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ABSTRACT2

3

There is a growing need for flexible stretch sensors to monitor real time stress and strain in4
wearable technology. However, developing stretch sensors with linear responses is difficult due5
to viscoelastic and strain rate dependent effects. Instead of trying to engineer the perfect linear6
sensor we take a deep learning approach which can cope with non-linearity and yet still deliver7
reliable results. We present a general method for calibrating highly hysteretic resistive stretch8
sensors. We show results for textile and elastomeric stretch sensors however we believe the9
method is directly applicable to any physical choice of sensor material and fabrication, and easily10
adaptable to other sensing methods, such as those based on capacitance. Our algorithm does11
not require any a priori knowledge of the physical attributes or geometry of the sensor to be12
calibrated, which is a key advantage as stretchable sensors are generally applicable to highly13
complex geometries with integrated electronics requiring bespoke manufacture. The method14
involves three-stages. The first stage requires a calibration step in which the strain of the sensor15
material is measured using a webcam while the electrical response is measured via a set of16
arduino-based electronics. During this data collection stage, the strain is applied manually by17
pulling the sensor over a range of strains and strain rates corresponding to the realistic in-use18
strain and strain rates. The correlated data between electrical resistance and measured strain19
and strain rate are stored. In the second stage the data is passed to a Long Short Term Memory20
Neural Network (LSTM) which is trained using part of the data set. The ability of the LSTM to21
predict the strain state given a stream of unseen electrical resistance data is then assessed22
and the maximum errors established. In the third stage the sensor is removed from the webcam23
calibration set-up and embedded in the wearable application where the live stream of electrical24
resistance is the only measure of strain - this corresponds to the proposed use case. Highly25
accurate stretch topology mapping is achieved for the three commercially available flexible sensor26
materials tested.27
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INTRODUCTION

Measuring real time stress and strain in wearable technology is a key requirement because this information29
is required to monitor the recovery of a shoulder operation through the wearing of a therapeutic garment, or30
the stretch of a hamstring of an athlete during training, or to protect the vulnerable skin of those who wear31
prosthetics or orthotics (de la Fuente et al., 2000; Howe and Sherwood, 2009). On the face of it measuring32
stretch should be relatively easy, especially because basic stretch sensors have been around for a long time.33
However the non-linearity and strain rate dependent hysteresis of high strain flexible sensors have proved34
difficult issues to solve (Amjadi et al., 2016; Noh, 2016; Seshadri et al., 2016).35

In this paper we recognise that developing stretch sensors with linear responses is difficult and that36
viscoelastic effects and strain rate effects are often unavoidable. Instead of trying to engineer the perfect37
linear sensor we take a different approach. We present a deep learning method that can learn the peculiarities38
of the non-linearity of cheap and easy-to-make sensors, while still giving reliable and robust strain data.39
This way we can offset the disadvantages of some types of sensors, while maintaining their advantageous40
simplicity in other areas. The method is entirely general and we believe it can be used with any flexible41
stretch sensor.42

We take a three-stage approach to developing a wearable sensor. The first stage involves a calibration43
step in where the strain of a sensor is measured using a webcam while the electrical response is measured44
via a set of arduino-based electronics. This data collection stage is designed to heed clinical advice that45
strains applied manually, over a range of strains and strain rates, mimics the real use cases of wearables46
which will always involve highly varying strain rates. This is the reason we did not use mechanically driven47
stretching methods for data collection. The correlated data between electrical resistance, measured strain48
and strain rate are stored, see Figure 1.49

In the second stage, the data is passed to a Long Short Term Memory Neural Network (LSTM) which50
is trained using part of the data set. The ability of the LSTM to predict the strain state given a stream of51
unseen electrical resistance data is then assessed, see Figure 1.52

In the third stage, the sensor is removed from the webcam calibration set-up and embedded in the53
wearable technology where the live stream of electrical resistance is the only measure of strain - this54
corresponds to the proposed use case. We are currently developing the approach to deal with stress and55
pressure sensors, as well as 2D shear sensors but as proof of principle we have focused on 1D stretch56
sensors in this paper. Nevertheless there are numerous applications where the measurement of linear 1D57
stretch is desired, but not currently available to practitioners. For example in the fitting of orthotic and58
prosthetic liners where the information on the expansion and expansion rate greatly affect comfort and59
skin health, as shown in Figure 1. Here, In these cases multiple 1D sensors can combine to give important60
information. More commonly, simple body tracking is required, such as the tracking of position of the arm,61
this could be done with a linear stretch sensor placed on the elbow, as if the material used is sufficiently62
thin, then change in resistance due to bending is negligible.63

We used this procedure to investigate three different commercially available flexible sensor materials,64
Medtex P130+B and Techniktex P130+B both from Statex Produktions & Vertriebs GmbH, and Adafruit65
Conductive Rubber Adafruit Industries. We show that in each case our deep learning approach provides66
robust strain information with smaller errors than other methods.67
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BACKGROUND

