
Practical Dynamic Information Flow
Control

Abhishek Bichhawat

A dissertation submitted towards the degree
Doctor of Engineering

of the Faculty of Mathematics and Computer Science
of Saarland University

by

Abhishek Bichhawat

Saarbrücken
September, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Acronym

https://core.ac.uk/display/196652484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Day of the Colloquium 22/06/2018
Dean of the Faculty Univ.-Prof. Dr. Sebastian Hack

Chair of the Committee Prof. Dr. Andreas Zeller
Reviewers Prof. Dr. Christian Hammer

Dr. Deepak Garg
Prof. Dr. Bernd Finkbeiner

Academic Assistant Dr. Marco Patrignani

Abstract

Over the years, computer systems and applications have grown significantly complex while han-
dling a plethora of private and sensitive user information. The complexity of these applications is
often assisted by a set of (un)intentional bugs with both malicious and non-malicious intent lead-
ing to information leaks. Information flow control has been studied extensively as an approach to
mitigate such information leaks. The technique works by enforcing the security property of non-
interference using a specified set of security policies. A vast majority of existing work in this area is
based on static analyses. However, some of the applications, especially on the Web, are developed
using dynamic languages like JavaScript that make the static analyses techniques stale and ineffec-
tive. As a result, there has been a growing interest in recent years to develop dynamic information
flow analysis techniques. In spite of the advances in the field, dynamic information flow analysis has
not been at the helm of information flow security in dynamic settings like the Web; the prime rea-
son being that the analysis techniques and the security property related to them (non-interference)
either over-approximate or are too restrictive in most cases. Concretely, the analysis techniques gen-
erate a lot of false positives, do not allow legitimate release of sensitive information, support only
static and rigid security policies or are not general enough to be applied to real-world applications.

This thesis focuses on improving the usability of dynamic information flow techniques by pre-
senting mechanisms that can enhance the precision and permissiveness of the analyses. It begins
by presenting a sound improvement and enhancement of the permissive-upgrade strategy, a strat-
egy widely used to enforce dynamic information flow control, which improves the strategy’s per-
missiveness and makes it generic in applicability. The thesis, then, presents a sound and precise
control scope analysis for handling complex features like unstructured control flow and exceptions
in higher-order languages. Although non-interference is a desired property for enforcing informa-
tion flow control, there are program instances that require legitimate release of some parts of the
secret data to provide the required functionality. Towards this end, this thesis develops a sound ap-
proach to bound information leaks dynamically while allowing information release in accordance
to a pre-specified budget. The thesis concludes by applying these techniques to an information flow
control-enabledWeb browser and explores a policy specificationmechanism that allows flexible and
useful information flow policies to be specified for Web applications.

Kurzzusammenfassung

Seit Jahren werden Computersysteme und -Anwendungen immer komplexer und verarbeiten eine
Unmenge private und sensible Daten. Die Komplexität der Anwendungen trägt neben der Exis-
tenz von (un)gewollt eingefügten Software Fehlern zur Weitergabe dieser sensiblen Informatio-
nen bei. Information Flow Control (IFC, zu Deutsch Informations-Fluss-Analyse) Mechanismen
sind Gegenstand intensiver Forschung um diesem Problem entgegen zu wirken. Grundsätzlich
basieren diese Ansätze auf der Anwendung von vordefinierten Sicherheitsregeln, die die Unbee-
influssbarkeit (engl. non-interference) garantieren. Der überwiegende Teil dieser Techniken nutzt
statische Analyse zur Erzeugung der Regeln. Dem gegenüber steht die Tatsache, dass Anwendun-
gen, insbesondere im Bereich Web-Anwendungen, in dynamischen Sprachen wie JavaScript en-
twickelt werden, wodurch rein statische Analysen unzureichend sind. Dynamische Methoden auf
der anderen Seite approximieren das Verhalten einer Anwendung und können daher die grundle-
gende non-interference nicht garantieren. Sie tendieren dazu besonders restriktive Regeln zu erzeu-
gen, wodurch auch der rechtmäßige Zugriff auf Information verweigert wird. Beide Ansätze sind
daher nicht zur Anwendung auf Systeme in der realen Welt geeignet.

Das Ziel dieser Arbeit besteht darin die Benutzbarkeit von dynamischen IFC Mechanismen zu
verbessern indem Techniken entwickelt werden, die die Genauigkeit und Toleranz steigern. Die
Arbeit präsentiert eine korrekte (engl. ’sound’) Erweiterung der permissive-upgrade Strategie (eine
Standardstrategie für dynamische IFC), die die Toleranz der Strategie verbessert und sie weithin
anwendbar macht. Darüber hinaus präsentiere ich eine neue dynamische IFC Analyse, die auch
komplexe Funktionen, wie unstruktierte Kontrollflüsse und Exceptions in Hochsprachen, abbildet.
Obwohl Unbeeinflussbarkeit eine wünschenswerte Eigenschaft ist, gibt es Anwendungen, die recht-
mäßigenZugang zu sensiblenDaten benötigenum ihre Funktion zu erfüllen. Umdies zu ermöglichen
präsentiert diese Arbeit einen Ansatz, der die ungewollte Weitergabe von Information quantifiziert
und anhand eines vordefinierten Grenzwertes freigibt. Diese Techniken wurden in einen Web-
Browser integriert, welcher es erlaubt die Definition von flexiblen und nützlichen Informations-
flussregeln für Web Anwendungen umzusetzen.

Acknowledgment

My first thanks goes to my primary advisor, Christian Hammer, for believing in me and offering me
a research position. Apart from teaching me important lessons in research and shaping my devel-
opment as a PhD student, he helped me get settled at a new home away from home. He has been
highly supportive in whatever initiatives I took. Additionally, I would like to thank my secondary
advisor, Deepak Garg, who taught me about how foundations are necessary for building a proper
system. Besides, the other not-so-research based talks and advices from both have helped me take
further steps inmy career. The acknowledgment would be incomplete without mentioningmymas-
ter’s supervisor, Prof. Ramesh Joshi, who introduced me to the wonderful field of research at IIT
Roorkee. I am grateful to all my committee members, Bernd Finkbeiner, Andreas Zeller and Marco
Patrignani, for agreeing to be a part of my thesis committee and putting up with my requirements.

Naturally, many thanks also go to my closest collaborator and co-author, Vineet Rajani, without
whom this thesis would not have been possible and with whom I had really great and fruitful dis-
cussions on security and every other topic in the world. Together, we had a lot of fun while doing
research and outside of it. I would also like to thank my friends and colleagues —Abhishek Tiwari,
Aravinda Krishnan, Himangshu Saikia, Kaustubh Beedkar, and Milivoj Simeonovoski who added
loads of fun and food to my PhD and travel as part of it. In particular, I want to mention my col-
leagues David Pfaff, Jenny Hotzkow, and Marie-Therese Walter, with whom I had the pleasure of
sharing the office and who helped me in handling all the German documents and procedures, and
also writing the German abstract of my dissertation. Special thanks to CISPA secretaries Stephanie
Feyahn, Isa Maurer, and Sabine Nermerich, who literally did all the bureaucratic tasks that I had to
and helped me in every way possible. I would also like to thank RS3, a special priority program un-
der the DFG, for primarily sponsoring my research and Heiko Mantel and his group for organizing
and taking care of all the administrative stuff while we enjoyed the project meetings.

I would also like to acknowledge Karthikeyan Bhargavan, Aseem Rastogi and Kapil Vaswani to
have given me the opportunity to work as a research intern with them. It was a wonderful and
highly interesting work environment for me and greatly helped me explore other related fields of
research. I met andmade friends with Rahul Kidambi, SameerWagh, and Shruti Tople during these
internships who also helped me in making career choices besides all the fun-filled game and movie
sessions. Thanks are also due to Jean Yang for offeringme a research position beforemy defensewas
scheduled and giving me feedbacks on all my endeavors since I have joined her group, in particular,
my defense presentation.

I am deeply grateful to my family and friends for their unconditional love, their faith in me, and
their advice in all situations. Without them, I would not have been able to go my own way during
the years of my PhD and would certainly not stand where I am today.

Contents

I Introduction and Background 1

1 Introduction 3

1.1 Contributions of the Thesis . 5

2 Background and Overview 7

2.1 Information Flow Control . 7

2.2 Information Release . 9

2.3 Dynamic Information Flow Control . 10

II Generalized Permissive-Upgrade Strategy 13

3 Improved Permissive-Upgrade 15

3.1 Overview . 15

3.2 Austin and Flanagan’s Permissive-Upgrade Strategy 18

3.3 Improved Permissive-Upgrade Strategy . 20

4 Generalized Permissive-Upgrade 23

4.1 Generalization of the Improved Permissive-Upgrade Strategy 23

4.2 Generalized Permissive-Upgrade on Arbitrary Lattices 24

4.3 Comparison of the Generalization of Section 4.2 with the Generalization of Section 4.1 28

x Contents

III Precise Control Scope Analysis 31

5 Dynamic IFC with Unstructured Control Flow and Exceptions 33

5.1 Control Flow Graphs and Post-dominator Analysis . 34

5.2 Exceptions and Synthetic Exit Nodes . 35

5.3 Formal Model . 36

IV Budget-based Limited Information Release 41

6 Bounding Information Leaks Dynamically 43

6.1 Quantifying Information Leaks . 45

6.2 Limited Information Release . 46

6.3 LIR Enforcement . 48

6.4 Formalization of LIR . 56

6.5 Soundness and Decoding Semantics . 58

V Application to an IFC-enabled Web Browser 63

7 Information Flow Policies for Web Browsers 65

7.1 Policy Component for Web Browsers . 65

7.2 WebPol policy model . 66

7.3 Expressiveness of WebPol . 69

8 Policy Implementation and Evaluation in an IFC-enabled Browser 75

8.1 Implementation and Evaluation of WebPol . 76

8.2 Implementation and Evaluation of LIR . 79

9 Related Work 81

VI Conclusion and Outlook 85

10 Conclusion 87

11 Future Directions 89

11.1 Evaluating Information Flow Policies on Real-World Websites 89

11.2 Exploring Alternative Granularities for Enforcing Information Flow Control 89

Contents xi

11.3 Handling Timing Leaks on the Web . 90

Appendix 91

A Proofs for Improved and Generalized Permissive Upgrade 93

B Proofs of Precision for Dynamic IFC with Unstructured Control Flow and Exceptions 104

C Proofs for IFC with Unstructured Control Flow and Exceptions 106

D Proofs for Limited Information Release . 111

List of Figures 121

List of Tables 123

Bibliography 132

Part I

Introduction and Background

Chapter 1

Introduction

Isn’t it amazing how the computer has evolved from a machine that filled a large room to what oc-
cupy our offices and pockets today! With the growth in the use of computers and the Internet for
almost every application, the amount of data, in particular sensitive data, that programs compute
has also increased dramatically. For instance, e-commerce websites have access to the personal de-
tails of a user including her address, credit-card details etc. Similarly, a hospital database stores sen-
sitive and private medical data of its patients. While the complexity of such systems has increased
manifold in the last few decades, the privacy and confidentiality guarantees still remain question-
able [5]. Often leaks occur either due to buggy programs or due to malicious code. Cryptographic
techniques protect data by encrypting it but many programs need to operate on confidential data,
which requires the data to be available in plaintext form. To assist this, access control techniques have
been widely used for preventing leakage of confidential data. However, once the authorized users
have access to data, there is no control on how the data can be used. The data might be input to a
program that writes to publicly-observable locations or outputs data that is accessible to all users.

Consider the Web, for instance. Web applications rely extensively on third-party JavaScript to
provide useful libraries, page analytics, advertisements and many other features [78]. In such a
mashup model, wherein the hosting page and the included scripts share the page’s state (called the
DOM), by design, all included third-party scripts run with the same access privileges as the host-
ing page. While some third-party scripts are developed by large, well-known, trustworthy vendors,
many other scripts are developed by small, domain-specific vendors whose commercial motives do
not always align with those of the web-page providers and users. This leaves sensitive information
such as passwords, credit card numbers, email addresses, click histories, cookies and location in-
formation vulnerable to inadvertent bugs and deliberate exfiltration by third-party scripts. In many
cases, developers are fully aware that a third-party script accesses sensitive data to provide useful
functionality, but they are unaware that the script also leaks that data on the side. In fact, this is
a widespread problem [59]. The traditional browser security model is based on restricting scripts’
access to data, not on tracking how scripts use data. Existing web security standards like the same-

4 1. Introduction

origin policy [19] and web browsers address this problem unsatisfactorily, favoring functionality
over privacy. The same-origin policy implemented in all major browsers restricts a web-page and
third-party scripts included in it to communicating with web servers from the including web-page’s
domain only. However, broad exceptions are allowed. For instance, there is no restriction on request
parameters in URLs that fetch images and, unsurprisingly, third-party scripts leak information by
encoding it in image URLs. The candidate web standard Content Security Policy [3], also imple-
mented in most browsers, allows a page to white list scripts that may be included, but places no
restriction on scripts that have been included, thus not helping with the problem above. Quite a few
fine-grained access control techniques have also been proposed [1, 4, 38, 45, 68, 74, 95, 105]. However,
all these techniques enforce only access policies and cannot control what a script does with data it
has been provided in good faith, i.e., if a third-party script was allowed access to some data only for
local computations, the policy places no restriction on the script for sending it on the network while
performing the computation. More broadly, no mechanism based only on access control can solve
the problem of information leakage.

The academic community has proposed solutions based on information flow control (IFC). It ensures
the security of confidential information even in the presence of untrusted and buggy code. The idea
is to track the flow of information through the program and prevent any undesired flows based on a
security policy. Research has considered staticmethods such as type checking andprogramanalysis,
which verify the security policy at compile time [40, 41, 53, 58, 76, 79, 87, 100], dynamic methods
that track information flow through program execution at runtime [10, 13–15, 21, 43, 46, 54, 89, 94,
102], and hybrid approaches that combine both static and dynamic analyses to add precision to the
analysis [22, 51, 52, 56, 77, 85, 98] for handling information leaks described above.

Dynamic analysis has the drawback of introducing significant performance overheads at runtime,
though it can bemore permissive than static analysismethods in certain cases [85]. Although helpful
in most scenarios, static analyses are mostly ineffective when working with dynamic languages like
JavaScript, which is an indispensable part of themodernWeb. The dynamic nature of JavaScript [82,
83] with features like dynamic typing, eval, scope-chains, prototype chains etc. makes sound static
analysis difficult. Thus, recent research has focused on dynamic analysis for enforcing information
flow control especially in languages like JavaScript. Even though research in dynamic information
flow control hasmade significant inroads in the last decade, the applicability of these techniques still
remains bleak, permissiveness being the major challenge to the practicality of dynamic information
flow control.

In recent years, researchers have also explored methods to quantify the amount of sensitive infor-
mation leaked by a program as an alternative to the qualitative notion of information flow control.
The developer determines an “acceptable” upper-bound on the number of bits of sensitive informa-
tion a program may leak. Programs that leak less than this “acceptable” amount of information are
considered secure. The information released is generally quantified as the knowledge gained by an
adversary about the sensitive data as a result of the information flow in the program. Specifically,
the adversary has knowledge about the possible set of initial values that can be associated with the
sensitive data. A flow in the program could reduce the number of possibilities, thereby increasing
the knowledge of the adversary about the specific value associated with the sensitive data in that
execution of the program. This change in knowledge can be measured as the number of bits of in-

1. Introduction 5

formation of sensitive data released to the adversary [37]. Statically quantifying the information
leaked by a program has been well studied in the literature and various static quantitative infor-
mation flow measures [7, 34, 71, 92, 93] and techniques [16, 33, 34, 42, 64, 93] have been proposed.
However, quantifying information leaks in a purely dynamic setting is still largely an open problem
(prior work is limited to [73]) as dynamic analysis is generally limited to the current execution of the
program in contrast to the static methods, which analyze the program as a whole.

1.1 Contributions of the Thesis

This thesis focuses on improving the usability of dynamic information flow techniques by presenting
mechanisms that enhance the precision and permissiveness of the analyses. The main contributions
are as follows:

• Generalized Permissive-Upgrade Strategy. To improve the permissiveness of dynamic in-
formation flow analysis, the thesis presents a sound improvement and enhancement of the
permissive-upgrade strategy (a strategywidely used to enforce dynamic information flow con-
trol). The development improves the original strategy’s permissiveness and applicability by
generalizing the approach to an arbitrary security lattice, in place of the two-point lattice con-
sidered in prior work.

• Precise Control Scope Analysis. Most of the existing work in dynamic information flow con-
trol does not handle complex features like unstructured control flow and exceptions. The pro-
posals that handle these features are too conservative and require additional annotations in
the program. This thesis presents a sound and precise dynamic control scope analysis for
handling these features without requiring any additional annotations from the developer.

• Bounding Information Leaks Dynamically. Although non-interference is a desired property
for enforcing information flow control, there are program instances that require legitimate
release of someparts of the secret data to provide the required functionality. However, inmany
cases it might not be known upfront as to what information needs to be released. Towards this
end, this thesis develops a sound approach to bound information leaks dynamically while
allowing information release in accordance with a pre-specified budget.

• Application to a Web Browser. The thesis concludes by applying these techniques to an in-
formation flow control-enabled Web browser. An information flow control system enforces
security policies that are a collection of rules for labeling private information sources, gener-
ally specified by a policy component in the system. To complement the work on enforcement
components in Web browsers, this thesis explores a policy specification mechanism to specify
flexible and useful information flow policies for Web applications.

Chapter 2

Background and Overview

2.1 Information Flow Control

Information flow control (IFC) refers to controlling the flow of (confidential) information through a
program based on a given security policy. Typically, pieces of information are classified into security
labels and the policy is a lattice over labels. Information is only allowed to flow up the lattice. For
illustration purposes often the smallest non-trivial lattice L @ H is used, which specifies that public
(low, L) data must not be influenced by confidential (high,H) data. Information flow control can be
used to provide confidentiality (or integrity) of secret (trusted) information; the work in this thesis
is, however, limited to confidentiality guarantees. Roughly the idea behind information flow control
is that an adversary can view all the public outputs of a program. By preventing private or sensitive
data to flow to public outputs, the adversary does not get any information about the private or
sensitive data.

The seminal work by Denning [40–42] definedmost of the theoretical ideas pertaining to informa-
tion flow control. In general, information can flow along many channels. However, this thesis con-
siders two of the most important flows — explicit and implicit — in deterministic programs. Covert
channels like timing or resource usage are beyond the scope of this thesis.

An explicit flow occurs as a result of direct assignment, e.g., the statement public = secret + 1

causes an explicit flow from secret to public. An implicit flow occurs due to the control structure
of the program. For instance, consider the program in Listing 2.1. The final value of y is equal to
the value of z even though there is no direct assignment from z to y. Leaking a bit like this can be
magnified into leaking a bigger secret bit-by-bit [12].

The correctness of the approaches enforcing information flow control is often stated in terms of
a well-defined security property known as non-interference [49], which basically stipulates that high
or secret inputs of a program must not influence its low or publicly observable outputs. While
non-interference is too strong a property in practice, different variants of the definition are proven.

8 2. Background and Overview

1 x = false, y = false

2 if (not(z))

3 x = true

4 if (not(x))

5 y = true

Listing 2.1: Implicit flow from z to y

One such variant of non-interference usually established for information flow control techniques
is termination-insensitive non-interference [100]. Roughly, a program is termination-insensitive non-
interferent if any two terminating runs of the program starting from low-equivalent heaps (i.e., heaps
that look equivalent to the adversary assuming that an adversary can observe some part of the heap)
end in low-equivalent heaps. Termination-insensitive means that one-bit of leak is tolerable when
an adversary checks whether or not the program terminated. In particular, this discounted one-bit
leak accounts for termination due to the failure of a runtime security check. Askarov et al. [12] show
that for programs with intermediate observable outputs, termination-insensitivity may leak more
than one bit but also show that this attack is limited to a brute-force attack.

Information flow control approaches either statically analyze the program at compile-time and
reject or accept a program based on the security policy, or dynamically analyze the flow of data in
a program by either using a modified runtime or with the help of a reference monitor, or employ a
combination of both the approaches to shrug off some of the individual limitations of the two ap-
proaches. Static approaches normally support restricted policies, and are less permissive in nature.
Besides, it becomes extremely complicated to use such methods with dynamically-typed languages
and languages that are loadedwith dynamic features. Dynamic approaches, on the other hand, add
runtime overheads and are less precise as compared to the static approaches. Dynamic information
flow control, which is the central theme of this thesis, is described in detail later in the chapter.

2.1.1 Flow-sensitivity

Static analysis techniques are usually flow-insensitive in nature, i.e., they do not account for the
ordering of the instructions in the program or the general flow of execution of the program. In other
words, all operations should be individually secure to secure the program as a whole. For instance,
consider the program snippet:

l = h

Assume that h is a secret variable labeled H and l is a public variable labeled L. This program
gets rejected by a flow-insensitive analysis as the assignment of a secret value to a public variable is
considered insecure.

Flow-sensitive analysis improves the permissiveness of static analysis techniques and is mostly
used in dynamic analyses. Under a flow-sensitive static analysis, the above program upgrades the
labels of l to H indicating the influence of H-labeled h on l. If the program was to output the
value of l on a L-observable channel later, the program gets rejected by the analysis. Flow-sensitive
analysis also accepts programswith dead-code like the one shown in Listing 2.2, thus improving the

2. Background and Overview 9

1 var x

2 if (not(z))

3 x = true

4 x = false

Listing 2.2: Permissiveness of flow-sensitive analysis

permissiveness of the analysis. Some flow-sensitive static analyses have been proposed to enforce
information flow control [53, 58] while almost all dynamic approaches are flow-sensitive in nature.

2.2 Information Release

Non-interference prevents all unauthorized flows without regarding the severity of the leaks. How-
ever, many practical applications require some fragment of the sensitive data to be released to pro-
grams for providing proper functionality or to improve the user-experience. For instance, according
to non-interference even a standard log-in applicationwould be considered insecure because it leaks
information about the user’s password, which is considered confidential, by either allowing or deny-
ing access. As a remedy, researchers have proposed variousways to intentionally release or declassify
sensitive data through relaxations of non-interference [91], which is generally enforced using anno-
tations like declassify in the program. For instance, declassify(pwd == input) would treat the
result of the password check as public, thus allowing access-information to be released to the user.
Most of these approaches require policy specifications by the developer that define what informa-
tion can be released by the program as in many settings it is difficult to trust third-parties to include
correct and appropriate (declassify) annotations for information release in the code. Declassifica-
tion approaches generally ensure that the adversary is unable to declassify or force declassification
of sensitive information as per his/her needs. Sabelfeld and Sands [91] present a survey of many
such techniques that allow release of information in a secure manner.

Some of these declassification techniques are described below. Cohen [35, 36] in his work on selec-
tive dependency used assertions to eliminate certain information paths thereby allowing programs
that satisfy the constraint to be accepted. The idea was that information flows to the adversary
should not allow her to deduce more information about secrets than is allowed by the assertions.
Volpano and Smith [99] present relative secrecy, a property that instead of providing absolute se-
crecy allows information to be released through specific match queries relative to the size of the se-
cret, i.e., if the adversary cannot guess the secret in polynomial time. Giacobazzi andMastroeni [48]
generalize non-interference bymodellingwhat property the adversary can observe about the secrets.
Li and Zdancewic’s relaxed non-interference characterizes the information released through down-
grading policies [66]. Sabelfeld and Sands [90] proposed the PER model using partial equivalence
relations for specifying information flow policies. Sabelfeld andMyers [88] introduced the notion of
delimited release, which enables the specification of declassification policy using escape hatches. The
policy specifies upfront what information can be released through these escape hatches. Localized
delimited release [9] requires that an expression is only released after a declassification operation
for this expression has appeared in the code. Lux and Mantel [69] propose explicit reference points

10 2. Background and Overview

to allow flexible specification of what secrets may be declassified at the specific reference points.
Robust declassification [103] ensures that only trusted code is allowed to declassify information.
Chong and Myers [30] propose a framework for specifying application-specific information release
policies. Chong [29] further proposes the concept of required information release, which consid-
ers applications that are obligated to release information under certain conditions. Askarov and
Sabelfeld introduce the concept of gradual release [8] for allowing release of information at certain
release or declassification points. The policy does not allow the adversary knowledge to refine its
knowledge of secrets at points other than the release points. Banerjee et al. [17] present a way to
specify declassification policies that satisfy conditioned gradual release, which is an extension of
the gradual release property. Similarly, another security property, policy controlled release, that ex-
tends gradual release was presented by Rocha et al. [84] for declassification in untrusted and legacy
programs.

2.3 Dynamic Information Flow Control

Dynamic IFC usually works by tracking taints or labels on individual program values in the lan-
guage runtime. A label represents a mandatory access policy on the value. A value v labeled ` is
written v`.

Flow-sensitive dynamic IFC analysis propagates labels as data flows during program execution.
Explicit flows are generally handled by carrying over the label of the computed value to the variable
being assigned. For example, in the statement x = y + z, the result of computing y + z will have
the label that is a join of the individual labels on y and z, which is the final label of x, i.e., if either of
y or z is labeled confidential or H , then the final label of x is also labeled H1.

Implicit flows in a flow-sensitive IFC analysis are tracked by maintaining an additional taint, usu-
ally called the program counter taint or program context taint or pc, which is an upper bound on
the label of all the control dependencies that lead to the current instruction being executed. For
example, in the program of Listing 2.1, the value in variable x at the end of line 3 depends on the
value in z. If z is labeled H , then at line 3, pc = H because of the branch in line 2 that depends on
z. Thus, by tracking pc, dynamic IFC can enforce that x has label H at the end of line 3, thus taking
into account the control dependency.

However, simply tracking control flow dependencies via pc is not enough to guarantee absence
of information flows when labels are flow-sensitive, i.e., when the same variable may hold values
with different labels depending on what program paths are executed. The program in Listing 2.1
is a classic counterexample, taken from [13]. Assume that z is labeled H and x and y are labeled L
initially. The final value in y is computed as a function of the value in z. If z contains trueH , then y

ends with trueL: The branch on line 2 is not taken, so x remains falseL at line 4. Hence, the branch
on line 4 is taken, but pc = L at line 5 and y ends with trueL. If z contains falseH , then similar
reasoning shows that y ends with falseL. Consequently, in both cases y ends with label L and its
value is exactly equal to the value in z. Hence, an adversary can deduce the value of z by observing
y at the end (which is allowed because y ends with label L). So, this program leaks information

1“z is labeled H” actually means “the value in z is labeled H”. This convention is used consistently.

2. Background and Overview 11

about z despite correct use of pc.

2.3.1 No-sensitive-upgrade Check

Preventing leaks due to implicit flow in dynamic IFC requires coarse approximation because a dy-
namic monitor only sees program branches that are executed and does not know what assignments
may happen in alternate branches in other executions. One such coarse approximation is the no-
sensitive-upgrade (NSU) check proposed by Zdancewic [104]. In the program in Listing 2.1, x’s label
is upgraded fromL toH at line 3 in one of the two executions above, but not the other. Subsequently,
information leaks in the other execution (where x’s label remains L) via the branch on line 4. The
NSU check stops the leak by preventing the assignment on line 3. More generally, it stops a pro-
gramwhenever a public variable’s label is upgraded due to a high pc. This check suffices to provide
termination-insensitive non-interference as shown by Austin and Flanagan [13].

2.3.2 Permissive-upgrade and Faceted Execution

To tackle the issue of permissiveness with the no-sensitive-upgrade strategy, Austin and Flanagan
proposed the permissive-upgrade strategy [14] and faceted execution [15]; faceted execution being
the most permissive of the three. Faceted execution simulates multiple executions simultaneously
within a single runtime. They introduce the concept of faceted values that are pairs of values for
both low and high observers. With multiple levels, each value in the pair is represented as a pair.
When branching on a faceted value, multiple executions are simulated for the different values in
the facet. However, the runtime overheads of faceted execution are quite prohibitive for multiple
security levels. This thesis, thus, considers only the permissive-upgrade strategy, which is more
permissive than the no-sensitive-upgrade strategy and much less performance-intensive compared
to faceted execution. Permissive-upgrade is described in detail in Section 3.2.

2.3.3 Other Approaches for Permissiveness

Secure multi-execution [43] is another approach for enforcing non-interference at runtime. Instead
of tracking information flow through the program, the approach executes multiple copies of the
program with different values of sensitive data. Conceptually, one executes the same code once for
each security level (like low and high) with a few constraints. The private data in the low execution
are replaced by default values, i.e., the public copy of the program does not see the actual value
of the private data but a pre-determined default value, and outputs on an `-labeled channel are
permitted only in the `-level execution of the program, i.e., the high execution of the program out-
puts on the high channel, if any, and the low execution of the program outputs on the low channel,
typically the network. The modification of the semantics forces that private data and the outputs
resulting from it are visible to only high-level observers. The public-level observers or the adversary
observe inaccurate results for the outputs that depend on the private value as the value is replaced
by the default value in that execution. This modification forces even unsafe programs to adhere
to non-interference. Additionally, secure multi-execution guarantees precision, i.e., the semantics
of a secure program is not altered. Thus, for a secure program the outputs are all accurate. Secure

12 2. Background and Overview

multi-execution normally guarantees termination-insensitive non-interference as the high execution
may not terminate in some cases. Flowfox [39] demonstrates secure multi-execution in the context
of web browsers. However, executing a program multiple times can be prohibitive for a security
lattice with multiple levels [15]. The runtime overhead incurred can be reduced if the executions are
run in parallel (which requires more hardware resources), though the program has to be run for all
levels irrespective of whether it uses private data or not. In addition to this, secure multi-execution
makes declassification complicated as it requires synchronization between different executions [80].

Birgisson et al. [27] describe a testing-based approach that adds variable upgrade annotations to
avoid halting on the NSU check in an implementation of dynamic IFC for JavaScript [54]. Hritcu et
al. improve permissiveness by making IFC errors recoverable in the language Breeze [57]. This is
accomplished by a combination of twomethods: making all labels public (by upgrading themwhen
necessary in a public pc) and by delaying exceptions. A different way of handling the problem of
implicit flows through flow-sensitive labels is to assign a (fixed) label to each label; this approach has
been examined in recent work by Buiras et al. in the context of a language with a dedicated monad
for tracking information flows [28]. The precise connection between that approach and permissive-
upgrade remains unclear, although Buiras et al. sketch a technique related to permissive-upgrade
in their system, while also noting that generalizing permissive-upgrade to arbitrary lattices is non-
obvious. This thesis confirms the latter and shows how it can be done.

Part II

Generalized Permissive-Upgrade
Strategy

Chapter 3

Improved Permissive-Upgrade

The no-sensitive-upgrade (NSU) check described earlier provides the basic foundations for sound
dynamic IFC. However, terminating a program preemptively because of the NSU check is quite
restrictive in practice. For example, consider the program of Listing 3.1, where z is labeled H and
y is labeled L. This program potentially upgrades variable x at line 3 under a high pc, and then
executes function f when y is true and executes function g otherwise. Suppose that f does not read
x. Then, for y 7→ trueL, this program leaks no information, but the NSU check would terminate
this program prematurely at line 3. (Note: g may read x, so x is not a dead variable at line 3.)

To improve permissiveness, Austin and Flanagan [14] proposed the permissive-upgrade strategy
as a replacement for NSU. However, that development lacks permissiveness in certain cases. This
chapter presents the soundness results of the permissive-upgrade strategy with the improvement
for further permissiveness in place.

3.1 Overview

This section presents a formal description of the no-sensitive-upgrade check. The technical develop-
ment in this thesis is mostly based on the simple imperative language shown in Figure 3.1. However,
the key ideas are orthogonal to the choice of language and generalize to other languages easily. The

1 x = false

2 if (not(z))

3 x = true

4 if (y) f() else g()

5 x = false

Listing 3.1: Impermissiveness of the NSU strategy

16 3. Improved Permissive-Upgrade

e = n | x | e1 � e2

c = skip | x := e | c1; c2 | if e then c1 else c2 | while e do c

` = L |M | H | . . .

k, l,m, pc = `

Figure 3.1: Syntax of the Language

Expressions:

const
〈σ, n〉 ⇓ n⊥

var
nk := σ(x)

〈σ, x〉 ⇓ nk
oper

〈σ, e′〉 ⇓ n′k
′

〈σ, e′′〉 ⇓ n′′k
′′

n := n′ � n′′ k := k′ t k′′

〈σ, e′ � e′′〉 ⇓ nk

Statements:

skip
〈σ, skip〉 ⇓

pc
σ

seq
〈σ, c1〉 ⇓

pc
σ′′ 〈σ′′, c2〉 ⇓

pc
σ′

〈σ, c1; c2〉 ⇓
pc
σ′

while-f
〈σ, e〉 ⇓ false`

〈σ, while e do c〉 ⇓
pc
σ

if-else

〈σ, e〉 ⇓ b` i =
{

1, if b = true

2, otherwise

}
〈σ, ci〉 ⇓

pct`
σ′

〈σ, if e then c1 else c2〉 ⇓
pc
σ′

while-t

〈σ, e〉 ⇓ true` 〈σ, c〉 ⇓
pct`

σ′′

〈σ′′, while e do c〉 ⇓
pct`

σ′

〈σ, while e do c〉 ⇓
pc
σ′

Figure 3.2: Semantics

use of a simpler language is to simplify non-essential technical details. The parts in this thesis that re-
quire a more complex language define the additional features in place. The language’s expressions
include constants or values (n, b), variables (x) and unspecified binary operators (�) to combine
them. The set of variables is fixed upfront. Labels (`) are drawn from a fixed security lattice. The
lattice contains different labels {L,M,H, . . .} with a partial ordering between the elements. Join
(t) and meet (u) operations are defined as usual on the lattice. The program counter label pc is an
element of the lattice.

3.1.1 Basic IFC Semantics

The rules in Figure 3.2 define the big-step semantics of the language, including standard taint prop-
agation for IFC: the evaluation relation 〈σ, e〉 ⇓ nk for expressions, and the evaluation relation
〈σ, c〉 ⇓

pc
σ′ for commands. Here, σ denotes a store, a map from variables to labeled values of the

3. Improved Permissive-Upgrade 17

assn-nsu
l = Γ(σ(x)) pc v l 〈σ, e〉 ⇓ nm

〈σ, x := e〉 ⇓
pc
σ[x 7→ n(pctm)]

Figure 3.3: Assignment rule for NSU

form nk. b represents a Boolean constant. For now, labels k ::= `; this is generalized later when the
“partially-leaked” taints are introduced in Section 3.2.

The evaluation relation for expressions evaluates an expression e and returns its value n and label
k. The label k is the join of labels of all variables occurring in e (according to σ). The relation for
commands executes a command c in the context of a store σ, and the current program counter label
pc, and yields a new store σ′. The function Γ(σ(x)) returns the label associated with the value in x

in store σ: If σ(x) = nk, then Γ(σ(x)) = k. ⊥ denotes the least element of the lattice.

The sequencing rule (seq) evaluates the command c1 under store σ and the current pc label; this
yields a new store σ′′. It then evaluates the command c2 under store σ′′ and the same pc label, which
yields the final store σ′. The if-else rule evaluates the branch condition e to a Boolean value b with
label `. Based on the value of b, one of the branches c1 and c2 is executed under a pc obtained by
joining the current pc and the label ` of b. Similarly, the rules for while (while-t andwhile-f) evaluate
the loop condition e and execute the loop command c1 while e evaluates to true. The pc for the loop
is obtained by joining the current pc and the label ` of the result of evaluating e.

The rule for assignment statements are conspicuously missing from Figure 3.2 because they de-
pend on the strategy used to control implicit flows. The rule for assignment (assn-nsu) correspond-
ing to the NSU check is shown in Figure 3.3. The rule checks that the label l of the assigned variable
x in the initial store σ is at least as high as pc (premise pc v l). If this condition is not true, the
program gets stuck. This is exactly the NSU check described in Section 2.3.1.

