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Introduction

Over the last decade, text-to-speech (TTS) technology has advanced by
leaps and bounds. This is especially true for statistical parametric speech
synthesis (SPSS), one the most widely used TTS paradigms. The main rea-
son for its popularity is its extreme flexibility, which makes it particularly
attractive for research.

Although SPSS has reached high levels of intelligibility, one thorny
and long-standing issue is the modeling of prosody. Prosody is a com-
plex speech phenomenon that pertains to the suprasegmental properties
of speech, i.e., properties beyond single sounds. Even though there is no
agreed-upon set of prosodic variables, the classical acoustic parameters
describing prosody are: F0 (responsible for intonation), duration (respon-
sible for absolute and relative duration of units), intensity (responsible for
energy-related features such as stress) and spectral characteristics (respon-
sible for voice quality).

As systems are getting better at modeling segmental features, their in-
adequacies in modeling suprasegmental features are becoming increasingly
apparent. This is especially true with regard to intonation. Even though
current approaches can produce fairly natural and intelligible speech, their
intonation tends to be rather bland and monotonous, which is unsuitable
for many TTS applications.

Despite the crucial role that intonation plays in making synthetic speech
sound more natural and human-like, for the longest time the modeling of
intonation has largely been subordinated to that of segmental features.
This is perhaps due, on the one hand, to the higher salience of segmental
features and, on the other, to the more elusive and generally intractable
nature of intonation.

The reason why modeling intonation is such a hard task is due to the
fact that it carries out a very large number of complex and highly-entangled
linguistic, para-linguistic and extra-linguistic functions, whose relationship
to the the source text is anything but trivial.

Nevertheless, intonation remains a rather pressing research topic, that
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is bound to become more critical in the coming years, especially as the
demand for TTS applications such as dialog systems, virtual agents, and
personal assistants increases. For these applications, it is desirable to gen-
erate speech that is not just intelligible, but also affective and natural
enough that users forget they are interacting with a computer. In these
domains, intonation is still very much considered an open question.

For these reasons, in my thesis I will be focusing on the modeling
of intonation. Within the scope of this proposal, intonation modeling is
used to refer to the problem of generating a sequence of F0 values given
a text sequence. Here, other important prosodic phenomena that accom-
pany intonation such as duration, loudness, timbre, etc., will be ignored
or assumed to be known.

This proposal is structured as follows. In Chapter 1, I will offer a brief
overview of TTS technology and intonation models. In Chapter 2, Chap-
ter 3 and Chapter 4, I will propose, motivate, and justify a deep learning
methodology for the modeling of intonation in the context of SPSS. In
Chapter 2, I will discuss how feature extraction is carried out in the pro-
posed methodology. In Chapter 3, I will present a dedicated deep neural
network (DNN) model for the modeling of intonation. In Chapter 4, I
will present a DNN model for the synthesis of segmental features from
a linguistic specification and an F0 contour. In Chapter 5, the proposed
methodology is evaluated and compared to a state-of-the-art parametric
TTS system. Finally, in the last chapter I will offer my own conclusions
and perspectives for future research.



Chapter 1

Scope

This chapter is devoted to a brief overview of the state-of-the-art in TTS
technology and it will serve as a way of contextualizing the scope of my
work within the field.

In the first section of the chapter, I will centre the discussion around
the dominant TTS paradigms and the role that F0 modeling plays within
them. This serves as justification for the TTS paradigm that was selected
for the implementation of the proposed methodology.

The second section will be devoted to the discussion of models of into-
nation. In this section, I will offer a brief review of some of the historically
most influential models of intonation.

In the third section, I will outline a deep learning methodology for the
modeling of intonation. The methodology is contextualized and compared
with previous research.

1.1 TTS Paradigms

TTS technology can be divided into two main branches. On the one hand,
we have rule-based synthesis and on the other we have corpus-based syn-
thesis.

In rule-based synthesis, which is historically highly related to formant-
synthesis, expert knowledge is required to come up with rules that ade-
quately account for speech phenomena. This knowledge is expensive to
acquire, it does not apply cross-linguistically, and it does not produce very
natural sounding speech, as it is almost impossible for experts to describe
any meaningful size of the combinatory space by means of rules.

Most rule-based intonation systems are inspired by the Pierrehumbert
model and make use of some variation of the tones and break indices (ToBI)
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transcription system (Silverman et al., 1992).

The main advantage of rule-based approaches is that it can be very
flexible and it can have a very small footprint. Even though this technology
has largely been surpassed by corpus-based synthesis, rule-based synthesis
is still been used for some limited applications, where footprint might be
a concern or when no speech data is available.

The second major approach to TTS is corpus-based synthesis. Within
this approach, we do not try to come up with linguistic rules that describe
speech phenomena, but rather we try to build models or databases from
speech corpora.

As this approach is currently regarded as the state-of-the-art, the fol-
lowing sections will be devoted to two main paradigms of corpus-based
synthesis: unit selection synthesis (USS) and SPSS.

1.1.1 Unit Selection Synthesis

USS is based on the use of original speech signals found in speech corpora,
where units of speech are dynamically selected from the corpus at run-
time. The selection process, in this case, is guided by the concerted effort
of minimizing target costs (i.e., how close the candidate is to our target
specification) and concatenative costs (i.e., how well the candidate fits with
adjacent units).

Many of the foundational ideas behind this approach were first laid out
in Hunt and Black (1996) and Campbell and Black (1997), which quickly
lead to the development of systems based on this new approach. The
success of this approach is due to the fact that, despite its simplicity, it
can produce highly intelligible and highly natural synthetic speech.

However, USS is not very flexible with regard to intonation modeling.
This is because most USS systems adopt a so-called “as-is” approach,
whereby the problem of prosody is tackled only indirectly by including
prosodic information in the target and concatenative cost functions. This
is under the assumption and the hope that the system will happen to find
appropriate segments that also fit together.

However, because of the extremely high levels of sparsity that charac-
terize most language and speech phenomena (van Santen, 1997; Möbius,
2003), USS approaches will often lead to noticeable prosodic discontinu-
ities when no appropriate units can be found. This problem is alleviated in
most USS systems by designing the corpus to include fairly neutral news-
style speech, which can be problematic if one wishes to generate expressive
and affective speech.
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These issues relating to F0 modeling constraints can be better illus-
trated by the example in Table 1.1, where we can imagine how a unit
selection system would operate in order to predict the F0 contour of the
target sentence, provided that sentences 1, 2, 3, and 4 are our entire corpus.

The system would completely ignore sentence 1 and splice together the
boldface segments from sentence 2, 3, and 4. This is due to the fact that
the target sentence and sentence 1 have very little in common as far as
phone sequence is concerned.

Target Earlier, I drank a small glass of fizzy coke.
(1) Clearly, she has a real knack for funny jokes.

Corpus (2) I met your husband earlier.
(3) Did you say she drank a small glass of water?

(4) A nice bottle of fizzy coke is what is needed
on a hot summer day!

Table 1.1: Example of a speech corpus, where the second row contains the
speech corpus used by a system for the synthesis of the target utterance
contained in the first row.

As we can see, intonation of the boldface segments would not match
what is required for the target sentence.

For instance, “earlier” in sentence 2 would have a far flatter and de-
scending F0 compared to the target, because that is what we expect at the
end of a declarative sentence. The segment “drank a small glass” comes
from a question and the F0 will be rising too much for our needs. Fi-
nally, “of fizzy coke” is probably going to have a really upbeat and lively
intonation because it’s contained in an exclamatory utterance.

However, we can easily make an argument that the intonation from
sentence 1 would be a far more suitable candidate that the intonation
generated from the combination of the boldface segments. Unfortunately,
USS systems are unable to make use of prosodically more appropriate
segments as these will rarely satisfy the phone-driven target specification.
This entails that even though the corpus might be rich in useful prosodic
information, it will remain largely unused.

1.1.2 Statistical Parametric Speech Synthesis

After almost over a decade dominated by USS, where the task of speech
synthesis was essentially reduced to a highly sophisticated talking clock,
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we have recently been witnessing to a resurgence of older approaches, but
revisited in the light of new ideas and technology. One such example is
SPSS.

In SPSS, we do not concatenate or manipulate the original pre-recorded
waveforms, but rather, signals are synthesized from scratch, similarly to
what used to be done in formant synthesis.

The main innovation of SPSS lies in reframing the problem as a ma-
chine learning (ML) task. Unlike formant synthesis, we no longer try to
come up with expert-knowledge rules, but we use ML algorithms to auto-
matically infer statistical models that describe mappings between sets of
input features and output features.

The main difference with USS is that, in SPSS, we do not use data
directly in the output, as we only use the corpus to extract linguistic
and acoustic features that can later be used to train models. In USS,
we can never do away with the original data, whereas in SPSS, once we
train a model, we no longer need the original waveforms to synthesize new
utterances. In USS, we do not have a model proper, but something more
akin to a database, as none of the original data has been parametrized.

The reason why research on alternatives to USS such as SPSS and
articulatory synthesis is so active is because of the flexibility these alterna-
tive approaches can offer. Unlike USS, where our control is limited to how
snippets of the pre-recorded waveform can be arranged, in parametric ap-
proaches, we theoretically have absolute control over every aspect of speech
production, including duration, pitch, spectral features, etc. This freedom
comes from the fact that we are no longer dealing with cumbersome data
that we cannot easily manipulate without significant signal degradation.
As signals are synthesized from scratch, we can define and set the param-
eters that are necessary to generate the speech phenomena that we want
to capture.

This is especially important with regard to the F0, an aspect that has
been particularly hard to control under the unit selection paradigm, with
the consequence that intonation modeling for a long time was mostly sub-
ordinated to the modeling of segmental features. In SPSS, it is possible to
build models of intonation independently of other aspects of speech. This
means we have far more freedom to experiment with different approaches
without worrying too much about other aspects of speech production.

Although the classical way of describing TTS systems is in terms of
front-end and back-end, my overview will be structured in terms of an
online and offline stage. As the front-end is usually quite similar for most
TTS systems, it is more useful to structure the overview in terms of a more
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general ML approach, where we often distinguish between an offline stage
(i.e., training) and an online stage (i.e., inference). Figure 1.1 shows the
pipeline of a typical SPSS system.

Figure 1.1: Pipeline of a typical SPSS system. The blue box represents
the offline stage, whereas the green one the online one.
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The Offline Stage

In the offline stage (the blue box in Figure 1.1), we first compile a speech
corpus, i.e., a collection of audio material and its corresponding text, which
is going to function as the training data.

From the corpus, we extract speech and textual features. The input
and output features must be aligned along the time domain. This can be
achieved by means of manual corpus annotation, or by means of forced
alignment.

A text analysis component extracts labels that are used to construct a
linguistic specification. The linguistic specification usually contains infor-
mation about phone labels, stress, part-of-speech (POS) tags, etc.

A speech analysis components extracts output features in the form of
acoustic parameters that can be used by a wave synthesizer to generate a
waveform. The exact nature of the acoustic parameters will largely depend
on the selected wave synthesis mechanism.

The most common approach is to utilize a vocoder, which can decom-
pose waveforms into acoustic parameters. Many commonly used vocoders
are based on the source-filter theory of speech, which arose from the merg-
ing of various theories on speech and acoustics (Chiba and Kajiyama, 1941;
Fant, 1960). Two very commonly used vocoders are STRAIGHT (Kawa-
hara et al., 1999) and WORLD (Morise et al., 2016). These vocoders can
produce reasonably intelligible speech, but they are also infamously known
for the buzzing quality of the synthetic signal.

There exists a different class of vocoders, which completely ignore the
source-filter model of speech and instead are based on sinusoidal modeling
mechanisms (McAulay and Quatieri, 1986). An open-source example of
these vocoders proposed recently is the MagPhase vocoder (Espic et al.,
2017). These vocoders produce much better speech quality, but they are
harder to use in real-world speech applications.

The labels produced by the text analysis component and the acoustic
parameters extracted by the speech analysis component are then used to
train a model that learns mappings from input to output features. hidden
Markov models (HMMs) and DNNs are the two most common approaches
for the training of the model.

The first SPSS systems were based on HMM approaches. Even though
they are quite effective, they are also plagued by a number of limitations.
As pointed out in Zen et al. (2013), decision trees and Gaussian mixture
models (GMMs), which are a big part of HMM approaches, are not partic-
ularly suited for the modeling of complex long-term dependencies, causing
the speech to be less varied and fairly monotonous. Decision trees are also
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not particularly suited to approximating complex functions, at least not
without building prohibitively large models. Finally, decision trees tend
to partition the input space into smaller regions, which results in a very
fragmented representation of the input space. This is very inefficient, as it
requires the use of separate sets of parameters for each region. It has been
shown that this can lead decision trees to completely ignore weak or rare
input signals, such as word-emphasis (Yu et al., 2010).

All of these issues, coupled with the recent emergence of deep-learning
technology, have propelled the almost exclusive adoption of neural net-
works in almost every domain of speech technology. Most neural networks
used nowadays in deep learning are sets of algorithms based on mathe-
matical models loosely inspired by biological neurons. The power of neu-
ral networks rests on their ability to function as universal approximators,
which endows them with the capacity to recognize and model extremely
complex patterns.

DNNs solve many of the shortcomings affecting HMM-based systems.
DNNs can model very complicated functions, they can make use of weak
or rare input signals, they can deal with very high-dimensional and highly
correlated features and they produce very compact and distributed repre-
sentations, which means model parameters are used much more efficiently.
These properties are all highly desirable when solving very complicated
problems such as speech and language tasks, where it is not at all uncom-
mon to have to deal with very sparse and high-dimensional input spaces
and where features interact in a very subtle and hierarchically layered
fashion.

Over the last few years, a large body of research has emerged in which
researchers have attempted to make use of DNNs to model speech data.
First attempts at using DNNs in SPSS involved only replacing the GMM
components of a HMM system (Ling et al., 2013) with feed-forward neural
networks (FFNNs).

As time went on and as DNNs have consistently been shown to outper-
form HMM-based systems with similar numbers of parameters (Zen et al.,
2013), more and more components in SPSS systems have been replaced:
from the prediction of spectral features, to F0 modeling, to duration mod-
eling, etc.

At the same time, we also witnessed the introduction of increasingly
powerful and sophisticated neural network architectures such as recurrent
neural networks (RNNs). RNNs made it possible to overcome the limita-
tions imposed by FFNNs as far as the modeling of contextual information
is concerned. Although, theoretically FFNNs can be used in the context
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of time-series prediction, the contextual information is limited by the size
of the input layer. Recurrent structures solve this problem by introducing
recurrent layers that are reused at each time step of the graph. This allows
us to feed the network arbitrarily long inputs.

RNNs became especially popular once the infamous vanishing gradi-
ent (Bengio et al., 1994) problem had been solved by introducing new
flavors of RNNs such as long short-term memories (LSTMs) (Hochreiter
and Schmidhuber, 1997) and gated recurrent units (GRUs) (Chung et al.,
2014). These architectures made it possible to train RNNs on very long
sequences of data without vanishing gradients by introducing cells with in-
put, output, and forget gates that better regulate the flow of information
across various time steps.

The aforementioned trend whereby more and more components of the
SPSS pipeline are removed in favor of a more end-to-end approach has
been pushed to its limits in the last few years thanks to the introduction of
architectures such as Char2Wav (Sotelo et al., 2017), Deep Speech (Hannun
et al., 2014) and Tacotron (Wang et al., 2017b).

The Online Stage

Once a model has been trained and tuned, it can be brought online and
used to synthesize novel speech. This constitutes the online stage of the
SPSS pipeline shown as the green box in Figure 1.1.

At this stage, the end-user can provide some text to be converted into
speech. Similarly to what happens in the offline stage, the text undergoes
text analysis to extract textual labels to build a linguistic specification.
The linguistic specification is used to query the model to generate acoustic
parameters. Finally, a speech synthesis component converts the acoustic
parameters into a waveform.

1.2 Intonation Models

In this section, I will offer a brief overview of the historically most influen-
tial theories and models of speech intonation that have successfully been
implemented in the context of TTS. Special attention will be given to the
representational level of the F0, as well as the main underlying assumptions
posited by each model.

In keeping with what is done in many publications on intonation mod-
eling, neural network approaches are covered alongside the classical into-
nation models previously discussed, even though, in my estimation, HMMs



1.2. Intonation Models 11

and DNNs do not constitute models of intonation proper.

