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A B S T R A C T

Recently, adaptive streaming has been widely adopted in video streaming services
to improve the Quality-of-Experience (QoE) of video delivery over the Internet.
However, state-of-the-art bitrate adaptation achieves satisfactory performance only
with extensive buffering of several tens of seconds. This leads to high playback
latency in video delivery, which is undesirable especially in the context of live con-
tent with a low upper bound on the latency. Therefore, this thesis aims at pushing
the application of adaptive streaming to its limit with respect to the buffer size,
which is the dominant factor of the streaming latency.

In this work, we first address the minimum buffering size required in adaptive
streaming, which provides us with guidelines to determine a reasonable low latency
for streaming systems. Then, we tackle the fundamental challenge of achieving such
a low-latency streaming by developing a novel adaptation algorithm that stabilizes
buffer dynamics despite a small buffer size. We also present advanced improve-
ments by designing a novel adaptation architecture with low-delay feedback for the
bitrate selection and optimizing the underlying transport layer to offer efficient real-
time streaming. Experimental evaluations demonstrate that our approach achieves
superior QoE in adaptive video streaming, especially in the particularly challenging
case of low-latency streaming.
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K U R Z FA S S U N G

In letzter Zeit setzen immer mehr Anbieter von Video-Streaming im Internet auf
adaptives Streaming um die Nutzererfahrung (QoE) zu verbessern. Allerdings er-
reichen aktuelle Bitrate-Adaption-Algorithmen nur dann eine zufriedenstellende
Leistung, wenn sehr große Puffer in der Größenordnung von mehreren zehn Se-
kunden eingesetzt werden. Dies führt zu großen Latenzen bei der Wiedergabe, was
vor allem bei Live-Übertragungen mit einer niedrigen Obergrenze für Verzögerun-
gen unerwünscht ist. Aus diesem Grund zielt die vorliegende Dissertation darauf
ab adaptive Streaming-Anwendung im Bezug auf die Puffer-Größe zu optimieren
da dies den Hauptfaktor für die Streaming-Latenz darstellt.

In dieser Arbeit untersuchen wir zuerst die minimale benötigte Puffer-Größe für
adaptives Streaming, was uns ermöglicht eine sinnvolle Untergrenze für die erreich-
bare Latenz festzulegen. Im nächsten Schritt gehen wir die grundlegende Herausfor-
derung an dieses Optimum zu erreichen. Hierfür entwickeln wir einen neuartigen
Adaptionsalgorithmus, der es ermöglicht den Füllstand des Puffers trotz der gerin-
gen Größe zu stabilisieren. Danach präsentieren wir weitere Verbesserungen indem
wir eine neue Adaptions-Architektur für die Datenraten-Anpassung mit geringer
Feedback-Verzögerung designen und das darunter liegende Transportprotokoll op-
timieren um effizientes Echtzeit-Streaming zu ermöglichen. Durch experimentelle
Prüfung zeigen wir, dass unser Ansatz eine verbesserte Nutzererfahrung für ad-
aptives Streaming erreicht, vor allem in besonders herausfordernden Fällen, wenn
Streaming mit geringer Latenz gefordert ist.
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E X T E N D E D A B S T R A C T

As video streaming rapidly gains on popularity and quality, it already represents
a dominant share of Internet traffic and its share will constantly grow in the near
future. To be effective, video needs to be presented to users in high quality and
without interruptions. However, the delivery of such video over best-effort packet-
switched networks is challenging due to unknown and time-varying network condi-
tions, including available throughput, delay and losses. A state-of-the-art approach
to tackle this challenge is adaptive streaming, in which the video stream is divided
into small segments and encoded using multiple quality levels with respect to vi-
deo characteristics (e.g., resolution and bitrate). This allows streaming applications
to respond to varying network by selecting and retrieving the most suitable quality
level for each segment to obtain a seamless playback. Adaptive streaming is desig-
ned to deliver the highest possible Quality-of-Experience (QoE) — e.g., maximizing
the bitrate while minimizing the likelihood of playback stalls (interruptions) and
avoiding frequent bitrate switches. Hence, nowadays, it has become ubiquitous in
video delivery, especially in Internet-based video distribution.

Despite the facility of dealing with varying network conditions, one of open is-
sues with adaptive streaming is that existing bitrate adaptation only reaches accep-
table video quality when buffering several tens of seconds. This leads to high
playback latency in video streaming, which is undesirable especially in the context
of live content with a low upper bound on the latency. In this thesis, we present an
efficient algorithm and architecture to support low-latency streaming. Our goal is
to improve the user’s QoE in adaptive streaming while reducing the latency. Several
contributions to this area of the research are outlined as follows.

In order to cope with efficient streaming systems with respect to low latency, it
will be necessary to determine a reasonable lower bound of the latency for adaptive
streaming. In our first contribution, we focus on the analytic study of streaming la-
tency. We analyze the components affecting the latency and determine the buffering
size as the main component. We present an analytical model of adaptive streaming
for buffer size, which can generalize various streaming scenarios concerning the
latency. Given the characteristics of a network (e.g., throughput and delay) and
the available video profiles (e.g., segment duration and video bitrates), we derive
a theoretical minimum of the buffering size required by adaptive streaming and
an approximation of the minimum buffering size. This allows us to determine a
reasonable low latency for streaming applications.

With the guidelines of the minimum buffering delay, our second contribution
addresses the challenge to design an adaptation algorithm which approaches the
lower bound requirement of streaming latency. The main challenge is the stabiliza-
tion of client buffer dynamics, because a small buffer lacks resilience to the buffer
fluctuation imposed by the mismatch between the network throughput and the vi-
deo bitrate of the selected video segment. We tackle this fundamental challenge by
developing a novel algorithm that minimizes buffer deviation from the desired level
despite a small client buffer and jointly reduces the frequency of bitrate switching.
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The proposed algorithm is the most suitable adaptation for low-latency streaming
compared to other state-of-the-art algorithms. It achieves the best performance with
a buffering size as small as a single segment duration.

The majority of bitrate adaptations do not explicitly take the network delay into
consideration during their design. However, the network delay is critical to low-
latency streaming. First, it introduces a significant delay for client feedback and
thus limits the effectiveness of the adaptation. Second, it incurs the reception delay
of consecutive segments, which directly influence the overall latency budget for the
streaming. In our third contribution, we present an adaptive streaming architecture
designed to address this issue. The key advantage of our architecture is a server-
side adaptation based on the throughput and buffer information, which provides
a low-delay feedback for the video bitrate selection and near-zero values for the
reception delay. Furthermore, we optimize the underlying transport layer of the
streaming architecture in order to support predictable delay variation and a high
throughput utilization for video streaming. With these refinements, our approach
exhibits advanced improvements in terms of user-perceived video quality.
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reduction within a time period having multiple degradation events
with insufficient degradation intervals.

Bsd
max the maximum of all Bdeg

min in a streaming session.

Bsdi
min the average of the minimum buffer levels required for each network

degradation in Dsdi.

baseRTT the minimum of the round trip time.

C(t) the available network throughput at time t.

C the average network throughput over the entire streaming session.

Ci the average network throughput during the entire reception of
segment i.

Cdeg the average network throughput during a network degradation event.

Cdeg
a the average network throughput during the time period within which

the remaining reception of a segment succeeding a network
degradation event deg is completed.

Cidi
n the average throughput over the n-th insufficient degradation interval.

di the reception duration for segment i, i.e., di = te
i − ts

i .

dd
i the request-response delay for segment i, i.e., the time elapsed from

the moment the client requests segment i until the client starts the
reception of segment i.

dn
i the network delay of segment i.

dr
i the delivery time of the request to segment i.

deg an event of network degradation.

Ddeg the duration of a network degradation event, in which the average
network throughput over each segment duration is lower than the
guaranteed throughput.

Ddi
min the shortest interval between two network degradation events within

the entire streaming session.

Didi
n the duration of the n-th insufficient degradation interval.

I(v) the index of the video segment to which the video packet v
corresponds.

ILV the impairment function of quality variation.
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ISD the impairment function of startup delay.

IST the impairment function of playback stalls.

L the streaming latency.

Mi the value of the video quality metric of segment i.

N the number of segments contained in a video.

Ni the number of consecutive segments preceding segment i that have
the same bitrate as segment i

NST the number of rebuffering events.

Nidi the number of insufficient degradation intervals in a streaming
session.

OPT the optimal solution of bitrate selection.

QoE the Quality-of-Experience function.

r the average video bitrate of a segment.

ri the average video bitrate of segment i.

R the nominal bitrate of the video (the video quality level).

Ri the nominal video bitrate of segment i.

S(v) the size of a video packet v in bytes.

SR
i the size (in kbit) of segment i encoded at the nominal video bitrate R.

ta
i the available time of segment i, i.e., the time at which segment i is

available at the server and is ready for the delivery.

td
i the time at which the server starts to deliver segment i.

te
i the time at which the reception of segment i ends.

tr
i the request time of segment i, i.e., the time at which the client issues a

request for segment i.

ts
i the time at which the reception of segment i starts.

T the duration of a video streaming session.

Tc video segment duration in seconds.

Td the delay time of the first video playback.

TS the startup delay

TST the total rebuffering duration, i.e., the total time of all playback stalls
events.

w the most recent estimate of the congestion window.

w′ the previous estimate of the congestion window.

α the parameter of the congestion control equation in FAST TCP, which
reflects the number of packets queued in the network.
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βl the lower threshold level in seconds of the buffer region for not
switching the video bitrate.

βmax the maximum client buffer level (i.e., the client buffer size) in seconds.

βre f the desired buffer level in seconds.

βu the upper threshold level in seconds of the buffer region for not
switching the video bitrate.

γ the smoothing parameter of the congestion control equation in FAST
TCP.

∆t the reception delay between two consecutive segments.

∆ti+1 the reception delay between segment i + 1 and segment i, i.e., the time
that elapses from the moment the client finishes receiving segment i
until the client starts to receive segment i + 1.

∆tr
i the request-response time of receiving segment i, i.e., the time that

elapses from the moment the client requests the reception of segment i
until the client starts to receive segment i.

∆tw
i+1 the waiting time for which the client waits before the reception of

segment i + 1, if a full buffer event occurs during the reception of
segment i.

η the parameter of the congestion control equation to control the
aggressiveness in the throughput acquisition.

λ the weighting factor for quality variations in an Quality-of-Experience
function.

µ the weighting factor for the startup delay in an Quality-of-Experience
function.

ν the weighting factor for rebuffering duration in an
Quality-of-Experience function.

Φ(t) the accumulated amount of received data (in seconds of video) in the
buffer at time t.

Φ′(t) the accumulated amount of playable received data (in seconds of
video) in the buffer at time t.

Ω(t) the accumulated amount of playout data at time t.

D the set of all network degradation events in a streaming session.

Didi the set of sequential degradation events with Nidi insufficient
degradation intervals.

Dsdi the set of network degradation events which are connected with the
shortest interval between two events in the entire streaming session.

R the set of available nominal bitrates of the video.

Vt the set of all video packets sent within the duration of t.



1
I N T R O D U C T I O N

Video has been an integral part of communications and entertainment applications
for many years. With the growth and popularity of the Internet, video delivery over
best-effort packet-switched networks such as the Internet has become an important
research area. To be effective, video needs to be presented to users in high quality
and without interruptions. So the term “streaming” is used to refer to the process
of delivering video as a continuous stream of audio-visual data. Nowadays, video
streaming has become a dominant traffic type in the Internet and its share will
constantly increase in the near future. By 2021, Cisco’s Visual Networking Index
[1] estimates that video traffic will globally be 82% of all consumer Internet traffic
and live Internet video will account for 13% of Internet video traffic. According to
Sandvine’s data [2], the company found that the combination of streaming audio
and video was responsible for over 71% of all evening traffic on North American
fixed networks. By 2020, Sandvine predicts an increase to 80%.

1.1 rising of internet video

As a result, the Internet is morphing into a video distribution network for digital
entertainment, which competes with traditional television broadcasting for con-
sumers’ attention. A new emergent form of television services aims to replicate
the traditional television experience offered by cable, terrestrial, and satellite pro-
viders. Today, people are watching a wide range of Internet video — from online
television or subscription services such as Netflix1 to free video from platforms
like YouTube2. In the U.S., 64% of all Internet households had an online subscrip-
tion service from Netflix, Amazon Prime3, and/or Hulu4 in 2017, and 51% of this
group had more than one of these services [3]. In addition to television-like ser-
vices, applications such as surveillance, Free Viewpoint Television (FTV), telepres-
ence, and tele-immersion are leveraging the Internet as the communication platform
to an ever increasing extent. People see video virtually every day while scrolling
through recent social media such as Facebook5 and WeChat6. User-generated video
— including personal live streaming — introduces even more exciting possibilit-
ies for them. The appetite for video — both on-demand and live — will further
increase with innovative technologies such as Ultra-High-Definition (UHD), Multi-

1 Netflix - Watch TV Shows Online, Watch Movies Online. https://www.netflix.com/
2 https://www.youtube.com/

3 https://www.primevideo.com/

4 Hulu: Stream TV and Movies Live and Online. https://www.hulu.com/
5 https://www.facebook.com/

6 WeChat - Free messaging and calling app. https://www.wechat.com/

1

https://www.netflix.com/
https://www.youtube.com/
https://www.primevideo.com/
https://www.hulu.com/
https://www.facebook.com/
https://www.wechat.com/
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View Video (MVV), and Virtual and Augmented Reality (VR and AR) video. VR
and AR traffic will increase 20-fold between 2016 and 2021 [1]. Indeed, video is
the future of media on the Web and is competing with scheduled linear television
content for consumers’ attention.

1.2 challenges in internet video

The Internet, however, was not designed to stream video. Traditional television
providers exclusively use a communication channel such as a radio frequency to
broadcast the video content to everyone within reach. For instance, Digital Video
Broadcasting (DVB) is such a well-known system distributing video using a variety
of approaches including: cable [4], satellite [5], and terrestrial television [6]. In con-
trast, the Internet is a best-effort packet-switched network that does not provide any
Quality-of-Service (QoS) guarantees. Also, the network for the data transmission
is shared among all the users. With video streaming over the Internet, a packet-
wise data stream is transmitted to every single receiver. The Internet is thus a very
challenging network for delivering delay-constraint data such as video, since, prior
to the start of streaming, the state of the network is unknown and hardly predict-
able. In particular, Transmission Control Protocol (TCP), which governs the Internet
traffic, is conventionally regarded as inappropriate for video streaming. The reason
is that the congestion control and the retransmission mechanism in TCP can lead to
undesirable end-to-end delays, which violate the timeliness requirement for video
streaming. Overall, video over best-effort packet-switched network faces a number
of challenges including: unknown and time-varying throughput, delay, and losses.
A study shows that TCP-based streaming requires the available network through-
put to be roughly twice as high as the video bitrate and a startup delay in tens of
seconds [7]. Worse still, if the throughput is not sufficient, the video playback will
stall due to the buffer running empty — video data is not received in time for its
playback. Then, the client needs to re-buffer a sufficient amount of data so as to
resume the playback. Furthermore, the demand, the usage, and the connectivity of
wireless and mobile networks recently grow significantly with the proliferation of
smartphones and tablets. In 2012–2017, the increase of mobile data traffic was recor-
ded with nearly 70% per year, primarily due to increased viewing of video content
[8]. The rapid growth and the ubiquity of wireless and mobile networks make the
challenges and issues in video streaming even more technically difficult. A mobile
user will always experience varying degrees of connectivity, and in some cases the
variations can be extreme and long lasting. According to a recent global study [9],
65% of respondents using mobile broadband experience rebuffering problems, 62%
experience delayed playback start, and 57% experience low video bitrate problems.

1.3 rising of adaptive streaming

Thus, on one hand, traditional fixed-quality video streaming technologies fail to
deliver acceptable Quality-of-Experience (QoE), which is a subjective measure from
the user’s perspective of the overall quality of multimedia services [10], e.g., less
playback stalls and better throughput utilization translate to an improved QoE. On
the other hand, supporting such an enormous amount of video traffic with an ap-
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propriate QoE places a huge burden on the communication network technology,
and requires novel solutions in the areas of content distribution, wireless and mo-
bile networking, as well as video streaming. So all significant streaming technolo-
gies developed since 2008 have been based on Adaptive Bitrate Streaming (ABS).
In ABS, a video stream is divided into small segments, each of which contains a
specific duration of video and is encoded with multiple quality levels with respect
to video characteristics such as video bitrate and resolution. This enables stream-
ing applications to dynamically adjust the characteristics of the streamed video
to a varying network state. Thereby, ABS lessens the playback stalls due to buf-
fer underflow and improves the utilization of the available network throughput.
The most prominent examples of ABS include Apple HTTP Live Streaming (HLS)
[11], Microsoft Smooth Streaming (MSS) [12, 13], Adobe HTTP Dynamic Streaming
(HDS) [14], and MPEG Dynamic Adaptive Streaming over HTTP (DASH) [15, 16].
In particular, DASH has been adopted as a true standard [17] by the International
Organization for Standardization (ISO) since 2012. With the demotion of Silver-
light7 and Flash8 plug-ins in browsers, HLS and DASH dominate the ABS format
landscape. The Media Source Extensions [18] framework enables HLS and DASH
playback via the HTML5 [19] video tag. Recently, MPEG (Moving Picture Experts
Group) issued a standard — Common Media Application Format (CMAF [20]) —
which aims to bridge HLS and DASH around a shared segment format. This uni-
form format reduces deployment overhead and complexity of Internet-based video
distribution. The broadcast industry has also adopted ABS for its need. DVB con-
sortium and Advanced Television Systems Committee (ATSC) issued DVB-DASH
[21] and ATSC 3.0 [22] specifications, which use DASH for both broadband and
broadcast delivery as well as the Hybrid Broadcast Broadband TV (HbbTV [23]).

1.4 challenges in adaptive streaming

As of today, ABS is the most prevailing and significant technology in video stream-
ing, especially over the Internet. A huge number of techniques, algorithms and sys-
tems have been centered around this concept which aims to offer users the best pos-
sible viewing experience on their networks and local hardware. Nevertheless, the
viewing experience is not comparable to traditional broadcast: frequent rebuffering
events, high latency of video playback, as well as low and/or heavily varying image
quality are the most dominant impairments. Extensive modeling and evaluations
of bitrate adaptation have revealed that the state-of-the-art adaptive solutions reach
satisfactory performance only under buffering of several tens of seconds [24, 25, 26].
For live events this implies a high playback latency for video streaming, which is
undesirable especially in the context of the services with a low upper bound on the
latency. This performance bottleneck is mainly a result of the underlying TCP trans-
port layer and the biased bitrate adaptation. Moreover, with the increased adoption
rate of broadband Internet access — global broadband adoption above 10 Mbps was
45% in 2017, a 29% increase compared with one year prior [8] — and the upcoming
5G rollout — across Europe and China by 2020 [27, 28] — we are seeing that users’
streaming demand for high-quality viewing experiences will be constantly increas-

7 https://www.microsoft.com/silverlight/

8 https://www.adobe.com/products/flashplayer.html

https://www.microsoft.com/silverlight/
https://www.adobe.com/products/flashplayer.html
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ing. Likewise, we are seeing the improvement potential of ABS’s performance, since
users will be expecting the viewing experience to match their Internet connectivity.
Consequently, in contrast to existing work, this thesis focuses on the research of a
low-latency streaming service with adaptive solutions that fulfill the requirements
of live video broadcast. To this end, we design and develop a novel approach for
adaptive streaming that minimizes the required video buffers on clients.

1.5 research contributions and thesis outline

In the following we outline the research problems and the main contributions.

towards reduced latency in adaptive video streaming

Although ABS has been a very active research area, a lot of research (e.g., [24, 25, 26,
29, 30, 31, 32]) focuses on the adaptation algorithms, few researchers (e.g., [33]) are
interested in how low the latency can be. To fill this gap, the first goal in this thesis is
to determine a reasonable lower bound on the latency for video delivery. Such a low
bound is absolutely necessary for the potential improvement of streaming solutions
in scenarios with low-latency requirements, such as the streaming of live events and
augmented vision, and video conferencing. Moreover, it provides us with baselines
to design more efficient streaming systems with respect to the latency.

In Chapter 3, our objective is to find out how low a reasonable latency for stream-
ing systems can be, by deriving the lower bound for the buffering size. In particular,
we first analyze the latency in ABS and identify the buffering size as the key com-
ponent affecting streaming latency; then we develop an analytical model of ABS for
buffer size, which can accommodate wide range of streaming scenarios, especially
in the context of low latency; last, we derive the theoretical lower bound of the buf-
fering size, and introduce an approximation of the minimum buffering size. The
related publication can be found in [34].

adaptation algorithm for buffer stabilization

The allowed latency of streaming systems limits the size of the client buffer in time
units (seconds of video). State-of-the-art adaptation algorithms (e.g., [24, 25, 26, 29, 30,
31, 32]) are not suitable for low-latency ABS due to a lack of explicit stabilization of
client buffer dynamics. Specifically, an empty client buffer leads to playback stalls
(rebuffering); when the client buffer is at its maximum level, a biased feedback
of network throughput is induced that results in suboptimal adaptation decisions.
Accordingly, existing streaming systems with a small client buffer size suffer from
frequent video playback stalls and/or low image quality.

Chapter 4 tackles the stabilization issue in low-latency ABS by developing a novel
algorithm that effectively supports streaming with a small buffering size. The con-
tribution consists of two major lines of work: i.) we present a baseline algorithm
for the bitrate adaptation that minimizes the buffer deviation from the desired
level despite a buffer as small as a single segment duration, and ii.) further im-
prove the algorithm by applying a simple-but-effective modification that reduces
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the heavy variation of image quality. Our algorithm outperforms the state-of-the-
art algorithms with at least 6% higher QoE. The research results of this chapter are
covered in the following publications: [35, 36, 37].

advanced improvements in low-latency adaptive video streaming

ABS performs video bitrate selection based on streaming client’s local information
such as throughput estimate and buffer occupancy. Most adaptation controllers
are deployed at the client side. In practice, the accuracy of bitrate adaptation is
limited due to feedback delay and unawareness of the dynamics of the underlying
transport layer. In addition, the TCP transport layer introduces severe packet delay
variation (packet jitter) and unstable throughput due to its loss- and window-based
congestion control, as well as error control with retransmission mechanism [7]. As
a result, streaming adaptation is often erroneous and causes client buffer instability
such that conventional streaming applications require an extensive buffering on the
order of tens of seconds (e.g., [24, 25, 26, 29, 30, 31, 32]).

In Chapter 5, we propose a server-side architecture for ABS, which removes feed-
back delay from the control loop of bitrate adaptation and provides a hybrid adapt-
ation controller based on throughput and buffer information. Moreover, we deploy
the proposed architecture over a new transport-layer protocol in [38] and employ
a modified delay-based congestion control from Fast TCP [39] into the transport
layer. This enables predictable packet jitter, explicit throughput estimates, and a
high throughput utilization for ABS. We evaluate the performance of our architec-
ture with respect to impairment functions that model user-perceived video quality
and compare against the well-known streaming architectures. Through intensive
experiments, we demonstrate significant improvements with at least 64% lower
impairment of stalls and at least 20% lower impairment of quality variations in
ABS with buffering sizes as small as the segment duration. Related publications are
[40, 41, 42, 43, 37].





2
B A C K G R O U N D

This chapter will briefly go through the prerequisite information on the work presen-
ted in this thesis. It starts with an overview of the technology in Internet-based
video streaming in Section 2.1. This is followed by the introduction of adaptive
video streaming in Section 2.2, including quality switching, playback buffer, stream-
ing behavior, video bitrate, segmentation, standards, and adaptation controller. This
chapter ends with the quality assessment of streaming services with respect to qual-
ity of experience in Section 2.3.

2.1 video streaming

TV broadcasting (such as cable [4], satellite [5], and terrestrial television [6]) and In-
ternet Protocol television (IPTV) services operate over managed networks for video
distribution, which fulfill certain QoS aspects required by these services and sup-
port multicast deployment. In contrast, the prevalent streaming technologies are
dedicated to delivering the video content over mostly unmanaged networks, i.e.,
best-effort packet-switched networks such as the Internet. With these streaming
technologies, video services such as Dailymotion1 and Youtube, are usually man-
aging a unicast connection and deliver video streams to the client by using the
standard Hypertext Transfer Protocol (HTTP) which relies on the TCP. Other tech-
nologies operate with a proprietary streaming protocol running on top of an exist-
ing transport protocol, mostly TCP and occasionally User Datagram Protocol (UDP).
One successful example of such a streaming protocol is the protocol suite of Real-
Time Transport Protocol (RTP) / Real-Time Control Protocol (RTCP) / Real-Time
Streaming Protocol (RTSP) [44, 45], which is usually built upon UDP. It provides
the means to establish and control the streaming session, as well as to monitor the
QoS so that streaming applications are able to deal with delay variations (jitters)
and packet reordering/losses. TCP is widely used in commercial streaming sys-
tems due to the ease of deployment on existing Content Delivery Network (CDN)
architecture for web services via HTTP, and the inherent control mechanisms for net-
work congestion and packet losses, while UDP-based streaming is typically focused
on live services, by providing mechanisms for TCP-friendliness and loss recovery
[46, 47, 48].

Any Internet-based streaming technology, however, faces an inherent challenge.
On one hand, the Internet is a so-called best-effort packet-switched network; i.e.,
it was not designed to provide any QoS guarantees, such as specified throughput
bitrate, network delay, and packet loss rate. On the other hand, the entity of stream-

1 Dailymotion: What to Watch. http://www.dailymotion.com/

7
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ing (i.e., video) by nature has strict timing constraint for its playback. Also, due to
users’ demand on excellent image quality, video streams are expected to have the
highest possible video bitrate and limited packet losses such that visual artifacts are
minimized. This conflict of the inherent properties between videos and the Internet
leads to a major problem: namely, Internet-based streaming experiences frequent
rebuffering events (playback stalls) in the course of video playback. Because when
the video data to be played back cannot arrive in time at the client and the data in
the buffer is not sufficient to be played back, the client has to pause the playback
and wait for sufficient data to be received and stored into the buffer, so as to re-
sume the decoding and the playback. Such a process of pausing the playback and
buffering the data is termed as rebuffering or playback stall2.

Considerable research effort has addressed the challenge by developing network-
ing architectures [49, 50, 51, 52, 53]. However, none of them has seen wide deploy-
ment yet. One reason lies in the complex implementation of QoS models as well as
of the trade-off between resource reservation and over-provisioning. Another way
to overcome the problem is to dynamically adapt the video characteristics of the
streams to varying network states. This leads to the development of ABS, which
will be described in more details in the sequel.

2.2 adaptive bitrate streaming

The general idea of ABS is to allow the bitrate (and consequently the quality) of the
video stream to change with respect to currently available resources (on a reason-
able timescale). The resource in this context is usually known as network through-
put, also known as network bandwidth3, but other parameters can be taken into
account such as screen resolution, battery capacity, and Central Processing Unit
(CPU) usage of end devices.

2.2.1 Dynamic Quality Switching

First, a video source is divided into small segments, each of which can be pro-
cessed independently from the others. The client sends requests to retrieve certain
segments of the video from a server, and then renders the received video segments
while the next segments are being downloaded. The Uniform Resource Locators
(URLs) of all segments are collected in a manifest file, which describes the temporal
and structural relationships between segments. Second, each of these segments
only represents a small duration of the whole video, typically 2–10 seconds long.
This enables the client to download only the necessary segments and employ trick
modes such as fast-forward, rewind, or seek efficiently. So the process of deliver-
ing video is more like a continuous stream of audio-visual data, to which the term
“streaming” is used to refer. Third, the small segments are encoded at multiple
Video Quality Levels (VQLs) with respect to various video characteristics such as

2 Although playback stalls can be due to multiple reasons — such as system/player crash and playback
failure — besides rebuffering, the term playback stall refers to the interruption of the playback due to
rebuffering throughout this thesis. It is used interchangeably with the term rebuffering.

3 In this thesis, the term bandwidth will refer to the bitrate in bits per second (bps) that can be transmitted,
not the signal bandwidth in hertz (Hz).
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Figure 2.1: Illustration of segment requests and bitrate adaptation in adaptive streaming

the resolution, frame rate, and video (coding) format. Typically, the VQLs differ
with respect to their nominal video bitrates, i.e., the average number of bits that are
processed in a unit of time over the entire video. So, the quality of the video is often
characterized by the nominal video bitrate. Given multiple VQLs for each segment,
the client may seamlessly switch between different VQLs at each request. Because
the segments are completely self-contained, the client can also perform seamless
video playback across segments and VQLs. The streaming system strives to select
the best segments to be delivered after examining a variety of parameters related
to network QoS (e.g., available throughput and network delay), device capabilities
(e.g., display resolution and CPU usage), as well as streaming states (e.g., the occu-
pancy of the playback buffer and server workload). Therefore, the bitrate adaptation
for ABS can be formulated as an optimization problem. Its goal is to provide the
highest possible QoE, e.g., maximizing the achievable bitrate while minimizing the
likelihood of playback stalls and bitrate switches. Figure 2.1 shows an example of
ABS, which improves the QoE by dynamically adjusting the VQLs according to the
network QoS.

2.2.2 Client Playback Buffer

Once video data is received at the client, the playback of the data may start immedi-
ately. However, such an immediate playback is infeasible to maintain a continuous
playback, because the arrival time of video data is often unable to meet its playback
deadline due to packet jitters and the mismatch between the video bitrate and the
throughput bitrate of the network. Generally, the client employs a playback buffer
(also called client buffer) to store the received data and attempts to keep the buffer
occupancy at a safe level, in order to absorb the jitters and the bitrate mismatch.
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Figure 2.2: Illustration of the client playback buffer, tracked in seconds of video. While
every second of video is taken out from the buffer for a continuous playback,
a specific amount of video is received and filled into the buffer. The amount
can be represented as a ratio between the network throughput and the selected
video bitrate, Ci

ri
seconds.

The occupancy of the playback buffer is primarily affected by the choice of video
bitrate. Since ABS provides multiple individual VQLs with different video bitrates,
the client is able to control the buffer occupancy to a certain extent by dynamically
selecting an appropriate VQL for each requested segment. Figure 2.2 illustrates an
example of the playback buffer occupancy with respect to the throughput and the
video bitrate. The occupancy (level) of the buffer is typically expressed in seconds
of video. Once the client completes the reception of a video segment, the playback
buffer is filled with a duration of video equal to the video duration of the segment.
For simplicity, we refer to the video duration of the segment as the segment dura-
tion, denoted by Tc. In the course of the buffering phase, the buffer level constantly
increases along the time. Once the buffering finishes, the client starts the playback
and enters to the playback phase. In the case of a continuous playback during the
playback phase, every second, one second of video is taken from the buffer and
displayed to the user, since exact one second of video should be played back every
second of real time. At the same time, the client receives Ci

ri
seconds of video and

stores it into the buffer, where ri denotes the video bitrate of the selected segment
with index i and Ci the average network throughput during the entire reception
of segment i. It implies that the buffer is filled at a rate Ci

ri
, while the buffer is

drained at a unit rate for a constant playback. For instance, consider ri = 2 Mbps
and Ci = 10 Mbps, then for each second, the buffer occupancy grows by 4 seconds.

