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Abstract

With the goal of lifting model-based guidance from the propositional setting to first-
order logic, I have developed an approximation theorem proving approach based on
counterexample-guided abstraction refinement. A given clause set is transformed
into a simplified form where satisfiability is decidable. This approximation extends
the signature and preserves unsatisfiability: if the simplified clause set is satisfi-
able, so is the original clause set. A resolution refutation generated by a decision
procedure on the simplified clause set can then either be lifted to a refutation in
the original clause set, or it guides a refinement excluding the previously found
unliftable refutation. This way the approach is refutationally complete.

The monadic shallow linear Horn fragment, which is the initial target of the
approximation, is well-known to be decidable. It was a long standing open prob-
lem how to extend the fragment to the non-Horn case, preserving decidability, that
would, e.g., enable to express non-determinism in protocols. I have now proven de-
cidability of the non-Horn monadic shallow linear fragment via ordered resolution.

I further extend the clause language with a new type of constraints, called
straight dismatching constraints. The extended clause language is motivated by an
improved refinement of the approximation-refinement framework. All needed oper-
ations on straight dismatching constraints take linear or linear logarithmic time in
the size of the constraint. Ordered resolution with straight dismatching constraints
is sound and complete and the monadic shallow linear fragment with straight dis-
matching constraints is decidable.

I have implemented my approach based on the SPASS theorem prover. On cer-
tain satisfiable problems, the implementation shows the ability to beat established
provers such as SPASS, iProver, and Vampire.
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Zusammenfassung

Mit dem Ziel die Modell-basierten Methoden der Aussagenlogik auf die Logik
erster Stufe anzuwenden habe ich ein approximations Beweis-System entwickelt,
das auf der Idee der ’Gegenbeispiel-gelenkten Abstraktions-Verfeinerung’ beruht.

Eine gegebene Klausel-Menge wird zunächst in eine vereinfachte Form über-
setzt, in der die Erfüllbarkeit entscheidbar ist. Diese sogenannte Approximation
erweitert die Signatur, aber erhält Unerfüllbarkeit: Falls die approximierte Klauseln
erfüllbar sind, so ist es auch die ursprüngliche Menge. Ein Resolutions-Beweis,
der von einer Entscheidungs-Prozedur auf der Approximation erzeugt wurde, kann
dann entweder als Basis eines Unerfüllbarkeits Beweises der ursprünglichen Menge
dienen oder aber eine Verfeinerung der Approximation aufzeigen, welche den ge-
fundenen Beweis davon ausschließt noch einmal gefunden zu werden. Damit ist
der Ansatz widerlegungs vollständig.

Das monadisch flache lineare Horn Fragment, das als anfängliches Ziel der
Approximation dient, ist bereits seit längerem als entscheidbar bekannt. Es war ein
lange offenes Problem, wie man das Fragment auf den nicht-Horn Fall erweitern
kann ohne Entscheidbarkeit zu verlieren. Damit lässen sich unter anderem nicht-
deterministische Protokolle ausgedrücken. Ich habe nun die Entscheidbarkeit des
nicht-Horn monadisch flachen linearen Fragments mittels geordneter Resolution
bewiesen.

Zusätzlich habe ich die Klausel-Sprache durch eine neue Art von Constraints
erweitert, die ich als ’straight dismatching constraints’ bezeichne. Diese Erweiter-
ung ist dadurch motiviert dass sie eine Verbesserung der Approximations-Verfei-
nerung des vorgestellten Systems erlaubt. Alle benötigten Operationen auf diesen
Constraints nehmen lediglich lineare oder linear-logarithmische Zeit und Platz in
Anspruch. Ich zeige, dass geordnete Resolution mit Constraints korrekt und voll-
ständig ist und dass das monadische flache lineare Fragment mit Constraints ent-
scheidbar ist.

Ich habe meinen Ansatz auf dem Theorem-Beweiser SPASS basierend imple-
mentiert. Auf bestimmten erfüllbaren Problem schlägt meine Implementierung
sogar etablierte Beweiser wie SPASS, iProver und Vampire.
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Martin Bromberger.

I am grateful to the university for providing such a high quality computer science
faculty so close to my home, allowing me to stay near to my supportive family.

Moreover, I want to thank the anonymous reviewers of the publications under-
lying this thesis for their valuable input.

VII



VIII



Contents

1 Introduction 1
1.1 The Approximation-Refinement Loop . . . . . . . . . . . . . . . 2
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 9

3 Approximations on Clauses 13
3.1 Monadic Transformation . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Shallow Transformation . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Horn Transformation . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Under-Approximations . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Avoiding Redundant Inferences . . . . . . . . . . . . . . . . . . . 24

4 Monadic Shallow Linear Horn Approximation-Refinement 27
4.1 Approximation⇒APH . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Lifting of⇒APH . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Conflicting Core . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Lifting the Linear Transformation . . . . . . . . . . . . . 32
4.2.3 Lifting the Shallow Transformation . . . . . . . . . . . . 33
4.2.4 Lifting the Horn Transformation . . . . . . . . . . . . . . 34
4.2.5 Lifting the Monadic Transformation . . . . . . . . . . . . 35

4.3 Approximation-Refinement . . . . . . . . . . . . . . . . . . . . . 36

5 Monadic Shallow Linear Approximation-Refinement 41
5.1 Decidability of the MSL Fragment . . . . . . . . . . . . . . . . . 42
5.2 Approximation⇒AP . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Lifting of⇒AP and Approximation-Refinement . . . . . . . . . . 48

6 Straight Dismatching Constraint Approximation-Refinement 51
6.1 Dismatching Constraints . . . . . . . . . . . . . . . . . . . . . . 54

6.1.1 Emptiness Check . . . . . . . . . . . . . . . . . . . . . . 58
6.1.2 Operations on Constraints . . . . . . . . . . . . . . . . . 59

IX



6.1.3 Matching Constraints . . . . . . . . . . . . . . . . . . . . 66
6.2 Decidability of the MSL(SDC) Fragment . . . . . . . . . . . . . 69
6.3 Approximation⇒APC . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4 Lifting of⇒APC . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5 Approximation-Refinement . . . . . . . . . . . . . . . . . . . . . 84

6.5.1 Improvements to Refinement . . . . . . . . . . . . . . . . 89

7 Implementation 93
7.1 Approximation Details . . . . . . . . . . . . . . . . . . . . . . . 94

7.1.1 Shallow Transformation . . . . . . . . . . . . . . . . . . 94
7.1.2 Refined Approximation and Preprocessing . . . . . . . . 96
7.1.3 Preprocessing Reflexive Predicates . . . . . . . . . . . . . 97

7.2 SPASS-AR Details . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2.1 Constraint Implementation . . . . . . . . . . . . . . . . 99
7.2.2 Unique Shallow Clauses . . . . . . . . . . . . . . . . . . 100
7.2.3 Selection and Splitting . . . . . . . . . . . . . . . . . . . 100

7.3 Lifting Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.3.1 DAG Lifting . . . . . . . . . . . . . . . . . . . . . . . . 102
7.3.2 Dynamic Approximation Assignment . . . . . . . . . . . 106

7.4 Refinement Details . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.4.1 The Lift-Conflict Selection . . . . . . . . . . . . . . . . . 107
7.4.2 Soft Reset . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.4.3 Matching Constraints . . . . . . . . . . . . . . . . . . . . 109

7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8 Conclusion 117

A Example Saturations 127
A.1 Example 7.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
A.2 Example 7.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

X



List of Figures

5.1 Horn transformation example. . . . . . . . . . . . . . . . . . . . 42

6.1 LPO with constraints . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 The parent literal position relation . . . . . . . . . . . . . . . . . 80

7.1 Generalized Unification with straight dismatching constraints . . . 108

A.1 Example 7.5.1 for n = 11 in the TPTP format. . . . . . . . . . . . 129
A.2 Example 7.5.2 in the TPTP format. . . . . . . . . . . . . . . . . . 133

XI



XII



List of Tables

7.1 The non-equality problems of the TPTP v.7.0.0 . . . . . . . . . . 114
7.2 The MSL Approximation Distance Table . . . . . . . . . . . . . . 115

XIII



XIV



Chapter 1

Introduction

The Inst-Gen calculus by Ganzinger and Korovin [27] and its implementation in
iProver has shown to be very successful. The calculus is based on an under-
approximation - instantiation refinement loop. A given first-order clause set is
under-approximated by finite grounding and afterwards a SAT-solver is used to test
unsatisfiability. If the ground clause set is unsatisfiable then a refutation for the orig-
inal clause set is found. If it is satisfiable, the model generated by the SAT-solver is
typically not a model for the original clause set. If it is not, it is used to instantiate
the original clause such that the found model is ruled out for the future.

In this thesis, I define an approximation-based first-order theorem proving ap-
proach based on counterexample-guided abstraction refinement that is dual to the
Inst-Gen calculus. A given first-order clause set N is step by step transformed into
an over-approximation Nk in a decidable fragment of first-order logic. That means
if Nk is satisfiable so is N. However, if Nk is unsatisfiable, then it is not known
whether N in unsatisfiable, in general. In that case, the approximation provides
a lifting terminology for the found refutation. Each step of the transformation is
considered separately to attempt to transform the proof of unsatisfiability for Nk

to a proof of unsatisfiability for N. If this fails, the cause is analysed to refine the
original clause set such that the found refutation is ruled out for the future and the
procedure repeats.

As a starting point of the approach, I consider first-order logic without equality
and use the Monadic Shallow Linear Horn theory [45] (MSLH) as the decidable
fragment of the approximation. The fragment consists of first-order clauses of
the form Γ → P(t) where all predicates are monadic and t is either a variable or
a linear term f (x1, . . . , xn). The atoms in Γ, denoting negative literals, are not
subject to any restriction. The transformation into this fragment is polynomial in
the size of N and constitutes an over-approximation. However, using the MSLH
fragment, the lifting and refinement were quite expensive. Therefore, I developed
two new decidable fragments based on MSLH that alleviate the problems. The first
improvement over MSLH is the removal of the restriction to Horn clauses, which
lead to the MSL fragment. This avoids an exponential lifting step caused by the
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transformation into Horn clauses. The second change is the introduction of straight
dismatching constraints to MSL, called the MSL(SDC) fragment. With MSL(SDC)
the refinement phase is simplified from creating quadratically many instantiations
to just two instead. The MSLH fragment and its successors properly include first-
order ground logic, but are also expressive enough to represent minimal infinite
Herbrand models.

In addition to developing a new proof method for first-order logic this consti-
tutes my second motivation for studying the new calculus and its approximation.
It is meanwhile accepted that a model-based guidance can significantly improve
an automated reasoning calculus. The propositional CDCL calculus [32] is one
prominent example for this insight. In first-order logic, (partial) model operators
typically generate inductive models for which almost all interesting properties be-
come undecidable, in general. One way out of this problem is to generate a model
for an approximated clause set, such that important properties with respect to the
original clause set are preserved. In the case of my calculus and approximation, a
found model can be effectively translated into a model for the original clause set.
So my result is also a first step towards model-based guidance in first-order logic
automated reasoning.

1.1 The Approximation-Refinement Loop

The central method introduced in this thesis is the approximation-refinement loop,
where the four steps of approximating, solving, lifting, and refining are repeated
until either the approximation is satisfiable or an unsatisfiability proof of the original
set is found.

Starting from a set N of clauses, first, the clauses are transformed to a set N′:
N ⇒∗App N′. For the loop, the transformation requires the properties that N′ belongs
to a decidable fragment and if N′ is satisfiable so is N.

If N′ is unsatisfiable, then it is not known whether N in unsatisfiable, in gen-
eral. However, there necessarily exists a resolution refutation for N′, which I can
potentially lift into a proof of unsatisfiability of N by following⇒∗App in reverse.

To avoid the complex DAG structure of resolution refutations, I instead intro-
duce the notion of a conflicting core of a clause set N. Given an unsatisfiable clause
set N a conflicting core of N is a clause set N⊥ such that for each clause C′ ∈ N⊥

there is a clause C ∈ N with Cσ = C′ for some σ and N⊥τ is unsatisfiable for
any substitution τ. Thus, conflicting cores are finite, unsatisfiable clause sets where
the remaining variables are used as global parameters such that any instantiation
preserves unsatisfiability. Conflicting cores can be effectively generated out of a
resolution refutation.

Now given an approximation N = N0 ⇒
k
App Nk and a conflicting core N⊥k of

Nk I proceed as follows: if the conflicting core N⊥k can be lifted to a conflicting
core N⊥k−1 of Nk−1 by undoing the approximation step Nk−1 ⇒App Nk, I continue
with N = N0 ⇒

k−1
App Nk−1. If I arrive this way at N = N0, unsatisfiability of N
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is shown. If the approximation step fails, then I refine N and eventually Nk−1 via
instantiation, such that the unliftable conflicting core can no longer be generated. I
show that the approach is sound and complete: a lifted conflicting core obviously
shows unsatisfiability of N and if N has a conflicting core, then it can be found and
lifted by the procedure.

The overall approach is parametric in the actual reasoning procedure for the
decidable fragment the clause set Nk eventually belongs to. It relies on the properties
of the approximation relation⇒App.

For example, consider the first-order Horn clauses, here written as an implica-
tion with a conjunction of negative literals on the left and a disjunction of positive
literals on the right,

S (x) → P(x, g(x))
→ S (a)
→ S (b)
→ S (g(x))

P(a, g(b)) →

P(g(x), g(g(x))) →

that are approximated into the MSLH theory

S (x),R(y) → T ( fP(x, y))
S (x) → R(g(x))

→ S (a)
→ S (b)
→ S (g(x))

T ( fP(a, g(b))) →

T ( fP(g(x), g(g(x)))) →

where the relation P is encoded by the function fP and the non-shallow sub-term
g(x) in the first clause is extracted by the introduction of the additional predicate R.
The approximated clause set has two possible refutations: one using ¬T ( fP(a, g(b)))
and the second using ¬T ( fP(g(x), g(g(x)))) plus the rest of the clauses, respectively.

For the first refutation the conflicting core is

S (a),R(g(b)) → T ( fP(a, g(b)))
S (b) → R(g(b))

→ S (a)
→ S (b)

T ( fP(a, g(b))) →

In this case lifting fails because where in the original clause S (x)→ P(x, g(x))
the variable x is used, the conflicting core clause S (a),R(g(b)) → T ( fP(a, g(b)))
instantiates both a and b. Therefore the original clause set is refined by replacing
the first clause with
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S (a) → P(a, g(a))
S (b) → P(b, g(b)) and

S (g(x)) → P(g(x), g(g(x))).

The approximation of the refined clause set

S (a) → P(a, g(a))
S (b) → P(b, g(b))

S (g(x)) → P(g(x), g(g(x)))
S (g(x)),R(y) → T ( fP(g(x), y))

R′(y) → R(g(y))
S (g(x)) → R′(g(x))

→ S (a)
→ S (b)
→ S (g(x))

T ( fP(a, g(b))) →

T ( fP(g(x), g(g(x)))) →

does no longer enable a refutation using ¬T ( fP(a, g(b))). Therefore, the refuta-
tion using ¬T ( fP(g(x), g(g(x)))) is found and lifted instead.

1.2 Related Work

The initial starting point of this work was based on [45] which shows decidability
of the MSLH fragment, referred to as a “monadic Horn theory where all positive
literals are linear and shallow”. To avoid exponential and quadratic blow-ups in the
lifting and refinement phases, the proofs in Sections 5.1 and 6.2 extend this result
to non-Horn clauses combined with the notion of dismatching constraints, which
are a restricted version of the dismatching constraints introduced in [1].

A fragment equivalent to MSLH, calledH1, was independently described and
proven decidable in [31]. A monadic Horn clause P1(t1), . . . , Pn(tn) → E is inH1
if E is linear and for any two variables x and y that appear in E and together in
some Pi(ti), x and y are arguments of the same subterm in E. While H1 is not
positive shallow, the condition on its variables guarantees that an H1-clause can
be transformed into an equivalent set of MSLH clauses using Shallow transfor-
mation. Their approach is based on automata transformations as opposed to my
superposition approach. On one hand, this allowedH1 to be successfully extended
with simple, path and homomorphism disequalities in [38, 39, 35], respectively.
On the other hand, the superposition approach allowed the inclusion of non-Horn
clause and dismatching constraints into the fragment. Neither of these extension
are compatible in an apparent way with the respective other approach.

In [19], the decidability ofH1 is also shown using superposition in a very simi-
lar way to [45]. [19] achieves single exponential time complexity as compared to
the double exponential complexity of [45] using an additional rule, called ε-split-
ting, that replaces a clause P1(x), . . . , Pn(x), Γ→ E with P1(x), . . . , Pn(x)→ P and
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P,Γ → E where P is a fresh predicate and x does not appear in Γ → E. In prac-
tice, however, the first-order prover SPASS [46] is able to apply general splitting
internally, which includes ε-splitting.

In ”A theory of abstractions” [18] Giunchiglia and Walsh define a general frame-
work to classify and compare approximations, which are here called abstractions.
They informally define abstractions as ”the process of mapping a representations
of a problem” that ”helps deal with the problem in the original search space by pre-
serving certain desirable properties“ and ”is simpler to handle“. In their framework
an abstraction is a mapping between formal systems, i.e., a triple of a language,
axioms and deduction rules, which satisfy one of the following conditions: An
increasing abstraction (TI) f maps theorems only to theorems, i.e., if α is a theo-
rem, then f (α) is also a theorem, while a decreasing abstraction (TD) maps only
theorems to theorems, i.e., if f (α) is a theorem, then α was also a theorem. Further-
more, they define dual definitions for refutations, where not theorems but formulas
that make a formal system inconsistent are considered. An increasing abstraction
(NTI) then maps inconsistent formulas only to inconsistent formulas and vice versa
for decreasing abstractions (NTD). With respect to their notions the approxima-
tion described in this paper is an abstraction where the desirable property is the
over-approximation and the decidability of the fragment makes it simpler to handle.
More specifically ⇒AP is an NTI abstraction for refutation systems, i.e., it is an
abstraction that preserves inconsistency of the original.

In [18], they list several examples of abstractions such as ABSTRIPS by Sac-
erdoti [37], a GPS planning method by Newell and Simon [30], Plaisted’s theory
of abstractions [34], propositional abstractions exemplified by Giunchiglia [17],
predicate abstractions by Plaisted [34] and Tenenberg [42], domain abstractions by
Hobbs [22] and Imielinski [23] and ground abstractions introduced by Plaisted [34].
In [34], three classes of abstractions are defined. The first two are ordinary and
weak abstractions, which share the condition that if C subsumes D then every ab-
straction of D is subsumed by some abstraction of C. However, my approximations
fall in neither class as they violate this condition via the Shallow transformation.
For example Q(x) → P subsumes Q(x) → Q( f ( f (x))), P; but the shallow approx-
imations S (x′) → Q( f (x′)), P and Q(x) → S ( f (x)) of Q(x) → Q( f ( f (x))), P are
not subsumed by any approximation of Q(x) → P. The third class are generaliza-
tion functions, which do not change the problem but abstract the resolution rule of
inference.

Another approximation framework is defined by Kautz and Selman [25], con-
sisting of a tuple 〈L, |=,LS ,LT ,LQ, fL, fU〉 called a knowledge compilation system.
L is the main logic, which is first-order logic without equality in my case. fL and
fU , which they call lower and upper bounds, are over- and under-approximations
that translate sets in the input fragment LS into series of approximations with in-
creasing precision in the target fragment LT . For a query α in the query language
LQ and set N ∈ LS , it holds that if fL(N) 6|= α then N 6|= α and if fU(N) |= α then
N |= α. My approximation-refinement approach can be considered a knowledge
compilation system where LT is the MSL fragment, LQ contains just the empty
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clause �, and fL is the approximation⇒AP with successive refinements. While I do
not use one, I can, following the example in [25], also remove all non-MSL clauses
from a given input to create an under-approximation.

An abstraction-refinement framework intended for large theories is introduced
by Hernandez and Korovin in [21]. In the context of this framework,⇒App would
be called a strengthening abstract function. While they also include under-approxi-
mation, their variation on lifting and refinement using a concretisation function is
weaker than mine. It has to refine all abstraction clauses involved in the proof since
it is unable to extract a singular cause.

Abstractions close to⇒AP are mentioned in [20] and [16]. Goubault-Larrecq
and Parrennes model C code with Horn clauses [20]. By using rules similar to⇒LI
and⇒SH, they abstract these clauses intoH1 and then use automated reasoning to
check desirable properties. Since most model clauses are already inH1, the abstrac-
tion is reasonably close to the original problem. Fruhwith et al. use approximation
to type check logic programs [16]. A Horn clause P1(t1), . . . , Pm(tm) → P(t) rep-
resenting a logic rule is approximated by clauses X1(x1

1), . . . , Xk(xl
k)→ type( fp(t̃))

and type( fp1(t1)), . . . , type( fpm(tm))→ Xi(xi), where x1
i , . . . , x

n
i are the occurrences

of variable xi in P(t) and t̃ is the linearisation of t replacing each xi by the respective
x j

i . This is approximation closely resembles a combination of Monadic and Linear
transformation, where the approximation is again inH1.

My approach of using an approximation-refinement loop, where the refinement
is based on the unsatisfiability proof of the approximation, closely resembles the
counterexample-guided abstraction refinement framework (CEGAR) described in
[12]. There, CEGAR is applied to CTL based automata, where the automaton
is the synthesis of a model and a negated property. An accepting trace of this
automaton then constitutes a counterexample of the property. Since, in general, the
automaton cannot be efficiently checked, a simplified abstraction is used instead.
These, however, can introduce ”spurious“ counterexamples that are then targeted by
refinement. Counterexamples correspond to conflicting cores in my framework and
spurious counterexamples are the equivalent of unliftable conflicting cores. The
CEGAR framework has been applied to numerous problems, however, generally
only in the context of model checking [7, 8, 15, 28].

An application of CEGAR close to this paper is found in the theorem prover
iProver. iProver uses the Inst-Gen [27] method, where a first-order problem is
abstracted with a SAT problem by replacing every variable with a (fresh) constant c.
The abstraction is solved by a SAT solver and a model is lifted to the original clause
set by equating abstracted terms with the set they represent, e.g., if P(c) is true in
a model returned by the SAT solver, then all instantiations of the original P(x) are
considered true as well. Inst-Gen abstracts using an under-approximation of the
original clause set. In case the lifting of the satisfying model is inconsistent, the
clash is resolved by appropriately instantiating the involved clauses, which mimics
an inference step. This is the dual of my method with the roles of satisfiability and
unsatisfiability interchanged. A further difference, however, is that Inst-Gen only
finds finite models after approximation, while my approximation also discovers
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infinite Herbrand models. For example the simple problem

→ P(a)
P( f (a)) →

P(x) → P( f ( f (x)))
P( f ( f (x))) → P(x)

has the satisfying Herbrand model where P is the set of even numbers. However,
iProver’s approximation can never return such a model as any P( f n(c)) will nec-
essarily abstract both true and false atoms and therefore instantiate new clauses
infinitely. My method on the other hand will produce the approximation

→ P(a)
P( f (a)) →

S (y) → P( f (y))
P(x) → S ( f (x))

P( f ( f (x))) → P(x)

which is saturated after inferring ¬S (a) from clauses two and three. However, Inst-
Gen can easily solve clause sets such as {P(y, g(y))→; → P(x, x)} that my method
struggles with (see Section 6.5.1).

1.3 Main Contributions

This thesis contributes to both theory and practice of automated first-order reasoning.
The main contributions can be summarized as follows:

Chapter 3: First-Order Over-Approximations I examine a number of transfor-
mations on first-order clauses and their properties; especially with respect to model
approximation.

Chapter 4: Approximation-Refinement A novel approximation approach for
first-order theorem proving based on counter-example guided abstraction refine-
ment. I show that this approach can be applied to create a sound and complete
calculus. I further incrementally improve this calculus to address practical con-
cerns.

Chapter 5: Decidability of the Monadic Shallow Linear Fragment As an im-
provement in the lifting phase of the Approximation-Refinement, I define a new
decidable fragment of first-order logic by extending the decision procedure of the
monadic, shallow, linear, Horn fragment to non-Horn clauses.
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Chapter 6: Straight Dismatching Constraints I introduce a new subset of dis-
matching constraints. These straight dismatching constraints are compatible with
the decision procedure of the MSL fragment and they further have a polynomial-
time satisfiability check as opposed to the exponential-time cost of general dismatch-
ing constraints. Nevertheless, they still allow an improvement of the Approximation-
Refinement’s refinement phase from a quadratic to a constant size operation.

Chapter 7: Implementation I present a prototype implementation which incor-
porates all three of my theoretical contributions. Although it cannot compete with
existing (portfolio) solvers, there are certain problem types only my implementation
can solve.
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Chapter 2

Preliminaries

I consider a standard first-order language where letters v,w, x, y, z denote vari-
ables, f , g, h functions, a, b, c constants, s, t terms, p, q, r positions and Greek letters
σ, τ, ρ, δ are used for substitutions. S , P,Q,R denote predicates, ≈ denotes equality,
A, B atoms, E, L literals, C,D clauses, and N clause sets. L is the complement
of L. The signature Σ = (F ,P) consists of two disjoint, non-empty, in general
infinite sets of function and predicate symbols F and P, respectively. The set of
all terms over the set of variablesV is T (F ,V). I use f (t) and f (x) as shorthand
for the terms f (t1, . . . , tn) and f (x1, . . . , xn) where n is the arity of f . If there are
no variables, then terms, literals and clauses are called ground, respectively. A
substitution σ is denoted by pairs {x 7→ t} and its update at x by σ[x 7→ t]. A
substitution σ is a grounding substitution for a set of variables V if xσ is ground
for every variable x ∈ V. The set of all ground clauses of a clause set N is defined
as G(N) B {Cσ | C ∈ N and Cσ is ground}.

The set of free variables of an atom A (term t) denoted by vars(A) (vars(t)). A
position is a sequence of positive integers, where ε denotes the empty position. As
usual t|p = s denotes the subterm s of t at position p, which I also write as t[s]p, and
t[p/s′] then denotes the replacement of s with s′ in t at position p. These notions
are extended to literals and multiple positions.

A predicate with exactly one argument is called monadic. A term is complex
if it is not a variable and shallow if it has at most depth one. It is called linear
if there are no duplicate variable occurrences. A literal, where every argument
term is shallow, is also called shallow. A term f (s1, . . . , sn) is called straight,
if f (s1, . . . , sn) is linear and all arguments are variables except for at most one
straight argument term si. For example, the terms f (x, f (a, y)) and f (x, f (y, z)) are
straight, while f (x, f (a, b)) is not. The term skeleton skt(t) of a term t is recursively
defined by the following two rules: (1) skt(x) = x′, where x′ is a fresh variable
and (2) skt( f (s1, . . . , sn)) = f (skt(s1), . . . , skt(sn)). Informally, the skt(t) is the
linearisation of t, e.g., skt( f (x, g(x, x))) = f (x, g(y, z)).

A clause is a multiset of literals which I write as an implication Γ→ ∆ where
the atoms in the multiset ∆ (the succedent) denote the positive literals and the
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atoms in the multiset Γ (the antecedent) the negative literals. In this notation,
a clause E1 ∨ ¬E2 ∨ ¬E3 ∨ E4 ∨ E5, in disjunctive normal form, is written as
E2, E3 → E1, E4, E5. I write � for the empty clause. If two clauses C and D are
equal up to α-renaming, D is called a variant of C and vice-versa. If Γ is empty I
omit→, e.g., I can write P(x) as an alternative of→ P(x) whereas if ∆ is empty
→ is always shown. I abbreviate disjoint set union with sequencing, for example, I
write Γ, Γ′ → ∆, L instead of Γ ∪ Γ′ → ∆ ∪ {L}. A clause E, E, Γ→ ∆ is equivalent
to E,Γ → ∆ and I call them equal modulo duplicate literal elimination. If every
term in ∆ is shallow, the clause is called positive shallow. If all atoms in ∆ are
linear and variable disjoint, the clause is called positive linear. A clause Γ → ∆

is called an MSL clause, if it is (i) positive shallow and linear, (ii) all occurring
predicates are monadic, (iii) no equations occur in ∆, and (iv) no equations occur
in Γ or Γ = {s ≈ t} and ∆ is empty where s and t are not unifiable. The first-order
fragment consisting of MSL clauses I call MSL. Clauses Γ, s ≈ t → ∆ where
Γ, ∆ are non-empty and s, t are not unifiable could be added to the MSL fragment
without changing any of the results. Considering a superposition calculus, it would
select s ≈ t. Since the two terms are not unifiable, no inference will take place on
such a clause and the clause will not contribute to the model operator or resolution
refutation. In this sense such clauses do not increase the expressiveness of the
fragment.

An atom ordering ≺ is an irreflexive, well-founded, total ordering on ground
atoms. Any atom ordering ≺ is lifted to literals by representing A and ¬A as
multisets {A} and {A, A}, respectively. The multiset extension of the literal ordering
induces an ordering on ground clauses. The clause ordering is compatible with the
atom ordering; if the maximal atom in C is greater than the maximal atom in D
then D ≺ C. I use ≺ simultaneously to denote an atom ordering and its multiset,
literal, and clause extensions. For a ground clause set N and clause C, the set
N≺C = {D ∈ N | D ≺ C} denotes the clauses of N smaller than C. A literal A is
called [strictly] maximal in a clause C ∨ A if and only if there exists a grounding
substitution σ such that for all literals B in C, Bσ � Aσ [Bσ ≺ Aσ].

A precedence ≺ is a strict total ordering on the symbols in F ∪ P. The lexi-
cographic path ordering ≺lpo (LPO) is a term ordering induced by a precedence
≺ and defined by: t ≺lpo s iff (1) t ∈ var(s) and t , s, or (2) s = f (s1, . . . , sm),
t = g(t1, . . . , tn), and (a) t ≺lpo si for some i, or (b) g ≺ f and t j ≺lpo s for all j, or
(c) f = g, t j ≺lpo S for all j, and (s1, . . . , sm)(≺lpo)lex(t1, . . . , tn). The LPO extends
to an atom ordering ≺lpo in the usual way.

A Herbrand interpretation I is a - possibly infinite - set of ground atoms. A
ground atom A is called true in I if A ∈ I and false, otherwise. I is said to satisfy
a ground clause C = Γ → ∆, denoted by I |= C, if ∆ ∩ I , ∅ or Γ * I. A
non-ground clause C is satisfied by I if I |= Cσ for every grounding substitution
σ. A Herbrand interpretation I is called a Herbrand model of N, I |= N, if I |= C
for every C ∈ N. A Herbrand model I of N is considered minimal with respect to
set inclusion, i.e., if there is no Herbrand model I′ with I′ ⊂ I and I′ |= N, then I
is minimal. A set of clauses N is satisfiable, if there exists a model that satisfies N.
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Otherwise, the set is unsatisfiable and in that case, any finite subset of G(N) that is
unsatisfiable is called an unsatisfiability core. An unsatisfiability core is considered
minimal if none of its strict subsets are unsatisfiable.

The partial model I≺N of a clause set N under a given ordering ≺ is a specific
Herbrand interpretation defined by the rules in Definition 2.0.1[46]. The smallest
ground clause C ∈ G(N) such that I≺N 6|= C, if it exists, is called the minimal false
clause of N.

Definition 2.0.1 (Partial Model Construction). Given a clause set N and an order-
ing ≺, the partial model I≺N for N is constructed inductively as follows:

I≺C B
⋃

D∈G(N)≺C

δD

δD B

{
{A} if D = Γ→ ∆, A; A strictly maximal; and I≺D 6|= D
∅ otherwise

I≺N B
⋃

C∈G(N)

δC

Clauses C with δC , ∅ are called productive.

A clause C is called redundant in a clause set N if for every D ∈ G(C), there
exist D1, . . . ,Dn in G(N)≺D such that D1, . . . ,Dn |= D. A clause C′ is called a
condensation of C if C′ ⊂ C and there exists a substitution σ such that, for all
L ∈ C there is an L′ ∈ C′ with Lσ = L′.

Ordered Resolution with selection is the calculus defined by the resolution and
factoring inferences (Definitions 2.0.2 and 2.0.3). A selection function sel assigns
to a clause Γ → ∆ a possibly empty subset of Γ. For a clause C and selection
function sel, the literals in sel(C) are called selected.

Definition 2.0.2 (Ordered Resolution with Selection).

Γ1 → ∆1, A Γ2, B→ ∆2

(Γ1,Γ2 → ∆1,∆2)σ
, if

1. σ = mgu(A, B);

2. Aσ is strictly maximal in Γ1 → ∆1, A)σ and sel(Γ1 → ∆1, A) = ∅;

3. B ∈ sel(Γ2, B→ ∆2)
or sel(Γ2, B→ ∆2) = ∅ and ¬Bσ maximal in (Γ2, B→ ∆2)σ.

Definition 2.0.3 (Ordered Factoring with Selection).

Γ→ ∆, A, B
(Γ→ ∆, A)σ

, if

1. σ = mgu(A, B);
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2. sel(Γ→ ∆, A, B) = ∅;

3. Aσ is maximal in (Γ→ ∆, A, B)σ.

A clause set N is called saturated up to redundancy (by ordered resolution
with selection), if for every inference between clauses in N the result R is either
redundant in N or G(R) ⊆ G(N). Ordered Resolution with selection is sound and
complete [2], i.e., A clause set N, that is saturated up to redundancy, is unsatisfiable,
if and only if � ∈ N. As a consequence, if N is unsatisfiable there exists a resolution
refutation of N that produces the empty clause.

Definition 2.0.4 (Resolution Refutation). A resolution refutation R of a clause set
N is a list of clauses, where the last clause is the empty clause �. Each clause C in
R is annotated as either an input, factoring, or resolution clause. Furthermore, a
resolution refutation R satisfies all of the following three properties:

(R1) If R = R1,CInput,R2, then C is a variant of a clause in N.

(R2) If R = R1,CFac,R2, then C is a factor of a clause in R1.

(R3) If R = R1,CRes,R2, then C is a resolvent of two clauses in R1.

Note that as a consequence of (R1)-(R3), N |= C for any clause C in a resolution
refutation R of N, including the empty clause at the end of R. The list starting with
the clauses in N and extended with every inference made by a resolution solver is
a resolution refutation. Additionally, a resolution refutation can be represented as
a resolution refutation tree. The empty clause is the root, input clauses are leaves,
and the factoring and resolution clauses are internal nodes with their parent clauses
as children.

Consider as an example the resolution refutation

[1 : Input] → P(x, x)

[2 : Input] P(a, y)→ Q(y, b)

[3 : Input] Q(a, x)→

[4 : Res : 1, 2] → Q(a, b)

[5 : Res : 4, 3] �

The corresponding resolution refutation tree is written as

→ P(x, x) P(a, y)→ Q(y, b)
→ Q(a, b) Q(a, x)→

�
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Chapter 3

Approximations on Clauses

In this chapter I introduce several transformations on first-order clauses and discuss
their properties. In particular, how the transformations affect satisfiability and
models of the clause set after transformation. I also call transformations with the
following desired properties approximations.

Definition 3.0.5 (Approximation). Let N ⇒ N′ be a relation on the clause sets,

(1) ⇒ is called an over-approximation
if satisfiability of N′ implies satisfiability of N,

(2) ⇒ is called an under-approximation
if unsatisfiability of N′ implies unsatisfiability of N.

(3) ⇒ is called satisfiability equivalent
if⇒ is both an over- and under-approximation.

In either case N′ is called an approximation of N.

In the following sections, most transformations are defined with rules of the
following form where one clause from the original set N is replaced by one or more
new clauses.

Rule N ∪̇ {C} ⇒R N ∪ {C1, . . . ,Cn}

with some conditions on C and C1; . . . ; Cn.

In this case, C1; . . . ; Cn are called the approximation clauses of the approxi-
mated or parent clause C. In case of a series of transformations N0 ⇒

k
R Nk, the

transitive closure of the parent relation between approximation and approximated
clauses defines the so-called ancestor relation, where each approximation clause in
Nk has a unique ancestor in N0.
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3.1 Monadic Transformation

The first transformation is called the Monadic transformation. As its name suggests
it creates a monadic clause set by removing every occurrence of non-monadic
predicates from the clause set. This can be achieved in several ways, for example,
simply removing all but one argument for each non-monadic predicate. I, however,
take an approach using term-encoding, which is satisfiability equivalent.

Starting from a clause set N the Monadic transformation is parametrized by a
single monadic projection predicate T fresh to N and for each non-monadic predi-
cate P a separate projection function fP which is also fresh to N.

Definition 3.1.1 (Monadic Projection). Given a non-monadic predicate P, a monadic
projection predicate T , and a projection function fP, define the injective function
µT

P on atoms as µT
P(P(t)) B T ( fp(t)) and µT

P(Q(s)) B Q(s) for P , Q. The func-
tion is extended to clauses, clause sets and interpretations. Given a signature Σ

with non-monadic predicates P1, . . . , Pn, define µT
Σ

(N) B µT
P1

(. . . (µT
Pn

(N)) . . .) and
µT

Σ
(I) B µT

P1
(. . . (µT

Pn
(I)) . . .).

Using Definition 3.1.1, the following rule defines the Monadic transformation.

Monadic N ⇒MO µT
P(N)

provided P is a non-monadic predicate in the signature of N.

For a clause C ∈ N, the clause µT
P(C) ∈ µT

P(N) is its approximation clause. The
first important property of a transformation is termination. Termination determines
whether it is possible to fully transform a given clause set such that all clauses have
a desired property. In this case, the Monadic transformation terminates and a clause
set that it cannot be applied on is monadic.

Lemma 3.1.2 (Termination). ⇒∗MO is terminating.

Proof. Let N0 be a clause set with a signature containing the n non-monadic pred-
icates P1, . . . , Pn. Then for N0 ⇒MO N1 = µT

P1
(N0), the signature of N1 contains

the n− 1 non-monadic predicates P2, . . . , Pn. After n transformations, N0 ⇒
n
MO Nn,

the signature of Nn is monadic and the Monadic transformation is finished. �

Next is the question which category of approximation (Definition 3.0.5), if any,
the transformation falls into. As mentioned, the Monadic transformation is both an
over- and under-approximation and therefore satisfiability equivalent.

Lemma 3.1.3 (Equivalence). ⇒MO is satisfiability equivalent.

Proof. Let N0 ⇒MO N1 = µP(N0). Then, N0 = µ−1
P (N1). Let I be a model of N1

and C ∈ N0. Since µP(C) ∈ N1 , I |= µP(C) and thus, µ−1
P (I) |= C. Hence, µ−1

P (I)
is a model of N0. Therefore, the Monadic transformation is an over-approximation.

Let I be a model of N0 and D ∈ N1. By construction, there is a C ∈ N0 such
that µP(C) = D Since I |= C, µP(I) |= µP(C) = D. Hence, µP(I) is a model of N1.
Therefore, the Monadic transformation is an under-approximation. �
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Lastly, I compare the partial models (Definition 2.0.1) of a clause set and its
approximation. Since the partial model depends on the term-ordering, the term-
ordering of the approximation has to agree with the one of the original. However,
whenever a transformation introduces fresh symbols to the signature, there is some
freedom in choosing the term-ordering of the approximation.

In the following, I show that, under certain conditions, the partial model of the
Monadic transformation is the ’same’ as the partial model of the original.

Definition 3.1.4. Given an atom ordering ≺ and a non-monadic predicate P. De-
fine ≺P as an ordering that extends ≺ such that if A ≺ P(t1, . . . , tn) ≺ B, then
µP(A) ≺P T ( fp(t1, . . . , tn)) ≺P µP(B).

For example, in an LPO give T the lowest precedence while fp inherits the
precedence of P.

Lemma 3.1.5. Given a Monadic transformation N0 ⇒MO N1 = µP(N0) and an
ordering ≺. Then, µP(I≺N0

) = I≺
P

N1
.

Proof. Assume µP(I≺N0
) , I≺N1

.
Let Q be the minimal atom distinguishing µP(I≺N0

) and I≺N1
.

Let Q ∈ I≺N0
and µP(Q) < I≺N1

. By definition, there is a productive ground
clause C ∨ Q in N and hence, Q is strictly maximal and I≺N0

6|= C. By construction,
µP(C ∨ Q) is a ground clause in N1 with µP(Q) also strictly maximal, which is not
productive as µP(Q) < I≺N1

. Hence I≺N1
|= µP(C) and there is a literal R ≺ Q such

that I≺N1
|= µP(R), but I≺N0

6|= R. This contradicts with Q being minimal.
Let Q ∈ I≺N1

and µ−1
P (Q) < I≺N0

. By definition, there is a productive ground
clause C′σ = C ∨ Q in N1 and hence, Q is strictly maximal and I≺N1

6|= C. By
construction, µ−1

P (C′) is a clause in N0.
Assume µ−1

P (C′)σ is not a ground clause in N0. This is only possible if a term
substituted by σ contains fp. However, T is the only predicate or function with an
argument of the S p sort and it always appears by construction with a fp-term as
argument.
Hence, µ−1

P (C′)σ is a ground clause in N0, which is not productive as µ−1
P (Q) < I≺N0

.
Hence I≺N0

|= µ−1
P (C) and there is a literal R ≺ Q such that I≺N0

|= µ−1
P (R), but

I≺N1
6|= R. This contradicts with Q being minimal. �

Using the result of Lemma 3.1.3, I will for simplicity in the following chapters
sometimes use non-monadic predicates in a context where only monadic predicates
are expected. In that case, a non-monadic atom such as P(x, y) implicitly represents
the monadic atom T ( fP(x, y)).

