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Abstract

Sophisticated mobile computing, sensing and recording devices like smartphones,
smartwatches, and wearable cameras are carried by their users virtually around the
clock, blurring the distinction between the online and offline worlds. While these
devices enable transformative new applications and services, they also introduce
entirely new threats to users’ privacy because they can capture a complete record of
the user’s location, online and offline activities, and social encounters, including an
audiovisual record. Such a record of users’ personal information is highly sensitive
and is subject to numerous privacy risks. In this thesis, we have investigated and built
systems to mitigate two such privacy risks: 1) privacy risks due to ubiquitous digital
capture, where bystanders may inadvertently be captured in photos and videos recorded
by other nearby users, 2) privacy risks to users’ personal information introduced by a
popular class of apps called ‘mobile social apps’. In this thesis, we present two systems,
called I-Pic and EnCore, built to mitigate these two privacy risks.

Both systems aim to put the users back in control of what personal information
is being collected and shared, while still enabling innovative new applications. We
built working prototypes of both systems and evaluated them through actual user
deployments. Overall we demonstrate that it is possible to achieve privacy-compliant
digital capture and it is possible to build privacy-compliant mobile social apps, while
preserving their intended functionality and ease-of-use. Furthermore, we also explore
how the two solutions can be merged into a powerful combination, one which could
enable novel workflows for specifying privacy preferences in image capture that do not

currently exist.



Zusammenfassung

Die heutigen Gerite zur mobilen Kommunikation, und Messdatenerfassung und -
aufzeichnung, wie Smartphones, Smartwatches und Sport-Kameras werden in der
Regel von ihren Besitzern rund um die Uhr getragen, so daf}3 der Unterschied zwischen
Online- und Offline-Zeiten zunehmend verschwimmt. Diese Gerite ermoglichen zwar
vollig neue Applikationen und Dienste, gefihrden aber gleichzeitig die Privatsphire
ihrer Nutzer, weil sie den Standort, die gesamten On-und Offline Aktivititen, sowie
die soziale Beziehungen protokollieren, bis hin zu audio-visuellen Aufzeichnungen.
Solche personlichen Nutzerdaten sind extrem schiitzenswert und sind verschiedenen
Risiken in Bezug auf die Privatsphire ausgesetzt. In dieser These haben wir Systeme
untersucht und gebaut, die zwei dieser Risiken fiir die Privatsphidre minimieren: 1)
Risiko der Privatssphidre wegen omniprédsenter digitaler Aufzeichnungen Dritter, bei
denen Unbeteiligte unbeabsichtigt (oder gegen ihren Wunsch) in Fotos und Videos
festgehalten werden 2) Risiko fiir die personlichen Informationen der Nutzer welche
durch die bekannte Kategorie der sozialen Applikationen herbeigefiihrt werden. In
dieser These stellen wir zwei Systeme, namens I-Pic und EnCore vor, welche die zwei
Privatssphire-Risiken minimieren.

Beide System wollen dem Benutzer die Kontrolle zuriickgeben, zu entscheiden
welche seiner personlichen Daten gesammelt und geteilt werden, wihrend weiterhin
neue innovative Applikationen ermoglicht werden. Wir haben fiir beide Systeme
funktionsfihige Prototypen gebaut und diese mit echten Nutzerdaten evaluiert. Wir
konnen generell zeigen dass es moglich ist, digitale Aufzeichnung zu machen, und
soziale Applikationen zu bauen, welche nicht die Privatsphire verletzen, ohne dabei
die beabsichtige Funktionalitit zu verlieren oder die Bedienbarkeit zu mindern.
Des weiteren erforschen wir, wie diese zwei Systeme zu einem leistungsfihigeren
Ansatz zusammengefiihrt werden konnen, welcher neuartige Workflows ermoglicht,
um FEinstellungen zur Privatsphére fiir digitale Aufzeichnungen vorzunehmen, die es

heute noch nicht gibt.



Acknowledgments

It is hard for me to put myself in my parents’ shoes who, over the years, provided me
a loving and nurturing environment to grow in, who encouraged me to push my own
boundaries, and then in an instant gave me their blessings when I decided to go away
for many years on a journey of self discovery. This thesis is dedicated to my parents
who gave me the wings to fly high in search of my own horizons. I hope to return back
to my roots one day.

I have always looked up to my elder Brother, Animesh, who was my inspiration
to purse the doctorate degree. He has always been there for me whenever I needed
his brotherly and professional guidance, and he continues to look out for me, behind
scenes, even if I get lost in my own struggles. I am forever grateful for his presence and
his encouragement on every step of the way.

My friends in Saarbruecken made the small city truly a memorable place to be.
They not only helped me develop the softer skills of my personality but also made
me appreciate the importance of living in the moment. A special mention to Mayank
and Ines who went out of their way to support me in my journey and who have for me
become the very definition of the word ‘friends’.

To my colleagues, faculty, IT, and the administrative staff members of MPI-SWS who
helped me grow as a researcher through their constructive criticism, encouragement,
and their help in navigating many obstacles of my technical quests. A special mention
to Rijurekha and Viktor, who I thoroughly enjoyed working with on both the projects.
I am also grateful to my thesis reviewers, Deepak and Mary, for their time and their
valuable feedback on my thesis.

I cannot begin to thank my advisor, Prof. Peter Druschel, for giving me a chance to
pursue the doctorate under his guidance. I am extremely grateful for his unwavering
guidance and his tremendous patience during my long journey. His passion for research
has truly been an inspiration for me.

And finally, last but by no means least, my wife, Nandita, whose unconditional
support, love, and affection has been the bedrock of my mental and physical well being.
Not only has she been putting up with patience the idiosyncrasies of a Ph.D. student,
she has become the source of my daily inspiration through her kind and humble nature.
I am filled with gratitude towards her for literally flying into my life and starting with
me the next phase of our life journey together.



Contents

12

Background|

2.1.1 Oblivious Transfer (OT)| . . . ... ... ... ... ......
2.1.2 _Yao's Garbled Circuits Protocoll . . . . .. ... ... ... ..
[2.1.3  Reducing the number of OTs|. . . . . . ... ... ... .. ..
22 H joninl-Picl . . ... oo
[2.2.1 Related work: advances in object detection in 1mages| . . . . . .
[2.2.2  Head detector description| . . . . . . ... ... ... ... ..

I-Pic: A Platform for Privacy-Compliant Image Capture|

3.5 I-PicDesign|. .. ... ... ... .. ... . ... .. .. . .. ...
[3.5.1 Imageprocessing . . . . .. ... ... .. ... ...

[3.5.2  Cryptographic Protocols| . . . . ... ... ... ... .....

[3.6.3 I-Pic overall performance]. . . . . . . ... ... ... ... ..

[3.6.4  Vision pipeline analysis| . . . ... ... ... 0oL

[3.6.5 Secure Feature Comparison| . . . .. ... ... ... .....

[3.6.6 Runtime and Energy Consumption|. . . . . . . ... ... ...

5

10

13
13
13
14
19
20
21
23



(3.7 I-Pic Summary| . . ... .. ... 59

4 Exploring I-Pic’s performance limits| 60
4.1 Exploring head detection| . . . . .. ... ... ... .......... 60
4.1.1  Post-processing head detector output/. . . . . ... . ... ... 61

1.2 Performance of the h r on the [-Pic dataset| . . . . . . 61

4.2 Exploring I-Pic’s runtime performance on a new Mobile SoC| . . . . . . 69
4.3 Conclusionl . . ... .. . ... 70
5 EnCore: Private, Context-based Communication for Mobile Social Apps 72
BI1 TIntroduction . . . . . .. ... ... 72
5.2 EnCore Related Work| . . . . . . ... ... ... .. ... ...... 74
[5.3  EnCore: Capabilities and Requirements| . . . . . ... ... ... ... 76
[5.3.1  Detecting nearby users and resources| . . . . .. .. ... ... 76
[5.3.2  Event-based communication/sharing{. . . . . . ... ... ... 77

5.4 EnCoreDesign| . ... ... ... ... .. ... ... ... ..., 78
[5.4.1 EnCore security properties| . . . . . . . .. ... ... ..... 79
542 Encounters . . .. ... .. .. ... ... ... 80
D43 Events|. . . ... .. 81
B44  Communication]. . . . . . . . . ... 82

[5.4.5 Security guarantees|. . . . . . .. ... ... ... 83

[5.5 Using Events with Context| . . . . . .. .. ... .. ... ....... 83
[5.5.1 Browsing the timeline| . . . . .. ... ... ... ... .... 84

[5.5.2 Creatingevents| . . . . ... ... .. ... .. ... ... 86
[5.5.3  Posting information|. . . . . ... ... Lo 86
[5.5.4 Recetving information| . . . . .. ... ... 87
[5.5.5 Controlling linkability| . . . . . ... ... ... ... ..., 87
[5.5.6  Implementation of conduits and router|. . . . . . ... ... .. 87
Evaluationl . . . . . . . . . . ... 88

D1 0 92

[5.7.1 Qualitative user feedback{. . . . . . ... ... ... ... ... 92

[5.7.2° Risks and challenges| . . . . . ... ... .. ... ... 93

[5.8 EnCore Summary| . . . . .. ... ... oL 94
6 Discussion and Future workl 96
[6.1 Leveraging EnCore forI-Pic| . . . . . ... ... ... ... .. .... 97
[6.1.1 New workflows enabled by integrating EnCore with I-Pic| . . . 98
[6.1.2  Privacyconcerns| . . . . .. ... ... .. ... .. ... ... 100

[6.2  Policy enforcement on the viewer] . . . . . . ... ... ........ 101

6



[6.6.1 Obscuring mechanisms|. . . . . . ..

[6.6.2  Requests to override user preferences

[/__Conclusion|

Append

A I-Pic User Survey|

107

109

110



Chapter 1
Introduction

Sophisticated mobile computing, sensing, and recording devices are now commonplace.
Smart phones and smart watches have already achieved significant adoption, and novel
devices, like Snapchat Spectacles, Microsoft HoloLens, Vuzix Blade, are imminent.
These devices are carried by their users virtually round the clock, blurring the
distinction between the online & offline world, and enabling transformative new
applications. For instance, mobile apps can provide location- and activity- sensitive
information, which can be overlaid onto a user’s field of view using smart glasses.
Mobile devices can also maintain a detailed record of a user’s life, recording everything
a user does, sees, hears, who he meets, and to enable communication related to a shared
experience or an event.

However, these applications and services also introduce a range of new threats to
users’ privacy. While a user carries a mobile phone, it can capture a complete record
of a user’s location, online and offline activities, and social encounters, including
an audiovisual record. While such a record is very useful to a user for their own
reference, it is also highly sensitive and inherently private. Unlike information users
post on online social networks, most users would likely not want to share such a
comprehensive record with anyone. Such a record of users’ personal information is
subject to numerous privacy risks [1], and real world instances of misuse of users’
personal data by organizations for profit have greatly aggravated these concerns [2].

Even in cases where a user does not use mobile applications or devices herself, her
privacy might still be at risk; e.g. when a user is captured in photos taken by nearby
strangers that are later shared on online social networks, revealing the whereabouts
of everyone photographed. Such unwanted image capture is perceived to be such a
serious privacy threat that it led to Google Glass [3] being banned at numerous venues.
These privacy concerns were also likely one of the factors that led to Google Glass’s
discontinuation [4]]. This example clearly highlights that for future mobile technology
to be broadly accepted, privacy concerns cannot be treated as an afterthought. Rather,



privacy should be a first-order concern, built into the design of mobile apps and

hardware.

At first glance it may appear that loss of privacy is inherent in ubiquitous context-
sensitive mobile applications. However, in this thesis, we show that it is possible to
achieve privacy by design for these mobile apps without losing intended functionality.
In particular, we investigate whether it is possible to reconcile privacy with functionality
in two specific contexts: 1) Spontaneous image capture using our smartphones while
protecting the privacy of bystanders captured in these images, and 2) Building mobile
social applications while preserving the privacy of users’ personal information these

apps operate upon.

1. I-Pic: A Platform for Privacy-Compliant Image Capture: (Chapter [3): The
first part of this thesis focuses on the privacy risks introduced by ubiquitous digital
capture facilitated by smartphone cameras, smart glasses, and life-logging cameras.
Bystanders may be photographed (either intentionally or inadvertently) without their
consent, which poses a significant risk to their privacy and security. To mitigate this
risk, we built and deployed I-Pic, a trusted software platform that integrates digital
capture with user-defined privacy. In I-Pic, users choose a level of privacy (e.g., image
capture allowed or not) based on social context (e.g., in public vs. with friends vs. at
workplace). The privacy choices of nearby users are advertised via BLE (Bluetooth
Low-Energy), and I-Pic-compliant capture platforms generate edited media to conform
to the privacy choices of the captured subjects. I-Pic uses a state-of-the-art deep neural
network for face recognition, and combines it with secure multi-party computations, to
ensure that users’ visual features and privacy choices aren’t revealed publicly, regardless
of whether these users are the subject of an image capture. We evaluate the I-Pic
prototype in realistic social scenarios, and demonstrate that the technical impediments
for privacy-compliant imaging can be reasonably overcome using current hardware
platforms, without giving up the spontaneity, ubiquity, and flexibility of image capture.
2. EnCore: Private, Context-based Communication for Mobile Social
Apps: (Chapter [5): The second part of this thesis focuses on mitigating privacy risks
introduced by mobile social apps. These apps consider users’ location, activity, and
nearby devices to provide context-aware services, e.g., sharing captured images with
nearby users, detecting the presence of friends in close vicinity, sharing news and
gossip with nearby people, and helping people find missed connections. Most of the
currently deployed mobile social apps rely on a trusted cloud service to match and
relay information, requiring users to reveal their whereabouts (potentially including
a continuous trace of their location), the perils of which have been extensively
noted [, 16, [7, 18, 9]. To mitigate this problem, we built and deployed EnCore, a mobile
platform that does not require a trusted provider, but instead builds on secure encounters
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between pairs of devices as a foundation for privacy-preserving communication for
mobile social apps. An encounter occurs whenever two devices discover each other
within Bluetooth radio range and generate a unique encounter ID. EnCore groups these
encounters in named communication abstractions called events, and enables encrypted
communication and sharing among event participants, all the while relying on existing
network, storage, and online social network services. Furthermore, the encounter
formation protocol used by EnCore, i.e. SDDR [10], ensures that users cannot be
tracked using their Bluetooth identifiers. We evaluated EnCore via multiple user
deployments, and based on the favorable user feedback we received, we demonstrate
that EnCore can support a wide range of event-based communication primitives for

mobile social apps, with strong security and privacy guarantees.

1.1 Contributions

Both I-Pic and EnCore provide platforms for building mobile apps in a privacy-
compliant manner that puts users in control of what personal information is collected,
and how it is shared. The primary contribution of this thesis is to demonstrate, through
actual deployments of applications built using these platforms, that one can preserve
most of the functionality of spontaneous image capture and mobile social applications
without giving up privacy.

The specific contributions of the I-Pic project (Chapter [3)) are:

e We analyze an important privacy challenge, image capture privacy, which has no

satisfactory solution till now.

e We demonstrate how one can achieve privacy preserving image capture in a
convenient & flexible manner (as compared to previous work), and show that

it is even feasible on current mobile devices.

e We report on the results of a user study conducted to understand people’s
sentiments and preferences towards privacy in digital capture. The aim of the
user study was to understand, to what extent people are willing to respect other
people’s privacy, how often do their privacy preferences change, and in which

situations. The findings from this study set the design requirements for I-Pic.

e We develop a technical architecture that addresses these design requirements and

that provides a more flexible solution than existing related work.

e We identify specific technical components to implement our design, and we
individually optimize the implementation of these components to make them
power efficient and scalable.

10



e We implement a working prototype of I-Pic that can run on a resource constrained
Android mobile device. We evaluate the I-Pic prototype in realistic social
scenarios with wide range of lighting conditions, and where bystanders appear

in natural poses both in the foreground and background of an image.

e We also present an exploration of the performance limits of I-Pic by evaluating
how I-Pic can benefit from both recent advances in machine learning techniques
and powerful new hardware likely to be available in future mobile devices. In
particular we show (in Chapter [)) that newer, more accurate object detection
techniques could be integrated in I-Pic without compromising the overall energy

efficiency of the device.

The specific contributions of the EnCore project (Chapter [5) are:

e We present the design of EnCore, a communication platform that provides
powerful new capabilities to mobile social apps, with strong security and
privacy guarantees, without requiring a trusted provider. We also present an

implementation of EnCore on Android devices.

e We demonstrate EnCore’s capabilities through Context, an Android application
that provides communication, sharing, collaboration, and organization based on
events. The application was shaped by user feedback from a series of test bed

deployments.

e We report on a series of live deployments of Context and EnCore, with 35 users
at MPI-SWS.

Finally, we also explore how to merge the capabilities of I-Pic and EnCore into a
powerful combination, one which could enable completely new ways of specifying
and communicating privacy preferences that do not exist currently. Specifically (in
Chapter [6), we envision a system that extends I-Pic with EnCore’s encounter-based
communication, and describe how this combination could be used to enable novel ways
of communication between photographers and bystanders. For e.g., these workflows
provide a convenient way for photographers to reach out to captured bystanders
(and for bystanders to reach out to photographers) to possibly seek their consent
before publishing a photograph (or to revoke their consent for a photograph). Such
functionality could be useful for compliance with governmental privacy regulations,
such as, GDPR [L1]] and AB375 [112].

Overall, we believe that even though a single platform alone may not be able to
provide an ideal end-to-end privacy-preserving infrastructure, technical innovations that

mitigate specific risk vectors will not only provide a strong basis for a broader societal
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conversation about the value of user privacy, but will also be needed for future mobile
and wearable technology to be broadly accepted by users.

The rest of the document is structured as follows. In Chapter [2] we describe some of
the existing cryptographic and computer vision building blocks that have been used in
the implementation of I-Pic. In Chapter 3| we present a detailed description of the I-Pic
project and its related work. In Chapter ] we present an exploration of how I-Pic can
benefit from recent advances in both hardware and software. In Chapter [5| we present
a detailed description of the EnCore project and its related work. Finally, in Chapter|[6]
we present a discussion of how EnCore and I-Pic can be used in conjunction and what
this combination means for different parties involved. We also describe alternate design

points and extensions for I-Pic, and also describe some future work directions for I-Pic.
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Chapter 2
Background

Here we describe some existing cryptographic and computer vision building blocks that
have been used in the implementation of I-Pic. These are not contributions of this thesis,

and have been included here for background only.

2.1 Garbled Circuits & Oblivious Transfers

Secure function evaluation (SFE) refers to the problem of how two parties can
collaborate to correctly compute the output of a function without either party needing
to reveal their inputs to the function, either to each other or to a third party. In 1986
Andrew Yao presented a solution to the problem called garbled circuits.

Yao’s garbled circuits protocol (GCP) transforms any function into a function that
can be evaluated securely by modeling the function as a boolean circuit, and then
masking the inputs and outputs of each gate so that the party executing the function
cannot discern any information about the inputs or intermediate values to the function.
The protocol is secure as long as both parties are semi-honest. A semi-honest adversary
is assumed to follow all required steps in a protocol, but will look for all advantageous
information leaked from the execution of the protocol, such as intermediate values,
control flow decisions, or values derivable from the same. Note that Yao’s protocol
does not guarantee that one party is not able to learn other party’s input by examining
the function’s result (if the function being executed allows for such reverse engineering).

In the following description we will refer to the function to be evaluated as f, the

two parties as P1 & P2, their inputs as ¢p; & 7p» respectively, and function’s output as
U = f(ipl, iPQ)-

2.1.1 Oblivious Transfer (OT)

OT refers to methods for two parties to exchange one-out-of-several values, with the
sending party blinded to what value was selected, and the receiving party blinded to
all other possible values that could have, but were not, selected. While OT and SFE
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are approaches to distinct (though related) problems, understanding Yao’s GCP and
its security properties requires understanding OT. It’s a cryptographic primitive and a
building block that Yao’s GCP builds on. In the following we provided a brief overview
of the OT problem and a simple OT protocol that is used as a building in I-Pic.

Problem definition: A general form of OT is /-out-of-N oblivious transfer, a two party
protocol where P1, the sending party, has a collection of values. P2 is able to select
one of the values from this set to receive, but is not able to learn any of the other values.

More formally, a I-out-of-N oblivious transfer protocol takes as inputs a set of N
values from P1, and an index ¢ from P2, where 0 < i < |N|. The protocol then outputs
nothing to P1, and N; to P2 in a manner that prevents P2 from learning NN; for all
values of j # i.

A special case of the above is the I-out-of-2 oblivious transfer problem, where N is
fixed at 2. Here P1 has just two values, and P2 is accordingly limited to i € {0, 1}.
Example 1-out-of-2 OT Protocol: Figure shows a I-out-of-2 OT protocol[13] that
is used in I-Pic as a building block. The protocol is based on Diffie-Hellman Key
Exchange. As long as no party deviates from the protocol, receiver is able to recover
the desired string M, but is not able to recover the other value, M;_.. Similarly, sender
never learns c. The protocol is included here to assist in the next section’s explanation
of how the full GCP works, and to provide an easy-to-understand example of OT to

build from later.
2.1.2 Yao’s Garbled Circuits Protocol

This section provides a description of Yao’s garbled circuits protocol and how the

protocol incorporates OT. For a more comprehensive description please refer to [[14].

High-level Description of the Protocol

P1 and P2 wish to compute function f securely, so that their inputs to the function
remain secret. The computation is initiated by first modeling f as a boolean circuit. P1
then “garbles” the circuit by representing the boolean values on all wires in the circuit
with pseudo-random bit strings, and then keeping the mapping between the boolean
values to random bit strings secret. This is done for the input and output wires of every
gate in the circuit, with the exception of circuit’s output gates; the values of these gates’
output wires are left un-garbled.

P71 then replaces each bit of his input with the pseudo-random string that maps to that
bit’s input on the corresponding input wire into the circuit. P1 then sends the garbled
circuit and his garbled input to P2.

P2 receives both the garbled circuit and P1’s garbled input. However, since all input

wires into the circuit have been garbled and only P1 has the mapping between the
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Diffie-Hellman Key Exchange

Sender
Input: (M)

Output: none

a < Ly

k = H(BY

A=yg"
B—gb
e < Encip(M)

Receiver
Input: none
Output: M

b < 7Zy

k= H(AY)

M = Decg(e)

OT Protocol based on Diffie-Hellman

Sender
Input: (Mg, M)

Output: none

a < Ly

ep < Ency, (Mo)
e1 < Ency, (M)

Receiver
Input: ¢
Output: M.,

b« Zy

ifc:O:B:gb
ife=1:B=Ag"

M, = Decy,, (ec)

Figure 2.1. A /-out-of-2 Oblivious Transfer protocol
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1. P1 generates a boolean circuit representation c of f that takes input ip; from
P1 and ips from P2.