If the ABS’s client picks a video bitrate that is smaller than the network through-
put, the fill rate of the buffer will exceed the drain rate (i.e., Ci

ri
> 1) and the buffer

level will rise. If the increase lasts sufficiently long, the buffer level will reach its
maximum level that corresponds to the size of the buffer. Generally, the buffer size
is measured in a unit of physical memory size, e.g., bytes. In practice, it is expressed
in seconds of video, because the buffer level is directly related to seconds of video
and bounded to a specific value in seconds of video in the context of video stream-
ing — for both live and on-demand. On one hand, in live streaming, the buffer level
(in seconds of video) cannot exceed the value of the streaming latency, because the
video content is being generated while being streamed and then the possibility to
prefetch content is severely limited. On the other hand, with Video-on-Demand
(VoD) services, the complete video content is available for delivery throughout the
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streaming session. Consequently, the client may theoretically prefetch the complete
rest of the content into its playback buffer while streaming, if the selected video
bitrate is sufficiently low compared to the available network throughput. However,
even with VoD, the maximum buffer level is generally limited. One reason is the
fact that the service providers avoid resource waste, by preventing the client from
downloading the content that will not be presented because e.g., the user quits the
streaming session or switches to other channels or abandons the prefetched low-
quality content if a throughput increase allows the client to request a higher-quality
level. Therefore, throughout this thesis, we term the buffer size as the maximum
buffer level in seconds of video. We define a full buffer or buffer overflow as the event
when the buffer occupancy is at its maximum level.

However, when the fill rate of the buffer is higher than the drain rate, the ABS
system probably does not maximize the video bitrate and cannot fully utilize the
available network throughput. On the contrary, if the system chooses a video bitrate
that is larger than the throughput of the underlying network, the buffer will be
filled at a rate smaller than the drain rate (i.e., Ci

ri
< 1) and the buffer occupancy

will drop. If this situation persists sufficiently long, the buffer will run empty and
the occupancy will be at the zero seconds. We call such an event empty buffer or buf-
fer underflow. If this event occurs during the playback phase, it will incur a so-called
rebuffering event. Note that, if rebuffering happens because the network through-
put is unable to sustain even the minimum video bitrate, there is nothing an ABS
system can do to avoid it, except for buffering sufficient video prior to such an inad-
equate throughput. Generally, the service providers should ensure sufficiently good
network QoS for their users in order to maintain at least the minimum video bitrate
while streaming. In practice, the guarantee however does not hold anytime due to
e.g., hardware failures, network congestion, or signal degradation on wireless net-
works. We name an event as network degradation in which the available throughput
is lower than the minimum video bitrate. Multiple studies (e.g., [54, 55, 56]) show
that the frequency and the duration of the rebuffering have the strongest impact
on the QoE. Therefore, a well-designed ABS system should keep the buffer occu-
pancy at a high enough level to mitigate the impact of network degradations and
should be able to avoid rebuffering events caused by choosing a non-sustainable
video bitrate.

2.2.3 ON-OFF Streaming Pattern

While ABS struggles with buffer underflow for preventing playback stalls, it needs
to take buffer control at near-maximum buffer levels into account. In case the play-
back buffer is at its maximum level, no video data can be received by the client and
the streaming enters an OFF period. Once the OFF period is past, the streaming
reenters an ON period and the client resumes receiving data. Here, one needs to
distinguish between VoD and live streaming. With VoD streaming, in case of a full
buffer, the client has to wait for the buffer occupancy to reduce to a level which
allows further video data to be stored into the playback buffer. With live streaming,
a full buffer implies that the streaming latency is near-zero. The unavailability of
segments restricts the continuity of the streaming and also incurs the same effect of
a full buffer in VoD streaming. The consumer of live streaming cannot receive video
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data until a segment is generated and is available for delivery. Therefore, a repeat-
ing alternation between ON and OFF periods happens in both streaming scenarios,
as long as the network throughput is higher than the selected video bitrate and this
condition lasts sufficiently long. Such a periodic phenomenon is called ON-OFF
streaming pattern. Unfortunately, the ON-OFF streaming pattern poses problems on
throughput estimation for ABS [57, 58, 59, 29, 60]. In general, the client estimates
the available throughput of the underlying network by measuring the transport-
layer throughput during every segment reception and computing a moving average
of those measurements over time [61]. This moving average is then used to select
the video bitrate for the next segment. Performing throughput estimation under
the ON-OFF streaming pattern cause inaccuracies in the estimation.

Akhshabi et al. [57] identify that the ON-OFF streaming pattern can lead to
quality instability and unfairness when multiple streaming clients compete over
the same network bottleneck. Depending on the temporal overlap of the ON-OFF
periods among competing clients, they may not estimate the available throughput
correctly. For instance, suppose that the ON periods of two clients do not over-
lap during the reception of a segment. Both clients can perceive the maximum
throughput (i.e., the capacity) of the bottleneck and will select a video bitrate that
is close to the maximum throughput. If that video bitrate is higher than 50% of
the maximum throughput, network congestion will occur while both clients receive
a segment with that video bitrate. In this case, the clients will observe that their
transport-layer throughput is less than the previous throughput estimate, and then
they will switch back to a lower video bitrate. This oscillatory switching behavior
can repeat, causing quality instability. Another example is that the ON period of
one client spans the ON period of another one. This can take place if one client is
receiving a segment with a higher bitrate than the other client. In this situation, the
former client will measure a throughput that is more than 50% of the maximum
throughput, while the latter one will measure only 50% of the maximum through-
put. Suppose that the bitrates currently selected by both clients are appropriate to
their throughput estimates, respectively. Then, both clients can converge to a stable
but unfair equilibrium in which the client with the higher bitrate keeps selecting
the higher bitrate but the client with the lower bitrate stays with the selection of the
lower bitrate.

The root cause of the issues studied in [57] mainly lies in the application-layer
behaviors initiated by the ON-OFF streaming pattern. In fact, such application-
layer behaviors can disturb the transport-layer dynamics, which negatively impacts
the application layer reversely. Accordingly, it can form a negative feedback loop.
Huang et al. [58] observe that the ON-OFF streaming pattern can interfere with TCP
dynamics, causing TCP to reenter the slow-start process, because the TCP conges-
tion window may time out due to the inactivity within an OFF period. As a result,
the client will acquire a lower throughput than the available throughput and thus
suffer from the underestimation of the available throughput. Even worse, bitrate
selection based on such low estimates can trigger a downward spiral effect, leading
to a undesirably low video quality [58]. The worse performance is due to the fact
that the underestimation of the throughput is combined with a conservative bitrate
selection. A conservative bitrate selection typically picks a video bitrate which is
equal to or lower than the throughput estimate. Then, a lower throughput leads the
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Figure 2.3: Bitrate selection based on average HTTP throughput in DASH with 2 s client
buffer size and 2 s segment duration. We demonstrate the performance issue
of a bitrate algorithm in DASH under the ON-OFF streaming pattern while
competing with a greedy TCP background traffic at a network bottleneck with
16 Mbps maximum throughput.

client to select a lower bitrate. When selecting a lower bitrate, the segment would
also be smaller in size (bytes). With a smaller segment size, the client becomes more
vulnerable to acquire lower throughput. In the worst case, a vicious cycle is created,
which brings the video bitrate down to its lowest value.

Figure 2.3 visualizes the behavior of a bitrate selection that is purely based on the
measurement of the average throughput at the HTTP/TCP client. It clearly points
out the random disturbance of the transport-layer throughput imposed by the ad-
aptation decisions at the application layer. These disturbances cause an excessively
poor bitrate selection. The observation reveals that the throughput acquired by the
streaming client does not match the available throughput any more and is limited
by the average bitrate of video segment instead, once the buffer keeps nearly full.
The throughput measurement of the upper layer is not aware of the underlying
transport dynamics and determines the available throughput based on the acquired
throughput. This incurs fluctuating and biased bitrate selection. The effect is partic-
ularly visible during the competition with the greedy background traffic. After the
background traffic is switched off, the streaming application significantly underu-
tilizes the network by just acquiring a small share of the available throughput. The
reason is that the throughput measurement at the application layer underestimates
the available throughput of the network during the ON-OFF streaming behaviors.
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2.2.4 Video Bitrate

As mentioned before, video streams in ABS are encoded at multiple VQLs, which
are typically characterized by the nominal video bitrate. The video bitrate is the
average rate at which a video is processed, measured in bits per second (bps) or
more often in kilobits per second (kbps) and megabits per second (Mbps). The
nominal bitrate of the video is the mean video bitrate over the entire video. The
quality of the video is determined by various factors such as video resolution (e.g.,
480p, 720p, and 1080p), frame rate (i.e., the number of consecutive images called
frames that are displayed per second on the screen, i.e., frames-per-second, e.g.,
24 f ps, 30 f ps, and 60 f ps.), and video compression technique (also known as video
coding technique, e.g., H.262 [62], H.264 [63], and H.265 [64], as well as VP8 [65],
VP9 [66], and AV1 [67]). In general, a higher video bitrate will accommodate higher
image quality in the video. Even though the image quality will be affected by other
factors from above together with the bitrate. For example, at the same video bitrate,
video encoded by an advanced codec such as H.264 will look substantially better
than an older coder like H.262. Nevertheless, throughout this thesis, we use video
bitrate and video quality both interchangeably, and use the nominal video bitrate
to represent the VQL of a video (stream).

In ABS, a video stream is segmented into small parts with a specific duration of
video. The average (video) bitrate of the segment may vary across the segments
with the same VQL (nominal video bitrate), if Variable Bitrate (VBR) encoding is
used to generate the video data. VBR encoding is commonly used on modern video
coding techniques to produce superior visual quality with a lower nominal bitrate
compared to Constant Bitrate (CBR) encoding, even though a video stream contains
complex segments e.g., due to a large number of high motion scenes. The primary
benefit of VBR encoding is that it allocates a higher bitrate (and therefore more
storage space) to the more complex segments of video streams and lower bitrates to
less complex segments. Accordingly, VBR encoding produces significantly higher
quality at similar nominal bitrate for complex segments than CBR encoding, which
maintains the same bitrate for all segments of the video stream.

Although VBR encoding provides a consistent quality throughout the video, it
also poses challenges during streaming. The average bitrates of video segments may
significantly vary around the nominal bitrate and may exceed the available network
throughput. For instance, Figure 2.4 shows the variance of the video bitrate for
different quality profiles of the video sequence Big Buck Bunny from [68], where the
average bitrate of each segment may significantly differ from the nominal bitrate of
the segment. In this example, at least 50% segments of each quality profile have
an average bitrate of at least 5–45 % higher or lower than the nominal bitrate. The
similar effects also happen to other video genres, e.g., sport (Red Bull Playstreets) and
movie (Valkaama) from [68]. Therefore, handling such bitrate variations becomes
one influential consideration while designing the ABS system.

2.2.5 Segmentation

Segmentation is essential to support streaming. To achieve the seamless playback
and switching of segments, each segment is required to be able to be decoded
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Figure 2.4: Average bitrate of segments in variable bitrate encoding with various quality
profiles. The red plus marker denotes the outliers of the 5-th and 95-th percent-
iles, which are marked with black bars. The blue box contains the bitrate range
from the 25-th to the 75-th percentile. The red bar in the center indicates the
nominal video bitrate.

independently. Namely, the streaming format of the video must fulfill this require-
ment of the completely self-contained segment. Modern video encoding employs
inter-frame compression: one or more neighboring frames are used to reconstruct
a current frame due to the temporal redundancy, only the differences are transmit-
ted. Therefore, it is necessary to ensure that there is an Intra-coded frame (I-frame)
at the beginning of each segment, such that clients can seamlessly play back the
segments and switch levels between different segments. Because I-frames do not
reference any other frames or segments, the client can start the decoding of a seg-
ment once its reception is completed. Fixed I-frame positions can be achieved by
aligning the group-of-picture (GOP) size of the encoding to the number of frames
in a segment; e.g., for a video with a frame rate of 24 f ps, a segment with two
second video duration may have a GOP size of 24 frames or 48 frames. As a con-
sequence, shorter segment durations result in a lower compression ratio because
I-frames have more bits, and thus the overall video quality is worse than the one of
longer segments encoded at the same bitrate. However, short segments allow quick
adaptability. Therefore, this trade-off needs to be balanced in content generation for
adaptive streaming. There are some research efforts (e.g., [69, 70, 71]) to optimize
the segment duration. Typically, the segment duration varies between 2 seconds
and 10 seconds.

The SP/SI-frame extension to H.264 [72] introduces two new frame types for
an alternative to I-frame when applications perform functionalities such as stream
switching, splicing, and random access. SP-frames utilize motion-compensated pre-
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diction similar to Predicted frame (P-frame), while SI-frames apply only spatial
prediction as I-frame and are used in conjunction with SP-frames. SP-frames have
significantly higher compression ratio than I-frames while providing similar func-
tionalities [72]. They are usually larger than P-frames by approximately 70% [73].
As a result, SP/SI-frames enable more switching points in a video stream without
significantly sacrificing the compression ratio.

2.2.6 MPEG-DASH

Currently, one of the most successful applications of ABS — HTTP-based Adapt-
ive Streaming (HAS) — runs on top of HTTP/TCP, although the idea of ABS can
be applied to other streaming protocols, e.g., UDP-based adaptive streaming. The
prime benefit of HAS is the leverage of an ubiquitous and highly optimized net-
work infrastructure. It consists of two aspects. First, using HTTP, HAS is flex-
ible to be deployed on CDNs including data centers and their proxy servers (e.g.,
caches), which were originally developed for web services to optimize their per-
formance e.g., with respect to load balancing and response time. Second, the usage
of HTTP/TCP eases the development of services and applications due to no fur-
ther requirements for congestion and error control, which are inherently built in
TCP. Considering the advantages of HTTP-based streaming, three dominant com-
panies — Microsoft Corporation, Apple Inc., and Adobe System Inc. — released
their commercial HAS solutions — MSS [12, 13], HLS [11], HDS [14], respectively.
Despite the wide adoption and commercial success, these solutions are incompat-
ible to each other, even though they use the similar technology behind HAS [74].
In response to the scattered landscape, a standard to facilitate the interoperability
became indispensable. The first specification of an HAS standard was initiated by
the Third Generation Partnership Project (3GPP) and was published in TS 26.234 re-
lease 9 [75] in 2009. In collaboration with 3GPP, MPEG published an international
standard ISO/IEC 23009-1 [17] in 2012, called DASH, also known as MPEG-DASH.
The European Telecommunications Standards Institute (ETSI) released the technical
specification of MPEG-DASH profile for DVB services [21] in 2015, which defines
the delivery of TV content via HAS.

DASH specifies XML and binary formats that allow a normative client to retrieve
video streams from any normative server, thereby enabling consistent playback
and unification of servers and clients of various vendors. The DASH specification
mainly defines two formats:

• The Media Presentation Description (MPD) provides sufficient information
(e.g., the program timing, segment availability, bitrates, and resolutions) for
a DASH client to establish a streaming service for the user. In particular, it
defines formats to announce resource identifiers for segments and to provide
the context for these identified resources using a hierarchical data model.

• The segment formats specify the formats of the entity body of the HTTP re-
sponse to the DASH client’s request. Segments contain video data and/or
metadata to decode and render the included video streams. DASH is video
codec agnostic and supports segment-container formats for both ISO Base Me-
dia File Format [76] and MPEG-2 Transport Stream [77].
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Details on content provisioning, the delivery of the MPD and the segments, as
well as normative client behavior for adaptation algorithms, fetching and playing
content, are outside of the scope of the DASH standard. Therefore, DASH enables
high flexibility for various use cases and delivery scenarios.

Today, DASH is gaining more and more deployment, accelerated by content pro-
viders and broadcasters such as Netflix, Youtube, and BBC4. Many DASH-enabled
tools have been developed such as DASH VLC Plugin [78], dash.js5, DASH-JS [79],
dash.as6, and libdash7 [80]. The DASH Industry Forum8 (DASH-IF) (a group in-
cluding the leading streaming companies) drives the rapid adoption and tremend-
ous research in and around MPEG-DASH. DASH-IF strives for interoperability of
products and services, and compatibility with consortia standards, by providing
publicly available implementation guidelines, test datasets, and software.

2.2.7 Adaptation Controller

Now that ABS needs to adapt its behavior to the variably available resource, the
most important functions of ABS are how to detect or predict those resources ac-
curately and then to react to the change adequately. An abstract model of common
ABS adaptation is depicted in Figure 2.5. An adaptation controller takes some in-
formation about the resources (e.g., typically available network throughput and/or
buffer occupancy) as inputs, and then based on a specific algorithm it performs the
bitrate selection for the next segment(s) to be delivered. Generally, the information
of the available throughput is unknown. Thus, an estimation technique is typic-
ally adopted to predict the throughput for the delivery of the next segment(s). The
simple way is to use a smoothing method such as averaging based on measured
throughput history. Since most information is the local information of the client
and the network QoS involves client’s network states, the adaptation controller are
usually located at the client. Due to the delay between the client request and the
server response, the client-side controller (e.g., [78, 29, 30]) is employed in many
high-latency streaming services, while in the context of low-latency streaming, a
server-side controller (e.g., [81, 82, 83]) is favorable.

A centralized controller is suggested to be deployed over a domain plane of
CDNs, such that the best CDN and bitrate for a client can be chosen using data-
driven prediction on a global view [84].9 Due to the varying network conditions
and the unawareness of network dynamics, the individual adaptation controller has
difficulties to maintain a stable video bitrate and a fair share of available network
resources. A network-assisted idea is proposed to further optimize the network
resource allocation, and thus to improve efficiency and fairness. There are ongo-
ing efforts (e.g., [85, 86, 87, 88, 89, 90]) to develop frameworks for such network-
assisted adaptation controllers. An active-assisting example is to place a proxy
server between client and server (in gateways or routers) in order to drive the bitrate

4 British Broadcasting Corporation. http://www.bbc.com/
5 https://github.com/Dash-Industry-Forum/dash.js

6 https://castlabs.com/open-source/dashas/

7 https://github.com/bitmovin/libdash

8 DASH Industry Forum. http://dashif.org/
9 It should be noted that the focus of such a centralized controller is on the optimization of CDNs,

instead of an individual client. Therefore, it is out of the scope of this thesis.

http://www.bbc.com/
https://github.com/Dash-Industry-Forum/dash.js
https://castlabs.com/open-source/dashas/
https://github.com/bitmovin/libdash
http://dashif.org/
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Figure 2.5: An abstract model of common ABS adaptation

adaptation by correcting bitrate requests [89]. Another example, in which a network
controller is implemented to provide throughput reservation and bitrate guidance
[86], gives clients more degrees of freedom for adaptation decisions. A recent ex-
tension to the DASH standard called Server and Network Assisted DASH (SAND
[87]) specifies the communication between the assisting network elements and the
clients as well as the communication between the assisting network elements.

2.3 quality of experience

The adaptation controller dynamically determines video qualities for a video stream,
in order to offer the best streaming quality for users. In making this decision, there
are many potential considerations of the quality — including network and video
factors — a client must account for. Thus, it is crucial to define and identify those
factors. On the other hand, when evaluating the performance of an ABS system, it
is essential to define the goals it has to achieve. These goals are usually involved
with various quality factors. Identifying these goals and expressing them in a way
that facilitates objective measurement are also very important. In this section, we
are going to describe those quality factors.

In the early days of Internet-based streaming, streaming services are assessed
by using QoS metrics of the network such as the packet loss rate and delay vari-
ation. Later, it has been recognized that video streaming quality must unavoidably
take into account user perception. The notion of the QoE was introduced in an
effort to assess user’s perceptual video quality. The International Telecommunica-
tion Union (ITU) defines QoE as “the degree of delight or annoyance of the user of
an application or service. It results from the person’s evaluation of the fulfillment
of his or her expectations and needs with respect to the utility and/or enjoyment
in the light of the person’s context, personality and current state” [91, 92]. More
succinctly, QoE is a measure of the perceptual QoS from the user’s perspective. Be-
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cause user perception is subjective and diversified in different environments, QoE is
conventionally obtained from subjective test, where human viewers rate the quality
of tested videos in a controlled laboratory environment. The QoE in those tests are
commonly expressed using the Mean Opinion Score (MOS), which is an average
over all individual scores on a predefined scale that a subject assigns to his opinion
of the system quality [92]. Although the MOS can provide an overall measure-
ment of user perception, subjective tests are often costly, offline, and not scalable.
Therefore, many studies (e.g., [93, 94, 95]) have been focusing on objective quality
models to predict QoE based on measurable influencing factors without human in-
volvement. Subjective test results are often used as ground truth to validate the
performance of the objective quality models. Most objective models even rely on
subjective test results to determine model parameters. A wide adoption of such
models is thus limited because of their complexity and indirectness. Since the dra-
matic development of Internet-based streaming makes large-scale data available for
analyzing QoE, data-driven analysis models [96] have recently emerged and raised
research interest. The massive data collection enables to replace sophisticated mod-
els with simpler models and map individual influencing factors to metrics such as
the user engagement — a quantitative reflection of user involvement and interaction
[97, 56, 98].

In the last part of this section, we first describe the QoE assessment in more
details and then discuss the influencing factors of the QoE in ABS.

2.3.1 Assessing Quality of Experience

There is an immense number of factors influencing the QoE. Based on the classi-
fication of influence factors discussed in [91, 99], we focus on two types of factors
— network-related and media-related —, which are used in the present work. We re-
mark that taking into account other types of influencing factors (such as context
and human influence) can potentially enhance the QoE. However, their adoption in
existing technologies is restricted, due to their complexity, subjectivity, and the lack
of models for integrating them into a quantified metric.

Network-related factors refer to data transmission over a network. The network
characteristics mainly include throughput, delay, packet loss, and their variations
over time. These factors are highly correlated with the network QoS, and thus are
often termed network QoS, despite a broader scope of the QoS definition [92].

In consideration of economical and resource-limitation reasons, video content
captured in high quality inevitably needs to be compressed in order to be transmit-
ted over a network. To some degree, the compression can be performed without a
visible distortion. Since there usually exists a substantial gap between the network
throughput and the video bitrate, compressing video content with a transmittable
bitrate often unavoidably results in a discernible quality degradation e.g., blocking
artifacts, blurring, and motion jerkiness. Media-related factors refer to video con-
figuration parameters of such as compression technique, coding format, resolution,
frame rate, and sampling rate.

If a streaming service runs over a managed network (e.g., IPTV), many network-
related factors are controllable. In this case, both network-related and media-related
factors can be jointly optimized to offer a high QoE. In contrast, the Internet only
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undertakes its “best effort” to deliver every packet in a quick manner but without
any QoS guarantees. Therefore, Internet-based streaming services will and often
do experience variations of both network-related and media-related factors. In that
case, the variations of media-related factors are relative restrainable, compared to
network-related factors, because network states of the Internet are typically un-
known and varying. In order to deliver the best possible QoE, video characteristics
(parameterized by media-related factors) are dynamically adapted to the varying
network states. ABS is an example of this adaptation. Such an adaptation can
be generalized as adjusting media-related and/or network-related factors that are
controllable to those that are not.

The influence factors of the QoE we identified above are objective, quantifiable,
and measurable. In view of this fact, they were used to assess the quality of video
streaming services in the early days. Nevertheless, they cannot accurately reflect
the QoE, although they could greatly impact the QoE. In the following, we discuss
some methods of QoE assessment with respect to subjective tests, objective quality
models, and data-driven analysis models.

2.3.1.1 Subjective Tests

With subjective tests, the QoE is measured by soliciting users’ opinions in a laborat-
ory environment. The opinions are frequently expressed using an MOS on a scale
of 1 (“bad”) to 5 (“excellent”) [100]. ITU provides a reference for performing the
subjective assessment of media quality [101] and the Video Quality Expert Group
(VQEG) describes detailed plans for conducting subjective tests [102]. Though, be-
ing regarded as a direct and relative accurate way of evaluating QoE, subjective
tests have three major limitations. First, they are costly in terms of time, money,
and human resources. Second, they cannot evaluate the QoE on the fly, e.g., in the
case of dynamic services. Third, they are carried out in a controlled environment,
with limited test videos, test conditions, and interviewee demography.

2.3.1.2 Objective Quality Models

In order to address these issues, objective quality models were introduced. Most of
them are based on the way the Human Visual System (HVS) perceives and processes
video signals. Accordingly, they identify the objective and measurable factors that
influence user perceptual quality, and map these factors to the QoE.

One commonly used method is to quantify the physical difference between the
reference and target (distorted) video, and to weigh the errors according to spatial
and temporal features of the video. Two basic examples are the Mean Squared Error
(MSE) and the Peak Signal-to-Noise Ratio (PSNR). Due to the physical significance
and the simplicity, such models are used in many studies (e.g., [103, 104, 105]) and
usually serve as the benchmark. However, simply based on a pixel-to-pixel compar-
ison of video data, they do not incorporate any HVS features in their computation,
thus are poorly correlated to the perceived quality measurements [106, 107].

In contrast to a comparison without considering the content, one objective method
— called Structural SIMilarity (SSIM) index [108] — takes into account the fact that
the HVS is highly sensitive to structural information and distortion from a scene.
Another method is the Video Quality Metric (VQM) [109], which was adopted by
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American National Standards Institute (ANSI) and ITU as a standardized method
of objective video quality measurement. VQM consists of objective parameters for
measuring the perceptual effects of several video impairments such as blurring,
jerky motion, global noise, block and color distortion, as well as error blocks. VQM
is optimized to achieve a reasonably good correlation with subjective results.

Many efforts have been made to develop QoE prediction models that do not need
to assess the reference video. These models (e.g., [110, 111, 112, 113]) leverage
network statistics (e.g., the packet loss and network throughput) and application-
specific factors (e.g., video bitrate and spatio-temporal features), in order to charac-
terize the relationship between these measurements and the QoE estimation. The
independence from the reference video allows QoE prediction models to meet the
demand of online QoE monitoring.

Nevertheless, the aforementioned methods are proposed to measure the visual
quality of a video impaired by packet losses and other artifacts, rather than by
an adaptively streamed video (in ABS). Therefore, an direct application of these
method is not suitable for ABS and new criteria should be considered in order to
evaluate the QoE of ABS. Moreover, the majority of objective quality models employ
subjective tests as ground truth to validate their performance. Even the optimization
of their model parameters are based on subjective results.

2.3.1.3 Data-Driven Analysis Models

As Internet-based Streaming has become more and more popular, great amounts of
data (with respect to e.g., content types, quality metrics, and user behavior) has been
collected for the analysis of streaming services. Recently, data-driven QoE analysis
has emerged as a promising way to circumvent the challenges in other methods.
It drives a shift from user “experience” metrics (e.g., PSNR, VQM, and subjective
MOS) to user “engagement” metrics [97, 56, 98] (e.g., the viewing time, the number
of watched videos, abandonment rate, and the return rate). On the other hand,
based on data-driven analysis, the engagement metrics can be derived from the
quantifiable and measurable metrics concerning e.g., startup delay, rebuffering, and
video bitrate. As a result, it enables to develop simple and reliable QoE prediction
models by leveraging big data. It is worth noting, that user engagement is an
important metric, which is of particular interest for content providers, because it
can be directly translated into providers’ business objectives e.g., the revenue of
advertisements and subscriptions [97, 56].

2.3.2 Quality of Experience for Adaptive Bitrate Streaming

As ABS has been widely accepted as the technology basis of Internet-based stream-
ing, the QoE for ABS has become a topic of prime importance in academia and
industry [114, 115, 97, 116, 74, 117, 118, 119, 120]. The core factors influencing the
QoE for ABS include: the playback stalls (in terms of e.g., the duration and the fre-
quency), the bitrate trajectory (representing the selected bitrates for the individual
video segments in sequence), the startup delay, and the latency (especially in the
case of live streaming). In the following, we explain each of these influencing factors
in more details.
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2.3.2.1 Playback Stalls

When the playback buffer of the streaming client has been depleted and the new
video segment does not arrive before its playback deadline, the playback of the
video must temporarily stop and an event called playback stall occurs. This is
often known as a buffer underflow. A buffer underflow is usually followed by
a rebuffering period, in which the client accumulates enough video data in the
buffer to resume playback. Thus, playback stall is also termed as rebuffering. The
conditions required for resuming the playback depend on the rebuffering strategy
of the client. The amount of rebuffered data needs to be traded off between the
duration of a stall event and the risk of future shortly-recurring stall events. A too-
short rebuffering duration may result in insufficient amounts of rebuffered data.
Then, more potential stall events may recur too soon.

Furthermore, in live streaming, playback stalls increase the live delay since the
subsequent segments are played back later than their scheduled playback deadlines.
Either, users need tolerate such a progressive delay, or the client has to fulfill the
subscribed latency constraint by e.g., skipping the playback of some delayed video
frame(s), or even delayed segment(s).

Many studies find that rebuffering is a significant metric to measure the QoE
[54, 121], and has the greatest impact on the user engagement [55, 56, 122]. The
development of ABS is primarily motivated just by avoiding the negative impact
of stall events on the QoE. The impact is mainly determined by both the duration
and the frequency of stall events [54]. Users who experience stall events longer, will
quit the view earlier [55, 56]. If stall events are inescapable, less-but-longer stalls
are preferred to frequent-but-shorter stalls [95, 118].

2.3.2.2 Bitrate Trajectory

The image quality of a video is another important factor influencing the QoE. As
mentioned in Section 2.2.4, the image quality is typically characterized by the video
bitrate. The bitrate delivered in ABS is the key metric in determining the image
quality. Consequently, the sequence of selected bitrates — referred to as bitrate tra-
jectory here, also known as adaptation trajectory — embodies all the features that
dramatically affect the overall QoE by its influence on the image quality of the in-
dividual video segments. Apparently, choosing a video bitrate as high as possible
for segments will yield a maximum QoE with respect to the image quality. Aca-
demia and industry use the average bitrate as the standard metric to measure the
video quality and define it as the average of the bitrates played during a streaming
session [97, 123, 124]. In that way, the higher the average bitrate is, the better the
video quality is. Ahmed et al. [122] find that not only the rate of rebuffering but
also average bitrate have the most impact on user engagement in live streaming.
We remark that other metrics such as PSNR, SSIM, and VQM can also be used to
represent the video quality. For instance, Liu et al. [117] proposes to use VQM due
to the good correlation with human perception and the heterogeneous setting of
the video provided by streaming services.

Recent works (e.g., [125, 95, 126]) have found that, not just average bitrate, but
also bitrate switching can influence the QoE. Two aspects must be accounted for:
the amplitude and the frequency of the bitrate switching. Although highly frequent
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bitrate switching may impair the QoE, gradual variations with multiple switches
are generally preferable to abrupt variations with a few switches [125, 85, 95]. The
authors of [117] observe that the impairment caused by an increasing bitrate switch
is much lower than that caused by a decreasing switch, and thus suggest to omit
the impact of increasing switches on their proposed impairment functions. This can
also be interpreted as an observation that users would rather have constant bitrate
than frequently varying bitrate, even though the average bitrate is lower [125, 114].

