

Aus dem Lehrstuhl für Experimentelle Orthopädie und Arthroseforschung Universität des Saarlandes Orthopädie Direktor: Prof. Dr. med. H. Madry

Nichtvirale zellvermittelte Überexpression der humanen Wachstumsfaktoren IGF-I und IGF-I/FGF-2 verbessert die Reparatur von osteochondralen Defekten im Großtiermodell

Dissertation zur Erlangung des Grades eines Doktors der Medizin der Medizinischen Fakultät

der UNIVERSITÄT DES SAARLANDES

2017

vorgelegt von:Heinz-Lothar Meyergeboren am:11.03.1988 in Wiesbaden

Inhaltsverzeichnis

1	Zusammenfassung/Abstract	1
2	Einleitung	5
2.1	Problematik und Überblick	5
2.2	Hyaliner Knorpel	6
2.3	Aufbau des gesunden hyalinen Gelenkknorpels	7
2.4	Einteilung der Knorpeldefekte	8
2.5	Klinische Therapiestrategien bei fokalen Gelenkknorpeldefekten	9
2.6	Experimentelle Therapiestrategien bei fokalen Gelenkknorpeldefekten	11
2.7	Wachstumsfaktoren IGF-I und FGF-2	12
2.8	Gentransfer-basierte Therapie fokaler Gelenkknorpeldefekte	13
2.9	Konzept der vorliegenden Arbeit	14
3	Problemstellung/Fragestellung	16
4	Material	17
4.1	Lösungen, Puffer und Medien	17
4.2	Chemikalien	18
4.3	Antikörper	18
4.4	Tierstämme	19
4.5	Geräte	19
4.6	Operationsmaterial	20
4.7	Verbrauchsmaterial	20
4.8	Software	20
-		<u> </u>
C	wietnoaen	21
5.1	Uberblick	21

5.2	Studiendesign	21
5.3	Großtiermodell	22
5.4	Sektion der Tiere	23
5.5	Makroskopische Evaluation der Defekte	24
5.5.1	Homburger Makroskopie Bewertungssystem	25
5.5.2	Oswestry Bewertungssystem	26
5.6	Histologische Evaluation der Gelenke	26
5.6.1	Entkalkung	26
5.6.2	Entwässerung	27
5.6.3	Einbettung und Schneiden	27
5.6.4	Färbungen	27
5.7	Histologische und Immunhistochemische Evaluationssysteme	29
5.7.1	Bewertungssystem nach Sellers	30
5.7.2	Bewertungssystem nach Pineda	31
5.7.3	Bewertungssystem nach Little	31
5.7.4	Bewertungssystem nach Immunreaktivität Typ-I-/-II-Kollagen	33
5.8	Statistische Analyse	33
6	Ergebnisse	35
6.1	Makroskopische Evaluation	35
6.1.1	Mediale Femurkondyle	36
6.1.2	Trochlea	37
6.2	Histologische Evaluation	39
6.2.1	Mediale Femurkondyle	39
6.2.2	Trochlea	46
6.3	Immunhistologische Evaluation	54
6.3.1	Mediale Femurkondyle	54
6.3.2	Trochlea	56

6.4	Vergleich der Defektreparatur von osteochondralen Defekten unter Behandlung von IGF-I Sphäroiden im Gegensatz zu IGF-I/FGF-2 Späroiden	58
6.5	Vergleich der Defektreparatur von osteochondralen Defekten zwischen mediale Femurkondyle und Trochlea	60
7	Diskussion	61
7.1	Evaluation der osteochondralen Reparatur	61
7.2	Die humanen Wachstumsfaktoren IGF-I und FGF-2	63
7.3	Immunhistochemische Evaluation des Reparaturgewebes	65
7.4	Applikation von <i>ex vivo</i> -transfizierten Zellen mit Hilfe von Alginatspäroiden	65
7.5	Limitationen und methodische Einschränkungen der vorliegenden Studie	67
7.5.1	Großtiermodell	67
7.5.2	Alginat-Sphäroide als Trägersubstanz für modifizierte Zellen	68
7.5.3	Bewertungssysteme der Knorpelreparatur	69
7.6	Ausblick	69
8	Literaturverzeichnis	71
9	Publikationen	88
10	Danksagung	89

Abbildungen

Abbildung 1: Aufbau hyaliner Gelenkknorpel	7
Abbildung 2: Einteilung Knorpeldefekte	8
Abbildung 3: Übersicht der Arbeit	21
<i>Abbildung 4:</i> Schematische Abbildung der Lokalisation der Defekte am Beispiel eines humanen Kniegelenks	22
Abbildung 5: Makroskopische Abbildungen der medialen Femurkondylen	24
Abbildung 6: Makroskopische Abbildungen der Trochleas	24
<i>Abbildung 7:</i> Histologische Darstellung von osteochondralen Defekten der medialen Femurkondyle, die mit <i>lacZ</i> oder mit IGF-I behandelt wurden	40
Abbildung 8: Histologische Darstellung von osteochondralen Defekten der medialen Femurkondyle, die mit <i>lacZ</i> oder mit IGF-I/FGF-2 behandelt wurden	42
Abbildung 9: Ergebnisse des Bewertungssystems nach Sellers am medialen Femurkondylus	43
Abbildung 10: Ergebnisse des Bewertungssystems nach Pineda am mediale Femurkondylus	n 45
<i>Abbildung 11:</i> Ergebnisse des Bewertungssystems nach Little am medialen Femurkondylus	46
<i>Abbildung 12:</i> Histologische Darstellung von osteochondralen Defekten der Trochlea, die mit <i>lacZ</i> oder mit IGF-I behandelt wurden	47
Abbildung 13: Histologische Darstellung von osteochondralen Defekten der Trochlea, die mit <i>lacZ</i> oder mit IGF-I/FGF-2 behandelt wurden	49
Abbildung 14: Ergebnisse des Bewertungssystems nach Sellers an Trochleas	50
<i>Abbildung 15:</i> Ergebnisse des Bewertungssystems nach Pineda an Trochleas	52
Abbildung 16: Ergebnisse des Bewertungssystems nach Little an Trochleas	53
<i>Abbildung 17:</i> Ergebnisse des semiquantitativen Bewertungssystems für Typ-I-Kollagen an medialen Femurkondylen	55
<i>Abbildung 18:</i> Ergebnisse des semiquantitativen Bewertungssystems für Typ-II-Kollagen an medialen Femurkondylen	55
<i>Abbildung 19:</i> Ergebnisse des semiquantitativen Bewertungssystems für Typ-I-Kollagen an Trochleas	56
Abbildung 20: Ergebnisse des semiquantitativen Bewertungssystems für Typ-II-Kollagen an Trochleas	57

Tabellen

Tabelle 1: Lösung, Medium, Puffer	17
Tabelle 2: Chemikalien	18
Tabelle 3: Antikörper	18
Tabelle 4: Zuordnung der Tiere und Paraffinblöcke der Studie H082	19
Tabelle 5: Geräte	19
Tabelle 6: Homburger Makroskopie Bewertungssystem	25
Tabelle 7: Oswestry Makroskopie Bewertungssystem	26
Tabelle 8: Bewertungssystem nach Sellers	30
Tabelle 9: Bewertungssystem nach Pineda	31
Tabelle 10: Bewertungssystem nach Little	32
<i>Tabelle 11:</i> Semiquantitatives Bewertungssystem zur Beurteilung der Immunreaktivität Typ-I-/-II-Kollagen	33
<i>Tabelle 12:</i> Ergebnisse Homburger Makroskopie Bewertungssystem mediale Femurkondyle IGF-I-Gruppe vs. <i>lacZ-</i> Gruppe	36
<i>Tabelle 13:</i> Ergebnisse Homburger Makroskopie Bewertungssystem mediale Femurkondyle IGF-I/FGF-2-Gruppe vs. <i>lacZ</i> -Gruppe	36
<i>Tabelle 14:</i> Ergebnisse Homburger Makroskopie Bewertungssystem Trochlea IGF-I-Gruppe vs. <i>lacZ</i> -Gruppe	37
<i>Tabelle 15:</i> Ergebnisse Homburger Makroskopie Bewertungssystem Trochle IGF-I/FGF-2-Gruppe vs. <i>lacZ</i> -Gruppe	37
<i>Tabelle 16:</i> Ergebnisse Oswestry Makroskopie Bewertungssystem mediale Femurkondyle IGF-I-Gruppe vs. <i>lacZ</i> -Gruppe	37
<i>Tabelle 17:</i> Ergebnisse Oswestry Makroskopie Bewertungssystem mediale Femurkondyle IGF-I/FGF-2-Gruppe vs. <i>lacZ</i> -Gruppe	38
<i>Tabelle 18:</i> Ergebnisse Oswestry Makroskopie Bewertungssystem Trochlea IGF-I-Gruppe vs. <i>lacZ</i> -Gruppe	38
<i>Tabelle 19:</i> Ergebnisse Oswestry Makroskopie Bewertungssystem Trochlea IGF-I/FGF-2-Gruppe vs. <i>lacZ</i> -Gruppe	38
<i>Tabelle 20:</i> Ergebnisse Sellers Bewertungssystem mediale Femurkondylen IGF-I-Gruppe vs. <i>lacZ</i> -Gruppe	41
<i>Tabelle 21:</i> Ergebnisse Sellers Bewertungssystem mediale Femurkondylen IGF-I/FGF-2-Gruppe vs. <i>lacZ</i> -Gruppe	43

<i>Tabelle 22:</i> Ergebnisse Sellers Bewertungssystem Trochleas IGF-I-Gruppe vs. <i>lacZ</i> -Gruppe	44
<i>Tabelle 23:</i> Ergebnisse Sellers Bewertungssystem Trochleas IGF-I/FGF-2-Gruppe vs. <i>lacZ</i> -Gruppe	44
<i>Tabelle 24:</i> Ergebnisse Pineda Bewertungssystem mediale Femurkondylen IGF-I-Gruppe vs. <i>lacZ</i> -Gruppe	45
<i>Tabelle 25:</i> Ergebnisse Pineda Bewertungssystem mediale Femurkondylen IGF-I/FGF-2-Gruppe vs. <i>lacZ</i> -Gruppe	46
<i>Tabelle 26:</i> Ergebnisse Pineda Bewertungssystem Trochleas IGF-I-Gruppe vs. <i>lacZ</i> -Gruppe	48
<i>Tabelle 27:</i> Ergebnisse Pineda Bewertungssystem Trochleas IGF-I/FGF-2-Gruppe vs. <i>lacZ</i> -Gruppe	50
<i>Tabelle 28:</i> Ergebnisse Little Bewertungssystem mediale Femurkondylen IGF-I-Gruppe vs. <i>lacZ</i> -Gruppe	51
<i>Tabelle 29:</i> Ergebnisse Little Bewertungssystem mediale Femurkondylen IGF-I/FGF-2-Gruppe vs. <i>lacZ</i> -Gruppe	51
<i>Tabelle 30:</i> Ergebnisse Little Bewertungssystem Trochleas IGF-I-Gruppe vs. <i>lacZ</i> -Gruppe	52
<i>Tabelle 31:</i> Ergebnisse Little Bewertungssystem Trochleas IGF-I/FGF-2-Gruppe vs. <i>lacZ</i> -Gruppe	53
<i>Tabelle 32:</i> Ergebnisse Typ-I-Kollagen Bewertungssystem mediale Femurkondylen IGF-I-Gruppe vs. <i>lacZ</i> -Gruppe	54
<i>Tabelle 33:</i> Ergebnisse Typ-I-Kollagen Bewertungssystem mediale Femurkondylen IGF-I/FGF-2-Gruppe vs. <i>lacZ</i> -Gruppe	54
<i>Tabelle 34:</i> Ergebnisse Typ-II-Kolllagen Bewertungssystem mediale Femurkondylen IGF-I-Gruppe vs. <i>lacZ</i> -Gruppe	55
<i>Tabelle 35:</i> Ergebnisse Typ-II-Kollagen Bewertungssystem mediale Femurkondylen IGF-I/FGF-2-Gruppe vs. <i>lacZ</i> -Gruppe	55
<i>Tabelle 36:</i> Ergebnisse Typ-I-Kollagen Bewertungssystem Trochleas IGF-I-Gruppe vs. <i>lacZ</i> -Gruppe	56
<i>Tabelle 37:</i> Ergebnisse Typ-I-Kollagen Bewertungssystem Trochleas IGF-I/FGF-2-Gruppe vs. <i>lacZ</i> -Gruppe	56
<i>Tabelle 38:</i> Ergebnisse Typ-II-Kollagen Bewertungssystem Trochleas IGF-I-Gruppe vs. <i>lacZ</i> -Gruppe	57
<i>Tabelle 39:</i> Ergebnisse Typ-II-Kollagen Bewertungssystem Trochleas IGF-I/FGF-2-Gruppe vs. <i>lacZ</i> -Gruppe	57

<i>Tabelle 40:</i> Differenz der Summenwerte der IGF-I- und <i>lacZ</i> -Gruppen im Sellers Bewertungssystem	58
<i>Tabelle 41:</i> Differenz der Summenwerte der IGF-I/FGF-2- und <i>lacZ</i> -Gruppen im Sellers Bewertungssystem	58
<i>Tabelle 42:</i> Differenz der Summenwerte der IGF-I- und <i>lacZ</i> -Gruppen im Pineda Bewertungssystem	58
<i>Tabelle 43:</i> Differenz der Summenwerte der IGF-I/FGF-2- und <i>lacZ</i> -Gruppen im Pineda Bewertungssystem	59
Tabelle 44: Vergleich der IGF-I-Gruppen zwischen medialer Femurkondyle und Trochlea anhand des Sellers Bewertungs- systems	60
<i>Tabelle 45:</i> Vergleich der IGF-I/FGF-2-Gruppen zwischen medialer Femurkondyle und Trochlea anhand des Sellers Bewertungs- systems	60

Abkürzungen

°C	Grad Celsius
Abb.	Abbildung
ABC	avidin-biotin-peroxidase complex/ Avidin-Biotin- Peroxidase Komplex
ACT	autologe Chondrozyten-Transplantation
aqua bidest.	aqua bidestillata
BMP	bone morphogenetic protein / knochenmorphogenetische Proteine
bzw.	beziehungsweise
cm	Zentimeter
CO ₂	Kohlenstoffdioxid
DMMB	1,9-Dimethylmethylenblau
et al.	et alii/et aliae
FGF-2	fibroblast growth factor 2 / Fibroblastenwachstumsfaktor 2
G	Gramm
GDF	growth/differentiation factor / Wachstums-/ Differenzierungsfaktor
н	Stunde(n)
IGF-I	<i>insulin-like growth factor I /</i> insulinartiger Wachstumsfaktor I
lgG	Immunglobulin G
IL	Interleukin
kDA	Kilodalton
kg	Kilogramm
I	Liter
lacZ	-Galactosidase-Gen
I	Mikroliter
g	Mikrogramm
m	Mikrometer

mg	Milligramm
min	Minute(n)
ml	Milliliter
mm	Millimeter
mM	Millimolar
ms	Millisekunde
MW	Mittelwert
ng	Nanogramm
NSAR	nicht-steroidale Antirheumatika
o.g.	oben genannt(e/r)
PBS	Phosphat-gepufferte Salzlösung
S	Sekunde
SD	Standardabweichung
SE	Standardfehler
Tab.	Tabelle
TGF-	transformierender Wachstumsfaktor beta
TNF	Tumornekrosefaktor
U	<i>unit /</i> Einheit
u.a.	unter andere(m/n)

1. Zusammenfassung/Abstract

Hintergrund. Osteochondrale Gelenkknorpeldefekte heilen schlecht. In der vorliegenden tierexperimentellen Studie wurde der Einfluss einer zellvermittelten Überexpression der humanen Wachstumsfaktoren IGF-I und IGF-I/FGF-2 auf die Reparatur von osteochondralen Defekten im Großtiermodell untersucht.

Fragestellungen. Speziell wurden drei Hypothesen untersucht: (1) Zeigen mit IGF-I behandelte Defekte eine bessere Knorpelreparatur, als die jeweilige Kontrollgruppe, die mit *lacZ* behandelt wurden? (2) Zeigen mit IGF-I/FGF-2 behandelte Defekte eine bessere Knorpelreparatur als die jeweilige Kontrollgruppe, die mit *lacZ* behandelt wurden? (3) Ist die Knorpelreparatur nach kombinierter Therapie mit IGF-I/FGF-2 besser als nach singulärer IGF-I-Therapie?

Methoden. Allogene ovine Chondrozyten wurden mit Plasmid-Expressionsvektoren für IGF-I, einer Kombination aus IGF-I/FGF-2 oder dem *Escherichia coli (lacZ*)-Gen transfiziert und in Alginat verkapselt. Die IGF-I-, IGF-I/FGF-2- und *lacZ*-Sphäroide wurden in zylindrische osteochondrale Defekte der medialen Femurkondyle und Trochlea von Kniegelenken adulter Merinoschafe implantiert. Nach 18 Wochen *in vivo* wurde die Defektreparatur durch makroskopische (Homburger und Oswestry Bewertungssystem), histologische (Bewertungssysteme nach Sellers, Pineda und Little) und immunhistochemische (Typ-I und -II-Kollagen) Bewertungssysteme evaluiert.

Ergebnisse. Beide Gruppen, die mit implantierten IGF-I-Sphäroiden bzw. IGF-I/FGF-2-Sphäroiden behandelten wurden, zeigten eine signifikant bessere Knorpelreparatur im Vergleich zur jeweiligen Kontrollgruppe, die mit *lacZ*-Sphäroiden behandelt wurden. Die implantierten IGF-I/FGF-2-Sphäroide vermittelten (trotz numerisch besserer Werte) keine statistisch signifikant verbesserte histologische Knorpelreparatur als IGF-I Sphäroide. In allen Untersuchungsgruppen war die histologische Knorpelreparatur in der Trochlea besser als in der medialen Femurkondyle. Bemerkenswerterweise verringerte sowohl die Implantation von IGF-I- als auch von IGF-I/FGF-2-Sphäroiden signifikant arthrotische Veränderungen des an die Defekte angrenzenden Knorpels in der Trochlea im Vergleich zur jeweiligen Kontrollgruppe, die mit *lacZ*-Sphäroiden behandelt wurden. In der medialen Femurkondyle waren die numerisch verringerten arthrotischen Veränderungen bei der Implantation von IGF-I- sowie von IGF-I/FGF-2-Sphäroiden im Vergleich zur jeweiligen Kontrollgruppe nicht signifikant unterschiedlich.

Diskussion. Die zellvermittelte Überexpression der Wachstumsfaktoren IGF-I und FGF-2 in osteochondralen Defekten verbesserte die histologische Knorpelreparatur von osteochondralen Defekten in Trochlea und medialer Femurkondyle des Kniegelenkes bei Schafen. Die Aussagekraft dieser Daten wird in Folgestudien weiter evaluiert werden, um die Voraussetzung für klinische Studien mit diesem Ansatz zu schaffen. Introduction. Osteochondral defects are an unsolved problem in reconstructive cartilage repair. Here, we tested in a preclinical large animal model the hypothesis that transplantation of alginate spheres containing articular chondrocytes which were genetically modified to overexpress a human insulin-like growth factor I (IGF-I) gene or a combination of IGF-I and the human fibroblast growth factor 2 (FGF-2) gene can enhance the repair of osteochondral defects in the trochlear groove and the medial femoral condyle *in vivo*.

Methods. Caprine articular chondrocytes were transfected with expression plasmid vectors containing a cDNA for the *E. coli lacZ* gene (lacZ implants), the human IGF-I gene (IGF-I implants) or both the human IGF-I and FGF-2 genes (IGF-I/FGF-2 implants). *LacZ*, IGF-I and IGF-I/FGF-2 implants were transplanted into cylindrical osteochondral defects in the trochlear groove and the medial femoral condyle of adult sheep. After 18 weeks *in vivo*, articular cartilage repair was evaluated using macroscopic (Homburger and Oswestry Score), elementary and complex histological (Pineda and Sellers Score) and immunhistological scores (type-I and II collagen). Moreover, osteoarthritic changes in the cartilage repair was compared between these two locations.

Results. After 18 weeks *in vivo*, implantation of both IGF-I and IGF-I/FGF-2 spheres markedly improved osteochondral repair at both topographical location within the knee joint compared with control *lacZ* spheres. Moreover, implantation of both IGF-I and IGF-I/FGF-2 spheres led to significantly reduced osteoarthritic changes in the cartilage adjacent to osteochondral defects in the trochlear groove. Hence, spatially defined overexpression of both human IGF-I and a combination of human IGF-I and FGF-2 resulted in most enhanced articular cartilage repair in osteochondral defects in the trochlear groove and the medial femoral condyle *in vivo*.

Conclusions. Transfection of therapeutic factors like the growth factors IGF-I and FGF-2 in osteochondral defects improve their cartilage healing in trochleas and condyles of sheep knee joints. Such hydrogel-based delivery of therapeutic factors based on nonviral overexpression provides a versatile tool

to evaluate other potential therapeutic genes *in vivo* with the aim of developing molecular strategies for osteochondral repair. Insights gained from these data may lead to more effective treatment options for acute osteochondral defects. Future studies will transfer the design of this study to major animal models with investigations over a longer period.

2. Einleitung

2.1 Problematik und Überblick

Alle Gelenkflächen des menschlichen Körpers sind mit hyalinem Knorpel überzogen. Er ist essentiell für die physiologische Gelenkfunktion. An hyalinem Gelenkknorpel kann es zu Defekten kommen. Die Ursachen hierfür sind sehr unterschiedlich. Traumata, arthrotische Veränderungen oder Erkrankungen des subchondralen Knochens wie eine Osteochondrosis dissecans oder Osteonekrose können mögliche Ursachen sein. Alle diese Mechanismen führen zu einer direkten oder sekundären Schädigung des hyalinen Gelenkknorpels oder gar zu einer Gelenkdeformierung (Glies 1882, Otte 1958, Steinwachs et al. 1999, Madry et al. 2010, Pape et al. 2010). Hyaliner Gelenkknorpel hat eine eingeschränkte Heilungsfähigkeit (O´Driscoll 1998, Jackson et al. 2001, Hunziker 2002). Unbehandelte Knorpeldefekte führen zu einer sekundären Arthrose (Mankin 1982, Imhoff et al. 1999, Madry und Pape 2008, Madry et al. 2016). Bisher hat kein Therapieansatz zu einer vollständigen Knorpelregeneration geführt (Gomoll et al. 2010, Madry et al. 2014, Cucchiarini et al. 2014, Bert et al. 2015). Knorpeldefekte heilen lediglich mit der Ausbildung eines Reparaturgewebes aus, welches zum größten Teil aus Faserknorpel und Kollagen-I besteht (Frisbie et al. 2003). Dieser ist nicht in der Lage, wie es hyaliner Knorpel ist, mechanischen Belastungen über einen längeren Zeitraum standzuhalten (Steinwachs et al. 1999, Peterson et al. 2002). Daher ist das Ziel aller Therapien, ein neues Regenerationsgewebe zu bilden, welches identisch mit hyalinem Knorpel ist oder ähnlich gute Eigenschaften wie dieser besitzt, um den mechanischen Belastungen standzuhalten.

Wachstumsfaktoren sind Signalproteine, die die Knorpelreparatur verbessern können (Trippel 1997, Rudert *et al.* 2000, Goldberg 2001). Sie besitzen lediglich eine kurze intraartikuläre Halbwertszeit, wodurch ihre therapeutische Wirksamkeit deutlich reduziert wird (Shida *et al.* 1996, Chuma *et al.* 2004). Um die intraartikuläre Wirkdauer der Wachstumsfaktoren zu verlängern, werden Wachstumsfaktorgene in Zellen des Reparaturgewebes geschleust. Es wurde gezeigt, dass die Sekretion von Wachstumsfaktoren von genetisch modifizierten Zellen, die in Knorpeldefekte implantiert wurden, die Knorpeldefektreparatur nachhaltig verbessert (Cuchiarini und Madry 2005).

