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Abstract

Population activity measurement by calcium imaging can be combined with cellu-
lar resolution optogenetic activity perturbations to enable the mapping of neural
connectivity in vivo. This requires accurate inference of perturbed and unper-
turbed neural activity from calcium imaging measurements, which are noisy and
indirect, and can also be contaminated by photostimulation artifacts. We have
developed a new fully Bayesian approach to jointly inferring spiking activity and
neural connectivity from in vivo all-optical perturbation experiments. In contrast
to standard approaches that perform spike inference and analysis in two separate
maximum-likelihood phases, our joint model is able to propagate uncertainty in
spike inference to the inference of connectivity and vice versa. We use the frame-
work of variational autoencoders to model spiking activity using discrete latent
variables, low-dimensional latent common input, and sparse spike-and-slab gen-
eralized linear coupling between neurons. Additionally, we model two properties
of the optogenetic perturbation: off-target photostimulation and photostimulation
transients. Using this model, we were able to fit models on 30 minutes of data
in just 10 minutes. We performed an all-optical circuit mapping experiment in
primary visual cortex of the awake mouse, and use our approach to predict neural
connectivity between excitatory neurons in layer 2/3. Predicted connectivity is
sparse and consistent with known correlations with stimulus tuning, spontaneous
correlation and distance.

1 Introduction

Quantitative mapping of connectivity is an essential prerequisite for understanding the operation
of neural circuits. Thus far, it has only been possible to perform neural circuit mapping by using
electrophysiological [1, 2], or electron-microscopic [3, 4] techniques. In addition to being extremely

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/196655399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


involved, these techniques are difficult or impossible to perform in vivo. But a new generation of
all-optical techniques enable the simultaneous optical recording and perturbation of neural activity
with cellular resolution in vivo [5]. In principle, cellular resolution perturbation experiments can
enable circuit mapping in vivo, however several challenges exist.

First, while two-photon optogenetics can be used to drive spikes in neurons with cellular resolution,
there can be variability in the number of spikes generated from trial to trial and from neuron to neuron.
Second, there can be substantial off-target excitation of neurons whose dendrites might pass close to
the targeted neurons. Third, there is a transient artifact from the laser pulse used for photostimulation
which contaminates the activity imaging, preventing accurate estimates of changes in neural activity
at the precise time of the perturbation, when accurate activity estimates are most useful. Fourth, the
readout of activity in the stimulated neurons, and their downstream neighbors is a noisy flourescence
measurement of the intracellular calcium concentration, which is itself an indirect measure of spiking
activity. Fifth, the synaptic input from one neuron is rarely strong enough to generate action potentials
on its own. Thus the optogenetic perturbation of single neurons is unlikely to generate changes in the
suprathreshold activity of post-synaptic neurons which can be detected via calcium imaging on every
trial.

Highly sensitive statistical tools are needed to infer neural connectivity in the face of these unique
challenges posed by modern all-optical experimental technology. To solve this problem, we develop
a global Bayesian inference strategy, jointly inferring a distribution over spikes and unknown con-
nections, and thus allowing uncertainty in the spikes to influence the inferred connections and vice
versa. In the past, such methods have not been used because they were computationally intractable,
but they are becoming increasingly possible due to three recent advances: the development of GPU
computing [6], modern automatic differentiation libraries such as Tensorflow [7], and recent devel-
opments in variational autoencoders, including the reparameterization trick [8, 9]. By combining
these techniques, we are able to perform inference in a large-scale model of calcium imaging data,
including spike inference, photostimulation, low-dimensional activity, and generalized linear synaptic
connectivity.

