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Abstract

This thesis aims to evaluate: 1) the feasibility of advanced diffusion Magnetic Reso-

nance Imaging (MRI) technique− Neurite orientation dispersion and density imag-

ing (NODDI) for providing in vivo imaging evidence of white matter (WM) pathol-

ogy at both preclinical and clinical stages of neurodegenerative diseases; 2) the

added value of this advanced technique - NODDI over the standard diffusion MRI

technique - Diffusion Tensor Imaging (DTI).

Monitoring WM pathology is vital in coping with this challenge brought by

neurodegenerative diseases as abnormal axonal transport has been identified in neu-

rodegenerative diseases. In vivo imaging evidence using DTI suggests that patients

with neurodegenerative diseases have abnormal WM microstructure compared to

normal controls. Whilst sensitive, DTI metrics lack tissue specificity to biological

features due to the simplicity of the model, therefore could not inform more on

the disease pathology. In contrast, NODDI could provide biologically meaningful

metrics that have been validated with histological measures in human neural tissue.

Therefore, investigating the potential of NODDI in clinical studies of neurodegen-

erative diseases could greatly increase our knowledge and benefit our understanding

of the disease pathology.

In this thesis, we chose pre-manifest Huntington′s disease and young onset

Alzheimer′s disease as the disease models to represent the preclinical and clinical

stages respectively. We demonstrated the feasibility of NODDI in not only detecting

WM abnormalities at both preclinical and clinical stages of neurodegenerative dis-

eases but also tracking the longitudinal progression of WM microstructural deficits

at the clinical stage. We also demonstrated the clinical relevance of NODDI by
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evaluating the correlations between the clinical assessments and NODDI metrics.

Compared with DTI, we found that NODDI could provide more information on

disease-specific WM pathology.
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Chapter 1

MOTIVATION

1.1 The context

Neurodegenerative diseases pose great challenges to the global healthcare. Since

last century, life expectancies have greatly increased across the world, and the age-

ing population is becoming larger and larger. Age is one of the biggest risk factors

of neurodegenerative diseases, and these diseases cause great financial and physi-

cal burden for patients themselves and their families as well as the whole society.

However, there are still not many effective therapeutic plans against these diseases.

This is in part due to the lack of the knowledge of the brain pathology in neurode-

generative diseases.

The traditional way of gaining the knowledge of the disease pathology is via

post-mortem studies. However, this method has quite a few limitations. Firstly,

most of post-mortem studies include relatively very few samples, and it is difficult to

reproduce the findings. Secondly, it is impossible to study the relationship between

the structure and function using this approach.

Powerful and sensitive neuroimaging techniques have been developed as win-

dows to access the disease pathology in vivo and non-invasively. Especially, the

recent advances in Magnetic Resonance Imaging (MRI) have provided compelling

evidence and therefore greatly enlarged our knowledge of brain pathologies in neu-

rodegenerative diseases [1]. Among the available MRI techniques, diffusion MRI

is of particular interest as it could provide in vivo microstructural information on
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biological tissue non-invasivly and has been successfully applied in studying white

matter abnormalities in neurodegenerative diseases.

Monitoring white matter is vital in coping with the challenge brought by neu-

rodegenerative diseases. White matter is the structural basis of functional integra-

tions between brain regions, and the intertwining structure-function relationship

suggests that white matter could provide invaluable insights into understanding the

behavioral and cognitive impairments in patients with neurodegenerative diseases.

Moreover, the atrophy of white matter has been recognized as a potential imaging

biomarker for aiding clinical diagnosis of neurodegenerative diseases. And track-

ing the evolution of white matter atrophy might aid us to understand the progression

of brain pathology in neurodegeneration. At present, the available MRI measures

of white matter atrophy include volumetric metrics from T1-weighted MRI and

microstructural metrics from diffusion-weighted MRI and other quantitative MRI

methods. Changes at the microstructural level are likely to be the earliest sign of

neurodegeneration, i.e., preceding volumetric losses and functional deficits. De-

tecting such microstructural abnormalities in white matter might benefit not only

the understanding of abnormal functional activities, but also the earliest detection

of neurodegeneration.

White matter microstructure configurations become accessible by measuring

water molecule diffusion using diffusion MRI. Among the diffusion MRI tech-

niques, Diffusion Tensor Imaging (DTI) is the first that has drawn great attention

and has been widely used to study white matter microstructure in neurodegenerative

diseases [2, 3]. White matter in patients with neurodegenerative diseases has been

found to have abnormal DTI metrics (increased diffusivity and decreased fractional

anisotropy (FA)) compared with normal controls (see [4,5] for reviews). Whilst sen-

sitive to white matter microstructural changes in neurodegenerative diseases, due to

the simplicity of the single tensor model in DTI, DTI metrics lack tissue specificity

to biological features. For example, a decrease in FA of white matter in patients

with neurodegenerative diseases might be caused by a decrease of axon density, an

increase of free water contamination, or a combination of both. In addition, DTI
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metrics are prone to free water contamination, which has been found to confound

DTI findings of white matter abnormalities in clinical studies of neurodegenerative

disease [6].

To provide biologically meaningful features that are free from free-water con-

tamination, a set of biophysical diffusion MRI models have been proposed. One

simple multi-compartment model - Neurite Orientation Dispersion and Density

Imaging (NODDI) [7] has drawn our particular attention because of its simplicity

and feasibility in clinical settings. With a multi-compartment model incorporat-

ing the isotropic diffusion contributed by free water, NODDI provides quantitative

compartment-specific metrics that are of biological meaning and clinical interest in

neurodegenerative diseases, including the neurite density index (NDI), providing an

estimate of axonal density in white matter; the orientation dispersion index (ODI),

quantifying the extent of axonal dispersion in white matter.

1.2 Problem statement
Given the theoretical advantages of NODDI, is NODDI feasible in studying white

matter changes of neurodegenerative diseases? What benefit will it bring compared

with the conventional DTI technique?

We are interested in evaluating the feasibility of NODDI and its added value

over DTI in different stages of neurodegenerative diseases, i.e., preclinical and clin-

ical, before and after disease onset. The feasibility here refers to:

• the sensitivity of NODDI to detecting abnormal white matter microstructural

changes before and after disease onset;

• the sensitivity of NODDI to track longitudinal white matter microstructural

changes after disease onset.

The preclinical neurodegenerative disease model we chose is pre-manifest

Huntington′s disease (pre-HD, a full penetrant genetic disease), individuals of

which could be identified many years before clinical onset by predictive genetic

testing. The after-onset neurodegenerative disease model we chose is Alzheimer′s

disease (AD), which is the commonest type of dementia.
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1.3 Aims of PhD projects
An evaluation of the feasibility of translating NODDI in clinical studies of neurode-

generative diseases:

• its sensitivity to white matter abnormalities in different stages of neurodegen-

erative diseases - before and after clinical onset;

• its capability to track longitudinal white matter changes in neurodegenerative

diseases;

• its clinical relevance by accessing the relationship of NODDI metrics with the

clinical assessments;

• A comparative evaluation of NODDI and conventional DTI in clinical studies

of neurodegenerative diseases cross-sectionally.

1.4 Structure of the thesis
The rest of this thesis is organised as below:

Chapter 2 - this chapter provides a general description of diffusion MRI tech-

nique, including the basic of water diffusion, how to measure water diffusion using

MRI, how to infer white matter microstructural configurations using diffusion MRI,

and how to analyse diffusion MRI images.

Chapter 3 - this chapter gives an overview of white matter pathology in neu-

rodegenerative diseases. It first describes the white matter microstructure in the hu-

man brain, and then gives a general introduction of neurodegenerative disease and

the two disease models selected to represent the preclinical and clinical stages of

neurodegenerative diseases (pre-manifest HD and young onset AD). For these two

selected disease models, this chapter also covers our understanding of the white

matter pathology and what diffusion MRI techniques tells us about the white matter

abnormalities in these two diseases.

Chapter 4 - this chapter describes all the key imaging factors that we need to

think about when we design a clinical study using diffusion MRI, including image

acquisition and image analysis.
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Chapter 5 - this chapter establishes the feasibility of NODDI in depicting the

in vivo white matter pathology at the pre-manifest stage of neurodegenerative dis-

eases and its advantages over standard DTI. We applied both NODDI and DTI to

study the white matter microstructural abnormalities in the pre-manifest Hunting-

ton’s disease.

Chapter 6 - this chapter demonstrates the feasibility of NODDI in providing the

details of in vivo white matter pathology at the clinical stage of neurodegenerative

diseases and its advantages over standard DTI. Both NODDI and DTI were applied

to assess the white matter microstructural changes in young onset Alzheimer’s dis-

ease.

Chapter 7 - this chapter explores the feasibility of NODDI in tracking the lon-

gitudinal progression of white matter pathology in neurodegenerative diseases. We

applied NODDI to detect the longitudinal progression of white matter microstruc-

tural abnormalities in a cohort of young onset AD and normal controls that we

followed up at an interval of one year.

Chapter 8 - this chapter summaries all the key findings, discusses about the

potential limitations of our studies and describes potential work in future.





Chapter 2

Diffusion Magnetic Resonance

Imaging

This chapter aims to give an introduction to the basic principles behind diffusion

MRI. It starts with subchapter 2.1, which introduces water diffusion - the basic

physical phenomenon measured by diffusion MRI and its potential to infer biolog-

ical tissue microstructure. Then in subchapter 2.2, it covers the principles of how

MRI works and how to measure water diffusion in the tissue using diffusion MRI.

The last subchapter 2.3 covers how to computationally infer tissue microstructural

information by diffusion MRI models.

2.1 Water Diffusion

2.1.1 Molecular diffusion and Einstein equation

Molecular diffusion refers to the translational movements of molecules when the

temperature is above 0 Kelvin [8]. This translational motion of molecules is also

known as Brownian motion, which was first discovered by the botanist Robert

Brown in 1827 when he observed the movements of pollen grains via a micro-

scope [9]. The classical descriptions of the diffusion macroscopically are Fick’s

laws [10](Equations 2.1 and 2.2 for the first and second Fick’s law respectively,

where J is the flux of the particles and D is the diffusion coefficient and C is the

concentration).

~J(r, t) =−D∇C(~r, t) (2.1)



34 Chapter 2. Diffusion Magnetic Resonance Imaging

−∇ · ~J =
∂C(~r, t)

∂ t
(2.2)

Einstein linked the Fick’s laws to self-diffusion phenomenon in order to describe

the molecular diffusion [11] (Equation 2.3).According to Einstein equation, in a

self-diffusion process, the mean squared displacement of molecules r2, after a time

interval t, is proportional to the diffusion coefficient D. The diffusion coefficient

D depends on not only the size of the molecules, but also the temperature and the

viscosity of the medium in which the molecules exist and diffuse [12].

< r2 >= 6Dt (2.3)

2.1.2 Water diffusion probes the brain microstructure non-

invasively

Molecular diffusion is useful to probe the microstructure non-invasively in a sam-

pled material. In a free space, the thermal energy drives the molecules to diffuse

freely and randomly along any direction. In contrast, in a sampled material, when

the molecules come across any barriers, the motion slows down. That is to say, the

diffusion of the molecules is more free in the direction along the barriers than that

in the direction perpendicular to the barriers. Therefore, given an appropriate time

interval, the distribution of molecule displacements in diffusion could reflect the

microstructural configurations of a sampled material.

In diffusion MR imaging, water molecules are the target due to its abundance

in biological tissue. The diffusion displacement of water molecules is affected by

the biological barriers, e.g., the cell membranes, and the respective distribution of

water diffusion could reflect the underlying microstructural configurations of the

tissue [13, 14]. Therefore, by measuring water diffusion, we could infer the in vivo

microstructural information of the biological tissue non-invasively.

2.1.3 Water diffusion in the brain

The brain can be roughly classified into three tissue types, including cerebrospinal

fluid (CSF), grey matter (GM) and white matter (WM). Each type has its unique
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configurations of the barriers for water diffusion. Therefore, the distribution of

water molecule displacements shows unique patterns across the brain.

Figure 2.1: Water diffusion in the brain

A simple illustration is described in Figure 1. In CSF, as there is no obstacle,

water molecules diffuse freely along any direction. Therefore, the water diffusion

in CSF is isotropic and has a high diffusivity. GM mainly consists of neuronal cell

bodies and dendrites. Due to the membrane obstacles of cell membranes, water

diffusion in GM often has no orientation preferences and is still isotropic but much

less than in CSF. Therefore, GM has a lower diffusivity than that in CSF. WM is

sometimes referred to as the fiber tracts, and includes mainly the myelinated axons.

In WM, water molecules diffuse freely along the fiber but highly restricted in the

perpendicular direction, which results in anisotropic water diffusion in WM.
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2.2 Measuring water diffusion in the tissue using

MRI
This part explains how to measure water diffusion in the tissue using MRI, and

has two parts: the first part introducing how MRI works (subsection 2.2.1) and the

second part explaining how to encode diffusion with MRI (subsection 2.2.2).

2.2.1 Introduction to MRI

MRI is rooted in the quantum phenomenon Nuclear Magnetic Resonance (NMR).

This phenomenon refers to the process of absorbing and re-emitting the energy of

protons, and was first reported in an experiment of measuring the magnetic momen-

tum of chemical elements by Rabi et al in 1938 [15]. NMR was further described in

the experiments of Bloch and Purcell in materials in 1946 [16]. The framework of

spatial encoding using magnetic field gradients was the key invention that enabled

the successful implementation of MRI systems. It was introduced by Lauterbur et

al [17], which translated the physical phenomenon - NMR into the modern MRI

systems we are using in both clinical practice and scientific research today.

In the following, we introduce the basics of nuclear magnetic resonance and the

principles to form a MR image. Subsection 2.2.1.1 first describes the behaviour of

protons in a magnetic field, and then covers how to measure the magnetic moments

of protons. The subsection 2.2.1.2 describes how to form a MR image.

2.2.1.1 Basics of nuclear magnetic resonance

A charged proton rotates around its own axis and forms a spin - ~J. The magnetic

moment ~µ is a property of nuclei that is related with ~J, and is determined by ~µ=γ~J

where γ is the gyromagnetic ratio of the nucleus. After adding a strong external

magnetic field ~B0, a torque from the external magnetic field causes magnetic mo-

ments~µ to precess and form a non-zero net magnetization ~M along with the direc-

tion of ~B0. Conventionally, we define z-axis as the orientation of the external static

magnetic field ~B0 and we use “longitudinal” and “transverse” to describe quantities

along z-axis and in xy plane. If we put the spins long enough in the external mag-

netic field, the sample will be fully “magnetized” and the net magnetization ~M will
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fully align with ~B0 (i.e., the longitudinal magnetization reaches its maximum and

the transverse magnetization in the xy plane is zero).

The frequency ω at which the magnetic moments precess is called as Larmor

frequency [18], and is determined by

ω = γ|~B| (2.4)

, where ~B is the external field. Equation 2.4 suggests that the Larmor frequency is

determined by the strength of the magnetic field |~B| and the gyromagnetic ratio γ of

the nucleus of a particle. For hydrogens of water molecules in a 3T magnetic field,

the Larmor frequency is 128MHz.

2.2.1.2 Manipulating the system to detect the net magnetization

The signal contributed by this non-zero net magnetization ~M is too small to be

detectable along z-axis (the direction of the main field). Therefore, we have to

rotate ~M away from z-axis. To achieve this, we can apply a radiofrequency (RF)

pulse to transfer energy to the protons [19]. After we terminate the RF pulse, ~M

rotates back to the z-axis. During this process, the changing magnetization induces

electric currents and a measurable signal arises. The angle we rotate is termed as

flip angle [20], and a 90o flip angle is often chosen.

After the excitation, the protons start losing the energy gradually and the

net magnetization rotates back towards z-axis. The temporal evolution of the net

magnetization introduces two mechanisms of relaxation. One is called as the

spin−lattice relaxation (longitudinal relaxation) along the direction of ~B0 while

the other is called as the spin−spin relaxation at the transverse plane.

The relaxation can be mathematically described by Bloch equations [21, 22]:

d ~M
dt

= γ ~M×~B−
Mx~i+My~j

T2
−Mz−M0

T1
~k (2.5)

In equation 2.4, M0 is the equilibrium value of Mz, γ ~M×~B describes the precession,

T1 is the spin-lattice relaxation time and T 2 is the spin-spin relaxation time. No-

tably, different types of tissue have different time constants of T1 and T2, determined



38 Chapter 2. Diffusion Magnetic Resonance Imaging

by the chemical and cellular structure in the tissue as well as the external magnetic

field strength.

Spin-lattice relaxation, known as longitudinal relaxation, describes the ex-

ponential recovery process of the longitudinal component of the net magnetiza-

tion [23]. The protons release energy into the environment via thermal interactions,

which increases the temperature of the sample. This relaxation can be mathemati-

cally written as:
d ~Mz

dt
=

M0−Mz

T1
ẑ (2.6)

Spin-spin relaxation is also known as transverse relaxation [21]. The interactions

between spins cause variations of the local magnetic field. This causes spins to

rotate at different frequencies, and after a while the phases of spins become inco-

herent. If the main field B0 is homogeneous, this relaxation can be mathematically

written as:
d ~Mxy

dt
= γ ~M×~B−

~Mxy

T2
(2.7)

However, in practical MRI system, the external magnetic field is inhomogeneous,

and this inhomogeneity introduces an additional dephasing mechanism. In reality,

the decay of transverse magnetization is determined by a time constant T ∗2 , which

is short than T2. If we use T
′

2 to describe the relaxation time of the extra dephasing

mechanism, T ∗2 can be mathematically described as:

1
T ∗2

=
1
T2

+
1
T ′2

(2.8)

2.2.1.3 MR image formation

For a 3-D object, the aim of spatial encoding is to produce a signal with the location

information [24, 25]. And its framework consists of two parts: 1) the selection of a

slice; 2) the within-slice localization [17].

Slice selection

As we described in Subsection 2.2.1, for a certain proton, the Larmor frequency

has a linear relationship with the strength of the external magnetic field. If we
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apply a gradient ~Gz along z-axis, the Larmor frequency of protons in each slice is

determined by:

ω = γ(B0 + z|~Gz|) (2.9)

By tuning the frequency of the RF pulse, we can decide which slice to be excited.

Spatial encoding within slice

An efficient way to encode locations within a slice is combining “frequency

encoding” and “phase encoding” using pulsed gradients. Frequency encoding is

similar as slice selection while phase encoding is to encode protons at different po-

sitions with characteristic phases by applying a phase-encoding gradient. Usually

the phase encoding gradient is applied between slice selection and frequency en-

coding while the frequency encoding gradient is applied at the time we measure the

signal.

After the excitation RF pulse, if we apply a gradient ~Gy along y-axis for a

time duration of τ , the phase of the magnetization ϕ varies along y axis and stays

as a unique constant value when we switch off this phase-encoding gradient ~Gy

(Equation 2.10).

ϕ = γ|~Gy|yτ (2.10)

If we apply a gradient ~Gx along x-axis, the Larmor frequency varies along x axis

and is determined by:

ω = γ|~Gx|x (2.11)

2.2.1.4 MRI pulse sequences

A MRI pulse sequence is a sequence of RF pulses and turn-on/turn-off magnetic

gradients as programmed. The key parameters of a MRI pulse sequence are: echo

time (TE)/repetition time (TR), flip angle, Field Of View (FOV), matrix size, in-

version pulses, the spatial acquisition strategy of k-space (the space in which we

acquire the signal, and see page 41 for more information), diffusion weighting fac-

tor b (for diffusion MRI). The most common pulse sequence used in diffusion MRI

is the pulsed gradient spin echo (PGSE) sequence [26].
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Spin echo was developed by Dr. Erwin Hahn [27] in 1949 to 1) measure the

maximum of the signal from the net magnetization and 2) avoid potential artefacts

due to the susceptibility of the signal to the inhomogeneity of the local magnetic

field. When we remove the 90o RF pulse, the signal detected starts to decay rapidly.