3.1.2 Formalization of the No-sensitive-upgrade Check

For establishing andproving the security property of termination-insensitive non-interference (TINI),
the observational power of the adversary needs to be defined. An adversary at level ` in the lattice
is allowed to view all values that have a label less than or equal to `. To prove the security prop-
erty of non-interference, it is enough to show that when executing a program beginning with two
different memory stores that are observationally equivalent to an adversary, the final memory stores
are also observationally equivalent to the adversary. For this, the observational equivalence of two
memory stores with respect to an adversary needs to be defined. Store equivalence is formalized as
a relation ∼`, indexed by lattice elements `, representing the adversary.

Definition 1 (Value equivalence). Two labeled values nk1 and nm2 are `-equivalent, written nk1 ∼` nm2 , iff
either:

1. (k = m) v ` and n1 = n2 or

2. k 6v ` andm 6v `

18 3. Improved Permissive-Upgrade

This definition states that for an adversary at security level `, two labeled values nk1 and nm2 are
equivalent iff either ` can access both values and n1 and n2 are equal, or it cannot access either value
(k 6v ` and m 6v `). In the lattice L @ H , two values labeled L and H are distinguishable for the
L-adversary.

Definition 2 (Store equivalence). Two stores σ1 and σ2 are `-equivalent, written σ1 ∼` σ2, iff for every
variable x, σ1(x) ∼` σ2(x).

The following theorem states TINI for the NSU check. The theorem has been proved for various
languages in the past.

Theorem 1 (TINI for NSU). With the assignment rule assn-nsu from Figure 3.3, if σ1 ∼` σ2 and 〈σ1, c〉 ⇓
pc

σ′1 and 〈σ2, c〉 ⇓
pc
σ′2, then σ′1 ∼` σ′2.

Proof. Standard, see e.g., [13]

3.2 Austin and Flanagan’s Permissive-Upgrade Strategy

To allow a dynamic IFC analysis to accept safe executions of programs with variable upgrades due
to high pc, Austin and Flanagan proposed a less restrictive strategy called the permissive-upgrade
strategy [14]. They study this strategy for a two-point lattice L @ H and their strategy does not im-
mediately generalize to arbitrary security lattices. Whereas NSU stops a program when a variable’s
label is upgraded due to assignment in a high pc, permissive-upgrade allows the assignment, but
labels the variable as partially-leaked or P . The exact intuition behind the partially-leaked label P is
the following:

A variable with a value labeled P may have been implicitly influenced by H-labeled values in
this execution, but in other executions (obtainable by changing H-labeled values in the initial
store), this implicit influence may not exist and, hence, the variable may be labeled L.

The program must be stopped later if it tries to use or case-analyze the variable (in particu-
lar, branching on a partially-leaked Boolean variable is stopped). Permissive-upgrade also ensures
termination-insensitive non-interference, but is strictly more permissive than NSU. For example,
permissive-upgrade stops the leaky program of Listing 2.1 at line 4 when z contains falseH , but it
allows the program of Listing 3.1 to execute to completion when y contains trueL.

In the revised syntax of labels, summarized in Figure 3.4, the labels k, l,m on values can be either
elements of the lattice (L,H) or P . The pc can only be one of L,H because branching on partially-
leaked values is prohibited. The join operation t is lifted to labels including P . Joining any label
with P results in P . For brevity in definitions, they extend the order @ to L @ H @ P . However, P
is not a new “top” member of the lattice because it receives special treatment in the semantic rules.

3. Improved Permissive-Upgrade 19

` = L | H

pc = `

k, l,m = ` | P

k t k = k

L tH = H

L t P = P

H t P = P

Figure 3.4: Syntax of labels including the partially-leaked label P

The rule for assignment with permissive-upgrade is

assn-pus
l := Γ(σ(x)) 〈σ, e〉 ⇓ nm

〈σ, x := e〉 ⇓
pc
σ[x 7→ nk]

where k is defined as follows:

k =

m if pc = L

m tH if pc = H and l = H

P otherwise

The first two conditions in the definition of k correspond to the NSU rule (Figure 3.3). The third
condition applies, in particular, when a variable whose initial label is L is assigned with pc = H .
The NSU check would stop this assignment. With permissive-upgrade, however, the updated vari-
able is labeled P , consistent with the intuitive meaning of P . This allows more permissiveness by
allowing the assignment to proceed in all cases. To compensate, any program (in particular, an ad-
versarial program) is disallowed from case analyzing any value labeled P . Consequently, in the
rules for if-then and while (Figure 3.2), the label of the branch condition is of the form `, which
does not include P . Thus, assignments under high pc succeed under the permissive-upgrade check
but branching or case-analyzing a partially-leaked value is not permitted as that can also leak infor-
mation.

The noninterference result obtained for NSU earlier can be extended to permissive-upgrade by
changing the definition of store equivalence. Because no program can case-analyze a P -labeled
value, such a value is equivalent to any other labeled value.

Definition 3. Two labeled values nk1 and nm2 are equivalent to an adversary at level L, written nk1 ∼L nm2 , iff
either:

1. (k = m) = L and n1 = n2 or

2. k = H andm = H or

3. k = P orm = P

Definition 4. Two stores σ1 and σ2 are L-equivalent, written σ1 ∼L σ2, iff ∀x.σ1(x) ∼L σ2(x).

Theorem 2 (TINI for permissive-upgrade with a two-point lattice). With the assignment rule assn-
PUS, if σ1 ∼L σ2 and 〈c, σ1〉 ⇓pc σ

′
1 and 〈c, σ2〉 ⇓pc σ

′
2, then σ′1 ∼L σ′2.

Proof. See [14].

20 3. Improved Permissive-Upgrade

1 y = false

2 if (not(x))

3 y = true

4 z = y || x

5 if (not(z))

6 w = true

Listing 3.2: Example showing the impermissiveness of the original
permissive-upgrade strategy

3.3 Improved Permissive-Upgrade Strategy

The original permissive-upgrade strategy, however, lacks permissiveness; it rejects secure programs
like the one shown in Listing 3.2. Consider that x is labeled H and w, y are labeled L. With the
original permissive-upgrade strategy, the label of z on line 4 would remain P and the execution
would be terminated when branching on z on line 5. With the improvement

H t P = H

the analysis can accept such programs while remaining sound. With the improvement, z would be
labeledH on line 4, which would allow the execution to branch on line 5, thus, taking the execution
to completion. The idea behind the improvement is that an H-labeled value is never observable at
L-level. Similarly, the result of any operation involving an H-labeled value is also never observable
at L-level. Thus, any operation involving a partially-leaked value and a H-labeled value does not
reveal any information to an adversary at level L about the partially leaked value.

The final label k in the assignment rule assn-pus under the improved permissive-upgrade strategy
becomes:

k =

m if pc = L

H if pc = H and l = H

P otherwise

The soundness results of the original permissive-upgrade strategy can be extended to show the
soundness of the improved permissive-upgrade strategy. However, a significant difficulty in prov-
ing the theorem using the modified notation for the imperative language is that the definition of ∼
is not transitive. In [14], the authors resolve this issue by defining a special relation called evolution.
The need for evolution is averted here using the auxiliary lemmas listed below. Lemma 2 proves the
required result substituting evolution.

Lemma 1 (Expression Evaluation). If 〈σ1, e〉 ⇓ nk1
1 and 〈σ2, e〉 ⇓ nk2

2 and σ1 ∼L σ2, then nk1
1 ∼L nk2

2 .

Proof. By induction on e.

Lemma 2 (Evolution). If pc = H and 〈σ, c〉 ⇓
pc
σ′, then

∀x.Γ(σ(x)) = P =⇒ Γ(σ′(x)) = P .

3. Improved Permissive-Upgrade 21

Proof. By induction on the derivation rules and case analysis on the last rule.

Lemma 3 (Confinement for improved permissive-upgrade with a two-point lattice). If pc = H and
〈σ, c〉 ⇓

pc
σ′, then σ ∼L σ′.

Proof. By induction on the derivation rules.

Theorem 3 (TINI for improved permissive-upgrade with a two-point lattice). With the assignment
rule assn-pus and the modified syntax of Figure 3.4, if σ1 ∼L σ2 and 〈σ1, c〉 ⇓

pc
σ′1 and 〈σ2, c〉 ⇓

pc
σ′2, then

σ′1 ∼L σ′2.

Proof. By induction on c and case analysis on the last step.

The detailed proofs are provided in Appendix A.1. Note that the definitions and proofs presented
in this chapter are specific to the two-point lattice and with respect to an adversary at level L.

Chapter 4

Generalized Permissive-Upgrade

Although the permissive-upgrade strategy as described in the previous chapters is useful, its devel-
opment in literature is incomplete so far: Austin and Flanagan’s original paper [14], and the work
building on it (Chapter 3), develops permissive-upgrade for only a two-point security lattice, con-
taining levels L andH with L @ H , and the new label P . A generalization to a pointwise product of
such two-point lattices (and, hence, a powerset lattice) was suggested by Austin and Flanagan in the
original paper, but not fully developed. As explained later in Section 4.1, this generalization works
for the improved permissive-upgrade strategy and can be proven sound.

However, that still leaves open the question of generalizing permissive-upgrade to arbitrary lat-
tices. It is not even clear hitherto that this generalization exists. This chapter shows by construction
that a generalization of permissive-upgrade to arbitrary lattices does indeed exist and that it is, in
fact, non-obvious. Specifically, the rule for adding partially-leaked labels and the definition of store
(memory) equivalence needed to prove non-interference are reasonably involved.

4.1 Generalization of the Improved Permissive-Upgrade Strategy

Austin and Flanagan point out that permissive-upgrade on a two-point lattice can be generalized
to a pointwise product of such lattices. This generalization can also be extended to the improved
permissive-upgrade strategy presented in the previous chapter. Specifically, letX be an index set—
these indices are called principals in [14]. Let a label l be a map of type X → {L,H, P} and let the
subclass of pure labels contain maps `, pc of typeX → {L,H}. The order@ and the join operation t
can be generalized pointwise to these labels. Finally, the rule assn-pus can be generalized pointwise

The content of this chapter is based on the work published as part of the paper, “Generalizing Permissive-Upgrade in
Dynamic Information Flow Analysis” [21]

24 4. Generalized Permissive-Upgrade

` = L |M | . . . | H

pc = `

k, l,m = ` | `?

`1 t `2
? = (`1 t `2)?

`1
? t `2

? = (`1 t `2)?

Figure 4.1: Labels and label operations

by replacing it with the following rule:

assn-gpus
l := Γ(σ(x)) 〈σ, e〉 ⇓ nm

〈σ, x := e〉 ⇓
pc
σ[x 7→ nk]

where k is defined as follows:

k(a) =

m(a) if pc(a) = L

H if pc(a) = H and l(a) = H

P otherwise

In the definition above, a represents a principal from the setX . It can be shown that for any semantic
derivation in this generalized system, projecting all labels to a given principal yields a valid semantic
derivation in the system with a two-point lattice. This immediately implies non-interference for the
generalized system, where observations are limited to individual principals.

Definition 5. Two labeled values nk1 and nm2 are a-equivalent, written nk1 ≈a nm2 , iff either:

1. k(a) = m(a) = L and n1 = n2 or

2. k(a) = m(a) = H or

3. k(a) = P orm(a) = P

Definition 6 (Store equivalence). Two stores σ1 and σ2 are `-equivalent, written σ1 ≈a σ2, iff for every
variable x, σ1(x) ≈a σ2(x).

Theorem 4 (TINI for permissive-upgrade with a product lattice). With the assignment rule assn-gpus,
if σ1 ≈a σ2 and 〈σ1, c〉 ⇓

pc
σ′1 and 〈σ2, c〉 ⇓

pc
σ′2, then σ′1 ≈a σ′2.

Proof. Outlined above.

This generalization of the two-point lattice to a product of such lattices is interesting because a
powerset lattice can be simulated using such a product. However, this still leaves open the question
of constructing a generalization of permissive-upgrade to an arbitrary lattice (for instance, lattices
like the one shown in Figure 4.3). Such a generalization is developed in the next section.

4.2 Generalized Permissive-Upgrade on Arbitrary Lattices

This section shows by construction the generalization of the permissive-upgrade strategy to arbi-
trary security lattices. For every element ` of the lattice, a new label `? is introduced which means
“partially-leaked `”, with the following intuition:

4. Generalized Permissive-Upgrade 25

assn-n
〈σ, e〉 ⇓ nm l = Γ(σ(x)) l = `x ∨ l = `x

? pc v `x k = pc tm

〈σ, x := e〉 ⇓
pc
σ[x 7→ nk]

assn-s
〈σ, e〉 ⇓ nm l = Γ(σ(x)) l = `x ∨ l = `x

? pc 6v `x k = ((pc tm) u `x)?

〈σ, x := e〉 ⇓
pc
σ[x 7→ nk]

Figure 4.2: Assignment rules for the generalized permissive-upgrade

A variable labeled `? may contain partially-leaked data, where ` is a lower-bound on the ?-free
labels the variable may have in alternate executions.

The syntax of labels is listed in Figure 4.1. Labels k, l,m may be lattice elements ` or ?-ed lattice
elements `?. In examples, suggestive lattice element names L,M,H (low, medium, high) are used.
Labels of the form ` are called ?-free or pure. Figure 4.1 also defines the join operation t on labels.
This definition is based on the intuition above. When the two operands of � are labeled `1 and `2

?,
`1 t `2 is a lower bound on the pure label of the resulting value in any execution (because `2 is a
lower bound on the pure label of `2

? in any run). Hence, `1 t `2
? = (`1 t `2)?. The reason for the

definition `1
? t `2

? = (`1 t `2)? is similar.

The rules for assignment are shown in Figure 4.2. They strictly generalize the rule assn-pus for the
two-point lattice, treating P = L?. Rule assn-n applies when the existing label of the variable being
assigned to is `x or `x

? and pc v `x. The key intuition behind the rule is the following: If pc v `x,
then it is safe to overwrite the variable, because `x is necessarily a lower bound on the (pure) label of

x in this and any alternate execution (see the framebox above). Hence, overwriting the variable

cannot cause an implicit flow. As expected, the label of the overwritten variable is pc tm, wherem
is the label of the value assigned to x.

Rule assn-s applies in the remaining case — when pc 6v `x. In this case, there may be an implicit
flow, so the final label on x must have the form `? for some `. The question is which `. Intuitively, it
may seem that one could choose ` = `x, the pure part of the original label of x. The final label on x

would be `x
? and this would satisfy the intuitive meaning of ? written in the framebox above.

Indeed, this intuition suffices for the two-point lattice of Section 3.2 and 3.3. However, for a more
general lattice, this intuition is unsound, as illustrated with an example below. The correct label is
((pc tm) u `x)?.

Example The need for the label k := ((pc tm)u `x)? instead of k := `x
? in rule assn-s is illustrated

below. Consider the lattice of Figure 4.3 and the program of Listing 4.1. Assume that, initially,
the variables z, w, x1, x′, x2, y1 and y2 have labels H , L1, L1, L′, L2, M1 and M2, respectively. Fix
the attacker at level L1. Fix the value of x1 at trueL1 , so that the branch on line 5 is always taken
and line 6 is always executed. Set y1 7→ falseM1 , y2 7→ trueM2 , w 7→ falseL1 initially. The initial
value of z is irrelevant. Consider two executions of the program starting from two stores σ1 with

26 4. Generalized Permissive-Upgrade

1 if (x′)

2 z = y1

3 else

4 z = y2

5 if (x1)

6 z = x1

7 if (not(x2))
8 z = x2

9 if (z)

10 w = z

Listing 4.1: Example explaining rule assn-s

H

M1 M2

L′L1 L2

L

Figure 4.3: Lattice explaining rule assn-s

x′ 7→ trueL
′
, x2 7→ trueL2 and σ2 with x′ 7→ falseL

′
, x2 7→ falseL2 . Note that as L′ and L2 are

incomparable to L1 in the lattice, σ1 and σ2 are equivalent for L1.

Requiring k := `x
? in ruleassn-s causes an implicit flow that is observable forL1. The intermediate

values and labels of the variables for executions starting from σ1 and σ2 are shown in the second
and third columns of Table 4.1. Starting with σ1, line 2 is executed, but line 4 is not, so z ends with
falseM1 at line 5 (rule assn-n applies at line 2). At line 6, z contains trueL1 (again by rule assn-n)
and line 8 is not executed. Thus, the branch on line 9 is taken and w ends with trueL1 at line 10.
Starting with σ2, line 2 is not executed, but line 4 is, so z becomes trueM2 at line 5 (rule assn-n
applies at line 4). At line 6, rule assn-s applies, but because k := `x

? is assumed in that rule, z now
contains the value trueM2

? . As the branch on line 7 is taken, at line 8, z becomes falseL2 by rule
assn-n because L2 v M2. Thus, the branch on line 9 is not taken and w ends with falseL1 in this
execution. Hence, w ends with trueL1 and falseL1 in the two executions, respectively. The attacker
at level L1 can distinguish these two results; hence, the program leaks the value of x′ and x2 to L1.

With the correct assn-s rule in place, this leak is avoided (last column of Table 4.1). In that case,
after the assignment on line 6 in the second execution, z has label ((L1 t L1) uM2)? = L?. Subse-
quently, after line 8, z gets the label L?. As case analysis on a ?-ed value is not allowed, the execution
is halted on line 9. This guarantees termination-insensitive non-interference with respect to the at-
tacker at level L1.

4.2.1 Termination-insensitive Non-interference (TINI)

To prove non-interference for the generalized permissive-upgrade, equivalence of labeled values
relative to an adversary at arbitrary lattice level ` needs to be defined. The definition is shown
below (Definition 7). Note that clauses (3)–(5) here refine clause (3) of Definition 5 for the two-point
lattice. The obvious generalization of clause (3) of Definition 5— nk1 ∼` nm2 whenever either k orm is
?-ed — is too coarse to prove non-interference inductively. For the degenerate case of the two-point
lattice, this definition also degenerates to Definition 5 (there, ` is fixed at L, P = L? and only Lmay
be ?-ed).

Definition 7. Two values nk1 and nm2 are `-equivalent, written nk1 ∼` nm2 , iff either

4. Generalized Permissive-Upgrade 27

w = falseL1 , x1 = trueL1 , y1 = falseM1 , y2 = trueM2

x′ = trueL
′

x′ = falseL
′

x2 = trueL2 x2 = falseL2

k := `x
? k := ((pc tm) u `x)?

if (x′) pc = L′

z = y1 z = falseM1

else pc = L′ pc = L′

z = y2 z = trueM2 z = trueM2

if (x1) pc = L1 pc = L1 pc = L1

z = x1 z = trueL1 z = trueM2
?

z = trueL
?

if (not(x2)) branch not taken pc = L2 pc = L2

z = x2 z = falseL2 z = falseL
?

if (z) pc = L1 branch not taken execution halted
w = z w = trueL1

Result w = trueL1 w = falseL1 (leak) no leak

Table 4.1: Execution steps in two runs of the program from Listing 4.1, with two variants of the
rule assn-s

1. k = m = `′ v ` and n1 = n2, or

2. k = `′ 6v ` andm = `′′ 6v `, or

3. k = `1
? andm = `2

?, or

4. k = `1
? andm = `2 and (`2 6v ` or `1 v `2), or

5. k = `1 andm = `2
? and (`1 6v ` or `2 v `1)

Definition 8. Two stores σ1 and σ2 are `-equivalent, written σ1 ∼` σ2, iff for every variable x, σ1(x) ∼`
σ2(x).

This definition is obtained by constructing (through examples) an extensive transition graph of
pairs of labels that may be assigned to a single variable at corresponding program points in two
executions of the same program. The starting point is label-pairs of the form (`, `). This characteri-
zation of equivalence is both sufficient and necessary. It is sufficient in the sense that it allows us to
prove TINI inductively. It is necessary in the sense that example programs can be constructed that
end in states exercising every possible clause of this definition. Appendix A.2 lists these examples.

Using the above definition of equivalence of labeled values, TINI can be proven for the generalized
permissive-upgrade strategy presented above. A significant difficulty in proving the theorem is that
the definition of ∼` is not transitive unlike the previous definition of ∼. Detailed proofs of all the
lemmas and the theorems are presented in Appendix A.3.

Lemma 4 (Expression evaluation). If 〈σ1, e〉 ⇓ nk1
1 and 〈σ2, e〉 ⇓ nk2

2 and σ1 ∼` σ2, then nk1
1 ∼` nk2

2 .

Proof. By induction on e.

28 4. Generalized Permissive-Upgrade

Lemma 5 (?-preservation). If 〈σ, c〉 ⇓
pc
σ′ and Γ(σ(x)) = `? and pc 6v `, then Γ(σ′(x)) = `′? and `′ v `.

Proof. By induction on the derivation rule.

Corollary 1. If 〈σ, c〉 ⇓
pc
σ′ and Γ(σ(x)) = `? and Γ(σ′(x)) = `′, then pc v `.

Proof. Immediate from Lemma 5.

Lemma 6 (pc-lemma). If 〈σ, c〉 ⇓
pc
σ′ and Γ(σ′(x)) = `, then σ(x) = σ′(x) or pc v `.

Proof. By induction on the derivation rule.

Corollary 2. If 〈σ, c〉 ⇓
pc
σ′ and Γ(σ(x)) = `? and Γ(σ′(x)) = `′, then pc v `′.

Proof. Immediate from Lemma 6.

Using these lemmas, the standard confinement lemma and non-interference can be proven.

Lemma 7 (Confinement Lemma). If pc 6v ` and 〈σ, c〉 ⇓
pc
σ′, then σ ∼` σ′.

Proof. By induction on the derivation rule.

Theorem 5 (TINI for generalized permissive-upgrade for arbitrary lattices). If σ1 ∼` σ2 and 〈σ1, c〉 ⇓
pc

σ′1 and 〈σ2, c〉 ⇓
pc
σ′2, then σ′1 ∼` σ′2.

Proof. By induction on c.

4.3 Comparison of the Generalization of Section 4.2 with the
Generalization of Section 4.1

Two distinct and sound generalizations of the permissive-upgrade strategy for the two-point lattice
have now been described: The generalization of the improved permissive-upgrade to pointwise
products of two-point lattices or, equivalently, to powerset lattices as described in Section 4.1, and
the generalization to arbitrary lattices described in Section 4.2. Since both the generalizations apply
to powerset lattices, an obvious question is whether one is more permissive than the other on such
lattices. The generalization of permissive-upgrade to pointwise lattices described in Section 4.1 can
be more permissive than the generalization described in Section 4.2 for powerset lattices in certain
cases as shown by the example below. The reason for this permissiveness is that the generalization
of permissive-upgrade to pointwise lattices tracks finer taints, i.e., it tracks partial leaks for each
principal separately.

4. Generalized Permissive-Upgrade 29

1 if (y)

2 x = z

3 if (z)

4 x = z

5 if (x)

6 z = x

Listing 4.2: Example where generalization of
permissive-upgrade to pointwise lattices

is more permissive than the
generalization to arbitrary lattices

HH

LH HL

LL

Figure 4.4: A powerset/product lattice

Example The powerset lattice of Figure 4.4 is used for illustration purpose. This lattice is the point-
wise lifting of the order L @ H to the set S = {L,H} × {L,H}. For brevity, this lattice’s elements
are written as LL, LH , etc. When generalization from Section 4.1 is applied to this lattice, labels are
drawn from the set {L,H, P} × {L,H, P}. These labels are concisely written as LP , HL, etc. For
the generalization from Section 4.2 to arbitrary lattices, labels are drawn from the set S ∪ S?. These
labels are written LH , LH?, etc. Note that LH? parses as (LH)?, not L(H?) (the latter is not a valid
label in the generalization applied to this lattice). Consider the program in Listing 4.2. Assume
that x, y and z have initial labels LL, HL and LH , respectively and that the initial store contains
y 7→ trueHL, z 7→ trueLH , so the branches on lines 1 and 3 are both taken. The initial value in
x is irrelevant but its label is important. Under the generalization from Section 4.1, x obtains label
(((HL)t (LH))u (LL))? = LL? at line 2 by rule assn-s. At line 4, the same rule applies but the label
of x remains LL?. When the program tries to branch on x at line 5, it is stopped. In contrast, under
generalization of permissive-upgrade to pointwise lattices, this program executes to completion. At
line 2, the label of x changes to PH by rule assn-gpus. At line 4, the label changes to LH because pc
and the label of z are bothLH . Since this new label has no P , line 5 executes without halting. Hence,
for this example, generalization of permissive-upgrade to pointwise lattices is more permissive than
the generalization to arbitrary lattices presented in Section 4.2.

An example for which the generalization of permissive-upgrade to arbitrary lattices is more per-
missive than generalization to pointwise lattices in the case of powerset lattices was not found.
But the generalization presented in Section 4.2 is more general than the product construction (Sec-
tion 4.1) when applied to arbitrary lattices (and hence, applicable to a broader set of lattices) as it is
unclear whether or how the improved permissive upgrade strategy generalizes to arbitrary lattices.
By developing this generalization, this work makes permissive-upgrade applicable to arbitrary se-
curity lattices like other IFC techniques.

Part III

Precise Control Scope Analysis

Chapter 5

Dynamic IFC with Unstructured
Control Flow and Exceptions

This chapter presents a mechanism to prevent leaks due to implicit flows in the presence of unstruc-
tured control constructs like break, return-in-the-middle and exceptions.

Implicit flow corresponds to control dependence in program analysis, where a predicate governs
which program path is executed and leaks information through the control flow of the program.
For sound analysis and to avoid over-approximation in certain cases, an important goal for implicit
flow tracking, in general, is to determine when the influence of a control construct has ended, i.e.,
to determine the correct pc label for every statement in the program. In other words, it is important
to have a precise control scope analysis in place. For block-structured control flow limited to if

and while commands, this is straightforward: The effect of a control construct ends with its lexical
scope, e.g., in

if (h) {l = 1;} l = 2

h influences the control flow at l = 1 but not at l = 2. This leads to a straightforward implemen-
tation of a pc upgrading and downgrading strategy: One maintains a stack of pc labels [104]; the
effective pc is the top one. When entering a control flow construct like if or while, a new pc label,
equal to the join of labels of all values on which the construct’s guard depends with the previous
effective pc, is pushed. When exiting the construct, the label is popped.

Unfortunately, it is unclear how to extend this simple strategy to non-block-structured control
flow constructs such as break, continue and return-in-the-middle for functions, all of which occur
in high-level languages. For example, consider the program

l = 1; while(1) {... if(h) {break;}; l = 0; break;}

The content of this chapter is based partly on the work published as part of the paper, “Information Flow Control in
WebKit’s JavaScript Bytecode” [22]

34 5. Dynamic IFC with Unstructured Control Flow and Exceptions

with h labeled H . This program leaks the value of h into l, but no assignment to l appears in a
block-scope guarded by h. Indeed, the pc upgrading and downgrading strategy just described is
ineffective for this program.

Implicit flow in the form of error handling is also a source of information leak as it helps the
adversary to learn about the system [47]. For instance, an exception handler might print the stack
trace of the error, fromwhich an attacker can determinewhat sort of attacks the system is vulnerable
to.

Tracking information flow in the presence of unstructured control flows is non-trivial as the con-
trol breaks out of block structures. Exceptions are much more difficult to handle as they allow for
non-local control transfer. Much work on error handling has focused in the context of static anal-
ysis [11, 76] and the work on IFC for dynamic languages has mostly ignored exceptions and other
unstructured control flow constructs [13, 14, 32, 44, 50]. Just et al. [60] present dynamic IFC for
JavaScript bytecode with static analysis to determine implicit flows precisely but ignore implicit
flows due to exceptions. Hedin and Sabelfeld propose a dynamic IFC approach for a language
modeling the core features of JavaScript [54] but ignore unstructured control flow constructs like
break, continue and return-in-the-middle for functions. For handling exceptions, they introduce an-
notations and an additional class of labels. An extension introduces similar annotations to deal with
unstructured control flows [55]. These labels are more restrictive than needed, e.g., the code indi-
cated by dots in the example above is executed irrespective of the condition h in the first iteration,
and thus there is no need to raise the pc before checking that condition.

To solve this issue, this chapter presents a precise dynamic analysis approach using post-dominator
analysis [42, 60].

5.1 Control Flow Graphs and Post-dominator Analysis

The approach presented in this chapter performs on-the-fly post-dominator analysis at runtime to
handle implicit flows. A control flowgraph (CFG),which is a directed graph, is constructed for every
new function before it is executed with every instruction being represented as a node and whose
edges represent the possible control flows. For every branch node, its immediate post-dominator
(IPD) is computed [22, 42, 60]. A stack of pc labels is maintained. When executing a branch node,
a new pc label is pushed on the stack along with the node’s IPD. When the IPD is actually reached,
the pc label along with the IPD is popped from the stack. In [70, 101], the authors prove that the
IPD marks the end of the scope of an operation and hence the security context of the operation, so
our strategy is sound. The IPD-based solution works for all forms of unstructured control flow like
break, continue, return-in-the-middle, and exceptions. Multiple return statements in a function are
represented by a single return node. Theorem 6 shows that the IPD of a node is the most precise
node where the context of an operation can be removed. For proving Theorem 6, a few definitions
are defined below.

Definition 9. (Control flow graph)
A control flow graph is a directed graph G = (N , E , ns, ne,L). N is the set of nodes. E is the set of control
flow edges (n1, n2) ∈ E , where ni ∈ N . (n1, n2) represents n2 may immediately execute after n1. The nodes

5. Dynamic IFC with Unstructured Control Flow and Exceptions 35

ns, ne ∈ N are special nodes representing the start and end point of G. The function L maps the edges in E
to labels.

Definition 10. (Path)
A path in a CFG G is a sequence of nodes (n1, n2, ..., nm) such that (ni, ni+1) ∈ E , written as n1 →p nm.
A node n that lies on the path n1 →p nm is written as n ∈ n1 →p nm. The notation n1 < n2 with respect to
two nodes n1 and n2 in a CFG G indicates that n2 lies on a path n1 →p ne .

Definition 11. (Branch-point)
A branch-point b is a node in a CFG G that has more than one successor, i.e.,
outdegree(b) > 1.

Definition 12. (Post-dominator)
In a CFG G, a node nd is said to be the post-dominator of a node n if all paths from n to the end-node pass
through nd, i.e., ∀p.n→p ne =⇒ nd ∈ p. The notation nd pd n indicates that nd is a post-dominator of n.

Definition 13. (Immediate post-dominator)
A node i is the immediate post-dominator of the node n, denoted as IPD(n), iff:

1. i pd n and

2. 6 ∃no ∈ N .((no pd n) ∧ (no < i)) or
∀no ∈ N .((no 6= n) =⇒ (no pd n =⇒ no pd i)).

Theorem 6 (Precision). Choosing any node other than the IPD to lower the pc-label will either give unsound
results or be less precise.

Proof. The proof of the theorem is described in Appendix B.

5.2 Exceptions and Synthetic Exit Nodes

Maintaining a precise CFG for post-dominator analysis at runtime in the presence of exceptions is
expensive. The CFG of a function is constructed statically on-the-fly when compiling the function at
runtime. An exception-throwing node in a function that does not catch that exception should have
an outgoing control flow edge to the next related exception handler in the runtime call-stack. This
means that the CFG is, in general, inter-procedural, and edges going out of a function depend on its
calling context, so IPDs of nodes in the functionmust be computed every time the function is called (the
IPDs change based on the earlier functions in the call-stack that called the particular function where
the exception occurs). Moreover, in the case of recursive functions, the nodes must be replicated for
every call. This is rather expensive. Ideally, the function’s CFG should be built only once when the
function is compiled and work intra-procedurally.

In the design presented in this chapter, every function that may throw an unhandled exception
and has an exception handler present earlier in the call-stack (which is assumed to be known at run-
time through additional data structures in the system) has a special synthetic exit node (SEN), which
is placed after the regular return node of the function in the CFG. Every exception-throwing node,
whose exception will not be caught within the function, has an outgoing edge to the SEN. In essence,

36 5. Dynamic IFC with Unstructured Control Flow and Exceptions

the SEN is treated as the IPD for nodeswhose actual IPDs lie outside of the function. By doing this, all
cross-function edges are eliminated and the CFGs become intra-procedural. This allows the compu-
tation of the CFGs just once as compared to the inter-procedural case. For every exception-throwing
instruction that has an associated handler, its context is maintained during dynamic information
flow analysis until the handler is reached. Thus, function calls and all potential exception-throwing
instructions are represented as nodes with multiple edges (branches) and push a node on the pc-
stack. However, a new node is not pushed on the pc-stack if the IPD of the current node is the same
as the IPD on the top of the pc-stack or if the IPD of the current node is the SEN, as in this case the
real IPD, which is outside of this method, is already on top of the pc-stack. In fact, the actual IPD of
a node having SEN as its IPD is the node that is currently on the top of the stack. This result is shown
in Theorem 7. The proof is shown in Appendix B.

Theorem 7. The actual IPD of a node having SEN as its IPD is the node on the top of the pc-stack, which lies
in a previously called function.

In summary, these semantics emulate the effect of having cross-function edges. For illustration,
consider the following two functions f and g. The � at the end of g denotes its SEN. Note that there
is an edge from throw 9 to � because throw 9 is not handled within g. � denotes the IPD of the
function call g() and handler catch(e).

function f() = {

l = 0;

try { g(); } catch(e) { l = 1; }

� return l;

}

function g() = {

if (h) {throw 9;}

return 7;

} �

In the absence of instrumentation, when f is invoked with pc = L, the two functions together leak
the value of h, which is assumed to have a label H , into the return value of f. When calling g, the
current pc and IPD (L,�) are pushed on the pc-stack. When executing the condition if (h) a new
node is not pushed again, but the top element is merely updated to (H,�) as its IPD is the SEN �. If
h is false, control reaches the return statement but with pc = H . At�, pc is lowered to L, so f ends
with the return value 0 and public label L. If h is true, control reaches the handler, which is in f and
invokes it with the same pc as at the point of exception, i.e., H . Consequently, permissive-upgrade
marks the assignment in the catch block as partially-leaked and prevents the implicit information
leak in this case.

5.3 Formal Model

This section formally models the semantics of the language with dynamic IFC instrumentation in-
cluding unstructured control flow and exceptions. The language from Figure 3.1 is extended to in-
clude unstructured control flow constructs like break, continue, return and exceptions. Programs
are considered as a collection of functions (without parameter-passing). The control flow analysis
is performed on a function before it is executed and is abstractly represented as a CFG in the formal
model. Thus, the program itself is modeled as a huge control flow graph (G). IPDs are computed
using the algorithm by Lengauer and Tarjan [65] when the CFG is created. The CFG is statically

5. Dynamic IFC with Unstructured Control Flow and Exceptions 37

e := n | x | e1 � e2

ι := end | x := e | branch e | jmp | return | throw e | catch x | SEN

Figure 5.1: Language Syntax

constructed (only once) as new functions are called or discovered at runtime. For a non-branching
node ι ∈ G, Succ(ι) denotes ι’s unique successor. For a conditional branching node ι, Left(ι) and
Right(ι) denote successors when the condition is true and false, respectively.

The syntax of the language modeling the nodes in a CFG is shown in Figure 5.1. The command
if e then c1 else c2 is represented as the node branch e with Left(G, ι) = c1 and Right(G, ι) = c2.
Similarly, while e do c is represented as branch e with Left(ι) = c and Right(ι) being the command
following while in the program. A jmp node in the CFG corresponds to break and continue with
Succ(ι) pointing to the next node in the CFG according to the operation. It is also assumed that a
function always ends with a return statement and thus a CFG normally ends with the return node.
Multiple return statements in a function are represented using a single return node. Succ(ι) points
the node to return to in the previous CFG, while the return value is saved in a global variable that
can be accessed by the program later on. When a new CFG is added for a function, the return node
of that CFG points to the successor node of the function call in the previous CFG. However, the IPDs
are computed when the CFGs are intra-procedural. Every node in the program’s CFG is uniquely
identifiable.

