Aus der Klinik für Urologie und Kinderurologie, Universitätsklinikum des Saarlandes, Homburg/Saar

Validierung und Target-Identifizierung deregulierter microRNAs in Metastasen des klarzelligen Nierenzellkarzinom

Dissertation zur Erlangung des Grades eines Doktors der Medizin der Medizinischen Fakultät der UNIVERSITÄT DES SAARLANDES 2017

vorgelegt von: Lara Franziska Stolzenbach geb. am: 07.01.1991 in Haan

Inhaltsverzeichnis

1		Zusamm	nenfassung	6
2		Einleitun	ıg	11
	2.	.1 Nier	renzellkarzinom	11
		2.1.1	Epidemiologie	11
		2.1.2	Ätiologie	11
		2.1.3	Histologie/ Makroskopie	12
		2.1.4	Genetik des klarzelligen Nierenzellkarzinoms	13
		2.1.5	Diagnostik und Symptome des NZK	14
		2.1.6	Klassifikation	16
		2.1.7	Prognose	17
		2.1.8	Therapie	19
	2.	.2 Mici	roRNA (miRNA)	24
		2.2.1	Biogenese und Funktion	24
		2.2.2	MiRNA in Tumoren	26
	2.	.3 Vora	arbeiten	31
3		Zielstellu	Ing	32
4		Materiali	en und Methoden	34
	4.	.1 Mat	erialien	34
		4.1.1	Patientenproben	34
		4.1.2	Zellkultur	36
	4.	.2 Met	hoden	36
		4.2.1	Hämatoxylin-Eosin Färbung	36
		4.2.2	RNA-Isolation aus FFPE-Gewebsproben	36
		4.2.3	GesamtRNA-Isolierung aus Zellkulturen	38
		4.2.4	Prüfung der RNA-Konzentration und -Reinheit	38
		4.2.5	Quantitative Real-Time PCR	39
		4.2.6	Zellkultur	42
		4.2.7	Auftauen und Einfrieren von Zellen	42
		4.2.8	Ernten der Zellen	43
		4.2.9	Zellzahlbestimmung und Aussaat der Zellen	43
		4.2.10	Transiente Transfektion	44
		4.2.11	Targetidentifizierung mit Zwei dimensionaler Gelelektrophorese	45
		4.2.12	Zwei dimensionale Gelelektrophorese	46

	4.2.	13	Statistische Analyse	48
5 Ergebnisse		sse	49	
	5.1	Vali	dierung der miRNA-Expression	49
	5.2	Bes	timmung der PCR Effizienzen	49
:	5.3 dem F	miR Primä	NA-Expressionen differieren zwischen den Hauptmetastasierungsorten und	50
	5.3.	1	MiR-30a-3p	50
	5.3.	2	MiR-24-1-5p	52
	5.4	Spe	zifische miRNA-Änderungen in Hirnmetastasen	53
	5.4.	1	miR-200a-3p	53
	5.5	Targ	getidentifizierung	55
	5.5.	1	Vorversuche Transiente Transfektion	55
	5.5. Nuk	2 deosi	Die Überexpression von miR-30a-3p beeinflusst die miRNA-Targets Cofilin un id-Diphosphat-Kinase B	id 59
6	Disl	kussi	on	52
7	Aus	blick	·······	70
8	Literaturverzeichnis		72	
9	Anh	nang.		78
10) Danksagung		jung	33
11	Erklärung gemäß § 7 Abs. 1 Nr. 4		34	

Tabellenverzeichnis

Tabelle I Mikroskopische und makroskopische Eigenschaften der Haupttumorentitäten	.13
Tabelle II Leitsymptome nach Harrisions 17.Auflage	.15
Tabelle III TNM-Klassifikation der UICC 2010	.17
Tabelle IV Stadiengruppierung der UICC 2010	.17
Tabelle V Tumorspezifisches Überleben nach TNM-Klassifikation des NZKs	.18
Tabelle VI Memorial Sloan-Kettering Cancer Center (MSKCC,Motzer) Kriterien et al EAU	
guidelines	.19
Tabelle VII Übersicht des Patientenkollektives	.35
Tabelle VIII Mastermix der Reversen Transkription	.39
Tabelle IX Reaktionsprozesse der Reverse Transkription	.40
Tabelle X Zusammensetzung des PCR-Mastermixes	.40
Tabelle XI Prozessablauf der Amplifikation	.41
Tabelle XII Komponenten der Transienten Transfektion	.44
Tabelle XIII Protokoll der Fokussierung	.46
Tabelle XIV Protokoll der Elektrophorese	. 47
Tabelle XV PCR-Effizienzen die miRNA-Primer	. 49
Tabelle XVI Abkürzungsverzeichnis	. 78
Tabelle XVII Geräte- und Programmliste	. 81
Tabelle XVIII Chemikalienliste und verwendete Kitsystem	. 82

Abbildungsverzeichnis

Abbildung 1 Molekulare Targets vom NZK2	20
Abbildung 2 Evidenzbasierende Empfehlungen für die systemische Therapie European	
Association of Urology 20152	3
Abbildung 3 MiRNA Entstehung und Funktion2	:6
Abbildung 4 Überblick über deregulierte miRNA und ihre Auswirkung2	27
Abbildung 5 Übersicht über den Metastasierungsprozess2	9
Abbildung 6 miRNA und ihre regulierten Signalwege in Tumormetastasen	0
Abbildung 7 Microarrayergebnisse zu miR-30a-3p, miR-24-1-5p und miR-200a-3p	51
Abbildung 8 Schematische Darstellung des qPCR-Zykluses4	.1
Abbildung 9 Expression von miR-30a-3p in Gewebeproben der Primärtumore und	
Metastasen verschiedener Organe5	;1
Abbildung 10 Expression von miR-24-1-5p in Gewebeproben der Primärtumore und	
Metastasen verschiedener Organe5	2
Abbildung 11 Expression von miR-200a-3p in Gewebeproben der Primärtumore und	
Metastasen verschiedener Organe5	4
Abbildung 12 Emittlung der Transfektionseffizienz bei Dharmafect mittels qPCR5	6
Abbildung 13 Etablierung der mimic 30a-3p Konzentration mittles qRT-PCR5	7
Abbildung 14 Validierung der Überexpression von miR-30a-3p in transfizierten Zellen mittels	3
qRT-PCR5	8
Abbildung 15 Gelbild: Zusammenfassung der drei Transfektionsansätze mit den 13	
differentiell exprimierten Proteinspots6	0
Abbildung 16 Gelbild, 3-D-Darstellung von Cofilin6	0
Abbildung 17 Darstellung der 13 differentiell exprimierten Proteinspots der 2-D-	
Gelelektrophorse als Heat map6	;1

1 Zusammenfassung

Die Prognose der Patienten mit einem klarzelligen Nierenzellkarzinom verschlechtert sich bei vorliegender Metastasierung drastisch. Auch neuartige zielgerichtete Systemtherapien und Immuntherapien führen äußerst selten zu einer kompletten Remission. Um neue effektive Therapieansätze und neue Prognoseparameter zu entwickeln, ist es notwendig, die molekularbiologischen Mechanismen der Metastasierung im klarzelligen Nierenzellkarzinom besser zu verstehen.

MicroRNAs sind entscheidende Regulatoren diverser molekularbiologischer Prozesse. Vorrangegangene Untersuchungen konnten Expressionsunterschiede der microRNAs zwischen Primärtumoren und dem umliegenden Normalgewebe bestätigen. Mithilfe der Expressionsunterschiede und funktioneller Analysen konnte die Beteiligung von microRNAs an der Tumorgenese belegt werden. Wenig untersucht ist die microRNA Expression in den Metastasen. Die Vorergebnisse von Heinzelmann, Unrein et al. konnten diesbezüglich Unterschiede zwischen Primärtumoren und Lungen-, Knochen- und Gehirnmetastasen zeigen. Mittels Microarrayanalysen wurden microRNAs (insbesondere miR-30a-3p, miR-24-1-5p) identifiziert, welche an den Hauptmetastasierungsorten im Vergleich zu den Primärtumoren verändert exprimiert waren. Zusätzlich wurden an einzelnen microRNA-Änderungen Metastasierungsorten spezifische (unter anderem miR-200a-3p-Deregulation in Gehirnmetastasen) detektiert. Um die Metastasierungsprozesse besser zu verstehen, ist es das Ziel dieser Arbeit, auf Basis der Vorergebnisse die Genexpressionsunterschiede von miR-30a-3p, miR-24-1-5p und der miR-200a-3p in weiteren Tumor- und Metastasengeweben mittels quantitative reverse transcription-polymerase chain reaction (qRT-PCR) zu validieren. Am Beispiel einer ausgewählten microRNA soll die Bedeutung für die Metastasierung mithilfe der Targetidentifizierung untersucht werden.

Total-RNA wurde aus *formalin-fixed paraffin-embedded* (FFPE) Proben von metastasierten und nicht-metastasierten Primärtumoren des klarzelligen Nierenzellkarzinoms (n=28) und Fernmetastasen (n=29) aus Lunge, Gehirn und Knochen isoliert. Mittels qRT-PCR wurde die relative Genexpression der miR-30a-3p, miR-24-1-5p und miR-200a-3p ermittelt.

Nach der Transienten Transfektion von miR-30a-3p in die Zelllinie 786-O wurden die potentiellen microRNA-*Targets* mittels Zwei-Dimensionaler-Gelelektrophorese identifiziert. Mithilfe des computerbasierten Vorhersage-Programmes GOmir und miRWalk wurden die komplementären Nukleotidsequenzen der potentiellen *Targets* für miR-30a-3p zusätzlich abgeglichen.

Zunächst beinhaltet die vorliegende Arbeit den Nachweis einer spezifischen microRNA-Änderung an einem einzelnen Metastasierungsort. Die Expression der miR-200a-3p war reduziert in Gehirnmetastasen im Vergleich zu den nichtmetastasierten und metastasierten Primärtumoren (5,38-fach (p= 0,00024) /4,9-fach (p=0,003)).MiR-200a-3p wurde in Gehirnmetastasen gegenüber der Knochenmetastasen das 2,92-fache (p=0,003) gegenüber der um und Lungenmetastasen 4,33-fache (p=0,003) um das reduziert exprimiert. Übereinstimmend mit dem Vorarbeiten eine spezifische miRNAwar Expressionsänderung für miR-200a-3p in Gehirnmetastasen reproduzierbar. Die ortsspezifische Expressionsänderung deutet auf Prozesse hin, die sich in den verschiedenen Metastasierungsorten unterscheiden.

Weiterhin war eine generelle Expressionsveränderung von miR-30a-3p und miR-24-1-5p an den Hauptmetastasierungsorten zu überprüfen. Eine Expressionsänderung von miR-24-1-5p an den Hauptmetastasierungsorten (Gehirn, Lunge und Knochen) konnte mittels qRT-PCR nur teilweise bestätigt werden. Nur in Gehirnmetastasen zeigte sich ein deutlicher Expressionsunterschied im Vergleich zu den Primärtumoren und den Lungenmetastasen. Damit ist miR-24-1-5p am ehesten als eine microRNA anzusehen, die nicht in allen Hauptmetastasierungsorten verändert ist, sondern nur im Gehirn. Hingegen zeigte miR-30a-3p eine generelle Expressionsveränderung an den Hauptmetastasierungsorten. Die relative Genexpression von miR-30a-3p nahm im Vergleich zu den nicht-metastasierten klarzelligen Nierenzellkarzinom in dem metastasierten klarzelligen Nierenzellkarzinom um ein 1,99-faches (p=0,028), in den Knochenmetastasen um ein 4,08-faches (p=0,0005), in den Gehirnmetastasen um ein 8,13-faches (p=0,00005) und in den Lungenmetastasen um ein 2,62-faches (p=0,002) ab. Die generelle Expressionsänderung in den Hauptmetastasierungsorten Vergleich Primärtumor deutet auf eine Beteiligung im zum am Metastasierungsprozess hin. Die zusätzlich nachgewiesene Verminderung der miR-30a-3p im metastasierten Primärtumor lässt schlussfolgern,

7

dass miR-30a-3p schon an den initialen Prozessen der Metastasierung beteiligt ist. Die identifizierten potentiellen miRNA-Targets der miR-30a-3p sprechen ebenfalls für diese These. Mithilfe der Zwei-dimensionalen Gelelektrophorese wurden die potentiellen Targets Alpha-Enolase, Galectin-1, Cofilin und Nukleosid-Diphosphatkinase B identifiziert. Alpha-Enolase ist ein Enzym der Glykolyse und Glukoneogenese und dient als Energieguelle für Tumorzellen (WARBURG, 1956a). Die Ziel-mRNA, Galectin-1 ist in verschiedenen Signalwegen beschrieben, unter anderem in der Zelladhäsion und der Metastasierung. Cofilin und Nukleosid-Diphosphat-kinase B, sind am Signalweg des Aktinzytoskelettumbaus beteiligt und tragen zur Mobilität der Zellen bei. Die Mobilität von Tumorzellen ist ein essentieller Vorgang in der Metastasierung. Die vorliegenden Ergebnisse deuten erstmalig auf eine regulierende Funktion der miR-30a-3p an dem Signalweg des Cofilins hin. Damit scheint miR-30a-3p über Cofilin an der Metastasierung des klarzelligen Nierenzellkarzinoms beteiligt zu sein. Zusammenfassend leisten die verifizierten microRNA Expressionen und die identifizierten *Targets* einen Beitrag zum besseren Verständnis der Metastasierung des klarzelligen NZK. In Zukunft sollte geprüft werden, ob sich die untersuchten microRNAs als biologische Marker für den individuellen Krankheitsverlauf und die prognosebestimmende Metastasierung eignen.

Abstract

The prognosis of patients with a clear cell renal cell carcinoma drastically deteriorates due to metastasis. Even novel targeted therapy and immune therapy rarely achieves a complete remission. To develop new effective therapies and new prognostic factors, a better understanding of molecular mechanism of metastasis is necessary.

MicroRNAs (miRNAs) are regulators of diverse molecular processes. Previous analyses could confirm alterations in miRNA expression between primary tumors und normal kidney tissue. MiRNA expression alterations and functional analyses confirmed a participation of miRNAs in tumorigenesis. Little is known about miRNA expression levels in metastases. Regarding to these preceding studies by Heinzelmann, Unrein et al. found miRNA alterations between primary tumors and of lung, bone and brain metastases. By microarray analyses, miRNAs (in particular miR-30a-3p, miR-24-1-5p) were identified, which were differentially expressed in metastases in comparison with primary tumors. Additionally there were specific miRNA alterations found at some metastasis locations (for example the dysregulation of miR-200a-3p in brain metastases). For a better understanding of metastasis processes, the aim of this study is to validate on the basis of the preceding study the gene expression alterations of miR-30a-3p, miR-24-1-5p and miR-200a-3p in other tissues of primary tumors and metastases by quantitative reverse transcriptionpolymerase chain reaction (qRT-PCR). For one selected miRNA the correlation to the metastasis process shall be investigated by target identification.

Total-RNA samples of metastatic and non-metastatic primary clear cell renal cell carcinoma (n=28) and metastases from lung, brain, bone (n=29) were isolated from *formalin-fixed paraffin-embedded* (FFPE) samples. The relative gene expression of miR-30a-3p, miR-24-1-5p and miR-200a-3p was investigated by qRT-PCR. After transient transfection of miR-30a-3p in cell line 786-O, targets were identified by two-dimensional gel electrophoresis. The nucleotide sequences of the potential targets of miR-30a-3p were compared by the computer-based prediction programs GOmir and miRWalk.

At first this study treats the verification of a differently expressed miRNA in a single metastatic location. The gene expression of miR-200a-3p was found to be reduced in

brain metastases compared to non-metastatic and metastatic primary tumors (5,38fold (p=0,00024) /4,9-fold (p=0,003)). Furthermore miR-200a-3p was reduced expressed in brain metastasis compared to bone (2,92-fold (p=0,003)) and lung metastases (4,33-fold (p=0,003)). Concordantly to the preceding studies a specific miRNA expression alteration was confirmed. The specific local expression alterations indicate differences in the processes at different metastases locations.

Furthermore a general expression alteration of miR-30a-3p and miR-24-1-5p in the distant metastases should be verified. An expression alteration of miR-24-1-5p in distant metastases (brain, lung and bones) could be partially confirmed by qRT-PCR. But in brain metastasis the expression is reduced compared to primary tumors and lung metastases. Therefore miR-24-1-5p is not regarded to be generally dysregulated miRNA in distant metastases, but rather as a dysregulated miRNA just in brain metastases. However, miR-30a-3p showed a general decrease of the expression in distant metastases. The relative gene expression of miR-30a-3p was found reduced in metastatic primary tumors (1,99-fold (p=0,028)), in brain metastases (8,13-faches (p=0,00005)), in lung metastases (2,62-faches (p=0,002)) and in bone metastases (4,08-faches (p=0,0005)) compared to non-metastatic primary tumor. The general expression alteration in the distant metastases shows that different processes between primary tumor and distant metastasis occur. These processes are supposed to be involved in the metastasis. Additionally the decrease of miR-30a-3p expression in metastatic primary tumor shows which miR-30a-3p is involved in the early steps of metastasis. The identified potential targets of miR-30a-3p support this thesis. By two-dimensional gel electrophoresis four targets, alpha-enolase, galectin-1 cofilin and nucleosid-diphosphate-kinase B were identified. Alpha-enolase is an enzyme of the glycolysis and gluconeogenesis and serves as energy source for tumor cells. The target galectin-1 is described in several signal pathways, amongst other in cell adhesion and in the metastasis. Two more microRNA-targets, cofilin and nucleosid-diphosphate-kinase B are involved in the signal pathway of actin cytoskeleton organization and contribute to cell mobility. Cell mobility is an essential event in metastasis. For the first time, the present study suggests a regulatory function of miR-30a-3p in the cofilin pathway. The verified miRNA expression alterations and the identified targets contribute to a better understanding of metastasis. In the future the investigated microRNAs shell be proved as biological markers for the individual follow-up prediction and for the metastasis prognosis.

2 Einleitung

2.1 Nierenzellkarzinom

2.1.1 Epidemiologie

Bei 90% der Tumore, die von der Niere ausgehen, handelt es sich um das Nierenzellkarzinom (NZK). Die Inzidenz nimmt vor allem in den Industrieländern jährlich zu. Im Jahr 2012 erkrankten in Europa 84.400 Menschen am NZK (FERLEY et al., 2013). Statistisch sind Männer häufiger betroffen als Frauen. Das Verhältnis zwischen Mann und Frau beträgt 2:1. Der Altersgipfel liegt zwischen dem 60. -70. Lebensjahr (Herrisions et al. 17.Auflage). 2012 verstarben 34.700 Menschen am NZK beziehungsweise an den Folgen des NZK. Es kommt in der Regel sporadisch vor, in 1% der Fälle tritt es bilateral auf.

2.1.2 Ätiologie

Es gibt eine breit aufgestellte Studiengrundlage zu den Risikofaktoren des NZKs. Zu den umwelt-assoziierten Risikofaktoren zählt der Nikotinkonsum (LJUNGBERG et al., 2011) Im Vergleich zu Nicht-Rauchern haben Raucher ein erhöhtes relatives Risiko um den Faktor 1,38, am NZK zu erkranken. Das Risiko korreliert mit dem Konsumverhalten von Tabak. Auch Passivraucher haben ein erhöhtes Risiko (HUNT, 2005).

Außerdem ist starkes Übergewicht ein relevanter Risikofaktor. Studien konnten eindeutig einen Zusammenhang zwischen dem NZK und einem erhöhten BMI belegen. Bei einer Zunahme des BMI von 5 kg/m² erhöht sich die Wahrscheinlichkeit, am NZK zu erkranken, bei Männern um den Faktor 1,24 und bei Frauen um 1,34 (LJUNGBERG et al., 2011).

Auch der Hypertonus gilt als Risikofaktor. Die Einnahme von Antihypertensiva wird als weiterer Risikofaktor diskutiert (WEIKERT et al., 2008).

Weitere Risikofaktoren sind die erworbene zystische Nierendegeneration, die Inanspruchnahme der Hämodialyse, die Niereninsuffizienz und die tuberöse Sklerose (LJUNGBERG et al., 2011).

