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Abstract

Electronic health records (EHR) are increasingly being used for constructing dis-
ease risk prediction models. Feature engineering in EHR data however is challeng-
ing due to their highly dimensional and heterogeneous nature. Low-dimensional
representations of EHR data can potentially mitigate these challenges. In this paper,
we use global vectors (GloVe) to learn word embeddings for diagnoses and proce-
dures recorded using 13 million ontology terms across 2.7 million hospitalisations
in national UK EHR. We demonstrate the utility of these embeddings by evalu-
ating their performance in identifying patients which are at higher risk of being
hospitalized for congestive heart failure. Our findings indicate that embeddings
can enable the creation of robust EHR-derived disease risk prediction models and
address some the limitations associated with manual clinical feature engineering.

1 Introduction

Risk prediction models are statistical tools which are used to predict the probability that an individual
with a given set of characteristics (e.g. smoking, blood pressure, family history of cancer) will
experience a health outcome (e.g. heart attack, type 2 diabetes, death). They are a cornerstone
of modern clinical medicine [1] as they enable clinicians to intervene earlier or chose the optimal
therapeutic strategy for a patient. Electronic health records (EHR), data generated during routine
patient interactions with healthcare providers [2, 3], offer the opportunity to create risk prediction
models in larger sample populations and higher clinical resolution [4] than previously available.
Utilizing EHR data however is challenging [5, 6, 7, 8] and a recent review [9] illustrated that
EHR-derived predictive models used a median of only 27 clinical features, mostly engineered in a
cross-sectional fashion.

Clinical concept embeddings, i.e. multi-dimensional vector representations of medical concepts, can
potentially enable the creation of risk prediction models that make use of a patient’s entire EHR
(e.g. diagnoses, procedures) and reduce the need for manual feature engineering. Contemporary
approaches for learning word embeddings are influenced by the neural language model developed by
Bengio et al. [10]. Word embeddings are a very popular way of representing high-dimensional and
high-sparsity data in the field of natural language processing and have demonstrated a significant
improvement in classification accuracy when combined with existing labelled data [11] . Popular
approaches include word2vec[12], which includes the continuous bag of words and skip-gram
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models, and GloVe [13], which produces word embeddings by fitting a weighted log-linear model to
aggregated global word-word co-occurrence statistics.

1.1 Previous research and contribution

Word embedding approaches have been previously used to create low-dimensional representations of
heterogeneous clinical concepts (e.g. diagnoses, prescriptions, procedures, laboratory findings) from
raw EHR data for various supervised and unsupervised learning tasks [14, 15]. Previous research has
evaluated the use of clinical concept embeddings in US data for predicting the risk of developing heart
failure using recurrent [16, 17] or convolutional [17] neural network architectures. In other disease
areas, embeddings have been evaluated for predicting events in critical care patients [18, 19], length
of stay and associated costs [20], suicide in mental health patients [21] and hierarchical regularities
in dependencies between health states [22].

A cornerstone of building risk prediction tools is external replication of findings [23]. Here, we
attempt to replicate and compare, to a certain degree, findings obtained using US data from single
hospital care providers [16] using UK EHR from multiple providers, and illustrate the application
of embeddings for risk prediction. This is the first study, to our knowledge, to utilize UK EHR data
in this context. The UK and US healthcare systems are significantly different in terms of planning,
delivery and reimbursement. This in turn directly influences what data are recorded in a patient’s
electronic health record. Additionally, in contrast with previous research, we evaluate the predictive
performance of different clinical information (e.g. diagnoses, procedures) independently as well since
including all available data might potentially be counterproductive given the noisy and heterogeneous
nature of EHR data.

2 Methods

2.1 Data sources and population

We used secondary care EHR from the UK Biobank [24], a population-based research study com-
prising 502,629 individuals in the UK. The study contains extensive phenotypic and genotypic
information and longitudinal follow-up for health-related outcomes is through linkages to national
EHR from hospital care and mortality registers. Diagnoses and procedures were recorded using
controlled clinical terminologies, i.e. hierarchical ontologies enables clinicians to systematically
record information about a patient’s health and treatment and enable the subsequent use of data for
reimbursement [25, 26] and research [27, 28]. Diagnoses were recorded using ICD-9 and ICD-10
[29] and procedures using OPCS-4 [30]. Admitted patients are assigned a primary and up to 15
secondary causes of admission.

We defined incident and prevalent HF cases using a previously-validated phenotyping algorithm
from the CALIBER resource [31, 32, 33]. HF cases were identified using ICD-9 and ICD-10 terms
occurring at any position during a patient admission (i.e. primary or otherwise) in patients aged
40-85 years old at the time of admission. For patients with multiple HF diagnoses, the date of onset
was defined as the earliest date of admission. HF cases were matched with four eligible controls on
assessment centre, year of recruitment, sex and year of birth. Controls were assigned an index date,
which was the date of HF diagnosis of the matched case. We excluded prevalent HF cases from our
analyses.

2.2 Learning concept and patient embeddings

We created four corpuses (Table 1) using: a) primary diagnosis terms (PRIMDX), b) primary
diagnosis terms and procedure terms (PRIMDX-PROC), c) using primary and secondary diagnosis
terms (PRIMDX-SECDX) and, d) primary and secondary diagnosis terms and procedure terms
(PRIMDX-SECDX-PROC). We learned concept-level embeddings using the GLoVe model on the
four corpuses and evaluated combinations of embedding dimension (50, 100, 150, 250, 500, 1000)
and window sizes (50, 10, 20). Models were trained using Adagrad [34] and 150 epochs. We created
patient-level embeddings (Figure 1.) by: a) extracting all terms from a patients EHR record from
the start of follow up to six months (to exclude features very strongly correlated with a subsequent
diagnosis [35]) prior to date of HF diagnoses for cases or the index date for matched controls, b)
looking up the vector representations for each embedding, c) creating a vector composed of the mean,
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Figure 1: (A) Patient EHR timeline. Concept-level representations of diagnoses and procedures in
(B) are transformed into patient-level vector representations. (C) Patients are represented by a vector
which is used as input in the supervised risk prediction experiment.

