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Abstract—This paper presents a novel method to estimate
the pitch target parameters of the target approximation model
(TAM). The TAM allows the compact representation of natural
pitch contours on a solid theoretical basis and can be used as
an intonation model for text-to-speech synthesis. In contrast to
previous approaches, the method proposed here estimates the
parameters of all targets jointly, uses 5th-order (instead of 3rd-
order) linear systems to model the target approximation process,
and uses regularization to avoid unnatural pitch targets. The
effect of these features on the modeling error and the target pa-
rameter distributions are shown. The proposed method has been
made available as the open-source software tool TargetOptimizer.

I. INTRODUCTION

The perceived naturalness of synthetic speech depends a
great deal on the generated intonation, i.e., the pitch con-
tour [1]. Most systems for text-to-speech synthesis use some
sort of intonation model that encodes the sequence of samples
of the actual pitch contour in terms of a reduced set of model
parameters. Prominent examples for intonation models are
the Fujisaki model [2], the tilt intonation model [3], or the
target approximation model [4], [5]. For speech synthesis, the
parameters of the used model are first predicted from the
intonational form of the utterance (e.g., pitch accent types
and positions) by means of a machine-learning technique,
and the final pitch contour is then deterministically calculated
(decoded) from these model parameters. In order to train the
prediction algorithm, the pitch contours of natural utterances
need to be encoded in terms of intonation model parameters,
i.e., the model parameters need to be estimated from real pitch
contours.

In this study, we investigated the estimation of the pitch
targets of the target approximation model (TAM) [4], [5].
The TAM has been previously shown to be well suited for
encoding intonation for multiple communicative functions in
parallel [6], and has the potential to generate highly natural
intonation for text-to-speech synthesis on a solid theoretical
basis. The basic principle of the TAM is shown in Fig. 1 for the
German word “versuchen”. Here, the f0 contour measured for
the spoken utterance is shown by the connected gray dots, and
the f0 contour re-synthesized by the TAM is given by the black
dots on the smooth black curve. The TAM assumes that the
surface f0 contour results from the sequential approximation
of pitch targets, which are shown as (oblique) dashed lines
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Fig. 1. Illustration of the target approximation model for the German word
“versuchen” [f5.z’u:.xn] with three syllables. The f0 contour of the natural
utterance is shown as gray dots and the modeled f0 is shown as black dots.
Syllable boundaries are indicated as vertical dashed lines, and pitch targets
as oblique dashed lines.

in Fig. 1. These targets represent the goals of the (log) f0
movement in terms of linear time functions. It is assumed
that there is one target per syllable. The target approximation
is modeled by a 3rd-order critically damped linear system.
Accordingly, the f0 contour can be considered as the output
of a low-pass filter applied to the sequence of syllable-wise
linear target functions.

To determine the target parameters that best reproduce
the f0 contour of a given natural utterance, Prom-On et
al. developed the tool PENTAtrainer1 [5]. This tool first
interpolates the f0 contour of the natural utterance in the
voiceless parts, and then performs an exhaustive search of the
target parameters over a grid of integral numbers to find the
parameter values that minimize the root mean square error
(RMSE) between the modeled and (interpolated) natural f0
contours. The target parameters are optimized sequentially
for one syllable after the other. An alternative method to
estimate pitch target parameters was implemented in the tool
PENTAtrainer2 [6]. However, instead of estimating the TAM
parameters that best reproduce the f0 of one specific utterance,
this tool estimates the best TAM parameters for specific
combinations of “communicative functions” (according to the
Parallel Encoding and Target Approximation framework [7])
that have been assigned to the syllables of a whole corpus of
speech, using the optimization method of simulated annealing.

In the present study we propose an alternative to the
previous methods and show how it improves the modeling of
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the f0 of natural utterances. The main features of the proposed
method are the following:
• The f0 contour in the voiceless parts of the original

utterance is not interpolated before the target estimation,
because it is not guaranteed that the interpolated sections
support the optimal reproduction of the f0 in the truly
voiced sections.

• The targets for all syllables of the utterance are jointly
optimized, instead of for one syllable after the other.

• We argue that different combinations of TAM parameters
can generate almost identical f0 contours. Therefore we
introduce regularization in order to prefer natural or
plausible pitch targets.