In der Regel tritt das NZK sporadisch auf, aber es sind auch familiäre Dispositionen beschrieben. Dazu zählt das hereditäre Von-Hippel-Lindau-Syndrom. Bei diesem autosomal-dominant vererbten Syndrom haben die Betroffenen eine 30%-ige höhere Wahrscheinlichkeit, an einem NZK zu erkranken (LINEHAN, 2012). Unabhängig vom Von-Hippel-Lindau-Syndrom haben Verwandte ersten Grades eines Betroffenen ein relatives Risiko von 1,1-1,7, auch am NZK zu erkranken (ROHDE, 2010).

2.1.3 Histologie/ Makroskopie

Das NZK wird histologisch und molekular nach der ISUP-Vancouver Klassifikation von 2013 differenziert. Die am häufigsten vorkommenden Tumorentitäten sind das klarzellige NZK (75%), das papilläre NZK (15-5%), und das chromophobe NZK (10-5%). Seltener treten das benigne Onkozytom (1%) und das Ductus Bellini (<1%) NZK auf. Die histologische Zuordnung erlaubt die Bestimmung der Tumorentität. Einen Überblick über die 3 häufigsten Tumorentitäten wird in der folgenden Tabelle I veranschaulicht (EBLE JN, 2004; KRISTIANSEN et al., 2014).

	klarzelliges NZK	papilläres NZK	chromophobes NZK
Mikroskopische Eigenschaften	Klares, eosinophiles Zytoplasma; alvoeläre und aziniäre Strukturen; geordnete kleine, dünnwandige Blutgefäße	Papilläre und tubuläre Strukturen 2 histomorphologisch abgrenzbare Subtypen	transparente, leicht retikuläres Zytoplasma und prominente Zellmembran; solide, pseudoglanduläre Strukturen mit fokalen Verkalkungen und brei- ten fibrotischen Septen; dickwandige und häufig hyalinisiert Blutgefäße
Tumorinitiation	Proximaler Tubulus	Proximaler Tubulus	Sammelrohrgang
In allen Tumorentit Prognose einher.	äten können sarkomatoide Vera	änderungen vorkommen, diese (gehen mit einer schlechten
Makroskopische Eigenschaften	gut abgrenzbar, Pseudokapsel, Schnittfläche goldgelb, häufig Hämorrhagien und Nekrosen	gut abgrenzbar, Pseudokapsel, gelb-braune Schnittfläche, weiche Struktur,	gut abgrenzbar , ohne Kapsel, blasse Schnittfläche, homogene feste Struktur
Grading (s.unten)	ISUP-Gradierungssystem	ISUP-Gradierungssystem	Grading nach Paner et al.
Genmutation	VHL-Mutation, 3p Deletion	Trisomie des Chromosoms 7 und Chromosom 17	Kombinierte Verluste der Chromosomen 1, 2, 6, 10, 13, 17, 21
Mikroskopische Darstellung (Hämatoxylin- Eosin-Färbung) von(HAMMERS CHMIED et al., 2008)			

Der Untersuchungsgegenstand dieser Arbeit ist das klarzellige NZK, somit fokussieren sich die folgenden Abschnitte dieser Arbeit nur auf diese Entität.

2.1.4 Genetik des klarzelligen

Nierenzellkarzinoms

Das vererbte klarzellige NZK tritt im Rahmen einer autosomal-dominant vererbten Erkrankung auf. Das Syndrom ist gekennzeichnet durch das vermehrte Vorkommen von Tumoren, wie das Retinohämangiom, das NZK, das Hämangioblastom des Spinalkanals beziehungsweise des Kleinhirns und das Phäochromozytom. Die Betroffenen entwickeln mit einer 30%-igen Wahrscheinlichkeit ein klarzelliges NZK. Im Gegensatz zu dem sporadischen, nicht-hereditären NZK tritt das NZK im Rahmen des Von-Hippel-Lindau-Syndroms häufiger in jüngeren Jahren, bilateral und multifokal auf. Die Erkrankung ist assoziiert mit einer Deletion der Region 3p25-26, welches das Von-Hippel-Lindau (VHL) Tumorsuppressorgen kodiert und führt damit zu einem Funktionsverlust/-defizit des VHL (CAIRNS, 2011; COHEN et al., 1979).

Auch das sporadische klarzellige NZK geht in den meisten Fällen mit einer Mutation im VHL-Tumorsuppressorgen einher. In einer Untersuchung von 110 sporadischen klarzelligen NZK sind in 57% der Tumoren VHL-Mutationen und in 98% der Verlust der Heterozygosität nachgewiesen worden (GNARRA et al., 1994). Das VHL Protein ist eine Komponente eines Elongationskomplexes. Dieser VHL-Komplex setzt sich zusammen aus Elongin C und B, CUL2 und Rbx1. In normoxischen Zellen bindet und ubiquiniert der VHL-Komplex die *hypoxia-inducible-factors* (HIF 1α, HIF 2β). Dadurch wird HIF 1α und HIF 2β durch Proteasomen abgebaut und ihre Funktion inhibiert. HIF 1α und HIF 2β sind Transkriptionsfaktoren und führen zu einer vermehrten Expression von weiteren proangiogenen und proliferativen Transkriptionsfaktoren, wie vascular endothelial growth factor A (VEGFA), platelet derived growth factor (PDGF), glucosetransporter (GLUT1) und epidermal growth factor receptor (EGFR). In hypoxischen Zellen ist VHL inhibiert und HIF 1a und HIF 2ß wird vermindert abgebaut. Bei einer Mutation des VHL-Gens kommt es zu einem Funktionsverlust des VHLs. Dadurch akkumuliert HIF 1a und HIF 2ß unabhängig von der Sauerstoffversorgung der Zelle und löst dadurch eine unkontrollierte Proliferation aus (COHEN, MCGOVERN, 2005; KAELIN JR, 2008; LINEHAN, 2012).

Weitere, häufige (20-40%) Verluste von Chromosomenbereichen wurden für 6p, 9, 10,14 und 18 beschrieben (JUNKER et al., 2003).

2.1.5 Diagnostik und Symptome des NZK

Die Diagnostik des NZK beginnt mit der allgemeinen klinischen Untersuchung. Dazu gehören die körperliche Untersuchung und die Anamnese. Die Leitsymptome des NZK sind die Hämaturie, der abdominelle Schmerz und der palpable Befund eines Flankentumors. Diese Symptomtrias treten bei nur 20% der Betroffenen auf und sprechen für ein fortgeschrittenes Tumorstadium.

Tabelle II Leitsymptome nach	h Harrisions 17.Auflage
------------------------------	-------------------------

Leitbefunde oder –symptome	Inzidenz (%)
klassische Trias: Hämaturie, Flankenschmerzen,	10-20
palpabler Flankentumor	
Hämaturie	40
Flankenschmerz	40
palpabler Flankentumor	25
Gewichtsverlust	33
Anämie	33
Fieber	20
Hypertonus	20
Leberfunktionsstörung	15
Hyperkalzämie	5
Erythrozytose	3
Neuromyopathie	3
Amyloidose	2
Erhöhter BSG	55

Das NZK kann außerdem assoziiert sein mit einem paraneoplastischen Syndrom, wie der Erythrozytose, der Hyperkalzämie, der Leberdysfunktion (Stauffer-Syndrom) oder der Dysfibrinogenämie. 20% der Patienten leiden an einem paraneoplastischen Syndrom bei der Erstdiagnose. Die Symptome sind der Tabelle II zu entnehmen.

Dennoch werden in 50% der Fälle Nierentumore zufällig im Rahmen einer radiologischen Untersuchung, wie der Sonographie, der Computerresonanztomographie (CT) und der Magnetresonanztomographie (MRT) entdeckt. Dabei gilt jede Raumforderung der Niere als maligne bis zum Beweis des Gegenteils. Die Raumforderung wird mit den folgenden Standarddiagnostiken abgeklärt: ein Röntgenbild des Thorax in zwei Ebenen und ein CT des Abdomens und des Beckens (Harrisions et al. 17.Auflage).

In der klinischen Labordiagnostik gibt es keine spezifischen Parameter für das NZK. Symptome wie die Hämaturie können durch die Bestimmung des Urinsedimentes und der Urinzytologie bestätigt werden und hinweisend für die Erkrankung sein. Das paraneoplastische Syndrom kann im Serum auffallen, durch beispielsweise eine Hyperkalzämie und eine Änamie. Zusätzlich sollte immer die Nierenfunktion überprüft werden, durch die Bestimmung des GFR und des Kreatininwerts. Ein Tumormarker existiert derzeit noch nicht, weder für die Diagnostik noch für den Krankheitsverlauf. Die Sonographische Untersuchung ist eine sensitive und spezifische Methode (93-98%), um Raumforderungen (>2,5 cm) darzustellen. Kleinere Raumforderungen können durch das CT des Abdomens besser erfasst werden und dienen damit der Sicherung einer Verdachtsdiagnose (ROHDE, 2010). Alternativ zur CT-Untersuchung kann auch das Magnetresonanztomographie (MRT) eingesetzt werden.

Zum präoperativen Staging dient das Röntgen des Thorax in zwei Ebenen. Dabei wird die Lunge auf Fernmetastasen untersucht. Wird der Verdacht auf Metastasen im Röntgen-Thorax gestellt, ist ein CT des Thorax indiziert. Zur weiteren Abklärung von Fernmetastasen kann individuell ein MRT des Gehirns und/ oder eine nuklearmedizinische Untersuchung durchgeführt werden.

Ein weiteres diagnostisches Verfahren ist die perkutane Tumorbiopsie. Biopsien werden zunehmend entnommen, um die Diagnose abzusichern und eine geeignete Therapie für den Patienten auszuwählen (MATUREN et al., 2007).

2.1.6 Klassifikation

Zur Klassifizierung des NZK wird das *Tumor-Node-Metastasis* (TNM) System von 2010 der *International Union against cancer* (UICC) angewandt. Nach diesem System wird die Ausdehnung des Tumors, der Lymphknotenbefall und das Vorhandensein von Fernmetastasen beurteilt (siehe Tabelle III). Zusätzlich kann anhand der TNM-Klassifikation der Tumor einem Tumorstadium zugeordnet werden (siehe Tabelle IV). In Deutschland findet diese Einteilung aber kaum Verwendung.

Die histologische Untersuchung des Tumorgewebes unterscheidet zwischen den Tumorentitäten und zusätzlich wird seit 2012 ein neues Gradierungssystem für klarzellige und papilläre NZK empfohlen. Das ISUP-Gradierungssystem berücksichtigt die Nukleoli der Tumorzellen und korreliert mit der Prognose. Das System ist 4-stufig:

- Grad 1: fehlende oder unauffällige Nukleolen in 400-facher Vergrößerung,
- Grad 2: prominente Nukleolen bei 400-facher Vergrößerung,
- Grad 3: prominente Nukleolen bei 100-facher Vergrößerung
- Grad 4: extreme nukleäre Pleomorphie, Tumorriesenzellen und/oder sarkomatoide/rhabdoide Veränderungen (KRISTIANSEN et al., 2014)

Tabelle III TNM-Klassifikation der UICC,2010

TNM-Klassifikation (UICC, 2010)			
T0	Kein Primärtumor nachweisbar		
T1a	Tumor < 4 cm groß, auf die Niere begrenzt		
T1b	Tumor 4-7 cm groß, auf die Niere begrenzt		
T2a	Tumor >7-10 cm		
T2b	Tumor > 10 cm		
Т3а	Invasion in die Nierenvene oder perirenale		
	Infiltration		
T3b	Invasion in V.cava unterhalb des Zwerchfells		
T3c	Invasion in V.cava oberhalb des Zwerchfells		
T4	Durchbruch der Gerota-Faszie		
N0	keine Lymphknotenmetastasen		
N1	Metastase in einen regionalem Lymphknoten		
N2	Metastasen in mehr als einem Lymphknoten		
M0	keine Fernmetastasen		
M1	Nachweis von Fernmetastasen		

Tabelle IV Stadiengruppierung der UICC 2010

Stadiengruppierung (UICC, 2010)			
Stadium	T1N0M0		
Stadium II	T2N0M0		
Stadium III	T3N0 oder T1-3N1M0		
Stadium IV	T4N0, N1M0 oder T 1-4N2M0 oder T1-4N1- 2M1		

2.1.7 Prognose

Derzeit erfolgt die Prognoseeinschätzung des NZK mithilfe der Histologie, der TNM-Klassifikation und des daraus resultierenden Tumorstadiums.

Die histologischen Tumorsubtypen haben unterschiedliche Prognosen. Univariante Analysen ergaben, dass Patienten mit einem klarzelligen NZK eine schlechtere Prognose im Vergleich zu dem chromophoben NZK haben (LEIBOVICH et al., 2010). Betrachtet man aber zusätzlich Tumorgrading und Tumorstadium, konnten die Prognoseunterschiede nicht belegt werden (DELAHUNT et al., 2007). Weiterhin wird das papilläre NZK in Typ I und II unterteilt. Der Subtyp I korreliert mit einem besseren klinischen Verlauf als der Subtyp II (HAMMERSCHMIED et al., 2008). Außerdem erlaubt das ISUP-Tumorgrading (s.o.) weitere Aussagen über die Prognose. Weiterhin können histologische Faktoren wie eine sarkomatoide Differenzierung, ein hoher Nekroseanteil oder mikrovaskuläre Tumorzellinvasionen zur Prognoseeinschätzung verwendet werden.

Bei der TNM-Klassifikation ist vor allem die Metastasierung für die Prognose entscheidend. Im Rahmen der Erstdiagnose ist das NZK in 20-30% der Fälle bereits metastasiert (LJUNGBERG et al., 2011). Das klarzellige NZK metastasiert vorzugsweise in die Lunge (70%), die Knochen (30%), die Leber (20%), das Gehirn (5%) und in retroperitoneale Lymphknoten (25%) (MOTZER et al., 2002) . Anhand der Tabelle V wird deutlich, dass mit der Größe des Tumors das Sterberisiko bis um das 16,9 fache steigen kann. Bei einer Metastasierung verdoppelt sich sogar das Sterberisiko (33,2 fache erhöhtes Risiko). Trotz histologischer Beurteilung und der TNM-Klassifikation ist die Prognoseeinschätzung für den einzelnen Patienten eingeschränkt.

Tabelle V Tumorspezifisches Überleben nach TNM-Klassifikation des NZK- Hazard Ratio (95%Konfidenzintervall)(Keegan, Schupp et al. 2012)

T1N0M0	Referenz
T2N0M0	2,71 (2.17 - 3.39)
T3N0M0	5.20 (4.36 - 6.21)
T4N0M0	16.88 (12.40 - 22.98)
N+M0	16.33 (12.89 - 20.73)
M+	33.23 (28.18 - 39.18)

Zur Einschätzung der Risikostratifizierung beim metastasierten NZK wird das *Database Consortium Model* (DCM) verwendet. Das DCM umfasst klinische Faktoren. Dazu zählen dieselben klinischen Faktoren wie im *Memorial Sloan-Kettering Cancer Center* (MSKCC)-Modell (siehe Tabelle VI). Allerdings wurde das Modell um Parameter, wie die Laktatdehydrogenase, die Neutrophilie, die Thrombozytopenie ergänzt. Anhand der Faktoren werden die Patienten in drei Risikogruppen unterteilt, in die *"favourable, intermediate und poor"* Risikogruppe (HENG et al., 2009). Für die *"favourable"* Gruppe wurde ein medianes Überleben von 43 Monaten ermittelt, für die *"intermediate"* Gruppe 22 Monate und 8 Monate beträgt die mediane Überlebenszeit für die *"poor"* Gruppe. Das DCM wurde validiert für die *targeted therapy* (HENG et al., 2013). Dennoch ist die Genauigkeit des DCM begrenzt, zumal das Individuum nicht berücksichtigt wird und nur klinische Parameter mit einbezogen werden. Es wurde nachgewiesen, dass Patienten mit bestimmten Einzelnukleotid-Polymorphismen (SNP) im CYP3A5-, NR1I3-und ABCB1 Gen besser auf die Sunitinib-Behandlung ansprachen als solche ohne SNP in den oben gennannten Genen (VAN DER VELDT et al., 2011). In diesem Zusammenhang ist es notwendig, biologische Marker zu finden, welche den individuellen klinischen Krankheitsverlauf und die prognosebestimmende Metastasierung vorhersagen.

Tabelle VI Memorial Sloan-Kettering Cancer Center (MSKCC,Motzer) Kriterien et al EAU guidelines; low risk: keine zutreffenden Risikofaktoren; intermediate risk: ein oder zwei Riskofaktoren; poor risk: drei oder mehr Riskofaktoren

Risk factors*	Cut-off point used	
Karnofsky performance status	< 80	
Time from diagnosis to treatment	< 12 months	
Haemoglobin	< Lower limit of laboratory reference range	
Lactate dehydrogenase	> 1.5 times the upper limit of laboratory range	
Corrected serum calcium	> 10.0 mg/dL (2.4 mmol/L)	

* Favourable (low) risk, no risk factors; intermediate risk, one or two risk factors; poor (high) risk, three or more risk factors.

2.1.8 Therapie

Die Therapie des klarzellige NZK ist wesentlich von der Prognose abhängig. Lokal begrenzte Tumore werden primär chirurgisch behandelt, mittels radikaler Tumornephrektomie oder Nierenteilresektion. Beide Verfahren verfolgen einen kurativen Ansatz. Aufgrund einer geringeren Mortalitätsrate, wird in der Therapie des lokal begrenzten NZK eine nierenerhaltende Tumorentfernung angestrebt (HUANG et al., 2009; ZINI et al., 2009).

Alternative Behandlungen des lokal begrenzten NZK sind nicht-chirurgische Verfahren. Sie gewinnen zunehmend bei älteren, komorbiden Patienten an Bedeutung. Dazu zählen die *watchfull waiting* und ablative Verfahren, wie die Radiofrequenztherapie und die Kyrotherapie. Sie sind keine Standardtherapien aufgrund mangelnder Datenlage zur Morbidität und Tumorkontrolle (LJUNGBERG et al., 2015).

Beim fortgeschrittenen NZK kommen verschiedene Therapien zur Anwendung. Die chirurgische Therapie beinhaltet die Entfernung des Primärtumors. Zusätzlich können solitäre Metastasen chirurgisch entfernt werden.

Das metastasierte NZK wird auch systemisch therapiert. Die Immunmodulatorische Therapie mit Interferon-α (IFN-α) oder Interleukin-2 (IL-2) (Ansprechrate 6-15%) galt bis zur Etablierung der *targeted therapy* und der neuartigen immunmodulatorischen Therapie mit *Checkpoint-Inhibitoren* als Standardtherapie. Aktuelle Leitlinien empfehlen die *targeted therapy* als Erstlinientherapie des fortgeschrittenen NZK (ESCUDIER et al., 2008; LJUNGBERG et al., 2015; MOTZER et al., 2007). Seit 2016 wird als Zweitlinientherapie der Einsatz von Nivolumab, einem immunmodulatorisch wirkenden *Checkpoint-Inhibitor*, empfohlen (LJUNGBERG et al., 2015).

Derzeit werden folgende Substanzen in Europa und der USA zur Therapie des metastasierten NZK angewendet:

- 1. Tyrosinkinaseinhibitoren: Sorafenib, Sunitinib, Pazopanib, Axitinib
- 2. monoklonale Antikörper gegen VEGF: Bevacizumab
- 3. mammilian target of rapamycin (mTOR)-Inhibitoren: Temsirolimus, Everolimus
- 4. Checkpoint-Inhibitoren der T-Zell-Immunantwort: Nivolumab

Die ersten drei Substanzgruppen zählen zu der *targeted therapy*. Sie basiert auf der Inhibition proangiogener Prozesse in den Tumorzellen und den Endothelzellen (Abbildung 1). Alle Substanzen der zielgerichteten Therapie inhibieren den VHL-HIFα-Signalweg (vergl. Genetik des klarzelligen Nierenzellkarzinoms).

