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ABSTRACT 

This research aims to investigate the mode choice behaviour associated with bike-sharing and 

car-sharing, and the strategies for encouraging their demand in order to pull people away from 

using private cars. In particular, we reveal the factors that could affect the choices of both 

services and explore their associated modal substitution patterns. Key interests are put on air 

pollution‟s impact on bike-sharing choice and the sources of demand for car-sharing (i.e. from 

private car users or public transport users). Moreover, we look at in what ways attitudinal factors 

could influence shared mobility choices and hence identify any implications. Furthermore, we are 

also interested in any measures from the habitual level that may help control private car usage in 

addition to the tactical-level efforts. The mode choice and related data employed in this work 

were collected by a paper-based questionnaire survey launched in 2015 at a Chinese city. 

Discrete choice modelling techniques are extensively applied, including the mixed logit (ML), 

mixed nested logit (mixed NL) and integrated choice and latent variable (ICLV) models. Our 

findings are compared to those from developed countries for any similarities and differences that 

lie between, though by addressing several key research gaps in the field, the findings will also 

significantly enrich the literature on shared mobility choice behaviour as well as disclosing 

implications for practitioners from both developed and developing countries for take-away and 

formulating the corresponding demand management policies. 
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IMPACT STATEMENT 

The work delivers benefits to both inside and outside academia. It aims to fill several knowledge 

gaps and enhance the current understanding of shared mobility choice behaviour. It is one of the 

first works that discloses the effect that air pollution could have on mode choice behaviour; in 

particular, it quantitatively reveals the extent to which an improvement of air quality could be able 

to boost bike-sharing‟s demand. The thesis also provides in-depth evidence regarding the 

sources that the demand for car-sharing would come from, i.e. more private car users or public 

transport users, and discovers the results could vary substantially by trip distance. Moreover, the 

study enriches the literature on how shared mobility choices could be correlated with decision 

makers‟ attitudes, while also demonstrating in value of time estimations the importance of taking 

into account individuals‟ differentiated attitudes. Furthermore, the work extends the results on 

habitual mode switching behaviour from few earlier binary analyses, i.e. car to non-car and 

non-car to car, by revealing the different behaviours from several non-car mode user groups. In 

addition, the work allows a comparison between the findings from this case study in a developing 

country and the common findings in developed countries to reveal any similarities and 

differences which would further enrich the literature. 

With respect to wider benefits outside academia, the research can yield implications for 

practitioners from both developed and developing countries for take-away and formulating 

shared mobility demand management policies as per the discovered evidence on mode choice 

behaviour. In particular, we collaborated with a government-owned local partner, Shanxi 

Transportation Research Institute, to collect travel behavioural data from the case study city, 

Taiyuan (China). Hence, the findings from this research could be directly used by the Municipality 

of Taiyuan to assist policy making in its jurisdiction for the promotion of bike-sharing and 

car-sharing usage while controlling the demand for private car. Besides, private operators which 

plan to deploy shared mobility services in Taiyuan could also take away the results or the 

analysis framework to assess their corresponding market strategies. 

The impact would be brought about through disseminating outputs via conference presentations 

and publications with prestigious peer-reviewed journals. The conferences at which our research 

has been presented include the: 

- 96
th
 and 97

th
 Transportation Research Board Annual Meeting,  
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- 14
th
 World Conference on Transport Research,  

- 44
th
 European Transport Conference,  

- 20
th
 EURO Working Group on Transportation Meeting and,  

- 15
th
 International Conference on Travel Behaviour Research.  

Regarding journal publications: 

- one paper reflecting the work in Chapter 4 has been published at Transportation 

Research Part A,  

- one for Chapter 5 is under the 2
nd

 round of peer-review at Transportation,  

- one for Chapter 6 is under the 1
st
 round of peer-review at Transportation Science and, 

- one for Chapter 7 has been accepted for publication at Transportation Research Record: 

Journal of the Transportation Research Board; 

- another paper reflecting the work in Appendix B has also been published at 

Transportation Research Record: Journal of the Transportation Research Board. 
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CHAPTER 1. INTRODUCTION 

1.1 Background and Motivation 

Although continuously increasing car usage is an issue that has grabbed attention 

across the globe, there are more and more cases popping up in developing countries where the 

number of cars on the road has breached a rational level, causing severe problems with respect 

to congestion and air pollution. By 2017 there were more than 200 million registered cars in 

China, an all-time high figure, leading to 10 of the cities in this country being listed among the top 

25 most congested cities in the world (Zheng, 2017). In Thailand car drivers‟ annual average 

hours spent in peak congestion was the highest, ahead of three other developing countries, 

Columbia, Indonesia and Russia, which ranked next, out of a survey including 38 main countries 

worldwide, excepting China (Lee, 2017). For many big cities in the developing countries, such as 

Delhi (Chattopadhyay, 2017), Beijing (Zhuang, 2018), and Bangkok (Janssen, 2018), the use of 

conventional fossil-fuelled cars has been identified as one of the main sources of urban air 

pollution. In fact, by comparing to the developed world, it can be argued that the rapid increase of 

car usage in developing countries could be attributed to two general causes, the “supply of car 

on road” (i.e. income growth and urbanisation leading to more car purchases which make cars 

an available travel option) and the “demand for car on road” (i.e. relatively under-developed 

public transport or other substitute services resulting in a strong preference for cars). Efforts 

have been made to tackle car usage through both the supply and demand sides, for example the 

notorious license plate restrictions and odd-even day travel schemes which target car availability 

and the expansion and upgrade of the public transport system which aims to offer a good 

alternative travel option. Nevertheless, it has turned out cars are still a highly dominant choice 

with respect to mode of transport in today‟s developing countries, as discussed above. Thus, an 

imperative task would be to explore how to more effectively pull people away from using their 

cars while not compromising regular travel needs, which is a goal that many conventional 

measures have found difficult to address. 

In the last couple of years one emerging concept has attracted massive public attention, 

broadly referred to as shared mobility. Although public transport and taxi could also fit in the 
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definition, nowadays the term more often reminds people of some newly emerged forms of 

service such as bike-sharing
1
, car-sharing

2
, ride-hailing

3
, ride-sharing

4
 and micro-transit

5
 etc. 

(Shared-Use Mobility Centre, 2018). Unlike the traditional public transport these shared mobility 

services usually offer greater flexibility, privacy and comfort; in other words, a generally more 

enjoyable travel experience from a user‟s perspective. Comparing to a private car, these new 

services transform the owner-ship to a user-ship (Kamargianni et al., 2016), and hence there 

could potentially be significant cost-savings by avoiding the need to purchase a car and the 

associated parking and maintenance troubles. As we can see from numerous cases around the 

world, bike-sharing, car-sharing and ride-hailing are among those shared mobility forms that 

have been through the most rapid expansions in these years. While from the perspective of 

tackling congestion and air pollution, bike-sharing and car-sharing may potentially be of greater 

values than ride-hailing services. Apparently, a simply reason is that ride-hailing still relies upon 

private car fleets which are generally fossil-fuel based, whereas bike-sharing is emission-free 

and most of the existing car-sharing services have been operating with electric or hybrid vehicle 

fleets which would certainly be a relief to the urban air pollution challenge (Bakker and Trip, 2013; 

Shaheen and Chan, 2015). Another argument is that ride-hailing could potentially cause far more 

traffic jams than it prevents, as per some of the latest evidence (Clewlow and Mishra, 2017; 

Schaller, 2017; Gehrke et al., 2018; Schaller, 2018). This is mainly because many ride-hailing 

travellers were moving across from public transport services, which they would have used for 

travel if they did not have the option of ride-hailing. Although car-sharing could possibly incur the 

same puzzle by absorbing public transport users, it was found in many cases as effective in 

reducing car ownership (Cervero et al., 2007; Loose, 2010; Martin et al., 2010; Mishra et al., 

2015; Bondorová and Archer, 2017; Vij, 2017), which means the aforementioned “supply of car 

on road” could at least be controlled and in turn result in an ease of congestion. As for 

                                                             
1
 Bike-sharing is a service making bicycles available for shared use to individuals on a short term basis for a fee. 

2
 Car-sharing is a service making cars available for shared use to individuals on a short term basis for a fee. 

3
 Ride-hailing offers a service that picks up passengers and drives to designated destinations for a fee. It uses online 

platforms to connect passengers with drivers who use personal, non-commercial, vehicles. 
4
 Ride-sharing essentially fills empty seats in vehicles. It can be seen in the form of the traditional private carpooling 

(grouping of travellers into a privately owned vehicle) or a real-time ride-sharing service (matching of drivers and 
passengers based on similar destinations through a mobile app before the trip starts). 
5
 Micro-transit is a service model that sits between ride-hailing and traditional fixed-route transit. It is demand-responsive 

but typically uses ad-hoc pickup and drop-off points, and generally operates within limited service zones. 
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bike-sharing, there are also cases demonstrating it could help to take cars off the road, 

especially when trip distance is short (Wang and Zhou, 2017; Xinhua, 2018). 

Both bike-sharing and car-sharing services are developing fast nowadays. Free-floating 

car-sharing is more often seen on the street than the traditional round-trip mode; dock-less 

bike-sharing has emerged and quickly been embraced by travellers alongside those with docking 

stations. Nevertheless, in contrast to the maturity of both services (in terms of operation history, 

business model and public acceptance etc.) in the developed world (Shaheen and Cohen, 2007; 

DeMaio, 2009; Shaheen et al., 2009; Shaheen et al., 2010; Shaheen and Cohen, 2013; Deloitte, 

2017), there are potentially more growth opportunities for developing countries which are 

generally falling behind the time schedule for “clearing certain social, economic, and 

demographic thresholds”, a prerequisite to the development of shared mobility (Bert et al., 2016). 

Following the recent success of both station-based and dock-less services in several Chinese 

cities, India, Thailand and some other developing countries are expected to embrace the next 

wave of the massive bike-sharing deployment (Cheetah Lab, 2018). Car-sharing, though still 

unfamiliar to the wider public in the developing world, is also expected to incur rapid supply 

expansion there in the near future (Dhingra and Stanich, 2014; Carrigan, 2015; Alam, 2016). 

Given such a trend, good demand-side management would be a key determinant in the 

sustainable growth of shared mobility in these emerging markets; since otherwise a large 

program could also turn into a large failure if the demand cannot promptly follow, as the 

experience of Wuhan in China has shown (Wang, 2015). One of the core needs would be to 

understand the factors that could influence the transport mode choice behaviour associated with 

shared mobility and hence the modal substitution pattern that is hidden beneath, in order to find 

ways to encourage the demand for choosing these newly emerged services to conduct daily 

trips. 

Attempts have been made towards such a direction of research; however, questions 

remain. First of all, there is a general concern in terms of a relative shortage of mode choice 

studies focusing on cases in developing countries, and such an oversight has significantly 

hindered the demand-side policy making in those areas due to the frequently revealed 

context-sensitive nature of travel behaviour (Barnes and Krizek, 2005; Tang et al., 2011; Maurer, 

2012; Kamargianni, 2015; Faghih-Imani et al., 2017); in other words, findings and implications 
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from developed countries may not be relevant to the developing world, especially given the 

cultural, geographical and other local differences between them. Secondly, and more importantly, 

there are several critical subjects still awaiting investigation: 

 Air pollution is a rather common challenge in developing countries which often have 

more severe air pollution levels over prolonged periods of time when compared to many 

of the developed nations. It could possibly be a critical factor affecting mode choice 

behaviour, especially when considering whether or not to choose active transport to 

travel. Hence exploring this factor may reveal some new insights and pathways for 

promoting bike-sharing usage. So far the topic has rarely been touched while studies 

have been largely limited to developed countries, for which air pollution is generally a 

less significant concern. 

 Though some evidence has been revealed with respect to the sources of demand for 

ride-hailing services (Clewlow and Mishra, 2017; Schaller, 2017; Gehrke et al., 2018; 

Schaller, 2018), there is still a lack of evidence with respect to car-sharing and its modal 

substitution pattern, especially regarding if more people using car-sharing “reduces the 

use of private vehicles or if, on the contrary, it reduces the number of public transport 

users” (Jorge and Correia, 2013; p.216). This is the information that policy makers are 

usually keen to find out, especially when they need to determine whether or not to 

endorse such a type of service (via subsidies and legislation etc.). 

 Apart from the conventional mode choice research that studies bike-sharing and 

car-sharing preferences there could be further opportunities to enhance the behavioural 

realism of shared mobility choices. One potential path is exploring the influence of 

personal attitudes on individuals‟ mode choice decisions. To date a good understanding 

of how shared mobility choices might be influenced by attitudinal factors is still largely 

absent. 

 Most of the existing mode choice analyses deal with how individuals make trade-offs 

between different attributes. Meanwhile, choice behaviours could also be habitual and 

sometimes mode use decisions may not be sensitive to the surrounding tactical-level 

conditions. Hence, attention has been focused on the habitual change of mode choice, 

usually as a result of the occurrence of life course events. Nevertheless, one puzzle is 
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that a switch from non-car modes to car has occurred more frequently than the opposite 

(Oakil et al., 2011; Clark et al., 2016a), posing an additional challenge to travel demand 

management as to how to tackle such a direction of change; since otherwise, once a car 

is picked up and over time its usage becomes habitual, it becomes even more difficult to 

alter the mode choice behaviour (Ouellette and Wood, 1998). Research in this area may 

generate additional inspiration as to how to control private car usage besides boosting 

the demand for shared mobility services. 

All in all, investigating these issues will not only fill the specific knowledge gaps under 

each of the subjects, but the findings can also disclose the implications for practitioners from 

both developed and developing countries, on the basis of which they can formulate demand 

management policies as per the discovered evidence. 

1.2 Research Questions and Objectives 

Following on from the issues outlined above we specify below the questions which need 

to be answered and the corresponding research objectives. 

The questions that would help to initiate this research are: 

 What are the factors that could affect the mode choices of bike-sharing and 

car-sharing in the case of a developing country? Will there be any key differences 

when compared to the findings in developed countries? 

 What are the modal substitution patterns hidden behind the choices of using 

bike-sharing and car-sharing to travel? In particular, could air pollution have a 

significant influence on bike-sharing‟s modal substitution pattern, and also, will 

more people choosing a car-sharing service reduce the usage of private cars or 

public transport? 

 Are there other important factors impacting shared mobility choices, such as the 

decision-makers‟ personal attitudes; and if so, are there any useful implications? 

 In addition to any tactical-level strategies for promoting the choices of shared 

mobility, could there also be measures at the habitual level to help control private 

car usage? 
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To provide insights to these questions, we identify the following key research objectives, 

which will be addressed throughout this work: 

 Revealing the factors that could affect bike-sharing choice and exploring the 

associated modal substitution pattern; in particular, testing if an increase in air 

pollution level would depress the willingness to cycle and to what extent an 

improvement in air quality would increase the demand for bike-sharing. 

 Revealing the factors that could affect car-sharing choice and exploring the 

associated modal substitution pattern; in particular, demonstrating to what extent 

the demand for car-sharing would come from private car usage as opposed to 

public transport usage. 

 Investigating in what ways attitudinal factors could influence the mode choices of 

both bike-sharing and car-sharing, and identifying the associated implications. 

 Given the frequently observed habitual switch from non-car modes to car, searching 

for any potential counter-measures that could help to reduce such a behavioural 

change to avoid car usage becoming a long-term habit which may offset any 

tactical-level efforts. 

1.3 Research Design and Methodology 

1.3.1 Data Preparation 

Given the aforementioned research goals, we choose to focus on China, as the largest 

developing economy in the world, to conduct a case study. Specifically, Taiyuan, the capital city 

of a northern province Shanxi, with more than 3 million population, is selected for us to analyse 

its citizens‟ mode choice behaviour; while we expect other cities in developing countries can also 

see the evidence and take away insights to assist policy making in their own jurisdictions. Both 

revealed preference (RP) and stated preference (SP) data are collected via a questionnaire 

survey that we launched in 2015. Meanwhile, socio-economic information at individual and 

household levels, travellers‟ attitudes towards various transportation-related issues, and 

retrospective travel behaviour data from several years in the past are also collected. We 

distributed paper questionnaires to 15,000 Taiyuan citizens, with the support from our local 
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partner, Shanxi Transportation Research Institute. Detailed descriptions regarding the case 

study choice, survey design and data collection procedure are provided in Chapter 3. 

1.3.2 Analysis Method 

Discrete choice models are extensively used in this study, although the means of 

application differ according to the research goals that will be subsequently addressed. 

Essentially this modelling technique is underpinned by random utility theory, namely that a 

choice made by an individual is attributed to his/her perceived utility associated with that choice 

(Ben-Akiva and Lerman, 1985). Various advancements have been made since the early era, 

such as the joint estimation of RP/SP datasets to compensate for each other‟s bias (Hensher 

and Bradley, 1993; Ben-Akiva et al., 1994; Bradley and Daly, 1997; Polydoropoulou and 

Ben-Akiva, 2001), an approximation to many model forms via the use of a more flexible mixed 

logit (ML) model (McFadden and Train, 2000; Hensher and Greene, 2003), a further 

advancement to a mixed nested logit (mixed NL) structure to address the confounding effect 

when introducing more than one type of error component in a single utility function (Hess et al., 

2004; Ortúzar and Willumsen, 2011), and an increasingly adopted integrated choice and latent 

variable (ICLV) framework for explicitly modelling the unobserved heterogeneity (Ben-Akiva et al., 

2002; Walker and Ben-Akiva, 2002; Bolduc et al., 2005; Bolduc and Alvarez-Daziano, 2010). All 

of these features will be reflected in this research, with more details regarding the modelling 

frameworks and specifications given in later chapters. 

1.4 Innovations and Expected Contributions 

We expect this work to contribute to a number of dimensions that reflect the gaps 

identified earlier. First of all, it will allow a direct comparison between the findings from this case 

study in a developing country and the common findings from the literature carried out in 

developed nations. Any key similarities and differences that are revealed will add direct evidence 

to the literature regarding whether the context-sensitive nature of travel behaviour is widely 

evident (Barnes and Krizek, 2005; Tang et al., 2011; Maurer, 2012; Kamargianni, 2015; 

Faghih-Imani et al., 2017), and hence if there are any important considerations for policy 
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practices. Next, our research on bike-sharing and car-sharing choice behaviour will allow 

practitioners to clearly see the modal substitution patterns as a result of the different measures 

that they could possibly adopt to promote shared mobility demand, and meanwhile, there will 

also be a focus on how to more effectively decrease private car usage, which is a key pursuit in 

today‟s urban transportation planning. Moreover, recall the two specific puzzles for which we aim 

to provide important answers in the field, i.e. to what extent an improvement in air quality would 

increase bike-sharing demand and if more people using car-sharing would reduce private car or 

public transport usage more significantly. The findings are not only expected to enrich the 

literature around these topics, but can also serve as useful insights to support relevant policy 

designs in the real world. Then, through a robust integrated modelling analysis, the impacts of 

various attitudinal factors on bike-sharing and car-sharing choices will be revealed, which could 

enhance our current understanding of shared mobility choice behaviour. Additionally, in this part 

of the work, a further insight will be offered to enrich the literature, around how much difference 

the presence of personal attitudes could make to the estimates of value of travel time savings 

(VTTS); in other words, this will reveal whether different VTTS estimates should be derived for 

policy use when individuals have differentiated attitudes. Finally, the analysis of mode switching 

behaviour can disclose measures from the habitual level that may help control private car usage 

in addition to the aforementioned tactical-level insights. Moreover, by exploring the possibly 

different mode switching behaviour among different non-car mode users, policy implications 

specific to each of these mode user groups could be acquired. 

An additional innovative aspect of this work is the adoption of an effective yet rarely 

utilised modelling framework, i.e. the mixed NL choice model (Hess et al., 2004; Ortúzar and 

Willumsen, 2011). The application of a mixed NL framework will not only help distinguish the 

inter-alternative correlation and panel effect as in our case, but any publications containing the 

use of this approach may also help a wider range of researchers notice and address this issue in 

their future studies. 

1.5 Thesis Outline 

The thesis has the following structure: 
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Chapter 2 aims to shed light on the aforementioned research gaps by going over some 

of the latest literature on various topics: our current understanding of bike-sharing choice 

behaviour, car-sharing choice behaviour, relevant research on attitudinal factors and shared 

mobility choices, as well as the mode choice change from a habitual perspective. A concluding 

remark is provided summarising the research opportunities. 

Chapter 3 introduces the data inputs for this work. In the beginning we explain our case 

study choice. Next, a thorough description is given on the survey design with a particular focus 

being put on the design of the SP mode choice experiment. We also present details of the 

sampling approach and data collection procedure in the end. 

Chapter 4 studies the factors that could affect bike-sharing choice and the associated 

modal substitution pattern. A mode choice analysis adopting a mixed NL framework is developed 

followed by a scenario analysis using sample enumeration to simulate the modal split changes 

under different policy pathways. Pooled RP and SP mode choice data from short-dist (within 2km) 

trips are employed for this study. In particular, we test a hypothesis that an increase in air 

pollution level would decrease the willingness to cycle, and question to what extent an 

improvement in air quality would increase the demand for bike-sharing. In the end, we derive the 

key implications for policy making based upon all the findings. Note also that since there is a core 

interest in air pollution, we include in Appendix B complementary research on air pollution‟s 

impact on mode choice behaviour by making use of the collected seasonal RP mode choice data 

(though the sample size is much smaller) to enrich the insights. 

Chapter 5 shares a similar strategy of research to Chapter 4 (apart from not having the 

seasonality study), but focuses on the choice behaviour of car-sharing. Besides, this part of the 

work employs the mode choice data from mid-dist (2km to 5km) and long-dist (more than 5km) 

trips to reflect the common scenarios for car-sharing usage. We investigate under each of the 

distance cases, the extent to which increased demand for car-sharing would come from private 

car or public transport usage. In addition, a number of informative indicators (e.g. VTTS, direct 

and cross point elasticity) are derived to enrich the findings and policy take-away. 

Chapter 6 explores in what ways the choices of using shared mobility services could 

possibly be influenced by personal attitudes. An ICLV model is adopted to study the effects of 

three attitudinal factors on the SP choices of bike-sharing and car-sharing to conduct commute 
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trips, while simultaneously investigating the causes associated with each of the attitudes. 

Moreover, the study further reveals how the VTTS estimation for shared mobility could be 

affected by the presence of personal attitudes, especially when their interactions with travel time 

are captured. 

Chapter 7 addresses the habitual change of mode choice. The work studies the mode 

switching behaviour from various non-car modes to car, in order to identify opportunities for 

policy intervention to hold back such a habitual change towards car usage. Retrospective 

commute mode choice and life course event data over four observation periods are employed. 

We apply first a mixed binary logit regression model to study the mode switching behaviour from 

car to non-car modes, and introduce a set of “mirror models” (also mixed binary logit) which 

evaluate the mode switches from different non-car modes to car. 

Chapter 8 concludes the work. A review of the research objectives, data inputs, analysis 

methods and key results is given at first, followed by a comparison of the findings from this case 

study and the common findings from the literature for developed countries to reveal any 

similarities and differences. An overall evaluation is then made of the wider implications of this 

research for the real world. To conclude we consider the limitations of this work and the possible 

opportunities for conducting further research. 
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CHAPTER 2. LITERATURE REVIEW 

This chapter reviews the literature on four individual topics, namely bike-sharing choice 

behaviour, car-sharing choice behaviour, attitudinal effects on shared mobility choices and 

habitual mode choice changes, in order to provide in-depth evidence to the earlier proposed 

knowledge gaps. For the first topic in section 2.1, since numerous studies have evaluated the 

choice of cycling-based modes including also bike-sharing, we structure the section by 

presenting a broad range of factors with their widely discovered effects, to give a full picture of 

our current understanding to the topic. Next, for the choice of car-sharing in section 2.2, we focus 

more on some recent works to discuss the puzzle regarding the source of demand for 

car-sharing given its great importance to our research and also due to a literature review study 

has already summarised the earlier research activities on such a topic. Then, in section 2.3 and 

2.4, our sight is extended to further look at the mode choice behaviour as a result of attitudinal 

factors and at a habitual level respectively. At last, a final discussion is provided in section 2.5 to 

shed light on the current knowledge gaps after reviewing all the above literature. In addition, the 

insights gained from this chapter could help us design the questionnaire survey which will be 

presented next in Chapter 3 and later on could also contribute to the specification of the mode 

choice models. 

2.1 The Choice of Bike-sharing 

Existing literature has identified a variety of factors that could affect bike-sharing choice 

as well as the general cycling usage. These many factors can be grouped into three categories: 

1. Natural and built environmental conditions, 2. Trip and mode related attributes, and 3. 

Socio-economic characteristics. 

Natural environmental conditions, such as weather, temperature, air-pollution, seem to 

heavily affect cycling choice. Some researchers incorporated different weather conditions (e.g. 

sunny, rainy or snowy) in their mode choice models (Daito and Chen, 2013; Kamargianni, 2015; 

Caulfield et al., 2017; Sun et al., 2018; Wang et al., 2018), while others also accounted for 

temperature impact (Parkin et al., 2008; Saneinejad et al., 2012; Motoaki and Daziano, 2015; De 

Chardon et al., 2017; El-Assi et al., 2017). In general, these studies came to similar conclusions; 
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namely that adverse weather conditions and colder temperature would significantly discourage 

travellers from cycling. Many studies also analysed the impact of topography. In particular, 

steeper roads would significantly discourage the choice of bicycle (Waldman, 1977; Rietveld and 

Daniel, 2004; Parkin et al., 2008; Mateo-Babiano et al., 2016; De Chardon et al., 2017; Sun et al., 

2018), although Motoaki and Daziano (2015) argued that the impact of hills on the cycling route 

choice heavily depended on the fitness of cyclist. Additionally, the effect of air pollution has been 

studied, but, to our knowledge, among the vast number of studies for developed countries, only 

Zahran et al. (2008) covered this effect via a cross-sectional analysis at the US county level and 

found pollution could decrease the number of cycling commuters on the road. 

About built environmental and land use impacts, cycling-related infrastructures have 

attracted significant attention in the existing literature. Many studies have focused on the 

importance of increasing the number of cycle lanes and bike-sharing stations in promoting the 

use of cycling or bike-sharing, in terms of reduced travel time, increased safety and convenience 

(Akar and Clifton, 2009; Larsen and El-Geneidy, 2011; Hankey et al., 2012; Daito and Chen, 

2013; Kamargianni and Polydoropoulou, 2013; Deenihan and Caulfield, 2015; Kamargianni, 

2015; Maness et al., 2015; Wang et al., 2015; Mateo-Babiano et al., 2016; De Chardon et al., 

2017; El-Assi et al., 2017; Nikitas, 2018). Nevertheless, there are also papers showing such an 

understanding is not widely held by revealing in their cases a highly insignificant relationship 

between the number of cycling facilities and cycling choice (Rodrı́guez and Joo, 2004; Moudon 

et al., 2005; Xing et al., 2010). Meanwhile, a few other factors have been occasionally looked at 

and their correlations with cycling usage were also found with significance. For instance, living in 

a densely populated community, the presence of a university campus nearby and having parks 

along the journey route could all potentially encourage people to choose cycling-based modes to 

travel (DeMaio and Gifford, 2004; Rodrı́guez and Joo, 2004; Barnes and Krizek, 2005; Moudon 

et al., 2005; Parkin et al., 2008; Maurer, 2012; Whalen et al., 2013; Kamargianni and 

Polydoropoulou, 2014; Sun et al., 2018; Wang et al., 2018), and moreover, living within a 

proximate distance to public transit stations could be particularly important to bike-sharing usage 

(Raux et al., 2017; Wang et al., 2018). 

Trip-related characteristics are also important factors that determine mode choices. First, 

with regard to trip purpose, cycling has been found to be used for recreational trips in several 
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studies (Moudon et al., 2005; Xing et al., 2010; Mateo-Babiano et al., 2016). While others, such 

as Faghih-Imani et al. (2017) showed the result could depend on time of the day, i.e. noon and 

evening trips were often associated with recreational purposes and morning trips with commute 

purposes; Sun et al. (2018) demonstrated specifically for bike-sharing that the registered 

members would use it for commute and non-members would use for recreation. Meanwhile, 

there is also a study arguing the usage of bike-sharing could be open to any purposes, rather 

than sticking to any one type in particular (Raux et al., 2017). Next, since bicycles move more 

slowly than motorized vehicles, there is overwhelming evidence confirming the negative 

relationship between cycling choice and trip distance (Parkin et al., 2008; Zahran et al., 2008; 

Akar et al., 2013; Wang et al., 2015; Faghih-Imani et al., 2017; Du and Cheng, 2018), and Xing et 

al. (2010) even argued that perceived trip distance had the most significant influence compared 

to any other types of factors. As for mode-related characteristics, the travel time and cost 

associated with a potential cycling trip generally have a negative correlation with its mode choice 

and both effects have been extensively studied (Kamargianni and Polydoropoulou, 2013; 

Kamargianni and Polydoropoulou, 2015; Ricci, 2015; Du and Cheng, 2018), though occasionally 

longer travel time may pose a positive utility on cycling usage (Whalen et al., 2013). Other 

attributes that are specific to a bike-sharing service and could potentially improve its usage 

include lower membership cost, shorter access and egress time, higher availability rate of 

in-station bicycles, longer operation hours and even helmet provisions (Lin and Yang, 2011; 

Fishman et al., 2015; Ahillen et al., 2016; De Chardon et al., 2017; Du and Cheng, 2018). 

Socio-economic characteristics have been widely studied, with age and gender 

emerging as among the most influential factors, i.e. younger generations and males are usually 

keener to cycle (Shafizadeh and Niemeier, 1997; Rodrı́guez and Joo, 2004; Moudon et al., 2005; 

Parkin et al., 2008; Baker, 2009; Akar et al., 2013; Fishman et al., 2015; Ricci, 2015; Wang et al., 

2015; Raux et al., 2017; Nikitas, 2018). Meanwhile, occupation and economic status may also 

play important role in determining cycling choice. Xing et al. (2010) showed that travellers with 

lower income cycled more because those with a higher income would attach higher values on 

their time, and thus, chose faster modes. Faghih-Imani et al. (2017) reached similar conclusions 

by arguing that the unemployed usually preferred cycling. However, some studies found that 

higher cycling rate could be associated with those that have better economic or social status, 
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possibly as a result of pursuing healthier lifestyles (Parkin et al., 2008; Zahran et al., 2008; 

Fishman et al., 2015; Kamargianni, 2015; Raux et al., 2017). Additionally, cycling was found to 

be a popular mobility choice among students in several cases (Baltes, 1996; Whalen et al., 2013; 

Wang et al., 2015; Du and Cheng, 2018). Vehicle ownership seems to be a more direct 

determinant of mode choice. In general, owning a car could potentially decrease the incentive or 

the need to cycle, either for educational (Rodrı́guez and Joo, 2004) or work-related purposes 

(Parkin et al., 2008). However, such an inverse relationship might also be attributed to 

collinearity with other factors; that is those who do not own vehicles and have to cycle could do 

so because of their disadvantaged income status that makes the purchase of a vehicle 

unaffordable; or the travel distance was too short to make it worthwhile to own a car (Baltes, 

1996). Other socio-economic factors that are positively associated with cycling usage can 

include a good health or body status (Moudon et al., 2005) and a well-educated background 

(Xing et al., 2010). 

Another popular approach to study socio-economic characteristics (instead of assuming 

their direct effects on mode choice utilities) is exploring systematic taste heterogeneity (Amador 

et al., 2005; Cherchi and Ortúzar, 2011). More insightful results could be gained by also taking 

into account this effect. In the case of cycling, for instance, it reveals how different 

socio-economic groups would react to the impacts of natural and built environmental conditions, 

as well as trip and mode attributes, e.g. female travellers were still reluctant to cycle even if in 

sunny days which in general could increase the attractiveness of cycling (Kamargianni, 2015). 

Although many studies have assessed cycling and bike-sharing choices, there are still 

gaps to be addressed. First of all, there is a general lack of mode choice studies in developing 

countries, particularly with respect to the choice of bike-sharing. The results in developed 

countries may have limited implications for developing countries since different local 

characteristics could lead to different results and conclusions. The existing literature has 

demonstrated such differentiations even among works carried out within developed countries 

and some studies directly showed the context-specific nature of travel behaviour through 

simultaneously studying multiple cases (Barnes and Krizek, 2005; Tang et al., 2011; Maurer, 

2012; Kamargianni, 2015; Faghih-Imani et al., 2017). Next, more specifically, there is a lack of 

literature focusing on the impact of air pollution, which is generally a less important concern in 
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developed countries. However, it might be essential to take into account such effects in the 

developing world where air pollution is a much more severe challenge. A recent study should be 

acknowledged (Campbell et al., 2016), in which the authors took into account air pollution‟s 

impact when using SP survey data from 623 participants and a multinomial logit model to study 

bike-sharing choice in Beijing. In our research, despite having a different scope and methodology 

as well as a larger sample, we will also extend further the findings on air pollution by revealing its 

effect on the modal substitution pattern via a scenario analysis (see Chapter 4). 

2.2 The Choice of Car-sharing 

Given the expected benefits of car-sharing, many research attempts have also been 

made with respect to the demand for using this service. Jorge and Correia (2013) conducted a 

literature review study summarising all the important works by the time. One of the gaps they 

identified was a lack of clear evidence on the modal substitution pattern, and in particular, if more 

people using car-sharing “reduces the use of private vehicles or if, on the contrary, it reduces the 

number of public transport users (p.216)”. This is the information that policy makers are keen to 

find out, especially when they need to determine whether or not to endorse car-sharing (via 

subsidies, legislation etc.). Later, Le Vine et al. (2014) investigated how an introduction of 

car-sharing service could influence car and public transport usage. The work showed the answer 

to such a puzzle could be a joint outcome of travellers‟ long-term and short-term behaviours; in 

other words, tactical-level behaviours at the short-run (i.e. mode choice for a trip, such as 

car-sharing, car or public transport) could be influenced by strategic-level behaviours at the 

long-run (i.e. mobility resource choice, such as car ownership and subscription to a car-sharing 

program).
6
 Nevertheless, given the limited amount of car-sharing choice data collected, the 

contribution of this work is more on the joint analytical framework it developed, rather than 

providing empirical answers to the aforementioned puzzle. Kopp et al. (2015) also explored 

modal substitution pattern by comparing the travel behaviour across a car-sharing member 

group and a non-member group. They found public transport demand was similar, while the 

demand for motorized private transport was significantly lower in the member group. However, 

                                                             
6
 Recall that our survey only focused on the mode choice behaviour at a tactical level, and this is due to almost all of the 

car-sharing services in China do not require regular membership fees or any long-term commitments which make the 
effect of strategic choice trivial. 
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they noticed that the result could be biased due to the sampled car-sharing user group already 

had a low rate of motorized private transport usage before joining the car-sharing scheme, and 

hence, further research was called for. One earlier attempt not mentioned by Jorge and Correia 

(2013), was made by Martin and Shaheen (2011), in which the authors looked directly at their 

survey statistics and saw car-sharing‟s impact on travel pattern was rather complex, where 

members from some organizations increased their public transits, while others shifted away, and 

the magnitudes were largely variable across member groups. In general, more robust evidence 

on modal substitution pattern is needed to better inform policy decisions. Unfortunately, to our 

best knowledge, the puzzle has remained overlooked apart from the few studies mentioned 

above, though some more recent works have shown up and significantly enhanced our 

understanding of car-sharing choice behaviour. Their main contributions are highlighted below. 

Carteni et al. (2016) used a binomial logit choice model to analyse the mode choice 

between car-sharing and private car. The key finding from the choice model and the follow-up 

elasticity analysis was that travel cost has a much greater impact than travel time on affecting 

car-sharing choice. Similarly, in De Luca and Di Pace (2015), travel cost was identified as one of 

the critical factors alongside access time to car-sharing spots, trip frequency, car availability and 

the type of trip etc. Moreover, De Luca and Di Pace (2015) showed via a cross-elasticity analysis 

that a change in car-sharing travel cost has much larger effect on the probability to choose to 

carpool than on the probabilities to choose bus and private car. Martinez et al. (2017) highlighted 

an important conclusion that the preference towards car-sharing would increase with trip length; 

in other words, the service could more likely be chosen as trips became longer. Becker et al. 

(2017) put particular attention on the socio-economic groups from which the usage of 

free-floating and station-based car-sharing services could come from. The results demonstrated 

both schemes could attract younger and educated people, which were in line with the key 

findings from the other two studies dedicated to revealing the influence of socio-economic factors 

on the general car-sharing choice (Dias et al., 2017; Prieto et al., 2017). However, a critical 

difference was emphasised such that a free-floating service was normally used by those higher 

incomes earners whose home location poorly served by public transportation whereas the 

station-based was preferred by self-employed workers who would appreciate the flexibility of 

using a car when needed. Apart from those rather fundamental factors and effects, a few more 
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novel subjects were also explored, such as a parking price increase (Balac et al., 2017), 

introducing autonomous vehicle fleets (Winter et al., 2017), placing a station outside a 

technology firm (El Zarwi et al., 2017), all of which could potentially boost car-sharing adoption. 

Some studies applied more advanced modelling techniques to investigate the impacts of 

latent variables/unobserved attributes on car-sharing choice, such as Efthymiou and Antoniou 

(2016), Kim et al. (2016), Kim et al. (2017a), Kim et al. (2017b) and Vinayak et al. (2018), which 

will be reviewed next in section 2.3 when looking at the attitudinal effect on mode choice 

behaviour. Many earlier works that involved factors affecting car-sharing choice and demand 

have been captured by Jorge and Correia (2013) and for which repeated reviews should be 

avoided, for example Catalano et al. (2008), Zheng et al. (2009), Morency et al. (2012), Ciari et al. 

(2013) and De Lorimier and El-Geneidy (2013), though two of them (Catalano et al., 2008; Zheng 

et al., 2009) also attempted to study modal substitution patterns; nevertheless, both works have 

rather specific focuses (i.e. Catalano et al. (2008) analysed 500 commuters‟ morning rush-hour 

trips heading to city centre; Zheng et al. (2009) studied car-sharing in a university campus) and 

more research would certainly be needed to offer broader insights. In addition, there were two 

other studies aiming at assessing the choice between electric and hybrid vehicle types within a 

car-sharing system (Zoepf and Keith, 2016; Wielinski et al., 2017), which should also be 

acknowledged. 

Overall, the existing studies offered valuable insights on car-sharing choice behaviour, 

though more effort is needed to understand better the modal substitution pattern hidden behind a 

potential increase of car-sharing‟s demand. Our following research aims to contribute to such a 

domain. Particularly, we would like to focus on a later phase for the case study in China 

(comparing to Le Vine et al. (2014) on car-sharing‟s market entry phase due to the matter of 

strategic choice), where membership subscription is not a universal concern and the key 

challenge is likely to be how to promote car-sharing usage; in other words, how could policy 

interventions effectively step in and make car-sharing a more popular choice among various 

daily mobility options. 
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2.3 Attitudinal Effects on Shared Mobility Choices 

So far, numerous studies have been made with regard to the decisions to use 

bike-sharing and car-sharing for daily mobility. However, there are further opportunities to 

enhance the behavioural realism of shared mobility choices, and one potential path is by 

exploring the influence of personal attitudes on mode choice decisions. 

 Research in this dimension has substantial benefits, i.e. explicitly modelling 

unobserved heterogeneity, increasing estimation efficiency and goodness-of-fit, enhancing 

behavioural realism, and extending policy relevance (Abou-Zeid and Ben-Akiva, 2014), and has 

already been found in various mode choice related topics. For instance, Johansson et al. (2006) 

took into account travellers‟ attitudes towards a number of issues, such as environment, safety, 

comfort, convenience and flexibility, to help explain the choices of car and public transport. 

