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ABSTRACT
We develop a data-driven spectral model for identifying and characterizing spatially unre-
solved multiple-star systems and apply it to APOGEE DR13 spectra of main-sequence stars.
Binaries and triples are identified as targets whose spectra can be significantly better fit by a
superposition of two or three model spectra, drawn from the same isochrone, than any single-
star model. From an initial sample of ∼20 000 main-sequence targets, we identify ∼2500
binaries in which both the primary and secondary stars contribute detectably to the spectrum,
simultaneously fitting for the velocities and stellar parameters of both components. We ad-
ditionally identify and fit ∼200 triple systems, as well as ∼700 velocity-variable systems in
which the secondary does not contribute detectably to the spectrum. Our model simplifies
the process of simultaneously fitting single- or multi-epoch spectra with composite models
and does not depend on a velocity offset between the two components of a binary, making it
sensitive to traditionally undetectable systems with periods of hundreds or thousands of years.
In agreement with conventional expectations, almost all the spectrally identified binaries with
measured parallaxes fall above the main sequence in the colour–magnitude diagram. We find
excellent agreement between spectrally and dynamically inferred mass ratios for the ∼600
binaries in which a dynamical mass ratio can be measured from multi-epoch radial velocities.
We obtain full orbital solutions for 64 systems, including 14 close binaries within hierarchi-
cal triples. We make available catalogues of stellar parameters, abundances, mass ratios, and
orbital parameters.
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1 IN T RO D U C T I O N

About half of solar-type stars are in binary or higher order multiple-
star systems (Raghavan et al. 2010; Moe & Di Stefano 2017). Be-
yond the Solar neighbourhood, most binaries are too close on the

�E-mail: kelbadry@berkeley.edu

sky to be spatially resolved; they appear as single photometric point
sources, and both components of binary systems contribute to the
spectra observed by spectroscopic surveys.

Spectroscopically identifying such unresolved binaries is
straightforward only if the period is relatively short (P � 5 yr).
In this case, spectra exhibit split or ‘double’ lines if the two com-
ponents have comparable luminosities (so-called SB2 systems),
and two peaks can be identified in the cross-correlation function
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(Pourbaix et al. 2004; Fernandez et al. 2017; Merle et al. 2017).
Even if the secondary is faint and does not contribute significantly
to the spectrum, short-period binaries can be identified from radial
velocity (RV) variability when multi-epoch spectra are available
(‘SB1’ systems; Minor 2013; Troup et al. 2016; Price-Whelan et al.
2017; Badenes et al. 2017).

However, about half of solar-type binaries have periods exceed-
ing 200 yr (Duquennoy & Mayor 1991; Duchêne & Kraus 2013).
The typical line-of-sight velocity separation between the two stars
in such systems is of order 1 km s−1, while the typical change in
the stars’ individual velocities over a one-year baseline is of or-
der 0.01 km s−1. Such systems will be missed by binary-detection
methods based on the Doppler shift.

Unresolved binarity in main-sequence stars presents both a nui-
sance and an opportunity for spectroscopic surveys of the Milky
Way. Because spectral morphology is a strong function of effective
temperature, contamination from a cooler secondary star1 makes
the observable spectrum of an unresolved binary different from that
of the primary, and in many cases, different from that of any single
star. This means that, if binarity is ignored and all spectra are simply
fitted with single-star models, biases can be introduced in the stel-
lar parameters and abundances inferred for unrecognized binaries
(El-Badry et al. 2018).

On the other hand, binarity-induced features in stellar spectra can
be exploited to detect binaries that could not be detected based on
velocity shifts alone: binaries can be identified as systems whose
spectrum can be significantly better fit by a binary spectral model
(i.e. a sum of two single-star models) than any single-star model.
This approach, if it can successfully be applied to large spectro-
scopic surveys, will make possible systematic study of the Galactic
binary population on an unprecedented scale.

El-Badry et al. (2018, hereafter E18) recently demonstrated that
fitting a binary model to synthetic APOGEE-like spectra makes
it possible to spectroscopically identify many binaries and to si-
multaneously recover the atmospheric parameters and abundances
of both component stars. In this paper, we apply the method de-
scribed in E18 to real spectra from DR13 of the APOGEE survey
(Majewski et al. 2017). We focus on main-sequence stars, for which
the effects of unresolved binarity on the spectrum are typically larger
than in giants. We demonstrate that, although the spectral signatures
of binarity are strongest in close systems with a large velocity offset
between the two stars, binaries with mass ratios 0.4 ≤ q ≤ 0.8 can
be detected with high fidelity even in the absence of any detectable
velocity offset (where q = m2/m1).

This paper is organized as follows. We describe our spectral
model for single and binary stars in Section 2 and its application
to the combined APOGEE spectra in Section 3. In Section 2.4, we
extend the model to fit multi-epoch spectra of close binaries with
detectable velocity changes between visits, calculating dynamical
mass ratios from the relative velocities of the two components.
We identify and derive parameters for close binaries, triples, and
systems with unusual velocity shifts in Section 3.2 and derive orbital
solutions for the subset of binaries with sufficient visits and phase
coverage in Section 3.4. We discuss our results and conclude in
Section 4.

1We adopt the convention that the secondary is the less massive of the two
stars (e.g. Duchêne & Kraus 2013). For the equal-age, equal-composition
main-sequence binaries that we model, the secondary is always cooler and
less luminous.

We provide many of the underlying model details in the appen-
dices. Specifically, in Appendix A, we describe the spectral model;
model selection and tests with semi-empirical synthetic binary spec-
tra are described in Appendix B; shortcomings of the model and
false positives are discussed in Appendix C, and diagnostics of
orbit-fitting convergence are presented in Appendix D. Available
catalogues are described in Appendix E.

2 M E T H O D S

Our binary spectral model depends on two steps: (i) creating a
data-driven generative model for single-star spectra (Section 2.1),
and (ii) combining the spectra of two single-star models, with a
suitable velocity offset (Section 2.2). To find candidate binaries, we
fit spectra with both single-star and binary models (Section 2.3)
and identify systems that can be significantly better fit by a binary
model (Appendix B).

In this work, we only attempt to fit main-sequence stars; i.e.
targets with log g ≥ 4. We do not attempt to identify binaries in
which one star is a giant because in most giant-dwarf binaries, the
dwarf secondary will contribute a negligible fraction of the total
light, while in giant–giant binaries, two components with the same
age will necessarily have similar masses, and thus, quite similar
spectra. We note that short-period binaries containing giants can be
straightforwardly detected from RV variability (Troup et al. 2016;
Badenes et al. 2017), and some giant–subgiant binaries can likely
be detected spectroscopically (Section 4.1).

2.1 Single-star spectral model

We model APOGEE spectra of single stars using a data-driven2

generative model to predict the rest-frame normalized flux density
at a given wavelength as a function of a set of ‘labels,’ ��, which
determine the spectrum. Our approach is very similar to that em-
ployed by The Cannon (Ness et al. 2015): the spectral model is a
fitting function that maps labels to normalized spectra, and the free
parameters of this fitting function are determined by optimization
on a training set, whose labels are obtained separately or known a
priori, e.g. from ab-initio fitting.

The primary difference between our method and existing imple-
mentations of The Cannon is that, as in Ting et al. (2017) and E18,
we model the normalized flux density at a particular wavelength
pixel using an artificial neural network rather than a polynomial
function. We find a neural network model to be more flexible than a
polynomial and to typically produce smaller errors in model spectra
during cross-validation; this formalism, which we refer to as The
Payne, is described further in Appendix A and will be explained in
detail in Ting et al. (in preparation). The full spectral model then
consists of all the individual neural networks for all wavelength
pixels stitched together.

We predict rest-frame spectra with a single-star model that de-
pends on five labels,

�� = (
Teff, log g, [Fe/H],

[
Mg/Fe

]
, vmacro

)
. (1)

We use [Mg/Fe] as a proxy for all ‘α-elements.’ We experimented
with including more elemental abundances as labels, including C,

2We also experimented with using synthetic, ab-initio spectral models,
but we found them ill suited for identifying binaries because systematic
shortcomings in synthetic models cause almost all spectra to be significantly
better fit by a sum of two models than a single model.
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N, O, and Si. We found that this did not substantially change our
identification of likely binary targets or their inferred mass ratios,
so we opted to use a relatively simple model in the interests of
reduced complexity. vmacro primarily accounts for the effects of
stellar rotation, and is small (<10 km s−1) for most stars with Teff �
6000 K. In practice, spectra are not observed in the rest frame, so
an additional label vHelio also determines the model spectrum and
must be included in fitting. However, our neural network model
always predicts spectra in the rest frame; Doppler shifts are applied
subsequently.

An ideal training set would contain only stars known to be single a
priori. Unfortunately, it is nearly impossible to conclusively rule out
the possibility that an unresolved system is a binary.3 We therefore
construct a training set by beginning with a random sample of main-
sequence APOGEE stars and then iteratively removing stars whose
spectra can be significantly better fit by the binary model described
in Section 2.2. The ASPCAP pipeline does not derive reliably cali-
brated abundances for dwarfs. ‘Ground truth’ labels for stars in the
training set were derived from ab-initio fitting with single-star mod-
els, following a procedure similar to that used by Ting et al. (2017);
see Ting et al. (in preparation) for details. For the initial training set,
we randomly selected 2000 targets distributed throughout the region
of label space within which a spectral model was desired, namely
4200 K < Teff < 7000 K, 4.0 < log g < 5.0, −1 < [Fe/H] < 0.5,
−0.4 < [Mg/Fe] < 0.6, and 0 km s−1 < vmacro < 45 km s−1. We
only attempt to fit targets for which the labels determined from
ab-initio fitting lie within this region of parameter space, as (i) we
are only interested in main-sequence stars, and (ii) the labels deter-
mined from ab-initio fitting are less reliable outside this range (Ting
et al., in preparation).

There is of course no guarantee that the targets in our initial
training set are actually single stars. After training the initial model,
we therefore fit all spectra in the training set both with the initial
single-star and binary models (as described in Section 2.2) based
on this single-star model. We then removed from the training set
the ∼300 targets that could be significantly better fit by a binary
model than a single-star model4 and retrained the single-star model
on the resulting ‘cleaned’ training set. We repeated this cleaning
and retraining procedure until none of the targets in the training
set could be significantly better fit by a binary model. This ap-
proach converges quickly: after the second iteration, fewer than
10 targets in the cleaned training set could be significantly better
fit by a binary model; after the third iteration, no additional tar-
gets in the training set could be significantly better fit by a binary
model.

This iterative cleaning procedure likely does not remove all un-
resolved binaries from the training set: only binaries whose com-
bined spectrum is significantly different from any single-star star
spectrum can be identified. For APOGEE-like spectra of solar-type
stars with negligible velocity offsets, the range of mass ratios over
which binarity is detectable is 0.4 � q � 0.85 (E18). Binaries in

3The only exception is in the immediate Solar neighbourhood (d � 8 pc),
where a combination of direct imaging and speckle interferometry can re-
solve nearly all systems where a velocity offset is not detectable (Simons,
Henry & Kirkpatrick 1996; Reid & Gizis 1997). However, there are only
∼66 stars in the Solar neighbourhood for which binarity can be ruled out with
high confidence; of these, only the Sun and Arcturus have been observed by
APOGEE.
4Here, we quantified ‘significantly better fit’ as having χ2

single star − χ2
binary >

1000. We develop a more detailed threshold for model selection in Ap-
pendix B.

the training set with mass ratios outside this range will not con-
taminate the spectral model, since their spectra are not significantly
different from the spectrum of a single star with the labels of the
primary.

Our approach would likely not work if binaries dominated the
training set, or if the functional form of the spectral model were
sufficiently complex to incorporate spectral features due to binarity
in the single-star model. Because binaries with spectra that are
significantly better fit by a binary model constitute only ∼15 per cent
of the initial training set and the spectral model is not very complex
(we use a small neural network with only one hidden layer of five
neurons), detectable binary spectra are essentially treated as outliers
and removed during iterative cleaning, preventing the model from
overfitting the signature of unresolved binarity into the single-star
model.

2.2 Binary spectral model

We assume that both components of a binary system have the
same age and composition. Fitting a binary model thus adds three
free parameters compared to the single-star model: the mass ratio,
q = m2/m1, which determines Teff and log g of the secondary, and
vmacro and vHelio of the secondary. To model the normalized spec-
trum of a binary with a particular mass ratio, we estimate Teff and
log g of the secondary using MIST isochrones (Choi et al. 2016),5

predict the single-star spectra of the primary and secondary in un-
normalized space, apply a Doppler shift, add the two spectra, and
finally pseudo-continuum normalize the total spectrum; see E18 for
details.

Since the data-driven model for single stars operates on normal-
ized spectra, predicting un-normalized spectra for the primary and
secondary requires a model for the pseudo-continuum by which
the normalized spectra can be multiplied. We obtain the pseudo-
continuum for a single star at a particular point in label space by ap-
plying our pseudo-continuum fitting procedure (see Section 2.3) to a
spectrum produced by a synthetic spectral model trained on Kurucz
spectra (Kurucz 1970, 1979, 1993). Synthetic spectra are first pro-
duced with units of surface flux density and are then multiplied by
the surface area of the star in question, using radii estimated from
MIST isochrones. The un-normalized flux density of an unresolved
binary system viewed from a distance D is then given by

fλ,binary = 1

D2

(
R2

1fλ,1 + R2
2fλ,2

)
, (2)

where R1 and R2 represent the radii of the primary and secondary
star, and fλ, 1 and fλ, 2 represent their individual flux densities. Be-
cause we subsequently normalize fλ, binary prior to fitting, the dis-
tance D is an arbitrary scaling factor and does not enter our anal-
ysis. In practice, R1 and R2 are estimated from Teff, log g, and
[Fe/H] using a neural network trained on a large grid of MIST
isochrones.

