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Zusammenfassung 

MicroRNAs sind essentielle post-transkriptionelle Regulatoren der Genexpression die 

an unterschiedlichen Prozessen wie Entwicklung, Signaltransduktion oder 

Wachstumskontrolle durch Bindung und Inhibition der Translation ihrer mRNA Ziel 

mRNAs beteiligt sind. Obwohl angenommen wird, dass ihre relative Expression in der 

Zelle das Ausmaß ihrer biologischen Funktion bestimmt, zeigt die Beladung der 

„Argonaute“ (Ago)-mRNA Komplexe mit miRNAs deren Relevanz besser an.  

In der vorliegenden Arbeit wurde die miRNA Beladung der Ago-Komplexe mit den 

miRNA Profilen der Gesamt-RNA zweier diffus-großzelliger B-Zell Lymphome 

(DLBCL) Linien nach Epstein-Barr Virus (EBV) -Infektion, verglichen. DLBCL ist ein 

hochmaligner Tumor, welcher in Aktivierte B-Zell (ABC-) und Germinal Center B-Zell 

(GCB-) DLBCL unterschieden wird. Etwa 10% aller DLBCLs sind mit dem onkogenen 

EBV, welches selbst 44 reife miRNAs exprimiert, infiziert.  

Die miRNA Profile aus Gesamtzellextrakten und des Ago2-Profils zweier DLBCL 

Linen wurden durch Hochdurchsatzsequenzierung (RNA-Seq) analysiert. In den 

Gesamt-Profilen konnten zwischen 713-851 humane miRNAs identifiziert werden, 

während die Ago2-Profile 1102-1372 humane miRNAs ergaben. Bei Anwendung 

eines 0.1% „cut-offs“ verringerte sich die Zahl der funktionellen miRNAs auf 56-62., 

welche jedoch immer noch 92-95% aller miRNAs-reads ausmachten. In Abhängigkeit 

von Latenztyp repräsentierten die viralen miRNAs 1.6% - 28% aller „reads“. In beiden 

Zelllinien hatte die EBV-Infektion den Verlust von miRNAs im Ago2-Komplex zur 

Folge. Die erhobenen Daten konnten für ausgewählte miRNAs durch RT-qPCR und 

im Northern Blot bestätigt werden. Auch die Analyse der Ago2-Komplexe der 

einzelnen Zellen ergab eine auffällige Umverteilung miRNAs zwischen Gesamt- und 

Ago2-assoziierten miRNAs. Zum Beispiel war die miRNA miR-423 in allen Zellen 6-8-

fach im Ago2-Komplex angereichert, während die miR-142 im Ago2-Komplex 

depletiert vorliegt , was auf einen Funktionsverlust hinweist. Die hier erhobenen Daten 

werden zum weiteren Verständnis des Beitrags von miRNAs bei der Entstehung und 

Aufrechterhaltung von DLBCLs leisten. 
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Summary 
 
MicroRNAs are important post-transcriptional regulators of gene expression in all 

eukaryotic cells and play essential roles, i.e. in development, signal transduction or 

growth control by binding to and inhibiting the translation of their mRNA targets. While 

it is widely assumed that their overall level in a cell reflects their functional relevance, 

the loading and transfer of miRNAs to the “Argonaute” (Ago)-mRNA complex appears 

to give a more accurate indication of their activity in a cell.  

In this thesis, the miRNA loading of the Ago complex was compared with the total 

cellular miRNA profile of two cell lines derived from diffuse large B-cell lymphoma 

(DLBCL) in comparison with their Epstein-Barr Virus infected counterparts. DLBCL is 

a highly malignant tumor subdivided into Activated B-cell (ABC-) and Germinal Center 

B-cell (GCB-) subtypes. About 10% of DLBCL are infected with the oncogenic Epstein-

Barr virus which itself encodes 44 mature miRNAs.  

The cellular and Ago2-bound miRNAs in two DLBCL lines were subjected to 

ultra-deep sequencing (RNA-seq). In the total profiles, 713-851 human miRNAs were 

detected while the Ago2-immunoprecipitation (Ago2-IP) resulted in 1102-1372 

different miRNAs. When a 0.1% cut-off was applied which is considered to yield the 

functionally relevant miRNAs, only between 56-62 miRNAs were left. These, however, 

represented 92-95% of all reads. In the two EBV-infected counterparts, EBV-miRNAs 

represented between 1.6% - 28% of all reads depending on the viral latency type.  In 

the case where EBV miRNAs accounted for 28 % of total reads cellular miRNAs were 

replaced from the Ago2-complex. The results could be confirmed for selected miRNAs 

by RT-qPCR and Northern blotting. Also within each cell line, various miRNAs were 

enriched or depleted from the Ago2 complex. For instance, mir-423-5p and mir-423-

3p were highly enriched, by over 6-8-fold in Ago2-IP, compared to total cellular profile 

in all cell lines while miR142 was strongly depleted from the Ago2-complex indicating 

a functional loss in DLBCL.  The data obtained will help to further understand the 

contribution of cell and viral miRNAs in induction and maintenance of DLBCL.  
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1 Introduction 

1.1 Lymphoma 

Lymphoma is a tumor of lymphocytes, representing almost 5% of all new cancer cases 

worldwide (MUGNAINI, GHOSH, 2016). Lymphomas are classified into two main 

groups: Hodgkin´s lymphoma (HL), representing about 10% of lymphoma, and non- 

Hodgkin´s lymphoma (NHL), accounting for the remaining 90%. The incidence of NHL 

is increasing with age and most of the patients are above 65 years old. NHL is 

categorized into B-cell, T-cell and natural killer (NK) cell types (MUGNAINI, GHOSH, 

2016; SHANKLAND et al., 2012).  

1.2 Genetics of Diffuse large B-cell lymphoma 

Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive subtype of 

NHL, as it accounts for about one third of all malignant lymphoma cases in adults 

(MIYAZAKI, 2016). DLBCL is characterized by expressing specific cell surface 

markers like CD19, CD20, CD22, and CD79a on B-cells Even though there are 

different markers for characterizing DLBCL, it is a heterogeneous disease with distinct 

clinical and biological features. Based on microarray gene expression profiling (GEP), 

the World Health Organization (WHO) classified DLBCL into three major clusters: (1) 

Germinal Center B-cell like (GCB), (2) Activated B-cell like (ABC) and cases, which 

could not be assigned to either group and were therefore, termed unclassifiable 

(ALIZADEH et al., 2000; CAMPO et al., 2011; ROSENWALD et al., 2002; 

SWERDLOW et al., 2016). In addition to GEP for classifying DLBCL, next-generation 

sequencing (NGS), including whole genome and exome sequencing also allows to 

differentiate the genetic alteration patterns of ABC and GCB (ZHANG et al., 2013). 

Germinal centers (GCs) are the sites in secondary lymphoid tissue where B cells 

proliferate, differentiate and undergo immunoglobulin somatic hypermutation (SHM), 

class switch recombination (CSR), and affinity selection, to produce high affinity 

antibodies (VICTORA, NUSSENZWEIG, 2012). Due to the high rate of B cell 

proliferation and differentiation, germinal center cells can undergo genetic aberration, 

resulting in lymphomagenesis (BASSO, DALLA-FAVERA, 2015). GCB-DLBCL 

http://www.medicinenet.com/tumor_grade/article.htm
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originates from germinal center centroblasts, is more common among young people 

and GEP shows the characteristics of tonic B-cell receptor (BCR) signaling (COPIE-

BERGMAN et al., 2002; CUMMIN, JOHNSON, 2016). ABC-DLBCL (often also termed 

non-GCB), is derived from post germinal center cells. It has been shown that 

MYC/BCL2 double translocations, amplification of the oncogenic mir-17–92 

microRNA cluster, mutations in genes such as BCL2 , the proto-oncogene MYC (gain 

of function), histone methyl-transferase EZH2 (gain of function), S1PR2, GNA13 (loss 

of function), occur more often in GCB-DLBCL (INTLEKOFER, YOUNES, 2014; 

ROSCHEWSKI et al., 2014; SWERDLOW et al., 2016). In comparison to GCB-

DLBCL, ABC-DLBCL is often characterized by mutations affecting in B-cell receptor 

signaling, especially the NF-κB-pathway (COPIE-BERGMAN et al., 2002; CUMMIN, 

JOHNSON, 2016). ABC-DLBCL is preferentially associated with mutations in genes, 

such as CD79A, MYD88, CARD11 and TNFAIP3, which activate the B-cell receptor, 

the Toll-like receptor and also the NF-kB pathways (BASSO, DALLA-FAVERA, 2015; 

LENZ et al., 2008; SWERDLOW et al., 2016; ZHANG et al., 2013). 

This molecular genetic difference in gene expression profile and signaling pathways, 

can lead to the conclusion that there is a unique pathogenicity mechanism, 

differentiating GCB- from ABC-DLBCL, resulting in a different strategy for treatment. 

 

1.3 Clinical genetic diagnosis of DLBCL 

A diagnosis of DLBCL is obtained from a tissue biopsy of the enlarged lymph node 

and assessment of lymph node architecture. Since GEP is not routinely available as 

the clinical diagnostic test for differentiation of GCB- and ABC-DLBCL, the “Hans 

algorithm” (Figure 1) has been used frequently with an accuracy of about 90%, and 

recommended for routine diagnosis. This algorithm is based on 

immunohistochemistry (IHC) staining, and evaluating the expression patterns of 

cluster of differentiation (CD10), B-cell lymphoma 6 (BCL6), and interferon regulatory 

factor-4/multiple myeloma-1 (IRF4/MUM1) expression (HANS et al., 2004; 

SWERDLOW et al., 2016). Novel methods, such as gene panel (Lymph2Cx assay) 

from Formalin-fixed paraffin-embedded (FFPE) tissues (SCOTT et al., 2014), NGS, 
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flow cytometry, cytogenetic analysis using fluorescence in situ hybridization (FISH) or 

polymerase chain reaction (PCR), for chromosomal translocations or rearrangements 

of genes, can be considered as alternative medical genetic diagnostic methods, to 

differentiate various types of lymphoma. 

 

1.4 Medical Treatment of DLBCL; future perspective 

Diffuse large B-cell lymphoma (DLBCL) is a human malignancy with a very poor 

prognosis. About 15% of all DLBCLs are EBV positive by virtue of the presence of 

EBER-transcripts in the tumor cells (DELECLUSE et al., 2007; IMIG et al., 2011). The 

standard treatment for patients with ABC or GCB-DLBCL is R-CHOP therapy. CHOP 

is a combination of rituximab, anti-CD20 monoclonal antibody, cyclophosphamide, 

doxorubicin, vincristine, and prednisone (TOMITA et al., 2013; YU, LI, 2015). As 

DLBCL constitutes a distinct molecular disease and therefore has a different clinical 

and prognostic features, it is promising to use novel strategies, based on molecular 

insights of affected signaling pathway and targeting genes, which are characteristic of 

GCB- or ABC-DLBCL. For example, targeting BCL-6 to prevent  cell proliferation, 

using an HDAC inhibitor (PAREKH et al., 2008), etoposide to inhibit topoisomerase II 

(DUNLEAVY et al., 2013; KUROSU et al., 2003) or targeting of EZH2, which is 

 

Figure 1: Hans algorithm for differentiation of diffuse large B-cell lymphoma 

(DLBCL).  

Immunohistochemical staining (IHC) to differentiate GCB-DLBCL from non-GCB-DLBCL 

(ABC-DLBCL). Adapted and modified from (HANS et al., 2004). 
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mutated in GCB-DLBCL (BÉGUELIN et al., 2013). In the case of ABC-DLBCL, which 

has the worst prognosis among DLBCLs, targeting the NF-κB-pathway to prevent 

constitutive activation and overexpression of NF-κB, could have a potential 

therapeutic effect, such as using ibrutinib, which inhibits BTK in the NF-κB-pathway 

(WILSON et al., 2015). 

 

1.5 Molecular genetics of Micro RNA 

MicroRNAs (miRNAs) are conserved, short single stranded noncoding RNA 

molecules of 19-25 nucleotides in length, which are processed from longer hairpin-

structured transcripts (Figure 2) (AMBROS et al., 2003; CULLEN, 2004). The main 

function of miRNAs in the cell is to fine-regulate gene expression. The first miRNA 

was discovered in Victor Ambros’ lab in 1994, where it was shown that the interaction 

of Lin 4 with the Lin14 mRNA in the worm Caenorhabditis elegans (C. elegans) causes 

reduction in the amount of LIN-14 protein, resulting in a distinct phenotype. This 

interaction is important in the timing of the development and transition from the first to 

the second larval stage (BARTEL, 2004; KIM, 2005; LEE et al., 1993). A few years 

later, the Ruvkun group found the second small RNA, termed let-7, controlling the 

Lin41 mRNA. They also demonstrated that this interaction is essential for the transition 

from larval stage 4 to the adult (REINHART et al., 2000). Most importantly, they also 

found that a let-7 homolog exists which is expressed in humans and other species 

(PASQUINELLI et al., 2000). This important discovery opened a new era in molecular 

biology to understand the functional importance of miRNAs (AMBROS, 2004; 

BARTEL, 2004). 
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1.6 Biogenesis of miRNAs 

About 1% of the genes encode for miRNA, and it is estimated that about one third of 

all human genes might be targeted by miRNAs. MiRNAs are transcribed from either 

intronic (coding and non-coding), or exonic regions of the genome. The primary 

transcription is typically several kilobases long, with (a) hairpin structure(s) that 

contain(s) either one miRNA or a cluster of miRNA hairpin structures, as shown in 

Figure 2 (BARTEL, 2004; HA, KIM, 2014; KIM et al., 2009).  

The key proteins for biosynthesis of miRNAs are two RNase III type endonucleases, 

Drosha and Dicer, and the “Argonaute” proteins. The region of the genome encoding 

a miRNA is first transcribed by RNA polymerase II (Pol II), leading to a primary miRNA 

transcript (pri-miRNA). Subsequently pri-miRNA is recognized and cleaved in the 

nucleus by the RNase-III endonuclease Drosha, together with the cofactor 

DGCR8/Pasha. This cleavage creates a hairpin structure about 70-bp length with 2-

nucleotide long 3′ overhangs at the cleavage site, which is termed precursor miRNA 

(pre-miRNA) hairpin. Then the pre-miRNA is translocated to the cytoplasm by exportin 

5, which is a Ran guanosine triphosphate-dependent (Ran-GTP) dsRNA-binding 

protein (BOHNSACK et al., 2004; LUND et al., 2004). In the cytoplasm, the pre-miRNA 

is further processed by the RNase III endonuclease “Dicer”, which results in the 

formation of ~22-nucleotide mature duplex miRNAs (BARTEL, 2004; HA, KIM, 2014; 

KRICHEVSKY, GABRIELY, 2009). 
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Figure 2: Genomic organization of miRNAs. 

MiRNAs can be classified into different groups based on their location in the genome. a) 

MiRNA located in the noncoding region of TU like the miR-15a and miR-16-1 cluster in 

DLEU2 (non-coding RNA gene). b) MiRNA located in the intron of coding TU for protein 

such as miR-25, miR-93 and miR-106b cluster in MCM7 transcript. c) MiRNA located in 

the exon of noncoding TU such as miR-155 in the BIC1 Gene .d) miRNA located in the 

exon of protein coding regions such as miR-985 in coding region of CACNG8. MiRNA 

can be transcribed as a polycistronic TU (a and b) or single TU (c and d). TU, transcription 

unit. Adapted and modified from (KIM et al., 2009). 

 

1.7 RNA-induced silencing complex (RISC) formation 

The mature miRNA duplexes are then incorporated into the Argonaute/EIF2C 

complex. The one strand with less thermodynamic base pairing stability, for instance 

a GU base pair, as compared to a GC base pair at the 5´ end, remains in the Ago 

complex and forms a functional mature miRNA, termed guide miRNA while the other 

miRNA strand named passenger miRNA (miRNA*) is released from the Ago-complex 

and degraded. However, in other cases, like miR-142, both miR-142-3p and miR142-

5p, are incorporated into the RISC complex (KWANHIAN et al., 2012). Dicer1 is also 

believed to associate with Ago2 in this process. Finally, Ago2, Dicer and TRBP (TAR 

RNA-binding protein or TARBP2 form the miRNA Induced Silencing Complex (RISC), 
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to silence their mRNA target (Figure 3) (BARTEL, 2004; KIM et al., 2009; LIN, 

GREGORY, 2015). 

 

 

Figure 3: miRNA biogenesis. 

MiRNA genes are transcribed by RNA pol II into pri-miRNA and then processed by 

Drosha–DGCR8 to generate the pre-miRNAs. The pre-miRNAs (about 65-70 

nucleotides) are recognized by the exportin5 / Ran GTP complex and transferred 

to the cytoplasm. In the cytoplasm, Dicer (RNase III) further processes the pre-

miRNA to generate the mature miRNA duplex. The mature miRNA is loaded into 

the AGO-GW182 protein complex and forms the RISC complex. Finally the miRNA 

directs the “Argonaute”-complex to the mRNA gene target to perform the silencing 

effect. Adapted and modified from (LIN, GREGORY, 2015).  
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1.8 Mechanism of miRNA-directed regulation 

Once the “Argonaute”-complex has been recruited to the 3´UTR of its mRNA target, it 

interacts with the N terminal domain of the GW182 protein (Drosophila) or the 

TNRC6A (mammalian) protein. GW182 possesses at the N-terminus glycine-

tryptophan (GW) amino acid repeats and a crystallographic study showed that two 

tryptophan residues are important for AGO binding (SCHIRLE, MACRAE, 2012). At 

the C-terminus, GW182 through a RNA recognition motif (RRM) and a poly(A)-binding 

protein-interacting motif 2 (PAM2) motif, directly interacts with the PABPC (poly(A)-

binding protein C) on the poly(A) tail of the mRNA. GW182 also interacts directly with 

NOT1 which is a part of CCR4–NOT deadenylation machinery. Recruiting the CCR4–

NOT complex to the 3´ UTR results in removing and shortening of the poly(A) tail, and 

also leads to cap removal from  mRNA and calling the XRN1 exonuclease and finally 

degrading the mRNA (MEISTER, 2013). 

1.9 The Argonaute proteins 

Argonaute (Ago) are the key proteins in the RISC complex. The AGO families are 

divided into three subclades: PIWI, AGO and WAGO (Worm-specific Argonaute). The 

PIWI subclade, which has a homology to Drosophila melanogaster PIWI, is mainly 

expressed in the germ line and associated with PIWI-interacting RNAs (piRNAs). The 

AGO subclade, which is similar to Arabidopsis thaliana AGO, is involved in the miRNA 

or the siRNA pathway (MEISTER, 2013). In humans, four types of the AGO subfamily 

have been identified, namely 1) hAGO, EIF2C1 2) hAGO2, EIF2C2 3) hAGO3, 

EIF2C3 4) hAGO4, EIF2C4. The Ago family is highly conserved, ubiquitously 

expressed in numerous tissues, and have a molecular weight of approximately 100 

kDa (SASAKI et al., 2003; ZHAI et al., 2016). Among the human AGO subfamily, Ago2 

is the only protein which possesses the catalytic RNAse activity, and has an important 

role in RNA guided silencing processes. Recently the crystal structures of AGO2 were 

resolved and it revealed four main domains: an N-terminal domain, a PAZ (Piwi-

Argonaute-Zwille), a MID (middle) and a Piwi domain (Figure 4) (ELKAYAM et al., 

2012; SCHIRLE, MACRAE, 2012). As shown in Figure 4, these domains form a bi-

lobal shape, one lobe with N-terminal domain and PAZ domain and the other lobe with 
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MID and PIWI domains. These lobes are connected, by Linker 1 (L1) and Linker 2 

(L2), in order to form a hinge, connect the two lobes and bond them together. The N-

terminal domain is important for loading the RNA duplex and unwinding of miRNA. 

The PAZ domain binds to the 2-nucleotide of 3´ overhang of miRNA. The MID domain 

provides a binding pocket for the 5´ overhang of the guide RNAs, with preferential 

binding to U or A nucleotides. The PIWI Domain has a homology to RNase H and 

possesses endonucleolytic activity to slice mRNAs, between nucleotide positions 10 

and 11, from the 5´ end of the small guide miRNA. Therefore, binding of the small 

guide RNA at 5´end, to PAZ and MID domain in one hand, and the 3´overhang to PIWI 

domain on the other hand, cause the small guide miRNA to accommodate in an A-form 

helix conformation, between two lobes. It also causes exposure of nucleotide 2 to 7 of 

guide miRNA, termed a seed sequence, and the finding of a complementary sequence 

of the mRNA target. All human AGO proteins subclades were able to induce 

translational suppression, degradation of mRNA targets through the formation of the 

RISC complex. Ago2 is the only Argonaute protein that has the capability to slice 

perfectly matched mRNA (HA, KIM, 2014; LIU et al., 2004; MEISTER, 2013; PARKER 

et al., 2005; YE et al., 2015; ZHAI et al., 2016). Ago2 knockdown, using siRNA results 

in increased expression of other Ago proteins, especially Ago1 and vice versa 

(MATSUI et al., 2015).  
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Figure 4: Schematic depiction of the Ago2 protein. 

a) Ago2 consists of an N terminal domain, a PAZ domain (binds to 3´ guide miRNA), 

the MID (middle) and the PIWI domain (binds to the 5´ monophosphate of the guide 

miRNA). The numbers indicate location of each domains in Ago2. b) 3D structure of 

human AGO2 with guide miRNA in red color. Adapted and modified from (ELKAYAM 

et al., 2012; HA, KIM, 2014) 

 

1.10  MicroRNAs in cancer 

Since the discovery of miRNAs by Victor Ambros in developmental timing in C. 

elegans, the function of miRNA was extended to their contribution to cancer. We now 

know that miRNAs can act as oncogenes (oncomiRs), by inducing different 

mechanisms such as cell proliferation, migration and invasion, tumor growth and 

metastasis, or act as a tumor suppressor by inhibiting cell proliferation, migration and 

invasion (LEE et al., 2016). The most common molecular genetic changes in miRNA 

expression levels are as follows: 

1) Downregulation of miRNA processing enzymes, such as a) Drosha by inducing 

expression of the oncogenic transcription factor c-MYC or RNA-specific deaminase 

 

a) 

 

 

 

 

 

b) 
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ADARB1, which results in the reduction of pri-miRNA processing and downregulation 

of the tumor suppressor microRNAs MiR-15/-16 (ALLEGRA et al., 2014). b) Dicer 

downregulation by different mechanisms, such as downregulation or loss of function 

of transcription factor TAp63 (binds to the promoter of Dicer), or by miRNA-mediated 

downregulation such as let-7 (TOKUMARU et al., 2008), miR-103/107 (MARTELLO 

et al., 2010), and miR-630 (RUPAIMOOLE et al., 2016). c) Induced ago2 

phosphorylation at Tyr393, by the epidermal growth factor receptor (EGFR), which 

affects binding of Ago2 to Dicer, during hypoxia leading to reduced miRNA processing 

(SHEN et al., 2013). d) Mutation in the exportin 5 encoding gene, leading to decreased 

transport of miRNA from the nucleus to the cytoplasm, which induces expression of 

the EZH2 and the MYC oncogene (MELO et al., 2010; RUPAIMOOLE, SLACK, 2017). 