3.2 Linear Transformation

The second transformation is called the Linear transformation. Its purpose is to
linearise the succedent of each clause in a given clause set by replacing duplicate
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variables with fresh ones. The Linear transformation is obviously not satisfiability
equivalent. For example, the satisfiable clause set {→ P(x, x); P(a, b) →} is trans-
formed into the unsatisfiable set {→ P(x, x′); P(a, b)→}. To avoid this when possi-
ble, I additionally duplicate antecedent literals that contain a replaced variable. For
example, the satisfiable set {→ S (a); S (x) → P(x, x); P(a, b) →} can be approx-
imated with the still satisfiable set {→ S (a); S (x′), S (x) → P(x, x′); P(a, b) →}
instead of the unsatisfiable set {→ S (a); S (x)→ P(x, x′); P(a, b)→}.

Linear 1 N ∪̇ {Γ→ ∆, E′[x]p, E[x]q} ⇒LI N∪{Γσ, Γ→ ∆, E′[x]p, E[q/x′]}

provided x′ is fresh and σ = {x 7→ x′}.

Linear 2 N ∪̇ {Γ→ ∆, E[x]p,q} ⇒LI N ∪ {Γσ,Γ→ ∆, E[q/x′]}

provided x′ is fresh, p , q and σ = {x 7→ x′}.

I consider Linear 1 and Linear 2 as two cases of the same Linear transformation
rule. Their only difference is whether the two occurrences of x are in the same or
different literals. Further, the duplication of literals in Γ is not needed if x does not
occur in them.

Duplicating the antecedent literals can in the worst-case lead to an exponential
blow-up of the size of the approximations clause. For example, the clause

P(x, y)→ Q(x, x, x, y, y)

is approximated by

P(x, y), P(x, y′), P(x′, y), P(x′, y′), P(x′′, y), P(x′′, y′),→ Q(x, x′, x′′, y, y′).

In Section 7.1.2, I introduce an optional preprocessing transformation that mitigates
this effect.

Further, consider a Linear transformation N ∪ {C} ⇒LI N ∪ {C′}, where a fresh
variable x′ replaces an occurrence of a non-linear variable x in C. Then, C′{x′ 7→ x}
is equal to C modulo duplicate literal elimination.

As with the Monadic transformation, the Linear transformation terminates.
However, as shown by the example, the Linear transformation is only an over-
approximation.

Lemma 3.2.1 (Linear Termination). ⇒∗LI is terminating.

Proof. The application of the Linear transformation strictly reduces the number of
duplicate variable occurrences in the succedent of a clause. When there are no more
duplicate variables, the entire clause set is linear. �
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Lemma 3.2.2. ⇒LI is an over-approximation.

Proof. Let N0 = N ∪ {Γ → ∆[x]p,q} ⇒LI N1 = N ∪ {Γ{x 7→ x′},Γ → ∆[x′]q}.
Let I be a model of N1 and C be a ground instance of a clause in N0. If C is
an instance of a clause in N, then I |= C. Otherwise C = (Γ → ∆[x]p,q)σ
for some ground substitution σ. Then, (Γ{x 7→ x′},Γ → ∆[x′]q){x′ 7→ x}σ =

(Γ,Γ→ ∆[x]q)σ, which equals C modulo duplicate literal elimination. Thus, I |= C
because I |= (Γ{x 7→ x′},Γ→ ∆[x′]q){x′ 7→ x}σ. Hence I |= N0. Therefore, the
Linear transformation is an over-approximation. �

Next, consider the clause set N B {→ P(x, x);→ P(a, b),Q(b, b)}. With
an LPO ≺lpo induced by the precedence a ≺ b ≺ P ≺ Q on the signature, N
has the partial model I≺lpo

N = {P(a, a), P(b, b),Q(b, b)}. The linear approximation
N′ = {→ P(x, x′);→ P(a, b),Q(b, b)} has I≺lpo

N′ = {P(a, a), P(a, b), P(b, a), P(b, b)}.
This example shows that in general I≺N * I

≺

N′ . However, for Horn clause sets the
model inclusion property holds.

Lemma 3.2.3. Given Horn clause sets N and N′ and an ordering ≺. If N′ ⇒LI N,
then I≺N ⊆ I

≺

N′ .

Proof. Assume I≺N * I
≺

N′ . Then, there exists a minimal atom A ∈ I≺N with A < I≺N′ .
By definition, there is a productive ground clause Cσ = Γ → A in N and hence,
A is strictly maximal in C and Γ ⊆ I

≺

N . Let σ′ = σ[x′ → xσ]. By construction,
there is a clause C′ ∈ N′ such that C′σ′ ≡ Cσ is a ground clause in N′. If C was
linearised, Γ′{x → x′}σ′ ⊆ Γ. Otherwise, C = C′. As A < I≺N′ , C′σ′ can not be
productive. Therefore, there has to be a B ∈ Γ with B < I≺N′ . However, since B ≺ A,
this contradicts with A being minimal. �

3.3 Shallow Transformation

As its basic function, the Shallow transformation flattens positive literals by extract-
ing complex subterms and encoding them with a fresh sort predicate and a new
clause.

N ∪̇ {Γ→ E[s]p,∆} ⇒SH
N ∪ {S (x),Γ→ E[p/x],∆} ∪ {Γ→ S (s)}

provided x and S are fresh, s is complex, E is monadic, and |p| = 2.

The rule assumes that the clause set N is monadic. Alternatively, one could use
an additional rule requiring that |p| = 1 for non-monadic literals E. However, this
is not necessary by simply applying the Monadic transformation first.

The two clauses S (x),Γ→ E[p/x],∆ and Γ→ S (s) are respectively called the
left and right approximation clauses named after the side of the S -literals. Their
resolvent R on the S -atoms subsumes the original clause, i.e., R |= Γ→ E[s],∆;
though not the other way around. E.g., → P(x, f (x)) has the approximations
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S (y)→ P(x, y) and→ S ( f (x)). Their resolvent→ P(x, f (y)) subsumes→ P(x, f (x))
but {→ P(x, f (x))} 6|= {→ P(x, f (y))}.

Since the predicate S is fresh, Γ → S (s) is the only clause where S occurs
in a positive literal. Therefore, the variable x in S (x),Γ → E[p/x],∆ is always
instantiated with an instance of s in any resolution proof.

I further generalize the Shallow transformation by allowing the original Γ and
∆ to be split between the two approximation clauses.

N ∪̇ {Γ→ E[s]p,∆} ⇒SH
N ∪ {S (x),Γl → E[p/x],∆l} ∪ {Γr → S (s),∆r}

provided x and S are fresh, s is complex, E is monadic, and |p| = 2,
Γl ∪ Γr = Γ, ∆l∪∆r = ∆,
{Q(y) ∈ Γ | y ∈ vars(E[p/x],∆l)} ⊆ Γl,
{Q(y) ∈ Γ | y ∈ vars(s,∆r)} ⊆ Γr.

Literals in Γ and ∆ can be put in either or both of the approximation clauses,
as long as they appear in at least one of them. However, if the original clause is
the result of a Shallow transformation itself, the transformation has to keep the
literals containing the fresh variable x together. Otherwise, the property that x is an
instance of s would be lost.

This free distribution of literals allows me to some extend to minimize and
choose the variables shared between the approximated clauses, i.e.,

vars(Γl,∆l, E[p/x]) ∩ vars(Γr,∆r, S (s)).

Note that if there are no shared variables, the resolvent of the approximated clauses
is exactly the original clause which means in this case the approximation is satisfia-
bility equivalent (see Section 3.3).

Lastly, the extraction term s could occur in Γ. In this case, these occurrences
can also be extracted at the same time, though, only if the containing literal is put
into the approximation clause with the extraction variable. This constitutes the full
version of the Shallow transformation rule.

Shallow N ∪̇ {Γ→ E[s]p,∆} ⇒SH
N ∪ {S (x),Γl → E[p/x],∆l} ∪ {Γr → S (s),∆r}

provided x and S are fresh, s is complex, E is monadic, and |p| = 2,
Γl{x 7→ s} ∪ Γr = Γ, ∆l∪∆r = ∆,
{Q(y) ∈ Γ | y ∈ vars(E[p/x],∆l)} ⊆ Γl,
{Q(y) ∈ Γ | y ∈ vars(s,∆r)} ⊆ Γr.

For example, let N = {Q( f (x), y) → P(g( f (x), y))}. The simple Shallow trans-
formation {S (x′),Q( f (x), y) → P(g(x′, y));→ S ( f (x))} is not satisfiability equiva-
lent – nor with any alternative partition of Γ. However, by replacing the occurrence
of the extraction term f (x) in Q( f (x), y) with the fresh variable x′, the approxima-
tion {S (x′),Q(x′, y)→ P(g(x′, y));→ S ( f (x))} is satisfiability equivalent.
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As with the Linear transformation, the Shallow transformation is also a termi-
nating over-approximation.

Lemma 3.3.1 (Shallow Termination). ⇒∗SH is terminating.

Proof. An application of the Shallow transformation strictly reduces the multiset
of term depths of the newly introduced clauses compared to the removed parent
clause. When there are no more complex terms at depth two, the entire clause set
is shallow. �

Lemma 3.3.2. Shallow transformation is an over-approximation.

Proof. Let N be a clause set with C B Γ → E[s]p,∆ where the complex term s
is extracted. The left and right approximation clauses in the approximation N′ are
S (x),Γl → E[p/x],∆l and Γr → S (s),∆r.

Let I be a Herbrand model of N′ and Cσ be a ground clause of N. Then, I
satisfies (Γr → S (s),∆r)σ and either I 6|= Γrσ, I |= ∆rσ, or S (s)σ ∈ I. In the first
two cases, I |= Cσ follows by construction. If S (s)σ ∈ I, then because I also sat-
isfies (S (x),Γl → E[p/x],∆l){x 7→ s}σ, either I 6|= Γl{x 7→ s}σ or I |= E[s]pσ,∆lσ.
Again, I |= Cσ follows by construction. Hence, I |= N and therefore, the Shallow
transformation is an over-approximation. �

The General Shallow Transformation is a satisfiability equivalent alternative
to the Shallow transformation (see Lemma 3.3.3). It keeps track of the shared
variables by adding them as additional arguments to the predicate S . Because a
Shallow transformation without shared variables is the same as a General Shallow
transformation, it shows that in this special case the Shallow transformation is also
satisfiability equivalent.

GenShallow N ∪̇ {Γ→ E[s]p,∆} ⇒SH
N ∪ {S (x, y1, . . . , ym),Γl → E[p/x],∆l}

∪ {Γr → S (s, y1, . . . , ym),∆r}

provided x and S are fresh, s is complex, E is monadic, |p| ≥ 2,
Γl{x 7→ s} ∪ Γr = Γ and ∆l∪∆r = ∆,
{y1, . . . , ym} B vars(Γr,∆r, s) ∩ vars(Γl,∆l, E[p/x]),

Note that in general S (s, y1, . . . , ym) is not monadic. The term s is then under
an implicit Monadic transformation at depth two and therefore applicable for the
Shallow transformation, again. Hence, the General Shallow transformation does
not terminate because it makes no progress in flattening the clause set if s was
already at depth two.

Lemma 3.3.3. General Shallow transformation is satisfiability equivalent.
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Proof. Analogous to Lemma 3.3.2, the General Shallow transformation is an over-
approximation. Let N be a clause set with C B Γ → E[s]p,∆ where the complex
term s is extracted. The left and right approximation clauses in the approximation
N′ are C1 B S (x, y1, . . . , ym),Γl → E[p/x],∆l and Cr B Γr → S (s, y1, . . . , ym),∆r.

Assume N′ is unsatisfiable and let I be an arbitrary interpretation. Then, there
exist ground clauses C ∈ G(N′) such that I 6|= C. If such a C is not an instance of
Cl or Cr, then C ∈ G(N) and thus, I 6|= N.

Otherwise, let Clτ1, . . . ,Clτm and Crρ1, . . . ,Crρn be all ground clauses of N′

false under I. Let

I′ B I \ {S (x, y1, . . . , ym)τ1, . . . , S (x, y1, . . . , ym)τm}

∪ {S (s, y1, . . . , ym)ρ1, . . . , S (s, y1, . . . , ym)ρn},

i.e., change the truth value for S -atoms such that the clauses unsatisfied under
I are satisfied under I′. Because I and I′ only differ on S -atoms, there exists
a ground clause D of N′ that is false under I′ and contains an S -atom. With-
out loss of generality, let D = Clσ

′. The proof for D = Crσ
′ is analogous.

Since I |= D, S (x, y1, . . . , ym)σ′ was added to I′ by some clause Crρ j, where
S (s, y1, . . . , ym)ρ j = S (x, y1, . . . , ym)σ′. Let R be the resolvent of Crρ j and Clσ

′

on S (s, y1, . . . , ym)ρ j and S (x, y1, . . . , ym)σ′. Then, I 6|= R because I 6|= Crρ j and
I ∪ {S (s, y1, . . . , ym)ρ j} 6|= Clσ

′. Because R is by construction a ground instance of
C ∈ N, I 6|= N.

Therefore, the General Shallow transformation is an under-approximation. �

The Partial Model Property Just as the Linear transformation, the Shallow
transformation also has the property that for Horn clause sets the partial model of
the original clause set is a subset of the partial model of the approximation clause
set.

Consider the clause set N = {→ P(x); P(x) → Q(x, f (x)); → Q(a, f (b)),R}.
Under the lexicographic path ordering ≺lpo induced by the precedence a ≺ b ≺ f ≺
P ≺ Q ≺ R, I≺lpo

N = {R, Q(t, f (t)), P(t) | t is a term}. The shallow approximation
N′ = {→ P(x); P(x)→ S ( f (x)); S (x′), P(x) → Q(x, x′); → Q(a, f (b)),R} has
under ≺′lpo induced by the precedence a ≺′ b ≺′ f ≺′ P ≺′ S ≺′ Q ≺′ R, the partial

model I
≺′lpo
N′ = {P(t), S ( f (t)), Q(s, f (t))) | s, t are terms}. Hence, for general clause

sets and orderings, I≺N * I
≺

N′ .
As with the Monadic transformation, the extension of the signature by a fresh

predicate symbol S requires a corresponding extension of the applied ordering.

Definition 3.3.4. Given a Horn clause set N and an ordering ≺. Let Γ→ E[s]p be
a ground clause in N with E[s]p maximal. If the clause from which Γ → E[s]p is
instantiated is transformed by Shallow transformation with extraction term s, then
define ≺′ as an extension of ≺ such that Γ ≺′ S (s) ≺′ E[s]p.

Lemma 3.3.5. Given a Horn clause set N and an atom ordering ≺. For N ⇒SH N′,
I
≺

N ⊆ I
≺′

N′ .
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Proof. Assume I≺N * I
≺′

N′ . Then, there exists a minimal atom A ∈ I≺N with A < I≺
′

N′ .
By definition, there is a productive ground clause Cσ = Γ→ A in N and hence, A
is strictly maximal in Cσ and Γ ⊆ I

≺

N . As Γ ≺ A and A is the minimal counterex-
ample, Γ ⊆ I≺

′

N′ .
If C is not transformed, then Cσ is also a ground clause in N′ and Cσ is productive
in N′, which contradicts A < I≺

′

N′ .
Otherwise, Cσ = Γ→ E[s]p with A = E[s]p and by construction S (s),Γ→ E[p/s]
and Γ → S (s) are ground clauses in N′. As S (s) is strictly maximal in Γ→ S (s)
and Γ ⊆ I≺

′

N′ , it is either productive or S (s) was already in IN′ . Then also,
S (s),Γ→ E[p/s] is productive, which contradicts with E[p/s] = A < I≺

′

N′ . �

3.4 Horn Transformation

The Horn transformation approximate a given non-Horn clause Γ → E1, . . . , En

with potentially several Horn clauses for each positive literal Ei. For an over-
approximation, at least one positive literal needs to be chosen.

Horn N ∪̇ {Γ→ E1, . . . , En} ⇒HO N ∪ {Γ→ Ei1 ; . . . ; Γ→ Eik }

provided n > 1, k > 0 and 1 ≤ i j ≤ n

Lemma 3.4.1 (Horn Termination). ⇒∗HO is terminating.

Proof. An application of the Horn transformation strictly reduces the number of
non-Horn clauses. When there are no more non-Horn clauses, the entire clause set
is Horn. �

Lemma 3.4.2. The Horn transformation is an over-approximation.

Proof. Let N be a clause set containing C = Γ → E1, . . . , En and a single step
Horn transformation is applied on C returning the set N′. Let I be a model of N′

and Cσ a ground clause. There is at least one clause C′ = Γ → Ei ∈ N′ with
1 ≤ i ≤ n. Since C′σ subsumes Cσ, I |= Cσ. Hence, the Horn transformation is
an over-approximation. �

If the Horn transformation is additionally restricted such that it produces ap-
proximation clauses for at least each maximal positive literal, the partial model
property also holds. I call this the strict Horn transformation.

stHorn N ∪̇ {Γ→ E1, . . . , En} ⇒HO N ∪ {Γ→ Ei1 ; . . . ; Γ→ Eik }

provided n > 1, k > 0, 1 ≤ i j ≤ n, and
if Ei is maximal in Γ→ E1, . . . , En, then Ei ∈ {Ei1 . . . , Eik }

However, consider the example N = {→ P; → P,Q; → Q,R} with atom
ordering P ≺ Q ≺ R and I≺N = {P,R}. For a single Horn transformation step produc-
ing N′ = {→ P;→ Q;→ Q,R}, the partial model I≺N′ = {P,Q} is not a superset of
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I
≺

N . But, after fully exhausting the strict Horn transformation, N′′ = {→ P; → R}
has the partial model I≺N′′ = {P,Q,R}. From here on, if not otherwise noted, the
Horn transformation will be exhaustive.

Lemma 3.4.3. Given a clause set N, its strict Horn approximation N′ and an
ordering ≺. Then, I≺N ⊆ I

≺

N′ .

Proof. Assume I≺N * I
≺

N′ . Then, there exists a minimal atom A ∈ I≺N with A < I≺N′ .
By definition, there is a productive ground clause Cσ = Γ→ ∆, A in N and hence,
A is strictly maximal in Cσ and Γ ⊆ ICσ. By construction, C′σ = Γ → A is a
ground clause in N′ with A also strictly maximal. As A < I≺N′ , C′σ can not be
productive. Therefore, there has to be an atom B ∈ Γ with B < I≺N′ . However,
B ≺ A and B ∈ I≺N , which contradicts with A being minimal. �

Additionally, if only maximal literals are used in the strict Horn transformation,
then the partial model of the approximation is the most precise.

Lemma 3.4.4. Given a clause set N, an ordering ≺ and two strict Horn approx-
imations N′ and N′′ of N where N′ only approximates maximal literals. Then,
I
≺

N′ ⊆ I
≺

N′′ .

Proof. Assume I≺N′ * I
≺

N′′ . Then, there exists a minimal atom A ∈ I≺N′ with
A < I≺N′′ . By definition, there is a productive ground clause Cσ = Γ→ A in N′ and
hence, A is strictly maximal in Cσ and Γ ⊆ I

≺

Cσ. By construction, Cσ = Γ → A
is also a ground clause in N′′. As A < I≺N′′ , Cσ can not be productive. Therefore,
there has to be a B ∈ Γ with B < I≺N′′ . However, B ≺ A and B ∈ I≺N′ , which
contradicts with A being minimal. �

Splitting as a Horn Transformation

In some cases splitting can be used as an alternative to the Horn transformation.
As opposed to the previous transformations, splitting creates branches that are
individually solved. If either of them is satisfiable, the original is satisfiable as well.

Definition 3.4.5 (Splitting). Γ1,Γ2 → ∆1,∆2

Γ1 → ∆1 | Γ2 → ∆2
where vars(Γ1 → ∆1) ∩ vars(Γ2 → ∆2) = ∅ and ∆1 , ∅,∆2 , ∅.

Lemma 3.4.6. Splitting is satisfiability equivalent.

Proof. Let N be a clause set with C = Γ1, Γ2 → ∆1,∆2 ∈ N, which can be split into
branches N1 and N2.

Let N1 be satisfiable. As Γ1 → ∆1 subsumes C, any satisfying model of N1 also
satisfies N.

Let N1 and N2 be unsatisfiable. Then for any model I there are σ1 and σ2 such
that (Γ1 → ∆1)σ1 and (Γ2 → ∆2)σ2 is unsatisfied. Therefore I does not satisfy the
ground clause Γ1σ1,Γ2σ2 → ∆1σ1,∆2σ2 = Cσ1σ2 and by extension N. �
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3.5 Under-Approximations

While I focus on over-approximation transformations in this thesis, I will briefly
discuss possible under-approximations in this section; particularly the deletion and
instantiation approximations, where non-MSL clauses are either deleted or replaced
with ground instantiations (See also [21]).

Although both transformations trivially preserve satisfiability, the partial model
of an approximation is not generally a subset of the original, the property dual to
the over-approximation case. This is demonstrated by the following two examples.

Example 3.5.1. Let N = {→ P,Q} and N′ = {→ P,Q; → P}. I≺N = {Q} and
I
≺

N′ = {P} with the atom ordering P ≺ Q. So, N ⊆ N′, but I≺N * I
≺

N′ .

Example 3.5.2. Let N = {→ P(x); → P(a),Q(b); → P(b),Q(b)}. With the atom
ordering ≺lpo induced by the precedence a ≺ b ≺ P ≺ Q, I≺lpo

N = {P(a), P(b)}.
Let Na = {→ P(a);→ P(a),Q(b);→ P(b),Q(b)} and Nb = {→ P(b);→ P(a),Q(b);
→ P(b),Q(b)}. Then I≺lpo

Na
= {P(a),Q(b)} and I≺lpo

Nb
= {P(b),Q(b)}. Although Na

and Nb are instantiations of N, I≺N * I
≺

Na
* I≺N and I≺N * I

≺

Nb
* I≺N .

When selecting a subset of a clause set as an approximation, the partial model
property can be achieved if all productive clauses in the subset are Horn.

Lemma 3.5.3. Given a clause set N and an ordering ≺. Let N′ be a clause set such
that GΣ(N′) ⊆ GΣ(N) and every ground clause C ∈ GΣ(N′) with a positive maximal
literal is Horn. Then, I≺N′ ⊆ I

≺

N .

Proof. Assume I≺N′ * I
≺

N . Then, there exists a minimal atom A ∈ I≺N′ with A < I≺N .
By definition, there is a productive ground clause Cσ = Γ → ∆, A in N′. As A
is strictly maximal in Cσ, ∆ is empty and Γ ⊆ I

≺

N′ . By construction, Cσ is also
a ground clause in N with A also strictly maximal. As A < I≺N , Cσ can not be
productive. Therefore, there has to be a B ∈ Γ with B < I≺N . However, B ≺ A and
B ∈ I≺N′ , which contradicts with A being minimal. �

For example, if all non-Horn clauses with a maximal positive literal are deleted
from a clause set N, then for the resulting set N′, I≺N′ ⊆ I

≺

N .
Next, when creating an under-approximation via ground instantiations, the

partial model property is generally preserved if all ground clauses are enumerated
by the given ordering ≺ up to an arbitrary point, i.e. given a clause set N, a ground
clause D, and an ordering ≺, then I≺N′ ⊆ I

≺

N for N′ = G(N)≺D.This can be further
refined by starting from an arbitrary ground under-approximation and taking all
atoms that could be produced. Then, recursively add all smaller productive ground
clauses that could affect the productivity of these atoms.

Definition 3.5.4. Given clause sets N and N′ with GΣ(N′) ⊆ GΣ(N) and an atom
ordering ≺. An atom A is called locked if for every clause Γ → ∆, A ∈ GΣ(N),
where A is maximal, Γ→ ∆, A ∈ GΣ(N′) and every B ∈ Γ ∪ ∆ is locked.
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Lemma 3.5.5. Given clause sets N and N′ withGΣ(N′) ⊆ GΣ(N) and an ordering ≺.
If atom A is locked, then A ∈ I≺N if and only if A ∈ I≺N′ .

Proof. By induction on ≺.
Let A ∈ I≺N′ . By construction, there is a clause Γ → ∆, A ∈ GΣ(N′) that

produced A. As GΣ(N′) ⊆ GΣ(N), Γ → ∆, A ∈ GΣ(N). By definition, every
B ∈ Γ ∪ ∆ is locked and B ≺ A. Hence, by the inductive hypothesis, B ∈ I≺N if and
only if B ∈ I≺N′ , for every B ∈ Γ ∪ ∆. Therefore, as Γ → ∆, A is productive in N′,
either Γ→ ∆, A is also productive in N or A is already in I≺N .

Let A ∈ I≺N . By construction, there is a clause Γ→ ∆, A ∈ GΣ(N) that produced
A. By definition, Γ → ∆, A ∈ GΣ(N) and every B ∈ Γ ∪ ∆ is locked and B ≺ A.
Hence, by the inductive hypothesis B ∈ I≺N ↔ B ∈ I≺N′ for every B ∈ Γ ∪ ∆.
Therefore, as Γ→ ∆, A is productive in N, either Γ→ ∆, A is also productive in N′

or A is already in I≺N . �

Lemma 3.5.6. Given an ordering≺ and clause sets N and N′ whereGΣ(N′) ⊆ GΣ(N)
and for every clause Γ → ∆, A ∈ GΣ(N′) with A maximal, every B ∈ ∆ is locked.
Then, I≺N′ ⊆ I

≺

N .

Proof. Assume I≺N′ * I
≺

N . Then, there exists a minimal atom A ∈ I≺N′ with A < I≺N .
By definition, there is a productive clause C B Γ → ∆, A in GΣ(N′). Hence, A is
maximal in C, ∆ ∩ I

≺

N′ is empty and Γ ⊆ I
≺

N′ . As GΣ(N′) ⊆ GΣ(N) and A < I≺N ,
C ∈ GΣ(N) is not productive. Therefore, there has to be either a B ∈ Γ with B < I≺N
or a B ∈ ∆ with B ∈ I≺N . Let B ∈ Γ with B < I≺N . Then, B ≺ A and B ∈ I≺N′ , which
contradicts with A being minimal. Let B ∈ ∆ with B ∈ I≺N . As B is locked, B ∈ I≺N′
by Lemma 3.5.5. This contradicts ∆ ∩ I

≺

N′ = ∅. �

3.6 Avoiding Redundant Inferences

Saturation based superposition solvers generate many redundant clauses during their
search. Most of its time a solver spends on removing these redundant clauses and
still, the clause set tends to grow too large, slowing the search down and eventually
running out of space. A method to identify non-redundant inferences is missing.

Obviously, superposition based theorem provers are unable to avoid redundant
inferences, but this is also true for other calculi. For example, the instantiation
based iProver which uses the Inst-Gen method, where a first order problem is ap-
proximated with a SAT problem by replacing every variable by a constant c. The
approximation is solved by a SAT solver and its answer is lifted to the original. In
case the approximation’s satisfying model cannot be lifted, the clash is resolved by
appropriately instantiating the involved clauses, which mimics an inference step.

Consider the clause set N = {P(x, y) ∨ Q(y), ¬P(a, z) ∨ R(z), Q(a),R(b)} which
has the approximation N′ = {P(c, c) ∨ Q(c), ¬P(a, c) ∨ R(c), Q(a), R(b)}. A possi-
ble satisfying model returned by a SAT solver is P(c, c), ¬P(a, c), Q(a), R(b). This
assignment clashes in N as it suggests for example P(a, a) and ¬P(a, a) and hence
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the implied inference is between P(x, y) ∨ Q(y) and ¬P(a, z) ∨ R(z). The resolvent
Q(y) ∨ R(y) is redundant under the signature {a, b} as {Q(a),R(b)} |= Q(y) ∨ R(y).

Theoretically, an inference with the minimal false clause under the partial model
is not redundant. Finding this minimal false clause is however undecidable. There-
fore, I intended to use an approximation where its partial model includes the partial
model of the original clause set. In a decidable fragment, finding the minimal false
clause of a clause set N is also decidable. If N is satisfiable there is no need to look
for a minimal false clause. Otherwise, enumerate the ground clauses of N by the
given ordering and build their partial model until the minimal false clause is found.
If this clause is false under the original partial model as well, then the minimal false
clause of the original problem can be identified.

An appropriate approximation is defined by the following four rules that were
introduced in the previous sections.

Monadic N ⇒MO µT
P(N)

provided P is a non-monadic predicate in the signature of N

stHorn N ∪̇ {Γ→ E1, . . . , En} ⇒HO N ∪ {Γ→ Ei1 ; . . . ; Γ→ Eik }

provided n > 1, k > 0, 1 ≤ i j ≤ n, and
if Ei is maximal in Γ→ E1, . . . , En, then Ei ∈ {Ei1 . . . , Eik }

Shallow N ∪̇ {Γ→ E[s]p} ⇒SH
N ∪ {S (x),Γl → E[p/x]; Γr → S (s)}

provided s is a complex term, p , ε, x and S fresh, Γl{x 7→ s} ∪ Γr = Γ, {Q(y) ∈ Γ |

y ∈ vars(E[p/x])} ⊆ Γl, {Q(y) ∈ Γ | y ∈ vars(S (s))} ⊆ Γr

Linear N ∪̇ {Γ→ E[x]p,q} ⇒LI N ∪ {Γ{x 7→ x′},Γ→ E[q/x′]}

provided x′ is fresh and p , q

Definition 3.6.1 (⇒pm). Define⇒pm as the priority rewrite system [3] consisting
of⇒MO,⇒HO,⇒SH and⇒LI with priority⇒MO >⇒HO >⇒SH >⇒LI.

Lemma 3.6.2. ⇒pm is a terminating over-approximation and for an exhaustive
transformation N ⇒∗pm N′ and term ordering ≺, I≺N ⊆ I

≺′

N′ .

Proof. Termination follows from Lemmas 3.1.2, 3.2.1, 3.3.1, and 3.4.1 and the
fact that neither transformation creates clauses that a higher priority rule could be
applied on. ⇒pm is an over-approximation by Lemmas 3.1.3, 3.2.2, 3.3.2, and 3.4.2
and I≺N≺ ⊆ I

≺′

N′ follows from Lemmas 3.1.5, 3.2.3, 3.3.5, and 3.4.3. �

Although I could not find a practical way to apply this method, from an unsuc-
cessful attempt, I derived the idea for the lifting in the approximation-refinement
calculi described in the following chapters.
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Chapter 4

Monadic Shallow Linear Horn
Approximation-Refinement

My first complete calculus is based on approximating into the monadic shallow
linear Horn fragment (MSLH) which has a decision procedure given in [45]. If
the approximation is satisfiable, so is the original clause set. Otherwise, I take the
unsatisfiability proof the approximation and attempt to construct a corresponding
proof of the original or refine the approximation and repeating the process.

4.1 Approximation⇒APH

I introduce the concrete over-approximations⇒APH that maps a clause set N to an
MSLH clause set N′. These rules of⇒APH were previously introduced in Chapter
3 and are adjusted to produce the MSLH fragment.

Monadic N ⇒MO µT
P(N)

provided P is a non-monadic predicate in the signature of N

Horn N ∪̇ {Γ→ E1, . . . , En} ⇒HO N ∪ {Γ→ Ei}

provided n > 1 and 1 ≤ i ≤ n

Shallow N ∪̇ {Γ→ E[s]p} ⇒SH
N ∪ {S (x),Γl → E[p/x]; Γr → S (s)}

provided s is a complex term, p , ε, x and S fresh, Γl{x 7→ s} ∪ Γr = Γ,
{Q(y) ∈ Γ | y ∈ vars(E[p/x])} ⊆ Γl, {Q(y) ∈ Γ | y ∈ vars(S (s))} ⊆ Γr

Linear N ∪̇ {Γ→ E[x]p,q} ⇒LI N ∪ {Γ{x 7→ x′},Γ→ E[q/x′]}
provided x′ is fresh and p , q

Definition 4.1.1 (⇒APH). Define⇒APH as the priority rewrite system [3] consisting
of⇒MO,⇒HO,⇒SH and⇒LI with priority⇒MO >⇒HO >⇒SH >⇒LI.

Lemma 4.1.2. ⇒APH is a terminating over-approximation.
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Proof. Termination follows from Lemmas 3.1.2, 3.2.1, 3.3.1, and 3.4.1 and the
fact that neither transformation creates clauses that a higher priority rule could
be applied on. ⇒APH is an over-approximation by Lemmas 3.1.3, 3.2.2, 3.3.2,
and 3.4.2. �

In addition to being an over-approximation, if a minimal Herbrand model I
of the approximation exists, it also preserves the skeleton term structure of the
original clause set, i.e., if P(s) ∈ I, then there is an original clause Γ → ∆, P(t)
such that s is an instance of skt(t). This property ensures that the refinement always
makes progress towards finding a model or a refutation of the original clause set by
instantiating its clauses (see Section 4.3).

Lemma 4.1.3. Let N0 be a monadic clause set and N0 ⇒APH Nk be its approxima-
tion. Let Nk be satisfiable and I be a minimal Herbrand model for Nk. If P(s) ∈ I
and P is a predicate in N0, then there exists a clause C = Γ → ∆, P(t) ∈ N0 and a
substitution σ such that s = skt(t)σ and for each variable x and predicate S with
C = S (x),Γ′ → ∆, P(t[x]p) and s|p = s′′, S (s′′) ∈ I.

Proof. By induction on the length of the approximation N0 ⇒
∗
APH Nk.

For the base Nk = N0, assume there is no C ∈ Nk with Cσ = Γ→ ∆, P(s) where
for each variable x and predicate S with C = S (x),Γ′ → ∆, P(t[x]p) and s|p = s′′,
S (s′′) ∈ I. Then I \ {P(s)} is still a model of Nk and therefore I was not minimal.
A contradiction.

Let N0 ⇒APH N1 ⇒
∗
APH Nk, P(s) ∈ I and P is a predicate in N0 and hence

also in N1. By the induction hypothesis on N1 ⇒
∗
APH Nk, there exist a clause

C = Γ → ∆, P(t) ∈ N1 and a substitution σ such that s = skt(t)σ and S (s2) ∈ I
for each variable y and predicate S with C = S (y),Γ′ → ∆, P(t[y]p) and s|p = s2.
The first approximation rule application is either a Linear, a Shallow or a Horn
transformation, considered below by case analysis.

Horn Case. Let⇒APH be a Horn transformation that replaces Γ′′ → ∆′,Q(t′)
with Γ′′ → Q(t′). If C , Γ′′ → Q(t′), then C ∈ N0 already fulfils the claim.
Otherwise, Γ→ ∆, P(t) = Γ′′ → Q(t′) and hence P(t) = Q(t′) and Γ = Γ′′. For
Γ′′ → ∆′,Q(t′) ∈ N0, s = skt(t)σ = skt(t′)σ and S (s′′) ∈ I for each variable x and
predicate S with S (x) ∈ Γ′′, Q(t′) = Q(t′[x]p) and s|p = s2.

Linear Case. Let⇒APH be a Linear transformation where C0 = Γ′′ → ∆′[x]p,q

is approximated with C1 = Γ′′,Γ′′{x 7→ x′} → ∆′[q/x′]. If C , C1, then C ∈ N0
fulfils the claim. Otherwise, C0 = Γ′′ → ∆, P(t){x′ 7→ x} ∈ N0 fulfils the claim
because s = skt(t)σ = skt(t{x′ 7→ x})σ and Γ′′ ⊆ Γ′′,Γ′′{x 7→ x′}.

Shallow Case.
Let ⇒APH be a Shallow transformation where C0 = Γ′′ → E[s1]p,∆ is approxi-
mated with Cl = S (x),Γl → E[p/x],∆l and Cr = Γr → S (s1),∆r. If C , Cl and
C , C2, then C ∈ N0 fulfils the claim. If C = C2, then P(t) ∈ ∆r because S is fresh
and thus C0 ∈ N0 fulfils the claim. Otherwise, C = Cl. If P(t) , Q(t′[p/x]), then
P(t) ∈ ∆l and C0 ∈ N0 fulfils the claim. Otherwise C = S (x),Γl → Q(t′[x]p),∆l

with P(t) = Q(t′[p/x]), s = skt(t[x]p)σ and S (s2) ∈ I for s|p = s2. Then by
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the induction hypothesis, there exist a clause CS = ΓS → ∆S , S (tS ) ∈ N1 and a
substitution σS such that s2 = skt(tS )σS and for each variable y and predicate S ′

with CS = S ′(y),Γ′S → ∆S , P(tS [y]q) and s2|q = s3, S ′(s3) ∈ I. By construc-
tion, CS = Cr. Thus, s2 = skt(s1)σS and s = skt(t[x]p)σ imply there exists a
σ′′ such that s = skt(t[p/s1])σ′′. Furthermore, because Γl{x 7→ s1} ∪ Γr = Γ′′, if
C0 = S ′(y),Γ′′′ → ∆, P(t[p/s1])[y]q, then either S ′(y) ∈ Γl and thus S ′(s4) ∈ IN ,
where s|q = s4, or S ′(y) ∈ Γr and thus S ′(s4) ∈ I, where (s[p/s2])|q = s4. Hence,
C0 ∈ N0 fulfils the claim. �

Note that for Lemma 4.1.3 the clause set Nk may contain predicates that have
been introduced by the Shallow transformation and are therefore not contained in
N0.

Lemma 4.1.4. Let N ⇒∗APH N′ such that N′ is satisfiable, and I be a minimal
Herbrand model of N′. If µT

Σ
(P(s1, . . . , sn)) ∈ I and P is a predicate in N, then there

is a clause Γ→ ∆, P(t1, . . . , tn) ∈ N and a substitution σ such that si = skt(ti)σ for
all 1 ≤ i ≤ n.

Proof. Because of the rule priority of⇒APH, N ⇒∗MO µΣ(N)⇒∗APH N′.
Let P(s) ∈ I and P be a monadic predicate in N. Since P is monadic, P is

a predicate in µΣ(N). Hence by Lemma 4.1.3, there exists a Γ→ ∆, P(t) ∈ µΣ(N)
and a substitution σ such that s = skt(t)σ. Then, µ−1

Σ
(Γ → ∆, P(t)) ∈ N fulfils the

claim.
Let T ( fp(s1, . . . , sn)) ∈ I. T is monadic and a predicate in µΣ(N). Hence by

Lemma 4.1.3, there exists a clause Γ→ ∆,T (t) ∈ µΣ(N) and a substitution σ such
that fp(s1, . . . , sn) = skt(t)σ. Therefore, t = fp(t1, . . . , tn) with si = skt(ti)σ for all i.
Then, µ−1

Σ
(Γ→ ∆,T ( fp(t1, . . . , tn))) ∈ N fulfils the claim. �

Lemma 4.1.4 also holds if satisfiability of N′ is dropped and I is replaced by
the superposition partial minimal model operator.

4.2 Lifting of⇒APH

As the combined transformation ⇒APH is an over-approximation, if the approxi-
mated clause set is satisfiable, so is the original set. However, if it is unsatisfiable I
cannot directly infer properties of the original clause set. Instead, I attempt to use
the unsatisfiability proof of the approximation to construct an unsatisfiability proof
of the original.

Such a proof is generated by the decision procedure in form of a resolution
refutation tree or DAG, where each leaf is an input clause, the root is the empty
clause, and the internal nodes are the inferred clauses with the premisses of the
inference attached as children to the node. Since manipulating such structures
can be quite complex, I do not use the resolution refutation directly, but instead
first create an unsatisfiable clause set called the conflicting core which is based on
unsatisfiability cores.
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Given an approximation N ⇒∗AP Nk and a conflicting core N⊥k of Nk, using the
lifting lemmas provided in this section I attempt to lift N⊥k step-wise to a conflicting
core of N. In case of success this shows the unsatisfiability of N. Otherwise, there
is an approximation step that cannot be lifted. Then, I refine the approximation, as
explained in Section 4.3. Because the lifting follows the steps of the approximation,
I show how each transformation rule is lifted, individually.

4.2.1 Conflicting Core

Definition 4.2.1 (Conflicting Core). A finite set of clauses N⊥ is a conflicting core
if N⊥σ is unsatisfiable for all ground substitutions σ of N⊥. A conflicting core N⊥

is a conflicting core of a clause set N if for every D ∈ N⊥ there is a clause C ∈ N
such that D = Cσ for some substitution σ. C is then called the instantiated clause
of D in N⊥. A conflicting core N⊥ of N is minimal if for any strict subset M ( N⊥,
M is not a conflicting core of N.

For example, let N = {→ P(x, x′); P(y, a), P(z, b) →}. N is unsatisfiable and a
possible ground refutation is resolving P(b, a), P(a, b) → with P(b, a) and P(a, b).
This corresponds to the conflicting core N⊥ = {P(b, a); P(a, b); P(b, a), P(a, b)→}.
Alternatively, ordered resolution might resolve → P(x, x′) and P(y, a), P(z, b) →
with substitution {x 7→ y; x′ 7→ a} and then the resolvent and → P(x, x′) with
substitution {x 7→ z; x′ 7→ b}. Here, the conflicting core is N′⊥ = {P(y, a); P(z, b);
P(y, a), P(z, b)→}. Note that N′⊥ contains the global variables y and z and is more
general than N⊥ since N′⊥{y 7→ b; z 7→ a} = N⊥.

In other words, a ground conflicting core N⊥ is an unsatisfiability core while
a general conflicting core N⊥ is a parametrized unsatisfiability core using globally
shared variables. Their advantage is that a single conflicting core can represent an
infinite number of unsatisfiability cores and can be further specified using instantia-
tion. The conflict clauses and their global variables in N⊥ are separate from their
instantiated clauses in N.