There is a large body of research carried out to produce new flexible sensors, these fall broadly into two68
categories, resistive and capacitive sensors.69

Capacitive Strain Sensing70

Capacitive stretch sensors are typically fabricated by sandwiching a dielectric between two electrode71
layers, all of which need to be stretchable. The impedance is measured by analysing the response variable72
signal frequency, and from this the capacitance is estimated without needing to have any information about73
the resistance change in the conductive electrode layers. The advantage of capacitive flexible sensors is their74
linearity and high sensitivity. However they tend to have low gauge factors and because of their layered75
structure are more complex to fabricate. Nevertheless capacitive sensors have been successfully made76
using conductive silicone for measuring pressure and shear stresses simultaneously at the stump-socket77
interface of lower-limb amputees (Laszczak et al., 2015, 2016). Conductive fabrics have been used by78
Tairych et al. (Andreas Tairych, 2017) to create multiple capacitive stretch sensors requiring only one79
channel for measurement; Atalay et al. (Atalay et al., 2017) used conductive stretch fabric as the electrodes80
sandwiching a silicone dielectric for a customizable strain sensor for human motion tracking; Kappel et al.81
(Kappel et al., 2012) developed a strain sensor based on a dielectric electro-active polymer (DEAP) that acts82
as an elastic capacitive material, strainable in one direction for measuring in-shoe navicular drop during83
gait; Zens et al. (Zens et al., 2015) used a complex layering of non-conductive PDMS and conductive84
PDMS made using carbon black particles as a novel approach to dynamic knee laxity measurement (Zens85
et al., 2015); Fassler et al. (Fassler and Majidi, 2013) produced soft-matter capacitors and inductors from86
microchannels of liquid-phase gallium–indium–tin alloy (galinstan) embedded in Ecoflex R© 00-30.87

Resistive Strain Sensing88

The advantage of resistive flexible sensors are their relative simplicity and stability for large strain in89
excess of 100%, however they tend to be highly non-linear and hysteretic, the two most common complex90
behaviours being relaxation time and the resistance spikes associated with fast changes in strain rate91
(Tiwana et al., 2012). There are two major mechanisms by which piezoresistive behaviour useful for stretch92
sensing is achieved. These are: (1) by doping an elastomer matrix with a conductive filler of some kind93
- this is primarily a nanoscale effect; and (2) by constructing a conductive pathway which undergoes a94
significant geometrical change under stretch that the resistance also changes - this is primarily a macroscale95
effect.96

For the first type, a polymer with low Young’s modulus, such as PDMS, rubber or silicone is used as a97
matrix and a conductive filler such as metal nanoparticles or carbon allotropes. When the ratio of filler to98
matrix content is above the percolation threshold, the composite material will conduct electricity. When the99
material is stretched, this increases the gaps of insulating matrix between adjacent conductive particles100
reducing the number of possible electron tunneling pathways, thus increasing the electrical resistance.101
There many ways to fabricate such as materials, for example Boland et al. (Boland et al., 2014) describe a102
simple method to infuse liquid-exfoliated graphene into natural rubber to create conducting composites,103
displaying 104-fold increases in resistance and working at strains exceeding 800%; Ferreira et al. (Ferreira104
et al., 2017) report a carbon nanotube (CNT) and PVDF composite capable of measuring the interface105
pressure within prosthetic stump/sockets; Watthanawisuth et al. (Watthanawisuth et al., 2015) report a106
novel sensor using a 3D-Graphene foam amalgam with PDMS; Lee et al. (Lee et al., 2015) report a sensor107
from highly stretchable conductive fiber composed of silver nanowires (AgNWs) and silver nanoparticles108

Frontiers 3



Oldfreyet al. Deep learning stretch sensors

(AgNPs) embedded in a styrene–butadiene–styrene (SBS) elastomeric matrix capable of 900% strain;109
Larimi et al achieved 350% strain with a low cost sensor fabricated by infusing graphene nano-flakes into110
a rubber-like adhesive pad (Larimia et al., 2018). This is similar to the commercially available Adafruit111
Conductive Rubber sensor Adafruit Industries we tested in this work.112

For the second type of piezoresistive sensor, a geometrical change is achieved in a conductive material.113
This can be a simple change as in a highly conductive liquid in a fluidic channel whose length increases114
and cross-sectional area decreases, or it can be a much more complex change, such as the change in the115
conductive pathways of a stretchable fabric. In the latter case, as the textile is stretched and relaxed, different116
parts of the weave come into contact with each other, making discrete pathway changes on the scale of the117
weft and weave. There many ways to fabricate such as materials, for example Chossat et al. (Chossat et al.,118
2015) describe a complex microchannel network with a room temperature ionic liquid (RTIL); Menguc119
et al. (Mengüç et al., 2014) made Ga-In based fluidic strain sensors, but refined their design with the use120
of discretized stiffness gradients to improve mechanical durability; Michaud et al.(Michaud et al., 2015).121
combine thin gold films on silicone which display large reversible change in electrical resistance upon122
stretching, with eutectic liquid metal conductors to maintain bulk metal conductivity, even upon extensive123
elongation; Smart fabric sensors (Castano and Flatau, 2014); and smart textiles (Nejad et al., 2017) similar124
to the commercially available Medtex P130+B and Techniktex P130+B Statex Produktions & Vertriebs125
GmbH we tested in this work.126

