
Computational Haplotyping: theory and practice

Shilpa Garg

Dissertation submitted towards the degree Doctor of Engineering
of the Faculty of Mathematics and Computer Science

of Saarland University

Saarbrücken
2018

Colloquium

Date : June 21, 2018
Place : Saarbrücken
Dean : Prof. Sebestian Hack

Examination Board

Chairman : Prof. Hans-Peter Lenhof
Reviewer : Prof. Tobias Marschall
Reviewer : Prof. Volkhard Helms
Scenti�c Assitant : Dr. Christina Backes

ii

Abstract

Genomics has paved a new way to comprehend life and its evolution, and also to investigate causes of
diseases and their treatment. One of the important problems in genomic analyses is haplotype assembly.
Constructing complete and accurate haplotypes plays an essential role in understanding population
genetics and how species evolve. In this thesis, we focus on computational approaches to haplotype
assembly from third generation sequencing technologies. This involves huge amounts of sequencing
data, and such data contain errors due to the single molecule sequencing protocols employed. Taking
advantage of combinatorial formulations helps to correct for these errors to solve the haplotyping
problem. Various computational techniques such as dynamic programming, parameterized algorithms,
and graph algorithms are used to solve this problem.

This thesis presents several contributions concerning the area of haplotyping. First, a novel algorithm
based on dynamic programming is proposed to provide approximation guarantees for phasing a single
individual. Second, an integrative approach is introduced to combining multiple sequencing datasets
to generating complete and accurate haplotypes. The e�ectiveness of this integrative approach is
demonstrated on a real human genome. Third, we provide a novel e�cient approach to phasing
pedigrees and demonstrate its advantages in comparison to phasing a single individual. Fourth, we
present a generalized graph-based framework for performing haplotype-aware de novo assembly.
Speci�cally, this generalized framework consists of a hybrid pipeline for generating accurate and
complete haplotypes from data stemming from multiple sequencing technologies, one that provides
accurate reads and other that provides long reads.

iii

iv |

Kurzfassung

Die Genomik hat neue Wege erö�net, die es ermöglichen, die Evolution lebendiger Organismen zu
verstehen, sowie die Ursachen zahlreicher Krankheiten zu erforschen und neue Therapien zu entwickeln.
Ein wichtiges Problem ist die Assemblierung der Haplotypen eines Individuums. Diese Rekonstruktion
von Haplotypen spielt eine zentrale Rolle für das Verständnis der Populationsgenetik und der Evolution
einer Spezies. In der vorliegenden Arbeit werden Algorithmen zur Assemblierung von Haplotypen
vorgestellt, die auf Sequenzierdaten der dritten Generation basieren. Dies erfordert große Mengen an
Daten, welche wiederum Fehler enthalten, die die zugrunde liegenden Sequenzierprotokolle hervor-
bringen. Durch kombinatorische Formulierungen des Problems ist die Rekonstruktion von Haplotypen
dennoch möglich, da Fehler erfolgreich korrigiert werden können. Verschiedene informatische Metho-
den, wie dynamische Programmierung, parametrisierte Algorithmen und Graph Algorithmen können
verwendet werden, um dieses Problem zu lösen.

Die vorliegende Arbeit stellt mehrere Lösungsansätze für die Rekonstruktion von Haplotypen vor.
Als erstes wird ein neuartiger Algorithmus vorgestellt, der basierend auf dem Prinzip der dynamischen
Programmierung Approximationsgarantien für das Haplotyping eines einzelnen Individuums liefert.
Als zweites wird ein integrativer Ansatz präsentiert, um mehrere Sequenzierdatensätze zu kombinieren
und somit akkurate Haplotypen zu generieren. Die E�ektivität dieser Methode wird auf einem echten,
menschlichen Datensatz demonstriert. Als drittes wird ein neuer, e�zienter Algorithmus beschrieben,
um Haplotypen verwandter Individuen simultan zu konstruieren und die Vorteile gegenüber der
Betrachtung einzelner Individuen aufgezeigt. Als viertes präsentieren wir eine Graph-basierte Methode
um mittels Haplotypinformation de-novo Assemblierung durchzuführen. Dieser Methode kombiniert
Daten stammend von verschiedenen Sequenziertechnologien, welche entweder genaue oder aber lange
Sequenzierreads liefern.

v

vi |

Acknowledgements

I would like to express my deep gratitude to all the people who supported me during this work.
First and foremost, I am grateful to my supervisor Dr Tobias Marschall who introduced me to this

haplotyping problem. He helped me to develop problem solving skills for solving a research problem
and provided me his able guidance in completing this thesis work. Thanks a million to Prof Volkhard
Helms for his consent to give time to review this thesis at a short notice. I would like to o�er special
thanks to Prof Thomas Lengauer for providing me his valuable remarks on an earlier version of some
of the chapters of this thesis. He provided me �nancial support and guided me about ways to pursue
my passion. I am thankful to Prof George Church for his valuable comments on an earlier version of
this thesis.

I am deeply grateful to Prof Richard Durbin whose lab I visited for my research internship. His
enthusiasm for genomics and guidance on future career prospects largely motivated me. Dr Tobias
Mömke has been great source of inspiration and advice for me. I am continually amazed by his problem
solving ability, which provided me motivation to solve ambitious problems.

I am immensely thankful to all collaborators and coauthors for their support and assistance. It
was great working with David Porubsky and Ashley Sanders, and learning the magic of Strand-Seq
technology. Thanks to Mikko Rautiainen and vgteam for great discussions on the graph world of
genomics.

I appreciate the discussions with my o�ce-mate Ali Gha�aari on violin and classical music. Special
thanks to Jana for always providing a friendly support and guidance. I would like to extend my thanks to
my group mates, who organized di�erent events at weekends. The events were enjoyable experiences.

Jana, Fabio, Lara, Prabhav and Adam proofread a few chapters of this thesis and I greatly appreciate
their valuable remarks and feedback.

I appreciate the travel �nancial support from Michelle Carnell, technical help from Achim, George
and MPII-IST and other administrative help from Susanne and Ruth.

Finally, I would like to express the gratitude to my family and friends, who greatly helped me in
this journey.

vii

viii |

Contents

1 Introduction 1

1.1 Genetics, DNA sequencing and Haplotyping . 1
1.2 Reference-based Haplotyping . 3

1.2.1 Haplotyping as a Combinatorial Optimization problem 4
1.2.2 Related work . 6
1.2.3 Pedigree of genomes . 9
1.2.4 Statistical phasing . 10

1.3 Diploid assembly . 11
1.3.1 Diploid assembly as a graph problem . 11
1.3.2 Related work on diploid assembly . 13

1.4 Thesis Scope and Outline . 15
1.5 Relevant publications . 16

2 Algorithmic Background 17

2.1 Types of algorithms . 17
2.1.1 Parameterized algorithms . 17
2.1.2 Randomized algorithms . 20
2.1.3 Approximation algorithms . 20

3 Approximation algorithm for phasing individual genomes 23

3.1 Our results. 23
3.2 Further related work. 24
3.3 Overview of our approach. 24
3.4 Preliminaries and notation. 26
3.5 Simple instances with wildcards. 26

3.5.1 A DP for SWC-instances. 29
3.6 Subinterval-free instances. 32
3.7 A QPTAS for general instances. 36

3.7.1 Length classes. 36
3.7.2 The general QPTAS. 39

3.8 Discussion . 40

4 Parameterized algorithm for phasing individual genomes 41

4.1 Literature survey . 41
4.2 WhatsHap Algorithm . 43
4.3 The need for combining di�erent sequencing technologies 45
4.4 Using MEC for data integration . 46
4.5 Evaluation metrics . 46
4.6 Results . 48

4.6.1 Experimental design and dataset description . 48

ix

x | Contents

4.6.2 Datasets . 49
4.6.3 Phasing performance of individual technologies 49
4.6.4 Integrative global phasing performance . 50

4.7 Discussion . 53

5 Parameterized algorithm for phasing pedigrees 57

5.1 Introduction . 57
5.2 The Weighted Minimum Error Correction Problem on Pedigrees 58
5.3 Example of PedMEC . 61
5.4 Algorithm . 63
5.5 Experimental Setup . 65

5.5.1 Real Data . 66
5.5.2 Simulated Data . 66
5.5.3 Compared Methods . 67

5.6 Performance Metrics . 67
5.7 Results . 69
5.8 Discussion . 72

6 A graph-based approach to diploid genome assembly 73

6.1 Introduction . 73
6.2 Further related work . 74
6.3 Diploid assembly pipeline . 78

6.3.1 Sequence graph . 78
6.3.2 Bubble detection in sequence graphs . 79
6.3.3 PacBio alignments . 80
6.3.4 Bubble ordering . 80
6.3.5 Graph-based phasing . 80
6.3.6 Generation of �nal assemblies . 84

6.4 Datasets and experimental setup . 84
6.4.1 Pipeline implementation . 84
6.4.2 Running Falcon Unzip . 85
6.4.3 Assembly performance assessment . 85

6.5 Results . 86
6.6 Discussion . 88

7 Contributions and discussion 91

7.1 Contributions . 91
7.1.1 Approximation status of Gapless-MEC . 91
7.1.2 Parameterized algorithm for phasing individual genomes 92
7.1.3 Parameterized algorithm for phasing pedigrees 92
7.1.4 Haplotype-aware de novo assembly . 93

7.2 Discussion . 93

Appendices

A Additional Details 109

A.1 Proof of Lemma 3.1 . 109
A.2 A simpli�ed DP for a single solution string. 110

0 | Contents

Chapter 1

Introduction

Genetics and Genomics study the phenomenon of life at its most basic level and are like wise fascinating
and important. An important �eld in genetics is haplotyping. Haplotyping is the process of determining
the sequences of both copies of homologous chromosomes, which are inherited from each parent in
diploid organisms. Haplotyping has applications in di�erent �elds such as evolutionary studies, clinical
diagnosis, precision medicine, and biotechnology. Third generation sequencing technologies allow for
reading fragments (in the order of magnitude of tens of kilo-bases) of the genome sequence, and thus
the reconstruction of haplotypes is possible, in principle. Unfortunately, sequencing is prone to errors
and the use of advanced algorithms and models is essential to correct for errors, in order to reconstruct
accurate haplotypes. However, the process of correcting these errors poses various computational
challenges. In this thesis, we present novel algorithms to addressing various computational challenges
in this �eld.

1.1 Genetics, DNA sequencing and Haplotyping

Genetics is the study of genes, genetic variation, and heredity in living organisms. Genetics controls
what an organism looks like and how it functions. Speci�cally, there are two sides to the science of
genetics. On the one hand, the availability of di�erent types of molecular information, such as sequence
information and gene expression levels, paired with gene editing techniques with which we can perturb
the genome in a controlled fashion and observe its biological e�ects, provides powerful explanation
tools to the functions of genes. On the other hand, genetics provides a fundamental understanding of
how organisms, populations, and species evolve. In the last few years, one of the most exciting new
developments is the way in which these two sides have begun to converge (Casillas and Barbadilla,
2017). This convergence is achieved through the development of technologies that provide datasets
from the genomic level to epigenomic, transcriptomic or proteomics level.

The discovery of the double helix structure of deoxyribonucleic acid (DNA) by Watson and Crick in
1953 laid the main foundation for modern genetics. In most living organisms, genetic information is
encoded in the form of DNA molecules. A DNA molecule is a chain in which many bases are ordered
in a linear sequence, the bases — A, T, G, and C — are the letters of the genetic alphabet. The whole
information within the DNA molecules of an organism is called its genome. The genome is divided
into chromosomes. Genomes have single (haploid), double (diploid) or higher ploidy with more than
two homologous chromosomes (polyploids). In this thesis, we focus on diploid organisms. For example,
humans are diploids, consisting of two copies of each chromosome called homologous chromosomes
or haplotypes — one inherited from the mother and the other from the father. There are di�erences
between these two copies of each chromosome known as genetic variation.

In the early 2000s, a historic breakthrough happened with the sequencing of the human genome
(Venter et al., 2001; Collins et al., 2003). Moreover, sequencing datasets of the human genome are made
available as open-access to help in their interpretation and understanding (Church, 2005). Speci�cally,
sequencing is an operation that determines the base sequence of a DNA molecule. For sequencing

1

2 | Chapter 1. Introduction

genomes, there exist several kinds of sequencing technologies which share the following common
properties. First, they yield genomes in fragments called “reads”. Second, the position of reads along
the genome sequence is unknown and also, mostly, the strand from which the read was sampled is
unknown. Third, the reads contain errors.

Sequencing technologies di�er in terms of error rates and lengths of the produced reads. We de�ne
the error rate of a read as the ratio of the number of incorrectly sequenced bases to the length of the
read. Broadly, the sequencing technologies can be categorized into three classes:

• First generation sequencing: The �rst sequencing technologies were developed in 1977 by Sanger et al.
(1977), who is awarded a Nobel Prize in chemistry, and Maxam and Gilbert (1977). Sanger sequencing
produces reads in the order of 800-1000 base pairs with an error rate ≤ 1%.

• Second generation sequencing: It includes Illumina/Solexa sequencing (Bentley et al., 2008), which
has been the most widespread technology. This technology produces short reads (hundreds of bases)
with an error rate ≤ 1%.

• Third generation sequencing: It includes Single Molecule Real Time sequencing (PacBio) (Eid et al.,
2009) and Oxford Nanopore sequencing (ONT) (Laszlo et al., 2014). These technologies produce very
long sequences that are up to hundreds of kilo-bases in length. The downside is that PacBio and ONT
exhibit very high error rates of up to 15% and 38% respectively.

Furthermore, there exist some sequencing protocols that provide long-range information. One of
the sequencing protocols is the Strand speci�c protocol (Strand-Seq), which includes preparation of
single-cell libraries. Also, each single strand of a DNA molecule is labeled regarding its 5’–3’ orientation
(Falconer et al., 2012). Illumina sequencing is performed from parental template strands in these single-
cell libraries. The sequencing results in Illumina reads, along with information on the directionality of
DNA. The other sequencing protocol is the 10x Genomics protocol (Eisenstein, 2015), which adds a
unique barcode to every short read (produced from Illumina platform) generated from an individual
molecule.

Sequencing data is routinely used to reconstruct the underlying haplotypes for diploid genomes.
Reconstructing haplotypes is required in order to correctly understand allele-speci�c expression and
compound heterozygosity. Compound heterozygosity is the phenomenon when the two homologous
copies of a genomic region each contain unique sequence variants, but at di�erent positions in that
region. These variants are responsible for di�erent functioning of the two homologous copies of a
gene, resulting in di�erent phenotypes. Thus, in settings in which compound heterozygosity play a
role, the knowledge about the speci�c haplotype is essential. Haplotypes also help in investigating the
genetic determinants of common diseases, and in performing population-genetic analyses of admixture,
migration and selection (Tewhey et al., 2011; Glusman et al., 2014). Furthermore, haplotype sequences
are used in relating genotypes to phenotypes, and for understanding how the arrangement of cis-
and trans-acting variants across the two homologous copies of a genomic region a�ects phenotypic
expression.

Technological progress in sequencing and computational approaches has enabled the reconstruction
of underlying haplotypes for diploid genomes. However, there are intrinsic bene�ts and challenges
when utilizing sequencing reads from di�erent sequencing technologies. Speci�cally, upcoming PacBio
and ONT sequencing deliver long reads, but have high sequencing error rates. In contrast, Illumina
sequencing delivers reads with low error rates, but have short lengths. Currently, no sequencing
technology delivers data that is complete and non-erroneous. Thus, the reconstruction of accurate and
complete haplotypes (without gaps) from sequencing datasets remains a challenging problem.

From available sequencing datasets, the �rst challenge for reconstructing haplotypes arises from a
lack of information of the genomic location of reads. The next challenge is the lack of the haplotypic
identity of reads, i.e. the haplotype that the read comes from. Knowing the haplotype of reads is
essential for reconstructing both copies of each chromosome, which in turn helps better understand the
true biological characteristics of diploid organisms.

1.2. Reference-based Haplotyping | 3

S N P 1 S N P 2 S N P 3 S N P 4 S N P 5 S N P 6 S N P 7

Single Individual Haplotyping

Reference genome

A G T C T T G

T
T
T
T

C
C T

C
C

C

C
C
C
C

T

C
C

C T

C
C
C G

C

C

T
T
T
T

C
C T

C
C

C

C
C
C
C

T

C
C

C

C
C
C G

C

C

C
C

T
T

T
C

C
C

T
C

C

C
C G

C

C

Aligned reads

Phased reads

Haplotypes

T

Figure 1.1: Seven variants covered by reads (horizontal bars) in a single individual. The alleles that a
read supports are printed in white. The middle panel shows the phased reads in colors and haplotypes
at the bottom over the seven variants.

The clever approaches are developed to solve these challenges. Broadly, the approaches to obtain
haplotypes are classi�ed into two categories: reference-based haplotyping and haplotype-aware de novo
assembly.

1.2 Reference-based Haplotyping

Reference-based phasing methods are applied when a reference genome is available for the species of
the target genome. We expect the target genome to be very close to the reference, more speci�cally,
given the reads of the target genome, we expect the reference to be from the same species as the reads.

Reference genomes provide reliable information on the genomic location of reads. Over the years, a
lot of e�ort has been devoted to generating good quality reference genomes (Consortium et al., 2010,
2005). Reference genomes provide the organization of the genome, including the relative position of
genes or chromosomes structure (Consortium et al., 2004). Reference genomes have been used by
biologists for other tasks, for instance, �nding the functions to annotate the genome (Harrow et al.,
2012).

Standard pipelines for reference-based phasing consist of the following steps: First, the reads
are aligned to the reference genome. Second, the variants are detected using various variant calling
algorithms, to �nding the di�erences of target genome to the reference. Third, the detected variants are
phased based on how aligned reads connect the alleles over them, to generate two haplotypes.

Please note that the di�erent terminologies reference-based haplotyping (phasing), single individual
haplotyping and read-based phasing are used interchangeably in this thesis.

To illustrate the haplotyping problem for a single genome, we consider a small example in Figure 1.1.
The example shows seven variants. Also shown are the sequencing reads aligned to the reference
genome. The alleles that the reads support are shown in white. Erroneous alleles in the reads are
shown in red. In practice, we do not know the alleles that contain these sequencing errors. The goal

4 | Chapter 1. Introduction

of the reference-based haplotyping problem is the re-assignment of phases to the reads, i.e. assigning
haplotype-speci�c colors (green or purple) to each read. In the middle panel, the colored bars represent
the assignment of each read to either the green or the purple haplotype. Finally, the reads from each
haplotype are separately assembled together in order to output two haplotypes that are shown at the
bottom in purple and green.

1.2.1 Haplotyping as a Combinatorial Optimization problem

We will see how we can formulate the haplotyping problem as combinatorial optimization problem,
that is, given an object o, �nd a solution such that an optimization criterion f is either minimized or
maximized.

For the haplotyping problem, which consists of determining the haplotypic identity of each read,
we consider the reads that are aligned to reference genome. A read aligner maps the reads to the
reference genome, ideally to positions with a high similarity score for the read. The number of read
alignments that cover a position is known as the coverage for that position. Furthermore, we have
structural nucleotide variants (SNVs) detected using di�erent variant calling algorithms. In the case of
bi-allelic variants, that is, those variants for which two di�erent alleles are known, three genotypes are
possible. The reference allele is typically denoted as 0 and the alternative allele as 1. Using this notation,
the two chromosomal copies either both carry the reference allele (genotype 0/0), or alternative allele
(genotype 1/1) or one of them contains the reference while the other one carries the alternative allele
(genotype 0/1). If both chromosomal copies carry the same allele (i.e. genotype 0/0 or 1/1), the genotype
is called homozygous, while genotype 0/1 is referred to as heterozygous. s Given the variants and the
alignments, the goal here is to phase the variants and generate the haplotypes.

Mathematically, the aligned reads over the variants are encoded in the form of a SNP matrix. The SNP
matrix for the example given in Figure 1.1 is illustrated in Figure 1.2. The SNP matrix F is an element
of {0, 1, –}R×M , where R is the number of reads and M is the number of variants along a chromosome.
Each matrix entry F (j, k) is 0 (indicating that the read matches the reference allele) or 1, indicating that
the read matches the alternative allele if the read covers that position and “–” otherwise. Note that the
“–” character can also be used to encode the unsequenced “internal segment” of a paired-end read. The
goal of the haplotype assembly problem is to generate two haplotypes h0, h1 ∈ {0, 1}M .

The presence of sequencing and mapping errors makes the haplotype assembly problem a challeng-
ing task. Computationally, this problem has been generally modeled as an optimization problem to
correct the sequencing and mapping errors. In literature, di�erent combinatorial formulations of the
problem have been proposed (Lippert et al., 2002). Among them, Minimum Error Correction (MEC)
(Lippert et al., 2002) has been proven particularly successful in the reconstruction of accurate haplotypes
for diploid species (Martin et al., 2016; He et al., 2010; Chen et al., 2013; Glusman et al., 2014; Rhee et al.,
2016). MEC aims to correct the input data with the minimum number of corrections to the SNP values,
such that the resulting reads can be partitioned into two sets, with each set identifying a haplotype. To
mathematically formulate the minimum number of corrections (MEC) as an optimization problem, we
require a few de�nitions.

The quality of a solution relies on the measure d(r1, r2) based on the Hamming distance between
any two rows r1, r2 ∈ {0, 1, –}M in F .
Definition 1.1 (Distance). Formally, the distance between rows r1 and r2 is given by

d(r1, r2) :=
∣∣{k ∣∣ r1(k) 6= – ∧ r2(k) 6= – ∧ r1(k) 6= r2(k)

}∣∣.
Definition 1.2 (Feasibility). A SNP matrixF ∈ {0, 1, –}R×M is called feasible if there exists a bi-partition
of rows (i. e., reads) into two sets such that all pairwise distances of two rows within the same set are
zero.

Feasibility of a matrix F is equivalent to the existence of two haplotypes h0, h1 ∈ {0, 1}M such that
every read r in the matrix has a distance of zero to h0 or to h1 (or both). The MEC problem can now

1.2. Reference-based Haplotyping | 5

S N P 1 S N P 2 S N P 3 S N P 4 S N P 5 S N P 6 S N P 7

Mathematical formulation of SIH (MEC)

SNP matrix

Phased reads

Haplotypes

-

-
-

Figure 1.2: Example shows the SNP matrix for the example shown in Fig. 1.1. Seven variants covered by
reads (horizontal bars) in a single individual. The allele in read is encoded as 1 if it matches the allele in
the reference position at that position and 0 otherwise. The middle panel shows the phased reads in
colors and haplotypes at the bottom over these seven variants.

simply be stated in terms of �ipping bits in F , where entries that are 0 or 1 can be �ipped and “–”
entries remain unchanged.
Problem 1.1 (MEC). Given a matrix F ∈ {0, 1, –}R×M , �ip a minimum number of entries in F in order
to obtain a feasible matrix.
Definition 1.3 (MEC cost). The MEC cost for a solution h0, h1 ∈ {0, 1}M is given by:

costF (h0, h1) :=
n∑
i=1

min{dist(ri, h0), dist(ri, h1)}

.
where ri ∈ {0, 1, –}M is the i-th row of a SNP matrix F .
The MEC problem is NP-hard (Cilibrasi et al., 2007), but more detailed analyses require a more �ne

grained distinction between di�erent instances types, which are described as follows.
• MEC: Instances in which entries in each of the n rows of F are from {0, 1, –}. There is no restriction

on the placement of entries 0, 1 and –. These instances are generated from Illumina, 10x Genomics
and Strand-Seq sequencing technologies.

• Gapless-MEC: A MEC instance is called gapless if the entries in each of the n rows of F follows
a regular expression of the type –∗{0, 1}∗–∗. These instances are generated from PacBio, ONT and
single-end Illumina like technologies.

• Binary-MEC: Instances in which entries in each of the n rows of F are from {0, 1} with no gaps.
Figure 1.3 shows an example of a mathematical representation of reads from di�erent sequencing

technologies, that cover seven variants. The top panel shows a general Binary-MEC instance consisting
of binary values with no gaps, the middle panel shows a Gapless-MEC instance with binary values in
between and gaps at its two ends and, the bottom is a MEC instance which consists of binary values
and gaps with no restriction on placement of gaps.

Additionally, we consider a weighted version of the MEC (wMEC), in which a cost is associated
to every matrix entry. This is useful in practice since each nucleotide in a sequencing read usually
comes with a “phred-scaled” base quality Q that corresponds to an estimated probability of 10–Q/10 that

6 | Chapter 1. Introduction

S N P 1 S N P 2 S N P 3 S N P 4 S N P 5 S N P 6 S N P 7

Different types of MEC's

Binary-MEC

Gapless MEC
- - -

- - -
- -- -

MEC
- - -

-
- -

- - -

Figure 1.3: Seven variants covered by reads (horizontal bars) in a single individual are represented as
MEC instances. At the top is a general MEC instance with arbitrary gaps, the middle is a Gapless-MEC
instance with gaps only at its two ends and the bottom is a Binary-MEC instance which consists of
only binary values.

this base has been wrongly sequenced. These phred scores can hence serve as costs of �ipping a letter,
allowing less con�dent base calls to be corrected at a lower cost compared to high con�dence ones.

Problem 1.2 (wMEC). Given a matrix F ∈ {0, 1, –}R×M and a weight matrixW ∈ NR×M , �ip entries in
F to obtain a feasible matrix, while minimizing the sum of incurred costs, where �ipping entry F (j, k)
incurs a cost ofW(j, k).

Beyond the MEC formulation and its variants, other objective functions as surveyed by Rhee et al.
(2016) have been proposed.

The other objective functions to solving haplotype assembly problem are as follows:
• Minimum fragment removal (MFR) and its weighted version (WMFR): These objective functions

derive the haplotype assembly by removing rows of the matrix F .
• Minimum SNP removal (MSR) and its weighted version (WMSR): These objective functions derive

the haplotype assembly by removing columns of the matrix F .
• Minimum fragment cut (MFC): This function involves partitioning of the rows ofF into two segments

representing haplotypes.
• Other objective functions such as Graph and Satis�ability (SAT) formulations.

The focus of the thesis is on the Minimum Error Correction (MEC) formulation for solving the
haplotype assembly problem.

1.2.2 Related work

Next, we survey existing algorithmic approaches, mainly focused on the Minimum Error Correction
formulation, to solving the haplotype assembly problem, both in theory and practice.

1.2. Reference-based Haplotyping | 7

Cloud 1

2*100bp/pair
~40%

1 0 0 1 - - - - - - - - - - - - - - - -
- - 1 0 0 0 0 - - - - - - - - - - - - -

Read 1
Read 2

Pa
cB

io 23 15 7 25

25 17 12 32 17

1 0 - - - - - - - - - - - - - - - - - -
- - 1 - - - - - - - - - - - - - - - - -

Read 1
Read 2

Ill
u
m

in
a

23 15

25

S
tr

S
e
q 1 - - - - - - 0 - 0 - - 0 - - - - 0 - 0

0 - - - - 0 - - - 1 - - - - - - - 1 - -
23 15

25

2317

1315

25 17

15 25

Cell 1
Cell 2

1
0

X 25 12 32 17

37 13 18Cloud 2

1 - - 1 - - - - - - - - - - - - - - - -
- - 1 - - - - - - 1 1 - - - - - - - - -

Pair 1
Pair 2H

i-
C 23 25

25 12 11

1 - - 1 - - - - - - - - - - - - - - - -
- - - 0 - - 0 - - - - - - - - - - - - -

Pair 1
Pair 2

m
a
te

 p
a
ir

s

33 25

2122

Span
[bp]

Density

~500bp

~3kbp

~100kbp 10%

~10kbp 100%

full
chromosome

2%

large
variance

2*100bp/pair

2*100bp/pair
~6.6%

1 - 0 - - 1 1 - - - - - - - - - - - - -
- - - - - - - 1 1 - - - 1 - - - - - - -

In human: ~1 heterzygous variant / 1000bp

Figure 1.4: Variants covered by reads in a single individual are represented as MEC instances from
di�erent sequencing technologies. The weights are shown in red. Figure from a paper by Klau and
Marschall (2017).

1.2.2.1 Theoretical approaches

In this section, we discuss theoretical approaches for theMEC and its versions for solving the haplotyping
problem. For the simplest version, Binary-MEC, �nding its optimal solution is equivalent to solving
the hypercube 2-segmentation problem (H2S). The H2S problem was introduced by Kleinberg et al.
(1998, 2004) and is known to be NP-hard (Feige, 2014; Kleinberg et al., 2004). The optimization version
of Binary-MEC is closely related to H2S. In the former we minimize the number of mismatches instead
of maximizing the number of matches. In particular, the NP-hardness of H2S directly implies the
NP-hardness of Binary-MEC, Gapless-MEC, and MEC. Gapless-MEC and MEC were shown to be
NP-hard by Cilibrasi et al. (2007).1

With respect to the approximation status, Ostrovsky and Rabani (2002) obtained a polynomial
time approximation scheme (PTAS) (see De�nition 2.5) for Binary-MEC based on random embeddings.
Building on the work of Li et al. (2002), Jiao et al. (2004) presented a deterministic PTAS for Binary-MEC.
For Gapless-MEC, a logarithmic factor approximation is the best known approximation algorithm so
far (Bonizzoni et al., 2016). Furthermore, the MEC problem in its general form is known to be APX-hard
(Cilibrasi et al., 2007). Therefore, there is a gap on the approximation status of Gapless-MEC: it is
unknown whether it is as easy as Binary-MEC or as hard as MEC.
Open Problem 1.1. The approximation status of Gapless-MEC is an open problem; Gapless-MEC
instances are important because they are often produced by single-ended PacBio or ONT technologies.
Deriving polynomial time approximation algorithms (PTAS) for Gapless-MEC instances provides
evidence that Gapless-MEC can be solved in polynomial time.

1Their result predates the hardness result of Feige (2014) for H2S. The proof of the claimed NP-hardness of H2S by
Kleinberg et al. (1998) was never published.

8 | Chapter 1. Introduction

1.2.2.2 Approaches in practice

Here, we discuss exact as well as heuristic approaches, which are often used in practice for solving the
haplotype assembly problem in a time e�cient manner.

Exact approaches. The exact approaches, which solve the problem optimally, include integer linear
programming (Fouilhoux and Mahjoub, 2012; Chen et al., 2013), and �xed-parameter tractable (FPT)
algorithms (He et al., 2010; Patterson et al., 2015; Pirola et al., 2015).

An Integer Linear Program (ILP) consists of two parts, constraints or conditions and an objective
function. Additionally, the objective function and the constraints are linear. An ILP in standard form
can be expressed as

maximize c
T
x

subject to Ax + s = b,
s ≥ 0,

and x ∈ Zn,
where c, b, x and s are vectors, A is a matrix and entries in x are integers.

Chen et al. (2013) proposed an ILP-based approach to solving the MEC problem. They consider
binary variables for each row and column and their corresponding values are supposed to be dependent
on haplotypes.

Branch-and-Bound algorithm. Branch-and-bound algorithms enumerate the candidate solutions by
using a rooted tree. The algorithm explores the branches of this tree, which represent subsets of the
solution set. Before enumerating the candidate solutions of a branch, the branch is compared to an
upper and lower estimated bounds on the optimal solution, and is ignored if it cannot produce a better
solution than the best one found so far by the algorithm. Wang et al. (2005) applied a branch-and-bound
algorithm for solving the MEC to �nding haplotypes. This approach solves the problem in an exact
way, but does not scale well for large datasets.

Parameterized algorithms. Parameterized algorithms choose a �xed parameter and solve a problem
in time exponential only in the size of this �xed parameter, but polynomial in the input size. Such
an algorithm is called a �xed-parameter tractable (FPT) algorithm, because problem instances can be
solved e�ciently for small values of the �xed parameter.

In NGS data analysis, there are several parameters, such as read length, coverage and number of
sequencing errors, that can help in solving genomics problems e�ciently. Choosing a parameter, that
is small enough to work in practice, is an art. In the works by He et al. (2010); Patterson et al. (2015);
Pirola et al. (2015); Martin et al. (2016); Klau and Marschall (2017), di�erent parameters are proposed
to solve the MEC problem with FPT approaches. These approaches are applied on each NGS dataset
separately, without considering these datasets in combination.

As described in Section 1.1, the NGS datasets have their inherent challenges and bene�ts and, no
technology independently enables producing complete haplotypes. For instance, long-read technologies
have high sequencing error rates and short-read technologies produce short reads, which are not
su�cient to producing the whole genome. Furthermore, the Strand-Seq technology produce long-
range information, but provide sparse information. These limitations from di�erent technologies
necessitates to combine the advantages of di�erent technologies in a joint optimization framework,
in order to facilitate producing complete haplotypes. In the recent work by Edge et al. (2017), they
assemble haplotypes by combining multiple sequencing technologies such as SMRT (PacBio) sequencing,
linked-read sequencing and proximity litigation sequencing. However, an e�cient algorithm to solve
haplotyping, by combining Strand-Seq sequencing datasets with other sequencing technologies in an
integrative framework, is unknown. Therefore developing a parameterized algorithm for this integrative
framework and deciding parameters that work well in practice is very important.

The corresponding MEC instances for a single genome from di�erent technologies such as Illumina,
PacBio and Strand-Seq technologies are shown in Figure 1.4. Shown is the toy example of MEC instances
for a human genome that consists of heterozygous variants, one in every 1000 bp. Over these variants,

1.2. Reference-based Haplotyping | 9

we observe that the matrix from Illumina data contains more gaps compared to binary values in every
row because of the short read nature. The matrix from long-read technologies such as PacBio and
ONT contain more binary values in every row. The matrix from Strand-Seq data is very sparse with
more gaps, and has arbitrary positioning of gaps and binary values. The reads from any technology
independently do not �ll all the columns in the matrix with binary values and therefore, cannot generate
end-to-end haplotypes. The joint matrix from di�erent combinations of technologies contains binary
values in all the columns and thus can produce end-to-end haplotypes.
Open Problem 1.2. Finding a parameterized algorithm for a version of MEC that uses multiple sequenc-
ing technologies in an integrative framework, is an open problem.

Heuristic approaches. A heuristic algorithm is one that is designed to solve a problem in an e�cient
fashion in terms of speed and memory requirements, at the cost of sacri�cing optimality. Heuristic
algorithms are most often employed when sub-optimal solutions are su�cient and exact solutions are
computationally expensive.

Many di�erent heuristic approaches have been proposed for haplotyping. HASH (haplotype assem-
bly for single human) uses a Markov chain Monte Carlo (MCMC) algorithm and a graph partitioning
approach to assemble haplotypes, given a list of heterozygous variants and a set of shotgun sequence
reads mapped to a reference genome assembly (Bansal et al., 2008). In the work by Wang et al. (2007), a
clustering algorithm is deployed to split the rows of F in two sets based on MEC formulation. HapCut
(Bansal and Bafna, 2008) utilizes the overlapping structure of the fragment matrix and max-cut compu-
tations to �nd the minimum error correction (MEC) solution for haplotype assembly. Duitama et al.
(2010) follows a heuristic approach for max-cut to �nd haplotypes e�ciently. MixSIH (Matsumoto and
Kiryu, 2013) utilizes a probabilistic mixture model to solve haplotyping. H-BOP (Xie et al., 2012) follows
a heuristic algorithm for optimizing a combination of the MEC and Maximum Fragments Cut models.
ProbHap (Kuleshov, 2014) employs a similar approach to Patterson et al. (2015), but ProbHap uses the
Viterbi algorithm to solve the maximum likelihood function speci�ed by a probabilistic graphical model.

1.2.3 Pedigree of genomes

Another approach to haplotyping takes into account the sequencing datasets from multiple members of
a families. Speci�cally, such an approach takes advantage of both sequencing data of each individual and
of the principles of the Mendelian segregation. These are highly informative for identifying haplotypes
that are identical-by-descent (IBD) between individuals within a pedigree. At the simplest level of a
family trio (both parents and one child), simple rules indicate which alleles in the child were inherited
from each parent, thus largely separating the two haplotypes in the child. This process of separating
the two haplotypes based on genotype data alone is called genetic haplotyping. Nevertheless, genetic
haplotyping cannot phase positions in which all family members are heterozygous. In such cases using
sequencing dataset can complement the genetic haplotyping.

The Haploscribe method (Roach et al., 2011) phased whole-genome data based on genetic haplo-
typing. Haploscribe followed a parsimony approach to generate meiosis-indicator (inheritance state)
vectors and obtained haplotypes by modeling the haplotyping problem using a hidden Markov model
(HMM). Abecasis et al. (2002) is based on genetic information that formed clusters of tightly-linked
sites within linkage disequilibrium. Williams et al. (2010) followed a dynamic programming approach
to compute the maximum likelihood haplotypes from genotype data of pedigrees.

All these previous approaches lack the joint usage of both information sources based on IBD and
sequencing datasets of individuals in the pedigree. Finding an e�cient method that uses both sequencing
data and genetic inheritance principles in an integrative fashion for performing phasing is important
for generating complete haplotypes.
Open Problem 1.3. Combining information pertaining to genetic inheritance, and sequencing reads
into one framework is an open problem. Furthermore, it is not clear whether it is possible to design an
e�cient algorithm that works well in practice is an important question.

10 | Chapter 1. Introduction

SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 SNP 6 SNP 7

1/1 1/1 1/10/1 0/1 0/10/0

0/0 0/0 0/00/0 0/10/10/1

0/1 0/1 0/1 0/1 0/1 0/11/1

Mother

Father

Child

Figure 1.5: Seven SNP loci covered by reads (horizontal bars) in three individuals. Unphased genotypes
are indicated by labels 0/0, 0/1 and 1/1. The alleles that a read supports are printed in white.

To illustrate the motivation to combine genetic and read-based haplotyping, the corresponding
MEC instance for a single genome is shown in Figure 1.5. There are seven SNP positions covered by
reads in three related individuals. This illustrates how the ideas of genetic and read-based haplotyping
complement each other. All genotypes at SNP 3 are heterozygous. Thus, its phasing cannot be inferred
by genetic phasing, that is, using only the given genotypes and not the reads. SNP 4, in contrast, is not
covered by any read in the child. When only using reads in the child (corresponding to single-individual
read-based phasing), no inference can be made about the phase of SNP 4 and neither about the phase
between SNP 3 and SNP 5. The phases of all SNPs for the child can be inferred based on the observation
that all seven child genotypes are compatible with the combination of brown and green haplotypes from
the parents. This example demonstrates that using pedigree information, genotypes and sequencing
reads jointly is very powerful for establishing phase information.

1.2.4 Statistical phasing

Another approach to haplotyping includes inferring haplotypes from genotype information of large
cohorts based on the idea that common ancestry gives rise to shared haplotype tracts, as reviewed by
Browning and Browning (2011); Loh et al. (2016b,a). This approach is known as statistical or population-
based phasing. Popular tools based on statistical phasing approach are Beagle (Browning and Browning,
2007), ShapeIt (Delaneau et al., 2013a,b) and Eagle (Loh et al., 2016b,a).

This approach can be applied to unrelated individuals and only requires genotype data, which can
be measured at low cost. While very powerful for common variants, this technique is less accurate for
phasing rare variants and cannot be applied at all to private or de novo variants.

In the above section, we have presented an overview of computational approaches for performing
reference-based haplotyping by using the reference genome as a backbone. Relying on a reference
genome may hinder the correct analyses in some cases. First, read mapping step in this method has a
reference bias because the reference genome does not capture the genomic diversity of a population.
The reads that are unique to the target genome, are not aligned or wrongly aligned to the reference
genome. The usage of reference genomes for read alignment hence generate a bias. Second, we make
the prior hypothesis that the target genome is close to the reference, which may not always be true in
reality. Third, the method is not self-su�cient since a prior reference needs to be constructed. For these
reasons, we additionally consider haplotype-aware de novo (without reference) or diploid assembly.

1.3. Diploid assembly | 11

Figure 1.6: Figure shows the reads and reconstructed haplotypes using two graph approaches: (a) de
Bruijn graph and (b) overlap graph.

1.3 Diploid assembly

In diploid assembly, the reads from a diploid genome are directly used to assemble the haplotype
sequences. The diploid assembly process involves partitioning the input set of reads into two disjoint
sets, and then gluing together the reads from each set in proper order to produce diploid assemblies.
Therefore, diploid assembly process aims to infer the ordering and haplotypic identity of input sequencing
reads. The diploid assembly process is challenging due to short read lengths, incomplete data, sequencing
errors, and repetitive regions on the genome.

Below, we discuss how to formulate the diploid assembly problem of �nding the ordering and
haplotypic identity of reads for producing diploid assemblies, while avoiding misassemblies in complex
repetitive regions.

1.3.1 Diploid assembly as a graph problem

The diploid assembly from sequencing reads is modeled as the graph problem. The assembly graph
restores reliable information about the ordering of reads. Assembly graphs can be categorized into two
families: overlap graphs and de Bruijn graphs.

Overlap graphs. Given a set of reads, the overlap graph consists of nodes that represent reads, and
edges that represent the overlap between read sequences. The weight on the edges represents the
maximal overlap length between two sequences. As illustrated in Figure 1.6b, given four reads, the goal
is to reconstruct the haplotypes sequences H0 and H1. In the shown overlap graph, there are four nodes

12 | Chapter 1. Introduction

R1, R2, R3 and R4 for these reads and there are edges between these nodes based on the overlap, for
example, there is an edge between R1 and R2 with a weight of 3.

Overlap graphs can be simpli�ed to string graphs by the transitive reduction of edges (Myers, 2005).
Also, contained edges (Myers, 2005) are removed, which occur when one read is a substring of other
reads.

Most of the assemblers generate only one sequence (consensus sequence) and the algorithm to
construct this sequence (instead of two) can be outlined as follows.
• Overlap: calculate pairwise overlaps between reads
• Layout: compute a parsimonious solution (as a generalized Hamiltonian path visiting each node at

least once while minimizing the total string length)
• Consensus: merge reads, using redundancy to correct sequencing errors

The �rst OLC assembler was developed by Celera (Myers et al., 2000), which was designed to
handle sequencing data from Sanger technology. Celera employs a BLAST-like approach for performing
all-vs-all read alignment. Celera then compacts the overlaps with no ambiguity and uses some heuristics
on the tangled regions that arise due to repeats. The �nal sequences are generated by forming a
consensus between reads to sequencing errors. Complex repetitive regions are hard to resolve, resulting
in fragmented assemblies. We call these fragmented sequences “contigs” for contiguous consensus
sequences. Furthermore, a series of contigs are connected using long-range read information such as
Hi-C and optimal mapping information, to generate long assemblies called “sca�olds”.

This paradigm was used with long Sanger sequences and for relatively small genomes. Currently,
the OLC-based algorithms are also used with PacBio datasets (Grohme et al., 2018).

De Bruijn graphs. The de Bruijn graph is a directed graph representing overlaps between sequences
of symbols, named after Nicolass Govert de Bruijn (Todd, 1933). In this type of assembly graph, each
read is broken into a sequence of overlapping k-mers, where a k-mer is a substring of length k. The
distinct k-mers are added as vertices to the graph, and k-mers with k – 1 overlap are connected by an
edge. In Figure 1.6a, the reads are divided into words of �xed length k, where k = 4. Here, each node in
the graph is a word and the connections between the nodes are based on the overlap between nodes.

The �rst application of the de Bruijn graph in genome assembly was introduced in the EULER
assembler (Pevzner et al., 2001). The assembly problem can then be formulated as �nding a walk through
the graph that visits each edge in the graph once — an Eulerian path problem. Due to the repeats, it is
di�cult to �nd Euler paths. In most instances, the assembler attempts to construct contigs consisting of
the unambiguous, unbranching regions of the graph.

Medvedev et al. (2007) extended the original directed de Bruijn graph model of Pevzner et al. (2001)
to a bi-directed de Bruijn graph (BDDG) model, which is more e�cient in handling DNA’s double-strand
structure. A bi-directed graph is a generalized directed graph in the sense that two end-points of an
edge are given independent orientations (or directions) at each end. Thus, from sequencing reads
R = {R1,R2, ...Rm}, we can generate a bi-directed de Bruijn graph by de�ning the vertices as k-mers
obtained from the reads and then getting all possible edges among the vertices.

The advantage of BDDG over directed de Bruijn graph is simpli�cation. Both strands of a k-mer are
represented by one node in BDDG compared to two separated nodes in directed graph. For example, if
forward strand is represent by node n, then the reverse strand is represented by n’ within the same
node n. This saves memory and storage but also simpli�es the graph so that graph operations are more
e�cient.

De Bruijn graph and overlap graph. The de Bruijn graph theoretically achieves the same tasks
that the overlap graph does, but in an e�cient manner (Li et al., 2012). The de Bruijn graph became
widely for assembling the short reads. The OLC approach did not scale well on the high number of
sequences generated by NGS. The use of the de Bruijn graph is prevalent for short read assembly
because these approaches employ e�cient techniques to handle redundancy in data. Indeed a k-mer
present multiple times in the sequencing dataset appears only once in the graph. This makes the de

1.3. Diploid assembly | 13

SV

Figure 1.7: Given the input reads (middle) from the two sequences (top), we show a corresponding
assembly graph at the bottom. The bubbles in the sequence graph (bottom) show three di�erent
heterozygous variations; the �rst one is an SNV, the second one is an SV, and the third one is an indel.