Therefore, a very fast detection is requried [28]. However, this demands high per-

formances of hardware. The first spin echo scheme proposed by Han was a com-

bination of two 90o RF pulses [27]. By utilizing the refocusing of the second RF

pulse, the spin echo scheme recovers part of the signal of interest. Carr and Pur-

cell [29] improved it using a combination of one 90o RF pulse and a 180o RF pulse.

The flip angle of the second RF pulse could be arbitrarily chosen but the 90o-180o

RF pulses provide the maximum of the echo signal magnitude, which is as twice as

the initial 90o-90o RF pulses. Therefore, this 90o-180o RF pulses is widely used in

diffusion MRI today and is described in detail next.

Spin Echo

When we apply the 90o RF pulse, the selected protons are “excited” and the trans-

verse component of the net magnetization increases rapidly. Once we remove this

RF pulse, the relaxation process starts. The spin-spin relaxation makes spins rotate

at different frequencies and therefore forms a phase incoherence (i.e., dephasing).

This dephasing of spins results in the decreasing of the transverse component of the

net magnetization.

Spin Echo (SE) works by refocusing the phases of spins by applying an 180o

RF pulse for a time twice of the duration of the first 90o RF pulse. The time between

the 90o RF pulse and the signal read-out pulse is TE. The 180o RF pulse is applied

at half of TE, i.e., TE/2, and has an area as twice as the 90o RF pulse. Once the 180o

RF pulse is applied, the spins rotate by 180o and continue their precessions but in

the opposite direction. Spins that precess faster after the 90o RF pulse now fall

behind. As they precess faster, they gradually catch up with the spins that precess

slower after the 90o RF pulse. The more coherent the phases of spins become, the

more the transverse magnetization is recovered. This SE scheme diminishes the

phase differences caused by T 2∗ effect, and the signal measured using SE scheme
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is referred to as the SE signal. Notably, the SE signal after refocusing is smaller

than that of the signal at the time when we remove the 90o RF pulse. This is due to

factors such as the thermal relaxation.

A perfect refocusing by the 180o RF pulse could not be achieved at cases: 1)

the local field distortion changes; 2) the spin moves to a different place. The second

case is invaluable for measuring diffusion with MRI, which is discussed later in

Section 2.2.2. described in detail next.

The Pulsed Gradient Spin Echo Sequence

The three common RF pulses in all PGSE sequences are 90o RF pulse and 180o RF

pulse as well as the signal readout pulse (echo). The PGSE sequence is repeated at

a time interval of TR to sample the k-space (see the next subsection for details) to

reconstruct the image.

Figure 2.2: The framework of single echo PGSE sequence

The conventional PGSE sequence is single echo PGSE, which only includes

one 180o RF pulse after 90o RF pulse and one readout (i.e., one “echo”). This

single echo PGSE sequence (Figure 2.2) produces images with very good signal-to-

noise rate (SNR) but is time consuming because this sequence sample each line in

k-space with a time of one TR.

K-space

K-space is the frequency domain of image space [30], introduced into MRI by likes

in 1979 [31] and Ljunggren and Twieg in 1983 [32, 33]. In MRI, we measure the
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signals in k-space and reconstruct images using Fourier transform (see Figure 2.3

for an example).

Figure 2.3: An example of Fourier transform between k space and image space

In k-space, low values around the origin carry the information at low spa-

tial frequencies while high values carry the information at high spatial frequencies.

Sampling along the x-axis in the k space represent sampling the spatial frequencies

along x axis in the image space. It is the same with sampling along the y axis. The

center in K-space determines the overall image contrast, brightness and shapes [30].
1

∆k determines FOV, and the number of ∆k defines the matrix size.

If we define the vector~k = γ
∫
~Gdt and leave out the constant phase caused by

the static magnetic field B0, we can rewrite the signal as

~S(~k) =
∫

~Mxy(~r)ei(~k·~r)d~r (2.12)

Sampling in K-space

K-space has an infinite number of points, and it’s not possible to sample completely

in k space. Practical k-space sampling is discrete, and forms “grid” or “matrix”.

A “grid” that is evenly distributed in k-space makes the data acquisition and image

reconstruction faster, easier and much more efficient.

There are several k-space sampling trajectories in MRI acquisition, and carte-

sian scheme is the most widely used one in clinical scanners. In cartesian scheme,
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Figure 2.4: Common k-space sampling trajectories. A The cartesian scheme; B The radial
scheme; C The spiral scheme.

the frequency encoding gradient and phase encoding gradient are separately applied

at the signal read-out and in the interval between RF pulse and read-out pulses. Af-

ter applying phase encoding gradient for a time τ , we apply frequency encoding

gradient for a time t and read out the signal at the periodic intervals until the line is

filled, then move to the next, and repeat this process until the sampling designed in

k-space is finished. Therefore, this Cartesian method results in a line-by-line trajec-

tory in k-space (Figure 2.4 A). Notably, there are other k-space sampling methods,

such as radially (Figure 2.4 B) and spirally (Figure 2.4 C) oriented trajectories.

However, they are much less accessible for clinical scanners.

Echo Planar Imaging

Echo Planar Imaging (EPI) is a fast k-space sampling method [34], and was pro-

posed in 1977 by Mansfield [35] but became popular after 1980s. Since then, EPI

has been the most common pulse sequence used in MRI. EPI works by recording

signals multiple times after each excitation, covering line by line in k-space without

going back to the origin. This results in a “zig-zag” sampling trajectory in k-space.

Notably, with different settings, EPI can be 2D and 3D, either spin-echo or gradient-

echo, and single-shot or multi-shot.

The time efficiency of EPI makes the fast image acquisition realistic for diffu-

sion MRI. For single-shot EPI, there is only one excitation for the whole k-space

sampling (Figure 2.5. A). In contrast, for multi-shot EPI, only part of the k-space is

sampled after one excitation and therefore the k-space sampling requires multiple
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Figure 2.5: Echo Planar Imaging in k space. A single shot k-space trajectory; B multi-shot
k-space trajectory

excitations. Figure 2.5 B is an example of multi-shot EPI, which illustrates that

only odd-numbered or even-numbered slices are recorded in each shot. Despite of

its time efficiency, EPI has its limitations and results in unique MRI image artifacts

(See section 2.2.2.2 artifacts in diffusion MRI images for further details).

2.2.2 Encoding diffusion using MRI

2.2.2.1 Measuring water diffusion using MRI

The sensitivity of MRI to self-diffusion was first reported by Hahn in 1950 when

he observed a signal reduction using the SE sequence [27]. He also proposed that

the diffusion coefficient is measurable. But it was until 1954 that Carr and Purcell

[29] came up with a framework using Hann’s spin-echo sequence to measure such

phenomenon. Carr and Purcell found that the magnitude of SE signal is highly

sensitive to random molecular diffusion. A decade later, Stejskal and Tanner [26]

designed the Pulsed Gradient Spin Echo (PGSE) sequence (Figure 2.6) using short-

duration gradient pulses.

In PGSE, the gradient pulse duration δ is much shorter than ∆ (the spacing

between the two gradients ~GD), and the net phase difference for spins betweens the

two gradients is determined by their positions at two time points. If spins diffuse

during the time between the two gradient pulses, the signal is smaller than that when

the spins stay at the same place. In diffusion MRI, the signal measured by PGSE
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Figure 2.6: The scheme framework of pulse gradient spin echo sequence

sequence could be expressed as:

S(~q) = S(0)
∫

p(~r)e−i~q·~rd~r (2.13)

where S(~q) and S0 are the signals acquired with or without the diffusion weighting

gradients respectively, p(~r)is the probability density distribution of water molecule

displacements, ~q = γδ ~G, and ~r is the diffusion displacement between the two

diffusion-encoding gradient pulses.

The sensitivity of MRI to diffusion is characterized by the well-known “b-

value” or “b factor” [36,37], which is also known as the diffusion weighting factor,

is given by:

b = q2(∆− δ

3
) = (γδG)2(∆− δ

3
) (2.14)

Notably, this only stands when δ << ∆ with single diffusion encoding. The general

definition of b value is:

b = γ
2
∫ t

0
|
∫ t ′

0
G∗(t ′′)dt ′′|2dt ′ (2.15)

where G∗ is the effective diffusion gradient (see [38] for more details on the relevant

physics).



46 Chapter 2. Diffusion Magnetic Resonance Imaging

2.2.2.2 Artifacts and distortions in diffusion MR images

Artifacts in MRI images refer to those signals that do not represent the signal from

the tissue in the respective voxel but occur due to the way the scan is performed.

And MRI images are prone to artifacts. Some of the artifacts are irreversible but

some can be avoided or minimised by carefully selecting the acquisition parameters

of the protocol and/or giving proper instructions for both the radiologists and the

participants. Therefore, a good knowledge of the MRI artifacts and their causes is

essential in setting up the MRI acquisition protocol and performing image acquisi-

tion and analysis. The following describes some of the artifacts that people often

see in diffusion MR images.

The motion artifacts

For the clinical scanner, it takes about 5 to 10 mins for a typical single-shell data ac-

quisition and about 12 to 20 mins for a multi-shell data acquisition. Such a long time

can be very difficult for human to stay still throughout the whole scan, especially

for patients with movement disorders or children. The bulk head movement intro-

duces an inconsistency of head position, and lead to mismatching of brain structures

throughout the scan. For example, a common motion-induced artifact in clinical

data is signal dropout in one or more Diffusion Weighted Images (DWI) volumes

(Figure 2.7). In such cases, the diffusion-weighted MRI signal acquired is either not

from the same voxel or incomplete. This brings confounding factors into estimating

diffusion MRI metrics and the further image analysis.

Figure 2.7: An example of signal dropout in multiple slices in DW images
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The distortions of brain anatomy caused by eddy currents

The rapid on-and-off gradients for imaging results in time-varying eddy currents.

According to Faraday′s law of induction, these currents introduce time-varying

magnetic fields. These magnetic fields are in general small, but still introduce bias

to the spatial-encoding gradients we use, and consequently distort the geometry of

the brain [39].

The EPI distortion

EPI is very sensitive to the inhomogeneity of the static external magnetic field.

The distortions in EPI are pronounced most in the air-tissue interfaces and in the

ventral portions of the temporal and frontal lobes (Figure 2.8). Various methods

have been proposed to correct this distortion [40,41] and one of the popular method

is to estimate the inhomogeneity of the field strength with images acquired at two

opposite phase-encoding directions [42]. However, this doubles the scan time and

may not be appropriate for clinical studies.

Figure 2.8: An example of EPI distortion

In addition to those artifacts we mentioned above, there are some other com-

mon artifacts in MR images such as chemical shifting (Figure 2.9), ghosting, ring-

ing, stripping, blurring, spiking (due to a failure of sampling in k-space) and wrap-

ping (due to the too small FOV) (See [43] for further details).
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Figure 2.9: An example of chemical shifting in the brain

2.3 Inferring white matter microstructural configu-

rations using diffusion MRI
The goal of microstructural imaging in biomedicine is to provide quantitative imag-

ing biomarkers that reflect tissue properties of interest (Figure 2.10). Among the

available techniques, diffusion MRI is unique in a way that it not only is sensi-

tive to the microstructural configurations at a much finer scale than other imaging

techniques available but also is non-invasive, relatively cheap and easy accessible.

Since the successful implementations of acquiring diffusion MRI images of the in

vivo human brain [36, 44, 45], various diffusion MRI models have been proposed

(see [14, 46] for a review) and can be categorised into 3 groups according to the

target the model is designed to describe [47]: 1) models of the tissue; 2) models of

the signal; 3) models that describe both the tissue and the signal .

Models of the tissue in group 1 are often referred to as biophysical models,

and utilise multi-compartment approaches [49–51] to explicitly describe the tissue

microstructure based on realistic assumptions [7, 52–61]. Models of the signal in

group 2 use mathematical models to describe the diffusion weighted MRI signals

without any hypotheses on the impact of tissue microstructure on the diffusion MRI

signals [62–70]. Models in group 3 share certain characteristics in Group 1 & 2,

which describe the signals from fiber populations but only capture very few tissue

microstructural features (e.g., fiber orientation distribution function) [71–81].

The simplest model of all is Apparent Diffusion Coefficient (ADC), which

was proposed at the same time as the first diffusion MRI images of the human brain

were generated [37]. ADC models the signal according to Einstein’s equation and
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Figure 2.10: Microstructure imaging using diffusion MRI. Illustration adapted from previ-
ous work [14, 48]

provides a global and statistical metric (often referred to as ADC too). Therefore,

diffusion weighted signal we acquire can be mathematically written as:

S = S0e−bADC (2.16)

ADC provides relatively good tissue contrast when b value is not too high, and it

has been widely used in various conditions [82]. However, the actual value of ADC

depends greatly on the direction of the diffusion gradient. Therefore, ADC values

are relatively less comparable across studies.

The most popular diffusion MRI model in the last 20 years is DTI. DTI uti-

lizes a second-order tensor D model to describe the distribution of water diffusion

in 3D space [2, 3], and has been widely used in clinical and neuroscientific studies

to study white matter microstructure (see [83] for a review). Under abnormal con-

ditions, DTI has been demonstrated to be sensitive to white matter microstructural

changes, such as mild cognitive impairment and Alzheimer’s disease (AD) (see [84]

for a review), brain tumor (see [85] for a review), Parkinson’s disease (see [86] for



50 Chapter 2. Diffusion Magnetic Resonance Imaging

a review), traumatic brain injury (see [87–89] for reviews) and so on. However, the

single tensor model in DTI assumes a single Gaussian distribution of water diffu-

sion, and is too simple to provide more information on complex paradigms of fiber

configurations [90]. That is to say, DTI metrics lack specificity to properties of

tissue microstructure. For example, the popular DTI metric - fractional anisotropy

(FA) can be affected by multiple factors, such as myelination, the permeability of

axonal membranes, axonal orientation dispersion, the packing density of axons and

so on. Therefore, changes in FA could not directly be attributed to changes in

specific tissue features. Changes in other popular DTI metrics - Axial Diffusivity

(AxD) and Radial Diffusivity (RD) are widely accepted to be sensitive to changes in

axon density and demyelination (see [91] for a review). However, this interpretation

does not always hold. For example, using simulations, Wheeler-Kingshott et al. [92]

has demonstrated that in crossing fibers, AxD and RD are mutually dependant on

each other. Whenever one of them changes, it causes changes in the other. They

also showed that under abnormal conditions, the changes in RD might be related to

the change of the principal direction of the tensor in those voxels. Therefore, one

should always be very careful to directly link the AxD/RD findings with changes

in the underlying tissue microstructure. In addition, DTI also suffers from partial

volume effect and DTI metrics are prone to free water contamination [6].

With recent advances in MRI hardware and sequences, diffusion MRI datasets

with richer information (multiple diffusion weighted gradient directions and higher

diffusion weightings (i.e., b values)) have become more and more accessible in clin-

ical scanners, and various models have been proposed based on these datasets. One

example of signal models in group 2 is Diffusion Kurtosis Imaging (DKI) [64]. DKI

estimates the kurtosis (i.e., the non-Gaussianity of the diffusion probability distri-

bution function), and has been applied in studying aging [93, 94], epilepsy [95, 96],

tumor [97, 98] and so on. Whilst extending to characterise the non-gaussian water

diffusion, DKI metrics still lack in tissue specificity as other advanced diffusion

MRI signal models in group 2.

Models in group 1 describe the diffusion weighted MRI signal as a linear com-
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bination of signals contributed by different tissue compartments. Each compartment

represents specific pools of water molecules in different environments and each wa-

ter pool has a unique pattern of water diffusion that can be represented by simple

geometrical shapes. Stanisz et al for the first time found that the diffusion process in

neural tissue could be represented by a three-compartment model [50]. The recent

multi-compartment biophysical models were designed to capture various proper-

ties of tissue microstructure, including: 1) axon diameter - CHARMED [54, 99],

AxCaliber [100, 101] and ActiveAx [57, 102]; 2) axon density or the volume frac-

tion of intra-cellular water - CHARMED, AxCaliber, NODDI, DIAMOND [60],

Bingham-NODDI [103], and Multi-compartment microscopic diffusion imaging

using Spherical Mean Technique (SMT) [61]; 3) the fibre orientation dispersion

- NODDI, Bingham-NODDI; 4) the permeability - Karger model [104], Apparent

exchange rate imaging [105], a machine learning based compartment models with

permeability [106]. Given the theoretical advantage of these multi-compartment

models, further work towards the clinical translation of such techniques is highly

demanded. Out of these models, NODDI is a very simple model that only requires

clinically-feasible datasets. And it is also the only multi-compartment diffusion

MRI model that has been validated with histological measures in human neural tis-

sue [107]. Therefore, NODDI is the ideal candidate for the translation of advanced

diffusion MRI techniques into clinical studies.

2.3.1 Diffusion tensor imaging (DTI)

2.3.1.1 Mathematical descriptions of DTI

DTI uses a single 2nd-order tensor D in 3-D space to describe the distribution of

water diffusion (Figure 2.11). Mathematically, it can be written as a 3-by-3 sym-

metrical covariance matrix:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

=
[
~v1~v2~v3

]
λ1 0 0

0 λ2 0

0 0 λ3

[
~v1~v2~v3

]−1
(2.17)
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where the diagonal elements (Dxx, Dyy, and Dzz) represent the diffusion coefficients

along x, y and z axis while the off-diagonal elements represent the diffusion covari-

ance between each pair of axes. By decomposition, a 2nd-order tensor D can be

represented by eigenvalues (λ1, λ2, λ3) and eigenvectors (~v1, ~v2, ~v3, with a dimen-

sion of 3 by 1) (Equation 2.14).

Figure 2.11: An illustration of the single tensor model in DTI

2.3.1.2 Tensor fitting

For each voxel, the tensor D is estimated by fitting a tensor into the diffusion atten-

uated MRI signal using a linear/nonlinear least square fitting. As D is symmetrical,

only 6 elements require estimations, including Dxx, Dxy, Dxz, Dyy, Dyz and Dzz.

Therefore, with a minimum acquisition consisting of 6 DWI volumes acquired at

non-colinear diffusion gradient directions with the same diffusion weighting and 1

without diffusion weighting, we could compute a tensor D for all the voxels within

the images. There are many choices of software available for ensor fitting, such as

FSL [108], DTIstudio [109], Camino [110] and so on.

2.3.1.3 Computing DTI metrics

Various DTI metrics were proposed, and the most widely used ones are FA, AxD,

RD, and Mean Diffusivity (MD). The equations below describe how to compute

these popular DTI metrics based on the eigenvalues [λ1, λ2, λ3] of the tensor D

(λ1 > λ2 > λ3).

MD =
λ1 +λ2 +λ3

3
(2.18)

AxD = λ1 (2.19)

RD =
λ2 +λ3

2
(2.20)
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FA = 2

√
(λ1−MD)2 +(λ2−MD)2 +(λ3−MD)2

2(λ 2
1 +λ 2

2 +λ 2
3 )

(2.21)

As the equation suggests, FA describes the anisotropy of water diffusion along

different directions. It has a range of 0-1, and is often regarded as a marker of

white matter tract integrity. MD describes the mean magnitude of water diffusion

across all the directions we measure. AxD describes the magnitude of water diffu-

sion along the principal eigenvector of the tensor ~v1, and RD describes the average

magnitude of water diffusion along the other two eigenvectors (~v2 and ~v3).

2.3.2 Neurite orientation dispersion and density imaging

(NODDI)

2.3.2.1 Mathematical descriptions of NODDI

NODDI describes water diffusion in each voxel as three compartments, including

intra-neurite, extra-neurite and free-water compartments. Mathematically, the dif-

fusion weighted MR signal can be written as a linear combination of signals con-

tributed by these three compartments (Equation 2.19).

S = (1− fiso)( ficSic +(1− fic)Sec)+ fisoSiso (2.22)

where S is the normalized diffusion weighted signal, and Sic, Sec and Siso are the

normalized diffusion weighted signal decays contributed separately by the intra-

neurite compartment, extra-neurite compartment and free water compartment, and

fic, fec and fiso are the volume fractions of the respective compartments.

