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The neural basis of meta-volition
Parashkev Nachev1, R. Edward Roberts2, Masud Husain3 & Christopher Kennard3

Volition is the power to act beyond simple, automatic responses. We can act voluntarily

because we can choose to act otherwise than immediate, external circumstances dictate. But

we can also choose to allow ourselves to be led automatically by events around us. The

neural basis of this higher power to suspend volition— which we term meta-volition—is

unknown. Here we show that inter-individual differences in meta-volition are reflected in

extensive, highly lateralised differences in right frontal white matter as indexed by diffusion

tensor imaging. Paradoxically, participants with enhanced white matter optimality in these

regions are less able to exercise meta-volition, finding it harder to suspend volition. This

suggests volition is dependent less on any hierarchical system of meta-volitional control than

on the extent to which an extensive network subserving higher volitional powers is com-

petitively dominant over others. A fundamentally parallel neural organisation of human

voluntary action at the highest level is thereby implied.
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The power to act voluntarily is volition: the ability to choose
one’s actions1,2. But choice does not stop there. One also
has the power to choose not to choose, deliberately to allow

one’s actions to be determined automatically by surrounding
events. Though other reflexive cognitive processes are the focus of
intense attention3,4, such “volition-on-volition”—meta-volition,
for short—has not been previously investigated. Yet the nature of
its neural instantiation is of crucial importance to the funda-
mental organisation of voluntary action because meta-volition
necessarily lies hierarchically higher than volition. Indeed, it
definitionally lies at the apex of any system of voluntary action
control.

This crucial position of meta-volition allows us to examine a
key question. Within the domain of human voluntary action, the
neural organisation of the brain exhibits structural features sug-
gestive of both serial or “hierarchical”, and parallel or “demo-
cratic” modes of operation5–7. The extent to which one or the
other predominates is often difficult to determine, for the orga-
nisation is generally complex enough to allow either type of
model to be fitted to the data comparably well. There are none-
theless critical points where relatively sharp constraints on the
space of plausible models may be found. Within any hierarchical
model, such a critical point is the apex, the highest node to which
all other nodes are necessarily subjugated. A predominantly
hierarchical neural organisation of volition would therefore pre-
dict the existence of a distinct neural substrate for meta-volition,
explicitly governing the operation of volitional powers.

Meta-volition, however, can also be instantiated by a funda-
mentally parallel class of models, where the power to suspend
volition and to respond involuntarily is simply the outcome of
democratic competition between the neural substrates of actions
differing in their degree of voluntariness, including automatic,
involuntary actions5–8. Here meta-volition emerges as a purely
latent variable, without a distinct neural substrate. A pre-
dominantly parallel neural organisation of volition would there-
fore predict meta-volition to be determined largely by the
competitive balance between neural substrates across the range of
action—from fully voluntary to fully automatic—not by the
operation of an explicit meta-volitional node.

These two approaches to modelling volition make divergent
predictions about inter-individual variations in the neural sub-
strate of meta-volition. In the serial case, greater powers of meta-
volition across individuals ought to be reflected in enhanced
optimality of a dedicated meta-volitional substrate. In contrast, in
the parallel case, such greater powers ought to be reflected in
reduced optimality of the substrates of more voluntary actions
compared with less voluntary ones, allowing the automatic
competitively to overcome the voluntary more easily. A beha-
vioural index of meta-volition combined with a neuroanatomical
tool sensitive to functionally material structural brain differences
across individuals offers a direct test of these divergent possibi-
lities. Making this distinction sets a limit to the maximal level of
the hierarchy of any serial model of volition.

Behavioural paradigms designed to study voluntary action
usually require the suppression of a less voluntary, automatic
action so as to perform a more voluntary, deliberate one. To
derive a behavioural measure of meta-volition we need to do the
opposite: respond automatically within a task where the inclina-
tion to respond deliberately arises as interference, degrading
rather than improving performance. The meta-volitional power
to suppress this inclination—to withhold volition—is then
directly measured by the degree of interference on the automatic
response. For a behavioural task to yield such a measure it must
have two key features. First, optimal performance must depend
solely on an external stimulus that guides the behaviour directly.
Second, there must be nothing voluntary that one can do so as to

improve performance other than to allow the external stimulus to
be guiding. Any specific voluntary contribution to the action can
therefore only be counterproductive overall. This second
requirement is the hardest to achieve, for the only reliable way to
stop the subject from attempting to do something task specific is
to render the critical task specifics unconscious.