1.1 Prior work

Bayesian models have been proposed to infer connectivity from purely observational neural datasets
[10, 11], however such approaches do not recover connectivity in the common setting where the
population neural activity is low-rank or driven by external unobserved inputs. Perturbations are
essential to uncover connectivity in such scenarios, and a combination of electrophysiological readout
and optogenetic perturbation has been used successfully [12, 13]. The analysis of such data is
far simpler than our setting as electrophysiological measurements of the sub-threshold membrane
potential of a post-synaptic neuron can enable highly accurate detection of strong and weak incoming
connections. In contrast, we are concerned with the more challenging setting of noisy calcium
imaging measurements of suprathreshold post-synaptic spiking activity. Further, we are the first to
accurately model artifacts associated with 2-photon optogenetic photostimulation and simultaneous
calcium imaging, while performing joint inference of spiking neural activity and sparse connectivity.

2 Methods

2.1 Variational Inference

We seek to perform Bayesian inference, i.e. to compute the posterior over latent variables, z, (e.g.
weights, spikes) given data, x (i.e. the fluorescence signal),

P (z|x) = P (x|z)P (z)

P (x)
, (1)

and, for model comparison, we would like to compute the model evidence,

P (x) =

∫
dz P (x|z)P (z) . (2)

However, the computation of these quantities is intractable, and this intractability has hindered the
application of Bayesian techniques to large-scale data analysis, such as calcium imaging. Variational
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Figure 1: An overview of the data and generative model. A. A schematic diagram displaying the experimental
protocol. All cells express a GCaMP calcium indicator, which fluoresces in response to spiking activity. A
large subset of the excitatory cells also express channelrhodopsin, which, in combination with two-photon
photostimulation, allows cellular resolution activity perturbations [5]. B. A simplified generative model, omitting
unknown weights. The observed fluorescence signal, f , depends on spikes, s, at past times, and the external
optogenetic perturbation, e (to account for the small photostimulation transient, which lasts only one or two
frames). The spikes depend on previous spikes, external optogenetic stimulation, e, and on a low-dimensional
dynamical system, l, representing the inputs coming from the rest of the brain. C. Results for spike inference
based on spontaneous data. Gray gives the original (very noisy) fluorescence trace, black gives the reconstructed
denoised fluorescence trace, based on inferred spikes, and red gives the inferred probability of spiking. D.
Average fluorescence signal for cells that are directly perturbed (triggered on the perturbation). We see a large
increase and slow decay in the fluorescence signal, driven by spiking activity. The small peaks at 0.5 s intervals
are photostimulation transients. E. As in C, but for perturbed data. Note the small peaks in the reconstruction
coming from the modelled photostimulation transients.

inference is one technique for circumventing this intractability [8, 9, 14], which, in combination with
recent work in deep neural networks (DNNs), has proven extremely effective [8, 9]. In variational
inference, we create a recognition model/approximate posterior, Q (z|x), intended to approximate
the posterior, P (z|x) [14]. This recognition model allows us to write down the evidence lower bound
objective (ELBO),

log P (x) ≥ L = EQ(z|x) [log P (x, z)− logQ (z|x)] , (3)

and optimizing this bound allows us to improve the recognition model, to the extent that, if Q (z|x)
is sufficiently flexible, the bound becomes tight and the recognition model will match the posterior,
Q (z|x) = P (z|x).

2.2 Our model

At the broadest possible level, our experimental system has known inputs, observed outputs, and
unknown latent variables. The input is optogenetic stimulation of randomly selected cells (Fig. 1A;
i.e. we target the cell with a laser, which usually causes it to spike), represented by a binary vector,
et, which is 1 if the cell is directly targeted, and 0 if it is not directly targeted. There are three
unknown latent variables/parameters over which we infer an approximate posterior. First, there
is a synaptic weight matrix, Wss, describing the underlying connectivity between cells. Second,
there is a low-dimensional latent common input, lt, which represents input from other brain regions,
and changes slowly over time (Fig. 1B). Third, there is a binary latent, st, representing spiking
activity, which depends on previous spiking activity through the synaptic weight matrix, optogenetic
stimulation and the low-rank latent (Fig. 1B). Finally, we observe spiking activity indirectly through
a flourescence signal, ft, which is in essence a noisy convolution of the underlying spikes. As such,
the observations and latents can be written,

x = f ,

z = {l, s,Wss},
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respectively. Substituting these into the ELBO (Eq. 3), the full variational objective becomes,

L = EQ(s,l,Wss|f ,e) [log P (f , s, l,Wss|e)− logQ (s, l,Wss|f , e)] , (4)

where we have additionally conditioned everything on the known inputs, e.