2.3.2.3 Startup Delay

The startup delay or initial delay is the time duration from a playback request being
initiated till the first start of a video playback. It typically includes the time taken to
download the manifest file (e.g., MPD file in MPEG-DASH), and the time required
to complete the reception of the partial video. In this thesis, the startup delay
excludes the time for receiving the manifest file. The reasons are two-fold. First, a
client does not necessarily need the manifest file for a playback, e.g., in scenarios of
a server-side adaptation architecture. Second, the size of the manifest file is often
much smaller compared to the partial video required for the playback; especially,
the manifest file for the initialization can be packed in a very small size so as to
reduce the delay.

The startup delay is always present in streaming services, as the client has to wait
until a specific amount of data is downloaded and stored into the playback buffer
in order to begin the decoding and the playback. This phase is sometimes called
(initial) buffering or prebuffering. We refer to the specific amount of buffered data in
seconds of video as buffering size. The practical value of the buffering size depends
on the network states (e.g., available throughput and network delay), the video
parameters (e.g., available bitrates and segment duration), and QoE requirements
(with respect to e.g., playback stalls and bitrate). Although a larger buffering size
directly incurs a higher startup delay (and a higher latency), it also provides the
client with a higher robustness to short-term throughput variations, and thus with
a lower risk of buffer underflows. Hence, the consideration of the minimum achiev-
able startup delay must account for the trade-off between the buffering size and the
risk of rebuffering. Staelens et al. [127] find that IPTV and VoD users are willing to
tolerate higher startup delays with a reward of less rebuffering. On the other hand,
a moderate startup delay of 2 seconds might severely deteriorate the QoE and even
make users quit the view completely, especially when users frequently start a new
streaming session, e.g., by switching program channels or watching short videos
[56]. In contrast to rebuffering, the client is typically unaware of the network condi-
tions during the initial buffering. In order to quickly fill up the playback buffer and
start the playback, a client will often choose the first (few) video segment(s) with
the lowest bitrate.

It is worth noting, that the impact of the startup delay on the QoE can be charac-
terized in different ways. The study [117] finds that the QoE will linearly decrease
with the increase of the startup delay but will converge to a minimum. Rodríguez
et al. [128] model the relationship between the QoE and the startup delay using an
exponential decaying function.



24 background

2.3.2.4 Latency

An important factor to evaluate live streaming experiences is the latency, also re-
ferred to as live latency, which is the time difference between the instants when
the live event occurs and when it is played back to users. This time difference is
sometimes called end-to-end delay, and expresses the liveness of the video stream.
While presently, Internet-based live streaming services might exhibit a latency on
the order of tens of seconds, many services would greatly benefits from bringing
down this value. In particular, low latency services — e.g., surveillance and passive
participation in video conferences — require a smaller latency in the range of a few
seconds; in the context of interactive services such as active participation in video
conferences, augmented vision, and online gaming, the latency requirements can
even reach below one second.

In the case of VoD streaming, since all video contents are already available for
delivery before the beginning of a streaming session, VoD services do not have the
same latency requirement as live services. Nevertheless, they still have requirements
on the startup delay, which is directly affected by the buffering size. The maximum
of the buffering size is equal to the client buffer size. Additionally, the buffer size of
a VoD client is often bounded (by a threshold of typically several tens of seconds), as
service providers only allow the client prefetch a certain number of video segments
in view of resource waste and the video quality. This is due to the fact that when the
client stores excessive video in the buffer, a user may start a new streaming session
or quit the view, or a client may re-download some segments with a higher bitrate
in order to offer a better image quality if the throughput is high enough. Therefore,
we use the buffer size of a VoD client to represent its latency requirement of a VoD
service, and refer to it as VoD latency, in order to distinguish between the live and
VoD with respect to the latency.

In practice, the buffer size is an indicator of the latency not only in VoD streaming,
but also in live streaming, because the latency in live streaming limits the maximum
occupancy of the playback buffer. Since the buffer occupancy is upper-bounded
by the user tolerable video playback lag, the buffer size is used to represent the
streaming latency in the rest of this thesis. Ideally, both the startup delay and the
buffer size should be as small as possible to reach the low-latency requirement, yet
large enough to avoid buffer underflow events.

2.3.2.5 Maximizing the QoE

The ultimate goal of ABS is to deliver a superior QoE to users. To this end, the
crucial challenge is to balance many potentially conflicting QoE considerations:

(a) Minimize rebuffering events where the client has to stall the playback due to
an empty buffer.

(b) Maximize the image quality with as high a video bitrate as possible subjective
to varying network conditions.

(c) Minimize the variations of the image quality by avoiding frequent and/or
large bitrate switches.
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(d) Minimize the startup delay so that users do not abandon the view while wait-
ing for a playback start.

The conflicts are for instance as follows. Accomplishing goal (b) results in a trade-
off with goal (a): the duration and the frequency of rebuffering events may be
minimized by always choosing the lowest bitrate, which will yield a suboptimal
image quality if the available network throughput can accommodate a video stream
with a higher bitrate; while maximizing the image quality by always choosing the
highest bitrate will too frequently incur unnecessary rebuffering events. Pursuing
goal (c) is traded off with goal (b), because one may maximize the overall image
quality by adapting the bitrates to any small changes of the network throughput,
which obviously increases the number of bitrate switches, though. In practice, goal
(a) is achieved at the cost of goal (c). Last, goal (d) and goal (b) contradict each
other: by choosing the lowest bitrate for video segments during the startup, one
succeeds in minimizing the startup delay, however, with a loss of the image quality.

Note that, because this thesis focuses on low-latency streaming, we do not sub-
sume the latency in the performance metrics for our QoE evaluation, instead we
interpret it as a constraint an ABS system must fulfill, in order to evaluate the ABS
performance under a specific latency requirement for various application scenarios.





3
T O WA R D S R E D U C E D L AT E N C Y I N A D A P T I V E S T R E A M I N G

To cope with low-latency adaptive streaming and to push the latency to its limit,
it is necessary to determine a reasonable lower bound on the latency for adaptive
streaming. Few researchers address the achievable lower bound of the latency. The
contributions in this chapter fill this gap by deriving the lower bound for the buffer-
ing size, which is the dominant factor of the streaming latency. Specifically, we first
analyze the components affecting the latency and identify the key component of the
latency. Then, we develop an analytical model for the process of adaptive stream-
ing with respect to client buffer dynamics. Next, we present the required buffering
size and its theoretical minimum given characteristics of a streaming scenario. Last,
we introduce an approximation of the minimum buffering size and validate the ap-
proximation under a bitrate-adaptive streaming simulation. The originality of the
contributions is acknowledged in an earlier conference publication [35].

3.1 latency in adaptive streaming

One fundamental characteristic of video streaming is the latency. It is also a key
performance indicator for bitrate adaptation. With respect to content availability,
we distinguish the latency with two categories: live streaming and VoD streaming.

3.1.1 Live Latency

In a live streaming system, the video content is continuously captured, encoded,
and segmented while streaming. Once a video segment is available, the system
can start to deliver it to the client. After the complete reception of a segment, the
client decodes and renders it. In order to achieve a better responsiveness to the
bitrate mismatch between network throughput and video quality, the client may
buffer a specific amount of segments before the playback. In an adaptive streaming
system, the video content is further encoded in several quality levels with respect to
their video characteristics (e.g., resolutions, frame rates, and bitrates). Accordingly,
the system dynamically adapts the characteristics of the video stream to varying
network states, leading to a smoother viewing experience with less playback stalls
and higher video bitrates.

In Section 2.3.2, the latency of live streaming is defined as the time difference
between the time at which the content is recorded and the time at which it is dis-
played on a client. The time difference is often termed live latency. This latency is
mainly affected by the following components: the video codec (for encoding and
decoding), the delivery (traversal over the network layers at both ends) and the buf-
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Figure 3.1: An example of Live latency with a buffering size of two segments.

fering. We assume that the video encoder will be parameterized appropriately for
a given scenario (e.g., intra-frame or slice-based encoding for very low latencies) to
allow a sufficient remainder of the overall delay budget for the delivery and the buf-
fering. The delivery is considered throughout the thesis by including the network
delays — typically characterized by the Round Trip Time (RTT) — visible to the
application layer, and the equations are general so that they can be applied to dif-
ferent applications scenarios (e.g., VoD with acceptable latencies of several seconds,
broadcast-like scenarios with latencies of several 100 ms to a second, and interactive
scenarios with latencies below 100 ms). Therefore, in this thesis, we focus on the
latency affected by the delivery and the buffering. The delivery time expresses the
time required for the delivery of video data (e.g., a frame or a segment) over the
network. It consists of the reception duration for a segment and the network delay
along the downstream path. A client may need to store a specific amount of video
data into its playback buffer before starting a video playback. We refer to the time
of the client collecting these data as the buffering time, and the amount of these video
data in seconds as the buffering size. The process of buffering these data is known as
the buffering phase. Once the process of the buffering is finished, the playback of the
video starts and continues till the end of the streaming session. We call this phase
the playback phase.

Figure 3.1 illustrates an example of the latency in live streaming and the time
notations used as follows. We assume that the delivery of segments are performed
sequentially. Consider segment i ∈ N+ is available at time ta

i . The client issues a
request for the segment at time tr

i and the delivery time for the request is dr
i . Then

the server starts to deliver the segment at time td
i . The network delay of segment

i is denoted by dn
i . We assume that dn

i is constant during the delivery of segment
i; i.e., the network delay for sending each bit of segment i is constant. At time ts

i
the client starts to receive the segment and finishes the reception at time te

i . Thus,
the reception duration for segment i can be expressed as di = te

i − ts
i . Under the

assumption of the sequential delivery, we have

td
i = max

{
ta
i , tr

i + dr
i , td

i−1 + di−1

}
, (3.1)

where i > 1 and td
1 = max {ta

1, tr
1 + dr

1}. Note that td
i−1 + di−1 in Equation 3.1 in-

dicates the time at which the server finishes sending segment i− 1. We denote the
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buffering size by Bd and the segment duration by Tc. If a client buffer contains m ≥ 1
segments (i.e., Bd = m · Tc) when a playback starts, the latency can be calculated as:

L = te
i+m−1 − ta

i + Tc = ts
i+m−1 + di+m−1 − ta

i + Tc , (3.2)

where i > 1, ∀j ≥ 1 : ts
j = td

j + dn
j , ∀j > 1 : ta

j = ta
j−1 + Tc = t0 + j · Tc, ta

1 = t0 + Tc,
and t0 is the start time of the content.

According to Equation 3.2, we can derive the following three special cases, in
order to provide an intuitive understanding of main contributors to the latency.
The special cases are based on the following assumptions:

• A segment request that comes too early results in biased bitrate selections and
therefore a suboptimal streaming performance, while a request that comes
too late leads to an increase of streaming latency and may cause an unneces-
sary drop of the client buffer level. Consequently, we assume that the system
employs an ideal pre-request scheme of segments such that the start of de-
livering a segment is performed once the delivery of the preceding segment
is completed and the selected segment is available, i.e., ∀j ≥ 1 : tr

j + dr
j =

max
{

td
j−1 + dj−1, ta

j

}
. In practice, it is difficult to have an ideal pre-request

scheme due to a lack of precise estimation of the delivery time (i.e., dr
j , dn

j , and
dj). To this effect, we introduce a server-side adaptation (Chapter 5) to fulfill
this assumption.

• In order to eliminate the additional delay incurred prior to the delivery of
segment i, we also assume that the server starts to deliver segment i as soon
as it is available, i.e., td

i = ta
i .

• Furthermore, we assume that the size of the client buffer is unlimited so that
the reception will not delay due to a full buffer. This implies that ts

i = td
i + dn

i .

The example shown in Figure 3.1 satisfies the assumptions.
i.) If the network throughput is sufficiently high such that ∀i ≤ j ≤ i + m− 1 :

dj < Tc, the server starts the delivery for segment j at the time td
j = ta

j . We can
calculate the latency L as

L =ta
i+m−1 + dn

i+m−1 + di+m−1 − ta
i + Tc

=ta
i + (m− 1) · Tc + dn

i+m−1 + di+m−1 − ta
i + Tc

=m · Tc + dn
i+m−1 + di+m−1

=Bd + dn
i+m−1 + di+m−1

. (3.3)

This case yields the lower bound of the latency with a buffering size of Bd.
ii.) If the network throughput is so low that ∀i ≤ j ≤ i + m − 1 : dj > Tc, the

time at which the server finishes the delivery of segment j− 1 is after the available
time of segment j (i.e., td

j = td
j−1 + dj−1 > ta

j ). It implies that the start time of the
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reception for segment j is ts
j = td

j−1 + dj−1 + dn
j . Based on Equation 3.2, the latency

can be computed as

L =td
i + dn

i+m−1+
m−1

∑
j=0

di+j − ta
i + Tc

>td
i − ta

i + dn
i+m−1 + (m + 1) · Tc

=Bd + dn
i+m−1 + Tc

. (3.4)

iii.) In adaptive streaming, adaptation algorithms strive to select segments whose
video bitrates are close to the network throughput on average. Without loss of
generality, we assume that ∀i ≤ j ≤ i + m − 1 : dj = Tc. So it holds td

j = td
j−1 +

dj−1 = ta
j . Similarly to the previous case, we get

L =td
i + dn

i+m−1+
m−1

∑
j=0

di+j − ta
i + Tc

=Bd + dn
i+m−1 + Tc

. (3.5)

Based on the analysis of above cases, we see that the buffering size is the biggest
contributor to the latency which can be optimized under a given network scenario.
It implies that given network characteristics (e.g., throughput and network delay),
we can optimize m, Tc, and video bitrates (for having small di), in order to minimize
the streaming latency. Normally, Tc and a selected set of video bitrates are provided
in a streaming system for preserving a high coding efficiency and video quality.
Therefore, the minimization of m (the buffering size) is the challenge in low-latency
adaptive streaming.

3.1.2 Latency in VoD streaming

In a VoD streaming system, all video contents or segments are prerecorded and
stored at the server, and thus, there is no such a latency requirement as in live
streaming. Theoretically, VoD streaming allows buffered video data to be as long as
the duration of video content. Though, as discussed in Section 2.3.2, VoD streaming
still has requirements on the startup delay, the video quality, and waste of network
and server resources, especially in cases, when users watch long videos, frequently
switch channels, or early abandon the view. Therefore, the amount of buffered data
is typically bounded in a VoD streaming client.

As the complete video content in a VoD streaming session is available for the
delivery right from the beginning of the session, in contrast to a live streaming
system, we define the latency of VoD streaming as the maximum allowed amount
of buffered data in seconds of video at the client, also known as client buffer size (in
seconds). To distinguish from live latency, we also refer to it as VoD latency. The
reasons for the definition of VoD lantency as client buffer size are two-fold: the
client buffer size implies the maximum allowed delay between the arrival time and
the display time of video data at the client; it is the upper bound of the buffering
size, which affects the startup delay. Therefore, the buffering size is the dominant
factor of VoD latency, as the lower bound of the latency. Furthermore, the buffering
size dominates the startup delay, which is defined as the time difference between the
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Figure 3.2: An example of VoD streaming with a buffering size of two segments.

time when the content is requested and the time when it is displayed on a client.
Similar to live streaming, we derive and analyze the startup delay of VoD streaming
as follows. Because all video segments are available for the delivery during the
whole time throughout the streaming session, the available time of each segment is
prior to its request time; i.e., ∀i ≥ 1 : ta

i ≤ tr
i . According to Equation 3.1, the server

starts to deliver segment i at time

td
i = max

{
tr
i + dr

i , td
i−1 + di−1

}
, (3.6)

where i > 1 and td
1 = tr

1 + dr
1. Analog to Equation 3.2, if the buffer of a VoD client

contains m ≥ 1 segments (i.e., Bd = m · Tc) when a playback starts, the startup delay
Ts by definition can be given as:

Ts = te
i+m−1 − tr

i = ts
i+m−1 + di+m−1 − tr

i
, (3.7)

where i > 1 and ∀j ≥ 1 : ts
j = td

j + dn
j .

Similarly, we assume that an ideal pre-request scheme is employed such that
∀j ≥ 1 : tr

j + dr
j = td

j−1 + dj−1. Then Equation 3.7 can be expressed as

Ts =ts
i+m−1 + di+m−1 − tr

i

=tr
i + dr

i + dn
i+m−1+

m−1

∑
j=0

di+j − tr
i

=dr
i + dn

i+m−1+
m−1

∑
j=0

di+j

. (3.8)

An example is illustrated in Figure 3.2. The reception duration di is proportional
to the segment duration Tc dependent to the average network throughput during

the reception of segment i; i.e., ∀i ≥ 1 : di ∝ Tc. Therefore, it holds
m−1
∑

j=0
di+j ∝

m · Tc = Bd. In the case of adaptive streaming, a well-designed adaptation algorithm
will select segments with video bitrates equivalent to the average throughput, such
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that the video quality is optimized. This results in
m−1
∑

j=0
di+j ∼ Bd and based on

Equation 3.7 we have

Ts =dr
i + dn

i+m−1+
m−1

∑
j=0

di+j

∼dr
i + dn

i+m−1 + Bd

. (3.9)

Because the amount of buffered data is bounded in VoD streaming, Bd is bounded
and its upper bound is the client buffer size βmax (in seconds) i.e., the VoD latency.

Based on Equation 3.9, we see that the startup delay of VoD streaming is dom-
inated by the buffering size as in the case of live streaming. Moreover, the VoD
latency (i.e., the client buffer size) is bounded below by the buffering size; namely,
L = βmax ≥ Bd. Therefore, if the buffering size is minimized, the client buffer size
can also be minimized so that the resource usage and the video quality is optimized.
To minimize the buffering size, we need to find out what the lower bound of the
buffering size is. In the following we introduce a model of adaptive streaming for
buffer size before the derivation of the minimum buffering size.

3.2 adaptive streaming model for buffer size

Consider a video as a set of N consecutive segments V = {1, 2, 3, · · · , N}, each
of which represents Tc seconds of the video and is encoded at different nominal
bitrates in set R. A streaming client receives the video segments from index i = 1
and stores them into a playback buffer. Let b(t) be the buffer level (in seconds) at
time t. The client starts the video playback, once it completes the buffering i.e., the
reception of the first m ≥ 1 segments.

Let ts
i and te

i be the time at which the client starts and finishes the reception of
segment i ≥ 1, respectively. If the size (in kbit) of segment i encoded at the nominal
bitrate R is given and denoted by SR

i , or if the average bitrate of segment i is given
and denoted by ri, we have

SR
i =

∫ te
i

ts
i

C(t) dt or ri · Tc =
∫ te

i

ts
i

C(t) dt , (3.10)

where C(t) is the available network throughput at time t. As described in Sec-
tion 3.1, the reception duration of segment i is defined as

di = te
i − ts

i . (3.11)

After the entire reception of segment i, the client may wait for ∆ti+1 seconds and
then starts to receive segment i + 1 at time ts

i+1. The waiting time ∆ti+1 is referred
as the reception delay in this thesis and is determined by the time at which the
data sent by the server arrive and the time at which the client allows to receive the
data. The former one is dependent on the available time and the requesting time
of segments as well as the network delay. The latter one considers the waiting time
incurred by the client when the buffer is full. Note that at that moment, the client
cannot receive any new segments and waits for the buffer to reduce a level which
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allows a new segment to be received. Then, the start time of receiving segment i + 1
can be given by

ts
i+1 = max

{
td
i+1 + dn

i+1, te
i + ∆tw

i+1

}
, (3.12)

where ∆tw
i+1 is the waiting time for receiving segment i + 1 due to a full buffer after

the reception of segment i. According to Equation 3.1, the delivery of segment i + 1
starts at time

td
i+1 = max

{
ta
i+1, tr

i+1 + dr
i+1, td

i + di

}
. (3.13)

Therefore the reception delay between segment i and segment i + 1 (i.e., the time
that elapses from the moment the client finishes receiving segment i until the client
starts to receive segment i + 1) ∆ti+1 can be computed as

∆ti+1 = ts
i+1 − te

i . (3.14)

As the segments are being filled into the buffer during the receiving process and
being drained out for video playback, the buffer dynamics are expressed as follows:

bs
i+1 =


bs

i + Tc i ≤ m((
bs

i − di
)
+
+ Tc − ∆ti+1

)
+

else
, (3.15)

where (x)+ = max{x, 0}, m ≥ 1 is the number of segments required for the buf-
fering before the first playback (i.e., Bd = m · Tc), bs

i = b(ts
i ) indicates the buffer

level when the client starts to receive segment i, and the buffer level is initialized
with ∀t ≤ ts

1 : b(t) = 0, thereby bs
1 = 0. We distinguish two cases in Equation 3.15:

during the buffering phase, only the filling process of the buffer is being performed
without the draining process, because the playback has not started yet; during the
playback phase, both processes are being performed at the same time. Equation 3.15

assumes that each segment must be received in its entirety before it can be played
back. Note that playback stall events occur if bs

i < di or bs
i + Tc < di + ∆ti+1.

Namely, an event of playback stalls occurs if the buffered data is not sufficient to be
consumed before the entire reception of a segment, or if the buffered data succeed-
ing the reception cannot hold to be consumed prior to the next reception. Analog
to Equation 3.15, the waiting time ∆tw

i+1 can be formulated as

∆tw
i+1 =


0 i ≤ m((

bs
i − di

)
+
+ Tc − βmax

)
+

else
, (3.16)

where βmax denotes the maximum occupancy level of the client buffer, i.e., the
client buffer size. The client buffer size is assumed to be equal to or larger than
the buffering size, i.e., βmax ≥ Bd = m · Tc, such that the buffering process can
be completed. Here, for simplicity, we assume that Bd and βmax are a multiple of
segment duration Tc.

Note that our seven equations (Equation 3.10–3.16) are indeed linear independent
and the equation system can be solved, given network throughput and delay (i.e.,
C(t), dr

i+1, and dn
i+1), available time and request time of segments (i.e., ta

i+1 and tr
i+1),

selected video bitrates ri, segment duration Tc, maximum client buffer size βmax,
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buffering size m, as well as the status of the preceding segment (i.e., bs
i , ts

i , and td
i ).

An example of solving the system is shown in Excursion 3.1. The dynamics of the
model are therefore deterministic.

Excursion 3.1 An example of solving the equation system of adaptive streaming
model for buffer size

Consider βmax = 2 s, i > m, bs
i = 2 s, C(t) = 1000 kbps, dn

i+1 = dr
i+1 = dn

i =

1 s, ri = 500 kbps, Tc = 2 s, ts
i = 10 s, ta

i = td
i = 9 s, ta

i+1 = 11 s, tr
i+1 = 11 s,

and that we want to determine bs
i+1. Based on Equation 3.10, we have

te
i = 11 s. Then we get di = 1 s with Equation 3.11. We further retrieve

∆tw
i+1 = 1 s from Equation 3.16. By Equation 3.13, it yields td

i+1 = 12 s.
Subsequently, we obtain ts

i+1 = 13 s with Equation 3.12. Equation 3.14 gives
us ∆ti+1 = 2 s. According to Equation 3.15, we determine bs

i+1 = 1 s; i.e.,
the buffer level becomes smaller.

If we employ an ideal pre-request scheme for segment i + 1 with tr
i+1 =

10 s, we can achieve td
i+1 = 11 s and bs

i+1 = 2 s, which introduces no ad-
ditional delay for the delivery and is beneficial to the stability of buffer
dynamics. This demonstrates the effect of the ideal pre-request scheme
and confirms our motivation of presenting the server-side adaptation.

In summary, this example shows that our seven equations (Equa-
tion 3.10–3.16) can model the dynamics of streaming process.

In contrast to the model defined in [32], our model first introduces the available
time and the request-response time for live video segments into the reception delay.
The reasons are as follows. i.) With live streaming, video segments become avail-
able for receiving during the course of the streaming session. The client needs to
determine precisely when a new segment is ready and make the necessary request.
ii.) In the context of low-latency streaming, especially over wireless networks, the
request-response time of receiving segments is not negligible for client side adapt-
ation. This is due to a lack of precise estimation of the delivery time as indicated
in Section 3.1. Second, our model takes into consideration the buffering size, which
characterizes the streaming latency as a dominant factor. Consequently, our model
is more generalized, can accommodate wide range of streaming scenarios, espe-
cially in the context of low latency.

3.3 minimum buffering size

In the following we will address the question: what is a reasonable buffering size
for adaptive streaming if the QoS of a network is given. Note that minimizing
the buffering size implies minimizing the latency, as described in Section 3.1. To
answer this question, we first introduce the concept of the network degradation.
Most Internet Service Providers (ISPs) ensure the lowest available throughput (also
known as Guaranteed Throughput) for their customers. However, they cannot ensure
such network QoS anytime, and so the throughput may drop below the guaranteed
throughput in a time period, e.g., due to the failure of hardware or quality degrad-
ation of network path (e.g., wireless path). Here, we define an event as network
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degradation in which the average network throughput over each segment duration
is lower than the guaranteed throughput.

Given a set of video bitrates R, the guaranteed throughput of the network is at
least min{R}, such that it can support the minimum performance of video stream-
ing service. Consider a streaming service that experiences a network degradation
with a duration Ddeg. During this time period, the service cannot offer a proper
video bitrate to maintain the amount of buffered data over a specific level, because
the throughput is smaller than min{R}. It means that di > Tc holds for each re-
ceived segment within Ddeg and then the buffer level decreases constantly during
the playback. If the buffer is empty, the client suffers from playback stalls. There-
fore, a client needs to collect sufficient video data in the buffer before a network
degradation occurs. Namely, there exists a minimum buffer level a client has when
the network degradation starts, such that the client can avoid playback stalls during
a network degradation with a duration of Ddeg. Let Bdeg

min denote this minimum buf-
fer level (in seconds). Then, such a network with Ddeg requires streaming services
to buffer video data of at least Bdeg

min prior to the network degradation. A stream-
ing session may experience one or more events of network degradation at different
time intervals. Thus, streaming services need to ensure sufficient video data in the
buffer prior to the playback in order to offer continuous playback even when one
or multiple degradation events occur. We denote the minimum buffer level prior to
the playback of a streaming session by Bmin. The buffer level required prior to the
playback is equivalent to the buffering size per definition introduced in Section 3.1.

The minimum buffer level is the minimum requirement of streaming services
with which no playback stalls occur in the course of streaming. Hence, we can
derive its theoretical minimum for a streaming session by delaying the playback
such that the accumulated playable data received in the buffer is always more than
the accumulated playout data at any time points. Figure 3.3 illustrates the idea
with an example of live streaming. Note that due to the assumption the data of a
segment in the buffer is able to be played only after the segment is totally received
by the client. We define playable received data as the data of all segments which are
received in their entirety and stored in the buffer; while received data includes the
playable received data and the data of a segment being received.

Consider the duration of video segments Tc = 2 s and the minimum of video
bitrates min{R} = 0.5 Mbps. To achieve the minimum buffer level, the selected
video bitrate need to be the minimum bitrate, i.e., r = min{R}. The instant through-
put during the streaming session is shown in Figure 3.3a and switches between
0.25 Mbps and 1 Mbps. To simplify the illustration, we assume that the reception
delay is zero and the client buffer size is infinite. Therefore, given the throughput
and the selected video bitrates, we generate the curves of accumulated received
data and accumulated playable received data in the client buffer as shown in Fig-
ure 3.3b. Note that no playback stalls are allowed during the streaming even if the
client experiences the network degradation. As a result, the amount of accumu-
lated playout data continuously and linearly increases with a slope of 1, because
one second of video is played back in one second of real time. Moreover, the line
of accumulated playout data needs to be below the curve of playable received data,
because the client requires more received data than the data to be played back. We
can determine the delay time for the playback by shifting the line to the right as
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Figure 3.3: An example of solving the minimum buffering size for a live streaming ses-
sion. The idea is to delay the playback, such that the accumulated amount of
playable received data is more than the one of playout data at any time points.
With a delayed playback, the buffer level varies without reaching zero, even the
throughput drops below the minimum supported bitrate.

shown in Figure 3.3b The buffering size is then the amount of received data at the
time when the delayed playback starts. In this example, the delay time is 14 s and
the buffering size is 12 s.

Formally, we can calculate the accumulated amount of playable received data (in
seconds of video) at time t ≥ 0 as

Φ′(t) = (i− 1) · Tc | te
i−1 ≤ t < te

i , (3.17)

where i ∈ N+ fulfills te
i−1 ≤ t < te

i , te
i denotes the time at which the reception

of segment i is completed, and te
0 = 0. Equation 3.17 implies that the amount

of playable received data increases by Tc seconds once a segment is completely
received, and keeps constant before the reception of the next segment is finished.
In contrast, the accumulated amount of received data (in seconds of video) in the
buffer at time t can be calculated as
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Φ(t) =

(i− 1) · Tc t < ts
i

(i− 1) · Tc +
1
ri

∫ t
ts
i
C(t) dt else

∣∣∣∣∣∣∣ te
i−1 ≤ t < te

i , (3.18)

where ts
i is the start time of the reception for segment i and fulfills te

i−1 ≤ ts
i < te

i
because of the sequential reception. The additional term of the integral in Equa-
tion 3.18 represents the portion of segment i (in seconds) received by the client and
stored in the buffer. Note that the data amount in the buffer actually increases
continuously during the reception of segments in the case of C(t) > 0; while the
amount of playable data increases in a step-wise fashion, due to the assumption
that each segment can be played back only if it is received in its entirety.

ts
i and te

i in Equation 3.17 and Equation 3.18 can be determined based on Equa-
tions 3.10–3.13 in Section 3.2. Here, we consider a live scenario and assume that the
size of the playback buffer is infinite. The reasons are as follows. i.) To determine
the minimum buffer level, we need to relax the size limit of the buffer. Otherwise,
the minimum is not solvable in the case where the minimum is larger than the size
limit. ii.) When the buffer is full, the client cannot receive any new segments and
waits for the buffer to reduce to a level which allows a new segment to be received.
The waiting time increases the streaming latency. In order to minimize the latency,
we eliminate the size limit of the buffer. iii.) The memory and the storage are less
important for modern clients compared to the live experience. The only exception
is when playback stall events occur, the buffer level will cumulatively increase after
the reception duration becomes di < Tc, because the client has to wait for sufficient
data during playback stalls and this delays the playback and therefore increases the
latency. Skipping video frames or segments can be used to limit the buffer level to
a specific value, so as to fulfill the latency constraint.

In practice, the assumption of infinite buffer sizes in live streaming is feasible and
does not overload the client with respect to the performance, because the restricted
availability of video segments implicitly limits the number of segments stored in the
buffer if the latency constraint is defined. In VoD scenarios, that all segments are
available for the delivery, can lead to significant quality gains in times of very high
available throughput. Moreover, a buffer which can physically hold specific long
video with the highest bitrate in bytes, can accommodate much longer video with
the lowest bitrate. Streaming systems may select video segments with the lowest
bitrate to maintain the continuity of the playback in the case of critical network
conditions (such as network degradation).