Our results are not sensitive to the choice of synthetic model
spectra, which sets only the relative flux contribution of the pri-
mary and the secondary, because the total binary spectrum is again
normalized prior to fitting. We have verified that we obtain similar

5In practice, we predict Teff and log g of the secondary from Teff and log g
of the primary, [Fe/H], and q using a neural network trained on a large
grid of binary isochrones with 0.01 ≤ (age/Gyr) ≤ 13.5 and −1 ≤ [Fe/H]
≤ 0.5. We have verified through cross-validation that typical errors in the
thus-estimated parameters of the secondary are small (∼20 K in Teff and
∼0.01 dex in log g).
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results by simply defining a continuum for each star as a blackbody
with appropriate Teff scaled by the surface area of the star.

For long-period systems with negligible velocity shifts, our model
cannot detect binaries with mass ratios q � 0.4, because the sec-
ondary contributes a negligible fraction of the total light, or q �
0.85, because the spectra of the primary and secondary are too sim-
ilar. In practice, another, often more stringent limit on the lowest
detectable mass ratio is set by our spectral model’s minimum Teff of
4200 K. For systems with a hot primary star (Teff � 6500 K), this
limit is not important, since a secondary with Teff < 4200 K would
be too faint to contribute significantly to the spectrum anyway.
However, the model’s minimum Teff reduces the range of detectable
mass ratios for systems with cooler primaries: for a primary with
Teff = 5800 K, the effective minimum q that can be modelled is qmin

≈ 0.62, while for a primary with Teff = 5000 K and qmin ≈ 0.75.
We discuss this further in Appendix B1.

2.3 Model fitting

Best-fitting labels for binary and single-star models are determined
through full-spectrum fitting of normalized spectra in vacuum wave-
lengths. Pseudo-continuum normalization is carried out using the
Cannon-type normalization routine from the APOGEE package
(Bovy 2016), which fits a fourth-order Chebyshev polynomial to
pixels in which the gradient of the data-driven spectral model with
respect to the labels is small. Bad pixels and pixels with poor sky
subtraction, as flagged in the bitmasks produced by the APRED
pipeline (Nidever et al. 2015), are masked during normalization
and fitting.

Fitting is carried out using the SCIPY curve_fit routine,
which implements the ‘trust region reflective’ algorithm (Branch,
Coleman & Li 1999) for χ2 minimization. When fitting a single
spectrum with a single-star model, we find that the optimization es-
sentially always converges on the true global minimum, irrespective
of the location in label space where it is initialized. However, for
the binary model there is an obvious degeneracy: the normalized
spectrum of a q = 1 binary model is identical to that of a q = 0
model in the limit of no velocity offset. Hence, the posterior for a bi-
nary model is often bimodal in q, and minimization can sometimes
converge on a false local minimum. We therefore initialize ∼10
separate optimizers with different initial values of q when fitting a
binary model. If these do not all converge to the same model, we
take as the best model the one that reaches the lowest global χ2. We
have verified by fitting semi-empirical synthetic binary spectra that
this approach converges on the true global minimum in ∼99 per cent
of all cases (see Appendix B1).

Most APOGEE targets are observed more than once, with time
baselines between individual visits ranging from ∼1 h to ∼1200 d.6

Spectra from individual visits are shifted to rest frame and co-added
to produce a single combined spectrum with higher signal-to-noise
ratio (S/N) than the individual visit spectra by the APSTAR pipeline
(Nidever et al. 2015). It is these combined spectra that are fit by the
ASPCAP pipeline to derive the stellar parameters and abundances

6The APOGEE observing strategy aims to observe most targets three times,
over a minimum time baseline of 1 month. Some targets, primarily faint
stars, are visited more often to accumulate S/N; some targets in unfavourable
locations, such as the Galactic Bulge, are visited only once (Zasowski et al.
2013). Most targets with baselines longer than 1 yr, as well as those with
multiple visits within one night, are targets which were observed initially
during the survey commissioning period and again during the main survey.

published for the main survey (Holtzman et al. 2015; Garcı́a Pérez
et al. 2016), but the reduced spectra from individual visits are also
made publicly available.

Combined spectra are easier to work with than individual visit
spectra both because they have higher S/N and because stars are of-
ten observed with a different fibre and with a different barycentric
velocity at each visit, so that the combined spectrum is less affected
by bad pixels, poor sky subtraction, and telluric absorption than
the individual visit spectra. We therefore fit the combined spectra
rather than spectra from individual visits when possible. However,
if a system is an unresolved close binary, the orbital configuration
and relative RVs of the primary and secondary will change between
visits, so that the morphology of the total binary spectrum is dif-
ferent in each visit. In such cases, the combined spectrum does not
represent any real physical system, and fitting it can yield biased
labels.

For this reason, we attempt to fit all targets that may be close
binaries using the individual visit spectra rather than the combined
spectrum. We identify potential close binaries as targets for which (i)
the best-fitting model to the combined spectrum is a binary model in
which the line-of-sight velocity separation of the two components,
�vlos, is greater than 10 km s−1, or (ii) the Vscatter term calculated
from the RVs determined by the APSTAR pipeline (Nidever et al.
2015) is greater than 1 km s−1, indicating potential RV variabil-
ity. Some of these targets, particularly stars with high Teff or low
S/N, are single stars with poorly constrained RVs, but many are
close binary systems. Fitting individual visit spectra for targets with
Vscatter > 1 km s−1 also protects against the possibility of a single
star erroneously appearing to be a binary if the RVs are calculated
incorrectly, while creating the combined spectrum; otherwise, co-
adding two visit spectra with different Doppler shifts could produce
a combined spectrum bearing erroneous signatures binarity with
q = 1.

The number of free parameters to be optimized increases substan-
tially when we fit spectra from many visits simultaneously, since
the RVs at each visit are all free parameters. This can make the fit
more susceptible to convergence on an erroneous local minimum in
χ2; we discuss the measures taken to ensure global convergence in
this case in Section 2.4.

For both single-visit and combined spectra, we inflate the un-
certainties of pixels with S/N > 200–0.5 per cent (i.e. S/N of 200)
during fitting because empirical S/N diagnostics based on the vari-
ation in a given pixel across visits show that the noise model un-
derestimates uncertainties for bright stars and is likely limited by
systematics at this level (Nidever et al. 2015). We also find that our
fitting approach often performs poorly at low S/N, primarily due to
poor continuum normalization. We therefore do not attempt to fit any
visit spectra with median S/N < 30 pixel−1. Since most APOGEE
targets are bright, this restriction excludes less than 20 per cent of
the targets in our sample; for these targets, we report labels ob-
tained by fitting the combined spectrum, which has higher S/N, but
we caution that results for targets with large Vscatter and low S/N are
likely less reliable.

We do not report uncertainties on labels for individual targets.
Formal fitting uncertainties based on the concavity of the likelihood
function in the vicinity of the global maximum can be computed
withcurve_fit (e.g. Ness et al. 2015; Ho et al. 2017), and compa-
rable uncertainties can be obtained by MCMC sampling. However,
the thus-obtained uncertainties are typically unrealistically small for
high-S/N spectra (e.g. σ (Teff ) < 10 K for typical APOGEE spectra)
because they do not properly account for systematic errors in the
spectral model. Systematic errors can arise if (i) the spectral model
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is not sufficiently complex to account for all the variance in the data
set, (ii) there are unaccounted-for errors in the labels assigned to
the training set, or (iii) the adopted set of labels does not fully char-
acterize all the variance in the data set. We investigate the typical
precision of our best-fitting labels in Appendix B1.1.

2.4 Fitting multi-epoch spectra

We attempt to fit the individual visit spectra rather than the com-
bined spectra of all stars that were visited more than once and are
flagged as potential close binaries. In order to fully exploit the in-
formation contained in the spectra, we fit all single-visit spectra
for each system simultaneously, requiring the physical parameters
of the component stars to be the same at all epochs. Because we
fit all visit spectra with the same spectral model, we implicitly
treat the instrumental line spread function as constant across all
fibres and visits. For the single-star model, we also require the line-
of-sight velocity to be the same at each epoch; in this case, the
model is no more complex than when fitting a single combined
spectrum.

For an isolated binary system, the line-of-sight velocities of the
two components are not independent: in the centre-of-mass frame,
conservation of linear momentum requires that the RV of the pri-
mary along any line of sight, v1, and that of the secondary, v2, are
related by v2 = −v1/qdyn, where qdyn is the dynamical mass ratio of
the system. If the centre-of-mass heliocentric velocity of the binary
is γ , then

vHelio,2 = γ + (
γ − vHelio,1

)
/qdyn. (3)

Here, vHelio denotes a velocity at a single epoch, measured in the
frame of the centre of mass of the Solar system.

For true, isolated binary systems containing two main-sequence
stars, qdyn should be equal to the spectral mass ratio q, which deter-
mines the contribution of the secondary star to the binary spectrum.
We will use q and qspec interchangeably in the rest of this paper.
However, we fit qdyn and qspec separately to allow for the possibility
of companions whose contribution to the spectrum is different from
what is predicted by the dynamical mass ratio. This could occur, for
example, if there are biases in the isochrones used in the spectral
model, if the secondary falls near the edge of the APOGEE fibre
and only a fraction of its flux contributes to the spectrum, or if a
third object is present in the system. Comparing the best-fitting qdyn

and qspec provides a useful diagnostic of the accuracy of our spectral
model.

Our basic ‘SB2’ binary model does not allow the velocities of
both stars to vary freely, but instead enforces the restriction that
the velocities at all epochs follow equation (3) when two or more
visit spectra are fit simultaneously. In most cases, this leads to best-
fitting velocities that are similar (within ∼200 m s−1 on average, and
nearly always within a few km s−1) to those obtained when equa-
tion (3) is not enforced. However, there are some targets for which
the best-fitting velocities are very different – and produce a much
better fit – when equation (3) is not enforced than when it is. Such
systems have velocities inconsistent with being a simple two-body
system and likely contain a third component. To avoid mischarac-
terizing these systems, we also fit all targets with a binary model in
which the velocities of both components are allowed to vary freely;
systems that are significantly better fit by this model are classified
as SB2s with an unseen third component (see Section 2.4.1 for
details).

We also find systems in which there is a clear RV shift in the
spectrum between different visits but no individual visit spectrum
is better fit by a binary model; i.e. the existence of a companion

can be inferred from its gravitational effects on the primary, but
the companion does not significantly contribute to the observed
spectrum. Most of these single-line binary (‘SB1’) systems are
probably ordinary main-sequence binaries with low mass ratios
and relatively short periods; some are likely binaries in which the
companion is a stellar remnant. To distinguish between SB1s and
SB2s, we fit all potential close binary systems with an SB1 model,
which is identical to the single-star model, except that the RV is
allowed to vary between visits. We designate systems as SB1s if the
SB1 and SB2 models converge on essentially the same fit; i.e. if there
is no detectable contribution to the spectrum from the secondary.

Finally, we find some systems whose visit spectra cannot be well
fit by any single star or binary model: the binary model provides a
better fit than the single-star model, but many lines are poorly fit or
are missing entirely from the best-fitting binary model. We find that
many of these systems can be much better fit by a triple model: i.e.
three stars with independent velocities and masses, restricted to lie
on the same isochrone.

2.4.1 Summary of models fit to visit spectra

We simultaneously fit the N visit spectra for each object in the
‘potential close binary’ subsample with a total of five different
models, which we summarize here. We classify systems based on
the total χ2 of each model, preferring the least complex model when
different models have similar χ2.

(i) Single star: the single-star model has six free parameters,
regardless of the number of visit spectra:

��single star = (
Teff, log g, [Fe/H] ,

[
Mg/Fe

]
,vmacro, vHelio

)
. (4)

In particular, this model forces the heliocentric velocity of the star
to be the same in all visits.

(ii) SB1: the SB1 model is identical the single-star model, except
that the heliocentric velocity is allowed to vary between the N visits.
The 5 + N free parameters are:

��SB1 = (
Teff, log g, [Fe/H] ,

[
Mg/Fe

]
,vmacro,vHelio,i

)
, (5)

where i enumerates the visits.
(iii) SB2: the SB2 model fits two stars, with different veloci-

ties at each visit, but with the restriction that the velocity satisfy
equation (3). The 9 + N free parameters are

��SB2 =
(
Teff, log g, [Fe/H] ,

[
Mg/Fe

]
,q,

vmacro1, vmacro2, qdyn, γ, vHelio1,i

)
. (6)

(iv) SB2 with unseen third object: this model fits two stars but
allows their velocities to vary freely, without enforcing equation
(3). If it provides a significantly better fit than the SB2 model, the
relative RV shifts are inconsistent with being a simple Keplerian
two-body system. The 7 + 2N free parameters are:

��SB2, unseen 3rd object =
(
Teff, log g, [Fe/H] ,

[
Mg/Fe

]
,q,

vmacro1, vmacro2, vHelio1,i, vHelio2,i

)
. (7)

(v) SB3: the SB3 model fits three stars and imposes no restrictions
on their velocities. The 9 + 3N free parameters are:

��SB3 =
(
Teff, log g, [Fe/H] ,

[
Mg/Fe

]
,q2, q3, vmacro1,

vmacro2, vmacro3, vHelio1,i, vHelio2,i, vHelio3,i

)
, (8)

where q2 = m2/m1 and q3 = m3/m1.
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Figure 1. Left: spectrum of an unresolved main-sequence binary with q = m2/m1 ≈ 0.7 as observed by APOGEE. Top panel shows the full normalized
spectrum. Middle panel shows the spectrum and best-fitting binary and single-star models, zoomed-in on a narrow wavelength range enclosing a hydrogen
Brackett line. The binary model fits the data significantly better than the single-star model. Bottom panel shows the two components of the best-fitting binary
model. The spectrum’s broad features are due primarily to the hotter star, which contributes >80 per cent of the total light, but has no strong narrow lines; the
shape of the sharp line profiles is primarily due to the cooler star. Our method makes it possible to identify many long-period binaries like this one, in which
the velocity offset between the two stars is negligible. Right: spectrum of a presumed single star with similar parameters to the primary in the system shown in
the left-hand panels. In this case, the best-fitting binary and single-star models are identical.

