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Abstract 

Cured in place pipe (CIPP) is one of the trenchless methods of pipe rehabilitation, by inserting a new 

polymeric liner inside the host pipe. Different abnormalities may occur during manufacturing, curing, 

inserting and operation in CIPP, which may reduce its efficiency; therefore regular inspection is 

necessary. Nowadays these inspections are only through destructive methods. In this thesis, the non-

destructive testing (NDT) is applied, such as microwaves, terahertz and ultrasound immersion 

techniques for investigation these abnormalities. 

As the CIPP is exposed to water after installation, the effect of hydrothermal aging was investigated 

here. The aging was performed by immersion of CIPP samples in double distilled water at 65 °C until 

the samples get saturated. The saturation process was controlled through weighing. The inspection of 

aging was performed via comparison of optical microscopic images before and after aging and also 

through nanoindentation tests. It was shown that the mechanical aging is the reason of the mechanical 

properties degradation. Moreover, microwaves and terahertz techniques could distinguish aged 

samples from the unaged ones. These methods and ultrasound technique could detect the insufficient 

curing and geometrical defects in CIPP. Besides, the thickness measurement through these methods 

was possible. 

In summary NDT has a good outlook for analysis of CIPP and in the future it can be an alternative to 

destructive testing in this region. 
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Zusammenfassung 

Cured in place pipe (CIPP) ist eine Rohrsanierungsmethode, bei der ein Polymerschlauch in das 

Altrohr eingeführt wird. Bei der Herstellung, Aushärtung, Einbringung und dem Betrieb von CIPP 

können verschiedene Auffälligkeiten auftreten, die die Effizienz von CIPP beeinträchtigen können und 

eine regelmäßige Überprüfung  erforderlich machen. Heutzutage werden diese Inspektionen nur mit 

zerstörenden Methoden durchgeführt. In dieser Arbeit wurden zerstörungsfreie Methoden (ZfP) wie 

Mikrowellen, Terahertz und Ultraschall eingesetzt, um solche Auffälligkeiten zu untersuchen. 

Da das CIPP nach der Installation Wasser ausgesetzt ist, wurden in dieser Arbeit unter anderem die 

Effekte der Alterung untersucht. Die hydrothermale Alterung erfolgte durch Eintauchen der CIPP-

Proben in doppelt destilliertem Wasser bei 65 °C, um die Proben vollständig mit Wasser zu sättigen. 

Dieser Prozess wurde durch Wägen überprüft. Die Untersuchung der Alterung erfolgte durch 

Vergleich ihrer lichtmikroskopischen Bilder vor und nach der Alterung sowie durch 

Nanoindentationstests. Hierdurch konnte gezeigt werden, dass die mechanische Alterung der Grund 

für die Verschlechterung der mechanischen Eigenschaften ist. Terahertz- und Mikrowellenverfahren 

konnten die gealterten Proben von nicht gealterten Proben unterscheiden. Außerdem waren die 

Dickenmessung, der Nachweis der unzureichenden Aushärtung und der geometrischen Defekte im 

CIPP mittels dieser Techniken und dem Ultraschallverfahren möglich. 
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1 Introduction 

 Renewal systems of sewer pipelines 1.1

Buried pipelines may exhibit damage after a while because of pressure, corrosion, aging, erosion, etc.. 

The renewal process of pipes, regardless of their material and damage can be divided into 

replacement, repair and rehabilitation. 

 Replacement 

Replacement means exchanging the existing pipe with a new pipe. The new pipe offers a new canal 

that does not depend on the existing pipe for its structural performance [Allouche 2012; Sokoll 2009].  

 Repair 

Repair of sewer pipelines can result from gradual deterioration in localized areas of the sewer line, 

external damage or other unexpected and rapid deterioration of conditions within the sewer. The goal 

of repair actions is either to restore the sewer to an operating condition or to deal with localized 

deterioration. The main difference between repair and rehabilitation is that repair is temporary until a 

more complete rehabilitation or replacement can be carried out.  

Repair of a damaged section or a failure of pipes usually focuses on taking only remedial action for 

one or two sections of the pipe. This solution is often in emergency conditions and then will be 

completed with rehabilitation [Allouche 2012; Sokoll 2009]. 

 Rehabilitation 

Pipeline sewers rehabilitation represents a more extensive or deliberate effort to renew portions of a 

sewerage system. The focus of this discussion is on techniques that can be carried out without any 

trenching to expose the sewer line. As shown in Fig. 1, various rehabilitation methods could be used 

[Allouche 2012; Sokoll 2009]. 

 

Fig. 1: Rehabilitation approaches for sewer pipelines 

These trenchless methods are frequently used to rehabilitate deteriorated sewer mains, seal leaky 

joints, cracks and to repair service laterals [Manavipour 2014].  

Cured in place pipe (CIPP) is a member of the family of trenchless rehabilitation methods that enables 

the renewal of a buried pipe without a full excavation of the ground. CIPP are mainly thermosetting 
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polymers, which are inserted into the host pipe by pulled in place method or by inverting method 

under water or air pressure when the resin is flexible. After that they will be cured in the pipe. 

Therefore it is named ―cured in place pipe‖ [Matthews 2018]. Fig. 2 shows a CIPP liner during 

installation.  

 

Fig. 2: Installation of CIPP in pipeline through pulled in place [Dilg 2007] 

A project of CIPP includes a diversity of investigative, design, planning and execution phases. When a 

pipeline has been identified as needing rehabilitation, it is necessary to find out if the CIPP process is a 

suitable candidate for rehabilitation. CIPP is generally available in diameters of 0.1 to 3 m [Matthews 

2011]. 

 Historical background of cured in place pipe 1.1.1

The first known use of a CIPP lining was carried out in 1971 in the relining of 70 m length of the 

Marsh Lane Sewer in Hackney, East London. This 100 years old brick egg-shaped sewer had 

dimensions of 1.175 m×0.610 m (height × middle width).  

Eric Wood, the inventor of this method, was supported by entrepreneurs Doug Chick and Brian 

Chandler. Following a successful trial, they established the company Insituform Pipes and Structures, 

Ltd. and continued to market the technology and made improvements in the materials, preparation and 

application of the technology [Allouche 2012].  

 Cured in place pipe materials 1.1.2

CIPP consists of two main parts: tube construction and resin. 

Tube construction: CIPP tube construction makes of needled polyester felt, which serves only as a 

carrier for the resin. It means, the resin is the dominant contributor to the mechanical properties of the 
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system. Other forms of tube construction entered the marketplace in the U.S. during the 1990s. They 

involved inclusion of reinforcing materials such as fiberglass, aramid fibers or carbon fibers in some 

configuration. The reinforcement positions at selected points within the thickness of the tube wall or 

the wall may consist primarily of braided reinforcing layer(s). The needled felt tube is most commonly 

made of a non-woven needled felt fabricated with polyester fibers. The non-woven felt has little 

reinforcing capability. Therefore, the strength of a CIPP liner can be increased by using fiber-

reinforced CIPP and woven CIPP [Westaway 2001; Zhao 2005]. 

Resin: There are three types of thermoset resins, which are well suited for usage in CIPP applications. 

These are unsaturated polyester (UP), vinyl ester and epoxy resins. 

The most commonly used resin is UP, which is convenient and economic for most normal applications 

additionally it has good corrosion resistance to normal sewage conditions. Isophthalic polyester resins, 

used in more than 80% of the CIPP market worldwide, are the most frequently used type of 

unsaturated polyester resins (UPRs). These resins are usually with average value of reactivity, rigid, 

and corrosion-grade with a high viscosity when compared to standard laminating resins. They 

normally contain fumed silica to help prevent resin drainage from the upper portion of the CIPP during 

the curing process. Due to their lower cost in comparison with vinyl ester and epoxy resins and an 

acceptable level of water tightness and chemical resistance, they are a suitable choice for most 

municipal sewer applications. Iso-polyesters impregnate CIPP materials can be cured even when 

ambient temperatures drop to near or below the freezing point [Matthews 2011]. 

One of the other types of polyester resins used in CIPP is polyester resin based on terephthalic acid. It 

has higher tensile toughness and a higher heat distortion temperature than standard polyester resins. 

But their production requires higher processing temperatures, pressures and cycle times, which make it 

more expensive. Another type of polyester resin is orthophthalic anhydride, which has been used in 

Europe. Because this type of resin is viewed as a low quality resin choice and it is not capable of 

meeting the chemical resistance requirements of ASTM F1216, it is not currently used in CIPP 

applications in North America. 

Polyester resins based on bisphenol fumarate offer outstanding resistance to caustic and oxidizing 

environments, applied for sewer lines requiring a high degree of chemical and temperature resistance 

[Allouche 2012]. Epoxy resins are also used in CIPP applications. The epoxy resins are more 

expensive, which is why they are mainly used in pressure pipes and potable water applications. They 

can also be used where it is important to avoid the release of styrene. Vinyl ester resins are typically 

used in harsh environment, which need improved chemical and temperature resistance. They can 

provide better initial and retained structural properties than the UPRs and they are significantly more 

expensive than the standard polyester resins. A less-used variant of the vinyl ester resin is a urethane-

modified vinyl ester resin [Penders 2012]. 
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In some CIPP there is a coating part, which is a sacrificial layer of polyurethane to hydrolyze over the 

time considered. Nowadays, diverse resistant coating layers are used such as different polyurethane 

(PU) or polyethylene (PE) materials [Allouche 2012; Penders 2012]. 

 Installation of cured in place pipe 1.1.3

When the impregnated CIPP is ready, it is transported into the host pipe to be relined. In order to avoid 

thermal curing of CIPP during the transport to the site, they are kept in refrigerated storage or in a 

chilled condition [Sterling 2016].  

The installation can be done either by inversion of the CIPP along the host pipe using water or air 

pressure or by pulling the CIPP into place and then inflating it to a close fit using water or air [Sterling 

2010; Matthews 2011] (see Fig. 3). 

  

Fig. 3: CIPP Installation, a) inversion, b) pull-in [Allouche 2012] 

After the uncured CIPP is in place and held tightly against the host pipe, the thermosetting polymer is 

cured using hot water, steam or ultraviolet (UV) light causing the crosslinking. The curing processes 

(e.g. time and temperature curves for thermal curing and UV light intensity for UV curing) are 

important to be certain that the full thickness of the CIPP becomes suitably cured [Matthews 2011; 

Sterling 2010].  

In the next paragraphs, these two methods of curing will be explained in detail: 

a. Thermal Curing 

Thermal curing includes the use of heat via contact with hot water, steam, or hot air or also by 

allowing the CIPP to cure by exposure to ambient temperatures for small diameter pipes [Allouche 

2012]. 

Hot water curing is the main curing method for CIPP and can be used for all range of host pipe 

diameters. Steam curing offers a more rapid cure than hot water and thus increasing the efficiency. 

This process increases safety issues but is only used in small to medium diameter pipes because the 
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evenness of curing conditions is harder to control in large diameter pipes and over long installation 

lengths. Since the steam has less ―thermal mass‖ it makes the curing more risky, whereby either 

insufficient heat is provided to complete the curing or excess heat from the resin is not removed 

causing a resin to boil. Either using hot water or steam, the temperature is measured as the CIPP cures 

to check the exothermic reaction and to ensure complete cure of the resin [Sterling 2010].  

b. UV Curing 

The UV light curing is developed and used mainly for glass fiber tubes, which are impregnated with 

polyester or vinylester resins. The seamless CIPP has both an inner and outer film. The outer film 

blocks UV light. The inner film is removed after curing. The CIPP tube is winched into the existing 

pipe and inflated with air pressure (41.37 to 55.16 kPa) and then cured using a UV light train [Sterling 

2010; Sterling 2016] (see Fig. 4).  

 

Fig. 4: UV light curing of CIPP in pipe [Dilg 2007] 

 Flaw types of cured in place pipe 1.1.4

Abnormalities in CIPP can be divided into different categories. In the following, some flaws are 

described:  

I. Visible abnormalities 

Wavy and folding CIPP surface, blister (Fig. 5a), cracks (Fig. 5b), discoloration, debonding or 

removing of the liner wall are categorized in visible abnormalities, which are detected and 

documented using video camera systems [Kampbell 2011]. 

The cracks, which make the CIPP leaky can be observed on the surface. These cracks can be inspected 

visually. The invisible cracks in the depth cannot be detected, although they affect the mechanical 

properties of CIPP [Kampbell 2011; Bosseler 2009]. 
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Fig. 5: Flaws on CIPP, a) blister, b) cracks on CIPP wall [Bosseler 2009] 

 

II. Reduction of thickness 

The thickness of CIPP changes during the installation and application because of various parameters 

e.g. curing, corrosive materials in wastewater, erosion, etc. (see Fig. 6). The reduction of the thickness 

is undesirable, because of the less resistance to the pressure, erosion, corrosion, etc. [Yousef 2006]. 

 

 

Fig. 6: a), b) Variation of CIPP thickness, which cannot be measured in situ [Bosseler 2009]. 

The gap between pipe and liner after curing is unavoidable. Although it is tried to calculate the 

suitable diameter of a CIPP according to the size of the pipe, but during the curing of liner in the pipe, 

since shrinkage occurs in a thermosetting polymer after crosslinking, an annular gap is unavoidable 

[Allouche 2014; Bakeer 2008]. Therefore it is important to measure this gap both after curing and 

during the inspection of the liner after some years of in service. 
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Fig. 7: Pipe segment with the CIPP, a) without annular gap, b) with annular gap [Doherty 2005] 

For most cases, the space between the host pipe and the liner is either local or eccentric rather than a 

uniform ring. Therefore a uniform ring may not exist in CIPP installations [Bakeer 2008] (see Fig. 7, 

Fig. 8). 

 

Fig. 8: Cross-section of a pipe lined (not to scale; the annular gap enlarged for the purpose of illustration) 

The only way to measure the annular gap between the CIPP and the host pipe is using a caliper by 

removal of the host pipe plus the CIPP [Allouche 2014]. 

The measurement of the annular gap is of interest in liner performance because structurally, a tight 

liner with a small annular gap will have a better resistance to external buckling for the same thickness 

of the liner. It is also more likely to be locked a tight liner into place within the host pipe by negligible 
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irregularities and joints in the host pipe, which limits the potential longitudinal movement of the liner 

in the pipeline [Sterling 2010]. 

III. Insufficient curing 

Curing insufficiently of the CIPP is rarely detected in the frame work of canal inspection. 

Discoloration can be a sign of this abnormality (Fig. 9). This discoloring is easier to distinguish in the 

laboratory in comparison to in situ. For UPR the smell of styrene is a sign of deficient curing. The 

insufficient curing decreases the mechanical properties, which are distinguishable through three point 

bending flexural tests [Penders 2012]. 

 

Fig. 9: Discoloration of liner due to insufficient curing [Bosseler 2009] 

 

IV. Leakage 

Penetration of water through the wall of CIPP with different forms e.g. drops on the wall (Fig. 10), as 

well as infiltration with clear detectable flow of water is possible [Allouche 2012; Penders 2012].  

 

Fig. 10: Drops of water on the inside of the liner due to leakage [Bosseler 2009] 
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 Flaw detection of cured in place pipe 1.1.5

The flaw detection of the CIPP nowadays is through the following methods: 

i. Visual inspection 

Using a closed-circuit television (CCTV) camera is not only to inspect the CIPP, but also to inspect 

the pipeline prior to the relining work and to find out any necessary additional measurements required 

(such as pipe diameter). 

Most rehabilitated sections are only evaluated using CCTV immediately after the installation and then 

periodically using CCTV depending on the overall inspection, since in comparison to the other non-

destructive techniques, this approach is cheaper. This means a regular CCTV inspection at intervals of 

a number of years [Allouche 2012; Sokoll 2009]. In this frame, it would be possible to detect different 

abnormalities such as discolored stain, blister, and local leakage. According to the size of CIPP, this 

inspection can be done manually or by robots [Navab-Kashani 2014]. 

ii. Tightness testing 

In order to perform the tightness test, the interior coatings are cut and the outer films are taken away, if 

they exist. In three test areas with a diameter of 455 mm, red colored water e.g. Rhodamine B is 

applied on the inside surface of the liner. The outside of the liner is exposed to vacuum of 0.5 bars 

(Fig. 11). Samples are indicated as leaky, when the test liquid penetrates (drops, foam or moisture) at 

least from one test area. The laminate discoloration is permitted. The test duration is 30 minutes 

[Sokoll 2009]. 

 

Fig. 11: Tightness testing in the IKT institute [Sokoll 2009] 

iii. Three point flexural test 

CIPP samples are cut from the crown, side and bottom of a liner using a router and a band saw and 

tested under three point flexural test according to standards DIN EN ISO 178 and DIN EN 761 as 
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shown in Fig. 12. The mechanical property like elastic modulus can be measured through this 

measurement [Allouche 2014]. 

 

Fig. 12: Mechanical testing of three point flexural test [Muenchmeyer 2007] 

iv. Thickness measurement 

There is no in situ non-destructive testing (NDT) to measure the thickness of a liner. Nowadays the 

only applicable method carried out to measure the thickness of CIPP is using a caliper and 

micrometer. The ultrasonic testing equipment cannot work well on the liner field samples, because of 

attenuation of ultrasounds [Allouche 2012]. The results of CIPP thickness measurement through 

ultrasound echo test in the Institut für Unterirdische Infrastruktur (IKT) report [Sokoll 2009] are still 

pending and are not yet validated. In order to use a caliper, the liner sample should be cut out of the 

location in the pipe and tested in a laboratory (see Fig. 13). The removal place of the liner need to be 

repaired and filled in again either by a robot or manually [Sterling 2010].   

 

Fig. 13: Measurement of the thickness of CIPP [Muenchmeyer 2007] 
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v. Sample-based inspection 

The sample of CIPP should be removed from the pipe depending on the location. There are two ways 

of sample taking. Samples from the liner in a manhole are removed manually. In the sites of the pipe, 

which are not accessible by hand, a cutting robot goes through the pipe and takes the sample to the 

manhole. It should be marked on the samples, from which part (top, bottom or the side) of the liner 

they are removed [Sterling 2010]. After that, the removed volume needs to be filled manually or by 

using a robot again (see Fig. 14). 

  

Fig. 14: Sample removal site, a) before filling, b) after filling [Sokoll 2009]. 

 

 Aging 1.2

Since the CIPP is exposed to water and it is aged during the operation, it is necessary to investigate the 

aging process. 

 Types of aging 1.2.1

The aging process in polymer matrix composite materials is dependent on temperature. At 

temperatures above the glass transition temperature (Tg), molecules move rapidly where an increase or 

a decrease of temperature causes an increase or a decrease of volume in time in accordance to the 

temperature change. Tg represents the region in which the resin transforms from a hard, glassy solid to 

a viscous liquid. At temperatures lower than Tg, the molecules move slowly such that temperature 

changes are not instantly reflected by a corresponding change in the volume of the material. Therefore, 

there are three types of aging: 

a. Chemical aging 

This kind of aging relates to irreversible changes in the polymer matrix composite through 

mechanisms like crosslinking or chain scission. These mechanisms include thermo-oxidative, thermal 
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and hydrothermal aging. Crosslinking and oxidation are the dominant chemical aging mechanisms in 

polymer matrix composite operating temperatures. Chemical aging often leads an increase in 

crosslinking density. It can cause changes in material density and increase Tg, which as a result will 

influence the mechanical properties such as strength and stiffness [Martin 2008]. 

b. Physical aging  

The physical aging occurs when a polymer is quickly cooled down below Tg and the material develops 

towards its thermodynamic equilibrium. Variations in the free volume, enthalpy, and entropy of the 

polymer are the results of this aging, which produces measureable changes in the mechanical 

properties. Physical aging is a reversible process. It means, if the polymer sets in the primary situation 

before the aging, the material will reach the previous physical and mechanical properties [Martin 

2008]. 

c. Mechanical aging 

Another irreversible process is mechanical degradation, which is observable also on the macroscopic 

scale. These aging mechanisms consist of matrix cracking, delamination, interface degradation, fiber 

breakage, and inelastic or plastic deformation. Hence, they have a direct effect on mechanical 

properties such as stiffness and strength [Martin 2008]. 

 

Hydrothermal aging on composites  

In composite materials, hydrothermal aging affects the matrix through variation on chemical and 

physical properties, as well as the fiber/matrix interface which is the determining factor in the 

composites [Wang 2007]. Water enters a composite material principally by the mechanism of 

diffusion. Other mechanisms are possible such as capillarity along the fibers, the interface and 

transport by micro-cracks [Tsenoglou 2006]. Water entrance into a composite leads to plasticization of 

the polymer matrix and degradation of the fiber/matrix interface, which causes debonding. 

Plasticization is the phenomenon of diffusing a small molecule, called a plasticizer, blended with a 

glassy polymer results in a reduction of the Tg of the polymer and its elastic modulus. Such 

plasticization usually increases polymer flexibility or mobility [Wang 2007]. 

