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Abstract  

High-sensitivity troponin I (hsTnI) and N-terminal pro-brain natriuretic peptide (NTpro-BNP) 

are predictors of coronary artery disease. Recently, routine hematological parameters 

emerged as mortality predictors. We examined the predictive value of hematological 

parameters (from the Utrecht Patient Oriented Database; UPOD) and hsTnI and NTpro-BNP 

for mortality in a coronary angiography population (Utrecht Coronary Biobank n=1,913). Using 

Cox regression, receiver operating characteristics, integrated discrimination improvement 

(IDI) and continuous net reclassification improvement (cNRI) analysis, we compared the 

predictive properties of hematological parameters with hsTnI and NTpro-BNP for mortality. 

During a median follow-up duration of 1.8 years, 77 deaths occurred. A panel of 7 

hematological parameters (leukocyte count; reticulocyte mean corpuscular hemoglobin 

concentration; red blood cell (RBC) green (FL1) fluorescence; %neutrophils; %large (>120fL) 

RBCs, %monocytes and coefficient of variation of neutrophil complexity) was highly 

predictive. Added to clinical characteristics, hematological parameters (area under the curve 

[AUC]:0.856, p<0.001, IDI:0.07, p<0.001, cNRI:0.37, p<0.001) were better predictors than 

hsTnI (AUC:0.818) or NTpro-BNP (AUC:0.834) alone or combined (AUC:0.834). 

Hematological parameters may provide mortality risk information following coronary 

angiography and may be superior to hsTnI and/or NTpro-BNP. 

 

Keywords: coronary artery disease, biomarkers, mortality.  



 3

Introduction 

High-sensitivity troponin I1 (hsTnI) and NT pro-B-natriuretic peptide2 (NTpro-BNP) 

constitute the current clinical gold-standard biomarkers for diagnosis and prognosis in acute 

myocardial infarction,3 stable heart failure,4 elective coronary angiography,5 stable and 

unstable coronary artery disease (CAD)6,7 and percutaneous coronary intervention8 (PCI) 

patients.  

Recently, a different and easily accessible type of biomarker has emerged. Blood cell 

characteristics (counts and percentages), e.g. from leukocytes9,10 and red blood cells 

(RBCs),11 harbor prognostic information in diverse patient populations. Such hematological 

parameters are widely available and measured on a routine basis. Modern automated 

hematology analyzers automatically perform a whole blood cell count irrespective of the 

clinical request. While not routinely reported to the physician, the unrequested parameters 

can be extracted and stored for future reference. In the University Medical Center in Utrecht, 

blood cell differentiation data from the Abbott Sapphire12 hematology analyzer have been 

stored in the Utrecht Patient Oriented Database (UPOD)13 for research purposes. The 

measured parameters consist of cell counts, cell sizes and other cell properties such as cell 

complexity and granularity. 

As precise estimation mortality risk in CAD patients is key for a patient-specific 

treatment policy and for accurate patient information, we compared the predictive power of 

routine hematological parameters with the current clinical standard, hsTnI and NTpro-BNP, 

for prediction of mortality during two years of follow-up in CAD patients undergoing coronary 

angiography.  

 

Methods 

Study population 

In this study we analyzed data from the Utrecht Coronary Biobank (UCORBIO) cohort 

(registered as an observational study at clinicaltrials.gov, identifier: NCT02304744), an 

observational cohort study of coronary angiography patients in the University Medical Center 

in Utrecht, the Netherlands. From October 2011 to December 2014, a total of 2,591 patients 

were enrolled. For the current study, we selected adult (>18 years) patients presenting with 
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myocardial infarction (either ST-Segment Elevation Myocardial Infarction or Non-ST-Segment 

Elevation Myocardial Infarction), chest pain without release of cardiac enzymes (stable or 

unstable angina), dyspnea on exertion, silent ischemia or screening for non-cardiac surgery 

with complete case information (n=1,913). Patients with other indications for coronary 

angiography (coronary anomalies, screening for cardiac surgery or follow-up after heart 

transplantation) were excluded.  

Ethics, consent and permissions 

All patients provided written informed consent and the study conforms to the 

Declaration of Helsinki. The institutional review board of the University Medical Centre Utrecht 

approved of this study (registration number 11-183).  

