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ABSTRACT

The radiation force on dust grains may be dynamically important in driving turbulence and
outflows in rapidly star-forming galaxies. Recent studies focus on the highly optically thick
limit relevant to the densest ultraluminous galaxies and super star clusters, where reprocessed
infrared photons provide the dominant source of electromagnetic momentum. However, even
among starburst galaxies, the great majority instead lie in the so-called ‘single-scattering’
limit, where the system is optically thick to the incident starlight, but optically thin to
the reradiated infrared. In this paper, we present a stability analysis and multidimensional
radiation—hydrodynamic simulations exploring the stability and dynamics of isothermal dusty
gas columns in this regime. We describe our algorithm for full angle-dependent radiation trans-
port based on the discontinuous Galerkin finite element method. For a range of near-Eddington
fluxes, we show that the medium is unstable, producing convective-like motions in a turbulent
atmosphere with a scale height significantly inflated compared to the gas pressure scale height
and mass-weighted turbulent energy densities of ~0.01-0.1 of the mid-plane radiation energy
density, corresponding to mass-weighted velocity dispersions of Mach number ~0.5-2. Ex-
trapolation of our results to optical depths of 10° implies maximum turbulent Mach numbers
of ~20. Comparing our results to galaxy-averaged observations, and subject to the approxima-
tions of our calculations, we find that radiation pressure does not contribute significantly to the
effective supersonic pressure support in star-forming discs, which in general are substantially
sub-Eddington. We further examine the time-averaged vertical density profiles in dynamical
equilibrium and comment on implications for radiation-pressure-driven galactic winds.
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(e.g. Thompson, Quataert & Murray 2005; Krumholz & Burkhart

1 INTRODUCTION 2016; Krumbholz et al. 2018). On sub-galactic scales, a mechanism

A mystery of galaxy formation is the mechanism of galactic winds,
which must transport significant amounts of gas out of nearly all
galaxies, as indirectly inferred from the comparison of the cosmic
stellar mass function with simulations (e.g. Somerville et al. 2008),
the mass—metallicity relation (Finlator & Davé 2008; Peeples &
Shankar 2011), and chemical evolution models of the deuterium-
to-hydrogen abundance ratio of the Galaxy (Weinberg 2017).
Radiation pressure on dust has been proposed as a mechanism
for galactic winds by Murray, Quataert & Thompson (2005), Mur-
ray, Ménard & Thompson (2011). Additionally, star-forming discs
must be supported against collapse by the turbulent velocity dis-
persion of their gas, for which the driving mechanism plausibly
may be gravitational instability, supernovae, or radiation pressure
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is sought for the observed early destruction of dense gas clumps
(objects of number density ~10° cm™ and diameter ~1 pc; e.g.
Lopez et al. 2011; Pellegrini, Baldwin & Ferland 2011; Lopez et al.
2014) prior to their first supernovae. One possible mechanism is the
radiation pressure of starlight on dust (Harwit 1962; O’dell, York &
Henize 1967; Chiao & Wickramasinghe 1972; Barsella et al. 1989;
Ferrara et al. 1990; Scoville et al. 2001; Scoville 2003; Krumholz
& Matzner 2009; Murray, Quataert & Thompson 2010; Raskutti,
Ostriker & Skinner 2016). In this work, we study the aspects of the
radiation pressure mechanism, with application to these dynamical
questions.

Previous work on radiation pressure-driven winds and turbulence
in the galactic context has largely focused on the radiative force
imparted by IR photons in IR-optically thick dusty gas columns
(Krumbholz & Thompson 2012; Krumholz & Thompson 2013; Davis
et al. 2014b; Zhang & Davis 2017; but see Raskutti et al. 2016;
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Tsz-Ho Tsang & Milosavljevic 2017), where multiple scattering of
IR photons can transfer many times the photon source momentum
L/c to the gas. This ‘multiple-scattering’ regime applies to systems
(e.g. galaxies or GMCs) with very high column densities (0.1—
10 gem™ or 10°~10*M@ pe™?) (Thompson et al. 2005; Andrews
& Thompson 2011), but is inapplicable to systems that have gas
column densities and dust-to-gas ratios similar to that of the Galactic
interstellar medium or an ‘average’ local starburst galaxy like M82
(Coker, Thompson & Martini 2013).

This latter regime is that of ‘single-scattering’ of UV/optical pho-
tons from starlight; that is, systems in which the optical depth to
scattering of UV/optical photons by dust is of the order of unity, but
the optical depth to scattering of IR photons by dust is much less
than unity. This regime is applicable to a wider variety of systems
because the flux-mean opacity «kr = [k, F,dv/[F,dv integrated
over a galaxy’s starlight spectral energy distribution is 2-3 orders
of magnitude larger than the opacity integrated over the IR band
alone (Thompson et al. 2005; Andrews & Thompson 2011; Draine
2011) (although expanding IR-optically thick media must even-
tually undergo a single-scattering phase; Thompson et al. 2015).
High redshift star-forming galaxies also have column densities in
the single-scattering range (Bouché et al. 2007; Daddi et al. 2008,
2010; Genzel et al. 2010; Tacconi et al. 2013); thus, this limit is
broadly applicable. This regime of direct radiation pressure has
been frequently invoked in constructing ‘sub-grid’ or other approx-
imate models of galactic winds in cosmological hydrodynamical
simulations (e.g. Hopkins, Quataert & Murray 2011; Zu et al. 2011;
Agertz et al. 2013; Ceverino et al. 2014) as an important physical
mechanism to drive significant winds and regulate star formation in
galaxies. In the absence of this hypothesized momentum feedback,
galactic gas affected by thermal energy input from only supernovae
(i.e. with no other thermal input sources) suffers radiative cooling
losses that are fatal to the realistic regulation of star formation (e.g.
Katz 1992; Katz, Weinberg & Hernquist 1996), unless cooling is
artifically prevented or delayed (e.g. Stinson et al. 2006). Thus, it is
important to evaluate the effects of single-scattering radiation pres-
sure in galactic discs from first principles with an accurate treatment
of radiation transport.

This paper focuses on the ‘single-scattering’ regime of direct ra-
diation from starlight on to dusty gas. We investigate the non-linear
instabilities and dynamics in this regime with multidimensional
simulations of the astrophysically relevant limit of compressible
radiation hydrodynamics.! We conduct simulations in an idealized
2D plane-parallel geometry (see Appendix A for justification) of
a perfectly coupled isothermal dust—gas mixture subject to both
gravitational forces and radiation forces and measure the result-
ing turbulent velocity dispersion and kinetic energy density. We
investigate the general stability properties of the medium, whether
radiation pressure can drive turbulence, and if so, how much, and
illuminate regimes where single-scattering radiation pressure might
be dynamically important.

In Section 2, we derive a hydrostatic equilibrium profile in the
presence of gravity and radiation pressure in the single-scattering
limit and investigate its linear stability. In Section 3, we describe
our numerical methods for hydrodynamics and radiation transport,
and our initial conditions and boundary conditions. In Section 4,
we describe the results of our numerical experiments. We assess the
stability of sub-Eddington atmospheres in the single-scattering limit

IFor an investigation of linear instability in the incompressible hydrody-
namic regime with radiation forces, see Krolik (1977).
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over a broad range of parameter space and compute the resulting
turbulent velocity dispersion, turbulent energy density, and vertical
density profiles in the unstable cases. We discuss the implications for
driving mechanisms of galactic turbulence and winds in Section 5
and conclude in Section 6.

2 LINEAR PERTURBATION ANALYSIS

We consider a radiation-supported atmosphere with an analytic
model of radiation—hydrostatic equilibrium, in which pressure gra-
dients, gravitational forces, and radiation forces produce a time-
stationary state with zero velocity.> We assess our approximation
of plane-parallel constant gravity with reference to a model disc
potential in Appendix A.

For an isothermal® gravitating atmosphere with sound speed cr
and gravitational acceleration —g, we have the exponential density
profile:

p(z) = poe” /M (1

where hy = c3/g is the scale height of the atmosphere, c7 is the
isothermal sound speed, and py is a density normalization that sets
the total column density of the atmosphere.

In the optically thin limit, this is modified by replacing —g with
the net acceleration on a parcel of gas due to both radiation forces
and gravity. For zero net acceleration, there is no unique equilibrium
profile and for positive net acceleration, there is no equilibrium state
at all.

In the case of perfectly beamed radiation from an infinite mid-
plane source, the equations for the equilibrium density profile are

dp 1 K

-V = 5 |\~ — Fini o 2
& = (et o) 0 @

and

dr

i Kkp(2), (3)
b4

where py is the gas density at the mid-plane, 7 is the vertical optical
depth, Fq is the (beamed) radiation flux at the mid-plane, and «
is the flux-mean dust opacity per mass of dust—gas mixture. The
boundary conditions are

p(0) = po, “4)
7(0) =0, (5)
and

Fiia = I'Edd FEdd beamed (T)- (6)

We compute the beamed Eddington flux by solving for the mass-
weighted radiative acceleration

ge T

FEdd,beamed(T) = — —
Kk 1—e

@)

that produces an acceleration equal to g. We compute a hydrostatic
profile for a given Eddington ratio I'ggqg and optical depth 7 by

2Previous works have derived qualitatively similar results (e.g. density pro-
file inversions) in the different physical regime of local thermodynamic
equilibrium (e.g. Joss, Salpeter & Ostriker 1973), which does not apply to
the single-scattering case.

31sothermal is an appropriate assumption about the thermal state of the gas
because for most systems in the single-scattering regime, the gas density is
low enough (<10*3 cm™3) that the dust and gas are not thermally coupled.
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Figure 1. Hydrostatic density profiles with I'ggq = 0.8 and 7 = 10 computed
in the interval O < z < 10 with 512 grid points. The dashed orange line shows
the hydrostatic profile assuming a source of beamed radiation. The solid blue
line shows the hydrostatic profile assuming an isotropic radiation source.

solving for the value of p( that yields a profile of desired optical
depth 7. The density p is positive whenever ['gqq < 1 and unphysical
solutions are obtained for I'gqq > 1.

We show a numerically integrated hydrostatic profile for
Iggg = 0.8 and optical depth © = 10 in Fig. 1. We note that a
density profile inversion develops when Fy,iq > gc/k, as is the case
for the ‘beamed radiation’ profile shown in Fig. 1.