Corpus Tokens Tokens Tokens Vocabulary
(total) (unique) (median) size

PRIMDX 2,766,487 10,606 4 5,581
PRIMDX-SECDX 7,699,930 13,883 7 7,797
PRIMDX-PROC 7,904,942 18,608 11 10,949
PRIMDX-SECDX-PROC 12,838,385 21,885 15 13,165

Table 1: Information on the corpuses used as sources for training the clinical concept embeddings.

max and min of all concept vector representations and, d) normalizing to zero mean and unit variance.
For comparisons purposes, we additionally created one-hot representations of EHR data where the
feature vector had the same size as the entire vocabulary and only one dimension is on.

2.3 Risk prediction

We evaluated each set embeddings by applying a linear support vector machine (SVM) classifier
to predict HF onset as a supervised binary classification task using the normalized patient-level
embeddings as input. We split the data into a training dataset and a test dataset (ratio 3:1) and
performed six-fold cross-validation in all modeling iterations on the training data to find the optimal
hyper-parameters. We evaluated predictive performance using the area under the weighted receiver
operating characteristic curve (AUROC) and the weighted F1 score computed on the test dataset
which was unseen.

2.4 Implementation

The SVM was implemented using scikit-learn [36]. GloVe embeddings were trained using binaries
from pennington2014glove. The documented source code using sample synthetic data for our
experiments is available at https://github.com/spiros. EHR data used in our experiments are available
by applying to the UK Biobank [24]. UK Biobank ethical approval ref. 9922.

3 Experimental Results

We used raw EHR data from 502,639 participants and identified 4,581 HF cases (30.52% female) and
matched them as previously described to 13,740 controls. The mean age at HF diagnosis was 63.397
(95% CI 63.174-63.619). We trained the clinical concept embeddings from 2,447 ICD-9, 10,527
ICD-10 and 6,887 OPCS-4 terms across 2,779,598 hospitalizations. We observed that similarly
with previous research studies using clinical concept embeddings, diseases which are biologically

3



Figure 2: Ten closest neighbours of the ICD-10
term I50 Heart Failure in 2D using t-SNE [37].

ICD-10 Term Similarity
I25 Chronic Ishaemic Heart Disease 0.521853
I48 Atrial Fibrillation and Flutter 0.519000
R06 Abnormalities in Breathing 0.479213
I20 Angina Pectoris 0.468975
I21 Acute Myocardial Infarction 0.460850
I47 Paroxysmal tachycardia 0.441402
N17 Acute renal failure 0.422741
I34 Nonrheumatic mitral valve disorders 0.417978
I08 Multiple valve disease 0.412447
J44 Other COPD 0.387752

or contextually closely related across the entire corpus are located close to each other in the vector
space (Figure 2).

We observed similar predictive performance across both one-hot and clinical concept embedding
prediction experiments. Clinical concept embeddings performed marginally better than one-hot
encoded data. The highest performing models were the ones using information combining all
diagnoses and surgical procedures (Table 2), obtained with a vector size of 250 and a context window
size of five with embeddings. For models using the less extensive corpuses, the best performing
results were observed with vectors of smaller size (50 dimensions) and larger context windows
(ranging from 10-20). Although, counter-intuitively, the PRIMDX best embedding outperformed
PRIMDX-PROC (using procedures and primary diagnoses), PRIMDX-PROC performed better than
PRIMDX on average across all vector size and context window combinations. This suggests that
clinical concept vectors could be beneficial for risk prediction in absence of a domain ontology or in
a semi-supervised fashion combined with labelled data to boost performance [38].

One-hot Embeddings
Embedding AUROC F1 AUROC F1
PRIMDX 0.6543 0.7558 0.6720 0.7390
PRIMDX-PROC 0.6445 0.7362 0.6662 0.7341
PRIMDX-SECDX 0.6697 0.7527 0.6878 0.7568
PRIMDX-SECDX-PROC 0.6815 0.7664 0.6965 0.7500

Table 2: Best performing embeddings in test dataset with optimal hyper-parameters.

Direct comparison with previous studies is challenging due to the use of different underlying popula-
tions, study designs and incomplete definitions of cohorts and outcomes [39, 40]. When comparing
our results with previous studies which used clinical concept embeddings to predict HF onset in
a similar experimental setup, our approach achieved broadly similar (but slightly worse) overall
performance and followed similar patterns: Choi [16] et al. utilized clinical concept vectors trained
using word2vec skip-gram and reported an AUROC of 0.711 with one-hot encoded input and AUROC
of 0.743 using embeddings with a SVM classifier. Interestingly, the fact that we observed similar
(albeit slightly worse) results when using data from multiple hospitals compared to a study sourcing
data from a single hospital indicates that embedding approaches can potentially be a very useful tool
for scaling analyses across large heterogeneous data source and are insensitive to source variations.

4 Conclusion

Our work evaluated the use of word embeddings trained using GloVe for creating low-dimensionality
representations of heterogeneous clinical concepts in UK EHR data. The use of clinical embeddings
produced marginally improved predictive performance compared to conventional one-hot models and
thus potentially has has numerous applications in healthcare settings where complex, heterogeneous
information requires succinct representation or a domain ontology is not fit for purpose. Further
research is required to evaluate performance across different prediction windows and increase model
interpretability to enable their rapid translation into clinical care.
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