Data collection 

Data collection in the UCORBIO cohort has been described before.14 In summary, 

standardized electronic case report forms were completed at baseline containing age, sex, 

cardiovascular risk factors, indication for angiography, medication use, angiographic findings 

and eventual treatment of CAD. The angiographic findings were categorized into 4 groups by 

the treating interventional cardiologist: no CAD, minor CAD (wall irregularities, <50% 

stenosis), single vessel disease (one vessel with >50% stenosis15) and multi-vessel disease 

(2 or 3 vessels with >50% stenosis).  

Plasma Biomarkers 

Plasma biomarkers (hsTnI and NTpro-BNP) were measured in thawed EDTA plasma, 

which had been drawn directly prior to coronary angiography from the arterial sheath, before 

heparinization and immediately stored at -80°C. hsTnI was measured using the STAT High 

Sensitive Troponin-I assay on the ARCHITECT i2000 analyzer (Abbott Park, Illinois, USA). 

NTpro-BNP was measured using a semi-automated ELISA robot (Freedom EVO, Tecan, 

Switzerland, antibodies: 15C4 and biotinylated 13G12, Hi-test Finland). 

Hematological parameters 

Hematological parameters were obtained through complete blood count analysis at 

inclusion from the same blood sample as the plasma biomarkers. Fifty-six routinely measured 

RBC, leukocyte and platelet parameters from the UPOD database were initially taken into 

consideration in this study.13 All hematological parameters were measured using the Cell-Dyn 
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Sapphire16 hematology analyzer (Abbott Diagnostics, Santa Clara, CA, USA). This analyzer is 

equipped with an integrated 488-nm blue diode laser and uses spectrophotometry, electrical 

impedance, laser light scattering (multi-angle polarized scatter separation), and 3-color 

fluorescent technology to measure morphological parameters of leukocytes, RBCs and 

platelets for classification and enumeration. The morphological parameters entail the 

following 5 optical scatter signals for leukocytes: cell size (0˚ scatter, axial light loss), cell 

complexity and granularity (7˚ scatter, intermediate angle scatter (IAS)), nuclear lobularity 

(90˚ scatter, polarized side scatter (PSS)), depolarization (90˚ depolarized side scatter (DSS)) 

and viability (red fluorescence (FL-3), 630 ± 30 nm). Platelets are analyzed using two optical 

scatter signals: IAS scatter (7˚, cell size) and PSS scatter (90˚, granularity; internal structure). 

RBC parameters are measured or calculated based on impedance measurements. 

Reticulocytes are optically measured using IAS scatter (7˚, cell size) and FL-1 fluorescence 

(RNA content). Throughout this paper, all hematological parameters are reported as 

multitudes of their standard deviation (SD) to facilitate comparison of effect sizes between 

parameters as their absolute values vary strongly in their order of magnitude.  

Statistical Analysis 

Baseline characteristics are reported as means and standard deviations for continuous 

variables and percentages for categorical variables, both, for the entire cohort and for 

survivors and non-survivors separately.  

First, we constructed a clinical risk prediction model. Covariates for this model were 

selected using a backward stepwise Cox regression model for all-cause mortality, which and 

comprised: age, sex, diabetes, hypercholesterolemia, smoking status, indication for 

angiography, angiographic CAD severity, history of PCI, history of acute coronary syndrome 

(ACS), kidney failure and treatment following angiography. The model with the lowest Akaike 

information criterion was selected. Assumptions for Cox regression were checked and 

satisfied. 

To determine a predictive panel of hematological parameters we first evaluated 

mutual correlation of the parameters (total n=56) by means of hierarchically clustered 

heatmap analysis, grouping closely related parameters in a cluster. From each cluster of 

collinear parameters (spearman’s R>0.6 or <-0.6) the parameter with the strongest relation 
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with all-cause mortality was selected for further analysis. The remaining parameters (n=34, 

supplemental table 1) were entered in a backward stepwise Cox regression model. 

Subsequently, the top 10 significant parameters were added to the clinical model (which was 

coerced to stay in the model) and backward stepwise Cox regression was performed again to 

determine the final panel of hematological parameters. 

Receiver operating characteristics (ROC) analysis was performed to assess the 

prognostic value of hsTnI, NTpro-BNP and the panel of hematological parameters in addition 

to the clinical model. The clinical model was entered as a linear predictor to stabilize its 

predictive value. Next, we evaluated the prognostic value of adding hsTnI, NTpro-BNP or 

both to the panel of hematological parameters (all on top of the clinical model).  

For visualization of the predictive value of the panel of hematological parameters, a 

linear predictor was constructed and the predicted risk based on this linear predictor was 

divided into quartiles. Survival, adjusted for the clinical parameters was subsequently plotted 

for these quartiles. 