2. P1 transforms c by garbling each gate’s computation table, creating garbled
circuit ¢,.

3. P1 sends both ¢, and the values for the input wires in ¢, corresponding to % p;
to P2.

4. P2 uses I-out-of-2 OTs to receive from P1 the garbled values for ip; in c,.

5. P2 calculates ¢, with the garbled versions of ip; and ipy and outputs the
result.

Figure 2.2. Yao’s Garbled Circuits Protocol

garbled values of these wires and the boolean values these garbled values represent, P2
does not know what values to input into the circuit to match her input bits. In other
words, for each input wire into the circuit, P2 can select one of two random strings to
input (corresponding to O or 1), but does not know which of these correspond to her
desired input bit.

In order to learn which pseudo-random string to select for each of P2’s input wires,
P2 engages in a I-out-of-2 OT with P1 for each bit of P2’s input. For each round of the
OT, P2 submits the bit she wishes to learn, receives the corresponding string. Note that
the properties of OT prevent P1 from learning about P2’s input in this process. Once
P2 has received all of the strings corresponding to her input into the circuit, she holds
everything needed to compute the output of the circuit: her garbled inputs, P1’s garbled
inputs, and the garbled circuit itself. Further, she has obtained these values without P1
learning her inputs, nor P2 learning P1’s inputs.

P2 then begins to compute the circuit by entering the pseudo-random strings that
correspond to each bit of her and P1’s input into the corresponding input wires and
using the resulting garbled output string as an input to the next gate. P2 may try to learn
information about P1’s inputs by watching the execution of the circuit. The protocol
prevents P2 from doing so due to the manner that each computation table for each gate
was constructed.

Recall that the computation table for every gate in the circuit was constructed
so that each pair of inputs produces an output that represents the correct boolean
result, but which appears pseudo-random to P2 . In other words, instead of mapping
from {0,1} x {0,1} — {0,1}, all gates in the circuit become a function mapping
two random looking strings to another uniformly distributed pseudo-random string,

16



or f({0,1}* {0,1}*) — {0,1}*, where |k| is the size of the pseudo-random
strings. Since P2 never learns the mapping between strings used in the table and their
underlying boolean values, P2 learns nothing by watching the outputs of each gate.
Recall that the values returned by the output gates in the circuit are not obscured.
This results in P2 learning the value of f(ip;,ip2) once the computation has finished.

P2 then completes the protocol by sharing this computed value with P1.

Detailed Description of the Protocol

Here we provide further details of steps 2 to 5 of Yao’s protocol presented in Figure 2.2
Details presented in this section may be omitted in case the reader is only interested in
gaining a high-level understanding of the protocol.

Step 2: Garbling Truth Tables: Once P1 has constructed a boolean circuit
representation ¢ of f, the next step is to garble the truth table for each gate in c,

generating a garbled version of the circuit, ¢, (i.e. ¢ — ¢,).

0 11
z kz, k;

x oy KO KkE KO,k

Figure 2.3. Garbling a single gate

z |y | z x | y | z || garbled value

000 Ky | Ry [ KD ]| Ency o (K)

o1 |1 ky | ky | k2 || Encpo g (K])

1 0 1 /{3316 k?g ]{3; Enck%,kg(k;)

1|1 ] 1 ky | Ky | k2 || Encraga (KD
(a) Original Values (b) Garbled Values

Figure 2.4. Computation table for g
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Lets us consider a single logical OR gate, g, represented in Figure where z,y
denote the input wires and z denotes the output wire. Initially P1 generates the values
for this gate as normal, resulting in the truth table in Figure [2.4{(a).

Next, P1 associates two 80-bit random cryptographic keys k2, k! with each wire =
of the gate (k2 encodes a 0-bit and k! encodes a 1-bit on wire z). The original truth
table, Figure[2.4{(a), can now be written in terms of these cryptographic keys producing
the first three columns of the table shown in Figure 2.4(b). Next, P1 computes the

following ciphertexts to produce the values for the ‘garbled value’ column:

Encki’ki(kg("’j)), for all inputs i, 7 € {0,1}

The resulting four ciphertexts taken in random order constitute a garbled gate. The
collection of all garbled gates forms the garbled circuit ¢,. Note, g(i,7) denotes the

boolean output of gate g (obtained from its original truth table) for boolean inputs ¢, j.

This encryption plays two important roles in the protocol. First, since the output of
each encryption operation is pseudo-random, it removes any correlation between the
underlying truth values in the table and the resulting garbled values. Even though the
OR gate produces three identical boolean values, the garbled values are all uniformly
distributed, revealing nothing about the underlying value being encrypted.

Second, as shown in ‘garbled values’ column in Figure[2.4(b), the output keys (values
in z column) are encrypted using the input keys (values in the z, y columns). Doing so
prevents P2, the circuit evaluator, from manipulating the circuit structure and using

inputs other than those provided by P1.

The only gates in the circuit that do not need to be garbled are the output gates, or
gates with wires that do not serve as input wires to another gate. The output values
from these gates can remain unobscured since they are outputting the final result of the

circuit, a value which P2 is allowed to learn.

Step 3: Sending Garbled Values to P2: Once P1 has finished generating the garbled
circuit, he then needs to garble his input to the function, creating a mapping of i p; to its
garbled equivalents. P1 begins this process by replacing the first bit of his input with
the corresponding key for that input wire in the circuit. For example, P1’s first bit was
input into the wire z, and the value of %, was 1, P1 would select k! to be the first value
in his input to the garbled circuit. P1 then repeats this procedure for the remaining bits
in his input, creating P1’s garbled input. P1 then sends the garbled circuit ¢, and his
garbled input to P2.

Step 4: Receiving P2’s Input Values through OT: P2 receives ¢, and P1’s garbled
input, but still needs the garbled representation of her own input to compute the circuit.

Recall that P1 has the garbled values for all of P2’s input wires, but has no knowledge
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of what values correspond to P2’s true input. P2, inversely, knows the bits of her own
input, but not the corresponding keys for her input wires in c,.

P2 maps the first bit of her input to its corresponding garbled value by engaging in
a I-out-of-2 OT with P1, where P1’s inputs are k:g, k; (assuming P2’s first input bit
is mapped on to wire ¥ in the circuit), and P2’s input is 0 or 1, depending on the first
bit of P2’s input. P2 performs additional OTs with P1 for all values 0 < ¢ < |[ipso|
to achieve her full garbled input into c¢,. The number of OTs performed grows linearly
with |ip2|. An optimization proposed by [15] to reduce the number of OTs to a constant
value, k, which can be set to a small value (K = 80 used in this thesis). In Section[2.1.3
we describe this reduction.
Step 5: Computing the Garbled Circuit: Once P2 has both garbled inputs and the
garbled circuit, she can compute the circuit as follows. For each input gate, P2 looks
up the corresponding value from P1 and P2’s garbled input values and uses them as
keys to decrypt the output value from the gate’s garbled truth table. Since P2 does not
know which output key these two input keys correspond to, P2 must try to decrypt each
of the four output keyﬂ If the protocol has been carried out correctly, only one of the
four values will decrypt correctly. The other three decryption attempts will produce L.
The newly decrypted key then becomes an input key to the next gate. P2 continues this
process until she reaches the output wires of the circuit. Each of these wires output a
single, unencrypted bit. P2 then reassembles the output bits and has the correct solution
for the f encoded by c,. P2 completes the protocol by sending the output of the circuit
to P1.

2.1.3 Reducing the number of OTs

In this thesis we use an optimization proposed by [[15] to reduce a large number of
OTs to a smaller constant (k) number of OTs. We use k£ = 80 for our implementation.

Consider a general OT primitive, denoted as OT}", which realizes m (independent)
oblivious transfers of ¢-bit strings. That is, OT}" represents the following functionality:
Inputs: S holds m pairs (2,0, x;1), 1 < j < m, where each z;, is an /-bit string. R
holds m selection bits r = (rq,..., 7).
Outputs: R outputs ;. for 1 < j < m. S has no output.

For the use cases described later (Chapter (3) in this thesis, m =~ 800 and ¢ = 80
(fixed). The protocol proposed by [13] reduces OT}* to OT*

m?

where k is a security
parameter and m > k (for simplicity, we assume ¢ being equal to k). The OTF,
primitive is implemented as k invocations of a OT. protocol. The I-out-of-2 OT
protocol, described in Figure is used as the OT! primitive, where the length of
strings (M, M) is set to m. We describe this protocol in Figure [2.5]

'In this thesis we use the implementation of garbled circuits described in [16], which reduces the
number of decryptions per garbled gate to one.
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INPUT OF S: m pairs (2,0, %) of £-bit strings, 1 < j < m.
INPUT OF R: m selection bits r = (ry,..., 7).

COMMON INPUT: a security parameter k.

ORACLE: a random oracle H : [m] x {0,1}* — {0, 1}
CRYPTOGRAPHIC PRIMITIVE: An OTF, primitive.

1. S initializes a random vector s € {0,1}* and R a random m X k bit matrix
T.

2. The parties invoke the OT* primitive, where S acts as a receiver with input s
and R as a sender with inputs (t', r ®t'), 1 <i < k.

3. Let Q denote the m x k matrix of values received by S. (Note that q° =
(si-r) @t and q; = (r;-s) & t;.) For 1 < j < m, .S sends (y;0,y;,1) Where
Yio = Tj0 ® H(J, (lj) and y;1 = x;1 S H(J, q; D 5).

4. For 1 < j < m, Routputs z; = y;,, © H(j, t;).

Figure 2.5. Reducing OT}" to OT’:,L

Notation for the protocol: We use capital letters to denote matrices and small bold
letters to denote vectors. We denote the jth row of a matrix A/ by m; and its ¢th column
by m’. The notation b - v, where b is a bit and v is a binary vector, should be interpreted

in the natural way: it evaluates to 0 if b =0 and tovif b = 1.

2.2 Head detection in I-Pic

In this section we describe the head detector [17] used in Chapter 4] where we explore

performance limits of the I-Pic prototype developed in Chapter ﬂ

Head detection refers to detecting the presence and location of heads in an image.
Head detection produces bounding boxes enclosing a rectangular area in an image
where a head might be present. Head detectors are special cases of generic object
detectors that have been specialized for detecting heads only. In this thesis, we use a
head detector [17] that is based on the popular object detection framework called Faster
R-CNN[19].

In the next section (Section [2.2.1) we will first describe some of the related work
pertaining to recent advances in object detection techniques, followed by (Section[2.2.2))
a description of the head detector [[17] used in Chapter [4]

2The I-Pic prototype(developed in Chapter uses an open source face detector called
HeadHunter [18]], which is described in Chapter
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2.2.1 Related work: advances in object detection in images

In this section we briefly describe the recent advances in object detection techniques
for still images. The details presented in section may be omitted in case the reader is
only interesting in gaining a high level understanding of the head detector described in
Section

Up until 2012, progress on various visual recognition tasks was largely based on the
use of SIFT [20] and HOG [21] features. Using these features, the improvements in
accuracy on tasks such as PASCAL VOC object detection [22] were small, and were
mostly obtained by building ensemble systems and employing variants of successful
methods. HeadHunter [18]], the face detector used in I-Pic, was also based on ensemble

systems.

In 2012, AlexNet [23] took a radically different approach, and demonstrated that
accuracy of computer vision tasks could be substantially improved by leveraging
Convolutional Neural Networks (CNNs). Specifically, AlexNet achieved a whopping
40% improvement over the previous best result for image classification on the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) dataset [24, 25]. Since then,
CNNs (and deep learning) have become the de-facto standard for implementing
computer vision tasks. In the following we describe related work specific to object

detection based on deep learning techniques.

Multi stage object detection using deep learning: In 2014, R-CNN [26] explored
the possibility of generalizing AlexNet’s classification results to object detection tasks.
They showed that CNNs provide dramatically higher object detection performance as
compared to prior systems based on HOG-like features. The R-CNN (Region-based
Convolutional Network) operated in two stages: in the first stage it used an existing
object proposal system, called Selective Search [27]], to generate a set of bounding boxes
that might contain an object in them. In the second stage, each object proposal was
processed using a CNN to extract convolutional features for that object proposal. These
features were then used for classifying object proposals into different object categories
(using pre-trained SVMs). After this classification, the same CNN features were used,
in conjunction with a linear regression model, to output a tighter bounding box for each
object proposal. Using this multi-stage approach, R-CNN improved object detection
accuracy by more than 30% compared to the previous best results. This improvement
in accuracy, unfortunately, came at the cost of substantial increase in computational
complexity. This was because R-CNN required forward passing every object proposal,
around 2000 per image, through the R-CNN network. Another downside to R-CNN was
that it was very time consuming to train, as it required training three different models

separately.

21



In 2015, Fast R-CNN [28] combined R-CNN'’s three models into a single CNN,
which resulted in 9x faster training times. Furthermore Fast R-CNN significantly
reduced the repeated processing required for each object proposal by reusing
intermediate CNN feature maps for subsequent processing. As a result Fast R-CNN

performed 213x faster at test-time.

In 2016, Faster R-CNN [19] showed that it was not necessary to use a separate system
for generating object proposals. Instead, it integrated a region proposal network (RPN)
into the existing Fast R-CNN network (FRN). The Faster R-CNN network contains
two branches that share the majority of their computations, branching at the end into
separate RPN and FRN stages. The common portion of the network starts with a set
of dummy proposals (called anchors) and the input image, to compute a CNN feature
map that is used by both RPN and FRN. RPN produces a set of object proposals that are
subsequently used by FRN (along with the pre-computed CNN feature map) to refine
them into tighter bounding boxes, and to classify them. The resulting network operates
10x faster at test time than Fast R-CNN, provides better object detection accuracy, and

requires approximately 6 times fewer object proposals than Fast R-CNN.

R-FCN (Region-based Fully Convolutional Network) [29] further improved on
Faster R-CNN’s runtime performance, by pushing the object proposal specific repeated
computations to the last layer possible. Instead of cropping feature maps from the layer
where the RPN stage branched off, R-FCN extracted object proposal specific feature
vectors from the last feature layer prior to prediction. As a result, R-FCN achieved upto

20x faster test-time runtime, while maintaining accuracy comparable to Faster R-CNN.

Single stage object detection using deep learning: Faster R-CNN [19] and
R-FCN [29] provide good accuracy for object detection but are still considered
too computationally intensive for embedded systems and too slow for real-time
applications. For example, Faster R-CNN achieves a maximum of 7 frames per second
on desktop grade GPUs [30]]. Single shot detectors, on the other hand, such as SSD [31]]
and YOLO [32], explore the possibility of trading off accuracy for speed (and lower
computational complexity). Both systems, SSD and YOLO, eliminate the bounding
box proposals and the subsequent feature re-sampling stage altogether, and instead
use a single feed-forward convolutional network to directly predict classes & anchor
offsets. Both approaches divide an image into a fixed sized grid. For each grid cell
they predict a fixed number of bounding boxes and scores that indicate the presence of
objects in those boxes. Such a pipeline, on the one hand, provides significant speeds
ups, both YOLO and SSD can operate at 45 frames per second. On the other hand, both
approaches impose strong spatial constraints on bounding box predictions, which limits
the number of nearby objects they can predict. Despite these limitations, these systems

are promising alternatives for achieving real time detection on mobile devices.
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Instance segmentation: All the above approaches identify a bounding box around
the object, and do not identify the exact object boundaries. More recent research
efforts, such as Mask R-CNN [33]] and DeepMask [34], have also focused on instance
segmentation, which refers to the correct detection of all objects in an image while also
producing the exact shape of an object. Knowing which pixels fall within the exact
shape of an object could be particularly useful for cases where these pixels need to be
post-processed, e.g., for blurring out an object from an image by distorting the pixels
falling within the object.

2.2.2 Head detector description

The head detector we used [17] is based on the Faster R-CNN [19] framework.
The head detector was trained using 7,372 head images extracted from 10,103 images
available in the PASCAL VOC 2010 trainval set [35]. Images that did not have people in
them were retained as a source of negatives. The training was modified from the original
Faster R-CNN configuration to make it more suitable for head detection. Specifically,
to account for small heads, small scale dummy anchor boxes were added during the
training. The resulting network was specialized for detecting heads that appeared both
in foreground & background, and could also detect heads when they were turned more
than 90 degrees in profile, including heads from behind. The training was carried out
using the Matlab extension of the Caffe framework [36]. The trained detector is made
available as two Caffe model files, corresponding to the two stages of the detector, and
Matlab code that executes the two models in succession and performs some of the post
processing steps.

The first stage of the detector, called the region proposal network (RPN), takes as
input the image to be processed and produces approximately 30,000 proposal bounding
boxes and corresponding scores. The score indicates the probability of a head being
present in a proposal box. These boxes are then processed by Non-maxima suppression
(NMS) using the algorithm described in R-CNN [26]. This is followed by eliminating
boxes based on their scores and retaining only the top-K. NMS is a post-processing
algorithm responsible for reducing multiple detection boxes that belong to the same
object down to a single box. NMS rejects a box if it has an intersection-over-union
(IoU) overlap larger than a certain threshold with a higher scoring box. Higher values
of NMS threshold tend to produce multiple boxes for a single object. For the first stage,
the NMS threshold was set to 0.7 and the value of K, for the top-K step, was 2000.

The second stage of the detector, called the Fast R-CNN network (FRN), takes as
input the 2000 object proposals and a feature map output by the last convolutional layer
of the RPN. The FRN stage produces a tighter bounding box for each object proposal
along with a probability score. These boxes are post-processed using NMS and the top-
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K steps, with thresholds of 0.6 and 300, respectively. The boxes, along with their score
values, remaining after this post-processing step is the output of the head detector.

The output of the head detector may still contain multiple boxes detected for a single
head. Further lowering the NMS threshold (below 0.6) for the FRN stage reduces the
number of boxes produced per head, but these produced boxes often do not overlap with
the actual head properly. In Chapter ] we describe some additional post-processing
steps, not part of the head detector, that were applied to the output of the head detector
to reduce duplicate boxes.
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Chapter 3

I-Pic: A Platform for
Privacy-Compliant Image Capture

3.1 Introduction

Smart phones and wearable devices like smart glasses have audiovisual recording
equipment that can be operated near continuously. These devices enable a wide range
of novel applications and services, including location-, situation-, and activity-aware

services, augmented reality based services, and lifelogging.

At the same time, these devices pose serious new risk to users’ privacy and security.
Bystanders may be recorded (intentionally and or inadvertently) without their consent.
Objects (e.g. defense installations), activities (e.g. screening procedures at an airport),
and information (contents of a whiteboard or monitor, paper on table) may be recorded

illegally or in violation of corporate policy.

Traditional ways to dealing with these types of threats are inadequate. Devices that
integrate recording with other capabilities are now ubiquitous, and it is not obvious to
a bystander if a smart glass, for instance, is presently recording or not. It would be
cumbersome and socially awkward for bystanders to voice their preferences to anyone
wearing a potential recording device. Similarly, it may be awkward or impossible to
ask visitors to relinquish or switch/stow their phones and wearables while in a space

that may have some recording restrictions (e.g., an airport).

Instead recording devices should be able to sense the privacy preferences of nearby
users and organizations automatically, and enforce these preferences in their platform
software. Moreover, the techniques used to disseminate privacy preferences must not
by themselves reduce users’ privacy by enabling tracking or identification of the user.
Developing the principles, methods, and protocol underlying this capability, as well as

prototype systems, is the goal of this project.
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Towards that end we built I-Pic, a platform for policy-compliant image capture,
whereby captured images are automatically edited according to the privacy choices of
individuals photographed. I-Pic’s design was motivated by a user study, described in
Section [3.3] which found that:

Capture policies should be individualized: Privacy concerns vary between
individuals. Even in the same situation, different subjects have different preferences.
This finding motivated I-Pic to preclude options that impose blanket or venue specific
policies [37, 138, 39].

Policies should be situational: Study subjects stated consent to be photographed at
certain times, places, events, or by certain photographers, but would make different
choices in other circumstances. This motivated I-Pic to not impose a static policy per
individual [40]], and to avoid solutions that require prior arrangements between specific
subjects and photographers (whitelisting or blacklisting).

Compliance by courtesy is sufficient: An overwhelming majority of our subjects
stated that they would choose to comply with the privacy preferences of friends and
strangers, especially if doing so didn’t interfere with the spontaneity of image capture.
I-Pic provides such a platform but is not meant to stop determined users from taking
pictures against the wishes of others; indeed, these users could simply use a non-I-Pic

compliant device.

Consider a strawman system where mobile devices broadcast their owner’s privacy
preferences via Bluetooth. Without additional information, a camera would have to edit
the image according to the most restrictive policy received, even if the corresponding
person does not appear in the image at all! To be practical, polices must be accompanied
by a visual signature so that a camera can associate a person captured in an image with
a policy.

However, Bluetooth transmissions can cross walls, which would create a serious
privacy problem if visual signatures were broadcast in the clear: Next-door neighbors
could identify persons whom they have never seen or photographed! To avoid this
problem, I-Pic relies on secure multiparty computation (MPC) to ensure that a capture
device learns only a person’s privacy choice, and only if that person was captured;
otherwise, neither side learns anything.

User studies and privacy requirements inform the architectural components of I-Pic:
Users advertise their presence over BLE(Bluetooth Low-Energy): these broadcasts are
received by I-Pic-compliant capture platforms. When an image is taken, the platform
determines if any of the captured people match the visual signatures of nearby users

using MPC. If there is a match, the platform learns the policy and edits the image
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accordingly, e.g., by occluding the person’s face. To maintain the responsiveness of
image capture, unedited images are shown to the photographer immediately, but cannot
be shared until the image is processed in the background.

Next we describe I-Pic’s related work in Section[3.2] followed by results of our online
survey in Section After that we describe the main technical design of I-Pic in
Sections [3.4]and [3.5] along with existing work in face recognition and cryptography we
build on. Finally, we present results of an experimental evaluation in Section 3.6

3.2 1-Pic Related work

Privacy in the presence of recording devices: Hoyle et al. [41] seek to understand
users’ concerns about continuous recording using wearable cameras, by studying a large
user population of avid life-loggers. Denning et al. [42] conduct a large scale user
survey to understand bystanders’ privacy concerns in public places like coffee shops
and possible ways to mitigate them. Our online survey additionally shows that privacy
concerns are very personal and dependent on the situation.

Roesner et al. [38] present a system that shares a venue’s privacy preferences with
wearable devices in an unobtrusive way. The idea is to convey privacy expectations
associated with places like gyms and washrooms with broadcast messages or visual
signs. The wearable devices in the venue pick up these messages or visual cues and
obey the specified privacy protocol. Unlike I-Pic, this system has no way to associate a
privacy policy with an object or person that appears in an audiovisual recording.

Visual markers to convey privacy policies to nearby wearable recording devices are
also used in [39]. [43] explores the expression of bystanders’ privacy intent using
gestures. Unlike I-Pic, these approaches require either physical tagging of objects and
locations, or explicit user actions (i.e., gestures) to convey privacy choices. Moreover,
I-Pic enables user-defined, personalized, context-dependent privacy choices.

