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ABSTRACT
Interaction conditions can change the balance of cooperation and conflict in
multicellular groups. After aggregating together, cells of the social amoeba
Dictyostelium discoideum may migrate as a group (known as a slug) to a new location.
We consider this migration stage as an arena for social competition and conflict
because the cells in the slug may not be from a genetically homogeneous population.
In this study, we examined the interplay of two seemingly diametric actions, the
solitary action of kin recognition and the collective action of slug migration in
D. discoideum, to more fully understand the effects of social competition on
fitness over the entire lifecycle. We compare slugs composed of either genetically
homogenous or heterogeneous cells that have migrated or remained stationary
in the social stage of the social amoeba Dictyostelium discoideum. After migration
of chimeric slugs, we found that facultative cheating is reduced, where facultative
cheating is defined as greater contribution to spore relative to stalk than found for
that clone in the clonal state. In addition our results support previous findings that
competitive interactions in chimeras diminish slug migration distance. Furthermore,
fruiting bodies have shorter stalks after migration, even accounting for cell numbers
at that time. Taken together, these results show that migration can alleviate the
conflict of interests in heterogeneous slugs. It aligns their interest in finding a more
advantageous place for dispersal, where shorter stalks suffice, which leads to a
decrease in cheating behavior.

Subjects Cell Biology, Evolutionary Studies
Keywords Competition, Cheating, Chimeras, Migration, Dictyostelium discoideum

INTRODUCTION
Individuals often interact with others in their environment, whether it is multicellular

organisms such as lions in a plain, or bacteria in a wound in a more microscopic level.

These interactions are characterized by both the effect on the recipient of an action and the

effect of the behavior on the initiator of the action. For many years altruistic interactions,
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those that benefit the recipient but impose a cost on the actor, confounded evolutionary

biologists because they seem to provide a perfect setting for cheating, where individuals

could gain the benefits of cooperative individuals without contributing to the public good

(Hamilton, 1964a; Hamilton, 1964b; Axelrod & Hamilton, 1981; Lehmann & Keller, 2006;

Ghoul, Griffin & West, 2014). In this setting, a cooperative population would be overcome

with cheaters, leading to its collapse. However, Hamilton (1964a) showed that altruism

could evolve if individuals preferentially directed benefits to kin. This theory, known as

kin selection, requires individuals to be sufficiently related to overcome the costs of their

cooperative behaviors.

At its face, kin selection, while a social behavior, is a solitary interaction between two

individuals. Individual A senses individual B and based on some cue, be it genetic or

environmental, either directs resources towards B or not (Hurst & Beynon, 2010; Coffin,

Watters & Mateo, 2011; Leclaire et al., 2013). Yet there are many social behaviors that

require the collective action of a group of individuals. In higher organisms, the flight

patterns of migratory birds, group babysitting in meerkats, and schooling in fish are

all examples of collective action. Just as in other social behaviors, they are mirrored

in microbes. For example, there is swarming in Myxoccocus xanthus and fruiting body

formation in Dictyostelium (Crespi, 2001; Velicer & Yu, 2003). In microbes, many studies

have shown that relatedness is necessary for collective actions (Ross-Gillespie & Kümmerli,

2014). By studying both kin selection and collective behaviors in both higher organisms

and microbes, we can gain a deeper understanding of the evolution of multicellularity, a

collective action where independent individuals give up their own autonomy to form a

higher-level group (Szathmáry & Smith, 1995; Queller, 2000).

Dictyostelium discoideum can be used for the study of both individual (kin recognition)

and collective actions (development) making it ideal for the study of multicellularity.

D. discoideum reproduces by binary fission and preys on soil bacteria. When resources be-

come scarce, individuals send out a chemical signal that causes all nearby cells to aggregate

together and initiate development. Once aggregated, the cells begin differentiating. The

majority of the cells, approximately 80% will form reproductive spores while the remaining

cells will altruistically form sterile stalk (Kessin, 2001). Unlike metazoans that go through a

single-cell bottleneck at the zygote stage, Dictyostelium forms a metazoan-like aggregate

that may be made up of several genotypes, thus providing an arena for competition,

conflict, and manipulation.