Bruijn graph structure not very sensitive to high coverage, unlike OLC. The de Bruijn graph was �rst
proposed as an alternative structure (Pevzner et al., 2001) because it was less sensitive to repeats.

We now discuss the special structures in assembly graphs, that can occur due to repeats and
heterozygous regions.

Graph structures. We discuss mainly two types of structures (bubbles and repeats) that occur in the
assembly graphs for diploid genomes.

Bubbles. Bubbles are de�ned as a set of disjoint paths bounded by a �xed start and an end node and
all paths through the bubble �ow from start to end. No other vertex in the graph other than a start node
forms a pair with an end node. Bubbles in the graph represent heterozygosity or sequencing errors
for the diploid organism. Bubbles can contain simple SNVs with only one bp di�erence, or even large
complex structural variations in the order of kilo-bases or more. Figure 1.7 illustrates how bubbles in
an assembly graph can contain both small structural variants and large structural variants.

Repeats. Repeats in a genome causes branches or cycles in the assembly graphs and, therefore,
make a graph more complex and break the properties of the linear reference. Speci�cally, it becomes
di�cult to �nd the positioning or linear ordering of nodes in the graph. The repeats in the graph
are illustrated in Figure 1.8. In this example, the repeat R causes cycles and branches in the graph.
Assemblers generally handle these repeats by making a greedy guess as to which branch to follow.
Incorrect guesses create false joins (chimeric contigs) and erroneous copy numbers. If the assembler
is more conservative, it will break the assembly at these branch points, leading to an accurate but
fragmented assembly with fairly small contigs. The ability to resolve repeats depends on the reads
length. If there is a read that is long enough to span the repeat region, then the repeat is resolvable.
Therefore, upcoming long-read sequencing technologies produce reads that span these repeats helps in
obtaining maximally repeat-resolved diploid assemblies.

1.3.2 Related work on diploid assembly

Over the last decade, the development of various NGS technologies has impacted the assembly problem.
In theory, the problem of de novo assembly—computing the consensus of two or more sequences—is

14 | Chapter 1. Introduction

heterozygosity over genome

Figure 1.8: The assembly graph in which repetitive and heterozygous regions are condensed as nodes,
is shown. At the top, heterozygosity (in vertical bars) and repetitive regions (in red) over the genome
are shown. At the bottom, the graph with nodes as heterozygous or repetitive region are shown, and
connections are based on the successive read overlap. The graph has cycles because of repetitive region
shown by R, which also causes two branches.

NP-hard, when the problem is modeled either as string graphs or de Bruijn graphs (Medvedev et al.,
2007). There are several heuristic approaches for approximating the optimal de novo haploid assembly
based on NGS datasets (Idury and Waterman, 1995; Myers, 1995, 2005; Pevzner et al., 2001; Nagarajan
and Pop, 2009, 2013; Sović et al., 2013).

However, even with Sanger (reads of the order of 800-1000 base pairs) and Illumina sequencing,
which deliver short reads with low error rates, de novo assembly of heterozygous diploid genomes
has been a di�cult problem (Vinson et al., 2005; Levy et al., 2007). In practice, there are several short-
read assemblers based on Illumina data for heterozygous genomes (Kajitani et al., 2014; Pryszcz and
Gabaldón, 2016; Simpson and Durbin, 2012; Bankevich et al., 2012; Li, 2015b). The assemblies that they
produce are accurate, but contain gaps and are composed of relatively short contigs and sca�olds. Third
generation sequencing technologies such as methods available from Paci�c Biosciences (PacBio) and
Oxford Nanopore Technologies (ONT) deliver much longer reads, but with high error rates. There
are now several long-read assemblers (Koren et al., 2017; Vaser et al., 2017; Xiao et al., 2016; Berlin
et al., 2015; Chin et al., 2013; Hunt et al., 2015; Lin et al., 2016) that use these long-read data for de novo
assembly. The assemblies that are delivered from these assemblers are more contiguous, with longer
contigs and sca�olds. Finally, there are hybrid assemblers that take advantage of long-read data (with
its high error rate) and short-read data (with its low error rate) (Bashir et al., 2012; Antipov et al., 2015;
Zimin et al., 2017) and attempt to combine the best aspects of both. These hybrid assemblers delivers
highly accurate, repeat-resolved assemblies.

The main drawback of the state-of-the-art assemblers mentioned above is that they generate only

1.4. Thesis Scope and Outline | 15

one consensus sequence even for diploid organisms. To date, there is only one assembler that can
produce diploid assemblies for diploid genomes.

Diploid assembly. A recent and currently only available diploid assembly method — Falcon Unzip
(Chin et al., 2016) — is a purely PacBio based diploid assembler. Falcon Unzip generates haplotype contigs
or “haplotigs” that represent the diploid genome with correctly phased homologous chromosomes.
Falcon Unzip involves constructing a string graph from long PacBio reads, and generating haplotigs in
a greedy manner using a local conservative approach.

For generating haplotigs, Falcon Unzip �rst identi�es the phase for each read based on the condition
that the read covers at-least one SNV for phasing. In the regions over the genome where heterozygous
SNVs are at a long distance from each other, Falcon Unzip can not phase those regions, resulting in
incomplete assemblies. Additionally, Falcon Unzip has limitations with respect to phasing all large
structural variants and regions with high heterozygosity.

There is no known algorithm that works at di�erent levels of heterozygosity, phases all types of
structural variants and generates complete diploid assemblies. A potential approach to achieve the
task of complete diploid genomes is to perform phasing directly on the assembly graph. Moreover, it
becomes easy to detect large structural variants, such as translocations and other rearrangements, in an
assembly graph. Thus, working in the space of assembly graphs provides the opportunity to detect all
types of structural variation, which further helps in phasing whole genomes.

Additionally, Falcon Unzip is purely relying on PacBio data, which is noisy and, therefore, it requires
high coverage data for producing accurate assemblies. In contrast, hybrid approaches that combine
accurate Illumina and long read PacBio data, conceptually have the potential for producing good quality
assemblies even at low coverages. However, there is no known algorithm that combines multiple
sequencing datasets such as accurate Illumina and long read PacBio data for producing good quality
haplotigs.
Open Problem 1.4. Phasing bubbles directly from the assembly graph is an open problem. Additionally,
the extension to MEC formulation for phasing reads mapped to assembly graphs do not exist.

1.4 Thesis Scope and Outline

In the above sections, I highlighted four “open problems” in the area of haplotyping using NGS data.
The remainder of this thesis is structured as follows:
• Chapter 2 provides a general background on the di�erent types of algorithms. It establishes the

motivation on how these algorithms are used in solving small daily examples fast. It highlights the
advantages and disadvantages of these algorithms in context of large problems.

• Chapter 3 presents a dynamic programming based algorithm for solving Gapless-MEC instances
approximately. It discusses the approximation guarantee, that provides hint about the existence of
polynomial time approximation scheme for these instances. (Problem 1.1)

• Chapter 4 discusses di�erent types of NGS datasets, with their advantages and disadvantages. It
explores an integrative phasing framework that is obtained for combining NGS datasets. It discusses a
parameterized algorithm that solves these instances e�ciently in practice. Furthermore, I demonstrate
the e�ectiveness of this algorithm on real genomic datasets. (Problem 1.2)

• Chapter 5 presents a generalized parameterized approach to incorporate information from pedigrees.
Furthermore, I show experiments on real datasets and highlight that pedigree data has an additional
advantage in delivering better quality haplotypes. (Problem 1.3)

• Chapter 6 focuses on a generalized approach — haplotype-aware diploid assembly — in a graph
framework, that has the ability to handle all levels of heterozygosity and structural variations to
produce accurate and complete haplotype assemblies. Furthermore, I present this approach as a
hybrid of di�erent types of NGS datasets and show its e�ectiveness on a pseudo-diploid genome.
(Problem 1.4)

• Finally, Chapter 7 summarizes the results presented in this thesis, along with an outlook into the
future and perspectives.

16 | Chapter 1. Introduction

1.5 Relevant publications

• David Porubsky*, Shilpa Garg*, Ashley D. Sanders*, V. Guryev, Peter M. Lansdorp, T. Marschall, Dense
And Accurate Whole-Chromosome Haplotyping Of Individual Genomes, Nature Communications, 2017.

• Shilpa Garg, Marcel Martin and Tobias Marschall, Read-Based Phasing of Related Individuals, Proceed-
ings of ISMB 2016/Bioinformatics.

• Shilpa Garg, Mikko Rautiainen, Adam M Novak, Erik Garrison, Richard Durbin, Tobias Marschall, A
graph-based approach to diploid genome assembly, ISMB 2018 (to appear).

• Preprint: Shilpa Garg, Tobias Moemke, A QPTAS for Gapless-MEC, Submitted.
• Preprint: M. Martin*, M. Patterson*, Shilpa Garg, S. O. Fischer, N. Pisanti, G. W. Klau, A. Schnhuth, T.

Marschall, WhatsHap: fast and accurate read-based phasing.
In this paper, my contribution was in developing some parts of the pipeline and making �gures.

Chapter 2

Algorithmic Background

Many computational problems that arise in practice from analyzing biological data sets are optimization
problems. For optimization problems, the goal is to minimize or maximize some objective function (e.g.
cost, quality or other measures) over the set of possible solutions that satisfy some constraints. These
optimization problems often turn out to be NP-hard and, the NP-hardness of an optimization problem
implies that, unless P = NP, there is no polynomial-time algorithm that �nds the optimal value of the
objective function. The next step would be to look for algorithms that provide near-optimal solutions
and work fast in practice. We therefore seek to understand the structure of relevant problem instances
and to design algorithmic techniques to exploit these structures.

To design and analyze algorithms for these optimization problems, we explore the theory of
parameterized algorithms and the theory of approximation algorithms. Parameterized complexity aims
to analyze problem instances in �ner detail and some parameters are considered based on the structural
and other properties of input or output. The running time of parameterized algorithms is expressed as
a function of these parameters. The goal is to identify the parameters for which the overall running
time is small when their values are small, even if the input size is large. In approximation algorithms,
we relax the optimality criterion: instead of looking for an exact optimal solution, we allow solutions
for which the objective function is close to the optimal solution within some worst case bound. We
guarantee that the quality of the approximate solution is not worse than that bound on the deviation of
the solution from the optimum. The approximation algorithms and the parameterized algorithms can
be deterministic or randomized.

2.1 Types of algorithms

In this thesis, we consider the following broadly de�ned categories of algorithms for solving computa-
tional problems: parameterized algorithms, approximation algorithms and randomized algorithms.

2.1.1 Parameterized algorithms

Let us begin with a small example as illustrated by Cygan et al. (2015). Imagine that you are a security
guard of a bar in a small town of Germany. On Friday, several people come to the bar for a party. There
are some people who often �ght with each other at the bar and the guard takes note of them. In order
to have a peaceful party without any �ghts, the guard plans ahead and only admits people who do not
�ght with anyone else at the bar. At the same time, he is willing to reject at most k people, such that he
gains maximum pro�t.

The above situation can be formalized in the context of an optimization problem. Let us suppose
that there are n people who come to the bar, and the constraint is that for each pair of people, we know
whether or not they will have a �ght between them if the pair is allowed inside the bar. The goal here
is to identify the number of people allowed inside the bar to incur maximum pro�t such that there are
at most k people who are prohibited. Figure 2.1 shows an instance of the problem and a solution for k =
3. It can be easily checked that this instance has no solution with k = 2.

17

18 | Chapter 2. Algorithmic Background

A

B D

C F

E

G

Figure 2.1: An instance of the problem with a solution for k = 3. An edge between two guests means
that they will �ght if both are admitted. The grey circles represent the troublemakers.

E�cient algorithms. Let us solve the above problem in a naive manner by trying all possibilities.
If the problem instance is small, i.e. n = 100 people, then the number of possibilities are 2100. Even
for such a small instance, the algorithm takes a long time, and cannot give an answer in a reasonable
amount of time. Another approach to this problem is to reject a small number of guests, let’s say,
k ≤ 10. In this case, the total number of possibilities are

(100
10
)
. This approach is better compared to the

brute-force approach, but even this approach takes a long time.
Let us look closer into the problem and, try to identify some peaceful people and troublemakers. In

particular, we want to identifying persons who do not have a con�ict with anyone, and also identifying
a person who �ghts with at atleast k + 1 other persons. The example for this case is shown in Figure 2.1.
There are seven persons shown by nodes and there is an edge between nodes if the two persons �ght
between each other. Here, we want to �nd a person that �ghts with at atleast four persons for k = 3. In
this example, the person whom we want to reject from the party is D, reducing k by one. We proceed
ahead in a similar manner. If we are left with no such person then we know that each remaining person
will �ght with at most k other persons. Thus rejecting any single person resolves at most k potential
con�icts. If there are more than k2 potential con�icts, then it is not possible to have a good party by
rejecting only k persons. Taken together, the persons can be classi�ed into two important classes; one,
those who participate in at atleast one potential con�ict and second, those who participate in at most k
con�icts. Thus, in total, there are at most k2 potential con�icts, which results in 2k2 persons for whom
it is unknown. Now, if we try all possibilities of

(2k2

k
)
, the running time is reduced compared to previous

approach, but even this approach takes a long time.
After all above insights, the main observation to consider is that every con�ict has to be resolved,

and the only way to resolve a con�ict is to refuse at least one of the two persons. Let us suppose that
there is a con�ict between persons X and Y. If we add one of them, let’s say X, to the list of persons to
reject and, then repeat this process by rejecting at most k – 1 persons. If it succeeds, we get the solution,
otherwise we remove the person X from the reject list and, instead try moving Y to the reject list and
run this algorithm recursively. If this succeeds, we get the solution and otherwise, it is not possible to
solve this problem by rejecting at most k guests.

To analyze the running time of this recursive algorithm, there are in total O(2k) recursion calls, 2k
leaves in the recursion tree. Each recursion call can be solved in linear time O(m + n), where m is the

2.1. Types of algorithms | 19

total number of possible con�icts. The good news is that this recursive algorithm gives a solution in a
reasonable amount of time. This algorithm runs in time O(2k · k · n), and is faster than the brute-force
algorithm which takes O(nk) time.

In the O(2k · k · n)— time algorithm, the combinatorial explosion is restricted to parameter k, i.e.
the running time is exponential in k, but linear in n. The main insight from the above example is that
the problem instances can be solved in time polynomial in the input size, if we �x a parameter. We aim
to identify a parameter that is small for the problem instances encountered in practice.

We are now ready to provide some formal de�nitions on parameterized algorithms as de�ned by
Cygan et al. (2015).
Definition 2.1 (Parameterized algorithms). Algorithms with running time f (k) · nc , for a constant c
independent of both n and k, are called �xed-parameter (FPT) algorithms.

Typically, the goal in parameterized algorithms is to design FPT algorithms, trying to make both
f (k) factors and the constant c in the bound on the running time as small as possible.

In parameterized algorithms, k is simply a relevant secondary measurement that encapsulates some
aspect of the input instance, be it the size of the solution or the structure and other characterizes of the
input instance.

The art of parameterization. We have seen that we can solve a complex problem in an e�cient
manner by cleverly framing an algorithm using relevant parameters. For some problem instances, it is
easy to �nd such parameters, whereas it is di�cult for others.

For example, let us consider a variant of the problem described above where we want to reject
at most k persons such that the number of con�icts are at most l. Based on the properties explicitly
given in the input instance, the �rst guess is to parameterize either by k, by l or both. In case of both
parameters, the goal is to �nd an FPT algorithm with running time f (k, l) · nc for some computable
function f depending only on k and l. Thus, the above de�nition for a single parameter can be extended
to considering a set of parameters at the same time.

Parameterized algorithm (more than one parameter): Formally, one can express parameterization
by k and l, by de�ning the value k + l to be the parameter: an f (k, l) · nc algorithm exists if and only if
an f (k + l) · nc algorithm exists.

Other variants of the problem described above could be formulated as identifying at most k persons
to reject such that, say, the numbers of con�icts decreases by p, or such that each allowed person
con�icts with at most d other persons, or such that the average number of con�icts per guest is at most
a. Based on the properties of this instance, the parameters p, d, a are again explicitly given in the input,
indicating the kind of solution to �nd.

The bottom-line is that we can �nd di�erent parameters for a problem based on the structure and
other special properties of problem instances. This allows us to algorithms which are exponential in
these parameters, but polynomial in the input size.

Di�erent problem domains o�er di�erent choices of suitable parameters. For example, for the string
or sequence problems that are related to genomics, one can parameterize by the maximum read length,
by the maximum coverage, by the size of alphabet or by the number of alleles in a variant.

Parameterized complexity allows us to study how di�erent parameters in�uence the time complexity
of the problem. Additionally, it allows us to solve the problem e�ciently.

In conclusion, for the same problem, there can be multiple choices of parameters. Selecting the
right parameter(s) for a particular problem is often not straightforward.

We follow the formal foundation of parameterized complexity by Cygan et al. (2015).
Definition 2.2. A parameterized problem is a language L ⊆

∑∗×N, where
∑

is a �xed, �nite alphabet.
For an instance (x, k) ∈

∑∗×N, k is called the parameter.
Definition 2.3. A parameterized problem L ⊂

∑∗×N is called �xed-parameter tractable (FPT) if there
exists an algorithm A (called a �xed-parameter algorithm), a computable function f : N→ N and a
constant c such that, given (x, k) ∈

∑∗×N, the algorithm A correctly decides whether (x, k) ∈ L in

20 | Chapter 2. Algorithmic Background

time that is bounded from above by f (k) · |(x, k)|c , where |(x, k)| is the size of an instance. The complexity
class containing all �xed-parameter tractable problems is called FPT.

Observe that, given some parameterization problem L, the algorithm designer has essentially two
di�erent optimization goals when designing FPT algorithms for L. Since the worst case time complexity
has to be of the form of f (k) · nc , one can:
• optimize the parametric dependence of the running time, i.e., try to design an algorithm where function
f grows as slowly as possible; or

• optimize the polynomial factor in the running time, i.e. try to design an algorithm where constant c is
as small as possible.

2.1.2 Randomized algorithms

In randomized algorithms, the idea is to perform independent random choices and then utilize these
random choices to in�uence the computation. The assumption is that the average over all random
choices results in good performance.

There are two principal advantages to using randomized algorithms. The �rst is performance — for
many problems, randomized algorithms run faster than the best known deterministic algorithms. Thus,
randomized techniques are often used in approximation theory in order to provide a faster solution
to the problem. Second, many randomized algorithms are simpler to describe and implement than
deterministic algorithms of comparable performance.

An observation from basic probability theory —linearity of expectation— that is often used in the
analysis of randomized algorithms. Linearity of expectation states that the expectation over a sum of
random variables is equal to the sum over the expectation of each random variable. For example, for
random variables, X1,X2 . . ., the linearity of expectation is given by.

E
[∑

i
Xi
]

=
∑
i
E[Xi]. (2.1)

Here we provide an example of a randomized version of Quick-sort for illustration. Quick-sort is a
sorting technique which proceeds as follows. Pick an element p of the array as the pivot. Reorder the
elements of the array such that all the elements with values smaller than the pivot are to the left and the
greater ones are to the right. After the reordering operation is �nished, the pivot is at its �nal position.
The next step is to recursively apply the above steps of randomly picking the pivot and reordering to
the left and right parts.

Quick-sort depends on how the pivot element is picked. If the pivot element is chosen randomly,
then it is known as randomized Quick-sort. For any given array A of size n, it is easy to show that the
expected time of this algorithm is O(n log n) using the linearity of expectation (Motwani and Raghavan,
2010). Making the algorithm probabilistic gives us more control over the running time. The algorithm
runs fast with high probability. They are simple and e�cient compared to deterministic algorithms.

2.1.3 Approximation algorithms

In this section, we present some fundamental de�nitions and concepts of approximation algorithms.
Approximation algorithms are a techniques for �nding approximate solution for optimization problems
that are NP hard. If the approximate solution is close enough to the optimal solution and the algorithm
runs faster, then this behavior might be preferable for most practical purposes. Based on this motivation,
we de�ne the notion of α-approximation.

We follow the basic de�nitions of Vazirani (2013).

Definition 2.4. A polynomial-time algorithm A for an optimization problem X is an α-approximation
algorithm (α ≥ 1) if it returns a feasible solution whose value is at most a factor α away from the value
of the optimal solution, for any input instance.

2.1. Types of algorithms | 21

Thus, if opt is the optimal value of the objective function, an algorithm is an α-approximation
if it always returns a solution whose value is at most α · opt for a minimization problem, or at least
opt/α for a maximization problem. In general, α can be a growing function of the input size, and does
not necessarily need to be a constant number. For some problems, it is possible to �nd approximate
solutions that are arbitrarily close to the optimal solution. More formally:
Definition 2.5. We say that an algorithm A is a polynomial time approximation scheme (PTAS) for an
optimization problem X if for every �xed ε > 0 and for any instance I , the running time of A(ε, I) is
polynomial in the input size n, and it returns a solution whose value is at most a 1 + ε factor away from
the value of the optimal solution.

De�nitions 2.4 and 2.5 can be generalized in the context of randomized algorithms. In particular,
we call an algorithm an expected α-approximation if the expected value of the output solution satis�es
the above constraints.

For a PTAS, the running time is polynomial for a �xed ε, but the dependency on ε can be arbitrary;
in fact, running times can be on the order of f (1/ε)nO(g(1/ε)) for some functions f and g that are
super-polynomial with respect to 1/ε. Based on these functions f and g, there are di�erent variants
of PTAS algorithms. If the function g is a constant that does not depend on ε, the algorithm is called
E�cient PTAS (EPTAS); if, moreover, f is polynomial in 1/ε, then it is called a Fully Polynomial Time
Approximation Scheme (FPTAS). In some sense, NP-hard problems admitting an FPTAS can be thought
as the easiest hard problems; one such example is the Knapsack Problem.

A relaxation of De�nition 2.5 that allows for a slightly larger running time is a Quasi-Polynomial
Time Approximation Scheme (QPTAS). A QPTAS is de�ned exactly same as above, except that A is
allowed quasi-polynomial time O(npoly log n).

The class of problems that admit a constant factor approximation in polynomial time is called APX.
Clearly, all problems that admit a PTAS are in APX, but the converse is not true if P 6= NP (Jansen, 1998).

Some problems are known to be APX-hard. If a problem is APX-hard, then the existence of a
PTAS for it would imply the existence of a PTAS for every problem in APX. Thus, being APX-hard is
considered a strong evidence that the problem does not admit a PTAS.

The existence of a QPTAS for a problem is sometimes seen as a hint that a PTAS might exist: in
fact, it implies that the problem is not APX-hard.

For some problems, we can obtain better approximation ratios if we assume that the solution is
large enough. Formally, for a minimization problem X , the asymptotic approximation ratio ρ of an
algorithm A is de�ned as:

ρ = limn→∞supI {apx(I)/opt(I) : opt(I) ≥ n}

where apx(I) and opt(I) are the objective function value computed by algorithm A and optimal value
solution on the instance I respectively. Similarly to the de�nition of PTAS, we say that an algorithm A
is an Asymptotic PTAS or APTAS for problem X if A(ε, .) is an asymptotic (1 + ε)-approximation for
any �xed ε > 0.

There are several advantages to using approximation algorithms.
• An approximation algorithm provides a way to �nd a near-optimal solutions when the optimal

solution is not required, and �nding an optimal solution for the problem is NP hard.
• An approximation algorithm provides a mathematically rigorous basis to study heuristics, and helps

in unraveling structures of problem instances.
• The �eld of approximation algorithms gives us a means of distinguishing between various optimization

problems in terms of how well they can be approximated.
Let us consider a classic example to illustrate the motivation and design of an approximation algorithm.
Imagine that a thief has entered a house when its inhabitants have gone on a vacation. The thief has a
knapsack which is of �xed weight. In the house, the thief has multiple options for valuable items to
steal. Each of these items has a �xed price and weight as shown in Table 2.1. Since the knapsack that
can carry a �xed weight of 12, the thief can not steal all the items. The thief’s goal is to steal the items

22 | Chapter 2. Algorithmic Background

such that he gains the maximum pro�t from the items that �t into his knapsack. The thief problem
actually is the popular Knapsack Problem.

E�cient algorithms. The naive approach that a thief thinks of, is to try all possibilities of items
and then choose the best. The total number of possible combinations are 2n, which takes long time to
compute the �nal solution.

The next approach the thief follows is sorting the items in non-decreasing order based on the price.
The thief would �rst include an item in the knapsack with the maximum price and so on. In this example,
the thief �rst takes the gold ring and then, the mobile phone, which results in a weight of 11 and a price
of 30. This approach is basically a greedy approach and does not always give the optimal solution. For
instance, in this example, the optimal solution consists of items 1, 3 and 4, for a total weight of 31.

Another technique that the thief can employ is dynamic programming. The thief considers sub-
problems based on di�erent items. The thief stores the information “the best knapsack so far” for
these sub-problems in a DP table. The main idea is that the thief does not have to re-compute some
sub-problems, which helps to save time.

Running time. The run-time of this approach depends on the size of the DP table. Its two factors
are k rows (determined by the target capacity), and the n columns (the number of items in the set). So,
the run-time is θ(kṅ). The main point here is that k is not a constant, and its size may be considerably
larger than the number of items n in the set. Therefore, it is ine�cient to solve this problem using a
deterministic algorithm. However, these instances often arise in practice and we would like to solve
them. Thus we want to look into its approximate solution such that the algorithm to generate this
solution is faster than a deterministic algorithm.

We now provide its formal de�nition and its approximate solution.
In the knapsack problem, given a knapsack of size B ∈ Z+ and a set S = {a1, ..., an} of items with

their corresponding sizes and pro�ts s(ai) ∈ Z+ and p(ai) ∈ Z+, the goal is to �nd an optimal subset
of objects whose total size is bounded by B and which yields the maximum possible total pro�t. This
problem is also called as the 0/1 knapsack problem because each item can either be included in or
excluded from the knapsack.

PTAS for Knapsack. We present an algorithm, which was proposed by Lawler (1979), where it is
assumed that we know the optimal solution OPT . Let us assume that the set O ⊂ S is considered by the
optimal solution. Another set Q ⊂ O contains the items with value ≥ ε · OPT . We try all possibilities
for sets Q such that |Q| ≤ 1/ε. For some Q we remove an item from a set with value ≥ ε · OPT and then
run greedy algorithm to obtain set G. The �nal solution is the best value obtained by the union of Q
and G. The running time of this algorithm is (n + 1)1/ε · poly(n).

For analyzing this algorithm, let us consider a case when Q is guessed correctly, then the loss from
greedy algorithm is at most ε·OPT . This happens due to the bound on the size on items that are removed,
which are bounded by ε · OPT . Therefore, it is easy to see that p(Q ∪ G) = OPT – ε · OPT = (1 – ε)OPT .

The above analysis shows that the Knapsack problem is in PTAS. In addition, the problem exhibits
full polynomial time approximation scheme (FPTAS).

Item weight price
gold ring 3 20
mobile 8 10
radio 4 8
shoes 5 3

Table 2.1: Example for Knapsack problem

Chapter 3

Approximation algorithm for phasing individual

genomes

In this chapter, we study the approximation status of Gapless-MEC, which is a variant of MEC problem
(see Problem 1.1 introduced in Chapter 1). In other words, the minimum error correction problem
(MEC) is closely related to segmentation problems that were introduced by [Kleinberg–Papadimitriou–
Raghavan STOC’98] in the context of data mining. A MEC instance is an n×m matrix M with entries
from {0, 1, –}. Feasible solutions are composed of two binary m-bit strings, together with an assignment
of each row of M to one of the two strings. The objective is to minimize the number of mismatches
(errors) where the row has a value that di�ers from the assigned solution string. The symbol “–” is a
wildcard that matches both 0 and 1. A MEC instance is gapless, if in each row of M all binary entries
are consecutive.

Without restrictions, it is known to be UG-hard (Trevisan, 2012) to compute an O(1)-approximate
solution to MEC. For both MEC and Gapless-MEC, the best polynomial time approximation algorithm
has a logarithmic performance guarantee (Bonizzoni et al., 2016). We partially settle the approximation
status of Gapless-MEC by providing a quasi-polynomial time approximation scheme (QPTAS). Ad-
ditionally, for the relevant case where the binary part of a row is not contained in the binary part of
another row, we provide a polynomial time approximation scheme (PTAS).

3.1 Our results.

Our main result is the following theorem.

Theorem 3.1. There is a quasi-polynomial time approximation scheme (QPTAS) for Gapless-MEC.

We therefore partially settle the approximability for Gapless-MEC, which is not APX-hard unless
NP ⊆ QP (cf. Remy and Steger (2009)). Moreover, Cilibrasi et al. (2007) showed that allowing a single
gap in each string renders the problem APX-hard. Thus our result reveals a separation of the hardness
of the gapless case and the case where we allow a single gap. Furthermore, already Binary-MEC is
strongly NP-hard since the input does not contain numerical values. Therefore we can exclude the
existence of an FPTAS for both Binary-MEC and Gapless-MEC unless P = NP.

Additionally, we address the class of subinterval-free Gapless-MEC instances where no string is
contained in another string. More precisely, for each pair of rows from M we exclude that the set
columns with binary entries from one row is a strict subset of the set of columns with binary entries
from the other row.

Theorem 3.2. There is a polynomial time approximation scheme (PTAS) for Gapless-MEC restricted
to instances such that no string is the substring of another string.

23

24 | Chapter 3. Approximation algorithm for phasing individual genomes

3.2 Further related work.

Binary-MEC is a variant of the Hamming k-Median Clustering Problem when k = 2 and there are PTAS
known (Jiao et al., 2004; Ostrovsky and Rabani, 2002). Li et al. (2002) provided a PTAS for the general
consensus pattern problem which is closely related to MEC. Additionally, they provided a PTAS for a
restricted version of the star alignment problem aligning with at most a constant number of gaps in each
sequence. More recently, Bonizzoni et al. (2016) showed that it is unique games hard to approximate
MEC with constant performance guarantee, whereas it is approximable within a logarithmic factor in
the size of the input. Gapless-MEC was shown to be NP-hard by Cilibrasi et al. (2007).1

Alon and Sudakov (1999) provided a PTAS for H2S, the maximization version of Binary-MEC
and Wul� et al. (2013) showed that there is also a PTAS for the maximization version of MEC. For
Gapless-MEC, He et al. (2010) studied the �xed-parameter tractability in the parameter of fragment
length with some restrictions. These restrictions allow their dynamic programming algorithm to focus
on the reconstruction of a single haplotype and, hence, to limit the possible combinations for each
column. There is an FPT algorithm parameterized by the coverage (Patterson et al., 2015). Bonizzoni
et al. (2016) provided FPT algorithms parameterized by the fragment length and the total number of
corrections for Gapless-MEC.

Most research in haplotype phasing deals with exact and heuristic approaches to solve MEC. Exact
approaches, which solve the problem optimally, include integer linear programming by Fouilhoux and
Mahjoub (2012) and �xed-parameter tractable algorithms by He et al. (2010); Pirola et al. (2015). There
is a greedy heuristic approach proposed to solve Binary-MEC (Bansal and Bafna, 2008).

Lancia et al. (2001) obtained a network-�ow based polynomial time algorithm for Minimum Fragment
Removal (MFR) for gapless fragments. Additionally, they found the relation of Minimum SNPs Removal
(MSR) to �nding the largest independent set in a weakly triangulated graph.

3.3 Overview of our approach.

Our algorithm is a dynamic program (DP) that is composed of several levels. Given a general Gapless-
MEC instance, we decompose the rows of the instance into length classes according to the length of the
contiguous binary parts of the rows as shown in Figure 3.1.

q3,1 q2,1 q3,3 q1,1

Λ1

Λ2

Λ3

Figure 3.1: Di�erent length classes, Λ1 with corresponding column q1,1, Λ2 with corresponding columns
q2,1, q2,2 = q1,1, and Λ3 with corresponding columns q3,1, q3,2 = q2,1, q3,3, q3,4 = q1,1.

For each length class we consider a well-selected set of columns such that each row crosses at least
one column and at most two. (Row i crosses a column j, if Mi,j ∈ {0, 1}, i.e., the binary part of the row
contains that column.)

We further decompose each length class into two sub-classes, one that crosses exactly one column
and one that crosses exactly two columns as shown in Figure 3.2.

1Their result predates the hardness result of Feige (2014) for H2S. The proof of the claimed NP-hardness of H2S by
Kleinberg et al. (1998) was never published.

3.3. Overview of our approach. | 25

Λ1

q1,1 q1,2 q1,3 q1,4 q1,5

Figure 3.2: For a single-length-class instance, the sketch shows the strings crossing each column either
exactly once or exactly twice.

For the second class, it is su�cient to consider every other column, which leaves us with many
rooted instances. Thus for each sub-instance there is a single column (the root) which is crossed by all
rows of the instance.

We further decompose rooted sub-instances into the left hand side and the right hand side of the
root. Since the two sides are symmetric, we can arrange the rows and columns of these sub-instances
in such a way that all rows cross the �rst column. We call this type of sub-instance SWC-instance (for
“simple wildcards”) as shown in Figure 3.3. We order the rows from top to bottom by increasing length
in order to be able to further decompose the instance.

q0

Figure 3.3: Simple Wildcard (SWC) instances

The �rst level of our DP solves these highly structured SWC-instances. The basic idea that we
would like to apply is that we select a constant number of rows from the instance that represents the
solution. Without further precautions, however, this strategy fails because of di�ering densities within
the instance: the selected rows have to represent both the entries of columns crossed by many short
rows and entries of arbitrarily small numbers of rows crossing many columns. To resolve this issue, we
observe that computing the solution strings σ and σ′ is equivalent to �nding a partition of M into two
row sets, one assigned to σ and the other assigned to σ′. If we assume to have the guarantee that for
both solution strings σ and σ′ an ε fraction of rows of the matrix M forms a Binary-MEC sub-instance,
we show that the basic idea works.

This insight motivates to separate SWC-instances from left to right into sub-instances with the
required property and to assemble them from left to right using a DP. There are, however, several
complications. In order to choose the right sub-instances, we have to take into account that the choice
depends on which rows are assigned to σ and which are assigned to σ′. Therefore the DP has to take
special care when identifying the sub-instances.

Furthermore, in order to stitch sub-instances together to form a common solution, the solution
computed in the left sub-instance has to compute a set of candidate solutions oblivious of the choices of

26 | Chapter 3. Approximation algorithm for phasing individual genomes

the right sub-instance. This means that we have to compute a solution to the left sub-instance without
looking at a fraction of rows. We present an algorithm for these sub-instances in Section 3.5.

In order to combine the sub-instances, we face further technical complications due to having distinct
sub-instances for those rows assigned to σ and those rows assigned to σ′. In Section 3.5.1, we introduce
a DP whose DP cells are pairs of simpler DP cells, one for σ and one for σ′.

Before we consider general instances, we �rst develop our techniques by considering subinterval-
free instances which are easier to handle (Section 3.6). Observe that the instances considered until now
are special rooted sub-interval-free instances. We show how to solve arbitrary rooted sub-interval-free
instances by combining the DP with additional information about the sub-problems that contain the
root. We then introduce the notion of domination in order to combine rooted sub-interval-free instances
with a DP proceeding from left to right. The main idea is that a dominant sub-problem dictates the
solution. At the interface of two sub-instances, there can be a (contiguous) region where none of the
two sub-problems is dominant. We show that these regions can be solved directly by considering a
constant number of rows (using the results from Section 3.5).

Until this point, all parts of our algorithm run in polynomial time. We lose this property when
considering length classes, in Section 3.7.1. The length classes allow us to separate an instance into rooted
sub-instances. The di�culty is that the left hand side of a separating column may have a completely
di�erent structure than the right hand side of that column. We do not know how to combining the two
sides by considering only a polynomial number of possibilities. If we allow, however, quasipolynomial
running time, we can solve the problem. We use that each of the two sub-instances (the one on the
left and the one on the right) is composed of at most logarithmically many parts. Considering all parts
simultaneously allows us to take care of dependencies between the left hand side and the right hand
side and still solve them as if they were separate instances.

Combining such rooted instances from left to right then can be done in the same spirit as combining
rooted sub-interval-free instances. To solve the entire length-class, we combine both solutions by
running a new DP that considers quadruples of DP cells.

Finally, in Section 3.7.2, we are able to handle all length classes simultaneously. We solve general
instances in the same spirit as the combined sub-instances of a single length class. Instead of considering
quadruples of cells, however, we form collections of quadruples that are – �guratively speaking – stacked
on top of each other. The key insight is that there are only O(log(n)) di�erent length classes and each
collection has at most one quadruple of each length class. Considering all possible collections adds
another power of log(n) to the running time, which is still quasi-polynomial.

3.4 Preliminaries and notation.

We consider a Gapless-MEC instance, which is a matrix M ∈ {0, 1, –}n×m. The ith row of M is the
vector Mi,∗ ∈ {0, 1, –}1×m and the jth column is the vector M∗,j ∈ {0, 1, –}n×1. The length of the binary
part in Mi,∗ is |Mi,∗|. We say that the ith row of M crosses the jth column if Mi,j ∈ {0, 1}.

For each feasible solution (σ,σ′) for M , we specify an assignment of rows Mi,∗ to solution strings.
The default assignment is speci�ed as follows. For a row Mi,∗, we assign Mi,∗ to σ if dist(σ,Mi,∗) ≤
dist(σ′,Mi,∗). Otherwise we assign Mi,∗ to σ′. For the rows of M assigned to σ we write σ(M) and for
the rows assigned to σ′ we write σ′(M). For a given instance, Opt = (τ , τ ′) denotes an optimal solution.
Observe that knowing Opt allows us to obtain an optimal assignments τ (M) and τ ′(M) by assigning
each row to the solution string with fewest errors and knowing τ (M) and τ ′(M) allows us to obtain an
optimal solution by selecting the column-wise majority values.

3.5 Simple instances with wildcards.

In this section, we consider instances of Gapless-MEC where all entries of column one in M are zero or
one, i.e., Mi,1 ∈ {0, 1} for each index i. Observe that the wildcards now have a simple structure which
we refer to as SWC-structure. An instance with SWC-structure is an SWC-instance.

3.5. Simple instances with wildcards. | 27

Definition 3.1 (Standard ordering of SWC-instances). We de�ne the standard ordering of rows in M
such that |Mi,∗| ≤ |Mi+1,∗| for each i, i.e., we order them from top to bottom in increasing length of the
binary part.

Definition 3.2 (Good SWC-instances). We call an SWC-instance M good, if it is in standard ordering
and there are at least ε|τ (M)| rows of τ (M) and at least ε|τ ′(M)| rows of τ ′(M) that have only entries
from {0, 1}.

To solve good SWC-instances, we generalize the PTAS for Binary-MEC by Jiao et al. Jiao et al.
(2004). Our algorithm requires partitions of the set of rows. In the following two de�nitions, the
required number of rows may be a fractional number. To solve the problem, we allow the assignment
of fractional rows, i.e., for a row i, we can choose an x ∈ [0, 1] and assign an x fraction of i to one set
and a 1 – x fraction to the other set.

The following two de�nitions allow us introduce a structured view on optimal solutions.

Definition 3.3 (Trisection). An ε-trisection of an instance M for τ is a partition of the rows into three
consecutive ranges that have the following properties.

1. The �rst range U contains row M1,∗ and (1 – ε)|τ (M)| rows of τ (M).
2. The second range L is consecutive to �rst row set containing (ε – ε2)|τ (M)| rows of τ (M).
3. The third range X contains the remaining rows in M .

To avoid ambiguity, we choose L and X such that the �rst row is in τ (M).

We de�ne an ε-trisection U ′, L′, and X ′ for τ ′ analogously, replacing τ (M) by τ ′(M).

Definition 3.4 (Subdivision of trisections). We consider the rows sets U , L,U ′, L′ from De�nition 3.3
and additionally, we divide each of these sets into 1/ε2 disjoint subsets denoted as Ui, Li,U ′i , L′i. For each
i, Ui contains ε2 · |U | rows from τ (M) and Li contains ε2 · |L| rows from τ (M). Analogously, each U ′i
contains ε2 · |U ′| rows from τ ′(M) and L′i contains ε2 · |L′| rows from τ ′(M). To avoid ambiguity, each
set Ui and Li starts with a (fractional) row of τ (M) and each set U ′i and L′i starts with a (fractional) row
of τ ′(M).

We introduce a new algorithm SWCδ for our setting. For an instance M , we consider the rows sets
U , L,U ′, L′ from the ε-trisections of M and their subsets according to De�nition 3.4. Additionally, we
select a multi-set of rows from U ′i ∩ τ ′(M) and L′i ∩ τ ′(M). We then compute the majority weighting
according to De�nition 3.5 for each column j using multisets based on the minimum number of errors.
The main idea to �nd two small row sets that represent the whole instance M . The intuitive meaning is
that we select rows from the upper part with a much lower density then the rows of the lower part. We
therefore introduce a bias such that all rows are equally important.

Definition 3.5 (Weighted majority). Let j be an integer and let Ũ and L̃ be two matrices with at least j
columns. In Ũ∗,j and L̃∗,j , we replace all zeros by –1 and then all wildcard symbols by zero. We then
compute the number ν :=

∑
i∈Ũi,j

(1 – ε)i/(ε – ε2) +
∑

i∈L̃i,j i. Then Majorityj(Ũ , L̃) = 0 if ν < 0 and
Majorityj(Ũ , L̃) = 1 if ν ≥ 0.

With this preparation, we are now ready to present the algorithm. The input has a long list of
parameters that will allow our dynamic programs later on to control the execution. The reason is that
we do not know τ and τ ′. Therefore the algorithm takes guesses of row sets as input. The values r and
r ′ are guesses of |τ (M)| and |τ ′(M)|.

28 | Chapter 3. Approximation algorithm for phasing individual genomes

Input : Row sets Ui, Li, U ′i and L′i of a good SWC-instance M , numbers r , r ′.
Optional: selection of rows Ũi, L̃i, Ũ ′i , L̃′i, see below.

Output : A pair of solution strings (σ,σ′).
1 Run the algorithm for each possible selection of the following type and keep the best outcome

(minimum number of errors); // If provided as input, skip selection.
2 For each i, select (with repetition) a multi-set Ũi of 1/δ rows from Ui and L̃i from Li;
3 For each i, select (with repetition) a multi-set Ũ ′i of 1/δ rows from U ′i and L̃′i from L′i such that

Ũ ′ ∩ Ũ = L̃′ ∩ L̃ = ∅;
// Ũ :=

⋃
i Ũi. The values Ũ ′, L̃, and L̃′ are defined analogously.

4 For each column j, set σj := Majorityj(Ũ , L̃) and σ′j := Majorityj(Ũ ′, L̃′);
5 For each row i of M , determine the value di := dist(σ,Mi,∗) – dist(σ′,Mi,∗);
6 Assign the r rows with minimal values di to σ and the remaining r ′ rows to σ′.

Algorithm 1: SWCδ
Observe that for small (i.e., constant) values of r or r ′, the algorithm SWCδ can be replaced by an

exact algorithm since we know τ (M) if and only if we know τ ′(M), and we are able to guess constantly
many rows.

Lemma 3.1. Let M be a good SWC-instance. For su�ciently large r = |τ (M)| and r ′ = |τ ′(M)|, let
Ui, Li,U ′i , L′i be a subdivision (De�nition 3.4) of an ε-trisection U , L,X ,U ′, L′,X ′ of M . Then SWCε3 is a
(1 + O(ε))-approximation algorithm for M .

The proof is based on a randomized argument using Cherno� bounds. (See Appendix A.1).
Lemma 3.1 shows that the set of solutions considered by SWCε3 contains at least one solution that

is good enough even though we do not look at X . It does not say that we �nally compute that solution,
since other solutions may have fewer errors in U ∪ L or U ′ ∪ L′. For our dynamic programs, we need
a stronger statement. We would like to be able to compute a solution for an instance and afterwards
change a fraction of assignments without losing the approximation guarantee. The next lemma is a key
ingredient of our result.

Lemma 3.2. Let M be a good SWC-instance and ε > 0 su�ciently small. Let U , L,X be an ε-trisection
for τ (M) and U ′, L′,X ′ an ε-trisection for τ ′, with subdivisions Ui, Li,U ′i , L′i according to De�nition 3.4.
Let (σ,σ′) be the solution computed by SWCε3 with r = |τ (M)|, r ′ = |τ ′(M)|. Then re-assigning the rows
σ(X) to τ (X) and σ′(X ′) to τ ′(X ′) gives a (1 + O(ε))-approximation for the instance M .

Proof. For ease of presentation, we assume that all appearing numbers are integers. It is easy to adapt
the proof by rounding fractional numbers appropriately.