In general, every function has an associated exception table that maps each potentially exception-
throwing instruction in the function to the appropriate exception handler within the function. This
is represented by adding a Right edge in the CFG from the instruction’s node to the handler’s node;
throw has only one outgoing edge. It is conservatively assumed that any unknown code may throw
an exception, so function call is exception-throwing for this purpose. If a function contains unhan-
dled exceptions, the corresponding edges in the CFG point to the SEN of the CFG. The SEN is only
created if one of the previous functions in the call-stack has an appropriate exception handler for
the unhandled exceptions in the current function. When an SEN node is created, an edge is added
from the SEN of the CFG to a node in the previous CFG, which is either the catch node or the SEN

of that CFG. Succ denotes one of these edges. If there are no appropriate handlers in the call-stack,
the exception-throwing nodes have an edge to the end node of the program CFG. For simplicity of
exposition, it is assumed here that all exceptions belong to a single class — for different types of
exceptions, the exception class would also be matched for determining the appropriate exception
handler.

Program configurations for commands (nodes) are represented as 〈σ, ι, ρ〉, where σ represents
the memory store as before, ι represents the currently executing node, and ρ is the pc-stack. The
configuration for expressions is the same as before: 〈σ, e〉.

Each entry of the pc-stack ρ is a pair (`, ι), where ` is a security label, and ι is a node in the CFG.
When a new control context is entered, the new pc-label, which is a join of the current context label
and the existing pc-label (the label on the top of the stack), is pushed together with the IPD ι of

38 5. Dynamic IFC with Unstructured Control Flow and Exceptions

assn

ι = (x := e) 〈σ, e〉 ⇓ nm

l = Γ(σ(x)) l = `x ∨ l = `x
? pc = Γ(!ρ) k =

{
pc tm, pc v `x

((pc tm) u `x)?, pc 6v `x

}
σ′ = σ[x 7→ nk] ι′ = Succ(ι) ρ′ = isIPD(ι′, ρ)

〈σ, ι, ρ〉 → 〈σ′, ι′, ρ′〉

branch

ι = branch e 〈σ, e〉 ⇓ b`

ι′ =
{

Left(ι), if b = true

Right(ι), otherwise

}
ρ′′ = ρ.push(`, IPD(ι)) ρ′ = isIPD(ι′, ρ′′)

〈σ, ι, ρ〉 → 〈σ, ι′, ρ′〉

jmp, ret, sen
ι = jmp or return or SEN ι′ = Succ(ι) ρ′ = isIPD(ι′, ρ)

〈σ, ι, ρ〉 → 〈σ, ι′, ρ′〉

throw

ι = throw e
〈σ, e〉 ⇓ nk pc = Γ(!ρ) excValue = n(kt pc) ι′ = Succ(ι) ρ′ = isIPD(ι′, ρ)

〈σ, ι, ρ〉 → 〈σ, ι′, ρ′〉

catch

ι = catch x excValue = nm

l = Γ(σ(x)) l = `x ∨ l = `x
? pc = Γ(!ρ) k =

{
pc tm, pc v `x

((pc tm) u `x)?, pc 6v `x

}
σ′ = σ[x 7→ nk] ι′ = Succ(ι) ρ′ = isIPD(ι′, ρ)

〈σ, ι, ρ〉 → 〈σ′, ι′, ρ′〉

end
ι = end

〈σ, ι, ρ〉 → _

Figure 5.2: Semantics

the entry point of the control context. (ι) uniquely identifies where the control of the context ends.
In the semantics, the meta-function isIPD pops the stack. It takes the current instruction and the
current pc-stack, and returns a new pc-stack. !ρ returns the top frame of the pc-stack. Γ(!ρ) returns
the current context label, also represented as pc in the semantics.

isIPD(ι, ρ) :=

ρ.pop() if !ρ = (_, ι)

ρ otherwise

As explained in Section 5.2, a new node (`, ι) is pushed onto ρ only when ι (the IPD) differs from
the corresponding entry on the top of the stack or it is not SEN (Theorem 7). Otherwise, ` is joined
with the label on the top of the stack. This is formally represented using the function ρ.push(`, ι).

The derivation rules in Figure 5.2 define small-step semantics that define the judgment: 〈σ, ι, ρ〉 →
〈σ′, ι′, ρ′〉 (as big-step semantics cannot model unstructured control flow). The rules for expressions

5. Dynamic IFC with Unstructured Control Flow and Exceptions 39

are the same as in Figure 3.2. The rules are informally explained above. The soundness of the
analysis including unstructured control flow and exceptions is proven below.

To state the theorem formally, the equivalence of different data structures with respect to the
adversary needs to be defined. Value and memory equivalence is defined as before in Definitions 7
and 8. To prove termination-insensitive non-interference, some additional definitions and auxiliary
lemmas are defined below. The detailed proofs can be found in Appendix C.

Definition 14 (pc-stack equivalence). For two pc-stacks ρ1, ρ2, ρ1 ∼` ρ2 iff the corresponding nodes of ρ1

and ρ2 having label less than or equal to ` are equal.

Definition 15 (State equivalence). Two states s1 = 〈σ1, ι1, ρ1〉 and s2 = 〈σ2, ι2, ρ2〉 are equivalent, written
as s1 ∼` s2, iff σ1 ∼` σ2, ι1 = ι2, and ρ1 ∼` ρ2.

Lemma 8 (Confinement Lemma). If 〈σ, ι, ρ〉 → 〈σ′, ι′, ρ′〉 and Γ(!ρ) 6v `, then σ ∼` σ′, and ρ ∼` ρ′.

Theorem 8. Suppose:

1. 〈σ1, ι1, ρ1〉 ∼` 〈σ2, ι2, ρ2〉

2. 〈σ1, ι1, ρ1〉 →∗ 〈σ′1, end, []〉

3. 〈σ2, ι2, ρ2〉 →∗ 〈σ′2, end, []〉

Then, σ′1 ∼` σ′2.

Part IV

Budget-based Limited Information
Release

Chapter 6

Bounding Information Leaks
Dynamically

Information flow control allows tracking of sensitive and private informationwhile preventing leaks
to unauthorized public channels. However, in some cases it is required that (some part of) the sen-
sitive data be accessible over certain public channels. This violates the security property of non-
interference but is needed for practical reasons. This is generally achieved by specifying special
declassification policies, which allow for such release of information. For instance, the declassifi-
cation policy declassify(pwd == input) would treat the result of the equality check (pwd == input)
as public, thus allowing information to be released to the user. The enforcement generally requires
declassify annotations to be added to the code to specify which operations need to release the
value. Most of the approaches require policy specifications by the developer that define what in-
formation can be released by the program when the data to be declassified is part of the untrusted
code; else the untrusted code can arbitrarily add declassify annotations and release information
at will.

An alternative approach to declassification is to quantify the amount of information a program re-
leases about a sensitive value and to determine an acceptable upper bound, which accepts or rejects
the program. The information released is generally quantified by computing the difference in the
entropy, a measure of uncertainty, of information contained in the sensitive value before and after
the release with respect to an adversary [7, 34, 71, 92, 93]. Research in quantitative information flow
has focused on statically analyzing the program and determining aworst-case bound on the amount
of information that a program can release as a whole [16, 33, 34, 42, 64, 93]. These approaches rely
on the assumption that the probability distribution of the output values is known upfront.

Quantitative information flow analysismethods, in general, yield leakage bounds over all possible
executions of a program. A dynamic analysis, on the other hand, considers only the path being
taken in the current execution, which in general consensus seems to be unsound for quantifying

44 6. Bounding Information Leaks Dynamically

1 age = getCurrentAge(birthday, birthyear);

2 if (age < 18)

3 preference = "child";

4 else

5 preference = "adult";

Listing 6.1: Age-based Advertisement

information leaks. However, such an analysis would prove useful in scenarios like the Web where
the program to be analyzed might only be available at runtime and one needs to only bound the
amount of information released by the program about a sensitive value to untrusted sources [25].

In the context of dynamic analysis, bounding information leaks helps control the information leak-
age at runtime. The motivation of this work is, thus, to provide an analysis that bounds information
leaks dynamically at runtime and to prove that the approach is sound. McCamant and Ernst [73]
provide the only dynamic quantitative information flow analysis but do not prove the soundness of
their approach. They, however, provide a simulation-based proof [72] for quantifying the amount
of information released by the program about a secret for a simple system with a two-level lattice.
They track information flow more finely at the granularity of bits by restricting the language’s vari-
ables to single bits. They maintain a shadow bit for every variable that indicates the secrecy level
(public or secret) of the value in the variable. However, it is unclear how their technique scales for
multiple security levels or multiple secrets in the system.

Moreover, the approach by McCamant and Ernst [73] is more suitable for quantification rather
than for bounding information leaks; bounding information leaks introduces additional non-trivial
complications and leakage channels as detailed in later sections. Other prior work by Besson et
al. [20] used self-information to quantify the number of bits of information that could be leaked
about a secret value. However, this technique requires the knowledge of the probability distribution
or individual probabilities of the outputs that are based on secret values. In cases where it is difficult
to determine the probability of the outputs upfront, the use of this measure for analysis does not
help much.

This chapter explores an alternative approach, where the developer can specify a budget for ev-
ery sensitive value in the system (defaulting to zero if not specified), which is basically an upper
bound on the amount of information allowed to leak about that value. An underlying enforcement
mechanism ensures that no more information about that value is leaked than what is specified by
the budget.

Additionally, in scenarios like the Web where the untrusted third-party code changes quite often,
it is difficult for the developer to keep up with the changes and modify the what policy specifica-
tions accordingly. For instance, consider the program snippet in Listing 6.1 where the displayed
advertisements for some web-page depend on the viewer’s age. The exact age is considered sensi-
tive data, but in order to provide its functionality only an abstraction of the age is required, namely
whether age < 18. The developer might specify declassify(age < 18) as a declassification policy.
However, different jurisdictions might entail adaptations to this rule (requiring a different check on
age), resulting in a cumbersome process where the developer needs to update the policy frequently.

6. Bounding Information Leaks Dynamically 45

If, however, the developer associates a budget of 3 with the initial value in the variable age (mean-
ing that only 3 bits of information about age are allowed to leak), this example will be accepted in
the envisioned model. If the advertiser changes the criteria to include another check whether the
user is a teenager, this comparison can be included without requiring any change to the policy. The
soundness of the underlying enforcement would ensure that nomore information than the specified
budget can ever leak.

Bounding information leaks has additional advantages — it provides a formal meaning for al-
lowing certain operations like the one described in Listing 6.1 while establishing important security
properties related to them. There are a number of real-world programs that allow a limited number
of such operations to be performed, e.g., a password checker allows 3 tries before it locks the user’s
account.

Bounding information leaks in a purely dynamic setting is still largely an open problem. As the
property of non-interference does not allow any information release, this chapter proposes an end-
to-end guarantee that allows the flowof secret information to public channels in a controlledmanner
by declassifying fragments of the secret. The policy enforces that the only information leaked about
the secrets by a program is bounded by their pre-specified budgets. A sound enforcement of the
property is described and proven sound information-theoretically by coding the outputs generated
through information releases and showing that the output codes are uniquely-decodable. We utilize
an important result by Shannon [92], which states that the average length of uniquely-decodable
codes upper bounds the Shannon entropy of the outputs.

6.1 Quantifying Information Leaks

The information released, or the mutual information, is generally quantified as the difference in the
entropy, which is a measure of the adversary’s uncertainty, of the sensitive information before and
after the information is released, i.e.,

mutual information = initial uncertainty - final uncertainty

Roughly speaking, this amounts to the gain in knowledge of the adversary about a sensitive value.
The adversary computes a probable initial set of values for the sensitive value. By observing the
information released, the adversary can refine his/her knowledge set by removing the improbable
values. Various information-theoreticmeasures have been proposed [7, 34, 71, 92, 93] for quantifying
information leaks. Many of these measures determine an average worst-case bound on the amount
of information that a program can leak. But for deterministic systems in which the prior probability
distribution is not known, the maximum leakage is generally realized on uniform priors and most
of these measures equal Shannon entropy.

Clark et al. [33] propose an approach to statically quantify the amount of information leaked in
an imperative language. An important result that they prove in their work is that the information
released by a program in a deterministic system is equal to the Shannon entropy of the outputs
given the public inputs. Thus, for computing the information released by a program about a se-
cret, it is enough to compute the Shannon entropy of the public outputs given the public inputs.

46 6. Bounding Information Leaks Dynamically

1 dbPwd = getActualPassword(user);

2 uPwd = readUserPassword();

3 login = (dbPwd == uPwd);

Listing 6.2: Password Checker

Another important result is the Shannon’s source coding theorem [92] that intuitively states that if
one can associate variable-sized bit-codes with different outputs of a program such that the codes
are uniquely-decodable, then the average of the code-lengths of these codes has been shown to be
bounded by the Shannon entropy of the outputs of the program. The soundness of our approach
builds on top of these two results. We associate bit-codes with the outputs of the program being an-
alyzed and show that these codes are uniquely-decodable. In other words, the information release
as computed by our approach averaged over all executions is bounded by the actual information
released by the program.

6.2 Limited Information Release

Limited information release (LIR) is an information release policy that declassifies some (limited)
parts of sensitive information. The motivation for LIR is that, in general, certain information flows
leak only an insignificant part of a secret. As an example, the comparison of a secret with a constant
value is largely considered acceptable and its rejection by standard IFC analyses is too restrictive in
practice [18, 61]. Such information leaks are usually acceptable if one can guarantee that an adver-
sary cannot widen the declassification to launder information.

In the real-world, such policies find a wide range of applications. For instance, in the advertise-
ment example from Listing 6.1, the third-party ad service does not need to know the exact age of
the viewer for determining the preferred advertisement. It is sufficient to know whether the viewer
is a child or an adult (or a teenager). A similar example is that of a music app that hosts advertise-
ments for music shows and concerts in a town. Based on the age and the preferences of the user, the
advertisements might differ in each case.

Another common use-case of such policies is user authentication based on a secret password or a
PIN. The password checker in Listing 6.2 compares the secret password to the password entered by
the user. The public variable login reflects whether these match, indicating whether the log-in was
successful. Strict non-interference would normally prohibit assignments to the low variable login

as the value is derived from the secret password. However, releasing the log-in status to the user
cannot be avoided. Normally, a user can log-in in a single try but the probability of an adversary
guessing the correct password in one (or even a few) tries can be assumed to be negligible when the
password is strong and chosen randomly [99]. Thus, the assignment to the login variable may be
permitted for a few tries before the user’s account gets locked. Generally in these applications, there
is a trade-off between some private information leak and better services.

In practice, certain operations involving Boolean-valued expressions, and implicit flows leak very
little information, which might be required for providing proper functionality. King et al. [63] inves-

6. Bounding Information Leaks Dynamically 47

1 pub = 0; i = 1;

2 while (i ≤ 231) {

3 if ((sec & i) == i)

4 pub = pub | i;

5 i = i << 1;

6 }

Listing 6.3: Laundering attack via implicit flows

tigate the occurrence of implicit flows in some standard algorithms and discuss the pros and cons
of handling implicit flows. Russo et al. [86] also observe that implicit flows cannot be exploited in
non-malicious code to leak secrets efficiently. The LIR policy is, thus, guided by two key tenets:

• Declassification of Boolean-valued expressions. As has been observed previously [18, 61]
and is exemplified above, comparison operations and other Boolean values often provide a
low bandwidth channel for information leak. For instance, h 6= l only reveals whether the two
values in h and l are equal or not. Similarly, h < l and h > l only reveal that the value of h
is lesser and greater than the value of l, respectively. With LIR, such comparison operations
and Boolean-valued expressions are treated as potential points of information release. As all
operations need not be declassified, information is released only for those operations that are
explicitly annotated with declassify.

• Bounding the information released. Unfortunately, allowing information release when only
an insignificant amount of information is leaked can bewidened to leak the complete secret [88,
99]. The example in Listing 6.3 is a classical example of a laundering attack. It implicitly leaks
the secret value in sec to the variable pubwithout any direct assignments. Every time the check
on line 3 is performed, it leaks one bit of sec. The whole secret gets implicitly laundered into
the variable pub as this comparison is performed in a loop of length equal to the size of the
secret (in bits).

To limit the amount of information that can be leaked through laundering attacks, LIR in-
troduces a notion of budget (a natural number) associated with a sensitive value, which is an
upper bound on the amount of information that is allowed to leak about the sensitive value.
A budget is associated with every secret in the program and defaults to 0, if left unspecified.

Intuitively, a program is said to satisfy limited information release, if the information released
about the initial value of each secret in the system is limited by its pre-specified budget. If no infor-
mation is released about any secret or if the budgets for all the secrets reduce to 0, LIR reduces to the
standard non-interference policy. It is important to note that even when staying within the bounds
of the budget one can leak the entire secret via comparison operations. For instance, if an equality
comparison h == l involving a secret value h and a public value l returns true, a public adversary
knows that the value of h is the same as the value in l.

Although declassification of only Boolean-valued expressions is allowed by LIR, this can be ex-
tended to other expressions as well. In such cases, where the expression being declassified has a

48 6. Bounding Information Leaks Dynamically

1 pub = 0;

2 h = sec % 2;

3 sec = sec / 2;

4 if (declassify(h == 1))

5 pub = pub | 1;

6 i = sec % 2;

7 if (declassify(i == 1))

8 pub = pub | 2;

Listing 6.4: Leak due to dependent variables

data type having n possible values, the leak is accounted for by assuming that log2 n bits are leaked.
In this thesis, information release is restricted to Boolean expressions. Declassifying an integer value
would effectively mean that all bits of information about the secret value have been released and the
secret value could have been simply declassified.

6.3 LIR Enforcement

6.3.1 Language and Syntax

This section describes a runtime enforcement of LIR for the simple imperative language shown in
Figure 3.1 extended with the declassify operator as shown in Figure 6.1. The comparison and
arithmetic operators are separated as ⊕ and �, respectively, for the rules. The language is sufficient
for describing the key idea of LIR— appropriate deduction of budgets at declassification of Boolean
expressions involving secrets.

e := n | x | e1 � e2 | e1 ⊕ e2 | declassify(e1 ⊕ e2)

c := skip | x := e | c1; c2 | if e then c1 else c2 | while e do c

Figure 6.1: Syntax of the language

6.3.2 Key Aspects of the Enforcement

Normally, in dynamic information flow control mechanisms, every input to the program has a label
associated with it, which is an element of a security lattice. Along with the label, every input is as-
sociated with a budget that represents an upper bound on the amount of information that is allowed
to leak about that input.

To understand how the enforcement works with budgets, consider the example in Listing 6.4.
Consider a security lattice L @ H . Assume that the initial values in sec and h are both secret with
labelH and initial budget of 1. The initial value in pub and i are both public having the value-label

6. Bounding Information Leaks Dynamically 49

L. Suppose that at the assignment on line 2, the label of sec is carried over to the label of h (like any
flow-sensitive IFC monitor would). The declassification on line 4 would then release the value of h

(the last bit of sec) to pub deducting the budget of h but not sec as it has no information of h being
dependent on sec. As a result, the second bit of sec can also be leaked later (through the declassify
on line 7), which should not have been allowed as the budget of sec is just 1.

6.3.2.1 Labels and dependencies

Instead of directly tracking the label on the values, variable dependencies are tracked. As labels are
an abstraction of the dependencies, they carry lesser information than the dependencies. To track
the confidentiality level of the variables, every variable has an initial immutable security label asso-
ciated with it, referred to as its value-label (which is its initial label at the start of the program). An
immutable map Lmaps a variable to its initial value-label. Tracking dependencies enables individ-
ual access to the additional meta-data — value-label and budget — for every dependency. Thus,
the enforcement can determine the right variables to deduct budget from, which is required at the
point of declassification.

With dependency tracking, in the above example, initially h and secwill only have self-dependencies
and value-labels H . The monitor would then update the dependence of h on sec on line 2. As a
result, at the declassify instruction on line 4, it would deduct the budget from sec and not h. On
line 7, as the budget of the variable sec has exhausted, the leak of another bit of sec is prevented.

The dependencies in the label are split into two parts and the label on a value is represented as a
pair: (l, δ). The variable is itself represented as x = n(l,δ), where n is the value in the variable x and
(l, δ) is the label on the value. The second part of the label, δ, also referred to as dependency-set, is
a set of dependencies about whom some information can be released, i.e., those variables that have
a non-zero budget. Once the budget of a variable expires (becomes 0) and no more information
about that variable can be released, the variable is removed from the dependency-set of the current
value and added to the first part of the label to indicate that the current value is still dependent on
the variable but cannot release any information about it. For instance, if x = n(⊥,{x,y}) such that
L(y) = k, then current value in x is dependent on its original value and y’s original value and the
budgets of both x and y are non-zero. The initial value-label of y is k. When the budget of y expires,
y is removed from the dependency-set of the value in x and the value-label of y is joined with⊥ and
added to the secrecy-level of the value, i.e., x = n(k,{x}). It suffices to track the value-labels of the
variables whose budget has expired as the individual dependencies are not required for any further
monitoring. Thus, the first part of the label, l, is the join (upper-bound) of the value-labels of all the
dependencies for which no more information is allowed to (or can) be released. The first part of the
label, l, is referred to as the secrecy-level of the value and is an element of the security lattice. The
secrecy-level l also represents the minimal level at which the value can be observed, i.e., the current
value in the variable can never be released or declassified to a level below l. Initially, every variable
x depends only on itself and is labeled (⊥, {x}), where ⊥ represents the least element in the lattice.
The 7→ notation is used to map a variable to its label in the rest of this section, e.g., [x 7→ (⊥, {x})].

The join operation on the labels returns the join of the secrecy-levels and the union of the dependency-

50 6. Bounding Information Leaks Dynamically

sets as the final label, i.e.,
(l, δ) t (l′, δ′) = (l t l′, δ ∪ δ′)

Similarly, the ordering on the labels is defined as:

(l, δ) v (l′, δ′) = l v l′ ∧ δ ⊆ δ′

The function Γ(n(l,δ)) returns the current confidentiality level of the value, i.e., Γ(n(l,δ)) = l
⊔

x∈δ
L(x).

Note that the value in x is visible to an `-level adversary only if Γ(x) v `. pc denotes the current
program-context level.

With the dependency tracking and the new labeling mechanism in place, let us trace the enforce-
ment of budget reduction in a more involved example in Listing 6.5. Assume a security lattice
L @ M @ H , and two secrets a and b having value-labels L(a) = M and L(b) = H and tainted
[a 7→ (M, {}); b 7→ (L, {b})]. The initial budgets of a and b are 0 and 1, respectively. Also assume
that the taint on the value in x is [x 7→ (M, {})]. Consider two executions of the program depending
on whether the value of a is 0 or not.

1 if (a == 0)

2 x = b

3 z = declassify(x == 1)

4 y = declassify(b == 0)

Listing 6.5: Example to illustrate the need of budget-labels

When a is 0, x is assigned b on line 2with a label [x 7→ (M, {b})] (the join of the label of a and b). On
line 3, x can be declassified to levelM (as the budget of b is 1). Thus on line 3, [z 7→ (M, {})] and the
budget of b becomes 0. On line 4, as b’s budget has expired, [b 7→ (H, {}); y 7→ (H, {})]. In the other
run when a is not 0, [x 7→ (M, {})] on line 3. As the dependency-set is empty, no declassification
occurs on line 3. As the budget of b on line 4 is still 1, the value on line 4 is declassified to L. Thus,
after the assignment [y 7→ (L, {})]. Thus, in the first run an L-level adversary cannot observe any
value while in the second run, the adversary can see the value as it is labeled L. As the source code
of the program and the initial budgets are publicly visible, the adversary knows the budget of b and
can conclude that in the first case the branch on line 1 was taken and in the second run it was not
taken. This leaks an unaccounted additional bit of information about a although the budget of a

doesn’t allow any information release.

6.3.2.2 Budget-labels

The reason for the additional leak is that a purely dynamic information flowmonitor cannot account
for dependencies in alternate branches. To prevent this leak, an immutable budget-label on the bud-
gets is introduced, which is also an element of the security lattice. Additionally, the budget-label
indicates the confidentiality level to which information about the secret value can be released. An
immutable budget-label map B tracks the budget-label associated with each variable. The budgets
are represented as nl, where n is the budget and l is the budget-label. For meaningful declassi-
fications, it is required that the budget-label is not higher than the value-label for a variable, i.e.,
∀x.L(x) 6v B(x).

6. Bounding Information Leaks Dynamically 51

To prevent the leak described above, the budgets are only reduced for those variables in the
dependency-set δ that have a budget-label that is at least as high as l when declassifying a value
labeled (l, δ), i.e., ∀x ∈ δ.l v B(x). By imposing this condition, in the first run of the above example,
the value of x labeled [x 7→ (M, {b})] on line 3 is not declassified as the budget-label of b (B(b) = L)
is lower than the secrecy-level of the value (M). The budget of b on line 4 remains 1 and can release
the value of b == 0 to y, which is similar to how the second run proceeds, thereby avoiding the
additional leak.

6.3.2.3 Handling Implicit Flows with Budgets

Dynamic IFC approaches handle implicit flows via control constructs by employing a program-
context (pc) label, which is a join of the taint on all the values on which the current statement is
control dependent. Since variable dependencies are used in labels in our enforcement, those de-
pendencies also need to be checked for during assignment operations under a pc. However, using
dependencies in the pc could lead to additional information leaks. This happens because the assign-
ments that happen under a particular pc would carry the dependencies of the operands too, while
in an alternate run those dependencies might not be present in the label of the assigned variable.
Such mismatch of dependencies can leak information as illustrated below.

1 if (x ≤ 10)

2 x = y

3 z = declassify(x ≤ 15)

Listing 6.6: Illustration of handling of implicit flows

For the program in Listing 6.6, assume that x, y and z have value-labels of H , H and L (L v H),
and budgets of 1L, 0 and 0 assigned to them, respectively. Also assume that their current labels are
[x 7→ (L, {x}); y = (H, {}); z = (L, {})]. Suppose that the check for dependencies is included in the
pc, i.e., the assignment succeeds (as per the NSU check presented earlier) only if pc = (l, δ) v (ko, δo)
where (ko, δo) is the label of the variable x.

Consider two runs of the program with x ≤ 10 and x > 10. When x ≤ 10, the branch on line 1 is
taken and pc = (L, {x}) on line 2. This allows the assignment as the label of x is not less sensitive than
the pc. As a result, [x 7→ (H, {x})], which is the join of pc and label of y. On line 3, no information
is released as the budget-label of x is less than the secrecy-level of x, i.e., B(x) v H (as explained
above). In the other run when x > 10, the branch is not taken and the value of x ≤ 15 on line 3
is released to the level L as [x 7→ (L, {x})] on line 3 and its budget is 1L. This leads to different
sensitivities of z in the two runs which leads to leaking an additional bit about x in the first run
without being accounted for in its budget.

The above leak can be prevented by restricting the pc to contain only the secrecy-level, represented
as (l, {}), i.e., none of the dependencies in the pc are allowed to release any information through the
variables being assigned within the branch. This ensures that an assignment is visible only to those
levels that can actually see the assignment. Before entering a branch or a loop, the pc’s secrecy-level
l is joined with the value-labels of all the variables in its dependency-set. The function Γ(pc) returns
the secrecy-level l of the pc. When the meaning is clear from the context, pc is used instead of Γ(pc).

52 6. Bounding Information Leaks Dynamically

With this condition in place, in the above example the combined label of all the dependencies of
the value in the predicate is computed before using it in the pc. In the first run, on line 2 pc = (H, {})
(because L(x) = H) and the assignment fails due to the NSU check as pc 6v Γ(x), i.e., (H, {}) 6v
(L, {x}). In other words, to ensure soundness it is required that pc v k, where k is the secrecy-level
of the variable being assigned, i.e., the secrecy-level of the variable being assigned is at least as high
as the secrecy-level of the pc.

6.3.2.4 Budget Reduction Constraints

Now suppose that the example in Listing 6.5 is modified to instead declassify inside the branch as
shown in Listing 6.7. As before, assume that a and b are two secrets having value-labels L(a) = M

and L(b) = H and current labels [a 7→ (M, {}); b = (L, {b})], such that L ⊆ M ⊆ H . The initial
budgets of a and b are 0 and 1L, respectively. Also assume that [x 7→ (M, {})]. Again, consider two
executions of the program depending on whether the value of a is 0 or not.

1 if (a == 0)

2 x = declassify(b == 0)

3 z = declassify(b == 1)

Listing 6.7: Example to illustrate budget reduction

When a is 0, the value of b == 0 is declassified on line 2 making b’s budget 0 and x 7→ (M, {})
(the join of the label of a and the budget-label of b). On line 3, as b’s budget has expired, [b 7→
(H, {}); z 7→ (H, {})]. In the other run when a is not 0, [x 7→ (M, {})] on line 3 and the budget of b

also remains unchanged. As the budget of b on line 3 is still 1L, the value is declassified to the level
L. Thus, in the second run [z 7→ (L, {})]. While in the first run an L-level adversary cannot observe
any value, in the second run the adversary can see the value as it is labeled L. As the adversary
knows the budget of b, it can conclude that in the first case the branch on line 1 was taken and in
the second case it was not taken. This leaks an additional bit of information about a although the
initial budget of a is 0.

As the budget of a secret variable is publicly visible, budget reduction in a secret context leads to
such additional leaks. Two additional conditions need to be imposed to prevent such leaks:

1. A value cannot be declassified to a level lower than the current program context pc, as this
could leak information about the context itself

2. The budget of a variable can only be reduced in a pc lower than or equal to the budget-label
of the variable.

In the current setting, this would mean that if the label of the value being declassified is (l, δ)
where δ contains a variable x, then information about x is only declassified (the budget of x is only
reduced) if pc v ltB(x). With this condition in place, in the first run of the above program, the value
of b == 0 on line 2 is not declassified as the current program contextM is not lesser than or equal
to L, which is the join of the secrecy-level and the budget-label of b. Instead, the declassification
occurs on line 3 thereby preventing any additional information leaks.

6. Bounding Information Leaks Dynamically 53

6.3.2.5 Permissiveness

The overall confidentiality of the underlying value with a label (l, δ) is the join of l with the value-
label of all the variables in the dependency-set. Thus, all those dependencies whose value-label is
below the secrecy-level of the label can be removed as keeping those dependencies does not affect
the confidentiality of the value. This improves the permissiveness of the technique by not marking
the release of information for variables that have a label lesser than or equal to the current secrecy-
level or the pc because no information can be released below the current secrecy-level of the variable
or the current pc. For instance, consider a value n(k,{x}). If L(x) v k, then x is removed from the
dependency-set and the value is represented as n(k,{}). As explained earlier, budgets are deducted
only when pc v k, thus, the budgets of any variable whose value-label is below the pc are not
deducted from.

1 if (med ≤ 0)

2 x = declassify(sec == y);

3 if (declassify(y 6= 100))

4 pub = 1;

Listing 6.8: Example to illustrate permissiveness

To illustrate the gain in permissiveness by enforcing the condition specified above, consider the
program inListing 6.8. Assume [med 7→ (M, {}); x 7→ (M, {}); sec 7→ (M, {sec}); y 7→ (L, {y}); pub 7→
(L, {pub}), with the value-labels being L(sec) = H,L(y) = M,L(pub) = L such that L @ M @ H .
Also, assume that the budgets of sec and y are 1M and 1L, respectively. The program context label
(pc) on line 2 is (M, {}). The expression sec == y on line 2 has the label (M, {sec, y}).

Without the check for the current secrecy-level, the expression evaluation on line 2 releases the
value of sec and y into x. However as the secrecy-level is M , the final value of x would have the
secrecy-level of at least M . Thus, information about y is released to the levels M and above, who
already had access to the value of y. Subsequently, on line 3 as the budget of y has expired, no more
information about y is released and the assignment on line 4 fails. Thus, no useful information
about y is released at any point in the program, yet the program is terminated because of the NSU
check. With the check for current secrecy-level and the context label, the budget of y is not deducted
on line 2, which allows the check on line 3 to release information about y thereby allowing the
assignment on line 4 to succeed.

6.3.3 Semantics

To formally define the information released by a program starting from some initial memory con-
taining secret values, big-step semantics is defined for the language shown in Figure 6.1 that releases
some information about initial secret values at declassification of Boolean expressions.

Program configurations are extended with ι representing the budget store, which is a map from
the variables to the budget of these initial values (inputs to the program). The configurations for
expressions (e) and commands (c) are, thus, represented by 〈σ, ι, e〉 and 〈σ, ι, c〉, respectivelywhere σ
represents the memory store as before. 〈σ, ι, e〉 ⇓

pc
n(k,δ), ι′, τ defines expression evaluation. It means

54 6. Bounding Information Leaks Dynamically

that under some pc, starting withmemory σ and budget store ι, the expression e evaluates to a value
n labeled (k, δ) resulting in a budget store ι′. Additionally, the evaluation generates a trace τ , which
is a list of values of the form nk1

1 :: nk2
2 :: . . . :: nkj

j . Every declassified value is recorded on the trace
along with the level to which it is declassified. The two immutable maps— initial label map (L) and
budget-label map (B) are assumed to be available and omitted from the rules for clarity.

The evaluation rules for expressions are shown in Figure 6.2. The rule const evaluates constant
values to themselves with the label (⊥, {}) as they do not have any dependencies. Rule var evaluates
a variable and returns its value n alongwith the label (ko, δo). The functionR returns those variables
in δo whose budget has expired or have a budget-label lower than the secrecy-level ko. The current
secrecy-level ko is then joined with the value-labels of the variables returned by R while removing
them from the dependency-set δo. As no new information is released in both the cases, there is no
change to the budget store ι and no trace is generated (indicated as an empty trace ε).

In the rules for evaluating arithmetic (aop) and normal comparison (cop) operations, the join of the
label of the values that the two sub-expressions evaluate to is set as the label of the expression. The
individual sub-expressions may release some information as captured in τ1 and τ2, thus updating ι
to ι′.

The dcopr rule corresponds to the comparison operation with declassify, and allows informa-
tion release in certain cases. The separation of declassify from the normal comparison operations
is to offer more control over what information is required to be released. The rule applies only when
the current context pc is lower than or equal to the label of the value obtained by evaluation (pc v ko).
This avoids the leaks specified above in Section 6.3.2.2 and Section 6.3.2.4. The function ∆(δ, l,L)
returns the variables in the dependency-set δ that have an value-label greater than l. Additionally,
variables whose budget has expired during the evaluation of the sub-expressions are removed from
the dependency-set (using the function R). To prevent the leak described earlier in Section 6.3.2.2,
if the budget-label of any of the remaining variables in the dependency-set is not at least as high
as the original secrecy-level of the computed value (ko 6v B(x)), then the variable is removed from
the dependency-set. For all the variables removed from the dependency-set, their secrecy-level is
joined with that of the actual label. The budget of all remaining variables in the dependency-set δ is
deducted by 1, corresponding to the 1-bit Boolean value released on the trace. The function I(ι, δ)
reduces the budget and returns a new budget store. Their budget-label is also joined with the ac-
tual secrecy-level, which gives the final label of the declassified value. Depending on whether the
provenance set δ is empty or not, either:

• the budget of all remaining variables in the provenance set δ is deducted by 1, corresponding
to the 1-bit Boolean value released on the trace. The function I(ι, δ) reduces the budget and
returns a new budget store. Their budget label is also joined with the actual security level,
which gives the final label of the declassified value or

• if the remaining provenance set is empty, no declassification occurs

If declassification occurs, the declassified value is appended to the trace.

