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Abstract

Recent progress in quantum information technology suggests that we will
soon be able to carry out computational tasks that are intractable on classical
computers. In the common quantum circuit model that divides the underly-
ing quantum algorithms into discrete gates, it is crucial to perform each of
these gates with high accuracy. In this thesis we develop an effective model
required to precisely describe interactions between superconducting qubits
mediated by a resonator. An analytical technique to design optimal control
shapes based on derivatives of some base waveform is reviewed, connecting
it to related methodology in literature and completing with novel insights.
Using this technique, we develop improved pulse sequences to entangle two
Rydberg atoms via the Rydberg-blockade interaction and achieve fidelities
beyond what previously appeared to be a fundamental limit. A modern opti-
mal control algorithm that combines analytical pulse shapes with numerical
optimization is used to study the generation of entanglement between trapped
ions. Additionally, we focus on cooling superconducting qubits in adiabatic
quantum computation where computational problems are solved by adiabati-
cally changing the Hamiltonian of a quantum system. Errors due to imperfect
adiabatic evolution and finite temperatures deteriorate performance in such
protocols. We propose a novel approach to reducing these errors efficiently,
overcoming limits of previous cooling schemes.

vii





Zusammenfassung

Aktuelle Entwicklungen im Gebiet Quanteninformationstechnologie lassen er-
warten, dass bald erste Rechnungen auf Quantencomputern durchgeführt wer-
den, die auf klassischen Computern nicht ausführbar sind. Unterteilt man die
zugrunde liegenden Quantenalgorithmen in individuelle Gatter, ist es nötig,
diese Gatter mit hoher Genauigkeit auszuführen. In dieser Arbeit erarbeiten
wir ein effektives Modell zur genauen Beschreibung der mittels eines Reso-
nators vermittelten Wechselwirkung zwischen supraleitenden Qubits. Eine
analytische Technik zur präzisen Systemkontrolle mittels Ableitungen einer
Funktion wird in neuartiger Form aufgearbeitet, in Bezug zu verwandten
Methoden gesetzt und durch bisher unveröffentlichte Erkenntnisse vervoll-
ständigt. Anhand dessen entwickeln wir verbesserte Sequenzen zur Verschrän-
kung zweier Rydbergatome mittels der Rydberg-Blockade und überwinden
bisher vermutete Einschränkungen. Ein moderner Algorithmus, der analy-
tische Pulsformen mit numerischer Optimierung kombiniert, wird genutzt,
um die Verschränkung zwischen gefangenen Ionen zu untersuchen. Daneben
untersuchen wir Kühlprozesse im adiabatischen Quantencomputing, bei dem
Probleme durch adiabatisches Umschalten des Hamiltonians eines Quanten-
systems gelöst werden. Wir schlagen eine neue Methode vor, um in solchen
Verfahren relevante Fehler aufgrund imperfekter Adiabatizität und endlicher
Temperatur effektiv zu reduzieren und überwinden dabei Einschränkungen
bisheriger Verfahren.
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Chapter 1

Quantum Information
Processing and Computation

It is impossible to imagine our everyday life without computers. They take
on heavy computational tasks for research and development purposes, au-
tomatically control and monitor various electrical devices, or are even used
as communication tools in everyone’s pockets. After Bardeen, Shockley and
Brattain presented the first working solid state amplifier (a transistor) at
Bell Labs in December 1947, further improvements of the transistor revo-
lutionized technological progress in all areas of electronics in the twentieth
century. Transistors are key to central processing units (CPUs), where their
continuously decreasing physical dimensions – from a few centimeters in their
early stages to only a few nanometers at present – allow to keep on enhancing
performance and computational power.

Remarkably, albeit the functionality of transistors – particularly, but non-
exclusively, the description of energy bands – relies on quantum mechanics,
computers as we are still used to them process information according to the
laws of classical physics. The key element of classical information is a bit : It
can be assigned to either have value 0 or 1, and information is encoded in long
strings of zeros and ones. To process information and perform computational
tasks, different logical operations (gates) exist. A simple fundamental example
is an AND gate between two bits: Its outcome is 1 only if both input bits are
1, otherwise it will return 0. It turns out that any logical operation on bits
can be decomposed for instance in terms of NAND gates (inverted AND),
provided that a bit can be replaced by two identical copies of itself (this is
referred to as FANOUT operation). The NAND gate is therefore considered
a universal gate of classical computation.

Transistors, together with other devices and phenomena that are based
on quantum mechanics but otherwise act as macroscopic systems, can be

3



CHAPTER 1. QUANTUM INFORMATION PROCESSING 4

grouped unter the terminology Quantum Technology 1.0. Prominent exam-
ples are lasers, magnetic resonance and nuclear technology. Currently, new
systems that belong to Quantum Technology 2.0 are emerging [1]: Systems
that not only rely on quantum mechanics, but also explicitly make use of
unique quantum properties of quantum systems to process information. A
main concept thereof is a quantum computer: A computer that itself treats
information quantum mechanically and opens new perspectives of computa-
tion. This idea was pioneered by Feynman [2] who wondered how quantum
mechanics can be simulated with classical computers, given that the size of the
Hilbert space grows exponentially with the number of particles in a quantum
system. He proposed to use a well controlled quantum system to simulate
another one, and thus the idea of a universal quantum simulator was born.
A few years later, Deutsch [3] first proposed to apply quantum mechanics to
computational problems.

In analogy to classical bits, the key unit of a quantum computer is referred
to as a quantum bit (qubit). The fundamental and crucial difference between
classical bits and qubits is that a qubit is not limited to two possible values.
Since the value of a qubit, as will be detailed in section 1.1, is actually a quan-
tum mechanical state, it can be in infinitely many superpositions of so-called
computational basis states, denoted by |0〉 and |1〉, respectively. This substanti-
ates a core advantage of quantum computing: An intrinsic quantum speed up
due to massive parallelism without the need for multiple cores (as required for
parallelization on classical hardware). However, taking advantage of this par-
allelism is not straightforward and quantum algorithms need to be designed
with care. Nevertheless, it has been shown [4] that quantum algorithms can
be more efficient than their known classical counterparts. Prominent exam-
ples are Grover’s algorithm [5] to search an unsorted database and Shor’s
algorithm [6] for factoring large numbers. Note that often a proven bound
on the efficiency of classical algorithms does not exist, and hence quantum
algorithms can only be compared to the best known classical algorithm at
date.

Given the perspectives of quantum computing, there is no longer only
academic interest in the field. Industrial research, lead by multiple startups
as well as Google, IBM, Intel and – with slightly different focus – by Microsoft
and D-Wave Systems, is currently pushing the rapid development in the field
of quantum hardware. The number of coherently operated qubits, however,
is still orders of magnitude below what is needed for large-scale quantum
computing of commercial interest. IBM and Intel released chips with 50 [7]
and 49 [8] qubits, respectively, and Google took a major step forward with the
announcement of a 72-qubit chip [9]. At the time of writing the performance
of these chips still needs to be quantified. Although the announced qubit
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numbers are orders of magnitude below of what is required for large-scale
devices, the technological progress is remarkable and quantum supremacy
– successful operation of a computational task on quantum hardware that
cannot be run on classical computers – will potentially be demonstrated in the
very near future [10, 11]. One of the first important applications of quantum
hardware in near-term – before large-scale universal quantum computers
exist – will likely lie in quantum chemistry, where small quantum devices
can be used to study electronic structure problems of molecules [12, 13].
For instance, with contribution of about one to three percent to the global
energy consumption, the Haber-Bosch process to synthesize ammonium is
one of the largest industrial energy users worldwide [14]. Specialized quantum
simulators could help to accurately engineer better catalysts for this and other
processes, or even an alternative synthesization protocol with reduced energy
consumption and less environmental pollution.

This thesis addresses two important aspects relevant for quantum tech-
nologies: First, it focuses on techniques to achieve accurate control of quantum
systems and the derivation of accurate models to describe such systems. Sec-
ond, it explores how heating in so-called quantum annealing devices can be
suppressed efficiently. Both of these aspects are key to building universal
quantum devices. The remainder of this part gives a fundamental introduc-
tion into the field of quantum information. Part II will address the question of
how quantum systems can be manipulated in order to achieve a desired result,
and how their dynamics can be described within an effective framework to
significantly simplify their analysis. The majority of part II is based on the
idea of running quantum algorithms as sequences of distinct operations, much
like for classical computers. A different concept to build universal quantum
devices will be introduced in part III and end with a discussion of how a
specific fundamental error in these systems can be addressed.

1.1 Basic Introduction to Quantum Bits

Key to the algorithms implemented on quantum hardware is a proper math-
ematical toolset. In analogy to classical bits the fundamental concept to
describe the state of quantum systems are quantum bits (short: qubits). Since
they obey the rules of quantum mechanics [15] the state |ψ〉 can be any su-
perposition of computational basis states, which – in analogy to classical bits
– are referred to as |0〉 and |1〉, respectively. That is,

|ψ〉 = α |0〉+ β |1〉 (1.1)
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with complex probability amplitudes α and β. Since the state |ψ〉 must be
normalized, the probabilities to find the system in either |0〉 or |1〉 need to
sum up to one, i.e. |α|2 + |β|2 = 1. This fundamental difference to a classical
system, where bits can exclusively be either in state 0 or 1, gives rise to an
intrinsic quantum speedup due to parallelization and hence paved the way for
massive research and development in the field of quantum information over
the last decades. An equivalent way to express the state of a qubit (1.1) is

|ψ〉 = eiγ
(

cos

(
θ

2

)
|0〉+ eiφsin

(
θ

2

)
|1〉
)

(1.2)

where the qubit state is determined by a global phase γ as well as polar and
azimuthal angles θ and φ, respectively. As the outcome of a measurement of
some operator M̂ is determined by 〈M̂〉 = 〈ψ|M̂ |ψ〉, which is independent of
γ, the global phase γ has no observable effect and is hence typically neglected,
so that the state |ψ〉 is solely determined by the angles (θ, φ). So far, we
assumed that |ψ〉 is known exactly. More generally, a quantum state can be
in one of a number of states |ψi〉 with corresponding probabilities pi. The
density operator (also: density matrix )

ρ̂ =
∑

i

pi |ψi〉〈ψi| (1.3)

is a means for describing that a quantum system can be in any of the ensembles
of pure states {pi, |ψi〉}. Any density operator ρ̂ has to meet three fundamental
properties: (i) Its trace equals one, (ii) it must be a positive operator and (iii)
it must be Hermitian, i.e. ρ̂ = ρ̂†. The density operator allows to characterize
whether the state of a quantum system is known exactly, or a mixture of all
possible ensembles. These two situations are referred to as pure and mixed
states, respectively. For pure states, the trace of the squared density matrix
equals one, i.e. Tr (ρ̂2) = 1, while for a mixed state it will satisfy Tr (ρ̂2) < 1.
Representation (1.2) gives rise to a three dimensional visualization of quantum
states on the so-called Bloch sphere, as illustrated in FIG. 1.1. The axes of
the Bloch sphere correspond to eigenstates of the three Pauli matrices σ̂x, σ̂y
and σ̂z. Their matrix representations are

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
.

Note that only pure quantum states correspond to points on the surface of
the Bloch sphere. For a single qubit, rewriting the density operator (1.3) as

ρ̂ =
1

2

(
1̂ +~b · ~σ

)
, (1.4)
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σ̂z

σ̂x

σ̂y

|ψ〉

θ

φ

FIG. 1.1 – Pure qubit states are represented as points on the the surface of
the Bloch sphere. The state is uniquely determined by the angles θ and φ.
The axes correspond to eigenstates of the respective Pauli operators.

where ~σ = (σ̂x, σ̂y, σ̂z)
T is the vector of Pauli matrices and 1̂ the identity

operator, enables to describe any single-qubit state in terms of the Bloch
vector ~b. Pure states will satisfy |~b| = 1 while for mixed states we have |~b| < 1,
so that they correspond to points inside the Bloch sphere.

In a multi-qubit system, the computational basis states are formed by the
product states of individual qubits. That is, for N qubits the computational
basis is spanned by the states |q1〉 ⊗ |q2〉 ⊗ . . . ⊗ |qN〉 ≡ |q1q2 . . . qN〉, where
qj ∈ {0, 1} labels whether qubit j is in state |0〉 or |1〉.

1.2 Quantum Circuit Model

As classical computation is based on gates – logical operations on bits to
process information – there exist quantum gates for quantum computation. We
shall simply refer to them as gates as well. In classical information processing
the NAND (inverted AND) gate is a universal gate: every classical algorithm
can be decomposed solely in terms of NAND gates if FANOUT operations are
available. A similar concept exists in quantum computation: The elements of a
universal set of quantum gates are able to approximate any unitary operation
to arbitrary accuracy. Different universal sets of quantum gates exist, but
typically they consist of operations on single qubits as well as entangling two-
qubit gates [16]. Two (or more) quantum systems are said to be entangled if
their state cannot be described by a product state of the individual systems.
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Single-qubit gates are parametrized as a rotation

R̂(α,~n) = exp (−iα~n · ~σ) = cos(α) 1̂− i sin(α)~n · ~̂σ (1.5)

of the qubit state |ψ〉 about an angle α around the axis defined by the unit
vector ~n in the coordinate system of the Bloch sphere. Two-qubit gates are the
quantum extension to classical conditional gates, such as the XOR. That is, a
single-qubit gate is applied to one qubit (the target) conditioned on the state
of another (the control). The quantum analog of the classical XOR gate is
the controlled-NOT (CNOT) gate, which, in the basis {|00〉 , |01〉 , |10〉 , |11〉},
reads

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (1.6)

If starting in a computational basis state, it flips the state of the target qubit
only if the control qubit is in state |1〉. Since quantum gates obey the laws
of quantum mechanics, they are reversible – which is fundamentally different
to classical gates, where only certain gates are invertible. The CNOT gate,
together with single-qubit gates, forms a universal set of gates for quantum
computation [17]. It is a perfectly entangling gate. That is, it is capable of
creating the non-separable two-qubit Bell states |Φ±〉 = (|00〉± |11〉)/

√
2 and

|Ψ±〉 = (|01〉 ± |10〉)/
√

2 from two separable single-qubit states. For instance,
together with the Hadamard gate

H =
1√
2

(
1 1
1 −1

)
, (1.7)

it can be used to generate the maximally entangled Bell state |Φ+〉 from
the input state |00〉. In order to visualize a sequence of quantum gates,

|0〉 H

|0〉
|Φ+〉

FIG. 1.2 – Quantum circuit
that generates the Bell state
|Φ+〉 using a Hadamard and
CNOT gate. Horizontal lines
represent qubits.

that constitute an algorithm, they are
drawn in the form of quantum circuits. An
example of a particularly small quantum cir-
cuit that creates the Bell state |Φ+〉 is drawn
in FIG. 1.2: Horizontal lines represent in-
dividual qubits and time evolves from left
to right. In certain cases the qubit interac-
tions do not allow for a direct implementa-
tion of the CNOT gate. Often, it is then
possible to realize a controlled phase gate
CZ = |00〉〈00|+|01〉〈01|+|10〉〈10|−|11〉〈11|.
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By applying a Hadamard gate before and after the CZ gate, the CNOT can
be recovered from the controlled phase gate.

In general, of course, quantum circuits become more involved and typi-
cally contain many different types of single- and two-qubit gates. Prominent
examples of further perfectly entangling gates are the

√
SWAP and iSWAP

gates [16]. The concept of dividing a quantum algorithm into discrete gates,
which much like classical Boolean circuits are visualized in quantum circuits,
is known as the quantum circuit model. An alternative approach – adiabatic
quantum computation – will be introduced in part III of the thesis.

1.3 The DiVincenzo Criteria

Section 1.1 introduced the basic mathematical concept behind qubits, fol-
lowed by a short description of quantum gates and how (complex) quantum
algorithms can be visualized in terms of quantum circuits. In order for a
quantum computer based on the circuit model to work, its components need
to satisfy the five DiVincenzo criteria [18, 19]:

1. Identification of well-defined qubits:
Qubits – as introduced mathematically in the previous section – are in
fact ideal or effective two-level systems. The computational basis states
{|0〉 , |1〉} are often defined out of a larger Hilbert space and correspond
to states of lower energy (ground state) and higher energy (excited state).
The energy difference between ground and excited state is what will
be referred to as the qubit frequency. Physically, qubits can be defined
in a variety of different platforms which will be reviewed in chapter 2.
It is crucial that the Hilbert space of the quantum system is precisely
delineated and that the individual qubits can be isolated from others,
in terms of control and measurement.

2. Reliable state preparation:
Different algorithms require different initial conditions. Hence, it is
inevitable to be able to prepare the set of qubits in a well-defined
initial state. For instance, a common initial state is when all qubits are
prepared in their ground state. The difficulty of how to prepare a qubit
system in the respective states and also the technology to do so depends
very much on the physical platform the qubits are built from.

3. Low decoherence:
Decoherence processes limit the time over which a qubit can be used
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for reliable quantum information processing. It originates from inter-
actions between the qubit and its environment, which has two major
effects: (i) Relaxation, where the qubit loses energy to the environment
and as a consequence decays to its ground state, and (ii) dephasing,
where a superposition of states loses a coherent relation of their phases
and become mixed – eventually recovering classical behavior. In order
to minimize decoherence errors, qubits are designed to suffer from de-
coherence as little as possible, and algorithms are supported by error
correction schemes to account for certain errors [16].

4. Accurate quantum gate operations:
It is not enough to be able to implement a single gate with low errors.
In complicated quantum algorithms single- and two-qubit gates need to
be accurate enough to be repeatedly used, so that accumulated errors
will remain low enough in order for the outcome to be still reliable.
Conventional estimates [20] state that the error per gate should be less
than 10−4 to allow for fault-tolerant quantum computing, while modern
error correction schemes tolerate errors of about 1% [21]. Often, instead
of quantifying accuracy in terms of gate error, one uses the fidelity F .
It is directly related to the gate error, which is defined as 1− F .

5. Reliable quantum measurements:
Lastly, after applying all required gates, the final state of the qubit
register needs to be measured to extract the outcome of the computa-
tion. Measurement schemes need to be fast enough so that the state is
determined before decoherence renders the result unreliable.

In part II of this thesis, the central focus will be a study of how accurate
quantum gate operations in different quantum systems can be realized. In
parts, chapters 7 and 8 will also address the third DiVincenzo criterion.

The reader is directed to the textbook by Nielsen and Chuang [16] for
further information on quantum computation and quantum information.



Chapter 2

Physical Implementations of
Qubits

Over the past decades there has been a wide variety of proposals for hardware
platforms suitable for quantum computing, such as solid state systems in form
of superconducting qubits, and atomic systems in form of trapped ions and
trapped neutral atoms. On top of the DiVincenzo criteria (see section 1.3),
the ultimate goal to let the whole quantum system operate as a computer
imposes another constraint: Technology needs to be scalable, and hence poses
challenging problems to both science and engineering.

This chapter will briefly expand upon those platforms that are of particular
relevance for this thesis. A more exhaustive analysis of different platforms
and their current (fall 2017) state of the art can be found in Ref. [22] where
the authors propose to divide the evaluation of quantum computers into
five levels and rate current platforms according to these criteria: (A) Basic
functionality, such as implementation of gates and readout, (B) quality of
operations, (C) demonstration of quantum error correction, (D) demonstration
of fault-tolerant operations and (E) the implementation of complex fault-
tolerant algorithms.

2.1 Superconducting Qubits

Superconducting qubits are solid state systems that can be used in integrated
electrical circuits. They are human-made and hence parameters such as qubit
frequencies can be engineered at a wide range, in contrast to for instance
atoms, where the energy levels are given by nature. This, however, has both
advantages and disadvantages: For instance, while multiple qubits can be
printed quite easily on a single chip, there will always be inhomogeneities in

11
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ψ1(ϕ1) ψ1(ϕ1)

CJ

LJ

FIG. 2.1 – Schematic of a Joseph-
son junction (top) and its corre-
sponding effective circuit diagram
(bottom).

the fabrication process, preventing the existence of exactly identical qubits.
Superconducting qubits have been studied intensively in both theory and
experiment over the last two decades. As a number of great reviews on the
field already exist [23–27], we will briefly discuss the heart of each super-
conducting qubit – the Josephson junction – and then go over the basics of
superconducting qubits.

2.1.1 Josephson Junction

It is well known that the Hamiltonian of a LC-resonator circuit resembles
that of a harmonic oscillator, preventing it from being used as a qubit since
energy levels are equidistant and hence a well-defined qubit subspace cannot
be isolated. A nonlinear circuit element, the Josephson junction, breaks the
degeneracy and thereby allows to isolate two qubit levels out of the resulting
anharmonic oscillator.

As illustrated in FIG. 2.1, a Josephson junction is formed by two super-
conductors [28] separated by a thin insulating layer. The Cooper pairs in
each of the superconductors are described by the wave functions ψ1(φ1) and
ψ2(φ2). Owing to quantum mechanics, the Cooper pairs can tunnel through
the insulating barrier, allowing for nonzero voltage V and current I across
the tunnel junction. The dynamics of a Josephson junction are governed by
the Josephson equations [29]

I = Icsin(φ) , (2.1)

V =
Φ0

2π
φ̇, (2.2)

where φ = φ1 − φ2 is the superconducting phase difference, Φ0 = h/2e
the magnetic flux quantum for superconductors and Ic the critical current
of the junction. If the junction is biased with an external current above
Ic superconductivity breaks down. Much like a LC-resonator circuit, the
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Josephson junction can be thought of as a capacitor (capacitance CJ) in
parallel to a nonlinear inductor (inductance LJ) [24].

2.1.2 Qubit Designs

Using the Josephson junction to form a qubit subspace, three basic designs
of superconducting qubits emerged: (i) The phase qubit [30], where the

Cg

CJ

Vg
LJ

Superconducting island

FIG. 2.2 – Effective cir-
cuit diagram of a charge
qubit.

Josephson junction is connected in series with
a bias current and the qubit is formed by the
ground and first excited state within a metastable
well of a cosine washboard potential. (ii) The
flux qubit [31], consisting of a superconducting
loop that contains one or more Josephson junc-
tions. Here, the qubit subspace is defined by
(meta)stable states corresponding to opposite cir-
culating currents in the loop. (iii) The charge
qubit [32, 33], which is a Josephson junction con-
nected in series with a capacitor of capacitance Cg
and a voltage source Vg. The number of Cooper
pairs on the superconducting island, formed between the capacitor and the
Josephson junction, defines the qubit states. Since the charge qubit is the
basis for contemporary qubit designs, such as the Transmon [34] and the
Xmon [35], we will briefly expand upon it here.

A schematic circuit diagram of the charge qubit is given in FIG. 2.2. In
order to describe the charge qubit, a quantization of its circuit leads to the
circuit Hamiltonian

Ĥ = EC

(
N̂ −Ng

)2

− EJcos(ϕ̂) , (2.3)

where the number of Cooper pairs N̂ = Q̂/2e equals the charge Q̂ scaled by
1/2e. The charge operator Q̂ is conjugate to the phase ϕ̂. In Hamiltonian (2.3)
we have further introduced the charging energy EC = (2e)2/2(Cg + CJ), the
Josephson energy EJ = Φ0Ic and the gate charge number Ng = −CgVg/2e.
The charging energy is the energy required to have an extra Cooper pair on
the superconducting island, while the Josephson energy defines the energy a
Cooper pair requires to tunnel across the junction.

The Hamiltonian is conveniently understood in terms of the eigenbasis of
N̂ , that is N̂ |n〉 = n |n〉. Owing to the nonlinearity of the Josephson junction,
the Hamiltonian features an anharmonic spectrum. Hence, qubit states can
be well-defined and addressed separately: Typically, the two lowest energy
states form the qubit while higher states are the source of what will be later
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referred to as leakage errors – excitations, and hence information loss, to
states outside the computational subspace {|0〉 , |1〉}. If the qubit is encoded
in the ground and first excited state of Hamiltonian (2.3), the qubit frequency
equals EC(1− 2Ng) while the separation of first and second excited state is
given by EC(3− 2Ng). The difference between these transition energies, i.e.
2EC , is referred to as anharmonicity.

Taking into account that N̂ and ϕ̂ are conjugate variables, we find that
eiϕ̂ |n〉 = |n+ 1〉. We are then able to express Hamiltonian (2.3) in the
Cooper pair number basis. If we restrict ourselves to the qubit subspace the
Hamiltonian of the charge qubit becomes [36]

Ĥcq = EC

(
Ng −

1

2

)
σ̂z −

EJ
2
σ̂x. (2.4)

To achieve universal control of the qubit, nonzero Josephson energy and
tunable Ng are required. Conventional charge qubits operate in the regime
EC � EJ [23]. Their quality, particularly their coherence times, suffer from
the direct dependence of qubit frequency on Ng, which is proportional to the
gate voltage Vg. If there is noise in the voltage source, the qubit will dephase.
This effect can be minimized by working at the charge degeneracy point where
Ng = 1/2. Unfortunately, even only slightly away from the degeneracy point,
the effect can be quite harmful and so improved variants of the charge qubit
were developed.

Contemporarily used qubit designs, like the Transmon [34] and the Xmon
[35], make use of an additional large capacitance shunted in parallel to the
Josephson junction. This allows to operate the qubit in a regime where
EJ � EC and decoherence errors from noise in the voltage source are re-
duced significantly, as substantiated by coherence times improving from a
few nanoseconds [37] to about 100µs [38, 39] in only a decade. However, the
downside of operating in the regime of large Josephson energy is that the
qubit anharmonicity is decreased and hence leakage errors are enhanced. Yet,
advanced control schemes exist [40, 41] so that superconducting Transmon
and Xmon qubits remained state of the art at the time of writing.

Gates between multiple superconducting qubits can be established by
connecting them with superconducting coplanar waveguides, serving both as
resonators and transmission lines. The entire field of using such resonators
is termed circuit quantum electrodynamics [42, 43], being the analog to the
related field of cavity quantum electrodynamics [44]. Alternatively, tunable
capacitive or inductive couplings between qubits can be used to mediate
interactions [45, 46]. Yet, these tunable couplings are only used in specific
applications, and instead resonance methods involving resonators are rather
used for scalable quantum computation applications [47–49].
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2.2 Trapped Ions

Based on the progress in gate fidelities [50, 51] and the experimental status
of error correction [52, 53], trapped ions currently belong – together with
superconducting qubits – to the most promising platforms for quantum com-
putation. After ionization, quantum states of single electrons in the outer
shell define the qubit. Hence, the choice of ions is restricted to the earth-alkali
group and some transition metals [54, 55]. For details on quantum compu-
tation with trapped ions the reader is referred to the literature [54, 56, 57].
Within this section we will focus on the necessary basics such as control, trap
designs and different types of qubits, and proceed to review more in depth
the ion dynamics in a linear Paul trap.

In quantum information processing with trapped ions, there are two types
of qubits, distinguished by the states that constitute the computational sub-
space: The optical qubit and the hyperfine qubit.

1. Optical qubit:
In an optical qubit the computational states correspond to fine structure
levels of the trapped ion with an energy separation inside or close to
the optical regime. The excited state must be as stable as possible to
maintain coherence. A downside thereof is that strong single lasers are
required to control the qubit. Prominent examples for ions that feature
a forbidden direct optical transition and are typically used as optical
qubits are 40Ca+, 88Sr+ and 138Ba+.

2. Hyperfine qubit:
Ions with nonzero nuclear spin are qualified to be used as hyperfine
qubits. Here, the computational states are encoded in the hyperfine sub-
levels of a ground state, which makes them immune to decay and allows
for coherence times on the order of 1000s [58]. Since direct transitions
between the computational states are forbidden, gates are implemented
using Raman lasers [59] that drive transitions via an intermediate third
level with frequencies in or close to the optical range. Typical examples
are ions of odd isotopes, such as 9Be+, 25Mg+ and 43Ca+.

Based on these two types of qubits, lasers in the optical regime are convention-
ally used to control the ions [60, 61]. While there has been significant progress
in terms of quantum information with trapped ions using laser controls, the
experimental setups become very involved and hence pose severe problems to
scale up the number of qubits by orders of magnitude to be compatible with
large-scale fault-tolerant algorithms. A potential solution has been brought
forward in form of using microwave/radio-frequency control [62–64], which
greatly simplifies the complexity of the experimental setups.



CHAPTER 2. PHYSICAL IMPLEMENTATIONS OF QUBITS 16

2.2.1 Trapping Technologies

Owing to their electrical charge ions are trapped using electrostatic potentials.
However, as proven by Earnshaw’s theorem [65], it is impossible to spatially
stabilize an ion by solely using an electrostatic force. Using an additional time-
dependent field allows for stabilized trapping of the ions by synchronizing
the field to the motion of the ions. Since the synchronization of field and
ion motion requires exact knowledge of the ion mass, the system needs to be
isotopically pure. While there are many different types of traps, we restrict
our discussion to the following three basic trap designs:

1. Linear Paul trap:
The ions are trapped within a quadrupole geometry [66] and form a
linear chain (details below). There is a limit on the number of ions that
can be trapped and controlled coherently [67], given by the requirement
that the minimal spacing between ions must be larger than the focal
spot of the control lasers. It is expected that the current world record
of 14 entangled ions [68] is probably operating at or very close to this
limit.

2. Penning trap:
In a Penning trap, ions are confined using a combination of a strong,
homogeneous magnetic field and a static quadrupolar electric potential.
It allows for 2D arrays of trapped ions with ∼ 300 ions [69]. A notable
disadvantage of the Penning trap is that individual addressability and
control of the atoms can be very difficult [58].

3. Surface traps:
Here, the ions are trapped by potentials (similar to Paul trap) generated
via flat metallic surfaces [70]. By dividing the surface into multiple
segments it is straightforward to manipulate only a subset of ions at a
time. The planar electronic structure offers great prospects for scalability
[71] and motivates development of 2D surface trap designs [72].