In the work by Bo et al. [40], individuals wear clothes with a printed barcode, which
encodes the wearer’s public key. When an image of an individual showing face and
barcode is uploaded to an image server, the server garbles the face pixels, using the
public key encoded in the barcode. Only the individual who owns the associated private
key can later extract the actual face image. I-Pic, on the other hand, does not require its
users to wear any visual markers, it does not require users to trust an image server with
their private images, and can support context-dependent privacy policies.

In [44, 45| 146], the authors address privacy concerns in untrusted perceptual and
augmented reality applications, by partially processing media stream within the trusted
platform, thus denying apps access to the raw media streams. An augmented reality
app, for instance, might be provided only with the position of relevant objects within a

video stream sufficient for the app to overlay its own information, but not the full video.
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I-Pic also relies on the trusted platform, but focuses on enforcing individual’s privacy
policies regarding image capture by nearby devices.

Zero-Effort Payments [47], similar to I-Pic, uses face recognition and proximate
device detection using BLE to identify a user in an image, but their goal instead
i1s to create a mobile payment system. Unlike I-Pic, which is tuned to identify
even small faces in diverse range of photographic contexts, their system is meant to
visually identify a user, with human assistance, when she is in close proximity to the
cashier. Furthermore, they acknowledge concerns of user privacy in such a monitored
environment and propose the use of signage indicating that a face recognition system
is deployed in the area. Such a privacy solution is only viable in select scenarios, and
lacks the flexibility provided by I-Pic.

Visual fingerprints: Performance on human identification and re-identification tasks
has greatly improved over the last decade. Most notably, face recognition on large
databases in realistic settings is even approaching human performance [48]. Besides
the identity, a person can also be described and identified by a set of attributes [49, 50].
I-Pic uses a state of the art face recognition algorithm based on neural networks, but can
benefit from using semantic attributes describing a face, including features from other
body parts in addition to the face.

Cryptograhic primitives: There is complementary work to protect the privacy of
biometric data [S1, I52]] by projecting or encrypting representations. It is possible that
these approaches could be used in I-Pic to further reduce trust in the Cloud service by
obscuring users’ visual signatures.

InnerCircle [53]] describes a secure multi-party protocol for location privacy, which
computes in a single round whether the distance between two encrypted coordinates
is within some radius r. This computation is similar to I-Pic’s secure dot product and
thresholding computation. However, the protocol’s efficiency degrades exponentially
with the number of bits of precision of the distance. Since our threshold comparison
involves dot products of large feature vectors, we use garbled circuits for the threshold

comparison instead.

3.3 Online Survey

I-Pic’s design was informed by an online survey designed to provide a broader
perspective on personal expectations and desires for privacy. The survey, and
experiments with I-Pic, were conducted with user consent under an IRB approval
from the University of Maryland. The survey included an optional section on user
demographic, including gender, age, and ethnicity.

We publicized the survey on mailing lists and online social networks on November
10th, 2015. The survey is available online at http://goo.gl/forms/6tGGOYmFFG (and
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http://goo.gl/forms/6tGG0YmFFG

reproduced in Appendix [A), and the results here present a snapshot of all responses
collected on December 4th, 2015. As of this date, there were 227 responses, with 208
responders also answering the demographic questions. Respondents represented 32
countries. The age distribution is shown in Table 3.1}

Age group Fraction of participants
less than 20 years 9.2%
20 - 30 years 56.6%
30 - 40 years 25.1%
40-50 4.8%
more than 50 years 3.9%
Unspecified 0.4%

Table 3.1. Age groups of survey participants
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Figure 3.1. Variety in privacy preferences: based on physical situations

Questions in the survey envisioned different venues and activities and presented
participants with different privacy options: (a) agree to be captured in any photograph,
(b) agree, but would like a copy of the image, (c) please obscure my appearance in any
image, (d) can decide my preference only after viewing the photo, or (e) do not wish
to be captured in any photograph. Participants were asked to choose the privacy action
they considered most appropriate for each scenario (Figure [3.1I). To help visualize a
common scenario and to provide perspective for others, participants were shown an
image of people on a platform waiting to board a train, some with faces clearly visible.
The survey also gauged individual’s level of comfort depending on their relationship

to the photographer or the other subjects in the photograph (Figure [3.2)). Finally, we
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Figure 3.3. Variety in privacy preferences: based on use of images (OSN = Online Social Networks)

asked how potential uses of an image influence responders’ level of comfort with being

captured (Figure [3.3).

In Figure [3.1] the x-axis is sorted by the percentage of responders who chose the
most private action of ”do not wish to be captured”, increasing from left to right. Our
results show a mix of privacy concerns for different scenarios. In Figures [3.2]and 3.3
the x-axis is sorted by the percentage of responders who were much less comfortable

with photography, increasing from left to right. Once again, for these social situations
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or image usage scenarios, the privacy concerns of responders is not uniform. These
results demonstrate the necessity of diversity in privacy policy, and argue against venue

based policies that cannot be customized for individuals [38, 154)].

Unsurprisingly, privacy preferences are not unanimous for any scenario; there are,
however, trends. Responders tend to be more restrictive in venues such as beaches,
gyms and hospitals (in Figure [3.1); with strangers in a social situation (in Figure [3.2));
and when images can potentially be shared online (in Figure [3.3(c)). These trends can
be useful as they suggest default policies appropriate for different situations.

Number of privacy preferences | Fraction of participants
1 12.7%
2 27.8%
3 32.2%
4 19.4%
5 7.9%

Table 3.2. Variety in privacy preferences for same person

Table shows the percentage of responders versus the number of different privacy
choices for each responder. The table shows that individuals prefer different privacy
choices depending on the given situation. This finding illustrates the utility of context-
specific policies, and demonstrates the shortcomings of individualized hardcoded

policies, e.g., bar-codes on clothing [40)].

The survey asked whether responders cared about by-stander privacy when
respondents themselves capture images. An overwhelming majority (96.47%) answered
in the affirmative, motivating a system such as I-Pic. About a quarter (28%) agreed if
the overhead of the solution was low; another quarter (26%) agreed if the aesthetics of

images remain good.

Respondent Selection Bias The survey was voluntary and anonymous. The URL for
the survey was advertised on mailing lists and social networks used by the authors and
their friends, leading to a bias in how respondents learned about the survey. However,
we believe that the results presented here still have merit as they represent views across
different age groups and ethnicities. The results overwhelmingly support the thesis that
users often desire privacy from digital capture in social situations, and further that “one-
size-fits-all” solutions to image privacy are not effective. Moreover, as photographers,
the responders overwhelmingly consider bystander privacy to be important. These

observations inform I-Pic’s architecture, described next.
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3.4 I-Pic Architecture

3.4.1 I-Pic overview

Figure [3.4] shows I-Pic’s major components and their interaction. The two types
of principals in the system are bystanders or users who may be photographed, and
photographers who capture images. Both are assumed to operate an I-Pic-compliant
platform. Associated with each principal is a cloud-based agent to which the principals
offload compute-intensive tasks. The photographer is associated with a Capture Agent;
each bystander is associated with a Bystander Agent. We note that agents are logical
constructs; functions provided by the agent can be implemented within mobile devices

should I-Pic be used without wide-area connectivity.
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Figure 3.4. I-Pic major components

I-Pic requires a one-time Association protocol between users and their agent. Users
periodically broadcast their presence using BLE. Once an image is captured, the Face
Detection, Feature Extraction, and Secure Matching protocols are executed. If a user
is identified, the capture platform uses the Policy Enforcement protocol to modify the

photograph as requested. We describe these sub-protocols next.
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Association: Users select an agent as a proxy and provide it with photographs, which
are used to train an SVM classifier for face recognition. A user trusts her agent not to
leak her visual signature. The association protocol also exchanges a master key between
agent and user’s device, which is used to generate session keys in the future.

Next, users initialize their privacy profile, which is locally stored on their device, by
choosing relevant contexts based on location (e.g. office, home, gym, bar/restaurant,
public spaces) and time (work hours, off-work hours), and by choosing an appropriate
action for each context (agree to appear with face, blur face).

Periodic Broadcast: Users periodically broadcast an encrypted policy that specifies
how to treat the user’s picture if she appears in a photograph. This broadcast also
includes sufficient information to identify the user’s agent. The policy is encrypted
with a session key generated using the current time (divided into 15-minutes epochs)
and the master key exchanged with the user’s agent.

Capture platforms receive and cache policies. Once a photograph is captured, if a

user is identified, then the associated policy can be decrypted.

Secure Matching: Upon image capture, the platform detects and tries to recognize
faces. These components leverage existing prior work in face detection [18] and facial
feature extraction [55]], detailed in Section|3.5.1

The capture platform encrypts the extracted features and uploads them to its agent,
along with the network identifiers of all bystander agents that it has received as
broadcast recently. The Capture Agent and the Bystander Agent compare extracted
features and a bystander’s classifier weight vector by implementing a secure dot-product
protocol [S6] followed by a secure threshold comparison protocol based on garbled
circuits [S7]]. If the threshold passes, then the session key used to encrypt user’s policy

is revealed to the capture platform.

Policy Enforcement: When granted a session key for a user, the capture platform
decrypts the corresponding user’s privacy policy and performs the action requested.
Our current implementation only supports face obfuscation, which we implement using
the OpenCV library. More sophisticated techniques exist. For instance, it is possible
to morph a face into another face [S8] instead of blurring it. Furthermore, it is also
possible to remove an entire body from an image and extrapolate the background so
that the removal is not obvious [39]. While such advanced image processing techniques
are not the subject of this thesis, I-Pic can take advantage of them.

If a captured face cannot be matched against any bystander, but all advertised policies
have been evaluated, I-Pic defaults to blurring the face. This protects the privacy of
bystanders who either do not own a smart device or are not I-Pic users.

Similarly, all unmatched faces are blurred if the identification protocol does not

complete for some policies, likely due to lack of network connectivity. The platform
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maintains an encrypted copy of the original image, which can be used to release an
unblurred face in the original image as the protocol completes in the future.

3.4.2 Threat model

I-Pic’s cryptographic protocols ensure that a non-compliant capture device cannot
learn the feature vectors of a bystander who does not appear in a captured image. For
privacy policies of bystanders to be correctly applied, the capture platform on users’
devices is assumed to implement the I-Pic protocol correctly. Third-party applications
installed on users’ devices are untrusted.

Users of capture devices may be able to bypass I-Pic by “rooting” their device; a
different implementation could integrate I-Pic into the device firmware or implement
the protocol on a trusted hardware platform, thus raising the bar for bypassing I-Pic’s
privacy protection. We dismissed this approach, because uncooperative photographers
could in any case use a non-I-Pic compliant camera. Our goal instead is to enable
cooperative photographers to respect bystander’s privacy wishes in an unobtrusive
manner, without introducing new attack vectors. We believe that most users welcome
the ability to automatically comply with bystander’s wishes, as it enables them to take
pictures freely, without worrying whether they might offend others. This was also
observed in our online survey(Section [3.3), where 96% of the participants indicated
that they cared about bystanders’ privacy.

The Bystander Agent must be trusted by the bystander not to leak her visual signature.
The Capture Agent, on the other hand, does not have access to either the users’ visual
signature stored on the Bystander Agent or the features vectors extracted by the capture
device. However, Bystander Agent and Capture Agent are assumed not to collude, else
they could jointly extract the feature vectors of people captured in an image. Capture
Agent is additionally expected to construct the garbled circuit used for secure threshold
comparison (described in section accurately.

Cloud agents learn when an I-Pic compliant device captures an image, and the
Capture Agent learns the IP address of that camera device (Technically, both could
be spoofed since the request may use an identifier without capturing an image, and the
source IP address in a request could be that of a forwarding relay). I-Pic protocols are
designed to ensure that the cloud agents do not learn if a user appears in an image, or the
user’s current context or policy. The following Section [3.5|describes the I-Pic protocols
in detail.

3.5 I-Pic Design

Next, we describe the design of I-Pic in more detail. Figure shows the I-Pic

workflow in normal operation.
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Figure 3.5. I-Pic workflow

I-Pic compliant devices broadcast their encrypted (userid, policy) pairs periodically.
I-Pic compliant capture devices additionally discover other Bluetooth devices
periodically and add any received pairs to a local cache of nearby users. The entries
are flushed from the cache when a device’s broadcast has not been received for 10

minutes.

When an image is captured, I-Pic intercepts the raw image data. The captured image
is available for viewing immediately but cannot be shared until the image is processed.
A background task runs the vision pipeline described below in Section [3.5.1] to detect
faces and extract feature vectors for each. Next, for each feature vector extracted from
the image, the background task performs the secure matching protocol described below
in Section to determine if it matches with the registered classifiers of any of the
bystanders in the cache, and decrypts the policies of any matching bystanders.
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Finally, the I-Pic background task edits the image according to the policies of the
users captured in the image. By default, any face detected in the image that did not
match the signature of a bystander is occluded. This conservative choice errs on the
side of privacy in case of a bystanders who does not carry a mobile device or does not
use I-Pic, whose BLE broadcast was not received, or whose visual signature did not

match due to a false negative of the face recognition.
3.5.1 Image processing

The goal of I-Pic’s image processing is to identify people captured in the image,
extract visual signatures for each person, and match these signatures with those
advertised by nearby bystanders.

Detecting and recognizing people in images is an active area of research in computer
vision. The current I-Pic prototype relies on face recognition as a well-understood and
natural technique for detecting and recognizing people. More general techniques for
people detection and recognition based on full-body visual signatures can be integrated
into I-Pic in the future.

In the following, we briefly describe I-Pic’s face detection, feature extraction, and

face recognition pipeline.

Face detection: I-Pic must detect faces with high recall, ensuring that bystanders’ faces
are detected with high probability regardless of size, focus, pose, angle, lighting, or
partial occlusion. Unlike the primary subjects of an image, bystanders are not posing
for the camera, may be in the background, poorly lit, or out of focus, which makes their
detection challenging.

We use the open source HeadHunter [18] face detector. HeadHunter achieves face
detection recall of ~95% on standard image datasets like the Annotated Faces in the
Wild (AFW) [60]. For I-Pic, we ported HeadHunter to a mobile tablet with a GPU, as
described in Section 3.6 As we will show in Section [3.6.4, HeadHunter is superior to
other face detectors available for mobile platforms.

Feature extraction: We use the state of the art person recognition method from [535].
Unlike typical face recognition systems that can recognize only the frontal faces, [S3]
person recognition system has been trained to generalize across head pose by utilizing
hairstyle and context information. Due to this generalization, it outperforms other
cutting-edge face recognition systems in a social media photo setting [61], where
individuals often do not pose for the camera. Since I-Pic aims at identifying bystanders,
this person recognition system is highly relevant.

The person recognition system [55] is based on a convolutional neural network
(AlexNet [23]) pretrained on the ImageNet [62]] classification task, and fine-tuned for
the person identification task on People In Photo Albums (PIPA [61]), a large database
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of people in social media photos. While [55] uses five different body regions (face,
head, upper/full body, and scene) to maximize the performance, we only extract features
from the face region, and denote this cue as FNet.

Given a face, the original FNet extracts a 4096-dimensional feature vector. To ensure
the efficiency of the secure matching algorithm, which is inversely proportional to the
number of dimensions, we reduce this feature vector to 128 dimensions. We found that
using the neural network itself for dimensionality reduction results in a smaller drop
in overall recognition accuracy than using Principal Component Analysis. Specifically,
we insert a 128-dimensional fully connected layer before the last layer in the AlexNet,
randomly initialize the weights, and tune it using Stochastic Gradient Descent. Our
FNet features are extracted from this 128-dimensional layer after forward passing
Headhunter face detections through the network. All the training and feature extraction

in neural networks are done using the open source deep learning framework Caffe [36].

Face recognition: When a user registers, I-Pic extracts FNet features from the set
of portraits he or she provides. Per-user SVM classifiers are then trained on the FNet
features, where positive examples consist of the portraits provided by the corresponding
user, and negative examples from the other users and ~12K celebrity faces in the
Labeled Faces in the Wild dataset (LFW) [63]. On average, there are ~15 positive
examples per user, captured with different viewpoints and facial expressions. Users
may subsequently provide additional images for training, for instance, if they start to
wear glasses or grow a beard. The liblinear [64] package has been used to train the
SVMs.

In normal operation, HeadHunter detects faces in captured images, and the
corresponding FNet features are extracted. I-Pic compares the feature vector of each
detected face against the trained SVM classifiers of each bystander using a dot product
computation. If the dot product is above a certain threshold, the classifier indicates a
match. To ensure privacy, [-Pic computes the dot product and threshold comparison as
part of a secure multi-party computation between the photographer’s capture agent and
each bystander’s agent.

Before we describe the secure matching protocol, we briefly review the underlying
cryptographic protocols.

3.5.2 Cryptographic Protocols

I-Pic composes two standard protocols to achieve secure matching: secure dot

product and garbled circuits.

Secure dot product: The secure dot product protocol allows two parties, each with a
private vector, to compute the vector dot product without divulging the vectors. We use

the protocol described in [56]], which is based on the Paillier homomorphic encryption
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scheme [65]. We use the notation [a], to represent the encryption of a number a using
a public key pk. The Paillier encryption scheme is additively homomorphic, i.e., given
[a]yx and [b],x, it is possible to compute [a + b,k = [a]k[b]px- It follows that given
[a]x and an integer ¢, one can compute [ca],r = ([a]yx)¢. These two primitives can
be combined to compute the dot product securely as follows: Given two vectors v, =
[Vays Vags -+ Va,,) a0d 0y = [V, , Uy, ..., Vs, ], the dot product vy - vy = 7 (Va,0p,)-
Given the Paillier encryption scheme, one can compute the encrypted dot product of an

encrypted vector [v,],« and a cleartext vector v, as

[va - velpe = NZ(U%U%')]] - H([[Uaj]]pk)vbj

j=1 ok =1

A straightforward application of this protocol in I-Pic, however, faces two problems:
First, the capture device learns the dot products, which would enable a ‘rogue’ capture
device to learn the classifier weight vector of each bystander. By computing dot
products using a series of standard basis vectors (vectors that have a value of one in
one dimension and zero in all others), the dot product values reveal the dimensions
of a bystander’s weight vector. To prevent this attack, we use garbled circuits [S7]],
described below (and in detail in Section [2.I), to compute whether the dot product
exceeds a threshold £ without revealing the dot product itself.

Second, a capture device typically needs to compare several feature vectors,
corresponding to multiple faces that appear in a photo, to the classifier weight vector
of a bystander. For n feature vectors with m dimensions, the secure dot product
computations require nm encryptions (and n decryptions). We can optimize this

computation as follows.

Optimized n x 1 secure dot product: I-Pic reduces the number of encryptions from
nm to m using ideas from [66]]. Consider a matrix V' of n vectors with m dimensions
each, corresponding to n faces in a photograph, where V; ; is the jth element in the
ith vector. Let ¢; = [Vi;, Va2, ..., Vs | be the jth column of V. The photographer
computes an encryption of ¢; as [¢;],x = [(Viy) | (Vay) || - | (Vaj)]pk, Where ||
denotes concatenation. This involves only one encryption to produce the ciphertext
for n values. The photographer sends [c1 ]k, .., [Cm] k. the encrypted user ids (uid)
of the discovered bystanders, and pk to the Bystander Agent. For each bystander,
the Bystander Agent computes [vy, c;[,r = ([c;]px)™ for 1 < j < m, where vy is
the classifier weight vector of a bystander. Multiplying these encrypted values, the
Bystander Agent obtains a packed encryption of the dot products, [P || ... || Pu]yx =
Vi-vp || Varvp || oo || V- 0sllpe = [vs,€1llpkllvs, C2llpk---[Vb,, €m]px and sends it back
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to the photographer, who decrypts (using sk) and unpacks the values to recover the

individual dot products.

Garbled circuits for secure threshold computation: Garbled circuits allow two
parties holding inputs x and y, respectively, to evaluate an arbitrary function f{x,y)
without disclosing their inputs. The basic idea is that one party (the garbled circuit
generator—the Capture Agent in our setting), prepares an “encrypted” version of a
boolean circuit computing f; the second party (the circuit evaluator—the Bystander
Agent in our case) then obliviously computes the output of the circuit. The combination
of secure dot product and garbled circuits can provide the property that the bystander’s
session key is revealed to the capture device if, and only if, there is a match between
an extracted feature vector and the classifier weight vector of a bystander. The capture

device can then decrypt the bystander’s policy.
3.5.3 Secure matching protocol

Figure[3.6)shows a high level diagram of I-Pic’s secure matching using the two cloud

agents.

Capture E a Bystander
Agent

Agent

Encrypted features
vectors [c]y, Secure matching

Visual signature

of bystander,

[user-id] Sequence of

session keys (k)

H0) < (3]

url of bystander-agent, [user-id],, [policy],

Photographer’s device Bystander’s device

Figure 3.6. High level diagram of I-Pic secure matching with the two cloud agents

An example message exchange of the secure matching protocol for one image with
n detected faces and b bystanders is shown in Figure The photographer’s device
computes the m encrypted column vectors according to the “optimized n x 1” secure
dot product protocol, which requires m encryptions. The device sends these vectors to
the Bystander Agent (via the Capture Agent) along with the encrypted user ids of the b
bystanders (Message 2 and 3 in Figure [3.7).

The 1-Pic Bystander Agemﬂ now looks up the classifier weight vectors of the b
bystanders. For each bystander, it computes the encrypted packed dot products,

To simplify exposition, the description here assumes a single Bystander Agent service. The capture
device would have to execute the protocol for each Bystander Agent in case more than one is discovered.
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[Pia || Pia |l - |l Pinlpk, 1 < i < b, of the bystander feature vector and the n image

feature vectors.

Secure thresholding The Bystander Agent computes obscured encrypted packed dot
products, [P/, || Py || ... || P,],1 < i < b, by adding a different random value
R; ; to each dot product P ;, for 1 < ¢ < b1 < j < n. This is performed by
multiplying each of the b packed encrypted values containing n dot products each,
[Pii |l Pz || - || Pinllprs with [Riq || Rio || - || Rin]lpr for 1 < i < b. These
obscured encrypted packed dot products are sent to the photographer’s device via the

Capture Agent (Message 6 and 7).
The photographer’s device decrypts the b packed encrypted values containing n

obscured dot products each, which requires b decryption operations. The device
forwards these obscured dot products to the Capture Agent (Message 8), which then
constructs a garbled circuit that takes as input n obscured dot products P} ; = P; ;+ R, j,
n random values R;;, a session key K;, and the threshold £ (all provided by the
Bystander Agent), for 1 < i < b,1 < j < n. The circuit computes

Ki if Pi/,j > &+ Ri,j

P”S,RZ '7Ki -
( 0] 42 ) { 0 Otherwise

that is, the circuit reveals a bystander’s session key iff the dot product of the

bystander’s classifier weight vector and an image feature vector exceed the threshold.

