
Techniques to Protect
Confidentiality and Integrity of
Persistent and In-Memory Data

A dissertation submitted towards the degree
Doctor of Engineering

of the Faculty of Mathematics and Computer Science
of Saarland University

by

Anjo Lucas Vahldiek-Oberwagner

Saarbrücken
October, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Acronym

https://core.ac.uk/display/196652736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Date of Colloquium: February 5th, 2019
Dean of Faculty: Prof. Dr. Sebastian Hack

Chair of the Committee: Prof. Dr. Gert Smolka
Reporters
First Reviewer: Prof. Peter Druschel, Ph.D.
Second Reviewer: Deepak Garg, Ph.D.
Third Reviewer: Stefan Saroiu, Ph.D.
Academic Assistant: Engel Lefaucheux, Ph.D.

II

III

Abstract

Today computers store and analyze valuable and sensitive data. As a result we need

to protect this data against confidentiality and integrity violations that can result

in the illicit release, loss, or modification of a user’s and an organization’s sensitive

data such as personal media content or client records. Existing techniques protecting

confidentiality and integrity lack either efficiency or are vulnerable to malicious

attacks. In this thesis we suggest techniques, Guardat and ERIM, to efficiently and

robustly protect persistent and in-memory data.

To protect the confidentiality and integrity of persistent data, clients specify

per-file policies to Guardat declaratively, concisely and separately from code. Guardat

enforces policies by mediating I/O in the storage layer. In contrast to prior techniques,

we protect against accidental or malicious circumvention of higher software layers.

We present the design and prototype implementation, and demonstrate that Guardat

efficiently enforces example policies in a web server.

To protect the confidentiality and integrity of in-memory data, ERIM isolates

sensitive data using Intel Memory Protection Keys (MPK), a recent x86 extension

to partition the address space. However, MPK does not protect against malicious

attacks by itself. We prevent malicious attacks by combining MPK with call gates

to trusted entry points and ahead-of-time binary inspection. In contrast to existing

techniques, ERIM efficiently protects frequently-used session keys of web servers,

an in-memory reference monitor’s private state, and managed runtimes from native

libraries. These use cases result in high switch rates of the order of 105–106 switches/s.

Our experiments demonstrate less then 1% runtime overhead per 100,000 switches/s,

thus outperforming existing techniques.

IV

Kurzdarstellung

Computer speichern und analysieren wertvolle und sensitive Daten. Das hat zur Folge,

dass wir diese Daten gegen Vertraulichkeits- und Integritätsverletzungen schützen

müssen. Andernfalls droht die unerlaubte Freigabe, der Verlust oder die Modifikation

der Daten. Existierende Methoden schützen die Vertraulichkeit und Integrität

unzureichend, da sie ineffizient und anfällig für mutwillige Angriffe sind. In dieser

Doktorarbeit stellen wir zwei Methoden, Guardat und ERIM, vor, die persistente

Daten und Daten im Arbeitsspeicher effizient und widerstandsfähig beschützen.

Um die Vertraulichkeit und Integrität persistenter Daten zu schützen, verknüpfen

Nutzer für jede Datei Richtlinien in Guardat. Guardat überprüft diese Richtlinien für

jeden Zugriff und setzt diese im Speichermedium durch. Im Gegensatz zu existieren-

den Methoden, beschützt Guardat vor mutwilligem Umgehen. Wir beschreiben die

Methode, eine Implementierung und evaluieren die Effizienz von Beispielrichtlinien.

Um die Vertraulichkeit und Integrität von Daten im Arbeitsspeicher zu schützen,

isoliert ERIM sensitive Daten mit Hilfe von Intel Memory Protection Keys (MPK),

eine neue x86 Erweiterung, um den Arbeitsspeicher aufzuteilen. Da MPK allerdings

nicht gegen mutwillige Angriffe schützt, verhindert ERIM diese, indem es MPK mit

widerstandsfähigen Wechseln der Speicherbereiche und einer Binärcodeüberprüfung

kombiniert. Im Gegensatz zu existierenden Methoden, beschützt ERIM effizient

häufig genutzte Sitzungsschlüssel, Zustandsvariablen eines Referenzmonitors und

verwaltete Laufzeitumgebungen von nativen Bibliotheken. Unsere Experimente

zeigen, dass weniger als 1% Laufzeitmehraufwand je 100.000 Wechseloperationen pro

Sekunde notwendig sind.

V

Publications

Parts of this thesis have appeared in the following publications.

• “Guardat: Enforcing data policies at the storage layer”. Anjo Vahldiek-

Oberwagner, Eslam Elnikety, Aastha Mehta, Deepak Garg, Peter Druschel,

Ansley Post, Rodrigo Rodrigues, Johannes Gehrke. In Proceedings of the

European Conference on Computer Systems (EuroSys), 2015.

• “ERIM: Secure and Efficient In-process Isolation”, Anjo Vahldiek-Oberwagner,

Eslam Elnikety, Nuno O. Duarte, Deepak Garg, Peter Druschel. Under review

and technical report (arXiv:1801.06822), 2018.

Additional publications not included in this thesis.

• “Protecting Data Integrity with Storage Leases”, Anjo Vahldiek, Eslam Elnikety,

Ansley Post, Peter Druschel, Rodrigo Rodrigues. MPI-SWS Technical Report

2011-008.

• “Thoth: Comprehensive Policy Compliance in Data Retrieval Systems”, Eslam

Elnikety, Aastha Mehta, Anjo Vahldiek-Oberwagner, Deepak Garg, Peter

Druschel. In Proceedings of the USENIX Security Symposium, 2016.

• “Light-Weight Contexts: An OS Abstraction for Safety and Performance”,

James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby

Bhattacharjee, Peter Druschel. In Proceedings of the USENIX Symposium on

Operating Systems Design and Implementation (OSDI), 2016.

VI

• “Pesos: Policy Enhanced Secure Object Store”, Robert Krahn, Bohdan Trach,

Anjo Vahldiek-Oberwagner, Thomas Knauth, Pramod Bhatotia, Christof Fetzer.

In Proceedings of the European Conference on Computer Systems (EuroSys),

2018.

VII

Fynn, Julius, Timon and Kerstin.

VIII

Acknowledgments

I would like to extend my thanks to many people. They so generously contributed

to the work presented in this thesis and helped me during the ups and downs of

graduate life.

Firstly, I would like to express my sincere gratitude to my advisers Peter Druschel

and Deepak Garg for their continuous support. Their guidance helped me in research

and writing of this thesis. I’m very grateful to them for giving me the time to raise

my family and be with my children.

I would like to thank the rest of my thesis committee: Paul Francis, and Stefan

Saroiu, for their insightful comments and encouragement, but also for the hard

questions which helped me to further improve my research from various perspectives.

I have been very fortunate to collaborate with fantastic fellow PhD students,

Eslam Elnikety and Aastha Metha. With them, the countless and tiring deadlines

turned into adventure trips. I cannot imagine going through graduate life without

their friendship and support.

Besides Eslam and Aastha, I had the great pleasure to collaborate with Bobby

Bhattacharjee, Nuno Duarte, Johannes Gehrke, James Litton, Rodrigo Rodrigues,

and Ansley Post.

Furthermore, I would like to thank fellow students and postdocs at MPI-SWS

for creating a great place to work, in particular Arpan, Bimal, Bilal, Cheng, Ekin,

Ezgi, Felipe, Filip, Georg, Jan-Oliver, James, Juhi, Manohar, Natacha, Nancy, Nuno,

Oana, Paarijaat, Pedro, Pramod, Reinhard, Scott, and Viktor.

IX

A special thanks to the staff at MPI-SWS, Mary-Lou, Claudia, Brigitta, and

Annika, and in particular to Carina and Chris for their fantastic efforts and technical

know-how as well as Rose for her guidance on scientific writing and presenting.

I would like to thank my family for their support and strengthening words.

Without them I could not have accomplished this work. Fynn, Julius and Timon for

their enthusiasm and belief that every problem has a simple solution. Finally, I am

deeply thankful to Kerstin for all her love, support, her ultimate support during this

endeavor and three awesome kids!

X

Contents

Abstract IV

Kurzdarstellung V

Publications VI

Acknowledgments IX

Contents XI

List of Tables XV

List of Figures XVI

1 Introduction 1

2 Background 7
2.1 Protecting persistent data . 9

2.2 Protecting sensitive in-memory data 11

3 Guardat: Enforcing data policies at the storage layer 17
3.1 Design . 18

3.2 Threat model . 20

3.3 Interface . 21

3.3.1 Session interface . 21

3.3.2 Transaction interface . 23

3.3.3 File/Policy interface . 24

3.3.4 Content cache interface . 25

3.3.5 Certificate interface . 26

XI

3.3.6 Replication/migration interface 26

3.3.7 Application library . 27

3.3.8 Example usage . 27

3.4 Policy language . 27

3.4.1 Types . 28

3.4.2 Predicates . 28

3.4.3 Third-party certificates . 30

3.4.4 Semantics . 31

3.4.5 Usability . 31

3.5 Policy examples . 32

3.5.1 Protected executables . 32

3.5.2 Append-only logs . 33

3.5.3 Protected backup . 34

3.5.4 Mandatory access logging (MAL) 34

3.5.5 Other policy idioms . 38

3.5.6 Expressiveness . 38

3.6 Implementation . 39

3.6.1 Prototype . 39

3.6.2 Implementation alternatives 41

3.6.3 Filesystem interoperability . 42

3.6.4 Support for databases . 44

3.7 Experimental evaluation . 45

3.7.1 Experimental setup. 45

3.7.2 Microbenchmarks . 46

3.7.2.1 Read/write latency 46

3.7.2.2 Read/write throughput 49

3.7.2.3 I/O performance summary 50

XII

3.7.2.4 Policy evaluation overhead 51

3.7.2.5 Space requirements for metadata 52

3.7.2.6 Flash memory wear 52

3.7.3 Filesystem benchmarks . 53

3.7.4 Use case: Web server . 54

3.7.5 Mandatory access logging . 56

3.8 Related work . 57

3.9 Conclusion . 63

4 ERIM: Secure and Efficient In-process Isolation 65
4.1 Design . 68

4.1.1 Threat model . 69

4.1.2 Intel Memory Protection Keys (MPK) 70

4.1.3 High-level overview of the design 71

4.1.4 Call gates . 73

4.1.5 Binary inspection . 75

4.1.6 Process lifecycle with ERIM 77

4.1.7 Other considerations . 78

4.2 Rewriting inadvertent WRPKRUs . 80

4.2.1 Rewrite strategy . 80

4.2.2 Implementing the rewriting 83

4.3 Use Cases . 84

4.3.1 Isolating cryptographic keys in web servers 84

4.3.2 CPI/CPS . 85

4.3.3 Native libraries in managed runtimes 86

4.4 Implementation . 86

4.5 Evaluation . 87

XIII

4.5.1 Microbenchmarks . 87

4.5.1.1 Switch cost . 87

4.5.1.2 Emulating Memory Protection Keys (MPK)’s switch
cost . 88

4.5.1.3 Binary inspection . 90

4.5.1.4 Statically rewriting binaries 91

4.5.2 Protecting sensitive data in CPI/CPS 93

4.5.2.1 CPI . 94

4.5.2.2 CPS . 96

4.5.3 Protecting session keys in nginx 96

4.5.3.1 Scaling with multiple workers 99

4.5.3.2 Comparison to kernel-based isolation 100

4.5.4 Isolating managed runtimes 101

4.5.4.1 Comparison to isolation with bounds checks (SFI) . . 104

4.6 Related Work . 105

4.7 Conclusion . 110

5 Conclusion 113
5.1 Future Work . 114

Bibliography 120

XIV

List of Tables

3.1 Guardat Interface Calls . 22

3.2 Guardat policy language predicates 29

3.3 Guardat deployment scenarios and trust assumptions 42

3.4 Evaluation latency in µs for varying policy size and domain size . . . 51

4.1 Rewrite strategy for intra-instruction occurrences of WRPKRU . . . 82

4.2 Cycle counts for basic call and return 87

4.3 Domain switch rates of selected SPEC CPU benchmarks for ERIM-
CPI and EMUL-CPI . 89

4.4 Analysis inadvertent WRPKRU opcodes in Linux distributions and
ability to statically rewrite . 92

4.5 Domain switch rates of selected SPEC CPU benchmarks for ERIM-CPI 96

4.6 Nginx throughput with a single worker 97

4.7 Nginx throughput with multiple workers 100

4.8 Overhead relative to native execution for SQLite speedtest1 for ERIM
and Webassembly . 104

XV

List of Figures

2.1 Reference monitor implementation scenarios 8

3.1 Guardat implementation in a SAN server 40

3.2 Absolute Guardat latency overhead 47

3.3 Latency with an SSD, relative to iSCSI 48

3.4 Absolute latency with SSD . 49

3.5 Absolute latency with HDD . 49

3.6 SSD I/O throughput . 50

3.7 FS benchmarks read and write (r/w) performance 53

3.8 Web server throughput . 55

3.9 Latency with MAL, voluntary and no logging 57

4.1 SPEC CPU overhead for CPI/CPS with ERIM and an emu-
lation of WRPKRU (EMUL-CPI/CPS), relative to no protection . . . 90

4.2 SPEC CPU overhead for CPI/CPS and ERIM-CPI/CPS,
relative to no protection. 95

4.3 Nginx throughput with one worker with and without ERIM 98

4.4 Nginx throughput with one worker with emulated ERIM and lwCs . . 102

5.1 Steps towards an isolated cryptographic library in server applications 116

XVI

CHAPTER 1

Introduction

Today computers assist people in most daily activities such as social interac-

tions, learning, and information sharing. People entrust computer systems with

their valuable data, e.g., personal media content, financial and health records, and

cryptographic keys. Computer systems ought to protect the confidentiality and

integrity of such data. Confidentiality guarantees that only authorized reads of the

data succeed. Integrity prevents unauthorized updates to the data.

Violating the confidentiality and integrity of sensitive data can result in its

leak, loss or modification. As a result clients and organizations may face the loss of

highly sentimental data and reputational or financial loss. Common causes of data

confidentiality and integrity violations [15] include software bugs, security vulner-

abilities, misconfiguration and operator error. First, a bug, e.g., in an application

may overwrite existing files, violating integrity. Second, security vulnerabilities in

online services may be used by malicious attackers to extract sensitive data such as

cryptographic keys, violating confidentiality. Third, misconfigurations may lead to

accidental data reads, violating confidentiality. Fourth, an administrative operator

of a system may accidentally delete data from the system, violating integrity.

To prevent these violations, many techniques to protect data confidentiality

and integrity have been proposed. Model checking, language-based static analysis,

testing and reference monitors are broad classes of such techniques. Model checking

ensures that an application follows a given specification, and thus provides the

1

strongest guarantees compared to the remaining guarantees. However, model checking

of everyday software (e.g., operating systems or web browsers) is complex and

consequently difficult and expensive, which limits the use of model checking to

specific components in high-risk applications. Language-based static analysis enforces

specific program invariants over source code and marks invariant violations such

as bugs and vulnerabilities during development. Due to the approximation of

runtime values, analysis tools suffer in practice from high false positives rates. In

addition, limited support for multi-language software systems hinders their broad

adoption [104]. Testing, on the other hand, provides a reasonable and best-effort

coverage of violations over a subset of application inputs. Although widely used,

testing-based approaches do not provide formal guarantees, since testing every

possible input is usually unfeasible, especially when considering malicious attacks.

Thus, none of these techniques provides the ability to enforce confidentiality and

integrity systematically across applications and independent of the application

implementation.

In contrast, reference monitors [6] enforce confidentiality and integrity of data by

observing applications at runtime, mediating relevant events (such as I/O or memory

accesses) and denying accesses which violate confidentiality or integrity. Treating

the application as a black box allows reference monitors to enforce confidentiality

and integrity independent of the application implementation and application size,

and systematically across applications. This allows adoption across a wide range of

use cases including legacy applications with no access to source code. Compared

to model checking or static analysis, which prove correctness of an application,

reference monitors reduce the proof of correctness to a smaller and simpler piece of

code, namely the reference monitor. In contrast to the other techniques, reference

monitors induce runtime overhead on the production systems to which they are

applied. Reducing this overhead is an important design consideration.

2

Reference monitors have been applied to various use cases. When protecting data

confidentiality and integrity, we differentiate between protecting in-transit, persistent,

or in-memory data.In-transit data is typically protected using cryptographic methods

which encrypt the contents providing confidentiality, and sign the contents providing

integrity. For secure communication today’s computer systems rely on the SSL/TLS

standard with readily available implementations in several cryptographic libraries

such as OpenSSL [96]. However, for both, persistent and in-memory data, existing

techniques do not efficiently and comprehensively protect data confidentiality and

integrity [134, 45, 110, 124, 48, 3, 74, 59, 29, 68, 75, 113, 58, 38, 29].

To protect the confidentiality and integrity of persistent data, existing monitoring

techniques [48, 134, 45, 118, 139, 19, 74, 5, 124, 110] mediate application I/O by in

a library, file system, operating system, hypervisor, or in the storage layer. However,

mediation in a layer other than the storage layer can be easily bypassed, and none

of the storage layer techniques support general confidentiality and integrity policies.

Hence, a strong and general policy enforcement technique for persistent data is

currently missing.

To protect the confidentiality and integrity of in-memory data from accesses by

an untrusted application, prior work relies on memory isolation through language and

runtime [38, 72, 129, 143, 68], process-based [74, 59, 29, 20], or randomization-based

techniques [113, 58]. First, language and runtime techniques isolate by inserting

checks into the application binary to protect against arbitrary data accesses. Although

robust against malicious attacks, these techniques suffer from runtime overheads

to perform the checks. Second, process-based isolation splits the execution of an

application into separate hardware-protected processes. Similar to language and

runtime isolation, process-based isolation is robust against malicious attacks. The

efficiency depends on the cost of context switches between application processes,

which is usually high. Third, randomization-based isolation uses the huge address

space to hide sensitive data at a random location. While randomization-based

3

techniques are efficient (no checks or high switch costs), malicious attackers can

find the secret location and break guarantees [113, 60, 39, 49, 94]. No existing

technique efficiently isolates memory with low runtime overhead, and offers strong

protection against malicious attackers. As a result, no existing isolation technique is

sufficient for several important use cases such as protecting cryptographic keys or

native libraries in managed runtimes.

Contributions: This dissertation contributes Guardat, which efficiently enforces ex-

pressive confidentiality and integrity policies at the storage layer protecting persistent

data, and ERIM, which strongly and efficiently isolates in-memory data.

Guardat: In contrast to previous techniques [48, 134, 45, 118, 139, 19, 74] that

intercept at the application or a system software layer, Guardat protects the con-

fidentiality and integrity of persistent data at the storage layer. Thus, Guardat

minimizes the size and attack surface of the trusted computing base (TCB) relied

upon for enforcement.

Protecting at the storage layer limits available access information to block

addresses. As a result, existing storage layer techniques techniques [5, 124, 110] do

not enforce generic confidentiality and integrity policies. To overcome the lack of

client information such as file names and access credentials, clients communicate with

Guardat through secure channels, tunneling through untrusted system layers like the

operating system. Clients use this communication to send additional information

such as file names or access credentials. Using this information, Guardat enforces

confidentiality and integrity for every data access while relying only on its own

enforcement logic.

With Guardat, confidentiality and integrity requirements are specified as per-file

policies by users, developers, or administrators. Policies specify the conditions under

which a file may be read, updated, or have its policy changed. These conditions,

written in a declarative language, may depend on client authentication, the initial

4

and final states of the file (size and content) in an update transaction, or signed

statements by external trusted components (certifying, for instance, the current

wall-clock time). Guardat stores the policy as part of its own metadata and ensures

that each access to the file complies with the policy.

For example, users can rely on Guardat to mitigate serious threats: To prevent

the insertion of malicious code in executables, a policy can protect executable files

by allowing only updates signed by a trusted party; to prevent system logs from

corruption and tampering, a policy can protect log files by making them append-only;

to prevent the illicit release of a user’s private data, a policy can protect the user’s

data by requiring an authenticated secure session to read data; to prevent arbitrary

file accesses and allow auditing of accesses, a policy can protect files by requiring a

mandatory log entry before accessing a file.

We evaluate the efficiency of Guardat using the policy examples described

above. We show that Guardat enforces confidentiality and integrity policies with low

overhead. When protecting a web server’s content from accesses by unauthorized

users, and binaries from unauthorized updates, the throughput overhead is less than

1% compared to no protection.

ERIM: ERIM is a framework for strong, efficient isolation of in-memory data. It

allows partitioning an application into a trusted and an untrusted component within

a single address space. For this, ERIM relies on Memory Protection Keys (MPK) [64],

a recent x86 extension to partition the address space into up to 16 disjoint memory

domains. With ERIM the trusted and the untrusted component’s data reside in

different domains and ERIM controls access to each domain. A new user-mode CPU

instruction (WRPKRU) switches access permissions to domains efficiently (about 60

cycles per switch), without kernel intervention. Although efficient, this instructions

allows malicious attackers to escalate their access permissions. Hence, by itself MPK

5

is not sufficient to guarantee security against malicious or compromised untrusted

components.

ERIM’s contribution is to build secure memory isolation using MPK by (1)

providing call gates to securely transfer control to the trusted component at predefined

entry points without kernel intervention, and (2) use binary inspection to remove

exploitable binary code ensuring that the switch instruction cannot be exploited.

As a result, to gain access to secret data, an untrusted component has to invoke

a call gate transferring control to the trusted component. In contrast to prior

techniques, ERIM’s memory isolation significantly reduces the switch cost between

the trusted and untrusted component, does not slow down untrusted component like

language-based techniques, and protects against malicious attackers.

We apply ERIM’s design to challenging and previously high-overhead use

cases [74, 29, 72]. First, we isolate frequently used OpenSSL session keys of a

web server (nginx) and show scalability. Second, we isolate the safe region in an

implementation of code-pointer integrity (CPI) [72]. Third, we isolate a managed

runtime (node.js) from an untrusted native library (SQLite). Our results show that

ERIM provides robust memory isolation with a low overhead of less than 1% for

100,000 switches per second.

Overview: In the remainder of this thesis we further describe the background and

related work (Chapter 2), followed by detailed description of the design, implementa-

tion, and evaluation of Guardat (Chapter 3) and ERIM (Chapter 4). Finally, we

conclude and describe future work (Chapter 5).

6

CHAPTER 2

Background

In this chapter we provide an overview of the background work on reference

monitors and briefly describe existing techniques to protect confidentiality and

integrity of persistent and in-memory data. This chapter is only meant to server

as a background material for understanding the thesis. A detailed comparison to

existing work is provided in Sections 3.8 and 4.6.

Reference monitoring enforces security policies at run time without insisting that

the application be bug-free. Reference monitors intercept all relevant operations,

evaluate each operation against the required policy and deny operations when

violations are imminent. We summarize state-of-the-art techniques for reference

monitoring.

Figure 2.1 depicts possible implementation scenarios for reference monitors.

Reference monitors have been implemented at different abstraction layers within

the software and hardware stack (see Figure 2.1a). Each abstraction layer guards

access to the resources provided to higher layers. Reference monitors in higher layers

(e.g., application, database or file system) rely on protection guarantees provided by

lower layers, increasing the TCB and risk of circumvention of the reference monitor.

While monitoring at an abstraction layer, reference monitors can be implemented

by isolating software components in trusted execution environments (TEE) [82] (see

Figure 2.1b) or a separate application process [22] (see Figure 2.1c), by sandboxing

7

Operating System

Application

VMM

CPU

Remote

Host
Database RM

RM

RM

RM

RM

(a) Reference monitor at each level of abstraction

CPU

Application

TEE

Trusted

Component

RM

(b) Reference monitor in trusted execu-
tion environment (TEE)

Operating System

Application RM

(c) Reference monitor in separate appli-
cation

Operating System

RM

Application

(d) Sandboxing application inside a ref-
erence monitor

Operating System

Application

RM

(e) Inlined reference monitor

Figure 2.1: Reference monitor implementation scenarios

an application [143] (see Figure 2.1d), or by inlining monitors into the application

itself [1, 72, 29] (see Figure 2.1e).

Enforcement techniques in non-application layers efficiently mediate all accesses

to relevant resources (e.g., memory or files). Usually lower abstraction layers, such

as the operating system (OS) or virtual machine monitor (VMM), intercept events

with coarse-grain information from the application. Each layer abstracts information

with help from the application. For instance, implementing a per file confidentiality

policy is only possible within the file system layer or above. At these layers the

accessed file and its associated policy is still available.

Monitoring at the application layer offers the most detailed information about the

application state and execution at the cost of a larger TCB and risk of circumvention.

Inlining the mediation and enforcement into the application [37, 72] offers the ability

to protect the integrity of the control flow of an application at the cost of additional

checks for every indirect jump and return. Enforcing such application level guarantees

8

at a lower layer (e.g., the OS) is infeasible, since every check would incur high switch

costs between the layer and the application.

While numerous reference monitoring techniques have been suggested, this

dissertation focuses on protecting the confidentiality and integrity of persistent and

in-memory data. We describe next the state of the art in protecting persistent and

in-memory data.

2.1 Protecting persistent data

In the following we describe techniques to protect persistent data from illicit release,

corruption or deletion due to bugs, misconfigurations, operator error or malicious

attacks. We do not consider hardware failures, since replication (such as RAID [98])

or data encryption mitigate these threats easily.

In general, the data confidentiality and integrity guarantees in today’s computer

systems depend on, and are spread across the application, a database management

system, the OS (including the file system) and virtual machine monitors. For example,

each layer enforces its own user access control protecting against illicit accesses and in

some cases also keeps data hashes to protect the integrity. Compared to application

layer protection, lower layers provide a stronger protection against circumvention, but

typically do not provide a generic policy enforcement and instead focus on specific

uses and policies.

Hypervisor/OS data protection Nexus [118] and TAOS [139] are two OS-level

techniques that enforce authorization policies on OS interfaces (e.g., files, inter-

process communication, memory mappings or process management) protecting data

confidentiality. Nexus optionally maintains a Merkle hash tree of the file system

to provide data integrity. In contrast to Nexus and TAOS which enforce policies,

Dune [19] and lwC [74] are frameworks to build a reference monitor at the OS

abstraction layer mediating the system call interface and both show use cases to

9

protect data confidentiality and integrity. Although these systems improve the

confidentiality and integrity protection of persistent data, they can be circumvented

by accessing the data directly at the storage layer.

Protected file systems Beyond the access control in existing commercial file

systems, jVPFS [134] combines a small, trusted file system with a conventional

untrusted file system to ensure data confidentiality and integrity. It furthermore

encrypts data, maintains hash trees and logs data accesses. PCFS [45] enforces

declarative confidentiality and integrity policies. These systems suffer from possible

circumvention by directly accessing the data at the storage layer.

Protected storage Self-encrypting disks [110], dm-crypt [32] and Bitlocker [87]

encrypt data on disk, protecting its confidentiality and integrity. Web storage

services [5] enforce access control on client data using user identities, groups and

roles. In addition, data is encrypted for secure storage and confidential transit

within the system. Storage systems like Self Securing Storage (S4) [124] maintain

shadow copies of overwritten data allowing rollback in case of accidental or malicious

corruption of data. These systems provide a specific guarantee instead of a system

which enforces a large class of configurable policies.