It is important to separate two fundamental levels involved in the mod-
eling of F0. On the one hand, we have a representational level of the F0.
This aspect is primarily concerned with the description and formulation of
F0 representations that are based on very clear and predefined theoretical
assumptions about the nature of intonation. Some of these assumptions
are rooted in the field of phonology (i.e., the Pierrehumbert model), pho-
netics (i.e., the Fujisaki model), or perception (i.e., the IPO model), etc.
In a ML perspective, this aspect can be viewed as a feature engineering
step, in which we inject some of our assumptions about the phenomenon
we want to model into the representation or encoding of the F0.

A second level that we need to distinguish from the first one is the
mapping between the input features to the F0 representation, which con-
stitutes its own separate model built on top of the intonation model. The
mapping could codified by finite state grammars (e.g., most implementa-
tions of the Pierrehumbert model) or by statistical models such as HMMs
or DNNs. Although the modeling of the mappings between inputs and
outputs depends greatly on the intonation model that was used to pro-
duce the F0 representations, the two should not be conflated (e.g., there
exist implementations of the Fujisaki model both with HMMs (Yoshizato
et al., 2012) or DNNs (Sakurai et al., 2000)).

1.2.1 Pierrehumberts Theory of Intonation

The Pierrehumbert model of intonation, first introduced by Pierrehumbert
(1980), can be regarded as one of the most influential exponents of the tone
sequence school. Largely based on autosegmental-metrical (AM) phonol-
ogy theory, the tone sequence school views contours as linear sequences of
independent tones (or pitch accents).

Crucially, the tones within the sequence do not interact with each other,
but rather they act as a sequence of units, where their contrastive features
give rise to distinct intonational meanings.

The Pierrehumbert model uses two fundamental tones as its main build-
ing blocks: a high (H) tone and low (L) tone. These tones are combined
to give rise to three larger tone units: pitch accents, phrase tones and
boundary tones.

Pitch accents, which describe prosody at the word level, are marked by
a “*” and they are made up of either a single tone (H*, L*) or two tones
(H*+L, H+L*, L*+H, L+H*), where the position of the “*” indicates the
position of the stressed syllable.
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Multiple pitch accents can be combined into larger prosodic phrases
that describe the prosody of intermediary phrases. The tones used in the
context of intermediary phrases are phrase tones, and they are marked by
a “–” (H–, L–).

Finally, intermediary phrases can be combined into intonation phrases,
the largest prosodic unit accounted for by the model. Intonation phrases
are marked by boundary tones placed at the edges of the intonation phrase.
Boundary tones are marked by a “%” (H%, L%, %H, %L), where the
position of the “%” depends on placement of the tone either at the onset
or at the end of the intonation phrase.

To make sure only well-formed sequences can be produced, the Pier-
rehumbert model also specifies all the possible combinations of tones by
means of a finite state grammar.

({
%H
%L

}(


H*
L*

H*+L
H+L*
L*+H
L+H*



+

{
H–
L–

})+{
H%
L%

})+

Figure 1.2: Finite state grammar of the Pierrehumbert model.

The Pierrehumbert model has led to the creation of the widely used
transcription system ToBI. Even though the ToBI system was originally
designed for American English, it has since been adapted to many lan-
guages and implemented as part of many TTS systems.

1.2.2 The Fujisaki Model

The Fujisaki model of intonation, first introduced by Fujisaki (1983), can
be regarded as one of the most influential exponents of the superimposi-
tion school. Unlike the Pierrehumbert model, the F0 is not viewed as a
sequence of tones, but rather as a complicated function generated by the
superimposition of smaller components.

The Fujisaki model posits the existence of two main components that
determine the shape of the F0 contour: the phrase command and the accent
command.

The phrase command is responsible for the modeling of the global into-
nation of the utterance, whereas the accent command controls local pitch
excursions (for example in stressed syllables or stressed words).
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Phrase commands are modeled by pulses, and accent commands, by
step functions. The outputs of these operations are then joined by means
of an additive approach.

Figure 1.3: The Fujisaki Model. Reprinted from Fujisaki (2002).

Phrase commands and accent commands are said to simulate the action
of laryngeal muscles that control the frequency of vibration of the vocal
cords. This endows the model with a strong physiological basis.

As the placement of phrase commands and accent commands often
corresponds to key phonological units such as accent groups and phrase
boundaries, the model is able to produce linguistically interpretable com-
mands.

1.2.3 The IPO Model

Initially introduced to model Dutch intonation, the IPO model of intona-
tion (Gussenhoven et al., 1992) is generally classified as a perception-based
model of intonation. This is because this approach relies on a number of
assumptions about how contours are perceived by humans.

In particular, the IPO model puts forward that F0 changes that cannot
be perceived by humans need not be modeled and that it is sufficient to
only model perceptually salient features of pitch. Additionally, the IPO
approach is based on the assumption that the human ear is more sensitive
to tone variations (i.e., rise versus fall), than tone intensities (i.e., high
versus low).

Because on these assumptions, the IPO approach does not model raw
F0 contours, but rather piece-wise linear approximations superimposed on
a general declination line that are perceptually indistinguishable from the
original, as shown in Figure 1.4.
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Figure 1.4: Example of a piece-wise linear approximation of a contour.
Reprinted from Gussenhoven et al. (1992, p. 49).

After these approximations are produced, contours can be broken down
into a fixed inventory of F0 movements that are capable of describing
the whole original speech corpus from which they were extracted. The
combinations of these F0 movements are described by a grammar.

1.2.4 The Tilt Model

The tilt intonation model was first introduced by Taylor (1994) and is based
on his rise/fall/connection model of intonation. As this model is based on
a shape-based description of prosodic events, it has been classified as an
acoustic stylization-based model.

The model is based on four building blocks: pitch accents (modeled
by combinations of quadratic functions), boundary tones (also modeled by
combinations of quadratic functions), connections (modeled by straight-
line interpolations) and silences.

These building blocks can be used to describe prosodic events. In the
model, each event is a associated with a set of parameters. Each set of
parameters includes the position of the intonational event within both the
time and frequency domains, the amplitude, the duration, as well as a
so-called tilt value.

A tilt value is a real-valued parameter that describes the shape of the
event and is calculated by dividing the difference of the rise and fall of the
amplitudes of the quadratic functions by their sum:
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tilt =
|Arise| − |Afall|
|Arise|+ |Afall|

(1.1)

where:

Arise = amplitude of the rise
Arise = amplitude of the fall

The tilt parameters can range between −1 and 1, where −1 represents
a pure fall, 0 a perfectly symmetrical peak, and 1 a pure rise.

1.2.5 HMM and DNN Approaches

Over the past couple of decades, there have been a number of attempts of
modeling the F0 by means of HMMs and DNNs. Multiple F0 prediction
models have been developed for the HMM paradigm (Latorre and Akamine,
2008; Yu et al., 2009; Yu and Young, 2011). However, as DNNs have been
shown to outperform HMMs, various flavors and combinations of neural
network architectures for the modeling of the F0 have been proposed, from
FFNNs (Vainio, 2001), to RNNs (Zen and Sak, 2015), to bidirectional
recurrent neural networks (BRNNs) (Fan et al., 2014), etc.

Aside from the type of architecture, neural network approaches can be
classified based on whether prosody is modeled by a dedicated model (e.g.,
Vainio, 2001; Traber, 1990) or jointly with other speech features (e.g., Zen
and Sak, 2015; Fan et al., 2014). The latter approach has become more
common in the last few years and is consistent with the more general trend
in TTS technology towards increasingly end-to-end systems. This is also
the approach found in the open-source Merlin toolkit for DNN synthesis
(Wu et al., 2016).

The main idea behind this trend is to minimize human effort and inter-
vention in the task of feature engineering as much as possible. In spite of its
convenience, this approach is also less modular and less flexible, especially
for the purpose of research.

DNNs are notoriously hard to examine, because they produce highly
distributed representations, where it is not easy to determine for which as-
pects each parameter is responsible. When DNN F0 modeling is performed
jointly with other speech features, the F0 contour is intrinsically tied to
the other features. This means that if we try to replace the F0 contour
with a different one, the other features will not change to suite the new
contour.

Another aspect by which neural network approaches may differ is how
much (or how little) the F0 contour is pre-processed. One extreme case is
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when F0 contours are only minimally processed by means of a simple log
transform. Aside from this extreme, there are a number of approaches with
various levels of pre-processing such as Fujisaki model inspired approaches
(Sakurai et al., 2000), F0 template approaches (Ronanki et al., 2016), quan-
tization approaches (Wang et al., 2017a), discrete cosine transform (DCT)
approaches (Yin et al., 2016), etc.

Among the previous work focusing on intonation modeling in SPSS,
where significant processing is carried out, the most recent studies concern
the use of wavelets (Suni et al., 2013; Vainio et al., 2013; Ribeiro and Clark,
2015; Ribeiro et al., 2016). In particular, the continuous wavelet transform
(CWT) has proven useful both for analysis (Vainio et al., 2013), as well
as modeling (Suni et al., 2013). Further, it has been shown that CWT
can be used to decompose the F0 contour into various components based
on different prosodic scales (phrase, word, syllable, etc.), where not all
components are equally relevant for the reconstructed signal (Ribeiro and
Clark, 2015). Low frequencies do not convey much prosodic information,
and high frequencies are mostly noise. Wavelet contours can be stylized
for each prosodic level by means of DCT. This approach was successfully
applied also in the context of DNN synthesis, and it was shown to produce
more natural sounding prosody (Ribeiro et al., 2016).

1.3 Proposed Methodology

In this section, I outline a deep learning methodology for the modeling
of intonation in the context of SPSS. The advantages of SPSS have been
amply explored in Section 1.1, including the freedom to model the F0

independently of other speech features. In the proposed methodology, the
F0 is generated by a dedicated DNN model, while other acoustic features
are generated by a separate DNN model implemented for the synthesis of
segmental features.

In Section 1.2, I presented the historically most influential theories,
models and approaches for the modeling of intonation. One common fea-
ture shared by most of the previous work is either a fully or partially static
representation of intonation. For instance, Pierrehumbert’s theory of in-
tonation is based on a binary contrast of static high and low tones, the
Fujisaki model is based on the superimposition of functions that output
static contour values, wavelets decompose contours into static hierarchi-
cally organized sub-components, etc.

The IPO and the Tilt models display a higher level of dynamism as
contours are described in terms of fall and rise. However, these approaches
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are not fully dynamic. For instance, under the IPO approach, contours are
synthesized from a fixed inventory of standardized pitch templates, where
the position of the templates within the frequency domain is determined
by the general declination line on which they are superimposed.

The Tilt model is more flexible than the IPO model, as the shape of
prosodic events is not determined by a fixed inventory of pitch movements,
but rather by a set of tilt parameters. The Tilt model is also somewhat
dynamic, because each event is described in terms of fall/rise, instead of
a static high/low opposition. However, the start of each event is a static
frequency value that anchors the fall/rise pattern within a specific region
of the frequency domain.

In this thesis, I propose a purely dynamic approach, in which we model
the dynamic evolution of the interpolated F0 through time from a starting
position. The dynamic information is parametrized by a sign value for the
direction of change, and a quantized magnitude value for the amount of
change in such direction. The overall position of the predicted contour
within the frequency domain is determined based on the speaker’s voice
register.

Unlike the Fujisaki model and wavelet approaches, in the proposed
methodology, contours are not decomposed into hierarchical sub-components.
Similarly to the Tilt model, they are encoded into sequences of intona-
tional events, where each event represents a pitch movement. Unlike the
Tilt model, the position of each event within the frequency domain is not
static, but rather relative to the previous event.

Finally, the proposed methodology takes advantage of the recent ad-
vances in deep learning technology by also including word embeddings in
the model, so that contour predictions are driven by semantically richer
information.
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Chapter 2

Feature Extraction

In this section, I will describe how feature extraction is carried out in the
proposed methodology.

This section is divided into three parts. In the first part, I will discuss
the two most commonly used approaches for sampling speech data, and I
will present the adaptive sampling method implemented for my methodol-
ogy. In the second part, I will provide a description of the textual informa-
tion that I decided to include and justification for each chosen linguistic
feature. In the third part, I will present the technique I used for the dy-
namic encoding of the interpolated F0.

2.1 Sampling

One major preliminary step in approaching the problem of F0 modeling is
to decide how the pitch information and the corresponding linguistic labels
should be sampled. Most F0 estimation tools produce as their output a
sequence of F0 values sampled at a constant rate. Typically, for most TTS
systems, acoustic information is sampled at a 5 ms time interval. However,
different researchers might decide to use this data in very different ways
depending on how they approach the problem.

In this section, I will present the sampling approach used in my im-
plementation. The proposed sampling scheme is based on the selection
of a support level and a default time interval. The size of the interval is
adapted based on the duration of the support level. This approach is a
hybrid of two common sampling approaches: frame-by-frame and anchor-
point methods. The advantages and disadvantages of these methods are
discussed and used as motivation for the adaptive sampling rate method
presented here.
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2.1.1 Frame-by-Frame Approach

Under this approach, the data is sampled at a fixed time interval, typically
at a 5 ms time interval. This is what we typically find in TTS systems
such as Merlin (Wu et al., 2016), where the F0 and other acoustic features
are modeled jointly in a frame-by-frame fashion.

The main advantage of frame-by-frame approaches is that they are very
convenient and they make the least assumptions about the data. However,
it is also needlessly wasteful, as we would have to make a prediction for
every single frame. This can be problematic, if we wish to include very
rich input features such as word embeddings. Under this approach, using
word embeddings with hundreds (if not thousands) of inputs per frame
could become prohibitively expensive.

As a lot of the information contained in the F0 contour is redundant,
most of it can be discarded, as it is easily reconstructed from partial or
parametrized contours by means of interpolation. Not only does this allow
for larger inputs, but having fewer points to predict also means faster and
more efficient training, especially for longer sequences.

Despite the recent introduction of RNNs, which allow for much bet-
ter modeling of long sequences, long distance dependencies still remain a
tricky aspect to model, because of the limited time memory that these
architectures offers. Reducing the number of intonational events that we
want to predict per utterance will make the learning process much easier.

However, we cannot simply compress the data by naively downsampling
the output produced by F0 estimation tools. The main problem with a
lower fixed sampling rate is that the sampled points would be located
in linguistically irrelevant positions. For instance some points might be
located very close to the syllable boundaries, sometimes far from them.
Sometimes certain syllables might be skipped entirely because they are
too short. Notice for instance in Figure 2.1, how a fixed sampling rate
causes the sampled F0 to be distributed erratically with respect to linguistic
segments.

2.1.2 Fixed Anchor-Point Approaches

A commonly adopted solution to the problems that arises from the adop-
tion of low fixed sampling rates is to use so-called “anchor points”, i.e.,
linguistically relevant positions within the utterance (e.g., van Santen and
Möbius, 1997). One might, for example, choose to sample F0 measure-
ments at the start, center, and end of each syllable.

The advantage of this approach is that the contour can be represented
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Figure 2.1: Location of extraction points in an F0 contour at a fixed 10 Hz
sampling rate.

into a much more compact format, which makes training a lot easier. Under
this approach we also make sure that we have some information about each
and every instance of the chosen support level (usually the syllable).

Unlike the frame-by-frame approach, this approach has to make a num-
ber of assumptions about pitch and its perception. The first assumption
that we have to make is that phenomena that are lost as a consequence of
the downsampling process are not that important and that reconstructed
contours are still accepted by humans as natural. Additionally, we have to
assume that the timing of prosodic events corresponds to linguistic units
such as syllables or syllable sub-units, which might not always be the case
for all natural languages. An additional assumption that we have to make
if we simply use the same number of anchor points per linguistic segments
is that duration has no bearing on the shape of a pitch template (unless
of course duration is explicitly provided as an input feature to the model).
Under this assumption, we might fail to account for physiological con-
straints about the vocal tract, such as how fast pitch rises or falls can be
produced.

One disadvantage illustrated by using the same number of anchor points
per syllable is illustrated by Figure 2.2. As we can see, with a vanilla
implementation of the anchor-point approach we are unable to use more
data points for longer syllables where we might observe more complex
patterns.