• The TAM uses 5th-order systems instead of 3rd-order
systems, as they allow a more accurate modeling of pitch
contours.

In addition, we tested whether shifting the syllables bound-
aries compared to the conventional syllable segmentation
would improve f0 modeling, as hypothesized by Xu and
Liu [8] (which was not the case).

II. METHOD

A. Target approximation model
The TAM assumes one pitch target for each syllable of an

utterance. Within the interval of a syllable, the target x(t) is
defined as the linear function

x(t) = mt+ b, (1)

where m (in st/s) and b (in st) denote the the slope and height
of the target, respectively. The time t is defined relative to
the onset of the syllable for the interval [0, d], where d is
the syllable duration. The f0 (in st) within the syllable is the
response of a critically-damped low-pass filter of the order
N (i.e., the concatenation of N identical first-order low-pass
filters) with the time constant τ , i.e.,

f0(t) = (c0 + c1t+ . . .+ cN−1t
N−1)e−t/τ + (mt+ b), (2)

where the constants c0 . . . cN−1 depend on the initial con-
ditions. These constants are calculated such that f0 and its
derivatives f (n)0 = dnf0(t)/dtn at the beginning of a new
syllable equal the f0 and its derivatives at the end of the
previous syllable, so that the dynamic state of the system is
transferred from one syllable to the next:

c0 = f0(0)− b (3)

cn = (f
(n)
0 (0)− dn

dtn
(mt+ b)−

n−1∑
i=0

ci(−1/τ)n−i
(
n

i

)
i!)/n!, n = 1 . . . N − 1

The derivatives of f0 at the end of a syllable are given by

f
(n)
0 (t) =

dn

dtn
(mt+ b) + e−t/τ
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)
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for t = d. At the beginning of the first syllable of an utterance,
f0 is given as an onset value φ and the derivatives of f0 are
set to zero. As a formal difference to the original quantitative
TAM [5], we used the time constant τ to characterize the linear
system instead of the parameter λ = 1/τ to avoid confusion
with the regularization parameter λ (see below).

B. Estimation of pitch targets

For the estimation of the pitch targets, we assume that the
pitch contour to be reproduced by the TAM is given in terms
of samples f0(k∆t) in the voiced parts of the corresponding
utterance, where ∆t is the sampling interval (typically 10 ms)
and k is the sampling index. We also assume that the syllable
boundaries are given, and hence the target durations. The
unknown parameters of the TAM are the offset bs, the slope
ms, and time constant τs of every syllable (i.e., target) s. These
parameters can be summarized in vectors ps = (ms, bs, τs)

T ,
where s = 1, 2, . . . , S and S is the number of syllables. The
initial f0 value φ of the TAM is set to the first f0 sample of
the utterance.

In contrast to the previous approaches implemented in
PENTAtrainer1 and 2, we propose the joint estimation of all
TAM parameters by regularized optimization. Compared to
the syllable-wise successive estimation of target parameters
in PENTAtrainer1, the joint estimation has a better chance to
find an optimal solution for the whole utterance. In addition,
regularization helps to obtain solutions that are not only
optimal in a mathematical sense but also physiologically most
plausible. The proposed objective function to be minimized is

g(p1 . . .pS) = ||f0(k∆t)− f̂0(k∆t,p1 . . .pS)||22 (5)

+ λ
S∑
s=1

(ps − p)TW (ps − p)

subjected to the linear constraints (acting as search bounds)

 −50 st/s
75 st

12.5 ms

 ≤
 ms

bs
τs

 ≤
 50 st/s

115 st
1 s

 s = 1 . . . S.

(6)
The first term on the right-hand side of Eq. (5) is the squared

Euclidian distance between the original f0 samples in the
voiced parts of the utterance and the corresponding values f̂0
generated by the TAM. The second term is the regularization
term that penalizes parameter values based on their deviation
from the preferred values p = (m, b, τ)T . The degrees of
penalization for the different TAM parameters are adjusted by
the elements of the weight matrix W = diag(wm, wb, wτ ),
and λ determines the overall degree of regularization. For
the present study, the weights were empirically adjusted to
wm = 1 s2/st2, wb = 0.6 st−2, and wτ = 0.2 s2. We
furthermore set m = 0 (static targets are preferred) and
τ = 12.5 ms (this is considered the “typical” time constant).
b was set to the average pitch of the corresponding natural
utterance. With regard to the constraints (6), the bounds for τ
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were adopted from [5], and the bounds for b were adjusted to
cover a frequency range of 76-767 Hz (f0[Hz] = 2f0[st]/12).