Remote/Cloud storage In capability-based network attached storage [48, 40, 3],

every request requires a capability from an external policy manager to allow the

access. Separately creating these capabilities from the storage location limits the

efficiency of enforceable policies. For example, content-dependent policies would

increase the overheads to access the content at the policy manager and result in

doubling the number of data accesses.

Due to the recent trend to offload data storage to an untrusted cloud storage

service, several systems [128, 116, 79] propose additional techniques to protect data

confidentiality and integrity. Shu et al. [116] introduce a trusted proxy server in

between a client and a cloud storage service protecting data confidentiality and

10

integrity by authenticating clients and deploying an efficient Merkle hash tree. The

recently suggested Pesos object store [70] builds on Guardat’s policy language and

interpreter to enforce confidentiality and integrity policies over objects stored in an

untrusted cloud environment. It relies on trusted execution environments (TEE),

namely Intel’s SGX [63], and a storage device (Seagate’s Kinetic disks) providing a

secure channel to the TEE to ensure confidentiality and integrity of data stored in

the cloud. Similarly to Guardat, Pesos associates policies with objects and intercepts

every object access (mainly get/put requests) to evaluate the policy.

2.2 Protecting sensitive in-memory data

Enforcing security invariants while trusting only a small portion of an application’s

code generally requires isolating sensitive data so it cannot be leaked or corrupted

by untrusted code, and facilitating switches to trusted code that has access to the

isolated state. We discuss techniques to isolate and securely transfer control provided

by different abstraction layers (operating systems, hypervisors, applications) and

different techniques (compilers and language runtimes, and binary rewriting). Briefly,

these techniques are either not highly efficient or do not offer strong protection. The

techniques that offer strong protection either rely on costly context switches between

user- and kernelspace or add runtime overhead on untrusted applications as checks

are inlined into the binary code.

OS-based techniques A simple way to provide data isolation is to split application

components into separate processes. This approach is feasible only if the rate of

cross-component invocations is relatively low, so that the substantial inter-process

communication and context switching overheads are tolerable.

Novel kernel abstractions like light-weight contexts (lwCs) [74] and secure memory

views (SMVs) [59], combined with additional compiler support as in Shreds [29]

or runtime analysis tools as in Wedge [20], have reduced the cost of data isolation

11

to the point where isolating OpenSSL long-term signing keys is feasible with little

overhead [74].

Mimosa [50] relies on the Intel TSX hardware transactional memory to protect

private cryptographic keys from software vulnerabilities and cold-boot attacks. Pri-

vate keys are stored in memory in encrypted form. Accesses to the private key are

performed within a transaction that first decrypts the private key using a register-

based master key, performs the access, wipes the cleartext key, and then commits.

The cleartext key never exists outside an uncommitted transaction and TSX ensures

that an uncommitted transaction’s data is never exposed to DRAM or other cores.

Virtualization-based techniques In-process data isolation can also be provided

by a hypervisor. Dune [19] enables user-level processes to implement isolated

compartments by leveraging the Intel VT-x x86 virtualization ISA extensions [64].

Koning et al. [68] sketch how to use the VT-x VMFUNC instruction to switch extended

page tables in order to achieve in-process data isolation. SeCage [75] similarly relies

on VMFUNC to switch between isolated compartments; it also provides static and

dynamic program analysis based techniques to automatically partition monolithic

software into compartments. TrustVisor [81] uses a thin hypervisor and nested

page tables to support isolation. Similar to OS-based techniques, high switch costs

between components allows an efficient adoption only in use cases with low switch

rates.

Language and runtime techniques Data isolation can be provided as part of a

memory-safe programming language with low overhead. The cost of this isolation

is low if most of the checks can be done statically at compile time. However, only

applications written in such languages benefit, the isolation depends on the compiler

and runtime correctness, and can be undermined by libraries written in unsafe

languages.

12

Software fault isolation (SFI) [129, 143] provides data isolation in unsafe languages

through runtime memory access checks inserted by the compiler or by rewriting

executable binaries. However, SFI imposes an overhead on all execution of untrusted

code, not just on control transfers.

The memory-safe Rust language [103] allows unsafe code sections. Almohri et

al. [4] split the address space of a Rust program to isolate the unsafe code from the

remaining program.

Koning et al. [68] present a general isolation technique, called MemSentry, which

instruments programs using an LLVM pass. The instrumentation can rely on several

isolation techniques to ensure that only legitimate accesses to isolated data are allowed.

One of the isolation techniques used by MemSentry is MPK, and experimental results

show that this technique is the most efficient in situations where isolated data is

located in a few contiguous regions and accesses are frequent. However, MemSentry

requires a complementary control-flow integrity technique to prevent bypassing of the

instrumentation. Similar to Memsentry, a recently suggested memory isolation, called

IMIX, [43] also relies on a complementary control-flow integrity technique which

adds substantial runtime overhead. In contrast, ERIM does not require control-flow

integrity lowering the runtime overhead.

Shreds [29] provides a compiler and runtime library which protect the confiden-

tiality and integrity of variables and code blocks. Developers annotate the source

code to mark variables containing private data and code blocks computing on private

data. The compiler inserts necessary runtime checks and initial isolation of variables

and code blocks. The evaluation shows high switch cost of about 16ms which is only

marginally faster than thread or process switches. This limits Shreds applicability to

use cases with infrequent switching. We apply ERIM to more demanding use cases

that switch more frequently and as a result, would have high overheads if isolated

with Shreds.

13

Hardware-based trusted execution environments Intel’s SGX [63] and ARM’s

TrustZone [12] ISA extensions allow (components of) applications to execute with

hardware-enforced isolation that provides isolation even from the operating system.

The overheads for switching to a secure component are similar to other efficient

hardware-based isolation mechanisms [68].

ASLR Address space layout randomization (ASLR) is widely used to mitigate code

reuse exploits such as buffer overflow attacks [113, 58]. By randomizing the layout of

code and data in a process’s address space, ASLR seeks to make it more difficult for

attackers to reuse code as part of an exploit. In practice, ASLR has proved vulnerable

to attacks that learn the location of code and data dynamically [113, 60, 39, 49, 94].

ASLR-Guard [78] seeks to increase the difficulty of such attacks by encrypting

pointers to the ASLR region stored in memory.

Intel MPX, MPK, and ARM memory domain Intel introduced the MPX ISA

extension in the Skylake CPU series [64]. MPX provides architectural support for

bounds checking. A compiler can use up to four bounds registers, and each register

can store a pair of 64-bit starting and ending addresses. Specialized instructions

efficiently check a given address and raise an exception if the bounds are violated. By

itself, MPX cannot enforce security invariants, but it can aid SFI-based techniques

for data isolation [68].

Recent Intel CPUs provide support for memory protection keys (MPK) [64].

Protection keys provide a second level of page access permission controlled by the

application itself. To access a page, both the OS page tables and an additional

user-space controlled register must allow the access, else a page fault occurs. By

itself, MPK is not suitable for security applications, because malicious code could

raise its privileges. ERIM combines MPK with binary inspection to provide secure

isolation.

14

ARM memory domains [11] are similar to Intel MPK, except that changing

domain permissions requires a costly and privileged (kernel) operation. They cannot

be used to implement isolation with low-cost switching like MPK.

15

CHAPTER 3

Guardat: Enforcing data policies at
the storage layer

This chapter describes Guardat, a system to enforce confidentiality and integrity

policies on persistent data. Briefly, the problem is that computer and storage systems

increase in complexity and so does the risk to data confidentiality and integrity

from software bugs, security vulnerabilities and human error. In addition, data

is increasingly stored on third-party platforms, introducing additional risks like

unauthorized data use by the third party. Data stored in third-party platforms rely

on the trust and reliability of the third-party provider. Today’s systems enforce the

applicable security policy of a file implicitly in their code. Furthermore, the policy

specification and enforcement may spread over different subsystems, increasing the

risk of circumvention and misconfiguration.

Guardat introduces a reference monitor at the storage layer to tackle these

challenges. It provides a single-point of policy specification, configuration and

enforcement at the storage layer relying only on its own policy interpreter, enforcement

logic and explicit policy dependencies, thus minimizing the TCB and attack surface.

The following sections describe Guardat’s design and API, its declarative policy

language, example use cases, an implementation, related work and an experimental

evaluation of a prototype implementation.

17

3.1 Design

Guardat’s design was guided by four principles:

1. Guardat policies are attached to files, separate from code, and specified in a

custom declarative policy language. Therefore, the policy for a file’s data can

be specified concisely in one place and audited easily.

2. Guardat enforces policies in the storage layer to minimize the risk of policy

circumvention. Our implementation of Guardat in a SAN server, for instance,

allows a scalable configuration where policies are enforced by block servers

in a machine room, while client computers and the enterprise network are

untrusted.

3. Guardat policies state merely what accesses are allowed under which conditions,

leaving it to untrusted code how to demonstrate compliance with a policy. This

separation keeps the policy language small and policies concise, while shifting

complexity to untrusted software and overhead to client computers.

4. Guardat relies on cryptographic file attestations to bridge the semantic gap

between per-file policies and block-level enforcement. By requesting an attesta-

tion of a file’s policy, name and content hash, an application can verify that

Guardat associates data and policy correctly, independent of the filesystem or

its metadata.

Enforcement at the storage layer is preferable, since it minimizes the risk of cir-

cumvention, and makes it easy to physically protect the trusted Guardat components

in a machine room. A design enforcing at a higher layer (e.g., NAS file server, VMM

or client OS layer) would extend trust to additional, and likely more distributed,

components. Moreover, Guardat is able to bridge the semantic gap between files and

blocks as without relying on the untrusted filesystem and its metadata.

18

Data stored in Guardat is organized into files. For each policy-protected file,

Guardat maintains its own shadow metadata, consisting of an ordered list of extents,

a unique numeric identifier, a textual name string (typically used to store the file’s

pathname(s)—multiple in the case of hard links), and a reference to a policy in

effect for the file. The set of numeric identifiers form a flat namespace, while the

set of names typically encode a conventional namespace hierarchy maintained by an

untrusted filesystem. Each file can have its own policy but, typically, a collection of

files share the same policy.

The policy of a file consists of four rules, one for each of the permissions read,

update, destroy and setpolicy. Each rule specifies conditions on the context and

environment under which the respective permission holds. Abstractly, the read rule

represents the file’s confidentiality policy; the update rule encodes the file’s integrity

policy; the destroy rule governs when the file’s identifier (name) can be recycled;

and the setpolicy rule describes when the policy can be changed. Storage commands

that read or update a file or its metadata check conditions of the corresponding

policy rules.

Guardat integrates with filesystems. The (untrusted) filesystem as usual assigns

names and storage blocks to a file and translates file requests into block requests

using its metadata. Guardat uses its own shadow metadata to look up the file and

policy associated with a block request securely and efficiently. Guardat also assigns

its own unique file identifiers, which can be reused only under policy control.

File attestations tie the GDC’s view of a file as a sequence of extents to an

application’s view of a named file, thereby removing the need to trust the filesystem

and its metadata. By requesting an attestation after a file is written or read, an

application can verify that its view of the file is identical to the GDC’s. Guardat has

support for sparse files. The current design assumes that a block is assigned to at

most one file; block sharing to support de-duplication, for instance, could be added

easily.

19

Guardat’s program logic, called the Guardat controller or GDC, is integrated

with a storage block device and enforces policies on every read and write. The

GDC extends the standard block-device interface with a file-level interface, which

allows higher software layers to (a) create, delete, read and update sets of extents

(files) using simple transactions, (b) associate policies with files, (c) cryptographically

authenticate and establish secure sessions, (d) provide credentials and other evidence

of policy compliance, and (e) obtain attestations on stored files and their policies. The

file-level interface can be used by a Guardat-aware filesystem, or by an application

library in combination with a legacy filesystem via IOCTL calls.

3.2 Threat model

The GDC, metadata and data must be physically protected from unauthorized access

and undetected tampering. In our implementation (see Section 3.6.1), data and

metadata storage devices are assumed to be physically protected, e.g., in a machine

room with restricted access. Guardat policies are enforced, subject to external policy

dependencies, regardless of bugs, misconfigurations, or security incidents outside the

storage device, including incidents on any number of client machines.

We make standard assumptions about policies: Correct policies must be installed

when data is first stored, and external dependencies of policies like time servers,

client authentication keys, and admin authentication keys must be trustworthy (in

particular, admin authentication keys can often be stored offline and protected phys-

ically). Under these assumptions, Guardat defends against threats to confidentiality

and integrity of stored data. In addition, Guardat can protect the integrity and

confidentiality of files transferred between Guardat devices, and between a Guardat

device and a client device through a secure channel. This includes threats due to

bugs and vulnerabilities in intermediate software layers including operating systems,

filesystems, storage services built on top of Guardat, and networks, and threats due

20

to human negligence and opportunistic malice. Guardat is not concerned with data

availability. To mask the effects of a hardware or media failure, loss, or destruction

of a Guardat device, data must be replicated on multiple Guardat devices with

independent failure modes.

3.3 Interface

Guardat extends the standard block device interface with means to establish sessions,

create, update and delete files, install policies, provide evidence of policy compliance,

and obtain attestations. In the following, we describe the functionality provided by

the interface. Table 3.1 shows all Guardat API calls.

3.3.1 Session interface

A user application (also called a client) interacts with Guardat in a session. A

secure, authenticated session must be used to access files whose policy requires client

authentication. To access other files, no explicit session is required. Such use is

conceptually treated as part of a default, untrusted session.

A session is established with a standard handshake protocol in which the client

and Guardat authenticate each other using their private keys. As part of the protocol,

new, session-specific keys are created. These keys are used to encrypt and/or

authenticate (through message authentication codes) all subsequent communication

in the session. This protects in-transit data and commands from snooping and

modification in intermediate layers. Moreover, the client’s public key (which acts as

a client identifier) becomes available during every policy evaluation in the session;

hence, Guardat can enforce policies that restrict access to a specific user. At the

end of the handshake, Guardat returns a unique session identifier (sId) that links

later commands to the session. In the description of the remaining interface, we omit

21

Session API:
message, sId handshake1(message) Initiates the session establishment.
int handshake2(sId, message) Finalizes the session establishment.
int endsession(sId) Terminates the session sId.

Transaction API:
tId openTx(sId, objname) Starts a transaction on file named objname.
int endTx(sId, tId) Commits a transaction.
int setPolicy(sId, tId,
pId)

Set policy pId for objname.

int reuse(sId, tId, off, len,
off’)

Takes content of interval [off, off + len - 1] and inserts
content at off’.

int fresh(sId, tId, b, len,
buf, off [, cacheflag])

Write content to block and add to objname at offset off.

buf readTx(sId, tId, off,
len [, cacheflag])

Reads from objname at offset off.

File/Policy API:
pId createPolicy(sId, policy) Stores policy and returns a unique identifier pId.
int destroy(sId, objname) Deletes objname’s metadata and content.

Content Hashing API:
hId initHash(tId, curOrNew) Creates hash identifier for current or new objname.
certificate closeHash(hId) Computes hash, creates certificate and stores hash

in cache.

Certificate API:
nonce getNonce(sId) Returns pseudo-random nonce value.
int setCertificate(sId, certificate) Provide certificate to Guardat.
certificate attest(sId, objname, nonce) Creates a certificate attesting the state of obj-

name.

Replication/Migration API:
buf pickle(sId, objname, targetGdKey) Creates an encrypted buffer buf including

the content and policy of file objname which
can only be encrypted by a Guardat device
with targetGdKey as public key.

int unpickle(sId, buf, objname) Decrypts buf to extract content c and policy
p; creates policy p and file named objname
with content c; associates the previously cre-
ated policy.

Table 3.1: Guardat Interface Calls

22

the sId argument as it appears in every call. Guardat can work with any client-side

infrastructure for creating, managing and distributing public keys.

3.3.2 Transaction interface

Rich policies may require more than one read or write operation to transition a

file from one compliant state to another. For instance, a file’s integrity policy may

require that each update increments an embedded version counter. For this purpose,

Guardat supports transactions consisting of a sequence of reads and updates on a

single file. Transactions are atomic: either all the updates are persisted or they are

all discarded. Policies may refer to both the current and new content of a file in

a transaction, as well as the content of other files. The policy is checked once at

the end of the transaction, which commits if the policy check succeeds, and aborts

otherwise.

We find this design useful in encoding policy state machines and access-accounting

policies, as illustrated in Section 3.5. However, the design comes with a trade-off:

To avoid buffering a potentially unbounded number of updates during a transaction,

Guardat forbids destructive updates as part of a transaction. Instead, new content

must be written to fresh (not currently allocated to a policy-protected file) extents

on disk. This choice mirrors modern filesystem designs with copy-on-write block

allocation, e.g., in WAFL, ZFS, and Btrfs [56, 125, 23]. Outside a transaction,

destructive writes succeed if allowed by the policy.

The transaction API adds 5 new commands: openTx, endTx, reuse, fresh and

readTx, setPolicy. The call openTx(sId, objname) starts a new transaction on the file

named objname. Generating objname is up to the (untrusted) higher layers, e.g., the

filesystem. If objname does not exist, a new empty file is created and given this name

(this is the only way to create a file in Guardat). The call returns a transaction id

(tId) that links later calls to the transaction and the session. A file is updated by

23

reusing content from its current version and adding fresh content to create a new

version. The call reuse(tId, off, len, off’) takes content in the logical range [off,off+len-1]

from the current version and inserts it at offset off’ in the new version (insertion is

purely a metadata operation). The call fresh(tId, blk, len, buf, off) writes len bytes

from buffer buf to the extent starting at byte number b on disk and adds the resulting

extent to the new version at logical offset off. Before writing the extent, Guardat

checks that it is not occupied by any file (including the file being modified). The

new version of the file may be given a new policy with the call setPolicy(tId, pId).

The call buf readTx(tId, off, len) reads len bytes of the file starting at logical offset off

in the file and returns the result to the buffer buf. The read rule of the file’s policy is

evaluated before reading to buf; if it denies access, the call fails. This enforces data

confidentiality. Note that we allow byte-level addressing on files, so policies can be

very fine-grained.

The updates in a transaction are committed with the call endTx(tId). Guardat

evaluates the update rule of the file’s policy before committing the new version. This

enforces data integrity. The update rule has access to the current and new content of

the file, as well as relevant metadata, e.g., the offsets and lengths of reads and writes

in the transaction. Additionally, if the policy has been updated, Guardat evaluates

the setpolicy rule of the file’s policy; this protects the policy itself from unauthorized

changes.

3.3.3 File/Policy interface

While file creations are implemented as transactions, file destruction and policy

creation exist as additional calls. The destroy(objname) call removes the content

and metadata of the file named objname from Guardat after successfully evaluating

the destroy permission of the associated policy. To reduce the required metadata

space, Guardat allows multiple files to be protected by the same policy. Therefore,

24

the createPolicy call returns a policy Id (pId) which can be used multiple times in

setPolicy calls during a transaction.

3.3.4 Content cache interface

Guardat policies may be contingent on the current content of one or more files and

the proposed new content of the updated file in the context of a transaction. To

enable the efficient evaluation of such policies, two Guardat caches hold file content

for use in policy evaluation. A per-session cache contains entries that refer to current

file contents, either as a sequence of bytes at a given file offset and length, or as

the hash of such a sequence. A per-transaction cache contains the same types of

entries but refers to tentative updates to a file. Entries are added to the cache as a

side-effect of read, write, fresh or readTx commands with appropriate flags (cacheflag).

When a transaction commits, any entries in the transaction cache are moved into

the session cache, and any existing session cache entries they supersede are evicted.

When a transaction aborts, the entries in the transaction cache are discarded. To

satisfy a policy that refers to current or pending file content, untrusted client code

is expected to fill appropriate cache entries by issuing read/write commands before

attempting a transaction commit.

In order to iteratively build content hashes, Guardat offers the initHash call to

start the hash computation. If the returned identifier (hId) is specified as cacheflag

during a read, write, fresh or readTx call, then the respective content is added to

the hash computation. After a client finishes the read/write sequence, she closes

the hash via the closeHash call which finalizes the hash computation and stores

the result in the respective session or transaction cache for later use during policy

evaluation. In addition a cryptographically signed certificate including the computed

hash, file name and a hash of the associated policy is returned.

25

3.3.5 Certificate interface

Cryptographically signed certificates represent facts asserted by a trusted third party,

for instance, the wall clock time as reported by a trusted time server or the presence

of a file on another Guardat device. The certificate interface has commands to obtain

a fresh nonce (getNonce) to be included in a third-party certificate, and commands

to add a signed third-party certificate (setCertificate) to the Guardat cache for use

in subsequent policy evaluations. Third-party certificates are described further in

Section 3.4.

The call attest(objname, nonce) returns a GDC-signed certificate that attests the

existence of a file with its (set of) pathname(s), extents and policy. Optionally, the

certificate may also include a hash of any of the file’s contents. The attestation

embeds a client-provided nonce. The read policy rule authorizes this call.

3.3.6 Replication/migration interface

A set of commands allow untrusted client software to securely manage the replication

and migration of policy-protected files among Guardat devices, without access to

their cleartext contents. A file copy succeeds only if the file’s policy allows it, and

if the integrity of the file’s contents, name and policy are maintained during the

transfer. The pickle call invoked at a source Guardat device encrypts a file and its

policy for a specific target Guardat device, while the unpickle call installs the file at

the target Guardat device. An attestation from the target Guardat device can then

be used to prove to the source device that the file resides on the target device. A

file’s policy controls if, when and where a file can be migrated or replicated.

26

3.3.7 Application library

Guardat applications are linked with an untrusted library, which extends the POSIX

API with commands to set policies, provide authentication credentials and certificates,

and request attestations. The library also interposes the existing POSIX file API to

perform actions required to satisfy a file’s policy. It interacts with the GDC through

IOCTL calls. We provide more details about an application library for a specific use

case in Section 3.7.4.

3.3.8 Example usage

As an example, we show the sequence of steps required to update an executable file

protected by the policy described in Section 3.5. First, a software update application

(supd) supplies the required vendor certificate, which is passed by the Guardat library

to the GDC to be cached (via setCertificate). When supd opens the executable file

for writing, the library starts a transaction with the GDC, and arranges that the

hashes of all subsequent writes are added to the transaction cache. When supd is

done writing and closes the file, the library asks Guardat to commit the transaction,

which causes the GDC to evaluate the policy and commit if successful. Otherwise,

the commit fails and the file is not modified.

3.4 Policy language

Guardat file access policies are specified in an expressive and simple declarative

language. Each file’s policy contains four rules, one for each of the permissions read,

update, destroy and setpolicy. Each rule specifies the conditions under which the

respective permission holds.

A rule has the form (perm :- conds) and means that permission "perm" is granted

if the conditions "conds" are satisfied. The conditions "conds" consist of atomic facts

27

connected with conjunction ("and", written ∧) and disjunction ("or", written ∨).

Operationally, policy rules are clauses of constrained Datalog, with all atomic facts

in conditions treated as external [73]. Datalog is a standard foundation for writing

access policies [18, 33, 100], known for its clarity, high-level of abstraction and ease

of implementation.

3.4.1 Types

The policy language supports three numeric types (boolean, integer and float),

content hashes (SHA256), strings, public keys, lists of extents (each element of an

extent list stores the logical byte offset within the file, physical block address and

the length), variables and predicates.

3.4.2 Predicates

The Guardat policy language is based on standard Datalog but omits recursively-

defined predicates for simplicity. Its expressiveness stems from custom predicates

(40 in total) that are listed in Table 3.2. We divide the language’s predicates into

several categories. Relational, arithmetic and list predicates codify standard data

operations like addition and subtraction of numeric types and disjointedness of extent

lists. Access predicates provide the physical block addresses, the logical byte offset

and the number of bytes accessed, giving policies control over block-level accesses

outside of transactions. Session predicates provide authentication information for the

current session and the current value of the internal timer. File predicates provide

the accessed file’s metadata (file name, length, extents and policy hash). Transaction

predicates provide information about the metadata and policy updates during a

transaction. Content predicates provide access to the per-session and per-transaction

content caches. Finally, certificate predicates provide information about cached

third-party certificates.

28

Relational, arithmetic and list predicates
eq(x,y) x==y le(x,y) x ≤ y add(x,y,z) x=y+z mul(x,y,z) x=y·z

or x<-y ge(x,y) x ≥ y sub(x,y,z) x=y-z div(x,y,z) x=y/z
neq(x,y) x!=y lt(x,y) x < y rem(x,y,z) x = y mod z

gt(x,y) x > y
listGet(l, i, (o, b, len)) (o, b, len)==l(i) where i∈{0,. . .,|l|-1}
listLen(l, len) len == | l |
listIsMember(l, x) x ∈ l
listIsSubset(l1, l2) l2 ⊆ l1
listsAreDisjoint(l1,l2) l1 ∩ l2 == ∅
listIsPrefix(l, p) l == [p | S] where S is suffix and | concatenates
listIsSuffix(l, s) l == [P | s] where P is prefix and | concatenates
Access predicates (outside transactions)
accStartBlkIs(b) access starts at block b
accOffIs(o) access offset at byte o
accLenIs(len) access length is len
Certificate predicates
keyIs(k, d) Public key k is a signing authority for domain d

(established by a standard certificate chain)
k signs rel(x1, . . . , xn) at T k signed the relation rel(x1, . . . , xn) T counter

ticks ago (only with nonce)
Session predicates
sessionKeyIs(k) k == current session’s client authentication key
File predicates
fileNameIs(s) s == pathname of file
fileCurrLenIs(x) x == file length
fileCurrExAre(l) l == list of the file’s extents
fileCurrPolIs(h) h == file policy’s hash
Transaction predicates
txUpdatedExAre(l) l == {x | x ∈ WriteSet}
txReadExAre(l) l == {x | x ∈ ReadSet}
txReuseExAre(l) l == CurrExtents ∩ NewExtents
txIsPickle(k) current tx prepared pickled data for identity k
txIsUnpickle(k) current tx holds unpickled data from identity k
fileNewLenIs(x) x will be the new file length
fileNewExAre(l) l will be the new list of file’s extents
fileNewPolIs(h) h will be the new file policy’s hash
Content predicates
(f,off,len) says rel(x1, . . . , xn) x1, . . . , xn is the tuple at off,len in file f
(off,len) willSay rel(x1, . . . , xn) ditto for the updated content of the current trans-

action
(f,off,len) hasHash h hash of file f’s content at off,len equals h
(off,len) willHaveHash h ditto for the updated content in the current trans-

action

Table 3.2: Guardat policy language predicates

29

We divide the language’s predicates into three categories. Universal predicates are

available in all policy rules and provide knowledge of the public key that authenticated

the session (predicate sessionKeyIs), the name(s) of the file being accessed (predicate

fileNameIs), and any content already buffered in the session cache, including the

content of other files. Access to the content of other files is necessary for enforcing

many policies, including mandatory access logging (MAL) (see Section 3.5).

Rule-specific predicates are available in particular policy rules. In the read rule,

such predicates provide the length of the read and its logical and physical offsets

(hence, policies may be specified at byte-granularity). In the update rule, such

predicates provide the current and new extents of the file, the current and new file

sizes, and the new file contents buffered in the transaction cache. Hence, policies

may compare old and new file contents, e.g., the MAL policy requires that the file

version number increment at each update.

Finally, Guardat policies may mention arbitrary external predicates established

through third-party cryptographic certificates.