2.2 Hyaliner Knorpel

Der gesunde hyaline Knorpel besitzt Eigenschaften, um die auf ihn einwirkenden Stoß- und Druckkräfte auszuhalten. Er besitzt eine glatte Oberfläche, eine Flexibilität und einen geringen Reibungswiderstand (Sell et al. 2005, Ding et al. 2012). Hyaliner Knorpel ist ein bradytrophes, avaskuläres, anervales und alymphatisches Gewebe (Vachon et al. 1990, Isaksson et al. 2011). Die Chondrozyten werden durch Diffusion aus der Synovialflüssigkeit (Buckwalter et al. 2005, Kiss et al. 2014) und aus anliegenden Gefäßen des subchondralen Raums ernährt (Orth et al. 2011). Chondrozyten machen nur ca. 5-10 % des gesamten Knorpelgewebes aus (Buckwalter 1983, Milz 1994). Die übrigen ca. 90 % bestehen aus extrazellulärer Knorpelmatrix, in welcher die Chondrozyten eingebettet sind und welches sie selber produzieren (Imhoff 2005, Buckwalter und Mankin 1998). Die extrazelluläre Matrix ist maßgeblich für die außergewöhnlichen mechanischen Eigenschaften des hyalinen Knorpels. Die Aktivität der Chondrozyten ist altersabhängig. Nach dem Ablauf der Wachstumsphase verringert sich die Chondrozytenanzahl. Ihre metabolische, sowie mitotische Aktivität verringert sich dann zunehmend (Buckwalter und Mankin 1998, Handl et al. 2010, Heijink et al. 2011). Die extrazelluläre Matrix besteht zu ca. 70% aus Wasser und zu 30% aus Typ-II-Kollagenfibrillen, nichtkollagen Proteinen, Glykoproteinen und Protein-Polysaccharid-Komplexen, den Proteoglykanen wie das Aggrekan (Hardingham und Fosang 1992). Seine Proteoglykanuntereinheiten lagern sich an Hyaluronsäue an. Dadurch werden sie stark hydrophil und sorgen für den hohen Wassergehalt im Knorpelgewebe. Daraus resultiert der hohe hydrodynamische Druck sowie die gute Elastizität des hyalinen Gelenkknorpels. Im hyalinen Gelenkknorpel findet man zudem Kollagen Typ V, VI, IX, X, XI und XIV sowie andere Makromoleküle wie cartilage oligomeric matrix protein (COMP), Decorin, Fibronectin oder Fibromodulin (Vachon et al. 1990, Isaksson et al. 2011). Das Hauptkollagen des hyalinen Gelenkknorpels ist das Typ-II-Kollagen (Ding et al. 2012). Kollagen vom Typ-I kommt dagegen hauptsächlich in

fibrösen Reparaturknorpel vor, der bei spontaner Knorpelheilung in unbehandelten Knorpeldefekten entsteht (Isaksson *et al.* 2011).

2.3 Aufbau des gesunden hyalinen Gelenkknorpels

Abbildung 1: Aufbau hyaliner Gelenkknorpel (Schaf)

Der hyaline Gelenkknorpel gliedert sich in vier Schichten (Abbildung 1).

Die apikalste oberflächliche Schicht wird in zwei Zonen eingeteilt, in die apikale Lamina splendens und die darunter liegenden Transitionalzone. Beide Schichten besitzen eine mechanische Funktion. Sie stellen eine Barriere zwischen der Synovialflüssigkeit und dem Knorpel dar (Loeser 2010, Ding *et al.* 2012). Ihre Festigkeit erlaubt es, Scherkräfte abzufangen. Die Lamina splendens ist eine fibröse, zelllose Schicht und besteht aus parallel zur Oberfläche angeordneten Kollagenfibrillen. Sie dient zur trophischen Versorgung der Chondrozyten (Isaksson *et al.* 2011). In der Tangentialzone produzieren die Chondrozyten kollagenreiche Matrix und die Kollagenfibrillen sind tangential zur Oberfläche angeordnet und fangen Zugspannung ab (Lehner *et al.* 1989). Die *Tidemark* beschreibt die Grenze zwischen der Tangentialzone und dem kalzifizierten Knorpel. Diese besteht aus senkrecht verlaufenden Kollagenfibrillen vom Typ-II und sind in der darunter liegenden kalzifizierten Knorpelzone verankert (Hardingham und Fosang 1992). Die basalste Schicht des Gelenkknorpels bildet die Zone des kalzifizierten

Knorpels. Durch diese solide Verbindung wird die Übertragung der Scherkräfte von dem Gelenkknorpel auf den subchondralen Knochen ermöglicht. Unter der Zementlinie liegen die subchondrale Knochenplatte und die subartikuläre Spongiosa. Sie spielen eine wichtige Rolle in der Metabolisierung des Gelenkknorpels (Madry *et al.* 2010, Madry *et al.* 2016). Die typische Lokalisation von Knorpeldefekten im Knie ist in der Hauptbelastungszone, der medialen Femurkondyle (Curl *et al.* 1997, Hjelle *et al.* 2002).

2.4 Einteilung der Knorpeldefekte

Abbildung 2: Einteilung Knorpeldefekte

Die Defekte des hyalinen Gelenkknorpels werden nach ihrer klassifiziert. Ausdehnungstiefe Dabei wird der chondrale vom osteochondralen Defekt unterschieden. Beide Defektformen schränken die mechanische Belastbarkeit ein und führen ohne adäguate Behandlung zu Arthrose (Mankin 1982, Jackson et al. 2001, Madry 2010, Richardson 2010). Der chondrale Defekt beschreibt eine Läsion, die sich ausschließlich auf das Knorpelgewebe beschränkt. Die chondralen Defekte werden nochmals unterteilt in teilschichtige Defekte und vollschichtige Defekte (Isaksson et al. 2011). Klinische Relevanz findet diese Einteilung in den arthroskopischen Klassifikationen nach Noyes und Stabler (Noyes und Stabler 1989, Buck et al. 2009) und in der International Cartilage Research Society (ICRS) (Brittberg und Winalski 2003). Chondrale Knorpeldefekte werden

ausschließlich durch eingewanderte mesenchymale Synoviozyten aufgefüllt, da keine Verbindung zum Knochenmark besteht (Hunziker und Rosenberg 1996, Hunziker 2002, Brandt *et al.* 2006). In dem direkt an den Defekt angrenzenden Knorpel ist ein Anstieg der Mitosen und eine vermehrte Synthese von Proteoglykanen zu beobachten. Dabei tritt jedoch keine Defektheilung auf (Noyes und Stabler 1989, Brittberg und Winalsky 2003, Richardson 2010).

Bei einem osteochondralen Defekt ist auch der subchondrale Knochen verletzt (Orth et al. 2013). Hier kann sich im betroffenen Knorpelareal durch die Nähe zum Knochenamark ein Blutgerinnsel im Defektareal bilden (Fukuruwa et al. 1980, Shapiro et al. 1993, Jackson et al. 2001). Die an dem subchondralen Knochen einwandernden pluripotenten mesenchymalen Stammzellen können sich dann zu Chondrozyten und Osteoblasten differenzieren, welche dann das knorpelige Reparaturgewebe und den subchondralen Knochen bilden (Lai et al. 2005, Zellner et al. 2014). Dabei werden Wachstumsfaktoren freigesetzt, welche die Zellen stimulieren Proteoglykane Typ-I- und Typ-II-Kollagen zu bilden (Outerbridge 1961, Isaksson et al. 2011). Diese Zellen bilden jedoch weniger Proteoglykane und Typ-II-Kollagen als in einem gesunden hyalinen Knorpel vorhanden wäre. Das so entstehende Reparaturgewebe erscheint bereits nach einigen Monaten faserartig und ist der mechanischen Beanspruchung nicht länger gewachsen. Nach einiger Zeit fängt es an zu degenerieren (Jackson et al. 2001) und die Ausbreitung des Defektes in angrenzende Knorpelregionen kann häufig nicht verhindert werden. Knorpelreparatur bedeutet die Bildung eines Gewebes, das in seiner Struktur dem normalen hyalinen Knorpel lediglich ähnlich ist. Knorpelregeneration dagegen bezeichnet den Ersatz durch vollwertigen hyalinen Gelenkknorpel ohne das Auftreten von faserknorpeliger Degeneration.

2.5 Klinische Therapiestrategien bei fokalen Gelenkknorpeldefekten

Für die klinische Behandlung von Gelenkknorpeldefekten stehen eine Vielzahl von konservativen und operativen Therapiestrategien zur Verfügung (Madry *et al.* 2011, Filardo *et al.* 2016, Angele *et al.* 2016). Symptomatische Defekte werden rekonstruktiv-operativ behandelt. Die operativen

Therapieansätze können in zell- und gewebebasierte Verfahren unterteilt werden.

Zu den zellbasierten Verfahren zählen die Mikrofrakturierung (Steadman et al. 1999). die subchondrale Bohrung (Pridie die 1959) und Abrasionsarthroplastik (Johnson 2011, Sansone et al. 2015). Alle diese Verfahren verfolgen das Ziel der subchondralen Markraumeröffnung, wodurch pluripotente mesenchymale Stammzellen in den Defekt migrieren können und die Grundlage des Reparaturgewebes bilden. Ein weiteres zellbasiertes Verfahren (ohne Markraumeröffnung) ist die autologe Chondrozytentransplantation (ACT) (Brittberg et al. 1994; Jones und Peterson 2006; Niemeyer et al. 2016, Cyetanovich et al. 2017).

Zu den gewebebasierten Verfahren zählen primär die autologen oder allogenen osteochondralen Transplantate (Hangody *et al.* 1998, Braun *et al.* 2007, Ochs *et al.* 2007, Lee *et al.* 2017). Diese werden als singuläre oder wie bei der Mosaikplastik als multiple Knorpel-Knochen-Zylinder aus weniger belasteten Regionen des Gelenkes in den osteochondralen Defekt der Belastungszone transplantiert (Buckwalter und Mankin 1998, Imhoff *et al.* 1999, Peterson *et al.* 2003, Schnettler *et al.* 2008, Brophy *et al.* 2009). Damit ist die osteochondrale Transplantation das bisher einzige Verfahren, welches den Defekt mit hyalinem Gelenkknorpel füllt (Basad *et al.* 2010, Wakabayashi *et al.* 2002, Prodromos *et al.* 2015). Ältere, derzeit seltener verwendete gewebebasierte Verfahren sind die Transplantation chondrogener periostaler (O'Driscoll und Salter 1984) oder perichondraler (Bulstra *et al.* 1990) Gewebe. Auch das reine Knorpel-Debridement (Brandt *et al.* 2006) fällt in diese Gruppe.

Die korrekte Indikationsstellung zur rekonstruierenden Knorpeltherapie ist von verschiedenen Faktoren abhängig. Zu ihnen zählen Ursache, Art, Lage, Ausmaß und Größe des Defektes, Vorerkrankungen, Vorschädigungen, Alter und körperliche Konstitution des Patienten und nicht zuletzt das patientenspezifische Ziel mit dessen individuellen Aktivitätsniveau (Madry 2012). Heute werden bei kleinen fokalen Knorpeldefekten (0,5-2,0 cm²) markraumeröffnende Verfahren und bei kleineren fokalen osteochondralen Knorpeldefekten (< 1,0 cm²) osteochondrale Transplantationen bevorzugt (Shepard und Mitchell 1976, Steadman 2003, Flanigan *et al.* 2010). Der vollschichtige und große Knorpeldefekt (2 bis 12 cm²) im jungen aktiven Patienten ist die Hauptindikation der ACT (Pedersen *et al.* 1995, Peterson *et al.* 2000, Erggelet *et al.* 1998, Johnson 2001, Steadman *et al.* 2003, Miller *et al.* 2004, Brandt *et al.* 2006, Steadman *et al.* 2007, Madry und Pape 2008, Volz *et al.* 2017).

2.6 Experimentelle Therapiestrategien bei fokalen Gelenkknorpeldefekten

Die experimentellen Therapiestrategien basieren grundsätzlich auf der Applikation therapeutischer Faktoren die meistens direkt in Defektareale zur Verbesserung der Knorpelhomöostase führen sollen. Dabei wird zwischen der Förderung anaboler Prozesse durch den insulinartigen Wachstumsfaktor I (IGF-I) oder dem Fibroblastenwachstumsfaktor 2 (FGF-2) und der Hemmung kataboler Prozesse unterschieden. Diese therapeutischen Faktoren können sowohl frei als Protein in die Gelenkhöhle injiziert werden (Jentsch et al. 1980, van Beuningen et al. 1998, Rogachefsky et al. 1993, Yamamoto et al. 2004), als auch an eine Trägersubstanz gebunden in die Knorpeldefekte eingebracht werden (Sellers et al. 1997, Nixon et al. 1999, Fortier et al. 2002, Mierisch et al. 2002, Tuncel et al. 2005, Sohier et al. 2007). Die kurze Halbwertszeit dieser Peptide (IGF-I und FGF-2) limitiert diesen Ansatz (Chuma et al. 2004). Ihr Nachweis in der Synovialflüssigkeit ist bereits eine Stunde nach intraartikulärer Injektion nicht mehr möglich (Shida et al. 1996). Um dadurch trotzdem noch einen guten therapeutischen Effekt dieser Faktoren zu erzielen, müssen hohe Dosen des Proteins verabreicht werden (Fujimoto et al. 1999) oder eine kontinuierlich Substitution erfolgen (Otsuka et al. 1997, Mizuta et al. 2004).

Bei dem Gentransfer werden DNS-Sequenzen der therapeutischen Faktoren in jene Zellen eingebracht, die an der Besiedlung der Defektareale teilnehmen. Durch diese genetische Modifikation können die Zellen eine kontinuierliche Sekretion der Faktoren direkt innerhalb der Läsion sichern (Cucchiarini und Madry 2005).

2.7 Wachstumsfaktoren IGF-I unf FGF-2

Wachstumsfaktoren können Zellproliferation und Zellreifung im Defektgewebe induzieren und steigern die Matrixsynthese. Sie sind anabole Proteine und verbessern die Knorpelreparatur durch Verbesserung der Chondrogenese und Matrixsynthese (Trippel 1995 und 1997, Goldberg 2001), indem sie über spezifische membrangebundene Rezeptoren und intrazelluläre Signaltransduktionsprozesse auf Knorpelzellen wirken (Lo und Cruz 1995, Fortier *et al.* 2004).

Humanes IGF-I ist ein 7,6 kDa großes Polypeptid. Es stimuliert die Zellproliferation und -differenzierung (Trippel 1995 und 1997, Hunziker und Rosenberg 1996, Nakajima *et al.* 1998, Nixon *et al.* 1999, Ewton *et al.* 2002, Jin *et al.* 2006). Die Matrixsynthese wird ebenfalls durch IGF-I gefördert (Trippel *et al.* 1983). Dabei wird die Produktion von Typ-II-Kollagen, Proteoglykanen und Aggrekan angeregt, die Hauptbestandteile der Matrix des hyalinen Knorpels sind (Trippel *et al.* 1989, Nakajima *et al.* 1998, Neidel und Schulze 2000, Mierisch *et al.* 2002). Dadurch kann die Gentransfer basierte IGF-I-Therapie zu einer global verbesserten Knorpelreparatur führen (Gelse *et al.* 2003, Madry *et al.* 2005, Goodrich *et al.* 2007, Madry *et al.* 2013). Hierbei korreliert die applizierte IGF-I-Dosis mit der Knorpelreparatur (Zhang *et al.* 2017).

Der humane Wachstumsfaktor FGF-2 ist 17,2 kDa groß und unterstützt hauptsächlich die Differenzierung zu Chondrozyten *in vivo* (Schofield und Wolpert 1990, Kato 1992, Frenz *et al.* 1994), da er einen mitogenen Stimulus auf Chondrozyten besitzt (Sah *et al.* 1994, Madry *et al.* 2004). FGF-2 fördert darüber hinaus die Freisetzung von anderen chondrogenen Faktoren wie beispielsweise die des Transkriptionsfaktors Sox9 (Bi *et al.* 1999, Murakami *et al.* 2000) oder die Expression entsprechender Rezeptoren (Hernandez-Sanchez *et al.* 1997). Der günstige Effekt von FGF-2 auf die Defektreparatur des Gelenkknorpels bestätigte sich in tierexperimentellen Studien am Kleintiermodell (Cucchiarini *et al.* 2005, Hiraide *at al.* 2005, Yokoo *et al.* 2005, Kaul *et al.* 2006).

2.8 Gentransfer basierte Therapie fokaler Gelenkknorpeldefekte

Ein sehr wichtiges Ziel der Gentransfer-basierten Therapie ist die lokale Aufrechterhaltung eines hohen Wirkspiegels der therapeutischen Peptide in den Gelenken. Dieses Ziel soll durch die kontinuierliche Sekretion transfizierter Zellen erreicht werden. Ein Hauptproblem hierbei ist die für die Applikation schwierige intraartikuläre Lokalisation fokaler Knorpeldefekte. Für die sichere und effiziente Applikation der transfizierten Zellen in die jeweiligen Defektareale stehen zwei Methoden zur Verfügung.

Ein Ansatz ist die *in vivo* Applikation von Genvektoren und ortsständige Zellen in Defekte nach chirurgischer Eröffnung des Gelenks (Arthrotomie). Diese Methode wurde durch die Verbesserung von Transfermethoden wie beispielsweise durch das rekombinante Adeno-assoziierte Virus möglich (Madry *et al.* 2003, Cucchiarini *et al.* 2005). Allerdings wurde hierbei auch eine Transgenexpression in den Zellen der Synovialmembran nachgewiesen (Madry *et al.* 2003, Ulrich-Vinther *et al.* 2004, Pascher *et al.* 2004, Cucchiarini *et al.* 2005).

Eine andere Methode ist die Arthrotomie mit Implantation *ex vivo* genetisch modifizierter Zellen (Cucchiarini und Madry 2005). Hierfür werden autogene, allogene oder xenogene Zellen isoliert, kultiviert und *ex vivo* genetisch modifiziert. Anschließend werden diese Zellen in die Defekte implantiert und sezernieren in ihrem jeweiligen Defektareal kontinuierlich und in hohen Wirkspiegeln bestimmte Genprodukte (Kang *et al.* 1997).

Studien zur Knorpelreparatur wurden bereits an diversen Großtiermodellen durchgeführt, u.a. an Schweinen (Hunziker und Rosenberg 1996, Madry *et al.* 2015, He *et al.* 2017) und Pferden (Fortier *et al.* 2002, Hidaka *et al.* 2003, Strauss *et al.* 2005, Goodrich *et al.* 2007). Auch der Einsatz von transfizierten Zellen bei der Gentransfer basierten Therapie orthopädischer Erkrankungen ist gut dokumentiert (Lee *et al.* 2001), sowie bereits der Einsatz transfizierter lapinerer Knorpelzellen bei Kaninchen (Orth *et al.* 2011).

Das Hydrogel Alginat nimmt eine besondere Stellung als Trägersubstanz ein. Alginat besteht aus negativ geladenen Co-Polymeren. Seine Eignung wurde bereits in klinischen Studien beschrieben (Soon-Shiong *et al.* 1994, Diduch *et al.* 2000, Fragonas *et al.* 2000, Rey-Rico *et al.* 2017). In unserer Studie verwendeten wir transfizierte Schaf-Chondrozyten, die in Alginat als Trägersubstanz verkapselt wurden. Sie zeichnen sich durch eine langfristige Aufrechterhaltung einer hohen Zellvitalität aus (Orth *et al.* 2011).

2.9 Konzept der vorliegenden Arbeit

Die vorliegende tierexperimentelle Studie untersucht den Einfluss von transfizierten Knorpelzellen auf die Gelenkknorpelreparatur. Hierbei wurden Schafsknorpelzellen mit den für IGF-I oder IGF-I/FGF-2 in Kombination kodierenden DNS-Sequenzen transfiziert, in der Trägersubstanz Alginat verkapselt und anschließend in vivo in osteochondrale Defekte in den Kniegelenken 12 weiblichen Merinoschafen von implantiert. Als Kontrollgruppe verwendeten wir mit dem Escherichia coli lacZ-Gen kodierende DNS-Sequenzen transfizierte Knorpelzellen. Diese wurden ebenso mit der Trägersubstanz Alginat verkapselt und anschließend in vivo in osteochondrale Defekte in den Kniegelenken der 12 Merinoschafe implantiert.

Die osteochondralen Defekte setzten wir in die Knie beider Hinterbeine der Schafe, vier osteochondrale Defekte in die mediale Femurkondyle und vier osteochondrale Defekte in die Trochlea der Kniegelenke. Sechs Tiere wurden dabei mit IGF-I-Sphäroiden in alle vier Defekte eines Gelenkes beimpft. Den restlichen sechs Tieren implantierten wir IGF-I/FGF-2 Sphäroide in die Defekte eines Knies. In beiden Gruppen wurden in das kontralaterale Gelenk, rechts und links alternierend, je vier *lacZ*-Sphäroide als Kontrolle eingesetzt.

Postoperativ war den Tieren die Belastung der operierten Kniegelenke direkt in vollem Umfang gestattet. Auf eine Immobilisation der operierten Gelenke ist verzichtet worden. Nach 18 Wochen wurden die osteochondralen Defekte makroskopisch und histologisch untersucht. Die Datenerhebung führten wir anhand von etablierten makroskopischen, histologischen und immunhistochemischen Bewertungssystemen durch.

In mehreren Studien ergab ein Gentransfer von IGF-I (Gelse *et al.* 2003, Madry *et al.* 2005, Goodrich *et al.* 2007) oder FGF-2 (Yokoo *et al.* 2005) in fokale Knorpeldefekte ein strukturell signifikant besseres Reparaturgewebe als in den Kontrollen. Folglich wählten wir diese therapeutischen Wachstumsfaktoren für unsere tierexperimentelle Studie aus. Wir entschieden uns für das Schafmodell, da die Gelenkoberfläche im Gegensatz zu Kleintieren wie beispielsweise Kaninchen, dem menschlichen Kniegelenk näherkommt.

3. Problemstellung/Fragestellung

- 1. Zeigen mit IGF-I behandelte Defekte eine bessere Knorpelreparatur als die entsprechenden Defekte der Kontrollgruppe, die mit *lacZ* behandelt wurden?
- Zeigen mit IGF-I/FGF-2 behandelte Defekte eine bessere Knorpelreparatur als die entsprechenden Defekte der Kontrollgruppe, die mit *lacZ* behandelt wurden?
- 3. Ist die Knorpelreparatur nach kombinierter Therapie mit IGF-I/FGF-2 besser als nach singulärer IGF-I-Therapie?

4. Material

4.1 Lösungen, Puffer und Medien

Lösung/Medium/ Puffer	Inhaltsstoffe	Konzentration/Menge/ Volumen
Alginat-Suspension	Alginat (L-Glucuronsäure und D-Menouronsäure, Braunalge)	1,2 % (m/V)
Blocking buffer	Rinderalbumin	2 ml
Ū	PBS	198 ml
Echtgrün- (fast green)	Fast green	200 mg
Lösung	H ₂ O	ad 1000 ml
Entkalkungslösung	Natriumcitrat	50 g
	Ameisensäure (90%)	125 ml
	H ₂ O	ad 500 ml
Eosin-Lösung	Eosin G	10 g
	H ₂ O	ad 2000 ml
Formalin-Losung (pH	KH ₂ PO ₄	9,07 g
7,4)		11,86 g
	Formalinstammlosung	140 ml
	H ₂ O	ad 1000 ml
	Hamatoxilin	10 g
Hamatoxylin-Losung	Ethanol (100%)	120 mi
	Nathum-100al	10 g
		200 g
	$\Pi_2 \cup$	au 2000 mi
HCI-LOSUNG		2,4 mi
NaCl-Lösung (150	NaCl	435 mg
mM)		ad 50 ml
Natrium-Citrat-	Tri-Natrium-Citrat	1618 mg
	H ₂ O	ad 100 ml
Papain-Lösung	Papain	5 mg
	H ₂ O	200 microliter
PBS	PBS	ad 40 ml
	Kaliumchlorid (pH 7.2)	2.7 mM
	Kaliumhydrogenphosphat	1,7 mM
	Natriumchlorid	136 mM
	Dinatriumhydrogenphosphat	10 mM
	(Na ₂ HPO ₄ x 7H ₂ O)	
Safranin-Orange-	Safranin-Orange	1 g
Lösung	H ₂ O	ad 1000 ml
Trypsin-Lösung	Trypsin-Stammlösung (25%)	800 microliter
(0,1%)	PBS	ad 200 ml
Trypsin-Stammlösung	Trypsin	25% (V/V)
	PBS	75% (V/V)
Wasserstoff-Peroxid-	H_2O_2	0,6 ml
Lösung (0,3%)	H ₂ O	200 ml

Tabelle 1: Lösung, Medium, Puffer

Alle Lösungen wurden mit aqua dest. angesetzt.