These two requirements are satisfied by the asynchronous
saccadic choice paradigm9. Here on each trial participants are
asked to make a saccade, as quickly as they can, to the sudden
onset of either of two peripheral visual targets, dependent on
which one catches their attention (Fig. 1). The asynchrony (δ) of
onset between the two targets is varied within a range of small
values (typically <80 ms) so as to bias responding towards one or
the other target, randomised across trials. At a low δ the bias is
weak and the probability of foveating the first target is closer to
chance (Fig. 2a); at a high δ the bias is strong and the probability
of foveating the first target is closer to 1 (Fig. 2b). The behavioural
bias is thus readily parameterised as a psychophysical “choice”
function—with a characteristic threshold and slope—smoothly
relating the size of the asynchrony to the probability of choosing
the first target. Optimally performed, the only influence on the
saccadic choice in the task would be δ, resulting in a sharp
function ranging from chance to a probability of 1 within the
smallest possible value of δ.

Crucially, participants are instructed not to choose the target
they consciously perceived to have occurred first, but rather to
respond spontaneously, allowing their eyes to be automatically
guided by the cues without any conscious perceptual intervention.
This is possible because the asynchrony at which a consistent
saccadic response bias can be achieved is typically half the
threshold at which the temporal order of target onset can be
consciously perceived9,10. The optimal choice therefore occurs
beneath the threshold of conscious perception on which any
deliberate, volitional choice would necessarily depend. A
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Fig. 1 Diagrammatic sketch of the asynchronous saccadic choice paradigm.
Participants viewed a horizontally arranged array of three targets where the
central target served as the fixation point. On each trial, the participant
made a single speeded saccade in response to the sudden illumination of
one or both of the peripheral targets. On single target trials (50%) only one
randomised peripheral target was illuminated and the subject made a
saccade to it. On double target trials, both peripheral targets were
illuminated but with a small asynchrony (δ) between them, and the
participant was instructed to foveate as rapidly as possible whichever target
caught his attention. Critically, participants were not instructed to choose
the target that they consciously perceived to have occurred first, but to
allow their gaze to shift automatically to whichever target caught their
attention, unconsciously guided by the bias afforded by the asynchrony.
The value of δ on each double saccade trial was selected by an automatic
adaptive algorithm that optimised the information gain about the underlying
function18. Participants performed 400 trials in total after a training run of
50 trials which was not used in the analysis. Details of the performance of
each participant are given in Fig. 3. See Methods for further details

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0346-1

2 COMMUNICATIONS BIOLOGY |           (2019) 2:101 | https://doi.org/10.1038/s42003-019-0346-1 | www.nature.com/commsbio

www.nature.com/commsbio


deliberate choice based on conscious perception of the onset
would therefore hinder performance rather than help it, for at
asynchronies capable of strongly biasing a spontaneous response
the conscious perception of priority will be much weaker. Voli-
tional processes here can therefore only add interference noise to
the low-level, automatic bias produced by the asynchrony.

It is impossible to eliminate such interference completely. On
each trial in addition to the asynchrony, other, undefined factors
will influence which way the subject will go—guesses, sponta-
neous inclinations, etc.—necessarily more complex voluntary
response tendencies than the simple δ bias. Critically, we do not
need to know what these factors are; indeed, we cannot know for
we would have to capture the full spectrum of possible voluntary
patterns of responding: any factor other than δ can only degrade
performance. This degradation is captured psychophysically by
the slope of the choice function11. In participants in whom the
volitional interference is high the slope will be flat (Fig. 2a, b),
where it is low it will be steep (Fig. 2c, d). Our measure of the
capacity to withhold volition, to minimise the interference from
these factors, is then simply the slope of the function: the steeper
the slope in each participant the better the power of meta-
volition.