2.3 Generative model

Neglecting initial states, we can factorize the generative model as

P (f , s, l,Wss|e) = P (Wss)
∏

t

P (lt|lt−1)P (st|st−1:0, e, lt,Wss)P (ft|st:0, et) , (5)

i.e., we first generate a synaptic weight matrix, Wss, then we generate the latent low-rank states, lt
based on their values at the previous time-step, then we generate the spikes based on past spikes, the
synaptic weights, optogenetic stimulation, e, and the low-rank latents, and finally, we generate the
flourescence signal based on past spiking and optogenetic stimulation. To generate synaptic weights,
we assume a sparse prior, where there is some probability p that the weight is generated from a
zero-mean Gaussian, and there is probability 1− p that the weight is zero,

P
(
W ss
ij

)
= (1− p)δ

(
W ss
ij

)
+ pN

(
W ss
ij , 0, σ

2
)
, (6)

where δ is the Dirac delta, we set p = 0.1 based on prior information, and learn σ2. To generate the
low-rank latent states, we use a simple dynamical system,

P (lt|lt−1) = N
(
lt;W

lllt−1,Σ
l) . (7)

where Wll is the dynamics matrix, and Σl is a diagonal covariance matrix, representing independent
Gaussian noise. To generate spikes, we use,

P (st|st−1:0, e, lt,Wss) = Bernoulli (st;σ (ut)) (8)

where σ is a vectorised sigmoid, σi (x) = 1/ (1 + e−xi), and the cell’s inputs, ut, are given by,

ut = Wseet + Wss
t−1∑

t′=t−4
κs
t−t′st′ + Wsllt + bs. (9)

The first term represents the drive from optogenetic input, et, (to reiterate, a binary vector representing
whether a cell was directly targeted on this timestep), coupled by weights, Wse, representing the
degree to which cells surrounding the targeted cell also respond to the optogenetic stimulation.
Note that Wse is structured (i.e. written down in terms of other parameters), and we discuss this
structure later. The second term represents synaptic connectivity: how spikes at previous timesteps,
st′ might influence spiking at this timestep, via a rapidly-decaying temporal kernel, κs, and a synaptic
weight matrix Wss. The third term represents the input from other brain-regions by allowing the
low-dimensional latents, lt, to influence spiking activity according to a weight matrix, Wsl. Finally,
to generate the observed flourescence signal from the spiking activity, we use,

P (ft) = N
(
ft; rt,Σ

f) , (10)

where Σf is a learned, diagonal covariance matrix, representing independent noise in the flourescence
observations. For computational tractability, the mean flourescence signal, or “reconstruction”, is
simply a convolution of the spikes,

rt = A

t∑

t′=0

κt−t′ � st′ + br + Wreet, (11)

where � represents an entrywise, or Hadamard, product. This expression takes a binary vector
representing spiking activity, st′ , convolves it with a temporal kernel, κ, representing temporal
dynamics of flourescence responses, then scales it with the diagonal matrix, A, and adds a bias,
br. The last term models an artifact in which optogenetic photostimulation, represented by a binary
vector et describing whether a cell was directly targeted by the stimulation laser on that timestep,
directly affects the imaging system according to a weight matrix Wre. The temporal kernel, κc,t−t′
is a sum of two exponentials unique to each cell,

κc,t = e−t/τ
decay
c − e−t/τ rise

c , (12)

as is typical in e.g. [15].
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2.4 Recognition model

The recognition model factorises similarly,

Q (s, l,Wss|f , e) = Q (Wss)Q (s|f , e)Q (l|f) . (13)

