
Principles of Markov Automata

A dissertation submitted towards the degree
Doctor of Engineering

of the Faculty of Mathematics and Computer Science
of Saarland University

by

Christian Georg Eisentraut

Saarbrücken, 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Acronym

https://core.ac.uk/display/196652423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Day of Colloquium 17 / 07 / 2017
Dean of the Faculty Univ.-Prof. Dr. Frank-Olaf Schreyer

Chair of the Commitee Prof. Dr. Christoph Weidenbach

Reporters
First reviewer Prof. Dr. Holger Hermanns
Second reviewer Prof. Rob van Glabbeek, PhD.
Third reviewer Prof. Dr. Lijun Zhang

Academic Assistant Dr. Ernst Moritz Hahn

Abstract
A substantial amount of today’s engineering problems revolve around systems that are concur-
rent and stochastic by their nature. Solution approaches attacking these problems often rely on
the availability of formal mathematical models that reflect such systems as comprehensively as
possible. In this thesis, we develop a compositional model, Markov automata, that integrates
concurrency, and probabilistic and timed stochastic behaviour. This is achieved by blending two
well-studied constituent models, probabilistic automata and interactive Markov chains. A range
of strong and weak bisimilarity notions are introduced and evaluated as candidate relations for
a natural behavioural equivalence between systems. Among them, weak distribution bisimilar-
ity stands out as a natural notion being more oblivious to the probabilistic branching structure
than prior notions. We discuss compositionality, axiomatizations, decision and minimization
algorithms, state-based characterizations and normal forms for weak distribution bisimilarity. In
addition, we detail how Markov automata and weak distribution bisimilarity can be employed
as a semantic basis for generalized stochastic Petri nets, in such a way that known shortcomings
of their classical semantics are ironed out in their entirety.

iii

Zusammenfassung
Ein beträchtlicher Teil gegenwärtiger ingenieurwissenschafter Probleme erstreckt sich auf Sys-
teme, die ihrer Natur nach sowohl stochastisch als auch nebenläufig sind. Lösungsansätze fußen
hierbei häufig auf der Verfügbarkeit formaler mathematischer Modelle, die es erlauben, die Spez-
ifika jener Systeme möglichst erschöpfend zu erfassen. In dieser Dissertation entwickeln wir
ein kompositionelles Modell namens Markov-Automaten, das Nebenläufigkeit mit probabilistis-
chen und stochastischen Prozessen integriert. Dies wird durch die Verschmelzung der zweier
bekannter Modellklassen erreicht, und zwar die der probabilistischen Automaten und die der
interaktiven Markovketten. Wir entwickeln dabei ein Spektrum verschiedener, starker und
schwacher Bisimulationsrelationen und beurteilen sie im Hinblick auf ihre Eignung als natür-
liche Verhaltensäquivalenz zwischen Systemen. Die schwache Wahrscheinlichkeitsverteilungs-
bisimulation sticht dabei als natürliche Wahl hervor, da sie die probabilistische Verzwei-
gungsstruktur treffender abstrahiert als bisher bekannte Bisimulationsrelationen. Wir betra-
chten des Weiteren Kompositionalitätseigenschaften, Axiomatisierungen, Entscheidungs- und
Minimierungsalgorithmen, sowie zustandsbasierte Charakterisierungen und Normalformen für
die schwache Wahrscheinlichkeitsverteilungsbisimulation. Abschließend legen wir dar, dass
Markov-Automaten und die schwacheWahrscheinlichkeitsverteilungsbisimulation als Grundlage
für eine verbesserte Semantik von verallgemeinerten stochastischen Petrinetzen dienen kann,
welche bekannte Mängel der klassischen Semantik vollständig behebt.

v

Acknowledgement
During my time writing this thesis, I have met many people who inspired me and influenced me
for the better. Writing this thesis would not have been possible without them.

First, I would like to thank Holger Hermanns, who supervised my thesis and guided me on my
scientific journey from my second year of study onwards. Over the years, he has not only been
a teacher of science, methods and scientific passion to me, but also a friend. I especially like to
thank him for letting me roam free wherever my passion has led me.

I am grateful to Lijun Zhang for enthusing me with stochastic bisimulations, a topic I originally
never wanted to write a thesis about, but then soon loved to be my research topic for the years
to come. Additinally, I thank him for reviewing my thesis.
Many ideas of this thesis emerged from discussions and collaborations with Holger Hermanns,

Lijun Zhang, Andrea Turrini, Julia Krämer, Pedro D’Argenio, Lei Song and Johann Schuster.
Without these people, this thesis would have become a very different one.

I want to thank thank Rob van Glabbeek very much for reviewing my thesis, for his helpful
remarks and discussions and the great time we spent, as well as for all his great work that truely
inspired and fascinated me since the very beginning of my studies.

I thank all of my group colleagues Sven Johr, Lijun Zhang, Reza Pulungan, Pepijn Crouzen,
E. Moritz Hahn, Arnd Hartmanns, Alexander Graf-Brill, Gilles Nies, Hassan Hatefi, Vahid
Hashemi, Jan Krčal, Yuliya Butkova, and Hernán Baró Graf for the the great times we spent and
the interesting discussions.

My special thank goes to E. Moritz Hahn again, for taking the role of the academic assistant at
my thesis’ defence, and also to Christoph Weidenbach for being chair of the commitee in my
colloquium.

Especially, I want to thank Christa Schäfer, our group secretary, for always being most helpful
with everything concerning administrative matters, and for always having an open ear for all
kind of worries I may have had.
Outside my university life, a few people have supported me writing this thesis in more indi-

rect, but nevertheless crucial ways. I want to thank Konstantin Joseph, for being a friend and
teacher of life, Sphen Paul, for providing me with the most valuable insights into leadership and
communications, from which I still profit virtually every day of my life.

Finally, I want to whole-heartedly thank my family, who supported me with their love, pa-
tience and everything else I needed: my mother Gabriele, my father Hans, and my life partner
Julia.

vii

Contents

1. Introduction 1
1.1. Models . 3
1.2. Observational Equivalence . 6
1.3. Contributions and Structure of the Thesis . 11

2. Preliminaries 13
2.1. Sets and Multisets . 13
2.2. Elementary Topology . 14
2.3. Graphs . 15
2.4. Probability Theory . 17

I. Processes 21

3. Labelled Transition Systems 23
3.1. Model . 23
3.2. Bisimilarities . 27
3.3. Decision Algorithm . 33
3.4. Summary and Discussion . 35

4. Probabilistic Automata 37
4.1. Model . 37
4.2. Bisimilarity . 41
4.3. Decision Algorithm . 54
4.4. Summary and Discussion . 56

5. Interactive Markov Chains 61
5.1. Model . 61
5.2. Bisimilarities . 66
5.3. Decision Algorithm . 68
5.4. Summary and Discussion . 70

6. Comparative Semantics 71
6.1. Languages . 72
6.2. Axiomatization . 78
6.3. Probabilistic Forward Simulation . 84
6.4. Summary and Discussion . 87

ix

Contents

II. Markov Automata Theory 89

7. Markov Automata 91
7.1. Model . 92
7.2. Parallel Composition and Abstraction . 99
7.3. Summary and Discussion . 100

8. Bisimulations 103
8.1. Strong Bisimilarity . 103
8.2. Weak Bisimilarities . 104
8.3. Revisiting State-Based (Bi)Simulations . 127
8.4. A State-Based Characterization . 131
8.5. Challenge Completed . 145
8.6. Related Work . 146
8.7. Summary and Discussion . 151

9. Axioms 155
9.1. Calculus . 155
9.2. Axioms . 158
9.3. Soundness . 160
9.4. Completeness . 161
9.5. Open Challenges . 166
9.6. Summary and Discussion . 169

III. Markov Automata Algorithmics 171

10.Decision Algorithms 173
10.1. Challenges . 173
10.2. Algorithm . 175
10.3. Summary and Discussion . 180

11.Minimal Normal Forms 183
11.1. Structural Preorders . 184
11.2. Reductions . 185
11.3. Normal Forms . 194
11.4. Summary and Discussion . 203

12.A Semantics for Every GSPN 205
12.1. Confusion – A Question of Semantic Perspective 205
12.2. Generalized Stochastic Petri Nets . 208
12.3. Markov Automata Semantics for GSPN . 211
12.4. Bisimulation Semantics . 213
12.5. Summary and Discussion . 218

x

Contents

IV. Conclusion 221

13.Conclusion 223
13.1. The Foundations of Markov Automata . 223
13.2. System Specification and Quantitative Analysis 225
13.3. Open Challenges and Further Work . 227

Appendix 229

A. Alternative Definition of Weak (Hyper)Transitions 231

B. Proofs of Chapter 5 235
B.1. Lemma 5.1 . 235

C. Proofs of Chapter 7 239
C.1. Lemma 7.5 . 239
C.2. Lemma 7.6 . 240

D. Proofs of Chapter 8 243
D.1. Lemma 8.5 . 243
D.2. Lemma 8.7 . 248
D.3. Theorem 8.6 . 250
D.4. Theorem 8.8 . 256
D.5. Proof of Theorem 8.10 . 258
D.6. Proof of Theorem 8.13 . 261
D.7. Proof of Theorem 8.14 . 264
D.8. Proof of Theorem 8.15 . 275

E. Proof of Lemma 9.7 285

F. Proofs of Chapter 11 291
F.1. Lemma 11.4 . 291
F.2. Lemma 11.5 . 294
F.3. Lemma 11.11 . 295

Bibliography 297

xi

1. Introduction

A majority of systems that we study in modern computer science can be classified as concurrent
and communicating systems. The primary purpose of these systems is no longer classical com-
putation in the sense of deterministic transformation of input values into output values. Rather,
these systems continuously receive information and take it as a stimulus to react upon in different
ways. They consist of many components that engage in a steady stream of action and reaction.
Hereby, classical computation fades from the spotlight and becomes an abstract activity occur-
ring between the receiving and sending of information. The spectrum of real-world systems that
fall into this category is vast. Typical examples range from network protocols to automotive and
avionic control systems to complex biological, and nowadays social, networks. Even classical
computer programs with user interactions or inter-process communications are typical represen-
tatives. So research in computing system has seen a shift from systems that compute a single
input/output transformation to complex systems that are composed of a multitude of such sim-
ple systems, that moreover continuously receive input and produce output from each other and
their broader environment.
The basic intricacies of concurrency have been analysed in formal models for more than thirty

years. It has turned out that concurrency is intrinsically linked with a phenomenon called non-
determinism. It describes the situation that exactly one of several alternative events can occur in
the next moment, but it is not specified by any means and thus completely unpredictable, which
of them will actually take place.
In concurrency theory, it is assumed that concurrent components are scheduled non-

deterministically. This implies that it is unpredictable, which of them will make progress in any
moment of time and how far it will be executed before any of the other components becomes
active again. This assumption allows to abstract from details of concrete systems that would actu-
ally determine the scheduling, for example, the individual computation speed of the concurrent
components or the time messages need to travel in the ether before they arrive at their point of
destination. In this way, the models built with this theory are faithful in all possible situations,
and the properties derived from them possess general validity.
The generality of non-deterministic abstraction is, however, not always beneficial. Analyses

of concurrent models usually have high computational demands, as in general, all possibilities to
resolve non-determinism in one or the other way have to be considered. Furthermore, leaving
the choice between two possible events completely undetermined may lead to analysis results
that are practically irrelevant, as the interdependencies between competing events are known
and relevant. This is true especially for real world systems, where informatics meets natural
sciences. To model such systems adequately, concurrency theory needs to be extended with
quantitative aspects. Quantitative aspects include for example probabilistic behaviour, hard and
soft real-time stochastic time as well as cost and reward information. However, extending models
of concurrency with quantitative aspects in a semantically sound, and at the same time smooth
way has been an ongoing challenge. Still, this endeavour is of key importance for humanity’s
current and future challenges.

1

1. Introduction

Probabilistic
Automata

Interactive
Markov Chain

Labelled
Transition Systems

Discrete-Time
Markov Chains

Continuous-Time
Markov Chains

Probabilistic Decisions Non-Deterministic Decisions Stochastic Delay

Figure 1.1.: Lattice of Models

In this thesis, we focus our attention on two aspects, that play a key role in today’s engineering
problems. One of them is the incorporation of events that are determined by probabilistic deci-
sions, for instance, message loss in the modelling of communication protocols. In a classic engi-
neering setting, and without the need to model communication and concurrency, the modelling
would rely on discrete time Markov chains. However, if concurrency and communication are
needed, this elementary mathematical models lacks expressiveness. In fact, establishing a suitable
model that allows to incorporate concurrency theory and probabilistic behaviour has proven to
be a challenging task, and several competing approaches have been proposed over the last two
decades. Probabilistic automata as formulated by Roberto Segala and Nancy Lynch [SL94; Seg95]
have proven a model with broad range of applications in practical and theoretic research [Bai96;
BEM00; BK97; BK00; BS00; JY02; KN98; SV99; SV03; WZH07; HWZ08; TSP11].

The other aspect we are interested in is the incorporation of time. More precisely, the possi-
bility to express that certain processes consume a specific amount of time. We hereby focus on a
stochastic model of time, where the passage of time is governed by an negative exponential distri-
bution. The classical mathematical models to express this type of behaviour are continuous-time
Markov chains. They are the model of choice in many engineering contexts. On one hand, they
are based on a rather simple mathematical theory, that allows for an efficient computation of
many interesting properties, as for example the expected behaviour exhibited by a system in the
long run; on the other hand, Markov chains are suited to approximate almost any arbitrary form
of stochastic time obtained by extending the Markov chain appropriately. Thus, they allow, at
least in principle, to model arbitrary intricate stochastic behaviour in an approximate way, for
which often no feasible exact solutions exist.

Unfortunately, as discrete-time Markov chains, continuous-time Markov chains are not di-
rectly suited to express concurrency and communication between systems. In the past decades,
several models based on continuous-time Markov chains have been proposed to overcome these
limitations. Among them, Interactive Markov Chains [Her02] stand out. They are extensively ap-
plied in both theory and practice-oriented research [Böd+09; Bou+08; BCS07b; BCS07a; BCS10;
Boz+09b; Boz+09a; Boz+11; CZM09; Cos+08; Cos+09; HJ08; ZN10; Hav+10; Est+12].
In Figure 1.1, we summarize these models, together with their underlying models, as a lattice,

ordered by expressiveness.

For more than one decade, however, it has remained an open challenge to incorporate both prob-
abilistic events and stochastic time into one single model of concurrency. From an engineering
perspective, such a model has been long awaited. Many of today’s engineering problems actually
involve both probabilistic events and stochastic timed aspects. Especially in the context of error
modelling exists a rising need for formal models with both capabilities [Kat13].

2

1.1. Models

The only existing model that is expressive enough are Generalized Stochastic Petri Nets [Bal07;
Mar+91; MCB84]. They incorporate concurrency, probabilistic events and stochastic time. Un-
fortunately, they are not a fully satisfactory option. Though being broadly applied in industrial
strength applications, their semantic foundations are in fact not complete. For certain nets, so
called confused nets, no semantic interpretation exists. This semantic gap is a sore spot for practi-
cal application, as many users of tools based on this formalism are not aware of the problem, and
automatic checks are hardly implemented. This may result in the unwitting usage of semantically
undefined models.

The aim of this thesis is to provide a model, that blends both probabilistic events and stochastic
time with concurrency in a semantically clean and sound way. In addition, we strive to com-
bine and preserve the features of two of the most successful models, probabilistic automata and
interactive Markov chains, where it is reasonable, and to extend them where needed.

1.1. Models
Labelled Transition Systems (LTS), Probabilistic Automata (PA) [Seg95] and Interactive Markov
Chains (IMC) [Her02] are all variations of state-transition systems, and focused on concurrency.
Each of them, however, offers a different expressiveness with respect to quantitative aspects. Fig-
ure 1.1 depicts the lattice of our models, ordered by expressiveness. LTS is a basic model, which
fully captures concurrency, but without means to deal with quantitative aspects. It is the com-
mon foundation of all models discussed in this thesis. PA enhance LTS by the probabilistic
aspect, drawing inspiration from discrete-timed Markov chains, while IMC enhance them by ex-
ponentially distributed stochastic time, drawing their inspiration from continuous-times Markov
chains. We will review the differences and commonalities of these models in the following, and
discuss reasons of their success.

The foundational idea of all these models is to describe systems in terms of discrete states and
state changes, also called transitions. Transitions are labelled by names, so called actions, which
are abstract representations of the elementary activities a system could ever perform and that are
relevant for specific analysis intents. Actions are assumed to be timeless and atomic entities; they
do not bear any structure.

a aa

Figure 1.2.: Labelled Transition System

Example 1.1. In Figure 1.2 we see two simple labelled transition systems with two, and three
states respectively. We represent transitions by arrows with a black bar in the middle: .
Transitions are labelled by action, here a. In the system on the right we see that from one state
more than one transition with the same action label may originate, as long as they end in different
states. States remain unlabelled. ◁

3

1. Introduction

a b

a b

ab

||∅ =

Figure 1.3.: Interleaving Semantics of
Two Parallel Systems

a a a b

internal external

Figure 1.4.: Internal and External
Non-Determinism

While actions are the elementary building blocks of behaviour, the complete behaviour of a
system is the result of the entire graph structure of the state-transition system.

1.1.1. Concurrency
Concurrent systems are systems, which consist of several components, that can act independently
of each other at the same time, and that can as well interact via communication activities. More
generally, we also call a system concurrent when it consists of a single component, but is intended
to run concurrently with other components. Thus, every component of a concurrent system is
by definition a concurrent system itself. Sometimes, concurrent systems are also called reactive
systems, as they are susceptible to stimuli from the environment. This term is often used to
differentiate these kind of systems from classical computation devices, where the only input is
received initially and an output is generated upon termination. Concurrent, or reactive, systems
unusually are not designed to terminate.
They main assumption of concurrency theory as we use it in this thesis is that two independent

and concurrent actions can never occur exactly at the same time. This is reasonable since actions
are assumed to be timeless and atomic entities. However, concurrent actions are assumed to
happen exactly at the same time when they are part of a communication between two concurrent
components. This act is called synchronization. It is in fact the only way concurrent components
may interact.
As a matter of abstraction, it is further assumed that the order in which independent actions oc-

cur cannot be determined — it is non-deterministic. As a consequence, the concurrent execution
of two components can be understood as the set of all possible interleavings of their individual
actions, while the relative execution order defined by the components is maintained. Due to this
typical pattern models of concurrency that follow this abstraction are called interleaving (con-
currency) models. Pioneering work in this field has been done by Milner [Mil82; Mil89b] and
Hoare [Hoa85].
There is an ongoing debate whether interleaving semantics are really expressive enough, es-

pecially as the model does not provide any built-in primitives to distinguish between non-
determinism arising from parallel execution of processes, and non-determinism arising from a
modeller’s choice. For the analysis and verification of concurrent systems though, these differ-
ences have proven practically negligible. For further discussions we refer the reader to [Bae93;
Bae05; Abr06; ML12].

4

1.1. Models

1.1.2. Non-Determinism
In the models we study, non-determinism is closely linked to concurrency. However, non-
determinism can occur in a model for many other reasons [Her02; Seg95]:

Implementation Freedom When models serve as system specifications, certain behavioural as-
pects are left deliberately underspecified and to be closed by concrete implementations in one or
another way. In the model, this is expressed as a non-deterministic choice between the implemen-
tation alternatives.

Abstraction When real world systems are modelled, the conditions that lead to decisions are
often too complex to be encompassed by the model. A non-deterministic choice between all
possible decisions abstract from the details by encompassing all possible outcomes.

Concurrency Non-determinism occurs as a consequence of concurrent execution. As we have
already discussed, in interleaving semantics it is at the core of any concurrent execution.

Receptiveness in External Communication Communication between concurrent compo-
nents of a system is modelled by synchronized execution of transitions with the same label.
A non-deterministic choice between differently labelled transitions is thus necessary in the case
that a component needs to be receptive for more than one communication action in a single
moment.

One furthermore distinguishes between external and internal non-determinism. External non-
determinism is present when the transition involved in the choice are labelled by pairwise differ-
ent actions. Two or more transitions are in an internal non-deterministic choice if they have the
same label.
External non-determinism is needed to guarantee receptiveness of external communication.

In combination with other communicating processes its behaviour is fully determined, depend-
ing on the communication actions offered. Therefore, systems that are only externally non-
deterministic are often considered deterministic in their behaviour.
Non-determinism is an ingredient of virtually every model of concurrent systems. In isolation,

it has been intensively studied over the past decades and is well understood. In combination with
quantitative aspects, however, non-determinism and thus also concurrency remains a challenge.

1.1.3. Probabilities
In many situations, non-determinism is too abstract to model the choice between alternatives
faithfully. For example, when a fair coin is flipped, there are two possible alternative outcomes:
head and tail. Clearly, the choice between the two is probabilistically determined. We can predict
that each of them will occur with a chance of one to one. If our system under consideration relies
on this aspect, for example, because we want to compute wining probability in a game of dice,
modelling the coin throw with a non-deterministic choice is inappropriate.
Automata with both non-deterministic and probabilism can be defined in several ways. For a

good overview we refer the reader to [SV04], or to Chapter 4 for a brief summary. In our thesis,
we focus on Segala’s simple probabilistic automata [SL94; SL95; Seg97]. We will refer to them
as probabilistic automata (PA) in the following. In this model, non-deterministic choice between
several labelled transitions is allowed, exactly as for labelled transition systems. As probabilistic

5

1. Introduction

a

0.2 0.7
0.1

τ 0.3

0.30.4

0.6

a
1

0.4

Figure 1.5.: Probabilistic Automaton

4

8

0.5

1.125

τ

ττ

τ

Figure 1.6.: Interactive Markov Chain

extension, each transition leads to a distribution over states instead of a single state. Communica-
tion between systems and concurrent execution are modelled completely analogously to labelled
transitions systems via synchronization.

1.1.4. Stochastic Time
Mathematically, time can be modelled by stochastic processes. The model we consider here is
that of continuous-timeMarkov chains (CTMC). It assumes that the time when an activity occurs
is distributed probabilistically by an exponential distribution. In principle, a CTMC is a state-
transition system where transitions are labelled by real numbers, called rates. The rates denote
the parameters of the exponential distribution. Intuitively, they correspond to the expected time
units it takes on average until this transition is taken. Typical applications are failure models of
critical systems. From empirically known data rates are derived that represent the meantime to
failure of the single components of a system. With the complete CTMC model, more general
information about the failure behaviour of the system can then be computed, as for example the
probability and the average time to a fatal system crash.
Interactive Markov Chains (IMC) [Her02] combined the purely stochastic expressiveness

ofCTMC with interleaving concurrency. The genuine idea of IMC is that interactive transitions
and time transitions are modelled as different transitions. In this way, they are a conservative ex-
tension of LTS and CTMC. While many other models have emerged that aim at the combination
of stochastic time and concurrency, IMC excels with several superior properties. We will discuss
them in a broader context in Chapter 5.

1.2. Observational Equivalence
Computing system are always built with a specific purpose in mind, so that when executed, they
pursue a certain goal. For the systems we consider, this goal finds expression in the actions
and communications these systems issue and their interdependencies during execution. We call
this aspect the observable behaviour of a system. We distinguish this notion from the system’s
internal structure, that well induces its observable behaviour, but that is never directly exposed
to an observer. For example, when we describe a certain system as one that receives a message,
for example a number, and then sends a response, telling, for instance, whether the received

6

1.2. Observational Equivalence

number was a prime number or not, then we describe the system at the level of its observable
behaviour. Internally, the system might have a more detailed structure. For example, between
receiving the number and sending the result internal computations may happen. Maybe this
computation is even transferred to other subcomponents, such that many internal messages are
sent and received on the way. So, the internal structure of the system can become fairly complex,
while its observable behaviour remains simple. We also see that the same observable behaviour
can be implemented in many different ways internally, leading to more or less complex structures.
However, how simple or complex these internal structures may be, the resulting observable
behaviour must always stay the same.
From a more abstract perspective, one calls the observable behaviour of a system the process it

implements. Formally, a process is defined as an equivalence class of systems according to some
notion of observational equivalence. As the theory of concurrency has been closely linked to
the study of observational equivalences, one often refers to a system as a process, especially when
one considers it a representative of the behaviour it implements.
In concurrency theory, there is nothing like a canonical observational equivalence. This is

rooted in different opinions about which aspects of a system’s execution should actually be con-
sidered observable, and also about which properties observationally equivalent systems must
share. In general, an ideal observational equivalence should be a relation that is the coarsest
possible, satisfying a few basic requirements.

Remark 1.1 (Requirements of Observational equivalences). For this thesis, we stipulate the fol-
lowing requirements.

Requirement 1: Congruence When two systems are considered to show the same behaviour,
they should do so in every context of other systems. On a formal level, this is called the con-
gruence property of a relation. This property enables a powerful proof technique for very large
and complex systems: instead of considering the systems as monolithic blocks, which can only
be analysed as a whole, substructures can be considered separately, which are smaller and thus
simpler to analyse, and then recombined to arrive at a result for the complete systems. The con-
gruence property ensures that such an approach is actually correct. This methodology is often
referred to as compositional reasoning.

a a a

b c b c

Figure 1.7.: Two Systems with Different Branching Structure, but Identical Sequences of
Actions

Requirement 2: Preservation of the Non-Deterministic Branching Structure The non-
deterministic branching structure of a systems [Gla93; Van94; GW96] refers to the points during
an execution of a system, where decisions are made what future observable behaviour will be pos-
sible or impossible. For example in Figure 1.7, in the system on the right, the decision between

7

1. Introduction

action b and c occurs at the latest moment, while in the system on the left, the decision occurs al-
ready when action a is executed. As a contrast to the last example, the two systems in Figure 1.2
should not be distinguished, even though they also exhibit a similar difference in their internal
structure. The reason is that the system on the right exhibits the same followup behaviour after
action a has occurred independent of which branch has been chosen. In this simple case, the
system simply terminates. Thus, their non-deterministic branching structures agree, as no deci-
sions can be taken at any point during the execution that would influence the future observable
behaviour.

Preservation of the non-deterministic branching structure guarantees the preservation of virtu-
ally all kinds of essential observable properties of systems, for instance, preservation of dead-
lock/livelock behaviour1. Deadlock refers to the inability of a system to execute any further
actions, even though it has not yet reached an intentional final state. Deadlock occurs if a sys-
tems waits for communication offers from another system, but no system in its environment
offers such communication. Livelock refers to a behaviour, where a system continuously per-
forms some activities without effectively making any progress.

The behavioural properties that are linked to the non-deterministic branching structure can also
be characterized as formulas of various temporal logics, such as CTL∗ and its sublogics. In fact,
the demand for preservation of the non-deterministic branching structure coincides with the
demand to preserve satisfaction of formulas in the common temporal logics.

Requirement 3: Abstraction from Internal Details Internal activities of a system should
be completely ignored, as long as they do not have indirect consequences towards the non-
deterministic branching of the process.

Due to their vague nature, the last two requirements outline concepts that can never be formal-
ized conclusively for all kinds of models at once. They are thus not meant to be properties a
notion of equivalence will be formally evaluated against. We rather consider them a guiding
principle.

1.2.1. Bisimulation
Bisimulation is a co-inductive methodology of defining equivalences between concurrent systems
in the form of labelled transition systems [Mil89b; Par81]. Equivalences based on bisimulations
are called bisimilarities. The prominent feature of bisimilarities is the preservation of the non-
deterministic branching structure of a system. We will discuss this more thoroughly in Chapter 3.
We therefore consider bisimilarities as candidates for observational equivalences.

Important Properties
Bisimulations have proven a valuable tool for the verification and analysis of concurrent systems.
We summarize some of their benefits.

1In a setting where one abstracts from internal transitions, equivalences that preserve the branching structure do still
not allow to distinguish between deadlock and livelock, so that any such equivalence will distinguish when livelock
or deadlock is present in one system, while not in the other, but it will not distinghish the situation where a deadlock
has been replaced by a livelock or vice versa.

8

1.2. Observational Equivalence

Locality Even though bisimulation considers the dynamics of system in its completeness, in-
cluding its evolution over time, it is formulated as relation over states. This allows to proof two
systems bisimilar based on arguments that only pertain on the behaviour of the individual states.
In this way, global conformance in behaviour is reduced to state-wise local conformance. This
makes bisimulation not only a mathematically elegant, but also powerful proof technique.

Preservation of Logical Properties Bisimulation characterizes important modal and tempo-
ral logics such as µ-calculus, CTL, and CTL∗ [BK08], in the sense that bisimilar states or systems
are precisely those that cannot be distinguished by any formula expressed in these logics. For
the same reason, bisimulation preserves linear time temporal logic. In general, the practical
usefulness of bisimulation is rooted in its ability to abstract from state identities and from con-
crete implementations of behaviour as much as possible, but rather to focus on the observable
behaviour itself.

State-Space Minimization A favourable strategy often used in practice is to minimize the
system – or components thereof – to the quotient under bisimilarity, before further analysis are
performed. This can speed up the overall model analysis or turn a too large problem into a
tractable one [Che+96; HK00; Kat+07].

Decidability Due to its locality property, bisimulations are usually efficiently decidable for finite
systems.

We want to emphasize that the preservation of the non-deterministic branching structure is the
property of bisimulation that distinguishes it from all other notions of equivalence for concur-
rent systems, such as trace equivalence, failure equivalence and so on [Gla90; Gla93]. Even
though some of these notions preserve the non-deterministic branching structure partially, bisim-
ulation is the only relation to fully preserves it. Its other prominent features, such as composition-
ality and preservation of logical properties, are mainly a consequence thereof. For completeness,
we want to remark that while bisimulation is in general widely accepted as an essential tool for
a complete semantic characterization of concurrent processes based on its branching behaviour,
there exist arguments that a linear time perspective on process behaviour and, consequently, trace
equivalences, completely suffice [Var01; NV07; NV09].

Strong vs. Weak Bisimulations
Bisimulation comes in two general variants, usually referred to as strong and weak bisimulation.
The former makes no distinction between internal and observable activities. Weak variants, in-
stead, try to abstract from internal behaviours as much as possible. Weak bisimulation therefore
are suitable candidates when it comes to the last of our three properties of observational equiva-
lences.

1.2.2. Challenges
Bisimilarities has proven a successful basis for observational equivalences on labelled transition
systems. Naturally, the enhancement of labelled transition systems with quantitative aspects has
gone along with extensions of the theory of bisimulation. This, however, has turned out to be a
challenging task. This is especially true for weak notions of bisimilarity.

9

1. Introduction

11

Figure 1.8.: Rolling a Four-Sided Die
vs. Throwing Two Coins

tt

tt

th

th

ht

ht

hh

hh

throw

1
4

1
4

1
4

1
4

1
2

1
2

1
2

1
2

1
2

1
2

throw

τ τ

tt

th ht

hh t h

tt th ht hh

Figure 1.9.: Observationally Identical Probabilistic
Automata?

For probabilistic automata, weak (and strong) probabilistic bisimilarity [Seg95] has been
widely accepted as a reasonable observational equivalence. However, its known weak point is
that it distinguishes processes while its observable behaviour would suggest differently.

Example 1.2. Assume we want to conduct a probability experiment with four equally dis-
tributed outcomes. A natural way to implement this experiment is to throw a four-sided die (see
Figure 1.8). If no such die is at hand, we may as well replace the die by two successive coin
throws. To an observer who is only interested in the final outcome, these two variants should
be completely transparent. Phrased differently, an observer should not be able to reckon how
a system produces probabilistic outcomes, as long as the resulting probability distributions are
identical.

The two automata in Figure 1.9 represent the two experiments in the form of two Markov
automata. To avoid confusion of actions representing outcomes and probabilities, we assume the
sides of the die are labelled by ht, th, tt and hh, corresponding to head and tail of the coins.

We can see that the only difference between the two automata is the way the events are deter-
mined. In the automaton on the left, each of the four events is fixed by a single probabilistic
experiment (one single throw of a four-side coin). In contrast, in the automaton on the right the
outcome is actually determined by two coin throws (of two-sided coins) in sequence. Notably,
the actual procedure of how the final outcomes are determined, is hidden to the observer (by
using internal transitions). From the information that is available to an external observer, we
only see that each of the four possible outcomes appears with probability one over four after the
action throw has occurred. Intuitively, it is clear that we do not want to distinguish between
the two automata. Yet, probabilistic weak bisimilarity (and, to the best of our knowledge),
any other known notion of weak bisimilarity on probabilistic automata, fails to equate the two
automata. ◁

For interactive Markov chains the situation seems less debated. Weak bisimilarity, as defined in
[Her02], is generally accepted as the coarsest reasonable observational congruence on IMC, except
for some for some proposed orthogonal optimizations [Bra02]. Still, no definite answer has been
given on the question, if this notion of bisimilarity is in deed the coarsest possible equivalence
relations satisfying the requirements of an observational equivalence.

In summary, for probabilistic and stochastic systems a famous old question still remains open:

10

1.3. Contributions and Structure of the Thesis

Markov
Automata

Probabilistic
Automata

Interactive
Markov Chain

Labeled
Transition Systems

Discrete-Time
Markov Chains

Continuous-Time
Markov Chains

Probabilistic Decisions Non-Deterministic Decisions Stochastic Delay

Figure 1.10.: Completing the Lattice

what is the coarsest reasonable notion of observational equivalence on this kind of systems?
In addition, the precise role the existing notions of bisimilarity play in this regard needs to be
explored. Finally, the combination of both probabilistic immediate transitions and stochastic
timed behaviour in one model has been investigated never before.

1.3. Contributions and Structure of the Thesis
In this thesis, we will develop a model of concurrent and reactive systems that additionally ex-
hibits both probabilistic and stochastic timed behaviour: Markov automata. As illustrated by
Figure 1.10, it will be a conservative extension of PA and IMC. The thesis summarizes the work
that has been done in the context of Markov automata and their semantics since the introduction
of Markov automata at LICS 2010 [EHZ10a] . Our presentation follows a historical approach
in that it initially takes the perspective from the time before this publication, and develops the
theory of Markov automata from ground up.

Part I – Processes In the first part of the thesis, we will review the base models of Markov
automata, i.e. labelled transition systems, probabilistic automata and interactive Markov chains.
Chapters 3 to 5 are respectively dedicated to the three models. For each of them, we introduce
and formally define the models and their most common notions of bisimilarity. We end each
chapter with a decision algorithm for the respective notion of weak bisimilarity. For the sake of a
comparative analysis of the algorithms, especially in foresight of the corresponding algorithm for
Markov automata bisimilarity, we present them in a uniform way. This may result in algorithms
that are not optimal in practice. However, with respect to their theoretical complexity, the
presented algorithms are state-of-the-art.
Chapter 6 provides the axiomatic perspective on the different models and their notions of

bisimilarity. It still allows us to identify the similarities and differences between the bisimilarities
in a very succinct way. With one exception, the presented axiomatizations are a summary of
existing work.

11

1. Introduction

Part II Markov Automata Theory The theory of Markov automata is summarized
in the second part of the thesis. In Chapter 7, the model of Markov automata is define formally,
and equipped with operators for parallel composition and abstraction, i.e. hiding of internal
details. Finally, the model is compared to several other quantitative models with respect to their
expressiveness.
Chapter 9 is the climax of the second part. It develops the theory of bisimilarity for Markov

automata by discussing several variations of weak bisimilarity with their semantic properties.
Among them, we will identify one, weak distribution bisimilarity, that provably is the coarsest
notion of weak bisimilarity on Markov automata that satisfies the requirements we demanded
for a reasonable observational equivalence in the preceding sections. This notion of bisimilarity
is defined directly on distributions, and not on states as it is usually the case. At least for weak
bisimilarity, this is a novelty, and the roots of its coarseness. For a structurally restricted subclass
of Markov automata, we present a state-based characterization of this relation. Finally, we com-
pare weak distribution bisimilarity to the bisimilarities from Part 1, which will also answer the
question in how far they have been the coarsest relation possible for their respective models.
We complement our discussion of comparative semantics for the different models with a sound

and complete axiomatization of the coarsest congruence contained in weak distribution bisimi-
larity.

Part III Part III is the final part of the thesis, in which we discuss practically relevant aspects
and consequences of our findings of the preceding parts. In Chapter 11, we develop a decision
algorithm for weak distribution bisimilarity. Chapter 12 offers a complete treatment of the
algorithmic question how to arrive at a minimal quotient of a given automaton with respect
to bisimilarity. This problem is of particular practical relevance, as the minimization of an
automaton with respect to a given notion of behavioural equivalence prior to further processing
is a crucial step in many automated analysis trajectories. We treat this problem not only for the
bisimilarity developed in this thesis, but also for all bisimilarities we have discussed in Part I. Our
minimization algorithms aims at minimizing several dimensions of the size of an automaton at
the same time: the number of states and the number of transitions, as well as the size of the
support of the individual transitions. We will provide formal results under which conditions
minimality with respect to all criteria can be reached. While the basic quotient construction
itself is folklore, to the best of knowledge, a complete treatment of the necessary steps to arrive
at a truly minimal automaton is novel.
In Chapter 13, we use Markov automata and weak distribution bisimilarity to provide a novel

semantics for Generalized Stochastic Petri Nets that is complete in the sense that it provides
semantics to every GSPN, including confused nets. The semantics is furthermore conservative
in the sense that on all other GSPN, it agrees with the established semantics.

12

2. Preliminaries
In this chapter, we summarize the basic mathematical backgrounds of process algebra and prob-
abilistic and stochastic models. This summary comprises the fundamentals of sets, probability
theory and graphs.

2.1. Sets and Multisets
We use the notation {. . . } to denote sets. As we only rely on finite or countably infinite sets of
numbers or vertices of graphs, it suffices to use the naïve definition of sets and not to rely on
Zermelo-Fraenkel set theory. For arbitrary sets X , we use x ∈ X to denote that x is contained
in X , e.g. to denote that x is an element of X . We write X ⊆ Y to denote that X is a subset of
Y , e.g. every element of X is also an element of Y . We call two sets disjoint if they do not have
an element in common. Moreover, we use the standard definitions of the intersection X ∩ Y ,
the union X ∪ Y and the difference X \ Y for two sets X and Y . Furthermore, we use X ·∪Y to
denote the union of two disjoint sets X and Y .
In the following, we use N to abbreviate the set of all natural numbers starting at 0, e.g. N =

{0, 1, 2, 3, 4, . . .}. Moreover, we use R to abbreviate the set of all real numbers. We use square
brackets to denote a closed interval, e.g. [0, 1] denotes the interval of all real numbers between 0
and 1 also including 0 and 1.

Definition 2.1 (Multiset). A multiset is an unordered collection of well-defined objects. ◁

The difference between sets and multisets is that the later can contain the same object more
than once. We use the notation J. . .K to denote multisets.

Definition 2.2 (Cartesian Product). The Cartesian product A × B of two sets A and B is
defined as A×B := {(a, b) | a ∈ A ∧ b ∈ B}. ◁

Based on the Cartesian product of sets, relations and functions are defined. A binary relation
over two sets A and B is a subset of A × B. A function f from a set A to a set B is a binary
relation overA andB such that for every element a inA, there exists at most one element b inB,
such that (a, b) ∈ f . For simplicity, we use the standard notion f(a) = b for functions instead of
(a, b) ∈ f . A function f is called total if for every a in A, there exists b in B such that f(a) = b
holds.
Notation 2.1 (Domain of a Function). Let f : A → B be a function. We write dom(f) to denote
the subset of A for which f is defined.

13

2. Preliminaries

2.2. Elementary Topology
We here provide basic definitions and notations of topology.

Definition 2.3 (Metric Space). A metric space (X, d) is a set X and a total function d : X ×
X → R such that

• d(x, y) ≥ 0 for all x, y ∈ X ,

• d(x, y) = 0 if and only if x = y,

• d(x, y) = d(y, x)

• and d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ X

◁

For notion of convergence of sequences, the following set theoretical terminologies and prop-
erties are needed.

Definition 2.4 (Open and Closed Sets). An arbitrary subset Y of a metric space (X, d) is
called open if for any point x ∈ Y there exists a real number ϵ > 0 such that for any point y ∈ X
satisfying d(x, y) < ϵ holds: y ∈ Y .

A subset is called closed if its complement is open. ◁

For every point of an open set there exists a radius ϵ such that a spherical with diameter ϵ (or
smaller) is still a subset of X . Here is a small example: The set (0, 1) (the open interval from 0

to 1) is open. For example, if we define ϵ := min(x,1-x)
2 for every point x, all points with a shorter

distance from x than ϵ must also be in the interval. On the other side, the closed interval [0, 1]
is closed because its complement can be written as (−∞, 0) ∪ (1,∞) and this set can easily (and
similarly to the construction above) be shown to be open.

Definition 2.5 (Bounded set). A subset Y of a metric space (X, d) is called bounded if there
exists an y ∈ Y and an ϵ > 0 such that for all x ∈ Y holds: d(x, y) < ϵ. ◁

If we consider R with the function d(x, y) := |x − y| as a metric space and again look at the
interval [0, 1], we will see, that it is bounded. If we set ϵ to 0.5 and y to 0.5 no point in the
interval will be more than 0.5 away.
Now, we can define compact sets. Compact sets offer convenient properties with respect to

convergence of sequences.

Definition 2.6 (Compactness). A subset Y of a metric space (X, d) is called compact, if for
every superimposition Y =

∪
i Mi where for every i the set Mi is open there exists a finite

superimposition Mi1 . . .Min such that Y =
∪

j Mij . ◁

Compactness is a very strong criterion, which allows for many applications especially in the
theory of converging sequences.

Definition 2.7 (Sequence). A sequence of elements of a set X is a mapping m : N → M ,
where N is either the set {1, . . . , n} for some n ∈ N or N = N. In the first case, the sequence is
called finite and n is called the length of the sequence. In the second case, the sequence is called
infinite. ◁

14

2.3. Graphs

We usually denote sequences in sloppy notation. For example by a1, a2, . . . , an we denote a
finite sequence m of length n with m(i) = ai for all i ∈ {1, . . . , n}. Accordingly, we denote
infinite sequences as a1, a2, We also write (ai)i=1,...,n for a1, a2, . . . , an.
For infinite sequences, it is also important if they converge. Intuitively, we ask whether there

exists a number which we approximate better and better until we reach it at infinity.

Definition 2.8 (Convergence). A infinite sequence (an)n∈N in a metric space (X, d) is called
convergent with limes a if for every ϵ > 0 there exists an indexN ∈ N such that for everym ≥ N
holds: d(am, x) < ϵ. ◁

With the help of convergent sequences, we can define another version of compactness:

Definition 2.9 (Sequentially Compactness). A subset Y of a metric space (X, d) is called
sequentially compact if for every sequence (an)n∈N there exists a convergent subsequence with
limes in Y . ◁

In the following chapters, we will frequently use the following theorem:

Theorem 2.1. A subset of a metric space is compact if and only if it is sequentially compact.

If we only talk about subsets of Rn (for n ∈ N), we will also rely on the theorem of Heine-
Borel:

Theorem 2.2. A subset of Rn is compact if and only if it is bounded and closed.

Finally, we will also use special kinds of sequences, namely Cauchy sequences:

Definition 2.10 (Cauchy Sequence). We call an infinite sequence (an)n∈Nat Cauchy if for
every ϵ > 0 there exists an index N ∈ N such that for every m, l ≥ N holds: d(am, al) < ϵ. ◁

Intuitively, a Cauchy sequence is a sequence where the distance between to members of the
sequence becomes arbitrarily small.

Definition 2.11 (Completeness). A subset of a metric space is called complete if every Cauchy
sequence converges. ◁

In the following chapters, we will mainly use the complete sets [0, 1] and R.

2.3. Graphs
Graphs are one of the most foundational models in computer science. In our setting, they serve
as the fundamental underlying concept of all our semantic models of process behaviour.

Definition 2.12 (Labelled Directed Graph). A labelled directed graph is a tuple (S,E,L)
where

• S is a set of states,

• E ⊆ S × L× S is a set of edges, and

• L is a set of labels.

◁

15

2. Preliminaries

Definition 2.13 (Subgraph). A graph (S′, E′, L′) is called a subgraph of (S,E,L) if it is a
graph and in addition

• S′ ⊆ S,

• E′ ⊆ E, and

• L′ ⊆ L.

◁

A path in a graph is a sequence of states, m : N → S, such that each state is connected to
its successor by an edge, i.e. (m(i), l,m(i + 1)) ∈ E for some l ∈ L. The length of a path and
the definition finite and infinite paths carry over immediately from the respective definitions for
sequences.
We say two states s and s′ are connected if there is a finite path with whose first state is s and

last state is s′, or whose first state is s′ and last state is s. This means that when s is connected to
s′ than s′ is always also connected to s. In addition, we say s can reach s′ if there is a finite path
starting in s and ending in s′. In general, if s can reach s′, then this does not imply that s′ can
also reach s, as the graphs are directed. In fact, if s can reach s′ and s′ can reach s then the graph
is cyclic (if s ̸= s′).
A finite path is called a cycle, if the first an the last state are the same. A graph is called cyclic if

it contains a cycle, and acyclic otherwise.

Definition 2.14 (Connectedness). A set states of a graph is called connected, if every two
states are connected. It is strongly connected if every state can reach every other state. ◁

Definition 2.15 (Label Restricted Graph). Given a graph G = (S,E,L) and a label a ∈ L,
we denote by G|a the graph (S,E′, {a}) with

E′ = {(s, a, s′) ∈ E}

◁

Definition 2.16. Let G = (S,E,L) be a graph and a a label in L. G is called

• finite if |S| and |E| is finite, and infinite otherwise,

• a-finite if every connected subgraph of G|a is finite, and a-infinite otherwise,

• a-acyclic, if G|a is acyclic, and a-cyclic otherwise.

◁

16

2.4. Probability Theory

2.4. Probability Theory
Let X be some set and let P(X) be its powerset.

Definition 2.17 (σ-Algebra). A subset Σ ⊆ P(X) is called a σ-algebra if it satisfies the follow-
ing conditions:

1. Σ is non-empty.

2. If A ∈ Σ then also X \A ∈ Σ.

3. Let I be a countable index set. If for each i ∈ I Ai ∈ Σ then a also∪
i∈I

Ai ∈ Σ.

◁

Definition 2.18 (Measure). Let Σ be a σ-algebra. A function µ : Σ → R≥0 is called ameasure
if

1. µ(∅) = 0

2. Let I be a countable index set. Let {Ei}i∈I be a family of pairwise disjoint sets in Σ. Then

µ(
∪
i∈I

Ei) =
∑
i∈I

µ(Ei).

◁

Definition 2.19 ((Sub-) Probability Measures). LetΣ be a σ-algebra overX . Ameasure µ is
called sub-probability measure, or a subdistribution, if µ(X) ≤ 1. It is called a (full) probability
measure, or a distribution, if µ(X) = 1. ◁

We denote sub-probability distributions by Greek letters γ, ρ, µ, ν and ξ as well as indexed
variants thereof.

For any countable or finite setX , its powerset P(X) is a σ-algebra. We let Subdist(X) denote
the set of all subdistributions over X , and Dist(X) the set of all distributions over X .

Notation 2.2. For singleton sets {x} ∈ Σ, we usually write µ(x) instead of µ({x}).

Given µ ∈ Subdist(X), we denote by |µ| the overall measure µ(X), by Supp(µ) the set
{x ∈ X | µ(x) > 0 }, by µ(⊥) the value 1 − µ(X) where ⊥ /∈ X . Furthermore, we denote by
δ(x), where x ∈ X ∪ {⊥}, the Dirac distribution such that µ(y) = 1 for y = x, 0 otherwise;
δ(⊥) represents the empty distribution such that µ(X) = 0.
If µ1 and µ2 are subdistributions with |µ1|+ |µ2| ≤ 1 we write µ1 ⊕ µ2 to denote the subdis-

tribution µ with µ(s) = µ1(s) + µ2(s). We say µ can be split into µ1 and µ2, or that µ1 and
µ2 are a splitting of µ, if µ = µ1 ⊕ µ2. Since ⊕ is associative and commutative, we may use the
notation

⊕
for arbitrary finite sums.

17

2. Preliminaries

2.4.1. Infinite Sum
For a finite index set I = {0, 1, . . . , n}, we let∑

i∈I

ai = a0 + a1 + · · ·+ an.

For the infinite, but countable index I = N, we denote by
∑

i∈I ai the limit of the sequence
⟨
∑

m∈{0,1,...,i} am⟩i∈I , if it exists. Throughout the thesis, we only deal with summands ai ∈
R≥0. Therefore, the limit is always uniquely determined, if it exists, independent of the concrete
order of the summands, as part of the following lemma.

Lemma 2.1. Let σ : N → N be a permutation of the natural numbers. Then,∑
i∈N

ai =
∑
i∈N

aσ(i),

whenever the limit exists.

We mostly make use of this lemma silently.

2.4.2. Convex Combinations
Let I be a finite or countably infinite index set. Let −→p = (p1, p2, . . .) be a a vector with finite or
countably many components pi ∈ [0, 1]with i ∈ I such that

∑
i∈I pi = 1. Let−→µ = (µ1, µ2, . . .)

be a vector of subdistributions of the same size. We call⊕
−→p

−→µ :=
⊕
i∈I

pi · µi

the convex combination of µ1, µ2, . . . , with weights (or coefficients) p1, p2 It is often conve-
nient to use the notation p1 · µ2 ⊕ p2 · µ2 ⊕ · · · ⊕ pn · µn instead of

⊕
−→p

−→µ , especially if I is
finite.

We further let
µ1 ⊕p µ2 :=

⊕
(p,1−p)

(µ1, µ2).

It is helpful to recall that for the ⊕-operator

|µ1 ⊕ µ2| = |µ1|+ |µ2|,

and for ⊕p, if |µ1| = |µ2|,
|µ1 ⊕p µ2| = |µ1| = |µ2|.

An analogue property holds for arbitrary (non-binary) convex combinations. Note that for
full distributions, this implies that a convex combination of full distribution is always a full
distribution.

For two distributions µ1 and µ2 we define µ = µ1⊖µ2 as the renormalized non-negative
difference between the probability mass of each element in the support of µ1 and µ2. Formally,
as an intermediate step we define for each s ∈ Supp(µ1) a subdistribution µ′ to be

µ′(s) = max{µ1(s)− µ2(s), 0}

18

2.4. Probability Theory

and then normalize µ′ to a full distribution µ by letting µ := µ′

|µ′| , if µ
′ is not the empty distribu-

tion. For notational convenience, for a state s, we denote by µ⊖s the distribution µ⊖δ(s).
Notation 2.3. If I is finite, we call a convex combination finitary, and infinitary otherwise.

Lemma 2.2. ⊕
i∈I

⊕
j∈J

µi,j =
⊕
j∈J

⊕
i∈I

µi,j

Lemma 2.3. ⊕
i∈I

(µi ⊕p γi) =

(⊕
i∈I

µi

)
⊕p

(⊕
i∈I

γi

)
Lemma 2.4.

p ·
⊕
i∈I

µi =
⊕
i∈I

p · µi

Convex Sets
Definition 2.20 (Convex Hull). Let P = {p1, . . . , pn ∈ Rk} be a finite set of points in Rk.
We call CHull(P) = { c ∈ Rk | ∃c1, . . . , cn ≥ 0 :

∑n
i=1 ci = 1 and c =

∑n
i=1 ci · pi } the convex

hull of P . ◁

C is a finitely generated convex set, if C = CHull(P) for a finite set P ⊆ Rk.

Lemma 2.5 (cf. [CS02, Sec. 2]). Every finitely generated convex set C has a unique minimal set
of generators Gen(C) such that C = CHull(Gen(C)).

Liftings It is often convenient to consider subdistributions as relations over X × R>0 and
thus, to explicitly denote a subdistribution µ by the relation { (s, ps) | s ∈ X, ps = µ(s) }.
Whenever we use the set notation to specify a subdistribution, we use square brackets ⟨ and ⟩
instead of curly brackets to denote the set. Thus, to denote the subdistribution µ we will write
⟨ (s, ps) | s ∈ X, ps = µ(s) ⟩.
Given a relation S ⊆ A × Subdist(B), we lift S to a relation over Subdist(A) × Subdist(B)

by letting µ L(S) γ hold if and only if

γ =
⊕

a∈Supp(µ)

µ(a) · γa

where for each a ∈ Supp(µ) it holds that S(a, γa). The set L(S) is called the lifting of S.

19

Part I.

Processes

21

3. Labelled Transition Systems
Labelled transition systems (LTS) are the most elementary models for concurrent and reactive
systems. As the standard model of interleaving semantics, it represents a concurrent execution
of sequences of actions as the non-deterministic choice between all possible interleavings of the
sequences. It is the original model of concurrency, from which the quantitative models, which
are the main focus of this thesis, are based on. This chapter therefore serves as a introductory
chapter. It reviews the formal definition of the model, its bisimilarities as well as the standard
decision algorithm for bisimilarity. As for the model, the bisimilarities are a blue-print for all
bisimilarities introduced later in other chapters.

Outline and Contributions. In Section 3.1 we introduce the base model as well as two
composition operators, parallel composition and abstraction. The parallel composition features
CSP-style synchronization[BB87; Her02; Hoa85]. In Section 3.2 we introduce strong and weak
bisimilarity. We also review the experimenter’s perspective on bisimilarity, which is an intuitive
justification for bisimilarity being a natural notion of observational equivalence. Section 3.3
presents a decision algorithm for bisimilarity. Section 3.4 concludes.

3.1. Model
In every state, certain different activities may occur. When an activity happens, it causes a
change of state in the system, thus allowing a different set of activities to occur next. Similar to
the classical automata model from theoretical computer science, they consist of a set of states S
and a transition relation representing the single activities. However, their purpose is different
from determining a language of accepted words, but rather model the complete behaviour of
system via their structure. Every transition is labelled by some symbol, called action, which
is taken from a set Act of all possible actions. This allows to represent (and abstractly classify)
different behaviours a system may exhibit. Thus, actions are abstract representations of concrete
activities. Depending on the concrete systems, the set of actions may describe activities like
pressing a button or dropping a can of coke, as well as specific computations and molecule
reactions. Different to the classical automata model, labelled transition systems do not have any
notion of accepting state.
Being structurally akin to classical automata, labelled transition systems are easy to understand,

create and to (algorithmically) analyse, which makes them an ideal modelling and specification
formalisms amenable to various automata-based analysis and verification techniques.

Definition 3.1 (Labeled Transition Systems). A labelled transition systems is a quadruple
(S, s̄,Act,), where

• S is a non-empty finite set of states,

• s̄ is the initial state, in which the system’s behaviour is considered to start,

23

3. Labelled Transition Systems

• Act is a set of actions, and

• ⊆ S × Act× S is a set of transitions.

◁

Whenever the set of states S and the transition relation of an LTS A is finite, then A is called
finite. Throughout this thesis we will only consider finite transitions systems, unless mentioned
otherwise. The set of actions Act may be infinite, even for finite automata. In general, it is a
proper superset of the actions that actually occur as a label of any transition of A. For con-
venience it is often assumed that all automata under consideration share one common set Act
containing every action occurring in any automaton.

send0

send1

receive0

receive1

τ

τ

τ

τ

Figure 3.1.: A Simple Communication Channel

Example 3.1. The labelled transition system depicted in Figure Figure 3.1 represents a noisy
channel, where sending and receiving is modelled in one component. In an ideal world, the
sending of 0 would always lead to the reception of 0, and accordingly for 1. In this noisy channel
version, there exists the chance for faulty transmissions, modelled by internal transitions. When
a 0 has been sent, it is non-deterministically decided whether actually 0 is received as expected,
or 1 is received erroneously. ◁

Notations We usually denote elements from Act with letters a, b, States from S are
denoted by s and t and indexed variants. A transition tr = (s, a, s′) ∈ is usually denoted by
s a s;. Furthermore, it is said to leave from state s, to be labelled by a, and to lead to s′. We
also say that s enables action a, that action a is enabled in s, and that the transition (s, a, s′) is
enabled from s.

Parallel Composition and Abstraction
We will now define parallel composition of labelled transition systems. The construction is simi-
lar to the cross-product of automata. It perfectly reflects the idea that concurrency is represented
by all possible interleavings of the possible executions of the combined automata. In order to
express communication, the execution of certain action will be synchronized. For labelled tran-
sition systems, different variation of communication exist. The primitive introduced by Milner
is usually referred to as CCS-style communication, as it is the original communication primitive
used in the Calculus of Communication Systems (CCS) [Mil89b].

24

3.1. Model

a ab
parallel a

bc

c

c

b

s′

s t

t′

s, t s, t′

s’,t s′, t′

A = {a}

Figure 3.2.: Parallel Composition of two Labelled
Transition Systems

abstraction
a

b

τ

bA = {a}

Figure 3.3.: Abstraction of an Labelled
Transition System

CCS-style synchronization envisages that communication between parallel systems always hap-
pens between exactly two systems. Synchronization can only happen on complementary actions.
To this end, it is assumed that every action has a complement. When two systems synchronize
on two complementary actions, for systems that do not participate in the communication, this
communication becomes unobservable. In fact, formally, it results in a transition labelled with
the internal transition τ . As then no other system is able to observe the communication, it
cannot join in the synchronization. Another feature of this type of communication is that with-
out further means, two systems that may communicate on two actions do not have to do so.
Alternatively, both systems can interleave the two actions without every synchronizing. So to
say, communication is not obligatory. Within CCS, however, other operators exist that allow to
enforce synchronization.
Another communication primitive that has been adopted by many process calculi is CSP-

style communication, which is the original primitive in Hoare’s Communicating Sequential Pro-
cesses (CSP)[Hoa85]. While before, communication, i.e. synchronization, could only happen
between two systems, we here have broadcast communication, in which as many parallel sys-
tems join in as possible. Synchronization here must happen on transitions that are labelled with
exactly the same action. When two systems synchronize, it results in the same action being is-
sued again, so that another system can pick up and join the communication. Furthermore, not
every action serves as a potential communication action, but at the time of the parallel com-
position of two processes, the set of actions, which are intended as communication actions, is
fixed. One could say that this set of action specifies a communication interface between the two
processes. As now communication is restricted to dedicated actions, communication on them is
now enforced. This means that if two systems are supposed to synchronized on a certain action,
none of them can execute any transition labelled by this action on its own. To restrict broadcast
to a specific group of parallel components, in CSP a specialized abstraction operator exists, that
masks execution of communication actions by the internal action τ .
In this thesis, we adopt CSP-style communication for labelled transition system. The main

reason is that it is also the standard communication primitive for probabilistic automata and
interactive Markov chains, the other two basic models we will base our work on.
In order to denote parallel composition of two LTS, we will write A ||A A′, where A is an

arbitrary set of actions excluding the internal action τ . It is notationally helpful to use the
symbol ||A as syntactic sugar so that if s and s′ are two states, we write s ||A s′ to denote the pair
(s, s′).

25

3. Labelled Transition Systems

Definition 3.2 (Parallel Composition).
Given two LTS A = (S, s̄,Act,) and A′ = (S′, s̄′,Act, ′), their parallel composi-
tion A ||A A′ is defined as the automaton A∗ = (S∗, s̄∗,Act, ∗) where

• S∗ = S × S′

• s̄∗ = s̄ ||A s̄′

• ∗ is the least relation satisfying

s ||A s′ a ∗t ||A t′ if a ∈ A and s a t and s′ a ′t′

s ||A s′ a ∗t ||A s′ if a /∈ A and s a t

s ||A s′ a ∗s ||A t′ if a /∈ A and s′ a ′t′.

◁

Example 3.2. In Figure 3.2, we see an example of the parallel composition of two automata
with a synchronization on the common action a. ◁

During the modelling process, it frequently happens that certain aspects of a system’s be-
haviour should be hidden from the environment. We denote this process by abstraction. A
typical situation is when we want to model a component of a system that acts like a single device
towards its environment, but actually is composed of several submodules that interact internally.
For example, if we enter a coin in a beverage vending machine, the coin is first checked by one
component for its integrity, and then a second component evaluates the money value of the coin,
which is then shown on the display, which is again a third component. As a thirsty user, we
are not interested in these details. To us, the complete vending machine appears as one single
machine that we interact with. So, even though internal components interact when a coin is
inserted, we do not notice the necessary internal communication that go on in order to fulfil
their task.

Definition 3.3 (Abstraction). Given a LTS A = (S, s̄,Act,), its abstraction A|A =

(S′, s̄′,Act, ′) with respect to the set of actions A ⊆ Act \ {τ} satisfies

• S′ = S

• s̄′ = s̄

• is the least relation satisfying

s a ′t if a /∈ A and s a t

s τ ′t if a ∈ A and s a t

◁

Example 3.3. Figure 3.3 shows the abstraction of action a in a labelled transition system. ◁

26

3.2. Bisimilarities

3.2. Bisimilarities
Bisimulations are co-inductively defined binary relations, that relate states of a concurrent system
provided they exhibit the same transitions to the same states up to the bisimulation. If we
agree on saying that a bisimulation relation describes behaviour by relating two states precisely
when they are behaviourally equivalent, we can also say that a bisimulation relates two states
if their outgoing transitions agree on their action label and their goal states up to behavioural
identity. One typically distinguishes between strong and weak notions of bisimilarity. The latter
treat internal transitions, labelled by the special action τ , differently from those labelled by an
observable action. The former does not assign any special meaning to transitions labelled by τ .

3.2.1. Strong Bisimilarity
Definition 3.4 (Strong LTS Bisimulation). Let (S, s̄,Act,) be an LTS. A symmetric
binary relation R on S is a strong LTS bisimulation, if whenever s R t then s a s′ for some
a ∈ Act and s′ ∈ S implies t a t′ for some t′ with s′ R t′. ◁

We write s ∼LTS t if some strong LTS bisimulation R exists with s R t. We say that two LTS
A and A′ are strong LTS bisimilar if in their disjoint union the two initial states are strong LTS
bisimilar, i.e. s̄ ∼LTS s̄

′. We call ∼LTS strong LTS bisimilarity.

a

b

a

b

a

b cc c

Figure 3.4.: Two Strong LTS Bisimilar LTS

We will now discuss which aspects of a systems structure are deemed observable by virtue of
the equivalence classes induced by this bisimilarity.

Readiness and Failure The basic building block of observable behaviour are the actions a sys-
tem can issue, i.e. the inputs it can receive and the outputs it can send. In every moment of
its execution, a system may be able (and willing) to react to certain inputs and to produce
certain outputs. We say that a system is ready to execute this actions, or, alternatively, that
those actions are enabled. We further say that a system fails to execute an action in a specific
moment of execution, if it is not able to receive or to send it. If we know the complete
set of actions that a system is ready to execute in its next execution step, and the complete
set of actions it must fail to execute, we can completely characterize its possible behaviour
in the next step. Furthermore, if we assume that we know the set of all actions a system
could possible execute, it fully suffices to know the set of actions it is ready to execute.
Bisimulation compares whether the set of ready actions of one process is a subset of the
ready actions of the other. By its symmetric nature, this actually implies that two bisimilar
states must agree on their sets of ready actions.

27

3. Labelled Transition Systems

Most notions of observational equivalence (and also preorders) that are finer than
trace equivalence, take readiness and/or failures as their basic building blocks, for in-
stance [BIM95; Phi87; BBK87; MS92a].

Non-Deterministic Branching Structure Our second requirement of an observational equiv-
alence (Remark 1.1) was to preserve the non-deterministic branching structure. In fact,
this is a distinguishing feature of bisimulation. At the heart of its definition resides the
demand that whenever one process branches of with a certain transition (s a s′) then
also its bisimilar counterparts needs to exhibit this branching (t a s′) and vice versa.
Furthermore, due to its co-inductive nature, in bisimilarity it is possible to understand
two processes to be observably behaviourally equivalent precisely when they are bisimi-
lar. Given this, two bisimilar states need to reach bisimilar states again in every branch,
which precisely means that they must agree on their future behaviour. With that in mind,
it seems natural that two processes are only bisimilar if the points during their execution,
where decisions for future behaviour are made i.e. their states, exhibit precisely the same
branching structure — up to behaviourally redundant differences, i.e. additional transi-
tions/branchings that lead to bisimilar states. But this is exactly our definition of preser-
vation of the non-deterministic branching structure. In this way, we dare to say that the
use of the bisimulation methodology itself immediately implies the preservation of the
non-deterministic branching structure.