Generating the Conflicting Core

Next, I explain how the conflicting core is generated from a resolution refutation.
I assume here that the resolution refutation only uses factorization and resolution
inferences. Although in a Horn clause set the factorization rule is never applied, I
will here not make use of this restriction and instead describe a general procedure.

Definition 4.2.2 (Generalized Resolution Refutation). A generalized resolution
refutation R of a clause set N is a list of variable disjoint clauses, where the last
clause is the empty clause �. Each clause C in R is annotated with one of four
labels in the following way:
CN , CC′,σ, CC1,C2,σ, and CM which are called input, factor, resolution, and derived
clauses, respectively. Additionally, C∗ is used as a placeholder for an arbitrary
label. Furthermore, a generalized resolution refutation R satisfies the following
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four properties, where (R1)-(R3) correspond to the default properties of a resolution
refutation while (R4) is an additional invariant on generalized resolution refutations
used in Lemma 4.2.3.

(R1) If R = R1,CN ,R2, then C is a variant of a clause in N.

(R2) If R = R1,CC′,σ,R2, then C′∗ ∈ R1, and C is a factor of C′ using unifier σ.

(R3) If R = R1,CC1,C2,σ,R2, then C∗1 ∈ R1 and C∗2 ∈ R1, and C is the resolvent of
C1 and C2 using unifier σ.

(R4) If R = R1,CM,R2, then (i) for all D ∈ M, D is an instance of a clause in N,
and (ii) for all grounding substitutions δ over vars(N) ∪ vars(C), Mδ |= Cδ.

Note that the clauses in R are implicitly considered variable disjoint because or-
dered resolution treats the clauses in N as implicitly variable disjoint. This separates
the input clauses in R from their counterparts in N.

A generalized resolution refutation R returned by the decision procedure ini-
tially contains only input, factor and resolution clauses, which represent each node
of the resolution refutation. Derived clauses on the other hand represent nodes that
are already processed by the procedure generating the conflicting core. I use the
following rules⇒R on generalized resolution refutations to replace all clauses in R
with derived clauses:

Input R1,CN ,R2 ⇒R R1,C{C},R2

Factoring R1,CC′,σ,R2 ⇒R R1,CMσ,R2

if C′M ∈ R1.

Resolution R1,CC1,C2,σ,R2 ⇒R R1,CM1σ∪M2σ,R2

if CM1
1 ∈ R1 and CM2

2 ∈ R1.

Lemma 4.2.3. If R is a generalized resolution refutation and R ⇒R R′, then R′ is
also a generalized resolution refutation.

Proof. Let R be a generalized resolution refutation for a constrained clause set N.
Let R = R1,CN ,R2 ⇒R R1,C{C},R2 = R′. We only need to show that C{C} sat-

isfies property R4. Trivially, (i) C is a variant of a clause in N (R2) and (ii) Cδ |= Cδ
for any δ. Thus R′ is a generalized resolution refutation of N.

Let R = R1,CC1,C2,σ,R2 ⇒R R1,CM1σ∪M2σ,R2 = R′ with CM1
1 and CM2

2 in R1.
We only need to show that CM1σ∪M2σ satisfies property R4. By property R4, for
i = 1, 2 (i) for all D ∈ Mi there exists a D′ ∈ N such that D is an instance of D′ and
(ii) for all substitution δi, Miδi |= Ciδi.

(i) W.l.o.g., let D ∈ M1σ. Then, D = D1σ for some D1 ∈ M1 and thus, there is
a D′ ∈ N such that D1 is an instance of D′. Then D = D1σ is also an instance of
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D′. (ii) Let δ be a grounding substitution. Then, M1σδ |= C1σδ and M2σδ |= C2σδ.
Therefore, (M1σ ∪ M2σ)δ |= C, because C1σ,C2σ |= C by R3. Hence, R′ is a
generalized resolution refutation of N.

For R = R1,CC′,σ,R2 ⇒R R1,CMσ,R2 = R′, the proof works analogously to
the previous case. �

Since each step replaces one non-derived clause,⇒∗
R

terminates. Furthermore,
one of the rules can always be applied on the left-most non-derived clause in R.
Therefore, the end result contains only derived clauses. For the last clause �M,
M = N⊥ is then a conflicting core of N as a direct consequence of property R4.

Note that each clause in N⊥ can be traced back to a unique input clause in the
original R. Each input clause is a variant of exactly one clause in N, otherwise N
would have contained redundant variants of the same clause. In practice, this clause
is the instantiated clause of the conflict clause in N⊥.

Because the lifting is done step-wise on the applied approximation, I show in
the following how each individual transformation rule is lifted.

4.2.2 Lifting the Linear Transformation

In order to lift a Linear transformation the remaining and the newly introduced
variable need to be instantiated with the same term. For example, consider N and
its Linear transformation N′.

→ P(x, x) ⇒LI → P(x, x′)
P(y, a), P(z, b) → P(y, a), P(z, b) →

A ground conflicting core of N′ is N⊥.

→ P(a, a)
→ P(b, b)

P(a, a), P(b, b) →

Since P(a, a) and P(b, b) are instances of P(x, x) lifting succeeds and N⊥ is also a
unsatisfiability core of N.

Lemma 4.2.4 (Lifting the Linear Transformation). Let Nk ⇒LI Nk+1 be a Lin-
ear transformation where Nk = N ∪ {C}, Nk+1 = N ∪ {C′}, C = Γ → E[x]p,q,
and C′ = Γ{x 7→ x′},Γ→ E[q/x′]. Let N⊥k+1 be a conflicting core of Nk+1 and
C′σ1, . . . ,C′σm be all clauses in N⊥k+1 that are instances of C′. If xσj = x′σj for
1 ≤ j ≤ m, then N⊥k+1 \ {C

′σ1, . . . ,C′σm} ∪ {Cσ1, . . . ,Cσm} = N⊥k is a conflicting
core of Nk.

Proof. Let σ be any grounding substitution and I be any interpretation. Then,
I 6|= N⊥k+1σ and there exists a clause C⊥ ∈ N⊥k+1σ such that I 6|= C⊥. If C⊥ is not an
instance of C′, then C⊥ is a clause in N⊥k σ. Thus, I 6|= N⊥k σ. If C⊥ is an instance of
C′, then C⊥ = C′σjσ for some 1 ≤ j ≤ m. Because xσj = x′σj, C′σjσ and Cσjσ

are equal modulo duplicate literal elimination. Thus, I 6|= N⊥k σ. Therefore, N⊥k is a
conflicting core of Nk. �
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4.2.3 Lifting the Shallow Transformation

A Shallow transformation introduces a new predicate S , which is removed in the
lifting step. I take all clauses with S -atoms in the conflicting core and generate any
possible resolutions on these S -atoms. The resolvents, which do not contain the
S -atom any more, then replace their parent clauses in the core. Lifting succeeds if
all resolvents are instances of the original clause in the Shallow transformation.

For example, consider N and its Shallow transformation N′.

P(x),Q(y) → R(g(x, f (y))) ⇒SH S (x′), P(x) → R(g(x, x′))
Q(y) → S ( f (y))

R(g(a, f (b))) → R(g(a, f (b))) →

→ P(a) → P(a)
→ Q(b) → Q(b)

A conflicting core of N′ is N′⊥.

S ( f (b)), P(a) → R(g(a, f (b)))
Q(b) → S ( f (b))

R(g(a, f (b))) →

→ P(a)
→ Q(b)

By replacing S ( f (b)), P(a) → R(g(a, f (b))) and Q(b) → S ( f (b)) with their resol-
vent, N′⊥ lifts to a conflicting core of N.

P(a),Q(b) → R(g(a, f (b)))
R(g(a, f (b))) →

→ P(a)
→ Q(b)

Lemma 4.2.5 (Lifting the Shallow Transformation). Let Nk ⇒SH Nk+1 be a Shal-
low transformation where Nk = N ∪ {C}, Nk+1 = N ∪ {Cl,Cr}, C = Γ → E[s]p,
Cl = S (x),Γl → E[p/x] and Cr = Γr → S (s). Let N⊥k+1 be a conflicting core of
Nk+1 and NS be the set of all resolvents of clauses in N⊥k+1 on the S -atom. If all
clauses in NS are instances of C modulo duplicate literal elimination, then N⊥k =

{D ∈ N⊥k+1 | D not an instance of Cl or Cr} ∪ NS is a conflicting core of Nk.

Proof. Let σ be any grounding substitution and I be any interpretation. Then,
I 6|= N⊥k+1σ and there exists C⊥ ∈ N⊥k+1σ such that I 6|= C⊥. If C⊥ is not an
instance of Cl or Cr, then C⊥ ∈ N⊥k σ. Thus, I 6|= N⊥k σ. Otherwise, assume
Clτ1 . . . ,Clτm and Crρ1, . . . ,Crρn are the only clauses in N⊥k σ false under I. Let
I′ B I\{S (x)τ1, . . . , S (x)τm}∪{S (s)ρ1, . . . , S (s)ρn}, i.e., change the truth value for
S -atoms such that the clauses unsatisfied under I are satisfied under I′. Because I
and I′ only differ on S -atoms, there exists a clause D ∈ N⊥k σ that is false under I′

and contains an S -atom. Let D = Clσ
′. Since I |= D, S (x)σ′ was added to I′ by

some clause Crρ j, where S (s)ρ j = S (x)σ′. Let R be the resolvent of Crρ j and Clσ
′
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on S (s)ρ j and S (x)σ′. Then, I 6|= R because I 6|= Crρ j and I ∪ {S (s)ρ j} 6|= Clσ
′.

Thus, I 6|= N⊥k σ. For D = Crσ
′, the proof is analogous. Therefore, N⊥k is a

conflicting core of Nk. �

4.2.4 Lifting the Horn Transformation

Because the Horn transformation only keeps a single literal per non-Horn clause, a
single conflicting core corresponds to an incomplete proof of the original problem.
For example, if the clause→ E1, E2 is approximated as E1 and a proof uses E1σ and
E1τ, then repeating the refutation with→ E1, E2 leads to the clause→ E2σ, E2τ

instead of ⊥.
Without loss of generality and to ease the below arguments, I assume that any

non-Horn clause has exactly two positive literals: Γ → E1, E2. Any clause with
more positive literals is preprocessed by renaming pairs of positive literals using
fresh predicates.

For the lifting, I require that Γ→ E1, E2 was approximated both ways resulting
in an approximation with Γ → E1 and another with Γ → E2. If neither approx-
imation is satisfiable, there exist conflicting cores for both. From each core, all
instances (Γ → E1)τi and (Γ → E2)ρ j are replaced by a sort of Cartesian product:
Γτi, Γρ j → E1τi, E2ρ j. Lifting succeeds if all products are instances of the original
clause Γ→ E1, E2 modulo duplicate literal elimination.

For example, consider N

→ P(x),Q(y)
Q(a),Q(b) →

P(a) →

and its two Horn transformations N1 and N2.

→ P(x) → Q(y)
Q(a),Q(b) → Q(a),Q(b) →

P(a) → P(a) →

Their respective conflicting cores are N⊥1 and N⊥2 .

→ P(a) → Q(a)
P(a) → → Q(b)

Q(a),Q(b) →

By combining them, we get N⊥,

→ P(a),Q(a)
→ P(a),Q(b)

Q(a),Q(b) →

P(a) →

a conflicting core of N.
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Lemma 4.2.6 (Lifting the Horn Transformation). Let Nk = N ∪ {C} ⇒HO N ∪ {C1}

and Nk ⇒HO N ∪ {C2} where C = Γ → E1, E2, C1 = Γ → E1 and C2 = Γ→ E2.
Respectively, let N⊥1 and N⊥2 be their conflicting cores, and C1τ1, . . . ,C1τm and
C2ρ1, . . . ,C2ρn be all clauses in N⊥1 and N⊥2 that are instances of C1 and C2.
Define NH = {Γτi,Γρ j → E1τi, E2ρ j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. If every
clause in NH is an instance of C modulo duplicate literal elimination, then N⊥k =

N⊥1 \ {C1τ1, . . . ,C1τm} ∪ N⊥2 \ {C2ρ1, . . . ,C2ρn} ∪ NH is a conflicting core of Nk.

Proof. Let σ be any grounding substitution and I be any interpretation. Then,
I 6|= N⊥1 σ and I 6|= N⊥2 σ. There exist C⊥1 ∈ N⊥1 and C⊥2 ∈ N⊥2 such that I 6|= C⊥1
and I 6|= C⊥2 . If C⊥l is not an instance of Cl for some l, then C⊥l ∈ N⊥k σ. Thus,
I 6|= N⊥k σ. Otherwise, C⊥1 = C1τiσ and C⊥2 = C2ρ jσ for some i and j. Then,
I 6|= (Γτi,Γρ j → E1τi, E2ρ j)σ, which is in NHσ. Thus, I 6|= N⊥k σ. Therefore, N⊥k
is a conflicting core of Nk. �

As an alternative to the preprocessing, Lemma 4.2.6 can be generalized such
that for a clause Γ→ E1, . . . , En, the cores N⊥1 to N⊥n are combined.

Lastly, there exists a special case, where a single core is sufficient. If the core
is a conflicting core for each transformation case, then each instance only needs
to be combined with itself, which guarantees a successful lifting. For example,
let N = {P(a, b) →; P(x, b), P(a, y)}. Then N1 = {P(a, b) →; P(x, b)} and N2 =

{P(a, b)→; P(a, y)} are Horn transformations of N. N⊥ = {P(a, b)→; P(a, b)} is a
conflicting core of both N1 and N2. The lifting to N⊥ = {P(a, b)→; P(a, b), P(a, b)}
is a conflicting core of N.

4.2.5 Lifting the Monadic Transformation

Since the Monadic transformation is satisfiability equivalent, lifting always suc-
ceeds by replacing any T ( fP(t1, . . . , tn)) atoms in the core by P(t1, . . . , tn). For
example, consider N and its Monadic transformation N′.

→ P(x, x′) ⇒MO → T ( fP(x, x′))
P(y, a), P(z, b) → ⇒MO T ( fP(y, a)),T ( fP(z, b)) →

A conflicting core of N′ is N′⊥.

→ T ( fP(y, a))
→ T ( fP(z, b))

T ( fP(y, a)),T ( fP(z, b)) →

Reverting the atoms gives N⊥,

→ P(y, a)
→ P(z, b)

P(y, a), P(z, b) →

a conflicting core of N.

35



Lemma 4.2.7 (Lifting the Monadic Transformation). Let N ⇒MO µP(N) where P
is a non-monadic predicate in N. If N⊥ is a conflicting core of µP(N) then µ−1

P (N⊥)
is a conflicting core of N.

Lifting with Instantiation

By definition, if N⊥ is a conflicting core of N, then N⊥τ is also a conflicting core of
N for any τ. Sometimes a conflicting core, where no lifting lemma applies, can be
instantiated into a core, where one does. This then still implies a successful lifting.

For example, consider N and its Linear transformation N′.

→ P(x, x) ⇒LI → P(x, x′)
P(y, a), P(z, b) → P(y, a), P(z, b) →

A possible conflicting core of N′ is N′⊥.

→ P(y, a)
→ P(b, b)

P(y, a), P(b, b) →

Because P(y, a) is not an instance of P(x, x), Lemma 4.2.4 is not applicable. How-
ever, Lemma 4.2.4 can be applied on N′⊥{y 7→ a}.

→ P(a, a)
→ P(b, b)

P(a, a), P(b, b) →

In practice, this means lifting a conflicting core can fail because some conflict
clause Cc is not an instance of its parent clause C, even though Cc and C are
unifiable. In this case, I can instantiate the conflicting core with their most general
unifier σ. Then, Ccσ is an instance of C and no longer causes lifting to fail.

4.3 Approximation-Refinement

In the previous section, I have presented the lifting process for the case that the
conflicting core can actually be lifted. If, however, in one of the lifting steps the
conditions of the corresponding lemma cannot be met, lifting fails. A failed lifting
lemma always means that some clause in the conflicting core, the so-called lift-
conflict, is not an instance of the parent clause in the respective transformation step.
Because the clauses also have overlapping skeleton term structures, there exists at
least one variable in the original clause that the approximation instantiates twice in
a non-unifiable way. This results in two so-called conflicting instantiations.

For example, consider again N and its Linear transformation N′.

→ P(x, x) ⇒LI → P(x, x′)
P(y, a), P(z, b) → P(y, a), P(z, b) →
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A possible ground conflicting core of N′ is

→ P(a, a)
→ P(a, b)

P(a, a), P(a, b) →

Because P(x, x) and P(a, b) cannot be unified, lifting fails. P(a, b) is the lift-conflict
and {x 7→ a} and {x 7→ b} are the conflicting instantiations.

The refinement then always replaces the original clause in N with a set of
specific instances, which are determined by the conflicting instantiations.

Definition 4.3.1 (Specific Instances). Let C be a clause and σ1 and σ2 be two
substitutions such that the respective literals in Cσ1 and Cσ2 cannot be simulta-
neously unified. Then, the specific instances of C with respect to σ1 and σ2 are
clauses Cτ1, . . . ,Cτn such that (i) any ground instance of C is an instance of some
Cτi and (ii) no Cτi shares ground instances with both Cσ1 and Cσ2.

The existence of a finite set of specific instances is guaranteed for conflicting
substitutions [29]. The first property ensures that if C is replaced by specific in-
stances, the models of N stay the same. The second property ensures that the
approximation of the refined set no longer produces the same conflict because by
Lemma 4.1.4 the changes to the skeleton term structure carry over to the approxi-
mation.

Continuing from the previous example. The specific instances of P(x, x) are
P(a, a) and P(b, b). In the approximation of the refinement N′′,

→ P(a, a)
→ P(b, b)

P(y, a), P(z, b) →

the lift-conflict P(a, b) is not an instance any more. Hence, the previous conflicting
core cannot be found again. The refinement loop then restarts with the refined
clause set.

Since lifting fails at some step except for Monadic transformation, I describe
the refinement for Linear, Shallow and Horn transformation separately.

A Linear transformation enables more instantiations of the approximation clause
than the original clause, that is, two variables that were the same can now be instan-
tiated differently.

Definition 4.3.2 (Linear Approximation-Refinement). Let N ⇒k
APH Nk ⇒LI Nk+1

where C = Γ → E[x]p,q is approximated by C1 = Γ{x 7→ x′},Γ→ E[q/x′]. Let
N⊥k+1 be a ground conflicting core of Nk+1 with some lift-conflict C1σ ∈ N⊥k+1 such
that xσ and x′σ cannot be unified. Let C ∈ N be the ancestor of C′ ∈ Nk+1.
N \ {C} ∪ {Cτ1, . . . ,Cτn} is the linear approximation-refinement of N, where the
Cτi are the specific instances of C with respect to the conflicting instantiations
{x 7→ xσ} and {x 7→ x′σ}.
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The Shallow transformation is similar to the Linear transformation, because
it may also result in cases where the same variable is instantiated differently. As
mentioned before, the Shallow transformation can always be lifted if the set of
shared variables vars(Γ2, s) ∩ vars(Γ1, E[p/x]) is empty. Otherwise, each variable
in the intersection potentially introduces instantiations that are not unifiable.

For example, consider N and its Shallow transformation N′.

→ P( f (x, g(x))) ⇒SH S (z) → P( f (x, z))
Q(y) → S (g(y))

P( f (a, g(b)) → P( f (a, g(b)) →

A conflicting core of N′ is N′⊥.

S (g(b)) → P( f (a, g(b)))
→ S (g(b))

P( f (a, g(b)) →

Because P( f (a, g(b))) and P( f (x, g(x))) cannot be unified, lifting fails. P( f (a, g(b)))
is the lift-conflict and {x 7→ a} and {x 7→ b} are the conflicting instantiations. The
specific instances of P( f (x, g(x))) are

→ P( f ( f (x, y), g( f (x, y))))
→ P( f (g(x), g(g(x))))
→ P( f (a, g(a)))

and → P( f (b, g(b)))

In the approximation of the refinement, the lift-conflict P( f (a, g(b))) can no longer
appear in a conflicting core.

Definition 4.3.3 (Shallow Approximation-Refinement). Let N ⇒k
APH Nk ⇒SH Nk+1

where a clause C = Γ → E[s]p is approximated by Cl = S (x),Γl → E[p/x]
and Cr = Γr → S (s). Let N⊥k+1 be a conflicting core of Nk+1 with Clσl ∈ N⊥k+1 and
Crσr ∈ N⊥k+1 such that their resolvent CR is not unifiable with C. Let C ∈ N be the
ancestor of Cl. N \ {C} ∪ {Cτ1, . . . ,Cτn} is the shallow approximation-refinement
of N, where the Cτi are the specific instances of C with respect to the substitutions
σl and σr.

The Horn approximation-refinement works in an analogous way to the Shal-
low approximation-refinement with the difference that the two clauses come from
two conflicting cores instead of one. Similarly, if the set of common variables
vars(E1) ∩ vars(E2) is not empty, each variable in the intersection potentially intro-
duces instantiations that are not liftable.

For example, consider N

→ P(x),Q(x)
Q(a),Q(b) →

P(a) →

P(b) →
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and its two Horn transformations N1 and N2.

→ P(x) → Q(x)
Q(a),Q(b) → Q(a),Q(b) →

P(a) → P(a) →

P(b) → P(b) →

Their respective conflicting cores are N⊥1 and N⊥2 .

→ P(a) → Q(a)
P(a) → → Q(b)

Q(a),Q(b) →

Because the product → P(a),Q(b) cannot be unified with → P(x),Q(x), lifting
fails. → P(a),Q(b) is the lift-conflict and {x 7→ a} and {x 7→ b} are the conflict-
ing instantiations. The specific instances of → P(x),Q(x) are → P(a),Q(a) and
→ P(b),Q(b). In the approximation of the refinement, the lift-conflict→ P(a),Q(b)
is not a possible product any more.

Definition 4.3.4 (Horn Approximation-Refinement). Let N ⇒k
APH Nk = N′ ∪ {C},

Nk ⇒HO N′ ∪ {C1} and Nk ⇒HO N′ ∪ {C2} where C = Γ→ E1, E2; C1 = Γ→ E1;
and C2 = Γ → E2. Let N⊥1 and N⊥2 be conflicting cores of each case respectively
with C1σ1 ∈ N⊥1 and C2σ2 ∈ N⊥2 such that their product is not unifiable with C.
Let C ∈ N be the ancestor of C1 and C2. The Horn approximation-refinement of N
is the clause set N \ {C} ∪ {Cτ1, . . . ,Cτn} where the Cτi are the specific instances
of C with respect to the substitutions σ1 and σ2.

Lastly, there is a possibility that lifting fails but the respective refinement does
not apply. This is the case when a lifting lemma fails because some lift-conflict Cc

is not an instance of its parent clause C, but C and Cc are nevertheless unifiable.
In this case, I apply lifting by instantiation by applying the most general unifier σ
of C and Cc to the conflicting core N⊥. In the new conflicting core N⊥σ, Ccσ is no
longer a lift-conflict.

Theorem 4.3.5 (Static Completeness). Let N0 be an unsatisfiable clause set and
Nk its MSLH approximation. Then, there exists a conflicting core of Nk that can be
lifted to N0.

Proof. by induction on the number k of approximation steps. The case k = 0 is
obvious. For k > 0, let N0 ⇒

k−1
APH Nk−1 ⇒AP Nk. By the inductive hypothesis, there

is a conflicting core N⊥k−1 of Nk−1 which can be lifted to N0. The final approximation
rule application is either a Linear, a Shallow, a Horn or a Monadic transformation,
considered below by case analysis.

Linear Case. Let Nk−1 = N′ ∪ {C} ⇒LI Nk = N′ ∪ {C′} with C = Γ→ E[x]p,q

and C′ = Γ{x 7→ x′}, Γ→ E[q/x′]. Let Cσ1, . . . ,Cσn be the instances of C in N⊥k−1.
N⊥k−1 \ {Cσ1, . . . ,Cσn} ∪ {C′{x′ 7→ x}σj | 1 ≤ j ≤ n} is a conflicting core of Nk. By
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Lemma 4.2.4, it can be lifted to N⊥k−1 and by the inductive hypothesis, can be lifted
to a conflicting core of N0.

Shallow Case. Let N ⇒∗AP Nk−1 = N′ ∪ {C} ⇒SH Nk = N′ ∪ {Cl,Cr} with
C = Γ → E[s]p, Cl = S (x),Γl → E[p/x] and Cr = Γr → S (s). Assume Cσ is the
only instance of C in N⊥k−1. N⊥k = N⊥k−1 \ {Cσ} ∪ {Cl{x 7→ s}σ,Crσ} is a conflicting
core of Nk. By Lemma 4.2.5, N⊥k can be lifted to N⊥k−1. Now, let Cσ1, . . . ,Cσn

be the instances of C in N⊥k−1 with n > 1. Let C0 ∈ N0 be the ancestor of C
and N′0 = N0 \ {C0} ∪ {C0σ1, . . . ,C0σn}. N⊥k−1 is also a conflicting core for the
corresponding approximation N′k = N′ ∪ {Cσ1, . . . ,Cσn}. For each Cσi, N⊥k−1
contains only one instance such that the above case applies. Thus, there is a core
for approximation of each Cσi that can be lifted to N⊥k−1.

Horn Case. Let Nk−1 = N′ ∪ {C} with C = Γ → E1, E2. Assume Cσ is the
only instances of C in N⊥k−1. N⊥k1

= N⊥k−1 \ {Cσ} ∪ {(Γ → E1)σ} is a conflicting
core of Nk1 = N′ ∪ {(Γ → E1)}. N⊥k2

, constructed analogously for Γ → E2, is a
conflicting core of Nk2 . By Lemma 4.2.6, N⊥k1

and N⊥k2
can be lifted to N⊥k−1. Now,

let Cσ1, . . . ,Cσn be the instances of C in N⊥k−1 with n > 1. Let C0 ∈ N0 be the
ancestor of C and N′0 = N0 \ {C0} ∪ {C0σ1, . . . ,C0σn}. N⊥k−1 is also a conflicting
core for the corresponding approximation N′k = N′∪{Cσ1, . . . ,Cσn}. For each Cσi,
N⊥k−1 contains only one instance such that the above case applies. Thus, there are
cores for each possible approximation of the Cσi such that they can be lifted to
N⊥k−1.

Monadic Case. Let Nk−1 ⇒MO Nk = µT
P(Nk−1) where P is a non-monadic

predicate in Nk−1. N⊥k = µT
P(N⊥k−1) is a conflicting core of Nk. By Lemma 4.2.7, N⊥k

can be lifted to N⊥k−1. �

The above lemma considers static completeness, i.e., it does not tell how the
conflicting core that can eventually be lifted is found. One way is to enumerate
all resolution refutations of Nk in a fair way. A straightforward fairness criterion
is to enumerate the refutations by increasing term depth of the clauses used in the
refutation. Since the decision procedure on the MSLH fragment generates only
finitely many different non-redundant clauses not exceeding a concrete term depth
with respect to renaming, eventually the liftable refutation will be generated.
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Chapter 5

Monadic Shallow Linear
Approximation-Refinement

Motivated by the automatic analysis of security protocols, the monadic shallow
linear Horn (MSLH) fragment was shown to be decidable in [45]. The fragment
can be finitely saturated by superposition (ordered resolution with selection) where
negative literals with non-variable arguments are always selected.

Although from a complexity point of view, the difference between Horn clause
fragments and the respective non-Horn clause fragments is typically reflected by
membership in the deterministic vs. the non-deterministic respective complexity
class, for monadic shallow linear clauses so far there was no decidability result for
the non-Horn case. From a security protocol application point of view, non-Horn
clauses enable a natural representation of non-determinism.

Furthermore, in the approximation-refinement calculus based on the MSLH
fragment, lifting of the Horn transformation requires conflicting cores for each
positive literal in the approximated clause (see Lemma 4.2.6). This leads to a worst-
case exponential blow-up in the number of non-Horn clauses in the original clause
set.

For example consider the non-Horn clauses set N = {→ P1, P2, P3; → Q1,Q2;
P1,Q1 →; P1,Q2 →; P2,Q1 →; P2,Q2 →; P3,Q1 →; P3,Q2 →; }. As shown
in Figure 5.1, just these two clauses create six unique approximations. Since in
this example each set is its own minimal conflicting core, the lifting requires the
conflicting cores of each approximation to create a conflicting core of N.

The results of this chapter close the gap. I show that the monadic shallow linear
non-Horn (MSL) fragment is also decidable by ordered resolution with selection.
This drastically reduces the complexity of the approximation-refinement calculus,
where the non-determinism is more efficiently handled by the superposition solver.
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{→ P1, P2, P3; → Q1,Q2; P1,Q1 →; P1,Q2 →;
P2,Q1 →; P2,Q2 →; P3,Q1 →; P3,Q2 →}

{→ P1; → Q1,Q2;
P1,Q1 →; P1,Q2 →}

{→ P1;
→ Q1;

P1,Q1 →}

{→ P1;
→ Q2;

P1,Q2 →}

{→ P2; → Q1,Q2;
P2,Q1 →; P2,Q2 →}

{→ P2;
→ Q1;

P2,Q1 →}

{→ P2;
→ Q2;

P2,Q2 →}

{→ P3; → Q1,Q2;
P1,Q1 →; P1,Q2 →}

{→ P3;
→ Q1;

P3,Q1 →}

{→ P3;
→ Q2;

P3,Q2 →}

Figure 5.1: Horn transformation example.

5.1 Decidability of the MSL Fragment

In this section, I generalize the decidability of MSLH to the MSL fragment. Since
MSLH is a special case of MSL, the new decision procedure works for both frag-
ments. The procedure in question is ordered resolution with selection [46].

The ordering has to be chosen in such a way that a literal ¬Q(s) is smaller than
a literal P(t[s]p), where p is not the top position. For example, an LPO with a
precedence where functions are larger than predicates has this property.

As the selection function, I define a specific function sel.

Definition 5.1.1 (sel). Let C = S 1(t1), . . . , S n(tn)→ P1(s1), . . . , Pm(sm) be an MSL
clause. The Superposition Selection function sel is defined by S i(ti) ∈ sel(C) if

(1) ti is not a variable or

(2) t1, . . . , tn are variables and ti < vars(s1, . . . , sm) or

(3) {t1, . . . , tn} ⊆ vars(s1, . . . , sm) and for some 1 ≤ j ≤ m, s j = ti.

The selection function sel (Definition 5.1.1) ensures that a clause Γ → ∆ can
only be resolved on a positive literal if Γ contains only variables, which also appear
in ∆ at a non-top position. For example, in the clause

P( f (x)), P(x),Q(z)→ Q(x),R( f (y))

sel selects P( f (x)) because f (x) is not a variable. In

P(x),Q(z)→ Q(x),R( f (y))

sel selects Q(z) because rule (1) does not apply and z < {x, y}. In

P(x),Q(y)→ Q(x),R( f (y))
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sel selects P(x) because rules (1) and (2) do not apply and the argument term of
P(x) is also the argument of Q(x). Then in

P(x),Q(y)→ Q( f (x)),R( f (y))

nothing is selected as no rule applies.
Furthermore, if no negative literal is selected, then only positive literals are

maximal (Lemma 5.1.2).

Lemma 5.1.2. Let C = S 1(t1), . . . , S n(tn)→ P1(s1), . . . , Pm(sm) be an MSL clause.
If some S i(ti) is maximal in C, then at least one literal in C is selected.

Proof. Assume the literal S i(ti) is maximal in C, but no literal is selected by sel.
Then, by Definition 5.1.1 the term ti is a variable (1), which appears in some s j (2)
and s j , ti (3). Hence, s j = f (. . . , ti, . . . ) for some function f and therefore
S i(ti) ≺ P j( f (. . . , ti, . . . )). A contradiction. �

The following lemmas show that saturating an MSL clause set via ordered
resolution with selection function sel terminates. This consists of two parts. First,
any result of a resolution inference either has lower term depths than the parent
clauses or has a certain form that signifies a base case (Lemma 5.1.5). Second, this
base case is finite under a certain notion of redundancy (Lemma 5.1.4).

Definition 5.1.3 (Closed Set). A clause set N is called closed under renaming, if
for every clause C ∈ N and non-trivial variable renaming τ, Cτ < N. N is called
closed under condensation, if for every clause C ∈ N, no condensation exists.

Lemma 5.1.4. Let N be a set of MSL clauses, where for every clause C ∈ N,

(1) C = S 1(x1), . . . , S n(xn), S ′1(t), . . . , S ′m(t)→ ∆ or

(2) C = S 1(x1), . . . , S n(xn), S ′1(t), . . . , S ′m(t)→ ∆, S (t)

with vars(t) ∩ vars(∆) = ∅ and t shallow and linear. If N is closed under renaming
and condensation, then N is finite.

Proof. Let C = Γ → ∆ ∈ N. Since vars(t) ∩ vars(∆) = ∅ and all top level terms in
Γ are either a variable or t, C can be partitioned into variable disjoint parts:

(A) S 1(x), . . . , S k(x)→ S (x)

(B) S 1(x1), . . . , S k(xk), S ′1(t), . . . , S ′n(t)→ S (t)

(C) S 1(x1), . . . , S k(xk), S ′1(t), . . . , S ′n(t)→

where t = f (y1, . . . , ym) is linear and {x1, . . . , xk} ⊆ {y1, . . . , ym}.
Since the number of predicates, function symbols, and their ranks is finite,

the number of possible S ( f (y1, . . . , ym)) different up to renaming is finite. For a
given t, there exist only finitely many clauses of the form S 1(t), . . . , S n(t)→ S (t)
or S 1(t), . . . , S n(t)→ modulo condensation. For a fixed set of variables x1, . . . , xk,
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there exist only finitely many clauses of the form S 1(x1), . . . , S k(xk) → modulo
condensation. Therefore, for each form (A)-(C) there are only finitely many distinct
clauses modulo renaming and condensation.

Lastly, under renaming and condensation there are only finite possible combi-
nations to construct distinct clauses of type (1) and (2) out of parts (A)-(C). �

Lemma 5.1.5 (Saturation). Let N be a monadic positive shallow linear first-order
clause set. Then N can be finitely saturated under subsumption and condensation
by ordered resolution with selection function sel.

Proof. Let C = Γ→ S (t),∆ and D = S (t′), Γ′ → ∆′ be clauses in N where ordered
resolution with selection function sel can be applied on S (t) and S (t′) respectively.
Since N is positive shallow linear, all terms in ∆ and ∆′ are shallow and all variables
are linear. For C this implies that no literal in Γ is selected and hence C can match
only one of two patterns:

(A) C = S 1(x1), . . . , S n(xn)→ ∆, S ( f (y1, . . . , yk))

where x1, . . . , xn are variables in {y1, . . . , yk} ∪ vars(∆).

(B) C = S 1(x1), . . . , S k(xk)→ ∆, S (y)

where x1, . . . , xn are variables in vars(∆), i.e., y occurs only once.

In D, by Lemma 5.1.2 S (t′) is selected by sel and therefore D can match only one
of three patterns.

(1) D = S ( f (t1, . . . , tk)),Γ′ → ∆′.

(2) D = S (y′),Γ′ → ∆′

where Γ′ has no function terms and y < vars(∆′).

(3) D = S (y′),Γ′ → S ′(y′),∆′

where Γ′ has no function terms.

This means that any application of ordered resolution with selection sel results in
one of the following six resolvents R:

(A1) R = S 1(x1)σ, . . . , S n(xn)σ,Γ′ → ∆,∆′

with σ = {y1 7→ t1, . . . } and ∆σ = ∆ because {y1, . . . , yk} ∩ vars(∆) = ∅.

(B1) R = S 1(x1), . . . , S n(xn),Γ′ → ∆,∆′

The substitution {y 7→ f (t1, . . . , tk)} is irrelevant since y , xi and y < vars(∆)

(A2) R = S 1(x1), . . . , S n(xn),Γ′τ→ ∆,∆′

with τ = {y′ 7→ f (y1, . . . , yk)} and ∆′τ = ∆′ because y′ < vars(∆′).

(B2) R = S 1(x1), . . . , S n(xn),Γ′ → ∆,∆′.

(A3) R = S 1(x1), . . . , S n(xn),Γ′τ→ S ′( f (y1, . . . , yk)),∆,∆′

with τ = {y 7→ f (y1, . . . , yk)} and ∆′τ = ∆′ because y′ < vars(∆′).
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(B3) R = S 1(x1), . . . , S n(xn),Γ′ → S ′(y′),∆,∆′.

In each case the resolvent is again monadic positive shallow linear. Furthermore, in
the (A2) to (B3) cases

R = S 1(x1), . . . , S l(xl), S ′1(t), . . . , S ′m(t)→ ∆ or

R = S 1(x1), . . . , S l(xl), S ′1(t), . . . , S ′m(t)→ ∆, S (t)

with t = f (y1, . . . , yk). By Lemma 5.1.4, there are only finitely many such clauses
modulo renaming and condensation. Therefore, these four cases can only be applied
finitely many times by ordered resolution.

In the (A1) and (B2) cases, the multiset of term depths of the resolvent’s neg-
ative literals is strictly smaller than for the right parent. In both, the Γ is the same
between the right parent and the resolvent. Only the f (t1, . . . , tk) term is replaced
by x1σ, . . . , xnσ and x1, . . . , xn respectively. In the first case, the depth of the xiσ

is either zero if xi < {y1, . . . , yk} or at least one less than f (t1, . . . , tk) since xiσ = ti.
In the second case, the xi have depth zero which is strictly smaller than the depth
of f (t1, . . . , tk). Since the multiset ordering on natural numbers is terminating, the
first and second case can only be applied finitely many times by ordered resolution,
as well.

Let Γ→ ∆, S (t), S (t′) be a clause in N where ordered factoring with selection
function sel applies with σ = mgu(S (t), S (t′)) and R = (Γ→ ∆, S (t))σ. Because in
Γ→ ∆, S (t), S (t′) no literal is selected, Γ→ ∆, S (t), S (t′) and (Γ→ ∆, S (t))σ can
only match one of three patterns.

(A) S 1(x1), . . . , S n(xn)→ S ( f (y1, . . . , yk)), S ( f (z1, . . . , zl)),∆

where {x1, . . . , xn} ⊆ {y1, . . . , yk} ∪ {z1, . . . , zl} ∪ vars(∆), t = f (y1, . . . , yk), and
t′ = f (z1, . . . , zk). The result is

S 1(x1)σ, . . . , S n(xn)σ→ S ( f (y1, . . . , yk)),∆ with σ = {z1 7→ y1, . . . }.

(B) S 1(x1), . . . , S n(xn)→ S ( f (y1, . . . , yk)), S (z),∆

where t = f (y1, . . . , yk), t′ = z and {x1, . . . , xn} ⊆ {y1, . . . , yk} ∪ vars(∆),
i.e., z occurs only once. The result is

S 1(x1), . . . , S n(xn)→ S ( f (y1, . . . , yk)),∆.

(C) S 1(x1), . . . , S n(xn)→ S (y), S (z),∆

where t = y, t′ = z and {x1, . . . , xn} ⊆ vars(∆), i.e., y and z occur only once. The
result is

S 1(x1), . . . , S n(xn)→ S (y),∆.

In each case, the resolvent is again an MSL clause.
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Furthermore, in each case the clause is of the form S 1(x1), . . . , S l(xl) → ∆.
By Lemma 5.1.4, there are only finitely many such clauses after condensation and
removal of variants. Therefore, these three cases can apply only finitely many times
during saturation. �

Theorem 5.1.6 (Non-Horn Decidability). Satisfiability of MSL first-order clause
sets is decidable.

Proof. Follows from Lemma 5.1.5, as well as the soundness and completeness of
ordered resolution with selection. �

5.2 Approximation⇒AP

I introduce the concrete over-approximation ⇒AP that maps a clause set N to an
MSL clause set N′. The main difference between⇒AP and⇒APH is the removal of
the Horn transformation rule. As a consequence, the shallow and linear rules are
modified to handle non-Horn clauses as well.

Monadic N ⇒MO µT
P(N)

provided P is a non-monadic predicate in the signature of N

Shallow N ∪̇ {Γ→ E[s]p,∆} ⇒SH
N ∪ {S (x),Γl → E[p/x],∆l} ∪ {Γr → S (s),∆r}

provided s is a complex term, p , ε, x and S fresh,
Γl{x 7→ s} ∪ Γr = Γ, ∆l ∪ ∆r = ∆,
{Q(y) ∈ Γ | y ∈ vars(E[p/x],∆l)} ⊆ Γl,
{Q(y) ∈ Γ | y ∈ vars(S (s),∆r)} ⊆ Γr;

Linear 1 N ∪̇ {Γ→ ∆, E′[x]p, E[x]q} ⇒LI
N ∪ {Γσ,Γ→ ∆, E′[x]p, E[q/x′]}

provided x′ is fresh and σ = {x 7→ x′}.

Linear 2 N ∪̇ {Γ→ ∆, E[x]p,q} ⇒LI
N ∪ {Γσ,Γ→ ∆, E[q/x′]}

provided x′ is fresh, p , q and σ = {x 7→ x′}.

Definition 5.2.1 (⇒AP). Define⇒AP as the priority rewrite system [3] consisting
of⇒MO,⇒SH and⇒LI with priority⇒MO >⇒SH >⇒LI.