Abbildung 1 Molekulare Targets vom NZK (Macmillian Publishers LTd: Nat Rev Cancer 2002)

Abk.: VHL=von Hippel-Lindau, HIF=hypoxieinduzierender Faktor, mTOR= mammilian target of rapamycin, VEGF= vascular epithelial growth factor, PDGF= palet-derived factor, PDGFR= palet-derived growth factor, TGFα= transforming growth factor

Die Tyrosinkinaseinhibitoren interagieren mit unterschiedlichen Tyrosinkinaserezeptoren. Beispielsweise wirkt Sunitinib gegen vascular epithelial growth factor- Rezeptor (VEGFR), palet derived factor- Rezeptor (PDGFR) und gegen FMS Tyrosinkinasen3, c-Kit. Während Sorafenib und Pazopanib vergleichbare Wirkungsspektren wirkt Axitinib als zweite Generation haben, der Tyrosinkinasehemmer selektiver auf Tyrosinkinasen der VEGFR 1, 2, 3 (LJUNGBERG et al., 2011; MOTZER et al., 2013). Cabozantinib zählt ebenfalls zu den Tyrosinkinaseinhibitoren und hemmt unter anderem VEGFR 2 und MET. MET ist eine Tyrosinkinase, welche in Signalwege des Zellwachstums, -tod und Zellmobilität involviert ist. Unter anderem hängt MET auch mit dem VHL-Signalweg zusammen (YAKES et al., 2011). Das mediane progressionsfreie Überleben unter der Behandlung von Sunitinib verlängert sich um 11 Monate im Vergleich zur IFN-α-Monotherapie (MOTZER et al., 2007). Aufgrund der Überlegenheit der Tyrosinkinase-Inhibitoren gegenüber der Immuntherapie mit IFN-α und IL-2 wird derzeit Sunitinib und Pazopanib als "first-line" Therapie des klarzelligen, metastasierten NZK eingesetzt. Axitinib wird als "second-line" Behandlung empfohlen (Axis-Studie), wenn Nivolumab (Checkpoint-Inhibitor) für den betroffenen Patienten nicht zugänglich oder nicht verträglich ist (MOTZER et al., 2013; MOTZER et al., 2015b). Als "third-line" Therapie wird derzeit Cabozantinib empfohlen. Bei Patienten mit ein- oder zweimaligem Versagen der targeted therapy zeigte sich für Cabozantinib ein Vorteil im progressionsfreien Überleben um 7,4 Monate gegenüber 3,4 Monate unter der Therapie mit Everolimus (METEOR) (CHOUEIRI et al., 2015). Die häufigsten unerwünschten Nebenwirkungen der targeted therapy umfassen Hypertension, Müdigkeit und Diarrhoen.

Bevacizumab ist ein humaner monoklonaler Antikörper und bindet Isoformen des *vascular endothelial growth factor* (VEGF). In der Avoren-Studie (ESCUDIER et al., 2010; ESCUDIER et al., 2008) zeigte sich, dass Bevacizumab kombiniert mit IFN- α das progressionsfreie Überleben um 10,2 Monate und das Ansprechen auf die Therapie (auf 31%) erhöht. Allerdings treffen diese Fakten nur bei *"low-risk"* und *"intermediate-risk"* Patienten zu. Für diese Patienten-Subgruppe wird die kombinierte Behandlung mit Bevacizumab und IFN- α als *"first-line"* Therapie empfohlen (LJUNGBERG et al., 2015).

Eine weitere Therapie-Option sind die mTOR-Inhibitoren. mTOR ist involviert in Signalwege des Zellwachstums, der Zellproliferation und des hypoxischen Stresses. Temsirolimus bindet an ein intrazelluläres Protein (FKBP-12) und sie bilden einen Komplex. Dieser Komplex hemmt die mTOR Signalwege. Temsirolimus wird verwendet zur Therapie von *"poor-risk"* Patienten, da sich in einer Studie (NCT00065468) ein verbessertes medianes Gesamtüberleben zeigte (HUDES et al., 2007). Seit 2015 wird statt Everolimus zur Therapie von VEGF-refraktären Patienten die neue immunmodulatorischen Therapie mit Nivolumab empfohlen (MOTZER et al., 2015a).

Als Zweitlinientherapie wird die neue immunmodulatorische Therapie mit dem Wirkstoff Nivolumab, einem sogenannten Checkpoint-Inhibitor, empfohlen. Nivolumab zählt zu den monoklonalen Antikörpern, wie auch Pembrolizumab, Atezolizumab und Durvalumab. Die genannten monoklonalen Antikörper stimulieren die T-Zell-Immunantwort, indem der Programmed Death-1 (PD-1) T-Zell-Rezeptor oder die jeweiligen Liganden (Programmed Death Ligand-1/-2) blockiert werden (RIBAS 2012). Während Pembrolizumab und Nivolumab den PD-1 Rezeptor blockieren, interagieren Atezolizumab und Durvalumab mit den Liganden (MOTZER et al., 2015b; RIBAS 2012). In einer Untersuchung an 821 Patienten mit fortgeschrittenem klarzelligen NZK verlängerte sich das Gesamtüberleben der Patienten unter der Nivolumab Therapie auf 25,0 Monate. Im Vergleich verlängert sich das Gesamtüberleben unter der Everolimus-Therapie um 19,6 Monate. Aufgrund des Vorteils gegenüber der Everolimus -Therapie und der geringeren unerwünschten Nebenwirkungen, etablierte sich Nivolumab als Zweitlinientherapie (MOTZER et al., 2015a).

Abbildung 2 gibt einen Überblick über den Einsatz der systemischen Therapie beim metastasierten NZK. Die evidenzbasierten Empfehlungen wurden von der *European Association of Urology* in 2015 veröffentlicht.

Abbildung 2 Evidenzbasierende Empfehlungen für die systemische Therapie *European Association of Urology* 2015 (LJUNGBERG et al., 2015)

Abk.: OS = overall survival

Während das lokalisierte klarzellige NZK mit der Nephrektomie beziehungsweise der Nierenteilresektion erfolgreich therapiert wird, sind die neue zielgerichtete Therapie und die neuartige Immuntherapie mittels *Checkpoint-Inhibitoren* für das fortgeschrittene klarzelligen NZK palliative Therapieoptionen. Beide Therapien verlängern die progressionsfreie Zeit und die Lebenszeit der Betroffenen. Allerdings kommt es zu keiner Komplettremission der Metastasen. Aufgrund dessen sollten molekularbiologische Prozesse in Metastasen besser verstanden werden. Auf dieser Basis könnten neue Therapien und biologische Marker in Zukunft entwickelt werden.

2.2 MicroRNA (miRNA)

2.2.1 Biogenese und Funktion

MicroRNAs (miRNAs) sind kurze, nicht-kodierende RNA-Einzelstränge mit einer Länge von 19-25 Nukleotiden. Ihre Biogenese zur reifen miRNA erfolgt in zwei Schritten: eine nukleäre und eine zytosolische Spaltung (Abbildung 3). Die reife miRNA reguliert die Suppression beziehungsweise in seltenen Fällen die Überexpression der *Target*-mRNA.

Im Zellkern ist die miRNA Biogenese abhängig von der Genlokalisation der miRNA. Dabei unterscheidet man zwischen miRNA Genen im kodierenden Intronbereich und miRNA Genen im nicht-kodierenden intergenetischen Bereich.

Die Biogenese der intergenetischen miRNA beginnt mit der Transkription durch die RNA-Polymerase II und III (BORCHERT et al., 2006; LEE et al., 2004). Die miRNA des kodierenden Intronbereichs wird durch die RNA-Polymerase II transkribiert (YING, LIN, 2004). Die aus beiden Transkriptionen resultierende primäre miRNA (primiRNA) wird im Anschluss durch den Microprocessor, einem Proteinkomplex, gespalten. Der Microprocessor setzt sich zusammen aus der RNase III Endonuklease Drosha und dem doppelsträngigen RNA-bindenden Protein DiGeorgesyndrome-critical-region-gene 8 (DGCR8) (DENLI et al., 2004; HAN et al., 2004). Alternativ zum *Microprocessor*, werden Transkripte der miRNA aus dem kodierenden Intronbereich auch durch Komponenten des Spliceosomes gespalten (YING, LIN, 2004). In beiden Prozessen entstehen pre-miRNA. Anschließend wird die pre-miRNA über ein Transporter-Molekül (Exportin 5 und RAN-GTP) ins Zytoplasma transferiert (BOHNSACK et al., 2004). Im Zytoplasma interagieren die folgenden Komponenten: das multi-domäne Protein Dicer, das Protein Kinase R-aktivierendes Protein (PACT), das human immunodeficiency virus transactivating response RNA-bindingprotein (TRBP) und das Agonautenprotein 2 (Ago2) mit der pre-miRNA. In diesem Schritt wird der pre-miRNA der Nukleotid-Loop abgespalten und es entsteht eine doppelsträngige miRNA mit einem Nukleotidüberhang. Die exakte Interaktion der einzelnen Komponenten mit der pre-miRNA wird noch diskutiert (MACFARLANE, MURPHY, 2010). Die doppelsträngige miRNA wird im nächsten Schritt zu einer reifen einzelsträngigen miRNA prozessiert.

Der genaue Ablauf wird noch diskutiert. Die reife miRNA wird in den RNA-induced silencing complex (RISC) Proteinkomplex aufgenommen (BARTEL, 2004). Der RISC Proteinkomplex setzt sich zusammen aus dem Ago2-Protein, der reifen miRNA, dem Dicer und dem TRBP (MACRAE et al., 2008). In aktiver Form, beladen mit einer reifen miRNA, initiiert der Komplex die Inhibierung der Ziel-mRNA. Die miRNA leitet den RISC-Komplex zur Target-mRNA. Die Erkennung der Target-mRNA basiert auf einer Watson-Crick Basenpaarung zwischen der mRNA (genauer: an der 3' untranslated regions (UTRs)) und der Seed-Sequenz (2-8 Nukleotid am 5'Ende) der miRNA (LEE et al., 1993). In Abhängigkeit vom Grad der Komplementarität zwischen Target und miRNA, (BARTEL, 2004; YEKTA et al., 2004) kommt es entweder zum irreversiblen mRNA Abbau oder zur reversiblen Translationshemmung. Ersteres setzt einen hohen Grad der Komplementarität (mehr Basenpaarungen als nur die Seed-Sequenz) zwischen Target (MACFARLANE, MURPHY, 2010) und miRNA voraus (YEKTA et al., 2004). Daraufhin wird die mRNA durch die Endonukleasetätigkeit des Ago2 abgebaut (LIU et al., 2004). Der Ablauf der Translationshemmung ist noch unklar. Vermutlich werden die Initiation und die Elongation (PETERSEN et al., 2006) im Zusammenspiel mit P-Bodies (kleine dynamische zytoplasmatische Proteinspheroide) gestört. Neben der Expressionshemmung können miRNA auch zu einer verstärkten Translation von Proteinen führen. Beispielsweise bindet miR-10a an ribosomale Proteine und steigert deren Translation (MACFARLANE, MURPHY, 2010; ØROM et al.). Es ist anzumerken, dass eine einzige miRNA mehrere TargetmRNAs regulieren kann und eine mRNA kann durch mehrere miRNA reguliert werden (BARTEL, 2004). Die miRNA beeinflusst verschiedene Prozesse in der Zelle. Beispielsweise konnte gezeigt werden, dass die miRNA Familie miR-16 und miR15 am Zellwachstum und an der Zellinteraktion beteiligt sind (GAIDATZIS et al., 2007). Bartel et al. nimmt sogar an, dass alle biologischen Prozesse oder Funktionen mit miRNAs direkt oder indirekt assoziiert sind (BARTEL, 2009).

Abbildung 3 MiRNA Entstehung und Funktion ©2010 Bentham Science Publishers Ltd

2.2.2 MiRNA in Tumoren

Die Tumorgenese durchläuft einen mehrstufigen Prozess: Initiation, Progression und Metastasierung. Diese Prozesse basieren auf der Entartung der gesunden, humanen Zelle, welche beispielsweise durch Genmutationen oder veränderter Genexpression ausgelöst wird (HANAHAN, WEINBERG, 2000). MiRNA-Gene befinden sich unter anderem innerhalb instabiler Chomosomenabschnitte, die anfällig für Genmutationen sind, wie Punktmutationen, Amplifikationen, Deletionen oder Translokationen. Änderungen spezifischer miRNA-Gene in der Expression führen zur Tumorentstehung (CALIN et al., 2004). Eine Deregulation von miRNAs wurde in verschiedenen Tumoren beschrieben (CALIN et al., 2004; MICHAEL et al., 2003) und hat pathophysiologische Konsequenzen. Dabei kann es entweder zu einer Unterdrückung von Tumorsuppressoren oder zu einer Überexpression von Onkogenen kommen (siehe Abbildung 4).

Abbildung 4 Überblick über deregulierte miRNA und ihre Auswirkung (Schaefer& Jung; $\ensuremath{\mathbb{C}}$ Springer Medizin Verlag 2009)

Im Rahmen der Tumorgenese und -progression bezeichnet man beteiligte miRNAs als Oncomirs (ESQUELA-KERSCHER, SLACK, 2006). Onkogene miRNAs hemmen die Proteinsynthese tumorsuppressiver mRNA. MiR-21 wirkt beispielsweise als unter anderem in Onkogen. MiR-21 ist dem hepatozellulären Karzinom überexprimiert und führt zu einer Unterdrückung von den Tumorsuppressoren PTEN, PDCD4 und RECK (LIU et al., 2010). Die let-7 Familie zählt zu den Tumorsuppressoren. Diese miRNAs sind vermindert im Lungenkarzinom und im benignen mesenchymalen Tumor exprimiert. Aus der unzureichenden Hemmung durch die tumorsuppressive let-7 Familie resultiert eine Überexpression des HMGA2 Onkogens (LEE. DUTTA. 2007). Außerdem sind spezifische miRNA-Expressionsmuster kennzeichnend für Tumorentitäten. Dies ermöglicht, zwischen gesundem Gewebe und Tumorgewebe und zwischen Tumorsubtypen zu differenzieren. Beispielsweise zeigte Youssef et al. tumorspezifische Änderungen der miRNA-Expression für die verschiedenen Tumorentitäten des Nierentumors. Bei der Untersuchung von 94 kryokonservierten Gewebsproben verschiedener Subtypen (klarzelliges, chromophobes, papilläres NZK und das Onkozytom) des Nierentumors konnte eine Deregulation von 15 miRNAs mittels qRT-PCR bestätigt werden. Basierend auf der spezifischen miRNA Deregulationen wurde ein 4-stufiges Klassifikationsmodell zur Subtypenidentifizierung entworfen (YOUSSEF et al., 2011).

Weiterhin wurde speziell das klarzellige NZK auf veränderte miRNA-Expression untersucht. Eine Untersuchung von 28 Probenpaaren des klarzelligem NZK im Vergleich zu gesundem Nierengewebe ergab 35 deregulierte miRNAs. Von besonderem Interesse war die Überexpression von zwei miRNAs, miR-155 und miR-21, welche auch in anderen soliden Tumoren (Brust, Prankreas, Lunge) überexprimiert waren und in Assoziation mit der Tumorgenese standen (JUAN et al., 2010). In einer ähnlichen Studie von White et al wurden 166 miRNAs identifiziert, welche im klarzelligen NZK signifikant dereguliert waren gegenüber dem gesunden Niergengewebe. Außerdem detektierten sie in einer weiteren Studie, dass die miRNA-Expression auch in Metastasen gegenüber Primärtumoren des klarzelligen NZK dereguliert ist. Im Rahmen dieser Untersuchung beobachteten sie, eine progressive Reduktion der Expression ausgewählter miRNAs (beispielsweise miR-204) in den verschiedenen Geweben. Zusätzlich war miR-215 signifikant unterdrückt in metastasierten Primärtumoren im Vergleich zu nicht-metastasierten NZK Primärtumoren. Weiterhin wurde beschrieben, dass miR-215 an der Zellinvasion beteiligt ist. Damit liegt die Schlussfolgerung nahe, dass miR-215 mit der Tumorprogression und Metastasierung assoziiert ist (WHITE et al., 2011).

Anhand der Studien ist es naheliegend, dass veränderte miRNAs sowohl an der Tumorgenese als auch der Metastasierung beteiligt sind. Die exakten Prozesse sind nicht vollständig verstanden.

Die Metastasierung von Tumoren in entfernte Organe ist ein mehrstufiger Prozess (siehe auch Abbildung 5):

Nature Reviews | Cancer

Abbildung 5 Übersicht über den Metastasierungsprozess, et al. Isaiah J. Fidler, <u>The pathogenesis of</u> <u>cancer metastasis: the 'seed and soil' hypothesis revisited</u>, Nature Reviews Cancer 3, June 2003

Zu a) Die Proliferation des Primärtumors: Der Primärtumor wächst.

Zu b) Die Vaskularisation und Proliferation: Die vermehrte Vaskularisation des Tumors beginnt ab einer Größe von 1-2 mm um die Versorgung des Tumors zu sichern.

Zu c) Die Invasion in Blut- beziehungsweise in Lymphgefäße: Die Tumorzellen verändern ihre Eigenschaften mittels der epithelial-mesenchymalen Transition (EMT). Die neuen Eigenschaften erlauben den Metastasenzellen, sich vom Primärtumor abzugrenzen und die Basalmembran zu durchbrechen. Dadurch können die Zellen durch die Gefäßwände in die Blut- oder Lymphzirkulation eindringen.

Zu d) Die Zirkulation im Blut oder in der Lymphe: Die Zellen werden über den Blut- oder Lymphkreislauf in periphere Gewebe (beispielsweise Knochen, Lunge, Gehirn) verschleppt

Zu e) Die Extravasation in periphere Gewebe: Die Tumorzellen haften sich an die Gefäßwände und dringen in das periphere Gewebe ein.

Zu f) Die lokale Kolonisation (Mikrometastase) und die Proliferation zur Makrometastase: Die Metastasenzellen siedeln sich an und proliferieren anschließend zu einer Makrometastase (MA, WEINBERG, 2008).

Inzwischen beschreiben mehrere Studien, dass miRNAs die Metastasierung beeinflussen. MiRNAs sind in verschiedene Signalwege involviert und regulieren über die mRNAs die Proteinexpression, welche essentiell für den Metastasierungsprozess ist (siehe Abbildung 6). Diese miRNAs werden auch als *MetastamiRs* bezeichnet. Ma und die Kollegen der Gruppe um Weinberg untersuchten als erste die Rolle einer miRNA in einem metastasierten Tumor.

Die Untersuchung ergab, dass die miR-10b in mehr als 50% der metastasierten Mammakarzinome überexprimiert war. Weiterhin zeigten die funktionellen Analysen, dass miR-10b die initialen Schritte der Metastasierung regulierten. Während der Tumorprogression verstärkte der Transkriptionsfaktor TWIST1 die miR-10b Expression. MiR-10b wiederum erhöht indirekt die *RhoGTPase (RHOC)*, über die Unterdrückung des *RHOC*-hemmenden Transkriptionsfaktor *homeoboxprotein D10 (HOXD10)*. Damit kommt es zu einer verstärkten Migration und Invasion von Tumorzellen (MA et al., 2007).

Abbildung 6 miRNA und ihre regulierten Signalwege in Tumormetastasen. <u>MicroRNAs — the micro</u> <u>steering wheel of tumour metastases</u> Milena S. Nicoloso,Nature Reviews Cancer 9, April 2009

Die aktuelle Datenlage zeigt deutlich, dass miRNAs in Progressionsprozesse des Primärtumors, auch in die des klarzelligen NZK, beteiligt sind. Allerdings ist die Rolle der miRNAs in Metastasen des klarzelligen NZK, weitgehend unbekannt, so dass die vorliegende Arbeit sich auf dieses Thema fokussiert.

2.3 Vorarbeiten

Die Arbeitsgruppe von Prof. Dr. Junker untersuchte die miRNA Expression in Gewebsproben von Primärtumoren und von Metastasen des klarzelligen NZK. Die Microarrayanalysen (siehe Abbildung 7) zeigten, dass es für nicht-metastasierte und für metastasierte Primärtumore des klarzelligen NZK ein spezifisches miRNA-Profil gibt. Auch Fernmetastasen zeigten eine unterschiedliche Expression der miRNA im Vergleich zum nicht-metastasierten klarzelligen NZK (HEINZELMANN et al., 2011). Unter anderem konnte bei zwei miRNAs (miR-30a-3p, miR-24-1-5p) eine deutlich reduzierte Expression in den Fernmetastasen (Lunge, Knochen, Gehirn) gegenüber den Primärtumoren (metastasiert und nicht-metastasiert) festgestellt werden. miRNA-Änderungen Weiterhin die dass ergab Analyse, an einzelnen Metastasierungsorten vorkommen, wie beispielsweise die miR-200a-3p vermutlich Hirnmetastasen kennzeichnet.