It is straightforward to show that strong LTS bisimilarity is a bisimulation itself and also an
equivalence relation. Furthermore, it is a congruence with respect to the two compositions we
have defined.

Theorem 3.1. Strong LTS bisimilarity ∼LTS

1. is the largest bisimulation relation,

2. is an equivalence relation, and

3. is a congruence with respect to parallel composition and abstraction.

Remark 3.1 (The Game Perspective On Bisimulation). For certain applications, it is convenient
to describe bisimulations as a game, played on the LTS, by two players, also called challenger and
defender. The challenger corresponds to the ∀-quantified premise of the bisimulation condition,
while the defender corresponds to the ∃-quantified conclusion. Given a pair of states (which is
supposedly bisimilar), the challenger first picks any of the two states and then chooses a transi-
tion. The defender then needs to find a transition of the remaining state that has the same label
as the transition picked by the challenger. Then, the game starts anew with the two successor
state. The challenger wins the game if and only if the defender is not able to find a matching
transition.
The game formalism is well-suited to refute bisimilarity of two states, as a winning strategy

exists for the first player if and only if the states are not bisimilar. While we will implicitly make
use of the game perspective when we want to show that two systems are not bisimilar in this
thesis, we will not rely on it as a formal tool too much. We more focus on the nice intuitive
description it provides in terms of a challenger and a defender. This nomenclature is often very
handy when discussing differences between different notions of bisimulation.

28

3.2. Bisimilarities

3.2.2. Weak Bisimilarity
In labelled transition systems, explicit internal computations are transitions labelled by the dis-
tinguished action τ . They usually result from abstraction, even though they can also be used di-
rectly to model internal computation. As long as internal computations only appear in the form
of sequences of internal computation, where all involved states do not have any other enabled
transitions, they can be completely ignored from an observational perspective. In other words,
deterministic internal computations do not have any influence on the observable behaviour of a
system. This is different, if internal transitions are enabled in states that also enable other tran-
sitions, regardless whether these transitions are labelled by τ or any observable action. Then,
internal behaviour may have influence on what is observable for the outside.

a b b c

τ τ

Figure 3.5.: τ -Transitions may be Indirectly Observed

Example 3.4. In the LTS of Figure 3.5, the initial state is ready to execute both the actions a
and b. However, by an internal computation the system can decide to let any further attempts
to execute the action a fail, by taking the only internal transition that is enabled from the initial
state. From this state, it can even decide to refuse any further interaction by taking the transition
to the state on the very right. ◁

Note that internal behaviour can always only lead to a situation where less behaviour is pos-
sible. In a weak setting, we say that a transition is ready to be executed from a state, even if it
does not immediately originate from this state. It suffices that the state can reach via internal
transitions the state from which the transition originates . The reason for this postulate is that in-
ternal activity cannot be observed itself, but only by virtue of the changes of internal behaviour
it induces. Thus, we cannot distinguish the case where an observable action is executed from a
state because a transition labelled by that action originates directly from that state, or the case
where before an internal state change has to happen.

Example 3.5. In the LTS of Figure 3.5, the initial state is ready to execute actions a, b and
c, even though no transition leaves this state that is labelled by c. However, with one internal
transition this state can reach its right neighbour, which enables c. ◁

When internal activities should be considered unobservable, we have to adapt the definition of
bisimulation slightly. In this setting, a system may perform internal actions unnoticed. This
implies that the observation of the execution of an action a by system s may allow a to perform
a sequence of unobserved internal actions before and after the obligatory execution of a. We
express this by the following notation.

Definition 3.5 (Weak Transition). There exists a weak transition from state s to state t,
denoted by s ==⇒ t, if there exists a finite sequence s0s1 . . . sn such that s0 = s and sn = t and
for all i < n holds: si

τ−−→ si+1. Note that for the case n = 0 no transitions occurs at all.

29

3. Labelled Transition Systems

There exists a weak transition from state s to state t with label a ∈ Act\{τ}, if s ==⇒ s′, s′ a−−→ t′

and t′ ==⇒ t. ◁

Remark 3.2. Every state s satisfies s ==⇒ s by our definition. This means that the relation ==⇒
basically expresses reachability by internal transitions, including the case that every state can
reach itself trivially by taking zero internal transitions. This fact will play an important role for
the definition of weak bisimulation.
If a ∈ Act, we overload the notation and let s a

==⇒ t denote s ==⇒ t in the case that a = τ . In
the case we want to make explicit, that s performs an internal weak transition, in which actually
at least one τ -transition occurs, we write s τ ◦==⇒ t.

Definition 3.6 (Weak LTS Bisimulation). Let (S, s̄,Act,) be an LTS. A symmetric binary
relationR on S is a weak LTS bisimulation, if whenever s R t then s a s′ for some a ∈ Act and
s′ ∈ S implies t a

==⇒ t′ for some t′ with s′ R t′. ◁

We write s ≈LTS t if some weak LTS bisimulation R exists with s R t. We say that two LTS
A and A′ are weakly LTS bisimilar if in their disjoint union the two initial states are weakly LTS
bisimilar, i.e. s̄ ≈LTS s̄

′. We call ≈LTS weak LTS bisimilarity in the following.
It is a well-know fact that the transition s a s′ can be replaced by s

a
==⇒ s′ without changing

the resulting bisimilarity.
It is straightforward to show that weak LTS bisimilarity is a bisimulation itself and also an

equivalence relation. Furthermore, it is a congruence with respect to the two compositions we
have defined.

Theorem 3.2. Weak LTS bisimilarity ≈LTS

1. is the largest bisimulation relation,

2. is an equivalence relation, and

3. is a congruence with respect to parallel composition and abstraction.

Formally, the difference between weak bisimulation and strong bisimulation is small. The de-
fender, i.e. state t, is now allowed to match the transition of the challenger s by a weak transition,
while before, it had to choose a strong transition. This has several consequences on the notion
of observable behaviour induced by weak bisimilarity

Weak Readiness and Failure As already mentioned, in a weak setting we should consider ev-
ery action ready to be executed that can reached via a finite sequence of internal transitions.
Accordingly, a state of a system can only fail to execute an action a if it cannot reach any
state with internal transitions that is able to execute a.

Weak Branching Structure In a weak setting, we must rethink what we want to understand
to be the non-deterministic branching structure of a system. Due to the presence of inter-
nal transitions it may now be the case that a state change occurs in a system completely
unnoticed by the system’s environment. An example of such a system, together with its
bisimilar counterpart without any internal behaviour, can be found in Figure 3.6. Another
interesting variant of this specific type of internal behaviour is discussed in Example 3.6.
Another possible scenario is that due to an internal state change a system can spontaneously
restrict its possibilities to interact with the environment. We have discussed this issue in

30

3.2. Bisimilarities

τ

a

a

Figure 3.6.: Internal Steps Not Revealing New Behaviour can be Ignored

Example 3.4. Clearly, state changes of the later type, i.e. restricting interactions, are part
of the observable behaviour of a system, and thus must be integrated into our notion of
the observable branching structure of a system.

In weak bisimulation, these situations are covered by considering both observable actions
and the internal action τ in its simulation condition. This ensures that whenever a system
can perform an internal state change which results in a change of its interaction pattern,
then any weakly bisimilar system must also be able to simulate this change. At the same
time, the definition of bisimulation allows to let internal behaviour pass completely un-
noticed, if it does not influence the interactions in any way. This is ensured by ensuring
s ==⇒ s for any state. Thus, whenever a challenger proposes an internal transition that has
no observable consequences, the defender may answer this by doing nothing.

This perspective on the weak branching structure has seen some controversy in the his-
tory of weak notions of bisimilarity. In [Gla93; Van94; GW96], Branching Bisimulation
is introduced, which realizes a stricter notion of weak branching structure, which equates
fewer systems. Still, this relation has an appealing mathematical theory, and has been used
in practice and theory of concurrent systems. In fact, among all practically relevant be-
haviour properties of a concurrent system, branching bisimulation and weak bisimulation
preserve the same.

Example 3.6. Weak bisimulation allows to ignore internal self-loops because we can always
simulate them with a trivial weak transition of the state to itself. Note that this complete abstrac-
tion also from infinitary internal behaviour has been disputed sometimes and alternative notions
of bisimilarity have been proposed that distinguish the ability to perform a finite number of suc-
cessive internal transitions from the ability to do so with an infinite number, which one usually
refers to as divergence [Gla93]. In the course of this thesis, the precise treatment of divergent
behaviour will play an important role in the context of stochastic timed behaviour. ◁

3.2.3. The Experimenter’s Perspective
Robin Milner has provided a motivation for what observation behaviour of concurrent systems
should be in terms of simple button-pushing experiments [Mil81]. It can be shown that bisimilarity
indeed coincides with the button-pushing experiments we will describe in the following [Gla93]1.
Even though these consideration intentionally remain at an informal level, they provide interest-
ing insights, that will help us to understand the nature of bisimulation better.

1In [Gla93], actually a slightly different, but equivalent, setting of observations is introduced and then formalized in
order to establish this result.

31

3. Labelled Transition Systems

a b a b

τ

Figure 3.7.: Weak Bisimulation allows to
Ignore Internal Self-Loops

replicate

a

Figure 3.8.: Basic Machine

Button-Pushing Experiments
As before, we want to characterize behaviour in terms of observations, an external observer can
make. The observer remains, however, not fully passive, but can provoke reactions of the system
by stimulating it via pushing a system’s buttons. As the observer can actively provoke reactions
of the system, he can issue painful tests, which allow him to derive some information about the
way the system is structured. In a way, the observer acts as an observer in the strict sense and as
the environment of the system at the same time.

The way the observer interacts with a system is best described by imagining the system as
a simple machine, equipped with a set of buttons and a status light [Mil81; Gla93]. For every
action a system can possibly exhibit, the machine in Figure 3.8 is equipped with a button that
is labelled by the name of the action. This does not include internal actions. The observer can
issue an experiment by providing continuous pressure to a single button, say button a. Now,
there are three possible ways the machine can react to the experiment:

1. The machine does not react at all. In this case, we say the test has failed.

2. The machine can start to work, which is indicated by the status light. Then, after some
while, the button, which the observer is still keeping under pressure, will lock down in
order to signal that the machine has accepted the experiment a. After locking down, the
machine will finally stop working. When the observer releases the button, it will unlock
again. In order to continue his experimentation, the observer has to press and hold any of
the buttons again. Note that in order to issue a sequence of tests with the same button, the
observer has to release the button after each acceptance of the machine. In this way, he can
clearly distinguish how often the same action has occurred in sequence.

3. The machine starts working, however, it never accepts the experiment by either coming to
a stop again before the button locks down, or by working forever without ever accepting
the experiment.

We can clearly recognize that internal activity can occur at every point in time during an exper-
iment. It remains unobservable up to the information provided by the status light that goes on
during pressing a button, but the experiment has not been accepted, this means that the machine
is performing internal activities. The status light is only a means to enable the observer to distin-
guish the case where an action has only not yet been accepted, or where it will completely fail to

32

3.3. Decision Algorithm

be accepted. Details of internal behaviour, however, remain unobservable. Especially the precise
number of internal transitions a machine performs when the light goes on cannot be deduced.

Besides a button for every action, and the status light, a machine is equipped with a replication
button. The button can be pressed at every moment, and generates a (countable infinite) number
of exact copies of the machine. All copies as well as the original machine are in exactly the
same state the original machine was in before. This replication facility allows the observer to
perform multiple tests for the each state of the machine. For example, in this way, he can
extensively test which experiments are excepted by a machine in a certain state and which not.
Making an arbitrary number of copies of the machine in every state allows to fully explore the
(weak) branching structure of a system. Even though from an intuitive perspective this button
is unrealistic, it is unavoidable if we want to ensure that testing equivalent process agree on their
branching structure.
We finally want to note that one further needs to assume that the observer needs to have the

additional power to influence the way the machine resolves non-determinism in such a way that
it is guaranteed that the machine cannot constantly avoid to show certain aspects of its behaviour.
For example, if the machine can react in a certain state to pushing button a followed by button b
both by accepting a and b, and in a way where a will be accepted, but not b, it is guaranteed that,
if the observer has two copies of the machine in this very state, he will observe both outcomes of
this two step experiment. Milner called this assumption exposing the machine to different weather
conditions.

3.2.4. Summary
We have reviewed the two most well-known notions of weak bisimilarity for labelled transitions
systems, Milner’s original notions of strong and weak bisimilarity. We have discussed how they
characterize observable behaviour in terms of readiness and failure, and highlighted how they
preserve the non-deterministic branching structure of a system virtually by definition, in addition
to being congruence relations. Moreover, weak LTS bisimilarity has been designed to be ignorant
of the internal structure of a system as much as possible. These facts make weak LTS bisimilarity
a suitable candidate for an observational equivalence in the sense of Remark 1.1.
In addition, we have illuminated bisimilarity from an experimenter’s perspective and argued

that it faithfully captures a notion of observability that is characterized by a set of intuitively
reasonable experiments upon systems.

In summary, this underpins that weak LTS bisimilarity is an ideal foundation to build upon
our search for candidate notions of observational equivalence in the probabilistic and stochastic
realms in this thesis.

3.3. Decision Algorithm
The practical value of bisimilarity, be it its strong or its weak variant, critically depends on
the ability to algorithmically decide whether two LTS are bisimilar. In the following, we will
present such algorithms. In fact, the algorithms solve the more general problem of computing
equivalence classes of states with respect to bisimilarity. With this information at hand, it is
easy to decide whether two states are bisimilar, namely by checking if they fall into the same

33

3. Labelled Transition Systems

Decide(A)

1: W = {S};
2: repeat
3: W′ = W;
4: (C, a, C′) = FindSplit(W);
5: W = Refine(W, (C, a, C′));
6: until W = W′

7: return W

Figure 3.9.: Compute partitioning W
according to ≈LTS.

FindSplit(W)

1: for all (s, a, s′) ∈ T do
2: for all t ∈ [s]W do
3: if not ∃s′′ ∈ [s]W : (t, a, s′′) ∈ T

then
4: return ([s]W, a, [s′]W)
5: return (∅, τ, δ(⊥))

Figure 3.10.: Finding a splitter

equivalence class. Bisimilarity of two LTS can then be decided by first combining the two LTS
into a single one by constructing their disjoint union and then checking bisimilarity of the initial
states in the new LTS.

The algorithms for both the strong and the weak case are based on the idea of successively
refining a partitioning of states, initially starting with a safe over-approximation [KS90; PT87;
Fer90]. The algorithm starts out with one single partition comprising the whole state space. In
each iteration of the refinement loop, a partition is split when it contains at least two states that
cannot be bisimilar given the current partitioning. The information, that led to the splitting,
called splitter, is then used to divide the partition into those states that satisfy the splitter, and
those that do not. When no more refinement is possible, it is guaranteed that all partitions satisfy
the bisimulation conditions, and thus, are bisimilar. As we start from an over-approximation of
bisimilarity, it is guaranteed that the final result is as coarse as possible, and thus agrees with
bisimilarity and is not any finer bisimulation relation instead. We summarize the approach in
Figure 3.9, which is common to both algorithms, i.e. for strong and weak bisimilarity.
The two algorithms only differ in the way splitters are computed. A splitter consists of

• a spurious equivalence class C (i.e. a partition) that should be split because at least two of
its states being incompatible with respect to their behaviour and

• the source of the incompatibility: an action a and a partition C′, with the property that C
contains states do have a transition labelled by a to a state in C′, and also states that do not
have such a transition.

When we have been speaking of transitions before, this is only correct for strong bisimilarity.
For weak bisimilarity, we actually need to consider weak transitions instead. In fact, this is also
the only difference between the two algorithms.
Splitters are sought for in the subroutine FindSplit, which we will explain later. The sub-

routine Refine then computes the actual splitting of the spurious partition C, given the splitter
(C, a, s′) as a parameter (together with the partitioning W). We will not provide details of this
straightforward procedure.
Finding a splitter is also straightforward. Let in the following T = in the case of strong

bisimilarity, and T = ==⇒ in the case of weak bisimilarity. FindSplit returns (∅, τ, δ(⊥)) to
indicate that no suitable splitter has been found. Refine needs to be implemented such that it
does not perform any splitting of partitions if it receives this splitter as a parameter. In this way,
the outer main loop terminates once FindSplit has failed to find further splitters.

34

3.4. Summary and Discussion

Note that in the case of weak bisimilarity the relation T ===⇒ has to be computed a priori,
while for strong bisimilarity −−→ is immediately available as it is the original transition relation
of the input LTS. As a matter of fact, the computation of ==⇒ dominates the complexity of
the algorithm for weak bisimilarity. Still, both strong and weak bisimilarity can be decided in
polynomial time. The complexity of the above partition refinement approach is inO(m log(n)),
where m is the number of transitions and n the number of states, if implemented suitably. The
complexity of weak bisimilarity is dominated by the computation of the reflexive transitive
closure of internal transitions, which is owed to the usage of weak transitions. Naive imple-
mentations of transitive closure have cubic complexity. More advanced approaches are able to
establish that the computational complexity is belowO(n2.376) [CW87] or, only recently, below
O(n2.3727) [Wil12].

3.4. Summary and Discussion
In this chapter, we have introduced labelled transition systems as the most basic model of con-
current and reactive system we will consider in this thesis. We have reviewed strong and weak
notions of bisimilarity, and discussed their semantic properties. Finally, we have seen that the
relations can be decided by efficient polynomial time algorithm that makes them valuable tools
in applications. Weak LTS bisimilarity, moreover, has turned out an ideal candidate for obser-
vational equivalence that satisfies all requirements of Remark 1.1. These facts together make
weak LTS bisimilarity a valuable blueprint for our search for candidate notions of observational
equivalence in the probabilistic and stochastic realms.

35

4. Probabilistic Automata
Probabilistic automata are a probabilistic extension of labelled transition systems. The main
difference is that transitions no longer lead deterministically to a single state, but a probabilistic
experiment may decide in which concrete state a transition will result, each time it is executed.
While LTS are very well-accepted for formal specification and verification for concurrent, reactive
and distributed systems in the non-probabilistic settings, nevertheless, a lot of typical examples
for formal analysis show the need of analysing probabilistic aspects. Even a simple model of
a noisy channel becomes more precise if it includes a probabilistic choice between correct and
wrong receipt of the value just sent instead of a non-deterministic one. Thus, probabilistic exten-
sions of LTS, which we will refer to as probabilistic automata, have been introduced in the past in
various variants. In this thesis, we resort to a variant often called simple probabilistic automata,
as introduced by Roberto Segala [SL94].

Outline and Contributions. In this chapter, we give an overview of the state-of-the-art
theory of simple probabilistic automata, which we will call probabilistic automata in the follow-
ing. The model itself will be introduce in Section 4.1. We will also provide a short overview
over related models and how they differ from simple probabilistic automata. As for LTS, parallel
composition and hiding will be defined. The synchronization primitive is in CSP-style. In Sec-
tion 4.2, the standard strong and weak probabilistic bisimilarities will be introduced. Section 4.3
reviews the decision algorithm for weak probabilistic bisimilarity of [CS02]. In Section 4.4, we
compare the parallel composition operator that we have introduced to the original parallel com-
position operator of PA. Furthermore, we discuss variations of weak bisimilarity with alternative
definitions of weak transitions, and their semantic properties, concluding the chapter.

4.1. Model
The variant of probabilistic automata we use in this thesis finds wide acceptance in the litera-
ture [Bai96; BK00; BK97; JY02; KN98; SV99; SV03].
Our definition deviates slightly from the original definition in [Seg95]. The difference is in the

way we treat internal actions. We distinguish between a countable set of external actions and the
unique internal action τ . In the original definition, the set of actions is also partitioned into two
disjoint sets of external and internal actions. However, the set of internal actions may contain
an arbitrary number of distinguishable actions. Intuitively, the original definition thus allows
the modeller to distinguish internal processes by a name, while in our definition, every internal
activity is tagged by one single label that does not allow for any further distinction.
This adaption also allows us assume that the set of actions Act is the same for every PA we

consider. This will simplify otherwise tedious technical aspects of many considerations.
This difference bears no important semantic consequences, while at the same time it allows

us to present all model of this thesis in a uniform way. We will make a remark, when technical

37

4. Probabilistic Automata

differences will arise later, notably in the definition of parallel composition.

Definition 4.1 (Probabilistic Automaton). A Probabilistic Automaton (PA) is a quadruple
(S, s̄,Act,), where

• S is a non-empty countable set of states,

• s̄ is the initial state,

• Act is a countable set of actions containing the internal action τ ,

• ⊆ S × Act×Dist(S) is a set of probabilistic transitions.

◁

send0

send1

receive0

receive1

τ

τ

0.01

0.99
0.01

0.99

Figure 4.1.: Probabilistic Version of a Simple Communication Channel

Example 4.1. In the LTS version of the noisy channel, we modelled a transmission error with
a non-deterministic choice. The probabilistic transitions improves the model by specifying the
probability 0.01 of an erroneous transmission. ◁

We now provide a quick overview over other existing variants of probabilistic automata and
how they compare to the variant of Segala. For a more in depth overview, we refer the reader
to [SV04], where this section also draws its inspiration from.

The variants of probabilistic automata mainly differ in their transitions. The most basic variant
of probabilistic automata are reactive probabilistic automata [GSS95; Gla+90; LS91; LS89; LS92]
and generative probabilistic automata [GSS95; Gla+90; CC92; Chr90; CSZ92; Har02; Har99].
In reactive probabilistic automata, actions are treated as inputs provided by the environment.
In contrast, generative probabilistic automata generate actions as output. On the level of the
transitions, this can be seen by an important difference: transitions in the reactive setting lead
from a state and an action to a distribution over states, transitions in the generative setting lead
from a state to distributions over actions and states. Thus, in the former, the current state
of the automaton and the action that it receive as input completely determine its behaviour –
up to probabilistic choices; the automaton reacts to input with a probabilistic decision. Reactive
probabilistic automata are deterministic in every moment during execution, once all input actions
are fixed. In the generative setting, the automaton makes in each state a probabilistic decision
about both which state and action will occur next. It thus determines probabilistically the action

38

4.1. Model

that is to occur next; it generates them. These type of automata offers no non-deterministic
decisions.
Another category of probabilistic automata are alternating probabilistic automata [Han91;

HJ94]. Here, two types of transitions exist. The so-called probabilistic transitions lead to a dis-
tribution over states, and do not involve any action. The so-called non-deterministic transitions
lead to a set of pairs of actions and states, representing a non-deterministic decision.
The automata are named alternating because in each state, exactly one type of transition exists.

In this way, we can partition the state space according to the type of the outgoing transition into
probabilistic states and non-deterministic states. If probabilistic and non-deterministic states al-
ternate strictly along any path, the automaton is called strictly alternating [Han91; HJ94; And99;
And02].
The variant of probabilistic automata that we focus on in this thesis and that we have defined

in Definition 4.1 extends reactive probabilistic automata by full non-determinism. They are
sometimes also referred to as Simple (Segala) probabilistic automata [Sto02b; Sto02a]. A more
general version are Segala probabilistic automata [Seg95; SL94] (note the omission of simple).
There, transitions lead from a state to a distribution over actions and states. In contrast to
generative probabilistic automata, in each state there potentially is a non-deterministic choice
between the transitions. Note that despite to the coincidence of names, this is not the variant of
probabilistic automata from Definition 4.1.
We finally want to note that this overview has not been exhaustive, but focuses solely on the

variants that will appear in this thesis.

Parallel composition
We will now define parallel composition of two probabilistic automata. Similar to labelled tran-
sition systems, this definition resembles the cross-product of the two automata, with special care
taken for synchronous communication. At the same time, we must now specify the probability
distribution over the goal states of a transition. Transitions of the parallel composition can either
result from the interleaving of the individual transitions of the automata, or from a synchronous
execution of two transitions with the same label. In the former case, the transitions are executed
independently of the transitions of the other automaton. This means, while one automaton ex-
ecutes its transition, the other automaton stays where it is. Hence, the goal distribution over
states remain unchanged. In the latter case, we must determine the probability with which the
two automaton reach certain states at the same time. For each pair of possible goal states t and t′,
this is the probability that the first automaton reaches t and the second automaton reaches t′. By
elementary probability theory, this corresponds to the product of both probabilities, assuming
stochastic independence. The following definition formalizes the product of two distributions
over states according to our discussion.

Definition 4.2 (Product of Distributions). For two distribution µ and γ over S, we define

µ⊗ γ := ⟨ ((s, t) : µ(s) · γ(t)) | s ∈ Supp(µ), t ∈ Supp(γ) ⟩ .

◁

In order to denote parallel composition of two Markov automata, we will write A ||A A′,
where A is an arbitrary set of actions excluding the internal action τ . It is notationally helpful
to use the symbol ||A as syntactic sugar as follows:

39

4. Probabilistic Automata

s t ua b

0.3 0.2 0.50.6 0.4

a, ta, s a, u b, s b, t b, u

0.18 0.12 0.3 0.12 0.08 0.2

⊗

Figure 4.2.: Product of two Distributions

• If s and s′ are two states, we write s ||A s′ to denote the pair (s, s′).

• If µ and γ are two distributions over states, we write µ ||A γ to denote the distribution
µ⊗ γ.

For intuition, it is also convenient to use this notation for pairs of states (s, t) within the product
of two distributions. We write

µ ||A γ = ⟨ (s ||A t : µ(s) · γ(t)) | s ∈ Supp(µ), t ∈ Supp(γ) ⟩

instead of
µ ||A γ = ⟨ ((s, t) : µ(s) · γ(t)) | s ∈ Supp(µ), t ∈ Supp(γ) ⟩ .

Definition 4.3 (Parallel composition). Given to PA A = (S, s̄,Act,) and A′ =

(S′, s̄′,Act, ′), their parallel composition A ||A A′ is defined as the automaton A∗ =

(S∗, s̄∗,Act, ∗) where

• S∗ = S × S′

• s̄∗ = s̄ ||A s̄′

• ∗ is the least relation satisfying

s ||A s′ a ∗µ ||A µ′ if a ∈ A and s a µ and s′ a ′µ′

s ||A s′ a ∗µ ||A δ(s′) if a /∈ A and s a µ

s ||A s′ a ∗δ(s) ||A µ′ if a /∈ A and s′ a ′µ′.

◁

As we have seen, parallel composition is the straightforward probabilistic extension of parallel
composition for labelled transition systems.

40

4.2. Bisimilarity

a c

0.3
0.70.6

0.4

a b

1 1

a

0.3

0.7

b

1

c 0.6

0.4

c

0.60.4

b

1

b 1

w

v s

t u

parallel

A={a}
v, s

w, s

v, t

w, t

v, u w, u

Figure 4.3.: Parallel Composition of two Probabilistic Automata

Definition 4.4 (Abstraction). Given a PA A = (S, s̄,Act,), its abstraction A|A =

(S′, s̄′,Act, ′) with respect to the set of actions A ⊆ Act \ {τ} satisfies

• S′ = S

• s̄′ = s̄

• is the least relation satisfying

s a ′µ if a /∈ A and s a µ

s τ ′µ if a ∈ A and s a µ

◁

4.2. Bisimilarity
Probabilistic automata differ from labelled transition systems in that a system may perform a
probability experiment within every transition. The outcome of the experiment determines
to which state the system proceeds. Formally, this is modelled as a probability distribution
over all possible (successor) states. When an observer monitors a system that is modelled as a
probabilistic automaton, she can perceive the same basic observations as for LTS: the executable
actions. In addition, we must take into consideration that she can in some way observe with
what probability a specific observation can be made in each point in time.

We will study notions of observation formalized by different established equivalence notions
in the strong and in the weak setting.

41

4. Probabilistic Automata

We defer the full discussion in how far the existing equivalences are suitable candidates of
an observational equivalence for PA to Chapter 8. In Section 4.2.3, we will provide an intu-
itive discussion of the existing relations with respect to the experimenter’s perspective on be-
haviour (echoing Section 3.2.3).

4.2.1. Strong Bisimilarity
In probabilistic automata, any transition of a state leads to a probability distribution over states.
While in a strong LTS bisimulation the goal states of the challenger’s and the defender’s transition
need to match, in the probabilistic setting we ask that the probabilities of reaching bisimilar
states agree. In this section, we will introduce two standard notions of strong bisimilarity on PA,
namely strong probabilistic bisimilarity, and strong probabilistic distribution bisimilarity.

Technically, incorporating the probability of reaching specific successor states in the formu-
lation of bisimulation is realized by defining strong bisimulations as equivalence relations and
demanding that the distribution of both transitions assign the same probability mass to each
equivalence class with respect to the bisimulation. This elementary idea stems from [JL91; LS89;
LS91].
We introduce a special notation to express that two distributions over states agree with respect

to the probability they assign to the individual equivalence classes induced by an equivalence
relation R.

Definition 4.5 (Lifting). The lifting L(R) ⊆ Subdist(X)× Subdist(X) [LS89] of an equiva-
lence relationR onX is defined as: for µ1, µ2 ∈ Subdist(X), µ1 L(R) µ2 if and only if for each
C ∈ X/R, µ1(C) = µ2(C). ◁

Lemma 4.1 (Linearity of Liftings). For any finite or countable infinite index set I the following
holds: if ξi L(R) νi for each i ∈ I then also⊕

i∈I

ciξi L(R)
⊕
i∈I

ciνi.

Strong bisimilarity for probabilistic automata is defined as follows.

Definition 4.6 (Strong Bisimulation). Let (S, s̄,Act,) be a PA. An equivalence relation
R on S is a strong bisimulation, if whenever s R t then s a µ for some a ∈ Act and µ ∈ Dist(S)

implies t a γ for some γ′ ∈ Dist(S) with µ L(R) γ. ◁

Below Definition 3.4 on page 27, we discussed the aspects of a system’s structure that are
deemed observable by virtue of the equivalence classes induced by strong LTS bisimilarity. We
resume this discussion for strong bisimilarity for PA. The observations of strong LTS bisimilar-
ity and strong bisimilarity for PA agree with respect to the readiness and failure of actions in the
individual states, as well as with respect to the preservation of the non-deterministic branching
structure between bisimilar systems. The difference is that the probability distribution of reach-
ing a certain behaviour, expressed as an equivalence class over states with respect to strong LTS
bisimilarity, is now taken into account.
However, the consequences of the probabilistic setting are not considered in their full conse-

quence with respect to non-deterministic decisions. It is reasonable to assume that in a prob-
abilistic setting, non-deterministic decisions may not only be resolved by choosing one of the

42

4.2. Bisimilarity

alternatives, as it is the case in LTS, but also by means of a probabilistic choice over all alterna-
tives. This perspective is, however, not represented in strong LTS bisimilarity.
An alternative proposal for a strong bisimilarity on PA, strong probabilistic bisimilarity, takes

this idea up.

Definition 4.7 (Strong Combined Transitions). We write s a−−→c µ, if a ∈ Act and there
is a finite indexed set {(ci, µi)}i∈I of pairs of positive real valued weights and distributions such
that s a−−→ µi for each i ∈ I and

∑
i∈I ci = 1 and µ =

⊕
i∈I ciµi. ◁

Example 4.2. In Figure 4.4, the automaton on the left is missing the middle transition in
comparison to the automaton on the right. This middle transition is a convex combination of
the two transitions to u and v, respectively, with weights 1

3 and 2
3 . Still, for the automaton on

the left, we can justify that there exists a strong combined transition t
c−−→c

⟨
(13 , u), (

2
3 , v)

⟩
that

can simulate the missing transition. ◁

Note that the non-probabilistic resolution of non-determinism as we find it in LTS, now be-
comes a special case. Choosing a single transition corresponds to a Dirac distribution, where the
chosen transition is assigned probability 1 and all others probability 0.

Definition 4.8 (Strong Probabilistic Bisimulation). Let (S, s̄,Act,) be a PA. An equiv-
alence relation R on S is a strong probabilistic bisimulation, if whenever s R t then s a µ for
some a ∈ Act and µ ∈ Dist(S) implies t a−−→c γ for some γ′ ∈ Dist(S) with µ L(R) γ. ◁

We write s ∼PA t if some strong probabilistic bisimulation R exists with s R t. We say that
two PA A and A′ are strong probabilistic bisimilar if in their disjoint union the two initial states
are strong probabilistic bisimilar, i.e. s̄ ∼PA s̄′.

c

ba

1 1

1
c

1
c

ba

1 1

1

c

1c

1
3

2
3

u v u v

Figure 4.4.: Two Strong Probabilistic Bisimilar PA

It is straightforward to show that strong probabilistic bisimilarity is a bisimulation itself and
also an equivalence relation. Furthermore, it is a congruence with respect to the two composition
operators we have defined.

Example 4.3. The two automata in Figure 4.4 are strong probabilistic bisimilar, but not with
respect to strong bisimilarity for PA. ◁

Theorem 4.1. Strong probabilistic bisimilarity ∼PA

1. is the largest bisimulation relation,

2. is an equivalence relation, and

3. is a congruence with respect to parallel composition and abstraction.

43

4. Probabilistic Automata

We have seen that generalizing strong bisimilarity to PA can be done in two variants: a more
convervative one, where non-deterministic decisions are resolved by choosing one of the alter-
native transitions, and one that is more apt for the probabilistic setting, as it allows to resolve
non-deterministic choice probabilistically. In fact, the former variant can be consider as a special
case of the latter. The probabilistic variant of strong bisimilarity, ∼PA, is thus the most general,
yet conservative extension of strong bisimilarity to the probabilistic setting.

4.2.2. Weak Transitions in a Probabilistic Setting
Any notion of weak bisimulation necessarily relies on weak transitions. Since the formalization
of weak transitions for probabilistic automata is technically involved, we dedicate this section to
this task, before we begin our discussion of weak bisimilarity for PA in Section 4.2.3 on page 48.
Besides the definitions, we also provide a few essential lemmas for weak transitions.

The notion of weak transition we introduce here is more general then the standard definition.
The additional expressiveness is not needed in the course of this chapter, but will be elemen-
tary for our deliberations in the second part of the thesis. We therefore advise also the reader
proficient in probabilistic automata to take special notice of Definition 4.13 and Remark 4.1.
This section only focuses on technical aspects of weak transition. Their importance for weak
bisimulation and advanced semantic discussions will follow in Section 4.2.3.

In the literature, several approaches of defining weak transitions exist, for example, via probabilis-
tic execution in [Seg95], trees [Des+10], or infinite sum [Den+09]. As shown recently, these
formalization are effectively equivalent [Bre13]. It is thus irrelevant for the resulting bisimula-
tion relations, which formalization is chosen. We mainly will rely on the tree characterization
introduced in [EHZ10a]. Except for some of the proofs in the appendix, which use probabilistic
executions. In Appendix A, we introduce the necessary definitions.

Weak Transitions The definition of weak transitions needs several auxiliary concepts.

Definition 4.9 (Sequence Order). For two finite sequences of positive integers σ, σ′ ∈ N∗
>0

we write σ ≤ σ′ if there exists a (possibly empty) sequence ϕ such that σϕ = σ′. ◁

We will now define labelled trees by means of a set of sequences of positive integers. Each
sequence represents a node of the tree by encoding its address. The labelling is realized by a
partial function mapping each node to its label.

Definition 4.10 (Labeled Tree). A partial function T : N∗
>0 → L is called an (infinite)

L-labelled tree, if it satisfies the following conditions

1. for all σ, σ′ ∈ N∗
>0: σ ≤ σ′ and σ′ ∈ dom(T) implies σ ∈ dom(T)

2. σi ∈ dom(T) for i > 1 implies σ(i− 1) ∈ dom(T)

3. ε ∈ dom(T)

◁

Notation 4.1.

• A node σ ∈ dom(T) is called a leaf of T if there is no σ′ ∈ dom(T) such that σ < σ′.

44

4.2. Bisimilarity

• ε is called the root of T .

• For a node σ let Children(σ) = {σi | σi ∈ dom(T)}.

• We denote the set of all leaves of T by LeafT . The nodes that are no leaves are called inner
nodes. We subsume them in the set InnerT . If the tree has only one node, the root node,
then this node is assumed to be contained in both InnerT and LeafT . In any other case the
two sets are disjoint.

We consider in the following S×R>0×(Act ·∪ {⊥})-labelled trees. In principle, they represent
a probabilistic execution fragment of a probabilistic automata. The first label component denotes
the states along which the execution evolves, the last component denotes the action, and the
middle component the accumulated probability of reaching this node from the node the root is
labelled with. For a node σ we write StaT (σ) for the first component of T (σ), ProbT (σ) for the
second component of T (σ) and ActT (σ) for the third component of T (σ).

Notation 4.2. For a set Ǎ ⊆ , a node σ, an action a ∈ Act and a distribution µ over S, we
write σ a−−→Ǎ µ to express that a = ActT (σ), (StaT (σ),ActT (σ), µ) ∈ Ǎ and

ProbT (σ) · µ =
⟨
(StaT (σ′), ProbT (σ′)) | σ′ ∈ ChildrenT (σ)

⟩
.

.

Whenever Ǎ is clear from the context, we omit its subscript from the transition arrow.

Definition 4.11. Let A = (S, s̄,Act,) be a PA and Ǎ ⊆ . A transition tree T over Ǎ is
a S × R>0 × (Act ·∪ {⊥})-labelled tree that satisfies the following condition:

1. ProbT (ε) = 1,

2. ∀σ ∈ LeafT : ActT (σ) = ⊥,

3. ∀σ ∈ InnerT \ LeafT : ∃µ : σ
ActT (σ)−−−−−→Ǎ µ

◁

Note that the definition implies that
∑

σ∈LeafT
ProbT (σ) = ProbT (ε) = 1. We now explain

how a transition tree T corresponds to a probabilistic execution fragment: it starts from StaT (ε),
and resolves the non-deterministic choice by executing a probabilistic transition with the action
ActT (σ) at the inner node σ. The second label of σ is then the probability of reaching StaT (σ),
starting from StaT (ε) and following the selected transitions. If the action label of a node σ
indicates a timed transition, i.e. ActT (σ) = χ(r) for some real number r, then r represents the
exit rate of StaT (σ). In this case, a child σ′ is reached with ProbT (σ) times the discrete branching
probability P(StaT (σ), StaT (σ′)) of the underlying exponential distribution.

For two transition trees T and T ′, we say T is a prefix of T ′, written T ≤ T ′ if dom(T) ⊆
dom(T ′) and ∀σ ∈ InnerT ′ \ LeafT ′ : T (σ) = T ′(σ) and ∀σ ∈ LeafT ′ : either T (σ) = T ′(σ) or
σ ̸∈ LeafT and StaT (σ) = StaT ′(σ) and ProbT (σ) = ProbT ′(σ). An internal transition tree T is
a transition tree where each ActT (σ) is either τ or ⊥.

45

4. Probabilistic Automata

Definition 4.12 (Distribution Induced by a Transition Tree). Let T be a transition tree.
Then the distribution induced by T , denoted by µT , is defined as

µT =
⊕

σ∈LeafT

⟨(StaT (σ), ProbT (σ))⟩ .

◁

With the above definitions we are now able to define weak transitions.

Definition 4.13. Let A = (S, s̄,Act,) be a PA. For s ∈ S and µ a full distribution we
write

(1) s
a⇂Ǎ
===⇒ µ if µ is induced by some transition tree T over Ǎwith StaT (ε) = s. In case a ̸= τ ,

on every maximal path from the root precisely one node σ is labelled ActT (σ) = a. All
not yet labelled inner nodes must be labelled by τ .

(2) s
a

==⇒ µ if s a⇂Ǎ
===⇒ µ and Ǎ = .

For all these transition relations we say that the transition tree that induces µ also induces the
transition to µ. ◁

Note that s ==⇒ δ(s) always holds independently of the actual transitions s can perform.

Remark 4.1. Usually, one defines weak transitions without the ability to restrict the set of transi-
tions Ǎ appearing in the transition tree.

It is thus convenient to use separate terms for the more general and the standard variant. We
therefore speak of weak allowed transitions if we refer to general weak transitions (Case (1) of
Definition 4.13), and of weak transitions if we refer to weak transitions following the standard
definitions (Case (2)).

Hyper-Transitions We lift the notion of transitions of a state to transitions of a distribu-
tion over states.

Definition 4.14 (Hypertransitions). We say that there is a (weak allowed) hyper-transition
from ρ ∈ Subdist(S) to ν ∈ Subdist(S) labelled by a ∈ Act, denoted by ρ a ν (ρ a

==⇒ ν) ,
if there exists a family of (weak allowed) transitions {s a νs}s∈Supp(ρ) ({s

a
==⇒ νs}s∈Supp(ρ))

such that
ν =

⊕
s∈Supp(ρ)

ρ(s) · νs.

◁

Combined Transitions As in the strong case and as discussed, it is reasonable to assume
that in a probabilistic setting, internal non-determinism can be resolved probabilistically. Below,
we define the notion of weak combined transitions [Seg95], which arise as convex combination
of a set of weak transitions with the same label. This notion is a straightforward adaption of
the related concept for (non-weak) transitions we have introduced before. We only define the
concept for weak allowed hyper-transitions, which then carries over to weak allowed transitions
immediately.

46

4.2. Bisimilarity

Definition 4.15. We write µ a⇂Ǎ
===⇒c µ

′, if µ′ is an infinitary or finitary convex combination of
a family of distributions µ′

i with µ
a⇂Ǎ
===⇒ µ′

i. ◁

Remark 4.2. If clear from the context, we will often reference all variants of transitions by the
term transition, regardless of whether they are weak/strong/allowed/hyper transitions.

Properties of Transitions
Lemma 4.2 (Composition). Let a ∈ Act ∪ {τ}.

• If µ a⇂Ǎ
===⇒ µ′ and µ′ τ⇂Ǎ

===⇒ µ′′ then µ
a⇂Ǎ
===⇒ µ′′.

• If µ τ⇂Ǎ
===⇒ µ′ and µ′ a⇂Ǎ

===⇒ µ′′ then µ
a⇂Ǎ
===⇒ µ′′.

and

• If µ a⇂Ǎ
===⇒c µ

′ and µ′ τ⇂Ǎ
===⇒c µ

′′ then µ
a⇂Ǎ
===⇒c µ

′′.

• If µ τ⇂Ǎ
===⇒c µ

′ and µ′ a⇂Ǎ
===⇒c µ

′′ then µ
a⇂Ǎ
===⇒c µ

′′.

By letting Ǎ equal the set of all transition, this lemma also applies to ordinary weak (com-
bined) transitions. Furthermore, with letting µ = δ(s) this lemma applies also for sequences of
transitions where the first one is not a hyper-, but an ordinary (combined) transition.
This lemma implies that we can compose arbitrary finite sequences of weak (allowed) (com-

bined) (hyper) transitions into one single weak (combined) (hyper) transitions. In other words,
every distribution that is reachable by a finite sequences of such transitions is also reachable
directly by a single such transition. We often make use of this lemma without explicit notice.

Lemma 4.3 (Combining Combined Transitions). Let µ, µ′ ∈ Dist(S) and k ∈ N. Let I be
a finite or infinitary index set. The hypertransition µ

a
==⇒c µ′ exists if and only if there exist

distributions µi and coefficients ci ∈ [0, 1] with i ∈ I such that

µ =
⊕
i∈I

ciµi

and distributions µ′
i with

µi
a

==⇒c µ
′
i and µ′ =

⊕
i

ciµ
′
i.

In this section, we have introduced weak transitions in terms of labelled transition trees, that
correspond to probabilistic execution fragments. As it has been the case for strong transitions,
we can incorporate the probabilistic resolution of non-determinism into weak transitions in the
form of a convex combination of several weak transitions, leading to weak combined transitions.
We have also extended weak transition to relations over distributions instead of a state and a dis-
tribution, and called the resulting relation weak hypertransitions. They will provide a necessary
tool in our development of the bisimilarities for Markov automata. For reasons of convenience,
we will refer to hypertransitions as well as transitions. Finally, we have seen several lemmas
that deal with recombining weak transitions in various ways, and that will be in permanent use
during later proofs.

47

4. Probabilistic Automata

reset

a

Figure 4.5.: Machine with Reset Button

tt

tt

th

th

ht

ht

hh

hh

throw

1
4

1
4

1
4

1
4

1
2

1
2

1
2

1
2

1
2

1
2

throw

τ τ

tt

th ht

hh t h

tt th ht hh

Figure 4.6.: Two Automata with the Same
Observable Outcomes

4.2.3. Weak Bisimulations and Simulations
As an entry point for our discussion of weak bisimilarities for probabilistic systems, we again
take on the perspective of an experimenter, that tries to analyse the observable behaviour of
given probabilistic automata be means of different experiments and observations.

From there, we will review important weak process relations, both simulation and bisimu-
lation relations, that implement the experimenter’s perspective to different degrees. However,
all of them fail to satisfy our requirements for observational equivalences for different reasons.
They will, however, serve as a starting point for our investigations in the second part of the thesis,
where novel notions of weak bisimilarity for the probabilistic setting will be introduced.

The Experimenter’s Perspective
Testing scenarios in terms of button-pushing experiments, as we have introduced them in Sec-
tion 3.2.3 for LTS, have not been investigated extensively for probabilistic systems. While these
idea may have supposedly played an inspirational role in finding various notions of bisimilarity,
there is hardly any explicit reference.

Still, testing scenarios for probabilistic systems have been developed and extended gradually
over the decades. After the fundamental approach of [LS91; LS89] for the fully probabilistic
setting without non-determinism, the first steps in this direction have been undertaken in [SV03;
CSV07]. There, a testing scenario based on button-pushing machines is discussed for probabilis-
tic automata. The machine is a strongly reduced version of the machine we have described in
Section 3.2.3. It is only equipped with the action buttons, but it misses any further manipulation
mechanisms. In particular, a replication is not present. However, the machine has a special reset
button, that resets the machine (Figure 4.5) to its initial state.

In this thought experiment, the concrete probabilities with which experiments succeed are
not displayed on the machine, but are determined by the application of statistical methods. The
necessary samples are obtained by resetting the machine to its initial state with the reset button
over and over again. In this way, it is possible, to determine the exact probabilities with which
observations will be made.

Example 4.4. Recall the probability experiment from the introduction on page 10 that was
illustrated in Figure 1.9. Rolling a four-sided die should be observationally equivalent to flipping

48

4.2. Bisimilarity

two coins in sequence, as long as only the probability outcomes are presented, and not the
technical details how the probabilities have been determined. We illustrate the two situations as
a PA in Figure 4.6, which corresponds to Figure 1.9.
The machine on the left, where the die is rolled consists of a single τ transition that results in

a uniform distribution over the four possible outcomes. The machine on the right splits its coin
throwing experiment into two experiments, speak τ transitions, where each time a single coin is
thrown. At the end, the outcomes, denoted by tt, th, ht, and hh are the same.
In the testing scenario, the two automata are indistinguishable. The fact, that in the automa-

ton on the right includes intermediate states remains transparent. The observer can only see
that when the system starts, or when it has been reset, one of the observable actions tt, th, ht
or hh occur after some time. The same is true for the automaton on the left. When evaluat-
ing the samples, the observer will determine that each of the four outcomes has appeared with
probability 1

4 . ◁

The testing scenario also allows to observe the non-deterministic branching structure of the
system under test in parts. The reset button corresponds to an unbounded replication button
that can be only applied in the initial state. The information revealed about the branching
structure in this way is very limited. It does definitely not satisfy our second requirement in
Remark 1.1.
In the mentioned papers, it is shown that the behavioural equivalence resulting from this

testing scenaria is trace distribution equivalence [LSV07]. Trace distribution equivalence is the
probabilistic counterpart to trace equivalence for the non-probabilistic setting. It basically en-
sures that the probabilities for each trace to occur are the same in equivalent systems. Note that
in the presence of non-determinism, the same trace may have assigned more than one probability
number.

From the perspective of our search for an observational equivalence, trace distribution equiva-
lence is not fully satisfactory. Trace distribution does not meet our requirements of a behaviour
equivalence for two reasons. First, it does not preserve the branching structure. Second, it fails
to be a congruence with respect to parallel composition.
We forego a more formal discussion of trace distribution equivalence, and instead, will next

consider a different relation that is based on the same testing scenario, but has the advantage of
being a congruence.

Probabilistic Forward Simulation The unsymmetric variant of trace distribution
equivalence is called probabilistic trace distribution preorder. As before, this relation fails to be a
congruence. The coarsest congruence relation in which probabilistic trace distribution preorder
is contained is a relation called probabilistic forward simulation [Seg95; LSV07]. In fact, this
relation already posses many of the requirements we demand for an observational equivalence:
It satisfies the first requirement of Remark 1.1, namely being a congruence. Also intuitively, it
suggests itself to come as close to the third requirement as possible, as it stems from a testing
scenario with a very limited set of allowed observations and experiments. Finally, though, the
second requirement is not met. As probabilistic forward simulation is a simulation relation it
cannot preserve the the non-deterministic branching structure, even when cast to an equivalence
relation by taking its symmetric kernel.
In the following we will discuss the formal definition of this relation, as it will play an im-

portant role for the further development in the second part of the thesis. We begin with a new

49

4. Probabilistic Automata

notion of lifting a binary relation between two sets, to distributions over these sets. Note that it
differs conceptually from the lifting relation we have introduced in Definition 4.5.

Definition 4.16. Let R ⊆ S × S′ be a relation. The weighted lifting L̂(R) ⊆ Dist(S) ×
Dist(S′) of R relates µ R′ µ′ if and only if there exists a function w : S × S′ → [0, 1] such that
µ R′ µ′ implies:

1. w(s, s′) > 0 implies s R s′,

2. for each s ∈ S,
∑

s′∈S′ w(s, s′) = µ(s), and

3. for each s′ ∈ S′,
∑

s∈S w(s, s′) = µ′(s′).

◁

This definition splits the distribution µ into Dirac subdistributions, proceeds accordingly for
µ′, and then links them together via w such that for each state s in Supp(µ) its probability mass
in µ is the same as the overall probability mass of the linked subdistributions stemming from
µ′ (Condition 2), and vice versa (Condition 3). Condition 1 ensures that only those subdistribu-
tions are linked whose supports are related by R.

Definition 4.17 (Flattening). For a distribution µ ∈ Dist(Dist(S)), let

flatten(µ) =
⊕

γ∈Supp(µ)

µ(γ) · γ.

◁

The flattening operator reduces a distribution over distributions over S into a distribution
over S, while preserving the accumulated probabilities of the elements in the support of the
inner distributions.

Definition 4.18 (Probabilistic Forward Simulation). Let (S, s̄,Act,) be an PA. A rela-
tion R ⊆ S × Dist(S) is called a probabilistic forward simulation if whenever s R µ2 then for
all a ∈ Act:
whenever s a µ′

1, then ∃µ′
2 ∈ Dist(Dist(S)) : µ2

a
==⇒c flatten(µ′

2) and µ′
1L̂(R)µ′

2. ◁

For a state s and a distribution µ, we write s ⪯fwd µ if sRµ for some probabilistic forward
simulation R.

Theorem 4.2. ⪯fwd is the largest probabilistic forward simulation.

The most salient detail of the definition of probabilistic forward simulation is that is relates
states to distributions over states. This links the behaviour of a single state in a probabilistic sys-
tem to a distribution over states and their behaviours. As we will see especially in the second part
of this thesis, this concept is key to obtain a relation that is relaxed with respect to probabilistic
behaviour. In fact, it is the closest we can come to the experimental perspective with statistic
sampling and a reset button.

Combining the Testing Scenarios
As we have discussed, the probabilistic testing scenario only allows for very limited observations
of the non-deterministic branching structure. In our attempt to arrive at a probabilistic testing

50

4.2. Bisimilarity

scenario, in which also the non-deterministic branching structure is observable, we will now
consider a scenario that combines the probabilistic testing scenario with the scenario for LTS.
In the testing scenario for LTS, each system comes equipped with an unbounded replication

button, that allows the observer to create an unbounded number of copies of a system in each
state. In the probabilistic testing scenario, only a reset button is devised that allows to bring a
system back to its initial state. If an unbounded set of copies is created in the initial state with the
unbounded replication button, each copy can be treated like a freshly reset system. Therefore,
the unbounded replication button can replace the reset button in the combined scenario. From
the probabilistic scenario, we inherit the ability of the observer to use sampling of executions
and statistical methods in order to derive probability.
In summary, we obtain a scenario in which an observer can apply unbounded replication in

every state, and the combination of the unbounded replication button with statistic sampling to
insight in the probabilistic aspects of the system.

Consider again the two automata in Figure 4.6. With respect to their non-deterministic branch-
ing structure, the two automata agree, as neither of them is subject to any non-probabilistic
decision. Therefore, we expect the observations that can be made to agree with those possible in
the probabilistic testing scenario. There, the two automata are indistinguishable. Surprisingly,
in the combined testing scenario, they can be distinguished, as the points during the execution
of the automata, where probabilistic decisions are made, become fully observable. In the left
automaton only one decision is made, while in the automaton on the right, two decisions are
made in sequence.

Remark 4.3 (Probabilistic Branching Structure). In correspondence with the notion of non-
deterministic branching structure of a system, we let the term probabilistic branching structure
refer to the points during an execution of a system, where probabilistic decisions are made what
future observable behaviour will be possible or impossible.

The reason why in this testing scenario the probabilistic branching structure becomes ob-
servable is rooted in the fact that the sampling, which the observer needs in order to derive
probabilities is no longer restricted to executions starting in the initial state, as it was the case in
the probabilistic testing scenario. As the unbounded replication button can be applied in every
state, also those from which only τ -transitions leave, a new set of samples can be generated for
execution starting in every state, too.

Example 4.5. Recall that the observer can press the replication button in every state and create
an unbounded number of copies of the system in that state. When the observer keeps creating
copies (by continuous pressure on the button) on the automaton on the right in Figure 4.6, he
will also create an unbounded number of copies of state t and h, respectively, depending on how
the probabilistic choice has been resolved before.
By sampling the executions starting from these copies, he will reckon that the result of the

first coin is already determined at the time the copies are made, while the outcome of the second
coin throw is still open.

In contrast, for the machine on the left, he will not be able to find such a moment in the execu-
tion. Whenever he can create copies of the machine the outcome is either fully determined or not
at all determined, depending on whether the atomic event of rolling the dice has yet happened
or not. ◁

In summary, this means that the experimenter’s ability to make copies of the machine in every

51

4. Probabilistic Automata

moment of the execution, and his ability of applying statistic sampling from these copies, in com-
bination, enables him to reckon the probabilistic branching structure. However, in accordance
to the testing scenario for probabilistic systems, we want the probabilistic branching structure
of a system to be as transparent as possible.

Weak Probabilistic Bisimilarity On the level of equivalence relations, the combined
testing scenario intuitively seems to correspond to weak probabilistic bisimulation [Seg95]. This
relation is a straightforward generalization of strong probabilistic bisimilarity to the weak set-
ting. The statistical sampling of the testing scenario manifests as weak combined transitions; the
replication button is incorporated in the form of the typical bisimulation conditions. A formal
proof for this claim is pending, however.

Definition 4.19 (Weak Probabilistic Bisimulation). Let (S, s̄,Act,) be a PA. An equiv-
alence relation R on S is a weak probabilistic bisimulation, if whenever s R t then s a µ for
some a ∈ Act and µ ∈ Dist(S) implies t a

==⇒c γ for some γ′ ∈ Dist(S) with µ L(R) γ. ◁

We write s ≈PA t if some weak probabilistic bisimulation R exists with s R t. We say that
two PA A and A′ are weak probabilistic bisimilar if in their disjoint union the two initial states
are weak probabilistic bisimilar, i.e. s̄ ≈PA s̄′.

Example 4.6 (Discrimination by Weak Probabilistic Bisimilarity). We will show that
weak probabilistic bisimilarity distinguishes the two automata in Figure 4.6 and highlight the
similarities in the argumentation with respect to our discussion in Example 4.5, where argued
that the two automata are distinguished in the combined testing scenario.
First, we remark that pressing the replication button corresponds to relating two states in

a bisimulation. Whenever two states are related in a bisimulation, they can be exposed to arbi-
trary many experiments, which manifest in the form of the challenger’s and defender’s transition
conditions of bisimulation.
Assume that there exists a bisimulationR containing the initial states of the automata. Choos-

ing the left automaton as challenger first, the bisimulation conditions are easily matched for the
only transition available. It suffices for the automaton on the right to performing a weak transi-
tion to the uniform distribution over the states tt, th, ht, and hh. We now exchange the roles of
the challenger and the defender. The challenger proposes the only available transition, labelled
by throw, to the distribution µ =

⟨
(12 : t), (12 : h)

⟩
. The defender now must be able to match

this behaviour by a transition resulting in a distribution who assigns the same probability to
states that are bisimilar to the states in µ, i.e. the two distribution must be in the lifting of the
bisimulation relationR. In the testing scenario, this corresponds to the observation of an action
throw, followed by pressing the replication button, when the execution has reached t or h, respec-
tively. In fact, the only transition of the automaton on the left leads to the uniform distribution
over the states tt, th, ht and hh. If, as we assumed, the two automata are bisimilar, at least one
of those four states must be related to t, and h, respectively. It is, however, easy to verify that
none of them satisfies the necessary conditions. The reason is, as before in Example 4.5, that, for
instance, the state t of the right automaton can evolve to either state tt or th with probability
one half, while the states tt, th, ht and hh of the automaton on the left cannot evolve any further.
The analogue argument holds for h. ◁

As this example illustrates, weak probabilistic bisimilarity does not allow to equate automata
that only differ in their probabilistic branching structure. Despite, weak probabilistic bisimilar-

52

4.2. Bisimilarity

ity has become the de facto standard notion of weak bisimilarity for probabilistic automata, as it
satisfies the usual properties of bisimilarities. It is a bisimulation itself and also an equivalence
relation. Furthermore, it is a congruence with respect to the two compositions we have defined.

Theorem 4.3. Weak probabilistic bisimilarity ≈PA

1. is the largest bisimulation relation,

2. is an equivalence relation, and

3. is a congruence with respect to parallel composition and abstraction.

From our requirements for observational congruences (Remark 1.1), weak probabilistic bisim-
ilarity clearly satisfies the first two, being a congruence and preservation of the non-deterministic
branching structure. With respect to our third and final requirement, abstraction from internal
details, this relation, does not seem to be a good candidate. Thus, the quest for a suitable notion
of observational equivalence for probabilistic automata is still open so far.

The Experimenter’s Dilemma
As we have learned, the observers’ or experimenters’ ability to create an unbounded num-
ber of copies of a system in every moment of its execution is essential for observing the non-
deterministic branching structure. At the same time, statistic sampling is a necessary ability of
the experimenter in order to derive probabilities of observable events that he observes. In com-
bination, however, the two abilities lead to unwanted observation, namely the exposure of the
probabilistic branching structure. A way out of this dilemma seems only possible at the cost of
less simplistic testing scenario with stronger assumptions.

Example 4.7. One suggestion to resolve the dilemma is to restrict the use of replicated au-
tomata for sampling. For instance, in the automaton on the right of Figure 4.6, the negative
interference of replication and statistic sampling could be avoided if pressing the replication but-
ton was forbidden during the execution of those internal transitions, where the probabilities of
the ultimately observable activities tt, th, ht and hh are computed. Assume that in our testing
scenario, we could somehow oblige the system under test to enable the replication button if and
only if non-deterministic decisions are to be made, or at the beginning of a sequence on internal
probabilistic transitions. Then, in Figure 4.6 above, the replication button would only be avail-
able in the initial states; we could do our statistic sampling by means of the generated copies of
the system in the initial state, but we could not use the button in any other state. Thus, the two
automata in Figure 4.6 will appear observationally the same. As the replication button would
still be available in situation where non-determinism occurs, the observer would still be able to
reconstruct the non-deterministic branching structure. ◁

At this point, it seems that testing scenarios are no longer suited as a benchmark in the ques-
tion, whether a specific relation is a natural candidates for an observational equivalence. Our
demand for the preservation of the non-deterministic branching structure and the simultaneous
neglect of the probabilistic branching structure seems to defy this approach. We will therefore
not deepen this approach further. However, it will serve as a source of inspiration, when we
propose novel candidates for an observational equivalence in the second part of the thesis.

53

4. Probabilistic Automata

4.2.4. Discussion
In this section, we have started with a review of existing notions of strong bisimulation. We then
continued with the formalization of weak transitions for probabilistic automata. Finally, we have
discussed a testing scenario for probabilistic systems that realizes the observation of probabilistic
behaviour be means of statistic sampling and a reset button. The important property of the reset
button is that it always resets the system to its initial state. In this way, only the probabilities
of traces can be observed. The fine grained probabilistic branching structure, i.e. the precise
points in an execution, where probabilistic decisions are made, remain unobservable. We have
than considered several notions of process equivalence as well as a preorder relation. All of
them miss at least one of the requirements we demanded for observational equivalences. In
this regard, an interesting dichotomy has emerged: the relations either allow to make too fine
grained observations with respect to the probabilistic branching structure, or fail to preserve
the non-deterministic branching structure. A relation that satisfies both requirement seems hard
to establish. Our discussion of combining the testing scenarios of probabilistic automata and
labelled transition system suggests that this will, in fact, demand novel approaches.

4.3. Decision Algorithm
The first known decision algorithm for weak probabilistic bisimilarity [CS02] has a complexity
that is exponential in the number of states and transitions. Only recently a polynomial solution
of this problem has been given in [HT12]. The core of the problem lies, similar as for weak LTS
bisimilarity in determining whether two states that lie in the same supposed equivalence class
actually exhibit the same behaviour. For LTS, the behaviour of a state can be described by the
action that can be executed and the states that can be reached by weak transitions. For PA, the
problem is similar, however, weak transitions reach distributions over states, and furthermore,
weak transitions can be combined in an uncountable number of ways. Hence, while for LTS the
behaviour of a state is finite, for PA it is infinite. The remarkable contribution of [CS02] has
been to show that the uncountably many distributions that can be reached by a weak combined
transition can be fully characterized by a finite set of generating distributions. It was further
shown that these distributions are all reachable by transitions that are generated by a determinate
transition tree. This means that on every state, the same successor transition is chosen whenever
it is visited along the tree. Only before and after the observable action (if there is any), the tran-
sitions can be different. It is then a rather simple exercise to compute the distribution that result
from such transitions by solving a linear equation system. In this way, in a finite system, the
generators of all distributions reachable from a certain state by a weak combined transitions are
finite, and can thus be computed. Yet, the number of determinate transition trees is exponential
in the number of transitions, as in order to consider every possible tree, one has to consider all
combinations how the single states in the tree are continued in the transition tree.
Then, in [HT12], the following proposition has allowed to overcome the exponential ap-

proach.

Proposition 1 (cf. [HT12, Prop. 3]). Given a PA A, two probability distributions ρ1, ρ2 ∈
Dist(S), two actions a1, a2 ∈ Act, two sets Ǎ1, Ǎ2 ⊆ of transitions, and an equivalence re-
lationW on S, the existence of ν1, ν2 ∈ Dist(S) such that

ρ1
a1⇂Ǎ1====⇒c ν1, ρ2

a2⇂Ǎ2====⇒c ν2, and ν1 L(W) ν2

54

4.3. Decision Algorithm

can be checked in polynomial time.

The proof that this check can be performed in polynomial time relies on the construction of
a generalized flow problem, that in turn can be encoded into an LP-problem of polynomial size
spanned by the parameters ρ1, ρ2, a1, a2, Ǎ1, Ǎ2, and W. Details are given in [HT12].
The proposition is more general than needed for the purpose of deciding ≈PA. For example,

the concept of allowed transitions is not needed here. However, this general form will turn out
helpful later. A more accessible variant of the proposition is the following corollary, which is
the way in which the proposition is actually used for ≈PA.