Internal validation of the predictive properties of the hematological parameters was 

performed by means of post-estimation parameterwise shrinkage17 using the jackknife 

method (repeating the analysis leaving out 1 observation at a time). For this purpose we used 

the “shrink” package18 for R. Also, optimism-adjusted AUCs were calculated using a 

bootstrapping method.  

Furthermore, continuous net reclassification improvement (cNRI) and integrated 

discrimination improvement (IDI) measures for the abovementioned comparisons were 

calculated using the “survIDINRI” package19 to assess risk prediction improvement. The cNRI 

corresponds to the percentage of patients that is correctly reclassified by the addition of a 

new parameter to the previous Cox model and is calculated by adding the percentage of 

deceased patients who appropriately had higher predicted risk in the new model to the 

percentage of alive patients who appropriately had a lower predicted risk in the new model.20 

Continuous NRI was deemed preferable over categorical NRI due to the lack of established 

meaningful risk categories in secondary risk prediction.21  

The IDI corresponds to the absolute change in predicted risk between the old and the 

new model. It is calculated by subtracting the difference in predicted risk between deceased 
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and alive patients in the old model from the difference in predicted risk between deceased 

and alive patients in the new model.22 Additionally, we created optimism-adjusted calibration 

plots using bootstrapping (repeating the analysis using random resampling with replacement, 

n=40), to assess the model fit. 

All statistical analyses were performed using Rstudio and the R software package 

(version 3.1.2, Vienna, Austria).23 A two-sided p <0.05 was considered significant.  

 

Results 

Patient characteristics 

During a median follow-up duration of 1.8 years, 77 deaths occurred; 29 of which 

from cardiovascular events. Patient characteristics are shown in table 1, stratified by mortality 

status during follow-up. Patients who died during the follow-up period were older (73 vs 63 

years, p<0.001) and more frequently diabetic than survivors (38 vs 22%, p=0.002). Patients 

who died during follow-up more often had a history of coronary artery bypass grafting surgery, 

peripheral arterial disease, kidney failure and impaired left ventricular function. Angiotensin-

converting enzyme inhibitor (48 vs 34%, p=0.018) and diuretic use was significantly more 

common in deceased patients (55.8 vs 27.4%, p<0.001). Median hsTnI levels (22.3 vs 7.1 

ng/mL, p<0.001) and NTpro-BNP levels (260.5 vs 83.0 pmol/L, p<0.001) were significantly 

higher in deceased patients. The multivariable adjusted HR of hsTnI and NTpro-BNP for 

mortality during follow-up were 1.00 [0.93-1.08] per 1000 ng/mL increase, p=0.945 and 1.27 

[1.14-1.42], p<0.001 per 1000 pmol/L increase, respectively. 

Hematological parameters 

Backward Cox regression was performed as described above, providing a panel of 7 

hematological parameters. The levels of the hematological parameters for deceased and 

alive patients and multivariable adjusted hazard ratios (HRs) are displayed in table 2. When 

adjusted for clinical characteristics and the other selected hematological parameters the 

hazard ratios (HRs) were as follows: leukocyte count: HR 1.25 [1.12-1.39], p<0.001; 

reticulocyte mean corpuscular hemoglobin concentration (MCHCr): HR 0.65 [0.50-0.86], 

p=0.003; RBC green (FL1) fluorescence: HR 1.51 [1.15-1.97], p=0.003; % neutrophils: HR 

1.37 [1.07-1.75], p=0.012; % large (>120fL) RBCs: HR 1.17 [1.03-1.34], p=0.019; % 
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monocytes: HR 1.28 [1.04-1.59], p=0.023 and coefficient of variation (CV) of neutrophil 

complexity: HR 1.31 [1.03-1.67], p=0.026.  

All-cause mortality prediction 

We first evaluated the additive predictive value of hsTnI, NTpro-BNP and 

hematological parameters to a clinical model (table 3 top) for the prediction of all-cause 

mortality. hsTnI did not improve prediction of mortality in addition to the clinical model (AUC-

increase, IDI and cNRI all non-significant). NTpro-BNP on top of the clinical model 

significantly improved prediction (AUC 0.834 vs 0.818, p=0.019) (Figure 1A) and 

discrimination (IDI 0.02 [0.00-0.06], p=0.040), but not reclassification (cNRI 0.03 [-0.14-0.22], 

p=0.625). The combination of hsTnI and NTpro-BNP also improved the AUC from 0.818 to 

0.834, p=0.016 compared with the clinical model alone, but the IDI and cNRI were both non-

significant.  