Paulssen et al. (2014) studied a similar set of mode choices and attitudes, and they even further 

brought in and analysed the impacts of personal values (i.e. the factors that “lie at the heart of an 

individual‟s belief system”) on both mode choices and attitudes. Apart from car and public 

transport, Sarkar and Mallikarjuna (2018) discovered also the significance of flexibility perception 

in affecting the demand for two and three-wheeled motorcycles. Kamargianni et al. (2015) found 

that the mode choices when travelling to school could be influenced by teenagers‟ attitudes 

towards safety, green lifestyle and physical activity. There were also direct comparisons on 

model performance where mode choice models by adding in latent attitudes and perceptions 

always outperformed the corresponding base models in terms of predictive power (Yanez et al., 

2010; Chen and Li, 2017). In addition, some similar practices can be found in Bolduc et al. (2008), 

Daziano and Bolduc (2013), Kim et al. (2014), Beck et al. (2017) and Smith et al. (2017) on 

vehicle type choices (i.e. usually involving electric vehicle), Belgiawan et al. (2017) on student‟s 

car purchase decision, Fleischer et al. (2012) on flight choice and Song et al. (2018) on 

high-speed rail choice. 

Although to our knowledge, bike-sharing choice has rarely been evaluated through 

attitudinal influence, works have tried to reveal how this type of factors might affect the general 

cycling choice. Pro-bike attitudes, which could include general willingness to cycle and 

consciousness towards environment and sustainability issues, were popular factors that have 
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been analysed in many studies and were often identified as important driving forces to cycling 

usage (Kamargianni and Polydoropoulou, 2013; Maldonado-Hinarejos et al., 2014; 

Fernandez-Heredia et al., 2016). Similarly, the feelings towards internal (e.g. personal fitness) 

and external (e.g. weather and topography etc.) conditions could also heavily affect a traveller‟s 

decision to cycle, as being identified in several cases (La Paix Puello and Geurs, 2015; Motoaki 

and Daziano, 2015; Fernandez-Heredia et al., 2016). Nonetheless, these mostly studied 

attitudes may sometimes be less important according to the results of a Spanish case study by 

Munoz et al. (2016), in which the authors found the impacts of pro-bike lifestyles, environmental 

awareness and the perceptions on cycling capability were rather insignificant. Finally, some other 

attitudinal factors have also been examined in the aforementioned cycling choice studies, such 

as the perceptions of convenience and comfort, safety concerns and social norms, which could 

influence cycling choice as well to some extent. 

With respect to car-sharing choice, only a few recent studies have started to explore the 

potential influence of a limited range of attitudinal factors. Efthymiou and Antoniou (2016) and 

Kim et al. (2017a) identified in both of their case studies that the intention to join a car-sharing 

scheme could be significantly affected by people‟s satisfaction with their current travel patterns 

and habits. Kim et al. (2017b) discovered further that car-sharing choice was highly associated 

with pro-environmental and privacy-seeking attitudes, and perceptions on the symbolic value of 

cars. Moreover, in Vinayak et al. (2018), the frequency of using car-sharing was found not only 

being affected by attitudes such as pro-environmental and neo-urban lifestyle preferences, but 

also by socio-interactions (i.e. someone‟s behaviour depends on the behaviours of those nearby). 

A similar result was revealed by Kim et al. (2016) in which the authors argued that social 

influence was indeed significant in car-share decisions, and more importantly, the magnitude of 

social influence could vary as per the strength of social relationship across individuals. In 

addition, Fleury et al. (2017) looked at a specific corporate car-sharing scheme and highlighted 

that perceived effort expectancy (i.e. degree of ease associated with use) was probably among 

the most important psychological factors that could determine the intention to use this type of a 

service. Another work by Correia et al. (2010) focused on carpooling instead and found such a 

mode choice could be heavily affected by people‟s positive/negative attitudes and familiarity with 

the concept. 
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Besides the relatively limited understanding of how shared mobility choices might be 

influenced by attitudinal factors, another matter that could contribute to travel demand 

management but yet rarely looked at is the estimation of VTTS under the presence of personal 

attitudes. To our knowledge, Abou-Zeid et al. (2010) for the first time noticed the opportunity to 

capture the interaction effects between attitudinal factors and travel time or cost in order to have 

a more accurate calculation for VTTS. This is due to people with different attitudes could have 

different valuations towards trip-related factors and thus the willingness to pay for travel time 

savings could also be different. In other words, VTTS will no longer be identical across the 

population and need to be integrated over all individuals to derive a value at the societal level. 

Nevertheless, we noticed from the results of Abou-Zeid et al. (2010) that there is only a trivial 

difference (around 7%) between the VTTS estimated from a base mode choice model and from 

an ICLV mode choice model which captures an attitudinal factor ‟s interaction with travel cost. 

Such amount of difference is significantly smaller than a few earlier results when the impact of 

systematic and random taste heterogeneity on value of time was studied (Algers et al., 1998; 

Hensher, 2001a; Amador et al., 2005). In fact, the three works here all discovered around 40% 

difference when comparing the VTTS estimated from a base MNL model and from an ML model 

that captures taste heterogeneity. Algers et al. (1998) found the more flexible ML model 

decreased VTTS, while the other two (Hensher, 2001a; Amador et al., 2005) found the results in 

a completely opposite way
7
. Now a question may pop up that if the much smaller difference 

revealed by Abou-Zeid et al. (2010) would imply the non-significant influence of personal 

attitudes in VTTS estimation or there could be other explanations behind. As a result, we looked 

into their study and found from the survey statistics that 3 out of the 4 modelled indicators which 

reflect people‟s attitude towards car use were highly skewed in one direction, which strongly 

suggests the sampled individuals were sharing close rather than differentiated attitudes.
8
 Thus, 

it may be able to explain why capturing taste heterogeneity contributed so little to VTTS 

estimation (because there is no significant taste heterogeneity), though this hypothesis should 

be further tested. Unfortunately, to date, no other evidence was found apart from 

Bahamonde-Birke et al. (2017), which noticed as well the opportunity to calculate VTTS after 

                                                             
7
 In another study, Alpizar and Carlsson (2003) argued value of time could either increase or decrease with a more 

flexible model specification depending on the chosen mode. 
8
 See p.10 for the skewed indicators and see p.14 for which four indicators were modelled (Abou-Zeid et al., 2010). 
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seeing the interactions between attitudes and travel time, though no empirical results were 

provided in the study. 

Thus, in our subsequent analysis, we are not only aiming to enrich the literature by 

revealing how several types of personal attitudes could possibly affect bike-sharing and 

car-sharing choices, but also trying to investigate the extent to which VTTS estimation for shared 

mobility could be affected by the presence of personal attitudes, especially when the interaction 

with travel time or cost is captured, and hence compare to the result in Abou-Zeid et al. (2010). 

2.4 Habitual Mode Choice Change and the Role of Life Course Events 

Most of the mode choice studies have focused their analyses at a tactical level by 

exploring how individual travellers make trade-offs among different attributes. Nevertheless, 

there have also been works since early ages recognising that a choice behaviour could be 

habitual and a mode use decision might not easily be affected by the surrounding tactical-level 

conditions (Verplanken et al., 1997; Ouellette and Wood, 1998; Van der Waerden and 

Timmermans, 2003). With such an understanding, many studies have incorporated the dynamic 

elements in their models, i.e. by taking into account the influence of mode choices observed in 

earlier periods/states on the current mode choice behaviour (Ramadurai and Srinivasan, 2006; 

Dargay and Hanly, 2007; Srinivasan and Bhargavi, 2007; Kitamura, 2009), and in most cases the 

influence turned out to be significant. The revealed importance of mode choice habit could bring 

substantial challenges to effective travel demand management. For instance, if policy efforts only 

focus on the tactical-level mode choice behaviour, the expected modal shift from car to more 

sustainable modes may not easily occur due to the behaviour could be dominated by the mature 

car-use habit. So, what could be the solutions? In other words, can the choice habit be somehow 

changed? 

Research has proposed and shown that life course events could potentially lead to a 

change of mode choice habit. There could be a variety of such life course events (Scheiner and 

Holz-Rau, 2013), for example, household or family-related (getting married, child birth, etc.), 

employment-related (income change, employer change, etc.), residential or contextual-related 

(home relocation, trip distance change, etc.), and a number of studies have attempted to 
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investigate the connections between these events and long-term mode choice changes. Oakil et 

al. (2011) found that employment-related changes such as in work status and employer were 

among the most important factors that could trigger commute mode shift decisions through both 

directions, i.e. from car to non-car and from non-car to car, while a mode switch to car was 

largely associated with a child birth event. Moreover, the authors also highlighted the impacts of 

socio-economic factors generally turned out as insignificant, especially as a comparison to the 

significance discovered on those life course events. A later work of Clark et al. (2016a) also 

focused on these two-way changes of the commute mode choice habit. The results regarding life 

event impacts were pretty much in line with which in Oakil et al. (2011). Although the key 

conclusion this time was expressed as commute mode changes were primarily driven by working 

distance changes, it was further clarified that the occurrence of such a contextual-related event 

was usually caused by employment switches. Nevertheless, one notable difference by 

comparing these two works was Clark et al. (2016a) argued socio-economic factors could be 

critical to modal shift decisions, for instance, those highly educated would be less likely to switch 

to car commuting; besides, in this study built-environment characteristics were generally found 

with significant effects as well on mode choice changes. Meanwhile, there were also works 

looking at the mode switches to and away from bicycle use (Chatterjee et al., 2012; Oakil et al., 

2016). The results in both works confirmed the significant role of life course events, and more or 

less they could reflect the conclusions made from the previous two studies which focused on car 

use. For example, child birth would encourage a switch to car, and likewise, it could also stop 

people from cycling; changes in work status and employer were again found their effects on both 

directions of mode switches, i.e. from cycling to non-cycle and from non-cycle to cycling; and 

more specifically, a longer commute trip would tend to discourage cycling while a shorter 

commute was associated with a shift toward cycling. In the end, the impacts of life course events 

have also been explored on other types of travel behaviour such as car ownership changes 

(Dargay, 2001; Prillwitz et al., 2006; Oakil et al., 2014; Clark et al., 2014; Clark et al., 2016b) and 

commute distance changes (Clark et al., 2003; Prillwitz et al., 2007). 

Nevertheless, the challenge remains. It is probably desirable to see a switch away from 

using car following the occurrences of some life events; however, meanwhile, switching to car is 

also a possible outcome. In fact, Oakil et al. (2011) compared between a “Modal shift to car” 
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sample and a “Modal shift from car” sample, both from a 21-year longitudinal data series 

capturing nearly 200 individuals‟ behaviours, and it was revealed that the modal shifts from 

non-car modes to car were more frequently observed than the opposite. With the use of a much 

larger dataset (over 10,000 individuals) though only containing two waves of observations, Clark 

et al. (2016a) found the same result by seeing the percentage of car users who switched to other 

modes in the following period was less than 9% (in total). The figure is even smaller than the 

proportion of any other individual mode users who made a switch to car. Thus, given such a fact, 

it is crucial if efforts could be made to hold back any mode switches to car that are induced by life 

course events; since otherwise, once car is picked up and over time its usage becomes habitual, 

it would be even more difficult to alter the mode choice behaviour (Ouellette and Wood, 1998). 

As a result, we identified the following question that needs to be answered: given the presence of 

life course events that could result in the mode switches from non-car modes to car, what could 

be the counter-measures to hold back such a change? This is a subject that we cannot find many 

insights from the literature. Clark et al. (2016a) offered a policy discussion on how to make 

non-car modes more likely to be chosen for regular commute, given the occurrences of life 

course events. They offered policy recommendations in the circumstances of job changes and 

residential relocations, such as issuing transport information packs and travel offers to young 

entrants to the labour market and new community residents, who often contemplate commute 

options to a greater extent than mature employees and residents. However, to our knowledge, 

this is so far the only research that has explicitly discussed the relevant policy implications, even 

though they only studied non-car modes as a whole rather than breaking down the analysis and 

insight to specific modes, which could be more informative to the policy designs in practice. 

2.5 Discussions of the Gaps 

As a summary, several opportunities for conducting further research do turn up. Firstly, 

the impact of air pollution on mode choice behaviour has rarely been explored. In particular, 

since it is a challenge prevailing in most of the developing countries, whether or not and to what 

extent air pollution may significantly affect bike-sharing and other active transport choices 

become a subject that could worth more research attention. In terms of policy practice, if 
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evidence can be found to unveil such an impact, the current “one-way approach” (i.e. 

non-motorised transport is often seen as a solution to improve air quality) would become an old 

fashion and instead a “virtuous circle” could be created (i.e. better air quality could result in 

higher demand for using non-motorised transport, and higher non-motorised transport usage 

could further help reduce air pollution). Therefore, developing countries may be more 

incentivised to work on air pollution reduction from other sources (e.g. industrial, residential and 

business sectors) in order to exploit the extra gains from urban transport. Secondly, unlike 

bike-sharing which aims to serve travellers‟ short-dist trips, a car-sharing service is in general 

expected to be a much stronger and more feasible substitute for the widely used private car. 

Hence, a lack of clear insights on its modal substitution pattern, and especially whether the 

demand would mainly come from private car or public transport, becomes a rather prominent 

issue to today‟s policy making on car-sharing‟s demand management. In our subsequent 

analysis, the in-depth evidence is going to be revealed with respect to such a gap of knowledge. 

Thirdly, apart from a lack of good understanding of the impacts of attitudinal factors on shared 

mobility choices, another hypothesis concerning how the VTTS estimation could be affected also 

matters. An integrated choice and latent variable modelling analysis, later on, would help 

disclose how much difference the presence of attitudinal factors could have on VTTS estimates. 

In other words, this will provide evidence of whether different VTTS estimates for travellers with 

differentiated attitudes would be needed (instead of a single VTTS measure across population) 

and should be taken into account for any pricing-related designs of policies. Fourthly, given the 

concern that any tactical-level efforts for demand management may be compromised due to the 

potential dominance of mode choice habit, it would be rather useful to search for any 

complementary measures for controlling private car usage. One important question is if it would 

ever be possible to avoid a habitual mode switch towards private car when certain events took 

place during people‟s life courses. Our analysis looking at the habitual mode switches both 

to/from car is expected to bring some inspirations to the puzzle, while the insights will be further 

extended by investigating the different mode switching behaviour among different non-car mode 

users. Finally, and in addition, for all the areas of research being discussed above, due to the 

reviewed studies and their findings were rarely coming from the wider developing world, it could 

be worth delivering a case study focusing on a developing country in order to generate and 
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compare to the developed nations the results and the corresponding implications for policy 

take-away. 
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CHAPTER 3. DATA PREPARATION 

3.1 Case Study Choice 

To achieve the aforementioned research goals, we would like to conduct a case study in 

a developing country. We choose to focus on China, which is the largest developing economy in 

the world while being puzzled by severe congestion and urban air pollution problems owing to 

private car usage in many of its cities. At a glance, the country has accommodated bike-sharing 

services in hundreds of cities over the last couple of years and many of the schemes including 

both station-based and dock-less have gained remarkable international reputations (Song et al., 

2017; Richter, 2018). In comparison, the concept of car-sharing has only started to be 

familiarised by the Chinese public recently after a number of pilot and small-scale schemes were 

introduced to several big cities. Thus, car-sharing is still not yet a widely available travel option in 

China even though it has grabbed a significant amount of attention and is expected to grow fast 

in the near future (Hao, 2017; Xinhua, 2017). 

To select a case study city that is compatible with this research, two general criteria were 

considered. Firstly, we would like to have a city that suffers from increased car usage and aims to 

curb the resulted congestion and urban air pollution. Secondly, the city should have an interest in 

and potential to promote the usage of shared mobility services. As a result, the case study city 

would not only benefit directly from the findings of this work to assist policy making in its 

jurisdiction, but could also serve as a representative case for other cities in developing countries 

to see the evidence and take away insights to address their own issues. Eventually, Taiyuan, the 

capital city of a northern province Shanxi, with a population of over 3 million, is selected for this 

project. Traffic jams and air pollution have been problems in Taiyuan for a long time owing to the 

massive amount of car usage (CGTN, 2014; Liang, 2017), and hence, the city has been 

delivering continuous efforts to create a future with less dependence on private car and fossil fuel. 

In 2012 Taiyuan participated as one of the first few member cities in China‟s “Transit Metropolis” 

project (Jiang et al., 2013); in the same year a publicly operated station-based bike-sharing 

scheme was launched (see Figure 3-1) and has become one of the most in-demand schemes in 

the country (Burkholder, 2015; Hiles, 2015); in 2016, Taiyuan undertook an extensive taxi 
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overhaul project and replaced all of its 8,292 taxis with electric vehicles, making it the first city in 

China to do so (Global Opportunity Explorer, 2016); finally, since 2017, several electric 

car-sharing pilot schemes have been deployed in the city following the aforementioned 

nationwide interest in such a type of service (Sohu, 2018). Overall, Taiyuan offers a fertile ground 

for this research and we would expect the findings of this project to be of practical value to wider 

society. 

 

Figure 3-1 Bike-sharing docking stations in central Taiyuan (approx. 20km
2
 shown in the map)

9
 

                                                             
9
 Source: Taiyuan Public Transport Holdings, http://www.ty7772345.com/moremap.asp?Parent=3 
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3.2 Survey Design 

3.2.1 The Questionnaire 

The data analysed in this work comes from a paper-based questionnaire survey 

launched in 2015 at our case study city, Taiyuan. Both revealed preference (RP) and stated 

preference (SP) travel behavioural data are collected. The questionnaire consists of six sections 

as listed below, and an example of the questionnaire is given in Appendix A: 

 Personal socio-economic characteristics; 

 Household socio-economic characteristics; 

 RP trip diary revealing trip characteristics and mode choices in a single day; 

 Attitudes towards shared mobility and other related issues; 

 Retrospective survey collecting past socio-economic and mode choice data; and 

 SP mode choice experiment. 

For the first two sections, we aimed to capture a broad range of socio-economic data 

from each of the individual respondents. Some characteristics could potentially be the 

explanatory variables in a choice behavioural analysis (e.g. gender, age, household income, 

educational level), some could be the availability conditions to help specify a mode choice model 

(e.g. ownership of different mobility tools, possession of a driving license, cycling capability), 

some could serve as the criteria for data cleaning (e.g. trip diary data would be considered as 

invalid if one‟s occupation was driving-related), and some were the back-up information we 

collected for other research purposes in future. 

 In terms of the RP mode choice data, the survey participants were asked to fill in their 

trip diary for one day (i.e. their most recent working day). Due to resource constraints and local 

cultural barriers the use of GPS or Smartphone-based travel survey tools that could collect more 

advanced travel data was not possible. As such, only essential travel information was gathered 

in the trip diary (e.g. trip purpose, starting/end time of the trip, origin/destination, travel time, 

travel cost and mode used), though they could further help derive additional information that 

might be used in the modelling analyses (e.g. travel times and costs of any alternative modes, as 

well as the real-time air pollution level, temperature and weather conditions when a trip was 
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conducted).  

With regard to the way that attitudinal information was captured, we presented in the 

questionnaire a list of statements where the respondents were asked to indicate to what extent 

they agree with each of them. These statements belonged to four subjects: general 

environmental consciousness, attitudes towards public transport, towards bike-sharing and 

towards car-sharing. The degrees of agreement were measured using a 7-point Likert-scale 

(Likert, 1932) where: 1. Completely disagree; 2. Strongly disagree; 3. Disagree; 4. Neutral; 5. 

Agree; 6. Strongly agree and 7. Completely agree.  

As for the retrospective survey, respondents were asked to recall their most frequently 

used commute mode in 2006, 2008, 2010 and 2012, and also to provide a variety of information 

with respect to their life status in the same years.  

Finally, for the SP mode choice data, our experiment presented to each individual 

respondent hypothetical daily trip scenarios and asked them to choose which transport mode 

they would use. In particular, the method offers a means of capturing the choice of car-sharing, 

as the service was not yet available in Taiyuan at the time of the survey. It is also a useful 

technique for deriving wider policy implications, as SP data usually captures “a wider and 

broader array of preference-driven behaviours” (Louviere et al., 2003; p. 231) than the 

conventional RP data. 

3.2.2 A Pilot Survey 

A pilot survey was conducted before we came up with the final questionnaire design. The 

main objective is to test if the questions presented were appropriate and clear to respondents. 

Hence, we chose to use two non-probability sampling techniques, convenience sampling and 

snowball sampling, to quickly secure around 150 Taiyuan citizens who were willing to participate. 

Although in this testing phase of the survey the sample can hardly be representative to the 

population, most of the participants turned out to be commuters who had regular travel activities 

and provided good amount of information in the trip diary survey (which helped to improve the SP 

survey design; see the next section). 

Many changes were made to the questionnaire as per the feedback from the pilot survey. 
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This includes several important matters such as adding a question in the socio-economic survey 

checking if occupation is driving-related to filter out the corresponding individuals in mode choice 

analyses (Appendix A: S1. Q9), showing an example trip diary to help the respondents clearly 

understand what information they should provide (Appendix A: S3. Q1), and replacing the 

original 5-point Likert-scale measurement in the attitudinal survey with a 7-point measurement, 

which can yield more information while can still be well comprehended by the respondents 

(Appendix A: S4). Nevertheless, the most significant take-away from the pilot survey is knowing 

what elements should to be taken into account in the SP scenario designs. 

3.2.3 The SP Mode Choice Experiment 

For the SP experiment, the first important insight that we gained from the pilot survey 

was the need to have different SP scenarios based on the distance travelled; this was an 

outcome both from analysing the RP trip diary data and from the comments made by the 

participants. In particular, we observed that when distances went beyond 2km, the number of 

walking trips dropped substantially whereas when distances went below 2km, taxi trips were 

rarely seen. In light of such rather distinct trends, we decided to split the scenarios in our SP 

survey by trip distance and assign different choice sets accordingly, i.e. making “walk” available 

only for short trips (within 2km) and making “taxi” available only for longer trips (over 2km) to 

approximate the mode choice situation towards a real-life case. Moreover, by hearing from 

participants describing their daily travel experience in Taiyuan, we further split the trips over 2km 

to “between 2km and 5km” and “more than 5km” to reflect what local people perceive as a 

medium-distance trip and a long-distance trip for moving around in the city. In fact, such a split 

has also helped us identify if the mode choice behaviour and modal substitution pattern would 

differ by distance, and hence yield more targeted insights for policy take-away (see more details 

in Chapter 5).  

Eventually, in the SP experiment, we included six alternatives in the choice set: 1. car, 2. 

electric bike, 3. bus, 4. car-sharing
10

, 5. bike-sharing and 6. walk for the case of short-distance 

(“short-dist”, within 2km) trip; while for medium-distance (“mid-dist”, between 2km and 5km) and 

                                                             
10

 As per the pilot survey feedback there was imperfect knowledge among Taiyuan citizens about what car-sharing really 
represents. Thus, the concept and key features of a free-floating car-sharing scheme were described in the survey to 
reduce the bias in their understanding. 
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long-distance (“long-dist”, more than 5km) trips, walk was replaced by taxi as per our discussion 

above. Overall, we aim to capture all the urban transport modes that are frequently used by 

Taiyuan citizens (except car-sharing), with the private bike being excluded due to its continuously 

decreasing usage as a result of the continuous expansion of the city‟s bike-sharing program. 

Table 3-1 shows the SP experimental design for the three trip-distances. Each of the 

aforementioned alternatives possesses several mode-specific attributes, with trip purpose, 

temperature, weather and air pollution as the external conditions. Apart from doing a literature 

review, the selection of these attributes was also based on findings from the pilot survey. For 

instance, the “Walking time to/from station” was included after observing some potential 

connections (though we did not test the correlation) between respondents‟ stated walking times 

to/from bus or bike-sharing stations and whether any bus or bike-sharing trips were made in the 

diary (Appendix A: S3); similarly, “Mobile app availability” was captured by seeing quite a few 

individuals stated they would use smartphone to call taxi and check real-time bike-sharing 

information (Appendix A: S1). Besides, the pilot survey results also helped derive the 

levels/values for some of the attributes. For example, to generate the possible travel time and 

travel cost values for each alternative mode, we adopted the observed average values from the 

trip diary part of the pilot survey and multiplied by ±10%, ±20% etc. Although, due to the lack of 

official trip diary data we are not able to make a comparison for our observed travel times and 

costs, we still expect the values can be trusted given the sample size we had for the pilot survey. 

In addition, we discussed with experts from the local transport authorities to make sure the 

attribute values were generated on reasonable scales. 

Table 3-1 The SP Survey Design 

Short-dist 

Trip purpose: work/education, leisure, shopping. 

Weather: sunny (-10°, -5°, 0°, 5°, 10°, 20°, 25°, 30°), snow (-10°, -5°, 0°), rain (5°, 10°, 20°, 25°, 

30°). 

Air pollution level: excellent, good, light pollution, medium pollution, heavy pollution, terrible 

pollution. 

 Car E-bike Bus Car-share Bike-share Walk 

Travel time 2, 3, 5, 7, 

10min. 

5, 6, 7, 

9min. 

5, 7, 10, 12, 

15min. 

2, 3, 5, 7, 

10min. 

8, 10, 

12min. 

10, 15, 

20, 25, 

30min. 

Travel cost* ￥1, 1.2, 1.4,  ￥0.5, 1, ￥0.8, 1, ￥0, 0.5, 1.  
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1.6, 1.8. 1.5, 2, 2.5. 1.5, 2, 3, 4, 

5. 

Parking 

space 

Easy/hard to 

park 

     

Parking 

cost* 

free, ￥2, 5, 

8/h. 

     

Walking 

time to/from 

station 

  5, 10, 

15min. 

5, 10, 

15min. 

2, 5, 10min.  

Bus 

Frequency 

  every 2, 5, 

10, 15min. 

   

Mobile app 

availability 

  Yes, no. Yes, no. Yes, no.  

Mid-dist 

Trip purpose: work/education, leisure, shopping. 

Weather: sunny (-10°, -5°, 0°, 5°, 10°, 20°, 25°, 30°), snow (-10°, -5°, 0°), rain (5°, 10°, 20°, 25°, 

30°). 

Air pollution level: excellent, good, light pollution, medium pollution, heavy pollution, terrible 

pollution. 

 Car E-bike Bus Car-share Bike-share Taxi 

Travel time 5, 10, 15, 

20, 25min. 

8, 10, 

12, 15, 

20min. 

10, 12, 15, 

20, 25, 

30min. 

5, 10, 15, 

20, 25min. 

12, 15, 20, 

25, 30min. 

5, 10, 15, 

20, 

25min. 

Travel cost* ￥1.8, 2, 2.5, 

3, 3.5, 4, 5. 

 ￥0.5, 1, 

1.5, 2, 2.5. 

￥3, 5, 8, 

10, 15, 20. 

￥0, 0.5, 1, 

1.5. 

￥10, 12, 

15, 18, 

20, 25, 

30. 

Parking 

space 

Easy/hard to 

park 

     

Parking 

cost* 

free, ￥2, 5, 

8/h. 

     

Walking 

time to/from 

station 

  5, 10, 

15min. 

5, 10, 

15min. 

2, 5, 10min.  

Bus 

Frequency 

  every 2, 5, 

10, 15min. 

   

Mobile app 

availability 

  Yes, no. Yes, no. Yes, no. Yes, no. 

Long-dist 

Trip purpose: work/education, leisure, shopping. 

Weather: sunny (-10°, -5°, 0°, 5°, 10°, 20°, 25°, 30°), snow (-10°, -5°, 0°), rain (5°, 10°, 20°, 25°, 

30°). 

Air pollution level: excellent, good, light pollution, medium pollution, heavy pollution, terrible 

pollution. 
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 Car E-bike Bus Car-share Bike-share Taxi 

Travel time 15, 20, 25, 

30, 40min. 

20, 30, 

40, 50, 

60min. 

15, 20, 30, 

40, 50, 

60min. 

15, 20, 25, 

30, 40min. 

30, 45, 60, 

75, 90, 

120min. 

15, 20, 

25, 30, 

40min. 

Travel cost* ￥5, 8, 10, 

12, 15, 18, 

20. 

 ￥0.5, 1, 

1.5, 2, 2.5. 

￥10, 15, 

20, 25, 30, 

40. 

￥0, 1, 1.5, 

2, 3. 

￥15, 20, 

25, 30, 

40, 50. 

Parking 

space 

Easy/hard to 

park 

     

Parking 

cost* 

free, ￥2, 5, 

8/h. 

     

Walking 

time to/from 

station 

  5, 10, 

15min. 

5, 10, 

15min. 

2, 5, 10min.  

Bus 

Frequency 

  every 2, 5, 

10, 15min. 

   

Mobile app 

availability 

  Yes, no. Yes, no. Yes, no. Yes, no. 

* ￥1 ≈ $0.15 

 

In light of the attributes and attribute levels that have been obtained, theoretically, SP 

scenarios could then be generated following a full factorial design (Hensher et al., 2005). 

However, in many cases (ours as well), it would produce an endless number of scenarios which 

result in a need to embrace a fractional factorial design by extracting only a group of scenarios 

from the full set. The practice we followed to extract the scenarios for this survey was commonly 

known as orthogonal design
11

 which could help reduce the correlation between the attribute 

levels. More specifically, we adopted an “orthogonal main effects” design by assuming no 

interaction effects exist across the attributes, though it is an assumption that can hardly be tested 

in reality (Hensher et al., 2005; chapter 5.2.3). In order to preserve orthogonality, the key task is 

to identify the required degree of freedom (DoF), or in other words, the minimum number of 

scenarios that needs to be extracted (Caussade et al., 2005). By assuming main effects only, we 

calculated the required DoF for each of the distance cases by following the procedure explained 

in Louviere et al. (2003) and Hensher et al. (2005). As a result, we had a DoF of 56 for the 

                                                             
11

 Although an orthogonal design is not as advanced as several later proposed designs, such as the various forms of 
D-efficient design (Bliemer et al., 2009; Rose and Bliemer, 2009; Bliemer and Rose, 2010), we still employed this 
technique given the constraints we had on project cost (i.e. more advanced software such as Ngene is usually needed to 
handle an efficient design). 
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short-dist scenarios and 58 for the mid- and long-dist scenarios.
12

 Thus, for each of the three 

distance cases, we chose to generate 60 different scenarios and the software we used is SPSS, 

which can ensure the process of scenario generation preserves orthogonality (Hensher et al., 

2005). Next, to further reduce the number of scenarios presented to a respondent, the 60 

scenarios in each case were assigned to 30 blocks, and hence, a group of 2 scenarios would be 

presented in one questionnaire making in total 6 of them by presenting all three distance cases, 

i.e. two for short-dist trips, two for mid-dist trips, and two for long-dist trips.
13

 Eventually, one out 

of every 30 respondents would be given the same set of SP scenarios in our survey. 

3.3 Sampling and Data Collection 

The survey was launched through two waves in the city of Taiyuan over the year of 2015. 

The first wave was the main part of our data collection. The questionnaire was distributed to 

15,000 Taiyuan citizens over the summer months. Due to the population size of more than 3 

million in the urban area of Taiyuan, we employed a 2-stage stratified sampling technique to 

calibrate our sample in light of the city‟s census data. Specifically, for the first stage, the sampled 

individuals were proportionally spread over the six districts in the urban area as per the 

population size in each district; and then, for the second stage, the gender distribution of 

sampled individuals in each district was set to be proportional to the population gender 

distribution in each district. Moreover, given such a large number of individuals that we would like 

to approach, we co-operated with Shanxi Transportation Research Institute, which provided 15 

researchers assisting with the questionnaire distribution, questionnaire collection and 

incorporation of the data into electronic datasets
14

. 

Given the large number of individuals (15,000) we would like to approach and the 

relatively lengthy time we estimated for completing a questionnaire (around 20 minutes in 

average), instead of randomly capturing people on streets, the employed researchers were sent 

to liaise with communities, enterprises, organization from public sectors as well as universities 

                                                             
12

 The difference is due to there are different number of attributes between short-dist scenarios and mid- & long-dist 
scenarios as a result of the different choice sets involved. 
13

 We also tested how many choice tasks being presented in the SP experiment were acceptable to respondents. In the 
pilot survey we included 10 for each individual to answer, and we found in general the respondents were averse to a 
number of scenarios larger than 8. 
14

 The assistants were trained to understand the questionnaire and the related data ethics in case they need to address 
any doubts raised by survey respondents. After data collection, they were also trained to use EpiData (http://epidata.dk/) 
and SPSS (https://www.ibm.com/analytics/spss-statistics-software) for data recording. 



40 
 

and other educational institutions to search for survey participants (information of these 

work/education/living places are not revealed to comply with the data collection protocol). This 

approach allowed us to effectively assemble the required number of individuals and eventually 

we had over 40 liaised partners to disseminate the questionnaires. Nevertheless, the approach 

may have also posed an influence on the analysis results later on. As the conclusions in Chapter 

8 will show, we do not discover a generally significant effect of socio-economic factors on mode 

choice behaviour in our research, and this may partly be attributed to the fact that the sampled 

respondents could sometimes share close characteristics, such as those with similar ages, 

educational background and income levels when they were from the same work place, so that 

not enough variations were captured among socio-economic groups (see also a discussion in 

Chapter 8). 

Next, we launched the second wave of our survey over the winter time (end of 2015). 

This wave had a much smaller scale in terms of the number of participants involved and the 

amount of information we gathered. During the summer survey (i.e. the first wave), individuals 

were asked if they would be willing to come back and provide again their trip diary information in 

a winter day. This was mainly because the air quality in Chinese cities was found to have 

significant seasonal differences (Jiang et al., 2014; Rich, 2015). Hence it might also be possible 

to capture the impact of air pollution on mode choice behaviour via a seasonality analysis, i.e. 

evaluating the same individuals‟ mode choice behaviours across summer and winter. Eventually, 

706 individuals who agreed to continue with their participation for another round joined us in the 

follow-up winter survey. 

3.4 Data Cleaning and Handling 

Following the collection of questionnaires from the two waves of survey, we did a 

preliminary data cleaning which was conducted through several steps. First, missing values were 

removed from the following sections: personal and household socio-economic characteristics, 

RP trip diary and SP mode choice experiment; while we left the attitudinal survey and 

retrospective survey untouched till a later stage when these data need to be used as model 

inputs (see Chapter 6 and 7). Next, by examining through the responses provided in the 
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questionnaires, we identified the following information as invalid and removed the data 

accordingly: if there is more than one mode choice made in an SP scenario, if the observed SP 

mode choice breaches the mode choice availability conditions that we will apply later on in 

modelling analyses (e.g. car is assumed unavailable to those who do not have any household 

owned cars; more details are given in later chapters when specifying the models), and the 

questionnaires filled by those whose occupation was driving-related. Finally, to increase the 

credibility of RP trip diary data, we removed for each mode the lowest and highest 5% travel time 

values to avoid extreme observations to be involved in data analyses. 

For the main survey in summer time, the above procedure discarded questionnaires 

from over 5,000 individuals and left us with 9,499 individuals who remained in the sample. We 

then introduced a comparison between this cleaned sample and the city‟s census data
15

 (Table 

3-2), and the outcome showed a good compatibility between the two data sources in terms of the 

two-level strata we applied (i.e. population distribution across districts and gender distribution 

within each district). Nevertheless, this whole sample with 9,499 individuals will not be the final 

dataset that we use throughout the thesis. Later on, for each research topic, further selections 

from the data will be made in light of the corresponding research objectives, and more details on 

the sample statistics will also be disclosed accordingly. 

For the follow-up survey in winter time, the data cleaning procedure gave us 492 

individuals who provided with valid trip diary data, which is then used for conducting a 

seasonality analysis, as described above. However, since such an analysis can only offer partial 

insights to our research question with regard to air pollution‟s effect, the details of this part of the 

study are eventually presented in Appendix B, as complementary source of knowledge for 

interested readers to check. 
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 Census data source: Shanxi Statistical Yearbook 2014, available at: China Statistics Press, http://csp.stats.gov.cn/ 
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Table 3-2 Sample Data versus Census Data 

Districts of 

Taiyuan 

Sample  

(Main Data Collection) 
Census 

Population Male Female Population Male Female 

In: number of people 

Xiaodian 2,293 1,192 1,101 820,004 429,098 390,906 

Wanbailin 2,091 1,066 1,025 765,956 390,413 375,543 

Xinghualing 1,794 879 915 653,854 321,154 332,700 

Yingze 1,632 816 816 601,109 299,120 301,989 

Jiancaoping 1,127 741 386 424,294 205,182 219,112 

Jinyuan 562 238 324 225,849 115,219 110,630 

Total 9,499   3,491,066   

In: percentage 

Xiaodian 24% 52% 48% 23% 52% 48% 

Wanbailin 22% 51% 49% 22% 51% 49% 

Xinghualing 19% 49% 51% 19% 49% 51% 

Yingze 17% 50% 50% 17% 50% 50% 

Jiancaoping 12% 66% 34% 12% 48% 52% 

Jinyuan 6% 42% 58% 7% 51% 49% 

Total 100%   100%   

Note: after the data was cleaned, the sample data (N=9,499) remains consistent 

with the census data except for the gender distribution in the least two populated 

districts “Jiancaoping” and “Jinyuan”. 

 

Before the cleaned data is used for any mode choice analyses, another critical step in 
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data handling is the generation of modelling input variables that were not originally captured in 

the questionnaire. The SP survey offers a full set of data on trip and mode related attributes for 

both the chosen mode and the rest alternative modes. However, this is not the case in the RP trip 

diary, as it only gives the observed mode choice for a trip and the associated attributes; where 

the attribute information, especially travel time and travel cost, of any alternative modes that 

could potentially be chosen, is not available. Hence, for each of the observed trips in summer 

and winter, we need to derive this information before the RP data can be used as inputs in mode 

choice models. Eventually, the derivation relied upon the trip diary data collected on our own and 

some data from external sources. For instance, to calculate travel time values for any alternative 

transport modes, we used the travel time (duration) of the chosen mode and time of the day 

when a trip was made (both information available from trip diary), as well as the peak and 

off-peak average travelling speed of the chosen mode in the context of Taiyuan (obtained from 

Taiyuan Public Transport Holdings) to estimate the trip distance travelled, which was then used 

in conjunction with the speed information of other alternative modes to calculate their travel times 

(durations) respectively. To derive travel cost values, a broader range of factors were taken into 

account, such as for private car the amount of fuel consumption by engine displacements, fuel 

cost by different types of fuel, and for bus, bike-sharing and taxi services their pricing schemes in 

Taiyuan, in order to obtain the estimates with a good level of accuracy. 

Nevertheless, there are some challenges that cannot be easily overcome and could 

have inevitably biased the derived values more or less. For instance, for alternative modes, we 

cannot find out the information of route choice, which in reality can sometimes be different to the 

observed modes. This could result in different distances travelled and hence the estimates for 

both travel time and travel cost could be affected. We also relied upon mode speed information 

to calculate the corresponding travel time values. Although attempts were made to adopt 

differentiated speeds in peak and off-peak periods by knowing from the survey when a trip was 

made in a day, they were still very abstract measures and the different travel habits across 

individuals could not be captured. As for travel cost, by having relevant pricing scheme 

information, it was relatively simple to have the estimates for bus, bike-sharing and taxi services, 

which are also widely reported in many journey planners nowadays. However, as explained 

above, the value for car travel would need more specific cost information depending on vehicle 
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type and fuel type. Although the survey collected such information, the challenge arose when an 

individual has more than one car available to use and hence our calculation was based on 

assuming the first reported vehicle (Appendix A: S2. Q4) would be used for travel; apparently, 

this may also yield biased car travel cost. 

Finally, to enrich the RP trip diary data, daily air pollution and weather condition 

information was also gathered
16

 for all the recorded travel days in both summer and winter RP 

mode choice surveys. Air pollution is measured by a continuous variable, air quality index (AQI), 

the primary air pollution indicator used in China. Weather conditions are measured by a 

continuous variable °C temperature and three dummy variables showing if the day is rainy, 

snowy or neither. As there is a single AQI value throughout a day, we assigned identical values to 

all trips that occurred in the same day. The temperature measure fluctuates across hourly slots, 

and thus, we relied on the collected departure time information in the trip diary to match between 

the observed trips and the corresponding temperature values. 