In the case of an isotropically emitting infinite mid-plane source,
the equations for the equilibrium density profile are

dp 1 K ! (s

T <—g + = Fuig? / e O/mw) p(2) ®)
T 0

and

dr

diz = kp(2), ©)

where Fq is the (isotropic) flux at the mid-plane, 7 is the vertical
optical depth, and w is the direction cosine with respect to the
vertical z-axis.

The boundary conditions are

p(0) = po, (10)
7(0) =0, (11)
and

Fia = T'eda Fead;isotropic (T)- (12)

To derive Fgqd, isowropic(T), wWe compute the flux which produces
a mass-weighted radiative acceleration equal to g. Using Chan-
drasekhar’s definition of the flux (Chandrasekhar 1960) and assum-
ing grey radiation, we have

nF: =/ I(R)# - 24dQ, (13)
52
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where d2 is the element of solid angle singdfdg and pu =
cos~!(7 - 2) is the angle with respect to the Z direction for which we
wish to compute the flux. In spherical polar coordinates, we have

/2
T F(t)=2nl, / e~/ cos ¢ sin ¢ dp (14)
0
1
TF(t) = 27110/ e Hudu (15)
0
TF(t)=nlpe " (1 —T— rzef/ e/t dt) , (16)

where [ is the (isotropic) specific intensity at z = 0.

To obtain the mass-weighted Eddington flux, we need to compute
the mass-weighted mean radiative acceleration and solve for the
flux at z = 0 that produces such an acceleration. Since the opacity
Kk is constant and the radiative acceleration has a prefactor « p that
multiplies the flux, we can perform this weighting by integrating
the flux over optical depth

T T , , {o¢]
/F(t’)dt’:]o/ e’ <l—t’—r’zef/ e”/tdt) dt’
0 0 %
2 T T2 3 (et
=Zhll+e (- 1)+ [
solire (G505 [ 5]

(7
to find that the plane-parallel isotropic Eddington flux is
3 gc
FEdd,isotropic(T) = 5 %T
l4e L jLTS/OCe_Idr1
X e B — - il
2 2 2 /). ot
(18)

As before, pg is determined by solving for the value that yields
a profile with the desired optical depth 7. The density p is found to
be positive for I'ggg < 1 and unphysical solutions are obtained for
IMgaa > 1. We show a numerical integration for a hydrostatic density
profile where I'gqg = 0.8 and 7 = 10 in Fig. 1. A density inversion
develops whenever Fy,q > gc/k, as is the case for the ‘isotropic
radiation’ profile shown in Fig. 1.

2.1 Perturbations

We now perturb the hydrostatic density profile in order to investigate
its linear stability. In this section, we assume that the radiation
from the mid-plane is perfectly beamed, which is not physically
realistic and is not used in our main set of simulations. We make
this assumption here only because it enables us to treat the radiative
transfer consistently at linear order within the perturbation analysis
that follows.
We linearize the equations as

98p
— 4+ poV-6v=0 (19)
ot
and
08V KFaq
v =—VP+pg+pT, (20

where p = pg + 6p, P = Py + 6P, and Fryg = Fraa,0 + 6Faq refer
to the sum of the hydrostatic background state and the perturbed
state. Subtracting the hydrostatic background state and dropping
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second-order terms, we have

0dv K SF,, «F,,
Pog = —c}Vép + Spg + POTH1d + Spﬂ-

21

With background state optical depth 7y and the perturbed optical
depth 47,

F(2) = Fige ™70 = Fqe 0e™, (22)
Fo(z) = Fniae™ ™, (23)
and

§F(z) = Fo(efar — 1) =~ Fy(=61). 24)

We then assume solutions of the form

(Sv(x, z, l) — (SV eikXkazzfimt’ (25)
compute
‘ ,  kop
0T = kép(z)dz = ——, (26)
0 _lkz
and use the perturbed continuity equation to obtain
2
—iw ) K KPo
sv = —ike? “Fo(1-—=]). 27
K-ov ’CT+g+c"< ikz> 0

With further algebra, we obtain a local dispersion relation
K
@ = (kg +k2) cf +ikeg + —Fo@) lik: = kpo(2)], (28)

which is always stable for k, > 0 and is unstable for k, = 0, whenever
the horizontal wavenumber k, is less than a critical wavenumber

koo =cr'y/ %Fo(z) Kpo(2)- (29)

Therefore, radiation-supported atmospheres with beamed radiation
are unstable to perturbations with a horizontal wavelength longer
than

he = 27 /kye = 2mer (5 Fo(2) kpo(2)) 2 (30)

T ) -l
=4.8pc (Ipyd’ 7! 31
pc( B * ) 500K ) \1oomypez) = @D

in the limit T — oo and assuming kpy = dt/dz ~ 7 (c%/g)".
However, since the most unstable modes are at arbitrarily large
wavelengths, the validity of the WKB approximation may be in
doubt. Therefore, we carry out a quasi-global numerical eigen-
mode analysis with a finite difference discretization, with év al-
lowed to be an arbitrary (differentiable) function of z and with
an x-dependence restricted to functions of the WKB form (i.e.
8v = 8v(z) e'f*—i") Under these assumptions, we obtain a one-
dimensional wave equation for §v, as a function of k,. We then use

the fact that 9%/912 = —w? to obtain an eigenvalue equation of the
form
AbSv, = AV, 32)

where A is the finite difference matrix, A is the eigenvalue (equal
to w® — k2c}), and 8v, is the eigenvector. We solve this eigenvalue
equation as a banded diagonal matrix eigenvalue problem with
LAPACK (Anderson et al. 1999, via the pyTHON interface provided
by scipy; Jones et al. 2001), yielding the entire set of eigenvalues
and eigenvectors that can be represented on the discrete z-grid.
We assess the fidelity of the solution of the discrete problem to
that of the continuous problem by both successively doubling the
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Figure 2. The lowest order vertical eigenmodes for a hydrostatic profile
with 'ggg = 0.8 and T = 10 computed on the interval 0 < z < 10 with
2048 grid points. From the eigenvalue of the fundamental mode, we find
that the minimum unstable horizontal wavelength A, . = 8.95 c% /g. The
n > 0 modes do not converge with increasing box height, suggesting that
there exists a continuum of modes above the fundamental mode.

resolution of the grid in z and doubling the box height, finding that
the lowest order eigenmodes are affected by much less than 1 per
cent for changes about the values used here.

Carrying out this analysis, we find that the fundamental vertical
eigenmode can be either stable or unstable, depending on the (I"gqq,
7) parameters. We likewise find that the fundamental mode is un-
stable only for k, < k. . for some k, . that is a function of I'ggq
and 7. All higher order modes appear to be stable across the entire
parameter space. We show the results of an eigenmode calculation
at 'ggq = 0.8, T = 10 in Fig. 2, where the fundamental mode is
unstable for horizontal wavelengths A, . > 8.95c¢%/g.

We use our numerical eigenmode solver to solve the equation
@*(T'gad, T) = 0 and show this in Fig. 3. This represents the predic-
tion of the boundary between stability and instability as a function
of optical depth and Eddington ratio, since @® > 0 indicates stability
and w? < 0 indicates instability [according to our sign convention
given in equation (25)].

We can qualitatively understand the results of the global stability
analysis in terms of the dispersion relation (equation 28), in the sense
that the dispersion relation indicates greater stability at larger &,
since the terms involving &, are positive. Examining the fundamental
eigenmode at various points in Eddington ratio—optical depth space,
we see that the fundamental mode is similar in shape and width to
the hydrostatic density profile, with increasing similarity at higher
optical depths (e.g. compare the solid black line with the dotted
blue line in Fig. 2). Thus, we can compute the effective scale height
of the hydrostatic density profiles to obtain a characteristic profile
wavenumber k, = 277 /Aprofile, With

s Jr@)zdz
profile fp(Z) dZ

as a function of Eddington ratio and optical depth. Above 7 ~ 3,
the hydrostatic density profiles transition from being determined

(33)
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Figure 3. The solution to the equation ®? Tgaa, 7) = 0, showing the
boundary between stability and instability as a function of I'ggg and t for
beamed radiation that is predicted by our linear perturbation analysis (see
Section 2). At each optical depth, we solve for the critical value of I'ggqq
with a bisection root finding method that iterates over the output of our
eigenmode solver. The eigenmodes are solved by finite differences on the
domain 0 < z < 40 on a grid of 1024 points. (The residual wiggles at high
optical depth are due to the finite accuracy of our numerical solver.)

primarily by Eddington ratio to being determined primarily by op-
tical depth. This can be seen in Fig. 4 as the contours of constant
scale height rapidly slope upward at T ~ 3. The hydrostatic profiles
become increasingly similar to exponential profiles, with their ef-
fective scale height Apro51. converging towards the gas-pressure-only
scale height ¢7./g. Thus, the characteristic profile wavenumbers ,
approach 27 (in units of inverse gas pressure scale height) because
Aprofile = €3-/8 as T — o0o. According to the dispersion relation, the
larger values of k, above T ~ 3 should indicate greater stability and,
indeed, the stability curve is pushed upward above v ~ 3 (Fig. 3).
These effects make clear that the changes in global structure of the
solution as a function of optical depth are crucial to correctly calcu-
lating the stability properties of the solution, and that the asymptotic
small-wavelength dispersion relation alone is not an accurate guide
to the stability properties at the wavelengths comparable to the
effective scale height of the hydrostatic solution.

In Section 4, we examine the agreement of this perturbative pre-
diction with our fully non-linear simulations. In that set of simula-
tions, we choose an amplitude of turbulent driving that generates
transonic velocity dispersions, since any representative region of a
galaxy’s interstellar medium will involve density perturbations of
at least order unity. However, we conduct limited tests with small-
amplitude perturbations (of order 1072 ¢ in velocity amplitude)
generated from a k~* power spectrum, which ensures that the per-
turbations are primarily at long wavelengths, as we have found
those to be the most unstable. In these tests, we do not observe
any instability. Since our linear perturbation analysis suggests that
there should be unstable behaviour in some parameter regimes, we
speculate that this lack of instability in our numerical simulations
with small-amplitude perturbations is due to numerical dissipation
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Figure4. The hydrostatic scale height (equation 33) in units of gas pressure
scale height (c% /g) as a function of Eddington ratio and optical depth, as
determined by numerically integrating the hydrostatic density profiles from
0 < z <40 on a grid of 1024 points. Note that the scale height of the profiles
is determined primarily by Eddington ratio below t ~ 3 and primarily by
optical depth above t ~ 3.

or inconsistency in our boundary conditions. This behaviour may
also be due to our low-order coupling between radiation and hydro-
dynamics (i.e. operator splitting; see Section 3).