Sic represents the normalized signal contributed by the intra-neurite compart-

ment (neurites, modelled as zero-radius cylinders), and can be mathematically de-

scribed as:

Sic =
∫

S2
f (~n)e−bd||(~q×~n)d(~n) (2.23)

where~q is the diffusion-weighted gradient direction, f (~n) is the probability density

of a stick (i.e., a zero-radius cylinder) along the direction, and d|| is the intrinsic dif-

fusivity. Watson distribution is chosen as the mathematical description of f (~n), and



54 Chapter 2. Diffusion Magnetic Resonance Imaging

Figure 2.12: An illustration of NODDI model

is determined by a concentration parameter kappa κ) and the mean orientation ~µ .

In the intracellular compartment, water diffusion is free along the direction of axons

and dendrites but highly restricted in the perpendicular direction by the membrane

barriers, and therefore referred to as “restricted diffusion”.

Sec represents the normalized signal contributed by the extra-neurite compart-

ment (glial cells and cell bodies, modelled as a cylindrically symmetric tensor (also

known as “zeppelin”), and can be described as:

Sec =−b~qT (
∫

S2
f (~n)D(~n)d~n)~q (2.24)

where D(~n) is an anisotropic tensor with the same eigenvalue in the two perpen-

dicular directions. ~n is the principal direction of D(~n), d
′
‖the parallel diffusivity ,

d
′
⊥and the perpendicular diffusivity. In NODDI, the parallel diffusivity d

′
‖ in the

extra-neurite compartment is not set as the intrinsic diffusivity d‖ , but equals to

d‖ ficτ1 to take the effect of orientation dispersion into consideration. τ1 is defined

as:

τ1 =
−1
2κ

+
1

2F( 2
√

κ) 2
√

κ
(2.25)

where F(x) = 1
2

2
√

πe−x2
er f i(x), and er f i(x) is the imaginary error function. And

the perpendicular diffusivity d
′
⊥ has a tortuosity relationship with the intrinsic diffu-
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sivity, and equals to d
′
⊥ = (1− fic)d

′
‖. In this extra-neurite compartment, the water

diffusion is hindered by two types of tissue, glial cells and cell bodies (somas), and

therefore is referred to as “hindered diffusion”.

Siso represents the normalized signal contributed by the free water compart-

ment (modelled as a ball), and can be mathematically described as:

Siso =−bdiso (2.26)

where diso is the free water diffusivity. In free water compartment, water molecules

move freely, and have isotropic diffusion.

NODDI provides estimations of two tissue features of interest. One is Neurite

Density Index (NDI) that is the volume fraction of the sticks. The more axons there

are in white matter, the higher the NDI is. The other is Orientation Dispersion Index

(ODI), derived from the concentration parameter of Watson distribution κ , which

can be mathematically written as:

ODI =
2
π

arctan(
1
κ
) (2.27)

ODI describes the degree of the dispersion of dendrites from strictly parallel to fully

dispersed with the respective value of 0 to 1. The more dispersed the dendrites are

aligned with each other, the higher the ODI is. There is one more quantitative metric

from NODDI, the volume fraction of free water fiso, termed as FISO in this thesis.

2.3.2.2 NODDI fitting

For each voxel, NODDI fitting is implemented by searching for a set of parameters

~p that maximize the log likelihood between the measurements and the predicted

signals using a noise model with rician distribution. The log likelihood is defined

as:

logL(~p) =−2M logv+
M

∑
m=1

log I0(
SmS

′
m(~p)

v2 )+ logSm−
S2

m +S
′
m(~p)

2

2v2 (2.28)
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where Sm is the m− th measurement, S
′
m is the predicted signal from NODDI model

at the corresponding settings of Sm acquisition, v is the spread of the rician distribu-

tion and I0 is the modified first kind and 0− th order Bessel function.

The fitting procedure for NODDI includes two stages. A grid search is per-

formed before the gradient descent search. The grid search is to identify a set

of plausible parameters from a pool of parameters within their range for the mi-

crostructure within each voxel. And this set of parameters is used as the input

for the second stage of fitting - gradient descent search. Using the results of grid

search as the starting points for gradient descent search improves the time efficiency

and accuracy of fitting. The NODDI fitting is implemented in a matlab package

(http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab).

2.3.2.3 NODDI metrics

The complete set of model parameters in NODDI includes:

• fic, the volume fraction of the intracellular compartment (referred as NDI

throughout this thesis);

• fiso, the volume fraction of the free water compartment (referred as FISO

throughout this thesis);

• kappa, the concentration parameter of Waston distribution used to represent

f (~n);

• ~µ , the main orientation of Waston distribution;

• d‖, the intrinsic diffusivity;

• diso, the isotropic diffusivity of free water.

The diffusivities d‖ and diso in NODDI are set at typical values for in-vivo brain tis-

sue: d‖ equal to 1.7×10−3mm2/s and diso equal to 3.0×10−3mm2/s as in Alexan-

der et al., 2010 [57] and Zhang et al., 2011 [111]. ODI is computed from kappa

using equation 2.24.
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2.4 Diffusion MR Image Analysis
After estimating diffusion MRI metric, the next step in a diffusion MRI processing

pipeline is diffusion MRI image analysis. In either case or population studies of

the human brain white matter, popular quantitative analysis approaches in diffusion

MRI include voxel-wise analysis and regions of interest (ROI) analysis. The fol-

lowing describes the popular approaches: voxel-based analysis (VBA), tract-based

spatial statistics (TBSS), tractography, and region of interest (ROI) analysis(Figure

2.13).

Figure 2.13: Popular image analysis methods in diffusion MRI. Figure B and C were
adapted from Lebel et al., 2008 [112]

2.4.1 Voxel-based analysis

Voxel-based analysis (VBA) is an automated method in medical imaging research,

and it performs group comparisons or correlation analysis voxel by voxel [113–

117]. A whole brain white matter VBA is an ideal choice for exploratory studies

with no priori hypothesis. VBA in diffusion MRI is in general very useful but also

limited.

Similar as voxel-based morphometry (VBM) [118, 119], valid conclusions us-

ing VBA approach depends greatly on good alignments of brain structures by spa-

tial registration and the choice of kernel width for spatial smoothing [120–123]. On

one hand, a perfect spatial registration should not only resolve topological variabil-
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ities but also perform exact alignments of the fine structures. However, this kind of

spatial registration is often not guaranteed in reality [124–126]. For example, the

differences in ventral size between groups may introduction bias into spatial align-

ments and therefore may introduce false-positive results. Simon et al [113] found

that the changes in FA may be due to the differences in ventral size when they exam-

ined the changes in the brains of chromosome 22q11.2 deletion syndrome children.

On the other hand, smoothing is often performed to reduce the effects of misalign-

ments and improve the sensitivity to abnormalities if the kernel width of smoothing

is chosen right to the extent of the structure of interest. However, the choice of the

smoothing kernel width is often arbitrary and has been found to have impact on

the final results [126, 127]. Moreover, the smoothing introduces another issue - the

increasing of effective partial volume, especially in the voxels that are localised at

the interfaces of different tissue types.

The whole brain searching in VBA is ideal for exploratory studies but this

wide spatial extent may bring up issues such as reducing the statistical power. Due

to the expenses of MRI scans and the accessibility of MRI scanners, modern MRI

studies usually have only tens or hundreds of participants. Compared with the tens

of thousands of voxels that we perform group comparisons or correlation analysis,

this is rather limited and the localised subtle changes may not be picked up after

correcting multiple comparisons.

2.4.2 Tract-based spatial statistics (TBSS)

To deal with those issues in VBA analysis, a fully automated voxel-wise approach

- Tract-based spatial statistics (TBSS) [128] was proposed in 2006. It combines

both the advantage of automated whole brain searching in VBA and the anatomical

specificity in tractography and has been one of the most popular approaches since

then. In TBSS, all the statistical analyses are limited on the ”white matter skeleton”.

White matter skeleton is identified by searching for the centres of all white matter

fiber bundles that are common across the subjects in the cohort of a study. The main

steps of TBSS are:

• Step 1: Create the group-specific white matter skeleton using the skeletonized
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map of the average FA image in the common space.

– Align FA maps of all subjects to a common target using nonlinear spatial

registration.

– Create the group mean FA map of all aligned FA maps.

– Apply a “thinning” procedure to the group mean FA image (no maximal

suppression perpendicular to the relevant tract) and mask out those ar-

eas with low FA values and/or high individual variability of FA values.

The final “skeletonized” group mean FA map is the group-specific white

matter skeleton.

• Step 2: Create the “skeletonized” FA map for each subject by projecting each

aligned FA map onto the group-specific white matter skeleton.

The voxels with the highest FA value are considered as the local centers of

the white matter tract, and therefore this step searches for the maximum FA

value in the perpendicular direction of the nearest relevant tract on the group-

specific skeleton. For each subject, all the voxels on the skeleton are valued

as the same FA values from the respective local center of the nearest relevant

white matter tract. The same projection is applicable for other DTI metrics,

such as MD, AD and RD. By the end of this step, the “skeletonized” diffusion

MRI metric maps are created.

• Step 3: Perform voxel-wise statistical analysis across subjects on the group-

specific white matter skeleton.

2.4.3 Tractography

By integrating the direction information of each voxel, tractography, which is also

referred to as “fiber tracking”, reconstructs the 3D white matter tracts that connects

different brain areas (see [129] for a review). The fiber directions in each voxel

are estimated by diffusion MRI models and fiber tracking is a process of drawing

streamlines between cortical/subcortical structures.

A typical fiber tracking algorithm usually consists of 4 main steps:
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• Identify areas between which the fiber tracking will be performed;

• Place seeds (i.e., starting points for the next step - propagation) within those

areas;

• Carry out the propagation (i.e., a process that identifies all the voxels along

the tract) and draw streamlines;

• Terminate the propagation.

The areas for fiber tracking can be manually drawn, or defined according to the

projections from atlas in other MRI modalities (e.g., T 1), or whole brain. The seed

placement for fiber tracking is usually automated, and the number of seeds is often

one or more.

For propagation, two kinds of algorithms are used, deterministic [130,131] and

probabilistic fiber tracking [53, 132]. The deterministic fiber tracking reconstructs

streamlines that connect brain areas while the probabilistic fiber tracking takes the

uncertainty of the estimation of fiber directions into account and provides a prob-

ability map of the likelihood that a voxel belongs to a fiber tract. To improve the

robustness of the fiber tracking results, a few well-defined criteria to terminate fiber

tracking are often used, including the thresholds of minimum FA value and an ap-

propriate step size as well as the turning angle.

2.4.4 ROI analysis

ROI analysis is often chosen for studies with clear hypotheses because it improves

the statistical power by decreasing the number of multiple comparisons from tens

of thousands of voxels into tens or a couple of ROIs. It also has a relatively higher

tolerance of misalignments than VBA [133]. In ROI analysis of diffusion MRI met-

rics, we compute the representative value/curve such as mean, median or histogram

across all the voxels for each ROI. These values/curves in the chosen ROIs are the

inputs for the further statistical analysis.

The ROIs can be defined in many ways, such as definitions in the white mat-

ter atlas, manually drawing, tractography and so on. The manual delineation of
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ROIs is subjective and very time-consuming, and its accuracy greatly depends on

the experience and anatomical knowledge of the one who performs the drawing.

Tractography has been demonstrated to be able to reconstruct the major white mat-

ter bundles. However, its accuracy is still under debate [134, 135]. Anoter choice is

to define ROIs based on a white matter atlas. White matter atlases are often created

by experts with a good knowledge of the neuroanatomy. Therefore, an atlas-based

approach should theoretically minimise the potential impact of the knowledge of

the one who defines the ROI on the final results and improves the comparability of

findings across studies. However, this approach involves a registration step between

the white matter atlas and the diffusion MRI metric maps. The accuracy of this step

is key on the validity and reproducibility of the results.





Chapter 3

White matter in neurodegenerative

diseases: An overview

3.1 White matter in the human brain
White matter in the brain refers to the fibre tracts that link cortical and subcortical

brain areas, and mainly consists of glial cells and axons with or without myelin.

3.1.1 White matter microstructure

From a MR imaging point of view, the white matter microstructure in a voxel is

composed mainly of axons and the intra-axonal structure, myelin, glia cells, extra-

cellular space, and the vascular system (illustrated in Figure 3.1).

3.1.1.1 Axons

Axons in white matter connect to somas in cortical and subcortical regions, and play

an important role in brain function.

One important axonal feature is its diameter, and the relationship between the

axon diameter and the signal transmitting speed can be approximately considered

as linear [138]. That is to say, the larger the axon diameter is, the faster the signals

will transmit. Ideally, the more the axons with large diameters are in the human,

the faster the signal transmission will be. However, due to the constraints of bio-

logical factors such as brain volume and energy supply, human brain is not mainly

constituted by giant axons but instead small axons [139]. In the human brain, axon

diameter ranges from 0.1 um to 10 um [140]. Myelinated axons often have a diam-
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Figure 3.1: An illustration of the microstructure in a voxel of human brain white matter
from a view of MR imaging. Elements were adapted from [136] and [137]

eter that is more than 0.2 um, and a small number of giant axons with a diameter

bigger than 3 um have been found in fiber tracts such as corpus callosum [141,142]

and corticospinal tract [143]. Interestingly, there is a variation of axon diameter

even within the same tract. For example, previous studies found that the middle

body of corpus callosum have a large diameter than the genu of corpus callosum.

Moreover, the axons in its splenium occasionally have the largest diameter but often

have the smallest mean value of the diameter [141, 142, 144, 145].

Another important morphological feature is the density of axons. The decrease

in axon density has been found to be related with ageing [146] and neurodegener-

ative diseases such as multiple sclerosis [147] and AD [148]. In addition, the spa-

tial organisation of axon alignments may carry information about disease pathol-

ogy [149]. For example, the histological measures in a recent study showed that

MS patients had a reduced variability of axon orientations in the white matter of the

spinal cord compared with controls [107].
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3.1.1.2 The intra-axonal space

The membrane of axons form a unique intra-axonal space [14]. In this space, there

are proteins, macromolecules, filaments and mitochondria. Filaments maintain the

shape and the internal organisation of the axons [150]. The microtubules are the

structures that support the material transportation from the cell body to the axon

terminals [150].

3.1.1.3 Myelin

Myelin refers to the sheath that wraps around the axons with a thickness of about 10

nm [14]. It consists of 80 percent lipids and 20 percent proteins [14]. The segments

of myelinated axons repeat at a length of about 12 nm [151], and the gaps between

those segments are known as “nodes of Ranvier” [152].

In neural tissue, myelin supports a fast transportation of information along the

axons [138]. Notably, not every axon in the brain is myelinated. For example,

only about 30% of the axons in the corpus callosum have myelin [153]. Compared

with unmyelinated axons, myelinated axons are to a higher degree, physiologically

specialized [153].

3.1.1.4 Glial cells

Glial cells are the non-neuronal cells in central nervous system. They do not pro-

duce action potentials, and provide support to neural activities [154]. However, this

view has been shifted as it has been found that astrocytes, one subtype of glial cells,

have a key role in modifying the synapses in the brain [155].

In the central nervous system, there are various glial cell subtypes, includ-

ing microglia and macroglia (astrocytes, oligodendrocytes, ependymal cells, and

radial glia) [136]. Microglia are immune cells that protect the brain against dis-

eases. As for the macroglial cells, astrocytes have a unique star shape and maintain

the working environment of neurons, especially synapses; oligodendrocytes are the

producers of the myelin; ependymal cells are involved in the processing of creat-

ing CSF; radial cells are the “stem cells” in the brain that can create neurons and

provide a scaffold for neurons to radially migrate in the cortex (see [136] for more
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information).

3.1.1.5 Extra-cellular space

Extra-cellular space, as the name suggests, refers to the space outside the cells. The

fraction of this space was reported to be 15-35% in the non-human adult brains

using invasive microscopy techniques [156]. However, the techniques available are

invasive and always involve a process of fixing neural tissue, which often introduce

tissue shrinkages [141, 142, 145, 157]. Therefore, there is still no accurate way of

measuring the volume of this space until now.

3.1.1.6 Vascular system

There are three kinds of vascular system in the brain, including veins, arteries and

capillaries [14]. They can produce an effect of water-dispersion similar as water

diffusion. This effect is more rapid than water diffusion, and can be measured non-

invasively by a technique “intravoxel incohorent motion imaging” [158].

3.1.2 White matter tracts

White matter tracts in the brain have been popularly classified into 3 groups - com-

missural fibers and association fibers as well as projection fibers according to their

origins and terminals [159]. This approach was first proposed by a psychiatrist -

Theodore Meynert at the second half of the 19th century [160].

3.1.2.1 Commissural fibers

Commissural fibers refer to those that connect the brain areas between the two hemi-

spheres, and include corpus callosum and anterior commissure as well as posterior

commissure [159]. Take corpus callosum as an example. It is the biggest fiber

bundles in the brain, and carries the major information exchange between the two

hemispheres.

3.1.2.2 Association fibers

Association fibers are the white matter connections within each hemisphere [159].

Based on their length of the subcortical course and the origins and terminals, we

can further divide them into short fibers - U-shape fibers and long fibers - long
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association bundles. U-shape fibers are the connections between gyri in the near

neighbourhood. In contrast, long association bundles connect gyri in a more widely

distributed space. For example, superior longitudinal fasciculus connects the frontal

and occipital lobes.

3.1.2.3 Projection fibers

Projection fibers consist of afferent and efferent fibers that connect cortical areas

with subcortical structures and the spinal cord [159]. For example, the white matter

fibers connect the thalamus and the cortex.

3.2 White matter pathology in neurodegenerative

diseases

3.2.1 Neurodegenerative diseases

Neurodegeneration refers to the phenomenon that the neurons in the nervous sys-

tem suffer from structural and/or functional losses observed in neurodegenerative

diseases [161]. Neurodegenerative diseases often occur from middle to later stages

of life, and include progressive neurological disorders with heterogeneous clinical

and pathological expressions [162].

In the last couples of years, neurodegenerative diseases have caused great phys-

ical and financial burdens of patients, their families and to society. For example, in

Europe, there are approximately 7 million people with dementia, and the cost of car-

ing for them is about 130 billion euros per annum [163]. The situation is becoming

worse, as this population with dementia is expected to double every 20 years [163].

Sadly, there is still no effective solution to halt or slow down the progression of such

neurodegenerative processes.

Neurodegenerative diseases include dementia (its most common type -

Alzheimer′s disease, (AD)), Parkinson′s disease (PD), Huntington′s Disease (HD)

and so on. Although they have clear differences in the clinical symptoms and the

pattern of disease progression, they seem to share some common neurodegenera-

tive pathology, such as synapse loss [164], abnormal axonal transport [165, 166]
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and so on. Such neuropathology might be caused by abnormal aggregations of

disease-specific mis-folding protein (see [162] for a review).

So far, the causes of these neurodegenerative diseases are not still well un-

derstood. However, genes do play a role in the pathogenesis of neurodegenerative

diseases [1]. HD is caused by abnormal CAG trinucleotide repeats in the HTT

gene [167]. The discovery of this HTT gene has motivated researchers in this field

to identify genes that cause the neurodegenerative diseases (see [1] for more about

the story). For AD, there are 3 fully-penetrant genes (APP, PSEN1, and PSEN2)

that have been shown to be implicated in the disease [168, 169], and one risk fac-

tor - APOE ε4 [170]. Multiple genes are also associated with the development of

PD [171].

Here, my work focused on the two characteristic neurodegenerative disease -

young onset AD (YOAD) and Huntington’s Disease (HD). The pre-manifest stage

of HD individuals can be identified by predictive genetic testing years before the

clinical onset [167]. Therefore, pre-manifest HD is an ideal candidate to represent

the preclinical stage of neurodegenerative diseases. AD is the most common type

of dementia, and has been studied extensively so far. According to the age at the

disease onset, AD can be grouped into YOAD (also referred as early onset AD) and

late onset AD (LOAD). The disease progression in YOAD was found to be faster

than LOAD [172–174]. This makes YOAD a better disease model than LOAD for

our exploratory study on testing the feasibility of NODDI in tracking the longitu-

dinal progression of white matter pathology over a relatively short period of time.