Hence, we can reformulate Equation 3.12 and have the start time of receiving
segment i + 1 with

ts
i+1 = td

i+1 + dn
i+1 . (3.19)

Together with Equation 3.10, Equation 3.11, and Equation 3.13, we can calculate te
i ,

the end time of the reception for segment i. To obtain the theoretical minimum
buffer level, we need to select segments with the minimum video bitrate and min-
imize the reception delay ∆ti+1. Therefore, we assume that ri = min{R} and that
an ideal pre-request scheme of segments as described in Section 3.1 is applied so
that tr

i+1 + dr
i+1 = max

{
td
i + di, ta

i+1

}
. Then, Equation 3.13 can be reformulated as

td
i+1 = max

{
ta
i+1, td

i + di

}
. (3.20)
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Note that, under the constraint te
i−1 ≤ t < te

i , i is unique and deterministic for each
t, i.e., i is a function of t. The is due to the assumption that the reception and the
delivery of segments are performed sequentially, and thus, te

i is monotonic increas-
ing along i. Moreover, te

i is determined based on the aforementioned equations. So
Φ′(t) of Equation 3.17 and Φ(t) of Equation 3.18 both are deterministic.

Let Ω(t) denote the accumulated amount of playout data at time t. Because the
playout runs without interruptions and t seconds of video are played back in t
seconds of real time, we have

Ω(t) = t . (3.21)

Because Ω(t) has a slope of 1, the magnitude of right-shifting (i.e., the delay time) is
equal to the one of down-shifting (i.e., the maximum difference between Ω(t) and
Φ′(t)). Therefore, the delay time of the playback needs to be at least

Td =

(
max

0≤t≤T

{
Ω(t)−Φ′(t)

})
+

, (3.22)

so that the buffer contains more received data than the data to be played out at any
time points during a streaming session with a duration of T. Accordingly, this delay
ensures that no playback stalls occur in the course of the streaming. Note that Φ′(t)
is used in Equation 3.22 instead of Φ(t), because the data of a segment is playable
only after the entirety of the segment is available in the buffer.

As mentioned before, the amount of received data increases constantly, in contrast
to a step-wise increase of the amount of playable received data. At time t = Td, the
client receives Φ(Td) video data. It implies that the client buffer level is Φ(Td) at
time t = Td, if the playback delays by Td. Hence, the minimum buffer level required
prior to the playback is

Bmin = Φ(Td) , (3.23)

so that streaming services avoid playback stalls even if the network degradation
occurs. We refer to this minimum buffer level as the minimum buffering size of a
streaming session. Going back to the question at the beginning of this section,
Equation 3.23 gives an answer to the lower bound of the buffering size (Bmin) with
which streaming services offer continuous playback during the entire streaming
session even when network degradation events occur.

3.4 an approximation of minimum buffering size

The determination of the minimum buffering size presented in the previous sec-
tion requires perfect throughput and delay knowledge of the network during the
streaming session. However, this is unrealistic in practice, because the exact future
network states are unknown. In this section, we introduce an approximation to
solve the minimum buffering size. Our approximation is straightforward. It may
therefore serve as the foundation for potential requirements and improvements of
streaming systems.

Consider a live streaming scenario. The service experiences an event deg of net-
work degradation with a duration of Ddeg. Let Bdeg

min denote the minimum buf-
fer level required prior to the degradation event, such that the playback can run
without stalls within Ddeg. This minimum buffer level Bdeg

min can be calculated as:
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Bdeg
min =K ·

(
∆t +

r
Cdeg Tc

)
− (K− 1)+ · Tc+(

max
{

Ddeg
res , ∆t

}
+ y− Tc|K>0

)
+

, (3.24)

where K is the number of completely received segments during the time period
Ddeg and is defined as

K =

⌊
Ddeg

∆t + r
Cdeg Tc

⌋
, (3.25)

r is the selected video bitrate, ∆t is the reception delay of two consecutive segments,
Tc is the segment duration, Cdeg is the average throughput within Ddeg,

Ddeg
res = Ddeg − K ·

(
∆t +

r
Cdeg Tc

)
(3.26)

denotes the remaining time of Ddeg after the entire reception of all K segments
within Ddeg,

y =
r · Tc − Cdeg ·

(
Ddeg

res − ∆t
)
+

Cdeg
a

(3.27)

is the time required to receive the portion of a segment (or the entire segment) after
the network degradation, Cdeg

a is the average throughput succeeding the network
degradation within the time period y, and

Tc|K>0 =

Tc K > 0

0 else
. (3.28)

Note that the equation still holds if we define 0
0 = 0 in the case of Cdeg = 0. To

achieve the extreme, we can select segments with the minimum bitrate (i.e., r =

min{R}) and set the reception delay to zero (i.e., ∆t = 0).
It should be noted that Equation 3.24 is derived based on the following assump-

tions: i.) The reception of a segment is completed at the time when a network
degradation starts; ii.) The reception delay of two consecutive segments is constant
and equal to ∆t; iii.) The average throughput for receiving each segment during
the network degradation is constant and equal to Cdeg; iv.) Cdeg

a is constant and
fulfills ∆t + r·Tc

Cdeg
a
≤ Tc such that no playback stalls occur succeeding the network

degradation. As a result, our equation provides an approximation of streaming
requirements with respect to the buffer level, video bitrates, the segment duration,
the duration of the network degradation, the average throughput, and the reception
delay. The derivation of the equation is in Appendix A.1.

Equation 3.24 gives an approximation of the minimum buffer level required prior
to the network degradation, with which streaming services have a chance to of-
fer constant playback during that degradation. Streaming services may experience
one or multiple events of network degradation during the entire streaming session.
In the case of multiple events, the interval between two sequential events may be
insufficiently long and the network throughput within the interval may be insuffi-
ciently high, so that the client buffer after one degradation can not be refilled to a
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buffer level equal to or above the previous level prior to the degradation before the
next degradation occurs. Consequently, the buffer levels prior to those degradation
events progressively decrease. We refer to such an interval between the degradation
events as insufficient degradation interval. To approximate the minimum buffer level
in this scenario, we take into consideration the following two cases: i.) the max-
imum of minimum buffer levels required to compensate the buffer consumption
during each single degradation event and ii.) the minimum buffer level required
for the progressive buffer reduction within a time period having multiple degrad-
ation events with insufficient intervals. We choose the maximum of the required
buffer levels in both cases as the minimum buffer level prior to the playback Bmin
(i.e., the minimum buffering size of a streaming session) required for a continuous
playback in the course of the entire session.

Formally, we denote the approximate value for the minimum buffering size by
B̃min and express it as

B̃min = max
{

Bsd
max, Bmd

min

}
, (3.29)

where Bsd
max and Bmd

min represent the required buffer level for maintaining constant
playback during each single degradation event and during the time period having
multiple degradation events with insufficient intervals, respectively. By separately
calculating all minimum buffer levels required for all degradation events during the
entire session using Equation 3.24, we have

Bsd
max = max

deg∈D

{
Bdeg

min

}
, (3.30)

where D denotes the set of all degradation events and Bdeg
min is the minimum buffer

level required prior to a degradation event deg. To calculate Bmd
min, we consider

a streaming scenario having sequential degradation events with Nidi insufficient
intervals. Let Didi

n be the duration of the n-th insufficient interval with 1 ≤ n ≤ Nidi

and Cidi
n the average throughput over the n-th interval. The minimum buffer level

required prior to those sequential degradation events can be determined by

Bmd
min = ∑

deg∈Didi

Bdeg
min−

Nidi

∑
n=1

(
Cidi

n · Didi
n

r
− Didi

n

)
, (3.31)

where Didi indicates the set of sequential degradation events with Nidi insufficient
intervals. Note that the number of events in Didi, denoted by

∣∣Didi
∣∣, is equal to

Nidi + 1. The second sum term of Equation 3.31 represents the amount of the refilled
buffer during the insufficient degradation intervals.

In practice, it is inconvenient to retrieve the characteristics of all intervals between
network degradation events, in order to determine Cidi

n and Didi
n of Equation 3.31.

We consider the worst case of Didi
n in our approximation. In detail, we assume

that the insufficient degradation interval is the shortest interval between two de-
gradation events within the entire streaming session, and that the sequential de-
gradation events with insufficient intervals are all the events which are connected
with the shortest intervals. Furthermore, we assume Cidi

n to be the average network



3.5 validity of approximations 41

throughput over the entire streaming session. Accordingly, Equation 3.31 can be
reformulated as

Bmd
min = ∑

deg∈Dsdi

Bdeg
min −

(∣∣∣Dsdi
∣∣∣− 1

)
·
(

C · Ddi
min

r
− Ddi

min

)

=
∣∣∣Dsdi

∣∣∣ · Bsdi
min −

(∣∣∣Dsdi
∣∣∣− 1

)
·
(

C · Ddi
min

r
− Ddi

min

) , (3.32)

whereDsdi is the set of the degradation events which are connected with the shortest
interval between two events in the entire streaming session,

∣∣Dsdi
∣∣ indicates the

number of the events in Dsdi, Ddi
min represents the duration of the shortest interval,

C is the average throughput over the entire session, and Bsdi
min denotes the average

of the minimum buffer levels required for each network degradation event in Dsdi.
Finally, substituting Bsd

max from Equation 3.30 and Bmd
min from Equation 3.32 into

Equation 3.29, we can approximate the minimum buffering size for the streaming
session with

B̃min =max
{

max
deg∈D

{
Bdeg

min

}
,

∣∣∣Dsdi
∣∣∣ · Bsdi

min −
(∣∣∣Dsdi

∣∣∣− 1
)
·
(

C · Ddi
min

r
− Ddi

min

)} . (3.33)

It should be noted that our approximation assumes no degradation occurred during
the buffering phase.

Our approximation (Equation 3.33) implies that given the average throughput
of the network, the worst case of one single network degradation, as well as the
average case of multiple degradation events with the minimum degradation inter-
val and the number of those degradation events, we can estimate the minimum
buffering size required for a streaming scenario. Also, this can provide ISPs with
guidelines to ensure their network QoS for low-latency adaptive streaming with
respect to the worst case of one network degradation event and the average case of
degradation events with the shortest interval.

3.5 validity of approximations

In the following, we validate our approximation of the minimum buffering size un-
der a trace-driven simulation of a mobile network in the context of video streaming.

3.5.1 Methodology

We implement a simulation testbed based on the model of adaptive streaming (for-
mulated in Section 3.2) using Matlab1. Given throughput and delay traces of the
network, the testbed can simulate the receiving and playback process of the video as
well as the buffer dynamics at the client for a specific bitrate algorithm and video
profiles. To validate the approximation of the minimum buffering size, we first

1 Math. Graphics. Programming. - A tool for analyzing data, developing algorithms, or creating
models. http://www.mathworks.com/products/matlab/

http://www.mathworks.com/products/matlab/
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solve the theoretical minimum for a streaming session using the method presented
in Section 3.3. Then, we calculate the minimum buffering size of a streaming ses-
sion based on the approximation introduced in Section 3.4. Last, we compare the
two values using the error ratio. The error ratio is computed as

ER =
B̃min − B∗min

B∗min
× 100% , (3.34)

where B̃min and B∗min are the approximate and theoretical minimum of the buffering
size for a streaming session without playback stalls, respectively.

Video profiles. We use the Big Buck Bunny2 test sequence with a segment duration
of 2 s [68]. The video is encoded with the following nominal bitrates using constant
bitrate encoding: R = {500 kbps, 700 kbps, 1200 kbps, 3000 kbps, 5000 kbps}. This is
consistent with the encoding setting for YouTube video and the bitrate range for
240p, 360p, 480p, 720p, and 1080p, respectively3. We also use different segment
durations of 1 s, 4 s, 6 s, 8 s, and 10 s, to evaluate the validity of the approximation.

Network profiles. Our network profiles for the validation are distinguished into
two categories: one single event and multiple events of network degradation. The
former one is used to validate the approximate value of the minimum buffer level
required prior to one single network degradation (i.e., Bdeg

min of Equation 3.24). The
latter one is used to validate the approximation of the minimum buffering size
required for a streaming session (i.e., Equation 3.33).

• Single network degradation: Our approximation of Bdeg
min assumes that the av-

erage throughputs for receiving a video segment during the degradation and
succeeding the degradation (i.e., Cdeg and Cdeg

a in Equation 3.24) are constant.
So, we first conduct an experiment with constant throughput (Cdeg ∈ (0, 500)
and Cdeg

a ∈ [500, 5000]) and validate the approximates with increasing dura-
tion of a network degradation event from 0 s to 180 s by 1 s. Then, we conduct
another experiment with non-constant throughput, in which the throughputs
of each second during the degradation and succeeding the degradation are
uniformly randomly chosen from the intervals (0, 500) and [500, 5000], re-
spectively. Similarly, we validate the approximation with increasing duration
of network degradation as the first experiment.

• Multiple network degradation: Riiser et al. [129] provide a set of video stream-
ing throughput samples measured every one second in a mobile network. The
dataset covers different vehicular mobility scenarios (metro, tram, train, bus,
car, and ferry) and various measured durations (up to 40 minutes). Since the
throughput samples were collected in different types of public transportation,
each throughput trace reports significant fluctuations in network conditions
when streaming video over mobile network, and then contains multiple net-
work degradation events during a streaming session. We randomly pick 64
throughput traces from the 84 traces, and ensure that the selected traces cover
all mobility scenarios and each scenario contains at least five traces4.

2 https://peach.blender.org/

3 Live encoder settings, bitrates, and resolutions: https://support.google.com/youtube/answer/

2853702?hl=en

4 One of six scenarios in the dataset consists of only five traces.

https://peach.blender.org/
https://support.google.com/youtube/answer/2853702?hl=en
https://support.google.com/youtube/answer/2853702?hl=en


3.5 validity of approximations 43

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Duration of network degradation (second)

M
in

im
um

 b
uf

fe
r 

le
ve

l (
se

co
nd

)

 

 
Theoretical
Approximate

(a) Fixed constant throughput

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

120

140

160

180

Duration of network degradation (second)

M
in

im
um

 b
uf

fe
r 

le
ve

l (
se

co
nd

)

 

 
Theoretical
Approximate

(b) Random constant throughput

Figure 3.4: The theoretical and approximate minimum buffer levels required prior to one
single network degradation event with the constant network throughput, as the
degradation duration increases. The segment duration is 2 s. a.) The through-
puts of each second during the degradation and succeeding the degradation are
fixed to 250 kbps and 500 kbps, respectively. b.) For each degradation duration,
the throughputs of each second during the degradation and succeeding the de-
gradation are fixed to a uniform random value from the intervals (0, 500) and
[500, 5000], respectively.

3.5.2 Experimental Results

One single network degradation. We first validate the approximation of the min-
imum buffer level required prior to one single network degradation event (i.e., the
approximate values for Bdeg

min). In the first experiment, the throughputs during the
degradation and succeeding the degradation are constant and the duration of the
degradation increases from 0 s to 180 s by 1 s. Figure 3.4 shows the theoretical and
approximate minimum buffer levels as a function of the degradation duration, in
which the segment duration is 2 s. In the case of Cdeg = 250 kbps and Cdeg

a = 500 kbps
(Figure 3.4a), the minimum buffer level monotonically increases with increasing
duration of the degradation event, and the curve of the theoretical values is in line
with that of the approximate values. Figure 3.4b presents the results of scenarios,
in which we choose Cdeg ∈ (0, 500) and Cdeg

a ∈ [500, 5000] in kbps uniformly at
random for each degradation duration, respectively. Also, the approximate values
coincide with the theoretical ones. Namely, the error ratios are zero in both cases.
We omit the results for other segment durations, because the error ratios are zero.

Figure 3.5 shows the error ratios of the approximation when the throughput is
not constant. In this experiment, since the throughputs of each second during
the degradation are uniformly randomly chosen, we set Cdeg to the average over
all throughputs per second during the degradation. Similar to the previous ex-
periment, we compute the theoretical and approximate minimum buffer levels for
different degradation durations from 0 s to 180 s with an increase of 1 s. We repeat
the test of each segment duration 100 times and plot the distributions and averages.
Figure 3.5a shows the results for the case of 2 s segment duration. The results are



44 towards reduced latency in adaptive streaming

(0,16) (16,31) (31,46) (46,61) (61,76) (76,104)
−6

−4

−2

0

2

4

6

8

Theoretical minimum buffer level

E
rr

or
 r

at
io

 (
%

)

 

 
median
mean
25%−75%
5%−95%

(a) Segment duration of 2 s

1s 2s 4s 6s 8s 10s
−3

−2

−1

0

1

2

3

Segment duration

E
rr

or
 r

at
io

 (
%

)

(b) Various segment durations

Figure 3.5: Error ratio of the approximate and theoretical minimum buffering size in the
case of one single network degradation event with the non-constant network
throughput, indicated with different percentiles and the mean. a.) Error ratio
for scenarios with segment duration 2 s. Results are grouped into six sets with
equal sizes according to the theoretical minimum. The range for each set is
presented via open intervals under the axis. b.) Error ratio for scenarios with
segment durations of 1 s, 2 s, 4 s, 6 s, 8 s, and 10 s.

grouped into six sets with equal sizes and an ascending order of theoretical min-
imum buffer levels. The ranges of minimum buffer levels in each set are indicated
with open intervals: (0, 16), (16, 31), (31, 46), (46, 61), (61, 76), and (76, 104). Ac-
cording to the results, our approximation has an average error ratio of up to 0.09%
over each set and the approximate values converge to the theoretical minimum
along the increase of the minimum buffer level. Moreover, the error ratio of our
approximation is 0.02% on average in the case of 2 s segment duration. As shown
in Figure 3.5b, the average error ratios of each segment duration 1–10 s vary from
0.01% to 0.05% .

Multiple network degradation events. The error ratios of the approximates of
the minimum buffering size against the theoretical ones are shown via different
percentiles and the mean in Figure 3.6. We first look at the results for scenarios
with 2 s segment duration. To check the impact of theoretical minimums on the
error of the approximations, we group the results into six sets with roughly equal
sizes. The ranges of minimum buffering sizes in each set are presented with math-
ematical intervals of sets: [4, 6], [8, 10], [12, 31), (31, 50), [54, 122], and (165, 262].
The numbers of results in each set are 11, 12, 10, 10, 10, and 11, respectively. Fig-
ure 3.6a shows that the approximation of the minimum buffering size has average
error ratios from −8% to 14% over each set of the theoretical minimums. In the case
of the large buffering sizes (≥ 54 s), the error ratios converge and are significantly
lower, with an average of 2%. Moreover, the means of error ratios are much higher
than the medians in the case of the minimum buffering sizes from 12 s to 50 s. This
implies that our approximation highly overestimates the minimum buffering size
in few cases. For instance, 5% of error ratios are more than 106% in the range of
the minimum buffering sizes between 12 s and 50 s. The reason is that the approx-
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Figure 3.6: Error ratio of the approximate and theoretical minimum buffering size in the
case of multiple network degradation events, indicated with different percentiles
and the mean. a.) Error ratio for scenarios with segment duration 2 s. Results
are grouped into six sets with roughly equal sizes according to the theoretical
minimum. The range for each set is indicated via intervals under the axis. b.)
Error ratio for scenarios with segment durations of 1 s, 2 s, 4 s, 6 s, 8 s, and 10 s.

imation is biased to the worse cases of network degradation events. Nevertheless,
the error ratio of the approximation for scenarios of 2 s segment duration is 3% on
average as shown in Figure 3.6b.

Figure 3.6b shows the error ratios of the approximation under scenarios of various
segment durations: 1 s, 2 s, 4 s, 6 s, 8 s, and 10 s. The average error ratios lie between
−1% and 17%. In general, the error ratios are up to 3% on average and reduce
along the increase of the segment duration. The segment duration of 1 s is the
extreme case, in which the approximation has the largest average error ratio. The
reason is as follows. The smaller the segment duration is, the more frequently
the degradation events occur. Also, the consecutive degradation events with the
intervals which allow clients to recover the buffer occupancy to the minimum level
prior to the following degradation events occur more frequently, and those intervals
are smaller. This results that the second term of our approximation (i.e., Bmd

min from
Equation 3.32) yields a larger value. Therefore, the approximate value is more
higher than the theoretical one.

In summary, the approximation of the minimum buffering size is close to the
theoretical minimum on average, with a near-zero average error ratio in the case of
one single network degradation and an average error ratio of up to 17% in the case
of multiple degradation events.

3.6 summary

Our work in this chapter fills the gap of few research on the achievable lower bound
of the latency. Specifically, we first analyze the components affecting the streaming
latency and identify the buffering size as the main contributor to the latency. This
implies that to achieve low-latency streaming, we need to minimize the buffering
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size. However, streaming services need to ensure sufficient buffering, in order to of-
fer constant video playback. To study the dynamics of low-latency adaptive stream-
ing, we introduce an analytical model of adaptive streaming for buffer size. With
the model, we then derive the minimum buffering size based on the characterist-
ics of the streaming session. The theoretical minimum buffering size can support
adaptive video streaming without playback stalls. In addition, we present an ap-
proximation of the minimum buffering size which can be computed without the
exact future network states.

The work of this chapter provides us with the foundation to evaluate existing
adaptation solutions and to design more efficient streaming systems in the context
of low latency. It motivates the work of the following chapters. In Chapter 4, we
develop a bitrate adaptation algorithm which relies on the idea of the analytical
model for buffer size and stabilizes the buffer dynamics by selecting an optimal
video bitrate. The performance evaluation is performed using the bitrate-adaptive
streaming simulation based on the model and shows that the algorithm is suit-
able to adaptive streaming with a small buffer and the minimum buffering size.
In Chapter 5, we further improve the performance of our algorithm by employ-
ing a novel streaming architecture, which achieves near-zero reception delay. Our
algorithm benefits from the architecture, because the reception delay directly influ-
ences the buffer dynamics in the analytical model.



4
A D A P TAT I O N A L G O R I T H M : B I T R AT E S E L E C T I O N F O R
B U F F E R S TA B I L I Z AT I O N

From the previous chapter, we know that the buffering size is the main contributor
to the latency of a streaming session. Minimizing the latency implies minimizing
the buffering size. Moreover, the previous chapter introduces the analytical model
for buffer size and then derives the lower bound of the buffering size in view of the
network characteristics, such that we can determine a reasonable lower bound on
the latency for adaptive streaming. In this chapter, we assume an upper bound of
the latency given from the perspective of user’s requirement and present a suitably
targeted algorithm of bitrate adaptation for low-latency video streaming. We first
identify the main challenge of existing algorithms in adaptive streaming with small
buffer sizes. Then, we propose an novel adaption algorithm to tackle the open
issues and analyze its properties. Our proposed algorithm models buffer dynamics
in a way motivated by the model for buffer size. Based on this model, it effectively
stabilizes client buffer dynamics using quality-optimized bitrate selection. We call
the algorithm Buffer Dynamics Stabilizer (BDS).

4.1 challenges in low-latency adaptive video streaming

As will be detailed in Section 6.1 and Section 6.3, state-of-the-art bitrate adaptation
algorithms achieve acceptable performance with a large buffer size on the order of
tens of seconds. This leads to high latency in video delivery, which is undesirable
especially in the context of live features. The allowed latency limits the size of
the client buffer to seconds of video. Even in VoD scenarios, the buffer size is
also bounded due to the requirements on the startup-delay, the video quality, and
the resource waste, as mentioned in Section 2.2.2 and Section 2.3.2. Therefore, a
reasonable small buffer is required in both live and VoD streaming. However, a
small buffer lacks resilience to buffer fluctuation imposed by packet jitters and the
mismatch between the network throughput (bitrate) and the bitrate of the selected
video segment. Based on our own observations, the following inefficiencies are the
main causes for the buffer fluctuation:

First, the underlying TCP transport layer of streaming applications introduces
severe packet jitter and unstable throughput due to its congestion and error control
[7]. As a result, the network throughput acquired by streaming applications is very
unstable, especially in the case of highly variable throughput; e.g., on wireless and
mobile Internet paths as well as highly congested paths. In Chapter 5, we will
employ an optimized transport protocol instead of TCP to evaluate the effects and
to further improve the streaming performance.

47
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Figure 4.1: Average bitrate of each segment in variable bitrate encoding. The green line in-
dicates the nominal video bitrate (4 Mbps) of the Big Buck Bunny video sequence
[68] with a 2 s segment duration.

Second, as the transport-layer throughput is not explicitly known, the application
needs to estimate it based on segment reception history. Specifically, the throughput
upper bound during the reception of a segment is calculated as the ratio of the size
of the segment to the time it took to be received. In practice, the estimation is often
inaccurate [57, 58]. In particular, an ON-OFF streaming pattern incurred by a full
buffer leads to inaccurate throughput estimates, as described in Section 2.2.3. Worse
still, bitrate selection based on such biased estimates may trigger a downward spiral
effect, resulting in a unnecessary variable and low video quality [58]. Furthermore,
the ON-OFF streaming pattern results in quality variations and unfairness with
multiple video streaming sessions [57].

Third, as stated in Section 2.2.7, although most adaptation schemes are client-
based due to the scalability and the flexibility, the client feedback introduces a
significant delay into the throughput estimation and adaptation in the context of
low latency. Thus, it leads to suboptimal bitrate selections. In Chapter 5, we will
detail an solution to address this issue.

Last, even in case the transport-layer throughput can be accurately perceived at
the application layer, it often significantly differs from the average bitrate of the
selected video segment due to a two-fold quantization error. Namely, the client’s
throughput estimate is quantized by a nominal video bitrate that is chosen from a
discrete set of quality levels. In addition, the actual average bitrate of any segment
of the selected quality level oscillates around the nominal bitrate of the respective
level due to VBR encoding, as mentioned in Section 2.2.4. Figure 4.1 gives us a
further example with respect to the instantaneous bitrate of a segment along the
time, which significantly differs from the nominal bitrate. This leads to larger buffer
level fluctuations and increases the likelihood of buffer underflow or suboptimal
bitrate selection.

Altogether, these results show that buffer dynamics are unstable at the client side
and therefore the stabilization of client buffer dynamics is challenging. A smaller
buffer is more challenging for the buffer stabilization. As a result, the performance
of streaming applications is very unstable in scenarios with a small buffer, because
the client suffers from frequent video playback stalls (rebuffering) and/or low video
quality — an empty buffer results in playback stalls, which have the largest impact
of the QoE on user engagement; a full buffer leads to sub-optimal video quality.
In contrast to most state-of-the-art bitrate algorithms, the focus of our adaptation
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algorithm is on the stabilization of buffer dynamics with a small buffer while ad-
apting video quality, rather than on a minimization of the bitrate mismatch.

4.2 bitrate selection for buffer stabilization

The first step in our adaptation algorithm is the derivation of a model for client
buffer dynamics. We derive this model as a difference in seconds of video between
received video and played back video in the buffer and update it at each segment-
selection interval. Next, our algorithm selects the VQLs, such that the buffer level
is maintained at a desired level. Last, to reduce the rate of VQL switching, we in-
corporate a simple-but-effective scheme for stable VQL. For the sake of consistency
and brevity, we will continue to use the same terminologies and notations as in
Chapter 3 throughout the thesis.

4.2.1 Modeling buffer dynamics

Let be
i be the buffer level in seconds when the client completes the reception of

segment i. Similar to the equation of the buffer dynamics (Equation 3.15) in the
analytical model of ABS for buffer size (Section 3.2), we estimate be

i as follows when
the client receives the entire segment i− 1:

be
i = be

i−1 + Tc − (di + ∆ti) , (4.1)

where be
i−1 is the buffer level when the reception of segment i− 1 is completed and

is initialized with be
0 = 0, Tc is the segment duration, di represents the reception

duration for segment i, and ∆ti denotes the reception delay between segment i and
segment i − 1. Note that di and ∆ti are the estimates here, because their meas-
ured values are not available for the estimation of be

i . Moreover, in Equation 4.1
we assume that the client receives segments sequentially. Hence, the reception of
segment i does not overlap with the reception of segment i− 1; i.e., it holds ∆ti ≥ 0.
This equation implies that when each reception of a segment is completed, the cli-
ent buffer level increases by Tc (each segment containing a fixed duration of video)
and decreases by the corresponding reception duration for that segment (since di
seconds of video are played back in di seconds of real time), if the delay of receiving
that segment (i.e., ∆ti) is negligible. In practice, we can achieve near-zero values for
∆ti by employing server-side adaptation. Chapter 5 will detail an architecture of
server-side adaptation to minimize the reception delay. We note that Equation 4.1
models the buffer dynamics during the playback phase and the subtractive term
(di + ∆ti) of the equation is omitted in the case of the buffering phase.

Note that the buffer level be
i in Equation 4.1 may be negative. A negative be

i
implies that there exist playback stalls with a duration of | be

i | during the reception
of segment i. It should also be noted that be

i−1 is a non-negative value in the equation
due to the measurement of the buffer level. This is due to the fact that when the
amount of video data in the buffer is not sufficient to decode a single video frame,
the client stops video playback until it has enough data again.

As discussed in Chapter 3, the reception delay ∆ti directly influences the buffer
dynamics at the client. In particular, it leads to additional decrease of client buf-
fer occupancy and then potentially a buffer underflow according to Equation 3.15.
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Therefore, we introduce ∆ti into Equation 4.1 for estimating the future buffer occu-
pancy, so as to improve the accuracy of the estimation and bitrate selections.

The reception duration di can be estimated as:

di =
SR

i
ai

, (4.2)

where ai is an estimate of the average throughput (in kpbs) achieved while receiving
segment i and SR

i denotes the size (in kbit) of segment i encoded at the VQL (the
nominal bitrate) R. In the case of CBR encoding, the segment size SR

i is equal to
Tc · R; while in the case of VBR encoding, the relationship of SR

i ∼ R can vary over
segments. In the sequel, our focus is on the estimation of the throughput.

4.2.2 Estimating the network throughput

An accurate throughput estimation can improve streaming performance [130]. In
this thesis, we focus on bitrate adaptation algorithms only and assume that tech-
niques for the estimation are available to us. Many techniques of throughput estim-
ation can be found in the literature (e.g., [24, 131, 132, 133]).

We estimate the throughput for video segment i ≥ 2 as the mean of A ≥ 1
previous throughput samples:

ai =


1
A ∑

i−A≤j<i
ãj i > A

1
i−1 ∑

1≤j<i
ãj else

, (4.3)

where ãj is the average measured throughput (in kpbs) experienced during the re-
ception of segment j. Since adaptation algorithms typically initialize the selected
video bitrate for the first segment with the lowest bitrate of the adaptation set (i.e.,
R1 = min{R}) in order to achieve a low startup delay, the estimated throughput for
the first segment a1 is omitted here. The coefficient A represents the window size
of a moving average filter. Which size is selected depends on the type of movement
of interest, such as short, intermediate, or long-term.