Lemma 5.2.2 (⇒AP is a Terminating Over-Approximations). ⇒AP is a terminating
over-approximation.
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Proof. Termination follows from Lemmas 3.1.2, 3.2.1, 3.3.1, and 3.4.1 and the
fact that neither transformation creates clauses that a higher priority rule could
be applied on. ⇒APH is an over-approximation by Lemmas 3.1.3, 3.2.2, 3.3.2,
and 3.4.2. �

Corollary 5.2.3. If N ⇒∗AP N′ and N′ is satisfied by a model I, then µ−1
Σ

(I) is a
model of N.

Proof. Follows from Lemma 5.2.2. �

As in Chapter 4, the minimal Herbrand model of the eventual approximation
generated by⇒AP preserves the skeleton term structure of the original clause set,
if it exists.

Lemma 5.2.4. Let N0 be a monadic clause set and Nk be its approximation via
⇒AP. Let Nk be satisfiable and I be a minimal Herbrand model for Nk. If P(s) ∈ I
and P is a predicate in N0, then there exists a clause C = Γ → ∆, P(t) ∈ N0 and a
substitution σ such that s = skt(t)σ and for each variable x and predicate S with
C = S (x),Γ′ → ∆, P(t[x]p) and s|p = s′′, S (s′′) ∈ I.

Proof. By induction on the length of the approximation N0 ⇒
∗
AP Nk.

For the base Nk = N0, assume there is no C ∈ Nk with Cσ = Γ→ ∆, P(s) where
for each variable x and predicate S with C = S (x),Γ′ → ∆, P(t[x]p) and s|p = s′′,
S (s′′) ∈ I. Then I \ {P(s)} is still a model of Nk and therefore I was not minimal.
A contradiction.

Let N0 ⇒AP N1 ⇒
∗
AP Nk, P(s) ∈ I and P is a predicate in N0 and hence

also in N1. By the induction hypothesis on N1 ⇒
∗
AP Nk, there exist a clause C =

Γ→ ∆, P(t) ∈ N1 and a substitution σ such that s = skt(t)σ and S (s2) ∈ I for each
variable y and predicate S with C = S (y),Γ′ → ∆, P(t[y]p) and s|p = s2. The
first approximation rule application is either a Linear or a Shallow transformation,
considered below by case analysis.

Linear Case. Let ⇒AP be a Linear transformation where Γ′′ → ∆′[x]p,q= C0
is approximated with C1 = Γ′′,Γ′′{x 7→ x′} → ∆′[q/x′]. If C , C1, then C ∈ N0
fulfils the claim. Otherwise, C0 = Γ′′ → ∆, P(t){x′ 7→ x} ∈ N0 fulfils the claim
because s = skt(t)σ = skt(t{x′ 7→ x})σ and Γ′′ ⊆ Γ′′,Γ′′{x 7→ x′}.

Shallow Case. Let⇒AP be a Shallow transformation where Γ′′ → Q(t′[s1]p),∆
= C0 is approximated with Cl = S (x), Γl → Q(t′[p/x]),∆l and Cr = Γr → S (s1),∆r.
If C , Cl and C , Cr, then C ∈ N0 fulfils the claim. If C = Cr, then P(t) ∈ ∆r

because S is fresh and thus C0 ∈ N0 fulfils the claim. Otherwise, C = Cl. If
P(t) , Q(t′[p/x]), then P(t) ∈ ∆l and C0 ∈ N0 fulfils the claim. Otherwise C =

S (x),Γl → Q(t′[x]p),∆l with P(t) = Q(t′[p/x]), s = skt(t[x]p)σ and S (s2) ∈ I for
s|p = s2. Then by the induction hypothesis, there exist a clause CS = ΓS → ∆S , S (tS )
in N1 and a substitution σS such that s2 = skt(tS )σS and for each variable y and
predicate S ′ with CS = S ′(y),Γ′S → ∆S , P(tS [y]q) and s2|q = s3, S ′(s3) ∈ I. By
construction, CS = Cr. Thus, s2 = skt(s1)σS and s = skt(t[x]p)σ imply there exists
a σ′′ such that s = skt(t[s1]p)σ′′. Furthermore, because Γl{x 7→ s1} ∪ Γr = Γ′′, if

47



C0 = S ′(y),Γ′′′ → ∆, P(t[s1]p)[y]q, then either S ′(y) ∈ Γl and thus S ′(s4) ∈ IN ,
where s|q = s4, or S ′(y) ∈ Γr and thus S ′(s4) ∈ I, where (s[s2]p)|q = s4. Hence,
C0 ∈ N0 fulfils the claim. �

Lemma 5.2.5. Let N ⇒∗AP N′, where N′ is a normal form, and I be a minimal
Herbrand model of N′. If µT

Σ
(P(s1, . . . , sn)) ∈ I and P is a predicate in N, then there

is a clause Γ→ ∆, P(t1, . . . , tn) ∈ N and a substitution σ such that si = skt(ti)σ for
all i.

Proof. Because of the rule priority of⇒AP, N ⇒∗MO µΣ(N)⇒∗AP N′.
Let P(s) ∈ I and P be a monadic predicate in N. Since P is monadic, P is

a predicate in µΣ(N). Hence by Lemma 5.2.4, there exists a Γ→ ∆, P(t) ∈ µΣ(N)
and a substitution σ such that s = skt(t)σ. Then, µ−1

Σ
(Γ → ∆, P(t)) ∈ N fulfils the

claim.
Let T ( fp(s1, . . . , sn)) ∈ I. T is monadic and a predicate in µΣ(N). Hence by

Lemma 5.2.4, there exists a clause Γ→ ∆,T (t) ∈ µΣ(N) and a substitution σ such
that fp(s1, . . . , sn) = skt(t)σ. Therefore, t = fp(t1, . . . , tn) with si = skt(ti)σ for all i.
Then, µ−1

Σ
(Γ→ ∆,T ( fp(t1, . . . , tn))) ∈ N fulfils the claim. �

5.3 Lifting of⇒AP and Approximation-Refinement

Lifting and refinement follow the same idea as in Chapter 5 with the exception of the
missing Horn case and the slight changes to the Linear and Shallow transformation
rules. Definition and generation of the conflicting core is also unchanged but now
actually requires the factorization case.

Lemma 5.3.1 (Lifting the Linear Transformation). Let Nk ⇒LI Nk+1 be a Linear
transformation where Nk = N ∪ {C}, Nk+1 = N ∪ {C′}, C = Γ→ ∆[x]p,q and C′ =

Γ{x 7→ x′}, Γ→ ∆[q/x′]. Let N⊥k+1 be a conflicting core of Nk+1 and C′σ1, . . . ,C′σm

be all clauses in N⊥k+1 that are instances of C′. If xσj = x′σj for 1 ≤ j ≤ m, then
N⊥k+1 \ {C

′σ1, . . . ,C′σm} ∪ {Cσ1, . . . ,Cσm} = N⊥k is a conflicting core of Nk.

Proof. Let σ be any grounding substitution and I be any interpretation. Then,
I 6|= N⊥k+1σ and there exists a clause C⊥ ∈ N⊥k+1σ such that I 6|= C⊥. If C⊥ is not an
instance of C′, then C⊥ is a clause in N⊥k σ. Thus, I 6|= N⊥k σ. If C⊥ is an instance
of C′, then C⊥ = C′σjσ for some 1 ≤ j ≤ m. Because xσj = x′σj, C′σjσ and
Cσjσ are equal modulo duplicate literal elimination. Thus, I 6|= N⊥k σ. Therefore,
N⊥k is a conflicting core of Nk. �

Lemma 5.3.2 (Lifting the Shallow Transformation). Let Nk ⇒SH Nk+1 be a Shal-
low transformation where Nk = N ∪ {C}, Nk+1 = N ∪ {Cl,Cr}, C = Γ → E[s]p,∆;
Cl = S (x), Γl → E[p/x],∆l and Cr = Γr → S (s),∆r. Let N⊥k+1 be a conflicting core
of Nk+1 and NS be the set of all resolvents of clauses in N⊥k+1 on the S -atom. If all
clauses in NS are instances of C modulo duplicate literal elimination, then N⊥k =

{D ∈ N⊥k+1 | D not an instance of Cl or Cr} ∪ NS is a conflicting core of Nk.
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Proof. Let σ be any grounding substitution and I be any interpretation. Then,
I 6|= N⊥k+1σ and there exists C⊥ ∈ N⊥k+1σ such that I 6|= C⊥. If C⊥ is not an
instance of Cl or Cr, then C⊥ ∈ N⊥k σ. Thus, I 6|= N⊥k σ. Otherwise, assume
Clτl . . . ,Clτm and Crρl, . . . ,Crρn are the only clauses in N⊥k σ false under I. Let
I′ B I \{S (x)τl, . . . , S (x)τm}∪{S (s)ρl, . . . , S (s)ρn}, i.e., change the truth value for
S -atoms such that the clauses unsatisfied under I are satisfied under I′. Because I
and I′ only differ on S -atoms, there exists a clause D ∈ N⊥k σ that is false under I′

and contains an S -atom. Let D = Clσ
′. Since I |= D, S (x)σ′ was added to I′ by

some clause Crρ j, where S (s)ρ j = S (x)σ′. Let R be the resolvent of Crρ j and Clσ
′

on S (s)ρ j and S (x)σ′. Then, I 6|= R because I 6|= Crρ j and I ∪ {S (s)ρ j} 6|= Clσ
′.

Thus, I 6|= N⊥k σ. For D = Crσ
′, the proof is analogous. Therefore, N⊥k is a

conflicting core of Nk. �

Definition 5.3.3 (Linear Approximation-Refinement). Let N ⇒k
APH Nk ⇒LI Nk+1

where C = Γ → ∆[x]p,q is approximated by C1 = Γ{x 7→ x′},Γ→ ∆[q/x′]. Let
N⊥k+1 be a ground conflicting core of Nk+1 with some lift-conflict C1σ ∈ N⊥k+1 such
that xσ and x′σ cannot be unified. Let C ∈ N be the ancestor of C′ ∈ Nk+1.
N \ {C} ∪ {Cτ1, . . . ,Cτn} is the linear approximation-refinement of N, where the
Cτi are the specific instances of C with respect to the conflicting instantiations
{x 7→ xσ} and {x 7→ x′σ}.

Definition 5.3.4 (Shallow Approximation-Refinement). Let N ⇒k
AP Nk ⇒SH Nk+1

where C = Γ → ∆, E[s]p is approximated by Cl = S (x),Γl → E[p/x],∆l and
Cr = Γr → S (s),∆r. Let N⊥k+1 be a ground conflicting core of Nk+1 with Clσl ∈ N⊥k+1
and Crσr ∈ N⊥k+1 such that their resolvent CR is not unifiable with C. Let C ∈ N be
the ancestor of Cl. N \{C}∪{Cτl, . . . ,Cτn} is the shallow approximation-refinement
of N, where the Cτi are the specific instances of C with respect to the substitutions
σl and σr.

Theorem 5.3.5 (Static Completeness). Let N0 be an unsatisfiable clause set and
Nk its MSL approximation. Then, there exists a conflicting core of Nk that can be
lifted to N0.

Proof. by induction on the number k of approximation steps. The case k = 0 is
obvious. For k > 0, let N0 ⇒

k−1
AP Nk−1 ⇒AP Nk. By the inductive hypothesis, there

is a conflicting core N⊥k−1 of Nk−1 which can be lifted to N0. The final approxima-
tion rule application is either a Linear, a Shallow, or a Monadic transformation,
considered below by case analysis.

Linear Case. Let Nk−1 = N′ ∪ {C} ⇒LI Nk = N′ ∪ {C′} with C = Γ→ ∆[x]p,q

and C′ = Γ{x 7→ x′}, Γ→ ∆[q/x′]. Let Cσ1, . . . ,Cσn be the instances of C in N⊥k−1.
N⊥k−1 \ {Cσ1, . . . ,Cσn} ∪ {C′{x′ 7→ x}σj | 1 ≤ j ≤ n} is a conflicting core of Nk. By
Lemma 5.3.1, it can be lifted to N⊥k−1 and by the inductive hypothesis, can be lifted
to a conflicting core of N0.

Shallow Case. Let Nk−1 = N′ ∪ {C} ⇒SH Nk = N′ ∪ {Cl,Cr} with C =

Γ → E[s]p,∆l; Cl = S (x),Γl → E[p/x]; and Cr = Γr → S (s),∆r. Assume Cσ
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is the only instances of C in N⊥k−1. N⊥k = N⊥k−1 \ {Cσ} ∪ {Cl{x 7→ s}σ,Crσ} is
a conflicting core of Nk. By Lemma 5.3.2, N⊥k can be lifted to N⊥k−1. Now, let
Cσl, . . . ,Cσn be the instances of C in N⊥k−1 with n > 1. Let C0 ∈ N0 be the ancestor
of C and N′0 = N0 \ {C0} ∪ {C0σl, . . . ,C0σn}. N⊥k−1 is also a conflicting core for
the corresponding approximation N′k = N′ ∪ {Cσl, . . . ,Cσn}. For each Cσi, N⊥k−1
contains only one instance such that the above case applies. Thus, there is a core
for approximation of each Cσi that can be lifted to N⊥k−1.

Monadic Case. Let Nk−1 ⇒MO Nk = µP(Nk−1) where P is a non-monadic
predicate in Nk−1 N⊥k = µP(N⊥k−1) is a conflicting core of Nk. By Lemma 4.2.7, N⊥k
can be lifted to N⊥k−1. �
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Chapter 6

Straight Dismatching Constraint
Approximation-Refinement

In the previous chapter, I presented the decidability of the MSL fragment. This
allowed me to change the approximation target for SPASS-AR from the MSLH to
the MSL fragment and thereby avoid the worst-case exponential blow-up caused by
the Horn transformation during lifting.

The next biggest problem that becomes apparent lies in the refinement: The
number of specific instances, which the refinement replaces an original clause with,
is in the worst-case quadratic (see Definitions 4.3.1, 5.3.3 and 5.3.4).
For example, consider the first-order Horn clauses

Q(x) → P(g(x, f (x)))
→ Q( f (g(a, a)))
→ Q( f (g(b, b)))

P(g( f (g(a, a)), f ( f (g(b, b))))) →

under signature {a/0, b/0, f /1, g/2} that are approximated into
S (y),Q(x) → P(g(x, y))

Q(z) → S ( f (z))
→ Q( f (g(a, a)))
→ Q( f (g(b, b)))

P(g( f (g(a, a), f ( f (g(b, b)))) →

via linearisation of g(x, f (x)) to g(x, f (z)) and then deep variable term extraction of
f (z) through the introduction of a fresh predicate S [43]. The approximated clause
set has a refutation and the corresponding conflicting core, a minimal unsatisfiable
set of instances from the above clauses generating this refutation, is

S ( f ( f (g(b, b)))),Q( f (g(a, a))) → P(g( f (g(a, a)), f ( f (g(b, b)))))
Q( f (g(b, b))) → S ( f ( f (g(b, b))))

→ Q( f (g(a, a)))
→ Q( f (g(b, b)))

P(g( f (g(a, a), f ( f (g(b, b)))) →

Lifting the conflicting core to the original clause set fails, because the resolvent
of the first two conflict clauses, eliminating the introduced S predicate
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Q( f (g(b, b))),Q( f (g(a, a))) → P(g( f (g(a, a)), f ( f (g(b, b)))))
is not an instance of the original clause Q(x) → P(g(x, f (x))), modulo duplicate
literal elimination. A refinement step replaces Q(x) → P(g(x, f (x))) by the in-
stance Q( f (g(a, y))) → P(g( f (g(a, y)), f ( f (g(a, y))))), and instances representing
Q(x)→ P(g(x, f (x))), where x is not instantiated with f (g(a, y)). The former clause
contains the ground instance

Q( f (g(a, a)))→ P(g( f (g(a, a)), f ( f (g(a, a)))))

and the latter clauses include the ground instance

Q( f (g(b, b)))→ P(g( f (g(b, b)), f ( f (g(b, b))))) :

Q(a)→ P(g(a, f (a)))

Q(b)→ P(g(b, f (b)))

Q(g(x, y))→ P(g(g(x, y), f (g(x, y))))

Q( f (a))→ P(g( f (a), f ( f (a))))

Q( f (b))→ P(g( f (b), f ( f (b))))

Q( f ( f (x)))→ P(g( f ( f (x)), f ( f ( f (x)))))

Q( f (g(b, y)))→ P(g( f (g(b, y)), f ( f (g(b, y)))))

Q( f (g( f (x), y)))→ P(g( f (g( f (x), y)), f ( f (g( f (x), y)))))

Q( f (g(g(x, y), z)))→ P(g( f (g(g(x, y), z)), f ( f (g(g(x, y), z)))))

Then, the approximation of the above nine clauses, via linearisation and deep
variable term extraction, excludes the previously found refutation. Actually, the
refined approximated clause set yields a finite saturation and therefore shows satis-
fiability of the original clause set.

Note that this list of instantiations depends on the signature and the conflicting
instantiations. Specifically in this case, the number of specific instances is the
product of |{a, b, f , g}| − 1 and the depth of the term f (g(a, a)).

As a solution, I introduce in this chapter the notion of straight dismatching
constraints (SDC) which extend the clause language to allow expressing ”C, where
x is not instantiated with straight1 term s “ as the single constraint clause (C; x , s).

This enables a refinement where a clause is replaced by exactly two new clauses.
For the example, they are

Q( f (g(a, y)))→ P(g( f (g(a, y)), f ( f (g(a, y)))))

and Q(x)→ P(g(x, f (x))) ; x , f (g(a, v)).

This results in the refined approximation

S 1(y), S 2(x),Q(x)→ P(g(x, y))∗ (6.1)

1see Definition 6.1.1
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S 2(x),Q(x)→ S 1( f (x))∗ (6.2)

S 3(x)→ S 2( f (x))∗ (6.3)

→ S 3(g(a, y))∗ (6.4)

S 4(y),Q(x)→ P(g(x, y))∗; x , f (g(a, v)) (6.5)

Q(x)→ S 4( f (x))∗; x , f (g(a, v)) (6.6)

→ Q( f (g(a, a)))∗ (6.7)

→ Q( f (g(b, b)))∗ (6.8)

P(g( f (g(a, a)), f ( f (g(b, b)))))+ → (6.9)

where under the ≺lpo ordering induced by the precedence P ≺ Q ≺ S 4 ≺ S 3 ≺

S 2 ≺ S 1 ≺ a ≺ b ≺ f ≺ g and selection of the first complex negative literal, the
only inferences are

[10 : Res : 1, 9] S 1( f ( f (g(b, b))))+, S 2( f (g(a, a))),Q( f (g(a, a)))→

[11 : Res : 2, 10] S 2( f (g(b, b)))+,Q( f (g(b, b))), S 2( f (g(a, a))),Q( f (g(a, a)))→

[12 : Res : 3, 11] S 3(g(b, b))+,Q( f (g(b, b))), S 2( f (g(a, a))),Q( f (g(a, a)))→

A resolution between the fifth and ninth clause has the tautologous result

(S ( f ( f (g(b, b)))),Q( f (g(a, a)))→; f (g(a, a)) , f (g(a, v))).

Clauses with straight dismatching constraints are closed under resolution and
factoring. Repeated refinement steps and resolution inferences can add further
atomic constraints to a clause, which are interpreted as conjunctions, for example,
(C; x , t ∧ y , s) represents instances of C where neither x is an instance of t nor y
is an instance of s. Straight dismatching constraints can be efficiently encoded in
amortized constant space through structure sharing once the input constraint terms
are stored. Any straight term generated by the calculus is a subterm of an input
straight term. Relevant operations (substitution, intersection, solvability and subset
tests) take linear time in the size of the constraints, once they are ordered. Ordering
can be done as usual in linear logarithmic time. The ordered resolution calculus
with straight dismatching constraints is sound and complete, enables an abstract
redundancy criterion and follows the saturation principle: if all non-redundant
inferences from a clause set are performed and the empty clause is not generated
then the resulting saturated clause set has a model computed by a model operator.

Note that straight dismatching constraints are incomparable to the disequality
constraints with whichH1 is extended in [38, 39].

For the improved approximation-refinement approach (FO-AR) presented here,
any refinement step results in just two clauses, see Section 6.5. The additional
expressiveness of constraint clauses comes almost for free, because necessary com-
putations, like, e.g., checking emptiness of SDCs, can all be done in linear or
linear-logarithmic time, see Section 6.1.
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6.1 Dismatching Constraints

In the following I extend the notion of clauses by adding straight dismatching
constraints. The constraints are used to restrict which grounding substitutions can
be applied to a clause.

Definition 6.1.1 (Straight Terms). A term s = f (s1, . . . , sn) is called straight, if s is
linear and all arguments are variables except for at most one straight argument si.

For example, the f (x, f (a, y)) and f (x, f (y, z)) are straight, while f (x, f (a, b))
is not. Straight terms can be identified visually in their tree form, if there is exactly
one branch with function symbols on each node.

f

f

a

f

f

f

f

a b
Note that for two different ground terms t1 and t2, there always exists a position

in both where they have different function symbols. The path from the root to this
position in t1 defines a straight term t that has only t1 as an instance but not t2. Thus,
a straight term is sufficient to isolate two ground instances.

Definition 6.1.2 (Straight Dismatching Constraint). A straight dismatching con-
straint π is of the form ∧

i∈I

ti , si

where I is a finite set of indices, the ti are arbitrary terms and the si are straight
terms. Given a substitution σ, πσ =

∧
i∈I tiσ , si.

Further extend the set of constraints with the constants >,⊥ representing the
empty and the unsolvable constraint, respectively. An atomic constraint t , s
occurring in π is called a sub-constraint of π. The length |π| is defined as the
number of sub-constraints, |I|. The depth of a constraint

∧
i∈I ti , si is the maximal

term depth of the si.

Definition 6.1.3 (Solutions). Let π be a straight dismatching constraint, Σ a sig-
nature and V a set of variables with lvar(π) ⊆ V. A solution of π over V is a
grounding substitution δ overV such that for all i ∈ I, siδ is not an instance of ti.
DV(π) B {δ | δ is a solution of π overV}. A straight dismatching constraint is solv-
able if it has a solution and unsolvable, otherwise. Two constraints are equivalent
if they have the same solutions over allV. In particular, all grounding substitutions
are solutions of >, and ⊥ has no solution.

For example, consider the constraint π = x , b∧ x , f ( f (u))∧ x , g(v,w) with
the signature F = {a/0, b/0, f /1, g/2}. π is solvable and has the set of solutions
DV(π) = {{x 7→ a}, {x 7→ f (a)}, {x 7→ f (b)}, {x 7→ f (g(s, t))} | s, t ∈ T (F , ∅)} over
{x}.
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Note, that atomic constraints are not symmetric. For example x , a can have
a solution while a , x is unsolvable. Furthermore, the right-hand variables in a
constraint can be arbitrarily renamed while the left-hand variables are fixed. For
example, the constraints x , f (v) and x , f (w) are equivalent but x , f (v) and
y , f (v) are not. For an atom P(g(x, y)) and a constraint x , f (y), the two y
variables are not connected since for σ = {y 7→ t}, P(g(x, y))σ = P(g(x, t)) but
(x , f (y))σ = (x , f (y)). To avoid confusion, I generally rename right-hand
variables to be unique in a given context.

Furthermore, if δ is a solution of π ∧ π′, then δ is a solution of π and if δ is a
solution of πσ, then σδ is a solution of π. These two properties of solutions follow
directly from the definition and I will use them frequently without pointing them out
specifically. Further, I will ignoreV if it is clear in a given context. For example,
if π restricts the clause C,V is vars(C) ∪ lvar(π).

Definition 6.1.4 (Constraint Variant). A constraint π =
∧

i∈I ti , si is called a
variant of π′ if there is a variable renaming ρ with π′ =

∧
i∈I ti , siρ.

Lemma 6.1.5. If π is a variant of π′, then π and π′ are equivalent.

Proof. Let δ be a solution of π =
∧

i∈I ti , si. Then tiδ is not an instance of si if
and only if tiδ is not an instance of siρ. Hence δ is a solution of π =

∧
i∈I ti , si if

and only if it is a solution of π′ =
∧

i∈I ti , siρ. �

Definition 6.1.6 (Constraint Normalization). Define constraint normalization π↓ as
the normal form of the following rewriting rules over constraints.
1 π ∧ f (t) , y ⇒ ⊥

2 π ∧ f (t) , f (y) ⇒ ⊥

3 π ∧ f (t) , f (s) ⇒ π ∧ ti , si if si is complex

4 π ∧ f (t) , g(s) ⇒ π if f , g

5 π ∧ x , s ∧ x , sσ ⇒ π ∧ x , s

Note that the depth of π↓ is less or equal to the depth of π.

Definition 6.1.7 (Constraint Normal Form). A straight dismatching constraint π =∧
i∈I ti , si is called normal, if all ti are variables and if ti = t j with i , j, then si

is not an instance of s j.

Lemma 6.1.8. π↓ is a normal constraint and equivalent to π.

Proof. In the first and second rule, f (t1, . . . , tn) is an instance of y and f (y1, . . . , yn),
respectively. Hence, there are no solutions, which is equivalent to the unsatisfi-
able constraint ⊥. These steps also terminating. In the third rule, a grounding
substitution δ is a solution of f (t1, . . . , tn) , f (s1, . . . , sn), if and only if each t jδ

is not an instance of s j. However, since f (s1, . . . , sn) is straight there is exactly
one complex si or the second rule applies. Thus, the t jδ are instances of s j for
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j , i and the sub-constraint is equivalent to ti , si. In this case, the depth of the
sub-constraint decreases by one. In the forth rule, f (t1, . . . , tn) can never be an
instance of g(s1, . . . , sm) for any grounding substitution. Hence, all solutions of π
are solutions of π ∧ f (t1, . . . , tn) , g(s1, . . . , sm). In the last rule, let δ be a solution
of π ∧ x , t. Then, xδ is not an instance of t and hence, not an instance of tσ as
well. Therefore, δ is a solution of π∧ x , t∧ x , tσ. Both rules reduces the number
of sub-constraints. All rules together terminate and cover every case where the
left-hand side of a sub-constraint is not a variable or there are two constraints x , t
and x , s where s is an instance of t. Hence, applying the five rules exhaustively
results in a normal form that is a normal dismatching constraint. �

Definition 6.1.9 (Constrained Terms). A pair of a term and a constraint (t; π) is
called a constrained term. For a given signature Σ, the set of ground instances of
(t; π) is G((t; π)) = {tδ | δ ∈ DV(π),V = vars(t) ∪ lvar(π)}.

Definition 6.1.10 (Constrained Clauses). A pair of a clause and a constraint (C; π)
is called a constrained clause. A constrained clause is normal, if π is normal and
lvar(π) ⊆ vars(C). For a given signature Σ, the set of ground instances of (C; π) is
G((C; π)) = {Cδ | δ ∈ DV(π),V = vars(C) ∪ lvar(π)}. (C; π) is called an instance
of (C′; π′) if G((C; π)) ⊆ G((C′; π′)). The notion extends to sets of constrained
clauses. Two constrained clauses are equivalent if they have the same ground
instances. A Herbrand interpretation I satisfies (C; π), if I |= G((C; π)).

Note that in the context of a constrained clause (C; π), a solution δ of π is
implicitly overV = vars(C) ∪ lvar(π) such that Cδ is always in G((C; π)).

Definition 6.1.11 (Clause Variant). A clause (C; π) is called a variant of (D; π′)
if there is a variable renaming ρ such that Cρ = D and πρ is a variant of π′.

Lemma 6.1.12. If (C; π) is a variant of (D; π′), then (C; π) and (D; π′) are equiva-
lent.

Proof. Let Dδ ∈ G((D; π′)) and ρ be a variable renaming such that Cρ = D and πρ
is a variant of π′. Then ρδ is a solution of π and Dδ = Cρδ ∈ G((C; π)). The reverse
direction is analogous. �

Lemma 6.1.13 (Clause Simplification). A constrained clause (C; π∧
∧

i∈I x , si) is
equivalent to (C; π), if π is normal, x < vars(C)∪ lvar(π) and

∧
i∈I x , si is solvable.

Proof. Let Cδ ∈ G(C; π), where δ is a solution of π over V. Because
∧

i∈I x , si

is solvable, there is some solution {x 7→ t} over {x}. Then, δ[x 7→ t] is a solution
of
∧

i∈I x , si ∧ π overV ∪ {x}. Hence, Cδ[x 7→ t] ∈ G(C; π ∧ x
∧

i∈I x , si). The
reverse direction is trivial. �

Lemmas 6.1.8 and 6.1.13 show that any constrained clause can be replaced with
an equivalent normal clause. In the following I will assume any constrained clause
to be normal. For readability, I also often write clauses with the empty constraint
(C;>) simply as C.
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Definition 6.1.14 (Constrained Redundancy). For a given ordering on ground
clauses≺, a constrained clause (C; π) is called redundant in N if for all D ∈ G((C; π)),
there exist D1, . . . ,Dn in G(N)≺D such that D1, . . . ,Dn |= D.

Note that a constrained clause (C; π) with a tautology C or an unsolvable con-
straint π is redundant for any N.

Definition 6.1.15 (Constrained Condensation). A constrained clause (C′; π′) is
called a condensation of (C; π) if C′ ⊂ C and there exists a substitution σ such that,
πσ = π′, π′ ⊆ π, and for all L ∈ C there is a L′ ∈ C′ with Lσ = L′.

Lemma 6.1.16. Let constrained clause (C′; π′) be a condensation of constrained
clause (C; π). Then, (i)(C; π) |= (C′; π′) and (ii)(C; π) is redundant in {(C′; π′)}.

Proof. Let σ be a substitution such that C′ ⊂ C, πσ = π′, π′ ⊆ π, and for all L ∈ C
there is a L′ ∈ C′ with Lσ = L′.

(i) Let C′δ ∈ G((C′; π′)). Then σδ is a solution of π and hence Cσδ ∈ G((C; π)).
Let I |= Cσδ. Hence, there is a Lσδ ∈ I for some L ∈ C and thus L′δ ∈ I for
some L′ ∈ C′ with Lσ = L′. Therefore, I |= C′δ. Since I and C′δ were arbitrary,
(C; π) |= (C′; π′).

(ii) Let Cδ ∈ G((C; π)). Because π′ ⊆ π, δ is a solution of π′ and hence,
C′δ ∈ G((C′; π′)). Therefore, since C′δ ⊂ Cδ, C′δ ∈ G({(C′; π′)})≺Cδ and C′δ |= Cδ.

�

Lemma 6.1.17 (Refinement). Let N∪{(C; π)} be a constrained clause set, x ∈ vars(C)
and s a straight term with vars(s) ∩ vars(C) = ∅. Then N ∪ {(C; π)} and the refine-
ment N ∪ {(C; π ∧ x , s), (C; π){x 7→ s}} are satisfiability equivalent.

Proof. Let Cδ ∈ G((C; π)) be an arbitrary clause. If xδ is not an instance of s, then
δ is a solution of π ∧ x , s and Cδ ∈ G((C; π ∧ x , s)). Otherwise, δ = {x 7→ s}δ′

for some substitution δ′. Then, δ′ is a solution of π{x 7→ s} and therefore, Cδ =

C{x 7→ s}δ′ ∈ G((C{x 7→ s}; π{x 7→ s})). Hence, G((C; π)) ⊆ G((C; π ∧ x , s)) ∪
G((C; π){x 7→ s}). Therefore, if I is a model of N ∪ {(C; π ∧ x , s), (C; π){x 7→ s}},
then I is also a model of N ∪ {(C; π)}.

Let D ∈ G((C; π ∧ x , s)) ∪ G((C; π){x 7→ s}) be an arbitrary clause. If
D = Cδ ∈ G((C; π ∧ x , s)), then δ is also a solution of π and therefore D ∈ G((C; π)).
If D = C{x 7→ s}δ ∈ G((C; π){x 7→ s}), then {x 7→ s}δ is a solution of π and therefore
D ∈ G((C; π)). Hence, G((C; π∧ x , s))∪G((C; π){x 7→ s}) ⊆ G((C; π)). Therefore,
ifI is a model of N∪{(C; π)}, I is also a model of N∪{(C; π ∧ x , s), (C; π){x 7→ s}}.

�

Consider again the introductory example. Lifting the conflicting core of the ap-
proximation failed because D = Q( f ( f (b))),Q( f ( f (a)))→ P(g( f ( f (a)), f ( f (b))))
is not an instance of the original clause Q(x)→ P(g(x, f (x))). Specifically, because
x cannot be instantiated with an instance of both f ( f (a)) and f ( f (b)). Therefore,
I refine the original clause with the instantiation {x 7→ f ( f (a))} and the opposing
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constraint x , f ( f (a)), resulting in C1 = Q( f ( f (a)))→ P(g( f ( f (a)), f ( f ( f (a)))))
and C2 = (Q(x)→ P(g(x, f (x))) ; x , f ( f (a))). D differs from C1 because both
occurrences of x are already instantiated with f ( f (a)), excluding any approxima-
tions, where the second x is instantiated with f ( f (b)). Since x , f ( f (a)) has no
solutions where x is instantiated with f ( f (a)) and the approximation preserves this
fact by duplicating constraints, D can not be inferred from the approximation of C2.
Therefore, the clause D can not appear in the refined approximation again.

6.1.1 Emptiness Check

In this section, I show that solvability of a constraint is decidable. Note that not all
unsolvable constraints trivially normalize to ⊥. A normal constraint can actually
be both solvable and unsolvable depending on the signature. For example, x , a
is a normal constraint that is solvable for signature {a/0, b/0} but unsolvable for
signature {a/0}.

Definition 6.1.18. For a constraint π =
∧

i∈I ti , si and variable x, define the
x-sub-constraint πx of π as

πx B
∧

i∈I ∧ ti=x

x , si.

Note that any non-trivial normal constraint π with lvar(π) = {x1, . . . , xn} can be
partitioned into n xi-sub-constraints πx1 ∧ . . . ∧ πxn .

Lemma 6.1.19. A constraint π has no solution if and only if π↓= ⊥ or there exists
an x-sub-constraint πx of π↓ without solutions.

Proof. If π↓= ⊥, π has trivially no solutions. Let π↓= πx1 ∧ . . .∧πxn with lvar(π↓) =

{x1, . . . , xn}.
“⇒”. Assume there is no x-sub-constraint πx of π↓ without solutions. Thus, there
are solutions δ j = {x j 7→ t j} for each πx j . Then, δ = δ1 ∪ . . . ∪ δm is a solution of
π↓, which contradicts the assumption.
“⇐”. Assume δ is a solution of π↓. Then, δ is also a solution of any x-sub-constraint
πx of π↓, which contradicts the assumption. �

Definition 6.1.20. Define the set of shallow instantiations of x under signature Σ

as the set of substitutions ΘΣ
x = {{x 7→ f (y1, . . . , yn)} | f ∈ F and y1, . . . , yn linear}.

Note that if the set of function symbols F is infinite, ΘΣ
x is also infinite, but

then any constraint is trivially solvable if its normal form is different from ⊥. In the
context of ordered resolution, the function symbols appearing in the input clause
set constitute a finite signature.

Lemma 6.1.21. A constraint πx =
∧

i∈I x , si has no solution under signature Σ if
and only if πxσ has no solution for every σ ∈ ΘΣ

x .
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Proof. “⇒”. Assume δ is a solution of πxσ for some shallow instantiation σ. Then,
σδ is a solution of πx, which contradicts the assumption.

“⇐”. Assume δ is a solution of πx. Then, xδ is ground and hence, xδ =

f (y1, . . . , yn)σ for some function f ∈ F and substitution σ. Thus, σ is a solution of
πx{x 7→ f (y1, . . . , yn)} =

∧
i∈I f (y1, . . . , yn) , si, which contradicts the assumption.

�

Theorem 6.1.22. Emptiness of a straight dismatching constraint π is decidable.

Proof. If F is not finite, a constraint π has no solution if and only if π↓= ⊥. Let
π↓= πx1 ∧ . . . ∧ πxn with lvar(π↓) = {x1, . . . , xn}. Because each πxi has only finite
sub-constraints, by the pigeon hole principle, there exists for each xi a shallow
instantiation σi ∈ ΘΣ

xi
such that σi is a solution of πxi . Then, σ1 ∪ . . . ∪ σn is a

solution of π.
If F is finite, using Lemma 6.1.19 and 6.1.21 recursively to check emptiness of

π is sound and complete. In Lemma 6.1.19, the constraints πx of the recursive calls
have a depth smaller or equal than π. In Lemma 6.1.21, the |F | recursive calls on
the constraints πxσ↓ with σ ∈ ΘΣ

x have a depth strictly smaller than πx. Therefore,
the recursion terminates. �

Note that emptiness can be decided for straight dismatching constraints in
O(|F | · size(π)) (See Section 6.1.2).

Corollary 6.1.23. A constraint π is equivalent to π ∧ x , t, if π{x 7→ t} is empty.

Proof. DV(π∧ x , t) ⊆ DV(π) holds trivially andDV(π) ⊆ DV(π∧ x , t) follows
from Lemma 6.1.24. �

6.1.2 Operations on Constraints

In this section I consider implementation aspects of constraints including the repre-
sentation of constraints, the solvability test and further operations on constraints.

Structure Sharing Looking again at constrained resolution, factoring, and nor-
malization, note that the constraint-terms of the inference are all subterms of the
constraints of the parent clauses. This means that throughout a saturation, every
straight constraint term is a subterm of the constraints in the input set. Therefore,
an implementation can take advantage of structure sharing. By storing the input
constraints separately, an atomic constraint is representable as just a variable and a
pointer to the respective subterm.

Furthermore, by adding for each n-ary function symbol f the unary functions
f1, . . . , fn and a constant symbol f0, straight terms can be encoded and stored
as an array of function symbols terminated by a constant symbol. For example,
f (x, f (a, y)) and f (x, f (y, z)) become f2, f1, a0 and f2, f0, respectively.

59



Sorting All of the operations on constraints can be applied on arbitrary con-
straints, but most of them become significantly faster if the constraints are sorted.
Given total orderings <X on X and <F on F , sort normal atomic constraints by the
ordering defined by the following rules:

x , [l] < y , [r] if x <X y

x , fi, [l] < x , g j, [r] if f <F g

x , fi, [l] < x , f j, [r] if i <N j

x , fi, [l] < x , fi, [r] if 0 <N i and x , [l] < x , [r]

The first operation that becomes faster after sorting is the fifth normalization
rule (Definition 6.1.6). In a sorted constraint, x , t will be immediately followed by
any x , tσ1, . . . , x , tσn, because any straight instance of a straight term fi, . . . , g0
has the form fi, . . . , g j, . . . , h0.

While initially sorting a constraint takes linear-logarithmic time, sorting new
constraints created from already sorted constraints is generally faster. Adding a
fresh constraint and intersection require only a linear insert and merge operation,
respectively.

Substitution and normalization, π{x 7→ t}↓, preserve the sorting if t is linear and
variable disjoint from the left-hand variables of π. Otherwise, I can first bucket sort
the constraint depending on the left-hand variables without changing the sorting
of the sub-constraints with the same variables. Then, I can merge the individual
partially sorted intervals of sub-constraints. For example,

{x , f (t1, z) ∧ . . . ∧ x , f (tn, z) ∧ x , f (z, s1) ∧ . . . ∧ x , f (z, sm)}{x 7→ f (y, y)}

normalizes to {y , t1 ∧ . . . ∧ y , tn ∧ y , s1 ∧ . . . ∧ y , sm}, where y , t1 to y , tn
and y , s1 to y , sm are still sorted and only need to be linearly merged to sort the
normalized constraint.

Solvability Check Since clauses with an unsolvable constraint are tautologies,
checking constraint solvability is an important means to avoid unnecessary infer-
ences. Fortunately, solvability of straight dismatching constraints can be tested in
linear time.

This is in contrast to general dismatching constraints [13] where solvability
is NP-hard [14]. To illustrate this, SAT can be encoded as solvability of dis-
matching constraints with only ground terms on the right-hand side. For exam-
ple, the SAT clause Ci = x ∨ ¬y ∨ z is encoded by the atomic dismatching
constraint πi = fi(x, y, z) , fi(false, true, false). Then the general dismatching con-
straint π1 ∧ · · · ∧ πn as the result of the encoding of a clause set {C1, . . . ,Cn} with
signature Σ = {true, false} is solvable if and only if the clause set {C1, . . . ,Cn} is
satisfiable.

Considering again Lemma 6.1.22, note that for any shallow instantiationσ ∈ ΘΣ
x

an atomic constraint (x , t)σ normalizes to > except for exactly the one σ where
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both xσ and t have the same top function symbol. In that case, normalization
reduces the size of t by removing the top symbol of t. This means that in total
every non-variable position in the straight right-hand terms of the constraint is
considered exactly once for each σ ∈ ΘΣ

x . Solvability can therefore be decided in
O(|F | · size(π)).

If the sub-constraints are sorted, the solvability check can be computed in-place,
because each recursive call on some πx and πσ↓ applies to non-overlapping and con-
secutive sections in the sorted constraint. Recall that right hand sides of constraints
do not share any variables. Now, looking at the overall recursive derivation tree
generated along the proof of Lemma 6.1.22, the following invariant holds: Each
subterm of the right hand sides of the initial constraint occurs at most once as a top
level term on a right hand side constraint in the overall derivation tree. Solvability
of a sorted constraint π can therefore be decided independently of the size of F in
O(size(π)).

Furthermore, I can use intermediate results of the solvability check to sim-
plify the constraint. If πx{x 7→ t} has no solutions for some straight term t but
πx{x 7→ t}↓, ⊥, I can add x , t to π (Corollary 6.1.23) which replaces the sub-
constraints in πx{x 7→ t}↓ by Definition 6.1.6.5.