Furthermore, mechanical properties are sensitive to hydrothermal aging. For instance, a decrease in 

fracture toughness has been detected when a polymeric composite was simultaneously exposed to 

water and mechanical stress [Han 2003]. 

Indicators that are useful for tracking hydrothermal degradation are outlined below: 
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 Weight changes: Exposure to a moist environment may result in weight gain over time. For 

Fickian behavior, the proportion of weight gain and saturation level is proportional to relative 

moisture, although the time required to reach saturation is a function of temperature. 

 Physical changes: An increase in crack density may be detected after exposure to moist 

environment. Anomalous weight change behavior may be noted during cyclic exposure with 

the time to saturation and drying shortened by orders of magnitude following micro-crack 

formation. 

 Mechanical properties: The mechanical properties such as fatigue life, fracture toughness, and 

linear viscoelastic creep are mainly sensitive to hydrothermal degradation [Han 2003]. 

 

Plasticization: 

Generally plasticization or softening, a reversible phenomenon, refers to a change in the thermal and 

mechanical properties of a polymer.  A plasticizer has usually the desired properties of a polymer and 

used to have a compound that gives more extensibility, shock resistance and more flexibility by 

reducing elastic modulus. The principle function of the plasticizer is to be able to interpose itself 

between the polymer chains. Plasticization, on a molecular level, leads to increased intermolecular 

space or free volume, and may involve the weakening or breaking of selective interpolymer bonds. 

Plasticization implies intimate mixing, such that a plasticizer is dissolved in a polymer or a polymer is 

dissolved in a plasticizer. Efficiency of the plasticization can be measured by the lowering of Tg and 

also by typical dynamic mechanical properties such as decrease in fracture toughness and elastic 

modulus. Adding the plasticizer to the polymers will also lower the temperature at which the 

maximum of the damping occurs. The shift of the temperature shows the plasticizer efficiency. The 

temperature of the maximum damping depends on the frequency. The higher the frequency, the higher 

the temperature [Immergut 1965; Marais 1999]. 

Water is the most universal plasticizer in the world. Viscoelastic properties such as creep may also be 

responsive to moisture-induced degradation and can provide a good method for determining long-term 

influence on stiffness related degradation. 

Many so called 'water-soluble' polymers, including the polymers with: 

- A very high cationic charge (H-bonding), to neutralize the negative charges of the colloids 

- A relatively low molecular weight, to allow rapid diffusion in the medium and around the particles 

(10,000 to 1,000,000 g/mol). 

The plasticization by water affects the Tg of many synthetic and natural amorphous polymers 

(particularly at low moisture contents), and that Tg depression can be advantageous or disadvantageous 

to material properties, processing , and stability [Levine 1988]. 



  

- 16 - 

 

Most other synthetic and natural polymers, which are more hydrophobic, less polar, or lesser H-

bonders, are not highly water-soluble, but are water sensitive to some extent, especially at low 

moisture. For these, water is a plasticizer, but not a good solvent [Immergut 1965; Levine 1988]. 

 

Theory of diffusion 

Penetration of moisture into composite materials is explained relatively by diffusion, which means 

transport of water molecules into the matrix and in some cases into the fibers [Bao 2002; Srivastava 

1999]. Water can diffuse along the fiber–matrix interface in composites. This capillary flow prefers to 

occur along the interface, if wetting of the fibers by the matrix is incomplete [Tsenoglou 2006]. Crack 

propagation is the result of flow and storage of water in micro-cracks in the matrix through the 

osmotic pressure [Gautier 2000].  

Consequently, it is concluded that the mechanisms of moisture penetration in composites are much 

more complex than in the case of the unreinforced matrix [Thomason 1995]. Composites typically 

absorb more water than unreinforced polymers, depending on the total volume of the polymer. 

Numerous diffusion models have been proposed over the years for modeling hydrothermal effects in 

polymer composites. The one most frequently used model by researchers is the Fick’s law, which is: 

    
   

   
 Eq. 1 

where 

J is the diffusion flux [mol.m
−2

/s] to measure the amount of substance that will flow through a unit 

area during a unit time interval, 

D is the diffusion coefficient or diffusivity [m
2
/s], 

c* is the concentration, amount of substance per unit volume [mol/m
3
], and 

x* is the position [m]. 

Some researchers have proposed that the deviation can be explained by a two-stage Fickian process 

[Carter 1978; Gurtin 1979]. Others claim that the diffusion process in a composite is non-Fickian. 

Higher temperatures raise the water absorption in reinforced polymers, following Fick’s second law of 

diffusion (Eq. 2) [Christian 2012], where debonding of the fibers from the matrix is clearer and 

induces localized water entrapment [Lassila 2002].  

https://en.wikipedia.org/wiki/Mass_diffusivity
https://www.sciencedirect.com/science/article/pii/S002076830100021X#BIB3
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Eq. 2 

 

where 

t is time [s]. 

The diffusion coefficient increases with increasing temperature according to the Arrhenius equation: 

     
       

Eq. 3 

where  

D
0
 is the maximal diffusion coefficient [m

2
/s], 

Ea is the activation energy for the reaction [J.mol
−1

], 

T is the absolute temperature at which diffusion is occurring [K], and  

R is the universal gas constant (8.3144598 [J.mol
−1

.K
−1

]) [Christian 2012].  

It is known, when moisture enters the matrix and fiber, that it can plasticize the polymer and reduce 

the hardness. The question being raised in this thesis is if the diffusion of water molecules deteriorates 

the mechanical properties of CIPP after hydrothermal aging. 

 Mechanical properties of polymers 1.3

Polymers contain long molecules which are mostly bonded covalently. At the temperatures about 

some few Kelvin, application of strain may cause strain of the intermolecular bond while the 

molecular chains are fixed in their positions [Rösler 2007]. In this situation the materials behave 

elastically linear and in most cases they break brittle. Increase of temperature (even at room 

temperature) changes the behavior of polymers due to the thermally activated rearrangements and 

movements within and between the chains, which are partly reversible. These processes are mainly 

responsible for the observed viscoelastic behavior of polymers [Ahmad 2010; Chen 2013; Cheng 

2000; Dub 2008]. Viscoelastic effects can occur at temperatures well below the Tg and thus have to be 

considered when designing with polymers. Therefore, the time-dependency of the mechanical 

properties has a strong technical importance. There are two approaches for evaluation of the 

viscoelastic properties of materials which are as follows:  

1: The strain in a specimen is kept at constant stress, after a fixed loading time is measured. This 

technique is called retardation. 

2: The strain is kept fixed instead of the stress. In this case, the stresses decrease with time. This 

technique is called relaxation. It is due to the decrease of measured stress if we apply a constant strain. 

https://en.wikipedia.org/wiki/Activation_energy
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For technical applications, retardation curves are usually more important because in most cases the 

load on the component is known and it has to be checked, whether the permissible maximum strain is 

exceeded. However, evaluation of the time dependency of the mechanical properties with application 

of constant strain is also widely used.  

Fig. 15 shows the impacts of time, temperature and applied stress on the mechanical properties of 

polymethylmethacrylate (PMMA) with a glass transition temperature of about 100 °C. The 

isochronous stress-strain (ζ-u) curves are taken in retardation experiments. Clearly enough, in contract 

to the ―ordinary‖ ζ-u curves, each value of the stress requires its own experiment. Following general 

conclusions could be driven based on the curves: 

1: A linear viscoelastic region at small strains, with stress and strain being proportional could be 

observed.  

2: The slope of the linear region is time-dependent in contrast to the ordinary ζ- u curves. It generally 

decreases with increasing loading time.  

3: At strains larger than approximately 0.5%, a deviation from linear behavior is observed. The 

material becomes non-linear viscoelastic and, at even larger strains, flow viscoplastically. If the strain 

is increased further, plastic behavior dominates, and the slope of the curves decreases.  

4: If the loading time is increased in the viscoelastic region, the strain increases proportionally [Rösler 

2007]. 

 

Fig. 15: Isochronous stress-strain curves of amorphous polymethylmethacrylate with a glass temperature of approximately 

100 °C [Rösler 2007] 

Water as a plasticizer acts as a mobility enhancer whereas the hydrothermal aging. Its low molecular 

weight causes a huge increase in molecular mobility of amorphous and partially crystalline polymers 

due to an increased free volume. The water uptake has influence on mechanical properties for 

example, an overall reduction in the tensile properties at break can be observed. Generally, the main 

degradation occurred in the earlier stages of diffusion. A possible saturation of the stronger 

hydrophilic groups with a reduction of the water–polymer interactions could take into account this 
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relative stabilization for higher water contents. Losses in the tensile, elastic modulus and in the 

indentation hardness are the results by the plasticizing effect of water [Nogueira 2001]. 

It is a function of the plasticizer to insert itself between the polymer chains. The main obstacle to this 

endeavor are the attractive forces between the polymer molecules, which are influenced by the 

chemical and physical structure of the polymer. This means a change of the chain molecules. It should 

be noticed that when a low molecular weight material like water compound penetrates the crystalline 

regions, certain properties which depend on crystallinity such as the mechanical properties will 

deteriorate [Immergut 1965]. 

Generally the purposes for using a plasticizer in the polymer are the following: 

1) Increase the elasticity of the polymer. 

2) Decrease the glass transition temperature. 

3) Improve the properties such as non-flammability, thermal stability, shock resistance, antistatic 

properties, etc.. 

Besides, softening in mechanical properties during plasticization is unavoidable, such as reduction of 

elastic modulus and hardness correlating with molecular mobility. The lower the viscosity of the 

plasticizer is, the more the rigidity in the polymer drops. According to the structure of the polymer and 

plasticizer, the plasticizer can act as: 

i. A lubricant, which reduces the intermolecular friction and by this increases the 

deformability of a polymer. This is a reversible phenomenon. 

or as  

ii. A substance, which breaks the intermolecular bonds in a polymer network.  

According to these inferences the role of the plasticizer is amounted to the screening 

of centers of intermolecular forces in the course of selective solvation of these 

points. This phenomenon is irreversible [Shtarkman 1983]. 

 Formalisms for quantifying the viscoelastic properties 1.3.1

In general, the modulus of a viscoelastic material (or complex modulus E
*
) has two components:  

a) A real component Eʹ which is also often called the storage component and describes the linear 

elastic behavior of a material.  

b) The second component is the imaginary part of modulus Eʺ, which is often called loss 

component that describes the material’s viscous behavior. In a polymer the loss modulus 

presents actually the energy loss during a test in heating, while the real part of the elastic 

modulus relates to the volume change of the material [Gottstein 2007].  

In general, the complex modulus is described as follows [Gottstein 2007]: 

          Eq. 4 
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and [Cohen 2013]: 

|  |  √        
Eq. 5 

For formulating the time response or mechanical properties in terms of known mechanical elements, a 

spring (to present the in-phase deformation) is combined to a dashpot (for off-phase deformation) 

either in series (Maxwell model) or in parallel (Voigt model), shown in Fig. 16a, b. In general, the 

Maxwell model is more appropriate to a viscoelastic fluid [Rösler 2007]. The Voigt model is more 

suitable for a viscoelastic solid [Cohen 2013]. This model describes the behavior of a purely 

viscoelastic material i.e. the deformation just depends on time and not the applied stress. Based on 

Voigt configuration, the total strain (u) is equal to the elastic strain (ue) and viscous strain (uin): 

         

Furthermore the applied total stress (ζ) is equal to the stress applied to the spring (ζe) in addition to the 

stress applied to the dashpot (ζin): 

         [Gottstein 2007]. 

For the spring we basically apply Hooke´s law: 

   
  

  
⁄  Eq. 6 

where 

E
V is the spring constant in the Voigt model [Pa]. 

For a dashpot a Newtonian flow rule can be applied, which relates the inelastic strain rate (   
 ) to the 

ζin and viscoelasticity (η
V
): 

   
 =

   
  

⁄  [Gottstein 2007]. 

The total applied stress can be written as follows: 

                  
  Eq. 7 

or alternatively one can write: 

  
 

  
[     [ 

  

  
 ]] Eq. 8 

A constant load strains the spring, but the friction within the dashpot element provides a large initial 

resistance to the strain, causing the strain to increase with time. Both the E
V
 and the damping 

parameter η
V
 are temperature-dependent. If a constant stress (ζ =constant) is applied in accordance to 

the Voigt-Kelvin model, the model predicts inelastic behavior of samples but in the case that 
  

  
  , 

the model predicts a pure elastic behavior. In other words, for load control measurements, like creep 

tests performed via nanoindentation the model could be used successfully. However, if a constant 

strain is applied for a defined time and measures the reduction of the stress, like a standard creep test 

via an atomic force microscopy (AFM) test, the method could not be used for the evaluation of the 

results. The oversimplified mentioned models are important tools to qualitatively evaluate the physical 
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properties of a polymer. Therefore this simple model is only qualitatively, but not quantitatively, 

correct. More sophisticated evaluation of the results is possible with a combination of Voigt and 

Maxwell elements, for example using a generalized Voigt model as shown in Fig. 16c, which consists 

of two parallel Voigt components. This latter model is widely used for evaluation of the creep tests 

performed via the nanoindentation method. However, this model ignores the stress-dependence of the 

deformation. If the stress is sufficiently large, a polymer can deform plastically even below the glass 

transition temperature. In Fig. 16c parameters K1, K2 and C1, C2 refer to storage and loss stiffness. 

 

 

Fig. 16: A schematic representation of a) Maxwell, b) Voigt and c) generalized Voigt model 

 

 Experimental approaches for evaluation of the viscoelastic properties 1.3.2

As it was discussed, both elastic and plastic properties of polymers are time-dependent even at room 

temperature. Viscoelastic effects can be neglected only if strains and loading times both are small. 

Though, the way of performing the test (selected loading function) will have a strong impact on the 

measured properties. Hence, the quantitative comparison between the results of different working 

groups is very difficult. For more exact evaluation of the viscoelastic properties, dynamic mechanical 

analysis (DMA) is much more suitable to use. It gives the opportunity to quantify the storage and loss 

modulus of polymers.  

DMA is designed for testing on the macroscopic scale, typically with specimens on centimeter size 

scales and has been successfully proven effective. Various dynamic techniques with the capability of 

applying cyclic stress and/or strain could be performed. The most typical methods are:  

i) Using a parallel plate test fixture. In this setup, a specimen is placed between the parallel plates as 

shown in Fig. 17a. This technique measures a shear modulus as the plates are rotated at different 

angular frequencies and with different rotational amplitudes. The effects of the testing frequency can 

be observed by the amount of force that is necessary to accomplish the rotation desired [Hysitron 

2014]. 

ii) A sample can be tested uni-axially through a tension test, as in a typical dog-bone tensile test (Fig. 

17b). 
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DMA has the capability of testing frequencies over several orders of magnitude, beginning from the 

mHz range and going well into the hundreds of hertz. However, DMA is most successful at accurately 

characterizing macroscopic materials under 50 Hz [Hysitron 2014]. By the way, the macroscale DMA 

measurements are very time consuming to accurately quantify the complex modulus of polymeric 

materials using quasistatic techniques, requiring numerous tests and copious amounts of analysis. One 

other important drawback of the macroscopic testing methods is their inability to collect mechanistic 

information especially in the case of inhomogeneous materials. For example, a process like aging 

could cause debonding. It affects significantly the results of macro-mechanical testing methods. Hence 

precise interpretation of the macroscopic mechanical tests will be more complicated because the 

results are not influenced just by water absorption but also contribution of the debonding. To 

overcome the problems mentioned, it has been decided to locally characterize the mechanical 

properties via the nanoindentation technique. Detailed information about the technique is therefore 

provided in chapter  4.3.3, including its features and limitations. 

 

 

Fig. 17: Macroscopic testing methods for evaluation of the viscoelastic properties of materials, a) a parallel plate test fixture, 

b) uni-axial testing method [Hysitron 2014].  
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2 State of the art 

Even after about 40 years of the life of the first CIPP, recognition and verification of cured in place 

pipes is still limited to destructive testing in the laboratory. The key aspect of this work is focusing on 

the application of the non-destructive testing methods on CIPP analysis. In order to have a better 

investigation of this term, the concentration should be on a certain material of CIPP and the methods 

of its recognition and verification.  

 

Material of samples 

The material studied in this thesis is UPR combined with unwoven polyethylene terephthalate (PET) 

fibers as carrier material. 

UPRs are thermoset polymers with a relatively low molecular weight. There is a difference between 

UP and unsaturated UPR. Due to brittleness at room temperature and the difficulty to handle, UPs are 

rarely sold as such. Instead, they are mixed with a vinyl monomer in the molten state, whenever 

polyester is freshly synthesized in a plant. Therefore, materials that are viscous at room temperature, 

with a styrene content of ca. 60% are sold. This mixture of an UP with the vinyl polymer is referred to 

as an UPR [Ma 1993].  

UPRs contain double bonds (ethylenic groups) along the polymer chain. Unsaturated polyester resins 

are cured by cross-linking the long linear chains by means of vinyl monomers such as styrene, diallyl 

phthalate, methyl methacrylate, vinyl toluene, divinylbenzene, or combinations of these. Coating 

formulations generally contain the polyester resin dissolved in the vinyl monomer, which is 

subsequently cross-linked and cured by stirring in a catalyst (here peroxide as initiator) just before use 

(see Fig. 18). 

The polymerization mechanism involves free radical addition across the double bonds; hence, no 

volatile by-products are evolved. This is a distinct advantage over condensation polymerization, where 

water or other by-products that degrade electrical properties are produced during the cure. Free 

radicals may be initiated by thermal energy, ultraviolet light, or chemicals notably the organic 

peroxides [Kandelbauer 2014]. 
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Fig. 18: Synthesis of the UP and subsequent crosslinking of UP chains with styrene as the co-monomer [Fink 2013]. 

According to this fact, UPR consists of two polymers: short chain polyester containing polymerizable 

double bonds and a vinyl monomer. The curing reaction defines as copolymerization of the vinyl 

monomer with the double bonds of the polyester [Fink 2013].  

PET is a thermoplastic polyester, possessing excellent thermal and mechanical properties. PET has 

substantial fraction by volume in the waste stream and high resistance to the atmospheric and 

biological agents. It is formed by polycondensation reaction between terephthalic acid and ethylene 

glycol, which may exist as amorphous and semi-crystalline material [McKeen 2014]. Its structure is 

shown in Fig. 19.  

 

Fig. 19: Chemical structure of PET polyester [Potiyaraj 2007] 
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The most important properties of PET are: 

• High mechanical properties, 

• High thermal properties, 

• Good electrical properties, 

• Dimensional stability, 

• Excellent chemical resistance, and 

• Flame retardancy [McKeen 2014]. 

 Curing of unsaturated polyester resins 2.1

Crosslinking agents for addition polymers are molecules that contain two or more double bonds per 

molecule, for example styrene. Crosslinking of linear chain polymers causes them to stiffen and retain 

their shape and makes them insoluble in solvents that dissolve the linear chain polymer. 

In order to prepare the crosslinking units, unsaturated polyesters are dissolved in a polymerizable 

monomer such as styrene. The curing process of thermosets consists of two main phases: the heating 

period of the liquid resin (either pure or in the form of composites with fillers) and the cure reaction in 

the mould [Hanemann 2010; Yang 1991]. 

Styrenated unsaturated polyester resins can be cured by either room temperature or heat curing 

methods. Diallyl phthalate or isophthalate monomers do not respond well in room temperature cures 

and are generally only used in such heat curing applications as prepreg and molding compounds.  

The crosslink density, residual unreacted styrene monomer content and unreacted ester C=C bond 

content can be determined by Fourier Transform Infrared Spectroscopy (FTIR) [Fink 2013] but in this 

thesis the electromagnetic waves are used to figure out if it is cured or not.  

The unreacted ester C=C bond of UP and styrene bond C=C bond in comparison to reacted bond C-C 

can differ by electromagnetic waves microwaves and terahertz (THz). It shows that these bonds have 

different permittivity and therefore different absorption of waves [Kandelbauer 2014].  

This difference can be also determined by FTIR. The absorption of ester C=C bond at the wave 

number λ
-1

 =982 cm
-1

 used to determine the unreacted ester C=C bond concentration and the 

absorbance of styrene C=C bond at λ
-1

=912 cm
-1

 shows the residual styrene monomer concentration. 

The absorption of C=O bond at λ
-1

 =1731 cm
-1

 used as an internal standard the absorbance of styrene 

vinyl C=C decreases while the degree of curing increases [Ma 1993]. 
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 Characterization of aging effects in UPR and PET materials 2.2

PET fibers with unsaturated polyester resin in CIPP are used in order to carry the resin material. PET 

fibers do not reinforce the UP resin. They only help the resin to become more stable and to form easier 

into the CIPP. There is no reinforced polymer considered as UPR/PET. Consequently, the aging 

behavior of UPR and the related testing methods have been investigated where the approach and the 

results are described below.  