4.2 Chemikalien

Allgemeine Laborchemikalien für die Herstellung von Puffern und Lösungen wurden von Merck (Darmstadt), Roth (Karlsruhe) oder Sigma (Taufkirchen) bezogen. Bezugsquellen weiterer Chemikalien:

Chemikalien	Firma/Hersteller
1,9 Dimethylmethylenblau	Serva (Darmstadt)
ABC-Reagenz (Avidin-Biotin-Peroxidase-Reagenz)	Perbio (Bonn)
Alginat	Sigma (Taufkirchen)
Braunol	Braun (Melsungen)
Echtgrün (fast green FCF)	MP Biomedicals (Illkirch,
	Frankreich)
Eisessig	Sigma (Taufkirchen)
Eosin G	Merck (Darmstadt)
Essigsäure (3%)	Sigma (Taufkirchen)
Ethanol	Roth (Karlsruhe)
Formaldehyd-Lösung (4%)	Merck (Darmstadt)
Formalin-Stammlösung (37%)	Sigma (Taufkirchen)
Hämatoxylin	Merck (Darmstadt)
Paraffin-Granulat	Leica (Nussloch)
Rinderalbumin	PerBio (Bonn)
Roti-Histokitt II (Eindeckmittel)	Roth (Karlsruhe)
Safranin-Orange-Echtgrün	MP Biomedicals (Illkirch,
	Frankreich)
Salzsäure (1%)	Sigma (Taufkirchen)
Trypan-Blau-Lösung (0,4%)	Sigma (Taufkirchen)
Wasserstoffperoxid	Sigma (Taufkirchen)
Xylen	Universitätsklinikum des
	Saarlandes, Apotheke
	(Homburg)

Tabelle 2: Chemikalien; bei Ortsangabe in Deutschland wurde auf die Nennung des Ursprunglandes verzichtet

4.3 Antikörper

Zur immunhistochemische Färbung und Darstellung von Typ-I- und Typ-II-Kollagen im Knorpelreparaturgewebe wurden folgende monoklonalen Antikörper verwendet:

Bezeichnung	Spezies	Hersteller
Anti-Typ-I-Kollagen	Maus	Acris Antibodies (Hiddenhausen)
Anti-Typ-II-Kolagen	Maus	Acris Antibodies (Hiddenhausen)
Anti-Maus-IgG (biotinyliert)	Ziege	Vector Laboratories (Grünberg)
Tabelle 3: Antikörper		

4.4 Tierstämme

Die 12 weiblichen Merinoschafe wurden aus Bad Langensalza bezogen und waren zwischen 2 und 4 Jahre alt. Ihr mittleres Gewicht betrug 67 ± 7 kg. Die Tiere waren wie in unten stehender Tabelle markiert und dementsprechend zugeordnet.

Ohrmarke	Paraffinblock	
004	S034	
005	S035	
007	S032	
008	S040	
011	S041	
012	S042	
014	S036	
015	S031	
017	S039	
018	S037	
019	S038	
020	S033	

Tabelle 4: Zuordnung der Tiere und Paraffinblöcke der Studie H082

4.5 Geräte

Zur Anwendung kamen neben allgemeinen Laborgeräten zusätzlich folgende Geräte:

Gerät/Verbrauchsmaterial	Firma/Hersteller
Autoklav AMA-240	Astell (Sidcup, England)
Deckgläser für histologische Schnitte	Roth (Karlsruhe)
Digitalkamera Camedia C-5050 ZOOM	Olympus (Hamburg)
Digitalkamera CC-12 (auf Mikroskop BX-45)	Soft Imaging System (Münster)
Einbettmaschine EG 1140-C	Leica (Nussloch)
Gefrierschrank -20°C	Bosch (Gerlingern-Schillerhöhe)
Gefrierschrank -74°C NapCOIL UF 400	Napco (St. Herblain, Frankreich)
Inkubator (62°C)	Memmert (Schwabach)
Inkubator CB 150 (37°C)	Binder (Tuttlingen)
Klingen für das Rotationsmikrotom	Leica (Nussloch)
Magnetrührer multi stirr 4	Bellco Glass (Vineland, USA)
Metallkassette zur Paraffineinbettung	Roth (Karlsruhe)
Mikroskope BX-45 und CK-2	Olympus (Hamburg)
Objektträger für histologische Schnitte	Roth (Karlsruhe)
Plastikabdeckung zur Paraffineinbettung	Roth (Karlsruhe)
Rotationsmikrotom RM 2135	Leica (Nussloch)
Tischzentrifuge Qualitron Mikrozentrifuge	Krackeler Scientific (Albany, USA)
Waage EW-600-2M	Kern (Balingen)
Wärmeplatte HI 1220	Leica (Nussloch)
Wasserbad HI 1210	Leica (Nussloch)

Tabelle 5: Geräte; bei Ortsangabe in Deutschland wurde auf die Nennung des Ursprunglandes verzichtet

4.6 Operationsmaterial

Der Hohlbohrer zum Erzeugen der osteochondralen Defekte wurde von der Firma Synthes (Umkirch) hergestellt. Nahtmaterial, Spritzen und Nadeln stammen von Braun (Melsungen). Weitere verwendete chirurgische Instrumente bezogen wir größtenteils von den Firmen Martin (Tuttlingen), Medicon (Tuttlingen), Megro (Wesel) und A. Dumont & Fils (Montignez, Schweiz).

4.7 Verbrauchsmaterial

Objektträger und Deckgläser für histologische Schnitte, sowie Metallkassetten und Plastikabdeckungen für die Paraffin-Einbettung wurden von der Firma Roth (Karlsruhe) bezogen. Von Leica (Nussloch) stammen alle Klingen für das Rotationsmikrotom. Die Plastikartikel und Glasbehälter wurden von Falcon (Beckton Dickinson, Pont de Claix, Frankreich), Fisher (Schwerte), neoLab (Heidelberg) und VWR (Darmstadt) geliefert.

4.8 Software

Die Digitalisierung der Präparate und die Analyse der digitalen Bilder erfolgte mit der analySIS Software (Soft Imaging System, Münster). Zur statistischen Auswertung verwendeten wir SigmaStat 2006 (USA). Zum Erfassen und zur Darstellung der gewonnenen Daten verwendeten wir Microsoft Office Excel 2007 (USA).

5. Methoden

5.1 Überblick

Abbildung 3: Übersicht der Arbeit

5.2 Studiendesign

In diesem präklinischen Großtiermodell wurden 12 weibliche Merinoschafe als Versuchstiere verwendet.

Die osteochondralen Defekte sind in die Kniegelenke beider Hinterbeine gesetzt worden. Dabei setzten wir vier osteochondrale Defekte in die mediale Femurkondyle und vier osteochondrale Defekte in die Trochlea der Kniegelenke.

Sechs Tiere wurden mit IGF-I-Sphäroiden in allen vier Defekten eines Gelenkes beimpft. Den restlichen sechs Tieren wurden IGF-I/FGF-2 Sphäroide in die Defekte eines Knies implantiert. In beiden Gruppen setzten wir in das kontralaterale Kniegelenk, rechts und links alternierend, je vier *lacZ*-Sphäroide als Kontrolle ein.

Abbildung 4: Schematische Abbildung der Lokalisation der Defekte am Beispiel eines humanen Kniegelenkes (modifizierte Abbildung von www.thieme.de)

Postoperativ war den Tieren die Belastung der operierten Knie direkt in vollem Umfang gestattet. Eine Immobilisation der operierten Gelenke fand statt. Nach nicht 18 Wochen erfolgte die Datenerhebung. Die Defekte osteochondralen wurden nachfolgend makroskopisch und histologisch untersucht und miteinander verglichen.

5.3 Großtiermodell

Alle Tierversuche wurden von der Saarländischen Tierschutzkommission genehmigt. Sie sind in Übereinstimmung mit dem nationalen Recht für Tierschutz und den NIH Richtlinien für die Achtung und den Schutz von Versuchstieren durchgeführt worden.

An der Studie nahmen 12 gesunde, adulte, weibliche Merinoschafe im Alter zwischen 2-4 Jahren teil. Ihr durchschnittliches Körpergewicht betrug 65 ± 10

kg. Alle Schafe erhielten nach belieben Wasser, einen standardisierten unter ständiger veterinärmedizinischer Ernährungsplan und standen Überwachung. Die Eingriffe erfolgten unter sterilen Kautelen im Institut für Experimentelle Chirurgie am Universitätsklinikum des Saarlandes durch Prof. Dr. H. Madry unter Assistenz von H.-L. Meyer. Die Tiere wurden nach 12 h Fastenzeit mit 2% Rompun (Bayer, Leverkusen) pro 0,05 mg/kg Körpergewicht sediert und nach intravenöser Verabreichung von 4 mg/kg Körpergewicht Propofol (AstraZeneca, Wedel) und Caprofol 1,4 mg/kg Körpergewicht (Pfizer, Berlin) endotracheal intubiert. Beibehalten wurde die Narkose durch Inhalation von 1,5% Isofluran (Baxter, Unterschleißheim) und intravenöser Gabe von Propofol (6-12 mg/kg Körpergewicht/h). Nach Rasur, sterilem Abwaschen und Abdecken des Kniegelenks stellten wir über einen medialen parapatellaren Hautschnitt und nach lateraler Luxation der Patella in 60° Flexionsstellung die Facies patellaris femoris dar. Mit einem 3,2 mm breiten Hohlbohrer wurden jeweils in den medialen Femurkondylen und in die Trochlea femoris manuell vier zylindrische osteochondrale Defekte gesetzt (Tiefe 10 mm). Nach Spülung mit PBS wurden die Alginat-Sphäroide in die Defekte implantiert. Nach Reposition der Patella überprüften wir die korrekte Lage der Implantate unter dreiseitiger Bewegung. Hiernach erfolgte der schichtweise Wundverschluss mit sorgfältiger Naht der Gelenkkapsel und mit intrakutaner Hautnaht. Postoperativ erfolgte eine Antibiotikaprophylaxe mit Amoxicillin-Clavulanat (Pfizer) 30 mg/kg Körpergewicht. Weiterhin erhielt jedes Tier 3 ml 0,25%iges Fenpipramide/Levomethadon (MSD. Unterschleißheim). Als postoperative Analgesie injizierten wir den Tieren über einen Zeitraum von zwei Wochen Caprofen (1,8 mg/kg Körpergewicht) subkutan und gestatteten umgehend eine Vollbelastung. Aufgrund von therapierefraktären Wundinfektionen wurden zwei Tiere zwischen der ersten und achtzehnten Woche postoperativ geopfert und von der Studie ausgeschlossen.

5.4 Sektion der Tiere

Nach 18 Wochen wurden die verbleibenden 10 Merinoschafe nach Bestimmung der Körpermasse eingeschläfert. Ein etwaiger Erguss oder eine Luxation des Gelenks dokumentierten wir vor der Sektion. Nach dem Hautschnitt über die Streckseite des Gelenks und Explantation der Patella gewannen wir durch Gelenkspülung mit 1,5 ml PBS die Synovialflüssigkeit.

Im nächsten Schritt präparierten wir das distale Femur und stellten die Defekte dar. Diese wurden fotografiert und später anhand von makroskopischen Bewertungssystemen beurteilt.

Im Anschluss entnahmen wir das distale Femur, woraufhin wir auch die Defektzonen in einer standardisierten Methode entnahmen. Die Defekte wurden dann für 24h in 4%iger Formaldehydlösung fixiert und anschließend in 70%-igem Ethanol für die histologische Untersuchung aufbewahrt.

5.5 Makroskopische Evaluation der Defekte

Alle Kniegelenke und Defekte der Hinterbeine wurden durch jeweils ein Bild dokumentiert.

Abbildung 5: Makroskopische Abbildungen der medialen Femurkondylen

Abbildung 6: Makroskopische Abbildungen der Trochleas

Für die makroskopische Beurteilung verwendeten wir zwei Evaluationssysteme. Das Homburger Makroskopie Bewertungssystem und das Oswestry Bewertungssystem.

Homburger Makroskopie Bewertungssystem		
4 Kantualituri		~
1. Kontraktur	ia	1
2 Frauss	ja nein	0
2. 2.9400	ia	1
3. Intraartikuläre Adhäsionen	nein	0
	ja	1
4. Synovialitis	nein	0
F. Ostosphytop	ja noin	1
5. Osteophyten	ia	1
6. Farbe des Reparaturgewebes	normal	Ö
	weiß	1
	überwiegend weiß (>50%)	2
	überwiegend transparent (>50%)	3
	transparent	4
	kein Reparaturgewebe	5
7. Bedeckung des Reparaturgewebes mit	nein	0
Blutgeralsen	< 25% des Reparaturgewebes	1
	50%-75% des Reparaturgewebes	2
	> 75% des Reparaturgewebes	4
8. Oberfläche des Reparaturgewebes	normal	0
gg	abnorm, eben, homogen	1
	abnorm, eben, inhomogen	2
	abnorm, mit Fibrillationen	3
	abnorm, unvollständiges neues	
	Reparaturgewebe	4
	abnorm, kein neues	5
0. Füllung des Defekte	Reparaturgewebe	4
9. Fullung des Delekts	ninausiagenu gleiches Level wie angrenzendes	I
	Reparaturgewebe	0
	>50% Reparaturgewebe im Defekt	1
	<50% Reparaturgewebe im Defekt	2
	0% Reparaturgewe, beim Defekt	3
	kein sichtbares Reparaturgewebe	
	oder subchondraler Knochendefekt	4
10. Integration mit angrenzendem Knorpel	komplette Integration	0
11 Integration in angronzondan Knornel	sichtbare Grenze	1
	Risse und/oder Fibrillationen in	U
	Integrationszone	1
	Diffuse arthrotische Veränderungen	2
	übergreifen des Defekts in	
	angrenzenden Knorpel	3
	Subchondraler Knochendefekt	4

5.5.1 Homburger Makroskopie Bewertungssystem

Tabelle 6: Homburger Makroskopie Bewertungssystem

Bei dem makroskopischen Homburger Bewertungssystem (Goebel et al. 2012) wurden die Defekte jeweils makroskopisch anhand der Bilder bewertet. Hierbei können in verschiedenen Kategorien (siehe Tabelle 5) insgesamt 28 Punkte vergeben werden. Defekte ohne jegliches Reparaturgewebe erzielen 28 Gesamtpunkte, wohingegen Defekte mit einer kompletten Regeneration und normalem Knorpel 0 Punkte erzielen.

5.5.2 Makroskopisches Oswestry Bewertungssystem

Bei dem makroskopischen Oswestry Bewertungssystem (Smith *et al.* 2005) wurden die Defekte jeweils makroskopisch anhand der Bilder bewertet. Hierbei können in verschiedenen Kategorien (siehe Tabelle 6) insgesamt 10 Punkte vergeben werden. Defekte ohne jegliches Reparaturgewebe erzielen 0 Gesamtpunkte, wohingegen Defekte mit einer kompletten Regeneration und normalem Knorpel 10 Punkte erzielen.

Bewertungssystem nach Oswestry		
1. Niveau des Transplantats (im Vergleich	gleiches Niveau	2
zum angrenzenden Knorpel)	über dem Niveau	1
	unter dem Niveau	0
2. Integration in angrenzenden Knorpel	komplette Integration	2
	kleiner Spalt (<25% der Region)	1
	großer Spalt (>25% der Region)	0
 Aussehen der Oberfläche 	eben	2
	feine Fibrillationen	1
	heftige Fibrillationen	0
 Farbe des Transplantats 	perlmuttfarben, hyalinfarben	2
	weiß	1
	gelber Knochen	0
5. Konsistenz der Proben	normal im Vergleich zum	2
(Kriterium nicht evaluiert)	angrenzenden Knorpel	
	weicher	1
	sehr weich/hart	0

Tabelle 7: Oswestry Makroskopie Bewertungssystem

5.6 Histologische Evaluation der Gelenke

5.6.1 Entkalkung

Die Proben lagerten in 70%-igem Ethanol. Das Ethanol wurde nach einer Woche durch eine Entkalkungslösung ersetzt. Die Entkalkungslösung besteht aus zwei verschiedenen Lösungen. Lösung A und Lösung B. Beide Lösungen werden einzeln hergestellt und erst in einem dritten Schritt zu der Entkalkungslösung zusammengemischt. Lösung A besteht aus 100 g Natriumcitrat, welches bis auf 500 ml mit H₂O dest. aufgefüllt wird. Lösung B besteht aus 250 ml Ameisensäure und 250 ml H₂O dest. Die Proben entkalkten 8 Wochen in der Entkalkungslösung, wobei die Entkalkungslösung wöchentlich gewechselt wurde.
5.6.2 Entwässerung

Die Proben wurden zweimal für jeweils 1 h und einmal über Nacht unter Leitungswasser gespült. Zum dehydrieren setzen wir die Proben anschließend einer aufsteigenden Ethanolreihe aus (70%, 2x 95%, 100% jeweils 1 h, dann 100% über Nacht und abschließend nochmals 100% über 1 h). Im nächsten Schritt lagerten die Proben zweimal für jeweils 1 h in Xylol, um danach bei 62°C über 1 h in einem Xylol-Paraffin-Gemisch und erneut über Nacht in Paraffin gelagert zu werden.

5.6.3 Einbettung und Schneiden

Die Proben lagerten über Nacht in paraffingefüllten Metallkassetten und härteten aus. Die Paraffinblöcke wurden im Anschluss mit einem Rotationsmikrotom in 4 µm dicke Schnitte, mit einem Abstand von 200 µm geschnitten. Dabei achteten wir darauf, dass die Schnittführung in der Frontalebene des Defektes verlief und den Defekt, sowie den angrenzenden Knorpel in vollem Ausmaß berücksichtigte. Die Schnitte lagen zunächst in einem Wasserbad (24°C), um sie dann auf lysinbeschichtete Objektträger auf einer Wärmeplatte (42° für 20 min) zu positionieren. Die Objektträger härteten anschließend über Nacht in einem Wärmeschrank bei 62°C aus und wurden im Anschluss eingedeckt.

5.6.4 Färbungen

Vor allen Färbungen entparaffinierten wir die Schnitte mit Hilfe von Xylol (2x 5min) und hydrierten diese danach mit Hilfe einer absteigenden Ethanolreihe (2x 100%, 2x 95% und 1x 80% ETOH für jeweils 2,5 min). Nach der Färbung dehydrierten die Schnitte mithilfe einer aufsteigenden Ethanolreihe und Xylol (in umgekehrter Reihenfolge wie es oben beschrieben ist). Alle Schnitte wurden mit Roti-Histokitt II eingedeckt und über Nacht zum Austrocknen gebracht.

Safranin-Orange-Färbung

Bei dieser Färbung werden das Zytoplasma und das Kollagen durch die Echtgrün-Lösung grün gefärbt und die in der Knorpelmatrix lokalisierten Mucopolysaccharide mittels der Safranin-O-Lösung rot gegengefärbt.

Nach dem Entparaffinieren und der Hydration färbten wir die Schnitte in einer Hämatoxylin-Lösung. Nach 10 min spülten wir die Schnitte unter laufendem Leitungswasser ab, um sie dann für 4 min in einer Echtgrün-Lösung zu färben. Danach wurden die Schnitte dreimal kurz in einprozentige Essigsäure getaucht und im Anschluss für 5 min in 1%er Safranin-O-Lösung getaucht.

Hämatoxylin-Eosin-Färbung

Bei dieser Färbung färbt Hämatoxylin saure bzw. basophile Strukturen (Zellkern, DNA) blau. Eosin hingegen färbt basische bzw. azidophile Strukturen (Zytoplasma) rot.

Nach dem Entparaffinieren und der Hydration färbten die Schnitte in einer Hämatoxylin-Lösung nach Harris. Nach 10 min wurden die Schnitte unter laufendem Leitungswasser abgespült, um sie dann für 10 sek in einprozentiger Salzsäure zu differenzieren und direkt anschließend in Leitungswasser (60°C) für 4 min zu bläuen. Im nächsten Schritt färbten die Schnitte erneut für 2,5 min in einer Hämatoxylin-Lösung nach Harris. Im Anschluss wurden die Schnitte mit Leitungswasser abgespült und schließlich mit einer Eosinlösung für 1,5 min gefärbt.

Immunhistochemische Typ-I/-II-Kollagen-Färbungen

Bei dieser Färbung wird überall dort, wo die Peroxidase des ABC-Reagenz an sekundären Antikörpern haftet, eine braune Verfärbung hervorgerufen und färbt das Kollagen braun. Hierbei korreliert die Farbintensität mit der Kollagenkonzentration (H. Issaksson et al., 2011).

Nach dem Entparaffinieren und der Hydration gaben wir die Schnitte für 30 min, bei Raumtemperatur, in eine 0,3%ige Wasserstoff-Peroxid-Lösung. Die Schnitte wurden anschließend zweimal in PBS gespült und für 10 min bei 37°C in 0,1%iger Trypsin-Lösung angedaut. Nach erneuter Spülung mit PBS lagen die Schnitte für 30 min bei Raumtemperatur im *blocking buffer*. Danach

wurden die Schnitte in eine Nasskammer transferiert, um sie mit einem monoklonalen primären Anti-Typ-I-Kollagen- (Verdünnung 1:90 in *blocking buffer*) bzw. Anti-Typ-II-Kollagen- (Verdünnung 1:45 in *blocking buffer*) Antikörper zu bedecken und 1 h bei Raumtemperatur zu inkubieren. Nach erneuter Spülung mit PBS biotinylierten wir die Schnitte mit einem sekundären Antikörper (Verdünnung 1:200 in PBS). Die Schnitte kamen danach erneut in eine Nasskammer und inkubierten erneut 1 h lang bei Raumtemperatur. Nach erneuter Spülung der Schnitte mit PBS erfolgte die Applikation der nach Herstellerangaben vorbereiteten ABC-Reagenz. Anschließend inkubierten die Schnitte 30 min bei Raumtemperatur. Nach erneuter Spülung mit PBS wurden die Schnitte für 7 min bei Raumtemperatur mit der nach Herstellerangaben zubereiteten DAB-Lösung versehen. Die Schnitte wurden wieder in PBS gewaschen und abschließend 1 min lang mit aqua dest. gespült.

5.7 Histologische und Immunhistochemische Evaluationssysteme

Zu der Evaluation des Reparaturgewebes verwendeten wir zwei etablierte Bewertungssysteme. Das Bewertungssystem nach Sellers (Sellers *et al.* 1997) und das Bewertungssystem nach Pineda (Pineda *et al.* 1992). Die Evaluation des angrenzenden Knorpelgewebes erfolgte anhand des Bewertungssystems nach Little (Little *et al.* 2010). Die Immunreaktivität auf Typ-I- und Typ-II-Kollagen im Reparaturgewebe wurde mit einem semiquantitativen Bewertungssystem evaluiert. Die Beurteilung aller Schnitte durch die Bewertungssysteme erfolgte verblindet durch einen Untersucher und erfolgte bei 20-, 40- und 100-facher Vergrößerung. Für jeden Defekt wurden mindestens 10 Schnitte evaluiert. Insgesamt wurden für diese Studie 520 histologische Schnitte bewertet.

5.7.1 Bewertungssystem nach Sellers

Bewertungssystem nach Sellers		
 Defektfüllung in Relation zum 	111 - 125%	1
angrenzenden gesunden Knorpel	91 - 110%	0
	76 - 90%	1
	51 - 75%	2
	26 - 50%	3
	< 25%	4
2. Integration des Reparaturgewebes mit	normale Kontinuität	0
dem angrenzenden gesunden Knorpel	verminderte Kontinuität	1
	Spalte auf einer Seite	2
	Spalte auf beiden Seiten	3
 Matrixanfärbbarkeit mit Safranin-O 	normal	0
	leicht vermindert	1
	mittelstark vermindert	2
	stark vermindert	3
	keine Anfärbbarkeit	4
4. Zellmorphologie	(a) normal	0
	(b) vorwiegend runde Zellen mit	
	Chondrozytenmorphologie und	
	> 75% der Zellen in Säulen in der	
	radialen Zone	0
	25 - 75% der Zellen in Säulen in der	
	radialen Zone	1
	< 25% der Zellen in Säulen in der	-
	radialen Zone	2
	(c) 50% runde Zellen mit	
	Chondrozytenmorphologie und	
	> 75% der Zellen in Säulen in der	-
	radialen Zone	2
	25 - 75% der Zellen in Säulen in der	-
	radialen Zone	3
	< 25% der Zellen in Säulen der radialen	
		4
	(d) Vorwiegend fibroblastenannliche	_
5. Defeldenskiteldur ohne		5
5. Detektarchitektur onne	normal	0
Berucksichtigung der Derektränder	1 - 3 kielne Detekte	1
	I - 3 große Defekte	2
	> 3 groise Delekte	3
6. Oberflöchenersbiteldur Fibrilletion	Risse/Spailen	4
6. Openhachenarchitektur Fibriliation =	normal Joiehte Fibrilletienen	1
Aufraserung der Obernache	mitteleterke Fibrilletionen	ו 2
	starka Eibrillationan	2
7 Prozentuale aubahandrale		0
7. FIOZEIII.uale Subchonurale Knochonnouhildung unterholb des	90 - 100% 75 90%	1
Knorpelreparaturgewebes	75 - 09 % 50 - 74%	2
Riolpenepalalulgewebes	50 - 74 % 25 40	2
	20 - 40 2 95%	ა ⊿
8 Tidemark/Ossifikationsfront/	> ∠0 /0	4 0
Ilbergangezone zwiechen	75 - 80%	1
transitorischem und verkelktem	50 - 74%	2
Knornel	25 - 49%	2
	20 - 40 /0 < 25%	ა ⊿
	S 2070	т

Tabelle 8: Bewertungssystem nach Sellers

Das Bewertungssystem nach Sellers (Sellers *et al.* 1997) bewertet das Reparaturgewebe im Defekt. Hierbei können in verschiedenen Kategorien (siehe Tabelle 7) insgesamt 31 Punkte vergeben werden. Defekte ohne jegliches Reparaturgewebe erzielen 31 Gesamtpunkte, wohingegen Defekte mit einer kompletten Regeneration und normalem Knorpel 0 Punkte erzielen.