2) Downregulation of tumor-suppressor miRNAs such as a) the miR-34 family 

including miR-34a, miR-34b and miR-34c. b) the  let-7 family (consisting  of ten 

isoforms), involved in targeting many oncogenic mRNAs, like KRAS in the RAS 

signaling pathway, c) the miR-200 family such as miR-200a/b/429 and miR-200c/141, 

involved in epithelial–mesenchymal transition (EMT), which is important for 

metastasis and invasiveness of cancer cells (DE CRAENE, BERX, 2013), d) 

miR-15/16 located on chromosome 13q14 ,which is lost in B-cell chronic lymphocytic 

leukemia (CLL) and targets BCL-2 expression (PEKARSKY, CROCE, 2015), e) 

miR-506 inducing senescence by targeting CDK4 and CDK6  proteins (LIU et al., 

2014) and targeting  RAD51, a double-strand DNA damage repair gene, in ovarian 

cancer (LIU et al., 2015a), f) miR-520 (RUPAIMOOLE, SLACK, 2017). 

3) Molecular genetic alterations such as a) chromosomal deletion, for example, 

deletion(s) in the 13q14 chromosome, which is normally lost in B cell chronic 

lymphocytic leukemia (B-CLL), containing tumor suppressor miR-15 and miR-16 

(CALIN et al., 2002). b) Chromosomal amplifications such as amplification of the 

17q23.2 chromosomal region, which contains the oncogenic  mir-21, deregulated in 

many types of cancer (breast, lung, gastric, ovarian and prostate cancers) 

(KRICHEVSKY, GABRIELY, 2009) or amplification of the miR-17-92 cluster family on 

chromosome 13q 31.1, which is amplified in B cell lymphoma (MENDELL, 2008; 

RUPAIMOOLE, SLACK, 2017).  
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1.11  Epstein - Barr Virus (EBV) 

The Epstein–Barr virus (EBV), a human tumor virus, was discovered in 1964 by 

Antony Michael Epstein, Bert Achong and Yvonne Barr, using biopsy material of 

Burkitt’s lymphoma (BL) patients (EPSTEIN et al., 1964). It is estimated that more 

than 95% of the adult human population are seropositive for EBV infection. In the 

infected individual, EBV persists probably without any gene expression in CD19+ 

memory B-cells, where it is occasionally reactivated, and shed through the oropharynx 

into the saliva (THORLEY-LAWSON, 2001). Although the viral infection usually occurs 

without symptoms in the infected individual, EBV can induce tumors under certain 

conditions. EBV is responsible for approximately 1.8% of cancer deaths worldwide 

(DE MARTEL et al., 2012; KHAN, HASHIM, 2014; YOUNG et al., 2016). 

 

1.12 EBV latent genes and transformation 

EBV is a γ-herpesvirus with a double-stranded DNA genome of approximately 172 

kilobase pairs in length, encoding about 90 genes (KIEFF , RICKINSON 2007; 

SAMPLE et al., 1990; TASHIRO, BRENNER, 2017). The oncogenic potential of EBV 

is readily observed in vitro by transformation of resting B-cells into permanently 

growing lymphoblastoid cell lines (LCLs). These LCLs are correlated in vitro with the 

so-called “Post-Transplant Lymphoprolifertive Disease” (PTLD), observed under 

immunosuppression (DELECLUSE et al., 2007). EBV growth-transforms infected B 

cells by expressing a set of viral proteins, termed latent proteins including six EBV 

nuclear antigens (EBNA1, -2, -3A, -3B, -3C and –LP), and three membrane proteins 

(LMP1, 2A and 2B), (Table1). In addition to these nine proteins, EBV expresses two 

non-coding RNAs (EBER1 and EBER2), and 44 viral miRNAs (Figure 5) 

(GRUNDHOFF et al., 2006; PFEFFER et al., 2004). During latency, the EBV lytic cycle 

replication is usually repressed by different mechanisms, such as upregulation of 

important transcription factors like STAT3 (Signal transducer and activator of 

transcription 3) in BL or LCL cells.  STAT 3 upregulation can affect several Zn-finger 

repressors, such as ZNF253, ZNF257, SNF589 and SETDB1. Koganti et al. have 

shown a decline in B cells proliferation, when B cells from patients with hypomorphic 
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mutations in STAT3, are infected with EBV (KOGANTI et al., 2014; LIEBERMAN, 

2015). However, lytic cycle reactivation more likely occurs when the EBV-CD19+ 

memory in B-cells is recalled (LAICHALK, THORLEY-LAWSON, 2005; MIYASHITA 

et al., 1995). It has been shown that EBV lytic cycle can be induced, by activation of 

transcription factor BZLF1 or other proteins such as X-Box-binding protein 1 (XBP-1) 

and  protein kinase D (PKD), which has an  important  role in switching from latency 

to lytic cycle, during EBV infection (BHENDE et al., 2007; COUNTRYMAN, MILLER, 

1985; YOUNG et al., 2016) . 

 

Table 1: Different stages of EBV latency. 

Different EBV latency stages are associated with different tumors. Adapted and 

modified from (HEALY, DAVE, 2015). 

Latency 

Stages 

Expressed EBV 

protein 

Associated Tumors 

I  LMP2A, EBNA1 

Burkitt lymphoma 

DLBCL NOS 

T cell-rich DLBCL 

II 
Protein in latency I + 

LMP1,LMP2B 

Classic Hodgkin’s lymphoma 

Angioimmunoblastic T cell lymphoma 

NK/T cell lymphoma, N 

Nasopharyngeal carcinoma 

Gastric carcinoma 

III 

Protein in latency II + 

LP,EBNA2,EBNA3A, 

EBNA3B,EBNA3C 

 

Primary EBV infection 

Post-transplant lymphoproliferative disease 

AIDS-related lymphomas (plasmablastic 

DLBCL, 

primary CNS lymphoma, primary effusion 

lymphoma) 

EBV + DLBCL of the elderly 
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1.13  EBV miRNAs 

EBV was the first human DNA virus identified to encode miRNAs (PFEFFER et al., 

2004). EBV miRNAs are encoded in two clusters, the so-called BHRF1-cluster (Bam 

HI fragment H rightward open reading frame 1), which encodes 3 miRNAs and the 

BART-cluster (Bam HI-A region rightward transcript), encoding 41 miRNA (YOUNG 

et al., 2016). It has been shown that EBV miRNAs are important for keeping EBV in 

latency by targeting EBV proteins, such as BART(1-5p,16,17-5p), downregulating the 

LMP1 protein (LO et al., 2007), BART-2, downregulating the DNA polymerase BALF5 

expression (BARTH et al., 2008) and BART22, downregulating LMP2A (LUNG et al., 

2009). EBV miRNAs also have been shown by many research groups to target cell 

mRNAs and downregulating their protein expression. For instance, BART1 targets the 

tumor suppressor phosphatase and tensin homolog (PTEN)  (CAI et al., 2015), BART3 

and BART16 target IPO7 and TOMM22, respectively (DÖLKEN et al., 2010), BART9 

targets E-Cadherin (HSU et al., 2014) and BART6 targets Dicer (IIZASA et al., 2010; 

KANDA et al., 2015). 
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Figure 5: EBV BamHI restriction map. 

BamHI restriction maps for the EBV B95-8 strain and locations of latent cycle 

proteins and the EBV encoded miRNAs. The BamHI fragments are shown 

according to size using alphabetical letters, a capital letter A for the largest and 

small letter for the smaller fragment in descending order.TR, terminal repeats are 

shown as black blocks. BART, BamHI-A rightward transcript,(BHRF1) BamHI 

fragment H rightward open reading frame, (BARF1) BamHI-A fragment rightward 

reading frame, (LMP) latent membrane proteins, EBNA (Epstein–Barr nuclear 

antigens). Adapted and modified from (YOUNG et al., 2016). 
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1.14   Aim of the study 

A very promising approach to understand the involvement of a certain miRNA in the 

process of a disease such as cancer, is to assess the miRNA expression profile of 

cancer patients. The comparison with their normal counterpart is a very promising 

approach for understanding the involvement of (a) certain miRNA(s) in a disease of 

interest. This may lead to the discovery of a novel prognostic or diagnostic biomarker. 

Although it is believed that the miRNA profile from extracted total cellular RNA is an 

actual indicator of RISC complex-associated miRNA, due to quick degradation of non-

guide miRNA, this hypothesis was challenged by the Cullen group, when they 

compared the miRNA profile of the total cellular miRNAs with the RISC associated 

miRNAs (Ago-IP) pool. Intriguingly, they have found that the total cellular miRNA 

profile differs from the Ago-bound profile, and therefore they challenged the idea that 

the total cellular miRNA profile is accurately reflecting the Ago RISC-associated 

miRNAs (FLORES et al., 2014). 

The effect of EBV infection and dysregulation of the total cellular miRNA profile in 

DLBCL was reported by many researchers, as already discussed above. To the best 

of our knowledge, this is  the first time that Ago2 immunoprecipitation was performed, 

followed by sequencing (Ago2-IP-seq) in two different DLBLC cell lines and their EBV 

infected counterparts, in order to profile the miRNAs according to their functional level.  

The U2932 and SUDHL5 cells and their EBV infected counterparts were used as a 

model for ABC-DLBCL and GCB-DLBCL, respectively.  

 

The questions addressed in this project were as follows: 

 

1. Determination of differentially expressed miRNA in DLBCLs cell lines, in 

comparison with their EBV infected counterparts. 

2. Assessment of various expressed miRNA, in Ago2-IP in DLBCLs cell lines in 

comparison to EBV infected counterparts. 

3. Evaluation of enriched or depleted miRNA in the Ago2-IP, compared to the total 

cellar miRNA profile in each cell line by RNA-seq. 
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2 Materials and Methods 

2.1 Material 

 Laboratory equipment’s. 

Adjustable pipettes Gilson,Peqlab 

Agilent 2100 Bioanalyzer Agilent (Santa Clara, USA) 

Centrifuge Megafuge 1.0 R (Heraeus) 

Centrifuge 202 MK (Sigma) 

Centrifuge  1-16K   Sigma 

Chemidoc XRS system Bio-Rad 

CO2 incubator HeracellTM 150i (Thermo Scientific) 

Electrophoresis power supply Consort EV-231 (Consort bvba) 

Electrophoresis power supply Phero Stab 300 (Biotec Fisher) 

Heat block Thermomixer Compact (Eppendorf) 

Oven for hybridization UM 400B Hyp (Bachhofer) 

Phosphoimager 
PhosphoimagerTM-Typhoon with plates and 
cassettes for exponation (Molecular Dynamics, 

Amersham) 

Photometer NanoDropTM 2000c (Peqlab) 

Plates (MicroAmp® Fast 

Optical 96-Well Reaction (Carlsbad, USA) 

Real-Time PCR System 

(StepOnePlus™); 96-Well Applied Biosystems/Life Technologies 

Semi-Dry Blotter 2117 Multiphor (LKB Bromma) 

Shaker Thermomixer Compact (Eppendorf) 

Shaker POLYMAX 1040 (Heidolph) 

Shaker REAX 2000 (Heidolph) 

Shaker Edmund buehler 

Tank-Blotting chamber 2005 Transphor Electro Blotting Unit (LKB Bromma) 

Vortex Heidolph 

Weighing balance Sartorius 
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 Reagents and chemicals 

3-Mercapto-1,2-propandiol Sigma 

Ammonium persulfate (APS) Serva 

Bisacrylamide 2% Roth 

Blocking reagent Boehringer 

Blue protein standard  Biolabs 

Bovines Serumalbumin (BSA) Serva 

Bradford-Reagent Roti®-Quant Carl Roth 

Bromophenol blue Serva 

´´Complete Mini ``Protease Inhibitor 

Cocktail 

Roche Diagnostics 

Coomassie Brilliant Blue R 250 Roch 

Denhardt’s solution 50x Sigma 

Diethylpyrocarbonate (DEPC) Sigma 

EDC-Hydrochlorid Sigma 

Ethanol Roth 

Ethylendiamintetraacetat (EDTA) Serva 

Fetal calf serum (FCS) Gibco 

G 418 (Geneticin) Invitrogen 

Gamma  P-32 UTP Hartmann Analytics 

Glycin Sigma 

H2O2  30% Merck 

HybondTM-N membrane  GE healthcare life science Amersham  

IGAPEL CA 630 Sigma 

KCL Merck 

Klenow Fragment (DNA Polymerase I) Klenow Fragment (EP0051 ) 

Luminol( 3-Aminophthalhydrazide)  Sigma 

Magnesium chloride hexahydrate Roth 

Methanol Roth 
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Methylimidazole Peqlab 

TEMED Serva 

NaCl Merck 

Nitrocellulose membrane protran 0.2 

µM 

GE healthcare life science Amersham 

Neubauer chamber C-Chip Neubauer Improved , Digital 

Bio 

Nucleotides (dNTPs) Peqlab 

Nucleotides (NTPs) Invitrogen 

P-coumaric acid Sigma 

pH meter  Hydrus 300 Fisherbrand Hydrus 300 

PonceauS TM Sigma 

Real-Time PCR System 

(StepOnePlus™); 96-Well Applied Biosystems/Life Technologies 

Sepharose 4 Fast Flow Protein G GE Healthcare, Freiburg, Germany 

Skim milk powder Töpfer 

Sodium azide Merck 

Sodiumdodecylsulfate (SDS) Serva 

Tris base  Trizma Sigma 

 Miscellaneous materials 

mirVANA TM kit Ambion 

miScript II RT Kit Qiagen (Hilden, Deutschland) 

miScript II RT Kit Qiagen (Hilden, Deutschland) 

miScript SYBR® Green PCR Kit Qiagen (Hilden, Deutschland) 

Primers for qRT-PCR Qiagen 

Primers for NB Eurofins MWG operon 

RPMI -1640 Sigma 

SequaGel - UreaGel System National Diagnostics USA 
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 Antibodies  

Antibody   Source  and Isotype 

 

Dilutions 

used 

Reference 

 Ago2(11A9) Rat monoclonal IgG2a 1:50 a kind gift from Prof. 

Gunter Meister, University 

of Regensburg 

Sec 23b Rat monoclonal IgG2a 1:50 Prof.Kremmer, 

Dr.Szczyrba 

EBNA1(1H4) Rat monoclonal 1:10 Prof.Kremmer, 

Prof.Grässer 

LMP(S12) Mouse Monoclonal 1:10 a kind gift of Prof.Martin 

Rowe, University of 

Birmingham 

EBNA2 (R3) Rat monoclonal 1:50 
Prof.Kremmer,Prof. 

Grässer 

α-GAPDH(14C10) Rabbit 1:5000 Cell signaling 

Peroxidase AffiniPure Goat Anti-Rat 

IgG + IgM (H+L) 

1:8000 Jackson ImmunoResearch 

Laboratories 

Anti-Mouse IgG (whole molecule)–

Peroxidase antibody produced in rabbit 

1:8000 Sigma aldrich 

Anti-Rabbit IgG (whole molecule)–

Peroxidase antibody produced in goat 

1:8000 Sigma aldrich 
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 Buffers and Solutions 

Ammonium persulfate (APS) APS in dd H2O                           10% 

Blocking reagent 5% skim milk powder in PBS  

Crosslinking reagent for NB Methylimidazole                         245 μL  

EDC-hydrochloride                    0.75 g  

ddH2O up to 24 mL 

Coomassie-Brilliant blue stain (C.B.B) 300 mL Isopropanol 

780 mL dd H2O 

120 mL acetic acid 

0.3 g Coomassie Brilliant Blue R 250 

dNTPs dATP, dCTP , dGTP , dTTP  

each one                                   10 mM  

ECL-Solution A Luminol                                          1 gr 

DMSO                                      22.6 mL   

Up to 50 mL with dH2O 

ECL-Solution B P-coumaric acid                           0.5 gr 

DMSO                                        33.8 mL 

Up to 45 mL with ddH2O 

ECL-Solution C 1 M Tris HCl pH 8.5  

ECL  working solution Solution A                                    2.5 mL  

Solution B                                 1.113 mL  

Solution C                                     25 mL  

up to  250 mL with ddH2O 

for WB: 1 µl H2O2 added to 1mL ECL 

before use 
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Hybridization buffer 

 

20x SSC                                      7.5 mL  

1 M Na2HPO4                             0.6 mL  

10% SDS                                      21 mL  

50x Denhardt’s Solution               0.6 mL  

blocking reagent                         a pinch 

lysis buffer 

Tris/HCl pH 7.4                           25 mM 

KCl                                            150 mM 

EDTA                                            2 mM 

NaF                                               1 mM 

IGEPAL                                         0.5% 

Working solution: 

1 tablet complete mini protease inhibitor 

in 10 mL Lysis buffer before use 

MSE  5X 

MOPS                                                  1M 

NAAc                                                0.3M 

EDTA                                                0.3M 

H2O                  

PBS 

Solution A(10X) 

NaCl                                              80g 

KCl                                                  2g 

MgCl2.6H2O                                    1g 

CaCl2.2H2O                               1.32g 

Make the volume with dH2O to one liter 

Solution B(10X) 

Na2Hpo4.12H2O                     28.98g 

KH2PO4                                         2g 

Make the volume with dH2O to one liter 

working dilution : 1X from A+B  
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Polyacrylamide gel 12.5% 

(Separating  gel) 

Separating Stock buffer                  4 mL 

30% Acrylamide                           6.7 mL 

2% Biscrylamide                         2.68 mL 

ddH2O                                        2.62 mL 

10% APS                                     140 μL 

TEMED                                          14 μL 

Total                                         16.15 mL 

Polyacrylamide gel 10% 

(Separating  gel) 

Separating Stock buffer                 4 mL 

30% Acrylamide                          5.3 mL 

2% Biscrylamide                       2.12 mL 

ddH2O                                      4.58 mL 

10% APS                                    140 μL 

TEMED                                        14 μL 

Total                                        16.15 mL 

Polyacrylamide gel 4% 

(stacking gel) 

Stacking Stock buffer                1.25 mL 

30% Acrylamide                         750 μL  

2% Biscrylamide                        300 μL 

ddH2O                                        2.7 mL 

10% APS                                   100 μL 

TEMED                                        10 μL 

Total                                              5 mL 

Ponceau S-stain 

Trichloroaceticacid                        30 g 

Ponceau S                                      5 g 

Make up to 1 liter with dd H2O 
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“Low Molecular Weight” marker 

 

            

Protein  

 

kDa Concentration 

μg/μL 

Phosphorylase b  94  0.5  

BSA 67  0.7  

Ovalbumin  43  1.0  

Carboanhydrase  30  0.5  

Trypsin inhibitor  20.1  1.0  

Lactalbumin  14.4  0.5  

RNA loading buffer 

Formamide                                 750 μL  

5x MSE                                       150 μL  

formaldehyde                              240 μL  

50% glycerol                              200 μL  

dH2O                                          160 μL 

bromphenol blue                       a pinch  

xylene cyanol FF                       a pinch 

SDS-loading buffer 2x 

Tris/HCl pH 6.8                        130 mM 

SDS                                               6% 

ß-Mercapto-1,2-propandiol          10% 

glycerol                                         10% 

SDS-loading buffer 4x 

SDS                                            1,6 g 

β-Mercaptoethanol                       4 mL        

Glycerol                                        2 mL 

Tris pH 7 (1M)                              2 mL 

Bromo phenol blue                       4 mg 

ddH2O                                          2 mL 

SDS   Running Buffer  

for SDS-PAGE 

glycine                                          72 g   

Tris                                               15 g 

SDS (20%)                                    25 mL 
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Separating Stock buffer 

Tris                                               1.5 M 

SDS                                               0.4%   

pH                                                  8.8 

Stacking Stock buffer 

Tris                                                0.5 M 

SDS                                               0.4%   

pH                                                    6.8 

Stripping buffer for NB 
0.5% SDS 

SSC  20X 
NaCl                                               3 M  

trinatriumcitrat dihydrate              0.3 M 

Tranfer  Buffer for WB 

glycine                                          72 g   

Tris                                               15 g 

SDS (20%)                                 12.5 mL 

Methanol                                       1 liter 

Make up to 5 liters with dd H2O 

TBE buffer  10X 

Tris                                             0.89 M  

Boric acid                                   0.89 M  

EDTA                                          20 mM 

TE buffer (pH=8) 
Tris                                                10 mM 

EDTA                                              1 m 

Washing  buffer for IP 

Tris/HCl pH 7,4                          50 mM 

KCl                                           300 mM 

MgCl2                                           1 mM 

IGEPAL                                         0.5% 

Washing buffer I (for NB) 
SSC                                               5x 

SDS                                               1% 

Washing buffer II (for NB) 

SSC   1X 

SDS 1% 
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 Cell lines 

The following cell lines have been used in this study: 

U2932: a B-cell line, derived from a patient with HL followed by the NHL, and it has a 

characteristic of post-GC derived origin (ABC-DLBCL) of the tumor cells (AMINI et al., 

2002). 

U2932 EBV positive clone A: a U2932 cell line, infected with EBV-GFP, not expressing 

EBNA2 (BOCCELLATO et al., 2007). 

SUDHL5: a B-cell line, derived from a lymph node of a 17-year-old woman with B-cell 

non-Hodgkin lymphoma (B-NHL) and has characteristic of GCB-DLBCL. 

SUDHL5 EBV positive: SUDHL5 cell line, infected with EBV-GFP, obtained from Prof. 

Pankaj Trivedi, University of Rome. 
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 Primers for real time PCR 

 

The following Primer sequences were ordered from Qiagen for RT-qPCR analyses: 

 

Primer Sequences Cat. No. 

let-7c-5p UGAGGUAGUAGGUUGUAUGGUU MS00003129 

miR-10a-5p UACCCUGUAGAUCCGAAUUUGUG MS00031262 

miR-146a-5p UGAGAACUGAAUUCCAUGGGUU MS00003535 

miR-155-5p 'UUAAUGCUAAUCGUGAUAGGGGU MS00031486 

miR-15a-5p UAGCAGCACAUAAUGGUUUGUG MS00003178 

miR-221-3p AGCUACAUUGUCUGCUGGGUUUC MS00003857 

miR-28-3p CACUAGAUUGUGAGCUCCUGGA MS00009254 

miR-363-3p AAUUGCACGGUAUCCAUCUGUA MS00009576 

miR-423-3p AGCUCGGUCUGAGGCCCCUCAGU MS00004179 

miR-423-5p UGAGGGGCAGAGAGCGAGACUUU MS00009681 

miR-486-5p UCCUGUACUGAGCUGCCCCGAG MS00004284 

miR-92a-3p UAUUGCACUUGUCCCGGCCUGU MS00006594 
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 Probes used for Northern Blots (NB) and Ago2-IP NB. 

The following oligo DNA probes were obtained from Eurofins Genomics for generating 

miRNA probes for Northern Blots.  