Abbildung 7 Microarrayergebnisse zu miR-30a-3p, miR-24-1-5p und miR-200a-3p (HEINZELMANN et al., 2014)

Zu A) Die Expression von miR-30a-3p in Geweben der Primärtumore und Metastasen verschiedener Organe. Die Expression von miR-30a-3p ist reduziert in den Metastasen im Vergleich zu den Primätumoren des klarzelligen NZK.

Zu B) Die Expresspression von miR-24-1-5p in Geweben der Primärtumore und Metastasen verschiedener Organe. Die Expression von miR-24-1-5p ist reduziert in den Metastasen im Vergleich zu den Primärtumoren.

Zu C) Die Expression von miR-200a-3p in Geweben der Primärtumore und Metastasen verschiedenern Organe. Die relative Genexpression von miR-200a-3p ist in Gehirnmetastasen reduziert im Vergleich zum Probenkollektiv.

3 Zielstellung

Die Prognose der Patienten mit klarzelligem NZK verschlechtert sich bei vorliegender Metastasierung drastisch. Auf Standardtherapien wie die Chemo-/ Strahlentherapie spricht diese Tumorentität kaum an. Auch unter neuartigen zielgerichteten Systemtherapien und Immuntherapien zeigen sich äußerst selten komplette Remissionen. Um neue effektive Therapieansätze zu entwickeln, ist es notwendig, die molekularbiologischen Mechanismen von Tumorentstehung und -progression des NZK besser zu verstehen.

MIRNAs sind entscheidende Regulatoren diverser molekularbiologischer Prozesse. In verschiedenen Studien wurde nachgewiesen, dass sie auch an der Tumorgenese beteiligt sind. In diesem Zusammenhang untersucht die Arbeitsgruppe unter der Leitung von Fr. Prof. Dr. Junker die Rolle von miRNAs im klarzelligen NZK und in deren Metastasen. Dabei zeigten vorrangegangene Microarrayanalysen, dass deutliche Unterschiede in der miRNA-Expression zwischen den Primärtumoren und den Metastasen bestehen. Außerdem fand man miRNAs, welche nur an spezifischen Metastasenlokalisationen dereguliert vorliegen.

Ziel dieser Arbeit ist es, ausgewählte miRNAs hinsichtlich ihrer Bedeutung für die Metastasierung zu validieren und zu charakterisieren.

Hierfür sollen folgende Aufgaben bearbeitet werden:

- Die in den vorangegangen Microarrayanalysen detektierten miRNA-Expressionsänderungen sollen mit Hilfe der *quantitative Real-time Polymerase Chain Reaction* (qRT-PCR) in den Hauptmetastasierungsorten (Lunge, Gehirn und Knochen) im Vergleich zu Primärtumoren validiert werden. Hierfür wurden basierend auf den Vorarbeiten die miRNAs miR-30a-3p, miR-24-1-5p ausgewählt.
- Weiterhin soll beispielhaft an einer miRNA mit Hilfe der quantitativen RT-PCR untersucht werden, ob die spezifischen miRNA-Änderungen an einzelnen Metastasierungsorten reproduzierbar sind. Basierend auf den Vorarbeiten wird die Expressionsänderung der miRNA-200a-3p, die spezifisch Hirnmetastasen kennzeichnet, validiert.

 Um die funktionelle Bedeutung von miRNAs im Prozess der Metastasierung zu analysieren, sollen potentielle *Targets* von einer validierten miRNA identifiziert werden. Somit können Rückschlüsse auf die intrazellulären Signalwege gezogen werden, die am Metastasierungsort eine Rolle spielen.

Basierend auf diesen Daten können erste Erkenntnisse zu Prozessen am Metastasierungsort gewonnen werden, um zukünftig neue Prognoseparameter und Therapieansätze gegen das metastasierte klarzellige NZK zu entwickeln.

4 Materialien und Methoden

4.1 Materialien

4.1.1 Patientenproben

Für die Durchführung der Experimente wurde Gewebe von Patienten mit klarzelligem NZK verwendet. Die Einverständniserklärungen der Patienten für die Verwendung des Gewebes für Forschungszwecke lagen zum Zeitpunkt der chirurgischen Entnahme vor, wie auch das Ethikvotum. Bei den Geweben handelt es sich um Primärtumore und Fernmetastasen des klarzelligen NZK. Nach Entnahme der verschiedenen Gewebe wurden sie vom Pathologen begutachtet und histologisch nach der WHO-Klassifikation von 2010 für Tumore des Urogenitalsystems klassifiziert. Untersucht wurden 18 nicht-metastasierte NZK-Primarien, 10 metastasierte NZK-Primarien, 10 Lungenmetastasen, 13 Hirnmetastasen und 6 Knochenmetastasen.

Tabelle VII Übersicht des Patientenkollektives

Anzahl der Primärtumore des klarzelligen NZK	
Gesamtzahl	28
Nicht-metastasierte NZK	18
Metastasierte NZK	10
Geschlecht	
Männer / Frauen	18 / 10
T-Kategorie	
1a	10
1b	8
2	4
3a	1
3b	3
4	1
Grading	
1	13
2	11
3	3
Alter der Patienten zum Zeitpunkt der OP	
Mittelwert / Median	58,0 / 57
Spanne	38 / 77
Nachsorgezeitraum (in Monaten)	
Mittelwert / Median	53,8 / 73
Spanne	0 / 110
Nicht-metastasiertes NZK Nachsorgezeitraum (in Monaten)	
Mittelwert / Median	75,8 / 77,5
Spanne	0 / 110
Metastasiertes NZK Nachsorgezeitraum (in Monaten)	
Mittelwert / Median	9,8 / 6
Spanne	0 / 26
Zeitpunkt der Metastasierung (in Monaten)	
Mittelwert / Median	4,4 / 0
Spanne	0 / 14
Metastasenlokalisation	
Gesamtzahl	29
Gehirn	13
Knochen	6
Lunge	10

4.1.2 Zellkultur

Für die transiente Transfektion wurde die Zelllinie 786-O und die zu transfizierende Substanz *mimic* miR-30a-3p verwendet.Die Zelllinie 786-O stammt aus einem primären klarzelligen Nierenzellkarzinom der Niere eines 58-jährigen Mannes (Kaukasier).

4.2 Methoden

4.2.1 Hämatoxylin-Eosin Färbung

Die Gewebsproben wurden aufbereitet zu *formalin-fixed, paraffin-embedded* (FFPE)-Proben, welche man dann 3 µm dünn geschnitten auf Objektträgern fixierte. Dann begann man mit der HE-Färbung des Präparats. Zuerst wurde der Farbstoff Hämalaun nach Mayer Mereck 10 min auf den Objektträger gegeben. Danach wurde der Farbstoff mittels Leitungswasser abgespült und das Präparat mit einer HCL-Alkoholmischung (70% Ehtanol und 25% HCL) behandelt. Im Anschluss bläute man das Präparat 10 min lang unter kaltem Leitungswasser. Dann färbte man das Präparat mit 1%-igen Eosin für 30 s. Im Anschluss spülte man das Präparat ausführlich ab und differenzierte es mit 80%-igem Ethanol. Dann fixierte man die Färbung mit 100%- igem Ethanol. Diesen Schritt wiederholte man ein weiteres Mal. Schließlich spülte man mit reinem Xylol den Objektträger. Zum Schluss deckte man das Präparat mit Entellan ein.

Daraufhin folgte die mikroskopische Beurteilung des tumorösen Anteils innerhalb des Gewebe-Schnittes. Der tumoröse Anteil der Probe musste über 80% liegen und es durften keine nekrotischen Bereiche vorhanden sein.

4.2.2 RNA-Isolation aus FFPE-Gewebsproben

Aus den Paraffin-Gewebeblöcken wurden die Tumorbereiche in mehrere 10 µm dünne Scheiben geschnitten und in RNAse- und DNase- freie 1,5 ml Reaktionsgefäße gegeben.

Die GesamtRNA-Isolierung aus den FFPE-Proben erfolgte mit dem "miRNeasy FFPE Kit (Qiagen)" nach den Angaben des Herstellers. Zuerst wurde die Probe mit Ethanol versetzt, 10 s vermischt, 2 min bei 13,4 rpm zentrifugiert. Der Überstand wurde entnommen und mit 1 ml Xylol versetzt, 10 s vermischt und 2 min mit 13,4 rpm
zentrifugiert. Dieser Schritt diente dazu, das Paraffin zu entfernen. Man verwarf dann Überstand. Danach wurde 1 ml 100% Ethanol hinzugegeben, den der Reaktionsansatz für 10 s vermischt, anschließend für 2 min bei 13,4 rpm zentrifugiert und der Überstand restlos verworfen. Das Ethanol diente der Entfernung des Xylols. Anschließend ließ man das Pellet bei 37°C mit offenem Reaktionsgefäß 10 min inkubieren, so dass das Ethanol vollständig verdampfte. Das Pellet wurde mit 240 µl Buffer PKD und 15 µl Proteinase K resuspendiert. Das Reaktionsgemisch inkubierte 15 min bei 56°C, 15 min bei 80°C und dann 3 min auf Eis. Dabei wurde die RNA aus dem Gewebeschnitt durch das Enzym Proteinase K herausgelöst. Durch die Erhitzung der Probe wurden eventuelle Formalinreste an der RNA abgelöst. Danach wurde die Probe bei 13.500 rpm 15 min lang zentrifugiert. Der Überstand wurde abgenommen und in ein neues Reaktionsgefäß überführt. Als nächstes gab man 1/10 des Probenvolumens an DNase Booster Buffer und 10 µl DNase I Lösung hinzu. Das Reaktionsgemisch wurde durch Schwenken des Reaktionsgefäßes vermengt und 15 min bei Raumtemperatur inkubiert. Danach gab man 500 µl Buffer RBC und 1750 µl Ethanol (100%) zu der Lösung hinzu und vermischte es. Das Ethanol hat optimale Bindungskonditionen für die RNA geschaffen. Im folgenden Ablauf gab man 700 µl dieser Probe in ein 2 ml collection tube mit einer RNeasy Min Elute spin column und zentrifugierte das Gefäß bei 10.000 rpm 15 s In diesem Schritt hat die GesamtRNA an die Membran der RNeasy Min Elute spin column angebunden. Dann verwarf man das Filtrat. Dieser Schritt wurde wiederholt bis das Ethanol-Probengemisch vollständig aufgebraucht war. Im nächsten Schritt überführte man 500 µl Buffer RPE auf die RNeasy Min Elute spin column und zentrifugierte die Probe für 2 min bei 10.000 rpm und das Filtrat wurde anschließend verworfen. Dieser Schritt wurde wiederholt. Die RNeasy Min Elute spin column setzte man in ein neues Reaktionsgefäß von 2 ml um und zentrifugierte es für 5 min. Nach dem Umsetzen der RNeasy Min Elute spin column in ein neues 1,5 ml Reaktionsgefäß, wurden 14-30 µl RNase-freies Wasser auf den Filter gegeben. Durch abschließende Zentrifugation des Reaktionsgefäßes bei 10.000 rpm für 1 min liegt die RNA als Filtrat in Lösung vor und kann bei 20°C – 80°C aufbewahrt oder direkt weiterverarbeitet werden.

4.2.3 GesamtRNA-Isolierung aus Zellkulturen

Zur Total-RNA Isolierung aus Zellkulturen wurde das "miRNeasy Mini Kit 50" verwendet. Die Isolierung wurde nach Herstellerangaben durchgeführt.

Zur Durchführung der Isolierung mussten die Zellen als trockene Zellpellets vorliegen (s.u.). Zunächst wurde das Zellpellet mit 700 µl QIAzol Lysis Lösung für 1 min resuspendiert und danach 5 min bei Raumtemperatur inkubiert. Im Anschluss gab man 140 µl Chloroform in das Reagenzgefäß und vermengte es für 15 s. Dann wurde die Probe 15 min bei 11310 rpm und einer Temperatur von 4°C zentrifugiert. Durch das Zentrifugieren entstanden drei Schichten im Reagenzgefäß. Die obere durchsichtige Schicht beinhaltete RNA. Davon sollte man ungefähr 350 µl abnehmen und dies in ein neues Reagenzgefäß überführen. Im nächsten Schritt versetzte man den Reaktionsansatz mit dem 1,5-fachen Volumen Ethanol (100%) und vermischte es. Dann entnahm man 700 µl der Lösung und gab es in die RNeasy Mini spin column in einem 2 ml Auffanggefäß, diese wurde dann 15 s bei 10.000 rpm zentrifugiert. Das Filtrat wurde verworfen. Dieser Schritt wurde so lange wiederholt bis die Ethanol-Proben-Lösung vollständig filtriert wurde. Bei diesem Vorgang wurde die GesamtRNA an die Membran gebunden. Danach wurde die GesamtRNA durch verschiedene Substanzen gewaschen. Man gab 700 µl Buffer RWT auf die RNeasy Mini spin column, zentrifugierte wieder 15 s bei 10.000 rpm und verwarf das Filtrat. Dieser Vorgang wurde mit 500µl Buffer RPE mit einer anschießenden Zentrifugation für 2 min wiederholt. Danach wurde die RNeasy Mini spin column in ein neues 2 ml Reaktionsgefäß überführt und für 1 min bei maximaler Geschwindigkeit zentrifugiert. Im letzten Schritt wurde die RNeasy Mini spin column in ein neues 1,5 ml Reaktionsgefäß platziert, mit 30-50 µl RNA-freiem Wasser versetzt und für 1 min bei 10.000 rpm zentrifugiert. Im 1,5 ml Reaktionsgefäß befand sich dann die GesamtRNA, die bei 20°C – 80°C gelagert oder direkt weiterverarbeitet wurde.

4.2.4 Prüfung der RNA-Konzentration und -Reinheit

Mittels Nanodrop Spectrophotometer und dazugehörigem Softwareprogramm ND1000 wurde sowohl die RNA-Konzentration als auch deren Reinheit gemessen. Dazu applizierte man 1,5 µl der Probe auf die untere Optikoberfläche.

Basierend auf Wellenlängenmessung konnten Molekülkonzentrationen in den Proben errechnet werden. Die RNA-Konzentration wurde bei 260 nm bestimmt. Die Reinheit bestimmte man, indem man die folgenden Verhältnisse der Absorptionsspektren bildete: 260/280 und 260/230. Beide Verhältnisse sollten zwischen 1,8 und 2,0 liegen. Verschob sich das Verhältnis, bestand eine Verunreinigung.

4.2.5 Quantitative Real-Time PCR

Die Real-Time PCR ist eine sehr sensitive und spezifische Methode, um Nukleinsäuren zu quantifizieren.

Sie besteht aus zwei Schritten:

- Der Reversen Transkription
- Der PCR-Amplifikation

4.2.5.1 Reverse Transkription

In diesem ersten Schritt wurde die isolierte Total-RNA Probe in cDNA umgeschrieben. Bei der Reversen Transkription wurde das Taq Man® Micro RNA Reverse Transkription Kit (Applied Biosystems) verwendet. Folgende Komponenten vermischte man zum RT-Mastermix (siehe Tabelle VIII).

Tabelle VIII Mastermix der Reversen Transkription

RT-Mastermix pro Ansatz	
Komponente	Mastermix Volumen / 15 µl Reaktion
100 mM dNTPs (dTTP)	0,15 μl
MultiScribe Reverse Transkriptase	1 µl
,50 U/μl	
10x Reverse Transkriptions Buffer	1,5 µl
RNAse Inhibitor, 20 U/µl	0,19 μl
Nukleasefreies Wasser	4,16 µl
Gesamt	7 μΙ

Nach der Herstellung des Mastermixes wurden je 7 µl Mastermix, 5 µl GesamtRNA Probe (20 ng/µl) und 3µl RT-Primer in 0,2 ml Reaktionsgefäße gegeben. Anschließend wurde die Probe vermengt, zentrifugiert und 5 min auf Eis gelagert. Danach beginnt die Reverse Transkription im PCR-Gerät (siehe Tabelle IX).

	Zeit in min	Temperatur in °C
Primerhybridisierung	30	16
Elongation	30	42
Denaturierung	5	85
	8	4

Für die Reverse Transkription wurden Primer mit den folgenden Zielsequenzen für miR-30a-3p (CUUUCAGUCGGAUGUUUGCAGC),

miR-200a-3p (UAACACUGUCUGGUAACGAUGU),

miR-24-1-5p (UGCCUACUGAGCUGAUAUCAGU) und als Referenz RNU48 verwendet.

4.2.5.2 PCR-Amplifikation

Nach der Herstellung der cDNA erfolgte die relative Quantifizierung der miRNA durch die qRT-PCR. Zur Herstellung des PCR-Mastermixes verwendete man folgende Komponenten (siehe Tabelle X):

Tabelle X Zusammensetzung des PCR-Mastermixes

Komponente	Volumen in 10 µl Reaktion
TaqMan MicroRNA Assay Primer (20x)	0,5 µl
TaqMan Gene Expression Mastermix	5 µl
Nukleasefreies Wasser	3,5 µl
Gesamt	9 µl

Für jeden zu analysierenden Primer wurde jeweils ein Mastermix hergestellt. Außerdem benötigte man eine stabil exprimierte Referenz. Als Referenz diente der RNU48 Primer. Die Probe (1 μl) und der entsprechende Mastermix (9 μl) wurden in drei biologischen Replikaten auf eine 96-Well-Platte aufgetragen. Anschließend trug man noch eine Negativkontrolle auf: 1 μl RNAsefreies Wasser mit 9 μl jedes PCR-Mastermixes. Nach luftdichtem Verschließen der 96-Well-Platte mit einer Folie wurde diese für 1 min bei 1000 U/min zentrifugiert. Anschließend fand die Amplifikation im StepOnePlusTM Real PCR System statt bei folgendem Programm (siehe Tabelle XI):

Schritt	AmoliTAq Gold Enzyme	PCR		
	Activation			
	Hold	Zyklen (40)		
	Enzymaktivierung	Denaturierung	Annealing+Extension	
Zeit	10 min	15 s	60 s	
Temperatur in °C	95	95	60	

Abbildung 8 Schematische Darstellung des qPCR-Zykluses, nach (Expert Rev. Mol. Diagn. (2005)

Im Vordergrund der qPCR stehen die einzelnen Komponenten: die taqManmit Polymerase einer 5'-3' Exonukleasefähigkeit, spezifische taqMan Primer und sequenzspezifische Fluoreszenzsonden. Im ersten Schritt der gPCR lagern sich die Primer die an komplementären cDNA-Stränge an. Bei 95 °C wird die tagMan Polymerase aktiviert und liest spezifische cDNA Stränge ab und bildet den komplementären Strang dazu. Die sequenzspezifischen Sonden binden an die zu untersuchenden Bereiche der cDNA.

Sie bestehen aus einem fluoreszierenden *Reporter* am 3'-Ende und einen *Quencher* am 5'-Ende. Die Nähe zwischen *Reporter* und *Quencher* bedingt, dass das fluoreszierende Licht des *Reporters* durch den *Quencher* absorbiert wird. Erst wenn die Sonde durch die 5' Exonukleasefähigkeit der taqMan Polymerase in der Extensionsphase der PCR abgebaut wird und eine räumliche Trennung zwischen beiden Sondenenden entsteht, beginnt der *Reporter* zu fluoreszieren. Das Fluoreszenzsignal ist proportional zu den cDNA-Kopien der zu untersuchenden miRNA und steigt infolge dessen proportional bei jedem PCR-Zyklus.

Der Cycle threshold (Ct-Wert) dient der Quantifizierung.

4.2.6 Zellkultur

Die Zelllinie 786-O wurde in dem Zellmedium, bestehend aus 50% *Dulbecco's Modified Eagle Medium* (DMEM), 50% *Roswell Park Memorial Institute Medium* (RPMI) und 10% FKS, bei 37°C/5%CO2 kultiviert. Alle Zellkulturarbeiten fanden unter sterilen Bedingungen unter einer Sterilwerkbank statt.