 Hydrothermal aging of unsaturated polyester resins 2.2.1

It is known that polyester resins are sensitive to moisture through water absorption leading to chain 

scission by ester hydrolysis and thus to embrittlement. The degradation of polyester resins in water at 

different temperatures contains water uptake, swelling, ester hydrolysis, osmotic cracking and leaching 

of small molecules. Nevertheless, in reality, the most important aging process is cracking, originally 

described for polyester matrix and composites exposed in hot water [Bélan 1997; Bellenger 1995]. 

The osmotic cracking nucleation is formed by a phase separation between the polymer and water-

soluble organic molecules subsequent. Depending on the initial state of the polymer and water-soluble 

molecules system (heterogeneous or homogeneous), the osmotic cracking is sudden or crack induction 

time is observed depending on the water-soluble fraction and temperature. Major parameters 

promoting matrix cracking were identified including: 

1. High fraction of monomeric and catalyst residues, 

2. High fraction of ester functions in dangling chains, and 

3. High reactivity of ester functions. 

As any cracking phenomenon, this process can be described in terms of initiation (defect nucleation), 

propagation and arrest. The mechanism of propagation is relatively well understood: it results from 

osmosis linked to the difference in chemical potential of water in the cracks and in the bath. The 

polymer layer separating the crack from the bath behaves as a semipermeable membrane and one 

observes the build-up of an osmotic pressure in the cavity. Microscopic observations allow detecting 

the cracks [Gautier 2000].  

The nucleation mechanism can be assumed as follows: Hydrolysis proceedings on dangling chains 

(initially present or created by hydrolysis on elastically active chains) produce tiny organic molecules 

such as monomeric glycols or acids [Mortaigne 1999]. Due to a very low diffusivity (compared to 

water diffusivity and to their build-up rate), the acid molecules accumulate in the network. Since they 

are significantly more polar than the polymer, their equilibrium concentration must be low. Therefore, 

after a definite time, depending on the hydrolysis rate, the system becomes oversaturated and 

undergoes a phase separation. The excess of organic molecules leads to the build-up of micro pockets. 

Corresponding to the water affinity for those hydrophilic solutes, the entrance of water flux due to 
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micro cavity up to a certain limit increases the osmotic pressure, and osmotic crack propagation 

occurs. This mechanism is based on two major assumptions, which should be experimentally checked:  

 the generation from hydrolysis of sufficient quantities of organic monomeric species to induce 

demixing;  

 the low diffusivity of these organic molecules into the polyester, which must act as a semi 

permeable membrane [Gautier 2000; Mortaigne 1999]. 

 Hydrothermal aging of PET 2.2.2

PET is known as a thermoplastic polyester with relative high stiffness, temperature performance and 

dimensional stability. The inherent hydrothermal fragility of the ester link motivates the scientists in 

analysing PET aging in water or humid atmospheres [Launay 1999]. 

Hydrothermal aging dependence on the water temperature and time of immersion induces a rapid and 

drastic decrease of the mechanical strength of PET.  

The absorbed water induces not only a slight plasticization but also causes hydrolysis of the polymer 

chains in the amorphous phase by a random scission mechanism. Hydrolysis produces oligomers that 

either diffuse slowly out of the material or crystallize in the inter spherulitic zone. Therefore, the 

existence of oligomers modifies not only the hydrophilicity of PET but also its crystalline 

morphology, both features being likely to interfere with the absorption process. 

Hydrolysis may affect even the crystalline of PET in too long aging time. Besides, formation of cracks 

or voids that induces an additional uptake of water and osmotic cracking is responsible for the material 

fracture [Foulc 2005]. 

 Characterization of unsaturated polyester resin and PET 2.3

Polyethylene terephthalate polyester, PET, is known as the most common thermoplastic polyester and 

is often called just ―polyester‖. PET is both available as an amorphous (transparent) and as a semi-

crystalline (opaque and white) thermoplastic material. The properties of semi-crystalline PET can be 

characterized by strength, ductility, stiffness, and hardness in comparison. Amorphous PET has better 

ductility but less stiffness and hardness [McKeen 2014]. 

The main methods to characterize UPR and PET consist of: thermogravimetric analysis, dynamic 

mechanical analysis, Fourier transform infrared, mechanical tests, morphological analysis and 

differential scanning calorimetry. 
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 Thermogravimetric analysis (TGA) 2.3.1

To understand the pyrolysis and study the thermal stability of the UP resin, a thermogravimetric 

analysis (TGA) in dynamic conditions can be carried out, which is executable at different heating rates 

for example 10 °C/min. The experiment runs at room temperature under an argon atmosphere. This 

analysis is used to describe the weight loss of the sample as it is heated to show the temperatures at 

which degradation takes place [Ridzuan 2016]. 

 Dynamic mechanical analysis (DMA) 2.3.2

The DMA is a thermomechanical method to measure the viscoelastic properties of materials. It 

expresses the Tg of the material and allows to have an idea about the behavior of a material when it is 

subjected to mechanical and thermal stresses simultaneously. 

This method can be also used to measure temperature-dependent properties, such as the storage 

modulus (E′), loss modulus (E″), and damping factor tan(δ) of polymers [Ridzuan 2016].  

 Fourier Transform Infrared (FTIR) 2.3.3

Fourier transform infrared (FTIR) spectroscopy is employed to investigate the degradation behavior 

and chemical structure of UPRs and PET, providing insight into the degradation mechanism like 

thermal degradation, moisture degradation, etc.. This method identifies the nature of chemical bonds 

and the crystalline phases that are formed in the material [Dai 2013].   

FTIR is an instrumental technique, which measures the amount of infrared radiation reflected from or 

transmitted through a specimen. It is used mainly to solve the composition of organic compounds. 

Polymers degraded by different parameters through crosslinking, free radical formation, permanent 

bond cleavages, etc., subsequently experience breakup of molecules and formation of saturated and 

unsaturated groups. All these processes introduce so-called defects inside the material that are 

accountable for change in the optical, electrical, mechanical and chemical properties of the material 

[Al-Kadhemy 2016]. 

Basis of the FTIR analysis is, how well a sample absorbs light at each wavelength. When a beam of 

infrared energy with at spectrum 750 nm to 1 mm passes through a sample, the energy at certain 

frequencies is absorbed by the sample. The optical absorption spectrum is the property of the certain 

molecule and its molecular motions and can be used for quantitative investigation of molecular 

systems.  

 Mechanical tests 2.3.4

In order to characterize the mechanical properties Izod impact strength, three point bending and tensile 

tests are applied [Bergeret 2009; Foulc 2005; Laoubi 2014; McKeen 2014]. 
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Through tensile testing directly and indirectly these properties can be measured:  

 tensile stresses, 

 ultimate tensile stresses, 

 elongation, and 

 modulus properties [Bergeret 2009] 

 Morphological analysis 2.3.5

The morphology of UPR and PET with regard to cracks, debonding, fiber distribution is analyzed 

through an optical microscope [Sawpan, Holdsworth 2012; Sawpan, Pickering 2012]. 

In order to investigate the morphology with higher magnification in the nanoscale, a scanning 

electronic microscope (SEM) can be used. To do that the UPR and PET specimens need to be coated 

by evaporation of gold in vacuum in order to make them conductive [Chieruzzi 2013]. 

 Differential scanning calorimetry (DSC) 2.3.6

DSC is a technique to perform thermal characterization investigation on thermosetting resins. Since 

the components in a resin system cure, the evolving heat is measured by the DSC. If no significant 

heat of cure is observed, it is assumed that the resin sample is completely or 100% cured. The Tg or 

softening temperature of a thermoset resin can be measured also by DSC. When a thermosetting resin 

cures, the Tg increases and the heat of cure decreases. These changes are used to characterize and 

quantify the degree of cure of the resin system [Kattan 2002; Mafi 2005; Nava 2003; Romanzini 

2015]. 
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3 Challenge and motivation 

The main problem of using CIPP in wastewater pipes consists in the possible occurrence of 

abnormalities and damage during manufacturing, installation and operation. These flaws include 

visible damage on the surface, physical defects in the material, thickness variation, annular gap 

between CIPP and pipe and deterioration of mechanical properties. Therefore, the CIPP should be 

inspected at manufacturing, installation and regularly during operation in order to distinguish if they 

are applicable or not. To do that, a sample of CIPP material has to be taken from a location in the pipe 

to be tested through destructive methods in a laboratory, such as bending tests and tightness 

experiments (see ‎1.1.5). The vacancy of CIPP resulting after sample removal, should be filled in again 

with liner material. This process is expensive, and the results of only few removed samples are not 

representative for the overall CIPP liner.  

Even 40 years after the production of the first CIPP, the inspection of CIPP through non-destructive 

testing is still a challenging issue. The only applicable non-destructive testing up to now is CCTV 

inspection of the liner to detect the defects, discolorations, etc.. However many abnormalities of CIPP 

are not visible with this technique. 

So far few preliminary tests have been made with regard to NDT tests. According to a report from the 

IKT [Sokoll 2009], the following NDT techniques have been tested in the context of CIPP: 

 3D laser scanning, 

 Temperature measurement through glass fiber cables, 

 Heat flow thermography, 

 Impact echo measurement, 

 Local resonance spectroscopy, and 

 Ultrasound echo measurement. 

Nevertheless, the problem is, for all measurements with these techniques the validation of the test 

results are still pending. The tests have been applied in situ, but they have not been validated through 

testing in a laboratory on CIPP samples and compared with conventional experimental results. For 

example in the results of heat flow thermography, some irregularities have been seen, which are 

supposed to be delamination or pores [Sokoll 2009]. Since this part of the CIPP was not ever taken 

from the pipe to be tested in the laboratory, a proof of detecting delamination or pores is still pending. 

Therefore, these measurements should be completed and respective conclusions should be drawn as to 

how NDT could obtain a valuable role for quality control of CIPP after manufacturing, installation and 

during operation.  
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In this thesis for the first time the use of other NDT techniques based on microwaves, terahertz waves 

and also water immersion ultrasound is explored to figure out if these techniques are able to measure 

the properties, which are until now only measured through destructive testing. The advantage of 

microwaves and terahertz techniques are their contactless application. Therefore, no couplant is 

needed and it makes the inspection easier and faster. These methods are sensitive to moisture and 

allowing detecting even a small amount of water. Their penetration depth is much larger than infrared 

radiation and permits the probing of a significant volume of material in a pipe. Microwaves and 

terahertz methods are relatively insensitive to environmental conditions and in contrast to ionizing 

radiation, these methods are much safer and faster. 

The samples of CIPP are tested through the NDT methods before and after hydrothermal aging, which 

correspond to test the CIPP after installation and in operation. In contrast to IKT [Sokoll 2009]  and 

Allouche [Allouche 2012; Allouche 2014], which used the ultrasound technique only on dry samples, 

here the ultrasound technique does not only apply on dry but also on wet samples being saturated with 

water, because in reality the CIPP is exposed to water. It is seen that the existence of water in samples 

plays an important role in measurements, which has been ignored before. 

The results obtained with different techniques have to be validated not only among themselves but 

also compared to results obtained with other characterization methods such as nanoindentation and 

optical microscopy. 
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4 Experiments 

 Required equipment and theoretical background 4.1

 Furnace 4.1.1

In order to reach the desired temperature during the hydrothermal aging, a furnace is required. The 

furnace controller B150 shown in Fig. 20 is an electronic programmable controller which enables the 

precise control of heat treatment processes with the verification value of 1 °C . This controller has: 

 9 programs, each with 18 segments, which can be individually programmed and saved, 

 Two extra functions which can be switched on during a process, 

 Automatic timer for a programmable start time, 

 LCD display with 4 lines of text, 

 Programming of date and time, and 

 Highest temperature up to 650 °C. 

 

Fig. 20: Nabertherm furnace with controller B150 

 

 Electrical balance 4.1.2

For a precise weight measurement of CIPP samples during hydrothermal aging a balance model PCE-

AB 200C has been used in this thesis. 

Analytical balances of PCE-AB xxxC series are designed for laboratories and applications that require 

a high accuracy in the range of 0.1 mg. It includes an internal calibration feature that ensures the user 

of this analytical balance to be at a very high accuracy as well as the control of weighing. Fig. 21 

shows the balance PCE-AB 200C. 
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Fig. 21: Balance PCE-AB 200C 

 

The technical properties of the balance PCE-AB 200C are shown in Table 1. 

Table 1: Technical specifications of balance 

Balance type PCE-AB 200C 

Weighing range (max) 200 g 

Minimum load 10 mg 

Readability 0.1 mg 

Verification value 1 mg 

Calibration class I 

Permissible ambient temperature +18 to +30 °C 

Transit time <5 s 

Overall balance (with feet) 215(235)×345×350 mm 

Weighing space 175×140×230 mm 

Connection ~230 V 50 Hz 9 VA / =12 V 300 mA 

Total weight 6.5 kg 

 

Water uptake was first measured by weighing the samples periodically at ambient temperature. The 

relative weight gain of the matrix was plotted versus the square root of time (Fig. 83). 
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 Optical microscope 4.1.3

The Leica DM6000 (Fig. 22) is a research system microscope with motorized and automated functions 

for electrophysiological applications. The following contrast methods come into use: 

 Bright field, 

 Phase contrast, 

 Simple polarization contrast, 

 Differential interference contrast (DIC), and 

 Fluorescence. 

The features, adjustments of diaphragms and filters as well as adjustments of luminous intensity to the 

magnification and contrast methods can be carried out and reproduced automatically. The fluorescence 

illuminator, including filters, diaphragms and shutters, is completely automated. All motorized 

functions are controlled and displayed using the Leica STP6000 touch panel.  

The optical microscope Leica DM 6000 consists of: 

1) Stand base, 

2) Rear side, 

3) Focus, 

4) Guide plate, 

5) Upper part of stand,  

6) 1" motorized fluorescence axis, 

7) Tube change interface, and 

8) Two slide holders for filters or boosters. 

 

Fig. 22: Optical microscope Leica DM 6000 
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 Nanoindenter 4.1.4

Nanoindentation tests were performed with a Hysitron TI 900 TriboIndenter (shown in Fig. 23) 

equipped with a Performech controller, Stanford Research Systems (SRS) 830 DSP lock-in amplifier 

and National Instruments USB-GPIB adaptor. The internal digital feedback loop rate and data 

acquisition rates were 78 kHz and 38 kHz, respectively. In this thesis a one-dimensional, nanoDMA 

III compatible transducer was used. With this transducer, performance of the dynamic measurements 

was possible. Load and displacement resolution of the transducer was 1 nN and 0.04 nm respectively 

and the thermal drift was less than 0.05 nm/s. Additionally, the TriboIndenter utilizes an active anti-

vibration system, an acoustic enclosure, a stage controller, optic and optic electronics.  

 

Fig. 23: Hysitron TI 900 triboIndenter nanoindentor 

 

Theory: 

Nanoindentation, a mechanical testing technique, which is often considered to be non-destructive in 

the sense that the indentations are in general, too small to be observable by the naked eye and the test 

does not impair the structural integrity of the specimen. Different types of tests can be performed with 

the nanoindenter including quasistatic nanoindentation and nanoDMA indents. Quasistatic 

nanoindentation was traditionally used to quantitatively measure the mechanical properties, like 

hardness and elastic modulus of materials with linear elasticity like metals or ceramics. With the 

quasistatic nanoindentation method one can collect the applied load vs. displacement data and measure 

the hardness and elastic modulus at one single depth of indentation, with the presumption that the 

material deformation is purely linear elastic/plastic.  
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As it was discussed earlier, the magnitude of the real part of the elastic modulus depends heavily on 

temperature, while the magnitude of the imaginary part depends on both temperature and time. 

Therefore, the quasistatic measurements are not suitable and hence the nanoDMA method was used 

for studying systematically the time-dependent mechanical properties. With the aid of dynamic 

measurement, a sinusoidal loading could be applied in addition to the quasistatic loading. With this 

technique one can define the load amplitude and frequency (10 Hz - 200 Hz) in addition to the routine 

controllable parameters for the quasistatic condition, such as the maximum load, load rate, number of 

segments, data acquisition rate etc. The nanoDMA technique offers the advantage of significantly 

decreased testing time by examining mechanical properties over a range of frequencies. Additionally 

the required materials for the samples comparing to the macroscopic DMA measurements is less. The 

viscoelastic characterization of polymers can be experimentally studied by several means, the most 

common methods are:  

a) Creep, in which the indenter is rapidly brought to a given force/stress and the change in 

displacement required to maintain the defined force is monitored. A conventional quasistatic 

creep test is the application of a constant stress (or force) for a defined time period and 

measurement of the strain (or displacement). During the long time of test, and for keeping the 

force constant, a constant voltage will be applied to the transducer and hence it may warm up 

with time. Increase of the temperature may influence the validity of the measured 

displacements. One important shortcoming of this technique is the inability of separating the 

creep behavior of the material and the thermal drift of the device. A dynamic reference creep 

test is similar to a creep test performed with standard indentation, however, with the use of 

reference frequencies the test time can be much longer and because of the dynamic 

components, the test will continuously measure hardness, stiffness, modulus, etc. (see Fig. 

24). A reference creep test is a test with an initial reference frequency segment followed by a 

long constant force dynamic segment. The first reference frequency segment will be used to 

calculate the contact area and the second (longer) reference frequency segment will be 

analyzed as the creep segment [Herbert 2008]. 
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Fig. 24: Typical load function used for a creep test in addition to the method used for drift compensation during the test 

 

b) Frequency sweep test, which is applying a sinusoidal force with a defined amplitude at various 

frequencies (f), while t = 1/(2πf) = 1/ω (ω is the angular frequency). For a sweep test the 

frequency is varied in each progressive step. During this type of test, a fixed quasistatic load is 

chosen as well as a fixed dynamic load amplitude. Mechanical properties of viscoelastic 

materials often vary when tested at different frequencies. A ramping frequency test is used to 

determine mechanical properties as a function of frequency. This is the typical form of test 

performed by a DMA instrument at macroscale. The frequencies may be ramped from 10 Hz 

up to 200 Hz. When testing at lower frequencies (below 10 Hz), the test can take a very long 

time, so it is recommended that lower frequency tests utilize the reference frequency functions 

to minimize drift effects. When testing is performed over 200 Hz, the amplitude can become 

quite small and it may be difficult for the lock-in amplifier to measure the phase and 

amplitude of the displacement signal. The user must be sure that the amplitude is large enough 

at higher frequencies to ensure quality data. Fig. 25 shows the load function test [Oliver 2004]. 
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Fig. 25: A typical load function used for a frequency sweep test 

 

For detailed evaluation of the mechanical properties it has been decided to use local techniques 

because the required materials and time for performing experiments will be reduced. More 

importantly, the macroscopic scale of tests is sometimes not very successful in obtaining mechanistic 

information especially in the case of inhomogeneous materials. For example, a process like aging 

could cause debonding, which influences significantly the results of macro-mechanical testing 

methods. Hence precise interpretation of the macroscopic mechanical tests will be more complicated 

because the results are not influenced just by water absorption but also contribution of the debonding 

in interface and cracks in the matrix. 

The attractive feature of local tests is the ability to characterize the mechanical behavior of small 

volumes of matrix and fibers with spatial resolutions in the nano to micrometer range. The mechanical 

properties determined through local tests (including AFM or nanoindentation) are therefore not 

affected by osmotic cracks and debonding. What can change the mechanical properties such as 

hardness and elastic modulus is the material structure of the matrix and fibers. However, there are 

some challenges for local measurements, which are descried below: 

i) A proper location on the surface requires great precision [Deuschle 2007]. It is due to the 

fact that the force resolution of the device is in the range of micro Newton. In the case of 

soft polymers with an elastic modulus of some few MPa this force may cause 

deformation.  

ii) Some polymers are coated and hence surface properties may be different from the bulk 

properties. More importantly, polymer surfaces may exhibit markedly different 

viscoelastic behavior than their bulks due to differences in the microstructure and 

molecular chain mobility [Chakravartula 2006].  

iii) Getting knowledge of the exact contact geometry is critical at nanoscale even after precise 

sample preparation and device calibration, while the presumptions of a smooth surface 
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may not hold. To get rid of the influence of sample roughness, it is very common to 

enhance the depth of indentation and it reduces the lateral resolution of the measurements 

and also increases the contribution of adhesion on the results while the contact surface 

will increase [Cohen 2013].  

 

Local techniques 

It is difficult to obtain meaningful and accurate data using quasistatic testing. It is due to the large 

impact of the loading function on the measured properties of polymers. Therefore performing dynamic 

local measurements is necessary in order to gain systematic information about their viscous behavior. 