3 NUMERICAL METHODS

Having found that radiation pressure-supported atmospheres in the
single-scattering limit are unstable above a critical Eddington ratio
(Fig. 3), we now turn to numerical simulations to investigate the
non-linear development of the instability. We use ATHENA, a com-
pressible Godunov code (Stone et al. 2008; Stone et al. 2010), in
order to evolve the equations of two-dimensional isothermal hydro-
dynamics. We modify the code to include a radiation force term
in the momentum equation by first-order operator splitting. For
the hydrodynamics, we use the second-order van Leer integrator
(Stone & Gardiner 2009) with piecewise-parabolic method (PPM)
interface reconstruction in the primitive variables and the Harten-
Lax-van Leer-Contact Riemann solver to compute the fluxes. Due
to the difficult flow conditions that we encounter, we adaptively
reduce the order of the reconstruction to first-order whenever un-
physical states would result from PPM reconstruction (i.e. negative
densities), when the momentum source term is strongly impulsive
(i.e. at interfaces where the gradient of the radiative acceleration
is >10), or would otherwise produce unphysically large velocities
(M > 100). These conditions are regularly produced in the pres-
ence of an operator-split radiative acceleration source term at sharp
optical depth gradients, and we cannot evolve our simulations in a
stable manner at a reasonable time-step without resorting to such

MNRAS 477, 4665-4684 (2018)
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measures.* We use these modified criteria with the “first-order flux
correction” option implemented in ATHENA.

We compute the radiation source terms by solution of the time-
independent grey radiation transport equation, with angles dis-
cretized via the method of discrete ordinates, quadratures chosen
to be appropriate to the two-dimensional, plane-parallel geometry
(Appendix C), and spatial terms in the transport equation discretized
via the discontinuous Galerkin method (Appendix D). We discuss
the dependence of our results on spatial and angular resolution and
box size in Appendix E.

The equations we solve are

9 4. pv=o, (34)
ot

AON) ¥y + 97 = (0O — 55, (35)
it Vg = —(kp)lraa. (36)
TFg = / L) dS2, 37

and an isothermal equation of state
Py = pC7, (38)

where we have a direction cosine 71, constant isothermal sound
speed cr, constant gravitational acceleration g, and a constant,
temperature-independent opacity k. The flux is defined to include
the factor of 7 on the left-hand side so that the relationship between
intensity and flux is exactly the same for an isotropic angular dis-
tribution of radiation (equations 13-18) as for a beamed angular
distribution of radiation. With constant gravity (see Appendix A for
justification), opacity, and equation of state, the equations are self-
similar and the scales of the problem are set by the sound speed,
the magnitude of the gravitational acceleration, and the opacity. We
therefore introduce dimensionless equations by setting the physical
constants (including the speed of light ¢) to unity and switching to
dimensionless density D, dimensionless velocity V, dimensionless
time 7, dimensionless intensity /, dimensionless flux F, and dimen-
sionless energy density E. In these variables, equations (34)—(37)
become

W L v.p=0 (39
oT o
A(DV

(aT ) + V- [D(1 +V?] = DF — D§, (40)
A-VI=-DI, 1)
and
7F = /I(ﬁ)ﬁdQ. 42)

For the hydrodynamics equations, we impose boundary conditions
that are reflecting on the lower horizontal boundary and either re-
flecting or outflow (with inflow disallowed by a switch, i.e. diode

4We use a CFL number (defined here as the ratio of the time-step to the
crossing time of a sound wave across one grid zone along any coordinate
axis in the instantaneous comoving fluid frame; see Courant, Friedrichs &
Lewy 1967 for the original definition) of 0.4 for all of our simulations in
this paper.
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boundary conditions) on the upper boundary. The horizontal bound-
ary conditions are periodic. For the radiation transport equation,
we impose an isotropically radiating lower boundary of fixed flux
Fniq, the physical counterpart of which is the interstellar radiation
field (ISRF) from a continuously star-forming stellar population.
We likewise impose periodic boundary conditions in the horizontal
direction for the radiation transport.

The characteristic length, time, velocity, density, intensity, flux,
and energy density scales are

G _ 0.92pc (L 2 R
= = - = U. C 5
To=N=7 P\ 300x ) \100Mope—2
T 1/2 > -1
th =< =057TM , 44
0= % yr<3001<) <100M®pc*2> “4)
T 1/2
v = ¢r = Lokms-" <7300K) , (45)
o= 8
! Kca.
p -1
_ -3
T\ by
X AN 1 T AANA A 9
300 K 100 Mgpce—2
(46)
L =25
K
K ! z
= 0.263 st :
cresem -8 <103 cng*'> (100M0p0*2>
47
Fy= %€
K
-1
)
:O.263ergscm’2s"< > KQ 1) < 2),
10°cm? g~ 100 Mgpe~
(48)
and
_ 27 ge

K ! z
€0 K 1040 Go ( 103 cm? g1 ) ( 100 Mopc*2> 49)
respectively, where we have normalized « to an appropriate value
for the flux-mean dust opacity per gram of gas for a zero-age main
sequence fully populated stellar IMF and a Galactic dust-to-gas
ratio.’ The quantity Gy = 5.29 x 107'* ergs cm™ is the fidu-
cial solar neighbourhood value of the ISRF in the 6-13.6eV band
(Habing 1968; Draine 2011). Note that this value varies dramati-
cally with galactocentric radius; e.g. in the central molecular zone of
the Galaxy, Lis et al. (2001) inferred an ISRF of ~103 G,. We have
assumed that the gravitational acceleration g and the total surface

SDraine (2011) gives the radiation pressure cross-section per H (assuming
a Milky Way dust-to-gas ratio) as opy ~ 1.5 x 102! ecm? for a 30000 K
blackbody radiation spectrum, which may be appropriate for a star-forming
galaxy with radiation mostly from young O and B stars. Changing units to
per gram of H, we obtain an opacity o ,/upg = 897 cm? g~!. We approximate
this as 10° cm? g~ 1.
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density of mass X are related by

z
g=27GX =8.7x 10% cm s72 ( ) s (50)

100 Mgpc—2

as appropriate for a geometrically thin disc. We discuss our assump-
tion of constant gravitational acceleration in Appendix A. Note that
due to the factor of 7 included in the definition of the flux we adopt
[equation (37), which is identical to equation (7) in Chandrasekhar
1960], our units of intensity and flux are identical.

With these dimensionless variables, the only free parameters
of our simulation are the vertical optical depth T and the single-
scattering Eddington ratio I"'ggq. We must also choose the horizontal
and vertical simulation box sizes X,y and Y.y, respectively.

The vertical optical depth 7(X) of the sightline at horizontal po-
sition X is

Ymax
r(X):/ D(X,Y)dY. (51)
0

We denote the mean vertical optical depth averaged over all vertical
sightlines (or that of a uniform vertical density profile) as 7 (without
any arguments):

1 Xmax [ Ymax
T = / / D(X,Y)dY dX. (52)
Xmax 0 0

The definition implies that the vertical optical depth of an expo-
nential vertical density profile of the form p(y) = poexp (— y/yo)
is

T = PoYo (53)

for an infinitely tall box. Note that regardless of the form of the
density profile,

(X)) = KEgas(X) 54)

and averaged over all columns

T = K (Lgas)- (55)
The single-scattering Eddington ratio
Finid
Tpag = (56)
Edd Foua

is defined as the ratio of the incident lower boundary flux Fy,4 to the

single-scattering Eddington flux Fgqq, where the single-scattering

Eddington flux is given by equation (18) as derived in Section 2.

This is precisely the flux that produces a mass-weighted mean ra-

diative acceleration equal and opposite to that of the gravitational

acceleration g. In the infinitely optically thick limit (z — 00), this

becomes

3 gc 3

Feaa(t > 00) = 2~ ~7 = Zgc{Xgus), (57)
K

while in the optically thin limit, we recover the classical Eddington

ratio

[
Fraa(t = 0) = % (58)

as we illustrate in Fig. 5. In some works, the single-scattering Ed-
dington flux has been derived in the context of beamed radiation
from a source, as would be appropriate for a single point source
in spherical symmetry, rather than isotropic plane source radiation.
In the limit of beamed radiation, the appropriate single-scattering
Eddington flux is

gc T

FEad, beamed(T) = =— -
Kk 1—eT®

_ 8¢(Bgus)
l—e 7’

(59
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Figure 5. The various definitions of the Eddington flux (normalized to
the optically thin Eddington flux gc/k) as a function of optical depth.
The optically thin Eddington flux is the conventional Eddington flux gc/x
(equation 58). The isotropic single-scattering Eddington flux is defined in
equation (18). The optically thick isotropic Eddington flux is given in equa-
tion (57). The beamed single-scattering Eddington flux is defined in equa-
tion (59).

If this flux is inappropriately used for an isotropic source plane of
radiation, errors of order unity result. Compare the beamed single-
scattering flux (blue dot—dashed) with the isotropic single-scattering
flux (solid) in Fig. 5.

4 SIMULATION RESULTS

The parameters for the simulations are given in Table 1. We choose
box dimensions that are an order of magnitude larger than the (gravi-
tational) thermal pressure scale height yo = % /g in order to resolve
the long-wavelength instabilities suggested by our perturbative anal-
ysis (Section 2). We choose optical depths of 7 = 107%3-10' that
logarithmically sample the lower range of expected optical depths
inferred from observations of star-forming galaxies (see Section 5)
and span the optically thin to optically thick regimes. We use a
number of angles for the radiation that is twice the number of zones
in the vertical direction, ensuring that the angular distribution of
the specific intensity is well-resolved in the optically thin limit
(Appendix E).