55

4. Probabilistic Automata

Decide(A)

1: W = {S};
2: repeat
3: W′ = W;
4: (C, a, ρ) = FindSplit(W);
5: W = Refine(W, (C, a, ρ));
6: until W = W′

7: return W

Figure 4.7.: Compute partitioning W
according to ≈PA.

FindSplit(W)

1: for all (s, a, ρ) ∈ T do
2: for all t ∈ [s]W do
3: if P (W, a, ρ, δ(t)) has no solu-

tion then
4: return ([s]W, a, ρ)
5: return (∅, τ, δ(⊥))

Figure 4.8.: Finding a splitter

Corollary 4.1. Given a PA A, two probability distributions ρ1, ρ2 ∈ Dist(S), an action a ∈ Act,
and an equivalence relationW on S, the existence of ν ∈ Dist(S) such that

ρ2
a

==⇒c ν and ρ1 L(W) ν

can be checked in polynomial time.

We denote by P (W, a, ρ1, ρ2) an instance of the decision problem of Corollary 4.1. The
resulting decision algorithm is then a straightforward adaption of the algorithm for ≈LTS.
We summarize the algorithm in Figure 4.7. It employs the usual partition refinement approach,

where partition are refined according to a splitter. A splitter consists of

1. a spurious equivalence class that should be split because at least two of its states are not
compatible with respect to their behaviour and

2. the reason of the incompatibility: an action and a distribution over states.

Together, they describe a weak transition that can be performed by at least one state in the
spurious equivalence class, while at least one other state cannot do so.
The procedure FindSplit in Figure 4.8 computes the splitter. For this, it considers every transi-

tion (s, a, ρ) in and checks whether every state in the equivalence class of s according to the
current partitioningW is able to mimic this transition up to L(W). With other words, it exactly
checks the bisimulation condition: whenever s a−−→ ρ then t

a
==⇒c ρ

′ and ρ L(W) ρ′︸ ︷︷ ︸
computed by P (W, a, ρ, δ(t))

.

4.4. Summary and Discussion
The definitions for probabilistic automata in this chapter are all standard, except for the defini-
tion of the parallel composition, which slightly deviates from the original parallel composition
defined in [Seg95] for technical reasons. It has, however, appeared in the literature before, for
instance in [Den+07]. Originally, when two probabilistic automata are composed in parallel,
they are forced to synchronize on every external action they share, while the internal actions are
interleaved and not synchronized. We generalized this concept by synchronizing precisely those
action contained in some set A, which annotates the parallel composition operator. So, we ob-
tain the original behaviour by letting A = Act \ τ . We have adapted synchronization behaviour

56

4.4. Summary and Discussion

here for the sake of a uniform presentation relative to the other models, LTS and IMC, that we
discuss in this thesis.

A Matter of Weak Transitions
The notions of strong and weak bisimilarity we have introduced in this chapter are not the only
theoretically possible variations. As we have seen, strong bisimilarity for probabilistic automata
comes in two flavour. One, where transitions may be combined and one where ordinary tran-
sitions are considered. Both notions enjoy nice properties and are thus reasonable candidates.
Furthermore, these are the only two variants in the literature.
For weak bisimulations, there are more places than the usage of probabilistic vs. non-

probabilistic transitions, at which the definition can be varied.
One of them is the question, whether the challenger may propose only strong transitions or

also arbitrary weak transitions. We call the two variants the strong and weak challenger charac-
terization, respectively. For labelled transition systems and its respective bisimilarities, we know
that the two characterizations coincide.
For probabilistic automata, this is not the case. It turns out, that the non-probabilistic variant

has several semantic drawbacks. First, as noted for example in [Den05], the strong challenger vari-
ant of non-probabilistic weak bisimilarity is not transitive (see Figure 4.9). Fortunately, this draw-
back does not apply to the weak challenger characterization. Differently from what one might
expect, it is not a generalization of strong challenger characterization, though. This means, weak
challenger non-probabilistic weak bisimilarity fails to equate certain processes that are equated
by strong challenger non-probabilistic weak bisimilarity (see Figure 4.9).

b c b c b c

c

b

τ τ τ

aa

0.5

0.25

0.25

b c b c

τ τ

a

b c

τ

a
s

s1 s2

s4 s5

s3

s6 s7 s7

s4 s5

s6 s7

s4 s5

s6

s7

s4

s5

s6

s′6 s′6

s’

s′4

s′7s′7

s′2

s′4

s′1

s′5 s′5

s′′7

s”

s′′6

s′′5s′′4

s′′1

A′ A′′A

Figure 4.9.: A is strong challenger bisimilar to A′, and A′ is strong challenger bisimilar to A′′.
However, A is not strong challenger bisimilar to A′′. Furthermore, A′ and A′′ are
not weak challenger bisimilar.1

1The counterexamples are courtesy to Andrea Turrini, who brought it up during a discussion with Pedro D’Argenio

57

4. Probabilistic Automata

Example 4.8. In the following, we write≈s to denote strong challenger non-probabilistic weak
bisimilarity and ≈w to denote weak challenger non-probabilistic weak bisimilarity.
To see that ≈s is not transitive, we note that A ≈s A′ is justified by a bisimulation with the

equivalence classes {s, s′}, {s1, s′1, s2, s′2, s3}, {s4, s′4}, {s5, s′5} and {s6, s′6, s7, s′7}. Similarly for
A′ ≈s A′′, the justifying equivalence classes are {s′, s′′}, {s′1, s′′1 , s′2, s′′2}, {s′4, s′′4}, {s′5, s′′5} and
{s′6, s′′6 , s′7, s′′7}. However, A ̸≈s A′′. Necessarily, any justifying bisimulation needed to contain
the pair (s, s′′). The problem now is that s a−−→ µ with µ(s3) = 0.5, and µ(s4) = µ(s5) = 0.25
cannot be matched by s′′. The only transitions of s′′ lead to δ(s′′1), i.e. a distribution with only
one state. However, all three states in Supp(µ) are in different equivalence classes, as they are not
strong bisimilar. Thus, µ cannot be matched to δ(s′′1).

We have already argued that A′ ≈s A′′. We will now show that A′ ̸≈w A′′. Clearly, if this
was the case, (s′, s′′), must be contained in any justifying bisimulation. Now s′

a
==⇒ µ with

µ(s′1) = 0.5 and µ(s′4) = µ(s′5) = 0.25. It is easy to see that all three states in Supp(µ) must
necessarily be contained in different equivalence classes. However, the only two weak transitions
s′′ is capable of, lead to distributions containing at most two states. Hence, the transition of s′
cannot be matched by s′′. ◁

In contrast, the probabilistic variants of strong and weak bisimilarity are not affected by this
problems. In fact, they satisfy the same properties as bisimilarities for labelled transition systems:
both strong and weak probabilistic bisimilarities are transitive, and the strong and the weak
challenger characterization of weak probabilistic bisimilarity agree. The probabilistic variant is
thus a more satisfying candidate for a natural notion of behavioural equivalence on probabilistic
automata.

Another variation of weak bisimulation is rooted in the question, whether weak transitions
are allowed to be infinitary – as it is the case in the definitions we have presented so far – or
whether they are restricted to finitary transitions. In fact, both variants lead to reasonable no-
tions of bisimilarity satisfying all properties well-known from bisimilarities for LTS. Infinitary
transitions lead to coarser notions of bisimilarity and are also more widely used in the litera-
ture. Throughout this thesis, we have therefore adopted infinitary transitions for all notions of
bisimilarity.

Among the many possible variants of weak bisimilarity for probabilistic automata, we have
chosen the one that satisfies all relevant properties when compared to weak bisimilarity for LTS,
and that is, at the same time, commonly used in the literature.

Concluding Summary
In this chapter, we have introduced probabilistic automata as a model that augments labelled
transition systems by discrete probability decisions. We have defined and reviewed several es-
tablished notions of process equivalence, both strong and weak, and one preorder. Finally, we
shortly reviewed the decision algorithm for PA.
The most important insight of this chapter is that for PA, it is not clear what process relation

qualifies as a natural notion of observable behavioural equivalence. To foster our understanding
of what should be considered a natural notion of observable behaviour, we have introduced a
novel intuitive testing scenario akin to the one well-known for labelled transitions systems, but

and the author.

58

4.4. Summary and Discussion

extended to the probabilistic setting. This scenario suggests, that none of the known process
relations is actually ideal with respect to formalizing a natural notion of behavioural equivalence
on probabilistic automata.

59

5. Interactive Markov Chains
Interactive Markov chains (IMC) extend labelled transition systems by exponentially distributed
time delay transitions. It distinguishes between interactive transitions, which coincide with the
transitions known from labelled transition systems, and timed transitions, which are labelled
by a positive real value. Timed transitions with label λ denote a random time delay that is
governed by a negative exponential distribution with parameter λ. In this way IMC are a fully
conservative extension of labelled transition systems, in the sense that by dropping the timed
transitions, LTS can be fully regained. At the same time, by dropping the interactive transitions,
we obtain CTMC. The strict separation of interactive transitions and time transitions let IMC
stand out among most other compositional models and calculi in a stochastic setting, for example
TIPP [GHR92], EMPA [BG98], and PEPA [Hil96] . As summarized in [Cla+07], all of these
approaches share a different approach that integrates stochastic time and actions. While in IMC
actions happen instantaneous and do not consume time, in the other approaches the actions are
decorated by the delay. In this way, actions consume time directly. While this interweaving
of action and their duration may be intuitively appealing, it has several semantic drawbacks, as
detailed out in [Her02]. In fact, these drawbacks have led to the development of IMC.
Over the decades, IMC have turned out to be very successful models with broad areas of applica-

tion both in theory and practice-oriented research [Böd+09; Bou+08; BCS07b; BCS07a; BCS10;
Boz+09b; Boz+09a; Boz+11; CZM09; Cos+08; Cos+09; HJ08; ZN10; Hav+10; Est+12] .

Outline and Contributions. In this chapter, we give an overview of the state-of-the-art
theory of interactive Markov chains. The model itself will be introduce in Section 5.1. As for LTS,
parallel composition and hiding is introduced. The synchronization primitive is the stochastic
extension of the operators discussed in Chapter 4 and Chapter 3 as introduced in [Her02]. Also, a
notion of uniform representation will be introduced, that allows to express stochastic transitions
congruent to the immediate (probabilistic) transitions of PA and IMC. This representation will
be especially beneficial in the second part of this thesis, when we strive for a union of PA and
IMC in a single model class.
In Section 5.2, strong and weak bisimilarity will be defined. Section 5.3 provides a decision

algorithm for IMC. The algorithm is taken from [Her02], however slightly adapted in order to
better fit in our comparative setting. We conclude in Section 5.4.

5.1. Model
Definition 5.1 (Interactive Markov Chains). An Interactive Markov Chain (IMC) is a quin-
tuple (S, s̄,Act, ,), where

• S is a non-empty finite set of states,

• s̄ is the initial state,

61

5. Interactive Markov Chains

• Act is a set of actions consisting of immediate actions including the internal action τ ,

• ⊆ S × Act× S is a set of interactive transitions, and

• ⊆ S × R>0 × S is a multiset of timed transitions.
◁

The attentive reader may have noticed that our definition of interactive Markov chains differs
from the definition used in [Her02] by using a multiset for the collection of all timed transitions
instead of an ordinary set. In fact, this has been a (often adopted) mistake in the original work.
When a set is used, the definition of parallel composition, does not yield the expected results.

send0

send1

receive0

receive1

τ

τ

τ

τ

λ

µ

µ

λ

Figure 5.1.: Stochastic Version of a Simple Communication Channel

Example 5.1. In the LTS version of the noisy channel, we had to model a reception error with
a non-deterministic choice although a correct run of the system with respect to the model would
allow to always invert the value sent over the channel.

The timed transitions do not fix this problems as they only quantify the probability of taking
a transition over time. ◁

The semantic interpretation of an IMC corresponds to that of an CTMC concerning its stochas-
tic behaviour. A transition s λ s′ states that the IMC can change its state from s to s′ within d
time units with probability 1−e−λ·d. The probability is thus determined by a negative exponen-
tial distribution with parameter λ. As this distribution is uniquely determined by λ, it suffices
to label stochastic timed transitions with the delay. We observe that the greater λ, the higher
the probability to make a transition within d time units. In this sense, the higher λ is, the faster
the transition is. If more than one stochastic timed transition lead to the same state, their rates
accumulate. We therefore use

R(s, s′) =
∑Jλ | s λ s′ K

to denote the total rate with which s transitions to s′. If more than one state can be reached by
a stochastic timed transition, a competition between the states exists, called the race condition.
The probability to move from s to a particular state s′ within d time units is given by

R(s, s′)

R(s)
· (1− eR(s)·d),

62

5.1. Model

where R(s) =
∑

s′∈S R(s, s′). The latter is called the exit rate of s. We observe from the
formula of the race condition, that again a state s is left within a short period of time with a
higher probability the higher the sum of the rates leaving s, i.e. its exit rate, is. Once the state is
left, it is decided by a discrete probability, which of the potential successor states of s wins the
race. The probability that a particular state s′ wins the race is R(s,s′)

R(s) .
Immediate transitions are considered to consume no time when executed. This means that

no time passes when an immediate transition is taken. If we consider IMC as an open system
that awaits communication with its environment, it becomes clear that the point of time when
an immediate transition is executed cannot be determined without knowing the environment.
Therefore, in each state the immediate transition stay enabled until the state is left again, waiting
for a potential communication partner. The just said is only fully true for transitions labelled by
observable actions. For the internal action τ the case is different. Transitions labelled by τ are
considered to result from a successful communication, or to represent internal implementation
details, which we abstract from. As they are completely independent from external influences,
and their execution thus only depends on themselves, they can safely be assumed to take place
immediately without letting any time pass, as soon as a state is entered. The probability that
a stochastic timed transition fires at the same time, i.e. immediately upon activation, is zero.
Therefore, it is justifiable that internal transitions take precedence over stochastic timed transi-
tions. This is called the maximum progress assumption of interactive Markov chains.

Definition 5.2. In any IMC, internal transitions take precedence over stochastic timed transi-
tions. ◁

The maximum progress assumption implies that in states with both outgoing internal tran-
sitions and stochastic timed transitions the latter are semantically ineffective. Still, no such re-
strictions are imposed structurally. Instead, the maximum progress assumption will be formally
imposed as a side condition of the bisimilarities defined in Section 5.2.
Notation 5.1. We use the predicate s↓ to identify states that do not have any outgoing internal
transitions. Such states are usually called stable. Later, it will turn out useful to lift the predicate
↓ to distributions over states. We do this in the usual pointwise manner, by lettings µ↓ hold if
and only if s↓ for each s ∈ Supp(µ).

Uniform Representation It is often convenient to use a notational variant of timed tran-
sition predicate, where all outgoing Markovian timed transitions of one state are represented in
contracted form, as a special probabilistic transition labelled with the overall exit rate of the state.
Furthermore, as timed transitions only contribute to observable semantic behaviour if they orig-
inate from stable states (as formulated by the maximal progress assumption), it is convenient to
incorporate the stability directly into this new transition relation. In this way, the new transi-
tion predicate only captures those timed transitions that are semantically actually possible due to
stability of the originating state. Recall that we denote stability of a state s as s↓.

63

5. Interactive Markov Chains

Notation 5.2 (Uniform Stochastic Timed Transitions).
We write s

χ(r)−−−→ µ for r ∈ R≥0 if and only if s↓ and r = R(s) and

• if r = 0 then µ = δ(s),

• if r ̸= 0 then for all states t the distribution µ satisfies µ(t) = 1
r ·

∑
(s,x,t)∈

x.

We let Actχ denote the set Act ∪ {χ(r) | r ∈ R≥0 }.

Definition 5.3 (Uniform Representation of an IMC). The uniform representationAU of an
IMC A = (S, s̄,Act, ,) is a quadruple (S′, s̄′,Actχ, ′, ′), where

• S′ = S,

• s̄′ = s̄,

• ′ = , and

• ′ = { (s, χ(r), µ) | s χ(r)−−−→ µ }.

◁

Uniform representations are very similar to IMC. The main difference is that the set of actions
Actχ now spans Act and, in principle, all possible rates. To distinguish these special rate labels
from rates, though, they are written in the form χ(r). Note that χ(0) is also a possible label,
while 0 is not a valid rate in an ordinary IMC. It denotes the absence of timed transitions in a stable
state in the original IMC. The benefit of uniform representations it that now both immediate and
timed transitions are represented in a uniform way, namely as transitions leading to a distribution
over states. Furthermore, every stable state s ∈ S has exactly one outgoing timed transition that
fully describes its timed behaviour. Also, a timed transition is present at a state exactly if the state
is stable. Note that the relation ′ is a set, and not a multiset. While the uniform representation
of each IMC is unique, it is not possible to recover an IMC from its uniform representation in a
unique way. A stochastic timed transitions can be recovered in an infinite number of ways
by representing the total rate with which a state is reached by a summation of arbitrary many

summands. For instance, s
χ(5)−−−→ δ(s′) can be translated to s 2 s′ and s 3 s′ and also s 1 s′

and s 4 s′ and also s 0.3 s′, s 0.7 s′ and s 4 s′, and so on.

Remark 5.1. As the standard transformation of a uniform representation of an IMC into an ordi-

nary IMC we fix the IMC where s r t if and only if s
χ(r′)−−−→ µ with µ(t) = r in the uniform

representation.

Parallel composition
Parallel composition for IMC is an extension of the parallel composition operation we have al-
ready introduced for LTS. It fully agrees on the immediate transition relation , where parallel
composition results in the interleaving of the transitions of the components. One of the main

64

5.1. Model

reasons why IMC are a mathematically appealing model is that exactly this interleaving structure
can be transferred also to the timed transition relation .
In order to denote parallel composition of two IMC, we will write A ||A A′, where A is an

arbitrary set of actions excluding the internal action τ . It is notationally helpful to use the
symbol ||A as syntactic sugar so that if s and s′ are two states, we write s ||A s′ to denote the pair
(s, s′).

Definition 5.4 (Parallel composition). Given two IMC A = (S, s̄,Act, ,) and A′ =

(S′, s̄′,Act, ′, ′), their parallel composition A ||A A′ is defined as the automaton A∗ =

(S∗, s̄∗,Act, ∗, ∗) where

• S∗ = S × S′

• s̄∗ = s̄ ||A s̄′

• ∗ is the least relation satisfying

s ||A s′ a ∗t ||A t′ if a ∈ A and s a t and s′ a ′t′ (sync)

s ||A s′ a ∗t ||A s′ if a /∈ A and s a t (parL)

s ||A s′ a ∗s ||A t′ if a /∈ A and s′ a ′t′. (parR)

• ∗ is the least multirelation satisfying

s ||A s′ λ ∗t ||A s′ if s λ t (parLM)

s ||A s′ λ ∗s ||A t′ if s′ λ ′t′ (parRM)

◁

For LTS and PA, our definition of parallel composition marginally deviated from the original
definitions. For IMC, this corresponds to the original definition [Her02; HK10].

Definition 5.5 (Abstraction). Given a IMC A = (S, s̄,Act, ,), its abstraction A|A =

(S′, s̄′,Act, ′, ′) with respect to the set of actions A ⊆ Act \ {τ} satisfies

• S′ = S

• s̄′ = s̄

• is the least relation satisfying

s a ′t if a /∈ A and s a t

s τ ′t if a ∈ A and s a t

• ′ =

◁

65

5. Interactive Markov Chains

duplicate

a

reset

1.0211s

Figure 5.2.: Machine with Reset Button and Measurement of Time

5.2. Bisimilarities

In the context of stochastic timed systems, a similar testing scenario as the one we have discussed
in the beginning of Section 4.2.3 has been investigated in [WMB05]. The precise underlying
model in this scenario are continuous time Markov chains whose transitions are labelled by
actions. Note that this model is rather different to the models we are interested in IMC. The
interesting aspect, however, is that the machine in this scenario has been extended with one
additional display in comparison to the machine of the probabilistic scenario. It provides timing
information, that is used to observe and test the time behaviour induced by the Markovian delays
of the CTMC.

Interactive Markov chains are a combination of labelled transition systems and continuous
time Markov chains. The level of abstraction at which they allow to describe systems allows the
same observations we have discussed for labelled transition systems, but extends them by a prob-
abilistic notion of time. As a consequence, an observer can observe the passage of time. More
precisely, he can observe a delay of time occurring between two other observations. As by the
abstractions imposed by the definition of IMC, these observations cannot be precisely determined
time durations, but only probability distributions over time delays, which are governed by an
exponential distribution with some total delay rate λ ∈ R>0. We may imagine that the observer
is able to perform an infinite number of stochastic experiments in every moment (by virtue of
its unbounded number of copies of the system) to derive this information.

As for probabilistic automata, stochastic time also introduces a probabilistic choice over suc-
cessive behaviour after certain events. While in probabilistic automata, every action induces an
probabilistic experiment which is performed in order to determine the future behaviour of the
system after the immediate transitions has occurred, in interactive Markov chains such a choice
only appears after timed transitions, while action transitions always lead to a unique successor
state.

As for probabilistic automata, will defer the discussion whether the existing notions of (weak)
bisimilarity are reasonable observational equivalences for its model class to Chapter 8.

66

5.2. Bisimilarities

5.2.1. Strong Bisimilarity
Definition 5.6 (Strong IMC Bisimulation). Let (S, s̄,Act, ,) be an IMC. An equiva-
lence relation R on S is a strong IMC bisimulation, if whenever s R t then

1. s a s′ for some a ∈ Act and s′ ∈ S implies t a t′ for some t′ with s′ R t′, and

2. s
χ(x)−−−→ µ for some x ∈ R≥0 implies t

χ(x)−−−→ γ for some γ and µ L(R) γ.

◁

We write s ∼IMC t if some strong IMC bisimulation R exists with s R t. We say that two IMC
A and A′ are strong IMC bisimilar if in their disjoint union the two initial states are strong IMC
bisimilar, i.e. s̄ ∼IMC s̄′.
It is straightforward to show that strong IMC bisimilarity is a bisimulation itself and also an

equivalence relation. Furthermore, it is a congruence with respect to the two compositions we
have defined.

Theorem 5.1. strong IMC bisimilarity ∼IMC

1. is the largest bisimulation relation,

2. is an equivalence relation, and

3. is a congruence with respect to parallel composition and abstraction.

5.2.2. Weak Bisimilarity
The following characterization of weak IMC bisimulation incorporates the notion of combined
transitions that we have introduced for PA. In fact, replacing the combined transitions in this
definition by ordinary transitions does not make a semantic difference. So on its own, this
characterization is not particularly interesting. As one of the goals of this thesis is to create a
synthesis of both IMC and PA, this characterization turns out to be a necessary step, as it allows
to treat PA and IMC weak bisimilarity in a uniform way. We will also use this characterization to
derive a straightforward decision algorithm for≈IMC that arises from the corresponding algorithm
for ≈PA only with minimal adaptions.
Notationally, we will make no distinction between s a s′ and s a δ(s′) in the following.

This allows us to apply the notion of a combined weak transition without further adaptions.

Definition 5.7 (Weak IMC Bisimulation). Let (S, s̄,Act, ,) be an IMC. An equivalence
relation R on S is a weak IMC bisimulation if and only if whenever s R t then

1. s a s′ for some a ∈ Act and s′ ∈ S implies t a
==⇒c µ for some µ ∈ Dist(S) with

δ(s′) L(R) µ, and

2. s
χ(r)−−−→ µ for some r ∈ R≥0 implies t

χ(r)
===⇒c γ for some γ and µ L(R) γ.

3. If s↓ then t ==⇒ t′ for some t′ ∈ S with t′↓.

◁

67

5. Interactive Markov Chains

We write s ≈IMC t if some weak IMC bisimulation R exists with s R t. We say that two IMC
A and A′ are weak IMC bisimilar if in their disjoint union the two initial states are weak IMC
bisimilar, i.e. s̄ ≈IMC s̄′.

It is straightforward to show that weak IMC bisimilarity is a bisimulation itself and also an
equivalence relation. Furthermore, it is a congruence with respect to the two compositions we
have defined.

Theorem 5.2. Weak IMC bisimilarity ≈IMC

1. is the largest bisimulation relation,

2. is an equivalence relation, and

3. is a congruence with respect to parallel composition and abstraction.

Our definition of weak IMC bisimulation cannot be found in [Her02] in exactly this form. The
characterization that is closest stems from Lemma 4.3 of [Her02]. We take this characterization
as the original definition of weak IMC bisimulation and show that our characterization coincides
with it. We use notations in the following definition deviating from [Her02], which, however,
do not affect the underlying semantics.

Definition 5.8 (Weak IMC Bisimulation according to Lemma 4.3 of [Her02]). An equiva-
lence relationR is a weak IMC bisimulation if s R t implies for all a ∈ Act and for all equivalence
classes C of R,

1. s a s′ implies t a
==⇒ t′ for some t′ with s′ R t′,

2. s↓ implies t ==⇒ t′ and t′↓ for some t′ and∑
(s,x,s′)∈(∩ S×R>0×C)

x =
∑

(t′s,x,t′′)∈(∩ S×R>0×C)

x

◁

Lemma 5.1. The resulting bisimilarities of Definition 5.7 and 5.8 agree.

5.3. Decision Algorithm
The algorithm we present in the following is an adaption of the algorithm we have seen for prob-
abilistic automata. This is possible, as we can treat immediate transitions and timed transitions
in a uniform way owing to the uniform representation of IMC, in which χ(r) can be treated like
an ordinary action. From this perspective, the only difference between PA and IMC remains then
that immediate transitions in IMC end in a Dirac distribution instead of arbitrary distributions
over states. Even though convex combinations of transitions are not particularly reasonable
semantically in IMC, our characterization of weak IMC bisimilarity makes use of them. Beside
others, exactly for the reason that it allows a straightforward adaption of the decision algorithm
for PA. Only for the right treatment of stability extra care is needed. Algorithmically, in fact,
this check will implicitly happen during the conversion of the IMC to its uniform representation,
which is done as a preprocessing step.

68

5.3. Decision Algorithm

Decide(A)

1: A′ = Uniformize(A)
2: return Quotient(A′

Figure 5.3.: Computes partitioning W of S
according to ≈IMC

Quotient(A)

1: W = {S};
2: repeat
3: W′ = W;
4: (C, a, ρ) = FindSplit(W);
5: W = Refine(W, (C, a, ρ));
6: until W = W′

7: return W

Figure 5.4.: Compute partitioning W
according to ≈IMC on a IMC A in
uniform representation

Figure 5.3 summarizes the decision algorithm, which receives an arbitrary IMC as input and
returns a partitioning W of its state space, in which two states s and t are contained in the same
partition if and only if s ≈IMC t. As a partitioning of a state space implicitly defines an equivalence
relation over states, we may use the notation sWt to denote that s and t lie in the same partition
ofW, and, in general, treatW like an equivalence relation whenever convenient without further
mentioning.
The preprocessing in Uniformize transforms an IMC into its uniform representation. For every

state of the IMC it converts existing transitions into their uniform representation, if the state
has no outgoing τ transitions, i.e. it is stable. Otherwise, it removes all transitions of this
state. If a state s is stable, but has no outgoing transitions, the transition (s, χ(0), δ(s)) is
added to the relation of the uniform representation. This algorithm can be computed in
linear time with respect to the number of states and transitions of the input IMC.
The second step of the decision algorithm is then to compute the quotient with respect to

≈IMC on the uniform representation. The respective algorithm can be found in Figure 5.4. It
applies the standard partition refinement approach that we already know from LTS and PA. The
procedure Refine works exactly as for the other two models. For procedure FindSplit we can
actually take exactly the same procedure as for PA, with the minimal adaption that we treat χ(r)
for every r ∈ R≥0 like an ordinary action.

Theorem 5.3. Decide(A) computes ≈IMC in polynomial time.

Sketch. The interesting aspect is to show that stability is preserved according to Definition 5.7,
and that timed transitions may only trigger a splitting, if they originate from stable state. The last
point is ensured by Uniformize, as from all non-stable states the timed transitions are removed.
In this way, also the stability condition is ensured (Condition 3). Whenever a state is s stable, it
has a transitionsχ(r) for r ∈ R≥0. A state t can only be bisimilar to s if t ==⇒ t′↓ and s ≈IMC t′

by the first condition of bisimilarity. But then, this state t′ must enable a transition t′
χ(r) (note

the identical rates). Thus, checking the second condition of bisimilarity ensures also the stability
condition.

In [Her02], a more elaborate algorithm is devised that does not rely on techniques developed
for PA, and thus can be expected to yield better performance in most cases. The intention behind

69

5. Interactive Markov Chains

presenting an alternative variant has been to allow for a simple direct comparison between the
fundamental differences and similarities behind the decision algorithms for the various bisimilari-
ties. This approach turns out to be specifically instructive when we consider decision algorithms
for Markov automata in Chapter 10.

5.4. Summary and Discussion
This chapter has reviewed the model of interactive Markov chains and its associated notions of
bisimilarity. As in the chapters before, we have also reviewed a decision algorithm.

70

6. Comparative Semantics

In mathematics, an algebra is usually considered to be a set of constants and operations defined
over a carrier set together with a set of equational laws, also called axioms, that characterize
the constants and operators, or more precisely, the way they interact. Algebras are a means
to describe mathematical structures in an abstract way without the need to actually devise the
concrete objects. Very often, the axioms of an algebra are satisfied by more than one concrete
carrier set. In this way, different mathematical structures can be described concisely by means of
the axioms of their algebra. Furthermore, if different structures can be characterized by different
set of axioms that only differ in few places, their similarities and differences become apparent
instantly.

Process algebra aims to describes concurrent processes in terms of an algebra. It allows to de-
scribe arbitrary processes in terms of syntactic expressions of a formal language. The expressions
of such a language consists of constants and a family of operators. Typical for an algebra, a pro-
cess algebra is compositional in the sense that arbitrarily complex expressions can be composed
from simpler ones. Axioms are used to describe when syntactically different processes should
be considered semantically equivalent. The general benefits of algebras immediately carry over
to process algebras: the semantic properties of different models of concurrency are expressed
in a concise way, but independent of their concrete mathematical structure. For these reasons,
process algebra is especially suited for formal comparisons of different models of concurrency.
Process theories have been developed that are a process algebra by design, such as for instance
ACP [BW90; BPS01; Bae+10]. For most models of concurrency, however, including those we
consider in this thesis, formal process languages and axiom sets have been developed in hindsight
with the intention to precisely characterize the semantic similarities and differences between the
different approaches.

Outline and Contributions. The purpose of this chapter is to review the introduced
models from a process algebraic perspective, and to unfold the semantic similarities and differ-
ences between the various notions of bisimilarity, and also of probabilistic forward simulation.
To this end, we will introduce a small algebraic language for each of our models, LTS, PA and
IMC in Section 6.1. For each language, we will give a semantics in terms of the respective models.
Based on these languages, we will present sound and complete axiomatizations for the respective
bisimilarities in Section 6.2, and for probabilistic forward simulation in Section 6.3. This means,
that the axioms completely characterize the respective semantic relations. The axioms that are
shared by several or all axiomatizations, and the ones that distinguish an axiomatization from
another, are then the pivots that manifest the semantic similarities and differences, respectively.
Section 6.4 concludes.

71

6. Comparative Semantics

6.1. Languages
In the following, we will define languages for LTS, PA, and IMC. All languages are rather similar
concerning their basic constants and operators. This is not surprising, as the three models are
similar in their structures. To focus on the essential differences of the bisimilarities, and to not
get lost in intricate technicalities that only provide little insight, we restrict our attention to finite
and acyclic systems. In fact, we make one exception to this restriction: we add a special divergent
process that is capable of performing an unbounded sequence of internal actions. This process is
instrumental to make apparent a specific core difference between weak probabilistic bisimilarity
and weak IMC bisimilarity.

6.1.1. Syntax
In this section, we introduce the syntax for our process languages. All languages contain as
operators basic action prefixing, non-deterministic choice, and a special divergence operator, ∆,
and as constant the terminated process 0. They differ with respect to the question of what an
action precisely is.

Labelled Transitions Systems The process language that corresponds to the model
of labelled transition systems is a strict subset of the well-known calculus CCS [Mil89b], en-
hanced by the divergence operator, which does not appear in Milner’s original calculus, but has
appeared in several endeavours to axiomatize certain more complex notions of bisimilarity e.g.
in [LDH05].

Definition 6.1 (LTS Syntax). Let a ∈ Act, and A ⊆ Act. We define the language LTS by the
following grammar in Backus-Naur form:

LTS ∋ E,E′ ::= 0 | a.E | E + E′ | ∆(E)

We write LTS for the set of LTS expressions. We use E, E1, E2, F , . . . to range over LTS. ◁

With 0 we denote the process incapable of any behaviour. In other words, it represents a com-
pletely terminated process. The capability of executing an action a is expressed by the prefix
operator “a.”. In fact, this is actually a family of unary operators, with one member for each
a ∈ Act. An expression a.E then expresses a process that starts with the action a and then con-
tinues as E. The expression E + E′ denotes non-deterministic choice between two expressions.
It may either behave like E or like E′, as long as they are able to perform actions. For example
E+0 cannot decide to behave like 0, as 0 does not exhibit any actions. The ability of a process to
(exclusively) perform an unbounded number of τ actions in uninterrupted succession is denoted
by the expression ∆(E). We also call such behaviour divergence. Whenever E can perform an
action, divergence can be escaped by this action by continuing as whatever process E may evolve
to.

Notation 6.1. Since the operator + is associative and commutative, we use
∑

i∈I Ei to represent
the sum of LTS-terms (I finite).

72

6.1. Languages

Probabilistic Automata The essential difference between labelled transition system and
probabilistic automata is that transitions of the latter have several different successor states, which
they reach with a certain probability, instead of one single successor states. In our calculus, this
has both semantic and syntactic consequences, as for example the process prefix operator a.
cannot be longer completed by a simple process expression like in a.E, but has to be followed
by a distribution over process expressions. Thus, we need the ability to represent arbitrary
distributions syntactically. For this reason, our language for probabilistic processes will provide
process expressions as well as distribution expressions. The syntactic structure of the following
calculus is strongly inspired by existing calculi for probabilistic processes, e.g. [DPP05; DP07;
DP05; Den05; PS04; BS01].

Definition 6.2 (PA Syntax). Let a ∈ Act, A ⊆ Act, and p ∈ [0, 1]. We define the languages PA
of expressions by the following syntax.

PA ∋ E,E′ ::= 0 | a.D | E + E′ | ∆(E)

where D ∈ D is a distribution expression with syntax D ::=
⊕

i∈I piEi. If the sum expression
has only one operand, we write δ(E) instead of

⊕
1 · E. ◁

We write D and PA for the set of D-expressions and PA expressions, respectively. We use E, E1,
E2, F , . . . to range over of PA, and D , D1,. . . to range over D expressions respectively. Misusing
notation slightly, we write E ∈ Supp(D) if E = Ei for some Ei in

⊕
i∈I piEi = D .

LTS and PA only differ in the prefix operator. Whereas in LTS an action leads to the behaviour
of a certain process, in PA it leads to a distribution over processes, e.g. the process decides
probabilistically how to behave afterwards.
The process∆(E) here describes a process which performs an infinite number of τ transitions

in succession with probability 1. Whenever E can perform an action, divergence can be escaped
by this action by continuing as whatever distribution E may evolve to.

Notation 6.2. Since the operators + is associative and commutative, we use
∑

i∈I Ei to represent
the sum of PA-terms (I finite). We let the notational conventions defined for ⊕ in Section 2.4
also apply here.

Interactive Markov Chains The following language is taken from [Her02], restricted
to the operators essential for our comparison. The language in [Her02] includes the symbol ⊥,
instead of ∆. Different to ∆, it is a process constant and not an unary operator. Both denote
some notion of divergence, but ⊥ more precisely represents underspecified processes. We do
not deal with this aspect here and hence deviate from the original language of [Her02]. In our
setting, both operators have the same semantical implications concerning the considered notions
of bisimilarity.

Definition 6.3 (IMC Syntax). Let λ ∈ R>0, a ∈ Act, A ⊆ Act. We define the language IMC
by the following grammar in Backus-Naur form:

IMC ∋ E,E′ ::= 0 | a.E | λ.E | E + E′ | ∆(E)

◁

73

6. Comparative Semantics

ab

c

τ

a.c.∆(0) + b.0

c.∆(0)0

∆(0)

Figure 6.1.: Semantics of a.c.∆(0) + b.0.

We write IMC for the set of IMC expressions. We use E, E1, E2, F , . . . to range over of IMC.
The only difference to our basic process calculus is the inclusion of a new prefix operator, that

allows positive real numbers as prefix. In the same way as the action prefix operators denotes an
immediate transition labelled by an action, this operator denotes a timed transition labelled by
some rate representing the parameter of an exponential distributed time delay.

Notation 6.3. Since the operators + is associative and commutative, we use
∑

i∈I Ei to represent
the sum of IMC-terms (I finite).

6.1.2. Semantics
We will formalize the intuitive interpretation of the expressions by means of structural opera-
tional rules, which generate an special instance of the underlying model, i.e. a labelled transition
system, a probabilistic automaton or a interactive Markov chain, respectively. The semantics of
each expression is then defined by mapping them onto states in the system. The state space of
these systems will be defined as the set of all respective language expressions. In this way, we
implicitly define the mapping for each expression E. We obtain one single automaton for each
of the languages LTS, PA and IMC with infinite state space that covers every expression. The
concrete semantics of an expression E is then obtained in a final step by reducing the infinite
system to the subset reachable from state E.

Labelled Transition Systems For LTS expressions, we will provide rules for action
prefix (a.), choice (+). Termination (0) does not require specific rules.

Definition 6.4 (LTS Semantics).
Let As̄

LTS
= (S, s̄,Act,) denote a LTS that parameterized by its initial state s̄ ∈ S. Let

S = LTS and let the transition relation ⊆ LTS×Act× LTS be the least relation given by the
rules in Table 6.1.

The semantics of an arbitrary expression E ∈ LTS is defined as AE
LTS

. ◁

As mentioned before, we only consider the reachable part of the semantics underlying an

74

6.1. Languages

c

τ

a

0.60.4

a.(0.4 · 0 ⊕ 0.6 · (c.∆(0)))

c.∆(0)0

∆(0)

Figure 6.2.: Semantics of a.((0.4 · 0)⊕0.4 (c.∆(0)))

expression. In this way, we can draw its relevant parts.1

Example 6.1. The semantics of a.c.∆(0) + b.0 is the LTS in Figure 6.1. The states are labelled
by their corresponding expressions. Note that that the state ∆(0) has an internal self-loop. Re-
call that we only consider acyclic systems with the notable exception of self-loops of internal
transitions that can be attached to any state of the process via the operator ∆. This suffices to
capture the essence of divergent behaviour. ◁

Probabilistic Automata
Definition 6.5 (PA Semantics).
LetAs̄

PA
= (S, s̄,Act,) denote a PA that is parameterized by its initial state s̄ ∈ S. Let S = PA

and let the transition relation ⊆ PA × Act × PA be the least relation given by the rules in
Table 6.2.

The semantics of an arbitrary expression E ∈ PA is defined as AE
PA
. ◁

Interactive Markov Chains As usual for Markovian calculi, the Markovian transition
relation is a multi-relation, as the precise number of occurrences of the same rate leading
to a state determines the stochastic behaviour. For instance, for the expression (λ).0 + (λ).0

two transitions are generated. Whenever there are k different proof trees for a transition λ

the multi-relation will contain k such transitions. The need to represent multiplicities, stems
from our interpretation of the choice operator “+” in the presence of delays. The delay until
the choice is actually resolved is governed by an exponential measure given by the sum of all
competing rates. As a consequence, the behaviour of (λ).0 + (λ).0 should be the same as that of
(2λ).0, which has a delay of 2λ. In the former expression, however, we represent the delay by
two separate transitions labelled by λ that add up to 2λ. As the two transitions are between the
same two states and labelled by the same label, we formally need to resort to a multi-relation to
describe this situation adequately [Göt94; Hil96].
1Formally, our definition ofAE

LTS
has an infinite state space, while we will usually treat it like a finite system for obvious

reasons. Adapting the definition such that the set of states if effectively reduced to the reachable subset is trivial.

75

6. Comparative Semantics

c

τ

λa

λ.c.∆(0) + a.0

c.∆(0)0

∆(0)

Figure 6.3.: Reachable Part of the Semantics of λ.c.∆(0) + a.0

Definition 6.6 (IMC Semantics).
Let As̄

IMC
= (S, s̄,Act, ,) denote a IMC that is parameterized by its initial state s̄ ∈ S.

Let S = IMC and let the transition relation ⊆ IMC × Act × IMC be the least relation given
by the rules in Table 6.1, and let the transition relation ⊆ IMC × R>0 × IMC be the least
multi-relation given by the rules in Table 6.3, where the multiplicity of a transition is determined
by the number of derivations that witness its membership.2

The semantics of an arbitrary expression E ∈ IMC is defined as AE
IMC

. ◁

prefix
a.E a E

div1
∆(E) τ ∆(E)

div2
E a E′

∆(E) a E′

choiceL
E a E′

E + F a E′
choiceR

F a F ′

E + F a F ′

Table 6.1.: Operational semantic rules for immediate transitions.

Theorem 6.1 (Semantic Correspondence). The semantics of every expression E of any of the
languages LTS, PA,IMC is isomorphic to some finite LTS, PA,IMC that is acyclic, except for τ
self-loops3 and vice versa.

6.1.3. Congruence Relations
Due to the strong semantic correspondence between the semantics of process terms and their
models (Theorem 6.1), it is not surprising that the notions of bisimilarity we have discussed so
2 We refer the reader to [Nic+13; BDL13; Bra08] for alternative and arguably more elegant ways to formally deal with
potentially multiple occurrences of the same stochastic transition. We here follow the original approach of [Her02].

3stemming from the use of ∆

76

6.1. Languages

prefix
a.
⊕

i∈I piEi
a ⟨ (Ei : pi) | i ∈ I ⟩

div1
∆(E) τ δ(∆(E))

div2
E a µ

∆(E) a µ

choiceL
P a µ

P +Q a µ
choiceR

Q a µ

P +Q a µ

Table 6.2.: Operational semantic rules for immediate probabilistic transitions.

prefix-M
λ.E λ E

λ ∈ R>0

choiceL-M
E λ E′

E + F λ E′
choiceR-M

F λ F ′

E + F λ F ′

Table 6.3.: Operational semantic rules for Markovian transitions.

far can be lifted to process terms in a straightforward way, by calling E and F bisimilar if their
respective underlying semantic models are bisimilar.
We will define this in a generic way for arbitrary relations over states and arbitrary process

languages.

Definition 6.7. Let S be a non-empty set. Let L be a language whose expressions E,F have
a semantics J·K : L → S that maps into S. A relation R ⊆ S × S is lifted to a relation R′ over
L× L as follows:

E R′ F if and only if JEK R JF K.
◁

Notation 6.4. In the following, we will not discriminate between a relation R and its lifting R′.
Axiomatizations can only faithfully characterize an equivalence relation, if this relation is a

congruence with respect to all operators of the algebra (or at least those used in any of the
axioms). Otherwise, we could not safely replace meta variables by expressions without risking
to violate the soundness of the syntactic equations that we derived by means of the axioms.

It is a well-known deficiency of weak bisimilarities that they fail to be a congruence for the
non-deterministic choice operator +.

Example 6.2. We consider an example for the most simplest case, labelled transition systems.
Consider the two processes τ.a.0 and a.0. Obviously, both are weakly LTS bisimilar. However,
for example the processes c.0 + a.0 and c.0 + τ.a.0 are not. We depict their underlying labelled
transition systems in Figure 6.4. The reason is that the left process can perform a τ transition to

77

6. Comparative Semantics

τ

a

cac

c.0 + τ.a.0 c.0 + a.0

a.0

0 0

Figure 6.4.: Weak Bisimulation is No Congruence

a.0, but the right process, c.0 + a.0, cannot perform any τ transition. Hence c.0 + a.0 ≈LTS a.0
were to hold, if their initial states were bisimilar. As this process can now still perform b, whereas
the process a.0 cannot, the two initial process cannot be bisimilar. ◁

The problem is that weak bisimilarity allows to equate processes that only differ in an initial τ
transition. However, in the presence of non-deterministic choice, such a τ transition can sponta-
neously disable the other summands of the choice. It is well-known that the largest congruence
within any of the three notions of weak bisimilarity that we consider here, can be obtained by en-
forcing that two congruent processes must agree in their ability to perform an initial τ transition.
This is usually referred to as the root condition.

Definition 6.8 (Root Condition).

• E ≃LTS F holds if and only if E ≈LTS F and whenever

1. E τ E′ then F τ ◦==⇒ F ′ and E′ ≈LTS F
′, and

2. F τ F ′ then E τ ◦==⇒ E′ and E′ ≈LTS F
′.

• E ≃PA F holds if and only if E ≈PA F and whenever

1. E τ µ then F
τ−−→c ◦==⇒cγ and µ L(≈PA) γ, and

2. F τ γ then E
τ−−→c ◦==⇒cµ and µ L(≈PA) γ.

• E ≃IMC F holds if and only if E ≈IMC F and whenever

1. E τ E′ then F τ ◦==⇒ F ′ and E′ ≈IMC F ′, and

2. F τ F ′ then E τ ◦==⇒ E′ and E′ ≈IMC F ′.

◁

Theorem 6.2. The relations ≃LTS,≃PA, and ≃IMC are congruences with respect to all operators
of the respective languages.

6.2. Axiomatization
The purpose of this section is to compare the different process relations introduced in the preced-
ing chapters, in terms of the sets of axioms that characterize them as precise as possible. Simply

78

6.2. Axiomatization

speaking, an axiom is a syntactic laws that consist of two process expressions that are joined by
the equality sign =. An axiomatization of a process relation ≃ is a set A of axioms, that charac-
terize ≃ as precisely as possible. This means, that we first of all demand that the axioms in A are
sound with respect to ≃. An axiom is called sound with respect to a relation ≃ if E = F implies
E ≃ F . Then, if possible, we strive for axiomatizations that are also complete. Complete means
that whenever E ≃ F , we can also establish E = F by the axioms.
Before we investigate the different axiomatization, we need to fix a few formalities.

Meta Variables and Substitution While we have so far said that axioms consist of
expressions of our languages, this is not true in the strict sense. In fact, we make additional use
of meta variables that act like place holders that can be instantiated by arbitrary expressions. We
denote meta variables by E,F,G,H . . . as well as primed and indexed variants for LTS, PA, IMC
expressions, and D and primed and indexed variants for distribution expressions. In fact, we
already used meta variables when we defined the languages by means of a grammar.
Strictly speaking, meta variables should not be used in axioms, as they are not part of the

expressions of our languages. We use meta variables, however, to express patterns of axioms,
which allows us to notate an infinite number of axioms in a finite manner.

Example 6.3. In a strict sense, E + E = E cannot be an axiom as the letter E is not a valid
expression for any of our process languages. We call it, however, ameta axiom, as it represents in-
finitely many axioms, that all follow the same pattern. This meta axiom represents, for instance,
the axioms 0 + 0 = 0, a.b.0 + a.b.0 = a.b.0 and so on. ◁

For simplicity, we will treat meta variables as if they were expressions themselves. So if we
speak of expressions in the following, we usually refer also to expressions that include meta
variables. We also will call the resulting meta axioms simply axioms in the following.

For arbitrary expressionsG andH (possibly containing meta variables themselves), and ameta
variable F we write (H) {G/F}, to mean that every occurrence of the meta variable F in H is
replaced by the expression G.

Example 6.4. The notation (E + E) {a.0 + E/E} stands for (a.0 + E) + (a.0 + E). ◁

We denote the simultaneous replacement of variables E1, . . . , En by the expressions
H1, . . . , Hn by (G) {H1, . . . , Hn/E1, . . . , En}. Simultaneous replacement means that all replace-
ments take place at the same moment.

Example 6.5. Writing (E + F + E) {a.F, b.0/E, F} stands for a.F + b.0 + a.F , whereas
writing ((E + F + E) {a.F/E}) {b.0/F} stands for a.b.0 + b.0 + a.b.0. ◁

Syntactic Equations and Axiom Instances A syntactic equation is a pair of expres-
sions (including meta variables) joined by the symbol =. Note that every axiom is a syntactic
equation. We say a syntactic equation G = G′ is an instance of an axiom H = H ′ if there exist
meta variables E1, . . . , En and expressions H1, . . . , Hn such that G = G′ is identical to

(H) {H1, . . . , Hn/E1, . . . , En} = (H ′) {H1, . . . , Hn/E1, . . . , En} .

Provable Syntactic Rewritability We say two expressions E and F are provably syn-
tactic rewritable with respect to the axioms in the set A, written as A |= E < F , if

79

6. Comparative Semantics

1. E < F is an instance of an axiom in A, or

2. there is an expression E′ such that A |= E < E′ and A |= E′ < F .

Notation 6.5 (Provable Syntactic Equality). If the set of axioms A is reflexive and symmetric,
we write E = F instead of E < F and say the two expressions E and F are provably syntactic
equivalent.

As we have discussed, axiomatizations are finite sets, or at least finitely representable sets of
syntactic laws that are aimed at precisely characterizing a process relation. Their strength is that
by comparing the precise axioms that two axiomatization of different process relations have in
common, and in which axioms they differ, we are able to precisely pinpoint semantic differences
and similarities between the relations. We will use this power of axiomatizations in the rest of
this chapter to analyse and discuss the semantic subtleties of the various process relations we have
seen so far.

6.2.1. The Axioms
The sound and complete axiomatizations for the calculi together with their respective weak con-
gruences we review in this chapter have been introduced by [Mil89a], [BS01] and [Her02], re-
spectively. For LTS and IMC, the axiomatizations actually extend to arbitrary finite processes
including recursion. For PA, the respective extension of the axiom set have been established later
by [DPP05]. Also for various other flavors of probabilistic models and notions of process be-
haviour, that we will not consider in this thesis, sound and complete axiomatizations have been
provided [DP07; DP05; Den05; ABW06; PS04; BS01; JS90; LS92; And02; BBS95; Den+08].
Due to the introduction of the special operator ∆ in the calculi, our axioms slightly deviate

from the original axioms from the literature. We will discuss this thoroughly.
To illuminate the differences and similarities between the calculi and their respective weak

bisimulation congruences in the following as clear as possible, we present and discuss the axioms
not grouped by the congruence they axiomatize, but in such a way that the semantic differences
and similarities become apparent immediately by a thematic side-by-side comparison.

Common Axioms For equivalence relations, the set of axioms A must always be reflexive
and symmetric. We will not state this explicitly in the following.
The set of axioms that are shared by all relation is rather small. It is summarized in Table 6.4.

Axioms (COM) and (ASS) state that non-deterministic choice is both commutative and associative.
The main difference is that syntactically, it is possible to provide a choice between an arbitrary
process and the terminated process 0, for example E + 0, however, semantically, this cannot be
distinguished from the process E, as 0 adds no visible behaviour. Consequently, axiom (NEUT)
allows to eliminate 0 from non-deterministic choices.

(COM) E + F = F + E
(ASS) E + (F +G) = (E + F) +G
(NEUT) E + 0 = E

Table 6.4.: Basic Process Axioms (Common to All Calculi)

80

6.2. Axiomatization

LTS, PA IMC

(IDEM) E + E = E a.E + a.E = a.E (IDEM-1)
λ1.E + λ2.E = (λ1 + λ2).E (IDEM-2)

Table 6.5.: Idempotency Axioms

Idempotency It seems surprising that among the axioms common to all axiomatization,
no axiom exists that allows to remove duplicate summands in a non-deterministic choice, for
example like E + E = E. Such a law seems very reasonable, as a non-deterministic choice
between identical processes seems to semantically irrelevant. Usually, such an axiom is called an
idempotency law. In Table 6.5, we can see that for LTS and PA, in fact, this axiom holds.
For IMC, however, this axiom is, in its generality, unsound. The reason is that in IMC, the

choice operator not only plays the role of non-deterministic choice, but also the role of stochastic
choice between several delays. In the latter, the precise number how often a delay transition
occurs makes a difference, as it changes the over delay with which successor states are reached.
For instance, the process λ.0 + λ.0 is behaviourally identical to 2λ.0, but not to λ.0.
As a consequence, with respect to immediate transitions, idempotency is valid also for IMC

expressions. But with respect to timed transitions, this law is invalid. Hence, in IMC, idempo-
tence is restricted to immediate transitions. For timed transitions, instead, a summation law is
introduced that allows to add the rates leading to the same states in accordance with the laws for
exponential distributions. We review these differences in Table 6.5. Since in IMC idempotences
cannot be represented in a generic way as for the other models, we must also take explicit care
for the remaining operator ∆ and the constant 0. The corresponding law for ∆ can be found in
Table 6.6 ((∆-6)). For 0, however, no special axiom is needed, since (NEUT) is enough to eliminate
duplicated occurrences of 0.

Divergence The second general difference between the weak bisimilarities for LTS and PA,
and the IMC weak bisimilarity is the way in which they treat divergence, i.e. the ability of a
process to perform an unbounded number of τ -transition in succession. In classic process the-
ory, internal transitions are themselves considered as irrelevant for the observable behaviour.
Only their indirect influence on observable behaviour is relevant, for example if, by an internal
non-deterministic choice, they can decide which observable behaviour is enabled or disabled.
Furthermore, in the theories we have considered, τ transitions do not represent a fixed quantity
of internal activity. Each τ transition may stand for zero or any arbitrary number of internal
activities. They instead serve as an abstraction mechanism, which is not necessarily coupled with
any actual activity inside a system at all. From this perspective, it is only logical if even an in-
finite sequence of internal transition is not observable, as it does not necessarily correspond to
any actual behaviour at all. This viewpoint is represented in LTS weak bisimilarity as well as in
probabilistic weak bisimilarity. We find this reflected axiomatically by the axiom ∆(E) = τ.E
in Table 6.6, Axiom (∆). It expresses that ∆ can be ignored, as long as it is replaced by one
single internal transition to ensure congruence with respect to non-deterministic choice (i.e. it
maintains the root condition).

81

6. Comparative Semantics

LTS, PA IMC

(∆) ∆(E) = τ.E ∆(E) = τ.∆(E) (∆-1)
∆(τ.E + F) = τ.(τ.E + F) (∆-2)
∆(λ.E + F) = ∆(F) (∆-3)
∆(E) + λ.F = ∆(E) (∆-4)
∆(E + F) = ∆(E + F) + E (∆-5)

∆(E) + ∆(E) = ∆(E) (∆-6)

Table 6.6.: Divergence Axioms

However, this perspective on divergence is not common sense. It has been repeatedly argued
that divergence should not be equated with finitary internal behaviour. The argument here as-
sumes that, as internal transitions cannot be influenced by the environment, internal transitions
can always preempt any communication by causing a state change before any communication
via an observable action can take place. For finite sequences of internal behaviour, the preemp-
tive behaviour must finally come to an end, thus the machine cannot refuse communication ad
infinitum. A diverging machine, however, could decide to deny communication for every, even
though communication is still possible. Thus, divergence must be distinguished from finitary
internal behaviour. Further finer distinctions in the divergence behaviour are possible. A rather
complete overview is given in [Gla93] from the perspective of process relations, while [LDH05]
complements this with the axiomatic perspective.
Timed transitions, which are present in IMC, but not in LTS or PA, interfere with internal

transition in a yet different way than observable immediate transitions. In the presence of a
τ -transition, it is supposed that time cannot pass, by the maximal progress assumption. As a
consequence, timed transitions in states that are not stable do not have any semantic meaning.
Similar to our discussion before, the rationale behind this is that immediate transitions cannot
be influence from the environment, and furthermore, as they are merely abstractions, nothing
can prevent them from executing without letting time pass before. In the definition of weak
IMC bisimilarity (and also of strong IMC bisimilarity), it is thus necessary that a timed transition
may only play a role semantically, if it originates from a stable state. Hence, IMC bisimilarities
need to distinguish τ -behaviour more strictly than the other bisimilarities. From the necessity to
preserve stability it follows that divergence cannot be ignored completely. However, with the in-
tention to be still as coarse as possible, weak IMC bisimilarity allows to discard divergence, when
the process may escape it by an internal transition. Axiomatically, this discussion is summarized
in Table 6.6 in the right column.

Distribution Axioms All the axioms that we discussed so far did not contain an explicit
reference to distributions, as no prefix term has occurred there. Table 6.7 summarizes the axioms
that exclusively deal with distribution expression in the first three lines. They only describe
obvious properties. The last axiom of this table, (CC), states that whenever a process exhibits
two transitions with the same label, it also implicitly exhibits any of their convex combinations.
It syntactically reflects the use of combined transitions in probabilistic weak bisimilarity.

82

6.2. Axiomatization

(D-COM) a.(D ⊕p D ′) = a.(D ′ ⊕1−p D)
(D-ADD) a.(D ⊕p D) = a.D
(D-ASS) a.(D1 ⊕p (D2 ⊕ q

1−p
D3)) = a.((D1 ⊕ p

p+q
D2)⊕p+q D3)

(CC) a.D + a.D ′ = a.D + a.D ′ + a.(D ⊕p D ′)

Table 6.7.: Distribution Axioms and Convex Combination Axiom

Non-Probabilistic Probabilistic

(τ -1) a.τ.E = a.E a.(δ(τ.E)⊕p D) = a.(δ(E)⊕p D) (D-τ -1)

Table 6.8.: τ - Elimination Axioms

τ -Elimination Except for the axioms involving ∆, the axioms we have discussed so far are
not specific for the weak aspect of weak bisimilarity. They are also suited to characterize the
strong bisimilarity variants. The remaining axioms now treat the characteristics of the weak
bisimilarities. In Table 6.8 we find both the probabilistic and the non-probabilistic variant of the
simplest τ -law, which has been dubbed the (τ1)-law by Milner. Its purpose is to eliminate occur-
rences of τ that are entirely transparent for an observer, as they occur immediately after another
transition, and are not part of a non-deterministic choice. In the probabilistic setting, recall that
a transition leads to a distribution over states instead of a single state. The idea, however, remains
the same here: if any of the probable successor states can only exhibit a τ transition as its next
behaviour, this transition can be discarded. In Table 6.8, we find the respective axioms for both
settings next to each other.

(τ -2) τ.E = τ.E + E
(τ -3) a.(E + τ.F) = a.(E + τ.F) + a.F

Table 6.9.: Non-Probabilistic τ - Preemption Axioms

To completely characterize weak bisimilarity, two more axioms are needed. Both deal with
the preemptive power of τ -transitions. The well known laws for non-probabilistic systems are
summarized in Table 6.9. In the probabilistic variant, which is summarized in Table 6.10, the
first axiom agrees essentially. The only difference is that states are replaced by distributions
where necessary. In contrast, the second axiom differs from the corresponding law of the non-
probabilistic setting. Replacing states by distributions is not possible in this case, as then the
distribution replacing the process term E would have to occur both after a prefix expression
as well as without a preceding prefix expression. The latter construct is, however, syntactically
forbidden. The essential idea behind this axiom is that every behaviour that is represented by E

83

6. Comparative Semantics

(D-τ -2) a.D = a.D + a.(
⊕

i∈I piD
′
i) where D =

⊕
i∈I

piδ(Ei + τ.D ′
i)

(D-τ -3) τ.D = τ.D + a.(
⊕

i∈I piD
′
i) where D =

⊕
i∈I

piδ(Ei + a.D ′
i)

Table 6.10.: Probabilistic τ - Preemption Axioms

cannot only be executed after executing τ , but can – observationally – also appear to be executed
immediately. In the probabilistic setting we can recover this observation by decomposing the
distribution D that replaces E, or more precisely, the process expressions in its support, in a sum
formEi+a.D ′

i . If this sum form then reveals that every process expression in the support enables
(at least) one transition labelled with the same action, then the respective goal distributions D ′

i

can be factored out on top level and recombined into a.
⊕

i∈I piD
′
i . It is important to emphasize

that behaviour can only be factored out in this way when all process expressions agree on the
action name (here: a).
We finally summarize the preceding discussion in a theorem. We first define a sets of axioms

for each notion of bisimulation congruence. Let A = {(COM), (ASS), (NEUT)}. Then we let

A≃LTS = A ∪ {(IDEM), (∆), (τ -1), (τ -3), (τ -2)}
A≃PA = A ∪ {(IDEM), (∆), (D-τ -1), (D-τ -2), (D-τ -3),

(D-COM), (D-ADD), (D-ASS), (CC)}
A≃IMC = A ∪ {(IDEM-1), (IDEM-2),

(∆-1), (∆-2), (∆-3), (∆-4), (∆-5), (∆-6), (τ -1), (τ -3), (τ -2)}

Theorem 6.3 (Axiomatizations).

• A≃LTS is sound and complete for ≃LTS.

• A≃PA is sound and complete for ≃PA.

• A≃IMC is sound and complete for ≃IMC.

6.3. Probabilistic Forward Simulation
After our comparison of the axiomatization of the different weak congruences, we elaborate on
a sound and complete axiomatization for probabilistic forward simulation on PA and discuss its
relation to the axiomatization of ≃PA This will provide a core insight that is of interest in its own
right, and also for later deliberations. Probabilistic forward simulation significantly differs from
the other relations by being a preorder instead of an equivalence relation. Therefore, we separate
the discussion from the other relations.

84

6.3. Probabilistic Forward Simulation

6.3.1. Axioms
The fact that probabilistic forward simulation is defined as a relation over S × Dist(S), and
is thus a binary relation over two different types, turns out to be an inconvenient obstacle for
a technically sound axiomatic treatment. To overcome this, we will in the following use the
restriction of ⪯fwd to states.

Definition 6.9. Let E ⪯′
fwd F hold if and only if E ⪯fwd δ(F). ◁

Notation 6.6. We overload the symbol ⪯fwd and also use it to denote ⪯′
fwd for the rest of this

chapter.

Precongruence Axioms We first note that ⪯fwd already is a congruence relation, with
respect to the non-deterministic choice operator +; or more precise, a precongruence. Thus,
different to what we have seen for the other relations on LTS, IMC and PA, the relation is imme-
diately amenable for an axiomatization.
However, as ⪯fwd is a preorder, and not an equivalence, we use the symbol ≤ in our axiomati-

zation. Although ⪯fwd is not an equivalence, it is often helpful to write E = F if the preorder
holds from left to right and vice versa.

Notation 6.7. We write E = F if E ≤ F and F ≤ E.

The set of axioms that is sound and complete for ≃PA is also sound for ⪯fwd, and forms the
basis for our axiomatization – with one notable exception. As a precongruence is not symmetric,
the symmetry axiom, which we did not list explicitly, is not sound with respect to ⪯fwd. All
other elementary axioms that we did not state explicitly, namely, reflexivity and and transitivity
are also sound for ⪯fwd.

Distinguishing axioms Table 6.11 summarize the axioms that need to be added to the
axiomatization of ≃PA in order to obtain a complete axiomatization of ⪯fwd.

E ≤ E + F (F-1)
a.(D ⊕p δ(b.(D1 ⊕q D2))) ≤ a.(D ⊕p (δ(b.D1)⊕q δ(b.D2))) (F-2)

a.(δ(τ.D ′)⊕p D) = a.(D ′ ⊕p D) (D-τ -1)MA
τ.δ(E) = E (D-τ -1)fwd

Table 6.11.: Additional Axioms for ⪯fwd.

Axiom (F-1) is typical for simulation relations. It allows the right-hand-side process, i.e. the
simulating process, to perform arbitrary additional activities, as long as every activity of the
left-hand-side process is completely preserved. Formally, this is expressed by allowing to add any
process F in non-deterministic choice to the original process E. This axioms makes clear that
simulation relations do not preserve, but only enforce containment of the non-deterministic
branching structure of a process. In contrast, axioms (F-2) shows that ⪯fwd also weakens the
degree to which the probabilistic branching structure is preserved. If we focus our attention to
the expressions on the right-hand side of ⊕p on both sides of the inequality, (F-2) states that
every process whose only initial behaviour is an action b can be simulated by a distribution
over different processes all beginning individually with action b, but with different continuations

85

6. Comparative Semantics

afterwards, at least as long as the overall probabilistic behaviour is the same after b has occurred.
In other words, it says that any (binary) splitting of the successor distribution D of a process b.D
can simulate it, as long as the parts of the splittings are individually prefixed by b. The difference
is that the place where a probabilistic decision is made is shifted to an earlier point in time. The
reason why the axiom is slightly more complicated and needs the prefixing with a. is due to the
fact that we need a process expression on both sides of the inequality, and can thus not directly
talk about distribution expressions as we did before.