The following sections give a brief introduction to the selected disease models.

3.2.1.1 Huntington′s disease

HD is an autosomal dominant inheritance disease, and its occurrence in western

countries is about 10.6-13.7 cases per 100, 000 [175]. More than 36 CAG trinu-

cleotide repeats in the HTT gene largely increases the risk of developing HD in the

adulthood [176]. And more than 39 CAG repeats means a fully penetrant onset for

human beings [175].

The onset of HD often occurs at the middle or late stage of life (Figure 3.2).
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Figure 3.2: The clinical history of Huntington′s disease (adapted from [167])

HD patients have characteristic atrophy in the subcortical nuclei of the brain, in-

cluding caudate, putamen, globus pallidus and nucleus accumbens [175]. Clini-

cally, HD patients exhibit a combination of motor, cognitive and behavioural symp-

toms [167,175]. Movement disturbance in HD is characterized by chorea, the occur-

rence of which is often regarded as the criteria of the clinical onset [167]. Cognitive

dysfunctions in HD include impairments to recognition of emotion, visuospatial and

executive function, visual working memory, processing speed, and smell identifica-

tion [177–180]. Neuropsychiatric symptoms in HD are various, including apathy

(most common, 28% occurrence), anxiety, irritability, depression, obsessive com-

pulsive behaviours and pyschosis [180–183].

3.2.1.2 Young onset Alzheimer′s disease

AD is the most common type of dementia, and its incidence is about 1-3% in the

aging population that is over 65 years old [184–187]. AD can be caused by the
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abnormal mutations of gene - APP, PSEN1, or PSEN2, known as familial AD [188].

However, familial AD is relatively rare and the majority of AD patients belong to

sporadic AD [188].

The onset of AD often occurs at a mean age of about 80 years old (Figure 3.3),

caused by the abnormal accumulations of Aβ proteins in the brain [189]. The brain

atrophy in AD patients often starts from the frontal and temporal lobes, and then

progresses to the rest of the brain [189].

Figure 3.3: The clinical history of Alzheimer′s disease (adapted from [189])

Conventionally, the clinical diagnosis criteria for YOAD is that patients have

the clinical onset of AD before the age of 65 years old [190]. Typically, YOAD pa-

tients have less vascular brain damage compared with LOAD patients but a heavier

burden of neurofibrillary tangles, synapse loss, and neurite plaques [191].

3.2.2 White matter pathology in neurodegenerative diseases

The axonal pathology in white matter that is responsible for triggering the onset

of neurodegenerative diseases has been demonstrated to emerge decades before the

signs of clinical symptoms [192, 193]. Especially, the abnormal axonal transport

has been identified to be a feature shared by a variety of neurodegenerative diseases

[165, 166, 194], including AD [195, 196], HD [197], Parkinson’s disease [198] and
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so on.

Axonal transport refers to the transportation of materials between cell bodies

and synaptic terminals via the cellular cytoskeleton of axons [199]. In neurodegen-

erative diseases, the abnormal accumulations of proteins have been proposed to be

an early toxic marker of the disease pathology [194]. And these proteins disrupt

the fast axonal transport, which is one of the essential processes for the survival of

neurons [194].

In HD, the cellular pathology relevant to the abnormal axonal transport are

the disruptions of both anteorgrade and retrograde transport [197] as well as ax-

onal swellings [200]. In AD, the relevant cellular pathology include the disruption

of anterograde transport [201] and the axonal blockage [202] (see [166] for more

details on axonal transport in neurodegenerative diseases and the relevant cellular

pathology). These evidences highlight the importance of studying and monitoring

the progression of white matter pathology in neurodegenerative diseases.

3.2.3 Diffusion MRI in studying the white matter abnormalities

in neurodegenerative diseases

In the last few years, a lot of attention has been paid to studying white matter ab-

normalities in neurodegenerative diseases. Especially, diffusion MRI techniques,

which provide valuable information on the in vivo microstructural configurations

via measuring water diffusion non-invasively, have been widely used in clinical

neurodegenerative studies [203].

There are a lot of reviews on the role of diffusion MRI in studying impaired

white matter in neurodegenerative diseases, such as detecting abnormal white mat-

ter (see [204–208] for reviews), identifying impaired connectivity (see [209, 210]

for reviews), evaluating altered organisations of brain network (see [167, 211–214]

for reviews), providing potential markers for clinical diagnosis and predicting the

long-term outcomes [215–220] and so on.

More specifically, in pre-manifest HD, diffusion MRI studies have identified

increased diffusivity and decreased FA in CC, internal/external capsules, cingulate,

thalamic radiations, cerebral peduncles, fronto-occipital fasciculus, cortico-striatal
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tracts and fronto-thalamic tract [221–225]. In AD, diffusion MRI studies found

increased diffusivity and decreased FA in the temporal, parietal and frontal white

matter, the corpus callosum and the longitudinal association fiber tracts [226–230].

The longitudinal changes in DTI metrics of AD have been found over time in the

fornix, corpus callosum, inferior cingulum, hippocampal cingulum, internal and

external capsule, corona radiata, posterior thalamic radiation, superior and inferior

longitudinal fasciculus, fronto-occipital fasciculus, tapetum and uncinate fasciculus

[231–234].
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Image acquisition, preprocessing,

image analysis in a clinical study

using diffusion MRI

This chapter aims to cover the key imaging factors to be considered when designing

and performing a clinical study using NODDI and DTI (illustrated in the flowchart

of Figure 4.1). The first section discusses about acquisition protocols and the im-

portance of pre-testing the protocols. The second section describes the key steps

of imaging processing used in all our studies - from image quality control to the

quantitative analysis of diffusion MRI metrics.

4.1 Image acquisition
A successful MRI acquisition depends on a lot of factors. This section focuses on

the optimised acquisition protocols for NODDI and DTI first and then the impor-

tance of performing pre-testing for MRI scans.

4.1.1 Protocol design

The diffusion properties of the brain measured by MRI could fully reflect the mi-

crostructural configurations when measured with a high diffusion gradient along all

possible directions in 3D space. This demands a long scan time, which is not only

expensive but also infeasible for human participants. Therefore, for clinical stud-

ies, it is important to optimise the parameters of the acquisition protocol so that a
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Figure 4.1: The flowchart of the steps in an imaging study

relatively small collection of diffusion MRI measurements within a tolerable scan

duration could provide a good estimation of diffusion MRI metrics.

The key parameters of a diffusion MRI protocol are diffusion weighting factor

(b value), the number of diffusion weighted non-colinear directions, the duration of

the gradient pulses (δ ), the diffusion time (∆), TR/TE, Field of View (FOV), image

resolution, and the total acquisition time.

The selected b value in DTI studies typically ranges from 700 to 1000 s/mm2,

and the standard b value for DTI acquisition in clinical studies is 1000 s/mm2 [235].

Theoretically, the estimation of a 2nd-order tensor requires an acquisition with at

least one image without diffusion weighting (b= 0 s/mm2) and 6 non-colinear dif-

fusion weighted directions. However, a number of simulation studies showed that

using more than 6 directions could not only reduce the errors of the estimated DTI

metrics [236, 237], but also improve the accuracy of the estimated principle direc-

tion of DTI for fiber tracking [238–244]. In vivo human brain data also showed the

similar improvements of estimating fiber orientation for fiber tracking with more

than 6 directions [245]. Accordingly, 30/60/64 non-colinear directions are often
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sampled in clinical studies [246]. The typical ranges of TE and TR are 50-70 ms

and 8500-12000 ms respectively, and the voxel size is often between 2 mm and 2.5

mm for each dimension in the 3D space. A typical whole brain DTI acquisition

takes about 5-10 minutes. For our studies, we chose a DTI protocol that has a b

value of 1000 s/mm2 with 64 non-colinear directions and a resolution of 2.5mm

isotropic. The total acquisition is less than 10 minutes.

For NODDI, an acquisition protocol optimised for clinical studies was pro-

posed in its original paper [7] based on a framework for the experiment design

diffusion MRI studies [102]. The optimised clinical protocol for NODDI consists

of 2 shells (b=711 s/mm2 with 30 directions and 2855 s/mm2 with 60 directions,

TR/TE= 78/12500 ms) with a resolution of 2mm isotropic, implemented in a Philips

3T scanner with a the |G|max = 65mT/m. Its total acquisition time is about 25

minutes. For our study, we used Siemens scanners, and adapted the b values into

700 s/mm2 and 2000 s/mm2 with 32 and 64 non-colinear directions respectively.

Moreover, as partial volume effect might be worse in ageing and neurodegenerative

diseases [6], we added another shell with a b value of 300 s/mm2 acquired along

8 directions. This might improve the quality of estimating NODDI metrics, espe-

cially for FISO, as signals at low b values contain more contributions from the free

water diffusion. In order to avoid the contamination from perfusion effects, we did

not choose a b value lower than 300 s/mm2 [247]. Lastly, we used a voxel size of

2.5mm isotropic and the acquisition time is around 15 minutes.

4.1.2 Pre-testing MRI scans

Although MRI scans are expensive, it is of great importance to pre-test the acqui-

sition protocols on one or two subjects and perform image quality control for those

datasets before the actual study starts. This is essential to avoid acquiring prob-

lematic images with artefacts caused by the incorrect settings of the acquisition

protocol.
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4.2 Image processing
After MR image acquisitions, image processing follows. The main steps used in

our studies consist of: 1) quality control; 2) motion and eddy-current distortion

correction; 3) elimination of the non-brain tissue; 4) model fitting; 5) spatial nor-

malisation; 6) quantitative analysis. Each step in the processing pipeline (Figure

4.2) is described in detail later.

Figure 4.2: An illustration of the image processing pipeline

4.2.1 Quality control

Image Quality Control (QC) is an essential step to ensure that no problematic im-

ages with artifacts are included in the image analysis and improve the reproducibil-

ity of the findings in a study [248]. A diffusion MRI dataset with good quality usu-

ally has proper brain coverage, minimal or no artifacts (see chapter 2.2.2.2), little

motion either within a volume or across the images along different diffusion weight-

ing directions, correct tissue contrasts as described in the online tutorial [249]. We
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used manual QC methods in all our experiments. QC should be done within one

or two days after the MR image acquisition so that if the dataset does not pass the

QC - the researchers can either arrange re-scan this participant or recruit new par-

ticipants. Details on how we check diffusion MR images can be found in an online

tutorial [249].

4.2.2 Motion and eddy-current distortion correction

Head motion often brings up mismatching problems, i.e., the coordinates of one

voxel may not stay the same throughout the whole dataset.

Eddy-current distortion refer to the unrealistically distorted geometry of the

brain introduced by the magnetic gradients caused by time-varying eddy currents,

as described in chapter 2.2.2.2. In particular, this distortion is more severe for rapid

imaging sequences. As for diffusion MRI, the fast switching of diffusion weighted

gradients with high amplitude and long duration produces larger time-varying gra-

dient fields, which interfere with the spatial encoding gradients and therefore intro-

duce bigger geometrical distortion of the brain [39].

Both head motion and eddy-current distortion introduce bias in the estimated

diffusion MRI metrics and the final conclusions. Therefore, it is essential to correct

for both artifacts before any actual image analysis.

Registering the diffusion weighted images to the b0 images is a popular ap-

proach to correct for head motion and eddy-current distortion. However, there is a

difference in the signal intensities between b0 images and diffusion weighted im-

ages. And this difference may introduce bias into the direct registration between the

diffusion weighted images and the b0 images used in the most common used ap-

proach - FSL “eddy correct” [250]. Here, our approach for motion correction was a

linear registration using FLIRT [250–252]. We first estimated the affine transforma-

tion matrixes by registering each b0 image to the first b0 image. Then we registered

every diffusion weighted image to the first b0 image using the transformation matrix

estimated for registering its closest b0 image to the first b0 image. This approach

was also used in a previous study on NODDI in the spinal cord [253] and has been

demonstrated to be the most beneficial for diffusion MRI image processing [254].
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To have a better estimation of motion, instead of acquiring all the b0 images in the

first or last few volumes, we designed the acquisition of all b0 images in a way that

one b0 image is acquired after every 8 diffusion weighted images.

The output transformation matrix by FLIRT is an affine transformation ma-

trix estimated, and equals to “rotation matrix * skew matrix * scale matrix”. The

rotation matrix describes the rotational motion along the 3 axes, and can be mathe-

matically written as “Rx*Ry*Rz”. Rx can be mathematically written as:

Rx =


1 0 0 0

0 cx sx 0

0 −sx cx 0

0 0 0 1

 (4.1)

where cx = cos(θ), sx = sin(θ), θ is the angle that the head rotates away from the

head in the reference image along the x axis. Ry and Rz can be represented in a

similar mathematical form. The skew matrix can be mathematically written as:


1 kxy kxz 0

0 1 kyz 0

0 0 1 0

0 0 0 1

 (4.2)

where kxy, kxz and kyz are the three skew parameters. As it is a registration between

b0 images of the same subject, ideally the scaling matrix here is an identity matrix.

4.2.3 Eliminating the non-brain tissue

The non-brain tissue here refers to those structures such as skull, neck, fat, mus-

cle and so on. Masking out the non-brain tissue is necessary especially for brain

segmentation and image registration [255]. In our case, since NODDI fitting using

the available matlab toolbox [256] is very time consuming, excluding the non-brain

tissue can save a lot of time. This can be quite beneficial, especially for large studies

that recruits hundreds and thousands of participants.

In our study, we excluded non-brain tissue using a brain mask created using
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the Brain Extraction Tool (BET) [255]. This tool uses an approach that exploits

the local intensity changes and is applicable to images acquired with a collection

of MRI sequences (T1, T2 and T2*). Notably, BET provides an option to specify

the fractional intensity threshold to estimate the brain outline. And I often chose

a threshold of 0.15 as the starting one because according to my experience, this

threshold often gives a relatively good result for clinical datasets. After finishing

running BET, we checked and reassured the coverage of the brain mask. If the

mask either does not cover the whole brain or includes too many non-brain voxels,

we would adjust this threshold and re-run BET until we think the mask looks fine.

4.2.4 Model fitting

Both NODDI and the tensor model were fitted to estimate the NODDI and DTI

metrics respectively using the NODDI Matlab toolbox [256] and FSL [108]. The

details of the algorithms for NODDI fitting and DTI fitting were described in chap-

ter 2.3.2.2 and chapter 2.3.1.2. NODDI fitting using this matlab toolbox is time

consuming. And it is recommended to plan enough time for the fitting before run-

ning the quantitative analysis.

When the fitting is finished, it is important to check the NODDI metric maps,

especially for the first few scans in a study. It helps the researchers assess if the

settings of the sequences are appropriate.

4.2.5 Spatial normalisation

Spatial normalisation aligns the MRI volumes from their native spaces (in which

the MRI images are acquired) into a standard space with standardised coordinates.

This allows us to perform quantitative analyses such as group comparisons and

identifying the individual variations at both the voxel-wise and ROI levels. In spatial

normalisation, a certain volume is often chosen as the target to warp other volumes

onto. A popular choice of this target is a template in a standard space (see [257] for

a review on the templates available).

Although the standard templates have been extensively used in neuroimage

analysis, a study-specific template is demonstrated to be beneficial as it could min-
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Figure 4.3: The flowchart of spatial normalisation using DTI-TK. A. Constructing the
study-specific tensor template for cross-sectional studies; B. Constructing the
study-specific tensor template for longitudinal studies.

imise the bias caused by the differences in neuroanatomy between the template and

the brain of each individual [258, 259]. The creation of a study-specific template is

an iterative process. The first step is usually to initialise the study-specific template

by warping all the brain volumes onto a template or a target volume. Then we reg-

ister all the volumes from the native space onto this initial study-specific template.

This process is often repeated again and again until the differences between the tem-

plate and all the volumes in this study reach a certain threshold. By the end of these

iterations, we have created a template that is most likely to reflect the similarities in

brain anatomy within the population in the study. This template is often referred to

as a study-specific template.

For diffusion MRI, to create a study-specific template, we can use either single-

channel information, for example, a FA map [108], or multi-channel information
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such as tensor volumes [125], spherical harmonics [260] and so on. The esti-

mation of the spherical harmonics requires high b value datasets, and therefore

it is not an appropriate choice for our clinical datasets. Tensor-based registration

approaches have been demonstrated to perform better than FA-based registration

both cross-sectionally and longitudinally [261, 262]. Therefore, we implemented

a tensor-based framework for the spatial normalization using DTI-TK [263, 264]

in all our studies as illustrated in Figure 4.2. The template we used for initialis-

ing the study-specific template is a template created based on an ageing population

“ixi aging template.nii” [265]. Finally, we warped both NODDI metric maps and

DTI metric maps to the template space.

4.2.6 Quantitative analysis

With all the NODDI and DTI metric maps aligned in the template space, we ex-

tracted the representative values of NODDI and DTI metrics based on the spatial

unit in the following quantitative analyses.

In our case, as all of our experiments are exploratory studies, we first exploited

the most popular voxel-wise analysis method - tract-based spatial statistics (TBSS,

described in chapter 2.4.2). The white matter skeleton was created based on the

mean FA map of the whole cohort. We then projected all the NODDI and DTI met-

ric maps onto the skeleton. To further investigate the clinical relevance of NODDI,

we then computed the mean NODDI metrics of selected white matter ROIs defined

in the template space and explored the relationship between NODDI metrics and

the clinical measures of disease progression or cognitive performances.

As for the statistical analysis, for TBSS, we used “glm gui” to set up the gen-

eral linear model for group comparisons while for ROI analysis, we used matlab

to set up the general linear model for correlation analysis and group comparisons.

Further details were described in the methods of all the following studies.





Chapter 5

NODDI in the pre-manifest stage of

Huntington′s Disease

5.1 Introduction

In this chapter, we aimed to evaluate the feasibility of translating NODDI into study-

ing in-vivo white matter pathology at the preclinical stage of neurodegenerative dis-

eases. We also compared NODDI over the standard diffusion MRI technique - DTI

in terms of the sensitivity to detecting white matter abnormalities at this stage.

Here, we took pre-manifest HD as a disease example representing the pre-

clinical stage of neurodegenerative diseases. Huntington’s disease is a monogenic,

neurodegenerative disorder, characterised by motor, cognitive and neuropsychiatric

disturbance [266]. As it is both autosomal-dominant and fully penetrant, HD gene-

carriers can be identified many years prior to clinical onset via predictive genetic

testing [167]. This provides us a window to evaluate the early changes in the brain

at the preclinical stage of neurodegenerative diseases.

Studying white matter could greatly shed light on deepening our understand-

ing of the disease pathology. Abnormal white matter volumes have been identified

in major white matter bundles of both pre-manifest HD individuals and HD pa-

tients using T1-weighted imaging [267–269]. The emergence of such volume loss

in white matter at the macrostructural level is likely to be preceded by subtle alter-

ations at the microstructural level. Therefore, studying white matter microstructural
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configurations in preclinical stage of HD might enable us to probe much earlier

abnormalities due to the neurodegeneration and therefore provide a much earlier

picture of the disease pathology in the brain.

DTI has been used to examine white matter microstructural changes in pre-

manifest HD participants [167]. Interest has mainly focused on two key metrics

of water diffusion at the microscopic level: fractional anisotropy (FA) and mean

diffusivity (MD), estimating respectively the extent of directional dependence and

the magnitude of water diffusion [13]. Previous studies have shown that in a number

of white matter tracts, including the corpus callosum and internal capsule in addition

to cortico-striatal white matter tracts, pre-manifest HD individuals had increased

MD and decreased FA compared with controls [221–225]. As we described in

chapter 2, whilst sensitive to white matter microstructural changes, DTI metrics

lack specificity to inform on the underlying cellular sources of these white matter

changes and therefore specific disease mechanisms. DTI conflates the effect on

water diffusion from multiple sources of tissue microstructure, e.g. axonal density

(the packing density of axons) and axonal orientation distribution (the way in which

the axons spread in space relative to one another). Thus, though axonal loss has

often been suggested as the mechanism underpinning DTI findings in pre-manifest

HD studies, it remains unclear whether other alterations, such as changes to patterns

of axonal organization may also contribute to such pathologies.