4.2.7 Auftauen und Einfrieren von Zellen

Die Zellen wurden bei -196°C in Stickstoffbehältern gelagert. Zum Auftauen der Zellen gab man tröpfchenweise das zimmertemperierte Zellkulturmedium in das Kryogefäß der gefrorenen Zellen. Mit einer sterilen Glaspipette vermengte man gründlich Zellmedium und Zellen. Anschließend wurden die aufgetauten Zellen in einem 10 ml Röhrchen mit 8 ml Zellkulturmedium überführt und für 3 min bei 1100 rpm zentrifugiert. Der Überstand wurde verworfen, das Zellpellet in 1 ml Zellkulturmedium resuspendiert und in eine Zellkulturflasche mit ausreichend Zellkulturmedium überführt, um anschließend im Brutschrank kultiviert zu werden. Am folgenden Tag wechselte man das Medium, um zytotoxische Effekte des Einfriermediums zu verhindern.

Um die Zellen einzufrieren, mussten die Zellen als trockenes Zellpellet s.o. vorliegen. Zum Zellpellet gab man dann das Einfriermedium dazu. Das Einfriermedium bestand aus dem Zellkulturmedium mit 10% Dimethylsulfoxid (DMSO). Diese Substanz ist zytotoxisch, aber verhindert, dass die Zellen durch das Einfrieren platzen. DMSO hemmt die Kristallbildung in den Zellen.

4.2.8 Ernten der Zellen

Man nahm erst das Zellkulturmedium aus den 6-Well-Platten ab und wusch die Zellen in diesem Fall mit 1 ml PBS. Dann versetzte man die Zellen mit 200 µl Trypsin. Nach 5 min Inkubationszeit waren die Zellen vom Kulturboden gelöst. Als nächstes gab man 1 ml Zellkulturmedium hinzu. Man spülte das Well mit dem Zellkulturmedium aus, so dass sich alle Zellen in der Flüssigkeit akkumulierten. Diese wurde dann abgenommen und in RNA- und DNA-freie Reaktionsgefäße gegeben. Bei 1100 rpm wurden die Zellen 5 min zentrifugiert. Anschließend nahm man den Überstand ab und löste das Pellet in 1ml PBS auf. Im Verlauf wiederholte man die Zentrifugation und das Waschen mit dem PBS zweimal. Zum Schluss wurde der Überstand verworfen und das trockene Pellet bei -80 °C bis zur RNA-Isolierung aufbewahrt.

4.2.9 Zellzahlbestimmung und Aussaat der Zellen

Bevor die Transfektion begonnen wurde, musste die Zellzahl bestimmt werden, um zu gewährleisten, dass immer die gleiche Anzahl von Zellen transfiziert wurde. Man begann mit dem Waschen der Zellen mit 3 ml PBS. Dabei sollte man das PBS möglichst nicht direkt auf den Zellverband geben. Als nächstes schwenkte man die Zellkulturflasche und entnahm das PBS wieder. Zur Lösung der Zellen vom Flaschenboden verwendete man 500 µl Trypsin. Das Trypsin wurde direkt auf den Zellverband appliziert. Nach einer kurzen Inkubationszeit von 3-5 min im Brutschrank gab man 2-3 ml Nährmedium in die Flasche hinein. Dabei resuspendierte man Zellen, Trypsin und Nährmedium gründlich. Bei diesem Schritt sollten möglichst alle Zellen in Lösung gehen. Anschließend wurde die Flüssigkeit aus der Zellkulturflasche entnommen und in ein Zentrifugenröhrchen gegeben. Dies wurde 3 min bei 1100 rpm zentrifugiert. Der Überstand wurde abgenommen und man gab 1 ml frisches Nährmedium auf das Zellpellet. Dann vermischte man gründlich Zellen und Nährmedium. Der Suspension entnahm man 10 µl und vermischte diese mit dem gleichen Volumen Trypanblau. Zur Zellzahlbestimmung wurde ein Zellzähler LUNA automated cell counter von Logos Biosystems benutzt. Die Durchführung erfolgte nach Angaben des Herstellers. 10 µl der Zell-Trypanblaususpension wurde auf einen geräteeigenen Objektträger gegeben und die Zellkonzentration von dem Gerät errechnet. Abschließend wurden 30.000 Zellen pro Well ausgesät.

4.2.10 Transiente Transfektion

Zur transienten Transfektion wurde die Zelllinie 786-O ausgewählt und das *mimic* 30a-3p wurde in die Zellen transfiziert. Das *mimic* führte zu einer Überexpression einer bestimmten miRNA in der Zelle. Dieses Verfahren wurde nach dem Protokoll "Transfection with Dharmafect" von Qiagen durchgeführt.

Bei der Transfektion war zu beachten, dass zeitgleich zu einem Versuchsansatz ein zweiter Ansatz mitlief. Der erste Ansatz diente der RNA-Quantifizierung mittels qPCR, und aus dem zweiten Ansatz identifizierte man die *Targets* mittels 2D-Gelelektrophorese. Das Protokoll begann mit dem Aussäen der Zellen (s.o.). Pro Well wurden 30.000 Zellen ausgesät. Nach 20 h entfernte man das Nährmedium und versetzte die Zellen mit FKS-freiem Medium. 4 h später konnte dann die Transiente Transfektion durchgeführt werden. Zunächst setzte man das Transfektionsmedium an. Man bereitete zwei Reaktionsgefäße vor: 0,5 ml und 2,0 ml. Bei diesem Experiment füllte man die Reaktionsgefäße mit folgenden Komponenten (siehe Tabelle XII):

	0,5 ml Reaktionsgefäß	2,0 ml Reaktionsgefäß
Mimic in µl	3 µl	0 µl
Dharmafect in µI	0 µl	1 µl
Optimem in µl	197 µl	199 µl
Gesamt	200 µl	200 µl

Tabelle XII Komponenten der Transienten Transfektion

Die Substanz Dharmafect enthält Phospholipide, welche das *mimic* in die Zellen hineintransportieren. Optimem wird als reduziertes Nährmedium eingesetzt. Somit kann das kationische Dharmafect das anionische *mimic* besser in die Zellen transportieren. Nach jeweils 5 minütiger Inkubation der oben genannten Substanzen, gab man den Inhalt vom 0,5 ml Reaktionsgefäß in das 2 ml Reaktionsgefäß und vermischte beide Reagenzien miteinander. Nach 20 min füllte man das Reaktionsgefäß mit 1600 µl Zellkulturmedium auf.

Im nächsten Schritt entfernte man das Zellkulturmedium der 6-Well-Platten und jedes einzelne Well wurde mit PBS ausgewaschen. Danach gab man in jedes Well das Transfektionsreagenz. Als Kontrolle wurde ein Versuchsansatz (Mock) ohne den Zusatz des mimics mitgeführt. Anschließend wurden die Zellen bei 37°C bei 5% CO2 inkubiert. Nach 6 h ersetzte man das zytotoxische Transfektionsmedium mit frischem Nach 48 h wurden Zellkulturmedium. die Zellen geerntet. Es qab zwei unterschiedliche Verfahren für das Ernten der Zellen. Zunächst erntete man einen Zellansatz für die RNA-Quantifizierung. Dabei wurden die Zellen mit 1 ml PBS gewaschen und mit 200 µl Trypsin von der 6-Well-Platte abgelöst. Dann spülte man die Wells mit 1 ml frischem Zellkulturmedium und überführte die Zelllösung in ein neues Reaktionsgefäß. Dies zentrifugierte man 3 min bei 1100 rpm und entfernte den Überstand. Die Zellen wurden zweimal mit 1 ml PBS gewaschen und zentrifugiert. Danach verwarf man den Überstand. Das trockene Pellet wurde bei -80°C bis zur Gesamt-RNA-Isolierung Zur Targetidentifizierung mittels gelagert. 2-D-Gelelektrophorese diente der zweite Ansatz der transient transfizierten Zellen. Dafür wurden die Zellen zuerst mit Lysepuffer (50 mM Tris, 150 mM, NaCl, 1 mM MgCl2, 2% CHAPS) lysiert. Pro Well gab man 100 µl Lysepuffer zu den Zellen, schabte die Zellen gründlich auf Eis ab und zentrifugierte sie in einem Reaktionsgefäß 10 min bei 4°C und 10020 rpm.

4.2.11 Targetidentifizierung mit Zwei dimensionaler Gelelektrophorese

Zur Proteinfällung wurde zu 200 µl Lysat, im 1:2 Verhältnis, eine Acetronitril/Methanol (9:1) Lösung (-20 °C) zugegeben. Das Gemisch wurde gründlich geschüttelt und 30 s auf Eis inkubiert. Hiernach wurden die Reaktionsgefäße samt Lösung bei 4 °C und 2000 g 2 min lang zentrifugiert. Der Überstand wurde verworfen und die Pellets luftgetrocknet. Zum Lösen wurde das Pellet mit 50 µl Rehydratisierungspuffer (7 M Harnstoff; 2 M Thioharnstoff; 2% CHAPS; 0,5% Ampholyte; 10 mM DTT), über Nacht, bei Raumtemperatur inkubiert.

4.2.12 Zwei dimensionale Gelelektrophorese

Zur weiteren Erfassung und Identifizierung der Proteine wurde die zwei dimensionale Gelelektrophorese (2-D-Gelelektrophorese) Technik verwendet. Zuerst fand die isoelektrische Fokusierung statt, dabei wurden die Proteine nach ihrem isoelektrischen Punkt getrennt. Im zweiten Schritt trennte man die Proteine nach ihrem Molekulargewicht mittels Horizontalgelelektrophorese.

Zunächst wurden die Proben mit dem "Amersham CyDye DIGE Fluors (minimal dyes) for Ettan DIGE Kit" nach Protokoll Fluoreszenzmarkiert. Die Proben wurden mit Rehydratisierungspuffer auf 450 µl aufgefüllt und mit den Gelstreifen für die isoelektrische Fokosierung anschließend über Nacht bei Raumtemperatur inkubiert (in-gel Rehydratisierung). Die Fokusierung erfolgte nach folgendem Protokoll (siehe Tabelle XIII):

Bedingun	igen für Lauf ü	ber Nacht	
Einstellur	instellungen		Zeit in [h] entsprechend der Länge
Schritt	Modus	U [V]	24 cm
1	Stufe	150	3
2	Stufe	300	3
3	Gradient	1000	6
4	Gradient	3000*/6000	1
5	Stufe	3000*/6000	4,5
t gesamt	/Vh gesamt [h/	/kVH]	17,5/52

Tabelle XIII Protokoll der Fokussierung

Temperatur	20°C
I max /Strip	70 μΑ
** bewirkt schärfer Auftrennung bei Plasma	aproteinen

Rehydratisierungs-/Probenpuffer			
Zutat	Endkonzentration		
Harnstoff	7 M		
Thioharnstoff	2 M		
CHAPS	2% (m/v)		
frisch dazugeben			
Ampholyte	0,50%		
DTT	10mM		

Für die Trennung nach Molekulargewicht wurde das "2D HPETM Large Gel NF 12.5% Kit" von SERVA nach Protokoll des Herstellers verwendet. Die Elektrophorese erfolgte nach diesem Protokoll (siehe Tabelle XIV):

Tabelle XIV Protokoll der Elektrophorese

Large Gele							
Schritt	U [V] I [mA / P max [W / t [h:mi				n:min]		
			Gel]	Gel]			
1	100		7	1	00:	30	
2	200		13	3	00:	00:30	
3	300		20	5 0		0:10	
IPG-Streifen entfernen							
4	1500	40)	30		03:50*	
5	1500	45	5	40		00:50	
*bei Gradientengelen 4:50 h							

Die Fluoreszenzgele wurden abschließend mit dem Fluoreszenz-Scanner Typhoon Trio von GE Healthcare gescannt und mit der Software Delta2D (Decodon) ausgewertet. Die zwischen Mock und *mimic* differentiell exprimierten Protein-Spots wurden aus dem Gel ausgestanzt und für die Protein Identifizierung mittels Liquid-Chromatographie-Massenspektometrie/Massenspektometrie (LC-MS/MS) an das Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Universität des Saarlandes übergeben.

4.2.13 Statistische Analyse

Die Rohdaten der quantitativen Real-Time PCR wurden mit zwei statistischen Programmen, IBM SPSS Statistics (Version 20) und REST 2009 ausgewertet. Vorrausetzend für die Auswertung der Rohdaten war, dass der jeweilige Ct-Wert für RNU48 im Referenzbereich (21,0-25,9) lag. Zur graphischen Darstellung und statistischen Auswertung wurde SPSS Statistics Version 20 verwendet. Die Expressionsunterschiede und Graphiken wurden anhand der relativen Genexpression (= Effizienz RNU48CT RNU48/ Effizienz miR X CT miR X) erhoben. Die Unterschiede der miRNA Expression zwischen den untersuchten Proben wurden mit dem nicht-parametrischen Mann-Whitney-U-Test und dem parametrischen t-Test analysiert. Ein signifikanter Unterschied zwischen zwei zu vergleichenden Gruppen wird definiert bei einem p-Wert < 0,05. Ergänzend wurde der Fold Change mittels REST 2009 bestimmt.

5 Ergebnisse

5.1 Validierung der miRNA-Expression

Basierend auf den Microarray-Ergebnissen zur differentiellen miRNA-Expression in Fernmetastasen des klarzelligen NZK verglichen zu Primärtumoren der Arbeitsgruppe von Fr. Prof. Dr. Junker wurde die Expression von drei miRNAs (miR-30a-3p, miR-24-1-5p und miR-200a-3p) mit der qRT-PCR verifiziert. Dabei wurden ungepaarte Gewebeproben aus 19 nicht-metastasierten Primärtumoren, 10 metastasierten Primärtumoren und Gewebe aus den Hauptmetastasierungsorten Lunge (n=10), Knochen (n=6) und Gehirn (n=10) untersucht.

5.2 Bestimmung der PCR Effizienzen

Vor der eigentlichen Analyse wurden die Effizienzen für jeden miRNA-Primer ermittelt. Die Effizienz beschreibt die Vervielfältigung der Amplifikate während der qRT-PCR (im Idealfall eine Verdopplung mit jedem Zyklus) und sollte zwischen 1,8-2,0 liegen. Für die Ermittlung der Effizienz wurde je miRNA eine cDNA-Verdünnungsreihe von 100%, 10%, 1% und 0,1% erstellt und mit dem qRT-PCR-Verfahren gemessen. Die Effizienzen für die jeweiligen qRT-PCRs sind in Tabelle XV dargestellt.

Tabelle XV PCR-Effizienzen der miRNA-P	rimer
Effizienz der Gewebsproben	

Effizienz der Gewebsproben		
RNU48	1,941	
miR-30a-3p	1,979	
miR-200a-3p	1,963	
miR-24-1-5p	1,911	

5.3 miRNA-Expressionen differieren zwischen den Hauptmetastasierungsorten und dem Primärtumor

5.3.1 MiR-30a-3p

Die vorangegangenen Microarray-Analysen ergaben für die miR-30a-3p im Vergleich zum Primärtumor eine Deregulation in den Metastasen. Die gRT-PCR Daten zeigten, dass miR-30a-3p verglichen mit den nicht metastasierten klarzelligen NZK signifikant differentiell in den Fernmetastasen und den metastasierten klarzelligen NZK exprimiert war (siehe Abbildung 9). Die relative Genexpression von miR-30a-3p nimmt im Vergleich zu den nicht-metastasierten klarzelligen NZK in dem klarzelligen metastasierten NZK um ein 1,99-faches (p=0,028), in den Knochenmetastasen um ein 4,08-faches (p=0,0005), in den Gehirnmetastasen um ein 8,13-faches (p=0,00005) und in den Lungenmetastasen um ein 2,62-faches (p=0,002) ab. Die deutlichste Reduktion der miR-30a-3p Expression wurde damit in den Gehirnmetastasen beobachtet. In den Gehirnmetastasen wurde weiterhin eine signifikante Reduktion um das 3,82-fache (p=0,021) im Vergleich zu dem metastasierten klarzelligen NZK und um das 3,11-fache (p=0,021) im Vergleich zu den Lungenmetastasen festgestellt.

Abbildung 9 Expression von miR-30a-3p in Gewebeproben der Primärtumore und Metastasen verschiedener Organe

Abk.: FC= Fold Change, met. kzNZK= metastasiertes klarzelliges Nierenzellkarzinom, nicht met. kzNZK= nicht metastasiertes klarzelliges NZK

5.3.2 MiR-24-1-5p

Die Microarray-Analysen erbrachten eine Deregulation des miR-24-1-5p in den Metastasen im Vergleich zu metastasierten und nicht-metastasierten Primärtumoren. Verglichen mit den nicht metastasierten klarzelligen NZK wurde miR-24-1-5p in Gehirnmetastasen um das 5,59-fache (p=0,000163) und in Knochenmetastasen um 3,51-fache (p=0,008) vermindert exprimiert. In den Lungenmetastasen konnte keine signifikante Änderung bestätigt werden. Zusätzlich war miR-24-1-5p in Gehirnmetastasen gegenüber den metastasierten klarzelligen NZK (3,48-fach; p=0,008) und gegenüber der Lungenmetastasen (3,47-fache; p=0,006) vermindert exprimiert. Die Ergebnisse sind in Abbildung 10 dargestellt.

Abbildung 10 Expression von miR-24-1-5p in Gewebeproben der Primärtumore und Metastasen verschiedener Organe

Abk.: FC= Fold Change, met. kzNZK= metastasiertes klarzelliges Nierenzellkarzinom, nicht met. kzNZK= nicht metastasiertes klarzelliges NZK

5.4 Spezifische miRNA-Änderungen in Hirnmetastasen

5.4.1 miR-200a-3p

Die Microarray-Analysen ergaben in den Vorarbeiten, dass einzelne miRNAs ortsspezifische Expressionsänderungen in den Metastasen aufwiesen. Dies sollte am Beispiel von miR-200a-3p für Gehirnmetastasen validiert werden.

Die Ergebnisse der qRT-PCR bestätigten, dass miR-200a-3p in Gehirnmetastasen eine Änderung des Expressionsprofils im Vergleich zu nicht metastasierten und metastasierten Primärtumoren aufwies. Es wurde eine Verminderung im Vergleich zu nicht metastasierten um das 5,38-fache (p= 0,00024) und verglichen zu metastasierten NZK um das 4,9-fache (p= 0,003) ermittelt. Es zeigten sich auch signifikante Unterschiede zu anderen Metastasenlokalisationen. MiR-200a-3p wurde in Gehirnmetastasen gegenüber der Knochenmetastasen um das 2,92-fache (p=0,003) und gegenüber der Lungenmetastasen um das 4,33-fache (p=0,003) reduziert exprimiert. Zusätzlich konnten signifikante Expressionsunterschiede in Knochenmetastasen verglichen zu nicht-metastasierten klarzelligen NZK (FC=-10,10; p=0,026) detektiert werden.

Abbildung 11 Expression von miR-200a-3p in Gewebeproben der Primärtumore und Metastasen verschiedener Organe

Abk.: FC= Fold Change, met. kzNZK= metastasiertes klarzelliges Nierenzellkarzinom, nicht met. kzNZK= nicht metastasiertes klarzelliges NZK

5.5 Targetidentifizierung

5.5.1 Vorversuche Transiente Transfektion

Die *Targets* von miR-30a-3p wurden mittels der 2-D-Gelelektrophorese und Massenspektrometrie identifiziert. In Vorversuchen mit der klarzelligen NZK-Zelllinie 786-O mussten die Voraussetzungen hierfür zunächst definiert werden. Dazu zählen die Etablierung des Volumens von DharmaFECT 2, die Bestimmung der geeigneten Konzentration des *mimics* von miR-30a-3p zur stabilen Überexpression in der Zelllinie 786-O und die Überprüfung der Transfektionseffizienz mittels der qRT-PCR.

5.5.1.1 Etablierung des DharmaFECT-Volumens

Das Transfektionsreagenz Dharmafect transportiert mimic miR-30a-3p in die Zelllinie 786-O. Da es in hohen Konzentrationen eine zytotoxische Wirkung hat, wurde nach einem optimalen Volumen von Dharmafect gesucht, welches eine ausreichende Transfektion und dennoch eine geringe Zytotoxizität garantiert. Dafür wurde die Transfektionseffizienz mittels der qRT-PCR ermittelt. Für den Versuchsansatz wurde für das mimic eine konstante Konzentration verwendet und das Volumen an Dharmafect wurde variiert. Abbildung 12 verdeutlicht, dass in Abhängigkeit von der Menge an Dharmafect die Konzentration von miR-30a-3p in den Zellen proportional anstieg. Dabei konnte bereits bei Zugabe von 1 µl Dharmafect eine miRNA-Erhöhung um ein 139-faches im Vergleich zu untransfizierten Zellen (Mock) festgestellt werden. Für 3 µl Dharmafect betrug der Expressionsunterschied ein 237-faches und für 7 µl Dharmafect ein 793-faches. Außerdem zeigte sich in mikroskopischen Untersuchungen, dass die Zytotoxizität in Zellen, die mit 1 µl behandelt wurden, am geringsten war (Daten nicht dargestellt). In den folgenden Transfektionsexperimenten wurde schlussfolgernd jeweils 1 µl Dharmafect verwendet, da eine ausreichende Transfektionseffizienz und eine geringe Zytotoxizität gegeben waren.