To approximate the posterior over weights we use,

Q
(
W ss
ij

)
= (1− pij)δ

(
W ss
ij

)
+ pijN

(
W ss
ij , µij , σ

2
ij

)
. (14)

where pij is the inferred probability that the weight is non-zero, and µij and σ2
ij are the mean and

variance of the inferred distribution over the weight, given that it is non-zero. As a recognition model
for spikes, we use a multi-layer perceptron to map from the flourescence signal back to an inferred
probability of spiking,

Q (s(t)|v(t)) = Bernoulli (s(t);σ (v(t))) , (15)

where v(t) depends on the fluorescence trace, and the optogenetic input,

v(t) = MLPs (f(t− T : t+ T )) + DeWsee(t) + bs. (16)

Here, De is a diagonal matrix scaling the external input, and MLP (f(t− T : t+ T )) is a neural
network that, for each cell, takes a window of the fluorescence trace from time t− T to t+ T , (for us,
T = 100 frames, or about 3 seconds) linearly maps this window onto 20 features, then maps those
20 features through 2 standard neural-network layers with 20 units and Elu non-linearities [16], and
finally linearly maps to a single value. To generate the low-rank latents, we use the same MLP, but
allow for a different final linear mapping from 20 features to a single output,

Q (l(t)|f) = N
(
l(t);WflMLPl (f(t− T : t+ T )) ,Γl) . (17)

Here, we use a fixed diagonal covariance, Γl, and we use Wfl to reduce the dimensionality of the
MLP output to the number of latents.

2.5 Gradient-based optimization of generative and recognition model parameters

We used the automatic differentiation routines embedded within TensorFlow to differentiate the
ELBO with respect to the parameters of both the generative and recognition models,

L = L
(
σ,Wll,Σl,Wsl,bs,Σf, τ decay

c , τ rise
c ,br,Wre, pij , µij , σ

2
ij ,D

e,Wfl,MLP, respi, σk
)
,
(18)

where the final two variables are defined later. We then used Adam [17] to perform the optimization.
Instead of using minibatches consisting of multiple short time-windows, we used a single, relatively
large time-window (of 1000 frames, or around 30 s, which minimized any edge-effects at the start or
end of the time-window.

3 Results

3.1 All-optical circuit mapping experimental protocol

We used a virus to express GCaMP6s pan-neuronally in layer 2/3 of mouse primary visual cortex (V1),
and co-expressed C1V1 in excitatory neurons of the same layer. The mouse was awake, headfixed
and on a treadmill. As in [5], we used a spatial light modulator to target 2-photon excitation of the
C1V1 opsin in a subset of neurons, while simultaneously imaging neural activity in the local circuit
by 2-photon calcium imaging of GCaMP6s. With this setup, we designed an experimental protocol to
facilitate discovery of a large portion of the connections within a calcium-imaging field of view. In
particular, twice every second we selected five cells at random, stimulated them, observed the activity
in the rest of the network, and used this information to infer whether the stimulated cells projected to
any of the other cells in the network (Fig. 1A). The optogenetic perturbation experiment consisted of
7200 trials and lasted one hour. We also mapped the orientation and direction tuning properties of
the imaged neurons, and separately recorded spontaneous neural activity for 40 minutes. Our model
was able to infer spikes in spontaneous data (Fig. 1C), and in photostimulation data, was able to both
infer spikes and account for photostimulation transients (Fig. 1DE).
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3.2 Inferring the extent of off-target photostimulation

Since photostimulation may also directly excite off-target neurons, we explicitly modelled this
process (Fig. 2A). We used a sum of five Gaussians with different scales, σk, to flexibly model
distance-dependent stimulation,