We note that the SB2 models are in principle identical to the SB1
model (and the SB3 model to the SB2 models) in the limit where
q = 0. We keep these models separate in practice because our model
does not transition smoothly from the minimum possible q that can
be modelled (corresponding to Teff = 4200 K) to q = 0.

Fitting many visits simultaneously increases the number of la-
bels to be fit, increasing the risk of the optimizer’s convergence
on a local minimum. For example, for a target with 10 visits,
fitting the SB2 (SB3) model requires optimization of the likeli-
hood in 19 (39) dimensions, which is computationally demand-
ing. In tests with synthetic binary spectra, we find that conver-
gence on the global best fit is nearly always achieved as long as
the optimizer is initialized reasonably close to the global mini-
mum; i.e. with all velocities within ±∼20 km s−1 of their true
values at all epochs. We therefore first fit individual visit spec-
tra one at a time to estimate the velocity of each component at
each epoch, and then use the resulting best-fitting labels to initial-
ize the global optimizer during simultaneous fitting. Because the
velocity offsets at each epoch are nearly uncorrelated with those in
other epochs – i.e. changing vHelio, 1, i only shifts the spectrum pre-
dicted for the ith visit – the optimization remains tractable in many
dimensions.

3 R ESULTS

We fit the spectra of 20,142 targets from APOGEE DR13 that ab-
initio fitting with single-star models (Ting et al., in preparation)
found to (i) lie on the main sequence (log g > 4), (ii) fall within
the region of label space where the synthetic spectral model is
reliable (4200 K ≤ Teff ≤ 7000 K and −1 ≤ [Fe/H] ≤ 0.5), and
(iii) be acceptably fit, in a χ2 sense, by synthetic spectral mod-
els. From this initial sample, we identify 2645 targets in which
more than one star contributes significantly to the spectrum and an
additional 663 targets with time-variable RVs but no detectable
spectral contribution from the secondary. Catalogues of targets
classified as single stars, binaries, and triples are presented in
Appendix E.

Fig. 1 illustrates how our model identifies systems that are likely
binaries but show no significant RV variability or split lines due to
a velocity offset between the two components. Panels on the left
show the spectrum of a target that can be significantly better fit by a
binary model than a single-star model; those on the right show one
that cannot.

We fit the full spectrum simultaneously, but we zoom-in on a
small region to show the qualitative signatures of binarity. The
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Figure 2. Examples of single-star and binary models fit to binary systems with a negligible (top), intermediate (middle), and large (bottom) line-of-sight
velocity offset between the two stars. All three systems have a mass ratio q = m2/m1 ∼ 0.7, a primary star with Teff ∼ 5400 K and log g ∼ 4.5, and [Fe/H] ∼ 0.
Detecting binarity in systems with a large velocity offset (�vlos � 15 km s−1) is straightforward, because the two stars’ lines become separated in velocity space.
However, binarity can also be detected in many systems, where the line-of-sight velocity offset is negligible, as in the top panel, because the two-component
stars have different temperatures and ionization states, so their combined spectrum cannot be well fit by any single-star model.

spectrum in the left-hand panels contains features of both hot and
cool stars: wide hydrogen lines and rotationally broadened line
profiles at the wing of all lines, and deeper, narrow line cores that
do not show rotational broadening. No single-star model can achieve
a good fit: the absorption lines in the best-fitting single-star model
are too shallow, and some lines in the data spectrum are blended in
the best-fitting single-star model or are missing altogether. On the
other hand, the binary model can provide a good fit and reproduces
the line profiles of the observed spectrum. The decomposition of
the binary model spectrum in the bottom panel shows that the broad
features are all due to the hot primary star, while the sharper features
originate in the spectrum of the cooler secondary.

In the right-hand panels of Fig. 1, we show the spectrum of a
typical single star with stellar parameters and abundances similar
to the primary in the left-hand panels; as expected, it is similar to
the spectrum in the left-hand panels with the sharper, narrow lines
removed. In this case, the binary and single-star models converge
on what is essentially the same spectrum, so there is no reason to
prefer the binary model.

The binary spectrum in the left-hand panels of Fig. 1 illustrates
why it is often possible to spectrally identify binaries even when one
star is much brighter than the other: although the secondary star in
the binary system contributes less than 20 per cent of the total light,
it contributes a large fraction of the total absorption because lines
in hotter stars are often intrinsically weaker than those in cool stars.
For many binaries containing a hot primary and cool secondary, the
spectrum and binary model exhibit lines that are completely absent

from the spectrum of the primary because the relevant species are
ionized at its higher Teff.

3.1 Effect of a velocity offset

Although a line-of-sight velocity difference between the primary
and secondary stars is in many cases not required to identify binaries
with our model, a velocity offset makes the signatures of unresolved
binarity more obvious and extends the range of detectable mass
ratios. This is illustrated in Fig. 2, which compares the spectra of
three binary systems with similar stellar parameters, abundances,
and mass ratios, but a range of velocity offsets between the primary
and secondary components. The system shown in the top panel has
a small line-of-sight velocity offset, similar to the system in the
left-hand panels of Fig. 1. In this case, the effects of binarity are
quite subtle, and binarity can likely only be detected with detailed
spectral modelling. As the velocity offset increases (middle and
bottom panels), binarity-induced changes to the spectrum become
more obvious. In all three panels of Fig. 2, we plot the APSTAR
combined spectrum, not the spectra from individual visits. However,
the target in the bottom panel, which is the only target of the three
for which we might expect a large velocity change between visits,
was only visited once.

For APOGEE spectra with R = 22 500, one resolution element
corresponds to a RV difference of δv ∼ c/R ∼ 13.5 km s−1. The
traditional method of identifying binaries as systems in which the
cross-correlation function of an observed spectrum with a synthetic
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template exhibits two peaks can only reliably detect binaries in
which the line-of-sight velocity offset is of order 1–3 resolution
elements; such systems are usually referred to as ‘SB2’ systems.
For example, Fernandez et al. (2017) found that binaries could only
be reliably detected in APOGEE spectra when the maximum line-
of-sight velocity separation exceeded �vlos = 30 km s−1.7 Fig. 2
shows that even a small velocity offset can substantially strengthen
the signatures of binarity. How much a velocity offset improves
detectability for our method depends on the stellar parameters and
abundances of the primary, because it is easier to detect velocity
offsets in stars with many deep, narrow lines. For most stars with
Teff � 6500 K, a velocity offset of �vlos � (5−10) km s−1 makes it
possible to identify binaries from single-epoch spectra even when
the mass ratio is close to q = 1; such systems are not otherwise
detectable with our method (see Appendix B1).

3.2 Results for multi-epoch spectra with velocity variability

Examples of targets whose spectra are best fit by SB2, SB1, and
SB2 with an unseen third object, and SB3 models are shown in
Figs 3, 5, 8, and 6.

Fig. 3 shows a system that is best fit by the SB2 model (i.e.
case (iii) from Section 2.4.1) and exhibits spectra that change sub-
stantially from one epoch to the next. In the upper panel, we plot
the combined spectrum and the best-fitting binary and single-star
models obtained by fitting it. Although the binary model is a bet-
ter fit (and our initial fit to the combined spectrum did flag the
system as a likely binary), the fit is not very good: some features
in the combined spectrum cannot be accommodated by either the
single-star or the binary models. In the lower panel, we show the
spectra obtained in the three individual visits, which are co-added
to produce the combined spectrum, and the binary model obtained
by simultaneously fitting them. The fit to the individual visit spectra
is good. The poor fit to the combined spectrum is a consequence
of the fact that the components’ velocities change between visits,
meaning that the combined spectrum is an unphysical superposition
of different spectra.

The inset in Fig. 3 shows the heliocentric velocities of the primary
and secondary stars at each visit for the best-fitting SB2 model. The
slope and intercept of the line on which these velocities fall can be
used to calculate the dynamical mass ratio, qdyn, and the centre-of-
mass velocity, γ . For binary systems in which the velocities of the
two stars change significantly between visits, it is therefore possi-
ble to obtain a constraint on the mass ratio that is independent of
the spectral label q. Such constraints will of course not be reliable
if the orbital configuration does not change significantly between
visits: in this case, all measurements of vHelio,1 and vHelio,2 will be
clustered around one point, and the slope of the line is ill constrained.
We also emphasize that linear momentum conservation requires that
the slope of the line on which vHelio,2 and vHelio,1 fall must be neg-
ative for a true binary system. Fernandez et al. (2017) attempted
to infer qdyn also from systems in which the slope of this line is
positive or zero (e.g. their fig. 6), but mass ratios inferred in this
way have no physical interpretation and indicate either inaccurate
RV measurements or the presence of a third, unseen component.

7Other surveys find similar sensitivity to spectroscopic binaries; e.g. Merle
et al. (2017) found that binaries could be detected down to �vlos =
15 km s−1 in UVES spectra (R = 47 000) from the Gaia–ESO survey, and
Matijevič et al. (2010) found a minimum �vlos for reliable detection of
50 km s−1 in the RAVE survey (R = 7500).

Figure 3. A binary system in which the stars’ velocities change between
visits. Top panel shows a small portion of the combined spectrum (black),
which is produced by co-adding spectra from different visits, best-fitting
single-star model (red), and best-fitting binary model (cyan). The binary
model provides a better fit than the single-star model, but it cannot fully
reproduce the combined spectrum. Bottom panel shows the individual visit
and the best-fitting SB2 model, which produces an excellent match to all the
individual visit spectra. Inset shows heliocentric velocities of the primary
and secondary stars at each epoch; momentum conservation requires that
these lie on a line with slope −1/qdyn, where qdyn is the dynamical mass
ratio. The spectrally inferred mass ratio, qspec = 0.93, is in good agreement
with the dynamical mass ratio, qdyn = 0.91.

In Fig. 4, we compare the best-fitting values of qspec and qdyn

obtained for SB2 systems in which qdyn can be reliably measured; we
identify such systems as those in which the range of vHelio spanned
across visits is at least 10 km s−1 for both stars, corresponding to
a velocity shift of slightly less than one resolution element. We
colour points by the median of S/N per pixel as reported in the
allVisit catalogue, where the median is over all visit spectra used in
the fit.

The agreement between qspec and qdyn is in general quite good,
with a median absolute difference between qspec and qdyn of
med(|qspec − qdyn|) = 0.048 and a corresponding middle 68 per cent
range of (0.012–0.14). The agreement is on average better for tar-
gets whose spectra have higher S/N; most systems with significantly
different qspec and qdyn have S/N � 50. Particularly at lower mass
ratios, qdyn is on average slightly lower than qspec; i.e. assuming qdyn

is usually more accurate than qspec, the latter is biased to slightly
higher q. This can be understood as a consequence of the minimum
Teff of our spectral model, which sets an effective minimum qspec.
If a cool primary has a companion with Teff cooler than 4200 K that
cannot be fully accommodated by the spectral model, a better fit
can often still be achieved by a binary model with Teff = 4200 K
and a too-high qspec than a single-star model which ignores the
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Figure 4. Comparison of spectroscopically and dynamically inferred mass ratios for ‘SB2’ binary systems in which a dynamical mass ratio can be measured.
qspec is measured from the relative contribution of each star to the spectrum, and qdyn, from the relative changes of the RVs of the primary and secondary across
multiple epochs (see Fig. 3). The designation of primary and secondary components is based on their relative contribution to the spectrum: qspec is bounded by
1, but qdyn is not. 623 systems have sufficiently short periods to allow measurement of qdyn. Most systems for which the disagreement between qspec and qdyn

is large have low S/N (left) and cool primaries (middle). Due to the spectral model’s minimum Teff of 4200 K, low mass ratio systems can only be detected if
the primary is hot, and mass ratios are less accurate for cooler systems. The median absolute difference between qdyn and qspec is 0.048.

Figure 5. Visit spectra and best-fitting models for an SB1 system. The SB1
model contains only a single star contributing to the spectrum, but its RV
can vary across visits. The SB2 model includes the possibility of a second
star contributing to the spectrum. In this case, the best-fitting SB1 and SB2
models are identical, indicating that there is no detectable contribution to
the spectrum from the secondary. However, RV variability of the primary
clearly indicates that a companion is present. Assuming that the companion
is a main-sequence star, an upper-limit of q � 0.45 can derived; if q were
larger, the secondary would contribute detectably to the spectrum, and the
SB2 model would provide a better fit.

secondary entirely. This in part explains the substantial number of
cool systems with qspec near 1 and lower qdyn, though we note that
most cool systems also have lower S/N.

If the secondary is very faint compared to the primary, its contri-
bution to the spectrum may be completely undetectable, in which
case binary and single-star models will converge to the same model

Figure 6. Visit spectra of a target identified as a triple (SB3) system.
The three components have different line-of-sight velocities, so many lines
can be seen in triple, and an SB2 model cannot provide a good fit. Inset
shows the line-of-sight velocities of each component at each epoch. The
heliocentric velocity of the primary is consistent with being constant at
vHelio,1 ≈ 34.5 km s−1, so no dynamical mass ratio can be estimated for
m2/m1 or m3/m1. However, vHelio, 2 and vHelio, 3 fall on a line with an im-
plied mass ratio m3/m2 consistent with the spectrally inferred one. This
implies that the system is a hierarchical triple, as is illustrated in the orbit
schematic.
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Figure 7. Line-of-sight velocities for hierarchical triples containing a close
binary and third component with a much larger separation (see schematic
in Fig. 6). The tight correlation between the centre-of-mass velocity of the
close sub-binary and the velocity of the long-period component indicates
that most systems are bona-fide gravitationally bound triples, not chance
alignments between a close binary and a background or foreground star.

spectrum as long as the velocities are allowed to vary between visits.
Such systems can be distinguished from isolated single stars by the
fact that the ‘SB1’ model provides a better fit than the single-star
model, which requires a target’s velocity to be the same at all visits.
Fig. 5 shows an example of such a system. Our model makes it pos-
sible to set an upper limit on the mass ratio, under the assumption
that the companion is a main-sequence star: in this case, the SB2
model would provide a better fit than the SB1 model if the secondary
had Teff � 4200 K. This limit is likely conservative in practice for
main-sequence secondaries, as discussed above. However, it will
not apply for binaries in which the companion is a stellar remnant.