2.2.2 Dynamics in a Linear Paul Trap

After introducing the very basics of trapped ions we proceed to analyze the
collective motion inside a linear Paul trap. The following description will
follow work by James [73]. Let ωα be the trap frequency in direction α. Then,
for this particular trap design, stable confinement of ions along the z-axis
requires ωx,y � ωz. Without loss of generality, we will further consider the
situation of strong bounding in the x/y directions and therefore neglect all
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motion along the corresponding axes. Nevertheless, we note that motion
transverse to the ion chain can be a source of decoherence [74]. An additional
source of error is given by phase transitions to ion configurations other than
a linear chain, due to instable transverse modes. The probability for such
phase transitions has been shown to grow with the number N of ions inside
the trap [75]. We consider a linear trap with N ions of individual masses M
along the z-axis. The trap potential in this case reads

V =
N∑

m=1

1

2
Mω2

z

(
z(m)(t)

)2
+

N∑

n,m=1
m 6=n

Z2e2

8πε0

1

|z(n)(t)− z(m)(t)| , (2.5)

where Z is the degree of ionization, e is the electron charge, ε0 is the permitivity
of free space and z(m)(t) the z-coordinate of ion m at time t. If we assume
that each ion is sufficiently cooled, its motion is given by a fluctuation q(m)(t)

around its fixed equilibrium position z
(m)
0 , i.e. z(m)(t) ≈ z

(m)
0 + q(m)(t).

Equilibrium positions in the chain

The equilibrium positions are determined by the minima of the trap potential
V . That is, we need to find the roots of

∂V

∂z(m)

∣∣∣∣
z(m)=z

(m)
0

= 0. (2.6)

We introduce the typical length scale l = (Z2e2/4πε0ω
2
zM)1/3 of the ion-ion

spacing and use it to define the dimensionless equilibrium positions u(m) ≡
z

(m)
0 /l. Expressing equation (2.6) in terms of dimensionless coordinates leads

to the following system of m = 1, . . . , N coupled equations for the u(m):

u(m) −
m−1∑

n=1

1

(u(m) − u(n))
2 +

N∑

n=m+1

1

(u(m) − u(n))
2 = 0 (2.7)

For up to three ions the system (2.7) can be solved analytically. The respective
solutions for the equilibrium positions of N = 3 ions are given by

u(1) = −
(

5

4

)1/3

, u(2) = 0, u(3) =

(
5

4

)1/3

. (2.8)

Numerical solutions for ion numbers N > 3 reveal that the ion-ion spacing
grows with increasing distance from the center of the chain. The minimal
distance between ions obeys the empirical relation umin(N) ≈ 2.018/N0.559

and poses limitations on the maximum number of trapped ions [67].
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Fluctuations around the equilibrium

The Lagrangian of the ion system allows to determine the fluctuations q(m)(t)
of ion m around its equilibrium. Using a second order Taylor expansion of the
trap potential around the equilibrium positions we compute the Lagrangian
to be

L =
M

2

N∑

m=1

(
q̇(m)

)2 − 1

2

N∑

n,m=1

q(n)q(m) ∂2V

∂z(n)∂z(m)

∣∣∣∣
q(m)=q(n)=0

(2.9)

=
M

2

[
N∑

m=1

(
q̇(m)

)2 − ω2
z

N∑

m,n=1

Knmq
(n)q(m)

]
. (2.10)

The matrix elements Knm are given by

Knm =





1 + 2
N∑
j=1
j 6=m

1

|u(m) − u(n)|3 , n = m

− 2

|u(m) − u(n)|3 , n 6= m.

(2.11)

Since the matrix K is real, symmetric and positive semidefinite it has non-
negative eigenvalues µp associated to eigenvectors ~b(p). The eigenvectors are

defined by the relation
∑N

n=1Kmnb
(p)
m = µpb

(p)
m , where b

(p)
m denotes the m-

th element of the p-th eigenvector ~b(p). As was the case for the equilibrium
positions, analytical solutions to the eigensystem exist only for at most three
trapped ions. For N = 3 ions, the motion is determined by the eigenvectors

µ1 = 1, ~b(1) = (1, 1, 1)/
√

3, (2.12)

µ2 = 3, ~b(2) = (1, 0,−1)/
√

2, (2.13)

µ3 =
29

5
, ~b(3) = (1,−2, 1)/

√
6, (2.14)

which correspond in order to the center of mass (COM) mode, breathing mode
(also stretch mode) and Egyptian mode of the chain. The associated mode
frequencies are given by ωz,p =

√
µpωz. In the COM mode all ions move in

the same direction with identical amplitude, while for the breathing mode
the inner ion is at rest and the outer ions oscillate with equal amplitude in
opposite direction. The Egyptian mode describes a vibrational state of the
chain where the inner ion moves out of phase and with twice the amplitude
as both outer ions.
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Quantum motion of the ions

A second quantization of the ions’ motion is possible by first moving to
normal mode coordinates of the chain, i.e. using Qp(t) =

∑N
m=1 b

(p)
m q(m)(t).

We now express the normal mode coordinates through the respective harmonic
lowering and raising operators â and â†, respectively, to obtain the expression

q̂(m)(t) =

√
~

2Mωz

N∑

p=1

s(p)
m

(
âz,pe

−iωz,pt + â†z,pe
iωz,pt

)
(2.15)

for the fluctuation of ion m in second quantization. Here, we introduced the
quantity s

(p)
m = b

(p)
m /µ

1/4
p and used the following representation for position

and momentum operators:

Q̂p =

√
~

2Mωz,p

(
â†z,p + âz,p

)
, (2.16)

P̂p = i

√
~Mωz,p

2

(
â†z,p − âz,p

)
, (2.17)

They obey the canonical commutation relation
[
Q̂p, P̂q

]
= i~δpq and consti-

tute the Hamiltonian describing the quantum motion of N ions in a linear
Paul trap,

ĤPaul =
1

2M

N∑

p=1

P̂ 2
p +

M

2

N∑

p=1

ω2
z,pQ̂

2
p. (2.18)

Hamiltonian (2.18) is the sum of N harmonic oscillators, each with frequency
ωz,p. It turns out that the vibrational modes of the ion chain can be used to
generate entanglement between different ions [76, 77]. An alternative approach
to couple trapped ions involves long-range photonic links [54].

2.3 Rydberg Atoms

Rydberg atoms belong to the field of neutral atoms and hence, in contrast
to ions, cannot be trapped using electrostatic potentials. Instead, neutral
atoms are trapped in optical lattices formed by light-induced forces [78, 79].
More precisely, Rydberg atoms are atoms with large outer shell radii that
are excited to quantum states with large principal quantum numbers. Their
physics is well understood and excellently discussed in Gallagher’s textbook
[80].
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FIG. 2.3 – Two-body interaction strength as a function of particle separation
R for Rb atoms in their ground state, Rb atoms excited to the 100s Rydberg
state and Coulomb interaction between ions. Power laws for van der Waals
(vdW) forces, magnetic dipole-dipole (mag. d-d) interactions and dipole-dipole
(d-d) couplings are indicated. Recreated with permission from [81]. Copyright
(2010) by the American Physical Society.

A special feature of Rydberg atoms which makes them of interest for
quantum information processing is their strong long-range interaction [81].
Let us focus on the interaction of two particles separated spatially by distance
R: For neutral atoms in their ground state the interaction for R . 30nm is
dominated by 1/R6 van der Waals forces, while for larger separations magnetic
dipole-dipole interactions ∝ 1/R3 dominate. For R & 1µm the interaction
strength falls below 0.1Hz. However, if the atoms are excited to Rydberg
s-states with principal quantum number n = 100, the interaction between
the particles is about twelve orders of magnitude larger than if they are in
their ground states, as illustrated in FIG. 2.3. As such, Rydberg atoms have
the great advantage of exceptional on-off-rations in their couplings, based on
excitation and de-excitation of their quantum states. This is in contrast to
for instance trapped ions, where a strong Coulomb interaction on the order
of 1011Hz for R = 1µm is always present.

As can be done for trapped ions, qubit states in Rydberg atoms are
typically encoded in hyperfine sublevels. Common examples of Rydberg atoms
used in quantum information are Rb and Cs. For a detailed review about
how Rydberg atoms can be used for quantum information processing the
reader is referred to [81]. Similar to trapped ion systems, Raman lasers near
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or in the optical regime can be used to control Rydberg atom qubits [82, 83].
Additionally, control schemes based on microwaves [84], and a combination
of microwaves and gradient fields [85, 86] have been proposed.

Unfortunately, compared with superconducting qubits and trapped ions,
quantum gates with Rydberg atoms lack accuracy: Recent implementations
of single-qubit gates feature errors slighlty below 1% [87, 88]. However, gate
errors for multi-qubit gates are significantly worse. In advanced experimental
setups, two-qubit gate errors after accounting for certain known error sources
barely undercut values of 20% [89–91]. A detailed review of progress and
challenges of quantum computation with neutral atom qubits is provided by
Saffman [92]. Besides intrinsic limits on the fidelities of multi-qubit gates
there are multiple experimental issues. Examples for most relevant issues in
experiments with neutral atoms are Doppler dephasing, laser noise and atom
loss during the operations.

There exist different approaches to generate entanglement between trapped
Rydberg atoms [81, 92]. Examples thereof are (i) Rydberg dressing [90, 93],
where entanglement is generated via local spin exchange, (ii) dissipative entan-
glement [94, 95], where a combination of coherent and dissipative dynamics
(see chapter 3 for details on dynamics of quantum systems) is used to prepare
entangled states, and (iii) the Rydberg blockade [96–98], which is an effect
based on the strong long-range interaction between Rydberg atoms. Entan-
glement generation via the Rydberg blockade mechanism is an essential part
of the thesis and will be discussed in detail in chapter 7.

2.4 Other Candidates

Besides superconducting qubits, trapped ions and neutral atoms there are
other hardware platforms that are potentially suitable for building future
quantum computers. This section gives a superficial overview of these candi-
dates and points to relevant literature for more information. In general, the
remaining candidates can be categorized into semiconductor-based, photonic
and molecular platforms.

1. Semiconductors:
Since semiconductors are of enormous industrial importance, fabrication
and miniaturization has been perfected over the years and hence sub-
stantiates the great potential of these platforms for large-scale quantum
computing. The semiconductor platform can be divided into three main
types: (i) Quantum dots [19, 99], where trapped single electrons act as
artificial atoms and their spin is used as a qubit. Operation of quantum
dots shares some similarities with superconducting qubit circuits. (ii)
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Color centers, referring to isolated defects in artificial diamond crystals
[100, 101]. The diamond crystal serves as a trap for defects with nu-
clear and electronic degrees of freedom that can be operated similar
to trapped ions. (iii) Donor qubits in Silicon [102, 103], where strongly
bound electrons around single isolated dopants or defects in the material
can be used to encode qubits.

2. Photonic platforms:
Aside from being used for control and communication channels in quan-
tum systems, photons can also be used to host quantum information
[104]. A fundamental challenge, however, is that there is no interac-
tion between photons and hence multi-qubit gates cannot be imple-
mented directly. Strategies to circumvent this limitation by simulating
the required interactions involve special media, measurements or post-
processing [105, 106]

3. Molecules:
Nuclear magnetic resonance (NMR), where the qubit is encoded in a
nuclear spin 1/2, was one of the first candidates for quantum computing
[107, 108]. Yet, scalability is severely limited and it is hence no longer
pursued as a serious candidate for quantum information [109].



Chapter 3

Dynamics of Quantum Systems

In order to model and understand the dynamics of quantum systems it is
necessary to formulate equations of motions that accurately incorporate all
relevant effects. A fundamental criterion that differentiates between two ap-
proaches is the existence of couplings between the quantum system and its
environment. If such couplings do not exist – or at least are negligible for the
time window of interest – the quantum system may be considered a closed
system, which we will briefly review in the subsequent section 3.1. If couplings
to an environment are relevant and can no longer be neglected, the system is
referred to as an open quantum system. Section 3.2 gives an overview of two
methodologies that provide equations of motions for such open systems.

3.1 Closed Quantum Systems

The dynamics of a closed quantum system, often referred to as coherent or
unitary, are solely governed by its Hamiltonian Ĥ. The equation of motion for
a specific quantum state |ψ〉 is given by the Schrödinger equation i∂t |ψ〉 =
Ĥ |ψ〉 (the convention ~ ≡ 1 is used in this thesis) with some initial condition
|ψ(t0)〉 = |ψ0〉. Equivalently, but more common for applications that we will
study in part II of the thesis, the Schrödinger equation is rephrased in terms
of the unitary time evolution operator (the propagator) Û(t),

∂tÛ(t) = −iĤ(t)Û(t), Û(0) = 1̂. (3.1)

An equivalent way of representing the equation of motion is the von Neumann
equation: It describes the evolution in terms of the system’s density operator
that we introduced in equation (1.3). The von Neumann equation reads

˙̂ρ(t) = −i[Ĥ(t), ρ̂(t)], ρ̂(t0) = ρ̂0, (3.2)

23
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where [Â, B̂] = ÂB̂ − B̂Â is the commutator of Â and B̂, and ρ̂0 the initial
state of the system at time t0. Often, the dynamics dictated by equation (3.1)
can be greatly simplified by moving to a different basis, for instance to remove
fast intrinsic oscillations from the Hamiltonian. We denote such a unitary,
generally time-dependent, transformation by V̂ (t). It transforms Hamiltonian
Ĥ according to

Ĥv = V̂ †ĤV̂ + i
˙̂
V †V̂ . (3.3)

We will further refer to the original frame as the lab frame and label operators
in the new frame with a subscript v. The form of the Schrödinger equation is in-
variant under transformation (3.3), and the propagator Û(t) = V̂ (t)Ûv(t)V̂

†(0)
in the lab frame can directly be recovered from that in the new basis.

3.2 Open Quantum Systems

While it is theoretically more convenient to focus on closed systems, in experi-
ments it is often insufficient and instead couplings between a quantum system
and its environment need to be considered. In principle ”the system” could
be enlarged such that it includes all relevant parts that participate in the
interaction. However, aside from the huge overhead that would be required,
often a mathematical model to describe the enlarged system does not exist.
But even if it did, solving the full equations of motions of such an enlarged
system is often simply impossible.

Instead, it is favorable to derive effective equations of motion – so-called
master equations – for the quantum system. These master equations take into
account all relevant interactions but do not require to solve for the generally
irrelevant evolution of the environment. In quantum mechanics, two common
methods to study the dynamics of open quantum systems are the Lindblad
master equation and the Bloch-Redfield master equation, which we will briefly
discuss here, since both are of particular importance for chapters 7 and 10,
respectively.

3.2.1 Lindblad Master Equation

The evolution of a system state ρ̂Q(t), confined to the quantum system of in-
terest, according to the Lindblad master equation is subject to the differential
equation

˙̂ρQ(t) = −i[Ĥ(t), ρ̂Q(t)] +
∑

r

γr

(
L̂rρ̂Q(t)L̂†r −

1

2

{
L̂†rL̂r, ρ̂Q(t)

})
, (3.4)
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where {Â, B̂} = ÂB̂ + B̂Â is the anticommutator of Â and B̂. The first term
in equation (3.4) corresponds to the coherent dynamics – the von Neumann
equation (3.2) – while the second term of equation (3.4) gives rise to dissipa-
tive dynamics due to the environment. The Lindblad operators L̂r describe
incoherent transitions with Lindblad rates γr > 0. For a detailed discussion of
the underlying quantum dynamical semigroup the reader is referred to [110].

The Lindblad master equation is very instructive to use and hence has a
wide range of applications. A detailed derivation of the Lindblad form (3.4)
is given in the excellent textbook by Breuer and Petruccione [111]. We will
briefly discuss the underlying assumptions and approximations that are key
to the derivation:

1. Separability: It is assumed that at initial time t0 there are no corre-
lations between the quantum system and its environment. Hence, the
full density matrix is the tensor product ρ̂(t0) = ρ̂Q(t0)⊗ ρ̂env(t0).

2. Born approximation: The Born approximation states that through-
out the evolution, the full density matrix remains separable, i.e. ρ̂(t) ≈
ρ̂Q(t)⊗ ρ̂env. In other words, the interaction of system and environment
must not change the state of the environment significantly. This is valid
for weak couplings, and if the environment is much larger than the
system.

3. Markov approximation: This states that the environment does not
have a memory effect. That is, the evolution of the state at time t
only depends on the state at that particular time. It requires that the
timescale τenv of correlations with the environment is much shorter than
than any relevant timescale τQ of the system.

4. Secular approximation: The secular approximation amounts to ne-
glecting rapidly oscillating terms. More specifically, terms with transi-
tion frequencies |ω| � 1/τQ are neglected.

Note that the Lindblad master equation (3.4) is constructed such that it prop-
erly describes a physical process. That is, it preserves fundamental properties
of the density operator (i.e., trace and positivity). However, a direct connec-
tion to a microscopic model of the interactions between the system and its
environment is intractable with the Lindblad formalism. While the Lindblad
operators and rates often correspond to intuitive physical phenomena such
as dephasing and relaxation, they are still somewhat arbitrary parameters of
the model.
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3.2.2 Bloch-Redfield Master Equation

As opposed to the Lindblad formalism described above, the Bloch-Redfield
formalism derives the equations of motion from a microscopic model and
thereby allows to relate components of the resulting master equation to fun-
damental physical properties, such as the spectral density of the environment.
The Bloch-Redfield master equation, derived under assumptions (1)-(3) used
in the Lindblad formalism above, reads [111]

˙̂ρQ(t) = −
∞∫

t0

dsTrenv

{
[ĤQB(t), [ĤQB(t− s), ρ̂Q(t)⊗ ρ̂env]]

}
. (3.5)

Here, ĤQB(t) is the coupling Hamiltonian between the system and its en-
vironment, given in the interaction picture defined by the bare system and
environment Hamiltonian. By tracing out the environmental degrees of free-
dom, microscopic effects such as the noise-power spectrum of the environment
enter the equations of motions through environmental correlation functions.
The Bloch-Redfield master equation (3.5) can be brought into the Lindbladian
form (3.4) if the secular approximation is applied [111].
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Chapter 4

Introduction to Optimal
Control Theory

Control theory addresses the task of controlling systems such that a desired
result is achieved. A prominent example from engineering is cruise control
of a car: It needs to set some control variable (i.e., the power provided by
the engine) such that the target velocity specified by the driver is kept con-
stant. If the solution to the control problem also needs to ensure optimality
with respect to another quantity, for instance fuel consumption, Optimal Con-
trol Theory (OCT) provides a framework to find adequate solutions, and to
generally answer the question of controllability, of such a control task.

The central focus of this part of the thesis will be to find efficient solutions
to drive different quantum systems into a desired target or along a certain
trajectory. Steering quantum systems, that is engineering a specific time-
evolution (see chapter 3), in a well-controlled manner with the aid of OCT is
a fundamental problem that lies at the heart of currently emerging quantum
technologies [112]. While OCT is commonly used in quantum information
processing [113] it has a wide range of applications in other fields. For instance,
it is regularly used in nuclear magnetic resonance [114], spectroscopy [115],
sensing and metrology [116], but also has applications in biodynamics, where
it can be used to control the energy flow in biomolecules [117]. Two basic
requirements for OCT to work is that (i) a controllable set ~u of functions uj
exist and (ii) that the performance of the process can be quantified in terms
of a scalar fidelity function. A typical example of the controls uj in the field
of superconducting qubits are electromagnetic fields that are shaped in time,
in order to drive desired single- or multi-qubit gates.

29
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4.1 Fidelity Measures

A fidelity function defines a figure of merit to measure the quality of some
quantum evolution, induced by a set of control fields applied to the system.
Different fidelity functions exist [114, 118–122], each of them designed to be
particularly suited for certain systems and certain applications. The optimal
control problems we will discuss throughout part II of this thesis focus on
the implementation of different unitary gates, as well as state generation in
dissipative environments, and we will now introduce two fidelity functions
that (or similar forms thereof) are commonly used for these purposes.

In case of coherent dynamics, where the unitary propagator Û is accessible,
we can use the gate overlap fidelity [114]

F1 =
1

d2

∣∣∣Tr
(
P̂QÛ †t P̂QÛ(tg)

)∣∣∣
2

(4.1)

to quantify the overlap between the gate Û(tg) that was actually implemented

by the applied set of controls, and the target gate Ût. The projector P̂Q allows
to consider only the d-dimensional subspace Q of interest. For instance, when
the qubit is encoded in a nonlinear oscillator (see section 2.1), we are often
only interested in the final dynamics within its computational subspace Q,
spanned by the states {|0〉 , |1〉}. By construction, the gate overlap fidelity
(4.1) satisfies 0 ≤ F1 ≤ 1, whereby F1 = 1 corresponds to the best possible
result.

For dissipative dynamics a unitary propagator does not exist and hence it
is impossible to use the gate overlap fidelity (4.1). Instead, performance can
be quantified in terms of the state overlap fidelity [123]

F2 =

(
TrQ

{√√
ρ̂(tg)ρ̂t

√
ρ̂(tg)

})2

, (4.2)

where ρ̂t is the target state, ρ̂(tg) the state that is actually implemented

and TrQ{Ô} denotes the partial trace of operator Ô over the subspace Q of
interest (comparable to the projection PQ for F1). Note that, in contrast to
the gate overlap fidelity (4.1), the state overlap fidelity (4.2) is applicable
for both coherent and incoherent dynamics. However, if the propagator is
accessible and gradient information is used during the optimization, it is
more convenient to use the gate overlap (4.1).
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4.2 Optimization Algorithms

In order to improve the fidelity function, i.e. to minimize the error, the control
fields ~u are updated iteratively in numerically assisted methods. There exists
a vast variety of optimization algorithms which can be fundamentally differen-
tiated by whether they make use of derivatives of the fidelity function or not.
Common examples of direct search methods, that is derivative-free optimiza-
tion routines, are Simulated Annealing [124], Covariance Matrix Adaption
Evolution Strategy (CMA-ES) [125] and Nelder-Mead [126]. In contrast, meth-
ods such as Sequential Quadratic Programming (SQP), interior point methods
[127], Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [128] or
Gradient Ascent Pulse Engineering (GRAPE) [114] explicitly use derivatives
of the fidelity function to update the parameters.

While direct search methods tend to converge slower than gradient-based
ones, they are typically more tolerant to noise and are hence used for closed-
loop optimizations to calibrate pulse sequences in experiments [129, 130].
Regardless of the specific choice a good OCT method should satisfy three
basic criteria: Speed, accuracy and flexibility. That is, it needs to be able
to find simple high-fidelity solutions in a realistic experimental model, in
reasonable time [131].

The above description refers to numerically assisted OCT. Instead, in
certain situations it is also possible to design optimized control fields analyti-
cally, without additional numerical support. A prominent technique to derive
analytic controls will be detailed in chapter 6. We now briefly discuss two
common numerically assisted algorithms.

4.2.1 Nelder-Mead

The Nelder-Mead algorithm is a method designed to minimize a function
f : Rn → R of n variables. It compares the function values at (n + 1)
vertices ~x1, ~x2, . . . , ~xn+1 that themselves form a general simplex. The simplex
iteratively adjusts to the local landscape and ultimately contracts to a local
minimum of the function f .

In its original version [126] three operations are used to manipulate the
simplex: Reflection, contraction and expansion. Advanced versions of the
Nelder-Mead algorithm additionally use a shrink operation [132, 133]. The
details of each step depend on the constant parameters cr > 0 (reflection),
ce > 1 (expansion), 0 < cc < 1 (contraction) and 0 < cs < 1 (shrink). At each
iteration the vertices are ordered with respect to their associated function
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values

f1 ≤ f2 ≤ . . . ≤ fn+1, (4.3)

where we use the notation fj ≡ f(~xj). In that ordering, ~x1 and ~xn+1 are
referred to as the best and worst vertices, respectively. The centroid of the
best n vertices is defined as x̄ ≡∑j ~xj/n. Following Ref. [133] each iteration
of the Nelder-Mead algorithm contains the following steps:

1. Sort: Evaluate the function values at all (n + 1) vertices and sort
according to relation (4.3)

2. Reflect: Compute the reflection ~xR = x̄ + cr(x̄ − ~xn+1) and evaluate
fR. If f1 ≤ fR < fn, replace ~xn+1 with ~xR.

3. Expand: If fR < f1 compute the expansion ~xE = x̄ + ce(~xR − x̄) and
evaluate fE. If fE < fR, replace ~xn+1 with ~xE. Otherwise, replace ~xn+1

with ~xR.

4. Contract: (i) If fn ≤ fR < fn+1, compute the outside contraction
~xOC = x̄+ cc(~xR− x̄) and evaluate fOC . If fOC ≤ fR, replace ~xn+1 with
~xOC . Otherwise, go sto step 5. (ii) If fR ≥ fn+1, compute the inside
contraction xIC = x̄−cc(~xR−x̄) and evaluate fIC . If fIC < fn+1, replace
~xn+1 with ~xIC . Otherwise, go to step 5.

5. Shrink: Redefine the vertices according to ~xj = ~x1 + cs(~xj − ~x1) for
2 ≤ j ≤ n+ 1.

As such, the Nelder-Mead algorithm allows to optimize control parametriza-
tions that can be chosen to fit experimental needs. Thereby, it already satisfies
one of the three criteria for a good OCT method. However, Nelder-Mead op-
timizations do not generally feature speed and high accuracy since, for rather
complex problems, it tends to easily get stuck in local traps inside the opti-
mization landscape.

4.2.2 Gradient Optimization of Analytic Controls

A novel method that is believed to meet all three criteria described above
is reviewed in this subsection. It is based on simple analytic parametriza-
tions that can be chosen to accurately model experimental capabilities and
uses a gradient-based optimization routine, giving rise to the name Gradient
Optimization of Analytic conTrols (GOAT) [131].
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In order to better understand gradient-based optimization in quantum
systems, we will now briefly discuss the core idea of the GOAT algorithm. It
is convenient to decompose the total Hamiltonian

Ĥ(~x, t) = Ĥ0 +
∑

k

uk(~x, t)Ĥk (4.4)

into a non-controllable drift Hamiltonian Ĥ0 and a set of control Hamiltoni-
ans Ĥk. The control functions uk are characterized by a set of parameters ~x.
If, for instance, a Fourier parametrization is chosen, the parameters ~x corre-
spond to amplitudes, frequencies and phases of all Fourier components. The
specific choice of the parametrization is mainly determined by experimental
constraints, but also taking into account that generally a solution with fewer
parameters is preferable since it is easier to calibrate.

For the purpose of the discussion here, we will focus on the implementation
of a target gate Ût within a given gate time tg. As a figure of merit, we pick
the gate error (also infidelity) g which is given by

g(~x) = 1− 1

d

∣∣∣Tr
(
Û †t Û(~x, tg)

)∣∣∣ . (4.5)

Note the similarity to the overlap fidelity (4.1). The task of OCT is to mini-
mize infidelity g by finding an optimal set of parameters ~x. In order for the
optimization algorithm to be efficient, i.e. to meet the speed criterion, it needs
to be able to efficiently compute the gradient ∂~xg(~x) of the goal function. The
sought gradient is found to be [131]

∂~xg(~x) = −Re

{
g∗

|g|
1

d
Tr
(
Û †t ∂~xÛ(~x, tg)

)}
. (4.6)

By swapping derivative orders, we obtain a coupled system of differential
equations for Û(~x, tg) and its gradients from Schrödinger’s equation (3.1),

∂t

(
Û

∂~xÛ

)
= −i

(
Ĥ 0

∂~xĤ Ĥ

)(
Û

∂~xÛ

)
. (4.7)

An optimization process with GOAT will start at some initial set of param-
eters ~x0, which can either be a random or educated guess, and initiate any
gradient-based optimization routine such as L-BFGS [128] to minimize the
goal function (4.5). The required solutions to the coupled ordinary differen-
tial equations (ODE) (4.7) can be computed by any suitable ODE integrator,
for instance an adaptive Runge-Kutta method. The search algorithm will
iteratively update the parameters ~x based on evaluations of equations (4.5)
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and (4.6) until a requested threshold is reached, or no further improvement
is possible.

More details on the GOAT algorithm, particularly how it compares to
other methods, and why it is believed to be the first OCT algorithm that
meets all three criteria speed, accuracy and flexibility, can be found in [131].

4.3 Propagation Methods

While optimal control is in principle independent of the choice of propagation
method, the final method of choice can have a major effect on the feasibility
of optimizing a high-dimensional system. Two quantities which one should
consider are the highest occupied energy level, which determines the rate at
which the state’s phase oscillates, and the highest frequency component of
the Hamiltonian’s time dependence.

A piecewise constant (PWC) propagator [114, 118], which explicitly expo-
nentiates the Hamiltonian at every time step, is preferred when the control
fields are slow compared to the phase oscillations, and the exponential nat-
urally takes accurate care of the latter. Instead of PWC propagation, the
equations of motion may also be solved using standard ODE propagators,
such as adaptive Runge-Kutta methods. These are typically preferred when
the field oscillations are the fastest varying component of the state. Appendix
8.A provides details of PWC propagation.



Chapter 5

Nonadiabatic Corrections

In many branches of physics and other natural sciences, analyzing dynamics
of certain systems of interest can often be vastly simplified if it is possible
to separate timescales, as is possible for a spinning top: It spins at a high
frequency whereas its precession frequency is usually much lower. Often, it is
then advantageous to apply frame transformations that separate the subspace
of interest from the rest, such as separating a low-energy(frequency) subspace
from a high-energy(frequency) subspace. A prominent and well-celebrated
technique in quantum physics is the Schrieffer-Wolff transformation [134]
which is named after the authors of a famous condensed matter paper [135]
that relates the Anderson Hamiltonian to the Kondo Hamiltonian. In fact,
the transformation has already been used multiple times many years before –
for instance in order to study the dynamics of rotating molecules [136], which
is why the method is also known as van Vleck perturbation theory. To our
knowledge, the first application in quantum physics was about 15 years before
Ref. [135] in Foldy’s and Wouthuysen’s work about the Dirac theory of spin
1/2 particles [137]. However, for convenience, we will refer to the technique
as Schrieffer-Wolff transformation (SWT). A related method, so-called adi-
abatic perturbation theory [138, 139], perturbatively extends the adiabatic
approximation (see chapter 6) in order to solve the effective dynamics of
Hamiltonians that feature such a separation of scales.