We �rst analyze the computed solution string σ. Let η be the total number of errors of (τ , τ ′) within
M and let ηP be the total number of errors of (σ,σ′) within P := U ∪ L. Due to Lemma 3.1, we have
ηP ≤ (1 + O(ε))η.

We may assume r ≥ r ′ since otherwise we can simply rename the two strings τ , τ ′. Additionally,
by renaming of σ and σ′, we may assume that |σ(P) ∩ τ (P)| ≥ |σ′(P) ∩ τ (P)|. Therefore |τ (P)| ≥ n/3 and
|σ(P) ∩ τ (P)| ≥ n/6. (Recall that the matrix M has n rows and m columns. The value n/3 is a save bound
on n/2 – ε2n.)
Claim 3.1. There is a set I of m – 25η/n indices j such that σj = τj for all j ∈ I .

Proof of Claim. We concentrate on the columns of M where both strings τ and σ have at most n/12
errors within P . By counting the errors, there are at most 12η/n columns where τ has at least n/12
errors. Similarly, there are at most 12(1 + O(ε))ηP /n < 13η/n many columns where σ has at least n/12
errors. Therefore there is a set I of at least m – 25η/n columns where simultaneously both τ and σ have
less than n/12 errors each.

Now suppose that the claim was not true and there was an index j ∈ I with τj 6= σj . Then, since
|τ (P) ∩ σ(P)| ≥ n/6, either σj or τj is erroneous in at least n/12 rows of τ (P) ∩ σ(P), a contradiction. ♦

3.5. Simple instances with wildcards. | 29

Next we analyze σ′ for the columns I . Let j be a column (i.e., an index) from I . By symmetry, we
may assume σj = τj = 0. We aim to show that an optimal solution has always su�ciently many errors
to pay for wrong entries of σ′.

Let ηj be the number of errors of (τ , τ ′) in column j of M and let ηP ,j be the number of errors of
(σ,σ′) in column j of P . Let η′′j = ηj + ηP ,j .

Claim 3.2. For each column j of I , either σ′j = τ ′j or η′′j ≥ (ε – ε2)|τ ′(M)|/2.

Proof of Claim. We distinguish two cases. We �rst assume τ ′j = 0. If also σ′j = 0, we are done. We
therefore assume σ′j = 1. If there are more than |τ ′(L′)|/2 ones in column j of L′, (τ , τ ′) has more than
|τ ′(L′)|/2 errors in column j and thus ηj ≥ |τ ′(L′)|/2. Otherwise σ′(L′) has at least |τ ′(L′)|/2 zeros in
column j and therefore ηP ,j ≥ |τ ′(L′)|/2. We obtain η′′j ≥ |τ ′(L′)|/2 ≥ (ε – ε2)|τ ′(M)|/2 as claimed.

In the second case, τ ′j = 1 and we assume that σ′j = 0. If there are more than r ′/2 ones in column j of
U ′, (σ,σ′) has more than r ′/2 errors in column j and thus ηP ,j ≥ |τ ′(U ′)|/2. Otherwise τ ′(U ′) has at least
r ′/2 zeros in column j and therefore ηj ≥ |τ ′(U ′)|/2. Again, we obtain η′′j ≥ |τ ′(U ′)|/2 ≥ (1 – ε)|τ ′(M)|/2
as claimed. ♦

Since by our assumption |τ ′(X ′)| < ε2|τ ′(M)|, Claim 3.2 implies that within I , after reassigning the
rows we still have a (1 + O(ε))-approximation.

To �nish the proof, we argue that η is large enough to pay for all errors in X and X ′ outside of I .
Let ηI be the number of errors due to assigning σ to τ (X) and σ′ to τ ′(X ′) within the interval I .

Then, using the size of I stated in Claim 3.1, the total number of errors of (σ,σ′) in M is at most
(1 + O(ε))η + ηI + ε2n · 25η/n, i.e., the errors of SWCε3 within P , the errors within X and X ′ in the
columns of I , and all other entries of X ∪ X ′. The obtained approximation ratio is

((1 + O(ε))η + ηI + ε2n · 25η/n/η ≤ (η + O(ε)η + 25ε2η)/η = 1 + O(ε).
The �rst inequality uses that for some constant k, (1 + kε)η ≥ η + ηI .

3.5.1 A DP for SWC-instances.

Let M be an SWC-instance with rows {1, 2, . . . n}. We de�ne i to be the start and endi the end of string
number i of M , i.e., the column number of the matrix where the binary part starts and ends. For a
sub-matrix M ′ of M , M ′ determines the index of the �rst column of M ′ and endM′ the index of the last
column of M ′.

We next specify the parts of which the DP cells are composed. We divide the input instance into
blocks de�ned as follows.
Definition 3.6 (Block). Given a good SWC-instance M , a block B is a sub-instance determined by three
numbers 1 ≤ a < b < c ≤ n as follows. The �rst column of B is column 1 of M . The last column of B is
endb. The �rst row of B is a and the last row is n. We write UB for the rows from a to b – 1, LB for the
rows from b to c – 1, and XB for the rows from c to n.

The idea is that a block determines a trisection. We subdivide each block into chunks and select
rows from these chunks. Chunks are closely related to subdivisions of trisections, but we do not assume
the knowledge of (τ , τ ′).
Definition 3.7 (Chunk). Let B be a block determined by the numbers a, b, c. We partition B into 2/ε2

many chunks (ranges or rows). These chunks are determined by numbers

a = a1 < a2 < · · · < a1/ε2+1 = b = b1 < b2 < · · · < b1/ε2+1 = c .

The `th chunk of UB is the submatrix composed of the rows a` to a`+1 – 1 and the `th chunk of LB is
the submatrix composed of the rows b` to b`+1.
Definition 3.8 (Selection). For each block B with a set of chunks C, we consider multiset T of rows of
size 2/ε5. We require that T contains 1/ε3 rows from each chunk in C.

30 | Chapter 3. Approximation algorithm for phasing individual genomes

The selection T will take the role of Ũ and L̃ in SWCδ . With these preparations we can de�ne a DP
cell.
Definition 3.9 (DP cell). For each block B, each set of chunks C of B and each selection T of rows from
B, there is a DP cell represented by D(B,C, T). A DP cell D(B,C, T) is a predecessor of D(B̂, Ĉ, T̂) if the
following conditions hold.
• â = b and b̂ = c, where b, c, â, b̂ are the numbers from De�nition 3.6.
• The chunks from C between b and c are exactly the chunks from Ĉ between â to b̂.
• For each pair of chunks from T × T̂ with the same range of rows, the selection T matches the selection
T̂ .

The value of D(B,C, T) will be an approximation of the minimum number of errors that we can
have in M until the last column of B.

We now describe the dynamic program for a pair of solution strings (σ,σ′) by using joint DP cells
(ζ , ζ ′) (see also Fig. 3.4).

a

b
c
d

b′
b

c′

d′c

Figure 3.4: Example for a pair of strings with b′ > b. The blue lines and dashed blue ones represent sets
T and T ′, and T ∩ T ′ = ∅.

For σ′, we use the same notation as in De�nitions 3.6, 3.7 and 3.8, but we use the symbol prime (·′)
for all occurring variables.
Definition 3.10 (DP cell for a pair). We de�ne joint DP cell (ζ , ζ ′) = (D(B,C, T),D′(B′,C′, T ′)) with the
two single cells de�ned as in De�nition 3.9. We require that
• the rows of C and C′ where chunks start are pairwise distinct, and
• T ∩ T ′ = ∅.

Definition 3.11 (Predecessor of a joint DP cell). A DP cell (ζ̂ , ζ̂ ′) is a predecessor of (ζ , ζ ′) if (i) ζ̂ = ζ
and ζ̂ ′ is a predecessor of ζ ′; or (ii) ζ̂ is a predecessor of ζ and ζ̂ ′ = ζ ′.

Algorithm (SWC
σ,σ′

). The general idea of the algorithm is to guess trisections. Suppose we
initially chose blocks B, B′ that are the left-most trisections for τ and τ ′. Then we obtain an approximation
of the pre�x of (τ , τ ′) restricted to B,B′ (whichever ends �rst) by sampling rows of UB,LB,UB′ , and LB′ .
The sampled rows for LB and LB′ provide the interface to the next step. Suppose LB′ starts at an earlier
row than LB. Then we guess the trisection of M for τ restricted to the rows of LB′ and XB′ . Let B′′ be
that block of our algorithm. Then UB′′ = LB and we sample rows of LB′′ in order to approximate a new
in�x of τ . For a simpli�ed version of the DP without the complications due to having two solution
strings, we refer to Appendix A.2.

We globally guess two numbers r and r ′ that represent |τ (M)| and |τ ′(M)|. We split the processing
into an initialization phase and an update phase. In the initialization phase, we assign values to each
DP cell (ζ , ζ ′) based on SWCε3 with the following parameters. We obtain Ui, Li from the chunks C and
U ′i , L′i from the chunks C′. In the execution of SWCε3 , we use the selections T , T ′ instead of trying all
possible selections, i.e., T and T ′ determine all Ũi, L̃i, Ũ ′i , and L̃′i in the algorithm. Let B̃ be the matrix
with rows from 1 to the min{c – 1, c′ – 1} and columns one to min{endB, endB′ }. The solution of the

3.5. Simple instances with wildcards. | 31

computation is a pair of strings (σζ ,ζ′ ,σ′ζ ,ζ′), the pre�xes of the two computed strings until endB̃. The
value of (ζ , ζ ′) is costB̃(σζ ,ζ′ ,σ′ζ ,ζ′).

In the update phase, we compute the value and the pair of strings of the DP cell (ζ , ζ ′) as follows.
We inductively assume that all DP cells for predecessors of (ζ , ζ ′) have been updated already. We try all
predecessor pairs of DP cells and keep the one that gives the best result (see also Appendix A.2). Let
(ζ , ζ ′) be a predecessor of (ζ , ζ ′). By symmetry, we assume without loss of generality that b′ < b. There
are two cases how the two pairs interact. The �rst case is ζ = ζ . We run SWCε3 on the columns end

B
′ + 1

to endB with the parameters from (ζ , ζ ′) (see initialization). To obtain the full solution, we append the
computed string for B′ to the string σ′

ζ ,ζ′ (which is one of the solution strings of the predecessor pair).

Let B̃ be the matrix with rows from 1 to the min{c – 1, c′ – 1} and columns one to endB′ . The solution of
the computation is a pair of strings (σζ ,ζ′ ,σ′ζ ,ζ′), the pre�xes of the two computed strings from column
one to endB̃. The potential new value of (ζ , ζ ′) is costB̃(σζ ,ζ′ ,σ′ζ ,ζ′). We replace the stored solution with
the potential new solution if the cost has decreased.

The second case is ζ ′ = ζ . This case is the crux of the joint DP, since we have a “switch” of the role
of σ and σ′.

We run SWCε3 on the columns endB to endB′ with the parameters from (ζ , ζ ′) (see initialization).
To obtain the full solution, we then append the computed string for B to the string σζ ,ζ′ (which is one of
the solution strings of the predecessor pair). Let B̃ be the matrix with rows from 1 to the min{c – 1, c′ – 1}
and columns one to endB′ . The solution of the computation is a pair of strings (σζ ,ζ′ ,σ′ζ ,ζ′), the pre�xes
of the two computed strings until endB̃′ . The potential new value of (ζ , ζ ′) is costB̃(σζ ,ζ′ ,σ′ζ ,ζ′). We
replace the stored solution with the potential new solution if the cost has decreased.

For the last strings, we additionally consider special cells that are de�ned as before, but with c = n
or c′ = n. Intuitively, we use these cells when only at most 1/ε4 rows of τ (M) or τ ′(M) are left. For pairs
of cells containing such ζ or ζ ′, our computation considers the optimal solution within the computation
instead of SWCε3 .

Theorem 3.3. The algorithm SWCσ,σ′
is a PTAS for SWC-instances.

Proof. To see that the DP works in polynomial time, we observe that instead of simple DP cells in
Lemma A.1 here we consider pairs of DP cells. Therefore the number of cells is squared and thus stays
polynomial. During the recursive construction of the solution, we compare each cell to be computed
with one compatible cell at a time. Therefore the construction of the solution also takes only polynomial
time. As in Lemma A.1, the computed solution is vacuously feasible.

We continue with analyzing the quality of the computed solution. Let (τ , τ ′) be an optimal solution.
We set r = |τ (M)| and r ′ := |τ ′(M)|. By renaming the two strings we may assume that the last row of the
�rst (1 – ε2)r rows of τ (M) is below the �rst row of the last ε2r ′ rows of τ ′(M).

We consider DP cells similar to the proof of Lemma A.1. Starting from the top-most row of τ (M),
for each i ≥ 0, the ith range Yi contains the next (ε2i – ε2i+2)r rows of τ (M). We assign the rows not in
τ (M) such that the �rst row of each Yi is contained in τ (M). Then we choose Yi such that all rows of M
until Yi+1 are contained in Yi.

We consider the DP cells ζi for each i with the parameters Bi, Ci, and Ti. The block B0 contains the
rows of Y0 and Y1, and the columns one to the end of the �rst row of τ (B0). For each i > 0, block Bi
contains the rows of Yi and Yi+1, and the columns after those of Bi–1 to the end of the �rst row of Bi.

If only a constant number of rows of σ(M) are left, we can compute the partial solutions optimally
and there are DP cells for exactly this purpose: there is a DP cell ζi such that the last 2/ε5 rows of τ (M)
are located between ai and ci and Yi contains exactly these rows. As before, to keep a clean notation, in
the following we implicitly assume that cells with constantly many rows of σ(M) are handled separately.

The chunks of Ci are the ranges that equally distribute τ (B). The selection Ti is the best possible
selection as speci�ed in SWCε3 . Analogously we de�ne B′i, C′i , and T ′i for ζ ′i .

32 | Chapter 3. Approximation algorithm for phasing individual genomes

We construct a solution SOL and inductively show that the value of each considered cell (ζi, ζ ′j) and
(ζ ′i , ζj) is at most a factor (1 + O(ε)) larger than the number of errors of an optimal solution restricted to
the considered pre�x and the considered rows. Afterwards we show that our algorithm computes a
solution at least as good as SOL.

We �rst consider the DP cell (ζ0, ζ ′0). Recall that we assumed w.l.o.g. that i′0 > i0. We apply Lemma 3.2
with the parameters of the pair of cells to obtain the pre�xes σζ0 and σ′

ζ′
0
. The total number of errors

within the columns of M at the pre�xes is therefore at most a factor (1 + O(ε)) larger than in (τ , τ ′).
There are two possibilities for the subsequent steps with i ≥ 0.

We �rst assume that b′i+1 > bi and consider the cell (ζi, ζ ′i+1). Then, similar to the proof of Lemma A.1,
we apply SWCε3 to obtain the su�x of (σζi ,ζ′

i+1
,σ′ζi ,ζ′

i+1
) after endBi′ . By Lemma 3.2, considering the

su�x alone we have at most a factor (1 + O(ε)) more errors within these columns than (τ , τ ′).
Since ζi is a predecessor of ζi+1, all newly assigned rows were not considered in (ζi, ζ ′i). Note that ζi

did not change. Even though we looked at the same chunks, we used the same selections and therefore
did not change σζi ,ζ′

i
.

The second possibility is that b′i+1 < bi and we consider the cell (ζi+1, ζ ′i). The instance is shown
in Fig. 3.5. We then apply SWCε3 to obtain the su�x of (σζi+1,ζ′

i
,σ′ζi+1,ζ′

i
) after endBi . We obtain a

(1 + O(ε))-approximation analogous to the case b′i+1 > bi.

a0

b0
b1
b2

a′0

b′0 b′1

b′2

Figure 3.5: Blocks of an instance M in the DP for a pair of solution strings. The blue and gray lines
represent σ and σ′ respectively from �rst two iterations of DP. The sketch shows the switch example in
the second iteration because b′1 < b0.

3.6 Subinterval-free instances.

We show how to generalize the results of the previous section in order to handle instances where no
interval of a string s is a proper subinterval of a string s′ and thus show Theorem 3.2. To this end, we
�rst show how to handle the rooted version of sub-interval free instances, where there is one column j
such that each string of the instance crosses j.

We order the rows of a subinterval-free instance M from top to bottom such that for each pair
i, i′ of rows with the binary part of i starting on the left of the binary part of i′, i is above i′. In other
words, the binary strings are ordered from top to bottom with increasing starting position (i.e., column).
Observe that the sub-string freeness property ensures that the last binary entry of i′ is not on the left of
the last binary entry of i.

3.6. Subinterval-free instances. | 33

Lemma 3.3. Let M be a Gapless-MEC instance such that no string is the substring of another string.
Furthermore we assume that there is a column j of M such that each string of the instance crosses j.
Then there is a PTAS for M .

Proof. Let s and t be the �rst and the last row of M . The column j determines a block W of M that spans
all rows and the columns from the �rst binary entry of t, jt , to the last binary entry of s, js . In particular,
W has only binary entries.

The right hand side of jt (the submatrix of M composed of all columns with index at least jt) forms
a Gapless-MEC instance as required in Theorem 3.3. The submatrix of M that contains all rows of M
and columns 1 to js forms a Gapless-MEC instance as required in Theorem 3.3 if we invert both the
order of the rows and the columns. Instead of changing the ordering of the matrix, we can run the
algorithm from right to left and from bottom to top.

We would like to apply Theorem 3.3 independently to the two speci�ed sub-problems. To this end
we de�ne a special set of DP cells γ with cells (ζW , ζ ′W) ∈ γ. The content of these cells is similar to the
regular cells, but it contains the information for both sides simultaneously. More precisely, a cell ζW
has the following entrees (see also Figures 3.6 and 3.7).

(a) Three consecutive ranges of rows determined by numbers 1 ≤ ←−c <
←−
b <
−→
b < −→c ≤ n. These

numbers determine an upper range RU from row
←−
b + 1 to row

−→
b – 1 and the following further ranges.

A left lower range←−R L from row
←−
b to row←−c + 1, as well as a right lower range −→R L from row

−→
b to

row −→c – 1. (b) A separation into chunks C. There are 3/ε2 chunks in C: 1/ε2 for RU , 1/ε2 for −→R L, and
1/ε2 for←−R L. (c) A selection T of 3/ε5 rows (with repetition): 1/ε2 for each chunk.

We analogously obtain ζ ′W with the same variables but marked with the symbol prime. The rows
selected in ζ ′W are required to be disjoint from those in ζW , i.e., T ∩ T ′ = ∅. Also the boundaries of
chunks in ζW and ζ ′W have to be disjoint.

Definition 3.12 (Center cells). The cells (ζW , ζ ′W) ∈ γ are called center cells.

The reason is that they take a special role as common “centers” of two separate runs of the DP: one
run to the left and one run to the right. Observe that for each feasible entry of (ζW , ζ ′W), we can apply
Theorem 3.3 independently to the left and to the right, since the DP cells (ζW , ζ ′W) takes the role of
the left-most cell in Theorem 3.3. The strings only overlap between the columns jt , js where we obtain
an instance of Binary-MEC, which in particular is a good SWC-instance. Note that for each column ĵ
on the right hand side of jt , all rows of W located above

←−
b with binary entry at column ĵ have also

a binary entry at all rows between
←−
b and

−→
b , due to the subinterval-freeness. The properties of ĵ on

the left hand side of js are analogous. We will choose
←−
b and

−→
b in such a way that by Lemma 3.2, it is

therefore su�cient to consider the rows between
←−
b and

−→
b in order to handle all rows crossing j.

None of the remaining steps from Section 3.5.1 interfere with each other. We therefore run the
following DP . We �rst compute all center cells (ζW , ζ ′W) ∈ γ. For each cell, we store an in�x of σ and
an in�x of σ′. The in�x of σ starts at jt and ends at js. The entries of the two strings are those that
we obtain from SWCε3 with the parameters of (ζW , ζ ′W). Each cell (ζW , ζ ′W) forms a starting point for
Algorithm SWCσ,σ′

, applied independently towards the left hand side and the right hand side.
To see that the DP yields a good enough approximation, again we compare against an optimal

solution (τ , τ ′). Clearly we get a (1 + O(ε))-approximation for the in�x between column jt and js if for a
DP cell (ζW , ζ ′W), by Lemma 3.2. Note that the computed solution does not consider the rows above←−c
or below −→c . Since the further processing respects our choice between←−c and −→c , the claim follows
from Theorem 3.3.

General sub-interval-free instances We use Lemma 3.3 to handle general sub-interval free
instances. Instead of a single column j crossed by all strings, we determine a sequence q = (q1, q2, . . .)
of columns with the property that each string crosses exactly one of them. Let s1 be the �rst string in
M . Then we choose q1 to be the column of the last entry of s1.

34 | Chapter 3. Approximation algorithm for phasing individual genomes

We recursively specify the remaining columns. For a given j such that we know qj , let si be the last
(i.e., bottom-most) string that crosses qj . Then we choose qj+1 to be the last (i.e., rightmost) column of
string si+1. For each qi in the sequence q, we determine a block Wi analogous to W in Lemma 3.3.

A simple induction shows that by the no-substring property and the chosen order of strings, each
string crosses at least one column of q and none of them crosses more than one. In particular, for each j,
the solution on the left hand side of qj depends on rows of M disjoint from the rows that determine the
solution on the right hand side of qj+1.

In order to combine the solution on the right hand side of qj with the solution on the left hand side
of qj+1, we introduce a notion of dominance. Let us consider two arbitrary submatrices V1 and V2 of M .
Definition 3.13 (Dominance). We say that V1 τ -dominates V2 if for each column c that is in both V1
and V2, either at least one of the two matrices has no binary entries or the number of binary entries in
τ (V1) is at least 1/ε2 times the number in τ (V2). We say that V1 is τ -dominant over V2 for a column c, if
the one column submatrix of V1 determined by c dominates V2.

We analogously de�ne τ ′-dominance.

Consider a submatrix −→V of M that only contains rows that cross qi and a submatrix←−V of M that
only contains rows that cross qi+1. We observe that if −→V is τ -dominant over←−V for some column c, it is
also τ -dominant for all columns on the left hand side of c: until qi is reached, when moving to the left
the number of binary entries of τ (−→V) increases and the number of binary entries of τ (←−V) decreases.
Analogously, if←−V is τ -dominant over −→V for some column c, it is also τ -dominant for all columns on
the right hand side of c.

We therefore have a possibly empty interval I without τ -dominance such that the columns of −→V on
the left hand side of I are τ -dominant and the columns of←−V on the right hand side of I are τ -dominant.
(See also Figures 3.6 and 3.7.)

q0

W

q1

I

W

Figure 3.6: Blocks represented by ranges shown in red on an instance M and the blue lines are the
columns, I and W shows the empty interval and central region respectively.

q0

W

q1

I

W

Figure 3.7: This sketch shows a non-dominance example in region I .

Definition 3.14 (Dominance region). The dominance region of −→V with respect to ←−V is the set of
columns where −→V is dominant over←−V , and vice versa.

Within the dominance region, our old DP can simply compute solutions without considering

3.6. Subinterval-free instances. | 35

interferences: the dominated set of rows is small enough to be ignored, applying Lemma 3.2.
Within the interval I , the DP cells on both sides of I have to “cooperate.” We obtain a Binary-MEC

block in the middle with additional rows on the top and bottom. This sub-instance can be solved directly.
We use DP cells similar to Lemma 3.3, but for more than one center. For each j, we consider column

qj ∈ q and a collection κj of DP cells (ζqj , ζ ′qj) ∈ κj . Each cell (ζqj , ζ ′qj) is a center cell with center qj . We
refer to the cells in κj as the jth center cells.

Additionally, for each center cell we also store the dominance information on the left and right of
qj , i.e., we store the intervals←−I ,←−I ′ between qj–1 and qj and the intervals −→I ,−→I ′ between qj and qj+1
where no cell dominates another, once with respect to τ and once with respect to τ ′.

Formally this means to extend the cells by four numbers that store the start and end points four
intervals←−I ,−→I ′,−→I , and −→I ′.

For each of the four intervals we store additional information. The four intervals only di�er in
whether we consider σ or σ′. The left and right version are symmetric. Therefore it is su�cient
to analyze the details for a generic I ∈ ←−I ,−→I ′,−→I ,−→I ′. The interval I determines a block B that we
subdivide into chunks C and we select rows T . There are several di�erences to previous trisections,
subdivisions and selections.

We divide the rows of block B into four regions: a middle part U↑ that has only binary entries (a
Binary-MEC sub-instance) such that each row crosses qj , a middle part U↓ that has only binary entries
such that each row crosses qj+1, the rows U↑↑ above U↑, and the rows U↓↓ below U↓. We choose the
two middle parts such that the number of rows is maximal.

It is not su�cient to use a globally guessed r . Instead, we add four numbers r↑↑, r↑, r↓, r↓↓ to the
DP cell in order to guess and store the values τ (U↑), τ (U↓), τ (U↑↑), and τ (U↓↓).

Due to the non-dominance, we know that for each column of B, at least an ε2-fraction of rows from
τ (B) are located in the middle part M . Observe that there is no region that takes the role of X in a
trisection. We obtain an instance similar to a good SWC-instance, but it has two non-binary regions
and the binary region only has an ε2 fraction of rows instead of an ε-fraction. To be able to still apply
Lemma 3.2, we subdivide each of the three regions into chunks and increase the number of chunks
per region. The number of chunks depends on the four versions of r . If our chunks do not contain
more than ε4r rows of τ (M), the lemma is applicable. We guess a number k and set the size of chunks
with root qj to contain ε4kr↑↑ rows of τ (M) in U↑ and ε4kr↑↑ in M for the rows with root qj . There
may be an additional chunk with fewer rows, if the numbers don’t match. We specify the remaining
chunks symmetrically, based on a number guessed for root qj+1. The choice of k will become clear in
the description of the DP.

The increased precision also requires that we increase the precision of the entire remaining DP: we
replace each selection of 1/ε2 chunks into selections of 1/ε4 chunks. Clearly, the increased precision
cannot decrease the quality of the computed solution.

The idea of the DP is that for each qj , we run the rooted DP as an inner DP that determines solutions
for their dominance regions that �t to solutions in the consecutive non-dominance regions. The non-
dominance regions then form interfaces that we can use to compute an overall solution from left to
right with an outer DP.

The inner DP works as follows. For each cell (ζq1 , ζ ′q1) ∈ κ1, we compute the pre�xes of σ,σ′ until
q1 exactly as in Lemma 3.3. We start the DP to the right hand side also the same way as before, but
with the di�erence that as soon as we reach the row ranges for −→I or −→I ′, we use the choices already
stored in (ζq1 , ζ ′q1). We have to ensure that our choices within the DP do not contradict the choices
of (ζq1 , ζ ′q1) ∈ κ1. If (ζq1,i, ζ ′q1,i) is the cell of the inner DP that overlaps with −→I �rst, we require that
among the common rows, −→B contains the remaining rows from τ (M) restricted to the rows of the inner
DP and does not contradict Bi. Each chunk of Ci contains εk |τ (M)| rows of τ (M), for some integer k
(the same k that we guessed for the non-domination region). We have to ensure that the chunks of −→U ↑
and −→M ↑ match the chunks and the chunks of −→C i. Furthermore, we have to check that the selection of
rows matches.

36 | Chapter 3. Approximation algorithm for phasing individual genomes

For all j > 1 continue in the same manner starting from (ζqj , ζ ′qj) and handle the processing of←−I as
we did before with −→I . Observe that we can see the processing of (ζq1 , ζ ′q1) as a special case with empty
interval←−I , and to obtain the su�x of σ,σ′, the last interval −→I can be handled as empty interval.

The global DP proceeds from left to right. For each qj , it considers all cells (ζqj , ζ ′qj). The value of
(ζqj , ζ ′qj) is its inner DP value plus the best value achievable on the left hand side with the same choice
of parameters for the left non-domination region. Among all cells from κj with the same parameters
for the right non-domination region, the global DP only keeps the best value (the smallest number of
errors).

The above DP is a PTAS for M. Let (τ , τ ′) be an optimal solution. For each separate qj ∈ q, we
run the same DP as in Lemma 3.3 and thus we obtain a (1 + O(ε))-approximation. For the intervals←−I
and −→I , there is a choice of parameters that matches the choices analyzed in Lemma 3.3. We therefore
only have to argue that the transition between sub-instances works correctly. We consider the dominant
regions determined by (τ , τ ′) and consider the DP cells that guess these regions correctly from left
to right. Let I be one of the guessed non-dominant regions. We obtain the solution for I by applying
SWCε3 , which gives a (1 + O(ε)) approximation. The transition between dominant and non-dominant
regions uses that in both cases we create the solution strings from the same parameters in SWCε3 and
therefore creates the solution from the same instance strings. This �nishes the proof of Theorem 3.2.

3.7 A QPTAS for general instances.

To solve the general instances, the main observation is that we divide the rows into their at most log2(m)
length classes Λi, and the ith length class Λi is the set of all strings of length ` with ` ∈ (m/2i+1,m/2i].
First we present an algorithm to solve each length class Λi separately by constructing their corresponding
columns.

3.7.1 Length classes.

We show how we can handle length classes of strings. To this end, let us assume w.l.o.g. that m (i.e., the
number of columns in M) is a power of 2. Then for each i ≥ 0, the ith length class Λi is the set of all
strings of length ` with ` ∈ (m/2i+1,m/2i]. We observe the following known property of length classes.

Lemma 3.4. For each i ≥ 0 there is a set qi = {qi,1, qi,2, . . . } of columns such that (a) each string in Λi
crosses at least one column from qi and (b) no string from Λi crosses more than two columns from qi.
Furthermore, we can choose the sets such that qi ⊆ qi+1.

Proof. At level i, for each k with 1 ≤ k ≤ 2i+1 we select the column with index k ·m/2i+1. We observe
that the distance between two consecutive columns from qi is m/2i+1, which matches the shortest length
of strings in Λi: if a minimal string starts right after a column of qi, its last entry will cross the next
column of qi.

Since strings do not start before column 1 and column m is contained in each qi, claim (a) follows.
To see (b), observe that a maximum length string of Λi is at most m/2i. Let j be an index. The number
of columns from qi,j to the column right before qi,j+1 and from qi,j+1 to right before qi+2 are exactly
m/2i+1 . If the string starts directly at a column qi,j from qi, it would cross column qi,j+1 and end right
before column qi,j+2.

The last claimed property follows directly from the construction of the sets qi. (See also Fig. 3.2).

For each i, we now separate Λi into two sub-instances. One sub-instance Λ′i is formed by those
rows from Λi that only cross one column of qi and the second sub-instance Λ′′i is formed by those rows
that cross exactly two columns of Λi.

3.7. A QPTAS for general instances. | 37

Definition 3.15 (DP for a length class Λi). For each index j let ξ′j be the sets of DP cells for Λ′i and for the
odd indices j let ξ′′j be the set of cells for Λ′′i . We de�ne a super-cell that starts in j, (Z ′j ,Z ′′j ,Z ′j+1,Z ′′j+2) ∈
ξ′j × ξ′′j × ξ′j+1 × ξ′′j+2 and the super-cell that ends in j, (Z ′j–1,Z ′′j–2,Z ′j ,Z ′′j) ∈ ξ′j–1 × ξ′′j–2 × ξ′j × ξ′′j .
Lemma 3.5. There is a QPTAS for Gapless-MEC if all strings are in the same class Λi.

To prove it, we consider DP-cells according to De�nition 3.15 and combine these cells from two
consecutive columns such that they are compatible.

Proof. To combine the PTAS for Λ′i and Λ′′i , we proceed from left to right. For each index j let ξ′j be the
sets of DP cells for Λ′i and for the odd indices j let ξ′′j be the set of cells for Λ′′i . For each column c before
qi,1, each pair of cells (Z ,Z ′) ∈ ξ′1 × ξ′′1 determines two subproblems for which we compute the two
separate solutions. Let B(Z ,Z ′, z) be the set of all boxes (sets of rows) for σ considered in the sub-cells
of (Z ,Z ′) at column z and let B′(Z ,Z ′, z) be the set of all boxes (sets of rows) for σ′ considered in the
sub-cells of (Z ,Z ′) at column z.

We now extend the DP as follows. We compose the solution from left to right, starting with the
pre�x of (σ,σ′) before qi,1 and then, step by step, we �ll the intervals between qi,j and qi,j+1 for j ≥ 1.
The starting interval can be seen as the interval between a dummy-column q0 and q1. For each j, let
us analyze its interval. If j is odd, we simultaneously consider the cells ξ′j , ξ′j+1, ξ′′j , ξ′′j+2. Otherwise, we
simultaneously consider the cells ξ′j , ξ′j+1, ξ′′j–1, ξ′′j+1.

For each column c with index ` in the interval, in both cases the values of the DP cells reveal all
SWCε3 instances at c that we would have to solve in order to obtain solutions for Λ′i and Λ′′i separately.
Instead of solving these instances separately, we solve them simultaneously.

Let Ĉ1, Ĉ′1 and Ĉ2, Ĉ′2 be the chunks of the four DP cells at position j. In order to determine the
value σj , we have to combine Ĉ1 with Ĉ2 and take care of the di�erent densities of rows. To this end,
we generalize the function Majorityj .
Definition 3.16. Generalized Majority For a single chunk c, let r(c) be the number of rows in c that are
guessed to be in τ (M) and t(c) the number of selected rows. As in De�nition 3.5, we replace all values
zero by –1. Then, for the given set of chunks C with selection T , we compute

ρ :=
∑
c∈C

∑
i∈T : i∈c

(r(c) ·Mi,j) .

We set σj = 1 if the outcome is at least zero and 0 otherwise. The de�nition is analogous for σ′j .
By replacing the majority function by the generalized majority function of De�nition 3.16 in the proof

of Lemma 3.1, we obtain a (1 + O(ε))-approximation also if we consider di�erent cells simultaneously.
Since we consider all cells for the entire interval simultaneously, one of the choices is at least as

good as sampling uniformly at random with knowledge of τ (M) and τ ′(M). We therefore obtain a
solution for the interval with at most a (1 + O(ε)) factor of errors compared to (τ , τ ′)

Finally we have to join the results that we obtain for the intervals. Observe that for each pair
of cells (Z ′′j ,Z ′′j+2) ∈ ξ′′j × ξ′′j+2 there are two consecutive pairs of cells (Z ′j ,Z ′j+1) ∈ ξ′j × ξ′j+1 and
(Z ′j+1,Z ′j+2) ∈ ξ′j+1 × ξ′j+2. For a quadruple of cells (Z ′j ,Z ′′j ,Z ′j+1,Z ′′j+2) we consider each quadruple on the
left hand side ending with the matching cells Z ′j ,Z ′′j . Among these, we take the one with fewest errors.
To obtain the value of the new quadruple, we add the errors in the interval (qi,jqi,j+1] to the value of
the selected predecessor quadruple. To compute the value (Z ′j+1,Z ′′j ,Z ′j+2,Z ′′j+2), we consider all cells
(Z ′j ,Z ′′j ,Z ′j+1,Z ′′j+2), i.e., the cells that have the same Z ′′j ,Z ′′j+1,Z ′j+1 for all choices of Z ′j . We add the errors
between qi,j+1 and qi,j+2 to the smallest value found among the predecessors.

The approximation ratio follows from Lemma 3.6 and the quasi-polynomial running time from the
fact that we only consider constantly many super-cells simultaneously.

Lemma 3.6. There is a QPTAS for Gapless-MEC if all strings are in the same class Λ′i or Λ′′i .

38 | Chapter 3. Approximation algorithm for phasing individual genomes

Proof. We �rst note that by skipping all qi,j with even j, the strings in Λ′′i cross exactly one column of
the set. It is therefore su�cient to handle Λ′i.

For each column qi,j , we create a set of DP cells (as de�ned in De�nition 3.10) that stores information
about a center region as de�ned in De�nition 3.12 and about non-domination intervals as de�ned in
De�nition 3.13, exactly as in the proof of Theorem 3.2. The next insight is that we can order the rows
crossing column c at the left and right side as de�ned below.

Left row ordering We �rst order the rows with increasing starting positions of strings as in
Lemma 3.3. At the left side of column c , we obtain a similar instance as in Lemma 3.3.

Right row ordering Afterwards we reorder the rows in order to handle the right hand side of
column c. More precisely, we order the strings in increasing order based on the end of strings ei. The
obtained structure corresponds to the right hand side of column c is similar to the instance handled in
Lemma 3.3.

Instead of running the DP of Lemma 3.3, we guess the sequence of blocks. An optimal solution (τ , τ ′)
determines a sequence of blocks←−A 1,←−A 2, . . . ,←−A k such that |τ (←−A i+1)| = ε2|τ (←−A i)|. Instead of moving
from←−A 1 to←−A k using a DP, we directly guess the strings for all k sub-matrices simultaneously. We do
the same with the chunks and row selections. Additionally, we guess the sequence of sub-matrices
←−
A ′1,←−A ′2, . . . ,←−A ′k′ simultaneously such that |τ ′(←−A ′i+1)| = ε2|τ ′(←−A ′i)|. We obtain a combined DP cell

←−
ζ

for k + k′ sub-matrices.
Again we form the sub-matrices −→A 1,−→A 2, . . . ,−→A k and −→A ′1,−→A ′2, . . . ,−→A ′k′ analogous to the left hand

side and guess the selected strings of all matrices simultaneously such that |τ (−→A i+1)| = ε2|τ (−→A i)| and
|τ ′(−→A ′i+1)| = ε2|τ ′(−→A ′i)|. We obtain a combined DP cell

−→
ζ for all k + k′ sub-matrices on the right hand

side.
Definition 3.17 (DP cell for sub-class of a length class Λi). For each qi,j , let ξj be the set of super-cells
(
←−
ζ ,
←−
ζ ′ ,
−→
ζ ,
−→
ζ ′), but with the additional center and non-domination information of Lemma 3.3.

For each qi,j , let ξj be the set of super-cells based on De�nition 3.17. We then design a DP that moves
from left to right through the columns in qi. The DP and its analysis now follow from the proof of
Theorem 3.2, but we consider the left hand side and right hand side of each cell from ξj simultaneously.

To analyze the running time, we observe that k and k′ are at most O(log1/ε(n)) since for each i we
assume that |τ (←−A i+1)| = ε|τ (←−A i)| and |τ ′(←−A ′i+1)| = ε|τ ′(←−A ′i)|. The number of instances −→A i and −→A ′i are
also at most O(log1/ε(n)) each, for the same reason.

We thus obtain super-cells that are combined of logarithmically many sub-cells with polynomial
complexity. We obtain an overall super-cell which is a quadruple (

←−
ζ ,
←−
ζ ′,
−→
ζ ,
−→
ζ ′), and we have to

distinguish
(
nO(1))4 log1/ε(n) = nO(log n) di�erent cells, which is quasi-polynomial2.

We now analyze the performance guarantee. For each column j, we obtain the values σj and σ′j in
almost the same way as we do in Lemma 3.3, but with the di�erence that we require consistency with
all other rows sampled. For an optimal solution (τ , τ ′), it is su�cient to only consider choices of rows
such that all rows selected for σ are in τ (M) and all rows selected for σ′ are in τ ′(M). Such a selection
of rows ensures consistency. Note that we could apply the proof of Lemma 3.3 from the root to the
left hand side and to the right hand side independently, if we knew τ (M) and τ ′(M), just by avoiding
wrong assignments. The simultaneous selection of all relevant rows ensures that we consider at least
one selection of rows that satis�es these strong conditions. This solution is a (1 + ε) approximation by
the proof of Lemma 3.3, and our DP computes a solution of at least the same quality since we consider
the overall number of errors with respect to all sampled rows.

Combining the two sub-classes gives a QPTAS for an entire length class.
2We assume that n and m are polynomially related. This is justi�ed because there are n ·m entries of M and therefore

measuring in m instead of n would also give a quasi-polynomial complexity.

3.7. A QPTAS for general instances. | 39

3.7.2 The general QPTAS.

Finally we combine our insights to an algorithm for general instances by combining di�erent length
classes. (See also Fig. 3.1.)

For di�erent length classes Λi, we construct their corresponding columns as explained in the
previous section. The main idea is that for each column j, we only have to consider those quadruple
of super-cells according to De�nition 3.15 that cross j from all the length classes simultaneously. We
therefore consider at most O(log(n)) quadruples of super-cells simultaneously. In the dynamic program,
we consider a joint quadruple of super-cells from all the length classes. Then the overall complexity of
a joint cell is quasi-polynomial: the number of di�erent cells is

(
nO(log n))O(log n) = nO(log2 n).

Let Qi,j be the set of quadruples of length class i crossing column j such that the strings are ordered
from shortest length class to the longest. For each length class i, a quadruple q ∈ Qi,j is the set of rows
starting at j, cross j, or end in j. If j is the index of qi,`, the quadruple q starts in j if it is formed by
cells (Z ′`,Z

′′
` ,Z ′`+1,Z ′′`+2) and ends in j if it is formed by (Z ′`–1,Z ′′`–2,Z ′`,Z

′′
`) (see De�nition 3.15). If j lies

between qi,` and qi,`+1, j crosses those quadruples that contain Z ′` and Z ′`+1. If non of the cases are true,
we do not consider q in the cells for column j.

Let us consider a log(n) vector of quadruples v, with one quadruple Qi,j for each i and, consider
quadruples starting at, ending at, or crossing column j for length class i. We require that if for some i,
the quadruple q ∈ Qi,j ends at j, then for all the length classes Λk with k > i the same condition holds
(with index larger than i). This also implies that if for some i, the quadruple of length class i starts at
j, then the same also holds for all quadruples of shorter length classes (with index larger than i). In
particular, in order to be able to combine neighboring vectors of quadruples, we do not allow to mix
starting and ending quadruples. Let φ be the set of all log(n) vectors of tuples as described above (with
one tuple of each length class). The tuple for each length class is de�ned as in Lemma 3.5 and the DP
for general instances follows the ideas of Lemma 3.5: We move from left to right column by column. In
the initialization step, the joint DP cell is initialized based on Algorithm 1 using φ. We guess the blocks,
chunks and selections from each length class and consider them jointly in a DP cell.

For column j, let us consider a vector v ∈ φ. We distinguish whether v has starting or ending
quadruples. (One of the two cases must apply due to the shortest length class.) For a v ∈ φ with starting
quadruples, let d be the smallest number such that there is a quadruple of length class d starting at j.
To compute v we consider all v′ ∈ φ with the following properties. (a) v′ has the same quadruples for
all length classes d′ < d and (b) for d′ ≥ d, the right hand sides of the quadruples of length class d′ in
v′ compatible the left hand sides of the quadruples of v. The super-cells from the left and right hand
side are compatible if the intersecting strings from the left and right hand side are assigned to the same
types of solution string σ or σ′.

For a v ∈ φ with ending quadruples, let d be the smallest number such that there is a quadruple
of length class d ending at j – 1. (In the very �rst column of the instance, we do not need this value.)
To compute v we consider all v′ ∈ φ with the following properties. (a) v′ has the same quadruples for
all length classes d′ < d and (b) for d′ ≥ d, the right hand sides of the quadruples of length class d′ in
v′ match the left hand sides of the quadruples of v in column j – 1. Then the value of v is the sum of
the minimum value over all such v′ and the number of errors in column j obtained by applying SWCε3

exactly as in the proof of Lemma 3.5.

The approximation ratio follows by arguing that the expected number of errors at each column is
at most (1 + O(ε)) of OPT (see Lemma 3.5). This �nishes the proof of Theorem 3.1.

40 | Chapter 3. Approximation algorithm for phasing individual genomes

3.8 Discussion

The approximation status of Gapless-MEC instances has been open for 10 years (Cilibrasi et al.,
2007). We have studied the problem by unraveling its structures and identifying cases where the
PTAS algorithm for Binary-MEC can not be directly applied for Gapless-MEC. Based on the ideas of
the algorithm for Binary-MEC, we build our own dynamic programming algorithm, by additionally
including some deep insights. We have proved that the dynamic programming algorithm is in QPTAS.
Proving that the Gapless-MEC in QPTAS rules out the possibility of this problem to be in APX-hard
and also provides a hint that this problem can exhibit a PTAS.

This chapter has a preprint (Garg and Mömke, 2018), which has a co-author as T. Mömke.
The �gures in this chapter are taken from this preprint. I co-invented this approximation
algorithm with T. Mömke and co-wrote the paper with him.

Chapter 4

Parameterized algorithm for phasing individual

genomes

In the previous chapter, we studied the approximation status of MEC and its variants. In this chapter,
we �rst explore the practical approaches to solve the MEC and present the literature survey on these
approaches. Additionally, we survey practical approaches for solving other problem formulations
of haplotype assembly such as MLF and MFC introduced in Chapter 1. Afterwards, we highlight
the importance of combining multiple sequencing technologies to generate complete haplotypes for
individual genomes. We further explore how to use the MEC formulation for this data integration.