Example 6.6. Compare the processes E = d.a.(δ(b.0) ⊕0.5 δ(c.0)) and F = d.(δ(a.b.0) ⊕0.5

δ(a.c.0)), where we omitted the symbol δ for readability where it is clear from the context. It
holds that E ⪯fwd F . Note that for both process the occurrence of the action d and a is 1, and
for b and c, respectively, it is 0.5. They differ, however, in the moment when it is decided (in a
probabilistic sense) which of b and c will occur. In E, the decision happens with the execution
of a, while in F , this happens already in the preceding execution of d. ◁

So we clearly see that in the simulating process a probabilistic decision may always be shifted
towards an earlier point in time. This is very notable, especially as a is an observable action. So
in this way, the probabilistic aspect of an activity may be shifted towards a preceding (observable)
activity.
Axiom (D-τ -1)MA

4, in contrast, is less radical. It simply allows to shift internal probabilistic
decisions forward (or backward, as the rule induces an equality). Intuitively, this means that
whenever parts of an observable probabilistic activity are actually implemented by subsequent
internal activities, the latter can be completely ignored semantically. So internal probabilistic
decisions become transparent to an observer.
Axiom (D-τ -1)fwd finally allows to remove a τ prefix for processes. This is typical for weak

precongruences, which do not need the congruence fix we have applied for the bisimulation.

Comparison with ≃PA Being a simulation relation, it is not surprising that ⪯fwd is less
preserving with respect to the non-deterministic branching structure than the bisimilarity≃PA, as
enforced by axiom (F-1). Similarly, the idea of shifting probabilistic decisions between observable
activities, as expressed by axiom (F-2), is clearly not apt for a bisimulation. An interesting axiom
is axiom (D-τ -1)MA

a.(δ(τ.D ′)⊕p D) = a.(D ′ ⊕p D).

It is a generalization of (D-τ -1)

a.(δ(τ.E)⊕p D) = a.(δ(E)⊕p D).

(D-τ -1)MA allows to add or remove arbitrary internal transitions, while (D-τ -1) only allows this as
long as they do not involve any probabilistic decisions (besides a Dirac decision). In this way,
we see that ≃PA does not allow any modification of the probabilistic branching structure, while
⪯fwd is very liberal in this respect. While it is arguably reasonable to forbid anything like (F-2) to
be sound with respect to any reasonable notion of probabilistic bisimilarity, a similarly definitive
answer cannot be given for (D-τ -1)MA, as this axiom basically merely allows to implement a sin-
gle observable probabilistic decision by sequences of several internal unobservable probabilistic
decisions. Allowing such an axiom seems to confine perfectly with the driving idea behind weak
bisimilarities, namely, that internal activities should be transparent to the observer as much as
possible.
4the index MA in the name of the axiom hints at its importance for Markov automata (see Chapter 9)

86

6.4. Summary and Discussion

Discussion We claim that our axiomatization of ⪯fwd is sound and complete. It is strongly
inspired by [PS04], where the authors already claim to provide a sound and complete axioma-
tization for trace distribution precongruence, which coincides with probabilistic forward simu-
lation. However, it seems that the original axiomatization given in [PS04] is technically flawed.
The reason is that there, probabilistic forward simulation is treated unchanged as a relation over
S × Dist(S). This leads to axioms like E = δ(E). Clearly, resolving this into E ≤ δ(E) and
δ(E) ≤ E is unsound, as the latter is a mismatch with respect to the type signature of proba-
bilistic forward simulation. Already the axiom E ≤ δ(E) is technically problematic, as it allows
to derive E ≤ δ(δ(E)) with two consecutive applications. However, δ(δ(E)) is a distribution
over distributions over processes, and we can repeat this principle to arrive at arbitrarily nested
distributions. In this way, the axiom allows to relate expressions that are not even contained in
the algebra.
Still, the cited work has its clear merits in providing the essential insights for an axiomatiza-

tion. Axiom (D-τ -1)MA and (D-τ -1)fwd already appears there, yet, combined in one single axiom,
τ.D = D . It unfortunately suffers from the above mentioned problem in that it equates process
expressions and distribution expressions. Our axiomatization aims at healing these formal defi-
ciencies while preserving the original insights. Yet, we leave the formal proof of soundness and
completeness as an open problem.

6.4. Summary and Discussion
In this chapter, we have compared the different bisimulation relation for LTS, PA and IMC from
a process algebraic perspective by means of a comparison of their sound and complete axiomati-
zations. In the course of this we have highlighted important differences among the bisimilarities
that are on the one hand obviously owed to the different settings, such as the presence of timed
transitions and probabilities, but also on the other hand, more subtle differences that have to do
with the way internal behaviour is treated. Most prominently, we have seen that divergence does
not differ from finite sequences of internal behaviour from the perspective of weak LTS bisim-
ilarity and weak probabilistic bisimilarity, whereas for weak IMC bisimilarity, it plays a more
pronounced role. In IMC, internal behaviour directly interferes with timed behaviour by the
maximal progress assumption. This makes it necessary to distinguish finite sequences of inter-
nal behaviour from infinite behaviour, which shows in the axiomatization by refining the single
axiom ∆(E) = τ.E for LTS and PA into three more elaborate axioms for IMC.
The arguably most remarkable insight of this chapter has emerged during our comparison

of the axiomatizations of weak probabilistic bisimilarity and probabilistic forward simulation.
Most differences in the axioms can be explained by the simple fact that the former relation is a
bisimulation, while the latter is a simulation and thus naturally less restrictive. Yet, we identified
one axiom that is at the core of the axiomatization of probabilistic forward simulation, and that
is unsound for weak probabilistic bisimilarity, while it does actually not at all conflict with the
principles of bisimulations: axiom (D-τ -1)MA. We have conjectured that this axiom might even
be needed for a fully-fledged extension of the idea of weak bisimilarity to a probabilistic setting.
In fact, the semantic idea behind this axiom will be our guide line throughout the second part
of the thesis. In Chapter 9, we will come back to precisely this conjecture from the axiomatic
perspective.

87

Part II.

Markov Automata Theory

89

7. Markov Automata
Developing a model of concurrent and reactive systems that exhibits non-deterministic, proba-
bilistic and stochastically timed behaviour at the same time and providing sound semantic foun-
dations has been an open challenge for decades. In the realm of automata-based models, with
their semantic roots in interleaving concurrency semantics, no single such model has emerged so
far, to the best of our knowledge. This is especially surprising because

1. the scientific and industrial demand for such a model has been undaunted since many
decades,

2. many models covering only one of the two above quantitative aspects have been developed,
and do find wide-spread use.

With (Generalized) Stochastic Petri Nets, such a model arguably exists, however, building on
the foundations of Petri Nets. Translating the concepts of this model into an automata-based,
interleaving setting seems a simple task, at first sight. In fact, importing the structural aspects of
such a model is a relatively straightforward task, especially as both probabilistic and stochastic
time models are already at hand to provide the necessary inspiration. The real challenge in
finding such a model does not lie in the question how to assemble the necessary quantitative
aspects. The challenge is to find sound semantic foundations. For Generalized Stochastic Petri
Nets, this challenge has not been met, in our opinion. A certain class ofGSPN, so called confused
nets, has been willingly denied any semantic treatment. As we shall detail out in Chapter 12,
confused models often turn out to be those models where non-determinism has been used as
a purposeful modelling means other than expressing concurrent execution. While, in general,
non-determinism is highly valued as a powerful tool for abstraction or to allow for freedom of
implementation, in the context of GSPN it is depreciated as semantic underspecification. As a
consequence of the missing semantic foundations, no analysis trajectory for such systems has
been developed.
In the realm of automata-based models, the quantitative analysis of systems with any kind

of non-determinism has been actively studied since more than one decade. Also general quan-
titative model-checking algorithms for logics like CSL have become available recently [Neu10].
However, very often these advanced and costly analysis methods can be avoided, as the non-
determinism present at the model is behaviourally irrelevant with respect to a suitable notion of
bisimilarity. Even if reducing a model with respect to bisimilarity cannot always eradicate non-
determinism entirely, as it, for instance, may be the result of an intentional modeller decision,
it allows to reduce the presence of non-determinism to its necessary minimum. For this reason,
bisimilarity and techniques such as quotient construction up to bisimilarity have been at the
core of many analysis trajectory of automata-based concurrent and reactive systems both with
and without quantitative aspects. Last, but not least, bisimilarity itself is a valuable technique to
prove that a system’s specification and implementation agree. However, for models combining
non-determinism, probabilism and stochastic time, no semantically satisfactory notion of bisim-
ilarity has been known so far. We stipulate that this missing foundation is the reason why in the

91

7. Markov Automata

realm of automata-based models no combination of both quantitative aspects has been brought
up yet.

Outline and Contributions. This chapter introduces a novel automata-based model that
combines non-determinism, probabilism and stochastic time: Markov automata. This chapter is
the first of the second part of this thesis, which is dedicated to the foundations of Markov au-
tomata. In this chapter, we develop the foundations on the level of automata structures, and
show that the models emerges as the union of PA and IMC. The model itself will be introduced
in Section 7.1. We first define a very general model with almost no restriction on the number
of states and the structure of the transitions. However, for most of the later development, it
will be necessary to restrict the model class to different extents. We define the necessary terms
and concepts in this section, too. In Section 7.2, we define parallel composition and abstraction
operators on MA. Concluding this chapter, in Section 7.3, we review several well-known (quan-
titative) models, among them LTS, IMC, PA and their respective sub-models, and evaluate them
from the perspective of being sub-models of Markov automata themselves.

7.1. Model
Markov automata aim to integrate both probabilistic immediate behaviour as known from PA
and stochastic timed delay as known form IMC. Quite naturally, we define Markov automata as
the straightforward combination of the two models. The reason why this smooth integration is
possible is that both models extend labelled transition systems in two orthogonal ways. In par-
ticular, both keep the essential idea that concurrency can be modelled as the non-deterministic
choice between the interleavings of the (sequential) behaviour of component systems. Concern-
ing the probabilistic automata aspect of Markov automata, this becomes especially visible by
the fact that probabilism is only present within individual transitions, while the choice between
transition remains non-deterministic. Interactive Markov chains, in turn, do not alter the prin-
ciples of labelled transitions systems, but only extend them in a strictly orthogonal manner by
introducing a new transition relation, , that describes the delay in the form of the parameter
of the exponential distribution that characterizes the stochastic delay. So to arrive at Markov
automata, it suffices to add to probabilistic automata, or conversely, to refine IMC immediate
transitions with probabilities. Thus, we work with a twofold transition relation , containing
immediate probabilistic transitions and , containing the Markovian rate transitions.

Definition 7.1 (Markov Automaton). A Markov automaton (MA) is a quintuple
(S, s̄,Act, ,), where

• S is a non-empty countable set of states,

• s̄ ∈ S is the initial state,

• Act is a set of actions containing the internal action τ ,

• ⊆ S × Actχ ×Dist(S) is a set of probabilistic transitions, and

• ⊆ S × R>0 × S is a multiset of Markov timed transitions.

92

7.1. Model

0.7

0.4

0.6

0.3

7

1b

a

Figure 7.1.: A Markov Automata

a b a

b

1
2

1
2

1
2

1
2

1
2

1
2

τ

τ τ

s̄2

t h

tt th ht hh

Figure 7.2.: Cyclic, but τ -Acyclic MA

The sum of the labels of Markov timed transitions leaving a state must be finite, i.e. for each
s ∈ S ∑

(s,r,s′)∈

r < ∞.

◁

We assume that Act contains the atomic action labels (including τ) as we know them from
probabilistic automata. Whenever convenient, we use the same notational convention we in-
troduced in Notation 5.2 on page 64, to represent timed transitions as probabilistic transitions
labelled by a special action χ(r), where r ∈ R≥0. We treat χ(r) like an ordinary action. We write
Actχ to denote the set of all immediate actions and all actions of the form χ(r). Note that this set
does then not contain actual real numbers (without being encapsulated by χ), since Act itself is
assumed to not contain numbers. Especially for the definition of bisimilarities, this notation will
turn out handy. We call this representation of Markov automata their uniform representation.

Definition 7.2 (Uniform Representation of an MA). The uniform representation AU of an
MA A = (S, s̄,Act, ,) is a quadruple (S′, s̄′,Actχ, ′, ′), where

• S′ = S,

• s̄′ = s̄,

• ′ = , and

• ′ = { s, χ(r), µ | s χ(r)−−−→ µ in A}.

◁

As already discussed in Chapter 5, the uniform representation of a MA cannot be translated
back to a standard MA in a unique way. Thus, converting an MA into its uniform representation
bears a certain loss of information. However, this loss is only syntactical, as all semantically
relevant information is fully preserved.
As the interactive transitions of MA are as well probabilistic, we can now use the transition

predicate −−→ to uniformly represent timed and immediate transitions. We thus write for a

93

7. Markov Automata

Markov automaton s
a−−→ µ if and only if either a ∈ Act and s a µ or a = χ(r) and s↓ and

r =
∑

(s,x,s′)∈
x and for all states t the distribution µ satisfies µ(t) =

∑
(s,x,t)∈

x

r
.

7.1.1. Structural Restrictions
While we try to be as general as possible, automata with infinite state space become hard to han-
dle very quickly, if they do not meet an elementary restriction, that allow us to apply probability
theoretic standard arguments. This will become apparent later, when notions of weak bisimilari-
ties are discussed. We therefore restrict our attention to different restricted subclasses of infinite
MA, or of even finite MA, depending on the context.
If not stated otherwise, we restrict Markov automata to a countable branching structure. As

stated already at the definition of MA, we always assume a countable state space and hence, as
well countable support for each transition.

A widely-used restriction is to only consider systems that have a finite number of outgoing
transitions for each state.

Definition 7.3 (Image-Finiteness). An MA A = (S, s̄,Act, ,) is image-finite, if for
each state s ∈ S and every action a ∈ Act, the set

{(s, a, µ) ∈ }

is finite. ◁

Note that this restriction does not exclude automata having transitions with countably infinite
support. Furthermore, the number of outgoing timed transitions may remain infinite, as well as
the total number of outgoing immediate transitions. Image-finiteness restricts only the number
of outgoing immediate transitions with identical action label.

Definition 7.4 (Finite-Support). We say an MA is finite-support, if for each s ∈ S the number
of outgoing Markovian timed transitions is finite and for each transitions (s, a, µ) ∈ , the
support of µ is finite. ◁

In the following, we will identify different classes of MA with infinite state space. The next
definition is a helpful tool we need to specify the classes.

Definition 7.5 (Structure Graph). The structure graph of a MA (S, s̄,Act, ,) is a
labelled graph (S′, E, L) derived from A as follows:

• S′ = S,

• L = Actχ

• (s, a, s′) ∈ E if and only if s a−−→ µ for some µ with µ(s′) > 0 and a ∈ Actχ including
a = χ(r) for some r ∈ R≥0.

◁

The structure graph abstracts the structure of an MA by replacing each probabilistic and
stochastic transition to a set of transitions. For each state in the support of the original goal

94

7.1. Model

distribution a transition is added. The transition inherits its label from the transition it is de-
rived from. It preserves reachability within an MA, while being entirely forgetful about the
concrete probability with which a state is reached.

Definition 7.6 (Structural Properties). A Markov automaton is called

1. finite if its structure graph is finite,

2. weakly image-finite if it is image-finite, finite-support and its structure graph is τ -finite,

3. τ -(a)cyclic, or (a)cyclic, respectively if its structure graph is τ -(a)cyclic, or (a)cyclic, respec-
tively.1

◁

Note that a finite Markov automata can still contain infinitely many action in the set Act.
However, only a finite number of them will be actually used as transition labels.
A weakly image-finite MA can be thought of an MA that is locally finite in terms of the states

and distributions that can be reached from each state by weak transitions. Note that it may
overall have an infinite number of states and transitions.
As for PA, weak transitions of MA are, in principle, tree-like structures similar to an unfolding

of the automaton along an execution (cf. Definition 4.11). Different to non-probabilistic models
such as LTS and IMC, PA and MA weak transitions may contain infinite sequences of internal tran-
sitions as part of these trees. Therefore, (a)cyclicity of transitions and (in)finiteness of the state
space, especially for states reachable with internal transitions, make a difference in this setting.
For external actions, these differences effectively play no role for most theoretic considerations,
as they anyhow occur at most once in every weak transition.

Example 7.1. The MA in Figure 7.2 is cyclic, but both τ -acyclic and weakly image-finite. The
latter two properties ensure that every weak transition corresponds to a finite underlying tran-
sition tree. Phrased differently, weakly image-finiteness guarantees that from every state some
other state can be reached (by a weak transition) whose outgoing transitions are all labelled by
external actions, and τ -acyclic means that the probability to see the same state twice on a run as
long as only internal transitions are executed, is zero. ◁

Weakly image-finite MA guarantee that weak (combined) transitions only lead to distributions
with finite support, even though it neither restricts the state space to be finite in general, nor
does it disallow infinitary weak transitions. Still, the number of both weak and weak combined
transitions from one state may be infinite. However, it is always possible to represent each such
transitions by a finite convex combination of weak transitions.

Lemma 7.1. LetA = (S, s̄,Act, ,) be aweakly image-finite MA. Every infinitary convex
combination of weak (hyper-)transitions can also be represented by a finitary convex combina-
tion and vice versa.

Proof. It is obvious that with infinitary convex combinations we can represent every finitary
convex combination by simply letting almost all coefficients be 0.
We now consider the other, less obvious direction. By our restriction to weakly image-finite

MA, we only need to consider weak hypertransitions of distributions with finite support. Thus,

1We refer the reader to Definition 2.16 for the definition of τ -(a)cyclicity and τ -finiteness.

95

7. Markov Automata

it suffices to consider the case for weak transitions instead of hypertransitions, as each hypertran-
sition can then be represented as a finite convex combination of weak transitions.
Let s ∈ S. Whenever s a

==⇒c µ then, by the definition of weak combined transitions, there ex-
ists an countable number of real values ci ∈ [0, 1] with countable index set I and weak transitions
s

a
==⇒ µi such that

µ =
⊕
i∈I

ciµi. (7.1)

For a fixed state s ∈ S and an action a ∈ Act, weakly image-finite MA behave like finite
state, image-finite and finite-support MA on the subset of states that is reachable with probability
greater zero from s with weak (combined) a-transitions. Furthermore, by using its uniform
representation, they can be treated like PA. We may thus use the following claim, that is a
immediate consequence of Propositions 3 and 4 of [CS02], which hold for finite state, image-
finite and finite-support PA.

Claim 7.1. The set of distributions µ that can be reached by a weak (non-combined) transition s
a

==⇒
µ, is generated by a finitary convex combination of a finite set of distributions s a

==⇒ νk. Formally,
for every state s and every action a there is a finite set of generating distributions νk with s a

==⇒ νk
(with k ∈ K), such that for every µ, with s a

==⇒ µ there exist coefficients ck ∈ [0, 1] such that

µ =
⊕
k∈K

ckνk.

We continue the proof of the lemma. For a given distribution µ, we can by Equation 7.1 and
above claim, write

µ =
⊕
i∈I

ciµi =
⊕
i∈I

ci
⊕
k∈K

cikνk.

Note that while the coefficients cik depend on i, the generating distributions νk are the same for
each i (clearly possibly prefixed by a coefficient cik = 0). The last term can be further rewritten
to ⊕

i∈I

ci
⊕
k∈K

cikνk

=
⊕

i∈I,k∈K

cic
i
kνk

=
⊕
k∈K

(
⊕
i∈I

cic
i
k)νk

As K is finite, it becomes obvious that we obtain the sought finitary convex combination by
taking

⊕
i∈I cic

i
k as coefficients and νk as distributions. This ends the proof of Lemma 7.1.

Compactness
An important and standard restriction in the context of probabilistic behaviour is to resort to
automata, whose transitions define a compact space. To define this notion formally, we first
introduce a widely used metric on distributions [Des+99].

96

7.1. Model

Definition 7.7 (Distribution Metric). For a countable set X we define the metric d on
Dist(X) as d(µ, γ) = supY⊆X |µ(Y)− γ(Y)|. ◁

Definition 7.8 (Compactness). A MA A is compact, if for every state s and label a ∈ Actχ

the set {µ | s a
==⇒c µ }2 is compact according to the metric d. ◁

Lemma 7.2. Every finite MA is compact.

This lemma has been shown in [Des+10]. The compactness assumption allows us to assume
that whenever some state (or distribution) can approximate a distribution with weak transitions
arbitrarily closely, then it can also reach the distribution itself by a weak transition.

Corollary 7.1 (Closedness). Let s ∈ S and a ∈ Actχ in a compactMA. Given any infinite sequence
of distributions {µi}i∈I which converges towards the distribution µ with respect to the metric d. If
s

a
==⇒c µi for every i ∈ I , then also s a

==⇒c µ.

This fact follows immediately, as the set of all distributions reachable from s is compact and
thus closed, if the MA is compact. It will turn out as a helpful tool in many proofs. In fact, many
results in this thesis would not hold without this property.
The theorem of Bolzano-Weierstraß can be used to show two useful properties about conver-

gence of sequences distributions.

Lemma 7.3. Let S be a finite set.

1. Every sequence of distribution ⟨ξi⟩i∈N over S has a convergent subsequence, i.e. there
exists I ⊆ N and a distribution ξ′ with

⟨ξi⟩i∈I −→ ξ′.

2. Let R be a binary relation between distributions. Let ⟨µi⟩i∈I be a convergent sequence
of distributions over S with limiting distribution µ. Let ⟨γi⟩i∈I be some sequence of
distributions over S satisfying µi R γi for each i ∈ I . Then there exists an infinite subset
J ⊆ I such that ⟨µi⟩i∈J is still a convergent sequence with limiting distribution µ, and
⟨γi⟩i∈J is now also a convergent sequence with some limiting distribution γ′. Clearly,
µi R γi still holds for each i ∈ J .

We will frequently apply this lemma to distributions over the set of states S of a weakly image-
finite Markov automata, where all distributions result fromweak transitions of a finite number of
source distributions. Here, the set of states S is not necessarily finite, but due to the automaton
being weakly image-finite, the set of states relevant for our consideration can be reduced to a
finite subset. In these cases, the lemma is then still applicable. We will do so without further
mentioning if the necessary preconditions are clear from the context.
The next lemmas are refinements of the crucial insight that if convergent sequences of distri-

butions agree on their behaviour up to some notion of equivalence between states, then also the
limiting distributions of the sequences must do so.

Lemma 7.4. Let R be an equivalence class over S. Let ⟨µi⟩i∈I and ⟨γi⟩i∈I be two convergent
infinite sequences of distributions over S, with limiting distributions µ and γ, respectively. If for
every i ∈ I

µi L(R) γi

2The definition of weak (combined) transitions for Markov automata is completely analogue to the respective defini-
tions for PA and IMC. We do not provide an explicit formal definition.

97

7. Markov Automata

then also for the limiting distributions

µ L(R) γ.

Proof. Assume, in order to arrive at a contradiction, that there exists an equivalence class C ofR
such that

|µ(C)− γ(C)| = k > 0 for some k ∈ R>0. (7.2)

As the µi converge against µ, for any εµ there must exist an index l ∈ I such that d(µl, µ) < εµ.
Accordingly, as the γi converge against γ, for any εγ there must exist an index m ∈ I such that
d(γm, γ) < εγ .

By the definition of the metric d it must hold that

|µ(C)− µl(C)| < εµ and |γ(C)− γm(C))| < εγ . (7.3)

Now choose εµ = εγ = 1
2k and let n ∈ I be any index greater than max(l,m). As γn L(R) µn,

it must hold that

γn(C) = µn(C). (7.4)

Then,

|µ(C)− γ(C)| = |(µ(C)− µn(C))− (γ(C)− γn(C))| by Equation 7.4
≤ |(µ(C)− µn(C))|+ |(γ(C)− γn(C))|
< εµ + εγ = k by Equation 7.3.

This obviously contradicts our initial assumption that |µ(C)− γ(C)| = k.

The next two lemmas state state that, under very mild assumptions, a given sequence ⟨γi⟩i∈N
of distribution can approximate the transitions of its limiting distribution γ and vice versa. In
a sense, the limiting distribution of a sequence can perform a transition that is the limit of the
transitions of the members, or more precisely, of a subsequence thereof.

Lemma 7.5 (Approximative Behaviour I). Let A = (S, s̄,Act, ,) be a weakly image-
finite MA. Let ⟨γi⟩i∈N and ⟨γ′

i⟩i∈N be sequences of distributions over S. Let furthermore

• ⟨γi⟩i∈N −→ γ for some distribution γ, and

• γi
a

==⇒c γ
′
i.

Then, there exists a distribution γ′ such that

• ⟨γ′
j⟩j∈J −→ γ′ for some subsequence ⟨γ′

j⟩j∈J with J ⊆ N, and

• γ
a

==⇒c γ
′.

In addition, let P be an arbitrary predicate over states that is lifted to distributions by letting
P(γ) hold if and only if P(s) holds for every s ∈ Supp(γ). Then, if each γ′

j satisfies P(γ′
j) for

j ∈ J , then also P(γ′).

98

7.2. Parallel Composition and Abstraction

The proof of this lemma can be found in Appendix C.1.

Lemma 7.6 (Approximative Behaviour II). Let A = (S, s̄,Act, ,) be a Markov automa-
ton. Let ⟨γi⟩i∈N and ⟨γ′

i⟩i∈N be sequences of distribution over S. Let furthermore

(i) ⟨γi⟩i∈N −→ γ for some distribution γ, and

(i) γi
a

==⇒c ξi for some ξi in a finitary weak transition, and

(i) γ
a

==⇒c γ
′.

Then, there exist distributions γ′
i such that

• γi
a

==⇒c γ
′
i, and

• ⟨γ′
j⟩j∈J −→ γ′ for some subsequence ⟨γ′

j⟩j∈J with J ⊆ N.

In addition: if γ ==⇒c γ
′ is a finitary transition, also all γi

a
==⇒c γ

′
i are finitary transitions.

The proof of this lemma can be found in Appendix C.2.

Remark 7.1. If a = τ , precondition (ii) can be dropped, since every distributions µ satisfies
µ ==⇒c µ.

Lemma 7.7 (Limit Behaviour). Given a compact MA A, let R ⊆ S × S be an equivalence
relation. Let ⟨µi⟩i∈N be a convergent sequence of distributions with limiting distribution µ. Let
ρ be some distribution and let ρi be a family of distributions such that µi

a
==⇒c ρi and ρ L(R) ρi

for all i ∈ N. Then there must exist some ρµ such that µ a
==⇒c ρ

µ and ρ L(R) ρµ.

Proof. By Lemma 7.5, we may conclude the existence of a subsequence of the ρi with index set J
that converges against some distribution ρµ with the desired property that µ a

==⇒c ρ
µ. It remains

to show that also ρ L(R) ρµ, which follows immediately by Lemma 7.4.

Remark 7.2. We restrict to compact Markov automata throughout the thesis without further
explicit mentioning.

7.2. Parallel Composition and Abstraction
We will now define parallel composition of two Markov automata. It is the straightforward
combination of the corresponding definitions for probabilistic automata and interactive Markov
chains. We refer the reader to Section 4.1 and 5.1 for detailed explanations.

Definition 7.9 (Parallel composition). Given two MA A = (S, s̄,Act, ,) and A′ =

(S′, s̄′,Act, ′, ′), their parallel composition A ||A A′ is defined as the automaton A∗ =

(S∗, s̄∗,Act, ∗, ∗) where

• S∗ = S × S′

• s̄∗ = s̄ ||A s̄′

99

7. Markov Automata

• ∗ is the least relation satisfying

s ||A s′ a ∗µ ||A µ′ if a ∈ A and s a µ and s′ a ′µ′ (sync)

s ||A s′ a ∗µ ||A δ(s′) if a /∈ A and s a µ (parL)

s ||A s′ a ∗δ(s) ||A µ′ if a /∈ A and s′ a ′µ′. (parR)

• ∗ is the least multirelation satisfying

s ||A s′ λ ∗t ||A s′ if s λ t (parLM)

s ||A s′ λ ∗s ||A t′ if s′ λ ′t′ (parRM)

◁

Definition 7.10 (Abstraction). Given a MA A = (S, s̄,Act, ,), its abstraction A|A =

(S′, s̄′,Act, ′, ′) with respect to the set of actions A ⊆ Act \ {τ} satisfies

• S′ = S

• s̄′ = s̄

• is the least relation satisfying

s a ′µ if a /∈ A and s a µ

s τ ′µ if a ∈ A and s a µ

• ′ =

◁

7.3. Summary and Discussion
In this chapter, we have introduced Markov automata. They are a straightforward combination
of probabilistic automata and interactive Markov chains. The fundamental operations parallel
composition and abstraction carry over from the base models almost without adaptions.
We now want to review and extend the different kinds of models that Markov automata sub-

sume besides interactive Markov chains and probabilistic automata. The results are all immediate
consequences of the according subsumption properties for PA and IMC; still, this overview is of
interest on its own as it allows to compare both probabilistic and stochastic model classes in
one single uniform framework. In Chapter 8, we will extend this framework with a semantic
perspective, when we present an inclusion hierarchy of the canonical notions of bisimilarity for
the following models.

100

7.3. Summary and Discussion

Markov
Automata

Probabilistic
Automata

Interactive
Markov Chain

Labeled
Transition Systems

Discrete-Time
Markov Chains

Continuous-Time
Markov Chains

Probabilistic Decisions Non-Deterministic Decisions Stochastic Delay

Figure 7.3.: Hierarchy of Sub-Models

In Figure 7.3, the different submodels of Markov automata are ordered in a lattice. Whenever
one model lies above another in the lattice, then the former one is a generalization of the latter.
We will make precise in the following, how the different models emerge from Markov automata.

We first introduce helpful terminology. Recall that aDirac distribution assigns full probability
to a single outcome. We say that is Dirac if the distributions occurring as third components
of are all Dirac. It is deterministic if s a µ1 and s a µ2 implies that µ1 = µ2.

1. Labelled Transition Systems: If = ∅ and is Dirac, we obtain labelled transition
systems.

2. Discrete-time Markov chains: If = ∅ and |Act| = 1 and is deterministic, we obtain
discrete-time Markov chains (DTMC). Markov chains are unlabelled structures. In this case
one usually ignores the single action, and writes it as a triple (S,¶, s0) where ¶ is called
the probability matrix, and is given by ¶(s, s′) := µ(s′) provided s a µ.

3. Continuous-time Markov chains: If = ∅ we obtain continuous-time Markov chains
(CTMC). It is commonly represented as a triple (S,Q, s0) where Q is called the in-
finitesimal generator matrix, and is given by Q(s, s′) := rate(s, s′) provided s ̸= s′ and
Q(s, s) = rate(s, s)− rate(s). The latter reflects that in the original mathematical formula-
tion of CTMC it is impossible to make a difference between staying in state s, and jumping
back to s from s. Again, CTMC are in general unlabelled, and transitions are labelled only
with positive real valued rates. Hence, we require Act = R>0.

4. Probabilistic Automata: If = ∅ we obtain probabilistic automata.

5. Markov Decision Processes: If = ∅ and additionally is deterministic, we arrive at
Markov decision processes (MDP). MDP can thus be considered as special cases of proba-
bilistic automata.

6. Interactive Markov chains: If is Dirac, we get interactive Markov chains (IMC).

As this hierarchy shows, Markov automata can be applied in many contexts, where any of
its simpler submodels has been used so far, but any of the additional modelling aspects Markov

101

7. Markov Automata

automata provide have been missing for satisfactory results. At the same time, whenever it is
possible to simplify a model in a way such that the restrictions of any of the above submodels are
met, arbitrary analysis methods known for these submodels can be applied without adaptions.
In the next chapter, we will introduce a notion of bisimilarity for Markov automaton, that allows
to determine such simplification on a semantic level. In Chapter 12, we will show that in many
real-world applications, the reduction will allow to reduce a special class of Markov automata to
CTMC, even in cases where such reductions have not been possible with existing technology.

However, we want to note that while Markov automata indeed subsume all of these models
structurally, one should not generalize properties of Markov automata to its submodels blindly.
Most notably, parallel composition for Markov automata agrees with parallel composition for
labelled transition systems, probabilistic automata and interactive Markov chains. But all other
listed models, except CTMC, are not closed under parallel composition, as non-determinism is
introduced by this operation.

102

8. Bisimulations
In this chapter, we investigate different notions of bisimulation, both strong and weak, for
Markov automata. A special focus will be on the quest of finding a suitable notion of observa-
tional equivalence satisfying the three requirements we have proposed in Remark 1.1 on page 7.
As PA and IMC are submodels of MA, our findings will have immediate consequences for observa-
tional theories of these models. In Section 4.2.3 we have reviewed the state of the art for PA and
have concluded, that a satisfactory notion of observational equivalence is not yet available. For
IMC, a widely accepted notion of observational equivalence appears to exist in the form of weak
IMC bisimilarity.

Outline and Contributions. We begin our discussion with the introduction of strong
bisimilarity for Markov Automata in Section 8.1. In Section 8.2, we approach the challenge of
finding a natural notion of weak bisimulation for Markov automata from different perspectives
and make multiple proposals for notions of weak bisimulation. As a core contribution, we intro-
duce a novel notion of weak bisimulation, weak distribution bisimulation, that is weaker than
all known notions of weak bisimilarity on probabilistic automata. In the process, we introduce
a novel technique for defining bisimulations based on distributions over states instead of directly
on states.
Section 8.3 is dedicated to the applicability of this technique to exiting notions of bisimulation

on PA and IMC, which traditionally are defined as a state-based relation. The question, whether
also a state-based characterization of weak distribution bisimulation exist, will be investigated in
Section 8.4.
In Section 8.5, we take a look back to the challenge of finding a natural notion of bisimulation,

which we posed in Chapter 1, and we discuss, in how far weak distribution bisimilarity meets
our criteria.
In Section 8.6, we review related work and compare weak distribution bisimulation to various

bisimulation equivalences defined on probabilistic models. Section 8.7 concludes the chapter.

8.1. Strong Bisimilarity
We define strong bisimilarity for MA as the straightforward combination of the strong bisimilar-
ity notions of PA and IMC.

Definition 8.1 (Strong Bisimulation). Let (S, s̄,Act,) be a MA. An equivalence relation
R on S is a strong bisimulation, if whenever s R t then s

a−−→ µ for some a ∈ Actχ and
µ ∈ Dist(S) implies t a−−→ γ for some γ′ ∈ Dist(S) with µ L(R) γ. ◁

We write s ∼MA t if some strong bisimulation R exists with s R t. We say that two Markov
automata A and A′ are strong bisimilar if in their disjoint union the two initial states are strong
bisimilar, i.e. s̄ ∼MA s̄′.

103

8. Bisimulations

Strong probabilistic bisimilarity is defined akin to the respective definition for PA in Chapter 4,
by replacing the single-transition relation a−−→ by its combined variant a−−→c . We do not state
the full definition explicitly.

Both strong bisimilarities exhibit the usual properties of bisimilarities, such as being a congru-
ence with respect to parallel composition and abstraction.

Theorem 8.1. (Probabilistic) strong bisimilarity

1. is the largest bisimulation relation,

2. is an equivalence relation, and

3. is a congruence with respect to parallel composition and abstraction.

Theorem 8.2. On the respective submodels, strong (probabilistic) bisimilarity for MA agrees
with strong (probabilistic) bisimilarity for PA and IMC.

We do not provide explicit proofs for theorem. In most parts, it follows directly from the
definitions, the exception being the fact that the definition of strong IMC bisimulation does not
involve combined transitions, i.e. a probabilistic variant of strong bisimilarity does not exist. In
fact, substituting combined transitions for non-combined transitions in the definition of strong
bisimulation for IMC does not affect the resulting bisimilarity. We have established a correspond-
ing claim for weak IMC bisimilarity, in Lemma 5.1 and the respective proof; an adaption to strong
IMC bisimilarity is straightforward.

In summary, this section has shown that defining a notion of strong bisimilarity for Markov
automata is straightforward. Its underlying bisimulation emerges as the combination of the
respective bisimulations for PA and IMC. In fact, it is fully conservative on the respective sub-
models.

8.2. Weak Bisimilarities
A naïve combination of the respective standard weak bisimilarity notions for probabilistic au-
tomata and interactive Markov chain is straightforward to define, along the lines of the last
section, where we have proceeded in such way for strong bisimilarity.

Arriving at a bisimilarity that satisfies the three requirements for a suitable notion of observa-
tional equivalence is a by far more challenging task. A naïve combination would inherit from
weak probabilistic bisimilarity its failure to satisfy the third requirement, namely to abstract
from internal details as much as possible. Concretely, as we have discussed in Section 4.2.3, this
bisimilarity allows to observe the probabilistic branching structure of a process, which is some-
thing we consider unnatural. We will hence explore several alternative approaches in order to
finally arrive at a satisfactory notion of observational bisimilarity for Markov automata.

Most of the following results are only valid for compact MA (cf. Section 7.1.1, Definition 7.8). If
not stated otherwise, we assume in the following all Markov automata to be compact.

104

8.2. Weak Bisimilarities

8.2.1. Naive Weak Bisimilarity
The straightforward combination of the standard weak bisimilarities for probabilistic automata,
namely weak probabilistic bisimilarity, and interactive Markov chains, namely weak IMC bisimi-
larity, yields the following definition.

Definition 8.2 (Naïve Weak Probabilistic Bisimulation). Let (S, s̄,Act, ,) be a MA.
An equivalence relation R on S is a naïve weak probabilistic bisimulation, if

1. whenever s R t then s a µ for some a ∈ Actχ and µ ∈ Dist(S) implies t a
==⇒c γ for

some γ ∈ Dist(S) with µ L(R) γ, and

2. if s↓ then t ==⇒ t′ for some t′ ∈ S with t↓.

We write s ≈MA t if there exists a naïve weak probabilistic bisimulation R with s R t. We say
that two Markov automata A and A′ are naïve weak probabilistic bisimilar if in their disjoint
union the two initial states are naïve weak probabilistic bisimilar, i.e. s̄ ≈MA s̄′. ◁

The first condition corresponds to the first condition for weak IMC bisimulation and the only
condition for weak probabilistic bisimulation on PA. Note that we make use of the uniform
presentation for stochastic timed transitions, and immediate probabilistic transitions, using the
additional label {χ(r) | r ∈ R≥0 }. We refer the reader to Definition 4.13 and Definition 4.15 for
details. The second condition is the stability condition that occurs in in weak IMC bisimulation.

It is not hard to show that the bisimilarity resulting from this bisimulation satisfies the usual
properties of bisimilarities, such as being a equivalence relation and a congruence with respect to
all composition operators.1 As in the last section, when we discussed strong bisimilarity, these
results are inherited from the PA and IMC bisimilarities.
Our discussion in Section 4.2.3 has shown that weak probabilistic bisimilarity is too discrim-

inating with respect to internal details of an automata, thus violating our third requirement
for an observational equivalence. More specifically, the relation discerns between differences in
the probabilistic branching structure, even in cases where no non-determinism is present and
the probabilities of observable actions are the same in either case. This deficiency is inherited
by naïve weak probabilistic bisimilarity. In the following sections, we propose weaker notions
of bisimilarity for Markov automata and finally present a new candidate as an observational
equivalence. It is worth noting that the results presented here carry over to PA almost without
adaptions.

8.2.2. Relaxed Bisimulation
The three requirements of an observational equivalence (Remark 1.1) are essential for our quest
for weaker notions of bisimilarity. We restate them incorporating the results of our discussion
in Section 4.2.3.

1. An observational equivalence must be a congruence relation.

2. A reasonable observational equivalence for Markov automata (and also probabilistic au-
tomata) must preserve the non-deterministic branching structure of a system. This does

1Except for the well-known choice operator, which we have yet not defined so far.

105

8. Bisimulations

not mean that every occurrence of structural non-determinism in the automaton should be
observable. Rather, only then when it has consequences of what observations will be pos-
sible in the future. We recall that our characterization of the non-deterministic branching
structure refers to the observable differences that decisions induce.

3. In those segments of an execution of a process where the non-deterministic branching
structure is linear, i.e. no decisions are to be made, the probabilistic branching structure
should remain completely unobservable. This means, only the ultimate distribution over
consecutive observable events can be determined.

We attempt to guarantee the second requirement by exclusively basing our proposals on the bisim-
ulation methodology. In this section, we will focus on the most challenging point, requirement 3.
We begin by an attempt to make the requirement more formal.

Example 8.1. In Figure 8.1, the automaton on the left can be obtained from the automaton
on the right by fusing the probabilities of the internal transitions into a single transition with the
same eventual probabilities for the observable actions hh, ht, th and tt. By fusing we mean that
we replace within the distribution µ =

⟨
(t : 1

2), (h : 1
2)
⟩
, which results from the transitions

labelled by throw, each state by the distributions resulting from their successor transitions, as
long as they are only labelled by τ , and thus internal.
In the example, we replace t by the distribution

⟨
(tt : 1

2), (
th : 1

2)
⟩
, and h by⟨

(ht : 1
2), (

hh : 1
2)
⟩
. With the respective probabilities that t and h have in µ, namely 1

2 in

each case, we obtain the distribution
⟨
(tt : 1

4), (
th : 1

4), (
ht : 1

4), (
hh : 1

4)
⟩
. This is precisely

the distribution we reach in the automaton on the left immediately by the transition labelled
with throw. ◁

In this example, we have used the notion of fusing of sequences of internal transitions to
describe the process of obtaining information about the probabilistic behaviour, when we are
not aware of any intermediate states. In terms of the testing scenario, this corresponds to our
idea of allowing replication of states and using it for statistic sampling only in the first state in a
sequence of internal transitions (cf. Section 4.2.3, page 53).

The idea of fusing distribution is not completely new. Generalized Stochastic Petri Nets (GSPN),
a model that unifies exponentially distributed stochastic timed behaviour and internal probabilis-
tic transitions, use precisely this technique to determine its underlying continuous time Markov
chain, which acts as the semantics of a GSPN. Obviously, this method is only well defined if
non-determinism is absent, as otherwise it is not clear in which way internal transitions shall
be fused when a non-deterministic decision point is reached. For this reason, the semantics of
GSPN is incomplete, in general, as non-determinism can be introduced in the model, but cannot
be dealt with semantically. We will provide complete semantics for GSPN in Chapter 12 that
becomes possible due to the results of this chapter.

Example 8.2. Consider the schematic automaton in in Figure 8.2, where cloudy objects denote
distributions over states. Circles denote arbitrary states of the automaton and shaped objects
denote behaviourally distinguishable states. We abstract from concrete probabilities. Transition
arrows between distribution denote hypertransitions.
Clearly, the distributions with the coloured states on the right and on the bottom should not

be considered behaviourally equivalent, as the distribution on the right completely lacks . If

106

8.2. Weak Bisimilarities

tt

tt

th

th

ht

ht

hh

hh

throw

1
4

1
4

1
4

1
4

1
2

1
2

1
2

1
2

1
2

1
2

throw

τ τ

tt

th ht

hh t h

tt th ht hh

Figure 8.1.: Two Automata with the Same
Observable Outcomes

τ

τ

Figure 8.2.: Process Decides Internally
Between Different Distributions

we now try to fuse distributions starting from the distribution on the top-left, we will have to
decide which of the two internal transitions to take. No matter for which we decide, we will
completely ignore the other distribution, which is, however, behaviourally completely different.
Thus, we will change the intended semantics underlying the automaton drastically. ◁

Generalizing fusion to non-deterministic automata is by far not straightforward. The obvious
solution is to restrict the fusion to those segments of internal transitions that are structurally
free of non-deterministic choices. However, structural non-determinism may be completely ir-
relevant for the observable behaviour.

Example 8.3. In Figure 8.3, we see almost the same situation as before in Example 8.2. How-
ever, the distribution on the left contains and, instead of , another state that can only
perform an internal transition to a distribution over and . When we fuse these distributions,
i.e. the distribution on the top-right with the one at bottom-right, we obtain a distribution over
, and . With suitable concrete probabilities, we then obtain a distribution that is identical

to the distribution on the bottom-left.
Now, the top-left distribution has two outgoing internal transitions to two structurally differ-

ent distributions. Thus, structurally, we see non-determinism here. However, if we apply the
fusion process on the right-hand-side distribution that we have described above, we see that the
non-determinism is not relevant behaviourally.
We want to remark that, in general, the situation can be even more complicated than in this

example, especially in the presence of recursive behaviour. ◁

We see that a simple structural criterion when to stop the fusion process may not lead to
the desired result, and end prematurely. Therefore, we need to investigate semantic criteria of
stopping the fusion process.

A Fusing Transition Relation
Wewill now investigate how the idea of fusing distributions can be incorporated into a definition
of a bisimulation relation in the form of a new notion of weak transition relation.
A relation that describes the result of fusion needs to make statements about the probabilities

with which observable behaviour will (finally) occur. To better illustrate the foundations of

107

8. Bisimulations

τ

τ

τ

Figure 8.3.: Structurally Different Distributions Become Behaviourally Identical

our approach, we will ignore internal behaviour for a moment. By the following formula, we
express that a distribution µ can execute action a with probability p, or more precisely, that the
probability to be in a state that enables a transition with label a is p.

∃µ1, µ2 : µ = µ1 ⊕p µ2 ∧ (∃µ′ : µ1
a−−→ µ′ ∧ µ2⊥a) (8.1)

The first two operands of the logical conjunction states that the probability mass of states in µ
that enable a transition with action a is p = |µ1|. By the notation µ2⊥a in the last operand, we
mean that no state in the support of µ2 is able to execute a transition labelled by a. This operand
ensures that the probability p is precise and not only a lower bound.
This formula does not yet allow to make statements about the probabilities of observable

behaviour that will finally hold, after all internal transitions have been taken.

Example 8.4. Consider the uniform distribution µ over the states t and h in the automaton
on the right of Figure 8.1. The final probabilities tt, th, ht and hh to occur is 1

4 for each. ◁

To capture this in a formula, it does not suffice to simply replace the strong transition arrow
−−→ by a weak (combined) transition arrow ==⇒c in formula 8.1. The reason is that none of the
states in the support of a distribution might be immediately able to execute any action besides τ .

Example 8.5 (cont’d.). Neither s nor t in the support of µ can execute a transition with label
hh, ht, th, or tt, independent of whether we consider strong transitions or weak transitions. Yet,
if we fuse the internal behaviour, each of these actions has a probability of 1

4 . ◁

Formally, the process of fusion is achieved by performing a weak transition before the distri-
bution µ is split. This allows us to replace states in the support of µ that have only outgoing
internal transitions by the successor distributions. This leads to the following proposal.

∃µ1, µ2 : µ ==⇒c µ1 ⊕p µ2 ∧ (∃µ′ : µ1
a

==⇒c µ
′ ∧ µ2⊥a)

Unfortunately, this formula does not yet fulfil our intents, as we will illustrate with an example.

Example 8.6 (cont’d). Assume that we replace the action label tt by hh in the automaton on
the right of Figure 8.1, such that the final probability of executing hh becomes 1

2 . With the last
proposed formula, we could wrongly establish that the probability of executing hh is still 1

4 . By
the formula, it suffices to find suitable distributions µ1 and µ2. We choose µ2 =

⟨
(t : 2

3), (ht,
1
3)
⟩

and µ1 = δ(hh), and p = 1
4 . The formula is then satisfies because from µ, we can reach the

distribution
⟨
(t : 1

2), (ht : 1
4), (hh : 1

4)
⟩
by a weak transitions, where only states h executes, and

108

8.2. Weak Bisimilarities

state t remains unchanged. We verify that this distribution is exactly µ1 ⊕p µ2 and that no state
in the support of µ2 is able to perform a transition labelled by hh, including state t. ◁

To correct this, let µ ⇝ a denote that there exists a distribution µ′ and a state s ∈ Supp(µ′)

such that µ ==⇒c µ′ and s
a−−→. Intuitively, this means that it is possible for µ to finally execute

a with non-zero probability, if necessary internal transitions are executed before. With this
notation at hand, we propose the final generalization of Formula 8.1 to the weak transition
setting.

∃µ1, µ2 : µ ==⇒c µ1 ⊕p µ2 ∧ ∃µ′ : µ1
a

==⇒c µ
′ ∧ µ2 ̸⇝ a

This formalization also offers a reasonable generalization of the fusion process in a non-
deterministic setting. As in the deterministic case, the probability of an action to be executed
must be maximal, in the sense that it cannot be increased by executing internal transitions. How-
ever, for one action, there can be more than one probability, depending on how non-determinism
is resolved. Resolution of non-determinism takes places in the weak internal transition before
the splitting.

Notation 8.1. Let A = (S, s̄,Act, ,). Let µ ∈ Dist(S). We write

µ
a|p
==⇒c µ

′ if and only if ∃µ1, µ2 : µ ==⇒c µ1 ⊕p µ2 ∧ µ1
a

==⇒c µ
′ ∧ µ2 ̸⇝ a

A Distribution-Fusing Bisimulation
We will now use this notation to define a novel notion of bisimilarity based on the idea of
fusion. As for strong bisimulation and the IMC bisimulations, we treat timed transitions and
immediate probabilistic transition in a uniform way by virtue of the χ(r) notation. Even though
the discussions we have made so far where settled more in a PA setting, the arguments smoothly
extend when stochastic timed behaviour is added.

Definition 8.3 (Relaxed Bisimulation). LetA = (S, s̄,Act, ,) be a MA. A symmetric
relation R over Dist(S) is an relaxed bisimulation, if for each pair of distributions (µ, γ) ∈ R,
for every a ∈ Actχ \ {τ} and p ∈ [0, 1]:

(a) µ ==⇒c µ
′ implies γ ==⇒c γ

′ for some γ′ ∈ Dist(S) and µ′ R γ′,

(b) µ
a|p
==⇒c µ

′ implies γ
a|p
==⇒c γ

′ for some γ′ ∈ Dist(S) and µ′ R γ′,

(c) if µ↓ then γ ==⇒ γ′ for some γ′ ∈ Dist(S) with γ′↓.

◁

We write µ ∼∼∼⋆ γ if some relaxed bisimulation R exists with µ R γ. We say that two Markov
automataA andA′ are relaxed bisimilar if in their disjoint union the two initial states are relaxed
bisimilar, i.e. s̄ ∼∼∼⋆ s̄′.
Relaxed bisimulation is defined as a relation over distributions. In this respect, it differs from

all other relations we have considered so far. Bisimulations based on distributions have not been
considered much in the scientific community with few exceptions (cf. Section 8.6). To the best
of our knowledge, weak notions of bisimilarity based on distributions do not exist. We want
to remark that, however, in [FZ14], a notion of strong bisimulation has been defined that is
very similar to relaxed bisimulation. We have overcome the technical problem, that not every

109

8. Bisimulations

distribution over states may be able to perform a transition of a specific action with probability

1, by introducing subprobabilistic transitions
a|p
==⇒c. In [FZ14], instead, an additional dead state

is introduced, which guarantees input-enabledness.
Defining bisimulation directly as relations over distributions is a natural approach in the con-

text of probabilistic systems. In addition, it allows to abstain from the need to restrict bisimu-
lation relations to have special properties such as being an equivalence relation. In this respect,
they are akin to the mathematical elegance of the classic definitions of bisimulation.
The first condition of this definition is the typical bisimulation condition restricted to in-

ternal behaviour. Even though they are not observable directly, internal transitions may have
consequences that are observable indirectly when they involve non-deterministic decisions. For
example, if a system can internally decide to evolve in two different ways, each enabling different
observable actions. An example is given in Figure 8.4.

Observable behaviour is treated in the second condition. There, we apply the new transi-
tion relation that specifies that some action can occur with maximal probability p. As we have
discussed before, this is the core idea of the fusion process.
The reason why we use two separate conditions for τ actions and observable actions is that

merging them would counter the idea that internal behaviour is unobservable: if τ was included
also in the second condition, this would imply that the probability with which internal transi-
tions occur, can be observed, as the bisimulation would then allow to compare two automata
with respect to the maximal probabilities of τ -occurrences. We, however, claim that it is techni-
cally possible to merge the two conditions.
The third condition states that whenever µ is stable, then γ must be able to internally reach

a distribution that is stable, too. This condition is owed to the maximum progress assumption
we inherit from IMC. It is orthogonal to the discussion we made so far, and could in principle
be dropped in a setting without stochastic time, for example if A corresponds to a probabilistic
automaton. We refer the reader to Chapter 5 for a detailed discussion of this condition.

Example 8.7. Recall that the two automata in Figure 8.1 are not bisimilar with respect to
weak probabilistic bisimilarity. However, as the intuitively observable probabilities of action
occurrence is the same, we have argued that they should be related by a suitable observational
equivalence.

It is straightforward to define a relaxed bisimulation R, that shows that the two automata are
indeed relaxed bisimilar. We let

• δ(s̄1) R δ(s̄2),

•
⟨
(tt : 1

4), (th : 1
4), (ht : 1

4), (hh : 1
4),
⟩
R
⟨
(t : 1

2), (h : 1
2)
⟩
, and

•
⟨
(tt : 1

4), (th : 1
4), (ht : 1

4), (hh : 1
4),
⟩
R
⟨
(tt : 1

4), (th : 1
4), (ht : 1

4), (hh : 1
4),
⟩
.

It is straightforward to verify that in each of the related distributions the probability to weakly
execute a specific observable action is the same, and that the definition of relaxed bisimulation is
satisfied. ◁

It is straightforward to show that relaxed bisimilarity is also the largest relaxed bisimilarity, as
arbitrary unions of relaxed bisimulations are again relaxed bisimulations. For state-based proba-
bilistic and/or stochastic bisimulations this proof is in general a little involved, as bisimulations
are required to be equivalence relation, and the union of two equivalence relations in not an
equivalence in general.

110

8.2. Weak Bisimilarities

τ τ

Figure 8.4.: τ indirectly observable

a b c d a c b d

τ
1
2

1
2

τ
1
2

1
2

∼∼∼⋆

Figure 8.5.: Branching Structure Not Preserved

Theorem 8.3. ∼∼∼⋆ is the largest relaxed bisimulation.

No Candidate for Observational Equivalence

If we take a closer look on relaxed bisimilarity, it turns out that even though the relation is de-
fined following the bisimulation methodology, it does not preserve the non-deterministic branch-
ing structure. Furthermore, it fails to be a congruence with respect to parallel composition.
Moreover, even the strong variant of relaxed bisimulation, which we have not stated, does not

preserve the non-deterministic branching structure. This is very surprising at first sight, as it
seems that exactly this property lies at the heart of every relation defined by the bisimulation
methodology. We will illustrate the problem with an example in the following.

Example 8.8. Consider the two automata in Figure 8.5. As the probability to execute any of
the observable actions a, b, c, d is 1

2 , the two automata are relaxed bisimilar. Clearly, however,
the states with the outgoing observable actions do not have the same branching structure. For
instance, the automaton on the left has a state with outgoing transition labelled by a and b, while
no corresponding states exists in the automaton on the right. In fact, none of the states with
outgoing observable actions have the same outgoing action labels.
We remark that the difference in the non-deterministic branching structure of the automata in

Example 8.8, also causes relaxed bisimilarity to fail at being a congruence with respect to parallel
composition.
To continue the example, assume we combine the automata in parallel with another one that

can non-deterministically choose between a and b (and has no other behaviour), and enforce
synchronization upon these two actions. Then the probability that the communication succeeds
when combined with the automaton on the left is 1

2 , because actions a and b are only enabled
if the left probabilistic branch is taken in the immediate transition. When combined with the
right automaton, the probability is 1. Because no matter how the probabilistic choice of the
immediate transition is resolved, either a transition labelled by a, or a transition labelled by b is
enabled, and thus, the communication can succeed.
If we further assume that the automaton with which we compose in parallel can execute succ

after he has executed any of its transitions a or b, we can easily show that relaxed bisimilarity is
even not a congruence with respect to parallel composition. Because then, the probability that
succ occurs is 1

2 in one case, and 1 in the other, name precisely then, when the communication
on either a or b was successful. ◁

111

8. Bisimulations

This simple example has shown that relaxed bisimilarity neither preserves the branching struc-
ture of processes, nor is a congruence with respect to parallel composition.

Surprisingly, even fully deterministic processes exist that disprove relaxed bisimilarity to be a
congruence. In [Eis+15], a distribution-based bisimulation has been developed that is similar
to relaxed bisimulation in its intentions, but that succeeds in preserving the non-deterministic
branching structure. Even for this relation, the following example is a counterexample to the con-
gruence property. The interesting aspect of this example is that it involves no nondeterministic-
branching, but solely probabilistic branching.

s3 s4 s3 s4 r5 r6

s1 s2 s1 s2

s5 s6

r3 r4

r1 r2

r0s0 s′0

i

1
2

1
2

τ

1
2

1
2

i i

h t h t

i i

h t

Suc Suc

Figure 8.6.: s0 and s′0 represent two different ways of tossing a coin and r0 denotes the guesser.

Example 8.9 (Probabilistic Counterexample). The two automata on the left denote the
process of tossing a coin and then announcing the result to the environment.
Their difference is that the automata on the very left announces the result immediately after

tossing (action i), while the automaton in the middle performs proceeds in two steps. It first
tosses the coin internally (τ), and then pretends to toss the coin (i), even though it has already
been tossed. Note that intuitively from the outside we cannot see a difference between the
two automata. Both (pretend to) toss a coin, and with a uniform probability one of the two
outcomes head (h) or tail (t) is announced. It is easy to see that the two automata are indeed
relaxed bisimilar. Note, furthermore, that they are deterministic.
The process on the right represents a guesser, who tries to guess the result (before it is an-

nounced). The process of guessing happens in the very moment the (pretended) coin toss hap-
pens. If the guesser’s guess was successful, he can synchronize with the announced result of head
(h) or tail (t) of the tosser, and then execute the action Suc to signal his success. If he fails, the
parallel composition will deadlock. Note that this assumes that synchronization is enforced on
i, h and t.

No communication takes place between the guesser and the tosser. It is thus quite surprising
that if we execute the guesser in parallel with the guesser on the left, his maximum probability for
guessing correctly is 1

2 . Yet, when he plays the game against the automaton in the middle, there
is a way to resolve non-determinism in such a way that he guesses correctly with probability 1.
So seemingly, he suddenly has a guaranteed winning strategy.

◁

The intuitive explanation for this situation is that the guesser, when put in parallel with s′0
can base its decision which transition to choose in state r0 on the state the tosser has reached by
performing his internal probabilistic decision, namely either state s5 or s6. This means the state

112

8.2. Weak Bisimilarities

space that is generated by the parallel composition gives additional information to the guesser
which he intuitively should not have. When combined with s0 no such states exist.

This is an example of a situation where two different modelling purposes of non-determinism
interfere in an unexpected way, namely concurrency and implementation freedom. Intuitively,
the non-determinism that originates from state r0 leaves the freedom to implement any guessing
strategy. In the automaton that results from the parallel composition of the tosser and the guesser,
there is no distinction between the cases where non-determinism results from parallel composi-
tion directly, or if it results from different implementation alternatives. So, one possible strategy
to resolve non-determinism, often also called a scheduler, is one where the information in which
state the tosser currently is, is used to devise a winning strategy to resolve the non-determinism
of r0 that has resulted from implementation freedom. However, this strategy is unrealistic, as it
is not locally restricted to information the guesser may have, but is based on global knowledge
of the complete system.
The phenomenon of unrealistic schedulers is well known and has been studied nuancedly

in the literature (see for example [GD07; De 99; GA12] and [AHJ01] in the context of trace
distribution preorder. In fact, restricting ourselves to a suitable class of more realistic schedulers
suffices to reestablish a congruence result—at least for the bisimulation of [Eis+15].
Unfortunately, restricting schedulers has several drawbacks. On the one hand, this result is

not general any longer, and variations in the choice of the scheduler class used in a specific con-
text may invalidate results established by using this bisimulation. On the second hand, realistic
schedulers, as for example distributed schedulers, are known to quickly introduce undecidability
problems in the theory [GD07]. We summarize our discussion in the following remark.

Remark 8.1. ∼∼∼⋆ is not a congruence with respect to parallel composition, and it does not preserve
the non-deterministic branching structure. The failure to be a congruence is separate from its
failure to preserve the branching structure. Even for deterministic systems it is not a congruence
with respect to parallel composition (cf. Example 8.9).

Summary

Relaxed bisimilarity has turned out a very weak notion of bisimilarity that satisfies our demand
of fusing distributions along sequences of internal transitions. In other words, it allows us to
be ignorant of the probabilistic branching structure. It thus satisfies the last requirement of an
observational equivalence demanded in Remark 1.1 and Section 8.2.2.
Unfortunately, this came accompanied with a violation of the other two requirements: being a

congruence with respect to parallel composition and preserving the non-deterministic branching
structure. The two problems have turned out to be independent in so far that even for determinis-
tic systems the relation is not a congruence with respect to parallel composition (when combined
with a non-deterministic process). While this can be remedied by restricting our theory to cer-
tain schedulers, we consider this solution unsatisfactory; mainly, because the bisimulation then
loses its wide and general applicability as an observational equivalence. We therefore strive for
a different notion of bisimilarity that is oblivious of the probabilistic branching structure up to
the point where it interferes with essential properties of classic bisimilarity.

113

8. Bisimulations

8.2.3. Weak Distribution Bisimilarity
This section introduces a novel notion of bisimulation, weak distribution bisimulation that is
as oblivious of the probabilistic branching structure as possible, while still preserving the usual
properties of bisimilarities. As we will show, weak distribution bisimilarity satisfies all proper-
ties that we demanded of a reasonable observational equivalence in Chapter 1. Technically, the
definition of this bisimulation will be similar to relaxed bisimulation. It is also defined as a re-
lation over distributions and uses a similar approach to express that a certain behaviour occurs
with a certain probability. The difference is that it has stricter conditions on when a splitting of
distributions may take place.
We also introduce minor variations of the relation, namely its stability insensitive counterpart

as well as the induced simulation relation. They will prove to be a helpful tool in our later
formal comparison with existing relations in Section 8.3. We conclude this section with a series
of elementary properties of weak distribution bisimilarity, most notably that it is indeed the
largest weak distribution bisimulation. More advanced properties will be developed in course of
the succeeding sections.

Definition 8.4 (Weak Distribution Bisimulation). Let (S, s̄,Act, ,) be a MA. A
symmetric relation R over Dist(S) is a weak distribution bisimulation, if for each pair of distri-
butions (µ, γ) ∈ R for every a ∈ Actχ

(a) µ
a−−→ µ′ implies γ a

==⇒c γ
′ for some γ′ ∈ Dist(S) and µ′ R γ′,

(b) for every p ∈ [0, 1] and µ1, µ2 ∈ Dist(S) such that µ = µ1 ⊕p µ2 there exist γ1, γ2 ∈
Dist(S) such that γ ==⇒c γ1 ⊕p γ2 and µi R γi for i ∈ {1, 2}, and

(c) if µ↓ then γ ==⇒ γ′ for some γ′ ∈ Dist(S) with γ′↓.

We write µ ∼∼∼ γ if some weak distribution bisimulation R exists with µ R γ. We say that two
Markov automata A and A′ are weak distribution bisimilar if in their disjoint union the two
initial states are weak distribution bisimilar, i.e. s̄ ∼∼∼ s̄′. ◁

Notation 8.2. For two states s and t, we write s ∼∼∼δ t if δ(s) ∼∼∼ δ(t).
This reduction of ∼∼∼ to a relation on states is especially helpful for comparisons with existing

bisimilarities, which are usually defined as relations over states.
At this point, the reader might be interested in a comparison of the formal differences between

relaxed bisimulation and weak distribution bisimulation. To eliminate inessential differences
between the definitions, we provide a comparison of the weak challenger characterizations of
both relations later in this chapter. Arriving at the weak challenger characterization of weak
distribution bisimulation, however, needs several additional results before. The interested reader
may proceed immediately to page 120 for the comparison.

