce ordinary rotary echoes due to the 

intensity-distribution of the effective field [7].  In order to confirm that 

the dipolar interaction is responsible for this echo formation, we 

compare the echo-envelope decay with the nutation decay Γh(t) in the 

absence of the intensity distribution of the effective field.  If the dipolar 

interaction does not participate in the echo formation, the echo-envelope 

decay should coincide with Γh(t). 

Γh(t) was obtained by the following procedure.  We assume that 

the observed nutation decay Γ(t) can be written as 

 

        ),()()( hi ttt ΓΓ=Γ                  (4) 

 

where Γi(t) represents the nutation decay due only to the intensity 

distribution of the effective field.  In order to estimateΓi(t), we carried 

out a similar experiment on 19F nuclei (I = 1/2) in a Teflon sample of the 

same size as that of the Al203 sample.  From the observed nutation 

decay Γ(F)(t) and the echo-envelope decay on 19F nuclei, the latter can be 

regarded as Γh
(F)(t), we obtained Γi(t).  The decay function Γh(t) for 

5 
 



27A1 nuclei can be obtained from Γ(t)  and Γi(t) and the result is 

shown by the dashed line in Fig. 3. 

From the fact that the decay curve shown by open circles is quite 

different from the dashed line, we can recognize that the contribution of 

the intensity distribution of the effective field to the rotary echo is 

negligible. From the echo-envelope decay near t = 0, we can estimate the 

second moment M2(1) , since the second moment M2(2) does not 

contribute to the echo-envelope decay. 

As shown in the previous paper [3], the second moment M2(1) 

vanishes when 3/1cos =θ ,  which is the same as the well-known 

magic-angle condition [8].  Therefore, it is interesting to observe the 

echo-envelope decay under this condition, where the second moment 

due to the dipolar interaction vanishes.  Figure 4 shows the rotary echo 

observed at )3/1(cos 1−=θ , where the π-rotation is performed at t = 

300 μs.  In this case the intensity of the π-rotation rf-field is reduced 

to one half the intensity of the main one.  As is expected the 

echo-envelope decay is lengthened.  A detailed study is in progress. 

The author thanks Mr. K. Hayashi for his assistance in 

instrumentation. 
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  Figure Captions 

 

Fig. 1.  Pulse sequence used for observing the rotary echo due to 

magnetic dipolar interaction under the off-resonance condition of δ=

β. 

 

Fig. 2.  Rotary echo due to magnetic dipolar interaction observed at δ=

β.  The upper trace shows the usual transient nutation. The lower 

trace, showing the rotary echo, was observed after the π-rotation of 

the spins carried out at t = 200 μs.  The downward shift of the base 

line of the oscillation indicates the inversion of the nutation cone.  

The large shift of the echo-peak from t = 400 μs is due to the 

incomplete recovery. 

 

Fig. 3.  Rotary echo envelope decay (open circles). The echo envelope 

decay is obtained by plotting the oscillation amplitude of w(t) at t = 2

τ as a function of τ. Dashed line represents the nutation decay in 

the absence of the intensity distribution of the effective field, which is 

obtained by the aid of the similar experiment on 19F nuclei in Teflon.  

Closed circles show the observed nutation decay.  These decay 

curves are normalized. 

 

Fig. 4.  Rotary echo due to magnetic dipolar interaction observed at 

).2(        )3/1(cos 1 βδθ == −   The π-rotation is performed at t = 300

μs.  
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