 

Oligo probe Sequences 

let-7c-5p TGAGGTAGTA GGTTGTATGG TTcctgtctc 

miR-101-3p TACAGTACTG TGATAACTGA Acctgtctc 

miR-142-3p TGTAGTGTTT CCTACTTTAT GGAcctgtctc 

miR-142-5p CATAAAGTAG AAAGCACTAC Tcctgtctc 

miR-21-5p TAGCTTATCAGACTGATGTTGAcctgtctc 

miR-221-3p AGCTACATTG TCTGCTGGGT TTCcctgtctc 

miR-222-3p AGCTACATCT GGCTACTGGGTcctgtctc 

miR-363-3p AATTGCACGG TATCCATCTG TAcctgtctc 

miR-423-5p TGAGGGGCAGAGAGCGAGACTTTcctgtctc 

miR-4485-3p TAACGGCCGCGGTACCCTAAcctgtctc 

miR-4792-5p CGGTGAGCGCTCGCTGGCcctgtctc 
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2.2 Methods 

 Cell culture 

The U2932, SUDHL5, U2932 (EBV positive), SUDHL5 (EBV positive) cell lines were 

maintained in RPMI 1640 medium at 37 ℃ in a 5% humidified CO2 incubator. RPMI 

1640 was supplemented with10% fetal calf serum, antibiotic mix (40 IU/mL penicillin, 

50 μg/mL streptomycin, 1 IU/mL Neomycin-sulfate, 90 IU/mL Nystatin). An additional 

200 mg/mL G418 (Geneticin) was used for EBV positive cell lines. 

 Cell counting (Hemocytometer) 

The Neubauer Improved C-Chip was used to count the number of cells. Depending 

on the cell density, a 1:5 or 1:50 dilution was made in PBS and 2 to 4 outer big squares 

were counted. 

Cell density (cells/mL) 

                 = ((No. of counted cells): (No. of large Squares)) x 104 x Dilution factor. 

 

 RNA related techniques 

 

 RNA isolation 

Suspension cells (5 to 10 mL) were harvested by centrifugation at 500 x g for 5 

minutes at room temperature (RT). 700 μL of Qiazol (Qiagen) was added to the pellet 

and incubated for 5 min at RT. Afterwards, 125 μL of chloroform was added to the 

sample and vortexed for 15 sec, and subsequently again incubated for 10 min at RT. 

the sample was then  centrifuged at 12000 xg for 15 min at 4 ℃ and  the upper phase 

was transferred to a new  1.5 mL microcentrifuge tubes and 500 μL of isopropanol 

was added to the tube and incubated on ice for 15 min, followed by centrifugation at 

12000 xg  for 30 min in 4 ℃ . After that, the pellet was air dried at RT for 15 min and 

dissolved in 50 μl of RNase free H2O and the RNA was dissolved by incubation at 55 

℃ for 15 min.  
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RNA isolation for sequencing, qRT –PCR and Ago2-IP for NB was performed using 

the miRNeasy Mini kit (Qiagen) according to manufacturer’s instructions. Briefly, 700 

μl of QIAzol was added to 100 μl of cell lysate or directly to the beads, after the last 

washing step with PBS (Ago2-IP and control-IP).Then the mixture was vortexed and 

incubated at room temperature for 5 min. Centrifugation was performed at 12000 xg 

for 15 min at 4°C. Then the upper aqueous phase transferred to a new collection tube. 

Subsequently, 1.5 volumes of 100% ethanol were added and mixed by pipetting up 

and down few times, and the mixture was loaded on the spin column in a 2 mL 

collection tube. Next, the samples were centrifuged at 12000 xg for 1 min the 

supernatant discarded and this step was repeated, until all the solutions were loaded 

on the column. The column was washed once with 700 μl RWT buffer and twice with 

500 μl RPE buffer. All centrifugations were performed at 12000 xg for 1 min, and finally 

the column was transferred to a new collection tube. The RNA was eluted in 30 μl of 

RNase-free water by centrifuging at 12000 xg for 2 min. Tumor specimens from 

DLBCL patients were extracted from snap-frozen tissues using TriZol instead of 

Qiazol, as described above. The concentrations of all extracted RNAs, were measured 

by NanoDrop, and samples were stored at -70 ℃. 
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 MiRNA microarray and data analysis  

 

MiRNA expression profiling of 1205 human miRNAs and 44 EBV miRNAs was 

performed in triplicate using the Agilent human miRNA microarray (release 16.0, 

Agilent, Cat. No, G4870A). Briefly, 100 ng of isolated RNA from total lysates or 

immunoprecipitates from U2932 or U2932-EBV cell line was dephosphorylated, 

labelled with pCp-Cy3 and hybridized to the microarray according to the 

manufacturer’s instructions. 

Microarray data analysis was performed as described (LUDWIG et al., 2015). In brief 

microarrays were scanned using the Agilent Microarray Scanner and expression 

values were extracted with the Agilent Feature extraction software. Raw data of 

cellular input and immunoprecipitate arrays was quantil normalized separately using 

R software. Unpaired two-sided t-tests were performed. For identification of 

significantly differentially expressed miRNAs between U2932E-EBV vs. U2932 cell 

lines for total lysates and immunoprecipitates, two-fold changes and P-values of <0.05 

were considered statistically significant. 

 

 MiRNA sequencing and processing of data 

Sequencing was performed by next generation sequencing(IKMB, University of Kiel) 

using total cellular lysate and purified RNA from U2932, SUDHL5 and the EBV positive 

counterpart using TruSeq small RNA Library Type on the HiSeq 2500 system from 

Illumina. The analysis of sequencing data was performed by Tobias Fehlmann under 

the guidance of Prof.Dr. Andreas Keller (Chair for Clinical Bioinformatics, Saarland 

University). Briefly, the miRMaster tools was used to remove the trimmed adaptors 

and to quality filter the reads (FEHLMANN et al., 2017). Then the Bowtie sequence 

alignment software was used to map with Genome Reference Consortium GRCh38 

(hg38) with one mismatch pairing allowed (LANGMEAD et al., 2009). Those reads 

which mapped with hg38 were used for human miRNA quantifications and those which 

are not mapped to human genome were used for EBV miRNA. miRBase (v21) 

(KOZOMARA, GRIFFITHS-JONES, 2014) and the miRMaster tools were used for 

mapping of miRNA for human and EBV miRNA. 

http://www.illumina.com/systems/hiseq_2500_1500/performance_specifications.html
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 qRT-PCR 

Quantitative Real Time-PCR (qRT-PCR) was performed to validate the NGS data 

using the miScript II RT Kit and the miScript SYBR Green PCR Kit on the 

StepOnePlus™ Real-Time PCR System. 

 

 Reverse Transcription to generate cDNA for qRT-PCR 

 

The extracted RNA was converted to cDNA in the following reaction: 

 

The reaction mixture was incubated for 60 min at 37ºC, followed by 5 min at 95ºC to 

inactivate miScript Reverse Transcriptase. The reaction was diluted 1 to 10 in RNase-

free H2O, and the samples were stored at -20 ºC until further use. qRT-PCR reaction 

was performed in duplicate and miR-30d was used as an endogenous control as our 

NGS data showed no expression difference of human  miR-30d  between U2932 and 

SUDHL5 cell lines and the EBV positive counterparts in total  cell lysates or Ago2-IP 

miRNA profile. Fold change in EBV negative versus EBV infected DLBC cell lines was 

calculated by the following formula for cellular input and Ago2-IP: 

Fold change diffrence = 2^((miR-XEBVneg – miR-30dEBVneg)- (miR-XEBVpos – miR-30dEBVpos)) . 

To define if a miRNA was deregulated two criteria applied to our data:  

 

Components Volume 

5x miScript HiSpec Buffer 4 μL 

10x miScript Nucleic Mix 2 μL 

RNase free water 11μL 

miScript Reverse Transcriptase Mix 2 μL 

Template RNA 200 ng for total cellular and  

20 ng for Ago2 IP  RNA extract (1 μL) 
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1) At least 2-fold expression difference between EBV negative and positive 

counterpart. 

2) qRT-PCR result in the same direction as in the sequencing results. 

 

The following cycling program was used for StepOne instrument: 

 

 

 

 

 

 

 

 

PCR Initial activation step 95 °C     15 min 

3-step cycling:   

 94 °C      15 s 

 55 °C      30 s                

 70 °C      30 s 

 

  

Components Volume  

cDNA-Template (1:10 diluted) 2 μL 

2x QuantiTect SYBR® Green PCR Master Mix 5 μL 

10x miScript Universal Primer 1 μL 

10x miScript Primer Assay 1 μL 

H20 RNase-free 1 μL 
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 Northern blot for the Analysis of the miRNA 

Northern blot is a technique used to detect a specific RNA in a sample. This technique 

was performed to compare and validate significantly deregulated miRNA from NGS 

and qRT-PCR data in total cellular lysate and Ago2-IP data. 

Equal amounts of extracted RNA from total cellular (15 -20 µg ) or Ago2-IP and isotype 

control (200 ng of purified RNA ), were mixed with 5 µl RNA loading buffer, and  loaded 

on a 12% urea polyacrylamide gel. The gel was run at 20W for 3 to 4 hours in 1X TBE 

buffer. To check the loading control and the quality of RNA, the gel was stained with 

ethidium bromide (10 µg in 100 mL 1X TBE) for 5 min and the RNAs were visualized 

at 254nm. The ethidium bromide picture was documented, using ChemiDoc XRS (Bio-

Rad). An equal amount of 1.5 µg RNA, from DLBCL and lymph nodes of patient 

samples was loaded for Northern blot. 

 

Composition of 12% of a Urea polyacrylamide gel 

Components Volume 

UreaGel 29:1 Concentrate  24 mL 

UreaGel Diluent  21 mL 

UreaGel Buffer 5 mL 

TEMED 20 µl 

APS 10% 400 µl 

 

 Transfer of RNA to a Membrane  

To transfer the RNA to a nylon membrane (Hybond N; Amersham), an electroblot 

transfer sandwich was set up as follows: five pre-wet Whatman papers with dH2O, 

nylon membrane, gel, five more pre-wet Whatman paper. Transfer was carried out at 

15V for 30 minutes, using a semi-dry chamber with transfer from anode to cathode.  

Following the transfer the membrane, on top of three Whatman papers, soaked in 

freshly prepared EDC crosslinking regent and then the NB membrane was wrapped 

in Saran-Wrap and incubated at 60 ℃ for 1 to 2 hours. Following crosslinking, the 

membrane was transferred to a glass tube and incubated with 30 mL pre-hybridization 

buffer with continued rotation at 50 C for 30 min. Then the 32 P-labeled miRNA probe 
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(see below) was added to the hybridization buffer, and incubated overnight with a 

continued rotation at 50 ℃, in an oven. The next day the membrane was washed two 

times with 5XSSC and two times with 1XSSC (each time about 20 min). The 

membrane was wrapped with Saran-Wrap and exposed to Phosphorimager, and the 

next day scanned with the Phosphorimager TM Typhoon. 

 

 Generating radiolabelled 32P RNA probe 

To generate radiolabelled 32P RNA probes a two-step procedure was used. First a 

double strand DNA template from a single stranded oligonucleotide which has a 

CCTGTCTC AT at 3´ end (complementary to T7 promoter sequence) was generated 

using the mirVANA TM kit. In second step the 32p RNA probe was generated from 

the double stranded template. 

Double strand DNA (dsDNA) template synthesis; 

a) The following components were incubated at 70 ℃ for 5 min and then at RT for 5 

min. 

Components Volume 

H2O 6μL 

T7-Promoter Primer (100μM) 2μL 

Oligonucleotide Template (100 μM) 2μL 

 

b) To complete the reaction, the following components were added and this mixture 

was incubated at 37 ℃ for 30 min. The prepared double strand DNA template for 

miRNA of interest was stored at -20 ℃ until use. 

Components Volume 

Nuclease-free H2O  4 µl 

10 x Klenow buffer  2  µl 

10 x dNTPs  2  µl 

Exo-Klenow 2 µl 
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2. Generation of 32P RNA probe at radioactive lab 

 

Components Volume 

Nuclease free H2O 7 µl 

dsDNA template 2  µl 

NTPs(without U) 3  µl 

10 x RNA polymerase buffer  2 µl 

T7-RNA polymerase  2  µl 

32P -labeled  UTP (radioactive) 5  µl 

 

After adding the above components, the mixture was put on continuous shaker 

(700RPM) for 10 min at 37 ℃ and then 1 µl of DNase I was added and again put on 

continuous shaker (700 RPM) for 10 min at 37 ℃, and finally as discussed the 

prepared probe was added to the glass tube containing hybridization buffer and cross-

linked NB membrane. 

 

 NB stripping  

To re-probe the NB membrane with a different 32p-labelled probe, the previous signal 

was removed using stripping buffer. The membrane was put into a glass tube and 

incubated with warmed stripping buffer, for one hour at 70C in the oven under 

continuous rotation. After removing the stripping buffer, the membrane was wrapped 

with a Saran-Wrap and exposed to the phosphor imager overnight (Phosphorimager 

TM Typhoon) to ensure that the previous signal was erased. 
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 Protein related techniques 

 Immunoprecipitation and immunoblotting of Ago2 – IP 

 

To perform the RISC associated miRNA profiling, the Ago2 Immunoprecipitation was 

carried out as described previously (DEMBLA et al., 2014; DOLKEN et al., 2010). The 

cell lines, either U2932 or SUDHL5 or the EBV positive counterparts were cultured, in 

large scale (400 to 500 mL) in RPMI1640, supplemented with 10% FCS and antibiotics 

(see material and methods). After counting the cells, about 3.5 X108 cells were used 

for each IP (3). Antibody coupling was performed one day before performing IP. For 

coupling, about 200 µL of Sepharose Protein G beads were washed 3 times with cold 

PBS buffer (at 500 xg for 3 min), and then at the last step the supernatant was 

removed and the pellet divided into two tubes. In each tube, about 100 µL of 

Sepharose Protein G beads was incubated overnight with 1.6 mL monoclonal 

antibody, Ago2 antibody 11A9 (rat IgG2a) or with isotype control (rat IgG2a) antibody, 

on vertical rotator at 4°C. The next day the beads were washed three times with PBS, 

and once with lysis buffer before incubating with lysate. For Ago2-IP, about 3.5 X 10 

8 cells from U2932, SUDHL5 and their EBV positive counterparts, were pelleted and 

washed three times with PBS (at 500 xg for 3 min). Then, 1.5 mL of lysis buffer were 

added to the pellet in 1.5 mL reaction tube, and incubated for 30 min on the vertical 

rotator at 4°C. Subsequently, the tube was centrifuged at 20,000 xg for 30 min at 4°C. 

Afterwards, to decrease the non-specific binding, the lysate was precleared with 100 

μL of protein G-Sepharose beads (washed 3 times in PBS) alone for 60 min at 4°C, 

using a vertical rotator. Next, samples were centrifuged at 20,000 xg for 5 min at 4°C. 

100 μL of the cleared lysate was removed for preparing total RNA, and 50 μL as a 

protein input. The remaining lysate was divided in two equal volumes for the Ago2-IP 

and the isotype control-IP experiment and the volumes were adjusted to 1 ml with lysis 

buffer. The coupled beads were incubated with the lysis buffer overnight on a vertical 

rotator at 4 °C. 

The next day, the beads were pellet down at 500 xg for 3 min at 4 ℃, and washed 

three times with wash buffer (50 mM Tris HCl, pH 7.4, 300 mM KCl, 1mM MgCl2, 0.5% 

IGEPAL) and once with PBS. 25 μL of each immunoprecipitated fraction was removed 
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and this sample was used to check the efficiency of Ago2 IP, by Western blot (GROSS 

et al., 2010) and the remaining beads was incubated with 700 μL Qiazol regent 

(Qiazol, Hilden, Germany ), followed by RNA extraction, using the miRNA easy kit.  

 

 SDS-PAGE  

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), is used to 

separate proteins according to the molecular mass, under denaturing conditions. 

SDS-PAGE was performed as described by Laemmli, 1970; Sambrook et al., 1989. 

Before loading the samples, either the lysate or immunoprecipitated fractions from 

different cell lines were diluted in 4X SDS loading buffer and heated for 6 min at 94℃. 

Three µl of molecular mass marker proteins were also separated on the gel. SDS-

PAGE was carried out at 80V (stacking gel) and 125 V (separating gel), for about 3.5 

hours. 

 

 Western Blot 

Following SDS-PAGE, the proteins were transferred to a nitrocellulose membrane by 

electrophoresis, at 400 mA for 3 hours at 4℃. After blotting, the membrane was 

stained with Ponceau S, to ensure that the transfer was carried out properly. The 

membrane was destained with PBS for 15 min under agitation and then blocked with 

5% nonfat dry milk in PBS for 75 min under agitation at room temperature. 

Subsequently, the membrane was incubated with the indicated primary antibody, 

overnight at 4 °C. The membrane was washed 3 times with PBS, for about one hour, 

and then incubated with appropriate secondary antibody(conjugated with horseradish 

peroxidase), in blocking reagent (5% milk in PBS) for 2 hour under agitation at 4 °C. 

The membrane was washed 3 times with PBS for about one hour at room temperature. 

Finally, the membrane was developed using ECL (see Material and Methods part) and 

documented with the Bio-Rad Gel-Doc apparatus, using the Quantity One (Bio-Rad) 

software.  
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3 Results 

Here we tested (i) the miRNA profiles of the DLBCL cell lines U2932 and SUDHL5 

and their EBV-converted counterparts U2932-EBV and SUDHL5-EBV , (ii) the miRNA 

profiles of the Ago2-complex of four cell lines, and(iii) whether the EBV-infection would 

alter the loading of the Ago2-complex. Previous work had shown that the overall 

miRNA profiling of a cell line did not necessarily reflect the function of a given miRNA 

as the Ago-loading might be very different from its overall content in the cell (FLORES 

et al., 2014). 

In the following, we refer to the sequencing of cellular miRNA as “Total” and to the 

miRNA obtained from the Argonaute 2 immunoprecipitation as “Ago2-IP”. 

 

3.1 Characterizations of cell lines 

The type of EBV latency was determined by Western blot with antibodies against 

EBNA1, LMP and EBNA2, using U2932-EBV and SUDHL5-EBV cellular extracts. As 

shown in Figure 6, SUDHL5-EBV has the characteristics of type III EBV-latency as it 

expresses EBNA1, LMP and high amounts of EBNA2. In contrast, U2932-EBV clone 

A has the characteristics of type II latency, as it express EBNA1 and LMP1 but low 

amounts of EBNA2. 

 
 

Figure 6: EBV latency in U2932-

EBV and SUDHL5-EBV cells. 

Extract of the U2932-EBV and SUDHL5-

EBV cell lines was assayed by 

immunoblotting using antibodies against 

EBNA1, LMP and EBNA2 .The EBNA2 

blot was restained with GAPDH antibody 

as a loading control. 
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3.2 Microarray results 

The isolated RNA from the Ago2-IP in U2932 and U2932-EBV, was analyzed by 

microarray. In addition, the RNA was isolated from the total cellular lysate to determine 

the miRNA profile prior to precipitation. Two replicates of the total cellular fraction 

failed the array quality control and were therefore excluded (marked as None 

Applicable (NA) from the study. the summary of the microarray data is shown in Table 

2. We detected 206 miRNAs in U2932-EBV, and 170 miRNAs in the U2932 cell line. 

Of the total cellular miRNAs, detectable in both cell lines, nine were significantly 

upregulated (≥2) and 14 were significantly downregulated (≤2), in U2932-EBV 

compared to the U2932, respectively. Data are presented in Table 3 with the 

expression level taken into account. In the Ago2-IP, 386 miRNAs were detected in the 

U2932-EBV, and 395 in the U2932 cell line. In comparison with the Ago2-IP profile of 

U2932-EBV vs. U2932, 15 miRNAs were upregulated, while 169 miRNAs were 

downregulated. A complete list of up and downregulated miRNAs is shown in the 

appendix (Table A9).  

 

Table 2: Summary of miRNAs detected by microarray, in “Total” and “Ago2-IP” 

profile in U2932-EBV and U2932. 

No. of miRNAs Replicate1 Replicate 2 Replicate 3 Replicate 4 Mean St dev. Summary 

Total cellular 

profile U2932-

EBV 

219 219 208 NA 215.33 6.35 206 

Total cellular 
profile U293 

182 190 163 NA 178.33 13.87 170 

Ago2_IP 
U2932-EBV 

413 408 388 392 400.25 12.12 386 

Ago2_IP 
U2932 

417 409 397 408 407.75 8.22 395 
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Table 3: Top 10 up regulated miRNAs and top 14 down regulated 

miRNAs in U2932-EBV vs. U2932 measured by microarray. 

Total cellular miRNAs profile Ago2-IP miRNAs profile 

miR-551b 7.08 miR-551b 8.85 

miR-630 2.77 miR-137 6.89 

miR-363 2.58 miR-363 6.53 

miR-130a 2.45 miR-494 6.37 

miR-15a 2.24 miR-449a 5.08 

miR-574-5p 2.23 miR-130a 4.77 

miR-1268 2.21 miR-630 3.48 

miR-222 2.14 miR-3651 2.87 

miR-335 2.06 miR-10a 2.75 

  miR-718 2.67 

    

    

miR-140-5p -2.02 miR-148a* -5.69 

miR-25 -2.05 miR-199b-5p -5.85 

miR-374a -2.10 miR-1180 -6.19 

miR-3174 -2.12 miR-193a-3p -6.25 

miR-193b -2.14 miR-126 -6.44 

miR-134 -2.22 miR-624* -6.45 

miR-24 -2.30 miR-345 -6.48 

miR-148a -2.35 miR-1260 -7.17 

miR-21* -2.38 miR-1260b -7.32 

miR-125a-3p -2.45 miR-1274b -8.48 

miR-3656 -2.47 miR-720 -10.62 

miR-342-3p -2.58 miR-340* -12.56 

miR-642b -2.68 miR-1274a -12.75 

miR-4327 -2.79 miR-340 -75.41 
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3.3 Sequencing results 

In order to investigate the miRNAs that were differentially associated with Ago2-

complex, in comparison to the total cellular miRNA profile, and to determine whether 

EBV infection changes the loading of miRNA in the RISC complex, we performed 

Ago2 immunoprecipitation (Ago2-IP), in extracts from the uninfected DLBCL cell lines 

(U2932, SUDHL5) and their EBV infected counterparts (U2932-EBV, SUDHL5-EBV). 

The RNAs from the Ago2-IPs and from the total cellular extracts were subjected to 

next generation sequencing (NGS).  

The specificity of the Ago2-IPs was determined from an aliquot of the precipitate, 

before the RNA was subjected to sequencing. As shown in Figure 7, the Western blot 

of the Ago2-IP demonstrated that the Ago2 protein was successfully precipitated from 

all four cell lines, and that the controls did not contain Ago2-protein 
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Figure 7: Immunoprecipitation of Ago2 from U2932, SUDHL5 and their EBV 

positive counterparts. 

Extract of the indicated cell lines was precipitated with Ago2 specific antibody (11A9) and 

an appropriate isotype control antibody. The membrane was first stained with Ago2 and 

then with mouse-anti rat IgG coupled to horseradish peroxidase as a secondary antibody. 

The precipitated Ago2-protein was visualized by the ECL method. The molecular mass 

marker proteins (in kDa) and the position of Ago2 are indicated by bars to the left side of 

the blot. 
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The overall results from the total cellular profiling and the Ago2-IP are shown in Table 

4. We obtained about 8.7-15.3 x106 reads, corresponding to 12 to 23% of total reads 

that matched to miRBase. The total cellular miRNA profiling yielded 700-850 

annotated miRNAs from the four cell lines. The Ago2-IP sequencing resulted in about 

28-55 x106 reads, corresponding to 78.82-68.25% of all reads. The Ago2-IP miRNA 

profiling, yielded 1102 to 1372 miRNAs, annotated in miRBase. Thus, the total number 

of reads for known human miRNA reads, increased about 10 times, as compared to 

the total cellular profile, indicating that the Ago2-IP strongly enriched the miRNAs, 

proving the specificity of the procedure.  