To examine the link between inter-individual differences in
behaviour and the underlying neural architecture we chose
magnetic resonance diffusion tensor imaging (DTI) of the white
matter, a method increasingly shown to reveal functionally rele-
vant neural variation with great sensitivity12–16. We focussed on
diffusivity measures, in particular axial diffusivity, a regional

marker of white matter optimality that is usually positively cor-
related with the performance of the powers dependent on the
neural substrate. A dominance of areas showing a positive cor-
relation with DTI indices of white matter optimality would
therefore support a serial framework of volition where inter-
individual differences in meta-volition are primarily driven by the
optimality of an explicit meta-volitional node. Conversely, a
dominance of areas showing a negative correlation—i.e. better
performance in those with less optimised white matter—would
support a parallel framework where such differences are primarily
driven by the competitive balance between the substrates of
voluntary and automatic powers, and meta-volition emerges as a
purely latent variable. In these circumstances having an optimised
network subserving voluntary powers reduces performance
because its interference cannot be easily overcome by the net-
works subserving simpler, more automatic powers. Note the
optimality we are referring to is only of the connective efficiency,
not of the operation of the network as a whole, which is naturally
not determinable from white matter parameters alone.

Results
Behaviour. Any behavioural measure is only fruitfully correlated
with brain structure if it shows variation across people. The 13
participants tested yielded a range of functions differing widely in
their slopes (Fig. 3) indicating a range of powers of meta-volition.
To estimate the individual slopes as accurately as possible we
manipulated δ following a Bayesian adaptive algorithm that
tracked performance trial-by-trial, automatically selecting the
asynchrony of successive trials so as to maximise the information
about the underlying psychometric function17. Crucially, this
approach allows us to derive robust estimates of slope, including
Bayesian posterior probability distributions of it for each parti-
cipant (Fig. 3, insets), showing that the variation we are observing
is unlikely to be simply noise within a parameter that is difficult
to estimate. Bayesian methods have been shown to be optimal for
accurate estimation of psychometric functions18.

Imaging. The individual behavioural parameters were then cor-
related with the imaging to identify the plausible neural substrate
of the behaviour. Whole-brain DTI volumes acquired for each
participant with a 1.5 Tesla scanner were used to derive individual
maps of white matter diffusivity. Following nonlinear registration
of the images so as to bring them into a common stereotactic
space, these maps were used to construct a voxel-wise statistical
model where the significance of the correlation between the slope
parameter of the choice function with the diffusivity was eval-
uated for each location in the white tracts common to the group,
controlled for age and sex, and corrected for multiple compar-
isons. This analysis revealed an extensive, highly lateralised region
connecting the right frontal and prefrontal cortex, showing
strongly significant negative correlation of axial diffusivity with
the meta-volitional measure (Fig. 4). The region consisted of five
contiguous clusters: one falling within the right anterior corona
radiata, one underlying the right superior frontal gyrus, and three
falling within the right inferior fronto-occipital fasciculus
(according to the John Hopkins University white matter tracto-
graphy atlas19). The cortex overlying these lateralised regions is
heavily implicated in complex voluntary action, with a later-
alisation in the literature that is congruent with our findings
here20–22. These suggesting that the strength of connectivity of
these areas weakens the power of meta-volition as a consequence
of greater interference from volitional substrates. By contrast, no
areas were found to be positively correlated with meta-volitional
power beyond the threshold of significance, or with measures of
radial diffusivity.
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Fig. 2 Measuring meta-volition with asynchronous choice. The relation
between the probability of choosing the first target and the target
asynchrony (δ) is a monotonically increasing function ranging from chance
to 1. When δ is low the probability of choosing the first target is closer to
chance (plot a) than when δ is high (plot b). The degree to which δ
determines the response is modulated by the degree of interference of
factors other than δ such as volitional factors disposing the subject
arbitrarily to look one way or the other. This modulation is reflected in the
slope of the function. Subjects who are able to minimise such volitional
interference, exercising greater power of meta-volition, show steep
functions determined sharply by the value of δ (plots c, d). Subjects who are
less able to minimise volitional interference, reflecting weaker powers of
meta-volition, show flatter functions less sharply determined by the value
of δ (plots a, b). The slope is thus the measure of meta-volition. See Fig. 3
for plots of the functions of each participant in the experiment
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Discussion
The surprising extent and distribution of the areas identified here
makes it highly improbable that they are critical to any single
function, still less meta-volition, with the behavioural parameters