5.7.2 Bewertungssystem nach Pineda

Das Bewertungssystem nach Pineda (Pineda *et al.* 1992) bewertet das Reparaturgewebe im Defekt. Hierbei können in verschiedenen Kategorien (siehe Tabelle 8) insgesamt 14 Punkte vergeben werden. Defekte ohne jegliches Reparaturgewebe erzielen 14 Gesamtpunkte, wohingegen Defekte mit einer kompletten Regeneration und normalem Knorpel 0 Punkte erzielen.

125%	1
100%	0
75%	1
50%	2
25%	3
0%	4
ja	0
fast	1
nicht in der Nähe	2
normal	0
leicht vermindert	1
mittelstark vermindert	2
stark vermindert	3
keine Anfärbbarkeit	4
normal überwiegend normaler Knorpel überwiegend Faserknorpel wenig Faserknorpel, aber überwiegend nicht-Knorpelzellen nur nicht-Knorpelzellen	0 1 2 3 4
	125% 100% 75% 50% 25% 0% ja fast nicht in der Nähe normal leicht vermindert mittelstark vermindert stark vermindert stark vermindert keine Anfärbbarkeit normal überwiegend normaler Knorpel überwiegend Faserknorpel wenig Faserknorpel, aber überwiegend nicht-Knorpelzellen nur nicht-Knorpelzellen

Bewertungssystem nach Pineda

Tabelle 9: Bewertungssystem nach Pineda

5.7.3 Bewertungssystem nach Little

Das Bewertungssystem nach Little bewertet die Arthrose im angrenzenden Knorpel des Defektes (Little *et al.* 2010). Hierbei können in verschiedenen Kategorien (siehe Tabelle 9) insgesamt 25 Punkte vergeben werden. Bei vollständigem Fehlen von arthrotischen Veränderungen wird eine Gesamtpunktzahl von 0 Punkten erzielt, wohingegen eine schwere Arthrose zu einer Punktzahl von 25 Punkten führt.

Bewertungssystem nach Little		
		•
1. Struktur (Beurteilung des schlechtesten	normal	0
Areais)		4
	(Obernache kaum zernssen)	1
		2
	(raue Obernache)	2
	(Disc. Fiscur/Fibrillation - 40% Tisfs)	2
	(RISS, FISSUI/FIDIIIation < 10% Here)	3
	Fissuren bis zur Transitionalzone	4
	Fissuren bis zur kalzifizierten Zone	5
	Fissuren bis zur Kaizinzierten zone	0
	Eiosionen ouer massive	
		7
	(1/3 Hele) Erosionon odor massivo	'
	Eiosionen die zur tiefen Zone	
	(2/3 Tiofo)	Q
	(2/3 Hele) Erosionen oder massive	0
	Eibrillationen bis zur kalzifizierten	
	Zone (vollständige Tiefe)	٩
	Erosionen oder massive	5
	Fibrillationen bis zum subchondralen	
	Knochen	10
2 Chondrozyten Dichte (Beurteilung des	normal	0
desamten Areals)	erhöht oder leicht erniedrigt	1
goodinion filodioj	moderat erniedrigt	2
	massiv erniedrigt	3
	keine Zellen	4
3. Zellklone (Beurteilung des gesamten	normal	0
Areals)	einzelne Duplets	1
,	viele Duplets	2
	Duplets und Triplets	3
	multiple Zellnester oder keine Zellen	4
4. Safranin-O-Färbung (Färbung des	normal	0
schlechtesten Areals)	erniedrigte Färbung bis zur mittleren	
	Zone (1/3 Tiefe)	1
	erniedrigte Färbung bis zur tiefen	
	Zone (2/3 Tiefe)	2
	erniedrigte Färbung bis zur	
	kalzifizierten Zone (vollständige	
	Tiefe)	3
	keine Färbung	4
5. Tidemark/kalzifizierter Knorpel/	intakte subchondrale Knochenplatte+	
subchondraler Knochen	eine Tidemark	0
(Beurteilung des schlechtesten Areals)	intakte subchondrale Knochenplatte+	
	doppelte Tidemark	1
	Blutgefäße penetrieren die	
	subchondrale Knochenplatte bis zur	~
	kalzifizierten Zone	2
	Blutgefalse penetrieren die Tidemark	3

Tabelle 10: Bewertungssystem nach Little

5.7.4 Bewertungssystem nach Immunreaktivität von Typ-I- und Typ-II-Kollagen

Das Bewertungssystem zur Bewertung der Immunreaktivität von Typ-I- und Typ-II-Kollagen im Reparaturgewebe ist ein semiquantitatives Bewertungssystem. Hierbei entspricht die Intensität der Braunfärbung der Kollagendichte im Präparat (Isaksson *et al.* 2011). Bei der Typ-I-Kollagen spezifischen Färbung diente der subchondrale Knochen als Positivkontrolle und der gesunde Gelenkknorpel als Negativkontrolle.

Bei der Typ-II-Kollagen spezifischen Färbung fungierte dagegen der subchondrale Knochen als Negativkontrolle und der gesunde Gelenkknorpel als Positivkontrolle.

Insgesamt können 4 Punkte vergeben werden. Defekte ohne jegliche Immunreaktivität im Reparaturgewebe erzielen 0 Gesamtpunkte, wohingegen Defekte mit einer starken Immunreaktivität bzw. einer starken Braunfärbung 4 Punkte erzielen.

Bewertungssystem zur Beurteilung der Immunoreaktivität		
Intensität der Braunfärbung entsprechend der Immunreaktivität (stets im Vergleich zur entsprechenden Positivkontrolle)	keine Immunreaktion signifikant weniger Immunreaktion moderat weniger Immunreaktion gleiche Immunreaktion höhere Immunreaktion	0 1 2 3 4

Tabelle 11: Semiquantitatives Bewertungssystem zur Beurteilung der Immunreaktivität von Typ-I- und Typ-II-Kollagen

5.8 Statistische Analyse

Nach Erfassung aller Daten führten wir zur Beurteilung der Ergebnisse statistische Analysen durch. Dabei wurden die mit IGF-I bzw. die mit IGFihren I/FGF-2 behandelten Defekte mit immer kontralateralen Kontrollgruppen, die mit *lacZ* behandelt wurden verglichen. Hierbei stellten wir die makroskopisch, histologisch und immunhistochemisch gewonnenen Ergebnisse jeweils einander gegenüber und überprüften diese mit Hilfe des Mann-Whitney-U-Test (= Wilcoxon-Rangsummentest, unabhängige Werte, nicht normalverteilt) auf Signifikanzen. Ein P-Wert <0,05 wurde als signifikanter Unterschied erachtet. Die Ergebnisse der Einzelkategorien, sowie die der Gesamtpunktwerte gaben wir als Mittelwert ± Standardabweichung an. Die statistische Auswertung wurde mit Hilfe von SigmaStat 2006 durchgeführt.

6. Ergebnisse

Im Ergebnisteil dieser Arbeit sind die Ergebnisse der makroskopischen, histologischen und immunhistochemischen Evaluationen der *in vivo* Experimente nach Implantation von *lacZ*-, IGF-I- und IGF-I/FGF-2-Sphäroide in osteochondrale Defekte der medialen Femurkondyle und Trochlea der Kniegelenke der Schafe dargestellt. Die Evaluationen wurde nach 18 Wochen *in vivo* Experiment durchgeführt.

6.1 Makroskopische Evaluation

Die Defekte waren stets gut identifizierbar und gut vom umgebenden Knorpel abgrenzbar. In keinem Gelenk fand sich ein Kniegelenkserguss, eine makroskopische Synovialitis, eine heterotope Ossifikationen oder Osteophyten. Die makroskopische Evaluation durch das Oswestry Beurteilungssystems ergab einen signifikanten Unterschied zwischen den Gruppen mit den Defekten in der Trochlea, die mit IGF-I/FGF-2- und mit lacZ-Sphäroiden behandelt wurden. Hierbei wurden in den Kategorien Knorpelreparatur und Integration zwischen diesen beiden Gruppen in der Trochlea die Knorpeldefekte, die mit IGF-I/FGF-2 behandelt wurden signifikant besser bewertet als die Knorpeldefekte der Vergleichsgruppe, die mit lacZ-Sphäroiden behandelt wurden. Ansonsten ergab die makroskopische Evaluation keinen signifikanten Unterschied zwischen den Defekten die mit IGF-I-, IGF-I/FGF-2- oder mit lacZ- Sphäroiden behandelt wurden.

6.1.1 Mediale Femurkondyle

_

Tabelle 12: Ergebnisse Homburger Makroskopie Bewertungssystem mediale Femurkondyle IGF-I-Gruppe vs. *lacZ*-Gruppe

Kategorie	IGF-I Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Kontraktur	0,00 ± 0,00	0,00 ± 0,00	0,990
Erguss	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,990
Intraartikuläre Adhäsionen	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,990
Synovialitis	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,990
Östeophyten	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,990
Farbe des Reparaturgewebes	2,60 ± 1,50	$2,40 \pm 0,94$	0,810
Bedeckung des Reparaturgewebes			
mit Blutgefäßen	2,35 ± 1,35	2,30 ± 1,22	0,910
Oberfläche des Reparaturgewebes	3,45 ± 1,23	$3,85 \pm 0,88$	0,280
Füllung des Defekts	$2,20 \pm 1,15$	2,15 ± 0,81	0,890
Integration mit angrenzendem			
Knorpel	$1,00 \pm 0,00$	$1,00 \pm 0,00$	0,990
Integration mit angrenzendem Knorpel	$3,00 \pm 1,26$	$2,75 \pm 0,91$	0,200
Gesamtpunktzahl	14,60 ± 5,38	14,40 ± 3,98	0,890

Tabelle 13: Ergebnisse Homburger Makroskopie Bewertungssystem mediale Femurkondyle IGF-I/FGF-2-Gruppe vs. *lacZ*-Gruppe

Kategorie	IGF-I/FGF-2 Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Kontraktur	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,990
Erguss	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,990
Intraartikuläre Adhäsionen	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,990
Synovialitis	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,990
Östeophyten	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,990
Farbe des Reparaturgewebes	$1,65 \pm 1,46$	2,20 ± 1,40	0,170
Bedeckung des Reparaturgewebes			
mit Blutgefäßen	1,90 ± 1,48	2,10 ± 1,37	0,640
Oberfläche des Reparaturgewebes	2,95 ± 1,47	3,15 ± 1,31	0,660
Füllung des Defekts	1,85 ± 1,31	1,90 ± 1,02	0,550
Integration mit angrenzendem			
Knorpel	$1,00 \pm 0,00$	1,00 ± 0,00	0,990
Integration mit angrenzendem Knorpel	2,60 ± 1,43	2,80 ± 1,28	0,760
Gesamtpunktzahl	11,95 ± 6,59	13,15 ± 5,85	0,550

Kategorie	IGF-I Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Niveau des Transplantates Integration in angrenzenden Knorpel Aussehen der Oberfläche Farbe des Transplantates	$0,75 \pm 0,97$ $0,45 \pm 0,76$ $0,50 \pm 0,76$ $0,65 \pm 0,81$	$0,50 \pm 0,89$ $0,30 \pm 0,47$ $0,60 \pm 0,75$ $0,55 \pm 0,60$	0,463 0,817 0,654 0,892
Gesamtpunkte	2,35 ± 3,01	1,95 ± 2,33	0,946

Tabelle 14: Ergebnisse Oswestry Makroskopie Bewertungssystem mediale Femurkondyle IGF-I-Gruppe vs. *lacZ*-Gruppe

Tabelle 15: Ergebnisse Oswestry Makroskopie Bewertungssystem mediale Femurkondyle IGF-I/FGF-2-Gruppe vs. *lacZ*-Gruppe

Kategorie	IGF-I/FGF-2 Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Niveau des Transplantates Integration in angrenzenden Knorpel Aussehen der Oberfläche Farbe des Transplantates	$1,10 \pm 0,97$ $1,05 \pm 0,94$ $0,95 \pm 0,89$ $1,20 \pm 1,01$	$0,60 \pm 0,88$ $0,50 \pm 0,83$ $0,50 \pm 0,76$ $0,75 \pm 0,85$	0,139 0,090 0,129 0,180
Gesamtpunkte	4,30 ± 3,66	2,35 ± 3,12	0,171

6.1.2 Trochlea

Tabelle 16: Ergebnisse Homburger Makroskopie Bewertungssystem Trochlea IGF-I-Gruppe vs. *lacZ*-Gruppe

Kategorie	IGF-I Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Kontraktur	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,990
Erguss	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,990
Intraartikuläre Adhäsionen	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,990
Synovialitis	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,990
Osteophyten	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,990
Farbe des Reparaturgewebes	1,35 ± 0,67	1,45 ± 0,69	0,640
Bedeckung des Reparaturgewebes			
mit Blutgefäßen	0,95 ± 0,39	0,95 ± 0,51	1,000
Oberfläche des Reparaturgewebes	2,30 ± 1,08	2,50 ± 1,24	0,550
Füllung des Defekts	1,35 ± 0,49	1,35 ± 0,81	0,880
Integration mit angrenzendem			
Knorpel	$1,00 \pm 0,00$	0,95 ± 0,22	0,800
Integration mit angrenzendem Knorpel	$1,70 \pm 0,98$	2,15 ± 1,23	0,280
Gesamtpunkte	8,65 ± 2,76	9,35 ± 3,88	0,520

Kategorie	IGF-I/FGF-2 Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Kontraktur	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,990
Erguss	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,990
Intraartikuläre Adhäsionen	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,990
Synovialitis	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,990
Östeophyten	$0,00 \pm 0,00$	$0,00 \pm 0,00$	0,990
Farbe des Reparaturgewebes	$1,10 \pm 0,55$	1,45 ± 1,05	0,420
Bedeckung des Reparaturgewebes			
mit Blutgefäßen	0,95 ± 0,39	1,15 ± 1,09	0,990
Oberfläche des Reparaturgewebes	$2,20 \pm 0,70$	2,50 ± 1,19	0,330
Füllung des Defekts	0,95 ± 0,51	1,30 ± 0,86	0,320
Integration mit angrenzendem			
Knorpel	0,95 ± 0,22	0,95 ± 0,22	0,990
Integration mit angrenzendem Knorpel	1,80 ± 1,01	2,50 ± 1,19	0,080
Gesamtpunkte	7,95 ± 2,35	9,80 ± 4,67	0,320

Tabelle 17: Ergebnisse Homburger Makroskopie Bewertungssystem Trochlea IGF-I/FGF-2-Gruppe vs. *lacZ*-Gruppe

Tabelle 18: Ergebnisse Oswestry Makroskopie Bewertungssystem Trochlea IGF-I-Gruppe vs. *lacZ*-Gruppe

Kategorie	IGF-I Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Niveau des Transplantates Integration in angrenzenden Knorpel Aussehen der Oberfläche Farbe des Transplantates	$\begin{array}{c} 1,05 \pm 0,89 \\ 1,25 \pm 0,72 \\ 1,00 \pm 0,79 \\ 1,20 \pm 0,77 \end{array}$	$\begin{array}{c} 1,15 \pm 0,93 \\ 0,80 \pm 0,89 \\ 0,70 \pm 0,73 \\ 0,80 \pm 0,77 \end{array}$	0,735 0,113 0,261 0,133
Gesamtpunkte	4,50 ± 2,78	3,45 ± 2,95	0,245

Tabelle 19: Ergebnisse Oswestry Makroskopie Bewertungssystem Trochlea IGF-I/FGF-2-Gruppe vs. *lacZ*-Gruppe

Kategorie	IGF-I/FGF-2 Implantate MW ± SD	<i>lacZ</i> Implantate MW ± SD	P-Wert
Niveau des Transplantates Integration in angrenzenden Knorpel Aussehen der Oberfläche Farbe des Transplantates	$1,65 \pm 0,67$ $1,40 \pm 0,68$ $1,30 \pm 0,66$ $1,35 \pm 0,67$	$\begin{array}{c} 1,00 \pm 0,97 \\ 0,75 \pm 0,72 \\ 0,90 \pm 0,79 \\ 0,95 \pm 0,83 \end{array}$	0,054 0,012* 0,126 0,143
Gesamtpunkte	5,70 ± 2,32	3,60 ± 3,03	0,027*

6.2 Histologische Evaluation

6.2.1 Mediale Femurkondyle

Evaluation von osteochondralen Defekten an Schnitten der medialen Femurkondyle anhand des Bewertungssystems nach Sellers

Vergleich der Ergebnisse von lacZ- mit IGF-I-Sphäroiden in vivo

In den mit IGF-I-Sphäroiden behandelten Defekten ist der individuelle Wert jeweils für Defektfüllung, Anfärbbarkeit der Grundsubstanz, Zellmorphologie und Defektarchitektur signifikant besser verglichen mit den Werten der Defekte, die mit *lacZ* behandelt wurden. Nach Summation aller individuellen Werte ist der Mittelwert der Gesamtpunktzahl der mit IGF-I-Sphäroiden behandelten Defekte signifikant besser als der Mittelwert der Gesamtpunktzahl der Defekte, die mit *lacZ* Sphäroiden behandelt wurden (24,1 und 27,3 Punkte, bei P < 0,001, Tabelle 19).

Abbildung 7: Die Graphik zeigt die histologische Knorpelreparatur von Defekten osteochondralen der Femurkondyle medialen 18 Wochen nach Transplantation von transfizierten Chondrozyten in vivo. Die Bilder A, C, E, G, I, K zeigen osteochondrale Defekte, die mit lacZ transfizierten Chondrozvten behandelt wurden. Die Bilder B, D, F, H, K, M zeigen osteochondrale Defekte, die mit IGF-I transfizierten Chondrozyten behandelt wurden. Die Präparate aus A bis D zeigen eine Safranin-O Färbung und die Präparate Е Н bis eine Hämatoxilin-Eosin Färbung. Die abschließenden Bilder I und K zeigen eine immunhistochemische Färbung monoklonaler Maus antihuman Typ-I-Kollagen Immunglobuline-G und die Bilder L und Μ zeigen eine immunhistochemische Färbung monoklonaler Maus anti-human Typ-II-Kollagen Immunglobuline-G. Die Bilder A,B,E,F sind in der Orignalvergößerung x40 dargestellt. Die Vergrößerung der Bilder C,D,G,H,I,K,L,M beträgt x100. Maßstabsbalken: 2 mm (A 0,5 und B) und mm (C,D,G,H,I,K,L,M). C zeigt eine Vergrößerung aus A, D zeigt eine Vergrößerung aus B, G zeigt eine Vergrößerung aus E und H zeigt eine Vergrößerung aus F.

Kategorie	IGF-I Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Defektfüllung Integration Matrixanfärbbarkeit mit Safranin-O Zellmorphologie Defektarchitektur ohne Berücksichtigung der Defektränder Oberflächenarchitektur Fibrillationen Subchondrale Knochenneubildung	$2,28 \pm 0,20 2,34 \pm 0,11 1,54 \pm 0,16 4,10 \pm 0,11 3,58 \pm 0,10 2,78 \pm 0,07 3,56 \pm 0,08 2,94 \pm 0,03 \\ 0,01 \\ 0,02 \\ 0,03 \\ $	$2,94 \pm 0,20$ $2,58 \pm 0,11$ $2,76 \pm 0,16$ $4,62 \pm 0,11$ $3,96 \pm 0,10$ $2,74 \pm 0,07$ $3,68 \pm 0,08$ $4,00 \pm 0,02$	0,023* 0,120 <0,001* 0,002* 0,007* 0,680 0,290
Gesamtpunkte	24,12 ± 0,03	4,00 ± 0,03	<0,180 <0,001*

Tabelle 20: Ergebnisse Sellers Bewertungssystem mediale Femurkondylen IGF-I-Gruppe vs. *lacZ*-Gruppe

Vergleich der Ergebnisse von lacZ- mit IGF-I/FGF-2-Sphäroiden in vivo

In den mit IGF-I/FGF-2-Sphäroiden behandelten Defekten ist der individuelle Wert jeweils für Defektfüllung, Anfärbbarkeit der Grundsubstanz, Zellmorphologie, Oberflächenarchitektur und Neubildung des subchondralen Knochens signifikant besser als der der mit *lacZ* behandelten Defekte. Die Summation aller individuellen Werte zeigte, dass der Mittelwert der Gesamtpunktzahl für die mit IGF-I/FGF-2-Sphäroiden behandelten Defekte signifikant besser ist als der der mit *lacZ*-Sphäroiden behandelten Defekte (19,1 und 23,7 Punkte, bei P < 0,001, Tabelle 20).

Abbildung 8: Die Graphik zeigt die histologische Knorpelreparatur von osteochondralen Defekten der Femurkondyle medialen 18 Wochen nach Transplantation von transfizierten Chondrozyten in vivo. Die Bilder A, C, E, G, I, K zeigen osteochondrale Defekte. lacZ transfizierten die mit Chondrozyten behandelt wurden. Die Bilder B, D, F, H, K, M zeigen osteochondrale Defekte, die mit IGF-I/FGF-2 transfizierten Chondrozyten behandelt wurden. Die Präparate aus A bis D zeigen eine Safranin-O Färbung und die Präparate Е bis Н eine Hämatoxilin-Eosin Färbung. Die abschließenden Bilder I und K zeigen eine immunhistochemische Färbung monoklonaler Maus antihuman Typ-I-Kollagen Immunglobuline-G und die Bilder L und zeigen Μ eine immunhistochemische Färbung monoklonaler Maus anti-human Typ-II-Kollagen Immunglobuline-G.

Die Bilder A,B,E,F sind in der Orignalvergößerung x40 dargestellt. Die Vergrößerung der Bilder C,D,G,H,I,K,L,M beträgt x100. Maßstabsbalken: 2 mm (A und B) und 0,5 mm (C,D,G,H,I,K,L,M). C zeigt eine Vergrößerung aus A, D zeigt eine Vergrößerung aus B, G zeigt eine Vergrößerung aus E und H zeigt eine Vergrößerung aus F.

Kategorie	IGF-I/FGF-2 Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Defektfüllung	0,76 ± 0,14	1,74 ± 0,14	<0,001*
Integration	2,38 ± 0,11	2,62 ± 0,11	0,130
Matrixanfärbbarkeit mit Safranin-O	1,18 ± 0,13	1,96 ± 0,13	<0,001*
Zellmorphologie	2,76 ± 0,10	3,86 ± 0,10	<0,001*
Defektarchitektur ohne			
Berücksichtigung der Defektränder	3,66 ± 0,07	3,88 ± 0,07	0,030*
Oberflächenarchitektur Fibrillationen	$2,44 \pm 0,08$	2,88 ± 0,08	<0,001*
Subchondrale Knochenneubildung	2,24 ± 0,08	$2,90 \pm 0,08$	<0,001*
Tidemark	$3,70 \pm 0,06$	$3,82 \pm 0,06$	0,160
Gesamtpunkte	19,12 ± 0,42	23,66 ± 0,42	<0,001*

Tabelle 21: Ergebnisse Sellers Bewertungssystem mediale Femurkondylen IGF-I/FGF-2-Gruppe vs. *lacZ*-Gruppe

Abbildung 9: Darstellung der Ergebnisse des Evaluationssystems nach Sellers am medialen Femurkondylus.

Mit * markierte Werte weisen einen signifikanten Unterschied zu der jeweiligen Kontrollgruppe (*lacZ*-Gruppe) auf.

* p < 0,001 (Vergleich lacZ- mit IGF-I-Gruppe); * p < 0,001 (Vergleich lacZ- mit IGF-I/FGF-2-Gruppe)

Evaluation von osteochondralen Defekten an Schnitten der medialen Femurkondyle anhand des Bewertungssystems nach Pineda

Vergleich der Ergebnisse von lacZ- mit IGF-I-Sphäroiden in vivo

In den mit IGF-I-Sphäroiden behandelten Defekten ist der individuelle Wert für Anfärbbarkeit der Grundsubstanz und Zellmorphologie signifikant besser verglichen mit den Werten der Defekte, die mit *lacZ* behandelt wurden. Nach Summation aller individuellen Werte ist der Mittelwert der Gesamtpunktzahl der mit IGF-I-Sphäroiden behandelten Defekte signifikant besser als der Mittelwert der Gesamtpunktzahl der Defekte, die mit *lacZ*-Sphäroiden behandelt wurden (8,4 und 10,5 Punkte, bei P = 0,004, Tabelle 23).