By the same token, if we want to increase the number of anchor points
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Figure 2.2: Location of extraction points in an F0 contour with 3 anchor
points.

to capture more complex behaviors in longer syllables, as it was done in
Figure 2.3, we end up with too many points in shorter syllables, where
contours are less complex.
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Figure 2.3: Location of extraction points in an F0 contour with 7 anchor
points.
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2.1.3 Adaptive Sampling Rate

As previously mentioned, frame-by-frame sampling rates have the advan-
tage of making fewer assumptions about the data and are more conve-
niently implemented. However, including rich inputs such as word em-
beddings is prohibitively expensive. On the other hand, anchor points
can provide us with a more consistent number of points across linguistic
segments, but we cannot allocate more anchor points for longer segments.
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Figure 2.4: Location of extraction points in an F0 contour with an adaptive
sampling rate.

Given the various advantages and disadvantages of both approaches,
in my methodology, I decided to adopt a hybrid of both. This is imple-
mented by first selecting an appropriate linguistic level for interval subdi-
vision (e.g., the syllable level) and a time interval as the default sampling
rate (e.g., 0.1 s). The default sampling rate was determined heuristically,
by trying out many different values and plotting the the original contours
overlaid with vertical lines representing the sampling sites. For each sylla-
ble, the sampling rate is adapted, based on the default sampling rate and
the duration of the syllable, based on Equation 2.1.

srs =
durs

[durs
dsr

]
(2.1)

where:

sr = sampling rate for syllable s
dur = duration of syllable s
dsr = default sampling rate
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As we can observe in Figure 2.4, the proposed adaptive sampling rate
produces points of varying distance across syllables. However, less so than
a purely anchor-point-driven approach. At the same time, we are able to
allocate more sample points to longer syllables, which is the main advan-
tage of the other approach, since we are not limited by a fixed number of
anchor points.
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2.2 Textual Labels

Once the time locations where inputs and outputs are sampled is deter-
mined, one must choose suitable input labels for the prediction of the target
outputs.

In this section, I present each set of linguistic labels that are included
in the proposed methodology and describe their role and usefulness for
the task of F0 modeling. Finally, I present how they are converted into
their corresponding binary features and combined into input vectors for
the DNN model.

2.2.1 Phones

Even at the lowest level, i.e., at the level of the phonemes, F0 is affected.
At this level, depending on the phoneme and the amount of voicing applied
to its corresponding phonemic realization, pitch features might or might
not be specified.

This inconvenient fact is often circumvented by interpolating the miss-
ing F0 measurements and applying smoothing. Critics of this approach
point out that this produces artifacts that might negatively affect the
learning process and the results (Wang et al., 2017a).

In the proposed methodology, each intonational event represents a
movement describing the amount of pitch change from the previously ob-
served F0 value (for more details on the F0 encoding, see Section 2.3).
If the frequency of the previous value is unspecified (because it has not
been interpolated), then it is impossible to calculate the amount of rela-
tive change between it and the currently observed F0 value. This means
that in the proposed methodology, it is not possible to do away with inter-
polation. As F0 must always be interpolated, it is not necessary to include
information about phonemes to account for unvoiced parts of the contour.
For these reasons, information about phones is not included.

2.2.2 Onset and Rhyme

In addition to the issue relating to whether phonemes are voiced or not, we
also need to take into account that the timing of certain prosodic events
might be tied to the structure of the syllable, as different parts of the
syllable carry different amounts of prosodic information. Consider for in-
stance the phrase “steak?”, where most of the prosodic information (i.e.,
the upward inflection) is carried by the vowel (i.e., the nucleus) and not
the fricative (i.e., the onset).
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This issue cannot simply be addressed by including positional infor-
mation such as percentage values. Percentage values are not very reliable
for syllables, because the internal structure of the syllable can change dra-
matically depending on the identity and relative duration of the phones it
contains.

In order to better account for these timing phenomena and to ensure
better alignment between the syllabic structure and the F0 contour, I de-
cided to include onset and rhyme labels.

2.2.3 Syllable

Because of the importance of syllabic units, I included labels for both
lexical stress (i.e., primary, secondary, and no stress) as well as syllable
boundaries (i.e., either present or absent).

2.2.4 POS tags

The next linguistic label I decided to include is POS tags. These are
necessary in order to capture prosodic events pertaining to the syntactic
domain. Phonologically identical words (e.g., the word “cut” can function
both as a noun or a verb) often have different syntactic functions depending
their POS tag and correspondingly different prosodic behaviors.

Intuitively, a verb like “to wrap” behaves more closely to other verbs
than the word “wrap” used as a noun. Notice how in the following sen-
tences we can switch the verbs coming after “want to” and maintain the
same overall prosodic profile (provided the new word has the same accent
groups).

(1) Tonight I want to make a few presents.

(2) Tonight I want to wrap a few presents.

(3) Tonight I want to send a few presents.

2.2.5 Lemmata

The next set of labels I included in my implementation is word lemmata
and word boundaries. This might seem like an unnecessary complication
since word vectors will greatly increase the size of the model.

The reason why word information is important is that words (especially
used in context) can carry with them the semantics of a sentence as well
the underlying attitude of a speaker who might decide to speak such an
utterance. For instance a speaker uttering “I am so depressed today!” is
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more likely to use a generally flatter and monotonous tone than someone
who’s uttering “I feel so alive today!”.

Another reason it is desirable to include word vectors is that a lot of
syntactic classes described by POS tags are not fine-grained enough to cap-
ture important semantic and syntactic differences. For instance, adverbial
expressions such as “additionally”, “clearly”, “not”, “then”, “yesterday”
are all labeled as part of the same group, even though they display very dif-
ferent syntactic behaviors, which can often lead to very different intonation
patterns.

In most language models, word vectors are not usually learned using
vanilla softmax classification. This is due to the extremely large number of
possible outputs (i.e., context words), which makes training very resource-
intensive and time-consuming. A common workaround to this issue is to
use noise classifiers (Mikolov et al., 2013). In our particular case, we will
show that we have a fairly small number of output classes (for more details
on the output of the proposed intonation model, see Section 2.3), which
means we are able to train word vectors using standard loss functions.

As adding words embeddings to the model is computationally expen-
sive, it is important to select and process the word tokens carefully. Mor-
phological information is redundant, as it is by and large already encoded
by the POS tags. Therefore it can be discarded by means of lemmatization.

Secondly, it is important to remove word lemmata that are only fre-
quent as a mere consequence of the specific word distribution of the training
corpus, e.g., character names, place names, etc. These words are only spe-
cific to the training corpus. It is therefore unlikely that they will come up
again and that they will generalize well within new contexts. To remove
these words, we filter out the lemmata that are not found in frequency lists
of English based on much larger corpora.1

2.2.6 Punctuation

The last feature I added to my implementation is punctuation. Punctua-
tion, aside from helping distinguish between sentence types (interrogative,
declarative, exclamatory, etc.) is a feature that is also useful for demarcat-
ing syntactic phrases and solving syntactic ambiguities. This in turn can
help us decide which prosodic strategy to adopt.

Since punctuation does not have a reliable acoustic representation (oc-
casionally realized through pauses), punctuation annotations are added in

1The frequency list used to filter out words is derived from the the British National
Corpus (http://www.natcorp.ox.ac.uk/using/index.xml?ID=freq).

http://www.natcorp.ox.ac.uk/using/index.xml?ID=freq
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correspondence to the words. In particular, for every word, I added a label
for punctuation before and after the word. In the case of punctuation be-
fore the current word, the punctuation label is generated by concatenating
all the text characters between the current word and the previous word.
Similarly, for the punctuation after the current word, the punctuation label
is generated by concatenating all the text characters between the current
word and the next word. White space interspersing punctuation characters
is removed. The resulting punctuation labels are then augmented with a
special punctuation label for no punctuation.

2.2.7 Input vectors

Linguistic labels cannot be used directly and fed to a neural network, as
neural networks can only accept data in the form of input vectors.

In our case, most of our data is not sequences of numerical values, but
rather categorical data such as words, stress information, POS tags, etc.
In order to use this information, we first need to encode these values into
one-hot vectors. In one-hot vectors, all positions contain zeros, except for
the position referring to the observed label, which contains a one. This
process converts the categorical data into binary features, that can be used
by the neural network. Based on the corpus used in the implementation,
the binary features reported in Table 2.1 were obtained (for more details
see Appendix A and Appendix B).

Level Description Size

Word lemmata 1937
POS tags 66
word boundaries 3
punctuation before word 55
punctuation after word 55

Syllable syllable boundaries 3
syllable stress 5
onset/rhyme 3

Table 2.1: Linguistic features used as input for the F0-DNN model.

Binary features encoding various linguistic information can then be
strung together into a single larger vector. This is what is usually done in
most neural network applications.
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In the proposed approach, I followed a similar approach, with the dif-
ference that I decided to separate word vectors from the other linguistic
inputs (see Figure 2.5). This choice was primarily made for the sake of
performance at inference time (for details, see Chapter 3). Word vectors
have an extremely high number of binary features and constitute the most
expensive part of the model.

Stressed Noun ? cat

Figure 2.5: Example of an input vector. Word and non-word features are
encoded by two separate vectors. This particular set of vectors could refer
to a data point sampled at the end of a sentence such as “Where is the
cat?”.
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2.3 Intonation Labels

In addition to selecting the appropriate linguistic labels as input, one must
also generate intonation labels for the output, so as to provide supervision
during the training of the model. All the previous work on intonation
modeling discussed in Section 1.2 focuses on a static description of the
F0, either as a value (e.g., log(F0), wavelets, quantized F0, etc.) or as a
pattern (e.g., templates, splines, B-splines etc.). Here, I propose a dynamic
approach, whereby contours are not encoded as a sequence of static values,
but rather as a sequence of values representing the dynamic evolution of
the contour through time.

In order to achieve this, a new encoding scheme for the interpolated F0

has been devised. The encoding scheme is characterized by three key fea-
tures: quantization, dynamism, and compression. Quantization is achieved
by discretizing the frequency space into frequency levels. Pitch movements
from one level to the next are encoded dynamically as sequences of pitch
intervals, rather than sequences of static landing sites. Pitch intervals are
compressed by representing intervals as the combination of two compo-
nents: sign and magnitude. The sign represents the direction of pitch
change, and the magnitude, the amount of change in such direction. The
magnitude representation is further compressed by rounding magnitude
values to their closest triangular number approximation.

2.3.1 Encoding

The prosodic dynamics are calculated from static values sampled from
interpolated F0 contours2 by means of the following recursive formula:

ft =

{
2(nt/s) t = 0
ft−1 ∗ 2(nt/s) t > 0

(2.2)

where:

t = time index
s = number of steps within each octave
nt = number of steps away from ft−1

ft = frequency of the F0 value nt steps away from ft−1

The formula automatically maps F0 values to an underlying pitch scale,
where each octave contains s equally sized steps (pitch levels). In my

2In my implementation, contours are estimated and interpolated by means of the
software package Praat (http://praat.org/).

http://praat.org/
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implementation, s is set to 24 in order to have each frequency interval
correspond to exactly 1/2 semitone of the standard western scale. At each
time step t, we estimate ft to produce the closest approximation to the
observed F0 value at time t. The nt value that produces the closest F0

approximation constitutes the dynamic information we want to store.
As no values come before the first one, the estimation of ft=0 is only

needed to start the recursion for the subsequent ft values. Therefore nt=0

does not represent a dynamic, but rather the position of ft=0 within the
underlying scale (i.e., how many steps away from the bottom of the pitch
scale). As neither an upward nor a downward pitch movement takes place
before the very first F0 value, nt=0 is set to 0 after the recursion is complete.

The dynamic information nt is separated into two components: the
sign of nt which gives the direction of change, and its magnitude, which
corresponds to the amount of change in such direction. The sign is encoded
by using three values: −1 (falling), 0 (level), and 1 (rising). Magnitude
values are rounded to their closest triangular number approximation, where
triangular numbers are defined as follows:

Tn =
n∑

k=1

k = 1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
=

(
n + 1

2

)
(2.3)

where:

Tn = nth triangular number
n(n+1)

2
= a binomial coefficient

2.3.2 Decoding

At decoding time, we face the inverse problem. We have a sequence of
signs and magnitudes. From these, we want to reconstruct a sequence of
F0 values.

To recover the pitch interval information encoded by nt, sign and mag-
nitude are multiplied. The dynamics are recursively applied (i.e., added)
to a starting seed value. To initialize the recurrence, the seed is set to 0.

This process automatically produces static values mapping to the un-
derlying pitch scale’s levels. To convert these static pitch levels into their
corresponding Hertz values, a pitch scale is generated with the following
equation:

fn = 2(n/s) (2.4)
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where:

s = number of levels within each octave
n = scale level
fn = F0 value at the nth level of the scale

As the frequency mapping scale does not contain any negative values,
we shift the static values to be decoded until they are all positive. Then,
we produce an initial F0 sequence by replacing each static value by its
corresponding frequency generated by Equation 2.4. This sequence is then
shifted to correspond to the speaker characteristics, using the following
translation:

f ∗
t = ft −

1

k

k∑
t=0

ft + f(s) (2.5)

f(s) = average F0 of speaker s
t = time index
ft = F0 value at time t
f ∗
t = F0 value at time t adapted to speaker s

2.3.3 Quantization

One major characteristic of the encoding scheme I have presented is its
quantizing effect on the encoded contour, which transforms continuous
curves into sequences of discrete categorical data.
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Figure 2.6: Example of a quantized contour. The F0 contour is represented
by a dashed line. The darker rectangles represent the corresponding quan-
tized contour.

From the perspective of learning, quantization has the effect of convert-
ing F0 modeling from a regression problem to a classification one. More
specifically, under a quantized regime, a DNN would not attempt to ap-
proximate an underlying function of the contours, but rather a function
of the probabilities of the categorical symbols from which the observed
contour is generated.

This decision might seem rather odd at first, as most researchers usually
choose to preserve the original continuous F0 values and try to model the
underlying function of the contour. I decided against this approach because
in my estimation it might restrict and flatten the possible contours that
the model can output. This is due to the fact that, as the model tries to
reconstruct the underlying function, it will interpolate and smooth it to fit
the training data. This has the effect of producing an averaged-out version
of the observation.

In order to avoid this, I decided not to use numerical values and to
replace them with categorical data describing quantized pitch jumps. As
the categorical data represents clear pre-defined pitch movements and not
static values, pitch values are not forced to fit into a smoothed function
of the contour, but rather a function of the probabilities of the categorical
symbols from which the static F0 contours are generated. This means
that the model is less restricted with regard to how fast pitch values can
change or how far up or down they can jump, because the weights of the
network are not modeling the actual size of the output values, but rather
probabilities of pre-defined pitch movements.
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The inclusion of quantization as a feature is also justified by the fact
that F0 is limited to a specific frequency range (typically 85 to 180 Hz for
males and 165 to 255 Hz for females) and that very small pitch variations
(say, 100 and 100.02 Hz) are not that important in the context of TTS,
where reconstructed F0 contours often only approximate the original. This
is for instance the main assumption underlying the IPO intonation model
(see Section 1.2 for more details), where contours are simplified to only
preserve perceptually relevant prosodic features and where less important
features such as micro-prosody are discarded.

In my encoding scheme, quantization is achieved by the recursive ap-
plication of Equation 2.2, which automatically maps the static F0 val-
ues to a quantized frequency space (i.e., a pitch scale). This equation is
more commonly used to determine the frequency of notes of the equal-
tempered western scale, i.e., a scale where each octave is divided into
(twelve) equally-sized steps. In my implementation, the use of this for-
mula was slightly different from its more common application, as it not
used to directly partition the frequency space into levels, but rather to
estimate the number of pitch levels separating one observed F0 and next.

The choice of basing the encoding scheme on this particular scale is
somewhat unconventional, as a more common choice in speech applications
would be to utilize a mel scale. One reason behind this decision is the
criticism surrounding the mel scale put forward by Donald D. Greenwood,
a student of Stevens who worked on the mel scale experiments in 1956, who
considers the scale to be biased by experimental flaws (Greenwood, 1997).
Equation 2.2, on the other hand, is purely based on well-understood physics
of sound, as it was not determined empirically through the judgment of
test subjects.

Secondly, Equation 2.2 is adopted for the sake of convenience, as it
much easier to debug and check the sanity of the encoding when the en-
coded values have a clearly interpretable meaning. For instance, if we set
s to 24, each interval in the scale corresponds exactly to half a semitone
of the standard western scale.