Delivering the Bystander Agent’s inputs to the garbled circuit requires a Diffie-
Hellman key exchange (DH) and two rounds of oblivious transfers (NPOT [67] and
OTEXT [15]), which are partly piggy-backed on the secure dot product protocol
messages, and shown in Figure (Messages 4, 5, 6 and 9). The Capture Agent now
sends the circuit to the Bystander Agent, along with the garbled values of the obfuscated
inputs ]3{7]-,
oblivious transfer (Message 9).

The steps of OTEXT algorithm are described in Figure In Figure the
steps labeled ‘OT2’ (steps 6 and 9) refer to completing the overall OT}" described
in Figure 2.5] The steps labeled ‘OT1’ (steps 5 and 6 in Figure correspond
to completing the OT* primitive (step in 2 in Figure . The otk primitive is
implemented as k invocations of the /-out-of-2 OT protocol, described in Figure
These k invocations are clubbed into steps 4, 5, and 6 in Figure

and the garbled values of Bystander Agent’s inputs as part of the OTEXT

The Bystander Agent executes the circuit b times with the appropriate inputs, and
returns the garbled results to the Capture Agent (Message 10). After ungarbling the
results, the Capture Agent returns the session keys for the matched bystanders to the

photographer’s device (Message 11).
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As composed, the matching protocol has the desired property that a photographer
learns a bystander’s current session key if and only if a feature vector in the image
matches that bystander’s classifier weight vector. Garbled circuits also ensure that the
Bystander Agent does not learn whether there was a match between the encrypted facial
feature vectors and a bystander. Additionally, no principal learns the vectors held by

the other principals nor the magnitude of the dot products.

Note that the Capture Agent is trusted to construct the garbled circuit correctly. This
requirement could be relaxed if one is willing to run additional checks [68] at some

additional computational and runtime overhead.

3.6 I-Pic Evaluation

We have prototyped I-Pic on Android version 4.4.2E] In our deployment, we used
a Google Project Tango Tablet [69] as the photographer’s capture device and Galaxy
Nexu phones as bystander devices. The Nexus phones advertised their presence once

every 640ms over BLE.

We ported HeadHunter [18] to Android for face detection. HeadHunter is optimized
for execution on CUDA-enabled GPUs [70]; the Tango Tablet allows us to access
CUDA cores. The camera output on the tablet (available as a JPEG file) is first
histogram equalized [[71]] and then resized to 640x360 before being input to HeadHunter.

HeadHunter outputs bounding boxes corresponding to detected faces.

To extract feature vectors from facial images, we used an Android port of the Caffe
framework [72]] and ran it with our FNet neural network. The extracted vectors were
normalised such that each feature value was in the range [0,1]. We ported existing
Java secure dot product and garbled circuit implementations [73] to C++ on Android to
optimize for runtime and energy consumption. The various agents were implemented
as HTTP servers.

We begin with a description of I-Pic deployments in various settings; these
deployments were also approved by the University of Maryland IRB. While we gained
intuition about our vision pipeline using standard face recognition datasets (and the
pipeline’s performance compares well with the state-of-the-art on them), all results
presented here evaluate I-Pic on images captured “in the wild”, reflecting spontaneous
image capture in different social situations with a range of lighting conditions, camera
angles, distances, and poses.

2The code for the I-Pic prototype is available at https://ipic.mpi-sws.org/code/ipic.html
3Galaxy Nexus has Bluetooth hardware capable of BLE advertising, but the functionality is not
available via standard API calls. We patched the kernel to enable BLE advertising.
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3.6.1 Deployments

To evaluate I-Pic, we registered fifteen volunteers from our institutions using the
registration procedure detailed in Section Each volunteer received a Galaxy
Nexus device for BLE advertisement, which they carried on their person. Registered
users could choose to either show or blur their face when photographed; this setting
could be changed at their discretion.

The photographs in our results were captured over three days (see Table [3.3)), and
were taken using the Tango tablet and a DSLR camera. We used the DSLR setup
(Sony A7, 35mm /2.8 lens, 1/80 fixed exposure time with Sony HVL-F32M flash) to
simulate better tablet cameras with higher resolution and faster apertures expected in
future tablets. The photographs captured by the DSLR camera were manually fed into
the I-Pic processing pipeline.

We annotated all photographs manually with ground truth face rectangles using
the open source annotation tool Sloth [74]]. For each face, we manually added other

information, such as the identity of registered users, pose, and lighting condition.

Date  Capture device = Number of Number of
photographs  ground-truth faces
Nov 20  Tango tablet 81 277
Nov 27  Tango tablet 176 553
Dec 02 DSLR 130 843
All 387 1673

Table 3.3. Experimental dataset

3.6.2 I-Pic decision tree

In I-Pic, faces in photographs end up being edited (e.g., blurred) or remain
unchanged, correctly or incorrectly, depending on decisions made by different
subsystems. Figure [3.8] shows the possible paths through I-Pic, culminating in leaf
nodes colored green if I-Pic preserves user privacy and red if it does not. Note that
it is possible for I-Pic to make a mistake, e.g., not recognize a face, and for the
corresponding path to still lead to a green leaf node, e.g., because the user policy stated
not to obscure their face. Finally, some leaf nodes are grey, corresponding to privacy
irrelevant mistakes where non-faces were detected as faces and possibly blurred.

Understanding this decision tree, and in particular, analyzing where privacy-relevant
errors can accrue, will enable us to parameterize and evaluate our vision pipeline in the
context of [-Pic’s overall goal.

The decision tree has three stages: (1) face detection, (2) face recognition and (3)
policy application. Stages 1 and 2 are computational and depend solely on the accuracy

of the vision pipeline. The diagram separates these from Stage 3, which is contingent
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on user choices. For instance, if users choose more permissive policies, then errors from

previous stages will less likely result in privacy violations, and vice-versa.

Face Detection: Stage 1 may result in three outcomes: True Positive (TP), where I-Pic
detects a face marked in ground truth; False Positive (FP), where I-Pic detects a non-
face object as a face; or False Negative (FN), where I-Pic does not detect a face marked
by ground truth. All TP and FP detections are passed to the face recognition engine in
the next stage.

The FN faces bypass the I-Pic pipeline and remain unchanged, and can potentially
lead to a privacy violation (red leaf node). To minimize these cases, we bias the face
detection engine towards higher recall (lower FN) at the expense of lower precision
(higher FP). This means that a non-face object occasionally gets blurred in an image,

in exchange for increased privacy.

Face Recognition: For a TP face detection output, there are six possible choices for
recognition in the I-Pic pipeline: (1) True Positive (TP), where the detected face is
matched only with the individual identified in ground truth; (2) True Positive along
with False Positives (TP*), where the face is matched with the ground truth individual,
but also with otherﬂ (3) False Negative (FN), where the face is not matched with the
ground truth person; (4) False Negative along with False Positives (FN*): I-Pic does
not match with the ground truth, but instead matches with one or more other registered
individuals; (5) True Negative (TN), where I-Pic correctly does not match the face
to any registered individual; and (6) False Positive(s) (FP*), where I-Pic incorrectly
matches the face to one or more registered users.

Two leaf nodes have privacy violations for face recognition. FP is responsible for
both paths, while one of them also requires a FN. Thus lower FP or high precision has
higher priority for recognition, and adequate balance with low FN or high recall is also
necessary. These requirements guide the parameterization of the I-Pic face recognition
engine.

Misdetected faces (FP in detection) are also fed into the recognition protocol, and
may lead to (1) True Negatives (TN) whereby I-Pic does not recognize the “face” as a
registered user, or (2) False Positives (FP*) where I-Pic mistakenly matches the “face”
to one or more registered users.

Policy: Each detected face leads to an action, as shown by the leaves of the tree. If the
recognition engine outputs a single user, then the action corresponding to that users’
policy is undertaken. However, in cases of multiple matches, e.g., due to TP*, FN* or
FP*, the most restrictive policy chosen by any “recognized” user is applied. For all
unrecognized users, [-Pic blurs faces by default.

“We allow multiple matches; any registered face that exceeds a similarity threshold is considered a
match.
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We will detail an experiment with 687 faces in 120 images to examine I-Pic’s privacy
violations in Section [3.6.3] The percentages below the leaves in Figure [3.8] show the
fraction of faces that mapped to each path in the decision tree, in this experiment. As
can be seen from the percentage values, the privacy preferences of 14% of 687 captured
faces were violated, primarily due to errors early in the vision pipeline (face detection).
In the next sections, we will present detailed evaluations of the vision pipeline, whose

accuracy primarily determines I-Pic’s performance.

3.6.3 I-Pic overall performance

We begin with an evaluation of I-Pic’s overall performance in terms of its
primary goals, which are to (i) respect bystanders’ privacy, and to (ii) preserve the
photographer’s intent to the extent allowed by subjects’ privacy choices.

Toward this end, we took a sample of 120 images with 687 faces marked in the
ground-truth. We additionally marked each face according to its role in the image, as
shown in Table [3.4] along with the frequency of faces with a given role.

Name ‘ Role in photograph ‘ Number of occurrences
PP | primary subject posing 185
PN | primary subject natural 115
BP | prominent bystander 56
BO | other bystanders 331

Table 3.4. Roles of faces captured in images

Many of the captured faces correspond to unregistered individuals. Since we don’t
know the privacy preferences of these individuals, we assigned them policies manually,
so that we can process each image as if each captured person were registered with
a policy. We assigned the show-face policy to the 185 PP faces, since it would be
inconsistent for a person who poses for a photograph to refuse to have their face
shown. For the remaining 502 faces, we randomly choose one of show-face or blur-
face policies.

The percentage values given at the leaves in Figure [3.8] show what fraction of these
687 faces had what outcome when run through the I-Pic system. As we can see, privacy
was violated in 14% of the cases, while the remaining 86% had no privacy violation.

We also assign a privacy loss score in each case of violation. These scores provide a
subjective measure of the severity of the privacy violation depending on the role of the
face in the image, with higher scores indicating a more severe violation. The privacy
loss scores are given in Table with the last column indicating how many of each

type of violation occurred in the 687 faces.
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Privacy loss score | penalization scenario ‘ occurrences
3 PN privacy violated 15 (2.18%)
BP privacy violated 12 (1.75%)
BO privacy violated | 70 (10.19%)
no privacy violated | 590 (85.88%)

Table 3.5. Privacy loss scores

S =N

About 2% of cases had the most severe privacy violation, which is to show a primary
subject not posing for the camera against their wishes. Also about 2% of cases had a
clearly visible bystander shown against their wishes, and around 10% were less severe
cases, where a not prominently depicted bystander was not blurred. We conclude that,
overall, I-Pic observes subjects’ policies in most cases (86%). Moreover, violations that
did occur were mostly in the moderate or mild category.

The second aspect of I-Pic’s overall performance is its ability to preserve the
photographer’s intent, to the extent allowed by the subject’s policies. Similar to the
privacy loss score, we can define a subjective intent loss score, which penalizes blurring
a posing primary subject (score 3), blurring a non-posing primary subject with a show-
face policy (score 2), and bystanders with show-face policies (score 1) in decreasing
order of severity. The ordering is based on a subjective judgment of intent loss severity
when a face is unnecessarily blurred, based on the face’s role in the image. We note
that our assignment of an intent penalty for the bystander case is conservative, as it is

unclear whether a photographer should have expectations about capturing bystanders.

Figure shows the intent loss scores for the 120 images, normalized by the
maximum intent loss that could occur in a given image. The images are sorted by
increasing number of faces from left to right. The bars represent the image composition
in terms of roles of the faces depicted in it. I-Pic preserves the photographer’s intent,
as measured by our score, perfectly in 55 (45.8%) of the images, with the intent loss
increasing for pictures with more faces. The vast majority of intent loss cases are caused
by a failure to recognize the face of a bystander with a permissive policy, combined with
I-Pic’s default policy to blur.

Being focused on privacy, I-Pic biases its choices towards privacy, including the
default policy and the rule to apply the most restrictive policy in case of multiple
matches. As a result, losses in the vision pipeline come at the expense of intent rather
than privacy. In the following subsections, we investigate circumstances that lead to
imperfections in the vision pipeline, which are causal for the losses in privacy and intent

reported here.

48



3.6.4 Vision pipeline analysis

The I-Pic decision tree demonstrates how (and how many) privacy violations occur as
a result of errors in the vision pipeline. An obvious case is when a face is not detected,
and thus not blurred in post-process. We have identified and manually labeled images
with factors that affect detection and analysis, as we explain next. This analysis is
done with our full image dataset of 387 images, where 1673 faces have been manually
marked with ground truth (Table [3.3)).

Factors affecting detection and recognition

The factors labeled in the ground truth (lighting, pose, and size) greatly affect whether a
face is detected or not. We determine size based on the number of pixels in the image the
face occupies; “small” faces (s-Sm) have a bounding box with at least one dimension
less than 100 pixelsf]; all other faces are “large” (s-Lg). Pose is one of “frontal, profile,
tilted head” (p-Std); “facing up, down” (p-Avert); “back turned, obstructed view” (p-
Occ). Lighting is one of “Bright, even lighting” (I-Good); “Low even lighting” (1-Low);
“Backlit, Shadow, Strong directional” (1-Poor).

Figure decomposes face detection recall along these factors, for our image
dataset (Table [3.3). The figure includes example images corresponding to different
conditions for visual reference. The recall values for detection can be as high as 95% to
as low as 32%, based on lighting, face size, and how occluded a face is in a photograph.

The leftmost bar with recall around 32% represents all combinations of factors
combined with a partly occluded pose (p-Occ). 20% of the faces in our dataset are
in this category. Together with the faces that suffer from low or poor illumination and
an averted pose (four leftmost bars), they have recall below 50%. Faces in this category

are probably not clearly recognizable even for humans without contextual information.

Face characteristic Recognition recall
1-Good—p-Std-s-Lg 85.22%
1-Good—p-Avert-s-Lg 82.79%
I-Low—p-Std—s-Lg 78.62%
1-Good—p-Avert-s-Sm 67.38%
1-Good—p-Std—s-Sm 66.29%
p-Occ or 1-Poor 20.49%

Table 3.6. Face recognition recall vs. different illumination conditions, face poses and face sizes

Table [3.6]shows the face recognition recall for a subset of illumination, pose and size

characteristics. Recognition recall is only meaningful for individuals who are registered

3The Tango camera produces 2688 x 1520 pixels images and Sony A7 produces 4240 x 2832 pixels
images
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Figure 3.10. Face detection accuracy vs. illumination conditions, face poses and face sizes

in the I-Pic system. Our 15 registered individuals occured with the subset of conditions
given in Table 3.6 while only unregistered individuals occured in other conditions.

p-Occ and I-Poor lead to poor recognition recall. This effect is intuitive, as occlusion
or directional lighting distorts the facial features, making it harder to match with
registered face models. Additionally, s-Sm performs worse than s-Lg. Our FNet neural
network scales the input image to 227 x 227 pixels before feature extraction. Since
s-Sm faces are less than 100 pixels in either width or height, this upscaling potentially
affects the face recognition accuracy for small faces.

Precision for face detection or recognition do not show any marked correlation under
different illumination, pose or size. In summary, good detection recall (>60%) and
excellent recognition recall of nearly 80% occurs when pose is frontal or averted,
illumination is good or low, or the size is large. This category includes about 65%
of the faces in our images, and represents cases where subjects are clearly recognizable

and privacy is most important.

Mapping back to events

The previous section identified different factors affecting I-Pic’s face detection and
recognition. But in what scenarios can one expect favorable conditions? In this section,

we describe the scenarios in which we have evaluated I-Pic, and catalog photographs
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and faces from each scenario according to our factors. We note that photographers were

not aware of these factors when the photographs were taken.

Context name | characteristics illumination
Campus Individuals posing Natural light
(180 faces) outdoors, with some

bystanders present

Social Afternoon tea session with Combination natural and
(237 faces) 40 people in an indoor atrium | fluorescent light

Office Daily exchanges in Fluorescent light

(129 faces) offices and corridors

Party Crowded party Back and directional
(424 faces) in small indoor venue lighting from lamps

Table 3.7. Four different social contexts

Figure 3.11. Campus Context

Table [3.7 lists four events where we obtained about 64% of our captured images.
These images contain 970 manually annotated faces; the table lists the number of faces
for each context. Figures[3.11] [3.12] [3.13] [3.14] shows representative images from each
event; Figures [3.15| [3.16] 3.17] show the illumination, poses and size distribution for
these 970 faces.

Figure m plots the recall (%) and precision (TPTJF%) for both detection and

recognition for the four events. The plot also includes data for All, corresponding to all
1673 faces in our evaluation, including those taken outside the four events.

Both detection and recognition recalls depend on contexts: Campus photographs
taken outdoors with favorable poses have high recall for both detection and recognition.
In contrast, challenging lighting and occluded faces in the indoor Party context lead to

low recall.
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Figure 3.14. Party Context

Face recognition precision is high, independent of the social context. However,
face detection precision varies with context. Manual inspection of the images revealed
that busy scenes with many people have more false positives in face detection. Here,

body parts like ears or hands, or striped clothing, accidentally match the face detection
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Figure 3.16. Variety in faces poses in different contexts
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Figure 3.17. Variety in faces sizes in different contexts

template of HeadHunter. This shows up as lower precision in the Social context, which
has crowded scenes.

As discussed in Section [3.6.2] I-Pic is biased towards higher recall for face detection
and higher precision for face recognition, to maximize the privacy scores of the system.
Figure [3.18]shows the effects of these choices on the vision pipeline performance.

In summary, the Campus, Social, and Office contexts have recall in the 70-80%
range for both face detection and recognition. The challenging scenarios like Party
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Figure 3.18. I-Pic vision pipeline performance

provide an opportunity for future vision research. Our image dataset, captured with
mobile cameras, will be very useful to design new vision algorithms, which I-Pic can
incorporate in the future.

Comparison to existing face detectors

We have used the open source HeadHunter [[18]] for face detection. A natural question
to consider is how well existing, widely used face detectors, such as those bundled with
Android or OpenCV, compare. Table [3.8] shows the precision and recall for different
face detection libraries on our dataset. HeadHunter vastly outperforms the competition,
justifying its use within I-Pic. Note that low detection recall, in particular, leads to false
negatives in I-Pic, which can lead to privacy violations. In Chapter [4] (Section [@.1)) we

also evaluate the performance of a recent state-of-the-art head detector.

Library ‘ Precision ‘ Recall
Android 38.65 5.49
Snapdragon 94.28 591
OpenCV 31.27 49.91
HeadHunter 68.47 68.55

Table 3.8. Comparison of face detection libraries
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3.6.5 Secure Feature Comparison

Next, we present microbenchmarks evaluating the processing and bandwidth
requirements of the secure vector matching protocol with varying numbers of faces
and bystanders. During these experiments, both the cloud agents are running on the
same machine and are on the same 802.11 WiFi network as the I-Pic devices. In each
run of the experiment, we generated feature vectors randomly.

Consider Figures[3.19and [3.20] which show the protocol’s total runtime latency and
its breakdown. Latency includes computations on the device, on the cloud agents, and
the network transit time between the device and the Capture Agent.

The number of input vectors that have to be encrypted and transmitted increases
with the number of faces in the photograph, resulting in an expected linear increase in
runtime in Figure 3.19] Figure [3.20] shows that a major contribution to this runtime
is the client side encryption of feature vectors for the secure dot product part of the
protocol (Step 2 in Figure [3.7). Due to the “n x 1 dot product” optimization, described
in Section the client side runtime does not increase significantly with the number
of faces.

From separate measurements (not shown in Figure [3.20) we know that these client
side encryption operations show a 2x reduction in runtime on mobile platforms
supporting a 64bit ARMv8-A instruction set. ﬂ

Increasing the number of bystanders for a fixed number of faces increases the runtime
linearly, but importantly, it does not significantly increase the client-side runtime
(Figure [3.20). This is a desirable property as the photographer’s overhead does not
signficantly depend on the number of bystanders in the vicinity.
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Figure 3.19. Total Runtime of the secure matching protocol

®Measurements are not shown here because the Tango tablet does not support the ARMVvS-A
instruction set.
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Figure 3.21. Total data exchanged for the secure matching protocol for different number of bystanders

Figure [3.21] shows the data transmitted between the device and Capture Agent,
and between the cloud agents. We observe that data transmitted between the device
and Capture Agent is less than 100KB and it does not increase significantly with the
number of faces or bystanders. This figure also shows the effects of adding the garbled
circuit. The garbled circuit affects the data exchanged (and the latency) between the
cloud agents, which increases both with the number of bystanders and the number of
faces. Garbled circuits are evaluated by the Bystander Agent for each bystander and the
number of inputs to each garbled circuit depends on the number of faces.

Overall the results show that the secure matching protocol can be efficiently executed.
Moreover, computation can be offloaded to a significant extent from the client devices
to the cloud agents.

3.6.6 Runtime and Energy Consumption
Figure plots the overall time taken for I-Pic to process different photographs,

along with times spent in different vision and secure matching tasks. In each case,
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the capture platform received and processed between 3 and 10 BLE advertisements,
with varying number of faces in the photograph as plotted along the x-axis. The times
for secure matching includes network communication and all cryptographic functions.
Face detection dominates, often requiring 25 seconds per photograph. Recall that the
processing takes place asynchronously in the background, and does not interfere with
the users’ experience while capturing and reviewing images.

While the face detection cost in particular is high in our prototype (70-80% of
total processing time), we believe it is encouraging that best-of-breed face detection is
feasible on mobile devices available today. Advances in mobile hardware capabilities,
driven in part by emerging virtual reality applications, will benefit HeadHunter and
other stages of the I-Pic pipeline in the near future. Moreover, face detection is already
being offered as a standard feature on mobile platforms, and future implementations
(possibly hardware supported) with better accuracy could directly benefit I-Pic.
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Figure 3.22. Overall and task level runtimes of I-Pic prototype. 10 bystanders were discovered in each

case.
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Figure 3.24. Face detection accuracy of I-Pic prototype for different image resolutions

We measured the energy consumption of the various subcomponents of I-Pic using
the Monsoon Power Monitor [[75]]. We attached the power monitor to a Nvidia Shield
Tablet K1 [76]Z] and processed an image with 30 faces in it. Figure shows the
energy consumption for different resolutions of the input image. The face detector uses
the GPU, whereas the feature extraction is CPU bound. Energy consumption of face
detection is independent of the number of faces in an image, whereas it is linear in the
number of faces for feature extraction. The secure matching algorithm was run with the

30 faces extracted from the image along with 40 simulated bystanderﬂ

Image resolution | Number of images processed
(pixels) (containing 30 faces each)
320x180 408
480x270 347
640x360 288
800x450 239

Table 3.9. I-Pic’s projected capacity on a 5100 mAh battery

Using these measurements, Table shows I-Pic’s projected capacity on the Nvidia
Shield tablet, which has a 5100 mAh battery. More than 288 images and 8640 faces can
be processed on a single charge. Figure [3.24] compares the face detection accuracy
versus the resolution of input images, and serves to highlight the tradeoff between
accuracy and energy consumption of the prototype. Reducing the resolution to 480x270
pixels enables the prototype to process 20% more images, but comes at a high (12%)

drop in face detection recall. On the other hand increasing the resolution to 800x450

"We used the Shield tablet for the power measurements because the Monsoon power monitor is unable
to power the Tango tablet. The latter requires a 7.5 volts power supply whereas the Monsoon power
monitor can only supply a maximum of 4.5 volts.