Kategorie	IGF-I Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Defektfüllung Integration Matrixanfärbbarkeit mit Safranin-O Zellmorphologie	$2,28 \pm 1,67$ $1,42 \pm 0,78$ $1,54 \pm 0,99$ $3,12 \pm 0,90$	$2,62 \pm 1,52$ $1,66 \pm 0,66$ $2,36 \pm 1,08$ $3,90 \pm 0,30$	0,298 0,160 <0,001* <0,001*
Gesamtpunkte	8,36 ± 3,47	10,54 ± 2,76	0,004*

Tabelle 22: Ergebnisse Pineda Bewertungssystem mediale Femurkondylen IGF-I-Gruppe vs. *lacZ*-Gruppe

Vergleich der Ergebnisse von lacZ- mit IGF-I/FGF-2-Sphäroiden in vivo

In den mit IGF-I/FGF-2-Sphäroiden behandelten Defekten ist der individuelle Wert für Defektfüllung, Integration des Reparaturgewebes und Zellmorphologie signifikant besser als der der mit *lacZ* behandelten Defekte. Die Summation aller individuellen Werte ergab, dass der Mittelwert der Gesamtpunktzahl für die mit IGF-I/FGF-2-Sphäroiden behandelten Defekte signifikant besser ist als der der mit *lacZ*-Sphäroiden behandelten Defekte (4,3 und 6,6 Punkte, bei P < 0,001, Tabelle 24).

Kategorie	IGF-I/FGF-2 Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Defektfüllung Integration Matrixanfärbbarkeit mit Safranin-O Zellmorphologie	$0,76 \pm 0,80$ $0,52 \pm 0,61$ $1,18 \pm 0,44$ $1,80 \pm 0,53$	1,54 ± 0,97 1,14 ± 0,67 1,36 ± 0,63 2,58 ± 0,70	<0,001* <0,001* 0,270 <0,001*
Gesamtpunkte	4,26 ± 1,44	6,62 ± 1,65	<0,001*

Tabelle 23: Ergebnisse Pineda Bewertungssystem mediale Femurkondylen IGF-I/FGF-2-Gruppe vs. *lacZ*-Gruppe

Abbildung 10: Darstellung der Ergebnisse des Evaluationssystems nach Pineda am medialen Femurkondylus.

Mit * markierte Werte weisen einen signifikanten Unterschied zu der jeweiligen Kontrollgruppe (*lacZ*-Gruppe) auf.

* p = 0,004 (Vergleich lacZ- mit IGF-I-Gruppe); * p < 0,001 (Vergleich lacZ- mit IGF-I/FGF-2-Gruppe)

Evaluation des an den Defekt angrenzenden Knorpels der medialen Femurkondyle anhand des Bewertungssystems nach Little

Hierbei ergaben sich keine signifikanten Unterschiede in den individuellen Kategorien. Es wurden keine signifikanten Unterschiede in dem angrenzenden Knorpel der osteochondralen Defekte in den medialen Femurkondylen nach Transplantation von *lacZ*-Sphäroiden verglichen mit IGF-I- oder IGF-I/FGF-2-Sphäroiden gesehen (Tabelle 27).

Kategorie	IGF-I Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Struktur Chondrozytendichte Zellklone Safranin-O-Färbung <i>Tidemark</i>	$6,40 \pm 2,67$ $3,40 \pm 0,91$ $3,00 \pm 1,00$ $2,93 \pm 1,03$ $2,73 \pm 0,46$	$7,60 \pm 2,53$ $3,47 \pm 0,83$ $3,67 \pm 0,72$ $3,67 \pm 0,72$ $2,80 \pm 0,41$	0,197 0,934 0,100 0,058 0,770
Gesamtpunkte	18,47 ± 5,48	21,20 ± 4.30	0,228

Tabelle 24: Ergebnisse Little Bewertungssystem mediale Femurkondylen IGF-I-Gruppe vs. *lacZ*-Gruppe

Kategorie	IGF-I/FGF-2 Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Struktur Chondrozytendichte Zellklone Safranin-O-Färbung <i>Tidemark</i>	$7,13 \pm 2,13 \\ 3,00 \pm 0,93 \\ 2,80 \pm 1,01 \\ 2,87 \pm 0,99 \\ 2,60 \pm 0,51$	$6,53 \pm 1,60$ 2,47 ± 1,06 2,60 ± 1,12 3,20 ± 1,01 2,33 ± 0,49	0,164 0,158 0,632 0,394 0,219
Gesamtpunkte	18,40 ± 3,46	17,13 ± 2,53	0,262

Tabelle 25: Ergebnisse Little Bewertungssystem mediale Femurkondylen IGF-I/FGF-2-Gruppe vs. *lacZ*-Gruppe

Abbildung 11: Darstellung der Ergebnisse des Evaluationssystems nach Little am medialen Femurkondylus.

p = 0,228 (Vergleich *lacZ*- mit IGF-I-Gruppe); p = 0,262 (Vergleich *lacZ*- mit IGF-I/FGF-2-Gruppe)

6.2.2 Trochlea

Evaluation von osteochondralen Defekten an Schnitten der Trochlea anhand des Bewertungssystems nach Sellers

Vergleich der Ergebnisse von lacZ- mit IGF-I-Sphäroiden in vivo

In den mit IGF-I-Sphäroiden behandelten Defekten ist der individuelle Wert für Integration des Reparaturgewebes, Anfärbbarkeit der Grundsubstanz, Zellmorphologie, Defektarchitektur, Oberflächenarchitektur und Wiederherstellung der *Tidemark* jeweils signifikant besser verglichen mit den Werten der Defekte, die mit *lacZ* behandelt wurden. Nach Summation aller individuellen Werte ist der Mittelwert der Gesamtpunktzahl der mit IGF-I-Sphäroiden behandelten Defekte signifikant besser als der Mittelwert der Gesamtpunktzahl der Defekte, die mit *lacZ*-Sphäroiden behandelt wurden (18,8 und 21,0 Punkte, bei P < 0,001, Tabelle 21).

Abbildung 12: Die Graphik zeigt die histologische Knorpelreparatur von osteochondralen Defekten der Trochlea 18 Wochen nach Transplantation von transfizierten Chondrozyten *in vivo*. Die Bilder A, C, E, G, I, K zeigen osteochondrale Defekte, die mit *lacZ* transfizierten Chondrozyten behandelt wurden. Die Bilder B, D, F, H, K, M zeigen osteochondrale Defekte, die mit IGF-I transfizierten Chondrozyten behandelt wurden. Die Präparate aus A bis D zeigen eine Safranin-O Färbung und die

eine Safranin-O Färbung und die Präparate Е bis н eine Hämatoxilin-Eosin Färbung. Die abschließenden Bilder I und K zeigen eine immunhistochemische Färbung monoklonaler Maus anti-human Typ-I-Kollagen Immunglobuline-G und die Bilder L und M zeigen immunhistochemische eine Färbung monoklonaler Maus antihuman Typ-II-Kollagen Immunglobuline-G.

Die Bilder A,B,E,F sind in der Orignalvergößerung x40 dargestellt. Die Vergrößerung der Bilder C,D,G,H,I,K,L,M beträgt x100. Maßstabsbalken: 2 mm (A und B) und 0.5 mm (C,D,G,H,I,K,L,M). C zeigt eine Vergrößerung aus A, D zeigt eine Vergrößerung aus B, G zeigt eine Vergrößerung aus E und H zeigt eine Vergrößerung aus F.

Kategorie	IGF-I Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Defektfüllung	0,56 ± 0,09	0,66 ± 0,09	0,430
Integration	1,18 ± 0,06	1,36 ± 0,06	0,043*
Matrixanfärbbarkeit mit Safranin-O	1,66 ± 0,08	1,88 ± 0,08	0,049*
Zellmorphologie	4,10 ± 0,10	4,42 ± 0,10	0,020*
Defektarchitektur ohne			
Berücksichtigung der Defektränder	2,34 ± 0,14	3,14 ± 0,14	<0,001*
Oberflächenarchitektur Fibrillationen	1,88 ± 0,09	$2,28 \pm 0,09$	0,003*
Subchondrale Knochenneubildung	$3,48 \pm 0,08$	$3,36 \pm 0,08$	0,280
Tidemark	$3,58 \pm 0,06$	$3,88 \pm 0,06$	<0,001*
Gesamtpunkte	18,78 ± 0,28	21,00 ± 0,28	<0,001*

Tabelle 26: Ergebnisse Sellers Bewertungssystem Trochleas IGF-I-Gruppe vs. *lacZ*-Gruppe

Vergleich der Ergebnisse von lacZ- mit IGF-I/FGF-2-Sphäroiden in vivo

In den mit IGF-I/FGF-2-Sphäroiden behandelten Defekten ist der individuelle Wert für Anfärbbarkeit der Grundsubstanz, Zellmorphologie und Defektarchitektur signifikant besser als der der mit *lacZ* behandelten Defekte. Nach Summation aller individuellen Werte stellte sich heraus, dass der Mittelwert der Gesamtpunktzahl für die mit IGF-I/FGF-2-Sphäroiden behandelten Defekte signifikant besser ist als der der mit *lacZ*-Sphäroiden behandelten Defekte (19,6 und 22,2 Punkte, bei P = 0,003, Tabelle 22).

Abbildung 13: Die Graphik zeigt histologische die Knorpelreparatur von osteochondralen Defekten der Trochlea 18 Wochen nach Transplantation von transfizierten Chondrozyten in vivo. Die Bilder A, C, E, G, I, K zeigen osteochondrale Defekte, die mit lacZ transfizierten Chondrozyten behandelt wurden. Die Bilder B, Η. D. F. K, Μ zeigen osteochondrale Defekte, die mit IGF-I /FGF-2 transfizierten Chondrozvten behandelt wurden. Die Präparate aus A bis D zeigen eine Safranin-O Färbung und die Е bis Präparate н eine Hämatoxilin-Eosin Färbung. Die abschließenden Bilder I und K zeigen eine immunhistochemische Färbung monoklonaler Maus anti-human Typ-I-Kollagen Immunglobuline-G und die Bilder L und M zeigen immunhistochemische eine Färbung monoklonaler Maus antihuman Typ-II-Kollagen Immunglobuline-G. Die Bilder A,B,E,F sind in der Orignalvergößerung x40 dargestellt. Die Vergrößerung der Bilder C,D,G,H,I,K,L,M beträgt

x100. Maßstabsbalken: 2 mm (Å und B) und 0,5 mm (C,D,G,H,I,K,L,M). C zeigt eine Vergrößerung aus A, D zeigt eine Vergrößerung aus B, G zeigt eine Vergrößerung aus E und H zeigt eine Vergrößerung aus F.

Kategorie	IGF-I/FGF-2 Sphäroide	lacZ Sphäroide	P-Wert
Defektfüllung	1,16 ± 0,19	1,64 ± 0,19	0,080
Integration	$1,74 \pm 0,12$	$1,72 \pm 0,12$	0,900
Matrixanfärbbarkeit mit Safranin-O	$1,38 \pm 0,09$	$1,96 \pm 0,09$	<0,001*
Zellmorphologie	$3,90 \pm 0,14$	$4,48 \pm 0,14$	0,003*
Defektarchitektur ohne			
Berücksichtigung der Defektränder	2,72 ± 0,13	3,58 ± 0,13	<0,001*
Oberflächenarchitektur Fibrillationen	$2,04 \pm 0,11$	$1,98 \pm 0,11$	0,700
Subchondrale Knochenneubildung	$3,00 \pm 0,13$	$3,00 \pm 0,13$	1,000
Tidemark	$3,68 \pm 0,08$	$3,84 \pm 0,08$	0,150
Gesamtpunkte	19,62 ± 0,60	22,20 ± 0,60	0,003*

Tabelle 27: Ergebnisse Sellers Bewertungssystem Trochleas IGF-I/FGF-2-Gruppe vs. *lacZ*-Gruppe

Abbildung 14: Darstellung der Ergebnisse des Evaluationssystems nach Sellers an Trochleas.

Mit * markierte Werte weisen einen signifikanten Unterschied zu der jeweiligen Kontrollgruppe (*lacZ*-Gruppe) auf.

* p < 0,001 (Vergleich lacZ- mit IGF-I-Gruppe); * p = 0,003 (Vergleich lacZ- mit IGF-I/FGF-2-Gruppe)

Evaluation von osteochondralen Defekten an Schnitten der Trochlea anhand des Bewertungssystems nach Pineda

Vergleich der Ergebnisse von lacZ- mit IGF-I-Sphäroiden in vivo

In den mit IGF-I-Sphäroiden behandelten Defekten ist der individuelle Wert für Anfärbbarkeit der Grundsubstanz und Zellmorphologie signifikant besser verglichen mit den Werten der Defekte, die mit *lacZ* behandelt wurden. Nach Summation aller individuellen Werte ist der Mittelwert der Gesamtpunktzahl der mit IGF-I-Sphäroiden behandelten Defekte signifikant besser als der Mittelwert der Gesamtpunktzahl der Defekte, die mit *lacZ*-Sphäroiden behandelt wurden (5,5 und 6,5 Punkte, bei P = 0,003, Tabelle 25).

Kategorie	IGF-I Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Defektfüllung Integration Matrixanfärbbarkeit mit Safranin-O Zellmorphologie	$0,56 \pm 0,50$ $0,28 \pm 0,54$ $1,58 \pm 0,54$ $3,10 \pm 0,65$	$0,58 \pm 0,70$ $0,54 \pm 0,68$ $1,86 \pm 0,57$ $3,48 \pm 0,68$	0,780 0,075 0,038 0,007*
Gesamtpunkte	5,52 ± 1,30	6,46 ± 1,30	0,003*

Tabelle 28: Ergebnisse Pineda Bewertungssystem Trochleas IGF-I-Gruppe vs. lacZ-Gruppe

Vergleich der Ergebnisse von lacZ- mit IGF-I/FGF-2-Sphäroiden in vivo

In den mit IGF-I/FGF-2-Sphäroiden behandelten Defekten ist der individuelle Wert für Defektfüllung, Integration des Reparaturgewebes, Anfärbbarkeit des Reparaturgewebes und Zellmorphologie signifikant besser als der der mit *lacZ* behandelten Defekte. Nach Summation aller individuellen Werte stellte sich heraus, dass der Mittelwert der Gesamtpunktzahl für die mit IGF-I/FGF-2- Sphäroiden behandelten Defekte signifikant besser ist als der der mit *lacZ*-Sphäroiden behandelten Defekte (5,6 und 7,9 Punkte, bei P < 0,001, Tabelle 26).

Kategorie	IGF-I/FGF-2 Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Defektfüllung Integration Matrixanfärbbarkeit mit Safranin-O Zellmorphologie	$1,16 \pm 1,46 \\ 0,12 \pm 0,33 \\ 1,38 \pm 0,57 \\ 2,98 \pm 0,98$	$\begin{array}{c} 1,64 \pm 1,24 \\ 0,76 \pm 0,72 \\ 1,96 \pm 0,75 \\ 3,58 \pm 0,67 \end{array}$	0,011* <0,001* <0,001* 0,003*
Gesamtpunkte	5,64 ± 2,27	7,94 ± 2,31	<0,001*

Tabelle 29: Ergebnisse Pineda Bewertungssystem Trochleas IGF-I/FGF-2-Gruppe vs. *lacZ*-Gruppe

Abbildung 15: Darstellung der Ergebnisse des Evaluationssystems nach Pineda an Trochleas.

Mit * markierte Werte weisen einen signifikanten Unterschied zu der jeweiligen Kontrollgruppe (*lacZ*-Gruppe) auf.

* p = 0,003 (Vergleich lacZ-mit IGF-I-Gruppe); * p < 0,001 (Vergleich lacZ-mit IGF-I/FGF-2-Gruppe)

Evaluation von arthrotischen Veränderungen der Trochlea anhand des Bewertungssystems nach Little

Vergleich der Ergebnisse von lacZ- mit IGF-I-Sphäroiden in vivo

Die individuellen Kategorien Struktur, Chondrozytendichte, Zellklone, Safranin-O-Färbung und *Tidemark* sind signifikant schlechter bei den mit *lacZ*-Sphäroiden behandelten Defekten verglichen mit denen, die mit IGF-I-Sphäroiden behandelt wurden. Die arthrotischen Veränderungen sind im angrenzenden Knorpel im Vergleich zu den osteochondralen Defekten in der Summe nach Transplantation von *lacZ*-Sphäroiden signifikant schlechter (15,8 Punkte) als nach Transplantation von IGF-I-Sphäroiden (9,9; P < 0,001).

Kategorie	IGF-I Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Struktur Chondrozytendichte Zellklone Safranin-O-Färbung <i>Tidemark</i>	$\begin{array}{c} 2,27 \pm 1,39 \\ 1,93 \pm 0,59 \\ 1,93 \pm 0,88 \\ 2,13 \pm 0,92 \\ 1,67 \pm 0,62 \end{array}$	$4,93 \pm 2,02$ $2,60 \pm 0,74$ $2,93 \pm 1,16$ $3,00 \pm 0,76$ $2,33 \pm 0,49$	0,001* 0,013* 0,026* 0,026* 0,013*
Gesamtpunkte	9,93 ± 2,43	15,80 ± 3,23	<0,001*

Tabelle 30: Ergebnisse Little Bewertungssystem Trochleas IGF-I-Gruppe vs. lacZ-Gruppe

Vergleich der Ergebnisse von lacZ- mit IGF-I/FGF-2-Sphäroide in vivo

Die individuellen Kategorien Zellklone (P=0,008), Safranin-O-Färbung (P=0,003) und *Tidemark* (P=0,002) sind signifikant schlechter bei den mit *lacZ*-Sphäroid behandelten Defekten verglichen mit denen, die mit IGF-I/FGF-2-Sphäroiden behandelt wurden. Die arthrotischen Veränderungen im angrenzenden Knorpel sind im Vergleich zu den osteochondralen Defekten in der Summe nach Transplantation von *lacZ*-Sphäroiden signifikant schlechter (16,1 Punkte) als nach Transplantation von IGF-I/FGF-2-Sphäroiden (11.4; P = 0,007).

Tabelle 31: Ergebnisse Little Bewertungssystem Trochleas IGF-I/FGF-2-Gruppe vs. *lacZ*-Gruppe

Kategorie	IGF-I/FGF-2 Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Struktur Chondrozytendichte Zellklone Safranin-O-Färbung <i>Tidemark</i>	$\begin{array}{c} 3,27 \pm 2,22 \\ 2,13 \pm 0,64 \\ 2,13 \pm 1,06 \\ 2,33 \pm 0,72 \\ 1,53 \pm 0,74 \end{array}$	$\begin{array}{c} 4,60 \pm 3,02 \\ 2,27 \pm 0,59 \\ 3,33 \pm 1,05 \\ 3,33 \pm 0,90 \\ 2,60 \pm 0,74 \end{array}$	0,180 0,632 0,008* 0,003* 0,002*
Gesamtpunkte	11,40 ± 3,74	16,13 ± 5,14	0,007*

Abbildung 16: Darstellung der Ergebnisse des Evaluationssystems nach Little an Trochleas. Mit * markierte Werte weisen einen signifikanten Unterschied zu der jeweiligen Kontrollgruppe (*lacZ*-Gruppe) auf.

* p < 0,001 (Vergleich lacZ-mit IGF-I-Gruppe); * p = 0,007 (Vergleich lacZ-mit IGF-I/FGF-2-Gruppe)

6.3 Immunhistologische Evaluation

Evaluation der Immunhistochemischen Typ-I/II-Kollagen-Färbungen.

6.3.1 Mediale Femurkondyle

Semiquantitatives Immunhistochemisches Bewertungssystem evaluiert an Schnitten der medialen Femurkondyle

In den mit IGF-I-Sphäroiden, sowie in den mit IGF-I/FGF-2-Sphäroiden behandelten Defekten sieht man eine Immunreaktion bei den Typ-I- und bei den Typ-II-Kollagen gefärbten Schnitten. Aufgrund der geringen Differenz zwischen allen verglichenen Gruppen kann kein signifikanter Unterschied zwischen den Bereichen der osteochondralen Defekte und dem jeweiligen angrenzenden Knorpel ausgemacht werden.

Tabelle 32: Typ-I-Kollagen Bewertungssystem mediale Femurkondylen IGF-I-Gruppe vs. *lacZ*-Gruppe

Kategorie	IGF-I Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Immunreaktivität im Reparaturgewebe	2,60 ± 0,55	2,60 ± 0,55	1,000

Tabelle 33: Typ-I-Kollagen Bewertungssystem mediale Femurkondylen IGF-I/FGF-2-Gruppe vs. *lacZ*-Gruppe

Kategorie	IGF-I/FGF-2 Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Immunreaktivität im Reparaturgewebe	$2,80 \pm 0,45$	2,60 ± 0,55	0,242

Abbildung 17: Darstellung der Ergebnisse des semiquantitativen Bewertungssystems für Typ-I-Kollagen an medialen Femurkondylen.

p = 1,000 (Vergleich *lacZ*- mit IGF-I-Gruppe); p = 0,242 (Vergleich *lacZ*- mit IGF-I/FGF-2-Gruppe)

Tabelle 34: Typ-II-Kollagen Bewertungssystem mediale Femurkondylen IGF-I-Gruppe vs. *lacZ*-Gruppe

Kategorie	IGF-I Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Immunreaktivität im Reparaturgewebe	2,20 ± 1,10	3,00 ± 0,71	0,310

Tabelle 35: Typ-II-Kollagen Bewertungssystem mediale Femurkondylen IGF-I/FGF-2-Gruppe vs. *lacZ*-Gruppe

Kategorie	IGF-I/FGF-2 Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Immunreaktivität im Reparaturgewebe	$2,80 \pm 0,84$	$3,40 \pm 0,55$	0,217

Abbildung 18: Darstellung der Ergebnisse des semiquantitativen Bewertungssystems für Typ-II-Kollagen an medialen Femurkondylen.

p = 0,310 (Vergleich *lacZ*- mit IGF-I-Gruppe); *p* = 0,217 (Vergleich *lacZ*- mit IGF-I/FGF-2-Gruppe)

6.3.2 Trochlea

Semiquantitatives Immunhistochemisches Bewertungssystem evaluiert an Schnitten der Trochlea

In den mit IGF-I-Sphäroiden, sowie in den mit IGF-I/FGF-2-Sphäroiden behandelten Defekten sah man eine Immunreaktion bei den Typ-I- und den Typ-II-Kollagen gefärbten Schnitten. Aufgrund der geringen Differenz zwischen allen verglichenen Gruppen konnte jedoch kein signifikanter Unterschied zwischen den Bereichen der osteochondralen Defekte und dem jeweiligen angrenzenden Knorpel ausgemacht werden.

Tabelle 36: Typ-I-Kollagen Bewertungssystem Trochleas IGF-I-Gruppe vs. lacZ-Gruppe

Kategorie	IGF-I Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Immunreaktivität im Reparaturgewebe	3,40 ± 0,55	$3,40 \pm 0,89$	0,841

• •			
Kategorie	IGF-I/FGF-2 Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Immunreaktivität im Reparaturgewebe	$2,40 \pm 0,55$	2,75 ± 0,50	0,356

Tabelle 37: Typ-I-Kollagen Bewertungssystem Trochleas IGF-I/FGF-2-Gruppe vs. *lacZ*-Gruppe

Abbildung 19: Darstellung der Ergebnisse des semiquantitativen Bewertungssystems für Typ-I-Kollagen an Trochleas.

p = 0,841 (Vergleich *lacZ*- mit IGF-I-Gruppe); p = 0,356 (Vergleich *lacZ*- mit IGF-I/FGF-2-Gruppe)

Tabelle 38: Typ-II-Kollagen Bewertungssystem Trochleas IGF-I-Gruppe vs. lacZ-Gruppe

Kategorie	IGF-I Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Immunreaktivität im Reparaturgewebe	1,00 ± 1,41	$0,20 \pm 0,45$	0,548

Tabelle 39: Typ-II-Kollagen Bewertungssystem Trochleas IGF-I/FGF-2-Gruppe vs. *lacZ*-Gruppe

Kategorie	IGF-I/FGF-2 Sphäroide MW ± SD	<i>lacZ</i> Sphäroide MW ± SD	P-Wert
Immunreaktivität im Reparaturgewebe	1,20 ± 1,64	$0,25 \pm 0,50$	0,556

Abbildung 20: Darstellung der Ergebnisse des semiquantitativen Bewertungssystems für Typ-II-Kollagen an Trochleas.

p = 0,548 (Vergleich *lacZ*- mit IGF-I-Gruppe); p = 0,556 (Vergleich *lacZ*- mit IGF-I/FGF-2-Gruppe)

6.4 Vergleich der Defektreparatur von osteochondralen Defekten unter Behandlung mit IGF-I-Sphäroiden im Gegensatz zu der Behandlung mit IGF-I/FGF-2-Sphäroiden

Tabelle 40: Differenz der Summenwerte der IGF-I- und lacZ-Gruppen im Sellers Bewertungssystem

Kategorie	IGF-I Sphäroide MW ± SE	<i>lacZ</i> Sphäroide MW ± SE	mittlere Differenz
Mediale Femurkondyle Gesamtpunkte	24,12 ± 0,55	27,28 ± 0,55	-3,16
Trochlea Gesamtpunkte	18,78 ± 0,28	21,00 ± 0,28	-2,22

Tabelle 41: Differenz der Summenwerte der IGF-I/FGF-2- und lacZ-Gruppen im Sellers Bewertungssystem

Kategorie	IGF-I/FGF-2 Sphäroide MW ± SE	<i>lacZ</i> Sphäroide MW ± SE	mittlere Differenz
Mediale Femurkondyle Gesamtpunkte	19,12 ± 0,42	23,66 ± 0,42	-4,54
Trochlea Gesamtpunkte	19,62 ± 0,60	22,20 ± 0,60	-2,58

Die mit IGF-I/FGF-2-Sphäroiden behandelten osteochondralen Defekte sind numerisch immer besser als die Defekte, die nur mit IGF-I-Sphäroiden behandelt wurden. Die durchschnittliche Differenz der Gesamtsummen der behandelten Knorpeldefekte betragen mit IGF-I/FGF-2 = 4,54 zu IGF-I = 3,16 in der medialen Femurkondyle und IGF-I/FGF-2 = 2,58 zu IGF-I = 2,22 in den behandelten Knorpeldefekten der Trochlea jeweils im Vergleich mit der jeweiligen Kontrollgruppe.