METHODS

Dynamic Electrical Resistance Measurement of the Stretch Sensors127

The electrical resistance of each strain sensor was measured using an analogue signal processing (ASP)128
circuit which consists of a voltage divider, operational amplifier, filtering and an ADC as shown in Figure 2.129
After digitalisation, the signal undergoes digital signal processing (DSP) which consists of an oversampling130
routine onboard the Arduino, serial communication via USB to laptop, where it goes through a 5th Order131
Butterworth filter. This creates a data stream of filtered resistance and its gradient. These values are the132
inputs to the neural network described in the LSTM section. The values of the resistors and capacitors133
used in the ASP were calculated to optimise the dynamic range, and reduce noise. These calculations are134
explained in the following sections.135

ASP: Optimising Dynamic Range136

The opposing resistor, Rs from Figure 2, for the voltage divider is chosen using the maximum and137
minimum resistance measured by a standard multimeter (these are not necessarily at the max and min138
stretch). Rs was then calculated using equation 1:139

Rs =
√
Rmax ×Rmin (1)

ASP: Gain and Offset140

The analogue conditioning circuit is an inverting op amp configuration using an MCP3208 Chip. The141
inversion is irrelevant to the analysis of the signal in this application, but has advantages compared to the142
non-inverting configuration. In particular, the noise contribution is amplified equally with the signal, which143
is not true for the non-inverting case, in which it is amplified to a greater degree (Carter, 2002). R1, R2, R3144
and R4 from Figure 2 were calculated using equations 2 and 3. Initial values for R2 and R3 must be of the145
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same order of magnitude, and are chosen so to minimise the input resistance to the ADC, which must be146
kept below 1000Ω for the MCP3208. So that147

R1 =
R2

|m|
(2)

R4 =
bR3R1

5(R2 +R1)− bR1
(3)

where m = −5
Vrag

, b = mVlow. Vrag is the voltage range of the stretch sensor and optimised voltage148
divider measured through the ADC, and Vlow is the lowest value in this range, with the assumption that m149
is negative, and b is positive. A more detailed description of this method can be found in Carter (2002).150

ASP: Filtering151

Frequencies higher than the sampling rate appear as lower frequencies when sampled, which can result in152
a variety of possible distortions to a voltage signal. To avoid such aliasing, frequencies contained in the153
signal must be below the Nyquist frequency, which is defined as half the sampling rate. This was achieved154
by implementing a second order unity gain Sallen-key low-pass filter, for which equation 4 dictated the155
choice of resistors and capacitors to achieve the required cut-off frequency.156

fcut−off =
1

2π
√
R5R6C1C2

(4)

For the unity gain op amp used this was simplified as R5 = R6 = 470Ω, and C1 = C2 = 0.01µF .157

DSP: Oversampling158

Oversampling was undertaken onboard the Arduino, so as not to take CPU power away from the laptop,159
slowing the intensive neural network processing. A useful property of the inverse relationship between160
sample rate and resolution, is that it holds true even above the physical resolution of the ADC, however161
the sample rate is reduced by averaging over multiple real samples, here we averaged over Ns samples,162
to maintain the required sample rate. This achieves a n bit increase with Ns = 22n. A reduction in noise163

power also resulted from this by a factor of
1

Ns
. In this work we use Ns = 25.164

The frame rate of the camera is orders of magnitude lower than the sample rate of the ASP, so it governs165
the size of the data set we could produce, namely 30 frames per second. All digital processes had to be166

achieved within the
1

30
of a second frame window, and for this reason the oversampling was performed167

on board the Arduino, as this could be performed in parallel to computations on the computer CPU. The168
resistance was filtered using the SciPy package, Version 0.19.1 was used for this study. The filters used were169
the signal.butter() and signal.filtfilt() functions. The gradient was measured using the gradient() function in170
the NumPy package, Version 1.15.0 was used for this study.171

Measuring Strain in Real-Time172

To measure real-time strain and resistance, each stretch sensor was positioned under a webcam connected173
to a laptop, see Figure 3. We used a standard Logitech C270 camera with a frame rate of 30 frames per174
second. For each experiment the webcam was positioned 50cm above the flexible sensor using a clamp175
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stand. The flexible sensor was connected electrically to the ASP circuit and red dot labels were placed on176
the electrode clamps of the flexible sensor. The flexible sensor was then stretched and unstretched manually177
at a range of strain rates (from 0 to 1 sec−1). The computer vision package OpenCV (Version 3.3.0 was178
used for this study) running on the laptop was used to collect the images from the camera and automatically179
detect the red dots and their coordinates, which were used to compute the real-time strain. The strain was180
correlated with the resistance measurements to produce a data set as input for the LSTM.181