AFM was used intensively for studying the mechanical properties of polymers mainly due to the low 

thermal drift of the system and hence its stability over time and thus accurate measurements especially 

at low frequencies (between 0.1 and 1000 Hz). However, the main drawbacks of AFM could be listed 

as below: 

i) The AFM tips are normally installed tilted with an angle of about 15°. Hence the applied 

forces are not restricted to the surface normal.  

ii) In polymers, it is more convenient to use tips with low stiffness (less than 5 Nm) and 

hence the cantilever may twist during the indentation, especially at the start of the 

indentation, because of a torque arising from the imperfect vertical loading of the tip 

owing to the sample roughness, and the alignment of the sample or the tip. This can lead 

to either a flexural or a torsional force.  

iii) The maximum applied force and depth of indentation is mostly limited. Although more 

recent progress has been achieved with modern AFM devices (e.g. PeakForce 

measurements with the aid of Bruker devices), which overcomes this shortcoming. 

The nanoindentation technique could solve all these problems mentioned. However, the stiff diamond 

tip in addition to the lower force resolution when compared to the AFM technique could destroy the 

surface during scanning or alternatively during the tip approach. Therefore, it is more convenient to 

use a blunt tip (with a radius of some hundreds of nanometers) instead of a sharp tip for polymers.  

The nanoDMA technique (which performs DMA measurements at nanoscale) was used recently to 

study locally the mechanical properties of materials with time-dependent deformation and recovery 

behavior. In the classical dynamic test at the macroscale the phase lag is measured from the strain 

response to a sinusoidal tensile or flexural stress, while the phase lag in nanoindentation is controlled 

by the displacement response of the indenter to sinusoidal loading. In this thesis, the discussion is 

limited to linear viscoelastic behavior, which means that the strain depends only on time and not on 

the magnitude of stress. This holds when the stress is kept small.   
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 Vector network analyzer 4.1.5

A vector network analyzer (VNA) is an instrument used to measure impedance. It is possible to 

measure impedance at lower frequencies with relatively simple tools, including a sine wave generator, 

a volt meter, a current meter, and a calculator [HP8510 2001]. 

At radio frequency (RF) and microwave frequencies, measurements of voltage and current become 

more complex. As a result, a VNA uses a more complex design to measure incident and reflected 

waves. In many ways, the VNA combines the principles of the basic impedance measurement with 

hardware appropriate for microwave frequencies. When using a VNA to measure the impedance or the 

reflection factor, a sine generator stimulates the device under test (DUT). In addition, two receivers 

take the place of the combination of a volt meter and current meter. These receivers, with the help of 

signal separation hardware, characterize the response of the device by measuring the phase and 

amplitude of signals that are both incident to and reflected from the DUT. Finally, calibration 

capabilities are required to eliminate systematic errors and compute the appropriate ratios (similar to 

the impedance) necessary to produce S11, which is one part of the S parameters (see ‎4.3.4.2) [HP8510 

2001]. 

Vector network analyzer systems, such as the HP 8510, measure the magnitude and phase 

characteristics of networks and of components such as filters, amplifiers, attenuators, and antennas. 

The HP 8510 Network Analyzer is a fully integrated vector network analyzer system. The minimum 

configuration consists of a source, a test set, and the network analyzer [HP8510 2001]. 

Source: The source provides the RF signal. An HP 8360 Series synthesized sweeper, or an HP 834x 

Series synthesized sweeper, or an HP 835x-Series sweep oscillator with an appropriate HP 835xx 

Series plug-in, may be used. 

Test set: The test set separates the signal produced by the source into an incident signal, sent to the 

device under test and a reference signal against which the transmitted and reflected signals are later 

compared. The test set also routes the transmitted and reflected signals from DUT to the receiver 

(IF/detector). Any HP 851x Series test set may be used. 

Network analyzer: An HP 8510C network analyzer, which includes the HP 8510 Display/Processor 

and the 85102 IF/Detector (Receiver). The receiver together with the display/processor processes the 

signals. Using its integral microprocessor, it performs accuracy enhancement and displays the results 

in a variety of formats. 

Peripherals: Additional system components can include HP-IB peripheral devices such as a printer, a 

plotter, and a disc drive. Measurement results and other kinds of information can be sent to a printer or 

plotter, or to a disc driver. These system instruments are controlled with the network analyzer front 

panel keys [HP8510 2001]. 
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To obtain a high spatial resolution image of the liner samples microwaves in the frequency range of 75 

to 100 GHz corresponding to the wavelengths of 4 to 3 mm were used in a contactless manner (free-

space) in the reflective mode. Fig. 26 shows the VNA HP 8510 used in this thesis. 

 

Fig. 26: Vector network analyzer HP 8510 (75-100 GHz) 

 

Theory: 

Like with all electromagnetic radiation, microwave propagation depends on the interaction between 

time-varying electric and magnetic fields. These fields oscillate in waves that are called travelling 

waves because energy is transported from one position to another. According to the medium through 

which the electromagnetic waves propagate, the velocity of propagation changes. Microwaves lie 

within a broad frequency range from 300 MHz up to 300 GHz, corresponding to wavelengths of 100 – 

0.1 cm. Electromagnetic microwave radiation has been used in the determination of water content in 

various materials for at least four decades. One of the most important applications of microwave 

sensors is measurement of moisture [Zoughi 2000].  

The propagation of a plane electromagnetic wave along the x-axis in a lossy medium can be described 

by: 

 ̅   ̅            
Eq. 9 

where 

 ̅ is the electric field strength [V/m]. 

 ̅0 is the peak value (vector) of  ̅ [V/m], 
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while 

         Eq. 10 

where  

k is the complex propagation factor,  

kʹ is the real part, and 

kʺ is the loss factor by which the propagation losses in the medium are taken into account. 

Dielectric spectroscopy determines the dielectric properties of the sample as a function of frequency. 

The complex permittivity ε is the dielectric property that describes how the material under an 

electromagnetic field influences the electric field. 

         Eq. 11 

where  

εʹ is the absolute permittivity or real part of permittivity [F/m], and 

εʺ is the absolute loss factor or imaginary part of permittivity [F/m] [Zoughi 2000]. 

Absolute permittivity reflects a material’s ability to store energy of the external electrical field during 

the polarization in the material, and the loss factor is related to the absorption and dissipation of the 

electromagnetic energy and the resistance of the material to the polarization by conversion into other 

kinds of energy (such as the thermal kind). Polarization is an ordering in space of an electrically 

charged unit under the presence of an external electric field. The charges become polarized to 

compensate for the electric field such that the opposite charges move in opposite directions. The 

external field causes the formation of an electric moment in the entire volume of the dielectric material 

in each polarizing units namely an atom, an ion or a molecule. There are three basic mechanisms of 

polarization in dielectric materials [Zoughi 2000; Zoughi 1995]: 

 Electronic polarization: it is observed in most dielectrics, in which the centroid of the negative 

charges (electrons) and the nucleus (positive charges) in an atom experience a slight 

displacement in the influence of an electric field. 

 Orientational (dipole) polarization: materials such as water or some polymers are composed of 

molecules that naturally possess a non-zero electric dipole moment. These materials are 

known as polar materials. These dipole moments are randomly oriented until an electric field 

becomes present, where they align and give rise to a net polarization vector. 

 Ionic (molecular) polarization: some materials consist of negative and positive ions. In the 

presence of an external electric field, similar to the electronic polarization, a displacement 

occurs and the material polarizes [Zoughi 2000; Zoughi 1995]. 
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The propagation factor is related to the permittivity by 

     √   Eq. 12 

also 

  
 

√  
 

Eq. 13 

 

where 

µ is the magnetic permeability [H/m] and 

c is speed of light [m/s].  

The values for permittivity, permeability and speed of propagation in vacuum are: 

                     

                 

                   

In any medium other than vacuum, the constants obtain higher values and are usually expressed 

relative to the values in vacuum: 

       Eq. 14 

       Eq. 15 

where 

 r stands for relative.  

For para-/diamagnetic materials 1r . Therefore [Nyfors 1989]: 

  
 

√  
 

  

√  
 
 Eq. 16 

The reflection coefficient (Г) of electromagnetic waves at an interface is given by: 

  
√   √  

√   √  
 Eq. 17 

where 

ε1: Permittivity of the first medium, e.g. air, and 
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ε2: Permittivity of the second medium, e.g. specimen [Born 1980]. 

In the microwave range, free water (i.e. chemically non-bonded) exhibits a much higher permittivity 

(both real and imaginary part) than most solid materials [Nyfors 1989]. Therefore, by adding water to 

the solid, its moisture is increased, resulting in a substantial effect on permittivity. This difference in 

permittivity can be detected by microwave sensors. Therefore a change in permittivity will affect the 

velocity and attenuation of microwaves in a material. 

Signal processing: 

Signal processing is concerned with the representation of the signals by sequences of numbers or 

symbols and the processing of these sequences. The aim of this processing is to estimate characteristic 

parameters of a signal or to transform a signal into a form which is in some sense more desirable. A 

complex analog signal is a function of time, x(t), and it is formed by the real and imaginary parts (Fig. 

27): 

 

Fig. 27: Three-dimensional view of real and imaginary parts 

 

The relationship between these two parts is given by: 

                  Eq. 18 

where 

  √     

the signal can be also represented by magnitude and phase (Fig. 28): 

                      Eq. 19 

where  

a is the magnitude [V], 

θ is the phase [deg.], and  

―a‖ can be calculated from: 
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     √  
       

     Eq. 20 

 

Fig. 28: Diagram of the relationship between the real and imaginary parts of the complex number x and its magnitude and 

phase. 

 Terahertz system 4.1.6

The measurements presented here were performed with a compact terahertz system made by 

Fraunhofer ITWM. The system is shown in Fig. 29. The system is operating in transmission mode 

with two antennas being the emitter and the detector. The samples to be inspected are placed on the x-

y scanner axis carriage and are measured non-destructively in transmission mode. 

 

Fig. 29: THz system set up, transmission mode 

 

The terahertz pulse transmitted through the sample experiences attenuation in amplitude, time delays 

to the reference pulse, scattering with comparing the width of the pulse in relation to the reference 

pulse and providing information about the spectral characteristics of the sample. 
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Theory: 

The gap in electromagnetic waves between microwaves and infrared is the THz region of the 

electromagnetic spectrum frequency from 0.1 THz to 10 THz corresponding to the wavelengths from 

3 mm to 30 µm respectively. This ―terahertz gap‖ has historically been defined by the relative lack of 

suitable and inexpensive sources, detectors and systems for THz waves.  Within the last 15 years, 

many new THz techniques have been pioneered, motivated in part by the vast range of possible 

applications for THz imaging, sensing, and spectroscopy [Carey 2002; Fitzgerald 2005]. 

THz today are with continuous wave (CW) and pulsed sources readily available. There is a difference 

between the CW THz radiation and pulsed form of THz radiation. In this thesis, the pulsed type of 

terahertz is used to characterize the materials [Liu 2013; Tredicucci 2004]. The terahertz sources can 

be categorized into thermal, electrical and optical/laser based. The THz system used in this thesis was 

laser based [Brückner 2010]. Fig. 30 [Kolano 2010] shows the schematic of the generation of a THz 

pulse through a photoconductive switch. 

A split antenna structure is applied on a III-V group semiconductor of gallium (Ga) arsenide (As) 

substrate. A DC bias is placed across the antenna and an ultrashort pump-laser pulse (< 100 fs) is 

focused in the gap in the antenna. Irradiation of the gas with an optical pulse, whose energy is greater 

than the band-edge distance between the valence band and conduction band of the semiconductor, 

causes that the electrons and holes are generated. The result is a conductive channel. The externally 

applied field causes the separation of the electron-hole pairs, representing themselves, each a dipole 

moment. The integral over all dipole moments results in the source of the electric field. The strength 

of the electric field of the THz pulse depends on both the number of charge carriers and the electrical 

voltage [Chan 2007]. 

Fig. 31 shows the principle of a time domain spectroscopy in transmitted mode [Brückner 2010]. In 

this figure TDS refers ro time domain spectroscopy.   

 

Fig. 30: Generation of a THz pulse through the photoconductive switch 
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Fig. 31: Time domain spectroscopy, an image of the sample is built up based on selective absorption, which causes delays in 

arrival time at the detector 

 

 Ultrasound system with water immersion technique 4.1.7

In ultrasound testing a couplant is needed to transfer the acoustic energy between the transducer and 

the sample. Immersion in water is a suitable way of maintaining transducer coupling to the specimen 

surface. This method offers the advantages of: 

 Uniform sensitivity from uniform coupling, and 

 Suitable for automated scanning. 

The reflection technique in pulse-echo mode is the most commonly used method in ultrasound 

immersion inspection. A single ultrasound transducer transmits and receives signals so that only 

single-sided access is needed. A pulse generator creates a signal to the transmitter that provides an 

acoustic wave. The wave spreads from the transducer face into the sample and back using water as an 

impedance transition medium. Through this round trip travel, the wave may cross several boundaries 

with different acoustic impedances that reflect the wave. The first reflection is at the front surface of 

the sample (front-wall echo). If there is any inclusions within the sample, the wave reflects again, 

when it interacts with internal surfaces of defects (defect echo). The last reflection occurs at the 

boundary of the test object and surrounding medium (water in this case). The reflected signal can be 

represented in several ways, namely as an A-scan, B-scan and C-scan [Cartz 1995].   

The A-scan represents a time signal, which is the Hilbert transformation of the raw signal and shows 

the variations in amplitude of the ultrasound signal as it crosses a path from the transducer face to the 

sample back-wall and back. It means, A-scan signals give us the information of the thickness of the 
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material at a single point (x0,y0) at time t. A B-scan displays a scanning across the sample and mapping 

several A-scans parallel to the wave propagation. On a typical B-scan, the abscissa represents the 

position along the scanning direction and the values of time of flight (TOF) or distance are shown on 

the ordinate axis. The signal amplitude can be mapped to a color map scheme to display changes in 

amplitude owing to defects in a visual context. Usually the front and back-wall echo will have higher 

signal amplitude than the defect echo. This is visually represented by different colors mapped to the 

highest signal amplitude. If there is any defect in the path of the ultrasound wave, the back-wall echo 

amplitude at the x-position of the potential defect is weaker. The C-scan image represents a view of 

the sample as seen from above and therefore shows a cross section of the sample and defect parallel to 

the scanning surface. The C-scan image includes a series of parallel A-scans, which are operated over 

a surface, and the pulse echoes are limited to those returning during a fixed time interval. The reflected 

signals from the back-wall are ―gated‖, and its peak value provides data for the C-scan image. To 

obtain a C-scan image, the sample is scanned in a raster pattern and the transmitted wave amplitudes 

are gated and mapped over the x–y plane within a certain time range. This type of data analysis helps 

us to track a defect through the thickness of the sample due to changes in amplitude [Cartz 1995]. 

In this thesis, a high frequency ultrasonic imaging system of the Hillger Company had been used for 

carrying out the tests, including probes, pan and a manipulator from the I-Deal company (see Fig. 32). 

 

Fig. 32: The ultrasound system specified and constructed by the company I-Deal 

 

IDealviewer is a tool for visualization and analysis of two and three-dimensional data sets. The 

IDealviewer software is a tool for visualization and analysis of two and three-dimensional datasets. 

This viewer offers the following built-in features:  

 3D volume view,  

 Cut planes, 

 Texture mapping,  
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 Ray casting,  

 Maximum intensity projection,  

 Marching cubes,  

 BDC projections, and  

 Amplification and threshold.  

The IDealviewer supports datasets, measured by A1040 MIRA based on ultrasonic tomography for 

non-destructive testing.  

The measurement can be performed with conventional or sampling phased array technique.  

Theory: 

Ultrasound is sound of a pitch too high to be detected by the human ear of the frequency greater than 

about 18 KHz. Ultrasound waves are mechanical oscillations being transferred into the surrounding 

area in contrast to electromagnetic waves. Any mechanical wave is composed of oscillations of 

discrete particles of a material. If the oscillation of the particles have the same direction with the 

spreading of the wave, it is called a longitudinal wave and the spatial distance between two successive 

oscillation is called wavelength (see Fig. 33a). 

In case of the direction of the oscillation and the propagation are perpendicular to each other, the wave 

is called a transverse wave (see Fig. 33b). [Blitz 1997; Blitz 1996; Krautkrämer 1990]. This type of 

wave can only exist in solid materials, while the longitudinal wave can also exist in fluidic and 

gaseous materials [Krautkrämer 1990]. 

 

 

Fig. 33: Mechanical waves, a) longitudinal wave, b) transverse wave [Krautkrämer 1990] 
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These mechanical waves require a carrier material and cannot exist like electromagnetic waves within 

a vacuum or any other surrounding without matter. The frequency range being used for ultrasound 

technical measurement is usually far above the upper human audible limit. Usually frequencies 

between 1-20 MHz are used but some exceptions apply. 

These waves penetrate any material with a speed specific for the material. This is a specific 

characterization for each material with the same molecular structure. Nevertheless, this value is 

varying with temperature and is mainly valid for gases and fluids with external pressure. 

The sound velocity of the longitudinal wave V
l
 and the transverse wave V

t
 can be calculated from the 

material properties, mostly density which represents mass of the material in relation to its volume 

[Bolt 1995]. 

The elastic properties of a material, elastic modulus or Young’s modulus (E) and the transverse 

contraction, Poisson’s ratio (υ) and density (ρ) affect the sound velocity. 

The sound velocities are calculated by the following equations: 

   √
 

 
 √

   

           
 

Eq. 21 
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Eq. 22 

 

   

The relation between sound velocity and frequency can be obtained [Krautkrämer 1986]: 

      Eq. 23 

where  

V is the sound velocity [m/s], 

f is the frequency [Hz], and  

λ is the wavelength [mm].  

An ultrasound wave propagates from a surface simulated by a vibration into the interior of the test 

sample. During the propagation, the existing wave is weakened by internal friction. This phenomenon 

is called absorption.  The highly absorbing materials are used for acoustic damping and vice versa the 

materials with low absorption do not weaken the ultrasonic wave very much and are well-suited for 

ultrasonic measurements. Absorption is frequency-dependent. It is increasing with rising frequency on 

nearly all materials. Besides, mostly in metallic materials, the scattering phenomenon is responsible 
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for a decrease of amplitudes, i.e. sound attenuation. This scattering means the development of circular 

waves at obstacles in the dimension of wavelength, e.g. crystal structure or also inhomogeneity. 

When an ultrasonic wave arrives at the boundary area of another material, it is principally split into a 

reflected and a through-transmitted part. The simplest case of perpendicular incidence is shown in Fig. 

34. 

 

Fig. 34: Ultrasound wave travelling perpendicularl towards a boundary of two media [Deutsch 2002] 

 

The amplitude of the incoming wave is mostly described by the expression of sound pressure. 

Reflection coefficient Г and transmission coefficient D
*
 can be calculated from the acoustic 

impedance Z of both materials, where the impendence is defined in accordance to Eq. 24: 

     Eq. 24 

where  

ρ is the density of the material [g/m
3
], and 

V is the speed of sound [m/s]. 

The other factors being the reflection and transmission ratios are [Bolt 1995]: 

  
     

     
 Eq. 25 

   
   

     
 Eq. 26 
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 Samples 4.2

In order to characterize different properties of CIPP through different methods, various samples are 

required.  

 Aging samples 4.2.1

i. Material properties 

As mentioned in ‎1.1.2, UPR and PET materials were examined in this thesis. The UPR for aging 

samples is the classical isophthalic-based polyester resin MAXPOL
1
 (Ortho Neopentyl glycol resins, 

O-NPG). PET fibers with a diameter about 40 µm and a melting point about 252 °C were used.  

MAXPOL is developed for the production of CIPPs in the pipe rehabilitation industry. Fully cured 

polymer is characterized by high chemical resistance, good mechanical properties and an excellent, 

long-lasting retention of the properties. The material properties of aging samples are shown in Table 2. 

These samples have the thickness of 20.5 mm. 

Table 2 : Physical and mechanical properties of samples 

Materials 

Flexural 

E-Modulus  

[MPa] 

Flexural 

strength 

[MPa] 

Sealed 

Glass transition 

temperature 

[°C] 

Fiber volume 

fraction 

Density 

[g/ml] 

Profile 

 

UPR/PET 3247 32 yes 120 25% 1.31 DN 1000 

 

ii. Sample preparation 

One of the aims of this thesis is to investigate the CIPP samples after manufacturing, installation and 

during operation. As the CIPP here is completely cured it is not possible to test the samples in 

condition after manufacturing, because the CIPP is first cured during installation. Since the CIPPs are 

exposed to water after installation and during operation, in order to investigate the effect of water 

aging on CIPP samples, a hydrothermal aging process has been applied on the samples. To accelerate 

the hydrothermal aging, high temperature has been applied. Since the temperature of wastewater in 

reality may not exceed 70 °C and the high temperature has extra chemical effect on the polymers 

(depends on the Tg of materials), a temperature of 65 °C has been applied in this thesis.   