If the current context (pc) is not lower than or equal to the secrecy-level of the value obtained
by evaluation (pc 6v k), no information is released as shown in the rule dcopn. The final label is a

6. Bounding Information Leaks Dynamically 55

const
〈σ, ι, n〉 ⇓

pc
n(⊥,{}), ι, ε

var

σ(x) = n(ko,δo) δ′ = R(δo, ι, ko,B) δ = δo \ δ′ k = ko
⊔

x∈δ′

L(x)

〈σ, ι, x〉 ⇓
pc

n(k,δ), ι, ε

aop

〈σ, ι, e1〉 ⇓
pc

n(k1,δ1)
1 , ι1, τ1

〈σ, ι1, e2〉 ⇓
pc

n(k2,δ2)
2 , ι′, τ2 n = n1 � n2 (k, δ) = (k1, δ1) t (k2, δ2)

〈σ, ι, (e1 � e2)〉 ⇓
pc

n(k,δ), ι′, (τ1 :: τ2)

cop

〈σ, ι, e1〉 ⇓
pc

n(k1,δ1)
1 , ι1, τ1

〈σ, ι1, e2〉 ⇓
pc

n(k2,δ2)
2 , ι′, τ2 n = n1 ⊕ n2 (k, δ) = (k1, δ1) t (k2, δ2)

〈σ, ι, (e1 ⊕ e2)〉 ⇓
pc

n(k,δ), ι′, (τ1 :: τ2)

dcopn
〈σ, ι, (e1 ⊕ e2)〉 ⇓

pc
n(k,δ), ι′, τ pc 6v k

〈σ, ι, declassify(e1 ⊕ e2)〉 ⇓
pc

n(k,δ), ι′, τ

dcopr

〈σ, ι, (e1 ⊕ e2)〉 ⇓
pc

n(ko,δo), ι1, τ1

pc v ko δ′ = ∆(δo, ko,L) δ′′ = R(δ′, ι1, ko,B) δ = δ′ \ δ′′

k = ko
⊔

x∈δ′′

L(x)
⊔
y∈δ

B(y) ι′ = I(ι2, δ) τ =
{

τ1 :: τ2 :: nk, if (δ 6= ∅)
τ1 :: τ2, otherwise

}
〈σ, ι, declassify(e1 ⊕ e2)〉 ⇓

pc
n(k,{}), ι′, τ

Auxiliary functions:

∆(δ, k,L) =
{

x
∣∣ (x ∈ δ) ∧ (L(x) 6v k)

}
R(δ, ι, k,B) =

{
x
∣∣ (x ∈ δ) ∧

(
ι(x) = 0 ∨ k 6v B(x)

)}
I(ι, δ) = λx.

ι(x)− 1, if (x ∈ δ)

ι(x), otherwise

Figure 6.2: LIR - Semantics of expressions

56 6. Bounding Information Leaks Dynamically

skip
〈σ, ι, skip〉 ⇓

pc
〈σ, ι, ε〉

if-else

〈σ, ι, e〉 ⇓
pc

n(ko,δ), ι′, τ1 i =
{

1, if (n = true)
2, otherwise

}
k = ko

⊔
x∈δ

L(x) 〈σ, ι′, ci〉 ⇓
pctk

〈σ′, ι′′, τ2〉

〈σ, ι, (if e then c1 else c2)〉 ⇓
pc
〈σ′, ι′′, τ1 :: τ2〉

seq

〈σ, ι, c1〉 ⇓
pc
〈σ′, ι′, τ1〉

〈σ′, ι′, c2〉 ⇓
pc
〈σ′′, ι′′, τ2〉

〈σ, ι, c1; c2〉 ⇓
pc
〈σ′′, ι′′, (τ1 :: τ2)〉

assn

〈σ, ι, x〉 ⇓
pc

(l,), ι, ε pc v l

〈σ, ι, e〉 ⇓
pc

n(m,δ′), ι′, τ

k = pc tm δ = ∆(δ′, k,L)

〈σ, ι, x := e〉 ⇓
pc
〈σ[x 7→ n(k,δ)], ι′, τ〉

while-f
〈σ, ι, e〉 ⇓

pc
false(k,δ), ι′, τ

〈σ, ι, while e do c〉 ⇓
pc
〈σ, ι′, τ〉

while-t

〈σ, ι, e〉 ⇓
pc

true(ko,δ), ι1, τ1 k = ko
⊔
x∈δ

L(x)

〈σ, ι1, c; while e do c〉 ⇓
pctk

〈σ′, ι′, τ2〉

〈σ, ι, while e do c〉 ⇓
pc
〈σ′, ι′, τ1 :: τ2〉

Figure 6.3: LIR - Semantics of commands

join of the secrecy-levels of all the dependencies. The individual sub-expressions may release some
information τ1 and τ2, thus updating ι to ι2.

The judgment for a command execution is given by 〈σ, ι, c〉 ⇓
pc
〈σ′, ι′, τ〉—under a program context

pc, the execution of a command c starting with memory σ and budget store ι results in a final mem-
ory σ′ and budget store ι′ while generating a trace τ of released values. The semantics is shown
in Figure 6.3 whose rules are standard except for some changes in the assignment and branching
rules. The assignment rule assn does the standard NSU check that disallows assignment to a public
variable in a secret context— pc v l, where l is the secrecy level of the variable x to which the assign-
ment is being made. The branching rules if-else and while-t compute the context label by joining
the value-labels (L) of all the dependencies in δ.

6.4 Formalization of LIR

The following section formalizes the property of LIR and prove it for the semantics presented above.
LIR is essentially a property stating that the total number of bits that can be leaked about a secret
(by a program) is upper bounded by its pre-specified budget (in an average sense). The trace gen-
erated in the LIR semantics captures the data about the declassified value. An adversary at level `
can view those values in a memory store σ that have a label less than or equal to ` (∀x.Γ(σ(x)) v `).
The adversary can also observe the projection of the trace generated as part of the semantics, de-
fined formally in Definition 16. Similarly, the adversary can view a projection of the budget-map as

6. Bounding Information Leaks Dynamically 57

defined in Definition 17.

Definition 16 (Trace projection). Given a trace, τ , the trace projection w.r.t. an adversary at level `, written
τ↑`, is defined as:

[]↑` = []

(nm :: τ)↑` =

nm :: τ↑` if m v `,

τ↑` else.

Definition 17 (Budget-map projection). The projection of a budget-map, ι, w.r.t. an adversary at level `,
written ι↑`, is defined as:

ι↑` = λx.

ι(x), if
(
B(x) v `

)
0, otherwise

The observational equivalence of various data structures used in the semantics with respect to an
adversary needs to be defined for formally defining LIR. Definition 18 and 19 define the observa-
tional equivalence of two values and two memory stores, respectively, with respect to an adversary
at level `. Definition 20 and 21 define the observational equivalence of the budget-maps and the
generated traces.

Definition 18. Two labeled values v1 = n(l1,δ1)
1 and v2 = n(l2,δ2)

2 are observationally equivalent at level `,
written v1 ∼` v2 iff either:

1. n1 = n2, l1 = l2 v ` and δ1 = δ2 (or)

2. Γ(v1) 6v ` and Γ(v2) 6v ` and l1 = l2 v ` and δ1 = δ2 (or)

3. Γ(v1) 6v ` and Γ(v2) 6v ` and l1 6v ` ∨ ∃x ∈ δ1.B(x) 6v ` and l2 6v ` ∨ ∃x ∈ δ2.B(x) 6v `

Definition 19. Two memory stores σ1 and σ2 are observationally equivalent at level `, written σ1 ∼` σ2 iff
∀x. σ1(x) ∼` σ2(x).

Definition 20. Two budget-maps ι and ι′ are equivalent at level `, written ι ∼` ι′, iff ∀x.B(x) v ` =⇒
ι(x) = ι′(x).

Definition 21. Two traces τ and τ ′ are equivalent at level `, written τ ∼` τ ′, iff τ↑` = τ ′↑`.

As per LIR, the length of the projected trace is bounded by the total budget deducted. The length
of a trace τ is represented as |τ |. This intuition of LIR is formalized in Definition 22.

Definition 22 (Limited information release). A program c is said to satisfy limited information release
w.r.t. an adversary at level ` if for any given memory store σ, ι, and pc, 〈σ, ι, c〉 ⇓

pc
〈σ′, ι′, τ〉 then |τ↑`| ≤

ι↑` − ι′↑`

Theorem 10 shows that the monitored semantics presented in Section 6.3.3 satisfy limited infor-
mation release for every secret in the memory. Lemma 9 proves that in a secret context with respect
to an adversary at level `, no declassification visible to the adversary occurs. Theorem 9 proves that

58 6. Bounding Information Leaks Dynamically

in a store containing only one secret value with respect to `-level adversary (the other secrets can be
assumed to be visible to the adversary), the length of the trace is bounded by the budget reduced,
i.e., the number of bits declassified is bounded by the deduction in budget of that secret value. The-
orem 10 generalizes this result to all secrets in the system. The proofs are detailed in Appendix D.

Lemma 9 (Confinement). If 〈σ, ι, c〉 ⇓
pc
〈σ′, ι′, τ〉, and Γ(pc) 6v `, then σ ∼` σ′, ι ∼` ι′ and τ↑` = ε

Theorem9 (Limited information release for a single secret). If 〈σ, ι, c〉 ⇓
pc
〈σ′, ι′, τ〉, and∃x ∈ σ.

(
Γ(σ(x)) 6v

` ∧
(
∀y ∈ σ.y 6= x ∧ Γ(σ(y)) v `

))
, then |τ↑`| ≤ ι↑`(x)− ι′↑`(x).

Theorem 10 (Limited information release). For any memory store σ, budget store ι and program c if
〈σ, ι, c〉 ⇓

pc
〈σ′, ι′, τ〉, then c satisfies limited information release for σ and ι

6.5 Soundness and Decoding Semantics

The LIRpolicy defined earlier enforces that the information released by a programabout every secret
is bounded by its pre-determined budget. However, to prove that the actual information released by
the approach is soundly accounted for, it needs to be shown that the the budget reduction performed
as part of LIR is well-founded in an information theoretic sense. To this end, the result of Shannon’s
source coding theorem [92] is leveraged to utilize the trace generated by the semantics containing
the declassified values.

Recall that Shannon’s source coding theorem states that if different outputs of a program can be
associated with uniquely-decodable codes, i.e., given a bit string there are no two different inter-
pretations of the sequence of code-words, the information leaked by the program about the secret
inputs through these outputs as computed using Shannon entropy is upper-bounded by the aver-
age length of these codes. As the prior probability distribution is assumed to be unknown in this
setting, channel capacity is used instead of Shannon entropy, which is the maximum information
leakage across all possible distributions of a random variable. For deterministic programs, the chan-
nel capacity is realized on uniform priors. The trace projected to an adversary contains all the bits
the adversary can observe about the secret inputs to the program. The projected trace can, thus,
be regarded as a coding of the information released about the secrets to the adversary. Hence, if it
can be proven that the trace projected to an adversary is uniquely-decodable then its average length
over all executions is an upper bound on the information leaked by the program as computed by
the definition of Shannon entropy for uniform distributions.

In order to prove the soundness of the approach, this section presents a decoding semantics that
simulates the adversary’s approach to decode the information it obtains via the trace. The purpose
of the decoding semantics is to show that the adversary-projected trace corresponds to a uniquely-
decodable code, i.e., decoding the trace would result in a unique final memory store for the adver-
sary, thereby showing that our enforcement is sound. The salient features of the semantics are:

1. Decoding semantics is specialized to a fixed adversary at level `.

2. Decoding semantics operates on adversary-projected data structures, i.e., an `-projectedmem-
ory, where the secret inputs are replaced by ? that represents an unknown value (as shown in

6. Bounding Information Leaks Dynamically 59

Definition 23) and `-projected budget store, where the budgets having a budget-label higher
than the adversary’s level are replaced by 0 (as in Definition 17).

3. At declassification points, the decoding semantics reads a value from the `-projected trace.

4. Decoding semantics completely skips the code that is executed under a pc influenced by secrets
(having the value ?).

Definition 23 (Memory store projection). The projection of a memory store, σ, w.r.t. an adversary at level
`, written σ↑`, is defined as:

σ↑` = λx.

σ(x), if
(
Γ(σ(x)) v `

)
?(⊥,{x}), otherwise

Program configurations for expressions and commands are extendedwith the projected trace and
projections of the memory and budget store, given by 〈σ↑`, ι↑`, e, τ↑`〉 and 〈σ↑`, ι↑`, c, τ↑`〉, respec-
tively. σ↑`, ι↑`, and τ↑` represent the `-projected memory, budget-map and trace, respectively.

The semantics of expression and command evaluation is shown in Figures 6.4 and 6.5 and is
mostly similar to LIR semantics presented earlier (Figures 6.2 and 6.3) except that the decoding
semantics takes the trace τ as input. The rules generate a new trace τ ′, which is a suffix of the orig-
inal trace τ . The main difference in the semantics of expressions shows up in the s-dcopr rule —
when declassification occurs, the declassified value is read from the trace (as opposed to the one
computed by local evaluation in the sub-expressions, which is generally ?). The main difference in
the semantics of commands is in the branching rules. Branching or looping on ? values skips the
execution as shown in rules s-if-else-s and s-while-fs.

The proof for the projected-trace being uniquely-decodable is based on the decoding semantics
progressing on the trace generated by the LIR semantics and resulting in a unique final memory
with respect to the adversary. This requires defining equivalence between the memory stores in the
two semantics. Thememory equivalence (Definition 25) is defined based on the observational equiv-
alence of the values in the original memory store and the projected memory store (Definition 24).
The idea behind the definition of value equivalence is that if a value is visible to the adversary in
the original memory store, then the value is also visible to the adversary in the projected store (Def-
inition 24.1). If the value is not visible to the adversary in the original memory store, then either the
value shall never be declassified to the adversary in either semantics (Definition 24.2(a) and 24.2(b))
or the value can be declassified to the adversary under both the semantics (Definition 24.2(c)).

Definition 24. Two values vo and vs, where vo is a value in the original memory store and vs is a value in
the projected memory store for simulation, are observationally equivalent at level `, written vo '` vs iff

1. vo = n(k,δ)
o , vs = n(k′,δ′)

s , no = ns and (k = k′) v ` and δ = δ′ (or)

2. vo = n(k,δ)
o , Γ(vo) 6v `, vs = ?(k′,δ′) and either:

(a) k 6v ` ∧ k′ 6v `

(b) k v ` ∧ ∃x ∈ δ.(B(x) 6v `) ∧ k′ 6v `

(c) (k = k′) v ` ∧ δ = δ′

60 6. Bounding Information Leaks Dynamically

s-const
〈σ, ι, n, τ〉 ↓

pc
n(⊥,{}), ι, τ

s-var

σ(x) = v(k,δo) δ′ = R(δo, ι, ko,B) δ = δo \ δ′ k = ko
⊔

x∈δ′

L(x)

〈σ, ι, x, τ〉 ↓
pc

v(k,δ), ι, τ

s-aop

〈σ, ι, e1, τ〉 ↓
pc

v(k1,δ1)
1 , ι1, τ1

〈σ, ι1, e2, τ1〉 ↓
pc

v(k2,δ2)
2 , ι′, τ ′ v = v1 � v2 (k, δ) = (k1, δ1) t (k2, δ2)

〈σ, ι, (e1 � e2), τ〉 ↓
pc

v(k,δ), ι′, τ ′

s-cop

〈σ, ι, e1, τ〉 ↓
pc

v(k1,δ1)
1 , ι1, τ1

〈σ, ι1, e2, τ1〉 ↓
pc

v(k2,δ2)
2 , ι′, τ ′ v = v1 ⊕ v2 (k, δ) = (k1, δ1) t (k2, δ2)

〈σ, ι, (e1 ⊕ e2), τ〉 ↓
pc

v(k,δ), ι′, τ ′

s-dcopn
〈σ, ι, (e1 ⊕ e2), τ〉 ↓

pc
v(k,δ), ι′, τ ′ pc 6v k

〈σ, ι, declassify(e1 ⊕ e2), τ〉 ↓
pc

v(k,δ), ι′, τ ′

s-dcopr

〈σ, ι, (e1 ⊕ e2), τ〉 ↓
pc

v(ko,δo)
o , ι1, τ1 pc v ko

δ′ = ∆(δo, ko,L) δ′′ = R(δ′, ι1, ko,B) δ = δ′ \ δ′′ m = ko
⊔

x∈δ′′

L(x)
⊔
y∈δ

B(y)

(v, k, ι′, τ ′) =
{

(vt, kt, I(ι1, δt), τ ′′), if (τ1 = vkt
t :: τ ′′) ∧ (kt = m) ∧ (δ 6= ∅)

(vo,m, ι1, τ1), otherwise

}
〈σ, ι, declassify(e1 ⊕ e2), τ〉 ↓

pc
v(k,{}), ι′, τ ′

Figure 6.4: Decoding semantics of expressions

6. Bounding Information Leaks Dynamically 61

s-skip
〈σ, ι, skip, τ〉 ↓

pc
〈σ, ι, τ〉

s-assn
pc v Γ(σ(x)) 〈σ, ι, e, τ〉 ↓

pc
n(m,δ′), ι′, τ ′ k = pc tm δ = ∆(δ′, k,L)

〈σ, ι, (x := e), τ〉 ↓
pc
〈σ[x 7→ n(k,δ)], ι′, τ ′〉

s-seq
〈σ, ι, c1, τ〉 ↓

pc
〈σ′, ι′, τ1〉 〈σ′, ι′, c2, τ1〉 ↓

pc
〈σ′′, ι′′, τ ′〉

〈σ, ι, c1; c2, τ〉 ↓
pc
〈σ′′, ι′′, τ ′〉

s-if-else-n

〈σ, ι, e, τ〉 ↓
pc

v(ko,δ), ι′, τ1 v 6= ?

i =
{

1, if (v = true)
2, otherwise

}
k = ko

⊔
x∈δ

L(x) 〈σ, ι′, ci, τ1〉 ↓
pctk

〈σ′, ι′′, τ ′〉

〈σ, ι, (if e then c1 else c2), τ〉 ↓
pc
〈σ′, ι′′, τ ′〉

s-if-else-s
〈σ, ι, e, τ〉 ↓

pc
?(_,_), ι′, τ ′

〈σ, ι, (if e then c1 else c2), τ〉 ↓
pc
〈σ, ι′, τ ′〉

s-while-fs
〈σ, ι, e, τ〉 ↓

pc
v(_,_), ι′, τ ′ (v = ?) ∨ (v = false)

〈σ, ι, while e do c, τ〉 ↓
pc
〈σ, ι′, τ ′〉

s-while-t

〈σ, ι, e, τ〉 ↓
pc

true(ko,δ), ι1, τ1

k = ko
⊔
x∈δ

L(x) 〈σ, ι1, c; while e do c, τ1〉 ↓
pctk

〈σ′, ι′, τ2〉

〈σ, ι, while e do c, τ〉 ↓
pc
〈σ′′, ι′′, τ ′′〉

Figure 6.5: Decoding semantics of commands

Definition 25. Given a memory store σ and a projected memory store σ′↑`, their equivalence '` at level ` is
defined as: ∀x. σ(x) '` σ′↑`(x)

Under a given memory σ and budget store ι, if a program executes to completion under the LIR
semantics and generates a trace τ , then for any chosen adversary ` the same program executing
under `-projected memory (σ↑`) and budget store (ι↑`) along with the projected trace τ↑` results in
an observationally equivalent final memory stores obtained at the end of both the executions with
respect to the adversary ` (Theorem 11).

Theorem11 (SimulationTheorem). If 〈σ, ι, c〉 ⇓
pc
〈σ′, ι′, τ〉, then 〈σ↑`, ι↑`, c, τ↑`〉 ↓

pc
〈σ′′, ι′′, τ ′′〉 such that

62 6. Bounding Information Leaks Dynamically

σ′ '` σ′′, ι′ ∼` ι′′ and τ ′′ = ε

The proof of the theorem and the various auxiliary lemmas required to prove the theorem are
described in Appendix D. As a sanity check, when the budgets of all the secrets in the store are 0,
the LIR semantics satisfy non-interference (Corollary 3).

Corollary 3 (Non-interference). If 〈σ1, ι1, c〉 ⇓
pc
〈σ′1, ι′1, τ1〉, 〈σ2, ι2, c〉 ⇓

pc
〈σ′2, ι′2, τ2〉, σ1 ∼` σ2, and ι1↑` =

ι2↑` = 0, then σ′1 ∼` σ′2.

Part V

Application to an IFC-enabled Web
Browser

Chapter 7

Information Flow Policies for Web
Browsers

Previously proposed approaches [22, 31, 55, 81], for enforcing dynamic information flow control in
web browsers lack adequate support for specifying policies conveniently. Flowfox [97] provides a
rich policy framework but all websites are subject to the same policy, and the underlying IFC tech-
nique, secure multi-execution [43], does not handle shared state soundly. COWL [94] uses coarse-
grained isolation, allowing scripts’ access to either remote domains or the shared state, but not both.
This requires significant code changeswhen both are needed simultaneously (see Chapter 9 formore
details).

This chapter presents WebPol, a policy framework that allows a web-page developer to release
data selectively to third-party scripts (to obtain useful functionality), yet control what the scripts can
do with the data. WebPol policies label sensitive content (page elements and user-generated events)
at source, and selectively declassify themby specifyingwhere (towhich domains) the content and its
derivatives can flow. Host page developers specifyWebPol policies in JavaScript, a language already
familiar to them. WebPol is integrated with the instrumentation of the dynamic IFC framework
for WebKit presented thus far (WebPol integrates with any taint-based IFC solution to overcome
the shortcomings listed above). The expressiveness of WebPol policies is demonstrated through
examples and by applying WebPol to two real websites.

7.1 Policy Component for Web Browsers

IFC is a broad term for techniques that control the flow of sensitive information in accordance with
pre-defined policies. Sensitive information is information derived from sources that are confidential

The content of this chapter is based on the work published as part of the paper, “WebPol: Fine-grained Information Flow
Policies for Web Browsers” [24]

66 7. Information Flow Policies for Web Browsers

or private. Any IFC system has two components—the policy component and the enforcement compo-
nent. The policy component allows labeling of private information sources. The label on a source
specifies how private information from that source can be used andwhere it can flow. The collection
of rules for labeling is called the policy. The enforcement component enforces policies. This could,
for example, be the dynamic taint tracking approach described earlier. WebPol contributes a policy
component to complement existing work on enforcement components in web browsers.

In the context of web-pages, data sources are objects generated in response to user events like the
content of a password box generated due to key presses or a mouse click on a sensitive button, and
data obtained in a network receive event. In WebPol, data sources can be labeled with three kinds
of labels, in increasing order of confidentiality: 1) the label public represents non-sensitive data, 2)
for each domain domain, the label domain represents data private to the domain; such data’s flow
should be limited only to the browser and servers belonging to domain and its sub-domains, and
3) the label local represents very confidential data that must never leave the browser. These labels
are ordered public < domaini < local. These labels are fairly expressive. For example, labeling a
data source with the domain of the hosting page restricts its transfer to only the host, and prevents
exfiltration to third-parties. Labeling a data source with the domain of a service provider such as
an analytics provider allows transfer to only that service.

Since most data on a web-page is not sensitive, it is reasonable to label data sources public by
default and only selectively assign a different label. WebPol uses this blacklisting approach. Two
nuances of source labeling are noteworthy. The first is its fine granularity. Not all objects generated
by the same class of events have the same label. For instance, characters entered in a password field
may have the domain label of the hosting page, limiting their flow only to the host, but characters
entered in other fields may be accessible to third-party advertising or analytics scripts unrestricted.
This leads to the following requirement on the policy component.

Requirement 1: The policy component must allow associating different policies with different ele-
ments of the page.

The second is that the label of an object can be dynamic, i.e., history-dependent. Consider a policy
that hides from an analytics script how many times a user clicked within an interactive panel, but
wants to share whether or not the user clicked at least once. The label of a click event on the panel
is public the first time the user clicks on it and private afterwards and, hence, it depends on the
history of user interaction. This yields the following requirement on the policy component.

Requirement 2: Labels may be determined dynamically. This requirement means that labels must
be set by trusted policy code that is executed on-the-fly and that has local state.

7.2 WebPol policy model

WebPol works on a browser that has already been augmented with IFC enforcement based on taint
tracking. It provides a framework that allows setting labels at fine-granularity, thus expressing and
enforcing rich policies. This section explains the design ofWebPol. WebPol prevents under-the-hood

7. Information Flow Policies for Web Browsers 67

exfiltration of sensitive data that has been provided to third-party scripts for legitimate reasons. So,
third-party scripts are not trusted but code from the host domain is trusted. WebPol’s policies are
agnostic to specific channels of leak. However, current IFC enforcements in browsers track only
explicit and implicit flows. Consequently, leaks over other channels such as timing and memory-
usage are currently out of scope.

7.2.1 Policies as event handlers

The first question in the design of WebPol is who should specify policies. Since the goal here is
to prevent exfiltration of data by third-party scripts and it is the developer of the host page who
bootstraps the inclusion of scripts and best understands how data on the page should be used, it is
natural and pragmatic to have the developer specify policies, possibly as part of the page itself.

The next question is how the developer specifies policies. To answer this, recall the two require-
ments identified in Section 7.1 — it should be possible to specify different policies on different page
elements and policies should be allowed to include code that is executed on-the-fly to generate la-
bels. Considering the fact that sensitive data is usually generated by input events, it is clear that
policies should be page element-specific (trusted) code that is executed after events have occurred
(this code labels event-generated data). Fortunately, web browsers provide exactly this abstraction
in the form of event handlers! So, the event-handling logic in web browsers is extended to express
WebPol policies. This allows leveraging a lot of the existing browser logic for event handler instal-
lation, parsing and event dispatch in interpreting policies. The rest of this section explains how this
is done.

In WebPol, policies are special event handlers, specified using a special marker in the HTML
source of the hosting page. These special handlers, called policy handlers, follow standard JavaScript
syntax, can be attached to any page element, listening for any event and, like other handlers, are
triggered every time the event is dispatched on the element or any of its descendants. However,
unlike other handlers, the sole goal of policy handlers is to assign labels to other sensitive objects,
including the event being dispatched. To allow the policy handlers to do this, the browser is slightly
modified to afford these handlers two special privileges:

• Policy handlers can execute two new JavaScript API functions that set labels on other objects.
No other JavaScript code can execute these two functions. These functions are described later.

• During event dispatch all applicable policy handlers are executed before ordinary handlers.
This ensures that labels are set before ordinary handlers (including those of third-party scripts)
execute.

To maintain the integrity of the policies, policy handlers must be included in the HTML source
of the page directly. They cannot be installed dynamically by JavaScript code. Otherwise, third-
party scripts could install policy handlers that set very permissive labels. Also, if a DOM element
has a policy handler, third-party scripts are disallowed from detaching that element or moving it
elsewhere, as that can change the interpretation of the policy. Similarly, changing the attributes of
such an element is restricted.

68 7. Information Flow Policies for Web Browsers

Figure 7.1: Work-flow of the WebPol policy model

Since different policy handlers can be associated with different elements, Requirement 1 is satis-
fied. Moreover, policy handlers are ordinary JavaScript code, so they can also maintain local state
in private variables, thus satisfying Requirement 2.

The work-flow of policy interpretation in WebPol is shown in Figure 7.1. Briefly, the steps are:

1. The web page developer specifies the policy in the host HTML page in the form of special
event handlers.

2. The browser parses the policy and registers its handlers (mostly like usual handlers, but with
the two special privileges mentioned above).

3. When an event dispatches, listening policy handlers are executed first.

4. These policy handlers set labels on objects affected by the event, including the event object
itself. They may also update any local state they maintain.

5. The remaining event handlers are dispatched as usual. The IFC enforcement in the browser
enforces all labels that have been set by the policy handlers (during any prior event’s dispatch),
thus preventing any data leak in contravention of the labels.

7.2.2 Integration with the web browser

WebPol needs minor modifications to the browser to parse and interpret policies and to expose
additional JavaScript API functions to set labels.

HTML and event dispatch changes. WebPol adds an HTML extension to differentiate policy code
from other JavaScript code. Concretely, the browser’s parser is changed to interpret any script file
with the extension .policy included directly in the host page as a policy. If such a policy script
installs a handler, it is treated as a policy handler. Additionally, a policy script can set labels on the
page’s global variables and DOM elements (like password fields). If a script does this, it should be
included in the host page before third-party scripts that use those variables. WebPol also requires
a small change to the browser’s event dispatch mechanism to execute policy handlers before other
handlers.

7. Information Flow Policies for Web Browsers 69

1 var p = document.getElementById("pwd");

2 p.addEventListener("keypress", function (e){

3 var score = checkPwdStrength(p.value);

4 document.getElementById("pwdStrength").innerText = score;

5 new Image().src = "http://stealer.com/pwd.jsp?pwd="+p +score;

6 });

Listing 7.1: Password strength checking script that leaks the password

Label-setting APIs. WebPol exposes two new JavaScript API functions to set labels. These functions
can be called only by the policy code in .policyfiles and handlers installed by such files (the browser
is modified to enforce this).

The function setLabel(label) sets the label of the object on which it is called to label. As ex-
plained earlier, label can be public, a domain name, or local (the default is public). Once an
object’s label is set, it is enforced by the underlying IFC enforcement. The special label HOST is a
proxy for the domain of the host page.

The function setContext(label) can be called only on an event object. It restricts the visibility of
the event to label label and higher. In simple terms, if label is a domain, then only that domain
can ever learn that this event occurred, whereas if label is local, then no domain can ever learn
that this event occurred. Technically, this is accomplished by setting the pc of the event handlers
running during the dispatch to label, which ensures that their side-effects (writes to DOM and
network communication) are labeled label or higher.

As opposed to setLabel, which makes individual data objects (like password fields) private,
setContext makes the existence of an event private. This is useful. For instance, clicking on the
“politics” section of a news feed might indicate that the user is interested in politics, which may
be private information, so the page may want to hide even the existence of click events from third-
party scripts. (The distinction between the privacy of event content and event occurrence has been
previously described by Rafnsson and Sabelfeld [80].)

7.3 Expressiveness of WebPol

The expressiveness of WebPol policies is illustrated through the following examples.

7.3.1 Example 1: Password strength checker

Many websites deploy password strength checkers on pages where users set new passwords. A pass-
word strength checker is an event handler from a third-party library that is triggered each time the
user enters a character in the new password field. The handler provides visual feedback to the user
about the strength of the password entered so far. Strength checkers usually check the length of the
password and the diversity of characters used. Consequently, they do not require any network com-
munication. However, standard browser policies cannot enforce this and the password strength

70 7. Information Flow Policies for Web Browsers

1 function currencyConverter() {

2 var toCur = document.getElementById("to").value;

3 var xh = new XMLHttpRequest();

4 xh.onreadystatechange = function() {

5 if (xh.readyState == 4) {

6 currencyRate = eval(xhttp.responseText);

7 var aAmt = document.getElementById("amt").value;

8 var convAmt = aAmt * currencyRate;

9 document.getElementById("camt").innerHTML = convAmt;

10 xh.open("GET","http://currConv.com/amount.jsp?atc=" + aAmt);

11 xh.send(); }}

12 xh.open("GET","http://currConv.com/conv.jsp?toCur=" + toCur, true);

13 xh.send(); }

Listing 7.2: Currency converter script that leaks a private amount

checker can easily leak the password if it wants to. Listing 7.1 shows such a “leaky” password
checker. The checker installs a listener for keypresses in the password field (line 2). In response to
every keypress, the listener delivers its expected functionality by checking the strength of the pass-
word and indicating this to the user (lines 3, 4), but then it leaks out the password to stealer.com

by requesting an image at a URL that includes the password (lines 5, 6).

With WebPol, the developer of the host web-page can prevent any exfiltration of the password by
including the policy script:

document.getElementById("pwd").setLabel("HOST");

This policy sets the label of the passwordfield to the host’s owndomainusing the function setLabel().
Subsequently, the IFC enforcement restricts all outgoing communication that depends on the pass-
word field to the host.

Conceptually, this example is simple because it does not really leverage the fine-granularity of
WebPol policies and fine-grained dynamic IFC. Here, the third-party script does not need any net-
work communication for its intended functionality and, hence, simpler confinement mechanisms
that prohibit a third-party script from communicating with remote servers would also suffice. The
next example is a scenario where the third-party script legitimately needs remote communication,
which leverages the fine-granularity of WebPol policies and fine-grained dynamic IFC.

7.3.2 Example 2: Currency conversion

Consider a web-page from an e-commerce website which displays the cost of an item that the user
intends to buy. The amount is listed in the site’s native currency, say US dollars (USD), but for the
user’s convenience, the site also allows the user to see the amount converted to a currency of his/her
choice. For this, the user selects a currency from a drop-down list. A third-party JavaScript library
reads both the USD amount and the second currency, converts the amount to the second currency
and inserts it into the web-page, next to the USD amount. The third-party script fetches the current

7. Information Flow Policies for Web Browsers 71

1 var p = document.getElementbyId("sect_name");

2 p.addEventListener("click",function(event){

3 event.setLabel("HOST"); });

Listing 7.3: Policy that allows counting clicks but hides details of the clicks

1 clickCount = 0;

2 var p = document.getElementbyId("sect_name");

3 p.addEventListener("click",function (e){ clickCount += 1; });

Listing 7.4: Analytics script that counts clicks

conversion rate from its back-end service at currConv.com. Consequently, it must send the name of
the second currency to its back-end service, but must not send the amount being converted (that is
private information). The web browser’s same-origin policy has been relaxed (using, say, CORS [2])
to allow the script to talk to its back-end service at currConv.com. The risk is that the script can now
exfiltrate the private amount. Listing 7.2 shows a leaky script that does this. On line 11, the script
makes a request to its back-end service passing to it the two currencies. The callback handler (lines
4–11) reads the amount from the page element amt, converts it and inserts the result into the page
(lines 6–9). Later, it leaks out the amount to the back-end service on line 10, in contravention of the
intended policy.

WithWebPol, this leak can be preventedwith the following policy that sets the label of the amount
to the host only:

document.getElementById("amt").setLabel("HOST")

This policy will prevent exfiltration of the amount and will not interfere with the requirement to
exfiltrate the second currency. Importantly, no modifications are required to a script that does not
try to leak data (e.g., the script obtained by dropping the leaky line 10 of Listing 7.2).

7.3.3 Example 3: Web analytics

To better understand how users interact with their websites, web developers often include third-
party analytics scripts that track user clicks and keypresses to generate useful artifacts like page
heat-maps (which part of the page did the user interact with most?). Although a web developer
might be interested in tracking only certain aspects of their users’ interaction, the inclusion of the
third-party scripts comes with the risk that the scripts will also record and exfiltrate other private
user behavior (possibly for monetizing it later). Using WebPol, the web developer can write precise
policies on which user events an analytics script can access and when. Several examples of this are
shown.

To allow a script to only count the number of occurrences of a class of events (e.g., mouse clicks)
on a section of the page, but to hide the details of the individual events (e.g., the coordinates of every
individual click), the web developer can add a policy handler on the top-most element of the section

72 7. Information Flow Policies for Web Browsers

1 var alreadyClicked = false;

2 var p = document.getElementById("sect_name");

3 p.addEventListener("click",function (event){

4 if (alreadyClicked = true)

5 event.setContext("HOST");

6 else {

7 alreadyClicked = true;

8 event.setLabel("HOST");

9 }});

Listing 7.5: Policy that only tracks whether a click happened or not

1 document.body.addEventListener("keypress", function (event){

2 var o = window.getComputedStyle(event.target).getPropertyValue("opacity");

3 if (o < 0.5)

4 event.setLabel("HOST");

5 });

Listing 7.6: Example policy to prevent overlay-based stealing of keystrokes

to set the label of the individual event objects to HOST. This prevents the analytics script’s listening
handler from examining the details of individual events, but since the handler is still invoked at
each event, it can count their total number. Listings 7.3 and 7.4 show the policy handler and the
corresponding analytics script that counts clicks in a page section named sect_name.