We choose the initial conditions of gravitational hydrostatic equi-
librium (when the thermal pressure gradient balances gravity, i.e. an
exponential gas pressure vertical profile) and then turn on solenoidal
stochastic turbulent driving with a time-dependent external forcing
}. At each time-step when it is turned on, the external forcing j‘ is
computed as an independent realization of a Gaussian random field
with f(k) oc k~* and no compressive modes (i.e. V - } =0).°

©We use the implementation included in ATHENA in the file turb. c.

MNRAS 477, 4665-4684 (2018)
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Table 1. Parameters used for radiation hydrodynamic simulations of the ‘single-scattering’ limit.

IEad T Xmax Yimax Ny Ny Nangles/2 Upper b.c.  Stochastic driving Stable?
(/8 (/8

FIDUCIAL SIMULATION
A 0.8 10 25 50 512 1024 1024 Outflow Initial (r = 0) Unstable
CONVERGENCE TESTS
A0 0.8 10 25 50 256 512 512 Outflow Initial (r = 0) Unstable
Al 0.8 10 25 50 128 256 256 Outflow Initial (r = 0) Unstable
A2 0.8 10 25 50 64 128 128 Outflow Initial (r = 0) Unstable
A3 0.8 10 25 50 32 64 64 Outflow Initial (r = 0) Stable
Ad 0.8 10 25 50 512 1024 512 Outflow Initial (r < 10) Unstable
A5 0.8 5 25 100 128 512 256 Outflow Initial (r = 0) Unstable
A6 0.8 10 25 100 128 512 256 Outflow Initial (r = 0) Unstable
A7 0.8 15 25 100 128 512 256 Outflow Initial (r = 0) Unstable
B 0.8 10 6.25 50 128 1024 512 Outflow Initial (r < 10) Unstable
C 0.8 10 6.25 50 128 1024 512 Reflecting Initial (r < 10) Unstable
D 0.8 10 4.6875 50 96 1024 512 Outflow Initial (r < 10) Unstable
E 0.8 10 4.6875 50 96 1024 512 Reflecting Initial (r < 10) Unstable
F 0.5 10 25 50 512 1024 512 Outflow Initial (r < 10) Stable
PARAMETER VARIATIONS
G 0.9 0.316 50 100 128 256 256 Outflow Initial (r < 10) Stable
H 0.95 0.316 50 100 128 256 256 Outflow Initial (r < 10) Unstable
1 0.6 0.6 25 50 128 256 256 Outflow Initial (r < 10) Stable
J 0.7 0.6 25 50 128 256 256 Outflow Initial (r < 10) Unstable
K 0.5 1.0 25 50 128 256 256 Outflow Initial (r < 10) Stable
L 0.6 1.0 25 50 128 256 256 Outflow Initial (r < 10) Unstable
M 0.5 3.16 25 50 128 256 256 Outflow Initial (r < 10) Stable
N 0.6 3.16 25 50 128 256 256 Outflow Initial (r < 10) Unstable
(¢} 0.7 3.16 25 50 128 256 256 Outflow Initial (r < 10) Unstable
P 0.8 3.16 25 50 128 256 256 Outflow Initial (r < 10) Unstable
Q 0.5 10 25 50 512 1024 512 Reflecting Initial (r < 10) Stable
R 0.6 10 25 50 512 1024 512 Reflecting Initial (r < 10) Stable
S 0.7 10 25 50 512 1024 512 Reflecting Initial (r < 10) Unstable
T 0.8 10 25 50 512 1024 512 Reflecting Initial (r < 10) Unstable
U 0.9 10 25 50 512 1024 512 Reflecting Initial (r < 10) Unstable
\% 0.5 31.6 25 50 128 256 256 Outflow Initial (r < 10) Stable
w 0.6 31.6 25 50 128 256 256 Outflow Initial (r < 10) Stable
X 0.7 31.6 25 50 128 256 256 Outflow Initial (r < 10) Stable
Y 0.8 31.6 25 50 128 256 256 Outflow Initial (r < 10) Unstable

4.1 Fiducial simulation

For our fiducial simulation (simulation A), we apply a strong impul-
sive perturbation at the initial time-step, and we find that the ensuing
unstable behaviour drives transonic turbulent velocities driven by
radiation pressure without further driving from the forcing field.
In the leftmost panel of Fig. 6, which shows the full vertical and
horizonal extent of the simulation, we see the imprint of the initial
perturbations at time ¢ = 1 (left), instabilities altering the non-linear
evolution by time ¢ = 10 (middle), causing the density profile to
break up into high- and low-column-density regions, and at t = 70
(right) the initial density profile is fully broken up into jets and fila-
mentary features with transonic or mildly supersonic velocities that
are characteristic of the two-dimensional unstable behaviour of our
idealized system. The breakup of the density profile into filaments
and blobs allows for the escape of substantial amounts of radiation
to altitudes that are very high compared to the gas pressure scale
height.

We see this relationship between flux and density more clearly
in Fig. 7, where the left-hand panel shows the same density field
as in the rightmost panel of Fig. 6 but logarithmically scaled, and
the right-hand panel shows the vertical flux for the same simulation
time. The low-density region in the lower middle of the simulation

MNRAS 477, 4665-4684 (2018)

box (dark blue in the log density field) enables the flux to escape to
ahigh height (tens of ¢2 /g scale heights) and levitates the filaments
that absorb the majority of the flux at the edges of this low-density
region. This relationship between flux and density is characteris-
tic of the late-time highly non-linear behaviour of this simulation,
as well as all other simulations we have run with a strong initial
impulsive perturbation that show evidence of instabilities.

In Fig. 8, we show the time-averaged vertical density profile for
a lower resolution simulation otherwise equivalent to the fiducial
simulation, except with twice the vertical extent, which enables us to
resolve the characteristic scale height associated with the turbulent
dynamical equilibrium for this particular set of parameters in the
unstable regime. We also show the density profiles for lower and
higher optical depth simulations, illustrating that the density profile
scale height and normalization increases with optical depth. We
discuss these additional simulations in Section 4.2 and we discuss
the character of the dynamical equilibrium in Section 4.3.

We note that the physical resolution of our fiducial simulation is

T ) -
Ax = 0.04pc . (60)
300K /) \ 100 Mgpe—2
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Figure 6. The density field for our fiducial simulation (simulation A) at three successive time outputs (r = 1, 10, 70, respectively). The leftmost panel shows
the early non-linear evolution of the exponential atmosphere subject to the k= initial forcing field. The middle panel shows the increasing inhomogeneity in
the atmosphere. The rightmost panel shows the break up of the atmosphere into filaments and blobs that allow the mid-plane flux to escape to high altitude.
The axes and colorbar scales are all in the dimensionless units defined in equations (44)—(49).

We discuss the resolution dependence of our simulations in Ap-
pendix E.

4.2 Variations of optical depth and Eddington ratio

By running the variants of this fiducial simulation (the simulations
in the second section of Table 1), with varying Eddington ratio I'g4q
and optical depth 7, we find that there is a critical Eddington ratio
IBad, orit(T) below which large perturbations decay and the long-
term evolution relaxes to hydrostatic equilibrium and above which
we obtain self-sustaining transonic or mildly supersonic turbulence
driven solely by radiation pressure (i.e. the behaviour seen in the
rightmost panel of Fig. 6). For these simulations, we apply the
forcing at each time-step until = 10 (c7/g) without radiation, when
the system’s velocity dispersion approaches a statistical steady state,
which we take to indicate an approximate dynamical equilibrium.
We then disable the stochastic driving for the remainder of each
simulation, and turn on a source of radiation at the lower boundary
with a flux given by equation (56) to obtain the desired Eddington
ratio.

To illustrate the behaviour of the simulations above and below the
critical Eddington ratio, we show the turbulent velocity dispersion
as a function of time for two pairs of simulations that lie on either
side of the boundary between self-sustaining turbulence and decay-
ing turbulence. Two simulations with self-sustaining turbulence are
shown as solid lines and two simulations with the same optical depth
but with a lower Eddington ratio that exhibit decaying turbulence
are plotted as dotted lines in Fig. 9. We define the (mass-weighted,

1D-equivalent) turbulent velocity dispersion év as

1 1
(Bv)* = 7 / 3 ((ve — (V) + (vy — (v,))?) pdV, (61)

where M is the total mass inside the simulation box, v, and v, are
the velocity components, p is the mass density, dV'is the 2D volume
element, and (v;) = M"fpv[ dV. We see that for I'ggg = 0.8 and
7 = 10, the turbulent velocity dispersion appears to asymptote to
~2cr over many tens of ¢7/g time-scales.

The turbulent energy density of the same simulations as a function
of time is shown in Fig. 10. The mass-weighted turbulent energy
density

1 1 2 2
Serg = M/ |:§,0 ((vx - (vx)) + (vy - (vy)) ) pdV (62)

is an order of magnitude less than the radiation energy density at
the lower boundary

emia = (27 /¢) T'gaa FEaa(T). (63)

Thus, the turbulent energy density of our idealized disc is not in
equipartition with the radiation energy density at the mid-plane of
the disc, which drives the motion. This energy balance discrepancy
may be due to much of the radiation flux acting to levitate the disc,
which, in hydrostatic equilibrium, does no work on the fluid. We
have verified that, in a time-averaged sense, very little of the flux
escapes from the atmosphere, consistent with our interpretation of
the time-averaged vertical density profiles in Section 4.3.