The idea of quantizing contours is not new in the context of F0 mod-
eling. In a recent proposal, quantization of F0 into static discrete values
has been adopted as a way of avoiding F0 interpolation (Wang et al.,
2017a). In particular, unspecified F0 values (e.g., in the presence of un-
voiced segments) are encoded by a dedicated categorical symbol. This is
argued to help avoid the influence of prosodic artifacts created during the
interpolation process. From the perspective of dynamism, this approach is
functionally very similar to calculating the log of F0 values: quantization
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simply linearizes the logarithmic relationship between F0 and pitch, with
the difference that the static representations are discrete.

However, in the methodology proposed here, quantization carries out a
completely different function, as it is not used to avoid interpolation, but
rather to provide a quantized space as the basis for the calculation of the
dynamics. In the proposed approach, it is not possible to do away with
interpolation, because each F0 label is defined in relation to the previous
one, which means we can never leave the value of F0 unspecified, otherwise
all the following F0 labels would become uninterpretable. Therefore, here,
quantization of the frequency domain is just an indirect way of ensuring
that dynamics are also quantized and not real-valued.

2.3.4 Static vs. Dynamic

The main feature of the proposed encoding is its dynamism. This means
that contours are not encoded as a sequence of static values, but rather
as a sequence of values representing the dynamic evolution of the contour
through time.

This idea stems from a number of empirical and anecdotal observations
that can be made about pitch both in the context of speech and music.
In particular, the first observation is that raw F0 measurements assign an
absolute value to each sample, and this value is completely meaningless
when taken in isolation. It is only when F0 values are presented in context
that they are endowed with prosodic meaning.

This closely mirrors a similar observation that can be made about the
musical domain. In music, notes, just like speech pitch points, are com-
pletely meaningless by themselves. As most musicians will know, what in
fact constitutes a melody is not so much the sequence of notes, but the
sequence of musical intervals, i.e., the relative change between one note
and the next one. This is especially apparent if we consider that most
people who can sing a tune can do so without any knowledge about the
name of the notes in the melody. Melodies are also routinely transposed
(i.e., pitch translation) to suit various voice ranges without changing the
musical message of the tune. All this can be explained by the fact that, to
a large extent, humans, with the possible exception of those born with per-
fect pitch, do not rely on absolute measurements to produce and process
musical pitch.

Similarly to what happens in music, humans do not know the exact F0

values they process or produce (again with the exception of those with per-
fect pitch) and yet, they are still able to correctly generate and interpret
intonation patterns. Furthermore, speech patterns can also be transposed,
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i.e., when for instance they are uttered by people with different voice reg-
isters, without much change in the prosodic message (e.g., a question is
interpreted as a question regardless of the shift of the contour along the
frequency axis).

We do not wish to take this analogy any further. Speech and music are
after all two completely different domains and there is even some evidence
that the processing of pitch information differs significantly for speech and
music phenomena. Zatorre and Baum (2012) suggest that there are two
pitch-related processing systems in the human brain: one for coarse and
approximate pitch analysis, and one for precise and fine-grained analysis.
Of these, it is suggested that the latter is unique to music. Because of the
significant differences between the two domains, within the scope of the
present discussion, the only loose analogy that we wish to take advantage
of is the fact that the encoding of both musical or prosodic messages relies
on a somewhat more relative dimension of frequency than an absolute one.

The importance of a dynamic representation of the contour rests in its
ability to capture a more abstract and compact representation, endowed
with a higher degree of invariance. This property is illustrated by Fig-
ure 2.7. As it can be observed, the static values after the upward transla-
tion are completely different. On the other hand, a dynamic representation
is completely invariant to frequency translation:

 

Dynamic 

Static 

Figure 2.7: On the left side of the figure, a quantized F0 contour is shown.
On the right side, the same quantized F0 contour has been shifted upwards
by three steps. At the bottom of the figure, the corresponding static and
dynamic values are reported.

As a side effect, the proposed encoding scheme is also naturally register-
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independent, as any upward or downward translation of the original con-
tour would yield the same encoded sequence. This means it can be used
to seamlessly model intonation of multi-speaker corpora without any ad-
ditional normalization steps.

2.3.5 Sign Separation

One important feature of the proposed encoding scheme is the decompo-
sition of pitch intervals into sign and magnitude information. The reason
for the separation of these two types of information is justified first and
foremost as a way of reducing the number of possible outcomes by half.

One additional advantage of this separation is that we are also able to
produce a representation that has a higher degree of invariance to com-
pression and dilation, especially with regard to sign information. This
property is illustrated by Figure 2.8, where we can see how the sign of a
contour remains unaltered, even after dilation has taken place. We can
also observe that the magnitude, similarly to traditional static values, is
more susceptible to noise.

 

Static 

Sign 

Magnitude 

Figure 2.8: On the left side of the figure, a quantized F0 contour is shown.
On the right side, the same quantized F0 contour has undergone dilation.
At the bottom of the figure, the corresponding static and dynamic values
are reported. The dynamic values are represented by the corresponding
sign and magnitude values.
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2.3.6 Magnitude Compression

The last main feature that characterizes the proposed dynamic approach
is its compressing effect. Compression is achieved in a first instance by
means of quantization, as this greatly restricts the possible number of
outcomes. This is because the continuous infinite space is mapped to
simplified quantized space with a discrete and finite number of possible
output values.

A second source of compression is provided by the separation of sign and
magnitude information. This atomizes the contour representation into its
minimal components: the direction of movement and the amount thereof.

Even though separating the sign and the magnitude reduces the number
of possible outcomes by half, the number of magnitude labels is still much
too great and wasteful if not properly compressed. This is especially true
as far as large intervals are concerned, where we might not want to model
the small difference between extremely large interval values.

One way to reduce the number of labels, would be to use larger steps
by setting the s parameter in Equation 2.2 to a lower value. This, how-
ever, would also reduce our ability to encode smaller prosodic movements,
which would result in very imprecise contour reconstruction. Ideally, our
encoding scheme should be able to model most prosodic events, so both
small and large intervals.

However, we might not wish to model them with the same level of preci-
sion, since small differences between large intervals might be less important
to model. If the processing of pitch information for speech is based on a
fairly coarse-grained analysis of pitch as suggested in (Zatorre and Baum,
2012), encoding fine-grained differences is unnecessary.

For these reasons, a third source of compression is added. In the pro-
posed encoding, the number of possible magnitude values is drastically
reduced by rounding magnitude values to their closest triangular number
approximation. Triangular numbers are a sequence of numbers that are
obtained by continued summation of natural numbers.

For instance, the sequence of natural numbers “1, 2, 3, 4, 5, etc.” would
yield the sequence of triangular numbers “1, 3, 6, 10, 15, etc.”. For my
encoding scheme, an additional 0th triangular number is included, i.e.,
“0, 1, 3, 6, 10, 15, etc.”.

Triangular numbers have the nice property that the distance between
each number and the next one grows linearly. When we only consider
intervals whose index is a triangular number we are able to consider in-
tervals with a linearly decreasing precision. This means that we are able
to model small intervals very precisely, with the trade-off that we model
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large intervals less precisely.

2.3.7 Encoded Contours

In order to assess the validity and usefulness of my encoding, I compared
the original contours with their encoded-decoded counterparts by plotting
and listening to their copy-synthesis.

Figure 2.9 shows an original contour along with its encoded and de-
coded counterpart. As we can see, the original and the reconstructed
contours are quite similar, albeit with a few subtle differences. In par-
ticular, observe in Figure 2.9 how all the numbers of steps in each pitch
interval are triangular numbers (i.e., 0, 1, 3, 6, 10, 15, etc.). For instance,
the second syllable (i.e., “mid”) has two intervals, where the first one has
10 steps and the second one, 6. Also, notice how the reconstructed contour
occasionally overshoots or undershoots. For example, in the fifth syllable
(i.e., “naits”), the first pitch interval contains only 3 steps instead of the
more accurate 4.
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Figure 2.9: Plot of the original and reconstructed contours for the utterance
“A Midsummer Night’s Dream”. The dashed horizontal lines represent the
levels of the underlying pitch scale. The vertical lines represent syllable
boundaries. At the bottom of each syllable boundary are the phones con-
tained in the syllable. The dots represents the points in time where the F0

values were sampled.
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This is because this encoding scheme was not designed with reconstruc-
tion accuracy as its main goal in mind, as it was actually conceived of from
the start primarily as a way of producing extremely minimal, flexible and
dynamic representations of contours.

Even though we might be prepared to accept less than perfect recon-
struction as a trade-off in favor of increased flexibility, it is still important
to quantify the exact extent to which the original and reconstructed con-
tours differ. A measure of distance between the original and the recon-
structed contour can give us an approximate and indirect way of quanti-
fying how much of the original prosodic message has been lost.

Despite the fairly noticeable differences observed in the plots of the
original and reconstructed contours, the measured root mean squared er-
ror (RMSE) distance for the entire corpus came out to a fairly low 1.03 Hz.
Pulkki and Karjalainen (2015) cite 1 Hz as the just noticeable difference
(JND) threshold for a 250-500 Hz pitch range. This means that on average,
the original and the encoded-decoded signals will largely be indistinguish-
able pitch-wise. This result was also confirmed, albeit only anecdotally, by
listening to the copy-synthesis.

It should be pointed out that lossless or near-lossless encoding is not a
necessary requirement, nor is it the primary aim of my encoding scheme.
As pointed out previously, the feature we are interested in preserving is not
exact F0 measurements, but relative pitch changes with a strong emphasis
on minimal and flexible encoding. However, given that the proposed encod-
ing scheme can reconstruct the original F0 measurements to a fairly high
degree, we can rest assured that converting the original measurements into
pitch intervals did not result in unexpected artifacts or excessive skewing
of the data.

In order to better understand the effects of the encoding on the orig-
inal data, I also looked at the distribution of the original F0 values (see
Figure 2.10) and the distribution of the reconstructed F0 values (see Fig-
ure 2.11) for the entire corpus, after they were decoded from pitch interval
sequences.

As we can see from Figure 2.10 and Figure 2.11, F0 values from recon-
structed contours retain the overall distribution of the original ones. The
most obvious difference is that the reconstructed F0 values cluster around
the values found in the semitone scale underlying the quantization process.

One final aspect that I investigated was the pitch labels that were
produced by the encoding process itself, i.e., before decoding them back
into F0 values, as these are the actual values that will be fed the neural
network. After collecting all instances of sign and magnitude for the entire
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Figure 2.10: Plot of the interpolated F0 values in the training set.

corpus, the two complete sets turned out to be the following:

• Sign: −1, 0, 1

• Magnitude: 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55

One striking aspect of this result is that the size of these two sets is
extremely small, as only three labels for the sign and only eleven labels
for the magnitude were used to reconstruct the original contours for the
whole corpus. This is somewhat unexpected, especially considering the
pitch variety that can be observed in Figure 2.11 and the relatively low
RMSE distance between the original and the reconstructed contours.

This results highlights another feature of this encoding scheme that
I had not originally considered, i.e., its highly generative nature. Just
as a small set of morphemes can generate a virtually infinite number of
words, it should also be possible to combine pitch movements to generate
a virtually infinite variety of contours, among which natural ones hopefully
also reside.

As we can observe in Figure 2.12, the pitch interval distribution seems
to follows a power-law distribution, as it is expected in many frequency
rankings in the linguistic domain. Also, notice how the distribution is
mirrored and centered around the zero value; and how the intervals at
either side of the plot are progressively further apart. This effect is due to
the use of triangular numbers, which allow us to capture smaller intervals
more precisely than larger intervals.
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Figure 2.11: Plot of the F0 values after they were encoded to pitch intervals
and then decoded back into F0 values.

2.3.8 Output vectors

In order to use the proposed encoding in the context of DNN models, it
first needs to be converted into output vectors.

Sign and magnitude information is first converted into their correspond-
ing binary features. Based on the corpus used for training, the output
binary features shown in Table 2.2 are obtained (for more details see Ap-
pendix A).

Description Size

Sign 3
Magnitude 11

Table 2.2: Intonation features used as output for the F0-DNN model.

These binary features are then converted into two separate binary vec-
tors (shown in Figure 2.13) so that they can be fed to the DNN model.
This way, one part of the network can attend to the modeling of the sign,
while the other, the modeling of the magnitude.
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Figure 2.12: Plot of the distribution of the pitch intervals generated by the
encoding process for the training set.

−1 6

Figure 2.13: Example of an output vector. This particular set of vectors
would refer to an output representing a six step downward pitch moment,
where the “−1” label represents the direction of the movement and where
the “6” label represents the number of step in that direction.
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Chapter 3

Intonation Modeling

In this section, I shall provide a detailed description of the dedicated DNN
model that I implemented for the prediction of intonation. The description
of the inputs and outputs have been amply explained and justified in the
previous sections, where I also showed how they are converted into suitable
vectors that can be fed to the model. The input is comprised of two sets
of one-hot vectors: one for the lemma information and the other for all the
other textual information. The output also consists of two sets of one-hot
vectors: one for the sign and one for the magnitude information.

Here, I will present the DNN architecture that is tasked with the map-
ping of the inputs to the outputs and I will provide the reasoning behind
various implementational choices that were made, many of which were
arrived at by trial and error after much experimentation.

In the first part of this section, I will provide a general overview of the
architecture, including its main features and components. Subsequently,
I will delve into various implementational and architectural choices and
reasons in much greater detail.
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3.1 General Overview

The DNN model, shown in Figure 3.1, is structured into three main com-
ponents: a word embedding component, a linguistic interaction component
and a prediction component.

Figure 3.1: DNN pipeline. The dependencies on the previous states are
represented by dashed arrows, and the forward dependencies, by plain
arrows. The blue box corresponds to a FFNN, the red box, to a network
composed by a feed-forward layer and a bidirectional recurrent layer, and
the green box, to a network composed of a feed-forward layer and a forward
recurrent layer.

The word embedding (Levy and Goldberg, 2014) component is com-
prised of three feed-forward layers of the following sizes: 2048, 1024, 512.
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The main function of this component is to convert the one-hot word vec-
tors into smaller, denser vectors by projecting the lemma information into
a dedicated reduced space.

The next component is the linguistic interaction component. At this
stage, the output of the word embedding component is concatenated with
all the other linguistic inputs and passed through one feed-forward layer
of size 512.

The purpose of this feed-forward layer is to merge the dense lemma
representations and the other linguistic inputs. This gives inputs a chance
to have some local interaction before they are fed to additional layers.

Once the inputs have been processed locally, i.e., within the time step
they were emitted, they are fed to pair of BRNN layers with 512 GRU neu-
rons each. The purpose of the bidirectional layers is to capture contextual
interaction through time.

The last component is composed of two similar sub-components. These
are tasked with the prediction of the sign and magnitude of the dynamic
of the F0, respectively. Each sub-component is composed of a simple feed-
forward layer of 512 nodes and a forward recurrent layer of 256 GRU
neurons, to take the context into account.

The input to this last component is the backward and forward states
produced by the previous component, plus its own recurrent sign and mag-
nitude states. In order to align the sign and the magnitude predictions,
the magnitude sub-component has additional input coming from the out-
put of the sign sub-component. ELU (Clevert et al., 2015) is used as the
activation function for all neurons in the model.

3.2 Architectural Details

3.2.1 Word embedding

In the proposed approach, the training of the word vectors is integrated
with the rest of the linguistic features within a single common structure.
The reason behind this choice is that neural networks can model very subtle
interactions and detect very fine-grained correlations. By training word
vectors separately, the network cannot guide the dimensionality reduction
on the basis of the interactions that these dense word vectors will have
downstream with other inputs. By training all the labels within the same
instance, all the interactions between linguistic labels and output labels
are allowed to flow back into the feed-forward word layers.

However, because of the size of the word inputs, integrating the train-
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ing of word embeddings within a common structure can cause significant
performance degradation at inference time. To overcome this, word vec-
tors are given a number of dedicated feed-forward layers, to project the
large input vectors into smaller dense vectors. After the network has been
trained, the dense word vectors can be extracted by feeding the one-hot
word vectors one after the other. For each word we can then push the
input thought network right until the last feed-forward word layer of the
word embedding component. This last forward layer can be saved and
used during inference in lieu of the original one-hot word vectors, thus
bypassing the computationally expensive word embedding component.