Next, consider a restriction of this policy, which allows the analytics script to learn only whether
or not at least one click happened in the page section, completely hiding clicks beyond the first. This
policy can be represented in WebPol using a local state variable in the policy to track whether or
not a click has happened and the function setContext(). Listing 7.5 shows the policy. The policy
uses a variable alreadyClicked to track whether or not the user has clicked in the section. Upon the
user’s first click, the policy handler sets the event’s label to the host’s domain (line 8). This makes
the event object private but allows the analytics handler to trigger and record the occurrence of the
event. On every subsequent click, the policy handler sets the event’s context to the host domain using
setContext() (line 5). This prevents the analytics script from exfiltrating any information about the
event, including the fact that it occurred.

Finally, note that a developer can subject different page sections to different policies by attaching
different policy handlers to them. Themost sensitive sectionsmay have a policy that unconditionally
sets the event context to the host’s, effectively hiding all user events in those sections. Less sensitive
sections may have policies like those of Listings 7.5 and 7.3. Non-sensitive sections may have no
policies at all, allowing analytics scripts to see all events in them.

7. Information Flow Policies for Web Browsers 73

7.3.4 Example 4: Defending against overlay-based attacks

To bypass WebPol policies, an adversarial script may “trick” a user using transparent overlays. For
example, suppose a script wants to exfiltrate the contents of a password field that is correctly pro-
tected by a WebPol policy. The script can create a transparent overlay on top of the password field.
Any password the user enterswill go into the overlay, which isn’t protected by any policy and, hence,
the script can leak the password.

Such attacks can be prevented easily inWebPol using a single policy, attached to the top element of
the page, that labels data entered into all significantly transparent overlays as HOST. Listing 7.6 shows
such a policy. This particular policy labels all keypress events on elements of opacity below 0.5 as
HOST, thus preventing their exfiltration. The threshold value 0.5 can be changed, and the policy can
be easily extended to other user events like mouse clicks.

7.3.5 Summary of WebPol expressiveness

The security community has extensively studied several aspects of policy labeling, colloquially called
the dimensions of declassification (see [91] for a survey). Broadly speaking, WebPol policies cover three
of these dimensions—the policies specify what data is declassified (dimension: what), to which do-
mains (dimension: to whom) and under what state (dimension: when). “What data is declassified”
is specified by selectively attaching policies to elements of the page. “Which domains get access” is
determined directly by the labels that the policy sets. Finally, labels generated by policy handlers
can depend on state, as illustrated in Listing 7.5.

There are two other common dimensions of labeling—who can label the data (dimension: who)
and where in the code can the labels change (dimension: where). These dimensions are fixed in
WebPol due to the specifics of the problem: All policies are specified by the host page in statically
defined policies.

Chapter 8

Policy Implementation and
Evaluation in an IFC-enabled Browser

This chapter describes the implementation of WebPol (Chapter 7) and the LIR policy (Chapter 6) on
top of an existing IFC-instrumentation [22, 60, 81] (referred to as WebIFC in the remaining of this
chapter). WebIFC targets WebKit, the browser engine used in Safari, for enforcing dynamic IFC in
the three main components of the engine — JavaScript bytecode interpreter, the document object
model (DOM) engine, and the event handling mechanism.

Labels in WebIFC are word size bit-sets (currently 64 bits); each bit in the bit-set represents label
from a distinct domain (like google.com). Join on labels is simply bitwise or. WebIFC adds labels
to all data structures, including registers, objects, object properties and scope chain pointers, and
attach security labels to every node in the DOM graph and all its properties, including pointer to
other nodes. In WebIFC, the code is instrumented to propagate explicit and implicit labels and
implement the permissive-upgrade check. Specifically, WebKit’s JavaScript bytecode interpreter
(JavaScriptCore) for enforcing dynamic IFC for JavaScript [22, 60]. In WebKit, bytecode is generated
by a source-code compiler and organized into code blocks. Each code block is a sequence of byte-
codes with line numbers and corresponds to the instructions for a function or an eval statement. A
code block is generated when a function is created or an eval is executed. WebIFC performs control
flow analysis on a code block when it is created and generates a CFG for it before it starts executing.
The IPDs of its nodes are calculated by static analysis of its bytecode; they are computed using an
algorithm by Lengauer and Tarjan with CFG as an input to the algorithm [65]. The formalization of
the bytecodes, the semantics of its bytecode interpreter with the instrumentation of dynamic IFC,
and the proof of correctness of instrumentation of the bytecodes with the IFC semantics is shown
in [23]. Additionally, all native JavaScript methods in the Array, RegExp, and String objects are in-
strumented inWebIFC and appropriate IFC checks in the native C code implementing all DOMAPIs

The content of this chapter is based partly on thework published as part of the paper, “WebPol: Fine-grained Information
Flow Policies for Web Browsers” [24]

76 8. Policy Implementation and Evaluation in an IFC-enabled Browser

up to Level 3 are added [81]. WebIFC also modifies the event handling loop, labeling every event
and event handler based on their formalization of the event handling loop with the IFC checks [81].

WebIFC enforces termination-insensitive non-interference in all the major components of WebKit
while tracking labels at a fine-granularity. This thesis adds additional instrumentation on top of
WebIFC for enforcing the ideas presented earlier. For exceptions, a synthetic exit node is added to
the CFG along with the edges as described earlier in Section 5.2. Additional changes are required to
the compiler to make it compliant with the instrumentation. The modification is to emit a slightly
different, but functionally equivalent bytecode sequence for finally blocks; this is needed for ac-
curate computation of IPDs.

8.1 Implementation and Evaluation of WebPol

8.1.1 Implementation of WebPol

WebPol is prototyped in WebKit on top of WebIFC. To implement WebPol, the HTML parser was
modified to distinguish policy files (extension .policy) from other JavaScript files and to give policy
code extra privileges. Two new JavaScript API functions — setLabel() and setContext() —were
added. Finally, the event dispatch logic was modified to trigger policy handlers before other han-
dlers. In all, 25 lines in the code of the parser were modified, 60 lines for the two new API functions
were added and 110 lines in the event dispatch logic were modified. Thus, implementing WebPol
has low overhead, and can be ported to other browsers easily.

8.1.2 Evaluation of WebPol

The goal of the evaluation is two-fold. The first goal is to measure the overhead of the system with
IFC enforcement and WebPol, both in parsing and installing policies during page load and for exe-
cuting policy handlers later. This is done by running a few benchmarks, by measuring the overhead
for the examples presented in Section 7.3, and for two real-world websites. Second, to understand
whether WebPol can be used easily, WebPol policies are applied to two real-world websites. All the
experiments were performed on a 3.2GHz Quad-core Intel Xeon processor with 8GB RAM, running
Mac OS X version 10.7.4 using Safari 6.0. The implementation and evaluation is done on WebKit
nightly build #r122160. As WebIFC does not cover JIT, JIT support was disabled in all the experi-
ments.

8.1.2.1 Performance Overheads on Synthetic Examples

Tomeasure the instrumentation’s runtime overhead, four examples from Chapter 7.3 (Examples 1, 2
and the two sub-examples of Example 3)were tested in three different configurations: Base—uninst-
rumented browser, no enforcement;WebIFC—existing instrumented browser with IFC checks, but
no policy handlers (everything is labeled public); WebPol—instrumented browser running policy
handlers.

8. Policy Implementation and Evaluation in an IFC-enabled Browser 77

JavaScript Execution Time Page Load Time
Example # Base WebIFC WebPol Base WebIFC WebPol

Example 1 2430
2918

(+20.1%)
2989

(+1.9%)
16

17
(+6.3%)

19
(+12.5%)

Example 2 3443
4361

(+26.7%)
5368

(+29.2%)
41

43
(+4.9%)

46
(+7.2%)

Example 3
(count)

1504
1737

(+15.5%)
1911

(+11.6%)
24

25
(+4.2%)

31
(+25.0%)

Example 3
(presence)

1780
2095

(+17.7%)
2414

(+18.9%)
26

28
(+7.7%)

30
(+7.7%)

Table 8.1: Performance of examples from Section 7.3. All time in ms. The numbers in parenthesis
are additional overheads relative to Base.

JavaScript execution time: The overheads of executing policy handler code were measured by in-
teracting with all four programs manually by entering relevant data and performing clicks a fixed
number of times. For each of these configurations, the total time spent only in executing JavaScriptwas
measured, including scripts and policies loaded initially with the page and the scripts and policies
executed in response to events. The difference betweenWebIFC and Base run times is the overhead
of dynamic IFC, while the difference between theWebPol andWebIFC run times is the overhead of
evaluating policy handlers. Since only JavaScript execution time is measured and there are no time-
triggered handlers in these examples, variability in the inter-event gap introduced by the human
actor does not affect the measurements.

The left half of Table 8.1 shows these observations. All numbers are averages of 5 runs and the stan-
dard deviations are all below 7%. WebIFC adds overheads ranging from 15.5% to 26.7% over Base.
To this, the policy handlers (WebPol) add overheads ranging from 1.9% to 29.2%. TheWebPol over-
heads are already modest, but this is also a very challenging (conservative) experiment for WebPol.
The scripts in both sub-examples of Example 3 do almost nothing. The scripts in Examples 1 and Ex-
ample 2 are slightly longer, but are still much simpler than real scripts. On real and longer scripts, the
relative overheads of evaluating the policy handlers is significantly lower as shown later. Moreover,
the baseline in this experiment does not include other browser costs, such as the cost of page parsing
and rendering, and network delays. Compared to those, both WebIFC and WebPol overheads are
negligible.

Page load time: The time taken for loading the initial page (up to the DOMContentLoaded event)
was measured separately. The difference between WebPol andWebIFC is the overhead for parsing
and loading policies. The right half of Table 8.1 shows these observations. All numbers are the aver-
age of 20 runs and standard deviations were below 8%. WebPol overheads due to policy parsing and
loading range from 7.2% to 25% (last column). When the overheads due to taint tracking (column
WebIFC) are added, the numbers increase to 12.1% to 29.2%. Note that page-load overheads are
incurred only once on every page (re-)load.

78 8. Policy Implementation and Evaluation in an IFC-enabled Browser

1 document.getElementById("passwordPwd").setLabel("secret");

2 document.getElementById("passwordTxt").setLabel("secret");

3 var x = document.getElementsByTagName("div");

4 var i = 0;

5 for (i = 0; i < x.length; i++)

6 x[i].setLabel("secret");

Listing 8.1: Policy code for password strength checking website

1 var x = document.getElementsByClassName("user"); // username

2 var y = document.getElementsByClassName("pwd"); // password

3 for (i = 0; i < x.length; i++) {

4 x[i].addEventListener("keypress", function(event){

5 event.setLabel("HOST");

6 });}

7 for (i = 0; i < y.length; i++) {

8 y[i].addEventListener("keypress", function(event){

9 event.setLabel("HOST");

10 });}

Listing 8.2: Policy code for bank log-in website with an analytics script

8.1.2.2 Policies on Real-world Websites.

Further, WebPol was evaluated by writing policies for two real-world applications—a website that
deploys a password-strength checker (similar to Example 1) and a bank log-in page that includes
third-party analytics scripts (similar to Example 3). The WebPol policies specified for the password
strength checking website and the bank website with an analytics script are shown in Listings 8.1
and 8.2, respectively. The code on lines 3–6 of Listing 8.1 allows the strength-checking script to write
back the visual indicator of password strength to the host page’s DOM.

Experience writing policies: In both cases, meaningful policies could be specified easily after un-
derstanding the code, suggesting that WebPol policies can be (and should be) written by website
developers. The policy for the password-strength checker is similar to Listing 7.1 and prevents the
password from being leaked to third-parties. Additional policy code of 4 lines was needed to al-
low the script to write the results of the password strength check (which depends on the password)
into the host page. The analytics script on the bank website communicates all user-behavior to its
server. The policy specified disallows exfiltration of keypresses on the username and the password
text-boxes to third-parties.

Performance overheads: The performance overheads on the two websites were also measured, in
the same configurations as for the synthetic examples. Table 8.2 shows the results. On real-world
websites, where actual computation is long, the overheads of WebPol are rather small. The over-
heads of executing policy handlers, even relative only to Base’s JavaScript execution time, are 4.0%
and 13.2%, while the overheads of parsing and loading policies are no more than 4.0%. Even the to-

8. Policy Implementation and Evaluation in an IFC-enabled Browser 79

JavaScript Execution Time Page Load Time
Website Base WebIFC WebPol Base WebIFC WebPol

Password 79.5
115.5

(+45.3%)
126

(+13.2%)
303

429
(+41.6%)

441
(+4.0%)

Analytics 273.4
375.1

(+37.2%)
386.1

(+4.0%)
2151

2422
(+12.6%)

2499
(+3.6%)

Table 8.2: Performance on two real-world websites. All time in ms. The numbers in parenthesis
are additional overheads relative to Base.

Figure 8.1: Overheads of LIR on SunSpider Benchmark Tests

tal overhead of WebIFC andWebPol does not adversely affect the user experience in any significant
way.

8.2 Implementation and Evaluation of LIR

To implement the LIR semantics described in Chapter 6, the security label attached to the JavaScript
objects and the DOM nodes was modified to carry a provenance-label, representing the dependency
set. The provenance-label is basically a bit-vector where each bit represents a distinct JavaScript
object or DOM node. Each bit in the provenance-label is mapped to a budget, a budget label and an
actual label of the object. The setLabel() API is extended to include the budget, and the budget
label for a JavaScript object or a DOM node. If the budget is not specified, it is assumed to be 0.
Similarly, if a budget label is not specified, it is assumed to be⊥. The checks are performed as per the
semantics at every comparison operation assuming an implicit declassification at each comparison
operation.

The performance overhead added as part of the LIR instrumentation in the IFC-enabled browser
is evaluated and compared against the uninstrumented browser and WebIFC (Basic IFC). The per-

80 8. Policy Implementation and Evaluation in an IFC-enabled Browser

formance evaluation was done for the standard SunSpider 1.0.2 JavaScript benchmark suite on the
uninstrumented browser, on the IFC-instrumented browser and on the LIR instrumented browser.
The average overhead for LIR instrumentation over the original uninstrumented browser is 170%
and adds only 17% to the overhead of WebPol.

Chapter 9

Related Work

Browser security is a very widely-studied topic. Here, only closely related work on browser security
policies and policy enforcement techniques is described.

Information flow control and script isolation. With the widespread use of JavaScript, research
in dynamic techniques for IFC has regained momentum. Nonetheless, static analyses are not com-
pletely futile. Guarnieri et al. [50] present a static abstract interpretation for tracking taints in JavaScript.
However, the omnipresent eval construct is not supported and this approach does not take implicit
flows into account. Chugh et al. propose a staged information flow approach for JavaScript [32].
They perform static server-side policy checks on statically available code and generate residual
policy-checks that are applied to dynamically loaded code. This approach is limited to certain
JavaScript constructs excluding dynamic features like dynamic field access or the with construct.

Austin and Flanagan [13] propose purely dynamic IFC for dynamically-typed languages like
JavaScript. They use the no-sensitive-upgrade (NSU) check [104] to handle implicit flows. Their per-
missive-upgrade strategy [14] is more permissive thanNSU but retains termination-insensitive non-
interference. This work builds on the permissive-upgrade strategy. They also present faceted eval-
uation [15], which is the most permissive technique of the three. However, given the performance
considerations, the technique is not suitable for enforcing information flow control in browsers.
Just et al. [60] present dynamic IFC for JavaScript bytecode with static analysis to determine implicit
flows precisely even in the presence of semi-unstructured control flow like break and continue.
Again, NSU is leveraged to prevent implicit flows. This thesis builds on top of their work to enforce
information flow control in browsers.

JSFlow [54, 55] is a stand-alone implementation of a JavaScript interpreter with fine-grained taint
tracking. Many seminal ideas for labeling and tracking flows in JavaScript owe their lineage to JS-
Flow, but since JSFlow is written from scratch it has very high overheads and introduces annotations
to deal with semi-structured control flow. It detects security violations due to branches that have not
been executed and injects annotations to prevent these in subsequent runs. The approach presented

82 9. Related Work

in this thesis relies on analyzingCFGs and does not require annotations. To improve permissiveness,
their subsequent work [27] uses testing.

Kerschbaumer et al. [62] build an implementation of an information flowmonitor for WebKit but
do not handle all implicit flows. A black-box approach to enforcing non-interference is based on
secure multi-execution (SME) [43]. Bielova et al. [26] and De Groef et al. [39] implement SME for
web browsers. These systems do not attach labels to specific fields in the DOM. Instead, labels are
attached to individual DOM APIs.

Chudnov and Naumann [31] present another approach to fine-grained IFC for JavaScript. They
rewrite source programs to add shadow variables that hold labels and additional code that tracks
taints. This approach is inherently more portable than that of JSFlow or the work presented in
this thesis, both of which are tied to specific, instrumented browsers. However, it is unclear how
this approach could be extended with a policy framework like WebPol that assigns state-dependent
labels at runtime.

The work most closely related to WebPol is that of Vanhoef et al. [97] on stateful declassification
policies in reactive systems, includingweb browsers. Their policies are similar to the ones presented
here, but there are significant differences. First, their policies are attached to the browser and they
are managed by the browser user rather than website developers. Second, the policies have coarse-
granularity: They apply uniformly to all events of a certain type. Hence, it is impossible to specify a
policy that makes keypresses in a password field secret, but makes other keypresses public. Third,
the enforcement is based on securemulti-execution [43], which is, so far, not compatible with shared
state like the DOM.

COWL [94] enforcesmandatory access control at coarse-granularity. In COWL, third-party scripts
are sandboxed. Each script gets access to either remote servers or the host’s DOM, but not both.
Scripts that need both must be re-factored to pass DOM elements over a message-passing API
(postMessage). This can be both difficult and have high overhead. For scripts that do not need
this factorization, COWL is more efficient than solutions based on fine-grained information flow
tracking.

Mash-IF [67] uses static analysis to enforce IFCpolicies. Mash-IF’smodel is different fromWebPol’s
model. Mash-IF policies are attached only to DOM nodes and there is no support for adding poli-
cies to new objects or events. Also, in Mash-IF, the browser user (not the website developer) decides
what declassification is allowed. Mash-IF is limited to a JavaScript subset that excludes commonly
used features such as eval and dynamic property access.

JSand [6] uses server-side changes to the host page to introducewrappers around sensitive objects,
in the style of object capabilities [75]. Thesewrappersmediate every access by third-party scripts and
can enforce rich access policies. Through secure multi-execution, coarse-grained information flow
policies are also supported. However, as mentioned earlier, it is unclear how secure multi-execution
can be used with scripts that share state with the host page.

WebPol policies are enforced using an underlying IFC component. Although, in principle, any
IFC technique such as fine-grained taint tracking [22, 55, 59], coarse-grained taint tracking [94] or
securemulti-execution [43] can be usedwithWebPol, to leverage the full expressiveness ofWebPol’s
finely-granular policies, a fine-grained IFC technique is needed.

9. Related Work 83

Access control. The traditional browser security model is based on restricting scripts’ access to data,
not on tracking how scripts use data. In the traditional model, it is impossible to allow scripts access
to data they need for legitimate purposes and, simultaneously, to prevent them from leaking the
data on the side, which is the goal of IFC and WebPol. More broadly, no mechanism based only on
access control can solve this problem. Nonetheless, some closely related work on access control in
web browsers is discussed below.

All browsers today implement the same-origin policy (SOP) [19], which prevents a page and
scripts included in it from making requests to domains other than the page’s host. However, for
pragmatic reasons, image requests are exempt, which is sufficient to leak information. Consequently,
the SOP is not effective against malicious or buggy scripts. Cross-origin resource sharing (CORS) [2]
relaxes the SOP further to allow some cross-origin requests. Content security policies (CSPs) [3] al-
low white- and black-listing scripts. Unlike WebPol, CSPs offer no protection against scripts that
have been included by the developer without realizing that they leak information.

Conscript [74] allows the specification of fine-grained access policies on individual scripts, limit-
ing what actions every script can perform. Similarly, AdJail [68] limits the execution of third-party
scripts to a shadow page and restricts communication between the script and the host page.

Zhou and Evans [105] take a dual approach, where fine-grained access control rules are attached
toDOMelements. The rules specifywhich scripts can and cannot access individual elements. Along
similar lines, Dong et al. [45] present a technique to isolate sensitive data using authenticated encryp-
tion. Their goal is to reduce the size of the trusted computing base.

ADsafe [38] and FBJS [4] restrict third-party code to subsets of JavaScript, and use static analysis
to check for illegitimate access. Caja [1] uses object capabilities to mediate all access by third-party
scripts. Webjail [95] supports least privilege integration of third-party scripts by restricting script
access based on high-level policies specified by the developer.

All these techniques enforce only access policies and cannot control what a script does with data
it has access to.

Part VI

Conclusion and Outlook

Chapter 10

Conclusion

Security and privacy have been of paramount importance since computer systems and applications
have started handling private, sensitive and confidential information. The need of the hour is to
carefully handle such data as it interacts with various untrusted third-party applications. Although
helpful inmany scenarios, static information flowanalyses aremostly ineffectivewhenworkingwith
dynamic languages like JavaScript, which is an indispensable part of the modern web. The dynamic
nature of JavaScript makes sound static analysis difficult. Dynamic information flow control is a
promising step forward, though the permissiveness of dynamic analyses presents a major challenge
to the practicality of these techniques. This thesis focuses on improving the usability of dynamic
information flow techniques by:

• Developing mechanisms that enhance the precision and permissiveness of the analyses:
To improve the precision of dynamic information flow analysis, this thesis develops a sound
approach for handling complex language features like unstructured control flow and excep-
tions. The existing approaches to handle these features are too conservative generating a lot
of false-positives and often require additional annotations by the developer. In contrast, the
methodology presented in this thesis performs a sound and precise dynamic information flow
analysis using post-dominator analysis at runtime to handle these features without requiring
any additional annotations from the developer. The approach is also shown to be the most
precise approach for handling such complex features dynamically.

To further improve the permissiveness of dynamic informationflowanalysis, this thesis presents
the design of a sound improvement and enhancement of the permissive-upgrade strategy. The
development improves the original strategy’s permissiveness by relaxing the rules for han-
dling partially-leaked data while retaining soundness. The original strategy’s enforcement
was limited to a two-point security lattice, and lacked generalization to an arbitrary lattice (as
is required for real-world scenarios). To this end, this thesis presents a non-trivial approach to
generalize the applicability of the approach to an arbitrary security lattice.

88 10. Conclusion

• Proposing a technique to bound the release of sensitive information in realistic applica-
tions: Although dynamic quantification has been studied earlier, bounding information leaks
dynamically remains an open problem. To this end, this thesis develops a sound approach
to bound information leaks dynamically by allowing information release in accordance to a
pre-specified budget that specifies the amount of information that can be released about the
secret. The thesis proposes the property of limited information release to capture this security
condition and proves its enforcement sound, information-theoretically.

• Describing a comprehensive policy mechanism for easy specification of security policies:
To complement thework on enforcement components inweb browsers, the thesis also explores
a policy specification mechanism to specify flexible and useful information flow policies for
web applications.

Chapter 11

Future Directions

11.1 Evaluating Information Flow Policies on Real-World
Websites

The dissertation focused on bridging the gap between the theory of dynamic information flow con-
trol and its practicality in the real-world. As part of understanding the practicality of such ap-
proaches in real-world websites, it would be interesting to investigate the types of security policies
developers would be interested in. The idea would be to come up with a set of generic policies that
could help evaluate different real-world websites for privacy and confidentiality violations. An-
other interesting direction for evaluation of information flow policies on real-world websites is to
explore integrity violations by third-party scripts. Broadly, these policies could be related to cook-
ies, web storage, and other user-data used by different websites. For example, a policy related to
cookies could be that third-party scripts should not be able to extract information from first-party
cookies, which is currently allowed if the cookie is not marked HttpOnly. Similarly, a third-party
script (loaded from the same domain) can modify the localStorage object of the host without any
restrictions, which can be restricted or prevented by ensuring that such information does not leak
via the third-party script.

11.2 Exploring Alternative Granularities for Enforcing
Information Flow Control

The current enforcement of dynamic information flow control tracks the flow of information be-
tween all data structures in the system at a fine-granularity. Although this increases the precision
of the analysis significantly, it affects the performance adversely. Alternatively, one could explore
approaches that are a little coarser than the current approach without giving up much on the pre-

90 11. Future Directions

cision. One such approach would be to only track information flow globally and at the level of a
function-call, rather than tracking it through all local data-structures. The challenge here would be
to retain the precision of fine-grained techniques, which can probably be achieved by code-rewriting.
The high-level idea would be to execute the part of the code not dependent on sensitive data before
executing that part of the code that operates on sensitive data.

11.3 Handling Timing Leaks on the Web

Primarily, the work done in the area of dynamic information flow control has focused on handling
two types of leaks— leaks due to explicit and implicit flows. However, there are various other covert
channels like timing, resource-usage etc. that can leak sensitive information. Among these, web-
based timing attacks have been known to be a non-trivial source of information leakswith no feasible
client-side solutions till date [96]. For instance, the time taken for performing sensitive computation
can be measured by sending out public requests before and after the computation. Although the
two requests do not carry any sensitive information, the time between the two requests can leak
information about the data on which the computation was performed [96]. As part of future work,
it would be interesting to explore a language-based solution to handling timing leaks, which would
mostly be based on balancing the time taken for performing sensitive operations. The challenging
part would be to handle loops and the different browser features that result in such leaks.

Appendix

A Proofs for Improved and Generalized Permissive Upgrade

A.1 Proofs for Improved Permissive Upgrade Strategy

Lemma 1 (Expression Evaluation). If 〈σ1, e〉 ⇓ nk1
1 and 〈σ2, e〉 ⇓ nk2

2 and σ1 ∼ σ2, then nk1
1 ∼ nk2

2 .

Proof. Induction on the derivation and case analysis on the last expression rule.

1. const: n1 = n2 = n and k1 = k2 = ⊥.

2. var: As σ1 ∼ σ2, ∀x.σ1(x) = nk1
1 ∼ σ2(x) = nk2

2 .

3. oper: IH1: If 〈σ1, e1〉 ⇓ n′k
′
1

1 , 〈σ2, e1〉 ⇓ n′k
′
2

2 , σ1 ∼ σ2, then n′k
′
1

1 ∼ n′k
′
2

2 .
IH2: If 〈σ1, e2〉 ⇓ n′′k

′′
1

1 , 〈σ2, e2〉 ⇓ n′′k
′′
2

2 , σ1 ∼ σ2, then n′′k
′′
1

1 ∼ n′′k
′′
2

2 .
T.S. nk1

1 ∼ nk2
2 , where n1 = n′1 � n′′1 , n2 = n′2 � n′′2 and k1 = k′1 t k′′1 , k2 = k′2 t k′′2 .

As σ1 ∼ σ2, from IH1 and IH2, n′k
′
1

1 ∼ n′k
′
2

2 and n′′k
′′
1

1 ∼ n′′k
′′
2

2 .
Proof by case analysis on low-equivalence definition (Definition 3) for n′k

′
1

1 ∼ n′k
′
2

2 followed by
case analysis on low-equivalence definition for n′′k

′′
1

1 ∼ n′′k
′′
2

2 .

• n′1 = n′2 and k′1 = k′2 = L:

– n′′1 = n′′2 and k′′1 = k′′2 = L: n1 = n2 and k1 = k2 = L

– k′′1 = k′′2 = H : k1 = k2 = H

– k′′1 = P or k′′2 = P : k1 = P or k2 = P

• k′1 = k′2 = H :

– n′′1 = n′′2 and k′′1 = k′′2 = L: k1 = k2 = H

– k′′1 = k′′2 = H : k1 = k2 = H

– k′′1 = P or k′′2 = P : k1 = H and k2 = H

• k′1 = P or k′2 = P :

– n′′1 = n′′2 and k′′1 = k′′2 = L: k1 = P or k2 = P

– k′′1 = k′′2 = H : k1 = k2 = H

– k′′1 = P or k′′2 = P : k1 = P and/or k2 = P

Lemma 2 (Evolution). If pc = H and 〈σ, c〉 ⇓pc σ
′, then ∀x.Γ(σ(x)) = P =⇒ Γ(σ′(x)) = P .

Proof. Proof by induction on the derivation rules and case analysis on the last rule.

• skip,while-f: σ = σ′

• assn-pus: If pc = H and l = P , then k = P . All other σ(x) remain unchanged.

• seq:
IH1: If pc = H and 〈σ, c1〉 ⇓pc σ

′′, then ∀x.Γ(σ(x)) = P =⇒ Γ(σ′′(x)) = P .
IH2: If pc = H and 〈σ′′, c2〉 ⇓pc σ

′, then ∀x.Γ(σ′′(x)) = P =⇒ Γ(σ′(x)) = P .
From IH1 and IH2, if pc = H and 〈σ, c1; c2〉 ⇓pc σ

′, then ∀x.Γ(σ(x)) = P =⇒ Γ(σ′(x)) = P .

94

• if-else:
IH: If pc = H and 〈σ, ci〉 ⇓pct` σ

′, then ∀x.Γ(σ(x)) = P =⇒ Γ(σ′(x)) = P .
As H t ` = H , from IH.

• while-t: Similar to seq and if-else

Lemma 3 (Confinement for improved permissive-upgrade with a two-point lattice). If pc = H and
〈σ, c〉 ⇓pc σ

′, then σ ∼ σ′.

Proof. Proof by induction on the derivation rules and case analysis on the last step.

• skip,while-f: σ = σ′

• assn-pus: If l = L, then k = P else if l = H , then k = H , else if l = P , then k = P . Thus, σ ∼ σ′

• seq: IH1: If pc = H and 〈σ, c1〉 ⇓pc σ
′′, then σ ∼ σ′′ and

IH2: if pc = H and 〈σ′′, c2〉 ⇓pc σ
′, then σ′′ ∼ σ′.

From Lemma 2, ∀x.Γ(σ(x)) = P =⇒ Γ(σ′′(x)) = P and ∀x.Γ(σ′′(x)) = P =⇒ Γ(σ′(x)) = P .
From definition, ∀x either:
σ(x) = σ′′(x) and Γ(σ(x)) = Γ(σ′′(x)) = L: From IH2, either σ′′(x) = σ′(x) and Γ(σ′′(x)) =
Γ(σ′(x)) = L or Γ(σ′(x)) = P

or Γ(σ(x)) = Γ(σ′′(x)) = H : From IH2, Γ(σ′′(x)) = Γ(σ′(x)) = H

or either Γ(σ(x)) = P or Γ(σ′′(x)) = P : If Γ(σ(x) = P , then from Lemma 2, Γ(σ′′(x) = P .
Hence, Γ(σ′(x)) = P .

• if-else: IH: If pc = H and 〈σ, ci〉 ⇓pct` σ
′, then σ ∼ σ′. If pc = H , thenH t ` = H . Thus, from

IH.

• while-t: Similar to if-else and seq.

Theorem 1 (TINI for improved permissive-upgrade with a two-point lattice). With the assignment
rule assn-pus and the modified syntax of Figure 3.4, if σ1 ∼ σ2 and 〈σ1, c〉 ⇓pc σ

′
1 and 〈σ2, c〉 ⇓pc σ

′
2, then

σ′1 ∼ σ′2.

Proof. Proof by induction on the derivation rules and case analysis on the last step.

• skip,while-f: σ′1 = σ1 ∼ σ2 = σ′2

• assn-pus: From Lemma 1, nm1
1 ∼ nm2

2 . If pc = L, then k = m. If pc = H and l = H , then
k1 = k2 = H . If pc = H and l = L, then k1 = k2 = P . Hence, σ′1 ∼ σ′2.

• seq: IH1: If σ1 ∼ σ2 and 〈σ1, c1〉 ⇓pc σ
′
1, and 〈σ2, c1〉 ⇓pc σ

′
2, then σ′1 ∼ σ′2 and

IH2: If σ′1 ∼ σ′2 and 〈σ′1, c2〉 ⇓pc σ
′′
1 , and 〈σ′2, c2〉 ⇓pc σ

′′
2 , then σ′′1 ∼ σ′′2 .

From IH1 and IH2, σ′′1 ∼ σ′′2

95

• if-else: IH: If σ1 ∼ σ2 and 〈σ1, ci〉 ⇓pct`1 σ
′
1, and 〈σ2, cj〉 ⇓pct`2 σ

′
2, and `1 = `2, and ci = cj

then σ′1 ∼ σ′2. From Lemma 1, nl11 ∼ nl22 . Thus, either `1 = `2 = L or `1 = `2 = H . If
`1 = `2 = L, then n1 = n2. Thus, ci = cj and hence, from IH σ′1 ∼ σ′2.
If `1 = `2 = H , then pc tH = H . From Lemma 3, σ1 ∼ σ′1 and σ2 ∼ σ′2, and σ1 ∼ σ2.
T.S. σ′1 ∼ σ′2, i.e., ∀x.σ′1(x) ∼ σ′2(x).
Let σ1(x) = nk1

1 and σ2(x) = nk2
2 and σ′1(x) = n′1

k′
1 and σ′2(x) = n′2

k′
2 . Case analysis on the

definition of equivalence:

– n1 = n2 and k1 = k2 = L: Either n′1 = n1 and k′1 = k1 = L and n′2 = n2 and k′2 = k2 = L

or k′1 = P or k′2 = P

– k1 = k2 = H : k′1 = k1 = H and k′2 = k2 = H

– k1 = P or k2 = P : From Lemma 2, k′1 = P or k′2 = P

• while-t: Similar to if-else and seq.

A.2 Examples for Equivalence Definition

Consider the following notations for the examples:
l,m, h, l? represent any variable with label L,M , H , L?, respectively, such that L vM v H .
An `-level adversary is assumed. ` represents the labels that are above the level of the attacker.

TableA.1 shows example programs for the transition from low-equivalent values to low-equivalent
values. First column and first row of the table represents all the possible ways in which two values
can be low-equivalent (from defintion 7).

A.3 Proofs and Results for Generalized Permissive Upgrade for Arbitrary
Lattices

Lemma 4. Expression Evaluation Lemma
If σ1 ∼` σ2,
〈σ1, e〉 ⇓ nk1

1 ,
〈σ2, e〉 ⇓ nk2

2 ,
then nk1

1 ∼` nk2
2 .

Proof. Proof by induction on the derivation and case analysis on the last expression rule.

1. const: n1 = n2 = n and k1 = k2 =⊥.

2. var: As σ1 ∼` σ2, ∀x.σ1(x) = nk1
1 ∼` σ2(x) = nk2

2 .

3. oper: IH1: If 〈σ1, e1〉 ⇓ n′k
′
1

1 , 〈σ2, e1〉 ⇓ n′k
′
2

2 , σ1 ∼` σ2, then n′k
′
1

1 ∼` n′k
′
2

2 .
IH2: If 〈σ1, e2〉 ⇓ n′′k

′′
1

1 , 〈σ2, e2〉 ⇓ n′′k
′′
2

2 , σ1 ∼` σ2, then n′′k
′′
1

1 ∼` n′′k
′′
2

2 .
T.S. nk1

1 ∼` nk2
2 , where n1 = n′1 � n′′1 , n2 = n′2 � n′′2 and k1 = k′1 t k′′1 , k2 = k′2 t k′′2 .

96

`, ` `1
?, `2 `1, `2

? `1
?, `2

? `1, `2 `1
?, `2 `1, `2

?