Tabelle 42: Differenz der Summenwerte der IGF-I- und lacZ-Gruppen im Pineda Bewertungssystem

Kategorie	IGF-I Sphäroide MW ± SE	<i>lacZ</i> Sphäroide MW ± SE	mittlere Differenz
Mediale Femurkondyle Gesamtpunkte	8,36 ± 3,47	10,54 ± 2,76	-2,18
Trochlea Gesamtpunkte	5,52 ± 1,30	6,46 ± 1,30	-0,94

Kategorie	IGF-I/FGF-2 Sphäroide MW ± SE	<i>lacZ</i> Sphäroide MW ± SE	mittlere Differenz
Mediale Femurkondyle Gesamtpunkte	4,26 ± 1,44	6,62 ± 1,65	-2,36
Trochlea Gesamtpunkte	5,64 ± 2,27	7,94 ± 2,31	-2,30

Tabelle 43: Differenz der Summenwerte der IGF-I/FGF-2- und lacZ-Gruppen im Pineda Bewertungssystems

Die mit IGF-I/FGF-2-Sphäroiden behandelten osteochondralen Defekte sind numerisch immer besser als die Defekte, die nur mit IGF-I-Sphäroiden behandelt wurden. Die durchschnittliche Differenz der Gesamtsummen der behandelten Knorpeldefekten betragen mit IGF-I/FGF-2 = 2,36 zu IGF-I = 2,18 in der medialen Femurkondyle und IGF-I/FGF-2 = 2,30 zu IGF-I = 0,94 in den behandelten Knorpeldefekten der Trochlea jeweils im Vergleich mit der jeweiligen Kontrollgruppe.

6.5 Vergleich der Defektreparatur von osteochondralen Defekten zwischen medialer Femurkondyler und Trochlea

Kategorie	Mediale Femurkondyle	Trochlea	P-Wert
	MW ± SD	MW ± SD	
Defektfüllung	2,28 ± 0,20	0,56 ± 0,09	<0,001*
Integration	2,34 ± 0,11	1,18 ± 0,06	<0,001*
Matrixanfärbbarkeit mit Safranin-O	1,54 ± 0,16	1,66 ± 0,08	0,450
Zellmorphologie	$4,10 \pm 0,11$	4,10 ± 0,10	1,000
Defektarchitektur ohne			
Berücksichtigung der Defektränder	3,58 ± 0,10	2,34 ± 0,14	<0,001*
Oberflächenarchitektur Fibrillationen	2,78 ± 0,07	1,88 ± 0,09	<0,001*
Subchondrale Knochenneubildung	$3,56 \pm 0,08$	$3,48 \pm 0,08$	0,460
Tidemark	$3,94 \pm 0,03$	$3,58 \pm 0,06$	<0,001*
Gesamtpunkte	24,12 ± 0,55	18,78 ± 0,28	<0,001*

Tabelle 44: Vergleich der IGF-I-Gruppen zwischen medialer Femurkondyle und Trochlea anhand des Sellers Bewertungssystems

Tabelle 45: Vergleich der IGF-I/FGF-2 Gruppen zwischen medialer Femurkondyle und Trochlea anhand des Sellers Bewertungssystems

Kategorie	Mediale Femurkondyle	Trochlea	P-Wert
	MW ± SD	MW ± SD	
Defektfüllung	$0,76 \pm 0,14$	$1,74 \pm 0,14$	0,090
Matrixanfärbbarkeit mit Safranin-O	$2,38 \pm 0,11$ 1,18 ± 0,13	$2,62 \pm 0,11$ 1,96 ± 0,13	<0,001* 0,050*
Zellmorphologie Defektarchitektur ohne	2,76 ± 0,10	3,86 ± 0,10	<0,001*
Berücksichtigung der Defektränder	$3,66 \pm 0,07$	$3,88 \pm 0,07$	<0,001*
Oberflächenarchitektur Fibrillationen	$2,44 \pm 0,08$	$2,88 \pm 0,08$	0,007*
Subchondrale Knochenneubildung	$2,24 \pm 0,08$	$2,90 \pm 0,08$	<0,001*
Tidemark	$3,70 \pm 0,06$	$3,82 \pm 0,06$	0,860
Gesamtpunkte	19,12 ± 0,42	23,66 ± 0,42	0,530

Hierbei zeigt sich, dass in den Knorpeldefekten die mit IGF-I-Sphäroiden behandelt wurden die Defekte der Trochlea eine signifikant bessere Knorpelreparatur zeigen als die der medialen Femurkondyle.

Bei den mit IGF-I/FGF-2-Sphäroiden behandelten Knorpeldefekten zeigte sich kein signifikanter Unterschied zwischen der Knorpelreparatur der medialen Femurkondyle und der Trochlea.

7. Diskussion

Die Therapie osteochondraler Defekte ist ein weiterhin ungelöstes Problem. Die Daten der vorliegenden Studie zeigen, dass die osteochondrale Reparatur nach Transplantation von Alginatsphäroiden, welche IGF-I-oder IGF-I/FGF-2-überexprimierende Chondrozyten beinhalten, signifikant besser im Vergleich zu den jeweiligen Kontrollgruppen ist. Die Daten zeigen weiterhin, dass diese signifikante Verbesserung der osteochondralen Reparatur durch derartigen ex vivo Gentransfer jeweils für die mediale Femurkondyle als auch für die Trochlea femoris gilt. Desweiteren ist die Knorpelreparatur in der Trochlea in allen histologische Untersuchungsgruppen immer besser als in der medialen Femurkondyle. Obwohl die mit IGF-I/FGF-2-Sphäroiden behandelten Defekte numerisch bessere Ergebnisse zeigen als Defekte die mit IGF-I-Sphäroiden behandelt dieser Unterschied wurden ist statistisch nicht signifikant. Bemerkenswerterweise verringerte sowohl die Implantation von IGF-I- als auch von IGF-I/FGF-2-Sphäroiden signifikant arthrotische Veränderungen des an die Defekte angrenzenden Knorpels in der Trochlea im Vergleich zur Kontrollgruppe, die mit *lacZ*-Sphäroiden behandelt wurden.

(1) Die osteochondrale Reparatur ist nach Transplantation von Alginatsphäroiden, welche IGF-I- oder IGF-I/FGF-2-überexprimierende Chondrozyten beinhalten, signifikant besser im Vergleich mit den jeweiligen Kontrollgruppen.

7.1 Evaluation der osteochondralen Reparatur

Die makroskopische Evaluation zeigte bereits einen signifikanten Unterschied beim Vergleich der Qualität des knorpeligen Reparaturgewebes von Defekten, die mit IGF-I/FGF-2 behandelt wurden, im Vergleich zu der *lacZ*-Kontrolle im Bereich der Trochlea. Die signifikanten Unterschiede wurden in den Kategorien Knorpelreparatur und Integration festgestellt.

Die histologische Evaluation der Gelenkknorpeldefektreparatur nach Sellers zeigte, dass alle Gelenkknorpeldefekte der Gruppen der medialen Femurkondylen und Trochleas, die mit den therapeutischen Faktoren IGF-I oder IGF-I/FGF-2 behandelt wurden, gegenüber ihren jeweiligen Kontrollgruppen (*lacZ*-Sphäroide) eine signifikant bessere Knorpelreparatur

aufwiesen. Die histologische Evaluation der Gelenkknorpeldefektreparatur nach Pineda ergab, dass alle Gelenkknorpeldefekte der Gruppen der medialen Femurkondylen und Trochleas, die mit IGF-I oder IGF-I/FGF-2 behandelt wurden gegenüber ihren jeweiligen Kontrollgruppen, die mit lacZ-Sphäroiden behandelt wurden eine signifikant bessere Knorpelreparatur besitzen. Diese Ergebnisse bestätigen die von uns gewonnenen Ergebnisse des Seller und Pineda Bewertungssystems und unterstreichen die Validität beider Bewertungssysteme. Diese Ergebnisse bestätigen die Beobachtungen, die in vorausgegangenen Studien gemacht wurden (Madry et al. 2002, Fukumoto et al. 2003, Takahashi et al. 2005, Madry et al. 2005, Kaul et al. 2006, Madry et al. 2007). In einer Studie von Orth et al. 2012 wurden fünf der meisten verwendeten histologischen am Bewertungssysteme unter anderem in Hinsicht auf ihre Zuverlässigkeit, Reproduzierbarkeit und Validität in Bezug auf das klinische Ergebnis des Knorpelzustandes bewertet. Darunter waren auch die in der vorliegenden Studie verwendeten Pineda und Sellers Bewertungssysteme. Diese Studie zeigt, dass diese histologischen Bewertungssysteme mit dem klinischen Zustand des Knorpels korrelieren und somit geiegnet sind den Zustand hyalinen Knorpels zu quantifizieren und zu bewerten. In der Gruppe der osteochondralen Defekte der medialen Femurkondylen waren die mit IGF-I oder IGF-I/FGF-2 behandelten Knorpeldefekte numerisch immer besser, als die jeweiligen Kontrollgruppen (*lacZ*-Sphäroide). Ein signifikanter Unterschied zeigte sich hierbei nicht.

Der Vergleich der Defektreparatur von osteochondralen Defekten unter Behandlung von IGF-I-Sphäroiden im Gegensatz zu der Behandlung mit IGF-I/FGF-2-Späroiden zeigt, dass die mit IGF-I/FGF-2-Sphäroiden behandelten osteochondralen Defekte numerisch immer besser sind als die Defekte, die nur mit IGF-I-Sphäroiden behandelt wurden. Dieser Unterschied war statistisch nicht signifikant. Dieser Befund spiegelt die Ergebnisse der meisten vorausgegangenen Studien wieder (Fukumoto *et al.* 2003, Takahashi *et al.* 2005, Madry *et al.* 2005, Lan *et al.* 2006, Madry *et al.* 2007, Cucchiarini *et al.* 2016, Zhang *et al.* 2017).
7.2 Die humanen Wachstumsfaktoren IGF-I und FGF-2

In der von uns durchgeführten tierexperimentellen Studie verwendeten wir die Wachstumsfaktoren IGF-I und FGF-2. IGF-I kann die strukturellen und funktionellen Eigenschaften von ex vivo synthetisiertem Knorpelgewebe verbessern (Madry et al. 2002, Madry et al. 2007). Es wurde gezeigt, dass das IGF-I-Protein durch eine intraartikuläre Injektion (Rogachefsky et al. 1993), durch eine Verabreichung in einem Fibrin-Thrombus (Hunziker und Rosenberg 1996, Nixon et al. 1999), verabreicht in einem Gelatine-Schwamm (Alemdar et al. 2016) oder verabreicht in einem Kollagengel (Tuncel et al. 2005) zu einer global verbesserten Knorpelreparatur führt. Arbeitsgruppen implantierten modifizierte Verschiedene Zellen in Knorpeldefekte (Madry et al. 2005, Goodrich et al. 2007) und erreichten eine lokale Überxepression von IGF-I. Das neu entstandene Reparaturgewebe wies verbesserte histologische Eigenschaften auf, jedoch zeigten darauffolgende biomechanische Studien, dass das Reparaturgewebe mechanischen Belastungen auf Dauer nicht gewachsen war und auch degenerativen Prozessen unterlag (Kaplan et al. 2003, Gratz et al. 2006). Das gleiche Ergebnis zeigte sich auch bei IGF-I-Protein behandelten osteochondralen Defekten (Strauss et al. 2005). Auch an osteochondralen Defekten wurde der positive Effekt auf die Knorpelreparatur durch die Überexpression des Proteins FGF-2 deutlich (Yokoo et al. 2005, Kaul et al. 2006). Die Wachtumsfaktoren IGF-I und FGF-2 haben eine synergistische Wirkung auf Zellen des Stütz- und Bewegungsapparates. Kombiniert appliziert verstärken sie die Neubildung von Knochen (Lan et al. 2006), die Differenzierung von Stammzellen (Steinert et al. 2008) und die Myogenese (Pirskanen et al. 2000). Die Kombination der Wachstumsfaktoren IGF-I und FGF-2 hat einen positiven Effekt auf die Proliferation von Chondrozyten (Chaipinyo et al. 2002, Fukumoto et al. 2003, Takahashi et al. 2005). Die Ergebnisse der vorliegenden Arbeit bestätigen die vorausgegangenen Aussagen. Eine mögliche Erklärung hierfür ist, dass das IGF-I-Protein eine zeit- und dosisabhängige Expression eines FGF-2-Rezeptors anregt. Dadurch sprechen die Chondrozyten vermehrt auf FGF-2 an. Dies unterstützt die Hypothese, dass die Kombination der Wachstumsfaktoren IGF-I und FGF-2 einen positiven Effekt auf die Proliferation von Chondrozyten hat, wie es auch unsere Studie zeigt. Eine andere Studie beschrieb jedoch eine gegenseitige Hemmung der proliferativen anabolen Eigenschaften der Wachstumsfaktoren IGF-I und FGF-2 (Russo et al. 2004). Eine weitere Studie zeigte, dass FGF-2 das Überleben von verkapselten Chondrozyten nicht verbessert und die Wirkung von IGF-I signifikant hemmt (Loeser et al. Studien wurde 2005). In den meisten der Synergismus der Wachstumsfaktoren IGF-I und FGF-2 nachgewiesen. Eine Studie von Shi et al. (2012) beschreibt, dass zur effektiven Knorpelreparatur mehrere Wachstumsfaktoren zusammen nötig sind. Fortier et al. (2002) verbesserten biochemische Parameter der Chondrogenese durch die Implantation eines mit IGF-I-Protein angereicherten Fibrin-Chondrozyten-Gemisches. Madry et al. (2005) beobachtete eine signifikante Verbesserung der Knorpelreparatur nach Implantation von transfizierten Chondrozyten mit dem Gen für IGF-I in Kaninchenkniegelenken nach drei und vierzehn Wochen gegenüber der lacZ-Kontrollgruppen. Die Arbeit von Kaul et al. (2006) kam zu dem gleichen Ergebnis und hatte das gleiche Studiendesign wie die der kurz zuvor beschriebenen Studie von Madry et al. (2005). Der Unterschied lag darin, dass anstelle des Wachstumsfaktors IGF-I der Wachstumsfaktor FGF-2 verwendet wurde. Auch die Studie von Zhang et al. (2017) kam unter Applikation von IGF-I in unterschiedlichen Dosen zu einer verbesserten Knorpelreparatur im Kaninchenmodell. In der Arbeit von Yokoo et al. (2005) wurden AAV-transduzierte Chondrozyten in einem Typ-I-Kollagen-Gel transplantiert. Auch in dieser Studie wurden durch das Bewertungssystem nach Wakitani et al. (1994) für die FGF-2 Gruppe bessere Resultate beobachtet als für die Kontrollgruppe. Gelse et al. (2003) beobachten eine verbesserte Knorpelreparatur bei kombinierter Applikation von zwei Wachstumsfaktoren IGF-I und BMP-2 als bei der Applikation eines Wachstumfaktors alleine. Diese Studien unterstreichen die Wirkung von IGF-I und FGF-2 als therapeutische Faktoren in der Behandlung von fokalen Gelenkknorpeldefekten, wie es auch die vorliegende Studie belegt. Die aktuellen Daten zeigen eine signifikant verbesserte Knorpelreparatur nach Implantation von IGF-I- bzw. IGF-I/FGF-2-Sphäroiden im Gegensatz zu den mit *lacZ*-Sphäroiden behandelten Kontrollgruppen.

7.3 Immunhistochemische Evaluation des Reparaturgewebes

Die immunhistochemische Evaluation des Reparaturgewebes zeigte keine signifikanten Unterschiede zwischen den mit IGF-I bzw. mit IGF-I/FGF-2 behandelten Defekten der Trochlea oder der medialen Femurkondylen und deren jeweiligen Kontrollgruppen hinsichtlich der Immunreaktivität für Typ-Ioder Typ-II-Kollagen. In einer früheren Studie wurde hingegen eine FGF-2bedingte Abnahme der Immunreaktivität des Reparaturgewebes im Defekt auf Typ-I-Kollagen beobachtet (Kaul et al. 2006). In vorangegangenen Studien wurde bereits eine in vitro FGF-2-induzierte Stimulation der Typ-II-Kollagensynthese nachgewiesen (Veilleux und Spector 2005). Dies wurde auch in vivo bestätigt (Kaul et al. 2006). Dieser Effekt wird für IGF-I in verschiedenen Studien konträr diskutiert. In vitro beobachtete man in zwei vergangenen Studien ein stimulierenden Effekt des therapeutischen Faktors IGF-I auf die Typ-II-Kollagensynthese (Fortier et al. 2002, Capito und Spector 2007). In vivo liegen hierzu konträre Befunde vor (Madry et al. 2005, Goodrich et al. 2007). Sowohl in unbehandelten, als auch in behandelten Gelenkknorpeldefekten war eine spontane Zunahme von Typ-II-Kollagen über 14 Wochen zu beobachten (Madry et al. 2005, Kaul et al. 2006). Dies konnten wir in der vorliegenden Arbeit nicht bestätigen. Mögliche Ursachen könnten ein anderes gewähltes Tiermodell, ein längerer postoperativer Zeitraum, die Unterschiedlichkeit der Tiere untereinander oder der unterschiedlich gewählte Belastungsumfang sein.

7.4 Applikation von *ex vivo*-transfizierten Zellen mit Hilfe von Alginatsphäroiden

Anhand von *ex vivo*-transfizierter Chondrozyten werden die neu gebildeten Faktoren kontinuierlich nach der Transgenexpression in den Knorpeldefekt abgegeben. Dadurch wird ein kontinuierlich signifikanter Wirkspiegel innerhalb des Reparaturgewebes aufrechterhalten und initiale Konzentrationsspitzen im Gelenk können so verhindert werden, wie sie nach intraartikulärer Injektion der Wachstumsfaktoren beobachtet werden (Sellers *et al.* 2000). Hierbei ist die Lokalisation der transfizierten Chondrozyten im Defekt essentiell, da sich nach freier intraartikulärer Injektion von adenoviral IGF-I transduzierten Zellen keine Verbesserung der Defektmorphologie des Gelenkknorpels feststellen lies (Gelse *et al.* 2001). Dagegen war die Gelenkknorpelreparatur signifikant besser als die transfizierten Zellen mithilfe eines Fibrinklebers direkt in den Knorpeldefekt transplantiert wurden (Gelse *et al.* 2003). Daraus lässt sich schließen, dass bei der Behandlung fokaler Knorpeldefekte die gezielte Transplantation transfizierter Zellen in die Gelenkknorpeldefekte der intraartikulären Injektion therapeutischer Faktoren überlegen ist (Cucchiarini und Madry *et al.* 2005). In Zukunft wird es auch hier die Aufgabe sein weitere Trägersubstanzen zu erforschen und zu finden. Wie Beispielsweise in einer aktuellen Studie von Shah *et al.* (2016) die synthetische elektrostatische Partikel im Nanobereich als Trägersubstanz für Wachstumsfaktoren verwenden.

(2) Die signifikante Verbesserung der osteochondralen Reparatur durch *ex-vivo* Gentransfer findet sich jeweils für die mediale Femurkondyle als auch für die Trochlea femoris.

Desweiteren ist die histologische Knorpelreparatur in der Trochlea in allen Untersuchungsgruppen immer besser als in der medialen Femurkondyle. Obwohl die mit IGF-I/FGF-2-Sphäroiden behandelten Defekte numerisch bessere Ergebnisse als Defekte, die mit IGF-I-Sphäroiden behandelt wurden, zeigen, ist dieser Unterschied statistisch nicht signifikant.

(3) Die Implantation von IGF-I- und IGF-I/FGF-2-Sphäroiden verringert signifikant arthrotische perifokale Veränderungen in der Trochlea im Vergleich zu den Kontrollgruppen.

Das Ziel ist. einen wirkungsvollen Heilungsansatz die gegen Knorpeldegeneration zu finden. Hierfür ist es essentiell wichtig, die Arthrose in frühen Stadien zu erkennen. Studien zeigen, dass sich bereits in der Frühphase der Arthrose der umliegende Knorpel Veränderungen unterzieht und seine Integrität verloren geht. Eine ebenso wichtige Rolle spielt die subchondrale Knochenplatte, die sich im Prozess der beginnenden Arthrose verbreitert (Madry et al. 2016). Dadurch ist es sehr wichtig, bei der Arthrose den umliegenden Knorpel zu untersuchen und dies mit einem Bewertungssystem zu quantifizieren (Angele et al. 2016). Ein histologisch im

Schafsmodell gut dokumentiertes Berwertungssystem hierfür ist das Bewertungssystem nach Little (Little et al. 1997, Sidler et al. 2013). Das in der vorliegenden Studie verwendete Bewertungssystem nach Little beurteilt den an die Gelenkknorpeldefekte angrenzenden Knorpel. Die Daten zeigen, dass alle Gelenkknorpeldefekte der Gruppe der Trochleas, die mit IGF-I oder IGF-I/FGF-2 behandelt wurden gegenüber ihren jeweiligen Kontrollgruppen, die mit lacZ-Sphäroiden behandelt wurden eine signifikant bessere Knorpelreparatur besitzen. In der Gruppe der IGF-I-Sphäroide stellte sich ein signifikanter Unterschied in den Kategorien Struktur, Chondrozytendichte, Zellklone, Safranin-O-Färbung und Tidemark heraus. In der Gruppe der IGF-I/FGF-2 Sphäroide stellten sich die signifikanten Unterschiede in den Kategorien Zellklone, Safranin-O-Färbung und Tidemark heraus. In der IGF-I Gruppe im Vergleich zu der IGF-I/FGF-2-Gruppe stellten sich in zwei Kategorien, Struktur und Chondrozytendichte, zwei signifikante Unterschiede mehr fest. Daraus resultiert eine signifikant verbesserte Knorpelreparatur des angrenzenden Knorpels, wie es in anderen Studien und Tiermodellen bereits beschrieben wurde (Zhang et al. 2017). In der Gruppe der medialen Femurkondylen waren die Defekte mit IGF-I-Sphäroiden gegenüber der Kontrollgruppen numerisch immer besser, jedoch statistisch nicht signifikant.

7.5 Limitationen und methodische Einschränkungen der vorliegenden Studie

7.5.1 Großtiermodell

Für die vorliegende Studie wurden Merinoschafe als Großtiermodell (Aigner *et al.* 2010, Chevrier *et al.* 2015) für osteochondrale Defekte ausgewählt. In den subchondralen Defekten hat das Defektareal Anschluss an die subchondrale Knochenplatte, wodurch Zellen des Knochenmarks in die Läsion migrieren können. Gleichzeitig können die Wachstumsfaktoren IGF-I und FGF-2 die chondrogene Differenzierung von Zellen aus dem Knochenmark stimulieren (Frenz *et al.* 1994, Nixon *et al.* 1999, Fujimoto *et al.* 1999). Dadurch kann die von uns beobachtete verbesserte Knorpelreparatur auf den Einfluss der Wachstumsfaktoren IGF-I und IGF-I/FGF-2 zurückzuführen sein. Dabei beeinflussen die Wachstumsfaktoren

sowohl die Zellen aus dem subchondralen Raum (Madry *et al.* 2017) als auch ortsständige Chondrozyten.