We show the stable (lower white) and unstable (upper cross-
hatched blue) regions of parameter space empirically determined

MNRAS 477, 4665-4684 (2018)
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Figure 7. The log density field (compare with the right panel of Fig. 6) and the vertical flux (in dimensionless units; equation 48) for our fiducial simulation

(simulation A) at time ¢t = 70.
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Figure 8. The vertical density profile for simulations A5, A6, and A7 in
Table 1, averaged over times 50 c¢7/g < t < 300 c7/g.
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by our simulations in Fig. 11. The open circles indicate simulations
with parameter values that are found to self-sustain turbulence after
the initial perturbation, and those with filled circles are those for
which the perturbations decay and produce a stable hydrostatic at-
mosphere in the presence of radiation forces (even though they may
have inversions in their vertical density profiles). The indeterminate
region (in which we did not run any simulations, as explained be-
low) is the shaded orange region. For = = 0.316, we find that the
transition to instability is between ['gqg = 0.9-0.95. For v = 0.6,
we find that it is between I'ggg = 0.6-0.7. For T = 1, we find that
it is between ['ggq = 0.5-0.6. For T = 3.16, the limit is between
IMgqq = 0.5-0.6. For T = 10, this limit is between ['ggq = 0.6-0.7.
For t = 31.6, this limit is between ["'ggq = 0.7-0.8. This limit ap-
pears to be qualitatively consistent with the stability curve in the
(kg4 T) parameter space that we obtained by perturbative analysis
for beamed radiation, shown as the dashed white line in Fig. 11
(Section 2). As discussed in Section 2.1, the physical reason for
the upturn in the stability curve at T ~ 3 is that the vertical density
stratification in hydrostatic equilibrium sets a minimum wavelength
for normal modes. The unstable modes only appear at long wave-
lengths, so that when the effective vertical scale height is less than
the critical wavelength, the instability is suppressed. At T ~ 3, we
see in Fig. 4 that the effective hydrostatic profile scale heights de-
crease rapidly with the optical depth for all the Eddington ratios,
and the profiles become increasingly similar to exponential pro-
files with scale height ¢2./g. Since an exponential density profile
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Figure 9. The turbulent Mach number M = §v/cr (see equation 61) as
a function for time for a subset of our simulations (simulations R, M, T,
and N listed in Table 1). The solid lines show M for the unstable simula-
tions, which produce self-sustaining turbulent velocities through radiatively
driven instabilities. The dashed lines show the velocity dispersion for the
stable simulations, for which the turbulent velocities decay after the external
stochastic driving is turned off.
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Figure 10. The turbulent energy density (see equation 62) in units of the
mid-plane radiation energy density (equation 63) as a function of time for a
subset of the simulations (simulations R, M, T, and N listed in Table 1). The
solid lines show the simulations for which turbulence is self-sustained, and
the dotted lines show the simulations for which turbulence decays.
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Figure 11. The stability curve in the optical depth-Eddington ratio pa-
rameter space, as determined empirically from our simulations that assume
isotropic mid-plane radiation (listed in Table 1). The white dotted line shows
the linear stability prediction for beamed radiation derived in Section 2, as
previously shown in Fig. 3.

is stable without radiation forces, we may intuitively expect that
stability increases as the hydrostatic profiles become more similiar
to exponential profiles.

We have tested, through many additional simulations not other-
wise described in this paper, that there do not appear to exist any
‘islands’ of stability (instability) within the unstable region (stable
region) of parameter space. We do not systematically carry out sim-
ulations within the indeterminate region of parameter space (orange,
single-hatched region of Fig. 11) because the transition from stabil-
ity to instability is not sharp for simulations of finite box size and
finite time, as indicated by test simulations with the parameters near
this transition. Given the uncertainties in computing the Eddington
ratios of galaxies and the idealized relationship between our models
and real galaxies, a more precise estimate of the instability region
in this parameter space is not particularly useful.

4.3 Summary of results

We summarize the time-average velocity dispersion and the time-
average turbulent energy density of all of our simulations that we
run with forcing turned on at times ¢ < 10 in Figs 13 and 14.
Generally, we find that the velocity dispersion and turbulent energy
density increase with both optical depth and Eddington ratio. For
example, at T = 10 with the fiducial box size, we find that for
Mgag = 0.7, §v ~ 1.4 (averaged over 50 < 1 < 100); for I'gqg = 0.8,
we find §v ~ 1.9; and for I'ggq = 0.9, we find §v ~ 2.4. Likewise, at
I'gqq = 0.7, we find that for T = 0.6, v ~ 0.5; for t = 3.16, v~ 0.9;
and for r = 10, §v ~ 1.4 (equation 61). In all parameter regimes
simulated, we find that %p 8v? K epg = 27 (Fyia/c), in contrast
to the ansatz that turbulence will reach energy equipartition with
radiation when Fq ~ Fgqq [i.€. %p 8V ~ eryq; see equations (4),
(9), and (10) in Thompson et al. 2005 for a Toomre Q = 1 disc].
We find that the velocity dispersion §v depends on the incident

MNRAS 477, 4665-4684 (2018)
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flux F as v ~ «/F, saturating at ~2 ¢y for the highest mid-plane
fluxes in the parameter space that we simulate. We speculate that this
energy balance ansatz fails because the radiation does no work when
levitating the fluid in hydrostatic equilibrium. If this explanation is
correct, it suggests that the mean properties of the simulations may
be largely explained by a model of hydrostatic equilibrium in the
presence of radiation and gravity, with a subdominant turbulent
pressure contribution (see Section 4.3 on time-averaged density
profiles).

This lack of equipartition can also be explained by noting that the
flux cannot be arbitrarily high without driving a strong wind that will
inevitably expel all of the gas. This is derived as a maximum limit on
Fniq for a hydrostatic atmosphere in Section 2. Intuitively, this is the
case even in the presence of turbulence (whether self-generated or
not) because the single-scattering Eddington flux is always greater
than the optically thin Eddington flux gc/k (equation 18; see also
Fig. 5), and therefore there can exist systems (for Eddington ra-
tios near unity) where the incident flux is super-Eddington with
respect to the optically thin Eddington flux gc/k but sub-Eddington
with respect to the single-scattering Eddington flux Fgyq (i.e. when
IggaFraa > gc/k). In such a regime (applicable to simulation A),
any very dense columns that are temporarily sub-Eddington (due to
turbulent density fluctuations that increase their density such that
they self-shield) will be dispersed into super-Eddington columns
as they sink, spread out horizontally, and become optically thin, as
observed in our simulations.

We can estimate the expected turbulent Mach number at order-of-
magnitude for the optically thick single-scattering Eddington limit
with basic dimensional considerations. Equating the rate of shock
dissipation with the rate of work done by radiation on the fluid

deout dein

(eurb) = dr = dr =<V

where the angle brackets indicate the expectation value over space
or time, and dots indicate partial derivatives with respect to time. We
approximate the expectation values by replacing the state variables
with characteristic scales (i.e. replacing p with pg), assuming that
v ~ dv, taking the radiation flux to be the optically thick isotropic
Eddington flux at the mid-plane for a system with optical depth 7 and
Eddington ratio I'g4q (equation 57), and, extending the dimensional
analysis presented in Gammie & Ostriker (1996), introduce the
dissipation length scale L:

1 L\ KO 3 gc
Epoz?vz(@) =auT°rEdd5g7r. (65)

K
L Bra). (64)
C

We replace the characteristic scales with those defined in Section 3
and obtain an expression for the turbulent velocity dispersion §v:

51}2/6% = 3rEddI (66)

M ~ 1.7 FEddfy (67)

where we have further assumed that the dissipation length scale L
is equal to the gas pressure scale height ¢Z./g. This equation is only
sensible if I'gqg < 1, because otherwise the entire column of fluid
will be launched in a wind. Thus, the turbulent Mach number is
constrained by physical and dimensional considerations to be <./T
fort > 1.

We now compare to the Mach number expected under the as-
sumption that the turbulent kinetic energy density is in equipartion
with the mid-plane radiation energy density:

Crurb ™ €rad- (68)

MNRAS 477, 4665-4684 (2018)

10!
S
5]
)
g
jm}
)
c 100
=
=
=
j}
el
—
2
- shock dissipation prediction
calibrated relation
1071 1 |||||||| 1 |||||||| 1 11 1313111
1071 100 101 102
TI'Edq

Figure 12. The tT'ggq-M scaling relation, as predicted by equation (67)
(solid black line) and as rescaled to our simulations (solid blue line). The
time-average Mach numbers from our individual simulations are shown
by the blue points. Our simulations suggest a turbulent dissipation scale
~5 times smaller than we assumed in equation (67).

We parametrize the flux in terms of the optically thick Eddington
flux at the mid-plane to obtain

1 2 3

~p0dv? ~ Ty s 5o 69)
2 c 2 k

and we again substitute the characteristic scales defined in Section 3
to obtain

8v2/c3 ~ 67 Tt (70)

M ’\’4.3\/ FEddf~ (71)

This assumption of energy equipartition, thus, produces a turbulent
kinetic energy density (since ey, o< M?) greater by a factor of
2m compared to equating the expectation values of the relevant
terms in the momentum equation. As is apparent from the overall
Mach number normalization in Fig. 13, our simulations agree better
with the prediction obtained by equating the time derivatives of
the energy densities (equation 67), rather than the energy densities
themselves (equation 71). However, we note that the scaling with
Eddington ratio and optical depth is identical in both formulations.

Since the prediction from our first argument (equation 67) is
found to agree at the factor-of-few level with our simulations and
is based on a reasonable description of the physics involved, we
use our simulations to rescale our order-of-magnitude predictions
(Fig. 12). Since our simulated squared turbulent Mach numbers are
about a factor ~5 smaller than predicted based on the dimensional
analysis argument equating time derivatives of energy densities
(which, taking the model at face value, implies a dissipation length
scale L that is ~5 times smaller than the assumed L = c3./g), we
predict an increase in the squared turbulent Mach number M? in
systems where the optically thick single-scattering limit applies and
the system is within the unstable parameter regime of Fig. 11 by the
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Figure 13. The time-averaged (¢ > 50 c7/g) velocity dispersion as a function
of Eddington ratio I'gqq and optical depth t for the simulations in Table 1
where the driving is for time ¢ < 10. The size of the circles scales with the
Mach number of the simulations.
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Figure 14. The time-averaged (1 > 50 c7/g) turbulent energy density (equa-
tion 62) in units of the mid-plane radiation energy density (equation 63) as
a function of Eddington ratio I'gqq and optical depth t for the simulations
in Table 1 where the driving is for time 7 < 10. The size of the circles scales
with the kinetic energy density of the simulations.

additive factor
AM? 2 3Tyt /5 = 0.6 Tggqt. (72)

Assuming that the turbulence produced by radiation pressure be-
haves as a linearly additive energy source in the sense of equa-
tion (64), the rescaling is appropriately done in the square of the
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Mach number since M? is proportional to the turbulent energy den-
sity. This calibration predicts that for the extreme limit of astrophys-
ically reasonable optical depths and Eddington ratios (I'ggqT ~ 10°),
radiation pressure may produce M ~ 24 turbulence in a T ~ 103
and 'ggq ~ 1 system. However, we caution that this prediction is
an extrapolation from the lower optical-depth regime in which we
have conducted simulations and we cannot rule out that the cali-
bration factor itself may be a function of optical depth, and more
importantly, that such predictions only apply for systems within the
unstable parameter regime identified in Fig. 11.