3.4.3 Third-party certificates

Guardat verifies every certificate provided to it using standard certificate chain

verification [30] and makes the certificate’s content and its signer’s public key available

to the policy interpreter through the predicate signs. Guardat relies on untrusted

clients to provide relevant certificates before access. If the required certificates for

policy evaluation are missing, access is denied. When a certificate issuer is offline

and previous certificates time out, access to files that rely on certificates from that

issuer may be denied, but access to other files remains unaffected. To prevent

replay attacks, each certificate must include either a recent Guardat-generated nonce

using a pseudorandom number generator, or an explicit expiration time (time server

certificates must contain a recent nonce). Guardat waits for a certificate containing

30

a nonce it generates for a small period only. This wait time is an upper bound on

the delay between the issuance of a certificate and its acceptance by Guardat and,

hence, also an upper bound on the difference between the clock time estimated by

Guardat and the clock time known to a time server.

3.4.4 Semantics

Guardat’s policy language uses standard Prolog semantics (Datalog is a sublanguage

of Prolog). These semantics have been studied extensively, both in the context of

access control [18, 100] and more generally, so we review them only briefly. Predicates

are evaluated left-to-right in a rule. Variables are implicitly existentially quantified.

If a variable appears in many predicates joined by conjunction (∧), it gets bound to

a concrete value (public key, file name, time point, etc.) when the first predicate in

which it appears evaluates. Of all policy clauses joined by disjunction (∨), only one

has to evaluate affirmatively to allow access. The language is implemented using a

stack machine, which is standard for languages like Prolog [131]. We describe the

evaluation time complexity of the language in Section 3.7.2.4.

3.4.5 Usability

Declarative languages similar to ours are widely used as policy languages (e.g.,

XACML, SecPAL, Binder, SD3, and KeyNote [92, 18, 33, 66, 21]) due to their

simplicity, which enables a very concise policy specification, as well as a very small

interpreter, minimizing the TCB. A standard, imperative language could be used

instead, but at the loss of the above mentioned benefits. Several security-oriented

operating systems incorporate similar policy languages (e.g, Taos, Nexus and Singu-

larity [139, 118, 140]). More broadly, the source of our policy language, Datalog, is

an industry-strength alternative for SQL. Datalog is also used for other purposes like

declarative specification of network protocols (languages NDlog and Overlog [76, 77]).

31

We believe that policies will be written mostly by privacy and security experts.

For any application, there will be a limited number of basic useful policies, and

most system administrators, users or developers will merely select from a library of

policies, perhaps with minor customization.

3.5 Policy examples

We illustrate Guardat’s capabilities by presenting example policies to protect exe-

cutables, log files and backups. If the read or update rule of a policy is omitted,

then the permission is always allowed and if a setpolicy or destroy rule is omitted,

then that permission is never allowed.

3.5.1 Protected executables

For an executable file, it is desirable to prevent accidental or malicious overwriting

or rollback to a prior version. A representative Guardat policy to accomplish this

is shown below. The policy states that the new content of the executable after any

update must be signed by the software vendor (called “Vendor”) as being version 10

or later. Moreover, any policy changes must be certified with the administrator’s

key, kad.

update :- file_name_is(F) ∧ new_length_is(L) ∧

(0, L) willHaveHash Nh ∧ key_is(K, “Vendor”) ∧

K signs ok_hash(F, N, Nh) ∧ (N ≥ 10)

setpolicy :- file_name_is(F) ∧

new_pol_hash_is(Nph) ∧

kad signs good_policy(F, Nph)

The first rule allows an update to the file only if there is a public key K belonging

to “Vendor” (condition key_is(K, “Vendor”)), which signs that the file’s new content

32

hash, Nh, is the Nth version of the executable (condition K signs ok_hash(F, N, Nh))

and N ≥ 10. The predicates key_is(K, “Vendor”) and K signs ok_hash(F, N,Nh) are

verified from client-provided certificates signed by a certifying authority and the

vendor, respectively. The second rule allows a change to the executable’s policy only

if the hash of the new policy, called Nph, has been certified by the administrator

(condition kad signs good_policy(F, Nph)).

Properties: As long as the integrity of the vendor’s and admin’s keys is maintained,

files protected by the policy cannot be overwritten except with content signed by the

vendor and version ≥ 10, even if the entire system is compromised (write integrity).

A variant of this policy can limit content on the system’s boot sector to vendor-signed

boot images, thus protecting the boot sequence from trojans and rootkits.

3.5.2 Append-only logs

The following policy specifies an append-only file that may be extended by anyone

but modified in-place (e.g., rotated) only by an administrator identified by the public

key kad. The policy prevents accidental or malicious manipulation of system log files.

update :- session_is(kad) ∨

(old_length_is(Lo) ∧ new_length_is(Ln) ∧ (Ln ≥ Lo) ∧

updated_locations_are(M) ∧ disjoint(M, [0, Lo]))

The policy allows an update if either the session is authenticated by the administrator

(condition session_is(kad)) or the file’s new length Ln exceeds its current length Lo

and the first Lo bytes of the file are not modified.

Properties: As long as the integrity of the admin’s key is maintained, the policy is

enforced even if the system is compromised.

33

3.5.3 Protected backup

Backup files can be protected from accidental or malicious modification for a fixed

period of time using the following policy.

update :- key_is(K, “TimeServer”) ∧

K signs time(T) at Ti ∧

count_is(Tj) ∧ (T + Tj − Ti > endT)

The policy allows modification to the file only if the current time exceeds a pre-

determined time endT. To enforce such policies, Guardat relies on signed certifi-

cates from time servers and a short-range internal timing counter. In detail, the

policy says that there should be a key K belonging to a time server (condition

key_is(K, “TimeServer”)), which issued a certificate that the time was T when the

Guardat internal counter had value Ti (condition K signs time(T) at Ti), the current

internal counter value is Tj (condition count_is(Tj)) and the current time (calculated

as T + Tj − Ti) exceeds the backup end time endT.

Properties: As long as the integrity of the time server and its signing key is

maintained, a file with this policy cannot be modified before the designated time,

even if the system, the admin’s and the file owner’s private keys are compromised.

3.5.4 Mandatory access logging (MAL)

Legislation and organizational policies often mandate that all read and write access

to sensitive information like medical records be logged. Although application-level

solutions to enforce such mandatory access logging (MAL) exist, enforcing the policy

in Guardat is desirable because it would increase security.

34

For this exposition, let P be the sensitive file which must be protected by MAL

and let L be its log file. We assume that the log file is append-only, through the

policy described earlier. The MAL requirement is three-fold:

Completeness For every read on P , an entry in L should describe who read and

from where in P . For every write, a similar entry must exist in L and it must

additionally contain a hash of the content written.

Causality Given two write entries in L, the order in which they were applied to P

should be evident and, similarly for a read and a write entry.

Precision Call a write entry in L dangling if it does not correspond to an actual

write on P . Then, either dangling entries should not be allowed in L or they

should be detectable.

Dangling read entries are usually not a problem, because it is in the client’s

interest to establish that it did not read certain data and, hence, not create dangling

read entries. We also describe later how read entries can be made precise.

We start with an obvious strawman policy for P , which is complete, but does

not provide causality and precision. We refine the design later. We define two kinds

of entries for L: may_read(K, S), which indicates that the client with public key

K has potentially read the set S of (off,len) ranges from P ; and change(K, S, H),

which states that content with hash H has been written to the ranges in S. To force

logging of reads, we require in the read rule of P ’s policy that if the range R is read

by client K, then an entry may_read(K, S) with R ⊆ S exist in L. Similarly, write

logging could be forced through P ’s update rule.

This strawman policy for P can be expressed in the Guardat policy language

because the set R of locations read or updated is available through contextual

predicates in the policy language, the client K is available through the predicate

is_session(K) and L’s content is available through the session cache (predicate says).

35

The policy can also be easily satisfied by the client: Prior to reading or writing,

the client could append an appropriate entry to L and have it cached for P ’s

subsequent policy evaluation. Even though this policy satisfies the MAL requirement

of completeness, it does not satisfy causality and precision. Nothing in L’s policy

prevents the client from creating entries that are never used and such entries cannot

be distinguished from others (this violates precision). Moreover, nothing in P ’s

policy prevents use of L’s entries out-of-order, which violates causality.

To obtain causality and precision, we refine this strawman design. We embed a

counter in each entry in L and enforce through L’s policy that the counter increase

by 1 at each successive change entry and remain the same at each may_read entry. We

enforce through P ’s policy that the value of the counter in the last change entry that

has already been applied to P be written at a designated locus in P . Further, the

entry used to justify a read must have a counter number that matches the current

counter in P . We describe below how we enforce these requirements. Assuming that

they have been enforced, both causality and precision are satisfied. Causality holds

because the policies just described force that change entries apply to P in increasing

order of their counter numbers, and that a read corresponding to a may_read is used

after all change entries with smaller or equal counter numbers have been applied.

Precision holds because a change entry is dangling if and only if its counter number

is higher than the counter in P .

The log’s entries are revised to include counter numbers. They take the forms

may_read

(N, K, S) and change(N, K, S, H), where N denotes a counter. We reserve a fixed

locus in P for a counter, called C. The log is initialized with a dummy entry with

N = 0 and P is initialized with C = 0. We describe relevant policies of L and P in

words, omitting symbolic representations for clarity. We have formally represented

these policies in our prototype implementation; experimental results are presented in

Section 3.7.5.

36

L’s update policy: Only appends are allowed and only entries of the two designated

forms may be added. If the added entry has the form may_read(N, . . .), then

N must be copied from the previous entry and if the added entry has the form

change(N, . . .), then N must be one more than the previous entry’s counter.

These requirements can be represented in the Guardat policy language because

the previous entry and the new entry are accessible through the session and

transation caches, respectively, during evaluation of the update rule.

P ’s read policy: L must contain a may_read entry with the same counter number

as C and range set larger than the actual range read. L’s relevant entry and

C are accessible through the session cache during P ’s policy evaluation. In

particular, C can be referenced because Guardat supports byte-level addressing

on files and the locus of C is fixed in advance. The client is responsible for

specifying which entry of L in the session cache satisfies the policy.

P ’s update policy: L must contain an entry describing the update precisely. The

counter in the entry must be one more than C. The update must also increment

C by 1. When evaluating P ’s policy, L’s relevant entry and the old value of

C are accessible through the session cache. The new value of C is accessible

through the transaction cache.

MAL client: The MAL client must perform some bookkeeping steps to satisfy the

MAL policy. Prior to each access on P , appropriate log entries must be created and

committed to Guardat. When creating log entries, flags must be set to buffer them

in the content cache for use in P ’s policy evaluation. A log entry’s cache record is

also necessary to create the next log entry. Similarly, when C is updated, flags must

be set to cache it for use in future policy evaluations. This approach follows from

our design principle of placing the burden and complexity of how to satisfy a policy

on the untrusted code.

37

The overhead of creating log entries for updates can be reduced by committing

transactions less frequently (and, hence, requiring fewer change entries). Similarly,

the overhead of creating log entries for reads can be reduced by clubbing several

anticipated reads into a single may_read entry. The performance benefit of these

optimizations is substantial and we report on it in Section 3.7.5. Applications

that cannot accurately estimate their read-sets ahead of time can simply create

blanket may_read entries that cover the entire file and periodically commit read-only

transactions accompanied by special log entries that specify precisely what has been

read in the transaction. The precise read set is available to Guardat during a commit

transaction, so the log entry’s accuracy can be verified. This mode of use requires a

second counter in log entries and the sensitive file to count read-only transactions.

3.5.5 Other policy idioms

Many other common policies can be expressed in Guardat. Examples include:

(a) Role-based policies where access depends on the client’s role in an organization

(certificates can relate clients to roles), (b) Blacklist (whitelist) policies where access

is denied (allowed) if the client’s identity exists in a sorted file (the file’s sortedness

can also be enforced using Guardat policies), and (c) History-based policies where

access depends on past events that are visible to Guardat. The latter can be enforced

by recording events in a dedicated log file and allowing access to the data file only

when the log file is in certain states. The MAL policy is a simple history-based

policy that allows access only when the event of creating an appropriate log entry

has occurred.

3.5.6 Expressiveness

As these examples demonstrate, the Guardat policy language is expressive. It

can express content-based policies like MAL that prior work on declarative policy

38

languages cannot. However, the language has limitations. It disallows recursively-

defined predicates and, hence, cannot express layouts defined by iteration or recursion,

e.g., it cannot express that the content of a file be well-formed XML. Such constraints

may be checked by a trusted external verifier using certificates to communicate

between the verifier and Guardat, or by extending the language with recursive

predicates.

3.6 Implementation

This section describes the prototype implementation of Guardat in a SAN server

and present implementation alternatives of the Guardat design.

3.6.1 Prototype

Our prototype is based on the iSCSI Enterprise Target (IET) SAN server, which

implements the server-side iSCSI protocol and provides SCSI block storage access

via Ethernet. IET is in production use and available for many Linux distributions.

Figure 3.1 depicts the component level design. The server accesses an SSD for the

Guardat metadata and one or more payload disks which are either magnetic- or

flash-based. IET consists of a kernel module, which implements block accesses, and

a user-level daemon process, which implements iSCSI management functions. To

implement Guardat, we extended the kernel module and added a second user-level

daemon, which implements the Guardat interface and evaluates policies. The kernel

module performs upcalls to determine if iSCSI block accesses should be allowed. The

server is configured with a small SSD for storing Guardat metadata, as well as one

or more magnetic disks or SSDs for the payload data.

The Guardat daemon maintains two B-tree index structures on the metadata

SSD: a block-to-file index to find the file and policy associated with a given block

number, and a name-to-file index to retrieve the file information (set of extents,

39

Figure 3.1: Guardat implementation in a SAN server

policy, etc.) given a file id. For performance, the Guardat daemon maintains a

write-through DRAM cache of B-tree nodes and policies, backed by the SSD. Updates

are persisted on the SSD during a transaction commit.

When the kernel module receives a block access request, it passes the access type

(read/write) and location (disk offset, length) to the multi-threaded Guardat daemon,

which consults the block-to-file index. If the block location is not associated with

a policy-protected file, the access is granted. Otherwise, the daemon evaluates the

policy and returns the result to the kernel module. For read requests, the block read

is scheduled while checking the permission to reduce latency. During a write request,

the block write must be deferred until the Guardat daemon grants the permission.

To reduce the number of upcalls and policy evaluations, the kernel module main-

tains a cache of previous policy evaluation results of the form 〈extent, permissions〉.

To feed this cache, the Guardat daemon always returns the largest extent encompass-

ing the presently requested block for which the same permissions hold. The cache is

flushed when a policy changes. This optimization avoids policy re-evaluation and

saves the communication cost between kernel module and the Guardat daemon in

many cases.

Our prototype’s attack surface consists of the IET management interface, the

block-device interface, the Guardat interface extensions as well as the policy language.

40

Despite the relatively large IET codebase, which includes a minimally configured

Linux kernel, the resulting attack surface is likely to be significantly smaller than

that of the systems and applications built on top of Guardat in most cases. Our

Guardat implementation adds less than 20,000 LOC to the existing IET codebase,

plus the OpenSSL and glib libraries it relies on.

3.6.2 Implementation alternatives

Guardat can be implemented in different ways depending on the deployment and

threat model. The GDC can be implemented using the following mechanisms:

(a) In a SAN server for use in a data center, as described in the previous prototype

section.

(b) Integrated with the microcontroller of a hybrid disk for use in an individual

machine.

(c) In a trustlet within a virtual machine monitor or operating system, isolated

using trusted hardware features like Intel SGX [63] or ARM TrustZone [12].

Table 3.3 lists examples of deployment scenarios, their threat models and trust

assumptions. As described in the threat model each implementation must protect

the GDC, metadata and data from unauthorized physical access and undetected

tampering

Implementation (a) relies on physical protection, e.g., in a machine room with

access only by trusted employees. A possible deployment scenario at a Cloud provider

protects user data from bugs and misconfigurations in its infrastructure and from

opportunistic access by employees. The user must trust the Cloud provider to prevent

physical access to the SAN server by all but trusted employees.

In implementation (b), the GDC is implemented as part of a microcontroller

embedded in a hybrid disk. Here, the metadata and data are encrypted and au-

41

Guardat
Implemen-
tation

Deployment
objective

Trust
assumption

Who
trusts?

How trust is
discharged?

Cloud
storage
server

User wishes to protect
her data from bugs,
errors and
opportunistic
employees at a
reputable Cloud
provider

Only trusted
staff has
physical
access to
servers

User Provider re-
stricts physical
access to servers

Storage
servers

Data center wants
protection from bugs,
misconfigurations,
disgruntled employees

ditto Data
center

Center restricts
physical access
to servers

Microcontroller
in user’s disk

Service provider
wishes to protect
proprietary content
cached on user’s
machine

User cannot
compromise
the controller

Provider User is unable
to tamper with
controller chip

Microcontroller
in user’s disk

User wants to protect
data on her machine
from bugs, viruses and
mistakes

None needed - -

Table 3.3: Guardat deployment scenarios and trust assumptions

thenticated to protect them from unauthorized access and undetected tampering.

The microcontroller implements the GDC and stores its private key in an embedded

TPM. In this scenario, the Guardat policies are enforced as long as the microcon-

troller has not been physically tampered with. While we have not attempted this

implementation, we believe it is feasible with a high-end microcontroller that has

on-chip hardware support for secure hashing and cryptography, as well as a TPM.

Implementation (c) has similar security properties, except that the GDC executes

on the main CPU and trust is derived from this CPU’s trusted isolation capabilities.

3.6.3 Filesystem interoperability

Full interoperability with Guardat requires modest filesystem modifications to add

session ids to the buffer cache tags for secure sessions, to associate write commands

42

with appropriate transactions, and to enable policy-compliant file reallocation/de-

fragmentation. Unmodified filesystems can be used with many policies. In fact,

all policies described in Section 3.5 except MAL operate with an unmodified ext4

filesystem.

We sketch how our Guardat prototype can be used with an existing, unmodified

filesystem, which is not aware of Guardat and issues only ordinary block reads

and writes. In this compatibility mode, applications are linked with a library,

which implements the standard POSIX filesystem interface, and provides additional

operations for applications to authenticate, set a policy for a file, provide certificates

required by policies, and request attestations. The library interacts with the Guardat

userspace daemon directly and makes API calls to associate block read and write

operations issued by the filesystem with an object, client session and transaction. We

note that the library is untrusted and does not require extra privileges. In particular,

the library only executes those Guardat calls on behalf of applications that the

applications are allowed to execute themselves.

To determine if a block read operation is allowed, the Guardat daemon maps

the requested block number to the associated object (if one exists) using the block-

to-object B-tree. To further be able to map the read operation to an authenticated

session, we impose the limitation that only a single transaction or session can be

open for a given object at any given time in compatibility mode. Confidential objects

cannot in general be accessed through the file system, because that system’s block

cache may deliver data encrypted for one client to another client. Therefore, an

application library reads such objects through the IOCTL interface, by first looking

up the object’s list of extents, and then issuing reads via IOCTL.

Write operations may refer to an extent not currently associated with any object.

(When a file is extended, the filesystem allocates new blocks.) Therefore, prior to

writing new data to a file, the application library provides the Guardat daemon with

a vector of hashes of aligned blocks containing the new data. This vector enables

43

the daemon to associate subsequent writes issued by the filesystem with the correct

object, offset, session and transaction. In order to avoid ambiguity, two blocks with

the same hash value may not be outstanding at the same time. The daemon enforces

this condition by temporarily refusing to accept a block hash vector that contains an

element that is already present among the current set of outstanding vectors.

When the kernel module receives a write command, it computes the hash of

blocks to be written, and sends the hash to the daemon along with the request. The

daemon matches write requests with the list of hashes provided by the compatibility

library. Computing hashes in the kernel avoids sending data from the kernel to the

userspace daemon.

The compatibility mode has limitations. As mentioned above, only a single session

and transaction may be active for any given object, which can lead to some loss of

performance in workloads with concurrent accesses to the same file. Also, because the

filesystem is unaware of Guardat, any attempt by the filesystem to relocate a file with

an associated integrity policy may fail. As a result, defragmentation of an unmodified

filesystem requires a modified defragmentation utility. Object data encrypted with a

session key must be communicated between library and the Guardat daemon without

going through the iSCSI driver, to avoid polluting the filesystem’s buffer cache with

session-encrypted data. Finally, an unmodified filesystem that overwrites blocks in

place cannot be used with certain integrity policies in compatibility mode. These

limitations can be lifted by modifying a filesystem to use the extended Guardat API.

3.6.4 Support for databases

Some applications and systems increasingly rely on databases rather than files to

represent their state. In databases, each row and each column may have a different

policy, so enforcement at the file or block level is generally not appropriate. Table

or column policies can be enforced with an appropriate file-based data model with

44

Guardat in special cases. Recent work [84] enforces similar data confidentiality and

integrity policies over databases.

3.7 Experimental evaluation

In this section, we describe a prototype implementation of Guardat within a SAN

server. We evaluate its performance on a series of microbenchmarks, and in the

context of a web server that enforces several of the policies explained in Section 3.5.

3.7.1 Experimental setup.

The Guardat-enhanced IET SAN server (based on version 1.4.20.3-9.6.1) [65] runs

on a server connected to the client via one 10Gbit Ethernet link. The client software

runs on OpenSuse Linux 12.1 (kernel version 3.1.10-1.16, x86-64). The Linux iSCSI

client connects to the IET server, and appears to the Linux filesystems as a locally

connected SCSI block device.

The IET server and the Linux client each run on a Dell Precision T1600 worksta-

tion with an Intel Xeon E3-1225 3.1Ghz quad core CPU (AES and AVX instruction

set) and 8GB main memory. The server has a 500GB disk drive dedicated to the

server OS installation. Data blocks are stored either on a separate Seagate Bar-

racuda 2TB 7200 rpm hard drive with a 64MB cache [111], or on a 512GB Samsung

SSD [106]. The Guardat metadata is stored on a OCZ Deneva 2 C SLC 60GB (raw

64GB) SSD [93]. Only 4GB of that SSD is actually used for Guardat metadata.

Guardat uses a DRAM metadata cache that holds 100K b-tree nodes.

The OpenSSL crypto library [96], Intel AES encryption library [61], and Intel’s

fast SHA256 implementation [62] are used for Guardat cryptographic operations.

45

3.7.2 Microbenchmarks

3.7.2.1 Read/write latency

We first examine the read/write latency of the Guardat prototype under synthetic

workloads, using either a HDD or an SSD as the block store.

We use a 2TB image with 3.8 million files, each spanning a single 512KB extent.

To use the same metadata size and access pattern on the HDD and SSD despite

their different capacities, we access files allocated in the first 512GB of the image

only. We compare the Guardat prototype with the original IET under three different

configurations.

iSCSI: The plain IET iSCSI implementation.

Guardatempty: Guardat is used, but no files are protected by a policy.

Guardatfile: An “allow all” policy is associated with each file.

Guardatpolicy: Each file is protected by a policy selected at random from a set of

40,000 different policies, each of which allows access after a past date.

Each configuration is exercised with two access types (Read and Write) and

three different access patterns:

Sequential: Blocks are accessed in order of increasing block id.

Local: Each accessed block chosen randomly within 40,000 block ids of the previous

block.

Random: Each accessed block chosen randomly on the entire disk.

Each access reads or writes a single 512 byte block. For each access pattern in

each configuration, we perform five experimental runs; each run has 20,000 accesses

46

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

RR LR SR RW LW SW

O
ve

rh
ea

d
in

 m
s

Workload

Guardatempty
Guardatfile

Guardatpolicy

Figure 3.2: Absolute Guardat latency overhead. (Overhead of Guardatempty
invisible <2.5 µs.)

(a total of 100,000 accesses for each configuration). Each run starts at a randomly

chosen location on the disk.

Figure 3.2 shows the absolute Guardat latency for metadata lookup and policy

evaluation in the experiment. (Note that these results are independent of whether a

SSD or HDD is used as the data store.) Error bars indicate the standard deviation.

In the Guardatempty case, the userspace daemon spends 2.5µs upon the first

access to check for a (non-existent) policy. A single entry is then added to the kernel

module’s permission cache, covering the entire disk and granting universal permission

(no policies). Subsequent requests are granted from this cache at near zero cost

making all blue bars invisible in Figure 3.2. In the other cases, the time spent by

Guardat depends on the locality of the workload, which determines the hit rate in

the kernel permission cache and the daemon’s DRAM cache of b-tree nodes. For

example, the Guardat overhead averages 2.2µs for Guardatpolicy in the sequential

access cases, since caching is very effective. However, under the random workloads,

Guardatpolicy has to perform on average 0.7 reads on its metadata SSD per check,

increasing its overhead to 160µs. The variable number of metadata SSD accesses

required for a given policy check explains the high variance.

47

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

RR LR SR RW LW SW

R
el

at
iv

e
ov

er
he

ad

Workload

iSCSI
Guardatempty

Guardatfile
Guardatpolicy

Figure 3.3: Latency with an SSD, relative to iSCSI

Figure 3.3 shows the resulting average access latency with the SSD, relative to

the plain iSCSI. Even with the fast SSD as a block store device, the Guardat latency

overhead is generally low, but significant for random writes (2-fold increase). The

fact that our block store SSD performs random writes much faster than random

reads (153µs versus 233µs), presumably due to write buffering in its internal DRAM,

combined with the fact that the policy check cannot be overlapped with the access

during a write, contributes to this high relative overhead.

Note that the random access workload is extreme: The SSD block store device

is very fast, we are measuring the latency of tiny accesses (512 bytes) at random

locations over the entire disk, and there are many files and policies. Increasing the

request size reduces the overhead. For example, with a 4K request size, the overheads

decrease from 29.3% for RR and 101.6% for RW to 17.7% and 96.1%, respectively.

With 128K requests, the overheads go further down to 0.9% and 23.5%, respectively.

Moreover, as we show next, even under this workload the SSD retains much of its

latency advantage over the HDD with Guardat, and Guardat’s throughput overhead

is very low on both the SSD and the HDD.

Figures 3.4 and 3.5 compare the absolute latencies achieved on a HDD and SSD

with and without Guardat. Despite Guardat’s large relative overheads for purely

random writes, the SSD retains its towering latency advantage on such accesses over

48

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

RR LR SR RW LW SW

R
es

po
ns

e
tim

e
(m

s)

Workload

iSCSI SSD Guardatpolicy SSD

Figure 3.4: Absolute latency with SSD

 0.01

 0.1

 1

 10

RR LR SR RW LW SWLo
g.

 re
sp

on
se

 ti
m

e
(m

s)

Workload

iSCSI HDD Guardatpolicy HDD

Figure 3.5: Absolute latency with HDD

the HDD (note that the y-axis is different for SSD and HDD). With the magnetic

HDD, the Guardat latency overheads for all configurations are negligible (below 1%).

Compared to a locally attached SSD, the average latency of a remotely connected

iSCSI SSD increases by 0.051 ms, a little more than one network round trip (0.047

ms).

3.7.2.2 Read/write throughput

Next we examine the read/write throughput of the Guardat prototype, using the same

configurations as the latency experiment. The test client issues four 128KB requests

concurrently, which is sufficient to achieve maximal read and write throughput in

49

 0

 100

 200

 300

 400

 500

 600

RR LR SR RW LW SW

Th
ro

ug
hp

ut
 (M

B
/s

)

Workload

iSCSI
Guardatempty

Guardatfile
Guardatpolicy

Figure 3.6: SSD I/O throughput

the baseline iSCSI in all cases. For each access pattern in each configuration, we run

the throughput test 5 times; each run issues a total of 20,000 accesses and starts at

a random block within the disk.