5.5.1.2 Etablierung der Konzentration des mimics miR-30a-3p

In diesem Vorversuch wurde ermittelt, welche Konzentration von *mimic* 30a-3p zu den Zellen (Zelllinie 786-O) hinzugegeben werden muss, um nach 48 h eine erhöhte relative Genexpression von miR-30a-3p zu garantieren. Mittels qRT-PCR wurde die Konzentrationserhöhung von miR-30a-3p in den Zellen in Abhängigkeit der eingesetzten *mimic* -Konzentration (25 ng/µl, 75 ng/µl und 125 ng/µl *mimic* 30a-3p) gemessen.

Die Vorversuche ergaben, dass die Expressionslevel in behandelten Zellen mit 25 ng/µl *mimic* 30a-3p um das 16,9-fache, mit 75 ng/µl *mimic* 30a-3p um das 65,5 fache und bei 125 ng/µl *mimic* 30a-3p um das 98,9-fache steigen (siehe Abbildung 13). Anhand der Ergebnisse wurde für die folgenden Experimente die *mimic* Konzentration 75 ng/µl verwendet.

Abbildung 13 Etablierung der mimic 30a-3p Konzentration mittles qRT-PCR

5.5.1.3 Validierung der Überexpression von miR-30a-3p

Für die *Target*-Identifizierung muss eine stabile Überexpression von miR-30a-3p in den Zellen gesichert sein. Nur unter dieser Bedingung kann angenommen werden, dass die differentiellen Proteinkonzentrationen in der 2-D-Gelelektrophorese auf die Überexpression von miR-30a-3p zurückzuführen ist. Um eine fundierte Aussage über die Ergebnisse treffen zu können, wurden 3 biologische Replikate transfiziert. Bei den biologischen Replikaten handelt es sich um drei Zellansätze der Zellinie 786-O, die mit 1 µl Dharmafect und einer *mimic* 30a-3p Konzentration von 75 ng/µl inkubiert wurden. In allen drei Ansätzen konnte gezeigt werden, dass in den transfizierten Zellen eine deutliche Überexpression von miR-30a-3p um das 322-fache in 2. Transfektionsansatz um 423-fache und im 3. Transfektionsansatz um 593-fache erhöht (Abbildung 14).

Abbildung 14 Validierung der Überexpression von miR-30a-3p in transfizierten Zellen mittels qRT-PCR

5.5.2 Die Überexpression von miR-30a-3p beeinflusst die miRNA-Targets Cofilin und Nukleosid-Diphosphat-Kinase B

Nach Überexpression von miR-30a-3p in der Zelllinie 786-O wurden die *Targets* mittels Multiplex-2-D-Elektrophorese und Massenspektrometrie identifiziert. Für den Versuch wurden 3 biologische Replikate (siehe vorheriges Kapitel) untersucht. Die gelelektrophoretische Auftrennung der Proteine ermöglicht einen Vergleich von miR-30a-3p transfizierten Zellen (*mimic* -30a-3p) und *mimic* -freien Zellen (Mock) (Abbildung 17).

Die Auswahl der zu identifizierenden Protein-Spots erfolgte nach zwei Kriterien. Die Unterschiede zwischen den Proteinspots der transfizierten Zellen und der *mimic* - freien Zellen sollten mindestens 15% Differenz aufweisen und statistisch (t-Test, p=0,10) signifikant sein. Die erhöhte Irrtumswahrscheinlichkeit von 10% wurde aufgrund der kleinen Fallzahl bei diesem Versuchsansatz bewusst gewählt, um keine *Targets* zu verlieren. Anhand dieser Bedingungen wurden 13 Protein-Spots aus den Gelen ausgestanzt und für die Protein-Identifizierung mittels LC-MS/MS vorbereitet (siehe Abbildung 15).

Abbildung 15 Gelbild: Zusammenfassung der drei Transfektionsansätze mit den 13 differentiell exprimierten Proteinspots

140714_F_140630_Cy5_modk	- 140714_F_140702_Cy5_modk-
140714_F_140630_Cy3_mR-	140714_F_140702_Cy3_mR-
	-140714 JF_146502_C(3_)mR-

Abbildung 16 Gelbild, 3-D-Darstellung von Cofilin (Spot 7 aus Abbildung 15 eines Transfektionansatzes)

Die Identifizierung ergab, dass folgende Proteine die 13 Spots repräsentieren (Abbildung 16): Cofilin (03-09), Adenin-phosphoribosyl-Transferase(02), Galectin-1(11), Nukleosid-diphosphat-kinase B(10), Ubiquitin carboxyl-terminal hydroxylase Isoenzym L1(01), Alpha- Enolase(13) und Fructose-bisphosphate Aldolase A(12).

Mit Hilfe des computerbasierten Vorhersage-Programmes GOmir (Human microRNA target analysis and gene ontology clustering by GOmir, a novel stand-alone application; Maria G Roubelakis, Pantelis Zotos, Georgios Papachristoudis, Ioannis Michalopoulos, Kalliopi I Pappa, Nicholas P Anagnou and Sophia Kossida^{*}; *BMC Bioinformatics* 2009, **10**(Suppl 6):S20 doi:10.1186/1471-2105-10-S6-S20) konnte Cofilin aufgrund der passenden Sequenz (Chromosom 11, TAGGG(A/G)TCGTC) als potentielles miRNA-Zielgen bestätigt werden.

Abbildung 17 Darstellung der 13 differentiell exprimierten Proteinspots der 2-D-Gelelektrophorse als Heat map

Die Target heat maps zeigt statistisch signifikante Unterschiede nach dem Mann-Whitney-U-Test in der Expression der 13 ausgewählten Targets der miR-30a-3p. grün= supprimiert, schwarz= kein Unterschied, rot= überexpremiert

6 Diskussion

Die Prognose eines am klarzelligen NZK erkrankten Patienten hängt wesentlich von der Metastasierung ab. Das Auftreten von Metastasen steigert das Sterberisiko um den Faktor 33,2 (Keegan, Schupp et al. 2012). Die Metastasierung des klarzelligen NZK ist ausschlaggebend für die Therapiestrategie. Das lokal begrenzte klarzellige NZK wird durch die Nephrektomie kurativ therapiert. Hingegen wird das metastasierte klarzellige NZK mit der zielgerichteten Systemtherapie palliativ behandelt. Die Erstlinientherapien (nach der EAU) mit Sunitinib oder mit Pazopanib (Tyrosinkinase-Inhibitoren) erreichen zwar eine Ansprechrate von 34-40%, es wird aber keine Komplettremission unter dieser Therapie erreicht (MOTZER et al., 2007; STERNBERG et al., 2010). Hinzu kommt, dass sich innerhalb von 6-15 Monaten unter der zielgerichteten Systemtherapie eine Therapieresistenz ausbilden kann Zweitlinientherapie mit dem (RINI, ATKINS, 2009). Die neu etablierte Immunmodulator Nivolumab führt zu einer Lebensverlängerung um durchschnittlich 25 Monate (MOTZER et al., 2015a). Aufgrund dessen und der immer noch deutlich verkürzten Lebenszeit betroffener Patienten ist es notwendig, die beteiligten Mechanismen im Metastasierungsprozess besser zu verstehen, um neue Therapieoptionen zu entwickeln.

Zelluläre Prozesse werden wesentlich durch miRNAs reguliert. Es ist bekannt, dass sich die miRNA-Expression in Primärtumoren von NZK im Vergleich zum umliegenden Normalgewebe unterscheidet (JUNG et al., 2009; WOTSCHOFSKY et al., 2012). Wenig untersucht ist die Expression im Vergleich von Primärtumoren und Metastasen. Die Vorergebnisse von Heinzelmann, Unrein et al. konnten diesbezüglich Unterschiede zwischen Primärtumor und Lungen-, Knochen- und Gehirnmetastasen zeigen. Mittels Microarrayanalysen ergaben sich deutlich reduzierte Genexpressionen (miR-30a-3p, miR-24-1-5p) in Fernmetastasen (Lunge, Knochen, Gehirn) im Vergleich zu den Primärtumoren (einschließlich metastasierten und nicht-metastasierten Primärtumoren). Neben der einheitlichen Expressionsänderung einiger miRNAs allen untersuchten an Hauptmetastasierungsorten konnten ebenfalls ortsspezifische miRNA-Expressionsunterschiede (miR-200a-3p) detektiert werden. (HEINZELMANN et al., 2014).

Um die Microarray-Ergebnisse mit einer unabhängigen Methode zu validieren, ist es das Ziel dieser Arbeit, auf Basis der Vorergebnisse die Expressionsunterschiede von miR-30a-3p, miR-24-1-5p an den Hauptmetastasierungsorten und die ortsspezifisch in Gehirnmetastasen deregulierte miR-200a-3p in weiteren Tumor- und Metastasengeweben mittels qRT-PCR zu überprüfen. Um deren Einfluss auf Metastasierungsprozesse besser zu verstehen, wurden beispielshaft an einer ausgewählten miRNA potentielle miRNA-*Targets* identifiziert.

Die Expression der miRNAs miR-200a-3p, miR-30a-3p und miR-24-1-5p wurden im Rahmen dieses Projektes in Fernmetastasen des klarzelligen NZK erstmalig in Lunge, Gehirn und Knochen untersucht.

Das erste Ziel dieser Arbeit beinhaltet den Nachweis einer spezifischen miRNA-Änderung an einem einzelnen Metastasierungsort. Übereinstimmend mit den Vorarbeiten konnte für miR-200a-3p eine signifikant verminderte Expression in Gehirnmetastasen im Vergleich zu den Primärtumoren und den Hauptmetastasierungsorten Lunge und Knochen nachgewiesen werden. Erstmalig konnte für miR-200a-3p eine verminderte ortsspezifische Expression in Gehirnmetastasen nachgewiesen werden. Die ortsspezifisch verminderte Expression deutet auf Prozesse hin, die sich in den verschiedenen Metastasierungsorten unterscheiden. Bisher gibt es keine vergleichbare Literatur zu ortsspezifischen Expressionsunterschieden von miRNAs an Hauptmetastasierungsorten des klarzelligen NZK. Explizit die verminderte Expression von miR-200a-3p in Gehirnmetastasen wurde bisher nicht untersucht. Allerdings konnte eine verminderte Expression der miR-200 Familie in den Primärtumoren anderer Tumorentitäten, wie zum Beispiel im Mammakarzinom oder Blasenkarzinom nachgewiesen werden (GREGORY et al., 2008; WIKLUND et al., 2011). Anschließende funktionelle Analysen und Targetidentifizierungen in Zelllinien des Mammakarzinoms ergaben für die miR-200 Familie eine Beteiligung an der Tumorprogression und der frühen Metastasierung über die Regulation der epithelial mesenchymal transition (EMT). In zwei unabhängigen Studien konnte der miR-200 Familie zwei Transkriptionsfaktoren der EMT, ZEB 1 und ZEB 2 als Targets zugeordnet werden (GREGORY et al., 2008; KORPAL et al., 2008). Im Vergleich zu den vorliegenden Ergebnissen zeigte sich für miR-200a-3p keine verminderte Expressionsänderung im Primärtumor, sondern eine signifikant verminderte Expression in Gehirnmetastasen.

Es scheint, dass die miR-200a-3p, im Vergleich zu den anderen Tumorentitäten, im Primärtumor des klarzelligen NZK nicht an der EMT beteiligt ist. Vielmehr lassen sich aus der verminderten Expression der miR-200a-3p in Gehirnmetastasen zwei Hypothesen für eine ortsspezifische miRNA-Änderung ableiten:

Erste These: Die Mikroumgebung der Tumorzellen im Metastasierungsorgan beeinflusst die intrazellulären Signalwege von Tumorzellen und führt zur veränderten Expression von miR-200a-3p. Dass es sich im Gehirn um ein besonders Mikromilieu handelt, zeigt auch die deutlich verminderte Expression der miRNA-30a-3p und miRNA-24-1-5p (um 8,13-fache und 5,59-fache) in Gehirnmetastasen im Vergleich zu nicht-metastasierten Primärtumor. Verschiedene Publikationen unterstützen diese Beobachtungen. Eine vorangegangene Untersuchung an Gehirnmetastasen des Mammakarzinoms konnte nachweisen, dass die Ansiedlung von Tumorzellen ausschließlich im Gehirn zu einem Verlust des Tumorsuppressors PTEN im Vergleich zu anderen Organen führt. Im Verlauf der Untersuchung wurde miR-19a in von Astrozyten ausgehende Exosomen nachgewiesen. MiR-19a ist beteiligt an der Regulation der PTEN Expression. Der Verlust von PTEN führt zu einem Metastasenwachstum (ZHANG et al., 2015). Diese Daten zeigen, dass die Mikroumgebung unter anderem direkt über exosomale Zell-Zell Interaktion Einfluss auf Prozesse in der Tumorzelle hat. Im weiteren Verlauf sollte die Rolle der miR-200a-3p in Gehirnmetastasen genauer identifiziert werden, indem die Targets von miR-200a-3p bestimmt werden.

Zweite These: Ausschließlich Tumorzellen mit besonderen molekularbiologischen Fähigkeiten können sich in bestimmten Geweben bzw. Organen ansiedeln. Unter dieser Annahme würden Tumorzellen mit einer verminderten Expression von miR-200a-3p die Fähigkeit erlangen, zum Beispiel die Blut-Hirn-Schranke überwinden zu können und/ oder sich im Gehirn anzusiedeln. In diesem Rahmen würde man erwarten, dass bereits im metastasierten Primärtumor Tumorzellen mit einer verminderten Expression von miR-200a-3p vorliegen. MiR-200a-3p war aber nicht vermindert exprimiert im metastasierten Primärtumor im Vergleich zu Primärtumoren, die keine Metastasen entwickeln. Die nicht nachweisbare verminderte Expression kann durch die intratumorale Heterogenität erklärt werden. Die intratumorale Heterogenität im klarzelligen NZK besagt, dass sich die Tumorzellen auch innerhalb eines Tumors in ihren Eigenschaften und Fähigkeiten unterscheiden (GERLINGER et al., 2012). Die Anzahl an Tumorzellen mit einer veränderten miRNA Expression kann im Primärtumor sehr gering sein, sodass sie mit quantitativen Verfahren schwer nachzuweisen sind (GERLINGER et al., 2012). Um diese Hypothese zu überprüfen, sollte im nächsten Schritt eine miRNA-in-situ Hybridisierung des metastasierten Primärtumors durchgeführt werden, um den Anteil an veränderten Tumorzellen visuell nachzuweisen. Alternativ kann in verschiedenen Arealen des Tumors die Expression mittels qPCR vergleichend untersucht werden.

Das zweite Ziel beinhaltet die Verifizierung der generellen Veränderung von miR-30a-3p und miR-24-1-5p Expression an den Hauptmetastasierungsorten (Lunge, Gehirn und Knochen) im Vergleich zu den Primärtumoren. Für miR-24-1-5p ergab sich in den qRT-PCR-Analysen, ähnlich zu miR-200a-3p, eine verminderte Expression in Gehirnmetastasen im Vergleich zu den nicht-metastasierten und metastasierten Primärtumoren. In den Knochenmetastasen zeigte sich allein zum nicht-metastasiertem Primärtumor eine verminderte Expression. In den Lungenmetastasen war keine Expressionsänderung reproduzierbar. Damit konnten die vorangegangenen Microarray-Ergebnisse nur teilweise bestätigt werden. Die differierenden Ergebnisse lassen sich durch die unterschiedlichen verwendeten Methoden erklären. Im Vergleich zu semiquantitativen Microarrays ist die qRT-PCR eine sensitivere, genauere Methode zur Quantifizierung (ARYA et al., 2005). Außerdem wurden unterschiedliche Probenkollektive untersucht. Zusammenfassend sind die vorliegenden Ergebnisse als zuverlässig zu werten und miR-24-1-5p nicht als eine miRNA anzusehen, die in allen Hauptmetastasierungsorten verändert ist, sondern nur im Gehirn. Bis zum aktuellen Kenntnisstand wurde miR-24-1-5p im Zusammenhang mit der Tumorgenese nur im Prostatakarzinom beschrieben. Im Prostatakarzinom wurde mittels Microarrayanalysen eine verminderte Expression im Primärtumor nachgewiesen. In anschließenden Transfektionsstudien hemmte eine erhöhte Expression von miR-24-1-5p das Zellwachstum. Aufgrund dessen wurde eine tumorsuppressive Wirkung für die miR-24-1-5p angenommen. Allerdings wurden die Ergebnisse der Mikroarrayanalysen nicht mittels qRT-PCR bestätigt und keine weiteren funktionellen Analysen zu miR-24-1-5p angeschlossen (COARFA et al., 2016). Es besteht daher eine begrenzte Vergleichbarkeit zwischen den Ergebnissen. Letztendlich wurde eine verminderte Expression in den Gehirnmetastasen, wie in den vorliegenden Ergebnissen, bisher in keiner anderen Tumorentität beschrieben.

Für miR-30a-3p zeigte sich eine gleichmäßig verminderte Expression in metastasierten Primärtumoren und Metastasen in Lunge, Gehirn und Knochen im Vergleich zu den nicht-metastasierten Tumoren. Die verminderte Expression von miR-30a-3p konnte somit in den Hauptmetastasierungsorten bestätigt werden. Dabei wurde in Gehirnmetastasen im Vergleich zum nicht-metastasierten Primärtumor die deutlichste Verminderung der Expression (um das 8-fache) festgestellt. Im Gegensatz zu den Vorarbeiten zeigte sich zusätzlich eine verminderte Expression von miR-30a-3p in metastasierten Primärtumoren. Die Expressionsänderung in den Hauptmetastasierungsorten allein deutet auf eine Beteiligung am Metastasierungsprozess hin. Die zusätzlich nachgewiesene Verminderung der miR-30a-3p im metastasierten Primärtumor lässt schlussfolgern, dass miR-30a-3p schon an den initialen Prozessen der Metastasierung beteiligt ist. Dafür sprechen ebenfalls die in der vorliegenden Arbeit unter Verwendung der 2-D-Gelelektrophorese identifizierten potentiellen Targets von miR-30a-3p. Mithilfe der miRWalk Datenbank konnten die komplementären Nukleotidseguenzen der folgenden potentiellen Targets für miR-30a-3p zusätzlich abgeglichen werden:

- Cofilin,
- Nukleosid-Diphosphat-kinase B
- Galectin-1
- Alpha- Enolase

Die Alpha-Enolase ist ein Enzym der Glykolyse und der Glukoneogenese. Der Glukosestoffwechsel stellt eine Energiequelle für die verschiedenen Tumorprozesse dar (WARBURG, 1956b). Galectin-1 ist an unterschiedlichen Signalwegen beteiligt. Neben der Beteiligung an der Zellapoptose, -proliferation und –differenzierung (DANGUY et al., 2002; SCHWARZ et al., 1998) ist Galectin-1 in die Immunantwort involviert. Galectin-1 induziert den T-Zell-Tod durch eine Hemmung der Aktivität der CD45 (Tyrosinphosphatase) und einer ausbleibenden Phosphorylierung der Lynkinase (HE, BAUM, 2004; PACE et al., 1999). Cofilin und Nukleosid-Diphosphat-kinase B wurden im Signalweg des Aktinzytoskeletts sind essentiell für die Mobilität von Zellen (MOON, DRUBIN, 1995). Dies lässt vermuten, dass miR-30a-3p über Cofilin und Nukleosid-Diphosphat-kinase B an der Mobilität der Tumorzellen beteiligt ist.

Die Motilität von Tumorzellen ist ein essentieller Vorgang im gesamten Verlauf der Metastasierung und ist von besonderer Bedeutung in den frühen Prozessen der Metastasierung, wie zum Beispiel für die Migration und Invasion, denn nur mobile Zellen können sich vom Primärtumor oder von Fernmetastasen absiedeln.

