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In collisionless astrophysical plasmas, waves and instabilities are well modeled by the linearized Vlasov–Maxwell

equations, which have non-trivial solutions only when the complex frequency ω solves the hot-plasma dispersion rela-

tion. NHDS (New Hampshire Dispersion relation Solver) is a numerical tool written in Fortran 90 and first introduced

by Verscharen et al. (2013) to solve this dispersion relation under the assumption that the plasma background distri-

bution is a gyrotropic drifting bi-Maxwellian for each species j,
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in a cylindrical coordinate system aligned with the direction of the background magnetic field B0, where nj is the

density, w⊥ (w‖) is the perpendicular (parallel) thermal speed with respect to B0, and Uj is the field-aligned drift

speed. All floating-point quantities use double precision.

The NHDS code closely follows the formulation of the hot-plasma dispersion relation laid out by Stix (1992). It uses

a Newton-secant method to identify those frequencies at which there are non-trivial solutions to the wave equation,
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based on an initial guess for ω, where ε is the dielectric tensor, E is the vector of the electric-field Fourier amplitudes,

c is the speed of light, and k = (k⊥, 0, kz) is the wavevector. The initial guess defines the plasma mode that the

code follows in k. The Newton-secant method converges if the absolute value of the determinant of the matrix in

Equation (2) is less than a user-defined value. All frequencies are given in units of the proton gyro-frequency Ωp and

all length scales in units of the proton inertial length dp.

For each of the up to ten plasma components j, the user defines the temperature anisotropy T⊥j/T‖j with respect to

B0, the value of β‖j ≡ 8πnjkBT‖j/B
2
0 , the relative charge qj/qp, the relative mass mj/mp, the relative density nj/np,

and the normalized drift velocity Uj/vA, where kB is the Boltzmann constant, vA is the proton Alfvén speed, and

T‖j is the temperature parallel to B0. Furthermore, the ratio vA/c and the angle of propagation θ are user-defined

parameters.

The calculation of εik entails the evaluation of the modified Bessel function Im(λj) of the first kind and the plasma

dispersion function Z(ζ), where λj ≡ k2⊥w
2
⊥j/2Ω2

j , and ζ is a dimensionless complex number. For the evaluation

of Im, NHDS applies the recursion method supplied by the Numath Library (Clenshaw 1962). It determines the

maximum order mmax of Im as the smaller of either a user-defined limit or as the number for which Immax(λj) is less

than a user-defined value. NHDS evaluates Z(ζ) following Poppe & Wijers (1990) by computing the complex error
function w(ζ) = Z(ζ)/i

√
π through one of the following methods, depending on the value of |ζ|: a power series, the

Laplace continued fraction method, or a truncated Taylor expansion. This combined method is faster than alternative

approaches and calculates w(ζ) to an accuracy of 14 significant digits for almost all ζ.

NHDS determines the polarization of the wave solutions as the ratios Ey/Ex and Ez/Ex from Equation (2), which

translate to ratios of the magnetic-field amplitudes through Faraday’s law. In addition, as described by Verscharen

& Chandran (2013) and Verscharen et al. (2016), NHDS calculates the relative wave energy Wk and the Fourier

amplitudes of the fluctuations in density, bulk velocity, and pressure. The code also calculates the contribution γj to

the total growth/damping rate Im(ω) from each species j as described by Quataert (1998).

For a given wave solution, NHDS can determine the value of the self-consistent fluctuating distribution function on

a user-defined Cartesian grid in velocity space as described by Verscharen et al. (2016). NHDS saves the fluctuating

distribution function in HDF5 files and creates an XDMF file for visualization with programs like ParaView. This

calculation entails the calculation of the Bessel function Jm(k⊥v⊥/Ωj) of order m, which NHDS performs through a

polynomial Chebyshev approximation. The maximum order mmax for Jm is determined in the same way as mmax for

Im in the calculation of εik, except that mmax for Jm is evaluated for each v⊥.

Figure 1 shows the dispersion relations of Alfvén/ion-cyclotron (A/IC) and fast-magnetosonic/whistler (FM/W)

waves in parallel and perpendicular propagation as well as some of their polarization properties determined with

NHDS.
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The code is publicly available for download (Verscharen & Chandran 2018, Codebase: https://github.com/

danielver02/NHDS).

10−7
10−5
10−3
10−1

0 0.5 1 1.5 2

10−4

10−2

100

10−12
10−9
10−6
10−3

10−3

10−2

10−1

100

|E
z
/
E

x
|

|k|dp

|E
y
/E

x
||

Im
(ω

)|/
Ω
p

R
e(
ω

)/
Ω
p

A/IC, θ = 0.001◦
FM/W, θ = 0.001◦

A/IC, θ = 89◦
FM/W, θ = 89◦

Figure 1. Dispersion relations for the A/IC and FM/W waves in parallel (θ = 0.001◦) and perpendicular (θ = 89◦) propagation.
The panels show from the top to the bottom: the normalized real part of the frequency, the normalized damping rate, the ratio
|Ey/Ex|, and the ratio |Ez/Ex| as functions of |k|.
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