Although averaging is a simple technique for throughput estimation, our eval-
uation shows that it gives accurate estimates under the assumption that through-
put samples obtained from the transport layer accurately reflect the available net-
work throughput. Namely, the transport protocol can accurately perceive available
throughput only if it can increase its transmission rate to the point where it satur-
ates the link. This assumption holds when the bitrate control at the application layer
selects segments whose bitrates are slightly larger than, or equal to, the available
throughput. However, the bitrate control generally selects segments conservatively
with a lower bitrate to avoid playback stalls; the buffer level then starts to increase.
When the buffer level reaches its maximum, the client application will pause read-
ing the data, thus triggering the ON-OFF streaming pattern and then affecting the
transport protocol’s (TCP) congestion and flow control. As a consequence, the TCP
sender no longer increases the transmission rate, which prevents accurate estima-
tion of the available throughput for a number of future segments. In other words,
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an accurate throughput estimation at the transport layer requires support from the
application layer in that the bitrate control performs an accurate selection of the
segment bitrate. We refer to such throughput estimation as systemic, since the
requirement for accurate estimation is a correct operation of several system com-
ponents, in this case the transport-layer congestion and flow control as well as the
application-layer bitrate control.

Furthermore, averaging is a simple technique for throughput estimation, there-
fore it is also a “stress test” of the effectiveness of the buffer control in our algorithm.
Note that smoothed throughput estimates cause delayed responses to large through-
put drops, which in turn must be compensated with a large buffer size [25]. Hence,
it is challenging to use such a simple estimation technique in the bitrate control of
low-latency adaptive streaming. We believe that our algorithm benefits from the ac-
curacy of the throughput estimation, because the more accurately we can estimate
the throughput, the more accurate the estimation of buffer dynamics can be.

4.2.3 Stabilizing buffer dynamics (basic bitrate selection)

In order to stabilize the buffer dynamics, our segment selection minimizes the devi-
ation of the current buffer level from the desired level. For each segment, we select
the nominal bitrate (the VQL) as follows:

Ri = arg min
R∈R

∣∣be
i − βre f

∣∣ , (4.4)

where R is the set of nominal bitrates of the video, βre f ∈ (0, βmax] is the desired
buffer level, and βmax is the maximum buffer level corresponding to the client buffer
size. By plugging Equation 4.1 and Equation 4.2 into Equation 4.4, we obtain

Ri = arg min
R∈R

∣∣∣∣∣be
i−1 + Tc −

(
SR

i
ai

+ ∆ti

)
− βre f

∣∣∣∣∣ . (4.5)

The selection of the desired buffer level affects the streaming performance of the
algorithm. Because we focus on a small buffer size (i.e., βmax is small) and playback
stalls have the largest impact on user engagement, βre f is normally set to a value
above 0.5 · βmax, so that the buffer level has more room to stay away from zero level.
However, as mentioned in Section 4.1, a full buffer (i.e., the buffer level is at its
maximum level in seconds) disturbs the transport-layer throughput and then may
lead to sub-optimal video quality and fairness issues with other competing flows.
It implies that βre f cannot be too close to βmax. Section 4.4.3 will give a further dis-
cussion on the impact of the desired buffer level on streaming performance. Based
on our observations, we suggest that βre f = 0.8 · βmax.

As the goal of our bitrate adaptation is to reduce the buffer fluctuation while the
bitrate selection is being performed, we refer to our algorithm as Buffer Dynamic
Stabilizer (BDS).

Note that our bitrate selection of BDS (Equation 4.5) minimizes the quantization
error (as mentioned in Section 4.1), which is due to two factors: i.) deviation of the
nominal bitrate (R) from the average bitrate of the segment ( SR

Tc
) due to VBR encod-

ing and ii.) deviation of the desired bitrate (r) from the nominal bitrate. The reason
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is that we directly apply the sizes of candidate segments (i.e., SR
i ) into the minimiza-

tion of the buffer deviation. As a result, Ri from Equation 4.5 is the nominal bitrate
that minimizes the deviation of the average bitrate from the desired bitrate; namely,

∀R ∈ R and R 6= Ri :

∣∣∣∣∣ri −
SRi

i
Tc

∣∣∣∣∣ <
∣∣∣∣∣ri −

SR
i

Tc

∣∣∣∣∣ , (4.6)

where ri is the desired bitrate for segment i that minimizes the buffer deviation. A
proof of Inequality 4.6 is in Appendix A.2.

4.2.4 Stabilizing video quality levels (improved bitrate selection)

Based on Equation 4.4, our algorithm chooses the VQLs such that the buffer levels
converge to a specific value. However, this choice does not take the stability of
VQLs into account and thus may lead to frequent VQL switching, especially in the
case of highly variable network throughput and/or video complexity. Therefore, we
present a modified version of BDS to reduce the switching rate. The modification
introduces a specific region of the buffer level for non-switching VQLs as shown in
Algorithm 4.1. In particular, let βl and βu denote the lower threshold and the upper
threshold of a buffer region, respectively. We select the nominal bitrate Ri = Ri−1, if
the estimated buffer level be

i ∈ [βl , βu]. We will see in Section 4.4.2 that by stabilizing
VQLs, BDS benefits from the modification in terms of the QoE. We will also explore
the impact of βl and βu on the performance in Section 4.4.3. For brevity, we call
the basic version of BDS, directly from Equation 4.5, BDS-0, and call the modified
version, as described in Algorithm 4.1, BDS-1. To allow a fast startup playback, BDS-
0 and BDS-1 both select the video segments with the lowest bitrate of the adaptation
set during the buffering phase; i.e., ∀1 ≤ i ≤ m : Ri = min{R}, where m is
the number of received segments for the buffering before the first video playback.
The input of the algorithm be

i−1 is a direct measurement of the client buffer level.
The inputs ai and ∆ti are the estimates based on their history measurements; they
are more accurate if the application layer can retrieve those information from the
transport layer. Other inputs are available as predefined values and dynamic values
directly queried from streaming applications.

Since BDS aims to stabilize the buffer dynamics away from the zero and max-
imum buffer level, it can significantly reduce the OFF period of the ON-OFF stream-
ing pattern as mentioned in Section 2.2.3. As a result, BDS mitigates the disturbance
of the transport-layer throughput by the application-layer adaptation decisions, so
as to solve the issues of quality variations and unfairness imposed by the disturb-
ance between the two layers.

4.3 optimal bitrate selection

The ultimate goal of adaptation algorithms is to deliver the highest possible user’s
QoE by selecting the quality level for future video segments. Thus, it allows stream-
ing services to achieve higher long-term user engagement [55]. Depending on the
definition of the QoE, the optimum of QoE can be characterized by e.g., maximizing
the video bitrate while minimizing the likelihood of playback stalls and avoiding
too many bitrate switches.



4.3 optimal bitrate selection 53

Algorithm 4.1 BDS Algorithm (an improved version, BDS-1)

Input: ai, be
i−1, ∆ti, Ri−1, βl , βu, βre f , m, Tc, R, ∀R ∈ R : SR

i
Output: Ri

1: if 1 ≤ i ≤ m then . buffering phase
2: Ri = min{R}
3: be

i = be
i−1 + Tc

4: else if i > m then . playback phase

5: be
i = be

i−1 + Tc −
(

SRi−1
i
ai

+ ∆ti

)
6: if be

i ∈ [βl , βu] then
7: Ri = Ri−1

8: else . basic bitrate selection, BDS-0

9: Ri = arg min
R∈R

∣∣∣∣∣be
i−1 + Tc −

(
SR

i
ai

+ ∆ti

)
− βre f

∣∣∣∣∣
10: end if
11: end if

4.3.1 QoE function

While the definition of the QoE may differ across users, the four key components of
the QoE are listed as follows.

• Average video quality. Consider that there are N video segments received in a
streaming session. The average per-segment quality (nominal video bitrate)
over all segments can be expressed as

1
N

N

∑
i=1

Ri . (4.7)

• Average quality variations. This characterizes the magnitude of the bitrate change
in the quality between every two consecutive segments:

1
N − 1

N−1

∑
i=1
|Ri+1 − Ri| . (4.8)

• Startup delay TS. This delay indicates the reaction time for the playback start.
In practice, its value is a direct measure of the time interval between the ini-
tiation of a request and the playback start at the client. The startup delay of
an algorithm depends on the buffering size and the bitrate selection strategy
during the buffering phase applied by the algorithm. Thus, it also reflects the
streaming latency. To allow a fair comparison, we apply the same buffering
size to all algorithms evaluated in this thesis, unless noted otherwise.

• Total rebuffering duration TST. A metric represents the total time of all stalling
events during the playback of the entire streaming session due to a buffer
underflow. In practice, the value is the sum of all measured durations of
rebuffering events that occurred in the course of the playback.
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According to user preferences, the QoE function QoE : RN → R can be defined as

QoE =
N

∑
i=1

Ri − λ
N−1

∑
i=1
|Ri+1 − Ri| − µ · TS − ν · TST , (4.9)

where λ, µ, and ν are the non-negative weighting factors for bitrate variations, star-
tup delay, and rebuffering duration, respectively. A larger λ indicates that the user
prefers less quality variations. In the case of low-latency streaming, we can employ
a large µ to the QoE function. A larger ν enables user preferences for a smoother
video playback with less stalls.

Defining suitable QoE functions for video quality is an open issue [134]. The QoE
can be mapped by various function models such as based on linear, logarithmic or
exponential functions. Even QoE functions can model user-perceived video quality
based on subjective test results (e.g., [135]). Here, we adopt a simple linear model,
which is the weighted sum of different factors. Nevertheless, our QoE function is
quite general such that it can model various user preferences by applying different
weighting factors.

4.3.2 QoE Optimization Problem

The object of bitrate adaptation is to maximize the QoE of the users. Based on the
adaptive streaming model introduced in Section 3.2, the QoE optimization problem
for bitrate adaptation can be formulated as:

maximize
R1, ..., RN

QoE

subject to Equations 3.10–3.16,

bs
i ∈ [0, βmax],

Bd ∈ (0, βmax],

Ri ∈ R, ∀i = 1, ..., N.

. (4.10)

βmax and Bd are assumed to be a multiple of segment duration Tc, as in our adaptive
streaming model for buffer size. In Problem 4.10, Bd is a known variable of the QoE
optimization. This formulates the optimization problem of a streaming system in
which the buffering size is fixed and given. However, it should be noted that Bd

can be considered as a decision variable. Namely, Bd can also be an output of
the optimization of Problem 4.10, apart from selected bitrates R1, ..., RN . In this
case, solving the optimization problem yields the optimal bitrate selection and the
optimal buffering size, with which the maximum QoE can be achieved. Note that if
the objective function QoE imposes sufficiently large penalties on the startup delay
and the playback stalls, this optimization problem can solve the minimum buffering
size as presented in Section 3.3.

Our formulation of the QoE optimization problem is sufficiently generalized to
be applicable to any QoE function. Here, we apply the QoE function defined as
Equation 4.9 to Problem 4.10. Because the selected bitrate Ri for each segment is
an available variable in our adaptive streaming model, we can freely determine
the values for the first two components of the QoE (i.e., video quality and quality
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variations) based on Equation 4.9. According to our streaming model, we then
define the other two components as follows.

• Startup delay TS. By definition, it can be determined by

TS = te
m − tr

1 , (4.11)

where the buffering size contains m ≥ 1 video segments (i.e., Bd = m · Tc), te
m

represents the end time of the reception for segment m, and tr
1 is the request

time of the first segment at the client. Note that TS can also be a decision
variable of the optimization problem, like the buffering size Bd. On the other
hand, TS can be a fixed and given variable for the optimization. For instance, it
can be integrated into the optimization problem as a constraint, in cases where
the user prefers to achieve a specific TS, especially a specific small value.

• Total rebuffering duration TST. After the buffering phase, for each reception of
a segment, rebuffering occurs in two cases: i.) it occurs during the reception
if the reception duration is higher than the playout buffer level; ii.) it occurs
between the reception of two consecutive segments if the reception delay is
higher than the buffer level succeeding the entire reception of one segment.
Cf. Equation 3.15, the total rebuffering duration is thus calculated as

TST =
N

∑
i=m+1

(
(di − bs

i )+ +
(
∆ti+1 − Tc − (bs

i − di)+
)
+

)
, (4.12)

where di denotes the reception duration of segment i (i.e., the time required
to receive segment i in its entirety).

Given network throughput and delay traces as input, the optimization of Prob-
lem 4.10 outputs a sequence of selected bitrates R1, ..., RN , which represents an
optimal solution of bitrate selection. Let OPT denote the optimal solution of bitrate
selection. Given an OPT, Equation 4.9 yields the maximum QoE, denoted by
QoE(OPT). This implies that the maximum QoE can be achieved with perfect
knowledge of future network throughput and delay. In Section 4.4.5, we demon-
strate an example of optimal bitrate selections for typical network scenarios.

4.4 performance evaluation

We evaluate the algorithm performance using modeling and simulation of adapt-
ive video streaming. Our evaluation methodology consists of a prototype imple-
mentation, a benchmark comparison with state-of-the-art algorithms, as well as a
simulation of a streaming model and the dynamic network conditions.

4.4.1 Methodology

Our evaluation methodology combines a bitrate-adaptive streaming simulation with
a trace-driven simulation of a mobile network. Our choice to use the simulation is
motivated by the need to find out how far away existing algorithms are from the
optimal solutions.
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Performance metric. Our evaluation employs a normalized QoE metric based on
the streaming model introduced in Section 3.2. As described in the previous section,
given an optimal solution of bitrate selection OPT, the QoE function QoE returns
the maximum QoE QoE(OPT). The optimum OPT can be computed by solving
the optimization problem with the corresponding QoE function as well as perfect
knowledge of future network throughput and delay. Because the assumption of
perfect knowledge about the future is not true in reality, for any bitrate adaptation
algorithm, QoE(OPT) is an upper bound of the achievable QoE.

Let QoE(A) be the QoE achieved by a bitrate adaptation algorithm A. Normalized
QoE of A is defined as the evaluation metric for algorithm A:

n-QoE(A) =
QoE(A)

QoE(OPT)
. (4.13)

We specify a default QoE function (formulated by Equation 4.9) by setting λ = 1
and µ = ν = 6000. That is, 1 s rebuffering or startup delay has the same penalty
as the bitrate reduction of a segment by 6000 kbps, corresponding to the maximum
bitrate in the adaptation set. Based on the specific QoE function, we compute the
QoE achieved by any algorithm and the maximum QoE by solving Problem 4.10.

Streaming simulation. We continue to apply the simulation testbed used in Sec-
tion 3.5; i.e., a simulation is implemented based on our model of adaptive stream-
ing using Matlab. We also integrate the prototype implementation of the evaluated
algorithms into the simulation. Given throughput and delay traces, the testbed
simulates the streaming process, the bitrate selection of the algorithm, and the buf-
fer dynamics at the client. Furthermore, we solve the QoE optimization problem
(formulated by Problem 4.10) under the Matlab simulation, using an optimization
solver (CPLEX1). This gives us the maximum QoE required in the normalized QoE
metric. A validation of this simulation testbed will be discussed in Section 4.4.5.

Algorithms. We first implemented a basic version of BDS (BDS-0) formulated
by Equation 4.4. For simplicity, the desired buffer level βre f of BDS-0 is chosen
to be 0.5 · βmax. We also implemented an improved version of BDS (BDS-1) as
shown in Algorithm 4.1, in order to examine the effect of the modification with
direct comparison to BDS-0. We set the parameters of BDS-1 βre f = 0.5 · βmax,
βl = 0.1 · βmax, and βu = 0.9 · βmax. Using a large buffer region for stabilizing VQLs
implies that BDS can achieve a low rate of bitrate switching. The impact of the
different parameters on the QoE will be discussed in Section 4.4.3.

Our benchmark adaptation algorithms are RB [78], BB [30], and FESTIVE [29].

• RB is a rate-based algorithm and follows the algorithm applied in DASH
VLC plugin [78], which simply chooses the highest bitrate smaller than the
throughput estimate without considering the effect of previous bitrates. Most
commercial players appear to employ this stateless adaptation algorithm [29].

• We use the function introduced by Huang et al. [30] as a representative of
buffer-based algorithms (BB). The function with the reservoir re = 0.1 · βmax

and the cushion cu = 0.8 · βmax maintains a mapping between buffer occu-
pancy and video bitrates.

1 http://www.ibm.com/software/products/en/ibmilogcpleoptistud

http://www.ibm.com/software/products/en/ibmilogcpleoptistud
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Figure 4.2: QoE performance of the five adaptation algorithms. a.) CDF of normalized QoE
for scenarios with the client buffer size of 2 s. b.) Average normalized QoE over
all throughput trace cases for scenarios with client buffer sizes of 2 s, 4 s, 6 s, 8 s,
and 10 s.

• FESTIVE balances both efficiency and stability with respect to video quality.
Since we could not find a free implementation of FESTIVE, we developed our
own implementation for FESTIVE and applied all parameters following the
description in the original paper [29].

Therefore, our performance comparison contains five sets of performance results:
RB, BB, BDS-0, BDS-1, and FESTIVE. Due to our focus on low-latency streaming, we
specifically use small client buffer sizes of 2 s, 4 s, 6 s, 8 s, and 10 s. Correspondingly,
we set the buffering sizes same as the client buffer sizes (i.e., Bd = m · Tc with
m = 1, 2, 3, , 4, and 5).

Video profiles. We use the Red Bull Play Streets test sequence (genre: sports)
with a segment duration of 2 s [68]. The adaptation set of video segments includes
9 bitrates from 100 kbps to 6000 kbps using VBR encoding [68]: R = {100 kbps,
200 kbps, 300 kbps, 500 kbps, 900 kbps, 1500 kbps, 2500 kbps, 4000 kbps, 6000 kbps}.

Network profiles. We employ the same network profiles as described in Sec-
tion 3.5.1. Namely, we simulate a mobile network based on the throughput dataset
[129], which consists of video streaming throughput measurements of a moving
device in a mobile network. Since the dataset does not include network delay meas-
urements, we assume a one-way delay of 50 ms on the network (i.e., dn

i = dr
i = 50 ms

of the adaptive streaming model introduced in Section 3.2), according to the median
RTT of 100 ms observed empirically in prior work [136, 137].

4.4.2 Benchmark Results

According to the above experimental setup, we perform a benchmark comparison
of five adaptation algorithms (RB, BB, BDS-0, BDS-1, and FESTIVE) over all through-
put trace cases. We plot both the empirical Cumulative Distribution Function (CDF)
and the averages of the normalized QoE as shown in Figure 4.2.
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Figure 4.2a shows the CDF of the normalized QoE in scenarios with the client
buffer size of 2 s. Our proposed algorithms (BDS-0 and BDS-1) outperform other
algorithms with an increase of the median normalized QoE by at least 11%. The
improvement of the median reaches even the 32% of the normalized QoE, com-
pared to FESTIVE. BB offers the worst performance on the normalized QoE and its
achievable QoE is up to 39% of the optimum. Since the results of BB is significant
worse than other algorithms in small buffer sizes, we omit to show the results with
the negative values of normalized QoE in the figures, in order to better distinguish
between the different curves using zoom-in. Moreover, we omit the results of the
CDF for other client buffer sizes and report the averages of the normalized QoE
instead, in order to provide an illustrative summary of the results.

Figure 4.2b shows the average normalized QoE in scenarios with different client
buffer sizes (2 s, 4 s, 6 s, 8 s, and 10 s). First, BDS-1 achieves the best performance in
all scenarios with different buffer sizes. Specifically, BDS-1 has 6–15% and 24–40%
higher average normalized QoE, compared to RB and FESTIVE, respectively. Sim-
ilar to the case of 2 s buffer size, BB gets the worst performance over different buffer
sizes, except that it obtains 4% higher normalized QoE than FESTIVE on average in
the scenario with 10 s buffer size. Second, as expected BDS-1 improves the normal-
ized QoE with the scheme for stabilizing VQLs. We see that BDS-1 achieves a 2–22%
higher average normalized QoE compared to BDS-0. This reflects the effectiveness
of our simple modification with respect to quality stabilization. Third, we observe
that all algorithms benefit from large client buffer sizes. For each 2 s-increase in the
buffer size, BB has an increase of average normalized QoE by at least 16%, while
the average normalized QoE of RB, BDS, and FESTIVE improves by up to 14%. The
one exception is that BDS-0 suffers from a QoE degradation by 2% when the buffer
size increases from 8 s to 10 s. This is due to the fact that BDS-0 relatively frequently
switches VQLs in the case of a large buffer size; in our experiments we observe that
average quality variations of BDS-0 increase when the buffer size increases from 6 s.
Finally, as existing algorithms achieve only less than 71% of the optimal QoE on
average, it suggests that there is still room for the improvement.

The reasons for the superior performance of BDS against other algorithms are
summarized below.

• The bitrate selection of BDS aims to maintain stable dynamics of the client
buffer with a small size. Accordingly, BDS is able to control the buffer at near-
zero levels and to reduce the possibility of rebuffering. On the other hand, the
stabilization of buffer dynamics with a nearly full buffer supports systemic
throughput estimation, thereby increasing the accuracy of throughput estima-
tion at the application layer and lessening the interactive disturbance between
the transport-layer throughput and the application-layer adaptation decisions.

• In contrast, RB performs its bitrate selection based on the measurement of the
long-term average throughput. However, it lacks of a mechanism for buffer
stabilization. This often leads to significant variations of the buffer level due
to incorrect throughput estimates. Thus, it suffers from a worse QoE perform-
ance. This inferior performance can be compensated with a larger buffer.

• BB maps the ranges of buffer levels to video bitrates and performs the selec-
tion based on the mapping. By allocating a specific range from the limited
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buffer size for each bitrate, it enables quasi-stabilization of buffer dynamics.
However, the stabilization is very limited, as only a small portion of the whole
buffer is used for a specific bitrate, compared to BDS. Therefore, although BB
achieves the worst performance in scenarios of small buffer sizes, its perform-
ance significantly improves with the increase of the buffer size.

• FESTIVE favors small quality variations over higher video quality. As a res-
ult, it achieves a very low average video quality and its achievable QoE is
significantly worse than that of other algorithms. Although FESTIVE allows
to balance video quality and quality variations by tuning the parameters, we
find that it is complex to achieve both high average video quality and low re-
buffering, without taking rebuffering metrics into account during the design
of the algorithm.

In summary, BDS outperforms the state-of-the-art adaptation algorithms with at
least 6% higher average normalized QoE, despite a client buffer size as small as a
single segment duration (2 s).

4.4.3 Impact of parameters

Our algorithm BDS has three main free parameters (βre f , βl , and βu), which affect
the performance of the algorithm. In the following, we analyze the impact of these
parameters on the QoE performance.

Desired buffer level. There is a tradeoff in choosing a suitable value for βre f .
Setting it to too high or too low causes low video quality or playback stalls as
mentioned in Section 4.1. Figure 4.3a shows the impact of βre f in BDS-0 on the
average normalized QoE over all throughput trace cases. We focus on the evaluation
of the desired buffer level βre f in the range of 50–100% of the maximum buffer level
βmax. The ratio βre f /βmax increases in steps of 10%. Empirically, we observe the
maximum of the average normalized QoE when the ratio βre f /βmax is set to a value
between 70–90%, in particular, when βre f /βmax = 80%. We also observe that the
average normalized QoE generally increases along the increase of the desired buffer
level, specifically by up to 4% for each 10%-increase of βre f /βmax from 50% to 90%.

Threshold buffer levels. Recall that BDS-1 does not switch the VQL when the
buffer level is between the lower threshold level βl and the upper threshold level
βu, i.e., when b(t) ∈ [βl , βu]. The larger the interval [βl , βu] is, the more room
is allowed to reduce the switching rate. When the buffer level is frequently close
to its maximum it incurs a poor performance, as also evidenced by the results for
βre f /βmax = 99% in Figure 4.3a. Therefore, we fix βu/βmax = 90% and explore the
impact of βl/βmax ∈ [10%, 80%] on the QoE performance. Based on the above ob-
servations, we set βre f /βmax = 80%. Figure 4.3b shows that the average normalized
QoE generally decreases along the increase of βl/βmax in scenarios with different
client buffer sizes. We observe that the maximum is achieved if βl/βmax = 20% in
the case of client buffer sizes of 2 s and 4 s. The maximum is up to 2% larger than
the second maximum, which is achieved when βl/βmax = 10%.

As our basic bitrate selection (BDS-0) can effectively control a buffer level as small
as a segment duration, we “aggressively” suggest a fixed value for βl of as small as
a segment duration if the buffer size is large than the segment duration; e.g., in our
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Figure 4.3: Impact of BDS’s parameters on normalized QoE for scenarios with client buffer
sizes of 2 s, 4 s, 6 s, 8 s, and 10 s, on average of 64 mobile throughput traces. In
b.), the scenario marked with the asterisk on the x-axis indicates the “best” case
where βl = Tc, if βmax > Tc, otherwise βl = 0.1 · βmax.

experiments we use βl = Tc, if βmax > Tc, otherwise βl = 0.1 · βmax. The results for
this suggestion are indicated by the asterisk as the “best” case in Figure 4.3b. The
results show that it achieves the best performance in scenarios with client buffer
sizes of 6 s, 8 s, and 10 s, with an increase of the average normalized QoE by up to
2% compared to the second best. The one exception is the case of βmax = 4 s where
the achievable average normalized QoE is 3% less than the maximal.

In summary, based on the above observations, we suggest the following paramet-
ers used in BDS: βre f = 0.8 · βmax; βu = 0.9 · βmax; βl = Tc, if βmax > 2 · Tc, otherwise
βl = 0.2 · βmax.

4.4.4 Performance with Minimum Buffering Size

In the previous chapter, we introduce the minimum buffering size, with which
streaming services can ensure a constant video playback without rebuffering even in
case of the network throughput lower than the guaranteed throughput (i.e., in case
of the occurrence of the network degradation). In this subsection, we evaluate the
performance of the four adaptation algorithms — i.e., RB, BB, BDS-1, and FESTIVE
presented in Section 4.4.1 — under the constraint of the minimum buffering size.

Section 3.5 solves the theoretical minimum buffering sizes for each streaming
session with the given video and network profiles. Figure 3.6a groups the results
of the minimum from 4 s to 262 s into six sets with roughly equal sizes. Due to our
focus on low-latency streaming, we use the set of minimum buffering sizes [4, 6] s
with 2 s segment duration. We randomly pick one from the ten throughput traces
in the set, which consists of 631 throughput samples and requires a theoretical
minimum buffering size of 6 s. We evaluate the four algorithms with this trace with
the theoretical minimum buffering size. The parameters of BDS is set following the
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suggestion in Section 4.4.3. The maximum client buffer size is equal to the buffering
size for all algorithms.

We perform the evaluation over scenarios with increasing buffering sizes from 6 s
to 44 s in steps of 2 s (i.e., totally 20 scenarios), because algorithms may not achieve
the same result as the ideal algorithm does — i.e., experiences no playback stalls.
Figure 4.4 shows the performance of algorithms with respect to the total time of
playback stalls and the normalized QoE from 6 s to 26 s. We omit the results of
scenarios with buffering sizes of > 26 s due to the convergence of the results. The
performance analysis here is performed with respect to the total time of the play-
back stalls experienced by an algorithm with the minimum buffering size during
the whole streaming session, because the metric of playback stalls has the largest
impact of the QoE on user engagement and the minimum buffering size is obtained
under the constraint of a continuous playback.

Results. Figure 4.4a shows that FESTIVE experiences the least playback stalls
(of 1 s with the theoretical minimum buffering size) compared to the other three
algorithms and can provide a continuous playback with a buffering size of ≥ 8 s.
However, it achieves the lowest QoE as shown in Figure 4.4b. The reason is that
FESTIVE tends to maintain a stable video quality against higher video quality and
therefore obtains the lowest average bitrate in a highly variable throughput scenario.
BDS achieves the second best performance with respect to playback stalls and the
best QoE performance, respectively. Specifically, playback stalls drops from 2 s to
0.5 s for an increase of buffering size from 6 s to 8 s and down to 0 s for a buffering
size of ≥ 10 s; the normalized QoE reaches 0.82 in the case of 10 s buffering size
and converges to around 0.85 for a buffering size of ≥ 14 s. In particularly, the av-
erage video bitrate achieved by BDS converges to 1.66 Mbps for a buffering size of
≥ 16 s while the available network throughput is 1.78 Mbps on average. Our obser-
vations conform to the results presented in Section 4.4.2. BDS effectively stabilizes
the buffer dynamics by selecting appropriate video bitrates and keeps the bitrates
high and stable if the client buffer level lies in the specific region. Although BB
achieves the second best QoE performance of all four algorithms, it suffers from the
worst performance with respect to playback stalls. BB only benefits from a large
buffering size, because its bitrate selection is based on a mapping between buffer
levels and video bitrates. A larger buffering size allows more space to separate
different bitrates such that the algorithm can select an adequate bitrate. Our obser-
vations on BB also conform to the results presented in Section 4.4.2. RB obtains a
relative high and stable average video bitrate due to the bitrate selection based on
the measurement of the long-term average throughput. However, incorrect through-
put estimates lead to significant variations of the buffer level. Therefore, it suffers
from more playback stalls, compared to BDS. Although the normalized QoE of RB
increases along the increase of the buffering size, the improvement is not significant.

In summary, BDS is most suitable for low-latency streaming, compared to the
other state-of-the-art algorithms. It achieves the best QoE performance in all scen-
arios and no playback stalls with a buffering size of two more segment durations
than the theoretical minimum buffering size.
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Figure 4.4: Performance evaluation of bitrate adaptation algorithms with respect to the total
time of playback stalls and the normalized QoE during the streaming session un-
der the constraint of various buffering sizes. The theoretical minimum buffering
size is 6 s and the segment duration is 2 s.

4.4.5 Discussion

We note that our results are based on the simulation of a video streaming model,
and therefore may not be representative of realistic results. To validate our mod-
eling and simulation as well as to provide relatively realistic results, we conduct a
further experiment using a combination of the prototype implementation and the
emulation network. It should be noted that this is not a rigorous validation of our
simulation for video streaming process in practice. Nevertheless, in the following
we will explore simulation results compared to emulation ones. We will see that our
simulation results can at least match the improvement of the algorithms, although
the exact numerical improvements are scenario-dependent. This implies that our
simulation may serve as a testbed for the foundation of potential improvements.

Implementation and emulation setup. Our streaming prototype implementation
is Linux-based and is deployed in the VLC media player2. The client buffer size is
as small as a segment duration; i.e., βmax = 2 s. Based on given network profiles, we
control the available throughput of the end-to-end bottleneck via a network emula-
tion tool, Dummynet3 [138]. Here, we consider three typical network throughput
scenarios as shown in Figure 4.5:

(a) Long-term throughput variations: an abrupt change between 1 Mbps and
3 Mbps occurs every 30 s;

(b) Short-term throughput variations: the same change as in long-term variations,
however, occurs every 2 s;

(c) Mobile throughput dataset (HSDPA): a random one of aforementioned 64
throughput traces in Section 4.4.1.

All other setup variables are same as in Section 4.4.1.

2 http://www.videolan.org/vlc/index.html

3 http://info.iet.unipi.it/~luigi/dummynet/

http://www.videolan.org/vlc/index.html
http://info.iet.unipi.it/~luigi/dummynet/
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Figure 4.5: Network throughput scenarios
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Figure 4.6: The optimum OPT of bitrate selection under each of three scenarios: (a) long-
term throughput variations; (b) short-term throughput variations; (c) mobile
throughput traces.