                                                      

1
 Maxpol is a thixotropic, filled, not pre-accelerated, UPR based on isophthalic acid / neopentylglycol low 

exothermic used in liner of the ―RS Technik‖ factory. 

 

 

 

https://en.wikipedia.org/wiki/Accelerated_aging
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As aging samples, three samples 1, 2 and 3 with dimension of 20.0 mm×20.0 mm×20.5 mm were cut 

into plates (Fig. 35). In order to have a better comparison, one unaged sample as a reference was cut 

from the CIPP in the same dimension. The unaged sample corresponds to the CIPP after installation 

and the aged samples correspond to the CIPP during operation. 

 

  

Fig. 35: Aging samples, a) front-side, b) back-side 

 

 Nanoindentation and optic microscope samples 4.2.2

i. Material Properties 

The same material was used as mentioned in ‎4.2.1. 

ii. Samples preparation 

In order to use the nanoindenter and optic microscopy, the surface of the CIPP samples had to be 

grinded and polished. For this purpose three samples with ground and polished surface have been 

prepared (Fig. 36). These samples were considered with nanoindenter and optical microscopy once 

before and once after aging. 

 

 

Fig. 36: Polishing of CIPP sample 
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 Geometrical defect sample 4.2.3

To check out whether defects in CIPPs can be recognized by microwaves, terahertz and ultrasound 

methods, some geometrical defects were machined on a CIPP sample. 

i. Material properties 

The material of the defect samples is the same as mentioned in Table 2 with the thickness of 20.5 mm. 

ii. Sample preparation 

Flat bottom holes (FBHs) with 10, 5 and 3 mm diameter and depth of 18, 15, 10, 6 and 2 mm were 

drilled on the back-side of the CIPP UPR/PET sample. Fig. 37 shows the FBHs on the sample. The 

front-side of the CIPP is available for any tests in the pipe and it is in contact with water. The red 

circles indicate the positions of the holes on the other side. 

  

Fig. 37: Flat bottom holes machined on the back-side of a CIPP sample, a) front-side of the CIPP, b) back-side of the CIPP 

 

Fig. 38 with a schematic sketch of the FBHs, shows the diameter and depth of the FBHs. The details 

of the FBHs can be found in Table 3. 

 

Fig. 38: Schematic sketch of the bottom holes on UP/PET liner 
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Table 3: Details of geometrical FBHs in CIPP sample 

Defect Diameter [mm] Depth [mm] 

1 10 18 

2 10 15 

3 10 10 

4 10 6 

5 10 2 

6 5 18 

7 5 15 

8 5 10 

9 5 6 

10 5 2 

11 3 15 

12 3 10 

13 3 6 

 Partially Cured sample 4.2.4

A sufficient curing process on the CIPPs has an important role on their chemical and mechanical 

properties. The curing and crosslinking process can change the dielectric permittivity and speed of 

sound in thermoset polymers. Since microwaves and terahertz testing are sensitive to variation of 

dielectric property and ultrasound testing with respect to the variation of speed of sound, it is 

reasonable to investigate this property of CIPPs. 

i. Material properties 

The partially cured sample in this section is made of UPR with carrier material PET as mentioned in 

Table 2 with a thickness of 8.5 mm. The sample is inhomogeneous and partially cured. This sample is 

flat and is not manufactured to be used as CIPP, but useful to inspect the process of the curing. 

ii. Sample preparation 

The sample for this section (see Fig. 39) is partially cured. For microwave measurement a line test was 

performed in reflection mode. Tests have been done in a line scan from the uncured to cured area. For 

the terahertz measurement a surface including the cured and uncured area has been scanned. For 

ultrasound measurement both the line scan and area scan has been done. 



  

- 56 - 

 

 

Fig. 39: The partially cured sample 

 Experimental 4.3

 Weighing experiments 4.3.1

Due to the exposure of CIPPs to water in reality, they are aged and saturated with water. This is the 

reason why the samples should become water-saturated. At first the samples were dried in the 

Nabertherm Controller B150 oven for one hour at 108±3 °C until all initial moisture was removed. 

The samples were then cooled in a desiccator and immediately weighted with the balance model PCE-

AB 200C. This weight recorded refers to the conditioned weight (W0). Then the samples were 

immersed in double distilled water at 65 °C. The samples were removed from the water after 24 hours, 

gently wiped free from surface moisture with a dry cloth and weighted immediately. This weight 

refers to wet weight (Ww) again. The weighing has been repeated at the end of the first week and every 

two weeks thereafter until the increase in weight per two-week period by the three descending 

consecutive weighing reached less than 1% of the total increase in weight average [ASTM 

International D 570 – 98]. The samples were then considered substantially saturated. After testing the 

samples in wet state, they were dried again in the oven for 1 hour and cooled down in a desiccator.  

 Optical microscopy experiments 4.3.2

The samples in ‎4.2.2 were observed by the Leica DM6000 M once before and once after aging. It was 

tried to capture the same area of the sample before and after aging to make the comparison easier. 

 Nanoindentation experiments 4.3.3

Hysitron TriboIndenter
®
 with the Performech™ controller and a Berkovich diamond tip has been used 

in this thesis to perform nanoDMA measurement for studying the creep resistance and viscoelastic 
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properties of the samples. The tip area function was defined with the conventional method of fused 

quartz calibrations. All nano indents, creep and sweep, were performed with the same initial 

loading rate of 200 μN/s followed by a holding time at the maximum force of about 200 μN and 

unloading rate of −200 μN/s. 

Conditions of creep test:  

Hold time: 300 seconds, load amplitude: 3-5μN, displacement amplitude: 1-2 nm, frequency: 220Hz 

Conditions of sweep test: 

Load amplitude: 3-5μN, displacement amplitude: 1-2 nm, frequency: 10 Hz to 200 Hz 

 Microwave experiments 4.3.4

A VNA allows an accurate and broadband microwave measurement of the phase and amplitude or real 

and imaginary parts. A horn antenna (aperture approximately 6 mm×9 mm) was used both as 

transmitting and receiving antenna. The distance between the sample and the antenna was 50 mm. 

 Aging experiment through microwaves 4.3.4.1

The aging samples (see ‎4.2.1) were characterized with microwave in time domain (75 – 100 GHz) in 

reflection mode before aging and immediately after aging when the samples are still wet (Fig. 40). 

After that, the samples were placed in the oven at 108±3 °C for one hour. They were allowed to cool 

down in a desiccator, and then they were characterized with microwaves one more time. Every sample 

is tested on different 20 points.  

 

Fig. 40: Set up of VNA test of aging samples in reflection mode 

 

 Geometrical defects experiment through microwaves 4.3.4.2

The test procedure was performed with a two-axis scanner across the fixed antenna (see Fig. 41) with 

a scan area 110 mm×90 mm in reflection mode. A computer program controlled the measurement data 

acquisition of the VNA and the movement of the sample in the x- and y-axis. The control parameter 

S11 has been applied to each measurement position for 201 frequencies between 75 and 100 GHz. The 
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measurement data have been stored on a computer and then processed using C++ programs. In this 

case, the evaluated volume starts with the scan surface at the location of the antenna aperture and ends 

in the beam direction beyond the sample back-wall. The technique of the synthetic aperture radar 

(SAR) was used to increase the lateral resolution [Moll 2013]. 

 

 

Fig. 41: Set up of VNA test of CIPP sample with FBHs in reflection mode 

 

S Parameter 

S parameters are used predominantly in the context of microwave frequencies because they provide a 

simple notation with exact data regarding the device performance in achievable environments. They 

are a ratio of two complex quantities, which means magnitude and phase. The S parameter numbering 

convention is: Sout in. where the first number (out) refers to the port where energy is emerging and the 

second number (in) names the port of incidence. In Fig. 42 ―a‖  is the incident wave and ―b‖ is the 

emerged wave and the numbers refer to reflection or transmission mode (1 is reflection and 2 is 

transmission). The energy in this graph can only be applied at the a1 node. S11 refers to the reflection 

mode (b1/a1) and S21 is the parameter of transmission mode (b2/a1). Fig. 42 shows a1 as the incident 

wave, b1 as the reflection of a1 and b2 as the transmission of a1. 

 

 

Fig. 42: S parameter flow graphs, reflection/transmission test set 
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Theory of SAR algorithm 

The geometric resolution is a measure of the separability of two nearby objects with the same radar 

cross section and is given as the minimum distinguishable distance in space, angle or speed. These 

variables determine the resolution cell [Soumekh 1999]. 

In radar, the axial resolution δe depends on the bandwidth or pulse duration of the transmitted signal 

[Duersch 2004]: 

   
 

   
 

Eq. 27 

 

where  

c is the speed of light [m/s], and 

Be is the bandwidth of antenna [Hz].   

The azimuth resolution δa depends on the azimuth size of the antenna and increases with liftoff 

(distance between target and radar) [Duersch 2004].  

        
 

  
   

Eq. 28 

 

where  

θa is the half width at half maximum (HWHM), 

r0 is the liftoff [m], 

da length of antenna [m], and 

λ is the wavelength [m]. 

An improvement in the azimuth resolution of an aperture is only possible within limits with a 

predetermined distance to the target and the wavelength of the measured signal by increasing the 

antenna aperture, which is specified by the application and installation situation. Synthetic aperture 

radar is a moving aperture radar along an imaginary aperture and all received echoes are stored in 

magnitude and phase (Fig. 43). 

 

Fig. 43: Schematic of synthetic aperture 
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The synthetic aperture is created by the fact that a point shaped target is within the lobe of a real 

antenna, which moves along the flight path (Fig. 44), is illuminated and all received echoes are stored 

in magnitude and phase. This covered during the illumination of the target flight path is called 

synthetic aperture. Because of the thereby changing distance between the antenna and target, the 

received echo signal with respect to the transmission signal to a Doppler frequency shift is calculated. 

Each target is identified by its characteristic Doppler frequency response and can in principle be 

distinguished from adjacent locations. 

 

Fig. 44: Schematic of azimuth resolution and length of synthetic aperture 

 

         
 

  
   

Eq. 29 

 

where  

Lsa is length of the synthetic aperture [m]. 

    
  

   
 

Eq. 30 

 

where  

θsa is the beamwidth of the synthetic antenna. 

   
  

 
 

Eq. 31 

 

where  

δa is azimuth resolution of a synthetic aperture radar [m].  
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Therefore the azimuth resolution of a radar with synthetic aperture is independent of wavelength and 

the range [Duersch 2004; González-Partida 2008; Soumekh 1999]. 

According to the Eq. 27 the axial resolution of the VNA in this project follows: 

   
 

   
 

         

        
     

The best lateral resolution is equal to the wavelength. In this case in the W-band up to 100 GHz, the 

wavelength corresponding to resolution is 3 mm. 

 

 Curing experiment through microwaves 4.3.4.3

Along the 11 points of the blue line being stepwise 1.41 mm apart (see Fig. 45) measurements were 

taken through the VNA in reflection mode. The control parameter S11 (reflection mode) at each 

measurement position has been applied for 201 frequencies.  

 

Fig. 45: VNA measurement on partially cured CIPP in reflection mode with horn antenna 

 Terahertz experiments 4.3.5

All THz measurements have been done in transmission mode. In the THz measurements the axial 

resolution according to the 2 THz bandwidth is equal to 0.075 mm. The best reachable lateral 

resolution is equal to the wavelength, which means 0.1 mm in this case.  

 Aging experiment through THz 4.3.5.1

Three wet aged samples in comparison with one unaged sample were scanned through the THz system 

(see Fig. 46), in steps of 1 and 0.6 mm. The lateral resolution in this test is therefore equal to 1 and 

0.6 mm.  
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After that, the experiment was repeated with the aged dry samples (the wet samples dried in furnace 

and cooled down) and one unaged sample.   

 

Fig. 46: Three aged samples left and one unaged sample right on x-y scanner of THz system in transmission mode 

 

 Geometrical defects experiment through THz 4.3.5.2

The sample explained in ‎4.2.3 was tested with the THz system in transmission mode in a scan area of 

127 mm×118 mm in steps of 0.25 mm. The best possible lateral resolution is therefore in the range of 

0.25 mm. The question is if one can reach this resolution or not, which will be answered in a test. The 

sample was set on the x-y scanner such that the FBHs were to the side of the detector (see Fig. 47). 

 

Fig. 47: The machined flat bottom holes sample on the x-y scanner of the THz system in transmission mode 

 Curing experiment through THz 4.3.5.3

An area of 140 mm×220 mm including a cured and an uncured area was scanned in steps of 1 mm 

with the THz system transmission mode to detect an insufficient curing process on the sample (see 

Fig. 48). 
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 Fig. 48: The partially cured sample on the x-y scanner of the THz system in transmission mode 

:  

 Ultrasound experiments  4.3.6

 Aging experiment through US 4.3.6.1

Three aging samples and one unaged sample of CIPP explained in ‎4.1.2 were immersed in water to be 

tested with ultrasound in reflection mode (Fig. 49). The measurement was done on aged samples once 

wet and once dry. In these measurements the conventional method with the 2.25 MHz transducer was 

used. 

 

Fig. 49: Set-up of immersed in water high-frequency ultrasonic measurement, testing the aging samples 

 

The speed of sound in the material should be known and this parameter needs to be entered in the 

system at the beginning of the scanning. In order to calculate the speed of sound, one should calibrate 

the system with the known thickness and measure the time of flight to calculate the speed. In aging 

experiment the speed of sound was calculated to be 2600 m/s. 
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 Geometrical defects experiment through US 4.3.6.2

The CIPP sample with flat bottom holes was immersed in water at room temperature and tested in 

reflection mode at 2.25 MHz scaning area of 120 mm×120 mm with the same speed of sound 

in ‎4.3.6.1 (Fig. 50). 

 

Fig. 50: Set-up of immersed in water high-frequency ultrasonic measurement, testing the sample with FBHs 

 

 Curing experiment through US 4.3.6.3

The curing process of thermosetting polymers follows the variation in the storage modulus and loss 

modulus. The sound velocity of a longitudinal wave and damping of this wave in the medium are 

connected with the longitudinal storage modulus and the longitudinal loss modulus as follows: 

  
      

   Eq. 32 

  
       

          Eq. 33 

where  

  
  is longitudinal storage modulus [g/m.s

2
], 

  
  is longitudinal loss modulus [g/m.s

2
], 

Vl is longitudinal velocity [m/s], 

ρ is density [g/m
3
], 

ω is the angular frequency [Hz], and 

α
long 

is the longitudinal damping [1/m]. 

It can be summarized as the complex longitudinal modulus E
*
: 



  

- 65 - 

 

  
    

     
  

Eq. 34 

 

In order to monitor the curing process through an ultrasonic system, two parameters are needed: the 

sound velocity and the damping. To calculate the sound velocity, one should know the thickness of the 

material and the traveling time [Karbhari 2013]. The partially cured sample was immersed in water at 

room temperature and tested in reflection mode with 5 MHz with the scan area of 170 mm×190 mm 

marked in Fig. 51. In addition, the sound velocity at the different 11 points was measured. 

 

 

Fig. 51: Set-up of immersed in water high-frequency ultrasonic measurement, testing the partially cured sample  
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5 Results 

 Results of weighing 5.1

The determination of the mechanism and the level of degradation on composites are dependent on the 

hydrothermal conditions. They include, for example, the duration of a hydrothermal test, the chemicals 

contained in the water and its temperature. To simplify the chemical conditions of water, double-

distilled water has been used, and the hydrothermal aging was performed until the samples reached the 

saturation level. It is assumed that the samples shall then be considered substantially saturated when 

the increase in weight per two-week period by the three consecutive weighing averages (Ave.) is less 

than 1% of the total increase in weight. This level of saturation was reached after 8 weeks (1344 

hours) of hydrothermal aging. Fig. 52 shows the total increase in weight measurements. Ww is the wet 

weight and W0 is the conditioned weight. 

 

 

Fig. 52: Weight gain curves at 65 °C of three aging samples, showing total weight gain vs. time 

 

 Results of optical microscopy 5.2

With the help of optical microscopy, degradation after hydrothermal aging is detectable. Fig. 53a, b 

show the CIPP surface before the aging and Fig. 53c, d after aging in different magnification. In order 

to investigate the changes in the matrix, fibers and interfaces, it was tried to inspect the same area of 

the surface before and after aging. The black parts in the fiber area in Fig. 53a, c and d marked in red 
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circles appeared after polishing the sample with a black textile. Even after cleaning with water and 

alcohol, some of these color-changes stayed in the fiber area. 

  

  

Fig. 53: Optical microscopic observation, a), b) before aging, c) matrix osmotic cracking after aging and d) interfacial 

debonding after aging 

 

 Results of nanoindentation 5.3

In the introduction, different models were mentioned for characterization of the tip-viscoelastic 

material interactions. However, during this work the generalized Voigt model was used for analysis of 

the data due to its successive results referenced in other publications [Cohen 2013; Sahu 2018)]. Based 

on the Voigt model, the reduced storage modulus    
 ), the reduced loss modulus or energy loss    

   

and the damping (δ) in the dynamic mechanical analysis method is calculated as follows [Zamanzade 

& Barnoush 2014)]: 

  
  

  √ 

 √  

 Eq. 35 



  

- 68 - 

 

  
  

   √ 
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Eq. 36 

 

     
  

  

  
  

   

  
 

Eq. 37 

 

where  

Ks is the storage stiffness of the sample [N/m], 

Ac is the contact area [m
2
],  

ω is the angular frequency [Hz], and 

ωCs is the loss stiffness of the sample [N/m]. 

The   
  relates to the stiffness of the material, or the in-phase response of the material to the applied 

force. This modulus relates the elastic recovery of the sample, which is the amount of energy 

recovered from the sample subsequent to a loading cycle. The Young’s modulus (which is the slope of 

the initial part of a stress-strain curve) and storage modulus are conceptually similar but they are not 

the same. Therefore, Young’s modulus has not necessarily been the same value as the storage modulus 

similar to other elastic concepts like shear, bulk and compressive moduli. In the case of linear elastic 

materials (e.g. metals or ceramics) the term elastic modulus is used which is similar to the storage 

modulus in the viscoelastic materials. Additionally, the term reduced elastic modulus (not elastic 

modulus) is commonly used in the case of nanoindentation tests, because the elastic deformation of the 

diamond tip should be considered as well, for exact definition of the elastic modulus of the samples. 

The measured   
  of the samples could be related to its storage modulus and Poisson’s ratio (0.38-0.40) 

and the indenter (ET and υ
T
) according to the following equation: 

 

  
 
 

    

  
 

    
 

  
 

Eq. 38 

 

Dissipation of energy in a material under cyclic load is called damping. It basically represents the 

ability of a material on absorbing energy. It varies with the state of the material, its temperature, and 

with the frequency. The   
  relates to the damping behavior of the material and is observed by the time 

lag between the maximum force and the maximum displacement. This damping is the amount of 

energy put into the sample during the indentation that is dissipated by various processes that facilitate 

energetic losses, primarily heat generation [Zamanzade, Vehoff 2014]. 

The calculated storage and loss moduli are the broadly used model-dependent quantities that could be 

used for describing material mechanics [Dokukin 2015]. There is a strong demand for a DMA 
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technique capable of measuring the dynamic moduli of polymers. Polymer databases of the storage 

and loss moduli used in industry are mostly limited to 200 Hz [Dokukin 2015]. 

After this, the terms of elastic modulus, storage modulus and loss modulus refer to the reduced one. In 

all the presented nanoindentation results in creep and sweep tests, each point represents the average of 

three tests among the 50 indents in the matrix, fiber and interphase (Fig. 54). 

  

Fig. 54: Optic microscopic image of the creep and sweep test on the matrix and fiber and interphase of the CIPP sample, a) 

horizontal test, b) vertical test 

 Frequency sweep test 5.3.1

The modulus-frequency plots are important because they explain how a material changes as frequency 

changes. For viscous materials, this can give useful information about its flow. Fig. 55 shows the 

changes of storage modulus of matrix as a function of the applied dynamic frequencies. Over the 

frequency range tested, the storage modulus in matrix and fiber decreases after aging in wet condition 

and it reverses back to the initial amount after drying (Fig. 55a, b). 
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Fig. 55: Sweep test, average of storage modulus of three tests vs. frequency at three conditions: unaged, aged wet and aged 

dry a) matrix and b) fiber 

 

On the contrary, in Fig. 56a, b the aging increases the loss modulus in wet condition and after drying 

the Eʺ reverses back to the primary amount. 
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Fig. 56: Sweep test, average of loss modulus of three tests vs. frequency at three conditions: unaged, aged wet and aged dry, 

a) matrix, b) fiber 

 

High values of tanδ at low frequencies in all cases in Fig. 57 indicate high energy dissipation at low 

frequencies. This figure shows higher damping in wet condition, but almost the same damping in 

unaged and aged dry condition in both matrix and fiber.  