We note that most SB1s and some close SB2s can be qualitatively
identified as unlikely to be single based on the scatter across visits
in the RVs measured by the APSTAR pipeline (e.g. Badenes et al.
2017). However, we find a nontrivial number of SB2 systems (∼100
systems out of the ∼20000 targets studied in this work) that show
clearly time-variable spectra, with changes in the velocities of both
components larger than 30 km s−1, for which the APSTAR-derived
vHelio measurements change at the < 1 km s−1 level. This indicates
that APOGEE RV measurements are likely problematic for these
systems, and studies that flag short-period binaries based on velocity
variability will miss some SB2 systems.

Fig. 6 shows an example of a spectrum classified as a triple. The
SB2 model (cyan) clearly cannot provide a good fit to the observed
spectra, which simply have too many lines; on the other hand, the
triple model is a good fit to all visits. The inset shows the velocities of
the three components at each epoch; note that these are all allowed to
vary freely and are not restricted to follow any equivalent of equation
(3). One component, the spectral primary, has effectively constant
velocity (within ±0.5 km s−1) across all visits. On the other hand,
the velocities of the secondary and tertiary components vary a great
deal between visits and fall on a line with negative slope, just as in
case of close binaries (Fig. 3). The most straightforward explanation
for these kinematics is that the system is a hierarchical triple (e.g.
Ford, Kozinsky & Rasio 2000; Toonen, Hamers & Portegies Zwart

2016) consisting of a close binary orbiting a third system with a
period much longer than that of the close binary, so that the velocity
of the primary and the centre-of-mass velocity of the close binary
do not change significantly over the temporal baseline between
visits (which is ∼54 d for this target). This type of hierarchical
orbital is illustrated schematically in Fig. 6. Consistent with this
interpretation, the spectrally inferred mass ratio between the two
components of the close binary is similar to the dynamical mass
ratio inferred from the slope of the line on which their velocities
fall.

We find 114 triple systems, most of which have the same qualita-
tive velocity configuration as the system in Fig. 6: they contain one
component with effectively constant velocity over all visits and two
components with variable velocities that fall on a line as expected
by a close binary. This is not surprising, as hierarchical configura-
tions are the natural stable end state of the dynamical evolution of
(otherwise chaotic) triple systems (Naoz et al. 2013). We also find
systems in which the velocity of the third (long-period) component
is not constant but changes approximately linearly with time; this is
expected if the system’s outer period is long compared to the obser-
vation baseline but not so long that no change can be observed. In
such cases, the heliocentric velocities of the other two components
do not fall on a straight line but exhibit some intrinsic scatter; this
scatter can be reduced if a constant multiple of the linear trend of
the lone star is subtracted from the velocities of the other two stars.

Such systems are almost certainly gravitationally bound triples,
since the velocities of all three components are correlated. However,
for triples in which the velocity of one component is consistent with
being constant over the time baseline spanned by observations,
there is no guarantee that the three stars are actually gravitation-
ally bound: the observed velocities could also be explained by a
chance alignment between a close binary system and a background
or foreground star. Whether such chance alignments constitute a
substantial fraction of the targets we identify as hierarchical bina-
ries can be diagnosed by comparing the centre-of-mass velocity
of the close binaries to the velocity of the third component. For
gravitationally bound triples, these should be reasonably similar,
with offsets of order the orbital velocity of the long-period com-
ponent. The typical offsets should be larger (at minimum, of order
30 km s−1, the velocity dispersion of the Milky Way’s stellar disc)
for chance alignments.

We investigate this explicitly in Fig. 7. Here, we only plot sys-
tems that are consistent with the velocity of the of the long-period
component being fixed over all epochs; we identify such cases as
systems in which the change in the velocity of the long-period com-
ponent across epochs is less than 2 km s−1 when all velocities are
allowed to vary freely. Consistent with the expectation for bound
triples, the system velocity of the close binary is in most cases
within 10 km s−1 of that of the third component. There are five sys-
tems in which the offset is larger, but due to the relatively short
observational baselines, we find that none of these velocity offsets
are large enough to rule out the possibility that all three stars are
gravitationally bound. We discuss the possibility of contamination
due to chance alignments of stars further in Section 3.5.

Along with SB1s, SB2s, and SB3s, we also identify a class of
systems in which the presence of a third component can be deduced
from RV measurements, but only two stars contribute significantly
to the spectrum. Fig. 8 shows an example of such a target. The
standard SB2 model, which enforces equation (3) with qdyn ≥ 0.2,
cannot satisfactorily fit the spectrum. However, the ‘SB2 with un-
seen third component’ model, which allows the velocities of both
components to vary freely, provides a good fit, converging on a
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Figure 8. Visit spectra of a triple system in which the third component
does not contribute significantly to the spectrum but can be detected gravi-
tationally. Cyan line shows best-fitting SB2 model with the restriction that
vHelio, 1 and vHelio, 2 fall on a line with negative slope [equation (3)]. Red
line shows the best-fitting binary model in which the velocities of the pri-
mary and secondary are allowed to vary freely. Inset shows the line-of-sight
velocities corresponding to the red model. The velocity of the secondary is
consistent with being constant at vHelio,2 ≈ −14.5 km s−1, while that of the
primary varies substantially. This implies that the system is a hierarchical
triple in which one component of the close binary does not contribute to
the spectrum (i.e. it is a stellar remnant or faint M dwarf); this is shown
schematically in the orbital diagram.

solution in which the velocity of one component is consistent with
being fixed across epochs while that of the other varies.

As illustrated in the orbital schematic in Fig. 8, such a RV pattern
can be explained straightforwardly if the system is a hierarchical
triple in which the close binary is an SB1; i.e. one component of the
close binary does not contribute to the spectrum, either because its
mass is low or because it is a compact remnant. No dynamical mass
ratio can be inferred for these systems, because the acceleration
of the variable-velocity component is due primarily to the unseen
component. We identify 108 SB2 systems in which the presence
of a third component can be inferred dynamically; the majority of
these systems have velocity configurations similar to Fig. 8, with
one component’s velocity essentially constant.

3.3 Colour–magnitude diagram

A straightforward diagnostic to verify that the targets we spectro-
scopically identify as binaries are primarily true binaries, as op-
posed to single stars whose spectra contain unusual features that
are not well accounted for in the spectral model, is to examine their
distribution in a colour–magnitude diagram (CMD). True binaries
are expected to lie above the single-star main sequence of a CMD
(Hurley & Tout 1998; Li, de Grijs & Deng 2013): binaries with
q ∼ 1 will have the same colour as would either single star but will

be twice as luminous, while binaries with 0.5 � q � 0.9 will be
both brighter and redder than a single star with the parameters of
the primary.

Accurate measurements of absolute magnitude (and hence dis-
tance) are required to construct the CMD. To identify stars in our
sample with accurate distance measurements, we cross-matched
it with the Tycho–Gaia astrometric solution catalogue (Michalik,
Lindegren & Hobbs 2015) using the gaia_tools.xmatch rou-
tine written by Jo Bovy. This revealed 1925 stars in our sample with
parallax errors of 10 per cent or better,8 217 of which were spectro-
scopically identified as multiple-star systems in which at least two
components contribute detectably to the spectrum.

We plot the CMD for these objects, based on 2MASS photom-
etry, in the left-hand panel of Fig. 9. As expected, the majority of
spectroscopically identified binaries are scattered above the main
sequence. We stress that our model for identifying binaries operates
exclusively on normalized spectra and does not rely whatsoever on
photometry; the fact that nearly all of the spectroscopically iden-
tified binaries populate the expected locus of the CMD above the
main sequence is therefore a robust confirmation that our model is
finding real binaries.

In the right-hand panel of Fig. 9, we show schematically how
the presence of an unresolved companion is expected to change a
star’s position on the CMD. For a single stellar population, binaries
with mass ratios 0.6 � q � 1 form a coherent second sequence
∼0.75 mag above the main sequence; i.e. it is not the case over this
range of mass ratios that binaries with higher q fall farther above
the main sequence. This occurs because as q is increased from
0.6 to 1 and Teff of the secondary increases, unresolved binaries
move blueward parallel to the main sequence. On the other hand,
in binaries with q � 0.4, the secondary contribute so little light
that the change in the unresolved system’s location on the CMD is
negligible.

The lowest mass ratio to which we are sensitive is q ∼ 0.4, so
the majority the binaries we identify should scatter above the main
sequence for their respective isochrone. In the left-hand panel of
Fig. 9, we plot separately binaries with q ≤ 0.6 (which are only
detectable around primaries with Teff � 5800 K; see Appendix B1)
and those with higher mass ratios. As expected, the lower mass ratio
systems are on average below the higher mass ratio systems on the
CMD. With one exception,9 systems identified as triples (SB3) fall
above the binary main sequence. We do not mark SB1s in Fig. 9;
their distribution on the CMD is similar to that of single stars, likely
because most have low mass ratios.

The sample of stars for which accurate parallaxes are available
spans a wide range of metallicities and ages, so significant intrinsic
scatter is expected in the distribution of both single stars and binaries
on the CMD. We note that there are some stars that our model does
not identify as binaries but which still scatter well above the main
sequence. We suspect that most of these systems are binaries with

8This corresponds to a magnitude error of ±0.22 mag, plus typical 2MASS
photometric errors of ±0.03 mag. We do not attempt to correct for extinction
or reddening, which is expected to be modest in the near-infrared at the
distances of the stars with accurate parallaxes (which have a median distance
of 200 pc).
9We have investigated the spectra of this target (2M07212735+2342096)
in detail and find it to be an unambiguous triple, with clear changes in
spectral morphology between visits. Why it falls below the main sequence
is not clear; one possibility is that marginally resolved multiplicity led to an
overestimate of its parallax.
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Figure 9. Left: CMD of all stars in our sample with parallax errors of 10 per cent or less (grey circles). Black and red symbols represent spectroscopically
identified binaries, with maximum line-of-sight velocity offsets between the two components greater (short period) and less than (long period) 30 km s−1.
Binaries with mass ratios q < 0.6 are marked with hexagons; those with q > 0.6, with stars. Triples are marked with blue points. Most spectroscopically
identified binaries lie above the main sequence. Traditional SB2 identification methods can only identify close binaries with large velocity offsets (black
symbols); our method can identify many more long-period binaries with negligible velocity offsets (red symbols). Right: schematic effect of unresolved
binarity on the CMD. Black line shows a MIST isochrone for single stars with a single age and metallicity; coloured loci show where binaries with different
mass ratios and primary Teff fall when they are spatially unresolved.

q ∼ 1 and small velocity offsets; these are not detectable in our
current framework.

We also divide suspected binaries into subsamples with large
and small velocity offsets, corresponding approximately to sys-
tems which could and could not be detected with traditional
Cross-correlation function (CCF)-based binary-detection methods
(Fernandez et al. 2017). Only ∼30 per cent of systems have velocity
offsets that are large enough to be detected with traditional methods.
This highlights one of the primary advantages of the method intro-
duced in this work: it is sensitive to a substantially larger fraction
of the binary population than methods based on RV separation or
variability alone.

3.4 Deriving orbital parameters

We derive full orbital solutions for 64 binary systems which have
sufficient visits and phase coverage to constrain the orbit. Our crite-
ria for determining whether the available velocity data are sufficient
to constrain a system’s orbit are discussed in Appendix D. We only
attempt to derive orbital solutions for systems in which at least two
stars contribute to the spectrum; orbital solutions for SB1 systems
in APOGEE can be found in Troup et al. (2016).

Velocities for both components are returned as labels for the
best-fitting spectral model. An initial estimate of the RV uncer-
tainty at each visit is obtained through bootstrapping: Gaussian
noise proportional to the best-fitting model residual at each pixel
is added to the data spectrum and the fit is repeated; the uncer-
tainty on each RV is taken to be the standard deviation of the best-
fitting velocity at each epoch when this procedure is repeated many
times.

Fitting a Keplerian orbit amounts to simultaneously maximizing
the likelihood of the RV curves of the primary and secondary, where
the model RV for a given set of orbital parameters is obtained by

solving the two-body problem (Murray & Correia 2010). We use
a custom PYTHON implementation of the adaptive simulated anneal-
ing algorithm (Iglesias-Marzoa, López-Morales & Jesús Arévalo
Morales 2015) to obtain an initial maximum-likelihood estimate
of the best-fitting orbital parameters and then sample the param-
eter space in the vicinity of the maximum likelihood with EMCEE

(Foreman-Mackey et al. 2013) to estimate parameter uncertainties.
We use non-informative, flat priors throughout. In addition to the
seven standard Keplerian orbital parameters,10 we fit a ‘jitter’ term,
s2, to allow for the possibility of intrinsic scatter in the RVs due to
e.g. stellar pulsation or underestimated RV uncertainties (see e.g.
Baluev 2009; Price-Whelan et al. 2017). The effective total uncer-
tainties in the RVs used in fitting are then σ 2

tot,i = σ 2
i + s2, where σ i

are the RV uncertainties at each epoch found from bootstrapping.
Explicitly, the log-likelihood function is

lnL = −1

2

N∑
i

{
[vr(ti, �θ1) − vHelio1,i]2

σ 2
1,i + s2

+ ln[2π(σ 2
1,i + s2)]

+ [vr(ti, �θ2) − vHelio2,i]2

σ 2
2,i + s2

+ ln[2π(σ 2
2,i + s2)]

}
. (9)

Here, the sum is over N epochs at times ti, vr(t, �θ ) represents
the predicted RV at time t for a system with orbital parame-
ters �θ (Murray & Correia 2010), and �θ1 = (

P , Tp, e, ω, K1, γ
)

and �θ2 = (
P , Tp, e, ω + π, K2, γ

)
are the orbital parameters for

each component. For most systems, the best-fitting jitter is small
(s2 ∼ 0.1 km2 s−2), indicating that our estimates of σ i are rea-
sonably accurate. However, for stars with large vmacro, which

10 These include the period, P, periastron time, Tp, eccentricity, e, argu-
ment of periastron, ω, centre-of-mass velocity, γ , and the velocity semi-
amplitudes, K1 and K2.
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Figure 10. Left: Orbit fit to an SB2 systems with 15 epochs. In this relatively low mass ratio system, the secondary contributes only ∼3 per cent of the light,
but we can still determine its velocity to ±∼1 km s−1. Black and grey lines show the heliocentric velocity of the primary and secondary star. Right: 68 and
95 per cent marginalized probability regions for the system’s orbital parameters. Because the eccentricity is very nearly 0, Tp, and ω are highly degenerate and
are individually not well constrained, reflecting the fact that these quantities are meaningless for a circular orbit. We derive similar orbital solutions, shown in
Table 1, for 64 systems.

indicates significant rotation, jitter is sometimes of order 1 km s−1.
This suggests that our velocity measurements are less accurate for
rapidly rotating stars, which is also supported by our experiments
with semi-empirical binary spectra (Appendix B1).