More specific biological features of white matter microstructure can be investi-

gated using more recent advances in diffusion MRI techniques [14]. Most recently,

these advances have been made accessible for clinical research with the develop-

ment of NODDI [7]. NODDI disentangles the heterogeneity of the tissue compo-

sition within each voxel by partitioning the MR signal into different components

reflecting distinct tissue features: neurite (dendrites and axons) density, their orien-

tation distribution, and free water contamination (e.g. CSF partial volume). Using

this approach, changes in axonal density can be distinguished from those in axonal

spatial organization, while removing the potentially confounding effect of free wa-

ter, which increases in areas of tissue degeneration [6]. NODDI has seen widespread



5.2. Research dissemination 85

uptake to help ascertain cellular substrate of white matter alterations, including ap-

plications to neurological disorders, such as Focal Cortical Dysplasia [270], young

onset Alzheimer’s disease [271], first-episode psychosis [272] and Parkinson’s dis-

ease [273], but is yet to be applied in HD.

We hypothesised that 1) NODDI could detect white matter abnormalities in

pre-manifest HD individuals compared to normal controls; 2) NODDI could pro-

vide a better depiction of white matter pathology in pre-manifest HD than DTI.

To test these hypotheses, with a cohort of thirty-eight pre-manifest HD individuals

and forty-five controls from the Track-On HD study [274], we quantified group

differences of NODDI & DTI metrics over the whole brain white matter using

TBSS [128]. To evaluate the clinical relevance of NODDI, within the pre-defined

white matter ROIs, we evaluated the feasibility of NODDI to track the disease pro-

gression by correlation analysis between NODDI metrics and clinical scores of dis-

ease progression, and calculated sample sizes as references for future clinical trials.

5.2 Research dissemination

We presented the preliminary results of this work at the ISMRM 2015. And we then

finished analysing the whole cohort and this work has been published on Annals of

Neurology.

• Reduced Neurite Density in Pre-manifest Huntington′s Disease Population

detected by NODDI, J Zhang, S Gregory, RI Scahill, A Durr, DL Thomas,

S Lehericy, G Rees, SJ Tabrizi, H Zhang, TRACK-ON HD investigators,

International Society for Magnetic Resonance in Medicine, 2015.

• In vivo characterisation of white matter pathology in pre-manifest Huntington′s

disease. J Zhang*, S Gregory*, RI Scahill, A Durr, DL Thomas, S Lehericy,

G Rees, SJ Tabrizi, H Zhang, TRACK-ON HD investigators, Annals of

Neurology, 2018 (* joint first author)



86 Chapter 5. NODDI in the pre-manifest stage of Huntington′s Disease

5.3 Methods

5.3.1 Participants

40 pre-manifest HD gene-carriers and 52 controls were recruited at two HD re-

search centres (one in Paris and the other in London) as part of the Track-On HD

study. Pre-manifest HD subjects had a Unified Huntington′s Disease Rating Score

(UHDRS) Total Motor Score (TMS) [275] of <5; a diagnostic confidence score of

<4, and were required to have a CAG repeat length no less than 40 and a disease

burden score (DBS) [276] greater than 250 at recruitment. Controls were spouses or

gene-negative siblings of the pre-manifest HD gene carriers. The exclusion criteria

for both groups included manifest disease, age below 18 or above 65, major psychi-

atric, neurological or medical disorder or a history of severe head injury. For fur-

ther details, see previous work [274]. Cumulative probability to onset (CPO) [277]

and TMS were assessed by experienced clinicians and used as clinical measures

of disease progression. The local ethics committee approved this study and each

participant signed written informed consent.

5.3.2 Diffusion MR image acquisition

Participants were scanned using the same type of 3T Siemens Trio scanners in both

centres. A twice-refocused spin-echo echo-planar imaging sequence was used to

minimise the eddy-current distortions for both NODDI and DTI acquisition.

5.3.2.1 The NODDI acquisition

The NODDI protocol is: multiple b-values (2000, 700 and 300 s/mm2) with 64,

32 and 8 non-colinear diffusion-encoding directions respectively; 14 b=0 s/mm2

images; voxel size=2.5×2.5×2.5 mm3; TR/TE = 7000 ms/ 90.8 ms; 55 slices; ac-

quisition time about 15 mins.

5.3.2.2 The DTI acquisition

The DTI protocol is: a b-value of 1000 s/mm2 and 42 non-colinear diffusion-

encoding directions; 7 b=0 s/mm2 images; voxel size=2×2×2 mm3 isotropic;

TR/TE = 13100 ms/ 88 ms; 75 slices; acquisition time about 9.5 mins.
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5.3.3 Preparations of NODDI and DTI metric maps

The NODDI and DTI metric maps were computed in the way as we listed in Chapter

4. We did 1) quality control of the image datasets; 2) motion and eddy-current

distortion correction; 3) exclude non-brain tissue by creating a brain mask and check

whether the mask covers the brain properly; 4) model fitting for both NODDI and

DTI; 5) registration of each subject into the group-specific tensor template using

DTI-TK [263].

5.3.4 Statistical analysis

5.3.4.1 The general linear model for group comparison

We used a general linear model (GLM) for group comparison. The dependent vari-

able is the NODDI/DTI metric of either each voxel on the white matter skeleton or

each ROI. The main factor is the group type, “Pre-HD” standing for pre-manifest

HD individuals and “NC” standing for normal controls. We includes age, gender

and scan site as covariates. For continuous variables like age, we demeaned the vari-

able and converted into a vector. For categorical variables - gender and study center,

we used 0 to represent male and 1 to represent female, and used 0 to represent the

research centre in London and 1 to represent that in Paris.

5.3.4.2 TBSS Analysis

As designed in Chapter 4, we used TBSS to identify whole brain white matter mi-

crostructural changes using NODDI in pre-manifest HD compared to the controls.

We created white matter skeleton from the group mean FA map in the template

space with the default FA threshold (0.2). We then projected NODDI and DTI met-

ric maps onto the skeleton.

After map projection, we used a non-parametric analysis for group compari-

son - permutation test, and we set up the GLM as we described in section 5.2.4.1.

The permutation was performed 5000 times [278] and multiple comparisons were

corrected at p<0.05 using Threshold-Free Cluster Enhancement (TFCE) [279]. We

also performed the same TBSS analysis of group comparisons between pre-manifest

HD individuals and controls using DTI.
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Figure 5.1: White matter ROIs defined in the ICBM-81 white matter atlas. A. Genu of the
corpus callosum; B. Body of the corpus callosum; C. Splenium of the corpus
callosum; D. Anterior limb of the internal capsule; E. The posterior limb of the
internal capsule; F. The external capsule.

5.3.4.3 ROI Analysis

To reveal descriptive statistics of NODDI metrics in white matter, complement-

ing TBSS analysis, ROI-based analysis was performed for a set of key white

matter tracts chosen a priori according to the literature (corpus callosum (genu,

body, splenium); internal capsules (anterior and posterior limbs); external cap-

sules) [221, 222, 225, 280]. The ROIs for these tracts are presented in Figure 5.1.

ROIs were defined by warping the ICBM-81 white matter atlas [281] to the FA map

of the group tensor template using NiftyReg [282], as described in Chapter 4. To

minimize partial volume effects, ROIs were defined by thinning the mask of each

white matter ROI in the atlas by 1mm.

Group comparison

To increase the statistical power, the bilateral internal/external capsules were ana-

lyzed jointly. The general linear model used for group comparison of mean NODDI

metrics in white matter ROIs is the same as that in TBSS. The multiple comparisons

were corrected using False Discovery Rate at p < 0.05.
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Correlation analysis

Among the ROIs with significant group differences, we evaluated the value of

NODDI metrics in tracking disease progression using Pearson correlation analy-

sis. Correlations between the NODDI metrics and the clinical scores of disease

progression (CPO and TMS) were considered as significant if p<0.05.

Sample size estimation

The estimation of sample sizes for future clinical trials using NODDI were calcu-

lated (using matlab) with 80% power and 5% 2-tailed significance of group dif-

ference using NODDI metrics of ROIs (chosen based on statistical significance in

ROI-based group comparisons).

5.4 Results

5.4.1 Demographics, Number of CAG Repeats and Clinical

Scores of HD Disease Progression

Controls Pre-manifest HDs Statistics

N 45 38 N/A

Age, mean±std (range) 49.1±10.8(28-69) 44.3±8.6(28-70) p=0.03

Gender, Female/Male 27/18 17/21 n.s.

Site, London/Paris 20/25 18/20 n.s.

CAG repeats N/A 42.9±1.9(40-47) N/A

CPO N/A 0.30±0.18 (0.06-0.75) N/A

TMS N/A 6.40±3.85 (0-15) N/A

Table 5.1: The demographic summary of Controls and Pre-manifest HD individuals. N/A
= non applicable. n.s. = not significant.

Following the assessments of controlling image quality, 38 pre-manifest HD

and 45 control participants were included in the final statistical analysis. The sum-

mary of the demographics and numbers of genetic mutation as well as clinical
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scores of HD disease progression (CPO and TMS) were listed in Table 5.1. Pre-

manifest HD individuals and normal controls were matched for gender and site but

pre-manifest HD individuals were younger than controls (p<0.05).

5.4.2 Group differences detected by NODDI using TBSS analy-

sis

Figure 5.2: Whole brain white matter abnormalities in pre-manifest HD detected by NDI
using TBSS, TFCE corrected, p<0.05

The whole-brain white matter analysis of NODDI metrics revealed that com-

pared with the controls, pre-manifest HD gene-carriers showed a) reduced axon

density in widespread white matter areas indicated by NDI, including the corpus

callosum, bilateral superior longitudinal fasciculus, the posterior limb of internal

capsule, external capsule, posterior thalamic radiation, middle cerebellar pedun-

cle, corona radiation, uncinate fasciculus and the posterior cingulum (Figure 5.2,

TFCE corrected p<0.05) and b) altered axonal organization in localized white mat-

ter surrounding the basal ganglia indicated by ODIs, including anterior limbs of

the internal capsule bilaterally, external capsule, and right retrolenticular part of in-

ternal capsule) (Figure 5.3, TFCE corrected p<0.05). There were no significant
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Figure 5.3: Whole brain white matter abnormalities in pre-manifest HD detected by ODI
using TBSS, TFCE corrected, p<0.05

differences in FISO (TFCE corrected p<0.05).

With a stricter threshold of significance p<0.01, group differences in NDI still

survived (Figure 5.4) but not ODI.

5.4.3 Group differences detected by DTI using TBSS analysis

The whole-brain white matter analysis of DTI metrics revealed that compared with

controls, pre-manifest HD group had 1) reduced FA predominantly in the corpus

callosum, superior longitudinal fasciculus, and posterior corona radiata bilaterally

compared to controls (Figure 5.5, TFCE corrected p<0.05); 2) increased MD, in-

cluding the corpus callosum, bilateral superior longitudinal fasciculus, the poste-

rior limb of internal capsule, external capsule, posterior thalamic radiation, middle

cerebellar peduncle, corona radiation, uncinate fasciculus and the posterior cingu-

lum (Figure 5.6, TFCE corrected p<0.05); 3) increased AxD, including the external

capsules, the right cerebellar peduncle, the corpus callosum, the posterior thalamic

radiations, the right uncinate fasciculus and corona radiata (Figure 5.7, TFCE cor-

rected p<0.05); 4) increased RD, including the corpus callosum, the left posterior
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Figure 5.4: Whole brain white matter abnormalities in pre-manifest HD detected by NDI
using TBSS, TFCE corrected, p<0.01

limb of internal capsule, the left middle cerebellar peduncle, the left uncinate fasci-

culs, the bilateral superior longitudinal fasciculi, the bilateral corona radiata (Figure

5.8, TFCE corrected p<0.05). There was no decreased in diffusivities or increase

in FA. (TFCE corrected p<0.05)

With a stricter threshold of significance p<0.01, none of group differences in

DTI metrics survived.

5.4.4 Group differences detected by NODDI using ROI analysis

In line with the whole-brain findings, ROI analyses showed that pre-manifest HD

gene-carriers had a) decreased NDI in the splenium, body and genu of the corpus

callosum, posterior limb of the internal and external capsules and b) decreased ODI

in the anterior limb of internal compared with controls (Table 6.2, FDR corrected

p¡0.05). No ROIs showed significant FISO group differences.
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Figure 5.5: Whole brain white matter abnormalities in pre-manifest HD detected by FA
using TBSS, TFCE corrected, p<0.05

Table 5.2: NODDI metrics of white matter ROIs selected in pre-manifest HDs and controls
(FDR corrected, p<0.05), specifically a) ROIs with NDI group differences; b)
ROIs with ODI group differences.

a) NDI (mean±std)

WM ROIs Pre-manifest HD Controls Statistics

Genu of corpus callosum 0.53±0.05 0.56±0.04 p<0.000

Body of corpus callosum 0.58±0.05 0.60±0.04 p=0.026

Splenium of corpus callosum 0.60±0.04 0.63±0.03 p<0.000

Posterior limb of internal capsule 0.68±0.05 0.70±0.04 p=0.023

External capsule 0.50±0.03 0.51±0.02 p=0.014

b) ODI (mean±std)

WM ROIs Pre-manifest HD Controls Statistics

Anterior limb of internal capsule 0.17±0.01 0.18±0.01 p<0.000
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Figure 5.6: Whole brain white matter abnormalities in pre-manifest HD detected by MD
using TBSS, TFCE corrected, p<0.05

5.4.5 Correlations between clinical scores of disease progression

and NODDI metrics in selected white matter ROIs

Clinical scores of disease progression, CPO and TMS, were negatively correlated

with NDI in the body and splenium of corpus callosum respectively (Figure 8.2 A-

B). No HD progression scores significantly correlated with ODI in anterior limb of

internal capsule.

5.4.6 The estimated sample sizes for selected ROIs using

NODDI

For NDI, 19, 57, 16, 58, 43 participants for each group could achieve a power of

0.8 respectively in genu of corpus callosum, body of corpus callosum, splenium of

corpus callosum, posterior limb of internal capsule, and external capsule. For ODI,

20 participants for each group could achieve the same power of 0.8 in anterior limb

of internal capsule.
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Figure 5.7: Whole brain white matter abnormalities in pre-manifest HD detected by AxD
using TBSS, TFCE corrected, p<0.05

5.5 Discussion

To our knowledge, this study is the first that provides the most detailed depiction,

to date, of the in-vivo axonal pathology in white matter at the premanifest stage of

neurodegenerative diseases using a cohort of pre-manifest HD. Using NODDI, we

found that NDI, the NODDI marker for axonal density, is reduced in widespread

white matter of pre-manifest HD compared to the controls, and NDI in the cal-

losal tracts correlated with the clinical measures of the disease progression. These

findings provide direct support for the view that axonal loss is the major factor un-

derlying white matter pathology in pre-manifest HD. Interestingly, we have also

identified an alteration in the coherence of axonal organization in the white matter

tracts surrounding the basal ganglia in pre-manifest HD compared to controls. This

might suggest a compensatory prunning of axons in those white matter regions that

are most likely to be affected in HD.

Whole-brain white matter analysis identified that compared with controls, pre-

manifest HD had decreased NDI in widespread white matter areas. This suggests
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Figure 5.8: Whole brain white matter abnormalities in pre-manifest HD detected by RD
using TBSS, TFCE corrected, p<0.05

Figure 5.9: Correlations between clinical scores of disease progression and NODDI met-
rics

that 1) the reduction of axonal density might be the predominant factor of white

matter pathology in pre-manifest stage of HD, which is supported by the evidence

of abnormal axonal transport in the HD animal models [283,284]; 2) the widespread

white matter abnormalities indicate a large proportion of abnormal structural con-

nections between cortical and subcortical areas in pre-manifest HD individuals, pro-
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viding further evidence to support the observed disrupted anatomical networks in

pre-manifest HD population [223, 285–287]. Notably, even though it is plausible

that the reduction in NDI observed here is underscored by the loss of axon density,

there may also be an impact from the demyelination. In white matter regions with a

loss of myelin, there might be a decreased MRI signal and a reduced NDI estimated

by NODDI [107].

Meanwhile, we found a decrease in ODI of those white matter areas that sur-

round the basal ganglia - the characteristic atrophy in Huntington′s disease. Pre-

manifest HD individuals still maintain a normal life, and this suggests that fiber

tracts linking the striatum to the cortex might be in a reorganizing process to com-

pensate for the axonal loss in the same areas. This theory needs further efforts

to investigate using the proposed compensation models in neurodegenerative dis-

eases [288]. For example, to identify solid evidence of compensations in the brain of

pre-manifest HD individuals, we could investigate HD-gene carriers at both younger

adulthood and older adulthood to check if their microstructure in these areas are

similar as the cohort we observed here, and if the functional activities of the brain

are similar as what we observed here. Additionally, ODI has been validated in

a recent histological study in the spinal cord of patients with Multiple Sclerosis

(MS) [107]. This study showed the reduction in ODI is consistent with the histo-

logical observations of a reduced variability of axon orientation. This suggests that

the increase coherence of axon packing might be a reflection of either reduced col-

lateral branching driven by the pathology or the alterations in the morphometry of

individual axons.

These NODDI findings together revealed a unique and complete picture of

axon degeneration in whole brain white matter of HD. Importantly, our NODDI

findings are highly likely to be reproducible because the cohort in our study is not

unique. This is supported by the consistency of our DTI findings with previous

studies [221–225].

Using DTI, we found that pre-manifest HD participants displayed widespread

increased MD and reduced FA in white matter compared to controls. However, the
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simplicity of the single tensor model used in DTI prevents changes in DTI metric

from being directly linked to changes in the tissue properties of white matter. More

explicitly, the increases in MD and decreases in FA that we observed here could be

attributed to multiple factors in neurodegeneration, such as the decrease in axonal

density, altered white matter organization (i.e., the coherence of fiber orientation),

and the change in the partial volume effect. Even though we could speculate that

these increases in MD are driven by the reductions in axonal density, an increase in

free water volume can also attribute to MD increases [6].

Interestingly, we found that the group differences in NDI still survived after

using a much stricter significant threshold of p value less than 0.01, but none of

the differences in DTI metrics survived. This suggests that NODDI may have a

better sensitivity than DTI. However, it is not fair to conclude that NODDI is more

sensitive than DTI just with these datasets. Firstly, there is a difference in the voxel

size of the datasets for DTI and NODDI. Our single-shell data for DTI has a smaller

voxel size than multi-shell DWI data for NODDI. A smaller voxel has quite a few

benefits, but it also means its SNR is lower than that of a bigger voxel. One can

argue that the more abnormalities identified using NODDI than DTI may be partly

due to our NODDI dataset might have a better SNR than DTI dataset. The DTI

protocol used here was part of a longitudinal study - TRACK-ON HD, and they had

already acquired DTI data for the previous two visits before adding a multi-shell

DWI acquisition for NODDI. Therefore, it was not possible for us to change the

settings of DTI just for our study at the third-time visit. Most importantly, there

was very limited time left for adding new scans. In the end, we had to make the

voxel size bigger for NODDI to make the acquisition time fit the whole schedule.

Secondly, the number of measurements for single-shell DWI data for DTI is almost

half of that for multi-shell DWI data for NODDI. Further studies on comparing the

sensitivity of NODDI and that of DTI could be implemented in a fair way that we

fit both NODDI and DTI to the same multi-shell dataset. Although DTI fails to

describe the non-gaussian water diffusion, we could estimate the parameters of DTI

using DKI as the kurtosis model is an extension of the 2nd-order tensor [289].
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The tract-specific white matter ROI analysis further confirmed the importance

of those white matter tracts in understanding the white matter pathology of HD.