$BLE scanning for 5 seconds consumes 0.12 mAh of energy, which is accounted for in Figure
but not shown separately.
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only gives diminishing returns for face detection recall when compared to the increased

energy consumption that accompanies it.

3.7 I-Pic Summary

I-Pic allows users to respect each others’ individual and situational privacy
preferences, without giving up the spontaneity, ubiquity, and flexibility of digital
capture. The I-Pic design and prototype demonstrate that the technical impediments
for privacy-compliant imaging can be reasonably overcome using current hardware
platforms. I-Pic leverages cutting-edge face detection and recognition technology,
which is often perceived as a threat to privacy, to instead increase user’s privacy
regarding digital capture. Future advances in mobile platform hardware and computer
vision will directly benefit I-Pic to further improve the efficiency and accuracy of its
privacy enforcement. In Chapter[d] we explore a state of the art head detection technique
based on deep neural networks to improve I-Pic’s privacy performace and also port I-Pic
to a newer platform, a powerful development board containing the Nvidia Jetson TX2

Mobile SoC, to explore gains in energy efficiency possible using newer hardware.
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Chapter 4
Exploring I-Pic’s performance limits

In this chapter we explore how I-Pic can benefit from recent advances in both software
and hardware technology. With the initial I-Pic prototype presented in Chapter
the primary aim was to build a complete end-to-end system that worked on a mobile
device, and to evaluate it in realistic social scenarios. In this chapter we explore how
much better I-Pic can perform if we take advantage of state-of-the-art object detection
techniques and powerful new hardware likely to be available in future mobile devices.
Specifically, we experiment with a state-of-the-art head detector [[17] built on top
of Faster R-CNN [[19]], a popular deep learning framework used to detect objects in
still images. We also explore the feasibility of running this head detector on a mobile
platform, using a powerful development board containing the new Nvidia Jetson TX?2
Mobile SoC [77]. Overall we found that we can significantly improve I-Pic’s ability to
protect a user’s privacy while consuming 33% less energy than our original prototype.

4.1 Exploring head detection

As described in Section [3.6.3] I-Pic’s privacy guarantees depend on the accuracy
of it’s visual recognition sub-systems, which include the face detection and face
recognition components. This dependency is highlighted in Figure which shows all
possible paths through I-Pic, culminating in leaf nodes colored green if I-Pic preserves
user privacy and red if it does not. The figure shows that in 11% of cases I-Pic
violates users’ privacy due to false negatives in our face detector, i.e., the detector
fails to detect faces actually present in photographs. This loss in accuracy is because
HeadHunter [18]), the face detector used in our prototype implementation, is unable to
detect faces that are small, or faces that are partially occluded, or faces that are turned
up or down, or rotated by more than 90 degrees in profile. Furthermore, HeadHunter
frequently identifies hands and ears as faces, which further reduces the overall accuracy
of I-Pic’s vision pipeline. Finally, HeadHunter does not use deep learning, which is

now the de facto standard for building object detectors that offer better accuracy than
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HeadHunter, such as Faster R-CNNJ[19]]. Overcoming these limitations while exploring
the limits of [-Pic’s accuracy was our primary motivation to experiment with a state-of-
the-art head detector [[17]].

The head detector we used [17] was trained by our computer vision collaborators,
and is based on the Faster R-CNN [19] framework. Additional details of this head
detector along with some of the recent related work in object detection techniques
are described in Section [2;2} In the following sections we will, first, briefly describe
the additional post-processing steps that were performed on the output of the head
detector (Section 4.1.1), and then we evaluate how well the head detector performs

(Section 4.1.2)) on the dataset of images generated in I-Pic’s earlier deployment.
4.1.1 Post-processing head detector output

The trained head detector was made available to us as two Caffe [36]] model files,
corresponding to the two stages(described in Section of the detector, and Matlab
code that executed the two models in succession to produce the output of the head
detector.

The output of the head detector are bounding boxes in an image where a head might
be present. Each bounding box also has an associated score that indicates the likelihood
of a head being present in that box. We retained bounding boxes with score > 85 and
size > 30x30 pixels. We will refer to these retained boxes as output-boxes.

Box merging: We additionally post-process output-boxes by merging nearby boxes
into a single larger bounding box, as show in Figure We introduced this step to

reduce multiple output-boxes detected for a single head. We merge a candidate box B
Area(B1NBa)
Area(B1)

is > 0.50, and 2) the Affinity [78] between the two boxes, “LetoB) is > 0.95.
Figures [.1(b)| and 4.1(c)] show the effect of box merging on an image taken from
I-Pic’s deployment. Figure shows the multiple output-boxes (blue) without any

merging applied. Figure shows the output after box merging, where the merged

with a box B into a larger box B™, if 1) the relative area of intersection,

box is shown in green. The ground truth annotation is shown in a yellow box in both

figures.
4.1.2 Performance of the head detector on the I-Pic dataset

In this section, we present a detailed evaluation of the head detector on the set of
photographs collected in I-Pic’s initial deployment (Section [3.6.1)).

As a first step, we manually annotated all photographs, replacing each face rectangle,
previously annotated, with a full head rectangle. We additionally annotated each head
with information, such as the identity of the person, pose, lighting condition, and the
role it plays in an image. The head detector was executed on all the photographs using

an Nvidia Tesla K80 GPU, followed by box merging to produce a set of DetectedHeads.
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(a) Box merging

i

(c) After merging

1l [ M
(b) Before merging

Figure 4.1. Effect of box merging. Output-boxes (along with scores) are shown in blue. The box produced

after merging output-boxes is shown in green. Yellow box shows the annotated ground truth.

For a particular ground truth box, the highest scoring DetectedHead with a relative

Area(DetectedHead N GroundTruthBox)
Area(DetectedHead)

positive (TP). All unmatched DetectedHeads and ground truth boxes were treated as

area of intersection,

> (0.60 was treated as a true

false positives (FP) and false negatives (FN) respectively.

Head detector recall & precision: Table {.1] shows the performance of the head
detector compared to HeadHunter and other face detection libraries. There is a
significant increase in recall, ﬁ,
that the head detector is able to detect many more heads than HeadHunter. This

as compared to HeadHunter, which shows

is a highly desirable property to have in order to improve I-Pic’s ability to provide
privacy. Figure[d.2]shows all the false negatives (FN) of the head detector. We find that
the head detector sometimes misses out on heads that have significant occlusions, or

heads that are very small in size, or heads that are backlit. Somewhat surprisingly,
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but very rarely, it fails to detect frontal heads. This is a limitation of the detector
that our vision collaborators also acknowledge, and will require re-training the head
detector. Nevertheless, the performance of the head detector is significantly better than
HeadHunter.
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Figure 4.2. False negatives of the head detector.

We also manually inspected the false positives in DetectedHeads and found that very
few non-head objects were falsely identified as heads. About 86% of all the false
positive DetectedHeads corresponded to actual heads. 75% of these were the backs
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of heads which were not marked in our ground truth dataset, and the rest were either
profile or front heads corresponding to duplicate detection boxes still remaining after

box merging.

Library Precision | Recall
Android 38 5
Snapdragon 94 6
OpenCV 31 49
HeadHunter 68 68
Head detector 76 92

Table 4.1. Comparison of the head detector with other face detection libraries

I-Pic’s processing pipeline with head detector: I-Pic’s updated processing pipeline
with the head detector included is shown in Figure 4.3] Unlike I-Pic’s earlier pipeline
(presented in Figure [3.8)), the updated pipeline processes each photograph using, both,
HeadHunter (to detect faces) and the head detector (to detect heads). The output of this
step is classified in three categories and is processed accordingly.

Matched faces: These are all faces (detected by HeadHunter) that are also detected as
heads by the head detector. They serve as input to the face recognition step. Depending
on the privacy preferences of the bystanders and the accuracy of face recognition, some
of the matched faces are selected for obfuscation. DetectedHeads corresponding to
these matched faces are obfuscated. We obfuscate the head instead of the face because
obfuscating the head removes more identifying information about a person than just
obfuscating a face. Therefore to provide better privacy and since the corresponding
matched head bounding box is readily available, we choose to obfuscate the head.

Unmatched heads: These are heads detected by the head detector (DetectedHeads)
that are not detected as faces by HeadHunter. These heads are obfuscated by default.
By doing so, we err on the side of privacy in case of a bystander who either does
not carry a mobile device, or does not use I-Pic, or whose BLE broadcasts were not
received, or whose face was missed due to a false negative in face detection. The default
policy of obfuscation is also in accordance with the one we had used for our initial I-Pic
prototype, described previously in Section[3.5]

Unmatched faces: These are faces detected by HeadHunter that are not detected as
heads by the head detector. These faces are not processed further. Through manual
inspection we found that a large majority of these Unmatched faces were non-face
objects, such as hands and ears. Therefore we chose not to obfuscate these by default.

To study the performance of this updated pipeline, in terms of its ability to protect
users’ privacy and photographer’s intent, we conducted an experiment, similar to one
described in Section [3.6.3] using a sample of 1545 ground truth faces/heads from 380
images. Table 4.2 and Figures [4.3] and |4.4] show the result of this experiment.
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Role in photograph Number of occurrences | Privacy violations | Intent violations
Primary subject posing 221 (14.3%) 0 (0%) 48 (3.1%)
Primary subject natural 428 (27.7%) 6 (0.4%) 111 (7.2%)

Prominent bystander 425 (27.5%) 24 (1.5%) 160 (10.3%)
Other bystanders 471 (30.5%) 65 (4.2%) 159 (10.3%)
Total 1545 95 (6.1%) 478 (30.9%)

Table 4.2. Number of instances of privacy & intent violations, categorized by their role in photographs

Protecting privacy: From Figure f.3] we find that including the head detector
significantly improves I-Pic’s ability to protect users privacy. This is shown by the
percentage of heads for which privacy is violated, which has been reduced from 14%
of faces previously (in Figure [3.8) to 6% of faces. This significant improvement is a
direct result of the head detector’s ability to detect nearly all heads in an image (high
recall). Furthermore we found (through manual inspection) that all non-face objects
(hands, ears, etc.) detected by HeadHunter as faces were discarded as unmatched
faces. This is because the head detector’s output(DetectedHeads) contains very few
non-face objects, therefore the intersection of HeadHunter’s output and DetectedHeads
retains actuals heads only, and filters away non-head objects as unmatched faces. This
ability to automatically discard non-face false positives is highly desirable, since these
objects don’t match any of the bystanders during face recognition, and are unnecessarily
obfuscated.

Intent preservation: Figure 4.4{shows how using the new head detector impacts I-Pic’s
ability to preserve the photographer’s intent. We find that 36% of all images show no
intent violations, as compared to 46% images previously (in Figure [3.9). This decrease
in performance is primarily because all unmatched heads are obfuscated by default,
decreasing I-Pic’s overall intent score performance. This also highlights the inherent
trade off between privacy and photographer’s intent. In I-Pic we have deliberately
chosen to err on the side of privacy. Moreover, from Table 4.2 we see that the majority
of intent violation instances occurred for bystanders in the background, who generally
appear smaller in size than primary subjects in an image. This is encouraging because,
even though intent violations are not desirable in general, overall it is less severe to
incorrectly blur out small heads in the background, rather than prominent heads in the

foreground.

Accuracy in different social scenarios: Figure shows the recall & precision of the
head detection and face recognition components, categorized by the social scenarios
presented in Section @ We find that in all scenarios, recall for the head detector
is more than 90%, which is a significant increase compared to Figure previously,
where it ranged from 60 to 80%. Head detection precision also shows an improvement
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of 5 to 10 percentage points in all the scenarios. Face recognition results are nearly

similar to the previous results, which is expected.
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Figure 4.5. Recall and Precision for Head detection and Face recognition(matched faces)

Head recognition: In the discussion above we used face recognition to match privacy
preference of captured bystanders to their visual signatures. Here, however, we show
how the performance is impacted if use head recognition instead. To do that we
followed steps similar to the ones described in Section [3.5.1] For each registered
user, we trained a head recognition SVM classifier using the training images previously
collected and 3000 heads images from PASCAL VOC 2010 training set (as the
generic negative set). Features vectors from head images were extracted using a deepnet

similar to FNet, which was trained on head images instead of face images.

We evaluated the head classifiers both on DetectedHeads and matched heads. Overall
the results were not very promising: the recall and precision for head recognition was
less than 30% in most scenarios. It turns out that state-of-the-art systems for head
recognition, such as [55] and [[79], also have low accuracies, 46% and 60% respectively.
One reason for I-Pic’s even lower performance (less than 46%) is that we use a generic
negative set to train person-specific classifiers. This makes I-Pic’s head recognition use
case even more challenging than the most difficult scenario (the day-split configuration)
evaluated in state-of-the-art systems [35] [79]. Although not a viable option for I-
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Pic, training one-vs-all classifiers similar to the ones described in [S5] brought I-Pic’s
accuracies closer to the accuracies reported in [S3]].

Overall we found that accurate head recognition with arbitrary poses that works well
in a wide range of social situations, and also in an open world setting (as required by I-
Pic) is still an open research challenge. Substantially improving I-Pic’s head recognition
performance will require significant improvements in state-of-the-art technology for
head recognition, which is currently beyond the scope of this thesis.

4.2 Exploring I-Pic’s runtime performance on a new Mobile SoC

In this section we explore how I-Pic can benefit from powerful new hardware likely to
be available in future mobile devices. Previously, in Section[3.6.6] we had described the
energy consumption of I-Pic on the Nvidia Shield Tablet containing the Nvidia Tegra
K1 Mobile SoC, released in 2014. Here we explore how much better I-Pic can perform
using a powerful new Mobile SoC, the Nvidia Jetson TX2 [77], released in 2017.

To measure I-Pic’s runtime performance, we ported the three main components of I-
Pic’s new processing pipeline, the head detector, face detector, and the feature extractor,
on to the Nvidia Jetson TX2 Developer Kit [80]. The developer kit runs the ARM port
of the standard Ubuntu 16.04 Linux distribution and provides display, Ethernet, & USB
ports to conveniently access the Jetson TX2 module. We also ported the Matlab code
accompanying the head detector (described in Section to python, since Matlab is
not supported on the ARM platform.

We used the Keysight B2961A Low Noise Power Source [81] to power up and
measure the energy consumption of the developer kit. The Keysight B2961A was
configured to provide a constant 6 volts with the maximum current capped at 3 amperes.
During the actual energy measurements of the three components, all other cables, i.e.,
display, Ethernet, and USB were disconnected from the board.

Figures {.6(a) and {4.6(b) show the energy consumption & the runtime of the three
components. Similar to Section we processed an image containing 30 faces for
our measurements. Note the head detector was only implemented on the Jetson TX2.

Overall we find that the energy consumption and runtime on the new Jetson TX2
module is significantly better than Tegra K1. This is encouraging since head detection
in I-Pic’s new processing pipeline comes with substantial additional computation
overhead. In fact, on Jetson TX2, we are able to perform all the three tasks within
the same energy (and runtime) budget as that of the face detector on Tegra K1. The
head detector is at least twice as energy efficient (and faster) than the face detector on
Jetson TX2. The face detector itself is 1.6 times more efficient on Jetson TX2 than on
Tegra K1. Feature extraction for 30 faces (using the Caffe framework) is also 8 times

more efficient and faster on Jetson TX2 than Tegra K1.
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Figure 4.6. Energy consumption and running time of I-Pic’s components on two different mobile SoCs.

The total energy consumption of all the I-Pic components on Jetson TX2, including
face detection, head detection, feature extraction, secure matching and BLE scanning[]
is estimated to be 216.44 Joules. At this rate of consumption, the Jetson TX2
implementation will be able to process 322 images on a single charge of 5100 mAh
battery (operating at 3.8 volts), as compared to 288 images measured previously
on Tegra K1 in Section [3.6.6] For comparison, I-Pic’s original prototype (used in
Section [3.6.6), which only uses face detection instead of both face and head detection,

running on Jetson TX2 is able to process 576 images on a single charge.

4.3 Conclusion

Overall we conclude that I-Pic can benefit significantly from recent advances both

in software and hardware. We explored this possibility, in this chapter, by integrating

"We have conservatively assumed the combined energy consumption for secure matching and BLE
scanning to be the same across the two platforms, the same as that measured on Tegra K1 in Section[3.6.6|
(which was 26 Joules)
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a state-of-the-art head detector in I-Pic’s processing pipeline and by using a powerful
new Mobile SoC. We found that with these changes, I-Pic could provide better accuracy
at faster runtimes, while operating within a lower energy budget.

Specifically, in Section[d.1] we showed that using a state-of-the-art head detector [[17]
improved I-Pic’s ability to detect all the people in an image from 70% (previously) to
90%. This improvement also increased I-Pic’s ability to protect users’ privacy from
86% (previously) to 94%. We also modified the I-Pic’s processing pipeline to use a
combination of face detection and head detection, which also helped in automatically
eliminating false positives produced by the face detector.

Using a powerful new Mobile SoC, the Nvidia Jetson TX2, we demonstrated,
in Section @.2] that I-Pic’s three main computer vision components could operate
significantly faster, while consuming less energy than previously measured on the Tegra
K1. The head detector was twice as fast and 2x more energy efficient as compared to
the face detector, while providing higher accuracies. The face detector itself performed
1.6 times better on Jetson TX?2 than Tegra K1. Overall we found that, on Jetson TX2, all
the three components combined could operate at a lower energy budget than that of the
face detector on Tegra K1. We further estimated that a complete prototype implemented
on the Jetson TX2 platform will be able to process more images on a single charge,
increasing from 288 images (previously) to 322 images.

In conclusion, we find these results to be very encouraging as they suggest that there
is still room for improving I-Pic’s performance, without compromising on its energy

efficiency.
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Chapter 5

EnCore: Private, Context-based
Communication for Mobile Social

Apps

5.1 Introduction

Mobile social apps consider users’ location, activity, and nearby devices to provide
context-aware services (such as Highlight [82]], Facebook Nearby[83], YikYak [84],
Whisper [85]). Users of these increasingly popular apps are exposed to various
privacy risks. Most currently deployed mobile social apps rely on a trusted cloud
service [82, 83, [84] to match and relay information, requiring users to reveal their
personal information, such as a trace of their location, social networking profile, etc.,

the perils of which have been extensively noted [, 6, 7, 8, 9].

Some recent apps [86, [87] additionally use device-to-device (D2D) communication
via short-range radio (e.g., Bluetooth, Wi-Fi Direct). D2D communication permits new
capabilities: first, devices can precisely identify nearby devices, enabling powerful
ad hoc communication and sharing. Second, D2D enables devices to create pairwise
shared keys, which can be used to bootstrap secure and private communication without

a trusted broker.

Recognizing this opportunity, new secure D2D handshake protocols, such as
SMILE [88]], SmokeScreen [[89] and SDDR [10] have been developed. SDDR provides
a secure encounter abstraction: pairs of co-located devices establish a unique encounter
ID and associated shared key using D2D communication, which encounter peers can
subsequently use for secure communication. While specific apps have been built using
encounters [88,189], no platform exists that relies on encounters to enable a wide range

of privacy-preserving mobile social communication and sharing.
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In this project, we leverage the notion of addressable secure encounters introduced
in SDDR to build EnCore, a communication platform that provides powerful new
capabilities to mobile social apps, with strong security and privacy guarantees, without

requiring a trusted provider. Using EnCore, apps can:

e Rely on encounters to conveniently and securely bootstrap events, which
represent socially meaningful groups of proximal users and are associated with
inferred context and user annotations.

e Send, receive, share, organize, and search information and contacts by referring
to events by their name, time or location, while maintaining confidentiality and
full control over participants’ anonymity and linkability.

e Use conduits to distribute and store information within events, before, during
and after the actual social event. Current conduits rely on e-mail, Dropbox and
Facebook.

To illustrate the space of apps supported by EnCore, consider a scenario of tourists
visiting a site. While there, visitors wish to share live recommendations on nearby
sights, shows to attend, and eateries to try, but do not wish to reveal any (long-term)
linkable information about themselves. If, unbeknownst to them, a friend or person with
a shared interest is in the area, they would like to be notified, yet they wish to remain
anonymous to all others. At a later time, attendees may like to share content (e.g.,
photos) and commentary related to the visit, but only with those who were there. Lastly,
some might wish to follow up with a special person they met but failed to exchange
contact information with. EnCore supports all these capabilities and more.

The primary contributions of this project are as follows:

e We present the design of EnCore and its implementation on Android devices.

e We demonstrate EnCore’s capabilities through Context, an Android application
that provides communication, sharing, collaboration and organization based on
events. The application was shaped by user feedback from a series of test bed

deployments.

e We report on a series of live deployments of Context and EnCore, with 35 users
at MPI-SWS.

The structure of this chapter is as follows: in the next section we will
describe the related work (section [5.2)), followed by a description of EnCore’s
requirements (section [5.3), and overall design (section [5.4)), followed by a description
of the Context app built on top of EnCore (section [5.5), results from a series of live

73



deployments of EnCore (section [5.6) and qualitative feedback we received from our

users (section [5.7).
5.2 EnCore Related Work

Mobile social apps Most currently deployed mobile social apps like Highlight [82]],
Facebook nearby [83]], YikYak [84] and Whisper [85] rely on a cloud service to match
co-located devices and relay data among them. Users must trust the provider with their
whereabouts, activities, and social encounters.

More recent systems like LoKast [90], AllJoyn [86], Haggle [91, 92] and
Musubi [93], as well as lost-and-found apps like Tile [94], use D2D radio
communication, which enables infrastructure-independent and accurate detection of
nearby devices (e.g., those within Bluetooth range). In principle, these systems could
be designed so that users do not have to trust the cloud provider with their sensitive data.
Unfortunately, once Bluetooth discoverability is enabled, devices can be tracked even
when they are not actively communicating, introducing a new threat to privacy. Unlike
the tracking of cellular phones by mobile operators, such “Bluetooth surveillance” by
stores and businesses is not regulated [93]].

EnCore relies on SDDR [[10] for D2D radio communication. SDDR incorporates an
efficient periodic MAC-address change protocol that ensures users cannot be tracked
using their MAC address. The SDDR handshake protocol is provably secure and does
not leak users’ identity or profile information except to selected users.

The AirDrop [96] service in Apple’s 10S 7 enables iPhone users to share content
with nearby devices. AirDrop uses Bluetooth for device discovery and token setup,
and an ad hoc Wi-Fi network to transfer data. AirDrop is designed for synchronous
pairwise sharing among co-located users. Android Beam [97] is similar to AirDrop
but relies on NFC [98] to initiate communication by physically placing devices back
to back, and uses Bluetooth or Wi-Fi Direct [99] to transfer content. EnCore instead
enables communication with all encountered EnCore devices, both during and after
co-location. Moreover, EnCore prevents tracking, and supports anonymous and group

communication.