  

 

It has been suggested that only miRNAs which represent more than 0.1% of the total 

reads are functional (FLORES et al., 2014; MULLOKANDOV et al., 2012). For this 

reason, a 0.1% cut-off was applied for further analysis in all cell lines for selection of 

functionally relevant miRNAs. This means that in our analysis, only a miRNA with at 

least an expression of 0.1% of the total reads in one of the cell line was taken into 

account.  

At the 0.1% cut-off level, only 61 to 62 of human miRNA remained in the total cellular 

miRNA profile of U2932 and U2932-EBV cells; however, these corresponded to 96.4% 

to 94.4% of total annotated miRNA reads, respectively. In SUDHL5 and SUDHL5-

EBV, 59 to 58 of human miRNA were detected in the total cellular lysate, representing 

Table 4: Overview of sequencing reads in “Total” and “Ago2-IP” obtained 

from U2932 and SUDHL5 and their EBV positive counterparts. 

 Cell line Total reads Total reads match 

with miRBase 

% of match 

reads 

Detected 

miRNA 

To
ta

l 

U2932-EBV  10423487 1,815,328 17.42 851 

U2932 8752305 2,076,239 23.72 758 

SUDHL5-EBV 11470056 2,019,181 17.60 763 

SUDHL5  15322853 1,944,300 12.69 713 

A
go

2
_I

P
 U2932 -EBV + 55928169 38,168,544 68.25 1372 

U2932 42384180 26,494,508 62.51 1185 

SUDHL5-EBV 34811526 27,005,099 77.58 1141 

SUDHL5  28245506 22,264,473 78.82 1102 
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73.3% and 97.0% of detected miRNAs, respectively. At the 0.1% cut-off level in the 

Ago2-profile 51 to 66 of human miRNA were detected in U2932-EBV and U2932, 

corresponding to 94.8% to 97.0% of the total miRNAs, respectively. In SUDHL5-EBV 

and SUDHL5, 50 to 54 human miRNA were detected in the Ago2-IP, representing 

68.6% and 97.2% of miRNA reads, respectively.  

The presence of EBV miRNA was also analyzed in the total cellular and the Ago2-IP 

miRNA profile. In U2932-EBV cells, six EBV-miRNAs (1.3% of all reads), and in 

SUDHL5-EBV cells, 26 EBV-miRNAs (23.4% of total reads), remained above 0.1% 

cut-off level, whereas in the  Ago2-IP profiling of  U2932-EBV cell line, 6 EBV (1.6% 

of total miRNA reads) and the SUDHL5-EBV cell line, 23 EBV miRNAs (28.2% of total 

reads) were present above the 0.1% cut-off level (Table 5). 

Table 5: MiRNA reads in “Total” and “Ago2-IP” at 0.1% cut-off. 

 Cell line Human  

miRNA 

EBV  

miRNA 

% of Human 

 miRNA 

% of EBV  

miRNA 

To
ta

l 

U2932 -EBV  62 6 94.4% 1.3% 

U2932  61 - 96.4% - 

SUDHL5-EBV  58 26 73.3% 23.4% 

SUDHL5  59 - 97.0%  

A
go

2
_I

P
 U2932-EBV 51 6 94.8% 1.6% 

U2932  57 - 97.0% - 

SUDHL5-EBV 50 23 68.6% 28.2% 

SUDHL5  54 - 97.2% - 
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3.4 Highly expressed miRNAs in U2932 and SUDHL5 and their 

EBV-positive counterparts 

There is an inverse relation between the expression level of a miRNA and its inhibitory 

potential for a specific mRNA target, and a crucial role for Ago2 protein in the RISC 

silencing complex (LEUNG et al., 2011; LIU et al., 2016). Therefore, we analyzed the 

expression of the most abundant miRNAs in the total cellular and Ago2-IP miRNA 

profiles in each cell line, separately, at the 0.1% cut-off level. The top 20 miRNAs in 

the total cellular and the Ago2-IP profile are listed in descending order in Table 6 and 

Table 7. These miRNAs comprised about 74 to 85% of all identified miRNA reads in 

the four DLBCL cell lines. For instance, in the total cellular profiles, miR-92a-3p and 

miR-191-5p were among the most abundant miRNAs in the U2932 cell lines and miR-

21-5p and miR-142-5p were, among the most highly expressed miRNA in the 

SUDHL5 cell lines. 

  



 

54 
 

Table 6 : Top 20 miRNAs in U2932 and SUDHL5 and their EBV positive counterparts  

in “Total” profile at 0.1% cut-off. EBV miRNAs are underlined. 

% of relative expression of total miRNA pool 

U2932 SUDHL5 

miRNA  EBV + miRNA EBV - miRNA EBV + miRNA  EBV - 

miR-92a-3p 16.783 miR-92a-3p 17.205 miR-21-5p 14.164 miR-142-5p 28.391 

miR-191-5p 9.169 miR-191-5p 11.556 miR-142-5p 6.891 miR-21-5p 10.992 

miR-181a-5p 7.785 miR-148a-3p 8.417 miR-BHRF1-1 5.971 miR-181a-5p 5.613 

miR-146a-5p 5.849 miR-181a-5p 7.073 miR-148a-3p 5.807 miR-26a-5p 5.057 

miR-148a-3p 5.704 let-7a-5p 4.559 miR-191-5p 4.947 miR-191-5p 4.122 

miR-142-5p 5.213 miR-26a-5p 4.159 miR-181a-5p 3.619 miR-16-5p 3.588 

miR-16-5p 3.929 miR-142-5p 3.854 miR-16-5p 3.321 miR-30d-5p 3.031 

let-7f-5p 3.555 let-7f-5p 3.787 miR-BART10-3p 3.254 miR-92a-3p 3.013 

let-7a-5p 3.472 miR-146a-5p 3.380 miR-22-3p 3.158 let-7a-5p 2.848 

miR-30d-5p 3.379 miR-16-5p 3.123 miR-30d-5p 3.060 miR-22-3p 2.781 

miR-26a-5p 2.887 miR-30d-5p 2.736 miR-BART8-5p 2.975 let-7f-5p 2.746 

miR-21-5p 2.551 miR-182-5p 2.566 let-7a-5p 2.587 miR-148a-3p 2.681 

miR-27b-3p 1.753 miR-30e-5p 1.728 let-7f-5p 2.587 miR-142-3p 2.657 

miR-19b-3p 1.744 miR-20a-5p 1.666 miR-26a-5p 2.549 miR-30e-5p 1.960 

miR-182-5p 1.609 miR-27b-3p 1.625 miR-92a-3p 2.364 miR-28-3p 1.466 

miR-155-5p 1.339 miR-192-5p 1.623 miR-30e-5p 1.862 miR-4792 1.349 

miR-192-5p 1.300 miR-21-5p 1.331 miR-182-5p 1.550 miR-21-3p 1.106 

miR-20a-5p 1.157 let-7g-5p 1.322 miR-BART7-5p 1.367 miR-192-5p 0.881 

miR-30e-5p 1.139 miR-186-5p 1.048 miR-BART19-5p 1.267 let-7g-5p 0.776 

miR-186-5p 0.879 miR-22-3p 0.860 miR-146b-5p 1.188 miR-4485-3p 0.709 

Total sum 

in percent 
81.196  83.618  74.488  85.767 
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In the Ago2-IP-profiles, miR-92a-3p, miR-181a-5p, miR-146a-5p, and miR-148a-3 

had the highest abundance in the U2932 cell lines and miR-21-5p, miR-142-5p, miR-

92a-3p and miR-181a-5p were the most abundant human miRNAs in the SUDHL5 

lines. 

Table 7: Top 20 miRNAs in U2932 and SUDHL5 and their EBV positive 

counterparts in “Ago2-IP” profile at 0.1% cut-off. EBV miRNAs are underlined. 

% of relative expression of Ago2-IP miRNA pool  

U2932 SUDHL5 

miRNA  EBV + miRNA EBV - miRNA EBV + miRNA  EBV - 

miR-92a-3p 26.551 miR-92a-3p 23.235 miR-21-5p 
16.15
1 miR-21-5p 14.373 

miR-181a-5p 10.446 miR-181a-5p 9.224 miR-BHRF1-1 7.030 miR-142-5p 13.376 

miR-146a-5p 10.051 miR-148a-3p 7.232 miR-92a-3p 4.881 miR-181a-5p 8.794 

miR-191-5p 5.372 miR-146a-5p 7.106 miR-148a-3p 4.216 miR-92a-3p 7.077 

miR-16-5p 4.615 miR-191-5p 6.580 miR-BART8-5p 4.154 miR-26a-5p 6.298 

miR-148a-3p 4.096 miR-26a-5p 4.317 miR-181a-5p 4.149 miR-16-5p 5.130 

miR-30d-5p 3.184 miR-16-5p 3.565 miR-22-3p 3.862 miR-22-3p 4.762 

miR-26a-5p 3.124 miR-182-5p 3.089 miR-142-5p 3.435 miR-191-5p 3.399 

let-7f-5p 2.665 miR-30d-5p 3.074 miR-16-5p 3.231 let-7f-5p 3.294 

miR-21-5p 2.581 let-7f-5p 2.949 miR-BART6-3p 3.143 miR-28-3p 3.260 

miR-142-5p 2.074 let-7a-5p 2.257 miR-191-5p 2.883 miR-30d-5p 3.027 

miR-182-5p 1.966 miR-21-5p 1.956 miR-30d-5p 2.617 miR-148a-3p 2.644 

miR-27b-3p 1.916 miR-142-5p 1.939 let-7f-5p 2.566 miR-423-5p 1.639 

miR-155-5p 1.311 miR-27b-3p 1.707 miR-BART10-3p 2.498 miR-30e-5p 1.612 

let-7a-5p 1.153 miR-30e-5p 1.502 miR-26a-5p 2.210 miR-142-3p 1.501 

miR-192-5p 1.080 miR-192-5p 1.470 miR-BART11-3p 1.950 let-7a-5p 1.437 

miR-186-5p 0.865 miR-22-3p 1.289 miR-BART19-5p 1.889 miR-146a-5p 1.258 

miR-30e-5p 0.804 miR-186-5p 1.275 miR-182-5p 1.827 miR-192-5p 1.018 

miR-378a-3p 0.790 miR-378a-3p 0.852 miR-28-3p 1.728 miR-186-5p 0.944 

miR-22-3p 0.756 miR-19b-3p 0.750 miR-BART7-5p 1.677 miR-27b-3p 0.892 

Total sum 
in percent 

85.400  85.368  76.097  85.735 

 

 



 

56 
 

3.5 Comparative analysis of up and down regulated miRNAs in 

EBV infected cell line to EBV negative DLBCL cell lines in total 

cellular and Ago2-IP 

EBV encodes 44 mature miRNAs, and the EBV-infection might change the total 

cellular miRNA profile. Therefore it could also influence the loading of the Ago2-

complex with human miRNAs. Accordingly, the fold changes of human miRNAs were 

analyzed and compared, between EBV-infected and their non-infected counterparts. 

For the sake of this comparison, we again considered only miRNAs above the 0.1% 

cut-off level, for functionally relevant miRNAs. The top 10 induced and reduced 

miRNAs, due to EBV infection in total cellular profile are shown in Table 8, and the 

complete lists can be found in the appendix (Tabel A5). 

 

Table 8: Comparison of miRNA profiles in EBV+ vs. EBV- in “Total” profile in 

 U2932 and SUDHL5 at 0.1% cut-off. 

U293. Total SUDHL5 Total 

miRNA  EBV + EBV - 
 Ratio  
EBV +/ - miRNA  EBV + EBV - 

Ratio 
 EBV +/ - 

miR-4485-3p 0.276 0.062 4.432 miR-182-5p 1.55 0.419 3.699 

miR-221-3p 0.21 0.056 3.767 miR-146b-5p 1.188 0.367 3.235 

miR-222-3p 0.122 0.037 3.332 miR-10a-5p 0.155 0.061 2.561 

miR-193b-3p 0.104 0.034 3.087 miR-148a-3p 5.807 2.681 2.166 

miR-18a-5p 0.103 0.035 2.985 miR-148a-5p 0.184 0.103 1.793 

miR-1246 0.151 0.051 2.976 miR-146a-5p 0.799 0.477 1.674 

miR-15a-5p 0.255 0.091 2.787 miR-27a-3p 0.153 0.097 1.579 

miR-155-5p 1.339 0.503 2.663 miR-155-5p 0.219 0.163 1.341 

miR-19b-3p 1.744 0.664 2.626 miR-486-5p 0.403 0.302 1.335 

miR-19a-3p 0.276 0.113 2.454 miR-21-5p 14.164 10.992 1.289 

        

miR-22-3p 0.49 0.86 0.57 miR-28-3p 0.877 1.466 0.598 

miR-210-3p 0.058 0.108 0.537 miR-181b-5p 0.102 0.172 0.592 

miR-30c-5p 0.224 0.422 0.53 miR-181a-3p 0.108 0.197 0.547 

miR-1260b 0.062 0.127 0.488 miR-26a-5p 2.549 5.057 0.504 

miR-1260a 0.061 0.126 0.486 miR-28-5p 0.137 0.277 0.494 

miR-339-3p 0.064 0.142 0.454 miR-4532 0.054 0.138 0.392 

miR-146b-5p 0.073 0.163 0.448 miR-142-5p 6.891 28.391 0.243 

miR-92b-3p 0.049 0.125 0.389 miR-1246 0.069 0.339 0.205 

miR-27a-3p 0.032 0.177 0.179 miR-142-3p 0.468 2.657 0.176 

let-7c-5p 0.024 0.245 0.097 miR-4792 0.095 1.349 0.07 
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In the total cellular profile of U2932-EBV, miR-4485-3p, -221-3p and -222-3p were 

found to be the most strongly induced, while miR-182-5p,-146-5p and -10a-5p had the 

highest induction in SUDHL5-EBV. In contrast, let-7c-5p and miR-27a-3p were most 

strongly reduced in U2932-EBV, and miR-4792 and miR142-3p had the strongest 

reduction in the total cellular miRNA profile in SUDHL5-EBV.  

A comparison of the Ago2-IP in EBV positive versus EBV negative cells are shown in 

Table 9, for the top 10 induced and reduced miRNA, and the complete lists can be  

found in the appendix (Tabel A6). MiRNAs such as miR-15a-5p, -221-3p and- 155-5p 

had the strongest relative presence in the Ago2-complex of 2932-EBV, compared to 

U2932. MiR-363-3p,-182-5p had the strongest induction in SUDHL5-EBV, compared 

to SUDHL5 while miR-let-7c-5p and -27a-3p showed the strongest reduction in 

U2932-EBV as compared to U2932 . MiR-142-3p and -5p were the most strongly 

depleted from the Ago2-complex in SUDHL5-EBV compared to SUDHL5. 
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Table 9: Comparison of “Ago2-IP”profile in EBV-positive vs. non-infected 

cell lines vs. “Total” profile at 0.1% cut-off. 

U2932 Ago2-IP SUDHL5 Ago2-IP 

miRNA  EBV + EBV - 
 Ratio  
EBV +/- miRNA  EBV + EBV - 

 Ratio  
EBV +/ - 

miR-15a-5p 0.276 0.109 2.539 miR-363-3p 0.105 0.017 6.046 

miR-221-3p 0.114 0.045 2.538 miR-182-5p 1.827 0.667 2.739 

miR-155-5p 1.311 0.730 1.795 miR-146b-5p 0.988 0.472 2.095 

miR-130b-3p 0.145 0.082 1.759 miR-10a-5p 0.189 0.097 1.956 

miR-423-5p 0.738 0.442 1.671 miR-148a-3p 4.216 2.644 1.595 

miR-9-5p 0.286 0.200 1.430 miR-148a-5p 0.126 0.085 1.476 

miR-146a-5p 10.051 7.106 1.414 miR-27a-3p 0.130 0.097 1.336 

miR-181b-5p 0.504 0.368 1.369 miR-21-5p 16.151 14.373 1.124 

miR-21-5p 2.581 1.956 1.320 miR-146a-5p 1.381 1.258 1.098 

miR-16-5p 4.615 3.565 1.294 miR-155-5p 0.338 0.310 1.091 

        

        

miR-25-3p 0.373 0.678 0.550 miR-15a-5p 0.093 0.187 0.501 

miR-183-5p 0.117 0.214 0.547 miR-181b-5p 0.191 0.383 0.498 

let-7b-5p 0.064 0.119 0.542 miR-151a-5p 0.304 0.625 0.486 

miR-339-3p 0.080 0.149 0.536 miR-181a-5p 4.149 8.794 0.472 

miR-30e-5p 0.804 1.502 0.535 miR-186-5p 0.443 0.944 0.469 

let-7a-5p 1.153 2.257 0.511 miR-28-5p 0.189 0.515 0.366 

miR-30c-5p 0.139 0.291 0.480 miR-26a-5p 2.210 6.298 0.351 

miR-146b-5p 0.090 0.191 0.468 miR-486-5p 0.036 0.124 0.292 

miR-27a-3p 0.031 0.143 0.215 miR-142-5p 3.435 13.376 0.257 

let-7c-5p 0.013 0.115 0.116 miR-142-3p 0.219 1.501 0.146 

 

3.6 Differential RISC associated of human and EBV miRNAs in 

comparison to cellular miRNA profile 

As mentioned, the Cullen group challenged the notion that the total cellular miRNA 

profile is a realistic functional indicator of the association of a miRNA with the RISC 

complex. They found a discrepancy in various miRNAs in the Ago2-IP profiling as 

compared to the total cellular profile (FLORES et al., 2014). Accordingly, we also 

analyzed the relative enrichment or depletion of human Ago-bound miRNAs, versus 

the total cellular miRNA profile at 0.1% cut-off for each of the four DLBCL cell lines, 

separately. The top 10 enriched or depleted human miRNAs in Ago2-complex are 
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shown in Table 10, for U2932 and its EBV positive counterpart, and in Table 11 for 

SUDHL5 and its EBV positive counterpart. For instance, miR-423-5p and -5p were 

enriched 2.5-8 fold in Ago2-IP in comparison to the total cellular miRNA profile in the 

four cell lines.  

 

 

 

Table 10:List of miRNAs enriched or depleted from the “Ago2-IP”as compared 

to the “Total” profile in U2932-EBV and U2932 at 0.1% cut-off.  

U2932-EBV U2932 

miRNA 
% of total  
miRNA pool 

% of RISC 
assoc. pool 

RISC   
enriched miRNA 

% of total 
 miRNA pool 

% of RISC  
assoc. pool 

RISC  
enriched 

miR-423-5p 0.217 0.738 3.407 miR-320a 0.064 0.151 2.345 
miR-423-3p 0.233 0.516 2.22 miR-423-5p 0.195 0.442 2.267 
miR-146a-5p 5.849 10.051 1.718 miR-146a-5p 3.38 7.106 2.103 
miR-92a-3p 16.783 26.551 1.582 miR-425-5p 0.333 0.544 1.635 
miR-22-3p 0.49 0.756 1.542 miR-22-3p 0.86 1.289 1.498 
miR-181b-5p 0.334 0.504 1.512 miR-21-5p 1.331 1.956 1.469 
miR-425-5p 0.338 0.484 1.434 miR-155-5p 0.503 0.73 1.452 
miR-181a-5p 7.785 10.446 1.342 let-7i-5p 0.34 0.478 1.407 
miR-28-3p 0.338 0.454 1.342 miR-423-3p 0.313 0.429 1.369 
miR-182-5p 1.609 1.966 1.222 miR-28-3p 0.508 0.695 1.367 
        
        
miR-30b-5p 0.377 0.129 0.343 miR-142-5p 3.854 1.939 0.503 
miR-18a-5p 0.103 0.035 0.342 let-7a-5p 4.559 2.257 0.495 
miR-98-5p 0.399 0.134 0.336 let-7c-5p 0.245 0.115 0.47 
let-7a-5p 3.472 1.153 0.332 let-7g-5p 1.322 0.595 0.45 
miR-20a-5p 1.157 0.355 0.307 miR-98-5p 0.566 0.231 0.408 
miR-19b-3p 1.744 0.505 0.29 miR-20a-5p 1.666 0.54 0.324 
miR-486-5p 0.425 0.033 0.077 miR-486-5p 0.199 0.03 0.15 
miR-4485-3p 0.276 0.004 0.013 miR-4792 0.384 0.003 0.008 
miR-1246 0.151 0.001 0.003 miR-1260b 0.127 0.0005 0.004 
miR-4792 0.287 0.001 0.003 miR-1260a 0.126 0.0004 0.003 
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MiR-4792, -1246 and -4485-3p in U2932-EBV and miR-1260a ,-1260b and -4792 in 

U2932 were identified to be strongly depleted more than 69 fold in the RISC complex, 

as compared to the total cellular miRNA profile. 

In SUDHL5-EBV, miR-486-5p, -260a, -260b,-and -4485-3p were the most strongly 

depleted miRNAs from Ago2-complex, whereas miR-4532, -1260a and -4792 were 

depleted about 78 to 3000 fold, from the Ago2-complex in SUDHL5. 

Table 11: List of miRNAs enriched or depleted in the “Ago2-IP”as compared to the 

“Total” profile in SUDHL5–EBV and SUDHL5 at 0.1 % cut –off. 

SUDHL5-EBV SUDHL5  

miRNA  

% of total 
miRNA 
pool 

% of RISC  
assoc. 
pool 

RISC  
enriched miRNA  

 % of total 
miRNA  
pool 

% of 
RISC 
assoc. 
pool 

RISC 
enriched 

miR-423-5p 0.134 0.936 6.989 miR-423-5p 0.188 1.639 8.721 
miR-423-3p 0.175 0.496 2.834 miR-423-3p 0.254 0.785 3.087 
miR-92a-3p 2.364 4.881 2.064 miR-146a-5p 0.477 1.258 2.636 
miR-28-3p 0.877 1.728 1.972 miR-92a-3p 3.013 7.077 2.349 
let-7i-5p 0.2 0.377 1.886 let-7i-5p 0.283 0.662 2.337 
miR-181b-5p 0.102 0.191 1.873 miR-181b-5p 0.172 0.383 2.225 
miR-146a-5p 0.799 1.381 1.729 miR-28-3p 1.466 3.26 2.224 
miR-155-5p 0.219 0.338 1.547 miR-106b-3p 0.082 0.159 1.932 
miR-28-5p 0.137 0.189 1.381 miR-155-5p 0.163 0.31 1.901 
miR-425-5p 0.108 0.143 1.323 miR-425-5p 0.095 0.179 1.879 
        
        
miR-142-5p 6.891 3.435 0.498 miR-486-5p 0.302 0.124 0.409 
miR-142-3p 0.468 0.219 0.468 miR-30b-5p 0.378 0.153 0.405 
let-7a-5p 2.587 1.06 0.41 miR-20a-5p 0.334 0.118 0.352 
miR-30b-5p 0.332 0.133 0.4 miR-98-5p 0.229 0.081 0.351 
miR-98-5p 0.26 0.077 0.295 miR-4485-3p 0.709 0.009 0.013 
miR-20a-5p 0.302 0.084 0.278 miR-1246 0.339 0.001 0.002 
miR-486-5p 0.403 0.036 0.089 miR-1260b 0.117 0.00012 0.001 
miR-4485-3p 0.517 0.004 0.009 miR-4792 1.349 0.001 0.001 
miR-1260b 0.107 0.0003 0.003 miR-1260a 0.117 0.00009 0.001 
miR-1260a 0.107 0.0002 0.002 miR-4532 0.138 0.00004 0.0003 
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3.7  Presence of EBV miRNAs in the Ago2-containing RISC 

complex. 