3.2.2 Linguistic interaction

The linguistic interaction component is tasked with modeling both the
local interaction between word and non-word features, but also contextual
interactions across multiple time steps. In the proposed approach, these
temporal interactions are modeled by means of BRNN layers. However,
this is not the only possible approach, as these could also be modeled with
feed-forward layers.

FFNNs have successfully been used in Vainio (2001) to model time
series in the context of intonation modeling. In their work, the use of feed-
forward layers is appropriate, as the author explains that their intention
is not to model trajectories or curves directly, but rather instantaneous
values within an utterance.

Under their approach, contours are not treated as events that unfold
through time, but rather as something more akin to “static pictures”,
where trajectories are just a side-effect of correctly predicting the static
values. The task of the network would then be to match snippets of linguis-
tic inputs to snippets of contour “pictures”. Given their initial assump-
tions and the way their work was set up, it makes sense to use feed-forward
layers.1

However, within the proposed methodology, this approach does not
seem to be appropriate, as the proposed DNN is based on a completely
different set of assumptions, most of which are antithetical to those un-
derlying their work. In particular, the main assumption underlying my
proposal is that contours are not to be viewed as sequences of “static pic-
tures” that we try to fit together in a sequence, but rather as sequences of
instructions of interpretable prosodic commands.

Even though FFNNs can in principle learn time series by using a sliding

1or even convolutional layers, I would venture to suggest.
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window, a more common and elegant way to approach tasks involving time
series or forecasting is to use RNNs. RNNs are especially suitable for the
modeling of time series, as they can be fed arbitrarily long sequences of
data, whereas FFNNs can only model fixed size windows. Once the size of
the window has been decided, we cannot feed inputs whose size is larger
than that of the window. Similarly, inputs of smaller sizes either need
to concatenated with other inputs to fill up the input window, or they
need to be padded. Given these limitations associated with FFNNs, in the
proposed model, interactions over time are modeled by means of recurrent
layers.

As RNNs comes in different flavors, it is important to select the most
suitable architecture for the task at hand. Vanilla RNNs are not optimal
for my task, because they can only read the inputs one after the other,
with the result that our context is limited to only past observations.

Even though humans almost never read the entire sentence before read-
ing it out loud, they typically do look ahead and make use of many direct
and indirect clues that the network has no access to. For instance, hu-
mans can extrapolate a lot of information about the general length and
structure of a sentence or a paragraph by noticing punctuation symbols,
line breaks, etc. For all these reasons, it would be desirable to present the
neural network with both past and future inputs.

This can be achieved using BRNNs, where one recurrent layer reads
the input forwards and the other backwards. Additionally, Schuster and
Paliwal (1997) have shown that BRNNs achieve better performance than
vanilla unidirectional RNNs.

3.2.3 Feed-back Connections

The last component of the the proposed DNN architecture is characterized
by a rather complex structure, with multiple inputs and recurrent feed-back
connections feeding into it.

This is in contrast with many other approaches, where the output of
BRNNs is fed directly to the output layer to produce a prediction. This
approach would be more than sufficient if we were in the situation in which
the input features can only map to one possible output sequence. However,
in many sequence-to-sequence problems this is often not the case. Consider
for instance the case of machine translation (MT): for every sentence in
the source language there are potentially multiple ways in which it can be
rendered in the target language.

In this scenario, the task of the neural network is twofold: on the
one hand, it has to predict an output sequence that would be fitting for
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the input sequence; on the other, it has to make sure that each possible
rendition of the input sequence is cohesive and coherent within itself. This
means that in the event in which for some input sequence there are two
possible output sequences that the network could predict and these two
sequences are just as likely, we want the neural network to commit to one
and only one of the two possibilities and not to blend different elements
from the two that might not coherently fit together.

In MT, this problem is often solved by means of feedback and attention
mechanisms (Cho et al., 2014; Luong et al., 2015). Attention mechanisms
make sure the network learns to which parts of the inputs it should attend
at every step of the prediction. This is especially important when the
inputs are temporally not aligned with the outputs (e.g., when translating
from English to German, the verb sometimes has to move to the end of
the sentence).

In our particular case, an attention mechanism is not necessary, because
our inputs and outputs are already aligned along the time domain. So, to
make sure predictions were coherent, feedback connections from previous
outputs are sent into current processing layers. This technique has also
been used in the context of MT to ensure local fluency (Cho et al., 2014).

The introduction of feedback connections is also justified by evidence
about the importance of feedback in speech (Borden, 1980). Particularly
in what concerns intonation, it has been observed that, in postlingually
deafened adults, intonation patterns undergo a progressive process of de-
terioration when feedback weakens as a consequence of hearing loss (Lane
and Webste, 1991). Alterations in pitch pattern production are also ob-
served in adults with unimpaired hearing in response to manipulated pitch
feedback (Burnett et al., 1998). Adding feedback mechanisms to our net-
work serves as a way to simulate the ability that humans have to hear and
utilize their own previous pitch patterns in the generation of subsequent
ones.

In order to model sign and magnitude simultaneously, both predictions
are integrated within a single shared task. In ML, this technique is com-
monly referred to as multi-task learning (MTL). Aside from the ability to
share tasks, there are many additional advantages in using MTL: it pro-
motes selection of representations that are useful for all tasks, it allows
for transfer learning, it can help focus attention on features that are most
relevant, and it provides strong regularization (Ruder, 2017).

In order to add this sharing-task feature to my network, I first added
two parallel feed-forward layers (i.e., the output of one feed-forward layer
does not feed into the other), one for the sign and one for the magnitude,



3.2. Architectural Details 51

where each has its own set of parameters. Each of the two feed-forward lay-
ers takes as input the concatenated current forward and backward states
from the bidirectional layers, plus the sign and magnitude outputs pre-
dicted at the previous time step. Then, in order to model sign and magni-
tude interactions across time, I added one recurrent layer for the sign and
one for the magnitude. Just like the feed-forward layers on top of which
they sit, these two recurrent layers run alongside each other, and each has
its own set of parameters. One of these recurrent layers makes predictions
for the sign, and the other, for the magnitude.

At each time step the layers involved in the prediction of the sign receive
information about the sign and magnitude that have been emitted in the
previous time step. Likewise, the layers involved in the prediction of the
magnitude also receive information about the sign and magnitude that
have been predicted. This makes sure that the two sets of layers involved
in each task can realign themselves to the other at each time step.

However, even with feedback connections that allow for realignment,
we might still have problems of inconsistency within each time step. This
is because the layers involved with the prediction of, say, the magnitude
receive only information about what sign and magnitude have been emitted
in the previous step, but they do not have access to what the current sign
prediction is. To reduce the chance of inconsistencies within each time
step, a connection between the current sign prediction and the current
magnitude forward layer has been added. Under this approach, we assume
that the task of sign prediction takes precedence over the task of magnitude
prediction. The idea is that we first decide in which direction we want to
move and then we can decide exactly the amount by which we move into
that direction.

One important implementation detail is that, during the back-propagation
stage, we must not propagate the magnitude error through its connection
to the current sign prediction. If we neglect to take this crucial step, the er-
ror from the magnitude will flow into the layers dedicated to the prediction
of the sign, which can cause the magnitude error signal to completely take
over the sign representations so that they become predictive of the magni-
tude. Not only would this defeat the whole purpose of dividing the network
into two tasks, but, in my experience, it can often lead to gradient-related
errors.

In conclusion, at each time step, the prediction of the sign is condi-
tioned on all the previous, current, and subsequent linguistic inputs, as
well as the previous sign and magnitude predictions. The prediction of the
magnitude, on the other hand, is conditioned on all the previous, current,
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and subsequent linguistic inputs, as well as the previous sign and magni-
tude predictions, as well as the sign predicted at the current time step.
The predictions that the network emits for both the sign and the mag-
nitude will be used together with the output vectors that we feed to the
network as to compute an error function describing the distance between
our prediction and the training data.

3.2.4 The Error Function

There are two main error functions that are very popular in the context of
deep learning: one is the RMSE and the other is the cross-entropy error.

As my problem is not formulated as a classification task, the cross-
entropy error function is used. Even though it is theoretically possible to
perform classification using the RMSE error function, it has been found
that the cross-entropy function leads to faster training and better general-
ization in classification tasks (Golik et al., 2013; Simard et al., 2003).

3.2.5 The Optimizer

In contrast with recent and popular trends of using adaptive per-parameter
learning methods such as Adagrad (Duchi et al., 2011), Adadelta (Zeiler,
2012), Rmsprop (Dauphin et al., 2015), Adam (Kingma and Ba, 2014)
and Nadam (Dozat, 2016), I decided to adopt a variant of the classical
stochastic gradient descent (SGD) algorithm.

Recently, it has been found that, for over-parametrized problems, as it
is the case for most current deep learning applications, adaptive optimiza-
tion methods can produce drastically different solutions, as well as models
that generalize significantly worse than SGD, even when they perform bet-
ter on the training data (Wilson et al., 2017). This observation was also
at the basis of one of the recommendations offered by Hoffer et al. (2017)
on how to train models that can generalize better.

For these reasons, in my implementation I used SGD with Nesterov
Momentum, also called Nesterov accelerated gradient (NAG), which is a
faster variant of Momentum optimization (Nesterov, 1983).

3.3 Accuracy Issues

One issue that is particularly hard to address in intonation modeling is
how to measure accuracy during the training phase and what stopping
criterion should be used.
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When intonation is treated as a regression problem, i.e., when using
log(F0) as input and RMSE error as the error function, the obvious solution
would be to simply use the loss on the function as a measure of accuracy.
By calculating the loss on both the training and the validation set we can
stop training as soon as the loss on the validation set starts increasing.
This is a commonly employed technique also known as early-stopping.

The problem is that intonation is a highly unpredictable phenomenon.
For every sentence, multiple completely different, yet plausible, renditions
are possible. Which one of these should be predicted is highly dependent
on a number of contingent factors (e.g., linguistic context, the speaker’s
psychological state, the addressee, etc.), many of which are not available
to the network. This means that at some point of the training process, we
might produce contours that sound natural because they capture general
prosodic properties from the corpus very well. However, the loss from these
contours might be very high because the reference sentences just happen
to be a completely different and equally plausible rendition of the input.
A consequence of this possibility is that we cannot heavily rely on the loss
of the neural network to measure the progress on the training.

As we currently do not have a reliable method to automatically measure
the appropriateness of a specific contour against a specific set of linguistic
inputs, the strategy adopted in my methodology was to save a copy of the
model at the end of each epoch. After training, I selected one by listening
to the synthetic contours it generated for the validation set.

3.4 Overfitting Issues

The reason why it is so important to determine the most appropriate time
to stop the training of the network is because models produced at different
epochs will be radically different.

If we train the model for too long, we start capturing too many details
about the training data, many of which are specific to the training set
and will not generalize well for new observations. This phenomenon is due
to fitting the training data too closely and in machine learning it is also
known and overfitting.

The chance of overfitting is particularly high in my model, because of
the high number of parameters and the inclusion of very large layers for
word vectors. One commonly used technique to alleviate this problem,
is dropout. With dropout, the contributions of a subset of the neurons
during training (Srivastava et al., 2014) are temporarily and randomly
excluded. This process introduces noise and temporarily prevents some of
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the inputs from reaching all the nodes in the network, thus reducing the
chance that complex co-adaptations might emerge and forcing the network
to make predictions only from partial sources of information. Despite its
simplicity, dropout is very effective at reducing overfitting and is one of
the most common regularizing techniques used in deep learning.

Because of these reasons, I added dropout to all the feed-forward layers
of the network. This substantially alleviated the overfitting problem, which
resulted in more consistent models across training epochs.

In previous sections, feed-forward layers preceding recurrent layers were
justified as locations in the network to allow for local interactions between
inputs. In addition to this main reason, feed-forward layers were also used
to provide a convenient location to apply dropout.

In my architecture, there are many locations where one-hot vectors are
concatenated with dense vectors before they are processed by recurrent
layers. For instance, non-word linguistic inputs are concatenated with
feed-forward layers before they are passed through bidirectional layers.

As we cannot apply dropout to very sparse vectors such as the one-
hot vectors (because most of their inputs are already mostly zeros), feed-
forward layers provide for a convenient location where we can merge sparse
inputs with dense inputs to create a single dense representation, onto which
dropout can be applied.

3.5 Data augmentation

Even though dropout produced a substantial improvement in the quality
of the synthetic contours and greatly increased consistency across models,
many of the predicted contours still contained extreme and implausible
pitch excursions or pitch drops.

My hypothesis for this behavior was that the network was suffering from
the so-called exposure bias problem. Exposure bias refers to a phenomenon
often observed in generative models where outputs are fed back and used
as inputs for subsequent output generation.

As explained by Ranzato et al. (2015), the problem is that during
training, the model only utilizes the gold-standard output as its feedback
and not its own predictions, which at inference time are bound to contain
some errors or deviations from the original distribution. This discrepancy
makes prediction brittle, as generation errors may accumulate over time.

One way to solve this issue is to randomly expose the network to either
the ground-truth or its own predictions during training. However, this
approach has been argued to be theoretically flawed (Huszár, 2015) and
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not particularly successful in the context of F0 modeling (Wang et al.,
2017a), where instead one of the proposed solutions is to use dropout
to occasionally remove feedback. However, in my network I already had
dropout applied to the feedback connections and although dropout did
help improve performance, it never completely eliminated the problem.

One thing I noticed was that often, the most problematic utterances
were also the longest. On the one hand, this behavior is expected, as it is
consistent with the exposure bias hypothesis: longer utterances allow for
a larger margin of error, as we have more steps to predict and therefore
more opportunities for generating errors. On the other hand, I could not
understand why, once the prediction starts moving in the wrong direction,
the network is unable to detect it and correct it.

It is easy to understand why generation errors are very problematic
in language modeling, where interactions between words may have very
unpredictable effects and errors are very hard to recover from. In humans,
recovering strategies from these kind of errors is anything but trivial, as it
often involves cognitively challenging tasks such as detecting the problem in
the first place, rephrasing the problematic segment, or finding a convoluted
and yet graceful way of still completing the utterance. These are all tasks
that most neural networks are not trained to perform.

In our case, the property that we want to capture, and that is required
to avoid getting out of a certain range, is a lot coarser and easier to define.
This property is very apparent when we observe the F0 contour over very
long stretches of speech such as in Figure 3.2: pseudo-periodicity.

Even though over the course of a single utterance, a typical F0 contour
might display a declining (i.e., in the case of a declarative) or rising (i.e.,
in the case of questions) trajectory, over the course of arbitrarily long
sequences, F0 contours are pseudo-periodic, i.e., on average they move
neither up nor down, as the F0 values simply oscillate around a mean
value.

This property is not immediately obvious if one only looks at the dis-
tribution of the static values shown in Figure 2.10. However, if we look at
Figure 2.12, we can clearly see that the distribution of the pitch intervals is
mirrored around the centre (zero). As we can see, for each positive interval
there is a negative one, which means that over the course of a sufficiently
long stretch of time the contours behave in a pseudo-periodic fashion.

My explanation as to why the network fails to capture this behav-
ior is that the corpus is composed of mostly short utterances. The most
common patterns in most training utterances are F0 contours that either
follow a globally declining (in declarative) or rising trajectory (in ques-



56 Chapter 3. Intonation Modeling

0 5 10 15 20 25 30

Time (s)

125

150

175

200

225

250

275

300

F
re

q
u
en

cy
(H

z)

F0 Contour

Figure 3.2: F0 contour of a long (30 s) stretch of speech from the corpus.
Notice how the signal presents a pseudo-periodic behavior: even though it
is not periodic, peaks and valleys appear at fairly regular intervals.

tions), but only a few longer ones display the pseudo-periodic property I
just described. So what might happen when the network is expected to
predict unusually long sequences is that it will keep producing the the same
declining or rising trajectory observed in shorter sentences, even though
this entails moving outside the human voice range.

To fix this, the data was augmented by stitching contiguous utterances
back together. The idea is that, by doing so, each training utterance
will be much closer to the global distribution of the whole corpus. As a
consequence, even if mistakes are produced during generation, the network
will attempt to make use of the incorrect histories to still produce a pseudo-
periodic behavior, thus greatly reducing the change of moving outside of
the human voice range.