Life-logging apps Friday [100] keeps an automated journal of user activities such as
calls, SMSes, location history, photos taken and music history for browsing and sharing
purposes. Memoto [101] is a life-logging camera that takes a picture every 30 seconds.
The Funf framework used in the Social fMRI project [[102] is a platform for social and
behavioral sensing apps. Since all these services upload the collected data to the cloud,

users have to trust the cloud provider with their private information.

Private mobile social communication systems SMILE [88] is a mobile “missed
connections” application, which enables users to contact people they previously met,
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but for whom they do not have contact information. SMILE creates an identifier and
an associated shared key for any set of devices that are within Bluetooth range at a
given time. Users can subsequently exchange messages (encrypted with the shared key)
anonymously through a cloud-based, untrusted mailbox associated with the encounter
ID.

In SmokeScreen [89]], devices periodically broadcast two types of messages, clique
signals (CSs) and opaque identifiers (OIDs). CSs enable private presence sharing,
announcing the device’s presence to any nearby member of a mutually trusting clique
of devices (e.g., friends). The sender’s identity can be determined from the signal only
by clique members, who share a secret. OIDs enable communication with strangers.
A trusted broker can resolve OIDs to the identity of their sender, assuming that two or
more devices agree to mutually reveal their identities. In comparison, EnCore supports
anonymous communication with strangers without requiring a trusted broker.

SPATE [103] uses physical encounters among mobile devices to allow users to
explicitly establish private communication channels, so that they can communicate and
share data securely in the future. SPATE does not address anonymity, does not support
communication among strangers who did not explicitly introduce their devices, and
does not provide a way to address devices by referring to a shared context.

PIKE [104] is a key exchange protocol designed for secure proximity-based
communication among the participants of an event. Keys are exchanged using an
existing service like Google Calendar or Facebook, which require knowledge of the
contact details for each participant. EnCore, on the other hand, leverages encounters to
exchange keys with previously known and unknown participants, and without explicit

user action.

SDDR: Secure Device Discovery and Recognition SDDR [10] builds on the
encounter-based communication style introduced by SMILE, adding selective and
unilaterally revocable linkability. The SDDR handshake protocol is provably secure,
non-interactive and energy-efficient. SDDR attempts to form a pairwise encounter with
each nearby device, establishing a shared key in the process. SDDR can also recognize
specific users or users with specific attributes if both peers in an encounter agree to be
recognized by each other, while remaining unlinkable by other devices. This selective
linkability can be revoked and reinstated efficiently and unilaterally by each peer.

To prevent devices from being linked across encounters by their link-layer addresses,
SDDR changes the MAC address every “epoch” (roughly every 15 minutes). However,
periodic address changes are not natively supported in Bluetooth 2.1 and cause
established connections to reset. EnCore uses a Bluetooth 4.0 SDDR implementation
that maintains all of the security properties of SDDR over Bluetooth 2.1, and preserves

interaction with legacy accessories and devices.
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Privacy-preserving MAC protocols SlyFi [105] is a link layer protocol for
802.11 networks that obfuscates packet bits, including MAC address identifiers and
management information, in order to prevent adversaries from identifying or tracking
users in an application-independent manner. EnCore addresses the complementary
concern of enabling anonymous, context-based communication based on encounters.
EnCore, however, additionally includes a Bluetooth MAC address change protocol to
prevent cross-encounter linking. Bluetooth 4.0 [[106] protocol incorporates low-power,

low-latency discovery and security extensions relevant to EnCore.

Location privacy Several works investigate location privacy for mobile devices [107,
108, 1109, 1110, [111]. Roughly speaking, the following two classes of approaches have
been proposed. The first class proposes to send fake or perturbed location data, or
send location data at coarser granularity [108, 109, (110, 111} [112]. This class of
approach essentially trades off utility with privacy. The second class of approaches does
not require data obfuscation, but resorts to anonymity [[107, (113} [111]. For example,
Koi [107] sends unperturbed locations to a cloud server; however, the location is not
linkable with a user’s identity (assuming two non-colluding servers). In comparison
with these approaches, EnCore achieves location privacy without relying on trusted,

centralized infrastructure.

Device discovery Energy-efficient device discovery in wireless networks has been
studied extensively [114, 115,116} (117, [118]]. EnCore currently uses a simple, static
device discovery scheme, but could easily incorporate the more sophisticated protocols
in the literature. Other work aims to enable users to prove that they were in a particular
location [119, [120]. EnCore addresses the orthogonal problem of allowing users to
prove that they were in the vicinity of certain other devices. The Unmanaged Internet
Architecture [[121] (UIA) provides zero-configuration naming and routing for personal
devices. While it shares with EnCore the goal of enabling seamless communication
among personal devices, UIA is not concerned with the specific communication model

and privacy needs of mobile social applications.

5.3 EnCore: Capabilities and Requirements

In this section, we describe EnCore’s capabilities in light of the communication
requirements of mobile social apps and the privacy needs of users. EnCore provides
its capabilities without relying on a third-party provider that is entrusted with users’

whereabouts, activities, and social encounters.
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5.3.1 Detecting nearby users and resources

A basic requirement of mobile social apps is the detection of nearby resources and
users. EnCore’s secure encounters enable this capability using D2D communication.

Detecting nearby resources has several variants:

Discovering when a known friend is nearby Friends can be members of certain
online social network circles (e.g., friends, family, colleagues), or specific users that
have previously paired their devices. For privacy reasons, a user should be able to
control discoverability by individuals or circles manually, and based on the present
time, location, or activity. Moreover, a user’s device should be unlinkable by all other

devices.

Discovering relevant resources and nearby strangers that match a profile The
profile might include interests (e.g., “tango”) or relationship status (e.g., “single male
age 27 seeking female”). For privacy reasons, a user should be able to control
discoverability by individual profile attributes manually, and based on the present time,
location, or activity. Moreover, an attribute should be visible only to devices that

advertise a matching attribute.

Keeping a record of (strangers’) devices encountered This record is useful to
communicate and share information related to a shared experience, taking place in the
present (e.g., sharing recommendations for menu items while at a restaurant) or in the
past (e.g., sharing selected photos from a joint tour bus ride). For privacy reasons, this

record must not contain personally identifying or linkable information.
5.3.2 Event-based communication/sharing

Mobile social apps enable communication among members of a social event like a
meeting or gathering. A key abstraction in EnCore is an event, a set of encounters
relevant to a social event along with inferred context and user annotations. Typically, an
event includes a subset of a device’s ongoing encounters at a given time, and a device
may be part of multiple concurrent events. For instance, while at a restaurant, Alice’s
device may participate in a dinner event comprising encounters with each of the devices
present at her dinner party. Concurrently, her device may be part of a restaurant event
comprising encounters with other guests at the restaurant. Both events are socially
meaningful, and may be used to share photos and notes about the dinner with her party,
and menu suggestions with the other guests, respectively. Note that Alice’s device may
also encounter devices of people who pass by outside the restaurant, which are not part
of any event.

EnCore is able to infer certain types of events automatically, and users can create
named events manually by annotating specific encounters. Events occur naturally as

users are presented with relevant encounter and context information. For instance,
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moviegoers at a theater might wish to share movie recommendations on the spot, while
participants of a sightseeing tour may wish to share selected photos and videos days
later. Attendees at a conference might wish to virtually carry on a conversation started
in the hallway, texting and sharing links long after the conference is over. Supporting

events has the following requirements:

Ad hoc event creation The ability to set up an event without the inconvenience of
having to pair mobile devices with every attendee or enumerating every attendee by
their contact details. This capability lowers the bar for setting up communication and
sharing related to an ad hoc event or meeting.

Event-based communication The ability to send, receive, share, organize and search
information and contacts by referring to the time/location or name of the appropriate
event. This capability makes it easy to communicate with people one has met on a

particular occasion, without needing to remember everyone’s name or contact details.

Furthermore, the platform must protect user’s privacy and data confidentiality,

leading to two additional requirements:

Privacy control To protect privacy, users must retain the option to participate in an
event with full contact details, a permanent nickname (“Alice”), or under an unlinkable,
one-time pseudonym. The former may be appropriate for a meeting with business
partners at a conference, while the latter are appropriate for sharing content related
to a shared activity with strangers.

Access control The ability to control access to the event is critical for private event-
based communication. An event may be restricted to any subset of those physically
present during a specific event, and may optionally include additional users who are

invited by a member.

5.4 EnCore Design

In this section, we describe the services supported by the EnCore platform. Figure[5.1]
depicts the various components of the EnCore architecture. EnCore uses the SDDR
protocol to form D2D encounters, and store these in the EnCore database. The Event
Generator component groups, under user direction, related encounters into socially
relevant named events, and stores these in the database. Users use applications to
communicate with event peers. Depending on the event specification and the type
of content shared, the Routing module decides how to forward event invitations,
content and notifications to the members of an event. The information is sent using
Conduits, which rely on an existing communication, storage or OSN service to effect

communication. Applications usually default to specific conduits for particular event
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Figure 5.1. EnCore Architecture

and data types, e.g., Dropbox for video sharing. Before describing each of these
components, we discuss EnCore’s security properties and threat model.

5.4.1 EnCore security properties

Threat model

We assume that a subset of devices is controlled by attackers who participate in the
EnCore protocol as peers and may also collude. Also, attackers can observe network
communication and data stored in the Cloud. However, attackers cannot decrypt content
without knowledge of the encryption key or invert cryptographic hashes. Furthermore,
we assume that user devices are not compromised, i.e., attackers cannot learn honest
users’ private keys or the shared keys associated with encounters or events in which
no attacker was a participant. Finally, honest users do not share event keys with non-
members (users not part of an event).

We assume that user devices, including the operating system and any applications
the user chooses to run, do not divulge information identifying or linking the device or
user through EnCore conduits or other communication channels (the EnCore protocols
themselves do not leak identifiable information, down to the MAC layer.). Finally,
we rule out radio fingerprinting attacks, which can identify a device by its unique
RF signature [122]. Such attacks require sophisticated, non-standard signal capture

hardware, and are outside our threat model.

Security properties

Under the assumptions stated above, EnCore provides the following security properties:

79



Bluetooth device unlinkability Attackers cannot track a legitimate user’s device across
Bluetooth radio contacts, unless the user’s device remains in Bluetooth contact with
some attacker’s device for a continuous period that is never interrupted by more than
two SDDR epoch changes[]

Encounter unlinkability/selective linkability Attackers cannot link different
encounters with a user’s device, unless the user has explicitly linked their device with

an attacker’s device and has not revoked the link.

Communication unlinkability Attackers cannot link communication or posts by a
legitimate user in different events, unless the user has explicitly included identifying

information, such as a nickname, in the posts.

Anonymity Attackers cannot learn the identity of a legitimate user or user’s device with

whom they share an event, unless the user explicitly reveals this identity.

Confidentiality Attackers cannot learn the communication content of events in which

no attacker participates.

Authenticity Users can verify that the communication or content received in an event
originates from a member.

We highlight that EnCore’s threat model and security properties are mostly inherited
from SDDR [10]. In principle, one could use a different platform, such as SMILE [8§]]
or SmokeScreen [89]] to support EnCore’s functionality. Minimally, EnCore expects
the underlying platform to discover nearby devices, form encounters and provide
pairwise shared keys with them. SDDR additionally provides selective linkability and

revocation, as well as Bluetooth unlinkability.
5.4.2 Encounters

EnCore uses a modified version of the SDDR [10] protocol for device discovery
and for forming D2D encounters. Below we give a brief overview of how SDDR
forms encounters and provides selective linkability. Further details, including SDDR’s
security guarantees and scalability, are available in [10].

Each device periodically performs a discovery (also known as an inquiry) to identify
all nearby devices, collecting their MAC addresses and beacon messages in the process.
Every device is also always discoverable, responding to incoming inquiry messages
with information on how the discoverer can establish a connection (e.g., MAC address)
and an additional payload, referred to as the beacon. This response is sent by
the Bluetooth controller autonomously without requiring the attention of the main
processor. Therefore, devices must only wake up to perform an inquiry. Otherwise,
while simply discoverable, only the Bluetooth controller must be active, allowing the
rest of the system to remain in a suspended state (consuming almost no energy).

'Device unlinkability for Wi-Fi can be achieved using existing work like SlyFi [105]
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Once SDDR receives the beacon(s), it forms an encounter with the remote device and
computes a shared key. The beacon contains a Diffie-Hellman (DH) [[123] public key
which is used to compute this shared key.

While processing the beacon, SDDR additionally checks if the device belongs to a
known, selectively linkable user. To support this, the beacon also includes a Bloom
filter, which represents a set of salted hashes of secrets shared with the devices of
linkable users. Two linkable devices advertise the same set member, which guarantees
a match in the Bloom filters. The Bloom filters are padded to achieve a uniform load.
Moreover, the salt is changed in every successive inquiry, which makes the probability
of false positives quickly approach zero with each additional round in which the Bloom
filters match. To a third (unlinked) device, on the other hand, the Bloom filters look like
randomly changing sets of bits.

SDDR divides time into epochs (typically fifteen minutes long), during which the
MAC address and DH public/private key pair remain constant. This allows the devices
to track each other during an epoch, but remain unlinkable across epochs.

The original SDDR implementation used Bluetooth 2.1 to provide an efficient
discovery and encounter formation implementation. Specifically, it encoded the
beacons in the additional 240 bytes that the Bluetooth 2.1 Extended Inquiry Response
(EIR) feature allows a device to include as part of the inquiry response. However,
Bluetooth 2.1 does not support changing MAC addresses, which is required by SDDR;
otherwise, users could simply be tracked by their MAC addresses regardless of the
privacy provided by SDDR. As a result, the original SDDR implementation reset the
Bluetooth controller with a new MAC address every epoch, every fifteen minutes or so.
While this provided the necessary security guarantees, it also rendered the device unable
to maintain long-term connections with other paired accessories such as headsets.

For use in EnCore, we used a Bluetooth 4.0 implementation of SDDR, which
provides native support for randomized, ephemeral MAC addresses. This feature
enables EnCore to maintain compatibility with legacy accessories. Furthermore, the
communication model supported by Bluetooth 4.0 is different from Bluetooth 2.1, so the
Bluetooth 4.0 implementation uses a different wire protocol and a FEC-based message
encoding scheme. Design and implementation of SDDR over Bluetooth 4.0, though not

a contribution of this thesis, is described in [124].
5.4.3 Events

Events are socially meaningful sets of encounters. The Event Generator creates
events by selecting encounters that are taking (or took) place concurrently and form a
social event meaningful to users. There are two methods for generating events: relying
on explicit user input from the Context application, or using existing user annotations

(e.g., the user’s calendar entries). Once an event is created, the generator, using
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suitable conduits (Section[5.4.4)), sends an invitation to all participating encounter peers,
containing an event ID and a shared event key, which can be used for communication
among event members. For privacy reasons, users are required to explicitly invite others
for events inferred from their private calendar entries.

EnCore provides several methods by which users can create events: For small
meetings, all participants tend to interact in close proximity with one another, and thus
all devices form encounters with each other. Users can manually select appropriate
encounters, using cues such as whether an encounter corresponds to a known user, or
a received signal strength indicator (RSSI), which helps to distinguish between nearby
and distant users.

For larger events and future events, it is inconvenient or impossible for one user
to select all participants from the set of encounters they observe at the time of event
creation. If the event is managed, and has a list of attendees, it is possible to bootstrap
the EnCore event similar to PIKE [[104]], using Facebook or another existing registration
system. However, unlike PIKE, EnCore can also handle ad hoc events. For these events,
the event creator can specify a time period and geographic area, such that any devices
within the specified space-time region is automatically invited to the event. This can be
implemented by having each event member forward invitations over their encounters
that meet the spatial and temporal constraints. Evaluating such policies in a large scale
deployment is part of ongoing work.

In designing EnCore, we chose not to use protocol means to disambiguate multiple
EnCore events that correspond to the same social event. Thus, users are free to create
multiple EnCore events for the same social event, or (somewhat more commonly for
large events), a few users may end up creating their own EnCore event corresponding
to the same social event. Our experience is that event peers themselves resolve this
ambiguity by gravitating to one event, abandoning the others without requiring an
arbitration protocol (this was observed in our deployment as well, see section [5.6). Of

course, applications atop EnCore may choose to provide their own arbitration protocol.
5.4.4 Communication

All application-level communication in EnCore occurs among the members of an
event. Two types of components within EnCore are responsible for communication,
Conduits and the Router.

Conduits are adapters to existing communication, storage and online social network
services, and are used to convey information between event participants. Conduits
accept messages or content and, depending on the type of conduit, either a list
of encounter IDs (the communication end-points for pairwise message transport) or
an event ID (the rendezvous point for group communication and sharing). They

convert the encounter IDs or event ID into addresses or names used by the underlying
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communication, storage, or OSN service that the conduit relies on. To provide
secure communication among the members of an event, conduits normally encrypt
the communication using either the shared encounter key(s) established during the
handshake protocols, or the shared event key distributed during the event creation.

The Router component decides, based on the event specification and the type of
information shared, how information is forwarded among event members. Three types
of information are routed: event invitations, content, and notifications. If the conduit
used for the event and information type supports multicast or shared storage, then the
router delivers the information in one step, using the event ID as an address and the
event key to encrypt. If the conduit supports pairwise communication, then the router
sends the information to each member with which the local device shares an encounter,
using the encounter IDs as addresses and the associated shared keys to encrypt. If
not all pairs of event members share an encounter, then the routers on each member
device forward the information to all of their local encounter peers that meet the event

membership specification and have not already received it.
5.4.5 Security guarantees

Building EnCore on SDDR guarantees the security properties related to unlinkability.
Since SDDR requires periodic MAC address changes, devices are not linkable at
the Bluetooth layer unless the tracking device is present whenever the SDDR device
changes addresses. Similarly, since SDDR ensures that the advertisements do not
carry identifying information (except to linked users), devices remain unlinkable.
The confidentiality and authenticity guarantees are provided by ensuring that all
communication is encrypted and protected by a message authentication code, using
either an event key or an encounter key. Since only encounter or event peers possess
the same shared keys, this ensures both confidentiality (event peers can decrypt) and

authenticity (only encounter or event peers can post).

5.5 Using Events with Context

We have developed an Android application called Context over EnCoreﬂ Context
maintains a private record of the user’s activities and social encounters, and allows
users to communicate, share, collaborate, organize and search information and contacts
using events. The design of Context was shaped significantly by user feedback during a
series of testbed deployments within our institute community between September, 2012
and September, 2013.

Even though Context still lacks the feature wealth, sleekness and visual polish of

a commercial product, users in our institute-internal deployment have generally found

2The code for the Context app is available at https:/people.mpi-sws.org/~paditya/code/encore.html
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Context useful, and have come up with creative uses for its capabilities. We provide
quantitative details of Context’s usage in our deployment in Section [5.6] as well as
qualitative user feedback in Section In the rest of this section, we briefly describe
the main functions provided by Context and their value to the user: browsing the user’s
timeline and identifying socially relevant encounters, managing events, posting and

receiving information, and managing user linkability.
5.5.1 Browsing the timeline

Figure[5.2]shows a screenshot of Context’s timeline view for a hypothetical user Bob.

Bob can navigate this view by scrolling, zooming or searching by keyword or date.

The timeline view shows encounters, events and calendar entries as horizontal
bars spanning time intervals. For linked encounters, the peer’s name is displayed.
Anonymous encounters show “Unknown’ as the peer name. The height and color of the
encounter bar indicates signal strength and is a rough proxy for proximity. This view
scrapes the user’s calendar and displays previously scheduled entries. Any EnCore
events are displayed in the events area. Events are marked with pending invitations or

notifications (if any).

Selecting any UI element reveals more information about, and shows a menu of
possible actions on the element. For example, selecting an event highlights the
participating encounters, allows the user to inspect or edit the event’s metadata, invite
more participants, or launch an application to browse the event’s content. Selecting a

location switches to a map-based view.

This simple linear view provides remarkable functionality: For instance, as shown
by (1) on the Figure, by navigating back to this view, Bob can remind himself that he
was with Alice at the table tennis championship before lunch on September 10, and
eventually they walked to lunch together. The events pane shows that Bob was invited

to the associated event and has a pending notification.

The rectangles (2) and (3) show how social events, both scheduled and impromptu,
naturally line up vertically along the timeline. (2) shows that Dave joined Bob and
Alice for lunch, and that there was someone else (unknown with high signal strength)
nearby. This may be a sufficient hint for Bob to recall that Dave was with his guest at
lunch. There were other lower signal strength encounters with unlinked users at lunch.
Similarly, (3) shows a scheduled event, the Reading Group, that has a calendar entry
and an associated EnCore event. Once again the vertical alignment of the high signal
strength encounters with Kelly and Jack serve as reminder that they were at the reading
group meeting. The encounter with Amy has low signal strength and likely is an artifact

of her being in a nearby room but not at the reading group meeting.
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5.5.2 Creating events

Users create events by touching the “Create Event” button and selecting a set of
encounters to be included. If the event was previously scheduled in the calendar, its
metadata (name, duration) is automatically imported; otherwise, the user can adjust the
default duration inferred from the selected encounters, enter a name for the event, and
optionally add the event to the calendar. Once the user confirms, the event is created
and invitations are sent to the selected encounters. To support events where some of the
users are not physically present (e.g. users attending an event virtually), event members
can additionally invite any of their past encounters or known contacts to the event.

For more complex events or future events, the user can specify temporal and spatial
(e.g., within the current building) constraints for included encounters. Future and
transitive encounters that meet these constraints are invited automatically.

By default, the appropriate conduit to implement an event is chosen automatically.
When all participants are linked encounters who provide Facebook account details (as
is the case in our deployment at users’ request), then a conduit is chosen that maps
the event to a private Facebook event. Otherwise, a conduit is chosen that maps the
event to a folder in Dropbox. The Dropbox conduit supports anonymous participants
and provides the same basic sharing functionality, albeit without the integration and the
sophisticated event presentation of Facebook.

These facilities make it easy to set up communication and sharing among a socially
meaningful group of users in an ad hoc fashion. The event creator does not require
contact details of the participants, and can include anonymous users via unlinked

encounters.
5.5.3 Posting information

Context appears as a choice in Android’s Share menuﬂ Therefore, any type of
content can be selected (e.g., pictures and videos from the Android gallery, audio from a
recording app, pin drops from a map app, text from a notes app) and shared via Context.
Within Context, the user simply touches an event in which the content is to be posted.

As a convenient shortcut, users can post information directly from within Context
and select encounters with whom the information should be shared, without creating an
event. Internally, Context creates an event with default metadata to handle the posted
information.

These facilities make it very convenient to send messages and share content with

nearby or previously encountered users.