Currently, applications of the SWT are countless. Apart from the examples
mentioned before, it is widely used in quantum many-body systems. The SWT
can for instance be used to study electron gases [140] and the ground state
of the Hubbard model [141], but it has also become an important tool in

This chapter was published in ”L.S. Theis and F.K. Wilhelm, Phys. Rev. A 95, 022314
(2017)”. Copyright (2017) by the American Physical Society. The majority of the text was
written by L.S. Theis. All numerical simulations and underlying analytic calculations were
carried out by L.S. Theis.
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quantum information theory. For instance, it aids the understanding of the
dispersive interaction in circuit quantum electrodynamics [43, 142, 143] within
the framework of superconducting qubits [26] coupled through a resonator
[144].

An important property of the SWT is that the eigenvalues of the derived
effective Hamiltonian reproduce those of the full Hamiltonian (in the relevant
subspace) to the required order of approximation. It may happen that the
derived effective Hamiltonian has fewer degrees of freedom than the full
Hamiltonian while featuring a more complex structure. This has eventually
inspired the idea of perturbative gadgets [145, 146], where the SWT is used to
analyze and construct high-energy simulator Hamiltonians with a low degree
of complexity, that are used to approximate complex low-energy dynamics of
some target Hamiltonian [147].

With ongoing technical developments, real-time control of quantum sys-
tems – in terms of shaped pulses for instance found via OCT, as introduced in
chapter 4 – has become an important tool in quantum information to assess
new degrees of controllability. However, applications of real-time control are
not only limited to quantum information processing [148]. Possible other ex-
amples are quantum quenches in many-body systems, where a Hamiltonian is
suddenly changed non-adiabatically [149], or fast tuning of qubit frequencies
[150, 151]. Frequency-tuning of superconducting qubits is typically done by
changing the magnetic flux penetrating the Josephson junctions [152], as we
will explain in section 5.2. This method is quite sensitive to flux noise, which
is why fast real-time flux control has so far been a difficult task. Yet, recent
developments of a new qubit design [153], called the Gatemon, allows for fast
frequency-tuning by manipulating voltage [154] instead of magnetic flux, so
that fast frequency sweeps are easily possible.

In this chapter, we briefly review the idea of the SWT and present a
general extension of the method incorporating time-dependent effects, which
is inevitable given the imminent implementation of real-time controls. Goldin
and Avishai [155] have used a time-dependent analogue of the SWT to study
time-dependent impurities in Anderson and Kondo models. We adapt the idea
of constructing a time-dependent Schrieffer-Wolff transformation (TDSWT)
and present the full hierarchy of the approximation. Performing a second
order perturbation theory ultimately reveals that the TDSWT adiabatically
eliminates terms in the Hamiltonian that originate in real-time control. A
similar idea of frame transformations has been used to adiabatically eliminate
leakage errors in anharmonic ladder systems [40], such as superconducting
qubits, but has – in a generalized version – for instance also shown promise
to reduce errors in Rydberg gates [98]. Both applications will be detailed in
chapters 6 and 7, respectively. By way of example we reconsider the dispersive
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transformation of a Jaynes-Cummings type Hamiltonian for arbirarily many
multilevel systems, taking into account that the energy levels as well as the
couplings in general may depend on external controls, such as magnetic flux
for Transmon qubits [34].

We focus on a system that is relevant for the implementation of entan-
gling gates with superconducting qubits. However, similar arguments hold
for instance for a quantum dot architecture, where the couplings depend on
the external laser controls [156]. To substantiate the importance of our work,
we show that the difference in fidelities, based on previous models and our
extended one, can be on the order of 10−2 which is of indisputable importance
for high-fidelity gates, given that error thresholds for fault-tolerant quantum
error correction are believed to lie between 10−4 and 10−2 for many relevant
systems [157]. A second-order Magnus expansion [158, 159] provides a closed
analytic form to accurately estimate the errors observed in numerically exact
simulations.

5.1 The Schrieffer-Wolff Transformation

The essence of the original SWT [135] is to remove a perturbation from some
Hamiltonian Ĥ. Hereto it generates an effective Hamiltonian Ĥeff from the
Hamiltonian Ĥ = Ĥ0 + ε(Ĥ1 + Ĥ2) using a perturbative expansion, so that
Ĥeff is diagonal up to a desired order in the perturbing term ε(Ĥ1 + Ĥ2).
Note that it is advantageous to separate the perturbation into a diagonal
term Ĥ1 and a offdiagonal one Ĥ2 – both assumed to be constant operators.
The effective Hamiltonian is then obtained via a unitary transformation so
that Ĥeff = e−ŜĤeŜ. The generator Ŝ must be anti-hermitian (this preserves
the Lie structure of the problem [160]) and we continue to write the effective
Hamiltonian in terms of nested commutators,

Ĥeff = e−ŜĤeŜ =
∞∑

j=0

1

j!
[Ĥ, Ŝ]j, (5.1)

whereby [Â, B̂]n = [[Â, B̂]n−1, B̂] and [Â, B̂]0 = Â. A typical, but not manda-
tory way to determine the sought transformation is to expand Ŝ in different
orders j of ε, i.e. Ŝ =

∑
j Ŝj. Ultimately, this gives rise to removing the off-

diagonal perturbation Ĥ2 up to a desired order in ε. One obtains successive
equations for the Ŝj from an order-by-order expansion in the perturbation

ε, e.g. [Ĥ0, Ŝ1] = −Ĥ2 removes the off-diagonal perturbation to lowest order.
More details are provided in the remainder of this section, which extends the
SWT to a generic time-dependent case.
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5.1.1 Extension to Time-Dependent Perturbations

The formalism of the previous section needs to be extended [155], as soon
as the perturbation is time-dependent. Then, the generator Ŝ in general is
time-dependent as well, so that the amended transformation (5.1) becomes

Ĥeff = e−ŜĤeŜ + i∂t

(
e−Ŝ
)
eŜ. (5.2)

Analogously to before, equation (5.2) is expanded in terms of nested commu-
tators so that the effective Hamiltonian can be written as

Ĥeff =
∞∑

j=0

1

j!
[Ĥ, Ŝ]j − i

∞∑

j=0

1

(j + 1)!
[

˙̂
S, Ŝ]j. (5.3)

We proceed to separate the effective Hamiltonian Ĥeff into off-diagonal (Ĥeff
od )

and diagonal (Ĥeff
d ) terms, which are given by

Ĥeff
od =

∞∑

j=0

1

(2j + 1)!
[Ĥ0 + Ĥ1, Ŝ]2j+1 +

∞∑

j=0

1

(2j)!
[Ĥ2, Ŝ]2j

− i
∞∑

j=0

1

(2j + 1)!
[

˙̂
S, Ŝ]2j,

(5.4a)

Ĥeff
d =

∞∑

j=0

1

(2j)!
[Ĥ0 + Ĥ1, Ŝ]2j +

∞∑

j=0

1

(2j + 1)!
[Ĥ2, Ŝ]2j+1

− i
∞∑

j=0

1

(2j + 2)!
[

˙̂
S, Ŝ]2j+1.

(5.4b)

Expanding Ŝ =
∑

j Ŝj as a power series in the perturbation yields equations

that remove off-diagonal terms in the effective Hamiltonian, i.e. solve Ĥeff
od = 0

up to the desired order in ε, and thereby diagonalize the Hamiltonian. As
stated before, the particular definition of Ŝ is not mandatory, but the typical
choice of a perturbative expansion. Consequently, different ansätze for Ŝ lead
to different diagonalizations. In order to compare orders of ε, we make the
a priori assumption that ∂tŜj is of order (j + 1) of the perturbation. Hence,
the first few equations that determine the transformation read

[Ĥ0, Ŝ1] =− Ĥ2, (5.5a)

[Ĥ0, Ŝ2] =− [Ĥ1, Ŝ1] + i
˙̂
S1, (5.5b)

[Ĥ0, Ŝ3] =− [Ĥ1, Ŝ2]− 1

3
[Ĥ2, Ŝ1]2 + i

˙̂
S2, (5.5c)

[Ĥ0, Ŝ4] =− [Ĥ1, Ŝ3]− 1

3
[[Ĥ2, Ŝ1], Ŝ2]− 1

3
[[Ĥ2, Ŝ2], Ŝ1] + i

˙̂
S3. (5.5d)
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Successively solving equations (5.5) will then cancel all perturbing terms up
to the desired order so that the effective Hamiltonian Ĥeff is purely diagonal.
We need to verify the consistency of solutions to equations (5.5) under the
a priori assumption on the derivative of ∂tŜj: from equation (5.5a) we see

that Ŝ1 inherits perturbation of order one from Ĥ2. Similarly, it follows from
equation (5.5b) that ∂tŜ1 and Ŝ2 are of order two in the perturbation and
so on. This ensures the consistency of our expansion. Finally, the remaining
diagonal terms in equation (5.4b) need to be calculated. We use equations
(5.5) and obtain the first few remaining terms that constitute the effective
Hamiltonian Ĥeff =

∑
j Ĥ

eff
j to be

Ĥeff
0 =Ĥ0, (5.6a)

Ĥeff
1 =Ĥ1, (5.6b)

Ĥeff
2 =

1

2!
[Ĥ2, Ŝ1], (5.6c)

Ĥeff
3 =

1

2!
[Ĥ2, Ŝ2], (5.6d)

Ĥeff
4 =

1

2!
[Ĥ2, Ŝ3]− 1

4!
[Ĥ2, Ŝ1]3. (5.6e)

5.1.2 The Dispersive Transformation

A particular example of the SWT in the context of quantum information is the
analysis of cavity-mediated residual interactions between multilevel systems.
Under the assumption of weak coupling, the SWT can be used to derive an
effective Hamiltonian which is free of interactions between multilevel systems
and the cavity. Many fundamental concepts in quantum information, such
as readout [42] and gate synthesis [43], are based on this so-called dispersive
frame. We start with the decomposition of the Jaynes-Cummings Hamiltonian
[161] for N multilevel systems with respective energy levels ω

(m)
j , coupled to

a cavity (oscillator frequency ωr) with coupling strengths g
(m)
j,j+1 into

Ĥ0 = ωrâ
†â+

N∑

m=0

∞∑

j=0

ω
(m)
j Π̂

(m)
j , (5.7a)

Ĥ1 = 0, (5.7b)

Ĥ2 =
N∑

m=1

∞∑

j=0

g
(m)
j,j+1

(
σ̂

+(m)
j â+ σ̂

−(m)
j â†

)
, (5.7c)

where superscript (m) labels the m-th element in the total Hilbert space,

Π̂
(m)
j ≡ |j〉〈j|(m) is the projector to state |j〉(m) of system m, and â, â† are
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the harmonic ladder operators of the cavity. Hamiltonian Ĥ0 defines the bare
energy levels of a harmonic oscillator with frequency ωr and the N multilevel
systems, while couplings between the oscillator and the multilevel systems
are encoded in Ĥ2. For readability, we abstain from explicitly highlighting
time-dependence, but we stress that in general both energy levels ω

(m)
j (t) and

couplings g
(m)
j,j+1(t) are time-dependent quantities. The raising and lowering

operators of each multilevel system are given by σ̂
+(m)
j ≡ |j + 1〉〈j|(m) and

σ̂
−(m)
j ≡ |j〉〈j + 1|(m), respectively. We aim at removing all interactions be-

tween the cavity and the multilevel systems up to second order, so that the
dynamics can be solely reduced to the multilevel systems. Therefore, we need
to find the operators Ŝ1 and Ŝ2 that satisfy equations (5.5a) and (5.5b), for
the Hamiltonians given by equations (5.7). We note that

[
∞∑

j=0

(
σ̂
−(m)
j â† ± σ̂+(m)

j â
)
, Ĥ0

]
∝

∞∑

j=0

(
σ̂
−(m)
j â† ∓ σ̂+(m)

j â
)

(5.8)

and use this identity to find solutions for the generators Ŝ1 and Ŝ2. With the
shorthand notation δ

(m)
j ≡ ω

(m)
j,j+1 − ωr for the detunings from the resonator,

and ω
(m)
j,j+1 ≡ ω

(m)
j+1 − ω(m)

j we write the corresponding solutions as

Ŝ1 =
N∑

m=1

∞∑

j=0

g
(m)
j,j+1

δ
(m)
j

(
σ̂
−(m)
j â† − σ̂+(m)

j â
)
, (5.9a)

Ŝ2 =− i
N∑

m=1

∞∑

j=0

1

δ
(m)
j

d

dt

(
g

(m)
j,j+1

δ
(m)
j

)(
σ̂
−(m)
j â† + σ̂

+(m)
j â

)
. (5.9b)

The so-called dispersive Hamiltonian up to second order then reads

Ĥeff =

{
ωr +

N∑

m=1

∞∑

j=1

(
χ

(m)
j−1,j − χ(m)

j,j+1

)
Π̂

(m)
j −

N∑

m=1

χ
(m)
0,1 Π̂

(m)
0

}
â†â

+
N∑

m=1

ω
(m)
0 Π̂

(m)
0 +

N∑

m=1

∞∑

j=1

(
ω

(m)
j + χ

(m)
j−1,j

)
Π̂

(m)
j

+
∑

m6=n

∞∑

j,k=0

g
(m)
j,j+1λ

(n)
k

(
σ̂
−(m)
j σ̂

+(n)
k + σ̂

+(m)
j σ̂

−(n)
k

)

+ i
∑

m6=n

∞∑

j,k=0

g
(m)
j,j+1

λ̇
(n)
k

δ
(n)
k

(
σ̂
−(m)
j σ̂

+(n)
k − σ̂+(m)

j σ̂
−(n)
k

)
.

(5.10)
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Here we have denoted one of the expansion parameters by λ
(m)
j ≡ g

(m)
j,j+1/δ

(m)
j ,

which we will refer to as the dispersive parameter, and introduced the disper-
sive shift

χ
(m)
j,j+1 ≡

(
g

(m)
j,j+1

)2

δ
(m)
j

. (5.11)

The contribution from Ŝ2 adiabatically eliminates a time-dependent qubit-
cavity interaction that would be apparent if the usual SWT was applied and
the effective Hamiltonian was then additionally extended by the summand
i∂t(e

−Ŝ)eŜ, describing inertial forces when the new frame is interpreted as an
accelerated reference frame. In fact, Hamiltonian (5.10) is almost identical to
the commonly used dispersive Hamiltonian [162]: The multilevel systems are
energy-shifted by the dispersive shifts and are dispersively coupled among each
other through the cavity via σ̂+σ̂−-type interactions, whereby the interaction
strength scales as 1/δ. Additionally, we observe the usual shift of the resonator
frequency ωr by a value that depends on the state of the multilevel systems,
which ultimately can be used for readout purposes [163]. However, in addition
to the common dispersive Hamiltonian, the regular dispersive coupling terms
in the third line of Hamiltonian (5.10) are amended by a different type of
interaction terms accounting for inertial errors. The latter scale proportionally
to λ̇

(n)
k – essentially the speed at which the parameters are modulated.

In order that our perturbative expansion, which leads to Hamiltonian
(5.10), is valid we need to limit the magnitude of the expansion parameters.
They need to meet the conditions

λ
(m)
j � 1, (5.12a)

λ̇
(m)
j /δ

(m)
j � 1, (5.12b)

for all values of j and m. Otherwise higher-order terms in equations (5.6) need
to be considered, which is straightforward and does not qualitatively change
the results. Since equation (5.12b) basically limits the velocity at which λ

may change, we refer to λ̇
(m)
j /δ

(m)
j as dispersive adiabaticity parameter.

5.2 Entangling Two Transmon Qubits

As an example, we choose to work with two Transmon qubits [34] coupled to a
shared resonator ωr. From Hamiltonian (5.10) we see that the physical qubits
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dispersively couple to each other through the cavity. This interaction provides
a common way to implement a controlled-phase gate: The avoided crossing
between the |11〉 and |20〉 states can be used to control the phase of state |11〉
[144]. Conventionally, this amounts to keeping one qubit (Q1) at a constant
frequency whereas the frequency of qubit two (Q2) changes in time: First
being far detuned from Q1 and ωr, it is tuned to a constant frequency close to
resonance with Q1 in order to generate a strong dispersive interaction. Both
qubits interact for a certain time tg and Q2 is tuned back from close-resonance
as soon as the interaction time tg was long enough to implement the desired
gate. Optimal control theory has sought fast pulses to produce high-fidelity
gates based on the dispersive interaction using a geometric derivation [150],
as well as a deeper analysis of the underlying Landau-Zener physics [151]. For
convenience, we only work in the relevant {|11〉 , |20〉} subspace, where the
reduced Hamiltonian Ĥeff

red is given by

Ĥeff
red =

χt + δω −∆(1)

2
σ̂z +

(
g

(2)
0,1λ

(1)
1 + g

(1)
1,2λ

(2)
0

)
σ̂x −

(
λ̇

(2)
0 g

(1)
1,2

δ
(2)
0

− λ̇
(1)
1 g

(2)
0,1

δ
(1)
1

)
σ̂y.

(5.13)

Here, we denote the anharmonicity of the first Transmon by ∆(1), and use the
definitions δω = ω

(2)
1 −ω(1)

1 and χt = χ
(1)
0,1 +χ

(2)
0,1 +χ

(1)
1,2. In order to speed up the

conventional implementation of two-qubit gates [144] – which is based on the
formalism explained above – tremendously, real-time control of frequencies
via modulating the applied magnetic flux Φ [150, 151] is required. The qubit
frequencies ωj as well as the couplings gj,j+1 scale with the applied magnetic
flux, which changes the Josephson energy EJ of the Josephson junctions [34],

EJ(Φ) = EJΣcos

(
πΦ

Φ0

)√
1 + d2tan

(
πΦ

Φ0

)
(5.14)

gj,j+1(Φ) ∝
√
j + 1

2
(EJ(Φ))1/4 (5.15)

ωj(Φ) = j
√

8EcEJ(Φ) + ∆j, (5.16)

whereby Φ0 is the magnetic flux quantum, Ec the charging energy and d is
the junction asymmetry. Without loss of generality we focus on symmetric
junctions, i.e. d = 0. The anharmonicities ∆j in case of a Duffing oscillator –
which is a good approximation for Transmon qubits – are given by [41]

∆j =
j(j − 1)

2
∆2. (5.17)
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5.2.1 Relevance of Time-Dependent Effects

If advanced controls [150, 151] are used, explicit time-dependence in form of
real-time flux control enters the problem. Specifically, the qubit frequencies
(and hence the detunings δj) depend on time. Moreover, as given by equation
(5.15), the coupling strengths gj,j+1 also depend on the applied flux. It is
crucial to note that especially the flux-dependence of g is usually not con-
sidered in literature, and so the effective Hamiltonians are derived without
taking into account the effect of real-time parameter control in the SWT [164].
However, we will show that it is inevitable to rigorously incorporate these
effects if implementations of high-fidelity gates, compatible with current error
thresholds, are desired. Along these lines, it is also important to question the
assumption of constant off-diagonal elements in Hamiltonian (5.13), as is for
instance used in Refs. [150, 151].

The parameters we use to simulate the Transmon system yield moderate
couplings g/2π ≈ 27 MHz and qubit frequencies on the order of 7 GHz
around the bias points. We proceed to show that (i) the full TDSWT needs
to be applied as soon as one aims at high-fidelity gates and (ii) that the
assumption of constant off-diagonal elements severely deteriorates results.
The exemplary waveforms we consider are smooth and slow sinusoidal (Φs)
as well as tangential (Φt) controls, both with flux changes of ∆Φ = 60 mΦ0

at maximum, i.e.

Φs(t) = Φbias + A · sin(2πνt+ ϕ) (5.18a)

Φt(t) = Φbias + A · tan

(
B · Erf

(
C

(
t− tg

2

)))
, (5.18b)

where A,B,C, ν and ϕ are constants, Φbias is a static bias and Erf(x) is the
Gauss error function. Tangential pulses and pulses with sinusoidal modula-
tions were used explicitly in [151]. We evolve Ĥeff

red with both of these controls
and quantify the effects in question by considering three different situations,
represented by the three unitaries

• Û1: Full simulation of Ĥeff
red,

• Û2: Neglect terms proportional to λ̇ in Ĥeff
red,

• Û3: Neglect terms proportional to λ̇ in Ĥeff
red and approximate all in-

stances of g, χ and δ as their mean values.

To measure the individual gate errors derived from those three models, we
use the common gate overlap fidelity

F1(Û) =
1

d2
Q

∣∣∣Tr
(
Û †Ût

)∣∣∣
2

(4.1)
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and choose a set of Ns = 10000 random target unitaries Ût of dimension
dQ = 2, that are parametrized by the angles ~ϕ ≡ (ϕ1, ϕ2, ϕ3) and given in
the representation

Ût = Û(~ϕ) ≡
(

eiϕ1cos(ϕ3) eiϕ2sin(ϕ3)
−e−iϕ2sin(ϕ3) e−iϕ1cos(ϕ3)

)
(5.19)

for an arbitrary 2× 2 unitary matrix. We evaluate fidelity (4.1) for each of
the Ûj (j = 1, 2, 3) with respect to the Ns different random target unitaries
and compute the fidelity differences

∆F (Û1, Ûn) = F1(Û1)− F1(Ûn) (5.20)

to quantify errors corresponding to the approximations upon which the prop-
agators Û2 and Û3 are based. The corresponding normalized histograms are
plotted in FIG. 5.1 for sinusoidal and tangential modulations with realistic
gate times of tg = 30 ns. The top row of FIG. 5.1 reveals that even for smooth
pulses without any fast modulation, an incorrect frame transformation (SWT
vs. TDSWT) translates into average discrepancies between fidelities on the
order of 10−3. For models that assume constant off-diagonal components in
the reduced Hamiltonian (5.13), as was done in earlier studies [150, 151],
discrepancies in gate fidelities are even on the order of 10−2 (bottom row of
FIG. 5.1). To substantiate the importance of the results, we highlight that the
pulses we used for simulations are significantly smoother (and free from fast
oscillations) than usual control shapes, for instance obtained via methods of
optimal control theory. Those pulses typically exhibit relatively fast changes,
which in turn lead to increasing values for the velocities λ̇

(m)
j and thereby

even higher mismatches in gate fidelities.

5.2.2 Error Estimation via Magnus Expansion

A second order Magnus expansion [158, 159] can be used to understand the
error statistics depicted in FIG. 5.1. In general, the Magnus expansion is a
way to analytically express the unitary propagator of a quantum system at
time tg, subject to a time-dependent Hamiltonian Ĥ as

ˆ̄U = exp

(
−itg

∞∑

k=1

ˆ̄H(k)

)
. (5.21)

Explicit forms for the so-called averaged Hamiltonians ˆ̄H(k) exist [158, 159]
and account for time-ordering issues. We use a second order Magnus expansion
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FIG. 5.1 – Normalized histograms for the differences in fidelity ∆F with
respect to Ns = 10000 random unitaries. Neglecting the time-dependent part
of the dispersive transformation (∝ λ̇) leads to errors on the order of 10−3

(top row). Models as were used before [150, 151] – that assume all instances of
g, χ and δ to be constant – lead to errors on the order of 10−2 (bottom row).
Parts (a) and (c) belong to sinusoidal pulses Φs, (b) and (d) to tangential ones
(Φt) given by equations (5.18). The discrepancies associated to nonadiabatic
corrections to the Hamiltonian are of great relevance for high-fidelity gates.
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to approximate the unitaries Û1 and Û2. That is, we truncate series (5.21) at
k = 2, so that only the first and second order averaged Hamiltonians

ˆ̄H(1) =
1

tg

tg∫

0

dt Ĥ(t), (5.22a)

ˆ̄H(2) = − i

2tg

tg∫

0

dt2

t2∫

0

dt1

[
Ĥ(t2), Ĥ(t1)

]
, (5.22b)

are required. For convenience we introduce the shorthand notation

ω =
〈

11
∣∣∣ Ĥeff

red

∣∣∣ 11
〉
, (5.23a)

gr = Re
{〈

11
∣∣∣ Ĥeff

red

∣∣∣ 20
〉}

, (5.23b)

gi = − Im
{〈

11
∣∣∣ Ĥeff

red

∣∣∣ 20
〉}

, (5.23c)

to simplify Hamiltonian (5.13). After employing identity (1.5) we end up with
a closed analytic expression for the error ∆F ,

∆F ( ˆ̄U1,
ˆ̄U2) = f(α1, ω̄ + δgi,gr , δω,gr − ḡi, ḡr + δω,gi , ~ϕ)

− f(α2, ω̄, δω,gr , ḡr, ~ϕ).
(5.24)

Here, the time-averaged mean of a function s(t) is denoted by a stacked bar,
i.e. s̄ ≡ 1

tg

∫ tg
0

dt s(t). Information about the unitary’s phases enters through

the second order Magnus terms, which are determined by the quantities

δω,gr =

tg∫

0

dt2

t2∫

0

dt1 (ω(t2)gr(t1)− ω(t1)gr(t2)) , (5.25a)

δω,gi =

tg∫

0

dt2

t2∫

0

dt1 (ω(t2)gi(t1)− ω(t1)gi(t2)) , (5.25b)

δgi,gr =

tg∫

0

dt2

t2∫

0

dt1 (gi(t2)gr(t1)− gi(t1)gr(t2)) . (5.25c)

The rotation angles of unitaries ˆ̄U1 and ˆ̄U2 are set by the constants

α1 =
√

(ω̄ + δgi,gr)
2 + (δω,gr − ḡi)2 + (ḡr + δω,gi)

2, (5.26a)

α2 =
√
ω̄2 + δ2

ω,gr + ḡ2
r , (5.26b)
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FIG. 5.2 – Normalized histogram for the difference in fidelity ∆F with re-
spect to Ns = 10000 random unitaries obtained from a second order Magnus
expansion, see equation (5.24). The statistics are based on a tangential pulse
and reproduce those of FIG. 5.1a very well.

respectively. The function f(α, a1, a2, a3, ~ϕ) in equation (5.24) is defined as

f(α, a1, a2, a3, ~ϕ) =
4

α2
{αcos(ϕ1)cos(α)cos(ϕ3)− sin(α){a1cos(ϕ3)sin(ϕ1)

+ a2cos(ϕ2)sin(ϕ3) + a3sin(ϕ2)sin(ϕ3)}}2 .

(5.27)

Indeed, as shown in FIG. 5.2 for tangential pulses, equation (5.24) reproduces
the statistics of a numerically exact simulation, shown in FIG. 5.1a, very well.

The mean error, independent of ~ϕ, is obtained via averaging ∆F ( ˆ̄U1,
ˆ̄U2) over

~ϕ ∈ [0, 2π]⊗3, and yields a value of ∆F ∼ 10−3.21 for the situation considered
in FIG. 5.2.

5.3 Conclusion

We have given a detailed outline of the time-dependent Schrieffer-Wolff trans-
formation and applied it to derive a general expression for the dispersive
Hamiltonian of arbitrarily many multilevel systems coupled to a cavity via a
Jaynes-Cummings type of interaction. The usual dispersive coupling between
the multilevel systems is altered by terms that scale with the dispersive adi-
abaticity parameter – essentially the speed at which parameters change in
time.
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As a specific example, we provide a simple but accurate model to imple-
ment dispersive entangling two-qubit gates using only σ̂z-control of the qubits.
Fidelities based on previous models are shown (numerically and analytically)
to differ from those based on our extended model by up to 10−2 for control
fields without fast modulation. Given state-of-the-art error thresholds for scal-
able fault-tolerant architectures, we remark that the nonadiabatic corrections
we derived are of substantial importance for accurate simulations. In case of
high-frequency controls, or pulses with fast flux sweeps, higher-order terms
of the TDSWT need to be considered, and estimated gate fidelities based on
previous models become even more erroneous. Note that the discussion in this
chapter does not address the determination of optimal waveforms. Instead, it
provides a general toolset to derive simplified but accurate models which then
may be used for accurate simulations, for instance in order to apply quantum
optimal control.

As a final note, we highlight that the fundamental effects considered in this
chapter are not only apparent in the dispersive frame: For instance the depen-
dence of qubit-cavity coupling strengths g on the applied magnetic flux are
also relevant in simulations of the full Jaynes-Cummings Hamiltonian. These
effects should be carefully analyzed in order to provide accurate simulations
of the real dynamics.



Chapter 6

Derivative-based Analytical
Optimal Control

The optimization algorithms that were introduced in section 4.2 find optimal
solutions to control fields with the aid of numerical assistance: Typically, they
require numerically exact solutions to the system dynamics, and update the
control fields based on these numerical computations. In certain cases, how-
ever, it is also possible to find optimal solutions that achieve a desired result
solely by analytical techniques. In this chapter we will review the Deriva-
tive Removal by Adiabatic Gate (DRAG) framework [40, 41, 165] and present
state-of-the-art insights regarding the underlying theory and its applications.
The majority of this chapter deals with effective frame transformations in
order to derive optimal solutions, directly connecting to the concept presented
in chapter 5.