7.5.2 Alginat-Sphäroide als Trägersubstanz für modifizierte Zellen

Alginat-Sphäroide dienen als Trägersubstanz für therapeutische Faktoren (Lim und Moss 1981, Chang 1997, Gutowska et al. 2001, Hsu et al. 2017) und können diese kontinuierlich über einen längeren Zeitraum abgeben (Edelmann et al. 1991, Downs et al. 1992, Davies et al. 1997). Klinische Anwendung finden sie zum Beispiel in der Inselzell-Therapie des Diabetes Mellitus (Lim und Sun 1980, Sambanis 2003, de Vos et al. 2006) oder bei der Gentherapie von Tumoren (Visted et al. 2001). Hydrogele, besonders Alginat-Sphäroide etablierten sich als Trägersubstanz für die Implantation modifizierter Zellen in Knorpeldefekte (Diduch et al. 2000, Mierisch et al. 2003, Madry et al. 2003 und 2005, Kaul et al. 2006, Helfricht et al. 2017). So benutzten wir auch in der vorliegenden Arbeit Alginat-Sphäroide als Trägersubstanz. Dabei wird der differenzierte Phänotyp der Zellen durch die Verkapselung nicht beeinflusst (von der Mark et al. 1977, Benya et al. 1978, van Susante et al. 1995, Aydelotte et al. 1998, Domm et al. 2000), sondern die chondrogene Differenzierung mesenchymaler Zellen oder entdifferenzierter Chondrozyten sogar stimuliert (Shakibaei und De Souza 1997, Lemare et al. 1998). Alginat hat eine physiologisch negative Ladung (You et al. 2001) und eine zeitlich kurze Stabilität (Bonaventure et al. 1994, Rokstad et al. 2001, Madry et al. 2005, Kaul et al. 2006). Bis heute wurden keine Entzündungs- oder Unverträglichkeitsreaktionen gegenüber Alginat als Trägersubstanz beobachtet. Alginat wurde bereits in Studien der autologen Chondrozytentransplantation am Patienten als Trägersubstanz eingesetzt (Soon-Shiong et al. 1994). Dies sind weitere Vorteile von Alginat-Sphäroiden, als Trägersubstanz. Grund für die zeitlich kurze Stabilität der Alginat-Sphäroide könnte der Efflux divalenter, guervernetzender Kationen sein (Mierisch et al. 2003). Verschiedene Studien zeigen, dass nicht nur das Alginat, sondern auch die transplantierten Zellen nach kurzer Zeit in den Knorpeldefekten nicht mehr nachweisbar sind (Grande et al. 1989, Hidaka et al. 2003). Es wird vermutet, dass die verkapselten Zellen als primär als

parakrines Sekretionsvehikel dienen und nicht hauptsächlich die Aufgabe der Besiedelung der Knorpeldefekte übernehmen (Madry und Cucchiarini 2011).

7.5.3 Bewertungssysteme der Knorpeldefektreparatur

Die makroskopische Evaluation der osteochondralen Defekte wurde anhand des Homburger Makroskopie Bewertungssystems (Goebel *et al.* 2012) und des Oswestry Bewertungssystems (Smith *et al.* 2005) durchgeführt. Das Homburger Makroskopie Bewertungssystem hat die doppelte Anzahl von Kategorien bei der Bewertung als das Oswestry Bewertungssystem und korreliert mit wesentlichen histologischen Parametern der Defektreparatur (Goebel *et al.* 2017). Daher erlaubt es eine verbesserte Charakterisierung der Gelenkknorpeldefektreparatur, als es mit dem Oswestry Bewertungssystem möglich ist.

Die histologische Evaluation wurde mithilfe von drei verschiedenen Bewertungssystemen durchgeführt. Wir verwendeten das Bewertungssystem nach Pineda (Pineda *et al.* 1992) und die Weiterentwicklung dieses etablierten Bewertungssystems durch Sellers (Sellers *et al.* 1997). Anhand dieser Bewertungssysteme lässt sich das Reparaturgewebe in fokalen Knorpeldefekten bewerten. Darüber hinaus verwendeten wir das Bewertungssystem nach Little, um die Arthroseentwicklung an dem an die fokalen osteochondralen Defekte angrenzenden Knorpel zu bewerten (Little *et al.* 2010).

Die immunhistologische Evaluation fand anhand eines semiquantitativen Bewertungssystems statt. Hierbei wurde jeweils die Immunreaktivität auf Typ-I- und Typ-II-Kollagen im Reparaturgewebe bewertet.

Bereits in vergangenen Studien unseres Labors bewährten sich diese Bewertungssysteme (Madry *et al.* 2005, Cucchiarini *et al.* 2005, Kaul *et al.* 2005).

7.6 Ausblick

Nicht-virale Transfektionsmethoden ermöglichen einen effizienten Gentransfer in die Zellen des Stütz- und Bewegungsapparates und haben daher einen hohen Stellenwert in der orthopädischen Forschung (Madry *et al.* 2005). Dadurch bieten sich genetisch modifizerte Zellen sehr gut für eine

Gentransfer-basierte Therapie von Knorpeldefekten an. Die nicht-viralen Transfektionssysteme werden durch aktuelle Fortschritte immer effektiver und dadurch werden immer bessere Methoden zur *in vivo* Übertragung des genetischen Materials gewährleistet (Cucchiarini *et al.* 2014, Itaka *et al.* 2015).

In dieser Studie wiesen wir durch die Transfektion von den therapeutischen Faktoren IGF-I und IGF-I/FGF-2 in osteochondrale Defekte verbesserte histologische Parameter bei der Knorpelreparatur von osteochondralen Defekten an Trochlea und medialen Femurkondylen des Kniegelenkes bei Schafen nach. Folgestudien werden dieses Studiendesign auf andere Großtiermodelle übertragen und Untersuchungen über längere Zeiträume wählen, um den menschlichen Gelenkknorpel und seine biomechanischen Belastungen besser zu imitieren. Letztendlich können auch klinische Studien am menschlichen Gelenkknorpel mit nicht-viralen Transfektionssytemen und therapeutischen Faktoren durchgeführt werden. Der endgültige Erfolg ist klinisch meistens jedoch erst Jahrzehnte später zu erkennen mit der möglichen Entwicklung einer sekundären Arthrose. Auch in der Wahl und der Kombination verschiedener therapeutischer Faktoren gibt es noch ein großes erforschbares Feld. So werden wahrscheinlich, ausgehend von Ergebnissen der Grundlagenforschung zu molekularen Mechanismen der Knorpelreparatur und Bildung hyalinen Knorpels (Maes 2017), neue therapeutische Faktoren und andere Verfahren wie aktuell der 3D-Druck in den Fokus rücken (Schon et al. 2017).

Höchstwahrscheinlich werden gentherapeutisch gestützte Verfahren niemals chirurgische Verfahren in der Behandlung von Knorpeldefekten komplett ersetzen können. Sie könnten jedoch eine supportive therapeutische Maßnahme darstellen, um im Rahmen von etablierten rekonstruktivchirurgischen Verfahren die Knorpelreparatur weiter zu verbessern (Cucchiarini *et al.* 2014). Hierzu geben die Daten der vorliegenden Arbeit im Großtiermodell Anlass zu vorsichtigem Optimismus. Die Aussagekraft dieser Daten wird nun in Folgestudien weiter evaluiert, um weitere Voraussetzung für klinische Studien mit diesem Ansatz zu schaffen.

8. Literaturverzeichnis

1. Aigner T, Cook J, Gerwin N, Glasson S, Laverty S, Little C, McIlwraith W, Kraus V (2010) Histopathology atlas of animal model systems . overview of guiding principles. Osteoarthritis Cartilage 18 Suppl 3:S2-6

2. Alemdar C, Yücel, Erbil B, Erdem H, Atiç R, Özkul E (2016) Effect of insulin-like growth factor-1 and hyaluronic acid in experimentally produced osteochondral defects in rats. Indian J Orthop. 2016 Jul-Aug;50(4):414-20

3. Angele P, Niemeyer P, Steinwachs M, Filardo G, Gomoll A, Kon E, Zellner J, Madry H. (2016) Chondral and osteochondral operative treatment in early osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2016 Jun;24(6):1743-52.

4. Aydelotte M, Thonar E, Mollenhauer J, Flechtenmacher J (1998) Culture of chondrocytes in alginate gel: variations in conditions of gelation influence the structure of the alginate gel, and the arrangement and morphology of proliferating chondrocytes. In Vitro Cell Dev Biol Anim. 34:123-30

5. Basad E, Ishaque B, Bachmann G, Sturz H, Steinmeyer J (2010) Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg Sports Traumatol Arthrosc 18, 519-527

6. Beale B (2004) Use of nutraceuticals and chondroprotectants in osteoarthritic dogs and cats. Vet Clin North Am Small Anim Pract 34, 271-289

 Behrens P, et al. (2004) Indikations- und Durchführungsempfehlungen der Arbeitsgemeinschaft "Geweberegeneration und Gewebeersatz" zur Autologen Chondrozyten-Transplantation (ACT). Z Orthop Ihre Grenzgeb 142, 529-539

Bert J (2015) Abandoning microfracture of the knee: has the time come? Arthroscopy 31 (3):501-505

9. Bi W, Deng J, Zhang Z, Behringer R, de Crombrugghe B (1999) Sox9 is required for cartilage formation. Nat Genet. 22:85-9

10. Brandt K, Radin E, Dieppe P, van de Putte L (2006) Yet more evidence that osteoarthritis is not a cartilage disease. Ann Rheum Dis 65, 1261-1264

11. Braun S, Vogt S, Imhoff A (2007) Stadiengerechte operative Knorpeltherapie. Orthopäde 36:589-99

12. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Eng J Med. 331:889-95

13. Brittberg M, Winalski C (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am. 85-A:58-69

14. Brophy R, Rodeo S, Barnes R, Powell J, Warren R (2009) Knee articular cartilage injuries in the National Football League: epidemiology and treatment approach by team physicians. J Knee Surg 22, 331-338

15. Buck F, Hoffmann A, Hofer B, Pfirrmann C, Allgayer B (2009) Chronic medial knee pain without history of prior trauma: correlation of pain at rest and during exercise using bone scintigraphy and MR imaging. Skeletal Radiol 38, 339-347

16. Buckwalter J (1983) Articular cartilage. Instr Course Lect. 32:349-70

17. Buckwalter J, Woo S, Goldberg V, Hadley E, Booth F, Oegama T, Eyre D (1993) Softtissue aging and musculoskeletal function. J Bone Joint Surg Am. 75:1533-48

18. Buckwalter J, Mankin H (1998) Articular cartilage repair and transplantation. Arthritis Rheum. 41:1331-42

19. Buckwalter J, Mankin H (1998) Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 47:477-86

20. Buckwalter J, Mankin H (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47, 487-504

21. Buckwalter J, Mankin H, Grodzinsky A (2005) Articular cartilage and osteoarthritis. Instr Course Lect 54, 465-480

22. Bulstra S, Homminga G, Buurman W, Terwindt-Rouwenhorst E, van der Linden A (1990) The potential of adult human perichondrium to form hyaline cartilage in vitro. J Orthp Res. 8:328-35

23. Capito R, Spector M (2007) Collagen scaffolds for nonviral IGF-1 gene delivery in articular cartilage tissue engineering. Gene Ther. 14:721-32

24. Chaipinyo K, Oakes B, van Damme M (2002) Effects of growth factors on cell proliferation and matrix synthesis of low-density, primary bovine chondrocytes cultures in collagen I gels. J Orthop Res. 20:1070-8

25. Chang P (1997) Microcapsules as bio-organs for somatic gene therapy. Ann N Y Acad Sci. 831:461-73

26. Chevrier A, Kouao A, Picard G, Hurtig M, Buschmann M (2015) Interspecies comparison of subchondral bone properties important for cartilage repair. J Orthop Res 33 (1):63-70

27. Chuma H, Mizuta H, Kudo S, Takagi K, Hiraki Y (2004) One day exposure to FGF-2 was sufficient for the regenerative repair of full-thickness defects of articular cartilage in rabbits. Osteoarthritis Cart. 12:834-42

28. Cucchiarini M, Madry H (2005) Gene therapy for cartilage defects J Gene Med. 7:1495-509

29. Cucchiarini M, Madry H, Ma C, Thurn T, Zurakowski D, Menger M, Kohn D, Trippel S, Terwilliger E (2005) Improved tissue repair in articular cartilage defects *in vivo* by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol Ther. 12:229-38

30. Cucchiarini M, Madry H, Guilak F, Saris D, Stoddart M, Koon Wong M, Roughley P (2014) A vision on the future of articular cartilage repair. Eur Cell Mater 27:12-16

31. Cucchiarini M, McNulty A, Mauck R, Setton L, Guilak F, Madry H. (2016) Advances in combining gene therapy with cell and tissue engineering-based approaches to enhance healing of the meniscus. Osteoarthritis Cartilage. 2016 Aug;24(8):1330-9.

32. Curl W, Krome J, Gordon E, Rushing J, Smith B, Poehling G (1997) Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13 (4):456-460

33. Cvetanovich G, Riboh J, Tilton A, Cole B (2017) Autologous Chondrocyte Implantation Improves Knee-Specific Functional Outcomes and Health-Related Quality of Life in Adolescent Patients. Am J Sports Med. 2017 Jan

34. Davies M, Mitchell C, Maley M, Grounds M, Harvey A, Plant G, Wood D, Hong Y, Chirila T (1997) In vitro assessment of the biological activity of basic fibroblast growth factor released from various polymers and biomatrices. J Biomater Appl. 12:31-56

35. de Vos P, Faas M, Strand B, Calafiore R (2006) Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27:5603-17

36. Diduch D, Jordan L, Mierisch C, Balian G (2000) Marrow stromal cells embedded in alginate for repair of osteochondral defects. Arthroscopy 16:571-7

37. Ding M, Danielsen C, Hvid I, Overgaard S (2012) Three-dimensional microarchitecture of adolescent cancellous bone. Bone 51, 953-960

38. Domm C, Fay J, Schunke M, Kurz B (2000) Die Redifferenzierung von dedifferenzierten Gelenkknorpelzellen in Alginatkultur. Einfluss von intermittierendem hydrostatischen Druck und niedrigem Sauerstoffpartialdruck. Orthopäde 29:91-9

39. Downs E, Robertson N, Riss T, Plunkett M (1992) Calcium alginate beads as a slowrelease system for delivering angiogenic molecules *in vivo* and in vitro. J Cell Physiol. 152:422-9 40. Edelman E, Mathiowitz E, Langer R, Klagsbrun M (1991) Controlled and modulated release of basic fibroblast growth factor. Biomaterials 12:619-26

41. Erggelet C, Steinwachs M, Reichelt A (1998) Die Behandlung von Gelenkknorpeldefekten. Deutsches Ärzteblatt 95

42. Filardo G, Kon E, Longo UG, Madry H, Marchettini P, Marmotti A, Van Assche D, Zanon G, Peretti G (2016) Non-surgical treatments for the management of early osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2016 Jun;24(6):1775-85.

43. Flanigan D, Harris J, Brockmeier P, Siston R (2010) The effects of lesion size and location on subchondral bone contact in experimental knee articular cartilage defects in a bovine model. Arthroscopy 26, 1655-1661

44. Fortier L, Mohammed H, Lust G, Nixon A (2002) Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg Br. 84:276-88

45. Fortier L, Deak M, Semevolos S, Cerione R (2004) Insulin-like growth factor-I diminishes the activation status and expression of the small GTPase Cdc42 in articular chondrocytes. J Orthop Res. 22:436-45

46. Fragonas E, Valente M, Pozzi-Mucelli M, Toffanin R, Rizzo R, Silvestri F, Vittur F (2000) Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate. Biomaterials 21:795-801

47. Frenz D, Liu W, Williams J, Hatcher V, Galinovic-Schwartz V, Flanders K, Van de Water
T (1994) Induction of chondrogenesis: requirement for synergistic interaction of basic
fibroblast growth factor and transforming growth factor-beta. Development 120:415-24

48. Frisbie D, et al. (2003) Early events in cartilage repair after subchondral bone microfracture. Clin Orthop Relat Res, 215-227

49. Fujimoto E, Ochi M, Kato Y, Mochizuki Y, Sumen Y, Ikuta Y (1999) Beneficial effect of basic fibroblast growth factor on the repair of full-thickness defects in rabbit articular cartilage. Arch Orthop Trauma Surg. 119:139-45

50. Fukumoto T, Sperling J, Sanyal A, Fitzsimmons J, Reinholz G, Conover C, O'Driscoll S (2003) Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthritis Cart. 11:55-64

51. Gelse K, von der Mark K, Aigner T, Park J, Schneider H (2003) Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells. Arthritis Rheum. 48:430-41

52. Glies T (1882) Über die Heilung von Knorpelwunden. Dtsch Z Chir 18

53. Goebel L, Orth P, Müller A, Zurakowski D, Bücker A, Cucchiarini M, Pape D, Madry H (2012) Experimental scoring systems for macroscopic articular cartilage repair correlate with the MOCART score assessed by a high-field MRI at 9.4 T--comparative evaluation of five macroscopic scoring systems in a large animal cartilage defect model. Osteoarthritis Cartilage. 20(9):1046-55

54. Goebel L, Orth P, Cucchiarini M, Pape D, Madry H (2017) Macroscopic cartilage repair scoring of defect fill, integration and total points correlate with corresponding items in histological scoring systems - a study in adult sheep. Osteoarthritis Cartilage. 2017 Apr;25(4):581-588

55. Goldberg A (2001) Effects of growth factors on articular cartilage. Ortop Traumatol Rehabil. 3:209-12

56. Gomoll A, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M, Kon E (2010) The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc 18 (4):434-447

57. Goodrich L, Hidaka C, Robbins P, Evans C, Nixon A (2007) Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J Bone Joint Surg Br. 89:672-85

58. Grande D, Pitman M, Peterson L, Menche D, Klein M (1989) The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res. 7:208-18

59. Gratz K, Wong V, Chen A, Fortier L, Nixon A, Sah R (2006) Biomechanical assessment of tissue retrieved after *in vivo* cartilage defect repair: tensile modulus of repair tissue and integration with host cartilage. J Biomech. 39:138-46

60. Handl M, Dr0ík M, Varga F (2010) The Current Status of Biomechanical Evaluation of the Hyaline Cartilage. in Cartilage Repair: Current Concepts., Vol. 1 (eds. Brittberg, M., Imhoff, A.B., Madry, H., Mandelbaum, B.R.) (UK: DJO Publications., Guildford, 2010)

61. Hangody L, Kish G, Karpati Z, Udvarhelyi I, Szigeti I, Bely M (1998) Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics 21:751-6

62. Hardingham TE, Fosang AJ (1992) Proteoglycans: many forms and functions. FASEB J.6:861-70

63. He A, Liu L, Luo X, Liu Y, Liu Y, Liu F, Wang X, Zhang Z, Zhang W, Liu W, Cao Y, Zhou G (2017) Repair of osteochondral defects with in vitro engineered cartilage based on autologous bone marrow stromal cells in a swine model. Sci Rep. 2017 Jan 13

64. Heijink A, et al. (2011) Biomechanical considerations in the pathogenesis of osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc 20, 423-435

65. Helfricht N, Doblhofer E, Bieber V, Lommes P, Sieber V, Scheibel T, Papastavrou G (2017) Probing the adhesion properties of alginate hydrogels: a new approach towards the preparation of soft colloidal probes for direct force measurements. Soft Matter. 2017 Jan 18;13(3):578-589

66. Hernandez-Sanchez C, Werner H, Roberts C Jr, Woo E, Hum D, Rosenthal S, LeRoith D (1997) Differential regulation of insulin-like growth factor-I (IGF-I) receptor gene expression by IGF-I and basic fibroblast growth factor. J Biol Chem. 272:4663-70

67. Hidaka C, Goodrich L, Chen C, Warren R, Crystal R, Nixon A (2003) Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7. J Orthop Res. 21:573-83

68. Hiraide A, Yokoo N, Xin KQ, Okuda K, Mizukami H, Ozawa K, Saito T (2005) Repair of articular cartilage defect by intraarticular administration of basic fibroblast growth factor gene, using adeno-associated virus vector. Hum Gene Ther. 16:1413-21

69. Hjelle K, Solheim E, Strand T, Muri R, Brittberg M (2002) Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy. 2002 Sep; 18(7):730-4

70. Hsu B, Fu S (2017) Field Effect Microparticle Generation for Cell Microencapsulation. Methods Mol Biol. 2017;1479:57-70.

71. Hunziker E, Rosenberg L (1996) Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. J Bone Joint Surg Am 78, 721-733

72. Hunziker E (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage. 10:432-63

73. Imhoff A, Ottl G, Burkart A, Traub S (1999) Osteochondrale autologe Transplantation an verschiedenen Gelenken. Orthopade 28, 33-44

74. Imhof H (2005) Arthrose (degenerative Gelenkerkrankungen) in Handbuch diagnostische Radiologie: Muskuloskelettales System 3: Systematische Skeletterkrankungen - Erkrankungen der Gelenke Vol. 1 (ed. Axe Stäbler, J.F.) 314-356 (Springer Verlag, Berlin Heidelberg, 2005)

75. Isaksson H, et al. (2011) Structural parameters of normal and osteoporotic human trabecular bone are affected differently by microCT image resolution. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 22, 167-177

76. Itaka K, Uchida S, Matsui A, Yanagihara K, Ikegami M, Endo T, Ishii T, Kataoka K (2015) Gene Transfection toward Spheroid Cells on Micropatterned Culture Plates for Geneticallymodified Cell Transplantation. J Vis Exp. 2015 Jul 31;(101) 77. Jackson D, Lalor P, Aberman H, Simon T (2001) Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study. J Bone Joint Surg Am 83-A, 53-64

78. Jentzsch K, Wellmitz G, Heder G, Petzold E, Buntrock P, Oehme P (1980) A bovine brain fraction with fibroblast growth factor activity inducing articular cartilage regeneration *in vivo*. Acta Biol Med Ger. 39:967-71

79. Johnson L (2001) Arthroscopic abrasion arthroplasty: a review. Clin Orthop Relat Res, S306-317

Jones D, Peterson L (2006) Autologous chondrocyte implantation. J Bone Joint Surg Am.
88:2502-20

81. Kang R, Marui T, Ghivizzani S, Nita I, Georgescu H, Suh J, Robbins P, Evans C (1997) Ex vivo gene transfer to chondrocytes in full-thickness articular cartilage defects: a feasibility study. Osteoarthritis Cartilage. 5:139-43

82. Kaplan B, Gorman C, Gupta A, Taylor S, Iezzoni J, Park S (2003) Effects of transforming growth factor Beta and insulinlike growth factor 1 on the biomechanical and histologic properties of tissueengineered cartilage. Arch Facial Plast Surg. 5:96-101

83. Kato Y (1992) Roles of fibroblast growth factor and transforming growth factor- families in cartilage formation. In: Adolphe M (ed) Biological Regulation of the Chondrocytes. CRC Press, Boca Raton, pp 141-60

84. Kaul G, Cucchiarini M, Arntzen D, Zurakowski D, Menger M, Kohn D, Trippel SB, Madry H (2006) Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) *in vivo*. J Gene Med. 8:100-11

85. Kiss A, Cucchiarini M, Menger M, Kohn D, Hannig M, Madry H (2014) Enamel matrix derivative inhibits proteoglycan production and articular cartilage repair, delays the restoration of the subchondral bone and induces changes of the synovial membrane in a lapine osteochondral defect model *in vivo*. J Tissue Eng Regen Med 8 (1):41-49

86. Lan J, Wang Z, Wang Y, Wang J, Cheng X (2006) The effect of combination of recombinant human bone morphogenetic protein-2 and basic fibroblast growth factor or insulin-like growth factor-I on dental implant osseointegration by confocal laser scanning microscopy. J Peridontol. 77:357-63

87. Lai Y, Qin L, Yeung H, Lee K, Chan K (2005) Regional differences in trabecular BMD and micro-architecture of weight-bearing bone under habitual gait loading--a pQCT and microCT study in human cadavers. Bone 37, 274-282

88. Lee K, Song S, Hwang T, Yi Y, Oh I, Lee J, Choi K, Choi M, Kim S (2001) Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor beta 1-producing fibroblasts. Hum Gene Ther. 12:1805-13

89. Lee B, Bin S, Kim J, Kim W, Choi J (2017) Survivorship After Meniscal Allograft Transplantation According to Articular Cartilage Status. Am J Sports Med. 2017 Jan

90. Lehner K, Rechl H, Gmeinwieser J, Heuck A, Lukas H, Kohl H (1989) Structure, function, and degeneration of bovine hyaline cartilage: assessment with MR imaging in vitro. Radiology. 1989 Feb;170(2):495-9

91. Lemare F, Steimberg N, Le Griel C, Demignot S, Adolphe M (1998) Dedifferentiated chondrocytes cultured in alginate beads: restoration of the differentiated phenotype and of the metabolic response to interleukinbeta. J Cell Physiol. 176:303-13

92. Lim F, Moss R (1981) Microencapsulation of living cells and tissues. J Pharm Sci. 70:351-4

93. Lim F, Sun A (1980) Microencapsulated islets as an artificial endocrine pancreas. Science 210:908-10

94. Little C, Smith S, Ghosh P, Bellenger C. Histomorphological and immunohistochemical evaluation of joint changes in a model of osteoarthritis induced by lateral meniscectomy in sheep. J Rheumatol. 1997;24(11):2199. 209

95. Little C, Smith M, Cake M, Read R, Murphy M, Barry F (2010) The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in sheep and goats. Osteoarthritis Cartilage 18 Suppl 3:S80-92

96. Lo Y, Cruz T (1995) Involvement of reactive oxygen species in cytokine and growth factor induction of cfos expression in chondrocytes. J Biol Chem. 270:11727-30

97. Loeser R, Chubinskaya S, Pacione C, Im H (2005) Basic fibroblast growth factor inhibits the anabolic activity of insulin-like growth factor 1 and osteogenic protein 1 in adult human articular chondrocytes. Arthritis Rheum. 52:3910-7

98. Loeser R (2010) Age-related changes in the musculoskeletal system and the development of osteoarthritis. Clin Geriatr Med 26, 371-386

99. Madry H, Padera R, Seidel J, Langer R, Freed L, Trippel S, Vunjak-Novakovic G (2002) Gene transfer of a human insulin-like growth factor I cDNA enhances tissue engineering of cartilage. Hum Gene Ther. 13:1621-30

100. Madry H, Cucchiarini M, Stein U, Remberger K, Menger M, Kohn D, Trippel SB (2003) Sustained transgene expression in cartilage defects *in vivo* after transplantation of articular

chondrocytes modified by lipid-mediated gene transfer in a gel suspension delivery system. J Gene Med. 5:502-9.