of which they show in any event an inverse correlation. So broad
a swathe of overlying cortex must underpin a wide range of
voluntary action possibilities, consistent with our model of
interference in the task where any potential voluntary action plan
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Fig. 3 Saccadic choice function plots. On each pair of axes is plotted the final estimate of the underlying psychometric function with the slope value
(β) indicated next to the line. The dots show the values of δ sampled by the algorithm, with the diameter of each dot proportional to the number of
observations at that value. Note that since the algorithm adaptively sampled the function of each subject in response to individual performance, the values
of δ necessarily vary across the group. Note also that the function is not a post hoc fit to the values of δ but rather is estimated adaptively during the run.
The heatmaps within each plot show the densities of the posterior distributions of the slope and threshold parameters at the end of the run. Each function
was estimated on the basis of 200 trials. Detailed data for the 13th participant is not available owing to accidental corruption of the digital file storing the
details of the function
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may cause interference. Equally, the striking lateralisation and
confinement within the frontal lobe make the result unlikely to
reflect a global, functionally non-specific difference in the white
matter that happens incidentally to correlate with the index of
meta-volition.

Nonetheless, we must consider alternative explanations.
Though the task necessarily involves a perceptual component—
detecting the priority of onset of the two cues—no perceptual
process can plausibly account for the observed correlation for five
reasons. First, correlating the threshold of the function—a better
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measure of perceptual sensitivity than slope—with the imaging
parameters yielded no surviving voxels for either a positive or a
negative correlation with either axial or radial diffusivity. Second,
these frontal areas are remote from the posterior areas known to
be principally concerned with visual perception. Third, optimal
performance of the task is below the threshold of conscious
perception9. Fourth, the observed confinement to the frontal lobe
is inconsistent with any localisation that might be expected from
decisive involvement of an attentional network23. Fifth, white
matter optimality is here inversely correlated with performance.

This result is also not plausibly explained by simple motor
aspects of saccade generation. The critical areas of nearby cortex
for saccades—the frontal and supplementary eye fields—are both
bilateral and far more circumscribed than the extensive white
matter differences would suggest24. The low level, collicular cir-
cuits likely to be dominantly engaged by the task, automatically
performed, are of course wholly out of range, being subcortical.
Enhanced optimality of the white matter connections of these
substrates would in any event predict improved performance
rather than the inverse relation observed here.

Finally, behaviour within the scanner—how motionless the
participants were during image acquisition—could cause arte-
factual correlations owing to attenuation of measured diffusivity
from incidentally greater head movement of participants who
were worse at the behavioural task. Such an effect could not
explain our result, however, because any movement-induced false
correlations would either be global or distributed on either side of
a common axis of head movement: clearly this cannot be true of
an isolated right frontal localisation.

In the absence of alternative explanations we are compelled to
conclude that the strong inverse relationship between white
matter optimality in regions serving right frontal cortex and the
power of meta-volition indicates that the highest level of control
of voluntary action is mediated primarily by a competitive pro-
cess between parallel systems subserving actions of varying levels
of voluntariness rather than a hierarchically superior “meta-
volitional system”. The idea of action selection as the outcome of
democratic competition between rival neural ensembles—as ele-
gantly conceptualised in the LATER model25 and its kin—
therefore appears to extend to the highest level of volition. This
empirical finding substantiates the conceptual implausibility of
models of action where decision-making is localised to hier-
archically ever higher substrates, for such models both needlessly
limit the size of the substrate on which volitional powers are
dependent and fundamentally displace rather than answer the
question of how the brain makes the exercise of volitional powers
possible. It offers support instead to democratic models of neural
organisation5 where volition—including the highest power of
suspending volition—arises competitively without the interven-
tion of a discrete hierarchical system of higher control.

Methods
Participants. A group of 13 right-handed participants aged 21–28 (mean 22.9)
with a sex ratio of 6:7 M:F took part in the study. The behavioural task and the
imaging were administered in separate sessions. Informed written consent was
obtained, and the study was approved by the London–West London & GTAC
Research Ethics Committee.