Indeed, cheaters have been identified that are consistently over-represented in the sorus

when mixed with another strain in both nature and in the laboratory setting (Strassmann,

Zhu & Queller, 2000; Fortunato, Queller & Strassmann, 2003; Queller et al., 2003; Gilbert

et al., 2007). However, all of these experiments were done bypassing a part of the lifecycle

that involves another collective action—migration. If the present environment is not

conducive to reproductive success, the group of cells, now known as a slug, can collectively

migrate to a better location to finish development (Kessin, 2001). While it seems like there

should not be any conflict within the slug, because this process allows cells to escape a poor

environment, there is evidence of some conflict. Foster et al. (2002) found that clonal slugs
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travel further than chimeric slugs composed of the same number of cells. This conflict

could be avoided if the cells segregated to form separate slugs but experiments show that

larger slugs move faster than smaller slugs and that a larger chimeric slug will travel further

than smaller clonal ones, which could make a huge difference if a slug is attempting to

reach a favorable location (Inouye & Takeuchi, 1980; Foster et al., 2002).

We know that there is competition between genotypes when there is no slug migration

but why during the migration stage? The cells risk death if they aggregate in a location

that is not conducive to dispersal and reproduction so why isn’t there some type of

armistice while migrating? It turns out that slug migration is costly (Jack et al., 2011).

As the slug moves, prestalk cells are left behind in a slime trail (Bonner, Koontz & Paton ,

1953; Sternfeld, 1992; Kuzdzal-Fick et al., 2007). The remaining cells must redifferentiate

to maintain the proper slug proportioning of prestalk and prespore cells, which leads to

a decrease in the number of reproductive spores that are formed (Abe et al., 1994; Ràfols

et al., 2001; Jack et al., 2011). Decreasing the number of reproductive spores may set the

stage for increased conflict if the slug is not homogeneous, similar to how limited resources

may cause escalation of fights between higher organisms. For this reason, we predict that

prolonging the time heterogeneous slugs migrate will accentuate competition because it

prolongs the time genotypes compete against each other and decreases the availability of

reproductive spores.

MATERIALS & METHODS
Growth and maintenance of strains
We used five naturally occurring clones of D. discoideum (NC28.1, NC34.1, NC63.2,

NC85.2 and NC105.1) originally collected in North Carolina (Francis & Eisenberg, 1993),

which have been used in several previous studies on the social behavior of D. discoideum

(e.g., Fortunato, Queller & Strassmann, 2003; Buttery et al., 2009). We grew spores from

frozen stocks on SM agar plates (10 g peptone, 1 g yeast extract, 10 g glucose, 1.9 g

KH2PO4, 1.3 g K2HPO4, 0.49 g MgSO4 (anhydrous) and 17 g of agar per liter) in the

presence of Klebsiella aerogenes (Ka) bacteria at a temperature of 22 ◦C.

Transformation of wild clones
We collected actively growing and dividing cells from the edges of plaques grown in

association with Ka on SM agar plates and transferred them to HL5 axenic medium

(5 g proteose peptone, 5 g thiotone E peptone, 10 g glucose, 5 g yeast extract, 0.35 g

Na2HPO4·7H2O, 0.35 g KH2PO4 per liter (Watts & Ashworth, 1970)) + 1% PVS (100,000

units of penicillin, 100 mg streptomycin sulphate, 200 µg folate, 600 µg vitamin B12

per liter) that was changed daily. The HL5 was changed daily until the culture dishes

were free of visible bacteria. We then harvested the cells and washed them twice by

centrifugation and resuspended them in cold standard KK2 buffer (16.1 mM KH2PO4

and 3.7 mM K2HPO4). Once the culture dishes were free of visible bacteria, we followed

the procedure for the transformation of D. discoideum by (Pang, Lynes & Knecht, 1999)

with red fluorescent protein (RFP) on an actin-15 promoter and a G418-resistance cassette.
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The cells were transferred to culture dishes containing HL5 + 1% PVS and left

overnight. After 24 h the medium was replaced with fresh medium containing 20 µg/ml

G418 and changed daily for five days of selection. Wild D. discoideum clones do not grow

well in axenic medium so we transferred the amoebae to SM agar with Ka to propagate.