`, ` - if(h)

x1 = l

if(h)

x1 = l

if(h)

x1 = l

else

x1 = l

x1 = h

x1 = m

if(h)

x1 = 4

if(m)

x1 = l?

x1 = m

if(h)

x1 = 4

if(m)

x1 = l?

`1
?, `2 x1 = l -

x1 = l

if(h)

x1 = l

if(h)

x1 = l
x1 = h

x1 = m

if (h)

x1 = l

if(m)

x1 = l?

x1 = m

if (h)

x1 = l

if(m)

x1 = l?

`1, `2
?

x1 = l

x1 = l

if(h)

x1 = l

- if(h)

x1 = l
x1 = h

x1 = m

if (h)

x1 = l

if(m)

x1 = l?

x1 = m

if (h)

x1 = l

if(m)

x1 = l?

`1
?, `2

?
x1 = l

x1 = l

if (h)

x1 = l

x1 = l

if (h)

x1 = l

- x1 = h

x1 = m

if (h)

x1 = l

if (m)

x1 = l?

x1 = m

if (h)

x1 = l

if (m)

x1 = l?

`1, `2 x1 = l

x1 = l

if (h)

x1 = l

x1 = l

if (h)

x1 = l

x1 = l

if (h)

x1 = l

else

x1 = l

-

x1 = m

if (h)

x1 = l

if(m)

x1 = l?

x1 = m

if (h)

x1 = l

if (m)

x1 = l?

`1
?, `2 x1 = l

x1 = l

if (h)

x1 = l

x1 = l

if (h)

x1 = l

x1 = l

if (h)

x1 = l

else

x1 = l

x1 = h -

x1 = m

if (h)

x1 = l

if (m)

x1 = l?

`1, `2
?

x1 = l

x1 = l

if (h)

x1 = l

x1 = l

if (h)

x1 = l

x1 = l

if (h)

x1 = l

else

x1 = l

x1 = h

x1 = m

if (h)

x1 = l

if(m)

x1 = l?

-

Table A.1: Examples for all possible transitions of low-equivalent to low-equivalent values

97

As σ1 ∼` σ2, from IH1 and IH2, n′k
′
1

1 ∼` n′k
′
2

2 and n′′k
′′
1

1 ∼` n′′k
′′
2

2 .
Proof by case analysis on low-equivalence definition for n′k

′
1

1 ∼` n′k
′
2

2 followed by case analysis
on low-equivalence definition for n′′k

′′
1

1 ∼` n′′k
′′
2

2 .

Lemma 5. ?-preservation Lemma
∀x.If 〈σ, c〉 ⇓pc σ

′, Γ(σ(x)) = `? and pc 6v `, then Γ(σ′(x)) = `′? ∧ `′ v `

Proof. Proof by induction on the derivation and case analysis on the last rule.

1. skip : σ = σ′.

2. assn-n: As pc 6v `, these cases do not apply.

3. assn-s: From the premises, for x in statement c, Γ(σ′(x)) = ((pc tm) u `)? = `′. Thus, `′ v `.
For any other y, σ(y) = σ′(y). Thus, `′ = `.

4. seq : IH1 : ∀x.If 〈σ, c〉 ⇓pc σ
′′, Γ(σ(x)) = `? and pc 6v `, then Γ(σ′′(x)) = `′′? ∧ `′′ v `

IH2 : ∀x.If 〈σ′′, c〉 ⇓pc σ
′, Γ(σ′′(x)) = `′′? and pc 6v `′′, then Γ(σ′(x)) = `′? ∧ `′ v `′′

Thus, from IH1 and IH2, Γ(σ′(x)) = `′? ∧ `′ v `.

5. if-else: Let k = `′′.
IH: ∀x.If 〈σ, c〉 ⇓pct`′′ σ′, Γ(σ(x)) = `? and pc t `′′ 6v `, then Γ(σ′(x)) = `′? ∧ `′ v `
As pc 6v `, so pc t `′′ 6v `.
Thus from IH, Γ(σ′(x)) = `′? ∧ `′ v `

6. while-t: Let k = `e.
IH1: ∀x.If 〈σ, c〉 ⇓pct`e

σ′′, Γ(σ(x)) = `? and pc t `e 6v `, then Γ(σ′′(x)) = `′′? ∧ `′′ v `
IH2: ∀x.If 〈σ′′, c〉 ⇓pct`e σ

′, Γ(σ′′(x)) = `′′? and pc t `e 6v `, then Γ(σ′(x)) = `′? ∧ `′ v `
As pc 6v `, so pc t `e 6v `.
Thus from IH1 and IH2, Γ(σ′(x)) = `′? ∧ `′ v `

7. while-f : σ = σ′.

Corollary 1. If 〈σ, c〉 ⇓
pc
σ′ and Γ(σ(x)) = `? and Γ(σ′(x)) = `′, then pc v `.

Proof. Immediate from Lemma 5.

Lemma 6. pc Lemma
If 〈σ, c〉 ⇓pc σ

′, then ∀x.Γ(σ′(x)) = ` =⇒ (σ(x) = σ′(x)) ∨ pc v `.

Proof. Proof by induction on the derivation and case analyis on the last rule.

• skip: σ(x) = σ′(x).

98

• assn-n: For x in the statement c, by premises, ` = pc t `e. Thus, pc v `.
For any other y s.t. Γ(σ′(y)) = `′, σ(y) = σ′(y). For assn-s, case does not apply.

• seq: IH1: If 〈σ, c1〉 ⇓pc σ
′′, then ∀x.Γ(σ′′(x)) = `′′ =⇒ (σ(x) = σ′′(x)) ∨ pc v `′′.

IH2: If 〈σ′′, c2〉 ⇓pc σ
′, then ∀x.Γ(σ′(x)) = ` =⇒ (σ′′(x) = σ′(x)) ∨ pc v `.

From IH2, if σ′′(x) 6= σ′(x), then pc v `.
If σ′′(x) = σ′(x), then from IH1:

– If σ(x) = σ′′(x): σ(x) = σ′(x).

– If σ(x) 6= σ′′(x): pc v `′′, where `′′ = Γ(σ′′(x)). As σ′′(x) = σ′(x), `′′ = Γ(σ′(x)) = `.
Thus, pc v `.

• if-else: IH: If 〈σ, c〉 ⇓pct`e
σ′, then ∀x.Γ(σ′(x)) = ` =⇒ (σ(x) = σ′(x)) ∨ pc t `e v `.

From IH, either (σ(x) = σ′(x)) or pc t `e v `. Thus, (σ(x) = σ′(x)) ∨ pc v `.

• while-t: IH1: If 〈σ, c〉 ⇓pct`e
σ′′, then ∀x.Γ(σ′′(x)) = `′′ =⇒ (σ(x) = σ′′(x)) ∨ pc v `′′.

IH2: If 〈σ′′, c〉 ⇓pct`e σ
′, then ∀x.Γ(σ′(x)) = ` =⇒ (σ′′(x) = σ′(x)) ∨ pc v `.

From similar reasoning as in “seq”, either σ(x) = σ′(x) or pct`e v `. Thus, σ(x) = σ′(x)∨pc v
`.

• while-f: σ(x) = σ′(x).

Corollary 2. If 〈σ, c〉 ⇓
pc
σ′ and Γ(σ(x)) = `? and Γ(σ′(x)) = `′, then pc v `′.

Proof. Immediate from Lemma 6.

Lemma 7. Confinement Lemma If pc 6v `, 〈σ, c〉 ⇓pc σ
′, then σ ∼` σ′.

Proof. Proof by induction on the derivation and case analysis on the last rule.

1. skip : σ = σ′.

2. assn-n: Let xi = vki
i and xf = vkf

f , s.t ki = `i ∨ ki = `i
? and pc v `i : As pc 6v `, `i 6v `. By

premises of assn-n, kf = `f ∨ kf = `f
?, where `f = pc t `e. As pc 6v `, `f 6v `. Thus, by

definition 7.2, 7.3, 7.4 or 7.5, xi ∼` xf .

3. assn-s: Let xi = vki
i and xf = vkf

f , s.t ki = `i ∨ ki = `i
? and pc 6v `i : By premise, kf =

((pc tm) u `i)?. Thus, `f v `i and by definition 7.3 or 7.5 xi ∼` xf .

4. seq : IH1: σ ∼` σ′′ and IH2: σ′′ ∼` σ′. T.S : σ ∼` σ′.
For all x ∈ dom(σ), respective x′′ ∈ dom(σ′′) and respective x′ ∈ dom(σ′), x ∼` x′′ and x′′ ∼` x′.
To show: x ∼` x′.
Let x = vk1

1 , x′′ = vk2
2 , x′ = vk3

3 , where k1 = `1 ∨ k1 = `1
?, k2 = `2 ∨ k2 = `2

? and k3 = `3 ∨ k3 =
`3
?.

Case-analysis on definition 7 for IH1.

• (k1 = k2) = `′ v ` ∧ v1 = v2 : By IH2 and definition 7,

99

(a) (k2 = k3) = `′ v `∧v2 = v3 (case 1): Transitivity of equality, (k1 = k3) = `′ v `∧v1 =
v3. Thus, x ∼` x′.

(b) k2 = `′ and k3 = `3
? ∧ `3 v `′ v ` (case 5): By definition 7.5 x ∼` x′.

• k1 = `1 6v ` ∧ k2 = `2 6v `: By IH2, either

(a) k2 = `2 6v ` ∧ k3 = `3 6v `. By definition 7.2, x ∼` x′.

(b) k2 = `2 6v ` ∧ k3 = `3
?: `1 6v `. Thus, by definition 7.5, x ∼` x′.

• k1 = `1
? ∧ k2 = `2

?: By IH2,

(a) k2 = `2
? ∧ k3 = `3

? (case 3): By definition 7.3, x ∼` x′.

(b) k2 = `2
? ∧ k3 = `3 ∧ (`3 6v `) (case 4): By definition 7.4, x ∼` x′.

(c) k2 = `2
? ∧ k3 = `3 ∧ (`2 v `3) (case 4): By corollary 1, pc v `2. As pc 6v ` and `2 v `3,

so `3 6v `. By definition 7.4, x ∼` x′. .

• k1 = `1
? ∧ k2 = `2 s.t. (`2 6v `) (case 4): Either

– k2 = `2 6v ` ∧ k3 = `3 6v `: By definition 7.4, x ∼` x′.

– k2 = `2 6v ` ∧ k3 = `3
?: By definition 7.3, x ∼` x′.

• k1 = `1
? ∧ k2 = `2 s.t. (`1 v `2) (case 4):

– k2 = k3 = `2: By definition 7.4, x ∼` x′.

– k2 = `2 6v ` ∧ k3 = `3 6v `: By definition 7.4, x ∼` x′.

– k2 = `2 6v ` ∧ k3 = `3
?: By definition 7.3, x ∼` x′.

• k1 = `1 ∧ k2 = `2
? s.t. (`1 6v `): By IH2,

(a) k2 = `2
? ∧ k3 = `3

? (case 3): By definition 7.5, x ∼` x′.

(b) k2 = `2
? ∧ k3 = `3 s.t. (`3 6v `) (case 4): By definition 7.2, x ∼` x′.

(c) k2 = `2
? ∧ k3 = `3 s.t. (`2 v `3) (case 4): By corollary 1, pc v `2. As pc 6v ` and

`2 v `3, so `3 6v `. By definition 7.2, x ∼` x′.

• k1 = `1 ∧ k2 = `2
? s.t. (`2 v `1): Also, (`2 v `1 v `). By IH2,

(a) k2 = `2
? ∧ k3 = `3

? (case 3): As `2 v ` and pc 6v `, pc 6v `2. By lemma 5, `3 v `2.
Thus, `3 v `2 v `1. By definition 7.5, x ∼` x′.

(b) k2 = `2
? ∧ k3 = `3 (case 4): As `2 v ` and pc 6v `, pc 6v `2. But, by corollary 1, pc v `2.

By contradiction, this case does not hold.

5. if-else : IH : k = `′. If (pc t `′) 6v `, then σ ∼` σ′.
As pc 6v `, pc t `′ 6v `. Thus, by IH, σ ∼` σ′.

6. while-t: IH1 : k = `′. If (pc t `′) 6v `, then σ ∼` σ′.
As pc 6v `, pc t `′ 6v `. Thus, by IH1, σ ∼` σ′′.
IH2 : k = `′. If (pc t `′) 6v `, then σ′ ∼` σ′′.
As pc 6v `, pc t `′ 6v `. Thus, by IH, σ′′ ∼` σ′.
Therefore, σ ∼` σ′′ and σ′′ ∼` σ′.
(Reasoning similar to seq.)

7. while-f : σ = σ′

100

Theorem 2. Termination-insensitive non-interference
If σ1 ∼` σ2, 〈σ1, c〉 ⇓pc σ

′
1, 〈σ2, c〉 ⇓pc σ

′
2, then σ′1 ∼` σ′2.

Proof. By induction on the derivation and case analysis on the last step

1. skip: σ′1 = σ1 ∼` σ2 = σ′2

2. assn-n and assn-s: As σ1 ∼` σ2, ∀x.σ1(x) ∼` σ2(x). Let σ1(x) = vk1
1 , σ2(x) = vk2

2 and
σ′1(x) = v′k

′
1

1 , σ′2(x) = v′k
′
2

2

s. t. ki = `i ∨ ki = `i
? and k′i = `′i ∨ ki = `′i

? for i = 1, 2.
Let 〈e1, σ1〉 ⇓ w

ke
1

1 ∧ 〈e2, σ2〉 ⇓ w
ke

2
2

s. t. kei = `ei ∨ kei = `ei
? for i = 1, 2. For low-equivalence of e1 and e2, the following cases arise:

(a) kei = `ei , s.t. (`e1 = `e2) = `e v ` ∧ w1 = w2:

i. pc 6v `1 ∧ pc 6v `2: By premise of assn-s rules, k′i = ((pc t `e)u `i)?. By definition 7.3,
σ′1 ∼` σ′2.

ii. pc 6v `1 ∧ pc v `2: k′1 = ((pct `e)u `1)? and k′2 = pct `e. As `′1 v `′2, by definition 7.4,
σ′1 ∼` σ′2.

iii. pc v `1 ∧ pc 6v `2: k′2 = ((pct `e)u `2)? and k′1 = pct `e. As `′2 v `′1, by definition 7.5,
σ′1 ∼` σ′2.

iv. pc v `1 ∧ pc v `2: k′1 = pc t `e and k′2 = pc t `e. If pc v ` and `e v ` and w1 = w2, by
definition 7.1, σ′1 ∼` σ′2. If pc 6v `, pc t `e 6v `. By definition 7.2, σ′1 ∼` σ′2.

(b) `e1 6v ` ∧ `e2 6v `: From premise of assignment rules, k′1 = pc t `e1 ∨ k′1 = (pc t `e1)? ∨ k′1 =
((pc t `e1) u `1)?. Similarly, k′2 = pc t `e2 ∨ k′2 = (pc t `e2)? ∨ k′2 = ((pc t `e2) u `2)?. Since
`e1 6v ` and `e2 6v `, pc t `e1 6v ` and pc t `e1 6v `. Therefore, from Definition 7.2, 7.3, 7.4 or
7.5 σ′1 ∼` σ′2.

(c) kei = `ei
?: By premise of assn-s rules, k′i = ((pc t `ei) u `i)? or k′i = (pc t `ei)?. By defini-

tion 7.3, σ′1 ∼` σ′2.

(d) ke1 = `e1
? ∧ ke2 = `e2:

i. pc 6v `1 ∧ pc 6v `2: By premise of assn-s rules, k′i = ((pc t `ei)u `i)?. By definition 7.3,
σ′1 ∼` σ′2.

ii. pc 6v `1 ∧ pc v `2: k′1 = ((pc t `e1)u `1)? and k′2 = pc t `e2. From definition 7.4, `e1 v `e2,
so (pc t `ei) u `1 v pc t `e2. By definition 7.4, σ′1 ∼` σ′2.

iii. pc v `1∧pc 6v `2: k′2 = ((pct`e2)u`2)? and k′1 = (pct`e1)?. By definition 7.3, σ′1 ∼` σ′2.

iv. pc v `1 ∧ pc v `2: k′1 = (pc t `e1)? and k′2 = pc t `e2. If `e2 6v `, so pc t `e2 6v `. Else if
`e1 v `e2, then pc t `e1 v pc t `e2. By definition 7.4, σ′1 ∼` σ′2.

(e) ke1 = `e1 ∧ ke2 = `e2
?:

i. pc 6v `1 ∧ pc 6v `2: By premise of assn-s rules, k′i = ((pc t `ei)u `i)?. By definition 7.3,
σ′1 ∼` σ′2.

ii. pc 6v `1∧pc v `2: k′1 = ((pct`e1)u`1)? and k′2 = (pct`e2)?. By definition 7.3, σ′1 ∼` σ′2.

101

iii. pc v `1 ∧ pc 6v `2: k′1 = pc t `e1 and k′2 = ((pc t `e2) u `2)?. (pc t `e2) u `2 v pc t `e1. By
definition 7.5, σ′1 ∼` σ′2.

iv. pc v `1 ∧ pc v `2: k′1 = (pc t `e1)? and k′2 = pc t `e2. If `e1 6v `, so pc t `e1 6v `. Else if
`e2 v `e1, then pc t `e2 v pc t `e1. By definition 7.5, σ′1 ∼` σ′2.

3. seq: IH1: If σ1 ∼` σ2 then σ′′1 ∼` σ′′2
IH2: If σ′′1 ∼` σ′′2 then σ′1 ∼` σ′2
Since σ1 ∼` σ2, therefore, from IH1 and IH2 σ′1 ∼` σ′2.

4. if-else: IH: If σ1 ∼` σ2, 〈σ1, c〉 ⇓pct`e
1
σ′1, 〈σ2, c〉 ⇓pct`e

2
σ′2 and pc t `e1 = pc t `e2 then σ′1 ∼` σ′2.

• If `e1 v `, `e1 = `e2 and n1 = n2. By IH, σ′1 ∼` σ′2.

• If `e1 6v `, then `e2 6v `, pc t `ei 6v ` for i = 1, 2. By Lemma 7, σ1 ∼` σ′1 and σ2 ∼` σ′2. T.S.
σ′1 ∼` σ′2, i.e., (∀x.σ′1(x) ∼` σ′2(x))
Case analysis on the definition of low-equivalence of values, x, in σ1 and σ2. Let σ1(x) =
vk1

1 and σ2(x) = vk2
2 and σ′1(x) = v′k

′
1

1 and σ′2(x) = v′k
′
2

2

(a) (k1 = k2) = `′ v ` ∧ v1 = v2 = v:

– If k′1 = `′1 ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by definition 7.1, `′ = `′1 ∧v =
v′1 and `′ = `′2 ∧ v = v′2. Thus, `′1 = `′2 ∧ v′1 = v′2, so σ′1(x) ∼` σ′2(x).

– If k′1 = `′1
? ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by definition 7.5 `′1 v `1 = `′

and by definition 7.1 k′2 = `′2 = `2 = `′. So, `′1 v `′2. By definition 7.4, σ′1(x) ∼`
σ′2(x).

– If k′1 = `′1 ∧ k′2 = `′2
?, then as σ1 ∼` σ′1 and σ2 ∼` σ′2,by definition 7.1 k′1 =

`′1 = `1 = `′ and by definition 7.5 `′2 v `2 = `′. So, `′2 v `′1. By definition 7.5,
σ′1(x) ∼` σ′2(x).

– If k′1 = `′1
? ∧ k′2 = `′2

?, then by definition 7.3, σ′1(x) ∼` σ′2(x).

(b) (k1 = `1 6v `) ∧ (k2 = `2 6v `):

– If k′1 = `′1 ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by definition 7.2, (k′1 = `′1 6v
`) ∧ (k′2 = `′2 6v `). So, σ′1(x) ∼` σ′2(x).

– If k′1 = `′1
? ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by definition 7.2 k′2 = `′2 6v `.

By definition 7.4, σ′1(x) ∼` σ′2(x).

– If k′1 = `′1 ∧ k′2 = `′2
?, then as σ1 ∼` σ′1 and σ2 ∼` σ′2,by definition 7.2 k′1 = `′1 6v `.

By definition 7.5, σ′1(x) ∼` σ′2(x). If k′1 = `′1
? ∧ k′2 = `′2

?, then by definition 7.3,
σ′1(x) ∼` σ′2(x).

(c) (k1 = `1
? ∧ k2 = `2

?) :

– If k′1 = `′1
? ∧ k′2 = `′2

?, by definition 7.3, σ′1(x) ∼` σ′2(x).

– If k′1 = `′1 ∧ k′2 = `′2
?, then as σ1 ∼` σ′1 and σ2 ∼` σ′2,by corollary 2, pc t `e1 v `′1.

As pc t `e1 6v ` and by definition 7.2, `′1 6v `. By definition 7.5, σ′1(x) ∼` σ′2(x).

– If k′1 = `′1
? ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by corollary 2, pc t `e2 v `′2.

As pc t `e2 6v ` and by definition 7.2, `′2 6v `. By definition 7.4, σ′1(x) ∼` σ′2(x).

– If k′1 = `′1 ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by corollary 2, pc t `e1 v `′1

and pc t `e2 v `′2. As pc t `ei 6v ` and by definition 7.2, `′1 6v ` and `′2 6v `. By
definition 7.2, σ′1(x) ∼` σ′2(x).

102

(d) (k1 = `1
? ∧ k2 = `2):

– `2 6v ` :

∗ If k′1 = `′1
? ∧ k′2 = `′2

?, by definition 7.3, σ′1(x) ∼` σ′2(x).

∗ If k′1 = `′1 ∧ k′2 = `′2
?, then as σ1 ∼` σ′1 and σ2 ∼` σ′2,by corollary 2, pct`e1 v `′1.

As pc t `e1 6v ` and by definition 7.2, `′1 6v `. By definition 7.5, σ′1(x) ∼` σ′2(x).

∗ If k′1 = `′1
? ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by definition 7.2, `′2 6v `.

By definition 7.4, σ′1(x) ∼` σ′2(x).

∗ If k′1 = `′1 ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by corollary 2, pc t `e1 v `′1.
As pc t `e1 6v ` and by definition 7.2, `′1 6v `. By definition 7.2, `′2 6v `. By
definition 7.2, σ′1(x) ∼` σ′2(x).

– `1 v `2 v ` :

∗ If k′1 = `′1
? ∧ k′2 = `′2

?, by definition 7.3, σ′1(x) ∼` σ′2(x).

∗ If k′1 = `′1 ∧ k′2 = `′2
?, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by corollary 2, pct`e1 v `′1.

As pc t `e1 6v `, and by definition 7.2, `′1 6v `. By definition 7.5, σ′1(x) ∼` σ′2(x).

∗ If k′1 = `′1
? ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, `′1 v (pc t `e1) u `1 as

pc t `e1 6v `1 and `′2 = `2 by corollary 1 and definition 7.1. Thus, `′1 v `′2. By
definition 7.4, σ′1(x) ∼` σ′2(x).

∗ If k′1 = `′1 ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by corollary 1, pc t `e1 v `1.
As pc t `e1 6v `, by contradiction the case does not hold.

(e) (k1 = `1 ∧ k2 = `2
?):

– `1 6v ` :

∗ If k′1 = `′1
? ∧ k′2 = `′2

?, by definition 7.3, σ′1(x) ∼` σ′2(x).

∗ If k′1 = `′1
? ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2,by corollary 2, pct`e2 v `′2.

As pc t `e2 6v ` and by definition 7.2, `′2 6v `. By definition 7.5, σ′1(x) ∼` σ′2(x).

∗ If k′1 = `′1 ∧ k′2 = `′2
?, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by definition 7.2, `′1 6v `.

By definition 7.4, σ′1(x) ∼` σ′2(x).

∗ If k′1 = `′1 ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by corollary 2, pc t `e2 v `′2.
As pc t `e2 6v ` and by definition 7.2, `′2 6v `. By definition 7.2, `′1 6v `. By
definition 7.2, σ′1(x) ∼` σ′2(x).

– `2 v `1 :

∗ If k′1 = `′1
? ∧ k′2 = `′2

?, by definition 7.3, σ′1(x) ∼` σ′2(x).

∗ If k′1 = `′1 ∧ k′2 = `′2
?, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, `′2 v (pc t `e2) u `2 as

pc t `e2 6v `2 and `′1 = `1 by corollary 1 and definition 7.1. Thus, `′2 v `′1. By
definition 7.5, σ′1(x) ∼` σ′2(x).

∗ If k′1 = `′1
? ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by corollary 2, pct`e2 v `′2.

As pc t `e2 6v `, and by definition 7.2, `′2 6v `. By definition 7.4, σ′1(x) ∼` σ′2(x).

∗ If k′1 = `′1 ∧ k′2 = `′2, then as σ1 ∼` σ′1 and σ2 ∼` σ′2, by corollary 1, pc t `e2 v `2.
As pc t `e2 6v `, by contradiction the case does not hold.

5. while-t: IH1: If σ1 ∼` σ2, 〈σ1, c〉 ⇓pct`e
1
σ′′1 , 〈σ2, c〉 ⇓pct`e

2
σ′′2 and pct`e1 = pct`e2 then σ′′1 ∼` σ′′2 .

IH2: If σ′′1 ∼` σ′′2 , 〈σ′′1 , c〉 ⇓pct`e
1
σ′1, 〈σ′′2 , c〉 ⇓pct`e

2
σ′2 and pc t `e1 = pc t `e2 then σ′1 ∼` σ′2.

103

• If `e1 v `, `e1 = `e2 and n1 = n2. By IH1 and IH2, σ′1 ∼` σ′2.

• If `e1 6v `, then `e2 6v `, pc t `ei 6v ` for i = 1, 2. By Lemma 7, σ1 ∼` σ′′1 and σ2 ∼` σ′′2 .
T.S. σ′′1 ∼` σ′′2 : By similar reasoning as if-else.
As σ′′1 ∼` σ′′2 , and by Lemma 7, σ′′1 ∼` σ′1 and σ′′2 ∼` σ′2.
T.S. σ′1 ∼` σ′2: By similar reasoning as if-else.

6. while-f: σ′1 = σ1 ∼` σ2 = σ′2

104

B Proofs of Precision for Dynamic IFC with Unstructured
Control Flow and Exceptions

Theorem 3 (Precision). Choosing any node other than the IPD to lower the pc-label will either give unsound
results or be less precise.

Proof. Consider a branch-point b ∈ N with IPD IPD(b) = i ∈ N .
Assume that (n ∈ N) 6= i is the node where the context of the predicate expression in b is removed.
Thus, either:

• b < n < i: Then, ∃p.n 6∈ b →p ne. Thus, if n performs an action that should not have been
performed in the context of the predicate expression in b, it might leak information about the
predicate expression in b.

• b < i < n: Then, for any n′ ∈ N such that i < n′ < n performing an operation that should
not be performed in the context of b would be reported illicit as n′ would be executed in the
context of b.

– If n′ pd b, then ∀p.n′ ∈ b→p ne. Hence, the statement n′ executes irrespective of whether
the branch at b is taken or not and hence, does not depend on the predicate expression
in b, i.e., there is no implicit flow from the predicate expression in b to n′, but still the
program might be rejected.

– Ifn′ is a statement executing under the context of another branch-point b′, such that b′ pd b,
then as b′ does not have any implicit flow from the predicate expression in b, any statement
executing under the context of the predicate expression in b′ should not be influenced by
the context of the predicate expression in b. Hence, the program might be rejected even
though there is no information leak.

• i <> n: ∀p.n 6∈ i →p ne or ∀p.n 6∈ b →p ne, n will never be reached. Thus, the context of
b shall not be removed until ne such that b < i < ne. Similar reasoning as in the second case
with n = ne.

Hence, the most precise node where one can safely remove the context of b is n = IPD(b) = i.

Theorem 4. The actual IPD of a node having SEN as its IPD is the node on the top of the pc-stack, which lies
in a previously called function.

Proof. Assume two functionsF andG given by theCFGsG = (N , E , ns, ne,L) andG′ = (N ′, E ′, n′s, n′e,L′),
respectively. The program’s start and exit node are given by Ns and Ne, respectively. Consider a
branch-point b′ ∈ N ′ having SEN as its IPD. Assume a branch-point b ∈ N such that b < b′ < (i =
IPD(b)), (i ∈ N) 6= SEN, b is the last executed branch-point and top of the pc-stack contains i.
∀p.i ∈ b→p ne. Thus, i pd b′ such that b < b′ < i.
T.S. 6 ∃n ∈ b′ →p i | (n pd b′) ∧ (b′ < n < i).
Proof by contradiction: Assume ∃n.n pd b′ | b′ < n < i. Then the node n either lies in the function F

105

or G or in another function H given by the CFG G′′ = (N ′′, E ′′, n′′s , n′′e ,L′′), such that F calls H and
H calls G.

• n ∈ N ′: As IPD(b′) = SEN and SEN is the last node in a function(G′), ∃p.n 6∈ b→p ne.

• n ∈ N ′′: As ∀p.n ∈ b′ →p Ne and G() < b′, thus, ∀p.n ∈ G()→p Ne, which means IPD(G()) 6=
SEN. Hence, the top of the pc-stack then would have IPD(G()) = (n′′ ∈ N ′′) ≤ n and not i.

• n ∈ N : When the call to G or any other function H is made, it would push i, IPD of the
branch-point on the top of the pc-stack.

Thus, 6 ∃n ∈ b′ →p i | (n pd b′)∧ (b′ < n < i). Hence, the top of the pc-stack, i is the actual IPD of any
node b′ having SEN as its intra-procedural IPD.

106

C Proofs for IFC with Unstructured Control Flow and Exceptions

Lemma 8 (Confinement Lemma). If 〈σ, ι, ρ〉 → 〈σ′, ι′, ρ′〉 and Γ(!ρ) 6v `, then σ ∼` σ′, and ρ ∼` ρ′.

Proof. Γ(!ρ) = pc in the proof that follows.
As pc 6v `, the nodes in the pc-stack that have label less than or equal to ` will remain unchanged.
Branching instructions pushing a new node would have label of at least pc due to monotonicity of
pc-stack. Even if ι′ is the IPD corresponding to the !ρ.ipd , it would only pop the top node. Thus, all
the nodes that have label less than or equal to `will remain unchanged. Hence, ρ ∼` ρ′.
To show: σ ∼` σ′.
By case analysis on the instruction type:

• assn, catch: Similar to cases assn-n and assn-s of Lemma 7.

• branch, jmp, ret, sen, throw: σ = σ′

Lemma 9. If 〈σ0, ι0, ρ0〉 →n 〈σn, ιn, ρn〉 and ∀(0 ≤ i ≤ n).Γ(!ρi) 6v `, then ρ0 ∼` ρn

Proof. Proof by induction on n.
Basis: ρ0 ∼` ρ0

IH : ρ0 ∼` ρn−1

FromDefinition 14, all nodes labeled less than or equal to ` of ρ0 and ρn−1 are equal. From Lemma 8,
ρn−1 ∼ ρn so, all nodes labeled less than or equal to ` of ρn−1 and ρn are equal. Thus, all nodes
labeled less than or equal to ` of ρ0 and ρn are equal and by Definition 14, ρ0 ∼ ρn.

Lemma 10. ?-preservation Lemma
If 〈σ, ι, ρ〉 → 〈σ′, ι′, ρ′〉,
then ∀x.Γ(σ(x)) = `? ∧ (Γ(!ρ) 6v `) =⇒ Γ(σ′(x)) = `′? ∧ `′ v `

Proof. Proof by case analysis on the instruction type:

• assn, catch: from the premise

• branch, jmp, ret, sen, throw: σ = σ′

Corollary 3. If 〈σ, ι, ρ〉 → 〈σ′, ι′, ρ′〉, and Γ(σ(x)) = `? and Γ(σ′(x)) = `′, then Γ(!ρ) v `.

Proof. Immediate from Lemma 10.

Lemma 11. If 〈σ0, ι0, ρ0〉 →? 〈σn, ιn, ρn〉 and ∀(0 ≤ i ≤ n).Γ(!ρi) 6v `, then σ0 ∼` σn

107

Proof. By induction on n.
Basis: σ0 ∼` σ0 by Definition 8.
IH: σ0 ∼` σn−1.
From IH and Definition 8, ∀x.(σ0(x) ∼` σn−1(x). From Lemma 8, σn−1 ∼` σn. Thus, ∀x.(σn−1(x) ∼`
σn(x)
Assume that σ0(x) = vk0 , σn−1(x) = vk

′

n−1, and σn(x) = vk
′′

n either:

• (k = k′) = `′ v ` ∧ v0 = vn−1 :

1. (k′ = k′′) = `′ v ` ∧ vn−1 = vn: (k = k′′) = `′ v ` ∧ v0 = vn. Thus, σ0(x) ∼` σn(x).

2. k′ = `′ and k′′ = `′′? ∧ `′′ v `′ v `: By definition 7.5. Thus, σ0(x) ∼` σn(x).

• k = `1 6v ` ∧ k′ = `2 6v `:

1. k′ = `2 6v ` ∧ k′′ = `3 6v `. By definition 7.2, σ0(x) ∼` σn(x).

2. k′ = `2 6v ` ∧ k′′ = `3
?: `1 6v `. Thus, by definition 7.5, σ0(x) ∼` σn(x).

• k = `1
? ∧ k′ = `2

?:

1. k′ = `2
? ∧ k′′ = `3

?: By definition 7.3, σ0(x) ∼` σn(x).

2. k′ = `2
? ∧ k′′ = `3 ∧ (`3 6v `): By definition 7.4, σ0(x) ∼` σn(x).

3. k′ = `2
? ∧ k′′ = `3 ∧ (`2 v `3): By corollary 3, Γ(!ρn−1) v `2. As Γ(!ρn−1) 6v ` and `2 v `3,

so `3 6v `. By definition 7.4, σ0(x) ∼` σn(x).

• k = `1
? ∧ k′ = `2 s.t. (`2 6v `): Either

– k′ = `2 6v ` ∧ k′′ = `3 6v `: By definition 7.4, σ0(x) ∼` σn(x)

– k′ = `2 6v ` ∧ k′′ = `3
?: By definition 7.3, σ0(x) ∼` σn(x)

• k = `1
? ∧ k′ = `2 s.t. (`1 v `2):

– k′ = k′′ = `2: By definition 7.4, σ0(x) ∼` σn(x)

– k′ = `2 6v ` ∧ k′′ = `3 6v `: By definition 7.4, σ0(x) ∼` σn(x)

– k′ = `2 6v ` ∧ k′′ = `3
?: By definition 7.3, σ0(x) ∼` σn(x)

• k = `1 ∧ k′ = `2
? s.t. (`1 6v `):

1. k′ = `2
? ∧ k′′ = `3

?: By definition 7.5, σ0(x) ∼` σn(x)

2. k′ = `2
? ∧ k′′ = `3 s.t. (`3 6v `): By definition 7.2, σ0(x) ∼` σn(x)

3. k′ = `2
? ∧ k′′ = `3 s.t. (`2 v `3) : By corollary 3, Γ(!ρn) v `2. As Γ(!ρn) 6v ` and `2 v `3,

so `3 6v `. By definition 7.2, σ0(x) ∼` σn(x).

• k = `1 ∧ k′ = `2
? s.t. (`2 v `1): Also, (`2 v `1 v `).

1. k′ = `2
? ∧ k′′ = `3

?: As `2 v ` and Γ(!ρn) 6v `, Γ(!ρn) 6v `2. By lemma 10, `3 v `2. Thus,
`3 v `2 v `1. By definition 7.5, σ0(x) ∼` σn(x)

2. k′ = `2
? ∧ k′′ = `3: As `2 v ` and Γ(!ρn) 6v `, Γ(!ρn) 6v `2. But, by Lemma 9, Γ(!ρn) v `2.

By contradiction, this case does not hold.