Long Short Term Memory Neural Network (LSTM)182

Long Short Term Memory networks are a special kind of Recurrent Neural Network (RNN) introduced183
by Hochreiter and Urgen Schmidhuber (1997), which are capable of learning long-term dependencies,184
and have advantages over traditional RNNs, such as avoiding the vanishing gradient problem. Traditional185
RNNs map input sequences to outputs using the following recurrence equations:186

ht = g(Wxhxt + Uhhht−1 + bh) (5)

zt = g(Whzht + bz) (6)

where g is an element-wise non-linearity, e.g. sigmoid function or hyperbolic tangent, xt is the input187
matrix at time t. ht is the hidden state matrix which from equation 5 is a function of the input at the same188
time step (xt), modified by a specific weight matrix Wxh, and the previous hidden state ht−1 modified by189
its own weight matrix Uhh. In equation 6 the output matrix zt is determined by a similar process to give an190
output prediction.191

192

The weighted matrices act as filters to determine the importance of various inputs, and their elements193
along with the biases bh and bz are the parameters in the ‘deep learning’. The ‘deep’ indicates that there194
are multiple separate layers with additional hidden states like ht whose role is to modify the output layer,195
see Figure 4. LSTMs build on this RNN framework by including memory cells comprising of three types196
of gates: (i) a Forget Gate, which conditionally decides what information to throw away; (ii) an Input197
Gate which conditionally decides which values from the input to update to the memory state; and (iii) an198
Output Gate, which conditionally decides what to output based on input and the memory state, see Figure199
5. Each cell is like a mini-state machine where the gates of the cells have weights that are learned during200
the training procedure. These cells are described mathematically by the following equations:201

it = σ(Wixxt + Uihht−1 + bi) (7)

ft = σ(Wfxxt + Ufhht−1 + bf ) (8)

ot = σ(Woxxt + Uohht−1 + bo) (9)

ct = ft � ct−1 + it � tanh(Wcxxt+ Uchht− 1 + bc) (10)

ht = ot � tanh(ct) (11)

where � is the Hadamard product and it is the input gate (state at time t), ft is the forget gate, ot is the202
output gate, ct is the cell state, and ht is the hidden state analogous to that from the simpler RNN example.203
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A pictoral representation of this LSTM unit can be seen in Figure 5, where as in the simple RNN, the cell204
is given the input matrix xt and the previous time step’s hidden state ht−1. Here however, they are passed205
through the three gates, each with separate modifying weight matrices, serving their separate functions,206
before outputing the hidden state ht. A more detailed description of LSTM architecture can be found in207
Jozefowicz et al. (2015).208

209

Our network architecture comprises 3 layers of 270 LSTM cells followed by a single linear layer which210
maps the final recurrent layer to a single output via further weighted & biased matrix multiplication. The211
architecture of this structure is shown in Figure 4 showing the input nodes, the layers of LSTM cells (each212
one as shown in Figure 5), the output matrix, and the output node. The network size was set by comparing213
varied architectures that were able to complete within 1/30 of a second (along with the other processing214
requirements). This means that once the vision tracking is removed from the system, the sampling rate can215
be set to match the 30 fps of the original data collection, preserving the accuracy of the predictions without216
any time lag.217

The weights and biases of the 4 network layers are trained by gradient descent using Adaptive Moment218
Estimation that computes adaptive learning rates for each parameter (Kingma and Ba, 2014). The loss219
function used in this method is assessed by calculating the root mean squared error (RMSE) of the set of220
batch predictions vs the actual strain measurements tracked with the webcam.221

Dropout, Noise, Processing and Implementation222

Dropout is a recently introduced regularization method as described by Srivastava et al. (2014), which223
has been very successively applied to standard feed-forward neural networks, but with less success when224
applied to recurrent networks. Dropout entails probabilistically excluding a given proportion of the input225
and internal connections from activation and weight updates while training the network. Our approach226
follows the method suggested by Zaremba et al. (2014) for applying it to LSTM networks, which in short,227
only applies it to all non-recurrent connections in the cell structure.228

LSTM networks produce better results on larger datasets and many training steps. In order to train them229
effectively using small datasets, we create more data for it to use, by adding symmetric noise to the inputs230
and continuing training. With this larger augmented dataset, a much greater number of useful training steps231
are possible. It also serves as an effective regularisation method, reducing overfitting of the network, which232
is a primary concern for all networks, particularly those with smaller datasets.233

A Butterworth filter is used with a cut-off frequency dictated by the highest measured frequency present234
in the vision data. This enables usable predictions to be achieved even when the neural network is not able235
to reduce its loss function to a low enough value to produce stable outputs. In general, the raw network236
output is noisy, however after filtering, shows excellent calibration correlation.237

This method was implemented using the Tensorflow package, Version 1.8 was used for this study, on a238
Toshiba Tecra laptop running an Arch based linux operating system.239

Materials240

We tested three commercially available stretch sensor materials with our method, these were Medtex241
P130+B and Techniktex P130+B both from Statex Produktions & Vertriebs GmbH, and Adafruit Conductive242
Rubber Adafruit Industries.243
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Medtex P130+B244