The DRAG technique [40, 41, 165] was developed in the context of the
emerging technology of high-precision superconducting quantum devices. With
coherence times of these systems improving dramatically towards the end of
the first decade in twenty-first century, it became a promising possibility to
address desired quantum transitions in these systems with increasing spec-
tral resolution [166–169]. However, very fast pulses were needed to operate
below the limits imposed by decoherence, which was a problem both in terms

This chapter was published as an invited Focus article in ”L.S. Theis, F. Motzoi, S.
Machnes and F.K. Wilhelm, EPL 123, 60001 (2018)”. The majority of the text was written
by L.S. Theis and F. Motzoi. S. Machnes provided the calibration data for FIG. 6.3 and
contributed the majority of text in the calibration subsection 6.4.3. The chapter mostly
reviews known techniques, but also provides new information; particularly: (i) Connection
between derivative-based control and related methodologies, (ii) Exact, instructive formu-
lation of the problem, e.g. equations (6.7) and (6.8), (iii) Connection between spectral
engineering and adiabaticity, and (iv) Recommendations based on previous experience.
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of microwave shaping technology in a highly cooled environment [170] and
in terms of the rich level structure of nonlinear superconducting quantum
circuits, which involves unwanted coupling to quantum states outside the com-
putational subspace – typically referred to as leakage levels [171, 172]. The
basic DRAG idea was to augment a simple smooth Rabi pulse Ω(t)σ̂x with
an off-quadrature auxiliary pulse with a simple dependence ∝ ∂tΩ(t)σ̂y/∆,
where ∆ is the gap energy to the nearest excited state.

The basic mechanism behind the correction is the removal of diabatic
errors so that the system couples to the leakage subspace only adiabatically,
returning back to the computational space by the end of the pulse. Such ideas
have a rich history, including the first application to removing leakage from
STIRAP pulses [173], to its generalization to a broader class of problems in
[174, 175], to the formulation in terms of transitionless dynamics in [176],
and finally to a general categorization under the framework of Shortcuts to
Adiabaticity (STA) [177].

Although DRAG is closely related to these ideas, they are not interchange-
able and functionally solve different kinds of problems in quantum mechanics:
(i) The DRAG framework is a convergent expansion that allows removing
series of errors that differently affect different portions of the Hilbert space
and operators therein. Thus, functionally, it is perhaps closest to the transi-
tionless superadiabatic driving technique of [178], based on the superadiabatic
expansion [179, 180]. (ii) The DRAG expansion allows the solution of not
just one STA but can remove a system of diabatic errors to a manifold of
unwanted low-lying gap states. In this sense, it is a powerful extension of
STA methodology. (iii) While STA usually deals with problems of adiabatic
passage techniques, DRAG is equally well applicable to resonant driving prob-
lems, also known as spectral selectivity problems, where one can think of an
adiabatic elimination of fast subspaces (closely related to the method pre-
sented in chapter 5) while only perturbatively affecting the near-degenerate
subspace where resonant driving occurs.

The method was first tested in [181, 182]. Since then it has become a
standard tool in superconducting qubit experiments [144, 152, 183–190]. There
have been numerous implementations, extensions, and applications to different
physical systems in the intervening ten years since the first presentation of
the ideas. Other techniques to deal with harmful transitions were developed
[191, 192] but do not feature the flexibility of DRAG pulses, particularly with
regards to spectral selectivity. We review here some of the main developments,
including: (i) Connections drawn to other STA methods [177], (ii) a better
understanding of the convergence properties of the expansion [165], (iii) the
application to spins, optical lattices and Rydberg atoms [98, 165, 193, 194], (iv)
and the development of the closely related technique of Weak AnHarmonicity
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With Average Hamiltonian (WAHWAH) [122, 195].
The chapter is structured as follows: We first introduce the reader to

relevant and related control frameworks, in particular the adiabatic theorem,
superadiabaticity and counterdiabaticity. In the subsequent section 6.2, we
then present a general mathematical formulation of how DRAG solutions can
be derived exactly, using iterated frames. In particular, we show how to deal
with diabatic errors on multiple and/or uncontrolled transitions. However,
for typical multi-level problems, it can be intractable to exactly solve the
equations obtained from this general theory. We therefore continue to present
three useful expansions to obtain perturbative DRAG solutions in section 6.3.
Section 6.4 ends the discussion with a review of significant, experimentally
motivated examples to demonstrate the general applicability of DRAG, and
show how perturbative solutions are obtained for a given system.

6.1 Review of Adiabatic Control Techniques

Consider a Hamiltonian Ĥ0(t) with eigenvalues En(t) and eigenstates |n0(t)〉,
respectively. The adiabatic theorem [180, 196–198] states that if the system is
initially prepared in some instantaneous eigenstate |n0(t)〉, the state evolved
according to Schrödinger’s equation i∂t |ψ(t)〉 = Ĥ0(t) |ψ(t)〉 will follow this
eigenstate, i.e. |ψ(t)〉 = |n0(t)〉 up to a phase, provided the Hamiltonian Ĥ0(t)
changes sufficiently slowly (~ ≡ 1). This is referred to as adiabatic evolution.
We refer the reader to Ref. [199] for a detailed and rigorous analysis of different
formulations of the theorem. It is convenient to transform to the adiabatic
frame of Ĥ0, that is the diagonal basis {|φn〉}, by a unitary transformation
V̂0(t) =

∑
n e

iϕn(t) |n0(t)〉〈φn|, according to

Ĥeff(t) = V̂ †0 (t)Ĥ0(t)V̂0(t) + i
˙̂
V †0 (t)V̂0(t). (6.1)

The inertial term Î(t) ≡ i(∂tV̂
†

0 (t))V̂0(t) is the source of transitions between
instantaneous eigenstates of Ĥ0 (we refer to these as diabatic or nonadiabatic
errors, as introduced in a slightly different context in chapter 5). If the adia-
batic theorem can be applied, we may neglect the inertial term Î(t) in equation
(6.1) up to a geometric phase [200], canceled for convenience via the free phase
ϕn(t) =

∫ t
0
〈n(t′)|∂t′n(t′)〉 dt′ . Time evolution of the diagonal Hamiltonian

D̂(t) ≡ V̂ †0 (t)Ĥ0(t)V̂0(t) = En(t) |φn〉〈φn| is then given straightforwardly by

Û(t) =
∑

n

e−i
∫ t
0 En(t′)dt′ |φn〉〈φn| , (6.2)

where the evolution in the original basis is V̂0(t)Û(t)V̂ †0 (0).
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6.1.1 Superadiabaticity

For practical applications of system control, Hamiltonians often do not change
slowly enough to justify an adiabatic approximation as given by equation
(6.2), i.e. neglecting the diabatic term Î(t). In order to properly quantify
the finite rate of change theory needs to be extended accordingly. To this
end, Berry provided a useful framework under the name of superadiabaticity
[180, 201], formulated also 20 years earlier by Garrido [179] in the context
of adiabatic invariants. The method amounts to finding corrections to the
Hamiltonian that account for finite inertial terms, by utilizing a sequence of
iterative adiabatic transformations. That is, analogously to equation (6.1),
we define the j-th adiabatic frame Hamiltonian recursively as

Ĥj = V̂ †j−1Ĥj−1V̂j−1 + i
˙̂
V †j−1V̂j−1, j ≥ 1. (6.3)

We assume all operators are (implicitly) time-dependent from this point on-
ward. Each V̂j diagonalizes the error term Îj−1 ≡ i(∂tV̂

†
j−1)V̂j−1 from previous

order, producing a new diagonal Hamiltonian D̂j ≡ V̂ †j ĤjV̂j and a new inertial

term Îj.

Unfortunately, these iterative transformations eventually begin to diverge
[201] from the actual dynamics of Ĥ0 and so the expansion must be trun-
cated. The accuracy of a given frame can be quantified by the adiabatic
quality factor Qj ≡

∫ tg
0
‖D̂j‖/‖Îj‖. The highest value of Qj corresponds to

the optimal frame, after which the series starts to diverge. However, for the
purposes of high-fidelity quantum control, this frame will often be insufficient
to meet accuracy requirements and therefore motivated the development of
more accurate control methods over the last twenty years. Nonetheless, the
insight from the superadiabatic expansion will be crucial to using the DRAG
framework which relies on the existence of such equivalent-frame adiabatic
transformations.

6.1.2 Counterdiabaticity

Counterdiabaticity, also known as transitionless quantum driving [176, 177],
comprises a technique to construct a Hamiltonian which drives states that
exactly follow a desired trajectory. There are many choices for this counter-
diabatic Hamiltonian Ĥcd, for instance due to different possible phases in the
exponent of equation (6.2), but the most straightforward one is to exactly
cancel the diabatic error term Î(t) . To this end, we augment the Hamiltonian
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Ĥ0 to become

ˆ̃H0(t) = Ĥ0(t) + Ĥcd(t),

Ĥcd(t) = −V̂0(t)Î(t)V̂ †0 (t) (6.4)

which renders equation (6.2) exact.

6.2 Removing Systems of Inertial Terms

Combining the superadiabatic series with counterdiabaticity gives rise to the
ability to solve systems with many unwanted diabatic transitions, including
those that are not contained in the control Hamiltonian. This basic idea un-
derlies the DRAG framework [40, 41, 165] and related methodology [178]. The
DRAG transformations can take the form of a single dressing transformation,
or an iterative frame expansion like the superadiabatic one.

6.2.1 Basic Iterative Framework

Using equation (6.3), we successively diagonalize the initial Hamiltonian as
before. The expansion is now truncated at the N -th frame, which we refer to as
the DRAG frame, and rendered exact by the addition of a driving term which
cancels ÎN = i(∂tV̂

†
N)V̂N . Thus, transforming back to the initial Schrödinger

picture, i.e. the frame of Ĥ0 (the lab frame), the respective counterdiabatic
correction is

Ĥcd = −iŴN ÎNŴ
†
N = −iŴN

˙̂
V †NŴ

†
N−1, (6.5)

where Ŵj ≡
∏j

m=0 V̂m gives the transformation from first to j-th frame.
A necessary condition for equations (6.3) and (6.5) to match the intended
dynamics is that the DRAG frame must coincide with the lab frame at
initial and final time, i.e. ŴN(0) = ŴN(tg) = 1̂. In this frame, equation (6.5)
ensures that the effective Hamiltonian is leakage-less with respect to unwanted

couplings, i.e. 〈m| ˆ̃HN |n〉 = 0 for all relevant states |m〉 6= |n〉. One should note,
however, that the DRAG frame is a dressed frame, and only the DRAG frame
is transitionless throughout: All others exhibit leakage during intermediate
times. Nonetheless, if the DRAG frame is equivalent to the lab frame at the
boundaries of the time window, this ensures that no population remains in
the unwanted states of the lab frame as well. This condition can typically be
met if the control fields smoothly vanish for t ∈ {0, tg}.

Next, we apply the DRAG methodology to two important cases of quantum
control: First, when the diabatic error ÎN , and hence the desired correction, do
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not match the operator form of a physical control in the lab. Second, when two
different diabatic error terms (ÎN = Î

(1)
N ⊕Î

(2)
N ) need to be corrected by operator

terms sharing a single time dependence, e.g. a single laser field. We will refer to
these situations as uncontrolled and overconstrained transitions, respectively.
Though these two problems are in fact operationally quite different, most
systems will exhibit both kinds of diabaticities.

6.2.2 Uncontrolled Diabaticities

In order to find solutions that are confined to attainable controls of the system
we decompose the correction Hamiltonian (6.5) in terms of some available
set of k = 1, . . . ,M non-overlapping controls. That is, we decompose the
controllable Hamiltonian as Ĥctrl(t) =

∑
k uk(t)ĥk + h.c. with control fields

uk and coupling terms ĥk = |ψ(to)
k 〉〈ψ

(from)
k |, so that

Ĥcd(t) ≡ −i
M∑

k=1

[
uk(t)ĥk + u∗k(t)ĥ

†
k

]
. (6.6)

We iteratively apply superadiabatic transformations to determine the control
fields uk =

∑
j uk,j in the counterdiabatic Hamiltonian (6.6). The uk,j are

contributions to the optimal control fields in the lab frame which cancel
diabatic errors from the j-th superadiabatic frame. To confine the corrections
to the attainable controls, we calculate the respective overlap with the diabatic
error Îj for each successive superadiabatic iteration j, i.e.

uk,j(t) = −i
〈
ψ

(from)
k

∣∣∣ Ŵj ÎjŴ
†
j

∣∣∣ψ(to)
k

〉
,

Îred
j = i

˙̂
V †j V̂j −

∑

k

Ŵ †
j

[
uk,jĥk + u∗k,jĥ

†
k

]
Ŵj.

(6.7)

The inertial term Îj is now generally reduced with DRAG to Îred
j for j > 0,

i.e. there is a partial cancellation if the counterdiabatic corrections do not
perfectly map to attainable controls. Subsequent superadiabatic iterations
are used to diagonalize Îred

j along the lines of (6.3), where Îred
j now replaces

i(∂tV̂
†
j )V̂j. Whereas the standard sequence of superadiabatic transformations

may often diverge (Q∞ → 0), series (6.7) will (typically) converge to zero
error as the diabatic error is iteratively reduced. For example, a three-level
system where one transition is driven and a second remains constant and
uncontrolled will exhibit this feature [202].

In practice, some transitions may share a common time-dependence. How-
ever, we omit this case here for clarity because it typically results in overcon-
strained transitions – which will be treated in the next subsection.
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6.2.3 Overconstrained Diabaticities

When error terms are not independently controlled (as is usually the case),
this can lead to counterdiabatic expansions that do not converge, similarly to
the superadiabatic series (6.3). This can be understood as a consequence of
the fact that for long times |Îj+1| ≥ |Îj| [165, 201], and so we must proceed
carefully. For clarity, we consider here the case where all transitions in the
system are controlled with a single global field, i.e. uk(t) = u(t). The direct
recursive solution (6.7) will now be replaced with the simultaneous constraints

u(t) =
∑

j

vj(t) and
〈
m
∣∣∣ Îred

N

∣∣∣n
〉

= 0, ∀m 6= n,

where again Îred
j = i

˙̂
V †j V̂j −

∑

k

Ŵ †
j

[
vjĥk + v∗j ĥ

†
k

]
Ŵj.

(6.8)

Here, the uk,j from the previous case (6.7) were replaced by vj to emphasize
the independence of k. The system (6.8) becomes fully constrained when
the total number of frames N equals the number of unwanted transitions
M . A larger frame number can also be used, for example if some controls
are not attainable. Usually it is possible to obtain solutions for all times
simultaneously through a single system of M algebraic equations (see also
[203] where it is exact).

6.3 Perturbation methods with DRAG

The formulation of the counterdiabatic correction to the superadiabatic expan-
sion is not generally analytically solvable, and for infinite dimensional systems
even numerical solutions are intractable. However, for durations much shorter
than the adiabatic limit (but still longer than the inverse of the smallest
energy gaps), it is still possible to obtain very high-fidelity solutions in the
perturbative limit. We discuss three approximation methods, recalling that
we restrict ourselves to non-overlapping, traceless controls for simplicity.

6.3.1 Schrieffer-Wolff (SW) Expansion

To expand the exact multi-state, DRAG solutions in (6.5), (6.7) and (6.8)
one can use a power series in the inverse gap energies, which we shall re-
fer to as ∆j. We express the diagonalization operator in the SW form

[135], Ŵ (t) = exp(Ŝ(t)). Since the transition elements (the controls) are
time-dependent, the SW transformation must be amended to include time-
dependence [41, 204]. As detailed in chapter 5 the effective Hamiltonian is
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then given by

Ĥeff =
∑

n

1

n!
[Ĥ, Ŝ]n − i

∑

n

1

(n+ 1)!
[

˙̂
S, Ŝ]n, (5.3)

where [Â, B̂]n = [[Â, B̂]n−1, B̂] and [Â, B̂]0 = Â. Contrary to the exact DRAG
solutions in (6.5), (6.7) and (6.8), the standard SW method determines a single
frame transformation Ŝ =

∑
j Ŝ

(j) to orders j in the small parameter u/∆. Let
us start with the case of canceling a single harmful transition ∆k, correspond-
ing to a term uk(t)ĥk +u∗k(t)ĥ

†
k in the initial frame. The required generator of

Ŵ that diagonalizes the j-th order error is Ŝ
(j)
k (t) = (wk,j(t)ĥk − w∗k,j(t)ĥ†k)/∆k.

The wk,j correspond to j-th order error terms in the dressed frame (so
wk,0 = uk). In general, multiple transitions will be detrimental, and their

total effect can be captured by Ŝ(j) =
∑

k Ŝ
(j)
k .

To guarantee convergence one must be sure to count orders correctly [165].
In the next subsection we proceed to show that O(∂tuk,j(t)) = O(uk,j(t)∆k),
so that the inertial term in (5.3) can be as important as the first term – as is
true for the superadiabatic expansion – thus making counterdiabatic terms
crucial. Given this ordering of errors, one can determine counterdiabatic
corrections uk,j to control k from the dressed error wk,j, either by direct
application or by j-th order Taylor expansion of the inverse transformations.

In the spirit of the superadiabatic expansion one may alternatively can-
cel k = 1, . . . ,M transitions ∆k using MN generators Ŝ

(j)
k iteratively with

j = 1, . . . , N . The analog to the superadiabatic expansion is to pick instead
Ŵ =

∏
V̂l with V̂l = exp(Ŝ

(j)
k ), where the indices k and j are uniquely com-

bined into a single index l ≡ (k, j) running from 1, . . . ,MN . We compute
the l-th effective Hamiltonian recursively via the relation

Ĥl =
∑

n

1

n!
[Ĥl−1, Ŝl]n − i ˙̂

Sl (6.9)

and require that all j-th order terms be canceled before diagonalizing the
next order in the small parameter. Indeed, for j = 1, this corresponds to the
first-order error expansion of the superadiabatic series, where transitions as
before can also be uncontrolled or overconstrained. Thus, when a diabatic
term cannot be canceled with a counterdiabatic Hamiltonian, it remains the
same order in the small parameter, but of one higher iteration order in the
superadiabatic frame numbering. Depending on the available controls or
chosen superadiabatic frame, the SW procedure may feature several solutions
to remove a given order of error [41].
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6.3.2 Fourier Spectrum

A common method in spectroscopy [158] is to use the Fourier transform
(FT) of the input fields to estimate the excitation of transition elements in
the Hamiltonian. Remarkably, this approach reproduces [165] the first order
(j = 1) transitionless SW expansion, connecting the concepts of adiabaticity
and spectroscopy.

In the rotating frame of the energies in the system, transition elements will
take the form uk(t)e

−i∆ktĥk + u∗k(t)e
i∆ktĥ†k. The spectral response is given by

the finite-time FT, that is F(u,∆) ≡
∫ tg

0
u(t)e−i∆t dt. The counterdiabaticity

condition can be rephrased via the identity

F(u,∆) = F
(
ir

∆r

dru(t)

dtr
,∆

)
= 0, ∀r ≥ 1, (6.10)

which follows directly from r-fold integration by parts when all r boundary
terms go to zero. Thus, the spectrum of a single control u at frequency ∆k

will be canceled out when we add the counterdiabatic Hamiltonian Ĥcd(t) =
− i

∆k

d
dt

(u(t)ĥk−h.c.), corresponding to r = 1 in equation (6.10), or any of the

higher derivative corrections. Equality (6.10) also explains why both terms
in (6.9) are of the same order. In particular, where the FT describes the
dynamics well (small error terms, or F(u,∆)� 1) is also where the effect of
|Ŝl∆| and |∂tŜl| should be very similar. This corresponds to the regime of high
quality Q for the optimal superadiabatic frame (6.3), where the divergence
of the series can be explained by the additional harmful effect of higher order
terms in SW beyond the FT approximation.

The n-th derivative in the FT solution (6.10) corresponds to the supera-
diabatic corrections from the n-th iteration [203], and, as in the cases above,
we can combine these to solve for multiple unwanted diabatic terms simul-
taneously, with gaps ∆k respectively. We choose the ansatz control field
u(t) = b(t) +

∑N
r=1 ari

r dr

dtr
b(t), where b(t) is any smooth base waveform such

as a Gaussian pulse, to find the linear system of algebraic equations

1 +
∑

r

ar(∆k)
r = 0 ∀k, (6.11)

and solve for the coefficients ar. The base waveform b(t) and its derivatives
need to start and end at zero for equation (6.10) to hold. Solving system
(6.11) for N transitions gives

u = b− i
∑

k

∂tb

∆k

−
∑

k

∑

j>k

∂2
t b

∆k∆j

+ . . .+
(−i)N∂Nt b

∆1∆2 · · ·∆N

. (6.12)
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Other possible solutions exist when derivatives of higher order than N are
used. Equation (6.11) also corresponds to the exact DRAG solution when
driving systems of harmonic oscillators [203].

6.3.3 Magnus Expansion

The FT forms the first order (average Hamiltonian) term in the so-called
Magnus series [159, 205] which gives an exact analytic expression for the
propagator over a finite time window, as introduced in equation (5.21). The
series has different convergence criteria than SW, because the integrals, rather
than the time-instantaneous terms, need to be small. The Magnus series gen-
erally takes a more involved iterative form than SW, but often it is sufficient
to truncate the series at the second order. Note that the series does not
intrinsically enforce adiabaticity, but counterdiabaticity can be built in via
relation (6.10).

In addition to counterdiabatic terms, unwanted transitions can be removed
by solving the (underconstrained) diagonalization conditions obtained from
the Magnus Hamiltonian terms using any extra controls (similarly to SW). In
particular, any off-resonant error term can be directly removed by driving at
the transition frequency with the opposite weight, i.e. spectral shaping [158,
165]. A solution that combines counterdiabaticity with spectral shaping using
the Magnus expansion is the Weak AnHarmonicity With Average Hamiltonian
(WAHWAH) pulse sequence [122, 195], which will be discussed in the next
section. To improve experimental practicality, it is often desirable to work
with a small smooth basis of time-domain waveforms, such as derivatives of
Gaussians or Fourier components [195].

6.4 Physical Examples

We review some experimentally relevant applications of the DRAG framework.
The basic motivations and results are summarized for each.

6.4.1 Single-qubit Leakage via Schrieffer-Wolff

State-of-the-art superconducting qubits, such as Transmon qubits, are well
modeled by a standard nonlinear oscillator [34, 169] as introduced in section
5.2. Their j-th energy level in the rotating frame is given by ωj(t) = jδ(t)+∆j,
with anharmonicities ∆j (cf. equation (5.17)), and δ(t) = ωq(t) − ωd is the
detuning of qubit ωq from the carrier ωd. Typically, |∆2| ∼ 0.05ωq, so that
leakage to higher near-resonant states deteriorates performance. The rotating
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FIG. 6.1 – (a): Performance of unoptimized DRAG variants as a function of
gate time, derived from an iterative Schrieffer-Wolff expansion (6.3) to higher
orders. Target : σ̂x rotation of a single qubit described by the lowest three
levels of Hamiltonian (6.13). – (b): Performance of the DRAG pulses used in
(a) for a fixed gate time tg = 4π/∆2 as a function of coupling strength λ to
the leakage level.

frame Hamiltonian can be written as [41]

Ĥ(t) =
d−1∑

j=1

[
ωj(t)Π̂j +

x,y∑

α

λj−1
uα(t)

2
σ̂αj−1,j

]
. (6.13)

Here, we used the effective Pauli spin operators σ̂xj,k = |j〉〈k| + |k〉〈j| and

σ̂yj,k = −i |j〉〈k|+i |k〉〈j| for k > j and the projector Π̂j = |j〉〈j|. The coupling
constants λj are well approximated by those of a harmonic oscillator, i.e.
λj ≈

√
j. Utilizing expansion (5.3) we decouple the qubit subspace {|0〉 , |1〉}

from the remaining Hilbert space by choosing V̂ = exp(−iŜ) with

Ŝ(t) =
∑

j

sz,j(t)Π̂j +

x,y∑

α

∑

j<k

sα,j,k(t)σ̂
α
j,k. (6.14)

Based on the discussion in 6.3.1 we expand each sα,j,k(t) in a power series

of a small parameter ε = 1/∆2tg to obtain respective solutions s
(n)
α,j,k(t) to

arbitrary order n. Following the calculations in Ref. [41] we find conditional

equations for the s
(n)
α,j,k(t) to any order. Note that these equations reveal a set

of free parameters, allowing for multiple solutions to the same order in ε. For
instance, a prominent solution in lowest order features a y-only correction,
that is uy = −u̇xλ1/2∆2 and δ = 0.
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FIG. 6.2 – Gate error as a function of gate time for WAHWAH controls
(1.0 and 2.0). Separate single-qubit rotations and simultaneous rotations
both share a speed limit at about 2π/δ. Gaussian pulses perform orders of
magnitude worse than WAHWAH control, both for separate and simultaneous
rotations. Performance of derivative-based DRAG pulses is similar to that of
Gaussians.

To obtain higher order solutions it is preferable to use iterative transforma-
tions along the lines of equation (6.9). The performance of solutions to differ-
ent orders, obtained via iterative transformations, is depicted in FIG. 6.1a as a
function of pulse length, and in FIG. 6.1b as a function of coupling strength λ
for a fixed gate time tg = 4π/∆2. Higher order solutions are taken from [165].
Note also that when the |0〉 ↔ |2〉 transition is controlled via an additional
corresponding frequency component, exact solutions to the three-level system
exist (cf. chapter 8 in [206]).

6.4.2 Crosstalk in Multi-Qubit and Qutrit Systems

A standard quantum control problem is the selective addressability of a two-
level system in the spectral vicinity of other such systems, as occurs for
instance in nuclear magnetic resonance (NMR) [207]. This problem is well
adapted to a multi-diabatic control solution where weighted sums of different
derivatives cancel all excitations in aggregate on the unwanted transitions
[165], as in solutions (6.8) or more simply (6.12).
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When additional, crowded leakage levels are present, it has been shown to
be advantageous to use sideband modulated controls, based on the Magnus
expansion methodology in section 6.4.2. This so-called WAHWAH solution
[122, 195] uses a sideband modulated Gaussian principle control in conjunction
with an auxiliary DRAG pulse. Typical parameters of such a scenario are
qubit frequencies ωq,j ∼ 5GHz, anharmonicities |∆2| ∼ 300MHz and crowded
transitions ωq,2 + ∆2 = ωq,1 + δ with δ ∼ ωq/100. The x-quadrature of the
control field is supported by first order DRAG uy = −u̇x/2∆2 to minimize
leakage within a qubit, and sideband modulated to cancel crowded transitions,

ux(t) = A0e
− (t−tg/2)2

2σ2

{
1− cos

(
ωx

[
t− tg

2

])}
. (6.15)

Here,A0 enforces the desired rotation angle and σ gives the standard deviation.
At first [122], a modulation with ωx = δ/2 was suggested (we refer to this
as WAHWAH 1.0). As shown in FIG. 6.2, these controls can achieve errors
O(10−4), below conventional error thresholds. However, WAHWAH 1.0 is
limited to work for specific gate durations tg, and only one qubit may be
driven at once. To overcome these limitations, the method was generalized
in [195], suggesting an optimal sideband modulation ωx = ωx(tg, δ). The
significant improvement over Gaussian controls is illustrated in FIG. 6.2 for
the original (1.0) and improved version (2.0) of WAHWAH pulses. For details,
particularly about the implementation of simultaneous gates using a smooth
basis of Sine functions, we refer the reader to Ref. [195]. WAHWAH 1.0 was
experimentally demonstrated in [208].

6.4.3 Experimental DRAG and Pulse Calibration

Turning to the experimental implementation [181, 182] of DRAG pulses: In
practice, actual system parameters differ somewhat from those assumed in
theory due to characterization gaps, system drift, or unknown transfer func-
tions affecting the input field shapes [170]. As a simplification, we assume
the low order terms in DRAG are easier to implement as their shape will be
mostly maintained on entry into the dilution fridge. Even so, many different
low-order variants of DRAG have been found in the literature for third-level
leakage [40, 41, 165, 182]. This reduced functional form can further be opti-
mized theoretically [195] and/or through a closed-loop process experimentally
[129, 130] to account for the effect of higher order terms and experimental un-
certainties (preferably using more advanced gradient-free algorithms such as
CMA-ES [125]). A systematic experimental study of the tune-up of the pref-
actors in front of the functional forms for the control operators was performed
in [190].
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FIG. 6.3 – A slice of the 3D calibration landscape for DRAG solution up to
the first order in the small parameter to the qubit σx-gate leakage problem.
Point A and B denote [40]’s and [41]’s first-order solutions, respectively. Point
C is the optimum for this control function subspace (here αx = −0.0069), with
infidelity of 10−6.63. A successful calibration process will typically start at a
known DRAG solution, i.e. points A or B, and conclude in point C. The inset
illustrates the associated pulse shapes: markers represent the unoptimized
shapes (ux: •, uy: �, δ: �) whereas solid lines depict the corresponding optimal
solution (C).

For instance, let us denote the Gaussian pulse implementing a σ̂x gate
for the qubit by G(t). Then the first order solutions described in [40, 41,
165] are parameterized by the limited functional basis ux ∝ G, uy ∝ ∂tG
and δ ∝ G2, which mimics the limited shaping control that can exist in
experiment. None of the reported solutions are optimal within this functional
basis: For typical example parameters, infidelities may be further reduced from
10−5.28 to 10−6.63 by slightly adjusting the prefactors of the control fields. For
example, [40]’s first order DRAG solution may be transformed according to
ux → (1 + αx)ux and similarly for uy and δ, and then the constants αx, αy
and αδ are optimized. A discussion for why optimization within a severely
restricted functional subspace may often be sufficient is given in [209] and
follow-up publications. A schematic of the the optimization task involved in
the calibration, as well as the shape of the associated controls, is shown in
FIG. 6.3.
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6.4.4 Interacting Spectrally-Crowded Rydberg Atoms

While DRAG has its origin in the field of superconducting qubits, it has
also shown promise in atomic systems (specifically trapped Rydberg atoms):
Using a combination of DRAG control shaping and analytical optimization of
the trap design, a proposal for errors below the conventional error threshold
of 10−4 in a room temperature environment for entangling gates based on
the Rydberg-blockade was made in [98] and will be detailed in chapter 7.
Spectral shaping of the control field in form of equation (6.12) is used to
reduce leakage into several nearby Rydberg states other than the target state,
and to further minimize blockade leakage. Such shaping techniques can also
reduce gate times and leakage errors in other Rydberg-level based proposals
for entanglement [202].