Wse
ij = respi

5∑

k=1

exp
[
d2i (xj)/

(
2σ2

k

)]
, (19)

where xj describes the x, y position of the “target” cell j, and each cell receiving off-target stimulation
has its own degree of responsiveness, respi, and a metric, di(xj , yj), describing that cell’s response
to light stimulation in different spatial locations. The metric allows for stimulation to take on an
elliptic pattern (given by Pi’s), and have a shifted center (given by x̂i),

d2i (xj) = (xj − x̂i)
T

Pi (xj − x̂i) (20)

After inference, this model gives a similar spatial distribution of perturbation-triggered activity
(Fig. 2B). Furthermore, it should be noted that because each cell has its own responsiveness and
spatial light absorption profile, if we stimulate in one location, a cell’s responsiveness is not a simple
function of distance (Fig. 2BC). Finally, we allow small modifications around this strict spatial profile
using a dense weight matrix.

3.3 Joint inference of latent common inputs

Our model was able to jointly infer neural activity, latent common inputs (Fig. 3A) and sparse
synaptic connectivity. As expected, we found one critical latent variable describing overall activation
of all cells (Fig. 3B) [18], and a second, far less important latent (Fig. 3C). Given the considerable
difference in magnitude between the impact of these two latents on the system, we can infer that only
one latent variable is required to describe the system effectively. However, further work is needed to
implement flexible yet interpretable low-rank latent variables in this system.
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3.4 The model recovers known properties of biological activity

The ELBO forms only a lower bound on the model evidence, so it is possible for models to appear
better/worse simply because of changes in the tightness of the bound. As such, it is important to
check that the learned model recovers known properties of biological connectivity. We thus compared
a group of models, including the full model, a model with dense (as opposed to the usual sparse)
synaptic connectivity, a model with only low-rank latents, and a simple model with no higher-level
structure, for both spontaneous (Fig. 4A) and perturbed (Fig. 4B) data. We found that the sparse
GLM offered a dramatic improvement over the dense GLM, which in turn offered little benefit over a
model with only low-rank activity. (Note the reported values are ELBO per cell per timestep, so must
be multiplied by 348 cells and around 100,000 time-steps to obtain the raw-ELBO values, which are
then highly significant). Thus, the ELBO is able to recover features of real biological connectivity
(biological connectivity is also sparse [1, 2]).

3.5 Joint inference is better than a “pipeline”

Furthermore, we compared our joint approach, where we jointly infer spikes, low-rank activity, and
weights, to a more standard “pipeline” in which one infer spikes using a simple Bayesian model
lacking low-rank activity and GLM connectivity, then infer the low-rank activity and weights based
on those spikes, similar to [11]. We found that performing inference jointly — allowing information
about low-rank activity, GLM connectivity and external stimulation to influence spike inferences
greatly improved the quality of our inferences for both spontaneous (Fig. 4A) and perturbed data
(Fig. 4B). This improvement is entirely expected within the framework of variational inference, as
the “pipeline” has two objectives, one for spike extraction, and another for the high-level generative
model, and without the single, unified objective, it is even possible for the ELBO to decrease with
more training (Fig. 4B).

3.6 The inferred sparse weights are consistent with known properties of neural circuits

Next, we plotted the synaptic “GLM” weights for spontaneous (Fig. 5A–D) and perturbed (Fig. 5E–
H) data. These weights are negatively correlated with distance (p < 0.0001; Fig. 5BF) suggesting
that short-range connections are predominantly excitatory (though this may be confounded by cells
overlapping, such that activity in one cell is recorded as activity in a different cell). The short range
excitatory connections can be seen as the diagonal red bands in Fig. 5AE as the neurons are roughly
sorted by proximity, with the first 248 being perturbed, and the remainder never being perturbed. The
weights are strongly correlated with spontaneous correlation (p < 0.0001; Fig. 5CG), as measured
using raw fluorescence traces; a result which is expected, given that the model should use these
weights to account for some aspects of the spontaneous correlation. Finally, the weights are positively
correlated with signal correlation (p < 0.0001; Fig. 5DH), as measured using 8 drifting gratings, a
finding that is consistent with previous results [1, 2].
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Figure 5: Inferred connection weights. A. Weight matrix inferred from spontaneous data (in particular, the
expected value of the weight, under the recognition model, with red representing positive connectivity, and
blue representing negative connectivity), plotted against distance (B), spontaneous correlation (C), and signal
correlation (D). E–H. As A–D for perturbed data.