The addition of hematological parameters to the baseline clinical model (AUC 0.818) 

significantly improved discrimination (IDI 0.07 [0.03-0.14], p<0.001) and reclassification (cNRI 

0.37 [0.19-0.49], p<0.001). The AUC increased to 0.856, p<0.001.  

We then assessed whether hsTnI, NTpro-BNP or their combination could improve 

prediction in addition to the clinical model enriched by the hematological parameters (table 3 

bottom, Figure 1B). While the AUC increased slightly, albeit non-significantly upon addition of 

NTpro-BNP (AUC 0.863 vs 0.856, p=0.061), only the combination with hsTnI significantly 

improved prediction (AUC 0.865, p=0.049). Neither hsTnI, NTpro-BNP nor their combination 

could significantly improve discrimination or reclassification (IDIs and cNRIs all non-

significant, table 3).  

Bootstrapped calibration plots were created (supplemental figure 1) in order to 

assess goodness-of-fit. Addition of hematological parameters to the clinical model 

significantly increased the R2 (from 0.119 to 0.177, p<0.001), reflecting a better fit. When 

hsTnI was added to the model, it did not further improve the model fit. However, addition of 

NTpro-BNP slightly increased model fit (R2 increased to 0.190, p=0.003). Optimism-adjusted 

AUCs provided similar results compared with the AUCs derived from our original models 

(supplementary figure 3).  

Internal Validation 
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Models based on a single dataset tend to result in overfitting and overoptimistic 

estimates. Therefore, our model was internally validated by means of post-estimation 

shrinkage. The predicted all-cause mortality risk based on the initial model including 

hematological parameters was grouped into quartiles (Q1 to Q4). Adjusted survival curves 

are shown in Figure 2. HR for Q3 vs Q1 and Q4 vs Q1 were 6.6 [2.0-21.9], p=0.002 and 9.6 

[3.0-31.2], p<0.001, respectively. After shrinkage, the HR for Q2 vs Q1 remained non-

significant. HR for Q3 vs Q1 and Q4 vs Q1 were 3.2 [2.0-5.2], p=0.010 and 4.8 [3.2-7.0], 

p<0.001, respectively.  
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Discussion 

Our study shows superiority of hematological parameters over the current clinical 

standard hsTnI and NTpro-BNP for mortality prediction in CAD patients undergoing coronary 

angiography. The resulting panel of parameters comprises leukocyte and RBC 

characteristics. Both, leukocyte and RBC characteristics have previously been reported to 

serve as strong predictors of mortality in various patient groups.  

In cardiovascular disease patients, leukocyte characteristics have been tested and compared 

with the established marker high-sensitivity C-reactive protein (hsCRP). In stable CAD 

patients undergoing coronary angiography, neutrophil count was superior to hsCRP in 

predicting cardiovascular mortality.9 In our study, we also included RBC and platelet 

characteristics as potential predictors of mortality. High platelet reactivity is an independent 

predictor of future adverse events in myocardial infarction patients and thus seemed to be a 

logical candidate for testing.24 Unexpectedly, none of the platelet characteristics (plateletcrit, 

mean platelet volume, platelet distribution width, CV of platelet granularity and reticulated 

platelet count) in UPOD added any predictive value to the clinical model in our study; mean 

platelet volume did however predict mortality in univariable analysis in agreement with the 

literature.25 The reasons can be manifold. Our study population mainly consists of stable CAD 

patients, which have a lower risk of acute fatal thrombotic events due to high platelet 

reactivity than myocardial infarction patients. Hence, the role of platelets in this cohort might 

be less relevant. More likely though, the predictive value of platelet characteristics is also 

reflected by other hematological parameters in our multivariable model, rendering it non-

significant. Another possibility is that high platelet reactivity is not reflected by their 

morphology as measured by the hematology analyzers, supporting the need for separate 

platelet activation testing in high-risk patients. Finally, though our analyses did not investigate 

such effects, the lack of platelet markers might be due to platelet inhibitors given to the vast 

majority of patients included in this study. 

In contrast, both leukocyte and RBC parameters provided additional predictive value. 