108

Lemma 12. Suppose
〈σ1, ι, ρ1〉 → 〈σ′1, ι′1, ρ′1〉,
〈σ2, ι, ρ2〉 → 〈σ′2, ι′2, ρ′2〉,
σ1 ∼` σ2, ρ1 ∼` ρ2, Γ(!ρ1) = Γ(!ρ2) v `, and either Γ(!ρ′1) = Γ(!ρ′2) v `) or Γ(!ρ′1) 6v ` ∧ Γ(!ρ′2) 6v `)
then σ′1 ∼` σ′2 and ρ′1 ∼` ρ′2.

Proof. Every instruction executes isIPD at the end of the operation. If ι′i is the IPD corresponding
to the !ρi.ipd , then it pops the first node on the pc-stack. As ρ1 ∼ ρ2 and Γ(!ρ1) = Γ(!ρ2), ι′i would
either pop in both the runs or in none. Thus, ρ′1simρ′2 (branch rule is explained below).
Assume σ1(x) = vk1

1 , σ2(x) = vk2
2 , σ′1(x) = v

k′
1

1′ and σ′2(x) = v
k′

2
2′ .

Proof by case analysis on the instruction type:

• assn, catch: Γ(!ρ1) = Γ(!ρ2) = pc v `

– pc v `1 ∧ pc v `2: As nm is equivalent, σ′1(x) ∼` σ′2(x).

– pc 6v `1 ∧ pc 6v `2: By Definition 7.3, σ′1(x) ∼` σ′2(x).

– pc v `1 ∧ pc 6v `2: k′2 v pc and pc v k′1. By Definition 7.3 and 7.4, σ′1(x) ∼` σ′2(x).
Similarly for the analogous case.

• branch: As b`i is equivalent in the two runs, either `1 = `2 v ` or `1 6v ` ∧ `2 6v ` (`i does not
have ?). The IPD of ι would be the same in both the cases. If the IPD is SEN, then the label of
!ρi is joined with the label obtained above, which is either less than or equal to ` and same in
both the runs (or) not less than or equal to ` in both the runs. Thus, either Γ(!ρ′1) = Γ(!ρ′2) or
Γ(!ρ′1) 6v ` ∧ Γ(!ρ′2) 6v `. Because ρ1 ∼ ρ2, ρ′1 ∼` ρ′2.
If the IPD is not SEN, then it is some other node, which makes the ipd field the same. Thus, the
pushed node is the same in both the cases or has label not less than or equal to ` and hence,
ρ′1 ∼` ρ′2 σ′1 = σ1 ∼` σ2 = σ′2.

• Other rules: σ′1 = σ1 ∼` σ2 = σ′2.

Lemma 13. Suppose

1. 〈σ′0, ι0, ρ′0〉 → 〈σ′1, ι′1, ρ′1〉 →n−1 〈σ′n, ι′n, ρ′n〉,

2. 〈σ′′0 , ι0, ρ′′0〉 → 〈σ′′1 , ι′′1 , ρ′′1〉 →m−1 〈σ′′m, ι′′m, ρ′′m〉,

3. (ρ′0 ∼` ρ′′0), (σ′0 ∼` σ′′0),

4. (Γ(!ρ′0) = Γ(!ρ′′0) v `), (Γ(!ρ′n) = Γ(!ρ′′m) v `),

5. ∀(0 < i < n).(Γ(!ρ′i) 6v `) ∧ ∀(0 < j < m).(Γ(!ρ′′j) 6v `),

then (ι′n = ι′′m), (ρ′n ∼` ρ′′m), and (σ′n ∼` σ′′m).

109

Proof. Startingwith the same instruction and high context in both the runs can result in two different
instructions, ι′1 and ι′′1 . This is only possible if ιwas some branching instruction in the first place and
this divergence happened in a high context.

1. To prove ι′n = ι′′m:
From the property of the IPDs, if ι0 pushes a node with label 6v ` on top of pc-stack which
was originally v `, IPD(ι0) pops that node. Since the runs start from the same instruction ι0,
ι′n = ι′′m = IPD(ι), where Γ(!ρ) v `.

2. To prove ρ′n ∼` ρ′′m:

• n > 1 and m > 1: Γ(!ρ′1) 6v ` ∧ Γ(!ρ′′1) 6v `, because ι0 has the same IPD and ι′1, ι′′1 are
not the IPDs. As ρ′0 ∼ ρ′′0 and Γ(!ρ′1) 6v ` ∧ Γ(!ρ′′1) 6v `, from Lemma 12, ρ′1 ∼ ρ′′1 and
!ρ′1.ipd =!ρ′′1 .ipd = IPD(ι0), if ι′1 6= IPD(ι0) and ι′′1 6= IPD(ι0). As ι′n = ι′′m = IPD(ι0), it
pops the !ρ′1 and !ρ′′1 , which correspond to ρ′n and ρ′′m in the nth and mth step. Because
ρ′1 ∼ ρ′′1 and from Lemma 9, ρ′n ∼ ρ′′m.

• n = 1 and m > 1: If ι′1 = IPD(ι0), and Γ(!ρ′1) v `. It pops the node pushed by ι0,
i.e., Γ(!ρ′n) v `. In the other run as Γ(!ρ′′1) 6v ` and Γ(!ρ′′m) v `, by the property of IPD
ι′′m = IPD(ι0), which would pop from the pc-stack !ρ′′m, the first frame labelled 6v ` on the
pc-stack. Thus, ρ′n ∼ ρ′′m.

• n > 1 andm = 1: Similar to the above case.

3. To prove σ′n ∼` σ′′m:

(a) n > 1 and m > 1: From Lemma 12, σ′1 ∼` σ′′1 . From Lemma 11, σ′1 ∼` σ′n−1 and σ′′1 ∼`
σ′′m−1. And from Lemma 8 σ′n−1 ∼` σ′n and σ′′m−1 ∼` σ′′m. Similar case analysis as above
for different cases of equivalence.

(b) n = 1 and m > 1: In case of branch, σ′0 = σ′1 and σ′′0 = σ′′1 . Thus, σ′1 ∼` σ′′1 . From the
above case, if σ′1 ∼` σ′′1 , then σ′n ∼` σ′′m.

(c) n > 1 andm = 1: Symmetric case of the above.

Definition 1 (Trace). A trace is defined as a sequence of configurations or states resulting from a program
evaluation, i.e., for a program evaluationP = s1 → s2 → . . .→ sn where si = 〈σi, ιi, ρi〉, the corresponding
trace is given as T (P) := s1 :: s2 :: . . . :: sn.

Definition 2 (Epoch-trace). An epoch-trace for an adversary at level `, (E`) over a trace T = s1 :: s2 ::
. . . :: sn where si = 〈σi, ιi, ρi〉 is defined inductively as:

E`(nil) := nil

E`(si :: T) :=

si :: E(T) if Γ(!ρi) v `,

E(T) else if Γ(!ρi) 6v `.

Theorem 5 (Termination-Insensitive Non-interference). SupposeP andP ′ are two program evaluations.
Then for their respective epoch-traces with respect to an adversary at level ` given by:

110

E`(T (P)) = s1 :: s2 :: . . . :: sn,
E`(T (P ′)) = s′1 :: s′2 :: . . . :: s′m,
if s1 ∼` s′1 and n ≤ m,
then
sn ∼` s′n

Proof. Proof by induction on n.
Basis: s1 ∼` s′1, by assumption.
IH: sk ∼` s′k
To prove: sk+1 ∼` s′k+1.
Let sk →i sk+1 and sk →i′ s

′
k+1, then:

• i = i′ = 1: From Lemma 12, sk+1 ∼` s′k+1.

• i > 1 or i′ > 1: From Lemma 13, sk+1 ∼` s′k+1.

Corollary 4. Suppose:

1. 〈σ1, ι1, ρ1〉 ∼` 〈σ2, ι2, ρ2〉

2. 〈σ1, ι1, ρ1〉 →∗ 〈σ′1, end, []〉

3. 〈σ2, ι2, ρ2〉 →∗ 〈σ′2, end, []〉

Then, σ′1 ∼` σ′2.

Proof. σ1, σ2 and ρ1, ρ2 are empty at the end of ∗ steps. From the semantics, in contextv ` both runs
would push and pop the same number of nodes. Thus, both take same number of steps in the epoch-
trace. Assume it to be k . Then in Theorem 5, n = m = k. Thus, sk ∼` s′k, where sk = 〈σ′1, end, []〉
and s′k = 〈σ′2, end, []〉. By Definition 15, σ′1 ∼` σ′2.

111

D Proofs for Limited Information Release

Lemma 14 (Trace-projection). (τ1 :: τ2)↑` = τ1↑` :: τ2↑`

Proof. By induction on τ1.
Base case: If τ1 = [], then ([] :: τ2)↑` = τ2↑` = [] :: τ2↑` = []↑` :: τ2↑`.
Inductive case: IH: (τ1 :: τ2)↑` = τ1↑` :: τ2↑`
TS: ((nm :: τ1) :: τ2)↑` = (nm :: τ1)↑` :: τ2↑`

(nm :: τ1)↑` =

nm :: τ1↑` if m v `,

τ1↑` else.
(1)

Also by associativity of list concatentation, ((nm :: τ1) :: τ2) = (nm :: (τ1 :: τ2)). Again,

(nm :: (τ1 :: τ2))↑` =

nm :: (τ1 :: τ2)↑` if m v `,

(τ1 :: τ2)↑` else.
(2)

If m v `: from (2), LHS = nm :: (τ1 :: τ2)↑` and from (1), RHS = nm :: τ1↑` :: τ2↑`. From IH, LHS =
RHS. Else: from (2), LHS = (τ1 :: τ2)↑` and from (1), RHS = τ1↑` :: τ2↑`. From IH, LHS = RHS.

Lemma 15 (Confinement of expressions). If
〈σ, ι, e〉 ⇓

pc
n(m,δ), ι′, τ , and Γ(pc) 6v `, then ι ∼` ι′ and τ↑` = ε

Proof. Proof by induction on the derivation for expressions and case analysis on the last rule.

• const and var: ι = ι′ and τ = ε

• aop and cop:
IH1: If 〈σ, ι, e1〉 ⇓

pc
n(m1,δ1)

1 , ι1, τ1, and pc 6v `, then ι ∼` ι1 and τ1↑` = ε

IH2: If 〈σ, ι1, e2〉 ⇓
pc

n(m2,δ2)
2 , ι′, τ2, and pc 6v `, then ι1 ∼` ι′ and τ2↑` = ε

As pc 6v `, ι ∼` ι1 and τ1↑` = ε and ι1 ∼` ι′ and τ2↑` = ε. Thus, (τ1↑` :: τ2↑`) = (τ1 :: τ2)↑` =
ε.
As ι ∼` ι1, ∀x ∈ ι.B(x) v ` =⇒ ι(x) = ι1(x) and ι1 ∼` ι′, ∀x ∈ ι1.B(x) v ` =⇒ ι1(x) =
ι′(x). Thus, ∀x ∈ ι.B(x) v ` =⇒ ι(x) = ι′(x).

• dcopr: From above reasoning, τ1↑` :: τ2↑` = (τ1 :: τ2)↑` = ε and ∀x ∈ ι.B(x) v ` =⇒
ι(x) = ι2(x). As pc v ko and pc 6v `, ko 6v `. ι2 changes for only those x that have a budget
label B(x) w ko. Thus, ∀x ∈ ι.B(x) v ` =⇒ ι(x) = ι′(x). As l 6v `, nl↑` = ε. Thus,
τ↑` = (τ1 :: τ2 :: nl)↑` = ε

• dcopn: From above reasoning, τ1↑` :: τ2↑` = (τ1 :: τ2)↑` = ε and ∀x ∈ ι.B(x) v ` =⇒
ι(x) = ι2(x). τ↑` = ε.

Lemma 16 (Confinement). If 〈σ, ι, c〉 ⇓
pc
〈σ′, ι′, τ〉, and Γ(pc) 6v `, then σ ∼` σ′, ι ∼` ι′ and τ↑` = ε

112

Proof. Proof by induction on the derivation for commands and case analysis on the last rule.

• skip: σ = σ′, ι = ι′ and τ = ε

• assn: As pc 6v ` and pc v Γf (σ(x)), Γf (σ(x)) 6v `. Also, (Γf (σ′(x)) = pc tm) 6v ` and all
other σ(x) remains unchanged. Thus, σ ∼` σ′. From Lemma 15, ι ∼` ι′ and τ↑` = ε.

• seq: IH1: If 〈σ, ι, c1〉 ⇓
pc
〈σ′, ι′, τ1〉, and pc 6v `, then σ ∼` σ′, ι ∼` ι′ and τ1↑` = ε

IH2: If 〈σ′, ι′, c2〉 ⇓
pc
〈σ′′, ι′′, τ2〉, and pc 6v `, then σ′ ∼` σ′′, ι′ ∼` ι′′ and τ2↑` = ε

As ∼` is an equivalence relation, from IH1 and IH2, σ ∼` σ′′, ι ∼` ι′′. From Lemma 14,
(τ1 :: τ2)↑` = ε.

• if-else: IH: If 〈σ, ι′, ci〉 ⇓
pctk

〈σ′, ι′′, τ2〉, and pc t (k, δ) 6v `, then σ ∼` σ′, ι′ ∼` ι′′ and τ2↑` = ε

From Lemma 15, ι ∼` ι′ and τ1↑` = ε. Also, as pc 6v `, pc t l 6v ` and from IH, σ ∼` σ′,
ι′ ∼` ι′′ and τ2↑` = ε. Thus, ι ∼` ι′′ and (τ1 :: τ2)↑` = ε

• while-t: Similar to if-else and seq

• while-f: σ = σ′. From Lemma 15, ι ∼` ι′ and τ↑` = ε

Lemma 17. If
〈σ, ι, e〉 ⇓

pc
n(l,δ), ι′, τ and ∃x ∈ σ.

(
Γ(σ(x)) 6v ` ∧

(
∀y ∈ σ.y 6= x ∧ Γ(σ(y)) v `

))
,

then |τ↑`| ≤ ι↑`(x)− ι′↑`(x).

Proof. Induction on the derivation for expressions and case analysis on the last rule.

• const: ι = ι′ and |τ↑`| = 0.

• var: ι = ι′ and |τ↑`| = 0.

• aop and cop: IH1: If 〈σ, ι, e1〉 ⇓
pc

n(k1,δ1)
1 , ι1, τ1, and

∃x ∈ σ.
(

Γ(σ(x)) 6v ` ∧
(
∀y ∈ σ.y 6= x ∧ Γ(σ(y)) v `

))
then |τ1↑`| ≤ ι↑`(x)− ι1↑`(x).

IH2: If 〈σ, ι1, e2〉 ⇓
pc

n(k2,δ2)
2 , ι′, τ2, and

∃x ∈ σ.
(

Γ(σ(x)) 6v ` ∧
(
∀y ∈ σ.y 6= x ∧ Γ(σ(y)) v `

))
then |τ2↑`| ≤ ι1↑`(x)− ι′↑`(x).

From IH1 and IH2, |τ1↑`|+ |τ2↑`| = ι↑`(x)− ι′↑`(x). Thus, |(τ1 :: τ2)↑`| ≤ ι↑`(x)− ι′↑`(x).

• dcopr: Similar to cop, |(τ1 :: τ2)↑`| ≤ ι↑`(x)− ι2↑`(x). Either:

– ko v ` ∧ x ∈ δo.L(x) 6v `: If x ∈ δ.(B(x) 6v `) =⇒ l 6v `. Thus, |τ↑`| = |τ1↑`| + |τ2↑`|.
As ι2 = ι′, |τ↑`| ≤ ι↑`(x)− ι′↑`(x).
If x ∈ δ.(B(x) v `) =⇒ l v ` and ι′(x) = ι2(x) − 1. τ = τ1 :: τ2 :: nl. |τ↑`| =
|τ1↑`|+ |τ2↑`|+ 1. Thus, |τ↑`| ≤ ι↑`(x)− ι′↑`(x).
If δ = ∅ then τ↑` = τ1↑` :: τ2↑` and ι′ = ι2. Thus, |τ↑`| ≤ ι↑`(x)− ι′↑`(x)

– ko 6v `: l 6v `. Thus, |τ↑`| = |τ1↑`|+ |τ2↑`|. As ι2 = ι′, |τ↑`| ≤ ι↑`(x)− ι′↑`(x).

113

• dcopn: Similar to cop, |(τ1 :: τ2)↑`| ≤ ι↑` − ι2↑`. Thus, |τ↑`| ≤ ι↑`(x)− ι′↑`(x)

Theorem 6 (LIR for a single secret). If 〈σ, ι, c〉 ⇓
pc
〈σ′, ι′, τ〉, and

∃x ∈ σ.
(

Γ(σ(x)) 6v ` ∧
(
∀y ∈ σ.y 6= x ∧ Γ(σ(y)) v `

))
,

then |τ↑`| ≤ ι↑`(x)− ι′↑`(x).

Proof. Induction on the derivation for commands and case analysis on the last rule.

• skip: ι = ι′ and |τ↑`| = 0.

• assn: From Lemma 17.

• seq: IH1: If 〈σ, ι, c1〉 ⇓
pc
〈σ′, ι′, τ1〉, and

∃x ∈ σ.
(

Γ(σ(x)) 6v ` ∧
(
∀y ∈ σ.y 6= x ∧ Γ(σ(y)) v `

))
then |τ1↑`| ≤ ι↑`(x)− ι′↑`(x).

IH2: If 〈σ′, ι′, c2〉 ⇓
pc
〈σ′′, ι′′, τ2〉, and

∃x ∈ σ.
(

Γ(σ(x)) 6v ` ∧
(
∀y ∈ σ.y 6= x ∧ Γ(σ(y)) v `

))
then |τ2↑`| ≤ ι′↑`(x)− ι′′↑`(x).

x ∈ σ =⇒ x ∈ σ1.
From IH1 and IH2, |τ1↑`|+ |τ2↑`| ≤ ι↑`(x)− ι′′↑`(x). Thus, |τ↑`| ≤ ι↑`(x)− ι′′↑`(x).

• if-else: From Lemma 17, |τ1↑`| ≤ ι↑`(x)− ι′↑`(x).
IH: If 〈σ, ι′, ci〉 ⇓

pctk
〈σ′, ι′′, τ2〉, and

∃x ∈ σ.
(

Γ(σ(x)) 6v ` ∧
(
∀y ∈ σ.y 6= x ∧ Γ(σ(y)) v `

))
then |τ2↑`| ≤ ι′↑`(x)− ι′′↑`(x).

From IH and Lemma 17, |τ↑`| ≤ ι↑`(x)− ι′′↑`(x).

• while-t: Similar to if-else

• while-f: From Lemma 17.

Lemma 18. If 〈σ, ι, e〉 ⇓
pc

n(l,δ), ι′, τ , then |τ↑`| ≤ ι↑` − ι′↑`.

Proof. Induction on the derivation for expressions and case analysis on the last rule.

• const: ι = ι′ and |τ↑`| = 0.

• var: ι = ι′ and |τ↑`| = 0.

• aop and cop:
IH1: If 〈σ, ι, e1〉 ⇓

pc
n(k1,δ1)

1 , ι1, τ1, then |τ1↑`| ≤ ι↑` − ι1↑`.

IH2: If 〈σ, ι1, e2〉 ⇓
pc

n(k2,δ2)
2 , ι′, τ2, then |τ2↑`| ≤ ι1↑` − ι′↑`.

From IH1 and IH2, |τ1↑`|+ |τ2↑`| = ι↑` − ι′↑`. Thus, |(τ1 :: τ2)↑`| ≤ ι↑` − ι′↑`.

• dcopr: Similar to cop, |(τ1 :: τ2)↑`| ≤ ι↑` − ι2↑`. Either:

114

– ko v ` ∧ ∀x ∈ δo.L(x) v `: If δ 6= ∅ then ∃x.ι2(x) > 0 and ι2(x) − ι′(x) = 1. For more
than one x, ι2↑` − ι′↑` ≥ 1. Also, τ = τ1 :: τ2 :: nl. |τ↑`| = |τ1↑`| + |τ2↑`| + 1. Thus,
|τ↑`| ≤ ι↑` − ι′↑`

– ko v ` ∧ ∃x ∈ δo.L(x) 6v `: If ∃x ∈ δ.(B(x) 6v `) =⇒ l 6v `. Thus, |τ↑`| = |τ1↑`|+ |τ2↑`|.
As ι2 = ι′, |τ↑`| ≤ ι↑` − ι′↑`.
If ∀x ∈ δ.(B(x) v `) =⇒ l v ` and ι′(x) = ι2(x) − 1. τ = τ1 :: τ2 :: nl. |τ↑`| =
|τ1↑`|+ |τ2↑`|+ 1. Thus, |τ↑`| ≤ ι↑` − ι′↑`.
If δ = ∅ then τ↑` = τ1↑` :: τ2↑` and ι′ = ι2. Thus, |τ↑`| ≤ ι↑` − ι′↑`

– ko 6v `: l 6v `. Thus, |τ↑`| = |τ1↑`| + |τ2↑`|. As ι2 = ι′, |τ↑`| ≤ ι↑` − ι′↑`. If δ = ∅ then
τ↑` = τ1↑` :: τ2↑` and ι′ = ι2. Thus, |τ↑`| ≤ ι↑` − ι′↑`

• dcopn: Similar to cop, |(τ1 :: τ2)↑`| ≤ ι↑` − ι2↑`. Thus, |τ↑`| ≤ ι↑` − ι′↑`

Theorem 7 (LIR). If 〈σ, ι, c〉 ⇓
pc
〈σ′, ι′, τ〉, then |τ↑`| ≤ ι↑` − ι′↑`.

Proof. Induction on the derivation for commands and case analysis on the last rule.

• skip: ι = ι′ and |τ↑`| = 0.

• assn: From Lemma 18.

• seq: IH1: If 〈σ, ι, c1〉 ⇓
pc
〈σ′, ι′, τ1〉, then |τ1↑`| ≤ ι↑` − ι′↑`.

IH2: If 〈σ′, ι′, c2〉 ⇓
pc
〈σ′′, ι′′, τ2〉, then |τ2↑`| ≤ ι′↑` − ι′′↑`.

From IH1 and IH2, |τ1↑`|+ |τ2↑`| ≤ ι↑` − ι′′↑`. Thus, |τ↑`| ≤ ι↑` − ι′′↑`.

• if-else: From Lemma 18, |τ1↑`| ≤ ι↑` − ι′↑`.
IH: If 〈σ, ι′, ci〉 ⇓

pctk
〈σ′, ι′′, τ2〉, then |τ2↑`| ≤ ι′↑` − ι′′↑`.

From IH and Lemma 18, |τ↑`| ≤ ι↑` − ι′′↑`.

• while-t: Similar to if-else

• while-f: From Lemma 18.

Lemma 19. If 〈σ, ι, e, τ〉 ↓
pc

v, ι′, τ ′, then 〈σ, ι, e, τ :: τ r〉 ↓
pc

v, ι′, τ ′ :: τ r

Proof. Proof by induction on the derivation for expressions and case analysis on the last rule.

• s-const and s-var: τ = τ ′ = ε, thus τ :: τ r = τ ′ :: τ r.

• s-aop and s-cop:
IH1: If 〈σ, ι, e1, τ〉 ↓

pc
v, ι1, τ ′, then 〈σ, ι, e1, τ :: τ r〉 ↓

pc
v, ι1, τ ′ :: τ r

IH2: If 〈σ, ι, e2, τ
′〉 ↓

pc
v, ι1, τ ′′, then 〈σ, ι, e, τ ′ :: τ r〉 ↓

pc
v, ι′, τ ′′ :: τ r

T.S. If 〈σ, ι, e, τ〉 ↓
pc

v, ι′, τ ′′, then 〈σ, ι, e, τ :: τ r〉 ↓
pc

v, ι′, τ ′′ :: τ r. From IH1 and IH2.

115

• s-dcopr: As above, if 〈σ, ι, e, τ〉 ↓
pc

v, ι′, τ ′′, then 〈σ, ι, e, τ :: τ r〉 ↓
pc

v, ι′, τ ′′ :: τ r. As v is the same,

τ ′′ = nl :: τ1 and τ ′′ :: τ r = nl :: τ1 :: τ r.
Thus, if 〈σ, ι, e, τ〉 ↓

pc
v, ι′, τf , then 〈σ, ι, e, τ :: τ r〉 ↓

pc
v, ι′, τf :: τ r

• s-dcopn: Similar to above case

Lemma 20. If 〈σ, ι, c, τ〉 ↓
pc
σ′, ι′, τ ′, then 〈σ, ι, c, τ :: τ r〉 ↓

pc
σ′, ι′, τ ′ :: τ r

Proof. Proof by induction on the derivation for commands and case analysis on the last rule.

• s-skip: τ = τ ′, thus τ :: τ r = τ ′ :: τ r.

• s-assn: From Lemma 19.

• s-seq: IH1: If 〈σ, ι, c, τ〉 ↓
pc
σ′, ι′, τ1, then 〈σ, ι, c, τ :: τ r〉 ↓

pc
σ′, ι′, τ1 :: τ r

IH2: If 〈σ, ι, c, τ1〉 ↓
pc
σ′, ι′, τ ′, then 〈σ, ι, c, τ1 :: τ r〉 ↓

pc
σ′, ι′, τ ′ :: τ r.

From IH1 and IH2.

• s-if-else-n and s-while-t: Similar to above case

• s-if-else-s and s-while-fs: From Lemma 19.

Corollary 5 (Trace Reduction). If 〈σ, ι, c, τ〉 ↓
pc
σ′, ι′, ε, then 〈σ, ι, c, τ :: τ r〉 ↓

pc
σ′, ι′, τ r

Proof. From Lemma 20

Lemma 21 (Equivalence). If σ ∼` σ′ and σ '` σ′′, then σ′ '` σ′′

Proof. Consider x = n(l,δ)
1 in σ and x = n(l′,δ′)

2 in σ and x = vs such that σ(x) ∼` σ′(x). Thus, either:

• n1 = n2 ∧ l = l′ ∧ δ = δ′: As σ '` σ′′, vs = n(ls,δs)
s and n1 = ns ∧ l = ls ∧ δ = δs. Thus,

n2 = ns ∧ l′ = ls ∧ δ′ = δs. Hence, σ′ '` σ′′ from Definition 24.1

• l = l′ ∧ δ = δ′ ∧ ∃ym ∈ δ.m 6v `: As σ '` σ′′, vs = ?(ls,δs) and l v ` and ls = > and
∃ym ∈ δ.B(x) 6v `. Thus, l′ v ` and ls = > and ∃ym ∈ δ′.B(x) 6v `. Else, l = ls ∧ δ = δs. Thus,
l′ = ls ∧ δ′ = δs. Hence, σ′ '` σ′′ from Definition 24.2(b), 24.2(c)

• l 6v ` ∧ l′ 6v `: As σ '` σ′′, vs = ?(ls,δs) and ls = >. Hence, σ′ '` σ′′ from Definition 24.2(a).

Lemma 22 (Expression Simulation). If 〈σ, ι, e〉 ⇓
pc

v, ι′, τ , then

〈σ↑`, ι↑`, e, τ↑`〉 ↓
pc
v′, ι′′, τ ′ such that TTv '` v′, ι′↑` = ι′′, and τ ′ = ε

116

Proof. Assume σs = σ↑`. Proof by induction on the derivation for expressions and case analysis on
the last rule.

• const: n⊥ = n⊥ and δ = δ′ = {}. Thus, v '` v′. ι = ι′ and ι↑` = ι′′, thus, ι′↑` = ι′′. τ = ε,
thus, τ↑` = τ ′ = ε.

• var: As σ '` σs, σ(x) '` σs(x), thus v '` v′. ι = ι′ and ι↑` = ι′′, thus, ι′↑` = ι′′. τ = ε, thus,
τ↑` = τ ′ = ε.

• aop and cop:
IH1: If 〈σ, ι, e1〉 ⇓

pc
v1, ι1, τ1 and σ '` σs, then 〈σs, ι↑`, e1, τ1↑`〉 ↓

pc
v′1, ι

′
1, τ
′
1 such that v1 '` v′1,

ι1↑` = ι′1 and τ ′1 = ε.
IH2: If 〈σ, ι1, e2〉 ⇓

pc
v2, ι2, τ2 and σ '` σs, then 〈σs, ι1↑`, e2, τ2↑`〉 ↓

pc
v′2, ι

′
2, τ
′
2 such that v2 '`

v′2, ι2↑` = ι′2 and τ ′2 = ε.
As σ '` σs, from IH1 and IH2 v1 '` v′1 and v2 '` v′2, where v1 = n(k1,δ1)

1 , v2 = n(k2,δ2)
2 ,

v′1 = (n(k′
1,δ

′
1)

s1 ∨ ?(k′
1,δ

′
1)), v′2 = (n(k′

2,δ
′
2)

s2 ∨ ?(k′
2,δ

′
2)).

ι′ = ι2 and ι′′ = ι′2, thus from IH1 and IH2, ι′↑` = ι′′.
T.S: v '` v′, i.e, v1 � v2 '` v′1 � v′2.
As v1 '` v′1, either:

1. v1 = n(k1,δ1)
1 , v′1 = n(k′

1,δ
′
1)

s1 , n1 = ns1 and k1 = k′1 v ` and δ1 = δ′1:
As v2 '` v′2, either:

(a) v2 = n(k2,δ2)
2 , v′2 = n(k′

2,δ
′
2)

s2 , n2 = ns2 and k2 = k′2 v ` and δ2 = δ′2:
n1 � n2 = ns1 � ns2 and (k1 t k2 = k′1 t k′2) v ` and δ1 ∪ δ2 = δ′1 ∪ δ′2. From
Definition 24.1, v '` v′.

(b) v2 = n(k2,δ2)
2 and Γ(v2) 6v ` and v′2 = ?(k′

2,δ
′
2):

– k′2 = > and k2 6v `:
(l = k1 t k2) 6v `, thus Γ(v) 6v `, ns1 � ? = ? and l′ = k′1 t > = >. From
Definition 24.2(a), v '` v′.

– k′2 = >, k2 v ` and ∃x ∈ δ2.(B(x) 6v `):
(l = k1tk2) v `, (Γ(v) = Γ(v1)tΓ(v2)) 6v ` and l′ = >. (ns1�? = ?). δ = δ1∪δ2,
thus x ∈ δ2 =⇒ x ∈ δ, i.e., ∃x ∈ δ.(B(x) 6v `). From Definition 24.2(b), v '` v′.

– (k2 = k′2) v ` ∧ δ2 = δ′2:
(l = k1 t k2) v ` and (Γ(v) = Γ(v1) t Γ(v2)) 6v `. As δ1 = δ′1, δ = δ1 ∪ δ2, and
δ′ = δ′1 ∪ δ′2. δ = δ′. k1 = k′1 and k2 = k′2, so, l = l′. From Definition 24.2(c),
v '` v′

2. v1 = n(k1,δ1)
1 , Γ(v1) 6v `, v′1 = ?(k′

1,δ
′
1):

As v2 '` v′2, either:

– v2 = n(k2,δ2)
2 , v′2 = n(k′

2,δ
′
2)

s2 , n2 = ns2 , k2 = k′2 v ` and δ2 = δ′2:
Similar to the case (1.b) above

– v2 = n(k2,δ2)
2 , Γ(v2) 6v ` and v′2 = ?(k′

2,δ
′
2):

∗ k′1 = > and k1 6v `:
l′ = k′1 t k′2 = > and (l = k1 t k2) 6v `. From Definition 24.2(a) v '` v′

117

∗ v′1 = ?(k′
1,δ

′
1), k′1 = >, k1 v `, and ∃x ∈ δ1.(B(x) 6v `):

δ = δ1 ∪ δ2 and l′ = k′1 t k′2 = >. As l′ = > either:
(l = k1 t k2) v `. As x ∈ δ1 =⇒ x ∈ δ. Thus, ∃x ∈ δ.(B(x) 6v `). From
Definition 24.2(b), v '` v′ (or)
k2 6v ` and (l = k1 t k2) 6v `. From Definition 24.2(a), v '` v′

∗ (k1 = k′1) v ` and δ1 = δ′1:
As v2 '` v′2, either:
k′2 = > and k2 6v `. l = k1 t k2 and l′ = k′1 t k′2. From Definition 24.2(a),
v '` v′. (or)
k2 v `, k′2 = > and ∃x ∈ δ2.(B(x) 6v `). k1 t k2 v `, k′1 t k′2 = >, δ = δ1 ∪ δ2

and ∃x ∈ δ.(B(x) 6v `). From Definition 24.2(b), v '` v′ (or)
(k2 = k′2) v `, δ2 = δ′2: l = k1 t k2 and l′ = k′1 t k′2, so l = l′. δ = δ1 ∪ δ2 and
δ′ = δ′1 ∪ δ′2. Thus, δ = δ′. From Definition 24.2(c), v '` v′.

T.S.: If 〈σ, ι, e〉 ⇓
pc

n(l,δ), ι′, τ , and 〈σs, ι, e, τ↑`〉 ↓
pc
n′, δ′, ι′′, τ ′, and σ '` σs, then τ ′ = ε. τ =

τ1 :: τ2.
τ↑` = τ1↑` :: τ2↑`. From aop, cop and IH1, 〈σs, ι, e1, τ1↑` :: τ2↑`〉 ↓

pc
n′1, δ

′
1, ι
′
1, τ2↑` because

τ ′1 = ε. From aop, cop and IH2, τ ′ = ε

• dcopr: IH1: If 〈σ, ι, e1〉 ⇓
pc

v1, ι1, τ1 and σ '` σs, then 〈σs, ι↑`, e1, τ1↑`〉 ↓
pc

v′1, ι
′
1, τ
′
1 such that

v1 '` v′1, ι1↑` = ι′1 and τ ′1 = ε.
IH2: If 〈σ, ι1, e2〉 ⇓

pc
v2, ι2, τ2 and σ '` σs, then 〈σs, ι1↑`, e2, τ2↑`〉 ↓

pc
v′2, ι

′
2, τ
′
2 such that v2 '`

v′2, ι2↑` = ι′2 and τ ′2 = ε.
As σ '` σs, from IH1 and IH2 v1 '` v′1, v2 '` v′2 and τ ′1 = τ ′2 = ε.
Also from IH1 and IH2, ι2↑` = ι′2.
T.S: v '` v′, ι′↑` = ι′′ and τ ′ = ε.
v = v1 ⊕ v2 and v′ = v′1 ⊕ v′2.
As v1 '` v′1, either:

1. v1 = n(k1,δ1)
1 , v′1 = n(k′

1,δ
′
1)

s1 , n1 = ns1 , k1 = k′1 v ` and δ1 = δ′1:
As v2 '` v′2, either:

(a) v2 = n(k2,δ2)
2 , v′2 = n(k′

2,δ
′
2)

s2 , n2 = ns2 , k2 = k′2 v ` and δ2 = δ′2:
Assume δi = δ1 ∪ δ2 and δ′i = δ′1 ∪ δ′2, thus, δi = δ′i. As (l = k1 t k2 = k′1 t k′2 = l′),
δi = δ′i and ι2↑` = ι′2, δi = δ′i. Either:

– δi = δ′i = ∅ : n = n1 ⊕ n2 = ns1 ⊕ ns2 = ns and (l = k1tk2 = k′1tk′2 = l′) v `,
thus, v '` v′.
Also, ι′ = ι2 and ι′′ = ι′2. Thus, ι′↑` = ι′′.
τ = τ1 :: τ2. From s-dcopr and IH1, 〈σs, ι↑`, e1, τ1↑` :: τ2↑`〉 ↓

pc
v′1, ι

′
1, τ2↑` be-

cause τ ′1 = ε. From s-dcopr and IH2, τ ′ = τ ′2 = ε.
– (δi = δ′i) 6= ∅ : τ = τ1 :: τ2 :: nl. From s-dcopr and IH1, 〈σs, ι↑`, e1, τ1 :: τ2 ::
n〉 ↓

pc
v′1, ι

′
1, τ2 :: n because τ ′1 = ε. From s-dcopr and IH2, 〈σs, ι1↑`, e2, τ2 ::

n〉 ↓
pc

v′2, ι
′
2, n because τ ′2 = ε. From s-dcopr, τ ′ = ε and τ2 = nl. Thus, v '` v′.