This technique, in conjunction with dropout, proved to be a very effec-
tive way of alleviating both the problem of extreme pitch excursions/falls,
as well as the out-of-range contours. After applying these techniques, the
distribution of the static F0 values and pitch intervals the test data (Fig-
ure 3.3 and Figure 3.4, respectively) was fairly similar to the corresponding
distribution for the training data (Figure 2.10 and Figure 2.12, respec-
tively).
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Figure 3.3: Plot of the interpolated F0 values predicted for the test set.
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Figure 3.4: Plot of the distribution of the pitch intervals generated by the
encoding process for the test set.
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Chapter 4

The Segmental Synthesizer

In the first stages of my implementation, synthetic contours produced were
simply transplanted onto the original signals by means of pitch manipu-
lation in Praat. As this approach results in inconsistent quality across
signals, a vocoder was used to synthesize the signals from scratch.

Even though vocoders can theoretically separate the periodic informa-
tion (i.e., the F0 contour) from spectral features and aperiodicity, in reality
most vocoders (in particular those based on the source-filter model) do not
achieve perfect decorrelation.

This means that each set of features cannot be modeled independently
of each other without significant signal degradation. In order to model F0

independently, the generation of aperiodic and spectral features must be
conditioned on the periodic features.

This was achieved in my implementation by a neural network model
that takes a linguistic specification along with duration and F0 informa-
tion as input, and predicts the remaining acoustic features as output. By
conditioning the training of the acoustic features not only on duration
and linguistic features, but crucially also on the F0, we are able to model
the residual correlations left over by the vocoding process. The segmental
synthesizer provides a way of inhibiting the effects of the spectrum, thus
making the synthesis of spectral features consistent across many possible
F0 contours.
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4.1 General Overview

The pipeline of the segmental synthesizer (shown here as Figure 4.1) is
organized into two major components: a DNN component (the blue and
the green boxes) and a waveform generation component (the red box). The
DNN component is composed of two major components: a frame prediction
component (the blue box) and smoothing component (the green box).

Figure 4.1: Pipeline of the segmental synthesizer. The Frame Prediction
component (the blue box) is a 10-layer FFNN. The Smoothing component
(the green box) is a single-layer RNN. The Waveform Generation compo-
nent (the red box) is a vocoder.

The segmental synthesizer takes a linguistic representation (i.e., phone
features) and log(F0) as input. This information is fed to a FFNN to
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predict a frame at each time step.
In order to ensure that the transitions between the frame are smooth,

the output of the FFNN is passed through an RNN.
The output of this component, as well as the F0, are used by a vocoder

to generate a waveform.

4.2 Description of the Input

According to common practice, input frames are produced at 5 ms inter-
vals. The features contained in each frame consist of 225 binary features
and 3 numerical features (for more details, see Appendix C).

The binary features, which constitute the linguistic specification, are
used to encode quinphone identity, i.e., information about the current
phone, the previous one, the next one, the one before the previous one,
and the one after the next one. The phone set is based on the Oxford Ad-
vanced Learner’s Dictionary (OALD) provided with Festival1, augmented
with an extra symbol for silence.

The numerical features comprise: a percentage value to encode posi-
tional information within the syllable, phone duration encoded as number
of frames divided by 100 to make it fit approximately within a 0–1 range,
and finally, log2(F0) divided by 10 to make it fit approximately within a 0–
1 range. During training, the F0 information is extracted by the WORLD
vocoder and linearly interpolated.

Input vectors generated by the concatenation of the binary and numer-
ical features are normalized to a standard normal distribution.

4.3 Description of the Output

For each input frame a corresponding output frame containing acoustic
features is constructed. The output features contained in each frame con-
sist of 2 binary features and 67 numerical features (for more details, see
Appendix C).

The binary features encode voiced-unvoiced (VUV) information. The
aperiodic and spectral information is extracted by the WORLD vocoder
and then converted into 5 band aperiodicity parameters (BAP) and 60
mel-generalized cepstrum (MGC) coefficients, including the corresponding
gain, using Speech Signal Processing Toolkit (SPTK).2 The binary and

1http://www.cstr.ed.ac.uk/projects/festival/
2http://sp-tk.sourceforge.net/

http://www.cstr.ed.ac.uk/projects/festival/
http://sp-tk.sourceforge.net/
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numerical information is concatenated into a single vector and then nor-
malized to a standard normal distribution.

4.4 Description of the DNN Model

The neural network model is organized into two major components. The
first component (shown as the blue box in Figure 4.1) is comprised of 10
feed-forward layers, each containing 1024 hidden units. These layers are
tasked with the processing of frames within each time step.

For this first component, a special type of self-normalizing feed-forward
layers are used. In self-normalizing neural networks (SNNs), the provided
activation function is modified slightly so that neuron activations will au-
tomatically converge towards zero mean and unit variance. SNNs have
been shown to outperform traditional FFNNs (Klambauer et al., 2017).
In my implementation, the self-normalizing modification is applied to the
ELU activation function (Clevert et al., 2015).

The second component (shown as the green box in Figure 4.1) is a single
forward GRU recurrent layer with 1024 hidden units and ELU activations.
The main purpose of this component is to replace the smoothing function
of the static values across frames traditionally achieved through the use of
the dynamics.

The network was trained using the sum-of-squares error function, which
was minimized using SGD with Nesterov Momentum.

4.5 Wave Generation

During inference, input vectors are constructed with a synthetic F0 con-
tour.

The input vectors are passed through the network to generate VUV,
BAP, and MGC coefficients. VUV information is used to set the unvoiced
parts of the F0 contour to zero. BAP and MGC coefficients are converted
back to aperiodic and spectral information.

The F0 contour, the aperiodic, and the spectral information are fed to
the waveform component of the pipeline (shown as the red box in Fig-
ure 4.1) to produce an acoustic signal by means of the WORLD vocoder3.

3https://github.com/mmorise/World

https://github.com/mmorise/World
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Evaluation

After the proposed methodology was implemented, a dedicated evaluation
protocol was devised to evaluate the proposed model in comparison to a
state-of-the-art parametric TTS system. In this chapter, I describe how
the stimuli for the evaluation were prepared, the evaluation protocol, the
results of the evaluation, and a discussion.

5.1 Stimuli Preparation

To run the evaluation, the 2017 Blizzard Challenge1 speech corpus2 was
used. The full corpus comprises about 6.5 hours of speech taken from a
number of children’s audiobooks, all read by a British female speaker.

The corpus was automatically aligned and pre-processed with the Mon-
treal Forced Aligner (McAuliffe et al., 2017) and the MaryTTS system (Le
Maguer and Steiner, 2017), producing 3866 utterances for a total of 3 h
and 57 min of speech. The corpus was then split into three subsets: a
training set (3475 utterances), a validation set (211 utterances), and a test
set (180 utterances).

For the evaluation, three sources of intonation were considered: the
intonation estimated from the original recording, the intonation produced
with the proposed methodology, and finally, the intonation produced by
the Merlin toolkit3 (Wu et al., 2016). The Merlin toolkit makes for a

1For details on the Blizzard Challenge see https://synsig.org/index.php/
BlizzardChallenge2017

2The corpus, originally made available by Usborne publishing (https://
usborne.com/), is available at http://www.cstr.ed.ac.uk/projects/blizzard/2017/
usborneblizzard2017/

3The implementation of the Merlin toolkit is available at: https://github.com/
CSTR-Edinburgh/merlin

https://synsig.org/index.php/Blizzard_Challenge_2017
https://synsig.org/index.php/Blizzard_Challenge_2017
https://usborne.com/
https://usborne.com/
http://www.cstr.ed.ac.uk/projects/blizzard/2017/usborne_blizzard2017/
http://www.cstr.ed.ac.uk/projects/blizzard/2017/usborne_blizzard2017/
https://github.com/CSTR-Edinburgh/merlin
https://github.com/CSTR-Edinburgh/merlin
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particularly apt comparison, because it also uses DNN technology, albeit in
a very different way, as intonation and other acoustic features are modeled
jointly.

As the main objective was to evaluate intonation, all stimuli used in
the evaluation protocol were first neutralized with respect to duration and
spectral features, to ensure that stimuli produced by different systems are
comparable with respect to their intonation.

Duration was neutralized by imposing the duration of the original
recordings extracted during the forced-alignment step. As for the neu-
tralization of the spectral features, it was not possible to use the acous-
tic features extracted from the original recordings: even though vocoders
based on the source-filter model can theoretically separate the periodic
information from the spectral features and the aperiodic features, in re-
ality vocoders often do not achieve perfect decorrelation of these sets of
features. As consequence, replacing the estimated F0 of a recording with
an arbitrary one will most likely result in substantial quality degradation.

In order to inhibit the effects of the spectrum, a DNN segmental syn-
thesizer was implemented. The segmental synthesizer used for the stimuli
preparation is described in detail in Chapter 4. For the training of the
segmental synthesizer, the same training, test, and validation sets were
used. The mel-cepstral distortion (MCD) of the synthesizer measured on
the test set was around 7 dB.

5.2 Evaluation protocol

As currently no objective evaluation can reliably assess the quality of the
intonation of speech, a dedicated evaluation protocol based on subjective
evaluation was devised. Subjective evaluations are primarily designed to
probe more subjective and intangible aspects of speech that cannot eas-
ily be tested by means of objective evaluation, such as intelligibility and
naturalness.

The dedicated protocol for the evaluation is a classic preference AB
test, i.e., subjects are exposed to a pair of stimuli and they are required to
express their preference. This choice is justified by the need to avoid the
ceiling effect, as well as the lack of reproducibility and interpretability that
often affects evaluations based on absolute judgments such as mean opinion
score (MOS). The AB preference task was also chosen for its simplicity.
As the test would be delivered online to people who might have never
participated in speech evaluations, more common but also slightly more
complicated evaluation protocols such as the multiple stimuli with hidden
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reference and anchor (MUSHRA) test were deemed unsuitable.
A no-preference option was not included, lest subjects should abuse this

option as a way to avoid expressing strong opinions. In order to prevent
this from happening, during the evaluation, participants are always forced
to make a decision. Later on, a lack of preference can be inferred by simply
looking at preference distributions. For instance, if participants expressed
preference for a system over another system within a certain percentage
range, say 40%–60%, then we can assume there is no preference.

The evaluation was automatically prepared and managed by the online
platform PercEval.4 The platform makes sure that stimuli are properly
shuffled and spread out across participants in a statistically balanced way,
so that all participants are exposed to as wide a variety of stimuli as
possible and that, on average, all stimuli are seen a similar number of
times.

From the test corpus, 180 distinct pairs were constructed. After pro-
viding the pairs and a set of configuration parameters, the platform started
generating experiments on-demand. Whenever a new participant was avail-
able, a new experiment was generated and delivered online.

At the start of the evaluation, each participant was required to provide
an email address and to take the brief questionnaire shown in Figure 5.1.

Figure 5.1: Questionnaire displayed before the evaluation.

After the questionnaire, participants were introduced to a quick simula-
tion, in which 6 of the total 180 pairs were used to allow them to familiarize
themselves with the evaluation environment.

Of the 174 remaining pairs, each participant listened to 60 pairs, each
selected randomly using a balanced random selection algorithm. At each

4The platform was made available courtesy of the EXPRESSION group at IRISA,
https://www-expression.irisa.fr/.

https://www-expression.irisa.fr/
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step of the evaluation (here shown in Figure 5.2), subjects were presented
with a pair of stimuli, a transcription of the corresponding text, as well as
the question: “Which way of reading the following text do you prefer, A
or B?”

Figure 5.2: Screenshot of one evaluation step.
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5.3 Results and Discussion

In total, 40 listeners participated in the evaluation. Of these, 10 were
native speakers of English. The results of their evaluation are shown in
Figure 5.3 (for more details on the results, see Appendix D).

Figure 5.3: Preference evaluation results.

The most noticeable trend is the clear preference of both native and
non-native subjects for the natural intonation over the automatically gen-
erated ones. This trend is amplified for the native subjects, where pref-
erence for the natural intonation can reach as high as 79.4% (Merlin vs.
Original).

Comparing the proposed model to Merlin, the two seem to be more or
less equivalent for the non-native listeners (52.0% vs. 48.0%). However, if
we look at the results for the native subjects, there seems to be a slight
preference for the proposed model (57.4% vs. 42.6%).

Overall, these results do not show a very strong preference for either
system. However, the difference between the results of the native and non-
native subjects is not negligible and might imply that the proposed model
is able to capture more specific phenomena, which are going undetected by
the non-native subjects. What the nature of these phenomena might be is
unclear, but their effect is strong enough to warrant further investigation.

Because the evaluation protocol was designed to be very simple, it also
has limitations. For instance, participants had to select their preference
without any context. This can be problematic for intonation evaluations,
as the same intonation pattern might be correct or incorrect, depending
on the context in which it is used. However, the strong preference for the
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original shows that subjects were still able to distinguish the systems, even
without context.

The evaluation protocol is also limited in its ability to provide more
qualitative analysis of the differences between systems. This points to a
clear need for a more refined analysis protocol in order to qualify how the
proposed model differs from that of Merlin.
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Conclusions

In this thesis, I have presented a dedicated methodology for the modeling
of F0 using a deep learning approach.

The core idea behind the proposed approach is to model the dynamic
evolution of the interpolated F0 through time from a starting position,
where the dynamic is parametrized by a sign value for the direction of
change, and a quantized magnitude value for the amount of change in such
direction. The predicted contour is shifted within the frequency to match
the speaker’s register. The proposed approach also attempts to inform in-
tonation modeling with semantically richer information by including word
embeddings.

After justifying and motivating these underlying ideas, the proposed
methodology has been implemented into a DNN model in the context
of SPSS. Each part of the implementation design has been justified and
motivated.

The implemented intonation model has then been evaluated in com-
parison to the state-of-the-art parametric TTS system Merlin. The evalu-
ation has shown that the proposed methodology performs just as well as
the state-of-the-art and there seems to be a trend for native listeners to
actually prefer the proposed model.

Most past and current approaches to intonation modeling have been
solely focused on a static description of intonation. This thesis represents
a marked departure from these more established approaches, as intonation
was modeled as a purely dynamic phenomenon. The evaluation conducted
in this thesis has shown that this approach produces results that are on par
with (if not slightly better than) the state-of-the-art Merlin system, con-
firming the validity of the proposed methodology as a new and legitimate
direction of research.
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6.1 Perspectives and Future Work

6.1.1 Magnitude Relativization

In the proposed F0 encoding scheme, pitch is encoded as a relative phe-
nomenon: each pitch value is defined in relation to the previous one. This
is in opposition the absolute description of static approaches, where each
pitch value is defined with respect to its absolute position within the fre-
quency domain.

One possible direction of research could be to explore ways of rela-
tivizing the description of pitch even further. In the proposed encoding
scheme, magnitude is defined in an absolute way, as each pitch interval is
pre-defined based on the underlying reference scale. Future research might
try to describe each magnitude value in relation to the previous one.

Describing the magnitude in a relative way would make the represen-
tation of pitch more invariant to dilation and compression, as the depth
of each fall and rise would be described relative the previous ones. In
the proposed methodology, the final predicted contour is shifted to match
the speaker’s register. If the magnitude is relativized, the final predicted
contour could also be adjusted based on a scaling factor to produce a tar-
get overall level of compression/dilation. This scaling factor describing
compression/dilation could be important to capture differences between
speakers, speaking styles, genres, etc.

6.1.2 Larger Speech Corpora

The proposed methodology has been implemented in the context of a deep
learning paradigm. DNN training is notoriously data-hungry and only re-
ally shines for problems where a vast amount of data is available. However,
the evaluation conducted in this thesis was based on a fairly small speech
corpus (3 h and 57 mins). In light of the small size of the training corpus,
there is only so much that any given DNN model might be able to capture.

An interesting question for future research would be whether the ob-
served trend for native speakers to prefer the proposed methodology would
be amplified if the model were trained on a much larger speech corpus. The
proposed approach was designed to make use of semantically richer infor-
mation by means of word embeddings.

However, because of the small size of the corpus, each lemma is observed
only a handful of times. Consequently, the DNN model might just be
unable to produce a meaningful representation for most lemmata. It would
be interesting to explore whether using vastly larger data sets would result
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in significant performance gains.