Figure 3.6 shows the absolute throughput with the SSD. The results shown

are the averages of 5 runs, where error bars indicate the standard deviation. The

Guardat overhead is below 2% for all access patterns with the SSD. With the HDD,

the overheads are in the same range.

The high latency overhead on random writes does not significantly affect the

throughput because policy evaluation for different requests can be performed in

parallel by the multi-threaded Guardat daemon, and overlapped with disk and SSD

accesses to metadata and blocks.

Moreover, compared to a locally attached SSD, the throughput overhead is at

most 3% for all iSCSI and Guardat configurations and workloads.

3.7.2.3 I/O performance summary

While Guardat adds little latency to HDD accesses and SSD accesses with good

locality, it has a noticeable latency overhead on small, purely random writes to

an SSD. However, this overhead diminishes quickly with larger request sizes and

50

Policy size Domain size
1 2 4 8 16

1 2.2 3.4 5.8 10.7 20.4
2 4.6 10.4 28.9 95.1 345.8
3 7.0 24.0 121.2 770.5 5,518.1
4 9.4 50.9 485.3 6,156.4 88,319.3
5 11.9 104.9 1,951.3 49,234.7 1,411,800.8

Table 3.4: Evaluation latency in µs for varying policy size (number of predicates
and variables in the policy) and domain size (maximum number of cache entries)

more locality, and can be overlapped with concurrent accesses, so that the SSD’s

throughput is not affected.

3.7.2.4 Policy evaluation overhead

Consistent with Datalog, the theoretical worst-case evaluation time for a policy

rule is in O(m ·Dn), where m is the size of the rule (number of predicates), D is

the size of the domain (bounded by the size of the Guardat cache) and n is the

number of variables in the rule. In Table 3.4, we show the measured policy evaluation

time for synthetic policies designed to extricate worst-case execution from our policy

interpreter. D varies along columns of the table and m and n vary along rows (m = n

in all experiments). The results match the expected complexity O(m · Dn). The

table indicates (correctly) that policy evaluation could be a substantial bottleneck for

some policies but we do not observe this bottleneck in practice. The average policy

evaluation latency of the most complex policy evaluated, MAL (Section 3.7.5) is only

27.7µs, even though the policy has m = 4, n = 4 and D = 40. This is because of a

careful implementation of the policy interpreter to consider more recent cache entries

first. Our other example policies evaluate even faster; the average evaluation time of

the time-based policy from the latency experiment configuration Guardatpolicy is

only 3.7µs.

51

3.7.2.5 Space requirements for metadata

We quantify the metadata storage requirements. Because the metadata size depends

on the structure of the payload data, we analyzed the metadata space requirements

for 70,825 filesystem snapshots collected by Agrawal et al. [2]. The snapshots were

taken from Windows systems within Microsoft corporation between 2000 and 2004,

and contain between 30k and 90k files each with an average file size between 108KB

and 189KB. For evaluation purposes, we give each file in each snapshot an integrity

policy that disallows modification prior to a given date. The snapshots are more

than 10 years old at the time of this writing. Because the average file size in

today’s systems has likely increased, however, our analysis of Guardat’s metadata

requirements relative to the size of the data is conservative.

The required metadata can be accommodated in a solid state memory of 0.8% of

the data size for 99.89% of the snapshots. As a point of reference, even commercially

available hybrid disks provide at least 0.8% Flash [112] at the time of this writing.

Newer combinations of Flash/disk devices achieve much higher Flash to disk capacity

ratios and this trend is projected to continue given the price and space reduction

rates of flash memory. For example, Apple’s Fusion Drive [10] has a ratio of 128GB

Flash for a 1TB HDD, which can easily accommodate all the snapshots. In all our

experiments, which use other data sets, the metadata fit into only 0.2% of the data

size.

3.7.2.6 Flash memory wear

Because Flash memory can endure only a limited number of erase/program cycles,

we must check that the SSD used to store metadata will not wear quickly. To be

conservative, we assume that the Flash must last at least 10 years. The lifetime is

influenced by the size of the metadata, the rate of metadata updates, and the Flash

capacity. A smaller capacity causes the Flash log to wrap around faster and leads to

52

 0
 50

 100
 150
 200
 250
 300

iozone(r/w) bonnie++(r/w)

P
er

fo
rm

an
ce

 (M
B

/s
)

iSCSI SSD
Guardatpolicy SSD

iSCSI HDD
Guardatpolicy HDD

Figure 3.7: FS benchmarks read and write (r/w) performance

higher utilization, which in turn reduces cleaning efficiency and requires even more

Flash writes.

Under the configuration of Guardatpolicy used above, we keep track of how

much wear the Flash experiences while presented with a series of metadata updates,

i.e., adding and removing extents to a content file picked at random. Enterprise

environments typically deploy single-level cell (SLC) Flash memory, which has a

nominal lifetime of 100,000 erase/program cycles. Using only 4GB of such memory

we can accommodate up to 19.5M updates per day (225 per second). This is an

extraordinarily high update rate that can accommodate even the most write-intensive

applications. Cheaper multiple-level cell (MLC) and triple-level cell (TLC) Flash

memory with nominal lifetimes of 10,000 and 1,000 erase/program cycles would

support up to 1.95M and 195,000 metadata updates per day, respectively.

3.7.3 Filesystem benchmarks

Next, we measure the performance of the Guardat prototype using the standard

filesystem benchmarks iozone v3.429 and Bonnie++ v1.03. The block store was

formatted under ext4. iozone uses four worker threads to write 1GB sequentially

53

to four separate files.1 Later, each worker performs a sequential read of the file

they previously wrote. Similarly, Bonnie++ writes then reads 1GB each to 16

files. Figure 3.7 shows the performance for the baseline and Guardat under the

Guardatpolicy configuration. The results shown are the averages of 5 runs and

error bars indicate the standard deviation. The Guardat overheads are below 1.0%

for both benchmarks on both the HDD and the SSD. Note that Bonnie++ uses the

C library functions getc and putc to perform file reads and writes, and is therefore

unable to saturate the disks.

Similar to the throughput experiment, the iSCSI SSD results are close to those

achieved with a locally attached SSD (at most 3.5% lower).

3.7.4 Use case: Web server

Next, we consider the performance of the Guardat prototype as part of a modified

Apache Web server. The server holds a 220GB static snapshot of English language

Wikipedia articles from 2008 [137] and Wikimedia images from 2005 [136], containing

15 million files with an average file size of 15KB and maximum file size of ∼500KB.

The HTTP client asynchronously requests HTML pages from the Web server, using

a workload based on the actual access counts of Wikipedia pages during one hour on

April 1, 2012 [138]. Because our snapshot is much older and had fewer articles at

the time, we ignore accesses to non-existing pages. In total, about 350,000 different

pages were accessed in the trace, of which 250,000 are part of the 2008 snapshot.

Since we do not have access to time stamps, we distributed the individual accesses

evenly within an hour, and replayed the first 100,000 page requests.

We use the following Guardat policies to protect the server’s persistent state:

Content: Require content updates signed by owners. We randomly assign one of

40,000 owners to each content file.

1We used the command iozone -i 0 -i 1 -r 512k -I -c -e -T -t 4 -s 1g -F files

54

 200

 250

 0 10 20 30 40 50 60 70 80 90

Th
ro

ug
hp

ut
 (R

eq
ue

st
s/

s)

Number of concurrent HTTP requests

iSCSI
Guardat

Figure 3.8: Web server throughput

Executables/Config: Require that updates to executable and configuration files

be signed by the administrator.

Log files: The Apache log files can only be appended, except with an administrator

key used to rotate the log.

To satisfy the log file policy, we added a total of 51 lines of code to Apache. This

extra code issues Guardat commands to send content hashes to Guardat and flush

application and filesystem caches (fflush & fsync) before every log file update. The

policies protecting the content, executables and configuration files do not require any

modifications to Apache.

Figure 3.8 shows the average throughput of three runs as a function of the number

of concurrent HTTP accesses, for plain iSCSI and Guardat (standard deviation is

below 0.5%). Each run loads 100,000 Wikipedia pages. The throughput overhead of

the Guardat configuration over the unmodified iSCSI server is 1.95% at 60 concurrent

requests, where iSCSI reaches its peak throughput, and always within 2.7%. This

result shows that the Guardat overheads mostly overlap with other activities in the

Web server. The 100,000 page requests result in approximately 350,000 Guardat

reads, for an average of 3.5 reads per page. This shows that a substantial number

of reads reach the Guardat device and are not absorbed by the filesystem buffer

55

cache. In addition, Apache writes 2.7MB of log records in 170 transactions under the

append-only policy. There are no updates to content, executables and configuration

files, nor log rotations in the workload, but policies must still be checked during each

access.

In terms of functionality, Guardat protects content, logs, configuration and

executable files from tampering by unauthorized parties, which we confirmed through

fault injection experiments.

3.7.5 Mandatory access logging

In our final experiment, we perform accesses to a file with our mandatory access

logging (MAL) policy. The policy requires an appropriate entry in a separate log

file for an access to be allowed by Guardat. We use a 64MB primary file with or

without the MAL policy in place. The primary file and the log file reside on different

HDDs attached to the same Guardat IET server. The version counter embedded in

the primary file is stored in Flash memory not used by Guardat. The client connects

to the Guardat device and accesses the primary file in three different configurations.

no log: File accessed without any logging and enforcement. (horizontal lines)

log: Accesses logged without policy enforcement.

Guardat MAL: Accesses logged and policy enforced by Guardat.

Figure 3.9 shows the average access latency for 100,000 sequential 4KB reads and

writes of the primary file, varying the number of accesses per recorded log entry from

1 to 512. Error bars indicate the standard deviation. In the case of a single access

per log entry, enforcing the MAL policy increases the read/write latency by 11.5%

and 50.6%, respectively, over voluntary logging. The higher cost for logged writes

compared to reads reflects the need to update the version number. Both costs can

be reduced by issuing version counter updates, log writes, and primary file accesses

56

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 8 32 128 512

A
c
c
e
s
s
 l
a
te

n
c
y
 (

m
s
)

Accesses per log entry

Read log
Read Guardat MAL

Write log
Write Guardat MAL

read no log
write no log

Figure 3.9: Latency with MAL, voluntary and no logging

in parallel. Moreover, as shown in the figure, the cost of MAL can be amortized by

logging several accesses in a single log entry, and approaches the cost of completely

unlogged accesses for 512 accesses per log entry.

3.8 Related work

Policy languages based on Datalog. Many declarative policy language are based

on Datalog and resemble the Guardat policy language in syntax and semantics. Some

examples are Soutei [100], Binder [33] and SecPAL [18]. Whereas these languages

are generic, the Guardat policy language is domain-specific and contains custom-

designed, storage-relevant predicates (Section 3.4). Soutei, Binder and SecPAL allow

intensional (recursive, rule-defined) predicates, which the Guardat policy language

omits to keep the implementation simple. These predicates can be added to Guardat

without any conceptual challenges. DKAL [52] extends Datalog with declarative

rules for exchanging authorization credentials in distributed systems. Such rules can

be added to Guardat as well.

TCG storage work group specification. Although developed independently, the

Guardat architecture bears some resemblance to storage work group standards of

the trusted computing group (TCG) [127]. Similar to Guardat, the TCG standard

57

prescribes session-based communication with storage devices and access control

on all calls. This industry interest supports the case for Guardat’s architecture.

Unlike our work, however, the TCG standard does not describe a concrete design,

implementation, or policy language, leaving these to device vendors; nor does it

include attestation of stored data. Implementations exist for a subset of the TCG

specification [123], providing full-disk encryption to preserve confidentiality of data

upon device theft, loss or end of life. They do not include secure sessions, universal

access checks, integrity policies, or attestations, all of which Guardat does.

Trusted computing. Trusted computing (TC) relies on a trusted platform module

(TPM) attached to a computer’s motherboard to provide a hardware root-of-trust [97],

while Guardat relies on a controller (GDC) attached to a storage device, enclosure

or server. While TC provides remote attestation of the software executing on a

computer, Guardat protects stored files and attests their state. TC provides sealed

storage, where data is encrypted with a key stored in the TPM and released only

when the computer runs a specific, trusted software configuration. Guardat instead

enforces a declarative policy on all data accesses. Compared to TC, Guardat can

reduce the size of the TCB and its attack surface. Depending on the policy, the

TCB may be as small as the GDC. TC can complement Guardat: A Guardat policy

for file access can require that trusted software, verified via TC remote attestation,

execute on the client computer. Conversely, TC can be used to attest the GDC.

Related trusted computing proposals. Building on TC, semantic attestation [54]

enforces properties of a computation by a runtime verification substrate within a

VMM. Guardat provides a limited form of semantic attestation that enforces a data

access policy, and does not require machine virtualization. With Excalibur [107]

data can be bound cryptographically to a predicate on nodes (e.g., “this node is in

Europe” or “this node is running Xen”). Guardat can implement a similar capability

with the help of a trusted authority to certify the predicate. However, Guardat can

58

enforce many other policies directly, without requiring an external trusted authority.

Pasture [69] is a TPM-backed messaging and logging library that enforces MAL

on data stored on an untrusted client machine. Furthermore, clients can delete

unaccessed data in a way that provably prevents future access. In Section 3.5.4, we

describe a similar MAL policy in Guardat.

VMM/OS data protection. Overshadow [28] uses VMM interception of application-

to-kernel switches to protect confidentiality and integrity of in-memory application

data from a corrupted OS. Using memory-mapped files, the same protection extends

to persistent files. Guardat enforces declarative policies (not considered in Over-

shadow) on persistent files. Overshadow’s in-memory protection can be combined

with Guardat for end-to-end enforcement of policies on data flowing through a

system.

In InkTag [57], designated high-assurance processes (HAPs) are protected from

the OS by the VMM, which verifies the OS’s actions. The VMM also intercepts all I/O

and enforces access control list-based protection on file accesses. Guardat supports

richer policies. Protections provided by InkTag can be circumvented by rebooting

into an OS without InkTag. Guardat protections cannot be bypassed by rebooting.

InkTag requires changes to the OS and, depending on the application workload, may

add 2-3x overhead. Guardat does not require any changes to the OS and incurs

only moderate overheads even for very challenging workloads. Furthermore, Guardat

provides policy protection even for remote clients, which Inktag does not.

The Nexus operating system [118], like the earlier Taos operating system [139],

applies policy-based authorization on OS interfaces for file access, memory mapping,

IPC and process management. The Nexus policy language, NAL, is similar to

Guardat’s [108]. Like Guardat, the untrusted application demonstrates policy

compliance by providing credentials ahead of access. However, Guardat focuses

exclusively on the storage subsystem and its policy language is more expressive for

59

this subdomain, e.g., it can express the MAL policy, which NAL cannot. Moreover,

Guardat is implemented in the storage layer. Nexus optionally provides data integrity

by maintaining a Merkle hash tree over the entire filesystem and storing the root

hash in a TPM. The same idea may be applied to Guardat.

DCAC [142] modifies the OS kernel to enforce attribute-based access control

on files. In DCAC, processes have attributes (privileges) and file policies are con-

junctions and disjunctions of these attributes. A process may create sub-attributes

of any attribute it controls, and it may delegate these sub-attributes to other pro-

cesses. DCAC can be used to build security primitives like process sandboxing and

application-controlled ad hoc sharing. The same primitives can be built on Guardat,

using application-created private keys instead of attributes for authorization. Ad-

ditionally, Guardat can enforce data integrity, access logging and time-dependent

access policies that DCAC cannot.

Protected storage. Butler et al. [27, 25, 26] describe storage devices that control

access to storage segments contingent on the presence of a hardware token, or on

successful remote attestation of the host computer. Guardat can also express such

policies.

Commercially available self-encrypting disks [110] encrypt data to ensure its

confidentiality when the device is lost or stolen. Our Guardat prototype includes

this capability. Web storage services like Amazon S3 [5] provide access control to a

client’s data based on user identities, groups and roles, encryption for secure data

storage and transit, and access logging. Guardat can enforce these (and many other)

policies and provides file attestations. Because it operates at the storage layer, it

does not require trust in the Cloud provider’s remaining platform.

In capability-based network-attached storage (NAS) [48, 3, 40], access requests

include a cryptographic capability created out of band by a policy manager, a trusted

component that serves all storage devices in a data center. A Guardat device, on the

60

other hand, can interpret and enforce many policies without relying on an external

policy manager; thus, Guardat can operate in an otherwise offline environment

(unless a policy specifically delegates to an external verifier). Guardat can enforce

content-based policies and attest files, which capability-based NAS cannot.

Type-safe disks (TSD) [119] track the filesystem’s relationship among disk blocks

using an extended block interface. Thus, a TSD can enforce basic filesystem integrity

invariants, such as preventing access to unlinked blocks. A security extension called

ACCESS adds read and write capabilities to selected disk blocks, thus enabling access

control for entire files and directories. Guardat additionally supports cryptography

and secure channels, which provide stronger protection against compromised hosts,

buggy filesystems and operator mistakes. Also, Guardat’s policy language can

support rich policies beyond filesystem metadata integrity.

To address the specific problem of accidental or malicious corruption of backup

data, one possibility is to restrict the ability to overwrite that data. The simplest

form is to use a write-once storage medium like a DVD. Similarly, Venti [101] is a

centralized storage service that implements a write-once interface and is intended as

a storage back end for archival data. Internally, data is stored on a RAID disk group.

Data blocks with identical content are coalesced prior to being stored. Write-once

solutions, however, will accumulate stored data over time. To avoid this inflexibility,

where data needs to be retained forever and the storage medium can never be reused,

one can disable writes for a given time period. This can be achieved in various ways.

Storage systems such as Self Securing Storage (S4) [124] and NetApp’s Snap-

Vault [55] RAID storage server retain shadow copies of overwritten data or disable

writes for a given period of time to address the specific problem of accidental or

malicious corruption of data. Guardat can enforce these and much richer integrity

constraints (Section 3.5), as well as confidentiality and access accounting.

61

Protected filesystems. jVPFS [134, 133] is a stacked, microkernel-based filesystem

that combines a small, isolated trusted component with a conventional untrusted

filesystem. jVPFS uses encryption, hash trees and logging to ensure data confiden-

tiality and integrity. Guardat instead operates at the storage layer, and supports a

much wider range of confidentiality and integrity policies.

SQCK [51] states a filesystem’s metadata invariants as SQL queries, and check-

s/repairs these invariants off-line. Recon [44] enforces declarative invariants on a

filesystem’s metadata at runtime. Guardat instead enforces data confidentiality and

integrity, and does not rely on correct filesystem metadata.

PCFS [45] and PFS [130] enforce declarative integrity and confidentiality policies

at the filesystem-level. Unlike Guardat, PCFS and PFS cannot enforce policies that

depend on the content or size of files, do not attest stored files, and can be bypassed

by booting into a different configuration. PFS uses the NAL policy language, which

we discussed earlier. PCFS uses a formal logic with more connectives than the

Guardat policy language. However, the logic is undecidable, which increases the

clients’ work in establishing policy compliance.

Protecting data availability. Storage systems like RAID [98], snapshotting filesys-

tems [56, 125, 89] and some backup utilities [9, 88] use redundancy to ensure data

availability. Guardat addresses the orthogonal problem of ensuring integrity, con-

fidentiality and access accounting in the face of human error, adversarial threats

and software bugs (e.g., a bug in a backup application that overwrites backed up

data [46]). In practice, Guardat must be combined with redundant storage to ensure

the availability of data in case of a media failure, loss, destruction or failure of a

Guardat device.

Extended storage functionality. Commercial hybrid disks [112] package a mag-

netic disk drive with a modest amount of NAND Flash memory, used as a non-volatile

write-back cache to increase performance. Guardat uses a comparable amount of

62

Flash memory to store its policy metadata but, in addition, protects data. Object-

based storage devices replace the traditional block-based storage with an object-based

interface [86]. These systems offer capability-based security for whole objects, which

we already compared to. Some Guardat commands are also object-based, and could

therefore be integrated with an object-based storage standard. Seagate’s recent

Kinetic Open Storage Platform [109] is based on storage devices with Ethernet

interfaces and in-built key-value stores and secure data migration abilities (similar

to Guardat pickle/unpickle commands). Unlike Guardat, access control relies on a

trusted library outside the drive. Several storage subsystems like active disks [102],

semantically smart disks [120] and differentiated storage services [85] include program

logic to improve performance. Guardat addresses the orthogonal concerns of data

confidentiality, integrity and access accounting.

Pennington et al. [99] describe an intrusion detection system (IDS) at the storage

layer, which raises an alarm when an access matches a per-file or global rule. Guardat

instead is able to enforce per-file security policies, and the policies can be richer than

the rules of an IDS system.

3.9 Conclusion

To the best of our knowledge, Guardat is the first system that enforces, at the storage

layer, rich per-file confidentiality, integrity and access accounting policies, and attests

the state of files. Enforcement at the storage layer reduces the risk of policy circum-

vention due to software bugs, misconfigurations and operator error. The Guardat

policy language, although based on well-understood foundations, provides domain-

specific predicates to enforce rich confidentiality, integrity and access accounting

policies based on a wide range of conditions, including client authentication, trusted

wall-clock time, and the state (content) of files, even at sub-file granularity. Guardat

ensures the confidentiality and integrity of a system’s persistent state and data, yet

63

is easy to deploy and amenable to an efficient implementation, as demonstrated by

our experimental evaluation.

64

CHAPTER 4

ERIM: Secure and Efficient
In-process Isolation

The previous chapter described the design, implementation and evaluation of

Guardat, a storage layer reference monitor enforcing confidentiality, integrity and

accounting policies over persistent data. It enforces these policies independent of

higher abstraction layers providing a strong threat model relying on a small TCB

and attack surface.

However, the set of enforceable policies are limited by the observable events

at the storage layer. Guardat has no control over data released to an application

with sufficient access credentials. As a results an application may leak data over the

network, due to bugs, malicious attacks or misconfigurations.

In contrast to Guardat, ERIM mediates an untrusted application’s execution,

intercepting relevant application operations like accesses to private data or operating

system services. To mediate untrusted applications, ERIM partitions sensitive data

and code into an isolated and trusted component, thereby limiting the effects of bugs

and vulnerabilities in the untrusted component to data accessible in the untrusted

application only. For instance, isolating cryptographic keys from the remaining

application can thwart vulnerabilities like the OpenSSL Heartbleed bug [90]; isolating

jump tables can prevent attacks on the integrity of an application’s control flow; and

isolating a managed language’s runtime can protect its security invariants from bugs

and vulnerabilities in co-linked native libraries.

65

Isolation foremost requires memory isolation, which prevents an untrusted com-

ponent from directly accessing the private memory of other components. Broadly

speaking, memory isolation can be enforced using one of two approaches. First,

we may instrument the code of untrusted components with bounds checks prior to

indirect memory accesses, ensuring that memory of other components is not accessed

directly, as in SFI [129]. However, this approach imposes overhead on all execution of

untrusted components due to bounds checks, and it requires an additional technique

to prevent circumvention of the bounds checks in the face of control-flow hijacks [68].

The total overhead is commonly of the order of tens of percent points.

The second approach is to use hardware support for memory isolation such as

OS or hypervisor (extended) page tables [20, 29, 74, 19]. Here, fast access checks in

hardware prevent a component from accessing the memory of other components, but

there is an overhead on switches between components, since hardware privileges must

be changed, e.g., by switching page tables and possibly invalidating TLB entries.

Recent work on in-process isolation such as Wedge [20], Shreds [29], and light-weight

contexts (lwCs) [74] has reduced the cost of hardware-based isolation somewhat.

Nonetheless, switching still requires a system call and its cost is significant (at 1 us

per switch [74] a conservative switch rate of 100,000 times a seconds amounts to 10%

overhead).1

Consequently, there is need for an isolation technique that does not impose

continuous overhead while a component executes and that also has very low switching

cost on component transition. ERIM achieves this goal by building on a recent x86

ISA extension called memory protection keys or MPKs, also simply called protection

keys [64]. MPKs allow tagging each page with one of 16 domains, thus partitioning

a process’ address space into disjoint domains. A special per-core register, PKRU,

1Using x86 memory segmentation instead of page tables, as in Native Client [143], can reduce
the switch cost. However, support for segmentation with 64-bit addressing is limited and Native
Client has been deprecated in favor of the memory-safe language WebAssembly [53].

66

determines which domains are accessible. Switching permissions requires only writing

the PKRU register with a user-mode instruction, which is a relatively quick operation

(11–260 cycles on current Intel CPUs in our experiments).

However, since the PKRU-update instruction is user-mode, MPK by itself

in insufficient for security: Compromised or malicious components can execute

the instruction to gain unauthorized access to the memory of other components.

To prevent this, ERIM additionally relies on binary inspection to ensure that all

occurrences of this instruction (called WRPKRU) in the binary are safe, i.e., they

cannot be exploited to gain unauthorized access. By design, this property holds even

if there is a control-flow hijack in the untrusted component. Hence, there is no need

to complement ERIM with control-flow integrity, which would add overhead.

ERIM distinguishes itself from prior work on applications that have very high

switching rates (~105/s or more) and that additionally spend a nontrivial amount of

time in untrusted components. There are many such applications. We evaluate our

prototype of ERIM on three such applications. First, in the web server nginx, we

show that ERIM can isolate session keys. Protecting session keys is a meaningful

goal, since attacks targeted at individual users’ privacy only need to compromise

session keys. Second, we show that ERIM can efficiently isolate the safe region in

code-pointer integrity [72]. Third, we show that ERIM can be used to isolate a

managed language runtime from possibly buggy native libraries. In all cases, we

observe switching rates of orders at least 105 times/s per core. ERIM provides strong

hardware isolation with overheads less than 1% for every 100,000 switches/s, which

is considerably lower than that of existing techniques.

The following sections describe the design, three use cases, a prototype imple-

mentation, related work and the evaluation using three use cases.

67

4.1 Design

Like prior work, ERIM enables a trusted application component to isolate sensitive

data from the rest of the untrusted application. Unlike prior work, ERIM supports

such isolation with low overhead even at high switching rates between the untrusted

application and the trusted component, and without relying on any other (possibly

expensive) protection mechanism, e.g., control-flow integrity. By way of example,

the trusted component may be a crypto library that wants to isolate cryptographic

keys, an inlined reference monitor that wants to isolate sensitive meta data (such as

a taint map or jump tables), or it may be a managed language runtime that wants

to isolate from a buggy native library. We use the letter T to denote the trusted

component and U to denote the remaining untrusted application.

The main primitive ERIM provides is memory isolation—it reserves a region of

the address space accessible exclusively from the trusted component T. This reserved

region is denoted MT and it can be used by T to store sensitive data. The rest of

the address space, denoted MU, holds the application’s regular heap and stack and

is accessible from both U and T. ERIM prevents U from having direct access to MT;

access to MT is enabled atomically with a control transfer to designated entry points

in T, and disabled when T returns control to U. More precisely, ERIM enforces the

following invariants:

(1) While control is in U, access to MT remains disabled.

(2) Access to MT is enabled atomically with a control transfer to a designated entry

point in T and disabled when T transfers control back to U.