  

                                                             
16

 Data source: China‟s Ministry of Environment Protection (Ministry of Environment Protection, 2016) and Shanxi 
Meteorology (Shanxi Meteorology, 2016) 
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CHAPTER 4. THE MODAL SUBSTITUTION PATTERN 

FOR BIKE-SHARING: AIR POLLUTION’S EFFECT
17

 

This chapter investigates the modal substitution pattern for bike-sharing. We will first 

reveal the factors affecting bike-sharing choice behaviour through a mode choice analysis and 

then evaluate the modal substitution pattern via a scenario analysis which will disclose the 

pattern of modal split changes as a result of the different policy options aiming at increasing 

bike-sharing ridership. A particular focus is placed on the impact of air pollution on mode choices; 

specifically, we will test if an increase in air pollution level would depress the willingness to cycle 

and to what extent an improvement in air quality would increase the demand for bike-sharing. 

Mode choice models that are developed include nested logit and mixed nested logit 

(Hess et al., 2004; Ortúzar and Willumsen, 2011) to handle the issues of inter-alternative 

correlation and panel effect. For model development, SP and RP mode choice data are 

combined to acquire the results with less behavioural bias (Hensher and Bradley, 1993; 

Ben-Akiva et al., 1994). The models are compared across each other and the one with the best 

performance is selected to study policy impacts on modal substitution pattern in the SP 

environment
18

. This research focuses on short-dist trips (within 2km), as it is the most frequently 

observed bike-sharing travelling range in our case study (Gu Dong, 2016). 

The chapter is structured as follows. Section 4.1 presents the data sources. Section 4.2 

explains the modelling framework and describes the model specifications in detail. Section 4.3 

discusses model estimation results, followed by a policy impact analysis in section 4.4. Section 

4.5 concludes the research findings and policy implications. Readers are also encouraged to 

check a seasonality study in Appendix B, as complementary research showing air pollution‟s 

effect on mode choice behaviour. 

4.1 Data 

As presented before, 9,499 individuals provided with their SP and RP mode choice 

responses after the preliminary data cleaning. However, SP data is often criticised for not 
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 See a published version at: https://doi.org/10.1016/j.tra.2018.01.019 
18

 This study does not aim to forecast market demand in the real world. 
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reflecting the exact circumstance in reality due to an individual may not incur precisely a choice 

scenario described in the survey (Louviere et al., 2003). Thus, as a way to improve the reliability 

of our SP mode choice data, we apply the following strategy to refine further the observations 

that will be analysed in this study: if someone made SP choices in the short-dist scenarios but 

did not reveal any “within 2km” trips in the trip diary, these SP choices would be excluded from 

the analysis. In other words, we keep only the participants‟ SP observations that are rigorously 

consistent with their RP trip diary information. Eventually, there are 4,769 individuals offering 

9,028 valid observations for the short-dist trips SP experiment. 

Table 4-1 presents the socio-economic statistics of these individuals. Age and 

occupational status statistics indicate that adults with fixed jobs constitute the main group in the 

sample, indicating that the sample has successfully captured regular commuters whose mode 

choice behaviours are most considered in urban planning and policy-making. There is a high 

possession rate of public transport cards meaning that most of the sampled individuals can 

access both bus and bike-sharing services hassle-free. Almost all respondents are healthy 

enough to cycle, which ensures that bike-sharing is a feasible choice in a sufficient number of 

scenarios. The SP modal choice patterns are also given in the table, although they are not 

comparable to the observed RP modal splits which are followed in Table 4-2. This is because the 

SP modal splits are the outcome based on hypothetical scenarios, which have no implications to 

the real world. Nevertheless, it can be noticed that the choice set is different across the two data 

sources. Apart from car-sharing being unavailable in the RP data as it was not yet a mature 

travel option in Taiyuan at the time of the survey, private bike was deliberately excluded from the 

SP survey leading to another distinction between the two choice sets. As explained before, this is 

due to private bike usage has dropped substantially after the city‟s huge success in bike-sharing 

and is expected to diminish further as bike-sharing continues to grow (Oortwijn, 2017; Poon, 

2017). The statistics in Table 4-1 reveals a similar trend that bike possession rate is much lower 

than the other private modes in the sample. 
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Table 4-1 Sample Statistics and SP Modal Splits 

  N=4,769 

Gender Male 51% 

Female 49% 

Age under 18 9% 

18-25 31% 

26-35 27% 

36-45 20% 

46-59 11% 

60 or above 2% 

Marital status Single 47% 

Married 53% 

Educational level High school or below 29% 

College 32% 

Undergraduate 34% 

Graduate and above 5% 

Occupational status Fixed job 68% 

Student 24% 

Retired 2% 

Self-employed or unemployed 6% 

Public transport card Percentage of possession 74% 

Cycling capability Health enough to cycle 94% 

Household monthly income 

(after tax)* 

Under ￥3000 34% 

￥3000 -￥6000 36% 

￥6000 -￥9000 16% 

￥9000 -￥15000 9% 

￥15000 -￥30000 4% 

Over ￥30000 1% 

Household car Percentage of possession 46% 



48 
 

Household electric bike  Percentage of possession 42% 

Household bike  Percentage of possession 17% 

SP modal splits (9,028 obs.) 

Bike-sharing Walk Electric bike Bus Car-sharing Car 

22% 30% 9% 29% 2% 8% 

 

Table 4-2 RP Modal Splits 

RP modal splits (6,614 obs.) 

Bike-sharing Walk Electric bike Bus Car* Bike 

18% 31% 12% 26% 8% 5% 

* In the RP data, it is also known that the 8% car trips consist of 6% car driver trips and 2% 

car passenger trips. 

 

4.2 Modelling Framework 

To estimate the mode choice models we utilise the SP dataset as well as the pooled 

SP/RP dataset. Since the SP survey only presents hypothetical scenarios to respondents, the 

mode choices observed from the questionnaire sometimes may not be consistent with the 

respondents‟ mode choice behaviour in reality where it often involves more factors and contexts 

that could affect decision-making. Therefore, bringing in the RP data to jointly estimate a model 

can potentially reduce the behavioural bias and increase the precision of estimated parameter 

values. Such a strategy has become a popular practice in mode choice studies (Hensher and 

Bradley, 1993; Ben-Akiva et al., 1994; Bradley and Daly, 1997; Polydoropoulou and Ben-Akiva, 

2001; Bhat and Sardesai, 2006; Cherchi and Ortúzar, 2011; Lavasani et al., 2017). This work 

takes advantage of having access to both data sources and joins the SP and RP mode choice 

data based on the distance criteria (within 2km, see Table 4-1). Moreover, a model based only on 

the RP data is tested before developing the pooled model. This procedure is to confirm there are 

not significant differences in the estimated parameter values (e.g. opposite impact signs) 

between the SP model and the RP model, in which case pooling the two datasets for a joint 
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model estimation should be handled with more cautions (Ortúzar and Willumsen, 2011). 

However, as this research focuses on the SP data which contains a broader range of information 

than the RP data, we will only present the model estimation results from the SP model and the 

pooled SP/RP model in the next section. 

Regarding the models, an NL structure is developed first to account for any potential 

correlation among the alternatives in the choice set. This is applied on both the SP and the 

pooled SP/RP data. Next, due to the panel structure of the SP data (i.e. repeated choice 

observations from a single respondent), corresponding mixed NL models are further developed 

to capture the correlation across choice observations. Mixed logit is a flexible model structure 

that can approximate any random utility model (McFadden and Train, 2000; Hensher and 

Greene, 2003). A mixture of multinomial logit can simultaneously address the aforementioned 

inter-alternative correlation and panel effect by adding error components. However, arguments 

have arisen supporting the use of a mixture of nested logit in order to avoid any potential 

confounding effects when introducing more than one type of error component (Hess et al., 2004; 

Ortúzar and Willumsen, 2011). Hence, we follow the mixed NL approach to develop the mode 

choice models for this study. The mathematical equations used to specify the model are provided 

below (Eq.(1) – Eq.(7)) (for more information see: Hess et al., 2004; Ortúzar and Willumsen, 

2011). 

The utility function for an alternative i  ( ni C ) chosen by an individual n  ( 1,...,n N ) 

at the t th
 ( 1,...,t T ) number of SP scenario is given by: 

1

K

int k intk i in int

k

U X   


     (1) 

while the measurable part of the utility is defined as: 

1

K

int k intk i in

k

V X  


    (2) 

where nC  is the choice set, U  is the utility associated with a mode choice, X  is the 

vector of explanatory variables, and the normally distributed error component   with zero mean 
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captures the panel effect. The estimated parameters are k  and  . V  is the measurable 

utility and   is the unobserved term i.i.d. Extreme Value and independent from  . 

The choice probability functions are: 

Choice of a nest (upper level): 
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Choice of an alternative inside a nest (lower level): 
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  (4) 

General choice of an alternative: 

|s sint M nt int MP P P   (5) 

where P
 

is choice probability, sM

 

represents the nest s ( 1,...,s z ), IV
 

is the 

expected maximum utility for the choice of alternatives inside a nest, 
 

is the scale parameter 

measuring the different variances across nests. 

The general choice probability function is integrated over  , gives (now intP

 

is fully 

denoted as the conditional probability ( | , , , )nt t int k in nP i X C  ): 

1
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    (6) 

Log-likelihood function that needs to be maximized: 

1

( , ) ( | , , , )
n

N

in n in k i n

n i C

LL y InL i X C   
 

   (7) 

where iny  takes the value of 1 if an individual n  chooses an alternative i  and 0 

otherwise. 

Several models have been estimated to identify the correct explanatory variables and 

their appropriate forms. For each variable, we measured its impact on all mode choice utilities 

and identified the one which parameter value is closest to zero for normalisation. Variables that 
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displayed highly insignificant effects on mode choice utilities were dropped out to avoid type I 

errors
19

. These include snowy weather, car parking space availability and bus frequency etc. A 

linear relationship was adopted to measure the impact of temperature as it showed much higher 

significance than a curvilinear relationship (i.e. extreme and moderate temperature). 

Socio-economic factors were tested in two ways: 1.by assuming their direct effects on mode 

choice utilities, and 2. by interacting with other attributes (i.e. systematic taste heterogeneity). 

The results showed that model fitness improved significantly with the latter manner. To capture 

systematic taste heterogeneity, the sub-categories of the socio-economic variables were merged 

into two general groups (i.e. low and high) to more explicitly reveal their impacts. For 

inter-alternative correlation, many possibilities were tested including bike-sharing and electric 

bike as two-wheeled vehicles, bike-sharing and walk as active modes, bike-sharing and 

car-sharing as newly emerged sharing economy, car and car-sharing as comfortable 

automobiles, bus and car-sharing as shared automobiles. Eventually, only bus and car-sharing 

were found to have a significant correlation. Table 4-3 presents the variables included in the final 

models and the ways they were measured. 

Regarding, the NL and mixed NL models using the combined SP and RP, the RP trip 

diary data was utilised to estimate the parameter values on the following variables: “Rain”, 

“Commute”, “Travel cost”, “Travel time” and all the socio-economic factors. “Air pollution”, 

“Temperature”, “Parking cost”, “Access time” and “App availability” were not captured in the RP 

data and such as we cannot estimate these parameters. Meanwhile, the values of “Air pollution” 

and “Temperature” displayed little variations across the observed RP trips and were therefore 

considered as redundant. It is because the trip diary survey was conducted only in summer days 

and the case study city Taiyuan has very stable pollution and temperature levels in this season. 

Different scaling factors (to correct variance difference) were adopted in the model estimation
20

. 

Finally, three availability conditions were included in the mode choice models: 1. Car is 

available to households that own a car, 2. Electric bike is available to households that own an 

electric bike, and 3. Cycling is available to those who can cycle given their state of health. The 

availability conditions can increase model validity by helping to explain the circumstances within 
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 Incorrect rejection of a true null hypothesis 
20

 In this study SP data is the primary data source and the RP utilities were scaled relative to it (Hensher and Bradley, 
1993). 
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which someone does not choose a particular mode because the mode is not an available option. 

Possession of a driving license was not considered an availability condition since the choice of 

car or car-sharing could be made by drivers as well as passengers; possession of public 

transport card was also excluded as travellers would still access bus or bike-sharing service by 

paying cash or borrowing others‟ card. 

Table 4-3 Explanatory Variables and Measurements 

Variable Measurement 

Air pollution air quality index (AQI) by taking the average value of each 

level (25 for excellent level „0-50‟; 75 for good level 

„51-100‟; 125 for light pollution „101-150‟; 175 for medium 

pollution „151-200‟; 250 for heavy pollution „201-300‟; 400 

for terrible pollution „above 300‟)  

Rain 1 if weather is rainy, 0 if otherwise 

Temperature temperature in °C 

Commute 1 if trip purpose is commute (i.e. work/education), 0 if 

otherwise 

Travel cost in RMB (￥) 

Parking cost in RMB (￥)/hour 

Travel time in min 

Access time in min, walking time to stations/parking spots 

App availability 1 if a smart phone application is available, 0 otherwise 

Male 1 if gender is male, 0 if female 

Lower age 1 if age is “under 18” or “18-25” or “26-35”, 0 if “36-45” or 

“46-59” or “60 or above” 

Lower income* 1 if household monthly income is “under ￥3000” or 

“￥3000-￥6000” or “￥6000-￥9000”, 0 if “￥9000-

￥15000” or “￥15000-￥30000” or “over ￥30000” 

Lower education 1 if educational level is “high school or below” or “college”, 

0 if “undergraduate” or “graduate and above” 
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4.3 Model Estimation Results 

To estimate the NL and mixed NL models, PythonBiogeme (Bierlaire, 2016a) was used. 

Table 4-4 shows the model estimation results using the SP data, and Table 4-5 shows the model 

estimation results using the pooled data (combined SP and RP data). We first compare across 

these modelling outputs and then discuss the factors affecting the choice of bike-sharing and 

other mode choices in general. 

4.3.1 Models Performance and Comparison 

The first model is an NL model based on the use of SP data. Bus and car-sharing are 

found to share some common unobserved attributes under the so-called nest “shared 

automobile”. The output   value 2.24, complies with the specification requirement of nested 

logit as it is greater than 1, where 1/  21 (Hess et al., 2004; Ortúzar and Willumsen, 2011). 

There is no other significant correlation being detected among the remaining alternatives. Panel 

effect is revealed next using a mixed NL model and the error terms appear to be significant on all 

alternative modes. The nesting parameter   shrinks as expected (Hess et al., 2004) since the 

mixed NL model decomposes the error term further than the NL model. The model fitness 

improves by capturing the additional explanatory power resulted from panel effect, and hence we 

observe significant increases in the values of likelihood ratio test and adjusted rho-bar squared. 

The more fitted model can yield more reliable estimates of the parameters. For example, without 

taking into account individuals‟ differentiated tastes, most of the coefficients associated with the 

car-sharing alternative turn out to be much larger than those with other alternatives; these values 

reduce substantially in the mixed NL model, as the model detects the choice of car-sharing is not 

utterly explained by the observed variables, but could also be affected by individuals‟ unique 

preferences on car-sharing. 

When the RP data is added, the model performance increases further compared to the 

two models based on only SP data. Meanwhile, panel effect is estimated simultaneously in the 

RP data as there are also repeated observations from an individual in the RP trip diary. Nests are 
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   was defined earlier in Eq. 3 and Eq. 4. 
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tested on the RP mode choices as well although they did not turn out significant as in the SP 

case. Overall, the mixed NL model based on combined SP and RP data shows the best 

performance and will, therefore, be used next to study the factors‟ impacts on mode choices. 

Table 4-4 Model Estimation Results Using SP Data 

 NL Mixed NL 

 Coef. t-stat Coef. t-stat 

bikeshare
 

 0.97  1.88  2.85  3.62 

walk
 

 2.23 7.71  4.02 7.72 

ebike
 

 0.23  0.57  0.80  1.10 

carshare
 

- 17.80 - 4.20 - 0.03 - 0.06 

car
 

 0.98 2.21  1.07 1.28 

Natural environmental conditions     

Air pollution-bikeshare - 0.0032 - 4.66 - 0.0081 - 6.20 

Air pollution-walk - 0.0049 - 9.20 - 0.0111 - 9.48 

Air pollution-ebike - 0.0028 - 4.59 - 0.0078 - 6.40 

Air pollution-bus - 0.0041 - 4.63 - 0.0062 - 4.27 

Air pollution-carshare  0.0213  3.36  0.0011 0.74* 

Rain-bikeshare - 0.51 - 2.63 - 0.64 - 2.54 

Rain-walk - 1.10 - 8.15 - 1.74 - 8.89 

Rain-ebike - 0.74 - 4.39 - 0.73 - 2.92 

Rain-carshare  5.37  3.51  1.46 4.72 

Rain-car  0.16  0.84*  1.06 3.40 

Temperature-bikeshare  0.01  3.23  0.02 3.89 

Temperature-walk  0.01  2.38  0.01 2.60 

Temperature-carshare - 0.24 - 4.45 - 0.08 - 7.09 

Temperature-car - 0.02 - 4.23 - 0.05 - 6.17 

Trip and mode attributes     
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Commute-bikeshare - 0.76 - 7.22 - 1.23 - 7.61 

Commute-walk  0.25  2.96  0.22  1.31* 

Commute-car - 0.23 - 1.43* - 0.79 - 2.66 

Travel cost-bikeshare - 0.69 - 6.17 - 0.78 - 4.92 

Travel cost-bus - 0.41 - 3.45 - 0.08 - 0.62* 

Travel cost-carshare - 2.05 - 3.37 - 0.27 - 2.63 

Travel cost-car - 0.29 - 0.74* - 0.90 - 1.22* 

Parking cost-car - 0.06 - 2.78 - 0.09 - 2.26 

Travel time-bikeshare  0.27  5.03  0.38  4.37 

Travel time-walk - 0.03 - 2.60 - 0.05 - 2.17 

Travel time-ebike  0.24  4.28  0.38  3.82 

Travel time-bus  0.12  6.93  0.18  7.72 

Travel time-carshare  0.18  1.07*  0.13  3.39 

Travel time-car  0.04  0.81*  0.01  0.14* 

Access time-bikeshare - 0.17 - 8.17 - 0.24 - 7.45 

Access time-bus - 0.11 - 6.60 - 0.24 - 8.10 

Access time-carshare - 0.17 - 0.94* - 0.08 - 1.98 

App availability-bikeshare - 0.87 - 9.58 - 1.11 - 8.10 

App availability-bus  0.12  1.28*  0.70  5.44 

App availability-carshare  2.14  3.30  0.24  1.40* 

Systematic taste heterogeneity     

Air pollution * Male-bus - 0.0017 - 4.94 - 0.0018 - 3.67 

Air pollution * Lower age-bus  0.0024  6.29  0.0020  3.75 

Air pollution * Lower income-bus  0.0013  2.31  0.0013  1.61* 

Commute * Lower income-car - 0.33 - 2.67 - 0.53 - 1.99 

Commute * Lower education-walk - 0.18 - 3.18 - 0.18 - 1.31* 

Inter-alternative correlation & Panel effect   

sharedmotor
 

2.24  7.30#  1.84 6.75# 

bikeshare
 

- -  0.84  4.60 
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walk
 

- -  3.28  23.23 

ebike
 

- - 2.58  13.25 

bus
 

- - 1.78 15.39 

car
 

- - 3.27 12.66 

Number of observations 9028 9028 

Initial log-likelihood - 14122.8 - 14122.8 

Final log-likelihood - 12188.0 - 11079.7 

Likelihood ratio test 3869.5 6086.1 

Adjusted rho-bar squared  0.13 0.21 

* parameter values not meeting the 95% significance level 

# t-test against base value of 1 

 

Table 4-5 Model Estimation Results Using Combined SP and RP Data 

 NL Mixed NL 

 Coef. t-stat Coef. t-stat 

bikeshare
(SP) 

 1.64 8.62  1.89  10.19 

walk
(SP) 

 1.82 8.57  1.91 9.43 

ebike
(SP) 

 0.33  1.97  0.75  4.79 

carshare
(SP) 

- 21.9 - 3.81 - 1.66 - 2.59 

car
(SP) 

 0.11 0.61 0.50 2.79 

bikeshare
(RP) 

- 0.04 - 0.42  0.24  2.88 

bike
(RP) 

- 0.43 - 3.65  0.39  5.01 

walk
(RP) 

- 0.03 - 0.29  0.45 5.72 

ebike
(RP) 

- 0.03 - 0.32  0.43  5.61 
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cardriver
(RP) 

- 0.72 - 5.26  0.16  2.08 

carpassenger
(RP) 

- 1.29 - 7.11 - 0.05 - 0.56 

Natural environmental conditions     

Air pollution-bikeshare (SP) - 0.0048 - 8.89 - 0.0045 - 8.29 

Air pollution-walk (SP) - 0.0046 - 9.24 - 0.0045 - 9.17 

Air pollution-ebike (SP) - 0.0029 - 5.01 - 0.0022 - 3.93 

Air pollution-bus (SP) - 0.0052 - 6.06 - 0.0020 - 2.65 

Air pollution-carshare (SP)  0.0274  3.27  0.0023 1.96 

Rain-bikeshare (SP & RP) - 0.15 - 6.37 - 0.10 - 3.89 

Rain-walk (SP & RP) - 0.48 - 4.41 - 0.62 - 6.99 

Rain-ebike (SP & RP) - 0.26 - 1.71* - 0.40 - 2.77 

Rain-carshare (SP)  8.60  3.91  1.26 4.11 

Rain-car (SP & RP)  0.88  8.37  0.41 8.32 

Temperature-bikeshare (SP)  0.01  2.19  0.01 3.16 

Temperature-walk (SP)  0.01  1.67*  0.01 4.12 

Temperature-carshare (SP) - 0.27 - 4.45 - 0.05 - 4.95 

Temperature-car (SP) - 0.03 - 6.04 - 0.02 - 4.37 

Trip and mode attributes     

Commute-bikeshare (SP & RP) - 0.12 - 5.36 - 0.18 - 10.27 

Commute-walk (SP & RP)  0.05  2.83  0.06  7.90 

Commute-car (SP & RP)  0.30  6.66  0.03  2.48 

Travel cost-bikeshare (SP & RP) - 0.61 - 6.69 - 0.72 - 8.33 

Travel cost-bus (SP & RP) - 0.15 - 1.42* - 0.10 - 0.10* 

Travel cost-carshare (SP) - 1.66 - 3.40 - 0.30 - 3.16 

Travel cost-car (SP & RP) - 0.12 - 2.11 - 0.04 - 1.22* 

Parking cost-car (SP) - 0.04 - 2.17 - 0.03 - 1.66* 

Travel time-bikeshare (SP & RP)  0.06  6.60  0.04  5.75 

Travel time-bike (RP)  0.11  7.93  0.05  6.16 

Travel time-walk (SP & RP) - 0.02 - 6.58 - 0.01 - 5.56 
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Travel time-ebike (SP & RP)  0.14  6.94  0.09  5.83 

Travel time-bus (SP & RP)  0.08  7.85  0.05 6.04 

Travel time-carshare (SP)  0.36  2.04  0.07  2.01 

Travel time-car (SP & RP)  0.09  5.50  0.07  6.26 

Access time-bikeshare (SP) - 0.09 - 5.09 - 0.09 - 4.58 

Access time-bus (SP) - 0.08 - 5.05 - 0.10 - 6.78 

Access time-carshare (SP) - 0.07 - 0.35* - 0.05 - 1.57* 

App availability-bikeshare (SP) - 0.66 - 8.49 - 0.66 - 8.14 

App availability-bus (SP)  0.07  0.82*  0.33  4.51 

App availability-carshare (SP)  2.38  3.08  0.27  1.96 

Systematic taste heterogeneity     

Air pollution * Male-bus (SP) - 0.0016 - 4.84 - 0.0010 - 3.23 

Air pollution * Lower age-bus (SP)  0.0025  6.53  0.0010  2.89 

Air pollution * Lower income-bus (SP)  0.0014  2.40  0.0005  0.94* 

Commute * Lower income-car (SP & RP) - 0.41 - 7.10 - 0.01 - 0.01* 

Commute * Lower education-walk (SP & RP) - 0.17 - 6.59 - 0.02 - 3.47 

Inter-alternative correlation & Panel effect   

sharedmotor
(SP) 

2.21  4.91#  1.68 4.89# 

bikeshare
 (SP & RP) 

- -  1.51 10.88 

walk
 (SP & RP) 

- -  1.05 7.04 

ebike
 (SP & RP) 

- -  1.31 12.32 

bus
 (SP & RP) 

- - 1.74 14.01 

car
 (SP & RP) 

- - 1.15 7.20 

Scaling factor (RP) 4.83 7.93# 5.96 9.53# 

Number of observations  15642 15642 

Initial log-likelihood - 24788.3 - 24788.3 

Final log-likelihood - 21010.1 - 16994.7 
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Likelihood ratio test  7556.4 15587.1 

Adjusted rho-bar squared 0.15 0.31 

* parameter values not meeting the 95% significance level 

# t-test against base value of 1 

 

4.3.2 Model Estimation Results: Bike-sharing 

Regarding natural environmental conditions, firstly, air pollution is found to have a 

significant negative effect on bike-sharing choice. Due to the possible concern on health damage 

an increase in air pollution level would discourage travellers from using bike-sharing. Next, the 

impacts of weather and temperature are shown to be similar to those found in earlier studies. 

Rainy weather can significantly decrease the demand for bike-sharing and warmer weather can 

increase the probability to use bike-sharing. 

The impacts of trip and mode attributes are revealed next. When conducting commute 

trips (for work or education) bike-sharing is a less preferable option. In other words, as the most 

literature shows, bike-sharing is more likely to be used for leisure purposes. As for travel cost 

and travel time, bike-sharing choice is, as expected negatively correlated with the former and 

however positively correlated with the latter. A discussion on this finding is given in the next 

sub-section. Access time to bike-sharing parking spots is negatively associated with its choice 

which means longer walking distance will discourage people from using the service. It is also 

found a negative coefficient on bike-sharing app availability. Such a result is nevertheless in line 

with the fact that the existing bike-sharing app in Taiyuan is not popular at all among the 

registered bike-sharing users as shown in the operator‟s latest report (Taiyuan Public Transport 

Holdings, 2016). The bike-sharing docking stations in Taiyuan is quite dense (there is a docking 

station every 500m on average) and probably this has made a smartphone app (e.g. provide 

real-time information on bike availability) somewhat redundant. 

Finally, the choice of bike-sharing is not significantly associated with any critical 

socio-economic characteristics (gender, age, household income, and education level) although 

their effects are analysed in the way of systematic taste heterogeneity (results not included in the 
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final models due to high insignificance). Such a finding is similar to the results of the 

aforementioned Beijing study (Campbell et al., 2016) in which the authors showed bike-sharing 

users could emerge across the social spectrum with no significant preference from any particular 

groups of people. 

4.3.3 Model Estimation Results: Rest of the Modes 

Apart from bike-sharing, air pollution also has a significant negative impact on walk, 

electric bike and bus choices. Car-sharing is the only mode that displays a positive correlation 

between its utility and higher air pollution level (in fact car choice shows a positive relationship 

too, but it is normalised to base when specifying the model). The impact of adverse weather is 

consistent with air pollution, such that rain will discourage the choices of electric bike and walk 

while increasing the attractiveness of car and car-sharing. As for temperature, another mode 

choice besides bike-sharing that is preferred under warmer weather is walking, whereas car and 

car-sharing are more likely to be chosen when the temperature falls. 

Regarding trip purpose, walking is a significantly preferred mode for short-dist commute 

trips. A more interesting result is found on private car choice. In Table 4-4, people‟s stated 

choices imply that they do not like to use cars for commuting; however, when their actual 

behaviour is incorporated (combined SP and RP data), private car choice turns out to be 

positively associated with commute trips (Table 4-5). Regarding, the rest of the modes (electric 

bike, bus, and car-sharing) no significant correlation has been found between their choices and 

trip purposes. 

An increase in travel cost will decrease the utility of all mode choices, although such an 

impact on bus choice and car choice is insignificant as shown by the mixed NL model in Table 

4-4 and 4-5. However, for travel time, its effect is positively associated with all mode choice 

utilities except for walk. Hess et al. (2005) offered a comprehensive explanation for such a 

phenomenon and positive travel time coefficients would simply indicate the existence of conjoint 

activities
22

 and travel-experience factors
23

 (Salomon and Mokhtarian, 1998) that people 

perceive when making mode choice decisions. In microeconomic term, the marginal opportunity 

                                                             
22

 That is the negative marginal utility of a travel-time increase is compensated by the gains in utility resulting from 
simultaneously conducted activities. 
23

 Such as the comfort, pleasure or the positive social perception associated with traveling by a particular mode. 
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cost of travel time would be offset or even overwhelmed by the marginal benefit of travel time 

associated with a mode choice. Another possible reason for observing positive travel time 

coefficients is related to the design of SP mode choice experiment. When trip distance is short, 

the levels/values assigned to the attribute, travel time, are close (see Table 3-1) and there may 

not be enough variations to incentivise survey respondents to make trade-offs with other 

observed attributes. As a result, it is not appropriate to conclude that utilities increase with travel 

time by having the positive coefficients, but travel time could be dominated by other more 

influential attributes when an individual was evaluating the information in an SP scenario and 

based on which trying to make a mode choice decision. Such a hypothesis can be supported by 

the model estimation results from the next chapter which studies longer trip cases (larger 

differences in travel time levels in the SP survey, Table 3-1) and the model reveals negative 

travel time coefficients for all mode choices. 

The access time variables on the choices of bike-sharing, car-sharing and bus all display 

negative signs meaning that longer walking journeys to the stations or parking spots can reduce 

the perceived utilities associated with these choices. Several remaining mode-related attributes 

also have the expected signs of impact: bus app availability (positive), car-sharing app 

availability (positive) and car parking cost (negative). 

Systematic taste heterogeneity is firstly captured in the NL models with its significant 

impact being found on the choices of bus, car and walk (no other systematic taste heterogeneity 

is detected as significant apart from those presented). It has been shown that bus usage is 

negatively correlated with air pollution. As a result, the positive coefficients on the two interacted 

terms (air pollution and lower age group, air pollution and lower income group) can suggest that 

younger and less wealthy people would still use bus service even if air quality becomes worse. 

On the contrary, the group of male travellers is found to prefer bus less than female travellers, 

while air pollution would further push the male group away from using the service. For the taste 

heterogeneity on trip purpose, in the SP only model (Table 4-4), the lower income group do not 

prefer either car or walk for commuting, no matter the mode itself is a preferable option (walk) or 

a less preferable option (car) for commute journeys. In the pooled dataset (Table 4-5), the lower 

income group still dislikes car and walk for commute purpose even though car is now positively 

associated with commuting as we showed earlier. Nevertheless, these results have become 
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slightly different when panel effect is incorporated; the t-statistics measuring systematic taste 

heterogeneity decrease in the mixed NL models and some values then become insignificant 

(Table 4-4 and 4-5). 

4.3.4 Value of Time 

Given the observed positive travel time coefficients, the willingness to pay for travel time 

saving is not possible to derive (Hess et al., 2005). It is because in such a case the “travel time” 

variable captures not only the effect of travel time, but also the effect of any conjoint activities and 

travel-experience factors. However, the willingness to pay for access time savings can be 

estimated using the ratio of marginal utilities of access time over travel cost. In the case of a 

short-dist trip, the estimated willingness to pay values are ￥0.12, ￥0.16 and ￥1.02 per 

minute for bike-sharing, car-sharing and bus respectively (Table 4-6). The value for bus turns out 

to be much higher. This may be due to we unintentionally captured people‟s willingness to pay for 

bus waiting time savings as well, if, in the SP mode choice experiment, some respondents see 

the access time for bus as it includes the waiting time at station. Future studies, especially in the 

context of China, are welcome to compare to the results. 

Table 4-6 Willingness to Pay for Access Time Savings (per minute) 

Bike-sharing Car-sharing Bus 

￥0.12 ￥0.16 ￥1.02 

4.4 Policy Impact Analysis 

A number of scenarios are proposed to explore the effectiveness of different policy 

options that may help promote the usage of bike-sharing. (Table 4-7). The model estimation 

results of the mixed NL model based on combined SP and RP data are used for simulation. The 

simulation method is sample enumeration. 

A key objective is to investigate to what extent better air quality could help increase 

bike-sharing ridership. In our case study, China has ambitions and plans to control air pollution in 

its cities. Therefore, scenarios can be developed based on their goals for air quality improvement, 

and hence to assess how modal substitution pattern could be affected if the goals were met. To 
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begin with, a 20% air quality increase is proposed as a mid-term goal in our scenarios in 

accordance with the air pollution reduction target in China (Zhang, 2017). The central 

government has set a five-year plan (2012 to 2017) to decrease the air pollution levels in the 

country‟s top 3 city clusters (i.e. Beijing-Tianjin-Hebei cluster, the Yangtze cluster centred by 

Shanghai and the Pearl cluster centred by Guangzhou) by 25%, 20% and 15% respectively. 

Hence, the median target (20%) is selected as the reference for this study. Next, a 50% air 

quality increase is proposed as a long-term goal. It is based on the fact that coal burning 

accounts for 50%-70% of air pollution in the above mentioned 3 clusters (Wang, 2014). Thus, a 

50% air quality increase is adopted to represent an optimistic “coal-free era” in the long-term. 

To generate broader insights, measures for bike-sharing service improvement are also 

proposed. As per the model estimation results, reductions in travel cost and access time are 

introduced and joint with air quality improvement to create more scenarios for analysis. Table 4-7 

shows the simulation results, while Table 4-8 shows the direct and cross-point elasticity.  

Table 4-7 Scenarios and Modal Substitution Patterns 

Scenarios 

M
id

-t
e
rm

 

M1 20% air quality increase 

M2 20% air quality increase + 20% bike-sharing travel cost reduction 

M3 20% air quality increase + 50% bike-sharing travel cost reduction 

M4 20% air quality increase + 50% bike-sharing travel cost reduction + 20% 

bike-sharing access time reduction 

M5 20% air quality increase + 50% bike-sharing travel cost reduction + 50% 

bike-sharing access time reduction 

L
o
n
g
-t

e
rm

 

L1 50% air quality increase 

L2 50% air quality increase + 20% bike-sharing travel cost reduction 

L3 50% air quality increase + 50% bike-sharing travel cost reduction 

L4 50% air quality increase + 50% bike-sharing travel cost reduction + 20% 

bike-sharing access time reduction 

L5 50% air quality increase + 50% bike-sharing travel cost reduction + 50% 

bike-sharing access time reduction 
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Modal Substitution Patterns 

 Bike-share Walk E-bike Bus Car-share Car 

 Baseline 21.5% 30.2% 9.2% 28.8% 2.4% 7.9% 
M

id
-t

e
rm

 

M1 22.0% 30.9% 9.1% 28.7% 1.9% 7.4% 

M2 22.6% 30.7% 9.0% 28.5% 1.9% 7.4% 

M3 23.4% 30.4% 8.9% 28.1% 1.8% 7.4% 

M4 24.7% 29.8% 8.8% 27.7% 1.8% 7.2% 

M5 26.7% 28.9% 8.6% 27.0% 1.8% 7.0% 

L
o
n
g
-t

e
rm

 

L1 22.7% 31.7% 8.8% 28.7% 1.4% 6.7% 

L2 23.2% 31.5% 8.8% 28.5% 1.4% 6.6% 

L3 24.1% 31.2% 8.7% 28.1% 1.4% 6.5% 

L4 25.4% 30.6% 8.6% 27.6% 1.4% 6.4% 

L5 27.4% 29.7% 8.3% 26.9% 1.3% 6.3% 

 

Table 4-8 Direct and Cross Point Elasticity 

Choice probability 

of 

Bike-sharing 

travel cost 

Bike-sharing 

access time 

Bike-sharing (direct) - 0.118 - 0.274 

Walk (cross) 0.038 0.084 

Bus (cross) 0.035 0.072 

Car (cross) 0.034 0.066 

 

The key insights are identified as follows: 

 Firstly, better air quality can indeed improve the demand for bike-sharing (Baseline 

to M1 and L1); meanwhile, the demand for walking also rises whereas private car 

usage drops. However, by comparing to the rest of scenarios (M2-M5 and L2-L5), it 

is easily noticed that air quality improvement is less effective than bike-sharing 

service improvement (e.g. access time saving, travel cost saving) in promoting 

bike-sharing ridership. 
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 Secondly, a saving in access time to bike-sharing parking spots appears to be more 

effective than saving in bike-sharing travel cost in short-dist trips. In M4 and M5 (or 

L4 and L5) when access time reduction starts to intervene, bike-sharing ridership 

rises more significantly than M2 and M3 (or L2 and L3). The elasticity analysis in 

Table 4-8 reflects the same fact that the probability of choosing bike-sharing is more 

elastic to a change in access time (-0.274) than a change in travel cost (-0.118). 

 Finally, by looking through M2-M5 and L2-L5 (i.e. measures focusing on 

bike-sharing service improvement), it is seen that the increases in bike-sharing 

demand mostly come from the shrinking demand for walking and bus rather than 

private car. The cross elasticity values also reveal the same trend (Table 4-8). Such 

a discovery leads to an interesting choice in policy making: the improvement of 

bike-sharing service (e.g. access time saving, travel cost saving) is more effective 

than air quality improvement in promoting bike-sharing usage; however, the latter is 

on the other hand more useful in suppressing private car demand as the figures 

show. Hence, since all policy measures come with costs it should be policy makers‟ 

discretion to prioritise target and make use of the two options. 

4.5 Conclusions 

This study investigated the factors affecting mode choice behaviour in Taiyuan (China) 

with a focus on bike-sharing choice. Based on the combined SP and RP short-dist trip data, NL 

and Mixed NL models were developed to study the impacts of natural environmental conditions, 

trip and mode attributes as well as systematic taste heterogeneity on mode choices. In the end, 

the potential impacts of a number of policy options on bike-sharing‟s modal substitution pattern 

were analysed. 

The mixed NL model well addressed the inter-alternative correlation between bus and 

car-sharing as well as the panel effect caused by repeated choice observations. The 

incorporation of RP data into SP data significantly increased the model performance and the 

credibility of model estimation results. The signs of coefficients are in general consistent between 

the SP alone models and the models using combined SP and RP data. Several vital insights 
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were generated for bike-sharing choice. People would be more likely to use the service if air 

quality was better; the service users also favoured warmer weather and disliked rain; 

bike-sharing appeared to be a more popular choice in leisure trips rather than commute trips; 

lower travel cost and shorter access time to parking spots would encourage its ridership. 

Moreover, by comparing the results to the existing findings in developed countries, a significant 

difference was revealed concerning socio-economic factors. Bike-sharing choice was often 

significantly associated with particular socio-economic groups as shown in the literature. In this 

research by examining through systematic taste heterogeneity, none of the socio-economic 

groups significantly interacted with any factors affecting bike-sharing choice. The finding was 

however in line with the earlier study in Beijing (Campbell et al., 2016), in which the results also 

showed the users of bike-sharing service could arise anywhere from the social spectrum. 

The policy impact analysis offered more intuitive information to policy makers. In 

short-dist trips, improving bike-sharing service itself (e.g. access time saving, travel cost saving) 

would be more effective than improving air quality for promoting bike-sharing usage. To take one 

step further, access time saving was found to be more effective than travel cost saving. 

Nevertheless, if suppressing private car usage was also a policy target, then air quality 

improvement could be reconsidered since it was more effective than bike-sharing service 

improvement which was more likely to bring down the demand for walking and bus rather than 

private car. 