The decreases of NDI in all parts of corpus callosum suggest that the axon loss

in corpus callosum might start in the early stage of HD. This may have an impact

on the inter-hemisphere communications for certain cognitive activities as corpus

callosum is the main pathway for transferring signals between the two hemispheres

[290]. Interestingly, we found decreased NDI but decreased ODI in posterior and

anterior limb of internal capsules. This suggests that in the pre-manifest stage of

HD, the pathway that carries the communications between the striatum and the

thalamus might have less axons and there might be a reorganization of axons that

connects the structures within the striatum as posterior and anterior limb of internal

capsules are those white matter tracts that connect different anatomical structures

within the striatum and the striatum to the cortex and the thalamus [290]. Moreover,

the decreased NDI in external capsules (a part of the corticostrital fiber tract [290])

suggests disrupted connections between putamen and the opercular cortex; these

two are the major grey matter atrophies in HD [266].

As for the clinical relevance, we identified correlations between clinical mea-

sures of disease progression and NDI in corpus callosum. This demonstrated that

NDI is very sensitive to pathological changes in pre-manifest HD and therefore has

the potential to be a useful biomarker to track the disease progression during the

pre-manifest stage of HD.

A deep understanding of the white matter pathology in the pre-manifest stage

of HD could aid the developments of effective therapies for other neurodegenera-

tive diseases, such as Parkinson’s disease and dementia. As the axonal pathology

may be shared by other protein-misfolding neurodegenerative disorders, NODDI

might potentially offer new insights into a mechanistic understanding of white mat-

ter pathology in these diseases as well. However, we have studied data acquired at

only one time point. Therefore, it is possible that our findings might be a reflection

of the abnormal neural development caused by the abnormal HD gene mutations.

Nevertheless, our work differentiated alterations to axonal density from other po-
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tential confounding sources in neurodegeneration, such as the coherence of axon

alignments, free water contamination and so on. This may contribute to linking

ex-vivo histopathological observations to modern neuroimaging findings. In future,

investigating a longitudinal cohort of pre-manifest HD might help clarify this con-

cern.

A few issues deserve additional comments. Firstly, we used a multi-center

dataset combining the data from two HD research centers. Given the relatively low

prevalence of HD in the whole population, it is necessary to combine datasets from

multiple centers to achieve a sufficient statistical power. To minimize any poten-

tial confounding effects, an identical acquisition protocol was used at both sites in

the scanner with the same model, and in all our statistical analysis we have included

”site” as a covariate. However, further studies are needed to investigate the potential

impact of different scanners on the final results. Secondly, even though NODDI is

much more informative on the tissue microstructure than the standard DTI, NODDI

is still a simple model and may not describe pathological tissue microstructure fully

in the neurodegenerative process. Nevertheless, NODDI still provides a unique win-

dow to study the axonal pathology at the microscopic level non-invasively and in

vivo. Along with the future work we discussed earlier in this section, one more fu-

ture work could be the exploration of the structural substrates in grey matter that are

relevant to the functional abnormalities in both pre-manifest and manifest HD using

NODDI as this technique was also proposed to probe the grey matter microstruc-

ture. Finally, as HD is characterized by the atrophy in basal ganglia, it would be

interesting to investigate to what content, the white matter microstructural changes

we observed here is affected by the atrophy, and how the interactions between the

subcortical atrophy and the white matter pathways have impact on the development

and the progression of HD.

5.6 Conclusions

In summary, our work showed that axonal loss might be a predominant feature of

white matter pathology in pre-manifest HD, and NODDI metrics correlated with
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clinical scores of disease progression. In addition, we also found group differences

in NDI survived at a much stricter threshold of statistical significance, and might

suggest its better sensitivity than DTI to white matter microstructural abnormalities

at the pre-manifest stage of neurodegenerative diseases. These evidence together

demonstrated the feasibility of NODDI in studying preclinical white matter changes

and its clinical relevance.





Chapter 6

NODDI in young onset Alzheimer’s

disease

6.1 Introduction

In this chapter, we aimed to test the feasibility of NODDI in depicting the most

detailed picture of in vivo white matter pathology at the clinical stage of neurode-

generative diseases. We also compared NODDI over the standard DTI in terms of

the sensitivity to detecting white matter microstructural changes in patients com-

pared with controls at the onset stage of neurodegenerative diseases.

The disease model we chose to represent the clinical stage of neurodegen-

erative diseases is Alzheimer’s disease (AD), as AD is the most common cause

of dementia in humans [291]. Young Onset AD (YOAD) patients are defined as

those who have the disease onset at an age of less than 65 years old [190]. YOAD

tend to have a faster disease progression than Late Onset AD (LOAD) [172–174],

and often present non-amnestic phenotypes with unique syndromes, including a dy-

sexecutive/behavioural syndrome [292], logopenic progressive aphasia [293] and

posterior cortical atrophy [294]. These atypical phenotypes share a certain simi-

larity in terms of the distribution of Aβ plaques [295], but they also have marked

differences in the atrophy of the brain [296] and focal tau tangle pathology [297].

Although grey matter and the hippocamus are the first structures that break down in

AD [298], white matter is also involved in AD patholgoy [299]. Moreover, from a
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mechanistic perspective, the mismatch between the widespread amyloid deposition

and more focal downstream neurodegeneration might be potentially explained by

the prion-like spread of proteinopathies with tropism for specific large scale neural

networks [300, 301]. As white matter is the information highway in the neural net-

works, it is of great interest to understand the pathology of white matter in YOAD.

With DTI, white matter microstructure in YOAD has been found to have de-

creased fractional anisotropy (FA) and increased diffusivity compared with normal

controls [302–304]. As described in chapter 2, DTI is limited in terms of inform-

ing specific tissue properties. Using NODDI, we may differentiate the changes in

axonal density from the changes in the spatial organisation while excluding the po-

tential contamination from the free water that is often found to increase in tissue

with degeneration [6].

As genes encode the protein that dictates the function of cells, these selec-

tive vulnerabilities of brain areas and differential patterns of brain pathology of

YOAD patients are likely to be driven, at least to some degree, by the genetic influ-

ences. One of the established genetic risk factors for sporadic AD is Apolipoprotein

(APOE) ε4 [305]. In humans, there are 3 variants of APOE (i.e., ε2, ε3 and ε4), and

APOE ε4 is found to be associated with the higher risk of disease manifestation for

young onset AD [291] and the earlier decline of cognitive performance [306]. The

protein APOE encodes is apoE, which is a low-density protein that is key in coor-

dinating the redistribution and mobilization of fatty acid, cholesterol, and phospho-

lipids [307]. And apoE protein is involved in brain plasticity, neuronal development

and repair functions [308, 309]. As the major role of apoE in the brain is trans-

porting the lipid components that contribute to building up the myelin sheath in

the white matter [310–312], it would be interesting to study if genotypes (with or

without APOE ε4) may play a role in the white matter pathology in YOAD.

In this study, we applied both DTI and NODDI in a population of YOAD pa-

tients and controls. We tested the hypotheses that (1) NODDI could detect the white

matter breakdown in YOAD; (2) NODDI metrics would reveal different patterns and

extents of white matter microstructural damage in individuals with different geno-
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types (with or without APOE ε4); (3) NODDI could provide a much more detailed

picture of white matter pathology in YOAD than DTI; and (4) regional measures

of neurite density estimated using NODDI would correlate with performance on

neuropsychological tests.

6.2 Research dissemination
This work has been accepted and published on Neurobiology of Aging.

• ApoE influences regional white matter neurite density loss in Alzheimer’s

disease, Slattery CF*, Zhang J*, Paterson RW, Foulkes AJM, Carton A,

Macpherson K, Mancini L, Thomas DL, Modat M, Toussaint N, Cash DM,

Thornton JS, Henley SMD, Crutch SJ, Alexander DC, Ourselin S, Fox NC,

Zhang H, Schott JM, Neurobiology of Aging, 2017 (* joint first author)

6.3 Methods

6.3.1 Participants

From 2013 to 2015, we recruited 45 YOAD patients who met the diagnosis crite-

ria for probable AD and had the disease onset at an age of less than 65 years old

from a specialist Cognitive Disorders clinic. None of them had a family history or a

known mutation that might suggest an autosomal dominant inheritance. For all the

YOAD patients, we recorded their presenting cognitive symptom. YOAD patients

were classified as having a phenotype of typical [313] or atypical (posterior corti-

cal atrophy) AD [294] according to published diagnosis criteria. We also recruited

twenty-four healthy controls who matched for the mean age and gender. All par-

ticipants underwent MRI scans, the mini-mental state examination (MMSE) [314]

testing, the assessment on the Hachinski Ischaemic Score [315] and an extensive

neuropsychology battery designed to capture phenotypic diversity in YOAD include

the assessments of:

• general intellect (the matrices and vocabulary subtests of the Wechsler Ab-

breviated Scale of Intelligence, WASI) [316];
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• numeracy and literacy (Graded Difficulty Arithmetic, GDA) [317];

• episodic memory for faces and words (Recognition Memory Test, RMT)

[318];

• visuospatial and visuoperceptual performance (Visual Object and Spatial Per-

ception battery, VOSP) [319];

• Graded Difficulty Spelling Test, GDST) [320];

• Digit Symbol Modalities Test, DSMT [321];

• speed of processing and executive function (Delis−Kaplan Executive Func-

tion System−design fluency test, DKEFS) [322];

• verbal fluency.

Ethical approval of this study was obtained from the National Hospital for Neurol-

ogy and Neurosurgery Research Ethics Committee of UK. Written informed con-

sents were clearly explained to and obtained from all the subjects.

6.3.2 Assessing APOE ε4 genotype

Separate specific consents on blood donation for genetic analysis were assigned

by all the patients. For each patient, their DNA was extracted from their blood

sample and their APOE ε4 genotype was determined by PCR with 3’−minor groove

binding probes.

6.3.3 Diffusion MR image acquisition

Participants were scanned in a Siemens Magnetom Trio (Siemens, Erlangen, Ger-

many) 3T MRI scanner using a 32-channel phased array head coil at Queen square

in London. A twice-refocused SE EPI sequence was used to minimise the eddy-

current distortion for both NODDI and DTI acquisition.

6.3.3.1 The NODDI acquisition

The settings of the optimized NODDI protocol are: multiple b-values (2000, 700

and 300 s/mm2) with 64, 32 and 8 non-colinear diffusion-weighted directions re-
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spectively; 14 b=0 s/mm2 images; voxel size=2.5×2.5×2.5 mm3; TR/TE = 7000

ms/ 92 ms; 55 slices; the acquisition time about 16:13 minutes.

6.3.3.2 The DTI acquisition

The settings of the DTI protocol are: a b-value of 1000 s/mm2 and 64 non-colinear

diffusion-weighted directions; 9 b=0 s/mm2 images; voxel size=2.5×2.5×2.5 mm3;

TR/TE = 6900ms / 91ms; 55 slices; the acquisition time about 16:29 minutes. This

acquisition was repeated twice. Again, the DTI acquisition is part of a bigger study

and they specified the acquisition parameters before we added NODDI acquisition.

6.3.4 Preparations of NODDI and DTI metric maps

Thirty-seven YOAD patients and twenty-three controls had both the DTI and

NODDI data that passed the quality control criteria. All the diffusion-weighted im-

ages were confirmed to have the minimal artefacts. And the NODDI and DTI metric

maps were estimated in the way as we explained in Chapter 4. We did 1) motion

and eddy-current distortion correction; 2) exclude non-brain tissue by creating a

brain mask and check whether the mask covers the brain properly; 3) model fitting

for both NODDI and DTI; 4) spatial normalisation of both NODDI and DTI maps

by registering the tensor map of each subject into the group-specific tensor template

using DTI-TK. Notably, we fit tensor to the whole DTI dataset with 128 gradient

directions, of which the volume number is similar to that of NODDI. Therefore, the

comparisons of NODDI and DTI performances here are much fairer than what we

did in chapter 5.

6.3.5 Statistical analysis

6.3.5.1 The statistics of clinical characteristics and neuropsychol-

ogy scores

We converted the raw scores (x) of patient neuropsychology performances into z-

scores z = (x− u)/σ , where u is the mean of the control population and σ is the

standard deviation of the control population. Then we calculated the mean z scores

for each neuropsychological test within each participant group and the composite
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score for each cognitive score across all the neuropsychological tests (where appli-

cable) for each domain. For categorical variables, we used fisher exact test and for

the continuous scores, we used t test. For z scores, we used Wilcoxon rank sum

test. All the statistical analyses of the clinical characteristics and neuropsychology

scores were performed using Stata version 12.

6.3.5.2 The general linear model for group comparison

We used a general linear model (GLM) for group comparison. The dependent vari-

able is the NODDI/DTI metric of either each voxel on the white matter skeleton

or each ROI. For group comparisons, the GLM includes age, gender as covariates.

Before entering covariates - age and gender into the GLM, for continuous variables

such as age, we demeaned the variable and converted into a vector while for cate-

gorical variables - gender, we used 0 to represent male and 1 to represent female.

The main factor is the group type, “APOE ε4-” standing for APOE ε4 negative pa-

tients, “APOE ε4+” standing for APOE ε4 positive patients, “YOAD” standing for

all the patients and “NC” standing for normal controls.

6.3.5.3 TBSS Analysis

As designed in Chapter 4, we used TBSS to identify whole brain white matter mi-

crostructural changes using NODDI in patients compared to the controls. We cre-

ated white matter skeleton from the group mean FA map in the template space with

the default FA threshold (0.2). We then projected DTI and NODDI metric maps

onto the skeleton.

Figure 6.1: The 4 quadrant ROIs we defined
on the white matter skeleton.

After map projection, we used a

non-parametric analysis for group com-

parison - permutation test [278], and

we set up the GLM as we described

in section 6.2.5.2. The permutation

was performed 5000 times and mul-

tiple comparisons were corrected at

p<0.05 using TFCE [279]. We also

performed the same TBSS analysis of
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group comparisons between YOAD and

controls using DTI. The contrasts of

the pairwise comparisons we tested

included “NC>YOAD”, “NC<YOAD”, “NC>APOE ε4-”, “NC<APOE ε4-

”, “NC>APOE ε4+”, “NC<APOE ε4+”, “APOE ε4+>APOE ε4-”, “APOE

ε4+<APOE ε4-”.

6.3.5.4 ROI Analysis

Four ROI corresponding to left and right posterior quadrants (parieto-occipital lobe

projections) and left and right anterior quadrants (fronto-temporal lobe projec-

tions) of the white matter skeleton were manually defined to assess the relation-

ship between microstructural tissue changes and neuropsychological performance

in YOAD patients. These ROIs were delineated in the group template space by di-

viding the white matter skeleton into 4 areas at coordinates (x=112, y=88) (Figure

6.1). We then calculated the mean NODDI metrics (NDI, ODI and FISO) of each

quadrant ROI for all the participants in our cohort. We further performed both group

comparisons on NODDI metrics and correlations between NODDI metrics and the

neuropsychological performances. In both analyses, we included age and gender

covariates and a p<0.05 was considered significant.

6.4 Results

6.4.1 Demographics, genetic and clinical characteristics

Demographics and neuropsychological performance for all the participants are

shown in Table 6.1. There were no significant differences in the mean age and

gender between patients and controls (age, p = 0.3; gender, p = 0.8). No individ-

ual scored more than 4 on the Hachinski Ischaemic Score. As for the genotype

of APOE 4 status, of the 37 patients, 22 (59%) were APOE ε4 positive (ε4+, 18

heterozygotes and 4 homozygotes) and the rest as APOE ε4 negative (ε4-). APOE

ε4+ patients were significantly older than APOE ε4- patients at their enrollment to

the study (p = 0.03). There were no significant differences between ε4+ and ε4-

patients in MMSE scores, their age at the clinical symptom onset, or their clinical
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disease duration at enrollment to the study. Most of the ε4+ patients were char-

acterised as a ’typical AD’ amnestic phenotype (19 out of 26) while 8 of the ε4-

patients presented a phenotype of a ’typical AD’ amnestic phenotype and the other

7 of the ε4- patients had atypical AD - Posterior Cortical Atrophy (PCA).

6.4.2 Neuropsychological profiles

YOAD patients showed multi-domain cognitive impairments, including perfor-

mance IQ; literacy and numeracy; recognition memory for words; speed of infor-

mation processing and executive function; visuospatial and visuoperceptual perfor-

mance (Table 6.1). Compared with APOE ε4+ patients, APOE ε4- patients did

not have significant differences in the duration of the disease but had worse perfor-

mances on the speed of information processing and executive function (p=0.01) and

the tests of literacy and numeracy (p=0.04).

6.4.3 Whole brain white matter microstructural damage in

YOAD

6.4.3.1 Group differences detected by NODDI using TBSS analysis

The voxel-wise group differences in NODDI metrics between YOAD patients and

controls on the white matter skeleton were shown in Figure 6.2. Compared to con-

trols, YOAD patients had reduced NDI in occipital, parietal, temporal frontal white

matter, superior longitudinal fascicules, cingulum, the splenium and genu of the cor-

pus callosum. Moreover, we found reduced ODI in splenium and body of corpus

callosum, superior longitudinal fascicules, and temporal white matter. Interestingly,

we found increases in FISO in the corpus callosum.

6.4.3.2 Group differences detected by DTI using TBSS analysis

The voxel-wise group differences in DTI metrics between YOAD patients and con-

trols on the white matter skeleton were shown in Figure 6.3. We found that com-

pared to controls, YOAD patients had decreased FA and increased diffusivities

(MD, AxD and RD), involving the occipital, parietal, temporal white matter, corpus

callosum. Unlike NODDI results, the majority of frontal white matter were spared
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using DTI. The differences in FA and RD between YOAD and controls were more

asymmetric compared with those in MD and AD.

6.4.4 White matter microstructural damage in YOAD with dif-

ferent APOE ε4 genotypes

6.4.4.1 Group differences detected by NODDI using TBSS analysis

The voxel-wise group differences in NODDI metrics between genotypes of YOAD

patients and controls on the white matter skeleton were shown in Figure 6.4, Figure

6.5 and Figure 6.6. Both APOE ε4+ YOAD patients and APOE ε4- YOAD patients

had similar distribution of decreased ODI compared with controls. However, these

two showed their unique signature differences in NDI and FISO compared with

controls. Both patient groups had significant decrease in NDI across the parietal-

occipital and temporal white matter areas compared with controls. However, YOAD

patients with APOE ε4 showed much more widespread white matter impairments

with decreased NDI across the brain than YOAD patients without ε4. Specifically,

frontal white matter was less involved in patients without APOE4, and there was

a difference in the symmetry of decreased NDI between APOE ε4+ and APOE

ε4- YOAD patients. Moreover, APOE ε4- YOAD patients had significant FISO

increase compared with controls while no significant increase in FISO was found in

APOE ε4+ YOAD patients. No significant group differences were found when we

compared YOAD patients with APOE ε4 directly.

6.4.4.2 Group differences detected by DTI using TBSS analysis

The voxel-wise group differences in DTI metrics between genotypes of YOAD pa-

tients and controls on the white matter skeleton were shown in Figure 6.7, Figure

6.8, Figure 6.9 and Figure 6.10. Both YOAD groups with or without APOE ε4 had

decreased FA involving the parieto-occipital white matter, genu of the corpus cal-

losum, temporal white matter. However, in the FA differences relative to controls,

YOAD APOE ε4+ patients involved less areas of corpus callosum and temporal

lobe than YOAD APOE ε4- patients. MD, AxD and RD were all found to increase

in both YOAD patient groups compared with controls, in the splenium, body and
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genu of the corpus callosum, and parieto-occipital white matter. Moreover, YOAD

APOE ε4+ patients had increased RD in the frontal white matter. And there were

no significant group differences in any of DTI metrics when we compared YOAD

subgroups directly.

6.4.5 ROI analysis with NODDI metrics

6.4.5.1 Group differences in NODDI metrics of ROIs on the white

matter skeleton

We presented the mean NODDI metrics of all the 4 quadrant white matter skele-

ton ROIs in Table 6.2. The group comparisons showed that in all the 4 quadrant

ROIs, YOAD patients had abnormal NDI compared with controls. There were no

significant differences in FISO and ODI between YOAD patients and controls.