Monocytes have long been known for their causal role in plaque initiation, progression and 

destabilization.26 As previously shown, their numbers correlate with the presence of 
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cardiovascular disease, higher IL-6 levels and predict all-cause and cardiovascular 

mortality.27,28 

Recent studies have shown the direct involvement of neutrophils in cardiovascular 

disease. Neutrophil depletion significantly reduced plaque formation in mice.29 Furthermore, 

neutrophils can be found in high numbers in coronary artery autopsy specimens from patients 

who died of myocardial infarction.30 In addition to neutrophil numbers, we found additional 

predictive value of the variation in neutrophil complexity. This can be regarded as an 

indication of a ‘left shift’ or neutrophil activation as frequently seen in acute infections.31 

Morphological changes of neutrophils have also recently been described to correlate with 

cardiac function after acute myocardial infarction in a porcine model.32 The observed ‘left shift’ 

could thus reflect subclinical chronic inflammation due to prevailing coronary atherosclerosis 

or subacute myocardial ischemia. This is supported by the interaction between neutrophil 

numbers and morphology on one side and atherosclerosis and ischemia (or vice versa29) on 

the other. The exact mechanisms relating these neutrophil characteristics to increased 

mortality risk however remain to be elucidated. 

The role of RBCs in atherosclerosis is less clear. Nevertheless, they harbor significant 

predictive value in various diseases. In particular RBC distribution width33–35 (RDW), which 

reflects the variation in RBC volume, has been proposed as a powerful risk indicator of 

mortality.11 RBC volume is inversely related with RBC age; young cells are largest, senescent 

cells are smaller.36 RBC characteristics, particularly the % of large (i.e. young) RBCs that 

independently predicted mortality in our study concurred with a higher proportion of young 

erythrocytes (closely related to RDW, r= 0.21, p<0.001). RBC green (FL1) fluorescence, 

which was associated with worse survival in our study reflects the amount of residual RNA in 

young erythrocytes and reticulocytes. Thus, it could reflect a higher percentage of young 

RBC, but its clinical relevance remains unclear. 

Together with the MCHCr, markers of an immature RBC population with a low reticulocyte 

hemoglobin concentration are thus related to a higher risk of mortality in coronary 

angiography patients. 

To our surprise, we did not find any predictive value of hsTnI in our cohort. High-

sensitivity troponin T (hsTnT) has been reported by several other groups as a potential 
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predictor of mortality, for example in stroke,37 after cardiac surgery38 and after elective 

coronary angiography.5 Possibly, this finding is due to differential prognostic properties of 

hsTnI and hsTnT, as reported by de Antonio et al.39 

High BNP levels are predictive of adverse events in a population of stable CAD 

patients6 and NTpro-BNP has been shown to predict mortality in an unstable CAD 

population.40 Our study is in line with others, showing that the predictive value of NTpro-BNP 

for mortality is superior to hsTnI.41  

Nevertheless, hematological parameters in our study outperformed both NTpro-BNP 

and hsTnI for prediction of mortality. Apparently, blood cell characteristics provide more 

prognostic information than the cardiac-specific biomarkers hsTnI and/or NTpro-BNP.  

The hematological parameters included in our panel are of leukocyte (total leukocyte count, 

neutrophil %, monocyte % and neutrophil complexity CV) and RBC origin (MCHCr, RBC 

green (FL1) fluorescence and % large RBCs). Leukocyte42 and neutrophil counts43 have 

previously been described as prognostic markers for mortality in a population-based cohort. 

Neutrophil count was not included in our analysis due to its collinearity (r=0.68, p<0.001) with 

neutrophil %, which was included as it had a stronger association with mortality.  

The reason that blood cells convey more accurate prognostic information than 

cardiac specific biomarkers could be related to the organ-specificity of hsTnI and NTpro-BNP. 

The end-point in our study was all-cause mortality, meaning that not all deaths were due to 

cardiovascular disease or its consequences per se. Hematological parameters could provide 

a general whole-body overview of an individual’s health status and subsequent prognosis. 

Therefore, we performed an additional analysis for cardiovascular death only. Again, 

hematological parameters outperformed hsTnI and NTpro-BNP (supplemental figure 2). 

However, the number of cardiovascular deaths was low (n = 29) and these data should thus 

be interpreted with caution.  

In this manuscript the clinical parameters were analyzed as a linear predictor, 

meaning that the predictive value of these parameters was kept fixed when adding new 

hematological parameters. This might be a limitation to this study.  

Several groups have investigated the relation between statin use and hematological 

parameters.44,45 In our study our results did not change when adding statin use to the 



 13

prediction model, also there was no interaction between statin use and the predictive value of 

hematological parameters (pinteraction 0.9).  