Results. We begin with Figure 4.6, which shows an optimal solution of bitrate se-
lection under each of three network throughput scenarios. First, the selected bitrates
of the optimal solutions accurately track the dynamics of the network throughput
without frequent and significant bitrate switches. Second, the optimum incurs no
rebuffering events. These results confirm the objective of the simulation and the
optimization problem.

Figure 4.7 shows the performance of three algorithms (RB, BDS-0, and FESTIVE)
in terms of the normalized QoE over three different throughput scenarios in both
simulation and emulation. We omit the results for BDS-1 for brevity, since BDS-1
performs slightly better than BDS-0 in this experiment. We see that BDS-0 achieves
the best performance in all cases and RB the second best. Specifically, BDS-0 in-
creases the QoE performance at least by 61% in the simulation and RB at least by
43%, compared to FESTIVE. Similarly, the normalized QoEs of BDS-0 and RB in
the emulation are increased at least by 45% and 41%, respectively. Furthermore,
the performance of BDS-0, RB, and FESTIVE in the simulation are generally up
to 22%, 6%, and 11% higher than the performance in the emulation, respectively.
We conjecture that the better performance in the simulation is due to the fact that
our modeling and simulation represent an ideal and theoretical behavior of bitrate
adaptation. The one exception, which sounds abnormal, is that the simulation per-
formance of RB is slightly lower than the emulation one in the case of long-term
throughput variations, specifically 0.9% lower. However, the results in both cases
(the simulation and the emulation) are quite comparable and do not contradict in
terms of the performance ranking between the three algorithms.
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lation, respectively.

4.5 summary

In this chapter, from the perspective of the upper bound of streaming latency, we
propose a novel bitrate adaptation algorithm for low-latency dynamic video strea-
ming that stabilizes a small client buffer. Our algorithm models buffer dynamics in
a way motivated by the analytical model for buffer size (Section 3.2) and performs a
quality-optimized bitrate selection based on the model of buffer dynamics. In parti-
cular, we pose the buffer stabilization as an optimization problem where the quality
level of each segment is determined by i.) jointly considering a switch decision of
the quality level according to the specific buffer region and ii.) selecting the quality
level that minimizes the deviation of the buffer level from the desired buffer level.

We demonstrate the performance of our algorithm using a simulation methodo-
logy, which combines a bitrate-adaptive streaming simulation with a trace-driven
simulation of mobile network in the context of video streaming. The results of
simulation experiments and prototype trials show that our algorithm effectively sta-
bilizes the buffer at a level as small as a single segment duration (2 s) and achieves
at least 6% higher QoE, compared to the state-of-the-art algorithms. We also explore
the impact of free parameters in our algorithm on the user’s QoE and provide a sug-
gestion for further improvements. Finally, we evaluate existing algorithms under
the constraint of the minimum buffering size. It shows that low-latency streaming
benefits from the stabilization of buffer dynamics, and that our algorithm achieves
the best QoE performance in all cases and no playback stalls with a buffering size
of two more segment durations than the theoretical minimum.

By a direct comparison of existing algorithms to the optimal bitrate selection, we
observe that existing algorithms achieve only less than 71% of the optimal QoE on
average. This suggests that there is still room for the improvement, and therefore
motivates us to present a novel streaming architecture of bitrate adaptation in the
next chapter.



5
A D VA N C E D I M P R O V E M E N T S I N L O W- L AT E N C Y A D A P T I V E
V I D E O S T R E A M I N G

The previous chapter shows that state-of-the-art bitrate adaptation is not suitable
for low-latency adaptive video streaming due to a lack of explicit stabilization of
client buffer dynamics, and therefore introduces an adaptation algorithm (Buffer
Dynamics Stabilizer, BDS) that minimizes buffer deviations by quality-optimized
bitrate selection. The performance results indicate that there is still room for impro-
vements. To this end, we present further improvements for low-latency adaptive
streaming in practice. The main contribution of this chapter is the design of a
server-side architecture for adaptive streaming, which provides a low-delay feed-
back for the video bitrate selection and allows a hybrid adaptation algorithm based
on throughput and buffer information even at the server side. The design of the
server-side architecture is motivated to minimize the reception delay, which has a
direct impact on client buffer dynamics as stated in Chapter 3 and Chapter 4. The
proposed architecture is flexible to operate with different transport-layer protocols,
such that a streaming-optimized transport protocol other than TCP can be applied
to promote the improvements. The improvements are evaluated with respect to
user-perceived video quality.

5.1 introduction

Most adaptation controllers are deployed at the client side. The main reason is that
a client-side controller is close to users and therefore flexible to retrieve a wide set of
user local information for the adaptation: e.g., regarding to client buffer occupancy,
available network throughput, CPU load, etc. Although the decision at the client
may be convenient for a bitrate selection at the segment request time, the delay
between client and server due to the request-response mechanism may make the
selection not viable anymore at the response time of the requested segment. Such
a client-side feedback introduces a significant delay into the bitrate adaptation and
leads to a suboptimal bitrate selection, especially in quickly changing scenarios like
wireless and mobile networks. Even worse, the feedback delay incurs unnecessary
reception delay of segments, as explained in in Chapter 3 and Chapter 4. According
to Equation 3.15 and Equation 4.1, the reception delay results in additional decre-
ase of client buffer occupancy and then potential playback stalls due to a buffer
underflow. This reduction of buffer occupancy is especially critical in low-latency
streaming. Even though a pre-request scheme can be employed, which intends to al-
leviate the impact of the feedback delay, its efficiency strongly relies on the accuracy
of the estimation of the pre-request time. However, the estimation is often inaccu-
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Figure 5.1: Open-loop rate control architecture

rate, because it is hard to accurately predict the future network states. Accordingly,
the effectiveness of pre-requesting segments for a client-side adaptation is limited in
terms of the delay minimization. As a result of these inefficiencies, client-side adap-
tation architecture becomes one of the main limiting factors for the deployment of
a high-quality video streaming, especially for a low-latency live content.

In contrast to existing adaptation architectures, we propose a novel server-side
architecture to adaptive streaming that effectively supports low-latency streaming
applications with a buffering size as small as the segment duration of the adaptation
set. Since our adaptation controller takes place at the server so that the control loop
is not affected by delays and does not require explicit feedback from the client, we
name the architecture as Open Loop rAte Control (OLAC).

5.2 open loop dynamic rate control

The stabilization of client buffer dynamics is essential to low-latency adaptive vi-
deo streaming, as discussed in Chapter 4. Hence, the main design goal of OLAC
is to maintain a stable buffer level for the client playback buffer as small as the
segment duration. To achieve this goal, OLAC implements the adaption controller
at the server side (Figure 5.1), in contrast to most streaming solutions that adopt a
client-side adaptation controller. With this architecture modification, we eliminate
the feedback delay from clients in the control loop of bitrate adaptation and mini-
mize the reception delay of video segments, which allows OLAC to increase the
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accuracy of throughput estimation and bitrate adaptation. In addition, the adapta-
tion algorithms in OLAC are specifically designed to maintain a stable buffer in low
delay streaming. To this end, the OLAC adaptation controller is based on both the
throughput and the buffer information.

Our proposed OLAC approach has four components as shown in Figure 5.1. First,
the virtual client buffer at the server avoids delayed feedback from clients. Second,
an adaptation controller based on both the throughput and the buffer information is
implemented in order to maximize user’s QoE. Third, an open-loop synchronization
scheme eliminates the drift between the free-running server and client clocks. Last,
the underlying transport mechanism of the OLAC architecture is designed to be
replaceable, thereof enabling greater performance improvements by using different
emerging transport protocols.

5.2.1 Virtual Client Buffer

To avoid the delayed feedback from the client, our virtual buffer simulates the client
buffer level (in seconds) at the streaming server as follows:

b(t) = ∑
v∈Vt

S(v)

r
RI(v)

I(v)

− (t− te
m)+ , (5.1)

where t is the time elapsed since the first video packet was sent (excluding the
duration of playback stalls), te

m is the time at which the server finishes sending m
video segments, Vt is the set of all video packets sent within the duration of t, S(v)
is the size of a video packet v (in bytes), I(v) is the video segment to which the

video packet v corresponds, RI(v) is the nominal bitrate of segment I(v), and r
RI(v)

I(v)
represents the average bitrate of video segment I(v) encoded at a nominal bitrate
RI(v). For example, by putting i = I(v), we define that a video packet v corresponds
to segment i, has a nominal video bitrate Ri, and rRi

i is the actual average bitrate
of segment i when the segment is encoded at a nominal bitrate Ri. Equation 5.1
assumes that the client starts the playback once it buffers m segments; i.e., the
buffering size is Bd = m · Tc. Note that t excludes the duration of playback stalls,
which ensures that b(t) is non-negative. Therefore, given the average bitrate of a
segment, we translate the transmitted data volume into its corresponding video
duration and calculate the difference between the video duration of sent video data
and the actual elapsed time of sending those video data excluding the buffering.

5.2.2 Adaptation Controller

An adaptation controller performs bitrate selections for the adaptation based on its
algorithm logic. Our design goal focuses on the low-latency video streaming with
a buffer size as small as the segment duration. In order to make the optimal choice
when a video bitrate has to be selected, the controller needs to be able to predict the
trend of the buffer occupancy as accurately as possible, to avoid buffer underflows
and overflows. Therefore, it is important for the adaptation algorithm inside the
controller to take both buffer and throughput information into consideration when
making decisions for the bitrate selection. Thanks to the server-side simulation
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of the client buffer, the adaptation controller in OLAC is flexible to employ diffe-
rent algorithms based on the buffer and throughput information even at the server.
Moreover, such a hybrid adaptation controller needs to stabilize the adaptive re-
sponse to dynamics of transport and application layers. To this end, we apply the
adaptation algorithm (BDS) presented in Chapter 4 into our OLAC controller. BDS
performs the bitrate selection for the next segment once the delivery of a segment
is completed at the server side, and effectively maintains a stable buffer at a level
as small as the segment duration. It benefits from the OLAC architecture, which
provides a low delay of bitrate adaptation, and an improvement of its effectiveness
is evidenced in Section 5.4.4.

5.2.3 End-to-end Synchronization

Live streaming services require each single client to consume video frames at exactly
the same rate they are produced at the source; i. e., capturing and rendering of the
video content must be generator locked between source and sink [77]. Otherwise, the
clock drift between the server and the client in a long-term streaming session causes
a constant increase or decrease of buffered data at the client. In addition, the clock
drift leads to a divergence of the virtual client buffer from the actual client buffer in
our OLAC system.

Conventional HTTP-based streaming compensates for the clock drift between the
server and the client by lowering the sending rate via TCP flow-control mechanism
and by receiving more video data from the server in advance. A constant increase
of buffer occupancy will finally trigger TCP flow-control mechanism, such that the
server throttles the arrival rate of video data at the client. In the case of a con-
stant buffer decrease, the client may request to receive more data in advance, so as
to keep the buffer away from the empty. However, neither are applicable in live
services: lowering the sending rate delays the arrival of video data and thus incre-
ases the streaming latency; subject to the availability of video segments, receiving
more video data in advance is infeasible. Instead, we apply the concept of the Pro-
gram Clock Reference (PCR) in MPEG (Moving Picture Experts Group) systems [77],
where the reference clock samples are injected into the packet stream on the server
and enable the client to perform the recovery with an adjustable virtual clock via a
standard Phase Locked Loop (PLL). Since our method of the clock synchronization
is independent to TCP flow-control mechanism, the OLAC architecture is flexible to
employ other transport-layer protocols than TCP. In the sequel, we focus on a novel
streaming protocol which is designed to support real-time video delivery.

5.3 real-time transport

HTTP is commonly considered a poor fit to low-latency Internet communications,
since error and congestion controls of the underlying TCP interfere with the time-
liness requirements of such applications. Thanks to the flexibility of the protocol
configuration, OLAC allows an alternative transport paradigm beneath the stre-
aming architecture, in order to improve the streaming performance by replacing
HTTP/TCP. In the following, we present dynamic adaptive streaming architecture
over an emerging transport protocol.
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Figure 5.2: Dynamic streaming architecture based on the PRRT protocol

5.3.1 Predictable Reliability

Real-time video streaming is subject to specific delay constraints in order to limit
the buffering at the receiver and preserve interactivity. Gorius [38] addresses this
requirement and introduces a streaming-specific transport protocol, named Predic-
tably Reliable Real-time Transport (PRRT). PRRT specifies a delivery time budget
for each packet and must finalize the error control operations for it within this
time budget. If this is impossible, the application experiences residual packet loss.
The delay-constrained error control is based on a packet-level, adaptive Hybrid Error
Coding (HEC) method that achieves capacity-approaching error control on bidirectional
packet-erasure channels [139]. The scheme can be understood as a variant of Type-II
Hybrid-ARQ coding [140], which has been found to be optimal in case the capacity
of a packet erasure channel is unknown or dynamic.

PRRT’s transport paradigm is predictable reliability. The protocol includes a sto-
chastic performance model (Figure 5.2) that allows for instant optimization of the
protocol configuration under consideration of the transport-layer’s periodic net-
work state feedback. Specifically, this optimization process adjusts the error control
so as to fulfill the reliability requirement of the application under the given delay
constraint with a high probability. Besides adapting the protocol configuration, the
performance model calculates the maximum goodput under the throughput esti-
mate obtained from the congestion control equation at the client. The goodput
calculation considers the protocol overhead in terms of packet headers and repair
packets for the error control.

In PRRT’s paradigm, as shown in Figure 5.2, the server runs a packet scheduler
that feeds video packets at a rate of less than or equal to the received goodput
estimate into the network. Under selection of the suitable bitrate of the dynamic
video source, this ensures continuous real-time transmission of the video stream.
The throughput estimate is obtained at the client based on the network state of the
network path (e.g., RTT and packet loss information). Periodic feedback updates the
throughput estimate at the server. The server determines the throughput overhead
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that is required for the error control and obtains the resulting goodput via the
protocol’s performance model.

5.3.2 Delay-based congestion control

Loss-based congestion control interprets all packet losses as congestion events, thus
is prone to errors in present of packet-loss channels, e.g., wireless and mobile net-
work. As a result, most TCP flavors significantly underutilize the available network
throughput in wireless and mobile scenarios. Since delay-based congestion control
evaluates the queuing delay of the network to obtain a congestion signal, it is not
affected by additional packet losses other than congestion losses. Moreover, delay-
based control schemes maintain a stable queuing on the network over a long time
such that they increase the throughput and reduce delay jitter for the long term.
Both are desired properties of streaming-friendly congestion control. Therefore, we
employ delay-based congestion control into the PRRT framework.

In order to obtain smooth and tunable congestion control, we modify the delay-
based control equation from Fast TCP [39], as follows:

w =min
{

2 · w′, (1− γ) · w′

+γ ·
(

η · baseRTT
avgRTT

· w′ + α · (1− η)

)} , (5.2)

where α > 0, γ ∈ (0, 1], and η ∈ (0, 1]. w and w′ are the most recent and the
previous estimate of the congestion window, respectively. baseRTT represents the
minimum RTT observed so far, and avgRTT is the average RTT using Exponentially
Weighted Moving Average (EWMA). The control equation itself performs EWMA
with parameter γ over the current and the previous estimate of the congestion
window. α reflects the number of packets buffered in the network, which should
not exceed the aggregate queue size of the network. Both parameters α and γ

originate from the Fast TCP equation. We introduce η to provide control over the
protocol’s aggressiveness in the throughput acquisition, as a smaller value for η

attenuates the congestion signal [141].
Under the modified delay-based congestion control, PRRT improves the throug-

hput utilization of continuous packet streams by providing a stable estimate of the
available throughput and realizes opportunistic TCP-friendliness [142].

Our OLAC architecture benefits from PRRT in that PRRT provides the adapta-
tion controller with predictable packet delay variations, smooth, explicit goodput
estimates, and a high throughput utilization.

5.4 performance evaluation

For the quality evaluation of OLAC, we perform experiments in scenarios of wi-
reless home networks with an emulated broadband access. We evaluate the per-
formance of the architecture with respect to impairment functions that model user-
perceived video quality, and compare it against well-known streaming architectures.
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5.4.1 Methodology

Our experiments on the performance evaluation of video streaming are more realis-
tic and challenging in this chapter. We run the experiments in a wireless network
with an emulated broadband access and evaluate the performance in terms of user-
experience metrics. We repeat each test ten times and plot both the averages and
the distributions.

Performance metrics. In this thesis, we focus on the industry-standard video
quality metrics explored in [124], which are also acknowledged in the research
community [55, 97]:

• Startup delay (join time), measured in seconds, represents the duration it lasts
from a request of video playback being initiated till the start of the playback.

• Rebuffering ratio captures the rebuffering duration during a streaming session,
and is defined as the ratio of the total time all rebuffering events take to the
duration of the session.

• Rate of rebuffering reflects the frequency of rebuffering events occurred during
a streaming session, and is computed as the ratio of the number of rebuffering
events to the duration of the session.

• Average bitrate (video quality) is the mean of nominal video bitrates selected
during an adaptive streaming session, since the selected bitrate during the
session is changing between different bitrate streams. It is measured in bits
per second (e.g., kbps or Mbps).

• Rate of bitrate switching (quality variants) indicates the frequency of bitrate swit-
ching during a streaming session, and is calculated as the ratio of the number
of bitrate switching events to the duration of the session.

There are three important factors that impact user-perceived video quality in
adaptive video streaming: startup delay, stalls, and quality variation. Liu et al. [117] de-
rive a set of impairment functions to quantitatively measure user experience. These
impairment functions are defined as follows.

• Impairment of startup delay is defined as

ISD = min{3.2 · TS, 100} , (5.3)

where TS is the duration of startup delay in seconds and the coefficients are
computed by linear regression between the startup delay and the average sub-
jective impairment.

• Impairment of stalls (rebuffering) is defined as

IST = 3.35 · TST + 3.98 · NST − 2.5 ·
√

TST · NST , (5.4)

where TST indicates the total duration of playback stalls and NST stands for
the number of stalls. This impairment function IST models the user experience
affected by the duration and the number of stalls. The third term in IST is used
to compensate the simultaneous effects of stalls duration and stalls number;
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i.e., the impairment value does not increase monotonically with stalls number,
if stalls duration is fixed [117]. Note that, compared to the original function
defined in [117], Equation 5.4 does not take into account the additive term
which affects IST due to the motion information of the video. The omission
does not affect the performance comparison, because only one video sequence
is used here for the comparison and the term is determined by the average
magnitude of motion vectors over the whole video.

• Impairment of quality variation (level variation) is given as

ILV = 73.6 · P1 + 1608 · P2 , (5.5)

where

P1 =
1
N

N

∑
i=1

Mi · e0.02·Tc·Ni (5.6)

models the impairment caused by selecting a particular video bitrate with
the video quality metric value Mi, N is the number of transmitted segments
during the streaming session, Mi is the VQM value [109] of segment i, Tc is the
segment duration, and Ni is the number of consecutive segments preceding
segment i that have the same bitrate as segment i. In turn, P2 models the
impairment caused by bitrate fluctuations:

P2 =
1
N

N

∑
i=1
|Mi −Mi+1|2 · sign(Mi+1 −Mi) , (5.7)

sign(x) =

1 x > 0

0 otherwise
. (5.8)

Namely, the impairment of quality variation ILV spans all three dimensions of
video quality: i.) average video quality covered by P1; ii.) number of quality
switches covered by P2; iii.) average magnitude of switches covered by P2.

All the coefficients in the above functions are applied according to their definition
in [117]. We use VQM software that is freely available1. The value is between 0 and
1, and a lower VQM value implies better quality and less annoyance.

Network profiles. We experimentally evaluate the performance of the proposed
solution in scenarios with competing greedy TCP traffic and multiple streaming
sessions in an IEEE 802.11n wireless network. In order to emulate a wired broad-
band access network, between the streaming server and the Access Point (AP) we
introduce a bottleneck of 16 Mbps with 40 ms RTT and a queue size of 80 KBytes via
the Dummynet2 network emulator. The wireless receiver is positioned at a distance
of 5 m from the AP with a wall in the direct signal path. Figure 5.3 illustrates the
experimental setup. To demonstrate the fairness and the response to competing
traffic, we take into account the following two scenarios.

• Competing greedy TCP traffic: each streaming session runs for 180 s. After
60 s, we inject one bulk TCP flow with a duration of 60 s, using Iperf3.

1 http://www.its.bldrdoc.gov/resources/video-quality-research/software.aspx

2 http://info.iet.unipi.it/~luigi/dummynet/

3 http://iperf.fr

http://www.its.bldrdoc.gov/resources/video-quality-research/software.aspx
http://info.iet.unipi.it/~luigi/dummynet/
http://iperf.fr
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Figure 5.3: An overview of the experimental setup

• Competing multiple streaming sessions: three concurrent streaming sessions
simultaneously run for 120 s, each corresponding to one server and one client.

Video profiles. We use a high definition video sequence Big Buck Bunny with a
resolution of 1920× 1080 pixels and various segment durations of 2 s, 4 s, 6 s, and
8 s. The adaptation set includes bit rates between 1 Mbps and 16 Mbps under VBR
encoding. Between 1 Mbps and 6 Mbps, the bitrate increases in steps of 1 Mbps, and
above 6 Mbps the step size is 2 Mbps. We apply MPEG Transport Stream (MPEG-TS)
as the video stream format, in order to compensate for the clock drift between the
server and the client in case of a long streaming session. By inserting PCRs in the
packet stream, we enable the client to synchronize its clock to the server clock by
means of these clock samples and a PLL, and thus avoid the drift.

Algorithms. For the quality evaluation of OLAC, our benchmark bitrate adap-
tation are DASH VLC plugin [78] and Quality Adaptation Controller (QAC) for
adaptive video streaming [81].

• DASH VLC plugin, as a reference implementation of DASH system archi-
tecture [78], is freely available4. The reference implementation uses the rate-
based adaptation algorithm (RB) in its adaptation-logic component, as descri-
bed in Section 4.4.1; i.e., DASH VLC plugin chooses the highest bitrate smaller
than the long-term average of all throughput measured samples. Since DASH
VLC plugin is a reference implementation of DASH standard, we refer to it as
DASH in our evaluation for brevity.

• QAC selects the video bitrate to match the available throughput based on
feedback control theory. The adaptation controller of QAC is also deployed
at the server so that the control loop is not affected by feedback delays. To
the best of our knowledge, a reference implementation is not available. To
this end, we have developed our own implementation of QAC following the
description in the research paper [81].

To demonstrate the effectiveness of OLAC in practice, we implement its architecture
and algorithms in a Linux-based streaming prototype. We employ the basic version
of BDS (i.e., BDS-0) as the adaptation algorithm of the OLAC controller, in order
to highlight the performance improvements of OLAC. According to the results in
Section 4.4, we believe that using BDS-1 in OLAC further enhances the performance.

4 http://www-itec.uni-klu.ac.at/dash/?page_id=10

http://www-itec.uni-klu.ac.at/dash/?page_id=10
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The OLAC streaming is flexible in that it can be configured to operate with different
transport-layer protocols. In this thesis, we present two such configurations:

• First, OLAC is configured to operate over standard TCP-Cubic5 available in Li-
nux systems. An OLAC implementation over TCP is immediately deployable
and allows a direct comparison to state-of-the-art bitrate selection methods,
which commonly use standard TCP as their transport layer. For brevity, we
refer to this OLAC configuration as Dynamic Adaptive Streaming over TCP
(DAST).

• Second, we configure OLAC to use PRRT as its transport layer [139]. PRRT
implements an efficient, predictably reliable error control for optimized utili-
zation of the available throughput on wireless Internet paths. By incorpora-
ting the delay-based congestion control, PRRT achieves opportunistic TCP-
friendliness. We refer to the OLAC-over-PRRT configuration as Dynamic
Adaptive Streaming over PRRT (DASP).

Therefore, our performance comparison contains four sets of performance results:
DASH (VLC plugin), QAC, DAST (OLAC over TCP), and DASP (OLAC over PRRT).

We specifically focus on low-latency streaming scenarios with small client buffer
sizes βmax of 2 s, 4 s, 6 s, and 8 s. To demonstrate the performance of OLAC with a
latency as small as the segment duration, we use the segment durations Tc of 2 s, 4 s,
6 s, and 8 s (corresponding to client buffer sizes βmax = Tc) and the buffering size
Bd = m · Tc with m = 1.

5.4.2 Mirror the Client Buffer Dynamics

The key component of the OLAC architecture is the virtual client buffer, which
simulates client buffer dynamics at the server. As a result, OLAC enables server-
side bitrate adaptation based on the buffer and throughput information, and thus
the performance increase for bitrate adaptation. The effectiveness of OLAC relies
on the simulation accuracy of the virtual client buffer — i.e., whether the virtual
client buffer is able to accurately mirror the dynamics of the client buffer. Hence,
we first inspect the accuracy of the buffer simulation before we present the results
of performance evaluation for OLAC.

Figure 5.4 and Figure 5.5 show the performance of DAST and DASP when com-
peting with a TCP flow in terms of video quality level and buffer level, respectively.

In general, the virtual buffer level in the DAST configuration tracks the dyna-
mics of the client buffer. However, it is observed that there are obvious skews and
deviations between the virtual and actual client buffer levels, when the competing
TCP flow is added into the bottleneck network. In consequence, due to misleading
buffer information, DAST cannot always pick suitable video bitrates to adapt the
dynamics of the network, and then occasionally suffers from critical low buffer occu-
pancies. As shown in Figure 5.4a, the buffer level reaches 0 s at second 79 for the
client buffer size of 2 s and at second 85 for the client buffer size of 6 s in Figure 5.4c.
The reason is that the delivery of video packets over TCP has no delay constraints

5 All implementations of DASH, QAC, and DAST used in this thesis are based on TCP-Cubic[143], the
default TCP flavor in current Linux and Android systems.
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(a) DAST with client buffer size 2 s
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(b) DAST with client buffer size 4 s
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(c) DAST with client buffer size 6 s
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(d) DAST with client buffer size 8 s

Figure 5.4: Video quality level and buffer level of DAST when competing with a single TCP
flow. The segment durations include 2 s, 4 s, 6 s and 8 s.



76 advanced improvements in low-latency adaptive video streaming

and experiences packet jitter (packet delay variation). Namely, TCP packet jitter
introduces a mismatch between the set of packets used for buffer simulation at the
sender (Vt in Equation 5.1) and the set of packets that actually arrive at the client.
In contrast, PRRT ensures that per-packet arrival deadlines are met, therefore the
virtual buffer level of DASP accurately tracks client buffer dynamics. As shown in
Figure 5.5, the virtual buffer level is almost in line with the actual client buffer level;
in other words, the virtual buffer is like a mirror of the client buffer dynamics in
our DASP configuration.

As a result, bitrate adaptation benefits from the OLAC architecture. From Fi-
gure 5.4 and Figure 5.5, we see that the video stream with both configurations
is continuously delivered at a high video bitrate and our bitrate adaptation reacts
smoothly to the injection of competing traffic by converging to an equal share of the
bottleneck throughput. After removal of the competing flow, the video stream com-
pletely re-acquires the available throughput. The buffer level converges towards
the desired buffer level. These results confirm the efficiency of our OLAC control
scheme: the converging buffer level indicates that the application layer absorbs the
dynamics of transport layer with precise bitrate selections.

In summary, DASP accurately mirrors the dynamics of the client buffer thanks
to the timely arrival of packets provided by PRRT. In contrast, due to packet jitter,
DAST cannot track the client buffer dynamics as well as DASP.

5.4.3 Performance Comparison

Single Competing TCP Session. Figure 5.6 shows the performance in terms of the
impairment functions when each of four approaches (DASH, QAC, DAST, DASP)
competes with a single TCP flow. With respect to the startup delay, DAST achie-
ves the lowest values on average, as shown in Figure 5.6a. Specifically, the startup
delays in DAST are 0.3 s, 0.6 s, 0.8 s, and 1.0 s on average in the case of segment du-
rations 2 s, 4 s, 6 s, and 8 s, respectively. Correspondingly, the average impairments
of startup delay for DAST are 0.5, 1.3, 1.7, and 2.0, respectively. QAC has a delay
approximately equal to the segment duration, because QAC server feeds video data
into the sender buffer at a rate equal to the video playback rate. Therefore, it has
the largest impairment of startup delay. In the case of DASP, the startup delay is
larger than that of DASH or DAST, since PRRT has a slower sending rate than TCP
in the beginning of a session and a smoother throughput variation. Specifically, the
impairment for DASP is 3.1− 6.0 higher than that for DAST on average.

Figure 5.6b and Figure 5.6c show the performance in terms of the impairment of
stalls and quality variation, respectively. Overall, DAST and DASP obtain the best
performance. First, compared to DASH and QAC, OLAC reduces the impairment
of stalls by at least 80%. In fact, our DASP sessions had no stalls. The reason
is that OLAC effectively controls the buffer level and PRRT provides an accurate
throughput information. Second, compared to DASH and QAC, DAST and DASP
reduce the impairment of quality variation by at least 26% and 20%, respectively.
Third, the variance of impairment values in OLAC is smaller than for QAC and
DASH in most cases. This shows that OLAC has a more stable performance than
the other approaches.
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(a) DASP with client buffer size 2 s
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(b) DASP with client buffer size 4 s
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(c) DASP with client buffer size 6 s
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(d) DASP with client buffer size 8 s

Figure 5.5: Video quality level and buffer level of DASP when competing with a single TCP
flow. The segment durations include 2 s, 4 s, 6 s and 8 s.
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Figure 5.6: User experience modeled by impairment functions for single competing TCP
traffic in ten runs of each streaming scenario. The segment durations include
2 s, 4 s, 6 s and 8 s. The 5-th and 95-th percentiles are marked with black bars.
The blue box contains the impairment values between 25-th and 75-th percentile.
The red bar in the center indicates the mean of impairment values.
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Multiple Streaming Sessions. Figure 5.7 shows that all four tested approa-
ches ensure fairness in the sense of enabling multiple competing video sessions
to achieve an equal user-perceived quality. OLAC achieves the best performance.
First, the total impairment of stalls of three DAST streams is reduced by at least
85% and 64%, compared to DASH and QAC, respectively. In the case of DASP, only
very few stalls were detected, thus it reaches a reduction of at least 98%. Second,
the total impairment of quality variation of three DAST streams is reduced by at
least 26% and 37% compared to DASH and QAC, respectively. In the case of DASP,
a reduction of at least 26% and 41% is achieved. For the impairment of initial delay,
we obtain similar results as in scenarios of competing a single TCP session. The
only difference is that the average startup delays in DASH and DAST increase by
0.7–2.9 s and 0.1–1.0 s, because the available throughput for each stream is reduced
due to the competition among streams.