Variations We note that from our definition of bisimilarity it is straightforward to derive
the related simulation relation by dropping the symmetry condition. We will use this relation
for a formal comparison with probabilistic forward simulation in Section 8.3.

Definition 8.5 (Weak Distribution Simulation). Let (S, s̄,Act, ,) be a MA. A rela-
tionR overDist(S) is a weak distribution simulation, if for each pair of distributions (µ, γ) ∈ R
for every a ∈ Actχ

114

8.2. Weak Bisimilarities

(a) µ
a−−→ µ′ implies γ a

==⇒c γ
′ for some γ′ ∈ Dist(S) and µ′ R γ′,

(b) for every p ∈ [0, 1] and µ1, µ2 ∈ Dist(S) such that µ = µ1 ⊕p µ2 there exist γ1, γ2 ∈
Dist(S) such that γ ==⇒c γ1 ⊕p γ2 and µi R γi for i ∈ {1, 2}, and

(c) if µ↓ then γ ==⇒ γ′ for some γ′ ∈ Dist(S) with γ′↓.

We write µ ⪯ γ if some weak distribution simulation R exists with µ R γ. We say that two
Markov automataA andA′ are weak distribution similar if in their disjoint union the two initial
states are weak distribution similar, i.e. s̄ ⪯ s̄′. ◁

Stability Insensitive Variants The maximal progress assumption does not play a role
in the purely probabilistic setting, but is a crucial aspect of compositionality in the stochastic-
timed setting (cf. Chapter 5). Thus, the standard notions of PA equivalence do not incorporate
any condition similar to Condition (c) in the preceding definitions, while IMC equivalences share
them.
To allow for better comparison with the process relations for PA, we introduce stability insen-

sitive variants of the above definitions. They only differ in the removal of the third condition.
We note that removal is only semantically effective in the non-stochastic setting. In the stochas-

tic setting, the notation
χ(r)−−−→ implicitly encodes stability. With this notation in mind, it is

straightforward to see that Condition (a) already subsumes Condition (c). The reason why we
state it in Definitions 8.4 and 8.5 at all, is merely to make the treatment of stability (i.e. maximum
progress) more explicit to the reader.
Therefore, we define the stability insensitive relations only on PA, where we let a ∈ Act instead

of a ∈ Actχ.

Definition 8.6 (Weak Stability Insensitive Distribution Bisimulation). Let (S, s̄,Act,)
be a PA. A symmetric relation R over Dist(S) is a weak stability insensitive distribution bisim-
ulation, if for each pair of distributions (µ, γ) ∈ R for every a ∈ Act

(a) µ
a−−→ µ′ implies γ a

==⇒c γ
′ for some γ′ ∈ Dist(S) and µ′ R γ′,

(b) for every p ∈ [0, 1] and µ1, µ2 ∈ Dist(S) such that µ = µ1 ⊕p µ2 there exist γ1, γ2 ∈
Dist(S) such that γ ==⇒c γ1 ⊕p γ2 and µi R γi for i ∈ {1, 2}.

We write µ ∼∼∼ ↚ γ if some weak stability insensitive distribution bisimulation R exists with
µ R γ. We say that two PA A and A′ are weak stability insensitive distribution bisimilar if in
their disjoint union the two initial states are weak stability insensitive distribution bisimilar, i.e.
s̄ ∼∼∼↚ s̄′. ◁

Definition 8.7 (Weak Stability Insensitive Distribution Simulation). Let (S, s̄,Act,)
be a PA. A relation R over Dist(S) is a weak stability insensitive distribution simulation, if for
each pair of distributions (µ, γ) ∈ R for every a ∈ Act

(a) µ
a−−→ µ′ implies γ a

==⇒c γ
′ for some γ′ ∈ Dist(S) and µ′ R γ′,

(b) for every p ∈ [0, 1] and µ1, µ2 ∈ Dist(S) such that µ = µ1 ⊕p µ2 there exist γ1, γ2 ∈
Dist(S) such that γ ==⇒c γ1 ⊕p γ2 and µi R γi for i ∈ {1, 2}.

115

8. Bisimulations

Wewrite µ ⪯ ↚ γ if some weak stability insensitive distribution bisimulationR exists with µ R γ.
We say that two PA A andA′ are weak stability insensitive distribution similar if in their disjoint
union the two initial states are weak stability insensitive distribution similar, i.e. s̄ ⪯ ↚ s̄′. ◁

Used in a different context and using different notation, this relation has actually been in-
troduced in [Den+09] under the name testing preorder, however without the accompanying
bisimulation relation.

Elementary Properties
Lemma 8.1 (Union). Let R and R′ be two weak distribution bisimulations. Then R ∪ R′ is
a weak distribution bisimulation.

This lemma establish the existence of a unique largest weak distribution bisimulation, which
then necessarily coincides with ∼∼∼.

Corollary 8.1. ∼∼∼ is the largest weak distribution bisimulation.

Theorem 8.4 (Equivalence Relation). ∼∼∼ is an equivalence relation.

Proof. Symmetry follows from the definition; reflexivity is straightforward. For transitivity, we
will prove that the relationR = { (µ, ξ) | ∃γ : µ ∼∼∼ γ∧γ ∼∼∼ ξ } is a weak distribution bisimulation.
Consider an arbitrary pair (µ, ξ) ∈ R. Hence, by definition, µ ∼∼∼ γ ∼∼∼ ξ for some distribution γ.

Case (a): Let µ a−−→ µ′. As µ ∼∼∼ γ and ∼∼∼ is a weak distribution bisimulation, there must exist
γ′ such that γ a

==⇒c γ′ and µ′ ∼∼∼ γ′. Now similarly, as γ ∼∼∼ ξ, there must exist ξ′ such that
ξ

a
==⇒c ξ

′, and γ′ ∼∼∼ ξ′. It immediately follows that (µ′, ξ′) ∈ R.

Case (b): Let p be an arbitrary real number in [0, 1] and µ1 and µ2 two distributions such that
µ = µ1 ⊕p µ2. As µ ∼∼∼ γ there exist γ1 and γ2 such that γ ==⇒c γ1 ⊕ γ2 and µi

∼∼∼ γi for
i ∈ {1, 2}. Let γ′ = γ1⊕pγ2. As γ ==⇒c γ holds and since γ ∼∼∼ ξ, we first use Condition (a)
to derive that there exists ξ′ such that ξ ==⇒c ξ and γ′ = ξ′. Second, using Condition (b),
we can infer that there exist ξ1 and ξ2 such that ξ′ ==⇒c ξ1 ⊕p ξ2 and γi ∼∼∼ ξi for i ∈ {1, 2}.
Then by Lemma 4.2, also ξ ==⇒c ξ1 ⊕p ξ2 directly. Again, this is enough to show that
(µi, ξi) ∈ R for i ∈ {1, 2}.

Case (c): Assume µ↓. Since µ ∼∼∼ γ, there exists γ′ such that γ ==⇒c γ′ and γ′↓. As γ ==⇒c γ′

and γ ∼∼∼ ξ, there exists ξ′ such that ξ ==⇒c ξ
′ and γ′ ∼∼∼ ξ′. As γ′↓, there must exists ξ′′ such

that ξ′ ==⇒c ξ
′′ and ξ′′↓. By Lemma 4.2, this satisfy to derive ξ ==⇒c ξ

′′ and ξ′′↓.

We finally state a lemma that will be helpful in many proofs. Intuitively, it means that distri-
butions that can mutually reach each other by means of weak internal transitions, are all weak
distribution bisimilar.

Lemma 8.2. If µ ==⇒c γ ==⇒c µ
′ and µ′ ∼∼∼ µ then also µ ∼∼∼ γ ∼∼∼ µ′.

The lemma is straightforward to prove. Analogue results are standard for most weak bisimi-
larities.

116

8.2. Weak Bisimilarities

Bisimulation-Up-To-Splitting
We now introduce a proof technique that reduces the number of pairs of bisimilar pairs of distri-
butions we need to provide explicitly, when establishing that two distributions are bisimilar.
Notation 8.3 (Composite Relation). Given a relation R ⊆ Dist(S) × Dist(S), we let R⊕ be
the relation satisfying µ R⊕ γ if and only if there exist a finite or countable infinite index set J ,
distributions µi and γi as well as positive real numbers pi ∈ R>0 for each i ∈ J , satisfying

•
∑

i∈J pi = 1,

• µ =
⊕

i∈J piµi and γ =
⊕

i∈J piγi, and

• ∀i ∈ J : µi R γi.

A composite relation relates distributions if they can be split into subdistributions in such a
way that the subdistributions can be related by the original relation.

Lemma 8.3. If R is a weak distribution bisimulation then also R⊕ is a weak distribution
bisimulation.

Proof. Let in the following µ =
⊕

i∈J piµi and γ =
⊕

i∈J piγi.

We begin with Condition (a) of Definition 8.4. Assume that µ a−−→ ν. By the definition of
hyper-transition, we know that there is a defining a-transition for each state s ∈ Supp(µ). This
immediately implies that, for each sij ∈ Supp(µi) there must exist a transition sij

a−−→ νij such
that

ν =
⊕
i

pi
⊕

µi(s
i
j)ν

i
j .

Let νi =
⊕

µi(s
i
j)ν

i
j . By the definition of hyper-transition, µi

a−−→ νi. As µi R γi and R is a
weak distribution bisimulation, there must exist ξi with γi

a
==⇒c ξ

i and νi R ξi. By Lemma 4.3
we obtain that γ a

==⇒c

⊕
i∈J piξ

i. Immediately,
⊕

i∈J piν
i R⊕ ⊕

i∈J piξ
i follows, as νi R ξi.

For Condition (b), let µa ⊕p µb = µ be a splitting of µ. Then for each of the distributions µi,
there must exist a splitting µa

i ⊕qi µ
b
i = µi satisfying⊕

i∈J

piqi
p

µa
i = µa and

⊕
i∈J

(1− pi)(1− qi)

1− p
µb
i = µb.

As µi R γi for each i ∈ J , andR is a weak distribution bisimulation there must exist weak com-
bined hyper-transitions γi ==⇒c γ

a
i ⊕qi γ

b
i with µa

i R γa
i and µb

i R γb
i (⋆). Then, by Lemma 4.3,

γ ==⇒c

⊕
i∈J

pi(γ
a
i ⊕qi γ

b
i)

which, by standard algebraic arguments, is equivalent to⊕
i∈J

piqi
p

γa
i︸ ︷︷ ︸

:=γa

⊕p

⊕
i∈J

(1− pi)(1− qi)

1− p
γb
i︸ ︷︷ ︸

:=γb

.

117

8. Bisimulations

We immediately see

µa =
⊕
i∈J

piqi
p

µa
i R⊕

⊕
i∈J

piqi
p

γa
i = γa

µb =
⊕
i∈J

(1− pi)(1− qi)

1− p
µb
i R⊕

⊕
i∈J

(1− pi)(1− qi)

1− p
γb
i = γb,

as µa
i R γa

i and µb
i R γb

i for each i ∈ J by ⋆.

Finally Condition (c) is similarly to, but simpler than Condition (a), using µ↓ if and only if µi↓
for each µi.

This lemma effectively means that we can use a composite relation over relatively basic dis-
tributions in order to establish bisimilarity of complex distributions. Phrased differently, this
means that ∼∼∼ is compositional with respect to ⊕.

Corollary 8.2 (Linearity).
∼∼∼=∼∼∼⊕

Proof. This follows with the fact that ∼∼∼ is the largest weak distribution bisimulation (Corol-
lary 8.1) and Lemma 8.3.

If we want to prove two distributions bisimilar, it suffices to show that they are contained in
some bisimulation-up-to-splitting. The definition of bisimulation-up-to-splitting is identical to
that of weak distribution bisimulation, except that it replaces R in every condition of the form
µ R γ by the composite relation, yielding µ R⊕ γ.

Definition 8.8. Let (S, s̄,Act, ,) be a MA. A symmetric relation R over Dist(S) is a
bisimulation-up-to-splitting, if for each pair of distributions (µ, γ) ∈ R for every a ∈ Actχ

(a) µ
a−−→ µ′ implies γ a

==⇒c γ
′ for some γ′ ∈ Dist(S) and µ′ R⊕ γ′,

(b) for every p ∈ [0, 1] and µ1, µ2 ∈ Dist(S) such that µ = µ1 ⊕p µ2 there exist γ1, γ2 ∈
Dist(S) such that γ ==⇒c γ1 ⊕p γ2 and µi R⊕ γi for i ∈ {1, 2}, and

(c) if µ↓ then γ ==⇒ γ′ for some γ′ ∈ Dist(S) with γ′↓.

◁

Lemma 8.4. Whenever R is a bisimulation-up-to-splitting then R⊆∼∼∼.

Proof. We will establish that R⊕ is a weak distribution bisimulation. The result then follows
from R ⊆ R⊕.
The proof that R⊕ is a weak distribution bisimulation follows the line of the proof of

Lemma 8.3. There, we showed that R⊕ is a weak distribution bisimulation if R is a weak
distribution bisimulation. For this proof, R is only a bisimulation-up-to-splitting, and not a
bisimulation. The crucial insight is, however, that the definition of bisimulation-up-to-splitting
and weak distribution bisimulation are almost identical, with the notable exception that R is
replaced by R⊕ in Conditions (a) and (b). Therefore, it suffices to adapt the proof by replacing
every argument of the form

118

8.2. Weak Bisimilarities

“
⊕

i∈J piν
i R⊕ ⊕

i∈J piξ
i follows, as νi R ξi”

by an argument of the form

“
⊕

i∈J piν
i R⊕ ⊕

i∈J piξ
i follows, as νi R⊕ ξi”.

The only difference between the two lines is the addition of ⊕ at the relation symbol R on
the right. Unfortunately, this implication does not hold immediately. It needs the following
additional argument: Let νi R⊕ ξi be justified by the index set Ki, weights qik and distributions
νik and ξik with

•
∑

k∈Ki qik = 1,

• νi =
⊕

k∈Ki qikν
i
k and ξi =

⊕
k∈Ki qikξ

i
k, and

• ∀k ∈ Ki : νik R ξik.

Then, we can justify
⊕

i∈J piν
i R⊕ ⊕

i∈J piξ
i with help of the index set L := { li,k | i ∈ J, k ∈

Ki }, weight ri,k := piq
i
k and the distributions νli,k = νik and ξli,k = ξik for i ∈ K and k ∈ Ki:

We first note that ⊕
i∈J

piν
i

=
⊕
i∈J

pi
⊕
k∈Ki

qikν
i
k

=
⊕
i∈J

⊕
k∈Ki

piq
i
kν

i
k

=
⊕
i∈J

⊕
k∈Ki

ri,kν
i
k

=
⊕

li,k∈L

rli,kνli,k

and that, with a completely analogue argument,
⊕

i∈J piξ
i =

⊕
li,k∈L rli,kξli,k . Then we note

that by assumption for all i ∈ J : ∀k ∈ Ki : νik R ξik holds, and thus also νli,k R ξli,k .

Weak Challenger Characterization
Definition 8.9 (Weak Challenger Characterization). A symmetric relationR ⊆ Dist(S)×
Dist(S) is called a weak challenger weak distribution bisimulation if whenever µ R γ then

(a’) if µ a
==⇒c µ

′ then γ
a

==⇒c γ
′ for some γ′ ∈ Dist(S) and µ′ R γ′,

(b’) for every p ∈ [0, 1] and µ1, µ2 ∈ Dist(S) such that µ ==⇒c µ1 ⊕p µ2 there exist γ1, γ2 ∈
Dist(S) such that γ ==⇒c γ1 ⊕p γ2 and µi R γi for i ∈ {1, 2}, and

(c’) if µ ==⇒c µ
′ and µ′↓ for some µ′ then γ ==⇒ γ′ for some γ′ ∈ Dist(S) with γ′↓.

◁

119

8. Bisimulations

Lemma 8.5 (Characterizations). Onweakly image-finite MA, two distribution µ and γ are weak
distribution bisimilar if and only if they are related by some weak challenger weak distribution
bisimulation.

The proof of this lemma can be found in Appendix D.1.
The weak challenger characterization drastically simplifies several proofs. We will use it in the

following without further explicit mentioning. It is, however, important to note that we have
only shown the validity of the lemma for weakly image-finite MA. Note that this restriction
merely is a consequence of the proof we provided, and not necessarily needed in general. We
are not aware of a counterexample that would definitely establish that the two characterizations
disagree for general MA.

Comparison with Relaxed Bisimilarity
We continue with a technical discussion of the formal differences in the definitions of the two
distribution bisimulations. Using the characterization in Lemma 8.5 as the basis of our com-
parison, we see that the differences between relaxed bisimulation and weak distribution bisimu-
lation mainly lie in the stricter splitting condition, and the uniform treatment of internal and
observable action in the definition of weak distribution bisimulation. Condition (c) of relaxed
bisimulation and Condition (c) of Definition 8.4 fully coincide. For internal transitions, Con-
dition (a) of relaxed bisimulation agrees with Condition (a) of weak distribution bisimulation.
For observable actions (including the stochastic timed action χ(r)), the special transition rela-

tion
a|p
==⇒c of relaxed bisimulation (Condition (b)), is reflected by both Conditions (a) and (b)

of weak distribution bisimulation. For convenience, we recall the definition of
a|p
==⇒c as stated in

Notation 8.1.

µ
a|p
==⇒c µ

′ if and only if ∃µ1, µ2 : µ ==⇒c µ1 ⊕p µ2︸ ︷︷ ︸
ϕ1

∧∃µ′ : µ1
a

==⇒c µ
′︸ ︷︷ ︸

ϕ2

∧µ2 ̸⇝ a︸ ︷︷ ︸
ϕ3

.

Subformula ϕ2 corresponds to Condition (a) of weak distribution bisimulation. It reflects
the core idea of bisimulations, that a certain behaviour may occur from a distribution. The
important differences are linked to the other two subformulas, which we will now discuss in
detail.
The splitting condition contained in the notation

a|p
==⇒c (subformula ϕ1) is stricter than the

one of weak distribution bisimulation. There, it is demanded that for every splitting of one of
two bisimilar distributions, there is a splitting of the other distribution, such that the distribu-
tions of the splitting are bisimilar again. For relaxed bisimulation nothing similar is demanded.
The splitting is only used to allow to isolate states that can exhibit a certain observable action,
which are gathered in distribution µ1, or γ1, respectively. The other half of the splitting, µ2 (γ2),
is completely disregarded. Thus, its specific behaviour is lost for further considerations in the
bisimulation. In contrast, as both µ1 and µ2 are demanded to be bisimilar again to γ1 and γ2, re-
spectively for weak distribution bisimulation, the behaviour of both splitting parts will be fully
considered be subsequent checks of the bisimulation conditions. In summary, for both notions
of bisimulation the splitting condition is necessary to observe that a certain behaviour occurs
with a specific probability. The crucial difference is hereby that while weak distribution bisimu-

120

8.2. Weak Bisimilarities

lation saves both parts of the splitting for further behavioural analysis, this aspect is completely
discarded for relaxed bisimulation.
Another important difference is the complete lack of subformula ϕ3 in weak distribution

bisimulation. This lack allows to split distributions arbitrarily. The important consequence is
that weak distribution bisimulations allow to consider also behaviour of arbitrary states in iso-
lation, while relaxed bisimulation only allows to consider complete distributions. Thus, weak
distribution bisimilarity combines the purely distribution-based view of relaxed bisimilarity with
the purely state-based view of the classical state-based bisimilarities as for example weak proba-
bilistic bisimilarity.
These in parts quite subtle differences between relaxed bisimulation and weak distribution

bisimulation lead to the effect that weak distribution bisimilarity enjoys many favourable prop-
erties, which relaxed bisimilarity did not have, among them the congruence property for parallel
composition. We will discuss these properties in the following sections.

Semantic Insights
We present two properties of weak distribution bisimilarity that are needed for various proofs,
and that are interesting in their own right.

A Kind of Stuttering Condition Aweak transition is called a stuttering transition, if all
states that are passed along the transition by internal transitions belong to the same equivalence
class with respect to bisimilarity (cf. [GW96]).
In the definition of weak distribution bisimilarity, also a stuttering phenomenon occurs, even

though with respect to distributions instead of states.
This can be best seen in Condition (b) of weak distribution bisimulation as expressed in the

formulation of Lemma 8.5 (the weak challenger characterization).

Lemma 8.6. Let R be a weak distribution bisimulation with µ R γ. Let µ ==⇒c µ1 ⊕p µ2

for arbitrary µ1 and µ2. According to Condition (b) of Lemma 8.5, there exist γ1 and γ2 with
γ ==⇒c γ1 ⊕ γ2 and µ1 R γ1 and µ2 R γ2.

In addition,
µ ∼∼∼ µ1 ⊕ µ2

∼∼∼ γ1 ⊕ γ2 ∼∼∼ γ.

As typical for a stuttering condition, the start and goal distributions of the weak transitions
µ ==⇒c µ1 ⊕p µ2 and γ ==⇒c γ1 ⊕ γ2 are weak distribution bisimilar. This implies, that no
change of equivalence class occurs in between. This is especially interesting, when we recall that
Condition b essentially captures the idea of fusion of distribution. This lemma then illustrates
that the fusion process never continues beyond a point where behaviour is changed.
Note that in the lemma we use an arbitrary weak distribution bisimulation R to relate µ and

γ, but ∼∼∼ in the conclusion of the lemma. In fact, this claim does not hold in general, if we replace
∼∼∼ in the last equation by the weak distribution bisimulation R.

Proof. As R is a bisimulation, according to Condition (b) of Lemma 8.5, µ1 R γ1 and µ2 R γ2.
This immediately implies µ1

∼∼∼ γ1 and µ2
∼∼∼ γ2. With Corollary 8.2 µ1 ⊕ µ2

∼∼∼ γ1 ⊕ γ2 follows.
The remaining equalities follow by transitivity of ∼∼∼.

Note, however, that weak distribution bisimulation is not akin to branching bisimula-
tion ([GW96]), as no stuttering condition is applied on the simulating weak transitions.

121

8. Bisimulations

Converse Linearity Corollary 8.2 states that two distributions are bisimilar if they can
be split into families of distributions whose members are pairwise bisimilar. This is especially
interesting as it allows to deduce bisimilarity of distribution from pairwise bisimilarity of the
states in their support.
The following lemma allows to converse this statement in some sense. It states that, in princi-

ple, if µ ∼∼∼ γ, we can for an arbitrary splitting of a distribution µ find a splitting of γ, such that
the components of the splitting are pairwise bisimilar. However, such a splitting of γ cannot be
found immediately, in general. Instead, γ must be allowed to perform a weak internal transition
first.

122

8.2. Weak Bisimilarities

Lemma 8.7 (Inverse Linearity). Let
⊕
i∈J

piµi be a splitting of µ with a possibly infinite index

set J ⊆ N.
If µ ∼∼∼ γ then there exist γi for each i ∈ J such that

γ ==⇒c

⊕
i∈J

piγi and µi
∼∼∼ γi.

The proof of this lemma can be found in Appendix D.2.

Summary
In this section, we have introduced weak distribution bisimilarity with the goal in mind to
achieve the relational coarseness of relaxed bisimilarity by splitting distributions, while at the
same time maintaining the crucial properties of an observational equivalence (Remark 1.1).
So far, we have shown that bisimilarity can be characterized both with weak and strong chal-

lenger transitions, as it is the case for most notions of bisimilarity. We have also presented an
up-to-proof technique that reduces the number of distribution pairs that one has to actually
compare in a bisimulation proof. Finally, we presented two properties of weak distribution
bisimilarity that provided first insights in its semantic structure.
However, we have not yet answered the essential question whether weak distribution bisimi-

larity satisfies the properties of an observational equivalence. We will answer this question in the
following section.

8.2.4. Relaxed Bisimilarity Congruence
So far, establishing an observational equivalence relation on Markov automata has turned out
to be a challenging task: While relaxed bisimilarity is arguably suited to formalize observations
in the probabilistic and stochastic setting as a bisimilarity being ignorant of a systems internal
structure as much as possible, it has failed to be a congruence relation for parallel composition and
non-deterministic choice (cf. Remark 8.1). Thus, while clearly satisfying the last requirement of
Remark 1.1, it fails its first.
In this section, we will prove that weak distribution bisimilarity, which is only slightly finer

than relaxed bisimilarity, succeeds at being a congruence for all operators. Finally, we will es-
tablish that weak distribution bisimilarity is indeed the coarsest congruence relation included in
relaxed bisimilarity.
With this result at hand, weak distribution bisimilarity becomes a most promising candidate

for a canonical observational equivalence for Markov automata, fully satisfying at least two out
of the three requirements of Remark 1.1. As we will argue in Section 8.5, in fact, it meets all
three requirements.

Congruence Properties of Weak Distribution Bisimilarity
This section summarizes the congruence result for abstraction and parallel composition. Among
them, the congruence result for parallel composition is technically the most challenging to estab-
lish.

123

8. Bisimulations

Theorem 8.5. ∼∼∼ is a congruence with respect to abstraction:

A ∼∼∼ A′ =⇒ A|A ∼∼∼ A′|A

The proofs follows well-known patterns (see for instance [Mil89b; Her02]).

Theorem 8.6. ∼∼∼ is a congruence with respect to parallel composition:

A ∼∼∼ A′ =⇒ A||A A∗ ∼∼∼ A′ ||A A∗

The proof of this lemma can be found in Appendix D.3.

Relaxed Bisimulation Congruence
Weak distribution bisimilarity has been designed to keep the idea behind relaxed bisimilarity,
while being a congruence with parallel composition. In the following, we will first establish that
∼∼∼ ⊊ ∼∼∼⋆, showing that weak distribution bisimilarity is indeed a refinement of relaxed bisim-
ilarity. As a second step, we will improve upon this result by showing that it is an optimal
refinement in the sense that ∼∼∼ is the coarsest congruence contained in relaxed bisimilarity.

Refinement We now discuss two examples that illustrate the differences between weak dis-
tribution bisimilarity and relaxed bisimilarity.

The following is an example of two processes where both bisimulations agree. The interest-
ing aspect here is to see in what respect the used witness bisimulation relations differ for the
respective notion of bisimilarity.

Example 8.10. Recall that the two automata from Figure 8.1 are relaxed bisimilar, as we have
shown in Example 8.7. We show by providing a suitable weak distribution bisimulation R that
they are also weak distribution bisimilar.

• δ(s̄1) R δ(s̄2),

•
⟨
(tt : 1

4), (th : 1
4), (ht : 1

4), (hh : 1
4),
⟩
R
⟨
(t : 1

2), (h : 1
2)
⟩
, and

•
⟨
(tt : 1

4), (th : 1
4), (ht : 1

4), (hh : 1
4),
⟩
R
⟨
(tt : 1

4), (th : 1
4), (ht : 1

4), (hh : 1
4)
⟩
,

• δ(t) R
⟨
(tt : 1

2), (th : 1
2))
⟩
,

• δ(h) R
⟨
(ht : 1

2), (hh : 1
2))
⟩
.

The bisimulation R differs from the one that we have used in Example 8.7 by the two last items,
which are not necessary to establish the relaxed bisimulation of Example 8.7. The additional two
pairs are needed in R in order to satisfy the splitting condition, Condition (b) of Definition 8.4
for the pair⟨
(tt : 1

4), (th : 1
4), (ht : 1

4), (hh : 1
4),
⟩

R
⟨
(t : 1

2), (h : 1
2)
⟩
, when the distribution⟨

(t : 1
2), (h : 1

2)
⟩

is split into δ(t) ⊕ 1
2
δ(h). All ther conditions are straightforward to

establish. ◁

We now illustrate a typical situation where relaxed bisimilarity and weak distribution bisimi-
larity do not agree.

124

8.2. Weak Bisimilarities

Example 8.11. Let us now consider the two automata with initial states s0 and s′0 of Figure 8.6,
which represent two ways to perform a fair coin toss. While they are relaxed bisimilar, they
are not weak distribution bisimilar. The unique internal transition of s′o leads to a uniform
distribution over the states s5 and s6, which we will call µ in the following. In the intuition,
the former of these states represents the situation where it is already determined that the coin
toss (denoted by action i), will yield the result head (action h), while the latter represents the
opposite situation where tail (action t) is already determined. If now s0 and s′0 would actually
be weak distribution bisimilar, this would mean that also s0 and µ must be weak distribution
bisimilar. Then, µ can be split into δ(s5)⊕ 1

2
δ(s6). Clearly, the two distributions of the splitting

are not weak distribution bisimilar. Now, state s0 cannot perform any internal transitions. Thus,
if the two automata were weak state bisimilar, we must be able to split δ(s0) into two not weak
distribution bisimilar distributions, matching δ(s5) and δ(s6), respectively. Obviously, this is
impossible. Hence, the two different implementations of a tosser are not weak distribution
bisimilar. ◁

The two situations in the last two examples seem very similar. However, while the first was
weak distribution bisimilar, the second was not. What is the difference between these situations?
In the first example, observable behaviour precedes the fusion of probabilities induced by internal
transitions, while in the second example, the fusion process precedes the observable behaviour.
Phrased differently, in the first situation, the observable transition originates from a single state
and only the distribution over states that is reached by the transition is subsequently refined with
internal transition. In the second situation, first internal transitions lead to a distribution over
several (non-bisimilar) states, which together exhibit a certain behaviour, which they are not
capable of performing in isolation. Notably, it is precisely the second situation that shows that
relaxed bisimilarity is not a congruence with respect to parallel composition.
When we have discussed the idea of fusing distributions of sequences of internal transitions, we

have stressed that the fusion process may not continue beyond a point where non-deterministic
decisions between different behaviours need to be made. Recall that this may already be the case
in the presence of a single outgoing internal transition from a state. The decision is then to stay at
the state, or to continue along the transition. When the state has (observable) behaviour that the
(distribution over) states reached by the internal transition cannot exhibit, taking the transition
or not is indeed a non-deterministic decision between two behaviours. In Figure 8.7 we see a
simple example of such situations. The initial state may perform a transition labelled by a to
the state . With an internal transition, it reaches a state that has both an a and a b-transition
to . The last state, that is reached by an internal transition from this state, has again only an
a-transition to . The internal transition from the first to the second state has no influence on
the observable behaviour, as the behaviour of the first state is fully preserved by the second. In
contrast, the third state exhibits less behaviour than the second, as it loses the ability to perform
a b-transition. Thus, the internal transition from the second to the third state has consequences
on the observable behaviour. Hence, the fusion process (which is trivial here, as all distributions
are Dirac) will proceed from the first to the second state, but must not continue to the third.
In fact, weak distribution bisimulations conform with this demand. Due to the simplicity of
the example, it is possible to identify state and distribution of equivalent behaviour immediately
from the structure. In turn, weak distribution bisimilarity is able to identify distributions of
identical behaviour (in the sense that they are then bisimilar) during the fusion process. It can
thus continue the fusion process even across structural non-determinism, as long as it is not
behavioural.

125

8. Bisimulations

τ

ab

τ

a

1

1

11

1

a

1

Figure 8.7.: Preserving Transitions

Now we formally state and prove the precise relationship between weak distribution bisimilarity
and relaxed bisimilarity, which we have so far only discussed intuitively.

Theorem 8.7. ∼∼∼ ⊊ ∼∼∼⋆

Proof. The strictness follows immediately from Example 8.11. We now show that ∼∼∼ is also an
relaxed bisimulation. Both relations are symmetric by definition. The last condition of both
bisimulations agrees by definition. The first condition of relaxed bisimulation agrees with the
first condition of the weak challenger characterization of weak distribution bisimilarity. Note
that we can freely switch between the standard characterization and the weak challenger char-
acterization even though the respective characterization in general induce different bisimulation
relations. Weak distribution bisimilarity is a bisimulation relation according to both characteri-
zations.
Now consider the last condition, Condition (b). Assume µ

a
==⇒ [p]µ′. By definition of the

transition relation, there exists a distribution µ1 ⊕p µ2 with

(i) µ ==⇒ µ1 ⊕ µ2, and

(ii) µ1
a

==⇒c µ
′, and

(iii) µ2 ̸⇝ a.

First, (i) and µ ∼∼∼ γ imply that by Condition (a) of the weak challenger characterization of weak
distribution bisimulation, γ ==⇒c γ1 ⊕p γ2 for some distributions γ1 and γ2, and µ1

∼∼∼ γ1 and
µ2

∼∼∼ γ2. Second, (ii) and µ1
∼∼∼ γ1 imply with Condition (a) that γ1

a
==⇒ γ′ with µ′ ∼∼∼ γ′. Finally,

we will establish that µ2 ̸⇝ a and µ2
∼∼∼ γ2 imply that also γ2 ̸⇝ a. Assume the contrary, i.e.

there exists γ′
1 ⊕p γ′

2 for some distributions γ′
1, γ

′
2 and real number p with γ2 ==⇒c γ′

1 ⊕p γ′
2

and γ′
1

a−−→. Since µ2
∼∼∼ γ2, thus also µ2 ==⇒c µ′

1 ⊕p µ
′
2 for some distributions µ′

1 and µ′
2 with

µ′
1

∼∼∼ γ′
1. The last statement immediately implies that µ′

1
a

==⇒ , which contradicts the assumption
that µ2 ̸⇝ a.

Relaxed Bisimilarity Congruence We will now show that weak distribution bisimi-
larity is indeed the coarsest congruence contained in relaxed bisimilarity with respect to parallel
composition.

Definition 8.10 (Relaxed Bisimulation Congruence). Let ≃⋆ denote the coarsest relaxed
bisimulation that is in addition a congruence with respect to parallel composition (||A), i.e. ≃⋆

satisfies Definition 8.3 and whenever s ≃⋆ t then also s ||A G ≃⋆ t ||A G for A ⊆ Act and
G ∈ MA. ◁

Theorem 8.8. ∼∼∼ = ≃⋆.

126

8.3. Revisiting State-Based (Bi)Simulations

The proof of this theorem can be found in Appendix D.4.
With this result, we see that weak distribution bisimilarity also satisfies the first requirement

for being considered an observational equivalence for Markov automata (Remark 1.1). Relaxed
bisimilarity has been designed with the third requirement in mind, i.e. being as ignorant of
the internal structure of a probabilistic and stochastic system as possible. As weak distribution
bisimilarity is the coarsest refinement of relaxed bisimilarity satisfying also the first requirement,
it is valid to say that weak distribution bisimilarity also fully satisfies the third requirement.
Before we finally discuss in Section 8.5 in how far weak distribution bisimilarity also satisfies

the second requirement, i.e. preservation of the non-deterministic branching structure, we will
shed light on the novel approach of distribution-based bisimulations from two different perspec-
tives.

8.3. Revisiting State-Based (Bi)Simulations
In this section, we show that the distribution-based approach is general enough to be also applied
to the well-known (bi)similarities for PA and IMC. From this perspective, it will become clear
that the distribution-based approach is in fact the natural approach to defining bisimulation on
stochastic and probabilistic systems, and that the state-based approach is only a special case of it.

8.3.1. PA and IMC
To recover the standard state-based bisimulations for PA and IMC, it suffices to adapt the second
condition of weak distribution bisimulation: We do no longer allow to match a distribution
splitting by first performing a weak internal transition and then to split. Instead, we demand to
split immediately.
In this section, we will show that this new bisimulation is a distribution-based characterization

of the established weak bisimulation for PA and IMC. This shows that the technique of distribu-
tion splitting is powerful enough to express liftings of a state-based equivalence relation R to
distributions, which we have denoted by L(R). In other words, state-based probabilistic bisimu-
lations can be easily reformulated in the distribution-based setting. In addition, our formulation
relieves us from the burden to demand that a bisimulation must be an equivalence relation.2
Finally, we will show that probabilistic forward simulation coincides with weak distribution

simulation.

Definition 8.11 (Semi-Weak Distribution Bisimulation). Let (S, s̄,Act, ,) be a MA.
A symmetric relation R over Dist(S) is a weak distribution bisimulation, if for each pair of
distributions (µ, γ) ∈ R for every a ∈ Actχ

(a) µ
a−−→ µ′ implies γ a

==⇒c γ
′ for some γ′ ∈ Subdist(S) and µ′ R γ′,

(b) for every p ∈ [0, 1] and µ1, µ2 ∈ Dist(S) such that µ = µ1 ⊕p µ2 there exist γ1, γ2 ∈
Dist(S) such that γ = γ1 ⊕p γ2 and µi R γi for i ∈ {1, 2}, and

(c) if µ↓ then γ ==⇒ γ′ for some γ′ ∈ Dist(S) with γ′↓.
2Other characterizations of weak bisimulation for PA that do not demand probabilistic bisimulations to be equivalence
relations are known. See, for instance, [Bai98].

127

8. Bisimulations

We write µ
◦∼∼∼ γ if some semi-weak distribution bisimulation R exists with µ R γ. ◁

As before for weak distribution bisimilarity, we will also consider the simulation induced by
this bisimilarity. It is obtained from Definition 8.11 by dropping the symmetry condition. We

denote the resulting bisimilarity by
◦
⪯ ↚ .

The above definition is an exact copy of Definition 8.4 except for the omission of the weak
transition in the second condition. While it is not obvious how to translate Definition 8.4 in
a state-based setting, we try to make a first step towards this direction with this new definition.
The crucial point is to understand the nature of distribution splitting. Splitting a distribution
µ means separating it into two arbitrary distribution µ1 and µ2 such that µ = µ1 ⊕p µ2 for
some p ∈ [0, 1]. While splitting µ into itself µ ⊕p µ is formally possible, it does not contribute
to our understanding. The value of splitting lies in its ability to single out the individual states
in the support of the distribution. It is easy to see that for every distribution µ it holds that
µ = δ(s) ⊕µ(s) (µ⊖s). By repeatedly applying this splitting, it is clear that in this way, we can
successively expose every single state in the support of µ.

As a consequence, when two distributions are bisimilar by virtue of µ R γ, then splitting
allows us to ensure that for every state s in Supp(µ) there exists a subdistribution γ′ of γ such
that δ(s) R γ′. As R is symmetric, we can use this argument now for γ′ and infer that every
state t in Supp(γ) must satisfy δ(s) R δ(t). We can formulate this in a notation familiar from
weak probabilistic bisimulation and weak IMC bisimulation, if we let Rδ be defined as s Rδ t if
and only if δ(s) R δ(t), i.e. the state-wise reduction of R. Then, it must hold that µ L(Rδ) γ,
which in other words means that to every equivalence class of states with respect toRδ, the same
probability mass must be assigned to by both µ and γ. In this way, splitting of distributions
induces a state-based relation from a distribution-based relation.
The intuitive discussion from the last paragraph immediately leads us to the theorem that the

largest semi-weak distribution bisimulation,
◦∼∼∼, is basically a reformulation of weak probabilistic

bisimulation on Markov automata. The only technical difference is that semi-weak distribution
bisimulation is additionally aware of timed transitions and demands the addition stability condi-
tion also owed to the timed setting of MA. Abstracting from these circumstantial details, the two
relations coincide. To state this formally, we first define semi-weak stability insensitive distribu-
tion bisimulation.

Definition 8.12 (Semi-Weak Stability Insensitive Distribution Bisimulation). Let
(S, s̄,Act,) be a PA. A symmetric relation R over Dist(S) is a semi-weak stability insensi-
tive distribution bisimulation, if for every a ∈ Act

(a) µ
a−−→ µ′ implies γ a

==⇒c γ
′ for some γ′ ∈ Dist(S) and µ′ R γ′,

(b) for every p ∈ [0, 1] and µ1, µ2 ∈ Dist(S) such that µ = µ1 ⊕p µ2 there exist γ1, γ2 ∈
Dist(S) such that γ = γ1 ⊕p γ2 and µi R γi for i ∈ {1, 2}.

We write µ
◦∼∼∼↚ γ if some semi-weak stability insensitive distribution bisimulation R exists with

µ R γ. ◁

Again, we denote the respective induced simulation relation by
◦
⪯ ↚ .

Both (bi)similarities can also be characterized by using a weak combined hyper-transitions in the
first condition instead of a strong transition.

128

8.3. Revisiting State-Based (Bi)Simulations

Definition 8.13 (Weak Challenger Characterization of Semi-Weak Distribution Bisim-
ulation). Let (S, s̄,Act, ,) be a MA. A symmetric relation R over Dist(S) is a weak
distribution bisimulation, if for each pair of distributions (µ, γ) ∈ R for every a ∈ Actχ

(a) µ
a

==⇒c µ
′ implies γ a

==⇒c γ
′ for some γ′ ∈ Subdist(S) and µ′ R γ′,

(b) for every p ∈ [0, 1] and µ1, µ2 ∈ Dist(S) such that µ = µ1 ⊕p µ2 there exist γ1, γ2 ∈
Dist(S) such that γ = γ1 ⊕p γ2 and µi R γi for i ∈ {1, 2}, and

(c) if µ ==⇒c µ
′ and µ′↓ then γ ==⇒ γ′ for some γ′ ∈ Dist(S) with γ′↓.

We write µ
◦∼∼∼ γ if some semi-weak distribution bisimulation R exists with µ R γ. ◁

Definition 8.14 (Weak Challenger Characterization of Semi-Weak Stability Insensi-
tive Distribution Bisimulation). Let (S, s̄,Act,) be a PA. A symmetric relation R over
Dist(S) is a semi-weak stability insensitive distribution bisimulation, if for every a ∈ Act

(a) µ
a

==⇒c µ
′ implies γ a

==⇒c γ
′ for some γ′ ∈ Dist(S) and µ′ R γ′,

(b) for every p ∈ [0, 1] and µ1, µ2 ∈ Dist(S) such that µ = µ1 ⊕p µ2 there exist γ1, γ2 ∈
Dist(S) such that γ = γ1 ⊕p γ2 and µi R γi for i ∈ {1, 2}.

We write µ
◦∼∼∼ ↚ γ if some semi-weak stability insensitive distribution bisimulation R exists with

µ R γ. ◁

Lemma 8.8 (Characterizations II). On weakly image-finite MA, two distribution µ and γ are
semi-weak distribution bisimilar if and only if they are related by some weak challenger semi-
weak distribution bisimulation.

The proof follows along the line of the proof of Lemma 8.5, which is the according lemma for
weak distribution bisimulation.

Theorem 8.9.
◦∼∼∼ ↚ is a semi-weak stability insensitive distribution bisimulation and an equiva-

lence relation.

Let s and t be two states of some PA A = (S, s̄,Act,). Let s
◦∼∼∼ ↚
δ t if δ(s)

◦∼∼∼ ↚ δ(t)

Theorem 8.10. On finite PA, it holds that

◦∼∼∼↚
δ = ≈PA

The proof of the theorem can be found in Appendix D.5. Our proof strategy relies on an
inductive argument, which explains the restriction to finite PA. However, we claim that the
theorem also holds for infinite MA.

With this theorem, we can understand the state-based weak probabilistic bisimilarity as as
special cases of a distribution-based bisimilarity. It is a simple exercise to repeat this reduction for
interactive Markov chains and weak IMC bisimulation. Indeed, it can be shown that on IMC, semi-
weak distribution bisimilarity and weak IMC bisimilarity coincide. As IMC incorporate stochastic
time, the stability condition is needed for the two relations to match.

129

8. Bisimulations

Theorem 8.11. On IMC, it holds that
◦∼∼∼δ = ≈IMC

For Markov automata, we obtain such identities between
◦∼∼∼ and ≈MA. We recall that ≈MA was

the straightforward combination of ≈PA and ≈IMC. So, this result is an immediate consequence of
the last two theorems.

Theorem 8.12. On finite MA,
◦∼∼∼δ = ≈MA.

In this section, we have shown that the classical state-based definitions of PA and IMC bisimula-
tions can be also obtained from the distribution-based definition by slightly adapting the splitting
condition. We have thus identified a novel and at the same time natural way of defining proba-
bilistic and stochastic bisimulation that is on the one hand able to comprise existing notions of
bisimulation, and on the other hand gives us a powerful tool to define a novel and coarser notion
of bisimulation with only little adaption.

8.3.2. Probabilistic Forward Simulation revisited
For probabilistic automata it has been less clear than for other models whether bisimulations are
the semantically right way to define observational equivalences as discussed in Chapter 4. Trace
distribution preorder has been introduced as the weakest reasonable semantics that treats prob-
abilistic behaviour in a way that corresponds with an intuitive notion of what can be observed
externally. It is coarser than bisimulation based relations for PA. And it is not only coarser with
respect to the branching structure of systems, but also with respect to the probabilistic branching
structure. With respect to the branching structure, this is arguably not a very desirable property,
as it does not preserve deadlocking behaviour under parallel composition. Even more, trace
distribution preorder is even not a congruence with respect to parallel composition. With re-
spect to the probabilistic branching structure, however, the coarse nature of trace distribution
preorder makes it an attractive candidate for the coarsest reasonable process relation. Probabilis-
tic forward simulation is the coarsest congruence with parallel composition included in trace
distribution. Still, being a simulation relation, it does not preserve deadlocking behaviour.
So we are in a situation where we have two competing proposals for an ideal observational

equivalence: weak probabilistic bisimilarity on one side, and probabilistic forward simulation
on the other side.

• Weak probabilistic bisimilarity preserves deadlocking behaviour, and comes with all the
other benefits of bisimulations (cf. Chapter 1). However, its treatment of probabilistic
behaviour is arguably too fine.

• Probabilistic forward simulation lacks the nice properties unique to bisimulations, but
treats probabilistic branching in the coarsest reasonable way.

We thus strive for a relation that combines the best of these relations: A bisimulation that deals
with probabilistic branching structure the way probabilistic forward simulation does. We claim
that weak distribution bisimilarity is the relation we have searched for. It is a bisimulation and
comes with all its benefits, and at the same time, it is ignorant of the probabilistic branching struc-
ture of a process as far as possible, without violating compositionality with respect to parallel

130

8.4. A State-Based Characterization

composition. In fact, it turns out that the simulation induced by weak distribution bisimilarity,
⪯ coincides with probabilistic forward simulation in a divergence free setting. Using ⪯ ↚ , the
stability-insensitive variant of ⪯, we are able to establish the coincidence of weak distribution
bisimilarity and probabilistic forward simulation, up to the minor difference that the former re-
lates distributions, while the latter relates a state to a distributions. Technically, we compensate
for this minor difference by comparing ⪯ ↚ to L̂(⪯fwd), the lifting of ⪯fwd to distributions (cf.
Section 4.2.3).

Theorem 8.13.

µ ⪯ ↚ γ if and only if ∃γ′ : flatten(γ′) = γ ∧ µ L̂(⪯fwd) γ
′

The proof can be found in Appendix D.6.

Conclusion We have seen that the well-known probabilistic and stochastic bisimilarities can
be defined directly on distributions with an only slightly stricter variant of the splitting condi-
tion of weak distribution bisimulation. One remarkable benefit of this formulation is that it no
longer requires weak probabilistic bisimulation and weak IMC bisimulation to be equivalence re-
lations. However, the maybe most compelling insight of recasting the well-known bisimulations
in distribution-based characterizations is that, first, it is has now become apparent that weak
distribution bisimulation is in principle a rather obvious generalization of these well-known
bisimulation relations, and second, that recovering this obvious generalization in the state-based
formulation seems virtually impossible.
This impression is intensified by our analogue considerations for probabilistic forward simula-

tion. As it has turned out, this relation is indeed the state-based realization of weak distribution
simulation. To the best of our knowledge, in the literature no approach of transforming this
definition into a bisimulation variant has been known before.

8.4. A State-Based Characterization
Naively speaking, notions of bisimulation based on distributions are harder to establish than
state-based notions for the simple reason that the former potentially become much larger than
the latter. For state-based bisimulations, at most the set of reachable states must be considered and
suitably related via bisimilar pairs. In contrast, for distribution-based notions, when a concrete
bisimulation is to be constructed, potentially an uncountable number of distributions must be
considered, even for finite states systems. This turns out to be especially problematic when
it comes to algorithmic treatments of bisimilarity, for example, in the context of verification of
systems and state space minimization by bisimulation quotienting. Standard partition refinement
approaches usually applied in this context seem infeasible here, as even for finite state space, the
problem space (i.e., the reachable distributions) is uncountable. We will in the following develop
a state-based characterization of weak distribution bisimulation to overcome the algorithmic
limitations and to shed more light on the exact semantic differences between this notion of
bisimilarity and naïve weak probabilistic bisimulation, which stands in place for the well-known
state-based bisimilarities of Chapter 4 and 5.
We begin with some intuitive discussion of the distinguishing feature of weak distribution

bisimulation in terms of observability of states. As discussed in Chapter 1, each notion of bisim-
ilarity is coupled with a specific intuitive notion of observability. Ideally, the bisimilarity is a

131

8. Bisimulations

perfect formalization of observability. As we have discussed in detail in this chapter, weak dis-
tribution bisimilarity is as close to such an ideal bisimilarity for Markov automata as we can
get, as any coarser variation cannot be a congruence with respect to parallel composition. The
reason why it is coarser than the standard bisimilarities appears intrinsically linked to the fact
that it is defined over distributions rather than states. While the ability of the observer to make
an unbounded copy of a system in every moment, was naturally linked to the notion of states in
transitions systems with probabilistic and stochastic behaviour, for probabilistic and stochastic
models like Markov automata or probabilistic automata, it is naturally linked to the notion of
distributions over states, and especially the ability to split them. Similar to stochastic processes,
a probabilistic process is in a certain state only with a certain probability in every moment (al-
though the presence of non-determinism complicates the situation here). To respect this, it seems
unavoidable that bisimilarity is based on distributions.
In this section, we will discuss how weak distribution bisimulation can still be expressed as a

state-based relation. We will see, however, that this characterization needs surprising extensions
to the standard state-based approach of formulating bisimulations.

8.4.1. A First Intuitive Approach
As a first approach, we try to distinguish states according to their potential to contribute to
the observable behaviour of a system. As it turns out, certain states determine the behaviour
in a crucial way, while others can in principle be eliminated without changing the observable
behaviour. The state-based characterization will use this observation to restrict the challenger to
only propose transitions to distributions over states that matter for the observable behaviour.

A Behavioural Classification of States
We call a state s behaviourally redundant3, if it can reach via internal transitions a distribution µ
over states, which is observation equivalent to δ(s), i.e. no distinction can be made between them
by virtue of any experiment the button-pushing machine allows. Furthermore, the experimenter
cannot perceive that any change has happened at all, as the transition itself is unobservable, too.
If s is not behavioural redundant, we also call it behaviourally pivotal. Phrased differently, a state
s is behaviourally pivotal if and only if it either has no outgoing internal transitions at all or
every internal transition allows for different observations than δ(s) itself allows (note that δ(s)
always allows for at least the observation that any of its internally reachable successor states or
distributions allow for).

Example 8.12. The most simple examples of behaviourally redundant states are states whose
only outgoing transition is an internal transition. State s in Figure 8.8 is a typical example.
More intricate examples are states that do have outgoing external transitions, but which can

be all simulated by a single successor distribution reachable via internal transitions. State t of
Figure 8.9 is such an example. The a-transitions can by mimicked by the internally reachable
distribution over the states u and v, since both have an outgoing a transition to the same state .
Note that a state is only behaviourally redundant, if there is an internal successor distribution

that can compensate for all behaviours of the state at the same time. It does not suffice if every
behaviour can be compensated for by some internal successor distribution.
3Behaviourally redundant states are a generalization of the idea vanishing markings known from GSPN. We discuss this
in Chapter 12.

132

8.4. A State-Based Characterization

τ

0.5 0.5

s

Figure 8.8.: Redundant State
Without External
Transitions

τ

a

0.3 0.7

cab

a

11

1

1

1

t

uv

Figure 8.9.: Redundant State
With External
Transition

ττ

τ

τ
1

11

1

Figure 8.10.: Redundant
States and
Internal Non-
Determinism

It is also instructive to note that the presence of multiple internal transitions does neither
immediately imply that the state is pivotal nor that it is redundant. It only depends on whether
one of the corresponding successor distributions is able to mimic all behaviours of the others.
Figure 8.10 exemplifies this. All states except the green one are redundant.

◁

1

2

3

4

5

6
τ

τ

τ

τ

τ

τ

c c

τtr1

1
2

1
2

tr2

tr3

1
2

1
2

tr4

tr5
1
4

3
4

Figure 8.11.: What is Pivotal Here?

Example 8.13 (Behaviourally Pivotal States). Consider our running example, which we
repeat in Figure 8.11. Assume that all non-round states of the PA induce pairwise distinct be-
haviour (for example each state can only perform a unique observable action). Then state 4

is behaviourally pivotal, since none of its internal successor distributions δ() and δ() can
behaviourally match the other, and thus cannot preserve the behaviour of s. Trivially, also 5 is
behaviourally pivotal, since it has no successors. In contrast, all other states are not behaviourally
pivotal, as for each of them the behaviour is fully preserved by one of its respective τ -successor
distributions. In particular, state 2 is not behaviourally pivotal since its behaviour is fully pre-
served by δ(4) via transition 2

τ−−→ δ(4). ◁

133

8. Bisimulations

Characterization
We will now explain how the notion of behaviourally pivotal states is linked to a state-based
characterization of weak distribution bisimulation.
Consider the probability distribution µ =

(
3
4δ(4)

)
⊕
(
1
4δ(5)

)
over behaviourally pivotal

states and the distribution γ =
(
1
2δ(2)

)
⊕
(
1
2δ(3)

)
over behaviourally redundant states. The

observer will not be able to distinguish between the two distributions, as the respective proba-
bilities for the possible observations are the same for both distributions: with probability 3

4 we
will see either , , or c followed by , and with probability 1

4 we see no further behaviour,
i.e. termination, which is represented by 5 . In µ the probabilities, that a certain observation
can be made next, are directly determined by the probability µ assigns to the states causing the
respective behaviours, i.e. 3

4 for 4 and 1
4 for 5 . Non of those states can perform any further

internal transition without reducing the possible observations, as they are observationally piv-
otal. Similarly as for naïve weak probabilistic bisimulation, the individual states in the support
of µ immediately determines the observable behaviour of µ. For γ, it is still the case that we
can make the same observations, as γ τ−−→ µ with help of the two transitions 2

τ−−→ δ(4) and
3

τ−−→
(
1
2δ(4)

)
⊕
(
1
2δ(4)

)
.

However, considering state, µ and γ are quite different. While the observable behaviour of
2 happens to agree with the observable behaviour of 4 , the behaviour of 3 is unique. No

other state allows the observation of , and c followed by with probability 1
2 and the

observation of termination again with probability 1
2 . So considering state-wise behaviour, µ and

γ are clearly different. So, a direct state-based comparison of the distribution seems impossible.
The reason why this fails is that in a direct state-wise comparison of µ and γ we attempt to

compare behaviourally pivot states with behaviourally redundant states. As we are only inter-
ested in observations, we should only compare states in our bisimulation that are behaviourally
pivotal. It is, however, not reasonable to demand that the bisimulation conditions only have to
be met by pivotal states, as then likely every two behaviourally redundant states would be con-
sidered bisimilar, no matter how they evolve further. Thus, our approach will not be to ignore
behaviourally redundant states, but instead to demand that every redundant state s must be able
to reach a distribution µ over pivotal states, that fully preserves the behaviour of s, and that,
furthermore, µ is able to satisfy any bisimulation condition in lieu of s.

8.4.2. Formalization
Themost difficult aspect in the formalization of the above approach is stating that a behaviourally
redundant state s should be replaced by distribution µ over pivotal states, which fully preserve
the behaviour of these states. This is not obvious to achieve, and needs the following three steps:

Challenge 1 We need means to identify states as behaviourally redundant/pivotal

Challenge 2 We need to be able to relate every behaviourally redundant state to a distribution
over pivotal states that can enact in place of it.

Challenge 3 The concepts of observationally redundant and observationally pivotal states essen-
tially depend on our concept of observational equivalence, which is exactly what we intend
to formally characterize in terms of bisimulation. At the same time, we have elicited that
our formalization of bisimulation should be based on precisely these two concepts. Thus,
we need to define two mutually dependent concepts.

134

8.4. A State-Based Characterization

We solve these challenges as follows:

1. To approach the first challenge, instead of identifying states as redundant/pivotal, we
will use the analogue concept of preserving transitions. We call a internal transition
(s, τ, µ) ∈ τ−−→ preserving (and only those) if µ fully preserves the observable behaviour
of s. Then, a state is behaviourally redundant if and only if it has an originating preserving
transition.

2. Given a set of preserving transitions, we implement the second challenge by relating a
redundant state s to a distribution µ, which is reachable from s via a weak transition that
only uses preserving transitions, and which is maximal with this property. Before we give
further intuitive rationale for this approach, it is helpful to provide a formal definition
of the last notion. Instead of relating a state s to a distribution µ, we consider the more
general case where we relate a distribution ξ over (redundant) states to a distribution µ

over pivotal states. We will denote this as ξ PZ=⇒ µ.

Definition 8.15 (Maximal Transition). Given a MA A, a set P of internal transitions
and an equivalence relation R on states, we write µ P,RZ=⇒ µ∗ to denote a weak combined
transition from µ to µ∗ with the following properties:

a) µ
τ⇂P
===⇒c µ

∗.

b) whenever µ∗ τ⇂P
===⇒c µ

′, then µ∗ L(R) µ′.

◁

In the following, the equivalence relationR will always be clear from the context. We will
thus usually omit it.

The first clause ensures that only preserving transitions may be used to reach µ∗ starting
from µ, while the second clause formalizes the maximality condition mentioned before,
which intuitively expresses that the transition is of maximal length. In arbitrary infinite-
state systems, it is not reasonable to assume that µ∗ always exists. We will effectively reduce
our considerations in the following to MA that are weakly image-finite. For MA, that are
both weakly image-finite and τ -acyclic, the maximality condition can be simplified to the
statement that µ∗ cannot perform any further weak allowed combined transitions, i.e. µ∗↓.
In the presence of τ -cycles, we apply our generalized statement. In non-probabilistic tran-
sition systems, our maximality condition is equivalent to stating that a state is maximal, if
states reachable from it, must lie on a τ -cycle. Our definition generalizes this to systems
with probabilistic transitions and a maximal distribution µ∗. The precise role the equiv-
alence relation R plays here will become clear in the following discussion. We already
want to anticipate, however, that we will let R be the bisimulation relation we actually
want to define. Intuitively, we can then rephrase this clause to state that a distribution
µ∗ is maximal if arbitrary weak allowed combined transitions always lead to an equivalent
distribution with respect to (state-based) bisimulation. If we recall that any two states that
lie on one τ -cycle in non-probabilistic transition systems are also weakly LTS bisimilar, it
becomes clear that µ∗ can be called maximal if it does not change up to a bisimulation R.

3. The final challenge we need to solve that the preceding definitions depend on a relation
R, which intuitively should already be a bisimulation that captures our intuitive notion of

135

8. Bisimulations

observability in a formal way. At the same time, as we have discussed, our formal definition
of R will need to rely on the preceding definitions. Thus, the preceding definitions and
our definition of bisimulation will be mutually dependent and intertwined.

The following definitions will formalize what it means that a distribution and a state are
behaviourally equivalent and when a transition is preserving. We parameterize them by an
equivalence relation R, which will turn out to be a bisimulation relation in the end.

Definition 8.16. A distribution γ is said to simulate s with respect to a set of internal
transitions P ⊆ τ and an equivalence relation R, if whenever s a

==⇒c µ
′ then there exist

µ, ξ′ and ξ such that µ′ PZ=⇒ µ and γ
a

==⇒c ξ
′ and ξ′

PZ=⇒ ξ, and µ L(R) ξ. ◁

This definition will be the essence of the following two definitions, whose purpose it is to
intertwine the definition of a bisimulation relation R and the definitions of the set of pre-
serving transitions P finally in Definition 8.19, the definition of weak state bisimulation.
A graphical representation of Definition 8.16, and how it is applied in the following two
definitions, can be found in Figure 8.12.

Definition 8.17. Let A = (S, s̄,Act, ,) be given. A set of internal transitions
P ⊆ τ is called preserving with respect to an equivalence relation R ⊆ S × S if for every
(s, τ, γ) ∈ P the distribution γ simulates s with respect to P and R. ◁

The following definition captures the typical scheme of bisimulation extended by the idea
that the challenger may only propose a transition to a distribution µ, if this distribution
contains exclusively behaviourally pivotal states, i.e. it is maximal with respect to Z=⇒.

Definition 8.18. An equivalence relation R ⊆ S × S is called preserving with respect to
P if

a) whenever s R t, then δ(t) simulates s with respect to P and R
b) if s↓ then t ==⇒ γ for some γ ∈ Dist(S) with γ↓;

◁

Having solved the three challenges, we are now ready to combine them into a definition of weak
state bisimulation. In fact, a weak distribution bisimulation will not solely be a binary relation of
distributions, but such a binary relation combined with a set of internal transitions. The former
represents the bisimulation relation in the usual sense, while the second is a set of preserving
transitions. Note that since the two notions depend on each other, it is necessary to define them
in one single instance.

Definition 8.19 (Weak State Bisimulation). Let A = (S, s̄,Act, ,) be a Markov
automaton. An equivalence relation R on S, together with a set of internal transitions P is
called a weak state bisimulation pair, if

• R is preserving with respect to P , and

• P is preserving with respect to R.

◁

136

8.4. A State-Based Characterization

s µ′

µ

γ ξ′

ξ

L(R)

a

τP ∋

a

τ ⇂P

τ ⇂P

C

C

C

s µ′

µ

t ξ′

ξ

L(R)

a

a

τ ⇂P

τ ⇂P

C

C

C

R

Figure 8.12.: Schematic view on the essence of Definition 8.17 and 8.18. In both cases, we
have a simulation condition according to Definition 8.16, but with slightly
different premises.

We call the first component,R, of a weak state bisimulation pair a weak state bisimulation and
the elements of the second component, P , its preserving transitions. We write s ∼∼∼s t if there exists
a state-based weak distribution bisimulation relating s and t (and its respective set of respecting
transitions). As usual, we lift this relation to a relation between automata by requiring that the
initial states of two automata are related in their disjoint union.

Example 8.14 (State-Based Weak Distribution Bisimulation). Consider again the MA
depicted in Figure 8.11 and suppose that states , , and are not weak bisimilar. The equiv-
alence relation R whose non-singleton classes are { 1 , 6 } and { 2 , 4 } is a state-based weak
distribution bisimulation, given P = {tr1, tr2, tr3, tr5}.
Checking the step condition for the pair (2 , 4) is trivial, so let us focus on the pair (1 , 6).

Each weak combined transition 6
τ

==⇒c ν enabled by 6 , can be matched by 1 by reaching
νtr5

(via preserving transitions tr1, tr2, and tr3 chosen with probability 1) and then behaving
as in 6

τ
==⇒c ν. If we stay in 6 with non-zero probability, then we remain in 1 with the same

probability and the lifting condition is satisfied.
Now, consider the weak transition 1

τ
==⇒c ν enabled by 1 , where ν = {(2 : 1

2),
(3 : 1

2)} (this is actually the ordinary transition tr1). 6 has no way to reach ν so it needs help
of 1 to match such a transition: 6 performs the transition 6

τ
==⇒c γ where γ = {(4 : 3

4), (5 :
1
4)}, i.e., it performs tr5, while ν reaches γ by the preserving weak hyper transition ν

τ⇂P
===⇒c γ

by choosing with probability 1 preserving transitions tr2 from 2 and tr3 from 3 and then
stopping.
The transition 1

τ
==⇒c ν is not the only weak combined transition enabled by 1 . It enables,

for instance, the weak combined transition 1
τ

==⇒c ρ where ρ = {(: 1
2), (3 : 1

2)}. 6 matches
this transition by enabling 6

τ
==⇒c ϕ where ϕ = {(: 1

2), (4 : 1
4), (5 : 1

4)} that can be
reached from ρ by the preserving weak hyper transition ρ

τ⇂P
===⇒c ϕ obtained by performing no

transitions from and choosing tr3 (that is preserving) with probability 1 and then stopping.
There are several other transitions enabled by 1 that can be matched in a similar way. ◁

137

8. Bisimulations

Weak state bisimilarity is unusual for two reasons.