For some systems with mass ratios near 1, we found that it was
initially impossible to obtain a good fit to the measured RVs because
the velocity assignments of the two stars were switched in the fits
for one or more visits. We attempted to fit these systems by allowing
the fitting algorithm to switch the assigned velocities for individual
visits if doing so would improve the fit. In most cases, this solved
the problem. A few systems (∼5 per cent of those with sufficient
coverage) remained with RV curves that could not be well fitted by
a Keplerian orbit, even with the possibility of switching the assigned
velocities; these systems may have poorly measured RVs or contain
an unseen component.

Fig. 10(a) shows an example orbital solution for a system with
typical phase coverage, RV errors, and number of epochs. This
system has the lowest mass ratio, q = 0.44, of the systems for which
we derive orbital solutions. Because of the system’s low mass ratio,
the secondary contributes only a small fraction (∼3 per cent) of the
total light in the spectrum; it is not obvious from visual inspection
that more than one star contributes to the spectrum. However, the
secondary is detected unambiguously by our model, and the fact
that the primary and secondary velocities all fall on a Keplerian
orbit confirms the validity of the detection.

Marginalized probabilities for the orbital parameters of this sys-
tem are shown in Fig. 10(b). Most orbital parameters are well
constrained for this system, without strong parameter covariances.

However, the periastron time, Tp, and argument of periastron, ω,
are highly degenerate, because the orbit is nearly circular (the ec-
centricity, e, is consistent with 0); the orbit has no well-defined
periastron, and hence Tp and ω are undefined. All systems with
low eccentricities therefore have large uncertainties in ω and in
Tp, even when the meaningful parameters of the orbit are well
constrained.

In Table 1, we provide best-fitting orbital parameters and
marginalized uncertainties for 64 systems for which an orbital
solution could be obtained. Most of these systems are ordinary
double-lined binaries (SB2s), similar to the system shown in Fig. 3.
However, we also include solutions for several close SB2s within
hierarchical triples (similar to Fig. 6), as well as SB1s within hi-
erarchical triples with hidden third components (similar to Fig. 8).
These are fit very similarly to pure SB2 systems, with the only dif-
ference being that vHelio measurements for individual stars at each
visit are obtained from the ‘SB3’ and ‘SB2 with an unseen third
object’ models. We only attempt to fit such systems if they are
consistent with the third component having constant velocity over
the observed baseline. For ‘SB2 with an unseen third object’ sys-
tems, the fit is to a single RV curve, so K2 is not measurable. The
rms velocity residual for all orbital solutions ranges between 0.04
and 1 km s−1. The systems with the largest velocities errors have
(i) lower average S/N and (ii) higher Teff and vmacro, both of which
make it more difficult to accurately measure RVs.

The statistics UN and VN in the last column of Table 1 quantify
the uniformity of coverage in orbital phase and velocity by the
measured RV data. We calculate these statistics following Troup
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Table 1. Orbital solutions for double-line spectroscopic binaries. We report the median and middle 68 per cent of the marginalized posterior samples for each
parameter. UN and VN quantify the phase and velocity coverage of the observations (see Appendix D); systems with UNVN � 0.5–0.6 are susceptible to
erroneous bad fits.

2MASS ID Nepochs P Tp e ω K1 K2 γ UNVN

(d) (BMJD) (radians) (km s−1) (km s−1) (km s−1)

06212323+1701485 8 42.24 56657.15 0.3166 0.684 35.27 41.40 1.37 0.79
±0.19

0.17 ±0.21
0.23 ±0.0091

0.0092 ±0.029
0.034 ±0.31

0.29 ±0.32
0.31 ±0.19

0.18

08544465+1130053 21 39.23855 55933.620 0.6932 1.0931 59.79 62.93 −6.818 0.92
±0.00097

0.00093 ±0.016
0.016 ±0.0014

0.0014 ±0.0035
0.0035 ±0.20

0.19 ±0.20
0.21 ±0.069

0.069

04030722+5150045 9 69.973 55906.20 0.569 4.026 31.5 33.4 −7.176 0.76
±0.076

0.093 ±0.38
0.33 ±0.045

0.036 ±0.024
0.026 ±2.9

1.9 ±3.1
2.1 ±0.089

0.091

21313924+1307507 41 1.5567964 55731.18 0.0016 1.03 59.51 71.84 −52.199 0.92
±0.0000016

0.0000015 ±1.10
0.19 ±0.0016

0.0012 ±4.30
0.76 ±0.12

0.12 ±0.13
0.13 ±0.069

0.061

18470667−0226077a 32 7.52676 55823.81 0.0136 5.38 45.86 55.85 15.99 0.93
±0.00015

0.00014 ±0.39
0.37 ±0.0046

0.0050 ±0.32
0.30 ±0.27

0.26 ±0.26
0.26 ±0.15

0.15

07355296+2135482 15 15.3645 55879.8 0.0065 4.62 31.47 72.11 15.50 0.87
±0.0010

0.0011 ±1.5
1.5 ±0.0033

0.0034 ±0.60
0.62 ±0.17

0.18 ±0.27
0.27 ±0.11

0.10

15010903+3702218 7 17.5079 56090.854 0.2996 2.5573 41.962 57.13 −47.938 0.61
±0.0011

0.0011 ±0.046
0.045 ±0.0014

0.0013 ±0.0092
0.0088 ±0.100

0.092 ±0.14
0.14 ±0.040

0.036

08541894+1239291 22 1.3046792 55904.366 0.042 2.96 130.2 130.2 7.87 0.91
±0.0000087

0.0000089 ±0.054
0.052 ±0.010

0.010 ±0.25
0.24 ±1.7

1.7 ±1.8
1.8 ±0.86

0.80

19303146+4210508b 24 5.55412 56444.01 0.0120 6.05 43.20 – −58.76 –
±0.00013

0.00014 ±0.25
0.22 ±0.0029

0.0030 ±0.28
0.24 ±0.13

0.13 ±0.092
0.100

08464223+1205302 17 15.0232 56654.146 0.2980 0.290 24.76 26.54 −6.493 0.93
±0.0023

0.0024 ±0.023
0.023 ±0.0034

0.0035 ±0.010
0.011 ±0.13

0.12 ±0.14
0.14 ±0.058

0.055

··· ··· ··· ··· ··· ··· ··· ··· ··· ···
Notes. aSystem is an SB2 within a hierarchical triple (10 systems). bSystem is an SB1 within a hierarchical triple (three systems). This table is available in its
entirety (with orbital solutions for 64 systems) in machine-readable form.

et al. (2016, their equations 22 and 23); both UN and VN are bounded
between 0 and 1, with values near 1 corresponding to uniform
phase and velocity coverage. Troup et al. (2016) estimated that
orbital parameters are unreliable for SB1s if UNVN < 0.5; of course,
the probability of recovering the correct orbit also depends on the
number of RV measurements and their uncertainties. In Appendix D,
we carry out tests with synthetic RV data to determine the number
of epochs and phase + velocity coverage required for reliable orbit
recovery of SB2s with RV data similar to that obtained for real
binaries.

In the top panel of Fig. 11, we plot constraints on the semimajor
axes and component masses derived from the orbital parameters of
all systems for which we present an orbital solution.11 Our sample
contains systems with periods ranging from 0.6 d (short enough
that the two stars are nearly touching, with a sin i ∼ 0.8 R�) to
∼600 d. Dynamical constraints on the absolute masses of stars in
individual binaries are weak due to the degeneracy with sin i, but
the highest lower limit on the mass of an individual component is
∼1.5 M�. This corresponds to Teff � 6600 K for a solar-metallicity
star on our adopted MIST isochrones; reassuringly, none of our
dynamical mass constraints imply Teff > 7000 K, which is the upper
limit adopted for our spectral model.

We plot the periods and eccentricities of binary systems in the
bottom panel of Fig. 11. Most of the short-period (P � 10 d)

11We calculate asin i, M1sin 3i, and M2sin 3i using the standard formulae
from Cox (2000). It is not possible to measure a or M directly from RV
data alone; we note that future astrometric constraints can break the degen-
eracy between these quantities and orbital inclination for nearby systems
(Halbwachs et al. 2017a).

Figure 11. Top: distribution of periods, semimajor axes, and masses for
the 64 double-lined binary systems for which we derive an orbital solu-
tion. Due to APOGEE’s relatively rapid cadence (most targets have maxi-
mum baselines of a few months), these systems are heavily biased towards
short periods. Bottom: period-eccentricity distribution. Most systems with
P � 10 d have low eccentricity due to tidal circularization.
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systems have nearly circular orbits, likely due tidal dissipation
processes (e.g. Koch & Hrivnak 1981). However, a few systems
with short periods do have eccentricity constraints that are in-
consistent with zero. Some of these systems are short-period bi-
naries within a hierarchical triple; such systems are known to
be susceptible to eccentricity boosts via three-body interactions
(Kozai 1962).12

3.5 Are binaries gravitationally bound?

Our method finds binaries and triples by identifying targets in which
more than one star falls within a single APOGEE fibre and con-
tributes to the observed spectrum. In all cases where the velocities
of the components of a suspected binary or triple system are not ob-
served to vary in a correlated way, there is no guarantee that all the
components are gravitationally bound: chance alignments of stars
at different distances that fall within the same fibre can produce
spectra consistent with binarity.

To estimate the false-positive rate due to such ‘optical binaries’
that are not gravitationally bound, we analyse mock photometric
catalogues created with GALAXIA (Sharma et al. 2011). GALAXIA im-
plements the Besançon model of stellar population synthesis (Robin
et al. 2003) to populate the Galactic distribution function and pro-
duce realistic mock surveys along arbitrary lines of sight. Using a
Galactic dust extinction map computed by mwdust (Bovy et al.
2016), we produced mock catalogues complete to J = 14 mag
along three lines of sight representative of the range of stellar
densities spanned by different APOGEE fields: one towards the
bulge with (�, b) = (0 deg, 5 deg), one towards the Galactic anti-
centre with (�, b) = (180 deg, 0 deg), and one at high latitude with
(�, b) = (0 deg, 60 deg), where � and b represent Galactic longitude
and latitude. We then checked, for each star in a mock catalogue,
whether any other stars fall within a circular aperture of diameter
2 arcsec centred on that star, representing a single APOGEE fibre.
If more than one star was found in a given aperture (including both
dwarfs and giants), we classified all stars in that aperture as a single
optical binary.

Towards the Galactic Bulge, we find a 0.2 per cent probability
that a star is an optical binary. The same probability is 0.05 per cent
towards the Galactic anticentre and 0.005 per cent at high latitude.
As these probabilities are all much smaller than our detected bi-
nary fraction of ∼15 per cent, we conclude that optical binaries are
unlikely to be a large source of false positives, though a small frac-
tion of the systems we detected in fields towards the Bulge may be
chance alignments masquerading as binaries.

Our model requires all components of a multiple-star system
to have identical distances and abundances and fall on a single
isochrone. This is likely a reasonable assumption for true, gravita-
tionally bound binaries (Desidera et al. 2004; Andrews, Chanamé &
Agüeros 2017), but it is unlikely to hold for chance alignments. One
could thus distinguish between true binaries and chance alignments
by allowing the stellar parameters and abundances, and/or relative
distance, of the secondary to vary freely and identifying cases where

12The only short-period system which is distinctly non-circular and is not
best fit by a triple model is 2M21320320+1107560, with P = 6.70
d, e = 0.41, and 41 epochs. It may well also be part of a hierarchical
triple in which the third (long-period) component is too faint to appreciably
contribute to the spectrum. Such a system would not be identifiable as having
an unseen companion, as only systems in which the unseen companion is
in the short-period sub-binary have velocities inconsistent with being an
isolated binary.

the best-fitting model assigns significantly different abundances or
distances to the different components. We defer such analysis to
future work.

4 D I S C U S S I O N A N D C O N C L U S I O N S

4.1 Comparison to previous work

Chojnowski et al. (2015) compiled a catalogue of double-lined spec-
troscopic binaries and triples in APOGEE by identifying targets
whose cross-correlation function exhibited multiple peaks.13 Of the
610 targets in their catalogue that were also in our initial sample,
574 were also classified as multiple systems by our pipeline, 5
were classified as SB1s, and 31 were classified as consistent with
being single stars. Of the 574 stars classified as multiple systems
by both pipelines, 514 are in our ‘potential close binary’ subsam-
ple, which contains variable-velocity targets and binaries with large
velocity offsets between the two components (Section 2.4). This
∼95 per cent agreement rate is encouraging, given the very differ-
ent approaches of the two pipelines. A primary advantage of the
method developed in this work is its increased sensitivity to long-
period systems with negligible velocity offsets.

Recently, Badenes et al. (2017) studied the occurrence rate of
short-period, velocity-variable binaries in APOGEE. They found
the multiplicity fraction for main-sequence stars to be a factor of
∼2 higher in the lowest metallicity tercile of their sample than in
the highest metallicity tercile. We find a similar result: for short-
period systems (those with velocity shifts of at least 10 km s−1

between epochs), the multiplicity fraction is ∼60 per cent higher
for the lowest metallicity tercile of our sample ([Fe/H] <−0.21)
than for the highest metallicity tercile ([Fe/H] >−0.02). Badenes
et al. (2017) studied systems with metallicities as low as [Fe/H] =
−2.5; given the smaller range of metallicities in our sample ([Fe/H]
> −1), these results are likely consistent. For long-period systems,
we find the binary fraction to be consistent with being constant with
metallicity. Some theoretical models (e.g. Machida 2008) predict
that low-metallicity clouds should preferentially form short-period
binaries, consistent with this result. However, we caution against
overinterpreting this finding, as we have not attempted to quantify
or correct for changes in the completeness of our method at lower
metallicity.