We analyzed the presence and abundance of EBV miRNAs in the total cellular fraction 

and the Ago2-miRNA profile in the EBV-infected cell lines. As shown in Table 12, the 

overall amount and the presence of virus-encoded miRNAs varied between the two 

cell lines. As already pointed out, the virus contributed only about 1.3% to the total 

amount of miRNAs in U2932-EBV, while 23.4% of the total miRNA reads were derived 

from the virus in SUDHL5-EBV. In U2932-EBV, EBV-miR-BART10-3p constituted only 

0.43%, and BART8-5p, 0.29% of the total counts. In SUDHL5-EBV, the viral miRNAs 

EBV-miR-BHRF1-1, -BART10-3p and -BART8-5p contributed to 5.97%, 3.25% and 

2.97% of the total miRNA reads, respectively. 

In the Ago2-profiling of the U2932-EBV cell line, EBV-miR-BART8-5p, -BART11-3p 

and -BART6-3p were the most abundant viral miRNAs, with 0.42%, 0.33% and 0.31% 

abundance, respectively. In the SUDHL5-EBV, BHRF1-1, BART8-5p and BART6-3p 

were the most abundant EBV miRNAs in total cellular profile, with 7.02%, 4.15% and 

3.14% abundance, respectively. The most abundant EBV miRNAs in total cellular 

profile were found to be same in the Ago2-complex, while BHRF1-1, BART10-3p and 

BART8-5p were the most abundant miRNA in total cellular profile in SUDHL5 (see 

below). 

 

Table 12: EBV miRNAs in the “Total” and the “Ago2-IP” profile in U2932-EBV 

and SUDHL5-EBV. 

U2932 SUDHL5 

miRNA Total  miRNA Ago miRNA Total miRNA Ago2 

rel. expr. 
% 

rel. expr. 
% 

rel. expr. 
% 

rel. expr. 
% 

BART10-3p 0.4365 BART8-5p 0.42474 BHRF1-1 5.971 BHRF1-1 7.0296 
BART8-5p 0.2964 BART11-3p 0.33851 BART10-3p 3.2542 BART8-5p 4.1537 
BART6-3p 0.1967 BART6-3p 0.31849 BART8-5p 2.9754 BART6-3p 3.1426 
BART11-3p 0.1582 BART10-3p 0.24271 BART7-5p 1.3665 BART10-3p 2.4979 
BART22 0.1281 BART19-5p 0.18918 BART19-5p 1.2667 BART11-3p 1.9503 
BART7-5p 0.1138 BART7-5p 0.13593 BART11-3p 1.1298 BART19-5p 1.889 
    BART6-3p 1.0978 BART7-5p 1.6766 
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The enrichment of EBV miRNAs in the Ago2-complex, in comparison to the total 

cellular profile, was determined. As shown in Table 13, miR-BART11-3p and miR-

BART19-5p were enriched more than 2- fold in U2932-EBV, while miR-BART10-3p 

was depleted from the Ago2-complex by 1.8-fold, as compared to the total cellular 

profile. In SUDHL5-EBV, miR-BART6-3p and miR-BART11-3p were strongly 

enriched, by 2.8 and 1.7 fold, respectively, while EBV-miR-BART5-5p and -BART1-

3p were depleted, below the 0.1% cut-off. 

 

Table 13: List of EBV-miRNA enriched or depleted in the “Ago2-IP”compared to 

“Total” profile in U2932-EBV positive and SUDHL5-EBV at 0.1 % cut-off. 

U2932-EBV SUDHL5-EBV 

EBV miRNA 

% Total 
miRNA 

pool 

% RISC 
assoc. 
pool 

RISC 
enriched 

 fold 
change EBV miRNA 

% Total 
miRNA 

pool 

% RISC 
assoc. 
pool 

RISC 
enriched 

 fold 
change 

miR-BART11-3p 0.158 0.339 2.140 miR-BART6-3p 1.098 3.143 2.863 

miR-BART19-5p 0.092 0.189 2.053 miR-BART11-3p 1.130 1.950 1.726 

miR-BART6-3p 0.197 0.318 1.619 miR-BART17-5p 0.511 0.844 1.653 

miR-BART8-5p 0.296 0.425 1.433 miR-BART19-5p 1.267 1.889 1.491 

miR-BART7-5p 0.114 0.136 1.194 miR-BART16 0.125 0.185 1.476 

 

 

miR-BART8-3p 0.287 0.221 0.769 

miR-BART10-3p 3.254 2.498 0.768 

miR-BART9-5p 0.300 0.201 0.669 

miR-BART7-3p 0.323 0.201 0.623 

miR-BART1-5p 0.131 0.075 0.572 

miR-BART19-3p 0.354 0.175 0.494 

miR-BART17-3p 0.274 0.115 0.418 

miR-BART22 0.128 0.098 0.767 miR-BART1-3p 0.137 0.044 0.320 

miR-BART10-3p 0.436 0.243 0.556 miR-BART5-5p 0.120 0.034 0.281 
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3.8 Validations of sequencing results by RT-qPCR 

In order to validate the NGS sequencing results, 12 miRNAs with different expression 

levels, either up- or down-regulated, were selected for reverse transcription 

quantitative PCR (RT-qPCR), based on their presence above the 0.1% cut-off level. 

The RT-qPCR was carried out in duplicate on independent biological replicates for 

both cell lines and their EBV-infected counterparts, in the total cellular RNA and the 

RNA isolated from the Ago2-IP. 

The RT-qPCR results of 8 out of 12 selected miRNAs gave results corresponding to 

the NGS results of total cellular RNA from U2932-EBV, compared to U2932. As shown 

in Figure 8, we validated the relative upregulation of four miRNAs, including miR-10a-

5p, -146a-5p, -221-3p and -363-3p and the relative downregulation of four miRNA, 

including let7c-5p, miR-283p, miR-423-3p and miR-92a-3p. 

 

Figure 8:RT-qPCR validation for U2932-EBV vs. U2932 in “Total” 

Black bars represent NGS data and white bars represent RT-qPCR results. 
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Furthermore, using RNA extracted from the Ago2-IP of U2932-EBV and U2932, the 

relative upregulation of miR-10a-5p, miR-146a-5p, miR-155-5p, and miR-15a-5p, 

miR-221-3p, miR-363-3p, mi -486-5p, miR-92a-3p and relative downregulation of let-

7c and miR-28-3p were confirmed. These data are presented in Figure 9. 

 

The analogous experiments, employing RNA obtained from whole cells or the Ago2-

IPs were carried out, for comparing SUDHL5-EBV vs. SUDHL5. Here, 10 out of 12 

selected miRNA yielded consistent results for the sequencing of total cellular miRNA 

profile. As shown in Figure 10, we confirmed the relative up-regulation of five miRNAs, 

including miR-10a-5p, -146a-5p, -155-5p, -221-3 and -363-3p and a relative 

downregulation of five miRNAs, including miR-15a-5p, -28-3p, -423-3p, -423-5p and -

92a-3p. 

 

Figure 9:RT-qPCR validation of U2932-EBV vs. U2932 for “Ago2-IP” 

Black bar represent NGS data and open bars represent RT-qPCR results. 
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Figure 10:RT-qPCR validation for SUDHL5-EBV vs. SUDHL5 for “Total” 

Black bars represent NGS data and open bars represent RT-qPCR results. 

 

Using RNA extracted from Ago2-IP for comparing by RT-qPCR SUDHL5-EBV vs. 

SUDHL5, we confirmed the relative up- and downregulation of selected miRNAs as 

shown in Figure 11. In particular, the relative upregulation of miR-10a-5p, -146a-5p, -

155-5p, -221-3p and -363-3p and the relative downregulation of miR-let-7c,-15a-5p, -

28-3p, -423-3p, -423-5p, -486-5p and -92a-3p were validated. 
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Figure 11: RT-qPCR validation for SUDHL5-EBV vs. SUDHL5 for “Ago2-IP”. 

Black bar represent NGS data and open bars represent RT-qPCR results. 

 

3.9 Verification of sequencing by Northern blotting 

 Analysis of total cellular miRNAs  

Northern blotting (NB) is considered the gold standard for validation of miRNA 

expression, as it avoids the false positive results that may arise from the enzymatic 

manipulation and amplifications that are necessary for biochemical reactions during 

the NGS or RT-qPCR procedures. Second, it unambiguously detects differences in 

expression in given cellular settings, like the ones analyzed in this work. For this 

reason, we performed NB as a powerful second validation method for some miRNAs 

that were found to be up- or downregulated by NGS and RT-qPCR.  
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The results of NB from total extracted RNA from U2932, SUDHL5 and their EBV-

positive counterparts, are shown in Figures 12, 13, and 14. In comparison of U2932-

EBV with U2932, we confirmed the upregulation of miR-222-3p, -551b-3p,-142-3p, -

155-5p and -142-5p and the downregulation of hsa-let-7c-5p. In SUDHL5-EBV, we 

also verified the upregulation of miR-363, -21-5p and downregulation of miR-142-5p, 

compared to SUDHL5. 

NGS data from Ago2-IP indicated that miR-4485-3p and 4792-5p were highly depleted 

from the Ago2-IP profile (Table 10 and Table 11), while miR-4485-3p and -4792-5p 

were above 0.1% cut-off level of total known miRNA reads, in the total cellular miRNA 

expression profile. MiR-4485-3p and miR-4792-5p were not present at the 0.1% cut 

off in U2932 and SUDHL5-EBV, respectively. We could not detect a signal either for 

miR-4485-3p or 4792-5p by northern blot (Figure 15). 
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Figure 12: Validation of NGS results by northern blotting. 

Total RNA isolated from U2932, SUDHL5 and their EBV positive counterparts 

(20µg/lane) was assayed using probes for the indicated miRNAs. The EtBr loading 

control is shown beneath each blot.  
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Figure 13: Validation of NGS results by northern blotting. 

Total RNA isolated from U2932 and SUDHL5 and their EBV positive counterparts 

(20µg/lane) was assayed using probes for the indicated miRNAs probes. The EtBr 

loading control is shown beneath each blot. 
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Figure 14: Validation of NGS results by northern blotting. 

Total RNA isolated from U2932 and SUDHL5 and their EBV positive counterparts 

(20µg/lane) and human tissue from a DLBCL patient were assayed by the probes 

for the indicated miRNAs. The EtBr loading control is shown beneath each blot. 
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Figure 15: Validation of NGS results by northern blotting. 

Total RNA isolated from U2932 and SUDHL5 and their EBV positive counterpart 

(20µg/lane) were assayed by NB using probes for miR-4485-3p and miR-4792-5p as 

indicated. No proper signal detected for miR-4485-3p and 4792-5p) while reprobing 

of the same membrane after stripping gave a detectable signal for mir101-3p. The 

EtBr loading control is shown beneath each blot.  
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 Analysis of Ago2-IP miRNAs by northern blotting. 

From our NGS results and  their validation using RT-qPCR, we found that by 

comparing Ago2-IP in U2932-EBV versus U2932 cell lines, miR-221-3p was strongly 

upregulated (0.114% versus 0.045% ) by 2.5-fold and hsa-let-7c-5p was strongly 

downregulated (0.013% vs. 0.115%) by 8-fold. We then speculated if we could detect 

the difference by NB, using RNA extracted from the Ago2-IP- fraction. We were able 

to isolate RNA from the Ago2-IP and, to a lesser extent, from the control IP. The 

amounts isolated were sufficient to run several Northern blots. We loaded equal 

amounts (200 ng) of RNA extracted from the Ago2-IP and the control-IP of U2932, as 

shown in Figure 16. As expected, miR-221-3p was enriched in both Ago2-IP fraction 

and total cellular lysate in U2932-EBV, in comparison to U2932. By stripping the 

membrane to remove the previous signal (miR-221-3p), and probing with hsa-let7c-

5p, which was downregulated in U2932-EBV cell lines, from Ago2-IP NGS data, we 

observed the depletion of let-7c-5p in U2932-EBV in total cellular lysate and in the 

Ago2-IP. These results were in line with our NGS and RT-qPCR data for miR-221-3p 

and hsa-let7c-5p. 

From our NGS results for SUDHL5-EBV versus SUDHL5, we found that miR363-3p 

(0.105 vs. 0.017) in Ago2-IP has the strongest enrichment of about 6-fold. MiR-423-

5p showed the strongest enrichment in the Ago2-ip, in comparison to the total cellular 

profile, by more than 6- fold in SUDH-EBV (0.134 vs. 0.936 ) and about 8 fold (0.188 

vs. 1.639), in SUDHL5. In addition, miR-423 about 1.75 fold downregulated in Ago2-

IP in SUDHL5-EBV, compared to SUDHL5. By performing Ago2-IP-NB, using again 

200 ng of extracted RNA from Ago2-IP fraction, we found an enrichment of miR-363-

3p in the Ago2-IP of SUDHL5-EBV. After stripping and reprobing the membrane with 

miR423-5p, we observed depletion of mir423-5p in Ago2-IP of SUDHL5, compared to 

SUDHL5-EBV. These results were also in line with our NGS and RT-qPCR data. 
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Figure 16: Validation of Ago2-IP-Seq by northern blotting. 

Total RNA isolated from U2932-EBV and U2932 total cellular and Ago2-IP cell 

lines. (20 µg per lane from total cellular RNA and 200 ng per lane from Ago2-IP) 

were applied to 12.5% urea gel and assayed by NB using the indicated probes. 

First miR-221-3p probe were used and then the membrane was probed with let-7c-

5p (after stripping the membrane to remove the primary signal).The EtBr loading 

control is shown under the blot. Due to the low amount of RNA loaded in Ago2-IP 

fraction (200 ng), no signals were detected in EtBr of Ago2-IPs and Control-IPs. 
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Figure 17: Validation of Ago2-IP-Seq by northern blotting. 

Total RNA isolated from SUDHL5-EBV and SUDHL5 total cellular and Ago2-IP cell 

lines. (20 µg per lane from total cellular RNA and 200 ng per lane from Ago2-IP) 

were applied to 12.5% urea gel and assayed by NB using the indicated probes. 

First miR-363-3p probe were used and then the membrane was probed with miR-

423-5p (after stripping the membrane to remove the primary signal).The EtBr 

loading control is shown under the blot. Due to the low amount of RNA loaded in 

Ago2-IP fraction (200 ng), no signals were detected in EtBr of Ago2-IPs and 

Control-IPs. 
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4 Discussion 

Non-Hodgkin lymphoma (NHL) is the fifth most common type of malignancy globally. 

Of these, diffuse large B-cell lymphoma (DLBCL) is the most common form of NHL 

(BRADSHAW et al., 2016; SKRABEK et al., 2013). DLBCL is a heterogeneous group 

of disease in regard to pathology and clinical and genetic characteristics. The 

heterogeneity arises due to dysregulation of different transcription factors such as B-

cell lymphoma 6 (BCL-6) at different stages of B-cell development (GATTO, BRINK, 

2010; IQBAL et al., 2009; IQBAL et al., 2015). DLBCL is categorized into two common 

types: Activated B-cell like (ABC) and Germinal Center B-cell like (GCB), based on 

gene expression profiling (GEP) (ALIZADEH et al., 2000). Due to difficulties in the 

characterization and differentiation of GCB- from ABC-DLBCL, many investigators 

attempt to identify a miRNA or a set of miRNAs to use as potential diagnostic 

differentiation biomarkers (ALIZADEH et al., 2000; IQBAL et al., 2015; JORGENSEN 

et al., 2015; ROSENWALD et al., 2002). 

Ago2-IP, followed by miRNA sequencing, is becoming an advanced tool to determine 

the miRNA profile of a given tumor and to investigate functionally active miRNA, as it 

has been shown recently by the Cullen group that simply the level of a miRNA in the 

total cellular lysate is not a clear indication of its biological function but rather the 

loading of the Ago-complex (FLORES et al., 2014).  

For this reason, this study was carried out to compare by ultra-deep sequencing the 

miRNAs bound to Ago2 with the overall miRNA present in two sets of DLBCL cell lines 

with and without EBV-conversion. The first cell line was U2932, which has a gene 

expression profile (GEP) similar to ABC-DLBCL (AMINI et al., 2002) and the second 

cell line was SUDHL5, which has a GEP similar to GCB-DLBCL. We investigated 

enriched or depleted miRNAs in the Ago2- associated complex as compared to their 

total cellular miRNA profile. We also validated our results by RT-qPCR and northern 

blot (NB) for a selected set of up or downregulated miRNAs that were deregulated in 

the total cellular RNA and in the Ago2-IP. 
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The total miRNA profiling of the four cell lines yielded between 713-851 different 

miRNAs while the number of miRNAs in the Ago2-IP yielded 1102-1372 different 

miRNAs. Further, the number of sequencing reads increased dramatically, by almost 

ten times, in the Ago2-IP fraction in the four cell lines, as compared to miRNAs 

detected in the total cellular profiles. In addition, the number of detected miRNAs in 

the Ago2-IP fraction was significantly increased, by more than 35% in all four cell lines, 

as compared to the total cellular miRNA profile. The increase in the number of reads 

and detected miRNAs in Ago2-IP fraction is a clear indication of enrichment and 

specificity of our Ago2-IP. In addition, we observed miRNAs expressed at low 

abundance that were not detectable in the total miRNAs profiles. This approach might 

therefore be applied as a very promising tool in the discovery of new miRNAs. Most 

importantly, the Ago-associated miRNAs might be considered as the potentially 

relevant miRNAs to serve as biomarkers for diagnosis and for the determination of 

potential mRNA targets. 

As it had been suggested that functional miRNAs should be present above 0.1% of 

the total reads, a 0.1% cut-off was applied in all cell lines for the selection of 

functionally relevant miRNAs (FLORES et al., 2014; MULLOKANDOV et al., 2012).  

The application of this cut-off left only 59-62 out of more than about 713-851 miRNAs 

that were present overall in the four lines, but the application of this cut-off also left 

only between 50-57 miRNAs in the Ago2-profile. The miRNAs that were left, however, 

were present at different ratios in both U2932 and U2932-EBV as well as SUDHL5 

and SUDHL5-EBV. The miRNAs above the 0.1% cut-off did nevertheless represent 

over 95% of all miRNAs in the four cell lines. 

In the U2932-EBV cells, the EBV-encoded miRNAs represent 1.3% of the total and 

1.6% of all Ago2-bound miRNAs. In this line, EBV was in latency I or II as only EBNA1 

and LMP1 but not significant amounts of EBNA2 were detectable. Here, ebv-miR-

BART10-3p with 0.43% of the total had the highest relative expression of the EBV-

miRNAs, but was not among top 20 miRNA in U2932-EBV. In contrast, ebv-miR-

BART8-5p accounted for 0.4% of Ago2-associated viral miRNAs. In SUDHL5-EBV, 

however, which has the characteristic of EBV-latency type III (high EBNA2, EBNA1, 
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LMP1), EBV miRNAs represented about 23.4% of total cellular profile, and an 

enrichment to about 28.2% of viral miRNAs was observed in the Ago2-IP profile. Here, 

ebv-miR-BHRF1-1, -BART-10-3p and BART8-5p were the most abundant viral 

miRNAs in total miRNA profile with frequencies of 5.9%, 3.2%, 2.9%, respectively. 

BHRF1-1 and BART8-5p with 7.0% and 4.1%, respectively, were also among the most 

abundant miRNAs in Ago2 profile in SUDHL5-EBV. This suggests that under type III 

EBV latency, for example, in EBV-associated PTLD, EBV miRNAs might functionally 

displace a significant amount of human cellular miRNAs from the Ago2-complex. In 

addition, the viral infection had dysregulated the human cellular miRNA expression. 

Alternatively, it might be possible that miRNAs in type III latency are more efficiently 

processed. The changes in the cellular miRNA profile in EBV latency type III, 

compared to type I, were previously reported by Flemington and coworkers 

(CAMERON et al., 2008a). We have also observed elevated expression of miR-21-

5p, miR-27a-3p and miR-146b-5p in SUDHL5-EBV vs. SUDHL5 cells, which is 

consistent with their data.  

The Venn diagrams shown in Figures 18 depict the miRNAs that are not present or 

exclusively in the Ago2-complexes in the four cell lines. We note that miRNAs miR-

1260a/b were not present in the Ago2-complex in U2932, SUDHL5 and SUDHL5-EBV 

and were strongly depleted from Ago2 in U2932-EBV. Likewise, miR-486-5p was 

below the 0.1% cut-off in the Ago2-complex in U2932, U2932-EBV, SUDHL5-EBV 

except in SUDHL5.Surprisingly, the number of cellular miRNAs excluded from the 

Ago2-complex in U2932-EBV and SUDHL5-EBV did not differ significantly as we had 

expected that the large amount of EBV-miRNAs associated with Ago2 in SUDHL5-

EBV (almost 30%) would lead to a stronger loss of cell miRNAs as compared to 

U2932-EBV where the viral miRNAs accounted for only 1.6% of the Ago2-bound 

miRNAs above the 0.1% cut-off. In SUDHL5, miRNAs miR-4485-3p, -4792, and -4532 

were only present in the total profile, and miR-4485-3p was not Ago2-bound in 

SUDHL5-EBV. We assume that these sequences, although listed in miRBASE, are 

not real miRNAs but probably breakdown products of other non-coding RNAs. For 

instance, probing the RNA of the U2932 and SUDHL5 cell line did not yield a 

detectable signal for this sequence at the position where miRNAs migrate in a 
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Northern blot. Again, miR-1260a/b and -98-5p were not present in both cells, leaving 

miR-1246 to be excluded from Ago2 in SUDHL5, while miR-486-5p, 20a-5p, -210-3p, 

-15a-5p and -181a-3p were excluded from Ago2 in SUDHL5-EBV. Likewise, miR-

4792, not present in the SUDHL5- Ago2, was also not Ago2-bound in the 

U2932/U2392-EBV pair. Here, miR-486-5p and miR-301a-3P were Ago2-excluded in 

both lines while U2932-EBV also had no significant amounts of let7b-3p, -miR-17-3p, 

-18a-5p, -21-3p, 193-3p, 222-3p, and miR-1246, the latter also being excluded in the 

SUDHL5-Ago2 complex (Figure 18). It may thus be assumed that the EBV-conversion 

results in a loss of some more miRNAs from the Ago2-complex and that the presence 

of EBV under latency III conditions might result in an overall reduction of cell miRNAs 

associated with the Ago2-complex. The displacement of miRNAs under type III latency 

is somewhat more prominent than type I latency, and the presence of the virus 

nevertheless changes the overall expression of certain cellular miRNAs. This question 

needs further attention in additional experiments beyond the scope of this thesis. 
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MiR-21-5p was the most abundant miRNA in the total and in the Ago2 miRNA profile 

of SUDHL5-EBV cells. It has been shown that EBNA2 induces miR-21 expression, 

due to post-transcriptional mechanisms and in EBV latency type III (CAMERON et al., 

2008a; ROSATO et al., 2012). Upregulation of mir-21 has been reported in different 

type of cancers, such as colorectal (ASANGANI et al., 2008), sinonasal 

 

  

  

Figure 18: Venn diagrams: showing the miRNAs found exclusively either in the 
total RNA or the Ago2-profiling of the U2932, SUDHL5 and their EBV infected 
counterparts. (A) Total miRNA profile vs. Ago2-profile of U2932-EBV, (B) Total miRNA 
profile vs. Ago2-profile of U2932 (C) Total miRNA profile vs. Ago2-profile of SUDHL5-
EBV, (D) Total miRNA profile vs. Ago2-profile of SUDHL5. 
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(KOVARIKOVA et al., 2017), glioblastoma (CHAN et al., 2005) and breast cancer 

(IORIO et al., 2005).  