The past few years many hematological parameters and ratios have been proposed 

for prediction in cardiovascular diseases, such as the leukocyte count,46 monocyte-to-

lymphocyte ratio,10 neutrophil-to-lymphocyte ratio47 and so on. While it is unclear which 

hematological parameter will prove to be the best predictor, it logically makes sense that a 

panel of several hematological parameters is more accurate than a single parameter or ratio 

between two, as proposed in this manuscript. External validation of our findings remains 

indicated. 

 

Conclusions 

Hematological parameters outperform the established biomarkers hsTnI or NTpro-

BNP alone or in combination in predicting all-cause mortality after coronary angiography. 

Hence, readily available hematological parameters may provide a useful tool to improve 

current risk prediction algorithms (possibly integrated within the hematology analyzer linked to 

the electronic patient records) for all-cause mortality in coronary angiography patients. While 

we put every effort in validating our model internally, external validation is warranted to 

investigate the clinical use of these parameters and their extension to other cardiovascular 

disease patient groups.  
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Figure 1. ROC plots of hematological parameters, hsTnI and NTpro-BNP; A) in addition 

to a clinical model for the prediction of all-cause mortality, B) in addition to a clinical 

model plus hematological parameters for the prediction of all-cause mortality 

A) ROC plots of the clinical model and of the clinical model extended with hsTnI, NTpro-BNP 

(or both) and hematological parameters for the prediction of all-cause mortality during 2 years 

of follow-up. B) ROC plots of the clinical model plus hematological parameters and of that 

model extended with hsTnI, NTpro-BNP or both for the prediction of all-cause mortality during 

2 years of follow-up. “Clin + H” stands for clinical model plus hematological parameters.  

Abbreviations: ROC = receiver operating characteristics, hsTnI = high-sensitivity troponin I, 

NTpro-BNP = N-terminal pro-brain natriuretic peptide.  
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Figure 2. Survival plot showing survival by quartiles of predicted risk based on 

hematological parameters, adjusted for clinical characteristics 

The predicted risk of all-cause mortality based on hematological parameters, was grouped 

into 4 quartiles (Q1 to Q4). See methods section for more detailed explanation. The 

multivariable adjusted survival in these quartiles was plotted using Cox regression analysis. 

The HR for Q2 vs Q1 was not significant, for Q3 vs Q1 it was 6.5 [2.0-21.8], p=0.002; the HR 

for Q4 vs Q1 was 11.8 [3.6-38.1], p<0.001. Abbreviations: HR = hazard ratio.  
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Supplemental figure 1. Calibration plots of prediction models  

The predicted vs the observed risk is shown for the clinical model, the clinical model plus 

hematology, the clinical model plus hematology and hsTnI and the clinical model plus 

hematology and hsTnI and NTpro-BNP. The model fit is significantly improved by the addition 

of hematological parameters. Addition of hsTnI results in no improvement. Addition of NTpro-

BNP however does slightly improve model fit further. *p-value from Wald-test comparing the 

Cox model to the previous one (without the added marker in question).  

Abbreviations: hsTnI = high-sensitivity troponin I, NTpro-BNP = N-terminal pro-brain 

natriuretic peptide.  
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Supplemental figure 2. ROC plots of hematological parameters, hsTnI and NTpro-BNP 

in addition to a clinical model for the prediction of cardiovascular mortality 

ROC plots of the clinical model and of the clinical model extended with hsTnI, NTpro-BNP (or 

both) and hematological parameters for the prediction of cardiovascular mortality during 2 

years of follow-up. Abbreviations: ROC = receiver operating characteristics, hsTnI = high-

sensitivity troponin I, NTpro-BNP = N-terminal pro-brain natriuretic peptide.  
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Supplemental figure 3. Optimism-adjusted AUCs for the models used in this 

manuscript.  

These adjusted AUCs were calculated using a bootstrapping approach (n=100). Original and 

adjusted AUCs are shown in the red (adjusted AUC) and blue lines (original AUC). 