Plaques that fluoresced red under a (535 nm) light source were transferred to G418-SM

agar plates (30 µg/ml G418) in the presence of G418 resistant Ka for a final round of

selection. Stable clones were then mixed in equal proportions with their ancestor and

allowed to develop. Those that did not significantly differ in proportion when mixed with

their ancestor and allowed to develop were used in the assay (see Figs. S1 and S2).

Cell preparation and migration assay
We washed harvested log-phase cells free of bacteria by repeated centrifugation and

suspended them in KK2 buffer at a density of 1 × 108 cells/ml. We made 50:50 chimeric

mixes of each RFP clone against all other ancestor clones, with a total of 10 chimeric mixes.

We placed 1.5% water agar Petri plates (size: 150 × 15 mm) in a laminar flow hood to

remove excess moisture. We then drew a line on the underside of the plates that was 2 cm

from the edge of the plate so that a line of 1 × 107 cells could be applied with accuracy

and dried beneath a laminar flow hood for an additional 45 min. For each treatment

there were 20 plates: ten chimeric mixes and ten clonal mixes (all 5 ancestors and their

RFP-transformants).

We set up two different treatments: non-migration and migration. For the non-

migration treatment, plates of each clone or mix were wrapped individually in foil with a

0.5 cm wide slit cut over the cells and then placed in an incubator where they could receive

light from above, a condition which causes them to fruit without first migrating. For the

migration treatment, plates were aligned and stacked with paper circles between each one.

The plates were then wrapped in aluminum foil, leaving a small opening at the end of the

plates opposite to the cells. This provided a directional light gradient for the aggregates

to phototactically move toward. The plates from both treatments were incubated for 6

days in 24-hour light, before being unwrapped and placed beneath a unidirectional light

source to induce fruiting of any slugs that remained. Each pair of treatments was replicated

five times.

To measure migration distance, we followed the procedure in Jack et al. (2011) where

the plate was marked in 2 cm wide zones parallel to the original line they were applied and

counted the number of fruiting bodies per zone using a dissecting microscope.

Estimation of spore allocation and rate of spore loss
Spore production
Spore allocation was measured using spore production as a proxy. The fruiting bodies were

carefully scraped up with a modified spatula and added to 3 mL of spore buffer (20 mM

EDTA and 0.1% NP-40). To calculate spore production, the total number of spores was

estimated and divided by the original number of cells.

To estimate the proportions of spores of both strains in a chimeric fruiting body, we

counted the proportion of RFP-labeled cells using a fluorescent microscope, correcting
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for loss of labeling from the clonally plated RFP genotypes. To reduce sampling error, we

counted at least 250 spores.

Rate of spore loss
We calculated the rate of spore lost as the decrease in spore production per centimeter

traveled. We took the difference in spore production between the No Migration and

Migration treatments and divided by the difference in distance traveled between the

Migration and No Migration treatments. Standardizing for distance traveled allows us

to accurately compare the proportion of spores that were lost for both treatments.

Measuring cheating and facultative behavior
We calculated the spore production for each pair both clonally and chimerically following

the procedure in (Buttery et al., 2009). Clonal spore production varies between genotypes.

This is equivalent to fixed allocation cheating and must be accounted for when measuring

facultative behavior. Facultative behavior is measured as the deviation from clonal spore

production when in chimera. The amount of facultative behavior was calculated as the sum

of the degree to which a genotype’s own spore production increased (‘self-promotion’) and

the amount it could reduce its competitors’ (‘coercion’) during social competition. The

values for coercion and self-promotion can be plotted as coordinates on a grid (Fig. 4).

The origin stands for no change in behavior. Any deviation from the origin is considered

facultative behavior. We compared the lengths of the vectors for the migration and no

migration treatments.

Morphometrics
We measured spore-stalk ratio directly from fruiting body architecture by estimating

volumes. We calculated stalk volume using the average width of the stalk measured across

the bottom, middle, and top of the stalk and the stalk length. We calculated spore allocation

as the volume of the sorus divided by the volume of the whole fruiting body (Buttery et al.,

2009). Seven or eight fruiting bodies from each clone or chimeric pair were measured.

Statistical analysis
All statistical analyses were calculated using R software version 3.0 (www.r-project.org).

Because of the ‘round robin’ nature of the experimental design, data were analyzed as

nested ANOVAs, using 1-way or 2-way ANOVAs depending upon the number of factors in

the analysis. This allowed us to control for variation between replicates.