Zum jetzigen Zeitpunkt gibt es weder Publikationen, die den Zusammenhang zwischen der miR-30a-3p und der frühen Metastasierung für das klarzellige NZK thematisieren, noch eine Untersuchung, die Cofilin als ein Target von miR-30a-3p beschreibt. Eine vorrausgegangene Arbeit konnte unabhängig zu den vorliegenden Ergebnissen einen Expressionsunterschied der miR-30a-3p im metastasierten klarzelligen NZK feststellen (WHITE et al., 2011). Mittels Microarrayanalysen war miR-30a-3p in metastasiertem Primärtumor reduziert exprimiert im Vergleich zum nicht-metastasierten Primärtumor. Allerdings wurde dieses Ergebnis nicht weiter verfolgt und verifiziert. Weitere Untersuchungen beschäftigen sich mit der Rolle der miR-30a-3p in der Metastasierung. Im nicht-kleinzelligen Lungenkarzinom konnte in vitro an Zelllinien mittels Western blot das Target Snai1 für miR-30a und miR-30e bestätigt werden. Snai1 ist ein Transkriptionsfaktor der EMT (KUMARSWAMY et al., 2012). Die EMT ist ein wichtiger Mechanismus der frühen Metastasierung (MANI et al., 2008). In invasiv wachsenden Zelllinien des nicht-kleinzelligen Lungenkarzinoms (H1299, Calu1) ging eine verminderte miR-30a Expression mit einer erhöhten Ncadherin (Biomarker der EMT) Expression und einer erniedrigten E-cadherin Expression einher. Funktionsanalysen zu miR-30a ergaben eine verstärkte Inhibition der Migration und Invasion. Eine erhöhte miR-30a Expression verhinderte in in-vivo Versuchen an Hühner-Embryonen die Metastasierung in Lunge und Leber. Schlussfolgernd hemmt eine erhöhte miR-30a Expression die Metastasierung im nicht-kleinzelligen Lungenkarzinom. Ebenso induzierte eine verminderte Expression der miR-30a die EMT und trug zur frühen Metastasierung bei (KUMARSWAMY et al., 2012). Auch im hepatozellulären Karzinom konnten die Biomarker der EMT Vimentin, E-cadherin und MMP3 mittels Western Blots bestätigt werden (WANG et al., 2014). Limitierend an dieser Untersuchung war, dass explizit die Biomarker der EMT als Targets für miR-30a-3p überprüft wurden und keine Targets anderer Signalwege in Betracht gezogen wurden. Die hier vorliegende Arbeit konnte den Einfluss von miR-30a-3p an anderen Signalwegen identifizieren. Über die potentiellen Targets Cofilin und Galectin-1 hat miR-30a-3p Einfluss auf die Motilität der Tumorzellen.

Galectin-1 ist unter anderem ein Regulator in der Interaktion von Zellen und der Extrazellulär Matrix. Über die Interaktion mit Oberflächenglykoproteinen, wie Integrin (HOOD, CHERESH, 2002) und glykosylierte Proteine, wie Fibrin und Laminin, der Extrazellulär Matrix (COLIN HUGHES, 2001) beeinflusst Galectin-1 die Migration und Tumorzellen. In zwei Tumorentitäten Invasion von (Kolonkarzinom, Mammakarzinom) konnte eine Korrelation zwischen Lymphknotenmetastasen und Konzentration hergestellt werden (ANDRÉ et al., der Galactin-1 1999). Zusammenfassend nimmt man an, dass Galectin-1 über diese Mechanismen zur Absiedlung von Tumorzellen vom Primärtumor beiträgt (COUSIN, CLONINGER, 2016; LIU, RABINOVICH, 2005). In vorrangegangenen Untersuchungen zum Mammakarzinom konnte für das weitere Target Cofilin ein direkter Einfluss auf die frühen Prozesse der Metastasierung festgestellt werden. In einem in-vitro Invasionsassay konnte eine Abhängigkeit der Invasion von der Cofilinexpression nachgewiesen werden. In weiteren Tierversuchen an Ratten führte eine durch LIMK1 induzierte verstärkte Aktivität des Cofilinsignalwegs zu einer erhöhten Invasion und Metastasierung der Tumorzellen im Vergleich zur Kontrollgruppe. (WANG et al., 2006). Es scheint, dass Cofilin über den Signalweg des Aktinzytoskelettumbaus zur Metastasierung im Mammakarzinom führt. Es ist anzunehmen, dass dieser Prozess ebenfalls im klarzelligen NZK eine Rolle spielt.

Zusammenfassend scheint eine verminderte miR-30a-3p Expression auch in anderen Tumoren an der frühen Metastasierung beteiligt zu sein. Dementsprechend ist von einer tumorsuppressiven Wirkung von miR-30a-3p auszugehen. Jedoch ist anhand der vorliegenden Ergebnisse anzunehmen, dass miR-30a-3p über Cofilin und Nukleosid-Diphosphat-kinase B an der Metastasierung des klarzelligen NZK beteiligt ist. Zumal in einer anschließenden Arbeit der Arbeitsgruppe Heinzelmann et al das *Target* Cofilin mittels Western Blot bestätigt werden konnte. Allerdings ist eine Involvierung der miR-30a-3p an der EMT nicht ausgeschlossen. Tumorsuppressive Fähigkeiten wurden auch in Primärtumoren des klarzelligen NZK mit einem gestörten *von Hippel Lindau* (VHL)-Gen nachgewiesen. Erstens zeigte sich in diesen Primärtumoren des klarzelligen NZK eine deutlich verminderte Expression der miR-30a-3p. Zweitens konnte in Zellversuchen ein Zusammenhang zwischen einer verminderten miR-30a-3p Expression und einer verstärkten Expression des hypoxiainducible factors 2 α (HIF 2 α) nachgewiesen werden. Solche Zellen neigten zu einer verstärkten Proliferation, Angiogenese und zum Tumorwachstum (MATHEW et al., 2014). Angesichts der verminderten Expression der miR-30a-3p und dem deutlichen Zusammenhang zur Tumorprogression und Metastasierung sollte geprüft werden, ob sich miR-30a-3p zur therapeutischen Anwendung oder als Prognosemarker eignet, zumal in der eben genannten Arbeit ebenfalls eine Korrelation zwischen der Überlebenszeit und der miR-30a-3p Expression festgestellt wurde. Eine niedrige miR-30a-3p Expression ging mit einem geringeren Gesamtüberleben einher (MATHEW et al., 2014). Zum aktuellen Kenntnisstand existieren wenige Arbeiten, die die Metastasierung der klarzelligen NZK in Zusammenhang mit der miRNA Expression untersuchen. Insbesondere mangelt es an differenzierten Untersuchungen der Genexpression von miRNAs an Hauptmetastasierungsorten im Vergleich zum Primärtumor, den obwohl vorangegangene Untersuchungen bereits nachweisen konnten, dass veränderte miRNA Expressionen in Metastasen des klarzelligen NZK vorliegen. Beispielsweise konnten 21 deregulierte miRNAs in Knochenmetastasen im Vergleich zum Primärtumor (WOTSCHOFSKY et al., 2012) und 6 deregulierte miRNAs in Metastasen (unklaren Ursprungs) des klarzelligen NZK (WHITE et al., 2011) detektiert werden. Die vorliegenden Ergebnisse konnten beweisen, dass nicht nur Expressionsunterschiede der miRNA zwischen den Hauptmetastasierungsorten und den Primärtumoren (miR-30a-3p) bestehen, sondern auch, dass zwischen den Hauptmetastasierungsorten Unterschiede vorliegen (miR-200a-3p). Schlussfolgernd laufen unterschiedliche Prozesse in Abhängigkeit vom Metasierungsort ab. Die weitere Identifizierung ortsspezifischer miRNAs und deren funktionelle Bedeutung sollte Gegenstand zukünftiger Untersuchungen sein, um die ortsspezifischen Prozesse besser zu verstehen.

Der limitierende Faktor der gesamten Arbeit ist die begrenzte Anzahl des Probenkollektivs und das Fehlen von gepaarten Proben von Primärtumor und Fernmetastasen. Weiterhin wurden in der vorliegenden Arbeit die potentiellen *Targets* noch nicht mit einer alternativen Methode verifiziert. Im Anschluss an diese Arbeit konnte Cofilin jedoch als *Target* mittels Western Blot bestätigt werden. Die weiteren *Targets* gilt es ebenfalls zu validieren, um die Funktion der miR-30a-3p besser zu verstehen.

7 Ausblick

Die vorliegende Arbeit konnte nachweisen, dass Expressionsunterschiede zwischen den Primärtumoren, den Hauptmetastasierungsorten (miR-30a-3p) und sogar zwischen den Hauptmetastasierungsorten (miR-200a-3p) im klarzelligen NZK vorliegen.

Die verminderte Expression der miR-200a-3p in Gehirnmetastasen im Vergleich zum Probenkollektiv dass unterschiedliche Prozesse zeigt, auch an den Hauptmetastasierungsorten ablaufen. Die unterschiedlichen Prozesse können durch Zell-Zell-Interaktionen Mikroumgebung der aus der Tumorzellen an den Metastasenorten induziert sein. Um dies zu überprüfen, sollte zunächst die miR-200a-3p Expression in Astrozyten und Neurone gemessen werden. Eine weitere Möglichkeit wäre, dass nur Tumorzellen mit einer besonderen Fähigkeit sich in ein spezifisches Mikromilieu absiedeln können. Zunächst sollten mithilfe einer miRNA-insitu Hybridisierung die miRNA-Expression im Primärtumor visualisiert werden, um einer möglichen intratumoralen Heterogenität Rechnung zu tragen. Die Klärung dieser Hypothesen trüge wesentlich zum Verständnis der Metastasierung bei und könnte diagnostische und eine therapeutische Anwendung finden.

Am Beispiel der miR-30a-3p zeigte die vorliegende Arbeit eine verminderte Expression an den Hauptmetastasierungsorten im Vergleich zu nicht-metastasierten Primärtumoren. Die Expression der miR-30a-3p weist daraufhin, dass in den Fernmetastasen metastasenspezifische Prozesse ablaufen. Diese Prozesse besser zu verstehen, sollte Gegenstand zukünftiger Untersuchungen sein. Sie eignen sich als therapeutische Ansätze für die Behandlung des fortgeschrittenen klarzelligen NZK. Am Beispiel der miR-30a-3p sollten dafür im Anschluss dieser Arbeit die potentiellen *Targets* von miR-30a-3p mittels Western Blot verifiziert werden, um den vollständigen Signalweg der miR-30a-3p nachzuvollziehen. In funktionellen Analysen sollte die Frage beantwortet werden, ob eine erhöhte miR-30a-3p Expression die Metastasierung des klarzelligen NZK hemmt. Dies sollte zunächst in *in-vitro* Funktionsassays an invasiv wachsenden Zellkulturen untersucht werden. Im Verlauf sollten dieses Ergebnisse in *in-vivo* Versuchen bestätigt werden.

Die zusätzliche verminderte Expression der miR-30a-3p im metastasierten Primärtumor weist auf eine Beteiligung an frühen Prozessen der Metastasierung des Primärtumors hin. Im Anschluss an diese Arbeit sollte geprüft werden, ob sich miR-30a-3p als Prognosemarker zur Einschätzung des Metastasierungspotentials des Primärtumors eignet. Dazu sollte die miR-30a-3p Expression in Primärtumoren in Korrelation zum Gesamtüberleben und zur Metastasierung an einem unabhängigen Patientenkollektiv untersucht werden.

8 Literaturverzeichnis

- André S, Kojima S, Yamazaki N, Fink C, Kaltner H, Kayser K, Gabius H-J (1999) Galectins-1 and -3 and their ligands in tumor biology. Journal of Cancer Research and Clinical Oncology 125:461-474
- 2. Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HRH (2005) Basic principles of real-time quantitative PCR. Expert Review of Molecular Diagnostics 5:209-219
- 3. Bartel DP (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 116:281-297
- 4. Bartel DP (2009) MicroRNAs: Target Recognition and Regulatory Functions. Cell 136:215-233
- 5. Bohnsack MT, Czaplinski K, GÖRlich D (2004) Exportin 5 is a RanGTP-dependent dsRNAbinding protein that mediates nuclear export of pre-miRNAs. RNA 10:185-191
- 6. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097-1101
- 7. Cairns P (2011) Renal Cell Carcinoma. Cancer Biomarkers 9:461-473
- 8. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National Academy of Sciences of the United States of America 101:2999-3004
- Choueiri TK, Escudier B, Powles T, Mainwaring PN, Rini BI, Donskov F, Hammers H, Hutson TE, Lee J-L, Peltola K, Roth BJ, Bjarnason GA, Géczi L, Keam B, Maroto P, Heng DYC, Schmidinger M, Kantoff PW, Borgman-Hagey A, Hessel C, Scheffold C, Schwab GM, Tannir NM, Motzer RJ (2015) Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma. New England Journal of Medicine 373:1814-1823
- 10. Coarfa C, Fiskus W, Eedunuri VK, Rajapakshe K, Foley C, Chew SA, Shah SS, Geng C, Shou J, Mohamed JS, O'Malley BW, Mitsiades N (2016) Comprehensive proteomic profiling identifies the androgen receptor axis and other signaling pathways as targets of microRNAs suppressed in metastatic prostate cancer. Oncogene 35:2345-2356
- 11. Cohen AJ, Li FP, Berg S, Marchetto DJ, Tsai S, Jacobs SC, Brown RS (1979) Hereditary Renal-Cell Carcinoma Associated with a Chromosomal Translocation. New England Journal of Medicine 301:592-595
- 12. Cohen HT, McGovern FJ (2005) Renal-Cell Carcinoma. New England Journal of Medicine 353:2477-2490
- 13. Colin Hughes R (2001) Galectins as modulators of cell adhesion. Biochimie 83:667-676
- Cousin J, Cloninger M (2016) The Role of Galectin-1 in Cancer Progression, and Synthetic Multivalent Systems for the Study of Galectin-1. International Journal of Molecular Sciences 17:1566
- 15. Danguy A, Camby I, Kiss R (2002) Galectins and cancer. Biochimica et Biophysica Acta (BBA) -General Subjects 1572:285-293
- 16. Delahunt B, Bethwaite PB, Nacey JN (2007) Outcome prediction for renal cell carcinoma: evaluation of prognostic factors for tumours divided according to histological subtype. Pathology - Journal of the RCPA 39:459-465
- 17. Denli AM, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432:231-235
- 18. Eble JN SG, Epstein JI, Sesterhenn IAM, (2004) Pathology of Genetics of Tumours of the Urinary System and Male Genital Organs. . eds World Health Organization Classification of tumours IARC Press: Lyon
- 19. Escudier B, Cosaert J, Jethwa S (2008) Targeted therapies in the management of renal cell carcinoma: role of bevacizumab. Biologics : Targets & Therapy 2:517-530
- Escudier B, Bellmunt J, Négrier S, Bajetta E, Melichar B, Bracarda S, Ravaud A, Golding S, Jethwa S, Sneller V (2010) Phase III Trial of Bevacizumab Plus Interferon Alfa-2a in Patients With Metastatic Renal Cell Carcinoma (AVOREN): Final Analysis of Overall Survival. Journal of Clinical Oncology 28:2144-2150
- 21. Esquela-Kerscher A, Slack FJ (2006) Oncomirs [mdash] microRNAs with a role in cancer. Nat Rev Cancer 6:259-269
- 22. Ferley DD, Osborn RW, Vukovich MD (2013) The effects of uphill vs. level-grade high-intensity interval training on VO2max, Vmax, V(LT), and Tmax in well-trained distance runners. J Strength Cond Res 27:1549-1559
- 23. Gaidatzis D, van Nimwegen E, Hausser J, Zavolan M (2007) Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 8:69
- 24. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A, Tarpey P, Varela I, Phillimore B, Begum S, McDonald NQ, Butler A, Jones D, Raine K, Latimer C, Santos CR, Nohadani M, Eklund AC, Spencer-Dene B, Clark G, Pickering L, Stamp G, Gore M, Szallasi Z, Downward J, Futreal PA, Swanton C (2012) Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. New England Journal of Medicine 366:883-892
- 25. Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H, Latif F, Liu S, Chen F, Duh FM, Lubensky I, Duan DR, Florence C, Pozzatti R, Walther MM, Bander NH, Grossman HB, Brauch H, Pomer S, Brooks JD, Isaacs WB, Lerman MI, Zbar B, Linehan WM (1994) Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 7:85-90
- 26. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593-601
- 27. Hammerschmied CG, Walter B, Hartmann A (2008) Nierenzellkarzinom 2008. Der Pathologe 29:354-363
- 28. Han J, Lee Y, Yeom K-H, Kim Y-K, Jin H, Kim VN (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes & Development 18:3016-3027
- 29. Hanahan D, Weinberg RA (2000) The Hallmarks of Cancer. Cell 100:57-70
- 30. He J, Baum LG (2004) Presentation of galectin-1 by extracellular matrix triggers T cell death. J Biol Chem 279:4705-4712
- 31. Heinzelmann J, Unrein A, Sanjmyatav J, Gajda M, Wunderlich H, Neubert AK, Grimm MO, Junker K (2011) 278 A SPECIFIC MIRNA SIGNATURE CHARACTERIZES METASTASIS IN RENAL CELL CARCINOMA. European Urology Supplements 10:107
- 32. Heinzelmann J, Unrein A, Wickmann U, Baumgart S, Stapf M, Szendroi A, Grimm M-O, Gajda M, Wunderlich H, Junker K (2014) MicroRNAs with Prognostic Potential for Metastasis in Clear Cell Renal Cell Carcinoma: A Comparison of Primary Tumors and Distant Metastases. Annals of Surgical Oncology 21:1046-1054
- 33. Heng DYC, Xie W, Regan MM, Warren MA, Golshayan AR, Sahi C, Eigl BJ, Ruether JD, Cheng T, North S, Venner P, Knox JJ, Chi KN, Kollmannsberger C, McDermott DF, Oh WK, Atkins MB, Bukowski RM, Rini BI, Choueiri TK (2009) Prognostic Factors for Overall Survival in Patients With Metastatic Renal Cell Carcinoma Treated With Vascular Endothelial Growth Factor– Targeted Agents: Results From a Large, Multicenter Study. Journal of Clinical Oncology 27:5794-5799
- 34. Heng DYC, Xie W, Regan MM, Harshman LC, Bjarnason GA, Vaishampayan UN, Mackenzie M, Wood L, Donskov F, Tan M-H, Rha S-Y, Agarwal N, Kollmannsberger C, Rini BI, Choueiri TK (2013) External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: a population-based study. The Lancet Oncology 14:141-148
- 35. Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2:91-100