• It is defined in terms of two mutually dependent co-inductive definitions: one describing a
binary relation between states, and one defining a subset of the transition relation τ .

• Different from all other notions of bisimilarity we have defined, it exclusively makes use
of weak combined transitions a

==⇒c, instead of the relation a−−→, where a ∈ Actχ. While
one would expect that the first occurrence of such a transition can be safely replaced by
a−−→, this is not the case. We will discuss this more deeply in the following referring to it

as the strong challenger characterization.

We have discussed and motivated the first point already thoroughly. Yet, it leaves the open
questions whether it is possible to give a purely state-based characterization of weak distribution
bisimilarity, that does not deviate so much from the standard characterizations of bisimilarity.

The second point reveals an surprising deficiency of this characterization, that cannot be over-
come easily. The obvious benefit of a strong challenger characterization is that it would drasti-
cally reduce the number of proof obligation we have, when we want to establish that a certain
relation is a weak state bisimulation. Currently, theoretically an uncountable number of cases
have to be checked with the original definition, that result from the uncountable number of dif-
ferent distributions reachable by a weak combined transition, in general. In practice, as we will
see in Chapter 10, this number is still exponential in the number of transitions of a finite MA.
With a strong transition characterization only the distributions directly reached by outgoing
transitions of each state have to be considered.
Unfortunately, the strong challenger characterization is incorrect. We will discuss the reasons

in the following more thoroughly. Before, we need to introduce the concept of maximal end
components (mecs) [Alf97]. Intuitively, they are the probabilistic equivalent to cycles in standard
labelled transition systems: τ -cycles where it is possible to return to each state of the cycle with
probability 1.

Definition 8.20 (Maximal End Components). Given a MA Awith set of states S, amaximal
end component (mec) is a maximal set C ⊆ S such that for each s, t ∈ C: s ==⇒c δ(t) and
t ==⇒c δ(s). ◁

The definition stems from [Alf97]. The set of allmecs is a disjoint partitioning of S. Thus, the
relation =mec, where s =mec t if and only if s and t lie in the same mec, is an equivalence relation
on states.
All states that lie in the same mec can mutually reach each other with τ transitions with

probability 14. It is thus straightforward to show that such states are weak distribution bisimilar.

Lemma 8.9. s =mec t implies s ∼∼∼δ t.

sv t

τ

τ, P

τ, P a

Figure 8.13.: A simple MA with mecs.

4Note that mecs are not necessarily bottom strongly connected components, as a mec may well be escaped by τ transi-
tions.

138

8.4. A State-Based Characterization

Example 8.15 (Strong Challenger Characterisation is Broken in the Presence of Mecs.).
Consider the automaton above. All transitions in this example are Dirac transitions. We label
two transitions with τ, P in order to express that they are elements of P , the set of supposedly
preserving transitions considering the strong challenger characterization. Note that, however,
the transition from s to v is not a preserving transition in the sense of the original definition
with respect to any bisimulation relation R, since s can reach with a weak a transition,
whereas v cannot perform an a transition at all. However, all conditions of the strong challenger
characterization are satisfied. The only non-preserving strong transition s can perform is the
one to t . Now it is enough that t can reach v via preserving transitions, by using t τ−−→ δ(s)

and s
τ−−→ δ(v). For completeness, it is easy to check that the transition from t to s satisfies

the conditions to be a preserving transition. With this result, it is straightforward to construct
two bisimulations R1 and R2 (satisfying the strong challenger characterization), where R1 is
the reflexive, transitive and symmetric closure of the relation containing only the pair (v , s)
and R2 accordingly containing (s , t). It is easy to check that for both R1 and R2 our choice
of preserving transitions satisfies the strong challenger characterization. If this characterization
now indeed was equivalent to ∼∼∼δ, the restriction of ∼∼∼ to states, then also v ∼∼∼δ s and s ∼∼∼δ t

would hold and thus, by transitivity, also v ∼∼∼δ t . But clearly, this cannot hold, as t can
perform an a-transition while v cannot. ◁

A similar phenomenon is well-known from the theory of term rewriting systems [BN98].
Without going into details, we will sketch the important facts. For our discussion, it suffices to
consider a rewriting system as ordinary graph or a (unlabelled) transition system. The transition
relation of this graph then called a rewrite relation. For convenience, we denote it by −−→.
The reflexive-transitive closure of −−→, which allows to do an arbitrary number of rewrite steps,
including zero, is denoted by ==⇒ . With these relation, we can define confluence and local
confluence as follows:

• A rewrite system is called confluent, if whenever s ==⇒ t1 and s ==⇒ t2 then there exists t
such that t1 ==⇒ t and t2 ==⇒ t.

• A rewrite system is called locally confluent, if whenever s −−→ t1 and s −−→ t2 then there
exists t such that t1 ==⇒ t and t2 ==⇒ t.

The only difference in the two definition is that the first two times the rewriting relation is used
it appears in the form of its reflexive-transitive closure ==⇒ , while in the definition of local
confluence it is directly the rewrite relation −−→.
A schematic view on this relation can be found in Figure 8.14, with confluence on the left

and local confluence on the right. If we compare this to Figure 8.12, and we replace ==⇒ by
==⇒c and the respective action labels, it becomes apparent that confluence strongly resembles
the schematic structure of especially the definition of preserving relation relation in Figure 8.12,
if we abstract from all further details. Furthermore, the schematic diagram of local confluence
then corresponds to the strong challenger characterization of weak state bisimulation, which we
obtain from Figure 8.12 when we replace the undashed double arrows by normal arrows, which
then stand for the relation a−−→.
It becomes now evident that confluence is structurally similar to our original definition of

weak state bisimulation, while local confluence is similar to its strong challenger characteriza-
tion. The interesting insight that we now gain from rewriting theory [BN98] comes from the
following theorem.

139

8. Bisimulations

Theorem. In an acyclic rewrite system, confluence and local confluence coincide.

In cyclic systems this is not the case in general. In fact, the typical counterexample has precisely
the shape of the MA of Figure 8.13, pruned from all labels.
The above theorem shows that, at least for systems withoutmecs, the strong challenger charac-

terization coincides with our original characterization. However, in its full generality, this claim
has resisted our proof attempts.

s t1

t2 t

s t1

t2 t

Figure 8.14.: Schematic view on Confluence and Local Confluence

We will now establish that ∼∼∼s indeed coincides with ∼∼∼δ.

Theorem 8.14. On weakly image-finite MA, ∼∼∼s=∼∼∼δ.

The proof of this theorem is rather involved. It can be found in Appendix D.7 in full length.
The core insight of the proof, which is needed to show that t ∼∼∼δ t′ implies t ∼∼∼s t

′ is semantically
interesting in its own respect.

Theorem 8.15. Let A = (S, s̄,Act, ,) be a compact Markov automaton, and µ, γ ∈
Dist(S). If µ ∼∼∼ γ then there exist µ∗ and γ∗ such that µ ==⇒c µ

∗, γ ==⇒c γ
∗,

µ ∼∼∼ µ∗ L(∼∼∼δ) γ
∗ ∼∼∼ γ.

The proof of this lemma can be found in Appendix D.8. It is by far not obvious and heavily
depends on the restriction to compact Markov automata. We deepen this aspect in Section 8.4.3.
For general systems, the distributions µ∗ and γ∗ may not exist.
While weak distribution bisimilarity compares whole distributions of states, this theorem

allows to resort to a state-based comparison, if only a “long enough” trace of internal transitions
is followed from two bisimilar distributions.

∼∼∼

∼∼∼

µ

γ

∼∼∼

τ
==⇒c

τ
==⇒c

µ∗

γ∗

L(∼∼∼δ)

Figure 8.15.: Graphical Representation of Theorem 8.15

Figure 8.15 illustrates the theorem graphically. We see that instead while µ ∼∼∼ γ does not
imply ∀C ∈ S/∼∼∼δ : µ(C) = γ(C) is not true in general, we can reach with internal transitions

140

8.4. A State-Based Characterization

only two distributions µ∗ and γ∗ satisfying ∀C ∈ S/∼∼∼δ : µ∗(C) = γ∗(C). Furthermore, the
distributions µ∗ and γ∗ are still bisimilar to µ and γ, respectively. Intuitively speaking, from an
observers perspective, we cannot distinguish µ and µ∗, and γ and γ∗, respectively. Thus, without
knowledge of the precise internal structure of the MA under consideration, distribution-based
bisimilarity can always be explained from or reduced to a state-based rationale.
Even though we have not investigated it formally, we conjecture that for general (non weakly

image-finite) MA, ∼∼∼s ⊆ ∼∼∼δ holds. We leave the formal proof for future work.

8.4.3. Beyond Compactness
In Theorem 8.15, we have emphasized that we restrict our attention to compact Markov au-
tomata.5 As the mentioned theorem is crucial to the proof of the main contribution of this
section, Theorem 8.14, our discussion has immediate consequences also for this theorem.
In the following, we will present an example of a non-compact automaton violating Theo-

rem 8.15. However, there also exist non-compact automata satisfying the theorem, as illustrated
in Example 8.16. The theorem does thus not necessarily only hold for compact automata. We
have not investigated more precise criteria when an automaton satisfies the theorem, though. As
non-compact automata are theoretically and practically hard to handle, we do not consider this
a challenge of primary importance, and leave it as further work.

Example 8.16 (Not Compact Automaton Satisfying Theorem 8.15). Consider the infi-
nite MA that consists of an infinite sequence of states s0, s1, s2, . . . with si

τ δ(si+1) for all
i ∈ N. This automaton is obviously not compact. Still, it is obvious that δ(si) ∼∼∼ δ(sj) for every
i, j ∈ N. ◁

We will now construct two automata whose initial distributions are weak distribution bisimi-
lar. However, no two states in the automata will be pairwise weak distribution bisimilar.
Throughout the following discussion, we will completely ignore the presence of the initial

state in Figure 8.16b. We will speak of its two successor states as the initial states, or initial
distribution, of the automaton. The initial state is not necessary for our train of thought, and
only there because by our definitions, MA do not allow to have an initial distribution.
The layouting of the automata in the figure clearly shows that the automata differ in the

number of state contained in each level: while the first automaton has 22l states in the l-th level,
the second has 22l+1 states (for l ∈ N).
Each state of the automaton is constructed in a similar way. Besides the internal transitions

connecting a state to its successors with a uniform distribution, we add observable transitions,
labelled by a1, a2, . . . , b1, b2, Note that only the initial state of the automaton in Figure 8.16a
has no outgoing observable transition. We let all observable transitions end in a single state ,
which is a terminal state. Introducing this additional state is not strictly necessary. We could as
well have added self-loops to the states. It only simplifies the drawing. Note that each state will,
in general, have more than one observable outgoing transition, labelled by different labels. In
fact, each node will have the same observable transitions as each of its direct predecessor and one
additional observable transition, that is labelled with a fresh action, i.e. that has not yet appeared
at any transition of states in lower levels of the tree. However, it may recur at the transition of
neighbouring states at the same level (and clearly at higher levels, as they copy the transition).

5see Section 7.1.1 for a definition of compactness

141

8. Bisimulations

1
4

1
4

1

1
4

b2

1
4

1

a2

1

a2

τ

b2

1

(a)

b3

1

τ

a3

1

b3 a3

1

a1

b3

τ

111

1
4

1
4

1
4

11

1
4

a3

1
4

1
4

1
1

1
4

b3 a3

1
4

b1

τ1
2

1
2

(b)

Figure 8.16.: Structure of the Two Automata

Note that in Figure 8.16 we only draw observable transition when they occur the first time.
Please also note that the names of the actions (or more precisely their indices) follow a specific
pattern that is not fully obvious.
We will now formally define the pattern of observable transitions and their action labels leav-

ing each state. For the formal construction, it is helpful to first imaging a binary balanced tree
starting with a single root node, from which we will derive the structure of the two automata in
Figure 8.16. We depict this binary tree in Figure 8.17.

a1

a2

b1

b2a2b2
a1 a1 a1 a1

Figure 8.17.: Intermediate Construction Tree

We will then obtain the two quartary trees from this tree by identifying every even level with
the first quartary tree, and every odd level with the second quartary tree. Again, we ignore
the actual initial state of the automaton in Figure 8.16b. In the binary tree, we index the states
names with sequences of digit from {0, 1}, which denote their address in the tree. The i-th digit

142

8.4. A State-Based Characterization

in the sequence tells us whether we need to go left (0) or right (1) when moving from level i
to level i + 1, in order to reach the desired state. So, for example, ε denotes the root node, and
the sequence 000 denotes the left most state in the third level, and 001 its neighbour in the same
level. 00 denotes their common ancestor in level 2. We now add observable transitions to the
states according to an inductively defined rule. Let in the following σ denote a sequence of the
binary digits, and |σ| its length (with |ε| = 0).

1. The state with index ε has no outgoing observable transition.

2. The state with index σi has all observable transitions the state with index σ has, plus a
transition labelled by a|σi| if i = 0 and b|σi| if i = 1.

Let all transitions lead to the dedicated state . It is crucial that all external actions ai and bi are
pairwise different. We see from the inductive definition that every states inherits all transitions
from its predecessors in the binary tree, and adds one new transitions. Depending on whether it
is a left or a right successor, this transition is labelled by an indexed variant of action a or b.
As indicated before, we now construct the two quartary trees out of this binary tree. Let the

state with index ε be the initial state of the first quartary tree (Figure 8.16a, and let the two states
with index 0 and 1 be initial states of the second tree (Figure 8.16b). Now, for each state (in both
trees), we add the following transitions and the induced states: if the state sσ (with index σ) is in
one of the quartary trees, then

sσ
τ δ(sσ00)⊕ 1

4
δ(sσ01)⊕ 1

4
δ(sσ10)⊕ 1

4
δ(sσ11).

The crucial property of these two automata is that their initial distributions are weak distribu-
tion bisimilar, while none of the trees’ states are pairwise weak distribution bisimilar.

Proposition 2.
δ(sε) ∼∼∼ δ(s0)⊕ 1

2
δ(s1),

but
sσ ̸∼∼∼δ sσ′

for σ ̸= σ′.

Proof. The reason why no two states are bisimilar is that they always differ in the set of external
actions that they can execute with probability greater zero. For notational convenience, we de-
note states by their indices in the following discussion. Let σ and σ′ be two different states. Let ρ
be their longest common prefix. First assume, that none of the two indices is a prefix of the other.
Without loss of generality, let then ρ0 be a prefix of σ, and ρ1 a prefix of σ′. By construction,
every state can exhibit every action one of its ancestors could. Also by construction then both σ
and ρ0 can exhibit a|ρ|+1, and both σ′ and ρ1 can exhibit b|ρ|+1. Again by construction, neither
can ρ0 exhibit b|ρ|+1, nor can ρ1 exhibit a|ρ|+1. As with every increase of the index length, only
actions with increased index are added to the outgoing transitions of states, this ensures that in
turn neither σ can exhibit b|ρ|+1 nor σ′ can exhibit a|ρ|+1 directly. The same holds — for the
same reason — for every state that is reachable via weak transitions from σ and σ′, respectively.
Now assume, that without loss of generality, σ is a prefix of σ′, and that σ0 is also a prefix of σ′.
Otherwise, the following holds with completely symmetric arguments. The probability with
which σ0 may execute a|ρ|+1 is 1, as it has directly an outgoing transition with this labelled. By

143

8. Bisimulations

the same arguments as in the last case, this property is inherited also to σ′ by construction of
the automata, as this state is a successor of σ0. In contrast, σ has no direct outgoing transition
labelled by a|σ|+1, as its index is shorter. Its only possibility to perform a|σ|+1 is to first perform
weak transitions in order to reach a distribution over states that can directly perform a|σ|+1. Its
only internal transition, however, leads to δ(σ0) ⊕ 1

2
δ(σ1). By construction, neither σ1 nor

any of its successor states is capable of executing a|σ|+1. Only σ0| (and its successors) are, as
we have just argued. Thus, the maximum probability with which σ can exhibit a|σ|+1 is 1

2 . As
the respective probability for σ′ was 1, we conclude that σ and σ′ cannot be weak distribution
bisimilar.

Establish bisimilarity of δ(sε) ∼∼∼ δ(s0) ⊕ 1
2
δ(s1), we again use an index σ as a short-hand for

the state sσ whenever convenient. Consider the relation R that is the symmetric closure of the
relation containing all pairs (δ(σ), δ(σ0)⊕ 1

2
δ(σ1)).

By construction, δ(sε) R δ(s0) ⊕ 1
2
δ(s1). We now need to show that R is a bisimulation-up-

to-splitting. Consider an arbitrary pair (δ(σ), δ(σ0) ⊕ 1
2
δ(σ1)). Assume that σ xl δ(Q). By

Q, we denote the dedicated state to which we assumed that all external transitions lead to. By
construction of our automata, it must be the case that l ≤ |σ| and x ∈ {a, b}, depending on
the concrete σ. By construction (of the binary tree), it immediately follows that also δ(σ0) ⊕ 1

2

δ(σ1))
xl δ(Q), as transitions are inherited to all states that have indices with σ as a prefix.

This covers all possible external transitions of δ(σ). The only internal transition of δ(σ) leads
to δ(sσ00) ⊕ 1

4
δ(sσ01) ⊕ 1

4
δ(sσ10) ⊕ 1

4
δ(sσ11). As δ(σ0) R δ(sσ00) ⊕ 1

2
δ(sσ01) and δ(σ1) R

δ(sσ10) ⊕ 1
2
δ(sσ11), δ(σ0) ⊕ 1

2
δ(σ1)) R⊕ δ(sσ00) ⊕ 1

4
δ(sσ01) ⊕ 1

4
δ(sσ10) ⊕ 1

4
δ(sσ11) follows.

This satisfies Condition (a) of bisimulation. As δ(σ) is a Dirac distribution, Condition (b) is
easy to satisfy. As all states, except Q are guaranteed to diverge, obviously also Condition (c) is
satisfied.
Now for the symmetric case, for Condition (a), we first note that δ(σ0)⊕ 1

2
δ(σ1)

xl Q only

if both δ(σ0)
xl Q and δ(σ1)

xl Q. By construction, this implies that l ≤ |σ|, and thus
clearly also δ(σ)

xl Q. The argument for the internal transitions follow similarly as in the last
case when we additionally note that δ(σ) ==⇒c δ(sσ00) ⊕ 1

4
δ(sσ01) ⊕ 1

4
δ(sσ10) ⊕ 1

4
δ(sσ11) and

δ(sσ00) ⊕ 1
2
δ(sσ01) R δ(sσ0) and δ(sσ10) ⊕ 1

4
δ(sσ11) R δ(sσ1). Precisely this argument also

essentially satisfies to deal with Condition (b). Condition (c) is again trivial.

8.4.4. Concluding Remarks
In this section, we have provided a state-based characterization of weak distribution bisimulation
for weakly image-finite Markov automata. This definition cannot be generalized to arbitrary
τ -infinite automata, while maintaining its compliance to weak distribution bisimilarity. On arbi-
trary (τ -infinite) Markov automata, weak distribution bisimilarity is able to equate distributions
that weak state bisimilarity cannot. The reason is that it crucially depends on the possibility
to reach a distribution over pivotal states from every (redundant) state with certain internal
transitions (preserving transitions). The existence of such distributions is not guaranteed for ar-
bitrary systems. As we have seen, the pathological representatives of this class connect an infinite
number of pairwise non-bisimilar but observationally redundant states with internal transitions
without ever reaching observationally pivotal states.

144

8.5. Challenge Completed

Even though the state-based characterization is not equivalent to the distributions-based bisim-
ilarity, it agrees on all finite-state systems and even a broad range of practically relevant infinite-
state systems, namely weakly image-finite automata.

8.5. Challenge Completed
In the end of Chapter 1 we have presented the open challenge of finding the coarsest reasonable
notion of observational equivalence on probabilistic and stochastic systems, satisfying the three
requirements from Remark 1.1, which we further refined in Section 8.2.2. In summary, they
have been

1. congruence

2. preservation of the non-deterministic branching structure

3. abstraction from internal details, especially the probabilistic branching structure

In the course of this chapter, we have seen that weak distribution bisimilarity satisfies the first and
the last requirement. It now remains to discuss in how far it also satisfies the second requirement.
As we have not stated this requirement formally, our argumentation will remain informal and

thus is not meant to be a definite answer in a formal sense. In our discussion of strong LTS
bisimilarity and weak LTS bisimilarity in Chapter 3, we have argued that using the bisimulation
methodology in the definition of an equivalence relation may already be considered a warran-
tor for this relation to preserve the non-deterministic branching structure. In contrast, in our
discussion of page 111 we have showed that relaxed bisimilarity does not preserve the branching
structure although it follows the bisimulation methodology. This dichotomy is rooted in the fact
that relaxed bisimilarity has imposed the bisimulation condition upon a complete distribution,
instead over single states, as this is usually the case. In Section 8.4, we have seen that instead weak
distribution bisimilarity can also be phrased based on states. In this definition, the usual bisim-
ulation condition on states, i.e. the mutual simulation (up to bisimilarity) of each transition is
fully preserved. It comes in the form of Definition 8.16, which we recall in the following.

Definition (Recapitulation of Definition 8.16). A distribution γ is said to simulate swith respect
to a set of internal transitions P ⊆ τ and an equivalence relation R, if whenever s a

==⇒c µ′

then there exist µ, ξ′ and ξ such that µ′ PZ=⇒ µ and γ
a

==⇒c ξ
′ and ξ′

PZ=⇒ ξ, and µ L(R) ξ.

Even though not fully obvious from this definition, we also recall that in the final definition
of weak state bisimilarity (Definition 8.19), the simulation condition is applied only in the case
where γ is a Dirac distribution, and thus effectively a state. The simulation condition is thus
mutually applied on states, as it is also the case for all other well-known state-based bisimulations.
Without doubt, the simulation condition of Definition 8.16 is unlikely more involved then the

simple condition of the well-known bisimulation, for instance weak probabilistic bisimilarity.
The precise difference is the inclusion of the extra internal transitions with the predicate PZ=⇒.
Therefore, if weak state bisimilarity failed to preserve the non-deterministic branching structure
of bisimilar systems, its cause must be rooted in this transition predicate. The set of transitions
P , however, is chosen in such way, that it precisely contains these transitions, where behaviour
is preserved fully. Hence, also the non-deterministic branching structure is preserved.

145

8. Bisimulations

We finally want to note that weak distribution bisimilarity, and thus also weak state bisimi-
larity, coincides with weak LTS bisimilarity on LTS. This clearly illustrates that the addition of
PZ=⇒ does not interfere with the way the non-deterministic branching structure is perceived by
the bisimulations.

In summary, this establishes that weak distribution bisimilarity indeed satisfies all three re-
quirements of Remark 1.1. We have thus reached a successful ending for our quest for the canon-
ical observational equivalence on Markov automata. Even more, as Markov automata subsumes
probabilistic automata and interactive Markov chains, we have also characterized the canonical
observational equivalence for these model classes.

8.6. Related Work
Notions of bisimulation that are based on distribution are rare and have seemingly not appeared
in the literature before 2008 in a strong and deterministic setting, and then 2010 for a weak
and fully non-deterministic setting. The breakthrough contributions here where [DHR08] and
[EHZ10a], respectively. [Den+09] where the first to use this idea for simulation relations.
The idea of fusing distributions along sequences of internal transitions has, however, already

been implemented in 2001 in a notion of branching bisimulation for alternating probabilistic
automata [AB01]. We will discuss these and other notions in detail in the following, and relate
it to our work.

8.6.1. Distribution Bisimilarity on Rabin-style Probabilistic
Automata

The insight that it is somehow natural to define bisimilarities for probabilistic systems over
distributions instead of states is not completely new. In [DHR08], a distribution based no-
tion of bisimilarity has been introduced for Rabin-style probabilistic automata. To discriminate
this bisimilarity and its corresponding bisimulations, simply baptized bisimulation in [DHR08],
from the variation distribution-based notions of bisimilarity in this thesis, we will call it in the
following Doyen-style distribution bisimilarity, after the name of the first author. While this
bisimilarity and weak distribution bisimilarity share the same essential idea, they differ vastly in
both their technical details and semantic intentions.
First, Rabin-style probabilistic automata are a simpler model than the one we consider. It has

no internal non-determinism and it is input-enabled, i.e. for every state, there exists exactly one
transition for each action label. In our setting, we can translate this to the following restricted
kind of PA: Let A = (S, s̄,Act,) be a internal deterministic probabilistic automaton that is
input-enabled, i.e. for every a ∈ Act and s ∈ S there exists a µ ∈ Dist(S) with s a µ. In
addition, τ /∈ Act. We will refer to such automata as Rabin-style PA for the rest of this section.

In this way, the most challenging aspects that we had to solve in defining weak distribution
bisimulation do not occur in Rabin-style automata, among them the question how to treat tran-
sition labels that are only enabled in some, but not in all states in the support of a transition,
and, after all, how to deal with internal non-determinism. In addition, Doyen-style distribution
bisimilarity is a strong bisimilarity, i.e., it does not treat internal transitions in a special way. As

146

8.6. Related Work

we have discussed thoroughly in this chapter, however, the semantical treatment in this regard
has been the most challenging part of our work.
Concerning semantic intentions, weak distribution bisimilarity has been designed to capture

behaviour that is essentially characterized by the probabilities with which actions can occur in
the various states of an automaton. The semantic intention of Doyen-style distribution bisimi-
larity is instead to characterize behaviour in terms of probabilistic traces, where individual states
and their branching structure play only a minor role. More leaning towards the classic concept
of automata theory, a Rabin-style probabilistic automaton can accept words, i.e. traces, with a
certain probability, if their is a non-zero probability to reach an accepting state. Two automata are
then considered equivalent, if they have the same probabilities for acceptance of traces. Doyen-
style distribution bisimilarity can been shown to coincide with this equivalence. To achieve this,
Doyen-style distribution bisimulations have the addition condition that two probability distribu-
tions can be bisimilar only if the respective probabilities to be in any accepting state are the same.
In our setting and using our notation, we can rephrase Doyen-style distribution bisimulation in
the following definition.

Definition 8.21 (Doyen-style distribution bisimulation). Let A = (S, s̄,Act,) be a
Rabin-style PA. Furthermore, let F ⊆ S be a set of accepting states.
Then, a symmetric relationR ⊆ Dist(S)×Dist(S) is a Doyen-style distribution bisimulation

if whenever µ R γ then

• µ(F) = γ(F)

• whenever µ a µ′ then γ a γ′ and µ′ R γ′.

As usually, we define Doyen-style distribution bisimilarity as the largest Doyen-style distribution
bisimulation. ◁

Note that this definition crucially depends on the set of accepting states F . If we set F = ∅ or
F = S then any two distributions can be shown to be bisimilar.
A direct comparison of Doyen-style distribution bisimilarity and weak distribution bisimilar-

ity is not possible, as the latter is not aware of the concept of accepting state. To allow technically
for a comparison, we can replace the set of accepting states by adding a self-loop to every accept-
ing state, labelled by a fresh distinguished action †, which we assume not to be in Act. Formally,
we add a transition s

†
δ(s) for every s ∈ S. Clearly, this is a bijective transformation of

Rabin-style probabilistic automaton with accepting states to a Rabin-style PA. In this way, we
can compare Doyen-style distribution bisimilarity on Rabin-style probabilistic automata to weak
distribution bisimilarity on the transformed automata.

Theorem 8.16. Doyen-style distribution bisimilarity is strictly coarser than weak distribution
bisimilarity (on the transformed probabilistic automaton).

The subset relation is not hard to see. For the strictness, we provide a counterexample:

Example 8.17. We consider a simple automaton with Act = {a} with the following states and
transitions:

• let t be a state with t a δ(t) and t /∈ F .

• let f be a state with f a δ(f), but f ∈ F .

147

8. Bisimulations

• let s, s′1 and s′2 be states with transitions s a ⟨
(f : 1

4), (t :
3
4)
⟩
, s′1

a ⟨
(f : 1

2), (t :
1
2)
⟩
,

and s′2
a δ(t). Let none of these states be in F .

Consider the distributions µ = δ(s) and γ =
⟨
(s′1 : 1

2), (s
′
2 : 1

2)
⟩
. It holds that both µ a⟨

(f : 1
4), (t :

3
4)
⟩
and γ a ⟨

(f : 1
4), (t :

3
4)
⟩
. It is easy to verify that µ and γ are thus Doyen-

style distribution bisimilar. However, they are not weak state bisimilar. The reason is that γ
can be split into the distributions δ(s′1) and δ(s′2), which are obviously not weak distribution
bisimilar, as their only transition leads to two different distributions over pairwise non-bisimilar
states f and t. ◁

This example shows that weak distribution bisimilar is still more distinctive concerning the
behaviour of individual states in the support of a distribution, while Doyen-style distribution
bisimilarity is exclusively concerned with whole distribution behaviour. In fact, it is not hard
to see that it coincides with relaxed bisimilarity. Therefore, both allow to relate distributions
that provide the same probability to accepting states, or states with † transitions, respectively,
irrespectively of the concrete additional behaviours of the individual states.

Theorem 8.17. Doyen-style distribution bisimilarity coincides with relaxed bisimilarity (on
the transformed probabilistic automaton).

Proof Sketch. As τ /∈ Act, only the second clause of Definition 8.3 is relevant. For the same
reason, weak transitions coincide with strong transitions then. As we have no internal non-
determinism, combined strong transition and strong transitions coincide, too. Finally, as every

state s is input-enabled, s
a|1
==⇒c µ holds for some µ, i.e. the execution probability of a is 1.

Taking all these consideration into account, we see that µ
a|p
==⇒c µ′ for p ∈ [0, 1] if and only

if µ a µ′. This holds for all actions a ̸= † and distributions µ, µ′. For †, µ †|p
==⇒c holds

in the transformed automaton if and only if µ(t) = p in the original Rabin-style probabilistic
automaton.

To the best of our knowledge, this bisimilarity has been the only known existing character-
ization of a probabilistic bisimilarity defined on distributions before the introduction of weak
distribution bisimilarity in [EHZ10a]. We have shown, that it in fact coincides with relaxed
bisimilarity. Like the latter, it thus fails to be a congruence relation and to preserve the non-
deterministic branching structure.

In [FZ14], a strong distribution-based bisimulation has been introduced that uses similar ideas
as relaxed bisimulation. In the literature, it was the first attempt ever made to bridge the gap
between equivalences on Rabin-style probabilistic automata and bisimulations on PA.

8.6.2. Probabilistic Branching Bisimilarities
Branching bisimilarity for labelled transition systems [GW96] is a stricter variant of weak LTS
bisimilarity. It additionally demands that all states that lie on sequences of internal transitions
that occur before an observable action must all belong to the same equivalence class. Thus, a
weak transition may leave the equivalence class of the initial state at most at the moment when
the observable transition is taken, but not as long as internal transitions are taken. This notion
of bisimilarity preserves the non-deterministic branching structure of process in a stricter sense

148

8.6. Related Work

than weak bisimilarity. As we have noted in Section 3.2.2, this strict form of preservation is not
necessary in order to preserve the properties we aim for. Therefore, we have not investigated
branching bisimilarities in this thesis so far.
Several notions of branching bisimilarity for probabilistic automata exist. The first proposal

for Segala-style probabilistic automata, as we consider them in this thesis, stems from [Seg95;
SL95]. Being defined akin to weak probabilistic bisimilarity concerning its treatment of proba-
bilistic behaviour, it does not allow to fuse probability distributions along sequences of internal
transitions. The same holds for delay branching bisimulation [Sto02b].
For the alternating probabilistic automata of Hansson [Han91], rooted probabilistic branch-

ing bisimulation has been introduced. It has been first introduced in [AB01; And02] for deter-
ministic systems, and then extended to non-deterministic systems in various slightly different
variations in [ABW06; AW06; AGT08; AG09]. In [AGT12], the coarsest congruence contained
in probabilistic branching bisimulation is established. The advantage of these variant of branch-
ing bisimilarity over the others is that it does allow to fuse sequences of internal behaviour in a
similar way than weak distribution bisimilarity. However, being also a relation over states, this
is only the case for the alternating model, where so called probabilistic states exist that represent
distributions. In this way, relating non-deterministic states and distributions, i.e. probabilistic
states, comes natural. Still, a translation of this notion of bisimilarity to Segala-style probabilis-
tic automata is so far not at hand and is also not obvious to obtain.

a
τ

τ

τ τ

a

b

τ

τ

1

1
2

1
2

1

2
3

1
3

1

1
3

2
3

2
5

2
5

1
5

1
5

2
5

2
5

1 1

a

b c

1

1
2

1

b c

1 1

1
2

Figure 8.18.: Branching Bisimilar Automata in Distribution-Based Settings

Example 8.18. In [AGT12], the PA in Figure 8.18 are used to show that in the non-alternating
model (i.e. the one we consider here), no notion of branching bisimulation exists that is able to
equate the two automata. The authors suppose that this might be due to the fact that the state
is not bisimilar to any of the states in the PA on the right, no matter which notion of branching
bisimulation is given. ◁

149

8. Bisimulations

It is a straightforward exercise to establish that the two automata in Figure 8.18 are indeed
weak distribution bisimilar. Thus, it seems promising to give a novel definition of probabilistic
branching bisimulation for PA based on distributions. We claim that weak distribution bisimilar-
ity can be changed into a notion of branching bisimilarity on Segala-style probabilistic automata
with only few adaptions. This relation will both maintain ability to fuse probabilities along se-
quences of internal transitions like weak distribution bisimilarity, and preserve the branching
structure of a process in a stricter sense.

Definition 8.22 (Branching Distribution Bisimulation). Let (S, s̄,Act, ,) be a finite
MA. A symmetric relation R over Dist(S) is a branching distribution bisimulation, if for each
pair of distributions (µ, γ) ∈ R for every a ∈ Actχ \ {τ}

(a) µ
τ−−→ µ′ implies either µ′ R γ or γ τ

==⇒c γ′′ for some γ′′ ∈ Dist(S) with γ R γ′′ and
γ′′ τ−−→c γ

′ and µ′ R γ′,

(b) µ
a−−→ µ′ implies γ τ

==⇒c γ′′ for some γ′′ ∈ Dist(S) with γ R γ′′ and γ′′ a−−→c γ′ and
µ′ R γ′,

(c) for every p ∈ [0, 1] and µ1, µ2 ∈ Dist(S) such that µ = µ1 ⊕p µ2 there exist γ1, γ2 ∈
Dist(S) such that γ ==⇒c γ1 ⊕p γ2 and µi R γi for i ∈ {1, 2}.

◁

Branching distribution bisimulation differs from weak distribution bisimulation in the transi-
tion conditions (the first two), but not in the splitting condition. The transition conditions are
typical for branching bisimulations. They demand that if the defender needs to take internal tran-
sitions then the starting distribution and the goal distribution must exhibit the same behaviour,
i.e. they are bisimilar.

Example 8.19 (Example 8.18 continued). The two automata in Figure 8.18 are branching
distribution bisimilar. ◁

The translation of this notion of branching bisimilarity on Segala-style probabilistic automata
to (rooted) probabilistic branching bisimilarity on the alternating model is not obvious. As
the goal of this thesis is to investigate weak bisimilarities that are as coarse as possibly, we leave
further investigations here for further work, as any variant of probabilistic branching bisimilarity
is necessarily strictly coarser than weak distribution bisimilarity, as it preserves a stricter notion
of the branching structure.

8.6.3. Probabilistic Barbed Congruence
The only weak notion of bisimulation on distributions we are aware of besides weak distribution
bisimulation has been developed in [DH11; DH12] independently. It is also a notion of bisim-
ilarity on Markov automata, and, as it has been shown in [DH12], their notion of bisimilarity
coincides with our notion except for minor details. The differences are mainly caused by the
usage of a slightly different underlying notion of compositionality, which ensures the maximal
progress property by definition, and thus, makes a semantic treatment of divergent behaviour
within the definition of bisimulation dispensable. Technically, also differences exist in the defini-
tion of weak (hyper)transitions. However, as shown in [Bre13], these notions actually agree.

150

8.7. Summary and Discussion

Another contribution of [DH11; DH12] is the definition of a novel notion of barbed con-
gruence. Barbed congruence has been introduced by Milner and Sangiorgi [MS92b] [MS92b]
as an alternative approach to characterization observable behaviour of processes. The idea is to
equip the observer with a minimal set of observations, the so called barbs she can make of a
process and the state it is currently in, for example, the currently enabled actions. In contrast to
bisimulation, it is then not demanded that two related processes can match any of each others
transitions. Instead, only for internal activities such a bisimulating behaviour is demanded. This
property is also called reduction-closedness. Thus, in summary, related process states must have
the same readiness and be reduction-closed. While on the first sight, this approach is ignorant
of behaviour that happens after observable actions have been executed, this is not the case: The
fact that barbed congruence is a congruence relation and by the reduction-closedness, the ap-
plication of abstraction or CCS-style parallel composition reveals such behaviour by converting
observable behaviour into internal behaviour. In [San95] it has been shown that observational
bisimulation and barbed congruence actually coincide.
For probabilistic systems [DD07] introduces a notion of barbed congruence and shows that

in coincides with a notion of bisimulation, that is essentially identical to weak probabilistic
bisimilarity. Most notably, this barbed congruence is defined on states and the barbs are readiness
(and failure) of actions as for the original notion of barbed congruence. The novelty of [DH11;
DH12] lies in the use of probabilistic barbs ⇓≥p

a and that is defined over distributions over
states. A distribution µ satisfies a barb ⇓≥p

a , i.e. µ ⇓≥p
a if µ ==⇒c µ′ for some µ′ and the overall

probability of states that enable am a-transition in µ′ is greater than p.
It is finally shown in [DH11; DH12] that barbed congruence and their variation of weak distri-

bution bisimilarity coincide for Markov automata. This seconds from an alternative perspective
our claim from Section 8.2.4 that weak distribution bisimilarity can be considered a canonical no-
tion of observational equivalence for Markov automata. In fact, our proof idea for Theorem 8.8
is strongly inspired by the proof of [DH11; DH12].

8.7. Summary and Discussion
During our quest for a suitable notion of bisimilarity for Markov automata, we have encountered
a multitude of different notions of bisimilarities and similarity, both well-known as well as novel.
Several of them have turned out to be strongly related and to coincide in several of the submodels
of Markov automata. Most notably, we have seen that the established standard notions of weak
bisimilarity can as well be expressed as distribution-based weak bisimilarities, which are a genuine
contribution of this chapter.
More concretely, we have seen that notions of bisimilarity considering distribution-behaviour

instead of single state behaviour are rare in the literature. We have discussed contributions that
share the distribution based approach with weak distribution bisimilarity, however on distinc-
tively different underlying settings. While these differences make it impossible to compare the
relations directly, we have investigated translations of the relations to our setting. It has turned
out that both relations significantly differ from our weak distribution bisimilarity. Doyen-style
distribution bisimilarity turns out to coincide with relaxed bisimilarity.
The other thread of research we reviewed focuses on alternating probabilistic automata, which

again are less general than PA in that with every transition special so called probabilistic states
are reached, which, in principle, encode distributions of states. By this, relating distributions
(expressed as special states) comes natural. As alternating probabilistic automata are known to

151

8. Bisimulations

differ fundamentally from PA, such that there is no faithful translation known between them, we
could not undertake any direct comparison between known notions of process equivalence with
the notions from this thesis. However, it inspired the definition of a novel notion of branching
distribution bisimilarity. Yet, we have not pursued further investigations of its properties, since
it is a stricter notion of process equivalence than weak distribution bisimilar.

While it has not been in the focus of this chapter, for completeness we remark that the findings
of Section 8.3, that the well-known notions of bisimilarity can be equivalently rephrased as
relations over distributions have been first shown in [EHZ10b] for the weak case, while the case
for strong variants of bisimilarity has been discussed in [Hen12].
We will now summarize the findings of this chapter in the form of three subset-inclusion lat-

tices in Figure 8.19. For each of the three prominent submodels, LTS,IMC, and PA, we consider
a separate lattice. On reason for this separation is that on different submodels, different notions
coincide. For example, on LTS, most equivalences coincide, as it only has a very elementary
notion of transition, as compared to the probabilistic transitions of PA. Another reason for the
separation is that not every notion of (bi)similarity can be reasonably deployed in every sub-
model. For example, notions that do not respect the maximal progress assumption (marked by
↚), or that are completely ignorant of timed transitions, are not considered in the IMC hierarchy.
Distribution-based relations only appear in the form of their reductions to states. For example,

instead of weak distribution bisimilarity, ∼∼∼, we consider ∼∼∼δ. Such reductions are always marked
by a subscript δ. Finally, a circle ◦ above a relation refers to the semi- variation. For example,

◦∼∼∼δ

refers to semi-weak distribution bisimilarity (reduced to states).

∼∼∼ ↚
δ =

◦∼∼∼↚
δ

= ≈LTS = ≈PA

≈IMC =
◦∼∼∼δ = ∼∼∼δ

⪯

⪯fwd = ⪯ ↚

⊆
⊆

⊆
⊆

(a) On LTS

⪯

≈IMC =
◦∼∼∼δ = ∼∼∼δ

⊆

(b) On IMC

⪯fwd = ⪯ ↚

⪯

≈PA =
◦∼∼∼ ↚
δ

∼∼∼ ↚
δ

∼∼∼δ

⊆

⊆⊆

⊆

⊆

(c) On PA

Figure 8.19.: Inclusion Hierarchy of the Weak (Bi)Similarities

We end this summary with some remarks about specific well-known bisimilarities that have
not been mentioned explicitly so far.
On labelled transitions systems, ∼∼∼δ,

◦∼∼∼δ and ≈IMC coincide with a notion of bisimilarity called
stability respecting bisimilarity [Gla93].

On discrete-time Markov chains, which are submodels of Markov Automata (see Section 7.3) ∼∼∼δ

and
◦∼∼∼δ coincide with weak bisimilarity [BH97; Bai+05]. We claim that ⪯ and

◦
⪯ can be adapted

such that they both coincide with weak similarity for state-labelled DTMC [Bai+05].
On continuous-time Markov chains, which are as well submodels of Markov Automata, ∼∼∼δ and

◦∼∼∼δ coincide with lumping equivalence [HHK02], due to the fact that our weak transitions do
not affect timed transitions. In contrast, for the same reason, we see no obvious way to adapt ⪯

152

8.7. Summary and Discussion

and
◦
⪯ to match weak similarity for state-labelled CTMC, as introduced in [Bai+05].

On interactive Markov chains ∼∼∼δ and
◦∼∼∼δ coincide with weak bisimilarity ≈IMC [Her02]. A yet

weaker variant has been introduced in [Bra02]. However, the difference is orthogonal to the
issues we have focused on here. We are confident, that our novel relation can be adapted in such
a way that the core aspect of [Bra02] becomes available also for Markov automata.
To the best of our knowledge, no weak similarity relations for IMC have been introduced in the

literature so far, so the one jointly induced by
◦
⪯ and ⪯ is new. In [HK10], a strong simulation

relation has been introduced, though.

153

9. Axioms
This chapter aims to establish a sound and complete axiomatization for weak distribution bisim-
ilarity on the fragment of finite and recursion-free MA processes. It thus continues our effort
to compare the precise semantics of the models discussed in this thesis, which we started in
Chapter 6.

Outline and Contributions. We begin with defining a suitable calculus that allows us
to express Markov automata processes by terms of an algebraic language in Section 9.1. As weak
bisimilarities in general, also ∼∼∼δ fails to be a congruence with respect to the non-deterministic
choice operator +. We thus need to introduce the coarsest congruence contained in weak dis-
tribution bisimilarity. In Section 9.2, we will then provide a set of axioms for finite processes
without recursion, which we will prove sound and complete in Section 9.3 and Section 9.4. As
we will show, in principle, the axioms for weak distribution bisimilarity are for the most part
common with the axioms of weak probabilistic bisimilarity and weak IMC bisimilarity. The fact
that weak distribution bisimilarity is a significantly coarser relation will be expressed by the ad-
dition of one single axiom. Besides, we will see several new axioms that result from a syntactical
simplification we made in the algebra that allows us to treat immediate and stochastic behaviour
in a uniform way. While not strictly necessary, it allows for a more convenient notation. In
addition, we will also provide sound and complete axiomatization for the simulation relation
included in weak distribution bisimilarity, which is itself already a congruence. Section 9.5 is
dedicated to the discussion which challenges arise when one attempts to generalize the axiomati-
zation to finite process with recursive behaviour. Section 9.6 concludes the section.

9.1. Calculus
The calculus of Markov processes unifies the approach of the calculi of interactive Markov chains
and of probabilistic process. Our intentions behind this calculus is solely to serve as the for-
mal basis for our comparative semantics, and to show the basic mechanics behind an algebra for
Markov automata. Our language does by no means aim to be as refined or expressive as inde-
pendent developments that have appeared in the meanwhile [Tim+12; Tim13]. These algebras
usually come with more elaborate applications and are often extended with orthogonal aspects,
such as data. Yet, it is clear that they share the same elementary ideas that stem from the algebras
of the ancestors of Markov automata, which we discussed in Chapter 6.
Let for this chapter the set Actχ denote the set Act ∪ {χ(r) | r ∈ R>0 }. It differs from the

prior meaning in that χ(0) is not included in the set.

Definition 9.1 (MA Syntax). Let a ∈ Actχ, A ⊆ Act, and p ∈ [0, 1]. We define the languages
MA of expressions by the following syntax.

MA ∋ E,E′ ::= 0 | a.D | E + E′ | ∆(E)

155

9. Axioms

where D ∈ D is a distribution expression with syntax D ::=
⊕

i∈I piEi. If the sum expression
has only one operand, we write δ(E) instead of

⊕
1 · E. ◁

We write D and MA for the set of D-expressions and MA expressions, respectively. We use E, E1,
E2, F , . . . to range over of MA, and D , D1,. . . to range over D expressions respectively. Misusing
notation slightly, we write E ∈ Supp(D) if E = Ei for some i ∈ I .

Because in the syntax of our calculus, the symbol a ranges over the set Actχ, we allow expres-
sions such as χ(r).D for any r ∈ R>0. Except for this addition, the syntax of this calculus equals
the syntax of PA, our calculus for PA.
Similar as before, χ(r) represents a sum of individual rates leading to a distribution of goal

states. If there is only one summand of this kind in an MA expression, it coincides with the total
exit rate of the state represented by that expression. Instead of adding this special parameterized
action, we could have as well adopted the approach of IMC, where a real valued prefix such as λ.E
denotes that with rate λ the current state transitions to state E. Both notations can be converted
in each other immediatly in the case where D corresponds to a Dirac distribution: χ(λ).δ(E)
can be written as λ.E with λ ∈ R>0 and vice versa. As we will show later, the case of a general
D can be reduced to the last case by an axiomatic rewriting. Essentially, our notation can thus
be considered a conservative generalization of the IMC.
The benefit of our approach is that it allows us to deal with immediate transitions and timed

transitions in a uniform way. Both now obey a structure where an action prefix is followed
by a distribution expression. Without this adaption, we would have needed to present several
of the following axioms twice: once for immediate prefix expressions and once for delay prefix
expressions.
As a consequence of this decision, some of the axioms that we inherit from the axiomatization

of IMC need adaption. However, as we will see, all adaptions are straightforward.

Notation 9.1. Where convenient, we write λ.D instead of χ(λ).D for λ ∈ R>0.

Notation 9.2. Since the operator + is associative and commutative, we use
∑

i∈I Ei to represent
the sum of MA-terms (I finite). We apply the notational conventions defined for ⊕ in Section 2.4
also here.

9.1.1. Congruence
Being a weak bisimulation, ∼∼∼δ is not a congruence with respect to non-deterministic choice +.
We apply the usual fix.

Definition 9.2. E ≃MA F holds if and only if E ∼∼∼δ F and whenever

1. E τ µ then F
τ−−→c ◦==⇒cγ and µ ∼∼∼ γ, and

2. F τ γ then E
τ−−→c ◦==⇒cµ and µ ∼∼∼ γ.

◁

Theorem 9.1. ≃MA is the coarsest congruence contained in ∼∼∼δ.

156

9.1. Calculus

9.1.2. Semantics
We will formalize the intuitive interpretation of MA expressions by means of structural opera-
tional rules. We define a semantics for each expression of D and MA, by mapping them onto
probability distributions over expressions and a transition system, respectively. The state space
of the transition system is defined as the set of all MA expressions. Each expression E ∈ MA thus
appears somewhere in this transition system. Its semantics is therefore determined naturally by
the state space reachable from the expression/state.
For MA-terms, we define two transition relations, one for actions, and one to represent the

impact of time. We will provide rules for prefix (a.) with a ∈ Actχ, choice (+) and divergence
(∆). Termination (0) does not require specific rules.

The transition relations and are derived by the SOS semantics in Definition 9.3.
There, a unifying notation is used in the form of −−→, where a−−→ with a ∈ Act stands for a

and λ−−→ with λ ∈ R>0 stands for λ .

Definition 9.3.

1. The transition relation ⊆ MA × Act× Dist(MA) is the least relation given by the rules
in Table 9.1.

2. The transition relation ⊆ MA×R>0 ×Dist(MA) is the leastmulti-relation given by the
rules in Table 9.1, where the multiplicity of a transition is determined by the number of
different derivations that witness the membership of this transition.

◁

prefix
a.
⊕

i∈I piEi
a−−→ ⟨ (Ei : pi) | i ∈ I ⟩

a ∈ Actχ

choiceL
P

a−−→ µ

P +Q
a−−→ µ

choiceR
Q

a−−→ µ

P +Q
a−−→ µ

diverge1
∆(E)

a−−→ ∆(E)
diverge2

E
a−−→ E′

∆
a−−→ E′

Table 9.1.: Operational semantic rules for MA.

In our Markov automata calculus MA, the prefix operator is followed by a distribution expres-
sion independent from whether it represents an immediate action (a ∈ Act) or a timed delay
(χ(r)). In contrast, in Markov automata themselves, rate transitions lead to states as inherited
from IMC. This difference implies that the transition systems induced by MA terms are not fully
isomorphic to Markov automata. In fact, this is only the case when each distribution expression

157

9. Axioms

in a MA term corresponds to a Dirac distribution. Thus, while every MA has an isomorphic cor-
respondent MA term, it is not true vice versa. However, each MA term can be uniquely mapped
to a term isomorphic to a MA by the following transformation rule, where every occurrence of
distribution expression D =

⊕
i∈I piEi is replaced by a Dirac distribution expression:

χ(r).
⊕
i∈I

piEi =
∑
i∈I

χ(ri).δ(Ei)

with ri = r · pi. This rule follows immediately from (IDEM-2)MA, which we will introduce later
and show to be sound with respect to ≃MA.
In summary, while the set of transition systems induced by MA terms and the set of Markov

automata are not fully identical up to isomorphism, their correspondence is strong enough to
consider MA a reasonable process algebra for Markov automata.

9.2. Axioms
For a larger part, the axioms of this chapter are identical to the axioms from Chapter 6 for PA
and IMC. This is not surprising, as these formalisms form the basis of Markov automata. In fact,
most differences result from our technical decision to use a uniform syntax for immediate and
timed transitions in MA. In this way, several axioms for IMC, dealing with timed transitions, are
not sound any longer, and need, mostly straightforward, adaptions. We summarize the axioms
that remain unchanged in Table 9.3.

(COM) E + F = F + E
(ASS) E + (F +G) = (E + F) +G
(NEUT) E + 0 = E

(D-COM) a.(D ⊕p D ′) = a.(D ′ ⊕1−p D)
(D-ADD) a.(D ⊕p D) = a.D
(D-ASS) a.(D1 ⊕p (D2 ⊕ q

1−p
D3)) = a.((D1 ⊕ p

p+q
D2)⊕p+q D3)

(CC) a.D + a.D ′ = a.D + a.D ′ + a.(D ⊕p D ′) (a ∈ Act)

(D-τ -2) a.D = a.D + a.(
⊕

i∈I piD
′
i)

where D =
⊕
i∈I

piδ(Ei + τ.D ′
i)

(D-τ -3) τ.D = τ.D + a.(
⊕

i∈I piD
′
i)

where D =
⊕
i∈I

piδ(Ei + a.D ′
i)

Table 9.2.: Standard Axioms

In Table 9.2 axioms for idempotency and divergence are missing. These axioms need a special

158

9.2. Axioms

treatment due to the fact that our language is no longer fully compatible syntactically with the
algebras PA and IMC. We provide them thus separately in Table 9.3. They follow along the lines
of the axiomatization for PA and IMC (cf. Section 6.2.1) with some necessary adaptions: For
PA, the idempotency law E + E = E was sufficient. In the presence of timed transitions this
law becomes unsound, as it would allow to write for example 1.δ(0) + 1.δ(0) = 1.δ(0). By
the additivity of rates, however, it follows that in this equation we incorrectly add the rates. A
correct equation would be 1.δ(0) + 1.δ(0) = 2.δ(0). Therefore, similar to the IMC setting, we
need to distinguish between idempotency in the context of immediate transitions and of timed
transitions. In the latter case, idempotency actually becomes more an additivity law. We use
(IDEM-1)MA and (IDEM-2)MA for these two cases. Note that we cannot directly use the correspond-
ing axioms for IMC, as there the prefix operator is followed by a process expression, but not a
distribution expression.

a.D + a.D = a.D (IDEM-1)MA
λ1.D + λ2.D ′ = (λ1 + λ2).(D ⊕ λ1

λ1+λ2

D ′) (IDEM-2)MA

Table 9.3.: Idempotency Axioms

The axioms for divergence, summarized in Table 9.4, are obtained from the corresponding
axioms for IMC by replacing all occurrences of process expressions by distributions expressions.

∆(E) = τ.δ(∆(E)) (∆-1)MA
∆(τ.D + F) = τ.δ((τ.D + F)) (∆-2)MA
∆(λ.D + F) = ∆(F) (∆-3)MA
∆(E) + λ.D = ∆(E) (∆-4)MA
∆(E + F) = ∆(E + F) + E (∆-5)MA

∆(E) + ∆(E) = ∆(E) (∆-6)MA

Table 9.4.: Divergence Axioms

The axiom that actually distinguishes ≃MA from the other congruences, particularly from ≃PA,
is (D-τ -1)MA (Table 9.5). It expresses the distinguishing property of weak distribution bisimilarity
to fuse sequences of internal transitions. This axiom has already appeared under the same name
in our axiomatization of ⪯fwd in Section 6.3, with the only differences that the latter is an axiom
over distributions. This is no very surprising, as weak distribution bisimilarity has turned out
to be the notion of bisimulation containing the probabilistic forward simulation kernel (cf. The-
orem 8.13).

a.(δ(τ.D ′)⊕p D) = a.(D ′ ⊕p D) (D-τ -1)MA

Table 9.5.: τ - Axioms (a ∈ Actχ)

159

9. Axioms

a
1
2

τ
1
4

3
4

1
2

τ
3
4

1
4

a

1
2

1
2

s1

s2 s3

E F E F

t1

E F

=

Figure 9.1.: A Typical Instance of (D-τ -1)MA

Example 9.1. Figure 9.1 shows a typical instance of an equivalence between two MA that can
be proven with axiom (D-τ -1)MA. The MA terms corresponding to the automaton on the left hand
side is

a.(δ(τ. (E ⊕ 1
4
F)︸ ︷︷ ︸

D′

)⊕ 1
2
δ(τ.(E ⊕ 3

4
F))︸ ︷︷ ︸

D

).

For better readability we wrote E instead of δ(E) and accordingly for F . By (D-τ -1)MA this is
equal to

a.((E ⊕ 1
4
F)︸ ︷︷ ︸

D′

⊕ 1
2
δ(τ.(E ⊕ 3

4
F))︸ ︷︷ ︸

D

).

By axiom (D-COM), we can swapD andD ′, which allows us to apply (D-τ -1)MAagain. By swapping
the distributions back again this leads to

a.((E ⊕ 1
4
F)︸ ︷︷ ︸

D′

⊕ 1
2
(E ⊕ 3

4
F)︸ ︷︷ ︸

D

).

With multiple applications of (D-COM), (D-ADD) and (D-ASS), we finally obtain

a.(E ⊕ 1
2
F),

which is the process term corresponding to the MA on the right-hand side of the Figure 9.1. ◁

We have now summarized all axioms that together establish an axiomatization of≃MA. We collect
them in the setAMA, which shall contain all axioms in Table 9.2, 9.3, 9.4 and 9.5. We will show in
the remainder of this chapter thatAMA is sound and complete for≃MA for finite and recursion-free
processes.

9.3. Soundness
Most axioms are known to be sound for ≃PA, which implies their soundness also for ≃MA. Only
one axiom needs further considerations.

Lemma 9.1 (Soundness). All axioms in AMA are sound with respect to ≃MA.

160

9.4. Completeness

Proof Sketch. Axiom (D-τ -1)MA is the only new axiom and remains to be discussed. As both sides
of

a.(δ(τ.D ′)⊕p D) = a.(D ′ ⊕p D)

have only one initial transition labelled by a, the only challenging part is to show that their
successor distributions are weak distribution bisimilar, i.e. δ(τ.D ′)⊕p D ∼∼∼ D ′⊕p D . As witness
relation, we use the identity relation on distributions plus the pair (τ.D ′,D ′). Checking the
necessary conditions is then a simple exercise.

9.4. Completeness
In this section we will show that the set AMA of axioms is complete for acyclic MA processes.
Formally, we will establish that whenever two acyclic processes are congruent, E ≃MA F , then
we can rewrite one into the other only be use of the axioms from AMA, i.e. E =AMA F .

For notational convenience, we usually keep the application of axioms (D-COM), (D-ASS),
(D-ADD) and (CC) implicit in the following. This allows us to represent distribution expressions
always in the form

⊕
i∈I piEi where I is a finite index set and pi ∈ [0, 1] with

∑
i∈I pi = 1.

Acyclic processes are exactly the expressions of MA without variables and recursive behaviour.
For ai ∈ Act, we use the notation

∑
{ ai.Di | i ∈ I } for a finite index set I as an abbreviation

of the finite summation of the summands ai.Di (with duplicated summands removed). This is
justified by the axioms (COM), (ASS) and (IDEM-1)MA.

Definition 9.4 (Sum Form). A process E is in sum form if it is either of the form

1. χ(r).
⊕
j∈J

pjEj +
∑

{ ai.
⊕
j∈Ji

pjEj | i ∈ I },

where ai ̸= τ for all i ∈ I , or

2.
∑

{ ai.
⊕
j∈Ji

pjEj | i ∈ I }+
∑

{∆(
∑

{ bi.
⊕
j∈Ji

qjFj | i ∈ Ik }) | k ∈ K },

where bi ̸= τ for all i ∈ Ik and k ∈ K, or

3. 0, and

• each Ej and Fj is again in sum form, and

• ai, bj ∈ Act, i.e. they are not timed actions, and

• all Ej and Fj that are part of the same distribution expression are pairwise different with
respect to ≡.

◁

Note that in Case 2 summands of the form ∆(0) are included, as Ik may be the empty set.

In the following, we will call the processes Ej and Fj occurring in E the successor processes
of E.

By axioms (COM) and (ASS), the specific order of the summands is not important. We will
therefore always assume the summands to be ordered in a way suitable for our presentation.

161

9. Axioms

Furthermore, by axiom (IDEM-1)MA, for the summands in
∑

we can assume thatEi = Ej implies
i = j. Thus, in order to show that two processes in sum form are syntactically identical, it
suffices to check that every summand of one process also is a summand of the other process and
vice versa.

The proof for completeness proceeds by induction over the longest sequence of actions a pro-
cess E can perform. We count actions resulting from prefix expressions. Furthermore, actions
resulting from divergence ∆ will count as one. We formalize this characteristic as D(E), by an
inductive definition along the structure of E.

D(0) = 0

D(∆(E)) = 1 +D(E)

D(a.D) = 1 +D(D) for a ∈ Actχ

D(E + F) = max{D(E),D(F)}

D(δ(E)) = D(E)

D(D ⊕p D ′) = max{D(D),D(D ′)}

A direct inductive proof of completeness seems impossible. Instead, we need to strengthen the
induction hypothesis by several unobvious statements. We need to introduce further definitions
first.

Definition 9.5. We call a process E saturated, if whenever E a
==⇒ µ with a ∈ Act then also

E
a−−→ µ and also each successor process of E is saturated. In addition, if E τ

==⇒ µ = δ(∆(F))
for some F , then ∆(F) shall also be a summand of E. ◁

This definition states that every weak transition of E is also represented by a strong transition.
This means that if we look at a process in sum form, we can immediately recognize every possible
(non-convex) observable behaviour that might happen next, only from looking at its summands.
In the special case that a weak transition leads to a Dirac distribution over a ∆ expression, we
add the expression as summand since ∆ expressions are a special syntactical form of an internal
transition, which should be immediately recognizable on top-level of the process structure.

Definition 9.6. We call a process E weak saturated, if either E is saturated or E is of the form
τ.D and every process E′ ∈ Supp(D) is saturated. ◁

Note that the difference between saturated and weak saturated is only in the initial shape of a
process. In both cases, the successor processes must be saturated. If E is weak saturated, however,
E itself may not be saturated, if it has only one initial transition.

Definition 9.7. We call a process E convex reduced, if for every action a ∈ Act the set Ta =

{µ | E
a−−→ µ } of a-successor processes, is the (unique) minimal set of generators of its set

of convex combinations {
⊕

µ∈Ta
pµ · µ |

∑
µ∈Ta

pµ = 1 }, and each successor process of E is
convex reduced. ◁

It is a well-known fact that every convex set has a minimal set of generators. This minimal set
is furthermore unique. We will make use of this fact in our completeness proof by reducing the
transitions of a process to exactly this unique set of generators.

162

9.4. Completeness

Definition 9.8. We call a process E tangible, if whenever E τ−−→ µ then either δ(E) ̸∼∼∼ µ or
E = ∆(F) for some process F and µ = δ(E)— and every successor process of E is tangible. ◁

Definition 9.9. We call a process E weak tangible, if either E is tangible, or E is of the form
τ.D and every E′ ∈ Supp(D) is tangible. ◁

Note that the difference between tangible and weak tangible is only in the initial shape of a
process. In both cases, the successor processes must be tangible. If E is weak tangible, however,
E itself may not be tangible, if it has only one initial transition.

Lemma 9.2. Every acyclic process can be rewritten into sum form by use of the axioms (COM),
(ASS), (NEUT), (IDEM-1)MA, (IDEM-2)MA, and (D-ADD), and the divergence axioms (∆-1)MA, (∆-2)MA,
(∆-3)MA, (∆-4)MA, and (∆-5)MA.

Proof. The proof proceeds by structural induction.

E ≡ 0: 0 is in sum form by definition.

E ≡ ∆(F): By induction, F is in sum form. If the structure of F follows Case 1, we eliminate
the summand χ(r).

⊕
j∈J pjEj by applications of (∆-3)MA. If the structure of F follows

Case 2, we need to eliminate the ∆, since then F has a summand of the form τ.D or
of the form ∆(H). Let us first assume that F ≡ τ.D + G. By (∆-2)MA, we rewrite
E = ∆(F) = ∆(τ.D + G) to τ.δ(τ.D + G) = τ.δ(F). Since F is by induction in sum
form, so is τ.δ(F).

Now, we consider the case where F ≡ ∆(H)+G. We show how reduce this case to the last
case. First, we rewrite F with (∆-1)MA to τ.δ(∆(H))+G. Hence E = ∆(τ.δ(∆(H))+G),
which is an instance of the last case.

E ≡ a.D : Follows immediately by induction and the definition, and possibly an application of
(D-ADD): Assuming by induction that all processes in Supp(D) are in sum form, we reduce
D by (D-ADD) whenever necessary, and then we immediately see that E is an instance of
Case 1 or 2, depending on whether a = λ or not.