Abbreviations: AUC = area under the curve (from receiver operating characteristics analysis). 
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Table 1. Baseline characteristics of UCORBIO patients.  
Overall Alive Deceased p 

n 1913 1836 77 
 

Age, mean (sd) 63.7 (10.9) 63.3 (10.8)  72.5 (8.7) <0.001 
Sex (%) 73.9 73.9 72.7 0.921 
BMI, mean (sd) 27.2 (4.5) 27.2 (4.5)  26.6 (4.8) 0.281 
Diabetes (%) 22.7 22.1 37.7 0.002 
Hypertension (%) 59.0 58.8 63.6 0.464 
Hypercholesterolemia (%) 48.0 48.4 39.0 0.133 
Smoking (%)              0.068 
   Active smoker 25.6 25.9 19.5 

 
   Ex-smoker 26.5 26.0 37.7 

 
   Non smoker 47.9 48.1 42.9 

 
History of ACS (%) 30.6 30.3 37.7 0.215 
History of PCI (%) 27.7 27.8 23.4 0.468 
History of CABG (%) 10.5 10.1 18.2 0.038 
History of CVA (%) 10.5 10.2 16.9 0.091 
History of PAD (%) 11.7 11.3 20.8 0.018 
Kidney failure (%) 2.8 2.5 10.4 <0.001 
     
EF (%)              <0.001 
   Normal 57.0 58.2 32.4 

 
   Mildly impaired 23.2 23.1 25.0 

 
   Impaired 12.1 11.7 20.6 

 
   Poor 7.6 6.9 22.1 

 
Aspirin (%) 58.1 58.0 59.7 0.859 
Clopidogrel (%) 20.8 20.9 18.2 0.658 
Beta-blocker (%) 54.5 54.3 59.7 0.409 
ACE inhibitor (%) 34.8 34.3 48.1 0.018 
Statin (%) 61.6 61.5 63.6 0.802 
Diuretic (%) 28.6 27.4 55.8 <0.001 
     
Coronary Angiography     
Indication (%)              0.222 
   Stable CAD 56.5 56.5 55.8 
   UAP 9.7 9.8 6.5 
   Infarction 28.4 28.4 27.3 
   Other 5.5 5.3 10.4 
Severity of CAD (%)              0.566 
   No CAD 6.3 6.3 6.5 
   Minor CAD 15.2 15.0 19.5 
   Single vessel disease 33.7 33.9 27.3 
   Multi vessel disease 44.9 44.8 46.8 
Procedure (%)              0.613 
   Conservative 31.3 31.1 36.4 
   PCI 62.6 62.8 58.4 
   CABG 6.1 6.1 5.2 
     
hsTnI (ng/mL, median [IQR])  7.4 [3.7, 30.1]  7.1 [3.6, 27.4]  22.3 [5.1, 65.9] <0.001 
NT proBNP (pmol/L, median [IQR]) 86.4 [33.4, 210.5] 83.0 [32.6, 199.8] 260.5 [89.5, 598.4] <0.001 
FU in years (median [IQR])  1.8 [1.0, 2.6]  1.7 [1.0, 2.5]  2.2 [1.8, 2.9] <0.001 

Abbreviations: UCORBIO = Utrecht Coronary Biobank, BMI = body mass index, ACS = acute 

coronary syndrome, PCI = percutaneous coronary intervention, CABG = coronary artery 

bypass grafting, CVA = cerebrovascular accident, PAD = peripheral arterial disease, EF = 

ejection fraction, ACE = angiotensin-converting enzyme, UAP = unstable angina pectoris, FU 

= follow-up, CAD = coronary artery disease, hsTnI = high-sensitivity troponin I, NTpro-BNP – 

N-terminal pro-brain natriuretic peptide.  
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Table 2. Characteristics of hematological parameters included in the prognostic set. 

 
Value Alive Value Deceased 

p-value 
difference HR (95% CI) p-value 

Leukocyte count (10^9 cells/L)  2.32 [1.91, 2.86]  2.42 [1.94, 3.11] 0.224 1.25 (1.12-1.39) <0.001 
MCHCr (mmol/L) 15.73 [15.28, 16.22] 15.24 [14.83, 15.68] <0.001 0.65 (0.50-0.86) 0.003 
RBC green (FL1) fluorescence (AU) 17.52 [17.01, 18.03] 17.76 [17.30, 18.12] 0.011 1.51 (1.15-1.97) 0.003 
% neutrophils (%)  5.97 [5.32, 6.60]  6.29 [5.74, 7.00] 0.001 1.37 (1.07-1.75) 0.012 
% large* RBCs (%)  0.71 [0.46, 1.08]  1.03 [0.71, 2.00] <0.001 1.17 (1.03-1.34) 0.019 
% monocytes (%)  3.18 [2.65, 3.81]  3.58 [2.58, 4.19] 0.075 1.28 (1.04-1.59) 0.023 
Neutrophil complexity CV (%)  7.27 [6.70, 7.89]  7.31 [6.65, 8.31] 0.377 1.31 (1.03-1.67) 0.026 

 
Medians and interquartile ranges of hematological parameters are shown for alive and 

deceased patients. The multivariable adjusted hazard ratios for all-cause mortality are shown 

for each 1-SD increase the hematological parameter and derived from a model containing: 

age, sex, diabetes, hypercholesterolemia, smoking status, indication for angiography, 

angiographic CAD severity, history of PCI, history of ACS, kidney failure, treatment following 

angiography and the other hematological parameters shown in the table. The p-values in the 

far right column correspond to significance of the multivariable adjusted hazard ratios in the 

prior column.  