6.4.5.2 The correlations between NODDI metrics and cognitive

function in patients

The correlation analysis showed that in patients, NDI of the quadrant white mat-

ter ROI in the right parieto-occipital lobe had significant positive correlations with

the visually-demanding measure of performance IQ from WASI matrices (Figure

6.11A); NDI of both the left and right quadrant white matter ROI in the parieto-

occipital lobes had significant positive correlations with the visuospatial and vi-

suoperceptual tasks (Figure 6.11 B and 6.11 C). There were no other correlations

between NDI and the cognitive performance in any other domain. There were no

significant correlations between ODI and any cognitive performance in all the do-

mains. There was a positive correlation between FISO of the left quadrant white

matter ROI in the posterior lobe and the performance of episodic memory for words

in patients (r=0.4, p=0.01).

6.5 Discussion
This study used NODDI to identify white matter damage in YOAD and its associ-

ations with the APOE ε4 genotype in YOAD patients. We found that NODDI is

sensitive to the white matter abnormalities in YOAD patients and has the potential
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to provide further insights into the commonalities and differences in white matter

change associated with APOE ε4 genotype. On top of the shared parietal-occipital

white matter changes, YOAD APOE ε4+ patients had more widespread areas with

reduced NDI while YOAD APOE ε4- patients exhibited reductions of NDI in more

focal posterior areas. And we demonstrated that regional NDI on the white matter

skeleton correlated with cognitive impairments in YOAD, suggesting that NODDI

metrics not only provide insights into regional white matter vulnerability, but also

have relevant clinical correlates. In the same cohort, DTI also revealed white matter

impairments in both APOE ε4+ and APOE ε4- YOAD patients relative to controls.

We found that NODDI is sensitive to the white matter damage in YOAD. Most

importantly, we confirmed the benefits of the tissue specificity of NODDI metrics.

For example, in corpus callosum, we found that all the diffusivity metrics of DTI

increased in YOAD patients. However, in the same region, we found that there was

an increase in FISO using NODDI. This highlighted the fact that DTI metrics are

prone to free water contaminations and changes in NODDI metrics are free from

this partial volume effect.

Moreover, APOE ε4+ YOAD patients had more extensive white matter areas

with reduced NDI than APOE ε4- YOAD patients. Although there were no sig-

nificant group differences in the direct comparisons between these two genotypes

of YOAD, we found that the t statistic map (Figure 6.12) of the direct comparison

exhibited the statistical trend of group differences as we compare the differences

each group had in the comparison with normal controls. Moreover, the reduction

in NDI of right parietal white matter keeps with a trend of worse performances

of visual tasks. Moreover, the differences and similarities of white matter dam-

age in YOAD genotypes may suggest a subtle modulation of this AD risk gene on

brain structure and functions. The reduction in NDI suggests axonal loss in YOAD

and this is supported by histological observations on abnormal axonal transport in

AD [195,196].The reduction in ODI of white matter in YOAD patients may suggest

a disorganization of fibers in those areas. Moreover, we identified the correlations

between NDI and the cognitive performances of YOAD patients. This highlighted
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the clinical relevances of NODDI metrics. However, we also found an unexpected

correlation between FISO in the left posterior quadrant on the white matter skeleton

and episodic memory for words. As we did not find any significant group differ-

ences in FISO, the cause of this correlation is not clear and we may need further

investigations.

The ROI analysis was based on our manual definition of 4 parts of the white

matter skeleton. This was just an approximate parcellation, and it was defined ac-

cording to the experience as described. The principle behind it was simply to ex-

tract the white matter areas on the skeleton that correspond to the white matter in

the frontal and posterior lobe of both hemispheres as the cognitive performances

we were interested in are thought to be related to those white matter. Future studies

could be done to explore the relationship between specific cognitive performance

and white matter tracts that we reconstruct using tractography. T1-weighted images

can also be exploited to parcellate the white matter skeleton according to the lobe

they belong to. Interestingly, we found that FISO of the left quadrant white matter

skeleton correlated with the performance of episodic memory for words in YOAD

patients. As AD is known to have enlarged ventricles, future studies are needed

to identify the relationship between the volume loss in this area and the NODDI

metrics as well as the cognitive performances.

There are a few limitations. Firstly, the assumptions in NODDI may not be

appropriate for disease conditions. And as a simple model, NODDI cannot charac-

terise all kinds of possible pathology in neurodegenerative diseases. Secondly, we

did not account for the potential presence of white matter hyperintensities (WMH)

on our results. Previous studies have shown that changes in DTI metrics might

be related to this WMH [323]. However, YOAD are less likely to have coexis-

tent vascular problems than LOAD at clinics. Therefore, we expect our results are

less confounded by this WMH. Nevertheless, future studies are required to check if

NODDI metrics are affected by WMH lesions. Thirdly, we only have a relatively

small cohort of the YOAD patients and it might be the reason that no significant

differences in either DTI metrics or NODDI metrics survived in the direct compar-
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isons between the genotypes of YOAD. Future studies with bigger sample sizes are

needed to confirm our findings. Lastly, we did not have the genotype information

of the normal controls, and we assumed that the distribution of APOE ε4 status is

similar in patients as the controls. Previous studies showed that APOE ε4 is a factor

that has influence on brain microstructure in normal controls [206,324,325]. There-

fore, our findings here need confirmations in future studies. As for future work, it

would be interesting to evaluate the sensitivity of NODDI to the early white matter

abnormalities at the preclinical stages of AD. Moreover, it is of clinical importance

to investigate if microstructural changes detected by NODDI and DTI are earlier

than the volumetric losses. Thirdly, as NODDI is a model designed to describe both

grey and white matter, we could also explore the respective microstructural changes

in grey matter in YOAD as this may inform on the cortical atrophy. Finally, as cor-

tical and hippocampal atrophy are known to be the characteristic atrophy in AD, it

would be interesting to investigate the relationship between these atrophy and the

white matter microstructural abnormalities we observed here.

6.6 Conclusion
Using NODDI, we identified white matter abnormalities in YOAD patients com-

pared with controls, and found NODDI could give a better quantification of the

tissue-specific microstructural changes than DTI. And we found NODDI has the

potential to reveal the associations between gene status and the spatial distribution

of white matter impairments in YOAD. In conclusion, we demonstrated the fea-

sibility of NODDI in detecting the white matter damage at the clinical stage of

neurodegenerative diseases using YOAD as a disease model. And NODDI may

provide a more fine-grained depiction of the microstructural changes at the clinical

stages of neurodegenerative process.
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Table 6.1: The Demographic and Clinical Characteristics.
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Table 6.2: NODDI metrics of all quadrant white matter ROIs on the white matter skeleton
in YOAD and controls.

WM ROIs YOAD Controls Statistics
NDI (mean±std)
Left anterior quadrant 0.554±0.022 0.538±0.031 p=0.043
Left posterior quadrant 0.559±0.029 0.518±0.031 p<0.0001
Right anterior quadrant 0.555±0.022 0.539±0.036 p=0.067
Right posterior quadrant 0.552±0.029 0.511±0.052 p=0.001
ODI (mean±std)
Left anterior quadrant 0.214±0.015 0.214±0.007 p=0.95
Left posterior quadrant 0.202±0.023 0.201±0.007 p=0.76
Right anterior quadrant 0.213±0.014 0.211±0.008 p=0.54
Right posterior quadrant 0.195±0.013 0.194±0.008 p=0.68
FISO (mean±std)
Left anterior quadrant 0.105±0.017 0.108±0.016 p=0.67
Left posterior quadrant 0.107±0.024 0.111±0.017 p=0.58
Right anterior quadrant 0.099±0.017 0.106±0.018 p=0.22
Right posterior quadrant 0.101±0.023 0.111±0.034 p=0.26
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Figure 6.11: The correlations between NODDI metrics and cognitive function in YOAD
patients (adapted from [271])

Figure 6.12: The t statistic map of the direct comparison between APOE ε4+ YOAD pa-
tients and APOE ε4- YOAD patients, warm color APOE ε4+ YOAD patients
< APOE ε4- YOAD patients, cool color APOE ε4+ YOAD patients > APOE
ε4- YOAD patients





Chapter 7

NODDI in longitudinal young onset

AD

7.1 Introduction

In this chapter, we aimed to test the feasibility of NODDI in tracking the longitudi-

nal progression of the in vivo white matter damage at the clinical stage of neurode-

generative diseases.

In both the cross-sectional studies described in chapter 5 and 6, we demon-

strated the feasibility of NODDI in revealing a detailed picture of the in vivo white

matter pathology at both the preclinical and clinical stages of neurodegenerative

diseases using pre-manifest HD and YOAD as the disease models. Moreover, in

chapter 6, we found that NODDI has the potential to reveal the impact of APOE

ε4 genotypes on the profiles of white matter damage in YOAD. As a novel tech-

nique that might potentially bridge the gap between the traditional pathology in

postmortem studies and the in vivo neuroimaging, it is also of great importance to

investigate if NODDI metrics could be sensitive biomarkers of the temporal evolu-

tion of white matter damage in clinical studies.

The importance of studying white matter abnormalities in AD has been high-

lighted by previous findings of abnormal axonal transport in Alzheimer′ disease.

The deficiency of axonal transport has been suggested to be a cause and a conse-

quence of the generation of amyloid β (Aβ ) [201, 326]. The accumulation of this
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amyloid β is considered as another characteristic feature in AD pathology [327].

Another essential factor for the maintenance of normal axonal transport is the neu-

ronal cytoskeleton, which can be disrupted by APOE ε4 [170]. In addition, the

accumulation of the hper-phosphorylated tau protein in the intraneuronal neurofib-

rillary tangles is also taken as a characteristic feature in AD pathology [327]. Tau

protein often presents in axons, and is mostly expressed by neurons that have a

preferential axonal localization [328]. The C-terminal microtubule-binding region

of Tau protein has a key role in the successful assembly and the stabilisation of

axonal microtubules [329–331]. Therefore, tau protein is important for the regu-

lation of axonal transport [332]. Additionally, we often find that axonal swelling

occurs in these three features that are involved in AD pathogenesis (Amyloid β ,

tau, and APOE ε4) [333–336]. Therefore, studying abnormalities in white matter

might shed light on revealing AD pathology.

White matter abnormalities in AD has been studied by DTI both cross-

sectionally and longitudinally. The cross-sectional studies have consistently found

that widespread white matter areas in AD had increased diffusivity and decreased

FA compared with normal controls, including the temporal, parietal and frontal

white matter, the corpus callosum and the longitudinal association fiber tracts

[226–230]. Longitudinally, FA has been found to decrease but MD has been found

to increase over time in the fornix, corpus callosum, inferior cingulum, hippocam-

pal cingulum, internal and external capsule, corona radiata, posterior thalamic radi-

ation, superior and inferior longitudinal fasciculus, fronto-occipital fasciculus, tape-

tum and uncinate fasciculus [231–234]. Whilst sensitive, due to the limited single

tensor model used in DTI, we can not directly link the DTI findings with any specific

tissue property. Such tissue properties have been becoming more and more accessi-

ble with the emerging advanced diffusion MRI techniques with biophysical models.

NODDI is one of such techniques that provides compartment-specific information

on the tissue properties. NODDI uses different mathematical distributions to model

the water diffusion contributed by different microstructure compartments and there-

fore provide us much more detailed information on the tissue property.
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Here, with a cohort of YOAD patients and controls scanned at both the be-

ginning and the end of one year, we explored the potential utility of NODDI for

depicting the temporal evolution of white matter pathology in neurodegenerative

diseases. In this exploratory study, we used a whole brain white matter voxel-wise

analysis - TBSS together with an unbiased longitudinal analysis framework [262].

Additionally, we explored the potential impact of APOE ε4 on the progression pat-

tern of white matter damage in YOAD using NODDI.

7.2 Research dissemination
This work has been presented in ISMRM 2017 and AAIC 2017. And a journal

paper is under preparations.

• Longitudinal neurite orientation dispersion and density imaging in young

onset AD, Slattery CF, Zhang J, Paterson RW, Foulkes AJM, Carton A,

Macpherson K, Mancini L, Thomas DL, Modat M, Toussaint N, Cash DM,

Thornton JS, Henley SMD, Crutch SJ, Alexander DC, Ourselin S, Fox NC,

Zhang H, Schott JM, Alzheimer’s and Dementia, 2017.

• Longitudinal progression of white matter deficits in Young Onset Alzheimer’s

Disease and Its Syndromic Variants using NODDI, Zhang J, Slattery

CF,Paterson RW, Foulkes AJM, Carton A, Macpherson K, Mancini L,

Thomas DL, Modat M, Toussaint N, Cash DM, Thornton JS, Henley SMD,

Crutch SJ, Alexander DC, Ourselin S, Fox NC, Zhang H, Schott JM, Interna-

tional Society for Magnetic Resonance in Medicine, 2017.

7.3 Methods

7.3.1 Participants

Out of the cohort we described in chapter 6, there were 20 controls and 26 YOAD

patients who participated in both of the scans (see chapter 6 for more details on

participants).
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7.3.2 Assessing APOE ε4 genotype

For each patient, their APOE ε4 genotype was determined as we described in Chap-

ter 6.2.2. Specific consents on donating blood for genetic analysis were given, ex-

plained and assigned by the patients at both times.

7.3.3 MRI acquisition

All the subjects were scanned twice with an interval of 12 months on the same

3T Siemens Trio MRI scanner at the Queen Square in London. The multi-shell

acquisition protocol is the same as the one used in chapter 6.

7.3.4 Preparations of NODDI metric maps

The quality of images was checked manually one volume by one volume as we de-

scribed in Chapter 4. Only 24 YOAD patients and 17 controls had both NODDI

scans that passed the quality control criteria. All the preprocessing steps (eddy-

current distortion and motion correction and tissue mask creation) and model fitting

are the same as described in Chapter 4. Notably, here we used an optimised longitu-

dinal framework implemented in DTI-TK for spatial normalisation. The details on

how to create the longitudinal group specific tensor template are described in Chap-

ter 4. To evaluate the longitudinal progression of white matter damage in YOAD,

we also calculated the annualised rate of change in NODDI metrics. The annualised

rate of change was computed by (NODDI metrics at the baseline - NODDI met-

rics at the one-year follow-up) / the interval between the two scans (in months).

7.3.5 Statistical analysis

7.3.5.1 The statistics of clinical characteristics

For categorical variables, we used fisher exact test for comparisons between 2

groups and chi-square test for comparisons between 3 groups. And for the con-

tinuous scores, we used student t test for the comparisons between two groups and

analysis of variance (ANOVA) for the three-group comparisons. All the statistical

analyses of the clinical characteristics were performed using Matlab 2016a. No-

tably, we do not expect there would be a difference in their demographic distribu-
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tions at the follow up because the participants were scheduled to be scanned at the

same interval of 12 months.

7.3.5.2 The general linear model for group comparison

We used the general linear model (GLM) for all our group comparison analysis. In

the GLM, the dependent variable is the NODDI metric of each voxel on the white

matter skeleton, and the covariates include gender and age at the baseline. Before

putting these two covariates into the GLM, we demeaned the continuous variable of

age and then converted it into a vector while for the categorical variable - gender,

we binarized the labels with 0 and 1 representing male and female respectively.

The main factor is the group type, “YOAD” standing for all the patients and “NC”

standing for normal controls.

7.3.5.3 TBSS analysis

As designed in Chapter 4, we used TBSS to identify group differences across the

whole brain white matter microstructure using NODDI. We first created white mat-

ter skeleton from the group mean FA map in the template space with the default FA

threshold (0.2). We then projected the NODDI metric maps at the baseline and the

follow-up as well as the annualised rate of change in NODDI metrics onto the white

matter skeleton.

After map projection, we used a non-parametric analysis for group compar-

ison - permutation test [278] , and we set up the GLM as we described in section

7.2.5.2. The permutation was performed 5000 times and multiple comparisons were

corrected at p<0.05 using TFCE [279]. The contrasts of the pairwise comparisons

we tested included “NC>YOAD”, “NC<YOAD”, “NC>APOE ε4-”, “NC<APOE

ε4-”, “NC>APOE ε4+”, “NC<APOE ε4+”, “APOE ε4+>APOE ε4-”, “APOE

ε4+<APOE ε4-”. Notably, to compare with findings in our cross-sectional study,

we also performed the group comparisons of NODDI metrics cross-sectionally at

the baseline.
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7.4 Results

7.4.1 Demographic

Table 7.1: The Demographic of YOAD patients and controls.

Controls YOAD Statistics
n=17 n=24

Sex, M:F, n 8:9 8:16 p=0.52
Age at baseline (years), mean/std 60.7/6.3 61.4/5.7 p=0.7

The summary of the demographics of controls and YOAD patients is listed

in Table 7.1. There were no significant differences in the age and gender between

patients and controls (age, p = 0.7; gender, p = 0.52). In terms of the genotype of

APOE ε4, among the 24 YOAD patients, there were 14 APOE ε4+ patients and

10 APOE ε4- patients. The summary of the demographic for YOAD genotypes

and controls is listed in Table 7.2. There were no group differences in age across

controls and APOE ε4- and APOE ε4+ (p=0.91). There were more female than

male in APOE ε4+ but the differences in the gender distributions in the three groups

did not reach a significant level (p=0.25). Most of the APOE ε4+ patients (11 out

of 14) and APOE ε4- patients (6 out of the 10) presented a ’typical AD’ amnestic

phenotype while the rest presented an atypical AD - PCA.

Table 7.2: The Demographic of controls and YOAD genotypes of patients.

Controls APOE ε4- APOE ε4+ Statistics
n=17 n=10 n=14

Sex, M:F, n 8:9 5:5 3:11 p=0.25
Age at baseline (years), mean/std 60.7/6.3 61.2/3.8 61.6/6.9 p=0.91

7.4.2 Group differences between YOAD patients and controls

Compared with controls, we found that YOAD patients had a faster annualised rate

of change in NDI (Figure 7.1 A, TFCE corrected p<0.05) in temporal, parietal and

occipital white matter, fornix, the splenium of corpus callosum, and white matter in

the cerebellum. There were no significant group differences in the annualised rate

of change in ODI (Figure 7.1 B, TFCE corrected p<0.05). Interestingly, we found

the annualised rate of change in FISO was bigger in YOAD than in controls, mainly
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involving the temporal white matter, cerebellar white matter, fornix, and brainstem

(Figure 7.1 C, TFCE corrected p<0.05).

In terms of the group comparisons between YOAD and controls at the baseline,
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we identified decreased NDI and decreased ODI as well as increased FISO with a

similar pattern (Figure 7.2, TFCE corrected p<0.05) as what we found in the cross-

sectional study described in Chapter 6.3.3.1.
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7.4.3 Group differences between YOAD genotypes and controls

The whole brain white matter TBSS analysis between YOAD genotypes and con-

trols showed that both genotypes of YOAD patients had significant differences in

annualised rate of change in NODD metrics than controls (TFCE corrected p<0.05).

Both genotypes of YOAD patients had faster annualised rate of change in NDI

than controls (Figure 7.3, TFCE corrected p<0.05). However, there were more

white matter tracts involved in APOE ε4+ patients than APOE ε4- patients. For

example, in the body of fornix and the splenium of corpus callosum as well as the

parietal white matter, APOE ε4+ patients had faster decrease in NDI than controls

while there were no significant group differences in annualise rate of change in NDI

between APOE ε4- patients and controls (TFCE corrected p<0.05). Additionally,

there seemed to be a different temporal evolution pattern in the two hemispheres

detected by NDI in YOAD genotypes. The differences in annualised rate of change

in NDI between APOE ε4- patients and controls showed a much more asymmetrical

pattern than those differences between APOE ε4+ patients and controls.

There were no significant group differences in annualised rate of change in

ODI between YOAD genotypes and controls (TFCE corrected p<0.05).

As for the group differences in the annualised rate of change in FISO, the

genotypes of YOAD patients showed a different pattern (Figure 7.4, TFCE cor-

rected p<0.05). There were no significant group differences in the annualised rate

of change in FISO between APOE ε4- patients and controls while APOE ε4+ pa-

tients had a much quicker increase in FISO than controls in the cerebellar and tem-

poral white matter, fornix, and brainstem(TFCE corrected p<0.05).