Medtex P130+B is a commercially available stretch nylon, interweaved with silver, aimed at medical245
dressings due to the anti-bacterial properties of silver. It is also used to construct stretchable conductive246
circuits and basic stretch sensors. Compared to solid rubber-like materials, it has a much smaller relaxation247
time than some material options, yet does display some additional complex resistive behaviour which248
makes more precise use more difficult.249

A 15cm sized strip of the Medtex P130+B fabric was cut and placed in metal clamps attached to the ASP250
circuit. The maximum and minimum resistance values were measured as 41Ω and 153Ω. Using Equation251
1, the optimum resistance value was found to be 79.2Ω, therefore a 75Ω resistor was used for Rs, as this252
was the closest single standard value available. The sensor was then stretched to find the operating range253
of this set-up, which was found to be 1.52V − 2.79V , a span of 1.27V . The required gain was calculated254
to be −3.94V/V , with an off-set of 5.99V . Using equations 2 and 3 the resistor values were calculated255
to optimise the ASP circuit for this experiment and found to be: R1 = 130Ω, R2 = 510Ω, R3 = 510Ω,256
R4 = 160Ω.257

Techniktex P130+B258

Techniktex P130+B is an advanced conductive fabric aimed at the wearable electronics market. It claims259
to have homogeneous conductivity in all directions, and have more reliable and linear behaviour. It still260
has an associated relaxation time, however it only increases resistance as it is stretched, unlike the Medtex261
fabric.262

A 15cm sized strip of the Techniktex fabric sample was cut and placed in metal clamps attached to263
the ASP circuit. The maximum and minimum resistance values were measured as 16Ω and 28Ω. Using264
Equation 1, the optimum resistance value was found to be 21.2Ω, therefore a 22Ω resistor was used, as this265
was the closest single standard value available. The sensor was then stretched to find the operating range of266
this set-up, which was 1.95V − 2.45V , a span of 0.5V . The required gain was calculated to be −10V/V ,267
with an off-set of 11V . Using equations 2 and 3 the resistor values were calculated to optimise the ASP268
circuit for this experiment and found to be: R1 = 51Ω, R2 = 510Ω, R3 = 510Ω, R4 = 120Ω.269

Adafruit Conductive Rubber270

The Adafruit conductive rubber comes in an 3mm diameter extruded cord, a 15cm sized length was271
placed in metal clamps attached to the ASP circuit. The maximum and minimum resistance values were272
measured as 1.18kΩ and 2.6kΩ. Using Equation 1, the optimum resistance value was found to be 1.75kΩ,273
therefore a 22kΩ resistor was used, as this was the closest single standard value available. The sensor was274
then stretched to find the operating range of this set-up, which was 2V −2.6V , a span of 0.6V . The required275
gain was calculated to be −8.3V/V , with an off-set of 16.7. Using equations 2 and 3 the resistor values276
were calculated to optimise the ASP circuit for this experiment and found to be: R1 = 62Ω, R2 = 510Ω,277
R3 = 510Ω, R4 = 330Ω.278

RESULTS

For each of the three stretch sensors the same experimental method was carried out. This comprised of279
collecting data by manually pulling and releasing the sensors in a manner consistent with real usage ie. over280
a period of many minutes and with a range of strain rates. For each material some of the correlated sets of281
measured strain from the webcam and measured electrical resistance were used to train the neural network.282
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Subsequently the neural network was used to predict the strain when only supplied with unseen electrical283
resistance data which was then compared with the unseen measured strain and the errors computed. The284
results are as follows.285

Medtex P130+B286

The sensor was manually stretched and relaxed for ∼15 minutes under the webcam, producing ∼27500287
correlations of measured sensor length vs measured electrical resistance. The data was pre-processed to288
produce a set of filtered resistance and unfiltered resistance gradients, matched against values of strain. The289
complex nature of this data can be seen in Figure 6(a) where three stretch and relax cycles for the sensor290
with three different strain rates (depicted in red, blue and green) produced very different functional forms291
(the grey line shows all the data). Figure 6(b) shows the measured strain correlated with the measured292
electrical resistance showing that the strain rates were different in each case and varied in a realistic ie.293
non-linear manner. The strain rates are quantified in Figure 6(c) which shows the characteristic spikes294
which are typical of such flexible stretch sensors. The rate of change of resistance for each case is shown in295
Figure 6(d) which was used as an input for the LSTM neural network.296

This dataset was used to train our LSTM architecture for ∼17 hours following an automated training297
schedule. The correlation between measured strain and resistance of the training data set can be seen in298
Figure 7(a). Figure 7(b) shows the correlation between measured and predicted strain in the final trained299
network. The Mean Absolute Error (MAE) between prediction and measured was 11.38% total strain,300
and the error distribution can be seen in Figure 7(c). The correlation was calculated using the Pearson301
Product-Moment Correlation.302