Behavioural task. Participants were seated in front of a cathode ray tube screen
running at 100 Hz vertical refresh rate (thereby allowing 10 ms temporal resolution
between events) with their heads supported by a table-mounted chin rest while
their eye position was continuously monitored by an ASL model 504 high-speed,
pan-tilt, infrared video-based eye tracker (Applied Science Laboratories, Bedford,
MA), sampling at 240 Hz with an ASL model 5000 series controller. They viewed a
horizontally arranged array of three 0.5° targets 8° apart with the central target
serving as the fixation point. No-one but the participant was in the testing room
during data collection. On each of a total of 400 trials, the participant was
instructed rapidly to make a single saccade in response to the sudden illumination

of one or both of the peripheral targets. On single target trials (50% of the total)
only one randomly chosen peripheral target was illuminated and the participant
made a saccade to it. On double target trials, both peripheral targets were illumi-
nated but with a small asynchrony (δ) between them, and the participant was
instructed to foveate as rapidly as possible whichever target caught his attention.
Critically, participants were instructed not to choose the target that they con-
sciously perceived to have occurred first, but to allow their gaze to shift auto-
matically to whichever target caught their attention. The value of δ on each double
saccade trial was selected by an automatic algorithm that chose within the range
0–300 ms in 10 ms steps according to a Bayesian model of the underlying psy-
chometric function with four parameters—guess rate (fixed at 0.5), threshold
(0–300 ms), slope (−2 to 2), and lapse rate (0 to 0.1)—and logistic form. Starting
with flat priors the model updated the posterior distributions of each parameter in
response to performance at the given value of δ (starting at 300 ms) on each trial
and chose the value of δ for the next trial so as to optimise the information gain
about the underlying function10. For each participant, this yielded at the end of the
run estimates of the threshold and slope, together with their posterior distributions.
The algorithm was implemented in Matlab (Mathworks, USA) using a Bayesian
adaptive psychometric methods toolbox developed by Thomas Tanner (https://
www.is.mpg.de/publications/3256). Participants performed 400 trials in total after a
training run of 50 trials which was not used in the analysis. Details of the per-
formance of each participant are given in Fig. 3.

Imaging. DTI data were acquired using a 1.5 T Siemens Magnetom Vision system
at Charing Cross Hospital, London. Four sets of whole-brain diffusion-weighted
volumes were acquired for each participant (12 directions; b= 1000 s mm−2;
48 slices; voxel size 2 × 2 × 3mm3; repetition time (TR)= 8.6 s; echo time (TE)=
94 ms; single shell; ungated) plus four volumes without diffusion weighting (b=
0 s mm−2). A T1-weighted anatomical image was also acquired using a MP-RAGE
sequence (TR= 1160 ms; TE= 4.38 ms; flip angle= 15; voxel size 1 × 1 × 1mm3).

Statistical analysis. Voxel-wise statistical analysis of the diffusion-weighted data
was performed using tract-based spatial statistics, part of FSL26,27. Diffusivity
images were created by fitting a tensor model to the raw diffusion data using
FMRIB’s diffusion toolbox (FDT), and then brain extracted using Brain Extraction
Tool (BET)28. The data were then aligned into a common space (Montreal Neu-
rological Institute) using the nonlinear registration tool FNIRT with the MNI152
template. A mean diffusivity image was created and thinned to generate a mean
diffusivity skeleton representing the centres of all tracts common to the group,
within which further voxel-wise operations were confined. We applied a general
linear model and used permutation-based non-parametric testing with variance
smoothing and age and sex as a covariate of no interest29. Results were considered
significant at p < 0.05 and clusters with over 100 contiguous voxels, corrected for
multiple comparisons using threshold-free cluster enhancement, an approach that
avoids the choice of an arbitrary threshold for initial cluster formation30. No
data were excluded. The null hypothesis is about the relation between brain
structure and psychophysical performance, about which the experimenter can
only be blind.

Code availability. The analysis code is available on reasonable request from the
corresponding author.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The processed datasets are available on reasonable request from the corresponding
author.
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