There were no significant group differences in annualised rate of change in any

of NODDI metrics between ε4+ and ε4- in the direct group comparisons between

these two YOAD genotypes (TFCE corrected p<0.05).

In terms of the cross-sectional group comparisons in NODDI metrics between

YOAD genotypes and controls at the baseline, we identified decreased NDI (Fig-

ure 7.5) and decreased ODI (Figure 7.6) as well as increased FISO (Figure 7.7) in

YOAD genotypes compared to controls (TFCE corrected p<0.05), which showed a
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similar spatial distribution as what we found in Chapter 6.3.4.1.

7.5 Discussion

Our study is the first study that explores the feasibility of NODDI in tracking the

longitudinal progression of white matter damage in neurodegenerative diseases.

We found that NODDI is sensitive to the longitudinal progression of white mat-

ter pathology in YOAD and its association with the APOE ε4 genotypes. NODDI

metrics showed faster annualised rate of change in NDI and FISO in YOAD pa-

tients than controls, and the similarities and differences in the disease progression

of white matter pathology associated with APOE ε4 genotype.

The abnormal axonal transport in AD observed in histological studies [170,

201, 326, 332] suggested a role of axon degeneration in Alzheimer’s disease. We

first observed decreased NDI in YOAD compared to controls in white matter that

surrounds the grey matter and the hippocampus at the baseline. We then identified a

faster annualised rate of decrease in NDI. These together suggest that the axonal loss

might start from those that are close to the well-know AD atrophy in the cortex and

the hippocampus but then progress to deep brain structures. It is biologically plau-

sible to connect the reduction in NDI with the changes in axonal density. However,

this reduction in NDI may also be because of the demyelination [107]. Although

we observed decreased ODI in YOAD patients compared to controls, there were no

group differences in the annualised rate of change in ODI between YOAD patients

and controls. This suggests that there were alterations in the spatial organisation

of axons within those fiber tracts but this alteration did not evolve over a year. In-

terestingly, we identified increased FISO around the corpus callosum and fornix in

YOAD patients compared with controls at the baseline and YOAD patients had a

faster annualised rate of increase in FISO in the temporal white matter, cerebellar

white matter, fornix, and brainstem. Fornix and corpus callosum are adjacent to

the ventricle and therefore can be affected by the enlarged ventricle that is often

observed in AD patients [337]. This highlights another advantage of the NODDI

model that the estimation of NODDI metrics - NDI and ODI is not contaminated by
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the free water content. However, the mechanism of faster rate of FISO increase in

cerebellar white matter and brainstem is still clear and worths further investigations.

As for the association between APOE ε4 genotype and the pattern of longitu-

dinal progression, our findings using NODDI suggest that with APOE ε4, YOAD

patients not only have damages in more white matter areas but also progress faster

in more white matter areas. However, there were no significant group differences in

the direct comparisons of NODDI metrics between APOE ε4 genotype subgroups

in the pattern of longitudinal progression. This is not surprising, given that the direct

comparison in our cross-sectional study in Chapter 6 did not have any significant

results either. More samples will be needed in future studies to confirm our findings.

One potential limitation of this study is that as simple biophysical model,

NODDI may not capture the complete neurodegenerative process in biological tis-

sue. Secondly, we are not clear if the assumption of the same intrinsic diffusivity

of NODDI in patients and controls at the beginning and the end of one year is valid

or not. However, there is so far no clear way how to validate this in biological

tissue. Additionally, we only have relatively small cohorts of YOAD subgroups

with different APOE ε4 genotypes, and the reproducibility of our findings need fur-

ther confirmation. Here, we only assessed the differences in the annualised rate of

change in NODDI metrics between controls and YOAD. An interesting question we

could explore in future is the relationship between the annualised rate of change in

NODDI metrics and the annualised rate of change in cognitive and behavioural per-

formances. Moreover, as described in earlier, DTI is a widely-used MRI technique

to study the microstructural changes in clinical studies. It is of great interest to in-

vestigate in future on the advantage of NODDI over standard DTI in depicting the

temporal evolution of white matter pathology in neurodegenerative diseases. More-

over, we did not acquire the genotype information of the normal controls, and our

assumption that the distribution of APOE ε4 status is similar in patients as the con-

trols may not be valid for our cohort. As APOE ε4 is a factor that has influence on

brain microstructure in normal controls [206,324,325]. Therefore, our findings here

need confirmations in future studies taking the APOE ε4 status of normal controls
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into consideration. Finally, it would be interesting to investigate the relationship

of the grey matter and hippocampal atrophy and the temporal evolution of white

matter microstructural abnormalities we observed here in future.

7.6 Conclusion
In this study, we established the feasibility of NODDI in tracking the disease pro-

gression in neurodegenerative diseases using YOAD as a disease model. And our

findings suggest that NODDI can be a powerful technique of tracking disease pro-

gression in Alzheimer′s disease and other neurodegenerative diseases.
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Chapter 8

Conclusions and Discussions

8.1 The summary

This thesis aimed to evaluate the feasibility of translating advanced diffusion MRI

technique - NODDI into characterizing the in vivo white matter pathology in neu-

rodegenerative diseases. The tissue-specificity of NODDI allows us to have more

plausible explanations of white matter abnormalities than using standard DTI both

before and after the disease onset cross-sectionally.

In chapter 4, I discussed the key imaging aspects of designing and conducting a

clinical study using NODDI and DTI, and described the image processing pipeline

used in all my exploratory experiments.

In chapter 5, I demonstrated the feasibility of NODDI in depicting a detailed

picture of the in vivo white matter pathology at the pre-manifest stage of neurode-

generative diseases. We applied both NODDI and DTI to study the white matter

microstructural abnormalities in a cohort of the pre-manifest HD individuals and

controls. With NODDI, we identified that compared with controls, pre-manifest

HD individuals had a reduction of NDI in widespread white matter, and decreased

ODI within white matter tracts that surround the characteristic atrophy in HD - the

basal ganglia. And the NODDI metric - NDI of the corpus callosum correlated with

the clinical scores of disease progression. In the same cohort, our DTI findings

are consistent with previous studies that pre-manifest HD individuals had increased

diffusivities and decreased FA in a large amount of white matter compared with nor-
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mal controls. The survival of the significant group differences in NDI but none for

DTI metrics at a much stricter threshold may suggest a better sensitivity of NODDI

than DTI to the white matter microstructural abnormalities.

In chapter 6, I presented clear evidence of a successful translation of NODDI

into studying the in vivo white matter pathology at the clinical stage of neurode-

generative diseases. We applied both NODDI and DTI to study the white matter

microstructural impairments in young onset AD patients. NODDI revealed a reduc-

tion of NDI in widespread white matter in young onset AD patients, compared with

controls. And NODDI has the potential to detect differences in the spatial distri-

bution of impaired white matter between young onset AD patients with or without

APOEε4. We also found NDI in the parieto-occipital white matter correlated with

the performances of the test of visual object and spatial perception battery and the

performance intelligence in WASI matrices.

In chapter 7, I established the feasibility of NODDI in tracking the longitudinal

progression of the in vivo white matter pathology at the clinical stage of neurode-

generative diseases. We applied NODDI to study the progression of in vivo white

matter pathology in young onset AD at the baseline and the one-year follow-up. We

found that compared with controls, young onset AD patients had a faster annualised

rate of reduction in NDI and a faster annualised rate of increase in FISO. In addition,

And NODDI has the potential to detect differences in the temporal progression of

impaired white matter between young onset AD patients with or without APOEε4.

Our findings here demonstrate the value of NODDI in revealing the temporal evo-

lution of in vivo white matter pathology at the clinical stage of neurodegenerative

diseases.

In conclusion, our findings in the experiments of this thesis demonstrate the

feasibility of applying this advanced diffusion MRI technique - NODDI in providing

a unique window of assessing the in vivo white matter pathology and its progression

in neurodegenerative diseases.
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8.2 Discussions and future work

8.2.1 Image quality control

For MRI images, quality control using visual inspection is now considered to be the

gold standard. But it demands a large amount of time, especially for diffusion MRI.

In our case, for one subject, the standard DTI dataset has more than 70 volumes, and

the NODDI dataset consists of over 100 volumes. The QC for these two datasets of

one subject takes more than one hour. If the same applies to large studies such as

UK Biobank [338] and Human Connectome Project (HCP) [339], manual checking

demands massive amounts of work. In such cases, more than one inspectors have

to be involved. This lends to another problem of manual QC - the bias of different

inspectors on their subjective standards of image quality.

Recently, there have been advances in the development of automated tools for

QC. One kind customises the selected features of a dataset as the criteria for QC

[340, 341]. The other kind trains a classifier using the QC outcomes of a subset of

the whole datasets as the input and predicts whether a certain diffusion MRI dataset

has artefacts or not [342, 343]. Both kinds require a certain amount of preparations

on QC and the experience of the inspector who does the preparation is very key. To

avoid the manual checking in this preparation step and the potential bias from the

inspector, an automated QC framework based on deep learning [344] and a diffusion

MRI signal simulator [345] has been proposed [346] and it has been demonstrated

to be sensitive to motion artefacts using dHCP datasets [347]. Therefore, it would

be interesting to evaluate the value of this tool in such datasets, which might greatly

reduce the amount of QC work for future studies.

8.2.2 The potential confounding impact of motion

In all the three experiments presented in this thesis, we have corrected motion us-

ing a strategy described in details in Chapter 4.2.2. After motion correction, we

have manually checked the images and confirmed that the motion was minimal.

However, as one of the neurodegenerative disease models used here - HD is a dis-

ease characterised by the disorders of movements, it is important to understand the
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potential influence of motion on our results in the pre-manifest HD study.

There are two kinds of motion in MRI images - the translational and rotational

motion, and we calculated both motions from the transformation matrix computed

during the motion correction. Our findings showed that neither the translational

motion or the rotational motion had significant group differences (for translational

motion, t=-1.733, p>0.05; for rotational motion, t=-0.285, p>0.05). Therefore,

we do not expect that motion would have any significant impact on our findings

of group differences. As for the correlations, there were no significant correlations

between the clinical measures (CPO and TMS) and neither of the translational and

rotational motion (p>0.05). Additionally, there was no significant correlation be-

tween rotational motion and NDI in any region of the corpus callosum (p>0.05).

However, the translational motion had a significant correlation with NDI in the sple-

nium of corpus callosum (p<0.05). Therefore, we reanalysed this correlation and

found it stayed as significant (r=-0.482, p=0.0039).

8.2.3 Strategies for correcting eddy-current distortion and mo-

tion

New post-processing tools such as “eddy” [348] has been demonstrated in realistic

data simulated by a framework [345] based on POSSUM [349, 350] to perform

better than the most commonly used “eddy correct”. This tool - “eddy” predicts the

diffusion weighted signals within each volume without any pre-defined model. By

registering all the DWI images acquired to its predictions, we could have a good

estimation of the eddy-current distortion and motion artefacts. Even though we

used a sequence that minimises the eddy-current distortion, it would be interesting

to evaluate whether the choice in this image preprocessing step might have impact

on our final conclusions.

8.2.4 Strategies for NODDI fitting

As described in Chapter 4.2.4, the NODDI fitting with the matlab toolbox takes a

very long time. Thanks to the high performance cluster provided by the department

of computer science at UCL, it did not take me a very long time to finish the NODDI
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fitting for all my studies. However, a fast NODDI fitting might greatly benefit other

researchers who do not have access to such powerful computing resources. To

accelerate the NODDI fitting, a new framework called Accelerated Microstructure

Imaging via Convex Optimization (AMICO) [351] was proposed.

Figure 8.1: The lifespan trajectory of NODDI metrics in white matter with AMICO fitting
and the standard fitting.

To test the feasibility of AMICO in a practical neuroimaging study, we ex-

plored whether AMICO fitting could provide the same lifespan trajectory of white

matter microstructure using NODDI as the standard fitting using matlab toolbox,

with a cohort from the Human Connectome Project (HCP) lifespan phase 1a dataset

[352]. The details of this study design were described in our previous ISMRM ab-

stract [353]. We extracted the mean NODDI metrics estimated by the AMICO fit-

ting and the original fitting of the white matter skeleton created by TBSS [128] and

the core white matter atlas [281]. We found that at both spatial levels, NODDI met-

rics estimated by AMICO fitting could produce the same lifespan trajectory as the

standard fitting using the matlab toolbox (Figure 8.1). This suggests that NODDI



152 Chapter 8. Conclusions and Discussions

Figure 8.2: The Bland-Altman plots of NODDI metrics in white matter with AMICO fitting
and the standard fitting.

metrics estimated by AMICO fitting are highly consistent with those estimated by

the standard fitting, which was further confirmed by the high correlations between

NODDI metrics estimated by AMICO fitting and those estimated by the standard

fitting. For all the mean NODDI metrics of the white matter skeleton, the R2 were all

over 0.97. Meanwhile, for the mean NDI and FISO of the core white matter ROIs,

both of the R2 had a value of over 0.98 while for ODI, the R2 was 0.88. However,

in the Bland-Altman plots, we found that NODDI metrics estimated by AMICO

fitting are consistently smaller than those estimated by the standard fitting (Figure

8.2). In terms of the time required to finish the NODDI fitting of a HCP lifespan

dataset, the standard NODDI fitting takes about 230 hours while the AMICO fit-

ting takes about one hour. This clearly demonstrates the advantage of AMICO over

the standard fitting, especially for high-quality rich datasets and large studies with

hundreds or thousands of participants. This time efficiency of AMICO might be the

reason why a recent paper studying the ageing of white matter in 3513 UK Biobank
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participants [354] has used AMICO fitting instead of the standard fitting.

Additionally, a machine-learning based framework - image quality transfer

[355, 356] has been proposed to provide NODDI metric maps based on data ac-

quired with a simple DTI protocol. This method is not only fast in terms of produc-

ing NODDI metric maps, but also save the trouble of acquiring multi-shell diffusion

MRI datasets. Therefore, it would be of great interest to test whether, in our studies,

the NODDI metric maps predicted by this framework could produce similar results

as our findings.

8.2.5 The time-dependence of NODDI metrics

The time-dependence of diffusion MRI signals [357] has been studied in both nor-

mal and abnormal neural tissue [50, 358, 359]. Interestingly, people found that this

time-dependence affects the behaviours of water diffusion in both intra-axonal and

extra-axonal compartments [360–362]. Although a variety of diffusion MRI mod-

els including NODDI have been proposed to estimate the volume fractions of the

intra-axonal and extra-axonal compartments, very few of them have taken the time-

dependence of diffusion MRI signals into consideration.

Two recent studies showed that there is an impact of this time-dependence on

the NODDI metrics of white matter in both brain and the spinal cord [363, 364].

Incorporating such time-dependence has been shown to improve the estimations

of the axon diameter and neurite density in multi-compartment models in the white

matter of the brain [361]. This time dependence highlights the importance of setting

TE the same for the acquisition of multi-shell datasets. This will make sure the

comparability of the NODDI findings across studies. Nevertheless, it would be

interesting in future to evaluate this time-dependence of the NODDI metrics in our

clinical cohort and identify a time scale that enables the estimated NODDI metrics

to maximumly reflect the histological measures of compartment-specific volume

fractions.
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8.2.6 The limitations of NODDI model

As we described in chapter 2.3.2, there are a few assumptions in NODDI model.

These assumptions were made to simplify the model and make it clinical feasible.

However, this may bring up a few limitations. First, the single value of intrinsic

diffusivity for in vivo and ex vivo neural tissue may not be plausible in abnor-

mal conditions. This may also be one of the reasons that the estimation of FISO

using NODDI seems to be a bit high, compared with the potential impact of T2-

relaxometry effect [365]. Secondly, it may be questionable how valid the assump-

tion of fast exchange in the extra-cellular compartment across all the orientations is

used in NODDI model. Thirdly, NODDI uses a single Watson distribution, which

may fail in areas with crossing fibres. Despite this, it has been showed that in white

matter areas with crossing fibres, the ODI will decrease when one of the crossing

fibres degenerates [103]. Moreover, there has been evidence that white matter in hu-

man brain is mostly dominated by dispersed fibres rather than crossing fibres [366].

Lastly, The decrease in NDI may be caused by demyelination in neurodegenerative

diseases. The lack of signals contributed from the myelination makes it difficult to

conclude that the decrease in NDI is merely caused by the axonal loss. Therefore,

we did interpret our results carefully, based on the evidence of abnormal axonal

transport in those two neurodegenerative diseases [195–197]. Nevertheless, it can

be very meaningful to isolate the effect of demyelination on the reduction in NDI in

future.

8.2.7 The reproducibility of NODDI metrics

The reproducibility of NODDI metrics is key for meta-analysis and multi-centre

studies as well as longitudinal studies. It has been shown that NODDI met-

rics have relatively high reproducibility regardless of the external magnetic field

strength [367]. And NODDI metrics have comparable reproducibility to those of

DTI metrics [368]. Additionally, NODDI metrics were found to be affected by the

choice of b value for the outer shell in a multi-shell acquisition scheme [369]. How-

ever, all of these studies are case studies, and further confirmations are required in

population-based studies.
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[105] Samo Lasič, Markus Nilsson, Jimmy Lätt, Freddy Ståhlberg, and Daniel Top-
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[140] Almut Schüz and Valentino Braitenberg. The human cortical white matter:

quantitative aspects of cortico-cortical long-range connectivity. Cortical ar-

eas: Unity and diversity, pages 377–385, 2002.

[141] Francisco Aboitiz, Arnold B Scheibel, Robin S Fisher, and Eran Zaidel. Fiber

composition of the human corpus callosum. Brain research, 598(1-2):143–

153, 1992.

https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/types-glia
https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/types-glia


172 Bibliography

[142] A-S LaMantia and P Rakic. Cytological and quantitative characteristics of

four cerebral commissures in the rhesus monkey. Journal of Comparative

Neurology, 291(4):520–537, 1990.

[143] Henry H Ong, Alex C Wright, Suzanne L Wehrli, Andre Souza, Eric D

Schwartz, Scott N Hwang, and Felix W Wehrli. Indirect measurement of

regional axon diameter in excised mouse spinal cord with q-space imaging:

simulation and experimental studies. Neuroimage, 40(4):1619–1632, 2008.

[144] Roberto Caminiti, Hassan Ghaziri, Ralf Galuske, Patrick R Hof, and Gior-

gio M Innocenti. Evolution amplified processing with temporally dis-

persed slow neuronal connectivity in primates. Proceedings of the National

Academy of Sciences, pages pnas–0907655106, 2009.

[145] Jesper Riise and Bente Pakkenberg. Stereological estimation of the total

number of myelinated callosal fibers in human subjects. Journal of anatomy,

218(3):277–284, 2011.

[146] AK Stark and B Pakkenberg. Histological changes of the dopaminergic ni-

grostriatal system in aging. Cell and tissue research, 318(1):81–92, 2004.

[147] Bruce D Trapp, John Peterson, Richard M Ransohoff, Richard Rudick,
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form deformation using graphics processing units. Computer methods and

programs in biomedicine, 98(3):278–284, 2010.

[283] Laurent R Gauthier, Bénédicte C Charrin, Maria Borrell-Pagès, Jim P Dom-

pierre, Hélène Rangone, Fabrice P Cordelières, Jan De Mey, Marcy E Mac-

Donald, Volkmar Leßmann, Sandrine Humbert, et al. Huntingtin controls

neurotrophic support and survival of neurons by enhancing bdnf vesicular

transport along microtubules. Cell, 118(1):127–138, 2004.



Bibliography 191

[284] Eugenia Trushina, Roy B Dyer, John D Badger, Daren Ure, Lars Eide,

David D Tran, Brent T Vrieze, Valerie Legendre-Guillemin, Peter S McPher-

son, Bhaskar S Mandavilli, et al. Mutant huntingtin impairs axonal traf-

ficking in mammalian neurons in vivo and in vitro. Molecular and cellular

biology, 24(18):8195–8209, 2004.

[285] Hans-Peter Müller, Martin Gorges, Georg Grön, Jan Kassubek, G Bernhard
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