Overall, this study is one of the first works that explore air pollution‟s impact on mode 

choice behaviour as well as factors affecting bike-sharing choice in a developing country. The 

findings could benefit policy making by revealing the effectiveness of different policy options, 

although how to deliver the proposed policy options, in reality, remains as a challenge to policy 

makers and such an issue is beyond the scope of this work. Cities with close characteristics to 

Taiyuan could benefit the most from the results and the insights. Researchers from developing 

countries could also make use of the methodologies in this research to study similar issues in 

their cases; especially in cities that have vast local and geographical differences to Taiyuan. 
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CHAPTER 5. THE MODAL SUBSTITUTION PATTERN 

FOR CAR-SHARING: SOURCES OF DEMAND 

This chapter investigates the modal substitution pattern for car-sharing. Similar to 

Chapter 4, pooled SP/RP data is used, mixed NL mode choice models are developed and a 

scenario analysis is followed. However, we would now like to focus on mid-dist (2km to 5km) and 

long-dist (more than 5km) trips since in general car-sharing is not expected to be a competitive 

travel option when making short-dist trips due to the associated access and alighting time 

(Martinez et al., 2017). Such a focus is also a result after observing the relatively small number of 

short-dist car trips in both RP and SP cases (Table 4-1, Chapter 4). Thus, in particular, we would 

investigate under each of the two distance cases, the extent to which the demand for car-sharing 

would come, from private car and public transport, to offer a direct insight to the puzzle stressed 

by Jorge and Correia (2013). Policy makers can see the modal substitution pattern as a result of 

different measures that they could adopt to promote car-sharing usage, and meanwhile, policy 

options that could more effectively bring down private car usage will also be identified. 

The chapter is structured as follows. Section 5.1 explains the data source, followed by 

the modelling framework in section 5.2. Section 5.3 presents the model estimation results and 

based on which a number of informative indicators (e.g. value of travel time savings, direct and 

cross point elasticity) are derived in section 5.4. A policy impact analysis and relevant discussion 

are provided in section 5.5. In the end, section 5.6 concludes the chapter. 

5.1 Data 

Similar to the previous chapter, SP data could suffer from not reflecting the exact 

circumstance in reality (Louviere et al., 2003), and thus we further refined the SP mode choice 

data by keeping only observations that were rigorously consistent with the participants‟ RP mode 

choice information, which was collected in the trip diary survey. Specifically, if someone made 

choices in the mid-dist SP scenarios but did not reveal any 2km-5km trips in his/her trip diary, 

these SP choices would be considered as less reliable and dropped out from the analysis. The 

same rule applies to long-dist trips. As a result, we have 3,698 individuals with 6,848 valid SP 
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observations left for mid-dist trips and 6,317 individuals with 11,925 valid SP observations left for 

long-dist trips. 

Table 5-1 displays the key statistics of the 3,698 and 6,317 individuals, alongside their 

SP mode choice patterns. The corresponding RP mode choices under the two distance cases 

are followed in Table 5-2 by having a slightly different set of alternatives (i.e. with private bike and 

no car-sharing, as discussed in Chapter 4). From both data sources, we can see when the trip 

gets longer, the demand for private car increases and the demand for bus, electric bike and 

bike-sharing all slightly decrease. Concerning socio-economic characteristics, the statistics of 

age and occupational status demonstrate that adults with fixed jobs constitute the main group in 

the sample, indicating that the sample has successfully captured regular commuters whose 

mode choice behaviours are highly important to urban planning and policy making. 

Table 5-1 Sample Statistics and SP Modal Splits 

  Mid-dist 

(N=3,698) 

Long-dist 

(N=6,317) 

Gender Male 51% 52% 

Female 49% 48% 

Age under 18 7% 5% 

18-25 31% 25% 

26-35 27% 32% 

36-45 22% 26% 

46-59 11% 11% 

60 or above 2% 1% 

Marital status Single 45% 37% 

Married 55% 63% 

Educational level High school or below 27% 25% 

College 35% 33% 

Undergraduate 33% 36% 

Graduate and above 5% 6% 

Occupational status Fixed job 68% 76% 
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Student 24% 16% 

Retired 2% 1% 

Self-employed or unemployed 6% 7% 

Public transport card Percentage of possession 74% 79% 

Cycling capability Health enough to cycle 95% 94% 

Household monthly 

income (after tax) 

Under ￥3000 34% 28% 

￥3000 -￥6000 38% 40% 

￥6000 -￥9000 15% 18% 

￥9000 -￥15000 8% 9% 

￥15000 -￥30000 3% 3% 

Over ￥30000 2% 1% 

Household car Percentage of possession 45% 55% 

Household electric bike Percentage of possession 46% 46% 

SP modal splits in mid- and long-dist trips 

Car-share Car Taxi Bus E-bike Bike-share 

Mid-dist: 6,848 obs. 

19% 13% 8% 36% 12% 12% 

Long-dist: 11,925 obs. 

19% 24% 9% 32% 9% 7% 

 

Table 5-2 RP Modal Splits in Mid- and Long-dist Trips 

Mid-dist 

(4,807 obs.) 

Long-dist 

(9,899 obs.) 

Car* 16% Car* 28% 

Taxi 5% Taxi 7% 

Bus 46% Bus 40% 

E-bike 17% E-bike 14% 

Bike-share 11% Bike-share 9% 

Bike 5% Bike 2% 
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* It is also revealed by the trip diary survey that the mid-dist car trips consist of 

11% car driver trips and 5% car passenger trips; the long-dist car trips consist 

of 20% car driver trips and 8% car passenger trips. 

 

5.2 Modelling Framework 

The results in the previous chapter have demonstrated the good performance of a mixed 

NL framework, so that once again, this modelling technique is applied, and two models are 

separately developed to study the mid- and long-dist mode choice data. The mathematical 

formulation of a mixed NL structure is described again here: 

The utility function for an alternative i  ( ni C ) chosen by an individual n  ( 1,...,n N ) 

at the t th
 ( 1,...,t T ) number of SP scenario is given by: 

1

K

int k intk i in int

k

U X   


     (8) 

while the measurable part of the utility is defined as: 

1

K

int k intk i in

k
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    (9) 

where nC  is the choice set, U  is the utility associated with a mode choice, X  is the 

vector of explanatory variables and the normally distributed error component   with zero mean 

captures the panel effect. The estimated parameters are k  and  . V  is the measurable 

utility and   is the unobserved term i.i.d. Extreme Value and independent from  . 

The choice probability functions are: 

Choice of a nest (upper level): 
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Choice of an alternative inside a nest (lower level): 
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General choice of an alternative: 

|s sint M nt int MP P P   (12) 

where P
 

is choice probability, sM
 

represents the nest s ( 1,...,s z ), IV

 

is the 

expected maximum utility for the choice of alternatives inside a nest, 
 

is the scale parameter 

measuring the different variances across nests. 

The general choice probability function is integrated over  , gives (now intP
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Log-likelihood function that needs to be maximized: 
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where iny  takes the value of 1 if an individual n  chooses an alternative i  and 0 

otherwise. 

The variables that were included in the final models are listed in Table 5-3. Each 

explanatory variable was tested by its effect on all mode choice utilities and the one which 

showed minimum effect (in terms of absolute value) was normalised to zero. Highly insignificant 

variables were removed from the utility functions to avoid type I error. Several issues are worth 

mentioning: Air pollution was presented in categorical measures to survey participants; however, 

the categories were defined based on the air quality index scheme as shown in Table 5-3. Thus, 

we modelled air pollution as a continuous variable, a generally preferred way of measurement in 

choice modelling (Ben-Akiva and Lerman, 1985; Moudon et al., 2005). Temperature was tested 

by a linear (continuous variable) and a curvilinear (dummy variable 1 for extreme temperature 

and 0 otherwise) relationship respectively for its effect on mode choice utilities; the former type of 

correlation was adopted due to higher t-statistics. Generic parameters on travel time and cost 
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were tested against alternative specific parameters. The use of generic parameters reduced 

model fitness in terms of likelihood ratio test and adjusted rho-bar squared, and thus alternative 

specific parameters for travel time and cost were eventually applied. Systematic taste 

heterogeneity (i.e. how different socio-economic groups think of different attributes) has been a 

favourite way to study socio-economic impacts (Amador et al., 2005; Cherchi and Ortúzar, 2002; 

Cherchi and Ortúzar, 2011). Our final models adopted such a form also due to the resulted 

higher values on model fitness comparing to directly adding the socio-economic variables in 

utility functions. Moreover, after testing with the socio-economic variables in their original 

sub-grouping formats, we merged the sub-groups of each variable into two general groups (i.e. 

low and high) to more clearly manifest the impacts. In the end, availability conditions were 

considered in the mode choice models: 1. Car is available to households that own a car
24

, 2. 

Electric bike is available to households that own an electric bike, and 3. Cycling is available to 

those who can cycle given their state of health. These conditions increased model validity by 

helping to explain the circumstances where someone did not choose a particular mode could be 

due to the mode was not an available option. 

The above analysis was first applied on the mid- and long-dist SP datasets. Then we 

formed up a pooled dataset for each distance case by bringing in the respondents‟ RP trips 

conducted in the same distance range. The critical limitation of SP data is it only captures 

hypothetical choice behaviour which may be inconsistent with choices that would be made in real 

life (Louviere et al., 2003). The joint analysis of the two types of data could reduce the 

behavioural bias and many works have followed such a practice (Hensher and Bradley, 1993; 

Ben-Akiva et al., 1994; Bradley and Daly, 1997; Polydoropoulou and Ben-Akiva, 2001; Bhat and 

Sardesai, 2006; Cherchi and Ortúzar, 2011; Lavasani et al., 2017). In our case, although the RP 

data did not capture car-sharing choice as well as a few other variables (air pollution, 

temperature, parking cost and space, access time and app availability due to paper-based 

survey) it could still help with the rest parameter estimation and improve the overall model fitness. 

Thus, in each of the two distance cases, we conducted the mixed NL analysis on the pooled 

dataset in order to have a comparison to the model performance based on SP data. Different 

                                                             
24

 Possession of a driving license is not an availability condition in this case since we allow the choices of car and 
car-sharing to come from both drivers and passengers. 
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scaling factors were applied in the joint SP/RP model estimation to address the difference in the 

variances of the unobserved error terms across the two datasets. Since SP data is the primary 

source in this study, the RP utilities were scaled relative to it. 

In the end, many hypotheses have been proposed prior to the modelling analysis 

including a few relevant to car-sharing: longer travel time and higher travel cost could both 

decrease the probability to choose car-sharing, longer walking time to car-sharing spots would 

also decrease the utility of using car-sharing service, whereas a smartphone based application 

would make car-sharing more appealing and more likely to be chosen. 

Table 5-3 Explanatory Variables and Measurements 

Variable Measurement 

Air pollution air quality index (AQI) by taking the average value of each 

level (25 for excellent level „0-50‟, 75 for good level 

„51-100‟, 125 for light pollution „101-150‟, 175 for medium 

pollution „151-200‟, 250 for heavy pollution „201-300‟, 400 

for terrible pollution „above 300‟) 

Rain 1 if weather is rainy, 0 if otherwise 

Temperature temperature in °C 

Commute 1 if trip purpose is commute (i.e. work/education), 0 if 

otherwise 

Travel cost in RMB (￥) 

Parking cost in RMB (￥)/hour 

Parking space 1 if available, 0 otherwise 

Travel time in min 

Access time in min, walking time to stations/parking spots 

Waiting time in min, waiting time at bus stop 

App availability 1 if a smart phone application is available, 0 otherwise 

Male 1 if gender is male, 0 if female 

Lower age 1 if age is “under 18” or “18-25” or “26-35”, 0 if “36-45” or 

“46-59” or “60 or above” 
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Lower income 1 if household monthly income is “under ￥3000” or 

“￥3000-￥6000” or “￥6000-￥9000”, 0 if “￥9000-

￥15000” or “￥15000-￥30000” or “over ￥30000” 

Lower education 1 if educational level is “high school or below” or “college”, 

0 if “undergraduate” or “graduate and above” 

 

5.3 Model Estimation Results 

Table 5-4 and 5-5 present the mixed NL results, which were generated using 

PythonBiogeme (Bierlaire, 2016a). In both mid- and long-dist trips, the joint SP/RP model offers 

improved values in likelihood ratio test and adjusted rho-bar squared comparing to the model 

using only SP data. The choice behaviour as being revealed by SP and SP/RP datasets are very 

much consistent in terms of the observed signs of impact
25

. We, therefore, base our discussion 

only on the results of the joint SP/RP model for both distance cases. 

Table 5-4 Mixed NL Results for Mid-dist Case 

 SP data SP & RP data 

 Coef. t-stat Coef. t-stat 

carshare
(SP) 

- 1.76 - 4.70 - 1.88 - 6.51 

car
(SP) 

- 0.60 - 1.24 - 0.03 - 0.13 

taxi
(SP) 

- 1.75 - 4.06 - 1.40 - 4.15 

bus
(SP) 

- 0.18 - 0.43 0.12 0.45 

bikeshare
(SP) 

 4.18 9.62 3.41  11.19 

cardriver
(RP) 

- - 0.90  7.16 

carpassenger
(RP) 

- -  0.35  2.76 

taxi
(RP) 

- -  0.87  5.48 

                                                             
25

 The only exception is observed on the impact of trip purpose. When RP data is involved, bike-sharing is no longer a 
preferred mode for mid-dist commute trips while taxi and bus are no longer among the preferred modes for long-dist 
commute trips. 
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bus
(RP) 

- -  1.17  7.62 

ebike
(RP) 

- -  0.68  4.07 

bike
(RP) 

- -  0.04  0.16 

Natural environmental conditions     

Air pollution-carshare (SP)  0.0109  6.98 0.0089  7.42 

Air pollution-car (SP) 0.0041  2.54 0.0026  2.64 

Air pollution-taxi (SP)  0.0032  1.86*  0.0005  0.43** 

Air pollution-bus (SP)  0.0009  0.59**  0.0008  0.76** 

Air pollution-bikeshare (SP) - 0.0243 - 11.12 - 0.0202 - 12.88 

Rain-ebike (SP & RP) - 1.02 - 3.49 - 0.45 - 4.31 

Temperature-taxi (SP) - 0.02 - 3.02 - 0.01 - 2.21 

Temperature-ebike (SP) 0.05  4.58  0.03  4.07 

Trip and mode attributes     

Commute-carshare (SP) - 0.78 - 3.77 - 0.54 - 3.16 

Commute-taxi (SP & RP) - 1.39 - 5.92 - 0.28 - 4.82 

Commute-ebike (SP & RP) 0.92 5.28  0.18  3.86 

Commute-bikeshare (SP & RP)  0.61  3.25 - 0.06 - 1.40** 

Travel cost-carshare (SP) - 0.03 - 1.95* - 0.04 - 2.86 

Travel cost-car (SP & RP) - 0.15 - 0.82** - 0.07 - 2.33 

Travel cost-taxi (SP & RP) - 0.08 - 4.66 - 0.04 - 3.34 

Travel cost-bus (SP & RP) - 0.02 - 0.15** - 0.02 - 2.21 

Travel cost-bikeshare (SP & RP) - 0.41 - 3.18 - 0.55 - 5.59 

Parking cost-car (SP) - 0.14 - 4.93 - 0.05 - 3.50 

Parking space-car (SP) 0.17  0.91** 0.07 0.69** 

Travel time-carshare (SP) - 0.03 - 2.59 - 0.01 - 1.32** 

Travel time-car (SP & RP) - 0.02 - 0.76** - 0.01 - 1.11** 

Travel time-taxi (SP & RP) - 0.01 - 0.07** - 0.01 - 1.44** 

Travel time-bus (SP & RP) - 0.04 - 3.36 - 0.01 - 0.52** 
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Travel time-ebike (SP & RP) - 0.05 - 3.09 - 0.02 - 1.62** 

Travel time-bikeshare (SP & RP) - 0.18 - 9.85 - 0.19 - 13.81 

Travel time-bike (RP) - - - 0.01 - 0.06** 

Waiting time-bus (SP) - 0.03 - 2.07 - 0.03 - 2.88 

Access time-carshare (SP) - 0.02 - 1.08** - 0.04 - 2.49 

Access time-bikeshare (SP) - 0.37 - 10.45 - 0.24 - 10.91 

App availability-carshare (SP) 0.35 3.23  0.36  3.79 

App availability-taxi (SP)  0.36  2.18 0.28 2.04 

App availability-bus (SP)  0.11  0.93** 0.14 1.77* 

App availability-bikeshare (SP)  3.79  10.69 3.63 12.09 

Systematic taste heterogeneity     

Air pollution * Male-bus (SP) - 0.0028 - 4.15 - 0.0017 - 3.43 

Air pollution * Lower age-taxi (SP) 0.0027  3.08  0.0032  3.83 

Air pollution * Lower age-bus (SP) 0.0042 5.33 0.0029  5.20 

Air pollution * Lower education-carshare (SP) - 0.0040 - 4.03 - 0.0025 - 2.85 

Air pollution * Lower education-taxi (SP) - 0.0036 - 3.34 - 0.0008 - 1.13** 

Commute * Lower education-carshare (SP) - 0.54 - 2.47 - 0.38 - 1.98 

Commute * Lower education-taxi (SP & RP) - 0.53 - 2.02 - 0.09 - 1.08** 

Inter-alternative correlation & Panel effect   

selfdriven
(SP) 

1.93 8.17#  1.44 7.26# 

carshare
 (SP & RP) 

 1.20  8.84  1.66  15.92 

car
 (SP & RP) 

 2.92 11.41  0.63  7.41 

bus
 (SP & RP) 

 1.95  18.13  0.89  13.40 

ebike
 (SP & RP) 

 2.53  12.61  1.35  12.50 

bikeshare
 (SP & RP) 

1.24  6.10  0.89  9.95 

bike
(RP) 

- -  1.04 5.56 

Scaling factor (RP) - - 7.65 10.03# 
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Number of observations  6848 11655 

Initial log-likelihood - 10738.4 - 15408.3 

Final log-likelihood - 8523.9 - 11342.9 

Likelihood ratio test  4428.9 8130.7 

Adjusted rho-bar squared 0.20 0.26 

Note: * parameter values not meeting the 95% significance level 

** parameter values not meeting the 90% significance level 

# t-test against base value of 1 

 

Table 5-5 Mixed NL Results for Long-dist Case 

 SP data SP & RP data 

 Coef. t-stat Coef. t-stat 

carshare
(SP) 

- 3.45 - 5.46 - 3.36 - 10.52 

car
(SP) 

- 1.12 - 1.95 - 1.29 - 5.61 

taxi
(SP) 

- 1.00 - 1.86 - 0.68 - 3.48 

bus
(SP) 

3.97 7.19 2.40 10.09 

ebike
(SP) 

 0.01 0.01 - 1.34 - 5.20 

cardriver
(RP) 

- - - 2.75 - 16.97 

carpassenger
(RP) 

- - - 3.10 - 18.64 

taxi
(RP) 

- - - 1.73 - 14.36 

bus
(RP) 

- - - 0.69 - 6.06 

ebike
(RP) 

- - - 2.44 - 12.38 

bike
(RP) 

- - - 1.17 - 8.10 

Natural environmental conditions     

Air pollution-carshare (SP) 0.0102 15.90 0.0077 14.52 
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Air pollution-car (SP) 0.0102  9.39 0.0073 9.72 

Air pollution-taxi (SP)  0.0067  13.25  0.0071  15.77 

Air pollution-bikeshare (SP) - 0.0254 - 6.25 - 0.0070 - 5.62 

Rain-car (SP & RP)  0.36  1.54**  0.33  3.46 

Rain-taxi (SP & RP)  0.33  2.06  0.30  4.50 

Rain-bus (SP & RP) 0.24 1.91* 0.04  0.51** 

Rain-ebike (SP & RP) - 0.89 - 5.11 - 0.61 - 4.69 

Rain-bikeshare (SP & RP) - 1.03 - 3.67 - 0.15 - 1.90* 

Temperature-carshare (SP) - 0.06 - 6.26 - 0.04 - 5.10 

Temperature-taxi (SP) - 0.04 - 6.08 - 0.03 - 4.98 

Temperature-bus (SP) - 0.07 - 9.60 - 0.06 - 9.42 

Temperature-bikeshare (SP) 0.05  3.83  0.01  0.24** 

Trip and mode attributes     

Commute-carshare (SP)  1.84  9.63 0.98  7.01 

Commute-taxi (SP & RP)  0.27  1.79* - 0.63 - 11.78 

Commute-bus (SP & RP) 0.03 0.18** - 0.58 - 6.49 

Commute-bikeshare (SP & RP) - 2.94 - 5.76 - 0.96 - 13.35 

Travel cost-carshare (SP) - 0.03 - 3.26 - 0.02 - 1.36** 

Travel cost-car (SP & RP) - 0.02 - 0.34** - 0.06 - 9.04 

Travel cost-taxi (SP & RP) - 0.05 - 5.53 - 0.04 - 12.95 

Travel cost-bus (SP & RP) - 0.96 - 12.59 - 0.32 - 7.00 

Travel cost-bikeshare (SP & RP) - 1.35 - 5.63 - 0.67 - 8.83 

Parking cost-car (SP) - 0.10 - 3.04 - 0.09 - 3.83 

Parking space-car (SP) 0.69  2.88 0.19  1.35** 

Travel time-carshare (SP) - 0.08 - 7.06 - 0.03 - 3.53 

Travel time-car (SP & RP) - 0.05 - 1.88* - 0.04 - 11.04 

Travel time-taxi (SP & RP) - 0.04 - 3.02 - 0.05 - 15.70 

Travel time-bus (SP & RP) - 0.01 - 1.91* - 0.09 - 5.69 

Travel time-ebike (SP & RP) - 0.06 - 9.68 - 0.04 - 10.88 
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Travel time-bikeshare (SP & RP) - 0.07 - 8.51 - 0.38 - 16.44 

Travel time-bike (RP) - - - 0.02 - 5.17 

Waiting time-bus (SP) - 0.08 - 6.10 - 0.15 - 12.68 

Access time-carshare (SP) - 0.06 - 4.34 - 0.04 - 3.81 

Access time-bus (SP) - 0.29 - 17.68 - 0.25 - 17.36 

Access time-bikeshare (SP) - 0.11 - 2.27 - 0.01 - 0.29** 

App availability-carshare (SP) 1.79 8.33  1.49  10.73 

App availability-taxi (SP)  0.20  1.95* 0.29 3.34 

Systematic taste heterogeneity     

Air pollution * Male-bikeshare (SP)  0.0053  2.45 0.0019  2.12 

Air pollution * Lower income-car (SP) - 0.0024 - 2.94 - 0.0021 - 3.38 

Air pollution * Lower education-car (SP) - 0.0017 - 2.34 - 0.0009 - 1.69* 

Temperature * Male-carshare (SP) - 0.01 - 1.36** - 0.01 - 0.90** 

Temperature * Male-bus (SP) - 0.01 - 3.18 - 0.01 - 3.32 

Temperature * Lower age-carshare (SP) 0.03 5.30 0.02 4.81 

Temperature * Lower age-taxi (SP)  0.03  5.89  0.02  5.29 

Commute * Lower income-bus (SP & RP)  0.53  3.63  0.53  5.90 

Commute * Lower education-carshare (SP) - 0.22 - 2.33 - 0.18 - 2.50 

Inter-alternative correlation & Panel effect   

sharingeconomy
(SP) 

2.55  6.26#  1.75  5.31# 

carshare
 (SP & RP) 

 1.44 12.53  0.97  7.67 

car
 (SP & RP) 

 4.10  21.15  2.52  21.11 

bus
 (SP & RP) 

1.66 18.40  1.97  24.57 

ebike
 (SP & RP) 

2.84 16.06  3.76 18.88 

bikeshare
 (SP & RP) 

 3.74 9.19  1.16 10.55 

bike
(RP) 

- - 0.02 0.27** 

Scaling factor (RP) - - 2.68 19.37# 
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Number of observations  11925 21824 

Initial log-likelihood - 18938.3 - 35361.5 

Final log-likelihood - 14322.4 - 23925.7 

Likelihood ratio test  9231.9 22871.5 

Adjusted rho-bar squared  0.24 0.32 

Note: * parameter values not meeting the 95% significance level 

** parameter values not meeting the 90% significance level 

# t-test against base value of 1 

 

In Table 5-4 and Table 5-5, the impacting factors are classified into three types: natural 

environmental conditions, trip and mode attributes and systematic taste heterogeneity. As far as 

natural environmental conditions, car-sharing and private car are the significantly preferred 

choices when air pollution level increases. This is possibly due to the sealed space and more 

protected environment they could offer to users who want to stay away from pollution. As a 

comparison, weather conditions are not that strongly associated with the choice of car or 

car-sharing. In mid-dist trips, neither of them is significantly affected by rain or temperature 

(results not presented due to high insignificance); however, in long-dist trips, car is preferred 

when there is rain and car-sharing is more likely to be chosen in colder temperature. The results 

potentially imply a correlation between weathers‟ effects and trip distance, such that when a trip 

becomes longer, travellers may start to care more about the weather conditions. 

 With regard to trip and mode attributes, travel time and cost both negatively affect the 

probabilities to choose car-sharing and car in mid- and long-dist trips. Both findings are 

consistent with microeconomic theory. However, not all parameter values appear to be significant, 

i.e. travel time‟s impact on both car and car-sharing in mid-dist trips and travel cost‟s impact on 

car-sharing in long-dist trips. More insights on significance level are discussed later alongside 

the estimation of VTTS. Next, the four mode-related attributes that were only captured by the SP 

survey [car parking cost (negative), car parking space (positive), car-sharing access time 

(negative) and car-sharing app availability (positive)] all have the expected impact signs to our 

hypothesis, although parking space is much less significant in affecting car choice in both 
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distances. The results could bring some direct implications for policy making; specifically, 

reducing the walking time to car-sharing spot and introducing smartphone application to 

car-sharing service could both help improve the usage of car-sharing, while raising the parking 

cost would be useful in suppressing private car demand. At last, in mid-dist trips, car-sharing is 

revealed as a preferred mode for non-commute purposes; meanwhile, in long-dist trips, the 

service is preferred for commute use. Private car choice is not found with significant correlation 

with any of the trip purposes. 

Systematic taste heterogeneity offers more in-depth insight on socio-economic impact. 

For a car-sharing alternative, a number of interaction terms are detected with significance. The 

lower education group is not keen on using car-sharing service even when air pollution levels are 

high, which could make the service more attractive. The lower age group seems to prefer 

car-sharing even when car-sharing becomes less appealing in warmer weather. The former 

discovery is statistically significant in the mid-dist case and the latter is in the long-dist case. 

Moreover, despite car-sharing is generally preferred for commute in long-dist trips and not 

preferred in mid-dist trips, the lower education group is, in particular, less likely to use the service 

for commute in both cases. Additionally, in the long-dist case, the interaction between 

temperature and gender group is also captured but presented with statistical insignificance. This 

is due to the effect was initially found significant in the NL structure; however, it became 

insignificant after the mixed NL structure incorporates panel effect which could better explain the 

model. As for private car alternative, no significant taste heterogeneity is discovered in mid-dist 

trips; in long-dist trips, the lower income and lower education groups would value less the 

increased utility of car resulted from increased air pollution level, which looks similar to what we 

found for car-sharing. As a summary, less wealthy and less educated people may be less likely 

to use car-sharing and private car; younger group seems to prefer car-sharing, however, this is 

only indicated by one significant interaction term; gender effect is negligible. 

Factors affecting other mode choices are not discussed in detail given the scope of this 

work and readers are invited to see them directly from Table 5-4 and 5-5. Overall, all factors have 

the expected signs of impact, though a few of them appear statistically insignificant. 

At last, inter-alternative correlation and panel effect are captured by the mixed NL 

structure of our models. Different nests are identified for mid- and long-dist trips. In the former 
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case, the nest „self-driven automobile‟ including car-sharing and car is found significant (Figure 

5-1) while in the latter case, car-sharing and bike-sharing are found to have significant 

correlation under the nest „sharing economy‟ (Figure 5-2). Both nests come from the SP part of 

the data. Other possibilities have also been tested such as car-sharing, car and taxi under 

„comfortable automobile‟, car-sharing, taxi and bus under „shared automobile‟, electric bike and 

bike-sharing under „two-wheeled vehicle‟ as well as bike-sharing and bike under „active transport‟ 

when RP data is also involved. However, none of these nests was found with significance
26

. It 

should also be noted that the nesting parameter   is larger than 1 in all the models. Such a 

value range satisfies the specification requirement of nested logit (Hess et al., 2004; Ortúzar and 

Willumsen, 2011) where 1/  27. For panel effect, it is estimated simultaneously by the SP 

part and the RP part in the pooled datasets, since both of which contain repeated choice 

observations from a single individual. The effect on all alternatives appears to be significant (note 

that taxi is normalised) except for the one on private bike in the long-dist case. 

 

Figure 5-1 The NL Structure Detected in the Mid-dist Model 

 

Figure 5-2 The NL Structure Detected in the Long-dist Model 

                                                             
26

 In fact, we found another nest (between car driver and car passenger) using only the RP data, where the t-statistic also 

shows significance; however, the nesting parameter 
 
has a value of 1.03 which is almost equivalent to an MNL 

specification. Thus, we discarded this nest by following the practice of Ortúzar and Willumsen (2011), in order to retain 
efficiency in model estimation. 
27

   was defined earlier in Eq. 10 and Eq. 11. 
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5.4 Value of Time and Elasticity Indicators 

By having the mode choice model results, VTTS for car-sharing, private car, taxi, bus 

and bike-sharing
28

 are calculated. VTTS is estimated from models of discrete choice as the ratio 

of the marginal utility of travel time on the marginal utility of income. For linear-in-parameters 

utility specifications this ratio is simply the ratio of travel time on travel cost coefficient; in other 

words, it measures a substitution effect that how much people are willing to pay for enjoying a 

reduction in travel time. 

Table 5-6 VTTS for Car-sharing, Car, Taxi, Bus and Bike-sharing 

 Mid-dist Long-dist 

Car-sharing ￥22.0 ($3.3)/h ￥81.1 ($12.2)/h 

Car ￥6.4 ($1.0)/h ￥43.0 ($6.4)/h 

Taxi ￥20.7 ($3.1)/h ￥75.4 ($11.3)/h 

Bus ￥21.0 ($3.2)/h ￥51.5 ($7.7)/h 

Bike-sharing ￥20.5 ($3.1)/h ￥33.6 ($5.0)/h 

 

The key impression from the results (Table 5-6) is that the VTTS values for all modes are 

higher in long-dist trips than in mid-dist trips. Many studies have found VTTS increasing with trip 

length (Wardman, 1998; Axhausen et al., 2008; Shires and De Jong, 2009) and such a finding is 

supported by microeconomic theory. In brief, marginal disutility increases as the journey 

becomes longer so that a travel time reduction in a longer trip is worth more. This also explains 

the observed increases in t-statistics of travel time‟s impact on all mode choices from the mid-dist 

case (Table 5-4) to the long-dist case (Table 5-5). 

The comparison across modes offers additional insights. Firstly, for mid-dist trips, all the 

modes share similar VTTS except for car which value is lower than the rest. There are two 

possible effects that could jointly determine the estimated VTTS for a specific mode (Wardman, 

1998; Mackie et al., 2003; Shires and De Jong, 2009). One is “user type effect”, which means the 

users of some modes may have different socio-economic characteristics to the users of other 

modes, leading to potentially different VTTS values; for example, car users normally come from 

                                                             
28

 Electric bike does not involve a perceived travel cost. 
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higher income groups which could give a relatively high VTTS. The other is “mode specific effect”, 

such that VTTS may also depend on the perceived utility associated with the journey time spent 

on a mode; for example, car normally gives more pleasant travel experience in terms of the 

comfort, cleanliness and privacy it offers, so that the willingness to pay extra amount in order to 

save its journey time is often weaker than travelling with other modes. Thus, in our case, the 

lower VTTS for car could potentially imply the mode-specific effect overwhelms the user type 

effect (Shires and De Jong, 2009). 

Next, the results also show that by moving from mid- to long-dist trips, the VTTS values 

for car-sharing, car and taxi increase much more aggressively compared to bus and bike-sharing 

(recall that VTTS increases with trip length). Such a difference is possibly a result of the 

aforementioned user type effect. As compared to bus and bike-sharing users, the users of 

car-sharing, car or taxi are found coming from higher education and income groups as per the 

results shown in Table 5-4 and 5-5. Evidence has widely been discovered that people having 

higher income or being more educated tend to have higher VTTS (Wardman, 1998; Jara-Diaz, 

2003; Mackie et al., 2003; Axhausen et al., 2008; Trottenberg and Belenky, 2011). Thus, when 

the trip length increases as moving from the mid distance to long distance in this case, it might 

not be surprising to see the surge of VTTS values with respect to car-sharing, car and taxi which 

user groups would be more willing to pay extra in order to save travel time. 

Finally, as a comparison, Wang and MacKenzie (2017) derived a VTTS value of $9.06/h 

for the car-sharing service in Seattle though different countries are likely to have different VTTS 

values (Shires and De Jong, 2009). 

In addition, direct and cross point elasticity are calculated with respect to several key 

attributes of car-sharing and private car. They are car-sharing‟s travel cost and access time in the 

mid-dist case; car-sharing‟s travel time and access time in the long-dist case; private car‟s travel 

cost and parking cost in both distances, given their significant impacts as being revealed by the 

models. “Direct” and “cross” refer to the impact of a change of an alternative‟s attribute level on 

the choice probability of the same alternative and of the other alternative respectively (Ben-Akiva 

and Lerman, 1985). “Point” means elasticity is measured in terms of an infinitesimal level change 

of an attribute. The estimation procedure is referred to Bierlaire (2017) and the results are given 

in Table 5-7.  
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Table 5-7 Direct and Cross Point Elasticity 

 Choice 

probability of 

Direct Cross 

M
id

-d
is

t 

Car-sharing - 0.197 

(TC-carshare) 

- 0.188 

(AT-carshare) 

0.049 

(TC-car) 

0.014 

(PC-car) 

Car - 0.370 

(TC-car) 

- 0.119 

(PC-car) 

0.035 

(TC-carshare) 

0.030 

(AT-carshare) 

L
o

n
g

-d
is

t 

Car-sharing - 0.802 

(TT-carshare) 

- 0.253 

(AT-carshare) 

0.021 

(TC-car) 

0.035 

(PC-car) 

Car - 0.059 

(TC-car) 

- 0.086 

(PC-car) 

0.180 

(TT-carshare) 

0.058 

(AT-carshare) 

Note: “TC” is travel cost, “TT” is travel time, “AT” is access time, “PC” is parking cost 

 

Some trends are clearly revealed: 

 All elasticity values are smaller than one, which means the probabilities of choosing 

car-sharing and private car are relatively inelastic to the level change of a single 

attribute. This fits our expectation since mode choice utilities are determined by 

many attributes altogether with significance, and thus the effect of a single attribute 

is expected to be limited. Two recent studies (De Luca and Di Pace, 2015; Carteni 

et al., 2016), which also computed elasticity values for car-sharing and private car, 

revealed exactly the same range of values. 

 Most of the cross elasticity values (except for changing car-sharing‟s travel time on 

the probability to choose private car in the long-dist case) are close to zero, implying 

that the probability of choosing a mode would depend more on its own attribute 

level changes rather than the attribute level changes of an alternative mode. 

More specifically on direct elasticity, 

 For car-sharing, first recall that studying the elasticity on travel cost in the mid-dist 

case and travel time in the long-dist case is due to their significant impacts as being 

revealed by the models. It is found that these two attributes are more effective than 
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access time in affecting car-sharing choice probability in both distances. 

 For private car, the choice probability is more elastic to attribute level changes in 

mid-dist trips than in long-dist trips. This is very much consistent with common 

perception as car usually is less willing to be substituted when the trip distance gets 

longer. To take a further look, in the mid-dist case, the choice probability is more 

elastic to a change in travel cost whereas, in the long-dist case, it is more elastic to 

a change in parking cost. 

5.5 Policy Impact Analysis 

So far, the results have indicated how individuals‟ choices would respond to the changes 

in attribute levels. Nevertheless, an elasticity analysis is still inadequate to help identify the 

effective ways for promoting car-sharing usage in real practice, especially when the possible 

degrees of policy intervention could be different across attributes given practical constraints. For 

instance, it is found in the mid-dist case that the probability of choosing private car is more elastic 

to a change in travel cost than parking cost. However, the degree that policies are able to adjust 

car travel cost would usually be smaller than adjusting parking cost. It is because car travel cost 

(i.e. fuel cost) heavily depends on market oil price whereas parking cost is often a rather local 

issue and less constrained for adjustment. Thus, which of these two attributes should be the 

policy focus remains unclear. Our scenario analysis in this section can help to answer such a 

type of question while revealing other critical insights for policy making. Specifically, we simulate 

in the SP environment
29

 the modal substitution pattern under different policy options that can be 

implemented in reality. The simulation method is sample enumeration, based on the results 

derived from the pooled data using mixed NL models. The policy scenarios and corresponding 

modal splits are displayed in Table 5-8 for the mid-dist case and Table 5-9 for the long-dist case. 

 

 

 

 

                                                             
29

 The simulation analysis only aims to reveal how people make trade-offs across the attributes; it does not intend to 
forecast market demand in the real world. 
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Table 5-8 Scenarios and Modal Substitution Patterns for Mid-dist Case 

Scenarios 

“Moderate” A: car-sharing travel cost (-20%), car-sharing access time (-10%) 

“Intermediate” B1: car-sharing travel cost (-20%), car-sharing access time (-20%) 

“Intermediate” B2: car-sharing travel cost (-50%), car-sharing access time (-10%) 

“Radical” C: car-sharing travel cost (-50%), car-sharing access time (-20%) 

“Intermediate” 

+ 

Complementary 

Measures 

B2 + [D: car travel cost (+10%), car parking cost (+20%)] 

B2 + [E1: car travel cost (+10%), car parking cost (+50%)] 

B2 + [E2: car travel cost (+20%), car parking cost (+20%)] 

B2 + [F: car travel cost (+20%), car parking cost (+50%)] 

Modal Substitution Patterns 

 Car-share Car Taxi Bus E-bike Bike-share 

Baseline 18.8% 13.2% 7.9% 36.2% 12.2% 11.7% 

A 20.0% 13.1% 7.7% 35.6% 12.1% 11.5% 

B1 20.4% 13.0% 7.7% 35.4% 12.0% 11.5% 

B2 21.3% 12.9% 7.6% 34.9% 11.9% 11.4% 

C 21.6% 12.9% 7.5% 34.7% 11.9% 11.4% 

B2 + D 21.4% 12.2% 7.6% 35.3% 12.0% 11.5% 

B2 + E1 21.5% 11.7% 7.7% 35.4% 12.1% 11.6% 

B2 + E2 21.5% 11.7% 7.7% 35.4% 12.1% 11.6% 

B2 + F 21.6% 11.3% 7.7% 35.6% 12.2% 11.6% 
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Table 5-9 Scenarios and Modal Substitution Patterns for Long-dist Case 

Scenarios 

“Moderate” A: car-sharing travel time (-10%), car-sharing access time (-10%) 

“Intermediate” B1: car-sharing travel time (-10%), car-sharing access time (-20%) 

“Intermediate” B2: car-sharing travel time (-20%), car-sharing access time (-10%) 

“Radical” C: car-sharing travel time (-20%), car-sharing access time (-20%) 

“Intermediate” 

+ 

Complementary 

Measures 

B2 + [D: car travel cost (+10%), car parking cost (+20%)] 

B2 + [E1: car travel cost (+10%), car parking cost (+50%)] 

B2 + [E2: car travel cost (+20%), car parking cost (+20%)] 

B2 + [F: car travel cost (+20%), car parking cost (+50%)] 

Modal Substitution Patterns 

 Car-share Car Taxi Bus E-bike Bike-share 

Baseline 19.0% 23.9% 8.7% 31.0% 9.0% 8.4% 

A 21.1% 23.3% 8.4% 30.0% 8.8% 8.4% 

B1 21.6% 23.1% 8.3% 29.9% 8.7% 8.4% 

B2 22.8% 22.8% 8.1% 29.4% 8.6% 8.3% 

C 23.3% 22.6% 8.1% 29.2% 8.5% 8.3% 

B2 + D 23.0% 22.2% 8.2% 29.6% 8.6% 8.4% 

B2 + E1 23.2% 21.6% 8.3% 29.8% 8.7% 8.4% 

B2 + E2 23.0% 22.1% 8.2% 29.6% 8.7% 8.4% 

B2 + F 23.3% 21.5% 8.3% 29.8% 8.7% 8.4% 

 

We first target on car-sharing demand promotion by setting up a moderate scenario, two 

intermediate scenarios and a radical scenario (A, B1, B2 and C). The policy options differ across 

distances as car-sharing choice is significantly associated with travel cost in the mid-dist case 

and with travel time in the long-dist case. The impact of access time is significant in both cases. 