Example Consider the constrained clause set N consisting of
(P(x, x)→ ; x , f (a)) and
(P( f (y), z) ; y , f ( f (v)) ∧ z , f ( f (a))).

Without the constraints, N is unsatisfiable because � can be inferred using the uni-
fier

σ = mgu(P(x, x), P( f (y), z)) = {x 7→ f (y), z 7→ f (y)}.
Instead, use σ to analyze the constraints.

yσ , f ( f (v)) ∧ zσ , f ( f (a)) ∧ xσ , f (a)
= y , f ( f (v)) ∧ f (y) , f ( f (a)) ∧ f (y) , f (a)
↓ y , f ( f (v)) ∧ y , f (a) ∧ y , a

sorted y , a ∧ y , f (a) ∧ y , f ( f (v))
For the solvability check, use the signature {a/0, f /1} given by the input.

(y , a){y 7→ a} or (y , f (a) ∧ y , f ( f (v))){y 7→ f (y)}.
⇒ a , a or y , a ∧ y , f (v).
⇒ ⊥ or [(y , a){y 7→ a} or (y , f (v)){y 7→ f (y)}].
⇒ ⊥ or [a , a or f (y) , f (v)].
⇒ ⊥ or [⊥ or ⊥].
⇒ ⊥.

Since the constraint is unsolvable, no resolution is performed and N is saturated. If
the constraint were solvable, for example, without the y , a constraint, I could re-
place y , f (a)∧y , f ( f (v)) with y , f (v) since (y , f (a) ∧ y , f ( f (v))){y 7→ f (y)}
is unsolvable.

Many-sorted Signature I can further improve the chance to identify unsolvable
constraints by using many-sorted signatures. Then, the shallow instantiations θΣ

x
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only range over the function symbols in the sort of variable x. In array-theories,
for example, data, indices, and arrays are usually modelled to be distinct from
each other. A constraint on an index-variable is therefore already unsolvable if just
all ground terms of the index-sort are excluded. Without sort information, such a
constraint is still solvable.

An algorithm to extract a many-sorted signature with a maximal number of
sorts was introduced in [10]. At first, all function and predicate symbols start with
different sorts. Then, compute equivalence classes of sorts that should be equal
for the problem to be well-sorted: Wherever a function symbol is the argument of
another function or predicate, their result and argument sorts are the same and for
each variable in each clause, the sorts of its occurrences are also the same. Using
union-find, the whole algorithm has linear complexity.

For first-order logic without equality, the resulting sorts are always monotone
[11], which means that the unsorted and many-sorted versions of the same problem
are satisfiability equivalent. As a consequence, the resolution calculus can continue
to use the unsorted signature while the constraint operations use the corresponding
many-sorted signature.

Subset Check Another important property of straight dismatching constraints is
the ability to efficiently check whether the solutions of one constraint are a subset of
the solutions of another constraint. The subset check allows common redundancy
eliminations such as subsumption, condensation, and subsumption resolution to
account for constraints. E.g., (P(x); x , a) subsumes (P(x),Q(y); x , a ∧ y , b),
while (Q(x); x , a) does not.

If πσ↓= > the subset condition on the solutions is trivially fulfilled, but even
for general constraints, I can decide the subset relation.

Lemma 6.1.24. Let π and π′ be solvable normal constraints. ThenDV(π) ⊆ DV(π′)
if and only if π{x 7→ t} has no solutions for every sub-constraint x , t in π′.

Proof. “⇒”. Assume there exists a sub-constraint x , t in π′, such that δ is a
solution of π{x 7→ t}. Then, {x 7→ t}δ is a solution of π. Because x{x 7→ t}δ = tδ is
an instance of t, {x 7→ t}δ is not a solution of π′. This contradicts the assumption
thatDV(π) ⊆ DV(π′).

“⇐”. AssumeDV(π) * DV(π′). Let δ be a solution of π, but not of π′. There
exists a sub-constraint x , t of π′ such that xδ is an instance of t. Hence, there is
a substitution σ such that δ = {x 7→ t}σ. Then, σ is a solution of π{x 7→ t}. This
contradicts the assumption that π{x 7→ t} has no solutions. �

Note that if π was fully simplified according to Corollary 6.1.23, then π{x 7→ t}
has no solutions if and only if π{x 7→ t}↓= ⊥. This means π{x 7→ t} is unsolvable
if there exists a constraint x , s ∈ π such that t is an instance of s. If both π and
π′ are also sorted, I can therefore implement the subset check similar to a merge in
merge-sort in O(size(π) + size(π′)).
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Using this subset test, I can check whether a constrained clause (Cσ; π1) is an
instance of (C; π2). If this is the case for two clauses in a clause set N, I can remove
(C; π) from N without changing the ground instances of N.

Corollary 6.1.25. G((Cσ; π1)) ⊆ G((C; π2)) if and only ifDV(π1) ⊆ DV(π2σ).

Proof. “⇒”. If DV(π1) is empty, then DV(π1) ⊆ DV(π2σ) is trivial. Otherwise,
let δ ∈ DV(π1) be arbitrary. Then, Cσδ ∈ G((Cσ; π1)) and thus, Cσδ ∈ G((C; π2)).
Hence, σδ is a solution of π2 and δ is a solution of π2σ. Thus,DV(π1) ⊆ DV(π2σ).

“⇐”. If G((Cσ; π1)) is empty, then G((Cσ; π1)) ⊆ G((C; π2)) is trivial. Other-
wise, let Cσδ ∈ G((Cσ; π1)) be arbitrary. Then, δ ∈ DV(π1) and thus, δ ∈ DV(π2σ).
Hence,σδ is a solution of π2 and Cσδ ∈ G((C; π2)). Thus,G((Cσ; π1)) ⊆ G((C; π2)).

�

Definition 6.1.26. A clause (C; π1) subsumes (D; π2) if there is a substitution σ

such that Cσ ⊂ D andDV(π2) ⊆ DV(π1σ).

Lemma 6.1.27. If (C; π1) subsumes (D; π2), (D; π2) is redundant in N ∪ {(C; π1)}.

Proof. Let Dδ ∈ G((D; π2)). δ is a solution of π1σ and hence, Cσδ ∈ G((C; π)).
Since Cσδ ⊂ Dδ, Cσδ ∈ G((C; π1))≺Dδ and Cσδ |= Dδ. Therefore, (D; π2) is
redundant in N ∪ {(C; π1)}. �

Ordering In ordered resolution with selection the ordering on atoms holds a key
role in the efficiency of the calculus. Just as their unconstrained counterparts, the
constrained resolution and factoring rules (Definitions 6.2.3 and 6.2.4) are only
applied if the unified literals are (strictly) maximal. This means that redundant
inferences can be avoided if the literals are not maximal under the constraint.

In general, any traditional ordering can be used by ignoring the constraints. If
an atom is not (strictly) maximal in the clausal part, it is not (strictly) maximal for
any ground instance including the ones solving the constraint. On the other hand,
the constraint could be excluding all ground instances where the atom is (strictly)
maximal. For example, the lexicographic path ordering (LPO) can be extended
with straight dismatching constraints. Similar extensions are possible for the RPO
and KBO.

Definition 6.1.28 (LPO with Constraints). Let s, t be terms, π a constraint and
F finite. The constrained lexicographic path ordering is defined by the transition
system on pairs (s ≺ t; π) given in Figure 6.1

Lemma 6.1.29. Constrained lexicographic path ordering is well-defined.

Proof. The first to third rule overlap with LPO: In each, the depth of s or t decreases,
while the constraint remains the same. The fourth and last rules are trivially termi-
nating. For the fifth and sixth rule, size(πσ↓) < size(π). Therefore, the constrained
lexicographic path ordering is well-defined. �
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( f (s) ≺ g(t1, . . . , tm); π) ⇒
∨

1≤i≤m

( f (s) � ti; π) if g ≺ f

( f (s1, . . . , sn) ≺ g(t); π) ⇒
∧

1≤i≤n

(si ≺ g(t); π) if f ≺ g

( f (t1, .., ti−1, si, .., sn) ≺ f (t); π) ⇒
∧

i< j≤n

(s j ≺ f (t); π) ∧ (si � ti; π)

(x ≺ g(t); π) ⇒ > if x ∈ vars(g(t))

(s ≺ x; π) ⇒
∧
σ∈θΣ

x

(sσ ≺ xσ; πσ↓) if x ∈ lvar(π)

(x ≺ t; π) ⇒
∧
σ∈θΣ

x

(xσ ≺ tσ; πσ↓) if x ∈ lvar(π)

(s ≺ t;⊥)⇒ >

Figure 6.1: The LPO transition system for constrained terms.

Note that the first four rules directly follow the definition of ≺lpo and therefore
(s ≺ t;>) is the same as computing s ≺lpo t. The fifth and sixth rule reuse the prin-
ciple idea of the solvability check to instantiate π until it normalizes to > or ⊥. In
the latter case, the last rule applies to remove instantiations that are excluded by the
constraint. For example, consider (a ≺ x ; x , a) with precedence a ≺ b ≺ f ≺ g.
The only ground case where a 6≺lpo x is (a ≺ a ; a , a), but the constraint a , a is
unsolvable. Therefore, a ≺lpo x under constraint x , a.

Furthermore, note that (a ≺ b ; b , a) ⇒∗ > directly implies that also
(a ≺ f (x) ; f (x) , a)⇒∗ > and (a ≺ g(x, y) ; g(x, y) , a)⇒∗ >. In general, only
the “minimal” solution of πx needs to be checked in the fifth rule. Analogously,
the “maximal” solution of πx suffices for the sixth rule, if it exists. A solution δ of
πx is minimal (maximal) if for every solution δ′ of πx, xδ �lpo xδ′ ( xδ �lpo xδ′ ).
For example, the constraint x , a ∧ x , f (b) ∧ x , f ( f (u)) has under signature
a ≺ b ≺ f the minimal solution {x 7→ b} and maximal solution {x 7→ f (a)}, but no
maximal solution exists under signature a ≺ b ≺ f ≺ g. If there is no maximal
solution, it means that arbitrarily large terms are solutions for πx. Then, I can
immediately conclude (x ≺ t; π) ⇒ ⊥ if x < vars(t). Therefore, I can refine these
rules to

(s ≺ x; π)⇒ (sδ ≺ xδ; πδ↓) if x ∈ lvar(π) and δ is the min. solution of πx

(x ≺ t ; π)⇒ (xδ ≺ tδ; πδ↓) if x ∈ lvar(π) and δ is the max. solution of πx

Just like the solvability check, minimal and maximal solutions can be computed
in linear time. Unless an earlier case allows an early termination, the previous rules
would eventually generate all cases for solutions of x including the minimal and
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maximal. Generating the cases alone corresponds to the work required to find the
minimal or maximal solution.

Lemma 6.1.30. sδ ≺lpo tδ for every solution δ of π iff (s ≺ t; π)⇒∗ >.

Proof. “⇒”: By induction on the derivation (s ≺ t; π)⇒∗ >.
The first four rules follow directly from the definition of ≺lpo. For example,

consider the first rule. Let ( f (s) ≺ g(t1, . . . , tm); π)⇒
∨

1≤i≤m( f (s) � ti; π)⇒∗ >.
Then, ( f (s) � ti; π) ⇒∗ > for at least one 1 ≤ i ≤ m. By the inductive hypoth-
esis, f (s)δ ≺lpo tiδ for every solution δ of π. Therefore by the definition of ≺lpo,
f (s)δ ≺lpo g(t1, . . . , tm)δ for every solution δ of π.

For the fifth rule, let (s ≺ x; π) ⇒
∧
σ∈θΣ

x
(sσ ≺ xσ; πσ) ⇒∗ >. Assume there

is a solution δ of π such that sδ 6≺lpo xδ. Then, xδ = f (y1, . . . , yn)δ′ for some
substitution δ′ and there is a σ = {x 7→ f (y1, . . . , yn)} ∈ ΘΣ

x . Since δ′ is a solution of
πσ, sσδ′ 6≺lpo xσδ′ contradicts the inductive hypothesis on (sσ ≺ xσ; πσ) ⇒∗ >.
The sixth rule is analogous. The last rule is trivial as ⊥ has no solutions.

“⇐”: Let (s ≺ t; π) ;∗ >, i.e., there is a normal form (s ≺ t; π) ⇒∗ F, where
F is either ⊥ or a formula consisting of conjunctions and disjunctions of pairs
(s ≺ t; π) where no rule can be applied. I prove by induction on the derivation
(s ≺ t; π)⇒∗ F, that there is a solution δ of π such that sδ 6≺lpo tδ.

Again, the first four rules follow directly from the definition of ≺lpo. E.g.,
consider the second rule. Let ( f (s1, . . . , sn) ≺ g(t); π)⇒

∧
1≤i≤n(si � g(t); π);∗ >.

Then, ( f (s1, . . . , sn) � ti; π) ;∗ > for at least one 1 ≤ i ≤ n. By the inductive
hypothesis, siδ 6≺lpo g(t)δ for a solution δ of π. Therefore, by the definition of ≺lpo,
f (s1, . . . , sn)δ 6≺lpo g(t)δ for the solution δ of π.

For the fifth rule, let (s ≺ x; π) ⇒
∧
σ∈θΣ

x
(sσ ≺ xσ; πσ) ;∗ >. Then,

(sσ ≺ xσ; πσ);∗ > for at least one σ ∈ ΘΣ
x . By the inductive hypothesis, sσδ 6≺lpo

xσδ for a solution δ of πσ. Therefore, sσδ 6≺lpo xσδ for the solution σδ of π. The
sixth rule is analogous and the last rule contradicts (s ≺ t; π);∗ >. �

Constrained LPO extends to atoms and literals in the usual way.

Corollary 6.1.31. Let (C ∨ E; π) be a constrained clause. If (E ≺ L; π) ⇒∗ > for
some literal L in C, then the literal E is not maximal in (C ∨ E; π) under ≺lpo. If
(E � L; π)⇒∗ > for some literal L in C, then the literal E is not strictly maximal
in (C ∨ E; π) under ≺lpo.

Union While intersection of two constraints is as straightforward as building
their conjunction, their union can generally not be expressed as a single constraint.
For example, consider the constrained clauses (P(x, y); x , a) and (P(x, y); y , a)
with the signature {a, b}. Together they have P(a, b), P(b, a), and P(b, b) as ground
instances, but there is no constrained clause (P(x, y); π) with the same ground clause
set.

For an x-sub-constraint πx, the emptiness check can also produce the com-
plement. Every time the algorithm reaches a point where the emptiness check
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(Lemma 6.1.21) returns non-empty, i.e, πx{x 7→ t} normalizes to >, add instead
x , t to the complement and continue. From De Morgan’s Law then follows the
union of x-sub-constraints and subtraction π \ πx.

While general unification is not possible, I can, however, use the subset test to
simplify constraints in some cases.

Lemma 6.1.32 (Union Simplification). Let π1 ∧ x , t and π2 be solvable con-
straints. If DV(π1{x 7→ t}) ⊆ DV(π2{x 7→ t}), then DV(π1 ∧ x , t) ∪ DV(π2) =

DV(π1) ∪DV(π2).

Proof. The part forDV(π1∧x , t)∪DV(π2) ⊆ DV(π1)∪DV(π2) is trivial. Assume
DV(π1) ∪DV(π2) * DV(π1 ∧ x , t) ∪DV(π2). Let δ be a solution of π1 but not
of either π1 ∧ x , t or π2. Then xδ is an instance of t and thus, xδ = x{x 7→ t}σ
for some grounding substitution σ. σ is a solution of π1{x 7→ t} and by assumption,
a solution of π2{x 7→ t}. Therefore, δ is a solution of π2 which contradicts the
assumption. �

Constraint Removal Lastly, any set of constraint clauses can be transformed into
an equivalent set of unconstrained clauses.

Definition 6.1.33. Let N be a set of constrained clauses and F finite. Define
the specific instantiations S(N) of N under Σ as the normal form of N under the
following transformation rules:

N ∪̇ {(C;⊥)} ⇒ N

N ∪̇ {(C; π)} ⇒ N ∪ {(Cσ; πσ↓) | σ ∈ ΘΣ
x }, where x ∈ lvar(π).

Lemma 6.1.34. S(N) is equivalent to N and for every (C; π) ∈ S(N), π = >.

Proof. First, prove that the transformation rules are satisfiability equivalent. Let
Cδ ∈ G((C; π)) and xδ = f (y1, . . . , yn)δ′. Then, σ = {x 7→ f (y1, . . . , yn)} is in
ΘΣ

x and δ′ is a solution of πσ. Therefore, Cδ ∈ G((Cσ; πσ)) which is a subset of
N ∪ {(Cσ; πσ) | σ ∈ ΘΣ

x and πσ is solvable}. The remaining cases are trivial.
The first rule, reduces the number of clause, while in the second rule for each

(Cσ; πσ), the multiset of sub-constraint depths in πσ↓ is smaller than in π. There-
fore, exhaustive transformation terminates. Since (C;>) ∈ N is the only case not
matched by any rule, the normal form can only contain such clauses.

�

Corollary 6.1.35. G((C; π)) = ∅ if and only if S({(C; π)}) = ∅.

6.1.3 Matching Constraints

In this section, I will briefly explore the logical extension of straight dismatch-
ing constraints with their dual matching constraints. As opposed to dismatching
constraints, a matching constraint x � t has a solutions δ if xδ is an instance of t.
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Refinement with constraints (see Section 6.5) segments a clause (C; π) into
(C; π ∧ x , s) and (C; π){x 7→ s}. Because the first segment does not change the
clausal part, the approximation for (C; π ∧ x , s) is analogous to (C; π). On the
other hand, after instantiating x with s, (C; π){x 7→ s} likely requires additional
approximation steps on s and its subterms. This increases the size of the approxima-
tion and adds more predicates, putting an additional burden on the solver. Instead,
I could use (C; π ∧ x � s) with a matching constraint which again avoids these
additional approximation steps.

Additionally, consider the clause Q( f (x))→ P( f ( f (x))) which requires a Shal-
low transformation to extract the subterm f (x). In its place, the equivalent clause
(Q(y) → P( f (y)); y � f (x)) is already shallow. Specifically, this always works for
subterms that are variable disjoint from the rest of the clause.

Note that a constrained clause (C; x � t) is trivially equivalent to C{x 7→ t}
assuming C and t are variable disjoint. Hence, the use of matching constraints is,
aside from the above mentioned cases, rather limited. For the sake of simplicity,
they will therefore not be considered in the theory outside this section.

Matching constraints, solutions, and normalization are defined analogously to
Section 6.1.

Definition 6.1.36 (Matching Constraint). A matching constraint ψ is of the form∧
i∈I

si � ti

where I is a finite set of indices and each ti is linear.

Definition 6.1.37 (Solutions). Let ψ be a matching constraint, Σ a signature and
lvar(ψ) ⊆ V. A solution of ψ overV is a grounding substitution δ overV such that
for all i ∈ I, siδ is an instance of ti.

Definition 6.1.38 (Constraint Normalization). Define constraint normalization ψ↓
as the normal form of the following rewriting rules over constraints.

1 ψ ∧ f (s1, . . . , sn) � y ⇒ ψ

2 ψ ∧ f (s1, . . . , sn) � f (t1, . . . , tn) ⇒ ψ ∧
∧

1≤i≤n

si � ti

3 ψ ∧ f (s1, . . . , sn) � g(t1, . . . , tm) ⇒ ⊥ if f , g

4 ψ ∧ x � t ∧ x � s ⇒ ψ ∧ x � tσ if σ = mgu(s, t)

5 ψ ∧ x � t ∧ x � s ⇒ ⊥ if ¬∃σ = mgu(s, t)

Definition 6.1.39 (Constraint Normal Form). A matching constraint
∧

i∈I xi � ti is
called normal if the xi are pairwise distinct variables.

Lemma 6.1.40. ψ↓ is a normal matching constraint and equivalent to ψ.
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Proof. In the first rule, any solution satisfies f (s1, . . . , sn) � y since f (s1, . . . , sn)
is already an instance of y. Hence, it can be dropped reducing the number of
sub-constraints. In the second rule, a grounding substitution δ is a solution of
f (s1, . . . , sn) , f (t1, . . . , tn), if and only if each siδ is an instance of ti. Thus, the sub-
constraint is equivalent to s1 � t1 ∧ . . .∧ sn � tn. In this case, the maximal depth of
the new sub-constraints decreases by one compared to f (s1, . . . , sn) , f (t1, . . . , tn).
In the third rule, f (s1, . . . , sn) can never be an instance of g(t1, . . . , tm) for any
grounding substitution. Hence, ψ ∧ f (s1, . . . , sn) � g(t1, . . . , tm) has no solutions,
which is equivalent to ⊥ and terminates the normalization. Let δ be a solution of
ψ ∧ x � t ∧ x � s. Then, xδ is an instance of both t and s. If s and t have no unifier,
this is impossible and hence, ψ∧ x � t∧ x � s is equivalent to ⊥ and terminates the
normalization. Otherwise, let σ = mgu(s, t).

Then, xδ is an instance of tσ and hence, δ is a solution of ψ∧ x � tσ. This step
reduces the number of sub-constraints, while depth(tσ) = max(depth(s), depth(t)).
Let δ be a solution of ψ ∧ x � tσ with σ = mgu(s, t). Then, xδ is an instance of tσ
and thus, also of both t and s. Hence, δ is a solution of ψ ∧ x � t ∧ x � s.

All rules together terminate and cover every case where the left-hand side of a
sub-constraint is not a variable or two left-hand side variables are the same. Hence,
applying the five rules exhaustively results in a normal form that is a normal match-
ing constraint. �

Note that there are two significant differences to dismatching constraints. The
first is that in an atomic constraint x � t, t is not required to be straight, only linear.
The second difference is that a normal matching constraint ψ contains at most one
sub-constraint per variable. This allows combing normal matching and dismatching
constraints with little overhead compared to just dismatching constraints. I call a
combination of matching and dismatching constraints ψ ∧ π a mixed constraint.

Definition 6.1.41 (Constrained Clauses). A clause with mixed constraints (C;ψ∧π)
is called a constrained clause. A constrained clause is normal, if ψ and π are
normal and lvar(ψ) ∪ lvar(π) ⊆ vars(C). For a given signature Σ, G((C; π)) =

{Cδ | δ ∈ DV(ψ), δ ∈ DV(π)} is called the set of ground instances of (C;ψ ∧ π).

Also, I can simplify mixed constraints even further.

Lemma 6.1.42 (Mixed Simplification). Let ψ′ ∧ x � s ∧ x , t ∧ π′ = ψ ∧ π be a
mixed constraint. If mgu(s, t) does not exist, then ψ ∧ π is equivalent to ψ ∧ π′. If s
is an instance of t, then ψ ∧ π is equivalent to ⊥.

Proof. Let δ be a solution of ψ ∧ π′ and mgu(s, t) does not exist. Then, xδ is an
instance of s. Since δ is not a unifier of s and t, xδ is not an instance of t. Thus, δ is
a solution of ψ ∧ x , t ∧ π′ = x , t∧. The reverse direction is trivial.

Assume δ is a solution of ψ ∧ π. Then, xδ is an instance of s and xδ is not an
instance of t. This contradicts the assumption that s is an instance of t. �

Lemma 6.1.43. A mixed normal constraint ψ ∧ x � t ∧ π has no solutions if and
only if ψ ∧ π{x 7→ t} has no solutions.
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Proof. Let δ be a solution of ψ ∧ x � t ∧ π. Then, xδ is an instance of t and thus,
δ = {x 7→ t}δ′ for some substitution δ′. Since ψ ∧ x � t is normal, x < lvar(ψ).
Therefore, δ′ is a solution of ψ and a solution of π{x 7→ t}.

Let δ be a solution of ψ ∧ π{x 7→ t}. Since x < lvar(ψ), {x 7→ t}δ is a solution
of ψ and π. Further, x{x 7→ t}δ = tδ is an instance of t. Therefore, {x 7→ t}δ is a
solution of ψ ∧ x � t ∧ π. �

Via Lemma 6.1.43, the emptiness check (Lemma 6.1.22) can be reused for
mixed constraints. Decidability (Lemma 6.2.8) and refinement (Lemma 6.5.6) can
also be straightforwardly extended to matching constraints. Everything else never
uses constraints directly and is therefore unaffected by the addition of matching
constraints.

Lastly, this leads to Lemma 6.1.44 which enables the two improvements men-
tioned at the beginning of this section.

Lemma 6.1.44 (Match Extraction). The clauses (C;ψ∧π) and (C′; x � t ∧ ψ′ ∧ π′)
are equivalent if there exists a term s such that the term t is an instance of s and
(C′; x � t ∧ ψ′ ∧ π′){x 7→ s} = (C;ψ ∧ π).

Proof. Let C′δ be a ground instance of (C′; x � t ∧ ψ′ ∧ π′). Then xδ is an instance
of t and by assumption, also an instance of s. Thus, δ = {x 7→ s}δ′ for some ground-
ing substitution δ′. Then, δ′ is a solution of (x � t ∧ ψ′ ∧ π′){x 7→ s}. Therefore,
C′{x 7→ s}δ′ = Cδ′ is a ground instance of (C′{x 7→ s}; (x � t ∧ ψ′ ∧ π′){x 7→ s}) =

(C;ψ ∧ π). The reverse direction is trivial, because (C;ψ ∧ π) is a instance of
(C′; x � t ∧ ψ′ ∧ π′). �

Lemma 6.1.44 shows that (C; π){x 7→ t} and (C; π ∧ x � t) are equivalent, if t is
linear and variable disjoint from C. Furthermore, for example, the clauses

(Q(g(x, y))→ P( f (g(x, y))); x � f (v) ∧ y , a)

(Q(z)→ P( f (z)); z � g( f (v),w) ∧ z , g(v, a))

are equivalent because instantiating the latter with {z 7→ g(x, y)} yields the former.

6.2 Decidability of the MSL(SDC) Fragment

In the following I will show that the satisfiability of the MSL(SDC) fragment is
decidable. For this purpose I will define ordered resolution with selection on con-
strained clauses and show that with an appropriate ordering and selection function,
saturation of an MSL(SDC) clause set terminates.

For the remainder of this section I assume an atom ordering ≺ such that a literal
¬Q(s) is not greater than a literal P(t[s]p), where p , ε. For example, an LPO
with a precedence where functions are larger than predicates or a KBO where all
symbols have weight one have this property.

69



Definition 6.2.1 (sel). Let (C; π) = (S 1(t1), . . . , S n(tn) → P1(s1), . . . , Pm(sm); π)
be an MSL(SDC) clause. The Superposition Selection function sel is defined by
S i(ti) ∈ sel((C; π)) if

(1) ti is not a variable or

(2) t1, . . . , tn are variables and ti < vars(s1, . . . , sm) or

(3) {t1, . . . , tn} ⊆ vars(s1, . . . , sm) and for some 1 ≤ j ≤ m, s j = ti.

The selection function sel (Definition 6.2.1) functions the same as sel defined
in Definition 5.1.1.

Definition 6.2.2. A literal A is called [strictly] maximal in a constrained clause
(C ∨ A; π) if and only if there exists a solution δ of π such that for all literals B in C,
Bδ � Aδ [Bδ ≺ Aδ].

Definition 6.2.3 (Ordered SDC-Resolution with Selection).

(Γ1 → ∆1, A ; π1) (Γ2, B→ ∆2 ; π2)
((Γ1,Γ2 → ∆1,∆2)σ ; (π1 ∧ π2)σ↓)

, if

1. σ = mgu(A, B);

2. Aσ is strictly maximal in (Γ1 → ∆1, A; π1)σ and sel(Γ1 → ∆1, A) = ∅;

3. B ∈ sel(Γ2, B→ ∆2)
or sel(Γ2, B→ ∆2) = ∅ and ¬Bσ maximal in (Γ2, B→ ∆2; π2)σ;

4. (π1 ∧ π2)σ↓ is solvable.

Definition 6.2.4 (Ordered SDC-Factoring with Selection).

(Γ→ ∆, A, B ; π)
((Γ→ ∆, A)σ; πσ↓)

, if

1. σ = mgu(A, B);

2. sel(Γ→ ∆, A, B) = ∅;

3. Aσ is maximal in (Γ→ ∆, A, B; π)σ

4. πσ↓ is solvable.

Note that while the above rules do not operate on equations, they actually allow
unit clauses that consist of non-unifiable disequations, i.e., clauses s ≈ t → where
s and t are not unifiable. There are no potential superposition inferences on such
clauses as long as there are no positive equations. So resolution and factoring
suffice for completeness. Nevertheless, clauses such as s ≈ t → affect the models
of satisfiable problems. Constrained Resolution and Factoring are sound.
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Lemma 6.2.5 (Soundness). Ordered SDC-Resolution and -Factoring with Selection
are sound.

Proof. Let the clause (Γ1,Γ2 → ∆1,∆2)σδ be a ground instance of the resol-
vent ((Γ1,Γ2 → ∆1,∆2)σ; (π1 ∧ π2)σ). Then, δ is a solution of (π1 ∧ π2)σ and
σδ is a solution of π1 and π2. Hence, (Γ1 → ∆1, A)σδ and (Γ2, B → ∆2)σδ are
ground instances of (Γ1 → ∆1, A; π1) and (Γ2, B → ∆2; π2), respectively. Be-
cause Aσδ = Bσδ, if (Γ1 → ∆1, A)σδ and (Γ2, B → ∆2)σδ are satisfied, then
(Γ1,Γ2 → ∆1,∆2)σδ is also satisfied. Therefore, Ordered SDC-Resolution with
Selection is sound.

Let the clause (Γ→ ∆, A)σδ be a ground instance of ((Γ→ ∆, A)σ; πσ). Then,
δ is a solution of πσ and σδ is a solution of π. Hence, (Γ → ∆, A, B)σδ is a
ground instance of (Γ → ∆, A, B; π). Because Aσδ = Bσδ, if (Γ → ∆, A, B)σδ is
satisfied, then (Γ → ∆, A)σδ is also satisfied. Therefore, Ordered SDC-Factoring
with Selection is sound. �

Definition 6.2.6 (Saturation). A constrained clause set N is called saturated up to
redundancy, if for every inference between clauses in N the result (R; π) is either
redundant in N or G((R; π)) ⊆ G(N).

Note that the redundancy notion includes condensation and that the condition
G((R; π)) ⊆ G(N) allows ignoring variants of clauses.

Lemma 6.2.7 (Ordered SDC Resolution Completeness). Let N be a constrained
clause set saturated up to redundancy by ordered SDC-resolution with selection.
Then N is unsatisfiable, if and only if � ∈ G(N). If � < G(N) then IN |= N.

Proof. Assume N is unsatisfiable but � < G(N). For the partial model IN , there
exists a minimal false clause Cσ ∈ G((C; π)) for some (C; π) ∈ N.

Cσ is not productive, because otherwise IN |= Cσ. Hence, either sel(C) , ∅
or no positive literal in Cσ is strictly maximal. Assume C = Γ2, B → ∆2 with
B ∈ sel(C) or ¬Bσ maximal. Then, Bσ ∈ ICσ and there exists a ground instance
(Γ1 → ∆1, A)τ = Dτ ≺ Cσ of some clause (D; π′) ∈ N, which produces Aτ = Bσ.
Therefore, there exists a ρ = mgu(A, B) and ground substitution δ such that Cσ =

Cρδ, Dτ = Dρδ. Since ρδ = σ is a solution of π and π′, δ is a solution of (π ∧ π′)ρ.
Under these conditions, SDC-Resolution can be applied to (Γ1 → ∆1, A; π′) and
(Γ2, B→ ∆2; π). Their resolvent (R; πR) = ((Γ1,Γ2 → ∆1,∆2)ρ; (π ∧ π′)ρ) is either
redundant in N or G((R; πR)) ⊆ G(N). Its ground instance Rδ is false in IN and
Rδ ≺ Cσ. If (R; πR) is redundant in N, there exist C1, . . . ,Cn in G(N)≺Rδ with
C1, . . . ,Cn |= Rδ. Because Ci ≺ Rδ ≺ Cσ, IN |= Ci and hence IN |= Rδ, which
contradicts IN 6|= Rδ. Otherwise, if G((R; πR)) ⊆ G(N), then Rδ ∈ G(N), which
contradicts Cσ being minimal false.

Now, assume sel(C) = ∅ and C = Γ → ∆, B with Bσ maximal. Then,
C = Γ → ∆′, A, B with Aσ = Bσ. Therefore, there exists a ρ = mgu(A, B)
and ground substitution δ such that Cσ = Cρδ and ρδ is a solution of π. Hence,
δ is a solution of πρ. Under these conditions, SDC-Factoring can be applied to
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(Γ → ∆′, A, B; π). The result (R; πR) = ((Γ → ∆′, A)ρ; πρ) is either redundant in
N or G((R; πR)) ⊆ G(N). Its ground instance Rδ is false in IN and Rδ ≺ Cσ. If
(R; πR) is redundant in N, there exist C1, . . . ,Cn in G(N)≺Rδ with C1, . . . ,Cn |= Rδ.
Because Ci ≺ Rδ ≺ Cσ, IN |= Ci and hence IN |= Rδ, which contradicts IN 6|= Rδ.
Otherwise, if G((R; πR)) ⊆ G(N), then Rδ ∈ G(N), which contradicts Cσ being
minimal false.

Therefore, if � < G(N), no minimal false clause exists and IN |= N. �

Lemma 6.2.8. Let N be a set of MSL(SDC) clauses without variants or condensa-
tions and Σ a finite signature. N is finite if there exists an integer d such that for
every (C; π) ∈ N, depth(π)≤ d and
(1) C = S 1(x1), . . . , S n(xn), S ′1(t), . . . , S ′m(t)→ ∆ or
(2) C = S 1(x1), . . . , S n(xn), S ′1(t), . . . , S ′m(t)→ S (t),∆
with t shallow and linear, and vars(t) ∩ vars(∆) = ∅.

Proof. Let (C; π) ∈ N. (C; π) can be separated into variable disjoint components
(Γ1, . . . , Γn → ∆1, . . . ,∆n; π1∧. . .∧πn), where |∆i| ≤ 1 and lvar(πi) ⊆ vars(Γi → ∆i).
For each positive literal P(s) ∈ ∆ there is a fragment

(A) (S 1(x1), . . . , S k(xk)→ P(s); π′)

with {x1, . . . , xk} ⊆ vars(s). If m > 0, there is another fragment

(B) (S 1(x1), . . . , S k(xk), S ′1(t), . . . , S ′m(t)→; π′)

or

(C) (S 1(x1), . . . , S k(xk), S ′1(t), . . . , S ′m(t)→ S (t); π′)

with {x1, . . . , xk} ⊆ vars(t), respectively. Lastly, for each variable x ∈ vars(C) with
x < vars(t) ∪ vars(∆) there is a fragment

(D) (S 1(x), . . . , S k(x)→; π′).

Since there are only finitely many terms s with depth(s)≤ d modulo renaming,
there are only finitely many atomic constraints x , s for a given variable x different
up to renaming s. Thus, a normal constraint can only contain finitely many combi-
nations of sub-constraints

∧
i∈I x , si without some si being an instance of another

s j. Therefore, for a fixed set of variables x1, . . . , xk, there are only finitely many
constraints π =

∧
i∈I zi , si with lvar(π) ⊆ {x1, . . . , xk} up to variants.

Since the number of predicates, function symbols, and their ranks is finite, the
number of possible shallow and linear atoms S (t) different up to variants is finite.
For a given shallow and linear t, there exist only finitely many clauses of the form
(S 1(t), . . . , S n(t)→ S (t); π) or (S 1(t), . . . , S n(t) →; π) with lvar(π) ⊆ vars(t) mod-
ulo condensation and variants. For a fixed set of variables x1, . . . , xk, there exist
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only finitely many clauses of the form (S 1(y1), . . . , S k(yl) →; π) modulo conden-
sation and variants where lvar(π) ⊆ {y1, . . . , yl} ⊆ {x1, . . . , xk}. Therefore, there are
only finitely many distinct clauses of each form (A)-(D) without variants or conden-
sations.

If in the clause (C; π) = (Γ1, . . . , Γn → ∆1, . . . ,∆n; π1 ∧ . . .∧ πn) for some i , j,
(Γi → ∆i; πi) is a variant of (Γ j → ∆ j; π j), then (C; π) has a condensation and is
therefore not part of N. Hence, there can be only finitely many different (C; π)
without variants or condensations and thus N is finite. �

Lemma 6.2.9 (Finite Saturation). Let N be an MSL(SDC) clause set. Then N can
be finitely saturated up to redundancy by sdc-resolution with selection function sel.

Proof. The general idea is that given the way sel is defined the clauses involved in
constrained resolution and factoring can only fall into certain patterns. Any result
of such inferences then is either strictly smaller than one of its parents by some
terminating measure or falls into a set of clauses that is bounded by Lemma 6.2.8.
Thus, there can be only finitely many inferences before N is saturated.

Let d be an upper bound on the depth of constraints found in N and Σ be
the finite signature consisting of the function and predicate symbols occurring in
N. Let (Γ1 → ∆1, S (t); π1) and (Γ2, S (t′) → ∆2; π2) be clauses in N where sdc-
resolution applies with the most general unifier σ of S (t) and S (t′) and resolvent
R = ((Γ1,Γ2 → ∆1,∆2)σ; (π1 ∧ π2)σ↓).

Because no literal is selected by sel, Γ1 → ∆1, S (t) can match only one of two
patterns:

(A) S 1(x1), . . . , S n(xn)→ S ( f (y1, . . . , yk)),∆

where t = f (y1, . . . , yk) and {x1, . . . , xn} ⊆ {y1, . . . , yk} ∪ vars(∆).

(B) S 1(x1), . . . , S n(xn)→ S (y),∆

where t = y and x1, . . . , xn are variables in vars(∆), i.e., y occurs only once.

The literal S (t′) is selected by sel in Γ2, S (t′) → ∆2, and therefore Γ2, S (t′) → ∆2
can match only one of the following three patterns:

(1) S ( f (t1, . . . , tk)),Γ′ → ∆′

(2) S (y′),Γ′ → ∆′ where Γ′ has no function terms and y < vars(∆′).

(3) S (y′),Γ′ → S ′(y′),∆′ where Γ′ has no function terms.

This means that the clausal part (Γ1,Γ2 → ∆1,∆2)σ of R has one of six forms:
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(A1) S 1(x1)σ, . . . , S n(xn)σ,Γ′ → ∆,∆′ with σ = {y1 7→ t1, . . . }.

∆σ = ∆ because S ( f (y1, . . . , yk)) and ∆ do not share variables.

(B1) S 1(x1), . . . , S n(xn),Γ′ → ∆,∆′.

The substitution {y 7→ f (t1, . . . , tk)} is irrelevant since S (y) is the only literal with
variable y.

(A2) S 1(x1), . . . , S n(xn),Γ′τ→ ∆,∆′ with τ = {y′ 7→ f (y1, . . . , yk)}.

∆′τ = ∆′ because y′ < vars(∆′).

(B2) S 1(x1), . . . , S n(xn),Γ′ → ∆,∆′.

(A3) S 1(x1), . . . , S n(xn),Γ′τ→ S ′( f (y1, . . . , yk)),∆,∆′ with τ = {y 7→ f (y1, . . . , yk)}.

∆′τ = ∆′ because y′ < vars(∆′).

(B3) S 1(x1), . . . , S n(xn),Γ′ → S ′(y′),∆,∆′.

In the constraint (π1 ∧ π2)σ↓ the maximal depth of the sub-constraints is less
or equal to the maximal depth of π1 or π2. Hence, d is also an upper bound on
the constraint of the resolvent. In each case, the resolvent is again an MSL(SDC)
clause.

In the first and second case, the multiset of term depths of the negative literals
in R is strictly smaller than for the right parent. In both, the Γ is the same be-
tween the right parent and the resolvent. Only the f (t1, . . . , tk) term is replaced by
x1σ, . . . , xnσ and x1, . . . , xn respectively. In the first case, the depth of the xiσ is
either zero if xi < {y1, . . . , yk} or at least one less than f (t1, . . . , tk) since xiσ = ti. In
the second case, the xi have depth zero which is strictly smaller than the depth of
f (t1, . . . , tk). Since the multiset ordering on natural numbers is terminating, the first
and second case can only be applied finitely many times by constrained resolution.

In the third to sixth cases R is either (S 1(x1), . . . , S l(xl), S ′1(t), . . . , S ′m(t)→ ∆; π)
or (S 1(x1), . . . , S l(xl), S ′1(t), . . . , S ′m(t)→ S (t)),∆; π) with t = f (y1, . . . , yk). By
Lemma 6.2.8, there are only finitely many such clauses after condensation and
removal of variants. Therefore, these four cases can apply only finitely many times
during saturation.

Let (Γ → ∆, S (t), S (t′); π) be a clause in N where sdc-factoring applies with
σ = mgu(S (t), S (t′)) and R = ((Γ→ ∆, S (t))σ; πσ↓). Because in Γ→ ∆, S (t), S (t′)
no literal is selected, Γ→ ∆, S (t), S (t′) and (Γ→ ∆, S (t))σ can only match one of
three patterns.
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(A) S 1(x1), . . . , S n(xn)→ S ( f (y1, . . . , yk)), S ( f (z1, . . . , zk)),∆

where t = f (y1, . . . , yk), t′ = f (z1, . . . , zk), and
{x1, . . . , xn} ⊆ {y1, . . . , yk, z1, . . . , zk} ∪ vars(∆). The result is

S 1(x1)σ, . . . , S n(xn)σ→ S ( f (y1, . . . , yk)),∆ with σ = {z1 7→ y1, . . . }.