RESULTS
Chimerism and migration
On average, slugs in the migration treatment traveled 5.76 ± 0.017 cm while slugs from the

no migration treatment traveled 0.093 ± 0.002 cm (1-way nested ANOVA: F6,214 = 476.02,

P < 0.001). We found that clonal genotypes vary in the distance they migrate (Fig. 1; 1-way

nested ANOVA: F4,34 = 7.55; P < 0.001). Chimeric slugs migrated less far than would

have been expected from the average of the migration distance of the two constituent
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Figure 1 Migration distance is genotype specific. An equal number of cells of each clone was placed on
water agar plates to form slugs. The slugs migrated under a unidirectional light source for six days and
were then allowed to fruit. An average migration distance per plate was calculated. The Tukey boxplots
shows the distribution of ten replicates (five untransformed, five RFP transformed) for each clone. (1-way
nested ANOVA: F4,34 = 7.55, P < 0.001).

clones (Fig. 2A; observed mean = 5.50 ± 0.24 cm, expected mean = 6.19 ± 0.20 cm;

1-way nested ANOVA: F1,49 = 17.86, P < 0.001). When we calculated the decrease in spore

production per centimeter traveled, we did not find a significant difference between clonal

slugs (µ= − 0.040 ± 0.004 spores per cell/cm) and chimeric slugs (µ= −0.046 ± 0.005

spores per cell/cm; Fig. 2B—one-way ANOVA; F1,93 = 0.83, p = 0.365).

Migration affects spore production and allocation
We found that chimeric fruiting bodies contain more spores than clonal fruiting bodies,

though the difference was only marginally significant. This confirms a previous significant

result (Buttery et al., 2009). Chimeric fruiting bodies produced more spores compared to

clonal fruiting bodies both with and without migration. The fruiting bodies of aggregates

that migrated produced significantly fewer spores than those that did not migrate (Fig. 3A;

2-way nested ANOVA: clonal vs. chimeric: F1,73 = 2.76, P = 0.066, µCL = 0.214 ± 0.011

spores per cell, µCH = 0.247 ± 0.017 spores per cell; migration vs. non-migration:

F1,73 = 133.9, P < 0.001, µM = 0.117 ± 0.006 spores per cell, µNM = 0.345 ± 0.015

spores per cell).

We found significant differences in fruiting body architecture between aggregates

that migrated and those that did not. From the morphometric analysis of fruiting body

structure, we found that fruiting bodies that migrated allocated proportionately more to

spores than those that did not (Fig. 3B; 1-way nested ANOVA: F1,24 = 10.46, P = 0.004,

µM = 0.933 ± 0.01, µNM = 0.836 ± 0.014). This was true for both clonal and chimeric

aggregates. As expected from this result, aggregates that migrated had shorter stalks
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Figure 2 Chimeric slugs travel less far than clonal slugs but lose cells over distance at a similar rate.
(A) Using the clonal migration distances from Fig. 1, we calculated the expected migration distances
for chimeric slugs that developed from the same total number of cells. The Tukey boxplots show that
migration distance for chimeric slugs were lower compared to clonal slugs (observed mean = 5.50
± 0.24 cm, expected mean = 6.19 ± 0.20; 1-way nested ANOVA: F1,49 = 17.89, P < 0.001). (B) However,
the decreased migration did not seem to affect spore production as there was not a significant difference
in the number of spores lost per cm traveled between clonal and chimeric fruiting bodies after migrating
(1-way nested ANOVA: F1,93 = 0.83, P = 0.365).

than those that did not (Fig. 3C; 1-way nested ANOVA: F1,60 = 804.1, P < 0.0001,

µM = 311.24 ± 11.71 mm, µNM = 1046.47 ± 27.23 mm).

Migration causes a decrease in cheating behavior
We estimated the amount of fixed cheating and facultative cheating between the two

treatments by comparing the spore production of clonal and chimeric fruiting bodies. We

found no differences in relative fixed allocations (i.e., clonal spore allocation) when we

compared spore allocation with and without migration. However, there was significantly

less facultative cheating behavior within chimeras that migrated compared to those

that did not (Fig. 4; 1-way ANOVA: F1,22 = 22.18, P < 0.001, µM = 0.086 ± 0.014,

µNM = 0.175 ± 0.02).