101. Madry H, Cucchiarini M, Terwilliger E, Trippel S (2003) Efficient and persistent gene transfer into articular cartilage using recombinant adeno-associated virus vectors in vitro and *in vivo*. Hum Gene Ther. 14:393-402

102. Madry H, Emkey G, Zurakowski D, Trippel S (2004) Overexpression of human fibroblast growth factor 2 stimulates cell proliferation in an ex vivo model of articular chondrocyte transplantation. J Gene Med 6:238-45

103. Madry H, Emkey G, Zurakowski D, Trippel S (2004) Overexpression of human fibroblast growth factor 2 stimulates cell proliferation in an ex vivo model of articular chondrocyte transplantation. J Gene Med 6:238-45

104. Madry H, Kaul G, Cucchiarini M, Stein U, Zurakowski D, Remberger K, Menger M, Kohn D, Trippel S (2005) Enhanced repair of articular cartilage defects *in vivo* by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther. 12:1171-9

105. Madry H, Weimer A, Kohn D, Cucchiarini M (2007) Tissue-Engineering zur Knorpelreparatur verbessert durch Gentransfer. Orthopäde 36:236-47

106. Madry H, Pape D (2008) Autologe Chondrozytentransplantation. Orthopäde 36:756-63

107. Madry H, Orth P, Kaul G, Zurakowski D, Menger M, Kohn D, Cucchiarini M (2010) Accleration of articular cartilage repair by combined gene transfer of human insulin-like growth factor I and fobriblast growth factor-2 *in vivo*. Arch Orthop. Trauma Surg

108. Madry H (2010) The subchondral bone: a new frontier in articular cartilage repair. Knee Surg Sports Traumatol Arthrosc 18 (4):417-418

109. Madry H, van Dijk C, Müller-Gerbl M (2010) The basic science oft he subchondral bone. Knee Surg Sports Traumatol Arthrosc 18, 419-433

110. Madry H, Cucchiarini M (2011) Clinical potential and challenges of using genetically modified cells for articular cartilage repair. Croat Med J. 2011 Jun;52(3):245-61

111. Madry H, Grun U, Knutsen G (2011) Knorpelrekonstruktion und Gelenkerhalt: Medikamentöse und operative Möglichkeiten. Dtsch Arztebl Int 108 (40):669-677

112. Madry H (2012) How to treat large (>4cm²) cartilage lesions in patients with different ages. in Cartilage Repair. Clinical Guidelines., Vol. 1 (eds. Brittberg M, Gobbi A, Imhoff A, Kon E, Madry H) (UK: DJO Publications, Guildford, 2012)

113. Madry H, Kaul G, Zurakowski D, Vunjak-Novakovic G, Cucchiarini M (2013) Cartilage constructs engineered from chondrocytes overexpressing IGF-I improve the repair of osteochondral defects in a rabbit model. Eur Cell Mater 25:229-247

114. Madry H, Alini M, Stoddart M, Evans C, Miclau T, Steiner S (2014) Barriers and strategies for the clinical translation of advanced orthopaedic tissue engineering protocols. Eur Cell Mater 27:17-21

115. Madry H, Ochi M, Cucchiarini M, Pape D, Seil R (2015) Large animal models in experimental knee sports surgery: focus on clinical translation. J Exp Orthop. 2015 Dec;2(1):9.

116. Madry H, Orth P, Cucchiarini M (2016) Role of the Subchondral Bone in Articular Cartilage Degeneration and Repair. J Am Acad Orthop Surg. 2016 Apr;24(4):e45-6.

117. Madry H, Kon E, Condello V, Peretti G, Steinwachs M, Seil R, Berruto M, Engebretsen L, Filardo G, Angele P (2016) Early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2016 Jun;24(6):1753-62

118. Madry H, Gao L, Eichler H, Orth P, Cucchiarini M (2017) Bone Marrow Aspirate Concentrate-Enhanced Marrow Stimulation of Chondral Defects. Stem Cells Int. 2017

119. Maes C (2017) Signaling pathways effecting crosstalk between cartilage and adjacent tissues: Seminars in cell and developmental biology: The biology and pathology of cartilage. Semin Cell Dev Biol. 2017 Feb;62:16-33.

120. Mankin H (1982) The response of articular cartilage to mechanical injury. J Bone Joint Surg Am. 64:460-6

121. Mierisch C, Anderson P, Balian G, Diduch D (2002) Treatment with insulin-like growth factor-1 increases chondrogenesis by periosteum in vitro. Connect Tissue Res. 43:559-68

122. Mierisch C, Cohen S, Jordan L, Robertson P, Balian G, Diduch D (2002) Transforming growth factor-beta in calcium alginate beads for the treatment of articular cartilage defects in the rabbit. Arthroscopy 18:892-900

123. Mierisch C, Wilson H, Turner M, Milbrandt T, Berthoux L, Hammarskjold M, Rekosh D, Balian G, Diduch D (2003) Chondrocyte transplantation into articular cartilage defects with use of calcium alginate: the fate of the cells. J Bone Joint Surg Am. 85-A:1757-67

124. Miller B, Steadman J, Briggs K, Rodrigo J, Rodkey W (2004) Patient satisfaction and outcome after microfracture of the degenerative knee. J Knee Surg 17, 13-17

125. Milz S (1994) Lückenbildungen der subchondralen Mineralisierungszone des Tibiaplateaus. Osteologie 3, 110-118

126. Mizuta H, Kudo S, Nakamura E, Otsuka Y, Takagi K, Hiraki Y (2004) Active proliferation of mesenchymal cells prior to the chondrogenic repair response in rabbit full-thickness defects of articular cartilage. Osteoarthritis Cartilage. 12:586-96

127. Murakami S, Kan M, McKeehan W, de Crombrugghe B (2000) Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA. 97:1113-8

128. Nakajima H, Goto T, Horikawa O, Kikuchi T, Shinmei M (1998) Characterization of the cells in the repair tissue of full-thickness articular cartilage defects. Histochem Cell Biol. 109:331-8

129. Neidel J, Schulze M (2000) Stellenwert der Synoviaanalyse für die Prognose der Matrixsynthese transplantierter Chondrozyten. Orthopäde 29:158-63

130. Niemeyer P, Albrecht D, Andereya S, Angele P, Ateschrang A, Aurich M, Baumann M, Bosch U, Erggelet C, Fickert S, Gebhard H, Gelse K, Günther D, Hoburg A, Kasten P, Kolombe T, Madry H, Marlovits S, Meenen N, Müller P, Nöth U, Petersen J, Pietschmann M, Richter W, Rolauffs B, Rhunau K, Schewe B, Steinert A, Steinwachs M, Welsch G, Zinser W, Fritz J (2016) Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: A guideline by the working group "Clinical Tissue Regeneration" of the German Society of Orthopaedics and Trauma (DGOU). Knee. 2016 Jun;23(3):426-35

131. Nixon A, Fortier L, Williams J, Mohammed H (1999) Enhanced repair of extensive articular defects by insulin-like growth factor-I-laden fibrin composites. J Orthop Res. 17:475-87

132. Noyes F, Stabler C (1989) A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med. 17:505-13

133. Ochs B, et al. (2011) Remodeling of articular cartilage and subchondral bone after bone grafting and matrix-associated autologous chondrocyte implantation for osteochondritis dissecans of the knee. Am J Sports Med 39, 764-773

134. O´Driscoll S, Salter R (1984) The induction of neochondrogenesis in free intra-articular periosteal autografts under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg Am. 66:1248-57

135. O'Driscoll S (1998) The healing and regeneration of articular cartilage. J Bone Joint Surg Am. 80:1795-812

136. Orth P, Kaul G, Cucchiarini M, Zurakowski D, Menger M, Kohn D, Madry H (2011) Transplanted articular chondrocytes co-overexpressing IGF-I and FGF-2 stimulate cartilage repair *in vivo*. Knee Surg Sports Traumatol Arthrosc. 2011 Dec;19(12):2119-30 137. Orth P, Zurakowski D, Wincheringer D, Madry H (2012) Reliability, reproducibility, and validation of five major histological scoring systems for experimental articular cartilage repair in the rabbit model. Tissue Eng Part C Methods. 2012 May;18(5):329-39.

138. Orth P, Meyer H, Goebel L, Eldracher M, Ong M, Cucchiarini M, Madry H (2013) Improved repair of chondral and osteochondral defects in the ovine trochlea compared with the medial condyle. J Orthop Res. 2013 Nov;31(11):1772-9

139. Orth P, Cucchiarini M, Kohn D, Madry H (2013) Alterations of the subchondral bone in osteochondral repair--translational data and clinical evidence. Eur Cell Mater 25:299-316; discussion 314-296

140. Otsuka Y, Mizuta H, Takagi K, Iyama K, Yoshitake Y, Nishikawa K, Suzuki F, Hiraki Y (1997) Requirement of fibroblast growth factor signaling for regeneration of epiphyseal morphology in rabbit full-thickness defects of articular cartilage. Dev Growth Differ. 39:143-56

141. Otte P (1958) Die Unfähigkeit der Regeneration von Gelenkknorpel. Z Orthop Ihre Grenzgeb 90, 299-303

142. Outerbridge R (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br. 43-B:752-7

143. Pape D, Filardo G, Kon E, van Dijk CN, Madry H (2010) Disease-specific clinical problems associated with the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18, 448-462

144. Pascher A, Palmer G, Steinert A, Oligino T, Gouze E, Gouze J, Betz O, Spector M, Robbins P, Evans C, Ghivizzani S (2004) Gene delivery to cartilage defects using coagulated bone marrow aspirate. Gene Ther. 11:133-41

145. Pedersen M, Moghaddam A, Bak K, Koch J (1995) The effect of bone drilling on pain in gonarthrosis. Int Orthop 19, 12-15

146. Peterson L, et al. (2000) Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res, 212-234

147. Peterson L, Brittberg M, Kiviranta I, Akerlund E, Lindahl A (2002) Autologous chondrocyte transplantation. Biomechanics and long-term durability. Am J Sports Med 30, 2-12

148. Peterson L, Minas T, Brittberg M, Lindahl A (2003) Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am 85-A Suppl 2, 17-24

149. Pineda S, Pollack A, Stevenson S, Goldberg V, Caplan A (1992) A semiquantitative scale for histologic grading of articular cartilage repair. Acta Anat (Basel). 143:335-40

150. Pirskanen A, Kiefer J, Hauschka S (2000) IGFs, insulin, Shh, bFGF, and TGF-beta1 interact synergistically to promote somite myogenesis in vitro. Dev Biol. 224:189-203

151. Pridie K (1959) A method of resurfacing osteoarthritic knee joints. Proceedings of the British Orthopaedic Association. J Bone Joint Surg Br. 41:618

152. Prodromos C, Amendola A, Jakob R (2015) High tibial osteotomy: indications, techniques, and postoperative management. Instr Course Lect 64:555-565

153. Read T, Stensvaag V, Vindenes H, Ulvestad E, Bjerkvig R, Thorsen F (1999) Cells encapsulated in alginate: a potential system for delivery of recombinant proteins to malignant brain tumours. Int J Dev Neurosci. 17:653-63

154. Rey-Rico A, Cucchiarini M, Madry H. (2017) Hydrogels for precision meniscus tissue engineering: a comprehensive review. Connect Tissue Res. 2017 Jan 4

155. Richardson J (2010) Subchondral Bone: Current Concepts. in Cartilage Repair: Current Concepts., Vol. 1 (eds. Brittberg M, Imhoff A, Madry H, Mandelbaum B) (UK: DJO Publications., Guildford, 2010)

156. Rokstad A, Kulseng B, Strand B, Skjak-Braek G, Espevik T (2001) Transplantation of alginate microcapsules with proliferating cells in mice: capsular overgrowth and survival of encapsulated cells of mice and human origin. Ann N Y Acad Sci. 944:216-25

157. Rogachefsky R, Dean D, Howell D, Altman R (1993) Treatment of canine osteoarthritis with insulinlike growth factor-1 (IGF- 1) and sodium pentosan polysulfate. Osteoarthritis Cartilage. 1:105-14

158. Rudert M, Moller H, Schulze M, Wirth C (2000) Tissue-Engineering für die Therapie von osteochondralen Knorpeldefekten. Zentralbl Chir 125 (6):509-515

159. Russo V, Andaloro E, Fornaro S, Najdovska S, Newgreen D, Bach L, Werther G (2004) Fibroblast growth factor-2 over-rides insulin-like growth factor-I induced proliferation and cell survival in human neuroblastoma cells. J Cell Physiol. 199:371-80

160. Sah R, Chen A, Grodzinsky A, Trippel S (1994) Differential effects of bFGF and IGF-I on matrix metabolism in calf and adult bovine cartilage explants. Arch Biochem Biophys. 308:137-47

161. Sambanis A (2003) Encapsulated islets in diabetes treatment. Diabetes Technol Ther. 5:665-8

162. Sansone V, de Girolamo L, Pascale W, Melato M, Pascale V (2015) Long-term results of abrasion arthroplasty for full-thickness cartilage lesions of the medial femoral condyle. Arthroscopy 31 (3):396-403

163. Schnettler R, Horas U, Meyer C (2008) Autologe osteochondrale Transplantate. Orthopäde 37:734-42

164. Schofield J, Wolpert L (1990) Effect of TGF-beta 1, TGF-beta 2, and bFGF on chick cartilage and muscle cell differentiation. Exp Cell Res. 191:144-8

165. Schon B, Hooper G, Woodfield T (2017) Modular Tissue Assembly Strategies for Biofabrication of Engineered Cartilage. Ann Biomed Eng. 2017 Jan

166. Sell C, et al. (2005) Quantification of trabecular bone structure using magnetic resonance imaging at 3 Tesla--calibration studies using microcomputed tomography as a standard of reference. Calcified tissue international 76, 355-364

167. Sellers R, Peluso D, Morris E (1994) The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of cartilage. J Bone Joint Surg Am 79, 1452-1463

168. Sellers R, Peluso D, Morris E (1997) The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 79:1452-63

169. Sellers R, Zhang R, Glasson S, Kim H, Peluso D, D'Augusta D, Beckwith K, Morris E (2000) Repair of articular cartilage defects one year after treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2). J Bone Joint Surg Am. 82:151-60

170. Shah N, Geiger B, Quadir M, Hyder M, Krishnan Y, Grodzinsky A, Hammond P (2016) Synthetic nanoscale electrostatic particles as growth factor carriers for cartilage repair. Bioeng Transl Med. 2016 Sep;1(3):347-356

171. Shakibaei M, De Souza P (1997) Differentiation of mesenchymal limb bud cells to chondrocytes in alginate beads. Cell Biol Int. 21 (2):75-86

172. Shapiro F, Koide S, Glimcher M (1993) Cell origin and differentiation in the repair of fullthickness defects of articular cartilage. J Bone Joint Surg Am 75, 532-553

173. Shepard N, Mitchell N (1976) The localization of proteoglycan by light and electron microscopy using safranin O. A study of epiphyseal cartilage. J Ultrastruct Res 54, 451-460

174. Shi S, Mercer S, Eckert G, Trippel S (2012) Regulation of articular chondrocyte aggrecan and collagen gene expression by multiple growth factor gene transfer. J Orthop Res. 2012 Jul;30(7):1026-31

175. Shida J, Jingushi S, Izumi T, Iwaki A, Sugioka Y (1996) Basic fibroblast growth factor stimulates articular cartilage enlargement in young rats *in vivo*. J Orthop Res. 14:265-72

176. Sidler M, Fouché N, Meth I, von Hahn F, von Rechenberg B, Kronen P (2013) Transcutaneous treatment with vetdrop(®) sustains the adjacent cartilage in a microfracturing joint defect model in sheep. Open Orthop J. 2013

177. Smith G, Taylor J, Amlquist K, Erggelet C, Knutsen G, Garcia Portabella M, Smith T Richardson J (2005) Arthroscopic assessment of cartilage repair: a validation study of 2 scoring systems. Arthroscopy 2005 Dec; 21(12): 1462-7

178. Sohier J, Hamann D, Koenders M, Cucchiarini M, Madry H, van Blitterswijk C, de Groot K, Bezemer J (2007) Tailored release of TGF-beta1 from porous scaffolds for cartilage tissue engineering. Int J Pharm. 332:80-9

179. Soon-Shiong P, Heintz R, Merideth N, Yao Q, Yao Z, Zheng T, Murphy M, Moloney M, Schmehl M, Harris M (1994) Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343:950-1

180. Steadman J, Rodkey W, Briggs K, Rodrigo J (1999) Die Technik der Mikrofrakturierung zur Behandlung von kompletten Knorpeldefekten im Kniegelenk. Orthopäde 28:26-32

181. Steadman J *et al.* (2003) The microfracture technique in the treatment of full-thickness chondral lesions of the knee in National Football League players. J Knee Surg 16, 83-86

182. Steadman J *et al.* (2003) Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 19, 477-484

183. Steadman J, Ramappa A, Maxwell R, Briggs K (2007) An arthroscopic treatment regimen for osteoarthritis of the knee. Arthroscopy 23, 948-955

184. Steinert A, Palmer G, Pilapil C, Ulrich N, Evans C, Ghivizzani S (2008) Enhanced In Vitro Chondrogenesis of Primary Mesenchymal Stem Cells by Combined Gene Transfer. Tissue Eng Part A. Epub ahead of print

185. Steinwachs M, Erggelet C, Lahm A, Guhlke-Steinwachs U (1999) Klinische und zellbiologische Aspekte der autologen Chondrozytenimplantation. Unfallchirurg 102, 855-860

186. Strauss E, Goodrich L, Chen C, Hidaka C, Nixon A (2005) Biochemical and biomechanical properties of lesion and adjacent articular cartilage after chondral defect repair in an equine model. Am J Sports Med. 33:1647-53

187. Takahashi T, Ogasawara T, Kishimoto J, Liu G, Asato H, Nakatsuka T, Uchinuma E, Nakamura K, Kawaguchi H, Chung UI, Takato T, Hoshi K (2005) Synergistic effects of FGF-2 with insulin or IGF-I on the proliferation of human auricular chondrocytes. Cell Transplant. 14:683-93

188. Trippel S (1995) Growth factor actions on articular cartilage. J Rheumatol Suppl. 43:129-32

189. Trippel S (1997) Growth factors as therapeutic agents. Instr Course Lect. 46:473-6

190. Tuncel M, Halici M, Canoz O, Yildirim Turk C, Oner M, Ozturk F, Kabak S (2005) Role of insulin like growth factor-I in repair response in immature cartilage. Knee 12:113-9

191. Ulrich-Vinther M, Duch M, Soballe K, O'Keefe R, Schwarz E, Pedersen F (2004) Invivo gene delivery to articular chondrocytes mediated by an adenoassociated virus vector. J Orthop Res. 22:726-34

192. Vachon A, Keeley F, McIlwraith C, Chapman P (1990) Biochemical analysis of normal articular cartilage in horses. Am J Vet Res 51, 1905-1911

193. van Beuningen H, Glansbeek H, van der Kraan P, van den Berg W (1998) Differential effects of local application of BMP-2 or TGF-beta 1 on both articular cartilage composition and osteophyte formation. Osteoarthritis Cartilage. 6:306-17

194. van Susante J, Buma P, van Osch G, Versleyen D, van der Kraan P, van der Berg W, Homminga G (1995) Culture of chondrocytes in alginate and collagen carrier gels. Acta Orthop Scand. 66:549-56

195. Veilleux N, Spector M (2005) Effects of FGF-2 and IGF-1 on adult canine articular chondrocytes in type II collagen-glycosaminoglycan scaffolds in vitro. Osteoarthritis Cartilage. 13:278-86

196. Visted T, Bjerkvig R, Enger P (2001) Cell encapsulation technology as a therapeutic strategy for CNS malignancies. Neuro Oncol. 3:201-10

197. Volz M, Schaumburger J, Frick H, Grifka J, Anders S (2017) A randomized controlled trial demonstrating sustained benefit of Autologous Matrix-Induced Chondrogenesis over microfracture at five years. Int Orthop. 2017 Jan 20

198. von der Mark K, Gauss V, von der Mark H, Muller P (1977) Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 267:531-2

199. Wakabayashi S, Akizuki S, Takizawa T, Yasukawa Y (2002) A comparison of the healing potential of fibrillated cartilage versus eburnated bone in osteoarthritic knees after high tibial osteotomy: An arthroscopic study with 1-year follow-up. Arthroscopy 18, 272-278

200. Wakitani S, Goto T, Pineda S, Young R, Mansour J, Caplan A, Goldberg V (1994) Mesenchymal cellbased repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 76:579-592 201. Yamamoto T, Wakitani S, Imoto K, Hattori T, Nakaya H, Saito M, Yonenobu K (2004) Fibroblast growth factor-2 promotes the repair of partial thickness defects of articular cartilage in immature rabbits but not in mature rabbits. Osteoarthritis Cartilage. 12:636-41

202. Yokoo N, Saito T, Uesugi M, Kobayashi N, Xin K, Okuda K, Mizukami H, Ozawa K, Koshino T (2005) Repair of articular cartilage defect by autologous transplantation of basic fibroblast growth factor gene-transduced chondrocytes with adeno-associated virus vector. Arthritis Rheum. 52:164-70

203. You J, Park S, Park H, Haam S, Chung C, Kim W (2001) Preparation of regular sized Ca-alginate microspheres using membrane emulsification method. J Microencapsul. 18:521-32

204. Zhang Z, Li L, Yang W, Cao Y, Shi Y, Li X, Zhang Q (2017) The effects of different doses of IGF-1 on cartilage and subchondral bone during the repair of full-thickness articular cartilage defects in rabbits. Osteoarthritis Cartilage. 2017 Feb;25(2):309-320

205. Zellner J, Kujat R, Koch M, Angele P (2014) Role of mesenchymal stem cells in meniscal repair. J Exp Orthop 1 (12)

9. Publikationen

 Orth P, Meyer HL, Goebel L, Eldracher M, Ong MF, Cucchiarini M, Madry H. Improved repair of chondral and osteochondral defects in the ovine trochlea compared with the medial condyle. J Orthop Res. (2013)

10. Danksagung

Die vorliegende Arbeit wurde in dem Labor des Zentrums für Experimentelle Orthopädie der Klinik für Orthopädie und Orthopädische Chirurgie am Universitätsklinikum des Saarlandes erstellt.

Mein herzlichster Dank gilt Herrn Prof. Dr. med. H. Madry für die außerordentlich gute Betreuung, Ihre ständige Ansprechbarkeit, ermunternden Worte und stets konstruktiven Kritik. Dies alles war von unschätzbarem Wert für meine wissenschaftliche Arbeit und für meinen wissenschaftlichen Werdegang.

Ebenso gilt mein ganz spezieller Dank dem gesamten Laborteam der experimentellen orthopädischen Klinik für die stets freundschaftliche Atmosphäre im Labor mit vielen fachlichen Anregungen. Ein besonderer Dank gilt hier namentlich: Frau G. Schmitt, Herrn PD Dr. med. P. Orth und Frau Prof. Dr. rer. nat. M. Cucchiarini.

Von Herzen Danke ich meinen Eltern Frau Dr. phil. Elina Meyer und Herrn Dipl.-Ing. Heinz Wolfgang Meyer, denen ich alles was ich bis jetzt in meinem Leben erreicht habe zu verdanken habe. Sie haben mich immer bei allem in meinem Leben unterstützt und würden für ihre drei Kinder alles geben. Ihr seid ein großes Vorbild für mich.

Zu guter Letzt gilt ein ganz besonderer Dank meinen Schwestern Dr. med. Claudia Elina Meyer, der ich überhaupt zu verdanken habe Medizin zu studieren und S. Zeidler, die immer ein Vorbild für mich sind, mich in jeder Situation unterstützen und immer ein offenes Ohr für mich haben.