Figure 8 (a) shows some of the unseen test data that correlates measured resistance with measured strain.303
Using only unseen resistance data and the resistance gradient data as inputs for the trained LSTM resulted304
in predicted strains of the flexible sensor with an MAE of 19.29% strain. Figure 8(b) shows the comparison305
between predicted and measured. The error distribution can be seen in Figure 8(c), which did show some306
errors up to 65%. The correlation of predicted vs. actual for the test set was 0.80, and increase of 0.23307
compared to the correlation of raw resistance vs actual, which was 0.67. This shows a significant increase308
in linearity of the system.309

Techniktex P130+B310

The sensor was manually stretched and relaxed for ∼15 minutes under the webcam, producing ∼27500311
data points of correlations of measured sensor length vs measured electrical resistance. As with the Medtex312
P130+B fabric, the complex nature of this data can be seen in can be seen in Figure 9(a) where three313
stretch and relax cycles for the sensor with three different rates (depicted in red, blue and green) produced314
very different functional forms. Figure 9(b) shows the output of the webcam correlated with the measured315
electrical resistance in each case showing that the rates were different in each case as quantified in Figure316
9(c). The rate of change of resistance for each case is shown in Figure 9(d) which was used as an input for317
the LSTM neural network.318

This dataset was used to train our LSTM architecture for around 17 hours following an automated training319
schedule. The correlation between measured and resistance of the training data set can be seen in Figure320
10(a). The resulting strainpredictions can be seen in Figure 10(b), where the Mean Absolute Error (MAE)321
was 6.64% total, and the error distribution can be seen in Figure 10(c).322

Figure 11 (a) shows the unseen test data that correlates measured resistance with measured. Using only323
the resistance data and the resistance gradient data as inputs for the trained LSTM resulted in predicted324
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Medtex P130+B Techniktex P130+B+B Adafruit Rubber
Linear Regression Model

Training Set Prediction Error (MAE%) 19.3 17.5 28.6
Test Set Prediction Error (MAE%) 24.8 19.3 30.6

5th Deg Polynomial Regression Model
Training Set Prediction Error (MAE%) 18.9 17.2 27.0

Test Set Prediction Error (MAE%) 25.0 19.2 28.9
Deep Feedforward Neural Network

Training Set Prediction Error (MAE%) 23.2 20.1 28.3
Test Set Prediction Error (MAE%) 25.1 21.3 32.1

Recurrent Neural Network
Training Set Prediction Error (MAE%) 16.4 11.8 17.1

Test Set Prediction Error (MAE%) 22.1 14.2 18.3
LSTM Neural Network

Training Set Prediction Error (MAE%) 11.4 6.64 13.8
Test Set Prediction Error (MAE%) 19.3 10.8 14.5

Table 1. Table of Results comparing different methods for calculating strain from the measured resistance
value.

strain of the flexible sensor with an MAE of 10.75%. Figure 11(b) shows the comparison between predicted325
and measured. The error distribution can be seen in Figure 11(c), which did show some errors up to 50%.326
The correlation of predicted vs. actual for the test set was 0.94, an increase of 0.09 when compared to the327
correlation of raw resistance vs actual, which was 0.85.328

Adafruit Conductive Rubber329

The sensor was manually stretched and relaxed for ∼15 minutes under the webcam, producing ∼27500330
data points of vs resistance. This material behaved in a more regular manner than the other two materials331
when exposed to different rates as shown in Figure 12(a) where three stretch and relax cycles for the sensor332
with three different rates are depicted in red, blue and green. Figure 12(b) shows the output of the webcam333
which measured the that correlated with the measured electrical resistance in each case showing that the334
rates as quantified in Figure 12(c). The rate of change of resistance for each case is shown in Figure 12(d)335
which was used as an input for the LSTM neural network.336

This dataset was used to train our LSTM architecture for around 13 hours following an automated training337
schedule until the error did not improve further. The correlation between measured and resistance of the338
training data set can be seen in Figure 12(a). The resulting predictions fitting the training data set can be339
seen in Figure 13(b), where the Mean Absolute Error (MAE) was 13.77% total , and the error distribution340
can be seen in Figure b 13(c).341

Figure 14 (a) shows the unseen test data that correlates measured resistance with measured strain. Using342
only the resistance data and the resistance gradient data as inputs for the trained LSTM resulted in predicted343
strain of the flexible sensor with an MAE for the test set was 14.49 %. Figure 14(b) shows the comparison344
between predicted and measured. The error distribution can be seen in Figure 14(c), which did show some345
errors up to 40%. The correlation of predicted vs actual for the test set was 0.92, an increase of 0.32346
compared to the correlation of raw resistance vs actual, as the correlation was only 0.60 for this material - a347
highly significant increase.348
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Medtex P130+B Techniktex P130+B+B Adafruit Rubber
No. of training examples 27500 27500 27500
No. of testing examples 5000 3200 5300

Raw Training Set Correlation 0.67 0.85 0.60
Training Set Prediction Correlation 0.95 0.98 0.93

Test Set Prediction Correlation 0.80 0.94 0.92
Training Set Prediction Error (MAE%) 11.38 6.64 13.77

Test Set Prediction Error (MAE%) 19.29 10.75 14.49

Table 2. Summary of results of the three commercially available stretch sensors used in this study.