Abbreviations: MCHCr = reticulocyte mean corpuscular hemoglobin concentration, RBC = red 

blood cell, AU = arbitrary units, CV = coefficient of variation. *>120 fL. 
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Table 3. Measures of improvement of all-cause mortality prediction. 

In addition to clinical characteristics IDI 
p-value 

IDI cNRI 
p-value 

cNRI 

Hematology 0.07 (0.03-0.14) <0.001 0.37 (0.19-0.49) <0.001 
hsTnI 0.00 (0.00-0.00) 0.817 -0.07 (-0.16-0.20) 0.970 
NTpro-BNP 0.02 (0.00-0.06) 0.040 0.03 (-0.14-0.22) 0.625 
hsTnI + NTpro-BNP 0.02 (0.00-0.07) 0.066 0.02 (-0.13-0.20) 0.671 
Hematology + hsTnI + NTpro-BNP 0.09 (0.05-0.17) <0.001 0.44 (0.24-0.53) 0.007 
In addition to clinical and hematological parameters 

hsTnI  0.01 (0.00-0.02) 0.113 0.16 (-0.18-0.31) 0.292 
NTpro-BNP 0.01 (-0.01-0.06) 0.186 -0.08 (-0.25-0.14) 0.777 
hsTnI + NTpro-BNP  0.02 (0.00-0.06) 0.093 -0.03 (-0.23-0.27) 1 

 
Abbreviations: IDI = integrated discrimination improvement, cNRI = continuous net 

reclassification improvement, hsTnI = high-sensitivity troponin I, NTpro-BNP – N-terminal pro-

brain natriuretic peptide. 
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Supplemental table 1. Parameters available and selected in the Utrecht Patient 

Oriented Database (UPOD).  

UPOD parameters 
Not intercorrelated  

(selected for further analysis) 
Leukocyte count X 
Neutrophil count  
Lymphocyte count  
Monocyte count X 
Eosinophil count  
Basophil count  
Neutrophil % X 
Lymphocyte % X 
Monocyte % X 
Eosinophil % X 
Basophil % X 
Red blood cell count  
Hemoglobin concentration X 
Mean corpuscular volume  
Red blood cell distribution width X 
Mean corpuscular hemoglobin X 
Mean corpuscular hemoglobin concentration  
Hematocrit  
Platelet count  
Mean platelet volume X 
Plateletcrit X 
Platelet distribution width X 
Reticulocyte count X 
Reticulocyte %  
Immature reticulocyte fraction  
Mean neutrophil cell size X 
Mean neutrophil complexity X 
Mean neutrophil lobularity X 
Mean neutrophil granularity X 
Mean neutrophil red fluorescence  
CV of neutrophil cell size X 
CV of neutrophil complexity X 
CV of neutrophil lobularity X 
CV of neutrophil granularity X 
CV of neutrophil red fluorescence X 
Mean lymphocyte cell size X 
Mean lymphocyte complexity X 
CV of lymphocyte cell size X 
CV of lymphocyte complexity X 
Mean platelet complexity  
Mean platelet granularity  
CV of platelet complexity  
CV of platelet granularity X 
Mean red blood cell complexity  
CV of red blood cell complexity  
Mean red blood cell green (FL1) fluorescence X 
CV of red blood cell green (FL1) fluorescence X 
Reticulocyte mean corpuscular hemoglobin concentration  
Hemoglobin distribution width X 
Reticulocyte mean corpuscular hemoglobin X 
Reticulocyte mean corpuscular volume  
% red blood cells with hemoglobin concentration <28g/dL  
% red blood cells with hemoglobin concentration >41g/dL  
% red blood cells with volume >120 fL X 
% red blood cells with volume <60 fL  
Reticulated platelet count X 

All available UPOD parameters (n=56) are listed. The ones marked with ‘X’ were not 

significantly intercorrelated with other parameters (n=34) in hierarchically clustered heatmap 

analysis and therefore selected for further analysis.  

CV= coefficient of variation. 