The first invariant provides isolation of MT from U, while the second invariant

prevents U from confusing T into accessing MT improperly by jumping into the

middle of MT’s code. Due to the second invariant, ERIM does not need support

from a solution for control-flow integrity for security.

68

Control transfers from U to T and back, with the corresponding enabling and

disabling of access to MT are facilitated by special sequences of ERIM-provided code,

dubbed call gates. Call gates are implemented in a manner that prevents exploitation

of their binary code for elevating privileges.

A call gate enables access to MT, executes a specified entry point of T, then

disables access to MT when transferring control to the trusted component and

disables access on the way back. A call gate transfers control only to a designated

entry point in the trusted component. This entry point may be a function (if the

trusted component is a library) or a specific sequence of instructions (if the trusted

component is inlined into the application).

By design, ERIM imposes negligible overhead on the execution of code within

the untrusted application and within the trusted component, and its call gates are

very fast. Additionally, ERIM’s isolation is strong—it is derived directly from a

hardware security feature and it is absolute, not probabilistic (unlike address space

layout randomization (ASLR)). Both, fast switching and the strong isolation, make

ERIM suitable to protect sensitive data in high-performance applications, even those

that switch between the application and the library very frequently.

4.1.1 Threat model

ERIM makes no assumptions about the untrusted component (U) of an application.

U may behave arbitrarily and may contain memory corruption and control-flow

hijack vulnerabilities that may be exploited during its execution.

However, ERIM assumes that the trusted component T’s binary does not have

such vulnerabilities and does not compromise sensitive data by calling back into U

while access to MT is enabled, through information leaks, or by mapping executable

pages with unsafe/exploitable occurrences of the WRPKRU instruction.

69

The hardware, the OS kernel, and a small library added by ERIM to each process

that uses ERIM are trusted to be secure. We also assume that the kernel enforces

standard DEP—an executable page must not be simultaneously mapped with write

permissions. ERIM relies on a list of legitimate entry points into T provided either

by the programmer or the compiler, and this list is assumed to be correct (see

Section 4.1.5). The OS’s dynamic program loader/linker is trusted to invoke ERIM’s

initialization function before any other code in a new process.

Side-channel and rowhammer attacks, and microachitectural leaks, although

important, are beyond the scope of this work. However, ERIM is compatible with

existing defenses.

4.1.2 Intel Memory Protection Keys (MPK)

To realize its goals, ERIM uses the recent MPK extension to the x86 ISA [64].

MPK allows associating one of 16 protection keys with each memory page, thus

partitioning the address space into up to 16 domains. A per-core register, called

PKRU, determines the current access permissions (read, write, neither or both) on

each domain for the code running on that core. Access checks against the PKRU are

implemented in hardware and impose no overhead on program execution.

Changing access privileges requires writing new permissions to the PKRU register

with a user-mode instruction, WRPKRU. This instruction is relatively fast (11–260

cycles on current Intel CPUs), does not require a syscall, changes to page tables, a

TLB flush, or inter-core synchronization.

Since WRPKRU can be executed in user-mode, untrusted code can execute it

at any point to elevate privileges and MPK cannot provide any memory security

against untrusted application code by itself. To get this protection, ERIM combines

MPK with additional binary inspection to ensure that any WRPKRU occurrences

70

on executable pages are safe, i.e., they cannot be exploited to improperly elevate

privilege.

The mainstream Linux kernel fully supports page-table entries tagged with MPK

domains, syscalls to tag the entries with specific domains and restores PKRU registers

upon context switches. Since hardware PKRU checks are disabled in kernel mode, the

kernel has also been modified to check PKRU permissions explicitly before accessing

any userspace pointer. To eliminate the risk of signal handlers elevating privileges,

the kernel updates the PKRU register to its initial set of privileges (only read/write

access to domain 0) before throwing a signal to the userspace.

4.1.3 High-level overview of the design

ERIM can be configured to provide either complete isolation of MT from U (con-

fidentiality and integrity), or only write protection (only integrity). For simplicity,

we describe the design for complete isolation first. Section 4.1.7 describes how to

configure ERIM slightly differently to provide write protection only.

ERIM’s isolation mechanism is conceptually simple: It maps T’s reserved memory,

MT, and the application’s general memory, MU, to two different MPK domains.

It manages MPK permissions (the per-core PKRU registers) to ensure that MU is

always accessible, while MT is never accessible when control is in U. It allows U to

securely transfer control to T and back via call gates. A call gate enables access to

MT using the WRPKRU instruction and immediately transfers control to a specified

entry point of T, which may be an explicit or inlined function. When T is done

executing, the call gate disables access to MT and returns control to U. This enforces

ERIM’s two invariants (1) and (2) from Section 4.1. Call gates operate entirely in

user-mode (they don’t use syscalls) and are described in Section 4.1.4.

Preventing WRPKRU exploitation A key difficulty in ERIM’s design is pre-

venting the untrusted U from exploiting WRPKRU instructions on executable pages

71

in the address space to elevate privileges, e.g. using control-flow hijack or code-

injection attacks. To prevent such exploits, ERIM relies on binary inspection to

enforce the invariant that only safe WRPKRU occurrences appear on executable

pages. A WRPKRU occurrence is safe if it is immediately followed by one of the

following:

(A) A pre-designated entry point of T.

(B) A specific sequence of instructions that checks that the permissions set by the

WRPKRU do not include access to MT and terminates the program otherwise.

A safe WRPKRU occurrence cannot be exploited to execute untrusted code with

access to MT. If the occurrence satisfies (A), then it does not give control to U at all;

instead, it enters T at a designated entry point. If the occurrence satisfies (B), then

it would terminate the program immediately were it used by a control-flow hijack to

enable access to MT.

ERIM’s call gates use only safe WRPKRU occurrences and, therefore, pass

our binary inspection. Our modified kernel inspects any page prior to mapping

it in executable mode, enforcing the invariant that all occurrences of WRPKRU

on executable pages are safe. Section 4.1.5 provides details of this kernel binary

inspection mechanism.

Creating safe binaries An important question is how to construct binaries that

do not have unsafe WRPKRUs. On x86, an inadvertent or unintended executable

WRPKRU may arise spanning the bytes of two adjacent instructions or as a subse-

quence in a longer instruction. To eliminate inadvertent WRPKRUs, we develop a

binary rewriting mechanism that rewrites any sequence of instructions containing an

inadvertent WRPKRU to a functionally equivalent sequence without any WRPKRUs.

Similarly, the mechanism also alters deliberate uses of WRPKRU which voluntarily

switch domains by inserting privilege checks. The mechanism can be deployed as

72

1xor ecx , ecx
2xor edx , edx
3mov PKRU_ALLOW_TRUSTED, eax
4WRPKRU // cop i e s eax to PKRU

6// Execute t ru s t ed component ’ s code

8xor ecx , ecx
9xor edx , edx
10mov PKRU_DISALLOW_TRUSTED, eax
11WRPKRU // cop i e s eax to PKRU
12cmp PKRU_DISALLOW_TRUSTED, eax
13j e cont inue
14s y s c a l l e x i t // terminate program
15cont inue :
16// con t r o l r e tu rn s to the untrusted app l i c a t i o n here

Listing 4.1: Call gate implementation in assembly. The code of the trusted
component’s entry point may be inlined by the compiler on line 6, or there may be
an explicit direct call to it.

a compiler pass, integrated with our binary inspection, or by statically rewriting

binaries prior to their use as explained in Section 4.2

4.1.4 Call gates

A call gate transfers control from U to T, enabling access to MT, then runs code

from a designated entry point of T, and later returns control to U after disabling

access to MT. This requires two WRPKRUs. The primary challenge in designing

the call gate is ensuring that both these WRPKRUs are safe in the sense explained

in Section 4.1.3.

Listing 4.1 shows the assembly code of a call gate. WRPKRU expects the new

PKRU value in the eax register and requires ecx and edx to be 0. The call gate

works as follows. First, it sets PKRU to enable access to MT (lines 1–4). The macro

PKRU_ALLOW_TRUSTED is a PKRU setting that allows access to MT. Next,

the call gate passes control to the designated entry point of T (line 6). The entry

point’s code may be invoked either by a direct call, or it may be inlined here.

73

After T has finished, the call gate sets PKRU to disable access to MT (lines

8–11). The macro PKRU_DISALLOW_TRUSTED is a PKRU setting that excludes

access to MT. Next, the call gate checks that the PKRU was actually loaded with

PKRU_DISALLOW_TRUSTED (line 12). If this is not the case, it terminates

the program (line 14), else it returns control to U (lines 15–16). It may seem

that the check on line 12 is pointless since it will always succeed (eax is set to

PKRU_DISALLOW_TRUSTED on line 10). While this will be the case under

normal operation, the check prevents exploitation of the WRPKRU on line 11 with

control flow hijack attacks (explained next).

Safety Both occurrences of WRPKRU in the call gate are safe—neither can be

exploited by a control flow hijack to get unauthorized access to MT. Specifically, the

first occurrence of WRPKRU (line 4) is of form (A)—there is a control transfer to

a specific, designated entry point of T right after the WRPKRU. This occurrence

cannot be exploited to transfer control to anything else. The second occurrence of

WRPKRU (line 11) is followed by a check that terminates the program if the new

permissions include access to MT. If, as part of an attack, the execution jumped

directly to line 11 with PKRU_ALLOW_TRUSTED in eax, the program would be

terminated on line 14.

Efficiency A call gate’s overhead on a roundtrip from U to T is two WRPKRUs, a

few very fast, standard register operations and one conditional branch instruction.

This overhead is very low compared to other hardware isolation techniques that

rely on inter-process communication, syscalls or hypervisor trampolines to change

privileges.

Use considerations ERIM’s call gate omits features that some readers may natu-

rally expect. These features have been omitted to avoid having to pay their overhead

when they are not needed. First, the call gate does not include support to pass

parameters from U to T or to pass a result from T to U. Instead, parameters and

74

return values can be passed via a designated shared buffer in MU (both U and T

have access to MU). Second, the call gate does not scrub registers when switching

from T to U. Consequently, if T uses confidential data, it must scrub any secrets

from registers before returning to U. Further, because T and U share the call stack,

T must also scrub secrets from the stack prior to returning. Alternatively, T can

allocate a private stack for itself in MT, and T’s entry point can switch to that stack

as soon as it is invoked. This will prevent T’s secrets from being written to U’s

stack in the first place. (Such a private stack is also necessary for multi-threaded

applications; see Section 4.1.7).

4.1.5 Binary inspection

Next, we describe ERIM’s binary inspection. This mechanism prevents U from

mapping any executable pages with unsafe WRPKRU occurrences. The mechanism

relies on a simple kernel modification that prevents U, but not T, from mapping

any page with execute permissions using calls like mmap and mprotect. (Whether

such a call is made by U or T is easily determined by examining the PKRU register.)

Instead, any such page is mapped read-only, and the kernel records in a buffer shared

with T that the page is supposed to be executable pending inspection.

If and when control transfers to such a page, a fault occurs. The fault traps to a

dedicated signal handler, which ERIM installs when it initializes (a further kernel

modification prevents U from overriding this signal handler). This signal handler

calls a T function which checks that the faulting page is pending inspection and, if so,

it scans the page and the beginnings and ends of surrounding pages for occurrences

of WRPKRU. For every WRPKRU, it checks that the WRPKRU is safe, i.e., either

condition (A) or condition (B) from Section 4.1.3 holds. If so, the handler remaps the

page with the execute permission and resumes execution of the faulting instruction,

which will now succeed. If not, the program is terminated. This mechanism has very

75

low overhead in practice (it scans an executable page at most once—when the page

is first used), it enforces that WRPKRU occurrences on executable pages mapped

by U are always safe, and it is fully transparent to U’s code if all its WRPKRUs are

already safe.

To check for condition (A), ERIM must be provided a list of designated entry

points of T. The source of this list depends on the nature of T and is trusted. If T

consists of library functions, then the programmer marks these functions, e.g., by

including a unique character sequence in their names. If the functions are not inlined

by the compiler, their names will appear in the symbol table. If T’s functions are

subject to inlining or if they are generated by a compiler pass, then the compiler must

be directed to add their entry locations to the symbol table with the unique character

sequence. In all cases, ERIM can identify designated entry points by looking at the

symbol table and make them available to the signal handler.

Condition (B) is checked easily by verifying that the WRPKRU is immediately

followed exactly by the instructions on lines 12–15 of Listing 4.1. These instructions

ensure that the WRPKRU cannot be used to enable access to MT and continue

execution.

Security We briefly summarize how ERIM attains security. The binary inspection

mechanism prevents U from mapping any executable page with an unsafe WRPKRU.

T does not contain any executable unsafe WRPKRU by assumption. Consequently,

only safe WRPKRUs are executable in the entire address space at any point, and they

transfer control to one of T’s designated entry points, which are safe by assumption.

Safe WRPKRUs preserve ERIM’s two security invariants (1) and (2) by design.

Hence, MT remains isolated from U.

76

4.1.6 Process lifecycle with ERIM

Besides the simple kernel changes mentioned in Section 4.1.5, all of ERIM is im-

plemented as a runtime library that is linked into a process binary either statically

or at load time through LD_PRELOAD. This library provides a memory allocator

for domain MT (this allocator can be used by T to allocate objects in MT) and,

importantly, an initialization function, which is invoked by the standard OS loader

before U’s main().

The initialization function, called init here, creates the memory domain MT and

maps memory to it (MU occupies the default MPK domain, which is automatically

created with the process). It then loads T’s code and data from a dynamic link

library. Next, init scans the code of T for unsafe WRPKRUs, sets up call gates to

enable control transfer to T’s entry points, and installs the signal handler mentioned

in Section 4.1.5. Finally, init scans U’s code, disables access to MT and transfers

control to U’s main().

After main() has control, U executes almost as usual. It maps and unmaps

memory in the domain MU using the standard system memory allocator. However,

to access T’s exported services, U must invoke a call gate to enable access to MT

and invoke a T entry point. Hence, U’s binary must be constructed to invoke call

gates to T at appropriate points. This is done using a combination of two techniques.

First, LD_PRELOAD can be used to re-link explicit T function calls to a library

of wrappers that invoke a call gate. Second, T invocations from functions inserted

by the compiler can be made to directly invoke the call gate by modifying these

functions. We use this method in our application of ERIM to CPI [72] to invoke a

call gate at every sensitive region update.

77

4.1.7 Other considerations

Multi-threaded applications ERIM’s design works as-is with multi-threaded

applications because MPK uses a per-core PKRU register. Threads are created

as usual, e.g., using libpthread. As the PKRU register is saved during context

switches, a new thread starts executing with its parent’s PKRU register. However,

multi-threading imposes an additional requirement on T (not on ERIM): In a multi-

threaded application, it is essential that T allocate a private stack in MT (not MU)

for each thread and execute its code on these stacks. This is easy to implement by

switching stacks at T’s entry points. Not doing so and executing T on standard stacks

in MU runs the risk that, while a thread is executing in T, another thread executing

in U may corrupt or read the first thread’s stack frames. This can potentially destroy

T’s integrity, leak its secrets and hijack control while access to MT is enabled. By

executing T on stacks in MT, such attacks are prevented.

ERIM for integrity only Some applications care only about the integrity of data,

but not its confidentiality. Examples include CPI, which needs to protect only

the integrity of code pointers. In such applications, efficiency can be improved by

allowing U to read MT directly, thus avoiding the need to invoke a call gate for

reading MT. The ERIM design we have described so far can be easily modified to

support this. Only the definition of the constant PKRU_DISALLOW_TRUSTED

in Listing 4.1 has to change to also allow read-only access to MT. With this change,

read access to MT is always enabled.

Just-in-time (jit) compilers using ERIM Existing jit compilers allocate new

code pages as writable, and alter the page permissions to execute-only once the

compilation finishes. At this time ERIM’s kernel module maps the page without

execute permission. When execution reaches the newly compiled code a segmentation

fault occurs. ERIM’s dynamic binary inspection scans the page and only enables the

78

execute bit if no unsafe WRPKRU exists. This mechanism is safe, but may lead to

program crashes as the jit compiler does not necessary emit WRPKRU free code.

ERIM-aware jit compilers can emit WRPKRU free binary code by relying on

the rewrite strategy described in Section 4.2, and inserting call gates when necessary.

An additional optimization could inform ERIM’s binary inspection mechanism at

the end of the jit compiler’s pipeline to scan the page for WRPKRUs and enable the

execute permission. This lowers the number of segmentation faults, but requires jit

compilers to support ERIM.

In addition to supporting ERIM, jit compilers can prevent memory-corruption

attacks [47] from, e.g., corrupting the jit compiler’s state using ERIM’s memory

isolation. ERIM’s memory isolation can efficiently protect the jit compiler’s state

by isolating the jit compiler in the trusted domain, while the application runs in

the untrusted domain. As a result, ERIM prevents the untrusted application from

accessing the jit compiler’s state preventing memory-corruption attacks. Compared

to existing work [42] which relies on Intel SGX to isolate the compiler’s state, ERIM’s

isolation is highly efficient.

OS privilege separation (extension) The design described so far provides mem-

ory isolation. Some applications, however, require privilege separation between T

and U with respect to OS resources. For instance, an application might need to

restrict the filesystem name space accessible to U or restrict the system calls available

to U. For example, suppose that the goal of using ERIM is to hide a long-term

cryptographic key that is also backed to a file. Unless U’s access to the file is also

restricted, no amount of memory isolation can effectively hide the key.

ERIM’s design can be easily extended with a few additional kernel changes to

support privilege separation with respect to OS resources. First, during process

initialization, ERIM’s init function can instruct the kernel to restrict U’s access rights.

After this step, the kernel refuses to grant access to restricted resources whenever

79

the present value of the PKRU is not PKRU_ALLOW_TRUSTED, indicating that

the syscall does not originate from T. To gain access to restricted resources, U has

to invoke T, which can act as a reference monitor.

4.2 Rewriting inadvertent WRPKRUs

For security, our binary inspection (see Section 4.1.5) requires binaries to have only

safe WRPKRU occurrences. WRPKRUs emitted purposefully by a compiler can

be made safe by changing the compiler slightly to insert the check on lines 12–15

of Figure 4.1 after every potentially unsafe WRPKRU. Inadvertent WRPKRUs—

those that occur unintentionally as parts of longer x86 instructions or spanning two

consecutive x86 instructions—are more interesting. In this Section, we describe

a rewrite strategy to eliminate such WRPKRUs. The strategy is complete: Any

sequence of x86 instructions containing an inadvertent WRPKRU can be rewritten

to a functionally equivalent sequence without any WRPKRUs.

4.2.1 Rewrite strategy

WRPKRU is a 3 byte instruction, 0x0F01EF. WRPKRU sequences that span two

or more instructions can be “broken” by inserting a 1 byte nop like 0x90 between

any two consecutive instructions. 0x90 does not coincide with any individual byte

of WRPKRU (0x0F, 0x01 and 0xEF), so this insertion cannot generate a new

WRPKRU.

A WRPKRU sequence that lies entirely within a longer instruction can be

eliminated by finding an equivalent sequence of instructions. Doing so systematically

requires understanding x86 instruction coding. An x86 instruction consists of:

(i) An opcode field possibly with prefix.

80

(ii) A MOD R/M field that determines the addressing mode and includes the code

for a register operand.

(iii) An optional SIB field that specifies registers for indirect memory addressing.

(iv) Optional displacement and/or immediate fields which specify constant offsets

for memory operations and other constant operands.

Our strategy for rewriting an instruction containing WRPKRU as a subsequence

depends on the fields with which the WRPKRU subsequence overlaps. Table 4.1

summarizes our strategy. If the WRPKRU sequence lies entirely in the opcode field,

then the instruction is WRPKRU. As explained earlier, this case is handled by

adding a check (B) after the instruction to make it safe.

If the sequence overlaps with the MOD R/M field, we change the register code in

the MOD R/M field, which eliminates the WRPKRU sequence. This change requires

a free register. If one exists, we use it, else we rewrite to push an existing register to

the stack, use it in the instruction, and pop it back. (Lines 2 and 3 in Table 4.1.)

If the sequence overlaps with the displacement or the immediate field, we change

the mode of the instruction to use a register instead of a constant. The constant

is computed in the register before the instruction (lines 4 and 6). If a free register

is unavailable, we push and pop one. Two instruction-specific optimizations are

possible. If the instruction is jump-like, then the jump target can be relocated in the

binary; this changes the displacement in the instruction, eliminating the need for a

free register (line 5). If the instruction is an associative operation such as addition,

then the operation can be performed in two increments without an extra register

(line 7).

We never rewrite the SIB field. This does not affect the completeness of our

technique since any WRPKRU must overlap with at least one non-SIB field (the SIB

field is 1 byte long while WRPKRU is 3 bytes long).

81

Overlap with Cases Rewrite strategy ID Example
Opcode Opcode = WRPKRU Insert privilege check after WRPKRU 1
Mod R/M Mod R/M = 0x0F Change to unused register + move com-

mand
2 add ecx, [ebx + 0x01EF0000] →

mov eax, ebx; add ecx, [eax +
0x01EF0000];

Push/Pop used register + move com-
mand

3 add ecx, [ebx + 0x01EF0000] →
push eax; mov eax, ebx; add ecx,
[eax + 0x01EF0000]; pop eax;

Displacement Full/Partial sequence Change mode to use register 4 add eax, 0x0F01EF00→ (push ebx;)
mov ebx, 0x0F010000; add ebx,
0x0000EA00; add eax, ebx; (pop
ebx;)

Jump-like instruction Move code segment to alter constant used
in address

5 call [rip + 0xffef010f] → call [rip +
0xffef0100]

Immediate Full/Partial sequence Change mode to use register 6 add eax, 0x0F01EF → (push ebx;)
mov ebx, 0x0F01EE00; add ebx,
0x00000100; add eax, ebx; (pop ebx;)

Associative opcode Apply instruction twice with different im-
mediates to get equivalent effect

7 add ebx, 0x0F01EF00 → add ebx,
0x0E01EF00; add ebx, 0x01000000

Table 4.1: Rewrite strategy for intra-instruction occurrences of WRPKRU

82

4.2.2 Implementing the rewriting

For binaries that can be (re)compiled from source, rewriting can be added to the

codegen phase of the compiler, which converts the intermediate representation (IR)

to machine instructions. Whenever codegen outputs an inadvertent WRPKRU, the

surrounding instructions in the IR can be replaced with equivalent WRPKRU-free

instructions as described above, and codegen can be run again on the updated IR.

For binaries that cannot be recompiled, the rewrite strategy can be integrated

with our binary inspection handler (Section 4.1.5). If the handler discovers an unsafe

WRPKRU on an executable page during its scan, it can overwrite the page with

1-byte trap instructions, make it executable, and store the original page in reserve

without enabling it for execution. Subsequently, if there is a jump into the executable

page, a trap occurs and the trap handler discovers an entry point into the page. It can

then disassemble the reserved page from that entry point on, rewriting any discovered

WRPKRU occurrences, and copy the WRPKRU-free instruction sequences back to

the executable page. To prevent other threads from executing partially overwritten

instruction sequences, we actually rewrite a fresh copy of the executable page with

the WRPKRU-free sequences, and then swap this rewritten copy for the executable

page. This technique is transparent to the application, has an overhead proportional

to the number of entry points into offending pages (we disassemble from every entry

point only once) and maintains the invariant that only safe WRPKRU sequences are

executable.

In contrast to rewriting at runtime, a binary can be statically rewritten to remove

all inadvertent WRPKRUs. Compared to a compiler or runtime approach, static

binary rewriting does not rely on source code availability and does not imposes

additional runtime overhead. Its drawback is the dependence on a static rewrite tool

which can successfully rewrite a binary. In order to successfully rewrite a binary,

83

tools like Dyninst [34] require a full disassembly of the binary. Recently Bauman et

al. [16] have proposed a static rewrite technique removing this dependency.

Our static rewrite approach, similar to the binary inspection, performs a simple

linear scan of the binary to find all those inadvertent occurrences of the 3-byte

WRPKRU sequence in executable sections. Next, using any binary rewriting tool, e.g.,

Dyninst [34], we disassemble the binary to the extent possible, and rewrite instructions

to eliminate these inadvertent occurrences. We use the previously described rewriting

strategy (see Section 4.2.1 or table 4.1). Occurrences of WRPKRU in parts that we

cannot disassemble are handled by the binary inspection and rewriting at runtime as

described in the previous Section.

We evaluate the effectiveness of statically rewriting binaries in Section 4.5.1.4.

4.3 Use Cases

ERIM differs from prior work by providing efficient isolation in applications where

switches between trusted and untrusted components are very frequent, of the order

of 105 or 106 times a second. We describe three such use-cases here, and show in

Section 4.5 that ERIM’s overhead is low on all of them.

4.3.1 Isolating cryptographic keys in web servers

Isolating long-term SSL keys to protect from web server vulnerabilities such as the

Heartbleed bug [90] is well-studied [74, 75]. However, long-term keys are accessed

relatively infrequently (only a few times per user session). Session keys that are

accessed far more frequently (up to 106 times a second per core in a high throughput

web server like nginx) have not been isolated so far. Isolating sessions keys is also

relevant as these keys protect the confidentiality of individual users. No existing

technique can isolate session keys without significant overhead.

84

Taking ERIM’s efficient isolation into account, an ERIM-protected component

can isolate the cryptographic keys and cryptographic methods. This results in a small

TCB and attack surface. OpenSSL does not implement isolation within the library,

hence we partitioned OpenSSL’s low-level crypto library (libcrypto) to isolate the

session keys and basic crypto routines, which run as T, from the rest of the web server,

which runs as U. The outer layer of OpenSSL provides the high-level SSL/TLS

interface, whereas the inner, isolated layer securely stores the cryptographic keys

and performs cryptographic operations. When using this ERIM-protected OpenSSL

within a server application, a new SSL/TLS session creates a session key within the

T. Messages of this session can only be en-/decrypted within the T. This efficiently

protects the cryptographic keys of server applications from memory vulnerabilities.

4.3.2 CPI/CPS

Code-pointer integrity (CPI) [72] is a compiler transform that prevents control-flow

hijacks by isolating sensitive objects—code pointers and objects that can lead to

code pointers—in a safe region that cannot be written without bounds checks. CPS

is a lighter, less-secure variant of CPI that isolates only code pointers. Switching

rates to the safe region can be very high in CPI, of the order of 106 switches per

second on standard benchmarks. A key question in CPI/CPS is how to isolate the

safe region. The original paper uses ASLR on x86-64 for its evaluation. ASLR

has almost no runtime overhead, but it is now known to be ineffective for data

isolation [113, 60, 39, 49, 94].

We show that ERIM can provide strong isolation for the safe region at low cost.

To do this, we override the CPI/CPS-enabled compiler’s intrinsic function for writing

the sensitive region to use a call gate around an inlined sequence of T code that

performs a bounds check before the write. (MemSentry [68] also proposes the use

85

of MPKs for isolating the safe region, but does not actually build or evaluate this

use-case.)

4.3.3 Native libraries in managed runtimes

Applications running on managed runtimes such as a Java or JavaScript VM often

rely on third-party native code libraries. A relevant security goal is to isolate the

managed runtime from bugs and vulnerabilities in the native libraries. ERIM can

be used for this purpose by mapping the managed runtime to T and the native

library(ies) to U. We test this by isolating a native SQLite plugin from Node.js.