6.1.3 Wavelet Parametrization

Wavelet-based techniques have shown a lot of promise in the field of into-
nation modeling. However, as a number of researchers are already actively
working on it, this thesis was focused on experimenting on new untested
ideas. However, this does not entail that the proposed methodology and
wavelets are mutually exclusive. In fact, an interesting future direction of
research could be to explore ways of extending the proposed methodology
with wavelet parametrization.

One of the major issues of the proposed encoding scheme discussed here
was its vulnerability to exposure bias at generation time. My explanation
for this behavior is the fact that the encoding scheme is based on a chain of
prosodic commands, where the interpretation of each is dependent on the
previous one. Because of this property, generation errors can easily prop-
agate and accumulate along the generation chain. This issue was largely
addressed by using data regularization and data augmentation techniques.

However, wavelets might actually provide a better solution to this prob-
lem. By decomposing the contour into sub-components, more global phe-
nomena could be modeled with far fewer data points, which would entail
shorter generation chains and, conceivably, less exposure bias overall.

6.1.4 Evaluation Protocol

In this thesis, the proposed approach was evaluated with a dedicated evalu-
ation protocol. Because the evaluation was delivered over the internet, the
evaluation also had a number of constraints and limitations, which made
more qualitative analysis impossible. Despite its limitations, the evalu-
ation protocol was still able to show a strong preference for the natural
intonation. This validates the protocol as a preliminary evaluation step,
particularly for exploring completely novel and untested ideas.

However, the protocol could not explain the observed trend whereby
native subjects seem to prefer the proposed methodology. To better ad-
dress these questions, it would be important to design a more accurate
analysis methodology to expose crucial difference between systems in a
more qualitative fashion. A better evaluation protocol for intonation mod-
eling might involve providing more contextual information for the stimuli,
recording the subjects’ reactions upon listening to stimuli, and asking sub-
jects more detailed questions about why they prefer certain stimuli over
others, etc.



72 Chapter 6. Conclusions



Bibliography

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term depen-
dencies with gradient descent is difficult. IEEE Transactions on Neural
Networks, 5(2):157–166, DOI: 10.1109/72.279181.

Borden, G. J. (1980). Use of feedback in established and developing
speech. In Speech and Language, volume 3, pages 223–242. Elsevier,
DOI: 10.1016/b978-0-12-608603-4.50013-5.

Burnett, T. A., Freedland, M. B., Larson, C. R., and Hain, T. C.
(1998). Voice F0 responses to manipulations in pitch feedback. The
Journal of the Acoustical Society of America, 103(6):3153–3161, DOI:
10.1121/1.423073.

Campbell, N. and Black, A. W. (1997). Prosody and the selection of source
units for concatenative synthesis. In Progress in Speech Synthesis, pages
279–292. Springer New York, DOI: 10.1007/978-1-4612-1894-4 22.

Chiba, T. and Kajiyama, M. (1941). The vowel: its nature and structure.
Tokyo-Kaiseikan.
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Appendix A

Intonation Model Label
Description

The full set of input and output labels used for the training of the intona-
tion model are reported in table A.1.

Labels Description

Syllable
Boundary

Size: 3
Details: If the sampled point is between two syllables

1, 0 otherwise, <unk> when unknown.
Set: <unk>, 0, 1

Word
Boundary

Size: 3
Details: If the sampled point is between two words 1,

0 otherwise, <unk> when unknown.
Set: <unk>, 0, 1

Syllable
stress

Size: 5
Details: 0 for unstressed, 1 for main stress, 2 for sec-

ondary stress, <sil> for non-speech, , <unk>
when unknown

Set: <unk>, <sil>, 0, 1, 2

Onset and
Rhyme

Size: 4
Details: <sil> for non-speech, , <unk> when un-

known, O is the onset of the syllable, R is
the rhyme of the syllable, i.e., nucleus+coda

Set: <unk>, <sil>, O, R
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POS tags
Size: 66
Details: <sil> for non-speech, <unk> when unknown.

The other labels come from the nltk POS-
tagger, and for words such as “don’t” or
“I’m” the two POSs predicted by the tagger
were spliced together.

Set: <unk>, <sil>, NN, DT, VBD, IN, PRP, JJ, RB,
NNS, VB, CC, TO, PRP\$, VBN, VBP, VBG, VBZ,
CD, MD, RP, WRB, WP, NNPOS, JJR, PRPVBZ,
VBDRB, EX, JJS, MDRB, PRPVBP, PRPMD, VBPRB,
RBR, NNMD, WDT, PDT, UH, WPVBZ, JJMD,
EXVBZ, DTVBZ, VBMD, NNVBP, RBS, VBZRB,
WRBPOS, NNP, WDTVBZ, FW, JJVBP, VBPPOS,
VBVBP, RBVBZ, WDTPOS, WP\$, VBZVBP, JJPOS,
NNSPOS, WRBVBZ, VBPOS, VBPVBP, VBPMD,
EXMD, VBZMD, RBPOS

Punctuation
Before
Word

Size: 55
Details: 〈sil〉 for non-speech, ’〈unk〉’ when unknown.

The labels are created by taking whatever
punctuation characters are between the cur-
rent and the previous word. ”start” and
”end” markers were added at the beginning
and end of each utterance. Here the punctu-
ation symbols are separated by the semicolon
symbol.

Set: <unk> ; <sil> ; _ ; , ; start ; .end ; start"
; ," ; . ; !" ; ." ; end ; ."end ; ?" ; !end ;
-- ; !"end ; ! ; ?"end ; ?end ; ... ; ...end
; ? ; ’ ; ", ; " ; ( ; : ; ..." ; start... ;
..."end ; ,end ; ) ; "end ; ?", ; ).end ; :"
; !", ; ), ; ".end ; start( ; start"... ;
."" ; )end ; .) ; "( ; !". ; ?".end ; -"end ;
start’ ; -end ; .!end ; !",end ; ,"end

Punctuation
After Word

Size: Same as “Punctuation Before Word”
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Details: 〈sil〉 for non-speech, ’〈unk〉’ when unknown.
The labels are created by taking whatever
punctuation characters are between the cur-
rent and the subsequent word. ”start” and
”end” markers were added at the beginning
and end of each utterance. Here the punctu-
ation symbols are separated by the semicolon
symbol.

Set: Same as “Punctuation Before Word”

Lemmata
Size: See Appendix B
Details: See Appendix B
Set: See Appendix B

Sign
Size: 3
Details: Direction of pitch change
Set: -1, 0, 1

Magnitude
Size: 11
Details: Amount of pitch change
Set: 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55

Table A.1: Intonation model label description.
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Appendix B

Lemmata Label Description

The full set of lemmata labels amounts to 1937 distinct labels. The 〈sil〉
label is for non-speech, the ’〈unk〉’ label for unknown words. The lemmata
labels come from lemmatized version of the text tokens. To avoid useless
frequent words such as character names, we filter out the lemmata that
are not found in frequency lists of English based on much larger corpora1.
The full set of lemmata used in the training of the intonation model is the
following:

<unk>, <sil>, the, be, and, of, a, in, to, have, it, i, that, for, you,
he, with, on, do, say, this, they, at, but, we, his, from, not, by, she,
or, as, an, what, go, their, can, who, get, if, would, her, all, my, make,
about, know, will, up, one, time, there, year, so, think, i’m, when,
don’t, which, them, some, didn’t, me, people, take, out, into, just,
see, him, your, come, could, now, it’s, than, like, other, how, then,
its, our, two, more, these, want, way, look, first, also, new, because,
day, use, no, man, find, here, thing, give, many, well, only, tell, very,
even, back, any, good, woman, through, us, life, child, work, down, may,
after, should, call, world, over, school, still, wasn’t, try, last,
ask, you’re, need, too, feel, three, state, never, become, between,
high, really, something, most, another, much, that’s, family, own,
leave, put, old, while, mean, keep, student, why, let, great, same, big,
group, begin, seem, country, help, talk, where, i’ll, turn, problem,
every, start, hand, might, american, couldn’t, show, part, against,
place, such, again, few, case, week, company, each, can’t, right,
hear, question, during, play, run, small, number, off, always, move,

1The frequency list used to filter out words is derived from the The British National
Corpus (http://www.natcorp.ox.ac.uk/using/index.xml?ID=freq).

http://www.natcorp.ox.ac.uk/using/index.xml?ID=freq
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night, live, mr, point, believe, hold, today, bring, happen, next,
god, without, before, large, million, must, home, he’s, under, water,
room, write, mother, area, national, money, story, young, fact, month,
different, lot, book, eye, i’d, job, word, though, business, side,
kind, four, head, far, black, long, both, little, house, wouldn’t,
yes, since, i’ve, around, friend, important, father, sit, away, until,
power, hour, game, often, yet, line, end, among, ever, stand, bad,
lose, member, pay, law, meet, car, city, almost, include, continue,
set, later, name, five, once, white, least, learn, real, change, team,
minute, best, she’s, several, he’d, idea, body, nothing, ago, lead,
understand, watch, together, hadn’t, follow, parent, stop, face, sure,
already, speak, others, read, allow, add, office, spend, door, person,
create, war, doesn’t, history, party, within, grow, open, morning,
walk, low, win, girl, what’s, early, food, moment, himself, air, teacher,
force, offer, we’re, enough, across, although, remember, foot, second,
boy, anything, maybe, able, everything, love, music, appear, buy,
probably, human, wait, serve, market, die, send, expect, sense, build,
stay, fall, oh, nation, plan, cut, college, death, course, someone,
she’d, experience, behind, reach, local, kill, six, remain, won’t,
suggest, class, raise, care, perhaps, there’s, late, hard, field,
else, pass, sell, sometimes, along, isn’t, themselves, report, better,
decide, strong, possible, heart, leader, light, voice, wife, whole,
police, mind, finally, pull, return, free, price, less, explain, son,
hope, develop, position, carry, town, road, drive, arm, true, break,
thank, international, building, action, full, join, further, director,
view, player, agree, especially, record, pick, wear, paper, special,
space, ground, form, support, event, they’re, whose, matter, everyone,
you’ve, couple, hit, base, star, table, court, produce, eat, teach,
half, easy, cost, figure, street, itself, either, cover, quite, picture,
you’ll, clear, piece, land, doctor, wall, worker, news, movie, certain,
north, simply, third, catch, step, baby, type, attention, draw, goodbye,
tree, we’ll, red, nearly, choose, cause, hair, century, window, listen,
soon, chance, brother, period, summer, realize, hundred, plant, short,
letter, choice, single, rule, daughter, south, husband, floor, haven’t,
church, close, thousand, fire, future, wrong, involve, anyone, weren’t,
bank, myself, sport, board, officer, rest, performance, fight, throw,
top, quickly, past, goal, bed, order, author, fill, drop, blood, upon,
aren’t, push, store, reduce, sound, fine, near, page, enter, share,
poor, race, similar, hot, usually, dead, rise, animal, shoot, east,
save, seven, despite, eight, thus, happy, exactly, protect, approach,
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determine, size, dog, serious, ready, sign, thought, answer, you’d,
mile, left, lie, prepare, giggle, whatever, success, argue, cup, stuck,
character, recognize, wonder, attack, herself, television, box, hung,
training, pretty, everybody, lay, general, feeling, bore, message,
outside, arrive, forward, present, skill, sister, chuckle, stage,
ok, they’d, miss, sort, act, shouldn’t, ten, mumble, station, blue,
indeed, truth, song, check, leg, dark, rather, laugh, guess, prove,
hang, entire, rock, forget, claim, enjoy, cold, final, main, green,
card, above, seat, amaze, nice, trial, expert, spring, visit, imagine,
tonight, huge, ball, finish, yourself, charge, popular, onto, fly,
weapon, we’ve, pain, wide, shake, direction, chair, fish, camera,
perform, sadness, bit, suddenly, discover, production, treat, trip,
evening, inside, adult, worry, deep, edge, let’s, writer, trouble,
throughout, challenge, fear, shoulder, middle, sea, dream, beautiful,
instead, improve, stuff, somebody, hotel, soldier, heavy, bag, heat,
marriage, tough, sing, pattern, skin, owner, ahead, who’s, yard, beat,
finger, garden, notice, collection, partner, kitchen, shot, we’d,
wish, safe, demon, mouth, victim, newspaper, smile, score, audience,
rich, dinner, travel, none, front, born, wind, key, fast, alone, bird,
speech, southern, eventually, forest, global, restaurant, judge,
customer, corner, swirl, railway, version, safety, troop, numb, hurt,
track, strike, sky, nobody, powerful, perfect, nine, announce, touch,
please, completely, sleep, it’ll, replace, british, camp, brain, date,
battle, afternoon, african, sorry, fan, stick, easily, hole, growl,
chinese, ship, solution, stone, slowly, scale, university, introduce,
driver, he’ll, park, spot, thunder, boat, drink, sun, distance, wood,
handle, mountain, winter, village, refuse, roll, gain, hide, gold,
club, farm, shape, crowd, nervously, strength, band, horse, prison,
ride, guard, demand, deliver, wild, observe, advantage, hiss, quick,
pound, bright, guest, tiny, block, protection, sting, settle, hmm,
feed, collect, scowl, mostly, lesson, river, snort, count, marry,
tomorrow, path, ear, shop, folk, lift, competition, jump, gather, sob,
fit, cry, warm, insist, christmas, spread, soft, egg, murder, engage,
tug, coffee, speed, cross, anyway, saturday, female, wave, afraid,
she’ll, quarter, native, wonderful, suit, blow, destroy, adore, cook,
burn, shoe, hey, mistake, flutter, fake, clothes, quiet, dress, cool,
bone, chief, yawn, below, promise, they’ll, bus, dangerous, remind,
moral, united, victory, following, dread, medicine, tour, photo, grab,
hop, fair, pair, famous, exercise, knee, flower, hire, actor, birth,
search, tie, circle, bottom, island, train, lady, neck, damage, plastic,
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tall, plate, male, alive, football, chicken, army, claw, shut, map,
extra, danger, welcome, hasn’t, rain, nod, leaf, dry, russian, pool,
thorn, climb, sweet, engine, fourth, salt, metal, fat, ticket, lip,
dove, strange, disappear, lunch, moonlight, somewhere, farmer, sugar,
mock, explore, grumble, enemy, planet, twirl, invite, repeat, hum,
howl, carefully, married, weather, monday, bear, pocket, shiny, squeal,
surprise, pierce, breath, sight, crumble, straight, belong, okay,
photograph, empty, trail, somehow, organize, storm, thanks, expensive,
yellow, shadow, dance, ring, mark, bridge, sunday, rainbow, anymore,
thinking, tickle, visitor, angry, crew, accident, meal, capture, glide,
prefer, earth, chest, thick, cash, beauty, salty, link, root, nose,
declare, daddy, bottle, america, hardly, sick, defend, sheet, mix,
foul, slow, wake, brown, shirt, warn, petal, cat, ponder, guide, snow,
english, steal, they’ve, slip, meat, funny, soil, how’s, blame, due,
dart, crazy, chain, branch, relief, dad, fright, kick, ancient, fee,
hurl, golden, german, silence, bowl, bound, except, trickle, hall,
trust, row, afford, meanwhile, fix, coward, creak, dusty, bedroom,
secret, nurse, ache, opposition, anywhere, master, puff, everywhere,
wing, lord, pour, stir, unseen, terrible, gulp, grant, hero, cloud,
stretch, winner, pepper, bark, busy, tip, aim, shudder, vegetable,
dish, fun, afterwards, opening, tear, grimace, whistle, league, hat,
rush, tired, fry, luckily, apart, match, barely, beneath, beside,
proud, peek, enormous, wheel, narrow, cream, gate, solid, hill, noise,
grass, careful, celebrate, useful, crown, taste, milk, escape, cast,
inch, closely, convince, height, unusual, plenty, sharp, explanation,
roof, weak, signal, forever, association, twenty, knock, warning,
cheese, sir, bread, scream, excellent, deeply, lucky, drag, guilty,
arrest, wash, sad, post, steel, shout, violent, silent, suppose, tea,
joke, description, slide, wedding, opponent, lake, bend, shall, sand,
tale, arrange, reply, opposite, prince, lock, deserve, stream, sale,
pot, grand, mine, hello, spanish, knife, countryside, coat, potato,
urge, dust, breathe, ordinary, rarely, pack, numerous, iron, passion,
priest, amazing, advance, shock, kiss, cap, juice, whenever, boss,
king, boot, asian, bean, creature, usual, round, breakfast, luck,
smell, nervous, toss, bury, pray, journey, surely, tower, smoke, glance,
toy, prisoner, nearby, birthday, castle, perfectly, coast, silver,
flag, whisper, gentleman, moon, swing, dig, wet, pan, mayor, pink,
poem, grandmother, preparation, wooden, cricket, concert, jail, giant,
cake, pop, quietly, shell, onion, brand, phrase, snap, hip, killer,
gang, heaven, rough, yell, clock, chocolate, sweep, button, bell,
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darkness, clothing, fence, react, furniture, cheek, pant, stranger,
broken, apple, electric, bet, stupid, fortune, shopping, cousin, wipe,
slave, dirt, odd, originally, bullet, tight, chart, square, gently,
sensible, strip, friendly, deck, tournament, pride, bake, freeze,
platform, sink, overseas, thirty, crash, tap, swim, tire, fault, loose,
rice, rugby, stair, proof, adventure, tongue, shelter, rub, entrance,
fade, net, funeral, clever, squeeze, mask, stable, pretend, steady,
oven, nowhere, exciting, ill, adapt, honey, pale, musician, flee,
carriage, comfort, scared, plot, gesture, chapter, shade, tail, custom,
fifteen, soup, celebration, pile, closer, besides, meter, incredible,
fighter, fifty, rid, cow, trick, federation, duke, qualify, asleep,
barrel, medieval, bite, loud, glove, delay, stroke, badly, murmur,
urgent, cotton, float, orange, blade, cabin, desperate, yours, pitch,
brilliant, boom, hungry, penny, wander, shrug, flame, collapse, comedy,
twelve, brush, wise, running, basket, ah, fighting, ugly, worried,
ghost, magnificent, cooking, ban, awful, heading, lovely, specially,
tactic, blanket, mouse, chase, brick, cupboard, horror, recording,
pie, gaze, courage, swear, defeat, slice, dear, coal, uncle, captain,
sigh, sadly, dare, soccer, tunnel, toe, abroad, mess, shine, upset,
reward, gentle, log, invent, laughter, insect, interrupt, magic, hunt,
lightly, excited, dull, flour, bitter, bare, candy, pity, pleased,
beg, slam, melt, midnight, greet, corridor, march, snake, excuse, pig,
classical, flash, duck, roman, confuse, excitement, plead, downstairs,
trunk, swallow, fetch, trap, princess, inspector, plain, burst, cave,
monster, fancy, obstacle, rip, herb, delighted, flood, pen, nightmare,
arena, forgive, striker, drift, drain, warrior, mud, hurry, temple,
suck, broadcast, leap, pond, guilt, skirt, tune, railroad, horn, strain,
nonsense, pad, bat, bye, creep, clash, grateful, grip, supper, wherever,
forty, trait, turkey, reserve, beam, stitch, smash, shield, thumb,
horrible, ruler, twist, relieve, rebel, forehead, bounce, hook, inn,
fox, needle, scare, ankle, rescue, firmly, detective, rider, noon,
poster, crawl, handsome, sum, halt, hug, punish, doorway, happiness,
bearing, emperor, bath, purple, reluctant, thief, eating, stamp, saint,
brass, sharply, yacht, fossil, peel, lump, goodness, referee, dreadful,
candle, hut, servant, vanish, summon, polish, chop, silk, popularity,
fling, scary, trophy, angel, rage, precious, hidden, stumble, lonely,
dawn, silly, tide, kit, wicket, seal, gardener, fool, rear, softly,
burning, arouse, useless, tremble, cart, obey, chat, knight, o’clock,
weep, treasure, mist, deed, caravan, grief, rocket, tackle, bow, ours,
furious, bubble, barn, sword, tightly, protective, tuck, faint, queen,
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sail, stadium, bloody, nest, lane, steam, cage, stag, clutch, temper,
wolf, throne, grin, bug, bless, aunt, dive, mixed, grasp, calm, haul,
curl, ruin, silently, sunshine, bang, bush, polite, brow, miserable,
terrify, sheep, cab, teammate, stride, snatch, bee, loop, shiver,
whip, fury, boil, murderer, monk, hammer, despair, spectator, sock,
eleven, luxury, maid, gasp, enclose, balcony, sailor, surrender, grim,
rolling, spell, helmet, lion, glare, royal, panic, wicked, cliff,
ashamed, scramble, flick, angrily, amuse, torch, delicious, dragon,
exclaim, delightful, soap, hatred, noisy, punch, staircase, passing,
flourish, purse, shed, elephant, worm, cheat, triangle, fever, rabbit,
coin, stain, loudly, upstairs, shatter, bored, dough, stool, sniff,
foolish, stab, rude, flock, poison, moor, oak, eighth, herd, tiger,
stagger, toast, tease, roar, fairy, ray, scent, sack, nasty, sleeping,
nun, heap, fierce, rob, worse, passport, unfair, chunk, frog, disguise,
courtyard, ladder, jungle, invade, sip, skip, dip, feather, boast,
villager, clearing, glow, weed, kindly, attacker, chimney, witch,
lone, sneak, monkey, lick, disturb, trench, scar, kite, gloom, tumble,
cure, hunger, haunt, faster, gossip, spare, halfway, hen, boiler,
carrot, cling, blink, procession, plunge, vicious, steer, cheer, slump,
chew, magical, mole, feast, majesty, goalkeeper, scratch, awake, groan,
craftsman, meadow, lid, sprinkle, voyage, jewel, goat, bump, banana,
palace, fuss, ram, rotten, hover, beard, brake, moan, fur, brutal,
happily, soar, unhappy, straw, exhaust, globe, blast, overnight, fare,
screw, warmth, cruel, mansion, cottage, balloon, fantastic, frown,
ha, marble, defender, mutter, arrow, meantime, spy, brave, importantly,
sunny, straighten, delight, spine, fog, butterfly, kneel, scissors,
sharpen, saw, aboard, sow, sweeten, astonish, bravery, oar, merry,
berry, fatten, greed, conquer, messenger, tame, paw, liar, ripe, donkey,
pearl, handkerchief
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Segmental Synthesizer Label
Description