4.1 Literature survey

Table 4.1 presents the summary of practical approaches for solving MEC and other problem formulations.
Wang et al. (2005) provides the exact algorithm for solving the MEC model. They model a haplotype
problem as a binary tree and haplotypes are viewed as the optimal path in this tree. They apply a
branch and bound algorithm to solve this haplotype problem. This algorithm searches an optimal path
in a binary tree, in which the node on the j-th level denotes the j-th fragment and the branch on the
path connecting its child denotes its corresponding haplotype assignment. A binary string is used to
represent an assignment of each fragment to one of the two haplotypes (a feasible solution to the MEC
model). The algorithm starts from root node by adding the �rst fragment and calculates the MEC score.
Then, if the calculated score is bigger than the previous score, the node will be divided. This process
is continued until all the fragments are considered. This results in a binary tree and then the optimal
haplotype path is computed in this tree. The branch and bound algorithm can �nd the exact optimal
solution, but the running time is exponential in the number of fragments. Therefore, it is not useful on
large datasets.

Lim et al. (2012) �rst identify an initial upper bound using a local search algorithm and reduce
the search space of the branch and bound algorithm based on this computed upper bound. By using
recursive property of bounding functions with some lookup table, they can solve the MEC problem
in reasonable time. Wang et al. (2012) consider the original fragments and uses Hamming distance to
calculate the di�erence between a haplotype and a fragment. They use the genetic algorithm and their
approach works even for tri- or tetra-allelic loci and homozygous sites.

Another approach for solving haplotyping using the MEC is to reduce it to a satis�ability (SAT)
problem. He et al. (2010) propose a partial Max-SAT formulation for haplotype assembly. Solvers such
as Clone and WBO are used to solve the resulting Max-SAT problems. Mousavi et al. (2011) suggest a
Max-2-SAT problem, which is more general than the partial Max-SAT. The general Max-SAT solver is
used for solving the instances. Thus their formulation is more generalized and their approach works
even for homozygous alleles that can appear due to sequencing errors. Also, their Max-SAT formulation

41

42 | Chapter 4. Parameterized algorithm for phasing individual genomes

Formulation Approach Authors
MEC Branch and Bound Wang et al. (2005), Lim et al. (2012)

Genetic algorithm Wang et al. (2005), Wang et al. (2012)
Satis�ability (SAT) Mousavi et al. (2011), He et al. (2010)

Probabilistic approach Chen et al. (2008), Bansal et al. (2008),
Bansal and Bafna (2008), Kuleshov (2014)

Parameterized Deng et al. (2013), Pirola et al. (2015),
Patterson et al. (2015)

ILP Chen et al. (2013)
Clustering Wang et al. (2007)

MLF Dynamic Programming Zhao et al. (2005), Xie et al. (2008),
Kang et al. (2010), Wu et al. (2013)

MFC Graph Duitama et al. (2010)
Others Mixture Model Matsumoto and Kiryu (2013)

Heuristic dynamic programming Xie et al. (2012)
Graph (spanning tree) Aguiar and Istrail (2012), Mazrouee and Wang (2014)

Table 4.1: Related work on computational approaches to haplotyping for a single individual

results in instances with fewer variables and clauses than those of the Partial Max-SAT formulation.
The heuristic Max-SAT solver irots provided in the UBCSAT package is used.

Some studies tried to model haplotyping problems by using probabilistic approaches. Since the frag-
ments of the input SNP matrix stem from two haplotypes, Chen et al. (2008) assumed that the fragments
were generated according to two parameters, representing sequencing errors and incompleteness errors.
They also assumed a third parameter denoting a minimum di�erence between two haplotypes. When
the parameters were unknown, they assumed the existence of those parameters from the input SNP
matrix and can reconstruct the haplotypes with high probability. Thus they designed a probabilistic
function using those parameters for the haplotype. As a result, the fragments from the fragment matrix
F were divided into two sets and the most frequent character in each SNP site was selected to determine
the haplotype sequence. HASH by Bansal et al. (2008) and HAPCUT by Bansal and Bafna (2008) also
used probabilistic models based on graph structure. They constructed a graph from the input matrix,
where the nodes correspond to the columns of the matrix. If there is a fragment that includes two
sites, the two nodes are connected by an edge. The weight of the edge is the number of fragments
inconsistent with the current phase between the SNP pair minus the number of fragments consistent
with the phase. Informally, the weight represents the weakness of phasing in SNP pair. HASH used a
graph-cut algorithm and constructs a Markov chain, but HAPCUT optimized the MEC score by using a
Max-Cut algorithm. Using a greedy algorithm, the �nal pair of haplotypes was determined based on the
resulting MEC score. Although HASH and HapCut achieve reasonably good results, they are heuristics
and therefore can not guarantee optimal solutions.

Another method used dynamic programming to determine the haplotypes for a single individual
(He et al., 2010). For the input reads encoded as the usual fragment matrix, this approach �rst solves
partial instances optimally and then extends the partial haplotypes by one bit repeatedly to obtain
full-length haplotypes. They showed that method can be applied to whole-genome sequencing datasets.
However, the method does not scale with increasing SNP sites per read because the running time is
O(m · 2k · n), where m is the number of reads, k is the length of longest read and n is the total number
of SNPs in the haplotypes. To solve this drawback, Deng et al. (2013) designed a di�erent dynamic
programming method whose running time is O(n · 2t · t), where t is the maximum coverage and n is
the number of columns. For large MEC instances, they combined this dynamic programming with
a heuristic approach. This method �rst applies a heuristic to obtain a subset of the input matrix F

4.2. WhatsHap Algorithm | 43

by using a randomized sampling approach and then carries out the dynamic programming. Once it
produces an initial solution from the submatrix, it re�nes the haplotypes by comparing the solution
to all fragments. By repeatedly solving a submatrix and re�ning the results, the �nal haplotypes are
determined. More recently, Patterson et al. (2015) provided an FPT algorithm to solving the wMEC
model. The running time is O(2cov ·m), where cov is the maximum coverage and m is the number of
columns. Pirola et al. (2015) considered a restricted variant of MEC, in which up to k corrections were
allowed per SNP position, and presented an FPT algorithm that runs in time exponential in k. The
running time is O(covk+1 · L ·m), where cov is the maximum coverage, L is the read length and m is the
number of SNP positions.

In another approach, the �rst ILP formulation for MEC was given by Fouilhoux and Mahjoub (2012)
and was based on a reduction to the maximum bipartite induced sub-graph problem. In another ILP
approach by Chen et al. (2013), the binary variable xk for column F (k) was considered such that its
value is supposed to be 1, if and only if the kth bits of h0 and h1 are 1 and 0 respectively. Moreover, the
binary variable yj for row F (j) was considered such that its value is supposed to be 1, if and only if the
read corresponding to F (j) is aligned to h0 and otherwise 0. The objective function was to minimize
the number of �ips in each entry from all the rows such that all rows can be assigned to the original
haplotypes h0 or h1 without any con�ict.

Another approach by Wang et al. (2007) considered a clustering algorithm that is used to split the
rows of F in two sets. The main contribution consists in the combination of the two distance functions
used by the clustering algorithm. The �rst distance is the Hamming distance as de�ned in Equation 1.1,
which basically computes the number of mismatches between two fragments. The second distance D′

considers the number of matches between the two fragments. The main idea is based on the intuition
that, given a certain �xed number of mismatches between two fragments, the more they overlap the
closer they are. Using the above distance functions, a simple iterative clustering procedure is given
as follows. The hamming distance is computed for each possible pair of fragments in the SNP matrix.
Let the two fragments r1 and r2 have the highest Hamming distance and the clusters are initialized as
C1 = r1 and C2 = r2. Let the computed consensus strings are H1 and H2 from these two clusters C1 and
C2 such that all the fragments are compared with H1 and H2 and assigned to the corresponding closer
set. The ambiguity in the assignment of fragments to both consensus strings is broken based on the
distance D′. Once all fragments are assigned, the consensus strings H1 and H2 are updated and the
algorithm iterates. The procedure loops until a stable haplotype pair is found (i.e. when the consensus
haplotypes are the same before and after the update).

There were some approaches to solve other objective functions such as MFR and MSR. They mainly
used graphs, dynamic programming and other heuristic methods to solve haplotyping problem.

Thus a number of computational approaches for read-based phasing have been developed and, par-
ticularly, progress on �xed-parameter tractable (FPT) algorithms has enabled solving read-based phasing
in practice, for instance through the implementations available in the software package WhatsHap1

(Martin et al., 2016), distributed as Open Source software under the terms of the MIT license.

4.2 WhatsHap Algorithm

WhatsHap (Patterson et al., 2015) is a Dynamic programming (DP) algorithm to optimally solve the
wMEC problem (Problem 1.2. It runs in O(2c ·M) time, where M is the number of variants to be phased
and c is the maximum physical coverage (which includes internal segments of paired-end reads). Since
it is independent of the read-length, so it is suitable for sequencing technologies producing long reads.
The general idea is to proceed column-wise from left to right while maintaining a set of active reads.
Each read remains active from its �rst non-dash position to its last non-dash position in F . Let the set
of active reads in column k be denoted by A(k). Note that c = maxk{|A(k)|}. For each column k of F , we
�ll a DP table column C(k, ·) with 2|A(k)| entries, one entry for each bipartition B of the set of active

1https://bitbucket.org/whatshap/whatshap

https://bitbucket.org/whatshap/whatshap

44 | Chapter 4. Parameterized algorithm for phasing individual genomes

reads A(k). Each entry C(k, B) is equal to the cost of solving wMEC on the partial matrix consisting of
columns 1 to k ofF under the assumption that the sought bipartition of the full read set A(1)∪ . . .∪A(k)
extends B according to the below de�nition.
Definition 4.1 (Bipartition extension). For a given set A and a subset A′ ⊂ A, a bipartition B = (P ,Q)
of A is said to extend (') a bipartition B′ = (P ′,Q′) of A′ if P ′ ⊂ P and Q′ ⊂ Q.

By this semantics of DP table entries C(k, B), the minimum of the last column minB{C(M , B)} is the
optimal wMEC cost.

DP cell initialization. Along similar lines as Patterson et al. (2015), we �rst compute the local
cost incurred by bipartition B = (R, S) in column k, denoted ∆C(k,B), and later combine it with the
corresponding costs incurred in previous columns. The cost W a

k,R of �ipping all entries in a read set R
to the same allele a ∈ {0, 1} is given by

W a
k,R =

∑
j∈R

JF (j, k) 6= aK · W(j, k),

In the same manner, we can compute costs W a
k,S for read set S to some allele a.

So given the corresponding column vectors F (k) andW(k) of the MEC matrix and of the weight
matrix, respectively, and the bipartition B = (R, S) of active reads A(k), the cost ∆C (k, B) is computed by:

∆C (k,B) = min
{
W 0

k,S + W 1
k,R,W 1

k,S + W 0
k,R
}

, (4.1)

where minimization considers the two possibilities of assigning those two alleles to the two haplotypes.
DP column recurrence. Note that C(k,B) is the cost of an optimal solution of Problem 1.2 for input

matrices restricted to the �rst k columns under the additional constraint that the solution’s bipartition
of the full read set extends B. Since column k lists all bipartitions, the optimal solution to the input
matrix consisting of the �rst k columns would be given by the minimum in that column. To compute
entries in column C(k + 1, ·), we add up local costs incurred in column k + 1 and costs from the previous
column is given as:

C(k + 1,B) = ∆C (k + 1,B) + min
B′∈B(A(k)):B'B′

C(k,B′) (4.2)

where B
(
A(k)

)
denotes the set of all bipartitions of A(k).

To adhere to the semantics of C(k+1, B) described above, only entries in column k whose bipartitions
are compatible with B are to be considered as possible “predecessors” of C(k + 1,B). Finally, we can
backtrace from the last column to get the haplotypes.

Let us consider an example to understand how the algorithm works. We consider an example SNP
matrix F and its corresponding weight matrixW as follows.

F =

v1 v2

r1 0 0
r2 1 0
r3 1 1

 (4.3)

W =

v1 v2

r1 q1 q2
r2 q3 q4
r3 q5 q6

 (4.4)

Let us consider some values in the weight matrix (4.4):

W =

v1 v2

r1 3 10
r2 9 1
r3 4 5

 (4.5)

So the goal is to partition the reads into two sets with minimum �ipping cost. If we try in a
brute-force manner, the possible bipartitions are as follows.

4.3. The need for combining di�erent sequencing technologies | 45

• For bipartition ({r1}, {r2, r3}), the cost is 1. This is achieved by �ipping entry F (2, 2) with a cost
W(2, 2) = 1.

• For the bipartition ({r1, r2, r3}, ∅), the cost computes to 14. This is achieved by �ipping entries
F (1, 1),F (1, 2),F (2, 2), with a cost of 3+10+1 = 14.

In a similar manner, we can compute the cost for other possible bipartitions.
Since this example is very small, it is doable in a brute-force manner. For large input instances,

we explain the FPT algorithm implemented in WhatsHap. As explained above, the initialization for
�rst column can be computed as follows. We consider all possible bipartitions and store cost for each
bipartition.

For instance, the �rst DP column for the above example for di�erent bipartitions, ∆C(1, .) can be
�lled in a following way using Equation (4.1):

C(1, ({r1, r2, r3}, ∅)) = min{3 + 0, 13 + 0} = 3

Similarly, we can compute ∆C (1, .) for other bipartitions ({r1, r2}, {r3}), ({r1, r3}, {r2}),
(∅, {r1, r2, r3}), ({r3}, {r1, r2}), ({r2}, {r1, r3}).

Now, let the DP table entries in the second column C(2, .) for di�erent bipartitions by using Equa-
tion (4.2):

C(2, ({r1, r2, r3}, ∅)) = min{11 + 0, 5 + 0} + min{C(1, ({r1, r2, r3}, ∅)} = 5 + 3 = 8

To �ll DP column C(2, .), we can analogously compute the cost for the remaining bipartitions
({r1, r2}, {r3}), ({r1, r3}, {r2}), (∅, {r1, r2, r3}), ({r3}, {r1, r2}), and ({r2}, {r1, r3}).

Once we reach the last column and know the optimal bipartition, we can backtrace to get the
corresponding haplotypes. We observe that the running time is linear in the number of variants and
independent of read length.

4.3 The need for combining di�erent sequencing technologies

All approaches to reconstruct haplotypes from sequencing reads, reference-based or reference-free,
come with the intrinsic limitation that the distance between subsequent heterozygous markers can
be larger than the read length itself. While long-read sequencing (such as PacBio SMRT (Steinberg
et al., 2014) and Oxford NanoPore MinION (Ammar et al., 2015)), or linked read data (such as those
provided by 10X Genomics (Zheng et al., 2016)) help to mitigate this issue, these technologies fail to
phase over longer stretches of homozygosity, repeat-rich areas including segmental duplications, and
centromeres. Thus, specialized techniques that enable homologous chromosomes to be discriminated
are required to physically connect alleles across whole chromosomes (Zheng et al., 2016; Ma et al., 2010;
Yang et al., 2011). As an alternative to whole chromosome separation, chromatin capture (Hi-C) methods
(Lieberman-Aiden et al., 2009) can be employed to infer long-range haplotype information, based on
the assumption that a chromosome will be cross-linked to itself more often than to its homologue
(Selvaraj et al., 2013). Recently, Hi-C data sets have been used in combination with other sequencing
methods for long-range phasing (Edge et al., 2017; Ben-Elazar et al., 2016). However, it has been shown
that to generate a reliable long-range haplotype sca�old, relatively high sequence coverage (ideally
90-fold) is needed to reduce bias caused by cross-links between non-homologous chromosomes (Edge
et al., 2017). In particular, because these haplotypes need to be inferred statistically, the probability
that two heterozygous variants are correctly phased relative to each other, deteriorates with increasing
chromosomal distances.

Our aim is to obtain dense and global haplotypes that span centromeres, homozygosity regions and
genome assembly gaps, while keeping error rates, costs and labor at minimum. To this end, we harness
the long-range phasing information provided by single cell template strand sequencing (Strand-seq)
(Falconer et al., 2012; Sanders et al., 2017). Strand-seq is an e�ective method to assemble highly accurate
chromosome-length haplotypes, albeit with lower density of phased alleles in comparison to read-based

46 | Chapter 4. Parameterized algorithm for phasing individual genomes

phasing (Porubský et al., 2016). Unlike other haplotyping methods, Strand-seq, by design, distinguishes
parental homologues based on the directionality of single-stranded DNA. Therefore, Strand-seq is able
to deliver global haplotypes, and its capability to correctly phase two variants with respect to each other
does not depend on their distance. To fully exploit this advantage, while at the same time generating
dense haplotypes that contain virtually all heterozygous SNVs, we show how the MEC problem can
serve as a framework to combine Strand-seq data with short-read, long-read, or linked-read sequencing
data. Previously, Strand-seq data had only been used on its own, resulting in global yet sparse haplotypes
(Porubský et al., 2016). We demonstrate how the long range phase information inherent to Strand-seq
data can be leveraged to bridge phased segments obtained from Illumina, PacBio or 10X Genomics
sequencing data into contiguous and global haplotypes that span whole chromosomes. We further o�er
extensive experimental guidance on favorable combinations of the number of used Strand-seq libraries
and the depth of PacBio or Illumina coverage, and thus enable considerable reductions in costs and
labor – yielding a novel, a�ordable and scalable approach for reconstruction of haplotype-resolved
individual genomes.

4.4 Using MEC for data integration

In this section, we address the problem of haplotype phasing from multiple sequencing datasets. To this
end, we present MEC instances to jointly include the read alignment or initial haplotypes from di�erent
technologies. For example, partial haplotypes might have been generated using Strand-seq data or 10x
Genomics. Furthermore, the read alignments over the variants using di�erent technologies such as
PacBio or Illumina are then additionally incorporated in F . As before, the goal is to partition the rows
in F into two non-con�icting sets. The input matrix and the bipartition of the rows are illustrated in
Figure 4.1. The matrix is �lled with 0, 1 and ‘-’ entries, where 0 and 1 indicate that the corresponding
read supports the reference or alternative allele, respectively, and ‘-’ means the information is missing
(e.g. because a read does not cover this variant site). We apply the WhatsHap algorithm (Patterson
et al., 2015) on the MEC instance from multiple sequencing technologies. WhatsHap selects a subset
of rows and solves the wMEC problem optimally on these rows. The result is a maximum likelihood
bipartition of rows, which corresponds to the two sought haplotypes. For all analyses, WhatsHap was
provided with a reference genome (option –reference) to enable re-alignment-based allele detection
when constructing the fragment matrix from sequencing reads. This has been shown to signi�cantly
improve performance for PacBio reads (Martin et al., 2016).

4.5 Evaluation metrics

To assess the quality of assembled haplotypes, we calculated di�erent metrics described in the following.
• Completeness: The process of haplotyping establishes phase relations between pairs of consecutive

heterozygous variants. We call each such pair a ’phase connection’. We de�ne haplotype segment
or haplotype block as a connected component of reads. For each haplotype segment produced
by a combination of technologies, we therefore count the number of phase connections, which is
equal to the number of heterozygous markers in the haplotype segment minus one. To measure the
completeness of a phasing, we sum the number of phase connections across all haplotype segments
and divide by the maximum possible number of phase connections, which is equal to the number of
heterozygous variants in the chromosome minus one.

• Switch error rate: The switch error rate is the fraction of phase connections for which the phasing
between the two involved heterozygous variants is wrong (see Figure 4.2).

• Largest haplotype segment: We are interested in haplotypes that span the whole length of the
chromosomes. To measure extend to which we achieved this, we report the fraction of heterozygous
variants that are part of the largest haplotype segment.

4.5. Evaluation metrics | 47

- - 0 - - 1 1 - 0 - 0 - - 1 - - 1 - - - - - 0 1 - 0 - - 0 - - 1 - 1
- 0 - - - 0 0 - - 0 1 - - 0 - 1 0 - - - 1 - 1 0 - - - 0 1 - 0 - - 0
- 1 0 0 0 1 1 0 0 -
- - - 0 0 1 1 0 1 1 0 0 -
- - - - - - 1 0 0 1 0 0 1 1 1 - - - - - - - - - - - - - - - - - - -
- - - - - - - - 1 0 1 1 0 0 0 1 0 - - - - - - - - - - - - - - - - -
- 1 1 1 0 1 1 0 0 1 - - - - -
- 0 0 1 0 0 1 1 0 1 - - - -
- 0 1 1 0 0 0 0 0 1 - -
- 0 1 0 0 1 1 0

- - 1 1 1 0 0 1 1 0 -

- - 1 1 1 0 0 1 1 0 -

| |

- - 0 - - 1 1 - 0 - 0 - - 1 - - 1 - - - - - 0 1 - 0 - - 0 - - 1 - 1

- 1 0 0 0 1 1 0 0 0 1 - - 0 - 1 0 - - - - - 1 0 - 1 - - 1 - 0 - - 0

- 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 - - - 0 0 0 1 0 0 1 1 0 1 1 1 0 1
- 0 1 1 1 0 0 1 1 0 1 1 0 0 0 1 0 - - - 1 1 1 0 1 1 0 0 1 0 0 1 1 0

- - 1 0 0 1 1 0 0 1 0 0 - 0 - 1 0 - - - - - 1 0 - 1 - - 1 - 0 - - 0
- - 1 - - 0 1 0 0 1 0 0 1 1 1 1 0 - - - - - 1 0 - 1 - - 1 - 0 - - 0
- - 1 - - 0 0 - 1 0 1 1 0 0 0 1 0 - - - - - 1 0 - 1 - - 1 - 0 - - 0

- - 1 - - 0 0 - 1 0 1 - - 0 - 1 0 - - - - 0 0 1 0 0 1 1 0 1 0 - - 0
- - 1 - - 0 0 - 1 0 1 - - 0 - 1 0 - - - - - 1 0 1 1 0 0 1 0 0 1 - 0

Strand-seq Hap1

Reads partitioned into haplotypes

Final haplotypes

Variable positions 1..34

Strand-seq Hap2
Read 1
Read 2
Read 3
Read 4
Read 5
Read 6
Read 7
Read 8

Read n

...

Strand-seq Hap1
Strand-seq Hap2

Read 1
Read 2
Read 3
Read 4
Read 5
Read 6
Read 7
Read 8

Read n

...

...

- 0 1 0 0 1 1 0

- - 1 - - 0 0 - 1 0 1 - - 0 - 1 0 - - - 1 1 1 0 1 1 0 0 1 - 0 - - 0

- 0 - - - 0 0 - - 0 1 - - 0 - 1 0 - - - 1 - 1 0 - - - 0 1 - 0 - - 0

a

b

c

Figure 4.1: Integration of global and local haplotypes by the WhatsHap algorithm. An example solution
of the weighted minimal error correction problem (wMEC) using WhatsHap algorithm is shown. For
simplicity base qualities used as weights are omitted from the picture. (a)The columns of the matrix
represent 34 heterozygous variants (SNVs). Continuous stretches of zeros and ones indicate alleles
supported by respective reads (0 – reference allele, 1 – alternative allele). First two rows of the wMEC
matrix are represented by Strand-seq haplotypes, illustrated as one ’super read’ connecting alleles
along the whole length of the chromosome. (1st row haplotype 1 alleles, 2nd row haplotype 2 alleles).
Subsequent rows of the matrix are represented by reads that map to the reference assembly in short
overlapping segments. Sequencing errors (shown in red in read 2 and 7) are corrected when the cost for
�ipping the alleles is minimized. (b) Reads are then partitioned into two haplotype groups (Haplotype
1 – dark blue, Haplotype 2 – light blue) such that a minimal number of alleles are corrected (in red).
As an illustration of long haplotype contiguity facilitated by Strand-seq ’super reads’, we depict two
non-overlapping groups of reads (gray rectangles) that can be stitched together by Strand-seq (dashed
lines). (c) Final haplotypes are exported for both groups of optimally partitioned reads.

• Largest haplotype segment Hamming rate: To assess whether haplotypes are correct over long
genomic distances, we only consider the largest haplotype segment and compute the Hamming
distance between true and predicted haplotypes (see Figure 4.2), divided by the total number of
heterozygous variants in this haplotype segment. That is, the Hamming error rate is equal to the
fraction of wrongly phased heterozygous variants. Note that, a single switch error (e.g. in the middle

48 | Chapter 4. Parameterized algorithm for phasing individual genomes

True haplotypes|

switch error = 2

SNVs:

Predicted haplotypes|

1 2 4 6 103 5 7 8 9

SNV1 = SNV2: 0
SNV1 = SNV2: 1

True haplotypes|

Hamming distance = 5

SNVs:

Predicted haplotypes|

1 2 4 6 103 5 7 8 9

a

b

Figure 4.2: Hypothetical phasing of 10 single nucleotide variants (SNVs) along a de�ned chromosomal
region is shown here. Each heterozygous SNV is represented in its two allelic forms (0 - reference
allele, 1 - alternative allele). True (reference) haplotypes are distinguished in blue colors and predicted
haplotypes in red. a) To count the number of switch errors (black crosses) between the true and
predicted haplotypes, neighboring pairs of SNVs are compared along each haplotype and recorded as
a new binary string of 0’s and 1’s depending on whether the allele state changes (see gray box). A
zero value is assigned if the given pair of SNVs have the same value, otherwise a value of 1 is assigned
value 1. The absolute number of di�erences in the binary string generated for the true and predicted
haplotypes is reported as the total number of switch errors. b) To calculate the Hamming distance, the
absolute number of di�erences between reference and predicted haplotypes is calculated for all SNV
positions. In addition we calculate block-wise Hamming distance which represents a cumulative sum of
all Hamming distances across all phased segments

of a chromosome) can give rise to a very large Hamming distance and hence the Hamming distance
is a much more stringent quality measure. While the switch error rate assesses whether haplotypes
are correct locally, i.e. between pairs of neighboring heterozygous variants, the Hamming distance
assesses whether haplotypes are correct globally.

4.6 Results

4.6.1 Experimental design and dataset description

To explore a new integrative phasing strategy, with the aim of obtaining dense and accurate chromosome-
length haplotypes, we used sequencing data available for a well-studied individual (NA12878). The
NA12878 genome has been extensively sequenced using multiple technologies, providing high-coverage
public sources of sequence information. In this study, we focused on read-based phasing data generated
from Illumina short-read sequencing and PacBio technology, as they represent current standards for
short- and long-read sequencing, respectively (Illumina short-read sequencing is for simplicity referred
to as “Illumina data”). The Illumina dataset was sequenced to an average depth of 49.5x coverage
with a median insert size of 433bp, and the PacBio dataset was sequenced to 39.6x coverage with an
average read length of 15kb. In addition, we evaluated the performance of 10X Genomics, an emerging
linked-read technology. Since none of these technologies alone provides chromosome-length haplotype
information, we additionally incorporated single cell Strand-seq data (Porubský et al., 2016), which has

4.6. Results | 49

the capacity to sca�old haplotype fragments obtained from other data types (Figure 4.3(a)). Here we used
134 single cell libraries sequenced to an average depth of 0.037x coverage per library using a paired-end
sequencing protocol. To evaluate the phasing accuracy of haplotypes reported in this study, we used
the publicly available Illumina platinum haplotypes generated for the same individual (NA12878) as a
’reference’ standard. NA12878 ’reference haplotypes’ were completed by genetic haplotyping using
highly accurate genotypes from seventeen individuals of a three-generation pedigree (Eberle et al.,
2017), which renders it an ideal gold-standard set for haplotype comparisons. We con�rmed that sites
and genotypes are in very good agreement with Genome in a Bottle calls. However, it should be noted
that, due to stemming from short reads, this SNV set most likely lacks some variants at repetitive or
complex genomic loci (e.g. recent segmental duplications).

4.6.2 Datasets

Illumina reads (Sudmant et al., 2015; Consortium et al., 2015) were obtained from the 1000 Genome Project
Consortium 2. PacBio reads (Zook et al., 2014) were obtained from Genome in a Bottle Consortium (GIAB)
3. 10X Genomics haplotypes: Pre-assembled 10X Genomics haplotypes (produced on the Chromium
platform with Chromium Genome v1 reagents, sequenced on an Illumina HiSeq X Ten and processed
with LongRanger 2.1.0) were downloaded from 10X Genomics website 4 and �ltered for heterozygous
and PASS �lter SNVs. Strand-seq libraries (Porubský et al., 2016): We downloaded them from the
European Nucleotide Archive 5, accession number: PRJEB14185. The same data can also be obtained at
the Zenodo site 6. Reference haplotypes (Eberle et al., 2017): In this study we use as a gold standard,
we downloaded reference triopedigree- based haplotypes of NA12878 obtained released as part of the
Illumina platinum genomes (Version: 2016-1.0 from 6 June 2016) 7.

4.6.2.1 Downsampling of sequencing datasets

To assess di�erent combinations of Strand-seq libraries (w.r.t. number of single cell libraries) with read
data (w.r.t. depth of coverage), we performed a systematic analysis of the phasing performance for
various subsets of each dataset. To achieve this, we downsampled the original publicly available datasets
consisting of: 134 single cell Strand-seq libraries (Porubský et al., 2016), 39.6x coverage long-read PacBio
data (Zook et al., 2014), and 49.6x coverage short-read Illumina data (Sudmant et al., 2015; Consortium
et al., 2015). To simulate Strand-seq datasets consisting of reduced numbers of single cells, we randomly
selected subsets of either 5, 10, 20, 40, 60, 80, 100, or 120 libraries from the original number of 134
libraries in the dataset. Read data from the PacBio and Illumina datasets were downsampled using
Picard (picard-tools-1.130) to meet a de�ned depth of coverage of either 2, 3, 5, 10, 15, 25, or 30-fold.
The downsampling was performed for 5 independent trials to account for variability in downsampled
datasets, and the average phasing performance across all trials was reported (as described below).

4.6.3 Phasing performance of individual technologies

To independently assess the phasing performance of each technology we assembled haplotypes directly
from sequencing reads (Illumina or PacBio) using WhatsHap. As discussed above (Section 5.4), this
algorithm is that it solves the Minimum Error Correction (MEC) problem optimally with a run-time
that scales linearly in the number of variants (alleles) and is independent of the read length. Therefore,
it performs well with short-read technologies (Illumina) and is especially suited for use with long reads
(PacBio, Oxford Nanopore). 10X Genomics haplotype segments were assembled by the vendor using the

2ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12878/high_coverage_alignment/
3ftp://ftptrace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/sorted_final_

merged.bam
4https://support.10Xgenomics.com/genome-exome/datasets/NA12878_WGS_210
5http://www.ebi.ac.uk/ena
6doi:10.5281/zenodo.830278
7http://www.illumina.com/platinumgenomes/

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12878/high_coverage_alignment/
ftp://ftp trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/sorted_final_merged.bam
ftp://ftp trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/sorted_final_merged.bam
https://support.10Xgenomics.com/genome-exome/datasets/NA12878_WGS_210
http://www.ebi.ac.uk/ena
doi:10.5281/zenodo.830278

50 | Chapter 4. Parameterized algorithm for phasing individual genomes

10X LongRanger pipeline. To phase multiple Strand-seq libraries we used the R package StrandPhaseR8

developed by David Porubsky. The haplotypes generated by each technology (i.e. Illumina, PacBio, 10X
Genomics and Strand-seq) were compared to the Illumina platinum reference haplotypes, to establish
the density, completeness and accuracy of the phase blocks delivered by each platform independently.
For a more streamlined exposition, we focus on the results obtained for Chromosome 1 in the following
analysis and present numbers aggregated across all chromosomes in a concluding discussion.

We found both PacBio and 10X Genomics technologies capable of phasing nearly the complete set
of variants listed in the reference haplotypes (98.8% and 97.2%, respectively), whereas Illumina alone
phased only 77.8% and Strand-seq only 57.6% of the reference SNVs (Figure 4.3(b)). Note that for 10X
Genomics data, we used the variant set discovered, genotyped, and phased by the 10X LongRanger
software and hence variants not discovered decrease our estimate of completeness. The comparatively
low percentage for Strand-seq can be explained by the relatively low sequencing coverage employed,
combined with a slight unevenness in genomic coverage. For all technologies except Strand-seq, only
short-range haplotypes were assembled using the read-based phasing, with a limited number of alleles
phased per haplotype segment (Figure 4.3(c)). For instance, we found >30,000 unconnected haplotype
segments assembled from Illumina data, with the largest segment of 16kb (median 500bp) harboring
only 0.06% of the phased variants. This is because heterozygous variants that are further apart than the
length of the sequenced DNA fragments cannot be connected, resulting in multiple disjoint haplotype
segments with an unknown phase between them. Improvements were achieved using longer sequencing
reads from PacBio technology, which e�ectively decreased the number of phased haplotype segments
(1,927) and increased their size; the largest segment of 1.7Mb (median 21kb) containing 1.25% of all
SNVs on Chromosome 1 (Figure 4.3(c)). 10X Genomics produced even longer haplotype segments
than both Illumina and PacBio data (Figure 4.3(c)). The largest haplotype segment contained almost
5% of the heterozygous SNVs and spanned more than 8.5Mb (median 241kb). Still, the haplotypes
of Chromosome 1 came in 199 disconnected segments and, hence, an end-to-end phasing was not
achieved (Figure 4.3(c)). That is, the linked reads from the 10X Genomics were not able to connect
distant neighboring heterozygous sites, for instance at centromeres, genome assembly gaps or regions
of low heterozygosity (Figure 4.3(a)). This is in contrast to the global, albeit sparse, haplotypes produced
by Strand-seq. Although the completeness of Strand-seq haplotypes was lower compared to the other
technologies, all phased variants were placed into a single haplotype segment spanning the entire
length of Chromosome 1 (Figure 4.3(b), and (c)).

Finally, we assessed the accuracy of each technology by calculating the extent of switch errors in
comparison to the reference haplotypes. High phasing accuracy of each technology was exempli�ed by
the low percentage (<0.4%) of switch errors (Figure 4.3(d)) with PacBio and 10X Genomics being the
most accurate. Since no single phasing technology was su�cient to generate both global and dense
haplotypes, we explored integrative phasing approaches that combine global, sparse haplotyping as
a�orded by Strand-seq technology with local high-density haplotypes from read-based phasing.

4.6.4 Integrative global phasing performance

We found that the combination of Strand-seq haplotypes with any of the other data types markedly
increased the number of variants that were phased in the largest haplotype segment, albeit to di�ering
degrees (Figure 4.4(a)). Speci�cally, for the Illumina data we observed the completeness of each haplotype
increased gradually with the number of Strand-seq libraries used in the experiment, whereas the depth
of coverage of Illumina data had only a minor but noticeable e�ect (Figure 4.4(a)). In contrast, the
PacBio data showed a signi�cant improvement in haplotype completeness at 10-fold genomic coverage,
regardless of the number of Strand-seq libraries used (Figure 4.4(a), black arrowhead). Similar results
were seen when we combined Strand-seq with the 10X Genomics haplotypes (Figure 4.4(a)). In all
cases, integration of Strand-seq phasing drastically improved the contiguity of the haplotype spanning
Chromosome 1 (Figure 4.4(b)). When combining Illumina data with 40 Strand-seq libraries >65% of the

8https://github.com/daewoooo/StrandPhaseR

https://github.com/daewoooo/StrandPhaseR

4.6. Results | 51

a

? ? ?

Experimental
phasing

SNV density
Cost/labor

Read-based
phasing

SNV density
Cost/labor

Chromosome 1 example

Heterozygous alleles
Centromere

? Unknown phase

Homozygosity region

Gene
Enhancer

0.0

0.1

0.2

0.3

PacBio only 10xGen only Illumina only StrandS only

%
 o

f s
w

itc
h

er
ro

rs

0

25

50

75

100

PacBio only 10xGen only Illumina only StrandS only

%
 o

f c
ov

er
ed

 b
en

ch
m

ar
k

S
N

V
s

57.6%77.8%97.2%98.8%

0.13% 0.3% 0.32%0.025%

c

Length of the longest haplotype (bp) : Illumina - 15994 bp
 PacBio - 1711716 bp
 10xGen - 8582136 bp
 Strand-seq - 248671482 bp

Illumina
only

PacBio
only

10xGen
only

StrandS
only

0.06% 30204

1927

199

1

1.25%

4.66%

57.6%
0 1 100 1000020 40 60

SNVs in the
largest segm.

of phased
segments d

b

Figure 4.3: Phasing e�cacy of read-based and experimental phasing approaches using Chromosome 1
as an example. a) Two homologous chromosomes are shown (blue and black). Experimental phasing
approaches like Strand-seq can connect heterozygous alleles along whole chromosomes, however, at
higher costs (time and labor) and lower density of captured alleles. In contrast, read-based phasing can
deliver high-density haplotypes, but only short haplotype segments are assembled with an unknown
phase between them. b) Barplot showing the percentage of phased variants, for each sequencing
technology, from the total number of reference SNVs (Illumina platinum haplotypes). c) Graphical
summary of phased haplotype segments for Illumina, PacBio, 10X Genomics and Strand-seq phasing
shown for chromosome 1. Each haplotype segment is colored in a di�erent color with the longest
haplotype colored in red. Side bargraph reports the percentage of SNVs phased in the longest haplotype
segment. d) Accuracy of each independent phasing approach measured as percentage of short switch
errors in comparison to benchmark haplotypes.

reference variants could be phased accurately (Figure 4.4(b), black asterisk); 5497 haplotype segments
(collectively representing 19.7% of the phased SNVs), however, remained disconnected, even when
integrating the complete (N=134) Strand-seq dataset. These results con�rm that Illumina data are of
limited utility for haplotype phasing.

In contrast, as few as 10 Strand-seq cells combined with 10-fold PacBio coverage were su�cient to
phase more than 95% of all heterozygous SNVs into a single haplotype segment (Figure 4.4(b), black
asterisk), and merely 5 Strand-seq single cell libraries were required to connect all 10X Genomics
haplotypes. However, we recommend at least 10 Strand-seq libraries (Figure 4.4(b), black asterisk) to
ensure that at least one haplotype-informative (i.e. Watson-Crick-type) cell exists for every chromosome
with high probability (p=0.978). This global haplotyping was unique to Strand-seq, as the combination
of 10X Genomics with PacBio reads proved ine�cient to join locally phased segments (Figure 4.4(b)).
That is, the added value of combining these two technologies is limited as the haplotype segments tend
to break at similar locations.

Finally, we assessed the phasing accuracy of the assembled haplotypes (the longest phased segment
only) (Figure 4.4(c)). Similar to the completeness of the haplotype, the accuracy of Illumina phasing
gradually increased with sequencing depth and Strand-seq library number, indicating that Illumina
coverage of 30-fold and higher is advisable (Figure 4.4(c)). We further observed slightly elevated switch
error rates at lower PacBio depths, which plateaued at 10-fold coverage (Figure 4.4(c), black arrowhead).
This is likely caused by allele uncertainty resulting from error-prone PacBio reads, especially at lower
sequencing depths (Figure 4.4(c)). The lowest switch error rate (< 0.2%) was achieved by the combination

52 | Chapter 4. Parameterized algorithm for phasing individual genomes

Illum
ina + Strand-seq

Pacbio + Strand-seq

2 3 4 5 10 15 25 30 31

25

50

75

100

25

50

75

100

Depth of coverage

%
 o

f p
ha

se
d

SN
V

pa
irs Strand-seq

cells (#)

5

10

20

40

60

80

100

120

134

Completeness of the longest haplotype segment

Contiguity of the longest haplotype segment

c Accuracy of the longest haplotype segment

Strand-seq + Illumina (30-fold coverage) Strand-seq + PacBio (10-fold coverage)

Strand-seq + 10x Genomics

StrandS + 10x Genomics

0

25

50

75

100

5 10 20 40 60 80 100 120 134

Strand-seq cells (#)

%
 o

f p
ha

se
d

SN
V

pa
irs

Strand-seq + 10x Genomics

10x Genomics + PacBio

*
*

*

SNVs in the
largest segm.(%)

SNVs in the
largest segm.(%)

PacBio
depth

StrandS
cells

StrandS
cells

0
5

10
20
40
60
80

100
120
134

0
5

10
20
40
60
80

100
120
134

0
5

10
20
40
60
80

100
120
134

0
2
3
4
5

10
15
25
31
all

0 50 7525 100

0 50 7525 100

0 50 7525 100

0 50 7525 100Chromosome 1 Chromosome 1

Illum
ina + Strand-seq

Pacbio + Strand-seq

2 3 4 5 10 15 25 30 31

2.0

3.0

4.0

2.0

3.0

4.0

Depth of coverage

Ha
m

m
ing

 e
rro

r r
at

e
(%

)

Strand-seq
cells (#)

5

10

20

40

60

80

100

120

134

0

0.5

1.0

1.5

2.0

5 10 20 40 60 80 100 120 134

Strand-seq cells (#)

Ha
m

m
ing

 e
rro

r r
at

e
(%

)

Illum
ina + Strand-seq

Pacbio + Strand-seq

2 3 4 5 10 15 25 30 31

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

Sw
itc

h
er

ro
r r

at
e

(%
)

Strand-seq
cells (#)

5

10

20

40

60

80

100

120

134
0

0.025

0.050

0.075

0.10

0.125

5 10 20 40 60 80 100 120 134

Sw
itc

h
er

ro
r r

at
e

(%
)

b

a

StrandS + 10x Genomics

SNVs in the
largest segm.(%)

StrandS
cells

SNVs in the
largest segm.(%)

Figure 4.4: Various combinations of Strand-seq and read-based phasing (Illumina, PacBio, 10X Genomics)
- Chromosome 1 as an example. Plots show haplotype quality measures for various combinations of
Strand-seq cells (5, 10, 20, 40, 60, 80, 100, 120, 134) with selected coverage depths of Illumina or PacBio
sequencing data (2, 3, 4, 5, 10, 15, 25, 30, >30-fold), or in combination with 10X Genomics haplotypes.
a) Assessment of the completeness of the largest haplotype segment as the % of phased SNVs. Grey
bars highlight PacBio sequencing depth where completeness and accuracy of �nal haplotypes do not
dramatically improve. b) Assessment of the contiguity of the largest haplotype segment as the length of
the largest haplotype segment. Every phased haplotype segment is depicted as a di�erent color, with
the largest segment colored in red. Black asterisks point to a recommended depth of coverage of a given
technology in combination with Strand-seq c) Assessment of the accuracy of the largest haplotype
segment as the level of agreement with the ‘reference’ standard. Black arrowheads highlight Illumina
and PacBio sequencing depth where accuracy of �nal haplotypes do not substantially improve.

4.7. Discussion | 53

of Strand-seq with 10X Genomics data (Figure 4.4(c), switch error rate).
Switch error rates re�ect local inaccuracies expressed by the number of pairs of consecutive

heterozygous variants that are wrongly phased with respect to each other. These error rates are
not necessarily informative about global haplotype accuracy, which largely depend on how switch
errors are spatially distributed. Note that one single switch error implies that all following alleles (up to
the next switch error) are assigned to the wrong haplotype. Since our goal is to generate dense and
global haplotypes, we additionally report the Hamming error rate of the largest haplotype segment in
comparison to the reference haplotypes. Illumina reads are highly accurate and therefore we observed
lower impact of sequencing depth on the global accuracy of the largest phased haplotypes (Figure 4.4(c),
Hamming error rate). In contrast, PacBio reads exhibited higher sequencing error rates, which translated
into higher switch error rates at low sequencing depths. Using 10-fold PacBio coverage combined with
at least 10 Strand-seq cells yielded highly accurate global haplotypes (Figure 4.4(c), black arrowhead),
while lower coverages led to markedly worse results. Furthermore, the combination of Strand-seq with
10X Genomics haplotypes yielded highly accurate global haplotypes, already at the minimal amount of
Strand-seq libraries (Figure 4.4(c), right panel).

Taken together, these results illustrate that Strand-seq can be used to phase existing sequence data
and build dense, global and highly accurate haplotypes. Indeed, we found our approach highly e�cient
for genome-wide phasing (Figure 4.5(a)). Using a combination of 40 Strand-seq libraries with 30-fold
Illumina coverage, or 10 Strand-seq libraries with either 10-fold PacBio coverage or the 10X Genomics
haplotypes we successfully sca�olded chromosome-length haplotypes for every autosome of NA12878.
The completeness of the genome-wide haplotypes measured for the largest haplotype block reached
95.7% and 69.1% using PacBio and Illumina reads, respectively (Figure 4.5(a)). We further demonstrated
the high accuracy of these haplotypes on the local and global scales, which showed low switch (<0.45%)
and Hamming error (<0.99%) rates for both the PacBio and Illumina combination (Figure 4.5(a)). Whereas
sca�olding the 10X Genomic haplotypes produced the most accurate local haplotypes (switch error rate
of 0.05%), global performance su�ered, and the highest Hamming error rate (2.18%) was calculated for
this combination. Nevertheless, using Strand-seq to sca�old any of the datasets remarkably improved
the completeness, contiguity and accuracy of phasing for each chromosome, highlighting our integrative
phasing strategy as a robust method for building dense and accurate whole genome haplotypes.