6.4.5 Motional States of Atoms

The anharmonic oscillator states that describe Josephson junction qubits are
isomorphic to vibrational states of atoms in optical lattice potentials [210].
Thus, most of the techniques in the above examples directly translate to
non-harmonic traps [193].

6.4.6 Microwave-Entangled Transmons

Because coupled superconducting quantum systems retain their dense level
structures, the ideas from the DRAG counterdiabatic framework are appli-
cable to entangling operations as well (cf. chapters 9 and 10 in [206]). This
includes adiabatic passage type gates, often used with Xmon qubits [150], but
it is especially applicable to microwave entangling gates [187, 192, 211–214],
which are transition-selective, e.g. the cross-resonance gate [215]. Together
with applications in high-fidelity single-qubit gates [183, 190] DRAG controls
made a crucial contribution to the demonstration of a universal gate set in
superconducting qubits [185].

6.4.7 Rotating Wave Approximation (RWA)

The ubiquitous approximation is used when resonantly driving quantum tran-
sitions [170]. Physically, it corresponds to neglecting diabatic multi-photon
transitions (e.g. in Floquet theory [191]) and these errors can also be sup-
pressed [165]. For counter-rotating terms at frequency 2ω, the DRAG solution
amounts to correcting the Rabi drive with Ω(t)σ̂x − Ω̇(t)σ̂y/2ω.
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6.4.8 Spin Resonance Systems

The above treatments can also apply to two-level systems, for example to
suppress crosstalk e.g. from global magnetic fields in NMR [165]. Besides,
DRAG has potential applications in quantum dots [194].

6.4.9 Λ-Systems and Sideband Transitions

Multi-photon transitions are also used in adiabatic and resonant pulses, and
can also suffer from diabatic errors to unwanted states [152]. This has inspired
DRAG-like extensions to STIRAP pulses [216] as well as similar solutions to
multi-photon Raman pulses (cf. chapter 10 in [206]).

6.4.10 Fast Dispersive Measurement

DRAG pulses have also found use for open-system control, being valuable in
measurement dynamics where the readout apparatus must be used and reset
quickly to avoid relaxation [183, 189]. In particular, equation (6.12) gives a
solution to measuring N qubit states via corresponding readout resonator
modes where we replace the gap energies by inverse Lorentzians, ∆j ≡ δj+iκ/2
[203]. This forces fast (super)adiabatic following on a network of one or more
decaying cavities, thereby exactly solving equation (6.8).

6.5 Conclusion

The DRAG framework can be understood as an iterative counterdiabatic
expansion which specifically allows to confine the solution space to attainable
controls of a given system. DRAG solutions are constructed to simultaneously
allow suppression of multiple transitions, also if available controls affect transi-
tions other than intentionally driven ones. In general, exact analytic solutions
to the underlying systems of equations are intractable. We presented three
common perturbative approaches to derive DRAG solutions of different orders:
Via an adiabatic Schrieffer-Wolff expansion, a spectral engineering approach
and solutions derived from average Hamiltonian theory. Whereas the first
two are based purely on expansions in terms of derivatives, the latter consti-
tutes a different family of solutions (WAHWAH) which incorporates sideband
modulations. We note that different expansion methods treat higher orders
differently: For instance, while a lowest order Magnus expansion reproduces
the spectral engineering solutions that can be derived from a superadiabatic
expansion, higher orders of both expansions differ significantly.



Chapter 7

Few-parameter Entanglement
of Rydberg Atoms

The work presented in this chapter shows how a combination of the DRAG
method, as introduced in chapter 6, and optimized trap parameters can be
used to significantly improve fidelities of the Rydberg blockade entangling gate
compared to previous implementations. The Rydberg blockade mechanism
introduced in [217] allows for the implementation of a controlled phase gate
which, by the use of Hadamard gates, recovers a maximally entangling CNOT
gate. We will now briefly discuss the basics of the Rydberg blockade gate
before moving to a more elaborate analysis. As illustrated in FIG. 7.1 the
controlled phase gate is implemented with a sequence of three pulses, each
of which resonant to the transition |1〉 ↔ |r〉: First, a π pulse acts on the
control atom, followed by a 2π rotation on the target atom. The last pulse
is another π rotation on the control atom. From FIG. 7.1a we see that
the pulse sequence induces zero phase ∆ϕt = 0 since, when the system is
initialized in state |00〉, none of the pulses is capable of exciting the atoms
to their Rydberg state. For input states |10〉 and |01〉 either only the two
π pulses or only the full 2π rotation drive population through the Rydberg
state |r〉 and thereby induce a net phase change ∆ϕt = π. Now, as shown
in FIG. 7.1b, for input state |11〉 the first π pulse excites the control atom
to its Rydberg state. The strong dipole-dipole interaction between Rydberg
states (see section 2.3) leads to an energy shift of the Rydberg state of the
target atom. We refer to this energy shift as the Rydberg blockade B0. If the

The majority of this chapter was published in ”L.S. Theis, F. Motzoi, F.K. Wilhelm and
M. Saffman, Phys. Rev. A 94, 032306 (2016)”. Copyright (2016) by the American Physical
Society. The majority of the text was written by L.S. Theis. All numerical simulations
and underlying analytic calculations were carried out by L.S. Theis, except for the form of
equation (7.7) which was provided by M. Saffman.
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FIG. 7.1 – Pulse sequence that implements a controlled phase gate via the
Rydberg blockade, operating on the input states |00〉 (a) and |11〉 (b). All
pulses are resonant with the |1〉 ↔ |r〉 transition. (a): Neither of the atoms
is excited to their Rydberg states, hence the net phase change ∆ϕt is zero.
(b): The control atom is excited to its Rydberg state. The Rydberg blockade
shift prevents excitation of the target atom to its Rydberg state so that the
total phase acquired is ∆ϕt = π.

blockade shift is large enough, there is no excitation of the target and only
the control atom picks up a phase of π. In conclusion, under ideal evolution
the discussed three pulse sequence implements the controlled phase gate in
the form CZ = |00〉〈00| − |01〉〈01| − |10〉〈10| − |11〉〈11|.

The Rydberg blockade mechanism as discussed above has been demon-
strated to be capable of creating bipartite entanglement with fidelities of
about 70% to 80% [89, 91]. There is good reason to believe that the fidelity
achieved to date is not a fundamental limit, but is due to experimental per-
turbations and the high sensitivity of Rydberg states to external fields [92].
With the expectation that experimental techniques will continue to improve,
it is important to address the question of the intrinsic fidelity limit of the
Rydberg blockade gate. Detailed analysis with constant amplitude Rydberg
excitation pulses revealed a Bell state fidelity limit of FB ∼ 0.999 in Rb or
Cs atoms in a 300 K environment [218]. Other work has sought to improve
on this with optimal control pulse shapes [219, 220], adiabatic excitation
[221, 222], or simplified protocols that use a single Rydberg pulse [223, 224].
However, none of the analyses to date that consistently account for Rydberg
decay and excitation leakage to neighboring Rydberg states have provided a
fidelity better than 0.999. This leaves open the question of whether or not
the Rydberg gate will be capable of reaching the 0.9999 level or better that
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appears necessary for scalable quantum computation with a realistic overhead
in terms of qubit numbers for logical encoding [157].

In this chapter we show that entangling Rydberg gates with fidelities
FB > 0.9999 are possible with Cs atoms in a 300 K environment and FB >
0.99999 in a 4 K environment. This advance is made possible using simple
and smooth analytic shaped pulses that are designed to suppress leakage
at a discrete set of frequencies [40] corresponding to neighboring Rydberg
states. By suppressing the leakage orders of magnitude more effectively than
is possible with square, or simple Gaussian pulses, we are able to run the gate
at least an order of magnitude faster than previous protocols, which is fast
enough to keep the spontaneous emission error low and achieve high fidelity.
Drastically reducing the gate time also has advantages in the short term, by
avoiding the onset of other experimental errors that increase with time, such
as technical noise. We find a gate time close to 50 ns, which is fast enough
to be competitive with superconducting qubits while retaining much longer
coherence times [214, 225].

7.1 Rydberg Excitation

The free evolution and gate Hamiltonians Ĥd and Ĥg, respectively, of a single
Rydberg atom in its lab frame, are given by (~ ≡ 1 everywhere)

Ĥd = ωg |g〉〈g|+ ωq |1〉〈1|+
∑

r′

ωr′ |r′〉〈r′| (7.1a)

Ĥg = u(t)
∑

r′

( n
n′

)3/2

(|r′〉〈0|+ |r′〉〈1|) + h.c. (7.1b)

whereby |g〉 denotes some auxiliary level we will use later to model decay.
Here r′ is shorthand for the set of quantum numbers specifying the Ryd-
berg states and n, n′ are the corresponding principal quantum numbers. The
matrix elements and the Rabi coupling for single photon excitation to high
lying Rydberg states scale as n−3/2. For Cs, the ground hyperfine splitting is
ωq/2π = 9.1926 GHz. The set of states {|r′〉} describes all relevant Rydberg
states. We assume that the control u(t) only negligibly couples any of these
states to |g〉 and hence, without loss of generality, we set the energy of |g〉 to
zero, i.e. ωg = 0. The control field has in-phase quadrature only,

u(t) = ux(t)cos(ωdt) . (7.2)

Usually, atoms are driven on resonance with the |1〉 ↔ |r〉 transition, so that
the carrier frequency is ωd = ωr − ω1 with ωr being the frequency of the
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FIG. 7.2 – (a): DRAG pulse sequence (blue) and initial Gaussian waveform,
(thin black) to implement a two-qubit entangling gate. Pulse lengths are τc
and τt for the control and target atoms, respectively. The control amplitudes
are shown on the same scale. – (b): Level diagram for one-photon Rydberg
excitation with laser frequency ωd. – (c): Detailed Rydberg level structure
and detunings. The dashed line corresponds to that in part b – (d): Spectrum
of pulse on control atom for Gaussian (black) and DRAG (blue) waveforms.

target Rydberg state |r〉. In order to remove any fast oscillation on the order
of ωd from the dynamics, we choose to work in a frame rotating with ωd
in the remainder of this chapter. The pulse sequence which we will use to
implement a two-qubit entangling gate is illustrated in FIG. 7.2a. As we have
seen earlier, this scheme implements a controlled phase gate CZ [217], which in
the computational basis {|00〉 , |01〉 , |10〉 , |11〉} reads CZ = diag(1,−1, 1, 1).
Note that this differs from the phase gate matrix of [217] due to our use of
−π instead of π for the last pulse, which eventually results in slightly better
gate fidelity.

The Hamiltonian of the compound system, control and target atom, can
be written as

Ĥ = Ĥcontrol ⊗ 1̂ + 1̂⊗ Ĥtarget +
∑

i,j

Bri,rj |ri, rj〉〈ri, rj| . (7.3)

Here, the Bri,rj quantify the Rydberg interaction strength between all relevant
Rydberg states |ri〉 of the control atom and |rj〉 of the target atom, including
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all possible leakage levels depicted in FIG. 7.2c. The desired excitation is
resonant with the transition from |1〉 to |r〉, with possible leakage channels
to the (n± 1)p3/2 states. The associated detunings are denoted ∆+ and ∆−,
respectively.

To remove leakage to np1/2 states we assume a specific implementation in
Cs atoms where qubit state |1〉 is mapped to |1′〉 = |f = 4,m = 4〉 before and
after the Rydberg gate. With σ+ polarized excitation light |1′〉 only couples to
states |np3/2, f = 5,mf = 5〉 so there is no leakage to np1/2 states, and errors
originating from couplings to multiple hyperfine states within the np3/2 levels
are also suppressed. For compactness of notation we refer to |1′〉 as |1〉 in the
following.

In addition to leakage to the blockaded target Rydberg state during the
2π pulse, significant leakage channels (represented by the subset of states
around the dashed horizontal line in FIG. 7.2c) exist for the π pulse when the
control qubit is initialized in state |0〉. The |0〉 state is coupled to Rydberg
states |n′p1/2,3/2〉 and |n′′p1/2,3/2〉. The Cs 6s1/2 − np1/2 oscillator strength is
anomalously small, as was first explained by Fermi [226], and for the states
S1, S2 of primary interest in TAB. 8.1 we estimate the ratio of Rabi coupling
strengths to np1/2 states as compared to np3/2 states as < 1/300 [227]. The
leakage to np1/2 states in Cs with Gaussian pulses is therefore negligible.
Nevertheless, we have still included possible leakage to np1/2 states in order
to substantiate the generality of our approach. The detunings for these tran-
sitions to np1/2,3/2 states are denoted ∆′,∆′′. In what follows we will refer to
the interaction between two target Rydberg states |np3/2〉 as B0.

7.2 Design of Control Pulses

Accurate selectivity of densely crowded Rydberg states, and corresponding
leakage errors, as described above, is a fundamental concern in quantum
information with Rydberg atoms. Hence, we will adapt the DRAG method
introduced in detail in chapter 6 to minimize these effects. Specifically, we
will engineer the spectrum of the control pulses such that blockade leakage
and leakage to neighboring Rydberg states are reduced. We will explicitly
utilize only a shaped in-phase control ux(t) and no additional out-of-phase
quadrature uy(t), which has already been suggested in earlier work [41]. This
simplifies the experimental implementation significantly.

For convenience, we briefly review the fundamental properties of such
DRAG controls. Suppose the spectral power at certain frequencies {δj} with
j = 1, . . . ,m is to be canceled. Hereto, closely related to the procedure in
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section 6.3.2, we choose the ansatz

ux(t) = u(0)
x (t) +

N/2∑

k=1

α2k
d2ku

(0)
x (t)

dt2k
, (7.4)

where N = 2m and u
(0)
x (t) is some smooth initial shape, e.g. a Gaussian pulse,

which meets the necessary requirements for the Fourier transform expansion
(6.10) to be applicable. The analog to the system of equations (6.11) then
becomes

1 +

N/2∑

k=1

α2k (−iδj)2k = 0, j = 1, . . . ,m. (7.5)

For instance, if two leakage transitions at frequencies δ1 and δ2 are to be
suppressed, the corresponding real-valued solutions for the coefficients αk in
equation (7.4) read α2 = 1/δ2

1 + 1/δ2
2 and α4 = 1/(δ2

1δ
2
2). Formally, solutions

to the system of equations (7.5) will feature imaginary degrees of freedom:
For the given example of m = 2, there will be free parameters α1 and α3

that correspond to potential out-of-phase controls. Yet, they can be chosen
at will and are set to zero in order for the control pulses to be restricted to
the in-phase quadrature only.

7.3 Gate Analysis

7.3.1 Population Error

We proceed to demonstrate how Gaussian pulses with DRAG components help
to improve over previous methods by several orders of magnitude. Since the
main advantage of Gaussian and DRAG shapes is an exponential suppression
of leakage, we first focus on population error arising from leakage channels to
other Rydberg states, as illustrated in FIG. 7.2c. For our simulations we use
the system parameters that are listed in TAB. 8.1. The two different settings,
S1 and S2, respectively, belong to two possible one-photon-excitation schemes
starting from the Cs 6s1/2 state. Leakage errors are expected to be worse in
S2 due to smaller energy splittings at higher Rydberg states, whilst lifetimes
in S2 are better by roughly a factor of two. As initial pulses for DRAG and
Gaussian control, we utilize generalized Gaussians of duration tg

u(0)
x (t) = G(t) ≡ Aθ

[
exp

(
−(t− tg/2)2

2σ2

)
− exp

(
−(tg/2)2

2σ2

)]N+1

(7.6)
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Parameter
Value

Parameter
Value

S1 S2 S1 S2

n 107 141 τn (µs) 538 969
n′ 106 138 ∆+/2π (GHz) -5.534 -2.507
n′′ 105 137 ∆−/2π (GHz) 5.694 2.562

∆′1/2/2π (GHz) -2.961 -1.245 ∆′3/2/2π (GHz) -3.161 -1.333

∆′′1/2/2π (GHz) 3.256 1.495 ∆′′3/2/2π (GHz) 3.051 1.405

B0/2π (GHz) 1.54 0.68 bn,n 1
bn,n′ 0.85 bn,n′′ 0.80
bn,n+1 1.02 bn,n−1 0.97

Table 7.1 – System parameters for the simulation of Rydberg blockade entan-
gling gates using np3/2 states in Cs for two different single-photon excitation
schemes, S1 and S2, at temperature T = 300 K. Lifetimes are calculated using
expressions in [229]. The relative blockades bn,m between Rydberg states |r〉
and |ri〉 with principal quantum numbers n,m are given in units of B0.

with a standard deviation σ = 2tg/3 and a pulse area θ determined by
the value of Aθ [228]. The exponent N + 1 ensures that the first N = 2m
derivatives of the Gaussian vanish at the boundaries of the time window,
t = 0 and t = tg. Note that N here is the same as for instance in equation
(7.4), so that we meet the conditions for equation (7.5) to hold. Unless stated
otherwise, we fix the pulse length τc for the ±π-pulses on the control atom
to τc = τt/2. In FIG. 7.3 we show the overall population error for a Rydberg
blockade entangling gate according to the pulse sequence given in FIG. 7.2a.
Conventional square pulses perform very poorly due to a high degree of
leakage. Gaussian pulses (we always compare Gaussian and DRAG pulses
with equal values of N) show an improvement by two to two and a half orders
of magnitude over the square pulse sequence. This is attributed to Gaussians
exponentially suppressing excitations to off-resonant transitions in the Fourier
space, whilst square pulses only achieve a polynomial suppression.

Leakage can further be reduced by minimizing the main leakage channel
into the |n′〉 subset of the control atom while also avoiding blockade leakage
into the target Rydberg state |r〉 of the target atom with the aid of analytical
DRAG pulses, whereby control and target pulses can be shaped independently
of each other. Hence, for the area π pulses we use N = 4 in equation (7.4) to
simultaneously suppress both ∆′ transitions, whereas N = 2 is sufficient for
the 2π pulse since only leakage to the blockade-shifted target Rydberg state is
significant. Note, however, that overall the error from the 2π rotation is more
significant than that from the π pulse since B0 is about half the value of ∆′.
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FIG. 7.3 – Population error for a two-qubit Rydberg blockade entangling
gate as a function of gate time tg = τt + 2τc. Gaussian pulses reduce leakage
errors by up to 2.5 orders of magnitude compared to conventional square
controls, while additional supplementation with DRAG further improves by
another 1.5 orders of magnitude for reasonable gate times. The DRAG pulses
are designed to minimize primarily leakage into the |n′〉 subset of the control
atom as well as blockade leakage in the target atom. The Rydberg blockades
B0/2π are 1.54 GHz and 0.68 GHz for S1 and S2, respectively.

Note also that we do not suppress the |n′′〉 subset since this would require us to
use N = 8, which in turn increases the amplitude of the control pulse ux. The
spectral argument that leads to our pulses only holds for ux/δ � 1 (δ being
the smallest detuning) so that increasing amplitudes deteriorate the gate.
Owing to the frequencies ∆′ and ∆′′ being very similar, the spectral power
at both ∆′′ transitions is sufficiently low even though they are not explicitly
nulled out, as depicted in the spectrum shown in FIG. 7.2d. Using these
frequency-selective shapes additionally yields another one and a half orders of
magnitude improvement over Gaussians, hence improving over square pulses
by up to four orders of magnitude. As expected, the best population errors
are achieved in setting S1, owing to larger separations between atomic levels.
Under these conditions, DRAG pulses allow to speed up gates by a factor of
three compared to Gaussians, while achieving the same error. Compared to
conventionally used square pulses, the speed up lies in the range of several
orders of magnitude.
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FIG. 7.4 – Population error for a fixed gate time τt = 30 ns as a function of
the blockade shift B0 in settings S1 and S2. The error is minimized for a value
of B0/2π ∼ 0.7 GHz in S2. In S1, the population error is optimal for blockade
shifts in the range of 0.7− 2.7 GHz.

7.3.2 Optimal Rydberg Blockade

The performance of the Rydberg entangling gate strongly depends on the
value of the blockade shifts. Scanning over the value of B0 for a fixed gate
time of τt = 30 ns reveals that the optimal value for B0/2π is around 1.5 GHz
for setting S1 and 0.7 GHz for setting S2, as shown in FIG. 7.4. A qualita-
tive explanation is based on analyzing the energy landscape of all involved
Rydberg states. For this purpose, we assume for simplicity that all blockade
shifts equal the target blockade, i.e. Bri,rj ∼ B0. Starting in the initial state
ρin = |10〉〈10| we notice that due to Rydberg excitation by the first π-pulse,
the Rydberg levels of the target atom are blockade-shifted by B0. As a con-
sequence, for instance the leakage transitions into the |n′′〉 subset are almost
resonantly driven by the 2π-pulse if B0 ∼ (∆′′1/2 + ∆′′3/2)/2, leading to even

more undesired excitation. On the other hand, if the initial state is |11〉, too
small a blockade will produce large population errors in the target Rydberg
state since the 2π-pulse will significantly excite the only marginally shifted
|np3/2〉 state. This motivates a careful analysis of the Rydberg energies since
an unsophisticated choice of B0 might introduce severe frequency crowding
issues and tremendously lower gate fidelities.

Analytically estimating the optimal value for the blockade shift is possible
by minimizing excitation to harmful levels [218]. The matrix element for a
transition to a Rydberg state |n〉 is proportional to n−3/2. On the other hand,
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the probability of exciting a state at detuning ∆k scales proportionally to
∆−2
k so that we can write the total probability of exciting harmful leakage

states as

Pleak ∝
1

(n+ 1)3(∆1 + B0)2
+

1

(n− 1)3(∆1 − B0)2

+
1

(n′)3(∆2 − B0)2
+

1

(n′′)3(∆2 + B0)2
+

1

n3B2
0

.
(7.7)

Here, we have set ∆1 = (∆+ +∆−)/2 and ∆2 = (∆′1/2 +∆′3/2 +∆′′1/2 +∆′′3/2)/4.

Finding the roots of dPleak/dB0 in order to minimize the leakage probability
(7.7), for instance for the parameters of setting S2, yields an optimal value for
the blockade B0/2π ≈ 0.68 GHz, which is in very good agreement with the
optimal value found numerically in FIG. 7.4. Note that the shape of Pleak can
be quite flat around its exact minimum. As a consequence, it may be possible
for certain setups to achieve similar performance with blockade shifts that
are below the analytical estimate. The blue line in FIG. 7.4 demonstrates
that setting S1 is an example of this situation: The analytical estimate is
1.54 GHz, which is about twice as much as the lowest optimal value 0.7 GHz
found via numerical optimization.

7.3.3 Entanglement Fidelity

Due to intermediate population of other Rydberg states, the ideal unitary
after the sequence in FIG. 7.2a will not equal the CZ gate that was discussed
in the beginning of this chapter. Instead, the ideal evolution is given by

ÛCZ,~φ
= diag(eiφ00 , eiφ01 , eiφ10 , eiφ11), (7.8)

where φij ≡ φij,ij is a shorthand notation for phases on the diagonal elements.
To turn the CZ-like gate in equation (7.8) into an entangling CNOT-like
gate we follow the procedure that turns a common CZ into a CNOT gate:
Applying a Hadamard gate on the target qubit before and after the CZ
operation recovers a CNOT. Similarly for our case, we find that, instead of a
Hadamard gate, a general π/2 rotation

R̂(~h) =
1√
2

(
eih00 eih01

eih10 eih11

)
(7.9)

with phases ~h = (h00, h01, h10, h11) can be used to turn, up to relative phases,
the CZ-like gate (7.8) into a CNOT. If the corresponding entangling phase
φent = φ00 − φ01 − φ10 + φ11 equals exactly π, the transformation

(
1̂⊗ R̂(π, φ̃,−φ̃, 0)

)
ÛCZ,φ

(
1̂⊗ R̂(0, 0, 0, π)

)
(7.10)



75 7.3. GATE ANALYSIS

30 40 50 60 70 80 90 100 110

10−5

10−4

10−3

10−2

10−1

100

Gate time tg (ns)

B
el
l
st
a
te

in
fi
d
el
it
y
1
−
F
B

S1 – DRAG (d/r) S1 – DRAG (d)

S1 – DRAG S1 – Gaussian

S1 – Square S2 – DRAG (d/r)

FIG. 7.5 – Unitary Bell state infidelity as a measure for entanglement gener-
ated by the pulse sequence in FIG. 7.2 using square pulses, Gaussians, DRAG,
detuned (d) DRAG controls and detuned DRAG controls with rescaled (r)
amplitude for setting S1, as well as optimal DRAG controls in S2. Detuning
DRAG pulses on the target atom accounts for wrong phases and combines
less leakage with high degrees of entanglement. The necessary detuning Λ
decreases proportionally to 1/τ 2

t with a value of Λ/2π = 124.07 MHz at
τt = 25 ns.

with φ̃ = φ10−φ11 produces a maximally entangling CNOT-like gate. In order
to quantify the degree of entanglement of our pulse sequence, we pick (|00〉+
|10〉)/

√
2 as an initial state. Ideally, under evolution (7.10) this yields, up to

local phases, the maximally entangled Bell state |Φ+〉 = (|00〉+ |11〉)/
√

2. To
quantify the performance we evaluate the state overlap fidelity (4.2) between
two density matrices ρ and ρt according to

F2 =

(
TrQ

{√√
ρρid
√
ρ

})2

. (4.2)

Here, we partially trace over the computational subspace Q, spanned by
the computational basis states {|00〉 , |01〉 , |10〉 , |11〉}, to disregard irrelevant
information about non-computational states.

For the specific target state ρt = |Φ+〉〈Φ+| we refer to the fidelity as Bell
state fidelity FB. The corresponding results are depicted in FIG. 7.5, whereby
we assume that the π/2 gates on the qubit subspace are perfect. We observe
that Gaussian controls seem to achieve better results than a naive DRAG
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control. However, the main reason for DRAG pulses to perform poorly at a
first glance is wrong phases. In the first publication of DRAG, a real-time
control of the carrier frequency ωd accounts for such phase errors [40].

However, it is also possible to employ a constant detuning Λ from res-
onance, i.e. ωd = ωr − ωq + Λ [195], with the benefit of less experimental
effort being required. We find that detuning only the 2π rotation of the
target atom is sufficient to achieve low enough errors. As a consequence of
off-resonant driving, rotation errors will be induced which can be compen-
sated by slightly rescaling the pulse amplitudes (up to at most 3% for the
fastest gates). The difference between the solid black and the dotted red lines
in FIG. 7.5 demonstrates that the combination of constant detuning and
a rescaled amplitude indeed account for both errors, yielding at least two
orders of magnitude improvement over Gaussian waveforms. As one would
expect from previous results [40], the optimal detuning is proportional to
the Rabi frequency squared, yielding approximately a 1/τ 2

t power law. In
order to obtain the optimal detuning Λ as a function of gate time we ran a
single-parameter optimization using the Nelder-Mead algorithm described in
section 4.2.1. The functional dependence of the optimal detuning is illustrated
in FIG. 7.6. We find that we are able to produce Bell states with a fidelity of
0.9999 for tg ∼ 50 ns using detuned DRAG pulses with amplitude correction.

An alternate approach to account for phase issues is by waiting an ap-
propriate time tgap between the pulses [89], or to track phases in software
and correct for them afterwards. The former approach will noticeably prolong
the gate times compared to our approach. Overall, detuned DRAG pulses
yield an improvement of more than two orders of magnitude compared to
conventional shapes. Furthermore, the necessary gate times are less than 10−7

of the few second coherence times that have been demonstrated with neutral
atom qubits [86], substantiating that Rydberg gates are a promising approach
for scalable quantum computing.

7.3.4 Including Spontaneous Emission

All results in the previous section are based on unitary evolution of the
atoms. A more realistic model incorporates decay due to finite lifetimes of
the energy levels. We employ Lindbladian dynamics to simulate the effects
of decoherence, whereby we assume that population of Rydberg levels decays
by a fraction of 7/8 into some auxiliary level |g〉 that has no effect on the rest
of the dynamics. The residual part equally decays into the qubit states |0〉
and |1〉. Hence, the full dynamics of our system are governed by the Lindblad
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FIG. 7.6 – Optimal detuning of the 2π DRAG pulse on the target Rydberg
atom as a function of pulse length for the parameters of setting S1, found
via a single-parameter Nelder-Mead optimization. The detuning Λ decreases
proportionally to 1/τ 2

t with a value of Λ/2π = 124.07 MHz at τt = 25 ns, which
is in agreement with related results [40] that suggest the optimal detuning to
be proportional to the squared Rabi amplitude.

master equation (3.4) for the density operator ρ̂,

˙̂ρ = −i[Ĥ, ρ̂] +
∑

r

γr

(
L̂rρ̂Q(t)L̂†r −

1

2

{
L̂†rL̂r, ρ̂Q(t)

})
. (3.4)

Here, the operators L̂r = l̂r⊗ 1̂+ 1̂⊗ l̂r describe decay of all relevant Rydberg
states |r〉 in both atoms into the states |g〉, |0〉 and |1〉, whereby the l̂r are
given by

l̂r =
7

8
|g〉〈r|+ 1

16
|0〉〈r|+ 1

16
|1〉〈r| . (7.11)

The decay rate γr is the inverse of the lifetime τr of Rydberg state |r〉. Cor-
responding values for the target Rydberg states in both settings are given in
TAB. 8.1. For an experiment at room temperature (∼ 300 K) in setting S1,
we find that Bell states are generated with a fidelity of better than 0.9999 at
a gate time slightly below 60 ns. The results for optimized DRAG pulses are
plotted in FIG. 7.7. Since lifetimes are shorter in setting S1, corresponding
gate fidelities start to become limited by non-unitary errors at gate times
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FIG. 7.7 – Bell state infidelity including decay out of all Rydberg levels
for optimized DRAG controls in both settings S1 and S2. Phase errors and
amplitude errors are accounted for by detuning (d) and rescaling (r) the
analytically obtained DRAG sequences, as described above. Bell states are
generated with a fidelity of 0.9999 at a total gate time of only 50 ns.

shorter than those where pulses in setting S2 suffer from limitation by dissipa-
tion. Overall, however, unitary errors are dominant, so that gates in setting S1
appear to be more promising than those in S2, despite shorter lifetimes. Since
π pulses on the control atom do not require blockade effects, we may run them
faster without losing performance. The dotted red curve in FIG. 7.7 confirms
this observation: For τc = τt/3 we achieve slightly better results, yielding 10−4

errors at only 50 ns gate time. In a 4 K environment lifetimes will be on the
order of a few milliseconds, allowing for performance very similar to that for
the unitary analysis.