Labels Description

Current
Phone

Size: 45
Details: The phone currently observed. The phone

set is based on the OALD1, augmented with
an extra symbol for silence.

Set: @, @@, a, aa, ai, au, b, ch, d, dh, e, e@, ei, f,
g, h, i, i@, ii, jh, k, l, m, n, ng, o, oi, oo,
ou, p, r, s, sh, sil, t, th, u, u@, uh, uu, v,
w, y, z, zh

Previous
Phone

Size: Same as “Current Phone”
Details: The phone before the currently observed one.
Set: Same as “Current Phone”

Before
Previous
Phone

Size: Same as “Current Phone”
Details: The phone before the previously observed

one.
Set: Same as “Current Phone”

Next
Phone

Size: Same as “Current Phone”
Details: The phone after the currently observed one.
Set: Same as “Current Phone”

1 http://www.cstr.ed.ac.uk/downloads/festival/2.4/festlexOALD.tar.gz

http://www.cstr.ed.ac.uk/downloads/festival/2.4/festlex_OALD.tar.gz
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After Next
Phone

Size: Same as “Current Phone”
Details: The phone after the subsequent phone.
Set: Same as “Current Phone”

Phone
Duration

Size: 1
Details: Number of frames for each phone divided by

100 to make it fit approx. within a 0-1 range.
Set: n/a

Log2(F0)
Size: 1
Details: Interpolated log2(F0), divided by 10 to make

it fit approx. within 0-1 range.
Set: n/a

VUV
Size: 2
Details: 1 for voiced, 0 for otherwise.
Set: 0, 1

BAP
Size: 6
Details: 5 BAP coefficients and corresponding gain
Set: n/a

MGC
Size: 61
Details: 60 MGC coefficients and corresponding gain
Set: n/a

Table C.1: Segmental synthesizer label description.
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Evalutation Results

P. vs. M. P. vs. O. M. vs. O.

Proposed 93 41
Merlin 69 34
Original 117 131

Table D.1: Native speakers evaluation results.

P. vs. M. P. vs. O. M. vs. O.

Proposed 302 196
Merlin 279 172
Original 395 411

Table D.2: Non-native speakers evaluation results.

P. vs. M. P. vs. O. M. vs. O.

Proposed 57.4% 25.9%
Merlin 42.6% 20.6%
Original 74.1% 79.4%

Table D.3: Native speakers evaluation results (in percentage).
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P. vs. M. P. vs. O. M. vs. O.

Proposed 52% 33.2%
Merlin 48% 29.5%
Original 66.8% 70.5%

Table D.4: Non-native speakers evaluation results (in percentage).



Appendix E

The Implementation

The code is implemented in Python 3 and is organized into four reposito-
ries: two for the intonation model (one for training and one for inference)
and two for the segmental synthesizer (one for training and one for infer-
ence). The choice of splitting the project into smaller sub-projects was
made for the sake of modularity. For instance, some users might only be
interested in the intonation model, whereas others might only be interested
in the implementation of the segmental synthesizer to carry out their on re-
search on prosody. All four sub-projects are built by means of open-source
build automation system Gradle1.

E.1 Intonation Model Implementation

The implementation of the intonation model is hosted at the following
links: https://github.com/ftomb/intonationmodeltraining and https:

//github.com/ftomb/intonationmodelinference. The first link is for
the training of the model, the second to run inferences.

To run the implementation, you will first need the following external
installed tools:

• Java

• SoX2

In addition, you will need the following Python packages:

• tgt

• numpy

1https://gradle.org/
2http://sox.sourceforge.net/

https://github.com/ftomb/intonation_model_training
https://github.com/ftomb/intonation_model_inference
https://github.com/ftomb/intonation_model_inference
https://gradle.org/
http://sox.sourceforge.net/
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• nltk3

• scipy

• tensorflow4 (1.2 and above)
• pyworld

• pysptk

To train the model, you need to place the following three folders into
the (/src) directory of the first repository (https://github.com/ftomb/
intonationmodeltraining):

• txt (text files)
• wav (wave files)
• textgrid (textgrid files)

The textgrid files must contain two tiers: one for the words and one for
the phones. The name of the word tier must contain the string “words”
and, likewise, the name of the phone tier must contain the string “phones”.
If you strip the phones of the stress information for the alignment phase,
make sure you add the stress information back into the phone tier.

For the syllabifier to work, the phones in the textgrids much be based
on the phone set used in the OALD5 phone set. It is also possible to use
other phone sets such as the one the Carnegie Mellon University (CMU)
Pronunciation Dictionary is based on.

To use the CMU set, you will have to modify the phone_set_path

variable in the build.gradle script to point to the CMU file provided in
the /src directory. To use different phone sets or difference languages,
you will have to place a json file similar to the ones provided in the /src

directory, in which you provide the consonant, vowel and onset sets of the
language.

Next, you have to provide the number of epochs you want the model to
train for. The value can be adjusted by modifying the n_epochs variable
in the build.gradle script. For my implementation (3h and 57mins of
speech), 20 epochs were sufficient.

To start training the model, run the following command, where [number_epochs]
is replaced by the number of epochs you want to train the model for:

3In particular you need to make sure have the wordNetLemmatizer installed (http:
//www.nltk.org/modules/nltk/stem/wordnet.html), as well as the NLTK WordNet
corpus downloaded

4https://www.tensorflow.org/
5 http://www.cstr.ed.ac.uk/downloads/festival/2.4/festlexOALD.tar.gz

https://github.com/ftomb/intonation_model_training
https://github.com/ftomb/intonation_model_training
http://www.nltk.org/_modules/nltk/stem/wordnet.html
http://www.nltk.org/_modules/nltk/stem/wordnet.html
https://www.tensorflow.org/
http://www.cstr.ed.ac.uk/downloads/festival/2.4/festlex_OALD.tar.gz
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./gradlew synthesize_wav_[number_epochs]

This command will automatically train a model for the specified num-
ber of epochs. At each epoch a model will be saved. The model is marked
by a number that corresponds to the epoch it was produced at.

Then, for each trained model, the command will use a vocoder to syn-
thesize the entire validation set using the acoustic features from the orig-
inal recordings. As the synthesis of segmental features by means of DNN
is computationally expensive, for this validation stage the vocoder is used
instead. After the synthesis process is complete, you can listen to wave-
forms produced at each epoch, so that you can pick the model you deem
most accurate. Each waveform is marked at the end by the model num-
ber it was synthesized from. The wave files will be generated inside the
/build/33_synth_wav folder

Finally, you can collected the files you will need at inference time.
These include:

• /build/18_NN_dictionaries/sign_label_dictionary.json

• /build/18_NN_dictionaries/magn_label_dictionary.json

• /build/20_merged_dictionaries/inference_dictionaries.json

• /build/28_frozen_models/frozen_model_[chosen_number]

To run the inference, you need to place these files into a folder named
model. You also need to rename the frozen_model_[chosen_number] to
frozen_model (i.e., remove the epoch number marking it at the end). The
model folder must then be placed inside the (/src) directory of the second
repository (https://github.com/ftomb/intonationmodelinference). In
addition you have to place the following two folders with their correspond-
ing files inside the /src folder:

• txt (text files)
• textgrid (textgrid files)

Similarly to the training process, if you used a different phone set, you
need to modify the phone_set_path variable in the build.gradle script
to point to the file provided in the /src directory.

To start the inference, run the following command:

./gradlew convert_to_hertz

This command will automatically generate F0 contours for the provided
data. The F0 files will be generated inside the /build/32_synth_f0s

folder.

https://github.com/ftomb/intonation_model_inference
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E.2 Segmental Synthesizer Implementation

The implementation of the intonation model is hosted at the following
links: https://github.com/ftomb/segmentalsynthesizertraining and
https://github.com/ftomb/segmentalsynthesizerinference. The first
link is for the training of the model, the second to run inferences.

To run the implementation, you will first need the following external
installed tools:

• Java

• SoX6

In addition, you will need the following Python packages:

• tgt

• numpy

• tensorflow7 (1.2 and above)
• pyworld

• pysptk

To train the model, you need to place the following three folders into
the (/src) directory of the first repository (https://github.com/ftomb/
segmentalsynthesizertraining):

• wav (wave files)
• textgrid (textgrid files)

The textgrid files must contain phone tier. The name of the phone tier
must contain the string “phones”.

Next, you have to provide the number of epochs you want the model to
train for. The value can be adjusted by modifying the n_epochs variable
in the build.gradle script. For my implementation (3h and 57mins of
speech), 25 epochs were sufficient.

To start training the model, run the following command, where [number_epochs]
is replaced by the number of epochs you want to train the model for:

./gradlew synthesize_[number_epochs]

6http://sox.sourceforge.net/
7https://www.tensorflow.org/

https://github.com/ftomb/segmental_synthesizer_training
https://github.com/ftomb/segmental_synthesizer_inference
https://github.com/ftomb/segmental_synthesizer_training
https://github.com/ftomb/segmental_synthesizer_training
http://sox.sourceforge.net/
https://www.tensorflow.org/
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This command will automatically train a model for the specified num-
ber of epochs. At each epoch a model will be saved. The model is marked
by a number that corresponds to the epoch it was produced at.

Then, for each trained model, the command will use the DNN model to
synthesize the entire validation set. After the synthesis process is complete,
you can listen to waveforms produced at each epoch, so that you can pick
the model you deem most accurate. Each waveform is marked at the end
by the model number it was synthesized from.

Finally, you can collected the files you will need at inference time.
These include:

• /build/05_phone_dictionary/phone_dictionary.dict

• /build/07_input_mean_std/input_mean_std.json

• /build/08_output_mean_std/output_mean_std.json

• /build/13_frozen_models/frozen_model_[chosen_number]

To run the inference, you need to place these files into a folder named
model. You also need to rename the frozen_model_[chosen_number] to
frozen_model (i.e., remove the epoch number marking it at the end). The
model folder must then be placed inside the (/src) directory of the second
repository (https://github.com/ftomb/segmentalsynthesizerinference).
In addition you have place the following folder inside /src:

• textgrid (textgrid files)

To start the inference, run the following command:

./gradlew synthesize

This command will automatically generate wave files for the provided
data. The wave files will be generated inside the /build/wav folder.

https://github.com/ftomb/segmental_synthesizer_inference
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