4.7 Discussion

Strand-seq has been successfully prepared from a wide range of cell types taken from various organisms
(Porubský et al., 2016; Falconer et al., 2012; Sanders et al., 2017) and is currently being adopted by an
increasing number of researchers. The integrative phasing strategy, which is a parameterized algorithm,
paves the way to leveraging Strand-seq to obtain chromosome-length dense and accurate haplotypes at
a manageable cost and labor investment. Based on the comprehensive evaluation presented above, we
recommend three di�erent combinations of Strand-seq with a complementary technology (Figure 4.5(b)).

As one option, one can combine Strand-seq with standard Illumina sequencing. Although the power
of Illumina data for phasing is limited, mainly due to short insert sizes and read lengths, it still has
some merit for adding additional variants to Strand-seq haplotypes. This might be of interest to many
researchers since Illumina sequencing still constitutes the most common technology and there is an
abundance of Illumina sequence data currently available for many sample genomes. To completely
phase these preexisting data, we recommend generating at least 40 Strand-seq libraries for the sample
genome, which is su�cient to phase >68% of all heterozygous variants genome-wide with good accuracy
(switch error 0.45%, Hamming error 0.99%), see Figure 4.5(a).

To build more complete haplotypes, we recommend combining Strand-seq with either PacBio
or 10X Genomic technologies. A minimum of 10-fold PacBio coverage coupled with 10 Strand-seq
libraries will phase >95% of heterozygous variants genome-wide with excellent accuracy (switch error
0.25%, Hamming error 0.91%). PacBio has been demonstrated to be particularly powerful for resolving
structural variation (Huddleston et al., 2017; Chaisson et al., 2015) and, although not explored here, might

54 | Chapter 4. Parameterized algorithm for phasing individual genomes

Cell sorting and preparation
of single cell Strand-seq libraries

Phased individual
genomes

OR.

OR.

OR.

OR.

Recommended combination of Strand-seq with other technologies

Genome-wide phasing of a single individual

Integrative phasing approach

WhatsHap ~ 6h.
10-fold Pacbio Reads
10x Genomics data

Strand-seq libraries
StrandPhaseR ~ 4h.

+

WhatsHap ~ 6h.
>30-fold Illumina Reads

Strand-seq libraries
StrandPhaseR ~ 4h.

+

b

a
40 Strand-seq cells

+
Illumina 30-fold coverage

10 Strand-seq cells
+

PacBio 10-fold coverage

10 Strand-seq cells
+

10x Genomics

Illumina
+

StrandS

PacBio
+

StrandS

10xGen
+

StrandS

0

25

50

75

100

P
ha

se
d

S
N

V
s

pa
irs

 (%
)

Illumina
+

StrandS

PacBio
+

StrandS

10xGen
+

StrandS

0.0

0.1

0.2

0.3

0.4

S
w

itc
h

er
ro

r (
%

)

Illumina
+

StrandS

PacBio
+

StrandS

10xGen
+

StrandS

0.0

0.5

1.0

1.5

2.0

H
am

m
in

g
er

ro
r (

%
)

Illumina
+

StrandS

PacBio
+

StrandS

10xGen
+

StrandS

Figure 4.5: Recommended settings to phase certain amounts of individuals. (a) Genome-wide phasing
of NA12878 using combination of 40 Strand-seq libraries with 30× short Illumina reads, 10 Strand-seq
libraries with 10-fold long PacBio reads, or 10 Strand-seq libraries with 10X Genomics data. Plots show
quality measures such as percentage of phased SNV pairs, switch error rate, and Hamming error rate
for phased autosomal chromosomes. (b) A diagram providing the recommendations for the required
number of Strand-seq libraries to be combined with recommended minimum of 10-fold PacBio and 30×
Illumina coverage in order to reach global and accurate haplotypes for a depicted number of individual
diploid genomes.

hence be the best choice when the resolution of haplotypes, structural variation and repetitive regions
is desired. However, the cost of this platform is still comparatively high. Therefore, until long-read
technologies have become standard practice, we recommend combining 10 Strand-seq libraries with
10X Genomics technology. We found this combination yielded the most complete (>98% heterozygous
variants genome-wide) haplotypes with the lowest switch error rate (0.05%). We did observe a slightly
increased Hamming error rate (2.18%), however, which indicates that some genomic intervals are
placed on the wrong haplotype, most likely due to switch errors in the pre-phased haplotype segments
(produced by 10X Genomics) used as input. Overall, combining Strand-seq with 10X Genomics is the
most cost-e�ective (in terms of time and money) strategy to phase an individual genome at extraordinary
accuracy.

In this study, we used pre-phased 10X Genomics haplotype segments because using the raw sparse

4.7. Discussion | 55

linked read data leads to algorithmically challenging wMEC problem instances, which presently cannot
be solved optimally by WhatsHap. This implies that variants that have not been discovered by Lon-
gRanger are considered unphased (and hence decrease “completeness”) and that the error rates can
likely be improved further by solving the combined instance resulting from Strand-seq and 10X data.
We therefore consider processing the 10X Genomics raw data an important topic of future research.

In this chapter, we focused on single individual haplotyping to avoid the biases and limitations of
reference-panel based phasing as well as the need to have access to genetic material of the parents. In
cases when high-coverage sequencing data of the parents are available, such datasets can be used to
enhance read-based phasing and provide long range phase information.

In the next chapter, we will analyze how we can generalize this parameterized algorithm to incor-
porate trio information to performing phasing. This will provide possibilities to generate good quality
haplotypes for pedigrees, which will have profound implications to the study of variability of personal
genomes in health and disease.

This chapter has been published in Nature Communications, 2017 (Porubsky et al.,
2017), which has co-authors as David Porubsky, Ashley Sanders, Jan O. Korbel, Victor
Guryev, Peter M. Lansdorp & Tobias Marschall. The preliminary version of this paper
is presented in David’s thesis. The �gures in this chapter are taken from the paper.
My contribution involves in developing and testing an integrative phasing analysis
pipeline. This analysis pipeline outputs data table, which is used for the �gures. I also
implemented the features in WhatsHap to include Strand-seq haps and 10X Genomics
data. I wrote draft for WhatsHap section and the corresponding draft �gures.

56 | Chapter 4. Parameterized algorithm for phasing individual genomes

Chapter 5

Parameterized algorithm for phasing pedigrees

Read-based phasing deduces the haplotypes of an individual from sequencing reads that cover multiple
variants, while genetic phasing takes only genotypes as input and applies the rules of Mendelian
inheritance to infer haplotypes within a pedigree of individuals. Combining both into an approach that
uses these two independent sources of information – reads and pedigree – has the potential to deliver
results better than each individually.

In this chapter, we provide a theoretical framework combining read-based phasing with genetic
haplotyping, and describe a �xed-parameter algorithm and its implementation for �nding an optimal
solution. We show that leveraging reads of related individuals jointly in this way yields more phased
variants and at a higher accuracy than when phased separately, both in simulated and real data.
Coverages as low as 2× for each member of a trio yield haplotypes that are as accurate as when
analyzed separately at 15× coverage per individual.

5.1 Introduction

With sequencing cost decreasing at an exponential rate, it has now become a�ordable1 to sequence the
genomes of multiple related individuals in a pedigree. As a result, sequencing datasets from pedigrees
are becoming publicly available. Thus designing algorithms that solve the haplotyping problem for
pedigrees in a joint framework by considering both information sources, sequencing reads and principles
of Mendelian inheritance, is very important.

We recall that phasing methods can be classi�ed into three classes. First, haplotypes can be inferred
from genotype information of large cohorts based on the idea that common ancestry gives rise to shared
haplotype tracts, as reviewed by Browning and Browning (2011); Loh et al. (2016b,a). This approach
is known as statistical or population-based phasing. The idea is to explain the genotypes of the target
genome by �nding maximum likelihood paths through a reference panel (large set of haplotypes from
the population). It can be applied to unrelated individuals and only requires genotype data, which can
be measured at low cost. While very powerful for common variants, this technique is less accurate for
phasing rare variants and cannot be applied at all to private or de novo variants. Second, haplotypes can
be determined based on genotype data of related individuals, known as genetic haplotyping (Glusman
et al., 2014). To solve the phasing problem, one seeks to explain the observed genotypes under the
constraints imposed by the Mendelian laws of inheritance, while being parsimonious in terms of
recombination events. For larger pedigrees, such as parents with many children, this approach yields
highly accurate haplotypes (Roach et al., 2011; Abecasis et al., 2002; Williams et al., 2010). On the
other hand, it is less accurate for single mother-father-child trios and has the intrinsic limitation of
not being able to phase variants that are heterozygous in all individuals. Third, the sequences of the
two haplotypes can be determined experimentally, called molecular haplotyping. Many techniques
do not resolve the full-length haplotypes but yield blocks of varying sizes. Approaches furthermore

1https://www.genome.gov/27565109/the-cost-of-sequencing-a-human-genome/

57

https://www.genome.gov/27565109/the-cost-of-sequencing-a-human-genome/

58 | Chapter 5. Parameterized algorithm for phasing pedigrees

largely di�er in the amount of work, DNA, and money they require. As discussed in Chapter 1, on one
end of the scale, next-generation sequencing (NGS) instruments generate local phase information of
the length of a sequenced fragment at ever-decreasing costs. On the other end, upcoming long-read
technologies such as Paci�c Biosciences and Oxford Nanopore technologies produce long reads in the
order of magnitude of kilo-bases. For reviews of several computational approaches that utilize data
from these technologies to produce haplotypes (Rhee et al., 2016; Sedlazeck et al., 2018). As discussed in
Chapter 2, WhatsHap is an e�cient parameterized approach for phasing a single individual. It can, for
instance, use long read data from PacBio technology and solve the Minimum Error Correction problem
to produce two haplotypes.

Hybrid Approaches. The ideas underlying population-based phasing, genetic haplotyping, and read-
based phasing have been combined in many ways to create hybrid methods. Delaneau et al. (2013a), for
instance, use local phase information provided by sequencing reads to enhance their population-based
phasing approach SHAPEIT. Exploiting pedigree information for statistical phasing has also been
demonstrated to signi�cantly improve the inferred haplotypes (Marchini et al., 2006; Chen et al., 2013).
Using their heuristic read-based phasing approach HapCompass, Aguiar and Istrail (2013) note that
combining reads from parent-o�spring duos increases performance in regions that are identical by
descent (IBD). Beyond this approach, we are not aware of prior work to leverage family information
towards read-based phasing.

Contributions. Here, we build upon WhatsHap (Patterson et al., 2014, 2015) and generalize it to
jointly handle sequencing reads of related individuals. To this end, we de�ne the Weighted Minimum
Error-Correction on Pedigrees Problem, termed PedMEC, which generalizes the (weighted) MEC
problem and accounts for Mendelian inheritance and recombination. This problem is NP-hard. We
generalize the WhatsHap algorithm for solving this problem optimally and thereby show that PedMEC
is �xed-parameter tractable. When the maximum coverage is bounded, the run-time of our algorithm is
linear in the number of variants and does not explicitly depend on the read length, hence inheriting the
favorable properties of WhatsHap.

We target an application scenario where related individuals are sequenced using error-prone long-
read technologies such as PacBio sequencing. As a driving question motivating this research, we ask
how much coverage is needed for resolving haplotypes in related individuals as opposed to single or
unrelated individuals. Our focus is on phasing and we do not consider the genotyping step, which can
either be done from the same data or from orthogonal and potentially cheaper data sources such as
micro-arrays or short-read sequencing. On simulated and real PacBio data, we show that sequencing
each individual in a mother-father-child trio to 5× coverage is su�cient to establish a high-quality
phasing. This is in stark contrast to state-of-the-art single-individual read-based phasing, which yields
worse results even for 15× coverage with respect to both error rates and numbers of phased variants. We
furthermore demonstrate that our technique also exhibits favorable properties of genetic haplotyping
approaches: Because of genotype relationships between related individuals, we are able to infer correct
phases even between haplotype blocks that are not connected by any sequencing reads in any of the
individuals.

5.2 The Weighted Minimum Error Correction Problem on Pedigrees

As discussed in Chapter 1, read-based phasing has predominantly been formulated as the Minimum
Error Correction (MEC) problem (Cilibrasi et al., 2007) and its weighted sibling wMEC (Greenberg et al.,
2004).

In this section, we present a novel formulation for jointly phasing individuals in a pedigree. To
this end, we generalize wMEC (see Problem 1.2) to account for multiple individuals in a pedigree
simultaneously while modeling inheritance and recombination. An overview of notation we use
is provided in Table 5.1. We assume our pedigree to contain a set of N individuals I = {1, . . . ,N }.

5.2. The Weighted Minimum Error Correction Problem on Pedigrees | 59

Table 5.1: Overview of common notation.

Notation Meaning Example
I Set of individuals {1, 2, 3, 4}
T Set of trio relationships {(1, 2, 3), (1, 2, 4)}

Fi ∈ {0, 1, –}Ri×M Input SNP matrix for individual i ∈ I
[

- - 1 0 1
0 1 1 1 -

]

Wi ∈ NRi×M Matrix of weights for individual i ∈ I
[

0 0 10 21 7
13 9 31 25 0

]
X ∈ NM Recombination cost vector (5, 20, 12, 23, 11)
gi ∈ {0, 1, 2}M Input genotypes for individual i (0, 2, 2, 1, 1)
A(k) Set of reads active in column k

{
[- - 1 0 1], [0 1 1 1 -]

}
∆C (k,B, t) Local cost for column k, bipartition B, 10

and transmission tuple t
C(k,B, t) DP table entry for column k, bipartition B, 37

and transmission tuple t
h0
i , h1

i ∈ {0, 1}M Sought haplotypes for individual i (0, 1, 1, 1, 0), (0, 1, 1, 0, 1)
tm→c , tf→c ∈ {0, 1}M Sought transmission vectors for trio (m, f , c) ∈ T (0, 0, 0, 1, 1)

Relationships between individuals are given as a set of (ordered) mother-father-child triples T . For
example, if I = {1, 2, 3, 4}, then T =

{
(1, 2, 3), (1, 2, 4)

}
corresponds to a pedigree where individuals 1

and 2 are the parents of individuals 3 and 4. We only consider non-degenerate cases without circular
relationships and where each individual appears as a child in at most one triple. Furthermore, we assume
all considered variants to be non-overlapping and bi-allelic. Each individual i comes with a genotype
vector gi ∈ {0, 1, 2}M , giving the genotypes of all M variants. Genotypes 0, 1, and 2 correspond to being
homozygous in the reference allele, heterozygous, and homozygous in the alternative allele, respectively.
In the context of phasing, we can restrict ourselves to the set of variants that are heterozygous in at
least one of the individuals, that is, to variants k such that gi(k) = 1 for at least one individual i ∈ I . For
each individual i ∈ I , a number of Ri aligned sequencing reads is provided as input, giving rise to one
SNP matrix Fi ∈ {0, 1, –}Ri×M and one weight matrixWi ∈ NRi×M per individual. We seek to compute
two haplotypes h0

i , h1
i ∈ {0, 1}M for all individuals i ∈ I . As before in the MEC problem, we want these

haplotypes to be consistent with the sequencing reads.

In addition, we want the haplotypes to respect the constraints given by the pedigree. Recall that
in each parent, the two homologous chromosomes recombine during meiosis to give rise to a haploid
gamete that is passed on to the o�spring. Therefore, each haplotype of a child should be representable
as a mosaic of the two haplotypes of the respective parent with few recombination events. To control
the number of recombination events, we assume a per-site recombination cost of X (k) to be provided as
input. Controlling the recombination cost per site is important because it is not equally likely to happen
at all points along a chromosome. Instead, recombination hotspots exist, where recombination is much
more likely to occur (and should hence be penalized less strongly in our model). The cost X (k) should
be interpreted as the (phred-scaled) probability that a recombination event occurs between variant k – 1
and variant k. To formalize the inheritance process, we de�ne transmission vectors tm→c , tf→c ∈ {0, 1}M
for each triple (m, f , c) ∈ T . The values tm→c(k) and tf→c(k) tell which allele at site k is transmitted
by mother and father, respectively. The haplotypes we seek to compute have to be compatible with
transmission vectors, de�ned formally as follows.

Definition 5.1 (Transmission vector compatibility). For a given trio (m, f , c) ∈ T , the haplotypes

60 | Chapter 5. Parameterized algorithm for phasing pedigrees

h0
m, h1

m, h0
f , h1

f , h0
c , h1

c ∈ {0, 1}M are compatible with the transmission vectors tm→c , tf→c ∈ {0, 1}M if

h0
c (k) =

{
h0
m(k) if tm→c(k) = 0

h1
m(k) if tm→c(k) = 1

and

h1
c (k) =

h0
f (k) if tf→c(k) = 0

h1
f (k) if tf→c(k) = 1

for all k ∈ {1, . . . ,M}.
With this notion of transmission vectors, recombination events are characterized by changes in the

transmission vector, that is, by positions k with tm→c(k – 1) 6= tm→c(k) or tf→c(k – 1) 6= tf→c(k). Given
our recombination cost vector X , the cost associated to a transmission vector can be written as follows
(in slight abuse of notation).
Definition 5.2 (Transmission cost). For a transmission vector tp→c ∈ {0, 1}M with p ∈ {m, f } and a
recombination cost vector X ∈ NM , the cost of tp→c is de�ned as

X (tp→c) :=
M∑
k=2

Jtp→c(k – 1) 6= tp→c(k)K · X (k),

where JSK = 1 if statement S is true and 0 otherwise.
To state the problem of jointly phasing all individuals in I formally, it is instrumental to consider

the set of matrix entries to be �ipped explicitly. We will therefore introduce a set of index pairs
Ei ⊂ {1, . . . , Ri}× {1, . . . ,M} where (j, k) ∈ Ei if and only if the bit in row j and column k of matrix Fi is
to be �ipped.
Problem 5.1 (Weighted Minimum Error Correction on Pedigrees, PedMEC). Let a set of individuals
I = {1, . . . ,N }, a set of relationships T on I , recombination costs X ∈ NM , and, for each individual
i ∈ I , a sequencing read matrix Fi ∈ {0, 1, –}Ri×M and corresponding weightsWi ∈ NRi×M be given.
Determine a set of matrix entries to be �ipped Ei ⊂ {1, . . . , Ri}× {1, . . . ,M} to make Fi feasible and two
corresponding haplotypes h0

i , h1
i ∈ {0, 1}M for each individual i ∈ I as well as two transmission vectors

tm→c , tf→c ∈ {0, 1}M for each trio (m, f , c) ∈ T such that∑
i∈I

∑
(j,k)∈Ei

Wi(j, k) +
∑

(m,f ,c)∈T
X (tm→c) + X (tf→c)

takes a minimum, subject to the constraints that all haplotypes are compatible with the corresponding
transmission vectors, if existing.

Note that for the special case of I = {1} and T = ∅, PedMEC is identical to wMEC. Therefore,
the PedMEC problem is also NP-hard. As discussed in Section 5.1, we are speci�cally interested in
an application scenario were the genotypes are already known. By using genotype data, we aim to
most bene�cially combine the merits of genetic haplotyping and read-based haplotyping. We therefore
extend the PedMEC problem to incorporate genotypes and term the resulting problem PedMEC-G.
Problem 5.2 (PedMEC with genotypes, PedMEC-G). Let the same input be given as for Problem 5.1
(PedMEC) and, additionally, a genotype vector gi ∈ {0, 1, 2}M for each individual i ∈ I . Solve the
PedMEC problem under the additional constraints that h0

i + h1
i = gi for all i ∈ I , where “+” refers to a

component-wise addition of vectors.
For the classical MEC problem, additionally assuming that all sites to be phased are heterozygous

is common (Chen et al., 2013). This variant of the MEC problem is a special case of PedMEC-G with
I = {1} and T = ∅ and g1(k) = 1 for all k.

5.3. Example of PedMEC | 61

1

0

1

-

-

32

15

27

0

0

0

-

-

25

33

42

0

1

1

0

-

13

25

23 0

0

-

-

124

29

17

1

1

1

-

-

32

5

17

0

1

0

-

25

31

12

0

1

0

1

13

15

23 0

1

-

-

34

29

17

0

1

1

-

-

32

15

7

0

1

0

-

-

25

3

12

0

0

0

1

-

13

15

23

0

1

0

-

-

34

29

17

A B

C

1 1 12112

18

91 22 87
recombination cost

1

0

1

-

-

0

0

0

-

-

0

1

1

0

-

0

0

-

-

1

1

1

-

-

0

1

0

-

0

1

0

1

0

1

-

-

0

1

1

-

-

0

0

0

-

-

0

0

0

1

- 0

1

0

-

-

1 1 1

0

1 0 0 1

0 1 1 0

haplotypes:

1 1 1 1

0 0 0 0

haplotypes:

0 0 0 0

1 0 1 0

haplotypes:

3

5

22

Cost:3+5+22

0

Input Output

minimize

Figure 5.1: Example shows the input instance and cheapest solution and the resultant haplotypes.

5.3 Example of PedMEC

In the following, we will see how the ideas of WhatsHap algorithm can be extended for solving PedMEC
and PedMEC-G. The basic idea is to use the same technique on the union of the sets of active reads
across all individuals i ∈ I , while adding some extra book-keeping to satisfy the additional constraints
imposed by pedigree and genotypes.

We consider the example in Figure 5.1 to illustrate how to solve a PedMEC instance. Consider a trio
with three individuals, mother, father and child. As input, the sequencing reads of each individual are
represented as SNP matrices Fi for i ∈ I = {A, B,C}. Also, we are given corresponding weight matrices
Wi that represent the likelihood of sequencing errors in each entry of the fragment matrices. Also, we
have a recombination vector X , representing the likelihood of recombination between two consecutive
variants. The sequencing errors present in reads create con�icts in these matrices. The objective here is
to generate con�ict-free matrices such that we obey the Mendelian laws of inheritance. This objective
is achieved by jointly minimizing the �ipping cost of the selected set of entries for all individuals and
the cost of recombination events in mother, father or both. As an output, we obtain two haplotypes for
each individual.

In this small example, it is easy to see that the entries marked in red boxes create con�ict in matrices.
The cheapest solution is to �ip these bits by paying a cost of 3 and 5, plus allowing one recombination
event in mother for a cost of 22.

Let us see how we can solve this PedMEC instance using a dynamic programming approach. We
assume that there are two haplotypes marked in green and purple for the mother, and in brown and
blue for the father as shown in Figure 5.2. The haplotypes for the child can be determined based on the
haplotypes transmitted from mother and father.

In our DP, we go column-wise from left to right. Let us consider the �rst column and compute

62 | Chapter 5. Parameterized algorithm for phasing pedigrees

1

0

1

-

-

32

15

27

0

0

0

-

-

25

33

42

0

1

1

0

-

13

25

23 0

0

-

-

124

29

17

1

1

1

-

-

32

5

17

0

1

0

-

25

31

12

0

1

0

1

13

15

23 0

1

-

-

34

29

17

0

1

1

-

-

32

15

7

0

1

0

-

-

25

3

12

0

0

0

1

-

13

15

23

0

1

0

-

-

34

29

17

A B

C

1 1 12112

18

1

0

1

-

0

0

0

-

0

1

1

0

-

0

0

-

-

1

1

1

-

-

0

1

0

-

0

1

0

1

0

1

-

-

0

1

1

-

-

0

0

-

-

0

0

0

1

- 0

1

0

-

-

1 1 1

= 00

1

1

5

32

15

27

32

5

17

32

15

7

Cost =

min{0,81} +

min{32,0} +

min{0,49} +
min{15,5}

= 5

Column 1

Input DP Initialisation

Figure 5.2: Example showing bipartition cost for the transmission vector 00 at column one.

DP cell value for the partitions shown in Figure 5.2 and a transmission value of 00; where the two
digits indicate which haplotype is transmitted from mother to child and father to child respectively.
Here, a value of 00 means that the mother transmits the green haplotype and the father transmits the
brown haplotype. To compute the minimum-cost allele assignment for each partition, we try di�erent
possible allele assignments. For example, �rst, we �ip all the entries in the partition to 1; and pay
costs based on the weights of the corresponding entries and, second, we try to �ip entries to 0 and pay
costs accordingly. For the green partition, we pay a cost of 0 if we �ip all entries to 0 and otherwise
15+7+32+27 = 81 for �ipping all entries to 1. Similarly, we compute the allele assignment costs for other
partitions too. We further take the minimum allele assignment for each partition and add the costs from
all partitions, which results in cost 5 for this example. Let us consider a di�erent transmission value
01. For this transmission value, the purple haplotype is transmitted from mother to child. Accordingly,
the partitions change and their corresponding allele assignment costs change correspondingly. For the
green partition, which is now transmitted to the child, costs of 0 if we �ip all bits to 0 and otherwise we
obtain costs 22 for �ipping all bits to 1. As before, we compute the minimum allele assignment cost for
each partition and resultant cost is 37 for this example. Similarly, we can compute partitions cost for all
possible partitions by considering di�erent transmission value and store them in a column of our DP
table.

Let us compute the partition cost for column two shown in Figure 5.3, given the DP column for
column one. Figure 5.3 shows partitions for transmission value 00, we compute the initialization cost as
we computed before in column one. For example, for green partition, we compute the initialization
cost (=3) as before, but we now additionally consider di�erent possibilities of recombination events
between two consecutive columns. Therefore, we pay an additional cost of 91 if the considered DP cell
at column one has transmission values 01 or 10, by allowing one recombination event for both cases. In
this way, when we compute the DP cell cost, we try all possibilities of recombination events (00, 01, 10,

5.4. Algorithm | 63

1

0

1

-

-

32

15

27

0

0

0

-

-

25

33

42

0

1

1

0

-

13

25

23 0

0

-

-

124

29

17

1

1

1

-

-

32

5

17

0

1

0

-

25

31

12

0

1

0

1

13

15

23 0

1

-

-

34

29

17

0

1

1

-

-

32

15

7

0

1

0

-

-

25

3

12

0

0

0

1

-

13

15

23

0

1

0

-

-

34

29

17

A B

C

1 1 12112

18

0

1

-

-

0

0

0

-

-

0

1

1

0

-

0

0

-

-

1

1

1

-

-

0

1

0

-

0

1

0

1

0

1

-

-

0

1

1

-

-

0

0

-

-

0

0

0

1

- 0

1

0

-

-

1 1 1

91 22 87
recombination cost

1

1

25

33

42

25

31

12

25

3

12

12

37= 01

= 00

Cost = 3

Recurrence Cost

=min{5,
37+1*91,
..... }
=5

3

Total cost
= 3+5 = 8

1

1

Input DP Recurrence

Column 2

Figure 5.3: Example showing bipartition cost for the transmission vector 00 at column two, given DP
column one.

11) with the previous cells and then take the minimum cost. Additionally, we consider the recursion
cost from the column one such that the partitions are consistent. For this example partition, it is easy
to see that the total cost is 8. Similarly, we compute partition cost for other partitions by trying all
transmissions values and store them in DP column two.

We recurse this process until the last column. Once we know the optimal partitions at the last
column, we can �nally backtrace to get the haplotypes for each individual.

Next, we describe the full algorithm more formally.

5.4 Algorithm

Algorithm Overview: Solving PedMEC and PedMEC-G. Let Ai(k) be the set of active reads in
column k of Fi. We now de�ne A(k) =

⋃
i∈I Ai(k). A bipartition B = (P ,Q) of A(k) now induces

bipartitions for each individual: Bi =
(
P ∩ Ai(k),Q ∩ Ai(k)

)
.

As before, we consider all bipartitions of A(k) for each column k, but now additionally distinguish
between all possible transmission values. We assume the set of trio relationships T to be (arbitrarily)
ordered and use a tuple t ∈ {0, 1}2|T | to specify an assignment of transmission values. Such an assignment
t can later (during backtracing) be translated into the sought transmission vectors: Assuming t to be an
optimal such tuple at column k, its relation to the transmission vectors is given by

t =
(
tm1→c1 (k), tf1→c1 (k), tm2→c2 (k), tf2→c2 (k), . . .

)
.

The transmission tuples give rise to one additional dimension of our DP table for PedMEC(-G), as
compared to the DP table for wMEC. For each column k, we compute table entries C(k,B, t) for all

64 | Chapter 5. Parameterized algorithm for phasing pedigrees

2|A(k)| bipartitions of reads and all 22|T | possible transmission tuples, for a total of 2|A(k)|+2|T | entries in
this column.

Computing Local Costs. Along the lines of Patterson et al. (2015), we �rst describe how to compute
the cost incurred by �ipping matrix entries in each column, denoted by ∆C(k,B, t), and then explain
how to combine them with entries in C(k – 1, ·, ·) to compute the cost C(k,B, t). The crucial point
for dealing with reads from multiple individuals in a pedigree is to realize that matrix entries from
haplotypes that are identical by descent (IBD) need to be identical (or need to be �ipped to achieve this).
For unrelated individuals (i.e. T = ∅), none of the haplotypes are IBD, giving rise to 2|I | sets of reads
for the 2|I | unrelated haplotypes. These 2|I | sets of reads are given by B and the cost ∆C (k, B, t) can be
computed by �ipping all matrix entries of reads within the same set to the same value.

For a non-empty T , the transmission tuple t tells which parent haplotypes are passed on to which
child. In other words, t identi�es each child haplotype to be IBD to a speci�c parent haplotype. We
can therefore merge the corresponding sets of reads since all reads coming from haplotypes that are
IBD need to show the same allele and need to be �ipped accordingly. In total, we obtain 2|I | – 2|T | sets
of reads, since each trio relationship implies merging two pairs of sets. We write S(k,B, t) to denote
this set of sets of reads induced by bipartition B and transmission tuple t in column k. The cost W a

k,S of
�ipping all entries in a read set S ∈ S(k,B, t) to the same allele a ∈ {0, 1} is given by

W a
k,S =

∑
(i,j)∈S

JFi(j, k) 6= aK · Wi(j, k),

where we identify reads in S by a tuple (i, j), telling that it came from individual i and corresponds to
row j in Fi. For PedMEC, i.e. if no constraints on genotypes are present, every set S can potentially be
�ipped to any allele a ∈ {0, 1}. Hence, the cost is given by

∆C (k,B, t) = min
a∈{0,1}S(k,B,t)

 ∑
S∈S(k,B,t)

W a(S)
k,S

 , (5.1)

that is, we minimize the sum of costs incurred by each set of reads S ∈ S(k,B, t) over all possible
assignments of alleles to read sets. For PedMEC-G, this minimization is constrained to only consider
allele assignments consistent with the given genotypes. To ensure that valid assignments exist, we
assume the input genotypes to be free of Mendelian con�icts.

Computing a Column of Local Costs. To compute the whole column ∆C(k, ·, ·), we proceed as
follows. In an outer loop, we enumerate all 22|T | values of the transmission tuple t. For each value of t,
we perform the following steps: We start with bi-partition B = (A(k), ∅) and compute all W a

k,S for all
sets S ∈ S(k,B, t) and all a ∈ {0, 1}, which can be done in O(|A(k)| + |I |) time. Next we enumerate all
bipartitions in Gray code order, as done previously (Patterson et al., 2015). This ensures that only one
read is moved from one set to another in each step, facilitating constant time updates of the values W a

k,S .
The value of ∆C(k,B, t) is then computed from the W a

k,S’s according to Equation (5.1), which takes
O(22|I | · |I |) time. Computing the whole column ∆C(k, ·, ·) hence takes O

(
22|T | · (2|A(k)| + 22|I | · |I |)

)
time.

DP Initialization. The �rst column of the DP table, C(1, ·, ·), is initialized by setting C(1,B, t) :=
∆C (1,B, t) for all bipartitions B and all transmission tuples t.

DP Recurrence. Recall that C(k,B, t) is the cost of an optimal solution for input matrices restricted
to the �rst k columns under the constraints that the sought bipartition extends B and that transmission
happened according to t at site k. Entries in column C(k + 1, ·, ·) should hence add up local costs incurred
in column k + 1 and costs from the previous column. To adhere to the semantics of C(k + 1,B, t),

5.5. Experimental Setup | 65

only entries in column k whose bipartitions are compatible with B are to be considered as possible
“predecessors” of C(k + 1,B, t).

Definition 5.3 (Bipartition compatibility). Let B = (P ,Q) be a bipartition of A and B′ = (P ′,Q′) be a
bipartition of A′. We say that B and B′ are compatible, written B ' B′, if P ∩ (A ∩ A′) = P ′ ∩ (A ∩ A′)
and Q ∩ (A ∩ A′) = Q′ ∩ (A ∩ A′).

Two bipartitions are therefore compatible when they agree on the intersection of the underlying
sets. Besides ensuring that bipartitions are compatible, we need to incur recombination costs in case
the transmission tuple t changes from k to k + 1. Formally, entries in column k + 1 are given by

C(k + 1,B, t) = ∆C (k + 1,B, t) (5.2)
+ min
B′∈B(A(k)):B′'B

t′∈{0,1}2|T |

{
C(k,B′, t′) + dH (t, t′) · X (k + 1)

}
,

where B
(
A(k)

)
denotes the set of all bipartitions of A(k) and dH is the Hamming distance. The distance

dH (t, t′) hence gives the number of changes in transmission vectors and thus the term dH (t, t′) · X (k + 1)
gives the recombination cost to be added.

Projection Columns. To ease computing C(k + 1, B, t) via Equation (5.2), we use the same technique
described by Patterson et al. (2015) and de�ne intermediate projection columns C∩(k, ·, ·). They can be
thought of as being between columns k and k + 1. Consequently, they are concerned with bipartitions
of the intersection of read sets A(k) ∩ A(k + 1) and hence contain 2|A(k)∩A(k+1)|+2|T | entries, which are
given by

C∩(k,B′, t) = min
B(A(k)):B'B′

{C(k,B, t)}. (5.3)

These projection columns can be created while computing C(k, ·, ·) at no extra (asymptotic) run-time.
Using these projection columns, Equation (5.2) becomes

C(k + 1,B, t) = ∆C (k + 1,B, t) (5.4)
+ min
t′∈{0,1}2|T |

{
C∩(k,B ∩ A(k), t′) + dH (t, t′) · X (k + 1)

}
,

where B ∩ A(k) := (P ∩ A(k),Q ∩ A(k)) for B = (P ,Q). We have therefore reduced the run-time of
computing this minimum to O(22|T |).

Runtime. Computing one column of local costs, ∆C (k, ·, ·), takesO
(
22|T | · (2|A(k)| +22|I | · |I |)

)
time, as

discussed above. For each entry, we use Equation (5.4) to compute the aggregate value of cost incurred
in present and past columns. Over all columns, we achieve a run-time ofO

(
M ·
(
22|T |+c+|I ||I | + 24|T |+c)),

where c = maxk{|A(k)|} is the maximum coverage.

Backtracing. An optimal bipartition and transmission vectors can be obtained by recording the
indexes of the table entries that gave rise to the minima in equations (5.4) and (5.3) when �lling the DP
table and then backtracing starting from the optimal value in the last column. Optimal haplotypes are
subsequently obtained using the bipartition and transmission vectors.

5.5 Experimental Setup

To evaluate the performance of our approach, we considered both real and simulated datasets.

66 | Chapter 5. Parameterized algorithm for phasing pedigrees

5.5.1 Real Data

The Genome in a Bottle Consortium (GIAB) has characterized seven individuals extensively using
eleven di�erent technologies (Zook et al., 2014). The data is publicly available. Here we consider the
Ashkenazim trio, consisting of three related individuals: NA24143 (mother), NA24149 (father) and
NA24385 (son). We obtained a consensus genotype call set (NIST_CallsIn2Technologies_05182015)
provided by GIAB, containing variants called by two independent technologies. For our benchmark, we
consider all bi-allelic SNPs on Chromosome 1 called in all three individuals, amounting to 141,256 in
total, and use the provided (unphased) genotypes.

Ground Truth via Statistical Phasing. To generate a ground truth phasing for comparison, we
used the population-based phasing tool SHAPEITv2-r837 (Delaneau et al., 2014) with default parameters.
The program was given the 1000 Genomes reference panel2, the corresponding genetic map3, and the
unphased genotypes as input. SNPs present in the GIAB call set but absent in the reference panel were
discarded, resulting in 140,744 phased SNPs, of which 58,551 were heterozygous in mother, 57,152 in
father and 48,023 in child. We refer to this set of phased SNPs as ground truth phased variants. We
emphasize that this phasing is solely based on genotypes and does not use phase information present
in the reads in any way and hence is completely independent. In the following, we refer to the original
genotypes from the GIAB call set (without phase information) restricted to this set of SNPs as ground
truth unphased genotypes, which we use as input for read-based phasing experiments described below.

PacBio Data. For each individual, we downloaded aligned Paci�c Biosciences (PacBio) reads4, which
had an average coverage of 42.3× for the mother, 46.8× for the father and 60.2× for the child, respectively.
The average mapped read length across mother was 8,328 bp, 8,471 bp and child 8,687 bp, for mother,
father, and child, respectively. For each individual, we separately downsampled the aligned reads to
obtain data sets of 2×, 3×, 4×, 5×, 10×, and 15× average coverage.

10XGenomics Data. The GemCode platform marketed by 10XGenomics uses a barcoding technique
followed by pooled short-read sequencing and data analysis through a proprietary software solution to
resolve haplotypes. Data from this platform is available from the GIAB project and represents phase
information obtained completely independently from either statistical phasing or PacBio reads. We
downloaded the corresponding �les5 for comparison purposes.

5.5.2 Simulated Data

Despite the high-quality data set provided by GIAB, we sought to complement our experiments by a
simulated data set. While the population-based phasing we use as ground truth is arguably accurate due
to a large reference panel and the high-quality genotype data used as input, it is not perfect. Especially
variants with low allele frequency present challenges for population-based phasers.

Virtual Child. As basis for our simulation, we use the haplotypes of the two parents from our ground
truth phased dataset. We generated two haplotypes of a virtual child by applying recombination and
Mendelian inheritance to the four parent haplotypes. In reality, recombination events are rare: All
of Chromosome 1 spans a genetic distance of approximately 292 cM, corresponding to 2.9 expected
recombination events along the whole chromosome. To include more recombinations in our simulated
data set, we used the same genetic map as above, but multiplied recombination rates by 10. The

2https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.tgz
3http://www.shapeit.fr/files/genetic_map_b37.tar.gz
4ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/(HG002_NA24385_son|HG003_NA24149_

father|HG004_NA24143_mother)/PacBio_MtSinai_NIST/MtSinai_blasr_bam_GRCh37/
5ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/(HG002_NA24385_son|HG003_NA24149_

father|HG004_NA24143_mother)/10XGenomics

https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.tgz
http://www.shapeit.fr/files/genetic_map_b37.tar.gz
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/(HG002_NA24385_son|HG003_NA24149_father|HG004_NA24143_mother)/PacBio_MtSinai_NIST/MtSinai_blasr_bam_GRCh37/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/(HG002_NA24385_son|HG003_NA24149_father|HG004_NA24143_mother)/PacBio_MtSinai_NIST/MtSinai_blasr_bam_GRCh37/
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/(HG002_NA24385_son|HG003_NA24149_father|HG004_NA24143_mother)/10XGenomics
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/(HG002_NA24385_son|HG003_NA24149_father|HG004_NA24143_mother)/10XGenomics

5.6. Performance Metrics | 67

recombination sites are sampled according to the probabilities resulting from applying Haldane’s
mapping function to the genetic distances between two variants. In line with our expectation, we
obtained 26 and 29 recombination sites for mother and father, respectively. The resulting child had
41,676 heterozygous variants.

Simulating PacBio Reads. We aimed to simulate reads that mimic the characteristics of the real
PacBio data set as closely as possible. For this simulation, we incorporate the variants of each individual
into the reference genome (hg19) to generate two true haplotypes for each individual in our triple. We
used the PacBio-speci�c read simulator pbsim by Ono et al. (2013) to generate a 30× data set for Chro-
mosome 1. The original GIAB reads were provided to pgsim as a template (via option –sample-fastq)
to generate arti�cial reads with the same length pro�le. Next, we aligned the reads to the reference
genome using BWA-MEM 0.7.12-r1039 by Li (2013) with option -x pacbio. As before for the real data,
the aligned reads for each individual were downsampled separately to obtain data sets of 2×, 3×, 4×,
5×, 10×, and 15× average coverage.

5.5.3 Compared Methods

Our main goal is to analyze the merits of the PedMEC-G model in comparison to wMEC; in particular
with respect to the coverage needed to generate a high-quality phasing. The algorithms to solve wMEC
and PedMEC-G described in Section 5.4 have been implemented in the WhatsHap software package6.
We emphasize that WhatsHap solves wMEC and PedMEC-G optimally. Since the focus of this study is
on comparing these two models, we do not include other methods for single-individual haplotyping. We
are not aware of other trio-aware read-based phasing approaches that PedMEC-G could be compared to
additionally.

The run-time depends exponentially on the maximum coverage. Therefore we prune the input data
sets to a target maximum coverage using the read-selection method introduced by Fischer and Marschall
(2016), which is implemented as part of WhatsHap. This target coverage constitutes the only parameter
of our method. For PedMEC-G, we prune the maximum coverage to 5× for each individual separately.
For wMEC, we report results for 5× and 15× target coverage. The respective experiments are referred
to as PedMEC-G-5, wMEC-5, and wMEC-15. For wMEC, we use the additional “all heterozygous”
assumption (see Section 5.4), to also give it the advantage of being able to “trust” the genotypes, as is
the case for PedMEC-G. Both wMEC and PedMEC-G were provided with the ground truth unphased
genotypes for the respective data set. PedMEC-G was additionally provided with the respective genetic
map (original 1000G genetic map for real data and scaled by factor 10 for simulated data).

As described above, the ground truth phased variants was generated by SHAPEIT with default
parameters, implying that SHAPEIT treated the three samples as unrelated individuals. For comparison
purposes, we re-ran SHAPEIT and provided it with pedigree information. We refer to the resulting
phased data set as SHAPEIT-trio. Moreover, we ran duoHMM (v0.1.7) by O’Connell et al. (2014) on the
resulting �les to further improve the phasing.

5.6 Performance Metrics

We compare each phased individual to the respective ground truth haplotypes separately and only
consider sites heterozygous in this individual.

Phased SNPs. For read-based phasing of a single individual (wMEC), we say that two heterozygous
SNPs are directly connected if there exists a read covering both. We compute the connected components
in the graph where SNPs are nodes and edges are drawn between directly connected SNPs. Each
connected component is called a block. For read-based phasing of a trio (PedMEC), we draw an edge
when two SNPs are connected by a read in any of the three individuals. In both cases, we count a SNP as

6https://bitbucket.org/whatshap/whatshap

https://bitbucket.org/whatshap/whatshap

68 | Chapter 5. Parameterized algorithm for phasing pedigrees

●

●●●●●

●●

●

●

●

●●

Phasing error rate [%]

F
ra

ct
io

n
of

 u
np

ha
se

d
he

te
ro

zy
go

us
 S

N
P

s
[%

]
Coverage: 2x
Coverage: 3x
Coverage: 4x
Coverage: 5x
Coverage: 10x
Coverage: 15x

PedM EC● ●
wM EC● ●

0 1 2 3 4 5 60 1 2 3 4 5 60 1 2 3 4 5 6

0
5

10
15

20
0

5
10

15
20

0
5

10
15

20

Simulated dataset

●

●●●●●

0 1 2 3 4 5 6

0
5

10
15

20

●

0 1 2 3 4 5 6

0
5

10
15

20

●

●

●

●

●●

0 1 2 3 4 5 6

0
5

10
15

20
F

ra
ct

io
n

of
 u

np
ha

se
d

he
te

ro
zy

go
us

 S
N

P
s

[%
]

Coverage: 2x
Coverage: 3x
Coverage: 4x
Coverage: 5x
Coverage: 10x
Coverage: 15x

PedM EC● ●
wM EC● ●

Phasing error rate [%]

Real dataset

Figure 5.4: Simulated data set (top) and real dataset (bottom): phasing error rate (x-axis) versus
completeness in terms of the fraction of unphased SNPs (y-axis) for PedMEC-G-5 (solid line), wMEC-5
(dashed line), and wMEC-15 (dotted line). Average coverage (per individual) of input data is encoded by
circles of di�erent sizes.

5.7. Results | 69

0

1

2

3

4

5

6

0

1

2

3

4

5

6

Pe
rc

en
t d

is
ag

re
em

en
t

fa
th

er

m
ot

he
r

ch
ild

fa
th

er

m
ot

he
r

ch
ild

SHAPEIT disagreeing10XGenomics disagreeing

PedMEC-G-5 disagreeing

Figure 5.5: Three-way comparison of phasings provided by SHAPEIT, 10XGenomics, and PedMEC-G-5
(on 15× coverage data). Of all pairs of consecutive SNPs phased by all three methods, the percentages of
cases where the phasing reported by one method disagrees with the other two are reported. Missing to
100%: cases where all three methods agree. Left: SHAPEIT run with default parameters, corresponding
to our “ground truth phasing”; right: SHAPEIT run with pedigree information.

being phased when it is not the left-most SNP in its block (for the left-most SNP, no phase information
with respect to its predecessors exists). All other SNPs are counted as unphased. Below, we report the
average fraction of unphased SNPs over all three family members.