Comparison with other Statistical Methods349

To evaluate the effectiveness of our deep learning approach we tested four alternative methods for350
calculating strain from the sensor data. These were: a standard linear regression model (Schneider et al.,351
2010); a 5th degree polynomial regression model (Heiberger and Neuwirth, 2009); a deep feed-forward352
neural network (DNN) (Schmidhuber, 2015); and a traditional recurrent neural network (RNN) (Jain and353
Medsker, 2000). Both the network models have the same structure as our LSTM network, that of 3 layers of354
270 nodes. These were fitted to the training data from all three materials and tested on the unseen datasets,355
in the same manner as our LSTM method. The regression models were created using the SciPy package356
(Version 0.19.1), and the networks were created using the Keras package (Version 2.2.2).357

We can see from Table 1 that the LSTM out-performs the simpler methods consistently for all three358
sensor types. The LSTM results show an average improvement of 10.0% error compared to the linear359
models, and an average improvement of 3.4% error on unseen test data compared to the simpler RNN. The360
linear and polynomial regression models perform poorly which is not surprising given the complexity of361
the non-linearity of the sensors. Although potentially capable of modelling much greater complexity, the362
DNN performs worse than the linear and polynomial regression methods, this is likely to be due to its363
single input/single output structure. As soon as some recurrence is added to the network architecture, as364
with the RNN and the LSTM, the results are greatly improved with a significant drop in error across all365
three materials, however generally a greater difference in error between the training data and the testing366
data is seen. This suggests that some overfitting is present, and that significant improvements can still be367
made in the future.368

DISCUSSION

In general, wearable technology developers would prefer perfectly linear flexible sensors, however such369
sensors have historically been difficult to make hence our approach to use available commercial flexible370
sensors and use deep learning algorithms such as LSTMs to make them usable in wearable technology. To371
test our approach we used three commercially available flexible sensors all of which showed non-linearity372
and strain rate dependant electrical responses. The summary of our results in Table 2 shows that we can373
predict strain to between 10% and 20% error for three different sensor types. The origin of non-linearity and374
rate dependence in flexible sensors is different in each case, and hence they show very different behaviour.375
However there are some general principles which our selection of commercial sensors illustrate.376

The fabric sensors have a macrostructure comprising of a warp and weft. In these sensors the conductive377
route through the material is via many different temporary mechanical connections which arise where378
the conductive fibres in the warp touch the weft and in doing so make another potential conductive path379
through the material. During stretch these local connections change both in number and area of contact, and380
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this changes the electrical resistance. The geometry of the fabric macrostructure during different stretch381
does not scale linearly with extension and so it is not surprising that fabric sensors are non-linear in their382
electrical response. Similarly on release their electrical properties are dependent on the way the individual383
fibres unstretch and mechanically slide past each other. Although the topology of the warp and weft remains384
in tact after stretch, at the microscale of the individual connective fibres, different mechanical connections385
and adjacencies result once the fabric returns to its original length. Hence the return path of de-stressing386
such a fabric is likely to be different. In addition the elastomer component of the fibres are viscoelastic and387
so their mechanical response is highly sensitive to strain rate. The difference between the two fabrics arises388
from thier intended use. Techniktex is designed with sensor applications in mind, having homogeneous389
conductivity in all directions, and more reliable and linear behaviour. The Medtex is primarily aimed at390
medical dressings, meaning that the homogeneity of the conductivity is not a major manufacturing concern.391
All these factors taken together produce the highly non-linear and distinctly different behaviours seen in392
our fabric sensors shown in Figure 6(a) and Figure 9(a).393

The Adafruit conductive rubber sensor is comprised of a viscoelastic rubber material with carbon black394
powder added. Here the electrical conduction arises from a percolation path of carbon particles in contact395
with each other. During stretching the percolative path changes as particle contact changes. As with the396
conductive fabrics the matrix elastomer is viscoelastic and so the combination of microscale contacts397
changing with length with rate dependant restoration forces results in a high non-linear electrical response.398
An interesting result arises with the conductive rubber as although the raw data has a much lower correlation399
than the two fabrics, it achieves an impressive increase after training, although still with a larger overall400
error than the Techniktex fabric. We speculate that this is due to the lack of macroscale structure (warp401
and weft) in the rubber which allows the behaviour to be learnt much more affectively by the neural402
network. This has some interesting implications for the inevitable use of deep learning with soft materials.403
Previous to the very recent increase in use of learning algorithms, structure and complexity has been404
focused on the physical geometries and structure, balanced against the human-limited ability to efficiently405
produce applicable models. Now that the limits of applied models has changed, with a huge increase in406
the complexity of non-human designed models of correlating input to output without the need for the407
intermediary steps to be established in full, the way we approach our use of materials may change. If the408
most powerful element in a system is its own learning capability, then physical design may begin to change409
in accordance. We find here that comparable results are possible with the simplest of physical approaches410
compared to a highly refined composite textile structure.411