E ≡ F +G: By induction, F and G are in sum form. If both are instances of Case 2, we are
done. If both are instances of Case 1, we apply (IDEM-2)MAto merge the timed actions. If
without loss of generality F ≡ 0, i.e. an instance of Case 3, we eliminate the instance
by (NEUT). The interesting case occurs when without loss of generality F is an instance
of Case 1 and G is an instance of Case 2. The problem occurs when in F + G we have
both a timed actions, stemming from F , and τ or ∆, stemming from G. First assume that
G ≡ τ.D +H . We will reduce this case to the other case, where G ≡ ∆(L) +H , and then
show how to eleminate the semantically superfluous timed action from F .

First, we show the transformation.

τ.D = τ.δ(τ.D) by (D-τ -1)MA

= τ.δ(τ.D + 0) by (NEUT)

= ∆(τ.D + 0) by (∆-2)MA

= ∆(τ.D) by (NEUT)

163

9. Axioms

Now we have reduced the problem to the case, where G ≡ ∆(L) + H (with L ≡ τ.D).
The more general case where G ≡ ∆(L) + H for an arbitrary L is treated with (∆-4)MA,
which allows us to eliminate any summands λ.D ′ occurring in F .

Definition 9.10 (∆-Expandedness). We say a process is ∆-expanded, if every subexpression
of the form∆(E+F) or∆(E) occurs as a summand of a summation, where alsoE is a summand,
except if E ≡ 0. ◁

Lemma 9.3. Every process E in sum form can be transformed into a process in sum form that
is in addition ∆-expanded with help of axiom (∆-5)MA.

Proof. We can apply the axiom on every∆ subterm containing summands different from 0. Since
these summands cannot be∆ expressions themselves, or λ prefix expression, this transformation
will not hurt any of the conditions of sum form.

Lemma 9.4. Every process E in sum form can be transformed into a saturated process in sum
form by the axioms in AMA.

Proof. We proceed by induction over D(E). By induction, we may assume that every successor
process of E is already saturated. Let E a

==⇒ µ with a ∈ Act. Then, we distinguish two cases:

1. there exists µ′ such that E τ−−→ µ′ and µ′ a
==⇒ µ.

2. there exists µ′ such that E a−−→ µ′ and µ′ ==⇒ µ.

Without loss of generality, we assume that in the second case µ′ ̸= µ, because otherwise, we are
already done.
As all processes contained in the support of µ′ are by induction hypothesis already saturated,

it holds that either

1. µ′ a−−→ µ, or

2. µ′ τ−−→ µ,

depending on the case we consider. As all the processes in the support of µ′ are in sum form, our
argumentation so far lets us derive that E must contain a summand with the following structure,
with possibly empty index sets I and J :

1. τ.

µ′︷ ︸︸ ︷
((
⊕
i∈I

ciδ(a.Di)⊕p (
⊕
j∈J

djδ(Ej + a.D ′
j))) with

µ = (
⊕
i∈I

ciDi ⊕p (
⊕
j∈J

djD
′
j)

2. a.

µ′︷ ︸︸ ︷
((
⊕
i∈I

ciδ(τ.Di)⊕p (
⊕
j∈J

djδ(Ej + τ.D ′
j))⊕q D ′′) with

µ = (
⊕
i∈I

ciDi ⊕p (
⊕
j∈J

djD
′
j)⊕q D ′′

164

9.4. Completeness

Note that this case distinction only is complete since we can, by Lemma 9.3, assume without
loss of generality, that E is∆-expanded. Hence, we do not need to treat any cases where relevant
expressions occur inside a ∆-expression.
We proceed with Cases 1 and 2. The idea is now to apply (D-τ -3) to the first case and Ax-

iom (D-τ -2) to the second case in order to add an additional summand a.µ′ to E. In neither case
we cannot proceed directly, as syntactically, the axioms are not applicable. For the first case, it
suffices to apply Axiom (NEUT) followed by Axiom (COM) to all subexpressions of the form a.Di.
We then arrive at

τ.((
⊕
i∈I

ciδ(0 + a.Di)⊕p (
⊕
j∈J

djδ(Ej + a.D ′
j)))

We now apply Axiom (D-τ -3) to obtain

τ.((
⊕
i∈I

ciδ(0 + a.Di)⊕p (
⊕
j∈J

djδ(Ej + a.D ′
j)))

+a. (
⊕
i∈I

ciδ(Di)⊕p (
⊕
j∈J

djδ(D
′
j))︸ ︷︷ ︸

µ

For the second case, we proceed completely analogously, for subexpressions τ.Di, but need
additional rewriting for the distribution expressions D ′′, which did not appear in the preceding
case. With Axiom (D-τ -1)MA, we can prefix D ′′ by a τ , and then again apply Axioms (NEUT)
followed by Axiom (COM) as before to finally arrive at

a.((
⊕
i∈I

ciδ(0 + τ.Di)⊕p (
⊕
j∈J

djδ(Ej + τ.D ′
j))⊕q δ(0 + τ.D ′′)).

Now, the expression is in the right shape to apply Axiom (D-τ -2) to obtain the desired result as
before. Finally, in both cases we undo our changes done to the original summand. If we proceed
in this way for every summand of E, we obviously arrive at a saturated process at the end, that
is still in sum form.
For the last case, namely that E τ

==⇒ µ = δ(∆(F)) for some F , which demands the addition
of the summand ∆(F), we first use our results from before. Hence assume without loss of
generality that E τ µ′ and µ′ ==⇒ δ(∆(F)). Then as we have shown before, we can saturate E
such that also E τ δ(∆(F)), i.e. E has a summand of the form τ.δ(∆(F)). Now by (∆-1)MAwe
can remove the trailing τ and obtain the desired summand ∆(F).

Lemma 9.5. Every saturated process E in sum form can be transformed into a convex reduced
and saturated process in sum form by the axioms in AMA.

Again, we can turn every such process in a process that is in addition ∆-expanded. We will
make use of this lemma in the future without further notice.

Lemma 9.6. Every saturated and convex reduced process E in sum form can be transformed
into a saturated and convex reduced process in sum form that is in addition ∆-expanded with
help of axiom (∆-5)MA.

165

9. Axioms

Proof. Follows as for Lemma 9.3, but with the additional remark that adding an expression from
inside a ∆ expression as a summand does not break saturatedness nor convex reducedness, since
every expression reachable now with a weak or strong transition has been reachable with a weak
transition before.

The next lemma is key to our completeness proof. We need to deviate from the standard
approach, in which we would first show that every process can be rewritten into some type of
normal form, and then show, that the normal forms of two bisimilar processes always coincide.
Surprisingly, a sequential approach to prove these two lemmas does not seem possible. Instead,
we need to establish both results at the same time, as in the inductive step, the two results
mutually rely on each other.
In the following, we write E ≡ F , if E = F only by the axioms (COM) and (ASS).

Definition 9.11 (Normal Form). We say a process is in normal form, if it is weak saturated,
weak tangible, convex reduced, ∆-expanded, and in sum form. ◁

Lemma 9.7. The following statements hold:

1. Every process can be rewritten into normal form with the axioms in AMA, and

2. For two processes E and F in normal form, E ≃MA F implies E ≡ F .

With this lemma, it is straightforward to establish completeness, Theorem 9.2. The proof of
this lemma can be found in Appendix E.

Theorem 9.2. Let E and F be two MA processes. Then E ≃MA F implies E =AMA F .

9.5. Open Challenges
Our axiomatization has only covered finite systems without recursive behaviour. This has en-
abled us to proceed for most proofs with induction over the longest sequence of actions a process
can potentially perform. For finite processes with recursion, a different approach is needed, as a
process may perform action sequences of infinite length.
Already for standard labelled transitions systems and weak bisimilarity, extending axioma-

tizations to the setting with recursive processes is more involved and requires, besides several
new axioms, a completely new proof idea, based on process equations. This principle idea has
been successfully applied to several notions of bisimilarity [Mil89a; Her02; BS01; DP07; DP05;
LDH05; ABW06; Eis07; GW96]. Surprisingly, an adaption for weak distribution bisimilarity
seems impossible, and has resisted our attempts so far. In order to stimulate further research, we
record our insights here why the standard approach seems to fail.
The core idea of proving completeness for finite-state systems with recursion is to use that

two process algebraic expressions E and F are provably equal if there is an equation system over
processes expressions that has a unique solution and which is provably satisfied by both systems.
In this context, equation systems always are of the form X = E, where the left-hand side only
consists of a variable and the right-hand side E is an arbitrary expression without recursion
(usually in some standard form).

We say that an expression E provably satisfies an equation system X1 = G1, . . . , Xn = Gn,
if for every equation Xi = Gi in the system there are process expressions Ei such that Ei =
(Gi) {E1/X1} {E2/X2} · · · {En/Xn} can be proven by the axioms, and, in addition E1 = E.

166

9.5. Open Challenges

A major proof step is then to construct a single equation system, that is satisfied by both pro-
cess expressions E and F . Therefore, first E and F are assumed (or rewritten) to be saturated.
The idea is then to introduce one equation for every pair (Ei, Fj) of bisimilar processes expres-
sions reachable from E and F , respectively. Every equation is of the form Xi,j =

∑
a.Xi′,j′′ .

The left-hand side is a variable and its right-hand side is a (finite) summation over actions fol-
lowed by a variable, and possibly unbound variables, which is something not of importance for
our discussion. Intuitively, a variable Xi′,j′ represents the combined behaviour of expression Ei

and Fj . Therefore, a summand a.Xi′,j′ stands on the right-hand side exactly if Ei
a−−→ Ei′ and

Fj
a−−→ Fj′ and Ei′ is bisimilar to Fj′ (for a ̸= τ) or if Ei

τ−−→ Ei′ and Ei′ is already bisimilar
to Fj′ and Fj′ = Fj or Fj

τ−−→ Fj′ and Ei is already bisimilar to Fj′ and Ei′ = E. As Ei

and Fj are bisimilar and they are saturated, whenever one of them can do an a-transition to a
state, the other one can follow with an a-transition to a bisimilar state. Thus, it is almost im-
mediate by construction that Ei and Fj both are provable solutions of Xi,j , as every next step
behaviour is reflected in their structure. The only crux is to deal with the possibility, that, from
the perspective of either Ei or Fj , in certain equations an additional τ transition may be present,
which has been introduced by the other process expression. Structurally, this is reflected by the
presence of a summand τ.Xi′,j or τ.Xi,j′ , where only one of the indices changes. For example,
in an equation with left-hand side Xi,j , if Ei

τ−−→ Ei′ , it may be possible, that Fj cannot match
this transition with an explicit transition, even though Ei and Fj are bisimilar. Still, following
the above construction, the summand τ.Xi′,j will be part of the right-hand side of the equation.
To deal with this problem, the proof strategy is then to not show directly that Fj satisfies the
equation, but instead use τ.Fj as a solution. By Axiom (τ -2), we can rewrite this to τ.Fj + Fj ,
which means that structurally, Fj is fully preserved and in addition, the missing summand τ.Fj

is then present. Showing that this expression is a solution of the equation is then straightforward.
Furthermore, whenever τ.Fj is replaced in a right-hand side expression (of another equation),
it must be in a summand of the form a.Xl,j for some l. Then by Axiom (τ -1), a.τ.Fj can be
reduced to a.Fj and the additional τ has been removed.

The crucial insight of this discussion is that the proof depends on the fact that every equation
with left-hand side Xi,j is defined in a way that allows to almost immediately see that both
Ei and Fj provably satisfy the equation Xi,j . If Ei (Fj) should fail to immediately satisfy a
corresponding equation, then it is guaranteed that τ.Ei (τ.Fj) does so.

For weak distribution bisimilarity, an analogous construction is not obvious. The reason is
that two bisimilar process expressions may reach states that are not bisimilar to any state of the
other process expression. For all other known bisimilarities, this not the case.

167

9. Axioms

a
1
2

τ
1
4

3
4

1
2

τ
3
4

1
4

a

1
2

1
2

s1

s2 s3

s4 s5 s6 s7

t1

t2 t3

Figure 9.2.: Bisimilar Automata With Non-Bisimilar States

Example 9.2. In Figure 9.2, the states s1 and t1 are weak distribution bisimilar. However, the
states s2 and s3 are not bisimilar to any of the states, given that and are non-bisimilar states.
The reason is that the distributions the two states reach by their only internal transition are
unique. In contrast, δ(s1), δ(t1),

⟨
(s2,

1
2), (s3,

1
2)
⟩
and

⟨
(, 1

2), (, 1
2)
⟩
are all weak distribution

bisimilar. ◁

It seems that the problem is rooted in the fact that weak distribution bisimilarity allows to
equate distributions whose supports contain states that are not bisimilar. While being the unique
feature of this bisimilarity addressing chiefly needed abstraction possibilities, we have also repeat-
edly observed it to be the cause of unexpected phenomena (see for example Section 8.4.3).

Example 9.3 (cont’d). The equation system for the automata in Figure 9.2 is not straightfor-
ward to construct. It is clear that, due to the saturation property, the first equation will contain
one summand for the a transition. This summand is also rather easy to construct, as it the goal
transition only involves states of equivalence class and . Hence, so far, we can conclude that
the first equation must be of the following shape.

X1,1 = a.

⟨
(X4,2,

1

8
), (X5,3,

3

8
), (X6,2,

3

8
), (X7,3,

1

8
)

⟩
+ ?

However, it is hard to see how to construct the missing τ transition of s1. We cannot write
something like τ.

⟨
(X2,1,

1
2), (X3,1,

1
2)
⟩
for ?, as this would mean that s2 and t1, and also s3 and

t1, respectively, should be bisimilar. But this is not the case, as we know. ◁

A solution in the concrete example is, to completely remove states s2 and s3 by the use of
Axiom (D-τ -1)MA. However, in more complex examples this might not always obviously be possi-
ble, as states with redundant transitions like s2 and s3 might still have other outgoing transitions,
that prevent a naive application of this axiom. One approach could be to remove such transitions
whenever possible by something like an inverse saturation procedure, that prunes out transition
whenever they can also be reconstructed via a sequence of preceding internal transitions. How-
ever, it is by far not obvious how to identify the candidates for the removal only in an axiomatic
way.

168

9.6. Summary and Discussion

9.6. Summary and Discussion
This chapter has provided a sound and complete axiomatization of weak distribution bisimilarity,
or more precisely, the coarsest congruence with respect to choice, contained in this relation.
We have based our axiomatization on a simple algebraic language for MA that is basically the
straightforward combination of the algebras for IMC and PA, however with a slight adaption of
the notion of delay prefix that allows a syntactically uniform treatment of timed, and non-timed
transitions, and thus reduced the number of axioms slightly.
The axiomatization syntactically highlights that the semantic core of weak distribution bisimi-

larity is its ability to fuse internal transition distributions, as expressed by this axiom:

a.(δ(τ.D ′)⊕p D) = a.(D ′ ⊕p D) (D-τ -1)MA

In fact, it is the only axiom that is not also valid for IMC and PA axiomatization. This axiom is
also pivotal for axiomatizations of probabilistic forward simulation, the only other relation that
allows for fusion of internal transition distributions (and which is, as we have already discussed,
in fact only the simulation variant of weak distribution bisimulation).
The completeness proofs for our axiomatization have shown to be non-trivial already for sys-

tem without recursive behaviour. While we conjecture that the axiomatization can be extended
to recursive processes, we have failed to establish a proof of completeness for any such extended
set of axioms. We have discussed the problems that arise and also various routes we have explored
in vain. Yet we hope that our insights may prove useful for future proof attempts.

169

Part III.

Markov Automata Algorithmics

171

10. Decision Algorithms
In this chapter, we investigate algorithms that decide whether two states of an automaton are
equivalent with respect to the various notions of bisimilarity we have introduced.
We restrict our consideration to finite MA. For strong bisimilarity and naïve weak probabilistic

bisimilarity, we can rely on existing decision algorithms with minimal adaptions [Her02; BEM00;
CS02]. The only challenge is to combine treatment of immediate probabilistic transitions with
the treatment of timed transitions. For naïve weak probabilistic bisimilarity, the algorithm is in-
deed a straightforward combination of the respective algorithms we have presented in Chapter 4
and 5.
For weak distribution bisimilarity, the case is harder. We will base our algorithm on deciding

weak state bisimilarity instead of weak distribution bisimilarity. If we want to recover an algo-
rithm for weak distribution bisimilarity that relates a pair of distributions (µ, ν) instead of states,
we can introduce two fresh states from which a transition with a fresh label goes to distribution
µ, respectively ν, and then check the bisimilarity of these two states with the algorithm tailored
to the state-based setting.

Outline and Contributions. Establishing a decision algorithm for weak distribution
bisimilarity comes with several challenges. Section 10.1 explains the challenges we have met and
tries to provide helpful insights for future developments. In Section 10.2, we present a decision
algorithm for weak distribution bisimilarity and discuss its runtime complexity. Section 10.3
concludes the chapter. The results this chapter stem from [Eis+13b].

10.1. Challenges
For decision algorithms of bisimilarities it is natural to pursue a partition refinement ap-
proach (cf. Sections 3.3, 5.3, and 4.3, or for further reference, [CS02; Her02; KS90; PLS00]).
For weak distribution bisimilarity this seems not feasible in a straightforward manner. Instead,
the standard approach needs to be adapted drastically. In the following, we will shed light on the
challenges we met and provide some explanation on alternative approaches that we have explored
but finally abandoned.

Distribution- vs. State-Based Bisimilarity A direct partition refinement approach
would need to refine a partitioning over the set of all distributions over the state space, as weak
distribution bisimilarity is defined naturally over distributions. However, this seems infeasible,
since even for finite state spaces, the set of all distributions is infinite. Clearly, it seems possible
to reduce the set of all distribution to only those distributions reachable by (sequences of) weak
combined hypertransitions from the initial distributions. While this set is still infinite, it is
possible to represent the set of distributions reachable from a state via weak combined transitions,
by an exponential number of distributions (cf. [CS02]). In our case, however, we would need to

173

10. Decision Algorithms

consider distributions reachable from distributions (and so on), and not states. Thus, we face an
exponential complexity with considerably large constants.
Another obstacle is the second condition of weak distribution bisimulation that demands to

check –at least if implemented naïvly– if for every splitting of the challenger distribution the de-
fender can reach a distribution that may be split accordingly. The number of splittings that need
to be checked is (naïvly) again infinite. All of this potential infiniteness must be countered by
some suitable finite representations. The bisimulation conditions for state-based characterization
of weak distribution bisimulation, weak state bisimulation, are, in turn, simpler to deal with by
finite representations. Being state-based, it again suffices to compute a partitioning for a finite set.
Moreover, there is no explicit condition dealing with distributions any longer. However, now,
much of the difficulty has shifted towards determining a suitable computation of the set P of
preserving transitions, that plays a key role in the state-based characterization (cf. Chapter 8).

In summary, different to the standard partition refinement approach, our algorithm does not
only need to compute a state space partitioning W but, at the same time, needs to compute the
set of preserving transitions P .

Challenging Refinement. The still open challenge with this approach is to compute
the set of preserving transitions P in a time-efficient way. It seems natural to take an iterative
refinement approach here, too, so that both the tentative set of preserving transitions P and the
tentative state space partitioning W are refined at the same time. So starting with the set of all
internal transitions as the initial value for P and the set {S} as initial state space partitioning
W, we would first refine W (if possible), and then remove those transitions from P , which do
no longer satisfy the necessary conditions with respect to the current tentative partitioning W.
Then, in the next round, we again try to refineW with respect to the refined set P . We continue
this until none of the two sets changes. The following example shows that this approach may
lead to erroneous results.

Example 10.1. Let s τ−−→ and s
τ−−→ and also t

τ−−→ and t
τ−−→ . Let furthermore

both s and t be equipped with a self-loop labelled by action a.
Assume that states and are not weak distribution bisimilar. Then, clearly, none of the

transitions is preserving. However, s and t are obviously weak distribution bisimilar. Assume
the transition t

τ−−→ has been eliminated from the candidate set P already, but s τ−−→ has
not. Furthermore, assume that W has already been refined enough to recognize that s and t are
not in the same class as and , and that the two are in separate classes as well.

Then, when during the next refinement loop, which refines the partitioning W, we check
whether s and t can simulate their respective a transition. Now, while t PZ=⇒ δ(t), this is not the
case for s, as s τ is still contained in P . Instead s

PZ=⇒ (assuming that cannot perform
any further relevant τ transitions). Now, the condition of weak state bisimulation demand that
δ(t) L(W) . Unfortunately, this is not satisfied. As a consequence s and t are falsely considered
to be not bisimilar. ◁

Clearly, this example is not a concrete counterexample against this approach. It merely demon-
strates the theoretic possibility that the interleaved refinement of the two sets may interfere
negatively. By this we want to emphasize that any algorithmic approach that iteratively refines
both sets in a somehow interleaved manner, needs careful soundness considerations. In fact, we
failed to prove that the interleaved refinement approach actually yields correct results, even for
various variations of this approach. We, for instance, tried to remove as many transitions as pos-

174

10.2. Algorithm

sible in one iteration, instead of only some, with the intent that the situation as in Example 10.1
will not occur. However, we could then not prove that both the transitions from s and t become
invalidated as being preserving in the same iteration step.
Our proof attempts neither lead us to the derivation a concrete counterexample. We thus con-

jecture that computing the relation P with a refinement approach should be possible. However,
great care has to be taken in the verification of such an approach.

10.2. Algorithm
The algorithm we propose follows the brute-force approach to circumvent the problem we have
discussed before. In Figure 10.1, which provides a top-level perspective on the algorithm, we see
in Lines 4 to 7, that the quotienting procedure, Quotient- with respect to pres (Line 5), is repeated
for all conceivable sets of preserving transitions, i.e. for all subsets of the set of all internal
transitions, D(τ). During its refinement steps, Quotient- with respect to pres repeatedly checks
whether P still satisfies the necessary conditions with respect to the current partitioningW. If at
some point it fails to do so, the procedure returns ∅ to indicate that P was not a suitable choice
for the set of preserving transitions.
In order to guarantee that finally the coarsest relation is computed, we join the results of all re-

finements in Line 6. Procedure Join computes the partitioning that results from the union of the
two partitionings. Treating W and W′ as equivalence relations over S, it computes the reflexive,
transitive and symmetric closure of W ∪W′. Thus, when Quotient- with respect to pres returns ∅
in order to indicate that no weak distribution bisimulation exists for the current candidate set P ,
this outcome will not alter W′.

Decide(A)

1: A′ = Uniformize(A)
2: A′ = Quotient-under-mec(A′)
3: W = ∅
4: for all P ⊆ D(τ) do
5: W′ = Quotient- with respect to pres(A′, P)
6: W = Join(W,W′)
7: return W

Figure 10.1.: Computing the partitioning with respect to weak distribution bisimilarity

In Lines 1 and 2, preprocessing steps are performed. First, the timed behaviour of MA, inher-
ited from IMC, is treated in exactly the same way as in the algorithm for IMC that we presented
in Chapter 5. In particular, the input MA is transformed into its uniform representation before
further treatment. We recall that this allows us to treat a MA like a PA extended by special actions
χ(r) for r ∈ R≥0. We refer the reader to Chapter 5, Definition 5.3 for further details.
The second preprocessing step, Quotient-under-mec, is needed to correctly compute matching

weak transitions later in the quotienting process when searching splitters. The procedure trans-
forms every input MA into a mec-contracted MA. In other words, it computes the quotient MA
with respect to =mec. Thus, the core of the partition refinement approach relies on its input MA
being mec-contracted. Lemma 8.9 guarantees the soundness of this preprocessing step.

175

10. Decision Algorithms

The quotienting itself, procedure Quotient- with respect to pres, will be discussed in detail in
Section 10.2.1.

10.2.1. The Algorithmic Core
The partition refinement occurs in procedure Quotient- with respect to pres, which is parameter-
ized by P , the current candidate for the set of preserving transitions. The procedure itself is en-
tirely unsurprising except for a consistency check performed in procedure Consistency: During
each refinement iteration of W1 in Quotient- with respect to pres, we check whether the currently
assumed set P still satisfies Definition 8.17. If it does not, we stop refining and immediately
return W = ∅. As we have already mentioned, after each call of Quotient- with respect to pres, in
procedure Decide the returned partitioning W is joined with the previously computed partition-
ing W′.

Quotient- with respect to pres(A, P)

1: W = {S};
2: repeat
3: W′ = W;
4: if not Consistency(P,W) then
5: return ∅
6: (C, a, ρ) = FindSplit(W, P);
7: W = Refine(W, (C, a, ρ));
8: until W = W′

9: return W

As for LTS,PA and IMC, the core of the quotienting process is to find splitter and refine parti-
tion accordingly. This is again done in the procedures FindSplit and Refine, respectively. While
the principle ideas are standard and follow along the lines of the decision algorithm for PA and
weak probabilistic bisimilarity, the technical execution and establishing soundness is highly non-
trivial. We will discuss this in the rest of this section.

Bisimulation Core Conditions. The core condition of weak probabilistic bisimilarity
is that whenever one of two distributions related by a bisimulation relation performs a transition,
the other distribution can perform a transition with the same label and the resulting distributions
of both transitions are again related by the lifting of the bisimulation relation.
To derive a polynomial time routine that is suited to check the core bisimulation condition,

we have used Proposition 1 (page 54), which we will recall in the following, trivially adapted
from PA to MA.

1For the rest of this section, we will treat W both as a set of partitions and as an equivalence relation, wherever
convenient, without further mentioning.

176

10.2. Algorithm

Proposition (Recapitulation of Proposition 1). Given a MA A, two probability distributions
ρ1, ρ2 ∈ Dist(S) such that |ρ1| = |ρ2| > 0, two actions a1, a2 ∈ Actχ, two sets Ǎ1, Ǎ2 ⊆ −−→
of transitions, and an equivalence relationW on S, the existence of ν1, ν2 ∈ Subdist(S) such that

ρ1
a1⇂Ǎ1====⇒c ν1, ρ2

a2⇂Ǎ2====⇒c ν2, and ν1 L(W) ν2

can be checked in polynomial time.

For weak state bisimulation, we actually have two core conditions:

1. W is preserving with respect to P , and

2. P is preserving with respect to W.

If we inspect them more closely, we see that they are indeed similar to the core condition of
weak probabilistic bisimilarity. In fact, they are similar enough to allow us to reuse Proposi-
tion 1. We will explain the details in the following. First, let us recall the essential definitions for
convenience.2

Definition (Recapitulation of Definition 8.17). Let A = (S, s̄,Act, ,) be given. A set of
internal transitions P ⊆ τ is called preserving with respect to an equivalence relationW ⊆ S×S
if for every (s, τ, γ) ∈ P the distribution γ simulates s with respect to P and W.

Definition (Recapitulation of Definition 8.18). An equivalence relation W ⊆ S × S is called
preserving with respect to P if

1. whenever sWt, then δ(t) simulates s with respect to P and W

2. if s↓ then t ==⇒ γ for some γ ∈ Dist(S) with γ↓;

The core of both conditions is that distribution γ or state t, respectively, must be able to
simulate state s with respect to P and W. Concretely, the term simulating here refers to Defini-
tion 8.16.

Definition (Recapitulation of Definition 8.16). A distribution Ψ is said to simulate s with
respect to a set of internal transitions P ⊆ τ and an equivalence relation W, if whenever
s

a
==⇒c Λ then there exist µ, ξ′ and ξ such that Λ PZ=⇒ µ and Ψ

a
==⇒c ξ′ and ξ′

PZ=⇒ ξ, and
µ L(R) ξ.

If we replace Ψ by γ, we obtain the core of Definition 8.17, and if by δ(t), the core of Defini-
tion 8.18. In the following, we will write Sim(s,W, P, a,Λ,Ψ), if µ, ξ′ and ξ can be found that
satisfy the conditions of Definition 8.16.
Checking the predicate Sim algorithmically will be at the core of our algorithmic treatment.

Even though the structures of this definition and of Proposition 1 are somewhat similar, it is not
completely straightforward to see how the latter can be used to algorithmically check Sim : the
proposition is not directly capable of dealing with the special transition relation PZ=⇒. This is due
to the fact that, by its definition, the special transition relation PZ=⇒ is more complex than simply
restricting a weak transition to some allowed transitions. This means, it cannot obviously be
expressed by ⇂Ǎ

==⇒c for some set Ǎ of suitable allowed transitions, as used within Proposition 1.
2Compared to our original definitions, we here have replaced R by W. As mentioned before, we treat W as a binary
relation whenever convenient.

177

10. Decision Algorithms

Computing the Core Condition. As we have seen, the most challenging aspect is to
compute the transition predicate Z=⇒. Everything else can easily be computed with help of
Proposition 1. Recall that µ PZ=⇒ µ∗ holds if and only if

1. µ
τ⇂P
===⇒c µ

∗.

2. whenever µ∗ τ⇂P
===⇒c µ

′, then µ∗ L(W) µ′.

Computing Sim(s,W, P, a,Λ,Ψ) now relies on two steps:

• Instead of working on the partitioning W directly, we transform it into an equivalence
W′ as follows: whenever for a state s ∈ S, a transition (s, τ, µ) ∈ P exists for some
distribution µ, we remove s from its equivalence class with respect to W, and isolate it,
such that sWs′ implies s′ = s. For all states t and t′ that do not have this property, we
maintain that tW′t′ if and only if tWt′. More formally, if C is the equivalence class of W
containing s, we let C′ = C \ {s} be the class replacing C in W′, and we add the singleton
equivalence class {s} to W.
It is easy to see that this operation is at most polynomial with respect to the number of
transitions and states of the MA.

• We then apply Proposition 1 with
– a1 = τ , a2 = a,
– ρ1 = Λ and ρ2 = Ψ, and

– Ǎ1 = P , Ǎ2 = P ∪ a and W = W′.

Using W′ instead of W now guarantees that whenever the proposition determines a match
ν1 L(W′) ν2, then the states related by W′ are either

(i) identical, or

(ii) cannot perform any further transitions in P .

While this is not exactly the meaning of Z=⇒, it is already quite close.

Theorem 10.1. There exist two distribution ν1 and ν2 with ν1 L(W ′) ν2 according to Propo-
sition 1 if and only if ν1

PZ=⇒ ν∗1 and ν2
PZ=⇒ ν∗2 and ν∗1 L(W) ν∗2 .

Proof. Case 1 We first show this logical equivalence from left to right. Hence, assume ν1 L(W′)
ν2. Recall that each equivalence classes of W′ is either a subset of an equivalence class of
W and each state in this class cannot perform any transition in P , or it is a singleton-set.
Let C = {s} be an arbitrary class satisfying the second case. Let µs be the distribution that
satisfies s PZ=⇒ µs and every state in µs cannot perform any further transition in P . The
distribution µs must exist as we can assume the underlying MA to be mec-contracted. Let
us write ν1 and ν2 as

p1δ(s1)⊕ · · · pnδ(sn)⊕ qν1 and p1δ(s1)⊕ · · · pnδ(sn)⊕ qν2,

where the state s1 to sn are exactly the states that lie in their own respective (singleton-set)
equivalence classes, and let ν1 and ν2 denote the respective missing part of ν1 and ν2. As

178

10.2. Algorithm

ν1 L(W′) ν2, it is guaranteed that we can indeed split ν1 and ν2 in this way. With the
transitions s PZ=⇒ µs we have introduced above, and the fact that all states in Supp(ν1) and
Supp(ν2) cannot perform any further transition in P , it follows that

ν1
PZ=⇒ p1δ(µ1)⊕ · · · pnδ(µn)⊕ qν1 and ν2

PZ=⇒ p1δ(µ1)⊕ · · · pnδ(µn)⊕ qν2.

Now it is immediate to check that the two distributions reached in this way are related with
respect to L(W). To see this, we first note that trivially for every µi with i ∈ {1, . . . , n},
µi L(W) µi, and by the choice of ν1 and ν2, from ν1 L(W′) ν2—which we can assume—we
can also conclude ν1 L(W) ν2, as the equivalence classes of W and W′ agree on the states
in Supp(ν1) and Supp(ν2).

Case 2 For the other direction of the logical equivalence, assume that the proposition cannot
establish Λ = ρ1

a1⇂Ǎ1====⇒c ν1, Ψ = ρ2
a2⇂Ǎ2====⇒c ν2 for some distributions ν1 and ν2 with

ν1 L(W′) ν2, butΛ
PZ=⇒ Λ′ andΨ PZ=⇒ Ψ̂ for some distributionsΛ′ and Ψ̂withΛ′ L(W) Ψ̂

holds.
This can only be the case if in Supp(Λ′)∪Supp(Ψ̂) there are states s that satisfy the second
condition of the definition of PZ=⇒, i.e. whenever s τ⇂P

===⇒c µ′, then δ(s)Wµ′, and at the
same time can still perform transitions in P . The second statement must hold, because
only with respect to states that satisfy this statement, W′ and W differ at all. Now assume
that sWt. Now if s and/or t are such a state, by the second condition of the definition
of PZ=⇒, whenever s τ⇂P

===⇒c µs, then δ(s) L(W) µs, and accordingly for t. As we work
in a mec-contracted MA, we can choose µs in such a way that none of the state in its
support can perform any further transition in P . For t, we can find a distribution µt with
according properties. By the transitivity of W, from µs L(W) sWt L(W) µt we can infer
that µs L(W) µt. As furthermore, all states in the supports of µs and µt cannot perform
any further transition from P , it must also hold that µs L(W′) µt. This means that even
though from Λ′ L(W) Ψ̂, we cannot immediately conclude Λ′ L(W′) Ψ̂, it is the case
that from both Λ′ and Ψ̂ we can continue with transitions from P in such a way that the
resulting distributions are related by both L(W) and L(W′). The latter clearly contradicts
our assumption. Thus, we arrived at a contradiction, and we have proven the claim.

FindSplit(W, P)

1: for all (s, a, ρ) ∈ T do
2: for all t ∈ [s]W do
3: if Sim(s,W, P, a, ρ, δ(t)) has no solution then
4: return ([s]W, a, ρ)
5: return (∅, τ, δ(⊥))

Figure 10.2.: Finding Splitters with core computation Sim(s,W, P, a, ρ, δ(t))

Algorithmic Context. The remaining parts of the algorithm are now easy to understand.
Following the same line as for instance [CS02], Quotient- with respect to pres makes use of a sub-

179

10. Decision Algorithms

procedure Refine, which actually creates a finer partitioning, as long as there is a partition contain-
ing two states that violate the bisimulation condition, which is checked for in procedure FindSplit.
More precisely, as in [CS02], procedure Refine divides partition C into two new partitions accord-
ing to the discriminating behaviour, which has been identified by FindSplit before. We do not
provide Refine explicitly. The two procedures FindSplit and Consistency mainly rely on Sim, but
are straightforward otherwise. As we have discussed, Sim can be decided in polynomial-time by
using Proposition 1 and some smart preprocessing.

Consistency(P,W)

1: for all (s, τ, ρ) ∈ P do
2: for all (s, a, ν) ∈ T do
3: if Sim(s,W, P, a, ν, ρ) has no solution then
4: return false
5: return true

Figure 10.3.: Consistency check, with core computation Sim(s,W, P, a, ν, ρ)

Complexity Summary. Most aspects of the algorithm have a polynomial asymptotic
worst-case runtime. Concerning the preprocessing steps, procedureUniformize is already known
to be polynomial from the corresponding algorithm for weak IMC bisimilarity (cf. Section 5.3).
It can be computed in linear time with respect to the number of states and transitions of the input
MA. ProcedureQuotient-under-mec can be efficiently computed according to [CH11]. The quoti-
enting core, procedure Quotient- with respect to pres is again polynomial. The main loop (Lines 2
to 8) is repeated at most as often as the partitioningW can be split, which is at most the number
of states minus one. The procedures Consistency, FindSplit and Refine, which are executed inside
this loop, have themselves polynomial complexity. Refine is known to be polynomial from the
corresponding algorithms for the PA and IMC bisimilarities. Both FindSplit and Consistency have
a nested loop with the computational check for predicate Sim at their inner body. The number
of executions of Sim can be bound by the number of transitions times the number of states for
FindSplit, and by the number of transitions to the square for Consistency. As we have already
argued, Sim itself can be checked in polynomial time. In total Quotient- with respect to pres thus
has a runtime polynomial in the number of states and transitions.
Unfortunately, an overall polynomial runtime is prevented by the computation of the set of

preserving transitions, P . As we have discussed in Section 10.1, we currently cannot iteratively
refine P . We therefore adopted a brute force approach, which considers all subsets from the
set of internal transitions, which is of size in O(2|−−→|). Once an (provably correct) algorithm
is found, where also the computation of the set P is iterative, the overall complexity of the
algorithm can turn polynomial.

10.3. Summary and Discussion
In this chapter, we have developed a decision algorithm for weak distribution bisimilarity, based
on an algorithm for weak state bisimilarity. This algorithm can be considered as the nucleus for

180

10.3. Summary and Discussion

extending the compositional specification and reasoning means in use for IMC to the more ex-
pressive MA setting. The presented algorithm uses worst-case exponential time and polynomial
space. In [SS14] an alternative approach is presented that is based on the computation of vanish-
ing states rather than preserving transitions. This algorithm shares the exponential worst-case
runtime with the approach presented here.
We were unable to show that the exponential bound is, in fact, hard. On the contrary, we

think that a polynomial algorithm exists. During our investigations, we failed at proving the
correctness of several polynomial-time aspirant algorithms, while we failed, at the same time, to
establish a superpolynomial lower bound. Finding a provably correct polynomial-time decision
algorithm for weak distribution bisimilarity remains an open challenge.

181

11. Minimal Normal Forms
Markov automata, and its submodels (see Section 7.3), form the backbone of successful model
checkers such as PRISM [KNP11], SCOOP [Guc+13], or IscasMC [Hah+14], enabling the anal-
ysis of randomized concurrent systems. Despite the remarkable versatility of this approach, its
power is limited by the state space explosion problem, and several approaches are being pursued
to alleviate that problem.
In related fields, a favourable strategy is to minimize the system – or components thereof –

to the quotient under bisimilarity. This can speed up the overall model analysis or turn a too
large problem into a tractable one [Che+96; HK00; Kat+07; Bar+11; HK10]. Both, strong and
weak bisimilarity are used in practice, with weaker relations leading to greater reduction. This
approach has not been explored in the context of Markov automata, and even in the probabilistic
automata setting support is fragmentary. Chapter 10 provides a base functionality, a decision al-
gorithm, but this is not a minimisation algorithm. This chapter therefore focuses on a seemingly
tiny problem: Does there exist a unique minimal representative of a given probabilistic automa-
ton with respect to weak bisimilarity? And can we compute it? In fact, this turns out to be an
intricate problem. We nevertheless arrive at a polynomial time algorithm, if the quotient of the
MA is assumed given.
Notably, minimality with respect to the number of states of a probabilistic automaton or

Markov automaton does not imply minimality with respect to the number of transitions. And
further minimization is possible with respect to transition fanouts, the latter referring to the
number of target states of a transition with non-zero probability. The minimality of an automa-
ton thus needs to be considered with respect to all the three characteristics: number of states, of
transitions and of transitions’ fanouts.
As a byproduct, our results provide tailored algorithms for strong probabilistic bisimilarity on

PA and strong and weak bisimilarity on labelled transition systems.
On general Markov automata and weak distribution bisimilarity, the situation is more com-

plex, though. As we will see, minimizing state space, number of transitions and fanout at the
same time is not possible. In the worst case, a minimization of the first two, may lead to a
polynomial growth of the latter. Still, this minimization can lead to drastically smaller automata
with respect to state space and number of transitions than the other notions of bisimilarity for
MA and PA. Therefore, analysis algorithm that are applied on minimized automata, may thus
strongly profit from the minimization depending on the concrete factor dominating their run-
time complexity.
In the following discussion, we will present minimization and decidability results for all mod-

els we have considered in this thesis, namely labelled transitions systems, probabilistic automata,
interactive Markov chains and Markov automata. As we have discussed in Section 7.3, all of these
models are subsumed by Markov automata. To avoid redundancies in the presentation, we will
technically use Markov automata as the only model in the following discussion. Whenever it is
necessary or instructive to restrict to any of the above mentioned specific submodels, however,
we will call the underlying MA an LTS, a PA or an IMC, respectively. We refer the reader to
Section 7.3 for a discussion which restrictions on general MA are necessary to obtain each of the

183

11. Minimal Normal Forms

different submodels.
The notions of bisimilarity we discuss will range over all the ones we have introduced in this

thesis, both strong and weak, with the exception of naïve weak probabilistic bisimilarity, which
we have shown to not be a particularly attractive relation. We let in the following the symbol ≍
range over any bisimilarity in

B = {∼LTS,∼PA,∼IMC,≈LTS,≈PA,≈IMC,∼MA,≈MA,∼∼∼δ}

unless stated differently.

Outline and Contributions. In Section 11.1, we define several preorder relations between MA
that make precise in which respect one automaton is structurally smaller than the other. We
consider various structural aspects, namely number of states, number of transitions and number
of states in the support of distributions. Reduction relations will be presented in Section 11.2
together with their time complexity, for the whole spectrum of different MA submodels and the
respective bisimilarities. In Section 11.3 normal forms will be defined, based on the reduction
relations introduced before. As we will see, for all bisimilarities, with the notable exception of
∼∼∼δ, the normal forms will be minimal with respect to all three characteristics. We conclude the
chapter in Section 11.4.

This chapter is an extended version of [Eis+13c].

11.1. Structural Preorders
The size of an automaton is usually expressed in terms of the size of the set of states |S| and the
size of the transition relations | | + | | of the automaton. The complexity of algorithms
working on probabilistic automata often depends exactly on those twometrics. A less commonly
considered metric is the number of target states of a transition reached with a probability greater
than zero. Especially in practical applications it is known that the first two of these metrics – the
number of states and transitions of an automaton – can be drastically reduced while preserving
its behaviour with respect to some notion of bisimilarity. In contrast, the last metric is usually
considered a constant, but in some cases it can be reduced as well. We will formalize these three
metrics by means of three preorder relations, thus allowing us to define the notion of minimal
automata up to bisimilarity.
To capture the last of the three metrics, we introduce the following definition.

Notation 11.1. D := ∪

Definition 11.1 (Transition Fanout). For a distribution µ ∈ Dist(S) we define ∥µ∥ =
|Supp(µ)|. For a set of transitions T we define ∥T∥ =

∑
(s,a,µ)∈T ∥µ∥. ◁

Definition 11.2 (Size Preorders). Let A = (S, s̄,Act, ,) and A′ =

(S′, s̄′,Act, ′, ′) be two MA, and let ≍ be any notion of bisimilarity. We write

• A ≺|S|
≍ A′ if A ≍ A′ and |S| ≤ |S′|,

• A ≺|D|

≍ A′ if A ≍ A′ and |D| ≤ |D′|, and

• A ≺∥D∥

≍ A′ if A ≍ A′ and ∥ ∥ ≤ ∥ ′∥.

184

11.2. Reductions

◁

We let from now on ⪯ range over ≺|S|
≍ , ≺|D|

≍ , and ≺∥D∥

≍ for ≍ ∈ B, unless mentioned otherwise. It is
easy to verify that these relations are preorders.

Definition 11.3 (⪯-Minimal Automata). We call a MA A ⪯-minimal, if whenever A′ ⪯ A
for some MA A′, then also A ⪯ A′. ◁

Lemma 11.1 (Existence of ⪯-Minimal Automata). For every MA A there exists a MA A′ such
that A′ ≍ A and A′ is ⪯-minimal.

The proof of this lemma is actually as trivial as we might expect. The base reason is that each
of the metrics maps on a well-founded set.

Proof. Every MA must consist of at least one state and at least 0 transitions. Therefore, for every
equivalence class up to ≍, its smallest representative (with respect to states) must consist of at
least one state of 0 transitions. Hence, every smallest representative must have the same number
of states, or transitions, respectively, as there cannot be a infinite sequence of automata with a
strictly decreasing number of states or transitions. As we do not demand that this representative
is unique, this suffices to conclude that at least one smallest representative must exist. This
suffices to establish the result for ≺|S|

≍ and ≺|D|

≍ . Note that 0 transitions implies also a fanout of size
0. Thus, the result immediately also follows for ≺∥D∥

≍ .

For each of the preorders considered, the proof of this lemma exploits that for every automa-
ton the respective metric is a finite natural number and at least 0.
As each relation ⪯ is a preorder, minimal automata are not necessarily unique. For example,

two ≺|S|
≍ -minimal automata A and A′ with A ≍ A′ may differ in the underlying set of states,

and/or transitions. This will be investigated in Section 11.3.

11.2. Reductions

(a)

τ

τ

ab a

c

c

≈PA

(b)

τ

b

a
a c

τ

T,R

(c)

τ

b

a c

Figure 11.1.: (a) Example PA, (b) Quotient reduction. (c) Rescaling of convex-transitive
reduction.

In this section, we introduce and formalize several methods to reduce the size of an automa-
ton. Except for the first method, quotient reduction, the methods are especially tailored towards
one or two distinct notions of bisimilarity. Two bisimilarities, weak IMC bisimilarity and weak
distribution bisimilarity, stand out from the others as they preserve stability. Therefore, the

185

11. Minimal Normal Forms

reductions that will be applied both for any of the two bisimilarities and any of the other bisim-
ilarities, need to be defined in two variants. One that does preserves stability, and one that does
not. The latter is necessary in order to achieve optimal reductions.
We summarize the properties of the reductions at the end of this section. We will further

discuss the time-complexity of the reductions.

11.2.1. Quotient Reduction
Definition 11.4 (Quotient Automaton). Let A = (S, s̄,Act, ,) be an arbitrary MA
and P(S) = {C | C ⊆ S }. Given an equivalence relation ≍ on S, we define the quotient
MA [A]≍ with respect to ≍ as the reachable fragment of the MA (S/≍, [µ0]≍,Act, []≍, []≍)
where

(i) the equivalence class mapping [·]≍ : S → P(S) is defined for every s ∈ S as [s]≍ = { s′ |
s′ ≍ s }. We lift it to distributions in the usual way by letting [µ]≍(C) =

∑
s∈C µ(s) for

all C ∈ S/≍.

(ii) S/≍ = { [s]≍ | s ∈ S },

(iii) []≍ = { ([s]≍, a, [µ]≍) | (s, a, µ) ∈ }

(iv) (c, λ, c′) ∈ []≍ if and only if (s, λ, s′) ∈ for fixed representatives s ∈ c and s′ ∈ c′

for all equivalence classes c and c′.

◁

For the last line, recall that is a multi-set. Thus, a transition may be contained more
then once if this is the case for the representatives. Also note that this definition relies on ≍
guaranteeing the usual conditions for Markovian transitions, .i.e. that they have the same total
exit rate and that the sum of the rates leading to an equivalence class of states is the same. This is
always the case for the equivalence relations we consider.

Definition 11.5 (Quotient Reduction). We write A ≍
; A′ if A′ = [A]≍. ◁

Figure 11.1(b) shows the result of applying Definition 11.5 to weak probabilistic bisimilarity
and the PA in Figure 11.1(a).

11.2.2. Convex Reduction
In essence, strong probabilistic bisimilarity ∼PA enhances standard bisimilarity by the idea that
the observable behaviour of a system is closed under convex combinations of transitions. Using
this fact, we minimize the number of transitions in a PA by replacing the transitions of each state
by a unique and minimal set of generating transitions.
Recall that by Lemma 2.5, every finitely generated convex set C has a unique minimal set of

generators Gen(C), such that C = CHull(Gen(C)). Thus, the lemma immediately guarantees
the optimality of our approach with respect to ≺|D|

∼PA
.

186

11.2. Reductions

1

3

2

3

3

6

Figure 11.2.: Three equivalent Interactive Markov Chains

Definition 11.6 (Convex Reduction). Let A be a MA. We write A C
; A′ if the automaton

A′ differs from A only by replacing the set by the set ′, where

(s, a, γ) ∈ ′ if and only if γ ∈ Gen(CHull({µ | (s, a, µ) ∈ })).

◁

11.2.3. Markovian Summation
In MA, and also IMC as a special case. Markovian transitions are labelled by real numbers, which
denote the rate with which a state change occurs. The higher the rate to transition from one
state s to another state t, the more likely it is that the state s will actually transition to t. At the
same time, the higher the rate, the faster the transition will likely occur. Therefore, it does not
only matter that a Markovian transition from s to t exists, but also the precise number. While
the label on interactive transition has the qualitative aspect to indicate which action occurs when
the transition is executed, the real number with which interactive transitions are labelled has a
quantitative meaning. Therefore, the more transition lead into one state, the higher is the total
transition rate into this state. Thus, must allow to differentiate how many transitions from
one state to another exist, even if all transitions are labelled by the same number. We therefore
defined it as a multi-relation. However, the same total transition rates from one state into another
are not uniquely represented by .

Example 11.1. In Figure 11.2, we see three times the same situation, in which s reaches t with
total rate 6. However, in the automaton on the left side, this is represented by three transitions
with rate 1, 2 and 3, while the middle automaton represents this as two transitions with rate 3.
The automaton on the right, finally, comes with only a single transition, labelled by 6. The sum
of the respective transitions is the same in each case, and thus semantically the three automata
are equivalent. ◁

Clearly, the representation on the right hand-side is the most compact. Arriving at this rep-
resentation from the other two is straightforward, as we only need to sum up the individual
transitions.

Definition 11.7 (Markovian Summation). Let A be a MA. We write A Σ
; A′ if the automa-

ton A′ differs from A only by replacing the set by the set ′, where

(s, λ, t) ∈ ′ if and only if λ =
∑

(s,λ′,t)

λ′ · (s, λ′, t).

187

11. Minimal Normal Forms

Note that inside the summation, we use the representation of multi-set as a mapping into
natural numbers, to determine how often a certain transition occurs in . ◁

11.2.4. Maximal-Progress Cut
For the purpose of constructing a minimal representation of systems with Markovian transitions,
the important difference of Markovian transitions compared to interactive transitions is
that whenever they originate from an unstable state s, i.e. s τ−−→, then the maximal progress as-
sumption dictates that these transition are actually semantically ineffective (cf. Chapter 5). Thus,
Markovian transitions originating from unstable states can always be cut off without changing
the behaviour of the system.

Definition 11.8 (Maximal-Progress Cutting). Let A = (S, s̄,Act, ,) be an IMC. We
write A M

; A′ if A′ = (S′, s̄′,Act, ′, ′) such that S = S′, s̄ = s̄′, = ′, and
(s, λ, t) ∈ ′ if and only if (s, λ, t) ∈ but not s τ . ◁

11.2.5. Convex-Transitive Reduction
Just like strong probabilistic bisimilarity, all weak probabilistic bisimilarity variants we consider
embody the idea that the observable behaviour of a system is closed under convex combinations.
Yet, this has to be interpreted for weak transitions. Finding a minimal set of generators turns out
to be harder in this setting, as the behaviour of each state s no longer only depends on (convex
combinations of) single step transitions leaving s. Instead, reachable distributions are now char-
acterized by arbitrarily complex transition trees, and the convex combinations of the result dis-
tributions. The number of different transition trees – and also their induced distributions – with
identical root is in general infinite. Yet, the convex set resulting from the convex combinations
of the infinite number of induced transitions is known to be finitely generated [CS02]. However,
in the worst case, the set of generators contains an exponential number of elements with respect
to the number of transitions. In Section 11.2.2, in the case of strong probabilistic bisimilarity,
we have used the set of generators to obtain a minimal representation of the automaton. With
weak transitions, naively adopting this approach will not lead to the desired minimization due
to the above mentioned possibly exponential blow-up. We therefore take inspiration from the
standard approach followed in transitive reduction of order relations. Intuitively, this is the op-
posite of the transitive closure operation, and is achieved by removing transitions that can be
reconstructed from other transitions by transitivity. We extend this idea by removing transitions
as long as they can be reconstructed from other transitions by transitivity and convex combina-
tions. In this spirit, we propose a simple algorithm that iteratively removes transitions, as long as
their target distribution can also be reached by a weak combination of other transitions. Similar
to transitive reduction on order relations, this reduction algorithm has polynomial complexity.
We will later show that this reduction leads to a minimal result with respect to ≺|D|

≈LTS
and ≺|D|

≈PA
,

if applied on a model that a priori has been subjected to a quotient reduction. However, as we
will see, for ∼∼∼, the case is more complicated, and this reduction alone is not effective to achieve
minimality.

188

11.2. Reductions

Definition 11.9 (Convex-Transition Reduction Preorder).
Given the MA A = (S, s̄,Act, ,) and A′ = (S′, s̄′,Act, ′, ′), we write A ⊆D A′ if
and only if = ′, S = S′, s̄ = s̄′, and ⊆ ′ and for each transition (s, a, µ) ∈ ′

there exists a weak combined transition s
a

==⇒c µ in A. ◁

Definition 11.10 (⊆D-Minimal Automata). We call a MA A ⊆D-minimal, if whenever
A′ ⊆D A for some MA A′, then also A ⊆D A′. ◁

Lemma 11.2 (Existence of⊆D-Minimal Automata). For every MA A there exists a MA A′ such
that A′ ≈PA A and A′ is ⊆D-minimal.

Note the use of ≈PA in this lemma, instead of ≈MA or ∼∼∼δ. In Section 8.7, we have established
that on LTS, ≈PA and ≈LTS coincide. Hence, obviously this result immediately carries over to
considerations for ≈LTS. As we will discuss in Section 11.3.2, even for our considerations with
respect to ∼∼∼δ, this lemma will suffice, as we will only apply the corresponding reduction after
another reduction that will guarantee that ∼∼∼δ and ≈PA also coincide on the reduced automaton.

Definition 11.11 (Convex Transitive Reduction). Let A be a MA. We write A T
; A′ if

A′ ⊆D A and A′ is ⊆D-minimal. ◁

Definition 11.12 (Stability-Preserving Convex Transitive Reduction). A T
;↓ A′′ if and

only if A T
; A′ and

• S′′ = S′

• s̄′′ = s̄′

• ′′ = ′

• ′′ = D′ ∪ T where (s, τ, δ(s)) ∈ T if and only if s↓ in A′, but s τ δ(s) in A, but not
s τ µ for any µ ̸= δ(s).

◁

As a special case, this reduction can be applied to non-probabilistic transition systems (LTS),
where it then, in essence, coincides with transitive reduction of directed graphs [AGU72]. For
this it is irrelevant that this reduction allows to combine transitions, as long as we work on a
quotient reduced system, because in that system bisimilar states have been collapsed into a single
representative. Thus, a Dirac transition to a single state can only be matched by a Dirac transition
to precisely that state. In the LTS setting, T

; preserves≈LTS, and in fact is a necessary step to arrive
at the transition minimal quotient. Notably, different to all other reduction relations we have
considered so far, this relation is non-deterministic, i.e., non-functional. This is the case already
in a non-probabilistic setting.

Example 11.2. Consider the automaton on top of Figure 11.3. Depending on which transition
we remove first, we obtain different minimal automata with respect to transitive reduction. The
lower two automata are both minimal reductions of this automata, but with different number of
transitions. This insight is by far not new. The automata are taken from [AGU72], with slight
modification. ◁

189

11. Minimal Normal Forms

1

1

1

1

1

1τ

τ τ

τ

τ

τ

1

1

1

1τ

τ τ

τ
τ

1τ

1

1τ

Figure 11.3.: Different Ways of Reducing a Complete Graph with Three Nodes

Furthermore, the simplistic reduction strategy of removing one transition after the other, as
long as the transitive closure of the resulting automaton is not changed, is not guaranteed to
yield an automaton, that is minimum with respect to the number of edges, already in the non-
probabilistic case.

Example 11.3. It is easy to see that the automaton on the left of Figure 11.3 cannot be further
reduced by removing any transition. However, as the automaton on the right shows, we can find
an alternative set of transitions which preserves reachability, but contains one transition less in
total. ◁

This is especially interesting, as we aim not only on minimal representations, but on unique
and minimum representations if they exist. As we will show in Section 11.3, this reduction
is, in fact, unique up to isomorphism1 (structural identity), if applied to a quotient reduced
automaton. The overall result will therefore be unique up to isomorphism.
This may be surprising at first sight, given the insights from Example 11.3. The explanation

why this phenomenon disappears in our case is that we do not apply reduction to arbitrary
automata, but to the quotient with respect to ≈LTS and ≈PA. This ensures that there are no states
on cycles of τ -transitions, as all such states are bisimilar, and thus cannot exist in the quotient.
Thus, in every cycle there must be at least on transition labelled by an observable transition.
Thus, in structures, in which two cycles are interweaved, as in Example 11.3, two such transition
must exist. For an example, say the transition from state 1 to 2 and the transition from state
2 to 3 are both labelled with a . Now recall that the kind of transitivity that we are interested

in always extends only to transitions labelled by τ , and at most one transition labelled by an
observable action. However, it does not include sequences of multiple observable transitions.
Thus, it is no longer the case that state 2 can reach itself by a weak, i.e. transitive, transition
labelled by a in the automaton on the right hand side, as this would imply using the transition
from 1 to 2 , which, is again labelled by a.
1see Definition 11.15 on page 194 for a formal definition

190

11.2. Reductions

11.2.6. Rescaling
A particular fine point of weak probabilistic bisimilarities [BH97] is related to internal transi-
tions that induce a nonzero chance of residing inside the class. If looking at the quotient, this
concerns any internal transition (s, τ, µ) that contains the source state s with nontrivial proba-
bility, i.e., 0 < µ(s) < 1. For those transitions, we can renormalize the probability of all other
states in the support set by 1− µ(s) without breaking weak bisimilarity. In other words, such µ
can be replaced by the rescaled distribution µ⊖s.

Definition 11.13 (Rescaling). Let A = (S, s̄,Act, ,) be a MA. We write A L
; A′ if

A′ = (S′, s̄′,Act, ′, ′) such that

1. S = S′, s̄ = s̄′ and = ′, but

2. for each (s, a, µ′) ∈ ′, either a ̸= τ and (s, a, µ′) ∈ , or a = τ and there exists
(s, τ, µ) ∈ such that µ(s) < 1 and µ′ = µ⊖s.

◁

As it will turn out, this reduction is the final step to obtain minimality with respect to ≺∥D∥

≈PA

if applied a posteriori to the other two reductions, ≈PA
; and T

;. Figure 11.1(c) depicts the result
of applying this sequence of reductions on the MA in Figure 11.1(a). Figure 11.1(b) shows the
automaton after it has been subjected to quotient reduction only.

11.2.7. Redundant State Elimination
It is folklore knowledge, that the quotient of an automaton with respect to a bisimulation equiv-
alence is minimum with respect to the number of states. We also make repeated use of this fact
in this chapter. However, this all is only true as long as the equivalence relation is defined over
states, and not over distributions. The quotient with respect to ∼∼∼δ, the state equivalence within
weak distribution bisimilarity, does not satisfy this property in general: in the quotient, states
may exist that are still removable without affecting the behaviour of the automaton.

Example 11.4. The states of the automaton on the right of Figure 11.4 are all distinguishable
with respect to ∼∼∼δ (assuming all non-round states of the same shape to represent a single state,
respectively). For instance, states t and u can reach and with different probabilities. While
the total probability of reaching for t is 1

3 , for u it is 2
3 . The fact that all states are distin-

guishable with respect to ∼∼∼δ implies that the automaton is already isomorphic to its quotient
automaton. However, states t and u are still removable without changing the overall behaviour
of the automaton: the automaton on the left is equivalent to the automaton on the right (or
more precisely, its initial states are) with respect to ∼∼∼δ, but pruned of states t und u.

◁

The reason behind this phenomenon is that ∼∼∼ has been designed to fuse distributions along
deterministic sequences of internal transitions, as long as their overall probabilistic behaviour is
not changed, even though the intermediate states along the fused sequence may be behaviourally
distinct. In Section 8.4, we have called these intermediate states redundant, as their probabilis-
tic behaviour is fully preserved by one of their internal successor distributions (not states!), and

191

11. Minimal Normal Forms

1
3

1
61

2

a

τ

τ

1
2

1
2

1
3

2
3

a
1
3 1

3

1
3

s

t

u

s′

Figure 11.4.: Two Equivalent Automata with Different State Sets

they are thus behaviourally redundant. Therefore, redundant states can always be removed with-
out affecting behaviour, as long as their incoming transitions are forwarded accordingly. Since
for each distribution, there is potentially more than one behaviourally equivalent successor dis-
tribution that is not redundant, in our reduction, we need to make some choice among them.
Therefore, the reduction relation we define will be non-deterministic, depending on which of
these distributions we choose. For a given possibly redundant distribution γ, each distribution
µ satisfying

γ
PZ=⇒ µ

is a suitable candidate, when P denotes the set of preserving transitions with respect to ∼∼∼δ.

Definition 11.14 (Redundant State Reduction). Let A = (S, s̄,Act, ,) be a weakly
image-finite MA. Let P be the set of preserving transitions with respect to ∼∼∼δ. Whenever we
write A R

; A′ then A′ = (S′, s̄′,Act, ′, ′) is some Markov automaton satisfying

1. S′ = { s ∈ S | s is not redundant }

2. s̄′ =

{
s̄ if s̄ is not redundant

t′ otherwise, for some fresh t′

3. and are some sets of minimal size containing

• a transition s̄′ τ µ for some µ satisfying µ0
PZ=⇒ µ, if and only if s̄′ = t′, i.e. s̄ is

redundant.

• for every weak hypertransition s
a

==⇒ µ′ of A, a transition s a ′µ for some µ

satisfying µ′ PZ=⇒ µ.

• for every transition s
χ(λ)−−−→ µ′ of A, a transition s

χ(λ)−−−→
′
µ for some µ satisfying

µ′ PZ=⇒ µ.

◁

192

11.2. Reductions

Note that in the last line of this definition we use the special notation
χ(λ)−−−→ to implicitly

define the transition relation . As we have discussed in Chapter 5, it is actually not possible
to uniquely derive from this notation. Therefore, we have given a standard interpretation
in Chapter 5 (see Remark 5.1). While this structurally may change the branching structure of

in a way that is not obvious from the intention of this reduction, – it may for example
replace two transitions s λ t by one transition s 2λ t – it has no semantic consequences for
our purpose of minimizing the automaton while preserving ∼∼∼. In fact, in the worst case we
anticipate the reductions that will be done by Σ

; in a later step during the minimization process
anyway.
The fact that this reduction relation is non-deterministic in general is not relevant in our

intended practical application, where we only apply this reduction to automata that are minimal
with respect to ∼∼∼δ already.

Lemma 11.3. If A = (S, s̄,Act, ,) is weakly image-finite, and a quotient automaton
with respect to ∼∼∼δ, i.e. A

∼∼∼δ
; A, then the redundant state reduction is deterministic, i.e. A R

; A1

and A R
; A2 implies A1 = A2.

Proof. Follows immediately from Lemma D.16, and the fact that ∼∼∼s = ∼∼∼δ (Theorem 8.14).

This lemma shows that the reduction becomes deterministic in the practically relevant case.
Surprisingly, however, the reduction may increase the number of transitions, as a transition is
inserted in the reduction whenever a weak transition has existed in the input automaton. For-
tunately, this increase can be undone by an subsequent application of C

;. When we discuss the
algorithmic complexity of the reduction, we will see that no increase in the number of transitions
is necessary with a clever implementation.

11.2.8. Properties of Reductions
We summarize preservation and computability properties of the reduction relations.

Lemma 11.4 (Preservation of Bisimilarities).

1. A ≍
; A′ implies A ≍ A′ for each A,A′ ∈ MA and ≍ ∈ B.

2. A C
; A′ implies A ≍ A′ for each A,A′ ∈ MA and ≍ ∈ {∼PA,∼MA}.

3. A T
; A′ implies A ≍ A′ for each A,A′ and ≍ ∈ {≈LTS,≈PA}.

4. A T
;↓ A′ implies A ≍ A′ for each A,A′ and ≍ ∈ {≈IMC,≈MA,∼∼∼δ}.

5. A L
; A′ implies A ≍ A′ for each A,A′ ∈ MA and ≍ ∈ {≈PA,≈MA,∼∼∼δ}.

6. A R
; A′ implies A ∼∼∼δ A′ for weakly image-finite MA.

7. A M
; A′ implies A ≍ A′ for each A,A′ ∈ MA and ≍ ∈ {∼IMC,≈IMC,≈MA,∼∼∼δ}.

193

11. Minimal Normal Forms

8. A Σ
; A′ implies A ≍ A′ for each A,A′ ∈ MA and ≍ ∈ {∼IMC,≈IMC,≈MA,∼∼∼δ}.

The proof of this lemma can be found in Appendix F.1.