(B) S 1(x1), . . . , S n(xn)→ S ( f (y1, . . . , yk)), S (z),∆

where t = f (y1, . . . , yk), t′ = z and {x1, . . . , xn} ⊆ {y1, . . . , yk} ∪ vars(∆),
i.e., z occurs only once. The result is

S 1(x1), . . . , S n(xn)→ S ( f (y1, . . . , yk)),∆.

(C) S 1(x1), . . . , S n(xn)→ S (y), S (z),∆

where t = y, t′ = z and {x1, . . . , xn} ⊆ vars(∆), i.e., y and z occur only once. The
result is

S 1(x1), . . . , S n(xn)→ S (y),∆.

In the new constraint πσ↓ the maximal depth of the sub-constraints is less or
equal to the maximal depth of π. Hence d is also an upper bound on the constraint
of the resolvent. In each case, the resolvent is again an MSL(SDC) clause.

Furthermore, in each case the clause is of the form (S 1(x1), . . . , S l(xl)→ ∆; π).
By Lemma 6.2.8, there are only finitely many such clauses after condensation and
removal of variants. Therefore, these three cases can apply only finitely many times
during saturation. �

Theorem 6.2.10 (MSL(SDC) Decidability). Satisfiability of the MSL(SDC) first-
order fragment is decidable.

Proof. Follows from Lemma 6.2.7 and 6.2.9. �

6.3 Approximation⇒APC

The approximation consists of the same transformation rules as in Chapter 5 except
further modified to handle constrained clauses. In most cases constraints are simply
copied from the approximated clause. For the Linear transformations the fresh
variable receives copies of the original variable’s constraints. Further, since the
refinement is now more rigid compared to before, it is now treated as an additional
transformation rule.
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Monadic N ⇒MO µT
P(N)

provided P is a non-monadic predicate in the signature of N.

Shallow N ∪̇ {(Γ→ E[s]p,∆; π)} ⇒SH
N ∪ {(S (x),Γl → E[p/x],∆l; π); (Γr → S (s),∆r; π)}

provided s is complex, |p| = 2, x and S fresh,
Γl{x 7→ s} ∪ Γr = Γ, ∆l∪∆r = ∆,
{Q(y) ∈ Γ | y ∈ vars(E[p/x],∆l)} ⊆ Γl,
{Q(y) ∈ Γ | y ∈ vars(s,∆r)} ⊆ Γr.

Linear 1 N ∪̇ {(Γ→ ∆, E′[x]p, E[x]q; π)} ⇒LI
N ∪ {(Γσ,Γ→ ∆, E′[x]p, E[q/x′]; π ∧ πσ)}

provided x′ is fresh and σ = {x 7→ x′}.

Linear 2 N ∪̇ {(Γ→ ∆, E[x]p,q; π)} ⇒LI
N ∪ {(Γσ,Γ→ ∆, E[q/x′]; π ∧ πσ)}

provided x′ is fresh, p , q and σ = {x 7→ x′}.

Refinement N ∪̇ {(C, π)} ⇒Ref N ∪ {(C; π ∧ x , t), (C; π){x 7→ t}}

provided x ∈ vars(C), t straight and vars(t) ∩ vars((C, π)) = ∅.

To reach the MSL(SDC) fragment the refinement transformation is strictly op-
tional. The satisfiability equivalenttransformation N ⇒Ref N′ is used to achieve a
more fine-grained over-approximation of N.

Note that the constraints of approximation clauses are implicitly simplified
causing redundant constraints to be deleted.

Definition 6.3.1 (⇒APC). Define⇒APC as the priority rewrite system [3] consisting
of⇒Ref ,⇒MO,⇒SH and⇒LI with priority⇒Ref >⇒MO >⇒SH >⇒LI, where⇒Ref
is only applied finitely many times.

Lemma 6.3.2 (⇒APC is a Terminating Over-Approximation). The approximation
rules are terminating over-approximations: (i) ⇒APC terminates, (ii) the Linear
transformation is an over-approximation, (iii) the Shallow transformation is an
over-approximation, (iv) the Monadic transformation is an over-approximation,
(v) the refinement transformation is an over-approximation,

Proof. (i) The transformations can be considered sequentially, because of the im-
posed rule priority. There are, by definition, only finitely many refinements at the
beginning of an approximation⇒∗APC. The Monadic transformation strictly reduces
the number of non-monadic atoms. The Shallow transformation strictly reduces the
multiset of term depths of the newly introduced clauses compared to the removed
parent clause. The Linear transformation strictly reduces the number of duplicate
variable occurrences in positive literals. Hence⇒APC terminates.
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(ii) Let N ∪ {(C; π)} ⇒LI N ∪ {(Ca; πa)} where an occurrence of a variable x
in (C; π) is replaced by a fresh x′. As (Ca; πa){x′ 7→ x} is equal to (C; π) modulo
duplicate literal elimination, I |= (C; π) if I |= (Ca; πa). Therefore, the Linear
transformation is an over-approximation.

(iii) Let N ∪ {(C; π)} ⇒SH N ∪ {(Cl; πl), (Cr; πr)} and (Ca; πa) be the shallow
ρ-resolvent. As (Ca; πa)ρ−1 equals (C; π) modulo duplicate literal elimination, I |=
(C; π) if I |= (Cl; πl), (Cr; πr). Therefore, the Shallow transformation is an over-
approximation.

(iv) Let N ⇒MO µP(N) = N′. Then, N = µ−1
P (N′). Let I be a model of N′

and (C; π) ∈ N. Since µP((C; π)) ∈ N′ , I |= µP((C; π)) and thus, µ−1
P (I) |= (C; π).

Hence, µ−1
P (I) is a model of N. Therefore, the Monadic transformation is an over-

approximation. Actually, it is a satisfiability equivalent transformation.
(v) Let N∪{(C; π)} ⇒Ref N∪{(C; π∧ x , t), (C; π){x 7→ t}}. Let Cδ ∈ G((C; π)).

If xδ is not an instance of t, then δ is a solution of π∧ x , t and Cδ ∈ G((C; π∧ x ,
t)). Otherwise, δ = {x 7→ t}δ′ for some substitution δ′. Then, δ is a solution
of π{x 7→ t} and thus, Cδ = C{x 7→ t}δ′ ∈ G((C{x 7→ t}; π{x 7→ t})). Hence,
G((C; π)) ⊆ G((C; π ∧ x , t)) ∪ G((C; π){x 7→ t}). Therefore, if I is a model of
N ∪ {(C; π ∧ x , t), (C; π){x 7→ t}}, then I is also a model of N ∪ {(C; π)}. �

As before, the transformation also preserves, besides unsatisfiability, the struc-
ture of terms in a model. However, since the addition of constraints increased the
complexity of this property, I explicitly define an ancestor relation⇒A on the basis
of⇒APC that relates clauses, literal occurrences and variables with respect to the
approximation. This relation is also used to determine the exact clause, literal, and
variable used in the refinement.

Definition 6.3.3 (The Shallow Resolvent). Let N∪{(C; π)} ⇒SH N∪{(Cl; π), (Cr; π)}
with C = Γ → E[s]p,∆, Cl = S (x),Γl → E[p/x],∆l and Cr = Γr → S (s),∆r. Let
x1, . . . , xn be the shared variables of Cl and Cr and ρ = {x1 7→ x′1, . . . , xn 7→ x′n}
be a variable renaming with x′1, . . . , x

′
n fresh in Cl and Cr. Define the shallow

ρ-resolvent as (Γl{x 7→ sρ},Γrρ→ E[p/sρ],∆l,∆rρ; π ∧ πρ).

Let (Ca; πa) be the shallow ρ-resolvent of N∪{(C; π)} ⇒SH N∪{(Cl; π), (Cr; π)}.
Note that for any two ground instances Clδl and Crδr, their resolvent is a ground
instance of (Ca; πa). Further, using the substitution ρ−1 = {x′1 7→ x1, . . . , x′n 7→ xn},
(Ca; πa)ρ−1 = (Γl{x 7→ s},Γr → E[s]p,∆l,∆r; π ∧ π) is equal to (C; π) modulo
duplicate literal elimination. This is because, ∆l ∪ ∆r = ∆ and Γl{x 7→ s} ∪ Γr = Γ

by definition of⇒SH and π ∧ π is equivalent to π.
Next, I establish parent relations that link approximation and approximated

clauses, as well as their variables and literals. Together the parent, variable and
literal relations allow me to not only trace any approximation clause back to their
origin, but also predict what consequences changes to the original set will have on
its approximations.

For the following definitions, I assume that clause and literal sets are lists and
that µT

P and substitutions act as mappings. This means I can uniquely identify
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clauses and literals by their position in those lists. Further, for every Shallow
transformation N ⇒SH N′, I will also include the shallow resolvent in the parent
relation as if it were a member of N′.

Definition 6.3.4 (Parent Clause). For an approximation step N ⇒AP N′ and two
clauses (C; π) ∈ N and (C′; π′) ∈ N′, define [(C; π),N]⇒A [(C′; π′),N′] expressing
that (C; π) in N is the parent clause of (C′; π′) in N′:
If N ⇒MO µT

P(N), then
[(C; π),N]⇒A [µT

P((C; π)), µT
P(N)] for all (C; π) ∈ N.

If N = N′′ ∪ {(C; π)} ⇒SH N′′ ∪ {(Cl; πl), (Cr; πr)} = N′, then
[(D, π′),N]⇒A [(D, π′),N′] for all (D, π′) ∈ N′′ and
[(C, π),N]⇒A [(Cl; πl),N′],
[(C, π),N]⇒A [(Cr; πr),N′] and
[(C, π),N]⇒A [(Ca; πa),N′] for any shallow resolvent (Ca; πa).

If N = N′′ ∪ {(C; π)} ⇒LI N′′ ∪ {(Ca; πa)} = N′, then
[(D, π′),N]⇒A [(D, π′),N′] for all (D, π′) ∈ N′′ and
[(C, π),N]⇒A [(Ca, πa),N′].

If N = N′′ ∪ {(C; π)} ⇒Ref N′′ ∪ {(C; π ∧ x , t), (C; π){x 7→ t}} = N′, then
[(D, π′),N]⇒A [(D, π′),N′] for all (D, π′) ∈ N′′ ,
[(C, π),N]⇒A [(C; π ∧ x , t),N′] and
[(C, π),N]⇒A [(C; π){x 7→ t},N′].

Definition 6.3.5 (Parent Variable). Let N ⇒AP N′ be an approximation step and
[(C; π),N] ⇒A [(C′; π′),N′]. For two variables x and y, define [x, (C; π),N] ⇒A
[y, (C′; π′),N′] expressing that x ∈ vars(C) is the parent variable of y ∈ vars(C′):
If x ∈ vars((C; π)) ∩ vars((C′; π′)), then

[x, (C; π),N]⇒A [x, (C′; π′),N′].
If N ⇒SH N′ and (C′, π′) is the shallow ρ-resolvent,

[xi, (C; π),N]⇒A [xiρ, (C′; π′),N′] for each xi in the domain of ρ.
If N ⇒LI N′, C = Γ→ ∆[x]p,q and C′ = Γ{x 7→ x′},Γ→ ∆[q/x′], then

[x, (C; π),N]⇒A [x′, (C′; π′),N′].

Note that if N ⇒SH N′ and x is the fresh extraction variable in (Cl; πl), then
x has no parent variable. For literals, I actually further specify the relation on the
positions within literals of a clause (C; π) using pairs (L, r) of literals and positions.
I write (L, r) ∈ C to denote that (L, r) is a literal position in (C; π) if L ∈ C and
r ∈ pos(L). Note that a literal position (L, r) in (C; π) corresponds to the term L|r.

Definition 6.3.6 (Parent literal position). Let N ⇒AP N′ be an approximation step
and [(C; π),N]⇒A [(C′; π′),N′]. For two literal positions (L, r) and (L′, r′), define
[r, L, (C; π),N]⇒A [r′, L′, (C′; π′),N′] expressing that (L, r) in (C; π) is the parent
literal position of (L′, r′) in (C′; π′):
If (C; π) = (C′; π′), then

[r, L, (C; π),N]⇒A [r, L, (C′; π′),N′] for all (L, r) ∈ C.
If N ⇒Ref N′ and (C′, π′) = (C; π ∧ x , t), then
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[r, L, (C; π),N]⇒A [r, L, (C′; π′),N′] for all (L, r) ∈ C.
If N ⇒Ref N′ and (C′, π′) = (C; π){x 7→ t}, then

[r, L, (C; π),N]⇒A [r, L{x 7→ t}, (C′; π′),N′] for all (L, r) ∈ C.
If N ⇒MO µT

P(N) = N′, then
[ε, P(t), (C; π),N]⇒A [ε,T ( fp(t)), (C′; π′),N′] for all P(t) ∈ C and
[r, P(t), (C; π),N]⇒A [1.r,T ( fp(t)), (C′; π′),N′] for all (P(t), r) ∈ C.

If N ⇒SH N′, C = Γ→ E[s]p,∆ and C′ = S (x),Γl → E[p/x],∆l, then
[r, E[s]p, (C; π),N]⇒A [r, E[p/x], (C′; π′),N′] for all r ∈ pos(E[p/x]),
[p, E[s]p, (C; π),N]⇒A [r, S (x), (C′; π′),N′] for all r ∈ pos(S (x)),
[r, L{x 7→ s}, (C; π),N]⇒A [r, L, (C′; π′),N′] for all (L, r) ∈ Γl,
[r, L, (C; π),N]⇒A [r, L, (C′; π′),N′] for all (L, r) ∈ ∆l.

If N ⇒SH N′, C = Γ→ E[s]p,∆ and C′ = Γr → S (s),∆r, then
[p, E[s]p, (C; π),N]⇒A [ε, S (s), (C′; π′),N′],
[pr, E[s]p, (C; π),N]⇒A [1.r, S (s), (C′; π′),N′] for all r ∈ pos(s), and
[r, L, (C; π),N]⇒A [r, L, (C′; π′),N′] for all (L, r) ∈ Γr ∪ ∆r.

If N ⇒SH N′, C = Γ→ E[s]p,∆ and (C′, π′) is the shallow ρ-resolvent, then
[r, E[s]p, (C; π),N]⇒A [r, E[p/sρ], (C′; π′),N′] for all r ∈ pos(E[p/sρ]),
[r, L{x 7→ s}, (C; π),N]⇒A [r, L{x 7→ sρ}, (C′; π′),N′] for all (L, r) ∈ Γl,
[r, L, (C; π),N]⇒A [r, Lρ, (C′; π′),N′] for all (L, r) ∈ Γr ∪ ∆r, and
[r, L, (C; π),N]⇒A [r, L, (C′; π′),N′] for all (L, r) ∈ ∆l.

If N ⇒LI N′, C = Γ→ ∆, E′[x]p, E[x]q and C′ = Γ{x 7→ x′}, Γ→ ∆, E′[x]p, E[q/x′],
[r, E′[x]p, (C; π),N]⇒A [r, E′[x]p, (C′; π′),N′] for all r ∈ pos(E′[x]p),
[r, E[x]q, (C; π),N]⇒A [r, E[q/x′], (C′; π′),N′] for all r ∈ pos(E[q/x′]),,
[r, L, (C; π),N]⇒A [r, L{x 7→ x′}, (C′; π′),N′] for all (L, r) ∈ Γ,
[r, L, (C; π),N]⇒A [r, L, (C′; π′),N′] for all (L, r) ∈ Γ, and
[r, L, (C; π),N]⇒A [r, L, (C′; π′),N′] for all (L, r) ∈ ∆.

If N ⇒LI N′, C = Γ→ ∆, E[x]p,q and C′ = Γ{x 7→ x′},Γ→ ∆, E[q/x′], then
[r, E[x]p,q, (C; π),N]⇒A [r, E[q/x′], (C′; π′),N′] for all r ∈ pos(E[q/x′]),
[r, L, (C; π),N]⇒A [r, L{x 7→ x′}, (C′; π′),N′] for all (L, r) ∈ Γ,
[r, L, (C; π),N]⇒A [r, L, (C′; π′),N′] for all (L, r) ∈ Γ, and
[r, L, (C; π),N]⇒A [r, L, (C′; π′),N′] for all (L, r) ∈ ∆.

The transitive closures of each parent relation are called ancestor relations.

6.4 Lifting of⇒APC

As with the approximation, the definitions of the conflicting core (Definition 4.2.1)
and generalized resolution refutation (Definition 4.2.2) also change with the addi-
tion of straight dismatching constraints.

Definition 6.4.1 (Conflicting Core). A finite set of unconstrained clauses and a
solvable constraint (N⊥; π) are a conflicting core if N⊥δ is unsatisfiable for all
solutions δ of π over vars(N⊥) ∪ lvar(π). A conflicting core (N⊥; π) is a conflicting

79



Γ → E[s]p,∆

Γl, S (x)→ E[p/x],∆l

Γ → E[s]p,∆

Γr →S (x),∆r

Γ → E[s]p,∆

Γl{x 7→ sρ}, Γrρ→E[p/sρ],∆l, ∆rρ

shallow left shallow right shallow resolvent

Γ → ∆,E′[x]p,E[x]q

Γσ, Γ → ∆,E′[x]p,E[q/x′]

Γ → ∆, E[x]p,q

Γσ, Γ → ∆,E[q/x′]

linear 1 linear 2

Figure 6.2: Visual representation of the parent literal position relation (Defini-
tion 6.3.6)

core of the constrained clause set N if for every C ∈ N⊥ there is a clause (C′, π′) ∈
N such that (C; π) is an instance of (C′; π′) modulo duplicate literal elimination.
(C′; π′) is then called the instantiated clause of (C; π) in (N⊥; π). A conflicting core
N⊥ of N is minimal if for any strict subset M ( N⊥, M is not a conflicting core of
N.

Definition 6.4.2 (Generalized Resolution Refutation). A generalized resolution
refutation R of a constrained clause set N is a list of variable disjoint constrained
clauses, where the last clause is the empty clause (�;>). Each clause in R is anno-
tated by one of the following four labels:
(C, π)N , (C; π)(C′;π′),σ, (C; π)(C1;π1),(C2;π2),σ, and (C; π)(N⊥;πc) which are called input,
factor, resolution, and derived clauses, respectively. Additionally, C∗ is used as a
placeholder for an arbitrary label. Furthermore, a generalized resolution refuta-
tion R satisfies the following four properties, where (R1)-(R3) correspond to the
default properties of a resolution refutation while (R4) is an additional invariant on
generalized resolution refutations

(R1) If R = R1, (C, π)N ,R2, then (C, π) is a variant of a clause (C′, π′) ∈ N.

(R2) If R = R1, (C; π)(C′;π′),σ,R2, then (C′; π′)∗ ∈ R1, and (C, π) is a factor of
(C′; π′) using unifier σ.

(R3) If R = R1, (C; π)(C1;π1),(C2;π2),σ,R2, then (C1; π1)∗ ∈ R1, (C2; π2)∗ ∈ R1, and
(C, π) is a resolvent of (C1; π1) and (C2; π2) using unifier σ.

(R4) If R = R1, (C; π)(N⊥;πc),R2, then (i) for all substitutions τ, πcτ is solvable if
πτ is solvable, (ii) for all D ∈ N⊥, (D; πc) is an instance of a clause in N, and
(iii) for all solutions δ of πc over lvar(πc) ∪ vars(N) ∪ lvar(π) ∪ vars(C), δ is
a solution of π and N⊥δ |= Cδ.
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Input R1, (C; π)N ,R2 ⇒R R1, (C; π)({C};π),R2

Factoring R1, (C; π)(C′;π′),σ,R2 ⇒R R1, (C; π)(N⊥;πc)σ,R2

if (C′; π′)(N⊥;πc) ∈ R1.

Resolution R1, (C, π)(C1;π1),(C2;π2),σ,R2 ⇒R R1, (C; π)(N⊥1 ∪N⊥2 ;πc1∧πc2)σ,R2

if (C1; π1)(N⊥1 ,πc1) ∈ R1 and (C2; π2)(N⊥2 ,πc2) ∈ R1.

Lemma 6.4.3. If R is a resolution refutation and R ⇒R R′, then R′ is also a
resolution refutation.

Proof. Let R be a resolution refutation for a constrained clause set N.
Let R = R1, (C; π)N ,R2 ⇒R R1, (C; π)({C};π),R2 = R′. We only need to show

that (C; π)({C};π) satisfies property R4. Trivially, (i) π = πc, (ii) (C; π) is a variant
of a clause in N (R2) and (iii) Cδ |= Cδ for any solution δ of π. Hence, R′ is a
resolution refutation for N.

Let R = R1, (C; π)(C1;π1),(C2;π2),σ,R2 ⇒R R1, (C; π)(N⊥1 ∪N⊥2 ;πc1∧πc2)σ,R2 = R′

with (C1; π′1)(N⊥1 ,πc1) and (C2; π′2)(N⊥2 ,πc2) in R1. Showing that (C; π)(N⊥1 ∪N⊥2 ;πc1∧πc2)σ

satisfies property R4 is sufficient. By property R4, for i = 1, 2 (i) for all substitutions
τ, πciτ is solvable if πiτ is solvable, (ii) for all D ∈ N⊥i there exists a (D′; π′) ∈ N
such that (D; πci) is an instance of (D′; π′) and (iii) for all solutions δi of πi, δi is a
solution of π′i and N⊥i δi |= Ciδi. (i) Let πτ be solvable. Since π = (π1 ∧ π2)σ, π1στ

and π2στ are solvable. Then, πc1στ and πc2στ are solvable as well and therefore,
(πc1 ∧ πc2)στ, too. (ii) W.l.o.g., let D ∈ N⊥1 σ. Then, D = D1σ for some D1 ∈ N⊥1
and thus, there is a (D′; π′) ∈ N such that (D1; πc1) is an instance of (D′; π′). Since
(D1σ; πc1 ∧ πc2) is an instance of (D1; πc1), (D; πc1 ∧ πc2) is also an instance of
(D′; π′). (iii) Let δ be a solution of πc1σ ∧ πc2σ. Then, σδ is a solution of both πc1
and πc2 and thus, also of both π1 and π2. Therefore, δ is a solution of (π1∧π2)σ = π.
Then, N⊥1 σδ |= C1σδ and N⊥2 σδ |= C2σδ. Therefore, (N⊥1 σ∪ N⊥2 σ)δ |= C, because
C1σ,C2σ |= C by R3 and Lemma 6.2.5. Hence, R′ is a resolution refutation for N.

Let R = R1, (C; π)(C′;π′),σ,R2 ⇒R R1, (C; π)(N⊥;πc)σ,R2 = R′. The proof works
analogously to the previous case. �

For the last clause (�,>)(N⊥,πc), (N⊥, πc) is then a conflicting core of N as a
direct consequence of property R4.

Note that each clause in N⊥ can be traced back to a unique input clause in the
original R. Each input clause is a variant of exactly one clause in N, otherwise N
would have contained redundant variants of the same clause. In practice, I set this
clause as the instantiated clause of the conflict clause in (N⊥, πc).

As in Chapters 4 and 5, given an approximation N ⇒∗AP Nk and a conflicting
core (N⊥k ; π) of Nk, using the lifting lemmas provided in this section I attempt to lift
(N⊥k ; π) step-wise to a conflicting core of N.
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Lemma 6.4.4 (Linear Lifting). Let N ∪ {(C; π)} ⇒LI N ∪ {(Ca; πa)} and (N⊥; πc)
be a conflicting core of N ∪ {(Ca; πa)}. Let C1, . . . ,Cm be all clauses in N⊥ with
instantiated clause (Ca; πa). If for each Ci, (Ci; πc) is an instance of (C; π) modulo
duplicate literal elimination, then (N⊥; πc) is a conflicting core of N ∪ {(C; π)}.

Proof. Follows trivially from the definition of conflicting cores, i.e., (N⊥; πc) is
already a conflicting core and for any clause C⊥ ∈ N⊥ that is not among C1, . . . ,Cm,
there is a clause (D, π′) ∈ N such that (C⊥, πc) is an instance of (D, π′) modulo
duplicate literal elimination. �

Lemma 6.4.5 (Shallow Lifting). Let N ∪ {(C; π)} ⇒SH N ∪ {(Cl; πl), (Cr; πr)} with
the fresh predicate S and (N⊥; πc) be a conflicting core of N ∪ {(Cl; πl), (Cr; πr)}.
Let NS be the set of all resolvents of clauses in N⊥ on S -atoms. If for each clause
Ca ∈ NS , (Ca; πc) is an instance of (C; π) modulo duplicate literal elimination, then
({D ∈ N⊥ | no S -atom in D} ∪ NS ; πc) is a conflicting core of N ∪ {(C; π)}.

Proof. Let N′⊥ = {D ∈ N⊥ | no S -atom in D} ∪ NS , δ be a solution of πc and I
an interpretation. Then, there exists a C⊥ ∈ N⊥δ such that I 6|= C⊥. If C⊥ does
not contain an S -atom, then C⊥ ∈ N′⊥δ. Thus, I 6|= N′⊥δ. Otherwise, at least one
clause with an S -atom is false underI in N⊥δ. By construction, any such clause has
either Cl or Cr as their instantiated clause. Let Clτ1, . . . ,Clτm and Crρ1, . . . ,Crρn

be all clauses in N⊥δ that are false under I. Let

I′ B I \ {S (x)τ1, . . . , S (x)τm} ∪ {S (s)ρ1, . . . , S (s)ρn},

i.e., change the truth value for S -atoms such that the clauses unsatisfied under I are
satisfied under I′. Because I and I′ only differ on S -atoms, there exists a clause
D ∈ N⊥δ that is false under I′ and contains an S -atom. Let D = Clσ. Since I |= D,
S (x)σ was added to I′ by some clause Crρ j, where S (s)ρ j = S (x)σ. Let R be the
resolvent of Crρ j and C1σ on S (s)ρ j and S (x)σ. Then, I 6|= R because I 6|= Crρ j

and I ∪ {S (s)ρ j} 6|= Clδ
′. Thus, I 6|= N′⊥δ. For D = Crσ, the proof is analogous.

Therefore, N′⊥ is a conflicting core of N ∪ {(C; π)}. �

Lifting a Refinement Transformation In the case of a refinement transformation
N ∪ {(C; π)} ⇒Ref N ∪ {(C; π ∧ x , t), (C; π){x 7→ t}}, the clauses (C; π∧ x , t) and
(C; π){x 7→ t} are both instances of (C; π). Therefore, any instance of either clause
in a conflicting core N⊥ of N ∪ {(C; π ∧ x , t), (C; π){x 7→ t}} is an instance of
(C; π). Hence, N⊥ is also a conflicting core of N ∪ {(C; π)}.

Lemma 6.4.6 (Refinement Lifting). Let N ⇒Ref N′. If (N⊥; π) is a conflicting core
of N′, then (N⊥; π) is a conflicting core of N.

Lifting with Instantiation now requires that the instantiation does not contradict
the conflicting core’s constraint. By definition, if (N⊥; π) is a conflicting core of N,
then (N⊥; π)τ is also a conflicting core of N if πτ is solvable.
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Static Completeness

Theorem 6.4.7 (Static Completeness). Let N0 be an unsatisfiable clause set and
N0 ⇒

∗
AP Nk. Then, for every ground conflicting core N⊥ of N0 there exists a ground

conflicting core N⊥k of Nk such that N⊥k can be lifted to N⊥.

Proof. By induction on N0 ⇒
∗
AP Nk. If N0 = Nk, any ground unsatisfiability core

of N0 is also a ground conflicting core of Nk. Let N0 ⇒
∗
AP Nk−1 ⇒AP Nk. By the

inductive hypothesis, there is a ground conflicting core N⊥k−1 of Nk−1 which can be
lifted to N0. The final approximation rule application is either a linear, a shallow, a
monadic or a refinement transformation, considered below by case analysis.

Let Nk−1 = N′ ∪ {(C; π)} ⇒LI Nk = N′ ∪ {(Ca; πa)} where a variable x is
replaced by x′. Let Cδ1, . . . ,Cδn be the instances of (C; π) in N⊥k−1. Then, each Cδi

is equivalent to Ca{x′ 7→ x}δi and {x′ 7→ x}δi is a solution of πa = π ∧ π{x′ 7→ x}
because δi is a solution of π. Thus, N⊥k−1\{Cδi, . . . ,Cδn}∪{Ca{x′ 7→ x}δi | 1 ≤ i ≤ n}
is a conflicting core of Nk. By Lemma 6.4.4, it can be lifted to N⊥k−1.

Let N ⇒∗AP Nk−1 = N′ ∪ {(C; π)} ⇒SH Nk = N′ ∪ {(Cl; πl), (Cr; πr)} where a
term s is extracted from a positive literal E[s]p via introduction of fresh predicate
S and variable x. Let Cδ1, . . . ,Cδn be the instances of (C; π) in N⊥k−1. Then, each
Cδi is equal modulo duplicate literal elimination to the resolvent Ci of Cl{x 7→ s}δi

and Crδi, and {x 7→ s}δi and δi are both solutions of π = πl = πr. Thus, N⊥k =

N⊥k−1 \ {Cδi, . . . ,Cδn} ∪ {Cl{x 7→ s}δi,Crδi | 1 ≤ i ≤ n} is a conflicting core of Nk.
Since {C1, . . .Cn} is the set of resolvents of {Cl{x 7→ s}δi,Crδi | 1 ≤ i ≤ n}, N⊥k can
be lifted to N⊥k−1 by Lemma 6.4.5.

Let N ⇒∗AP Nk−1 ⇒MO Nk = µP(Nk−1) where P is a non-monadic predicate in
Nk−1. N⊥k = µP(N⊥k−1) is a conflicting core of Nk. By Lemma 4.2.7, N⊥k can be lifted
to N⊥k−1.

Let N ⇒∗AP Nk−1 ⇒Ref Nk where (C; π) is segmented into (C; π ∧ x , t) and
(C; π){x 7→ t}. By Lemma 6.4.6, N⊥k also a conflicting core of Nk−1. �

The above lemma considers static completeness, i.e., it does not tell how the
conflicting core that can eventually be lifted is found. One way is to enumerate all
ground conflicting cores of Nk in a fair way. A straightforward fairness criterion is
to order conflicting cores by increasing term depth of their clauses.

Assume N0 is unsatisfiable and Nk is an MSL approximation of N0. There is a
smallest conflicting core N⊥ of N0 and by Lemma 6.4.7, a corresponding ground
conflicting core N′⊥ of Nk. Note that in the construction of N′⊥ none of the steps
increases the term depth of the clauses in N⊥. Furthermore, the total number of
distinct S -predicates in N′⊥ is bounded by the term depths in N⊥. Therefore, any
conflicting core that can be lifted to N⊥ is bounded by the term depths of N⊥.

Since the approximation is in the MSL fragment, the decision procedure returns
a resolution refutation of Nk. Let N⊥k be the conflicting core translate from the
refutation via Lemma 6.4.3. I assume that the decision procedure follows the
fairness criterion such that N⊥k contains the smallest ground conflicting core of Nk.
If N⊥k can not be lifted to N0, I use Lemma 6.5.6 to prevent the same conflicting
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core from being found again. Eventually, a conflicting core that can be lifted to N⊥

will be the smallest ground conflicting core of the refined approximation.

6.5 Approximation-Refinement

Thanks to the addition of straight dismatching constraints, the new refinement is
now quite different from the previous versions for MSLH and MSL (see Section 4.3
and 5.3). As a result of the changed refinement, I have also adapted a new approach
to the whole approximation-refinement. Whereas previously the refinement was
defined separately for the linear and shallow cases, now both are generalized and
treated as the same type of lift-conflict.

Consider the two cases where a lift-conflict can occur: In the linear case, there
exists a clause in the conflicting core that is not an instance of the original clauses.
In the shallow case, there exists a pair of clauses whose resolvent is not an instance
of the original clauses. Since lifting monadic and refinement transformations always
succeeds, there are no lift-conflicts in those cases.

Whenever lifting fails, there is a clause of some form, the so-called lift-conflict,
that is not an instance of an approximated clause. In the following this clause is
defined as a general lift-conflict which is then used to determine the refinement
independently of the rule that caused it.

Definition 6.5.1 (The Lift-Conflict). Let N ∪ {(C, π)} ⇒LI N ∪ {(Ca, πa)} and N⊥

be a minimal ground conflicting core of N ∪ {(Ca, πa)}. A conflict clause Cc ∈ N⊥

with the instantiated clause (Ca, πa) is called a lift-conflict if Cc is not an instance
of (C, π) modulo duplicate literal elimination.

Let N ∪ {(C, π)} ⇒SH N ∪ {(Cl, πl), (Cr, πr)}, (Ca; πa) be the shallow resolvent
and N⊥ be a minimal ground conflicting core of N∪{(Cl, πl), (Cr, πr)}. The resolvent
Cc of Clδl ∈ N⊥ and Crδr ∈ N⊥ is called a lift-conflict if Cc is not an instance of
(C, π) modulo duplicate literal elimination. Then, Cc is an instance of (Ca; πa),
which is the instantiated clause of Cc.

The goal of refinement is then to change the parent clause in such a way that
is both satisfiability equivalent and prevents the lift-conflict from again appearing
during the lifting of the refined approximations. Solving the refined approximation
will then necessarily produce a new proof because its conflicting core has to be
different. For this purpose, the refinement transformation segments the original
clause (C; π) into two parts (C; π ∧ x , t) and (C; π){x 7→ t}.

For example, consider N and its Linear transformation N′.

→ P(x, x) ⇒LI → P(x, x′)
P(a, b) → P(a, b) →

The ground conflicting core of N′ is

→ P(a, b)
P(a, b) →
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Because P(a, b) is not an instance of P(x, x), lifting fails. P(a, b) is the lift-conflict.
Specifically {x 7→ a} and {x 7→ b} are conflicting substitutions for the parent variable
x. Pick {x 7→ a} to segment P(x, x) into (P(x, x); x , a) and P(x, x){x 7→ a}. Now,
any descendant of (P(x, x); x , a) cannot have a at the position of the first x, and
any descendant of P(x, x){x 7→ a} must have an a at the position of the second x.
Thus, P(a, b) is excluded in both cases and no longer appears as a lift-conflict.

To show that the lift-conflict will not reappear in the general case, I use that the
conflict clause and its ancestors have strong ties between their term structures and
constraints.

Definition 6.5.2 (Constrained Term Skeleton). The constrained term skeleton of a
term t under constraint π, skt(t, π), is defined as the normal form of the following
transformation:

(t[x]p,q; π)⇒skt (t[q/x′]; π ∧ π{x 7→ x′}), where p , q and x′ is fresh.

The constrained term skeleton of a term t is essentially a linear version of t
where the restrictions on each variable position imposed by π are preserved. For
(t, π), a solution δ of π is over lvar(π) ∪ vars(t) and tδ is called a ground instance of
(t, π).

Lemma 6.5.3. Let N0 ⇒
∗
APC Nk, (Ck; πk) in N with the ancestor clause (C0; π0) ∈ N0

and (N⊥k ;>) be a minimal ground conflicting core of Nk. Let δ be a solution of πk

such that Ckδ is in N⊥k . If (L′, q′) is a literal position in (Ck; πk) with the ancestor
(L, q) in (C0, π0), then (i) L′δ|q′ is an instance of skt(L|q, π0), (ii) q = q′ if L and L′

have the same predicate, and (iii) if L′|q′ = x and there exists an ancestor variable
y of x in (C0, π0), then L|q = y.

Proof. By induction on the length of the approximation N0 ⇒
∗
APC Nk.

The base case Nk = N0, is trivial.
Let N0 = N ∪ {(C; π)} ⇒SH N ∪ {(Cl; πl), (Cr; πr)} = Nk, (Ck; πk) be the shallow
ρ-resolvent and Ckδ be the resolvent of two instances of (Cl; πl) and (Cr; πr) in N⊥k .
Then, (Ck; πk)ρ−1 is equal to (C; π) modulo duplicate literal elimination. Thus, by
definition (L, q) = (L′, q′)ρ−1. Therefore, (i) L′δ|q′ is an instance of skt(L|q, π0),
(ii) q = q′ if L and L′ have the same predicate, and (iii) if L′|q′ = x and there exists
an ancestor variable y of x in (C0, π0), then L|q = y.

Now, let N0 ⇒APC N1 ⇒
∗
APC Nk. Since (L′, p) has an ancestor literal position in

(C0, π0), the ancestor clause of (Ck; πk) in N1, (C1, π1), contains the the ancestor lit-
eral position (L1, q1), which has (L, q) as its parent literal position. By the induction
hypothesis on N1 ⇒

∗
APC Nk, (i) L′δ|q′ is an instance of skt(L1|q1 , π1), (ii) q1 = q′

if L1 and L′ have the same predicate, and (iii) if L′|q′ = x and there is an ancestor
variable y1 of x in (C1, π1), then L1|q1 = y1.

Let N0 = N∪{(C; π)} ⇒Ref N∪{(C; π∧x , t), (C; π){x 7→ t}} = N1. If (C1, π1) is
neither (C; π∧x , t) nor (C; π){x 7→ t}, then trivially (C0, π0) = (C1, π1). Otherwise,
(C1, π1) = (C; π ∧ x , t) or (C1, π1) = (C; π){x 7→ t}. Then (L1, q1) = (L, q) or
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(L1, q1) = (L, q){x 7→ t}. In either case,(i) L′δ|q′ is an instance of skt(L|q, π0),
(ii) q = q′ if L and L′ have the same predicate, and (iii) if L′|q′ = x and there exists
an ancestor variable y of x in (C0, π0), then L|q = y.

Let N0 ⇒MO µP(N) = N1. If P is not the predicate of L, then trivially
(L, q) = (L1, q1). If P is the predicate of L, then (L, q) = (P(t1, . . . , tn), q) and
(L1, q1) = (T ( fp(t1, . . . , tn)), 1.q). Thus, (i) L′δ|q′ is an instance of skt(L|q, π0) =

skt(T ( fp(t1, . . . , tn)|1.q, π0). (ii) The predicate of L′ is not P by definition. (iii) Let
L′|q′ = x and y be the ancestor variable of x in (C0, π0). Then, y is also the an-
cestor variable of x in (C1, π1) and L1|q1 = y. Therefore, L|q = P(t1, . . . , tn)|q =

T ( fp(t1, . . . , tn)|1.q = L1|q1 = y.
Let N0 = N ∪ {(C; π)} ⇒LI N ∪ {(Ca; πa)} = N1 where an occurrence of a

variable x is replaced by a fresh x′. If (C1, π1) , (Ca; πa), then trivially (C0, π0) =

(C1, π1). Otherwise, (C1, π1) = (Ca; πa), (C0, π0) = (C, π). By definition, (L, q) =

(L1{x′ 7→ x}, q1) and π0 = π1{x′ 7→ x}. Thus, skt(L|q, π0) = skt(L1|q1 , π1). There-
fore, L′δ|q′ is an instance of skt(L|q, π0). Since L and L1 have the same predicate
and q = q1, q = q′ if L and L′ have the same predicate. Let L′|q′ = z and y be the
ancestor variable of z in (C1, π1). If y , x′, then y is the ancestor variable of z in
(C0, π0) and L|q = L1{x′ 7→ x}|q1 = y1. Otherwise, x is the ancestor variable of z in
(C0, π0) and L|q = L1{x′ 7→ x}|q1 = x.

Let N0 = N ∪ {(C; π)} ⇒SH N ∪ {(Cl; πl), (Cr; πr)} = N1 where a term s is
extracted from a positive literal Q(s′[s]p) via introduction of the fresh predicate S
and variable x. If (C1, π1) is neither (Cl; πl) nor (Cr; πr), then trivially (C0, π0) =

(C1, π1).
If (C1, π1) = (Cl; πl) and L1 = S (x), then (C0, π0) = (C; π), q1 = 1, (L′, q′) =

(S (x), 1) and (Q(s′[s]p), 1.p) is the parent literal position of (S (x), 1). Let L′δ = S (t).
Since N⊥k is minimal and ground, there is a clause C′kδ

′ ∈ N⊥k that contains S (t)
as a positive literal, because otherwise no resolution refutation with clauses in N⊥k
involving Ck could have derived the empty clause. The ancestor of (C′k, π

′
k) ∈ Nk

in N1 is (Cr; πr) because it is the only clause in N1 with a positive S -literal. Then,
by the inductive hypothesis, (S (s), 1) in (Cr; πr) is the ancestor literal position of
(S (x), 1) in (C′k, π

′
k). Thus, t is an instance of skt(S (s)|1, πr) = skt(s, πr). Therefore,

t = L′δ|q′ is an instance of skt(Q(s′[s]p)|1.p, π) = skt(s, πr). Further, Q and S are
not the same predicate because S is fresh. Since x has no parent variable, L′|q′ = x
has no ancestor variable in (C0, π0).

If (C1, π1) = (Cl; πl) and L1 = Q(s′[p/x]), (C0, π0) = (C; π) and (Q(s′[s]p), q1)
in (C; π) is the parent literal position of (L1, q1) in (C1, π1) and ancestor literal
position of (L′, q′) in (Ck, πk). If q1 is not a position at or above p, the subterm
at p is irrelevant and thus skt(Q(s′[s]p)|q1 , π) = skt(Q(s′[p/x])|q1 , πl). Otherwise,
let r be a position such that q1r = 1.p. Since |p| = 2, no following Shallow
transformation step extracts a subterm of s′[p/x] containing x. Thus by definition
of⇒APC, L′ = Q(t′[x]p) and Ck also contains the negative literal S (x). Let S (x)δ =

S (t). Analogously to the previous case, t is an instance of skt(s, πr). Combined
with L′δ|q′ being an instance of skt(L1|q1 , π1) = skt(Q(s′[p/x])|q1 , πl) and L′δ|1.p = t,
L′δ|q′ is an instance of skt(Q(s′[s]p)|q, π). Since L and L1 have the same predicate
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and q = q1, q = q′ if L and L′ have the same predicate. Let L′|q′ = z and y in
(C1, π1) be the ancestor variable of z in (Ck, πk). Since x has no parent, y , x
and y in (C0, π0) is the ancestor variable of z. Therefore, Q(s′[s]p)|q1 = y because
Q(s′[p/x])|q1 = y.