We have characterized the gate performance in terms of the Bell state
fidelity. While the specific choice of fidelity (4.2) is the most widely used
measure of gate performance, others have been proposed [230]. In particular
the trace distance has been shown to be linearly sensitive to Rydberg gate
phase errors that affect the fidelity only quadratically [218]. Using the rescaled
(r) and detuned (d) DRAG gates that optimize the fidelity, we find that the
trace distance error is an order of magnitude larger. As it is an open ques-
tion as to which performance measure is most relevant for specific quantum
computational tasks we have not studied the trace distance in more detail,
although we anticipate that the trace distance error could also be reduced
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with appropriate pulse design.

7.4 Conclusion

In conclusion we have presented DRAG pulses with pure x-quadrature control
for Rydberg blockade gates that lead to a Bell state fidelity larger than
99.99% at gate times of only 50 ns. The pulses are designed based on an
analytical method that could readily be extended to the level structure of
other atoms. The results fully account for all dominant leakage channels as
well as Rydberg decay in a room temperature environment. The 50 ns gate
time is orders of magnitude faster than high-fidelity trapped ion gates, and
about the same speed as state-of-the-art superconducting qubit gates, while
the ratio of coherence time to gate time is orders of magnitude better.

Together with recent progress in high-fidelity single-qubit gates [86, 87]
in neutral atom platforms, DRAG pulses establish neutral atom qubits with
Rydberg blockade gates as a promising candidate for scalable quantum com-
putation. Our result specifically applies to the case of one-photon Rydberg
excitation. We leave extension to the more common case of two-photon ex-
citation for future work. We also emphasize that the predicted gate fidelity
assumes no technical errors and ground state laser cooling. Demonstrating
real performance close to the theoretical level established here remains an
outstanding challenge.





Chapter 8

Coherent Entanglement of
Trapped Ions

In the previous chapter we showed how controls and parameters obtained via
analytical derivation can be used to implement desired processes with high
fidelity. Such approaches are typically only possible if the system’s degree of
complexity is manageable via analytical methods, such as accurate enough
effective models. If analytic derivations are intractable, or if one intends to
explore the full power of quantum optimal control, numerically assisted opti-
mization algorithms as introduced in section 4.2 are the method of choice. In
this chapter we will utilize the GOAT algorithm [131], which combines the
benefits of analytic pulse parametrization and numerically assisted optimiza-
tion, to study the generation of Greenberger-Horne-Zeilinger states (|GHZ〉)
in a linear chain of trapped 9Be+ ions.

Generation of entangled quantum states is key to applications in quantum
information processing. When Cirac and Zoller first proposed linearly trapped
ions as an architecture for quantum computing [76], they also showed how
multi-qubit gates between trapped ions can be realized by coupling different
ions through their vibrational modes which were introduced in section 2.2.2.
A more elaborate way to generate entanglement is the Mølmer-Sørensen gate
[77], which in contrast to the proposal by Cirac and Zoller does not require
the ions to be completely cooled to their motional ground state. In both
approaches, lasers provide the fundamental resource to achieve the necessary
couplings. Both schemes coherently control the trapped ion system in or-
der to generate entanglement deterministically. As this requires high-fidelity
state preparation and sufficient reduction of decoherence errors, other ap-

This chapter is based on work done in collaboration with Shai Machnes, Giovanna
Morigi and Frank Wilhelm-Mauch. In preparation.
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proaches based on active feedback [231, 232] or dissipative state preparation
[233–235] appear to be promising alternatives to bare unitary control: Feed-
back techniques on large scale will still require active error correction, and
hence suffer from immense qubit overhead. Dissipative preparation schemes
typically amount to constructing a Liouvillian such that the target state be-
comes the steady state of the driven master equation, and are hence also
referred to as quantum reservoir engineering. As a consequence, quantum
reservoir engineering protocols tend to be intrinsically robust with respect to
many experimental noises, such as variability in initial conditions and control
fluctuations. Such schemes operate on timescales of the system’s dissipative
processes, which, by design, are usually much longer than the timescale for
unitary control. In contrast, relevant rates for state preparation via coherent
coherent control are often only limited by the available power.

Dissipative state preparation of trapped 9Be+ ions achieved fidelities no
better than 90% on timescales of a few hundred microseconds up to millisec-
onds [234, 236]. Recent work [237] applied optimal control theory to improve
on these results by finding optimal parameter settings, thereby enhancing
fidelities up to 98.7% in 6 ms operational time. Due to the exceedingly long
time, however, dissipative preparation might be vulnerable to other processes
in the system, such as dephasing and parameter drifts. Work based on coher-
ent state preparation demonstrates the generation of maximally entangled
states with infidelities of 8 · 10−4 [238] and 10−3 [51] on timescales of 100µs.
The goal of this chapter is to better understand if there is a clear advantage
for either the dissipative or coherent approach. To this end we shall apply the
GOAT algorithm in order to find robust Raman laser envelopes that generate
maximally entangled |GHZ〉 states with infidelities comparable to previous
protocols, but in significantly shorter times than is currently available. We
then examine the resulting pulse robustness to realistic levels of control noise
and initial state variability, allowing us to determine, in this instance, whether
dissipative or coherent state preparation is advantageous.

8.1 The System Model

Commonly, dynamics of trapped ions are described by effective models that
are based on adiabatic elimination [239, 240], the rotating wave approxima-
tion and a Lamb-Dicke approximation [60, 241]. The latter corresponds to
an approximation which allows to significantly simplify coupling terms be-
tween ions and their vibrational modes by utilizing that the recoil energy of
photons is smaller than a motional energy quantum. If sophisticated laser
envelopes are applied, careful analysis of the validity of all approximations
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FIG. 8.1 – Each ion is modeled as a Λ-system where transitions between the
computational states |0〉 and |1〉 are driven by Raman lasers with amplitudes

Ej(t) and wave vectors |~kj| = ωL,j/c (left). The ions are confined in a linear

chain along the z-axis, whereby ion m is irradiated at an angle θ
(m)
j with laser

E
(m)
j (t). The width of the laser beams and the associated angles θ

(m)
j need to

be chosen such that individual control of every ion is possible.

is required. For instance, effects as discussed in chapter 5 become relevant
and cannot be captured by adiabatic elimination theory. Moreover, certain
limits on the maximum control amplitudes need to be enforced in order for
the approximations to hold. Therefore, our goal is to work in a model that
is as generic as possible. This also has the advantage of alleviating experi-
mental requirements which stem from more restrictive models, for instance
the σ̂zσ̂z interaction described in [235, 242]. We encode the computational
states {|0〉 , |1〉} in the magnetic hyperfine manifold and use two respective

Raman lasers per ion m with amplitude E
(m)
j (t), as illustrated in FIG. 8.1, to

drive transitions between the computational states via the stratospheric state
|2〉. In the remainder of this chapter, subscript j labels which computational
state couples to the stratospheric state and superscript (m) denotes the ion
index. The free evolution Hamiltonian Ĥ0 of N ions and their associated N
vibrational modes is given by

Ĥ0 =
N∑

m=1

2∑

j=0

~ωj |j〉〈j|(m) +
N∑

p=1

~ωz,pâ†z,pâz,p. (8.1)

Here, as detailed in section 2.2.2, ωz,p is the frequency of the p-th mode along
the axis of the chain, described by the harmonic ladder operators âz,p and
â†z,p. Note that we assume strong binding of the ion chain so that relevant
vibrational modes are restricted to those along the axis of the chain. Coupling
terms, mediated by individual Raman lasers E

(m)
j (t) with associated carrier
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frequencies ω
(m)
L,j = c |~k(m)

j |, are modeled by the interaction Hamiltonian

ĤI =~
N∑

m=1

1∑

j=0

E
(m)
j (t)e−iω

(m)
L,j tei

~k
(m)
j ·~x(m)

eiϕ
(m)
L,j |2〉〈j|(m) + h.c. (8.2)

The ϕ
(m)
L,j are laser phases associated to the envelopes E

(m)
j . From the geometry

illustrated on the right-hand side of FIG. 8.1 we deduce the identity

~k
(m)
j · ~x(m) =

∣∣∣~k(m)
j

∣∣∣ z(m)
0 cos

(
θ

(m)
j

)
+
∣∣∣~k(m)
j

∣∣∣ q(m)(t)cos
(
θ

(m)
j

)

=ϕ̃
(m)
j +

∣∣∣~k(m)
j

∣∣∣ q(m)(t)cos
(
θ

(m)
j

)
,

(8.3)

where q(m)(t) is the fluctuation of ion m around its equilibrium position z
(m)
0 .

We use identity (8.3), introduce an arbitrary phase φ
(m)
j ≡ ϕ̃

(m)
j + ϕ

(m)
L,j and

quantize the ion motion following the theory in 2.2.2 to rewrite the interaction
Hamiltonian in the form

ĤI = ~
N∑

m=1

1∑

j=0

E
(m)
j (t)e−iω

(m)
L,j t

× exp

(
i

[
φ

(m)
j + η

(m)
j

N∑

p=1

s(p)
m

(
â†z,pe

iωz,pt + h.c.
)
])
|2〉〈j|(m) + h.c.

(8.4)

In Hamiltonian (8.4) we introduced the common Lamb-Dicke parameter

η
(m)
j ≡

√
~

2Mωz
|~k(m)
j | cos

(
θ

(m)
j

)
(8.5)

which typically is small enough to warrant an expansion of the exponent
for η

(m)
j � 1, corresponding to the Lamb-Dicke approximation described

above. The second line of equation (8.4) illustrates the major advantage of
the Lamb-Dicke approximation: The associated expansion avoids to exponen-
tiate the infinite-dimensional mode operators and hence allows for further
analytical simplification. However, we intentionally refrain from using such
an approximation.

A More Convenient Frame

The exact parameters and frequencies that describe our system are given in
TAB. 8.1. With reference to section 4.3 we note that the energy separation
of the stratospheric state |2〉 to the computational subspace is about six
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orders of magnitude larger than the splitting of both computational states,
inevitably hampering computations of the eigendecomposition needed for
PWC propagation since it is very error-prone for ill-conditioned matrices (for
instance matrices with dramatic differences in scales). Said difference in scales
also poses problems to other ODE integration methods: The computational
time to obtain reliable results will be unacceptable for OCT purposes since
the step size of the ODE solver needs to be extremely small in order to
accurately follow the high-frequency components induced by the high energy
of state |2〉.

In order to alleviate numerical propagation we transform the Hamiltonian
to a frame where the vibrational modes are co-rotating at their respective
frequencies. Additionally, we rotate each ion subspace such that the oscillatory

terms eiω
(m)
L,j t in Hamiltonian (8.4) vanish and the time-dependence is solely

encoded in the laser amplitudes E
(m)
j (t). The associated transformation that

we apply along the lines of equation (3.3) reads

V̂rot =

[
N⊗

m=1

e−i
ˆ̃H(m)t/~

]
⊗
[

N⊗

p=1

eiωz,ptâ
†
z,pâz,p

]
, (8.6)

where we introduce the carrier detunings such that ω
(m)
L,j ≡ ω2 −∆

(m)
j − ωj

and have used the definition

ˆ̃H(m) ≡ ~ diag
(
ω0 + ∆

(m)
0 , ω1 + ∆

(m)
1 , ω2

)
. (8.7)

Note that the transformation of the vibrational modes in equation (8.6) is
different from the conventional interaction picture transformation where one
usually moves to a counter-rotating frame in order to cancel the contribution
of motional states to the drift Hamiltonian. Instead, we move to a frame in
which the subspace of each motional mode is co-rotating with its respective
frequency. The identity

e−iωtâ
†âexp

(
c0

[
eiωtâ† + e−iωtâ

])
e−iωtâ

†â = exp
(
c0

[
â† + â

])
(8.8)

with arbitrary c0 ∈ C is useful to understand the effect of transformation
(8.6). Eventually, we cancel the e±iωz,pt terms in Hamiltonian (8.4), but are
effectively left with motional states with twice the frequency as in the lab
frame.

The full rotating frame Hamiltonian after applying transformation (8.6)
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Parameter Value Parameter Value

Z 1 e (C) 1.6021766208 · 10−19

M (u) 9u u (kg) 1.660539040 · 10−27

ε0 (As/Vm) 8.854187817 · 10−12 ~ (Js) 1.054571800 · 10−34

ωz/2π (MHz) [60] ∼ 5 l (µm) 5.36
ω0/2π (GHz) 0 ω1/2π (GHz) 1.207496
ω2/2π (GHz) 957804.5877 λ|0〉↔|2〉 (nm) [238] 313
c (m/s) 2.99792458 · 108

Table 8.1 – Numerical parameters used for our simulations. Spectral informa-
tion about the 9Be+ ions is taken from [238]. See also section 2.2 for more
details.

reads

Ĥrot = 2

Np∑

p=1

~ωz,pâ†z,pâz,p + ~
N∑

m=1

1∑

j=0

[(
−∆

(m)
j

)
|j〉〈j|(m)

+

{
E

(m)
j (t) cos

(
φ

(m)
j + η

(m)
j

N∑

p=1

s(p)
m

(
âz,p + â†z,p

)
)
|2〉〈j|(m) + h.c.

}]

(8.9)

which is indeed free of any rapid oscillations on the order of ω2 (and ω
(m)
L,j ).

Moreover, the control fields E
(m)
j (t) are its only time-dependent components.

We stress that Hamiltonian (8.9) does not involve any type of rotating wave
or other approximation. As we refrain from applying a Lamb-Dicke approx-
imation, we will compute the cosine term in Hamiltonian (8.9) numerically
exact. Hereto, we need to truncate the Hilbert space to finite dimensions,
which we will detail below.

8.2 General OCT Procedure

In this section we will describe further details about the optimization proce-
dure, for which we use an advanced implementation of the GOAT algorithm
(c.f. section 4.2.2) in MATLAB. We will first focus on implications of the
truncated Hilbert space and then provide a proper definition of the target goal
function, as well as an outline of the control parametrizations we use. Regard-
ing propagation, a PWC propagator with O (104) segments is the preferred
method of choice.
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8.2.1 Hilbert Space Cutoff

In order to numerically propagate Hamiltonian (8.9) we need to truncate the
infinite-dimensional Hilbert space associated to the vibrational modes of the
ion chain. We denote the basis states of the full system |i1i2 · · · iNm1m2 · · ·mN〉
where ik ∈ {0, 1, 2} labels the internal state of ion k, and the vibrational state
of mode k is given by mk ≤ Mk. Here, Mk denotes the highest level of vi-
brational mode k after which the respective Hilbert space is truncated. To
ensure that our results remain valid in the real system without cutoff, we
need to ensure that population in all highest vibrational levels |Mk〉 with
k = 1, . . . N is negligible over the entire propagation time. This guarantees
that higher modes have no substantial contribution to the dynamics, since
the ladder operators âz,p and â†z,p only couple adjacent levels, and the Hilbert
space cutoff does not impact our results. In order to enforce this constraint
on the populations in our optimization routine, we introduce a penalty term

Q(~x) = log10


 1

tg

tg∫

0

NΨ∑

l=1

〈Ψl(~x, t)|P̂p|Ψl(~x, t)〉 dt


 (8.10)

where P̂p =
∑

n |Φn〉〈Φn| describes the projector onto all penalized states,
i.e. any state where at least one mode is excited to its highest level, and
{|Ψl(~x, t)〉} is the set of all propagated states at times t ∈ [0, tg] depending
on the parameters ~x. Hence, Q essentially measures the total amount of
intermediate excitation to undesired states, whereby Q→ −∞ if there is no
occupation of the forbidden subspace and Q = log10(NΨ) if the {|Ψl〉} lie
inside said subspace for the entire duration. In addition to penalizing the
highest vibrational modes we will also need to include the stratospheric state
|2〉 into the penalty term, as will be discussed below.

8.2.2 Multi-Goal Optimization

With focus on the situation relevant for this chapter, we need to optimize the
overlap between states along the lines of equation (4.5) – where we straight-
forwardly replace the gates by target and propagated state vectors – and take
into account the additional penalty (8.10). That is, we introduce a combined
goal function G(~x) which depends on both g and Q. Usually, if additional
constraints in form of penalty terms are included in the optimization, the
corresponding terms appear as additional summands in the final goal function
[120] so that we would have G(~x) = g(~x) +Q(~x). However, a downside of this
choice of G is that the optimization might only care for either g or Q initially.
For difficult optimization tasks, once it converges in the direction of any of
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FIG. 8.2 – Landscape of the combined goal function (8.11) in the (g,Q) space
for cs = cd = 1 and es = ed = 2. The target values are Q0 = −6 and g0 = −4,
and the point (−4,−6) corresponds to the unique global minimum of the
multi-goal optimization.

these quantities, this is often accompanied with failure of the algorithm since
it is effectively trapped in the optimization landscape.

Combined Goal Function

Our approach to circumvent this issue is a careful construction of the combined
goal function G. The optimization will terminate once both g and Q fall below
their target thresholds g0 and Q0, respectively. To avoid that either g or Q
undercut these values significantly (which ultimately reduces the risk of local
traps) we found the goal function parametrization

G(~x) = cs (geff(~x) +Qeff(~x))es + cd (geff(~x)−Qeff(~x))ed (8.11)

to be most efficient. The effective values of g and Q are given by geff ≡ g− g0

and Qeff ≡ Q − Q0, respectively. The constants cs, cd, es and ed are free
parameters. However, we find the choice cs = cd = 1 and es = ed = 2 to
work best for our purposes. FIG. 8.2 illustrates the optimization landscape
as a function of g and Q, indicating that G(g,Q) exhibits a unique global
minimum at (g0, Q0). The advantage over other choices of G is that if, for
instance, q falls below its target value, the gradients will actively prevent
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further reduction of Q, so that the risk of local trapping in the direction of
either g or Q is minimized.

Gradient Computation

In order for the GOAT algorithm to be feasible, efficient computation of the
gradient ∂~xG(~x) is required. The GOAT equations of motion (4.7) now need
to be extended by the gradients of Q. For simplicity, we restrict our analysis
to the quantity q = 10Q. Gradients of Q are obtained via direct application
of the chain rule. Particularly, we know

∂tq =
1

tg

∑

l

〈Ψl|P̂p|Ψl〉 , (8.12a)

∂t∂~xq =
1

tg

∑

l

(∂~x |Ψl〉)† P̂p |Ψl〉+ h.c. (8.12b)

We are hence left with a system of coupled equations of motion for the
propagated states and their gradients, as well as the penalty terms (8.12).
Initial conditions are given by q(~x, 0) = 0 and ∂~xq(~x, 0) = ~0. The reader is
referred to Appendix 8.A for more details on efficient penalty computation
for the particular case of PWC propagation, which is crucial to make the
implementation of the GOAT algorithm feasible.

8.2.3 Control Parametrization

Generally, the GOAT algorithm allows to utilize any analytical pulse para-
metrization – provided its gradients exist. In our case, we will use two different
control parametrizations: (i) Superpositions of time-window functions based
on error functions and (ii) piecewise constant (PWC) controls, where the full
time window is divided into Nτ slices of width ∆τ , whereby the controls are
considered constant within each of these slices.

Both approaches are conceptually quite different: While (without addi-
tional constraints) PWC controls tend to appear noisy, they allow to explore
the limits of the control task since they generally grant most freedom in pulse
design. Contrarily, analytic parametrizations, for instance in terms of Fourier
components, Gaussians or error functions, can lead to simple and smooth
control shapes. The choice of the specific analytical parametrization depends
very much on the quantum control problem. We chose a superposition of error
functions since their spectrum is well located at distinct frequencies, which
alleviates suppression of unwanted excitations in a dense spectrum. This is
attributed to the fact that the envelopes E

(m)
j are multiplied with their respec-

tive carrier signal and hence, if we chose Fourier modes, we would generate
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FIG. 8.3 – Window function based on error functions according to equation
(8.13). Parameters chosen for the illustration are a = 500 MHz, A = 1 GHz,
t↑ = 100 ns and t↓ = 600 ns. Decreasing the slope s, here achieved by lowering
b while keeping A constant, softens the edges of the window when ramping
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beat frequencies – effectively exciting multiple frequencies other than those
that are actually required. FIG. 8.3 illustrates a single error function window

werf(t, a, s, t↑, t↓) =
a

4

(
1− Erf

(√
π

a
s(t− t↓)

))(
1 + Erf

(√
π

a
s(t− t↑)

))
,

(8.13)

with amplitude a, slope s and ramp up (down) time t↑ (t↓). Erf(x) is the
Gauss error function. In our optimizations we assume a control bandwidth
of b = 300 MHz and fix the slope per window to s = A/(1/b) where A is the
maximum limit on the amplitude a ∈ [−A,A]. Note that pulse parameters
are bounded in order to not exceed feasible limits of pulse shaping capabilities
[131]. We parametrize each laser envelope E

(m)
j in terms of a superposition

of N
(m)
j such error function windows whereby amplitude, ramp up and ramp

down time of each of these are individually optimized parameters. Hence,
the total number of parameters characterizing the laser envelopes is given by
Np,c = 3

∑
j,mN

(m)
j .

8.3 Generation of Entangled States

In this section we will now study the generation of the maximally entangled
state |GHZ〉 = (|00aa〉+ |11aa〉)/

√
2. In this notation the vibrational mode
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levels are labeled in alphabetical order from a onward. As introduced above, we
focus on a linear chain of two 9Be+ ions with a trap frequency ωz/2π ∼ 5 MHz.
In order to design smooth pulses the controls are parametrized in terms of
error function windows (8.13): Each Raman amplitude E

(m)
j (t) consists of

N
(m)
j = 7 individually optimized window functions, so that the total number

of parameters we optimize is Np,c = 7×2×2×3 = 84 (two ions, two beams per
ion, three parameters per error function window). For now, we assume that
the system is initially cooled to the ground state |00aa〉. This assumption will
be revisited later. FIG. 8.6 depicts the performance of optimized Erf controls,
as well as their robustness against noise (c.f. section 8.3.2) for operation times
tg of a few hundred nanoseconds (compared to O (100µs) in [51, 238]). We
achieve infidelities of 10−4 for operation times around 500 ns. Examples of
optimized controls for tg = 500 ns are illustrated in FIG. 8.4. To generate
pulses that smoothly start and end in zero, we apply an additional filter on
top of the superposition of window functions and compute the final gradient
with respect to the parameters by a straightforward application of the chain
rule.

Note that, in addition to the discussion in section 8.2.1, the penalty cost
function Q we use in our optimizations also inhibits population of the strato-
spheric state |2〉. Since it is highly dissipative with a decay constant τ2 ∼ 10 ns,
it should remain sufficiently unpopulated at all times. As a consequence, we
penalize a fraction of 1− (2/3)N

∏
k(Mk − 1)/Mk of the total Hilbert space,

where N is the number of ions and Mk the number of energy levels per vi-
brational mode. That is, overall, the factor (2/3)N corresponds to avoiding

excitation of any ion m to its respective stratospheric state |2〉(m), while∏
k(Mk − 1)/Mk is associated to suppressing population of vibrational levels

at which the Hilbert space is truncated. In our simulations, in order to retain
feasible computational times, we use Mk = 4 so that for two ions 75% of the
total Hilbert space contribute to the penalty cost in terms of the projector P̂p.
FIG. 8.6 demonstrates that optimized Erf controls achieve penalties slightly
below 10−2. A closer analysis shows that the final Q is determined largely by
population of the stratospheric state; contributions due to the Hilbert space
cutoff are negligible – substantiating the numerical accuracy of our model
compared to the full, untruncated version.

8.3.1 Effect of Spontaneous Emission

Based on the above analysis, we need to consider implications of intermediate
population in the stratospheric state. We estimate the error due to sponta-
neous emission out of state |2〉 by means of the achieved penalties: Hereto,
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FIG. 8.4 – Optimized Erf-window based control pulses for an operation time
of 500ns. The pulses achieve infidelities of ∼ 10−4 and a penalty ∼ 10−2.
Every Raman laser E

(m)
j is parametrized in terms of N

(m)
j = 7 individual Erf

components, yielding a total parameter count of 84 that are optimized.

we focus on PWC propagation with Nτ time slices of equal length and a cor-
responding slice width ∆τ = tg/Nτ . At each time step we lose population p2

to state |2〉, followed by a dissipative process over time ∆τ . According to this
model, the overall coherent population pc after Nτ time steps is approximately
given by

pc =
(
(1− p2) + p2e

−∆τ/τ2
)Nτ

. (8.14)

While this estimate does of course not account for all errors it should provide
feasible bounds if ∆τ � τ . Unfortunately, the penalties we find in FIG. 8.6
imply spontaneous emission errors of about 14.3% – rendering the quoted
infidelities unreliable. Nevertheless, we find that a penalty Q = 10−4 already
translates into spontaneous emission errors of only 5 · 10−3. Thus, we expect
that by increasing the laser detunings ∆

(m)
j by about one to two orders of

magnitude, and a corresponding enhancement of operation time tg, it should
be feasible to achieve penalties of 10−4 or below, thereby obtaining reliable
infidelities comparable to those reported in literature – but at much shorter
times.
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FIG. 8.5 – Trajectory of the multi-goal optimization in the (g,Q) space for
piecewise constant control parametrizations with a pulse duration of 500 ns.
The Raman lasers are detuned from resonance by ∆

(m)
j ∼ 13ω1.

In order to explore possible intrinsic limitations in our model, we also
perform optimizations with PWC controls in a system that is otherwise
identical to the one we used for error function based optimizations. To be
less restrictive we set the target infidelity to g0 = 10−5. With PWC controls
operating for tg = 500 ns and a total number of Np,c = 200 parameters per
control (the amplitude of each slice counts as a parameter) we are able to
produce pulses that generate state infidelities g = 10−5 while maintaining
a penalty of Q = 10−3.6. Using our estimate (8.14) this translates into a
spontaneous emission error of 1.22%, which corresponds to a realistic fidelity
of 98.78% – almost exactly matching the best fidelity reported in [237]. The
associated trajectory of the multi-goal optimization is illustrated in FIG. 8.5.

8.3.2 Robustness of the Solutions

In order to be feasible for practical implementations, control pulses should be
robust against the most relevant noise sources. As discussed above, solutions
found via quantum reservoir engineering tend to feature the desired robust-
ness. We therefore benchmark our results against two relevant noise sources:
Fluctuations of the laser amplitude and variations in the initial state. Fluc-
tuations in the control amplitudes are modeled by an Ornstein-Uhlenbeck
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process [243, 244], which is a stochastic process subject to the stochastic
differential equation

dxt = β(µ− xt)dt+ σ dWt. (8.15)

Here, xt denotes the value of a quantity affected by noise – for instance
position of a particle – at time t, µ is the equilibrium value, σ corresponds
to the amount of fluctuation, β gives the rate with which the variable reverts
back to its mean and Wt is the Wiener process. Realistic amplitude variations
are on the order of 1%, which we simulate by the parameters β = 0.1, µ = 1,
σ = 0.002 and an initial value of x0 = 1. As illustrated in FIG. 8.6a the
controls based on error functions are pretty robust against variations of the
E

(m)
j (t), substantiated by degradations of the infidelity by about one order

of magnitude. To simulate variable initial conditions we initialize the system
in a state that has 99% overlap with the ideal initial state |00aa〉, while the
remaining 1% is distributed equally among the states |00ab〉, |00ba〉 and |00bb〉.
In that case, as depicted in FIG. 8.6b, we achieve infidelities of about 10−2.3

which is slightly worse compared to noise in the laser amplitude, but still
on a tolerable level – comparing to other reported fidelities in literature. We
emphasize that the analyzed timescales are on the order of a few hundred
nanoseconds, hence orders of magnitude below current proposals.

8.4 Discussion

8.4.1 Conclusion

We derived a Hamiltonian that is far more general than conventional effective
models which are based on adiabatic elimination, as well as rotating wave
and Lamb-Dicke approximations. This allowed us to explore the limits of
entanglement generation via unitary processes in terms of control capabilities
via quantum optimal control, which, in conventional models, is only possible to
a limited extent due to the restrictions imposed by aforesaid approximations.
In order to make use of the state-of-the-art GOAT algorithm for our analysis,
we developed an efficient method to compute the gradients of penalty cost
functions to suppress population of harmful states.