In principle, the optimization problem above can be solved
using any method for bound-constrained optimization that
requires only the availability of an objective function but no
derivative information (see [9] for a recent review of this
class of methods). Here we used the algorithm BOBYQA
(Bounded Optimization by Quadratic Approximation) [10],
which is available as a C++ implementation in the modern
open-source software toolkit dlib [11], and generally performs
better than the widely used Nelder-Mead simplex algorithm
[12], according to [9]. Like most optimization methods for
non-convex problems, BOBYQA cannot guarantee to find the
global minimum of the objective function. Accordingly, the
method should be run multiple times with different random
initial parameter values (within the respective bounds), and
the best solution should be selected. Here we used 5S + 10
random initializations per optimization, as the complexity of
the problem increases with the number of syllables S.

Target-
Optimizer

Praat

WAV audio file

TextGrid file with
syllable boundaries

PitchTier file
with f  samples0

CSV file 
with pitch targets

PitchTier file with
model f  contour0

Gestural score file
for VocalTractLab

Optimization
parameters

Fig. 2. Information flow diagram for the TargetOptimizer.

The target optimization described above has been imple-
mented as the GUI-based open-source C++ software “Target-
Optimizer”, which is available at http://www.vocaltractlab.de/
index.php?page=targetoptimizer-download. Fig. 2 illustrates
the information flow for the tool. The input data for the
TargetOptimizer are a TextGrid file with syllable boundaries
and a PitchTier file with the f0 samples to be reproduced by
the TAM. Both files can be created with the software Praat [13]
from the audio file of the original utterance. The optimization
parameters (i.e., the regularization parameters λ and W , and
the bounds of the search space) can be set in the GUI or
as command line parameters. The results of the optimization
can be saved as a PitchTier file with the f0 samples of
the synthesized pitch contour, as a table with pitch target
parameters, or as a gestural score for the articulatory speech
synthesizer VocalTractLab 2.2 ([14], www.vocaltractlab.de).
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Fig. 3. Histogram of syllables in the words of the evaluation corpus.

III. EVALUATION

A. Speech corpus

For the evaluation of the estimation method we used a
corpus of German words spoken by a professional female
speaker. The words are audio samples that supplement a Ger-
man pronunciation dictionary [15] and are available as WAV
files from https://www.degruyter.com/view/product/19839. In
total, we used 1934 words with 4175 syllables, with the
syllable histogram given in Fig. 3. The reason for using
individual words instead of longer utterances was that this
study was embedded in a project aiming to predict the standard
intonation for single German words. For each spoken word,
the syllable boundaries were manually segmented according
to conventional acoustic landmarks using the software Praat
and saved as TextGrid files. In addition, the f0 contour was
extracted for each word and saved as a PitchTier file. Each
automatically determined pitch contour was carefully checked
for inaccurate pitch samples and, where necessary, manually
corrected.

B. Comparison with PENTAtrainer 1

To evaluate the effect of the joint estimation of the pitch
targets as opposed to the previously proposed sequential
estimation, we compared the performance of the proposed
method (here without regularization, i.e., λ = 0) with that of
PENTAtrainer1 for all words of our corpus. The performance
of both methods was quantified using (a) the RMSE and (b)
Pearson correlation coefficient ρ between the pitch samples of
the natural utterances and the corresponding modelled pitch
values. With the proposed method, we got RMSE = 0.557 st
and ρ = 0.946, and with PENTAtrainer1 we got RMSE =
1.028 st and ρ = 0.883. Hence, the joint estimation is a clear
improvement over the sequential estimation.

C. Effect of model order

The previous methods PENTAtrainer1 and PENTAtrainer2
are based on a 3rd-order TAM, i.e., N = 3 in Eq. (2). Here we
examined whether a different system order is possibly more
suitable to reproduce the natural pitch contours in our corpus.
To this end, the pitch contour of each word was estimated for
all N ∈ {2, 3, . . . , 10}, using no regularization again (λ = 0).
The average RMSE as a function of the model order (Fig. 4)
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Fig. 4. Root mean square error between the measured and modeled f0
samples for different orders of the target approximation model.

was lowest for N = 5 instead of N = 3. This happens to
conform with the optimal model order for the reproduction of
articulatory trajectories for lip and jaw movements that was
found previously [16]. Hence, a 5th-order TAM is superior to
a 3rd-order model for both pitch and supraglottal articulatory
movements.
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Fig. 5. Root mean square error between the measured and modeled f0
samples for different shift values for the syllable boundaries.