Modelling approaches similar to the method developed in this
work have previously been used on a case-by-case basis to fit
‘composite spectrum binaries’, a term that refers specifically to
binaries containing a cool giant primary and a hot subgiant or
main-sequence secondary (e.g. González & Levato 2006; Griffin &
Griffin 2010). Similar techniques have also been employed to spec-
troscopically detect and characterize unresolved binaries composed
of very low-mass stars or brown dwarfs with different spectral types
(Burgasser 2007; Burgasser et al. 2008). Although this work focuses
on modelling the spectra of binaries in which both components are
main-sequence stars, the method we develop is flexible and can be
straightforwardly extended to identify other flavours of binaries.
The primary requirement is a robust training set spanning the range
of single-star spectral types found in the data set of interest.

For systems known to be double-lined binaries, a wide variety
of techniques have been developed to disentangle the spectra of the
two-component stars in order to measure their individual velocities

13Their catalogue is available at http://astronomy.nmsu.edu/drewski/apogee
-sb2/apSB2.html.
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and stellar labels (e.g. Bagnuolo & Gies 1991; Simon & Sturm
1994; Hadrava 1995; Pavlovski & Hensberge 2010; Czekala et al.
2017). These techniques can reliably separate the spectra of the
individual components of a binary even when lines are blended, but
they generally require multi-epoch spectroscopy that captures the
combined binary spectrum at several orbital configurations.

If only single-epoch spectroscopy is available or the binary is
sufficiently wide that the orbital velocities of the two components
do not change much between visits, the most common approach
for measuring RVs is cross-correlation with a composite template
spectrum (Zucker & Mazeh 1994; Halbwachs et al. 2017b); this re-
quires first estimating the labels of the individual stars. In such cases,
most previous works have attempted to first model the primary star
with a synthetic or empirical template, then subtract this template
from the composite spectrum, and finally fit a model for the sec-
ond star to the residual spectrum. However, it is difficult to ensure
with this approach that the optimal binary model has been found,
as the single-star model spectrum that best fits the combined binary
spectrum does not in general correspond to the true best-fitting pa-
rameters of the primary star (see E18). The method introduced in
this work, which fits for the stellar parameters and velocities of both
components simultaneously, avoids these complications.

Recently, a few works have shown that double-lined binaries can
also be detected non-parametrically by identifying systems with pe-
culiar spectra that are clustered outliers in a high-dimensional space
of arbitrary summary statistics computed for all spectra collected by
a survey (Traven et al. 2017; Reis et al. 2017). While such methods
thus far primarily identify binaries with large velocity offsets, we
note that non-parametric methods can likely be further optimized
for binary identification by searching for targets which are precisely
the kind of outliers expected to result from binarity; for example,
one could identify systems that cannot be well described by a single
combination of spectral PCA components but can be well described
by two sums of components with different velocities.

4.2 Future prospects

4.2.1 Improving the model

A straightforward way to make our model sensitive to a larger frac-
tion of the binary population is to extend the single-star model to
cooler temperatures. As discussed in Appendix B1, the lower limit
of Teff = 4200 K, which is due to shortcomings of ab-initio spectral
models for main-sequence stars at lower temperatures, limits the
model to only detecting binaries with mass ratios near q = 1 at low
temperatures and prevents us from fitting spectra of the coolest stars
altogether. Fitting cooler stars does not required any modification
of our general approach, only a robust training set at lower temper-
atures, which currently does not readily exist. Due to the increased
importance of molecular opacity from many species at lower Teff,
it may be helpful to include more abundances in the spectral model
for cooler stars.

Our model could also be improved by fitting for the projected
rotation velocity vsin i explicitly instead of subsuming it under the
Gaussian broadening of vmacro, since the single-star model currently
performs worst for rapidly rotating stars. This is in principle simple
to accomplish: rotation velocities for stars in the training set can
be obtained straightforwardly in post-processing (e.g. Dı́az et al.
2011), and the inferred vsin i can then be added as an additional
label to the model. Rotation is currently not an important problem
for most of the targets in our sample because stars with Teff �
6500 K typically lose most of their angular momentum to magnetic

braking and do not rotate rapidly on the main sequence (Glebocki,
Gnacinski & Stawikowski 2000; Schatzman 1962), and stars with
Teff ≥ 6500 K represent less than 4 per cent of our data set. However,
an improved treatment of rotation would make it possible to better
model hot stars and would likely decrease the false-positive rate (see
Appendix C). This is particularly true for young stars, which can
rotate significantly even at cooler temperatures (e.g. Terrien et al.
2014).

4.2.2 Hierarchical modelling

Beyond the Solar neighbourhood, previous spectroscopic studies
of the Galactic binary population have been limited to studying
the short-period tail of the binary population. Because the model
presented in this work does not depend on RV variability or a line-
of-sight velocity offset to detect binaries, it has the potential to
substantially improve on existing constraints on the binary popula-
tion of the Milky Way and/or its satellites when combined with a
model for detection completeness and the survey selection function.

Existing RV surveys of the Milky Way and nearby dwarf galax-
ies are sensitive to binaries with periods less than ∼(1–10) yr (e.g.
Matijevič et al. 2011; Minor 2013; Hettinger et al. 2015; Gao et al.
2017; Badenes et al. 2017). For the lognormal period distribution
for solar-type stars found in the Solar neighbourhood (Duchêne &
Kraus 2013), ∼73 per cent percent of binaries have P > 10 yr; most
of these systems will be missed by such surveys. The most probable
period for solar-type binaries is ∼300 yr; assuming random orbit
orientations, the typical line-of-sight velocity separation for such
systems is �vlos ∼ 2 km s−1, and the average RV change over a one-
year baseline is ∼0.02 km s−1. This is an order of magnitude below
the detectability thresholds of existing large spectroscopic surveys,
though such weak RV trends in SB1s may be marginally detectable
with high-dispersion spectrographs typically used to study exoplan-
ets (Konacki 2005; Katoh et al. 2013).

Irrespective of RV variability, long-period binaries with
favourable mass ratios can be detected with our model as long as
both components fall within a single spectroscopic fibre. At a dis-
tance of 1 kpc, more than 80 per cent of solar-type binaries will have
projected separations of less than 1 arcsec, so that both stars would
fall with a single 2-arcsec fibre; this fraction increases at larger dis-
tances. On the other hand, for long-period systems, the binary spec-
tral model is sensitive only to intermediate mass ratio systems (0.4
� q � 0.8), in which the primary and secondary have qualitatively
different spectral types, but the secondary still contributes a non-
negligible fraction of the total light (see Appendix B1 and E18). The
distribution of mass ratios for solar-type binaries is approximately
flat down to q = 0.1 (Duchêne & Kraus 2013), so the binary model
will miss many high and low mass ratio systems with long periods.

We summarize the sensitivity of our method, as well as standard
binary-detection methods based on velocity variability, to systems
with different periods and mass ratios in Fig. 12. RV variability
can probe essentially all mass ratios, but only for the short-period
tail of the binary population. On the other hand, fitting a binary
spectral model to single-epoch observations can probe most of the
period distribution, but only for a restricted subset of mass ratios.
We thus expect that the method developed here can be fruitfully
combined with existing multi-epoch RV measurements from SB1s,
such as the APOGEE constraints on the short-period binary fraction
presented in Badenes et al. (2017) and measurements of the binary
fractions of nearby dwarf galaxies presented by Minor (2013). This
would enable a full hierarchical model for binary populations that
is sensitive to an unprecedented range of periods and mass ratios.
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Figure 12. Schematic illustration of the range of binary periods and mass ratios that can be detected with different methods. Grey shading (identical in all
panels) shows the distribution of periods and mass ratios for solar-type stars; hatches show the regions of parameter space that can be probed by RV variability
(left) and fitting a binary model to single- and multi-epoch spectra (middle, right). Conventional multi-epoch RV surveys are sensitive to essentially all mass
ratios, but only for short-period binaries, which represent roughly a third of the observed lognormal period distribution for solar-type stars. The binary spectral
model introduced in this work is sensitive to all but the longest periods (as long as both stars fall within one spectroscopic fibre) with single-epoch observations,
but only for intermediate mass ratio systems. When multi-epoch spectra are available, fitting a binary model can also detect all systems with variable RVs as
SB1s.

An immediate advantage of our method is that it is sensitive to
a large fraction of the binary population even when only single-
epoch observations are available. With multi-epoch observations,
our model can detect short-period systems as SB1s, with similar
sensitivity to traditional methods. Our modelling approach can also
be straightforwardly applied to spectra from other surveys. The
precise range of mass ratios to which it is sensitive will vary with
wavelength coverage: surveys at optical wavelengths will be more
sensitive to binaries with higher mass ratios (0.8 � q � 0.9; see
E18) due to the increased spectral information content at shorter
wavelengths, but they will be less sensitive at low q because a cooler
secondary star contributes a greater fraction of a binary system’s
total light in the near-infrared than at optical wavelengths.

In this work, we fit normalized spectra and only used the CMD
to assess the reliability of our spectral model. A promising avenue
for future work is to fit spectra and photometry simultaneously, or
to place a photometric prior on q. This would make it possible to
detect systems with q ∼ 1 and negligible velocity offsets, which are
twice as luminous as they would be if they were a single star. Par-
ticularly with improved parallaxes from future Gaia data releases,
photometric constraints could substantially extend the fraction of
the binary population to which our method is sensitive.

4.3 Summary

We have developed a flexible data-driven method for identifying
and fitting the spectra of multiple-star systems and have applied
it to ∼20 000 main-sequence targets from the APOGEE survey.
Unlike most previous work, our model performs well even for long-
period systems in which the line-of-sight velocity offset between
components is negligible, substantially expanding the fraction of the
binary population that can be probed by observations. Our method
is mostly automated and can be straightforwardly applied to other
spectroscopic surveys with modest adjustments. Our main results
are as follows:

(i) Spectral identification of long- and short-period binaries: un-
resolved binaries can be identified as systems whose spectrum can
be better fit by a sum of two single-star model spectra falling on a

single isochrone than any single-star model (Fig. 1). For systems
with mass ratios 0.4 � q � 0.8, in which the two stars have dif-
ferent spectral types, binaries can be identified spectroscopically
even in the limit of no velocity offset and with only single-epoch
observations. Spectral signatures of binarity are strengthened in the
presence of a velocity offset of order one resolution element or
greater (Fig. 2); thus, close binaries can be detected even in the
limit of q ∼ 1.

(ii) Photometric test of the model: nearly all spectroscopically
identified binaries with accurate distance measurements fall above
the main sequence on the CMD, as is predicted for true binaries, and
triple systems fall above most binaries (Fig. 9). Photometry does
not enter our binary identification procedure, so this agreement
with theoretical predictions provides independent validation of our
spectral model.

(iii) Dynamical mass ratios: for short-period binaries in which
the velocities of the two components change substantially between
visits, it is possible to obtain a dynamical measurement of the mass
ratio from the relative changes in the stars’ RVs between visits
(Fig. 3). This provides a constraint on the mass ratio that is inde-
pendent of the spectral mass ratio, which determines the contribu-
tion of the secondary star to the spectrum. We find good agreement
between spectral and dynamical mass ratios, with a median differ-
ence of 0.048 and even better agreement for systems with high S/N
spectra (Fig. 4).

(iv) Triple systems: we identify 114 systems in which the contri-
butions of three stars can be identified in the spectrum (Fig. 6) and
an additional 108 in which only two stars contribute significantly to
the spectrum, but the presence of a third component can be inferred
from its gravitational effects (Fig. 8). Most identified triples are hi-
erarchical, consisting of a close binary orbited by a third component
with a much longer period; we have verified that these systems are
all likely gravitationally bound (Fig. 7).

(v) Orbital solutions: for double-lined systems with a sufficient
number of epochs and well-sampled RV curves, we derive full Ke-
plerian orbital solutions (Fig. 10b); some of these systems are close
binaries within hierarchical triples. We derive orbital solutions for
64 binaries with periods ranging from ∼0.6 d to ∼2 yr and semi-
major axes ranging from ∼R� to ∼1 au. Consistent with previous
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studies, we find that most binaries with P � 10 d have eccentricity
consistent with 0 due to tidal circularization processes (Fig. 11).

We make catalogues of best-fitting labels for all identified
multiple-star systems publicly available; these are described in
Appendix E. A public version of the code used for fitting spectra in
this work is available at https://github.com/kareemelbadry/binspec.
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A P P E N D I X A : N E U R A L N E T WO R K SP E C T R A L
M O D E L

As mentioned in Section 2.1, we use a neural network to predict the
normalized flux density at a given wavelength pixel as a function of
stellar labels. As applied in this work, a neural network is essentially
a flexible function produced through the composition of simple
functions. It takes as its argument a vector of labels [��; equation
(1)] and returns the normalized flux density predicted at a particular
wavelength pixel.

For the neural network used in this work, which contains a sin-
gle hidden layer with five neurons, the normalized flux density at
wavelength pixel λ is given by

f̂λ = w̃i
λσ

(
wk

λi �̂k + bλi

) + b̃λ (A1)

with implied summation over k = 1, . . . , Nlabels and i = 1, . . . ,
Nneurons. Here, �̂ = (�� − ��min)/(��max − ��min) − 0.5 is a scaled label
vector, ��max and ��min are vectors of the maximum and minimum
values of each label in the training set, and σ (z) = 1/(1 + e−z) is the
‘sigmoid’ activation function. The weights, w and w̃, and biases, b
and b̃, parametrize the neural network; these are the free parameters
that are adjusted during training.