 

 

0 20 40 60 80 100 120 140 160 180 200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

a

L
o
s
s
 m

o
d
u
lu

s
 [
G

P
a
]

Dynamic frequency [Hz]

 unaged matrix

 aged wet matrix

 aged dry matrix

 

0 20 40 60 80 100 120 140 160 180 200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

b

L
o
s
s
 m

o
d

u
lu

s
 [

G
P

a
]

Dynamic frequency [Hz]

 unaged fiber

 aged wet fiber

 aged dry fiber



  

- 72 - 

 

 

 

 

Fig. 57: Sweep test, average of tanδ of three tests vs. frequency at three conditions: unaged, aged wet and aged dry, a) matrix, 

b) fiber 
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performed at room temperature at a constant force of 200 μN. Fig. 58 and Fig. 59 show some 

representative creep curve at three different states i.e. unaged, aged wet and aged dry. In all cases, 

three distinct regions are clear: primary or transient, secondary or steady-state stage and tertiary or 

stable stage. In Fig. 58a, b, the primary stage could be defined by rapid increase in displacement and 

hence reduction of the calculated hardness (Fig. 59a, b). The secondary stage in Fig. 58a, b shows a 

constant creep strain rate  
                      

  
          value till it reaches zero in the stage three. 

Creep behavior of a polymer depends on many different material features like viscoelastic properties, 

bond rupture and chain slippage [Spathis 2012]. 

The relation between the indent displacement and the hardness in Fig. 58 and Fig. 59 can be explained 

with the aid of the following equation: 

  
 

  
 Eq. 39 

where 

H is the hardness [Pa], 

P is the maximum applied force [N], and 

Ac is the contact area [m
2
]. 
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Fig. 58: Creep test, average of ref. indent displacement of three tests vs. time at three conditions: unaged, aged wet and aged 

dry, a) matrix, b) fiber 
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Fig. 59: Creep test, average of ref. hardness of three tests vs. time at three conditions: unaged, aged wet and aged dry, a) 

matrix, b) fiber 

 Results of microwaves 5.4

 Aging 5.4.1

Fig. 60a shows the time domain reflectometry signal of three samples before aging and after aging 

once moist and then after drying in oven. Each signal represents an average of 20 measurements of 
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the horn antenna, which are unchangeable in every measurement. The third peak refers to the front-

wall and the last one to the back-wall of the sample. Fig. 60b shows the average of 3 samples in every 

aging condition. The curves have been plotted from the time 400 ps because the first peak of the 

antenna appears at 450 ps. During 0 to 450 ps, microwaves propagate in the waveguide, therefore the 

signal gives no useful information. 

 

 

Fig. 60: Reflection measurement in time domain mode, a) three samples unaged, aged wet and aged dry, b) the signal average 

of three samples in three different conditions. The values are displayed in arbitrary units. 
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It is seen that the existence of water in wet condition is obvious in both front and back-wall echoes of 

the samples. 

 Geometrical defects  5.4.2

The geometrical defects on a CIPP sample have been tested through the microwave method. Fig. 61a 

shows the front-side of the sample, which faces to the microwave antenna. The flat bottom holes are 

marked in the image with numbers from 1 to 10 to distinguish them better in the signal imaging. The 

signal amplitudes in the form of cross sectional images of the captured volume parallel to the scanning 

surface, and thus parallel to the sample surface (Fig. 61), are analogous to a C-scan in the ultrasonic 

test. The amplitudes in the region of the sample are beginning from the front-wall surface in the 

perpendicular direction to the back-wall surface. At first the deepest FBHs with 18 mm depth in the 

Fig. 61b are seen, then the FBHs with 15 mm in Fig. 61c, after that the FBHs with 10 mm in the Fig. 

61d are observed. At the end in Fig. 61e, f the FBHs with 6 mm and 2 mm depth are detected with 

passing the time. toward the back-side (Fig. 61f). 

In the deeper layers, close to the back-wall, increasing noise appears due to the roughness and 

superimposed signals in the displaying of the FBHs (Fig. 61e, f). These FBHs with lower depths are 

more difficult to be detected because of the noise of the roughness of the back-wall and also the more 

attenuation of the signals due to the more damping in the material.  

With the help of the SAR technique and improvement of the lateral resolution, the FBHs with 10 mm 

diameter are well detectable, except for the FBH with 2 mm depth which is not visible well because of 

the back-wall roughness (Fig. 61f). The 5 mm diameter FBHs are just detectable with 18, 15 and 10 

mm depths. The clarity of the amplitude signal analysis is good enough to represent the diameters of 

the FBHs with the exception of FBHs with 6 and 2 mm depth (Fig. 61e, f). 
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Fig. 61: Surface image perpendicular to the beam axis, represents the C-scan, a) sample surface, b) FBHs with 18 mm depth, 

c) FBHs with 15 mm depth, d) FBHs with 10 mm depth, e) FBH with 6 mm depth with 10 mm diameter, f) FBHs with 2 mm 

depth with 10 mm diameter. 

 

Cross sectional images parallel to the beam axis (B-scan) can distinguish the FBHs in 3 rows (Fig. 

62a). The bottom horizontal strip in Fig. 62b, c and d is the reflection of the antenna. The second strip 
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represents the front-wall echo of the sample and the top strip is the back-wall echo of the sample. The 

noise of the back-side (see Fig. 61e, f) can be seen here also obviously in comparison to the front-side. 

  

  

Fig. 62: Sectional image parallel to the beam axis, represents the B-scan, a) sample surface with the marked scan area, b) 

echoes of the front and back-wall including the first row of FBHs, c) echoes of front and back-wall including the second row, 

d) echoes of front and back-wall including the third row. 

 

Between the front-wall and the back-wall, the FBHs can be detected. The first row consists of the 

10 mm diameter FBHs with 18, 15, 10 mm depths (Fig. 62b). The second row (Fig. 62c) shows that 

the diameter size of the FBH with 2 mm depth is not easy to distinguish. The same problem can be 

seen in Fig. 61f. The third row (Fig. 62d) shows the 5 mm diameter FBH with different depths. The 15 

and 10 mm depths are detectable in diameter and depth. It is strange to find out that the FBH with 2 

mm depth is more distinguishable than the 6 mm one. This can be because the FBH 6 has not been 

drilled exactly flat and the microwaves are not reflected to the antenna, but in different directions. 

However, the diameter of FBHs 6 and 2 mm depth is not possible to be measured. 
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 Curing 5.4.3

Because of the low velocity of microwave measurement (25 GHz bandwidth), not an area scan but a 

diagonal line measurement in reflection mode from the partial cured part to the complete cured part 

has been done here (Fig. 63a). 11 points along the line measurement in Fig. 63b show the increase of 

the magnitude while moving towards the cured part. It is seen that the microwave testing is able to 

distinguish the insufficient curing process in the sample. This test has been done two times, and the 

results were the same. 

 

 

 

Fig. 63: a) Schematic of the microwave line scan testing on partially cured sample, b) line microwave reflection measurement 

in time domain mode reflection mode of partially cured sample. The magnitude has arbitrary units. 
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 Results of terahertz 5.5

In order to discuss and realize the results of THz system, it should be first explained, how the signals 

are processed. 

THz signal processing 

The received THz pulse from the emitter saved as a time domain signal is shown in Fig. 64. A simple 

Fast Fourier Transform (FFT) analysis is therefore enough to obtain the spectrum of the measured 

time pulse. Fig. 64 represents also the calculation of some signal processing parameters of the time 

signal, which has been used in this thesis. In these measurements, the values of the amplitude are 

displayed in arbitrary units. 

 

Fig. 64: Signal processing of the THz time signal in this thesis 

The time signal analysis has been performed through the calculation of the envelope of the pulse (Fig. 

65). 

     √               

Eq. 40 

 

where 

E(t) is the envelope of the time pulse [a.u.], 

f(t) is the function of time pulse [ps], and 

H(f(t)) is the Hilbert transform of the time pulse [a.u.]. 
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Fig. 65: Calculation of the envelope of the THz time signal in this thesis 

Fig. 65 shows the envelope of the time signal and the calculation of TOF. In the diagram also the 

calculation of the envelope peak and the envelope width are shown. 

 Aging 5.5.1

In order to investigate the aged samples with the terahertz system at first three wet aged samples and 

one unaged sample were tested. After that the wet samples were dried and the test was repeated again 

including an unaged sample. Fig. 66 and Fig. 67 show the C-scans’ evaluations in transmission mode 

for different parameters of the THz signal transmitted through the three wet aged samples (left) in 

comparison to one unaged sample (right). It is seen that all of the parameters in these figures can 

distinguish the wet aged samples from the unaged sample. Fig. 66 shows that the wet aged samples 

have more attenuation compared to the unaged sample. Fig. 67 shows that the time of flight of wet 

aged samples is higher than the unaged sample. It has been shown before that the terahertz time 

domain spectroscopy is an important device for moisture detection, moisture tomography and in depth 

analysis of THz approaches for moisture related aging characterization in polymers [Szielasko 2017]. 



  

- 83 - 

 

 

 

 

 

Fig. 66: THz scan surface of three wet aged (left) and one unaged (right) samples. Analysis with different parameters in 

intensity 
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Fig. 67: THz scan surface of three wet aged (left) and one unaged (right) samples. Analysis with different parameters in TOF 

Fig. 68 and Fig. 69 show the C-scans’ evaluation respectively in intensity and in TOF, for different 

parameters of the THz signal transmitted through three aged dry samples (left) and one unaged sample 

(right). It is seen that in Fig. 68 the intensities in different parameters cannot distinguish the aging 

process but in Fig. 69 except the TOF analysis shown in Fig. 69b, d the other parameters can 

distinguish the aging process on the CIPP samples. In Fig. 69a, c the signal minimum time of flight 
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and the envelope peak time of flight show that the aged samples have a time delay to the unaged 

sample. 

 

 

 

 

Fig. 68: THz scan surface of three dry aged (left) and one unaged (right) samples. Analysis with different parameters in 

intensity 
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Fig. 69: THz scan surface of three dry aged (left) and one unaged (right) samples. Analysis with different parameters in TOF 
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 Geometrical defects  5.5.2

The machined geometrical defects with different depths and diameters as shown in Fig. 70 have been 

inspected by means of the terahertz time domain spectroscopy method. The details of defects are 

available in Fig. 38 and Table 3 respectively. 

 

 

Fig. 70: Front side of the sample with the marked scan area 

 

Fig. 71 shows the signal amplitudes in different parameters of the scanning surface. In Fig. 71a, c, d, f 

and g the three first columns of defects with 10 mm and 5 mm in diameters are visible with the 

exception of FBHs 9 and 10. It is observed that the air around the sample has always the highest 

amplitude and with respect to the thickness of the sample at the different FBHs, the deepest FBHs 

have the higher amplitude when compared to the FBHs with lower depth or the area without FBHs. 
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Fig. 71: THz scan surface of 127 mm×118 mm of FBH machined sample. Analysis with different parameters 
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In Fig. 71b and e one can see the same results but the FBH number 5 is not observable. Fig. 71h 

represents the best results, in which the FBHs 1 to 8 are observable and the existences of the FBHs 9 

and 10 is detectable. The amplitude is considered in an arbitrary unit [a.u.]. 

 

Fig. 72: THz scan surface of 127 mm×118 mm of FBH machined sample. Analysis of the spectrum signal at frequency 5 

THz 

 

Fig. 72 shows the spectrum analysis at 5 THz, in which the first 8 FBHs except number 5 are easy to 

evaluate in existence and diameter. However, this evaluation is not able to characterize the depth of 

the FBHs. 

Fig. 73 refers to the time signal analysis of the bore machined sample showing the cross section of the 

sample surface perpendicular to the signal propagation in different time intervals. As it can be seen 

from Fig. 73 the FBHs with the same depth appear together and the appearance of the FBHs begins 

with the deepest FBHs 18 mm. Gradually the FBHs disappear and the next two FBHs will come until 

to 2 mm in depth, which appear with some noise because of the roughness of the sample’s back-side. 

In any case the FBHs with the 3 mm diameters do not appear even in the time signal. It means the 

lateral resolution of the THz inspection is not enough to characterize two points with 3 mm or less 

distance. 
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Fig. 73: THz scan surface of 127 mm×118 mm of FBH machined sample. Cross sections of envelope analysis, perpendicular 

to the signal propagation, in time domain at different time intervals, a) 18 mm FBHs at 13.74 ps, b) 15 mm FBHs at 20.58 ps, 

c) 10 mm FBHs at 32.4 ps, d) 6 mm FBHs at 44.32 ps, e) 2 mm FBHs at 52.98 ps 
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 Curing 5.5.3

As explained in ‎5.4.3 the crosslinking and curing process in thermosetting polymers cause the 

variation of dielectric properties which is detectable with microwaves and also THz inspection. Due to 

the dilution of the resin with styrene in UP changes the dielectric parameter. This change as seen 

in ‎5.4.3 is visible through microwaves tests in time domain. In this section a surface of 

140 mm×220 mm marked in Fig. 74, has been scanned and the signals measured can be shown in time 

and frequency domain.  

 

Fig. 74: THz transmission method, testing on partially cured sample 

 

In this section different parameter analyses have been applied on the signal amplitude to figure out, 

which analysis can differentiate the dielectric parameter between partially and completely cured areas.      

Fig. 75 and Fig. 76 show these parameters respectively in intensity and in TOF. In between, only the 

time of flight parameters in Fig. 76a, b and c can present these different parts in terms of a difference 

in time except the envelope width.  
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Fig. 75: THz scan surface of 140 mm×220 mm of partially cured sample. Analysis with different parameters in intensity 
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Fig. 76: THz scan surface of 140 mm×220 mm of partially cured sample. Analysis with different parameters in TOF 

It is seen that the partially cured part has a shorter TOF than the completely cured one. This means that 

the real part of permittivity of the sample increases with the curing process but as no difference in two-

dimensional analysis is seen in intensity, the curing process may have no effect on the imaginary part 

or the effect is too small to be detected with this type of analysis. 
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The interesting point is that one can also see the trend of curing with different times of flight. When 

the electromagnetic waves need more time to pass through a medium, this means that the medium has 

more real part permittivity (εʹ). More specifically, the material has more ability to resist an electric 

field forming in the material. 

 

Fig. 77: THz scan surface of 140 mm×220 mm of partially cured sample. Analysis of the spectrum signal at 1 THz 

The two-dimensional analysis of the spectrum in Fig. 77 shows no differences between the signals for 

the partially cured and the completely cured part. 

 Results of ultrasound 5.6

 Aging 5.6.1

For the ultrasound testing, the aging samples were investigated in two conditions: 

1. Comparison of three wet aged samples with one unaged sample and 

2. Comparison of three dry aged samples with one unaged sample 

The aim of this measurement is to determine if the effect of the hydrothermal aging on the CIPP 

samples is detectable with the ultrasound technique. Therefore, the aged samples were tested with an 

unaged sample for a better comparison. Fig. 78a shows the B-scan of the measurement immediately 

after aging, while the samples are still saturated with water. It is seen that in the wet aged samples the 

back-wall echo is observable. Fig. 78b shows the B-scan of dry samples, in which no echo of the back-

wall is distinguishable. It is observed that the plasticization of water in CIPP samples facilitates the 
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detection of the back-wall echo. In other words it is possible to measure the thickness of the CIPP 

samples. 

 

           

Fig. 78: Ultrasound B-scan measurement of aged and unaged samples with frequency 2.25 MHz, a) three aged wet samples 

and one unaged sample, b) three aged dry samples and one unaged sample 

 Geometrical defects 5.6.2

Fig. 79b shows the ultrasound C-scan and presents the amplitudes of the CIPP surface. The FBHs are 

detectable when compared to the results shown in Fig. 79a. The first bottom row with the FBHs of 

10 mm in diameter and 18 to 10 mm in depth are distinguishable. In the second and third row the same 

depth FBHs with 5 mm in diameter are observed but among FBHs with 6 and 2 mm in depth, only the 

existence of the 6 mm in depth FBH with a large diameter in the second row is visible. The important 

point in this chapter is in contrary to the results of the microwave and the THz testing, where one of 

the FBH with 3 mm in diameter and 15 mm in depth is shown in the top row and can be recognized. 
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Fig. 79: a) Surface of the CIPP tested sample, scan area marked within the dotted area, b, c) ultrasound C-images, amplitude 

of the input echo on the CIPP sample with geometrical defects determined at 2.25 MHz frequency. 
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In order to inspect how this technique has been successful in detecting the size of the FBHs, as shown 

in Fig. 79c, the size of the FBHs has been measured. It is seen that the FBHs appear in Fig. 79b and c 

larger than the real size with the exception of FBH number 4. FBHs 3 and 11 have the best measured 

size related to the real size (see Table 4). 

 

Table 4: Results of the C-Scan of the ultrasound measurement on sample with FBHs 

FBH 
Existence 

visible? 
Real size C-scan size 

1 yes 10 mm×10 mm 14 mm×13 mm 

2 yes 10 mm×10 mm 14 mm×13 mm 

3 yes 10 mm×10 mm 12 mm×12 mm 

4 yes 10 mm×10 mm 5 mm×6 mm 

5 no 10 mm×10 mm - 

6 yes 5 mm×5 mm 10 mm×10 mm 

7 yes 5 mm×5 mm 9 mm×10 mm 

8 yes 5 mm×5 mm 7 mm×9 mm 

9 no 5 mm×5 mm - 

10 no 5 mm×5 mm - 

11 yes 3 mm×3 mm 4 mm×3 mm 

12 no 3 mm×3 mm - 

13 no 3 mm×3 mm - 
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Fig. 80: Ultrasound B-scan, amplitude of the input echo of the CIPP sample with geometrical defects inspected with 2.25 

MHz frequency, a) with front-wall echo, b) without front-wall echo, c) front-wall echo with depth of the FBHs 
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Fig. 80a shows the B-scan of the CIPP sample with FBHs. It is seen that the front-wall echo is so 

strong that it does not allow the echoes of the FBHs to be detected. In Fig. 80b the front-wall echo is 

cut for better investigation of the FBHs. B-scan evaluation helps to investigate the depth of the FBHs, 

which is not possible in a C-scan analysis. Fig. 80 shows that the back-wall is difficult to distinguish. 

 Curing 5.6.3

Fig. 81 shows the results of measured speed of sound at the different 11 points shown in Fig. 82a. 

 

Fig. 81: Speed of sounds of the 11 different points of the partially cured sample 

 

It is observed that the sound velocity decreases at first, followed by a slight increase in sound velocity 

and then stays constant after that.  

Since there is only a slight difference between the sound velocities of partially and completely cured 

area of the sample, with assumption of a constant velocity, a two-dimensional scan of the partially 

cured sample is possible. In order to investigate the damping of the sample, an area of 

190 mm×170 mm (shown in Fig. 82a) with a speed of sound of 2560 m/s has been scanned. 
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Fig. 82: a) The partially cured sample prepared for ultrasonic testing immersed in water with the scan area marked with a 

dotted line, b) ultrasound C-scan measurement within the dotted area with 5 MHz frequency, c) ) ultrasound B-scan 

measurement 
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It is obvious from Fig. 82 b and c that the damping in the partially cured area is higher than the 

completely cured area. Fig. 82b shows a C-scan of the dotted line area in Fig. 82a. More intensity of 

the ultrasound echo on the cured area is visible. Fig. 82c is a B-scan, which shows that in the cured 

area the back-wall echo at 8.5 mm is distinguishable but towards to the partially cured area the 

detection of the back-wall echo becomes more difficult. It is verified that the curing process decreases 

the damping in the material.  
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6 Discussion 

 Analysis by weighing 6.1

Increasing the temperature may raise water uptake and accelerates the saturation but in this thesis 

applied temperature is 65 °C, because the CIPPs are not exposed to higher temperature. If hydrolysis 

occurs during aging, this leads to weight loss in the polymer. The hydrolysis in polymer happens in 

high temperatures according to Tg of polymers (usually at more than 90 °C). Hydrolysis of the UPRs is 

therefore out of question when considering conventional sewer lines. The only weight loss that exists 

under the latter operational conditions is due to dissolution of the coupling agent at the matrix-fiber 

interface, which has been measured after drying the wet aged samples in the oven. 

The weight gain behavior of the randomly oriented PET carrier and UPR is a result of the water 

absorption in the matrix, fiber and their interface. The weight increase in percentage is calculated 

according to Eq. 41 and plotted versus square root of time (Fig. 83). 

                          
                                      

                       
     

 

Eq. 41 

 

The total weight increase in the three samples has been between 0.0887 g to 0.1033 g. The samples 

were weighted again after drying to measure the weight loss (see Table 5). 