SQLite and Node.js are, respectively, a state-of-the-art C database library and a

state-of-the-art managed runtime for JavaScript [121, 91].

4.4 Implementation

We have implemented a prototype of ERIM on Linux. The prototype includes a 77

line Linux Security Module (LSM) that intercepts all mmap and mprotect calls to

prevent U from mapping pages in executable mode, and prevents U from overriding

the binary inspection handler. We also added 26 LoC in kernel hooks needed for

this module. Our implementation also includes the ERIM runtime library, which

provides a memory allocator over MT, call gates, the ERIM initialization code, and

binary inspection. These comprise 569 LoC.

Separately, we have implemented the rewriting logic to eliminate inadvertent

WRPKRU occurrences (about 2250 LoC). While we have not yet integrated the

logic into either a compiler or our inspection handler, we have integrated it into a

standalone binary rewriting tool that uses Dyninst [34] to disassemble binaries. The

binaries used in our evaluation do not have any unsafe WRPKRU occurrences and

do not load any libraries at runtime.

86

Call type Cost (cycles)
Inlined call (no switch) 5
Direct call (no switch) 8
Indirect call (no switch) 19
Inlined call + switch 60
Direct call + switch 69
Indirect call + switch 99
getpid system call 152

lwC switch [74] (Skylake CPU) 6050

Table 4.2: Cycle counts for basic call and return

4.5 Evaluation

We evaluate ERIM on microbenchmarks and on the three applications mentioned

in Section 4.3. We perform our experiments on Dell PowerEdge R640 machines

with 16-core MPK-enabled Intel Xeon Gold 6142 2.6GHz CPUs (with Turbo Boost

and SpeedStep disabled), 384GB memory, 10Gbps Ethernet links, running Debian

8. For the CPI experiment, we use the Levee prototype v0.2 available from http:

//dslab.epfl.ch/proj/cpi/ and Clang v3.3.1 including its CPI compile pass,

runtime library extensions and link-time optimization. For the nginx experiment, we

use nginx v1.12.1 and OpenSSL v1.1.1 and the ECDHE-RSA-AES128-GCM-SHA256

cipher. For the managed language runtime experiment, we use Node.js v9.11.1 and

SQLite v3.22.0. For a comparison base line we use SQLite compiled to WebAssembly

via emscripten v1.37.37’s WebAssembly backend [36].

4.5.1 Microbenchmarks

4.5.1.1 Switch cost

We performed a microbenchmark to measure the overhead of invoking a function

with and without a switch to a trusted component. The function adds a constant to

an integer argument and returns the result. Table 4.2 shows the cost of invoking

87

http://dslab.epfl.ch/proj/cpi/
http://dslab.epfl.ch/proj/cpi/

the function, in cycles, as an inlined function (I), as a directly called function (DC),

and as a function called via a function pointer (FP). For reference, the table also

includes the cost of a simple syscall (getpid) and the cost of a switch on lwCs, a

recent in-process isolation mechanism based on standard page table protections [74].

In our microbenchmark, calls with an ERIM switch are between 55 and 80 cycles

more expensive than their no-switch counterparts. The most expensive indirect call

costs less than the simplest system call (getpid). ERIM switches are up to 100x

faster than lwC switches.

Because the CPU must not reorder loads and stores with respect to a WRPKRU

instruction, the overhead of an ERIM switch depends on the CPU pipeline state

at the time of the WRPKRUs in the switch. In experiments described later in this

Section, we observed average overheads ranging from 11 to 260 cycles per switch. At

a clock rate of 2.6GHz, this corresponds to overheads between 0.04% and 1.0% for

100,000 switches per second, which is significantly lower than the overhead of any

bounds-check, kernel- or hypervisor-based isolation.

4.5.1.2 Emulating MPK’s switch cost

Following we describe how to emulate the WRPKRU instruction. This enables

us to compare against techniques who’s environment does not support MPK. The

WRPKRU instruction moves the value of the eax register to the PKRU register.

However, since the instruction impacts the validity of subsequent loads/stores, the

instruction cannot be re-ordered relative to surrounding load/store instructions in

the execution pipeline. We emulate the cost of WRPKRU using a sequence of

xor instructions that have no net functional effect (except consuming CPU cycles),

followed by RDTSCP, which causes a pipeline stall and prevents instruction re-

ordering. The emulation code is shown in Listing 4.2.

88

f o r (i = 0 ; i < 5 ; i++) {
xor eax , ecx
xor ecx , eax
xor eax , ecx

}
rdtscp

Listing 4.2: WRPKRU emulation using RDTSCP and XorSwitch

Benchmark Switches/sec CPI Overhead (%)
ERIM EMUL

403.gcc 13,454,647 22.3 22.68
445.gobmk 1,055,994 1.77 1.76
447.dealII 1,270,582 0.56 0.17
450.soplex 408,192 0.6 2.56
464.h264ref 1,684,572 1.22 0.86
471.omnetpp 36,578,718 144.02 142.26
482.sphinx 1,148,883 0.84 0.65
483.xalancbmk 21,448,977 52.22 51.74

Table 4.3: Domain switch rates of selected SPEC CPU benchmarks and overheads
for ERIM-CPI and EMUL-CPI, relative to standard CPI.

Validation To validate that our emulation estimates overheads close to those of the

actual WRPKRU instruction, we re-run the CPI/CPS benchmarks of Section 4.5.2

with WRPKRU emulation in place of the actual WRPKRU instruction. Figure 4.1

reproduces ERIM’s relative overheads on various benchmarks from Figure 4.2 but

additionally lists the relative overheads using the WRPKRU emulation (lines EMUL-

CPI and EMUL-CPS). Table 4.3 lists the precise overheads for CPI on benchmarks

that have high switching rates. As can be seen, the overheads of the emulation are

very close to actual ERIM’s overheads on all benchmarks.

Note from Table 4.3 that our emulation is not perfect, but quite close to the

actual in terms of overhead. Emulating the performance of WRPKRU perfectly is

difficult since emulation cannot exactly reproduce the effects of WRPKRU on the

execution pipeline. (WRPKRU must prevent the reordering of loads and stores with

respect to itself.) Depending on the specific benchmark, our emulation slightly over-

89

0% 100% 200% 300%

400.perlbench

401.bzip2

403.gcc

429.mcf

433.milc

444.namd

445.gobmk

447.dealII

450.soplex

456.hmmer

458.sjeng

462.libquantum

464.h264ref

470.lbm

471.omnetpp

473.astar

482.sphinx3

483.xalancbmk

CPS

ERIM-CPS

EMUL-CPS

CPI

ERIM-CPI

EMUL-CPI

Figure 4.1: SPEC CPU overhead for CPI/CPS with ERIM and an emulation of
WRPKRU (EMUL-CPI/EMUL-CPS), relative to no protection. Error bars show
standard deviation over 5 runs.

or under-estimates the actual performance impact of WRPKRU due to the reason

mentioned above. We also observed that emulations of WRPKRU using LFENCE

or MFENCE (the latter was suggested by [68]) in place of RDTSCP incur too little

or too much overhead relative to the actual WRPKRU.

4.5.1.3 Binary inspection

To determine the cost of ERIM’s binary inspection, we measured the cost of scanning

the binaries of each of the 17 applications in the SPEC 2006 CPU benchmark, which

90

range in size from 9 to 3918 4KB pages and, when compiled with CPI (see next

Section), contain between 35 and 63765 WRPKRU instructions. The overhead is

largely independent of the number of WRPKRU instructions and ranges between 3.5

and 6.2 microseconds per page. Even for the largest binary, this amounts to only

17.7 milliseconds, a tiny fraction of the typical runtime of a process.

4.5.1.4 Statically rewriting binaries

Here, we analyze how often the WRPKRU opcode sequence (0x0F01EF) occurs in

existing binaries and we evaluate the effectiveness of our static binary rewriting.

We analyzed binaries from several Linux distributions to find occurrences of

WRPKRU opcodes in executable memory. Note that we have to consider not only

code sections of ELF files, but also read-only data marked as executable by the

standard GNU linker (PT_LOAD segments with execute-bit).

We analyzed all binaries of the Debian 8, Ubuntu 14.04 and Ubuntu 16.04

repositories as well as a compiled hardened Gentoo. Hardened Gentoo is a source

distribution with additional compilation flags (e.g. -PIE for position independent

code) to improve security. We also recompiled and relinked a hardened Gentoo

with the GNU ELF linker (hardened Gentoo Gold) to generate three load segments

(page protections R, RX, RW) in the ELF file. Creating a read-only load segment

eliminates exploitable WRPKRU opcodes in static data sections, since they are no

longer executable.

Table 4.4 summarizes our findings. First, WRPKRU opcodes occur mainly in

Debian- and Ubuntu-based binaries. Almost no WRPKRUs appear in Hardened

Gentoo, since it compiles executables as position independent code which changes

direct function calls into indirect (rip-dependent) calls reducing the likelihood of a

WRPKRU sequence occurring in constant offsets. The hardened Gentoo distribution

has 9 occurrences of WRPKRU in executable data segments, which do not appear in

Gentoo Gold.

91

Distribution Debian 8 Ubuntu 14 Ubuntu 16 Hardened Hardened
Gentoo Gentoo Gold

ELF files 61364 69830 79169 10212 10212
ELF files with WRPKRUs 182 (.30%) 224 (.32%) 219 (.28%) 9 (.09%) 0 (.0%)
Executable WRPKRUs 301 458 273 16 0
WRPKRUs in code section 69 (22.9%) 76 (16.6%) 101 (37.0%) 0 0
Disassembled by Dyninst 58 (84%) 63 (82.9%) 91 (90%) 0 0

Inter-instruction Number 35 (60%) 37 (59%) 43 (47%) 0 0
Rewritable by split 35 (100%) 37 (100%) 43 (100%) 0 0

Intra-instruction Number 23 (40%) 26 (41%) 48 (53%) 0 0
Rewritable by rule 7 23 (100%) 26 (100%) 48 (100%) 0 0

Table 4.4: Analysis inadvertent WRPKRU opcodes in Linux distributions and ability to statically rewrite

92

The majority of WRPKRU opcodes are found in non-code sections (like read-

only static data) that are executable, due to their inclusion in the read-execute load

segment. By linking these binaries with the GNU ELF linker and generating three

PT_LOAD segments, we can render these WRPKRU opcodes non-exploitable.

Using the DynInst [34] tool, we attempted to disassemble the code sections (e.g.

text, init, fini, plt) that contain WRPKRU opcodes. Of the 69, 76, and 101 such

instances in Debian 8, Ubuntu 14, and Ubuntu 16, DynInst was able to successfully

disassemble the surrounding code in 84, 82.9, and 90% of cases, respectively.

Next, we divided all occurrences where DynInst was able to disassemble the

surrounding instructions into those where the sequence appears either within or

across an x86 instruction. Both occur with similar frequency in the set of analyzed

binaries. No binary contained a legitimate WRPRKU instruction, since no software

uses MPK natively at the time of this writing. All instances that appear across two

x86 instructions were eliminated by inserting a NOP instruction. We were able to

rewrite all remaining, intra-instruction instances using rule 5 in Table 4.1. Neither

of these rewrites affects the performance of the rewritten programs.

The remaining 11, 13, and 10 instances in the three Linux distributions, respec-

tively, could not be rewritten because DynInst was unable to reconstruct the call

graph and disassemble the surrounding code successfully. We rely on the binary

inspection technique described in Section 4.1.5 to remove these instances.

4.5.2 Protecting sensitive data in CPI/CPS

We use ERIM to isolate the safe region of CPI and CPS [72] in a separate domain.

We modified CPI/CPS’s LLVM compiler pass to emit additional ERIM switches,

which bracket any code that modifies the safe region. The switch code, as well as

the instructions modifying the safe region, are inlined with the application code. In

addition, we implemented simple optimizations to safely reduce the frequency of

93

ERIM domain switches. For instance, the original implementation initializes sensitive

code pointers to zero during initialization. Rather than generate a domain switch

for each pointer initialization, we generate loops of pointer set operations that are

bracketed with a single pair of ERIM domain switches. This is safe, because the

loop relies on direct jumps and the code to set a pointer is inlined in the loop’s body.

In total, we modified 300 LoC in LLVM’s CPI/CPS pass.

Like the original CPI/CPS paper [72], we compare the overhead of the original

and our ERIM-protected CPI/CPS system on the SPEC CPU 2006 benchmarks,

relative to a base line compiled with Clang without any protection. The original

CPI/CPS system is configured to use ASLR for isolation, the default technique used

on x86-64 in the original paper. ASLR imposes almost no switching overhead, but

also provides no security [113, 60, 39, 49, 94].

Figure 4.2 shows the average runtime overhead of 10 runs of the original CPI/CPS

(lines “CPI/CPS”) and CPI/CPS over ERIM (lines “ERIM-CPI/CPS”). All overheads

are normalized to the unprotected SPEC benchmark. We were unable to obtain

results for 400.perlbench for CPI and 453.povray for both CPS and CPI. The

400.perlbench benchmark does not halt when compiled with CPI and SPEC’s result

verification for 453.povray fails due to unexpected output. These problems exist

in the code generated by the Levee CPI/CPS prototype with CPI/CPS enabled

(-fcps/-fcpi), not our modifications.

4.5.2.1 CPI

The geometric means of the overheads (relative to no protection) of the original CPI

and ERIM-CPI across all benchmarks are 4.7% and 5.3%, respectively. The relative

overheads of ERIM-CPI are low on all individual benchmarks except gcc, omnetpp,

and xalancbmk.

To understand this better, we examined the switching rates across benchmarks.

Table 4.5 shows the switching rates for benchmarks that require more than 100,000

94

0% 100% 200% 300%

400.perlbench

401.bzip2

403.gcc

429.mcf

433.milc

444.namd

445.gobmk

447.dealII

450.soplex

456.hmmer

458.sjeng

462.libquantum

464.h264ref

470.lbm

471.omnetpp

473.astar

482.sphinx3

483.xalancbmk

CPS

ERIM-CPS

CPI

ERIM-CPI

Figure 4.2: SPEC CPU overhead for CPI/CPS and ERIM-CPI/CPS, relative to
no protection.

switches/sec. From the table, it is clear that the high overheads on gcc, omnetpp and

xalancbmk are due to the extremely high switching rates on these three benchmarks

(between 1.6 × 107 and 8.9 × 107 per second). Profiling the execution of these

benchmarks indicated that the reason for the high rate of switches is tight loops with

pointer updates (each pointer update incurs a switch). An additional optimization

pass could lift the domain switches out of the loops safely by using only direct control

flow instructions and enforcing store instructions to be bound to the application

memory, but we have not yet implemented it.

95

Benchmark Switches/sec ERIM-CPI overhead
relative to orig. CPI in %

403.gcc 16,454,595 22.30%
445.gobmk 1,074,716 1.77%
447.dealII 1,277,645 0.56%
450.soplex 410,649 0.60%
464.h264ref 1,705,131 1.22%
471.omnetpp 89,260,024 144.02%
482.sphinx3 1,158,495 0.84%
483.xalancbmk 32,650,497 52.22%

Table 4.5: Domain switch rates of selected SPEC CPU benchmarks and overheads
for ERIM-CPI without binary inspection, relative to the original CPI with ASLR.

Table 4.5 also shows the overhead of ERIM-CPI excluding binary inspection,

relative to the original CPI over ASLR (not relative to an unprotected baseline

as in Figure 4.2). This relative overhead is exactly the cost of ERIM’s switching.

Depending on the benchmark, it varies from 0.03% to 0.16% for 100,000 switches

per second or, equivalently, 7.8 to 41.6 cycles per switch. These results indicate that

ERIM can support inlined reference monitors with switching rates of up to 106 times

a second with low overhead. Beyond this rate, the overhead becomes noticeable.

4.5.2.2 CPS

The results for CPS are similar to those for CPI, but the overheads are generally

lower. Relative to vanilla SPEC with no protection, the geometric means of the

overheads of the original CPS and ERIM-CPS across all benchmarks are 1.1% and

2.4%, respectively. ERIM-CPS overhead relative to the original CPS is within 2.5%

on all benchmarks, except except perlbench, omnetpp and xalancbmk, where it

ranges up to 17.9%.

4.5.3 Protecting session keys in nginx

Next, we use ERIM to isolate SSL session keys in a high performance web server,

nginx. We modified OpenSSL’s libcrypto to isolate the keys and the functions for

96

File
size
(KB)

Throughput Switches/s CPU
load
native
(%)

Native
(re-
q/s)

ERIM
rel.
(%)

0 95,761 95.83 1,342,605 100.0
1 87,022 95.18 1,220,266 100.0
2 82,137 95.44 1,151,877 100.0
4 76,562 95.25 1,073,843 100.0
8 67,855 95.98 974,780 100.0
16 45,483 97.10 820,534 100.0
32 32,381 97.31 779,141 100.0
64 17,827 100.00 679,371 96.7
128 8,937 99.99 556,152 86.4

Table 4.6: Nginx throughput with a single worker. The standard deviation is below
1.1% in all cases.

AES key allocation and encryption/decryption into ERIM’s T and use ERIM call

gates to invoke these functions.

Our goal is to measure ERIM’s overhead on the peak throughput of nginx. To

start, we configure nginx to run a single worker pinned to a CPU core, and connect

to it remotely from 4 concurrent ApacheBench (ab) [8] instances over HTTPS with

keep-alive. Each instance simulates 75 concurrent clients. The clients all request

the same file, whose size we vary from 0 to 128KB across experiments. Figure 4.3b

shows the throughput of ERIM-protected nginx relative to our baseline (native

nginx without any protection) for different request sizes, measured after an initial

warm-up period. Figure 4.3a shows the absolute throughputs in requests/s in the

same experiment. All numbers are averages of 10 runs.

ERIM-protected nginx provides a throughput within 95.18% of the unprotected

server for all request sizes. To explain the overhead further, we list the number of

ERIM switches per second in the nginx worker and the worker’s CPU utilization

in Table 4.6 for request sizes up to 128KB. The overhead shows a general trend up

to requests of size 32 KB: The worker’s core remains saturated but as the request

size increases, the number of ERIM switches per second decrease, and so does

97

 0

 20000

 40000

 60000

 80000

 100000

0k
b

1k
b

2k
b

4k
b

8k
b

16
kb

32
kb

64
kb

12
8k

b

R
e

q
u

e
s
ts

/s

File size

Native
ERIM

(a) Average number of requests per second for native and ERIM.

 0

 0.2

 0.4

 0.6

 0.8

 1

0k
b

1k
b

2k
b

4k
b

8k
b

16
kb

32
kb

64
kb

12
8k

bN
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

File size

Native ERIM

(b) Normalized throughput to native (no protection).

Figure 4.3: Nginx throughput with one worker, with and without ERIM protection,
with varying request sizes. Standard deviations were all below 1.1%.

98

ERIM’s relative overhead. The observations are consistent with an overhead of about

0.31%–0.44% for 100,000 switches per second. For request sizes of 64KB and higher,

the 10Gbps network card saturates and the worker does not utilize its CPU core

completely in the baseline. The free CPU cycles absorb ERIM’s CPU overhead, so

ERIM’s throughput matches that of the baseline.

Note that this is an extreme test case for a web server. Here, the web server does

almost nothing and serves the same cached file repeatedly. To get a more realistic

assessment, we set up nginx to serve from a 571 MB corpus of 15,520 static HTML

Wikipedia pages snapshotted in 2006 [137]. File sizes vary from 417 bytes to 522

KB (average size 37.7 KB). 75 keep-alive clients request random pages (selected

based on pageviews on Wikipedia [138]). The average throughput with a single nginx

worker was 22,415 requests/s in the base line and 21,802 requests/s with ERIM (std.

devs. below 0.6% in both cases). On average, there were 615,000 switches a second.

This corresponds to a total overhead of 2.7%, or about 0.43% for 100,000 switches a

second.

4.5.3.1 Scaling with multiple workers

To verify that ERIM scales with core parallelism, we re-ran the first experiment above

with 3, 5 and 10 nginx workers pinned to separate cores, and sufficient numbers of

concurrent clients to saturate all the workers. Table 4.7 shows the relative overheads

with different number of workers. For requests larger than those shown in the table,

the network card saturates, and the spare CPU cycles in the native base line absorb

ERIM’s overhead completely. For comparison, the second and third columns of the

table repeat the numbers of the 1 worker configuration of Table 4.6.

In the baseline, nginx’s throughput scales quite well with the number of workers.

Importantly, the relative overhead of ERIM’s protection does not increase with the

number of cores. Thus, ERIM scales with multi-core parallelism indicating that

ERIM adds no additional synchronization and scales perfectly with core parallelism.

99

File
size
(KB)

1 worker 3 workers 5 workers 10 workers
Native
(re-
q/s)

ERIM
rel.
(%)

Native
(re-
q/s)

ERIM
rel.
(%)

Native
(re-
q/s)

ERIM
rel.
(%)

Native
(re-
q/s)

ERIM
rel.
(%)

0 95,761 95.83 276,736 96.05 466,419 95.67 823,471 96.40
1 87,022 95.18 250,565 94.50 421,656 96.08 746,278 95.47
2 82,137 95.44 235,820 95.12 388,926 96.60 497,778 100.00
4 76,562 95.25 217,602 94.91 263,719 100.00
8 67,855 95.98 142,680 100.00

Table 4.7: Nginx throughput with multiple workers. The standard deviation is
below 1.5% in all cases.

This is unsurprising given that updates to the PKRU of a core affect execution on

that core only.

4.5.3.2 Comparison to kernel-based isolation

Using the single worker nginx experiment, we compare ERIM’s overhead to that

of lwCs [74], a state-of-the-art system for in-process isolation based on standard

page-table protections. LwCs map each isolated component to a separate address

space (in the same process). A switch between components requires kernel mediation

to change page tables.

Since lwCs were implemented only for FreeBSD, whose current kernel supports

neither MPKs nor our Xeon Gold machines, we run this comparison experiment

on an older machine without MPK support and use an emulation of WRPKRU

to account for ERIM’s overhead as described in Section 4.5.1.2. All experiments

described here were performed on Dell OptiPlex 7040 machines with 4-core Intel

Skylake i5-6500 CPUs clocked at 3.2GHz, 16GB memory, 10 Gbps Ethernet cards,

running FreeBSD 11.

We use the existing single worker nginx experiment (Section 4.5.2) to compare

the performance of an ERIM-based isolation to that of lwC-based isolation. As

opposed to ERIM switches, which operate entirely in userspace, lwC switches are

syscalls. We create a second instance of nginx that uses an lwC (in place of an ERIM

100

component) to isolate session keys and basic cryptographic functions. We allocate

data buffers in a memory region that is shared between the protected lwC and the

web server lwC to facilitate efficient data sharing. The overhead of WRPKRU is

emulated as previously explained.

Figure 4.4b depicts the overhead of the ERIM- and lwC-based variants relative

to the native baseline of an unmodified nginx, averaged over 20 runs. Nginx is

configured to run one worker and serves 4 ApacheBench instances each simulating

75 clients accessing a static file via HTTPS with keep-alive.

The ERIM-based emulation provides throughput within 97.88% (within 99%

for files 64KB and larger) of the unprotected native server, whereas the lwC-based

isolation is limited to 50% of the native server throughput for small files and up to

80% for large (2MB) files. The reason is the cost of lwC switch syscalls, which is too

high given the rate of invocations of the encryption functions.

Figure 4.4a shows the absolute number of served requests per second for the same

experiment. The lwC-based nginx cannot sustain more than 26,500 req/s, whereas

ERIM performs close to the native implementation. At 64KB files we saturate the

10Gbit network link resulting in lower req/s for the native baseline and ERIM.

In summary, we find that lwCs perform significantly worse than ERIM in this

experiment: The throughput of nginx with lwC-based isolation is never above 80%

of native nginx and, for small requests, where the switch rate is higher, it is below

50% of native nginx. In contrast, with ERIM’s isolation, the throughput is within

95% of native nginx in all configurations. Hence, ERIM performs significantly better

than kernel-mediated isolation at high switch rates.

4.5.4 Isolating managed runtimes

Next, we test ERIM’s use to isolate a managed language runtime from an untrusted

native library. Specifically, we link the widely-used native database library, SQLite,

101

 0

 20000

 40000

 60000

 80000

 100000

0k
b

1k
b

2k
b

4k
b

8k
b

16
kb

32
kb

64
kb

12
8k

b

25
6k

b

51
2k

b

1m
b

2m
b

R
e

q
u

e
s
ts

/s

File size

Native
ERIM (emulated)

LwC

(a) Average number of requests per second, native, ERIM and lwC.

 0

 0.2

 0.4

 0.6

 0.8

 1

0k
b

1k
b

2k
b

4k
b

8k
b

16
kb

32
kb

64
kb

12
8k

b

25
6k

b

51
2k

b

1m
b

2m
bN

o
rm

a
liz

e
d

 T
h

ro
u

g
h

p
u

t

File size

Native
ERIM (emulated)

LwC

(b) ERIM and lwC throughput normalized to native.

Figure 4.4: Nginx throughput with one worker, with emulated ERIM protection
and with lwCs, with varying request sizes. Standard deviations were all below 1.1%.

102

to Node.js, a state-of-the-art JavaScript runtime and use ERIM to isolate Node.js

from SQLite by mapping Node.js’s runtime to T and the native library to U. We

manually instrumented SQLite’s entrypoints to invoke call gates. Additionally, since

we want to isolate Node.js’s stack from SQLite, we run Node.js on a separate stack

in MT, and add code to switch to the standard stack (in MU) prior to calling a

SQLite function. Finally, SQLite uses the libc function memmove, which accesses libc

constants that are in MT, so we implemented a separate memmove for SQLite. In

total, we added 437 LoC.

We measure run time using the speedtest1 benchmark that comes with SQLite

and emulates a typical database workload [122]. This benchmark performs a total of

32 short tests that stress different database functions like selects, joins, inserts and

deletes. We increased the iterations in each test by a factor of four to make the tests

longer. Our base line for comparison is vanilla SQLite linked to Node.js without any

protection. We configure the benchmark to store the database in-memory and report

averages of 20 runs.

The geometric mean of ERIM’s overhead on runtime across all tests is 4.3%.

The overhead is below 6.7% on all tests except those with more than 106 switches

per second. This suggests that ERIM can be used for isolating native libraries from

managed language runtimes with low overheads up to a switching cost of the order of

106 per second. Beyond that the overhead is noticeable. Table 4.8, columns 1–3, show

the relative overheads for tests with switching rates of at least 100,000/s. These are

consistent with an average overhead between 0.07% and 0.41% for 100,000 switches/s.

The actual switch cost measured from direct CPU cycle counts varies from 73 to 260

cycles across all tests. The switch cost exceeds 100 cycles only on benchmarks where

the switch rate is very low (less than 2,000 times/s). We verified that these higher

cycle counts are due to instruction cache misses—at very low switch rates, the call

gate is flushed out of the instruction cache between switches.