DISCUSSION
Previous studies have found cheating in D. discoideum and that it can be divided into

two categories: fixed and facultative (Strassmann, Zhu & Queller, 2000; Fortunato, Queller

& Strassmann, 2003; Queller et al., 2003; Gilbert et al., 2007; Buttery et al., 2009). The

proportion of cells allocated to spore vs. stalk is generally a genotype-specific trait, so

if a high spore allocator is mixed with a low spore allocator, the high spore allocator is

Jack et al. (2015), PeerJ, DOI 10.7717/peerj.1352 7/14

https://peerj.com
http://dx.doi.org/10.7717/peerj.1352


Figure 3 Spore production and fruiting body architecture is affected by migration and whether
fruiting bodies are clonal or chimeric. The Tukey boxplots compare different measurements of fruiting
body production between groups and treatments. (A) This shows that clones that migrated had a
significantly lower spore production than fruiting bodies that did not, indicating the loss of cells as the
slugs migrated. Chimeric fruiting bodies had a higher, marginally significant, spore production compared
to clonal fruiting bodies across both non-migration and migration treatments (2-way nested ANOVA:
non-migration vs. migration: F1,73 = 133.9, P < 0.001; clonal vs. chimeric: F1,73 = 2.76, P = 0.063).
(B) The ratio of sorus volume to total fruiting body volume of migrated fruiting bodies are significantly
higher compared to those of the non-migration treatment, irrespective of whether the fruiting bodies
were clonal or chimeric (1-way nested ANOVA: F1,24 = 10.46, P = 0.004). (C) The higher ratio of sorus to
fruiting body shown in B may be explained because fruiting bodies that have migrated have significantly
shorter stalks than those that did not migrate (1-way nested ANOVA: F1,60 = 804.1, P < 0.0001).

expected to be overrepresented in the sorus. This is fixed cheating, and the degree to which

it occurs can be predicted from genotypes’ clonal behavior (Buttery et al., 2009). Facultative

cheating occurs when there is a significant deviation from the behavior exhibited under

clonal conditions. Genotypes that cheat by increasing their own allocation to spores are

‘self-promoters’ and those that can reduce their partner’s share are ‘coercers’ (Buttery et

al., 2009; Parkinson et al., 2011). Partitioning cheating behaviors have given us a lot of new

insight in kin conflict in D. discoideum, but these studies are limited because they do not

focus on competition during the migration stage, which makes up a large portion of the

social life cycle.
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Figure 4 Facultative cheating behavior is reduced after migration. Facultative cheating, the deviation
from clonal spore production when in chimera is the sum of ‘self-promotion’ and ‘coercion,’ is shown in
the Tukey boxplots as their overall behavior. Overall, this cheating behavior decreased by approximately
50% for fruiting bodies that migrated compared to those that did not (1-way nested ANOVA: F1,22 =

22.18, P < 0.001).

In this study, we examined the interplay of two seemingly diametric actions, the solitary

action of kin recognition and the collective action of slug migration in D. discoideum, to

more fully understand the effects of social competition on fitness over the entire lifecycle.

The study by Foster et al. (2002) found that chimeric slugs did not travel as far as clonal

slugs of the same size. They hypothesized that internal conflict was preventing the slugs

from traveling greater distances. The anatomy of the Dictyostelium slug is such that the

front of the slug is where the cells that will eventually become stalk are located. They

suggested that the unwillingness to be in the front of the slug might be the cause of

the shorter distances. More recent studies suggest that response to DIF-1, a polyketide

produced by prespore cells that induce differentiation into stalk, can predict whether a

clone is likely to cheat or be a cheater (Parkinson et al., 2011). Clones that were more

sensitive to DIF-1 were more likely to end up in the stalk. Our initial hypothesis was that if

social competition is prolonged by migration towards light, the behavior of cheaters would

be exaggerated if cheating is an active process where clones can either change their behavior

if they sense a competitor or change the behavior of their competitor. We predicted that

the lower relatedness of the chimeric slugs would increase the conflict within the slug, thus

decreasing the probability of cells working as a cohesive unit to migrate and increasing the

fitness of cheater clones.