3Most Android content apps have a “Share” button, which opens a menu of applications through
which the selected content can be shared.
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5.5.4 Receiving information

Notifications about incoming messages, posts or pending event invitations are shown
as icons with red flags on the corresponding event, or on an encounter in the case of a
message sent directly to an encounter. For instance, in Figure[5.2] there is a new post in
the “Reading group” event, and a pending invitation to the “Table tennis championship”
event. Notifications are also summarized in the notification center shown as an earth
icon at the top of the screen. Touching it will scroll to the nearest event or encounter
with a pending notification. Preference settings allow users to suppress notifications by
type or source.

To respond to an event invitation, the user touches the event, optionally views the
event’s metadata, and then accepts, declines or defers the invitation. To read incoming
messages or posts, the user selects the relevant event or encounter. Touching an event
launches an external application (e.g., Facebook) to show the latest post in the event.

These facilities enable users to prioritize, filter, browse and navigate incoming

information according to its context: event, encounter, time and location.
5.5.5 Controlling linkability

Context allows users to control the information revealed in an encounter in a variety
of ways. The user can choose to reveal a linkable nickname or their real identity to
selected peer devices. The linkable peers can be selected based on existing relationships
in an online social network (e.g., Facebook) or a contact list, or by pairing devices
individually. Moreover, linkability can be controlled based on the user’s present
location or time. For instance, users can choose to be linkable to colleagues only when
in the office and not be linkable by anyone at certain times.

Recall that a Facebook private event is used by default for events among linkable
encounters who provide Facebook details. User posts are linkable across such events.
Users can use a separate Facebook account under a pseudonym for this purpose; in fact,
all participants in our deployment use test accounts separate from their main Facebook
account. To avoid linkability across events, the creator of an event can choose to use a
Dropbox conduit instead, and users can decline invitations to Facebook-backed events
if they so choose. These facilities enable users to effectively control their privacy.

5.5.6 Implementation of conduits and router

EnCore and Context currently support the following conduits:

SMTP conduit The SMTP conduit allows users to securely exchange e-mails with the
participants of an event. The SMTP conduit allows any email client on the device
to send a message to the email addresses associated with one or more encounter

peers. If an encounter is linkable and has an associated email address, the message
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is simply sent to that address. If the encounter is unlinkable, then a one-time email
address is derived from the encounter ID, and the message is sent to that address. The
current implementation uses mailinator.com [125] for this purpose, which does
not require user registrations and creates mailboxes on-the-fly as mail arrives for an
address. The mail is public for all who can guess an email address, but this does not
affect conﬁdentialityﬂ since all EnCore mail is encrypted using an encounter or event
key. The Mailinator conduit is limited by the fact that Mailinator caches messages
only for a few hours, and applications need to periodically resend messages to ensure
persistence. Alternatively, one could easily setup a similar one time email system that

does not delete messagesﬂ

Dropbox conduit The Dropbox conduit converts an event ID into a folder name on
Dropbox, and stores all content posted to the event into that folder, encrypted with the
shared event key.

Facebook conduit This conduit associates an EnCore event with a private Facebook
event. It requires that all participants in the event are linkable and provide details for
a Facebook account. The event’s participants appear in the Facebook event with the
identity of the account they provided. Textual posts, comments, likes and photos are
posted in the Facebook event in cleartext, to maintain the flexibility and convenience of
the Facebook interfaceﬂ However, video and audio recording posted to the event are
uploaded using the Dropbox conduit (encrypted with the shared event key), and a URL
to that content is posted in the Facebook event.

Using Facebook allowed us to leverage the familiarity of users with its app.
The Facebook conduit cannot support unlinkable users, which was irrelevant in our
deployment. As part of ongoing work, we plan to recreate similar functionality within
Context with the ability to create events amongst unlinkable users.

Router The current router implementation is limited to forwarding information within
events in which all members share pairwise encounters. We are in the process of adding
transitive forwarding. There has not been much demand for this feature so far, due to

the relatively small size of our deployment and the types of events users have requested.

5.6 Evaluation

In this section we report on the field deployment of EnCore. Our latest EnCore field
deployment began on September 9, 2013, with 35 volunteers in the Saarbriicken office

of MPI-SWS. The participants were staff members and researchers, and were informed

“It does reveal that a message was sent to particular encounter or event, but the actual content is not
revealed.

SWe implemented such a system and used it during one of our initial deployments.

®Note that Facebook has access to cleartext posts; this can be avoided by using the Dropbox conduit
or a private OSN platform like Persona [126] to share all information.
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about the purpose of the experiment and what data would be collected. Most of the

participants (32 out of 35) were not directly involved in the project.

Deployment setup We provided each participant with a Galaxy Nexus phone running
EnCore with Context and the Facebook app. All phones were configured with the
account details of a different Facebook test account with a pseudonym. At users’ request
all phones were selectively linked with each other by default. Users were able to change
the linkability settings, configure their personal calendars for display in Context, and
change the pseudonym to their real name if they wished to do so (30 of the 35 users
did). None of the users modified the default linkability setting (i.e., link with all other
users). This is not surprising since the deployment was carried out among mutually

trusting users and linkability was limited to experimental devices only.

We requested users to carry the device, and encouraged them to use Context to
create events, communicate and share content as they saw fit. On September 16, we
installed an audio recording and a note taking application on each of the devices because
several users requested it, in addition to the default camera, gallery, calendar and map
applications already available on each device.

The phones ran EnCore using the Bluetooth 4.0 implementation of the SDDR
protocol. The phones executed discoveries every 13.5 seconds and changed MAC

addresses every 15 minutes.

Statistics from the deployment After the the first two weeks of the deployment, we
collected statistics for all the events created, which we present below. The users’ activity
level was roughly bimodal. 17 users created fewer than three events and made fewer
than five posts, while 18 users exceeded these numbers. Among the users not related to
the project, the maximum number of events created by a single user was 12 (median 3)

and the maximum number of posts created by a single user were 30 (median 4).

Event usage After removing from consideration a number of events that had been
created by project members for demonstration purposes, a total of 128 events remain.

We have divided these events into three categories based on their names: research
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Figure 5.4. Timelines of five actual events. Each point shows the type of activity performed along with

the time elapsed since the specified start time of the event

meetings (16%), social events (48%), and unknown (36%). We classified an event as
unknown if its purpose was not obvious from its name. Figure[5.3|shows the distribution
of event types and Figure [5.4] presents the timelines of a selection of five actual events

created during the deployment.

Based on informal feedback from users and our own observations, there was an
interesting mix of expected and creative uses of events. Events were created for
research gatherings, such as meetings, reading groups, etc., and used to exchange
meeting notes, audio recordings, followup comments and links to related papers. The
‘research meeting’ and the ‘reading group’ events in Figure [5.4] show the activity
timelines of two events in this category. Also, as seen in Figure [5.5] these events tend
to contain a moderate number of participants, which is what we commonly observe for

project/group meetings and reading groups in our institute.

Almost half of the events were created for social or informal gatherings, such as
lunches, coffee breaks, sports activities, bus rides, karaoke events, etc., and used to
share photos, videos and comments during and after the event. The ‘karaoke’, ‘playing

guitar’ and ‘lunch’ events in Figure [5.4] are typical examples. With the ‘karaoke’ event
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we also observed an instance of users resolving multiple EnCore events created for the
same social event by gravitating to one event (see Section [5.4.3). We observed that
users stopped posting to one of the two events created for karaoke and continued their
interactions on the other. Some creative uses include creating events to invite nearby
people for coffee breaks, or to inform nearby people about leftover party food using a
picture of the food. The number of members in social events ranges from 2 to 20 users

(median 3), which is expected given the size of our deployment (Figure [5.5).
Figure [5.4] also highlights that events can be created after the associated event has

ended, and that conversations tend to extend beyond the event duration. The former can
be observed for the ‘Lunch’ event by comparing the time when the EnCore event was
created (circular dot with an arrow) and the timespan of the actual social event (the first
horizontal bar from the top for each event).

Figure [5.6] shows the distribution of conversation durations for different types of

events. Even though most of the events did not have conversations longer than five
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hours, there were cases where users referred back to events they had attended in the
past and posted content to them long after the actual event had finished.

Figure [5.3] shows the distribution of the types of posts within events. Note that the
audio recording application was installed one week after the deployment had started;
the proportion of audio posts might have been higher had it been installed from the
beginning. A large portion of photos were uploaded directly from Context, rather than
via the Facebook application, which suggests that users found it convenient to refer to

an event directly from Context’s timeline.

Summary EnCore and Context provide a basis for exploring secure ad hoc
interactions. Both the analysis of data from the deployment and personal user feedback
show that real users find the paradigm useful and found new ways to collaborate and
share with colleagues using Context.

5.7 Discussion

In this section, we describe the qualitative feedback we received from our users, and

discuss the remaining risks and challenges.
5.7.1 Qualitative user feedback

Quantitative performance evaluations are often inadequate in capturing the utility of
new functionality. User engagement can be an important metric, and here we describe
the qualitative feedback we received from our users, both during and after the test
deployments. At the end our our latest deployment, many of our users expressed an
interest in using the system on a permanent basis once we have a version they can install
on their primary devices. We believe this is encouraging since it shows that users (albeit
highly technically proficient ones) find the system useful. In the rest of this section, we
discuss features that users have requested. We believe feature requests are illuminating.
While they obviously point out shortcomings in the existing system, they also point to
innovation enabled by, and creative use of, EnCore’s capabilities, some of which were
not anticipated by the design team.

Support for sharing audio recordings and import/export of events to/from calendar
was requested by users and rolled out during the last deployment. Various requests
were related to encounter export, to make information about nearby users available to
other applications. For instance, exporting a “Nearby” group into the Android address
book, which includes the contact details of currently nearby users, if known.

Another feature requested was the ability to create ephemeral pseudonyms as a way
to control linkability (in addition to the pairwise linkability offered by EnCore). These
pseudonyms allow other users to link their encounters with a device under a pseudonym

for a limited period and location (e.g., while attending a conference). Users can change
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(or remove) their pseudonym and can also choose to stop receiving messages addressed

to a pseudonym anytime.

A frequently requested feature is the ability to browse the EnCore timeline, post
content and manage events from a desktop computer. Users have also requested the
option to thread recurrent or related events, and view posts and comments within a
thread in a linearized manner. Finally, users asked that Context suggest events and
content to post, based on the users’ history, preference, and current context. For
instance, if Alice, Bob and Charlie have had frequent meetings recently, then Context
could automatically suggest another instance of the event when it notices similar
circumstances (encounters, location, time). These feature requests suggest that users
find it useful to be able to explore an encounter timeline, coupled with the ability to

create links, and to relate and recount events.
5.7.2 Risks and challenges

User privacy and security has informed every step of EnCore’s design. Unlike
virtually all existing mobile social apps, EnCore does not require the user to reveal
their sensitive context data, which often combines location, social contact and
communication trace, to a provider. Moreover, EnCore prevents Bluetooth device
tracking and provides strong security and privacy guarantees within its threat model.

However, privacy risks and usability challenges remain.

EnCore database confidentiality The data logged by EnCore resides on the mobile
device, and is susceptible to loss, theft, or subpoena. It is not clear what legal rights
regarding privacy and self-incrimination, if any, users can assert with respect to data
stored on their personal devices. Encrypting the EnCore database protects the data in
the case of loss or theft, though it will not stop a court from compelling the user to
provide the decryption keys. The risk can be somewhat reduced by configuring the
database to store a limited history. Since the usefulness of encounter information likely

diminishes over time, the resultant loss of functionality may be acceptable.

Private profile matching Linking encounters based on shared attributes is supported
by EnCore, but currently not fully exported by Context. A challenge in this regard is
how to prevent attacks where a malicious device advertises attributes in order to learn
as many attributes of nearby users as possible. The problem can be partly mitigated
by ignoring devices that advertise too many attributes or change their attributes too
frequently, but a more general defense is hard, unless attributes can be certified by an
external authority.

Reliably identifying socially relevant encounters Identifying relevant encounters
(e.g., the participants of a shared event) was not a problem in our deployment. The fact
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that all participants revealed their name or a pseudonym while in the office, combined

with the signal strength indication, proved sufficient.

However, identifying socially relevant encounters in a larger and denser environment
with many unlinkable devices is an open challenge. For instance, it is important to
reliably identify the attendees of a private, closed-door meeting that takes place in an
office building with EnCore devices in adjacent rooms. We are currently experimenting
with an audio-based confirmation protocol, where devices have to answer a (fast
attenuating) challenge transmitted as an audio chirp, in order to identify devices in the
same room. Another option would be to follow a non-interactive approach similar to
that of Sound of Silence [[127], where each device uploads a signature of their acoustic

environment to a cloud service that, by comparing signatures, identifies nearby devices.

In other situations, like a crowded party, distinguishing individual attendees is usually
not necessary, because the most likely types of interaction (e.g., sharing photos) are
directed to the group as a whole. In situations where users wish to identify individuals
within a crowded space (e.g., a dinner party at a busy restaurant), people tend to know
each other and have their devices linked already. If not, they can resort to bumping
devices via NFC or shake-to-connect [[128, [129]. In this case, no contact details would
be exchanged (unless desired), but the encounter would be marked as “confirmed” on

both devices.

Communication with strangers The limited deployment within our institute has not
yet allowed us to experiment with communication among strangers, as it would occur,
for instance, in the sightseeing scenario described in the introduction. This case, as
well as other challenges described above will require experience with deployments at
larger scale. Toward this end, we are developing a version of EnCore that does not
require rooting the phone, which is currently a major hurdle for a larger deployment.
Nevertheless, we believe we have shown that EnCore provides a robust foundation
for building secure, privacy-preserving mobile social applications that exploit the

opportunities afforded by D2D communication and secure encounters.

5.8 EnCore Summary

We have described the design, implementation, and evaluation of EnCore, a mobile
platform for social applications based on secure encounters. EnCore can support a
wide range of event-based communication primitives for mobile social apps, with
strong security and privacy guarantees, without requiring a trusted provider, and while
integrating with existing communication, storage and OSN services. As part of our
evaluation, we have conducted small-scale deployments of Context, an app for event

based communication, sharing and collaboration. User experience was favorable:
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users were engaged, requested new features, and used the app in interesting ways not
envisioned by us.

While our small-scale deployments have been invaluable in developing the system,
secure encounter-based communication promises more than what we have been able to
evaluate among a small set of mutually trusting, technically savvy users. Evaluating
EnCore’s primitives in dense environments and among strangers requires larger scale
deployment onto a more heterogeneous population. Our experience catalogued in this
document gives us confidence that EnCore and the secure encounter primitive will
continue to prove useful, and a larger userbase will yield compelling new ways to

communicate using EnCore.
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Chapter 6
Discussion and Future work

I-Pic has opened up interesting new opportunities for protecting bystander privacy
in image capture. Using I-Pic, bystanders can securely communicate their privacy
preferences to nearby photographers, and have these preferences automatically applied
to photographs they appear in, without having to personally approach the photographer
or vice versa. In Chapter [3] we presented one end-to-end design for I-Pic that was
deployable and consistent, one that individual users could start running.

In this chapter we explore alternative designs for I-Pic. We give suggestions on
how one can combine the technical blocks used within I-Pic (and EnCore) in different
ways to extend I-Pic beyond its current capabilities and create systems with different
properties.

This chapter is structured as follows. In Section [6.1, we envision a system that
extends I-Pic with EnCore’s encounter-based communication platform, which enables
anonymous communication between groups of nearby users. We explore how this
combination would enable completely new ways of specifying & communicating
privacy preferences. In Section [6.2] we explore how specifying privacy preferences
can be made completely dynamic by performing enforcement of privacy preferences
on the software used for viewing an image on an end user device. In Section we
give a brief description of how I-Pic can be extended beyond still images to protect
privacy of bystanders in video and audio recordings. In Section [6.4] we describe how
I-Pic can be extended to offload computer vision tasks to a trusted agent, such as
photographer’s own desktop/server machine. In Section [6.5] we explore how trusted
computing technology, such as ARM TrustZone [130], can be used to extend the threat
model of I-Pic to ensure that privacy preferences are applied even if the photographer’s
device is rooted. In Section [6.6] we discuss other future work directions for I-Pic, such
as how to best remove someone from an image, and, if needed, how to accommodate
requests to override users preferences from authorities, journalists, and professional

photographers.
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6.1 Leveraging EnCore for I-Pic

Imagine a privacy preference that states: “I am OK appearing in photographs, but
please send me a courtesy copy”, or “I will decide my privacy preference after seeing the
photograph”. These are examples of alternative ways of specifying privacy preferences
that a bystander might find useful while using I-Pic. While it is possible to broadcast
these privacy preferences in I-Pic, to enable any subsequent interaction between users,
they would also need to broadcast their contact details to nearby strangers, which
might not be desirable. In principle, EnCore’s anonymous encounters and event-based
communication could bridge this gap.

EnCore provides a set of convenient features to enable secure communication
between co-located users. First, EnCore automatically discovers other nearby users
using Bluetooth and forms pairwise encounters. Subsequently, a pair of users who
have shared an encounter can communicate with each other using EnCore’s cloud-
based conduits, even when they are no longer within Bluetooth range. Furthermore,
communicating via encounters does not reveal any linkable information about the users,
unless they choose to do so themselves. Finally, the Context app, built on top of EnCore,
provides additional contextual information to identify socially relevant encounters,
enables grouping encounters into events, and provides a platform for sharing digital
media by addressing it to encounters (or events).

[-Pic can leverage these features to enable photographers to anonymously
communicate with bystanders who were present at the time a photograph was captured,
regardless of whether they were captured in the photograph. Furthermore, using visual
signatures broadcast by bystanders, a photographer’s device could also automatically
associate a bystander’s face, captured in a photograph, to an encounter with that
bystander’s device. In principle, the photographer could then initiate a conversation
by simply selecting a face from the photograp On the bystander’s device, this
conversation will show up associated with a specific encounter, inside the Context app.
This encounter would then serve as the communication channel between the bystander
and the photographer.

Overall, integrating EnCore with I-Pic would enable the photographer to interact with
bystanders who were captured in a photograph, or to interact with those bystanders who
were present at the time a photograph was taken but were not captured in it. Having
these abilities in I-Pic would be powerful new additions that would change the user
experience in a profound manner, both for the photographer and the bystander. A user
would no longer be limited to specifying upfront a privacy preference based on time,
location, and who the photographer is. Instead, bystanders could choose to be notified

'The Photographer’s device could also initiate a conversation automatically in response to requests
from bystanders. In Section we present examples of such interactions.
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when they are captured in a photograph, and interactively respond with their privacy
preference, based on the content of the photograph. A photographer could also get in
touch with a bystander, who had originally chosen a restrictive preference, and ask them
to change their preference, in return for a copy of the photograph. These are just two
examples of the many new workflows/interactions that could be enabled by integrating
EnCore with I-Pic.

6.1.1 New workflows enabled by integrating EnCore with I-Pic

Below we present a comprehensive list of new workflows that could be enabled by

combining I-Pic with EnCore’s encounter-based communication platform.

o Capture-notifications: A photographer may be interested in notifying all
bystanders who were captured in a photograph, possibly to allow them to
conveniently contact the photographer in future. To do this, first, the
photographer’s device would match encounters to bystanders captured in a
photograph using visual signatures received from bystanders. These matched
encounters would then be used to notify captured bystanders. This workflow
could be automated on the photographer’s device, and I-Pic could be configured
to send these notifications by default. An extension to this workflow could
involve broadcasting notifications to unmatched encounters as well, informing

those bystanders that they may have been captured in a photograph.

e I am OK, but send me a copy: Bystanders could specify a privacy preference
stating that they are OK appearing in a photograph, as long as they receive a
copy of the photograph. This workflow could be executed automatically by the
photographer’s device, without requiring any input from the photographer.

o I will decide after seeing the photograph: Bystanders need not specify a privacy
preference a priori. Instead, bystanders could broadcast their visual signatures,
along with a preference stating that they would prefer to decide their privacy
preference after seeing the photograph. At a later time, the bystander would
receive a notification from the photographer’s device, along with the photograph.
The bystander could then swipe right (or left) to indicate that they are OK (or not
OK) about appearing in the photograph. Until the decision is made, a bystander’s
face will be conservatively blurred on the photographer’s device. This workflow
could also be processed automatically by the photographer’s device, without

requiring any input from the photographer.

e I would like to change my decision: Bystanders could retroactively change
their privacy preference for photographs they were earlier captured in. With
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capture-notifications enabled on photographers’ device (described in the first
workflow), bystanders who retroactively wish to change their privacy preference
could send an update over the encounters from which they had received a capture-
notification. On the photographer’s device, these updates could be automatically
applied to the necessary photographs. Note, that this workflow would require
storing an unedited (possibly encrypted) version of the photograph on the
photographer’s device. In Section [6.2] we explore the possibility of enforcing
the privacy preference on the viewing software of an end user device. This
would allow bystanders to completely dynamically specify and modify privacy

preferences.

Do I appear in any photographs you captured? If bystanders are interested in
obtaining photographs they might have been captured in, they could communicate
their visual signatures to past encounters at a certain time and place. A
photographer’s device, receiving such a request over an encounter, would
automatically compare accompanying visual signatures to photographs that were
captured during the time period of that encounter. The photographer could then

respond back to bystanders whose visual signatures produced a positive match.

Please reconsider your preference for this photograph: A photographer could
reach out to a bystander captured in a photograph who had broadcast a restrictive
preference, to request him to change his preference. The bystander could request
a copy of the photograph before making his decision. We assume that the
bystander had also broadcast his visual signature at the time the photograph was
captured. If the bystander was blurred out by default, which happens when a
captured subject cannot be matched with any of the received broadcasts, then this

workflow would not be possible.

I am a pro-photographer and would like to seek your permission: A
professional photographer might be legally required [11, [12] to seek explicit
permission from all people appearing a photograph before publishing it further.
To do so, the photographer could send messages over all (or specific) encounters
that were ongoing (or created) at the time a photograph was captured. This
initial interaction would be used by the photographer to reveal their identity,
which could then be followed up by a formal request, if the bystander chooses
to respond. These interactions could also be used by the photographer to offer to
pay bystanders for their permission to appear in the photograph.
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6.1.2 Privacy concerns

The workflows described in Section [6.1.1] could greatly improve I-Pic’s user
experience, but they could also raise privacy concerns that were not present in I-Pic’s

original prototype. Below we describe these concerns and possible solutions for them.

Most of the workflows presented in Section [6.1.1] involve sending photographs to
bystanders. Therefore, it is important to consider which faces are clearly visible in
photographs that are sent. Sending a photograph with all faces clearly visible would
violate the privacy preferences of all the bystanders who had chosen a restrictive privacy
preference upfront. Furthermore, the photographer might not even be aware of privacy
preference of all the bystanders, as some bystanders might have chosen to decide their
preferences after seeing the photograph. So a conservative choice will be to blur out all

faces except the one for the bystander to whom the photograph is being sent.