103

Test
Switches/s Overhead (%)

ERIM WebAssembly
100 11,183,281 12.73% 132.48%
110 8,329,914 12.18% 135.44%
400 8,161,584 15.42% 156.04%
120 7,190,766 13.81% 145.19%
142 7,074,553 9.41% 165.88%
500 6,419,008 12.13% 119.15%
510 5,868,395 5.60% 113.76%
410 5,091,212 3.64% 122.77%
240 2,358,524 3.74% 126.63%
280 2,303,516 3.22% 100.05%
170 1,264,366 4.22% 104.87%
310 1,133,364 2.92% 81.71%
161 1,019,138 2.81% 138.64%
160 1,014,829 2.73% 136.27%
230 670,196 2.04% 193.42%
270 560,257 2.28% 92.78%

Table 4.8: Overhead relative to native execution for SQLite speedtest1 tests with
more than 100,000 switches/s. Standard deviations were below 5.6% for native, and
ERIM and below 15.4% for WebAssembly.

4.5.4.1 Comparison to isolation with bounds checks (SFI)

We also use the above experiment to compare ERIM to isolation based on bounds

checks. For this, we re-compile the SQLite library to native code indirectly through

WebAssembly, a new memory-safe, low-level language designed specifically for writing

safe native plugins for JavaScript environments [53]. The WebAssembly to native

code translation inserts bounds checks prior to indirect memory accesses. Compilation

via WebAssembly is the currently recommended method for safely adding native

plugins to Google’s Chrome web browser; most major web browsers are expected to

recommend the same method in the near future.

Across all 32 tests, the geometric mean of the relative overhead of WebAssembly-

based isolation on run time is 133.5%. The overheads range from 66.4% to 280.6%,

which is significantly higher than ERIM’s overheads. However, WebAssembly’s

overheads do not increase with the switching rate since it does not interpose on

104

switches. Instead, it imposes a continuous overhead while execution is in SQLite.

Other work using bounds checks has found similarly high overheads on performance-

intensive benchmarks [95, 53].

4.6 Related Work

Reference monitors [6] mediate privileged access by untrusted applications protecting

data confidentiality and integrity, by sandboxing the application or checks inserted

into the applications execution. All implementations share the important property

of protecting the reference monitor’s code and state from corruption and deploy

isolation techniques shielding the reference monitor. Least-privilege and privilege

separation [105] define the basis for today’s reference monitor mechanisms in hardware

([82, 63, 12]), hypervisors ([14, 19]), operating systems ([132, 35]) or applications

([129, 80, 41, 143, 29]). Two recent surveys [126, 117] show viable attacks and possible

counter measures to protect against data confidentiality and integrity violations.

Furthermore their interception granularity varies from a separate guest OS ([14]),

a single application ([19, 20, 132]) or application components ([129, 82, 74, 80, 41,

143, 29, 144]). Intercepting at fine granularity offers isolation across application

components, whereas course-grain interception isolates independent applications or

components. Due to its frequent invocations, fine-grained interception solutions

require isolation techniques with low overhead. ERIM isolates application components

and intercepts fine-grained security relevant events within the application, similarly

to ARMlock [144] or SFI-based isolation [129, 80, 41, 143]. This is in contrast to

techniques using OS process boundaries ([74]) or CPU privilege levels ([19, 14]).

Koning et al. [68] survey techniques for efficient data encapsulation within a

process, including SFI, dynamic encryption of private data using the Intel AES-NI

ISA extensions, approaches that use VT-x virtualization hardware, and those that

rely on the Intel MPX and MPK ISA extensions. It then presents a general isolation

105

technique, called MemSentry, which instruments programs using an LLVM pass. The

instrumentation can rely on any one of the above mentioned isolation techniques to

ensure that only legitimate accesses to encapsulated data are allowed. One of the

isolation techniques used by MemSentry is MPK, and experimental results show that

this technique is the most efficient in situations where encapsulated data is located

in a few contiguous regions and accesses are frequent.

MemSentry relies on (and assumes the existence of) a general defense against

control flow hijacks to prevent untrusted code from exploiting the WRPKRU instruc-

tion to raise its privileges. General defenses against control flow hijacks, however,

are either incomplete or inefficient. For instance, instrumenting every load and

store operation is hard to circumvent but expensive. A defense such as protecting

only return addresses by using a shadow stack, on the other hand, can be done

efficiently, but does not prevent corruption of other code pointers or indirect branches.

Moreover, MemSentry burdens each application that requires data encapsulation

with the overhead of a general defense against control flow hijacks, even if it is not

otherwise required.

ERIM also uses MPK as the underlying isolation mechanism, but does not rely

on a generic defense against control flow hijacks. Instead, it provides a specific

defense against abuse of the WRPKRU instruction, a much simpler problem that can

be solved securely and efficiently. The performance gains of this change in approach

are significant—ERIM imposes less than 16% overhead on the SQLite speedtest (see

Section 4.5.4) while isolating via standard WebAssembly increases the runtime by a

geometric mean of 133.5%. WebAssembly similarly relies on control-flow integrity

for isolation.

In the following we survey techniques to isolate memory and reference monitor

applications using hardware-based TEE, hypervisor-/OS-based, language, compiler

and runtime techniques.

106

Hardware-based trusted execution environments. Recent additions to

Intel’s [63] and ARM’s [12] ISA allow applications to execute a trusted part in

a trusted execution environments (TEE). Isolated from the remaining hypervisor,

operating system or applications, TEE’s provide strong isolation and require targeted

implementations. Research systems use TEEs to reduce the TCB (see Flicker [82])

needed to execute code securely. Due to their strong isolation, TEE’s do not allow

direct access to OS services like filesystem or network which limits the usage due

to overheads while crossing the isolation boundary. ERIM isolates application

components, similar to Flicker, while maintaining the programming model allowing

access to OS services.

Haven [17] and SCONE [13] provide a systematic approach to run entire applica-

tions in TEEs while providing OS services. This shields entire applications from their

environment instead of protecting a specific application part. Security vulnerabilities

existing in the unshielded application, also exist in the shielded execution which

attacks may use to violate memory safety. As a result research is already looking at

using memory safety techniques [71] in TEEs.

In addition to TEEs Intel also added support for bound checks using Intel MPX

and memory regions with MPK [64]. Both techniques have been studied for their

effectiveness and adaptability in [68, 95]. Originally designed to enforce memory

bounds on application’s data structure accesses, MPX efficiently isolates memory,

when dividing into few regions. Once the program uses more regions, the internal

bound registers need to access shadow copies from main memory and stall executions.

In addition MPX currently allows only single-threaded applications.

Hypervisor/OS-based reference monitors. Today’s processors provide sev-

eral protection rings to isolate hypervisors, OSes and application. Invented to provide

efficient virtualization of the underlying hardware, e.g., Xen [14], Wedge [20] and

Dune [19] isolate application components to run at different ring levels and monitor

OS resources.

107

Nexen [115] decomposes the Xen hypervisor into isolated components and a

security monitor, using page-based protection within the hypervisor’s ring-0 privilege

level. Control of the MMU is restricted to the monitor; compartments are de-

privileged by scanning and removing exploitable MMU-modifying instructions. By

relying on MPK, ERIM is able to use a similar approach within application processes

at ring-3, by scanning and removing exploitable WRPKRU instructions.

SIM [114] relies on VT-x to isolate a security monitor within an untrusted guest

VM, where it can access guest memory with native speed. In addition to the overhead

of the VMFUNC calls during switching, these techniques incur overheads on TLB

misses and syscalls due to the use of extended page tables and hypercalls, respectively.

Overall, the overheads of virtualization-based encapsulation are comparable to OS-

based techniques.

Novel kernel abstractions like light-weight contexts [74] or secure memory

views [59] have reduced the cost of data encapsulation to the point where iso-

lating OpenSSL long-term signing keys is feasible with little overhead [74]. ERIM

achieves higher switch rates which allow isolating not only the long-term signing

keys, but also the short-term session keys.

Systems to automatically divide applications into different privilege levels use

OS process boundaries as protection [22, 67]. Their utility is limited by the switching

overhead across processes to monitoring infrequent events like file descriptor creations

(open, fopen). In ERIM the monitor similarly controls OS service access to untrusted

applications, while reducing the switch overhead between monitor and application.

Language and runtime techniques Memory isolation may be implicit in

a memory-safe programming language. The provided isolation depends on the

correctness of the compiler and the language runtime. However, such isolation can

be easily undermined by native libraries written in memory-unsafe languages.

Wahbe et al. [129] introduce software-fault isolation (SFI), a technique to isolate

untrusted applications and control access to OS services. Subsequently, additional

108

effort [144, 80, 41, 143] improved the guarantees, threat model, and performance.

SFI isolates by restricting the binary code during compilation, by binary rewriting,

or by dynamically emulating instructions. Instead of relying on a compiler, binary

rewriter, or emulator, ERIM trusts the Intel CPU to enforce memory isolation.

Recent systems [7] adapt SFI to just-in-time (jit) compiled languages like

JavaScript and isolate the language runtime from native libraries by generating

binary code restricting memory accesses. Similarly, ERIM isolates native libraries

from the language runtime as described in Section 4.3.3. Instead of restricting all

memory accesses, an ERIM-protected code generator is only required to generate

WRPKRU free binary code which results in less overhead during code execution and

code generation.

In contrast to SFI, which isolates untrusted applications, inlined reference mon-

itors (IRM) [38] insert security checks into the untrusted application to isolate it

from the trusted component. Using a compiler pass, checks are inserted before, e.g.,

memory accesses, jumps or function returns to protect the execution from accessing

protected memory. Two well known examples are control-flow integrity (CFI) [1] or

code-pointer integrity (CPI) [72]. To protect the confidentiality of its state (pointer

tables), CPI relies on address space layout randomization (ASLR) as one possible

isolation mechanism. However, ASLR is known to be easily breakable [60, 39, 94, 49].

ERIM offers an alternate, efficient technique for isolation in mechanisms like CPI.

Shreds [29] monitors and protects security relevant variables within applications.

It requires annotations by the programmer and a compiler pass to insert control

switches. At the beginning of the application a memory region is created to store the

isolated variables. When the execution accesses a variable, the execution switches to

trusted code and access the isolated variable. Compared to ERIM Shred’s switches

are very costly.

IMIX [43] introduces an additional page protection type called IMIX which

can only be accessed using a new smov CPU instruction. In combination with a

109

compiler supporting automated partitioning of sensitive data, IMIX compiles source

code which allocate sensitive data in an IMIX protected page. IMIX requires a

complementary control-flow integrity technique to be present and disallows dynamic

loading of code. ERIM, on the other hand, guarantees isolation despite control-flow

hijacks without relying on a technique for control-flow integrity.

Aurasium [141] dynamically relinks Android framework invocations and user

data accesses to an in-process reference monitor. In contrast to ERIM, Aurasium

does not protect the reference monitor’s memory from accesses. Hence, malicious

code may call Android framework functions or access user data directly.

Memory hiding. Memory Hiding relies on ASLR to place secrets at random

locations and restricts pointer computations [113, 58]. Although a very efficient

memory isolation solution, several attacks [60, 39, 94, 49] demonstrate how to

subvert the probabilistic guarantees and find hidden secrets. ERIM does not rely on

randomization, but still has comparable performance.

In addition to hiding secrets at random locations, secrets can also be hidden in

execute-only pages which include the secret as immediate values in CPU instructions

such as load immediate. A computation using the secret first loads the secret into

a register, computes the function and destroys the contents of the register before

returning to the regular execution. Redactor [31] and NEAR [135] hide code pointers

in execute-only memory to prevent code disclosure which is used by return-oriented

programming attacks.

4.7 Conclusion

We conclude with a brief summary of ERIM and how it compares to other memory

isolation techniques. Relying on the recent Intel MPK ISA extension and simple

binary inspection, ERIM provides hardware-enforced isolation with an overhead of

110

less than 1% for every 100,000 switches/s between components on current CPUs. It

imposes no overhead on execution within a component.

Existing hardware isolation techniques rely on either kernel- or hypervisor-

mediation for switching protection domains and incur much higher switching costs—

the state-of-the-art lwCs impose approximately 10% overhead for every 100,000

switches/s. Other techniques based on access bounds-checks such as SFI or memory-

safe languages provide isolation without interposing on domain switches, but impose

costs of several tens of percent on the normal execution of untrusted code, even with

mainstream hardware support for bounds checking (e.g., MPX), and additionally

require control-flow integrity to provide strong security. Yet other software techniques

like ASLR impose negligible runtime overhead but offer very limited defense against

strong user-space adversaries.

ERIM’s comparative advantage prominently stands out on applications that

switch very rapidly, and that spend a nontrivial fraction of time in untrusted code.

We have demonstrated ERIM’s efficacy on three such applications: isolating session

keys in web servers, isolating an inlined reference monitor’s private state and isolating

managed runtimes from native libraries. In all cases, ERIM provides strong isolation

with overheads significantly lower than those of existing techniques.

111

CHAPTER 5

Conclusion

Today computers store and analyze valuable and sensitive data such as personal

multimedia or client records. An important goal is to protect the confidentiality

and integrity of such data, minimizing the risk of illicit release, loss or modification.

However, existing techniques to protect confidentiality and integrity are vulnerable

to malicious attacks or are inefficient. This thesis contributes two new techniques,

Guardat and ERIM, providing confidentiality and integrity for persistent and in-

memory data securely and efficiently.

Guardat enforces, at the storage layer, rich per-file confidentiality and integrity

policies with low overhead. The enforcement at the storage layer reduces the attack

surface and the risk of circumvention due to software bugs, misconfigurations and

operator errors in higher layers. Guardat overcomes the gap between storage layer

enforcement and per-file policies by attesting the state of files and associated policies

through cryptographically-signed certificates. To specify policies, we develop a

domain-specific language which allows data accesses conditioned on authentication,

trusted wall clock time, and a file’s state including the content. We demonstrate an

efficient implementation to enforce such policies in an iSCSI SAN server and apply

Guardat to two use cases protecting the content, executable, and log files of a web

server, as well as enforcing mandatory access logging.

ERIM provides data confidentiality and integrity for in-memory data by isolating

sensitive data from accesses by untrusted components. It isolates sensitive data

113

into a separate, trusted memory component using Intel MPK and ensures that

only the trusted component has access to sensitive data. To prevent malicious

attacks from escalating privileges using the unprivileged WRPKRU CPU instruction,

ERIM additionally protects the trusted component via secure control transfers and

binary inspection. Secure control transfers ensure that the untrusted component

cannot elevate access permissions without the involvement of the trusted component.

Binary inspection guarantees that no executable binary code sequence elevates access

permissions to the trusted component, while executing untrusted code. ERIM’s

isolation imposes no additional overhead on the execution and less than 1% runtime

overhead per 100,000 switches/second. Unlike state-of-the-art isolation techniques,

the low switch cost and no overhead on execution allows ERIM to efficiently isolate

frequently-used session keys in web servers, an in-memory reference monitor’s private

state, and managed runtimes from native libraries as demonstrated in the evaluation.

5.1 Future Work

Guardat and ERIM independently protect the confidentiality and integrity of sensitive

persistent and in-memory data. While Guardat restricts data accesses at the storage

layer, it does not protect data released to an application. In contrast ERIM restricts

access to application data, but does not protect persistent data from malicious

attacks. Although beyond the goal of this thesis, in this section we discuss how to

overcome the limitations of each technique and attain an end-to-end confidentiality

and integrity guaranty of sensitive persistent data throughout its in-memory use in

an application.

We can overcome the limitations of each individual system by connecting an

ERIM-isolated monitor to a Guardat device which stores the secrets. These persis-

tently stored secrets on a Guardat device could be protected from arbitrary data

accesses by associating a policy which allows data access only by authorized connec-

114

tions. However, without any changes to ERIM, an ERIM-isolated monitor would

not be able to access these secrets. To gain access, the monitor has to connect to

the Guardat device and authenticate itself. The current design of ERIM does not

provide a way to generate a unique authorization secret that is reliable and consistent

across environments and reboots. In order to generate authorization secrets, existing

techniques like trusted platform modules (TPM) or Intel SGX generate authorization

secrets for code by measuring the code’s in-memory footprint as a secure hash. This

hash is then used to derive a unique authorization secret.

Similar to existing techniques, we suggest to change ERIM’s initialization to

generate an authorization secret by measuring the trusted monitor’s footprint. Once

measured, the secret is placed in the trusted monitor’s memory (outside of the

untrusted application’s reach). Using this secret, the trusted monitor authenticates

itself to the Guardat device. This approach guarantees that Guardat only releases

secrets to an ERIM-isolated monitor, while ERIM protects the in-memory copy of

the secret from accesses by an untrusted application.

By connecting an ERIM-isolated monitor to Guardat we provide an end-to-end

confidentiality and integrity guarantee which would be particularly interesting for

server applications that rely on a secure connection to clients using asymmetric

cryptography. In today’s server and cryptographic library implementations (see

Figure 5.1a) the private and session keys are not isolated in memory or protected in

persistent storage. Existing server applications read a private key from persistent

storage into memory and use the key to establish a secure connection by negotiating

a session key. The session key is stored in memory and used by both parties to

encrypt and decrypt messages. Hence, security vulnerabilities and bugs in the

untrusted server application, the operating system, or applications with access to

the storage may result in a confidentiality or integrity violation. For example,

unauthorized applications may read the persistent private key and release them,

violating confidentiality. Similarly, the key could be modified on disk, violating

115

(a) Today’s server applica-
tions

(b) Isolating a crypto-
graphic library using ERIM
and connecting it to a Guar-
dat device

(c) Combining ERIMwith
Software Guard Extensions
(SGX) to isolate from the
operating system

Figure 5.1: Steps towards an isolated cryptographic library in server applications

integrity. Once the keys reside in memory, malicious attacks like Heartbleed [90] can

release or modify the keys, violating both confidentiality and integrity.

To protect the keys from these types of threats, Guardat in combination with

ERIM can protect the persistent keys and the in-memory keys efficiently as shown in

Figure 5.1b. The server needs to be split into a trusted monitor which only holds the

cryptographic functions and an untrusted server which handles the communication

and provides the service to the client. During initialization ERIM isolates the trusted

monitor’s memory from the untrusted server application. ERIM measures the trusted

monitor and provides the authorization secret to the trusted monitor. It then allows

the trusted monitor to initialize, connect to a Guardat device, authorize using the

previously measured secret, and read the private key. Guardat checks that the

authenticated client actually is the ERIM-isolated trusted monitor which is specified

in the policy. After finishing the trusted monitor’s initialization, ERIM starts the

untrusted server, which begins its usual operation waiting for clients to connect.

Once a client connects to establish a secure connection, the untrusted server accepts

the connection, starts the SSL/TLS handshake protocol and switches to the trusted

monitor whenever encrypting or decrypting messages using the in-memory private

key and generating new session keys.

116

In contrast to the threat model of Guardat which assumes intermediate layers,

such as the OS, to be vulnerable to malicious attacks or circumvention, the technique

proposed above, however, assumes the OS to be trusted, since ERIM’s guarantees

depend on the OS. As a result, the proposed solution would only protect confidentiality

and integrity against attacks from outside, e.g., malicious clients attacking the server

like Heartbleed [90], and any threats on the network between the machine running

the server and the Guardat device. Such a threat model is common for servers

running in the cloud.

Further hardening ERIM against OS vulnerabilities: While the cloud threat

model is commonly assumed, recent attacks [24] show how other cloud tenants

can access in-memory secrets violating confidentiality and integrity. In addition,

highly sensitive applications may not assume the cloud provider to be trusted and,

hence, intermediate layers like the OS and VMM which provide isolation are no

longer trusted. In order to strengthen the threat model of the presented technique,

the memory isolation guarantees of ERIM have to be independent of intermediate

software layers like the OS or VMM.

To defend against these threats, trusted execution environments (TEE), in

particular Intel SGX, can be used to shield sensitive data from the cloud platform

and other tenants. SGX provides in-memory enclaves to store sensitive data and

execute code independent of the running OS or VMM. Several research systems

[17, 13, 70] demonstrate the use of Intel SGX to shield an application against the

cloud platform.

While SGX provides strong memory isolation guarantees, its high switch costs

comparable to a context switch hinders its adoption, and prevents it from being

used to isolate frequently-used secrets. Existing work overcomes these performance

limitations by either isolating infrequently-used secrets like private keys or isolating

an entire application. However, pushing entire applications (e.g., a server) into

117

an enclave without further memory isolation leaves the application vulnerable to

malicious attacks, due to the size and complexity of these applications. Recent

work [71] suggests further protecting applications in SGX enclaves by adding memory

bound checks. However, such checks incur substantial runtime overhead, and it is

not sufficient for ERIM to simply swap Intel MPK for Intel SGX. Instead, we need

to combine both approaches to allow entire applications to run within SGX enclaves,

shielding them from the remaining cloud software stack, while isolating secrets within

the application using a mechanism similar to Intel MPK.

To this end, we suggest amending the SGX specification, since it has no provision

for MPK-like memory isolation using per-page domains and an access permission

register such as the PKRU register. The enclave memory descriptors reside in

processor reserved memory which is inaccessible to system software (e.g., OS or

VMM). An important descriptor is the enclave page cache map (EPCM), a table-like

structure, which holds information about which memory pages belongs to an enclave

and holds per-page access permission bits. Currently the EPCM allows pages to be

accessible with read, write, and execute permission and does not allow pages to be

tagged with a MPK domain.

To allow page-level memory isolation within SGX enclaves, we suggest adding

memory domain identifiers to the EPCM and extending the CPU’s memory access

permission check to validate the current access permissions in the PKRU register

against the memory access’s EPCM domain identifier. This approach extends the

reach of Intel MPK into SGX enclaves. Similar to the use of MPK in ERIM, this

solution is vulnerable to malicious attacks and hence needs to be combined with

ERIM’s secure control transfers and binary inspection. For code in enclaves, we can

simplify ERIM’s binary inspection, since enclave memory is allocated once at the

start of an enclave and can only be extended with a special protocol including a step

in which the enclave approves the extension [83]. The binary inspection could scan

once at the start for unsafe WRPKRUs in all executable memory and at runtime it

118

could only approve new pages which do not contain unsafe WRPKRUs. There is no

need for kernel modifications or signal handlers. By amending the SGX specification

and combining it with ERIM’s secure control transfers and binary inspection, we

can isolate frequently-used secrets within SGX enclave without trusting the system

software like the OS (see Figure 5.1c).

In this section we have shown how to extend the protection of persistent files from

Guardat to in-memory data using ERIM. We discussed the challenge in authenticating

an ERIM-isolated trusted monitor to a Guardat device and describe a technique

to generate an authentication secret using code measurements. We discuss its use

in a commonly assumed threat model for cloud environments. For highly sensitive

applications, we describe an extension of Intel’s SGX to protect against rogue cloud

providers and other cloud tenants.

119

Bibliography

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow

integrity. In Proceedings of ACM SIGSAC Conference on Computer and

Communications Security (CCS), 2005.

[2] Nitin Agrawal, William J. Bolosky, John R. Douceur, and Jacob R. Lorch. A

five-year study of file-system metadata. ACM Transactions on Storage, 3(3),

2007.

[3] Marcos K. Aguilera, Minwen Ji, Mark Lillibridge, John MacCormick, Erwin

Oertli, David G. Andersen, Mike Burrows, Timothy Mann, and Chandramohan

Thekkath. Block-Level Security for Network-Attached Disks. In Proceedings

of USENIX Conference of File and Storage Technologies (FAST), 2003.

[4] Hussain M. J. Almohri and David Evans. Fidelius Charm: Isolating Unsafe

Rust Code. In Proceedings of ACM Conference on Data and Application

Security and Privacy (CODASPY), 2018.

[5] Amazon. Amazon Simple Storage Service (Amazon S3). http://aws.amazon.

com/s3/, 2011.

[6] James P. Anderson. Computer Security Technology Planning Study (Volume

II), 1972.

[7] Jason Ansel, Petr Marchenko, Ulfar Erlingsson, Elijah Taylor, Brad Chen,

Derek L. Schuff, David Sehr, Cliff L. Biffle, and Bennet Yee. Language-

independent sandboxing of just-in-time compilation and self-modifying code.

In Proceedings of ACM SIGPLAN conference on Programming language design

and implementation (PLDI), 2011.

120

http://aws.amazon.com/s3/
http://aws.amazon.com/s3/

[8] Apache HTTP Server Project. https://httpd.apache.org/docs/2.4/

programs/ab.html.

[9] Apple Inc. Time Machine, 2007.

[10] Apple Inc. Apple Fusion Drive. https://www.apple.com/de/imac, 2017.

[11] ARM. Developer guide: ARM memory domains. http://infocenter.arm.

com/help/, 2001.

[12] ARM. ARM Security Technology. http://infocenter.arm.com/

help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_

trustzone_security_whitepaper.pdf, 2009.

[13] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,

Christian Priebe, Joshua Lind, Divya Muthukumaran, Mark L. Stillwell, David

Goltzsche, David Eyers, Peter Pietzuch, and Christof Fetzer. SCONE: Secure

Linux Containers with Intel SGX. In Proceedings of USENIX Symposium on

Operating Systems Design and Implementation (OSDI), 2016.

[14] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex

Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of

virtualization. ACM SIGOPS Operating Systems Review, 37(5), 2003.

[15] Fritzgerald Barth, Victor Chin, Moshe Ferber, Sean Hittel, Laurie Jame-

son, Natheniel Mason, Hardeep Mehrotara, Ashish Mehta, Mihir Mohanty,

Krishna Narayanswamy, and Michael Roza. Top threats to cloud computing

plus industry insights. https://www.couldsecurityaliance.org/download/

top-threats-to-cloud-computing-plus-industry-insights/, 2017.

[16] Erick Bauman, Zhiqiang Lin, and Kevin W. Hamlen. Superset disassembly:

Statically rewriting x86 binaries without heuristics. In Proceedings of Network

and Distributed Systems Security Symposium (NDSS), 2018.

121

https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://www.apple.com/de/imac
http://infocenter.arm.com/help/
http://infocenter.arm.com/help/
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://www.couldsecurityaliance.org/download/top-threats-to-cloud-computing-plus-industry-insights/
https://www.couldsecurityaliance.org/download/top-threats-to-cloud-computing-plus-industry-insights/

[17] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding Applications

from an Untrusted Cloud with Haven. ACM Transactions on Computer Systems,

33(3), 2015.

[18] Moritz Y. Becker, Cédric Fournet, and Andrew D. Gordon. Design and

Semantics of a Decentralized Authorization Language. In Proceedings of IEEE

Computer Security Foundations Symposium (CSF), 2007.

[19] Adam Belay, Andrea Bittau, and Ali Mashtizadeh. Dune: safe user-level access

to privileged cpu features. In Proceedings of USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 2012.

[20] Andrea Bittau and Petr Marchenko. Wedge: splitting applications into reduced-

privilege compartments. In Proceedings of Networked System Design and

Implementation (NSDI), 2008.

[21] Matt Blaze, J. Fiegenbaum, John Ioannidis, and oAngelos Keromytis. The

KeyNote Trust-Management System Version 2. http://www.ietf.org/rfc/

rfc2704.txt, 1999.

[22] David Brumley and Dawn Song. Privtrans: Automatically Partitioning Pro-

grams for Privilege Separation. In Proceedings of USENIX Security Symposium,

2004.

[23] B-tree FS (Btrfs). https://btrfs.wiki.kernel.org/index.php/Main_Page,

2014.

[24] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,

Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and

Raoul Strackx. Foreshadow: Extracting the keys to the intel SGX kingdom

with transient out-of-order execution. In Proceedings of USENIX Security

Symposium, 2018.