Microarray or NGS assay may over- or underestimate the quantification of small 

RNAs, due to different designing platforms (LESHKOWITZ et al., 2013). For example, 

in microarray biases may arise due to primer and/or array design or in the sample 

preparation, differences in labeling, hybridization strength and cross-hybridization 

(LESHKOWITZ et al., 2013). NGS biases could be a consequence of sample 

preparation, such as adapter ligation, cDNA synthesis and PCR (HAFNER et al., 

2011; LESHKOWITZ et al., 2013; LINSEN et al., 2009; TIAN et al., 2010).  

Using microarray to compare the miRNA profiles of U2932-EBV versus U2932, we 

found that only 14 were miRNAs significantly down-regulated in total cellular profile of 

U2932-EBV while 169 human miRNAs were down-regulated in the Ago2-IP. 

In the comparison of U2932-EBV vs. U2932 in total cellular profile only miR-222 was 

upregulated more than 2 fold in both microarray and NGS results. In the Ago2-IP of 

U2932-EBV vs. U2932 in Ago2-IP profile, only miR-27a, miR-339 and miR-30c were 

downregulated more than 2 fold in both microarray and NGS results. By relating these 

findings with EBV infection it could be concluded that a large number of human 

miRNAs were dislocated in the Ago2-IP profile. In sequencing miRNA expression is 

defined as a relative copy number of sequence reads for a miRNA of interest; such a 

quantification can be applied to analyse the enrichment or depletion of a given miRNA, 

whereas such a quantification cannot be applied to microarray data where 

quantification is based on the relative expression value. For this purpose, NGS results 

were used for further analysis as we could not apply our microarray results to compare 

the enrichment or depletion of specific miRNA in the Ago2-complex. In addition, only 

after sequencing it was possible to apply the aforementioned 0.1% cut-off to filter out 

presumably non-functional miRNAs in our analysis (MULLOKANDOV et al., 2012). 

For selected miRNAs, we carried out northern blotting (NB) in addition to the 

confirmation of the NGS data by RT-qPCR. We could confirm the up-or down-

regulation of various miRNAs by this assay which has the advantage of the absence 
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of biochemical manipulations during sample preparation. We could confirm not only 

the changes in total miRNA expression but also a few miRNAs from the Ago2-IP. As 

we had no loading or internal control, we choose to analyze miRNAs that were up- or 

down-regulated. We reasoned that if we saw up-regulation of a miRNA in a given 

sample, then we should conversely observe down-regulation of another miRNA in the 

same sample. This was indeed the case. For this reason, we re-assayed the same 

membrane with consecutive probes and could indeed show up- and down-regulation 

of miRNAs on the same membrane (Figure 16 and Figure 17) additionally confirming 

some of the initial sequencing data. For instance, we could confirm the dramatic 

enrichment of miR-363 into to Ago2-complex of SUDHL5-EBV cells. 

Based on read counts, we detected miR-146a-5p was enriched in Ago2-IP and 

induced in EBV positive cell lines, congruent with previous reports that  miR-146a-5p 

was induced by LMP1 (CAMERON et al., 2008b). MiR-146b-5p is up-regulated in EBV 

positive DLBCL lymphoma (DE ANDRADE et al., 2014). Low expression of MiR-146b-

5p, a tumor suppressor, has been reported to be associated with poor prognosis, in 

DLBCL and gliomas cancer (LIU et al., 2015b; WU et al., 2014). In our data, the miR-

146b was down-regulated in U2932-EBV (type 1 latency) as compare to U2932, while 

the miR-146b-5p was upregulated over two-fold in SUDHL5-EBV as compared to 

SUDHL5, while  this miRNA was depleted over two-fold in total and Ago2-IP complex 

in U2932-EBV. Another tumor suppressor, miR-148a-3p/-5p was found to be down-

regulated in U2932-EBV vs. U2932, while being up-regulated in SUDHL5-EBV vs. 

SUDHL5 (YU et al., 2016) . 

Further, we found a very strong enrichment of the oncogenic miR-363-3p (SUN et al., 

2013) in SUDHL5-EBV. The miR-106-363 cluster has close homology with the miR-

17-92 cluster (LANDAIS et al., 2007). The miR-17-92 cluster (miR-17, miR-18a, miR-

19a, miR-20a, miR-19b-1, and miR-92-1) is located in 13q31.3 (DIOSDADO et al., 

2009). It has been reported that the miR-17-92 cluster undergoes amplification and 

overexpression in lymphoma tumors, such as DLBCL, chronic lymphocytic leukemia 

(CLL), Burkitt’s lymphoma (BL) and mantle cell lymphoma (MCL) (DAL BO et al., 2015; 

DIOSDADO et al., 2009; OTA et al., 2004; TAGAWA, SETO, 2005; VOLINIA et al., 
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2006). From the miR-17-92 cluster, miR-92a-3p showed the strongest expression in 

U2932 cells and was the fourth highly expressed miRNA in the Ago2 profile of 

SUDHL5 and SUDHL5-EBV. 

In SUDHL5, SUDHL5-EBV and also U2932-EBV, miR-423-5p and -3p were the most 

strongly RISC enriched miRNAs, and still the 2nd and 4th enriched in U2932, pointing 

at an important role for miR-423 in DLBCL tumorigenesis. miRNA-423-5p has been 

shown to be down-regulated in the plasma of colorectal cancer (CRC) patients (FANG 

et al., 2015) . However miR-423 is up-regulated in glioblastoma and it has been shown 

that overexpression of miR-423-5p induces proliferation, angiogenesis, and invasion 

in the glioblastoma cell lines U87 and U251 cells (LI et al., 2017). MiR-inhibitor of 

growth family proteins 4 (ING4) is a direct target of 423-5p (LI et al., 2017). It has also 

been shown that in EBV infected cell lines, the EBNA3C protein perturbs the 

interaction between p53 and ING4/5 in EBV infected cell lines, resulting in attenuation 

of p53, apoptosis and induction of cell proliferation (SAHA et al., 2011).  

We observed an almost complete loss of miR-1260a and miR1260b, in the Ago2-IP 

profile, in all cell lines used in this study. MiR-1260a and miR1260b  has an oncogenic 

potential (XU et al., 2015) . MiR-1260a and miR1260b have been shown to be part of 

transfer RNAs (tRNAs) group3 (tRF-3). tRF-3 are generated by Dicer and the RNase 

Z nuclease from 3′ ends of tRNA (LEE et al., 2009; VENKATESH et al., 2016).  It was 

shown that tRF-3s family members are associated with AGO1, 3, and 4, in HEK293 

cells, but not with Ago2. This might explain the failure to detect 1260a/b in the Ago2-

IP (KUMAR et al., 2014) . 

MiR-486-5p is downregulated in lung cancer (WANG et al., 2014). In our experiments, 

miR-486-5p was above 0.1% cut-off level of total known miRNA reads in total cellular 

profile and upregulated in U2932-EBV and SUDHL5-EBV as compare to the 

uninfected cells. Intriguingly miR-486-5p was strongly lost in Ago2-complex with less 

than 0.03% abundance in all cell lines except SUDHL5, and downregulated in SUDHL-

EBV and U2932-EBV compared to uninfected counterparts. We infer from these 

results that the Ago2-IP profile gives a better picture about the tumor suppressor 
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activity of miR-486-5p. As already pointed out above, we have noticed the absence of 

miR-4792, miR-4485-3p and miR-4532 in the Ago2-complexes when compared to the 

total cellular miRNA profiles. No proper signal was detected by using NB. These 

miRNAs might be part of transfer RNAs, associated with other types of Ago protein, 

or could be degraded tRNA products and are therefore most likely not bona fide 

miRNAs. The function of the aforementioned potential miRNAs should be investigated 

in more detail. Mir-221-3p and miR-155-5p were induced in U2932-EBV as compared 

to U2932. These results were consistent with those of Lawrie and co-workers 

(LAWRIE et al., 2007). However, miR-221-3p was not detected in neither of SUDHL5-

EBV or SUDHL5 cell line. 

MiR-142-3p was found to be downregulated in the Ago2 profile of U2932-EBV and 

SUDHL5-EBV cells. In contrast, in the total cellular profile of U2932-EBV cell line, 

miR-142-3p was upregulated. Overall, the depletion of miR-142 in the Ago2 profile 

compared to the total cellular profile and down regulation of miR-142 in EBV-infected 

cells was a clear indication of miR-142 being a tumor suppressor in DLBCL. It has 

been shown that miR-142 is downregulated in many types of cancers and that low 

levels of mir-142 predict a poor outcome. In our group, we have shown that 20% of 

DLBCLs harbor mutations in miR-142 and that the mutations in the seed sequence 

confer loss of activity (KWANHIAN et al., 2012). Here, we propose that in addition to 

point mutations, the depletion of miR142 in the Ago2 complex supports the notion that 

loss of function or loss of Ago-bound miR-142 plays a role in DLBCL. 

Taken together, we conclude that the human miRNA expression profile in the total 

cellular fraction is not always a real indicator of miRNA function and therefore 

functional activity. EBV, by encoding miRNAs, is displacing human miRNAs from the 

Ago complex and changes the balance of human miRNAs in the Ago complex. This 

change is dependent on the type of EBV latency or the origin of lymphoma, in our 

study ABC-DLBCL vs. GCB-DLBCL 
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5 Outlook 

One question that arises from our data and the results from Cullen and co-workers is 

how the cell decides to sequester miRNAs into (a) functionally silent Ago-complex(es) 

or to enrich miRNAs of low abundance into active RISC complexes; in EBV 

transformed cells, the process of functional inactivation might be brought about by 

loading additional, virus-encoded miRNAs into the Ago-complexes. Conversely, the 

infected cell might sequester viral miRNAs that are deleterious for the cells into non-

functional Ago-complexes thus activating otherwise non-functional miRNAs. We have 

found that ebv-miR-BART6 is highly present in the Ago2-complex of SUDHL5-EBV 

cells; this miRNA is known to target Dicer, an important enzyme in miRNA metabolism 

and function.  It might be possible that reduced amounts of Dicer serve to inactivate 

cell miRNAs, for instance those that are necessary to indicate the innate immune 

response to the viral infection.  

As miRNAs are more functional in the Ago complex than in the total cellular lysate, 

performing Ago2-IP followed by sequencing will give a better evaluation and 

understanding of highly functional miRNAs or, conversely, their loss of activity. This 

approach may improve our understanding the contribution of miRNAs in particular 

diseases or in developmental processes. 

Further, the enrichment of miRNAs by the Ago-precipitation will be a promising tool in 

the near future for (1) the discovery of new miRNA due to the high number of reads 

generated by this procedure; (2) for the design and choice of antagomirs (short 

oligonucleotides complementary to miRNAs), based on highly abundant miRNA in the 

Ago2-complex; (3) choosing miRNAs as biomarkers to differentiate ABC-DLBCL from 

GCB-DLBCL, using the Ago-bound miRNA profiles. 
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7 Appendices 

Table A1.Highly expressed miRNAs in U2932 and SUDHL5 and their EBV positive 
counterparts in “Total” profile at 0.1% cut-off. 
 

% of  total cellular miRNA pool 

U2932 SUDHL5 

miRNA  
EBV 
Positive miRNA 

EBV 
Negative miRNA 

EBV 
Positive miRNA   

EBV 
Negative 

miR-92a-3p 16.783 miR-92a-3p 17.205 miR-21-5p 14.164 miR-142-5p 28.391 

miR-191-5p 9.169 miR-191-5p 11.556 miR-142-5p 6.891 miR-21-5p 10.992 

miR-181a-5p 7.785 miR-148a-3p 8.417 miR-BHRF1-1 5.971 miR-181a-5p 5.613 

miR-146a-5p 5.849 miR-181a-5p 7.073 miR-148a-3p 5.807 miR-26a-5p 5.057 

miR-148a-3p 5.704 let-7a-5p 4.559 miR-191-5p 4.947 miR-191-5p 4.122 

miR-142-5p 5.213 miR-26a-5p 4.159 miR-181a-5p 3.619 miR-16-5p 3.588 

miR-16-5p 3.929 miR-142-5p 3.854 miR-16-5p 3.321 miR-30d-5p 3.031 

let-7f-5p 3.555 let-7f-5p 3.787 miR-BART10-3p 3.254 miR-92a-3p 3.013 

let-7a-5p 3.472 miR-146a-5p 3.380 miR-22-3p 3.158 let-7a-5p 2.848 

miR-30d-5p 3.379 miR-16-5p 3.123 miR-30d-5p 3.060 miR-22-3p 2.781 

miR-26a-5p 2.887 miR-30d-5p 2.736 miR-BART8-5p 2.975 let-7f-5p 2.746 

miR-21-5p 2.551 miR-182-5p 2.566 let-7a-5p 2.587 miR-148a-3p 2.681 

miR-27b-3p 1.753 miR-30e-5p 1.728 let-7f-5p 2.587 miR-142-3p 2.657 

miR-19b-3p 1.744 miR-20a-5p 1.666 miR-26a-5p 2.549 miR-30e-5p 1.960 

miR-182-5p 1.609 miR-27b-3p 1.625 miR-92a-3p 2.364 miR-28-3p 1.466 

miR-155-5p 1.339 miR-192-5p 1.623 miR-30e-5p 1.862 miR-4792 1.349 

miR-192-5p 1.300 miR-21-5p 1.331 miR-182-5p 1.550 miR-21-3p 1.106 

miR-20a-5p 1.157 let-7g-5p 1.322 miR-BART7-5p 1.367 miR-192-5p 0.881 

miR-30e-5p 1.139 miR-186-5p 1.048 miR-BART19-5p 1.267 let-7g-5p 0.776 

miR-186-5p 0.879 miR-22-3p 0.860 miR-146b-5p 1.188 miR-4485-3p 0.709 

let-7g-5p 0.858 miR-17-5p 0.778 miR-BART11-3p 1.130 miR-25-3p 0.680 

miR-103a-3p 0.808 miR-378a-3p 0.685 miR-BART6-3p 1.098 miR-27b-3p 0.659 

miR-378a-3p 0.803 miR-103a-3p 0.675 miR-BART22 0.935 miR-378a-3p 0.624 

miR-17-5p 0.728 miR-19b-3p 0.664 miR-28-3p 0.877 miR-186-5p 0.598 

let-7i-5p 0.530 miR-26b-5p 0.577 miR-192-5p 0.849 miR-146a-5p 0.477 

miR-22-3p 0.490 miR-98-5p 0.566 miR-21-3p 0.841 miR-26b-5p 0.456 

miR-142-3p 0.437 miR-25-3p 0.556 miR-146a-5p 0.799 miR-182-5p 0.419 

miR-BART10-3p 0.436 miR-28-3p 0.508 let-7g-5p 0.664 miR-151a-5p 0.379 
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miR-101-3p 0.429 miR-155-5p 0.503 miR-378a-3p 0.650 miR-30b-5p 0.378 

miR-486-5p 0.425 miR-101-3p 0.474 miR-BHRF1-3 0.644 miR-103a-3p 0.370 

miR-25-3p 0.409 miR-30c-5p 0.422 miR-27b-3p 0.564 miR-146b-5p 0.367 

miR-98-5p 0.399 miR-142-3p 0.399 miR-26b-5p 0.520 miR-1246 0.339 

miR-93-5p 0.386 miR-4792 0.384 miR-4485-3p 0.517 miR-20a-5p 0.334 

miR-9-5p 0.385 miR-93-5p 0.369 miR-BART17-5p 0.511 miR-101-3p 0.307 

miR-30b-5p 0.377 let-7i-5p 0.340 miR-BART13-5p 0.494 miR-486-5p 0.302 

miR-28-3p 0.338 miR-425-5p 0.333 miR-25-3p 0.485 miR-19b-3p 0.293 

miR-425-5p 0.338 miR-30b-5p 0.319 miR-142-3p 0.468 miR-30c-5p 0.291 

miR-181b-5p 0.334 miR-423-3p 0.313 miR-103a-3p 0.424 miR-93-5p 0.289 

miR-26b-5p 0.332 miR-29a-3p 0.289 miR-486-5p 0.403 let-7i-5p 0.283 

miR-29a-3p 0.324 miR-181b-5p 0.280 miR-BART18-3p 0.401 miR-28-5p 0.277 

miR-BART8-5p 0.296 let-7c-5p 0.245 miR-186-5p 0.394 miR-423-3p 0.254 

miR-4792 0.287 miR-9-5p 0.240 miR-BART19-3p 0.354 miR-98-5p 0.229 

miR-19a-3p 0.276 miR-148a-5p 0.223 miR-30c-5p 0.343 miR-17-5p 0.213 

miR-4485-3p 0.276 miR-486-5p 0.199 miR-30b-5p 0.332 miR-181a-3p 0.197 

miR-15a-5p 0.255 miR-183-5p 0.198 miR-BART7-3p 0.323 miR-423-5p 0.188 

miR-423-3p 0.233 miR-423-5p 0.195 miR-101-3p 0.304 miR-151a-3p 0.184 

miR-30c-5p 0.224 let-7d-5p 0.187 miR-20a-5p 0.302 miR-29a-3p 0.184 

miR-423-5p 0.217 let-7b-5p 0.181 miR-BART9-5p 0.300 miR-181b-5p 0.172 

miR-221-3p 0.210 miR-27a-3p 0.177 miR-BART2-5p 0.290 miR-210-3p 0.168 

miR-148a-5p 0.206 miR-769-5p 0.170 miR-BART6-5p 0.288 miR-155-5p 0.163 

miR-21-3p 0.202 miR-146b-5p 0.163 miR-BART8-3p 0.287 miR-15a-5p 0.154 

miR-BART6-3p 0.197 miR-339-3p 0.142 miR-BHRF1-2-3p 0.287 let-7d-5p 0.153 

let-7d-5p 0.176 miR-1260b 0.127 miR-BART17-3p 0.274 miR-140-3p 0.143 

miR-107 0.167 miR-1260a 0.126 miR-98-5p 0.260 miR-4532 0.138 

miR-BART11-3p 0.158 miR-92b-3p 0.125 miR-93-5p 0.257 miR-769-5p 0.138 

miR-769-5p 0.156 miR-140-3p 0.122 miR-BART14-3p 0.252 miR-941 0.120 

miR-1246 0.151 miR-19a-3p 0.113 miR-151a-5p 0.249 miR-1260a 0.117 

let-7b-5p 0.142 miR-210-3p 0.108 miR-155-5p 0.219 miR-1260b 0.117 

miR-130b-3p 0.132 miR-15b-5p 0.108 let-7i-5p 0.200 miR-148a-5p 0.103 

miR-BART22 0.128 miR-107 0.106 miR-17-5p 0.195   

miR-140-3p 0.124 miR-301a-3p 0.102 miR-19b-3p 0.193   

miR-222-3p 0.122   miR-148a-5p 0.184   

miR-183-5p 0.121   miR-151a-3p 0.183   

miR-BART7-5p 0.114   miR-423-3p 0.175   
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miR-17-3p 0.111   miR-10a-5p 0.155   

miR-301a-3p 0.110   miR-27a-3p 0.153   

miR-193b-3p 0.104   miR-BART3-5p 0.153   

miR-18a-5p 0.103   miR-28-5p 0.137   

    miR-BART1-3p 0.137   

    miR-423-5p 0.134   

    miR-BART1-5p 0.131   

    miR-210-3p 0.129   

    miR-BART16 0.125   

    miR-BART5-5p 0.120   

    let-7d-5p 0.118   

    miR-29a-3p 0.116   

    miR-15a-5p 0.110   

    miR-425-5p 0.108   

    miR-181a-3p 0.108   

    miR-941 0.107   

    miR-1260a 0.107   

    miR-1260b 0.107   

    miR-181b-5p 0.102   

    miR-140-3p 0.100   
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Table A2.Highly expressed miRNAs in U2932 and SUDHL5 and their EBV positive 
counterparts in “Ago2-IP” profile at 0.1% cut-off. 