If (C1, π1) = (Cr; πr) and L1 = S (s), let q1 = 1.q′1. Then, (C0, π0) = (C; π)
and (L, q) = (Q(s′[s]p), 1.pq′1) in (C0, π0) is the parent literal position of (L1, q1)
in (C1, π1). Thus, L′δ|q′ is an instance of skt((Q(s′[s]p)|1.pq′1 , π) = skt(s|q′1 , π) =

skt(L1|q1 , πr). Because S is fresh, Q is not the predicate of L′. Let L′|q′ = z and y in
(C1, π1) be the ancestor variable of z in (Ck, πk). Then, y in (C0, π0) is the ancestor
variable of z and Q(s′[s]p)|q = s|q′1 = y because s|q′1 = L1|q1 = y.

Otherwise, (L1, q1) in (C0, π0) is the parent literal position of (L1, q1) in (C1, π1),
by definition. Then, skt(L1, π) = skt(L1, πl) or skt(L1, π) = skt(L1, πr), respectively.

�

Next, I define the notion of descendants and descendant relations to connect
lift-conflicts in ground conflicting cores with their corresponding ancestor clauses.
The goal, hereby, is that if a ground clause D is not a descendant of a clause in N,
then it can never appear in a conflicting core of an approximation of N.

Definition 6.5.4 (Descendants). Let N ⇒∗APC N′, [(C; π),N]⇒∗A [(C′; π′),N′] and
D be a ground instance of (C′; π′). Then, D is called a descendant of (C; π). Define
the [(C; π),N]⇒∗A [(C′; π′),N′]-descendant relation⇒D that maps literals in D to
literal positions in (C; π) using the following rule:

L′δ⇒D (L, r) if L′δ ∈ D and [r, L, (C; π),N]⇒∗A [ε, L′, (C′; π′),N′]

For the descendant relations it is of importance to note that while there are po-
tentially infinite ways that a lift-conflict Cc can be a descendant of an original clause
(C; π), there are only finitely many distinct descendant relations over Cc and (C; π).
This means, if a refinement transformation can prevent one distinct descendant re-
lation without allowing new distinct descendant relations (Lemma 6.5.5), a finite
number of refinement steps can remove the lift-conflict Cc from the descendants
of (C; π) (Lemma 6.5.6). Thereby, preventing any conflicting cores containing Cc

from being found again.
A clause (C; π) can have two descendants that are the same except for the

names of the S -predicates introduced by Shallow transformations. Because the
used approximation N ⇒∗APC N′ is arbitrary and therefore also the choice of fresh
S -predicates, if D is a descendant of (C; π), then any clause D′ equal to D up
to a renaming of S -predicates is also a descendant of (C; π). On the other hand,
the actual important information about an S -predicate is which term it extracts.
Two descendants of (C; π) might be the exactly the same but their S -predicate
extract different terms in (C; π). For example, P(a) → S ( f (a)) is a descendant of
P(x), P(y) → Q( f (x), g( f (x))) but might extract either occurrence of f (x). These
cases are distinguished by their respective descendant relations. In the example, they
are either S ( f (a))⇒D (Q( f (x), g( f (x))), 1) or S ( f (a))⇒D (Q( f (x), g( f (x))), 2.1).
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Lemma 6.5.5. Let N0 = N ∪ {(C; π)} ⇒Ref N ∪ {(C; π ∧ x , t), (C; π){x 7→ t}} =

N1 be a refinement transformation and D be a ground clause. If there exists a
[(C; π ∧ x , t),N1]⇒∗A [(C′; π′),N2]- or [(C; π){x 7→ t},N1] ⇒∗A [(C′; π′),N2]-
descendant relation ⇒1

D, then there is an equal [(C; π),N0] ⇒∗A [(C′; π′),N2]-
descendant relation⇒0

D.

Proof. Let LD be a literal of D and L′ ⇒1
D (L, r). If D is a descendant of (C; π ∧ x , t),

then [r, L, (C; π ∧ x , t),N1]⇒∗A [ε, L′, (C′; π′),N2]. Because [r, L, (C; π),N0]⇒A
[r, L, (C; π ∧ x , t),N1], L′ ⇒0

D (L, r). If D is a descendant of (C; π){x 7→ t}, the
proof is analogous. �

Lemma 6.5.6 (Refinement). Let N ⇒APC N′ and N⊥ be a minimal ground con-
flicting core of N′. If Cc ∈ N⊥ is a lift-conflict, then there exists a finite refinement
N ⇒∗Ref NR such that for any approximation NR ⇒

∗
APC N′R and ground conflicting

core N⊥R of N′R, Cc is not a lift-conflict in N⊥R modulo duplicate literal elimination.

Proof. Let (Ca, πa) be the conflict clause of Cc and (C; π) ∈ N be the parent clause
of (Ca, πa). Cc is a descendant of (C; π) with the corresponding [(C; π),N] ⇒A
[(Ca; πa),N′]-descendant relation⇒0

Cc
. Apply induction on the number of distinct

[(C; π),N] ⇒∗A [(C′; π′),N′′]-descendant relations ⇒Cc
for arbitrary approxima-

tions N ⇒∗APC N′′.
Since only the Shallow and Linear transformations can produce lift-conflicts,

the clause (C; π) is replaced by either a linearised clause (C′; π′) or two shal-
low clauses (Cl; π) and (Cr; π). Then, the conflict clause (Ca; πa) of Cc is ei-
ther the linearised (C′; π′) or the resolvent of (Cl; π) and (Cr; π). In either case,
Cc = Caδ for some solution δ of πa. Furthermore, there exists a substitution
τ = {x′1 7→ x1, . . . , x′n 7→ xn} such that (C; π) and (Ca; πa)τ are equal modulo du-
plicate literal elimination. That is, τ = {x′ 7→ x} for a Linear transformation and
τ = ρ−1 for Shallow transformation (Definition 6.3.3).

Assume Cc = Caτσ for some grounding substitution σ, where τσ is a solution
of πa. Thus, σ is a solution of πaτ, which is equivalent to π. Then, Cc is equal to
Cσ modulo duplicate literal elimination an instance of (C; π), which contradicts
with Cc being a lift-conflict. Hence, Cc = Caδ is not an instance of Caτ and thus,
xiδ , x′iδ for some xi in the domain of τ.

Because xiδ and x′iδ are ground, there is a position p where xiδ|p and x′iδ|p have
different function symbols. Construct the straight term t using the path from the
root to p on xiδ with variables that are fresh in (C, π). Then, use xi and t to segment
(C; π) into (C; π ∧ xi , t) and (C; π){xi 7→ t} for the refinement N ⇒Ref NR. Note,
that xiδ is a ground instance of t, while x′iδ is not.

Let (L′1, r
′
1) and (L′2, r

′
2) in (Ca, πa) be literal positions of the variables xi and x′i

in Ca, and (L1, r1) and (L2, r2) in (C, π) be the parent literal positions of (L′1, r
′
1) and

(L′2, r
′
2), respectively. Because (Ca, πa)τ is equal to (C; π) modulo duplicate literal

elimination, L1|r1 = L2|r2 = xi. Let N ⇒Ref N1 be the refinement where (C; π) is
segmented into (C; π ∧ xi , t) and (C; π){xi 7→ t}.
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By Lemma 6.5.5, there exists for every [(C; π ∧ xi , t),N1]⇒∗A [(C′a; π′a),N2]-
or [(C; π){xi 7→ t},N1]⇒∗A [(C′a; π′a),N2]-descendant relation a corresponding equal
[(C; π),N] ⇒A [(C′a; π′a),N2]-descendant relation. Now, assume there exists a
[(C; π ∧ xi , t),N1]⇒∗A [(C′a; π′a),N2]-descendant relation⇒1

Cc
that is not distinct

from⇒0
Cc

. Because L′1δ⇒
0
Cc

(L1, r) for some literal position (L1, r) in (C; π), which
is the parent literal position of (L1, r) in (C; π ∧ xi , t), L′1δ⇒

1
Cc

(L1, r). However,
this contradicts Lemma 6.5.3 because xiδ is not an instance of skt(L1|r1 , π∧xi , t) =

skt(xi, π ∧ xi , t). The case that there is a [(C; π){xi 7→ t},N1] ⇒∗A [(C′a; π′a),N2]-
descendant relation that is not distinct from⇒0

Cc
is analogous using the argument

that x′iδ is not an instance of skt(L2{xi 7→ t}|r2 , π) = skt(t, π). Hence, there are
strictly less distinct descendant relations over Cc and (C; π∧ x , t) or (C; π){x 7→ t}
than there are distinct descendant relations over Cc and (C, π).

If there are no descendant relations, then Cc can no longer appear as a lift
conflict. Otherwise, by the inductive hypothesis, there exists a finite refinement
N ⇒Ref N1 ⇒

∗
Ref NR such that for any approximation NR ⇒APC N′R and ground

conflicting core N⊥R of N′R, Cc is not a lift-conflict in N⊥R modulo duplicate literal
elimination. �

6.5.1 Improvements to Refinement

In Lemma 6.5.6, I segment the conflict clause’s immediate parent clause. If the
lifting later successfully passes this point, the refinement is lost and will be possi-
bly repeated. Instead, I can refine any ancestor of the conflict clause as long as it
contains the ancestor of the variable used in the refinement. By Lemma 6.5.3(iii),
such an ancestor will contain the ancestor variable at the same positions. If I re-
fine the ancestor in the original clause set, the refinement is permanent because
lifting the refinement steps always succeeds. Only variables introduced by Shallow
transformation cannot be traced to the original clause set. However, these shal-
low variables are already linear and the partitioning in the Shallow transformation
can be chosen fixed such that they are not shared variables. Assume a shallow
variable y, that is used to extract term t, is a shared variable in the Shallow trans-
formation of Γ → E[s]p,∆ into S (x),Γl → E[p/x],∆l and Γr → S (s),∆r. Since
∆l ∪̇ ∆r = ∆ is a partitioning, y can only appear in either E[p/x],∆l or S (s),∆r. If
y ∈ vars(E[p/x],∆l), instantiate Γr with {y 7→ t} and Γl, otherwise. Now, y is no
longer a shared variable.

The refinement Lemmas only guarantee a refinement for a given ground con-
flicting core. In practice, however, conflicting cores contain free variables. If I only
exclude a single ground case via refinement, next time the new conflicting core will
likely have overlap with the previous one. But, I can often use specific instances to
remove all ground instances of a given conflict clause at once.

The simplest case is when unifying the conflict clause with the original clause
fails because their instantiations are structurally different at some position. For
example, consider the clause set N = {P(x, x); P( f (x, a), f (y, b))→}. It is satisfiable
but the Linear transformation is unsatisfiable with the lift-conflict P( f (x, a), f (y, b))
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which is not unifiable with P(x, x), because the two terms f (x, a) and f (y, b) have
different functions at the second argument. A refinement of P(x, x) is

(P(x, x); x , f (v, a))

(P( f (x, a), f (x, a)); >)

P( f (x, a), f (y, b)) shares no ground instances with the refined approximations.
Next, assume that again unification fails due to structural difference, but this

time the differences lie at different positions. For example, consider the clause set
N = {P(x, x); P( f (a, b), f (x, x))→}. It is satisfiable but the Linear transformation
of N is unsatisfiable with the lift-conflict P( f (a, b), f (x, x)) which is not unifiable
with P(x, x) because in f (a, b) the first an second argument are different but the
same in f (x, x). A refinement of P(x, x) is

(P(x, x); x , f (a, v))

(P( f (a, x), f (a, x))); x , a)

(P( f (a, a), f (a, a))); >)

P( f (a, b), f (x, x)) shares no ground instances with the refined approximations.
It is also possible that the conflict clause and original clause are unifiable by

themselves, but the resulting constraint has no solutions. For example, consider the
clause set N = {P(x, x); (P(x, y)→; x , a ∧ x , b ∧ y , c ∧ y , d)} with signature
Σ = {a, b, c, d}. It is satisfiable but the Linear transformation of N is unsatisfiable
with the lift-conflict (→ P(x, y); x , a ∧ x , b ∧ y , c ∧ y , d). While P(x, x) and
P(x, y) are unifiable, the resulting constraint x , a ∧ x , b ∧ x , c ∧ x , d has no
solutions. A refinement of P(x, x) is

(P(x, x); x , a ∧ x , b)

(P(a, a); >)

(P(b, b); >)

(P(x, y); x , a ∧ x , b ∧ y , c ∧ y , d) shares no ground instances with the
approximations of the refined clauses.

Lastly, I should mention that there are cases where a refinement covering all
ground instances of the conflict clause is impossible. For example, consider the
clause set N = {P(x, x); P(y, g(y))→}. It is satisfiable but the Linear transformation
of N is unsatisfiable with the lift-conflict P(y, g(y)), which is not unifiable with
P(x, x) because y and g(y) cannot be the same term. A refinement of P(x, x) based
on the ground instance P(a, g(a)) is

(P(x, x); x , g(v))

(P(g(x), g(x)); >)
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While P(y, g(y)) is not an instances of the approximations of the refined clauses, it
shares ground instances with P(g(x), g(x′)). The new lift-conflict is P(g(y), g(g(y)))
and the refinement will continue to enumerate all P(gi(x), gi(x)) instances of P(x, x)
without ever reaching a satisfiable approximation.

If instead of approximating P(x, x) with P(x, x′), something on the line of
(P(x, x′); x′ , g(x)) could be used, satisfiability would be preserved. However,
x′ , g(x) is not a dismatching constraint since x appears in the clause. Decidability
is not known to me for the MSL fragment with such disequality constraints.

For the MSLH fragment with disequality constraints, decidability has been
shown in [38] via transformation into bottom-up tree automata [36]. There, MSLH
clauses are called H1-clauses. Disequality constraints φ =

∧
i∈I si , ti differ

from dismatching constraints in that a clause Cσ is a ground instance of (C, φ) if
siσ , tiσ for every i ∈ I.

My attempts to prove decidability by combining the resolution approach with
the automata approach in [38] failed. On one hand, [36] relies on Horn clauses as
input to construct automata clauses. On the other hand, the termination argument
in Lemma 5.1.4 uses the fact that clauses without selected literals can be separated
into variable disjoint Horn components. However, this is not apparent for MSL
clauses with disequality constraints such as (→ P(x),Q(y); x , y).
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Chapter 7

Implementation

I have implemented the first-order approximation-refinement calculus (FO-AR)
described in Chapter 6 as an extension of SPASS v.3.8 called SPASS-AR. As
shown in Sections 5.1 and 6.2, the MSL and MSL(SDC) fragments can be decided
using ordered resolution with the specific selection function sel. Therefore, by just
using sel as the default selection function, SPASS already provides the decision
procedure for MSL.

The addition of the straight dismatching constraints to the signature of clauses
follows in a straight-forward way their description in Section 6.1. In relation to
the main saturation loop of SPASS, the constraints can in most places be treated
as a black-box that given a constraint either returns its normalization or NULL
indicating an unsolvable constraint.

The remaining steps of FO-AR, approximation, lifting, and refinement, are
build around the core routine of SPASS. A given clause set is first approximated.
Each transformation step is documented in the same way resolution and reduction
rule applications are documented by adding the information of rule, parent clauses
and affected literals to the approximation clause. The resulting approximation is
given as input to the modified solver.

Once finished, the result is analysed. If satisfiable, the result is reported and
the routine finished. Otherwise, the empty clause returned by SPASS is given as
input to the lifting. For the sake of the lifting, each inferred clause had its parents
documented and even if it was redundant was not deleted. This information is then
used to construct a DAG of the resolution refutation.

In a first version of SPASS-AR, the conflicting core was then recursively con-
structed and step-wise lifted as described in Section 6.4. However, the exponential
size of the conflicting core compared to the refutation DAG made this approach
impractical in many examples. Therefore, it was later replaced by a lifting method
that, while much more complex, works directly on the smaller DAG.

If the lifting succeeds, the conflicting core or the refutation Dag lifted to the
original clause set can be reported as a proof of unsatisfiability. Otherwise, all
relevant information of the failed lifting step is returned as the lift-conflict and
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given to the refinement function.
First, the refinement uses a modified unification algorithm on the conflict clause

and its parent to identify the positions of the two subterms in the conflict clause
that caused the unification to fail. One of those positions is then traced upwards to
the point were in the parent clause a variable is found. As the conflict clause is by
construction an instance of the parent clause’s term skeleton, this tracing necessarily
leads to the same variable for both positions. Next, I climb the ancestry tree of
the conflict clause to its corresponding original clause while keeping track of the
incorrectly instantiated variable. The original clause (C; π), its variable x and one
of the instantiations t are used to replace (C; π) with the refinements (C; π){x 7→ t}
and (C; π ∧ x , t). Lastly after resetting the solvers data-structures, the refined
clause set is again fed to the approximation.

7.1 Approximation Details

While Monadic and Linear transformation are implemented just as described in their
definitions, the definition of the Shallow transformation left certain parts unspeci-
fied which will be discussed in the following. Furthermore, to avoid unnecessary
repetition, satisfiability equivalent transformation steps are applied in a preprocess-
ing phase before starting the approximation-refinement loop proper.

7.1.1 Shallow Transformation

In the definition of the Shallow transformation, I noted that the distribution of
literals from Γ and ∆ into Γl, Γr, ∆l, and ∆r can be almost arbitrarily chosen as long
as none are dropped (see Section 3.3). Even duplicating literals and replacing s with
x in Γl is allowed. In the following, I will introduce the way the implementation
actually applies the Shallow transformation. Though I will ignore constraints here
for simplicity.

The first place where the implementation deviates from the definition is that
ground terms in positive literals are not extracted even if they are not shallow. For
the decidability of the MSL and MSLH fragments, only complex subterms that
contain variables are actually significant because they could potentially lead to terms
growing indefinitely. There is no such risk with ground terms and flattening them
would simply introduce an excessively large number of new predicates. Otherwise,
selection of the extraction term is arbitrary.

Given a clause Γ → E[s]p,∆ where the subterm s is chosen for extraction, I
first collect the variables in s, Vs B vars(s), and in the literal E[s]p without s,
VE B vars(E[p/c]) where c is an arbitrary constant. Next, I pick a fresh variable
x and replace each occurrence of s in Γ with x creating a Γ′ where Γ′{x 7→ s} = Γ.
Now, I consider the literals in Γ′ ∪ ∆ as nodes in a graph where two nodes are
connected if they share a variable. Given a set of variablesV, I use reachability in
this graph to find all literals that either contain a variable inV or are connected to
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such a literal. I call these the literals connected toV. Using this, I separate Γ′ and
∆ into four distinct groups:
Γ′s and ∆s that contain the literals connected toVs but not toVE;
Γ′E and ∆E that contain the literals connected toVE but not toVs;
Γ′S and ∆S that contain the literals connected to bothVs andVE;
Γ′N and ∆N that contain the literals connected to neitherVs norVE .

If Γ′S and ∆S are empty, then there are no shared variables and I create the
satisfiability equivalent approximations

S (x),Γ′E ,Γ
′
N → E[p/x],∆E ,∆N

and Γ′s{x 7→ s} → S (s),∆s.

If Γ′S and ∆S are not empty, let Γ′′S be the subset of literals in Γ′S that actually contain
variables inVs. I create the approximations

S (x),Γ′E ,Γ
′
N ,Γ

′
S → E[p/x],∆E ,∆N ,∆S

and Γ′s{x 7→ s},Γ′′S {x 7→ s} → S (s),∆s.

With {Q(y) ∈ Γ | y ∈ vars(E[p/x],∆l)} ⊆ Γ′E and {Q(y) ∈ Γ | y ∈ vars(s,∆r)} ⊆ Γ′s{x 7→ s}
these approximations fulfil all conditions of the Shallow transformation.

This choice of approximation stems from testing several versions. For one, I do
not duplicate any positive literals because this can otherwise cause an exponential
blow-up of the approximation. For example, consider

Γ→ P(g(h(x), x)), Q( f ( f (x)))

where each literal in Γ contains x. If I extract h(x) by replacing it with

S (y), Γ→ P(g(y, x)), Q( f ( f (x)))

and Γ→ S (h(x)), Q( f ( f (x))),

then I next need to extract f (x) in both approximation clauses. In the worst case,
I would create 2n approximation clauses if the original clause requires n Shallow
transformations in total.

Second, my experiments suggested that copying literals to the right approxi-
mation clause that do not share variables with s serves almost no improvement to
the precision of the approximation and instead unsatisfiability proofs just require
longer refutations.

Lastly, the independent literals are given to the left approximation to further
increase the odds of the right approximation being Horn. How such Horn clauses
are useful, I address in Section 7.2.2.
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7.1.2 Refined Approximation and Preprocessing

Some of the transformations applied in the approximation are satisfiability equiv-
alent which means for the approximation-refinement loop that lifting these steps
always succeeds. If such transformations are applied exclusively, the resulting
clause set is equivalent to the input set and can therefore be used as the original
clause set instead. Then, all approximations applied in this preprocessing phase
only need to be done once instead of being possibly repeated during every loop.

Since the Monadic transformation is always satisfiability equivalent and causes
only a small increase in the problem size, it is the first step of the preprocessing.
Next, I apply all Shallow transformations that have no shared variables. As shown
in Section 3.3, in this special case, the Shallow transformations is also a satisfiability
equivalent transformation. During the preprocessing, I even go a step further and
allow the Shallow transformation to additionally extract all occurrences of s in the
positive literals at the same time. Since this step is never lifted or refined, it causes
no problems later.

Additionally, I use the preprocessing to prevent a possible exponential blow-up
during the actual approximation phase. Specifically, I pre-process clauses where
the Linear transformation would create exponentially larger clauses. For example,
consider the clause

P1(x), . . . , Pn(x)→ P(x, . . . , x)

where P(x, . . . , x) contains m occurrences of x. Then, the Linear transformation
creates an approximation clause with n times m negative literals

P1(x1), . . . , Pn(x1), . . . , P1(xm), . . . , Pn(xm)→ P(x1, . . . , xm).

To prevent this explosion, I use renaming [33] to replace the clause with

P1(x), . . . , Pn(x)→ S (x) and

S (x)→ P(x, . . . , x)

with the fresh predicate S such that later the Linear transformation is instead

P1(x), . . . , Pn(x)→ S (x) and

S (x1), . . . , S (xm)→ P(x1, . . . , xm)

In general, let Γ→ ∆ be a clause where x occurs m times in ∆ and in n negative
literals. If n · m is significantly larger than n + m + 2, I introduce a fresh function
symbol f and replace Γ→ ∆ with the two clauses

T ( f (x, y1, . . . , yn)),Γx → ∆ and

Γx → T ( f (x, y1, . . . , yn))

where Γx ∪ Γx = Γ, vars(Γx) = {x, y1, . . . , yn}, and x < vars(Γx).
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For another example, consider the clause

P(x, y)→ Q(x, . . . , x, y, . . . , y)

where x and y appear n and m times respectively. Its linear approximation has again
n times m negative literals

P(x1, y1), . . . , P(xn, y1), . . . , P(x1, ym), . . . , P(xn, ym)→ Q(x1, . . . , x,y1, . . . , ym).

Again using the fresh function symbol f , I create

T ( f (x1, . . . , xn, y))→ Q(x1, . . . , xn, y, . . . , y)

and P(x, y)→ T ( f (x, . . . , x, y))

where the approximation again has size n + m + 2 instead of n · m.
In general, let Γ → ∆ be a clause where x occurs m times in ∆ and together

with other non-linear variables in at least one negative literal. I introduce a fresh
function symbol f and replace Γ→ ∆[x, . . . , x] with the two clauses

T ( f (x1, . . . , xm, y1, . . . , yn)),Γx → ∆[x1, . . . , xm] and

Γx → T ( f (x, . . . , x, y1, . . . , yn))

where x1, . . . , xm are fresh, Γx ∪ Γx = Γ, vars(Γx) = {x, y1, . . . , yn}, and x < vars(Γx).
As in the previous case, I estimate the sizes of the linear approximation before and
after the transformation to decide whether to apply this preprocessing or not. Specif-
ically, let m1, . . . ,mn be the number of occurrences of y1, . . . , yn in ∆, I compare
m1 ·m2 · . . . ·mn + |Γx| ·m + 2 with the sum of m ·m j1 · . . . ·m jl for each literal E ∈ Γx

with {x, y j1 , . . . , y jl} = vars(E).

7.1.3 Preprocessing Reflexive Predicates

As previously mentioned in Sections 6.5.1, the approximation-refinement cannot
show satisfiability of the simple clause set with the two clauses

→ P(x, x)

P(y, g(y))→

The problem is that→ P(x, x) cannot be refined in such a way that all instances of
the conflict clause→ P(y, g(y)) are excluded. The refinement loop instead ends up
enumerating all (→ P(gi(x), gi(x)); x , g(v)) but→ P(gi+1(y), gi+2(y)) will always
remain as a conflict clause.

I have not found a proper solution to this problem that works in all cases, but as
a partial solution to this problem, if the input clause set contains reflexivity axioms
such as→ P(x, x), I tag each occurrence of P as reflexive or irreflexive, i.e, whether
an atom P(s, t) is unifiable with P(x, x) or not, by creating two new predicates Pref
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and Pirr. I essentially separate the predicate P into reflexive and irreflexive parts.
For the example, this looks like

→ Pref(x, x)

Pirr(y, g(y))→

Since the two literals were not resolvable anyway, this replacement is satisfiability
equivalent. Now, the approximation is also satisfiable.

In general, for each predicate P with a reflexivity axiom, I replace all occur-
rences of atoms P(s, t) with Pref(s, t) and/or Pirr(s, t). If s and t are not unifiable, I
replace P(s, t) with Pirr(s, t). Otherwise, there is a most general unifier σ of s and
t. In that case, I replace the clause C ∨ [¬]P(s, t) with Cirr = C ∨ [¬]Pirr(s, t) and
Cref = Cσ ∨ [¬]Pref(sσ, tσ). If now Cref contains an atom Qirr(s, s), I remove Cref
again. I repeat this as long as Cirr and Cref still contain the predicate P.

To give the idea why this is satisfiability equivalent, let N′ be the transformation
of a clause set N which has P as its only predicate and contains the reflexivity axiom
{→ P(x, x)}. If I is a Herbrand model of N then {Pref(s, t), Pirr(s, t) | P(s, t) ∈ I} is
a model of N′ and if I is a Herbrand model of N′ then I can construct the model
{P(s, s) | Pref(s, s) ∈ I} ∪ {P(s, t) | s , t and Pirr(s, t) ∈ I} of N.

For symmetry and transitivity, which often accompany reflexivity,

→ P(x, x)

P(x, y)→ P(y, x)

P(x, y), P(y, z)→ P(x, z)

the result is

→ Pref(x, x)

Pirr(x, y)→ Pirr(y, x)

Pref(x, x)→ Pref(x, x)

Pirr(x, y), Pirr(y, z)→ Pirr(x, z)

Pirr(x, y), Pirr(y, x)→ Pref(x, x)

Pirr(x, y), Pref(y, y)→ Pirr(x, y)

Pref(x, x), Pirr(x, z)→ Pirr(x, z)

Pref(x, x), Pref(x, x)→ Pref(x, x)

However, after deleting redundant clauses, I am conveniently left with just

→ Pref(x, x)

Pirr(x, y)→ Pirr(y, x)

Pirr(x, y), Pirr(y, z)→ Pirr(x, z)
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which are no longer trivialized by the linear approximation→ P(x, x′) of the reflex-
ivity axiom. Further, consider the satisfiable clause set N

→ P(x, x)

P( f (x), f (y))→ P(x, y)

P( f (x), c)→

which has only infinite models [9]. As with the first example, its approximation is
unsatisfiable no matter the refinement. However, after tagging the reflexive predi-
cate P and deleting subsumed clauses, the resulting tagged set N′

→ Pref(x, x)

Pirr( f (x), f (y))→ Pirr(x, y)

Pirr( f (x), c)→

and its approximation are both immediately saturated. With this the approximation-
refinement can show the satisfiability of N′ and thereby also the satisfiability of the
satisfiability equivalent N. However, note that while N has only infinite models, N′

does have finite models. Hence, this does not show that the MSL fragment does not
have the finite model property.

Lastly this method is not restricted to just binary predicates, but can be applied
to any functions and predicates with arity larger than one.

7.2 SPASS-AR Details

SPASS, the solver at the heart of the implementation of FO-AR, required almost
no changes to decide the MSL fragment aside from changing the selection function.
The lion’s share of the work was implementing straight dismatching constraints to
turn SPASS into a decision procedure for the MSL(SDC) fragment. Nevertheless,
I also tried to implemented additional improvements that take advantage of the
approximation into MSL clauses.

7.2.1 Constraint Implementation

The implementation of constraints and the corresponding operations follows in a
straight forward way from their descriptions in Section 6.1. Though, I did not
implement most of the proposed optimizations because the impact of constraints on
the total run-time during experiments was quite small already.

From the perspective of the solver, constraints mostly act like a black box that
given a constraint either returns it normalized and minimized or that the constraint
is unsolvable. Therefore, extending SPASS with constraints required few changes
to the existing code of the solvers main loop. The largest difficulty was adapting
subsumption and condensation.
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For example, a standard clause C subsumes clause D if there exists a matching
substitution σ such that Cσ ( D. Constraint clauses (C; π1) and (D; π2) additionally
require that DV(π2) ⊆ DV(π1σ) (see Definition 6.1.26). However, since SPASS
implements σ by using bindings, I first needed to adapt the existing subsumption
and condensation code to produce the otherwise implicit σ. Furthermore, in the
general case, there can be multiple matching substitutions σ. If the constraint
check for one found σ fails, the function needs to be able to continue searching for
possible other matching substitutions.

7.2.2 Unique Shallow Clauses

As a result of the Shallow transformation, an approximation often contains many
clauses of the form

P1(x1), . . . , Pn(xn)→ S ( f (y1, . . . , ym))

where {x1, . . . , xn} ⊆ {y1, . . . , ym} and S is the predicate introduced by a Shallow
transformation step. By construction, such a clause is the only one where the
predicate S appears in a positive literal. Furthermore, because S ( f (y1, . . . , ym)) is
strictly maximal and none of the Pi(xi) are selected, this clause remains the only
clause with a positive occurrence of S throughout the run of the solver. I therefore
call such clauses unique shallow clauses. Consequently, a clause

S (t),Γ→ ∆

where S (t) is selected, is only ever resolved once with the corresponding unique
shallow clause.

I make use of this fact by collecting all unique shallow clauses during approxi-
mation and flagging their predicates. Whenever in a derived clause a flagged literal
can be selected, I immediately try to resolve the clause with the corresponding
unique shallow clause. If successful, I replace the clause with the resolvent and
repeat until no longer applicable. Otherwise, if the clauses cannot be resolved,
S (t),Γ → ∆ is redundant and can therefore be deleted. This leads to an improve-
ment in the search-space as there are fewer derived clauses.

7.2.3 Selection and Splitting

The selection strategy applied by the solver (Definition 5.1.1) and the conditions on
MSL clauses together enforce that any clause without a selected negative literal has
the form

Γ1, . . . ,Γn → E1, . . . , En, P1(y1), . . . , Pm(ym)

where the positive literals are variable disjoint, the Ei have the form P( f (x1, . . . , xl))
and each Γi consists only of literals Q(x) with x ∈ vars(Ei). This has the conse-
quence that all positive literals are maximal except for literals with a constant as
its argument. While this almost always allows me to skip computing the maximal
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literals, it also means that these clauses are resolved on each positive literal deriving
many unnecessary symmetric clauses.

For example, consider the clauses

S (x),R(y)→ P( f (x)),Q(g(y))

P( f (s))→ ∆1 and Q(g(t))→ ∆2.

The two resolution inferences are

S (s),R(y)→ ∆1,Q(g(y))

S (x),R(t)→ P( f (x)),∆2

and in a second step both produce the same clause

S (s),R(t)→ ∆1,∆2.

Because the two parts of S (x),R(y)→ P( f (x)),Q(g(y)) for x and y are disjoint, the
order of inferences on either side is irrelevant.

The solution is splitting (see Section 3.4). The clauses without selected literals
can be split into individual Horn clauses

Γ1 → E1 . . . Γn → En

→ P1(y1) . . . → Pm(ym).

SPASS itself already has a built-in splitting feature [46]. Alternatively, split-
ting can be emulated by renaming a splittable non-Horn clause ΓE ,Γ → E,∆ into
ΓE → E, P and P,Γ → ∆ where P is a fresh propositional predicate and the atom-
ordering is extended such that P is minimal. Then, with P selected, P,Γ → ∆ is
blocked until → P is derived. Lastly, AVATAR [44] presents yet another effec-
tive approach to splitting where splittable components of clauses are encoded as
propositions and then solved by a SAT prover.

The prototype implementation does not support either of these features. For one,
testing and determining which of these approaches is the best for MSL clause sets
is outside the scope of this thesis. Furthermore, each approach to splitting changes
the structure of the resulting resolution refutation and in neither case is there an
obvious way of adjusting the lifting to these changes.

7.3 Lifting Details

As mentioned before, the motivation for using conflicting cores is to avoid unnec-
essary complexity in the theory of the framework while sacrificing the efficiency of
the method. My first prototype actually implemented the lifting as described using
the conflicting cores. However, the loss of efficiency cannot be afforded in practice.
Therefore, I instead implemented a different more practical method that prioritizes
speed over simplicity.

101



7.3.1 DAG Lifting

The first and most necessary difference between theory and the actual implemen-
tation is that I lift the resolution proof directly instead of creating and lifting a
conflicting core. The simple reason is that a conflicting core can be exponentially
larger than its corresponding resolution proof which is stored compactly as a di-
rected acyclic graph (DAG). Note for the following that in a resolution refutation
tree, the leaves are at the top while the root is at the bottom.

The general idea is to recursively traverse the proof DAG down from the approx-
imation clauses in the leaves to the root and replace each node with a corresponding
clause derived from the original problem. If this fails at some node, I can either im-
mediately identify the conflict or check which parent node contains the conflict. In
the latter case, I move back up the DAG towards the leaves looking for the conflict.

The lifting is done at each node in two steps: first the linear lifting, then the
shallow lifting on top. For clarity however, I will explain each lifting separately.

Linear DAG Lifting

Assume the original clause set N is already monadic and shallow such that its
approximation NA is created using only Linear transformations.

Each leaf in the resolution proof is an approximated clause (C; π) in NA. I
revert each Linear transformation that was applied to create (C; π) by substituting
the fresh variable with the original variable. Specifically, if x is replaced with x′ at
some position, then one lifting step of (C; π) is (C; π){x′ 7→ x}. Note, however, that
duplicated negative literals are not removed by the lifting. The end result is a clause
(CL; πL) which is satisfiability equivalent to the ancestor clause of (C; π) in N.

For the internal nodes of the proof DAG, I will here assume that there are
only resolution inferences in the proof. The method is analogous for factorization
inferences and clause reductions, e.g. condensation.

Let (R; π) be the clause at the current node, (C; πC) and (D; πD) be the clauses at
its left and right parent nodes, and (CL; πC

L ) and (DL; πD
L ) are their respective linear

liftings. First, I try to repeat the resolution inference on (C; πC) and (D; πD) but
instead using (CL; πC

L ) and (DL; πD
L ). If this succeeds, their resolvent (RL; πL) is the

linear lifting of (R; π).
Otherwise, at this point lifting failed and I climb back up the DAG to find the

leaf containing the linear conflict. Starting with the clause (R; π) itself of the node
where the lifting failed, the climbing algorithm receives at each parent node (R′′; π′′)
a clause (R′; π′) which is an instance of (R′′; π′′).

First, I determine the two substitutions σC and σD such that the resolvent of
(C; πC)σC and (D; πD)σD is exactly (R′; π′), i.e., a resolution inference with the
identity as the most general unifier and without a variable renaming. In essence, I
apply the resolution inference backwards to determine the exact instances of the
parents (C; πC) and (D; πD) that are actually used in the resolution refutation.

Next, I check whether the liftings (CL; πC
L ) and (DL; πD

L ) have common ground
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instances with the respective clauses (CσC; π′) and (DσD; π′). If this is not the case
for either, that means there is a lift conflict on that particular parent branch. The
algorithm then continues climbing with (CσC; π′) or (DσD; π′) on the respective
parent node.

However, it is possible that both have common ground instances. In that case,
lifting failed because none of the left and right common instances can be resolved.
There, I compute the most general unifier σ of CL and CσC and give (DσD; π′)σ as
input to the climbing algorithm for the right branch. This restricts the right branch
to the instances used by the left branch and forces a conflict.

Once a leaf is reached, I have a clause (C′; π′) which is an instance of the
approximation clause (C; π) but has no common instances with its lifting (CL; πC

L ).
I again revert step by step the Linear transformations on (C; π) until I reach the
transformation step where the instantiations t and t′ for x and x′ in (C′; π′) are
not unifiable without making the constraint π′ unsolvable. The variable x, the two
instantiations t and t′, and the final constraint π′ constitute the lift conflict and are
used to refine the original ancestor clause of (C; π).

Consider as an example the clause set

→ P(x, x)
P(a, y) → Q(y, b)
Q(b, x) →

with the linear approximation

→ P(x, x′)
P(a, y) → Q(y, b)
Q(b, x) →

A possible resolution refutation tree is

→ P(x, x′) P(a, y)→ Q(y, b)
→ Q(x′, b) Q(b, x)→

�

The lifting is able to lift→ Q(x′, b) with the lifting clause→ Q(a, b).

→ P(x, x) P(a, y)→ Q(y, b)
→ Q(a, b) Q(b, x)→

However, lifting fails because Q(a, b) and Q(b, x) are not unifiable. For the compar-
ison, the relevant instantiations in the refutation of the approximation are

→ P(a, b) P(a, b)→ Q(b, b)
→ Q(b, b) Q(b, b)→

�
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Because → Q(b, b) and → P(a, b) have no common instances with → Q(a, b)
and → P(x, x) respectively while Q(b, b) → and P(a, b) → Q(b, b) are instances
of Q(b, x) → and P(a, y) → Q(y, b), I can trace the conflict to the leaf clause
→ P(x, x′) with the lift-conflict clause→ P(a, b).

Shallow DAG Lifting

The shallow lifting follows the same idea as the linear lifting. This time, assume
the original clause set N is already monadic and linear such that its approximation
NA is created using only Shallow transformations.

Unlike the Linear transformation, lifting a Shallow transformation cannot be
done locally on each leaf. Reverting a Shallow transformation would require com-
bining (C; π) with its left or right counterparts and thereby drastically changing the
shape of the resolution proof DAG. Instead, I replace the Shallow transformation
steps with general Shallow transformation (Section 3.3) by adding the shared vari-
ables as new arguments to the shallow predicate S . Specifically, when Γ→ E[s]p,∆

is approximated by S (x), Γl → E[p/x],∆l and Γr → S (s),∆r, I store the shared vari-
ables {y1, . . . , yn} defined by the intersection vars(Γl,∆l, E[p/x])∩vars(Γr,∆r, S [s])
such that they can be retrieved using the fresh predicate S as a key. Then during
lifting, I replace any literal S (t) in (C; π) with S (t, y1, . . . , yn) to create the shallow
lifting. Since the general Shallow transformation is satisfiability equivalent, if the
lifted clauses create a valid resolution proof, then the original clause set N is also
proven unsatisfiable.

For the internal nodes of the proof DAG, I again only describe the case for
resolution inferences which is for the most part analogous to the linear case. The
difference lies in how the climbing algorithm finds the conflict. While the linear
case always climbs back to a leaf, a single approximation clause can never cause a
shallow lift-conflict. As follows from the shallow lifting Lemma 6.4.5, a shallow
lift-conflict is always a resolvent of the left and right approximation clauses of a
Shallow transformation.

Therefore, the lifting had to have failed because at some node two shallow
literals ¬S (t, t1, . . . , tn) and S (s, s1, . . . , sn) in the respective parent liftings could
not be unified. This node can be found, as in the linear case, by climbing up the
refutation until there is no conflict in any parent node. Since each shallow predicate
S is unique to its respective Shallow transformation, this reveals the responsible
ancestor clause that needs to be refined. Then, I sequentially unify each ti and si

until I find the first pair that does not allow unification. Those t j and s j are the
conflict instances and the respective y j is the conflict variable.

Consider as an example the clause set

→ P(x, f (x))
P(x, x) →

with the shallow approximation
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S (x′) → P(x, x′)
→ S ( f (x))

P(x, x) →

A possible resolution refutation tree is

→ S ( f (x))
S (x′)→ P(x, x′) P(x, x)→

S (x′)→
�

For the lifting, I first replace each S (t) with S (t, x) and then repeat the resolution
steps which stops at the last step

→ S ( f (x), x)
S (x′, x)→ P(x, x′) P(x, x)→

S (x, x)→

because S (x, x) and S ( f (x), x) are not unifiable. The relevant instantiations in the
approximation proof are

→ S ( f (x))
S ( f (x))→ P( f (x), f (x)) P( f (x), f (x))→

S ( f (x))→
�

After unifying the relevant instantiations with the respective shallow liftings, I
get → S ( f (x), x) and S ( f (x), f (x)) →. Since both are valid, it tells me that the
approximation step that created the predicate S has a lift-conflict on the shared
variable x with the conflicting instantiations v and f (v).