The 20% and 50% travel cost reduction targets can be achieved by receiving subsidies from the 

public sector; however, a travel time reduction is more difficult to realise. One way to bring down 

car-sharing‟s journey time is allowing users to drive on “priority lanes”, such as the driving 
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permission for electric cars on bus lanes (BBC, 2016). However, the effect of such a measure 

cannot be easily predicted and thus, more conservative reduction targets for travel time (i.e. 10% 

and 20%) are adopted. Access time reduction also adopts relatively conservative targets since it 

usually requires an increase in the number of parking spots, which is a rather complex task for 

car-sharing operators. 

The modal substitution pattern is different between the two distance cases. In mid-dist 

trips, car-sharing‟s market share increases 2.8% (18.8% to 21.6%) from the baseline to the 

radical scenario (C); in the long-dist case, the increase is 4.3% (19.0% to 23.3%). The difference 

implies that more people are willing to switch to car-sharing in long-dist trips and such a finding is 

in line with the discovery that car-sharing becomes more competitive as trips become longer 

(Martinez et al., 2017). With respect to the usage of other modes (compare the baseline still to C), 

bus shrinks 1.5% and car shrinks 0.3% in mid-dist trips while bus shrinks 1.8% and car shrinks 

1.3% in long-dist trips
30

. The comparison among the figures reveals a challenge for the mid-dist 

case, i.e. private car usage is not reduced when car-sharing becomes more attractive and 

instead, bus usage is sacrificed much more. This is an outcome that government and urban 

planners may dislike. The finding suggests that at least for mid-dist trips, making car-sharing 

more competitive on its own is not sufficient; complementary policies are in absolute need for 

cutting down private car‟s demand. 

Therefore, we develop another four scenarios (D, E1, E2 and F) which include policy 

options for raising private car‟s travel and parking costs. As we proposed earlier, adjusting car 

parking cost is possibly more flexible than adjusting car travel cost. Thus, 20% and 50% increase 

targets are applied to parking cost while 10% and 20% are applied to travel cost. These four 

scenarios are expected to join one of the intermediate scenarios B1 or B2 to create more 

effective and more practical policy packages. A and C are not any longer considered since one 

shows the limited effect on modal split changes and the other may be too radical in real practice. 

Eventually, B2 is preferred than B1 in both distances due to the effectiveness it shows on 

improving car-sharing‟s market share. 

The combined scenarios can reveal broader insights. First of all, the increases in 

                                                             
30

 The findings on car correspond to the cross elasticity values. The probability to choose car is much more elastic to the 
changes in car-sharing‟s attributes in the long-dist case (0.180 is much higher than the rest). 
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car-sharing‟s market share (compare to the baseline) now come more from the falls in private car 

usage than in bus usage. For example, in the radical scenario B2+F, bus shrinks 0.6% and car 

shrinks 1.9% in mid-dist trips while bus shrinks 1.2% and car shrinks 2.4% in long-dist trips. 

Another discovery is on the effectiveness of the two car-attributes in reality. In mid-dist, raising 

car travel cost is a more effective measure than raising parking cost in suppressing car usage as 

per their direct elasticity values (Table 5-7). However, parking cost increase has higher policy 

flexibility than car travel cost increase (50% vs. 20%). Thus, in real practice, intervention can be 

radical with either of the two options given their equal effects on private car‟s market share in 

B2+E1 and B2+E2. As a contrast, in long-dist, a radical parking cost increase of 50% is more 

effective than a radical car travel cost increase of 20% (again, see B2+E1 and B2+E2) due to 

parking cost has both greater elasticity and higher policy flexibility than car travel cost. 

To conclude, we summarise the key takeaways for policy making in bullet points: 

 Our elasticity analysis identifies that people are less easy to switch away from 

private car when trip distance increases (the direct elasticity values on car travel 

and parking costs are greater for mid-dist trips than for long-dist trips). Thus, policy 

measures on raising car travel cost and parking cost should be prioritised for 

shorter trips to avoid inefficient use of resources (though the threshold/criterion for 

shorter and longer trips warrants more research). 

 The above conclusion leads to two subsequent questions: if such policy measures 

are genuinely needed for shorter trips, and what the alternative solution could be to 

suppress private car demand for longer trips. Our policy impact analysis reveals the 

answers. In the mid-dist case, when car-sharing service is made more appealing, 

the increasing demand mainly comes from a shrinking demand for bus rather than 

for private car. Therefore, the policy measures on private car attributes are in 

absolute need and should be implemented alongside any car-sharing promotion 

policies. In the long-dist case, private car users are found much easier to switch to a 

better car-sharing service. Therefore, instead of the inelastic measures of raising 

the costs of using car, it is more effective to improve the attractiveness of 

car-sharing and make it as a practical substitute for private car. 

 The effectiveness of various car-sharing promotion policies differs across distances. 
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In shorter trips, decreasing travel cost is more effective than travel time whereas in 

longer trips, decreasing travel time is more effective than travel cost. The finding fits 

well into microeconomic theory (Wardman, 1998; Axhausen et al., 2008; Shires and 

De Jong, 2009). Besides, any aggressive measures on access time reduction 

should be avoided especially when resources are constrained. It is instead 

preferred to reduce travel cost more aggressively in mid-dist case and travel time 

more aggressively in long-dist case. 

 Back to the shorter trip case where policy measures on private car attributes are 

needed, we recommend that it is up to the discretion of policy makers to prioritise 

car travel cost increase or parking cost increase when trade-off needs to be made 

given any practical constraints. The former is in itself more effective in suppressing 

private car demand while the latter is expected to have more rooms for policy 

intervention. 

5.6 Conclusions 

This chapter studied the factors that could affect car-sharing choice and identified the 

effective policy options that could promote car-sharing usage while suppressing private car 

demand. We conducted at first a mode choice analysis by using combined SP and RP survey 

data collected in the case study city, Taiyuan, China. Then, based on the choice model results, 

several informative indicators were derived such as VTTS, direct and cross point elasticity. 

Finally, we studied the modal substitution pattern in the SP environment to evaluate the 

effectiveness of different policy options. The results and relevant insights were generated 

separately for mid-dist trips (2km to 5km) and long-dist trips (more than 5km) throughout the 

work. 

Key findings are highlighted as follows. The model estimation results show people‟s 

car-sharing choice behaviour could differ by trip distance. In a cold weather, the attractiveness of 

car-sharing is found to increase with trip distance. When a trade-off needs to made between 

travel time and cost, car-sharing users would care more about travel cost savings in shorter trips 

and travel time savings in longer trips. The service is also preferred for conducting non-commute 
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trips in the shorter trip case while it is strongly preferred for commute purpose instead in the 

longer trip case. For the VTTS that is subsequently derived, the value for car-sharing is 

estimated as $3.3/h in mid-dist trips and $12.2/h in long-dist trips. Such a value difference is in 

line with our current insight on VTTS which normally increases with trip length (Wardman, 1998; 

Axhausen et al., 2008; Shires and De Jong, 2009). Finally, for elasticity measures, the values of 

cross elasticity are generally smaller than direct elasticity. This means the probabilities to choose 

car-sharing and private car are more sensitive to the level changes of their own attributes rather 

than the other‟s attributes. 

More critical insights are gained from the policy impact analysis. Raising the cost of car 

usage (e.g. via travel cost and parking cost) should be prioritised for shorter trips since car is 

more difficult to be substituted when the trip distance increases. In fact, shorter trips also need 

such direct measures to help suppress the demand for private car while promoting the demand 

for car-sharing; otherwise, the increasing demand for car-sharing would mainly come from bus 

users. On the contrary, longer trips would need an alternative and more effective solution to bring 

down private car usage and that is discovered as making car-sharing service more attractive to 

users so that it can serve as a viable substitute to private car. To promote car-sharing usage, the 

focus could be put more on saving the users‟ travel cost for shorter journeys and more on saving 

their travel time for longer journeys. 

Overall, this research offered some direct insights on if more people choosing 

car-sharing “reduces the use of private vehicles or if, on the contrary, it reduces the number of 

public transport users” (Jorge and Correia, 2013). More importantly, the results and the evidence 

derived from the policy impact analysis can be taken away as useful guidance for car-sharing 

policy making. We welcome more studies on car-sharing choice to compare to the various critical 

findings in this research. 
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CHAPTER 6. THE INFLUENCE OF ATTITUDINAL 

FACTORS ON SHARED MOBILITY CHOICES 

This chapter aims to study how personal attitudes (latent variables) could possibly affect 

bike-sharing and car-sharing choices. Meanwhile, given the potential importance of attitudinal 

influence on VTTS estimation (Abou-Zeid et al., 2010; Bahamonde-Birke et al., 2017), we would 

also like to disclose with empirical evidence, the extent to which such influence might be 

significant, especially when the interaction with travel time or cost is captured. The dataset that 

we will use for this part of the research consists of 3,486 individuals and their 6,381 commute trip 

observations from the SP survey (to ensure car-sharing choice can be captured). Three 

attitudinal variables examined are “Willingness to be a green traveller”, “Satisfaction with cycling 

environment” and “Advocacy of car-sharing service”. 

Attitudinal information is usually analysed through ICLV models (Ben-Akiva et al., 2002; 

Walker and Ben-Akiva, 2002; Bolduc et al., 2005; Bolduc and Alvarez-Daziano, 2010). In general, 

the ICLV model provides an integrated modelling framework which consists of a latent variable 

model and a discrete choice model. The latent variable model studies the potential causes of 

latent variables (i.e. unobserved attitudinal factors) via a structural equation system and also 

analyses via a set of measurement equations the observed indicators through which latent 

variables are manifested. The discrete choice model evaluates mode choice utilities as usual but 

now taking into account the impacts of latent variables as well alongside other explanatory 

factors. This research follows such an ICLV modelling framework, and a nested logit discrete 

choice model is developed to relax the IIA property (i.e. independence of irrelevant alternatives). 

Through a robust integrated modelling analysis, the impacts of personal attitudes on 

bike-sharing and car-sharing choices can be quantitatively revealed, provide a better 

understanding of shared mobility choice behaviour. The value of time analysis will disclose how 

much difference attitudes could make on VTTS estimates; in other words, this will tell whether 

different VTTS estimates are needed for travellers with differentiated attitudes. 

The work is structured as follows. Section 6.1 describes in detail the sample data that 

will be analysed in the ICLV model. Section 6.2 explains the modelling framework and section 
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6.3 evaluates the model estimation results. Finally, section 6.4 concludes the chapter. 

6.1 Data 

Our preliminary data cleaning reduced the sample size to 9,499 individuals. However, 

since this research is more interested in commute trips and attitudinal information, the sample 

was further filtered by keeping only those SP observations where the trip purpose is commute 

and those individuals who responded to the questions about attitudes & perceptions in a valid 

manner (i.e. a tolerance threshold is applied on the number of patterned scores given to 

consecutive statements and if the scores have significant inconsistency among several 

comparable statements). Eventually, the final dataset for this research includes 3,486 individuals 

with 6,381 SP mode choice observations. 

Table 6-1 presents the key descriptive statistics of the sample we use here and the mode 

choices in the labelled SP survey
31

. The commuters mainly consist of those aged between 26 

and 45 (83%), and most of them are married (85%). Gender and educational level distributions 

are relatively equal where the number of males and females are close, and half of the sample 

has a university degree. There is a high possession rate of public transport card (87%) meaning 

that most of the commuters can access bus and bike-sharing services “barrier-free”. Finally, 

more than 60% of the respondents have a driving license and almost all respondents have good 

health to cycle (96%). 

Table 6-1 Sample Descriptive Statistics 

  N=3,486 

Gender Male 54% 

Female 46% 

Age under 18 - 

18-25 1% 

26-35 48% 

36-45 35% 

46-59 15% 

                                                             
31

 All distance cases included due to both bike-sharing and car-sharing choices are studied. 
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60 or above 1% 

Marital status Single 15% 

Married 85% 

Educational level High school or below 22% 

College 29% 

Undergraduate 41% 

Graduate and above 8% 

Driving license Percentage of possession 64% 

Public transport card Percentage of possession 87% 

Cycling capability Healthy enough to cycle 96% 

Household monthly income 

(after tax) 

Under ￥3000 21% 

￥3000 -￥6000 42% 

￥6000 -￥9000 23% 

￥9000 -￥15000 10% 

￥15000 -￥30000 3% 

Over ￥30000 1% 

Household car Percentage of possession 56% 

Household electric bike Percentage of possession 44% 

Commute Trip Modal Splits (6,381 SP obs.) 

Bike-share Car-share Bus Taxi Walk E-bike Car 

11% 14% 27% 4% 12% 10% 22% 

 

The latent construct of our ICLV model was determined using the collected attitudinal 

information. To reveal the potential latent variables and the best indicators through which the 

latent variables are manifested, a principal component analysis (Jolliffe, 2002) was conducted 

followed by a varimax rotation (Kaiser, 1958) to assess the factor loadings of all possibly relevant 

statements in the survey. Eventually, three latent variables came out with a sufficient number of 

supportive statements. Based on the information carried by the statements (measured using a 

7-point Likert scale), we named the three latent variables as: “Willingness to be a green traveller” 

constructed based on five statements/indicators, “Satisfaction with cycling environment” based 
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on four statements, and “Advocacy of car-sharing service” based on four statements. Their 

statistics are given in Figure 6-1, 6-2 and 6-3 respectively, displaying the percentages of the 

sampled individuals agreeing/disagreeing with different levels. 

 

Figure 6-1 The Indicators of “Willingness to be a Green Traveller” (N = 3,486) 
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Figure 6-2 The Indicators of “Satisfaction with Cycling Environment” (N = 3,486) 

 

Figure 6-3 The Indicators of “Advocacy of Car-sharing Service” (N = 3,486) 
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In Figure 6-1, the detected five statements actually coincide with Taiyuan municipality‟s 

movement towards an eco-friendly transport system (see Chapter 3). In general, the sampled 

respondents seem to be supportive to such a vision by having more than 60% positive 

responses (i.e. “Agree”, “Strongly agree” or “Completely agree”) in all five statements. The 

details, however, do differentiate slightly. By comparing across the first three statements, we can 

see even if people are willing to use low-carbon transport for themselves and even persuade 

others, they could be less willing to sacrifice their private car usage. Similarly, when mentioning 

the word “policy”, even if in general (the 4
th
 statement), people tend to be more conservative in 

giving positive responses. 

In Figure 6-2, the first two statements reflect the city‟s bike-sharing service standards 

with respect to price and station distance. The results show that commuters are mostly satisfied 

with the current price scheme by having nearly 40% of them completely agree with the statement 

“I am satisfied with the current bike-sharing price” and less than 20% expressed negative 

attitudes (i.e. “Disagree”, “Strongly disagree” or “Completely disagree”). Unlike many cities in the 

world, the charging scheme that Taiyuan bike-sharing operator (Taiyuan Public Transport 

Holdings) adopts does not require a fixed/access fee each time. Users only need to pay based 

on the amount of time they spend (i.e. free in the first hour, ￥1/h for the next hour, ￥2/h for the 

next and ￥3/h for the rest of the day). Moreover, a user can return the bike to a docking station 

and get replaced with another one instantly to re-start the time count and avoid being charged. 

As for station distance, the current average distance between any two stations is smaller than 

500 meters (Toutiao, 2017). 

The latter two statements in Figure 6-2 reflect the indirect issues that bike-sharing users 

may consider. Firstly, the current traffic rules in Taiyuan have both pros and cons to cyclists. On 

the one hand, unlike the strict rules and punishments that car drivers have to bear, cyclists can 

travel much more freely. On the other hand, however, there are no individual green lights for 

“going straight” and “turning right” (vehicles travel on the right side in China). Hence, bicycles 

which go straight could have direct conflict with cars which turn right. Studies have also shown 

that cyclists could have significant safety concerns when cars were moving aside (Fishman et al., 

2012; Paschalidis et al., 2016; Piatkowski et al., 2017; Romero et al., 2017). Secondly, 

perceptions on public security may also affect bike-sharing usage due to the fear of crime or the 
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perceived sense of being unsafe could discourage travellers from using non-private modes 

(McCarthy et al., 2016). Nevertheless, it seems that Taiyuan municipality has created a generally 

satisfactory cycling environment since more than 60% of the sampled individuals give positive 

responses to both traffic rule and public security statements, as well as to the two statements on 

service standards. 

Finally, Figure 6-3 illustrates an overall optimistic view of car-sharing service and its 

future. However, by comparing between “Car-sharing could make me reduce private car usage” 

and “Car-sharing could make me reconsider whether or not to purchase a private car”, it is 

undoubtedly noticed that respondents are more cautious in agreeing with the latter statement, 

demonstrating their differentiated perceptions towards using a car and owning a car. In other 

words, having a car is not only meant to meet transport demand, but is also likely to carry 

additional values which car-sharing might be less capable of providing. 

Before we move to the modelling analysis, the following hypotheses are proposed to 

show in what ways we expect the latent variables could influence shared mobility choices: 

 Commuters who are more willing to be a low-carbon traveller would be more likely 

to use bike-sharing and car-sharing; 

 Commuters who are more satisfied with the cycling environment would be more 

likely to use bike-sharing; 

 Commuters who are car-sharing advocates would be more likely to use car-sharing. 

6.2 Modelling Framework 

Before the latent construct is introduced, a nested logit model is developed to reveal the 

effects of different explanatory variables (attributes presented in the SP survey and 

socio-economic factors) on mode choices while taking into account inter-alternative correlation 

given the fact that alternatives were labelled in the SP survey and could possibly share 

unobserved attributes. The model is specified after several rounds of tests to drop out the 

variables with highly insignificant effects and to identify the appropriate forms of including 

variables in utility functions. In particular, systematic taste heterogeneity is captured by 

evaluating the interaction effects between socio-economic factors and SP attributes. Such a way 
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of analysis has been increasingly adopted in discrete choice literature since it reveals whether 

the attributes would be differently perceived by different types of choice makers (Cherchi and 

Ortúzar, 2011; Ortúzar and Willumsen, 2011). Additionally, intra-person correlation among the 

observed mode choices was also assessed using a mixed logit structure (Cantillo et al., 2007); 

however, the parameter did not turn out significant and was thus excluded from the final model. 

This is possibly due to a large proportion of the sampled individuals only have one SP mode 

choice observation after passing through the data cleaning procedure as described in section 6.1 

(i.e. we refined the sample by keeping only the SP observations where the trip purpose is 

commute). Table 6-2 provides a summary of the explanatory variables in the model and their 

measured values. 

Next, to incorporate the latent variables (i.e. personal attitudes), we develop an ICLV 

model which consists of a latent variable model and a discrete choice model (Ben-Akiva et al., 

2002; Walker and Ben-Akiva, 2002; Bolduc et al., 2005; Bolduc and Alvarez-Daziano, 2010). The 

former part evaluates the latent variables using a set of structural equations (Eq. 15) and a set of 

measurement equations (Eq. 16). The structural equations aim to identify the causes of the 

different attitudes among individuals and that will usually be their unique socio-economic 

characteristics. The measurement equations intend to establish a relationship between the 

indicators from survey results and personal attitudes; in other words, create a channel to 

observe/measure the latent variables. It is also noteworthy that the indicators are imported into 

our model under their original ordered format (i.e. 7-point Likert-scale) rather than via a 

continuous approximation. For the discrete choice model, we use the nested logit model that has 

been developed earlier and meanwhile introducing the latent variables via two specifications. 

One is to study their linear effects in the utility functions (Eq. 17) and the other is to study their 

interaction effects with travel time/cost (Eq. 18). As a result, we can find out how the VTTS 

estimation could be affected by the different model specifications. The latent variable model and 

the discrete choice model are simultaneously estimated using a maximum likelihood estimator. 

The simultaneous estimation jointly uses all the available information and thus can result in both 

unbiased and efficient parameter values (Raveau et al., 2010). The estimation is conducted in 

Pythonbiogeme; in order to accommodate three latent variables in a single ICLV model, 

monte-carlo integration is used instead of numerical integration (Bierlaire, 2016b). The complete 
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modelling framework is described by Figure 6-4. 

 

Figure 6-4 An ICLV Model with 3 Latent Variables and a Nested Logit Discrete Choice Model 

 

The mathematical presentation of the modelling framework is given as follows: 

Structural equation (latent variable model): 

1

K

j j jk k j jn

k

ATT X  


      (15) 

Measurement equation (latent variable model): 

jh jh jh j jh jhnI ATT        (16) 

where jATT  is the vector of attitudinal factors, kX  is the vector of explanatory 

variables and jk  is the vector of estimated coefficients ( j  is the vector of intercepts). jhI  

is the vector of indicators through which the attitudinal factors are manifested and their effects on 

the indicators are revealed by the parameter vector jh  ( jh  is the vector of intercepts). jn  

and jhn  are the error components normally distributed across individuals with mean 0 and 
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variance 1, ~ (0,1)N , and 
j  and 

jh  are their effects (standard deviation) respectively. 

Utility function (discrete choice model): 

1 1

K J

i i ik k ij j i

k j

U X ATT  
 

        (17) 

1 1 1

K J K

i i ik k ij j k i

k j k

U X ATT X  
  

        (18) 

where iU  is the utility associated with an alternative mode, kX  is the vector of 

explanatory variables and any form of interactions among them (e.g. systematic taste 

heterogeneity), and ik  is the vector of estimated coefficients ( i  is the vector of alternative 

specific constants). The effects of attitudinal factors are revealed by the parameter vector 
ij . 

i  is the error component i.i.d. extreme value distributed. 

Table 6-2 Explanatory Variables and Measurements 

Variable Measurement 

Air pollution air quality index (AQI) by taking the average value of each 

level (25 for excellent level „0-50‟, 75 for good level „51-100‟, 

125 for light pollution „101-150‟, 175 for medium pollution 

„151-200‟, 250 for heavy pollution „201-300‟, 400 for terrible 

pollution „above 300‟) 

Rain 1 if weather is rainy, 0 if otherwise 

Temperature temperature in °C 

Travel cost in RMB (￥) 

Travel time in min 

Access time in min, walking time to stations/parking spots 

Wait time In min, waiting time at bus stop 

App availability 1 if a smart phone application is available, 0 otherwise 

Gender (female) 1 if gender is female, 0 if male 

Age (under 35) 1 if age is in the lower half categories in the survey (i.e. 

“under 18” or “18-25” or “26-35”), 0 if in upper half (i.e. 
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“36-45” or “46-59” or “60 or above”) 

Household income (below 

￥9,000) 

1 if household monthly income is in the lower half categories 

in the survey (i.e. “under ￥3000” or “￥3000-￥6000” or 

“￥6000-￥9000”), 0 if in upper half (i.e. “￥9000-￥15000” or 

“￥15000-￥30000” or “over ￥30000”) 

Educational level (not have a 

degree) 

1 if educational level is in the lower half categories in the 

survey (i.e. “high school or below” or “college”), 0 if in upper 

half (i.e. “undergraduate” or “graduate and above”) 

 

6.3 Results 

6.3.1 Latent Variable Model 

Table 6-3 presents the results of the latent variable model. For the structural equations, 

we assessed the effects of a variety of socio-economic factors on personal attitudes, including 

gender, age, household income, educational level, marital status and job types. The first four are 

detected with their significant associations with at least one latent variable while the last two do 

not demonstrate any significant effects (and thus dropped out). It is found that gender and age 

could significantly affect all three personal attitudes. Specifically, female commuters are more 

willing to travel with green modes and tend to be more favourable towards car-sharing, but 

meanwhile, they are less likely to be satisfied with the cycling environment in the city. For the age 

effect, the younger generation (under 35) are found to hold relatively negative attitudes across all 

three cases. The other two factors, household income and educational level, the former seems 

not affecting the willingness to be a green traveller, while the latter does not affect the satisfaction 

with cycling environment. Nevertheless, it is also revealed that those who are less wealthy could 

be more likely to be satisfied with cycling environment and those who are less educated could be 

less willing to be a green traveller; in addition, both groups are found to be less favourable 

towards car-sharing. Generally speaking, most of the discovered impacts can be interpreted 

intuitively. For example, it is as expected that female travellers are more sensitive to the 

surrounding issues when they cycle and thus more difficult to be satisfied; wealthier people are 
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more likely to use car and therefore tend to advocate a car-sharing service; and those who are 

more educated are usually more aware of environmental issues and hence more willing to adopt 

a green travel style. In contrast, the interpretation of age effect should be treated with caution, 

especially by observing a negative relationship (with a large t-statistic) between the younger 

generation and advocacy of car-sharing service, which is a relatively surprising result since 

car-sharing users tend to young as per the findings in some earlier studies (Becker et al., 2017; 

Dias et al., 2017; Prieto et al., 2017). Further research would be needed to explore any intrinsic 

factors that might result in such an outcome. 

With regard to the measurement equations, the results show that all the indicators are 

positively associated with the three latent variables, which are in line with our expectations. In 

other words, the more the respondents hold positive attitudes (i.e. willing to be a green traveller, 

satisfied with cycling environment and advocate car-sharing service), the more they agree with 

the selected statements in the survey. For each latent variable, the parameters of one of the 

indicators are normalised to the base values as per the model specification requirement 

(Bierlaire, 2016b). 

Table 6-3 Results: Latent Variable Model 

Structural equation 

 coefficient t-statistic 

Willingness to be a green traveller   

green
 

1.32 23.15 

Gender (female) 0.74 13.90 

Age (under 35) - 0.13 - 2.45 

Educational level (not have a degree) - 0.22 - 4.19 

green
 

2.07 56.22 

Satisfaction with cycling environment   

cycle
 

- 0.47 - 5.88 

Gender (female) - 0.34 - 6.57 

Age (under 35) - 0.25 - 4.82 
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Household income (below ￥9,000) 1.78 22.05 

cycle
 

2.07 49.70 

Advocacy of car-sharing service   

carshare
 

2.08 23.73 

Gender (female) 0.67 12.72 

Age (under 35) - 0.89 - 15.54 

Household income (below ￥9,000) - 0.38 - 5.15 

Educational level (not have a degree) - 0.84 - 14.68 

carshare
 

2.18 54.77 

Measurement equation 

 coefficient t-statistic 

Willingness to be a green traveller   

1green
 

 0.24 9.45 

2green
 

- 0.25 - 9.31 

3green
 

 0 - 

4green
 

 0.11  2.79 

5green
 

 0.40  12.16 

1green
 (I am willing to use low-carbon transport modes for daily 

trips.) 

 0.99  69.99 

2green
 (I am willing to reduce private car usage to help to 

alleviate congestion.) 

 0.95  66.40 

3green
 (I am willing to persuade my family and friends to use 

low-carbon transport modes more often.) 

 1 - 

4green
 (Stricter policies are needed to alleviate congestion and 

improve air quality.) 

 0.82  43.12 
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5green
 (I believe a bus system which entirely consists of electric 

buses will significantly improve Taiyuan‟s air quality.) 

 0.71 44.83 

1green
 

 0.96  43.81 

2green
 

 1.16  53.84 

3green
 

 1 - 

4green
 

 2.09  57.40 

5green
 

 1.75 57.90 

Satisfaction with cycling environment   

1cycle
 

 1.12 29.64 

2cycle
 

 0.32  11.29 

3cycle
 

 0.12  4.69 

4cycle
 

 0 - 

1cycle
 (I am satisfied with the current bike sharing price.) 

 0.79  37.62 

2cycle
 (I am satisfied with the current distance between bike 

sharing stations.) 

 0.64  39.35 

3cycle
 (I believe the current traffic rule is in favour of cyclist.) 

 0.95  57.42 

4cycle
 (I believe the current status of public security is in favour of 

cyclist.) 

 1 - 

1cycle
 

 2.15  52.94 

2cycle
 

 1.80  57.61 

3cycle
 

 1.35  49.69 

4cycle
 

 1 - 

Advocacy of car-sharing service   
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1carshare
 

- 0.21 - 8.11 

2carshare
 

 0.01  0.20* 

3carshare
 

 0 - 

4carshare
 

- 0.33 - 10.91 

1carshare
 (Car-sharing would help to reduce congestion.) 

 1.01  66.24 

2carshare
 (I believe car-sharing will become a popular transport 

option in the future.) 

 1.01  75.61 

3carshare
 (Car sharing could make me reduce private car usage.) 

 1 - 

4carshare
 (Car sharing could make me reconsider whether or not 

to purchase a private car.) 

 0.77  50.71 

1carshare
 

 1.16  52.15 

2carshare
 

 0.77  38.55 

3carshare
 

 1 - 

4carshare
 

 1.68  62.36 

* parameter values not meeting the 95% significance level 

 

6.3.2 Discrete Choice Model 

The results from three different mode choice models are compared in Table 6-4. The first 

column gives the nested logit mode choice model without adding the latent variables. 

Inter-alternative correlation appears to be significant since the sampled commuters are found to 

consider between motorized and non-motorised options first before making a specific mode 

choice. Besides, the nesting parameter   is greater than 1, which complies with the model 

specification requirement (Hess et al., 2004; Ortúzar and Willumsen, 2011). The shared mobility, 

bike-sharing and car-sharing alternatives, could be influenced by a variety of factors. Among 
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different natural environmental conditions, air pollution is found to affect the choice of these two 

alternatives oppositely, and that is an increase in air pollution level would decrease the utility of 

using bike-sharing while making car-sharing a more appealing option. By also observing the 

negative impact on walk choice and positive impacts on taxi and car choices, it is possible to 

argue that air pollution would make travellers prefer modes that have a closed space 

(car-sharing etc.) rather than those with more exposure (bike-sharing etc.). The other two natural 

environmental conditions, rainy weather and temperature, are not found with significant impacts 

on commuters‟ shared mobility choices.  

For trip and mode attributes, as we have expected, travel time and cost are both 

negatively correlated with bike-sharing and car-sharing usage. In addition, an available smart 

phone application would increase the probability to choose car-sharing while no significant 

impact is detected for its correlation with bike-sharing choice. The difference is possibly due to 

the different levels of familiarity (and thus different degrees of app dependence) with the two 

services, especially given that bike-sharing has been extensively used in the city for many years 

whereas to date car-sharing is still not a widely available travel option. Systematic taste 

heterogeneity is also captured by detecting the significant interaction effects between some 

attributes above and socio-economic variables. In particular, details are obtained with respect to 

the age effect on bike-sharing choice. Although both air pollution and travel cost are negatively 

correlated with bike-sharing usage, different age groups may value these effects differently and 

in our case that is the younger commuters (under 35) would be more anxious towards the 

negative impact of air pollution while worrying less about travel cost.  

For car-sharing choice, the only interaction effect that turns out significant is between 

educational level and travel cost where less educated commuters have weaker preference than 

more educated commuters, while an increase in travel cost would further push those less 

educated away from choosing car-sharing. At last, factors affecting other mode choices are also 

available for readers to check, though they will not be discussed in detail given our focus on the 

two shared mobility services. Overall, all factors have the expected impact signs. 

The second and third columns present the model estimation results when the latent 

variables are involved. As expected, the model fitness improves. For the linear effects of latent 

variables, it is found that a more positive attitude towards “Willingness to be a green traveller” 
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could significantly increase the probability of choosing bike-sharing and walk to commute, while 

making car less likely to be chosen. Nevertheless, car-sharing choice is not found to be 

significantly affected by such an attitude. One possible explanation is that the city of Taiyuan did 

not have any operated car-sharing schemes when the survey took place in 2015 and people 

were probably not aware whether the service vehicles would be powered by clean energy or 

traditional fossil fuel; thus, it is likely that car-sharing was not perceived as a low-carbon travel 

option among many survey respondents.  

The other two personal attitudes, “Satisfaction with cycling environment” and “Advocacy 

of car-sharing service”, do have the results that are in line with our hypotheses, i.e. people that 

are more satisfied with the cycling environment would be more likely to choose bike-sharing and 

those who are car-sharing advocates would prefer to use car-sharing for commute. It is also 

noteworthy that car-sharing advocates may be less likely to use car given the observed negative 

impact sign, though the result is not as significant as those discussed above (we decided to 

present this parameter since the t-statistic demonstrated high significance when testing alone 

the effect of “Advocacy of car-sharing service”, and the 95% significance no longer held when 

adding all three latent variables in the model). As for the interaction effects of latent variables, the 

impact signs are similar to which in the linear effect model but the taste heterogeneity on travel 

time and travel cost is now captured. Most of the interaction effects that are discovered with 

significance are between the attitudes and travel time, except for car, which instead has travel 

cost associated with more significant taste heterogeneity by commuters with differentiated 

attitudes. As for bike-sharing and car-sharing, those with more positive attitudes towards 

“Willingness to be a green traveller” and “Satisfaction with cycling environment” are found less 

uncomfortable with longer bike-sharing travel time, and similarly, car-sharing advocates could 

more easily accept longer car-sharing travel time. 
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Table 6-4 Results: Discrete Choice Model 

 Without LVs With LVs – 

linear effect 

With LVs – 

interaction effect 

 Coef. t-stat Coef. t-stat Coef. t-stat 

bikeshare
 

 1.06  7.48   0.64  4.44  1.20  7.95 

carshare
 

- 0.87 - 5.09 - 1.04 - 5.34 - 0.95 - 5.29 

bus
 

 1.27 7.20  1.21 7.10 1.35 7.50 

taxi
 

- 1.35 - 5.08 - 1.46 - 5.22 - 1.45 - 5.21 

walk
 

1.18 3.83 0.87  2.79  1.25  4.02 

ebike
 

 0.71 5.05  0.63 4.70 0.77 5.29 

car
 

 0 -  0 - 0 - 

Natural environmental conditions     

Air pollution-bikeshare - 0.0028 - 4.34 - 0.0031 - 4.75 - 0.0031 - 4.76 

Air pollution-carshare 0.0026 5.81 0.0027  5.85 0.0028  6.03 

Air pollution-taxi 0.0027 5.13 0.0028  5.13 0.0029  5.25 

Air pollution-walk - 0.0023 - 4.07 - 0.0022 - 4.03 - 0.0022 - 4.01 

Air pollution-car  0.0019  5.70  0.0021 5.79  0.0021 5.85 

Rain-bus 0.28  3.39  0.30  3.40  0.32  3.49 

Rain-taxi  0.53  3.79  0.56  3.83  0.59  3.89 

Rain-walk - 0.46 - 3.29 - 0.46 - 3.24 - 0.44 - 3.07 

Rain-ebike - 0.61 - 5.03 - 0.59 - 4.79 - 0.57 - 4.60 

Rain-car  0.34  3.60  0.35 3.58  0.37 3.63 

Temperature-bus - 0.01 - 3.83 - 0.01 - 3.82 - 0.01 - 3.75 

Trip and mode attributes     

Travel cost-bikeshare - 0.332 - 3.24 - 0.297 - 2.87 - 0.269 - 2.59 

Travel cost-carshare - 0.016 - 2.70 - 0.015 - 2.62 - 0.017 - 2.68 

Travel cost-bus - 0.373 - 5.05 - 0.386 - 5.02 - 0.402 - 5.13 
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Travel cost-taxi - 0.018 - 2.11 - 0.019 - 2.13 - 0.019 - 2.04 

Travel cost-car - 0.001 - 0.03* - 0.001 - 0.08* - 0.017 - 1.20* 

Travel time-bikeshare - 0.041 - 13.48 - 0.042 - 13.72 - 0.054 - 14.14 

Travel time-carshare - 0.007 - 3.27 - 0.008 - 3.40 - 0.009 - 3.52 

Travel time-bus - 0.015 - 3.82 - 0.016 - 3.92 - 0.016 - 3.86 

Travel time-taxi - 0.007 - 0.56* - 0.006 - 0.47* - 0.007 - 0.52* 

Travel time-walk - 0.010 - 0.54* - 0.009 - 0.47* - 0.002 - 0.08* 

Travel time-ebike - 0.038 - 5.15 - 0.039 - 5.26 - 0.039 - 5.16 

Travel time-car - 0.001 - 0.35* - 0.001 - 0.38* - 0.001 - 0.18* 

Access time-bus - 0.05 - 5.80 - 0.05 - 5.81 - 0.05 - 5.84 

Wait time-bus - 0.01 - 2.84 - 0.01 - 2.75 - 0.01 - 2.59 

App availability-carshare  0.17  2.56  0.18  2.65  0.19  2.68 

Systematic taste heterogeneity     

Gender (female) * Travel 

time-bus 

 0.006  3.60  0.006  3.44  0.006  3.53 

Age (under 35) * Air 

pollution-bikeshare 

- 0.004 - 4.93 - 0.004 - 4.68 - 0.004 - 4.72 

Age (under 35) * Air 

pollution-walk 

- 0.002 - 3.42 - 0.002 - 3.23 - 0.002 - 3.21 

Age (under 35) * 

Temperature-bus 

- 0.014 - 3.41 - 0.014 - 3.47 - 0.016 - 3.56 

Age (under 35) * Travel 

cost-bikeshare 

 0.354 3.18  0.359 3.18  0.354 3.13 

Age (under 35) * Travel 

time-bus 

 0.007 2.73  0.007 2.75  0.007 2.82 

Age (under 35) * Travel 

time-ebike 

- 0.010 - 2.86 - 0.010 - 2.88 - 0.010 - 2.84 

Household income (below 

￥9,000) * Travel cost-bus 

 0.128  2.65  0.138  2.75  0.146  2.77 
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Household income (below 

￥9,000) * Travel time-ebike 

 0.016  2.32  0.016  2.35  0.016  2.33 

Educational level (not have a 

degree) * Travel cost-carshare 

- 0.010 - 3.28 - 0.009 - 2.92 - 0.009 - 2.93 

Educational level (not have a 

degree) * Travel cost-car 

- 0.018 - 3.05 - 0.022 - 3.36 - 0.024 - 3.41 

Latent variables (personal attitudes)     

Green travel-bikeshare    0.173  7.00   

Green travel-walk    0.139  4.80   

Green travel-car   - 0.060 - 3.71   

Cycle satisfaction-bikeshare    0.052  2.27   

Car-sharing advocacy-carshare    0.038  2.65   

Car-sharing advocacy-car   - 0.021 - 1.62*   

Green travel * Travel 

time-bikeshare 

     0.004  5.60 

Green travel * Travel time-walk      0.006  3.32 

Green travel * Travel cost-car     - 0.006 - 3.21 

Cycle satisfaction * Travel 

time-bikeshare 

     0.002  2.48 

Car-sharing advocacy * Travel 

time-carshare 

     0.001  2.57 

Car-sharing advocacy * Travel 

cost-car 

    - 0.002 - 1.44* 

Inter-alternative correlation & Model fitness     

motorized
 

1.72 6.07# 1.68 6.11#  1.58 6.32# 

2
 

0.18 0.21 0.21 

* parameter values not meeting the 95% significance level 

# t-test against base value of 1 
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6.3.3 Value of Time 

Recalling the arguments that taste heterogeneity, as a result of individuals‟ differentiated 

attitudes, could be taken into account for more realistic VTTS estimation, this research intends to 

offer comparable evidence to the earlier result in Abou-Zeid et al. (2010), of the extent to which 

personal attitudes could have an influence on the estimated VTTS values. Table 6-5 displays the 

VTTS estimates for the two shared mobility services resulted from our three mode choice models; 

1. without the latent variables, 2. latent variables entered linearly in the utility functions and 3. 

latent variables‟ interaction effects with travel time/cost are captured so that the value will be 

integrated over all individuals in order to calculate the societal VTTS. 