In order to treat spectra with different line-of-sight velocities, all
spectra are shifted to rest frame and linearly interpolated on to a
common wavelength grid. Training the model consists of minimiz-
ing a loss function, comparable to the χ2 statistic, that quantifies
how well the model can fit the training set. We use an L1 loss func-
tion, which minimizes the total absolute difference between fluxes
predicted by the neural network and those in the training set. We
expect this to perform better than e.g. the χ2 statistic during the
iterative cleaning of the training set and retraining, since it is less
sensitive to outliers. During training, we mask all pixels with S/N
<50, bad or missing pixels, and pixels with poor sky subtraction.

We implement and train the neural network using the PYTHON

package PyTorch. We tested a wide range of network architec-
tures, varying the network depth, width, and activation function,
with both data-driven and synthetic spectral models. We find that
using a small neural network and a large training set is the most
straightforward way to prevent overfitting; using a substantially
larger network with more neurons or hidden layers causes the model
to reach lower losses (i.e. fit the training set better), but perform

worse in cross-validation. We verified that our spectral model per-
forms equally well on the training and cross-validation sets at fixed
S/N, so it does not overfit the training set.

An advantage of using a neural network spectral model is that the
neural network’s flexibility makes it possible to model a wide range
of stellar parameters in a single model, rather than stitching together
multiple models covering different regions of label space. However,
our basic approach of constructing a binary spectral model does not
depend critically on use of a neural network; a comparable binary
model could likely be built from other forms of single-star model
(e.g. The Cannon).

A P P E N D I X B : MO D E L S E L E C T I O N

Because the single-star model is a special case of the binary model, it
is always possible to obtain a binary model that fits a data spectrum
at least as well as does the best-fitting single-star model. As the
binary model is more complex than the single-star model, with
three additional free parameters, one might expect to find a better
fit, in a χ2 sense, with the binary model even for targets which are
true single stars. It is therefore necessary to formulate a heuristic to
determine ‘how much’ better a fit with a binary model is required
to constitute reliable evidence in favour of the binary model.

The primary statistic used for model selection is the χ2 differ-
ence, �χ2 = χ2

single − χ2
binary, which simply quantifies how much

better a fit is obtained by the binary model. We also calculate a sec-
ond statistic, the ‘improvement fraction’ fimp, to quantify how much
better a fit the binary model achieves relative to how different it is
from the single-star model. The basic idea here is that if a binary
model spectrum is very different from the single-star model, but
only achieves a slightly better fit to the data, this constitutes weaker
evidence in favour of the binary model than a case with compara-
ble �χ2 in which most of the difference between the best-fitting
binary and single-star model goes towards improving the fit. The
improvement fraction is defined as

fimp =
∑ {(∣∣f̂λ,single − f̂λ

∣∣ − ∣∣f̂λ,binary − f̂λ

∣∣) /σ̂λ

}
∑ {∣∣f̂λ,single − f̂λ,binary

∣∣ /σ̂λ

} , (B1)

where f̂λ and σ̂λ are the normalized flux density and correspond-
ing uncertainty, f̂λ,single and f̂λ,binary are the best-fitting normalized
single-star and binary model spectra, and the sum is over all wave-
length pixels.

Our full acceptance criterion for preferring the binary model is
given in Table B1. These thresholds were motivated in part by the
�χ2 and fimp values calculated for semi-empirical binaries as de-
scribed below, and in part by validation with the CMD (Fig. 9).
The adopted thresholds are conservative, and prevent us from iden-
tifying some binaries whose spectra can only be marginally better
fit by a binary model; however, setting them to substantially lower
values causes the model to begin categorizing more targets near the
main sequence of the CMD as binaries, indicating a non-negligible
false-positive rate. We have not tuned the minimum fimp value for
each �χ2; we set the intuitive requirement that a higher fimp should
be required for systems with a lower �χ2.

Different �χ2 thresholds are required for systems identified as
potential close binaries, because (i) for these systems, we fit multiple
visit spectra simultaneously, and (ii) we fit a total of five different
models (see Section 2.4.1). For these systems, we begin with a fidu-
cial threshold of �χ2 = 300 × Nepochs for each increase in model
complexity, where Nepochs is the number of visit spectra fit simulta-
neously; i.e. we require χ2

single star − χ2
SB1 > 300Nepochs for a system
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Table B1. Minimum �χ2 and improvement fraction
fimp (equation B1) for a target to be classified as a
binary. All systems with �χ2 < 300, and all systems
falling below the minimum fimp for a given �χ2,
are classified as inconclusive; i.e. showing no strong
evidence of binarity.

�χ2 = χ2
single − χ2

binary Minimum fimp

�χ2 ≥ 3000 0
2500 ≤ �χ2 < 3000 0.05
2000 ≤ �χ2 < 2500 0.075
1500 ≤ �χ2 < 2000 0.1
1000 ≤ �χ2 < 1500 0.125
750 ≤ �χ2 < 1000 0.15
600 ≤ �χ2 < 750 0.175
450 ≤ �χ2 < 600 0.2
300 ≤ �χ2 < 450 0.225

to be initially classified as an SB1; χ2
SB1 − χ2

SB2 > 300Nepochs for a
system to be initially classified as an SB2, etc. We then inspected
the spectra of these targets individually and reclassified suspected
false positives (see Appendix C).

We experimented with generating single-star spectra directly
from the spectral model, adding noise, and fitting them with both
binary and single-star models. This produces typical �χ2 values
of order unity, which is smaller than we find for the majority of
APOGEE targets. This occurs because spectra generated in this
way can necessarily be perfectly fit by the single-star spectral model,
which is not necessarily the case for real spectra. We quantify the
�χ2 values expected for real binary spectra in the next section.

B1 Tests with semi-empirical synthetic binary spectra

To assess the accuracy and potential systematics of our method,
and to measure the expected �χ2 values for true binaries with
a particular mass ratio, we construct a library of ∼15 000 ‘semi-
empirical’ synthetic binary spectra. These are created by combining
randomly chosen pairs of APOGEE spectra in un-normalized space,
following the method outlined in Section 2.2. We then normalize
and fit these spectra following the same procedure used to fit real
spectra. An advantage of constructing synthetic binary spectra by
combining real spectra (as opposed to simply generating binary
spectra from the data-driven model) is that this accounts for the
possibility that the model does not capture all the variance in the
real spectra; this is likely the case for our model, which only contains
five labels.

We require that the two stars used to construct a semi-empirical
binary spectrum have similar abundances (within 0.05 dex in [Fe/H]
and [α/Fe]) and fall within 0.03 dex in log g of a single isochrone.
We only combine spectra consistent with being single stars; i.e.
those which cannot be significantly better fit by a binary model
than a single-star model according to the thresholds in Table B1.
We assign realistic orbital parameters to each system following
E18, drawing orbital periods from the lognormal period distribution
for solar-type stars from Duchêne & Kraus (2013) and assuming
random orbit orientations and phases. Results from fitting these
semi-empirical binary spectra are shown in Figs B1–B4.

In Fig. B1, we show the χ2 difference in favour of the binary
model, �χ2 = χ2

single − χ2
binary, as a function of the mass ratio q,

line-of-sight velocity offset �vlos, and Teff of the primary star. As
expected, �χ2 is a strong function of q: most binaries with q � 0.75

Figure B1. Results of fitting semi-empirical binary spectra with single-star and binary models. Semi-empirical binary spectra are created by adding together
flux-calibrated APOGEE spectra of two stars with similar abundances. At q � 0.8, most semi-empirical binary spectra can be significantly better fitted with a
binary model, with �χ2 � 1000. The χ2 difference is nearly always larger for systems with large velocity offsets; for systems with q ∼ 1, only binaries with
�vlos � 10 km s−1 have �χ2 � 1000. At fixed q and �vlos, the typical �χ2 is larger for systems with cooler primaries. Due to our single-star spectral model’s
minimum Teff of 4200 K, low mass ratio systems can only be modelled for hot primaries.
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Figure B2. Results for fitting semi-empirical synthetic binary spectra. Left-hand panel shows the χ2 difference and improvement fraction [equation (B1)];
systems passing the adopted acceptance criterion for a binary candidate to be considered legitimate are plotted in red. Right-hand panel shows the resulting
completeness function; i.e. the fraction of semi-empirical binary systems at a given q that are successfully identified as binaries.

Figure B3. χ2 differences between best-fitting single and binary models.
Black histogram shows suspected single stars from which semi-empirical
binary spectra are constructed. Solid (dotted) red histogram shows semi-
empirical binary spectra which pass (fail) the �χ2 and fimp binary accep-
tance criterion.

have �χ2 > 1000, while most systems with q ∼ 1 have much lower
�χ2. This is expected, because the two stars in binaries with q ∼ 1
will have similar spectra, making the combined binary spectrum
indistinguishable from that of either single star unless there is a
sizable velocity offset between the two stars. The left-hand panel
of Fig. B1 shows that �χ2 is also a strong function of the velocity
offset �vlos: at fixed q, systems in which the velocity offset is
larger nearly always have larger �χ2. In particular, most binaries
with �vlos � 10 km s−1 have �χ2 > 1000, even at q ∼ 1. Indeed,
among binaries with large velocity offsets, the typical �χ2 is largest
for systems with q ∼ 1; in such systems, both stars contribute
significantly to the spectrum, and absorption lines are obviously
split.

The right-hand panel of Fig. B1 shows the dependence of �χ2,
and the range of mass ratios to which our method is sensitive, on
Teff of the primary. At fixed mass ratio and �v, the median �χ2 is
slightly lower for hot stars (Teff > 6000 K), particularly for systems

with q ∼ 1 and large �v. This occurs because lines are on average
weaker and more rotationally broadened in hot stars, reducing the
information content of the spectrum. This panel also shows that,
due to the minimum Teff of 4200 K of the single-star spectral model,
the minimum mass ratio that can be modelled varies with Teff of the
primary. This means that our completeness is higher for hot stars
than for cool stars.

To determine whether our binary model fit has converged on the
true globally optimal model rather than a local χ2 minimum, we
check whether the χ2 value of the best-fitting binary model is at least
as low as that corresponding to the binary model with the true labels
of the system. We find that our fit converges on the globally optimal
solution for ∼99 per cent of all semi-empirical binaries. About half
of the systems in which the fit converges on a local minimum are
binaries with q ∼ 1 in which the velocity assignments of the primary
and secondary stars are switched; in these cases, the derived stellar
labels are still reasonably accurate.

In Fig. B2, we show how our adopted model selection thresh-
old translates to the range of mass ratios to which the model is
sensitive. In the left-hand panel, we plot the distribution of semi-
empirical binaries in �χ2 − fimp space. �χ2 and fimp are correlated:
most systems whose spectrum can be significantly better fit by a bi-
nary model (high �χ2) also have high fimp. In the right-hand panel,
we plot the fraction of semi-empirical binaries at a given mass ratio
that pass our adopted model selection criteria to be considered re-
liable binary candidates. As expected, this ‘completeness’ function
is a strong function of mass ratio. Most binaries with 0.55 � q �
0.75 have spectra that are sufficiently different from any single-star
model that they can be unambiguously identified as binaries; at
higher mass ratios, the spectra of the two-component stars become
similar, so only the ∼20 per cent of binaries with �vlos � 10 km s−1

can be detected. At sufficiently low mass ratios, the secondary con-
tributes a negligible fraction of the total light.

We emphasize that this completeness function does not repre-
sent our global completeness function for all binaries, for two rea-
sons. First, the population of binaries in our semi-empirical library
is not statistically representative of the Galactic binary popula-
tion: because our single-star spectral model cannot model stars
with Teff < 4200 K, we cannot currently model low mass ratio bi-
naries in which the primary is cool, as the secondary will have
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Figure B4. Label recovery diagnostic for semi-empirical binary spectra that pass our �χ2 and fimp threshold to be considered real detections. For each label
�i, inset text indicates the median error, med(|�i, fit − �i, true|), and bias, med(�i, fit − �i, true).

Teff < 4200 K (see Section 2.2). Second, we have made no attempt
to model the APOGEE selection function, which would compli-
cate the distribution of Teff at a given q. For the particular set of
semi-empirical binaries analysed here, ∼50 per cent of all binary
systems pass the model selection threshold to be characterized as
binaries. However, this is not representative of the global sensitivity
of our model, since we make no attempt to use a realistic distribu-
tion of mass ratios in the semi-empirical library: the distribution of
mass ratios in our semi-empirical binary library is skewed towards
q = 1, which is precisely the regime in which the model performs
poorly.

In Fig. B3, we compare the distribution of �χ2 values for the
suspected single stars used in constructing the semi-empirical binary
library to those for semi-empirical synthetic binary spectra. Systems
for which 0 < �χ2 < 1 are assigned log �χ2 = 0 on this plot; each
histogram is normalized separately. The median �χ2 is ∼50 for
single stars, ∼200 for semi-empirical binaries that fail the detection

criteria to be considered reliable binaries, and ∼2600 for semi-
empirical binaries that pass the threshold to be considered reliable.
There is some overlap in the distribution of χ2 values for single stars
and semi-empirical binaries, since for systems with small �vlos, the
binary model in principle transitions smoothly to the single-star
model both as q → 1 and q → 0. However, for binaries with
favourable mass ratios, the typical �χ2 is more than an order of
magnitude greater than for single stars.

B1.1 Cross-validation

In Fig. B4, we compare the best-fitting labels for all semi-empirical
binaries that pass the binary detection threshold to the true labels
used in constructing the semi-empirical binary spectra. We set the
‘true’ abundance for each binary as the average of the abundances
of the two single stars, which we required to be within 0.05 dex
for [Fe/H] and [α/Fe]. Teff and log g refer to the primary. These
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semi-empirical binaries were not used to train the spectral model,
so this experiment constitutes cross-validation of the binary spectral
model. In each panel, we indicate the median signed error (bias)
and absolute error (scatter) in the best-fitting label. Overall, this
experiment reveals that labels inferred from fitting our binary model
are reasonably precise: the true and best-fitting labels fall near the
one-to-one line, with small scatter. The only label for which this
is not obviously true is vmacro, 2; this occurs primarily because only
hot stars have vmacro � 10 km s−1, so only the few binaries in which
both stars are hot have non-negligible vmacro, 2.