% of Ago2-IP miRNA pool 

U2932 SUDHL5 

miRNA  
EBV 
Positive miRNA 

EBV 
Negative miRNA 

EBV  
Positive miRNA   

EBV  
Negative 

miR-92a-3p 26.551 miR-92a-3p 23.235 miR-21-5p 16.151 miR-21-5p 14.373 

miR-181a-5p 10.446 miR-181a-5p 9.224 miR-BHRF1-1 7.030 miR-142-5p 13.376 

miR-146a-5p 10.051 miR-148a-3p 7.232 miR-92a-3p 4.881 miR-181a-5p 8.794 

miR-191-5p 5.372 miR-146a-5p 7.106 miR-148a-3p 4.216 miR-92a-3p 7.077 

miR-16-5p 4.615 miR-191-5p 6.580 miR-BART8-5p 4.154 miR-26a-5p 6.298 

miR-148a-3p 4.096 miR-26a-5p 4.317 miR-181a-5p 4.149 miR-16-5p 5.130 

miR-30d-5p 3.184 miR-16-5p 3.565 miR-22-3p 3.862 miR-22-3p 4.762 

miR-26a-5p 3.124 miR-182-5p 3.089 miR-142-5p 3.435 miR-191-5p 3.399 

let-7f-5p 2.665 miR-30d-5p 3.074 miR-16-5p 3.231 let-7f-5p 3.294 

miR-21-5p 2.581 let-7f-5p 2.949 miR-BART6-3p 3.143 miR-28-3p 3.260 

miR-142-5p 2.074 let-7a-5p 2.257 miR-191-5p 2.883 miR-30d-5p 3.027 

miR-182-5p 1.966 miR-21-5p 1.956 miR-30d-5p 2.617 miR-148a-3p 2.644 

miR-27b-3p 1.916 miR-142-5p 1.939 let-7f-5p 2.566 miR-423-5p 1.639 

miR-155-5p 1.311 miR-27b-3p 1.707 miR-BART10-3p 2.498 miR-30e-5p 1.612 

let-7a-5p 1.153 miR-30e-5p 1.502 miR-26a-5p 2.210 miR-142-3p 1.501 

miR-192-5p 1.080 miR-192-5p 1.470 miR-BART11-3p 1.950 let-7a-5p 1.437 

miR-186-5p 0.865 miR-22-3p 1.289 miR-BART19-5p 1.889 miR-146a-5p 1.258 

miR-30e-5p 0.804 miR-186-5p 1.275 miR-182-5p 1.827 miR-192-5p 1.018 

miR-378a-3p 0.790 miR-378a-3p 0.852 miR-28-3p 1.728 miR-186-5p 0.944 

miR-22-3p 0.756 miR-19b-3p 0.750 miR-BART7-5p 1.677 miR-27b-3p 0.892 

miR-423-5p 0.738 miR-155-5p 0.730 miR-146a-5p 1.381 miR-25-3p 0.879 

let-7i-5p 0.588 miR-28-3p 0.695 miR-30e-5p 1.280 miR-423-3p 0.785 

miR-103a-3p 0.566 miR-25-3p 0.678 let-7a-5p 1.060 miR-378a-3p 0.767 

miR-423-3p 0.516 miR-103a-3p 0.598 miR-146b-5p 0.988 miR-182-5p 0.667 

miR-19b-3p 0.505 let-7g-5p 0.595 miR-BART22 0.951 let-7i-5p 0.662 

miR-181b-5p 0.504 miR-425-5p 0.544 miR-423-5p 0.936 miR-151a-5p 0.625 

miR-425-5p 0.484 miR-20a-5p 0.540 miR-BART17-5p 0.844 miR-21-3p 0.594 

let-7g-5p 0.475 miR-17-5p 0.513 miR-192-5p 0.743 miR-28-5p 0.515 

miR-17-5p 0.469 let-7i-5p 0.478 miR-378a-3p 0.733 let-7g-5p 0.493 

miR-28-3p 0.454 miR-93-5p 0.459 miR-BART13-5p 0.725 miR-146b-5p 0.472 

miR-93-5p 0.446 miR-423-5p 0.442 miR-BHRF1-3 0.659 miR-181b-5p 0.383 

miR-BART8-5p 0.425 miR-423-3p 0.429 miR-27b-3p 0.605 miR-93-5p 0.368 

miR-25-3p 0.373 miR-101-3p 0.398 miR-25-3p 0.565 miR-103a-3p 0.360 

miR-20a-5p 0.355 miR-181b-5p 0.368 miR-21-3p 0.561 miR-155-5p 0.310 
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miR-BART11-3p 0.339 miR-29a-3p 0.343 miR-423-3p 0.496 miR-26b-5p 0.305 

miR-BART6-3p 0.318 miR-26b-5p 0.318 miR-186-5p 0.443 miR-101-3p 0.245 

miR-9-5p 0.286 miR-30c-5p 0.291 let-7i-5p 0.377 miR-30c-5p 0.245 

miR-15a-5p 0.276 miR-98-5p 0.231 miR-103a-3p 0.364 miR-19b-3p 0.242 

miR-29a-3p 0.263 miR-142-3p 0.228 let-7g-5p 0.349 miR-151a-3p 0.224 

miR-BART10-3p 0.243 miR-183-5p 0.214 miR-BART18-3p 0.338 miR-29a-3p 0.204 

miR-101-3p 0.240 miR-9-5p 0.200 miR-155-5p 0.338 miR-15a-5p 0.187 

miR-BART19-5p 0.189 miR-146b-5p 0.191 miR-BHRF1-2-3p 0.326 miR-140-3p 0.182 

miR-26b-5p 0.183 miR-148a-5p 0.185 miR-151a-5p 0.304 miR-425-5p 0.179 

miR-142-3p 0.172 miR-30b-5p 0.183 miR-BART6-5p 0.287 let-7d-5p 0.175 

miR-130b-3p 0.145 let-7d-5p 0.159 miR-26b-5p 0.261 miR-17-5p 0.170 

let-7d-5p 0.144 miR-92b-3p 0.152 miR-93-5p 0.255 miR-106b-3p 0.159 

miR-148a-5p 0.144 miR-769-5p 0.152 miR-BART14-3p 0.253 miR-30b-5p 0.153 

miR-30c-5p 0.139 miR-320a 0.151 miR-101-3p 0.244 miR-181a-3p 0.145 

miR-BART7-5p 0.136 miR-339-3p 0.149 miR-BART2-5p 0.235 miR-210-3p 0.138 

miR-107 0.135 miR-140-3p 0.148 miR-30c-5p 0.235 miR-941 0.138 

miR-98-5p 0.134 miR-27a-3p 0.143 miR-BART8-3p 0.221 miR-15b-5p 0.132 

miR-30b-5p 0.129 miR-19a-3p 0.134 miR-142-3p 0.219 miR-769-5p 0.126 

miR-183-5p 0.117 miR-15b-5p 0.132 miR-BART7-3p 0.201 miR-486-5p 0.124 

miR-221-3p 0.114 let-7b-5p 0.119 miR-BART9-5p 0.201 miR-20a-5p 0.118 

miR-19a-3p 0.114 let-7c-5p 0.115 miR-181b-5p 0.191   

miR-769-5p 0.107 miR-15a-5p 0.109 miR-10a-5p 0.189   

miR-140-3p 0.103 miR-107 0.107 miR-28-5p 0.189   

    miR-151a-3p 0.186   

    miR-BART16 0.185   

    miR-BART3-5p 0.176   

    miR-BART19-3p 0.175   

    miR-19b-3p 0.144   

    miR-425-5p 0.143   

    miR-30b-5p 0.133   

    miR-27a-3p 0.130   

    miR-148a-5p 0.126   

    miR-140-3p 0.116   

    miR-BART17-3p 0.115   

    miR-941 0.113   

    miR-17-5p 0.109   

    miR-29a-3p 0.107   

    miR-363-3p 0.105   

    let-7d-5p 0.104   



 

99 
 

Table A3. List of miRNAs enriched or depleted from the “Ago2-IP”as compared to 
the “Total” profile in U2932-EBV and U2932 at 0.1% cut-off. 
 

U2932-EBV  U2932 

miRNA 

% of total 
miRNA 
pool 

% of RISC 
assoc. 
pool 

RISC   
enriched miRNA 

% of total 
miRNA 
pool 

% of RISC 
assoc. 
pool 

RISC 
enriched 

miR-423-5p 0.217 0.738 3.407 miR-320a 0.064 0.151 2.345 

miR-423-3p 0.233 0.516 2.22 miR-423-5p 0.195 0.442 2.267 

miR-146a-5p 5.849 10.051 1.718 miR-146a-5p 3.38 7.106 2.103 
miR-92a-3p 16.783 26.551 1.582 miR-425-5p 0.333 0.544 1.635 

miR-22-3p 0.49 0.756 1.542 miR-22-3p 0.86 1.289 1.498 

miR-181b-5p 0.334 0.504 1.512 miR-21-5p 1.331 1.956 1.469 

miR-425-5p 0.338 0.484 1.434 miR-155-5p 0.503 0.73 1.452 

miR-181a-5p 7.785 10.446 1.342 let-7i-5p 0.34 0.478 1.407 

miR-28-3p 0.338 0.454 1.342 miR-423-3p 0.313 0.429 1.369 
miR-182-5p 1.609 1.966 1.222 miR-28-3p 0.508 0.695 1.367 

miR-16-5p 3.929 4.615 1.175 miR-92a-3p 17.205 23.235 1.35 

miR-93-5p 0.386 0.446 1.156 miR-181b-5p 0.28 0.368 1.317 

let-7i-5p 0.53 0.588 1.109 miR-181a-5p 7.073 9.224 1.304 

miR-130b-3p 0.132 0.145 1.093 miR-93-5p 0.369 0.459 1.245 

miR-27b-3p 1.753 1.916 1.093 miR-378a-3p 0.685 0.852 1.244 
miR-15a-5p 0.255 0.276 1.083 miR-15b-5p 0.108 0.132 1.221 

miR-26a-5p 2.887 3.124 1.082 miR-25-3p 0.556 0.678 1.218 

miR-21-5p 2.551 2.581 1.012 miR-186-5p 1.048 1.275 1.217 

miR-186-5p 0.879 0.865 0.984 miR-92b-3p 0.125 0.152 1.214 

miR-378a-3p 0.803 0.79 0.984 miR-140-3p 0.122 0.148 1.209 

miR-155-5p 1.339 1.311 0.979 miR-182-5p 2.566 3.089 1.204 

miR-183-5p 0.121 0.117 0.968 miR-19a-3p 0.113 0.134 1.192 

miR-30d-5p 3.379 3.184 0.942 miR-15a-5p 0.091 0.109 1.189 

miR-25-3p 0.409 0.373 0.912 miR-29a-3p 0.289 0.343 1.186 

miR-192-5p 1.3 1.08 0.831 miR-146b-5p 0.163 0.191 1.172 

miR-140-3p 0.124 0.103 0.826 miR-16-5p 3.123 3.565 1.142 

let-7d-5p 0.176 0.144 0.818 miR-19b-3p 0.664 0.75 1.13 
miR-29a-3p 0.324 0.263 0.811 miR-30d-5p 2.736 3.074 1.124 

miR-107 0.167 0.135 0.811 miR-183-5p 0.198 0.214 1.079 

miR-17-3p 0.111 0.088 0.791 miR-27b-3p 1.625 1.707 1.051 

let-7f-5p 3.555 2.665 0.75 miR-339-3p 0.142 0.149 1.05 

miR-9-5p 0.385 0.286 0.743 miR-26a-5p 4.159 4.317 1.038 

miR-148a-3p 5.704 4.096 0.718 miR-107 0.106 0.107 1.012 
miR-30e-5p 1.139 0.804 0.706 miR-192-5p 1.623 1.47 0.906 

miR-103a-3p 0.808 0.566 0.7 miR-769-5p 0.17 0.152 0.894 

miR-148a-5p 0.206 0.144 0.699 miR-103a-3p 0.675 0.598 0.885 

miR-769-5p 0.156 0.107 0.689 miR-30e-5p 1.728 1.502 0.869 

miR-222-3p 0.122 0.08 0.651 miR-148a-3p 8.417 7.232 0.859 

miR-17-5p 0.728 0.469 0.645 let-7d-5p 0.187 0.159 0.85 
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miR-30c-5p 0.224 0.139 0.624 miR-101-3p 0.474 0.398 0.839 

miR-301a-3p 0.11 0.068 0.619 miR-9-5p 0.24 0.2 0.833 

miR-191-5p 9.169 5.372 0.586 miR-148a-5p 0.223 0.185 0.831 

miR-101-3p 0.429 0.24 0.559 miR-27a-3p 0.177 0.143 0.809 

let-7g-5p 0.858 0.475 0.553 let-7f-5p 3.787 2.949 0.779 

miR-26b-5p 0.332 0.183 0.552 miR-301a-3p 0.102 0.079 0.774 

miR-221-3p 0.21 0.114 0.544 miR-210-3p 0.108 0.082 0.758 

miR-193b-3p 0.104 0.048 0.462 miR-30c-5p 0.422 0.291 0.688 

let-7b-5p 0.142 0.064 0.453 miR-17-5p 0.778 0.513 0.659 
miR-21-3p 0.202 0.084 0.413 let-7b-5p 0.181 0.119 0.657 

miR-19a-3p 0.276 0.114 0.413 miR-30b-5p 0.319 0.183 0.574 

miR-142-5p 5.213 2.074 0.398 miR-142-3p 0.399 0.228 0.572 

miR-142-3p 0.437 0.172 0.394 miR-191-5p 11.556 6.58 0.569 

miR-30b-5p 0.377 0.129 0.343 miR-26b-5p 0.577 0.318 0.552 

miR-18a-5p 0.103 0.035 0.342 miR-142-5p 3.854 1.939 0.503 

miR-98-5p 0.399 0.134 0.336 let-7a-5p 4.559 2.257 0.495 

let-7a-5p 3.472 1.153 0.332 let-7c-5p 0.245 0.115 0.47 

miR-20a-5p 1.157 0.355 0.307 let-7g-5p 1.322 0.595 0.45 

miR-19b-3p 1.744 0.505 0.29 miR-98-5p 0.566 0.231 0.408 

miR-486-5p 0.425 0.033 0.077 miR-20a-5p 1.666 0.54 0.324 

miR-4485-3p 0.276 0.004 0.013 miR-486-5p 0.199 0.03 0.15 
miR-1246 0.151 0.001 0.003 miR-4792 0.384 0.003 0.008 

miR-4792 0.287 0.001 0.003 miR-1260b 0.127 0.0005 0.004 

    miR-1260a 0.126 0.0004 0.003 
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Table A4. List of miRNAs enriched or depleted from the “Ago2-IP”as compared to 
the “Total” profile in SUDHL5-EBV and SUDHL5 at 0.1% cut-off 
 

SUDHL5-EBV SUDHL5 

miRNA  

% of total 
miRNA   
pool 

% of RISC 
assoc. 
pool 

RISC   
enriched miRNA  

  % of 
total 
miRNA 
pool 

% of RISC 
assoc. 
pool 

RISC 
enriched 

miR-423-5p 0.134 0.936 6.989 miR-423-5p 0.188 1.639 8.721 

miR-423-3p 0.175 0.496 2.834 miR-423-3p 0.254 0.785 3.087 

miR-92a-3p 2.364 4.881 2.064 miR-146a-5p 0.477 1.258 2.636 

miR-28-3p 0.877 1.728 1.972 miR-92a-3p 3.013 7.077 2.349 

let-7i-5p 0.2 0.377 1.886 let-7i-5p 0.283 0.662 2.337 

miR-181b-5p 0.102 0.191 1.873 miR-181b-5p 0.172 0.383 2.225 

miR-146a-5p 0.799 1.381 1.729 miR-28-3p 1.466 3.26 2.224 

miR-155-5p 0.219 0.338 1.547 miR-106b-3p 0.082 0.159 1.932 

miR-28-5p 0.137 0.189 1.381 miR-155-5p 0.163 0.31 1.901 

miR-425-5p 0.108 0.143 1.323 miR-425-5p 0.095 0.179 1.879 

miR-22-3p 3.158 3.862 1.223 miR-28-5p 0.277 0.515 1.861 

miR-151a-5p 0.249 0.304 1.221 miR-22-3p 2.781 4.762 1.712 

miR-10a-5p 0.155 0.189 1.219 miR-151a-5p 0.379 0.625 1.651 

miR-363-3p 0.089 0.105 1.179 miR-182-5p 0.419 0.667 1.592 

miR-182-5p 1.55 1.827 1.179 miR-186-5p 0.598 0.944 1.579 

miR-25-3p 0.485 0.565 1.165 miR-181a-5p 5.613 8.794 1.567 

miR-140-3p 0.1 0.116 1.152 miR-16-5p 3.588 5.13 1.43 

miR-181a-5p 3.619 4.149 1.146 miR-27b-3p 0.659 0.892 1.354 

miR-21-5p 14.164 16.151 1.14 miR-15b-5p 0.099 0.132 1.328 

miR-378a-3p 0.65 0.733 1.128 miR-21-5p 10.992 14.373 1.308 

miR-186-5p 0.394 0.443 1.124 miR-25-3p 0.68 0.879 1.293 

miR-27b-3p 0.564 0.605 1.073 miR-146b-5p 0.367 0.472 1.284 

miR-941 0.107 0.113 1.05 miR-93-5p 0.289 0.368 1.272 

miR-151a-3p 0.183 0.186 1.012 miR-140-3p 0.143 0.182 1.271 

miR-93-5p 0.257 0.255 0.992 miR-26a-5p 5.057 6.298 1.245 

let-7f-5p 2.587 2.566 0.992 miR-378a-3p 0.624 0.767 1.228 

miR-16-5p 3.321 3.231 0.973 miR-151a-3p 0.184 0.224 1.218 

miR-29a-3p 0.116 0.107 0.92 miR-15a-5p 0.154 0.187 1.214 

let-7d-5p 0.118 0.104 0.881 let-7f-5p 2.746 3.294 1.2 

miR-192-5p 0.849 0.743 0.875 miR-192-5p 0.881 1.018 1.155 

miR-26a-5p 2.549 2.21 0.867 miR-941 0.12 0.138 1.148 

miR-103a-3p 0.424 0.364 0.858 let-7d-5p 0.153 0.175 1.143 

miR-30d-5p 3.06 2.617 0.855 miR-29a-3p 0.184 0.204 1.107 

miR-15a-5p 0.11 0.093 0.852 miR-30d-5p 3.031 3.027 0.999 

miR-27a-3p 0.153 0.13 0.848 miR-148a-3p 2.681 2.644 0.986 

miR-146b-5p 1.188 0.988 0.832 miR-103a-3p 0.37 0.36 0.973 

miR-101-3p 0.304 0.244 0.803 miR-769-5p 0.138 0.126 0.917 

miR-19b-3p 0.193 0.144 0.746 miR-30c-5p 0.291 0.245 0.841 
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miR-148a-3p 5.807 4.216 0.726 miR-148a-5p 0.103 0.085 0.831 

miR-181a-3p 0.108 0.077 0.711 miR-19b-3p 0.293 0.242 0.826 

miR-210-3p 0.129 0.089 0.691 miR-191-5p 4.122 3.399 0.825 

miR-30e-5p 1.862 1.28 0.687 miR-30e-5p 1.96 1.612 0.822 

miR-148a-5p 0.184 0.126 0.684 miR-210-3p 0.168 0.138 0.822 

miR-30c-5p 0.343 0.235 0.684 miR-101-3p 0.307 0.245 0.798 

miR-21-3p 0.841 0.561 0.667 miR-17-5p 0.213 0.17 0.798 

miR-191-5p 4.947 2.883 0.583 miR-181a-3p 0.197 0.145 0.736 

miR-17-5p 0.195 0.109 0.558 miR-26b-5p 0.456 0.305 0.669 

let-7g-5p 0.664 0.349 0.526 let-7g-5p 0.776 0.493 0.635 

miR-26b-5p 0.52 0.261 0.502 miR-142-3p 2.657 1.501 0.565 

miR-142-5p 6.891 3.435 0.498 miR-21-3p 1.106 0.594 0.537 

miR-142-3p 0.468 0.219 0.468 let-7a-5p 2.848 1.437 0.505 

let-7a-5p 2.587 1.06 0.41 miR-142-5p 28.391 13.376 0.471 

miR-30b-5p 0.332 0.133 0.4 miR-486-5p 0.302 0.124 0.409 

miR-98-5p 0.26 0.077 0.295 miR-30b-5p 0.378 0.153 0.405 

miR-20a-5p 0.302 0.084 0.278 miR-20a-5p 0.334 0.118 0.352 

miR-486-5p 0.403 0.036 0.089 miR-98-5p 0.229 0.081 0.351 

miR-4485-3p 0.517 0.004 0.009 miR-4485-3p 0.709 0.009 0.013 

miR-1260b 0.107 0.0003 0.003 miR-1246 0.339 0.001 0.002 

miR-1260a 0.107 0.0002 0.002 miR-1260b 0.117 0.00012 0.001 

    miR-4792 1.349 0.001 0.001 

    miR-1260a 0.117 0.00009 0.001 

    miR-4532 0.138 0.00004 0.0003 
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Table A5. Comparison of miRNA profiles in EBV + vs. EBV - in “Total” profile in 
 U2932 and SUDHL5 cell lines at 0.1% cut-off. 
 

U2932 total SUDHL5 total 

miRNA  
EBV 
Positive 

EBV 
Negative 

  Ratio  
EBV +/ 
EBV- miRNA  

EBV 
Positive 

EBV 
Negative 

Ratio 
EBV +/EBV - 

miR-4485-3p 0.276 0.062 4.432 miR-182-5p 1.55 0.419 3.699 
miR-221-3p 0.21 0.056 3.767 miR-146b-5p 1.188 0.367 3.235 
miR-222-3p 0.122 0.037 3.332 miR-10a-5p 0.155 0.061 2.561 
miR-193b-3p 0.104 0.034 3.087 miR-148a-3p 5.807 2.681 2.166 
miR-18a-5p 0.103 0.035 2.985 miR-148a-5p 0.184 0.103 1.793 
miR-1246 0.151 0.051 2.976 miR-146a-5p 0.799 0.477 1.674 
miR-15a-5p 0.255 0.091 2.787 miR-27a-3p 0.153 0.097 1.579 
miR-155-5p 1.339 0.503 2.663 miR-155-5p 0.219 0.163 1.341 
miR-19b-3p 1.744 0.664 2.626 miR-486-5p 0.403 0.302 1.335 
miR-19a-3p 0.276 0.113 2.454 miR-21-5p 14.164 10.992 1.289 
miR-486-5p 0.425 0.199 2.138 miR-191-5p 4.947 4.122 1.2 
miR-21-3p 0.202 0.098 2.07 miR-30c-5p 0.343 0.291 1.178 
miR-21-5p 2.551 1.331 1.916 miR-103a-3p 0.424 0.37 1.145 
miR-130b-3p 0.132 0.076 1.737 miR-26b-5p 0.52 0.456 1.14 
miR-146a-5p 5.849 3.38 1.731 miR-22-3p 3.158 2.781 1.136 
miR-9-5p 0.385 0.24 1.603 miR-98-5p 0.26 0.229 1.134 
miR-107 0.167 0.106 1.58 miR-425-5p 0.108 0.095 1.132 
let-7i-5p 0.53 0.34 1.561 miR-378a-3p 0.65 0.624 1.04 
miR-142-5p 5.213 3.854 1.352 miR-30d-5p 3.06 3.031 1.01 
miR-17-3p 0.111 0.083 1.348 miR-151a-3p 0.183 0.184 0.997 
miR-16-5p 3.929 3.123 1.258 miR-101-3p 0.304 0.307 0.99 
miR-30d-5p 3.379 2.736 1.235 miR-192-5p 0.849 0.881 0.963 
miR-103a-3p 0.808 0.675 1.197 miR-30e-5p 1.862 1.96 0.95 
miR-181b-5p 0.334 0.28 1.193 let-7f-5p 2.587 2.746 0.942 
miR-30b-5p 0.377 0.319 1.183 miR-16-5p 3.321 3.588 0.926 
miR-378a-3p 0.803 0.685 1.172 miR-17-5p 0.195 0.213 0.916 
miR-29a-3p 0.324 0.289 1.121 miR-1260a 0.107 0.117 0.915 
miR-423-5p 0.217 0.195 1.112 miR-1260b 0.107 0.117 0.914 
miR-181a-5p 7.785 7.073 1.101 let-7a-5p 2.587 2.848 0.908 
miR-142-3p 0.437 0.399 1.096 miR-20a-5p 0.302 0.334 0.905 
miR-27b-3p 1.753 1.625 1.079 miR-941 0.107 0.12 0.893 
miR-301a-3p 0.11 0.102 1.078 miR-93-5p 0.257 0.289 0.891 
miR-93-5p 0.386 0.369 1.046 miR-30b-5p 0.332 0.378 0.877 
miR-425-5p 0.338 0.333 1.014 miR-27b-3p 0.564 0.659 0.857 
miR-140-3p 0.124 0.122 1.014 let-7g-5p 0.664 0.776 0.856 
miR-92a-3p 16.783 17.205 0.975 miR-92a-3p 2.364 3.013 0.785 
let-7d-5p 0.176 0.187 0.943 let-7d-5p 0.118 0.153 0.77 
let-7f-5p 3.555 3.787 0.939 miR-210-3p 0.129 0.168 0.77 
miR-17-5p 0.728 0.778 0.935 miR-21-3p 0.841 1.106 0.76 
miR-148a-5p 0.206 0.223 0.923 miR-4485-3p 0.517 0.709 0.729 
miR-769-5p 0.156 0.17 0.918 miR-15a-5p 0.11 0.154 0.713 
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miR-101-3p 0.429 0.474 0.904 miR-25-3p 0.485 0.68 0.713 
miR-15b-5p 0.091 0.108 0.842 miR-423-5p 0.134 0.188 0.713 
miR-186-5p 0.879 1.048 0.838 miR-769-5p 0.098 0.138 0.708 
miR-192-5p 1.3 1.623 0.801 let-7i-5p 0.2 0.283 0.707 
miR-191-5p 9.169 11.556 0.793 miR-140-3p 0.1 0.143 0.7 
let-7b-5p 0.142 0.181 0.786 miR-423-3p 0.175 0.254 0.688 
let-7a-5p 3.472 4.559 0.762 miR-186-5p 0.394 0.598 0.659 
miR-4792 0.287 0.384 0.748 miR-19b-3p 0.193 0.293 0.658 
miR-423-3p 0.233 0.313 0.743 miR-151a-5p 0.249 0.379 0.658 
miR-25-3p 0.409 0.556 0.735 miR-181a-5p 3.619 5.613 0.645 
miR-98-5p 0.399 0.566 0.704 miR-29a-3p 0.116 0.184 0.633 
miR-20a-5p 1.157 1.666 0.694 miR-28-3p 0.877 1.466 0.598 
miR-26a-5p 2.887 4.159 0.694 miR-181b-5p 0.102 0.172 0.592 
miR-148a-3p 5.704 8.417 0.678 miR-181a-3p 0.108 0.197 0.547 
miR-28-3p 0.338 0.508 0.665 miR-26a-5p 2.549 5.057 0.504 
miR-30e-5p 1.139 1.728 0.659 miR-28-5p 0.137 0.277 0.494 
let-7g-5p 0.858 1.322 0.649 miR-4532 0.054 0.138 0.392 
miR-182-5p 1.609 2.566 0.627 miR-142-5p 6.891 28.391 0.243 
miR-183-5p 0.121 0.198 0.61 miR-1246 0.069 0.339 0.205 
miR-26b-5p 0.332 0.577 0.576 miR-142-3p 0.468 2.657 0.176 
miR-22-3p 0.49 0.86 0.57 miR-4792 0.095 1.349 0.07 
miR-210-3p 0.058 0.108 0.537     

miR-30c-5p 0.224 0.422 0.53     

miR-1260b 0.062 0.127 0.488     

miR-1260a 0.061 0.126 0.486     

miR-339-3p 0.064 0.142 0.454     

miR-146b-5p 0.073 0.163 0.448     

miR-92b-3p 0.049 0.125 0.389     

miR-27a-3p 0.032 0.177 0.179     

let-7c-5p 0.024 0.245 0.097     
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Table A6. Comparison of miRNA profiles in EBV+ vs. EBV- in “Ago2-IP” profile in 
 U2932 and SUDHL5 cell lines at 0.1% cut-off. 