Our arguments above about shock dissipation may explain the
vertical density profiles shown in Fig. 8. If we assume that the scale
height of the time-average density profile A, is given at order-of-
magnitude by M?>c2/g(1 — I'gqq) instead of c¢2/g (i.e. assuming
that the turbulent velocities act as a pressure in the same manner as
gas pressure and that the effective gravity is reduced to obtain the
appropriate mass-weighted radiative acceleration), then we have

M
1 =Tk g

Teat ¢
Edd Cl 7 (73)
1 —Tkau &

hlurb ~

predicting that for T = 10 and I'ggq = 0.8, the turbulent scale height
is ~40 2. /g. We see that this agrees reasonably well with the scale
height inferred from the vertical density profile for these parameters
shown in Fig. 8. Further, this ansatz predicts that the turbulent
scale height is proportional to optical depth, which is qualitatively
supported by the trend with optical depth also shown in Fig. 8. In
the presence of radiation pressure, the scale height is substantially
inflated compared to what is expected from the turbulent pressure
alone, due to an effective gravity that is smaller than g. This fact
should be taken into account in interpreting observations of systems
that lie within the unstable parameter space we identify in Fig. 11.

5 DISCUSSION

5.1 Application to star-forming discs

In Fig. 15, we examine the galaxy-averaged distribution of Edding-
ton ratios and optical depths for the sample of galaxies compiled
in Krumholz (2014) (based on observations from Kennicutt 1998;
Bouché et al. 2007; Daddi et al. 2008, 2010; Genzel et al. 2010;
Tacconi et al. 2013; Davis et al. 2014a). We convert the observed
star formation rate and gas surface densities into these quantities
using

T =k%,/2, (74)

FEdd = 27TGCfg71 Eg
—1

Miper (Eo2 )40 /oo “rdr (75)
2107 272 2 ). € ’
and

Iead = Frir/ Feaa, (76)

where we have assumed a gas mass fraction f, = 0.3, a flux-mean
opacity k = 10 cm? g_l, and Frg is the total observed IR flux.
Fig. 15 shows the inferred Eddington ratios and optical depths
for the sample and the boundary between stability and instability
we have identified in this paper. Subject to uncertainties in dust-to-
gas ratio, aco conversion factor, and gas-to-total-mass ratio f,, we
find that only two galaxies in the sample are possibly above this
limit (using the bimodal oo conversion factor used for a reanalysis
of the same data set by Thompson & Krumholz 2016). The vast

X
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Figure 15. The Eddington ratio and optical depth as inferred from the sam-
ple of galaxies compiled in Krumholz 2014, assuming a gas mass fraction
f¢ = 0.3 (equations 74-76). The horizontal dashed line is an approximate fit
to the minimum of the stability curve shown in Fig. 11.

majority of galaxies are highly sub-Eddington on average and are
therefore not in the region of self-sustaining turbulence driven by
radiation pressure identified in Fig. 11. However, we note that the
observations used in Fig. 15 do not resolve the galaxies. Sub-regions
of galaxies, especially central star-forming regions, may be much
closer to Eddington, as suggested by comparing the local ISRF
(~1 Gy) with that inferred for the Galactic centre (~103 Gy; see Lis
et al. 2001). Resolved observations of star-forming galaxies should
be able to test this scenario, especially when combined with dust
modelling of IR observations to infer the radiation energy density.
Previously, several authors have considered the dynamical effects
of radiation pressure in giant molecular clouds both theoretically
and observationally (Scoville et al. 2001; Murray et al. 2010; Lopez
et al. 2011; Lopez et al. 2014; Raskutti et al. 2016) and found that
the single-scattering Eddington ratio may approach or exceed unity
during the cloud’s dynamical evolution, suggesting that resolved
extragalactic observations may also show star-forming sub-regions
to be at or above Eddington.

5.2 Application to galactic winds

For simulations where we resolve the turbulent scale height [equa-
tion (73); see also Fig. 8], we find no physically significant mass-loss
(we do find a change in mass of order one part in 103 over 300 c;/g
time-scales, but this is essentially insignificant and may also be due
in part to numerical effects caused by our boundary conditions).
This suggests that winds are only driven by radiation pressure in
the single-scattering limit when the mean mass-weighted acceler-
ation is greater than the gravitational acceleration (i.e. 'gqgq > 1),
or possibly when the turbulent scale height (inflated relative to
the gas pressure scale height) approaches the disc radius, thus be-
coming large enough that the plane-parallel approximation breaks
down (see Appendix A for further discussion of the applicability
of plane-parallel constant gravity to a galactic disc). We find that
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in simulations with box height Yy, less than the turbulent scale
height (e.g. simulation A in Table 1), radiative acceleration does
drive mass-loss from the box.

Thompson & Krumholz (2016) propose that globally sub-
Eddington systems may still drive winds due to local variations
in the mass-weighted radiative acceleration, thus modifying the
global dynamics due to such local variations of ['gyq that should oc-
cur with a wide distribution of column densities produced by highly
supersonic turbulence. That is, low column density sightlines in a
turbulent medium may be super-Eddington even though the system
is sub-Eddington on average, due to the linear scaling of Fggq On
X455 in the single-scattering limit (equation 18).

Since we do not observe such an effect in our simulations when
we resolve the turbulent scale height, even though we obtain a
distribution of column densities sufficiently wide such that there
is a small fraction of super-Eddington columns, the prospects for
this mechanism to succeed in nature will depend on a more de-
tailed examination of this possible effect in simulations with more
highly supersonic turbulence and with a finite escape velocity. The
idealized plane-parallel set-up we use for these simulations, while
reasonable for local disc simulations (Appendix A) and although
it is also one of the configurations contemplated in Thompson &
Krumbholz (2016), may be problematic for driving winds because
the escape velocity is formally infinite. As noted by Thompson &
Krumholz (2016), a key assumption of their model is that the column
density distribution remains correlated for time-scales long enough
that low-column patches that are locally super-Eddington have time
to be accelerated by the radiation force to a significant speed be-
fore the turbulent pattern shifts and they are shadowed by opaque,
sub-Eddington regions at lower altitude. However, this assumption
can never be satisfied in a truly plane-parallel system, because the
velocity required to escape is infinity, and thus the column density
distribution would need to remain correlated for an indefinitely long
time to allow material to escape to arbitrary height. In this respect,
the truly plane-parallel situation represents a singular limit whose
behaviour may be significantly different than the case of a disc of
material that is thin but has a finite scale height as a result of tur-
bulent motions driven by supernovae, gravitational instability, or
some other mechanism. We leave investigation of this case to future
work.

5.3 Dimensional limitations

Due to the availability of computational resources, we did not per-
form three-dimensional simulations. However, we expect that the
existence of the instability and the identified region of instability in
the (I'rad, T) parameter space will not be altered by dimensionality.
These features appear to be well predicted in our two-dimensional
simulations by a quasi-1D perturbative analysis (Section 2) and we
expect these basic features to persist in three dimensions.
However, the morphology and non-linear development of the
instability may be quite different in three dimensions due to the
existence of vortex stretching terms in the three-dimensional vor-
ticity equation (which do not exist in the 2D vorticity equation).
We expect, analogous to the ordinary Raleigh-Taylor instability,
that turbulent motions in three dimensions will lead to smaller scale
features rather than the large-scale plumes and channels we ob-
serve in two dimensions, which may affect the global behaviour.
Such qualitatively different morphology in 3D compared to 2D was
observed by Davis et al. (2014b) in their simulations of radiation-
pressure-driven winds in the multiple-scattering limit, also find-
ing a consistently higher volume-averaged Eddington ratio in 3D
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compared to 2D. We leave exploration of 2D versus 3D in the
single-scattering limit to future work.

5.4 Thermodynamic limitations and dust-gas coupling
assumptions

We employed an isothermal equation of state in this work, assuming
that the gas cooling and heating time-scales are much smaller than
the dynamical time-scales we simulate. However, the far-ultraviolet
(FUV) photons providing momentum to the gas also provide ther-
mal energy via photoelectric heating, which (assuming ionization
equilibrium) could heat the gas to thousands of Kelvins in near-
Eddington radiation environments, depending on the local density
and the metallicity and gravitational potential of the system in ques-
tion. However, this effect has been extensively studied in simula-
tions of disc galaxies (e.g. Tasker 2011; Forbes et al. 2016) and
here we seek to isolate the dynamical effects of radiation pressure.
Therefore, we do not make any conclusions about the thermal state
of the gas (or dust) in this work, and we anticipate future work
incorporating self-consistent heating and cooling source terms.

We also neglect any relative velocity between the dust and gas.
The dynamics of a two-component dust and gas medium has been
previously computed in spherical symmetry in the case of stellar
winds (Berruyer & Frisch 1983; Tielens 1983; Dominik, Gail &
Sedlmayr 1989; Netzer & Elitzur 1993), where the two-fluid results
are qualitatively similar to those obtained assuming perfect cou-
pling, except for a very small region near the base of the wind. The
dynamics of dust as aerodynamic particulates in a supersonically
turbulent interstellar medium has been considered by several au-
thors (Hopkins & Lee 2016; Hopkins & Squire 2017; Lee, Hopkins
& Squire 2017; Squire & Hopkins 2017a; Squire & Hopkins 2017b;
Tricco, Price & Laibe 2017). All of these works neglect Coulomb
forces, which are the dominant drag forces on the dust grains under
the conditions of interest in this work (see Appendix B). Treating
collisional drag only (appropriate for giant molecular cloud con-
ditions with very small fractional gas ionization), Hopkins & Lee
(2016) find that small dust grains (~0.1 um), expected to absorb
most UV/optical photons, exhibit large fluctuations in dust-to-gas
ratio (factors ~10%) locally but trace the parsec-scale density struc-
ture of the gas. However, Tricco et al. (2017), using different numer-
ical methods, find only ~10 per cent fluctuations in dust-to-gas ratio
locally for small grains experiencing collisional drag forces. When
including Lorentz forces but with essentially the same numerical
methods as Hopkins & Lee (2016), Lee et al. (2017) find that the
local dust-to-gas ratio fluctuations for small grains are greatly sup-
pressed. For the effects of radiative acceleration on dust in spherical
symmetry, see Suttner, Yorke & Lin (1999), although this work also
neglects Coulomb forces and, therefore, does not describe the con-
ditions of interest, which have a relatively large fractional ionization
due to the large radiation field (see Appendix B). Computing the
relative velocity between dust and gas due to Coulomb drag from
free protons under near-Eddington radiation conditions, we find that
the ratio of the drift velocity between dust and gas and the sound
speed is of the order of 10~ (Appendix B) and thus our single-fluid
approximation appears to be well justified.