In summary, we have shown that coherent generation of |GHZ〉 states with
realistic fidelities of about 99% in a linear chain of trapped ion is possible using
piecewise constant control parametrizations on a timescale of a few hundred
nanoseconds – orders of magnitude faster than conventional proposals, while
achieving fidelities comparable to those of state-of-the-art schemes based on
dissipative state preparation. The optimized piecewise constant pulse shapes
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√

2
from initial state |00aa〉 as a function of operation time with ωz/2π = 10MHz

and ∆
(m)
j ≈ 2ω1. Each Raman laser amplitude is composed of N

(m)
j = 7

individual Erf components (8.13). Robustness is analyzed with respect to
laser amplitude noise, modeled by an Ornstein-Uhlenbeck process (8.15) with
variation of up to 1.5% (a) and with regards to residual phonons, i.e. variable
initial condition (b). The ”reference” data corresponds to noise-free dynamics.
For realistic laser amplitude noise, infidelities are lowered from 10−4 to 10−3.
In case of variable initial conditions we find the pulses to be less robust. Yet,
achieved infidelities of about 10−2.3 are still on a tolerable level. Saturation of
g at about 10−4 is due to our choice of g0 which prevents further, undesired
improvement of g.

feature quick and rapid amplitude changes which render them impractical
for direct experimental implementation. Nevertheless, they provide important
theoretical information about fundamental limits of entanglement capabilities
in our model. We also studied the limits of quantum optimal control in the
sub-microsecond regime in terms of smooth controls based on error function
windows. In that case, we were unable to find results that sufficiently sup-
press population inside the highly dissipative stratospheric states, so that
realistic estimates for the fidelities are no higher than 85%. We found the
smooth waveforms to be robust against two relevant noise sources: Amplitude
fluctuations and variable initial conditions. Neglecting spontaneous emission
errors, we were able to achieve errors as low as 10−4, which is increased to
10−3 and 10−2.3 by amplitude and preparation noise, respectively.
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8.4.2 Outlook

We expect that it is feasible to improve the penalty cost by two orders of
magnitude (and, hence, enhance realistic entanglement fidelities accordingly)
by increasing the laser detunings likewise, accompanied with a respective in-
crease of operation times. This statement holds for both smooth controls and
piecewise constant parametrizations. Eventually, this would still correspond
to timescales at least one order of magnitude faster than the best current pro-
posals (referring to both unitary and dissipative preparation schemes) while
achieving preparation errors of only 0.1% or better, even under realistic con-
siderations of noise. We anticipate that the results of our robustness analysis
will also hold for longer timescales, since the functional shape of the controls
will remain similar. Our MATLAB implementation of the GOAT algorithm
has already been extended to support gradient-assisted optimization of laser
detunings, phases and angles along with Raman laser envelopes. As such,
future research can directly connect to the methods and results presented in
this chapter, with the expectation of achieving significant improvements both
in infidelities and penalties. Ultimately, this will allow to better understand
if there is a clear preference for either unitary or dissipative entanglement
schemes.



Appendix

8.A Propagation of Penalties

In order to perform quantum OCT using the GOAT algorithm with an ad-
ditional penalty cost Q to suppress population of certain states, we need
to simultaneously solve the underlying equations of motions. We focus on
a single propagated state |Ψ(t)〉, subject to the Hamiltonian Ĥ(~x, t) where
~x are some controllable parameters. The definition of the penalty term is
given in equation (8.10). In this section, we will drop the factor 1/tg from
the definition of Q for clarity and consider the gradients of q = 10Q instead.
We combine the regular GOAT equations of motion (4.7) and those for the
penalty (8.12) to the set (~ ≡ 1)

∂t |Ψ〉 =− iĤ |Ψ〉 , (8.16a)

∂t∂~x |Ψ〉 =− i
(

(∂~xĤ) |Ψ〉+ Ĥ∂~x |Ψ〉
)
, (8.16b)

∂tq = 〈Ψ|P̂p|Ψ〉 , (8.16c)

∂t∂~xq = (∂~x 〈Ψ|) P̂p |Ψ〉+ h.c., (8.16d)

of coupled ordinary differential equations that need to be solved efficiently in
order for the GOAT algorithm to be feasible. We note that ∂t(〈Ψ|) = (∂t |Ψ〉)†
and ∂~x(〈Ψ|) = (∂~x |Ψ〉)†.

8.A.1 PWC Propagation

The PWC assumption actually consists of two separate assumptions: First,
we approximate H (~x, t) as constant within each time slice, and in addition
we assume the controls to be PWC as well. We choose a notation where
slice τ starts at tτ−1 and ends at tτ with a duration of ∆τ . Without loss
of generality we pick the full time interval such that tτ=0 = 0 and tτ=NT =
tg. Limiting ourselves to a single control field, to keep notation simple, we
replace the general ~x with a time index xτ . We can now attempt to solve

97
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the above equations of motion (8.16): Expressions of |Ψτ 〉 and qτ , as well as
their derivatives at tτ , in terms of |Ψτ−1〉, qτ−1 and their derivatives at time
tτ−1 constitute a proper solution to the dynamics. The solution to equation
(8.16a) is straightforwardly given by

|Ψτ 〉 = Ûτ |Ψτ−1〉 , (8.17)

Ûτ = exp
(
−i∆τĤτ

)
. (8.18)

For the second equation of motion (8.16b), we need to look at a specific
component of ~x: The control amplitude xσ at time slice σ. If τ < σ then we
have not yet arrived at slice σ and the respective derivative is zero. If τ = σ,
then |Ψτ−1〉 is independent of xσ but Ûσ is not, and we have |Ψτ 〉 = Ûσ |Ψτ−1〉.
Lastly, if τ > σ then Ûτ is independent of xσ but |Ψτ−1〉 is not. Hence,

∂xσ |Ψτ 〉 =





0 , τ < σ(
∂σÛσ

)
|Ψτ−1〉 , τ = σ

Ûτ∂xσ |Ψτ−1〉 , τ > σ.

(8.19)

For the q equation of motion (8.16c) we make an additional assumption: We
assume the value of |Ψ〉 is fixed for the entire slice, and is equal to |Ψτ 〉. This
renders the solution of ∂tq = 〈Ψ|P̂p|Ψ〉 trivial:

qτ = ∆τ 〈Ψτ |P̂p|Ψτ 〉+ qτ−1 (8.20)

Solving the remaining equation of motion (8.16d) follows a logic similar to
the one we used for ∂xσ |Ψτ 〉, and derives directly from the derivative of rule
(8.20) with respect to xσ, recalling that qτ = ∆τ 〈Ψτ−1Û

†
τ |P̂p|ÛτΨτ−1〉+ qτ−1,

and that only Ûσ, |Ψτ≥σ〉 as well as qτ≥σ depend on xσ:

∂xσqτ =





0 , τ < σ

∆τ

(
(∂xσ |Ψτ 〉)† P̂p |Ψτ 〉+ h.c.

)
, τ = σ

∆τ

(
(∂xσ |Ψτ 〉)† P̂p |Ψτ 〉+ h.c.

)
+ ∂xσqτ−1 , τ > σ.

(8.21)

8.A.2 Update Algorithm

We summarize all assumptions we make in order to perform the (gradient)
propagation with a PWC integration formalism:

• The time interval [0, tg] is divided into Nτ slices. Slice τ starts at tτ−1

and ends at tτ , duration ∆τ . That is, tτ=0 = 0 and tτ=Nτ = tg. We shall
also use σ to enumerate time slices.
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• There is a single control Hamiltonian. Extension to multiple controls
follows naturally.

• Ĥ (~x, t) can be approximated as a constant operator Ĥτ within each
slice. For accuracy considerations, it is recommended (but not required)
to sample the continuous control fields at the middle of each slice.

• The controls ~x are PWC, i.e. xτ is the amplitude of the control Hamil-
tonian at slice τ . Therefore, Ĥτ = Ĥ0 + xτĤc.

• For the purposes of computing the penalty q, the value of |Ψ〉 is consid-
ered constant for the entire slice and is equal to |Ψτ 〉.

• We have a black box [118] to compute ∂xτ exp
(
−i∆τ

(
Ĥ0 + xτĤc

))

In order to propagate state and penalty, we require knowledge about the
initial state |Ψ0〉 and the value of the control field at all time slices xτ for
all τ = 1, . . . , Nτ . The initial conditions for the propagation are ∂xτ |Ψ0〉 = 0,
q0 = 0, ∂xτ q0 = 0 for all τ . The actual propagation is a loop on τ = 1 . . . Nτ

with essentially five steps per iteration:

1. Compute Hamiltonian at slice τ , Ĥτ = Ĥ0 + xτĤc

2. Compute the associated propagator, Ûτ = exp(−i∆τHτ )

3. Propagate the state, |Ψτ 〉 = Ûτ |Ψτ−1〉

4. Integrate the penalty, qτ = ∆τ 〈Ψτ |P̂p|Ψτ 〉+ qτ−1

5. For each control parameter xσ, i.e. for each gradient component, compute

(a) ∂xσ |Ψτ 〉 =





0 , τ < σ(
∂σÛσ

)
|Ψτ−1〉 , τ = σ

Ûτ (∂xσ |Ψτ−1〉) , τ > σ

(b) ∂xσqτ =





0 , τ < σ

∆τ

(
(∂xσ |Ψτ 〉)† P̂p |Ψτ 〉+ h.c.

)
, τ = σ

∆τ

(
(∂xσ |Ψτ 〉)† P̂p |Ψτ 〉+ h.c.

)
+ ∂xσqτ−1 , τ > σ
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8.A.3 Improving Propagation Efficiency

So far, we only considered the general task of finding solutions to the equations
of motion. However, doing so efficiently is crucial. Straightforward implemen-
tation of the above steps 5a and 5b, for the case τ > σ, suggest that nested
loops with a total of 1

2
Nτ (Nτ − 1) steps are required. Given that, in order for

the PWC approximation to be accurate [114, 118], Nτ typically is of order
O(103) or higher, and hence the O(N2

τ ) complexity to propagate gradients
poses serious limitations in terms of efficiency.

We proceed to show that a careful analysis of the propagation scheme
allows to reduce complexity from O(N2

τ ) to O(Nτ ). Let Nτ > 6, and examine
∂xσ |Ψ〉 for σ = 3, starting with τ = 3 because this corresponds to the first
time ∂xσ |Ψτ 〉 is non-zero:

∂x3 |Ψ3〉 =
(
∂x3Û3

)
|Ψ2〉

∂x3 |Ψ4〉 = Û4∂x3 |Ψ3〉 = Û4

(
∂x3Û3

)
|Ψ2〉

∂x3 |Ψ5〉 = Û5∂x3 |Ψ4〉 = Û5Û4

(
∂x3Û3

)
|Ψ2〉

∂x3 |Ψ6〉 = Û6∂x3 |Ψ5〉 = Û6Û5Û4

(
∂x3Û3

)
|Ψ2〉

...

∂x3 |ΨNτ 〉 = ÛNτ∂x3 |ΨNτ−1〉 = ÛNτ ÛNτ−1 . . . Û6Û5Û4

(
∂x3Û3

)
|Ψ2〉 (8.22)

Equation (8.22) suggests precomputing the terms

Aτ = Ûτ Ûτ−1Ûτ−2 . . . Û2Û1, (8.23)

Bτ = ÛNτ ÛNτ−1ÛNτ−2 . . . Ûτ+1Ûτ . (8.24)

Using the iterative relations Â0 = 1̂, Âτ = Ûτ Âτ−1 and B̂Nτ+1 = 1̂, B̂τ =

B̂τ+1Ûτ , which can be done O (Nτ ) complexity at step 2, we can then compute
all ∂xσ |ΨNτ 〉 in O (Nτ ) time, following

∂xσ |ΨNτ 〉 = B̂σ+1

(
∂xσ Ûσ

)
Âσ−1 |Ψ0〉 . (8.25)

A similar derivation holds for the gradients of q. We note that for k ≥ j,
ÛkÛk−1Ûk−2 . . . Ûj = B̂†k+1B̂j. In order to reduce complexity the additional
condition that ∆τ = ∆, ∀τ = 1, . . . , Nτ is required. The penalty gradients
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are given by

∂xσqNτ = 2∆ Re

{
Nτ∑

τ=σ

(
B̂†τ+1B̂σ+1

(
∂xσ Ûσ

)
Âσ−1 |Ψ0〉

)†
P̂pÂτ |Ψ0〉

}

= 2∆ Re

{
〈Ψ0|

(
Nτ∑

τ=σ

Â†σ−1

(
∂xσ Ûσ

)†
B̂†σ+1B̂τ+1P̂pÂτ

)
|Ψ0〉

}

= 2∆ Re

{
〈Ψ0|

(
Â†σ−1

(
∂xσ Ûσ

)†
B̂†σ+1

)( Nτ∑

τ=σ

B̂τ+1P̂pÂτ

)
|Ψ0〉

}

(8.26)

We note that (Â†σ−1(∂xσ Ûσ)†B̂†σ+1) is independent of τ and can therefore
be evaluated only once per σ at cost O (Nτ ). Similarly, each term in the
summation

∑Nτ
τ=σ B̂τ+1P̂pÂτ is a matrix multiplication of three matrices that

are easily computed at runtime. The sum, i.e. the entire expression (8.26) as
a function of σ, can be computed one term at a time (starting with σ = Nτ

and working back to σ = 1), again requiring only O(Nτ ) time.
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Chapter 9

Introduction

The majority of the previous part addressed the implementation of accurate
gates, and as such focused on discrete quantum gates within the quantum
circuit model. We will now discuss Adiabatic Quantum Computation [199]
(AQC), which is a promising alternative to the quantum circuit model of
computation [16]. The first idea of using adiabatic evolution for solving com-
putational problems appeared in [245] where adiabaticity is used to solve
classical combinatorial problems, and was referred to as quantum stochastic
optimization. Later on [246] the term Quantum Annealing (QA) was intro-
duced. It essentially describes a quantum extension of the classical simulated
annealing algorithm [124], and can natively be implemented in the instruction
set of an AQC platform [247]. Similar ideas arose and created terminology
such as quantum adiabatic algorithms [248] and adiabatic quantum optimiza-
tion [249]. When the term AQC first appeared [250] it was solely focused on
optimization but has extended its scope to become an alternate approach to
the circuit model over the last years.

Essentially, in order to solve certain problems using AQC one needs to
encode the solution to a given problem in the ground state of a Hamiltonian
Ĥ1 [199]. For computationally hard problems, this ground state is typically
prohibitively slow to reach. Hence, one constructs a Hamiltonian Ĥ(s) =
(1−s)Ĥ0+sĤ1 with a fully characterized Hamiltonian Ĥ0 and a parameter s ∈
[0, 1] which represents normalized time. At the beginning of the computation
(s = 0) the system Ĥ(0) will be prepared in the easily accessible ground
state of Ĥ0. As explained in section 6.1, adiabatically changing s from 0 to 1
ensures that the Hamiltonian Ĥ(s) will remain in its ground state, and hence,

Parts of this chapter were submitted for peer-review in Phyiscal Review Letters.
Preprint is available online: ”L.S. Theis, P.K. Schuhmacher, M. Marthaler and F.K. Wil-
helm, arXiv:1808.09873 (2018)”. The majority of the text was written by L.S. Theis. All
numerical simulations and underlying analytic calculations were carried out by L.S. Theis.
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at s = 1, one can extract the sought ground state of Ĥ1. This approach to
quantum computation has been shown [251] to be conceptually as powerful as
the quantum circuit model, and can hence be considered as universal. There
are various advantages that make AQC/QA appealing, such as an increased
robustness against decoherence [252] and simpler control. Another downside
of the quantum circuit model is the effect of finite temperatures: Generally,
one wants to operate at the lowest possible temperature in order to reduce
harmful effects originating in non-unitary dynamics [253]. In the context of
AQC/QA, however, a thermal environment is expected to be actually helpful
[254, 255].

At the time of writing, commercialization of quantum annealing devices
is pioneered by the Canadian quantum computing company D-Wave Systems.
Currently, their newest device features about 2000 qubits [256], arranged in
a Chimera topology [257] which only allows for limited couplings since every
qubit couples to six others. Whether their quantum annealing devices, which
undoubtedly demonstrate impressive engineering achievements, exhibit true
quantum speedup is still an open question. An extensive study on the topic
was performed in 2014 [258], suggesting that no quantum speedup was found.
Recent work confirms these results, showing that claims of quantum speedup
are typically based on unfair comparisons, or related to benchmark problems
that were specifically designed to give the D-Wave quantum annealer an
advantage [259]. A recently initiated multi-institutional collaboration called
Quantum Enhanced Optimization (QEO) [260], which comprises more than
100 researchers, aims at exploring the limits of coherent quantum annealing
devices and improving their quality [261]. One goal of the project is to build
a quantum annealer featuring non-stoquastic coupling terms. For instance,
the latter are believed to be required in order that the quantum annealer can
no longer be efficiently simulated by classical Quantum Monte Carlo methods
[262].

We proceed to discuss the fundamentals of an adiabatic quantum algo-
rithm that can be shown to feature a true quantum speedup compared to its
classical analog. As an example of quantum speedup via AQC we will review
the adiabatic Grover algorithm [263] and follow the discussion given in [199].

9.1 Searching an Unsorted Database

The general idea of the Grover algorithm [5] can be summarized as finding a
specific element (or multiple ones) within an unsorted database of N items
with the fewest possible number of database queries. Formally, this task can
be formulated as follows: A function f : {0, 1}n → {0, 1} is known to suffice
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f(m) = 1 and f(x) = 0 ∀x 6= m, and N = 2n is the number of bit strings.
The Grover algorithm addresses the problem of finding m with the minimum
number of evaluations of f . The function f is referred to as an oracle and
we will consider it as a given black box, so that only the complexity of the
actual algorithm is under review.

Classically, the database has to be queried element by element until the
marked item m is found. Hence, the average number of queries to find m will
scale linearly with the number of elements N . In the adiabatic Grover algo-
rithm we define the oracle in terms of the final Hamiltonian Ĥ1 = 1̂− |m〉〈m|.
Here, |m〉 represents the marked state corresponding to the item m to be
found. The binary representation is associated to the eigenvalues of the Pauli
operator σ̂z, that is σ̂z |0〉 = + |0〉 and σ̂z |1〉 = − |1〉. That way, the marked
state |m〉 equals the ground state of Hamiltonian Ĥ1 with eigenvalue 0, and
all other basis states have energy 1. We now proceed to discuss the key ele-
ments of the adiabatic Grover algorithm. For a detailed discussion the reader
is referred to Refs.[199, 263].

9.2 Initialization of the Algorithm

A successful operation of the quantum Grover algorithm requires an initial-
ization in a well-known initial Hamiltonian Ĥ0. In case of the Grover search
algorithm the initial Hamiltonian is Ĥ0 = 1̂− |φ〉〈φ|, where

|φ〉 =
1√
N

N−1∑

j=0

|j〉 = |+〉⊗n (9.1)

is a uniform superposition state and |±〉 = (|0〉 ± |1〉)/
√

2. |φ〉 is the ground
state of Ĥ0 so that if the full Hamiltonian Ĥ(s) = (1− s)Ĥ0 + sĤ1 is initially
prepared in |ψ(0)〉 = |φ〉 the evolution of the system can be reduced to a
two-dimensional subspace Q which is defined by the span of states |m〉 and
|m⊥〉. Here,

|m⊥〉 =
1√

N − 1

∑

j 6=m

|j〉 (9.2)

is the superposition of all states other than |m〉. The eigensystem of the
two-dimensional Hamiltonian Ĥ(s) in subspace Q can be solved exactly and
reveals an energy gap ∆(s) between the two lowest-energy states according
to [199]

∆(s) =

√
(1− 2s)2 +

4

N
s(1− s). (9.3)
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This yields a minimal gap ∆min = 1/
√
N = 2−n/2 in the middle of the sweep,

i.e. for s = 1/2. Applying the adiabatic theorem, the adiabatic condition
becomes [199]

tg �
3

∆2
min

= 3N. (9.4)

Only if the sweep duration tg is larger that 3/∆2
min the annealing procedure

will be adiabatic and return the correct result |m〉. However, inequality (9.4)
suggests a scaling much like in classical algorithms: The minimal time scales
linearly with the number of items N in the database.

9.3 Demonstration of Quantum Speedup

Based on the above discussion there is no quantum speedup for the quantum
Grover algorithm. Yet, the process can be optimized to achieve a quadratic
quantum speedup over the classical database search. To this end we write the
full annealing Hamiltonian in the more general form Ĥ(s) = (1− A(s))Ĥ0 +
A(s)Ĥ1, where A(s) is the so-called annealing schedule. Before, we only con-
sidered the situation of linear annealing schedules A(s) = s. An optimized
annealing schedule that slows down near the minimum gap can be used to
demonstrate quantum speedup. Similar ideas have a long history in NMR
[264] and are also key in recent research [150, 151].

A simple annealing schedule that serves for demonstration purposes is to
choose ∂tA(t) = c∆2[A(t)], where c is a constant, with the necessary boundary
condition A(0) = 0 and A(tg) = 1. This reflects that the annealing schedule
adapts to the energy gap and eventually yields the result [199]

tg =
N

c
√
N − 1

atan
(√

N − 1
)
N�1−→ π

2c

√
N. (9.5)

Indeed, equation (9.5) demonstrates a quadratic quantum speedup of the adi-
abatic Grover algorithm over the classical scenario which scales proportional
to N . Note that from equation (9.5) it seems that the sweep duration can be
made arbitrarily small by increasing the constant c. However, the error due
to the adiabatic approximation is directly related to the value of c, suggesting
that the adiabatic error increases with increasing c [199].

The analysis above assumes exact knowledge of the minimum energy gap
to find a better annealing schedule. Generally, for complex problems, the
energy spectrum is unknown and hence it is hard to determine optimized
annealing schedules a priori. Finding optimized annealing schedules will not
be part of this thesis and the reader is referred to literature [199, 263, 265–269]
for an overview of the current state of the art.



Chapter 10

Hybrid Quantum-Classical
Annealing

In chapter 9 we introduced the basics of AQC and mentioned its advantages
compared to the quantum circuit model. Nevertheless, there are some down-
sides that need to be considered when implementing AQC/QA: Perfectly adi-
abatic sweeps require infinite time. Since, both in numerics and experiments,
sweep lengths are inevitably finite, there will always be diabatic excitation
errors [151], as can be seen from studies of avoided crossings by means of of
Landau-Zener (LZ) physics [270, 271]. Moreover, although there is evidence
for thermally assisted AQC (TA-AQC), it remains a general question how
thermal excitations of states close to the ground state can be avoided and/or
be reverted efficiently. Since the spectral gap ∆ between the ground state and
the next higher state is generally unknown [253] it remains an important task
to find efficient cooling schemes that are independent of ∆. Present cooling
schemes such as Sisyphus cooling [272] and evaporative cooling [273] can in
principle be used to cool qubits, but unfortunately require knowledge of the
energy gap and are hence not well-suited for general applications.

In this chapter we will present a cooling scheme that is independent of the
energy gap ∆. Without loss of generality we focus on an annealing platform
based on superconducting flux qubits [274] and restrict our analysis to the dy-
namics of dissipative Landau-Zener systems. We provide a schematic circuit
diagram and a set of quantum master equations that accurately describe the
associated spin-boson dynamics of the driven dissipative Landau-Zener sys-
tem, showing that gap-independent cooling can be achieved by coupling the

This chapter was submitted for peer-review in Phyiscal Review Letters. Preprint
is available online: ”L.S. Theis, P.K. Schuhmacher, M. Marthaler and F.K. Wilhelm,
arXiv:1808.09873 (2018)”. The majority of the text was written by L.S. Theis. All nu-
merical simulations and underlying analytic calculations were carried out by L.S. Theis.
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Qubit

CPW
d

σx

σzFlux noise

FIG. 10.1 – Schematic circuit diagram to implement both σ̂x and σ̂z coupling
to a superconducting flux qubit. While the flux noise (σ̂z) is always present,
we propose to add an additional σ̂x coupling in terms of a coplanar waveg-
uide (CPW) at distance d from the qubit. The σ̂x-coupling strength can be
controlled directly by altering d.

qubit transversely to an ohmic environment, in addition to always-present lon-
gitudinal thermal noise. Since the effect of the additional transverse coupling
can be understood as supplementing the quantum annealing procedure with
additional classical annealing, we call the proposed scheme Hybrid Quantum-
Classical Annealing (HQCA).

10.1 System Model and Equations of Motion

As a toy model we restrict ourselves to a dissipative Landau-Zener prob-
lem, governed by a spin-boson model [275]. The bare system Hamiltonian
ĤQ(t) features a generally time-dependent drive ε(t) and a constant tunneling
amplitude ∆, i.e.

ĤQ(t) = −ε(t)
2
σ̂z −

∆

2
σ̂x, (10.1)

where the σ̂j denote the Pauli matrices. In the simplest non-trivial model, ε(t)
is linear in time with sweep velocity v and y-intercept ε0, i.e. ε(t) = vt+ ε0.
Without loss of generality we will assume ε0 = 0 in the remainder of this
chapter and let the sweep take place within the time interval [−t0, t0] with t0
chosen such that the initial energy splitting is large compared to the minimal
gap ∆. This serves as a proper toy model, especially if the two eigenstates
can be mapped to well-isolated adiabatic states of a larger system. In fact,
a system that features such an isolated small gap has been engineered and
analyzed with respect to the influence of (thermal) noise [276]. The full
Hamiltonian of our system is given by the bare qubit ĤQ, the heat bath ĤB
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and the qubit-environment coupling terms ĤQB. We model each heat bath as
harmonic oscillators, and assume that both X- and Z-couplings are present.
We will refer to these couplings as transverse and longitudinal, respectively.
The respective Hamiltonians are then given by

ĤQB =
∑

ν=x,z

∑

k

σ̂νλk,ν

(
b̂k,ν + b̂†k,ν

)
, (10.2a)

ĤB =
∑

ν=x,z

∑

k

ωk,ν b̂
†
k,ν b̂k,ν . (10.2b)

Based on previous ideas and experiments [277–280] we propose a cooling
scheme via an additional σ̂x coupling by using a coplanar waveguide (CPW)
as an environment, as shown in FIG. 10.1. The coupling strength to the qubit
can be controlled by modifying the distance d between CPW and qubit. In
order to derive an analytic set of equations of motions for the qubit subsystem,
we follow the core idea of the standard Bloch-Redfield formalism [111]. An
adequate model to describe the physics of AQC/QA is the spin-boson model
[275], which properly characterizes the coupling of some quantum system
with an external environment. In order to obtain analytic expressions for the
equations of motion in case of generic time-dependent Hamiltonians we apply
an appropriate formulation [281, 282] of the Bloch-Redfield theory. Following
Refs.[255, 281] we transform to a frame defined by the time-dependent rotation
R̂(t) = exp (iφ(t)σ̂y/2). Since the transformation is time-dependent the qubit
Hamiltonian acquires an additional inertial term, which can be related to non-
stoquastic interactions in a multi-qubit scenario [262], so that the Landau-
Zener Hamiltonian in the rotating frame reads

ˆ̃HQ(t) = R̂†(t)ĤQ(t)R̂(t) + i
˙̂
R†(t)R̂(t) = −E(t)

2
σ̂x +

φ̇(t)

2
σ̂y, (10.3)

where we use the mixing angle φ(t) = atan(ε(t)/∆) and the instantaneous
energy splitting E(t) =

√
∆2 + ε2(t). We denote all other operators in that

frame by a tilde, i.e. ˆ̃O(t) = R̂†(t)Ô(t)R̂(t). For later use we define ˆ̃H0(t) ≡
−E(t)σ̂x/2. Analogously, the qubit-environment coupling becomes

ˆ̃HQB(t) =
∑

ν=x,z

∑

k

ˆ̃σν(t)λk,ν

(
b̂k,ν + b̂†k,ν

)
(10.4)

with ˆ̃σν(t) being the Pauli matrices in the rotating frame. By introducing the
weights f1(t) = sin(φ(t)) and f2(t) = cos(φ(t)) we can express the rotating-
frame-matrices as ˆ̃σx(t) = −f1(t)σ̂z + f2(t)σ̂x and ˆ̃σz(t) = f2(t)σ̂z + f1(t)σ̂x,
respectively. In order to provide closed analytical expressions for the equations
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of motion, one employs standard Markovian approximations and an additional
adiabatic-Markovian approximation [281] (AMA). The latter is inevitable to
deal with the interaction picture transformation needed to carry out the time-
dependent Bloch-Redfield formalism. A detailed derivation of the equations
of motion is given in Appendix 10.A. The AMA features two important
parts: (i) the memory time τmem of the bath is assumed to be much smaller
than any system time scale and (ii) the drive ε(t) acts only on timescales
much larger than τmem so that it has no significant contribution to the rates.
This, in turn, allows to derive the Bloch equations for the density matrix
ˆ̃ρQ(t) = (1̂ +

∑
n bn(t)σ̂n)/2 associated to the qubit subsystem (10.3). The

Bloch vector (bx, by, bz) is determined by the set of quantum master equations
(QME)

ḃx =
(
φ̇− γxz

)
bz − γr

(
bx − b̄x

)
, (10.5a)

ḃy = Etbz − (γd + γr) by, (10.5b)

ḃz = −φ̇bx − Etby − γdbz − γzx
(
bx − b̄x

)
. (10.5c)

Here, we use the shorthand notation Et ≡ E(t), b̄x ≡ tanh(βEt/2) and defined
the set of rates

γr = 2πcoth

(
βEt

2

)(
sin2(φ)Jx(Et) + cos2(φ)Jz(Et)

)
, (10.6a)

γd = 4π lim
ω→0

n̄(ω) (Jz(ω) + Jx(ω)) , (10.6b)

γxz = 4πsin(φ)cos(φ) lim
ω→0

n̄(ω) (Jx(ω)− Jz(ω)) , (10.6c)

γzx = 2πsin(φ)cos(φ)coth

(
βEt

2

)
(Jx(Et)− Jz(Et)) , (10.6d)

that depend on the spectral densities Jν(ω) of the respective environments,
and the Bose distribution n̄(ω) = 1/(eβω−1), where β = 1/kBT . Relaxation is
encoded in γr, while γd and γzx,xz describe pure dephasing and cross-dephasing,
respectively. We stress that the Bloch-type equations (10.5) are based on a
proper treatment of external drives. The performed AMA might suggest that
the QME are only valid inside the adiabatic regime, i.e. when v � ∆2.
However, even for non-adiabatic drives they are still a good approximation.
This has been verified numerically for a similar Hamiltonian in Ref. [255] by
comparing the numerical solutions of their equivalent of equations (10.5) to
a numerically exact solution obtained via the path integral based method
QUAPI [283]. Furthermore, a detailed analysis of the assumptions that lead
to the QME in terms of different timescales was carried out in Ref. [282].
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FIG. 10.2 – (a): Final ground state population pG as a function of sweep
velocity v for a σ̂z-only coupling with coupling strength αz = 5 ·10−3 at differ-
ent temperatures. Clearly, even for small velocities and small temperatures, a
significant amount of population is lost into the excited state owing to heating.
(b): Relative improvement of pG compared to the data in (a) if an additional
CPW is used as a transversely coupled (σ̂x) heat bath with coupling strength

αx = αz, i.e. we plot (p
(x,z)
G − p(z)

G )/p
(z)
G where the superscript indicates the

type of couplings in the system. In the adiabatic regime we find improvements
of about 50% while the cooling effect in the non-adiabatic regime is even more
pronounced with gains of a few hundred percent. Generally, the gain increases
with temperature – indicating proper TA-AQC.