The accuracy of I-Pic’s computer vision pipeline will affect how well the approach
described above works in practice. A combined false positive and false negative in
face recognition could lead to a situation where a bystander receives a photograph
with his own face blurred out, and a different face clearly visible. To conservatively
accommodate for such possibilities, the photographer could start by sending out a
photograph with all faces blurred. If a bystander is then interested in obtaining a
photograph with their face clearly visible, the photographer could follow up with
additional steps of verification. The aim of these steps will be to verify that the
bystander who is requesting a photograph actually appears in that photograph. These
verification steps could include: requesting the bystander to locate their face in the
blurred photograph, and/or challenging the bystander to provide a selfie with them
holding a card that displays a random number sent by the photographer’s device.
These steps would have to be manually verified by the photographer. To reduce the
cognitive burden of verifying these steps, they could be integrated within existing
workflows of a device’s photo gallery application. For example, Google Photos, the
default photo gallery application of many Android devices, provides a feature for
automatically sharing photographs with captured bystanders [131]]. Before actually
sending the photos, confirmation for sharing these is obtained from the users while

they are browsing photos within Google Photos.

Another privacy concern could be that even if some bystanders decide to appear
in a photograph, their permissions might be limited to the photographer only. The
permission, by default, might not extend to other bystanders being able to see them as
well. In such cases, the bystanders could additionally specify, along with their original
consent sent to the photographer, whether they also consent to appearing in photographs

sent to others.
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Overall, we remain confident that the combination of EnCore with I-Pic is a powerful
one, and can enable workflows that would significantly improve user experience, both,
for the bystander and the photographer. Additional privacy challenges that may arise in
these new workflows can be mitigated by additional rounds of communication between
bystanders and photographers. These additional communication steps can easily be
automated and can be also integrated in existing workflows on a user’s device, to keep

the cognitive overhead of these steps low.

6.2 Policy enforcement on the viewer

In I-Pic bystanders must either specify their privacy policies a priori before a
photograph is captured, or communicate them afterwards using the combination of
EnCore and I-Pic (as described in Section [6.I). In either case, privacy policies are
communicated to the photographer who (or their capture device) then applies them to
the captured photograph.

A possible extension to this framework could be to push the enforcement of privacy
policies to the software used for viewing a photograph (e.g. a web browser), which runs
on the devices of end users viewing the photograph. In this design, for each successfully
matched face in the captured photograph a web url will be added as metadata to the
photograph. Viewing software will contact this url to obtain the latest privacy policy of
a captured bystander and apply those before displaying the photograph. Bystanders can
dynamically update their privacy policies by simply updating the information available
at these urls.

A straight forward implementation of this design would be to have the viewing
software carry out the secure matching step everytime it wants to display the picture.
Doing so will require the photographer’s device to attach all the information received
over bluetooth (at the time a photograph was captured) as metadata to the photograph.

Another approach could be to have the photographer’s device perform the secure
matching step. Upon a successful match, secure matching will return a url instead of
the actual privacy preference of that bystander. This url is then attached as metadata
to the captured photograph. The viewing software will contact this url to obtain the
most recent privacy policy. The url returned at the end of the secure matching step is
generated by the bystander at the time of registering with the a bystander agent. To

avoid being used as an identifier for the bystander this url should be changed over time.

6.3 Extending I-Pic to Video and Audio

The I-Pic architecture provides a pluggable framework for extending I-Pic to beyond
still images. Below we give a brief description of how I-Pic can be extended to protect

privacy of bystanders in video and audio recordings.
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Video: A straight-forward approach to extend I-Pic to process video will be to run
I-Pic’s face/head detection and recognition algorithms for each frame of a video clip.
The visual signatures broadcast by bystanders in I-Pic’s current architecture would be
used without any modifications to recognize detected faces in each frame. Although
this approach is easy to integrate in I-Pic, in general executing state-of-the-art object
detection networks on individual video frames would incur very high computational

cost for most applications, particularly for mobile devices.

A better approach for detecting objects in videos would be to exploit data redundancy
& continuity in adjacent video frames to reduce per-frame computation cost. Detecting

such continuities in adjacent frames, referred to as estimating “Optical Flow”, is a
fundamental task in video analysis. It has been studied for decades [132] and has been

used extensively in video compression algorithms.

The system proposed in [133]] detects objects in videos using a hybrid approach that
combines a state-of-the-art still image object detector with optical flow information. It
applies an image recognition network on sparse key frames and propagates the deep
feature maps from key frames to other frames via an optical flow field. This flow field
is estimated using algorithms such as [[134, [135]]. Using this hybrid architecture, [[133]]

can achieve upto a 10x speed up over approaches that do not use optical flow fields.

Audio: Integrating an audio processing pipeline in I-Pic would require the following
two computation steps to be carried out on the photographer’s device: 1) Speaker
Diarization: given an audio recording, identifying audio segments where only one
speaker is talking, and then clustering together segments coming from the same
speaker, and 2) Speaker recognition: matching the speaker for each cluster to the audio
signatures received from bystanders. These two steps are akin to the face detection and

face recognition steps of I-Pic’s image processing pipeline.

Speaker Diarization has been extensively studied [[136]. During this step, the audio
recording is first segmented into small portions where only one speaker is talking.
Feature vectors are extracted for each segment which are used to cluster together
segments coming from the same speaker. For the second step, i.e., speaker recognition,
feature vectors extracted during the diarization step can be used to identify the speaker
by comparing these feature vectors with pre-trained speaker models. In case of I-Pic

these pre-trained models will correspond to audio signatures received over bluetooth.

An example of such an is architecture is the system presented in [137]]. The system
segments the audio recording in 1 second chunks, computes the frequency spectrum for
each segment as an image, and then extracts feature vectors from this image using a
convolutional neural network. These features vectors are then used for both clustering

audio segments, and speaker identification.

102



Concurrently talking speakers create an additional challenge for the speaker
diarization step. Handling these cases will additionally require, for each audio segment,
computing the number of concurrently talking speakers and, if needed, isolating audio

for individual speakers using “Audio Source Separation” techniques [[138]].

6.4 Using a trusted photographer’s agent

In I-Pic the cloud agents are assumed to be semi-honest. Hence the computer
vision tasks that are performed on the photographer’s device are not offloaded to
the photographer’s agent. This is because offloading these tasks will require sharing
sensitive information, i.e. the captured photograph, with the photographer’s agent.

If required I-Pic can easily be extended to offload computer vision tasks to a trusted
agent, such as photographer’s own desktop/server machine. In this design the captured
photograph would be uploaded to the trusted photographer’s agent, which would
perform face/head detection, recognition, and initiate secure matching. Offloading these
steps will significantly decrease energy consumption on the photographer’s device.

One downside to this design is that the photographer will have to manage this trusted
agent on their own. This will require keeping this agent accessible from the Internet and
also keeping it updated with latest security patches. Furthermore, the bystander’s agent
may require remote attestation of the software running on photographer’s agent before
serving a request. This additional step will further increase the logistical overhead of

managing a trusted photographer’s agent.

6.5 Using ARM TrustZone to extend I-Pic’s threat model

In I-Pic the operating system on photographer’s device is trusted to not release the
captured photograph until it is fully processed, i.e., until secure matching has finished
and privacy preferences have been applied to the photograph.

This requirement for trusting the operating system could be relaxed by using
trusted hardware, such as ARM TrustZone [130]. TrustZone would allow enforcing
privacy preferences on the captured photograph even if the operating system on the
photographer’s device is compromised or if the device is rooted. This design assumes
that the photographer uses a device that runs I-Pic and is ARM TrustZone compliant.

ARM TrustZone is a set of hardware security extensions that supports isolation of two
“worlds” of execution: non-secure and secure, and allows for dynamic partitioning of
the hardware into secure and non-secure components. Each processor core executes in
the context of a single world at any time; a core can “switch” worlds using a privileged
instruction (and, if configured, upon exceptions or interrupts). All accesses to memory
and I/O devices are tagged with an additional bit, the NS’ bit, which specifies whether

the access was issued while the core was in non-secure mode. Components in the
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system (e.g., bus and memory controllers) can be configured, in hardware, to only allow

Securc accesses.

Essentially, using ARM TrustZone, an isolated, trusted OS kernel could be run in
secure mode, and control all memory/peripheral accesses and interrupts received by the
non-secure kernel. In case of I-Pic, code responsible for enforcing privacy preferences
on the captured photograph could be executed in secure mode as of part of the trusted

kernel, which will be invoked as soon as a photograph is captured.

ARM TrustZone could also be used to reliably disable the camera of a device
while it is operating within a restricted space. For e.g., disabling the smartphone
camera of outside guests visiting the premises of a private organization [[139, [140].
These approaches could be used to prevent the capture of openly visible sensitive
information (e.g. information appearing on whiteboards or computer screens) within

private premises without requiring guests to completely surrender their smartphones.

6.6 Future work

In this section, we discuss two additional future work directions for I-Pic: 1) how to
best obscure someone’s identity in a photograph, and 2) how to accommodate requests
to override users’ privacy preferences from authorities, journalists, and professional

photographers.
6.6.1 Obscuring mechanisms

As a straw-man design for I-Pic’s initial prototype, we chose to blur out faces of
bystanders in order to hide their identity in a photograph. Although blurring faces
is a commonly used technique, it suffers from two major drawbacks. First, blurring
offers limited privacy, since it might still be possible for humans or computers to
accurately identify people [141] based on their clothing, hairstyle, background, and
their body structure. Second, blurring a small portion of a photograph, such as a face,
creates a visually identifiable patch that significantly degrades the aesthetic quality of a
photograph. In this section, we discuss alternative mechanisms for obscuring captured

bystanders, and also describe the properties an ideal obscuring mechanism should have.

The ideal obscuring mechanism needs to strike the right balance between two often
conflicting requirements. First, the ideal mechanism should offer strong privacy. That
is, it should ensure that the probability a human or computer can accurately identify
an obscured person is either zero or a very low value. At the same time, using such
a mechanism should not introduce any visually identifiable artifacts that degrade the

aesthetic quality of a photograph, or make it appear structurally implausible.
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For example, completely removing a bystander by replacing them with the
background offers strong privacy. It is virtually impossible to directlyE] identify that
bystander as their visual appearance has been completely removed from a photograph.
This approach should work well for removing isolated bystanders who do not feature
prominently in a photograph. The same mechanism, on the other hand, will not be
suitable for removing one of two bystanders who are hugging each other in the captured
photograph. Doing so would leave the remaining bystander in an odd pose, and might
make the photograph appear structurally implausible. In this particular scenario, in-
place replacing the face of the obscured bystander by another face might be a better
option.

This example highlights the difficulty of constructing an ideal obscuring mechanism
that provides strong privacy without degrading the aesthetic quality of a photograph.
Furthermore, it may be that no single mechanism is ideal for all photographs, and even
for a single photograph, depending on its structure, a combination of techniques might
be required. In the following paragraphs we describe some related work for in-place
replacement of faces, and for completely removing bystanders from photographs.
In-place face replacement: The Controllable Face Privacy [142] system enables users
to alter images of faces by selectively changing semantic attributes, such as age, gender,
or, ethnicity of a face. One or more attributes can be changed at a time, while keeping
other attributes unchanged. For example, the system can change the gender of a face
while keeping the ethnicity the same as before. I-Pic could potentially use this system
as an aesthetically pleasing alternative to blurring faces. As of now, this system is
limited to altering frontal faces only, and it tends to synthesize distorted faces if more
than two attributes are changed at a time. More recently, Karras et al. demonstrated a
system [143]] that could synthesize photo-realistic fake facial images that are free from
any distortions. Using a dataset of 250 thousand frontal face images of celebrities, the
authors trained a generative deep neural network capable of producing fake face images
that were indistinguishable from actual photographs. While this system produces
surprisingly realistic images, it is still limited to synthesizing frontal faces only. Both
the systems described above will have to be extended to synthesize faces in arbitrary
poses before they can be used as obscuring mechanisms in I-Pic. Furthermore, these
systems could also be extended to replace the entire body of a bystander rather than just
faces, to enhance the privacy offered by these systems.

Completely removing a bystander: Instead of altering the face (and the body) of a
bystander, in many scenarios a viable option might be to simply remove a bystander
entirely. The Content-Aware Fill tool [144]], offered by Adobe Photoshop, allows users

2It might still be possible to indirectly infer a bystander’s presence and their identity, given additional
contextual information.
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to remove distracting objects from a photograph by automatically extrapolating the
background to replace the object. The tool can remove objects without introducing
any identifiable image processing artifacts, particularly if the object is not overlapping
with other objects, and is in front of a generally flat background. When the background
contains many details, the tool often produces identifiable distortions in the photograph.
More recently, Yang et al. [145] demonstrated a deep learning based approach for
high-resolution image inpainting that produces aesthetically better results, even in
difficult cases where the Content-Aware Fill tool fails. Image inpainting refers to the
process of filling holes in images with semantically plausible and context-aware details.
Preliminary results presented by the authors are encouraging, and this system could be
investigated further to study its performance on images from our dataset, and to measure
the energy overhead it would impose on the I-Pic prototype.

Both approaches presented above — in-place replacement of faces and completely
removing bystanders — could be used in I-Pic as obscuring mechanisms. It is unlikely
that either one of these approaches will work well for all photographs. The ideal
obscuring mechanism might require a combination of both these techniques, and
will also require learning to decide which technique to use for removing a particular

bystander.
6.6.2 Requests to override user preferences

There could be scenarios where authorities might wish to obtain un-edited versions
of photographs, overriding privacy preferences of captured bystanders. For example,
law enforcement agencies might request photographs from users who were present
near a crime scene. An employer could ask their employees for photographs to
investigate cases of misconduct within company premises. Journalists and professional
photographers might also need access to unedited versions of photographs they have
captured. There can be many more scenarios where one might be interested in obtaining
unedited versions of photographs. Local laws would ultimately govern who has the
authority to make these requests.

Nevertheless, if legislation requires it, future versions of I-Pic could be extended to
include a mechanism for obtaining unedited versions of photographs. One possible
mechanism might be to additionally store, on a user’s device, an unedited version of a
photograph that is encrypted with a user-specific key provided by a key-escrow [146].
The encryption key could be released by the escrow to authorities after they have
obtained proper authorization.

Deploying trusted key-escrows remains an open research problem [147, [148] that is
beyond the scope of this thesis. These challenges are not specific to I-Pic. Any viable
solution for deploying trusted key-escrows will benefit all applications that might be

legislatively required to cooperate with authorities.
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Chapter 7
Conclusion

Mobile devices are capable of collecting a detailed record of users’ personal information
such as a trace of their location, online and offline activities, and social encounters,
including an audiovisual record. This information, though extremely useful for enabling
new apps, is also highly sensitive and private. Such a record is subject to numerous
privacy risks as described by Aditya et al. [[1]]. In this thesis, we have investigated and
built systems to mitigate two such privacy risks.

In the first project, I-Pic, we investigated risks to users’ privacy which arise due to a
user’s audiovisual appearance being inadvertently captured and shared (as photographs
and videos) by other nearby users, without the captured user being aware of it.
To mitigate this risk, we built and deployed I-Pic, a trusted software platform that
integrates digital capture with user-defined privacy. I-Pic allows users to respect
each others’ individual and situational privacy preferences, without giving up the
spontaneity, ubiquity, and flexibility of digital capture. The I-Pic design and prototype
demonstrates that the technical impediments for privacy-compliant imaging can be
reasonably overcome using current hardware platforms. I-Pic leverages cutting-edge
face/head detection and recognition technology, which is often perceived as a threat to
privacy, to instead increase a user’s privacy regarding digital capture. Furthermore, our
evaluation also shows that future advances in mobile platform hardware and computer
vision techniques will directly benefit I-Pic further improving the accuracy of its privacy
enforcement, without compromising its energy efficiency.

In the second project, EnCore, we presented a platform for building mobile social
applications based on secure encounters. EnCore can support a wide range of event-
based communication primitives for mobile social apps, with strong security and
privacy guarantees, without requiring a trusted provider, and while integrating with
existing communication, storage, and OSN services. As part of our evaluation, we
conducted multiple user deployments of Context, an app based on EnCore for event

based communication, sharing and collaboration. We received favorable user feedback
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during these deployments, which gives us confidence that EnCore can serve as a
platform for developing social apps in a privacy-compliant manner.

Finally, we also explored the possibility of integrating the two projects presented
in this thesis. Specifically, we discussed how extending I-Pic with EnCore’s encounter-
based communication would create a powerful new combination, one that would enable
us to go beyond the current capabilities of I-Pic. We show that such a combination
would enable completely new ways of specifying & communicating privacy preferences
that do not exist currently, and which would further improve user experience, both
for the bystander and the photographer. These novel workflows could also be useful
for compliance with governmental privacy regulations, such as, GDPR [11] and
AB375 [12]].

Both I-Pic and EnCore provide platforms for building mobile apps in a privacy-
compliant manner that puts users in control of what personal information is collected,
and how it is shared. The primary contribution of this thesis is to demonstrate,
through actual deployments of applications built using these platforms, that one can
preserve most of the functionality of spontaneous image capture and build mobile social
applications without giving up privacy.

Even though a single platform alone may not be able to provide an ideal end-to-end
privacy-preserving infrastructure, we remain confident that technical innovations that
mitigate specific risk vectors will not only provide a strong basis for a broader societal
conversation about the value of user privacy, but will also be needed for future mobile

and wearable technology to be broadly accepted by users.
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Appendix A

I-Pic User Survey

In this appendix we reproduce the user survey conducted during the I-Pic project,
described in Section The survey is also available online at http://goo.gl/forms/
6tGGOYmFFG.

110


http://goo.gl/forms/6tGG0YmFFG
http://goo.gl/forms/6tGG0YmFFG

# Edit this form

Being photographed as a bystander

This survey is about your preferences when you are photographed as a bystander. The questions
will present you with common situations and ask you about your photo preferences when you
happen to be photographed by a nearby user.

A further description of our research project is provided towards the end of the survey before the
survey form is finally submitted.

How much time will it take to complete this survey

5-7 minutes.

Privacy of the data collected in this survey

The survey will be conducted anonymously and the only private information we will inquire will be
demographicinformation such as, your age-group, sex, nationality, etc. All individual responses
from the survey will be kept confidential and only aggregate statistical information will be derived
and published. The participation in the survey, and providing the private information, are both
voluntary. Your responses will only be made available to the researchers when the formis finally
submitted.

Contact Information

This survey is being conducted by Paarijaat Aditya, Rijurekha Sen and Peter Druschel at Max Planck
Institute for Software Systems, Germany, Bobby Bhattacharjee at University of Maryland and Tong
Tong Wu at University of Rochester. For further information, please contact the authors at
ipic@mpi-sws.org or +49-681-9303-9122.

This survey has been reviewed according to the University of Maryland, College Park IRB procedures
for research involving human subjects.

If you have questions about your rights as a research participant or wish to report a research related

injury, please contact: Institutional Review Board, University of Maryland, irb@umd.edu, 301-405-
4212.

By clicking "Continue", you agree to our survey data privacy statement.

Continue » — 00 |

33% completed



Being photographed as a bystander

* Required

Smartphones and wearable devices have enabled spontaneous photography at all places and
at all times. Here is an example photograph, whose primary subject is the car. But at least two
female passengers are clearly recognizable in the image. This survey wishes to capture your
sentiments regarding privacy in situations like this.




This section tries to capture your desired privacy actions in different scenarios. Please
imagine yourself in these different situations, and choose the privacy action you would be
most comfortable with.

The possible privacy actions are:

(A) I agree to be captured in any photograph.

(B) | agree to be captured, but please send me a copy of any photograph that includes me.
(C) Please obscure my appearance in any photograph that includes me.

(D) I can decide my preference only after | see the photograph.

(E) I do not wish to be captured in any photograph.

When | am *

engagingin a

daily outdoor

activity (e.g.

walking, cycling, O O O O O
going to market

places, etc.)

in a restaurant O O O O O

at a private
gathering with
friends or
family (e.g.
birthdays,
weddings, etc.)

O
O
O
O
O

using public
transport

at the beach

inabarora
nightclub

O O O O
O O O O
O O O O
O O O O
O O O O

at a hospital

at a public
gathering (e.g.
exhibitions,
concerts,
movies, etc.)

O
O
O
O
O

O
O
O
O
O

atagym

at my
workplace

tapl f
e O O O 0 ©

O
O
O
O
O



Regardless of the specific situation, how would the following factors affect your comfort at
being photographed?

In each case, the choices are:

(A) I will feel much more comfortable
(B) I will feel a bit more comfortable
(C) I will feel the same

(D) I will feel a little less comfortable
(E) I will feel much less comfortable



When *

the photograph may
be posted in a
forum with

restricted O O O O O

membership (e.g.
company/university
mailing list)

| am photographed

while | am with O O O O O

strangers
he ph her i
ot O O O O O

the photograph may
be published online

without my O O O O O

knowledge (e.g.
social networks)

The ph heri
S O O O O

the photograph may
be published online

and | am notified O O O O O

afterwards (e.qg.
social networks)

| am photographed

while | am with O O O O O

acquaintances

The photographer is
a professional

hot h .g.
redang T o% O O O O O

photographer,
journalist, artist)

the photograph will

be limited to

personal use by the O O O O O
photographer

There are minor
children in your

vicinity who might O O O O O

also be
photographed

Other contexts where your privacy matters

Are there any other venues or activities, where you have particular privacy desires regarding image
capture? Please add any such additional concerns below.

Your answer



As a photographer, would you like to respect the privacy
preferences of people around you?

D Yes, | care about others' privacy choices.
|:| Yes, provided the aesthetics of the photograph is good.
|:| Yes, provided the overhead of privacy aware photography is low.

D No, | do not care about privacy preferences of others.

D Page 2 of 3 BACK NEXT

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service



Being photographed as a bystander

Please fill in the following optional demographic information. All individual responses from the
survey will be kept confidential and only aggregate statistical information will be published.

Age group

(O less than 20 years
O 20 - 30 years

O 30 - 40 years

O 40 - 50 years

O more than 50 years

Gender

Your answer

Nationality

Your answer

] Education



High school graduate, diploma or the equivalent (for example: GED)
Some college credit, no degree

Trade/technical/vocational training

Associate degree

Bachelor’s degree

Master’s degree

Professional degree

Doctorate degree

OO OO0OO0O0OO0OO0O0

Other:

The project explores privacy concerns of subjects who happen to be photographed by third
parties using image capture devices like smart phones, smart glasses, and other wearable
devices with integrated cameras. The data collected from the survey will be used to inform
the design of a mobile platform that seeks to automatically respects the privacy
preferences of subjects captured in images. The platform will allow users to specify their
privacy choices in different situations, and have the choices securely communicated to any
nearby image capture devices, without revealing any personally identifiable information
about the user. The photographer's device will honor the received policies by editing the
captured image accordingly (e.g., obscure the faces of captured subjects according to their
wishes).

G  Page 3 of 3 BACK SUBMIT

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service
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