6 CONCLUSIONS

We have conducted a detailed investigation of the stability properties
of radiation-supported two-dimensional isothermal atmospheres in
the single-scattering limit both perturbatively and with simulations
using our newly developed angle-resolving radiation transport code
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based on the method of Reed & Hill (1973) and Klein et al. (1989)
(Appendix D).

We identify a small region of (I'gqq, T) parameter space that is
unstable and produces turbulence in the non-linear regime (Figs 3
& 11). Unstable solutions produce statistically steady-state turbu-
lent atmospheres with Mach numbers ~0.5-2 over the range of
parameters explored (Figs 9, 12, & 13). The turbulent kinetic en-
ergy density of the motions is, in general, substantially less than the
energy density of the driving radiation field (Figs 10 & 14). Due to
both the turbulence driven by radiation pressure and the reduction
in the effective gravitational acceleration, the scale height of the
atmosphere is inflated to the order of rFEddc% /(1 — I'gqq) (Fig. 8,
Section 4.3). An extrapolation of our results to extremely high op-
tical depth (r ~ 1000) and Eddington ratio (I'gqq ~ 1) suggests that
highly supersonic turbulence (M ~ 20) could be driven by systems
in this extreme of parameter space. We show that very high spatial
resolution (< 0.5pc for 300 Kelvin gas in a 100 Mg pc™2 disc)
is required to resolve the instability that produces this turbulence
(Appendix E).

Within the idealized nature of our calculations, these results,
combined with the parameter space identified by unresolved ob-
servations of star-forming galaxies (Fig. 15), imply that radiation
pressure in the single-scattering limit is not a significant contributor
to supersonic turbulence in star-forming galaxies when averaged
over galaxy-wide scales. However, resolved observations should
indicate whether the star-forming sub-regions of such galaxies (e.g.
giant molecular clouds or star clusters) are closer to the single-
scattering Eddington limit and thus lie in the unstable parameter
space where significant supersonic turbulent motions should be
driven by the instability we identify in this work.

For the galaxies which are substantially below the Eddington
limit, we note that the column-density-dependent nature of the ac-
celeration by radiation in a regime where the column density varia-
tions are produced by an external turbulent driving mechanism (e.g.
supernovae or gravitational instability in a multiphase medium) may
yet produce mass-loss and drive galactic winds, as proposed by
Thompson & Krumholz (2016). Because galaxies with low aver-
age optical depths lie preferentially closer to the Eddington limit
in Fig. 15, they may be the most susceptible to this mechanism for
mass-loss. We suggest that future work investigate, via controlled
numerical experiments, the effectiveness of radiative acceleration
in the presence of externally driven turbulence for driving galactic
winds in star-forming galaxies in the single-scattering limit.
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APPENDIX A: GRAVITATIONAL
ACCELERATION IN A DISC POTENTIAL

We justify our use of a constant gravitational acceleration in our
calculations by computing the vertical gravitational acceleration in
a model disc potential. We compute the gravitational acceleration
along the vertical direction for the Miyamoto—Nagai potential with
parameters appropriate to the Galaxy at the order of magnitude
(a = 6kpc and b = 0.3kpc, and M = 10'! M@; see e.g. Flynn,
Sommer-Larsen & Christensen 1996). Inspection of the full so-
lution (Fig. A1) shows that above z = 0.3 kpc, the gravitational
acceleration in the z direction only varies by ~20 per cent from
0.3 < z < 2.0kpc. This calculation shows that the gravitational
acceleration is roughly constant over many times the maximum
vertical scale used for any simulations or analytic calculations in
this work. Therefore, the approximation of the constant gravita-
tional acceleration g is justified, as long as we consider the lower
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Figure Al. The gravitational acceleration as a function of height above
the disc z at various galactocentric radii R for a Miyamoto—Nagai disc with
scale height b = 0.3 kpc and scale radius a = 6 kpc. The acceleration does
not vary by more than ~20 per cent above the disc scale height » = 0.3 kpc.

boundary of our simulations and analytic atmospheres to be at or
above the scale height b of the disc potential.

Additionally, as shown in Fig. A1, the gravitational acceleration
becomes more constant with height z as disc cylindrical radius
R increases. The overall amplitude of the acceleration also scales
linearly with the surface density, as has been verified by the explicit
computation of the surface densities for our model disc potential,
so that the ratio g/¥ is very nearly constant with disc cylindrical
radius R. We have verified that the variation in g/% with R is less
than 10 per cent across the disc (from 0 < R < 6 kpc) and therefore
our approximation that g scales linearly with surface density is
justified.

APPENDIX B: DUST-GAS COUPLING

We compute the drift velocity of the dust relative to gas, balancing
the radiative force on a grain with the drag force on a grain due to
collisions with ions (following section 7.8, Osterbrock & Ferland
2006), obtaining

T \"?/F
varite = 0.75km s | —— ) Ty, (B1)
300K Fy

where T is in Kelvin, Fy is defined in equation (47), and I'ggq
is the single-scattering Eddington ratio (defined in equation 55),
independent of grain size a. The ratio of the drift velocity to the
thermal gas velocity is

F
Varife/vo = 0.47 (%‘”) Tkdd- (B2)
0

This ratio is uncomfortably close to unity and exceeds unity for t
Z 2 when FEdd =1.

However, this calculation neglects the fact that the strong radia-
tion field increases the charge state of the grains and the Coulomb
forces, thus, become the dominant coupling force in the regime of
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interest. Additionally, due to a very short gyroperiod, the grain drift
velocity must be along the magnetic field lines. We therefore com-
pute the drift velocity parallel to the magnetic field in the presence
of radiative and Coulomb forces. This calculation depends on the
grain size, since radiation forces depend on grain size, but Coulomb
forces do not. The charge state calculation is highly non-linear and
must be computed numerically for accurate results. Using Cloudy
(Ferland et al. 2013; v13.04, with ISRF =(3/2) x 10°G,, where G,
is the Draine normalization of the ISRF, so that this is a ['ggg ~ 1
radiation field for T ~ 1, ny = 100 cm 3, standard ISM graphite and
silicate grains, and an extinguished radiation field above 13.6eV),
the charge state of the ~6 nm grains is 28.4 positive electron charges.
We then use equation (7.25) in Osterbrock & Ferland (2006) recast
in the dimensionally correct form (in Gaussian units):

Feoutomb ~ 501, ¢* Z; (kT)>? m,l,/z Vi, | (B3)

[equivalent to equation (4) of Draine & Salpeter 1979, assuming that
s < 1 and that proton—grain Coulomb drag is the dominant term]
where 7, is the proton number density, e is the electron charge in
esu, Z, is the dust grain charge, m, is the mass of the proton, and
Vasify, || 18 the dust—gas drift velocity along the magnetic field lines.
We then compute the drift velocity by setting the above equation
equal to the radiation force to obtain:

T 3/2
Varift, || = 7.5 X 10 *km s~ ! (m)

a 2 Z -2 np -1 F Edd

x <6nm) (m) (0.4cm—3) <To> Feaa, (B4)
where the free proton number density 7, = 0.4 cm™ is taken from
the full Cloudy calculation of the ionization fraction of the gas. This
drift velocity is within approximately an order of magnitude of the
drift velocity calculated from Cloudy: vy = 2.68 x 1072 kms™!,
with the Cloudy calculation using the full expression from Draine
& Salpeter (1979) and solving the resulting non-linear equation
numerically. Using equation (B4), we compute the ratio of drift
velocity to sound speed to obtain

ri _ T
Dattl _ g7 51074 [ ——
Yo 300K

a 2 Z -2 np -1 F Edd
— — —— | Tgaa.(BS
x (6nm) <28.4> (0.4cm—3) ( F, ) [ (B
Since this ratio is much less than unity, the small (~0.1 um size)
dust grains (which have the largest opacity to FUV radiation) and

gas should be very well coupled even in the presence of radiative
acceleration.

APPENDIX C: ANGULAR QUADRATURE

We can compute the radiation field very accurately with only one
poloidal angle (i.e. the ‘f;, = 1/3’ angular quadrature in the Ap-
pendix of Davis et al. 2014b) corresponding to the direction cosine
one would obtain from the two-point Gaussian quadrature:

cos¢p = % (C1)
¢ = cos™! (%) ~ 0.9553166183 ~ 54.735610326deg. (C2)

As Davis et al. (2014b) note, this angular quadrature forces the
[z component of the Eddington tensor to be equal to 1/3, but given
this approximation, it provides the best angular resolution in 2D
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plane-parallel geometry for a fixed number of angles. Quadrature
in the other angular coordinate 0 is uniform in angle.

APPENDIX D: DISCONTINUOUS GALERKIN
RADIATION TRANSPORT

There are many schemes for computing radiation transport. It is a
difficult problem with no single method dominating in practice over
the others. This paper discusses a state-of-the-art method for deter-
ministic (i.e. not Monte Carlo) transport of radiation from diffuse
sources (which may either lie inside the computational volume or
on the boundary). Point sources present their own problems caused
by the numerical diffusivity inherent in most deterministic trans-
port schemes and are not treated here (although an adaptive angular
quadrature scheme may make the methods discussed here viable for
treating such sources).

The method discussed here is that of discontinuous Galerkin fi-
nite elements (DGFEM), a relatively unknown methodology within
computational astrophysics. In this method, we use an approximate
representation of the solution on localized basis functions and inte-
grate by parts the continuous equation we wish to approximate. This
method was originally introduced as a neutron transport method by
Reed & Hill (1973), and later extended to photon transport in the
astrophysical context by Klein et al. (1989), with later development
by Castor, Dykema & Klein (1992) and Dykema, Klein & Castor
(1996). We base our derivation on that of Castor et al. (1992) and
Dykema et al. (1996).