Results analysis. The reason for superior performance of OLAC in comparison
with DASH and QAC is as follows. OLAC improves the accuracy of bitrate se-
lection by minimizing feedback delays of the adaptation compared to other approa-
ches. The effectiveness of OLAC with respect to the feedback delay will be detailed
in Section 5.4.4. OLAC takes into account the buffer and throughput information
while performing bitrate selections. In contrast, the bitrate adaptation algorithms of
DASH and QAC consider either buffer information or throughput information, but
do not consider them jointly. In addition, the bitrate selection algorithms of DASH
and QAC do not stabilize the client buffer dynamics, while BDS selects video bitra-
tes to reduce buffer fluctuations. As a result, the buffer level oscillates significantly
and streaming suffers from stalls. Finally, the bitrates in DASH and QAC are often
selected such that they do not match the available throughput, which may lead to
a low quality and a high quality variation. Specifically, DASH performs its bitrate
selection based on the measurement of the long-term average throughput at the
client. However, the average throughput does not reflect the instantaneous availa-
ble throughput. This often leads to significant variations of the buffer level, such
that video bitrates frequently switch to the minimum or the maximum available
bitrate. Although QAC achieves the smoothest change of bitrates, it has more stalls
in the case of large segment durations and a higher impairment of quality variation
in the case of segment duration of 2 s. The reason is that QAC reacts slowly in sce-
narios with a small client buffer. In particular, QAC applies a feedback control loop
where the bitrate selection is based on the buffer deviation from the target buffer in
the Proportional-Integral (PI) control law. The target buffer level is limited by the
maximum client buffer level. In the case of a small target buffer, errors accumulate
and cause a slow control behavior. Although QAC allows to change the behavior of
the adaptation by tuning the parameters of the PI control law, it can only eliminate
stalls if it enforces a low throughput utilization at all times during streaming.

In summary, thanks to the low-delay feedback of OLAC and the buffer stabiliza-
tion of BDS, our approaches (DAST and DASP) significantly outperform QAC and
DASH in terms of the impairment functions. The results show that our approach
achieves a very low startup delay, at least 64% lower impairment of stalls and 20%
lower impairment of quality variation. Since the inter-percentile range of the results
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Figure 5.7: Aggregate performance for multiple streaming sessions on average of ten runs
of each streaming scenarios. The segment durations include 2 s, 4 s, 6 s and 8 s..
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(i.e., the difference between 25-th and 75-th percentile) is smaller than for QAC and
DASH, we can also conclude that the performance of our approaches is more stable.

5.4.4 Impact of OLAC

The superior performance of DASP configuration shown in the previous section
is contributed by three main components: the adaptation algorithm for buffer sta-
bilization (BDS), the open-loop adaptation architecture with low-delay feedback
(OLAC), and the streaming-optimized transport protocol (PRRT). The performance
of BDS is presented in Chapter 4. The effectiveness of PRRT in OLAC is also de-
monstrated in Section 5.4.2 and Section 5.4.3. To evaluate the benefit of OLAC
on the proposed bitrate adaptation algorithm, we implement the same algorithm
(BDS-0) on the client side and compare this client-side adaptation controller with
the server-side adaptation controller (BDS-0 within OLAC). We employ the TCP
protocol configuration for these two architectures. In the case of a client-side adap-
tation, we require an estimation of the request time as discussed in Section 4.2, in
order to minimize the reception delay between two consecutive segments (i.e., ∆ti
in Equation 4.1). To this end, we estimate the request time based on the measure-
ment of the average request-response delay at the client. In detail, we first measure
the request-response delay for each request, i.e., the time elapsed from the moment
the client requests a segment until the client starts the reception of the segment.
We then estimate the request-response delay dd

i for segment i as the average of all
previous delay samples. Last, the client requests segment i at the moment when dd

i
seconds remain until the end of the reception for segment i − 1. The end time of
the reception for segment i− 1 is estimated based on the same throughput estimate
for segment i− 1 as the algorithm does.

Figure 5.8 shows that our bitrate adaptation algorithm within OLAC outperforms
the client-side adaptation in most of our experimental scenarios. OLAC reduces
the impairment of stalls and quality variation by up to 67% and 34%, respectively.
The reason is that OLAC can achieve near-zero values for ∆ti by deploying the
adaptation controller on the server side. In the case of a segment duration of 2 s,
OLAC has a higher impairment of stalls than the client-side adaptation. This is due
to the fact that virtual client buffer over TCP cannot track the dynamics of the client
buffer as shown in Section 5.4.2 because the delivery of video packets over TCP
suffers from severe delay variation. We omit the results with respect to the startup
delay, since they are very similar here in both scenarios.

According to the results in Figure 5.7 and Figure 5.8, we can also conclude
that our bitrate adaptation algorithm within a client-side architecture outperforms
DASH and QAC. Specifically, the impairment of stalls reduces by at least 65%, while
the impairment of quality variation is reduced by 2–48%.

5.4.5 Impact of Client Buffer Size

Finally, we explore the impact of the client buffer size on the OLAC performance in
low-latency streaming. In this experiment, we use the segment duration of 2 s as an
example, and increase the buffer size in steps of 2 s, resulting in buffer sizes of 2 s,
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Figure 5.8: Comparison of the client-side and server-side bitrate adaptation with the buffer
stabilization over TCP configuration. User experience modeled by impairment
functions for multiple streaming sessions on average of ten runs of each strea-
ming scenario. The segment durations include 2 s, 4 s, 6 s and 8 s.

4 s, 6 s, 8 s, and 10 s. Figure 5.9 reports the averages and the standard deviations of
ten runs of each streaming scenario for multiple streaming sessions.

Figure 5.9a shows that the rebuffering performance of OLAC significantly impro-
ves as the buffer size increases. Specifically, by increasing buffer size from 2 s to 4 s,
the impairment of stalls in DAST decreases by 60%, while DAST and DASP achie-
ves no rebuffering events for buffer sizes above 4 s and 2 s, respectively. Similarly,
for each 2 s-increase in buffer size, the impairment of quality variation in DAST
and DASP reduces by up to 3% and 7% (Figure 5.9b), respectively. Moreover, the
deviation results show that OLAC performs stably. With respect to the impairment
of startup delay, the results are very similar to the scenarios for multiple streaming
session in Section 5.4.3.

5.5 summary

To further enhance the streaming performance in the context of low latency, we
propose OLAC, a novel approach to dynamic streaming that effectively controls a
small client buffer required for low-latency streaming services. In order to mini-
mize the reception delay of video segments, the OLAC architecture introduces a
virtual client buffer and an advanced adaptation controller that jointly avoid buffer
instability at the client and compensate for inaccurate selection of the video bitrate.
The adaptation algorithm deployed in OLAC benefits from the low-delay feedback
provided by the server-side adaptation controller, thus increases the accuracy of bi-
trate adaptation. Our approach is designed to be flexible in operation with different
transport-layer protocols, so as to enable greater improvement from the underlying
transport protocols.

We implement the proposed dynamic streaming architecture and algorithm on
top of two transport-layer protocols (TCP and PRRT), and compare their perfor-
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Figure 5.9: User experience modeled by impairment functions for multiple streaming sessi-
ons with increasing client buffer sizes. Averages and standard deviations of ten
runs of each streaming scenario are indicated.

mance against two state-of-the-art solutions with respect to impairment functions
that model user-perceived video quality. We run experiments at a wireless network
with an emulated broadband access. Experimental evaluations show that OLAC
significantly improves user-perceived video quality in scenarios with single and
multiple competing flows. Specifically, we achieve only very few stalls in the PRRT
configuration and at least 64% lower impairment of stalls compared to the other
two solutions in the TCP configuration. In addition, OLAC achieves at least 20%
lower impairment of quality variation for dynamic streaming with buffer sizes as
small as the segment duration.





6
R E L AT E D W O R K

As Internet-based video streaming dramatically develops, much effort has been
put on understanding and improving users’ experience of streaming video. This
chapter discusses the existing literature on those aspect of adaptive streaming that
are related to our work. We begin with a survey of the latency in adaptive strea-
ming, which outlines a landscape of the latency achieved by state-of-the-art bitrate
adaptation. We proceed by reviewing the literature on the methods of throughput
estimation, based on which most adaptation solutions make their bitrate decisions.
We then focus on the studies addressing adaptation algorithms, striving for the
optimization of the streaming performance with various approaches. Afterwards,
we highlight the research efforts on the potential benefits from transport protocols,
followed by video encoding schemes. Finally, we end this chapter with the investi-
gation of a global optimization.

6.1 latency landscape in adaptive streaming

Video delivery over the Internet has evolved rapidly over the past few years. The
last decade has seen the transition of video streaming from UDP-based to HTTP/TCP-
based technologies. Recently, there has been a significant number of studies on HAS
and HAS-based commercial applications, and MPEG-DASH has emerged as a stan-
dard for Internet-based video streaming. Most of recent studies and applications
focus on streaming solutions that typically consider playback buffer sizes of 10 to
30 seconds or even more. In contrast, the attention to those that specifically target
live or low-latency streaming is significantly less.

6.1.1 Industry

Commercial video streaming services apply extensive buffering at the streaming
client and a conservative bitrate selection, in order to obtain continuous video play-
back with acceptable throughput utilization [24, 144, 145].

Akhshabi et al. [24] experimentally evaluate the bitrate adaptation mechanisms
of three HAS clients developed or used by the commercial service providers. The
examination focuses on the reaction to persistent and short-term throughput chan-
ges, the behaviors of two competing clients under a shared network bottleneck, as
well as the latency in the case of live streaming. They observe that the client buffer
sizes are approximately 30 s and one could reach 300 s for a 2 s video segment.

Müller et al. [144] compare their proposed implementation of MPEG-DASH
against three proprietary streaming solutions with respect to the selected bitrates

85
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and the buffer occupancy. The experiments are performed in an emulated mobile
3G environment using throughput traces recorded under vehicular mobility. The
results reveal that the solutions employ an at least 30 s buffer (i.e., 15 segments) to
compensate high throughput fluctuations.

Zabrovskiy et al. [145] provide a performance evaluation of eight commercial
and open-source HAS players in terms of e.g., average video bitrate, startup delay,
rebuffering, and bitrate switches. The players experience rebuffering and/or low
average bitrate in a scenario with step-wise and abrupt throughput changes, despite
applying buffer sizes in a range of approximately from 12 s to 40 s. A segment
duration of 4 s is adopted in their experiments.

6.1.2 Academia

While the industry employs conservative adaptation solutions for commercial stre-
aming services, the academia contributes to abundant methods for improving the
QoE in adaptive streaming. The great majority of them are based on the considera-
tion that, a client playback buffer is on the order of tens of seconds [25, 146, 26].

Timmerer et al. [146] investigate ten adaptation algorithms proposed in the litera-
ture. Their objective measurements are conducted within a controlled environment
based on a throughput trace, and have two versions of the segment duration (2 s
and 10 s). The buffer sizes of the tested algorithms vary approximately from 30 s to
80 s and their playback buffers have a mean buffer level of above 15 s, except that
two methods exhibit a relatively small buffer size of 10 s and 12 s in the case of the
2 s segment duration, but resulting in a high number of rebuffering.

Karagkioules et al. [26] address a comparative study of five adaptive streaming
algorithms running over various mobile network traces. The case study differentia-
tes between two sizes of the client buffer; 16 s (4 segments) and 92 s (23 segments)
target two application scenarios: live or short clips and VoD or long movies, re-
spectively. Additionally, the buffering size (i.e., the number of segments received in
the buffer before the playback can start initially) and the rebuffering size (i.e., the
number of segments received in the buffer before the playback can resume after a
buffer underflow event) are both set equal to 2 segments for their experiments.

In the context of live content, Thang et al. [25] study the behaviors of five typical
adaptation methods using two throughput cases: a simulated sudden throughput
drop and an actual throughput trace. They show the deficiencies of the five methods
when a client can maximally buffer 3, 5, and 10 video segments (corresponding to
6 s, 10 s, and 20 s, respectively).

6.1.3 Reduced Latency

As outlined above, numerous studies in industry and academia go to the adaptation
solutions that do not address the low-latency requirement. There are only few
research directions (e.g., [33, 147, 148, 149, 150]) toward a reduced latency. In the
sequel we point out some of them.

Lohmar et al. [33] identify and analyze the main delay components of HAS in
live services. To be robust towards network throughput fluctuations, they suggest
a buffering size of 2 segment durations, although the minimal target is one. Con-
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sequently, they estimate a latency for HAS on the order of 5 segment durations.
However, the analysis does not explicitly consider the actual characteristics of the
network, e.g., available throughput and network delay. Therefore, the result may
over- or underestimate the required latency.

Evensen et al. [147] explore the benefits of collaboratively using multiple network
interfaces in HAS. They introduce an adaptive, segmented video streaming system,
which dynamically divides a video segment into smaller logical sub-segments with
varying sizes, and dynamically assigns and requests sub-segments to the network
interfaces according to the throughput ratio of the network links. The adaptation
algorithm proposed in the system selects for the next segment the highest bitrate
that can be received before the playback deadline, based on the aggregated throug-
hput and the RTT perceived in the past. The buffer sizes vary from 1 to 6 seg-
ments (using 2 s video segment) in experiments, while the buffering size is fixed to
1 segment. The results show that dynamic size-adjusting and request-scheduling of
sub-segments are crucial to fully utilize the aggregated link capacity.

Miller et al. [150] focus on a HAS-based live streaming which keeps a target
latency within 5 s for the video segment duration of 2 s. According to throughput
predictions and prediction error estimations, the proposed algorithm computes the
probabilities of missing the playback deadline for the individual segments. The
highest bitrate for the next segment is identified such that the probability is bound
by a controlled threshold. An upward switching of the bitrate is only performed
if the fraction of bitrate switches does not exceed a predefined upper bound. The
algorithm relies on the short-term TCP throughput predictions on multiple time
scales from 1 s to 10 s.

Wei et al. [148] demonstrate that the server-push feature of HTTP/2 [151] allows
a reduction of the latency in live streaming by employing short segment durations
without the HTTP-request explosion issue. They experiment with 1 s segment du-
ration for the push strategy and observe a live latency of more than 3 s. However,
the study does not evaluate other QoE metrics than the latency, and the overhead
of the video compression due to the small segment. Similar to the idea of redu-
cing the latency, Huysegems et al. [149] further explore new HTTP/2 features to
improve the live experience in HAS. They use the HTTP/2 features such as stream
termination, request/response multiplex, stream prioritization, and server push, to
support a reduction in the segment duration to the sub-second level. The evalu-
ation demonstrates that an average latency can reach from 1.05 s to 10.48 s while
using five segment durations from 133 ms to 2 s. The encoding overhead of segment
duration 133 ms increases by roughly 10% compared to segment duration 2 s. It
should be noted that, these effort is orthogonal and complementary to our work.

6.2 throughput estimation

The available network throughput in the future is unknown and variable. A measu-
rement of network throughput often represents the throughput information in the
past. An adaptation system requires a technique to estimate the available throug-
hput, such that a suitable video bitrate is selected to adapt the varying throughput.

There exists a large body of literature on throughput measurement and estima-
tion in ABS. The simplest way is to use the measured throughput right after having
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fully received a video segment, usually called instant throughput, as the throug-
hput estimate for the next segment. The drawback of using instant throughput
as an estimate is that the adaptation suffers from short-term fluctuations. A po-
pular technique to cope with short-term fluctuations is using smoothing methods
on measured samples such as averaging [24, 29, 152, 153, 150, 154]. However, this
may lead to delayed responses to abrupt throughput drops. In addition, a throug-
hput estimate can be obtained by other means and tools e.g., based on probing
[132, 85, 60, 155], machine learning [133, 153, 156], stored data (lookup table) [157],
and server support [158].

An average approach is adapted by the dash.js player1, which uses the mean of
last three measured throughput samples as the throughput estimate for next video
segment. Akhshabi et al. [24] employ an EWMA in their proposed adaptation algo-
rithm. To avoid delayed reaction to significant buffer decreasing incurred by abrupt
throughput drops, they use a buffer threshold to decide whether the client should
switch to the lowest bitrate. Finding an appropriate trade-off between the respon-
siveness and smoothness for the averaging is challenging. Sobhani et al. [154] take
the advantage of the Kaufman’s Adaptive Moving Average (KAMA) [159], which
dynamically calculates the smoothing factor in EWMA based on the current throug-
hput trend. Jiang et al. [29] suggest the harmonic mean for throughput estimation,
in order to address the outlier issue in the averaging if the reception of a segment
experiences a very high or low throughput. Subsequently, the adaptation benefits
from the smoothness of throughput estimation with respect to quality variations.

Riiser et al. [157] introduce a throughput-lookup service based on Global Positi-
oning System (GPS), in order to estimate the throughput availability for HAS. The
principle of the GPS-based throughput-lookup service is to constantly monitor the
throughput and geographical location of streaming clients, and to store this data
to a central service. Using such a service allows streaming clients to query for es-
timated available throughput for given locations based on past observations. The
experiments, both simulations and real-world tests, show that the service can be
used to predict throughput fluctuations and network outages and is beneficial to
avoid buffer underflows in streaming over mobile networks.

Mirza et al. [133] propose a machine learning method for the TCP throughput pre-
diction. Tian and Liu [153] adopt this method to predict the achievable throughput
at the beginning of a streaming session, since there is no TCP throughput history
for the prediction. The method uses the Support Vector Regress (SVR) algorithm
[160] to train a TCP throughput model with dataset concerning packet loss rate,
queuing delay, file size, and the corresponding actual TCP throughput. To predict
the current TCP throughput for ABS, one just feeds the model with the current
measured packet loss, delay, and the selected segment size.

Sun et al. [156] develop a throughput estimation framework using observed
throughput from past video sessions. The framework uses an offline clustering
step to identify sessions with similar throughput patterns based on session features
such as ISP, region, server identifier, and client’s IP address. For each cluster, it
estimates the initial throughput (i.e., the available throughput at the beginning of a
streaming session) as the median throughput of the sessions in this cluster. To esti-
mate the throughput during a session, it trains a Hidden Markov Model (HMM) for

1 https://github.com/Dash-Industry-Forum/dash.js/wiki.

https://github.com/Dash-Industry-Forum/dash.js/wiki
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each cluster to capture the state transitions within the session. The proposed frame-
work is evaluated against five existing estimation approaches in both trace-driven
simulation and commercial deployments. The results demonstrate its benefits on
the estimation accuracy and the total rebuffering time.

Prasad et al. [132] survey four major techniques in available throughput measu-
rement using probes and review the throughput estimation tools that implement
these techniques. Probing-based throughput measurement estimates the available
throughput by periodically sending probing packets to the network and analyzing
the characteristics of the probing gap such as sending rate, delay, and size of pro-
bing packets. Such active probing methods may provide more accurate estimation
compared to passive methods as described above, but their major drawbacks are
two-fold. First, the estimation may not be accurate any more if the probing packets
traverse other network paths than the video data. Second, the additional probing
packets will cost the network resource. Therefore, passive methods are generally
used for throughput estimation in ABS.

To address the issues of active probing throughput measurements, Mok et al.
[85] propose an estimation method by integrating the probing measurement into
the video stream. The method employs a proxy (or the server side) to adjust the
sending rate of video packets by varying the inter-departure time of the packets in
each probing round. Based on the measurements, the proxy calculates the loss rate,
the average RTT, and the variance of RTT, and determines the preferred sending
rate by comparing these values with their lower and upper bounds. To achieve a
timely estimation, the method probes the network with a set of selected sending
rates that correspond with the available video bitrates, instead of probing with all
possible sending rates. As all probing methods, such a passive probing method
requires additional supports of the server (or a proxy) and/or the client.

In the presence of competing clients, the ON-OFF streaming pattern may interfere
the throughput estimation at the application layer, causing inaccurate estimate, as
discussed in Section 2.2.3. It is worth noting that Li et al. [60] present an alternative
probing method for throughput estimation to tackle this problem. Unlike throug-
hput estimation methods that output a direct estimated value for the current avai-
lable network throughput, the proposed method adopts a probing mechanism si-
milar to TCP congestion control — the Additive-Increase / Multiplicative-Decrease
(AIMD) algorithm. Namely, it constantly increments the estimated value by an ad-
ditive increase term until the measured throughput is smaller than the throughput
estimate; in case of an overestimate, it imposes a multiplicative decrease on the esti-
mated value. To yield a stable throughput estimate, a smoothing function over the
estimate values is required.

Streaming clients cannot directly estimate the correct throughput when receiving
pushed video segments. Cherif et al. [155] introduce to use WebSocket [161] messa-
ging to improve throughput measurements, while an adaptation solution reduces
the startup delay using HTTP/2 server-push. The basic idea is to calculate the
throughput on the client from the elapsed time between WebSocket messages at the
start and the end of sending a video segment. They transport the WebSocket messa-
ges over HTTP/2, which allow a client and a server to use a single TCP connection
for both HTTP and WebSocket streams. As a result, the probing messages will
traverse the same network path as the video stream. Compared to the traditional
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WebSocket (over a dedicated TCP connection for throughput estimation), WebSoc-
ket over HTTP/2 provides higher precision in such a probing-based estimation.

Xiao et al. [158] observe that the throughput of a streaming session depends
on not only the network conditions between the server and the client but also the
network resource allocation of the servers. The distribution of streaming clients
together with the network capacity of servers is beneficial in estimating the trend
of available throughput variation in the long term. Provided the availability of
the server support, it can be integrated into an existing estimation approach for
improving the accuracy.

6.3 adaptation algorithm

Recently, a wide range of adaptation algorithms have been proposed to support
HAS. The adaptation algorithms make bitrate decisions primarily based on throug-
hput measurement or throughput estimate and/or client’s playback buffer occu-
pancy. In this section, we review the literature on adaptation algorithms, which
employ such as control theory [81, 153], machine learning [162], dynamic program-
ming [163], queuing theory [164, 165, 166], optimization techniques [31], fuzzy logic
[154], and various heuristics [78, 167, 29, 60, 30]. As we will see, the most existing
algorithms do not stabilize or do not effectively stabilize the client buffer dynamics,
and thus typically adopt a large buffer size of e.g., more than 30 s for 2 s video
segments, leading to a high streaming latency. In contrast, we propose an bitrate
adaptation for the effective stabilization of the buffer dynamics, in order to support
low-latency adaptive streaming.

6.3.1 Throughput-based Approach

A throughput-based adaptation method depends only or mainly on the throughput
to select the bitrate for the next video segment. It is challenging to optimize the
buffer size using this method. On one hand, the throughput estimate is prone to
inaccurate or even erroneous. On the other hand, the throughput may significantly
fluctuate due to network dynamics. Therefore, this method typically suffers from a
huge buffer size and/or severe bitrate variations, even though various algorithms
use heuristics to mitigate this situation.

The VLC media player plugin (DASH VLC plugin), developed by Müller and
Timmerer [78], enables the VLC media player2 to play DASH-based streaming. The
plugin employs a simple throughput-based approach for bitrate selection that takes
the mean of all throughput samples measured in the past as the estimated value
and selects the highest bitrate from the bitrate set less than or equal to it. Most
commercial streaming players appear to apply such a typical approach for bitrate
selection [29]. Thus, we take this approach as a reference approach for the perfor-
mance comparison in the present thesis.

Liu et al. [167] present a conservative algorithm for bitrate selection based on the
throughput measured during the reception of the last segment and the minimum
buffer level threshold for bitrate up-switching. The algorithm deploys a step-wise

2 VLC media player. https://www.videolan.org/vlc/index.html
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increasing but quick decreasing mechanism for bitrate switching to prevent buffer
underflows. To produce smoothed throughput measurements, the algorithm adopts
video segments of 10 s. An evaluation is performed using ns-23 simulation, without
a baseline approach. The averages of client buffer levels vary from 54 s to 110 s in
scenarios of competing artificial background traffic with various sending rates.

Jiang et al. [29] propose the adaptation algorithm FESTIVE, targeting three per-
formance metrics: maximizing the utilization of the network capacity, minimizing
the number and magnitude of bitrate switches, and maximizing application-layer
fairness between competing clients. FESTIVE aims to heuristically optimize these
metrics based on three key steps. First, the available throughput is estimated by
using the harmonic mean over a fixed number of last segment receptions. Second,
based on the estimation, FESTIVE selects a target video bitrate and performs a step-
wise bitrate switch. The execution of an up-switching is delayed to avoid frequent
bitrate switching. The delayed up-switching may lead to the under-utilization of
the network capacity that is controlled by resolving the trade-off between the utili-
zation and the number of bitrate switches. Third, competing clients may not sense
the presence of each other in the network and predict the wrong available throug-
hput, because buffer overflow causes the OFF-period during ON-OFF streaming
behaviors. FESTIVE randomizes the request time of video segments in the case of
buffer overflow to overlap the ON-period and to sense the presence of other com-
peting clients. The performance of FESTIVE is evaluated using 2 s video segments
and around 30 s buffer size in a custom emulation framework. The results reveal
that FESTIVE outperforms four commercial solutions with respect to all three con-
sidered performance metrics. We adopt FESTIVE as a baseline approach for the
performance evaluation presented in Chapter 4.

6.3.2 Buffer-based Approach

Huang et al. [30] argue that the throughput estimation is unnecessary during the
playback phase. They observe that accurate throughput estimation at the applica-
tion layer is challenging in video streaming when the network throughput is highly
variable. Their investigation suggests an alternative adaptation algorithm (BBA)
simply based on the buffer information. BBA uses a lower buffer threshold (cal-
led reservoir) for the minimum bitrate and a upper buffer threshold (called upper
reservoir) for the maximum bitrate to avoid underflow and overflow, respectively.
It defines the region between the reservoir and the upper reservoir as a flexible
region for bitrate switching called cushion, and linearly maps buffer occupancy to
bitrate for switching in the cushion. BBA is deployed into a large commercial stre-
aming service for experiments. A 10–20% improvement in the rate of rebuffering
is observed compared to the default algorithm of the streaming service, when the
experiments adopt 4 s video segment and a 240 s playback buffer. Since BBA is the
first buffer-based approach for bitrate selection and its performance was evidenced
by millions of real users in a commercial service, we use BBA as another baseline
approach for the performance evaluation presented in Chapter 4.

Spiteri et al. [31] offer a theoretical justification for using buffer-based adaptation
algorithms, by showing that a near-optimal algorithm within a utility optimization

3 The Network Simulator - ns-2. https://www.isi.edu/nsnam/ns/

https://www.isi.edu/nsnam/ns/
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framework requires only buffer information and no throughput estimate. The aut-
hors formulate bitrate adaptation as a utility optimization problem that rewards an
increase in the average video bitrate and penalizes potential rebuffering time. Using
Lyapunov optimization method [168], they derive an algorithm BOLA that decides
a bitrate for video segments by solving the optimization problem. The derivation
is based on the assumption that the buffer size is infinite. Thus, BOLA performs
better with larger buffers, although dynamic buffer sizing is integrated into the al-
gorithm to control the achievable performance. The authors limit the buffer size
to 25 s in experiments of 3 s video segment and evaluate the algorithm using trace-
driven simulation of mobile network. The performance of BOLA is within 84–95%
of the optimal utility and better than two algorithms introduced in the literature
with respect to the considered utility metric. BOLA is now part of dash.js since
version 2.0.0.

Buffer-based methods leverage the client playback buffer to avoid the challenge
on throughput estimation. Since these methods make bitrate decisions only based
on the buffer information, they also require a sufficiently large buffer to absorb
the fluctuation of the buffer occupancy incurred by the throughput variations and
the bitrate mismatch, as well as to map the available bitrates to the buffer levels.
Accordingly, the buffer usually need to accommodate 8–60 video segments.

6.3.3 Buffer- and Throughput-based Approach

As outlined above, adaptation methods solely using throughput or buffer occu-
pancy achieve the suboptimal QoE. Many adaptation algorithms attempt to opti-
mize the QoE, taking both into accounts. However, they are not suitable for low-
latency adaptive streaming due to a lack of explicit stabilization of client buffer
dynamics. Using a buffer size of more than 30 s (equivalently 15 video segments) is
generally observed in their performance evaluation.

Yin et al. [32] develop an optimization problem of bitrate adaptation for QoE
maximization and propose an adaptation algorithm using Model Predictive Cont-
rol (MPC). The algorithm can directly optimize a formally defined QoE objective
by solving the optimization problem. In the algorithm, the bitrate for the current
segment is selected based on a throughput estimation for the next few segments as
well as the buffer occupancy. But, its performance depends on the accuracy of such
a throughput estimation. The algorithm also requires significant offline optimiza-
tion to be performed outside of the client for an exhaustive set of scenarios. Last,
the streaming model on which the optimization problem relies does not consider
the network delay and the timing information influenced by it. This often results in
erroneous optimization especially in the case of low-latency streaming.

Batalla et al. [164] introduce an adaptation algorithm that decides the video bi-
trate based on the estimated probability of rebuffering events. The estimation of
the probability depends on a queuing model of the playback buffer using as input
the characteristics of segment download time. Through online computations, the
required threshold for buffer occupancy is determined to ensure a given rebuffe-
ring probability. The algorithm selects the highest bitrate that satisfies the buffer
occupancy threshold. However, the adaptation algorithm suffers significant com-
putational overhead. Beben et al. [165] exploit a pre-computed map for buffer
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occupancy to avoid heavy online computation, although the modification lessens
the effectiveness of the adaptation.

Sobhani et al. [154] propose an adaptation mechanism using fuzzy logic. In
response to throughput variations, the mechanism takes into consideration the avai-
lable throughput estimated by means of KAMA on past throughput measurements
as well as the buffer dynamics predicted by Grey Prediction Model [169] based on
recent buffer levels. The proposed system is evaluated in an emulated test bed with
competing flows and is compared to four baseline adaptation algorithms. Each seg-
ment represents 6 s video and is encoded in 17 bitrates from 100 kbps to 6000 kbps,
while the buffer level can reach above 35 s in experiments.

Mao et al. [162] argue that bitrate adaptation based on preset rules in the form
of fine-tuned heuristics fails to achieve the optimal performance across a broad set
of application scenarios. Consequently, they present Pensieve, a system for bitrate
adaptation using Reinforcement Learning (RL). Pensieve observes a set of states
including the throughput measurements and the download time for the last few
video segments, the available sizes of the next video segment, the current buffer
level, the number of segments remaining in the video, and the selected bitrate of
the last video segment, and feeds these values to a neural network model, which
outputs a bitrate decision. The decision policy is derived from training the neural
network through Asynchronous Advantage Actor-Critic (A3C) algorithm [170]. To
speed up the training process, a simple simulation environment is used that models
the dynamics of the client playback buffer. Pensieve is deployed on the server-side
to simply guide client bitrate selection, thereof, easily supporting a broad range
of heterogeneous clients; while direct client-side deployment needs a lightweight
method to reduce the computational and memory overhead.

6.3.4 Approach with Buffer Stabilization

Despite using throughput and buffer occupancy as inputs, most methods are unable
to support adaptive streaming with a small buffer size, as discussed above. Some
methods determine a video bitrate such that the buffer occupancy can be controlled
around a target level, thereof, being able to reduce the buffer size.