3.7 Perturbed data supports stronger inferences than spontaneous data

Consistent with our expectations, we found that perturbations considerably increased the number
of discovered connections. Our spike-and-slab posterior over weights can be interpreted to yield
an estimated confidence probability that a given connection exists. We can use this probability to
estimate the number of highly confident connections. In particular, we were able to find 50% more
connections in the perturbed dataset than the spontaneous dataset, with a greater than 0.95 probability
(1940 vs 1204); twice times as many highly confident connections with probability 0.99 or higher
(1107 vs 535); and five times as many with the probability 0.999 or higher (527 vs 101). These results
highlight the importance of perturbations to uncovering connections which would otherwise have
been missed when analyzing purely observational datasets.

3.8 Simulated data

Using the above methods, it is difficult to assess the effectiveness of the model because we do not
have ground truth. While the ideal approach would be to obtain ground-truth data experimentally,
this is very difficult in practice. An alternative approach is thus to simulate data from the generative
model, in which case the ground-truth weights are simply those used to perform the initial simulation.
To perform a quantitative comparison, we used the correlation between a binary variable representing
whether the true weights were greater than 0.1 (because it is extremely difficult to distinguish between
zero, and very small but non-zero weights, and), and the inferred probability of the weight being
greater than 0.1, based on a combination of the inferences over the discrete and continuous component.
We chose a threshold of 0.1 because it was relatively small in comparison with the standard-deviation
for the non-zero weights of around 0.4. We started by trying to replicate our experiments as closely
as possible (Fig. 6), i.e. we inferred all the parameters, noise-levels, timescales, priors on weights
etc. based on real data, and resampled the weight matrix based on the inferred prior over weights.
We then considered repeating the same stimulation pattern 50 times (frozen), as against using 50
times more entirely random simulated data (unfrozen), and found that, as expected, using random
stimulation patterns is more effective. As computational constraints prevent us from increasing the
data further, we considered reducing the noise by a factor of 40 (low-noise), and then additionally
reduced the timescales of the calcium transients by a factor of 10 (fast decay) which improved the
correlation to 0.85.

These results indicate the model is functioning correctly, but raise issues for future work. In particular,
the considerable improvement achieved by reducing the timescales indicates that careful modeling of
the calcium transient is essential, and that faster calcium indicators have the potential to dramatically
improve the ultimate accuracy of weight inferences.
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For the “low noise” condition we reduce the noise level by a factor of 40, and for the “fast decay” condition, we
additionally reduce the calcium decay timeconstants by a factor of 10.

4 Discussion

We applied modern variational autoencoder and GPU computing techniques to create a fully Bayesian
model of calcium imaging and perturbation data. This model simultaneously and efficiently extracted
Bayesian approximate posteriors over spikes, the extent of two optogenetic perturbation artifacts, low-
rank activity, and sparse synaptic (GLM) weights. This is the first model designed for perturbation
data, and we are not aware of any other model which is able to extract posteriors over such a wide
range of parameters with such efficiency.

Our inferred weights are consistent with studies using electrophysiological means to measure connec-
tivity in mouse V1 [1, 2]. Further, model selection gives biologically expected results, identifying
sparseness, suggesting that these models are identifying biologically relevant structure in the data.
However, simply identifying broad properties such as sparseness does not imply that our inferences
about individual weights are correct: for this, we need validation using complementary experimental
approaches.

Finally, we have shown that recent developments in variational autoencoders make it possible to
perform inference in “ideal” models: large-scale models describing noisy data-generating processes
and complex biological phenomena simultaneously.
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