D. Effect of syllable boundary shift

As hypothesized by Xu and Liu [8], it could be beneficial to
move the syllable boundaries (and hence the temporal domains
of the targets) obtained by the conventional segmentation rules
towards the left by about 20-30 ms. Here we systematically
shifted the syllable boundaries (all boundaries simultaneously)
from their conventional positions by -50 ms to +50 ms (in
steps of 10 ms), and tested the model performance for all
words in the corpus (for λ = 0 and N = 5). Although the
optimal target parameters of individual syllables varied quite
strongly depending of the temporal shift, there was hardly any
overall effect on the RMSE, as shown in Fig. 5. Hence, the
conventional way of segmenting syllables is suitable for the
optimal reproduction of pitch contours.

E. Effect of regularization

The visual inspection of the estimated pitch targets using
the optimization without regularization, i.e., λ = 0, revealed
that the estimated targets were often not plausible in the
sense of the TAM. As an example, Fig. 6 (top) shows the
pitch contour of a three-syllabic word and the corresponding
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Fig. 6. Comparison of measured f0 samples (dots) and modelled f0 contours
(curves) for the word “Ästhetik” [Es.t’e:.tik] without regularization (λ = 0 and
RMSE = 0.303 st, top) and with regularization (λ = 0.75 and RMSE = 0.348,
bottom).

estimated targets for λ = 0. Obviously, the targets exhibit
strong slopes although the pitch contour is rather constant in
each of the first two syllables. Hence, an optimal reproduc-
tion of the original pitch contour has been achieved at the
expense of rather unnatural targets. This effect is explained
by the distributions of pitch target parameters obtained by
un-regularized optimization, as shown in Fig. 7 (top). Here,
parameter values at the bounds of the search space are often
preferred. This effect is counteracted by the regularization
term in Eq. (5), which penalizes extreme values and prefers
slope values around zero, offset values around the mean pitch
of the utterance, and time constants around 12.5 ms. Fig. 7
(bottom) shows the distributions for a regularization parameter
of λ = 0.015, where slope and offset values are now almost
normally distributed. Fig. 6 (bottom) illustrates that regular-
ization yields pitch targets that are far more plausible than
without regularization, while the RMSE gets only marginally
worse (from RMSE = 0.56 st with λ = 0 to RMSE = 0.62 st
with λ = 0.015 for the whole corpus).
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Fig. 8. Scatter plots of the estimated parameters of the target approximation
model for λ = 0 (no regularization).

The observations above indicate that the TAM is possibly
overdetermined from the viewpoint of optimization, i.e., dif-
ferent pitch target parameter combinations can lead to (nearly)
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identical pitch contours. This assumption is also supported by
the scatter plots in Fig. 8, which show that target parameter
values obtained without regularization are strongly correlated.
Hence, regularization is proposed as an essential feature to
estimate natural and plausible TAM parameters.

IV. CONCLUSION

We have demonstrated that an estimation of pitch targets
based on joined regularized optimization using a 5th-order
TAM allows not only the re-synthesis of natural f0 contours
with a smaller error than the previous estimation method of
PENTAtrainer1 but also yields more “natural” pitch targets
in the sense of the model. This makes the TAM a highly
interesting intonation model for future text-to-speech synthesis
systems. In this study, the proposed method has only been
tested with German utterances. In future work it would be
interesting to apply the method to tone languages like Man-
darin Chinese. In this case, the estimated target parameters
should reflect the type of tone associated with the individual
syllables, e.g., the method should ideally yield targets with
positive slopes for raising tones, and with negative slopes for
falling tones. Furthermore, future work is needed to determine
the relation between targets and syllables with multiple morae,
and the robustness of the TAM to ambiguities of syllabic
segmentation in running speech. For example, for Japanese,
Lee [17] found evidence that two consecutive morae may carry
a single pitch target, which is synchronized with the syllable.
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