As δi = δ′i and ι2↑` = ι′2, ι′↑` = ι′′.

118

(b) v2 = n(k2,δ2)
2 , Γ(v2) 6v `, v′2 = ?(k′

2,δ
′
2) and either:

– k2 6v ` and k′2 = >: (ko = k1 t k2) 6v `, thus, l 6v `. As l′ = > from s-dcopr,
δ′i = ∅ and v′ = ?(>,{}). From Definition 24.2(a), v '` v′. From s-dcopr, IH1,
and IH2, ι2↑` = ι′2 and τ ′2 = ε. Thus, ι′↑` = ι′′ and τ ′ = ε.

– k′2 = > and k2 v ` and ∃x ∈ δ2.(B(x) 6v `):
v′ = ?(>,δ′). (ko = k1 t k2) v ` and δ = δ1 ∪ δ2. As ∃x ∈ δ.(B(x) 6v `), l 6v `.
If ι2(x) = 0, then l w ko t m, else l w ko t B(x). In either case, l 6v `. Also,
l = k′1 t k′2 = > so δ′i = ∅. From Definition 24.2(a), v '` v′. From s-dcopr, IH1,
and IH2, ι2↑` = ι′2 and τ ′2 = ε. Thus, ι′↑` = ι′′ and τ ′ = ε.

– k2 = k′2 v ` and δ2 = δ′2:
δ = δ1 ∪ δ2 and δ′ = δ′1 ∪ δ′2. As δ1 = δ′1, δ = δ′. From IH1, and IH2, ι2↑` = ι′2

and τ ′2 = ε. If ∃x.ι2↑`(x) = ι2(x) = 0 ∧ L(x) 6v `, then l 6v ` and l′ = >.
Else l = l′ v `. Thus, δi = δ′i. Thus, if δi = δ′i = ∅, l′ = > and l 6v `,
ι′ = ι2↑` = ι′2 = ι′′ and τ ′ = τ ′2 = ε. Else, τ = τ1 :: τ2 :: nl and τ2↑` = nl :: τ ′

and v′ = nl. Hence, v '` v′ and τ ′ = ε. As δ = δ′ and ι2↑` = ι′2, ι′↑` = ι′′

2. v1 = n(k1,δ1)
1 and Γ(v1) 6v ` and v′1 = ?(k′

1,δ
′
1) :

As v2 '` v′2, either:

(a) v2 = n(k2,δ2)
2 , v′2 = n(k′

2,δ
′
2)

s2 , n2 = ns2 , k2 = k′2 v ` and δ2 = δ′2: Similar to case (1.b)

(b) v2 = n(k2,δ2)
2 and Γ(v2) 6v ` and n′2 = ?(k′

2,δ
′
2):

Different cases of Definition 24.2:

– k′1 = > and k1 6v `: From dcopr, l 6v ` and from s-dcopr l′ = >. ∀x ∈ δ.L(x) 6v
`, so ι2↑` = ι′↑` and τ↑` = τ1↑` :: τ2↑`. As δ = ∅, ι′2 = ι′′ and τ ′ = τ ′2 = ε. Thus,
ι′′ = ι′↑` and from Definition 24.2(a), v '` v′.

– k1 v ` and ∃x ∈ δ1.(B(x) 6v `) and k′1 = >: ∃x ∈ δ.(B(x) 6v `) as δ = δ1 ∪ δ2.
From dcopr, l 6v ` and l′ = >. Similar to above case.

– k1 v ` and δ1 = δ′1:
If k′2 = > and either k2 6v ` or k2 v ` and ∃x ∈ δ2.(B(x) 6v `) - similar to above
two cases.
If k2 v ` and δ2 = δ′2: δ = δ1 ∪ δ2 and δ′ = δ′1 ∪ δ′2 - similar to last case of 1.b

• dcopn: Similar to aop, cop.

Theorem 8 (Simulation Theorem). If 〈σ, ι, c〉 ⇓
pc
〈σ′, ι′, τ〉, then

〈σ↑`, ι↑`, c, τ↑`〉 ↓
pc
〈σ′′, ι′′, τ ′′〉 such that σ′ '` σ′′, ι′↑` = ι′′ and τ ′′ = ε

Proof. Assume σ↑` = σs. Thus, σ '` σs. As ` simulates the run, initial pc v `. Proof by induction
on the derivation for commands and case analysis on the last rule.

• skip: σ′ = σ '` σs = σ′′. τ = ε. Thus τ↑` = τ ′′ = ε. ι = ι′ and ι↑` = ι′′. So, ι′↑` = ι′′

119

• assn: As σ '` σs, σ(x) '` σs(x). Thus, either (Γf (σ(x)) = Γf (σs(x))) (or) Γf (σ(x)) 6v `

and Γf (σs(x)) = >. In either case, pc v Γf (σ(x)) and pc v Γf (σs(x)). From Lemma 22,
n(m,δ′) '` n(m′,δ′′)

s , ι′↑` = ι′′ and τ ′′ = ε. From Definition 24, n(l,δ) '` n(ls,δs)
s . Thus,

σ′ '` σ′′, ι′↑` = ι′′ and τ ′′ = ε.

• seq: IH1: If 〈σ, ι, c1〉 ⇓
pc
〈σ1, ι1, τ1〉, then 〈σ↑`, ι↑`, c1, τ1↑`〉 ↓

pc
〈σ′1, ι′1, τ ′1〉 such that σ1 '` σ′1,

ι1↑` = ι′1 and τ ′1 = ε

IH2: If 〈σ1, ι1, c2〉 ⇓
pc
〈σ′, ι′, τ2〉, then 〈σ1↑`, ι1↑`, c2, τ2↑`〉 ↓

pc
〈σ′′, ι′′, τ ′′〉 such that σ′ '` σ′′,

ι′↑` = ι′′ and τ ′′ = ε.
T.S : If 〈σ, ι, c1; c2〉 ⇓

pc
〈σ′, ι′, τ1 :: τ2〉, then

〈σ↑`, ι↑`, c1; c2, τ1↑` :: τ2↑`〉 ↓
pc
〈σ′′, ι′′, τ ′′〉 such that σ′ '` σ′′, ι′↑` = ι′′ and τ ′′ = ε.

From IH1, σ′1 = σ1↑` and ι1↑` = ι′1, thus, from IH2 σ′ '` σ′′ and ι′↑` = ι′′.
From IH1 τ ′1 = ε, and Corollary 5, 〈σ↑`, ι↑`, c1, τ1↑` :: τ2↑`〉 ↓

pc
〈σ′′, ι′′, τ2↑`〉. From IH2, τ ′′ =

ε.

• if-else: From Lemma 22, v '` v′, ι1↑` = ι′1, and τ ′1 = ε.
IH1: If 〈σ, ι1, ci〉 ⇓

pctk
〈σ′, ι′, τ2〉, then 〈σ↑`, ι1↑`, ci, τ2↑`〉 ↓

pctk
〈σ′′, ι′′, τ ′′〉 such that σ′ '` σ′′,

ι′↑` = ι′′ and τ ′′ = ε.
If v′ = n(l′,δ′)

s , then from IH1 σ′ '` σ′′, ι′↑` = ι′′ and τ ′′ = ε.
Else from confinement lemma 16 and Lemma 21, σ′ '` σ′′, ι′↑` = ι′′ and τ ′′ = ε.

• while-t and while-f: Similar to if and seq above

Lemma 23. If σ1 ∼` σ2 then σ1↑` = σ2↑`

Proof. From Definition 19, σ1 ∼` σ2 =⇒ ∀x.σ1(x) ∼` σ2(x). Assume σ1(x) = n(k1,δ1)
1 and σ2(x) =

n(k2,δ2)
2 . From Definition 18, either:

• n1 = n2, k1 = k2 v ` and δ1 = δ2: By definition of σ↑`, σ1↑`(x) = n(k1,δ1)
1 and σ2↑`(x) = n(k2,δ2)

2 .
Hence, σ1↑`(x) = σ2↑`(x)

• Γ(v1) 6v ` and Γ(v2) 6v ` such that k1 = k2 v ` and δ1 = δ2: By definition of σ↑`, σ1↑`(x) =
?(k1,δ1) and σ2↑`(x) = ?(k2,δ2). Hence, σ1↑`(x) = σ2↑`(x)

• Γ(v1) 6v ` and Γ(v2) 6v ` such that k1 6v ` and k2 6v `: By definition of σ↑`, σ1↑`(x) = ?(>,{})

and σ2↑`(x) = ?(>,{}). Hence, σ1↑`(x) = σ2↑`(x)

Lemma 24. If ι1 ∼` ι2 then ι1↑` = ι2↑`

Proof. From Definition 20, ι1 ∼` ι2 =⇒ ∀x.B(x) v ` =⇒ ι1(x) = ι2(x). By definition of
ι↑`, if (B(x) 6v ` then ι1↑`(x) = 0 else ι1↑`(x) = ι1(x)) and if (B(x) 6v `) then ι2↑`(x) = 0 else
ι2↑`(x) = ι2(x)). Thus, if B(x) v `, then ι1↑`(x) = ι2↑`(x) else ι1↑`(x) = ι2↑`(x) = 0. Thus,
ι1↑` = ι2↑`.

120

Lemma 25. If σ1 '` σ′ and σ2 '` σ′, then σ1 ∼` σ2

Proof. From Definition 25, σ1 '` σ′ =⇒ ∀x.σ1(x) '` σ′(x) and σ2 '` σ′ =⇒ ∀x.σ2(x) '` σ′(x).
Assume σ1(x) = n(k1,δ1)

1 , σ2(x) = n(k2,δ2)
2 and σ′(x) = v(l′,δ′).

T.S.: ∀x.σ1(x) ∼` σ2(x) From Definition 24 for σ1(x) '` σ′(x), either:

• v = ns and n1 = ns and (k1 = l′) v ` and δ1 = δ′: As σ2(x) '` σ′(x), by Definition 24.1 n2 = ns
and (k1, δ1) = (l′, δ′). Thus, σ1(x) = σ2(x).

• Γ(σ1(x)) 6v `, v = ? and either:

1. k1 6v ` ∧ l′ = >: Either k2 6v ` or k2 v ` ∧ ∃y ∈ δ.(B(y) 6v `: From Definition 18.

2. k1 v ` ∧ ∃y ∈ δ.(B(y) 6v `) ∧ l′ = >: Similar to above case

3. (k1 = l′) v ` ∧ δ1 = δ′: As l′ v `, k2 v ` ∧ δ2 = δ′. From Definition 18.(2).

Lemma 26. If 〈σ1, ι1, c〉 ⇓
pc
〈σ′1, ι′1, τ1〉, 〈σ2, ι2, c〉 ⇓

pc
〈σ′2, ι′2, τ2〉, σ1 ∼` σ2, ι1 ∼` ι2, and τ1 ∼` τ2, then

σ′1 ∼` σ′2.

Proof. From Theorem 8, if 〈σ1, ι1, c〉 ⇓
pc
〈σ′1, ι′1, τ1〉,

then 〈σ1↑`, ι1↑`, c, τ1↑`〉 ↓
pc
〈σ′′1 , ι′′1 , τ ′′1 〉 such that σ′1 '` σ′′1 , ι′1↑` = ι′′1 and τ ′′1 = ε and

if 〈σ2, ι2, c〉 ⇓
pc
〈σ′2, ι′2, τ2〉, then

〈σ2↑`, ι2↑`, c, τ2↑`〉 ↓
pc
〈σ′′2 , ι′′2 , τ ′′2 〉 such that σ′2 '` σ′′2 , ι′2↑` = ι′′2 and τ ′′2 = ε.

σ1 ∼` σ2 =⇒ σ1↑` = σ2↑`. ι1 ∼` ι2 =⇒ ι1↑` = ι2↑`.
As τ1 ∼` τ2, from Definition 21 τ1↑` = τ2↑`.
Thus, σ′′1 = σ′′2 , ι′′1 = ι′′2 and τ ′′1 = τ ′′2 .
σ′1 '` σ′′1 , and σ′2 '` σ′′2 , i.e., σ′2 '` σ′′1 . From Lemma 25.

Corollary 6 (Non-interference). If 〈σ1, ι1, c〉 ⇓
pc
〈σ′1, ι′1, τ1〉, 〈σ2, ι2, c〉 ⇓

pc
〈σ′2, ι′2, τ2〉, σ1 ∼` σ2, and ι1↑` =

ι2↑` = 0, then σ′1 ∼` σ′2.

Proof. From Theorem 7 and Lemma 26

List of Figures

3.1 Syntax of the Language . 16

3.2 Semantics . 16

3.3 Assignment rule for NSU . 17

3.4 Syntax of labels including the partially-leaked label P 19

4.1 Labels and label operations . 24

4.2 Caption . 25

4.3 Lattice explaining rule assn-s . 26

4.4 A powerset/product lattice . 29

5.1 Language Syntax . 37

5.2 Semantics . 38

6.1 Syntax of the language . 48

6.2 LIR - Semantics of expressions . 55

6.3 LIR - Semantics of commands . 56

6.4 Decoding semantics of expressions . 60

6.5 Decoding semantics of commands . 61

7.1 Work-flow of the WebPol policy model . 68

8.1 Overheads of LIR on SunSpider Benchmark Tests . 79

List of Tables

4.1 Execution steps in two runs of the program from Listing 4.1, with two variants of the
rule assn-s . 27

8.1 Performance of examples from Section 7.3. All time in ms. The numbers in parenthe-
sis are additional overheads relative to Base. 77

8.2 Performance on two real-world websites. All time in ms. The numbers in parenthesis
are additional overheads relative to Base. 79

A.1 Examples for all possible transitions of low-equivalent to low-equivalent values . . . 96

Bibliography

[1] Google Caja - A source-to-source translator for securing JavaScript-basedweb content. https:

//developers.google.com/caja/. [Online; accessed 25-Apr-2017].

[2] Cross-Origin Resource Sharing. http://www.w3.org/TR/cors/. [Online; accessed 25-Apr-
2017].

[3] Content Security Policy Level 3. https://www.w3.org/TR/CSP3/. [Online; accessed 25-Apr-
2017].

[4] Facebook. FBJS. https://developers.facebook.com/docs/javascript. [Online; accessed
25-Apr-2017].

[5] World’s Biggest Data Breaches. http://www.informationisbeautiful.net/

visualizations/worlds-biggest-data-breaches-hacks/, 2017. [Online; accessed 25-
Apr-2017].

[6] P. Agten, S. Van Acker, Y. Brondsema, P. H. Phung, L. Desmet, and F. Piessens. JSand: Com-
plete client-side sandboxing of third-party JavaScript without browser modifications. In Proc.
Annual Computer Security Applications Conference, pages 1–10, 2012.

[7] M. S. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith. Measuring information leak-
age using generalized gain functions. In Proc. 2012 IEEE 25th Computer Security Foundations
Symposium, CSF ’12, pages 265–279, 2012.

[8] A. Askarov and A. Sabelfeld. Gradual release: Unifying declassification, encryption and key
release policies. In Proc. 2007 IEEE Symposium on Security and Privacy (SP ’07), pages 207–221,
2007.

[9] A. Askarov and A. Sabelfeld. Localized delimited release: Combining the what and where di-
mensions of information release. InProc. 2007Workshop on Programming Languages andAnalysis
for Security, PLAS ’07, pages 53–60, 2007.

[10] A. Askarov and A. Sabelfeld. Tight enforcement of information-release policies for dynamic
languages. In Proc. IEEE Computer Security Foundations Symposium, pages 43–59, 2009.

https://developers.google.com/caja/
https://developers.google.com/caja/
http://www.w3.org/TR/cors/
https://www.w3.org/TR/CSP3/
https://developers.facebook.com/docs/javascript
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

126 Bibliography

[11] A. Askarov and A. Sabelfeld. Catch me if you can: permissive yet secure error handling. In
Proc. ACMSIGPLANFourthWorkshop on Programming Languages and Analysis for Security, pages
45–57, 2009.

[12] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive noninterference
leaks more than just a bit. In Proc. European Symposium on Research in Computer Security, pages
333–348, 2008.

[13] T. H. Austin and C. Flanagan. Efficient purely-dynamic information flow analysis. In Proc.
ACM SIGPLAN Workshop on Programming Languages and Analysis for Security, pages 113–124,
2009.

[14] T. H. Austin and C. Flanagan. Permissive dynamic information flow analysis. In Proc. ACM
SIGPLAN Workshop on Programming Languages and Analysis for Security, pages 1–12, 2010.

[15] T. H. Austin and C. Flanagan. Multiple facets for dynamic information flow. In Proc. ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 165–178, 2012.

[16] M. Backes, B. Kopf, and A. Rybalchenko. Automatic discovery and quantification of informa-
tion leaks. In Proc. 2009 30th IEEE Symposium on Security and Privacy, pages 141–153, 2009.

[17] A. Banerjee, D. A. Naumann, and S. Rosenberg. Expressive declassification policies and mod-
ular static enforcement. In Proc. 2008 IEEE Symposium on Security and Privacy, SP ’08, pages
339–353, 2008.

[18] T. Bao, Y. Zheng, Z. Lin, X. Zhang, and D. Xu. Strict control dependence and its effect on
dynamic information flow analyses. In Proc. 19th International Symposium on Software Testing
and Analysis, ISSTA ’10, pages 13–24, 2010.

[19] A. Barth. Theweb origin concept. http://tools.ietf.org/html/rfc6454. [Online; accessed
25-Apr-2017].

[20] F. Besson, N. Bielova, andT. Jensen. Hybrid information flowmonitoring againstweb tracking.
In Proc. IEEE 26th Computer Security Foundations Symposium (CSF ’13), pages 240–254, 2013.

[21] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Generalizing permissive-upgrade in dy-
namic information flow analysis. In Proc. 9th ACM SIGPLAN Workshop on Programming Lan-
guages and Analysis for Security, pages 15:15–15:24, 2014.

[22] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Information flow control in WebKit’s
JavaScript bytecode. In Proc. Principles of Security and Trust, pages 159–178. Springer Berlin
Heidelberg, 2014.

[23] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer. Information Flow Control in WebKit’s
JavaScript Bytecode. CoRR, abs/1401.4339, 2014. URL http://arxiv.org/abs/1401.4339.

[24] A. Bichhawat, V. Rajani, J. Jain, D. Garg, and C. Hammer. WebPol: Fine-grained Information
Flow Policies for Web Browsers. In Proc. 22nd European Symposium on Research in Computer
Security (ESORICS ’17), 2017.

http://tools.ietf.org/html/rfc6454
http://arxiv.org/abs/1401.4339

Bibliography 127

[25] N. Bielova. Dynamic leakage - a need for a new quantitative information flow measure. In
Proc. 11th ACM SIGPLAN Workshop on Programming Languages and Analysis for Security, 2016.

[26] N. Bielova, D. Devriese, F. Massacci, and F. Piessens. Reactive non-interference for a browser
model. In Proc. International Conference on Network and System Security, pages 97–104, 2011.

[27] A. Birgisson, D. Hedin, and A. Sabelfeld. Boosting the permissiveness of dynamic
information-flow tracking by testing. In Proc. European Symposium on Research in Computer
Security (ESORICS), pages 55–72, 2012.

[28] P. Buiras, D. Stefan, and A. Russo. On dynamic flow-sensitive floating-label systems. In Proc.
2014 IEEE 27th Computer Security Foundations Symposium, CSF ’14, pages 65–79. IEEEComputer
Society, 2014.

[29] S. Chong. Required information release. In Proc. 2010 23rd IEEE Computer Security Foundations
Symposium, pages 215–227, July 2010.

[30] S. Chong and A. C. Myers. Security policies for downgrading. In Proc. 11th ACM Conference
on Computer and Communications Security, CCS ’04, pages 198–209, 2004.

[31] A. Chudnov and D. A. Naumann. Inlined information flowmonitoring for javascript. In Proc.
22nd ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, pages 629–
643, 2015.

[32] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged information flow for JavaScript. In Proc.
ACM SIGPLAN Conference on Programming Language Design and Implementation, pages 50–62,
2009.

[33] D. Clark, S. Hunt, and P. Malacaria. A static analysis for quantifying information flow in a
simple imperative language. J. Comput. Secur., 15(3):321–371, 2007.

[34] M. R. Clarkson, A. C. Myers, and F. B. Schneider. Quantifying information flow with beliefs.
J. Comput. Secur., 17(5):655–701, Oct. 2009.

[35] E. Cohen. Information transmission in computational systems. In Proc. Sixth ACM Symposium
on Operating Systems Principles, SOSP ’77, pages 133–139, 1977.

[36] E. Cohen. Information Transmission in Sequential Programs. Foundations of Secure Computation.
Academic Press, 1978.

[37] T. M. Cover and J. A. Thomas. Elements of Information Theory (Wiley Series in Telecommunications
and Signal Processing). Wiley-Interscience, 2006.

[38] D. Crockford. ADsafe. http://adsafe.org/. [Online; accessed 25-Apr-2017].

[39] W.DeGroef, D.Devriese, N.Nikiforakis, and F. Piessens. Flowfox: aweb browserwith flexible
and precise information flow control. In Proc. ACMConference on Computer and Communications
Security, pages 748–759, 2012.

[40] D. E. Denning. A lattice model of secure information flow. Commun. ACM, 19(5):236–243, May
1976.

http://adsafe.org/

128 Bibliography

[41] D. E. Denning and P. J. Denning. Certification of programs for secure information flow. Com-
munications of the ACM, 20(7):504–513, July 1977.

[42] D. E. R. Denning. Cryptography and Data Security. Addison-Wesley Longman Publishing Co.,
Inc., 1982.

[43] D. Devriese and F. Piessens. Noninterference through secure multi-execution. In Proc. IEEE
Symposium on Security and Privacy, pages 109–124, 2010.

[44] M. Dhawan and V. Ganapathy. Analyzing information flow in JavaScript-based browser ex-
tensions. In Proc. Annual Computer Security Applications Conference, pages 382–391, 2009.

[45] X. Dong, Z. Chen, H. Siadati, S. Tople, P. Saxena, and Z. Liang. Protecting sensitive web
content from client-side vulnerabilities with cryptons. In Proc. 2013 ACM SIGSAC Conference
on Computer and Communications Security, pages 1311–1324, 2013.

[46] J. S. Fenton. Memoryless subsystems. The Computer Journal, 17(2):143, 1974.

[47] O. Foundation. Information leakage. https://www.owasp.org/index.php/Information_

Leakage, June 2013.

[48] R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-interference
by abstract interpretation. In Proc. 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’04, pages 186–197, 2004.

[49] J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE Symposium
on Security and Privacy, pages 11–20, 1982.

[50] S. Guarnieri, M. Pistoia, O. Tripp, J. Dolby, S. Teilhet, and R. Berg. Saving the world wide
web from vulnerable javascript. In Proc. 2011 International Symposium on Software Testing and
Analysis, pages 177–187, 2011.

[51] G. L. Guernic. Automaton-based confidentiality monitoring of concurrent programs. In Proc.
IEEE Computer Security Foundations Symposium, pages 218–232, 2007.

[52] G. L. Guernic, A. Banerjee, T. Jensen, and D. A. Schmidt. Automata-based confidentiality
monitoring. In Proc. Asian Computing Science Conference on Secure Software, pages 75–89, 2006.

[53] C. Hammer and G. Snelting. Flow-sensitive, context-sensitive, and object-sensitive informa-
tion flow control based on program dependence graphs. International Journal of Information
Security, 8(6):399–422, Dec. 2009.

[54] D. Hedin and A. Sabelfeld. Information-flow security for a core of JavaScript. In Proc. IEEE
Computer Security Foundations Symposium, pages 3–18, 2012.

[55] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking information flow in
JavaScript and its APIs. In Proc. ACM Symposium on Applied Computing, pages 1663–1671, 2014.

[56] D. Hedin, L. Bello, and A. Sabelfeld. Value-sensitive hybrid information flow control for a
javascript-like language. In Proc. 2015 IEEE 28th Computer Security Foundations Symposium,
CSF ’15, pages 351–365, 2015.

https://www.owasp.org/index.php/Information_Leakage
https://www.owasp.org/index.php/Information_Leakage

Bibliography 129

[57] C. Hritcu, M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett. All your IFCException are
belong to us. In Proc. IEEE Symposium on Security and Privacy (Oakland), pages 3–17, 2013.

[58] S. Hunt and D. Sands. On flow-sensitive security types. In Proc. ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 79–90, 2006.

[59] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An empirical study of privacy-violating infor-
mation flows in JavaScript web applications. In Proc. ACM Conference on Computer and Com-
munications Security, pages 270–283, 2010.

[60] S. Just, A. Cleary, B. Shirley, and C. Hammer. Information flow analysis for JavaScript. In
Proc. ACM SIGPLAN International Workshop on Programming Language and Systems Technologies
for Internet Clients, pages 9–18, 2011.

[61] M. G. Kang, S. McCamant, P. Poosankam, , and D. Song. Dta++: Dynamic taint analysis
with targeted control-flow propagation. In Proc. 18th Network and Distributed System Security
Symposium (NDSS ’11), 2011.

[62] C. Kerschbaumer, E. Hennigan, P. Larsen, S. Brunthaler, and M. Franz. Towards precise and
efficient information flow control in web browsers. In Proc. Trust and Trustworthy Computing,
pages 187–195. 2013.

[63] D. King, B.Hicks,M.Hicks, and T. Jaeger. Implicit flows: Can’t livewith ’em, can’t livewithout
’em. In R. Sekar and A. K. Pujari, editors, Proc. International Conference on Information Systems
Security (ICISS), volume 5352 of Lecture Notes in Computer Science, pages 56–70. Springer, Dec.
2008.

[64] B. Kopf andA. Rybalchenko. Approximation and randomization for quantitative information-
flow analysis. In Computer Security Foundations Symposium (CSF), 2010 23rd IEEE, pages 3–14,
July 2010.

[65] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flowgraph. ACM
Trans. Program. Lang. Syst., 1(1):121–141, Jan. 1979.

[66] P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In Proc. 32Nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’05, pages
158–170, 2005.

[67] Z. Li, K. Zhang, and X. Wang. Mash-if: Practical information-flow control within client-
side mashups. In Proc. 2010 IEEE/IFIP International Conference on Dependable Systems Networks
(DSN), pages 251–260, June 2010.

[68] M. T. Louw, K. T. Ganesh, and V. N. Venkatakrishnan. Adjail: Practical enforcement of confi-
dentiality and integrity policies on web advertisements. In Proc. 19th USENIX Conference on
Security, pages 24–24, 2010.

[69] A. Lux and H. Mantel. Declassification with explicit reference points. In Proc. 14th European
Conference on Research in Computer Security, ESORICS’09, pages 69–85, 2009.

130 Bibliography

[70] W. Masri and A. Podgurski. Algorithms and tool support for dynamic information flow anal-
ysis. Information & Software Technology, 51(2):385–404, 2009.

[71] J. L.Massey. Guessing and entropy. In In Proc. 1994 IEEE International Symposium on Information
Theory, page 204, 1994.

[72] S. McCamant and M. D. Ernst. A simulation-based proof technique for dynamic information
flow. In ACM SIGPLAN Workshop on Programming Languages and Analysis for Security, PLAS
’07, pages 41–46, June 2007.

[73] S. McCamant and M. D. Ernst. Quantitative information flow as network flow capacity. In
Proc. 29th ACMSIGPLANConference on Programming Language Design and Implementation, PLDI
’08, pages 193–205, 2008.

[74] L. A. Meyerovich and B. Livshits. Conscript: Specifying and enforcing fine-grained security
policies for javascript in the browser. In Proc. 2010 IEEE Symposium on Security and Privacy,
pages 481–496, 2010.

[75] M. Miller. Robust composition: Towards a unified approach to access control and concurrency control.
PhD thesis, Johns Hopkins University, 2006.

[76] A. C. Myers. JFlow: practical mostly-static information flow control. In Proc. 26th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’99, pages 228–241,
1999.

[77] F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. Cross-site scripting prevention
with dynamic data tainting and static analysis. In Proc. Network and Distributed System Security
Symposium, 2007.

[78] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen, C. Kruegel, F. Piessens,
and G. Vigna. You are what you include: Large-scale evaluation of remote javascript inclu-
sions. In Proc. 2012 ACM Conference on Computer and Communications Security, CCS ’12, pages
736–747, 2012.

[79] F. Pottier and V. Simonet. Information flow inference for ml. ACM Trans. Program. Lang. Syst.,
25(1):117–158, Jan. 2003.

[80] W. Rafnsson and A. Sabelfeld. Secure multi-execution: Fine-grained, declassification-aware,
and transparent. In Proc. 2013 IEEE 26th Computer Security Foundations Symposium, pages 33–
48, 2013.

[81] V. Rajani, A. Bichhawat, D. Garg, and C.Hammer. Information flow control for event handling
and the DOM in web browsers. In Proc. IEEE 28th Computer Security Foundations Symposium
(CSF ’15), pages 366–379, 2015.

[82] G. Richards, C. Hammer, B. Burg, and J. Vitek. The eval that men do – a large-scale study
of the use of eval in JavaScript applications. In Proc. European Conference on Object-Oriented
Programming, pages 52–78, 2011.

Bibliography 131

[83] G. Richards, C. Hammer, F. Zappa Nardelli, S. Jagannathan, and J. Vitek. Flexible access
control for javascript. In Proc. 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA ’13, pages 305–322, 2013.

[84] B. P. S. Rocha, S. Bandhakavi, J. d. Hartog, W. H. Winsborough, and S. Etalle. Towards static
flow-based declassification for legacy and untrusted programs. In Proc. 2010 IEEE Symposium
on Security and Privacy, SP ’10, pages 93–108, 2010.

[85] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security analysis. In Proc. 2010
IEEE 23rd Computer Security Foundations Symposium, pages 186–199, 2010.

[86] A. Russo, A. Sabelfeld, and K. Li. Implicit flows in malicious and nonmalicious code. In Proc.
2009 Marktoberdorf Summer School, 2009.

[87] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Journal on
Selected Areas in Communications, 21(1), Jan 2003.

[88] A. Sabelfeld and A. C. Myers. A model for delimited information release. In K. Futatsugi,
F. Mizoguchi, and N. Yonezaki, editors, Software Security - Theories and Systems, volume 3233
of LNCS, pages 174–191. Springer Berlin Heidelberg, 2004.

[89] A. Sabelfeld and A. Russo. From dynamic to static and back: Riding the roller coaster of
information-flow control research. In Proc. Perspectives of Systems Informatics, pages 352–365,
2010.

[90] A. Sabelfeld and D. Sands. A per model of secure information flow in sequential programs.
Higher-Order and Symbolic Computation, 14(1):59–91, 2001.

[91] A. Sabelfeld and D. Sands. Declassification: Dimensions and principles. J. Comput. Secur., 17
(5):517–548, Oct. 2009.

[92] C. E. Shannon. Amathematical theory of communication. SIGMOBILEMob. Comput. Commun.
Rev., 5(1):3–55, Jan. 2001.

[93] G. Smith. Foundations of Software Science and Computational Structures: 12th International Con-
ference, FOSSACS 2009, chapter On the Foundations of Quantitative Information Flow, pages
288–302. Springer, 2009.

[94] D. Stefan, E. Z. Yang, P.Marchenko, A. Russo, D.Herman, B. Karp, andD.Mazières. Protecting
users by confining JavaScript with COWL. In Proc. USENIX Symposium on Operating Systems
Design and Implementation, pages 131–146, 2014.

[95] S. Van Acker, P. De Ryck, L. Desmet, F. Piessens, and W. Joosen. Webjail: Least-privilege
integration of third-party components in webmashups. In Proc. 27th Annual Computer Security
Applications Conference, pages 307–316, 2011.

[96] T. Van Goethem,W. Joosen, and N. Nikiforakis. The clock is still ticking: Timing attacks in the
modern web. In Proc. 22nd ACM SIGSAC Conference on Computer and Communications Security,
CCS ’15, pages 1382–1393, 2015.

132 Bibliography

[97] M. Vanhoef, W. De Groef, D. Devriese, F. Piessens, and T. Rezk. Stateful declassification poli-
cies for event-driven programs. In Proc. 2014 IEEE 27th Computer Security Foundations Sympo-
sium, pages 293–307, 2014.

[98] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Krügel, and G. Vigna. Cross site scripting
prevention with dynamic data tainting and static analysis. In Proc. Network and Distributed
System Security Symposium, 2007.

[99] D. Volpano and G. Smith. Verifying secrets and relative secrecy. In Proc. 27th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’00, pages 268–276, 2000.

[100] D. Volpano, C. Irvine, and G. Smith. A sound type system for secure flow analysis. Journal of
Computer Security, 4(2-3):167–187, Jan 1996.

[101] B. Xin and X. Zhang. Efficient online detection of dynamic control dependence. In Proc. 2007
International Symposium on Software Testing and Analysis, pages 185–195, 2007.

[102] J. Yang, K. Yessenov, and A. Solar-Lezama. A language for automatically enforcing privacy
policies. In Proc. 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’12, pages 85–96, 2012.

[103] S. Zdancewic andA.C.Myers. Robust declassification. InProc. 14th IEEEWorkshop onComputer
Security Foundations, CSFW ’01, pages 15–23, 2001.

[104] S. A. Zdancewic. Programming Languages for Information Security. PhD thesis, Cornell Univer-
sity, August 2002.

[105] Y. Zhou and D. Evans. Protecting private web content from embedded scripts. In Proc. 16th
European Conference on Research in Computer Security, pages 60–79, 2011.

	I Introduction and Background
	Introduction
	Contributions of the Thesis

	Background and Overview
	Information Flow Control
	Information Release
	Dynamic Information Flow Control

	II Generalized Permissive-Upgrade Strategy
	Improved Permissive-Upgrade
	Overview
	Austin and Flanagan's Permissive-Upgrade Strategy
	Improved Permissive-Upgrade Strategy

	Generalized Permissive-Upgrade
	Generalization of the Improved Permissive-Upgrade Strategy
	Generalized Permissive-Upgrade on Arbitrary Lattices
	Comparison of the Generalization of Section 4.2 with the Generalization of Section 4.1

	III Precise Control Scope Analysis
	Dynamic IFC with Unstructured Control Flow and Exceptions
	Control Flow Graphs and Post-dominator Analysis
	Exceptions and Synthetic Exit Nodes
	Formal Model

	IV Budget-based Limited Information Release
	Bounding Information Leaks Dynamically
	Quantifying Information Leaks
	Limited Information Release
	LIR Enforcement
	Formalization of LIR
	Soundness and Decoding Semantics

	V Application to an IFC-enabled Web Browser
	Information Flow Policies for Web Browsers
	Policy Component for Web Browsers
	WebPol policy model
	Expressiveness of WebPol

	Policy Implementation and Evaluation in an IFC-enabled Browser
	Implementation and Evaluation of WebPol
	Implementation and Evaluation of LIR

	Related Work

	VI Conclusion and Outlook
	Conclusion
	Future Directions
	Evaluating Information Flow Policies on Real-World Websites
	Exploring Alternative Granularities for Enforcing Information Flow Control
	Handling Timing Leaks on the Web

	Appendix
	Proofs for Improved and Generalized Permissive Upgrade
	Proofs of Precision for Dynamic IFC with Unstructured Control Flow and Exceptions
	Proofs for IFC with Unstructured Control Flow and Exceptions
	Proofs for Limited Information Release

	List of Figures
	List of Tables
	Bibliography