 

Table 5: Calculation of increasing weight in three samples 

Samples 
Total increase in 

weight [g] 

          

                        
 final Ma 

Total decrease in 

weight [g] 

Sample 1 0.0963 0.976116% 0.62157103% 0.0109 

Sample 2 0.1033 0.816392% 0.64237299% 0.0113 

Sample 3 0.0887 0.98835% 0.59113629% 0.0105 
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Fig. 83: Weight gain curves at 65 °C of three aging samples, Ma vs. time1/2 

 

When the mass uptake reaches an apparent equilibrium, the Ma ceases at 0.6% as can be seen in Fig. 

83. Water absorption of polyester resin does not usually exceed this amount, according to the 

references [Apicella 1983]. 

The thickness of the samples was checked again after aging and a swelling of 0.3 mm up to 0.6 mm 

has been observed in wet condition and also after drying. This deviation in thickness has 1 to 2 ps time 

of flight of electromagnetic waves, then a delay in TOF of the microwave and the THz from 1 to 2 ps 

refers to this swelling. If the time delay is different from this amount, it represents the changing in the 

dielectric constant after aging. 

 Analysis by optical microscopy 6.2

During the exposure of CIPP to water, significant damage may occur in the form of micro-cracks. It 

has actually been observed that during the absorption stage such damage occurs mostly in the interior 

of the composite, while more intense micro-cracking is observed in the interface between the fibers 

and the matrix. It is therefore believed that the degradation effect of water absorption on the matrix of 

the composites is only secondary, compared to the damage at the fiber/matrix interface. 

Hence two types of degradation after the hydrothermal aging are distinguished: 

 1. Matrix osmotic cracking (Fig. 53c) 

 2. Interfacial debonding (Fig. 53d) 
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Both degradations may be induced by differential swelling or by osmotic cracking and debonding at 

the fiber/matrix interface because of water accumulation. In fact the interfacial zone constitutes a 

suitable site for the osmosis processes because of stress concentration and the coupling agent leaching 

out. The binder-dissolving in water at the fiber/matrix interface may cause the debonding [Manavipour 

2016]. 

To explain the degradation of the CIPP, the material and the curing process need to be investigated. 

Styrene is added to accelerate the curing process. It acts as a solvent [Sokoll 2009] which creates 

crosslinking units by reacting with the UPR. In the case that the polymers are incompletely 

polymerized, low heat stability, low resistance to hydrolysis and greater degree of swelling would 

appear. If aging in water promotes further reaction of the residual styrene monomer, it increases the 

Tg. Weight loss of polymers during water immersion is related to the leach-out of some of the 

components or portions of the macromolecular segments initially present in the resin [Apicella 1983]. 

The cured isophthalic polyester used in this research has Tg = 120 °C. The hydrolysis behavior is 

highly dependent on the temperature. The higher the temperature and the nearer it is to Tg, the higher 

the possibility of hydrolysis becomes. At 65 °C no hydrolysis is expected in UPRs. Hence, the only 

irreversible phenomenon that can occur as a result of hydrothermal aging is osmotic cracking and 

debonding [Gautier 1999]. On the other hand, since the UPR does not have high cationic charge (H-

bonding), it is not a hydrophobic polymer and water plays a role of plasticizer, but not of a solvent. 

Therefore UPRs cannot be categorized as water-soluble but water-sensitive materials. 

Microscopic observation of the samples before and after hydrothermal aging makes it possible to find 

out the reason behind the mechanical properties degradation of CIPPs. This degradation of elastic 

modulus and flexural stress in a three-point bending flexural test [Sterling 2016] may be dependent on 

the existence of micro-cracks in the matrix and debonding at the fibre/matrix interface, which 

appeared during the aging. 

The main question regarding the existence of chemical aging in the material, being also a reason 

behind the mechanical degradation of CIPP, is answered in the next section. With the help of 

nanoindentation measurements, it is possible to characterize the mechanical behavior of small volumes 

of the matrix and fiber with spatial resolutions in the nanometer range. Therefore, the mechanical 

properties, assessed by means of nanoindentation tests (such as hardness and elastic modulus) are not 

affected by osmotic cracks and debonding, but rather by the structure of the matrix and fiber materials 

depending on their status of chemical aging. 

https://en.wikipedia.org/wiki/Flexural_modulus
https://en.wikipedia.org/wiki/Flexural_stress
https://en.wikipedia.org/wiki/Flexure
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 Analysis by nanoindentation 6.3

 Frequency sweep test 6.3.1

An increase in storage modulus with frequency in wet condition has been seen in Fig. 55a, b, which 

may result from the existence of waer in material, which leaves the sample during the time. 

The storage modulus decreases after exposure of the composite material to an aging process in wet 

condition and it reverses back to the initial amount after drying. Fig. 55 shows also that the matrix has 

a higher storage modulus in comparison to fibers and in both the matrix and the fiber the water 

absorption causes reduction of the storage modulus. The water molecules interpose themselves 

between the UPR chains. This increases the distance between the chains and one can therefore say that 

the water absorption reduces the strength of the molecular bonds, which is the reason for the reduction 

of the storage modulus. Importantly the results show a complete recovery of the storage modulus after 

drying the wet samples in both cases in terms of the matrix and the fiber. It shows that at the aging 

temperature of 65 °C no hydrolysis happened and only mechanical aging consisting of cracks and 

debonding could cause mechanical deterioration of the samples. 

On the contrary in Fig. 56a, b the aging increases the loss modulus in wet condition and after drying 

Eʺ reverses back to the primary amount. This behavior is indicative of the beginning of certain internal 

damping or energy dissipating effects by an increase in the amount of water. It illustrates that the 

higher amount of moisture enters the network of the CIPP samples and shifts the interchain distance 

up to the maximum. It shows that in this thesis, water as a plasticizer acts as a lubricant to reduce the 

rigidity and by doing so it increases the deformability of the polymer. Hence, water is not a substance 

in the polymer and the intermolecular bonds are not broken, because this phenomenon is irreversible. 

The diffusion of water molecules throughout the polymer chains causes plasticization, which results in 

a reduction of the Tg [Marais 2000]. The increase of the loss modulus after aging can be explained 

with the large interchain distance because of the water diffusion, which increases the internal damping 

being reflected in the loss modulus, which is an indication of damping. This indicates that an energy 

dissipation has occurred in the material with the absorbed water, that leads to increase the loss factor 

and it contributes to the damping of the material. This result supports the idea that both the reduction 

in storage modulus and increase in loss factor are due to the presence of absorbed water in the matrix 

and the fiber. It is also seen that the frequency decreases the loss modulus, which can be interpreted as 

a reduction of the intermolecular friction and at the 200 Hz the loss modulus of the unaged and aged 

dry samples goes to zero. The decrease of tanδ with frequency (Fig. 57a, b) means that the material 

acts more elastic and by applying a load, it has more potential to store the load rather than dissipating 

it. 

It is known that a slow degradation process takes place when physical aging process due to water 

molecules is occurred in UPRs [Apicella 1981; Apicella 1982]. Moisture acts as both a plasticizer and 
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hydrolysis promoting the agent, decreasing the mechanical integrity of the ester matrix to a degree 

being dependent upon the temperature to which the material has been previously exposed. However, 

while plasticization is a reversible phenomenon, which disappears upon drying, chemical degradation 

is irreversible. As the mechanical properties after drying are reversed to the initial properties, it is 

confirmed that the only phenomenon during the aging process has been plasticization and it has been a 

physical aging process and not a chemical one. 

Fig. 55, Fig. 56 and Fig. 57 indicate also the frequency response of the viscous behavior. As the 

frequency and time being inversely related, hence at low frequency viscous behavior is more 

pronounced. The increase in the storage and decrease in the loss modulus when related to frequency 

can be attributed also to the junctions between the polymer molecules, which are temporary 

entanglements within the various stages of the material’s lifetime. In mechanical spectroscopy there 

are two relevant kinds of timescales: one is the timescale of measurement equal to 1/ ω and the other 

one is the lifetimes of the entanglements. At high frequency (ω), the timescale of measurement is 

shorter than at the lifetime of the entanglements, such that the entanglements behave as 'permanent'. It 

may increase the molecular chain rigidity and decrease the polymer chains’ mobility and the friction 

among them. Therefore a rise of storage and reduction of loss modulus happens. At increasing time 

(decreasing ω), the timescale of measurement becomes of the order of the lifetimes of the 

entanglements. Hence, less junctions remain effective. Therefore the rigidity of the polymer decreases 

and the polymer chains’ mobility and the friction increase, hence a reduction of Eʹ and increasing of 

Eʺ occur. 

 Creep test 6.3.2

As mentioned earlier the thermal drift can have a destructive influence on the validity of the measured 

displacement. Therefore all the values presented in this thesis are corrected using the method 

mentioned in chapter  4.1.4. Hence, the vertical axis has been named as ref. indentation displacement in 

Fig. 58 and ref. hardness in the Fig. 59. 

A reduction of hardness has been observed in both matrix and fiber after hydrothermal aging in the 

wet condition related to the plasticization process as shown in Fig. 59a, b. Absorption of water 

molecules increases the reference indent displacements. The steepest ascent at the early times of 

measurements in the case of wet samples could be attributed to the effect of water, which lessens the 

intermolecular Van der Waals' force. However, the reduction is more in case of the matrix, which 

shows more water absorption in the matrix when compared to the fibers. Certain solvents can cause a 

material to soften, while they are exposed to the material. Others can chemically react with and harden 

the material. Both of these effects can cause failure. However, the results show that the hardness of dry 

saturated samples returned to that of the unconditioned state. It verifies the existence of the 
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plasticization phenomenon. Therefore, this hydrothermal aging is assumed to have not caused 

permanent damage like hydrolysis of the matrix and the fiber.  

As mentioned earlier quantification of the results from creep measurements is made under the 

assumption that the samples show a linear viscoelastic behavior, which may not be correct specially in 

the case of pyramidal tips (like the tip used in this thesis) [Díez-Pascual 2015]. A generalized model of 

the viscoelastic–plastic behavior has been proposed by introducing an additional plastic element in the 

dashpot-spring model of viscoelasticity [Oyen 2003]. One simple way to compare the time-dependent 

deformation of polymers is to fit the variation of depth as a function of time during the hold period to 

the following equation [Beake 2006]: 

        (  
 

 
) 

 

Eq. 42 

where 

h is the indent displacement [nm], 

h0 is the initial penetration at the beginning of the hold period [nm], 

ζ is a characteristic of the asymptotic regime and proportional to the initial penetration [nm], 

t is the creep time [s], and 

τ is the characteristic time [s]. 

In other words, the characteristic of the creep time is equal to η which is achieved in Table 6 after 

curve fitting (see Appendix). 

Table 6: Characteristic of the creep time for three conditions 

Condition τ in matrix τ in fiber 

Unaged 4.18131 1.92639 

Aged wet 9.37751 10.29215 

Aged dry 5.3032 4.14909 

 

For the case of a conventional relaxation test and for a linear inelastic deformation the variation of the 

strain versus time can be depicted as follows (Fig. 84): 
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Fig. 84: Schematic presentation of the elastic and inelastic deformation of a linear viscous material. 

The first sudden change of strain during the application of the constant stress is due to the pure elastic 

deformation, which follows with a time dependent inelastic deformation. If a tangent at the time zero 

is plotted, the constant η can be calculated, which represents the time of the damping properties of a 

sample. The most frequently used equation for evaluation of the viscosity properties of polymers is as 

follows: 

  
 

        
 Eq. 43 

where 

η is the viscosity [Pa.s]. 

 

It can be observed from Table 6 that  the η values due to the water absorption both in the fiber and the 

matrix increases dramatically and then after drying it reduces again. It presents the influence of 

absorbed water on the damping properties of the polymers in both matrix and fiber. As explained 

before the viscosity property of the polymers is related to the loss modulus. The higher the viscosity 

the more energy dissipates in the polymer because of the loss modulus. Increasing η in wet condition 

and reversing to the initial amount after drying shows that the viscosity of the CIPP samples increases 

in the aged wet condition. Therefore the damping and loss modulus increase. It has been shown before 

in  5.3.1 that the storage modulus decreases in the aged wet condition, while the loss modulus increases 

and after drying both theses constants reverse to their initial values. The reversing of the η values 

shows that the hydrothermal aging on the CIPP samples in this thesis is due to the reversible 

plasticization. 

Fig. 58 and Fig. 59 also show the dependency of the ref. indent displacement and ref. hardness vs. 

time of testing. It is seen for the fiber and the matrix  in three conditions that increasing the time up to 
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200 seconds increases the ref. indent displacement. After 200 seconds the strain rate 

                      

  
 reaches zero. As explained in  6.3.1 this time dependency can be related to the 

temporary junctions between polymer molecules with different lifetimes. As the timescale of 

measurement increases and it is longer than the lifetimes of the junctions, it may decrease the 

molecular chain rigidity, therefore increases the ref. indent displacement and decreases the ref. 

hardness. 

 Analysis by microwaves 6.4

 Aging 6.4.1

Existence of water molecules in the material changes the permittivity (ɛr) and permeability (µr) 

properties. Since the variation of µr, as a result of the dielectric material being negligible in the frame 

of this study, it is assumed that µr =1.  

The speed of microwaves in CIPP samples can be calculated by knowing the thickness (x) of the 

sample and the TOF. 

  
 

   
 Eq. 44 

Assuming that the speed of the microwave propagation in vacuum is: 

            m/s 

then ɛʹr can be determined from: 

  
  (

      

  
)
 

 Eq. 45 

where 

C0 is the speed of light [m/s], 

ΔTOF is the time of flight in the material from which the time of flight in air has been subtracted [s], 

and 

x is the thickness of the material [m]. 

Eq. 45 is equal to Eq. 16. The factor 2 exists because of the reflection mode and the thickness needs to 

be inserted with factor 2 as well. A time domain measurement reveals the effects of all individual 

discontinuities due to permittivity changes, as a function of time or distance. Here, a discontinuity 

means a change of medium. 
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In the aged wet condition, the presence of free water in the CIPP sample increases the imaginary part 

of permittivity, which causes a high absorption of the signal resulting in no back-wall echo to be 

visible. The absorption of electromagnetic waves by water depends on the state of the water. Liquid 

water has a broad absorption spectrum in the microwave and THz regions, which can be explained in 

terms of changes in the hydrogen bond [Nyfors 1989]. 

The water molecule consists of one oxygen (O) and two hydrogen (H) atoms. These HOH nonlinear 

molecules have an angle of 104.5° and the OH distance is 0.95718×10
-10

 m. The chemical bonds are 

such that the electrons are closer to the oxygen atom than the hydrogen atoms, therefore the oxygen 

atom is more negatively charged than the hydrogen atoms. Because of the electronic and atomic 

polarizability the bent structure of the molecule produces a permanent dipole moment. Water 

molecules bounded by more than one H-bond are prevented from reorientational motions. Therefore, 

only the molecules, which are non- hydrogen or single hydrogen bonded can rotate around the 

direction of their permanent electric dipole moment into the direction of an external electric field, 

accordingly to contribute to the orientational polarization. As the water molecules are provided with a 

permanent electric dipole moment, their reorientational motions will produce electrical polarization 

noise. In principle this noise could be used to measure the dielectric properties of the moist systems 

[Kaatze 1989; Kupfer 2005; Lunkenheimer 2017]. 

The amplitude of the peak of the front-wall shows the difference of permittivity between air and 

sample. An increase in the front-wall echo amplitude is related to the increase of permittivity because 

of water absorption. It is observed that after drying the samples (condition ―aged‖), the front-wall and 

back-wall echo are almost the same when compared to the unaged samples. With access to the echo of 

the front-wall and the back-wall, the TOF can be calculated (Fig. 60). By knowing the permittivity of 

the CIPP, the speed of microwaves in the material can also be calculated (Eq. 45). It is then possible to 

measure the thickness of the sample. It means that the microwaves technique has the potential of a 

thickness measurement of the CIPP samples. The only point is that the CIPP should not be wet. Since 

one of the noticeable problems of a CIPP is its reduction in thickness, this method may help to detect 

the area of the CIPP where the thickness is unacceptable. 

By knowing the thickness and the TOF, it is possible to calculate the ɛr
ʹ
 from Eq. 45. Fig. 60b shows 

that the front-walls of the unaged and aged samples appear at 831.70 ps and 833.06 ps respectively, 

and  the back-wall echoes show up for the unaged condition at 1073.06 ps and for the aged condition 

at 1075.68 ps respectively. Since a swelling of 0.3 to 0.6 mm has been seen in the aged samples, which 

is equal to 1 to 2 ps and the ΔTOF here is 1.26 ps, it means that this delay is the effect of the variation 

of thickness. Therefore no change in the permittivity has been seen between the unaged and aged dry 

samples.    

https://en.wikipedia.org/wiki/State_of_matter
https://en.wikipedia.org/wiki/Hydrogen_bond
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Since for the aged wet condition the back-wall echo is not detectable, a calculation of the TOF in this 

case is not possible. It is shown that the microwave technique can detect the different times of flight 

between unaged and aged conditions. It is also seen that this technique can differentiate between the 

intensities of wet and dry conditions. 

The absorption of electromagnetic waves by water can be quantified by the imaginary part of 

permittivity (ɛʺ), which reveals a strong peak at frequency of about 20 GHz (corresponding to a 

cooperative relaxation of long-range hydrogen-bond-mediated dipole-dipole interactions) and a 

gradual tailing off towards higher frequencies (Fig. 85). Although the peak of ɛʺ in Fig. 85 appears at 

20 GHz but it is seen that ɛʺ in the frequency range above 5 to 100 GHz is still considerable. 

 

Fig. 85: Real part and imaginary part of the complex permittivity spectrum of water at 25 °C [Kupfer 2005]. 

 Geometrical defects 6.4.2

In ‎5.4.1 it is seen that with the help of the B-scan evaluation, the back-wall of the CIPP sample is 

distinguishable. It enables the measurement of the thickness of the CIPPs. The main problem with 

regard to thickness measurement is the roughness of the back-wall, which complicates the 

determination of the exact position of the back-wall. It should also be considered that the sample in 

this test was dry but in reality, the CIPPs are either immersed in water or exposed to a humid 

atmosphere, which both have a high absorption of microwaves. 

 Curing 6.4.3

Microwave dielectric measurements are sensitive and are a valuable tool for studying the crosslinking 

and monitoring the curing process in thermosetting polymers [Bovtun 2001]. The change of 

microwave dielectric parameters reflects the curing and crosslinking process in materials. Not only the 

crosslinking process but also using the additives to accelerate the curing process can change the 

dielectric properties. For example, in unsaturated polyesters the dilution of the resin with styrene 

changes dielectric properties. Adding styrene to the resin causes a small increase of the polymers 
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relative dielectric constant as well as the loss factor, which is detectable at low frequency between 0.1 

to 10 MHz [Hanemann 2010]. 

In case the traditional low frequency dielectric methods cannot detect the crosslinking process, the 

high accuracy of microwave methods enables even slight changes such as 1%, of the polymer 

dielectric parameters to be detected [Bovtun 2005]. 

In Fig. 63b the two peaks of each signal illustrate first the front and then the back-wall of the sample 

respectively. It is shown that when the material is better cured the magnitude is increased. As such the 

imaginary part is less in the cured condition. This means that a progression in crosslinking decreases 

the ɛʺ of the UPR.  

It is known that the thermal crosslinking procedure affects the dielectric property in carbon-black 

epoxy composites. The dielectric constant depends on the contribution of the interfacial, dipole, 

electronic and atomic polarizations. The dielectric constant of the material also depends upon the 

polarizability, in other words, the greater the polarizability of the molecule, the higher is the dielectric 

constant [Trihotri 2015]. 

The time of flight (time difference between 2 peaks) among points 1 to 11 has a variation of 2 ps (from 

92 ps to 94 ps). It shows that the variation of the dielectric constant is equal to 0.001. This small 

variation means that either the real part of the dielectric constant has not been changed or the 

microwave technique is not able to detect this variation. To answer this question, the sample has also 

been inspected through the THz system described in ‎5.5.3. The increase of the magnitude with 

progression of the curing process shows in Fig. 63b that the imaginary part of the dielectric constant 

decreases with the curing procedure and therefore the absorption of the electromagnetic waves in the 

sample decreases during the curing process. The absorption relates to the friction accompanying the 

orientation of the dipoles in the material. Since the polarization in the polyester as a polar polymer 

occurs because of the carbonyl oxygen atom driving the orientational polarization, this means that the 

orientation of the cured and saturated polymer molecules, in the external electrical field, accompany 

lower friction. It may explain why there is less collision between the large crosslinked molecules 

compared to the smaller molecules before crosslinking in the process of the orientation. 

 Analysis by terahertz 6.5

 Aging 6.5.1

As it is seen in ‎5.5.1 the THz technique is able to distinguish between the aged and unaged samples. 