Phasing Error Rate. For each block, the �rst predicted haplotype is expressed as a mosaic of the
two true haplotypes, minimizing the number of switches. This minimum is known as the number of
switch errors. Note that the second predicted haplotype is exactly the complement of the �rst one, due
to only considering heterozygous sites. When two switch errors are adjacent, they are subtracted from
the number of switch errors and counted as one �ip error. The phasing error rate is de�ned as the sum
of switch and �ip errors divided by the number of phased SNPs.

Three-Way Phasing Comparison. To simultaneously compare phasings from three di�erent meth-
ods (e.g. SHAPEIT, 10XGenomics, and PedMEC-G-5), we proceeded as follows. For an individual, we
considered all pairs of consecutive heterozygous SNPs that have been phased by all three methods.
For each of these pairs, either all three methods agree or two methods agree (since only two possible
phases exist). Below, we discuss the fraction of these di�erent cases in relation to the total number of
considered SNP pairs.

5.7 Results

We report the results of wMEC-5, wMEC-15, and PedMEC-G-5 for both data sets, real and simulated.
All combinations of the three methods, two data sets, and six di�erent average coverages (2×, 3×,

70 | Chapter 5. Parameterized algorithm for phasing pedigrees

Child

0/1 0/1 1/11/1 0/1 0/1

Mother

0/1 0/0 0/10/1 0/00/0

0/0 0/0 0/1 0/0 0/01/0

Father

Figure 5.6: Two disjoint unconnected haplotype blocks for which phase information can be inferred
from the genotypes.

4×, 5×, 10× and 15×) were run. The predicted phasings are compared to the ground truth phasing
for the respective data set. That is, for the real data set, we compare to the population-based phasing
produced by SHAPEIT; for the simulated data set, we compare to the true haplotypes that gave rise to
the simulated reads. Figure 5.4 shows the fraction of unphased SNPs in comparison to the phasing error
rate (see Section 5.6) for all conducted experiments. A perfect phasing would be located in the bottom
left corner.

The In�uence of Coverage. Increasing the average coverage is bene�cial for phasing. For all three
methods (wMEC-5, wMEC-15, and PedMEC-G-5) and both data sets, the phasing error rate and the
fraction of unphased SNPs decrease monotonically when the average coverage is increased, as is clearly
visible in Figure 5.4. The e�ect is much more drastic for wMEC than for PedMEC, however. Apparently,
wMEC needs more coverage to compensate for PacBio’s high error rate while PedMEC can resort to
exploiting family information to resolve uncertainty.

The Value of Family Information. When operating on the same input coverage, PedMEC-G-5
clearly outperformed wMEC-5 and even wMEC-15 in all cases tested. This was true for phasing error
rates as well as for the fraction of phased positions. On the real data set with average coverage 10×,
for instance, wMEC-5 and wMEC-15 reached an error rate of 2.9% and 1.9%, while it was 0.5% for
PedMEC-G-5.

Most remarkingly, PedMEC-G-5 delivers excellent results already for very low coverages. When
working with an average coverage as low as 2× for each family member, it achieves an error rate of
1.4% and a fraction of unphased SNPs of 1.8% (on real data). In contrast, wMEC-15 needs 15× average
coverage on each individual to reach similar values (1.4% error rate and 1.3% unphased SNPs). When
running on 5× data, PedMEC-G-5’s error rate and fraction of unphased positions decrease to 0.75% and
0.85%, respectively. Therefore, it reaches better results while requiring only a third of the sequencing
data, which translates into signi�cantly reduced sequencing costs.

Comparison of Real and Simulated Data. When comparing results for simulated and real data,
i.e. top and bottom plots in Figure 5.4, the curves appear similar, with some important di�erence. In
terms of the fraction of phased SNPs (y-axis), results are virtually identical. This indicates that our
simulation pipeline establishes realistic conditions regarding this aspect. Di�erences in terms of error
rates (x-axis) are larger. In general, error rates in the real data are larger than in the simulated data,

5.7. Results | 71

which might be partly caused by a too optimistic error model during read simulation. On the other
hand, the population-based phasing used as ground truth for the real data set will most likely also
contain errors. Especially low-frequency variants present di�culties for population-based phasers.
Next, we therefore compare our ground truth statistical phasing to the independent phasing provided
by 10XGenomics.

Three-Way Comparison with 10XGenomics. Figure 5.5(left) shows the results of a three-way
comparison of ground truth statistical phasing, 10XGenomics, and PedMEC-G-5 on 15× coverage data.
We observe that the total fraction of cases where there is disagreement between the three methods is
below 1%. Out of these, 10XGenomics and the statistical phasing agree in a sizeable fraction of cases,
shown in blue. In these cases, the PacBio-based PedMEC-G-5 is likely wrong. Given PacBio’s high read
error rate, the existence of such cases is not surprising. On the other hand, there also is a signi�cant
fraction of cases where PedMEC-G-5 and 10XGenomics agree, shown in red, indicating likely errors
in the statistical phasing. Cases where PedMEC-G-5 and the statistical phasing agree but disagree
with 10XGenomics are very rare, which is likely due to the low error rates of short-read sequencing
underlying the 10XGenomics phasing and the resulting highly accurate phasing.

SHAPEIT-trio and duoHMM. Figure 5.5(right) shows the same three-way comparison, but uses
the results obtained from SHAPEIT when run in trio mode. We see that this improved the phasing for
the child but dramatically worsened the agreement for the parents, with more than 4% of all phased
SNP pairs for which 10XGenomics and PedMEC-G-5 agreed but disagreed with SHAPEIT-trio. Running
duoHMM (O’Connell et al., 2014) to improve the SHAPEIT-trio phasing did not lead to any changes,
which might be related to that duoHMM is designed to be run for large cohorts of related individuals.

Phase Information Beyond Block Boundaries. Genetic phasing operates on genotypes of a pedi-
gree, without using any sequencing reads. Figure 5.6 illustrates a case where we have two blocks that
are not connected by reads in any individual. Nonetheless phase information can be inferred from the
genotypes: Each block contains a SNP that is homozygous in both parents and heterozygous in the
child, which immediately establishes which haplotype is maternal and which is paternal in both blocks.
Note that this, in turn, also implies the phasing of the parents. By design, PedMEC-G implicitly exploits
such information. To demonstrate this, we used the real data set and merged all blocks reported by
PedMEC-G into one chromosome-wide block and determined the fraction of cases where phases were
correctly inferred between blocks—and hence between two SNPs that are not connected by reads in any
individual. This resulted in a fraction of 89.7% correctly inferred phased (averaged over all individuals
and coverages; standard deviation 1.4%). Repeating the same for wMEC yielded 50.4% correctly inferred
phased, as expected equalling a coin �ip.

Runtimes. All experiments have been run on a server with two Intel Xeon E5-2670 CPUs (10 cores
each) running at 2.5GHz. The implementation in WhatsHap is sequential, i.e. only using one CPU core.
In all cases, the time spent reading the input �les dominated the time spent in the phasing routine
itself. Processing all three individuals of the 5× coverage real data set took 31.1 min, 31.2 min, and
26.2 min for wMEC-5, wMEC-15, and PedMEC-G-5, respectively. This time included all I/O and further
processing. Of these times, 2.0 s, 4.1 s, and 101.0 s were spent in the phasing routine, respectively. For
input coverage 15×, total processing took 89.3 min, 93.9 min, and 65.4 min for wMEC-5, wMEC-15, and
PedMEC-G-5, respectively. Of this, 2.5 s, 149.9 s, 321.5 s were spent in the phasing routines, respectively.
We conclude that the phasing algorithm presented here is well suited for handling current data sets
swiftly. In the future, we plan to further optimize the implementation of I/O subroutines and provide
automatic chromosome-wise parallelization of data processing.

72 | Chapter 5. Parameterized algorithm for phasing pedigrees

5.8 Discussion

We have presented a unifying framework for integrated read-based and genetic haplotyping. By
generalizing the WhatsHap algorithm (Patterson et al., 2015), we provide a �xed-parameter tractable
method for solving the resulting NP-hard optimization problem, which we call PedMEC. When maximum
coverage and number of individuals are bounded, the algorithm’s run-time is linear in the number
of phased variants and independent of the read length, making it well suited for current and future
long-read sequencing data. This is mirrored by the fact that the run-time is dwarfed by the time required
for reading the input �les in practice. PedMEC can use any provided costs for correcting errors in
reads as well as for recombination events. By using phred-scaled probabilities as costs, minimizing the
cost can be interpreted as �nding a maximum likelihood phasing in a statistical model incorporating
Mendelian inheritance, read error correction, and recombination.

Testing the implementation on simulated and real trio data, we could show that the method is notably
more accurate than phasing individuals separately, especially at low coverages. Beyond enhanced
accuracy, our method is also able to phase a greater fraction of heterozygous variants compared to
single-individual phasing.

Being able to phase more variants is a key bene�t of the integrative approach. Whereas read-based
phasing can in principle only phase variants connected by a path through the covering reads, adding
pedigree information enables even phasing of variants that are not covered in all individuals since the
algorithm can “fall back” to using genotype information. Figure 1.5 illustrates the increased connectivity
while phasing a trio, resulting in more phased variants in practice.

Genetic haplotyping alone cannot phase variants that are heterozygous in all individuals, emphasiz-
ing the need for an integrative approach as introduced here. We demonstrate that such an approach
indeed yields better result and recommend its use whenever both reads and pedigree information are
available. Most remarkingly, the presented approach is able to deliver outstanding performance even
for coverages as low as 2× per individual, on par with performance delivered by single-individual
haplotyping at 15× coverage per individual.

This chapter has been published at ISMB Proceedings/Bioinformatics 2016 (Garg et al.,
2016), which has co-authors as Marcel Martin & Tobias Marschall. The �gures in this
chapter are taken from the paper. I co-developed the algorithm with Tobias Marschall
and co-wrote the paper with him.

Chapter 6

Agraph-based approach to diploid genomeassem-

bly

Constructing high-quality haplotype-resolved de novo assemblies of diploid genomes is important
to reveal the full extent of structural variation and its role in health and disease. Current assembly
approaches often collapse the two sequences into one haploid consensus sequence and, therefore, fail
to capture the diploid nature of the organism under study. Thus, designing an assembler that is able
to produce accurate and complete diploid assemblies, while being resource-e�cient with respect to
sequencing costs, is a key challenge to be addressed by the bioinformatics community.

In this chapter, we present a novel graph-based approach to diploid assembly, which integrates
accurate Illumina data and long-read Paci�c Biosciences (PacBio) data. We demonstrate the e�ectiveness
of our method on a pseudo-yeast diploid genome and show that we require as little as 50× coverage
Illumina data and 10× PacBio data to generate accurate and complete assemblies. Additionally, we
show that our approach has the ability to detect and phase structural variants.

6.1 Introduction

In previous chapters, we have studied the problem of reconstructing haplotypes with respect to a given
reference genome. Here, we consider de novo assembly where we seek to reconstruct all haplotype
sequences without relying on a reference genome. As introduced in Chapter 1, the process of assembling
the two genome sequences from sequencing reads in a haplotype-aware manner is known as diploid
or haplotype-aware genome assembly. and the generated fragmented assemblies are called “haplotigs”.
However, the characteristics of next generation sequencing (NGS) reads vary depending on the tech-
nology employed. While reads from second generation platforms are short, third generation platform
produce reads with very high error rates, which renders diploid genome assembly fundamentally
challenging . Additional challenges inherent in the genome assembly problem include dealing with
short and long genomic repeats, handling other rearrangements present in the genome, and scaling
e�ciently considering input size, genome size, and hardware availability.

Across the short, long, and hybrid categories (see Section 1.3), most current assemblers (Sohn and
Nam, 2016; Simpson and Pop, 2015) require collapsing the two genome sequences of a diploid sample
into a single haploid “consensus” sequence (or primary contig). The consensus sequence is obtained
by merging together the distinct alleles at heterozygous regions into a single allele, and therefore
losing important information. The resulting haploid de novo assembly does not represent the true
characteristics of the diploid input genome.

To generate diploid assemblies for heterozygous genomes, there are two standard linear approaches;
one uses haploid contig sequences (Chin et al., 2016; Pendleton et al., 2015; Seo et al., 2016; Mostovoy
et al., 2016), while the other partitions the reads while using the reference genome as a backbone

73

74 | Chapter 6. A graph-based approach to diploid genome assembly

(Glusman et al., 2014; Martin et al., 2016; Chaisson et al., 2017b). In both approaches, the reads are �rst
aligned (either to the reference genome or the contigs). Second, variants such as SNVs are detected
based on the aligned reads. Finally, the detected variants are phased using long reads from a same or
di�erent sequencing technology.

For both reference-guided and contig-based assembly , this third step—solving the phasing problem—
can be addressed by solving the minimum error correction (MEC) optimization problem discussed in
Chapter 3 and Chapter 4. There are several disadvantages to reference-guided assembly; for example,
the reads are initially aligned to the reference genome and therefore the process is prone to reference
bias. Also, this approach can fail to detect sequences or large structural variants that are unique to the
genome being assembled. Thus, we can not �nd the cause of the disease, which is actually associated
with this structural variant in the genome.

However, there are also several reasons why the set of sequences/contigs produced by contig-based
assembly is not ideal. First, the contigs produced by haploid assemblers ignore the heterozygous variants
in complex regions, opting instead to break contiguity to express even moderate complexity. Second,
the contigs do not capture end-to-end information in the genome; the ordering or relationships between
contigs are critical in order to generate end-to-end chromosomal-length assemblies.

Some newer diploid assembly methods include Weisenfeld et al. (2017), where 10x Genomics linked
read data is used to determine the actual diploid genome sequence. Their approach is based on de Bruijn
graphs and applies a series of graph simpli�cations, in which simple bubbles are detected and phased
by using (short) reads that stem from the same (long) input molecule, which is determined through
barcoding. There is also a recent study by Chin et al. (2016), who follows a linear phasing approach to
generate diploid assemblies (haplotigs) for diploid genomes by using PacBio reads.

Contributions. We propose a graph-based approach to generate haplotype-aware assemblies of
single individuals. Our contribution is twofold. First, we propose a hybrid approach to integrate
accurate Illumina and long PacBio reads to generate diploid assemblies. The Illumina reads are used to
generate an assembly graph that serves as a backbone for subsequent PacBio-based steps. Second, we
generalize the diploid assembly problem to encompass constructing the diploid assembly directly from
the underlying assembly graph. The two genome sequences can be seen as two paths over the regions
of heterozygosity in the assembly graph. We make some �rst steps towards performing read-based
phasing on graphs.

Figure 6.1 demonstrates the conceptual advantages of our graph-based approach over the Falcon
Unzip method. Consider four SNVs separated by two large SVs and there are four reads spanning these
variants. Falcon Unzip can not phase the central region because the reads r3 and r4 do not cover any
SNVs and resulting in incomplete haplotigs. In contrast, graph-based approaches attempt to detect all
types of SVs and phase all of them.

We demonstrate the feasibility of our approach by performing a haplotype-aware de novo assembly
of a whole pseudo-diploid yeast (SK1+Y12) genome. We show that we generate accurate, contiguous,
and correctly phased diploid genomes. Through analysis of di�erent coverage levels, we demonstrate
that we require only 50× short-read coverage and as little as 10× long-read coverage data to generate
diploid assemblies. This illustrates that our hybrid strategy is a cost-e�ective way of generating
haplotype-resolved assemblies. Finally, we show that we successfully detect and phase large structural
variants.

6.2 Further related work

The assembly problem was initially formalized as the shortest common super-string problem (SCS)(Maier,
1978) to generate consensus sequence. The SCS problem turned out to be NP-hard, thus Tarhio and
Ukkonen (1988) predominantly followed the greedy approach to �nd an approximate solution for
solving the assembly problem. The basic idea of this approach is to combine the two reads that overlap

6.2. Further related work | 75

Assembly graph

PacBio reads

Haplotigs
Primary contig

Falcon Unzip

Graph-based

Phased PacBio reads

Falcon Unzip

Graph-based

r1
r2

r3
r4

r5
r6

SNV1 SNV2 SV1 SV2 SNV3 SNV4

Haplotigs

Figure 6.1: Input: an assembly graph (top) (consisting of four SNVs and two SVs) and the PacBio reads
r1, r2, r3, r4, r5, r6 (gray). Output: the phased reads (colored in blue and red) and haplotigs (bottom) using
Falcon Unzip and our graph-based approach. Our graph-based phases central region, contrarily, Falcon
Unzip does not.

to a maximum extent in terms of length or base quality estimates. This process is repeated until a
prede�ned minimum quality threshold is reached.

The early genome assemblers (Sutton et al., 1995; Green et al., 1999) were based on the greedy
strategies and have been used during the Human Genome Project. Greedy approaches were also
explored for datasets generated by second-generation DNA sequencing technologies (Warren et al.,
2006; Jeck et al., 2007).

The major disadvantage of these greedy approaches is that the shortest common super-string
problem neglects an essential feature of complex (e.g., vertebrate) genomes: repeats. This has led to the
invention of graph-based models for sequence assembly to handle repeats and other complex genomes.
Graph-based models form the basis of most current genome sequence assemblers. As introduced
in Chapter 1, there are basically two types of graph models such as de Bruijn (Pevzner et al., 2001;
Medvedev et al., 2007; Todd, 1933) and OLC-based string graphs (Myers, 2005). Over the last few years,
a lot of e�ort has been devoted to improving the graph based assemblers.

The Edena assembler followed the string graph approach for short-read sequencing data (Hernandez
et al., 2008). To e�ciently construct the string graph, several assemblers were developed using the FM
index (Simpson and Durbin, 2010), which led to memory-e�cient assemblers for large genomes (Li,
2012; Simpson and Durbin, 2012). The latest version of SGA implemented Bloom �lter to reduce the
running time. Furthermore, several fast string graph construction algorithms were developed (Dinh
and Rajasekaran, 2011; Gonnella and Kurtz, 2012; Ben-Bassat and Chor, 2014).

In the direction of de Bruijn graph, there were also considerable e�orts involved. The ABySS
assembler (Simpson et al., 2009) introduced a representation of the graph as a hash table of k-mers,
with each k-mer storing a byte representing the presence or absence of its eight possible neighboring
k-mers. This representation helped in computational gain by allowing distribution of the hash table
across a cluster of computers. In recent years, the use of Bloom �lters (Bloom, 1970) has been gaining
popularity by representing a set of k-mers. The Bloom �lter was �rst applied to k-mer counting by
Melsted and Pritchard (2011). The FM-index data structure Ferragina and Manzini (2000), which was
basically designed for mapping reads to the reference genome, was also used for sequence assembly.
The FM-index has also been recently used for representing de Bruijn graphs (Bowe et al., 2012; Rødland,

76 | Chapter 6. A graph-based approach to diploid genome assembly

2013). The key point was that only a fraction of k-mers need to be directly stored as vertices was
observed by Ye et al. (2012). A similar technique was used to improve the memory consumption of the
popular SOAPdenovo assembler (Luo et al., 2012). All steps in SOAPdenovo pipeline can be customized
according to users requirements.

Several algorithms that particularly considered the mate-pair information during assembly have
been developed . In the works of Butler et al. (2008); Bankevich et al. (2012), the assembler attempted
to enumerate all the paths connecting the endpoints of a mate pair. The paired de Bruijn graph
(Medvedev et al., 2011) approach modi�ed the de Bruijn graph structure to implicitly encode the mate-
pair information, thereby simplifying, resolving repeats and sca�olding of the graph based on the
mate-pair information.

Long-read assemblers. Although these short-read assemblers can generate consensus sequences to
span entire chromosomes, they are very fragmented and lack the �ner resolution required to improve
contig lengths. Instead, the biggest gains in contig lengths stem from single-molecule sequencing,
which generates long-read datasets. These long-read technologies such as PacBio and ONT can generate
reads longer than Illumina, but have high error rates. More speci�cally, these reads are long enough to
cover the most common repeats in both microbial and vertebrate genomes and can therefore generate
highly continuous assemblies. Subsequent e�orts have been devoted to handling long read lengths and
high error rates error rates to generate good quality assemblies. Several assembly tools are speci�cally
designed for long-read PacBio and Nanopore data such as Canu (Koren et al., 2017), HINGE (Kamath
et al., 2017), Racon (Vaser et al., 2017), Falcon (Chin et al., 2016), and Miniasm (Li, 2016).

Canu, which is based on Celera Assembler, has been speci�cally designed for noisy single-molecule
sequences. Canu followed an adaptive overlapping strategy that involved aligning the PacBio reads based
on tf-idf weighted MinHash (Berlin et al., 2015) and constructed a sparse assembly graph. It was mainly
designed to support long-read data, while being e�cient in terms of run-time and coverage requirements,
and additionally performed repetition and haplotype separation. Racon corrected assemblies by �nding a
consensus sequence between reads and the assembly through the construction of partial order alignment
(POA) graphs. After aligning the reads by mapping tools available (e.g. Minimap or Graphmap), Racon
segmented the sequence and found the best alignment between a POA graph of the reads and the
assembly. The HGAP (Hierarchical Genome Assembly Process) pipeline was developed for assembling
PacBio-generated data without requiring correction using short-read data (Chin et al., 2013). HGAP
was a hierarchical pipeline; it selected the longest PacBio reads to form the basis of the assembly and
performed their error-correction using multiple sequence alignment. The corrected long reads were
then assembled, and a consensus sequence was generated using the complete data set. This method
often generated single-contig assemblies of bacterial genomes. The FALCON assembler followed the
design of the hierarchical genome assembly process (HGAP) but used more computationally optimized
components. It used string graph algorithm for genome assembly and being best suited for PacBio
reads. It included several important steps such as error correction of raw reads, pre-assembly error
correction, overlap �ltering, graph construction from overlaps and contig construction from graph.

Hybrid assemblers. Besides short and long-read assemblers, the hybrid approaches to combine
di�erent sequencing datasets provide another avenue for generating accurate, contiguous and complete
assemblies. The hybrid assemblers, SPAdes by Bankevich et al. (2012) and ALLPATHS-LG by Gnerre
et al. (2011), are DBG-based, which constructs the base graph using Illumina data and then sca�old
the assemblies using longer, less accurate reads such as PacBio. Furthermore, SPAdes also supports
ONT data as the long read complement to NGS data. Recently, Fan et al. (2017) demonstrates that the
combination of PacBio and Illumina delivers accurate structural variant calls.

Other technologies. An emerging trend to generate accurate, contiguous and complete assemblies is,
to combine cost-e�ective Illumina sequencing dataset with other sequencing techniques. One powerful
sequencing technique is chromatin conformation capture via proximity ligation and high-throughput

6.2. Further related work | 77

Figure 6.2: (a) An initial assembly graph is constructed by FALCON by error-correcting the reads. The
bubbles are collapsed into a consensus sequence “primary contig”. (b) Heterozygous SNPs are identi�ed
and phased, thus haplotype of reads is identi�ed. (c) The phased reads are used to incorporate the
haplotype-fused path into the initial assembly graph, thus �nally a set of primary contigs and associated
haplotigs are generated. Figure from the paper by (Chin et al., 2016).

sequencing (Hi-C) (Lieberman-Aiden et al., 2009). This technique involves in generating a paired-read
data type (two reads separated by some distance) but from a distribution of sizes that can span mega
bases. The main advantage of these data sets is in the sca�olding step to connect contigs, which help
in generating chromosome-length sca�olds, and phase haplotypes (Burton et al., 2013; Selvaraj et al.,
2013). Along the similar lines, Rice et al. (2017) demonstrates on using in vitro reconstituted chromatin
and Illumina sequencing to assemble the American alligator genome. Another sequencing technique
is the barcoding of short reads to tag groups of “linked reads” that all originate from a larger, single
molecule of DNA. For these synthetic long-read data, Weisenfeld et al. (2017) introduces a new assembler,
Supernova, for the de novo assembly of diploid human genomes. Additionally, in the latest version of
the ABySS assembler, Jackman et al. (2017) explores linked reads and optical mapping for improved
sca�olding.

In addition to haploid assemblers, there also exists an only available diploid assembler that has the
ability to generate diploid assemblies for diploid organisms.

Diploid assemblers. To date, there is only one diploid assembler, Falcon Unzip. It’s pipeline is given
in Figure 6.2. Falcon Unzip �rst constructs a string graph by using PacBio reads and then collapses
the bubbles representing divergent regions between homologous sequences (Fig. 6.2a) to generate
sets of “haplotype-fused contigs” , also called “primary contigs”. Next, Falcon Unzip aligns reads to
the primary contigs and then identi�es phases of reads using aligned reads over heterozygous SNVs.
(Fig. 6.2b). Afterwards, Falcon Unzip identi�es haplotypes for the genome and phases each read using
greedy approach. Phased reads are then used to assemble haplotigs (Fig. 6.2c) that form the �nal diploid
assembly with phased single-nucleotide polymorphisms (SNPs) and structural variants (SVs).

We now explain the phasing process followed by Falcon Unzip. The reads are aligned to primary
contigs and heterozygous SNPs (het-SNPs) are called by considering signal from sequence alignments. A

78 | Chapter 6. A graph-based approach to diploid genome assembly

Figure 6.3: Overview of the diploid assembly pipeline.

simple phasing algorithm based on greedy approach is followed to phase “chain of SNPs”. Additionally,
the phase to aligned reads can be assigned unambiguously if read covers su�cient heterozygous SNVs.
If a read covers su�cient het-SNPs, then Falcon Unzip assigns a phased tag to each read. Some reads
might not have enough phasing information, thus do not contain phased tag. For example, if there are
not enough het-SNP sites covered by a read, it assigns a special “un-phased tag” for each un-phased
read. Furthermore, the initial assembly graph is updated according to phased reads and the haplotigs
are generated in a greedy manner using local conservative approach.

6.3 Diploid assembly pipeline

In this section, we present a novel diploid assembly pipeline for generating diploid assemblies. Our
assembly work�ow uses short read (e.g. Illumina) and long read (e.g. PacBio) data combinedly, as
illustrated in Figure 6.3, and we describe the details of this process in the following.

6.3.1 Sequence graph

Our �rst step is to construct a sequence graph using short read data with a low error rate, as provided
by the Illumina platform.
Definition 6.1 (Sequence Graph). We de�ne a sequence graph Gs(Ns , Es) as a bidirected graph, consist-
ing of a set of nodesNs and a set of edges Es . The nodes ni are sequences over an alphabetA = {A,C,G, T }.
For each node ni ∈ Ns, its reverse-complement is denoted by n′i. An edge ei′j connects the nodes n′i
to nj . Nodes may be traversed in either the forward or reverse direction, with the sequence being
reverse-complemented in the reverse direction.

In words, edges represent adjacencies between the sequences of the nodes they connect. Thus, the
graph implicitly encodes longer sequences as the concatenated sequences of the nodes along walks
through the graph.

To illustrate this, we consider an example sequence graph Gs in Figure 6.4. It consists of a node set
Ns = {1, 1′, 2, 2′, 3, 3′, . . .} and an edge set Es = {1→ 2, 1→ 3′ . . .}.

6.3. Diploid assembly pipeline | 79

r3

10: TACC

11: ATAT

1: ACTA

2: A

5: TGA 6: AACT

9: CG

8: T

7: A

3: C

4: TG

r1

r4
r2

Figure 6.4: For a subgraph of Gs, the example shows two bubbles l1 and l2, and their corresponding
alleles. Reads r1, r2, r3, r4 traverse the bubbles.

To generate the sequence graph Gs , we �rst employ SPAdes (Bankevich et al., 2012), which constructs
and simpli�es a de Bruijn graph, and we subsequently remove the overlaps between the nodes in the
resulting graph in a process we call blunti�cation, explained in the Supplement.

6.3.2 Bubble detection in sequence graphs

To account for heterozygosity in a diploid genome, we perform bubble detection. The notion of bubble
we use is closely based on the ultrabubble concept as de�ned by Paten et al. (2017). Brie�y, bubbles
have the following properties:
• 2-node-connectivity. A bubble is bounded by �xed start and end nodes. Removing both the start and

end nodes disconnects the bubble from the rest of the graph. Note that a bubble can be viewed in
either orientation. If the graph is traversed in one direction, and a bubble is encountered that starts at
a node ni and ends at a node n′j , then that bubble can also be described as the bubble with start node
nj and end node n′i, as it would be encountered when traversing the graph in the opposite direction.

• Directed acyclicity. A bubble is directed and acyclic.
• Directionality. All paths through the bubble �ow from start to end.
• Minimality. No vertex in the bubble other than the start node ni (with proper orientation) forms a

pair with the end node n′j (with proper orientation) that satis�es the above properties. Similarly, no
vertex in the bubble other than n′j forms such a pair with ni.

A bubble can represent a potential sequencing error or genetic variation within a set of homologous
molecules. We represent bubbles as collections of alternative paths.

Definition 6.2 (Path). We de�ne path ai as a linear ordering of nodes ai = n1, . . . nm.

A bubble is a collection of paths with the same start and end node and can be de�ned as follows:

Definition 6.3 (Bubble). Formally, a bubble is represented as a collection of allele paths lk = {a1, a2 . . .}
where

a1 = (n1, n2, . . . nm), a2 = (n1, n3 . . . nm)

and so on.

For example, Figure 6.4 shows a set of two bubbles L = {l1, l2}, and the set of allele paths for the
bubble l2 is {a1, a2, a3}, where a1 = (6, 7, 8′, 11), a2 = (6, 9, 11), a3 = (6, 10, 11).

80 | Chapter 6. A graph-based approach to diploid genome assembly

6.3.3 PacBio alignments

For phasing bubbles, we consider long reads from third generation sequence technologies such as PacBio.
We align these long reads to the sequence graph Gs to generate paths through the graph. We perform
graph alignment using a banded version of the algorithm described by Rautiainen and Marschall (2017),
which is a generalization of semi-global alignment to sequence-to-graph alignment1.

There are several advantages of aligning PacBio reads to graphs instead of to a reference genome or
contigs. SNPs often occur near larger variants such as insertions and deletions. SNPs are thus often
missed in these regions when reads contain large mismatches with respect to the linear sequences they
are aligned against. Graph alignment allows the alignment of reads to variants appropriate to each
read’s phase, and to other types of complex events.
Definition 6.4 (Alignment). We de�ne a set of read alignments as R = {r1, r2, . . . , rj}, where each read
alignment rj is given by a path of oriented nodes in graph Gs, written rj = (n1, . . . , nm).

For example, in Figure 6.4, R = {r1, r2, r3, r4} and the read alignment path r1 can be written as
r1 = (1, 2, 5, 6, 7, 8′, 11).

6.3.4 Bubble ordering

The next stage of our algorithm is to obtain an ordering of the bubbles L = (l1, l2, . . . lk), which we refer
to as a bubble chain. For example, in Figure 6.4, L = (l1, l2) is a bubble chain. A general sequence graph
Gs is cyclic, due to di�erent types of repeats present in the genome that create both short and long cycles.
Ordering bubbles in such a graph is closely related to resolving repeats, which is a challenging problem.
In this study, we rely on the Canu algorithm (Koren et al., 2017) to provide a bubble ordering by aligning
Canu-generated contigs to our sequence graph. Furthermore, we detect repetitive bubbles—that is,
bubbles that would need to be traversed more than once in a �nal assembly—based on the depth of
coverage of aligned PacBio reads, and remove such bubbles. We deem a bubble repetitive if the number
of PacBio reads aligned to its starting node is greater than a coverage threshold speci�ed by the user
over the genome. For example, given a 30× (= c) data set and a repeat that occurs 20 (= r) times in the
genome, then the coverage at the bubble on average is 600 (= r · c).

6.3.5 Graph-based phasing

Given a sequence graph Gs, ordered bubbles L, and PacBio alignments R, the goal is to reconstruct two
haplotype sequences {h0, h1}, called haplotigs, along each chain of bubbles.
Definition 6.5 (Haplotype path). Formally, a pair of haplotype paths (h0, h1) can be de�ned as two
paths through a bubble chain in the sequence graph and denoted as:

h0 = (ns, n2, . . . ne)

h1 = (ns, n3, . . . ne)

where h0 and h1 may di�er at the heterozygous regions de�ned by bubbles, and ns and ne are the
start and end of the bubble chain.

The two genome sequences can be seen as two walks through the bubbles L in the sequence graph
Gs that are consistent with the PacBio alignments R. In maximum likelihood terminology, the goal is to
�nd the most likely haplotype paths given the alignment paths traversing through the bubbles. For
example, in Figure 6.4, given bubbles (l1, l2) and PacBio alignments R = {r1, r2, r3, r4}, the goal is to �nd
two maximum likelihood haplotype paths {h0, h1} such that each PacBio alignment is assigned to one of
the haplotypes.

1https://github.com/maickrau/GraphAligner

https://github.com/maickrau/GraphAligner

6.3. Diploid assembly pipeline | 81

For a linear chain of bubbles L, the task of �nding these two haplotype paths is equivalent to picking
one allele path per haplotype for each bubble. To this end, we note that an alignment path rj for a
given read can be viewed as a sequence of allele paths traversed in consecutive bubbles. We represent
this association of reads to allele paths in the form of a bubble matrix F ∈ {0, 1, . . .m, –}|R|×|L|, where
|R| is the number of reads, |L| is the number of bubbles along a chromosome, and m = maxk |lk | is the
maximum number of paths (or alleles) in any bubble lk ∈ L. The entryF (j, k) ∈ {0, 1, . . .m, –} represents
the allele path index in bubble lk that read rj is aligned to, where a value of “–” indicates that the read
does not cover the bubble. In Figure 6.4, note that the read alignment path r4 does not cover all the
nodes in any of the allele paths in l2 and hence we set the corresponding value F (4, 2) to “–”. As a
result, this read covers only one bubble, which renders it uninformative for phasing, and we do not
consider it further. The remaining phasing-informative reads in Figure 6.4 are represented as:

F =

l1 l2

r1 0 0
r2 2 2
r3 1 2

 (6.1)

Corresponding to F , we have a weight matrixW ∈ W |R|×|L|×m. Each entry inW(j, k) is a tuple
storing a weight for each allele, which can for instance re�ect “phred-scaled” (i.e. –10 log(p)) probabilities
that the read supports a given allele. The weight of “0” at the ith entry in the tupleW(j, k) encodes that
the read rj is aligned to allele path index i in bubble lk . The remaining non-zero values in tupleW(j, k)
store the con�dence scores of switching the aligned read rj to other alleles in bubble lk .

For example, the corresponding weight matrixW(j, k) for F (6.1) is given by:

W =

l1 l2

r1 [0, q1, q2] [0, q3, q4]
r2 [q9, q8, 0] [q11, q5, 0]
r3 [q10, 0, q7] [q5, q6, 0]

 (6.2)

where the entry W(1, 1) value [0, q1, q2] means that the read r0 is aligned to allele a0 at bubble l1.
Additionally, the cost of �ipping it to other alleles is q1 for a1 and q2 for a2.

We are now ready to present the problem formulation. The main insight is that solving phasing
for bubble chains is similar to solving the phasing problem for multi-allelic SNVs in reference-based
haplotype reconstruction. Therefore, we build on the previous formulation of the Minimum Error
Correction (MEC) problem (Lancia et al., 2001) and its weighted version (wMEC) (Lippert et al., 2002;
Patterson et al., 2015) and further adapt it to work on a subgraph consisting of a chain of bubbles,
de�ning the Minimum Error Correction for graphs (gMEC) problem.

Problem 6.1 (wMEC for bubble chains (gMEC)). Assume we are given a bubble chain L = (l1, . . . , l|L|)
and a set R of aligned reads rj that pass through these bubbles, with F (j, k) indicating the index of the
allele in bubble lk that the alignment of read rj passes through, or “–” if it does not pass through lk , and
thatW(j, k, i) is the cost of �ipping F (j, k) to new value i. We want to �nd two paths through L, each of
which consists of a sequence of allele indices specifying which allele the path takes in each bubble lk ,
and then to �ip entries of F such that each row is equal to one of the paths for all non-dash entries
while the incurred costs are minimized.

Note that the wMEC problem constitutes a special case of gMEC, where the input graph is a chain
of bi-allelic bubbles. Next, we describe how to solve gMEC via dynamic programming (DP), which is
build upon the WhatsHap approach by Patterson et al. (2015) described in Section 5.4.

Solving gMEC for bubble chains. The basic idea is to now extend the dynamic program to consider
all possible path-pairs through each bubble. In the bi-allelic case, we have only two paths in every
bubble and, therefore, there is only one pair of distinct paths. In the multi-allelic case, we consider all
possible path pairs in each bubble. The goal is to �nd an optimal pair of paths from the sequence graph

82 | Chapter 6. A graph-based approach to diploid genome assembly

Gs. Analogously to the WhatsHap algorithm for wMEC, we proceed from left to right using dynamic
programming.

To explain the dynamic programming algorithm that we use, consider a toy example with the
weight matrix (6.2):

W =

l1 l2

r1 [0, 10, 5] [0, 5, 8]
r2 [7, 6, 0] [5, 2, 0]
r3 [2, 0, 4] [4, 3, 0]

 (6.3)

DP cell initialization. Along similar lines as Patterson et al. (2015), we �rst compute the local
cost incurred by bipartition B = (R, S) in column k, denoted ∆C(k,B), and later combine it with the
corresponding costs incurred in previous columns. The cost W i

k,R of �ipping all entries in a read set R
to an allele index i ∈ {0, 1, . . . |lk |} is given by

W i
k,R =

∑
j∈R

JF (j, k) 6= iK · W(j, k, i),

In the same manner, we can compute costs W i
k,S for read set S to an allele index i.

To compute the cost incurred by a bipartition in a particular column k, we minimize over all
possible pairs of alleles in bubble lk . There are

(|lk |
2
)

such pairs. So given the corresponding column
vectors F (k) andW(k) of the bubble matrix and of the weight matrix, respectively, and the bipartition
B = (R, S) of active reads A(k), the cost ∆C(k,B) is computed by minimizing over all pairs of alleles
A = {(x, y) ∈ lk × lk |x 6= y, x < y}:

∆C (k,B) = min
(p0,p1)∈A

{
min{W p0

k,S + W p1
k,R,W p1

k,S + W p0
k,R}
}

, (6.4)

where the outer minimization considers all allele pairs and the inner minimization considers the two
possibilities of assigning those two alleles to the two haplotypes.

DP column initialization. We initialize the �rst DP column by setting C(1,B) := ∆C(1,B) for all
possible bipartitions B. We enumerate all bipartitions in Gray code order, as done previously in Patterson
et al. (2015). This ensures that only one read is moved from one set to another in each step, facilitating
constant time updates of the values W i

k,S .
For a variant matrix (6.1) and its corresponding weight matrix (6.3), the DP column cell for bipartition

B = (R, S) is given by
∆C (k, (R, S)) = min

{
W 0

k,R + W 1
k,S ,W 1

k,R + W 2
k,S ,

W 0
k,R + W 2

k,S ,W 1
k,R + W 0

k,S ,

W 2
k,R + W 1

k,S ,W 2
k,R + W 0

k,S
}

Now, plugging values from (6.3) into the above equation for di�erent bipartitions, ∆C (1, .) can be �lled
as follows:

∆C (1,({r1, r2, r3}, ∅)) =
min{9 + 0, 16 + 0, 9 + 0, 16 + 0, 9 + 0, 9 + 0} = 9

Similarly, we can compute ∆C (1, .) for other bipartitions ({r1, r2}, {r3}),
({r1, r3}, {r2}), (∅, {r1, r2, r3}), ({r3}, {r1, r2}), ({r2}, {r1, r3}).

Due to the use of the Gray code order, we can perform this operation for one DP column in
O(
(|lk |

2
)
· 2|A(k)|) time.

DP column recurrence. Note that C(k,B) is the cost of an optimal solution of Problem 6.1 for input
matrices restricted to the �rst k columns under the additional constraint that the solution’s bipartition
of the full read set extends B. Since column k lists all bipartitions, the optimal solution to the input
matrix consisting of the �rst k columns would be given by the minimum in that column. To compute

6.3. Diploid assembly pipeline | 83

Input : Set A(1) of reads covering bubble l1.
Output :C(1, .)

1 for all bipartitions B of column k do

2 Compute ∆C (k,B) using Equation 6.4 and store in C(1,B).

Algorithm 2: DP COLUMN INITIALIZATION

entries in column C(k + 1, ·), we add up local costs incurred in column k + 1 and costs from the previous
column (see Algorithm 3). To adhere to the semantics of C(k + 1,B) described above, only entries in
column k whose bipartitions are compatible with B are to be considered as possible “predecessors” of
C(k + 1,B).

Definition 6.6 (Bipartition compatibility). For bipartitions B = (P ,Q) of A and B′ = (P ′,Q′) of A′, B and
B′ are compatible if P ∩ A ∩ A′ = P ′ ∩ A ∩ A′ and Q ∩ A ∩ A′ = Q′ ∩ A ∩ A′, denoted by B ' B′

For example, consider the second column from (6.1) and (6.3). Let us compute C(2, .) for di�erent
bipartitions using recurrence in Algorithm 3:

C(2, ({r1, r2, r3}, ∅)) = min{9 + 0, 10 + 0, 9 + 0, 10 + 0, 8 + 0, 8 + 0}

+ min{C(1, ({r1, r2, r3}, ∅)} = 8 + 9 = 17

To �ll DP column C(2, .), we can analogously compute this for the remaining bipartitions ({r1, r2}, {r3}),
({r1, r3}, {r2}), (∅, {r1, r2, r3}), ({r3}, {r1, r2}), and ({r2}, {r1, r3}).

Input :C(1, .) for all bipartitions of bubble k.
Output :C(k, .) for all the columns k up to the last column |L|

1 for all columns k ∈ {2 . . . |L|} do
2 for all bipartitions B ∈ B(A(k)) do
3 Compute ∆C (k,B) using Equation 6.4.

4 Combine it with cost from column k – 1 to obtain cost for column k:

C(k,B) = ∆C (k,B) + min
B′∈B(A(k–1)):B'B′

C(k – 1,B′)

5 where B
(
A(k)

)
denotes the set of all bipartitions of A(k) and B ' B′ follows Definition 4.1.

Algorithm 3: DP TABLE
Backtracing. We can backtrace from the last column C(|L|, ·) to compute an optimal bipartition

B = (R, S) of all input reads. Given this bipartition, we obtain minimum-cost haplotypes as follows: Let
Bk = (Rk , Sk) with Rk = R ∩ A(k) and Sk = S ∩ A(k) be the induced bipartition in column k. We then set

h0(k) = ai with i := arg min
i′∈{0,1,...|lk |}

W i′
k,Rk ,

h1(k) = aj with j := arg min
j′∈{0,1,...|lk |}

W j′
k,Sk ,

where ai and aj refer to the corresponding allele paths of bubble k (see De�nition 6.2).
Time complexity. Computing one DP column takes O(

(m
2
)
· 2|A(k)|) time, and the total running time

is O(
(m

2
)
· 2|A(k)| · |L|) for |L| bubbles, where m is the maximum number of alleles in any bubble from L.

Running time is independent of read-length and, therefore, the algorithm is suitable for the increased
read lengths available from upcoming sequencing technologies.

84 | Chapter 6. A graph-based approach to diploid genome assembly

6.3.6 Generation of �nal assemblies

To generate �nal assemblies, for every connected component in the base sequence graph Gs , we traverse
along the haplotype paths (h0, h1) running through that component. For the nodes in each path, we
concatenate together the nodes’ sequences from the base sequence graph Gs (in either in their forward
or reverse-complement orientations, as speci�ed by the path) in order to generate the �nal haplotig
sequences.

6.4 Datasets and experimental setup

To evaluate the performance of our method, we consider the real data available from two haploid yeast
strains SK1 and Y12 (Yue et al., 2017), which we combine to generate a pseudo-diploid yeast. Both the
SK1 and Y12 yeast strains are deeply sequenced using Illumina and PacBio sequencing. The Illumina
dataset is sequenced to an average coverage of 469× with 151 bp paired end reads. We randomly
downsample the dataset to a lower average coverage of 50×. The PacBio data is sequenced to an
average coverage of 334× with an average read length of 4510 bp. For coverage analysis, we randomly
downsample the PacBio reads to obtain datasets of di�erent coverages 10×, 20× and 30× with their
average read-lengths of 4482, 4501 and 4516 bp respectively.

6.4.1 Pipeline implementation

Sequence graph. The �rst step in our pipeline is to perform error correction on the Illumina data by
using BFC (Li, 2015a), which, in our experience, retains heterozygosities well for diploid genomes. BFC
is used with default parameters and provided with a genome size of 12.16 Mbp. The second step is to
generate a sequence graph that includes heterozygosity information. To construct such a graph, we �rst
construct the assembly graph by using a modi�ed version of SPAdes v3.10.1 (Bankevich et al., 2012). We
modify the original SPAdes to skip the bubble removal step and retain the heterozygosity information
in the graph, and run it with default parameters plus the --only-assembler option. It uses the short
Illumina reads to generate a De Bruijn-based assembly graph without any error correction. We then
convert the assembly graph to a blunti�ed sequence graph using VG (Garrison et al., 2017). After graph
simpli�cation, the resulting sequence graph has 158,567 nodes and 190,767 edges.