It is easily observed that VTTS for both bike-sharing and car-sharing would increase 

when having personal attitudes in the model, especially when the taste heterogeneity on travel 

time is captured. Although such an increasing trend is consistent with several earlier findings that 

more restrictive models tend to underestimate the value of time (Hensher, 2001a; Hensher, 

2001b; Amador et al., 2005), it should be noted that over-estimation could also be the case 

sometimes depending on the chosen variables, functional form and the nature of data, as 

explained by Amador et al. (2005). Moreover, for both bike-sharing and car-sharing, we found 

VTTS could increase by around 40% from the model specification without the latent variables to 

the specification capturing their interaction effects with travel time. As discussed in the literature 

review (section 2.3), such a figure is consistent to the detected amount of increase in several 

other works when allowing the taste of travel time to vary randomly (Algers et al., 1998; Hensher, 

2001a; Amador et al., 2005), and is clearly larger than the amount revealed by Abou-Zeid et al. 

(2010), i.e. around 7%, derived from a group of individuals who share close attitudes. 

Table 6-5 Value of Travel Time Savings across Models 

 Without LVs With LVs – 

linear effect 

With LVs – 

interaction effect 

Bike-sharing ￥7.4 ($1.1)/h ￥8.5 ($1.3)/h ￥10.3 ($1.5)/h 

Car-sharing ￥26.3 ($3.9)/h ￥31.7 ($4.8)/h ￥37.8 ($5.7)/h 

 

Overall, VTTS is an important indicator that is often used to guide the design of pricing 

policies for travel demand management. The above results would imply a need to derive different 
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VTTS for travellers with differentiated attitudes since the value could vary substantially when 

people have distinct tastes towards travel time/cost. We hereby generate another set of results 

trying to indicate how much the difference could be between those having relatively positive 

attitudes and negative attitudes. In the model that captures interaction effects, the taste of 

bike-sharing travel time could be affected by both “Willingness to be a green traveller” and 

“Satisfaction with cycling environment”. Therefore, we use the results from structural equations 

to select individuals whose socio-economic characteristics are all positively correlated with the 

two attitudes to formulate a group representing those having a positive attitude in general, and 

vice versa a group for those having a negative attitude. For car-sharing travel time taste that 

could be affected by “Advocacy of car-sharing service”, the same procedure applies to formulate 

the two contrasting groups. Table 6-6 shows the findings. It is revealed that VTTS among those 

holding a relatively negative attitude could be 20% and 40% higher respectively for bike-sharing 

and car-sharing than those holding a relatively positive attitude, which, in terms of intuition 

means that those who are more comfortable with the travel time spent on the two shared mobility 

services would have a lower willingness to pay for travel time savings. 

The plots in Figure 6-5 and 6-6 present the fact in a more explicit way. As an alternative 

approach to above, we could use the observed indicator values from measurement equations to 

group the individuals with differentiated attitudes. Specifically, we calculate for each individual an 

average score they gave in the survey to the indicators, for each of the three latent attitudes. This 

process could put individuals into six groups, i.e. whose average score is between “1 and 2”, “2 

and 3”, “3 and 4”, “4 and 5”, “5 and 6”, “6 and 7” (recall that 7-point Likert scale is used in our 

survey), as a way to represent the different levels of attitudes. In general, for all the three latent 

variables, we see VTTS decreases as people hold an increasingly positive attitude. By 

comparing the results to Table 6-6, we notice the range (or the spread) of VTTS becomes smaller 

when grouping the individuals by the indicator values from measurement equations. Such a 

difference is more or less expected due to the better approach to split attitudinal groups is via 

using the explanatory variables from structural equations (Vij and Walker, 2016), which could 

more effectively represent the different levels of attitudes, and in turn, more clearly demonstrate 

the VTTS spreads, compared to using measurement equations. Besides, this may also help 

explain the observed „noise‟, i.e. for “Satisfaction with cycling environment”, the VTTS revealed 
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for the group [6,7] is however higher than the value for the group [5,6], as shown in Figure 6-5. 

Table 6-6 VTTS by Structural Equation Groups 

 Being positive towards 

“green travel” + “cycle 

satisfaction” 

Being negative towards 

“green travel” + “cycle 

satisfaction” 

Bike-sharing ￥9.6 ($1.4)/h ￥11.3 ($1.7)/h 

 Being positive towards 

“car-sharing advocacy” 

Being negative towards 

“car-sharing advocacy” 

Car-sharing ￥31.7 ($4.8)/h ￥45.5 ($6.8)/h 

 

 

Figure 6-5 VTTS for Bike-sharing by Measurement Equation Groups 

 

 

Figure 6-6 VTTS for Car-sharing by Measurement Equation Groups 
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As a conclusion, the need to look at and disclose the corresponding VTTS for 

commuters with differentiated attitudes is highlighted in this research; otherwise, a single and 

over-simplified measure of VTTS across population could be misleading and potentially bias any 

pricing policies for effective travel demand management. However, it should be noted that the 

analysis of value of time in this research aims mainly to offer an indication demonstrating the 

extent to which personal attitudes could have an influence on the estimated values. A more 

accurate derivation of VTTS for practical application would need to involve studies of many other 

factors such as trip distance (Wardman, 1998; Axhausen et al., 2008), specific local context 

(Shires and De Jong, 2009), demographics (Jara-Diaz, 2003; Mackie et al., 2003; Trottenberg 

and Belenky, 2011) and other potential individual heterogeneity (Bastin et al., 2010). 

6.4 Conclusions 

This work studies how the usage of shared mobility services could be influenced by 

personal attitudes. An ICLV modelling framework is adopted to explore the effects of three 

attitudinal factors on bike-sharing and car-sharing choices, while simultaneously investigating 

the potential causes associated with each of the attitudes. A group of Chinese commuters‟ SP 

mode choice data is collected for the analysis. It is found that the probability to choose 

bike-sharing for a commute trip could be positively affected by the attitudes towards “Willingness 

to be a green traveller” and “Satisfaction with cycling environment” and car-sharing choice is 

positively correlated with the attitude towards “Advocacy of car-sharing service”. Moreover, by 

taking into account the interaction effects between the attitudinal factors and travel time of the 

two shared mobility services, a significant difference is discovered on the estimated VTTS 

comparing to the case of not having the attitudinal factors in the model or adding the attitudinal 

factors linearly in utility functions. The finding highlights the possibility to derive different VTTS for 

travellers with differentiated attitudes, as the tastes towards travel time spent could vary 

substantially. In other words, for practical application, a single measure of VTTS across 

population should not be preferred, in order to avoid biased pricing policies for travel demand 

management. 



117 
 

Although the work offers the state-of-the-art evidence of the extent to which personal 

attitudes could have an influence on the value of time estimation, several strategies could be 

adopted by future research to disclose more benefits of mode choice analyses involving latent 

variables. The work of Bahamonde-Birke et al. (2017) distinguished between the concepts of 

„attitude‟ and „perception‟, and a critical difference between the two is attitudes are often 

explained by socio-economic characteristics whereas perceptions are usually formulated based 

on mode-related attributes. Due to data constraints, we worked with three attitudinal factors in 

this research; however, studying perceptual factors in a mode choice analysis could potentially 

bring more practical values (Chorus and Kroesen, 2014), i.e. by having measures that could alter 

mode-related attributes and in turn affecting perceptions, mode choice behaviour and modal 

substitution pattern could be shifted towards a socially desirable outcome. Another critical 

challenge encountered by many ICLV studies (including this work) with a simultaneous model 

estimation structure and relying on maximum simulated likelihood inference approach is the 

extremely lengthy computation time, especially when multiple latent variables are involved. Bhat 

and Dubey (2014) proposed an alternative inference approach, maximum approximate 

composite marginal likelihood, to shorten model estimation time since the dimensionality of 

integration in the likelihood function will be independent to the number of latent variables and will 

require no more than bivariate normal cumulative distribution function to be evaluated for 

likelihood maximization (Bhat, 2011). So far, the application of such a new strategy is only 

compatible with specific modelling tool (i.e. GAUSS programming language) and would require 

complex coding inputs. Nonetheless, it is still a feasible alternative approach for future studies to 

consider, especially when there is a need to handle a broader range of attitudinal and perceptual 

factors. 
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CHAPTER 7. CONTROLLING CAR USAGE FROM A 

HABITUAL PERSPECTIVE 

In the earlier chapters, we tried to reveal any efforts that could be made at a tactical level 

for promoting shared mobility usage while suppressing the demand for private car. Now we 

would like to search for additional inspirations, as complements to the insights gained earlier, for 

what other aspects could be looked at to control private car usage. 

Recall that choice behaviour could be habitual, and the habitual changes of mode choice 

can be triggered by a variety of life course events. As such, although it is probably desirable to 

see a switch away from using car following the occurrences of some life events, meanwhile, 

switching to car is also a possible outcome and in fact, several results have indicated that 

switching from non-car modes to car was more frequently observed than the opposite (Oakil et 

al., 2011; Clark et al., 2016a). Such a puzzle could pose an additional challenge to travel demand 

management and it is crucial if efforts could be made to hold back the mode switches to car; 

since otherwise, once car is picked up and over time its usage becomes habitual, it would be 

even more difficult to alter the mode choice behaviour (Ouellette and Wood, 1998). 

This research aims to offer some direct insights to a query related to such a puzzle (i.e. 

given the presence of life course events that could result in the mode switches from non-car 

modes to car, what could be the counter-measures to hold back such a change) by conducting a 

mode switching analysis. A retrospective mode choice survey was launched to collect the 

citizens‟ regular commute mode information in 2006, 2008, 2010 and 2012 (totally four 

observation periods). A variety of life status data in the corresponding observation periods was 

also collected. A binary logit regression model is developed first to study the mode switching 

behaviour from car to non-car modes followed by a set of “mirror models” which evaluate the 

mode switches from different non-car modes to car. The mirror models could reveal any 

differences in mode switching behaviour among different non-car mode users, and hence more 

targeted policy implications could be derived. 

The remainder of the chapter is structured as follows. The next section provides the 

information about the retrospective survey and the descriptions of life course events and 
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observed mode switching patterns. The details of the model formulation follow. The model 

estimation results come next and a discussion of policy implications is presented in the end. 

7.1 Data 

This research uses the retrospective survey data to study the effects of life course 

events on mode switching behaviour. Earlier chapters have extracted rather large-scale samples 

for their modelling analyses; however, for the retrospective part, the number of responses that 

we keep in the final sample is limited. This is due to 1. the difficulty in recalling past information in 

a retrospective survey (Peters, 1988; Lillard and Waite, 1989) so that a lot of missing values do 

exist and the corresponding observations are removed, and 2. we applied many other criteria to 

make sure the selected data is credible enough to enter the analysis, for instance, a person 

included in the final sample should have full observations across all four periods and become a 

resident in the city at least before the first observation period, etc. Relevant information has been 

gathered in the survey to ensure those criteria can be fulfilled. Eventually, we have 1,799 

individual respondents with their all four-period commute mode choices (7,196 observations in 

total) ready to be used in the mode switching analysis. Some key information of this sample is 

presented in Table 7-1. 

Table 7-1 Sample Descriptive Statistics 

  N=1,799 in each year 

  2006 2008 2010 2012 

Gender Male 53% 53% 53% 53% 

Female 47% 47% 47% 47% 

Household monthly 

income (after tax, in 

CNY)* 

Below ￥3k 44% 40% 35% 31% 

￥3k -￥6k 38% 40% 42% 44% 

Above ￥6k 18% 20% 23% 25% 

Home & Work place Both in central districts 29% 28% 27% 27% 

Either or both in outer districts 71% 72% 73% 73% 

Marital status Single 39% 32% 24% 16% 

Married 61% 68% 76% 84% 
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Number of children 

(under 12) 

None 62% 57% 47% 38% 

At least one 38% 43% 53% 62% 

Employment status Have a fixed job 72% 77% 80% 84% 

Self-employed or student 28% 23% 20% 16% 

Commute distance Within 2km 17% 17% 16% 16% 

2km to 5km 20% 20% 18% 17% 

Beyond 5km 63% 63% 66% 67% 

Household car percentage of possession 34% 38% 45% 50% 

Household e-bike percentage of possession 46% 48% 49% 50% 

Household bike percentage of possession 68% 68% 68% 68% 

Commute mode 

choice 

Car 17% 20% 25% 29% 

Bus 27% 27% 25% 23% 

E-bike 17% 16% 15% 14% 

Bike 23% 22% 21% 20% 

Walk 15% 14% 13% 13% 

Taxi 1% 1% 1% 1% 

Note: age information is missing from the retrospective survey 

 

The sample is almost equally composed of male and female commuters. Age 

information is not collected in the retrospective survey. Household income has gradually 

increased over time. The proportion of people who both live and work in the central districts of 

Taiyuan city (there are 6 districts in Taiyuan and 2 are perceived as the central districts in the 

past decade) has remained stable. We found from the data that this is not due to the 

approximately the same number of people moving in/out, but simply because most respondents 

in the sample have stayed within the central/outer district boundary. Many people got married, 

had a child and got a fixed job during our study period. The distribution of commute distances is 

relatively stable over time; however, this time, it is revealed from data that such stability is caused 

by the occurrences of both commute distance increases and decreases, not because people 

have their home and work place locations unchanged (though, as mentioned earlier, most of 
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them still stayed within the boundary of central/outer district). There is an increasing possession 

rate of car by household over time, while the possession rates of electric bike and bike remained 

similar across the different periods. By looking back the 2015 sample statistics in previous 

chapters, electric bike ownership has remained high (i.e. around 50%) throughout our entire 

survey periods. This is very much consistent to the whole picture of China, which has had a 

higher adoption rate of electric bike for a decade compared to other parts of the world (Cherry, 

2010; 2013). Meanwhile, bike ownership has dropped substantially from 2012 to 2015, which 

reflects the aforementioned influence of the continuous expansion of the city‟s bike-sharing 

program. Regarding the commute mode choices, car usage has been through a continuous 

increase from 2006 to 2012; by looking at the rest of modes, we can see the increasing demand 

for car came from bus, electric bike, bike and walk journeys. Meanwhile, taxi was rarely chosen 

for regular commute trips and its share remained low in all four periods. 

Table 7-2 and 7-3 provide more specific statistics for a mode switching analysis with 

respect to life course event occurrences. In Table 7-2, we identified five critical life course events 

that could result in mode switching behaviour; these are: “Get married”, “Have a child”, “Get a 

fixed job”, “Increase of household income” and “Commute distance change”. Over the entire 

study period (2006-2012), the percentages of respondents who got married, had a child and got 

a fixed job are 28%, 24% and 12% respectively. The latter two figures (24% and 12%) are 

consistent with the statistics in Table 7-1 where the number of people having at least one child 

increased from 38% in 2006 to 62% in 2012, and having a fixed job increased from 72% in 2006 

to 84% in 2012. However, 28% of participants who got married, is 5% higher than the yearly 

marriage statistics (from 61% in 2006 to 84% in 2012). The difference implies 5% people may 

have got divorced but such a life course event will not be studied in our models given its low 

occurrence rate. The survey captures monthly household income in six levels: below ￥3k, ￥3k 

-￥6k, ￥6k -￥9k, ￥9k -￥15k, ￥15k -￥30k and above ￥30k. A jump to a higher household 

income level is another event that might make people reconsider their mode choice decisions. 26% 

of the sampled individuals have been through at least once such an income increase over the 

entire study period. Finally, commute distance change is broken down to two sub-cases, where 

22% have experienced a distance increase, and 14% have experienced a distance decrease. 
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Table 7-2 Life Course Event Occurrences on Individuals over the Study Period (2006-2012) 

Life course event % individuals been through 

the listed life course events 

(N=1,799) 

Got married 28% 

Had a child 24% 

Got a fixed job 12% 

Increase of household income (at least once)#* 26% 

Commute distance increased (at least once)* 22% 

Commute distance decreased (at least once)* 14% 

# Household monthly income is measured in six levels in the survey: below ￥3k, ￥3k -￥6k, 

￥6k -￥9k, ￥9k -￥15k, ￥15k -￥30k, above ￥30k 

* Events that could occur more than once over the entire study period (2006-2012) in the 

given sample 

 

To reveal the mode switching pattern, we convert the original sample data into a different 

format. Initially, each respondent has four mode choice observations from the four periods (2006, 

2008, 2010 and 2012) respectively. Then, we formulate paired observations by capturing the 

mode choices in a precedent period and the period followed. As such, each respondent now has 

three paired observations (2006/2008, 2008/2010 and 2010/2012) to display any mode switching 

behaviour. Table 7-3 offers an overview of the mode switching pattern over the entire study 

period (2006-2012). About 90% paired observations which had car as the commute mode in the 

precedent period, still had car chosen in the period followed. As a comparison, for bus, electric 

bike, bike and walk that were chosen in the precedent period, the percentages of paired 

observations which had the same modes chosen in the following period were lower, though all of 

the percentages were still above 80%. Thus, there was slightly stronger adherence to car usage 

than to using the rest of modes. Besides, it is noteworthy that car is always the most popular 

alternative, when people would like to switch away from bus, electric bike, bike and walk in the 

period followed. 
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Table 7-3 Mode Switching Pattern over the Entire Study Period (2006-2012) 

Precedent 

period 

The following period 

Car Bus E-bike Bike Walk Taxi 

Car 89.5% 5.4% 0.9% 2.2% 1.9% 0.2% 

Bus 11.1% 83.2% 1.7% 2.2% 1.5% 0.3% 

E-bike 6.4% 2.7% 84.9% 5.8% 0.2% 0% 

Bike 6.1% 4.3% 2.4% 86.0% 1.0% 0.1% 

Walk 6.0% 3.8% 1.0% 1.0% 88.2% 0% 

Note: we do not analyse the sticking to/switching away behaviour when having taxi in 

the precedent period due to the very limited observations of having taxi as a regular 

commute mode (see also the “Commute mode choice” in Table 7-1) 

 

7.2 Modelling Framework 

Based on the data structure displayed in Table 7-3, we put the paired observations into 

five sub-datasets in which the commute mode choice in the precedent period is car, bus, electric 

bike, bike and walk respectively. These are the datasets that will be used in our mode switching 

analysis. 

A binary logit regression model is developed at first to investigate the mode switching 

behaviour from car (precedent period) to non-car (the following period). Broader insights could 

be obtained if the “non-car” alternative can be decomposed into the actual modes that are 

chosen in the following period (e.g. car-bus, car-electric bike…) and hence perform a multinomial 

logit regression. However, there are very limited mode switching events in this working dataset 

(i.e. the first row of Table 7-3), and as a result, our modelling attempt with multinomial logit 

regression encountered a convergence issue. Eventually, a binary approach is adopted (see 

Oakil et al., 2011; Clark et al., 2016a). 

Next, a set of “mirror models” are developed to study the mode switching behaviour from 

bus to car, electric bike to car, bike to car and walk to car. There are two considerations behind 

such a practice: 1. It is important to distinguish and verify if a factor that could induce a mode 
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switch, for instance, car to non-car, is due to preferring a non-car alternative or simply preferring 

a switch of mode. This is the information that must be clearly revealed to avoid ineffective or 

even erroneous policy measures that could be developed from the modelling results (i.e. if a 

factor induces a mode switch from car to non-car is however due to “preferring switch”, in other 

words, this factor will have the same impact sign on non-car to car switch, then any policies 

designed around this factor and aim to encourage a car to non-car switch may at the same time 

result in a mode switch from non-car to car). Hence, these mirror models will help to check if a 

factor‟s impact on various mode switches to car is opposite or in the same direction to its impact 

on mode switch from car in the earlier model, and thus distinguish between “preferring mode” 

and “preferring switch” to better inform policy making. 2. Another benefit of a set of mirror models 

is that the differences in mode switching behaviour among different mode users can be revealed, 

i.e. a factor may only have a significant impact on some mode users and may be completely 

irrelevant to others. In other words, different and more targeted policy implications can be 

obtained when there is a need to persuade different non-car mode users not to switch to car as a 

regular commute mode. 

Again, either binary or multinomial logit regression can be applied to set up the mirror 

models. Taking the bus user model as an example, the binary specification will classify the paired 

choice observations into two categories: bus to car and bus to non-car, while the multinomial 

specification can handle more alternatives by for example further splitting the above “bus to 

non-car” into “bus to bus” (the majority) and “bus to the rest” (though only a tiny proportion). We 

tested both specifications and the most important part “bus to car” shared the same results in 

terms of factors‟ impacts on such a choice. Thus, we adopt the binary specifications for all the 

mirror models in order to simplify the result presentation while not losing any valid information 

and model explanatory power. 

The variables that are used to explain the mode switching behaviour include life course 

events (dynamic) and socio-economic factors (static). The life course events are those presented 

in Table 7-2; besides, for commute distance change (both increase and decrease), we generate 

three sub-groups, i.e. (change by) less than 2km, 2km to 5km and more than 5km to explicitly 

assess how different degrees of distance change in an urban context would possibly affect mode 

switches. All life course events are studied with their impacts on mode switch observations in the 
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same years. Oakil et al. (2011) also explored lead (one year before) and lag (one year after) 

effects of life course events in their mode switching models. However, we do not incorporate 

such effects in the analysis given the 2-year observation interval in our data which means the 

lead and lag effects are likely to be trivial. Three socio-economic factors are studied; gender, 

household income and home & work place (see Table 7-1). Mode switch availability conditions 

are also applied to the models, and they appear as that car, electric bike and bike can be chosen 

as regular commute modes only if an individual‟s household owns those vehicles. 

Finally, given the fact that an individual often has more than one paired observations in 

the datasets, a standard logit mixture approach (McFadden and Train, 2000; Hensher and 

Greene, 2003) is applied to all models to account for any potential intra-person correlation. Eq. 

19 presents the mathematical form of our mixed logit model. Model estimations are performed in 

BisonBiogeme (Bierlaire, 2003). 

1

K

in k ink i in in

k

U X   


     (19) 

where U  is the utility associated with a mode choice, i  is the choice alternative, n  

is the individual choice maker, X  is the factor of explanatory variables and   is the estimated 

parameter. The intra-person correlation is captured by the error component  , and the impact is 

denoted by the standard deviation  .   is the error component i.i.d. Extreme Value and 

independent from  . 

7.3 Results 

Table 7-4 and 7-5 display the modelling results of mode switching from car and to car 

respectively. As an overview, the log-likelihood and the adjusted rho-square values imply a fairly 

good level of fitness of all the models. The parameter measuring intra-person correlation also 

has universal significance confirming the presence of individual-specific attribute which did post 

an unobserved effect on mode switching behaviour. 

7.3.1 Model Estimation Results 

In Table 7-4, with respect to the mode switching behaviour from car to non-car, almost all 
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variables exhibit significant effects, except the life course event of having a child, which has a 

negative impact sign and is the only variable not meeting the 90% significance level. For the rest 

of life course events, getting married and encountering an increase of the household income also 

manifest a negative effect, which means both events are less likely to induce a shift to using 

non-car modes for regular commute. In comparison, positive effects on a switch from car to 

non-car are observed with the event of getting a fixed job and all the three cases of a commute 

distance decrease (i.e. by < 2km, by 2-5km and by > 5km). For the socio-economic factors, 

males and commuters from wealthier households would prefer to stick with car, rather than 

picking up any alternatives; however, if both the home and work place are inside the central 

districts of the city, people might be more willing to switch their commute modes away from car. 

Table 7-4 Mixed Binary Logit Regression Result: Mode Switch from Car to non-Car 

 coefficient t-statistic 

(The alternative: “car to car” is normalised to the base) 

Constant - 2.48 - 12.27 

Intra-person correlation (standard error)  1.76  6.50 

Static variables (socio-economic factors) 

Gender (male) - 1.64 - 6.15 

Household monthly income (Above ￥6k) - 0.50 - 1.94 

Home & Work place (both central districts)  2.39 9.07 

Dynamic variables (life course events) 

Got married - 1.64 - 1.82 

Had a child - 1.22 - 1.40* 

Got a fixed job  2.97  5.22 

Increase of household income - 2.17 - 2.64 

Commute distance decreased by < 2km  3.66  3.28 

Commute distance decreased by 2-5km  2.73  3.09 

Commute distance decreased by > 5km  4.40  8.50 

Model performance 

Number of obs. 1,110 
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Initial log-likelihood - 769.39 

Final log-likelihood - 251.10 

2   0.66 

* Parameter does not meet the 90% significance level 

 

So far, we only described some facts of the modelling results without further elaboration. 

This is because a single model studying only the car to non-car mode switching behaviour 

cannot firmly tell whether the factors‟ impacts are due to “preferring mode” (i.e. different utilities 

on car and non-car modes) or “preferring switch” (i.e. different utilities on embracing changes 

and living with status-quo). Thus, we now introduce the results of the mirror models in order to 

further unveil the mode switching behaviour. 

Table 7-5 shows the parameter values in the mirror models. Unlike the earlier “car to 

non-car” model in which most variables exhibit significant effects, there are many more 

insignificant variables in each of the four mirror models and are thus dropped out to avoid any 

model convergence problem. However, despite that part, the remaining significant variables do 

display consistency regarding their impact signs across the different mirror models and the 

analyses below will demonstrate whether these effects are due to “preferring mode” or simply 

“preferring switch”. 

Table 7-5 Mixed Binary Logit Regression Results: Mode Switches to Car 

 Bus to car E-bike to car Bike to car Walk to car 

 coef. t-stat coef. t-stat coef. t-stat coef. t-stat 

(In each model, the alternative: “not switch to car” is always normalised to the base) 

Constant - 2.24 - 10.58 - 0.74 - 2.55 - 2.74 - 8.44 - 4.88 - 4.32 

Intra-person correlation 

(standard error) 

1.45 4.30 1.93 6.27 0.84  3.15  2.11  7.74 

Static variables (socio-economic factors) 

Gender (male) - - - 3.90 - 3.74 - 1.68 - 2.93 - 4.17 - 3.42 

Household monthly 

income (Above ￥6k) 

 0.90  3.10 - -  1.27  2.50  3.99  3.42 
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Home & Work place 

(both central districts) 

- 1.09 - 3.24 - 2.79 - 3.30 - - - - 

Dynamic variables (life course events) 

Got married - - 2.63 3.08 2.81 4.45 7.23 4.78 

Had a child 2.14 5.78 - - - - - - 

Got a fixed job - - - - - - 4.95 2.85 

Increase of household 

income 

2.35 6.89 2.96 3.13 1.89 2.89 2.76  2.23 

Commute distance 

increased by < 2km 

- - - - - - 4.69 3.04 

Commute distance 

increased by 2-5km 

- - 5.49 2.29 4.19 3.83 - - # 

Commute distance 

increased by > 5km 

2.23 3.93 2.52 1.95 3.18 4.05 - - # 

Model performance 

Number of obs. 1,446 862 1,173 768 

Initial log-likelihood - 362.52 - 114.37 - 225.97 - 175.37 

Final log-likelihood - 175.88 - 52.80 - 72.33 - 23.53 

2   0.50  0.48  0.65  0.83 

Note: insignificant variables are dropped out since there are many of them in each model and 

including them can lead to model convergence problems 

# Those two variables in the “walk to car” model have no displayed values; not due to the effects 

are insignificant, but they have limited number of occurrences in the data and cannot be properly 

modelled 

 

Preferring Mode 

Several life course events are associated with mode preference. “Got married” could 

significantly affect the mode switches from electric bike, bike and walk to car where bus to car is 

the only model in which the significance is lost. By comparing these positive impact signs with 

the negative impact sign in the earlier model, it can be identified that getting married is likely to 
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make people start moving away from non-car modes to using car for regular commute; while if 

car users get married, they would possibly prefer sticking with car without switching to any 

non-car alternatives. The same conclusion can be made for having a child and encountering an 

increase of household income, where both events also have positive effects on the mode 

switches to car in the mirror models, and the effects are opposite to those in the earlier model, 

where negative signs are observed. However, it should be noticed that having a child is only 

significant in inducing bus users to switch to car, whereas a surge in household income has a 

universally significant effect in all four mirror models. Another life course event that belongs to 

“preferring mode” rather than “preferring switch” is the change of commute distance. Different 

degrees of commute distance increases are positively associated with the mode switches to car 

in the mirror models, whereas a mode switch from car to non-car in the earlier model is positively 

associated with commute distance decreases. 

For socio-economic factors in the mirror models and the earlier “car to non-car” model, 

opposite impact signs are found on monthly household income and home and work place 

location, which means both of these factors are associated with mode preference. Specifically, 

car commuters with higher household income would like to stick with car usage, and non-car 

commuters with higher household income would prefer switching to car. For those settled 

themselves in the central districts, they are more willing to accept a mode switch from car to 

non-car, while the switch from non-car to car turns out as a less appealing option. 

Preferring Switch 

Only one life course event and one socio-economic factor seem to be associated with 

such a type of behaviour. In the earlier model, getting a fixed job could lead to a mode switch 

from car to non-car; in the mirror models, the effect also has a positive impact sign, though it is 

significant only in the walk to car model. The implication would be that getting a fixed job (i.e. 

from self-employed or student) may induce a switch of commute mode. However, both switching 

to and away from car could occur, possibly depending on the more specific travel needs which 

cannot be identified from the available information in our survey. Similarly, male commuters are 

found with negative impact signs throughout the earlier “car to non-car” model and the 

subsequent mirror models which could imply their relatively strong “reluctant to switch” 

characteristic compared to female commuters. 
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7.3.2 Discussions and Policy Implications 

Like many travel behavioural studies, the modelling outputs could offer a bunch of 

insights to enrich the current literature. However, to what extent the insights could actually be 

taken away to inform policy making is always sceptical since in many cases the findings cannot 

be transferred into practical application due to various constraints. Thus, next, we will discuss 

each of the key factors in our models and evaluate their potentials in helping design policies with 

an objective to keep commuters away from car use.  

Getting Married 

There could be various reasons explaining why such an event would possibly induce a 

mode switch to car. For example, due to a car purchase activity which occurs frequently by 

getting married and thus resulting in an easy car access (Clark et al., 2016b), or due to a need to 

save commute journey time when starting to undertake additional family roles and as such 

switch to car given its faster speed, etc. In fact, the latter hypothesis could possibly reflect the 

results of our mirror models, in which getting married would make the users of electric bike, bike 

and walk switch to car, whereas its effect on bus users, who are probably more satisfied with the 

mobility of their status-quo mode, did not reveal any significance. Such a result could offer an 

opportunity for policy intervention. Although we cannot halt the mode switch to car by 

manipulating the occurrences of life course events, policy making could potentially step in from a 

tactical angle by encouraging the mode switch to bus. As such, when the users of electric bike, 

bike and walk get married, they could find their travel needs can also be satisfied by switching to 

bus. A very common policy practice to serve such a type of objective is the Voluntary Travel 

Behaviour Change (VTBC) strategy (Brög et al., 2009; Stopher et al., 2009), which usually 

consists of informational and marketing efforts to encourage a behavioural change (Clark et al., 

2016a), for example in our case could be providing special rewards to new customers starting to 

use bus, in order to attract the regular electric bike, bike and walk commuters. 

Having a Child 

Recall that the event does not have a significant effect on the mode switching behaviour 

from car to non-car modes; however, a positive and significant effect is observed in one of the 

switching to car models. Oakil et al. (2011) also had a similar discovery and one explanation they 
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proposed was, having a child would lead to stronger demand for travel flexibility, e.g. for baby‟s 

regular check-up or day care drop off and pick up, which is something car can offer. Moreover, 

further insight could be revealed by comparing across the mirror model results. Having a child is 

only significant in inducing bus and not the rest of mode users to switch to car, which implies that 

flexibility may not be the only concern in such a circumstance. The stronger willingness of bus 

users to choose car might be due to the dislike of public transport environment when travelling 

with baby in their commute trips (for drop-off and pick-up). Hence, encouraging new parents who 

used to commute by bus to switch to those non-car travel options could be a policy pursuit. For 

instance, subsidies could be offered to new parents for their purchases of cycling tools (e.g. 

e-bike or bike). 

Getting a Fixed Job 

Given the finding that employment status change could lead to both switching to and 

away from car, we prefer not to derive any policy implications at this stage until further research 

unveils the intrinsic factors that might result in such an outcome. Distance could be one of those 

factors after observing the significant impacts of commute distance changes on mode switching 

behaviour in our models (their policy implications will be discussed shortly). However, we did not 

study the potential interaction between the change of employment status and the changes of 

commute distance since there are not enough observations in the datasets. Besides, other 

intrinsic factors may exist and need to be investigated as well. 

Increase of Household Income 

This is the only factor that has a universally significant effect in all four mirror models. 

However, from a practical perspective, the results also imply none of the four modes can be a 

competitive alternative to car when commuters become wealthier and therefore the room for 

policy intervention would be limited. 

Changing Commute Distance 

An increase in commute distance could make non-car mode users start to prefer car; 

however, different non-car mode users would be affected by different degrees of increase. Bus 

users tend to switch to car only if the distance increase is large (by more than 5km); the two 

cycling mode users tend to switch to car under a smaller threshold (by 2km to 5km); finally, 

commuters on foot can switch to car even when there is a relatively small degree of increase (by 
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less than 2km). It seems that such a trend is in line with the travel speed of each non-car mode. 

As for the implications for policy making, bus users could potentially stay with bus, if for example 

they can be rewarded for making long-distance bus journeys. One solution is introducing a flat or 

even a diminishing bus pricing scheme with respect to journey distance so that the incurred 

longer travel time by bus comparing to which by car can be compensated in terms of a 

cost-saving, though whether the implementation is feasible or whether any side-effects would 

arise should be carefully studied by relevant research. By having a commute distance increase, 

persuading cyclists and on-foot commuters to stay with their original mode choices would be a 

trickier task since many more pain-points will get involved, e.g. physical fitness, comfort and 

safety concerns, which cannot be easily addressed by policy intervention. Thus, from a practical 

perspective, it might be more effective to encourage a mode switch to bus, for example via the 

aforementioned VTBC strategy by offering new-customer rewards to the cyclists and on-foot 

commuters who are willing to make a switch. Besides, for the two bicycle modes in particular, 

efforts could also be made towards the integration with public transport system (e.g. carrying 

foldable bikes on bus / placing bikes on the attached racks, both measures have already been 

adopted by many cities across the globe), which may offer another solution to handle a commute 

distance increase. 

Socio-economic Factors 

The three socio-economic factors in this research are studied regarding their linear 

effects on mode switching behaviour. A more sophisticated approach would be evaluating their 

interaction effects with life course events to better reveal the mode switching pattern, i.e. whether 

a socio-economic group would be affected more/less by a particular life course event and hence 

more realistic policy implications can be obtained (Scheiner, 2014). However, due to our data 

constraints that the number of interaction observations is very limited, only linear effects can be 

properly modelled. In fact, the data constraints by only having a small number of observations on 

life events or mode switch occurrences seem to be a universal issue given its presence in earlier 

studies as well (Oakil et al., 2011; Clark et al., 2016a; Klinger, 2017). Future work that can 

overcome such a data challenge could potentially be of significant contribution to mode switching 

research; meanwhile, a broader range of socio-economic factors, such as age, educational level 

and household size, could also be explored when relevant data is collected. 



133 
 

7.4 Conclusions 

This work offered a mode switching analysis using a retrospective survey data. The 

impacts of a variety of life course events were investigated and the corresponding implications 

for policy making were discussed. The survey data had a panel structure by capturing a group of 

Chinese citizens‟ main commute mode choices in four observation periods. A mixed binary logit 

regression model was developed at first to study the mode switching behaviour from car to 

non-car modes between a precedent period and the period followed. A set of “mirror models” 

were developed next to reveal the mode switches from each of the non-car modes to car. The 

mirror models also had a binary structure with the logit mixture to capture intra-person 

correlation. 

It was revealed that getting married, having a child and encountering an increase of 

household income could induce a mode switch from non-car modes to car, while car users who 

experienced these life course events would prefer sticking to car as their regular commute mode. 

Similarly, an increase in commute distance would make people more likely to switch to car, 

whereas a decrease would make people switch away from car. The only event that is not 

associated with a clear mode preference is getting in a fixed job, which could result in both 

switching to and away from car, and further research would be needed to explore any intrinsic 

factors that might result in such an outcome. 

Moreover, the mirror models also revealed the differences in mode switching behaviour 

among different non-car mode users, and corresponding policy implications were subsequently 

derived. To prevent the commuters using electric bike, bike and walk from switching to car when 

they get married, it could be useful to encourage the mode switches to bus which may also be 

able to satisfy their travel needs, since the bus commuters who get married are not found with 

the same level of desire to switch to car. Possible informational and marketing measures could 

be introduced to facilitate such a mode switch to bus. In comparison, bus users would be more 

willing to pick up car when they have a child, whereas the rest of non-car mode users seemed to 

be indifferent to such a switch towards car when experiencing child birth. Thus, measures could 

step in to encourage an opposite switch this time (i.e. bus to cycles or walk) via, for example, 

subsidies to new parents for their purchases of bikes and bike-related equipment. Another event 
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that could lead to useful policy implications was a commute distance change. Bus commuters 

would switch to car only if the distance increase is large (by more than 5km); e-bike and bike 

users would switch to car under a smaller threshold (by 2km to 5km); commuters on foot could 

switch to car even when there was a small increase (by less than 2km). As a result, a rewarding 

scheme would probably be needed for undertaking long-distance bus journeys to prevent bus 

users from switching to car. Meanwhile, persuading cyclists and on-foot commuters to switch to 

bus rather than staying with their status-quo choices would also be recommended, since an 

increase in distance could result in more pain-points that cannot be easily addressed by policy 

intervention (e.g. physical fitness, comfort and safety concerns). Finally, when discussing these 

policy implications, attempts were also made to provide possible explanations for the differences 

in mode switching behaviour among different non-car mode users (i.e. why an event could have 

a significant effect on some mode users and not on the others). However, they are still at a 

hypothetical level and this would also be an opportunity to build up further research. 

Several socio-economic factors were also studied. In particular, males were found to be 

more reluctant to make a switch to other available travel options (either from car to non- car and 

from non-car to car) comparing to females. However, due to data constraints, any interaction 

effects between socio-economic factors and life course events were not modelled. This is an 

area that should be studied in the future in order to acquire more targeted policy implications. 

Besides, not only with socio-economic factors, life course events per se could also be 

inter-connected across each other. For example, the event of receiving a fixed job may occur 

simultaneously with a commute distance change, as in the case of this work. Such an effect 

could be disclosed once more life event observations become available (i.e. through more waves 

of longitudinal data, or more individuals in a larger sample), so that a good number of interacted 

events can be captured and modelled. Another strategy is to isolate any potentially correlated 

events by extracting a subset of observed cases to explicitly study their independent effects, e.g. 

via developing different groups of models or implementing a sensitivity test (see Clark et al., 

2016), which could be explored by future research with a specific interest in such a topic. 
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CHAPTER 8. CONCLUSIONS 

In this chapter, we would like to make some concluding remarks for the thesis. We will 

start by reviewing the work completed in each of the individual chapters to show how the earlier 

proposed research questions have been answered. Next, the focus will be put on a comparison 

between the results obtained in this thesis and the results from existing literature for developed 

countries. Then, based upon the findings we have gained in this work, an overall evaluation will 

be made on the contributions and wider implications of this research to the real world. In the end, 

we will review some key limitations associated with the data and the analysis methods used. 

Moreover, while talking through all these subjects and issues, opportunities for moving forward 

and pathways for conducting future studies will also be discussed. 