Fig. 66 and Fig. 67 have shown that the wet aged samples have more attenuation and time delay when 

compared to the unaged sample. In order to verify this amount of time delay, the C-scan of the time 

signal of the wet samples at 57.73 ps has been shown in Fig. 86 and Fig. 87 indicates the A-scan of 4 

time domain signals of the marked points. The more obvious difference is the attenuation of the wet 

samples of 0.15 [a.u.]. It is also seen that there is a delay in TOF between wet aged samples and dry 
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aged and unaged samples (see Table 7). In this table the ΔTOF is calculated, which is the TOF in the 

material from that the time of flight in air has been subtracted. The TOF in the air in all the tests is 

18.83 ps, but because of its high intensity it is not shown in Fig. 87 and Fig. 89 to better show the 

differences between the unaged and aged signals. 

 

Fig. 86: THz scan surface of three wet aged and one unaged CIPP samples. Analysis of the time signal at time of 57.73 ps. 

 

 

Fig. 87: THz time signal received in transmission mode revealing the characteristic absorption behavior of the 4 chosen 

points on the unaged and the wet aged samples. 

It has been shown in ‎5.5.1 that the dry aged samples are distinguishable through the THz technique in 

TOF (Fig. 69). Fig. 88 and Fig. 89 show the same evaluation as Fig. 86 and Fig. 87 of the dry aged 

samples when compared to the unaged sample. It is seen that the aged samples have a maximum time 

delay of 1.83 ps in comparison to the unaged sample, but no differences in the intensity can be 

observed (Fig. 89, Table 7). Since this delay of time is less than 2 ps, it is assumed that this variation 

belongs to the change in the thickness. 
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Fig. 88: THz scan surface of three dry aged and one unaged CIPP samples. Analysis of the time signal at time of 64.72 ps. 

 

 

 

Fig. 89: THz time signal received in transmission mode revealing the characteristic absorption behavior of 4 chosen points on 

unaged and dry aged samples. 

 

Table 7: ΔTOF of 4 points of CIPP samples in wet and dry aged conditions 

Point ΔTOF [ps] ΔTOF [ps] 

Unaged 50.15 49.98  

aged 1 51.81 (wet) 51.81 (dry) 

aged 2 53.28 (wet) 51.48 (dry) 

aged 3 53.64 (wet) 51.48 (dry) 
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Fig. 90: Complex dielectric constants of liquid water at several temperatures as a function of the frequency [Yada 2008] 

Fig. 90 shows the complex dielectric constant of water as a function of the frequency. At a room 

temperature of 22 °C, both the real and imaginary parts decreased exponentially with increasing 

frequency below 1 THz. It is possibly associated with dipole-dipole interactions due to the free 

rotation of water molecules having no more than one hydrogen bond, and then stay almost constant 

beyond 2 to 3 THz. It confirms that the THz system in the frequency range less than 1 THz is a 

reliable method to detect the existence of water in the material. 

The spectrum analysis at the frequency of 1 THz in wet condition is shown in Fig. 91 and in dry 

condition is shown in Fig. 93. Fig. 91 shows the difference in intensity in the spectrum of wet and 

unaged samples. In order to better investigate the spectrum with respect to similarity in the time 

domain signal, 4 points were chosen to show the spectrum signal in the A-scan shown in Fig. 92. This 

figure indicates an attenuation of 0.4 [a.u.] in the wet samples. 

 

Fig. 91: THz scan surface of three wet aged and one unaged CIPP samples. Analysis of the spectrum signal at frequency of 

1 THz 
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Fig. 92: Frequency spectra of THz signals received in transmission mode revealing the characteristic absorption behavior of 4 

chosen points on unaged and wet aged samples. 

 

 

Fig. 93: THz scan surface of three dry aged and one unaged CIPP samples. Analysis of the spectrum signal at frequency of 

1 THz 

Fig. 93 shows the spectrum analysis of the dry aged samples at frequency of 1 THz. It is seen that the 

intensity cannot distinguish between the dry aged and unaged CIPP samples. The A-scan of the 4 

points marked in Fig. 93 is shown in Fig. 94. In this figure the differences of spectrum signals between 

unaged and dry aged samples cannot be differentiated from each other. 
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Fig. 94: Frequency spectra of THz signals received in transmission mode revealing the characteristic absorption behavior of 4 

chosen points on unaged and dry aged samples. 

 

 Geometrical defects 6.5.2

It has been shown in ‎5.5.2 that when considering the time of flight evaluation, it is possible to 

characterize more defects. The time of flight increases according to the permittivity and thickness of 

the material. It means that the air contributes to the shortest portion within TOF and parts of the 

sample without any FBHs have the longest TOF. The TOF depends on the distance between emitter 

and detector. As it can be seen in Fig. 71f and g, three first columns are distinguishable with the 

exception of FBHs 9 and10. The parameter Signal Min TOF has the same results but the FBH 5 is not 

detectable. The FBHs with the same depths are expected to appear in the same colors. It is seen from 

Fig. 71 that the represented depths of the FBHs match the real depths of the FBHs but for the not deep 

FBHs the presented diameters are not reliable. It is shown that the diameters of FBHs with depth of 6 

and 2 mm appear smaller than the real size. The envelope width analysis helps to detect all the first 8 

FBHs in Fig. 71h but this analysis is just suitable to detect the existence of the FBHs 9 and 10 but not 

with regard to their size and depth. Comparatively, the TOF parameters are more suitable for the 

evaluation allowing the depth of the defects to be distinguished. The fourth column with 3 mm 

diameter is not visible with any parameter analysis. It is shown that the lateral resolution is more than 

3 mm. 
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 Curing 6.5.3

In ‎5.5.3 the spectrum and different parameters in two-dimensional analysis were investigated. In order 

to better compare the spectrum signal, three points of both areas, marked in Fig. 77 have been 

investigated and discussed in chapter ‎6.5.3, where the results are shown in Fig. 95. It is seen that there 

is a little bit of attenuation between the spectra in two parts and the attenuation at the partially cured 

points is more but it is too small to be detected in a C-Scan. This small attenuation was therefore not 

detectable in parameters considered for the analysis. In this context, the importance of different signal 

processing analysis methods is understandable. 

 

Fig. 95: Frequency spectrum of THz signals at 1 THz received in transmission mode revealing the characteristic absorption 

behavior of the cured and not cured part 

 

Considering the time domain signal Fig. 96 clearly shows the difference of intensities of the envelope 

and the TOF. The cross section of the surface image not only presents the cured and not cured parts 

but also the trend of the curing process in different amounts of amplitude at the time of 43.4 ps. 
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Fig. 96: THz scan surface of 140 mm×220 mm of the partially cured sample. The cross section of the analysis of the time 

signal, perpendicular to the signal propagation at 43.4 ps. 

 

In order to better compare the TOF, 5 points in different ranges of grey color scale being analogous to 

different amplitudes have been chosen in Fig. 96. Fig. 97 indicates the time signals of these 5 points. It 

is observed that the peaks of the envelope at different positions of the sample appear in time around 

39 ps. It is therefore the optimum range with respect to time to inspect the time domain signal as 

shown in Fig. 96. This figure shows that the THz signal needs 18.76 ps to transmit between the emitter 

and the detector. Points 1 to 3 have a TOF of 38.28, 38.79, 39.18 ps respectively compared to 39.47 ps 

in the completely cured part.  

Fig. 97 also indicates that moving from point 1 towards the cured part; the intensity of the signal rises 

and shows that the dissipation of the signal decreases with improvement of the curing and crosslinking 

process. The high attenuation in the partially cured area confirms the results of Fig. 96 and the 

increasing time of flight in the fully cured section proves the results shown in Fig. 76a, b and c. The 

reason that the results shown in Fig. 76d cannot differ between the cured and uncured areas becomes 

obvious from Fig. 97. The envelope width of both areas is almost the same and only the time of flight 

of the envelope peak changes. This can be explained through the real part (ɛʹ) and the imaginary part 

(ɛʺ) of the dielectric parameter. ɛʹ measures the amount of the energy from the external electric field 

stored in the material but ɛʺ refers to the dissipation of the energy in the medium. In this case, it can be 

assumed that the uncured and partially cured CIPP has less εʹ and higher ɛʺ. 
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Fig. 97: THz scan surface of 140 mm×220 mm of partially cured sample. Analysis of the time signal of 5 points at different 

locations on the sample. 

By knowing the time delay of every point compared to air, it is possible to calculate ɛʹr with the 

following equation: 

  
  (

      

 
  )

 

 Eq. 46 

where 

C0 is the speed of light [m/s], 

ΔTOF is the time of flight in the material subtracted by the time of flight in air [s] and 

x is the thickness of the material [m]. 

The results of the ɛʹr calculation are shown in Table 8. 

 

 
Table 8: ɛʹr calculation of 4 points of the partially cured sample 

Point ΔTOF [ps]    ɛʹr 

Partially cured 1 19.52 2.85 

Partially cured 2 20.03 2.91 

Partially cured 3 20.42 2.96 

Completely cured 20.71 2.99 

 

 

0 5 10 15 20 25 30 35 40 45 50
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

In
te

n
s
it
y
 [

a
.u

.]

Time [ps]

 air

 partially cured 1

 partially cured 2

 partially cured 3

 completely cured



  

- 121 - 

 

As observed with the THz system, the variation of the real permittivity is detectable, whereas with the 

microwaves method, it was only possible to differentiate the signal intensities of the cured and 

partially cured material.   

 Analysis by ultrasound 6.6

 Aging 6.6.1

In section ‎5.6.1 with comparing the Fig. 78a, b, a reduction of attenuation in the wet condition after 

aging could be shown. Attenuation is defined from the ratio of the reflected signal amplitudes from the 

interfaces. The two main mechanisms, which cause the attenuation of ultrasound energy, are 

absorption and scattering. As a material is exposed to a wave, an amount of the energy of the wave is 

stored and some of the energy is lost and converted to heat. This is referred to as energy dissipation or 

absorption. The fraction of the lost energy over stored energy is known as loss factor or damping 

coefficient, which signifies the degree to which a material dissipates or absorbs energy. The damping 

coefficient is found to be dependent on temperature and frequency of the wave. It increases with the 

frequency while it is almost constant at temperatures under Tg [Krautkrämer 1969; Krautkrämer 1990]. 

Another reason for attenuation is scattering, which is a consequence of inhomogeneity in a material 

such as crystal discontinuities, grain boundaries, inclusions, particles and voids. It causes the 

conversion of the coherent, collimated waves into incoherent, divergent waves through reflection and 

refraction. The scattering is a function of the wavelength. Therefore, it increases when the frequency 

increases. The scattering from inclusions in a medium becomes significant only when the dimensions 

of the inclusions are comparable to the wavelength of sound in the medium. For polycrystalline metals 

and ceramics, scattering is the main mechanism that causes attenuation. Though, for liquids and 

polymers, absorption dominates [Krautkrämer 1969; Krautkrämer 1990]. 

Changing the frequency while the speed of sound is fixed will result in changing the wavelength of the 

sound. The wavelength of the used ultrasound has an important effect on detecting a discontinuity. A 

general rule of thumb is that a discontinuity should be larger than one-half of the wavelength to have a 

chance of being detected. Sensitivity and resolution are two terms that are usually used in ultrasonics. 

Sensitivity is the ability to locate small discontinuities and generally increases with higher frequency 

(shorter wavelengths). Resolution is the ability to locate discontinuities that are close together within 

the material or located near the part surface. The resolution also generally increases, when the 

frequency increases. However choosing a high frequency lowers the penetration of the ultrasound 

waves because of higher scattering. 

The plasticization increases the speed of sound in CIPP samples, because the water molecules diffuse 

between the UPR’s molecules and chains as a plasticizer and they fill the micro-cracks, debonding and 

pores by replacing the air molecules in the material. Increasing the speed while the frequency is fixed, 

increases the wavelength with the same resolution and sensitivity but less scattering and therefore 
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more penetration. The less scattering and more penetration enable the detection of the back-wall of the 

CIPP samples in the wet aged condition. As it is seen, even after aging in wet condition, the back-wall 

echo is still difficult to be detected. It shows that the rise of the speed and increase of the wavelength 

was not that much large. 

 Geometrical defects 6.6.2

The resolution in the C-scan depends on the step size of the manipulator. In the test described in 

chapter ‎5.6.2 steps of 0.55 mm were entered in both directions x and y. The resolution in depth is 

equal to the wavelength of the sound wave, which means that the resolution in depth depends on the 

applied frequency and the speed of sound in the material. Since the speed of sound in this CIPP 

sample has been determined to be 2650 m/s, the resolution calculated resulted in 1.1 mm. This amount 

of resolutions is the best resolution that can be achieved under ideal conditions. Certainly the 

resolution is affected by the test conditions, the material of the samples, the accuracy of FBHs, etc.. 

The ultrasound pulse generated by the transducer runs perpendicular to the surface and in the material. 

The pulse is then totally or partially reflected from the back-side of the CIPP sample. For this reason 

the back-side should be perpendicular to the propagation direction of the ultrasound wave. Since 

neither the front-wall nor the back-wall of the CIPP is totally flat, the echo can therefore not be 

completely reflected to the transducer, thus the back-wall echo is weak (see Fig. 80). The back-wall 

echo is reflected and travels opposite to the initial direction to reach the transducer after a certain TOF. 

In other cases, a part of the ultrasonic wave runs back and forth through the sample and once more 

generates a second back-wall echo with the double distance of the first back-wall echo (in the double 

TOF).  

It is seen in Fig. 80 that the back-wall is not well detectable because of the absorption of the ultrasonic 

waves in the material, but when the sample is thinner, for example at FBH 2 and 7, it is not only 

possible to detect the back-wall of the FBHs, but also the second back-walls (FBHs 7 and 2) appear 

(see Fig. 80c). The second echoes are not definitive defects in the material, because their position is in 

the depth of about 11 mm exactly under the FBH 2 and 7, where there is water in the FBHs. The 

appearance of these echoes in the double depth of the FBHs 2 and 7 also confirms this assumption. 

These results show that the ultrasound technique is more suitable to investigate the thinner CIPP 

samples. It is due to the lower damping and attenuation of ultrasound waves in the material.  

 Curing 6.6.3

If the curing process in thermosetting polymers begins in the liquid or soft gel state there is an initial 

decrease in sound speed because of the change in viscosity, where the reduction in viscosity is due to a 

temperature increase. After a while, as the temperature is increased and material cures, the speed of 

sound increases, because the molecular structure is constrained and supports a higher acoustic wave 
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velocity. The rate of increase in sound speed then slows down as the rate of cure slows down as well 

and the reaction nears completion. Initially the polymer is viscous and has a high compressibility. The 

curing process decreases the compressibility and raises the sound velocity [Shepard 1997]. 

When the curing process proceeds in the solid composite, the state of the matter does not change at the start 

and after curing. The change in the velocity is therefore not very significant (see Fig. 81). The initial 

reduction in velocity can be associated with a reduction of density as a result of the production of voids in 

the matrix, which leads to a reduction in the sound velocity. As the curing proceeds, these voids are 

eventually removed and the velocity is once more observed to increase. It can be also related to the residual 

unreacted styrene monomer, which is not reacted during the curing because of insufficient 

temperature. 

Fig. 82 shows that the curing process decreases the attenuation of the ultrasound waves and makes it 

even possible to detect the back-wall of the sample. The attenuation is strongly affected by the amount 

of curing agent present in the resin [Lionetto 2008]. The curing process causes the reaction of the 

remaining styrene in the matrix. This process follows the reduction of the ultrasound scattering in the 

material and this increases the amplitude. Also as the cure process proceeds, the length of the elements 

covalently linked, increases in the formation in the three-dimensional network, which increases the 

rigidity of the matrix. 
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7 Conclusion and future work 

The phenomenon, which occurs in the cured in place pipe samples during the aging, refers to 

mechanical aging through the observation of cracks in the matrix and debonding in the matrix/fiber 

interface. This phenomenon occurs due to the plasticization of the material and exposure to water as a 

plasticizer. The effect of the plasticization on the polymer structure is temporary and the mechanical 

properties of the material will reverse after drying. The nanoindentation tests showed that the 

mechanical properties of cured in place pipe samples after aging only change in the saturated 

condition and after drying the properties reversed back to their initial amount again. Only using a local 

method like nanoindentation for characterization of the mechanical properties makes it possible to 

confirm that the hydrothermal aging acts as a mechanical aging and not as a chemical one, because 

this method is independent of debonding and crack formation in the material. 

The results of this study have shown that during the hydrothermal aging, the weight of a CIPP sample 

totally increases. In that case there is weight increasing because of the absorbed water but also 

simultaneously loss of weight due to the dissolution of the coupling agent, which is shown after 

drying. The effect of aging was verified not only via nanoindentation testing but also via optical 

microscopic analysis. 

Three different non-destructive methods namely microwaves, terahertz and ultrasound were used to 

inspect the hydrothermal aging, curing process and geometrical defects in the cured in place pipe 

samples. The investigation of hydrothermal aging through the non-destructive testing shows that 

before aging the thickness of the samples is measurable through microwaves and terahertz methods, 

while ultrasound testing can detect the back-wall echo of the samples only when they are saturated 

with water. In the saturated condition, the microwave method was unable to detect the back-wall echo 

because of the high absorption of microwaves. It can be concluded that terahertz, microwave and 

ultrasound testing can show the existence of water in cured in place pipe samples. The microwave and 

terahertz systems were also successful to distinguish the aged dry samples from the unaged samples 

via different time of flight because of the swelling during the hydrothermal aging in the material, 

which is irreversible. As a conclusion, a combination of electromagnetic and ultrasound testing makes 

the thickness measurement of the cured in place pipe samples possible. 

Considering the geometrical defects, the terahertz technique had better results than microwaves, both 

in detecting the flat bottom holes and distinguishing their size. Although it has been shown that the 

ultrasound technique was a better choice to find the flat bottom holes when compared to terahertz, the 

ultrasound technique appeared to be a weaker method when it came to distinguish the size of the flat 

bottom holes. 
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Investigation of the curing process of the cured in place pipe sample through non-destructive methods 

shows that these methods are successful in detecting the curing trend. The terahertz and ultrasound 

techniques could distinguish the curing process both in terms of difference of time of flight and 

attenuation, while the microwave method could only differentiate this term through different 

attenuation. All of these detected parameters through the NDT methods can be seen in Table 9.  

Table 9: Detected parameters through the NDT methods of CIPP samples 

NDT methods 

Detected 

parameters in 

unaged sample 

Detected 

parameters in 

aged wet sample 

Detected 

parameters in 

aged dry sample 

Detected geometrical defects 

Detected 

insufficient 

curing 

Optical 

microscopy 

Fibers and 

matrix 

Fibers and matrix, osmotic cracks 

in matrix and debonding in 

interface of matrix and fibers 

- - 

Nanoindentation 

Loss and storage modulus, tan δ, hardness, 

indent displacement  

- - 

Microwaves 
Thickness, 

permittivity 

Existence of 

water 

Thickness, 

permittivity 

FBHs with 10 mm diameter up to 

2 mm depth and FBHs with 5 mm 

diameter up to 10 mm depth 

yes 

Terahertz 
Thickness, 

permittivity 

Existence of 

water, 

thickness, 

permittivity 

Thickness, 

permittivity 

FBHs with 10 and 5 mm 

diameters 
yes 

Ultrasound Speed of sound 

Existence of 

water, 

thickness, speed 

of sound 

Speed of sound See Table 4 yes 

 

As mentioned above, this work has presented several original results about microwave, terahertz, 

ultrasound and nanoindentation measurements. However, it also opens many new doors for further 

work which could assist in investigation of additional features of this thesis. It is advised for future 

research, that the different amounts of absorbed water to be tested using non-destructive testing, to 

figure out at which amount absorbed water becomes detectable. It is also suggested to investigate other 

defects such as delamination, cracks, inclusion, etc. through these methods. 

It is recommended for a next step to try non-destructive methods in a large pipeline, in which in situ 

manually performed measurements are possible. After that the results need to be verified in the 

laboratory. A step to follow would then be the automation of the measurement using pigging 
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technique, which can make measurement of the cured in place pipe in the pipes not being humanely 

accessible, possible.  
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9 Appendix 

 

Fig. 98: Fitting logarithmic curve on ref. indent displacement vs. time test of unaged matrix 

 

 

 

Fig. 99: Fitting logarithmic curve on ref. indent displacement vs. time test of aged wet matrix 
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Fig. 100: Fitting logarithmic curve on ref. indent displacement vs. time test of aged dry matrix 

 

 

 

Fig. 101: Fitting logarithmic curve on ref. indent displacement vs. time test of unaged fiber 
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Fig. 102: Fitting logarithmic curve on ref. indent displacement vs. time test of aged wet fiber 

 

 

 

Fig. 103: Fitting logarithmic curve on ref. indent displacement vs. time test of aged dry fiber 
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