Overall, our hypothesis was not supported. Although we did find a cost in distance

traveled when we compared chimeric and clonal slugs, the difference was not nearly

as large as that as in the study by Foster et al. (2002). Castillo et al. (2005) showed

that slugs found within shallow soil (1 cm from the surface) could easily travel to the

surface, whether or not they were chimeric and that neither clonal nor chimeric slugs
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could easily reach the surface when under a 5 cm-deep layer of soil. Additionally, cells

sloughed during migration will have seeded new colonies should the slug pass through a

patch of bacterial food (Kuzdzal-Fick et al., 2007), so even if the slug is unable to make it

completely through to the soil surface, the cells from the slug will still have the opportunity

to replicate. Most interestingly, instead of finding increased cheating, the outcome of our

interactions showed a decrease in cheating behavior when chimeric slugs were allowed

to migrate compared to when they were not. Weaker clones from the no migration

treatment had increased spore representation in the migration treatment suggesting that

migration reduced the costs associated with being a chimeric slug. There are two possible

explanations for our results. A recent paper found that kin recognition is lost during the

slug stage and that kin discrimination and cheating both decrease as development proceeds

(Ho & Shaulsky, 2015). Slug migration lengthens the development time, as D. discoideum

does not begin differentiating until it has reached a new location. It is possible that the

decrease in facultative cheating is related to the tgrB1 and tgrC1 genes decreased expression

levels, which leads to less kin recognition. Another possible explanation is related to the

production of DIF-1. Those clones that migrated the farthest (Fig. 1) were also the clones

that were most likely to be facultative cheaters according to (Parkinson et al., 2011). These

clones are the ones that show the least response to DIF-1 and produced the most. If in

chimeras, these longer migrating clones are no longer at the front, it could explain why

chimeric slugs travel shorter distances than clonal slugs. Additionally, it is possible that

the act of migration is energetically costly, so that these clones produce less DIF-1. If that

were the case, then clones that are more sensitive to it under non-migration circumstances

would show increased spore production, which would give the results that we saw—more

equitable distribution of spores.

When we compared our morphometric analysis of fruiting bodies for all treatments, we

found another consequence of migration. We found that spore-stalk allocation increases

with migration for both clonal and chimeric treatments. This may be a non-adaptive

response to the decreased DIF-1 production. Or, producing proportionally less stalk after

prolonged migration may be a useful strategy; stalk height may be less important if the slug

has migrated into a more suitable habitat for dispersal. Dictyostelid spores are sticky, and

therefore not likely to be dispersed by wind, but viable spores from dictyostelids have been

found in the digestive contents of earthworms, nematodes, and other soil invertebrates,

which can act as mid-distance dispersers or can travel over even longer distances in the

digestive tracts of birds and mammals (Suthers, 1985; Huss, 1989; Sathe et al., 2010).

CONCLUSIONS
Collective cell and animal behavior is useful for understanding the evolution of

multicellularity. Migration in D. discoideum encompasses concepts from both types

of behavior. Collective cell migration is necessary for two of the key processes of

embryonic development: gastrulation and organogenesis (Weijer, 2009). Cell migration

in Dictyostelium is very similar (Weijer, 2009). Both involve cells that are close together,

migrate easily, move collectively in response to a signal, use actin and cell–cell junctions to

Jack et al. (2015), PeerJ, DOI 10.7717/peerj.1352 10/14

https://peerj.com
http://dx.doi.org/10.7717/peerj.1352


provide traction, and have an extracellular matrix (Friedl & Gilmour, 2009; Weijer, 2009).

Collective animal behaviors such as grouping and swarming involve self-organization and

are found in both lower and higher organisms (Sumpter, 2006; Olson et al., 2013). They

provide many benefits such as reducing the risk of predation, increase foraging efficiency,

and improving mating success (Olson et al., 2013). For Dictyostelium, collective migration

allows the cells to move more efficiently and for longer distances than individuals, much

like the V formation in migrating geese. However, there are instances where individuals

within a group may go rogue and only think of their own self-interest, such as when

cheaters gain more of a public good than they contribute. Slug migration is beneficial to all

cells because it aligns the interests of the cells towards migration. Our study suggests that

migration may also lead to alleviation of the conflict of interests in heterogeneous slugs,

which leads to a decrease in facultative cheating.
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