8.1 A Quick Review of the Work 

This thesis delivered a mode choice study with specific attention being put on the 

fast-developing shared mobility services, and in particular on bike-sharing and car-sharing. In the 

beginning, four important knowledge gaps plus a general lack of understanding on mode choice 

behaviour in developing countries were recognised and discussed, which helped to set up the 

context for this research. Hence, we proposed four research questions which we aim to provide 

answers through this work, to better understand how to encourage the use of shared mobility 

services in the developing world, while in the meantime to effectively control private car usage. 

We conducted four chapters of research, each with a specific research objective, to 

answer the aforementioned questions. Chapter 4 and 5 studied the factors that could affect the 

mode choices of bike-sharing and car-sharing respectively, and their corresponding modal 

substitution patterns. In Chapter 4, the results revealed, in particular, the significant negative 

impact of air pollution on choosing bike-sharing as the travel mode. Nevertheless, via a policy 

impact analysis which revealed the modal substitution pattern (Table 4-7), it was found that 

improving air quality was actually less effective in promoting bike-sharing ridership than making 

some direct improvements on bike-sharing service (e.g. through access time saving, travel cost 

saving), though the measure could still be effective in helping reduce the dependence on using 

private car for short-distance trips. Besides, we developed both NL and mixed NL mode choice 
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models using an SP alone dataset, as well as a pooled SP/RP dataset to find out which model 

specification and which dataset would possibly lead to the most robust results. Eventually, the 

mixed NL model based on the pooled SP/RP data turned up with the best performance, which 

also offered guidance for the model development in Chapter 5 regarding car-sharing choice. 

In Chapter 5, by using pooled SP/RP datasets, two mixed NL mode choice models were 

developed to study car-sharing choices under mid-dist and long-dist trip cases accordingly, and 

to explore if the results differ by distance. With a core objective of promoting car-sharing while 

suppressing private car usage, some critical insights for policy making were obtained via a policy 

impact analysis (Table 5-8 and 5-9) and the derivation of several behavioural indicators (e.g. 

VTTS, direct and cross point elasticity). It was found that raising the cost of private car usage 

(travel cost, parking cost) should be prioritised for shorter trips since car would be more difficult 

to be substituted when trip distance increased. Shorter trips also need such direct measures to 

help suppress the demand for private car when promoting a car-sharing service; otherwise, 

car-sharing would attract more bus users instead. Longer trips (within the city radius) need a 

more effective solution to bring down private car usage, and that was discovered as making 

car-sharing service more appealing so that it could serve as a viable substitute for private car. 

For more information on any differences of the factors‟ impacts on shared mobility 

choices between the case in a developing country and developed world, we leave it to the next 

section 8.2 for a more detailed discussion. 

Regarding the third research question, Chapter 6 brought in attitudinal effects on the 

choices of using bike-sharing and car-sharing services. Specifically, we adopted an ICLV 

modelling framework to explore the effects of three attitudinal factors on bike-sharing and 

car-sharing choices, while simultaneously investigating the causes associated with each of the 

attitudes. A group of commuters‟ SP mode choice data was used. It was found that the probability 

of choosing bike-sharing could be positively affected by the attitudes towards “Willingness to be 

a green traveller” and “Satisfaction with cycling environment”; while car-sharing choice was 

positively correlated with the attitude towards “Advocacy of car-sharing service”. By taking into 

account the interaction effects between the attitudinal factors and travel time of the two services, 

a significant difference was discovered on the estimated VTTS comparing to the case of not 

having attitudinal factors in the model or adding attitudinal factors linearly in utility functions. The 
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findings highlighted the need to derive different VTTS for travellers with differentiated attitudes, 

as the tastes towards travel time spent could vary substantially (Table 6-6; Figure 6-5 and 6-6). 

Chapter 7 addressed the last research question on the habitual-level policy opportunities 

for controlling private car usage. Retrospective commute mode choice data over four 

observation periods (2006, 2008, 2010, 2012) were collected to analyse individuals‟ habitual 

mode choice changes. Binary ML models were developed to study first the mode switching 

behaviour from car to non-car modes and then the mode switches from each of the non-car 

modes to car. It was found that different non-car mode users do have different mode switching 

behaviour by observing their distinct reactions to life course events, especially towards getting 

married, having the first child and different degrees of commute distance change. A thorough 

discussion on how to make use of these results to serve policy design was provided in the end. 

8.2 Comparisons between Developing and Developed Countries 

Some earlier studies have revealed the difference in travel behaviours across different 

case study locations (Barnes and Krizek, 2005; Tang et al., 2011; Maurer, 2012; Kamargianni, 

2015; Faghih-Imani et al., 2017); however, these studies focused on areas in developed 

countries. As such, it is insightful to explore if there are any differences in travel behaviour 

between the developing and the developed world in general. By reviewing the factors that have 

been investigated in the previous chapters and their effects on shared mobility and other mode 

choices, we see that most of the factors demonstrate consistent effects to those already 

identified in the existing literature for developed countries. These broadly include a variety of 

natural environmental conditions as well as trip and mode attributes. Nevertheless, a key 

difference did emerge from our results, and that is about the impact of socio-economic factors. 

Such a type of factors would usually pose a significant influence on mode choice and 

other forms of travel behaviour; however, it was not the result in this work. When specifying mode 

choice models in earlier chapters, we analysed systematic taste heterogeneity rather than the 

traditional linear effect of socio-economic factors. This is due to insignificant coefficient values 

were extensively observed when including the variables linearly in utility functions, while 

systematic taste heterogeneity substantially increased the overall model fitness. Eventually, as 
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our results in Chapter 4, 5 and 6 have shown, several socio-economic factors demonstrated their 

effects on mode choice behaviour by significantly interacting with a few other attributes; but 

meanwhile, there were far more interaction effects that have turned out as insignificant and were 

thus dropped out from model estimation and presentation. 

One explanation, as we mentioned in the survey design in Chapter 3, could be that our 

sampled respondents occasionally shared close socio-economic characteristics (e.g. those with 

similar ages, educational background and income levels when they were from the same work 

place). As a result, when the variations across individuals are limited, it is possible that we could 

find the influence from the socio-economic side less significant. 

However, this may not be the whole case, as a few more results from developing 

countries (though mostly from China as well) have also shown the links between socio-economic 

characteristics and mode choice behaviour are weak, which may imply a behavioural difference 

between the developed and developing countries. For instance, we discovered in Chapter 4 the 

choice of bike-sharing was not significantly correlated with any of the socio-economic factors 

either linearly or via the form of systematic taste heterogeneity. The finding is very much 

consistent to which from a case study in Beijing, China (Campbell et al., 2016), as the authors 

also showed in their mode choice analyses the users of bike-sharing service could arise 

anywhere from the social spectrum, rather than from any specific demographic groups. Besides, 

there has been more evidence coming up. Another case study in Beijing looked at the general 

commute mode choices among teenagers going to schools (Li and Zhao, 2015). They studied a 

variety of socio-economic factors at both individual and household levels, and the model outputs 

revealed that for trips within 3km some effects were insignificant while for longer trips (over 3km) 

most of the socio-economic factors appeared to be insignificant. Feng et al. (2017) also 

discovered very close findings via a case study in Nanjing, China. The work proposed a relatively 

novel conclusion such that the impact of „classic‟ socio-demographics on travel behaviour would 

diminish over time after they modelled a set of repeated cross-sectional survey data from 

different years. The authors made a further attempt trying to interpret why nowadays in China, it 

is more likely to see socio-economic factors being redundant in directly explaining people‟s travel 

behaviour. Since the interpretation may not only serve the case of China, but possibly also the 

wider developing world, we would like to quote this part from the article in order to deliver a full 
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idea: 

“Apparently, people could have more opportunities including growing financial 

resources, more specialised destinations and transport mode choices to choose 

from due to economic growth, spatial transformations and heavy investment in 

public transport and therefore more diversified travel behaviour are observed. In 

the wake of more and more individualised and affluent societal contexts in 

current China, the objective socio-demographic factors, like gender, age and 

education, seem eminently possible to lose weight as determinants of travel 

behaviour while the influences of lifestyles and preferences or, to put it more 

generally, the subjective side of travel behaviour, which has long been neglected 

in transport studies are expected to become more and more prominent.” (p.8) 

Putting it in other words, developing countries such as China and others have been 

embracing a much faster pace of development and changes nowadays, compared to countries 

from the developed world. Hence, not only could the subjective side of lifestyles and preferences 

increasingly affect travel behaviour (Feng et al., 2017), but also the fast-changing urban contexts, 

transport service supplies and operations as well as the policies and measures released by 

governments and transport operators could all heavily influence the environment and 

surrounding conditions that people would rely upon to make any behavioural decisions. As such, 

the effects of socio-economic factors could easily become less significant, or, at least, less likely 

to be observed and captured. 

Nevertheless, we should still be critical to such a view even though the findings from 

several earlier works, and including this thesis, suggested the same fact. First of all, even if 

individuals‟ lifestyles and preferences may play a more important role in determining people‟s 

travel behaviour, what could explain the different lifestyles and preferences may still come back 

to individuals‟ socio-economic characteristics. We have identified such a type of correlation when 

studying the attitudinal influence in Chapter 6, i.e. in the structural equations, several 

socio-economic factors including gender, age, educational level and household income were 

found to be the key determinants that could explain the different attitudes among individuals. 

Another noteworthy fact is that although the aforementioned studies indicate the universal 

insignificance of socio-economic effects on mode choice behaviour, there are other studies 
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suggesting the impact of different socio-economic factors could vary case by case as per their 

findings from mode choice studies in a number of different developing countries including China, 

India, South East Asia and the Arab world (Elias et al., 2015; Le Loo et al., 2015; Munshi, 2016; 

Shen et al., 2016; Ji et al., 2017; Sun et al., 2017; Wu and Hong, 2017). Therefore, even though 

the aforementioned rapid changes and trends of development do widely hold in today‟s 

developing countries and can intuitively explain the insignificant socio-economic influence (Feng 

et al., 2017), a macro-level conclusion suggesting a general difference between the developing 

and the developed world must be treated with caution. The question to what extent travel 

behaviour could be associated with socio-economic factors, is shown by this work and the others 

as context-sensitive indeed; but if there could be any rather common behaviours among people 

in developing countries would require more research; especially given, the still, very limited 

number of mode choice studies in the broad developing world. 

8.3 Contributions and Wider Implications 

First of all, the findings in the thesis can help fulfil several knowledge gaps to the current 

mode choice literature. To our knowledge, it is one of the first works (alongside Campbell et al., 

2016) that disclosed and confirmed the effect that air pollution could have on mode choice 

behaviour. In particular, it quantitatively revealed the extent to which an improvement of air 

quality could be able to boost the demand for using bike-sharing when comparing to the standard 

measures focusing on upgrading the attributes of bike-sharing service. The thesis also provided 

in-depth evidence regarding the sources that the demand for car-sharing would potentially come 

from. Specifically, the results were found to vary substantially by trip distance, i.e. the service 

would be more easily to attract private car users in longer trips, and such a trend could also give 

feedback to a recent finding that the competitiveness of car-sharing would increase with trip 

length (Martinez et al., 2017). Moreover, the study enriched the current literature on how shared 

mobility choices could be correlated with choice makers‟ own attitudes, while also demonstrating 

the importance of taking into account individuals‟ differentiated attitudes in VTTS estimation. 

Furthermore, the work extended the results on habitual mode switching behaviour from few 

earlier binary analyses, i.e. car to non-car and non-car to car (Oakil et al., 2011; Clark et al., 
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2016a), by further revealing the different mode switching behaviour from several different 

non-car mode user groups. Overall, all these fresh findings could help improve our current 

understanding of people‟s mode choice behaviour. 

Next, based upon the detailed policy insights that have already been discussed in each 

of the individual chapters, we would like to explore here any wider implications of the findings 

and insights for the real world. The correlation between air pollution and mode choice behaviour 

could theoretically imply a “virtuous circle” that we proposed earlier (i.e. better air quality could 

result in higher demand for using non-motorized transport, and higher non-motorized transport 

usage could further reduce air pollution). If so, there could be extra societal benefits by 

controlling the air pollutants from industrial and other sectors, as it would indirectly help to 

encourage the demand for using bike-sharing and other non-motorized travel options. In fact, 

what happened in the city of Beijing during the last year inspired us for coming up with such a 

thought. Beijing has been well-known for its extremely severe urban air pollution problem for 

over two decades at least. Interestingly, the air quality drastically improved in 2017 (BBC, 2018; 

Telegraph, 2018), even though some moderate improvements could be seen from a few years 

before. Two incidents also occurred in the same year. Hundreds of factories in Beijing and in 27 

cities nearby were forced to shut down, suspend or curtail production; an unsustainable but 

strongest-ever government action in this kind, in order to quickly eliminate air pollution in the 

capital (BBC, 2018). Meanwhile, Beijing‟s bike-sharing usage exploded to a wild scale in 2017 

since some big bike-sharing companies, such as Mobike and Ofo, entered the city in 2015 

(Campbell, 2018). Although, without scientific proof, we cannot tell to what extent has the air 

pollution reduction helped to boost the bike-sharing usage and to what extent the bike-sharing 

trips has further contributed to air quality improvement, it at least raised an interesting case for 

looking into such a potential “virtuous circle”. Further research would be welcome to provide 

more in-depth insights.  

Car-sharing, at the moment, is not widely used in China and other developing countries, 

but the service is expected to grow rapidly (Dhingra and Stanich, 2014; Carrigan, 2015; Alam, 

2016) and as our findings have shown, it could potentially bring down private car usage, if 

appropriate policy measures could steer from aside. However, the findings could lead to a further 

question that when private car users find car-sharing appealing to travel with, will they scrap or 
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give away their own cars? This is a rather important issue because short-term travel decisions 

sometimes can be conditional on long-term travel decisions (Ben-Akiva and Bierlaire, 1999), 

such as the adverse effect of owning a car on the preference of using car-sharing to make a trip 

(Celsor and Millard-Ball, 2007; Le Vine et al., 2014; Ciari et al., 2016). Hence, as long as car 

ownership remains unchanged, there could be doubts around if the car-sharing supporting 

policies at a tactical level would have stable or long-term effects. Although optimistic results have 

been found regarding car-sharing‟s contribution in helping reduce car ownership (Cervero et al., 

2007; Loose, 2010; Martin and Shaheen, 2010; Martin et al., 2010; Mishra et al., 2015; 

Bondorová and Archer, 2017; Vij, 2017), debates are still there such as people are found 

reluctant to change car ownership while enjoying using shared car services at the same time 

(Kim et al., 2015), or the ownership change is heavily conditional on how frequent people use 

car-sharing (Le Vine and Polak, 2017). Besides, as our research extended the focus and 

discussion to the broad developing world, to what extent these results from developed countries 

could hold or change may still require further investigations. 

Moreover, the car-sharing choice analysis has raised implications for VTTS estimates, 

followed by an ICLV modelling analysis in the subsequent chapter trying to disclose more 

insights on the variations of VTTS among individuals with differentiated personal attitudes. One 

issue is worth to be noticed in those VTTS calculations; most of the mode choice studies that 

wish to obtain value of time related measures normally would adopt a generic parameter across 

all alternatives for estimating travel cost‟s effect on mode choices. This is due to the standard 

way to calculate VTTS would need the measurement of marginal utility of income, and one could 

use its „minus‟ instead, i.e. the coefficient of travel cost in the context of mode choice analysis. 

Hence, a generic travel cost coefficient can serve as a consistent representation of income. 

However, in mode choice studies, an alternative-specific measurement of travel cost‟s effect is 

also a common practice, which was adopted throughout this thesis as it outperformed the 

specification with the use of a generic parameter in all of our models, and the VTTS estimates 

were obtained accordingly. Although, under this way of calculation, VTTS may no longer be 

suitable for project appraisals which need a unitary travel cost (or in turn, income) measurement 

to derive the expected monetised benefits to society, the values calculated using our strategies 

can potentially be more accurate in supporting policy designs at an operational level. Travel 



143 
 

mode operators are normally interested in understanding how much individuals would be willing 

to afford a travel cost increase for each unit of their travel time saved, and hence making 

adjustments on prices and levels of service offered. Both strategies (generic & 

alternative-specific) could generate the results; however, in many cases, a generic travel cost 

parameter could compromise model performance by not revealing its potentially differentiated 

effects on different alternatives. As a result, for transport service operators which are more cared 

about the substitution pattern between the two factors, VTTS that takes into account 

alternative-specific effects of travel cost and time could potentially be of greater values by 

reflecting travellers‟ mode choice behaviour in a more accurate way. In fact, there have been 

practices performing VTTS estimation using alternative-specific travel cost coefficients instead 

(Polydoropoulou et al., 2013; Kamargianni et al., 2015), and more attention could be made in 

future on the evaluation of such a strategy in supporting operational policy designs and hence 

test our hypothesis.  

In the very end, the work attempted to provide complementary insights from another 

perspective on how to reduce private car usage. Since life course events were found being able 

to trigger the habitual mode switches to/from car, it would be worth asking further that if there 

could be other types of events (i.e. not „intrinsic‟ as those directly related to individuals) also 

having such effects, and more importantly, bringing more policy insights. By making hypotheses 

broadly, many substantial changes such as those in land use, in transport network and other built 

environment conditions, in transport service accessibility and even any persistent changes in an 

area‟s general weather conditions, may all possibly result in changes in mode choice habits. In 

fact, if studies can capture some of these „extrinsic‟ events in mode switching analyses, we 

expect there could even be more rooms for policy design. It is especially the case for developing 

countries, where the built environments, transport supplies and a lot other contextual aspects are 

currently in massive and rapid transitions and reforms. As such, interventions could have more 

opportunities to step in and hence pose an influence on people‟s mode choice habits. Moreover, 

when evaluating those „extrinsic‟ events, their potential interactions with, not only the 

socio-economic factors but also the „intrinsic‟ events (i.e. life course events), should be taken 

care of. For example, if a public transit station/stop was opened to use, car users who lived 

nearby might or might not switch to this public transport service, possibly depending on if they 
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had children recently or if there were changes in their employment and income status, etc. More 

research would be needed to shed light on the expected interactions among these events. 

Overall, in this thesis, we aimed to offer some insights on how shared mobility, in 

particular bike-sharing and car-sharing, could potentially affect modal split pattern, which is a key 

component in transport demand forecast. However, a further question we could ask is, when 

shared mobility services continue to expand and are more extensively used in the future, could 

this have an impact on some other aspects, such as trip generation and distribution, in transport 

demand forecast. This is a subject that also lacks research at the moment, although we could 

more or less expect some ways of influence. For example, for the number of trips generated in a 

region, on the one hand shared mobility services could largely enhance the general transport 

accessibility (e.g. through providing shared car/bike stations or service spots, which could further 

connect to public transport), while on the other hand they may help reduce vehicle ownership as 

per some earlier reviewed evidence; both of which are frequently observed trip generation 

factors (Jamal, 2017), although one may have a boosting effect (general accessibility) while the 

other having a suppressing effect (vehicle ownership). Overall, future research could be brought 

in to explore the wider impact of shared mobility, especially when we have a mixed expectation 

such as in the above example, in order to provide clearer evidence and hence to better inform 

the demand forecast. 

8.4 Limitations on Data and Analysis Method 

We have occasionally touched upon some of these technical-level limitations throughout 

the earlier writing of individual chapters. Nevertheless, a summary is provided here for an overall 

discussion of some key limitations associated with the data and analysis methods used to 

conduct this research. 

Regarding the survey design and data collection, several issues have come across, and 

improvements could be considered when future studies come around. SP choice experiment is 

an important source of data for works that are interested in evaluating the effects of new 

alternatives and new attributes which are about to be brought into the market (such as 

car-sharing in our case). A good design of an SP survey could often help improve the efficiency 
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in choice model estimation. We applied the orthogonal design for this case study as it has been a 

robust and widely used approach for many years. However, we have also mentioned that the 

various forms of efficient designs, which are commonly regarded as the state-of-the-art 

techniques nowadays, were not applied in our survey given the constraints we had on project 

cost (i.e. more advanced software such as Ngene is usually needed to handle an efficient 

design). Future SP surveys could evaluate whether or not using efficient designs would be 

feasible on their own practices; especially the so far most advanced Bayesian efficient design, 

which, on the one hand, allows random variation when assigning prior values to the parameters 

to be estimated, but on the other hand, requires much greater computational efforts compared to 

other simpler efficient designs (ChoiceMetrics, 2018). Nevertheless, there are some latest 

arguments coming up as well, questioning how much those efficient designs may benefit a 

choice analysis even comparing to the traditional orthogonal and random designs; flexibility 

could be allowed in choosing the different design techniques as the effects on model estimation 

could vary case by case (Walker et al., 2018). 

Apart from the method of an SP survey design, the elements inside, such as what 

alternatives and what attributes could be included, may also be improved from our current case. 

We noticed the opportunity at a later stage after the data collection. In particular, there are two 

important elements which we missed, but are expected to bring along useful insights if they could 

be captured by similar research in the future. Firstly, we did not include ride-hailing as an 

alternative mode in the SP choice set. At the time of our survey, there were severe debates in 

Taiyuan, alongside many other cities in China, on if the emerging ride-hailing services such as 

DiDi should be banned, after receiving massive protests from taxi drivers. In fact, the ban was 

activated in Taiyuan in just a couple of months (Mo, 2016). Therefore, we excluded ride-hailing 

from our SP survey due to both its small market share back then (the service just started to 

operate) and the uncertainty around how long the service could survive under government 

pressures. However, later, bans had been eventually removed in Chinese cities and the service 

has been developing fast since then. It is therefore crucial for future research to include 

ride-hailing as an alternative, when designing similar SP surveys for developing countries, as 

such a service may significantly affect people‟s preferences on other modes, given its 

continuously increasing demand nowadays. Secondly, in the current SP survey design, we 
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assigned smartphone-based application as an individually available attribute to some transport 

services (e.g. bus, taxi, bike-sharing and car-sharing). These mode-specific attributes were then 

analysed in mode choice models, and the results indicated a generally significant effect of app 

availability on the preferences of different modes. Such a finding may bring in another issue that 

is worth to be considered. As the mode-specific smartphone-based applications could attract 

people to use the corresponding transport services, will a multimodal service app be a valuable 

contribution to the market? This is something that could be studied by SP surveys in the future, 

via including a multimodal service app as a general attribute related to each of the alternative 

modes in a choice set (even for walking, e.g. through providing routing and travel time 

information, as many journey planners do nowadays), to test its effect on mode choice behaviour, 

which could be of greater value to the market. 

Moreover, by thinking of combing the SP data with RP mode choice data, another 

research that could be worth doing in similar types of work is to forecast the modal split changes 

in a real-world context, for example, how the entry of car-sharing would affect the current modal 

split pattern in Taiyuan, which could provide more direct insights to help design the relevant 

demand management policies. Our studies in Chapter 4 and Chapter 5 offered an opportunity for 

doing such an analysis. However, a critical barrier that we have encountered is the availability of 

modal split data at a city level in the case of Taiyuan. Since the data is not open to the public, we 

cannot verify to what extent the collected RP trip diary data would reflect the exact modal split 

pattern in Taiyuan. As a result, it would be highly uncertain if a demand forecast in the RP 

environment would contribute much in supporting policy designs in the real practice. Meanwhile, 

this is also why the earlier analyses relied mostly on the use of SP data as it collected a more 

extensive range of attributes that could be investigated, while only using the RP data as a 

complementary input. 

With regard to the remaining part of the survey, some information was also inadequately 

gathered and more or less posed an influence on the amount of research we can deliver in this 

work. For instance, in Chapter 6, we extracted and studied three attitudinal factors from the 

statements scored by our survey respondents. However, recall in the earlier conclusions that 

perceptions are generally better for policy use as they are mode-specific and could more easily 

react to policy measures altering mode-related attributes (Chorus and Kroesen, 2014; 
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Bahamonde-Birke et al., 2017). Therefore, it would be worth including more perceptual 

statements in future studies to derive more practical implications for policy making. A few 

statements in our survey were designed to capture people‟s perceptions of specific travel modes. 

However, the actual responses we collected from the sample eventually, did not allow the factor 

analysis to formulate any significant perceptual factors that could be studied.  

Another part of our research that suffered from a lack of collected information is the 

retrospective survey. It could be more insightful to study the interaction effects between life 

course events and socio-economic characteristics. As such, it can reveal the extent to which 

different socio-economic groups would react to a particular life course event and hence more 

targeted measures can be introduced to affect their different mode switching behaviour. 

Unfortunately, the number of interacted observations in our sample was too small to support 

such an analysis, though data limitation has appeared to be a rather common challenge among 

today‟s mode switching studies (Oakil et al., 2011; Clark et al., 2016a; Klinger, 2017). Hence, in 

general, any future works that could gather a good number of observations on life course events 

and mode switch occurrences would potentially be of significant contribution to the research in 

this field. 

As for the modelling side, one common challenge in discrete choice modelling when the 

complex model construct is involved, would be the lengthy modal estimation time; possibly taking 

days or even weeks with the standard computation devices that most modellers could have 

access to. This is especially the case in Chapter 6 where we developed an ICLV model with 

three latent variables and a simultaneous model estimation structure. In particular, the model 

also involves the use of a logit kernel as well as a maximum simulated likelihood inference 

approach; both of which are the standard practices and have been widely applied in studies on 

similar topics. However, an alternative way to specify an ICLV model may be considered in the 

future, and that is to develop an ICLV model using a probit-kernel and also performs the 

estimation using a new inference approach, namely maximum approximate composite marginal 

likelihood. Such an approach has been proposed by Bhat and Dubey (2014), where they applied 

both techniques to a typical ICLV framework (i.e. there is only a single nominal variable which is 

the choice set), and was further generalized for broader applications by Bhat (2015) in which the 

techniques were ready to be applied to a framework that jointly handles mixed types of 
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dependent variables (i.e. multiple nominal, ordinal, count and continuous variables). The new 

inference approach they proposed may significantly shorten the model estimation time, since it 

requires no more than bivariate normal cumulative distribution function to be evaluated for 

likelihood maximisation (Bhat, 2011). Meanwhile, the dimensionality of integration in the 

likelihood function is independent to the number of latent variables, which could also help ease 

the workload when importing three or more attitudinal factors to the model (Kamargianni et al., 

2015). Moreover, unlike the logit-kernel, a probit-kernel would offer a more flexible covariance 

structure of error terms without exhibiting the IIA property (i.e. independence of irrelative 

alternatives), which brings it potential to directly account for any inter-alternative correlations, 

instead of the need to introduce a nested model structure as we adopted in this research. It 

should also be pointed out that the maximum approximate composite marginal likelihood 

inference approach usually works more smoothly with a probit-kernel since additional 

computation efforts would be needed if estimating with a logit kernel, which requires a normal 

scale mixture representation for the extreme value error terms (Bhat, 2011). We have attempted 

to apply both techniques and based upon which to perform the estimation of our ICLV model. 

However, it would require relatively complex coding inputs in a unique programming environment 

(GAUSS) and also appeared as less capable in handling the 7-point Likert-scale indicators (as 

we have in our data) when specifying the measurement equations in the latent variable model. 

Eventually, we followed the conventional strategies, even though they cost an extremely long 

computational time during the model estimation. 

8.5 Embracing the Future: A Last Bit of Thinking 

The discussions above have shed light on where to move forward and on some of the 

opportunities for conducting further research; either through exploring a broader range of issues 

or improving the research design per se. However, a final remark we would like to make is 

regarding how this study can fit itself in the future era. In other words, if similar research is carried 

out in the coming decade, what new features and what new implications could possibly be 

attached to the work. 

The era we live in at the moment is flooded with innovations and technological 



149 
 

advancements. As we foresee, there are several aspects from this work, could interact with a 

number of hot topics in today‟s transport sector, such as the use of mobile phone or call detail 

record data to retrieve travel information, the role of virtual reality in SP choice experiment design, 

the emerging concept of Mobility-as-a-Service and the upcoming autonomous vehicle era. 

Instead of the traditional survey approach that actively collects individuals‟ travel 

information, e.g. by filling a trip diary, the passively-generated mobile phone data could 

potentially offer more precision on the information collected and a larger volume of observations 

to be studied (Chen et al., 2016). Although people may question that transport activities are not 

directly revealed by mobile phone data, strategies have been developed to help derive this 

information, e.g. by asking mobile phone users to report and verify their transport activities 

(Matyas and Kamargianni, 2018a) or by systematic data inference approaches (Alexander et al., 

2015; Toole et al., 2015; Jiang et al., 2017). Hence, we do expect the RP data used in future 

mode choice research to come more frequently from mobile phone, rather than the traditional trip 

diary record. As far as we know, China, as a country from the developing world, has planned for 

a massive use of mobile phone data in future travel demand forecast for several big city clusters. 

In order to access the data, an advantage that developing countries possibly have at the moment, 

compared to developed countries, is that data privacy is less concerned when collecting 

individuals‟ mobile phone data. However, this also indicates the need to take care of issues 

around data protection, before mobile phone data can become a standard practice and 

completely replace trip diary surveys. 

The way of how SP data is collected could also vastly change in the future. When people 

are invited to participate in an SP choice experiment, they may not correctly perceive a choice 

situation that is presented to them using descriptive texts. This is why sometimes we could see 

inconsistent choice behaviour lying between SP and RP data. Attempts have been made for 

example by using graphical presentations instead of descriptive texts to visualise a choice 

situation, and as such to help people better understand the choice situation that they are put in 

(e.g. Kamargianni and Polydoropoulou, 2013). However, these strategies can still be difficult in 

handling people‟s misperceptions on elements which never yet exist; this can either be new 

attributes that could be added to the current alternatives, or new alternatives that are about to be 

introduced in the market. Fortunately, given the technology burst, an increasingly popular 
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concept may help solve the issue, and that is called virtual reality. It is not difficult to imagine how 

it looks like when people are making choices in an SP experiment by wearing virtual reality 

devices. In particular, people can now have a visualised and clearer idea on those elements 

which never yet exist, and hence more likely to make a fully informed choice. Recently, such a 

practice has started to be tested and the preliminary results do indicate significant improvements 

in people‟s perceptions, showing a promising future for integrating virtual reality and SP choice 

experiments (Farooq et al., 2018). 

Mobility-as-a-Service has been a widely discussed subject in last years. It offers a model 

that brings together mobility service providers and individual travellers who can now seamlessly 

plan, access and pay for mobility through a single platform (Kamargianni et al., 2018). A core 

product that Mobility-as-a-Service is expected to offer is the different service plans, which bundle 

mobility services in different ways, e.g. there could be different amount of usage of each mobility 

service in different plans, so that customers can choose which one plan to subscribe as per their 

travel needs and preferences (Matyas and Kamargianni, 2018b). In the future, this could imply 

an increasing demand for research on customers‟ mode use preferences, especially the 

preferences towards shared mobility services, which are likely to be the key offerings in a service 

plan. Hence, when the era of Mobility-as-a-Service comes, the results and insights that we 

gained from this work could still be of great use, for example, in helping the design of 

Mobility-as-a-Service plans. 

Besides Mobility-as-a-Service, the fast development of autonomous vehicles could lead 

us to another possibly upcoming era. However, there are conflict views regarding in what ways 

autonomous vehicles would change our current travel behaviour. Although the vehicles can 

certainly be integrated into car-sharing and public transport systems, there are also concerns 

around what if autonomous vehicles made private cars a more appealing travel option (Röhrleef 

et al., 2015). In fact, given such a context, the work we have done in this thesis could potentially 

be of greater values. This is because our topic is about how to make shared mobility services 

more preferred by travellers, in order to pull them away from using private cars. As such, if efforts 

could be made today to persuade more car users to take up shared mobility or even public 

transport service, then over time as the mode choice becomes a habit, we would be more likely 

to embrace an era of autonomous vehicles by having people traveling in automated car-sharing 
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and public transport systems, rather than seeing roads flooded with private automated cars. 

All in all, a discussion around how this study may interact with the above issues is simply 

inspired by seeing the burst of technologies in today‟s world. There could be other issues 

involved as we move forward and see more innovations coming up. 
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APPENDIX A: An Example Questionnaire 

 

 

 

 

 

 

 

Taiyuan Citizens‟ Transport Mode 

Choice Survey 
 

（Anonymous） 

 

 

 

 The questionnaire is suitable for all Taiyuan citizens. 

 The questionnaire has six sections, please follow the instructions. 

 The data will be used for academic purposes only. 
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Section 1: Personal Information 

---------------------------------------------------------------------------------------------------------- --------------------- 

1. Gender: __ 

 

2. Age:   Under 18   18~25   26~35   36~45   46~59   60 and above 

 

3. Which year did you come and settle down in Taiyuan? ____ 

 

4. What is your marital status?   Single   Married 

 

5. How many children do you have? __ 

 

6. What is your education level?  

 High school and below   College   Undergraduate   Graduate and above 

 

7. What is your occupation? 

 Public servant   Enterprise staff   Service personnel   Worker   

 Teacher   Military service   Student   Retired   Farmer   Others 

 

8. Are you doing any part-time jobs?   Yes   No 

 

9. Do you have an occupation where driving is the sole function of the job, please indicate 

(if not, please go to question 10). 

 Bus driver   Taxi driver   Truck driver   

 Emergency or patrol vehicle driver (e.g. ambulance, police car)   

 Service driver (e.g. work for public or private sector)   Delivery vehicle driver 

 

10. Do you hold a driving license?   Yes   No 

If you have a license, do you have a readily available car whenever you want to drive? 

 Yes   No 

 

11. Do you own a Taiyuan public transport card?   Yes   No 

 

12. Do you use a smartphone?   Yes   No 

   If yes, what functions below do you use? (can be multiple) 

    Orientation   Route Planning   Calling Taxi   Checking Real-time Bus Information 

    Checking Real-time Bike Sharing Information 

 

13. Do you consider yourself as capable of cycling given your current health status 

(including any issues due to old age)?   Yes   No 

 

14. Please provide the street names of both your work place address: ________ and your 

home address: ________ 

(It would be used only to assess the accessibility of transport modes.) 
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Section 2: Household Information 

-------------------------------------------------------------------------------------------------- ----------------------------- 

“Household” refers to the family that currently you live in for daily life 

 

1. What is your house tenure type? 

 Owned outright   Owned with mortgage   Rented   Other (please specify) ________ 

 

2. What is your monthly household income (after tax)? 

(As with all your replies, your response will be treated in confidence. This question is asked only 

for studying income effect on mode choice.) 

 Under ￥3,000   ￥3,000 -￥6,000   ￥6,000 -￥9,000   ￥9,000 -￥15,000   

￥15,000 -￥30,000   Over ￥30,000 

 

3. Which of the below transport tools are owned by your household at the moment? (can 

be multiple) 

 Car (If yes, number of cars: ___) 

 Electric bike (If yes, number of electric bikes: ___) 

 Bike (If yes, number of bikes: ___) 

 Other (please specify both tool type and number) ________ 

 

4. Follow the question above, please fill in the form below if your household owns one or 

more cars. 

 Fuel type Fuel 

cost per 

month 

Overnight parking 

place 

Parking cost per 

month (excluding 

overnight) 

Car age Current 

odometer 

number 

Engine 

displace- 

ment 

Car 1  93# 

 97# 

 Diesel 

 Gas 

 Others 

 

 

 

 

___rmb 

Charged car park 

(￥__ per month) 

Charged street 

parking (￥__ per 

month) 

Free parking 

 

 

 

 

_______rmb 

 

 

 

 

_______year 

 

 

 

 

_____km 

 Under 1 

 1.0-1.2 

 1.3-1.5 

 1.6-2.0 

 2.1-3.0 

 Over 3.0 

Car 2  93# 

 97# 

 Diesel 

 Gas 

 Others 

 

 

 

 

___rmb 

Charged car park 

(￥__ per month) 

Charged street 

parking (￥__ per 

month) 

Free parking 

 

 

 

 

_______rmb 

 

 

 

 

_______year 

 

 

 

 

_____km 

 Under 1 

 1.0-1.2 

 1.3-1.5 

 1.6-2.0 

 2.1-3.0 

 Over 3.0 

Car 3  93# 

 97# 

 Diesel 

 Gas 

 Others 

 

 

 

 

___rmb 

Charged car park 

(￥__ per month) 

Charged street 

parking (￥__ per 

month) 

Free parking 

 

 

 

 

_______rmb 

 

 

 

 

_______year 

 

 

 

 

_____km 

 Under 1 

 1.0-1.2 

 1.3-1.5 

 1.6-2.0 

 2.1-3.0 

 Over 3.0 
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Section 3: Trip Dairy 

-------------------------------------------------------------------------------------------------- ----------------------------- 

1. Please read the example below, then recall and fill in the form with your trip yesterday if 

it is a weekday (if not, please recall the last weekday). 

 

Trip 

purpose 

Stage Departure 

time (24h) 

Origin Destination Transport 

mode 

Duration 

(min) 

Travel cost 

(￥, for taxi, 

bus, bike 

share) 

work 1 7:00 home bus stop walk 5 0 

2 7:10 bus stop bus stop bus 25 1 

3 7:35 bus stop work place walk 1 0 

4       

lunch 1 12:00 work place bike station walk 1 0 

2 12:01 bike station bike station bike share 10 0 

3 12:11 bike station restaurant walk 2 0 

4       

work 1 13:20 restaurant bike station walk 2 0 

2 13:22 bike station bike station bike share 10 0 

3 13:32 bike station work place walk 1 0 

4       

dinner 1 18:00 work place restaurant taxi 15 16 

2       

3       

4       

return 

home 

1 20:30 restaurant home car 

passenger 

20 0 

2       

3       

4       

 

Now please fill in the form with your own trip dairy: 

Trip 

purpose 

Stage Departure 

time (24h) 

Origin Destination Transport 

mode 

Duration 

(min) 

Travel cost 

(￥, for taxi, 

bus, bike 

share) 

 1       

2       

3       

4       

 1       

2       
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3       

4       

 1       

2       

3       

4       

 1       

2       

3       

4       

 1       

2       

3       

4       

 

2. Do you consider your trip yesterday typical (i.e. occurs in most days in a week)? 

 Yes (if yes, how many days of a week __ / 7)   No 

 

3. How long away on foot is the nearest bus stop from: your home __ min & your work 

place: ___min 

 

4. How long away on foot is the nearest bike sharing docking station from: your home __ 

min & your work place: ___min 

 

5. How many times in average do you use bus (one-way trips) a week? __ times 

 

6. How many times in average do you use your own bicycle (one-way trips) a week? __ 

times 

 

7. How many times in average do you use bike sharing (one-way trips) a week? __ times 

 

8. What difficulties have you encountered while using Taiyuan bike sharing? (can be 

multiple) 

 No bikes available at station 

 Cannot return bike at station due to full capacity 

 Cannot find a station or station too far away when looking for a ride 

 Cannot find a station or station too far away when looking for a return 

 Forget to bring the public transport card 

 Lose the public transport card 

 Device default at station 

 Bike component broken 

 A single card cannot be used by multiple people at the same time 

 Others______________________ 
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Section 4: Attitudes and Perceptions 

-------------------------------------------------------------------------------------------------- ----------------------------- 

Please indicate the level of your agreement with each of the statements below 

(1=Completely disagree, 2=Strongly disagree, 3=Disagree, 4=Neutral, 5=Agree, 6=Strongly 

agree, 7=Completely agree). 

 

Part 1: Environment & Air pollution 

 1 2 3 4 5 6 7 

I am aware about the climate change issues.        

I am worried about the climate change issues.        

I am worried about air pollution in Taiyuan.        

I am willing to use low-carbon transport modes for daily 

trips. 

       

I am willing to reduce private car usage to help to alleviate 

congestion. 

       

I am willing to persuade my family and friends to use 

low-carbon transport modes more often. 

       

Congestion charging zones is a promising measure for 

reducing congestion. 

       

Stricter policies are needed to alleviate congestion and 

improve air quality. 

       

 

Part 2: Bus 

 1 2 3 4 5 6 7 

I am satisfied with the current bus ticket price.         

I am satisfied with the current distance between bus stops.        