The median error in the best fit q for the semi-empirical binaries
is 0.021, which is smaller than the median difference of 0.048
between qdyn and qspec found for real binaries in Fig. 4. This is not
unexpected, because (i) qdyn also has non-zero uncertainty, and (ii)
‘qtrue’ for the semi-empirical binaries is calculated with the same
isochrones used in the model from which qfit is obtained. That is,
the median difference of 0.021 does not account for uncertainties
in the isochrones; the larger difference of 0.048 does, because qdyn

is independent of isochrones.
We emphasize that while Fig. B4 shows our derived stellar labels

to be precise, this does not guarantee that they are accurate. The
reason for this is that the uncertainties in stellar parameters obtained
from spectral fitting are often dominated by systematic uncertainties
in the model, which enter primarily from errors in the ‘ground truth’
labels of the training and validation sets, and are not accounted
for in cross-validation. The cross-validation errors therefore are
reasonable estimates of the precision of the model, but represent
lower limits on the absolute uncertainties.

APPENDIX C : FALSE POSITIVES

As discussed above, there are some targets for which our fitting
and model selection formally prefers a binary model but visual

inspection of the spectrum reveals that the evidence in favour of
the binary model is weak and a single-star model should likely
be preferred. After visually inspecting all ∼3300 targets for which
our model selection thresholds preferred a model other than a sin-
gle star, we flagged ∼300 targets as probable false positives. The
vast majority of such cases are hot stars (Teff � 6500 K) exhibiting
significant rotational broadening.

In Fig. C1, we show example spectra of two stars flagged as
false positives. The top panel shows the spectrum of a hot, rotating
star. Such spectra are less informative than spectra of cooler stars
with less rotational broadening: most metallic lines are intrinsically
weaker, since more species are ionized at higher Teff, and the profiles
of individual lines are smeared out due to rotation. Although the
binary model is formally preferred, with �χ2 ∼1000, it does not
obviously fit the profiles of individual lines better than the single-
star model. Indeed, the main difference between the binary and
single-star models is that the binary model produces slightly wider
blended lines.

Most of the stars we flag as false positives have spectra similar
to this target and large vmacro. There is in principle no reason to ex-
pect the method model to generically fail for such targets; the most
likely explanation is that our five-label single-star spectral model is
not sufficiently complex to fully characterize the results of rotation.
More than half of these targets are APOGEE telluric standard stars,
which are selected to be used for telluric correction because they
have nearly featureless spectra. Because hot, rotationally broadened
stars constitute only a small fraction of our initial sample, we sim-
ply visually inspected and removed questionable targets by hand.
A straightforward method for automating this procedure in future
work would be to remove all telluric standards and/or targets for
which a Fourier transform of the spectrum reveals little power at
high frequencies.

Figure C1. Spectra of two stars flagged as candidate binaries in our initial fitting that are likely false positives. Top: nearly featureless spectrum of a hot
(Teff ≈ 7000 K), rotationally broadened star. The main difference between the single-star and binary models (which has q = 1 and �vlos = 40 km s−1) is
that the binary model produces slightly broader lines. This target is an APOGEE telluric standard. Bottom: although the binary model (with q = 1 and
�vlos = 25 km s−1) is formally preferred, it has many marginally split lines, marked with arrows, which are not present in the data spectrum. This target is a
young star in an embedded cluster.
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Figure D1. Left: example APOGEE binary system with eight epochs in which the available velocity data are not sufficient to fully constrain the orbit. Top
and bottom panels show two qualitatively different orbital solutions which can both fit the measured velocity data (identical in the two panels) well. Because
the measured velocities are sparse, the posterior is multimodal. We do not provide orbital solutions for such systems. Right: results of fitting synthetic RV data
for an SB2 population with realistic orbital parameters and survey cadence. The ‘success rate’ indicates the fraction of systems in each cell of Nepoch − UNVN

space for which our fitting procedure converged on the true orbit from which RV measurements were generated. Orbits can usually be reliably constrained for
Nepochs � 7, though systems with poor phase coverage can still converge on incorrect orbital solutions. We only attempt to fit orbits for systems with Nepochs

≥ 7 and UNVN > 0.5.

The bottom panel of Fig. C1 shows the spectrum of a false-
positive candidate that is not featureless. The binary spectral
model achieves a fit that is formally better than the single-
star model (�χ2 ∼ 1500), but unlike the single-star model, the
binary model spectrum has noticeably split lines as a result of the
velocity offset between the two components. Because the data spec-
trum does not show such split line profiles, the binary model fit is
likely erroneous and formally preferred only because it produces
wider and shallower lines than the single-star model can accommo-
date. False positives like this one are rare; only a few dozen spectra
are identified in which the binary model produces a less realistic
line profile than the single-star model despite achieving a formally
better fit. A significant fraction of these are targets in young em-
bedded clusters. Young stars often exhibit spectral features that are
uncommon in older stars, such as chromospheric emission and in-
creased rotation in cooler stars. Our method is more susceptible to
incorrectly preferring a binary model if the spectrum cannot be well
accommodated by the single-star model; this is likely the case for
these targets. In future studies, such false positives can potentially
be eliminated by using a more complex spectral model for single
stars and ensuring that different varieties of ‘unusual’ spectra are
represented in the training set.

Besides reclassifying stars flagged as false positives upon visual
inspection to be single stars, we also reclassified some of the poten-
tial close binary targets (Section 2.4) from one multiple-star class

to another. For example, we reclassified SB2 systems for which
the best-fitting velocities of the primary and secondary fall on a
one-to-one line with positive slope as SB1s, and SB3s with broad
lines that were not obviously better bit by the SB3 model than the
SB2 model as SB2s. We attempted to be conservative in classifying
systems as triples; i.e. some triple systems are likely miscategorized
as binaries, but all systems classified as triples are unambiguously
better fit by the SB3 model than the SB2 model.

APPENDI X D : O RBI T-FI TTI NG
C O N V E R G E N C E

Sparse RV data can often be well fitted by several families of qualita-
tively different orbits, particularly when there are few RV measure-
ments and/or phase coverage is poor (e.g. Price-Whelan et al. 2017).
Due to the complex multimodal structure of the posterior in these
cases, standard MCMC techniques fail to fully explore the orbital
parameter space in finite time, meaning that there is no guarantee
that our orbit-fitting procedure will converge on the true solution or
that the orbital parameter uncertainties found by EMCEE are reliable.
In the left-hand panel of Fig. D1, we show an example APOGEE
binary in which the RV data are not sufficiently constraining to
yield an unambiguous orbital solution: (at least) two qualitatively
different orbital solutions can fit the measured RVs.
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To assess the number of epochs and phase + velocity coverage
required for reliable orbit constraints, we generated synthetic RV
measurements for a population of synthetic binaries (as described
in E18) with 4 < Nepochs < 12 and phase coverage 0.3 < UNVN < 1
and fit them using the same procedure described in Section 3.4. To
ensure realistic survey cadence, we drew observation times from
observations of real APOGEE stars. We added Gaussian noise to
the synthetic data with σRV = 0.2 km s−1, which is typical for our
observations.

The results of this experiment are shown in Fig. D1. We label
each fit successful if the true orbital parameters fall within the
marginalized 90 per cent credibility regions returned by MCMC
fitting. Although it is in principle possible to constrain the orbit
of an SB2 with as few as five RV epochs,14 reliable constraints for
can only be obtained from realistic data with �7 epochs. At fixed
number of epochs, constraints are more reliable for systems with
larger UNVN, as expected. Based on the results of this experiment,
we only attempt to fit orbits to systems with Nepochs ≥ 7 and UNVN

≥ 0.5. All but two of the targets for which we provide an orbital
solution have UNVN > 0.6; we caution that orbital parameters for
systems with lower UNVN may be less reliable.

We stress that the orbit of an SB2 can in general be constrained
with fewer RV measurements than that of an SB1. The basic reason
for this is that even with only a few epochs, having velocity mea-
surements for both stars pins down the system velocity γ exactly.
Therefore, many of the families of orbits with different combina-
tions of P, e, and γ that would be permitted if RV measurements
were only available for the primary can be excluded when the sec-
ondary is detected.

Other works have used more conservative limits to determine
whether the available velocity data were sufficient to constrain
a binary orbit. For example, Halbwachs et al. (2017a) require
Nepochs ≥ 11. The true probability of convergence on a local mini-
mum depends on the RV uncertainties, number of epochs, and the

14Although seven parameters are required to parametrize a two-body orbit,
the system velocity γ and mass ratio q = K1/K2 can be obtained ‘for free:’
if the RVs of the primary and secondary fall on a line vHelio,2 = αvHelio,1 + β,
the system velocity is γ = β/(1 − α) and the mass ratio is q = −1/α.

uniformity of observational coverage. This experiment indicates
that Nepochs ≥ 7 is usually sufficient for RV data similar to what
we obtain in this work, but the probability of convergence on an
erroneous orbital solution is, of course, lower for systems with a
larger number of epochs.

A P P E N D I X E : DATA PRO D U C T S

Here, we make available the best-fitting labels for all targets iden-
tified as multiple-star systems. We also provide a list of targets
consistent with being single stars in order to make it possible to
reconstruct our initial sample of 20 142 targets.

In Table E1, we list all targets consistent with being single
stars; labels for these systems will be released by Ting et al. (in
preparation). Labels for targets identified as SB1s are listed in
Table E2; these are obtained by simultaneously fitting visit spec-
tra. Labels for targets classified as binaries are listed in Table E3.
As described in Section 2.3, these are obtained by simultaneously
fitting visit spectra for potential close binaries, which are primarily
RV-variable systems, and by fitting the combined spectrum for all
other systems. For close binaries in which the orbital configuration
changes substantially between visits, we list dynamical mass ratios
and centre-of-mass velocities. Labels for targets classified as SB2s
in which the gravitational effects with an unseen third component
can be detected are listed in Table E4; these are obtained by si-
multaneously fitting visit spectra. Labels for targets identified as
triples in which all three components contribute to the spectrum are
listed in Table E5; these are obtained by simultaneously fitting visit
spectra.

Table E1. List of targets
identified as single stars. This
table is available in its en-
tirety (with 16 834 rows) in
machine-readable form.

APOGEE ID

2M00000233+1452324
2M00001701+7052395
2M00003475+5723259
2M00004578+5654428

···
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Table E2. Best-fitting labels for targets identified as SB1s. �vmax is the maximum change in RV between
visits. This table is available in its entirety (with parameters for 663 systems) in machine-readable form.

APOGEE ID Teff log g [Fe/H] [Mg/Fe] vmacro �vmax

(K) (dex) (dex) (dex) (km s−1) (km s−1)

2M00010204+0049037 6008 4.26 − 0.41 0.00 6.48 2.93
2M00031962−0017109 6157 4.23 − 0.23 − 0.06 42.95 65.17
2M00041803+1519505 5941 4.92 0.15 0.17 2.21 0.78
2M00041859+7104111 4921 4.36 0.13 − 0.01 5.64 20.26
··· ··· ··· ··· ··· ··· ···

Table E3. Best-fitting labels for targets identified as binaries in which both components contribute to the spectrum. Teff

and log g refer to the primary. For the 623 targets in which the orbital configuration changes substantially between visits,
we provide the dynamical mass ratios, qdyn, and centre-of-mass velocity, γ . This table is available in its entirety (with
parameters for 2423 systems) in machine-readable form.

APOGEE ID Teff log g [Fe/H] [Mg/Fe] qspec vmacro, 1 vmacro, 2 qdyn γ

(K) (dex) (dex) (dex) (km s−1) (km s−1) (km s−1)

2M00003968+5722329 4517 4.62 0.05 − 0.04 0.88 3.09 8.19 — —
2M00012717+0128193 5048 4.51 0.07 0.06 0.75 0.00 14.57 — —
2M00023179+1521164 4589 4.37 − 0.20 0.10 0.99 19.29 16.15 0.84 − 0.92
2M00024073+6354560 5664 4.26 0.18 − 0.01 0.67 1.42 3.34 — —
··· ··· ··· ··· ··· ··· ··· ··· ··· ···

Table E4. Best-fitting labels for targets in which two components contribute to the spectrum but the gravitational effects
a third components can be detected (e.g. Fig. 8). Teff and log g refer to the primary. This table is available in its entirety
(with parameters for 108 systems) in machine-readable form.

APOGEE ID Teff log g [Fe/H] [Mg/Fe] qspec vmacro, 1 vmacro, 2

(K) (dex) (dex) (dex) (km s−1) (km s−1)

2M00103470+0043200 4200 4.50 − 0.21 0.21 1.00 19.98 5.40
2M00265252+6359169 6416 4.56 − 0.04 − 0.29 0.85 10.34 14.38
2M00310678+8508494 5742 4.44 0.01 − 0.07 0.62 4.91 3.11
2M01194897+8532293 5272 4.54 − 0.08 0.03 0.90 2.68 4.80
··· ··· ··· ··· ··· ··· ··· ···

Table E5. Best-fitting labels for SB3s, targets in which three components contribute to the spectrum (e.g. Fig. 6). Teff

and log g refer to the primary. This table is available in its entirety (with parameters for 114 systems) in machine-readable
form.

APOGEE ID Teff log g [Fe/H] [Mg/Fe] q2 q3 vmacro, 1 vmacro, 2 vmacro, 3

(K) (dex) (dex) (dex) (km s−1) (km s−1) (km s−1)

2M00182859+6207248 5398 4.33 0.22 − 0.20 1.00 1.00 8.69 4.33 0.19
2M00285967+5931138 4655 4.20 − 0.22 0.08 0.94 0.94 1.39 30.07 36.15
2M00470197+1751448 6386 4.07 − 0.47 0.03 0.89 0.88 19.03 3.50 4.46
2M01103850+6655525 4756 4.60 0.07 − 0.00 0.92 0.81 3.71 1.34 16.35
··· ··· ··· ··· ··· ··· ··· ··· ··· ···
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