In the presence of competing clients, the ON-OFF streaming pattern may lead to
bitrate oscillation and unfairness, as discussed in Section 2.2.3. To tackle this pro-
blem, Li et al. [60] present Probe AND Adapt (PANDA), an adaptation algorithm
by devising two different steps other than conventional throughput-based adapta-
tion algorithm: throughput estimation and segment scheduling. PANDA probes
the available throughput using an AIMD-like algorithm, where the estimate value
slowly increases but aggressively decreases in case of the overestimation. In the
scheduling step, PANDA determines the requesting time for the next segment by
driving the buffer level towards a minimum reference level. The performance of
PANDA is however not explicit with respect to the number of bitrate switches. To
reduce the quality variation, Li et al. [163] use dynamic programming to solve a
utility optimization problem over a finite number of segments, and integrate the
algorithm into PANDA to determine the bitrate based on the throughput estimate
provided by PANDA. For the integration, an EWMA is used to smooth out the raw
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throughput estimation. The algorithm is evaluated in the ns-2 simulation and the
buffer size limits between 20 s and 50 s, using 2 s video segment.

In the context of live streaming, De Cicco et al. [81] investigate a commercial
High-Definition (HD) streaming service and identify that the service underutilized
the available throughput due to its conservative adaptation heuristic. They pre-
sent a server-side adaptation architecture to avoid delays of the client feedback,
thereof, providing a fast response to the adaptation dynamics. The main compo-
nent of the architecture is the controller (QAC) for adaptive live streaming system
designed by employing feedback control theory, without using any adaptation heu-
ristics. QAC chooses a PI controller to steer the occupancy of a sender buffer and
attempts to keep the sender buffer at a target level by selecting the video bitrate. In
the control loop, the sender buffer occupancy is taken as the feedback signal and
the throughput measurement is modelled as a disturbance. The key advantage of
using feedback control is to get a predictable system dynamics that can fulfill the
design goal such as settling time and steady state errors. As a result, the proposed
solution is able to maintain the buffer occupancy at the client around 15 s. The im-
provement compared to the commercial service is evidenced in scenarios including
step-like change of the throughput, square-wave varying throughput, and multiple
competing flows. We take QAC as a representative of the server-side adaptation
solution and use it as a baseline approach in the performance evaluation discussed
in Chapter 5.

The study by Tian and Liu [153] introduces an adaptation algorithm which com-
putes adjustment factors using buffer occupancy as feedback signal and selects a
video bitrate based on the adjusted throughput measurement or estimation. The
design goal of the algorithm is to achieve stable buffer occupancy around a target
buffer level and a smoothly increasing of video bitrate. The responsiveness of the
algorithm to highly varying throughput is demonstrated, when a target buffer level
is set to 20 s. The segment duration is not specified in the publication. The propo-
sed algorithm is similar in spirit to our work in adaptation algorithm. However, the
algorithm does not take into account the network delay, which is essential to the
design for low-latency streaming. Moreover, the algorithm has a set of configura-
tion parameters that does not allow for a straightforward tuning of the algorithm
for particular network environments.

Yadav et al. [166] model the streaming client as a queuing system, which al-
lows to calculate the expected buffer occupancy given a video bitrate, the estimated
throughput, and current buffer occupancy. Using this queuing model, they present
QUETRA, an adaptation algorithm which selects a video bitrate such that the buffer
occupancy converges to 50% of the maximum buffer level. As a result, the client
aims to keep the buffer occupancy away from the zero and maximum level, in or-
der to avoid playback stalls due to buffer underflows and the OFF-period of the
ON-OFF streaming pattern. For efficiency reason, a pre-computation of expected
buffer occupancy is required in the implementation of the algorithm. Through
experiments with various buffer sizes (30–240 s) and segment durations (2–5 s), it
demonstrates that the algorithm outperforms four considered baseline algorithms
in four different network profiles and seven video profiles.

These prior works reveal that buffer stabilization is important for low-latency
streaming. However, the main limiting factors of these works are two-fold. First,
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the algorithms do not explicitly incorporate the handling of the network delay in
their designs. Second, it does not allow for a straightforward configuration of the
algorithm parameters.

6.4 transport protocols

Video streaming has tight latency constraints, and data arriving too late is effectively
lost. Late arrivals of video data are detrimental to the QoE, as error occurrences of
video data are, which are generally due to packet losses. Streaming applications
run on top of transport protocols and ideally trust the transport layer to minimize
induced delays and to deliver an appropriate degree of reliability and timeliness.
These features offered by the transport protocols essentially rely on the error and
congestion control mechanisms implemented. Below, we will overview the research
efforts on both mechanisms. Our work is complementary to these efforts and will
benefit from a better error control and/or a better congestion control.

6.4.1 Error Control

TCP prefers reliability to timeliness and is designed to support fully reliability using
an Automatic Repeat reQuest (ARQ) method. In ARQ, the sender repeats the
transmission of data segments until obtaining acknowledgments from the receiver,
and initiates the retransmissions upon a timeout. Suchlike error control inevitably
comes at the price of unpredictable delay, and thus is infeasible for strict delay-
constraint flows. There are efforts on the error control at the application layer — e.g.,
Stream Control Transmission Protocol (SCTP) [171], Datagram Congestion Control
Protocol (DCCP) [172], Predictably Reliable Real-time Transport (PRRT) [38], Quick
UDP Internet Connections (QUIC) [173], and TCP Hollywood [174] — to support
the transport service features required by video delivery.

PRRT [38] introduces the concept of predictably reliability for delay-constrained
and loss-tolerant communications services. PRRT implements adaptive reliability
control under delay, reliability and throughput constraints, using so-called hybrid
ARQ, which combines ARQ and Forward Error Correction (FEC) to mutually com-
pensate for each other’s drawbacks. As a result, PRRT achieves capacity-approaching
error control on bidirectional packet-loss channels [139].

QUIC [173] is a transport protocol built atop UDP, and is designed to provide
security and reliability along with reduced connection and transport delay (versus
TCP). QUIC implements retransmissions and congestion control at the application
layer. Key features of QUIC include dramatically reduced connection establishment
time, improved congestion control, multiplexing without head-of-line blocking, and
FEC. A performance evaluation [175], however, shows that there is no significant
benefit to the QoE in ABS over QUIC.

On the other hand, novel streaming protocols are limited to be widely deployed
due to the transport-layer ossification [176, 177]: streaming applications is restricted
to use either TCP or UDP at the transport layer, neither of which is well-suited to
their needs. TCP Hollywood [174] reduces the overall delay, by removing head-of-
line blocking and offering partial reliability. It implements out-of-order delivery and
inconsistent retransmissions to meet the application-specific latency bounds. The
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modification of TCP Hollywood compared to the standard TCP is constrained for
the ease of implementation and wide deployment.

6.4.2 Congestion Control

Congestion control prevents the network from being overwhelmed by excess data
and serves competing flows for a fair share of the network. As a general-purpose
transport protocol, TCP is inherently equipped with a congestion control mecha-
nism. Most variants of TCP to date, however, are not optimized for video flows,
and many streaming services are exploring various congestion control algorithms
for improvements.

Akamai4 adopts FAST TCP [39] for improving the throughput of video flows,
instead of mainstream TCP variants such as TCP CUBIC [143] and TCP New Reno
[178], which use packet loss as congestion signal. Loss-based congestion controls
tend to completely fill the network buffer at a bottleneck link and induce a large
queuing delay that adversely affects the performance of all flows on the network. In
contrast, FAST TCP uses queuing delay (typically characterized by RTT) as conge-
stion signal and aims towards high speed wide-area networks. The deployment of
FAST TCP shows the enhancement in average video bitrate and rebuffering [179].

Recently, Google and YouTube deploy a variant of TCP congestion control — Bott-
leneck Bandwidth and Round-trip propagation time (BBR) [180] — on their services.
BBR models the network path using the throughput and RTT at which the network
delivers the most recent flight of outbound data. By dynamically estimating the
maximum throughput and the minimum RTT, BBR finds the optimal operation
point to respond to actual congestion, rather than packet loss.

Another variance of TCP is Compound TCP [181], which detects network conge-
stion based on both packet loss and queuing delay. Compound TCP is the default
congestion control used by Microsoft Windows. It characterizes low variations of
network delay as the sign of the under-utilization for the network, and improves
the fairness and the throughput by being aggressive only when the bottleneck link
of the network is underutilized.

When adopting a congestion control algorithm, it is important to avoid creating
interactions between congestion control and video bitrate adaptation, as Section 2.2.3
have discussed that the interactions may cause a downward spiral in video quality.

6.5 video encoding schemes

Recent advancement in camera, display, and image processing technology has ge-
nerated a paradigm shift from traditional 2D video to MVV technology. Although
state-of-the-art video technologies still encircle ubiquitous 2D video, the next big
step toward in video technology is destined to be MVV display and distribution. In
the following, we outline video encoding schemes according to two cases: single-
view (2D) video and multi-view video.

4 Akamai Techonologies. https://www.akamai.com/

https://www.akamai.com/
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6.5.1 Single-View Video

The recent rapidly developing ABS commonly uses single-layer coding like Advan-
ced Video Coding (H.264/AVC) and High Efficiency Video Coding (H.265/HEVC).
Nevertheless, the notion of adaptive quality for video streaming over Internet was
first introduced, when video quality was adapted by using layered coding [182, 46].
A modern example of layered coding is the Scalable Video Coding (SVC) standard,
which is an amendment to AVC standard and provides temporal, spatial, and image
quality scalability [183].

With single-layer coding, each video segment is encoded into multiple versions
according to video bitrate, each of which represents the same video as an indepen-
dent and separate file but with different image quality. One adapts the video quality
by switching the version i.e., by requesting a different file. Layered coding, on the
other hand, encodes the video segment into a base layer and one or more enhan-
cement layers in a hierarchical and cumulative way. The base layer represents the
video with the lowest video bitrate, and each enhancement layer contains only the
additional information for the next higher bitrate compared to the preceding layer.
As receiving the more layers, the client reconstructs the video with the higher video
bitrate. With such a manner, layered coding offers more resilience toward rebuffe-
ring and quality variation than single-layer coding, because it allows progressive
video reconstruction — i.e., the client always first downloads the base layer, and
optionally requests enhancement layers when enough throughput is available.

Though, there are two trade-offs that need to be considered in case layered co-
ding is employed in an ABS solution. First, layered coding introduces extra enco-
ding overhead. For example, SVC requires about 20% more bits to achieve the same
quality as AVC, and this overhead is content dependent [184]. Also, the overhead
increases along with the higher video bitrate [185]. Hence, video streaming today
prefers single-layer coding over layered coding. In addition, since the bandwidth
cost dominates the cost of streaming services, single-layer coding is currently more
favored in the industry [184]. Second, the flexibility of requesting enhancement
layers comes at the cost of increased requesting traffic, as several requests are nee-
ded per video segment. This should be taken into account in scenarios with high
network delay. It implies that layered coding adapts more easily to highly variable
throughput (such as in mobile scenarios) when a small client buffer size is used.

6.5.2 Multi-View Video

MVV is an emerging video form enabled by advances in multi-camera capturing
systems, stereoscopic display technologies, as well as image-based modeling and
rendering algorithms. With MVV, a scene is simultaneously recorded by multiple
cameras from different viewpoints (angles). The application domains of MVV is
diverse, and one example is Free Viewpoint Video (FVV), which uses multi-camera
systems to visualize the scene from arbitrary viewpoints [186]. FVV allows a user
to interactively navigate natural scenes (captured videos of real-world scenes) si-
milarly to the way synthetic scenes (computer graphics-generated scenes) are inte-
racted with. To support a seamless transition and a similar image quality across
all views, view-rendering algorithms synthesize virtual views of real-world scenes
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at locations between and around originally-captured viewpoints by warping and
blending a number of captured camera streams.

The aforementioned 2D video coding standards — although not specifically de-
signed for the compression of MVV — are readily applicable to encode MVV by tre-
ating each camera stream independently as a conventional 2D video. This strategy,
however, makes MVV distribution consume several times larger throughput than
2D video, since it contains multiple separate video streams captured by multiple
cameras. Furthermore, the throughput consumption will increase, as the number
of views increases. In practice, such a linearly increasing overhead is redundant,
because all views represent the same scene but from different perspectives. It im-
plies that the inter-view statistical dependency also increases along with the incre-
ase of view numbers. Taking advantage of the redundancies between the different
views in MVV, an efficient inter-view prediction is usually adopted to reduce the
throughput overhead. For instance, the Multi-view Video Coding (MVC) standard
[187, 188] specifically targets efficient compression of multi-camera video recordings
by exploiting the inter-view, spatial and temporal dependencies to improve the rate-
distortion performance. MVC is largely based on the existing H.264/AVC standard
and extends it with the optimized compression on inter-view and intra-view pre-
diction dependencies.

In this thesis, we focus merely on bitrate adaptation using single-layer coding,
however it should be noted that many aspects of video encoding profoundly influ-
ence the design and the performance of bitrate adaptation. For example, the bitrate
variation caused by the VBR encoding as discussed in Section 2.2.4 affects the buffer
level the client needs to preserve, and the granularity of the available video bitrates
for adaptation determines the effect of bitrate switches.

6.6 global optimization

Most bitrate adaptation attempts to optimize purely the performance of a single
client, since it lacks of a global view of all clients and network conditions. Even a
near-ideal bitrate adaptation is not sufficient, because there is significant variability
in network and CDN performance [189]. A global optimization [84] is proposed
to alleviate these concerns by coordinating actions across multiple clients. For in-
stance, a global optimization is able to proactively allocate a better performing CDN
to clients before they suffer from congestion links. Results show that the global con-
troller provides an improvement of average video bitrate by 70%. CDN federation
and peer-assisted hybrid CDN are two emerging approaches to augment existing
CDN infrastructure that have recently attracted significant industry attention. A
study [190] analyzes the potential benefits of both approaches based on content,
regional and peak-time effects, viewing behavior, and interest predictability. These
prior works are complementary and beneficial to our contributions.
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Internet-based streaming already became the main form of video distribution and
its ecosystem is currently evolving extremely fast. The classical broadcasting servi-
ces on the other hand, are being transformed, complemented, and partially replaced
by emerging online-television services that aim to deliver superior video quality to
users, while offering high interactivity, customization, and interconnection. Due to
the absence of QoS guarantees, Internet-based streaming needs to adapt its services
to the varying network conditions. In particular, while wireless and mobile video
traffic are persistently increasing their share of Internet traffic, highly variable con-
nectivity of wireless networks, especially in mobile environments, intensifies the
variability of network conditions severely. Significant progress has been made in
optimizing the streaming performance and adaptation solutions. The viewing ex-
perience however, is not comparable to classical broadcasting: the most notorious
impairments include frequent rebuffering events, high latency of video playback,
as well as low and/or heavily varying image quality. Additionally, the rising de-
mand for reduced latency and increased throughput, as well as the soaring user-
expectations for a better viewing experience make the issues more challenging.

In contrast to existing efforts that focus on adaptation solutions employing excess
buffer sizes in the range of several tens of seconds, we propose a novel approach
for adaptive streaming that minimizes the required buffer sizes on clients in order
to fulfill the requirements of live video broadcasting. Following this design goal,
we first analyze the elements influencing the streaming latency and identify the
buffering as the dominant element. We introduce an analytical model of adaptive
streaming for buffer size and derive the theoretical lower bound of the buffering
size and an approximate minimum, in order to determine a reasonable low latency
for streaming systems. Based on the model, we implement a simulation test-bed for
benchmark comparisons. Then, we develop an adaptation algorithm for low-latency
adaptive streaming, targeting the upper bound of the latency from the user’s per-
spective. The algorithm models buffer dynamics in a way motivated by the analyti-
cal model for buffer size and performs quality-optimized bitrate selection based on
the stabilization of client buffer dynamics. It is evaluated in simulated and realis-
tic network environments and outperforms the corresponding baseline algorithms
with respect to the considered performance metrics. Finally, we succeed in furt-
her improvements for low-latency streaming, by designing a server-side adaptation
architecture to minimize the feedback delay in the control loop of the bitrate adap-
tation and optimizing a transport-layer mechanism to support real-time streaming
with predictable reliability and high throughput utilization. The advancement of
both steps is beneficial for stabilizing the buffer dynamics at the client. Through
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intensive experiments, significant improvements of our solutions are demonstrated
in terms of user-perceived quality.

This thesis is addressing adaptation solutions in the field of low-latency adaptive
streaming and our results show that buffer stabilization in an adaptation design
is a principal criterion to push the streaming latency to its limit. We believe the
design principle will continue helping low-latency streaming solutions to deal with
the increasingly challenging environments in the future. There are still many open
questions in this field, and more research efforts are needed for applications based
on this work to become commonplace in the future Internet. We envision several
directions for future work based on the findings of this thesis. First, a coordina-
tion between the global adaptation and the individual adaptation on clients has the
potential of greatly boosting the QoE of all users as well as a single user, e.g., by
allowing load balancing and resource allocation based on large-scale measurement
feedback. Second, the evolution of adaptation solutions will need to be accompa-
nied by additional work on advanced video coding and the optimization of video
parameters, e.g., regarding the bitrate variation across video segments and the gra-
nularity of available bitrates. Third, recent trends towards VR and AR as well as
MVV drive the extension of adaptive streaming in these fields, where further opti-
mization techniques are needed to reduce the vast throughput requirements e.g., by
elaborately selecting the required content and only distributing those to clients. Las-
tly, the design guide of adaptation solutions benefits from a better understanding
of the QoE for adaptive streaming, including system, context, and human factors.
An important area of future research should therefore strive to build a holistic QoE
model and a corresponding monitoring system covering all relevant QoE factors.
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a.1 derivation of approximation for minimum buffering size

We derive the minimum buffer level Bdeg
min of Equation 3.24 based on the number of

the segments k which are completely received during a network degradation with
a duration Ddeg.

k = 0 : No video segment can be completely received during Ddeg. The time
required for the reception of a complete segment within Ddeg is ∆t + r

Cdeg Tc, and
k = 0 is the case that this time is bigger than Ddeg, i.e., Ddeg < ∆t + r

Cdeg Tc. However,
for continuous playback, the video in the buffer needs to last until the reception of
at least one segment completes. Therefore, the reception finishes after the network
degradation. Let y be the time required to receive the portion of a segment (or the
entire segment) after the network degradation. We have(

Ddeg − ∆t
)
+
· Cdeg + y · Cdeg

a = r · Tc . (A.1)

The function (·)+ of the term
(

Ddeg − ∆t
)
+

takes into account the case, in which the
reception of the segment starts after the network degradation if Ddeg ≤ ∆t; namely,
in this case y represents the time for receiving the entire segment after the network
degradation. Then the video required in the buffer for continuous playback prior
to the network degradation starts can be expressed as

Bdeg
min =max

{
Ddeg, ∆t

}
+ y

=max
{

Ddeg, ∆t
}
+

r · Tc − Cdeg ·
(

Ddeg − ∆t
)
+

Cdeg
a

,

Ddeg < ∆t +
r

Cdeg Tc

, (A.2)

where the term max{·} considers the case of Ddeg ≤ ∆t.
k = 1 : Only one segment is completely received within Ddeg. So we have ∆t +

r
Cdeg Tc ≤ Ddeg < 2 ·

(
∆t + r

Cdeg Tc

)
. Note that the client may initiate a request to

receive an additional segment within Ddeg but completes the reception after the
network degradation. Let

Ddeg
res = Ddeg − k ·

(
∆t +

r
Cdeg Tc

)
(A.3)
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denote the remaining time of Ddeg after the entire reception of all k segments during
the time period Ddeg. Similar to the case of k = 0, the time y required to finish the
reception of the additional segment after the the network degradation fulfills(

Ddeg
res − ∆t

)
+
· Cdeg + y · Cdeg

a = r · Tc .

Then we can compute the minimum buffer level as

Bdeg
min =∆t +

r
Cdeg Tc +

(
max

{
Ddeg

res , ∆t
}
+ y− Tc

)
+

,

∆t +
r

Cdeg Tc ≤ Ddeg < 2 ·
(

∆t +
r

Cdeg Tc

) , (A.4)

where

Ddeg
res = Ddeg −

(
∆t +

r
Cdeg Tc

)
and

y =
r · Tc − Cdeg ·

(
Ddeg

res − ∆t
)
+

Cdeg
a

. (A.5)

The playback time of video data in the buffer should cover the time required for
receiving all segments, including ones whose receptions complete within Ddeg and
the potential one whose reception finishes after the network degradation. Note that
video data in the buffer increases by one segment duration Tc after the complete re-
ception of a segment and the increase compensates the time required for receiving
the following segments. Therefore, the computation of Bdeg

min in Equation A.4 sub-

tracts Tc from the time required for the following reception max
{

Ddeg
res , ∆t

}
+ y.

The function (·)+ ensures that Bdeg
min is at least ∆t + r

Cdeg Tc, such that the client
can receive one entire segment and fill the buffer with Tc seconds video data, if
max

{
Ddeg

res , ∆t
}
+ y < Tc e.g., due to a sufficient large Cdeg

a .

k = 2 : The duration of the network degradation needs to be 2 ·
(

∆t + r
Cdeg Tc

)
≤

Ddeg < 3 ·
(

∆t + r
Cdeg Tc

)
, such that the client can complete the reception of exact

two segments within Ddeg. Analog to the case of k = 1, we have

Ddeg
res = Ddeg − 2 ·

(
∆t +

r
Cdeg Tc

)
and (

Ddeg
res − ∆t

)
+
· Cdeg + y · Cdeg

a = r · Tc ,

then

y =
r · Tc − Cdeg ·

(
Ddeg

res − ∆t
)
+

Cdeg
a

.

Because the increase of the buffer level (by Tc) due to the complete reception of
a segment (i.e., the first segment in this case) compensates for the decrease of the
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buffer level (by ∆t+ r
Cdeg Tc) during the reception of the next segment (i.e., the second

segment), the minimum buffer level prior to the network degradation is

Bdeg
min =∆t +

r
Cdeg Tc + ∆t +

r
Cdeg Tc − Tc+(

max
{

Ddeg
res , ∆t

}
+ y− Tc

)
+

=2 ·
(

∆t +
r

Cdeg Tc

)
− Tc+(

max
{

Ddeg
res , ∆t

}
+ y− Tc

)
+

,

2 ·
(

∆t +
r

Cdeg Tc

)
≤ Ddeg < 3 ·

(
∆t +

r
Cdeg Tc

)
. (A.6)

k = K : Because exact K segments are totally received within Ddeg, it holds that

K ·
(

∆t +
r

Cdeg Tc

)
≤ Ddeg < (K + 1)

(
∆t +

r
Cdeg Tc

)
. (A.7)

Similarly, we have

Ddeg
res = Ddeg − K ·

(
∆t +

r
Cdeg Tc

)
and (

Ddeg
res − ∆t

)
+
· Cdeg + y · Cdeg

a = r · Tc ,

then

y =
r · Tc − Cdeg ·

(
Ddeg

res − ∆t
)
+

Cdeg
a

.

Accumulating the increase and the decrease of the buffer level due to the reception
of all K segments, we obtain the minimum buffer level as

Bdeg
min =∆t +

r
Cdeg Tc + ∆t +

r
Cdeg Tc − Tc + · · ·︸ ︷︷ ︸

K−1

+

(
max

{
Ddeg

res , ∆t
}
+ y− Tc

)
+

=K ·
(

∆t +
r

Cdeg Tc

)
− (K− 1) · Tc+(

max
{

Ddeg
res , ∆t

}
+ y− Tc

)
+

,

K ·
(

∆t +
r

Cdeg Tc

)
≤ Ddeg < (K + 1)

(
∆t +

r
Cdeg Tc

)
. (A.8)

Now, we derive the number of the received segments K within Ddeg based on the
inequalities in Equation A.7. We can formulate K as follows based on Ddeg − K ·(

∆t + r
Cdeg Tc

)
≥ 0 and Ddeg − (K + 1)

(
∆t + r

Cdeg Tc

)
< 0, respectively:

K ≤ Ddeg

∆t + r
Cdeg Tc

, (A.9)
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K >
Ddeg

∆t + r
Cdeg T

− 1 . (A.10)

Because K is a non-negative integer, by combining Inequation A.9 and Inequa-
tion A.10 we have

K =

⌊
Ddeg

∆t + r
Cdeg Tc

⌋
. (A.11)

Considering the above cases, we can formulate the minimum buffer level required
for continuous playback in case of the network degradation with a duration Ddeg as

Bdeg
min =K ·

(
∆t +

r
Cdeg Tc

)
− (K− 1)+ · Tc+(

max
{

Ddeg
res , ∆t

}
+ y− Tc|K>0

)
+

, (A.12)

where

K =

⌊
Ddeg

∆t + r
Cdeg Tc

⌋
,

Ddeg
res = Ddeg − K ·

(
∆t +

r
Cdeg Tc

)
,

y =
r · Tc − Cdeg ·

(
Ddeg

res − ∆t
)
+

Cdeg
a

,

and

Tc|K>0 =

Tc K > 0

0 else
.
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a.2 proof of minimum quantization error

In the following we give a proof of Inequality 4.6; i.e., we show that the bitrate
selection of BDS (Equation 4.5) minimizes the two-fold quantization error: i.) devi-
ation of the nominal bitrate (R) from the average bitrate of the segment ( SR

Tc
) due to

VBR encoding and ii.) deviation of the desired bitrate (r) from the nominal bitrate.
Assume ri is the desired bitrate for segment i that minimizes the buffer deviation.
Cf. Equation 4.5, the desired bitrate ri can be calculated as

ri = arg min
r∈R

∣∣∣∣be
i−1 + Tc −

(
r · Tc

ai
+ ∆ti

)
− βre f

∣∣∣∣ . (A.13)

Then, we have

0 = be
i−1 + Tc −

(
ri · Tc

ai
+ ∆ti

)
− βre f , (A.14)

and thus obtain the desired bitrate ri with

ri =
(
be

i−1 + Tc − ∆ti − βre f
)
· ai

Tc
. (A.15)

On the other hand, Equation 4.5 for calculating the nominal bitrate Ri of segment i
can be reformulated as

Ri = arg min
R∈R

∣∣∣∣∣be
i−1 + Tc −

(
SR

i
ai

+ ∆ti

)
− βre f

∣∣∣∣∣
= arg min

R∈R

∣∣∣∣∣be
i−1 + Tc − ∆ti − βre f −

SR
i

ai

∣∣∣∣∣
= arg min

R∈R

∣∣∣∣∣
(

be
i−1 + Tc − ∆ti − βre f −

SR
i

ai

)
· ai

Tc

∣∣∣∣∣
= arg min

R∈R

∣∣∣∣∣(be
i−1 + Tc − ∆ti − βre f

)
· ai

Tc
−

SR
i

Tc

∣∣∣∣∣

. (A.16)

By substituting ri from Equation A.15 into Equation A.16, we get

Ri = arg min
R∈R

∣∣∣∣∣be
i−1 + Tc −

(
SR

i
ai

+ ∆ti

)
− βre f

∣∣∣∣∣
= arg min

R∈R

∣∣∣∣∣ri −
SR

i
Tc

∣∣∣∣∣
. (A.17)

This implies that the bitrate selection of BDS is equivalent to the bitrate selection for
minimizing the deviation of the average bitrate from the desired bitrate. Namely,
given a set of nominal bitrates of the video R and Ri computed with Equation 4.5,
we have

∀R ∈ R and R 6= Ri :

∣∣∣∣∣ri −
SRi

i
Tc

∣∣∣∣∣ <
∣∣∣∣∣ri −

SR
i

Tc

∣∣∣∣∣ , (A.18)

because of
∀R and R′ ∈ R : R 6= R′ ⇐⇒ SR

i 6= SR′
i . (A.19)
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a.3 publications

This appendix contains the publication list of the author of the present thesis.

Included Publications

The main contributions included in this thesis draw heavily on the following publi-
cations in the field of video streaming:

• Yongtao Shuai and Thorsten Herfet. Towards Reduced Latency in Adaptive
Live Streaming. In Proceedings of the IEEE Consumer Communications and Net-
working Conference (CCNC), Las Vegas, USA, January 2018.

• Yongtao Shuai and Thorsten Herfet. On Stabilizing Buffer Dynamics for Adap-
tive Video Streaming with a Small Buffering Delay. In Proceedings of the IEEE
Consumer Communications and Networking Conference (CCNC), Las Vegas, USA,
January 2017.

• Yongtao Shuai and Thorsten Herfet. A Buffer Dynamic Stabilizer for Low-
Latency Adaptive Video Streaming. In Proceedings of the IEEE International
Conference on Consumer Electronics - Berlin (ICCE-Berlin), Berlin, Germany, Sep-
tember 2016.

• Yongtao Shuai and Thorsten Herfet. Improving User Experience in Low-
Latency Adaptive Streaming by Stabilizing Buffer Dynamics. In Proceedings
of the IEEE Consumer Communications and Networking Conference (CCNC), Las
Vegas, USA, January 2016.

• Yongtao Shuai, Goran Petrovic, and Thorsten Herfet. OLAC: an Open-Loop
Controller for Low-Latency Adaptive Video Streaming. In Proceedings of the
IEEE International Conference on Communications (ICC), London, UK, June 2015.

• Yongtao Shuai, Goran Petrovic, and Thorsten Herfet. Open-Loop Rate Control
for Adaptive Video Streaming. In Proceedings of the IEEE Consumer Communi-
cations and Networking Conference (CCNC), Las Vegas, USA, January 2015.

• Yongtao Shuai, Goran Petrovic, and Thorsten Herfet. Server-Driven Rate Con-
trol for Adaptive Video Streaming using Virtual Client Buffers. In Proceedings
of the IEEE International Conference on Consumer Electronics - Berlin (ICCE-Berlin),
Berlin, Germany, September 2014.

• Yongtao Shuai, Manuel Gorius, and Thorsten Herfet. Low-Latency Dynamic
Adaptive Video Streaming. In Proceedings of the IEEE International Symposium
on Broadband Multimedia Systems and Broadcasting (BMSB), Beijing, China, June
2014.

Supplemental Publications

The following publications are related with video streaming, but are not considered
in the presented thesis:
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• Jochen Miroll, Yongtao Shuai, and Thorsten Herfet. Network Delay Estima-
tion in Reverse Genlock Synchronized Display Walls. In 15. ITG Fachtagung
für elektronische Medien (Dortmunder Fernsehseminar), Dortmund, Germany, Fe-
bruary 2013.

• Manuel Gorius, Yongtao Shuai, and Thorsten Herfet. Dynamic Media Stre-
aming with Predictable Reliability and Opportunistic TCP-Friendliness. In
Proceedings of the IEEE Consumer Communications and Networking Conference
(CCNC), Las Vegas, USA, January 2013.

• Manuel Gorius, Yongtao Shuai, and Thorsten Herfet. Dynamic media strea-
ming over wireless and mobile IP networks. In Proceedings of the IEEE Internati-
onal Conference on Consumer Electronics - Berlin (ICCE-Berlin), Berlin, Germany,
September 2012.

• Manuel Gorius, Yongtao Shuai, and Thorsten Herfet. Dynamic media strea-
ming under predictable reliability. In Proceedings of the IEEE International Sym-
posium on Broadband Multimedia Systems and Broadcasting (BMSB), Seoul, Korea,
June 2012.

• Manuel Gorius, Yongtao Shuai, and Thorsten Herfet. Predictably Reliable
Media Transport over Wireless Home Networks. In Proceedings of the IEEE
Consumer Communications and Networking Conference (CCNC), Las Vegas, USA,
January 2012. (Best Student Paper)
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