Bus is a convenient transport mode for me.        

I believe a bus system which entirely consists of electric 

buses will significantly improve Taiyuan‟s air quality. 

       

I consciously use the bus over a private vehicle to protect 

the environment. 

       

I avoid using bus as it is congested.        

More money should be invested on bus transport network to 

improve service standard. 

       

I believe that better integration between bus stops and 

bike-sharing stations is needed. 

       

Most of my family members use buses for their primary trips 

(i.e. work, education). 

       

Most of my close friends use buses for their primary trips 

(i.e. work, education). 

       

When more close friends use buses, it would make buses        
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more attractive to me. 

 

Part 3: Bicycles and Bike Sharing 

 1 2 3 4 5 6 7 

I am satisfied with the current bike sharing price.         

I am satisfied with the current distance between bike 

sharing stations. 

       

I believe cycling is a good physical exercise.        

I believe the current traffic rule is in favour of cyclist.        

I believe the current status of public security is in favour of 

cyclist. 

       

I feel unsafe while cycling anyway.        

I always use bike or walk for short distance trips.        

I avoid cycling when the air pollution level is high.        

Most of my family members use bicycles for their primary 

trips (i.e. work, education). 

       

Most of my close friends use bicycles for their primary trips 

(i.e. work, education). 

       

When more close friends use bike sharing, it would make 

bike sharing more attractive to me. 

       

 

Part 4: Car Sharing 

(Car sharing is similar to the current bike sharing; users can pick up a car at fixed stations or any 

parking spots on road; users will use mobile app to book, locate, unlock and start the vehicle and 

make payment.) 

 1 2 3 4 5 6 7 

Car-sharing would help to reduce congestion.        

I believe car-sharing will become a popular transport option 

in the future. 

       

Car sharing could make me reduce private car usage.        

Car sharing could make me reconsider whether or not to 

purchase a private car. 

       

Car is a sign of prestige for me.        

I am satisfied with my current main transport mode.        

I am interested to know more information when there is a 

new transport mode available. 
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Section 5: A Retrospective Survey 

-------------------------------------------------------------------------------------------------- -----------------------------

Recall the year 2006, 2008, 2010 and 2012, then please fill in the form below. 

 2006 2008 2010 2012 

Marital status    Single  

   Married 

   Single  

   Married 

   Single  

   Married 

   Single  

   Married 

Occupation 

 

 Full-time 

 Self-employ 

 Student 

 Retired 

 Unemployed 

 Full-time 

 Self-employ 

 Student 

 Retired 

 Unemployed 

 Full-time 

 Self-employ 

 Student 

 Retired 

 Unemployed 

 Full-time 

 Self-employ 

 Student 

 Retired 

 Unemployed 

Number of children ________ ________ ________ ________ 

Work/education district  Yingze 

 Xinghualing 

 Wanbailin 

 Jiancaoping 

 Jinyuan 

 Xiaodian 

 Other_____ 

 Yingze 

 Xinghualing 

 Wanbailin 

 Jiancaoping 

 Jinyuan 

 Xiaodian 

 Other_____ 

 Yingze 

 Xinghualing 

 Wanbailin 

 Jiancaoping 

 Jinyuan 

 Xiaodian 

 Other_____ 

 Yingze 

 Xinghualing 

 Wanbailin 

 Jiancaoping 

 Jinyuan 

 Xiaodian 

 Other_____ 

Home district  Yingze 

 Xinghualing 

 wanbailin 

 Jiancaoping 

 Jinyuan 

 Xiaodian 

 Other_____ 

 Yingze 

 Xinghualing 

 wanbailin 

 Jiancaoping 

 Jinyuan 

 Xiaodian 

 Other_____ 

 Yingze 

 Xinghualing 

 wanbailin 

 Jiancaoping 

 Jinyuan 

 Xiaodian 

 Other_____ 

 Yingze 

 Xinghualing 

 wanbailin 

 Jiancaoping 

 Jinyuan 

 Xiaodian 

 Other_____ 

Monthly after-tax household 

income (“household” refers to 

the family that you lived in for 

daily life) 

 Under 3000 

 3000-6000 

 6000-9000 

 9000-15000 

 15000-30000 

 Over 30000 

 Under 3000 

 3000-6000 

 6000-9000 

 9000-15000 

 15000-30000 

 Over 30000 

 Under 3000 

 3000-6000 

 6000-9000 

 9000-15000 

 15000-30000 

 Over 30000 

 Under 3000 

 3000-6000 

 6000-9000 

 9000-15000 

 15000-30000 

 Over 30000 

No. of household owned car ________ ________ ________ ________ 

No. of household owned e-bike ________ ________ ________ ________ 

No. of household owned bike ________ ________ ________ ________ 

What transport mode did you 

normally use for your trip to 

work/education? 

 Car 

 Bus 

 E-bike 

 Bike 

 Walk 

 Taxi 

 Car 

 Bus 

 E-bike 

 Bike 

 Walk 

 Taxi 

 Car 

 Bus 

 E-bike 

 Bike 

 Walk 

 Taxi 

 Car 

 Bus 

 E-bike 

 Bike 

 Walk 

 Taxi 

Duration of one-way trip to 

work/education? 

 

________min 

 

________min 

 

________min 

 

________min 
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Section 6: Scenarios 

-------------------------------------------------------------------------------------------------- ----------------------------- 

Please select the transport mode that you would use to travel in each of the scenarios 

below (single choice & tick in the bottom row in each scenario). 

(Car sharing is similar to the current bike sharing; users can pick up a car at fixed stations or any 

parking spots on road; users will use mobile app to book, locate, unlock and start the vehicle and 

make payment.) 

 

Scenario 1:  Travel within 2km, to work/education, sunny day, 10°C, with light pollution 

 
Car E-bike Bus Car share 

Bike 

share 

Walk 

Drive 3 min Ride 5 min Drive 5 

min 

Drive 7 

min 

Ride 8 min Walk 20 

min 

Fuel ￥1.2  Ticket ￥1 Cost ￥3 Cost ￥0  

Easy to park 

car 

     

Parking 

￥5/h 

     

  Walk 5 min 

to station 

Walk 5 min 

to station 

Walk 2 min 

to station 

 

  Every 2 

min 

   

  With app With app With app  

Your choice 

(please tick) 

      

 

Scenario 2:  Travel within 2km, to shopping, snowy day, -10°C, with excellent air quality 

 Car E-bike Bus Car share Bike share Walk 

Drive 7 min Ride 5 min Drive 12 

min 

Drive 7 

min 

Ride 8 min Walk 15 

min 

Fuel ￥1.6  Ticket ￥1 Cost ￥1 Cost ￥1  

Hard to park 

car 

     

Parking 

￥5/h 

     

  Walk 5 min 

to station 

Walk 10 

min to 

station 

Walk 5 min 

to station 

 

  Every 2 

min 

   

  With app With app Without 

app 

 

Your choice 

(please tick) 
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Scenario 3:  Travel within 2-5km, to leisure, sunny day, 20°C, with excellent air quality 

 
Car E-bike Bus Taxi Car share 

Bike 

share 

Drive 15 min Ride 20 

min 

Drive 20 

min 

Drive 10 

min 

Drive 20 

min 

Ride 30 

min 

Fuel ￥3  Ticket ￥1 Cost ￥18 Cost ￥8 Cost ￥0 

Hard to park 

car 

     

Parking 

￥5/h 

     

  Walk 10 

min to 

station 

 Walk 15 

min to 

station 

Walk 2 min 

to station 

  Every 5 

min 

   

  Without 

app 

With app With app With app 

Your choice 

(please tick) 

      

 

Scenario 4:  Travel within 2-5km, to work/education, sunny day, 5°C, with terrible pollution 

 Car E-bike Bus Taxi Car share Bike share 

Drive 25 min Ride 20 

min 

Drive 30 

min 

Drive 25 

min 

Drive 25 

min 

Ride 30 

min 

Fuel ￥3.5  Ticket ￥1 Cost ￥30 Cost ￥10 Cost ￥0 

Hard to park 

car 

     

Parking 

￥8/h 

     

  Walk 5 min 

to station 

 Walk 5 min 

to station 

Walk 2 min 

to station 

  Every 5 

min 

   

  Without 

app 

With app With app Without 

app 

Your choice 

(please tick) 
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Scenario 5:  Travel more than 5km, to work/education, rainy day, 10°C, with terrible pollution 

 Car E-bike Bus Taxi Car share Bike share 

Drive 40 min Ride 60 

min 

Drive 60 

min 

Drive 30 

min 

Drive 40 

min 

Ride 90 

min 

Fuel ￥18  Ticke￥0.5 Cost ￥40 Cost ￥15 Cost ￥2 

Easy to park 

car 

     

Parking 

￥5/h 

     

  Walk 5 min 

to station 

 Walk 5 min 

to station 

Walk 5 min 

to station 

  Every 2 

min 

   

  Without 

app 

Without 

app 

Without 

app 

Without 

app 

Your choice 

(please tick) 

      

 

Scenario 6:  Travel more than 5km, to work/education, rainy day, 30°C, with good air quality 

 
Car E-bike Bus Taxi Car share 

Bike 

share 

Drive 20 min Ride 20 

min 

Drive 30 

min 

Drive 30 

min 

Drive 25 

min 

Ride 60 

min 

Fuel ￥5  Ticket ￥2 Cost ￥25 Cost ￥20 Cost￥1.5 

Easy to park 

car 

     

Parking 

￥2/h 

     

  Walk 10 

min to 

station 

 Walk 5 min 

to station 

Walk 2 min 

to station 

  Every 5 

min 

   

  With app Without 

app 

With app With app 

Your choice 

(please tick) 

      

 

The survey ends here. We will held one more survey in the winter (a very short survey, 

only contains the trip diary part) to compare any mode choice differences of Taiyuan 

citizens between summer and winter. If you wish to help us with the short winter survey, 

please leave your name (optional) for further contact. Your name (optional): __________，

we appreciate your support. 
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APPENDIX B: Studying Air Pollution’s Impact on Mode 

Choice Behaviour via A Seasonality Analysis
32

 

The link between air pollution and transport sector has been widely recognized for a long 

period of time (Colvile et al., 2001). Urban transport has become an increasingly important 

source of air pollution due to the surge in the use of motorized vehicles, especially during the last 

20 years in developing countries after the rapid economic growth and urbanization (Lefèvre, 

2009; Vasconcellos, 2013; Cheng et al., 2015). Today, developing countries are still suffering 

significantly from severe and frequent air pollution problems. The traditional approach to tackle 

the problem is through improving fuel products and vehicle technologies to directly cut down 

pollutants (Faiz and Sturm, 2000; Gwilliam et al., 2004; Guttikunda and Mohan, 2014). Besides, 

reducing motorized vehicle usage via promoting non-motorized transport modes has also 

become a popular solution nowadays in developing countries (Hidalgo and Huizenga, 2013). In 

fact, there are a large number of researches involving mode choice behaviour analysis, which 

have effectively supported the policy making in improving the demand for non-motorized 

transport. 

Nevertheless, current policies on improving air quality and encouraging the take-up of 

non-motorized transport are often separated. In other words, it has still been a “one-way 

approach” that non-motorized transport is seen as a solution to improve air quality. However, 

whether better air quality could improve the willingness to use non-motorized transport remains 

veiled. So far, the impact of air pollution on mode choice behaviour is rarely explored due to most 

of the existing mode choice studies are based on the cases in developed countries, which in 

general have relatively limited air pollution concerns. However, capturing air pollution‟s impact 

has great implication for developing countries. If evidence can be found to unveil the impact, the 

current “one-way approach” would become an old fashion and instead a “virtuous circle” could 

be created (i.e. better air quality could result in higher demand for non-motorized transport, and 

more non-motorized transport usage could further reduce air pollution). As a result, developing 

countries may be more incentivized to work on air pollution reduction from other sources (e.g. 

                                                             
32

 See a published version at: https://doi.org/10.3141/2634-15 
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industrial, residential and business sectors) in order to exploit the extra gains in urban transport. 

Moreover, air quality in developing countries was recently found to have significant 

seasonal differences (Jiang et al., 2014; Rich, 2015). For instance in China, through a study 

involving 110 cities, air pollution was found to be smallest in summer and most severe in winter 

due to winter‟s low-frequency rainfall and high energy consumption (Jiang et al., 2014). Thus, it 

is possible to capture the impact of air pollution on mode choice behaviour via a seasonality 

analysis. Besides, it has been discovered that factors affecting mode choice behaviour could 

have different impacts across seasons when natural-environment conditions were different 

(Kamargianni, 2016). Therefore, in this work, a seasonality analysis will not only help revealing 

air pollution‟s impact, but will also provide in-depth understanding of other factors‟ impact 

changes across different natural-environment conditions. 

Overall, this research aims to provide policy makers with the evidence of air pollution‟s 

impact on urban transport mode choice behaviour; in particular to find out whether 

non-motorized transport (i.e. private biking, walk, and bike-sharing) will be more popular when 

having better air quality. Meanwhile, other factors such as trip and socio-economic 

characteristics are also covered in the analysis. RP travel behaviour data are collected in two 

seasons and two discrete mode choice models are developed respectively. 

Two rounds of travel behaviour survey were launched in the case study city Taiyuan, one 

in summer 2015 and one in winter 2015-2016. The goal is to study how the mode choice 

behaviour of the same individual changes under different air quality levels. Eventually, 492 

Taiyuan citizens provided valid one-day travel information in both rounds. The city has dramatic 

natural-environment differences in summer and winter in terms of both weather condition and air 

quality. Usually, there is moderate weather as well as clean air in summer comparing with 

freezing temperature and poor air quality in winter. Therefore, the case is not only suitable to 

study air pollution‟s impact, but also offers a clear difference in natural-environment condition for 

revealing the impact changes of trip and socio-economic characteristics. In addition, Taiyuan has 

one of the most successful bike-sharing schemes in China (Song, 2015), giving the city great 

potential to promote non-motorized transport. 

This research will inspire the policy making in air pollution reduction by exploring a new 

path using air pollution‟s reciprocal effect on travel behavioural change. Moreover, the 
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seasonality analysis will offer in-depth understanding of factors‟ impact changes when having 

different natural-environment conditions. Furthermore, since the case study is based on a 

Chinese city, this research will particularly be a useful reference to policy makers from China as 

well as other developing countries. 

For the remainder of this work, section B.1 describes the data collection and 

characteristics of the data. Section B.2 explains how the models are specified followed by an 

interpretation on the model estimation results in section B.3. Finally, section B.4 concludes the 

research. 

B.1 Data 

Two rounds of questionnaire survey were conducted, one in summer (August and 

September 2015) and one in winter (December, January, and February 2015-2016). Among the 

aforementioned 9,499 individuals who provided valid questionnaire responses in the summer 

survey, 706 individuals agreed to continue the participation in the winter survey. In winter 2016, 

the 706 individuals were asked to fill a paper questionnaire which only contains the trip diary 

survey and eventually 492 of them provided valid responses. 

This work uses only the RP travel behaviour data collected from the same 492 

individuals in both seasons. As such, any seasonality effects of the same factors on mode choice 

behaviour can be more clearly revealed. By comparing this smaller sample with the main sample 

of 9,499 individuals (Table B-1), it is found that the most key characteristics of the smaller sample 

are close to the main; there are only a few notable differences. More females are included in the 

smaller sample. More young professionals (i.e. aged between 26 and 35) are captured while the 

percentage of elder professionals (i.e. aged between 36 and 45) decreases. There are also 

larger proportions of driving license and public transport card holders, as well as those having 

private cars, electric bikes and bikes in households. Besides, all other indicators are almost the 

same between the two samples. Meanwhile, both samples show a high possession rate of public 

transport card meaning that most of the sampled individuals can access bus and bike-sharing 

services “barrier-free”. Almost all respondents state that they are healthy enough to cycle which 

ensures that bike and bike-sharing can be feasible choices in the survey. Finally, the 
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occupational status (i.e. nearly 80% are fixed-job individuals) shows that both samples have 

successfully captured regular commuters whose mode choice behaviours are the mostly 

concerned in urban planning and policy-making. Overall, the smaller sample with 492 individuals 

is valid for data analysis without incurring significant bias. 

In addition to the questionnaire survey, daily air pollution and weather condition data for 

the corresponding travel days in the summer and winter surveys were collected from China‟s 

Ministry of Environment Protection (Ministry of Environment Protection, 2016) and Shanxi 

Meteorology (Shanxi Meteorology, 2016). Air pollution is measured by a continuous variable, air 

quality index (AQI), the primary air pollution indicator used in China. Weather conditions are 

measured by a continuous variable °C temperature and three dummy variables showing if the 

day is rainy, snowy or neither. Moreover, as there is one uniform AQI for a single day, it will be 

identically applied to all trip observations on the same day. However, temperature can change 

significantly during different periods in a day. Therefore, to more accurately measure the 

temperature impact on mode choice behaviour, different temperatures will be applied to different 

trip observations according to their departure time. In particular, by considering Taiyuan‟s daily 

temperature change pattern, we assume trips departing during 11 am to 4 pm are associated 

with the maximum daily temperature, trips from 8 pm to 7 am in the next day are associated with 

the minimum daily temperature, and the average temperature is applied to the trips departing in 

the rest periods. 

At last, the key survey statistics from the two seasons are outlined in Table B-2. The 492 

individuals conducted 1,797 trips in summer and 1,722 trips in winter. As expected, the summer 

trips are associated with better air quality and higher temperature than the winter trips. In total, 

eight alternative modes are identified. There are notable differences between the modal split 

patterns in the two seasons. From summer to winter, there is an increase in the market share of 

more “protected” modes (i.e. car and bus) and a decrease in the market share of more “exposed” 

modes (i.e. cycling and walk). Although the observed choice behaviour changes correspond to 

the hypothesis that the same factors may affect mode choice behaviour differently under different 

natural-environment conditions, modelling analysis is still needed to provide more robust 

evidence. 
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Table B-1 Sample Descriptive Statistics 

  N=9,499 N=492 

Gender Male 52% 48% 

Female 48% 52% 

Age under 18 7% 9% 

18-25 25% 27% 

26-35 32% 35% 

36-45 24% 19% 

46-59 11% 9% 

60 or above 1% 1% 

Marital status Single 40% 39% 

Married 60% 61% 

Educational level High school or below 27% 28% 

College 32% 31% 

Undergraduate 35% 36% 

Graduate and above 6% 5% 

Occupational status Fixed job 76% 78% 

Student 17% 14% 

Retired 1% 1% 

Self-employed or unemployed 6% 7% 

Driving license  Percentage of possession 52% 61% 

Public transport card  Percentage of possession 79% 83% 

Cycling capability Health enough to cycle 94% 93% 

Household monthly 

income (after tax) 

Under ￥3000 30% 29% 

￥3000 -￥6000 39% 40% 

￥6000 -￥9000 18% 19% 

￥9000 -￥15000 9% 7% 

￥15000 -￥30000 3% 4% 

Over ￥30000 1% 1% 
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Household car  Percentage of possession 48% 59% 

Household electric bike  Percentage of possession 42% 48% 

Household bike  Percentage of possession 51% 58% 

 

Table B-2 Key Statistics from Summer and Winter Surveys 

  Summer Winter 

Number of trip observations: 1,797 1,722 

AQI split Excellent quality (0-50) 28% 0 

Good quality (51-100) 67% 0 

Light pollution (101-150) 5% 30% 

Medium pollution (151-200) 0 11% 

Heavy pollution (201-300) 0 59% 

Terrible pollution (above 300) 0 0 

Min. AQI  34 115 

Max. AQI  139 285 

Min. temperature  9°C -10°C 

Max. temperature  32°C 16°C 

Weather split Rain 62% 0 

Snow 0 2% 

Without rain or snow 38% 98% 

Mode choice split Car driver 15% 17% 

Car passenger 9% 18% 

Bus 18% 22% 

Electric bike 8% 7% 

Bike 7% 4% 

Bike-share 6% 3% 

Walk 35% 27% 

Taxi 2% 2% 
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B.2 Modelling Framework 

Two MNL mode choice models are developed based on the data collected in the two 

different seasons. MNL model is widely used to study discrete choice behaviour (Ben-Akiva and 

Lerman, 1985). Random utility theory underpins the model such that a choice made by an 

individual is based on his/her perceived utility generated by that choice and the utility associated 

with each choice is determined by its attributes, choice maker‟s characteristics, and other 

explanatory variables. 

Since one of the objectives is to capture if factors‟ impacts could be different when 

having different natural-environment conditions, the two MNL models are assigned the same 

explanatory variables in order to compare the results (see Equations 20 to 27). For instance, air 

pollution and temperature impacts are taken into account; however, rain and snow are excluded 

as they are only relevant to one season. 

Going to work and going to education as the two main trip purposes are selected. 

Meanwhile, two similar indicators, the occupational status in fixed job and in student are 

excluded in order to avoid collinearity between explanatory variables. Moreover, trip purpose is 

chosen instead of occupational status is due to the former is more directly related to mode 

choice behaviour. 

Travel time and travel cost are the key attributes of transport modes, and in turn could be 

important factors considered by travellers when making mode choice decisions. However, each 

of the observed trips in the survey only contains the actual travel time and travel cost of the 

chosen mode without telling the information of alternative modes. Therefore, for each observed 

trip in summer and winter, the authors calculated the travel time and travel cost for each 

alternative transport mode option other than the chosen one. The calculation uses the collected 

trip diary information and data provided by Taiyuan local authorities as the inputs (e.g. time of the 

day, mode speed, trip distance, fuel consumption, fuel cost, bus and taxi prices etc.). Due to 

space limitation, the detailed calculation procedures are not elaborated. Overall, travel time is 

included as an explanatory variable in the models in all eight utility functions, while travel cost is 

only applied to car driver, bus and taxi since the rest alternatives are either free to use (i.e. car 
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passenger, bike and walk) or the cost is too small to have an impact (i.e. electric bike and 

bike-sharing). 

Three categorical socio-economic variables are also considered for their impacts on 

mode choice behaviour; including gender, age, and household income (see Table B-1). However, 

when testing the impacts of age and income, the pilot results show each of their subgroups has 

minor effect on mode choices. As a result, the subgroups of age and income are merged into two 

general groups (i.e. lower half and higher half) in order to more clearly demonstrate their 

impacts. 

Finally, availability conditions to the transport mode alternatives should be imposed for 

each individual. These conditions will increase model validity by helping explain the 

circumstances such as someone did not choose an alternative mode for an observed trip could 

be due to the fact that the mode was an unavailable option. As a result, the availability conditions 

are specified as follows: 

 “Car driver” is available to the individuals who have driving licenses and at least one 

car in their households; 

 “Car passenger” is available to all individuals; 

 “Bus” is available to all individuals; 

 “Electric bike” is available to the individuals who have at least one electric bike in 

their households; 

 “Bike” is available to the individuals who are healthy enough to cycle and have at 

least one bike in their households; 

 “Bike-sharing” is available to the individuals who are healthy enough to cycle; 

 “Walk” is available to all individuals; 

 “Taxi” is available to all individuals. 

In addition, the model specification requires that the parameters of a variable must be 

normalized to the base value (i.e. zero) in at least one of the utility functions. Therefore, it must 

be noticed that the resulted impact signs of the rest parameters will not indicate the absolute 

impact directions of the variable on mode choice utilities. Instead, the signs will only be relative to 

the chosen normalized term. Hence, a lot of model specifications have been tested to normalize 

the parameter that is closest to zero for each variable in order to yield the most accurate results. 
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1 1 1

1

1 1

* * *

* * *

* *

cardri cardri work tem pol

cardritt cardritc male

age inc cardri

U WORK TEM POLLUTION

CARDRITT CARDRITC MALE

AGELOW INCLOW

   

  

  

   

  

  

                (20) 

2 2

2 2

* * *

* *

carpass carpass edu carpasstt male

age inc carpass

U EDU CARPASSTT MALE

AGELOW INCLOW

   

  

   

  
           (21) 

3 3 3 3

3 3

3

* * * *

* * * *

*

bus bus work edu tem pol

bustt bustc male age

inc bus

U WORK EDU TEM POLLUTION

BUSTT BUSTC MALE AGELOW

INCLOW

    

   

 

    

   

 

      (22) 

4 4 4

4 4 4

* * * *

* * *

ebike ebike work tem pol ebikett

male age inc ebike

U WORK TEM POLLUTION EBIKETT

MALE AGELOW INCLOW

    

   

    

   
   (23) 

5 5 5 5

5 5 5

* * * *

* * * *

bike bike work edu tem pol

bikett male age inc bike

U WORK EDU TEM POLLUTION

BIKETT MALE AGELOW INCLOW

    

    

    

    
  (24) 

6 6 6 6

6 6

6

* * * *

* * *

*

bikesh bikesh work edu tem pol

bikeshtt male age

inc bikesh

U WORK EDU TEM POLLUTION

BIKESHTT MALE AGELOW

INCLOW

    

  

 

    

  

 

  (25) 

7 7 7 7

7 7 7

* * * *

* * * *

walk walk work edu tem pol

walktt male age inc walk

U WORK EDU TEM POLLUTION

WALKTT MALE AGELOW INCLOW

    

    

    

    
 

(26) 

8 8 8* * * *

*

taxi work tem pol taxitt

taxitc taxi

U WORK TEM POLLUTION TAXITT

TAXITC

   

 

   

 
             (27) 

Where: 

WORK = 1 if trip purpose is work-related, 0 if otherwise; 

EDU = 1 if trip purpose is education-related, 0 if otherwise; 

TEM = °C temperature (continuous); 

POLLUTION = air quality index (continuous); 

CARDRITT = travel time by car driver (in min); 

CARPASSTT = travel time by car passenger (in min); 

BUSTT = travel time by bus (in min); 

EBIKETT = travel time by electric bike (in min); 

BIKETT = travel time by bike (in min); 

BIKESHTT = travel time by bike-sharing (in min); 
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WALKTT = travel time by walk (in min); 

TAXITT = travel time by taxi (in min); 

CARDRITC = travel cost by car driver (in ￥); 

BUSTC = travel cost by bus (in ￥); 

TAXITC = travel cost by taxi (in ￥); 

MALE = 1 if gender is male, 0 if female; 

AGELOW = 1 if age is under or equal to 35, 0 if above 35 

INCLOW = 1 if household monthly income is under or equal to ￥9000, 0 if more than

￥9000; 

, , , , , , , = the error components i.i.d. Extreme 

Value. 

B.3 Results 

Table B-3 presents the model estimation results for summer and winter observations. 

The differences between the results in the two seasons are specifically identified. It is expected 

from earlier research that an increase in air pollution level could discourage the use of more 

“exposed” modes, for example, all cycling-related modes and walk, and encourage the take-up 

of more “protected” modes such as car, bus, and taxi (Li and Kamargianni, 2016).  

On the one hand, the winter results are in line with such earlier findings. It is observed 

with high significance that bike, bike-sharing, and walk are not preferred when air pollution level 

increases; instead travellers will switch to car, bus, taxi and electric bike. The only different 

finding is the choice of electric bike, which is positively correlated with air pollution level in the 

winter results and however found a negative correlation in the earlier research. The phenomenon 

could possibly be explained by the commonly observed inconsistent behaviour between RP 

observations and SP experimental results (Ben-Akiva and Lerman, 1985; Louviere et al., 2003), 

such that a traveller may still have to use the privately owned electric bike in a polluting day in 

real life though this may not be a preferred choice in a hypothesized polluting scenario.  

On the other hand, given much better air quality, the summer model shows more 

disordered results in terms of air pollution‟s impact. For instance, the three non-motorized modes 

cardri carpass
bus ebike bike bikesh walk taxi
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are even found to have inconsistent impact signs (i.e. air pollution negatively correlated with walk 

but positively correlated with bike and bike-sharing). The results indicate that air pollution 

increases the perceived utilities of the cycling modes from a modelling perspective. However, the 

main cause is in fact that when the general air quality is good in summer, a traveller may be 

insensitive to a change in air pollution statistics and therefore a cycling decision can still be made 

even if air quality degrades from “perfect” to “very good”. In other words, air pollution now 

becomes a less important concern comparing to other factors. Overall, the results from the two 

seasonal models imply that severe air pollution can significantly discourage the usage of all 

non-motorized transport modes (bike, bike-sharing, and walk); however, when air pollution 

becomes moderate, a change in air pollution level does not have a significant impact on mode 

choice behaviour. 

Temperature is the other natural-environment factor studied in this research besides air 

pollution. Similarly, the seasonal comparison reveals that mode choices will be affected 

differently when having different temperature levels. The summer results show that an increase 

in temperature will make a variety of modes relatively popular when comparing to taxi, which is a 

strictly less preferred option under higher temperature in summer. This may be due to the strong 

local perception that it is uncertain to receive adequate air condition treatment from taxi drivers. 

In winter, a temperature increase is positively associated with the choices towards bike-sharing, 

electric bike and car and negatively associated with walk, bike, bus and taxi. Such relatively 

abnormal finding may be a special phenomenon of the case study; nevertheless, more local 

evidence is needed to better interpret this result. 

Two different trip purposes are studied. For travellers going to work, the results in both 

seasons show that when the parameter of car passenger choice is normalized to zero, taxi is the 

only mode choice that will not be chosen and all other alternative modes are found to have 

positive correlations with work-related purposes. Meanwhile, car passenger, bus, bike, 

bike-sharing, and walk are all the potential choices for travellers with education-related purposes 

given their positive impact signs in both seasons. Overall, the results imply that trip purpose is a 

factor that could consistently affect mode choice behaviour across different air quality and 

weather conditions. 

Travel time and travel cost are important attributes in affecting mode choice behaviour. 
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For travel time, the winter model found the expected negative relationship with most of the mode 

choices (except for car passenger and taxi, which will be explained shortly), which means the 

utility associated with each mode will decrease when it takes a longer time to arrive at the 

destination. In comparison, a number of impact signs turn out as positive in the summer model 

including the impacts on car choice, bus choice and electric bike choice (as well as the choices 

of car passenger and taxi as in the winter model). Such sign changes could be caused by the 

better natural-environment conditions (i.e. better air quality and warmer weather) in the summer 

period so that longer travel time may not result in significant comfort/utility loss. In other words, 

the travel time saving may not be as important as in the winter period. However, it must be 

noticed that travel time impacts on non-motorized transport choices such as bike, bike-sharing 

and walk are always negative throughout summer and winter. Such consistent behaviour could 

be due to the relatively low mobility power and the resulted longer travel time of non-motorized 

transport so that a further increase in travel time is always less preferred by travellers despite 

natural-environment conditions. In contrast, the positive impact signs of car passenger and taxi 

choices throughout the two seasons could be explained by the fact that they are both passenger 

transport and unlike bus, they do not have any exclusive lanes. Thus, when making a mode 

choice decision before travelling, the decision maker does not have the same level of prior 

knowledge on travel time as other self-driven modes. As for travel cost, the impacts on the three 

mode choices have consistent signs in summer and winter. Higher costs will reduce the demand 

towards bus and taxi; however, car cost is positively associated with its mode choice. The key 

reason is that in a RP survey, many drivers do not have perfect knowledge on the cost of car 

driving (i.e. the fuel cost). Therefore, the travel cost of car may not be precisely taken into 

account by individuals in choice making. 

At last, an important discovery is that the effects of all three socio-economic variables 

(i.e. gender, age and income) are completely dominated by other factors‟ impacts according to 

their low significance on all modes across the two seasons. However, some trends are still worth 

noting. More females will choose car passenger, bus, bike-sharing and walk as the travel modes 

in summer; whereas in winter females will only prefer to be car drivers. The elderly age group is 

found to have a positive relationship with using bike-sharing in summer; they will not choose it 

anymore in winter. Similarly, in summer wealthier people are open to all mode options except for 
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electric bike, which is more preferred by the lower income group. However, in winter, car driver 

and car passenger are the only options preferred by wealthier people. Overall, the results of 

gender, age and income impacts could indicate the existence of seasonal influence, such that 

females, elderly and wealthier people are found more sensitive to worse air quality and lower 

temperature. Nevertheless, they are not the influential factors on mode choice behaviour as 

compared to others. 

Table B-3 Summer and Winter Model Estimation Results 

 Summer Winter 

 coefficient t-statistic coefficient t-statistic 

 
- 9.57 - 2.75 1.89 1.46 

Work-car driver 1.49 4.77 0.67 2.77 

Temperature-car driver  0.08  2.79  0.02 1.16 

Air pollution-car driver  0.018  2.69 0.015  5.63 

Travel time-car driver  0.02 1.10 - 0.03 - 0.97 

Travel cost-car driver  0.19  4.41  0.12  2.66 

Male-car driver  0.06  0.08 - 0.23 - 0.47 

Age (lower)-car driver - 0.12 - 0.16 - 0.40 - 0.81 

Income (lower)-car driver - 1.81 - 0.99 - 0.45 - 0.65 

 
- 6.86 - 1.99 3.24 2.74 

Education-car passenger  1.14  3.30  1.51 4.89 

Travel time-car passenger 0.07 3.44 0.005 0.17 

Male-car passenger - 0.30 - 0.45  0.62  1.40 

Age (lower)-car passenger - 0.44 - 0.59 - 0.06 - 0.13 

Income (lower)-car passenger - 2.40 - 1.33 - 0.52 - 0.80 

 
- 5.18 - 1.49 43.40 0.79 

Work-bus  0.85  2.86  0.27  0.93 

Education-bus 1.42  4.63 1.16  2.95 

Temperature-bus  0.03  1.01 - 0.04 - 1.99 

cardri

carpass

bus
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Air pollution-bus  0.013 2.09 0.0002  0.06 

Travel time-bus  0.003  0.32 - 0.12 - 6.86 

Travel cost-bus - 2.69 - 6.00 - 37.90 - 0.69 

Male-bus - 0.71 - 1.06 0.10  0.21 

Age (lower)-bus - 0.53 - 0.72 - 0.44 - 0.87 

Income (lower)-bus - 0.87 - 0.48  0.32  0.45 

 
- 16.90 - 0.75 - 8.26 - 0.15 

Work-ebike  0.84 2.51  0.17 0.60 

Temperature-ebike  0.09  2.90 0.01  0.48 

Air pollution-ebike - 0.002 - 0.21  0.003 1.35 

Travel time-ebike 0.04 1.76 - 0.02 - 0.94 

Male-ebike  0.44  0.65  1.22  2.54 

Age (lower)-ebike - 0.005 - 0.01 - 0.29 - 0.56 

Income (lower)-ebike  6.74 0.30  10.90  0.20 

 
- 4.96 - 1.41  7.88  5.23 

Work-bike 0.83 2.22  0.48  1.25 

Education-bike 0.83  1.94 0.92  1.69 

Temperature-bike  0.03 0.74 - 0.06 - 2.25 

Air pollution-bike  0.016  1.85 - 0.009 - 2.63 

Travel time-bike - 0.12 - 7.12 - 0.21 - 8.26 

Male-bike  0.14  0.20 0.07  0.13 

Age (lower)-bike - 0.21 - 0.27 - 0.01 - 0.01 

Income (lower)-bike - 1.68 - 0.91  0.87  1.05 

 
- 9.06 - 2.57  14.50  7.97 

Work-bike share 0.40 1.02  1.05  2.37 

Education-bike share 1.77 4.67 0.67 1.01 

Temperature-bike share  0.13  4.02 0.04  1.07 

Air pollution-bike share  0.017 2.20 - 0.058 - 6.71 

ebike

bike

bikesh
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Travel time-bike share - 0.07 - 4.81 - 0.24 - 7.42 

Male-bike share - 0.66 - 0.94  0.73  1.18 

Age (lower)-bike share - 0.51 - 0.67  0.41  0.65 

Income (lower)-bike share - 1.11 - 0.60 0.32  0.34 

 
1.60 0.44  14.60  9.21 

Work-walk 0.75 1.54  0.31  0.77 

Education-walk 1.53 2.93 1.45 2.56 

Temperature-walk  0.03  0.70 - 0.06 - 2.02 

Air pollution-walk - 0.001 - 0.13 - 0.018 - 5.12 

Travel time-walk - 0.24 - 15.03 - 0.31 - 14.54 

Male-walk - 0.74 - 0.99  0.08  0.15 

Age (lower)-walk  0.12  0.14  0.38  0.64 

Income (lower)-walk - 1.29 - 0.69  1.02 1.31 

Work-taxi - 1.23 - 0.81 - 0.0001 - 0.00 

Temperature-taxi - 0.38 - 2.60 - 0.07 - 1.65 

Air pollution-taxi - 0.013 - 0.55  0.003 0.65 

Travel time-taxi  0.57  7.62  0.03  0.61 

Travel cost-taxi - 0.81 - 7.81 - 0.02 - 0.29 

Number of observations  1797  1722 

Initial log-likelihood - 3323.4 - 3189.3 

Final log-likelihood - 1400.2 - 1173.0 

Likelihood ratio test 3846.4 4032.6 

  
0.559 0.612 

 

B.4 Conclusions 

The work studies the factors that may affect urban transport mode choice behaviour in a 

developing country. It significantly advances the knowledge boundary in the research community, 

and to our knowledge, it is the first study investigating the impact of air pollution on mode choice 

walk

2
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behaviour. Two seasonal MNL models are built to reveal any differences in the factors‟ impacts 

under distinctive natural-environment conditions. Some implications for policy making could be 

drawn to help more effectively promote the demand for non-motorized transport. 

This research suggests that cleaning the air and promoting non-motorized transport 

must be tackled simultaneously due to their inter-dependence. It is possible to have a “virtuous 

circle” that not only an increase in the use of non-motorized transport would help improve air 

quality, but by having better air quality those non-motorized modes would also be increasingly 

attractive to travellers. Policy consideration could, therefore, be placed on the air pollution 

reduction in industrial, residential and business sectors, which could, in turn, lead to further air 

quality improvement in urban transport. However, cost and benefit analysis will be required to 

assess the feasibility of such “virtuous circle” in real practice, especially given the finding that air 

pollution‟s impact will diminish as it drops to lower levels. In addition, females, elderly and 

wealthier people, i.e. those who are found in the seasonality analysis to be more sensitive to a 

change in natural-environment conditions, are in particular expected to use more non-motorized 

transport when air quality improves. 

Nevertheless, commuters, who conduct regular trips for work and education purposes, 

have relatively inelastic demand for non-motorized transport across air quality and weather 

condition changes. A similar finding is also associated with travel time, which has strong negative 

impact on non-motorized transport usage in both seasons. The results imply that policies directly 

addressing trip purpose and travel time must be considered despite natural-environment 

conditions. For instance, policies could focus on satisfying commuters‟ stable demand for 

bike-sharing especially in the areas where workplaces and schools are concentrated. Measures 

can include increasing the number of docking stations or adopt more flexible bike return policies 

during peak time (e.g. portable card scanning machine can be used to record bike usage data so 

that bikes can be returned to and assembled by a staff in addition to docking stations). Besides, 

the travel time of using bike-sharing could be reduced by introducing electric bikes to the existing 

bike-sharing schemes as a way to enhance bike-sharing mobility and meanwhile without causing 

air pollution. 

In the end, this research also reveals an important distinction between findings in 

developing and developed countries. In this study, socio-economic characteristics (i.e. gender, 
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age, and income) hardly have significant impacts on any mode choices, although many impact 

changes are observed across seasons. However in developed countries, socio-economic 

characteristics were usually identified to have strong correlations with mode choice behaviour 

(Shafizadeh and Niemeier, 1997; Rodrı́guez and Joo, 2004; Moudon et al., 2005; Parkin et al., 

2008; Zahran et al., 2008; Baker, 2009; Akar, et al., 2013; Ricci, 2015; Wang et al., 2015; 

Faghih-Imani et al., 2017). The finding implies that policies should focus more on factors that 

have more significant impacts (e.g. air pollution, trip purpose and travel time) than 

socio-economic groups, in order to effectively promote travel behavioural changes. Nevertheless, 

more mode choice studies are needed in developing countries to further compare the findings. 
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