 

U2932 Ago2-IP SUDHL5 Ago2-IP 

miRNA  
EBV  
Positive 

EBV 
Negative 

  Ratio  
EBV +/ 
EBV- miRNA  

EBV  
Positive 

EBV 
Negative 

  Ratio  
EBV +/ 
EBV- 

miR-15a-5p 0.276 0.109 2.539 miR-363-3p 0.105 0.017 6.046 
miR-221-3p 0.114 0.045 2.538 miR-182-5p 1.827 0.667 2.739 
miR-155-5p 1.311 0.730 1.795 miR-146b-5p 0.988 0.472 2.095 
miR-130b-3p 0.145 0.082 1.759 miR-10a-5p 0.189 0.097 1.956 
miR-423-5p 0.738 0.442 1.671 miR-148a-3p 4.216 2.644 1.595 
miR-9-5p 0.286 0.200 1.430 miR-148a-5p 0.126 0.085 1.476 
miR-146a-5p 10.051 7.106 1.414 miR-27a-3p 0.130 0.097 1.336 
miR-181b-5p 0.504 0.368 1.369 miR-21-5p 16.151 14.373 1.124 
miR-21-5p 2.581 1.956 1.320 miR-146a-5p 1.381 1.258 1.098 
miR-16-5p 4.615 3.565 1.294 miR-155-5p 0.338 0.310 1.091 
miR-107 0.135 0.107 1.266 miR-103a-3p 0.364 0.360 1.009 
let-7i-5p 0.588 0.478 1.231 miR-101-3p 0.244 0.245 0.997 
miR-423-3p 0.516 0.429 1.205 miR-30c-5p 0.235 0.245 0.958 
miR-92a-3p 26.551 23.235 1.143 miR-378a-3p 0.733 0.767 0.956 
miR-181a-5p 10.446 9.224 1.132 miR-21-3p 0.561 0.594 0.944 
miR-27b-3p 1.916 1.707 1.122 miR-30b-5p 0.133 0.153 0.868 
miR-142-5p 2.074 1.939 1.070 miR-30d-5p 2.617 3.027 0.865 
miR-30d-5p 3.184 3.074 1.036 miR-26b-5p 0.261 0.305 0.856 
miR-93-5p 0.446 0.459 0.972 miR-191-5p 2.883 3.399 0.848 
miR-103a-3p 0.566 0.598 0.947 miR-151a-3p 0.186 0.224 0.828 
miR-378a-3p 0.790 0.852 0.927 miR-941 0.113 0.138 0.817 
miR-17-5p 0.469 0.513 0.916 miR-22-3p 3.862 4.762 0.811 
let-7d-5p 0.144 0.159 0.908 miR-425-5p 0.143 0.179 0.797 
let-7f-5p 2.665 2.949 0.904 miR-30e-5p 1.280 1.612 0.794 
miR-425-5p 0.484 0.544 0.890 let-7f-5p 2.566 3.294 0.779 
miR-19a-3p 0.114 0.134 0.850 let-7a-5p 1.060 1.437 0.738 
miR-191-5p 5.372 6.580 0.816 miR-192-5p 0.743 1.018 0.730 
let-7g-5p 0.475 0.595 0.798 miR-20a-5p 0.084 0.118 0.713 
miR-148a-5p 0.144 0.185 0.777 let-7g-5p 0.349 0.493 0.709 
miR-29a-3p 0.263 0.343 0.767 miR-93-5p 0.255 0.368 0.695 
miR-142-3p 0.172 0.228 0.753 miR-92a-3p 4.881 7.077 0.690 
miR-192-5p 1.080 1.470 0.735 miR-27b-3p 0.605 0.892 0.679 
miR-26a-5p 3.124 4.317 0.724 miR-210-3p 0.089 0.138 0.648 
miR-769-5p 0.107 0.152 0.708 miR-25-3p 0.565 0.879 0.643 
miR-30b-5p 0.129 0.183 0.707 miR-17-5p 0.109 0.170 0.640 
miR-140-3p 0.103 0.148 0.693 miR-140-3p 0.116 0.182 0.635 
miR-186-5p 0.865 1.275 0.678 miR-423-3p 0.496 0.785 0.632 
miR-19b-3p 0.505 0.750 0.673 miR-16-5p 3.231 5.130 0.630 
miR-15b-5p 0.088 0.132 0.672 miR-15b-5p 0.081 0.132 0.612 
miR-20a-5p 0.355 0.540 0.657 miR-19b-3p 0.144 0.242 0.595 
miR-28-3p 0.454 0.695 0.653 let-7d-5p 0.104 0.175 0.594 
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miR-182-5p 1.966 3.089 0.636 miR-769-5p 0.073 0.126 0.579 
miR-92b-3p 0.096 0.152 0.631 miR-423-5p 0.936 1.639 0.571 
miR-101-3p 0.240 0.398 0.602 let-7i-5p 0.377 0.662 0.570 
miR-22-3p 0.756 1.289 0.586 miR-106b-3p 0.085 0.159 0.532 
miR-98-5p 0.134 0.231 0.580 miR-28-3p 1.728 3.260 0.530 
miR-26b-5p 0.183 0.318 0.576 miR-181a-3p 0.077 0.145 0.529 
miR-320a 0.086 0.151 0.572 miR-29a-3p 0.107 0.204 0.526 
miR-148a-3p 4.096 7.232 0.566 miR-15a-5p 0.093 0.187 0.501 
miR-25-3p 0.373 0.678 0.550 miR-181b-5p 0.191 0.383 0.498 
miR-183-5p 0.117 0.214 0.547 miR-151a-5p 0.304 0.625 0.486 
let-7b-5p 0.064 0.119 0.542 miR-181a-5p 4.149 8.794 0.472 
miR-339-3p 0.080 0.149 0.536 miR-186-5p 0.443 0.944 0.469 
miR-30e-5p 0.804 1.502 0.535 miR-28-5p 0.189 0.515 0.366 
let-7a-5p 1.153 2.257 0.511 miR-26a-5p 2.210 6.298 0.351 
miR-30c-5p 0.139 0.291 0.480 miR-486-5p 0.036 0.124 0.292 
miR-146b-5p 0.090 0.191 0.468 miR-142-5p 3.435 13.376 0.257 
miR-27a-3p 0.031 0.143 0.215 miR-142-3p 0.219 1.501 0.146 
let-7c-5p 0.013 0.115 0.116     
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Table A7.   
Abundance of EBV miRNAs in total- and Ago2-miRNA profiles in U2932-EBV and 
SUDHL5-EBV infected cell line. 
 

U2932-EBV SUDHL5-EBV 
miRNA Total  miRNA Ago miRNA Total miRNA Ago2 

rel. expr. 
% 

rel. expr. % rel. expr. 
% 

rel. expr. % 

BART10-3p 0.4365 BART8-5p 0.42474 BHRF1-1 5.971 BHRF1-1 7.0296 

BART8-5p 0.2964 BART11-3p 0.33851 BART10-3p 3.2542 BART8-5p 4.1537 

BART6-3p 0.1967 BART6-3p 0.31849 BART8-5p 2.9754 BART6-3p 3.1426 

BART11-3p 0.1582 BART10-3p 0.24271 BART7-5p 1.3665 BART10-3p 2.4979 

BART22 0.1281 BART19-5p 0.18918 BART19-5p 1.2667 BART11-3p 1.9503 

BART7-5p 0.1138 BART7-5p 0.13593 BART11-3p 1.1298 BART19-5p 1.889 

BART19-5p 0.0922 BART22 0.09825 BART6-3p 1.0978 BART7-5p 1.6766 

BHRF1-1 0.0871 BHRF1-1 0.08756 BART22 0.9351 BART22 0.9512 

BART7-3p 0.0829 BART17-5p 0.07884 BHRF1-3 0.6435 BART17-5p 0.8444 

BART18-3p 0.0701 BART18-3p 0.05162 BART17-5p 0.5107 BART13-5p 0.7252 

BART17-5p 0.0589 BART13-5p 0.04266 BART13-5p 0.4936 BHRF1-3 0.6585 

BART16 0.0538 BART16 0.03831 BART18-3p 0.4007 BART18-3p 0.3384 

BART8-3p 0.0409 BART2-5p 0.03258 BART19-3p 0.3536 BHRF1-2-3p 0.3256 

BART9-5p 0.0408 BART7-3p 0.03072 BART7-3p 0.3231 BART6-5p 0.2869 

BART2-5p 0.0403 BART6-5p 0.03005 BART9-5p 0.3 BART14-3p 0.2532 

BART13-5p 0.0394 BART14-3p 0.02783 BART2-5p 0.2895 BART2-5p 0.2351 

BART14-3p 0.0342 BART8-3p 0.02579 BART6-5p 0.2882 BART8-3p 0.2212 

BART6-5p 0.034 BART9-5p 0.02475 BART8-3p 0.2875 BART7-3p 0.2011 

BART5-5p 0.0307 BART3-5p 0.02096 BHRF1-2-3p 0.2872 BART9-5p 0.2006 

BART3-5p 0.0276 BART9-3p 0.0136 BART17-3p 0.2741 BART16 0.1845 

BART1-3p 0.0255 BART11-5p 0.01217 BART14-3p 0.2516 BART3-5p 0.1761 

BART17-3p 0.0224 BART17-3p 0.01134 BART3-5p 0.153 BART19-3p 0.1746 

BART1-5p 0.0208 BART19-3p 0.00716 BART1-3p 0.1365 BART17-3p 0.1147 

BART19-3p 0.0187 BART3-3p 0.00692 BART1-5p 0.131 BART9-3p 0.0764 

BART3-3p 0.0147 BART1-5p 0.00685 BART16 0.1251 BART1-5p 0.0749 

BART11-5p 0.0123 BHRF1-2-3p 0.00683 BART5-5p 0.1204 BART4-5p 0.0705 

BART4-5p 0.0115 BHRF1-3 0.0068 BART11-5p 0.082 BART11-5p 0.0664 

BART9-3p 0.0115 BART1-3p 0.00633 BART4-5p 0.0626 BART1-3p 0.0437 

BHRF1-3 0.0096 BART4-5p 0.00563 BART9-3p 0.0622 BART18-5p 0.0392 

BART18-5p 0.009 BART18-5p 0.00473 BART18-5p 0.0605 BART5-5p 0.0339 

BART13-3p 0.0068 BART5-5p 0.00323 BART3-3p 0.0581 BART3-3p 0.0192 

BHRF1-2-3p 0.0066 BART4-3p 0.002 BART13-3p 0.0287 BART13-3p 0.0136 

BART21-3p 0.0064 BART15 0.00131 BART21-3p 0.0276 BART12 0.0134 

BART4-3p 0.0029 BART12 0.00099 BART15 0.0145 BART21-5p 0.0116 

BART15 0.0026 BART13-3p 0.00091 BART21-5p 0.0145 BART20-3p 0.011 

BART12 0.0017 BART21-5p 0.00087 BART14-5p 0.0145 BART15 0.0107 

BART21-5p 0.0014 BART21-3p 0.00075 BART12 0.0142 BART14-5p 0.0099 

BART20-3p 0.0011 BART14-5p 0.00068 BART20-3p 0.0123 BART21-3p 0.0059 

BART10-5p 0.0007 BART20-3p 0.00059 BHRF1-2-5p 0.009 BART4-3p 0.0054 
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BART14-5p 0.0005 BART10-5p 0.00017 BART4-3p 0.0075 BHRF1-2-5p 0.0045 

BART5-3p 0.0002 BART2-3p 0.00015 BART10-5p 0.0038 BART10-5p 0.0021 

BHRF1-2-5p 0.0002 BART20-5p 0.00006 BART20-5p 0.0028 BART2-3p 0.0014 

BART2-3p 0.0001 BHRF1-2-5p 0.00005 BART5-3p 0.0014 BART20-5p 0.0008 

BART20-5p 0.0001 BART5-3p 0.00004 BART2-3p 0.0013 BART5-3p 0.0004 
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Table A8.  
List of EBV-miRNAs enriched or depleted from the “Ago2-IP”as compared to the 

“Total” profile in U2932-EBV and SUDHL5-EBV   

 

U2932-EBV SUDHL5-EBV 

EBV miRNA 

% Total 
miRNA 

pool 

% RISC 
assoc. 
pool 

RISC 
enriched 

 fold 
change EBV miRNA 

% Total 
miRNA 

pool 

% RISC 
assoc. 
pool 

RISC 
enriched 

 fold 
change 

miR-BART11-3p 0.158 0.339 2.140 miR-BART6-3p 1.098 3.143 2.863 

miR-BART19-5p 0.092 0.189 2.053 miR-BART11-3p 1.130 1.950 1.726 

miR-BART6-3p 0.197 0.318 1.619 miR-BART17-5p 0.511 0.844 1.653 

miR-BART8-5p 0.296 0.425 1.433 miR-BART19-5p 1.267 1.889 1.491 

miR-BART7-5p 0.114 0.136 1.194 miR-BART16 0.125 0.185 1.476 

miR-BART22 0.128 0.098 0.767 miR-BART13-5p 0.494 0.725 1.469 

miR-BART10-3p 0.436 0.243 0.556 miR-BART8-5p 2.975 4.154 1.396 
    miR-BART7-5p 1.367 1.677 1.227 
    miR-BHRF1-1 5.971 7.030 1.177 
    miR-BART3-5p 0.153 0.176 1.151 
    miR-BHRF1-2-3p 0.287 0.326 1.133 
    miR-BHRF1-3 0.644 0.659 1.023 
    miR-BART22 0.935 0.951 1.017 
    miR-BART14-3p 0.252 0.253 1.006 
    miR-BART6-5p 0.288 0.287 0.995 
    miR-BART18-3p 0.401 0.338 0.845 
    miR-BART2-5p 0.290 0.235 0.812 
    miR-BART8-3p 0.287 0.221 0.769 
    miR-BART10-3p 3.254 2.498 0.768 
    miR-BART9-5p 0.300 0.201 0.669 
    miR-BART7-3p 0.323 0.201 0.623 
    miR-BART1-5p 0.131 0.075 0.572 
    miR-BART19-3p 0.354 0.175 0.494 
    miR-BART17-3p 0.274 0.115 0.418 
    miR-BART1-3p 0.137 0.044 0.320 
    miR-BART5-5p 0.120 0.034 0.281 
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Table A9.Up and down regulated miRNAs in “Ago2-IP”U2932-EBV vs. U2932 
measured by microarray 
 

miR-551b 8.85 miR-339-3p -2.23 miR-7 -2.71 miR-574-3p -3.89 

miR-137 6.89 miR-139-5p -2.23 miR-3654 -2.71 miR-30e* -3.92 

miR-363 6.53 miR-1286 -2.24 miR-365 -2.73 miR-1207-3p -3.92 

miR-494 6.37 miR-499-5p -2.25 miR-192* -2.73 miR-505* -3.96 

miR-449a 5.08 miR-627 -2.25 miR-3656 -2.73 miR-128 -3.98 

miR-130a 4.77 miR-188-3p -2.26 miR-32 -2.74 miR-532-3p -3.99 

miR-630 3.48 miR-500a -2.27 miR-548b-3p -2.76 miR-590-5p -4.00 

miR-3651 2.87 miR-181a-2* -2.28 miR-577 -2.77 miR-342-3p -4.01 

miR-10a 2.75 miR-625* -2.28 miR-629 -2.78 miR-25* -4.01 

miR-718 2.67 miR-188-5p -2.30 miR-140-3p -2.78 miR-4306 -4.13 

miR-1268 2.20 miR-1301 -2.30 miR-378* -2.79 miR-501-3p -4.19 

miR-450a 2.16 miR-331-5p -2.31 miR-374a -2.80 miR-3194 -4.42 

miR-4299 2.14 miR-103-2* -2.34 miR-660 -2.80 miR-500a* -4.45 

miR-3659 2.10 let-7d* -2.35 miR-193a-5p -2.83 miR-421 -4.45 

miR-15a 2.08 miR-132 -2.35 miR-1307 -2.84 miR-185 -4.56 

miR-4317 -2.00 miR-425* -2.36 miR-454* -2.88 miR-374c -4.62 

miR-30c-1* -2.00 miR-155* -2.37 miR-502-5p -2.89 miR-7-1* -4.79 

miR-1973 -2.01 miR-331-3p -2.37 miR-92a-1* -2.93 miR-140-5p -4.80 

miR-1280 -2.01 miR-642b -2.38 miR-129-5p -2.93 miR-769-3p -4.81 

miR-192 -2.02 miR-19a* -2.39 miR-106b* -2.96 miR-589* -4.82 

miR-19b-1* -2.02 miR-95 -2.40 miR-152 -2.97 miR-191 -4.88 

miR-200b -2.02 miR-29c* -2.40 miR-23a -2.99 miR-944 -5.07 

miR-3198 -2.03 miR-361-3p -2.41 miR-362-5p -3.09 miR-362-3p -5.07 

miR-16-2* -2.03 miR-30d* -2.42 miR-570 -3.11 miR-129* -5.19 

miR-22* -2.04 miR-18a* -2.44 miR-769-5p -3.16 miR-550a* -5.22 

miR-628-3p -2.04 miR-125a-3p -2.44 miR-148b -3.16 miR-21* -5.39 

miR-148b* -2.05 miR-1908 -2.44 miR-27a -3.17 miR-1270 -5.40 

miR-3195 -2.05 miR-22 -2.47 miR-422a -3.19 miR-582-5p -5.40 

miR-181d -2.06 miR-423-3p -2.47 miR-24 -3.22 miR-1303 -5.43 

miR-25 -2.09 miR-183 -2.50 miR-548b-5p -3.24 miR-4291 -5.43 
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miR-4284 -2.09 miR-24-1* -2.50 miR-186 -3.26 miR-502-3p -5.46 

miR-491-5p -2.12 miR-624 -2.53 miR-342-5p -3.31 miR-4286 -5.64 

miR-874 -2.13 miR-215 -2.53 miR-15b* -3.32 miR-148a* -5.69 

miR-330-3p -2.17 miR-548e -2.55 miR-181a* -3.33 miR-199b-5p -5.85 

miR-597 -2.18 miR-193b* -2.56 miR-744 -3.40 miR-1180 -6.19 

miR-30b* -2.19 miR-182 -2.57 miR-374b -3.50 miR-193a-3p -6.25 

miR-3934 -2.19 miR-598 -2.58 miR-3074 -3.50 miR-126 -6.44 

miR-1224-5p -2.19 miR-182* -2.63 miR-505 -3.53 miR-624* -6.45 

miR-30a -2.19 miR-193b -2.63 miR-766 -3.53 miR-345 -6.48 

miR-1285 -2.19 miR-378 -2.63 miR-197 -3.54 miR-1260 -7.17 

miR-548c-5p -2.20 miR-628-5p -2.64 miR-296-5p -3.58 miR-1260b -7.32 

miR-4323 -2.21 miR-29b-1* -2.65 miR-652 -3.58 miR-1274b -8.48 

miR-183* -2.21 miR-3150b -2.66 miR-93* -3.65 miR-720 -10.62 

miR-429 -2.22 miR-532-5p -2.68 miR-1255a -3.70 miR-340* -12.56 

miR-339-5p -2.22 miR-625 -2.69 miR-28-5p -3.71 miR-1274a -12.75 

miR-550a -2.23 miR-4327 -2.70 miR-199a-3p -3.75 miR-340 -75.41 
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8 Abbreviations 

  Ago  Argonaute Protein 

Ago2-RIP-seq Ago2-based RNA immunoprecipitation (RIP) 

APS Ammonium persulfate 

Bcl-2 B-cell CLL/lymphoma 2 

BHRF1 Bam HI fragment H rightward open reading frame 1 

DNA Deoxyribonucleic acid 

dNTP Desoxyribonucleosidtriphosphate 

EDTA Ethylenediaminetetraacetic acid 

FCS Fetal Calf Serum 

CACNG8 Calcium Voltage-Gated Channel Auxiliary Subunit Gamma 8 

H2O2 Hydrogen Peroxide 

HCL Hydrogen Chloride 

KCl Potassium Chloride 

kDa Kilo Dalton 

M Molar 

mA Milliampere 

mg Milligram 

MgCl2 Magnesium Chloride 

min Minute 

ml Milliliter 

mRNA Messenger RNA 

Na2HPO4 Sodium Hydrogen Phosphate 

NaOH Sodium Hydroxide 

NTP Nucleoside Triphosphate 

PBS Phosphate Buffered Saline 

RISC RNA Induced Silencing Complex 

RNA Ribonucleic Acid 

RPM Rotations Per Minute 
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RPMI-1640 Roswell Park Memorial Instiute-1640 

SDS Sodium Dodecyl Sulphate 

SDS-PAGE 

Sodium Dodecyl Sulphate- Polyacrylamide Gel 

Electrophoresis 

sec Second 

SSC Saline Sodium Citrate 

TAE Tris base, acetic acid, EDTA 

TBE Tris base, boric acid, EDTA 

TE Tris base, EDTA 

TEMED N,N,N’,N’-tetramethylethane-1,2-diamine 

TNRC6A Trinucleotide repeat containing 6 A 

V Volt 

W Watt 

μL Microliter 

μg  Microgram 
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