10.2 Environmental engineering

In our analysis we restrict ourselves to the case of ohmic heat baths [284,
285]. That is, the spectral densities Jν(ω) depend linearly on ω. However, this
model is only valid up to some high-frequency cutoff ωc,ν . For our purpose, we
choose to work with an exponential cutoff at frequencies ωc,ν = 10∆ whereby
the exact numerical value has an irrelevant impact on the quality of our
results. Different coupling strengths are modeled by the parameter αν , so
that the spectral density is eventually given by Jν(ω) = ανωe

−ω/ωc,ν . With
this explicit form of J(ω) we compute the limit limω→0 n̄(ω)Jν(ω), needed
in equations (10.6), to be equal to αν/β. We simulate the QME (10.5) with
initial conditions set up such that the system will always start in the exact
ground state of Hamiltonian (10.3). We use the final ground state population
pG after a full Landau-Zener sweep as our figure of merit to evaluate cooling
effects.

FIG. 10.2a shows the dependence of pG on sweep velocity v and tem-
perature T , for pure σ̂z coupling with αz = 5 · 10−3. As expected, heating
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in form of thermal excitations increases with temperature, substantiated by
significant population loss compared to coherent dynamics. If temperatures
are not too high, i.e. kBT . 5∆, there is a locally optimal velocity v0 at which
the sum of diabatic errors due to finite sweep length and thermal excitations
are minimized [286, 287]. However, since both v0 and pG(v0) strongly depend
on αz and temperature T , a sweep with velocity v0 would be a tradeoff which
generally still features poor performance. Instead, we deduce from FIG. 10.2b
that an additional CPW, coupled transversely via σ̂x with αx = αz, generally
performs significantly better compared to the situation where only longitudi-
nal thermal noise is present. The relative gain is defined as (p

(x,z)
G − p(z)

G )/p
(z)
G ,

where the superscript indicates which types of environment couple to the sys-
tem. Moreover, we find that – except for a small subset of velocities – higher
temperatures lead to better results than low-temperature simulations. We
therefore argue that an additional transversely coupled heat bath not only
reduces heating – it also properly demonstrates TA-AQC [254]: The benefit of
a thermal environment during open system dynamics. We observe this effect
even for αz > αx, remarking that it is slightly attenuated compared to the
situation αz ≤ αx. Aside, we note that the results for higher temperatures
serve as a mock-up for small energy gaps.

In case of pure thermal noise (σ̂z), the effect of TA-AQC in the non-
adiabatic regime is negligible for any reasonable values of αz. Nevertheless,
for αz & O(0.01), we find appreciable indications for TA-AQC even without
an additional CPW. A detailed numerical study of how the final ground state
population depends on both coupling constants, for fixed temperature kBT =
5∆ and fixed velocity v = 0.5∆2, is depicted in FIG. 10.3a. Comparing to the
behavior of pG(αz) without a CPW, as shown in FIG. 10.3b, the advantage of
an additional σ̂x heat bath becomes apparent: As soon as even small couplings
αx are present, pronounced relaxation after sweeping through the avoided
crossing leads to significant cooling of the system. This is substantiated by
equation (10.6a): Contributions to the relaxation rate γr are non-negative, so
that additional transverse coupling overall amplifies relaxation processes.

Based on the concept of frustrated decoherence [277, 278] one might sus-
pect that excitations into the excited state are effectively blocked due to the
non-commutativity of σ̂x and σ̂z. However, we do not observe such quantum
effects (which are similar to the Zeno blockade [288]) and attribute the effi-
ciency of the cooling scheme solely to enhanced relaxation, as evidenced by
the numerics in Appendix 10.B. Hence, the general quantum annealing pro-
cess is supported by relaxation at finite temperatures which must be smaller
than E(t) well outside the avoided crossing regime. The presence of energy
relaxation is reminiscent of classical simulated annealing [124]. We therefore
refer to our method as Hybrid Quantum-Classical Annealing (HQCA).
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FIG. 10.3 – (a) Dependence of the final ground state population pG on the
coupling strengths αx and αz for a temperature of kBT = 5∆ at a sweep
velocity v = 0.5∆2. The velocity is chosen such that it corresponds to a local
optimum of pG(v) as extracted from FIG. 10.2a. (b) Dependence of pG on αz
without the existence of an additional CPW, i.e. for αx = 0, with identical
parameters as in (a). The minimum is reached at αz,0 ≈ 0.01.

If the transverse coupling exceeds αx & 5 · 10−3, roughly all population
has relaxed back to the ground state by the end of the sweep – irrespective
of αz. The value αz,0 where the curve pG(αz) reaches its minimum decreases
with increasing temperature. Note that the non-monotonic behavior of pG(αz)
in FIG. 10.3b can be explained using a key result of Ref. [289], where the
authors show how dissipative dynamics merge into semiclassical dynamics if
the associated rates exceed a certain temperature-dependent value: In that
case, the final ground state population will be approximately given by the
result of coherent dynamics – which can be estimated via the Landau-Zener
formula pLZ = 1− e−π∆2/2v [270, 271]. For the parameters in FIG. 10.3 this
corresponds to a semiclassical limit of about 0.95, which is in good agreement
with the curve in FIG. 10.3b for αz ≈ 1.

10.3 Conclusion

In conclusion, we presented a gap-independent cooling scheme for a quantum
system affected by thermal σ̂z noise. The method outlined in this chapter
generally increases the ground state population after sweeping through an
avoided crossing at finite temperatures, owing to enhanced relaxation pro-
cesses induced by an additional transversely coupled heat bath in form of
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a coplanar waveguide. We find significant numerical evidence of thermally
assisted quantum annealing, and numerically demonstrated that the proposed
cooling scheme is capable of improving ground state populations by up to a
few hundred percent. Thereby we developed a method that has the potential
to improve the quality of current quantum annealing devices. Recall that all
parameters are independent of the energy gap, so that our cooling scheme is
intrinsically robust against energy fluctuations.

Our results suggest that the optimal annealing device is hybridizes quan-
tum and classical annealing: While quantum annealing allows to circumvent
local traps at constant energy, classical annealing (in form of relaxation in-
duced by transverse couplings to an environment) ultimately lowers the en-
ergy. We hence refer to our scheme as Hybrid Quantum-Classical Annealing
(HQCA). For further details on the derivation of the underlying QME (10.5)
and numerical details that illustrate enhanced relaxation processes, we refer
the reader to appendices 10.A and 10.B, respectively.



Appendix

10.A Derivation of the Quantum Master Equa-

tions

We provide details on the derivation of the quantum master equation. The
total Hamiltonian is decomposed as

Ĥ(t) = ĤQ(t) + ĤQB + ĤB, with (10.7)

ĤQ(t) = −ε(t)
2
σ̂z −

∆

2
σ̂x (10.8)

ĤQB =
∑

ν=x,z

∑

k

σ̂νλk,ν

(
b̂k,ν + b̂†k,ν

)
, (10.9)

ĤB =
∑

ν=x,z

∑

k

ωk,ν b̂
†
k,ν b̂k,ν . (10.10)

Following Ref. [281], we move to the rotating frame defined by the transfor-
mation R̂(t) = exp (iφ(t)σ̂y/2) with φ(t) = atan(ε(t)/∆). With the instanta-

neous energy splitting E(t) =
√
ε2(t) + ∆2 the bare system Hamiltonian and

the coupling term become

ˆ̃HQ(t) = −E(t)

2
σ̂x +

φ̇(t)

2
σ̂y ≡ ˆ̃H0 +

φ̇(t)

2
σ̂y, (10.11)

ˆ̃HQB(t) =
∑

ν=x,z

∑

k

ˆ̃σν(t)λk,ν

(
b̂k,ν + b̂†k,ν

)
. (10.12)

All operators other than ˆ̃HQ in that frame follow the transformation rule
ˆ̃O(t) = R̂†(t)Ô(t)R̂(t). By introducing the weights f1(t) = sin(φ(t)) and
f2(t) = cos(φ(t)) we express the rotating-frame Pauli matrices as

ˆ̃σx(t) = −f1(t)σ̂z + f2(t)σ̂x, ˆ̃σz(t) = f2(t)σ̂z + f1(t)σ̂x. (10.13)
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Following standard Bloch-Redfield theory (cf. section 3.3 in [111]) we start

in the interaction frame with respect to ˆ̃HQ and ˆ̃HB. Hence, the coupling
Hamiltonian in the interaction picture is given by

ˆ̃HQB,I(t) =
∑

ν=x,z

ˆ̃U †Q(t)ˆ̃σν(t)
ˆ̃UQ(t)⊗ B̂ν(t)

B̂ν(t) =
∑

k

λk,ν

(
eiωk,νtb̂†k,ν + e−iωk,νtb̂k,ν

) (10.14)

with some bath operator B̂ν and the free propagator of the bare qubit ˆ̃UQ(t) =

T̂ exp
(
−i
∫ t

0
ˆ̃HQ(t′)dt′

)
. The equation of motion for the density matrix of the

reduced qubit subsystem is hence given by

˙̃̂ρQ,I(t) = −
∞∫

0

dsTrB

{[
ˆ̃HQB,I(t),

[
ˆ̃HQB,I(t− s), ˆ̃ρQ,I(t)⊗ ρ̂B

]]}

= −
∞∫

0

ds
∑

ν,ν′

{
ˆ̃σν,I(t)ˆ̃σν′,I(t− s)ˆ̃ρQ,I(t) 〈B̂ν(t)B̂ν′(t− s)〉

−ˆ̃σν,I(t)ˆ̃ρQ,I(t)ˆ̃σν′,I(t− s) 〈B̂ν′(t− s)B̂ν(t)〉+ h.c.
}

In the above equation we have already included (i) a weak-coupling approx-
imation (Born approximation), which states that the reservoir is negligibly
affected by the system so that we may write the full density matrix as a
tensor product ˆ̃ρ(t) = ˆ̃ρQ(t)⊗ ρ̂B and (ii) a Markovian approximation. The
latter states that there is no memory, i.e. time evolution of the state de-
pends only on its present value, and is based on the assumption that the
correlation functions decay sufficiently fast compared to the time scale over
which the system changes notably. If we choose ρ̂B to be a stationary state
of the reservoir, the correlation functions are homogeneous in time, hence
〈B̂α(t)B̂β(t− s)〉 = 〈B̂α(s)B̂β(0)〉. Furthermore we assume that there is no

correlation between different baths, i.e. 〈B̂α(s)B̂β(0)〉 ∝ δαβ. We can then
write equation (10.15) in the form

˙̃̂ρQ,I(t) = −
∞∫

0

ds
∑

ν=x,z

{[
ˆ̃σν,I(t), ˆ̃σν,I(t− s)ˆ̃ρQ,I(t)

]
〈B̂ν(s)B̂ν(0)〉+ h.c.

}
.

(10.15)

We are looking for the equation of motion in the Schrödinger picture, that is

the evolution of ˆ̃ρQ(t), given by ˙̃̂ρQ(t) = ˆ̃UQ(t) ˙̃̂ρQ,I(t)
ˆ̃U †Q(t)− i[ ˆ̃HQ(t), ˆ̃ρQ(t)].
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A straightforward calculation reveals the sought equation of motion in the
Schrödinger picture to be

˙̃̂ρQ(t) = −i
[

ˆ̃HQ(t), ˆ̃ρQ(t)
]
−
∑

ν=x,z

{[
ˆ̃σν(t),

ˆ̃Sν(t)ˆ̃ρQ(t)
]

+ h.c.
}

(10.16)

where we introduced the operator

ˆ̃Sν(t) =

∞∫

0

ds ˆ̃UQ(t, t− s)ˆ̃σν(t− s) ˆ̃U †Q(t, t− s) 〈B̂ν(s)B̂ν(0)〉 . (10.17)

In order to derive an analytic form for the equation of motion we further
need to apply an adiabatic Markovian approximation [281] which amounts
to expressing the propagator as

ˆ̃UQ(t, t− s) ≈ exp
(
−i ˆ̃HQ(t)s

)
. (10.18)

This is sufficiently accurate provided the memory time τmem of the bath is
much smaller than any system time scale, τmem � (t− s), and if the drive ε(t)
acts on time scales τε � τmem so that it has no significant effect on the rates.
The correlation function can be expressed in terms of the spectral density
Jν(ω) of the bath (cf section 3.1.4 in [275]):

〈B̂ν(s)B̂ν(0)〉 =

∞∫

0

dω Jν(ω)
[
e−iωs (n̄ν(ω) + 1) + eiωsn̄ν(ω)

]
(10.19)

with the single-particle Bose distribution n̄ν(ω) = 1/(eβνω − 1). Using the
identity n̄ν(−ω) = −(n̄ν(ω)+1) we can rewrite equation (10.19) as an integral
over positive and negative ω, i.e.

〈B̂ν(s)B̂ν(0)〉 =

∞∫

−∞

dω sgn(ω)Jν(|ω|)n̄ν(ω)eiωs. (10.20)

Inserting equation (10.20) into the definition (10.17) allows us to carry out
the integration over s first, which yields terms

∫∞
0

dseiωs ≈ πδ(ω). Note
that we here neglect imaginary parts resulting from principal value integrals
since they simply manifest themselves as Lamb shifts. Calculating the right
hand side of equation (10.16) while using the Bloch representation ˆ̃ρQ(t) =
(1̂+

∑
n bn(t)σ̂n)/2 we eventually find the quantum master equations presented
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FIG. 10.4 – (a) Final ground state population pG as a function of the sweep
velocity v for a σ̂z-only coupling with coupling strength αz = 5 · 10−3 at
different temperatures. (b) Final ground state population for same parameters
as in (a) but with additional transverse coupler.

in the main article,

ḃx =
(
φ̇− γxz

)
bz − γr

(
bx − b̄x

)
, (10.5a)

ḃy = Etbz − (γd + γr) by, (10.5b)

ḃz = −φ̇bx − Etby − γdbz − γzx
(
bx − b̄x

)
. (10.5c)

Here, we use the shorthand notation Et ≡ E(t), b̄x ≡ tanh(βEt/2). Note that
we assume same temperatures for both baths since, in experiments, they will
both be located in the same cyrostat. The rates are then given by

γr = 2πcoth

(
βEt

2

)(
sin2(φ)Jx(Et) + cos2(φ)Jz(Et)

)
, (10.6a)

γd = 4π lim
ω→0

n̄(ω) (Jz(ω) + Jx(ω)) , (10.6b)

γxz = 4πsin(φ)cos(φ) lim
ω→0

n̄(ω) (Jx(ω)− Jz(ω)) , (10.6c)

γzx = 2πsin(φ)cos(φ)coth

(
βEt

2

)
(Jx(Et)− Jz(Et)) . (10.6d)

10.B Numerical Verification of Relaxation and

Cooling

In addition to the graphics shown in the main part of chapter 10, we want to
further support the statements by providing additional numerical data. For
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FIG. 10.5 – Population of the ground state as a function of time for different
parameter settings with sweep velocity v = 0.3∆2. As apparent from the
pics/annealing, an additional transverse coupling does not reduce intermediate
excitations. Cooling into the ground state is achieved by relaxation back into
the ground state.

an absolute comparison of how the final ground state population depends on
temperature and sweep velocity, please see FIG. 10.4. Our statement that
cooling is solely caused by relaxation processes is supported by FIG. 10.5,
which depicts the evolution of ground state population for different parameter
settings. If the CPW is transversely coupled to the qubit, excitation out of the
ground state is not minimized intermediately. Instead, population relaxes back
into the ground state after passing the avoided crossing. We find qualitatively
identical dynamics for other parameter regimes as well.





Conclusion

With a variety of already known near- and long-term applications, quantum
information processing and computation is of great interest for many areas
of science, such as physics, chemistry, biology and pharmaceutics. To date,
accurate coherent quantum control has been demonstrated with on the order
of ten qubits. Simple algorithms, for instance to compute the energy sur-
face of molecular hydrogen, were carried out successfully and substantiate
impressive progress in terms of single- and multi-qubit control over the last
decade. Quantum gates achieve fidelities at which error correction via surface
codes become useful and indeed simple instances of error correction have
already been demonstrated. Nevertheless, building a large-scale fault-tolerant
universal quantum computer still seems out of reach. It will require hundreds
or thousands of logical qubits, with significant overhead required to imple-
ment error correction protocols. Scaling up current quantum systems poses
immense challenges to both physics and engineering: Readout and control
electronics need to be developed for large-scale applications, algorithms and
control protocols need to be carefully designed to minimize overhead when
scaling up, and likely a variety of other yet unknown problems remain to
be mastered on the course of building a usable quantum computer. A ma-
jor focus of this thesis was the development of a simple but accurate model
of coupled qubits, and the design of optimal waveforms to implement high-
fidelity entangling gates on short timescales. Achieving high fidelities is an
important means to significantly reduce overhead due to additional physical
qubits required for error correction, while short gate times allow to reduce
errors due to decoherence and parameter drifts.

In order to determine solutions for accurate quantum control it is inevitable
to utilize models of high accuracy. In chapter 5 we provided a framework
that can be used to derive accurate effective Hamiltonians of arbitrary time-
dependence. Implementing entangling gates between dispersively coupled
superconducting qubits is a generic example of where our theory is of great
relevance: Advanced control schemes that aim for shortest possible gate times
require real-time control of the magnetic flux penetrating the qubits. However,
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current models do not account for all effects due to this real-time control and
hence lack accuracy. We provided a more exhaustive description of the physics
and showed that gate errors deduced from different models can differ by up
to 10−2 even for very smooth controls, which is on the same order as the
lowest known error thresholds for quantum error correction schemes. This
encourages to make use of our extended technique in order to reliably estimate
the dynamics, which is for instance of particular interest for future applications
of quantum optimal control in dispersively coupled systems, or others that
are subject to similar Hamiltonians.

Successful implementation of theoretically optimal control pulses in ex-
periments requires calibration of pulse parameters. Hereto it is preferable to
parametrize the pulses in terms of simple analytic functions with the fewest
possible amount of parameters. Undesired excitations of transitions that are
in spectral vicinity of one or more targeted ones (this is referred to as leakage)
are a major source of error when controlling quantum systems. Chapter 6
reviewed the prominent DRAG framework, which amounts to supporting a
base waveform with its derivatives in order to minimize this type of errors by
using only a minimal number of tunable parameters. We provided the first
description of the theory that properly connects DRAG to related method-
ology, points out fundamental differences and highlights important aspects
relevant for a successful application. To illustrate the power of the method
we exemplarily applied it to multiple fundamentally different problems and
provided an overview of further experimentally motivated applications.

Chapter 7 combines DRAG pulses and additional optimization of trap
parameters to find optimal solutions to entangle Rydberg atoms via the
Rydberg blockade interaction. Rydberg atoms – atoms excited to quantum
states with large principle quantum numbers – are particularly attractive due
to their strong long-range interaction with a huge on-off-ratio of about twelve
orders of magnitude. Yet, separation between adjacent quantum states scales
inversely with their quantum number so that these gates are very prone to
leakage errors. So far it was unclear whether gates based on the Rydberg
blockade interaction are capable of achieving fidelities better than 99.9%
in a realistic model. The work presented in chapter 7 demonstrates that
entangling gates with fidelities larger than 99.99% are indeed possible when
accounting for the most relevant leakage channels and dissipative processes,
even in room temperature environments. We showed that the required gate
times are only 50 ns, outperforming previous protocols both in terms of gate
times and fidelities by an order of magnitude. These results establish the
potential of neutral atom qubits with Rydberg blockade gates for scalable
quantum computation.

In chapter 8 we showed that coherent generation of maximally entangled
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states between trapped ions, using Raman lasers, is possible with realistic
fidelities of about 99% on sub-microsecond timescales. Hereto, we derived
an accurate model that is free from common approximations which other-
wise severely restrict the application of quantum optimal control. The error
we achieve is comparable to that of advanced dissipative state preparation
schemes, and just an order of magnitude lower than that of modern unitary
control proposals. However, we operate on timescales that are two to four
orders of magnitude below those reported in related literature. In order to
better understand if dissipative preparation schemes – which tend to be in-
trinsically robust against certain experimental noise – are preferable over
coherent control, we benchmarked our results against amplitude noise and
variable initial conditions, indicating that unitary control sequences achieve
appreciable robustness as well. Future research can directly connect to the
methods and implications of chapter 8, and study the regime of low microsec-
ond timescales, which should allow to improve state fidelities significantly,
while still operating at much shorter time – suggesting that these solutions
are also very robust against errors due to parameter drift and dephasing.

The above summary of part II mainly focused on the generation of high-
fidelity entangling gates required for applications in the quantum circuit
model, where quantum algorithms are divided into multiple discrete gates.
Adiabatic quantum computation and quantum annealing are based on a
different approach: Computational problems are solved by finding the ground
state of a Hamiltonian by the use of adiabatic system control. Current state-
of-the-art annealing devices, that are based on superconducting flux qubits,
suffer from diabatic errors originating from imperfect adiabaticity due to finite
sweep lengths and thermal excitations, induced by blackbody flux noise as the
energy gap shrinks below temperature. In chapter 10 we used a dissipative
Landau-Zener system to analyze these errors and proposed a remarkably
simple solution to them: Adding a heat bath to a transverse, non-commuting
observable allows the qubit to relax back to its ground state after the avoided
crossing, enhancing cooling effects by up to a few hundred percent. A major
advantage of this approach is its independence of the generally unknown
energy gap. Based on its functionality, we called our approach hybrid quantum-
classical annealing (HQCA) since it combines aspects of both quantum and
classical annealing: While pure quantum annealing circumvents local traps
at constant energy, additional classical annealing by enhanced relaxation
ultimately lowers the energy. The analysis of chapter 10 is restricted to single-
qubit problems and opens a future research project about cooling of multi-
qubit instances. In this case, frustration becomes relevant and we expect that
some modification of our current HQCA proposal is required to account for
the additional degrees of freedom. While in the current proposal the amount
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of cooling increases monotonically with transverse coupling strength, i.e. with
enhanced classical annealing, we expect a sweet spot of transverse coupling
strength for multi-qubit instances – corresponding to the optimal tradeoff
between quantum and classical annealing.

Recent progress in quantum information science, especially using super-
conducting qubits, is extremely promising, and it is reasonable to believe that
quantum supremacy will be demonstrated in the very near future. This refers
to the successful operation of a computational task on quantum hardware
which is impossible to run on classical computers. Despite this considerable
progress, a myriad of fundamental and technological challenges remains to
be solved before being able to build a usable large-scale quantum computer.
In order to pursue this ultimate goal efficiently, it appears to be crucial to
carefully analyze tradeoffs between quality and quantity of qubits. At the
time of writing, it seems that first and foremost industrial research is almost
only competing in terms of quantity. Press releases of bigger chips continu-
ously make headlines, but there remains silence about actual performance of
these chips over the course of more than half a year already. This suggests
that, while of course quantity is an important aspect of scaling up current
proof of principle experiments, fundamental research on the few-qubit level,
as carried out in this thesis, is equally required and should potentially return
to the focus of current research before claiming the next generation of larger
quantum chips.
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[166] H. Jirari and W. Pötz, “Optimal coherent control of dissipative n-level
systems”, Phys. Rev. A 72, 013409 (2005).

[167] P. Rebentrost and F. Wilhelm, “Optimal control of a leaking qubit”,
Phys. Rev. B 79, 060507 (2009).

[168] S. Safaei, S. Montangero, F. Taddei, and R. Fazio, “Optimized single-
qubit gates for josephson phase qubits”, Phys. Rev. B 79, 064524
(2009).

[169] B Khani, J. M. Gambetta, F Motzoi, and F. K. Wilhelm, “Optimal
generation of fock states in a weakly nonlinear oscillator”, Physica
Scripta T137, 014021 (2009).

[170] F. Motzoi, J. M. Gambetta, S. T. Merkel, and F. K. Wilhelm, “Optimal
control methods for rapidly time-varying Hamiltonians”, Phys. Rev. A
84, 022307 (2011).

[171] M. Steffen, J. Martinis, and I. Chuang, “Accurate control of Josephson
phase qubits”, Phys. Rev. B 68, 224518 (2003).

http://dx.doi.org/10.1016/j.physrep.2008.11.001
http://dx.doi.org/10.1103/RevModPhys.35.710
http://dx.doi.org/10.1103/RevModPhys.35.710
http://dx.doi.org/10.1109/PROC.1963.1664
http://dx.doi.org/10.1103/PhysRevA.79.013819
http://dx.doi.org/10.1103/PhysRevA.92.022335
http://dx.doi.org/10.1103/PhysRevA.92.022335
http://dx.doi.org/10.1103/PhysRevApplied.6.064007
http://dx.doi.org/10.1103/PhysRevA.88.062318
http://dx.doi.org/10.1103/PhysRevA.88.062318
http://dx.doi.org/10.1103/PhysRevA.72.013409
http://dx.doi.org/10.1103/PhysRevB.79.060507
http://dx.doi.org/10.1103/PhysRevB.79.064524
http://dx.doi.org/10.1103/PhysRevB.79.064524
http://dx.doi.org/10.1088/0031-8949/2009/t137/014021
http://dx.doi.org/10.1088/0031-8949/2009/t137/014021
http://dx.doi.org/10.1103/PhysRevA.84.022307
http://dx.doi.org/10.1103/PhysRevA.84.022307
http://dx.doi.org/10.1103/PhysRevB.68.224518


143 BIBLIOGRAPHY

[172] J. M. Chow, J. M. Gambetta, L. Tornberg, J. Koch, L. Bishop, A. A.
Houck, B. R. Johnson, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf,

“Randomized Benchmarking and Process Tomography for Gate Errors
in a Solid-State Qubit”, Phys. Rev. Lett. 102, 090502 (2009).

[173] R. Unanyan, L. Yatsenko, K Bergmann, and B. Shore, “Laser-induced
adiabatic atomic reorientation with control of diabatic losses”, Opt.
Commun. 139, 48 (1997).

[174] M. Demirplak and S. A. Rice, “Adiabatic population transfer with
control fields”, J. Phys. Chem. A 107, 9937 (2003).

[175] M. Demirplak and S. A. Rice, “On the consistency, extremal, and
global properties of counterdiabatic fields”, J. Chem. Phys. 129, 154111
(2008).

[176] M. V. Berry, “Transitionless quantum driving”, J. Phys. A: Math.
Theor. 42, 365303 (2009).
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[178] S. Ibáñez, X. Chen, and J. G. Muga, “Improving shortcuts to adia-
baticity by iterative interaction pictures”, Phys. Rev. A 87, 043402
(2013).

[179] L. M. Garrido, “Generalized adiabatic invariance”, J. Math. Phys. 5,
355 (1964).

[180] M. V. Berry, “Quantum phase corrections from adiabatic iteration”,
P. R. Soc. A 414, 31 (1987).

[181] J. M. Chow, L. DiCarlo, J. M. Gambetta, F. Motzoi, L. Frunzio, S. M.
Girvin, and R. J. Schoelkopf, “Optimized driving of superconducting
artificial atoms for improved single-qubit gates”, Phys. Rev. A 82,
040305 (2010).

[182] E. Lucero, J. Kelly, R. C. Bialczak, M. Lenander, M. Mariantoni, M.
Neeley, A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, T.
Yamamoto, A. N. Cleland, and J. M. Martinis, “Reduced phase error
through optimized control of a superconducting qubit”, Phys. Rev. A
82, 042339 (2010).

[183] R. Bianchetti, S. Filipp, M. Baur, J. M. Fink, C. Lang, L. Steffen, M.
Boissonneault, A. Blais, and A. Wallraff, “Control and tomography of
a three level superconducting artificial atom”, Phys. Rev. Lett. 105,
223601 (2010).

http://dx.doi.org/10.1103/PhysRevLett.102.090502
http://dx.doi.org/10.1016/s0030-4018(97)00099-0
http://dx.doi.org/10.1016/s0030-4018(97)00099-0
http://dx.doi.org/10.1021/jp030708a
http://dx.doi.org/10.1063/1.2992152
http://dx.doi.org/10.1063/1.2992152
https://doi.org/10.1088/1751-8113/42/36/365303
https://doi.org/10.1088/1751-8113/42/36/365303
http://dx.doi.org/10.1016/B978-0-12-408090-4.00002-5
http://dx.doi.org/10.1103/PhysRevA.87.043402
http://dx.doi.org/10.1103/PhysRevA.87.043402
https://doi.org/10.1063/1.1704127
https://doi.org/10.1063/1.1704127
https://doi.org/10.1098/rspa.1987.0131
http://dx.doi.org/10.1103/PhysRevA.82.040305
http://dx.doi.org/10.1103/PhysRevA.82.040305
http://dx.doi.org/10.1103/PhysRevA.82.042339
http://dx.doi.org/10.1103/PhysRevA.82.042339
http://dx.doi.org/10.1103/PhysRevLett.105.223601
http://dx.doi.org/10.1103/PhysRevLett.105.223601


BIBLIOGRAPHY 144

[184] D. Ballester, G. Romero, J. J. Garćıa-Ripoll, F. Deppe, and E. Solano,
“Quantum simulation of the ultrastrong-coupling dynamics in circuit
quantum electrodynamics”, Phys. Rev. X 2, 021007 (2012).

[185] J. M. Chow, J. M. Gambetta, A. D. Córcoles, S. T. Merkel, J. A.
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