This scheme is similar to the method of short characteristics, and
they have the same asymptotic scaling of computational complex-
ity in the number of spatial zones and angular ordinates. However,
there are important differences. DGFEM does not require the ex-
act (formal) solution along rays and the associated evaluations of
exponentials, which can still be quite expensive on modern CPUs
and GPUs. Second, it does not require any scheme for interpolat-
ing the upwind specific intensities, which virtually eliminates the
problems with (spurious) negative values of the specific intensity,
which otherwise require expensive ‘limiters’ of the sort used in
hydrodynamic solvers to maintain positivity of the solution (e.g.
Balsara 2001). These advantageous properties come at the expense
of maintaining in memory solution weights for each basis function
in each spatial zone.

D1 Equations

D1.1 Continuous transport equation

For a given angle (omitted in the notation), we use the transport
equation in its standard form, neglecting differences between the
lab and comoving frames:

191 . -
SO VI=n—yl. (D1)
c ot

D1.2 Discrete transport equation

For a given angle (omitted in the notation), within a given element,
the intensity is represented as the product of the element basis
functions and the nodal weights /;, as such:

N
10, y) =Y wix, . (D2)
I1=1
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Integrating by parts and carefully treating where the delta func-
tions yield fluxes between finite elements, we obtain a discrete
transport equation, for / as the downwind specific intensity, I* as
the upwind specific intensity, € as the angle, and 7 as the outward-
pointing normal of the downwind element on the boundary between
the upwind and downwind elements (such that Q< 0):

N
101 A -
Z -— + Xlk — Nk de;wk — IkQ . dekal
= c ot
+1k/ dAw,ka.ﬁ+1;/ dAw,wkfz.ﬁ} =0
oty o7V
(D3)

fori=1,...,N.
Approximating the integral [dVwwy as 8 [dVw; (‘mass lump-
ing’ in the terminology of Castor et al. 1992) yields

191,
<267t +x1 — 771) /del
N
+>° (—IkQ-/dek%w, (D4)
k=1

+Ik/ dAwlkaﬁ—FI,f/ dAw[ka~ﬁ> =0
otV o7V

191, N
-— I — V Iy D I'D;,) =0 D5
(Cal+Xl 7]1) l+k§1(k k,l+k k,l) ( )
Dk,l = —Q . /dek%wl +/ dA Wrw; Q -7 (D6)
otV
forl=1,...,N. f oy~ denotes an integral over the upwind boundary

of the element (for which € - # < 0), while f oy~ denotes an integral
over the downwind boundary of the element (for which Q-n>0).

D2 First-order scheme

If we choose the simplest possible (i.e. constant) basis for our finite
elements, then this equation becomes

lal+[ /dV
c ot X g

+(1/ dAQ-ﬁ+I*/ dAfz-ﬁ)zo. (D7)
atv v

Assuming a regular Cartesian mesh, we get

rar AxAy + (x AxAy + Ay @, + Ax Q) 1

c ot ’ (D8)

=nAxAy + (I Ay Q. + I} Ax Q).
Using a backward-Euler finite difference in time , we get

1

o (I —17") AxAy + (x AxAy + Ay Q@+ Ax Q) 1

D9)
=nAxAy +I'AyQ, + 17 Ax Q,

1 . .
(T AxAy 4+ x AxAy + Ay Q, + Ax Qy) 1
cAt (D10)

. . 1
=nAxAy + I Ay Q + I Ax Q, + Ttl'—‘ AxAy
E C

cAt
(- AxAy+ x AxAy + Ay Q. + Ax Q)

AxAy + Ay Q + IV Ax Q, + L 1"V AxA
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I= 1 — . (D12)
(E+X+r§+r‘v)

So for first-order DG transport, the recursive update rule for the
(downwind) specific intensity can be expressed in closed form with-
out any matrix inversions. This method can be expected to converge
linearly in space and time, and as such is somewhat numerically
diffusive.

However, the first-order method is simple to code and adequate
for computing transport in the semitransparent regime. We there-
fore adopt it for the simulations in this paper. The derived scheme
is exactly equivalent to the finite difference scheme of Stenholm,
Stoerzer & Wehrse (1991), although here we use finite elements,
rather than finite differences, for the derivation.

D3 Time discretization

We discretize the time derivative with a backward Euler finite dif-
ference representation:

101 11(to+AD)—Ity) 1
-—— -~ — (I, - I,_y). D13
c ot c At cAt(f =) ( )

Then an initial-value problem of the form

1or _ c (D14)
cor

becomes a boundary value problem of the form

Iy =cAtC+1_,. (D15)

D4 Transport sweeps

We invert the discretized transport equation element-by-element,
starting with the most-upwind element for a given angle, invert-
ing the local (NxN, where N is the number of basis functions per
element) transport matrix to obtain the /;’s for that element, then
proceeding with all downwind elements in sequence.

For a serial algorithm, it is simplest to choose the next element
to compute as the rightmost element nearest to the present element
along one axis, and exhausting the elements along that row. Then
we move to the next-downwind row and sweep laterally along that
row. For a parallel algorithm, the sweep may be taken diagonally,
instead of laterally (Koch, Baker & Alcouffe 1992).

D5 Cell-averaged moments

The cell-averaged energy density J is given by

1

N
1
= E 1 = —— E E I
J TAV - /dv n(a, b) TAV - /dv < wy(x, y) n,l

1

N N
= nAv Zn:lgl:ln.[/del(x, y): %Z;I"JV['

n

(D16)
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The cell-averaged flux density F is given by

1 L
Fi=— ;/dVI,,(a,b)Q,, A

1

N
S Av S wile, ) Qi
nAv - / P

1

N
— SN -ﬁ/de,(x,y)

n =1

N
%Zzz,,,,v, &, - i, (D17)
=1

n

D6 Convergence properties

The resulting transport algorithm is similar in many respect to the
short characteristics version of discrete ordinates transport, but we
can avail ourselves of the consistency and convergence theorems of
discontinuous Galerkin finite element theory. Since we used zeroth-
order (constant) basis functions, the method converges at first-order
in spatial resolution.

When using first-order (piecewise linear) basis functions, this
method yields the correct diffusion limit (i.e. accurately reproduces
the first and second moments of the specific intensity in an asymp-
totic expansion at T — 00) for the energy and flux of the radiation
field (Castor et al. 1992).

APPENDIX E: RESOLUTION TESTS

To check the robustness of our numerical conclusions about stabil-
ity, we have conducted a number of tests to explore the sensitivity

101
—
[<B)
0
g
]
=}
=
S 100
=
=
< — 512, N, = 1024, Ny/2 = 1024
e = 256, N, = 512, Ng/2 = 512
= 128, N, = 256, Ng/2 = 256
6T~ Ny—=T28 N7 /2 =128
Na = 32, N, = 64, Ng/2 = 64
10—1 | | |
0 20 40 60 80

time ¢ (cr/g)

Figure E1. The turbulent velocity dispersion as a function of time for
simulation A (solid blue), simulation A0 (solid orange), simulation Al
(solid green), simulation A2 (solid red), and simulation A3 (solid purple;
ordered from high resolution to low resolution). The mean turbulent velocity
dispersion is qualitative and unaffected by changes in the spatial and angular
resolution of our simulations as long as the gas pressure scale height is
resolved with at least two zones.
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of our results to resolution and box size. With respect to box size,
we find that there is a critical horizontal box size below which tur-
bulent motions are greatly suppressed. Simulations B, C, D, and E
(in Table 1) have horizontal box sizes that were chosen to be close
to the minimum unstable wavelength for a t = 10, 'gqq = 0.8 sys-
tem derived in Section 2. These simulations appear as the points at
M ~ 1,7t =10, and T'ggq = 0.8 in Fig. 9. All have turbulent veloc-
ities reduced by a factor of ~2 compared to the fiducial simulation
A, which is identical except for the horizontal box size and varia-
tion of boundary condition (outflow or reflecting upper horizontal
boundary).

To verify that our conclusions are unaffected by changes in spatial
and angular resolution, we run a simulation equivalent to simulation
A, but at a spatial and angular resolution twice as coarse (simulation
AQ0), and we also run simulations that are four times as coarse
(simulation A1), eight times as coarse (simulation A2), and 16 times
as coarse (simulation A3). Simulation A1 has the same resolution
as the lowest resolution simulations used in this paper. We sample
lower resolutions to justify the lowest resolution we use. We show
the turbulent velocity dispersion for simulation A (solid blue line),
simulation A0 (solid orange line), simulation A1l (solid green line),
simulation A2 (solid red line), and simulation A3 (solid purple line)
in Fig. E1. Except for the lowest resolution simulation, the time-
dependent behaviour is qualitatively similar across all simulations
and there is no significant difference in time-averaged turbulent
Mach number after an initial transient. (The relatively high velocity
dispersions of simulation A2 are due to a rapid mass-loss from
the computational domain that proceeds much slower in the higher
resolution simulations.)

MNRAS 477, 4665-4684 (2018)

The lowest resolution simulation has a very sub-sonic velocity
dispersion that is slowly decaying from the initial (r = 0) velocity
perturbation. This indicates that the instability is not resolved at this
low resolution. Simulation A3 has a spatial resolution

T ) !
Ax =0.78¢%/g = 0.72 pc . (ED
300K 100 Mg, pc—2

The minimum resolution to resolve the instability (at our fiducial
optical depth ¢ = 10 and Eddington ratio ['ggg = 0.8) therefore
lies between the resolution of simulation A2 (Ax = 0.39¢7/g) and
simulation A3 (Ax = 0.78 ¢2./g), suggesting that resolving the gas
pressure scale height with at least two zones is necessary to resolve
the instability. We have not explored in detail whether this resolution
requirement is a function of optical depth.

In a simulation with optically thin radiative cooling, this conver-
gence test suggests that better than 1 pc resolution would be neces-
sary to resolve the instability. We note that effective resolution can
be highly dependent on the details of the numerical method. We
use high-order methods for hydrodynamics, but low-order methods
for transport and for coupling the source terms; the use of accurate
high-order methods for all steps of the calculation may yield less
stringent resolution requirements, but constructing and testing such
a code is non-trivial.

This paper has been typeset from a TX/IATgX file prepared by the author.
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