Bubble detection. In the next stage, we use VG’s snarl decomposition algorithm (Paten et al., 2017)
to detect the regions of heterozygosity, or snarls, in the sequence graph. This results in 29,071 bubbles.

PacBio Alignments. After bubble detection, we align di�erent coverage levels (10×, 20× and 30×)
of long read PacBio data to the generated sequence graph using GraphAligner2. This resulted in 21,868,
43,459 and 73,129 PacBio alignments for input coverages of 10×, 20× and 30×, respectively.

Bubble ordering. To obtain an ordering of bubbles, we perform de novo assembly using Canu
v1.5 (Koren et al., 2017) on each PacBio dataset. As suggested by Giordano et al. (2017), we use
Canu v1.5 with the following parameter values: corMhapSensitivity=high, corMinCoverage=2,
correctedErrorRate=0.10, minOverlapLength=499, corMaxEvidenceErate=0.3. Next, we align
these Canu contigs to the sequence graph to obtain the bubble ordering, which we de�ne as the sequence
of bubbles encountered by each aligned contig. Note that we use Canu solely for bubble ordering.
In this paper, we restrict ourselves to phasing bubbles only in unique, non-repetitive regions. We
detect repetitive bubbles based on the coverage depth of the PacBio alignments and remove them from
downstream analyses. The coverage depth threshold used is 1.67 times the average coverage. This
results in 148, 80, and 71 bubble chains, and 26,576, 27,556 and 27,741 bubbles, at coverages of 10×, 20×,
and 30× respectively.

2https://github.com/maickrau/GraphAligner

https://github.com/maickrau/GraphAligner

6.4. Datasets and experimental setup | 85

SNV1 SNV2 SV1 SV2 SNV3 SNV4

Sequence graph

True reference

alignments

SNV1 SNV2 SV1 SV2 SNV3 SNV4

Predicted reference

alignments

Figure 6.5: For a subgraph of Gs , this example shows the true (top) and predicted (bottom) versions of two
haplotype alignments (red and blue) through a series of bubbles. When comparing the correspondingly-
colored lines between the two versions, we see one switch between SV1 and SV2: the prediction
contains one switch error. Six bubbles have been phased, for a total of �ve phase connections between
consecutive bubbles. Therefore, the phasing error rate is 1/5.

Graph-based phasing. For each of the coverage conditions, we take as input the ordered bubbles,
the long-read PacBio alignments and the sequence graph, and solve the gMEC problem by assuming
constant weights in the weight matrixW . The optimal bipartition is computed via backtracing and the
�nal haplotigs are generated by concatenating the node labels of the two optimal paths. These steps
have been implemented in our WhatsHap software as a subcommand phasegraph3.

6.4.2 Running Falcon Unzip

The main goal of this study is to measure the performance of phasing using a graph based approach,
and, in particular, the quality of haplotypes at heterozygous sites achievable by using this method with
low coverage PacBio data. Therefore, we compared our graph-based approach to the state-of-the-art
contig based phasing method Falcon Unzip, which also generates diploid assemblies.

The Falcon Unzip (Chin et al., 2016) algorithm �rst constructs a string graph composed of “haploid
consensus” contigs, with bubbles representing structural variant sites between homologous loci. Se-
quenced reads are then phased and separated for each haplotype on the basis of heterozygous positions.
Phased reads are �nally used to assemble the backbone sequence (primary contigs) and the alternative
haplotype sequences (haplotigs). The combination of primary contigs and haplotigs constitutes the
�nal diploid assembly, which includes phasing information dividing single-nucleotide polymorphisms
and structural variants between the two haplotypes.

We ran Falcon Unzip using the parameters given in the o�cial parameter guide4. We tried to run
Falcon Unzip for lower coverages of 10× and 20×, but it did not generate output in these cases (and we
assume it is not designed for such low coverages). Therefore, we only ran Falcon Unzip for 20× PacBio
coverage. Primary contigs and haplotigs were polished using the Quiver algorithm and corrected for
SNPs and indels using Illumina data via Pilon, with the parameters “--diploid” and “--fix all”
(Walker et al., 2014).

6.4.3 Assembly performance assessment

To evaluate the accuracy of the predicted haplotypes, we align reference assemblies of the two yeast
strains SK1 and Y12 (Yue et al., 2017) to the sequence graph. We emphasize that these reference

3Presently this functionality resides in the MAV branch, which will be merged to the master branch in the near future and
will be part of future WhatsHap releases.

4http://pb-falcon.readthedocs.io/en/latest/parameters.html

86 | Chapter 6. A graph-based approach to diploid genome assembly

assemblies are only used for evaluation purposes and are not a part of our assembly pipeline. We use
the following performance measures for the evaluation of diploid assemblies:

Phasing error rate. Over the yeast genome, we compare the di�erent diploid assemblies with the
ground truth haploid genomes of SK1 and Y12. As with the reference assemblies, we align the haplotigs
produced by Falcon Unzip to our sequence graph. For each phased bubble chain, the predicted haplotype
is expressed as a mosaic of the two true haplotypes, minimizing the number of switches. This minimum
then gives the number of switch errors. The phasing error rate is de�ned as the number of switch errors
divided by the number of phased bubbles. Figure 6.5 illustrates this calculation for a toy example. The
top panel shows the true references aligned to the sequence graph. At the bottom, predicted haplotypes
(from Falcon Unzip or our graph-based approach) are aligned to the graph. Comparing the true and
predicted haplotypes, we see one switch between SV1 and SV2, which means that the switch error
count is one. The number of phase connections between consecutive bubbles is �ve and the resulting
switch error rate for this example is 1/5.

Average Percent Identity. We consider the best assignment of each haplotig to either of the two true
references, obtained by aligning the haplotig to the references. For each whole diploid assembly, we
compute the average of the best-alignment percent identities over all haplotigs.

Assembly contiguity. We assess the contiguity of the assemblies by computing the N50 of haplotig
size.

Assembly completeness. We consider two assembly completeness statistics: �rst, the total length of
haplotigs assembled by each method, and second, the total number of unphased contigs.

6.5 Results

In this section, we present the results of our analysis of the diploid assemblies generated by our method
and by Falcon Unzip on the data sets described above.

Coverage analysis. To discover a cost-e�ective method for assembling a diploid genome, we consider
PacBio datasets that vary in terms of coverage—speci�cally, 10×, 20× and 30× coverage are considered.
One of the primary aims of our study is to compare two approaches—the graph-based approach we
implemented and the contig-based phasing done by Falcon Unzip. In doing so, we quantify the agreement
between the diploid assemblies generated by both methods and the true references. Table 6.1 shows
the assembly performance statistics for both of these methods. In order to assess the accuracy of the
competing diploid assemblies, we compute the phasing error rate and the average percent identity at
di�erent PacBio coverages. For the graph-based approach, we observe that as we increase the long
read coverage from 10× to 30×, the average identity of haplotigs increases from 99.5% to 99.8% and
the phasing error rate decreases from 2.5% to 0.7%. In contrast, Falcon Unzip produces haplotigs with
an average identity of 99.4% and phasing error rate of 3.8% at 30× coverage. Overall, comparing the
agreement between the graph-based approach (at 10× coverage) and Falcon Unzip (at 30× coverage) to
the true references, our graph-based approach delivers better haplotigs with respect to all measures
reported in Table 6.1. We believe that one reason for this is that we use an Illumina-based graph as a
backbone. Furthermore, optimally solving the gMEC formulation of the phasing problem most likely
contributes to generating accurate haplotigs. Overall, our analysis supports the conclusion that our
approach delivers accurate haplotype sequences even at a long read coverage as low as 10×.

To analyse the e�ect of di�erent coverages of the Illumina short-read datasets on the quality of
our haplotigs, we went back to the original, high coverage Illumina dataset (which we had been using
downsampled to 50× coverage) and downsampled it to 100× coverage, i.e. twice the amount of reads
used above. We observed that increasing the coverage did not have a drastic e�ect on the quality of
haplotigs. The average phasing identity rose to 99.81% and the total haplotig size was 23.9 Mbp, which
is virtually identical to the results for 50× as reported in Table 6.1.

With an increase in average PacBio coverage from 10× to 30×, the haplotype contiguity achievable
by using our approach improves from 40 kbp to 43 kbp. By way of comparison, Falcon Unzip delivers
haplotigs with a N50 length of 32 kbp at the same coverage level. This highlights the fact that our

6.5. Results | 87

Statistics PacBio Graph-based Falcon Unzip
coverage approach

Diploid assemblies Quality
Average Identity[%] 10× 99.50 —

20× 99.61 —
30× 99.80 99.4

Phasing error rate[%] 10× 2.5 —
20× 1.5 —
30× 0.7 3.8
Contiguity

N50 haplotig size [bp] 10× 40k —
20× 42k —
30× 43k 32k

Completeness
Haplotig size [Mbp] 10× 20.7 —

20× 21.1 —
30× 23.9 16.6

Unphased contigs 10× 2 —
20× 2 —
30× 2 77

Table 6.1: Comparison of two phasing methods, Falcon Unzip and our graph-based approach, at di�erent
PacBio coverage levels. For computing the “haplotig N50”, we only consider those portions of a contig
for which two haplotypes are available, i.e. those regions where Falcon reports both a primary contig
and an alternative haplotig. For “haplotig size”, we sum the length of contigs on both haplotypes
(“primary contigs” plus “haplotigs” in terms of Falcon’s output), so the target size is twice the genome
size (24.3Mbp in case of yeast).

approach generates more contiguous haplotypes compared to Falcon Unzip. In terms of haplotype
completeness, our approach yields diploid assemblies of length 20.7 Mbp, 21.1 Mbp and 23.9 Mbp at
average PacBio coverages of 10×, 20× and 30× respectively. At coverage 30×, Falcon Unzip delivers a
total assembly size of 16.6 Mbp, while the total length of both haplotypes of the pseudo-diploid yeast
genome is 24.3 Mbp. Our approach therefore delivers more complete haplotypes at a long-read coverage
of 10× compared to Falcon Unzip at a coverage of 30×. There are 2 haplotigs that are not phased by
our approach; this is due to the lack of heterozygosity over those regions. In comparison, there are
77 (out of 123) contigs that are not phased by Falcon Unzip. In summary, our graph-based approach
delivers complete and contiguous haplotype sequences even at a relatively low coverage of 10×.

Bubble characterization. We attempted to characterize the nature of the heterozygous genomic
variation encoded in the phased bubbles. There are 25,033 bi-allelic bubbles phased by our approach
when using 30× coverage PacBio data. Of these bubbles, there are 15,293 for which both allele sequences
have a length of at most 1 bp, out of which 15,258 are single base pair substitutions (SNVs) and 35 are
1 bp indels. The remaining 9,740 bubbles either encode two or more small variants or more complex
di�erences. To di�erentiate these cases, we computed an alignment between the two allele paths
and refer to those bubbles for which the alignment contains only substitutions but no indels as “pure
substitutions”. Figure 6.6a shows the joint distribution of length and (Hamming) distance for these
pure substitution bubbles. This analysis reveals, on the one hand, that many longer pure substitutions
have a low distance and hence encode multiple SNVs and, on the other hand, that there also exists a
population of more complex substitutions. For the 1,489 bubbles not classi�ed as pure substitutions,
which we refer to as “mixed bubbles”, Figure 6.6b shows the absolute length di�erence between the two

88 | Chapter 6. A graph-based approach to diploid genome assembly

0

200

400

600

0 10 20 30
Hamming distance

Le
ng

th
 [b

p]

250
500
750
1000
1250

count

a

0

1000

2000

0.00 0.25 0.50 0.75 1.00
Substitution rate

Le
ng

th
 [b

p]

50
100
150
200

count

c

Allele size difference [bp]

C
ou

nt

0 5 10 15 20

0
20

0
40

0
60

0

>2
0

b

Figure 6.6: Structural variation analysis of phased bubbles from our graph-based approach. a: Joint
distribution of allele length and Hamming distance, for pure substitutions. b. Distribution of size
di�erence between the two alleles, for mixed bubbles and indels. Pure substitutions always have a
size di�erence of 0, and are not included in the �gure. c. Joint distribution of the length of the longer
allele and the substitution rate, for mixed bubbles. With a higher substitution rate, the bubble has more
substitutions, and with a lower rate more indels.

alleles. While this di�erence is small for most bubbles, there are 93 bubbles with a length di�erence
of 21 bp or more. To further elucidate the nature of the sequence di�erences, Figure 6.6c presents the
joint distribution of length of the longer allele and substitution rate, which is de�ned as the fraction of
substitutions among all edit operations done to align the two sequences. (That is, a pure insertion or
deletion has a substitution rate of 0.)

6.6 Discussion

The Falcon Unzip method (Chin et al., 2016) is based purely on PacBio reads, which exhibit a high error
rate; it is therefore not suitable for lower coverages. By using (costly) high coverage PacBio data, Falcon
Unzip can generate good quality assemblies with an average haplotig identity of up to 99.99% (Chin
et al., 2016). However, it follows a conservative approach for phasing genomic variants. As sketched in
Figure 6.1, Falcon Unzip generates long primary contigs, but tends to phase them only partially.

To address the above problems, we have created a novel graph-based approach to diploid genome
assembly that combines di�erent sequencing technologies. By using one technology producing shorter,
more accurate reads, and a second technology delivering long reads, we produce accurate, complete
and contiguous haplotypes. Our method also provides a cost-e�ective way of generating high quality
diploid assemblies. By performing phasing directly in the space of sequence graphs—without �attening
them into contigs in intermediate steps—we can phase large structural variants, which is not possible
using linear approaches. We have tested our approach using real data, in the form of a pseudo-diploid
yeast genome, and we have shown that we deliver accurate and complete haplotigs. Furthermore, we
have shown that we can detect and phase structural variants.

In this study, we restricted ourselves to phasing unique, non-repetitive regions of the genome. As a
next step, we plan to develop techniques for phasing repetitive regions as well. Resolving repeats and
polyploids phasing are closely related problems, as pointed out by Chaisson et al. (2017a). Therefore,
we will aim to solve heterozygous variants and repeats in a joint phasing framework, in order to obtain
even more contiguous diploid genome assemblies that include both types of features. The machinery
we plan to develop for this purpose would also remove the need to run an external assembler (Canu)

6.6. Discussion | 89

for bubble ordering. Finally, our framework allows, in principle, for incorporating additional data from
other sequencing technologies, such as chromatin conformation capture (Burton et al., 2013), linked read
sequencing (Weisenfeld et al., 2017), and single-cell template strand sequencing (Strand-seq; Porubský
et al., 2016). Chapter 4 on reference-based haplotyping, we have shown such integrative approaches
to be very powerful when inferring chromosome-scale haplotypes; we believe similar results can be
obtained for de novo diploid genome assemblies.

This chapter will appear at ISMB Proceedings/Bioinformatics 2018, which has co-authors
as Mikko Rautiainen, Adam M Novak, Erik Garrison, Richard Durbin & Tobias Marschall.
The �gures in this chapter are taken from the paper. My contribution involves in
developing the phasing method and writing the paper.

90 | Chapter 6. A graph-based approach to diploid genome assembly

Chapter 7

Contributions and discussion

We summarize our algorithmic contributions for addressing the four open problems introduced in
Chapter 1. Furthermore, we provide broader perspectives on how these approaches can be utilized to
answer di�erent biological questions and further help in future precision medicine.

7.1 Contributions

Deriving accurate and complete haplotypes from sequencing datasets helps in genome-engineering,
evolutionary studies, and functional and comparative genomics. In this thesis, we have provided e�cient
algorithms to perform haplotyping based on di�erent information sources.

There are two ways to perform haplotyping using sequencing data: reference-based phasing and
haplotype-aware de novo assembly. In reference-based phasing, reads are aligned to the reference
genome and then the phasing is performed using aligned reads over the variants. Reference-based
phasing for a single individual is formulated as the Minimum Error Correction (MEC) and its weighted
version wMEC (as explained in Chapter 1). Some sequencing technologies give rise to Gapless-MEC
instances (e.g. PacBio, ONT), while other technologies produce general MEC instances (e.g. Strand-seq,
10X genomics). To study the complexity and approximation status of these instances is very important,
and helps in unraveling and understanding the structures.

7.1.1 Approximation status of Gapless-MEC

Third-generation sequencing technologies generate single-ended reads in the order of 10Kb in length.
These reads are often aligned to the reference genome for performing phasing. The alignment of these
reads can be mathematically represented in the form of a matrix, which is denoted by Gapless-MEC.
Gapless-MEC is a generalization for Binary-MEC because Binary-MEC instances contain only binary
values, whereas Gapless-MEC instances are allowed to contain wildcards at the end of each row. It is
known that Binary-MEC is in PTAS and MEC is APX-hard. However, there is a gap in our knowledge
of the approximation status of Gapless-MEC, which has been open for 10 years. As a part of this thesis,
we study the approximation status of Gapless-MEC and conclude that Gapless-MEC is in QPTAS.
Proving Gapless-MEC to be in QPTAS implies that the it is not APX-hard.

The main challenge in deriving a QPTAS for Gapless-MEC consists in sampling su�ciently many
rows such that we get haplotypes from end-to-end, otherwise we might miss parts which may lead to
an unbounded approximation. To handle this problem, we provided a dynamic programming approach
that captures the structure of the considered instances.

We started with simple instances (SWC) such that all the rows start from one column and are
ordered by increasing length of the binary part. Such instances are simple to solve because we can
apply the Binary-MEC algorithm for the sub-matrices starting from column one and then argue that
we generate good solution strings. As soon as we are at a sub-instance consisting of wildcards and
binary values, we carefully sample more rows and consider a weighted majority to generate haplotypes.

91

92 | Chapter 7. Contributions and discussion

Furthermore, we show that in expectation, the algorithm works well at each column and is in PTAS.
We have generalized this algorithm to solve complete SWC instances by using clever DP algorithms.

We further generalized this DP algorithm for SWC instances to solve sub-interval free instances.
The main insights are that we can determine a sequence of columns. At each column, we get SWC
instances at its left and right side. In order to combine the consecutive columns, we introduced the
notion of dominance such that we can solve two consecutive columns simultaneously in the DP, still
getting a good approximation. We proved that this dynamic programming algorithm is in PTAS.

Next, we generalize this dynamic programming algorithm to solve general Gapless-MEC instances.
The main observation is that we can divide the instances into di�erent length classes and each length
class can be solved in quasi-polynomial time. To combine di�erent length class instances, we use clever
techniques in DP and prove that the generalized dynamic program is in QPTAS.

7.1.2 Parameterized algorithm for phasing individual genomes

There are di�erent sequencing technologies available to sequence the genome, one of them is single-cell
template strand sequencing (Strand-seq) and others are long-read technologies. The strand-speci�c
technology provides global but sparse information about the haplotypes. The main advantage of Strand-
Seq technology is that it provides Illumina reads along with directionality information. The downside of
Strand-Seq data is its sparseness, which creates a necessity it to integrate with other available sources
such as PacBio and ONT to get complete haplotypes.

We have presented an integrative phasing strategy based on the parameterized WhatsHap algorithm
to generate accurate, contiguous and complete haplotypes. The parameterized algorithm has coverage
as a parameter, which is usually small enough in practice that makes it feasible to solve these instances in
short time. We have provided the integrative framework that consists of using MEC for data integration.
We have used a dynamic programming by Patterson et al. (2015) to solve these instances. The main idea
is to go column wise from left to right. At each column, we store the best allele assignment score for
each bipartition. In the recurrence step, when we compute the bipartition at k + 1 column, we consider
the bipartition from the previous column k such that the reads assigned to di�erent haplotypes remain
the same over two consecutive columns and we store the best allele assignment for the corresponding
bipartition in DP table. In this way, we recurse until the last column and �nally backtrace to generate
the haplotypes.

We have demonstrated the e�ectiveness of this algorithm on the real human genome. We have
performed a comprehensive analysis on the level of coverage required from each sequencing technology
in this integrative framework.

In the situation, when the Strand-Seq data is not available to provide global information about the
haplotypes, it is better to utilize the information from pedigrees.

7.1.3 Parameterized algorithm for phasing pedigrees

For a pedigree of genomes, we have extended the parameterized algorithm for a single individual to
additionally make use of the pedigree information. In this model, we want to �nd two haplotypes for each
individual in a pedigree such that we obey the Mendelian laws of inheritance. We therefore formulated
the combination of read-based phasing and genetic haplotyping into an integrative framework that we
call MEC on pedigrees (PedMec).

As input, we have SNP matrices and corresponding weight matrices for each individual in a pedigree.
Additionally, we have the recombination vector that represents the likelihood of recombination between
every pair of consecutive variants. We have provided a dynamic programming algorithm to solve
PedMec instances. The major di�erence between the pedigree framework and the single individual
case consists in the number of partitions. In our pedigree framework, we have four partitions, instead
of two, because the reads from the mother, father and child each can be partitioned into two sets, with
additional constraints that each read from the child partitions corresponds to either mother or father.
The constraints are represented by the transmission value, which determines which haplotype from

7.2. Discussion | 93

each parent is transmitted to the child. We compute the best allele assignment score for these four
partitions at each column and store them in a DP table. The recurrence step proceeds similarly to the
single individual case, but with additional step of trying all possibilities of recombination in mother
or father. We continue this process until the last column and backtrace to �nd haplotypes for each
individual in a pedigree.

The running time of pedigree algorithm is linear in 2t , where t is the number of trio-relationships,
but it still remains linear in the number of variants.

We demonstrate the e�ectiveness of our algorithm on both real and simulated data. We considered
the AJ trio from Genome in a Bottle Consortium (GIAB). We showed that we provided long-range
chromosomal-length accurate haplotypes by incorporating trio information. The main conclusion is we
require low coverages of 2× for each individual with family relationship information as opposed to a
single individual at 15× coverage.

7.1.4 Haplotype-aware de novo assembly

In all the approaches for reference-based haplotyping, we performed phasing based on the reads aligned
to the reference genome. Therefore, there is a reference bias. We have proposed a new approach to
reconstructing the genome sequences of diploid organisms directly from the reads, without relying
on a reference genome. The process of obtaining haplotype sequences from reads is called haplotype-
aware denovo assembly. Constructing these sequences is very important to understanding the true
characteristics of diploid organisms.

Current assemblers collapse the heterozygosity information represented by bubbles in assembly
graphs and therefore generate a haploid consensus sequence. A popular diploid assembler — Falcon
Unzip, which is purely PacBio based — has the ability to generate diploid assemblies. The main
disadvantages of Falcon Unzip method are that it fails for low coverage datasets and for genomes with
a high heterozygosity rate.

In order to handle these problems, we have provided a novel graph-based diploid assembly pipeline,
which makes use of short accurate and long error-prone sequencing reads. Our pipeline involves
constructing an assembly graph using Illumina data such that it acts as a backbone for subsequent steps.
This allows us to accurately detect SNVs represented by bubbles in the assembly graph. Furthermore,
we aligned the long reads to this graph to span over the bubbles and detect bubble chains. By using
these alignments of long reads to bubble chains, we perform phasing using a generalized wMEC model,
which is based on the observation that phasing bubble chains is equivalent to phasing multi-allelic
variants. Compared to solving wMEC with the WhatsHap algorithm, the running time increases by a
factor of

(a
2
)
, where a is the maximum number of alleles in any bubble.

We have demonstrated the e�ectiveness of our algorithm by combining two yeast strains to form a
pseudo-diploid yeast genome. We have shown that our graph-based approach has the ability to generate
more accurate, contiguous and complete assemblies even at a low coverage of 10×. Additionally, we
have pointed out that we can detect and phase large structural variations.

7.2 Discussion

Third generation sequencing technologies have vastly increased our ability to address the haplotyping
problem. Using long reads delivered by these technologies, the algorithms we designed are able to
generate accurate, contiguous and complete haplotypes. There remain some complex regions in diploid
genomes that are not yet solved by current approaches, either reference-based or de novo. We believe
that both reference-based and de novo approaches can be further improved to solve substantially
more complex and repetitive regions. In a de novo context, di�erent graph parameters such as tree-
width, maximum branching factor, copy number or other parameters can be explored to solve the
complex regions of genome. In a reference-based context, ILP, a greedy heuristic or other parameterized
approaches have the power to solve complex instances e�ciently.

94 | Chapter 7. Contributions and discussion

The techniques developed in this thesis can potentially also help to solve genomes of higher ploidy.
For such genomes, the current WhatsHap algorithm leads to running time of kc , where k is the ploidy
and c is the coverage. More e�cient ways could be explored to further improve the running time by
pruning the search space. Another conceivable extension of the WhatsHap algorithm is to separate
species based on long read data, thus solving the popular meta-genome assembly problem. Beyond that,
the techniques we have developed could have utility for transcriptome assembly of RNA sequences. In
all these problem, the main challenge is scalability, and therefore, e�cient data structure and algorithms
need to be developed to address these challenges.

Phasing large structural variants in complex regions during assembly was not possible earlier. These
variants include larger genomic ranges by substitution, insertion, deletion, copy number. Haplotype-
aware approaches from long read data can help in detecting structural variants in complex regions and
perform complete SV analyses.

In a general view, it is expected that in coming years reads become even longer and error rates
will be reduced. Constant algorithmic e�orts are required to handle the datasets that will arise from
new sequencing technologies. The methods proposed in this thesis could be re�ned, new applications
pursued, and other data types could be integrated.

By making algorithmic contributions to haplotyping, this thesis provides the genomics community
with computational tools to attack important biological questions such as haplotype-resolved studies
of genetic variation and genome instability. Accurate and complete haplotypes help in investigating
mechanisms behind complex phenotypes in humans, including ageing and common diseases such as
cancer. Having access to haplotype information promises insights into biological mechanisms of disease,
which further translates into potential advancements of precision medicine. Also, haplotype knowledge
is useful in population genetics, in particular for answering question of how evolution has shaped
genomic architecture.

In summary, haplotype information is essential for the complete description of individual genomes.
Access to haplotype resolved genomes enables us to discover novel genome features that were previously
hidden. The computational tools developed in this thesis enable haplotype-aware analyses and open up
new perspectives to answer open biological questions and to deepen our understanding of functioning
of genomes.

Bibliography

Abecasis, G. R., Cherny, S. S., Cookson, W. O., and Cardon, L. R. (2002). Merlin—rapid analysis of dense
genetic maps using sparse gene �ow trees. Nature genetics, 30(1):97.

Aguiar, D. and Istrail, S. (2012). Hapcompass: a fast cycle basis algorithm for accurate haplotype
assembly of sequence data. Journal of Computational Biology, 19(6):577–590.

Aguiar, D. and Istrail, S. (2013). Haplotype assembly in polyploid genomes and identical by descent
shared tracts. Bioinformatics, 29(13):i352–i360.

Alon, N. and Sudakov, B. (1999). On two segmentation problems. Journal of Algorithms, 33(1):173–184.

Ammar, R., Paton, T. A., Torti, D., Shlien, A., and Bader, G. D. (2015). Long read nanopore sequencing
for detection of hla and cyp2d6 variants and haplotypes. F1000Research, 4.

Antipov, D., Korobeynikov, A., McLean, J. S., and Pevzner, P. A. (2015). hybridspades: an algorithm for
hybrid assembly of short and long reads. Bioinformatics, 32(7):1009–1015.

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko,
S. I., Pham, S., Prjibelski, A. D., et al. (2012). Spades: a new genome assembly algorithm and its
applications to single-cell sequencing. Journal of computational biology, 19(5):455–477.

Bansal, V. and Bafna, V. (2008). HapCUT: an e�cient and accurate algorithm for the haplotype assembly
problem. Bioinformatics, 24(16):i153–i159.

Bansal, V., Halpern, A. L., Axelrod, N., and Bafna, V. (2008). An mcmc algorithm for haplotype assembly
from whole-genome sequence data. Genome research, 18(8):1336–1346.

Bashir, A., Klammer, A. A., Robins, W. P., Chin, C.-S., Webster, D., Paxinos, E., Hsu, D., Ashby, M., Wang,
S., Peluso, P., et al. (2012). A hybrid approach for the automated �nishing of bacterial genomes.
Nature biotechnology, 30(7):701–707.

Ben-Bassat, I. and Chor, B. (2014). String graph construction using incremental hashing. Bioinformatics,
30(24):3515–3523.

Ben-Elazar, S., Chor, B., and Yakhini, Z. (2016). Extending partial haplotypes to full genome haplotypes
using chromosome conformation capture data. Bioinformatics, 32(17):i559–i566.

Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G., Hall, K. P.,
Evers, D. J., Barnes, C. L., Bignell, H. R., et al. (2008). Accurate whole human genome sequencing
using reversible terminator chemistry. nature, 456(7218):53–59.

Berlin, K., Koren, S., Chin, C.-S., Drake, J. P., Landolin, J. M., and Phillippy, A. M. (2015). Assembling
large genomes with single-molecule sequencing and locality-sensitive hashing. Nature biotechnology,
33(6):623.

95

96 | Bibliography

Bloom, B. H. (1970). Space/time trade-o�s in hash coding with allowable errors. Communications of the
ACM, 13(7):422–426.

Bonizzoni, P., Dondi, R., Klau, G. W., Pirola, Y., Pisanti, N., and Zaccaria, S. (2016). On the minimum
error correction problem for haplotype assembly in diploid and polyploid genomes. Journal of
Computational Biology.

Bowe, A., Onodera, T., Sadakane, K., and Shibuya, T. (2012). Succinct de bruijn graphs. In International
Workshop on Algorithms in Bioinformatics, pages 225–235. Springer.

Browning, S. R. and Browning, B. L. (2007). Rapid and accurate haplotype phasing and missing-data
inference for whole-genome association studies by use of localized haplotype clustering. The American
Journal of Human Genetics, 81(5):1084–1097.

Browning, S. R. and Browning, B. L. (2011). Haplotype phasing: existing methods and new developments.
Nature Reviews Genetics, 12(10):703–714.

Burton, J. N., Adey, A., Patwardhan, R. P., Qiu, R., Kitzman, J. O., and Shendure, J. (2013). Chromosome-
scale sca�olding of de novo genome assemblies based on chromatin interactions. Nature biotechnology,
31(12):1119.

Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I. A., Belmonte, M. K., Lander, E. S., Nusbaum, C.,
and Ja�e, D. B. (2008). Allpaths: de novo assembly of whole-genome shotgun microreads. Genome
research, 18(5):810–820.

Casillas, S. and Barbadilla, A. (2017). Molecular population genetics. Genetics, 205(3):1003–1035.

Chaisson, M. J., Mukherjee, S., Kannan, S., and Eichler, E. E. (2017a). Resolving multicopy duplications
de novo using polyploid phasing. In International Conference on Research in Computational Molecular
Biology, pages 117–133. Springer.

Chaisson, M. J., Wilson, R. K., and Eichler, E. E. (2015). Genetic variation and the de novo assembly of
human genomes. Nature reviews. Genetics, 16(11):627.

Chaisson, M. J. P., Sanders, A. D., Zhao, X., Malhotra, A., Porubsky, D., Rausch, T., Gardner, E. J.,
Rodriguez, O., Guo, L., Collins, R. L., Fan, X., Wen, J., Handsaker, R. E., Fairley, S., Kronenberg,
Z. N., Kong, X., Hormozdiari, F., Lee, D., Wenger, A. M., Hastie, A., Antaki, D., Audano, P., Brand,
H., Cantsilieris, S., Cao, H., Cerveira, E., Chen, C., Chen, X., Chin, C.-S., Chong, Z., Chuang, N. T.,
Church, D. M., Clarke, L., Farrell, A., Flores, J., Galeev, T., David, G., Gujral, M., Guryev, V., Haynes-
Heaton, W., Korlach, J., Kumar, S., Kwon, J. Y., Lee, J. E., Lee, J., Lee, W.-P., Lee, S. P., Marks, P.,
Valud-Martinez, K., Meiers, S., Munson, K. M., Navarro, F., Nelson, B. J., Nodzak, C., Noor, A.,
Kyriazopoulou-Panagiotopoulou, S., Pang, A., Qiu, Y., Rosanio, G., Ryan, M., Stutz, A., Spierings, D.
C. J., Ward, A., Welsch, A. E., Xiao, M., Xu, W., Zhang, C., Zhu, Q., Zheng-Bradley, X., Jun, G., Ding,
L., Koh, C. . L., Ren, B., Flicek, P., Chen, K., Gerstein, M. B., Kwok, P.-Y., Lansdorp, P. M., Marth, G.,
Sebat, J., Shi, X., Bashir, A., Ye, K., Devine, S. E., Talkowski, M., Mills, R. E., Marschall, T., Korbel, J.,
Eichler, E. E., and Lee, C. (2017b). Multi-platform discovery of haplotype-resolved structural variation
in human genomes.

Chen, Z., Fu, B., Schweller, R., Yang, B., Zhao, Z., and Zhu, B. (2008). Linear time probabilistic algorithms
for the singular haplotype reconstruction problem from snp fragments. Journal of Computational
Biology, 15(5):535–546.

Chen, Z.-Z., Deng, F., and Wang, L. (2013). Exact algorithms for haplotype assembly from whole-genome
sequence data. Bioinformatics, 29(16):1938–1945.

Bibliography | 97

Chin, C.-S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J., Heiner, C., Clum, A., Copeland, A.,
Huddleston, J., Eichler, E. E., et al. (2013). Nonhybrid, �nished microbial genome assemblies from
long-read smrt sequencing data. Nature methods, 10(6):563–569.

Chin, C.-S., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion, G. T., Clum, A., Dunn, C., O’Malley,
R., Figueroa-Balderas, R., Morales-Cruz, A., et al. (2016). Phased diploid genome assembly with
single-molecule real-time sequencing. Nature methods, 13(12):1050–1054.

Church, G. M. (2005). The personal genome project. Molecular systems biology, 1(1).

Cilibrasi, R., Iersel, L. v., Kelk, S., and Tromp, J. (2007). The Complexity of the Single Individual SNP
Haplotyping Problem. Algorithmica, 49(1):13–36.

Collins, F. S., Morgan, M., and Patrinos, A. (2003). The human genome project: lessons from large-scale
biology. Science, 300(5617):286–290.

Consortium, . G. P. et al. (2010). A map of human genome variation from population-scale sequencing.
Nature, 467(7319):1061.

Consortium, . G. P. et al. (2015). A global reference for human genetic variation. Nature, 526(7571):68–74.

Consortium, E. P. et al. (2004). The encode (encyclopedia of dna elements) project. Science, 306(5696):636–
640.

Consortium, I. H. et al. (2005). A haplotype map of the human genome. Nature, 437(7063):1299.

Cygan, M., Fomin, F. V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., and Saurabh,
S. (2015). Parameterized algorithms, volume 4. Springer.

Delaneau, O., Howie, B., Cox, A. J., Zagury, J.-F., and Marchini, J. (2013a). Haplotype estimation using
sequencing reads. The American Journal of Human Genetics, 93(4):687–696.

Delaneau, O., Marchini, J., Consortium, . G. P., et al. (2014). Integrating sequence and array data to
create an improved 1000 Genomes Project haplotype reference panel. Nature communications, 5.

Delaneau, O., Zagury, J.-F., and Marchini, J. (2013b). Improved whole-chromosome phasing for disease
and population genetic studies. Nature methods, 10(1):5.

Deng, F., Cui, W., and Wang, L. (2013). A highly accurate heuristic algorithm for the haplotype assembly
problem. BMC genomics, 14(2):S2.

Dinh, H. and Rajasekaran, S. (2011). A memory-e�cient data structure representing exact-match overlap
graphs with application for next-generation dna assembly. Bioinformatics, 27(14):1901–1907.

Duitama, J., Huebsch, T., McEwen, G., Suk, E.-K., and Hoehe, M. R. (2010). ReFHap: A reliable and fast
algorithm for single individual haplotyping. In Proceedings of the First ACM International Conference
on Bioinformatics and Computational Biology, BCB ’10, pages 160–169, New York, NY, USA. ACM.

Eberle, M. A., Fritzilas, E., Krusche, P., Källberg, M., Moore, B. L., Bekritsky, M. A., Iqbal, Z., Chuang,
H.-Y., Humphray, S. J., Halpern, A. L., et al. (2017). A reference data set of 5.4 million phased human
variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree.
Genome research, 27(1):157–164.

Edge, P., Bafna, V., and Bansal, V. (2017). Hapcut2: robust and accurate haplotype assembly for diverse
sequencing technologies. Genome research, 27(5):801–812.

Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., et al.
(2009). Real-time dna sequencing from single polymerase molecules. Science, 323(5910):133–138.

98 | Bibliography

Eisenstein, M. (2015). Startups use short-read data to expand long-read sequencing market.

Falconer, E., Hills, M., Naumann, U., Poon, S. S., Chavez, E. A., Sanders, A. D., Zhao, Y., Hirst, M., and
Lansdorp, P. M. (2012). Dna template strand sequencing of single-cells maps genomic rearrangements
at high resolution. Nature methods, 9(11):1107–1112.

Fan, X., Chaisson, M., Nakhleh, L., and Chen, K. (2017). Hysa: a hybrid structural variant assembly
approach using next-generation and single-molecule sequencing technologies. Genome research,
27(5):793–800.

Feige, U. (2014). Np-hardness of hypercube 2-segmentation. arXiv preprint arXiv:1411.0821.

Ferragina, P. and Manzini, G. (2000). Opportunistic data structures with applications. In Foundations of
Computer Science, 2000. Proceedings. 41st Annual Symposium on, pages 390–398. IEEE.

Fischer, S. O. and Marschall, T. (2016). Selecting reads for haplotype assembly. biorxiv, 046771.

Fouilhoux, P. and Mahjoub, A. R. (2012). Solving VLSI design and DNA sequencing problems using
bipartization of graphs. Computational Optimization and Applications, 51(2):749–781.

Garg, S., Martin, M., and Marschall, T. (2016). Read-based phasing of related individuals. Bioinformatics,
32(12):i234–i242.

Garg, S. and Mömke, T. (2018). A qptas for gapless mec. arXiv preprint arXiv:1804.10930.

Garrison, E., Sirén, J., Novak, A. M., Hickey, G., Eizenga, J. M., Dawson, E. T., Jones, W., Lin, M. F., Paten,
B., and Durbin, R. (2017). Sequence variation aware genome references and read mapping with the
variation graph toolkit. bioRxiv, page 234856.

Giordano, F., Aigrain, L., Quail, M. A., Coupland, P., Bon�eld, J. K., Davies, R. M., Tischler, G., Jackson,
D. K., Keane, T. M., Li, J., et al. (2017). De novo yeast genome assemblies from minion, pacbio and
miseq platforms. Scienti�c reports, 7.

Glusman, G., Cox, H. C., and Roach, J. C. (2014). Whole-genome haplotyping approaches and genomic
medicine. Genome Medicine, 6(9):73.

Gnerre, S., MacCallum, I., Przybylski, D., Ribeiro, F. J., Burton, J. N., Walker, B. J., Sharpe, T., Hall,
G., Shea, T. P., Sykes, S., et al. (2011). High-quality draft assemblies of mammalian genomes from
massively parallel sequence data. Proceedings of the National Academy of Sciences, 108(4):1513–1518.

Gonnella, G. and Kurtz, S. (2012). Readjoiner: a fast and memory e�cient string graph-based sequence
assembler. BMC bioinformatics, 13(1):82.

Green, S. J., Monreal, R. P., White, A. T., Bayer, T. G., Green, S. J., Monreal, R. P., White, A. T., Bayer,
T. G., Arquiza, Y. D., White, A. T., Green, S. J., Buena�or, R., and Arquiza, J. N. Y. D. (1999). Phrap
documentation.

Greenberg, H. J., Hart, W. E., and Lancia, G. (2004). Opportunities for combinatorial optimization in
computational biology. INFORMS Journal on Computing, 16(3):211–231.

Grohme, M. A., Schloissnig, S., Rozanski, A., Pippel, M., Young, G. R., Winkler, S., Brandl, H., Henry, I.,
Dahl, A., Powell, S., et al. (2018). The genome of schmidtea mediterranea and the evolution of core
cellular mechanisms. Nature, 554(7690):56.

Harrow, J., Frankish, A., Gonzalez, J. M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken, B. L., Barrell,
D., Zadissa, A., Searle, S., et al. (2012). Gencode: the reference human genome annotation for the
encode project. Genome research, 22(9):1760–1774.

Bibliography | 99

He, D., Choi, A., Pipatsrisawat, K., Darwiche, A., and Eskin, E. (2010). Optimal algorithms for haplotype
assembly from whole-genome sequence data. Bioinformatics, 26(12):i183–i190.

Hernandez, D., François, P., Farinelli, L., Østerås, M., and Schrenzel, J. (2008). De novo bacterial
genome sequencing: millions of very short reads assembled on a desktop computer. Genome research,
18(5):802–809.

Hoe�ding, W. (1963). Probability inequalities for sums of bounded random variables. Journal of the
American statistical association, 58(301):13–30.

Huddleston, J., Chaisson, M. J., Steinberg, K. M., Warren, W., Hoekzema, K., Gordon, D., Graves-Lindsay,
T. A., Munson, K. M., Kronenberg, Z. N., Vives, L., et al. (2017). Discovery and genotyping of structural
variation from long-read haploid genome sequence data. Genome research, 27(5):677–685.

Hunt, M., De Silva, N., Otto, T. D., Parkhill, J., Keane, J. A., and Harris, S. R. (2015). Circlator: automated
circularization of genome assemblies using long sequencing reads. Genome biology, 16(1):294.

Idury, R. M. and Waterman, M. S. (1995). A new algorithm for dna sequence assembly. Journal of
computational biology, 2(2):291–306.

Jackman, S. D., Vandervalk, B. P., Mohamadi, H., Chu, J., Yeo, S., Hammond, S. A., Jahesh, G., Khan, H.,
Coombe, L., Warren, R. L., et al. (2017). Abyss 2.0: resource-e�cient assembly of large genomes using
a bloom �lter. Genome research, 27(5):768–777.

Jansen, T. (1998). Introduction to the theory of complexity and approximation algorithms. In Lectures
on Proof Veri�cation and Approximation Algorithms, pages 5–28. Springer.

Jeck, W. R., Reinhardt, J. A., Baltrus, D. A., Hickenbotham, M. T., Magrini, V., Mardis, E. R., Dangl, J. L.,
and Jones, C. D. (2007). Extending assembly of short dna sequences to handle error. Bioinformatics,
23(21):2942–2944.

Jiao, Y., Xu, J., and Li, M. (2004). On the k-closest substring and k-consensus pattern problems. In CPM,
volume 3109 of Lecture Notes in Computer Science, pages 130–144. Springer.

Kajitani, R., Toshimoto, K., Noguchi, H., Toyoda, A., Ogura, Y., Okuno, M., Yabana, M., Harada, M.,
Nagayasu, E., Maruyama, H., et al. (2014). E�cient de novo assembly of highly heterozygous genomes
from whole-genome shotgun short reads. Genome research, 24(8):1384–1395.

Kamath, G. M., Shomorony, I., Xia, F., Courtade, T. A., and David, N. T. (2017). Hinge: long-read assembly
achieves optimal repeat resolution. Genome research, 27(5):747–756.

Kang, S.-H., Jeong, I.-S., Cho, H.-G., and Lim, H.-S. (2010). Hapassembler: A web server for haplo-
type assembly from snp fragments using genetic algorithm. Biochemical and biophysical research
communications, 397(2):340–344.

Klau, G. W. and Marschall, T. (2017). A guided tour to computational haplotyping. In Conference on
Computability in Europe, pages 50–63. Springer.

Kleinberg, J. M., Papadimitriou, C. H., and Raghavan, P. (1998). Segmentation problems. In STOC, pages
473–482. ACM.

Kleinberg, J. M., Papadimitriou, C. H., and Raghavan, P. (2004). Segmentation problems. J. ACM,
51(2):263–280.

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy, A. M. (2017). Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome
research, 27(5):722–736.

100 | Bibliography

Kuleshov, V. (2014). Probabilistic single-individual haplotyping. Bioinformatics, 30(17):i379–i385.

Lancia, G., Bafna, V., Istrail, S., Lippert, R., and Schwartz, R. (2001). SNPs problems, complexity, and
algorithms. In Heide, F. M. a. d., editor, Algorithms ESA 2001, number 2161 in Lecture Notes in
Computer Science, pages 182–193. Springer Berlin Heidelberg.

Laszlo, A. H., Derrington, I. M., Ross, B. C., Brinkerho�, H., Adey, A., Nova, I. C., Craig, J. M., Langford,
K. W., Samson, J. M., Daza, R., et al. (2014). Decoding long nanopore sequencing reads of natural dna.
Nature biotechnology, 32(8):829–833.