- 36. Huang WC, Elkin EB, Levey AS, Jang TL, Russo P (2009) Partial Nephrectomy vs. Radical Nephrectomy in Patients With Small Renal Tumors: Is There a Difference in Mortality and Cardiovascular Outcomes? The Journal of urology 181:55-62
- Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, Staroslawska E, Sosman J,
 McDermott D, Bodrogi I, Kovacevic Z, Lesovoy V, Schmidt-Wolf IGH, Barbarash O, Gokmen E,
 O'Toole T, Lustgarten S, Moore L, Motzer RJ (2007) Temsirolimus, Interferon Alfa, or Both for
 Advanced Renal-Cell Carcinoma. New England Journal of Medicine 356:2271-2281
- 38. Hunt JD, van der Hel, O. L., McMillan, G. P., Boffetta, P. and Brennan, P. (2005) Renal cell carcinoma in relation to cigarette smoking: Meta-analysis of 24 studies. Int J Cancer, 114: 101–108 doi: 101002/ijc20618
- 39. Juan D, Alexe G, Antes T, Liu H, Madabhushi A, Delisi C, Ganesan S, Bhanot G, Liou LS (2010) Identification of a MicroRNA Panel for Clear-cell Kidney Cancer. Urology 75:835-841
- 40. Jung M, Mollenkopf H-J, Grimm C, Wagner I, Albrecht M, Waller T, Pilarsky C, Johannsen M, Stephan C, Lehrach H, Nietfeld W, Rudel T, Jung K, Kristiansen G (2009) MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. Journal of Cellular and Molecular Medicine 13:3918-3928
- 41. Junker K, Weirich G, Amin MB, Moravek P, Hindermann W, Schubert J (2003) Genetic subtyping of renal cell carcinoma by comparative genomic hybridization. Recent Results Cancer Res 162:169-175
- 42. Kaelin Jr WG (2008) The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 8:865-873
- 43. Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 Family Inhibits Epithelial-Mesenchymal Transition and Cancer Cell Migration by Direct Targeting of E-cadherin Transcriptional Repressors ZEB1 and ZEB2. The Journal of Biological Chemistry 283:14910-14914
- Kristiansen G, Delahunt B, Srigley JR, Lüders C, Lunkenheimer JM, Gevensleben H, Thiesler T,
 Montironi R, Egevad L (2014) Vancouver-Klassifikation von Nierentumoren. Der Pathologe:1 7
- 45. Kumarswamy R, Mudduluru G, Ceppi P, Muppala S, Kozlowski M, Niklinski J, Papotti M, Allgayer H (2012) MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer. International Journal of Cancer 130:2044-2053
- 46. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843-854
- 47. Lee Y, Kim M, Han J, Yeom K-H, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. The EMBO Journal 23:4051-4060
- 48. Lee YS, Dutta A (2007) The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes & Development 21:1025-1030
- 49. Leibovich BC, Lohse CM, Crispen PL, Boorjian SA, Thompson RH, Blute ML, Cheville JC (2010) Histological Subtype is an Independent Predictor of Outcome for Patients With Renal Cell Carcinoma. The Journal of Urology 183:1309-1316
- 50. Linehan WM (2012) Genetic basis of kidney cancer: Role of genomics for the development of disease-based therapeutics. Genome Research 22:2089-2100
- 51. Liu C, Yu J, Yu S, Lavker RM, Cai L, Liu W, Yang K, He X, Chen S (2010) MicroRNA-21 acts as an oncomir through multiple targets in human hepatocellular carcinoma. Journal of Hepatology 53:98-107
- 52. Liu F-T, Rabinovich GA (2005) Galectins as modulators of tumour progression. Nat Rev Cancer 5:29-41
- 53. Ljungberg B, Campbell SC, Cho HY, Jacqmin D, Lee JE, Weikert S, Kiemeney LA (2011) The Epidemiology of Renal Cell Carcinoma. European Urology 60:615-621
- Ljungberg B, Bensalah K, Canfield S, Dabestani S, Hofmann F, Hora M, Kuczyk MA, Lam T, Marconi L, Merseburger AS, Mulders P, Powles T, Staehler M, Volpe A, Bex A (2015) EAU Guidelines on Renal Cell Carcinoma: 2014 Update. European Urology 67:913-924

- 55. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682-688
- 56. Ma L, Weinberg RA (2008) Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet 24:448-456
- 57. MacFarlane L-A, Murphy PR (2010) MicroRNA: Biogenesis, Function and Role in Cancer. Current Genomics 11:537-561
- 58. MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA (2008) In vitro reconstitution of the human RISC-loading complex. Proceedings of the National Academy of Sciences of the United States of America 105:512-517
- 59. Mani SA, Guo W, Liao M-J, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell 133:704-715
- 60. Mathew LK, Lee SS, Skuli N, Rao S, Keith B, Nathanson KL, Lal P, Simon MC (2014) Restricted Expression of miR-30c-2-3p and miR-30a-3p in Clear Cell Renal Cell Carcinomas Enhances HIF2α Activity. Cancer Discovery 4:53-60
- 61. Maturen KE, Nghiem HV, Caoili EM, Higgins EG, Wolf JS, Wood DP (2007) Renal Mass Core Biopsy: Accuracy and Impact on Clinical Management. American Journal of Roentgenology 188:563-570
- 62. Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ (2003) Reduced Accumulation of Specific MicroRNAs in Colorectal Neoplasia11Note: Susan M. O' Connor and Nicholas G. van Holst Pellekaan contributed equally to this work. Molecular Cancer Research 1:882-891
- 63. Moon A, Drubin DG (1995) The ADF/Cofilin Proteins: Stimulus-responsive Modulators of Actin Dynamics. Molecular Biology of the Cell 6:1423-1431
- 64. Motzer RJ, Bacik J, Murphy BA, Russo P, Mazumdar M (2002) Interferon-Alfa as a Comparative Treatment for Clinical Trials of New Therapies Against Advanced Renal Cell Carcinoma. Journal of Clinical Oncology 20:289-296
- 65. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, Oudard S, Negrier S, Szczylik C, Kim ST, Chen I, Bycott PW, Baum CM, Figlin RA (2007) Sunitinib versus Interferon Alfa in Metastatic Renal-Cell Carcinoma. New England Journal of Medicine 356:115-124
- 66. Motzer RJ, Escudier B, Tomczak P, Hutson TE, Michaelson MD, Negrier S, Oudard S, Gore ME, Tarazi J, Hariharan S, Chen C, Rosbrook B, Kim S, Rini BI (2013) Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: overall survival analysis and updated results from a randomised phase 3 trial. The Lancet Oncology 14:552-562
- 67. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, Castellano D, Choueiri TK, Gurney H, Donskov F, Bono P, Wagstaff J, Gauler TC, Ueda T, Tomita Y, Schutz FA, Kollmannsberger C, Larkin J, Ravaud A, Simon JS, Xu L-A, Waxman IM, Sharma P (2015a) Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. New England Journal of Medicine 373:1803-1813
- 68. Motzer RJ, Rini BI, McDermott DF, Redman BG, Kuzel TM, Harrison MR, Vaishampayan UN, Drabkin HA, George S, Logan TF, Margolin KA, Plimack ER, Lambert AM, Waxman IM, Hammers HJ (2015b) Nivolumab for Metastatic Renal Cell Carcinoma: Results of a Randomized Phase II Trial. Journal of Clinical Oncology 33:1430-1437
- 69. Ørom UA, Nielsen FC, Lund AH MicroRNA-10a Binds the 5'UTR of Ribosomal Protein mRNAs and Enhances Their Translation. Molecular Cell 30:460-471
- 70. Pace KE, Lee C, Stewart PL, Baum LG (1999) Restricted Receptor Segregation into Membrane Microdomains Occurs on Human T Cells During Apoptosis Induced by Galectin-1. The Journal of Immunology 163:3801-3811
- 71. Petersen CP, Bordeleau M-E, Pelletier J, Sharp PA (2006) Short RNAs Repress Translation after Initiation in Mammalian Cells. Molecular Cell 21:533-542

- 72. Ribas A (2012) Tumor Immunotherapy Directed at PD-1. New England Journal of Medicine 366:2517-2519
- 73. Rini BI, Atkins MB (2009) Resistance to targeted therapy in renal-cell carcinoma. The Lancet Oncology 10:992-1000
- 74. Rohde V (2010). Nierenzellkarzinom (NZK). In Facharztwissen Urologie (Springer Berlin Heidelberg), pp. 199-222.
- 75. Schwarz FP, Ahmed H, Bianchet MA, Amzel LM, Vasta GR (1998) Thermodynamics of Bovine Spleen Galectin-1 Binding to Disaccharides: Correlation with Structure and Its Effect on Oligomerization at the Denaturation Temperature. Biochemistry 37:5867-5877
- 76. Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, Barrios CH, Salman P, Gladkov OA, Kavina A, Zarbá JJ, Chen M, McCann L, Pandite L, Roychowdhury DF, Hawkins RE (2010) Pazopanib in Locally Advanced or Metastatic Renal Cell Carcinoma: Results of a Randomized Phase III Trial. Journal of Clinical Oncology 28:1061-1068
- 77. van der Veldt AAM, Eechoute K, Gelderblom H, Gietema J, Guchelaar H-J, van Erp NP, van den Eertwegh AJM, Haanen JB, Mathijssen RHJ, Wessels JAM (2011) Genetic Polymorphisms Associated with a Prolonged Progression-Free Survival in Patients with Metastatic Renal Cell Cancer Treated with Sunitinib. Clinical Cancer Research 17:620-629
- 78. Wang W, Mouneimne G, Sidani M, Wyckoff J, Chen X, Makris A, Goswami S, Bresnick AR, Condeelis JS (2006) The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. The Journal of Cell Biology 173:395-404
- 79. Wang W, Lin H, Zhou L, Zhu Q, Gao S, Xie H, Liu Z, Xu Z, Wei J, Huang X, Zheng S (2014) MicroRNA-30a-3p inhibits tumor proliferation, invasiveness and metastasis and is downregulated in hepatocellular carcinoma. European Journal of Surgical Oncology (EJSO) 40:1586-1594
- 80. Warburg O (1956a) On respiratory impairment in cancer cells. Science 124:269-270
- 81. Warburg O (1956b) On the origin of cancer cells. Science 123:309-314
- 82. Weikert S, Boeing H, Pischon T, Weikert C, Olsen A, Tjonneland A, Overvad K, Becker N, Linseisen J, Trichopoulou A, Mountokalakis T, Trichopoulos D, Sieri S, Palli D, Vineis P, Panico S, Peeters PHM, Bueno-de-Mesquita HB, Verschuren WMM, Ljungberg B, Hallmans G, Berglund G, González CA, Dorronsoro M, Barricarte A, Tormo MJ, Allen N, Roddam A, Bingham S, Khaw K-T, Rinaldi S, Ferrari P, Norat T, Riboli E (2008) Blood Pressure and Risk of Renal Cell Carcinoma in the European Prospective Investigation into Cancer and Nutrition. American Journal of Epidemiology 167:438-446
- 83. White NMA, Khella HWZ, Grigull J, Adzovic S, Youssef YM, Honey RJ, Stewart R, Pace KT, Bjarnason GA, Jewett MAS, Evans AJ, Gabril M, Yousef GM (2011) miRNA profiling in metastatic renal cell carcinoma reveals a tumour-suppressor effect for miR-215. British Journal of Cancer 105:1741-1749
- 84. Wiklund ED, Bramsen JB, Hulf T, Dyrskjøt L, Ramanathan R, Hansen TB, Villadsen SB, Gao S, Ostenfeld MS, Borre M, Peter ME, Ørntoft TF, Kjems J, Clark SJ (2011) Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. International Journal of Cancer 128:1327-1334
- 85. Wotschofsky Z, Liep J, Meyer HA, Jung M, Wagner I, Disch AC, Schaser KD, Melcher I, Kilic E, Busch J, Weikert S, Miller K, Erbersdobler A, Mollenkopf HJ, Jung K (2012) Identification of metastamirs as metastasis-associated microRNAs in clear cell renal cell carcinomas. Int J Biol Sci 8:1363-1374
- Yakes FM, Chen J, Tan J, Yamaguchi K, Shi Y, Yu P, Qian F, Chu F, Bentzien F, Cancilla B, Orf J,
 You A, Laird AD, Engst S, Lee L, Lesch J, Chou Y-C, Joly AH (2011) Cabozantinib (XL184), a
 Novel MET and VEGFR2 Inhibitor, Simultaneously Suppresses Metastasis, Angiogenesis, and
 Tumor Growth. Molecular Cancer Therapeutics 10:2298-2308
- 87. Yekta S, Shih I-h, Bartel DP (2004) MicroRNA-Directed Cleavage of HOXB8 mRNA. Science 304:594-596

- 88. Ying S-Y, Lin S-L (2004) Intron-derived microRNAs—fine tuning of gene functions. Gene 342:25-28
- Youssef YM, White NMA, Grigull J, Krizova A, Samy C, Mejia-Guerrero S, Evans A, Yousef GM (2011) Accurate Molecular Classification of Kidney Cancer Subtypes Using MicroRNA Signature. European Urology 59:721-730
- 90. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang W-C, Li P, Li M, Wang X, Zhang C, Wang H, Ellis K, Cheerathodi M, McCarty JH, Palmieri D, Saunus J, Lakhani S, Huang S, Sahin AA, Aldape KD, Steeg PS, Yu D (2015) Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527:100-104
- 91. Zini L, Perrotte P, Capitanio U, Jeldres C, Shariat SF, Antebi E, Saad F, Patard J-J, Montorsi F, Karakiewicz PI (2009) Radical versus partial nephrectomy. Cancer 115:1465-1471

9 Anhang

Abkürzungen		vollständige Bezeichnung
2D-DIGE	-	zweidimensionale differentielle Gelelektrophorese
Abb	-	Abbildung
Abk.	-	Abkürzung
Ago-Protein	-	Argonautenprotein
BCL2	-	B-Zell lymphoma 2
BSG	-	Blutsenkungsgeschwindigkeit
bzw	-	beziehungsweise
ca	-	circa
cDNA	-	Komplementäre DNA
CHAPS	-	(3-[(3-Cholamidopropyl)-dimethylammonio]-propane-sulfonate
CLL	-	chronisch lymphatische Leukämie
СТ	-	Computertomographie
Ct	-	Cycle threshold
CUL2	-	Cullin 2
DCM	-	Database Consortium Model
DGCR8	-	DiGeorge Syndrome Critical region gene 8
DMEM	-	Dulbecco's Modified Eagle Medium
DNA	-	Desoxyribonukleinsäure
DTT	-	Dithiothreitol
EMT	-	Epithelial mesenchymal transition
FFPE	-	Formalin-Fixed, Paraffin-Embedded (tissue)
FKS	-	Fetales Kälberserum
FC	-	Fold Change
GFR	-	Glomeruläre Filtrationsrate
GTP	-	Guanosintriphosphat
GLUT1	-	Glucosetransporter
h	-	Stunde
HE	-	Hämatoxylin-Eosin

Tabelle XVI Abkürzungsverzeichnis

HIF	-	Hypoxie Induzierter Faktor
IFN-α	-	Interferon-a
IL-2	-	Interleukin-2
kb	-	Kilobasen
kzNzk	-	klarzelliges Nierenzellkarzinom
LC-MS/MS	-	Liquid-Chromatographie-Massenspektometrie/
		Massenspektometrie
LDH	-	Laktatdehydrogenase
met.	-	metastasiert
М	-	Molar
min	-	Minute
miRNA	-	MicroRNA
ml	-	Milliliter
MSKCC	-	Memorial Sloan-Kettering Cancer Center
MOCK	-	Mit normalem Medium versetzte Zellen
mRNA	-	Messenger RNA
MRT	-	Magnetresonanztomographie
m-Tor	-	Mammalian Target of Rapamycin
MYC	-	Myelocytomatose
n	-	Anzahl der Proben
ng	-	Nanogramm
nm	-	Nanometer
nt	-	Nukleotide
NTC	-	Non Template Control
NZK	-	Nierenzellkarzinom
р	-	Signifikanzwert
PACT	-	Proteinkinase R-activating protein
PBS	-	Phosphatgepufferte Salzlösung
PCR	-	Polymerase Chain Reaction
PDCD4	-	Programmed Cell Death 4
PDGFR	-	Platelet Derived Growth Factor Receptor
Pre-miRNA	-	Precursor miRNA
Pri-miRNA	-	Primary miRNA
PTEN	-	Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase

qRT-PCR	-	Quantitative Real-time Polymerase Chain Reaction	
RAF	-	Rapidly Accelerated Fibrosarcoma	
Ran	-	Ras-related nuclear protein	
Rbx1	-	Ring box 1	
RECK	-	Reversion-inducing cysteine-rich protein with Kazal motifs	
RISC	-	RNA-Induced Silencing Complex	
RNA	-	Ribonukleinsäure	
RPMI	-	Roswell Park Memorial Institute Medium	
RT	-	Reverse Transkriptase	
S	-	Sekunde	
S.O.	-	siehe oben	
s.u.	-	siehe unten	
TNM	-	Tumor-Node-Metastasis	
TRBP	-	human immunodeficiency virus transactivating response	
		RNA-binding protein	
TBS	-	Tris buffered saline	
Tris	-	Tris(hydroxymethyl)aminomethan	
UTR	-	untranslated regions	
VEGFR	-	Vascular Endothelial Growth Factor Receptor	
Vergl.	-	Vergleiche	
VHL	-	Von Hippel-Lindau	
WHO	-	World Health Organization	
ZNS	-	Zentralnervensystem	
μΙ	-	Mikroliter	

Gerät- und	Firma	
Programmbezeichnung		
Delta2D	Decodon GmbH; Greifswald; Germany	
Ettan IPGphor 3	GE Healthcare; Chalfont St Giles; GB	
IBM SPSS Statistics – Software for	IBM; Ehningen; Deutschland	
Predictive Analysis (Version 20)		
REST (Relative Expression Software	M.W. Pfaffl; München; Deutschland	
Tool) 2009		
SERVA IPG BlueStrip	Serva; Heidelberg; Germany	
StepOnePlusTM Real Time PCR System	Ambion Applied Biosystem; Austin;	
	USA	
Typhoon Trio	GE Healthcare; Chalfont St Giles; GB	
LUNA automated cell counter	Logos Biosystems	

Tabelle XVII Geräte- und Programmliste

Chemikalien und Kitsysteme	Hersteller
Bezeichnung	
2D HPETM Large Gel NF 12.5% Kit	Serva; Heidelberg; Germany
2-D Quant Kit	GE Healthcare; Chalfont St Giles; GB
Amersham CyDye DIGE Fluors	GE Healthcare; Chalfont St Giles; GB
(minimal dyes) for Ettan DIGEs	
DharmaFECT 2 Transfection Reagent	GE Healthcare; Chalfont St Giles; GB
Dulbecco's Modified Eagle Medium	Sigma Aldrich; St. Louis; USA
miRNeasy Mini Kit	Qiagen; Hilden; Germany
miScript miRNA Mimic	Qiagen; Hilden; Germany
Opti-MEM Medium	Sigma Aldrich; St. Louis; USA
Roswell Parc Memorial	Sigma Aldrich; St. Louis; USA
Institute Medium	
SERVALYTTM Carrier Ampholytes	Serva; Heidelberg; Germany
TaqMan® Gene	Ambion Applied Biosystems; Austin; US
Expression Master Mix	
TaqMan® MicroRNA	Ambion Applied Biosystems; Austin; US
Assay Primer	
TaqMan® MicroRNA Reverse	Ambion Applied Biosystems; Austin; US
Transkriptions Kit	
Trypsin	Sigma Aldrich; St. Louis; USA

Tabelle XVIII Chemikalienliste und verwendete Kitsystem

10 Danksagung

Die vorliegende Arbeit wurde in der Klinik für Urologie und Kinderurologie der medizinische Fakultät der Universität des Saarlandes ausgeführt.

An erster Stelle danke ich Frau Professor Dr. Junker für die Stellung des Themas und die ausgezeichneten Möglichkeiten, es zu bearbeiten. Ebenso danke ich Frau Dr. rer. nat. Heinzelmann und Herrn Dr. rer. nat. Hölters für die wertvolle und geduldige Unterstützung bei der Durchführung der Arbeit. Dies habe ich nie als selbstverständlich angesehen. Vielen Dank! Dies gilt auch für das gesamte Team des Forschungslabors der Klinik für Urologie der Universität des Saarlandes.

Ich danke ebenfalls dem Institut für Experimentelle und Klinische Pharmakologie und der Toxikologie der Universität des Saarlandes für die zur Verfügung gestellten Geräte.

Besonderen Dank schulde ich meinen Eltern und meinen Freunden für die geduldige Begleitung und seelischen Unterstützung in dieser durchaus anstrengenden Zeit. Es war immer jemand an meiner Seite, wenn mich der Mut verließ.

11 Erklärung gemäß § 7 Abs. 1 Nr. 4

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Bei der Auswahl und Auswertung folgenden Materials haben mir die nachstehend aufgeführten Personen in der jeweils beschriebenen Weise unentgeltlich geholfen:

1. Fr. Dr. rer. nat Heinzelmann (Betreuerin im Labor)

2. Hr. Dr. rer. nat. Hölters (Betreuer im Labor)

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden Arbeit nicht beteiligt. Insbesondere habe ich nicht die entgeltliche Hilfe von Vermittlungs- bzw. Beratungsdiensten (Promotionsberater/innen oder anderer Personen) in Anspruch genommen. Niemand hat von mir unmittelbar oder mittelbar geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form in einem anderen Verfahren zur Erlangung des Doktorgrades einer anderen Prüfungsbehörde vorgelegt.

Ich versichere an Eides statt, dass ich nach bestem Wissen die Wahrheit gesagt und nichts verschwiegen habe.

Vor Aufnahme der vorstehenden Versicherung an Eides Statt wurde ich über die Bedeutung einer eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unrichtigen oder unvollständigen eidesstattlichen Versicherung belehrt.

Unterschrift der/des Promovierenden