The training time of the LSTM on our system, which comprised of a simple low-spec PC, was of the412
order of 10-20 hours, but this could be reduced significantly through software optimisation and the use413
of faster machines. Nevertheless this amounts to a calibration process which only needs to be performed414
once. The more stringent criterion for real use application requires the trained LSTM to give real time415
high resolution values of stretch, and this requires a portable resistance measurement circuit and a portable416
computation unit to run the LSTM, as illustrated in Figure 1. We estimate the requirement for these would417
be entirely feasible.418

There are many advantages of a deep learning approach to calibration that have not been applied here. A419
major avenue which we will investigate in the future is ‘transfer learning’, where pre-trained models are420
applied to new datasets, either for direct inference, or for reductions in training time. For our application,421
this would be expected to be useful for different geometries of the same or similar materials. Another422
advantage of using this approach concerns wear and damage of sensors. With additional new datasets,423
an original trained system might be able to adjust itself to damage, thereby prolonging the usefulness424
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of sensors that generally require considerable manual construction. For instance (Graves et al., 2005)425
have shown LSTM networks are able to re-train rapidly to adapt to new subsets of data achieving greater426
accuracy than when trained from scratch.427

CONCLUSION

We have developed a deep learning method for calibrating highly hysteretic resistive stretch sensors.428
We show that technique gives reliable robust strain information for commercially available textile and429
elastomeric stretch sensors and requires no specialist equipment. Our LSTM model is more accurate than430
four other statistical models tested, as shown by consistent significantly lower errors on unseen datasets.431
Our method is open source and does not require any a priori knowledge of the physical attributes or432
geometry of the sensor to be calibrated, which is a key advantage as stretchable sensors are generally433
applicable to highly complex geometries with integrated electronics requiring bespoke manufacture.434
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1 FIGURES

Figure 1. Overview of System showing our three-stage approach to developing a wearable sensor. The
first stage involves a calibration step in which the sensor material is measured using a webcam while the
electrical response is measured via a set of arduino-based electronics. In the second stage the data is passed
to a Long Short Term Memory Neural Network which is trained using part of the data set. In the third stage
the sensor is removed from the webcam calibration set-up and embedded in the wearable technology where
the live stream of electrical resistance is the only measurement taken - this corresponds to the proposed use
case.

Figure 2. A diagram of the Analogue Signal Processing Circuit used in this work.

This is a provisional file, not the final typeset article 16



Oldfreyet al. Deep learning stretch sensors

Figure 3. A diagram showing the experimental set-up for the calibration step in our process, which
involves the use of a webcam to track dots in real-time on a flexible sensor to measure elongation, while
arduino-based electronics is used to collect the correlated electrical data.

Figure 4. A diagram of the architecture of the neural network used.
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Figure 5. A pictoral representation of the LSTM cell used Chen and Wang (2017)

Figure 6. Strain & electrical resistance behaviour of the Medtex P130+B during stretching; (a) normalised
strain versus normalised resistance; (b) normalised strain versus time; (c) strain rate versus time; (d)
normalised resistance versus time
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Figure 7. Medtex P130+B training data predictions and errors: (a) electrical resistance and correlated
strain of training set versus time; (b) training set error distribution; (c) Measured strain versus predicted
strain for training set.

Figure 8. Medtex P130+B real-time test predictions and errors:(a) electrical resistance and correlated
strain of unseen test set versus time; (b) unseen test set error distribution; (c) Measured strain versus
predicted strain for unseen test set.
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Figure 9. Strain & electrical resistance behaviour of the Techniktex P130+B during stretching; (a)
normalised strain versus normalised resistance; (b) normalised strain versus time; (c) strain rate versus
time; (d) normalised resistance versus time
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Figure 10. Techniktex P130+B training data predictions and errors: (a) electrical resistance and correlated
strain of training set versus time; (b) training set error distribution; (c) Measured strain versus predicted
strain for training set.
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Figure 11. Techniktex P130+B real-time test predictions and errors:(a) electrical resistance and correlated
strain of unseen test set versus time; (b) unseen test set error distribution; (c) Measured strain versus
predicted strain for unseen test set.
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Figure 12. Strain & electrical resistance behaviour of the Adafruit carbon-black rubber during stretching;
(a) normalised strain versus normalised resistance; (b) normalised strain versus time; (c) strain rate versus
time; (d) normalised resistance versus time
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Figure 13. Adafruit carbon-black rubber training data predictions and errors: (a) electrical resistance and
correlated strain of training set versus time; (b) training set error distribution; (c) Measured strain versus
predicted strain for training set.
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Figure 14. Adafruit carbon-black Rubber real-time test predictions and errors:(a) electrical resistance and
correlated strain of unseen test set versus time; (b) unseen test set error distribution; (c) Measured strain
versus predicted strain for unseen test set.
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