122

http://www.ietf.org/rfc/rfc2704.txt
http://www.ietf.org/rfc/rfc2704.txt
https://btrfs.wiki.kernel.org/index.php/Main_Page

[25] Kevin R. B. Butler, Stephen McLaughlin, and Patrick Drew McDaniel. Rootkit-

resistant disks. In Proceedings of ACM SIGSAC Conference on Computer and

Communications Security (CCS), 2008.

[26] Kevin R. B. Butler, Stephen E. McLaughlin, and Patrick D. McDaniel. Kells:

A Protection Framework for Portable Data. In Proceedings of Annual Computer

Security Applications Conference, 2010.

[27] Kevin R. B. Butler, Steve McLaughlin, Thomas Moyer, and Patrick McDaniel.

New security architectures based on emerging disk functionality. In IEEE

Security and Privacy, volume 8, 2010.

[28] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam,

Carl A. Waldspurger, Dan Boneh, Jeffrey Dwoskin, and Dan R.K. Port. Over-

shadow: A Virtualization-Based Approach to Retrofitting Protection in Com-

modity Operating Systems. In Proceedings of ACM Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), 2008.

[29] Yaohui Chen, Sebassujeen Reymondjohnson, Zhichuang Sun, and Long Lu.

Shreds: Fine-Grained Execution Units with Private Memory. In Proceedings

of IEEE Symposium on Security and Privacy (Oakland), 2016.

[30] Dave Cooper. Internet X. 509 Public Key Infrastructure Certificate and

Certificate Revocation List Profile. http://www.ietf.org/rfc/rfc5280.txt,

2008.

[31] Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,

Ahmad Reza Sadeghi, Stefan Brunthaler, and Michael Franz. Readactor:

Practical code randomization resilient to memory disclosure. In Proceedings of

IEEE Symposium on Security and Privacy (Oakland), 2015.

123

http://www.ietf.org/rfc/rfc5280.txt

[32] crysetup. dm-crypt. https://gitlab.com/cryptsetup/cryptsetup/wikis/

DMCrypt.

[33] John DeTreville. Binder, a Logic-Based Security Language. In Proceedings of

IEEE Symposium on Security and Privacy (Oakland), 2002.

[34] Dyinst. Dyninst: An application program interface (api) for runtime code

generation. http://www.dyninst.org.

[35] Eslam Elnikety, Aastha Mehta, Anjo Vahldiek-oberwagner, Deepak Garg, and

Peter Druschel. Thoth : Comprehensive Policy Compliance in Data Retrieval

Systems. In Proceedings of USENIX Security Symposium, 2016.

[36] emscripten. https://github.com/kripken/emscripten.

[37] Úlfar Erlingsson. The Inlined Reference Monitor Approach to Security Policy

Enforcement. PhD thesis, 2003.

[38] Ulfar Erlingsson and Fred B. Schneider. IRM enforcement of Java stack

inspection. In Proceedings of IEEE Symposium on Security and Privacy

(Oakland), 2000.

[39] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany

Tang, Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed

Okhravi. Missing the point(er): On the effectiveness of code pointer integrity.

In Proceedings of IEEE Symposium on Security and Privacy (Oakland), 2015.

[40] Michael Factor and Eran Rom. Capability based Secure Access Control to

Networked Storage Devices. In Proceedings of IEEE Conference on Mass

Storage Systems and Technologies (MSST), 2007.

[41] Bryan Ford and Russ Cox. Vx32 : Lightweight User-level Sandboxing on the

x86. In Proceedings of USENIX Anual Technical Conference (ATC), 2008.

124

https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt
http://www.dyninst.org
https://github.com/kripken/emscripten

[42] Tommaso Frassetto, David Gens, Christopher Liebchen, and Ahmad-Reza

Sadeghi. Jitguard: hardening just-in-time compilers with sgx. In Proceedings

of ACM SIGSAC Conference on Computer and Communications Security

(CCS), 2017.

[43] Tommaso Frassetto, Patrick Jauernig, Christopher Liebchen, and Ahmad-Reza

Sadeghi. IMIX: In-process memory isolation extension. In Proceedings of

USENIX Security Symposium, 2018.

[44] Daniel Fryer, Kuei Sun, Rahat Mahmood, Tinghao Cheng, Shaun Benjamin,

Ashvin Goel, and Angela Demke Brown. Recon: Verifying File System Consis-

tency at Runtime. ACM Transactions on Storage, 8(4), 2012.

[45] Deepak Garg and Frank Pfenning. A proof-carrying file system. In Proceedings

of IEEE Symposium on Security and Privacy (Oakland), 2010.

[46] Ron Garret. A Time Machine time bomb. http://blog.rongarret.info/

2009/09/time-machine-time-bomb.html.

[47] Robert Gawlik and Thorsten Holz. Sok: Make jit-spray great again. In

Proceedings of USENIX Workshop on Offensive Technologies (WOOT), 2018.

[48] Garth A. Gibson, David F. Nagle, Khalil Amiri, Jeff Butler, Fay W. Chang,

Howard Gobioff, Charles Hardin, Erik Riedel, David Rochberg, and Jim Zelenka.

A cost-effective, high-bandwidth storage architecture. In Proceedings of ACM

Conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 1998.

[49] Enes Göktas, Robert Gawlik, Benjamin Kollenda, Elias Athanasopoulos, Geor-

gios Portokalidis, Cristiano Giuffrida, and Herbert Bos. Undermining Informa-

tion Hiding (and What to Do about It). In Proceedings of USENIX Security

Symposium, 2016.

125

http://blog.rongarret.info/2009/09/time-machine-time-bomb.html
http://blog.rongarret.info/2009/09/time-machine-time-bomb.html

[50] Le Guan, Jingqiang Lin, Bo Luo, Jiwu Jing, and Jing Wang. Protecting private

keys against memory disclosure attacks using hardware transactional memory.

In Proceedings of IEEE Symposium on Security and Privacy (Oakland), 2015.

[51] Haryadi S. Gunawi, Abhishek Rajimwale, Andrea Arpaci-Dusseau, and Remzi

Arpaci-Dusseau. SQCK : A Declarative File System Checker. In Proceedings

of USENIX Symposium on Operating Systems Design and Implementation

(OSDI), 2008.

[52] Yuri Gurevich and Itay Neeman. DKAL: Distributed-knowledge authorization

language. In Proceedings of IEEE Computer Security Foundations Symposium

(CSF), 2008.

[53] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael

Holman, Dan Gohman, Luke Wagner, Alon Zakai, and F. Bastien. Bringing

the web up to speed with WebAssembly. In Proceedings of ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI),

2017.

[54] Vivek Haldar, Deepak Chandra, and Michael Franz. Semantic remote attesta-

tion: a virtual machine directed approach to trusted computing. In Proceedings

of USENIX Virtual Machine Research and Technology Symposium, 2004.

[55] Mark Hayakawa. WORM Storage on Magnetic Disks Using SnapLock Compli-

ance and SnapLock Enterprise. Technical Report TR-3263, Network Appliance,

2007.

[56] Dave Hitz, James Lau, and Michael Malcom. File System Design for an NFS

File Server Appliance. In Proceedings of USENIX Winter Technical Conference,

1994.

126

[57] Owen S. Hofmann, Sangman Kim, Alan M. Dunn, Michael Z. Lee, and Emmett

Witchel. InkTag: Secure Applications on an Untrusted Operating System. In

Proceedings of ACM Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2013.

[58] Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz. librando:

Transparent Code Randomization for Just-in-Time Compilers. Proceedings of

ACM SIGSAC Conference on Computer and Communications Security (CCS),

2013.

[59] Terry Ching-Hsiang Hsu, Kevin Hoffman, Patrick Eugster, and Mathias Payer.

Enforcing least privilege memory views for multithreaded applications. In

Proceedings of ACM SIGSAC Conference on Computer and Communications

Security (CCS), 2016.

[60] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side channel

attacks against kernel space ASLR. In Proceedings of IEEE Symposium on

Security and Privacy (Oakland), 2013.

[61] Intel Corporation. AESNI library. http://software.intel.com/en-us/

articles/download-the-intel-aesni-sample-library, 2011.

[62] Intel Corporation. Fast SHA256. http://download.intel.com/embedded/

processor/whitepaper/327457.pdf, 2012.

[63] Intel Corporation. Software Guard Extensions Programming Refer-

ence. https://software.intel.com/sites/default/files/managed/48/

88/329298-002.pdf, 2014.

[64] Intel Corporation. Intel(R) 64 and IA-32 Architectures Software Developer’s

Manual. Architecture, 2016.

127

http://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library
http://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library
http://download.intel.com/embedded/processor/whitepaper/327457.pdf
http://download.intel.com/embedded/processor/whitepaper/327457.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

[65] The iSCSI Enterprise Target Project. http://iscsitarget.sourceforge.

net/, 2011.

[66] T. Jim. SD3: A trust management system with certified evaluation. In

Proceedings of IEEE Computer Society Symposium on Research in Security

and Privacy, 2001.

[67] Douglas Kilpatrick. Privman: A Library for Partitioning Applications. In

Proceedings of USENIX Anual Technical Conference (ATC), 2003.

[68] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athana-

sopoulos. No Need to Hide: Protecting Safe Regions on Commodity Hardware.

In Proceedings of ACM European Conference on Computer Systems (EuroSys),

2017.

[69] Ramakrishna Kotla, Tom Rodeheffer, Indrajit Roy, Patrick Stuedi, and Ben-

jamin Wester. Pasture: Secure Offline Data Access using Commodity Trusted

Hardware. In Proceedings of USENIX Symposium on Operating Systems Design

and Implementation (OSDI), 2012.

[70] Robert Krahn, Bohdan Trach, Anjo Vahldiek-Oberwagner, Thomas Knauth,

Pramod Bhatotia, and Christof Fetzer. Pesos: Policy Enhanced Secure Object

store. In Proceedings of ACM European Conference on Computer Systems

(EuroSys), 2018.

[71] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod

Bhatotia, Pascal Felber, and Christof Fetzer. SGXBOUNDS: Memory Safety for

Shielded Execution. In Proceedings of ACM European Conference on Computer

Systems (EuroSys), 2017.

128

http://iscsitarget.sourceforge.net/
http://iscsitarget.sourceforge.net/

[72] Volodymyr Kuznetsov, László Szekeres, and Mathias Payer. Code-pointer

integrity. In Proceedings of USENIX Symposium on Operating Systems Design

and Implementation (OSDI), 2014.

[73] Ninghui Li and John C. Mitchell. Datalog with Constraints: A Foundation for

Trust Management Languages. In Proceedings of ACM Symposium on Practical

Aspects of Declarative Languages (PADL), 2003.

[74] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg,

Bobby Bhattacharjee, and Peter Druschel. Light-Weight Contexts: An OS

Abstraction for Safety and Performance. In Proceedings of USENIX Symposium

on Operating Systems Design and Implementation (OSDI), 2016.

[75] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. Thwarting

Memory Disclosure with Efficient Hypervisor-enforced Intra-domain Isolation.

In Proceedings of ACM SIGSAC Conference on Computer and Communications

Security (CCS), 2015.

[76] Boon Thau Loo. The Design and Implementation of Declarative Networks.

PhD thesis, University of California, Berkeley, 2006.

[77] Boon Thau Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis, Timo-

thy Roscoe, Ion Stoica, Thau Loo, Petros Maniatis, Tyson Condie, Timothy

Roscoe, and Joseph M. Hellerstein. Implementing declarative overlays. In

ACM SIGOPS Operating Systems Review, volume 39, 2005.

[78] Kangjie Lu, Chengyu Song, Byoungyoung Lee, Simon P. Chung, Taesoo Kim,

and Wenke Lee. ASLR-Guard: Stopping Address Space Leakage for Code

Reuse Attacks. In Proceedings of ACM SIGSAC Conference on Computer and

Communications Security (CCS), 2015.

129

[79] Michelle L. Mazurek, Yuan Liang, William Melicher, Manya Sleeper, Lujo

Bauer, Gregory R. Ganger, Nitin Gupta, and Michael K. Reiter. Toward strong,

usable access control for shared distributed data. In Proceedings of USENIX

Conference on File and Storage Technologies (FAST), 2014.

[80] Stephen Mccamant and Greg Morrisett. Evaluating SFI for a CISC Architecture.

In Proceedings of USENIX Security Symposium, 2006.

[81] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta,

Virgil Gligor, and Adrian Perrig. Trustvisor: Efficient tcb reduction and

attestation. In Proceedings of IEEE Symposium on Security and Privacy

(Oakland), 2010.

[82] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and

Hiroshi Isozaki. Flicker: An Execution Infrastructure for TCB Minimization.

In Proceedings of ACM European Conference on Computer Systems (EuroSys),

2008.

[83] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson,

Rebekah Leslie-Hurd, and Carlos Rozas. Intel software guard extensions

support for dynamic memory management inside an enclave. In Proceedings of

Hardware and Architectural Support for Security and Privacy, 2016.

[84] Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak Garg, and Peter

Druschel. Qapla: Policy compliance for database-backed systems. In Proceedings

of USENIX Security Symposium, 2017.

[85] Michael Mesnier, Feng Chen, Tian Luo, and Jason B. Akers. Differentiated

storage services. In Proceedings of ACM Symposium on Operating Systems

Principles (SOSP), 2011.

130

[86] Mike Mesnier, Gregory R. Ganger, and Erik Riedel. Object-based storage.

IEEE Communications Magazine, 41(8), 2003.

[87] Microsoft Corp. Bitlocker . https://docs.microsoft.com/en-us/windows/

security/information-protection/bitlocker/bitlocker-overview.

[88] Microsoft Corp. Windows Backup and Restore. http://www.microsoft.com/

athome/setup/backupdata.aspx{#}fbid=l7X90d97alI.

[89] Microsoft Corp. What Is Volume Shadow Copy Service?: Data Re-

covery. https://technet.microsoft.com/en-us/library/cc757854(v=ws.

10).aspx, 2003.

[90] MITRE. CVE-2014-0160. https://nvd.nist.gov/vuln/detail/

CVE-2014-0160, 2014.

[91] Node.js Foundation. https://nodejs.org.

[92] Oasis. eXtensible Access Control Markup Language, 2005.

[93] OCZ Technology Inc. Deneva 2 Data Sheet. https://drive.google.com/

file/d/0B4hWjkpwenosS0VMOWZkZ1BtR1E/view?usp=sharing, 2011.

[94] Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and Cristiano

Giuffrida. Poking Holes in Information Hiding. In Proceedings of USENIX

Security Symposium, 2016.

[95] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and

Christof Fetzer. Intel MPX Explained: A Cross-layer Analysis of the Intel

MPX System Stack. In Proceedings of ACM on Measurement and Analysis of

Computing Systems, 2018.

[96] OpenSSL. Crypto (OpenSSL cryptographic library). http://www.openssl.

org/, 2012.

131

https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
http://www.microsoft.com/athome/setup/backupdata.aspx{#}fbid=l7X90d97alI
http://www.microsoft.com/athome/setup/backupdata.aspx{#}fbid=l7X90d97alI
https://technet.microsoft.com/en-us/library/cc757854(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc757854(v=ws.10).aspx
https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://nodejs.org
https://drive.google.com/file/d/0B4hWjkpwenosS0VMOWZkZ1BtR1E/view?usp=sharing
https://drive.google.com/file/d/0B4hWjkpwenosS0VMOWZkZ1BtR1E/view?usp=sharing
http://www.openssl.org/
http://www.openssl.org/

[97] Bryan Parno, Jonathan M. McCune, and Adrian Perrig. Bootstrapping Trust

in Modern Computers. In Proceedings of IEEE Symposium on Security and

Privacy (Oakland), 2011.

[98] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redun-

dant arrays of inexpensive disks (RAID). In Proceedings of ACM SIGMOD

international conference on Management of data (SIGMOD), 1988.

[99] Adam G. Pennington, John Linwood Griffin, John S. Bucy, John D. Strunk,

and Gregory R. Ganger. Storage-Based Intrusion Detection. ACM Transactions

on Information and System Security, 13(4), 2010.

[100] Andrew Pimlott and Oleg Kiselyov. Soutei, a Logic-Based Trust-Management

System. In Proceedings of International Symposium on Functional and Logic

Programming (FLOPS), 2006.

[101] Sean Quinlan and Sean Dorward. Venti: a new approach to archival data

storage. In Proceedings of USENIX Conference of File and Storage Technologies

(FAST), 2002.

[102] Erik Riedel, Christos Faloutos, Garth a Gibson, and David Nagle. Active Disks

for Large Scale Data Processing. Tc, 34(6), 2001.

[103] Rust language. https://www.rust-lang.org/.

[104] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and

Ciera Jaspan. Lessons from building static analysis tools at google. Commun.

ACM, 61(4):58–66, March 2018.

[105] Jerome H. Saltzer and Michael D. Schroeder. The Protection of Information

in Computer Systems. In Proceedings of the IEEE, volume 63, 1975.

[106] Samsung. 830 SSD data sheet. http://www.samsung.com/us/system/

consumer/product/mz/7p/c1/mz7pc128nam/830.pdf, 2011.

132

https://www.rust-lang.org/
http://www.samsung.com/us/system/consumer/product/mz/7p/c1/mz7pc128nam/830.pdf
http://www.samsung.com/us/system/consumer/product/mz/7p/c1/mz7pc128nam/830.pdf

[107] Nuno Santos, Rodrigo Rodrigues, Krishna P. Gummadi, and Stefan Saroiu.

Policy-sealed data: A new abstraction for building trusted cloud services. In

Proceedings of USENIX Security Symposium, 2012.

[108] Fred B. Schneider, Kevin Walsh, and Emin Gün Sirer. Nexus authorization logic

(NAL): Design rationale and applications. ACM Transactions on Information

and System Security, 14(1), 2011.

[109] Seagate Technology LLC. Kinetic Open Storage Platform. http://www.

seagate.com/solutions/cloud/data-center-cloud/platforms.

[110] Seagate Technology LLC. Self-Encrypting Hard Disk Drives in the Data Center.

Technical Report TP583, 2007.

[111] Seagate Technology LLC. Barracuda Data Sheet. http://www.seagate.com/

files/staticfiles/docs/pdf/datasheet/disc/barracuda-xt-ds1696.

3-1102us.pdf, 2012.

[112] Seagate Technology LLC. Momentus XT Data Sheet. http://www.seagate.

com/docs/pdf/datasheet/disc/ds_momentus_xt.pdf, 2012.

[113] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,

and Dan Boneh. On the effectiveness of address-space randomization. In

Proceedings of ACM SIGSAC Conference on Computer and Communications

Security (CCS), 2004.

[114] Monirul I. Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi. Secure in-vm

monitoring using hardware virtualization. In Proceedings of ACM SIGSAC

Conference on Computer and Communications Security (CCS), 2009.

[115] Lei Shi, Yuming Wu, Yubin Xia, Nathan Dautenhahn, Haibo Chen, Binyu

Zang, Haibing Guan, and Jiñming Li. Deconstructing xen. In Proceedings of

Network and Distributed System Security Symposium (NDSS), 2017.

133

http://www.seagate.com/solutions/cloud/data-center-cloud/platforms
http://www.seagate.com/solutions/cloud/data-center-cloud/platforms
http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/barracuda-xt-ds1696.3-1102us.pdf
http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/barracuda-xt-ds1696.3-1102us.pdf
http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/barracuda-xt-ds1696.3-1102us.pdf
http://www.seagate.com/docs/pdf/datasheet/disc/ds_momentus_xt.pdf
http://www.seagate.com/docs/pdf/datasheet/disc/ds_momentus_xt.pdf

[116] Jiwu Shu, Zhirong Shen, and Wei Xue. Shield: A stackable secure storage

system for file sharing in public storage. J. Parallel Distrib. Comput., 74(9),

September 2014.

[117] Rui Shu, Peipei Wang, Sigmund A. Gorski III, Benjamin Andow, Adwait

Nadkarni, Luke Deshotels, Jason Gionta, William Enck, and Xiaohui Gu. A

Study of Security Isolation Techniques. ACM Computing Surveys, 49(3), 2016.

[118] Emin Gün Sirer, Willem de Bruijn, Patrick Reynolds, Alan Shieh, Kevin Walsh,

Dan Williams, and Fred B. Schneider. Logical attestation: an authorization

architecture for trustworthy computing. In Proceedings of ACM Symposium

on Operating Systems Principles (SOSP), 2011.

[119] Gopalan Sivathanu, Swaminathan Sundararaman, and Erez Zadok. Type-safe

disks. In Proceedings of USENIX Symposium on Operating Systems Design

and Implementation (OSDI), 2006.

[120] Muthian Sivathanu, Vijayan Prabhakaran, Florentina I. Popovici, Timothy E.

Denehy, Andre Arpaci-Dusseau, and Remzi Arpaci-Dusseau. Semantically-

Smart Disk Systems. In Proceedings of USENIX Conference of File and Storage

Technologies (FAST), 2003.

[121] SQLite. https://www.sqlite.org.

[122] SQLite. Speedtest1. https://www.sqlite.org/testing.html.

[123] Storage Work Group of the Trusted Computing Group. Self-Encrypting Drives

Take off for Strong Data Protection. https://trustedcomputinggroup.org/

self-encrypting-drives-take-off-strong-data-protection/, 2010.

[124] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz, Craig A. N.

Soules, and Gregory R. Ganger. Self-Securing Storage: Protecting Data in

134

https://www.sqlite.org
https://www.sqlite.org/testing.html
https://trustedcomputinggroup.org/self-encrypting-drives-take-off-strong-data-protection/
https://trustedcomputinggroup.org/self-encrypting-drives-take-off-strong-data-protection/

Compromised Systems. In Proceedings of USENIX Symposium on Operating

Systems Design and Implementation (OSDI), 2000.

[125] Sun Microsystems. Solaris ZFS, 2009.

[126] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal

war in memory. In Proceedings of IEEE Symposium on Security and Privacy

(Oakland), 2013.

[127] TCG. TCG Storage Architecture Core Spec-

ification. https://trustedcomputinggroup.org/

tcg-storage-architecture-core-specification/, 2007.

[128] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis, Ant Row-

stron, Tom Talepy, Richard Black, and Timothy Zhu. Ioflow: A software-defined

storage architecture. In Proceedings of ACM Symposium on Operating Systems

Principles (SOSP), 2013.

[129] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.

Efficient software-based fault isolation. In Proceedings of ACM Symposium on

Operating Systems Principles (SOSP), 1993.

[130] Kevin Walsh and Fred B. Schneider. Costs of Security in the PFS File System.

Technical report, Computing and Information Science, Cornell University, 2012.

[131] David H.D. Warren. an Abstract Prolog Instruction Set. Technical Report

Technical Note 309, SRI International, 1983.

[132] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway.

A taste of Capsicum. Communications of the ACM, 55(3), 2012.

[133] Carsten Weinhold and Hermann Härtig. VPFS: Building a virtual private

file system with a small trusted computing base. In ACM SIGOPS Operating

Systems Review, 2008.

135

https://trustedcomputinggroup.org/tcg-storage-architecture-core-specification/
https://trustedcomputinggroup.org/tcg-storage-architecture-core-specification/

[134] Carsten Weinhold and Hermann Härtig. jVPFS: Adding Robustness to a

Secure Stacked File System with Untrusted Local Storage Components. In

Proceedings of USENIX Anual Technical Conference (ATC), 2011.

[135] Jan Werner, George Baltas, Rob Dallara, Nathan Otterness, Kevin Z. Snow,

Fabian Monrose, and Michalis Polychronakis. No-Execute-After-Read: Pre-

venting Code Disclosure in Commodity Software. In Proceedings of ACM

SIGSAC Asia Conference on Computer and Communications Security (Asia

CCS), 2016.

[136] Wikimedia Foundation. Image Dump. http://archive.org/details/

wikimedia-image-dump-2005-11, 2005.

[137] Wikimedia Foundation. Static HTML dump. http://dumps.wikimedia.org/,

2008.

[138] Wikimedia Foundation. Page view statistics April 2012. http://dumps.

wikimedia.org/other/pagecounts-raw/2012/2012-04/, 2012.

[139] Edward Wobber, Martín Abadi, Michael Burrows, and Butler Lampson. Au-

thentication in the Taos operating system. ACM Transactions on Computer

Systems, 12(1), 1994.

[140] Ted Wobber, Aydan Yumerefendi, Martín Abadi, Andrew Birrell, and Daniel R.

Simon. Authorizing applications in singularity. In ACM SIGOPS Operating

Systems Review, volume 41, 2007.

[141] Rubin Xu, Hassen Saïdi, and Ross Anderson. Aurasium: Practical Policy

Enforcement for Android Applications. In Proceedings of USENIX Security

Symposium, 2012.

136

http://archive.org/details/wikimedia-image-dump-2005-11
http://archive.org/details/wikimedia-image-dump-2005-11
http://dumps.wikimedia.org/
http://dumps.wikimedia.org/other/pagecounts-raw/2012/2012-04/
http://dumps.wikimedia.org/other/pagecounts-raw/2012/2012-04/

[142] Yuanzhong Xu, Alan M. Dunn, Owen S. Hofmann, Michael Z. Lee, Syed Akbar

Mehdi, and Emmett Witchel. Application-defined decentralized access control.

In Proceedings of USENIX Anual Technical Conference (ATC), 2014.

[143] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth,

Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native

client: A sandbox for portable, untrusted x86 native code. In Proceedings of

IEEE Symposium on Security and Privacy (Oakland), 2009.

[144] Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. ARMlock: Hardware-

based Fault Isolation for ARM Yajin. In Proceedings of ACM SIGSAC Confer-

ence on Computer and Communications Security (CCS), 2014.

137

	Abstract
	Kurzdarstellung
	Publications
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Protecting persistent data
	Protecting sensitive in-memory data

	Guardat: Enforcing data policies at the storage layer
	Design
	Threat model
	Interface
	Session interface
	Transaction interface
	File/Policy interface
	Content cache interface
	Certificate interface
	Replication/migration interface
	Application library
	Example usage

	Policy language
	Types
	Predicates
	Third-party certificates
	Semantics
	Usability

	Policy examples
	Protected executables
	Append-only logs
	Protected backup
	Mandatory access logging (MAL)
	Other policy idioms
	Expressiveness

	Implementation
	Prototype
	Implementation alternatives
	Filesystem interoperability
	Support for databases

	Experimental evaluation
	Experimental setup.
	Microbenchmarks
	Read/write latency
	Read/write throughput
	I/O performance summary
	Policy evaluation overhead
	Space requirements for metadata
	Flash memory wear

	Filesystem benchmarks
	Use case: Web server
	Mandatory access logging

	Related work
	Conclusion

	ERIM: Secure and Efficient In-process Isolation
	Design
	Threat model
	Intel Memory Protection Keys (MPK)
	High-level overview of the design
	Call gates
	Binary inspection
	Process lifecycle with ERIM
	Other considerations

	Rewriting inadvertent WRPKRUs
	Rewrite strategy
	Implementing the rewriting

	Use Cases
	Isolating cryptographic keys in web servers
	CPI/CPS
	Native libraries in managed runtimes

	Implementation
	Evaluation
	Microbenchmarks
	Switch cost
	Emulating *mpk's switch cost
	Binary inspection
	Statically rewriting binaries

	Protecting sensitive data in CPI/CPS
	CPI
	CPS

	Protecting session keys in nginx
	Scaling with multiple workers
	Comparison to kernel-based isolation

	Isolating managed runtimes
	Comparison to isolation with bounds checks (SFI)

	Related Work
	Conclusion

	Conclusion
	Future Work

	Bibliography