Relaxed Shallow Lifting

An additional advantage of lifting the DAG instead of a conflicting core is the added
precision of the shallow lifting. Conflicting cores are an abstraction of resolution
refutations, where I remove the refutations DAG structure to focus instead on just
its leaf set. Due to this abstraction, I lose information that could improve shallow
lifting. Consider N and its Shallow transformation N′:

S (y), P(x, z) → R(x, y)
P(x, z),Q(y, z) → R(x, f (y)) ⇒SH Q(y, z) → S ( f (y))

→ P(a, a) → P(a, a)
→ P(a, b) → P(a, b)
→ Q(b, a),Q(b, b) → Q(b, a),Q(b, b)

R(a, f (b)) → R(a, f (b)) →

There is a ground refutation where the resolutions

Q(b, a)→ S ( f (b)) S ( f (b)), P(a, a)→ R(a, f (b))
P(a, a),Q(b, a)→ R(a, f (b))
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and
Q(b, b)→ S ( f (b)) S ( f (b)), P(a, b)→ R(a, f (b))

P(a, b),Q(b, b)→ R(a, f (b))
are the only resolutions on clauses with S -atoms. The corresponding conflicting
core N′⊥ of N′ is then

→ P(a, a)
→ P(a, b)
→ Q(b, a),Q(b, b)

S ( f (b)), P(a, a) → R(a, f (b))
Q(b, a) → S ( f (b))

S ( f (b)), P(a, b) → R(a, f (b))
Q(b, b) → S ( f (b))

R(a, f (b)) →

Lifting the core (Lemma 6.4.5) fails because the resolvents

Q(b, b)→ S ( f (b)) S ( f (b)), P(a, a)→ R(a, f (b))
P(a, a),Q(b, b)→ R(a, f (b))

Q(b, a)→ S ( f (b)) S ( f (b)), P(a, b)→ R(a, f (b))
P(a, b),Q(b, a)→ R(a, f (b))

are not instances of P(x, z),Q(y, z)→ R(x, f (y)).
However, lifting the resolution proof itself succeeds because the proof only

contains the two liftable resolution steps on S -atoms.

7.3.2 Dynamic Approximation Assignment

A possible further improvement, though I have not implemented it, is to allow
reassigning conflict clauses to a different ancestor clause if lifting fails.

Consider the linear conflict where (C′; π′) is an instance of the approximation
clause (C; π) but is not an instance of its lifting (CL; πL). That (C; π) is the instanti-
ated clause of (C′; π′) was determined by the resolution proof. However, (C′; π′) can
be an instance of more than one clause in the approximation. For example, a conflict
clause → P(a),Q(b) can be an instance of both → P(a),Q(x) and → P(x),Q(b).
For the proof, it is irrelevant which is the instantiated clause of→ P(a),Q(b).

In such a case, lifting could fail with one instantiated clause, but succeed with
another. Therefore, I could relax the conflict check to look whether there are al-
ternative approximation clause that could allow (C′; π′) to be lifted. The unsolved
problem, preventing implementation at this point, is how to efficiently find these
alternative instantiated clauses in the approximation.

7.4 Refinement Details

The refinement, which is, as the name implies, the last phase of the approximation-
refinement loop, has its own technicalities and possible improvements. The main
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work in the refinement, however, is the extraction of the straight term used to
generate the refined clauses.

7.4.1 The Lift-Conflict Selection

A lift conflict, as I have previously described it, consists of an original clause (C; π),
a variable x in C and two terms t and t′ that are not unifiable under a constraint
π′. However, the refinement requires an appropriate straight term s to create the
refinements (C; π){x 7→ s} and (C; π ∧ x , s).

The most reliable method is to first find the minimal solution δ of π′, i.e. where
xδ � xδ′ for every variable x and solution δ′ of π′. The resulting ground terms tδ
and t′δ are by construction not equal and therefore, there is a position p where the
top-symbol of t|p and t′|p differ while they are the same for every position above p.
The function symbols on the path from the root of tδ up to and including p describe
the required straight term s that differentiates tδ and t′δ, i.e., tδ is an instance of s
while s and t′δ have no common ground instances. In the worst case, however, this
refinement only prevents one unliftable ground resolution proof from reoccurring
in the following loops.

As shown in the examples in Section 6.5.1, there are cases where the chosen s
is more or less effective at removing unliftable ground proofs. Furthermore, there
can be several straight terms s that distinguish the same t and t′. For example, for
g( f (a), a) and g( f (b), b), both g( f (a), v) and g(v, a) are feasible for refinement but I
prefer the shorter second term. Further, for g( f ( f (a)), x) and g( f ( f (b)), f (x)), I use
g( f ( f (a)), v) rather than g(v, f (w)) because the latter is derived from the occurrence
conflict when trying to unify x with f (x) in the second argument. For this pur-
pose, I use a modified unification algorithm that searches for an ’optimal’ straight
refinement term (see Figure 7.1).

The rules are applied on triples (G,S, π) where S is the result set containing
valid straight terms and G is the set of unifications (t � t′, s, p) which track previous
decompositions with the straight term s and position p. Given two terms t and
t′ that are not unifiable under the constraint π, the algorithm starts with the triple
({(t � t′, x, ε)}, {}, π).

The generalized unification terminates for the same reason as unification, i.e.,
The Delete, Decompose, Conflict, Swap, and Constraint rules each lower the mul-
tiset of term depths of the left-hand sides of the equations t � t′ in G, while the
Eliminate rule permanently lowers the number of free variables in G.

Each rule preserves the invariant that ifσ is the total substitution applied on G by
the Eliminate rule and t and t′ are the starting terms, then for any (u � u′, s, p) ∈ G,
tσ and t′σ are instances of either s[p/u] or s[p/u′], respectively, and any term s ∈ S
is a straight term that differentiates tσ and t′σ.

While standard unification tracks the substitutions and fails upon reaching a
conflict, this version instead stores for each found conflict the corresponding straight
term. These straight terms are generated by extending a term with hole with each
application of the decompose rule and completing them upon reaching a conflict.
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Delete (G ∪̇ {(t � t, s, p)},S, π) ⇒ (G,S, π)

Decompose (G ∪̇ {( f (t1, . . . , tn) � f (t′1, . . . , t
′
n), s, p)},S, π) ⇒

(G ∪̇ {(ti � t′i , (s[p/ f (v1, . . . , vn)]), p.i) | 1 ≤ i ≤ n},S, π)

where v1, . . . , vn are fresh variables in s.

Conflict (G ∪̇ {( f (t) � g(s), s, p)},S, π) ⇒
(G,S ∪ {s[p/ f (v)], s[p/g(w)]}, π)

where v and w are fresh variables in s.

Swap (G ∪̇ {( f (t) � x, s, p)},S, π) ⇒
(G ∪̇ {(x � f (t), s, p)},S, π)

Constraint (G ∪̇ {(x � t, s, p)},S, π) ⇒
(G,S ∪ {s[p/s′ρ] | x , s′ ∈ π and t , s′↓= ⊥}, π)

where s and s′ρ are variable disjoint and π{x 7→ t}↓= ⊥.

Eliminate (G ∪̇ {(x � t, s, p)},S, π) ⇒ (G{x 7→ t},S, π{x 7→ t})

where x < vars(t), π{x 7→ t} is solvable, and
(t � t′, s, p)σ = (tσ � t′σ, s, p).

Figure 7.1: Generalized Unification with straight dismatching constraints

The added constraint rule catches a new case of conflict that can occur under the
presence of constraints. For example, f (x) and f ( f (a)) are not unifiable under the
constraint x , f (v) and I generate f ( f (x)) as the distinguishing straight term using
the constraint rule. Additionally, each rule is given a priority defined by the order
they are listed here, i.e., they are only applied if all previous rules are exhausted.

Once exhausted, one straight term is chosen from S depending on criteria such
as depth, size, and the number of eliminate steps used. However, note that the rules
are not complete. If the algorithm stops without result, I fall back on generating
the straight term from a minimal ground core instead. This is because there are
no cases for when x occurs in t or when π{x 7→ t} is unsolvable. The former case
is impossible to refine completely as shown in Section 6.5.1 and therefore, I try
to avoid whenever possible. The latter case could be refined but I consider it too
complex and has proven too rare in experiments to be worth implementing.

7.4.2 Soft Reset

At the end of the approximation-refinement loop, the theoretical framework suggests
a full reset of the solver and then restarting with the refined clause set. However,
this is quite wasteful as only one clause of the original clause set was removed.

Therefore, I have implemented what I call a soft reset. Since I still have the
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DAG structure of the resolution proof, I can use it to find and delete only those
clauses that were derived from the refined original clause. All remaining clauses,
would be derived again and can therefore be kept in the ’Use’ set of SPASS. I can
even keep clauses in the ’Worked-Off’ set by putting redundant clauses back into
the ’Use’ set that were made redundant by a now deleted clause. This preserves the
invariant of the ’Worked-Off’ set that all inferences between clauses in it are either
redundant, worked off or in use [46].

7.4.3 Matching Constraints

Lemma 6.1.44 in Section 6.1.3 mentioned a possible preprocessing when using
matching constraints in addition to dismatching constraints. This lemma could also
be applied to slightly improve the refinement. Instead of replacing a clause (C; π)
with (C; π){x 7→ s} and (C; π ∧ x , s), I can use (C; π ∧ x = s) and (C; π ∧ x , s).
This has the advantage that the instantiated term s does not require an extraction
through Shallow transformation.

However, this small benefit did not seem worth the additional effort implement-
ing matching constraints would have required.

7.5 Experiments

In the following I discuss several first-order clause structures for which FO-AR im-
plemented in SPASS-AR immediately decides satisfiability but superposition and
instantiation-based methods fail. I argue both according to the respective calculi and
state-of-the-art implementations, in particular SPASS 3.9 [47], Vampire 4.1 [44], for
ordered-resolution/superposition, iProver 2.5 [26] an implementation of Inst-Gen
[27], and Darwin v1.4.5 [4] an implementation of the model evolution calculus [5].
All experiments were run on a 64-Bit Linux computer (Xeon(R) E5-2680, 2.70GHz,
256GB main memory). For Vampire and Darwin I chose the respective CASC set-
ting, for iProver I set the schedule to “sat” and SPASS, SPASS-AR were used in
default mode. Please note that Vampire and iProver are portfolio solvers includ-
ing implementations of several different calculi whereas SPASS, SPASS-AR, and
Darwin only implement superposition, FO-AR, and model evolution, respectively.

For the first example

P(x, y)→ P(x, z), P(z, y)

→ P(a, a)

and second example,

→ Q(x, x)

Q(v,w), P(x, y)→ P(x, v), P(w, y)

→ P(a, a)
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the superposition calculus produces independently of the selection strategy and
ordering an infinite number of clauses of form

→ P(a, z1), P(z1, z2), . . . , P(zn, a).
Using the Linear transformation, however, FO-AR replaces

P(x, y)→ P(x, z), P(z, y)

→ Q(x, x)

respectively with

P(x, y)→ P(x, z), P(z′, y)

→ Q(x, x′)

Consequently, ordered resolution with selection derives→ P(a, z1), P(z2, a) which
subsumes any further inferences→ P(a, z1), P(z2, z3), P(z4, a). Hence, saturation of
the approximation terminates immediately. Both examples belong to the Bernays-
Schönfinkel fragment, so model evolution (Darwin) and Inst-Gen (iProver) can
decide them as well. Note that the concrete behaviour of superposition is not
limited to the above examples but potentially occurs whenever there are variable
chains in clauses.

On the third problem

P(x, y)→ P(g(x), z)

→ P(a, a)

superposition derives all clauses of the form→ P(g(. . . g(a) . . .), z). With a shallow
approximation of P(x, y) → P(g(x), z) into S (v) → P(v, z) and P(x, y) → S (g(x)),
FO-AR (SPASS-AR) terminates after deriving → S (g(a)) and S (x) → S (g(x)).
Again, model evolution (Darwin) and Inst-Gen (iProver) can also solve this exam-
ple.

The next example

→ P(a)

P( f (a))→

P( f ( f (x)))→ P(x)

P(x)→ P( f ( f (x)))

is already saturated under superposition. The same almost holds true for FO-AR,
where P(x) → P( f ( f (x))) is replaced by S (x) → P( f (x)) and P(x) → S ( f (x)).
Then ordered resolution terminates after inferring S (a)→ and S ( f (x))→ P(x).

The Inst-Gen and model evolution calculi, however, fail. In either, a satisfying
model is represented by a finite set of literals, i.e, a model of the propositional
approximation for Inst-Gen and the trail of literals in case of model evolution.
Therefore, there necessarily exists a literal P( f n(x)) or ¬P( f n(x)) with a maxi-
mal n in these models. This contradicts the actual model where either P( f n(a))
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or P( f n( f (a))) is true. However, iProver can solve this problem using its built-in
ordered resolution solver whereas Darwin does not terminate on this problem.

Lastly consider an example of the form

f (x) ≈ x→

f ( f (x)) ≈ x→
...

f n(x) ≈ x→

which is trivially satisfiable, e.g., saturated by superposition, but any model has at
least n+1 domain elements. Therefore, adding these clauses to any satisfiable clause
set containing f forces calculi that explicitly compute finite models to consider at
least n + 1 elements. The performance of final model finders typically degrades in
the number of different domain elements to be considered.

Combining each of these examples into one problem is then solvable by nei-
ther superposition, Inst-Gen, or model evolution and not practically solvable with
increasing n via testing finite models.

Example 7.5.1.

P(x, y)→ P(x, z), P(z, y)

→ P(a, a)

P( f (a), y)→

P( f ( f (x)), y)→ P(x, y)

P(x, y)→ P( f ( f (x)), y)

f (x) ≈ x→

f ( f (x)) ≈ x→
...

f n(x) ≈ x→

Testing Example 7.5.1 with n = 20 against SPASS, Vampire, iProver, and
Darwin each for more than one hour and, when applicable, using specialized sat-
isfiability schedules without success. Only SPASS-AR solved it in less than one
second (see Appendix A.1).

Another such example is Example 7.5.2.
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Example 7.5.2.

→ P(a, a, a)

P(x, y′, z′), P(x′, y, z)→ P( f ( f (x)), y, z)

P(x′, y, z′), P(x, y′, z)→ P(x, f ( f ( f (y))), z)

P(x′, y′, z), P(x, y, z′)→ P(x, y, f ( f ( f ( f ( f (z))))))

P( f ( f (x)), y, z)→ P(x, y, z)

P(x, f ( f ( f (y))), z)→ P(x, y, z)

P(x, y, f ( f ( f ( f ( f (z))))))→ P(x, y, z)

P( f (a), y, z)→

P(x, f (a), z)→

P(x, f ( f (a)), z)→

P(x, y, f (a))→

P(x, y, f ( f (a)))→

P(x, y, f ( f ( f (a))))→

P(x, y, f ( f ( f ( f (a)))))→

SPASS-AR saturates its approximation in under one second (see Appendix A.2)
while SPASS, Vampire, iProver, and Darwin each cannot solve it within a test-
run of over one hour. Note that while finite models exist, they require at least 30
domain elements which is too many for the finite model finders build into iProver
and Vampire.

Additionally, I have tested SPASS-AR on the non-equality problems in the
TPTP version 7.0.0 [40]. The problems were run for one hour each using a cluster
with 64-Bit Linux servers (Intel Xeon E5620 @ 2.40GHz, 6x 8GiB DDR3 1067
MHz ECC memory). Overall, SPASS-AR solved 2277 of the 4130 problems (55%),
1803 of the 3075 unsatisfiable problems (59%), and 484 of the 927 satisfiable
problems (52%). A detailed breakdown of the result for individual problem classes
is presented in Table 7.1. On average SPASS-AR refines a solved problem 8.5 times,
2.9 times for satisfiable and 10.1 times for unsatisfiable problems. 1403 problems
(62%) are solved without requiring a refinement, 409 (84%) are satisfiable and 994
(55%) unsatisfiable. For solved problems that are refined there are on average 21.3
refinements, 17.3 refinements for satisfiable and 21.6 refinements for unsatisfiable
problems, and each with a median of 10.

For comparison, under the same conditions with default schedules, SPASS v3.8
solved 2852 problems, Vampire v4.1 solved 3152, and iProver v2.7 solved 3565.
SPASS-AR solved 133 problems that SPASS did not solve, 116 problems that
Vampire did not solve, and 16 problems that iProver did not solve. When restricted
to using only the Inst-Gen calculus, iProver v2.7 solved 3433 problems with 19
unsolved problems solved by SPASS-AR.

After the preprocessing (see Section 7.1.2), 341 problems are already in the
MSL fragment of which 226 are in the MSLH fragment. Of those, SPASS-AR
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solves 320 (94%) and 205 (91%) problems, respectively. Most of the unsolved
MSL problems are actually large ground problems and therefore better suited for a
propositional satisfiability solver.

Additionally, I have measured the MSL approximation distance of each prob-
lem, i.e., the number of non-satisfiability equivalent transformation steps required
to approximate the problem into MSL. Table 7.2 shows that most problems are very
close to the MSL fragment with about a third at distance below ten and half below
twenty. Furthermore, for problems very close to MSL (distance 0-3) SPASS-AR
has a high success-rate, but surprisingly also for problems with a large distance
(200+). Note that 190 problems are missing from the total in Table 7.2 because
SPASS-AR was unable to compute their MSL distance due to problem size.

As mentioned in Section 6.5.1, certain lift-conflicts cannot be fully refined away.
For example, when the conflicting instantiations, t and t′, cannot be unified because
t occurs as a subterm in t′. Of the 2277 solved problems, only 198 (9%) contain
such an occurrence-conflict, of which all are unsatisfiable problems. On the other
hand, 755 of the 1824 unsolved problems (41%) reach at least one occurrence-
conflict before time-out; 129 out of 442 are satisfiable (29%) and 532 out of 1265
are unsatisfiable (42%).

The preprocessing introduced in Section 7.1.2 allows SPASS-AR to solve an
additional 40 problems (2% of solved problems) while the preprocessing method
for reflexive predicates (see Section 7.1.3) solves an additional 66 problems (3% of
solved problems). However, as only three of the latter are satisfiable, this method
seems ineffective at avoiding occurrence-conflicts in satisfiable problems.
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Domain All Solved % Sat Compl. % Unsat Proof %
SYN 1128 806 71% 275 166 60% 875 640 73%
LCL 564 115 20% 139 48 35% 430 67 16%
CSR 379 142 37% 4 1 25% 372 141 38%
FLD 281 58 21% 3 183 58 32%
GEO 264 172 65% 16 1 6% 249 171 69%
SWV 260 84 32% 16 16 100% 248 68 27%
NLP 206 129 63% 210 115 55% 14 14 100%
KRS 188 94 50% 85 30 35% 103 64 62%
GRP 129 69 53% 62 11 18% 77 58 75%
PUZ 95 68 72% 23 16 70% 70 52 74%
SET 86 58 67% 5 4 80% 82 54 66%
SWB 86 53 62% 56 30 54% 29 23 79%
PLA 51 10 20% 8 3 38% 43 7 16%
MGT 45 44 98% 45 44 98%
NUM 44 15 34% 5 5 100% 28 10 36%
COL 29 21 72% 29 21 72%
MSC 28 21 75% 7 6 86% 21 15 71%
TOP 26 10 38% 19 5 26% 7 5 71%
HWV 25 13 52% 6 6 100% 19 7 37%
ANA 23 8 35% 21 8 38%
SEU 21 11 52% 21 11 52%
LAT 19 11 58% 19 11 58%
SYO 18 7 39% 6 3 50% 13 4 31%
GRA 15 3 20% 13 1 8 % 2 2 100%
COM 14 10 71% 15 10 67%
ALG 13 2 15% 13 2 15%
MED 11 5 45% 2 2 100% 10 3 30%
RNG 10 1 10% 9 1 11%
AGT 8 1 12% 1 1 100% 7 0 0%
PRD 3 1 33% 2 0 0% 1 1 100%
SEV 3 2 66% 2 1 50% 1 1 100%

Table 7.1: The non-equality problems of the TPTP v.7.0.0 broken up by domain
into rows and sorted in decreasing order of total size of each. The columns show
total number vs. number solved and the respective percentage, additionally separate
columns for satisfiable and unsatisfiable problems.
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Distance Total Solved % SumT SumT % SumS SumS %
0 341 320 94% 341 9% 320 14%
1 149 146 98% 490 12% 466 21%
2 147 123 84% 637 16% 589 26%
3 81 67 83% 718 18% 656 29%
4 137 98 72% 855 22% 754 33%
5 74 51 69% 929 24% 805 35%
6 93 77 83% 1022 26% 882 39%
7 66 41 62% 1088 28% 923 41%
8 145 46 32% 1233 31% 969 43%
9 40 29 73% 1273 32% 998 44%

10 274 128 47% 1547 39% 1126 50%
11-20 459 241 53% 2006 51% 1367 60%
21-30 217 88 40% 2223 56% 1455 64%
31-40 290 84 29% 2508 64% 1539 68%
41-50 187 46 25% 2689 68% 1585 70%
51-60 202 133 66% 2891 73% 1718 76%
61-70 96 26 27% 2987 76% 1744 77%
71-80 76 27 36% 3057 78% 1771 78%
81-90 30 13 43% 3084 78% 1784 78%

91-100 113 11 10% 3196 81% 1795 79%
101-200 355 76 21% 3517 89% 1871 82%
201-300 150 117 78% 3649 93% 1988 87%
301-400 239 207 87% 3860 98% 2195 97%

401+ 80 78 98% 3940 100% 2273 100%

Table 7.2: The MSL Approximation Distance Table. The first block of three
columns shows the total number of problems with the given distance, as well as the
respective number of solved problems and their share compared to the total. The
second block lists the total number of problems with distance less or equal than the
given distance, as well as the percentage compared to the whole set of problems.
The last block shows the analogous result for solved problems.
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Chapter 8

Conclusion

In the beginning, I set out to make a first step towards using model-based guidance
in first-order reasoning. Propositional solvers based on conflict-driven clause learn-
ing [6] owe part of their surprising efficiency to the factor that a learned clause is
never redundant at the time it is added. This property, which first-order superposi-
tion solvers can only imitate with expensive redundancy checks, indirectly derives
from the fact that an inference on the minimal false clause under the partial model
operator is guaranteed to not be redundant.

For this reason, I first proved that for the approximation of first-order clause sets
into the MSLH fragment, the partial model of the original clause set is a subset of
the approximation’s partial model. I had hoped to use this property to the end that
if I find the minimal false clause in the decidable fragment of the approximation,
I could draw conclusions about the minimal false clause in the original clause set
and therefore choose inferences that do not require redundancy checks. While this
was ultimately unsuccessful, one approach to infer the minimal false clause from
the approximation eventually became the basis of the new calculus’ lifting and
refinement.

Therefore, I next relaxed the requirement on the approximation to the defini-
tion of over-approximation I am using now, i.e., satisfiability of the approximation
implies satisfiability of the original clause set. Based on this and the lifting, I de-
veloped an approximation-refinement approach to first-order logic without equality
that forms a sound and complete calculus.

However, the theory also contained obvious issues that would have made an
implementation impractical. First and foremost, lifting the Horn transformations
requires, similarly to splitting, exponentially many approximations such that an
unsatisfiability proof of the original clause set could be lifted by combining the
proofs of each approximation. Luckily, on re-inspection of the decidability proof
of the MSLH fragment, it turned out that it did not directly rely on the Horn prop-
erty. Therefore, the target of the approximation switched from MSLH to the new
decidable MSL fragment. This way not only was the most complex and expen-
sive part of lifting no longer necessary but the framework could now also handle
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non-deterministic theories much more directly.
The second practical problem of the framework was that the initial refinement

by instantiation generates up to quadratically many clauses depending on the depth
of the term needed for the refinement and the signature. The method of generating
specific instances given in [29] by focusing on just one relevant branch gave me the
idea for using this branch as a straight term.

Bundled with the suggestion to use the dismatching constraints in [1], I de-
veloped the straight dismatching constraints which instead allow a constant size
refinement. From that followed a sound and complete ordered resolution calculus
for first-order clauses with straight dismatching constraints and the decidability
of the corresponding MSL(SDC) fragment. Conveniently, relevant operations on
straight dismatching constraints, especially the emptiness check, perform in linear
or linear logarithmic time. A promising replacement for the previously quadratic
refinement. This is also in stark contrast to general dismatching constraints where
the emptiness check is NP-hard [14].

With the two issues solved, I finally began to implement SPASS-AR, the appro-
ximation-refinement calculus using SPASS as the underlying decision procedure
for MSL(SDC). While I expected inefficiencies from the first prototype, one stood
out the most. My calculus describes lifting in the form of a step by step lifting of
a conflicting core generated from the resolution refutation of the approximation.
However, the clause set of the conflicting core can be and often is exponentially
larger than the resolution refutation when represented as a directed acyclic graph.
Therefore, the implementation needed to deviate from the theory by instead lifting
the resolution refutation directly.

Even with this change, my prototypical implementation could not compete
with systems such as iProver or Vampire on the respective CASC categories of the
TPTP [41]. This is already due to the fact that they are all meanwhile portfolio
solvers. For example, iProver contains an implementation of ordered resolution
and Vampire an implementation of Inst-Gen. These systems, however, may benefit
from FO-AR by adding it to their portfolio.

Using a short example, I showed that FO-AR is superior to superposition,
instantiation-based methods on certain classes of clause sets. Of course, there
are also classes of clause sets where superposition and instantiation-based meth-
ods are superior to FO-AR, e.g., for unsatisfiable clause sets where the structure
of the clause set forces FO-AR to enumerate failing ground instances due to the
approximation in a bottom-up way.

The DEXPTIME-completeness result for MSLH strongly suggest that both the
MSLH and also the MSL and MSL(SDC) fragments have the finite model property.
If MSL(SDC) has the finite model property, the finite model finding approaches
are complete on MSL(SDC). The models generated by FO-AR and superposition
are typically infinite. It remains an open problem, even for fragments enjoying the
finite model property, e.g., the first-order monadic fragment, to design a calculus
that combines explicit finite model finding with a structural representation of infinite
models.
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There are not many results on calculi that operate with respect to models con-
taining positive equations. Even for fragments that are decidable with equality, such
as the Bernays-Schoenfinkel-Ramsey fragment or the monadic fragment with equal-
ity, there seem currently no convincing suggestions compared to the great amount
of techniques for these fragments without equality. Adding positive equations to
MSL(SDC) while keeping decidability is, to the best of my current knowledge, only
possible for at most linear, shallow equations f (x1, . . . , xn) ≈ h(y1, . . . , yn) [24].
However, approximation into such equations from an equational theory with nested
term occurrences typically results in an almost trivial equational theory. So this
does not seem to be a very promising research direction.

In summary, the contributions of this thesis are an examination of first-order
over-approximations and their properties with respect to model approximation, a
novel approximation-refinement approach for first-order theorem proving based
on counter-example guided abstraction refinement, a decision procedure for the
MSL fragment, the introduction of straight dismatching constraints with a linear-
logarithmic solvability check, and a prototype implementation which incorporates
the approximation-refinement, straight dismatching constraints, and the decision
procedure for the MSL fragment.

119



120



Bibliography
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Kouchnarenko. Rewriting Techniques and Applications: 19th International
Conference, RTA 2008 Hagenberg, Austria, July 15-17, 2008 Proceedings,
chapter Finer Is Better: Abstraction Refinement for Rewriting Approxima-
tions, pages 48–62. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[8] Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, and Tomáš Vojnar.
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Appendix A

Example Saturations

In the following sections, I present the saturations and TPTP versions of the two
examples from Section 7.5.

A.1 Example 7.5.1

Example 7.5.1 (see Figure A.1 for the TPTP format).

P(x, y)→ P(x, z), P(z, y)

→ P(a, a)

P( f (a), y)→

P( f ( f (x)), y)→ P(x, y)

P(x, y)→ P( f ( f (x)), y)

f (x) ≈ x→

f ( f (x)) ≈ x→
...

f n(x) ≈ x→

→ a ≈ b

SPASS-AR generates the following approximation and saturation. Note that
I have reformatted the clauses for readability. For example, I have removed the
constraints, as they were all >, reverted the Monadic transformation of P(s, t) into
T (fP(s, t)) and reformatted the equalities equal(s, t) into s ≈ t. Furthermore, redun-
dant clauses are not listed.

34[Inp : 33] P(u, v)+ → P(u,w), P(x, v)

35[Inp : 25] → P(a, a)∗

36[Inp : 26] P( f (a), u)+ →
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37[Inp : 27] P( f ( f (u)), v)+ → P(u, v)

38[Inp : 32] P(u, v)+ → S 2( f (u))

39[Inp : 31] S 2(u)→ S 1( f (u))∗

40[Inp : 29] S 1(u), P(v,w)+ → P(u,w)

41[Inp : 6] f (u) ≈ u→

42[Inp : 7] f ( f (u)) ≈ u→
...

57[Inp : 22] f n(u) ≈ u→

58[Inp : 23] → a ≈ b

59[Res : 35, 38] → S 2( f (a))∗

60[Res : 35, 40] S 1(u)→ P(u, v)∗

62[Res : 60, 38] S 1(u)→ S 2( f (u))∗

64[Res : 39, 61] S 2(a)+ →

65[Res : 39, 63] S 2( f (u))+ → P(u, v)

76[Res : 70, 36] → P(a, u)∗

A.2 Example 7.5.2

Example 7.5.2 (see Figure A.2 for the TPTP format)

→ P(a, a, a)

P(x, y′, z′), P(x′, y, z)→ P( f ( f (x)), y, z)

P(x′, y, z′), P(x, y′, z)→ P(x, f ( f ( f (y))), z)

P(x′, y′, z), P(x, y, z′)→ P(x, y, f ( f ( f ( f ( f (z))))))

P( f ( f (x)), y, z)→ P(x, y, z)

P(x, f ( f ( f (y))), z)→ P(x, y, z)

P(x, y, f ( f ( f ( f ( f (z))))))→ P(x, y, z)

P( f (a), y, z)→

P(x, f (a), z)→

P(x, f ( f (a)), z)→

P(x, y, f (a))→

P(x, y, f ( f (a)))→

P(x, y, f ( f ( f (a))))→

P(x, y, f ( f ( f ( f (a)))))→
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cnf(clause1,axiom,(˜sP(U,V) | sP(U,W) | sP(W,V))).

cnf(clause2,axiom,(sP(a,a))).

cnf(clause3,axiom,(˜sP(f(a),U))).

cnf(clause4,axiom,(˜sP(f(f(U)),V) | sP(U,V))).

cnf(clause5,axiom,(˜sP(U,V) | sP(f(f(U)),V))).

cnf(clause6,axiom,(˜f(U) = U)).

cnf(clause7,axiom,(˜f(f(U)) = U)).

cnf(clause8,axiom,(˜f(f(f(U))) = U)).

cnf(clause9,axiom,(˜f(f(f(f(U)))) = U)).

cnf(clause10,axiom,(˜f(f(f(f(f(U))))) = U)).

cnf(clause11,axiom,(˜f(f(f(f(f(f(U)))))) = U)).

cnf(clause12,axiom,(˜f(f(f(f(f(f(f(U))))))) = U)).

cnf(clause13,axiom,(˜f(f(f(f(f(f(f(f(U)))))))) = U)).

cnf(clause14,axiom,(˜f(f(f(f(f(f(f(f(f(U))))))))) = U)).

cnf(clause15,axiom,(˜f(f(f(f(f(f(f(f(f(f(U)))))))))) = U)).

cnf(clause16,axiom,(˜f(f(f(f(f(f(f(f(f(f(f(U))))))))))) = U)).

cnf(clause17,axiom,(a = b)).

Figure A.1: Example 7.5.1 for n = 11 in the TPTP format.
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SPASS-AR generates the following approximation and saturation.

65[Inp : 21] → P(a, a, a)∗

51[Inp : 29] S 1(u), P(v,w, x)+ → P(u,w, x)

50[Inp : 31] S 2(u)→ S 1( f (u))∗

49[Inp : 32] P(u, v,w)+ → S 2( f (u))

55[Inp : 33] S 3(u), P(v,w, x)+ → P(v, u, x)

54[Inp : 35] S 4(u)→ S 3( f (u))∗

53[Inp : 37] S 5(u)→ S 4( f (u))∗

52[Inp : 38] P(u, v,w)+ → S 5( f (v))

61[Inp : 39] S 6(u), P(v,w, x)+ → P(v,w, u)

60[Inp : 41] S 7(u)→ S 6( f (u))∗

59[Inp : 43] S 8(u)→ S 7( f (u))∗

58[Inp : 45] S 9(u)→ S 8( f (u))∗

57[Inp : 47] S 10(u)→ S 9( f (u))∗

56[Inp : 48] P(u, v,w)+ → S 10( f (w))

62[Inp : 18] P( f ( f (u)), v,w)+ → P(u, v,w)

63[Inp : 19] P(u, f ( f ( f (v))),w)+ → P(u, v,w)

64[Inp : 20] P(u, v, f ( f ( f ( f ( f (w))))))+ → P(u, v,w)

66[Inp : 22] P( f (a), u, v)+ →

67[Inp : 23] P(u, f (a), v)+ →

68[Inp : 24] P(u, f ( f (a)), v)+ →

69[Inp : 25] P(u, v, f (a))+ →

70[Inp : 26] P(u, v, f ( f (a)))+ →

71[Inp : 27] P(u, v, f ( f ( f (a))))+ →

72[Inp : 28] P(u, v, f ( f ( f ( f (a)))))+ →

73[Res : 65, 56] → S 10( f (a))∗

74[Res : 65, 52] → S 5( f (a))∗

75[Res : 65, 49] → S 2( f (a))∗

76[Res : 65, 61] S 6(u)→ P(a, a, u)∗

77[Res : 65, 55] S 3(u)→ P(a, u, a)∗

78[Res : 76, 69] S 6( f (a))+ →

79[Res : 76, 70] S 6( f ( f (a)))+ →

80[Res : 76, 71] S 6( f ( f ( f (a))))+ →

81[Res : 76, 72] S 6( f ( f ( f ( f (a)))))+ →

84[Res : 76, 56] S 6(u)→ S 10( f (u))∗

85[Res : 76, 55] S 6(u), S 3(v)→ P(a, v, u)∗
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88[Res : 60, 78] S 7(a)+ →

89[Res : 60, 79] S 7( f (a))+ →

90[Res : 65, 51] S 1(u)→ P(u, a, a)∗

91[Res : 76, 51] S 6(u), S 1(v)→ P(v, a, u)∗

92[Res : 59, 89] S 8(a)+ →

93[Res : 60, 80] S 7( f ( f (a)))+ →

94[Res : 59, 93] S 8( f (a))+ →

95[Res : 76, 64] S 6( f ( f ( f ( f ( f (u))))))+ → P(a, a, u)

96[Res : 58, 94] S 9(a)+ →

97[Res : 60, 81] S 7( f ( f ( f (a))))+ →

98[Res : 77, 67] S 3( f (a))+ →

99[Res : 77, 68] S 3( f ( f (a)))+ →

101[Res : 77, 52] S 3(u)→ S 5( f (u))∗

103[Res : 77, 63] S 3( f ( f ( f (u))))+ → P(a, u, a)

104[Res : 77, 51] S 3(u), S 1(v)→ P(v, u, a)∗

108[Res : 54, 98] S 4(a)+ →

109[Res : 54, 99] S 4( f (a))+ →

110[Res : 53, 109] S 5(a)+ →

111[Res : 90, 66] S 1( f (a))+ →

112[Res : 90, 49] S 1(u)→ S 2( f (u))∗

115[Res : 90, 62] S 1( f ( f (u)))+ → P(u, a, a)

120[Res : 50, 111] S 2(a)+ →

121[Res : 59, 97] S 8( f ( f (a)))+ →

122[Res : 58, 121] S 9( f (a))+ →

123[Res : 57, 122] S 10(a)+ →

124[Res : 50, 115] S 2( f (u))+ → P(u, a, a)

127[Res : 54, 103] S 4( f ( f (u)))+ → P(a, u, a)

128[Res : 53, 127] S 5( f (u))+ → P(a, u, a)

140[Res : 85, 63] S 6(u), S 3( f ( f ( f (v))))+ → P(a, v, u)

141[Res : 85, 64] S 6( f ( f ( f ( f ( f (u))))))+, S 3(v)→ P(a, v, u)

142[Res : 85, 51] S 6(u), S 3(v), S 1(w)→ P(w, v, u)∗

155[Res : 91, 62] S 6(u), S 1( f ( f (v)))+ → P(v, a, u)

156[Res : 91, 64] S 6( f ( f ( f ( f ( f (u))))))+, S 1(v)→ P(v, a, u)

168[Res : 104, 62] S 3(u), S 1( f ( f (v)))+ → P(v, u, a)

169[Res : 104, 63] S 3( f ( f ( f (u))))+, S 1(v)→ P(v, u, a)

175[Res : 60, 95] S 7( f ( f ( f ( f (u)))))+ → P(a, a, u)
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176[Res : 59, 175] S 8( f ( f ( f (u))))+ → P(a, a, u)

177[Res : 50, 155] S 2( f (u))+, S 6(v)→ P(u, a, v)

178[Res : 58, 176] S 9( f ( f (u)))+ → P(a, a, u)

179[Res : 57, 178] S 10( f (u))+ → P(a, a, u)

184[Res : 50, 168] S 2( f (u))+, S 3(v)→ P(u, v, a)

187[Res : 54, 140] S 4( f ( f (u)))+, S 6(v)→ P(a, u, v)

188[Res : 53, 187] S 5( f (u))+, S 6(v)→ P(a, u, v)

191[Res : 54, 169] S 4( f ( f (u)))+, S 1(v)→ P(v, u, a)

192[Res : 53, 191] S 5( f (u))+, S 1(v)→ P(v, u, a)

205[Res : 142, 62] S 6(u), S 3(v), S 1( f ( f (w)))+ → P(w, v, u)

206[Res : 142, 63] S 6(u), S 3( f ( f ( f (v))))+, S 1(w)→ P(w, v, u)

207[Res : 142, 64] S 6( f ( f ( f ( f ( f (u))))))+, S 3(v), S 1(w)→ P(w, v, u)

214[Res : 60, 141] S 7( f ( f ( f ( f (u)))))+, S 3(v)→ P(a, v, u)

215[Res : 60, 156] S 7( f ( f ( f ( f (u)))))+, S 1(v)→ P(v, a, u)

216[Res : 59, 214] S 8( f ( f ( f (u))))+, S 3(v)→ P(a, v, u)

217[Res : 58, 216] S 9( f ( f (u)))+, S 3(v)→ P(a, v, u)

218[Res : 57, 217] S 10( f (u))+, S 3(v)→ P(a, v, u)

221[Res : 59, 215] S 8( f ( f ( f (u))))+, S 1(v)→ P(v, a, u)

222[Res : 58, 221] S 9( f ( f (u)))+, S 1(v)→ P(v, a, u)

223[Res : 57, 222] S 10( f (u))+, S 1(v)→ P(v, a, u)

226[Res : 50, 205] S 2( f (u))+, S 6(v), S 3(w)→ P(u,w, v)

227[Res : 54, 206] S 4( f ( f (u)))+, S 6(v), S 1(w)→ P(w, u, v)

230[Res : 53, 227] S 5( f (u))+, S 6(v), S 1(w)→ P(w, u, v)

233[Res : 60, 207] S 7( f ( f ( f ( f (u)))))+, S 3(v), S 1(w)→ P(w, v, u)

234[Res : 59, 233] S 8( f ( f ( f (u))))+, S 3(v), S 1(w)→ P(w, v, u)

235[Res : 58, 234] S 9( f ( f (u)))+, S 3(v), S 1(w)→ P(w, v, u)

236[Res : 57, 235] S 10( f (u))+, S 3(v), S 1(w)→ P(w, v, u)
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cnf(clause1,axiom,(˜sP(U,X,Y) | ˜sP(Z,V,W)

| sP(f(f(U)),V,W))).

cnf(clause2,axiom,(˜sP(X,V,Y) | ˜sP(U,Z,W)

| sP(U,f(f(f(V))),W))).

cnf(clause3,axiom,(˜sP(X,Y,W) | ˜sP(U,V,Z)

| sP(U,V,f(f(f(f(f(W)))))))).

cnf(clause4,axiom,( ˜sP(f(f(U)),V,W) | sP(U,V,W))).

cnf(clause5,axiom,( ˜sP(U,f(f(f(V))),W) | sP(U,V,W))).

cnf(clause6,axiom,( ˜sP(U,V,f(f(f(f(f(W)))))) | sP(U,V,W))).

cnf(clause7,axiom,( sP(a,a,a))).

cnf(clause8,axiom,(˜sP(f(a),V,W))).

cnf(clause9,axiom,(˜sP(U,f(a),W))).

cnf(clause10,axiom,(˜sP(U,f(f(a)),W))).

cnf(clause11,axiom,(˜sP(U,V,f(a)))).

cnf(clause12,axiom,(˜sP(U,V,f(f(a))))).

cnf(clause13,axiom,(˜sP(U,V,f(f(f(a)))))).

cnf(clause14,axiom,(˜sP(U,V,f(f(f(f(a))))))).

Figure A.2: Example 7.5.2 in the TPTP format.
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