Lawler, E. L. (1979). Fast approximation algorithms for knapsack problems. Mathematics of Operations
Research, 4(4):339–356.

Levy, S., Sutton, G., Ng, P. C., Feuk, L., Halpern, A. L., Walenz, B. P., Axelrod, N., Huang, J., Kirkness,
E. F., Denisov, G., et al. (2007). The diploid genome sequence of an individual human. PLoS biology,
5(10):e254.

Li, H. (2012). Exploring single-sample snp and indel calling with whole-genome de novo assembly.
Bioinformatics, 28(14):1838–1844.

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv
preprint arXiv:1303.3997.

Li, H. (2015a). Bfc: correcting illumina sequencing errors. Bioinformatics, 31(17):2885–2887.

Li, H. (2015b). Fermikit: assembly-based variant calling for illumina resequencing data. Bioinformatics,
31(22):3694–3696.

Li, H. (2016). Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
Bioinformatics, 32(14):2103–2110.

Li, M., Ma, B., and Wang, L. (2002). Finding similar regions in many sequences. J. Comput. Syst. Sci.,
65(1):73–96.

Li, Z., Chen, Y., Mu, D., Yuan, J., Shi, Y., Zhang, H., Gan, J., Li, N., Hu, X., Liu, B., et al. (2012). Comparison
of the two major classes of assembly algorithms: overlap–layout–consensus and de-bruijn-graph.
Brie�ngs in functional genomics, 11(1):25–37.

Lieberman-Aiden, E., Van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I.,
Lajoie, B. R., Sabo, P. J., Dorschner, M. O., et al. (2009). Comprehensive mapping of long-range
interactions reveals folding principles of the human genome. science, 326(5950):289–293.

Lim, H.-S., Jeong, I.-S., and Kang, S.-H. (2012). Individual haplotype assembly of apis mellifera (honeybee)
using a practical branch and bound algorithm. Journal of Asia-Paci�c Entomology, 15(3):375–381.

Lin, Y., Yuan, J., Kolmogorov, M., Shen, M. W., Chaisson, M., and Pevzner, P. A. (2016). Assembly
of long error-prone reads using de bruijn graphs. Proceedings of the National Academy of Sciences,
113(52):E8396–E8405.

Lippert, R., Schwartz, R., Lancia, G., and Istrail, S. (2002). Algorithmic strategies for the single nucleotide
polymorphism haplotype assembly problem. Brie�ngs in bioinformatics, 3(1):23–31.

Loh, P.-R., Danecek, P., Palamara, P. F., Fuchsberger, C., Reshef, Y. A., Finucane, H. K., Schoenherr, S.,
Forer, L., McCarthy, S., Abecasis, G. R., et al. (2016a). Reference-based phasing using the haplotype
reference consortium panel. Nature genetics, 48(11):1443.

Loh, P.-R., Palamara, P. F., and Price, A. L. (2016b). Fast and accurate long-range phasing in a uk biobank
cohort. Nature genetics, 48(7):811.

Bibliography | 101

Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., et al. (2012).
Soapdenovo2: an empirically improved memory-e�cient short-read de novo assembler. Gigascience,
1(1):18.

Ma, L., Xiao, Y., Huang, H., Wang, Q., Rao, W., Feng, Y., Zhang, K., and Song, Q. (2010). Direct
determination of molecular haplotypes by chromosome microdissection. Nature methods, 7(4):299.

Maier, D. (1978). The complexity of some problems on subsequences and supersequences. Journal of
the ACM (JACM), 25(2):322–336.

Marchini, J., Cutler, D., Patterson, N., Stephens, M., Eskin, E., Halperin, E., Lin, S., Qin, Z. S., Munro,
H. M., Abecasis, G. R., and Donnelly, P. (2006). A comparison of phasing algorithms for trios and
unrelated individuals. American Journal of Human Genetics, 78(3):437–450.

Martin, M., Patterson, M., Garg, S., Fischer, S. O., Pisanti, N., Klau, G. W., Schoenhuth, A., and Marschall,
T. (2016). Whatshap: fast and accurate read-based phasing. bioRxiv, page 085050.

Matsumoto, H. and Kiryu, H. (2013). Mixsih: a mixture model for single individual haplotyping. BMC
genomics, 14(2):S5.

Maxam, A. M. and Gilbert, W. (1977). A new method for sequencing dna. Proceedings of the National
Academy of Sciences, 74(2):560–564.

Mazrouee, S. and Wang, W. (2014). Fasthap: fast and accurate single individual haplotype reconstruction
using fuzzy con�ict graphs. Bioinformatics, 30(17):i371–i378.

Medvedev, P., Georgiou, K., Myers, G., and Brudno, M. (2007). Computability of models for sequence
assembly. In WABI, volume 4645, pages 289–301. Springer.

Medvedev, P., Pham, S., Chaisson, M., Tesler, G., and Pevzner, P. (2011). Paired de bruijn graphs: a novel
approach for incorporating mate pair information into genome assemblers. Journal of Computational
Biology, 18(11):1625–1634.

Melsted, P. and Pritchard, J. K. (2011). E�cient counting of k-mers in dna sequences using a bloom
�lter. BMC bioinformatics, 12(1):333.

Mitzenmacher, M. and Upfal, E. (2005). Probability and Computing. Cambridge.

Mostovoy, Y., Levy-Sakin, M., Lam, J., Lam, E. T., Hastie, A. R., Marks, P., Lee, J., Chu, C., Lin, C., Džakula,
Ž., et al. (2016). A hybrid approach for de novo human genome sequence assembly and phasing.
Nature methods, 13(7):587–590.

Motwani, R. and Raghavan, P. (2010). Randomized algorithms. Chapman & Hall/CRC.

Mousavi, S. R., Mirabolghasemi, M., Bargesteh, N., and Talebi, M. (2011). E�ective haplotype assembly via
maximum boolean satis�ability. Biochemical and biophysical research communications, 404(2):593–598.

Myers, E. W. (1995). Toward simplifying and accurately formulating fragment assembly. Journal of
Computational Biology, 2(2):275–290.

Myers, E. W. (2005). The fragment assembly string graph. Bioinformatics, 21(suppl_2):ii79–ii85.

Myers, E. W., Sutton, G. G., Delcher, A. L., Dew, I. M., Fasulo, D. P., Flanigan, M. J., Kravitz, S. A., Mobarry,
C. M., Reinert, K. H., Remington, K. A., et al. (2000). A whole-genome assembly of drosophila. Science,
287(5461):2196–2204.

Nagarajan, N. and Pop, M. (2009). Parametric complexity of sequence assembly: theory and applications
to next generation sequencing. Journal of computational biology, 16(7):897–908.

102 | Bibliography

Nagarajan, N. and Pop, M. (2013). Sequence assembly demysti�ed. Nature Reviews Genetics, 14(3):157–
167.

O’Connell, J., Gurdasani, D., Delaneau, O., Pirastu, N., Ulivi, S., Cocca, M., Traglia, M., Huang, J.,
Hu�man, J. E., Rudan, I., McQuillan, R., Fraser, R. M., Campbell, H., Polasek, O., Asiki, G., Ekoru, K.,
Hayward, C., Wright, A. F., Vitart, V., Navarro, P., Zagury, J.-F., Wilson, J. F., Toniolo, D., Gasparini,
P., Soranzo, N., Sandhu, M. S., and Marchini, J. (2014). A general approach for haplotype phasing
across the full spectrum of relatedness. PLoS Genet, 10(4):e1004234.

Ono, Y., Asai, K., and Hamada, M. (2013). PBSIM: PacBio reads simulator–toward accurate genome
assembly. Bioinformatics, 29(1):119–121.

Ostrovsky, R. and Rabani, Y. (2002). Polynomial-time approximation schemes for geometric min-sum
median clustering. J. ACM, 49(2):139–156.

Paten, B., Novak, A. M., Garrison, E., and Hickey, G. (2017). Superbubbles, ultrabubbles and cacti. In
International Conference on Research in Computational Molecular Biology, pages 173–189. Springer.

Patterson, M., Marschall, T., Pisanti, N., Iersel, L. v., Stougie, L., Klau, G. W., and Schönhuth, A. (2014).
WhatsHap: Haplotype assembly for future-generation sequencing reads. In Sharan, R., editor,
Proceedings of the 18th Annual International Conference on Research in Computational Molecular
Biology (RECOMB), number 8394 in Lecture Notes in Computer Science, pages 237–249. Springer
International Publishing.

Patterson, M., Marschall, T., Pisanti, N., van Iersel, L., Stougie, L., Klau, G. W., and Schönhuth, A.
(2015). WhatsHap: Weighted haplotype assembly for future-generation sequencing reads. Journal of
Computational Biology, 22(6):498–509.

Pendleton, M., Sebra, R., Pang, A. W. C., Ummat, A., Franzen, O., Rausch, T., Stütz, A. M., Stedman, W.,
Anantharaman, T., Hastie, A., et al. (2015). Assembly and diploid architecture of an individual human
genome via single-molecule technologies. Nature methods, 12(8):780–786.

Pevzner, P. A., Tang, H., and Waterman, M. S. (2001). An eulerian path approach to dna fragment
assembly. Proceedings of the National Academy of Sciences, 98(17):9748–9753.

Pirola, Y., Zaccaria, S., Dondi, R., Klau, G. W., Pisanti, N., and Bonizzoni, P. (2015). HapCol: accurate
and memory-e�cient haplotype assembly from long reads. Bioinformatics, page btv495.

Porubsky, D., Garg, S., Sanders, A. D., Korbel, J. O., Guryev, V., Lansdorp, P. M., and Marschall, T. (2017).
Dense and accurate whole-chromosome haplotyping of individual genomes. Nature Communications,
8(1):1293.

Porubský, D., Sanders, A. D., Wietmarschen, N. v., Falconer, E., Hills, M., Spierings, D. C. J., Bevova,
M. R., Guryev, V., and Lansdorp, P. M. (2016). Direct chromosome-length haplotyping by single-cell
sequencing. Genome Res.

Pryszcz, L. P. and Gabaldón, T. (2016). Redundans: an assembly pipeline for highly heterozygous
genomes. Nucleic acids research, 44(12):e113–e113.

Rautiainen, M. and Marschall, T. (2017). Aligning sequences to general graphs in o (v+ me) time. bioRxiv,
page 216127.

Remy, J. and Steger, A. (2009). Approximation schemes for node-weighted geometric steiner tree
problems. Algorithmica, 55(1):240–267.

Rhee, J.-K., Li, H., Joung, J.-G., Hwang, K.-B., Zhang, B.-T., and Shin, S.-Y. (2016). Survey of computational
haplotype determination methods for single individual. Genes & Genomics, 38(1):1–12.

Bibliography | 103

Rice, E. S., Kohno, S., John, J. S., Pham, S., Howard, J., Lareau, L. F., O’Connell, B. L., Hickey, G.,
Armstrong, J., Deran, A., et al. (2017). Improved genome assembly of american alligator genome
reveals conserved architecture of estrogen signaling. Genome research, 27(5):686–696.

Roach, J., Glusman, G., Hubley, R., Montsaro�, S., Holloway, A., Mauldin, D., Srivastava, D., Garg, V.,
Pollard, K., Galas, D., Hood, L., and Smit, A. (2011). Chromosomal haplotypes by genetic phasing of
human families. The American Journal of Human Genetics, 89(3):382–397.

Rødland, E. A. (2013). Compact representation of k-mer de bruijn graphs for genome read assembly.
BMC bioinformatics, 14(1):313.

Sanders, A. D., Falconer, E., Hills, M., Spierings, D. C., and Lansdorp, P. M. (2017). Single-cell template
strand sequencing by strand-seq enables the characterization of individual homologs. Nature Protocols,
12(6):1151–1176.

Sanger, F., Nicklen, S., and Coulson, A. R. (1977). Dna sequencing with chain-terminating inhibitors.
Proceedings of the national academy of sciences, 74(12):5463–5467.

Sedlazeck, F. J., Lee, H., Darby, C. A., and Schatz, M. C. (2018). Piercing the dark matter: bioinformatics
of long-range sequencing and mapping. Nature Reviews Genetics, page 1.

Selvaraj, S., Dixon, J. R., Bansal, V., and Ren, B. (2013). Whole-genome haplotype reconstruction using
proximity-ligation and shotgun sequencing. Nature biotechnology, 31(12):1111–1118.

Seo, J.-S., Rhie, A., Kim, J., Lee, S., Sohn, M.-H., Kim, C.-U., Hastie, A., Cao, H., Yun, J.-Y., Kim, J., et al.
(2016). De novo assembly and phasing of a korean human genome. Nature, 538(7624):243–247.

Simpson, J. T. and Durbin, R. (2010). E�cient construction of an assembly string graph using the
fm-index. Bioinformatics, 26(12):i367–i373.

Simpson, J. T. and Durbin, R. (2012). E�cient de novo assembly of large genomes using compressed
data structures. Genome research, 22(3):549–556.

Simpson, J. T. and Pop, M. (2015). The theory and practice of genome sequence assembly. Annual review
of genomics and human genetics, 16:153–172.

Simpson, J. T., Wong, K., Jackman, S. D., Schein, J. E., Jones, S. J., and Birol, I. (2009). Abyss: a parallel
assembler for short read sequence data. Genome research, 19(6):1117–1123.

Sohn, J.-i. and Nam, J.-W. (2016). The present and future of de novo whole-genome assembly. Brie�ngs
in bioinformatics, 19(1):23–40.

Sović, I., Skala, K., and Šikić, M. (2013). Approaches to dna de novo assembly. In Information &
Communication Technology Electronics & Microelectronics (MIPRO), 2013 36th International Convention
on, pages 351–359. IEEE.

Steinberg, K. M., Schneider, V. A., Graves-Lindsay, T. A., Fulton, R. S., Agarwala, R., Huddleston, J.,
Shiryev, S. A., Morgulis, A., Surti, U., Warren, W. C., et al. (2014). Single haplotype assembly of the
human genome from a hydatidiform mole. Genome research, 24(12):2066–2076.

Sudmant, P. H., Rausch, T., Gardner, E. J., Handsaker, R. E., Abyzov, A., Huddleston, J., Zhang, Y., Ye,
K., Jun, G., Fritz, M. H.-Y., et al. (2015). An integrated map of structural variation in 2,504 human
genomes. Nature, 526(7571):75–81.

Sutton, G. G., White, O., Adams, M. D., and Kerlavage, A. R. (1995). Tigr assembler: A new tool for
assembling large shotgun sequencing projects. Genome Science and Technology, 1(1):9–19.

104 | Bibliography

Tarhio, J. and Ukkonen, E. (1988). A greedy approximation algorithm for constructing shortest common
superstrings. Theoretical computer science, 57(1):131–145.

Tewhey, R., Bansal, V., Torkamani, A., Topol, E. J., and Schork, N. J. (2011). The importance of phase
information for human genomics. Nature reviews. Genetics, 12(3):215.

Todd, J. A. (1933). A combinatorial problem. Studies in Applied Mathematics, 12(1-4):321–333.

Trevisan, L. (2012). On khot’s unique games conjecture. Bulletin (New Series) of the American Mathe-
matical Society, 49(1).

Vaser, R., Sović, I., Nagarajan, N., and Šikić, M. (2017). Fast and accurate de novo genome assembly
from long uncorrected reads. Genome research, 27(5):737–746.

Vazirani, V. V. (2013). Approximation algorithms. Springer Science & Business Media.

Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M.,
Evans, C. A., Holt, R. A., et al. (2001). The sequence of the human genome. science, 291(5507):1304–
1351.

Vinson, J. P., Ja�e, D. B., O’Neill, K., Karlsson, E. K., Stange-Thomann, N., Anderson, S., Mesirov, J. P.,
Satoh, N., Satou, Y., Nusbaum, C., et al. (2005). Assembly of polymorphic genomes: algorithms and
application to ciona savignyi. Genome research, 15(8):1127–1135.

Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C. A., Zeng, Q.,
Wortman, J., Young, S. K., et al. (2014). Pilon: an integrated tool for comprehensive microbial variant
detection and genome assembly improvement. PloS one, 9(11):e112963.

Wang, R.-S., Wu, L.-Y., Li, Z.-P., and Zhang, X.-S. (2005). Haplotype reconstruction from snp fragments
by minimum error correction. Bioinformatics, 21(10):2456–2462.

Wang, T.-C., Taheri, J., and Zomaya, A. Y. (2012). Using genetic algorithm in reconstructing single
individual haplotype with minimum error correction. Journal of biomedical informatics, 45(5):922–930.

Wang, Y., Feng, E., and Wang, R. (2007). A clustering algorithm based on two distance functions for
mec model. Computational biology and chemistry, 31(2):148–150.

Warren, R. L., Sutton, G. G., Jones, S. J., and Holt, R. A. (2006). Assembling millions of short dna
sequences using ssake. Bioinformatics, 23(4):500–501.

Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M., and Ja�e, D. B. (2017). Direct determination of
diploid genome sequences. Genome research, 27(5):757–767.

Williams, A. L., Housman, D. E., Rinard, M. C., and Gi�ord, D. K. (2010). Rapid haplotype inference for
nuclear families. Genome biology, 11(10):R108.

Wu, J., Wang, J., and Chen, J. (2013). A heuristic algorithm for haplotype reconstruction from aligned
weighted snp fragments. International journal of bioinformatics research and applications, 9(1):13–24.

Wul�, S., Urner, R., and Ben-David, S. (2013). Monochromatic bi-clustering. In ICML (2), volume 28 of
JMLR Workshop and Conference Proceedings, pages 145–153. JMLR.org.

Xiao, C.-L., Chen, Y., Xie, S.-Q., Chen, K.-N., Wang, Y., Luo, F., and Xie, Z. (2016). Mecat: an ultra-fast
mapping, error correction and de novo assembly tool for single-molecule sequencing reads. bioRxiv,
page 089250.

Xie, M., Wang, J., and Chen, J. (2008). A model of higher accuracy for the individual haplotyping problem
based on weighted snp fragments and genotype with errors. Bioinformatics, 24(13):i105–i113.

Bibliography | 105

Xie, M., Wang, J., and Jiang, T. (2012). A fast and accurate algorithm for single individual haplotyping.
In BMC systems biology, volume 6, page S8. BioMed Central.

Yang, H., Chen, X., and Wong, W. H. (2011). Completely phased genome sequencing through chromo-
some sorting. Proceedings of the National Academy of Sciences, 108(1):12–17.

Ye, C., Ma, Z. S., Cannon, C. H., Pop, M., and Douglas, W. Y. (2012). Exploiting sparseness in de novo
genome assembly. In BMC bioinformatics, volume 13, page S1. BioMed Central.

Yue, J.-X., Li, J., Aigrain, L., Hallin, J., Persson, K., Oliver, K., Bergström, A., Coupland, P., Warringer, J.,
Lagomarsino, M. C., et al. (2017). Contrasting evolutionary genome dynamics between domesticated
and wild yeasts. Nature genetics, 49(6):913–924.

Zhao, Y.-Y., Wu, L.-Y., Zhang, J.-H., Wang, R.-S., and Zhang, X.-S. (2005). Haplotype assembly from
aligned weighted snp fragments. Computational Biology and Chemistry, 29(4):281–287.

Zheng, G. X., Lau, B. T., Schnall-Levin, M., Jarosz, M., Bell, J. M., Hindson, C. M., Kyriazopoulou-
Panagiotopoulou, S., Masquelier, D. A., Merrill, L., Terry, J. M., et al. (2016). Haplotyping germline and
cancer genomes with high-throughput linked-read sequencing. Nature biotechnology, 34(3):303–311.

Zimin, A. V., Puiu, D., Luo, M.-C., Zhu, T., Koren, S., Marçais, G., Yorke, J. A., Dvořák, J., and Salzberg, S. L.
(2017). Hybrid assembly of the large and highly repetitive genome of aegilops tauschii, a progenitor
of bread wheat, with the masurca mega-reads algorithm. Genome Research, 27(5):787–792.

Zook, J. M., Chapman, B., Wang, J., Mittelman, D., Hofmann, O., Hide, W., and Salit, M. (2014). Integrating
human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat
Biotechnol, 32(3):246–251.

106 | Bibliography

Appendices

107

Chapter A

Additional Details

A.1 Proof of Lemma 3.1

Proof. We show the claim by using a randomized argument. To this end, we assume that for each i, the
rows from Ui and Li are selected uniformly at random from Ui ∩ τ (M) and Li ∩ τ (M) and the rows from
U ′i and L′i are selected uniformly at random from U ′i ∩ τ ′(M) and L′i ∩ τ ′(M). We argue that for each
column, the expected number of errors is at most a factor (1 + O(ε)) larger than in an optimal solution.
Then the claim follows from linearity of expectation and the fact that there is a selection with at most
the expected number of errors.

We consider the jth column of M . Let c := τ (M)∗,j , but without rows that have an entry “–” in
column j. Let p := |{i : ci = 0}|/|c| be the fraction of zeros in c. By swapping the zeros and ones we can
assume w.l.o.g. that p ≥ 1 – p, i.e., p ≥ 1/2. Our assumption implies τj = 0 and the optimal solution has
(1 – p)|c| errors within c.

The general idea of the proof is as follows. Suppose we would select exactly one row from τ (M)
uniformly at random. Then with probability p, the algorithm has (1–p)|c| errors in c and with probability
(1 – p) the number of errors is p|c|. Therefore the expected number of errors is (p(1 – p) + (1 – p)p)|c| =
2p(1 – p)|c|. We obtain the approximation ratio 2p(1 – p)|c|/((1 – p)|c|) = 2p.

We will see that the approximation ratio improves with choosing several rows instead of a single
one. Additionally, we have to handle the circumstance that we only sample from U ∪ L and ignore X .

There is a further issue regarding U . Let s be the smallest index such that Us and c intersect, i.e., Us
is the �rst set with binary entries in column j. Then rows sampled for Us may be located outside of c
at positions with wildcards in column j. We avoid the complications caused by the wildcards by only
considering classes Ui for i > s.

To summarize, c has at least εr selected entries and we ignore at most 2ε2r of these due to X and Us .
For each i > s, we sample 1/ε3 rows from Ui. Let c′ be c restricted to

⋃
i>s Ui and let c′′ be c restricted to

L. Let ĉ be c without Us and X and let c̄ be the part of c in X ∪ Us. For each i, let c′i be the fraction of
zeros of c′ in Ui and c′′i the fraction of zeros of c′′ in Li.

For each i ≤ `, we de�ne p′i to be the fraction of zeros c′i and p′′i the fraction of zeros c′′i .
We de�ne a random variables Y ′i,k for each s < i ≤ 1/ε2 and Y ′′i,k for each 1 ≤ i ≤ 1/ε2. In both

cases, 1 ≤ k ≤ 1/ε3. For each i, k, we pick an entry from c′i (c′′i) uniformly at random. Then Y ′i,k (Y ′′i,k) is
the value of the picked entry. For all i, k, E[Y ′i,k] = 1 – p′i and E[Y ′′i,k] = 1 – p′′i . Observe that the Yi,k
are independent Poisson trials. Let Y ′ :=

∑
s<i,1≤k≤1/ε3 Y ′i,k and Y ′′ :=

∑
i,1≤k≤1/ε3 Y ′′i,k . We want to

use Cherno� bounds to control the probability to take the wrong decision. It is su�cient to consider
Y ′ with s = 1/ε2 – 1, since in all other cases the probabilities are ampli�ed more. Observe that we do
not have to consider smaller s because we are given a good SWC-instance and therefore there are no
wildcards in L or L′.

Let µ′ := E[Y ′]. We analyze the ranges of µ′ separately.

109

110 | Appendix A. Additional Details

Case 1: Let us assume that µ′ ∈ [0, 1/(2eε3)]. We de�ne δ′ := 1/(2µ′ε3) – 1. Using a multiplicative
Cherno� bound (cf. Mitzenmacher and Upfal (2005)), we obtain

Pr(Y ′ ≥ 1/(2ε3)) <
(eδ

′

(1 + δ′)(1+δ′)

)µ′

=
(1

1 + δ′
)µ′(e

1 + δ′
)µ′δ′

(A.1)

= (2µ′ε3)µ
′
(e · 2µ′ε3)(1/(2ε3)–µ′) (A.2)

Note that both terms of (A.2) are numbers between zero and one. If µ′ < 1/ε, the right term is smaller
than ε4µ′. Otherwise the left term is smaller than ε4µ′

The range of µ′ implies that the majority of entries in ĉ′ is zero. Recall that ĉ′ has an ε3µ′ fraction
of zeros. The expected number of errors done by the algorithm is therefore at most (1 – ε4 · µ′) · (ε3µ′) +
ε4 · µ′ · (1 – ε3µ′) = (1 + ε)ε3µ′.

Case 2: Let us assume that µ′ ∈ (1/(2eε3), 1/(2ε3) – 1/ε2]. We use Hoe�ding’s inequality Hoe�ding
(1963) to analyze the range. To this end, we scale Y ′ and obtain Ȳ ′ := ε3Y ′, which has values between
zero and one. Then

Pr(Ȳ ′ – E[Ȳ ′] ≥ ε) ≤ e–2ε2/ε3
= e–2/ε .

Since for su�ciently small ε, e–2/ε < ε/(2e) ≤ ε4µ′, again we obtain a (1 + ε)-approximation in
expectation.

All other ranges now follow immediately: For µ′ ∈ (1/(2ε3) – 1/ε2, 1/(2ε3)] every solution is a
(1 + O(ε))-approximation and for larger µ′ the majority of entries in ĉ′ is one. The analysis is analogous.

In order to combine Y ′ and Y ′′, we introduce a bias for Y ′ such that we count rows i for s < i ≤ `
with a factor (1 – ε)/(ε – ε2). Then

Ȳ := Ȳ ′ · (` – s)(1 – ε)/(ε – ε2) + Ȳ ′′ · `
(` – s)(1 – ε)/(ε – ε2) + ` .

Then, using the union bound, setting σj = 0 for Ȳ < 1/2 and σj = 1 otherwise gives an expected 1 + O(ε)
approximation within ĉ. Errors in c̄ are either also errors in an optimal solution, or they contribute at
most a factor O(ε) to the total number of errors. Thus overall we obtain an approximation ratio 1 + O(ε)
within c. The algorithm SWCε3 has at most the same approximation ratio, since the only di�erence is
that we do not �x the Yi,k to be zero or one. Thus the random process used by the algorithm can only
have a lower variance.

This �nishes our analysis for τ (M)∗,j . For τ ′(M)∗,j , the proof is analogous.

We introduced a small but easy to handle imprecision due to the assumption that we can choose
exactly the same number of strings from each range.

A.2 A simpli�ed DP for a single solution string.

We describe a dynamic program (DP) for a simpli�ed setup with SWC-instances that consists of strings
only from one of the two solution strings and the DP computes a single solution string.

Algorithm (SWC
σ
). We �rst globally guess the value |τ (M)| =: r , i.e., we run the algorithm for

all possible values and keep the best outcome. The algorithm works in two phases. The �rst phase is an
initialization.

We initialize each of cell ζ := D(B,C, T) with the value computed by SWCε3 with the following
parameters. As Ui and Li, we use the chunks C. Since we only consider one solution string, we do not
have to �x r ′ or U ′i . In the execution of SWCε3 , we use the selection T instead of trying all possible
selections, i.e., T determines all Ũi and L̃i in the algorithm.

A.2. A simplified DP for a single solution string. | 111

The value of ζ is the number of errors in B. The computed solution is σζ . We update the cells
the second phase as follows. Consider a DP cells ζ = D(B,C, T) and let Π be the set of all possible
predecessors of ζ . Suppose that all cells in Π are updated already. (This is the case, if we consider cells
ordered by increasing value a, breaking ties arbitrarily.)

We try all cells ζ̂ ∈ Π (with all of its parameters marked by ·̂) and consider the block B from column
endb̂+1 on, which we call B̃. We then run SWCε3 with the parameters and selections from ζ for B̃. Let
err be the number of errors of the solution in the rows a to c – 1 of B̃. We concatenate the computed
solution string to σ

ζ̂
. The new value of ζ is min{ζ , ζ̂ + err}. Overall, the value of ζ is the minimum value

over all ζ̂ ∈ Π.
We iterate this procedure until all cells are updated. It might happen, however, that we were not able

to compute the entire solution yet. The reason is that valid DP cells as speci�ed select a large number of
rows, which may not be possible in the end. In order to �nish the DP, we additionally consider special
cells that are de�ned as before, but with c = n. Intuitively, we use these cells when only at most 1/ε4

rows of τ (M) are left. For these cells, our computation considers the optimal solution for the su�x of σ.
Lemma A.1. For SWC-instances M of Gapless-MEC with a restriction that M contains strings from
only one of the two solution strings (σ or σ′), the above algorithm is a PTAS.

Proof. Since all binary strings are feasible solutions, our algorithm vacuously produces a valid solution.
The number of di�erent DP cells is polynomial in the instance size since the number of variables is a
constant (depending on ε) and each variable has a polynomial range. All computations can be done in
polynomial time. Therefore the overall running time of the algorithm is polynomial.

To analyze the quality of the computed solution, we partition τ (M) into ranges. Starting from the
top-most row of τ (M), for each i ≥ 0, the ith range Yi contains the next (ε2i – ε(2i+2))r rows of τ (M). To
be consistent with properties needed in later proofs, we ensure that the �rst row of each Yi is contained
in τ (M) and thus we add the rows between Yi and Yi+1 to Yi. We note that if only a constant number of
rows of σ(M) are left, we can compute the partial solutions optimally and there are DP cells for exactly
this purpose: there is a DP cell ζi such that the last at most 1/ε4 rows of τ (M) are located between a and
c and Yi contains exactly these rows. To keep a clean notation, in the following we implicitly assume
that cells with constantly many rows of σ(M) are handled separately.

The block B0 contains the rows of Y0 and the columns one to the end of the �rst row of τ (Y0). For
each i > 0, block Bi contains the rows of Yi and Yi+1. It contains the columns after those of Bi–1 to the
end of the �rst row of Yi.

According to De�nition 3.9, the remaining parameters for cells ζi lead to at least as good a solution
as the following choice. The set C is chosen such that each block is the U and L part of an ε2-trisection
and the chunks are the subdivisions of the trisection (De�nitions 3.3 and 3.4). The selections S are
chosen in the same way as SWCε3 would choose them.

We inductively show that the value of each ζi is at most a factor (1 + ε) larger than the number of
errors of an optimal solution restricted to the considered pre�x. For i = 0 we only consider B0 and the
invariant follows directly from Lemma 3.2.

Suppose now that i ≥ 0 and for all ĩ < i the invariant is true. Then we consider ζi. Let B̃i be the part
of Bi after Bi–1.

We apply Lemma 3.2 to compute the string σζi . We obtain a (1 + ε) for the pre�x covered by σζi for
the following reason. The part before B̃i was �xed, and by our induction hypothesis, independent of
the rows considered in B̃ we already have a (1 + ε) approximation. The part of σζi within B̃i gives a
(1 + ε) approximation by the claim of Lemma 3.2.

We continue the induction until the entire string σ is determined.

112 | Appendix A. Additional Details

List of Figures

1.1 Seven variants covered by reads (horizontal bars) in a single individual. The alleles that
a read supports are printed in white. The middle panel shows the phased reads in colors
and haplotypes at the bottom over the seven variants. 3

1.2 Example shows the SNP matrix for the example shown in Fig. 1.1. Seven variants
covered by reads (horizontal bars) in a single individual. The allele in read is encoded
as 1 if it matches the allele in the reference position at that position and 0 otherwise.
The middle panel shows the phased reads in colors and haplotypes at the bottom over
these seven variants. 5

1.3 Seven variants covered by reads (horizontal bars) in a single individual are represented
as MEC instances. At the top is a general MEC instance with arbitrary gaps, the middle is
a Gapless-MEC instance with gaps only at its two ends and the bottom is a Binary-MEC
instance which consists of only binary values. 6

1.4 Variants covered by reads in a single individual are represented as MEC instances from
di�erent sequencing technologies. The weights are shown in red. Figure from a paper
by Klau and Marschall (2017). 7

1.5 Seven SNP loci covered by reads (horizontal bars) in three individuals. Unphased
genotypes are indicated by labels 0/0, 0/1 and 1/1. The alleles that a read supports are
printed in white. 10

1.6 Figure shows the reads and reconstructed haplotypes using two graph approaches: (a)
de Bruijn graph and (b) overlap graph. 11

1.7 Given the input reads (middle) from the two sequences (top), we show a corresponding
assembly graph at the bottom. The bubbles in the sequence graph (bottom) show three
di�erent heterozygous variations; the �rst one is an SNV, the second one is an SV, and
the third one is an indel. 13

1.8 The assembly graph in which repetitive and heterozygous regions are condensed as
nodes, is shown. At the top, heterozygosity (in vertical bars) and repetitive regions (in
red) over the genome are shown. At the bottom, the graph with nodes as heterozygous
or repetitive region are shown, and connections are based on the successive read overlap.
The graph has cycles because of repetitive region shown by R, which also causes two
branches. 14

2.1 An instance of the problem with a solution for k = 3. An edge between two guests means
that they will �ght if both are admitted. The grey circles represent the troublemakers. . 18

3.1 Di�erent length classes, Λ1 with corresponding column q1,1, Λ2 with corresponding
columns q2,1, q2,2 = q1,1, and Λ3 with corresponding columns q3,1, q3,2 = q2,1, q3,3, q3,4 =
q1,1. 24

3.2 For a single-length-class instance, the sketch shows the strings crossing each column
either exactly once or exactly twice. 25

3.3 Simple Wildcard (SWC) instances . 25

113

114 | List of Figures

3.4 Example for a pair of strings with b′ > b. The blue lines and dashed blue ones represent
sets T and T ′, and T ∩ T ′ = ∅. 30

3.5 Blocks of an instance M in the DP for a pair of solution strings. The blue and gray lines
represent σ and σ′ respectively from �rst two iterations of DP. The sketch shows the
switch example in the second iteration because b′1 < b0. 32

3.6 Blocks represented by ranges shown in red on an instance M and the blue lines are the
columns, I and W shows the empty interval and central region respectively. 34

3.7 This sketch shows a non-dominance example in region I 34

4.1 Integration of global and local haplotypes by the WhatsHap algorithm. An example
solution of the weighted minimal error correction problem (wMEC) using WhatsHap
algorithm is shown. For simplicity base qualities used as weights are omitted from
the picture. (a)The columns of the matrix represent 34 heterozygous variants (SNVs).
Continuous stretches of zeros and ones indicate alleles supported by respective reads
(0 – reference allele, 1 – alternative allele). First two rows of the wMEC matrix are
represented by Strand-seq haplotypes, illustrated as one ’super read’ connecting alleles
along the whole length of the chromosome. (1st row haplotype 1 alleles, 2nd row
haplotype 2 alleles). Subsequent rows of the matrix are represented by reads that map
to the reference assembly in short overlapping segments. Sequencing errors (shown in
red in read 2 and 7) are corrected when the cost for �ipping the alleles is minimized.
(b) Reads are then partitioned into two haplotype groups (Haplotype 1 – dark blue,
Haplotype 2 – light blue) such that a minimal number of alleles are corrected (in red).
As an illustration of long haplotype contiguity facilitated by Strand-seq ’super reads’,
we depict two non-overlapping groups of reads (gray rectangles) that can be stitched
together by Strand-seq (dashed lines). (c) Final haplotypes are exported for both groups
of optimally partitioned reads. 47

4.2 Hypothetical phasing of 10 single nucleotide variants (SNVs) along a de�ned chromoso-
mal region is shown here. Each heterozygous SNV is represented in its two allelic forms
(0 - reference allele, 1 - alternative allele). True (reference) haplotypes are distinguished
in blue colors and predicted haplotypes in red. a) To count the number of switch errors
(black crosses) between the true and predicted haplotypes, neighboring pairs of SNVs
are compared along each haplotype and recorded as a new binary string of 0’s and 1’s
depending on whether the allele state changes (see gray box). A zero value is assigned
if the given pair of SNVs have the same value, otherwise a value of 1 is assigned value
1. The absolute number of di�erences in the binary string generated for the true and
predicted haplotypes is reported as the total number of switch errors. b) To calculate the
Hamming distance, the absolute number of di�erences between reference and predicted
haplotypes is calculated for all SNV positions. In addition we calculate block-wise
Hamming distance which represents a cumulative sum of all Hamming distances across
all phased segments . 48

List of Figures | 115

4.3 Phasing e�cacy of read-based and experimental phasing approaches using Chromo-
some 1 as an example. a) Two homologous chromosomes are shown (blue and black).
Experimental phasing approaches like Strand-seq can connect heterozygous alleles
along whole chromosomes, however, at higher costs (time and labor) and lower density
of captured alleles. In contrast, read-based phasing can deliver high-density haplotypes,
but only short haplotype segments are assembled with an unknown phase between
them. b) Barplot showing the percentage of phased variants, for each sequencing tech-
nology, from the total number of reference SNVs (Illumina platinum haplotypes). c)
Graphical summary of phased haplotype segments for Illumina, PacBio, 10X Genomics
and Strand-seq phasing shown for chromosome 1. Each haplotype segment is colored
in a di�erent color with the longest haplotype colored in red. Side bargraph reports the
percentage of SNVs phased in the longest haplotype segment. d) Accuracy of each inde-
pendent phasing approach measured as percentage of short switch errors in comparison
to benchmark haplotypes. 51

4.4 Various combinations of Strand-seq and read-based phasing (Illumina, PacBio, 10X
Genomics) - Chromosome 1 as an example. Plots show haplotype quality measures
for various combinations of Strand-seq cells (5, 10, 20, 40, 60, 80, 100, 120, 134) with
selected coverage depths of Illumina or PacBio sequencing data (2, 3, 4, 5, 10, 15, 25,
30, >30-fold), or in combination with 10X Genomics haplotypes. a) Assessment of the
completeness of the largest haplotype segment as the % of phased SNVs. Grey bars
highlight PacBio sequencing depth where completeness and accuracy of �nal haplotypes
do not dramatically improve. b) Assessment of the contiguity of the largest haplotype
segment as the length of the largest haplotype segment. Every phased haplotype segment
is depicted as a di�erent color, with the largest segment colored in red. Black asterisks
point to a recommended depth of coverage of a given technology in combination with
Strand-seq c) Assessment of the accuracy of the largest haplotype segment as the level
of agreement with the ‘reference’ standard. Black arrowheads highlight Illumina and
PacBio sequencing depth where accuracy of �nal haplotypes do not substantially improve. 52

4.5 Recommended settings to phase certain amounts of individuals. (a) Genome-wide
phasing of NA12878 using combination of 40 Strand-seq libraries with 30× short Illumina
reads, 10 Strand-seq libraries with 10-fold long PacBio reads, or 10 Strand-seq libraries
with 10X Genomics data. Plots show quality measures such as percentage of phased SNV
pairs, switch error rate, and Hamming error rate for phased autosomal chromosomes.
(b) A diagram providing the recommendations for the required number of Strand-
seq libraries to be combined with recommended minimum of 10-fold PacBio and 30×
Illumina coverage in order to reach global and accurate haplotypes for a depicted number
of individual diploid genomes. 54

5.1 Example shows the input instance and cheapest solution and the resultant haplotypes. 61

5.2 Example showing bipartition cost for the transmission vector 00 at column one. 62

5.3 Example showing bipartition cost for the transmission vector 00 at column two, given
DP column one. 63

5.4 Simulated data set (top) and real dataset (bottom): phasing error rate (x-axis) versus
completeness in terms of the fraction of unphased SNPs (y-axis) for PedMEC-G-5
(solid line), wMEC-5 (dashed line), and wMEC-15 (dotted line). Average coverage (per
individual) of input data is encoded by circles of di�erent sizes. 68

116 | List of Figures

5.5 Three-way comparison of phasings provided by SHAPEIT, 10XGenomics, and PedMEC-G-5
(on 15× coverage data). Of all pairs of consecutive SNPs phased by all three methods,
the percentages of cases where the phasing reported by one method disagrees with the
other two are reported. Missing to 100%: cases where all three methods agree. Left:
SHAPEIT run with default parameters, corresponding to our “ground truth phasing”;
right: SHAPEIT run with pedigree information. 69

5.6 Two disjoint unconnected haplotype blocks for which phase information can be inferred
from the genotypes. 70

6.1 Input: an assembly graph (top) (consisting of four SNVs and two SVs) and the PacBio
reads r1, r2, r3, r4, r5, r6 (gray). Output: the phased reads (colored in blue and red) and
haplotigs (bottom) using Falcon Unzip and our graph-based approach. Our graph-based
phases central region, contrarily, Falcon Unzip does not. 75

6.2 (a) An initial assembly graph is constructed by FALCON by error-correcting the reads.
The bubbles are collapsed into a consensus sequence “primary contig”. (b) Heterozygous
SNPs are identi�ed and phased, thus haplotype of reads is identi�ed. (c) The phased
reads are used to incorporate the haplotype-fused path into the initial assembly graph,
thus �nally a set of primary contigs and associated haplotigs are generated. Figure from
the paper by (Chin et al., 2016). 77

6.3 Overview of the diploid assembly pipeline. 78
6.4 For a subgraph of Gs , the example shows two bubbles l1 and l2, and their corresponding

alleles. Reads r1, r2, r3, r4 traverse the bubbles. 79
6.5 For a subgraph of Gs , this example shows the true (top) and predicted (bottom) versions

of two haplotype alignments (red and blue) through a series of bubbles. When comparing
the correspondingly-colored lines between the two versions, we see one switch between
SV1 and SV2: the prediction contains one switch error. Six bubbles have been phased, for
a total of �ve phase connections between consecutive bubbles. Therefore, the phasing
error rate is 1/5. 85

6.6 Structural variation analysis of phased bubbles from our graph-based approach. a:
Joint distribution of allele length and Hamming distance, for pure substitutions. b.
Distribution of size di�erence between the two alleles, for mixed bubbles and indels.
Pure substitutions always have a size di�erence of 0, and are not included in the �gure.
c. Joint distribution of the length of the longer allele and the substitution rate, for mixed
bubbles. With a higher substitution rate, the bubble has more substitutions, and with a
lower rate more indels. 88

List of Tables

2.1 Example for Knapsack problem . 22

4.1 Related work on computational approaches to haplotyping for a single individual . . . 42

5.1 Overview of common notation. 59

6.1 Comparison of two phasing methods, Falcon Unzip and our graph-based approach, at
di�erent PacBio coverage levels. For computing the “haplotig N50”, we only consider
those portions of a contig for which two haplotypes are available, i.e. those regions
where Falcon reports both a primary contig and an alternative haplotig. For “haplotig
size”, we sum the length of contigs on both haplotypes (“primary contigs” plus “haplotigs”
in terms of Falcon’s output), so the target size is twice the genome size (24.3Mbp in case
of yeast). 87

117

118 | List of Tables

List of Algorithms

1 SWCδ . 28

2 DP COLUMN INITIALIZATION . 83
3 DP TABLE . 83

119

	Introduction
	Genetics, DNA sequencing and Haplotyping
	Reference-based Haplotyping
	Haplotyping as a Combinatorial Optimization problem
	Related work
	Pedigree of genomes
	Statistical phasing

	Diploid assembly
	Diploid assembly as a graph problem
	Related work on diploid assembly

	Thesis Scope and Outline
	Relevant publications

	Algorithmic Background
	Types of algorithms
	Parameterized algorithms
	Randomized algorithms
	Approximation algorithms

	Approximation algorithm for phasing individual genomes
	Our results.
	Further related work.
	Overview of our approach.
	Preliminaries and notation.
	Simple instances with wildcards.
	A DP for SWC-instances.

	Subinterval-free instances.
	A QPTAS for general instances.
	Length classes.
	The general QPTAS.

	Discussion

	Parameterized algorithm for phasing individual genomes
	Literature survey
	WhatsHap Algorithm
	The need for combining different sequencing technologies
	Using MEC for data integration
	Evaluation metrics
	Results
	Experimental design and dataset description
	Datasets
	Phasing performance of individual technologies
	Integrative global phasing performance

	Discussion

	Parameterized algorithm for phasing pedigrees
	Introduction
	The Weighted Minimum Error Correction Problem on Pedigrees
	Example of PedMEC
	Algorithm
	Experimental Setup
	Real Data
	Simulated Data
	Compared Methods

	Performance Metrics
	Results
	Discussion

	A graph-based approach to diploid genome assembly
	Introduction
	Further related work
	Diploid assembly pipeline
	Sequence graph
	Bubble detection in sequence graphs
	PacBio alignments
	Bubble ordering
	Graph-based phasing
	Generation of final assemblies

	Datasets and experimental setup
	Pipeline implementation
	Running Falcon Unzip
	Assembly performance assessment

	Results
	Discussion

	Contributions and discussion
	Contributions
	Approximation status of Gapless-MEC
	Parameterized algorithm for phasing individual genomes
	Parameterized algorithm for phasing pedigrees
	Haplotype-aware de novo assembly

	Discussion

	Additional Details
	Proof of Lemma 3.1
	A simplified DP for a single solution string.