Lemma 11.5 (Computability of Reductions). For every finite MA A, a MA A′ withA ; A′ can
be computed in

• polynomial time if ; =
≍
; and ≍ ∈ {∼LTS,≈LTS,∼PA,≈PA,∼MA,≈MA}

• polynomial time if ; ∈ { C
;,

T
;,

T
;↓,

L
;,

M
;,

Σ
;},

• exponential time if ; =
∼∼∼δ
; ◦ R

;.

The proof of this lemma can be found in Appendix F.2.

In the last item, we again make use of the fact that ∼∼∼δ and ∼∼∼s coincide for finite automata. Both
the reduction

∼∼∼δ
; and R

; have exponential complexity. However, computing R
; comes only with

polynomial cost once
∼∼∼δ
; has been computed, as identifying redundant states is a side-product of

the decision algorithm, Algorithm 10.1, which is already used to compute the quotient. As we
will use these reductions only in this subsequent manner, we do not consider their complexity
in isolation.

The results suggest that constructing a minimal representative of an equivalence class of au-
tomata with respect to all LTS, IMC and PA bisimilarities is possible in polynomial time. Only
weak distribution bisimilarity has resisted a polynomial time treatment so far. In the following
section, we will discuss these insights in greater detail.

11.3. Normal Forms
We are now concerned with minimality and uniqueness properties induced by the reduction oper-
ations with respect to the metrics discussed. To discuss uniqueness, it is convenient to introduce
normal forms as means to canonically represent automata in such a way that two automata are
equivalent if and only if they have identical normal forms. Or better, if and only if the normal
forms are identical up to isomorphism (structural identity).
Remark 11.1. Throughout this section, we assume all MA to be finite.

Definition 11.15 (Isomorphism). Two MA A = (S, s̄,Act, ,) and A′ =

(S′, s̄′,Act, ′, ′) are called isomorphic, denoted by A =iso A′, if their uniform representa-
tions satisfy Actχ = Actχ′ and if there is a bijective mapping b : S → S′ such that b(s̄) = s̄′ and
(s, a, µ) ∈ if and only if (b(s), a, b(µ)) ∈ ′. ◁

Definition 11.16 (Normal Form). Given an equivalence relation ≍ over MA, we call
NF : MA → MA a normal form, if it satisfies for every MA A

• NF(A) ≍ A, and

• for every MA A′ it holds that A ≍ A′ if and only if NF(A) =iso NF(A′).

◁

194

11.3. Normal Forms

It is natural to strive for normal forms that are distinguished in a certain sense. Not sur-
prisingly, we will strive for normal forms that are distinguished as being the smallest possible
representation of the behaviour they represent.
It will turn out that for LTS, PA, and IMC bisimilarities we can find a normal form that is opti-

mal with respect to all three metrics, i.e. number of states, number of transitions and transition
fanout. In contrast, for weak distribution bisimilarity, a similar result is impossible. Due to this
fundamental difference, we will work out the results for MA and the other models separately.

11.3.1. LTS, PA, IMC Bisimilarities
In the following, when we do not explicitly restrict the equivalences over which the symbol ≍
ranges, we assume the set {∼LTS,≈LTS,∼PA,≈PA,∼IMC,≈IMC}. We call a total and functional subset
of a binary relation r ⊆ MA × MA a function in r. Note that every function in r is a mapping
MA → MA.

Definition 11.17 (Normal Form Instances).

• Let NF∼LTS =
∼LTS
; .

• Let NF≈LTS be an arbitrary function in ≈LTS
; ◦ T

;.

• Let NF∼PA =
∼PA
; ◦ C

;.

• Let NF≈PA be an arbitrary function in ≈PA
; ◦ T

; ◦ L
;,

• Let NF∼IMC =
∼IMC
; ◦ M

; ◦ Σ
;.

• Let NF≈IMC be an arbitrary function in ≈IMC
; ◦ T

;↓ ◦ L
; ◦ M

; ◦ Σ
;.

◁

The next theorem is the main result of this section. It states that the automata we obtain by
the reductions are normal forms and furthermore, that they are optimally reduced with respect
to the three metrics. We want to emphasize that they are not only minimal with respect to these
metrics, but that even no automaton exists that is smaller with respect to any of the three metrics.
Thus, our reductions are optimal in all respects.

Theorem 11.1. Let ≍ ∈ B.

1. Minimality: NF≍(A) is ≺|S|
≍ , ≺|D|

≍ , and ≺∥D∥

≍ -minimal for every A ∈ MA.

2. Uniqueness of minimals: If A and A′ are ≺|S|
≍ , ≺|D|

≍ , and ≺∥D∥

≍ -minimal automata, and A ≍ A′,
then also A =iso A′,

3. Normal forms: NF≍ is uniquely defined up to =iso , and is a normal form.

It is straightforward to verify that all normal forms NF≍ above are indeed mappings. Further-
more, by Lemma 11.4, it follows that in each of the cases NF≍(A) ≍ A.
The remainder of this section is devoted to the proof of Theorem 11.1. We begin with a lemma

that we use often.

195

11. Minimal Normal Forms

Lemma 11.6 (Preservation of Minimality). Let ⪯ ∈ {≺|S|
≍ ,≺|D|

≍ ,≺∥D∥

≍ ,⊆D}. If A =iso A′ and A is
⪯-minimal, then A′ is ⪯-minimal, too.

For each normal form, the proof will refer to the following crucial, but already folklore insight,
that the quotient automaton is minimal with respect to the number of states. Note that this is
not true for ∼∼∼δ, which we will consider in the next section.

Lemma 11.7 (State Minimality of Quotient Automata). For every A ∈ MA, the automaton A′

with A ≍
; A′ is ≺|S|

≍ -minimal.

Next, we show that ≺|S|
≍ and ≺|D|

≍ -minimality can be achieved at the same time in one automaton.
For bisimilarities on LTS, this is enough to conclude also ≺∥D∥

≍ -minimality, as this always coincides
with ≺|D|

≍ -minimality here (as all transition have the form (s, a, δ(t))).

Lemma 11.8 (Compatibility of ≺|S|
≍ and ≺|D|

≍ -minimality). For every MA A there exists a MA A′

with A′ ≍ A, which is ≺|S|
≍ and ≺|D|

≍ -minimal.

Proof. By Lemma 11.1, there exists a MA A that is ≺|D|

≍ -minimal. Consider [A]≍. From Def-
inition 11.4 it is clear that for every transition of [A]≍ there exists a transition in A. Thus,
[A]≍ ≺|D|

≍ A, and hence, [A]≍ must also be ≺|D|

≍ -minimal. Furthermore, by Lemma 11.7, [A]≍ must
also be ≺|S|

≍ -minimal, and finally with Lemma 11.4 A ≍ A′ follows.

Strong Bisimilarities
Lemma 11.9 (Canonicity of Normal Form). Let ≍ ∈ {∼LTS,∼PA,∼IMC}, A ∈ MA, and A′ =

NF≍(A). For every ≺|S|
≍ and ≺|D|

≍ -minimal MA Am with Am ≍ A, also Am =iso A′.

Proof. We skip the proof for ≍ = ∼LTS and proceed with the more complicated case of ≍ = ∼PA.
Let Am be a ≺|S|

≍ and ≺|D|

≍ -minimal automaton. Recall that NF∼PA =
∼PA
; ◦ C

;. As applying ∼PA
; to A

leads to a≺|S|
∼PA

-minimal automaton according to Lemma 11.7, and C
; obviously does not alter the

number of states, NF∼PA(A) = A′ is ≺|S|
∼PA

-minimal, and thus |Sm| = |S′|, as Am is ≺|S|
∼PA

-minimal
by assumption.
Since A′ ∼PA A and A ∼PA Am, we have A′ ∼PA Am. We will now argue that b = ∼PA ∩

(S′ × Sm) is in fact a suitable mapping to establish A′ =iso Am. We start by showing that b
is functional, injective and surjective. Assume b is not injective. Then there must exist states
s1, s2 ∈ S′ and t ∈ Sm, such that b(s1) = t and b(s2) = t. But this implies s1 ∼PA t and
s2 ∼PA t. By transitivity, this implies s1 ∼PA s2, contradicting Lemma 11.7. Functionality can
be shown similarly. We skip the details. If b is not surjective, this would immediately contradict
the assumption that Am is ≺|S|

∼PA
-minimal, since then any state t ∈ Am for which no s ∈ S′ exists,

such that b(s) = t could be removed without violating A′ ∼PA Am.
Most of the other conditions that have to be checked to show that b is an isomorphism are

straightforward, except for the condition

(s, a, µ) ∈ if and only if (b(s), a, b(µ)) ∈ ′. (⋆)

The set of combined transitions any state s of A′ can perform, must equal the set of combined
transitions that b(s) can do as s ∼PA b(s). By reduction C

;, the set of transitions leaving s

196

11.3. Normal Forms

must be minimal, according to Lemma 2.5, and must also be unique. As the transitions of
b(s) are minimal by assumption, the uniqueness of the minimal set of generators guarantees
Condition (⋆).

For ∼LTS, recall that NF∼IMC =
∼IMC
; ◦ M

; ◦ Σ
;. Note that the reductions M

; and Σ
; do not

alter the number of states. Hence, with the same arguments as for ∼PA we can establish that
b = ∼IMC ∩ (S′ × Sm) is a suitable mapping to establish A′ =iso Am, except for the conditions
that

(s, a, µ) ∈ if and only if (b(s), a, b(µ)) ∈ ′ and

(s, λ, t) ∈ if and only if (b(s), λ, b(µ)) ∈ ′.

The definition of ∼IMC guarantees the coincidence of transitions from analogously to the case
of ∼PA. Concerning , we first note that from the definition of bisimulation, we can only infer
that the

1. the total exit rate of a state agrees,

2. that the state agree with respect to stability, and

3. that the reached distribution agree.

This is expressed by the condition s
χ(r)−−−→ µ in the bisimulation. However, this notation does

neither guarantee that no transition relation exist at unstable states, nor that the state-wise delay
transitions coincide. For Am, it is guaranteed that no such transition exists at unstable state, and
furthermore, that for each state t ∈ Supp(µ), there is exactly one transition in ′ with (s, µ(s)·
r, t). For NF∼IMC this is, however, guaranteed by the two reductions M

; and Σ
;, respectively.

For ∼LTS, ∼PA and ∼IMC Theorem 11.1 now follows almost immediately by Lemma 11.8,
Lemma 11.9 and Lemma 11.4, with the following respective further observations: for ∼LTS,
we, in addition, need the observation that A is ≺∥D∥

≍ -minimal if and only if it is ≺|D|

≍ -minimal, as
we remarked before Lemma 11.8. The same holds for ∼IMC, when we restrict our attention to
transitions from . For transitions in , reduction Σ

; guarantees a minimal fanout. For
∼PA, the same observation holds, but follows from the uniqueness of the minimal set of genera-
tors (Lemma 2.5).

Weak Bisimilarities
The following two lemmas are the weak counterparts to Lemma 11.9.

Lemma 11.10. Let A be a LTS and A′ = NF≈LTS(A). Let Am be a ≺|S|
≈LTS

and ≺|D|

≈LTS
-minimal LTS

satisfying Am ≈LTS A. Then A′ =iso Am.

We skip the proof of this lemma, as it is similar to, but simpler than the proof of the according
lemma for probabilistic automata, Lemma 11.11. Theorem 11.1 can then be proven in complete
analogy to the proof for ∼LTS.
We now turn to the proof of Theorem 11.1 and the necessary lemmas for PA and weak prob-

abilistic bisimilarity. It is the most involved case in this respect. It is instructive to note that in

197

11. Minimal Normal Forms

the following lemma, we need to apply the reduction L
; to arrive at an uniqueness result. Only

applying ≈PA
; followed by T

; will still lead to ≺|S|
≍ and ≺|D|

≍ -minimal automata, but they will not
agree up to =iso , in full generality. Relative to Lemma 11.10 and 11.9, the following lemma is
slightly more general.

Lemma 11.11. Let A be a ≺|S|
≈PA

-minimal MA, A T
; ◦ L

; A′, and A′
m be a ≺|S|

≈PA
and ≺|D|

≈PA
-

minimal MA satisfying A′
m ≈PA A. Now let A′

m
L
; Am for some Am. Then A′ =iso Am.

The proof of this lemma can be found in Appendix F.3.

Corollary 11.1. Let A be a ≺|S|
≈PA

-minimal MA.
A is ⊆D-minimal if and only if it is ≺|D|

≈PA
-minimal.

Proof. Let A be ≺|S|
≈PA

-minimal. For the first direction of the if and only if, note first that by

Lemma 11.8, a MA A′
m must exist, which is minimal with respect to ≺|D|

≈PA
and ≺|S|

≈PA
. Let A′

m
L
;

Am. Clearly, Am must be ≺|S|
≈PA

and ≺|D|

≈PA
-minimal, too. As by assumption, A is ⊆D-minimal,

A T
; A. Let A′ satisfy A L

; A′. We combine the two reductions and see that A T
; ◦ L

; A′.
This allows us to apply Lemma 11.11 to obtain A′ =iso Am. As A′ =iso Am implies that both
have the same number of transitions, also A′ must be ≺|D|

≈PA
-minimal. If we can now show that

also A and A′ have the same number of transitions, we are done. Assume the contrary to arrive
at a contradiction. As A L

; A′, this is only possible if there are two transitions (s, τ, µ) and
(s, τ, γ) in A such that µ⊖s = γ⊖s. But then, one of them could have been removed without
changing the combined weak transitions s can perform, contradicting the assumption that A is
⊆D-minimal.
For the other direction, assume A is in addition ≺|D|

≈PA
-minimal. As removing transitions from

A would lead to an automaton that is smaller with respect to ≺|D|

≈PA
, it must be the case that any

such automaton A′ does not satisfy A′ ≈PA A, otherwise contradicting the assumption that A
was ≺|D|

≈PA
-minimal. But then it immediately follows that A is also ⊆D-minimal.

Lemma 11.12. If A is ≺∥D∥

≈PA
-minimal, then there also exists A′, such that A ≈PA A′ and A′ is

≺|S|
≈PA

, ≺|D|

≈PA
, and ≺∥D∥

≈PA
-minimal.

Proof. We first show that for every ≺∥D∥

≈PA
-minimal automaton A there is one that is also ≺|S|

≈PA
-

minimal. As candidate, we take the unique automaton A′ such that A ≈PA
; A′. From Defini-

tion 11.4 and 11.5 it is clear that the transitions of A′ can be surjectively mapped to transitions
of A, such that every transition of A′ is smaller or equal with respect to ∥ · ∥ than its image
transition in A. Thus, minimality with respect to ≺∥D∥

≈PA
is preserved.

Now we show that any A′′, which satisfies A′ T
; A′′ is in addition ≺|D|

≈PA
-minimal. Clearly,

the numbers of states of A′ and A′′ are the same. Furthermore, the transitions of A′′ form a
subset of the transitions of A′. Thus, as A′ is ≺∥D∥

≈PA
-minimal, also A′′ must be ≺∥D∥

≈PA
-minimal. By

Definition 11.11, A′′ is minimal with respect to ⊆D, and thus, by Corollary 11.1, also with
respect to ≺|D|

≈PA
.

198

11.3. Normal Forms

Corollary 11.2. For every MA A there exists a MA A′ with A′ ≈PA A, which is ≺|S|
≈PA

, ≺|D|

≈PA
and

≺∥D∥

≈PA
-minimal.

Proof. Follows immediately from Lemma 11.1 and Lemma 11.12.

Lemma 11.13 (Canonicity of Normal Form). LetA′ = NF≈PA(A). Let Am be a ≺|S|
≈PA

, ≺|D|

≈PA
, and

≺∥D∥

≈PA
-minimal automaton satisfying Am ≈PA A. Then A′ =iso Am.

Proof. By Corollary 11.2 we know that Am exists such that Am ≈PA A and Am is ≺|S|
≈PA

, ≺|D|

≈PA

and ≺∥D∥

≈PA
-minimal. Furthermore, as Am is ≺∥D∥

≈PA
-minimal, it must hold Am

L
; Am. Finally, as

A′ = NF≈PA(A), there must exist A′′ such that A ≈PA
; A′′ and A′′ T

; ◦ L
; A′, and by the

Definition of ≈PA
; and Lemma 11.7, A′′ is ≺|S|

≈PA
-minimal. Thus, we may apply Lemma 11.11 to

obtain our result.

Theorem 11.1 now follows for ≈PA with Corollary 11.2 and Lemma 11.13.

We now finally turn to the respective proof of this lemma for IMC and weak IMC bisimilarity.
IMC and LTS only differ in the presence of timed transitions and preservation of stability in
the bisimilarity. Thus, most results follow completely analogously. We will state the crucial
lemma for this proof, which corresponds to Lemma 11.10 and 11.11 for LTS and PA, respectively.
Similar as in the PA case, uniqueness of the normal form does not immediately follow by the two
initial reduction steps, quotient reduction and transitive reduction. Instead, further reductions
are needed. For PA, this reduction was a kind of normalization of the distributions internal
transitions τ lead to. The corresponding reduction is L

;. In IMC, immediate transitions do
not lead to distributions, but to single states, exactly as for LTS. Therefore, no further reduction
is needed here. However, IMC are in addition equipped with timed transitions . For them,
two more reduction steps are necessary to arrive at a minimal and unique system: M

; ◦ Σ
;.

Lemma 11.14. Let A be an IMC and A′ = NF≈IMC(A). Let A′
m be a ≺|S|

≈IMC
and ≺|D|

≈IMC
-minimal

IMC satisfying Am ≈IMC A. Let A′
m

M
; ◦ Σ

; Am. Then A′ =iso Am.

Proof Sketch. Recall that NF≈IMC can by any function in ≈IMC
; ◦ T

;↓ ◦ L
; ◦ M

; ◦ Σ
;. Similarly

to the proof of Lemma 11.11, we can establish that the first two reductions ≈IMC
; ◦ T

;↓ lead to
a state minimal system. The only, but important difference is that we must use T

;↓ instead of
T
; in order to preserve stability in the correct way. Finally, reductions Σ

; and M
; ensure that

the transitions in becomes minimal in number and structurally unique with respect to =iso .
The arguments here are the same as for ∼IMC.

11.3.2. MA Bisimilarities
Both strong bisimilarity and naïve weak probabilistic bisimilarity are straightforward combina-
tions of the respective bisimilarities for PA and IMC. Their normal forms can be obtained by
simply joining the reductions that lead to normal forms for the respective bisimilarities of PA
and IMC. While formally, we cannot immediately conclude this from the previous result, the

199

11. Minimal Normal Forms

proofs do not need any new ideas. We therefore skip the details here and only state a summariz-
ing theorem.

Definition 11.18 (Normal Form Instances for MA).

Let NF∼MA =
∼MA
; ◦ M

; ◦ Σ
; ◦ C

; .

and

Let NF≈MA =
≈MA
; ◦ T

;↓ ◦ L
; ◦ M

; ◦ Σ
; .

◁

Theorem 11.2. Let ≍∈ {∼MA,≈MA}.

1. Minimality: NF≍(A) is ≺|S|
≍ , ≺|D|

≍ , and ≺∥D∥

≍ -minimal for every A ∈ MA.

2. Uniqueness of minimals: If A and A′ are ≺|S|
≍ , ≺|D|

≍ , and ≺∥D∥

≍ -minimal automata, and A ≍ A′,
then also A =iso A′,

3. Normal forms: NF≍ is uniquely defined up to =iso , and is a normal form.

Weak Distribution Bisimilarity As weak distribution bisimilarity is the weakest bisim-
ilarity of all we have considered, it clearly bears the potential to minimize a Markov automaton,
or a probabilistic automaton more than the other bisimilarities when we focus on ≺|S|

≍ and ≺|D|

≍ . As
we will see, minimizing with respect to these two metrics can come at the cost of an increase in
≺∥D∥

≍ . Conversely, introducing additional states and transitions can decrease the overall fanout of
the automaton.

1 2 3 4 5 6 87

0

AB

Figure 11.5.: Adding States and Transitions Reduces Fanout

Example 11.5. By weak distribution bisimilarity one may remove state 0 in the left automaton
in Figure 11.5, because it is behaviourally equivalent to its unique successor distribution. On the
right-hand side, we see the result of this reduction. Most notably, while we have reduced the
number states by 1 and the number of transitions by 1, we have increased the total fanout by 4!
While this increase seems not too high, we see its full range by considering instead a parametric
example where the number of states in the support of the outgoing transition of state 0 is n

200

11.3. Normal Forms

(currently n = 6). We then obtain an increase of n − 2, while still the decrease in both the
number of states and transitions stays 1. We see that in the worst case, we have an increase that
is linear in the number of states versus a constant decrease.
The example also illustrates that finding an optimally reduced automaton with respect to ≺∥D∥

≍
is a non-trivial task. Note that in the automaton on the right, all probabilities of the outgoing
transitions of state B and A are different. Still, the probabilities for states 1 to 6 only differ
in a constant factor. If we do not intend to reduce the number of the total fanout, we need
to identify within all transitions subdistributions that are identical up to some constant factor,
and thus in some sense shared between several transitions. Then, we can replace them by a new
state, like state 0 in our example, that basically represents the shared subdistribution. However,
identifying the optimal shared subdistributions seems a computational complex task, as taking
the largest shared subdistribution (in terms of states its support contains) may be suboptimal, as
well as taking a shared subdistribution that is shared by the largest number of transitions. ◁

Finding an automaton that is optimal with respect to ≺∥D∥

≍ seems highly non-trivial. We leave
the problem to future research.

In the following, we will present the necessary steps to minimize an automaton with respect
to ≺|S|

≍ and ≺|D|

≍ . In addition, we will show that this automaton can be further transformed into a
normal form by the reduction we are already familiar with. However, this normal form will not
be minimal with respect to all three metrics, and thus is not canonical in the way the normal
forms for the other bisimilarities are.
The first step is to show that two Markov automata are weak distribution bisimilar if and only

if they are naïve weak probabilistic bisimilar after reduction with respect to
∼∼∼δ
; and R

;.

Theorem 11.3. Let A and A′ be two MA, and let A
∼∼∼δ
; ◦ R

; Â and A′
∼∼∼δ
; ◦ R

; Â′. Then

A ∼∼∼δ A′ if and only if Â ≈MA Â′

Proof. It suffices to proof that

Â ∼∼∼δ Â′ if and only if Â ≈MA Â′,

as by Lemma 11.4 A ∼∼∼δ Â and A′ ∼∼∼δ Â′ and transitivity of ∼∼∼δ.
We first derive an important property. Recall from Definition 11.14 and 8.15 that if A R

; Â,
then all states s in Â satisfy: whenever s PZ=⇒ µ then δ(s) L(∼∼∼δ) µ. But this implies that for
every state t ∈ Supp(µ) also s ∼∼∼δ t must hold. Now we recall that the automata Â and Â′ that
we consider are also reduced with respect to

∼∼∼δ
;. But this immediately implies that s ∼∼∼δ t implies

in fact s = t. Thus, whenever s τ−−→ µ then either µ = δ(s) or δ(s) ̸∼∼∼δ µ. In other words,
whenever s ==⇒c µ then either µ = δ(s) or not s τ⇂P

===⇒c µ. Let us denote this fact by (⋆).
For the proof of our claim, we use the semi-weak distribution bisimulation characterization

of naïve weak probabilistic bisimulation, Definition 8.11, which is validated by Theorem 8.12.
With this characterization is becomes clear that semi-weak distribution bisimulation and naïve
weak probabilistic bisimulation coincide in the first and the third condition. Only the second
condition, the splitting condition, differs. We recall that for semi-weak distribution bisimulation
it states that whenever µ R γ then for every p ∈ [0, 1] and µ1, µ2 ∈ Dist(S) such that µ = µ1⊕p

µ2 there must exist γ1, γ2 ∈ Dist(S) such that γ = γ1 ⊕p γ2 and µi R γi for i ∈ {1, 2}. In turn,

201

11. Minimal Normal Forms

for weak distribution bisimulation, it states that then for every p ∈ [0, 1] and µ1, µ2 ∈ Dist(S)
such that µ = µ1⊕p µ2 there must exist γ1, γ2 ∈ Dist(S) such that γ ==⇒c γ1⊕p γ2 and µi R γi
for i ∈ {1, 2}. The precise difference lies in the way γ is allowed to answer the splitting:

γ = γ1 ⊕p γ2 versus γ ==⇒c γ1 ⊕p γ2.

It is obvious that the left-hand side implies the right hand-side. We now treat the other direction.
We will now argue that in our current context, both conditions must coincide. As µ =

µ1 ⊕p µ2 and thus also trivially µ ∼∼∼δ µ1 ⊕p µ2, by Remark 8.6, γ1 ⊕p γ2 ∼∼∼ µ1 ⊕p µ2
∼∼∼ µ must

hold if µ ∼∼∼ γ. But then, by transitivity of ∼∼∼, it follows that γ ∼∼∼ γ1 ⊕p γ2. By (⋆) and Lemma 8.2,
we can conclude that actually γ1 ⊕p γ2 must equal γ. As all automata we currently consider
are quotient automata with respect to ∼∼∼δ, they are clearly also mec-contracted. Thus, from
γ ==⇒c γ1⊕p γ2 and γ ∼∼∼ γ1⊕p γ2 and Lemma D.15, we can conclude that also γ

τ⇂P
===⇒c γ1⊕p γ2.

However, this is an immediate contradiction to (⋆), except if γ = γ1⊕p γ2. But then this implies
that we have found a suitable splitting of γ directly. And this is all that is needed to satisfy the
left-hand side above.

The interesting insight of this theorem is that the difference between weak distribution bisim-
ilarity and naïve weak probabilistic bisimilarity lies mainly in the ability of the former to elim-
inate more states, namely those, which we called redundant states. Once redundant states are
removed, every reduction that is valid with respect to naïve weak probabilistic bisimilarity is
also valid with respect to weak distribution bisimilarity. This theorem hence allows us to reduce
the problem of minimizing an MA with respect to weak distribution bisimilarity to the problem
of minimizing it with respect to naïve weak probabilistic bisimilarity.
We thus define the reduction for weak distribution bisimilarity as

NF∼∼∼δ
:=

∼∼∼δ
; ◦ R

; ◦NF≈MA .

We could actually omit the first reduction of NF≈MA , i.e.
≈MA
; , as this will not change the state

space at all, since ≈MA ⊆ ∼∼∼. It is straightforward to derive from here that NF∼∼∼δ
satisfies the

following properties.

Theorem 11.4.

1. Minimality: NF∼∼∼δ
(A) is ≺|S|

≍ and ≺|D|

≍ -minimal for every A ∈ MA.

2. Uniqueness of minimals: If A and A′ are ≺|S|
≍ and ≺|D|

≍ -minimal automata, and A ∼∼∼δ A′,
then also A =iso A′,

3. Normal forms: NF∼∼∼δ
is uniquely defined up to =iso , and is a normal form.

We emphasize that different to similar theorems we have seen before, minimality with respect
to ≺∥D∥

≍ does not hold for this normal form. We have already discussed this issue in the beginning
of this section. This problem shows that in general a reduction with respect to one measure may
lead to an increase in other measures. So, it may be necessary to develop different minimization
strategies than only state space reduction by quotienting in the future, depending on which
measure has the greatest influences on the run-time complexity of consecutive analyses applied
on the automaton

202

11.4. Summary and Discussion

∼LTS ≈LTS ∼PA ≈PA ∼IMC ≈IMC ∼MA ≈MA
∼∼∼δ

××××××××× ×××××××××××× ××××××

�××�×× �××�××�×× �××�××

�××�××

�××�××

�××�××�×× �××

������ ������

���

��� ��×

not unique

��� �××

��×���

×××

∼LTS
;

≈LTS
;

∼PA
;

≈PA
;

∼IMC
;

≈IMC
;

∼MA
;

≈MA
;

∼∼∼δ
;

T
;

T
;↓

T
;↓

C
;

R
;

NF≈MA

T
;

L
;

L
;

L
;

M
;

M
;

M
;

M
;

Σ
;

Σ
;

Σ
;

Σ
;

Figure 11.6.: Algorithmic steps in minimal quotient computation.

11.4. Summary and Discussion
This chapter has answered the question how to compute the minimal, canonical representation
of labelled transition system, probabilistic automata and interactive Markov chains with respect
to strong and weak bisimilarity, together with polynomial time minimization algorithms in
the finite case. Canonical forms have also appeared in axiomatic treatments of probabilistic
calculi [Den05], but are obtained by adding transitions via saturation, so without aiming for
minimality.
For Markov automata, we have established identical results for strong bisimilarity and naïve

weak probabilistic bisimilarity. For weak distribution bisimilarity, we have shown, however,
that no canonical normal form exists that is optimal in size with respect to all three measures, as
a reduction with respect to state space and transitions goes along with an increase in the fanout.
Still, a reduction with respect to weak distribution bisimilarity may still be beneficial, as the
decrease in the size of the state space and number of transitions compared to naïve weak prob-
abilistic bisimilarity (or weak probabilistic bisimilarity) is significant. The reduction algorithm
has currently exponential run-time complexity, which his inherited from the decision algorithm
for weak distribution bisimilarity (see Chapter 10). As this complexity is only an upper bound,
but not a lower bound, a polynomial algorithm may still be available in future.
The algorithms we developed can be exploited in an effective compositional minimization

strategy for MA and its submodels, because all considered bisimilarities are congruence relations
for the standard process algebraic operators. With this, we see a rich spectrum of potential
applications. While quotient reduction is a well-known and widely exploited technique to reduce
computation effort, the other reduction techniques presented here are novel or – at least – have
not undergone a systematic review with respect to their minimization potential. In this regard

203

11. Minimal Normal Forms

we would like to remark that the usage of reduction T
;must have already been considered in the

context of tools exploiting weak bisimilarity [FM91; CL11], we are not aware of publications
mentioning this point.
Figure 11.6 summarizes —from left to right— what steps are needed to perform the minimiza-

tion in labelled transition systems, probabilistic automata, interactive Markov chains andMarkov
automata. The triplets indicate minimality (�) or non-minimality (×) with respect to |S|, then
|D|, then ∥D∥. For example, ��× indicates that state and transition numbers are minimal, but
transition fanout size can be non-minimal.

204

12. A Semantics for Every GSPN
Generalized Stochastic Petri Nets (GSPN) [Chi+93; Mar+94; Bal07] constitute a formalism to
model concurrent computing systems involving stochastically governed timed behaviour. GSPN
are based on Petri nets, and are in wide-spread use as a modelling formalism in different engi-
neering and scientific communities. From Petri Nets they inherit the underlying bipartite graph
structure, partitioned into places and transitions, but extend the formalism by distinguishing be-
tween timed transitions and immediate transitions. The latter can fire immediately and in zero
time upon activation. The firing time of a timed transition is governed by a rate, which serves as
a parameter of a negative exponential distribution.
While GSPN owe their modelling power to the combination of these two types of transitions,

they also lead to a intricate semantic problem, that leaves certain definable nets –so called con-
fused nets– semantically undefined. In this chapter, we will show that this semantic gap is not
compulsive, and can be amended by a novel semantics for GSPN based on Markov automata.

Outline and Contributions. We first discuss the phenomenon of confused GSPN in
greater detail, highlight its semantic intricacies and motivate why the current status quo is unsat-
isfactory. Before we present our solution to the problem, we first recall the definition of GSPN
in Section 12.2. Then, in Section 12.3 we present the MA semantics for GSPN based on the mark-
ing graph, which we then refine into the bisimulation semantics in Section 12.4. The provided
semantics is complete in the sense that it gives a meaning to every GSPN. The semantics is fur-
thermore conservative with respect to the well-established existing semantics of well-defined nets.
More precisely, we show that for well-defined GSPN, our semantics is weak bisimulation equiva-
lent to the classical CTMC semantics. This entails that measures of interest, such as steady-state
and transient probabilities are identical.

This chapter is an extended version of [Eis+13a].

12.1. Confusion – A Question of Semantic
Perspective

The precise semantics of a GSPN may conceptionally be considered as consisting of two stages.
The first stage is an abstract, high-level semantics describing whenwhich transitions may fire, and
with what probability. Speaking figuratively in terms of a token game, this semantics determines
how tokens can be moved from place to place by the firing of transitions. The second stage is a
lower-level mathematical description of the underlying stochastic process, typically a continuous
time Markov chain (CTMC, for short), which is derived to represent the intended stochastic
behaviour captured in the first stage. This Markov chain is then subject to the analysis of steady-
state or transient probabilities of markings, or more advanced analysis such as stochastic model
checking.

205

12. A Semantics for Every GSPN

The modelling power of GSPN is particularly owed to the presence of immediate transi-
tions [Chi+93]. Unfortunately, this characteristic strength of the formalism may lead to se-
mantically intricate situations [Bau+02; Chi+93; Chi+93; CZ96; DS99; Kat12; EP03]. One of
the most prominent cases is confusion [Mar+94; Bal07]. In confused nets, the firing order of
two concurrently enabled, non-conflicting immediate transitions determines whether two subse-

p1 p3

p4

p5

p2

t1

t3

t2

λ1

λ2

p6

p7

Figure 12.1.: Confused GSPN, see [Mar+94, Fig. 21]. Timed transitions are depicted as
non-solid bars and immediate transitions, as solid.

quent transitions are in conflict or not. The net in Figure 12.1 is confused, since transitions t1
and t2 are not in direct conflict, but firing transition t1 first leads to a direct conflict between t2
and t3, which does not occur if t2 fires first instead. Confusion is not a problem of the high-level
(token game) semantics of a net (stage one), as it is entirely clear which transition may fire, and
how tokens are moved in either case. It is rather a problem of the underlying stochastic pro-
cess (stage two) that ought to be defined by this net. Recall that the transitions t1 through t3
are all immediate, and thus happen without elapse of time. Thus, their firing is basically trans-
parent to a continuous time evolution. Places p4 and p5 enable two distinct timed transitions
with rate λ1 and λ2 respectively, cf. Figure 12.1. Now, depending on how the confusion between
the transitions (and potentially the direct conflict between t2 and t3) is resolved, the underlying
stochastic behaviour either corresponds to an exponential delay with rate λ1, or to a delay with
rate λ2. Which of the two delays happens is not determined by the net structure, and as such is
non-deterministic.

t1

t2
t1

t3

t2

λ1

λ2

p1, p2

p2, p3

p1, p5 p3, p5

p4 p6

p3, p7

Figure 12.2.: Non-deterministic behaviour of the confused GSPN of Figure 12.1

Figure 12.2 shows a graphical representation of this phenomenon as a marking graph. States
correspond to markings of the net in Figure 12.1, and there is an obvious graphical correspon-
dence with respect to the representation of the firing of timed or immediate transitions by sim-
ilarly shaped edges. In state {p2, p3} the direct conflict between t2 and t3 in the net yields a
non-deterministic choice.
As the resulting process is not a CTMC, workarounds have been developed. To resolve (or:

avoid) non-determinism, priorities and weights have been introduced [Mar+87]. Intuitively,
weights are assigned to immediate transitions at the net level so as to induce a probabilistic

206

12.1. Confusion – A Question of Semantic Perspective

W1

W1+W2

W2

W1+W2

W3

W2+W3

W2

W2+W3

1

λ1

λ2

p1, p2

p2, p3

p1, p5

p4

p3, p5

p6

p3, p7

(a)

s1

s2

s3

s4

λ1

λ2

c1

c2

(b)

Figure 12.3.: (a) Probabilistic behaviour of weighted confused GSPN in Figure 12.1; (b) the
resulting CTMC

choice instead of a non-deterministic choice between (equally-prioritized) immediate transitions.
Ignoring priorities, whenever more than one immediate transition is enabled, the probability of
selecting a certain enabled immediate transition is determined by its weight relative to the sum
of the weights of all –including those that are independent– enabled transitions.
For example, for the marking depicted in Figure 12.1, transition t1 is selected with probability
W1

W1+W2
whereWi is the weight of transition ti. In this way, we obtain an unambiguous stochastic

process for this GSPN, cf. Figure 12.3a. Now, the unlabelled edges have multiple endpoints and
denote probability distributions over markings. We can consider this as a semi-Markov process,
which has both zero-time delay and exponentially distributed time delay edges, as worked out,
for instance by Balbo [Bal07]. In order to derive a CTMC from this process, sequences of zero-
time delay edges are fused into probability distributions over states. For our example net, we
obtain the CTMC in Figure 12.3b with initial distribution µ0 with µ0(s1) = c1 and µ0(s2) = c2
where

c1 =
W1

W1+W2
· W3

W2+W3
and c2 =

W2

W1+W2
+

W1

W1+W2
· W2

W2+W3
.

These quantities correspond to the reachability probability of marking {p4} and {p3, p5}, re-
spectively, from the initial marking. Unfortunately, this approach has a drawback, related to
the dependence and independence of transitions, an important concept in Petri net theory. In
our example net of Figure 12.1, the transitions t1 and t2 are independent. Their firings happen
independent from each other, as the two transitions share no places. Transitions t2 and t3, in
contrast, are dependent, as the firing of one of them influences the firing of the other (by dis-
abling it) via the shared input place p2. However, the expected independence between t1 and t2
is not reflected in our GSPN above after introducing weights. Instead, the probability to reach
marking p4 (and marking p5) under the condition that transition t2 has fired will differ from the
corresponding probability under the condition that t1 has fired. A further conceptual drawback
from a modelling perspective, is that when a new immediate transition is inserted between t1 and
t3, then this changes these probabilities. This is irritating, since we only refine one immediate
transition into a sequence of two immediate transitions. Since immediate transitions do not take
time, this procedure should not result in a change of the underlying stochastic model. However,
it does. We can also consider this phenomenon as a problem of locality. A local change of the
net has unexpected global consequences with respect to the probabilities.
To remedy this defect, several approaches to define the stochastic process at the net level have

been proposed. At the core of these approaches, immediate transitions are usually partitioned
according to their conflict behaviour, based on a structural analysis of the net. The standard

207

12. A Semantics for Every GSPN

approach is to partition them into extended conflict sets (shortly, ECSs) [Mar+87], which is a
generalization of structural conflicts in the presence of priorities (which are not treated here).
Intuitively, two transitions are in structural conflict in a marking, if both are enabled in this
marking, and firing any of them will disable the other. Inside an ECS, weights are used to
decide immediate transition firings, while no choice is resolved probabilistically across ECSs.
For confusion-free nets, the ECS does provide a way of resolving conflicts probabilistically with
a localized interpretation of weights. Unfortunately, for confused nets, this solution approach
suffers from the same problem as our initial approach: The ECSs for the net in Figure 12.1
are given by the partition {{t1} , {t2, t3}}. As transitions t2 and t3 are in the same ECS, the
decision which to fire will be resolved probabilistically according to their weights. Transitions
t1 and t2, in contrast, are in different ECS. Thus, the decision will still need to be resolved non-
deterministically, given that they may be enabled at the same moment. Inserting immediate
transition t4 between t1 and t3 as mentioned above will lead to the ECSs {{t1} , {t4} , {t2, t3}}.
Thus, still only the decision between transitions t2 and t3 is resolved probabilistically and not
influenced by t4. So, since some decisions are forced to be non-deterministic, this approach does
in general not yield a mathematically well-defined stochastic process. Moreover, it is easy to see
that in our example, any partition of immediate transitions will suffer from one of the semantic
problems discussed.
In summary, certain nets lead to undesirable semantic problems. Due to this fact, several

researchers have identified certain classes of nets as not well-defined (aka. ill-defined) [Mar+94;
CZ96; DS99]. Such nets are excluded both semantically and from an analysis point of view. Sev-
eral different definitions have appeared in the literature. However, ill-defined nets, with confused
nets being a prominent example, are not bad nets per se. As Balbo states [Bal00]: “this underspec-
ification [in confused nets] could be due either to a precise modelling choice [. . .] or to a modelling
error”. We firmly believe that the modeller should have full freedom of modelling choices, and
that such choices should not be treated as errors by definition.

12.2. Generalized Stochastic Petri Nets
This section introduces GSPN, where, for the sake of simplicity, we do not consider transition
priorities. For a set X , we use Σ(X) to denote the set of all partitions of X . For a set of places
P , a marking m is a multi-set over P of the form m : P → N. We let M denote the set of all
markings over P , and use m,m0 etc to denote its elements.

Definition 12.1 (Generalized stochastic Petri net). A generalized stochastic Petri net G
(GSPN) is a tuple (P, T, I, O,H,m0,W,D) where:

• P is a finite set of places,

• T = Ti ∪ Tt is a finite set of transitions (P ∩ T = ∅) partitioned into the sets Tt and Ti of
timed and immediate transitions,

• I,O,H : T → M defines the transitions’ input places, output places, inhibitor places1,

• m0 ∈ M is the initial marking,

• W : T → R>0 defines the transitions’ weights, and
1If transition t has no inhibitor places, we let H(t) = ∞.

208

12.2. Generalized Stochastic Petri Nets

• D : M → Σ(T) is a marking-dependent partition satisfying the condition that Tt ∈ D(m)
for all markings m ∈ M .

◁

The above definition agrees, except for the last component D, with the classical GSPN def-
inition in the literature [Mar+91; Mar+94; Bal07]. We use the marking-dependent partition
function D as a generalization of the extended conflict set mentioned before. It serves to ex-
press for which immediate transitions choices are resolved probabilistically, and for which non-
deterministically. This information is usually not provided in the net definition. Instead the
(marking independent) ECS are derived based on a structural analysis of the net at hand. The
reason why we include this information in an explicit form in the definition is mainly ought
to formal reasons. However, it also enables (but does not enforce) a view where the choices
between immediate transitions are resolved as a consequence of a conscious modelling decision,
possibly decoupled from the net structure. The constraint Tt ∈ D(m) is due to the fact that all
enabled timed transitions are always weighted against each other in a race. At the expense of
slightly more complicated definitions in the following, we could eliminate this technicality and
let D : M → Σ(Ti).
The input, output and inhibition functions assign to each transition a mapping P → N, spec-

ifying the corresponding cardinalities. A transition has concession if sufficiently many tokens
are available in all its input places, while the corresponding inhibitor places do not contain
sufficiently many tokens for an inhibitor arc to become effective. Firing a transition yields a (pos-
sibly) new marking, which is obtained by removing one or more tokens from each input place
and adding tokens to the transition’s output places. Immediate transitions execute immediately
upon becoming enabled, whereas timed transitions are delayed by an exponentially distributed
duration which is uniquely specified by a transition rate (i.e., a positive real number defined by
the weights).
For notational convenience, we write cascaded function application with indexed notation of

the first parameter. For example, we write It, Ot and Ht for I(t), O(t) and H(t), respectively.
The semantics of aGSPN is defined by itsmarking graph, which is obtained by playing the “token
game”. Immediate transitions are fired with priority over timed transitions [Mar+91; Chi+93;
Mar+94]. Accordingly, if both timed and immediate transitions have concession in a marking,
only the immediate transitions become enabled. Let G be a GSPN with marking m ∈ M .

Definition 12.2 (Concession and enabled transitions).
1. The set of transitions with concession in marking m is defined by:

conc(m) = {t ∈ T | ∀p ∈ P. m(p) ≥ It(p) ∧m(p) < Ht(p)}.

2. The set of enabled transitions in markingm is defined by: enm = conc(m)∩Ti if conc(m)∩
Ti ̸= ∅, and enm = conc(m) otherwise.

◁

A marking m is vanishing whenever an immediate transition is enabled in m, otherwise it
is tangible. Given the priority of immediate transitions over timed ones, the sojourn time in
vanishing markings is zero. In a vanishing marking, none of the timed transitions which have
concession is enabled. In a tangible marking m, only timed transitions can be enabled. The
residence time in tangible marking m is determined by a negative exponential distribution with
rate

∑
t∈enm W (t). The effect of executing a transition is formalized in the classical way:

209

12. A Semantics for Every GSPN

Definition 12.3 (Transition execution). Let the transition execution relation [·⟩ ⊆ M × T ×
M be such that for all markings m,m′ ∈ M and transitions t ∈ T it holds:

m [t⟩m′ ⇐⇒ t ∈ enm ∧ ∀p ∈ P. m′(p) = m(p)− It(p) +Ot(p).

◁

We now recall the notion of marking graph, obtained from reachable markings:

Definition 12.4 (Reachable marking graph). The marking graph of the GSPN G is the
labelled digraph MG(G) = (RS , E), where

• RS is the smallest set of reachable markings satisfying: m0 ∈ RS , and m ∈ RS ∧m [t⟩m′

implies m′ ∈ RS .

• The edge between m and m′ is labelled by the transition t such that m [t⟩m′.

◁

This graph describes how a net may evolve in terms of its markings. However, it fails to
faithfully represent the stochastic aspects of the net. This is made more precise below.
Recall the idea that we consider certain immediate transitions probabilistically dependent

on some other transitions (mainly when they are in conflict), while we consider them in-
dependent from others. Traditionally, these relations are captured by extended conflict sets
(ECSs [Mar+87]). Here, we consider a generalization of this concept in the form of an arbitrary
immediate transitions partition Dm. For each marking m, the partition Dm determines a way
of resolving conflicts between immediate transitions. Each set C ∈ Dm consists of transitions
whose conflicts are resolved probabilistically in m. On the other hand, transitions of different
sets are considered to behave in an independent manner, i.e., we make a non-deterministic selec-
tion if several of them are enabled inm. Our semantics will be general enough that we may allow
the latter even if there is a structural conflict between these transitions. Let us make this precise.
Assume that some transitions in the set C ∈ Dm are enabled and C is chosen to be fired.

Under this condition, the probability that a specific transition fires is given as the normalized
weight of the enabled transitions in C. Precisely, PC{t | m} = 0 if t ̸∈ C ∩ enm, and otherwise:

PC{t | m} =
W (t)

WC(m)
where WC(m) =

∑
t∈C∩enm

W (t). (12.1)

If m is a vanishing marking, WC(m) denotes the cumulative weight of all enabled (i.e., immedi-
ate) transitions in C. In this case the probability PC{t | m} of taking the immediate transition t
inm is determined by the weight assignmentW . Note thatPC{t | m} is 0 if t is neither enabled
nor an element from C. The case that m is tangible is similar. Then only timed transitions
are enabled, and recall that the set of timed transitions Tt is an element in Dm. Thus, C = Tt.
Accordingly,

WC(m) =
∑

t∈enm

W (t)

is the exit rate from the tangible marking m. In this case, PC{t | m} is the probability of taking
the transition t if the tangible marking m is left.

210

12.3. Markov Automata Semantics for GSPN

In both cases, several distinct transition firings may lead from m to the same marking m′.
These need to be accumulated. With some overload of notation we define

PC(m,m′) =
∑

m[t⟩m′

PC{t | m}.

12.3. Markov Automata Semantics for GSPN
Our aim is to provide a semantics to every GSPN. In particular, this includes nets in which
multiple immediate transitions are enabled in a marking, nets with cycles of immediate transi-
tions, as well as confused nets. Obviously, stochastic processes such as CTMC do not suffice for
this purpose, as they cannot express non-determinism. Markov automata, however, permit to
represent the concepts above, including a formulation in terms of a semi-Markov process with
zero-timed delay and exponentially distributed time delays [Bal07], while in addition supporting
non-determinism between transition firings in vanishing markings. The attentive reader may
have already realized that Figure 12.2 and Figure 12.3a are in fact graphical representations of
MA.

12.3.1. Preliminary Concepts
For the technical development of this chapter, it is convenient to assume that Markov automata
start their execution not from an initial state, as defined in Chapter 7, but from an initial distri-
bution over states. In this way, as for CTMC, MA start their execution in a specific state with a
certain probability. In the following, we use µ0 to denote the initial distribution of a MA.
These adaptions have only little consequences on the definitions and notations we used

throughout the thesis. We only need to generalize our definition bisimulation between two MA
in the obvious way: two MA A andA′ are weak distribution bisimilar if their initial distributions
satisfy µ0

∼∼∼ µ0
′ in the disjoint union of the two automata.

Note that for a clearer distinction with respect to GSPN transitions, we will call transitions of
Markov automata MA-transition in the following.

Notations and Nomenclature. We will routinely use the uniform representation of
an MA in the following without explicit mentioning. Hence, we make use of the notation −−→
to uniformly denote immediate and timed transitions. As before, the differentiation between
the two underlying kinds of transitions happens by the concrete choice of the action taken from
Actχ.
The nomenclature of GSPN deviates at some points for phenomena also known within

automata-based models. In the context of this chapter, it is convenient to adopt it also for MA.
Our notion of stability is replaced by a notion of tangibility in GSPN. Accordingly, we call a
state s ∈ S tangible if no immediate MA-transition originates from s. A probability distribution
over states is called tangible if all states in its support set are tangible. We recall from Section 7.3
that a CTMC can be considered a special case of MA: A CTMC is a MA with = ∅. Note that
for this chapter, CTMC are equipped with initial distributions instead of initial states, too, as we
adapted the definition of MA accordingly.

211

12. A Semantics for Every GSPN

12.3.2. Basic semantics of GSPN
We are now in the position to define the semantics of every GSPN—including the non well-
defined ones—by means of a MA. The intuition is rather simple. Basically the semantics of
a GSPN corresponds to its reachable marking graph, cf. Definition 12.4. States correspond to
markings, taking an immediate MA-transition in the MA is the counterpart to firing an immediate
transition in the net, and likewise for timed MA-transitions and timed transitions. The marking
graph can therefore directly be interpreted as a Markov automaton.

Definition 12.5 (Basic MA semantics for GSPN). The MA semantics of the GSPN G =

(P, T, I, O,H,m0,W,D) is the MA AG = A = (S, µ0,Act, ,), where

• S = RS is the reachable set of markings in the marking graph,

• µ0 = δ(m0),

• for every m ∈ RS , and each equivalence class C ∈ Dm,

1. there is an MA-transition m r µ if and only if m is a tangible marking, r = WC(m)
and µ(m′) = PC(m,m′) for all m′ ∈ RS ,

2. there is an MA-transitionm µ if and only ifm is a vanishing marking and µ(m′) =
PC(m,m′) for all m′ ∈ RS .

◁

So, the basic MA semantics is the marking graph of a GSPN. Every marking of the GSPN that
is reachable by a sequence of (net) transitions from the initial marking corresponds to a state in
the MA. As discussed before, in marking m of the net all enabled timed transitions t induce an
exponentially distributed stochastic delay with a rate r that is the sum of all weights of enabled
transitions. In this case, the probability to reach a marking m′, say, by MA-transition t is given
as the MA-transition’s relative weight. This is reflected in Clause 1 of the above MA semantics. If
no timed transition is enabled in marking m, then no timed MA-transition originates from state
m.
In contrast, the enabled immediate transitions in a marking need to be represented by more

than one immediate MA-transition in the MA. Recall that each equivalence class C ∈ Dm corre-
sponds to an ECS in GSPN terminology. For every such set C, the enabled transitions in C fire
with a probability that is equal to their weight in relation to the sum of the weights of all enabled
transitions in C. However, transitions that are in different sets in Dm are entirely independent.
More precisely, transitions from different sets in Dm compete in a non-deterministic way. This
is reflected in Clause 2 of the above definition. The non-deterministic choice between transitions
across different sets of Dm is represented by introducing an immediate MA-transition for every
set in the partition Dm. The probabilistic decision among transitions within a single set, in turn,
is reflected by the distribution over markings the corresponding immediate MA-transition leads
to.

12.3.3. Well-defined GSPN
The aim of this section is to formalize and generalize well-defined GSPN in terms of our new
semantics. Central for this purpose is the concept of (hyper) weak MA-transitions.

212

12.4. Bisimulation Semantics

It is crucial to recall in the following that any MA-transition itself is a weak MA-transition, and
that from any state s, there is always a weak MA-transition s ==⇒ δ(s), even if s is tangible.

Definition 12.6 (Well-defined GSPN). Let G = (P, T, I, O,H,m0,W,D) be a GSPN with
MA semantics AG. We say G is well-defined, if for every state m ∈ RS , and every pair (µ, µ′) of
distributions over tangible states it holds: m ==⇒ µ and m ==⇒ µ′ implies µ = µ′. ◁

Intuitively, this expresses that from every marking a unique marking over tangible states is
reachable. Different to [EP03], we are only interested in the probability to reach a marking, and
whether it is uniquely specified, but not in the sequences of MA-transitions leading to tangible
markings. Phrased differently, we are only interested in tangible state to tangible state probabili-
ties [CZ96; Bal07].
It is not surprising that a well-defined GSPN induces a unique CTMC: states will correspond

to those tangible markings, MA-transition r is obtained by extending the weak MA-transition
until tangible states are reached. The uniqueness is guaranteed by the definition of well-defined
GSPN. We have not given a explicit definition of CTMC in this thesis, as it can be considered as
a special case of a Markov automaton (see Section 7.3). For notational convenience, we consider
a CTMC as the tuple (S, µ0,) in the following, focusing only on the components of an MA
which are not trivial or empty when it represents a CTMC.

Definition 12.7 (CTMC induced by a well-defined GSPN). The well-defined GSPN G

induces the CTMC CG = (S, µ0,), where

• S is the set of reachable tangible markings of G,

• m r µ if and only if µ is the unique distribution over tangible markings such that a
distribution µ′ exists with m r µ′ and µ′ ==⇒ µ in the basic MA semantics of G,

• µ0 is the unique distribution over tangible markings such that m0 ==⇒ µ0.

◁

Lemma 12.1. The induced CTMC of a well-defined GSPN is unique (up to isomorphism).

12.4. Bisimulation Semantics
The basic MA semantics we have introduced already has several advantages. It is complete, i.e. it
provides semantics for every net, and it is amenable to several analysis techniques that are being
established (see Chapter 13 for further details). Nevertheless, we want to address more desirable
properties the current proposal does not have:

1. the semantics should be conservative with respect to the existing standard semantics for
well-defined nets,

2. immediate MA-transitions should be disregarded as much as possible, and exponential de-
lays should be only distinguished up to lumpability. This ensures that the actual formal se-
mantics agrees with the intuitive behaviour of a net and semantic redundancies are avoided
as much as possible. For instance, the introduction of a new immediate transition between

213

12. A Semantics for Every GSPN

t1 and t3 in Figure 12.1, which should be independent of every other concurrently enabled
transition, should not affect the underlying semantics.

We now will implement the above requirements by defining the semantics of a GSPNas its
basic MA semantics modulo weak distribution bisimilarity. This semantics will exactly represent
the behavioural kernel of the GSPN.

Definition 12.8 (Bismulation Semantics for GSPN). The bisimulation semantics of the
GSPNG = (P, T, I, O,H,m0,W,D) is the set of all Markov automata that are weak distribution
bisimilar to its basic MA semantics AG. ◁

For GSPN, whose basic MA semantics is finite, we can use NF∼∼∼δ
(AG) as a canonical repre-

sentative (see Chapter 11). Still, our general definition can be applied to an arbitrary GSPN
G.

12.4.1. Revisiting Well-definition
To illustrate why we consider weak MA bisimilarity a semantic equivalence especially well-suited
for GSPN semantics, let us recall the standard procedure applied to derive a CTMC from the
basic MA semantics underlying a well-defined GSPN. We illustrate this process with the MA
from Figure 12.3a as an example. For convenience, we repeat it in Figure 12.4a below. This
figure shows the basic MA semantics of the GSPN in Figure 12.1 in the case that every immedi-
ate MA-transition is weighted, and choices among immediate MA-transitions are always resolved
probabilistically. For a shorter notation, we now denote MA-transition probabilities by x1, x2

and so on. When we want to transform this MA into a CTMC, we successively remove every
immediate MA-transition by replacing a state with an outgoing immediate MA-transition by the
distribution that this immediate MA-transition leads to. The result of this replacement is shown
in Figure 12.4b and Figure 12.4c. Finally, when no such states remain, we obtain the CTMC in
Figure 12.4d, where c1 = x1x3 and c2 = x2 + x1x4. The effect of this iterative process of fusing
transitions can also be formulated via matrix operations [Mar+94].

In this example, this procedure leads to a unique result, as every state has at most one outgoing
immediate MA-transition. In general, it leads to unique results whenever the net is well-defined.
For nets with non-determinism, however, this approach does not lead to mathematically well-
defined results. To illustrate this, consider the net in Figure 12.5. Assume now that we do not
resolve every choice of immediate transitions probabilistically, but only the conflict between t2
and t3. Hence let Dm = {{t2, t3} , {t1} , {t4}}. Note that these are exactly the ECSs of the
net. We then obtain the non-deterministic basic MA semantics in Figure 12.6a. Applying the
fusing procedure as before is clearly not possible, since already in the initial state of the MA, the
marking {p1, p2}, we have two outgoing immediate MA-transitions, which will finally lead to
two different distributions over tangible markings.
Although it is thus not possible to fully remove immediate MA-transitions here – as they

are a necessary semantic component to express non-deterministic choice – we want to remove
immediate MA-transitions whenever they can be fused. In our example, this would lead to the
MA in Figure 12.6b. Only in the first state two immediate MA-transitions remain. They fully
capture the non-deterministic behaviour of this GSPN.

Weak MA bisimilarity has been designed to exactly perform the task of removing immediate
MA-transitions by fusion when the result is uniquely defined. In fact, the MA in Figure 12.6b is
the (state- and transition-wise) minimal MA that is weakly bisimilar to the MAin Figure 12.6a.

214

12.4. Bisimulation Semantics

x1

x2

x3

x4

1

λ1

λ2

p1, p2

p2, p3

p1, p5

p4

p3, p5

p6

p3, p7

(a)

λ1

λ2

x1x3

x1x4x2

p1, p2

p4

p3, p5

p6

p3, p7p1, p5

(b)

λ1

λ2

x1x3

x2 + x1x4

p1, p2

p4

p3, p5

p6

p3, p7

(c)

s1

s2

s3

s4

λ1

λ2

c1

c2

(d)

Figure 12.4.: From the MA semantics (a) a CTMC is obtained (d) by step-wise fusing
immediate MA-transitions in (b) and (c).

p1 p3

p4

p5p2

t1

t3

t2

p8 t4

p6

p7

λ1

λ2
Figure 12.5.: Confused GSPN with additional transition

Speaking more generally, weak bisimilarity gives us a powerful means to conservatively gen-
eralize the notion of tangible and vanishing markings. Formally, a tangible marking has been
defined as a marking that has no outgoing immediate transitions. Markings that are not tangible
are called vanishing. More intuitively speaking, as the words tangible and vanishing suggest, van-
ishing markings are semantically insignificant, while tangible markings constitute the semantic
essence of a net’s behaviour. Now, in the context of non-deterministic behaviour, besides of those
states without immediate transitions, also those states with a non-deterministic choice between
immediate transitions are semantically tangible in the literal sense (as long as the choice makes a
behaviour difference in the end).
To make this precise, we will define the notion of significant markings as a conservative ex-

tension of tangible markings, and show that for well-defined nets, they coincide with tangible
markings and vice versa.

Definition 12.9 (Significant marking). Given a GSPN G and its basic MA semantics AG, we
call a marking m insignificant if it is vanishing and – in AG – m is a state that has at least one
outgoing immediate MA-transition m −−→ µ such that µ ∼∼∼ δ(m). Otherwise we call marking m
significant. ◁

215

12. A Semantics for Every GSPN

x3

x4

λ1

λ2

p1, p2

p8, p2

p1, p5

p3, p2

p8, p5 p3, p5 p3, p7

p4 p6

(a)

x3

x4

λ1

λ2
s1 s3 s5

s4 s6

(b)

Figure 12.6.: A basic MA (a) with non-determinism and the smallest MA weakly bisimilar to it
(b). In (b), state s1 subsumes markings {p1, p2} and {p8, p2} from (a). All other
markings with immediate behaviour are removed as a result of fusing them.

Whereas every tangible marking is also significant, not every vanishing marking is insignifi-
cant. Only those vanishing markings are also insignificant, which have an immediate successor
distribution that is semantically equivalent to the marking itself, and could thus fully replace
the marking without affecting the behaviour of the net. Only in well-defined GSPN significant
and tangible, and vanishing and insignificant coincide respectively, as stated in the following
proposition.

Proposition 3 (Preservation). If G is a well-defined GSPN, then a marking m of G is tangible if
and only if it is significant.

Furthermore, the CTMC associated with a well defined GSPN enjoys the following strong
relation to the original net in terms of the MA semantics.

Proposition 4. The basic MA semantics AG of a well-defined GSPN G is weakly bisimilar to the
CTMC CG induced by G.

Before we present the proof of this proposition, an auxiliary notation and a claim is needed.
For the notation, we remark that due to the uniqueness of the distribution µ over tangible

states that is reachable from each distribution γ over markings of a well-defined GSPN, we can
conveniently use the relation Z=⇒ from Section 8.4 and write γ Z=⇒ µ to express that µ is the
unique distribution over tangible states such that γ ==⇒ µ.
The following insight is crucial for the understanding of the proof that follows: The second

clause of the definition of the CTMC induced by a well-defined GSPN (Definition 12.7) can be
rewritten as follows: in the CTMC m r µ if and only if m r µ′ Z=⇒ µ in the basic MA
semantics of G.

Claim 12.1. Let G be a well-defined GSPN. Then for every distribution γ and γ′ over states of the
automaton AG, denoting the basic MA semantics of G, it holds that γ ==⇒ γ′ implies γ Z=⇒ µ if and
only if γ′ Z=⇒ µ.

This follows immediately from the uniqueness of µ we have just recalled.

Proof of Proposition 4. In order to prove AG
∼∼∼ CG, we will provide a bisimulation R and show

that the pair of initial distributions of AG and CG is contained in R.

216

12.4. Bisimulation Semantics

Recall that the state space of AG is the set RS of all reachable markings. Let St be the state
space of CG, which is by definition of CG also the set of all reachable tangible markings of AG.
Let R be the symmetric closure of the relation {(γ, µ) ∈ Dist(RS)×Dist(St) | γ Z=⇒ µ}. We
denote by R−1 the symmetric complement of R.
The pair of initial distributions of AG and CG is contained in R, which follows immediately

from the definition of the initial distribution µ0 of CG.
We will now check that every pair of R satisfies the bisimulation conditions. First, consider

an arbitrary pair (µ, γ) ∈ R−1. As γ Z=⇒ µ, also γ ==⇒c µ. In addition (µ, µ) ∈ R for
every distribution µ over states of CG. This holds because, first, µ is tangible and thus trivially
µ Z=⇒ µ, and, second, St ⊆ RS . Therefore, it is straightforward to see that conditions (b) and (c)
of weak distribution bisimulation (Definition 8.4) are trivially met. For Condition (a), assume

µ
χ(r)−−−→ µ′. By definition of CG the distribution µ′ is tangible again. Now, by our choice of R,

γ Z=⇒ µ and thus γ ==⇒c µ. Even though µ′ is a distribution over states of both CG and AG,

it is not immediately the case that µ
χ(r)−−−→ µ′ also in AG, if µ

χ(r)−−−→ µ′ in CG. However, by
the definition of CG, there must exist µ′′ and µ r µ′′ ==⇒ µ′. Hence, together, we infer that

γ Z=⇒ µ
χ(r)−−−→ µ′′ ==⇒ µ′ which implies γ

χ(r)
===⇒c µ

′. Again with (µ′, µ′) ∈ R we are done.
Second, we consider an an arbitrary pair (γ, µ) ∈ R ∩ Dist(RS) × Dist(St). Following

Condition (a) of Definition 8.4, let γ a−−→ γ′. As AG results from a GSPN, a must either be τ or
χ(r). The second case implies that γ is tangible, and hence γ = µ, which renders this case trivial.
In the second case, let γ τ−−→ γ′. By Claim 12.1, this implies that γ′ Z=⇒ µ as already γ Z=⇒ µ.
Hence, we obtain (γ′, µ) ∈ R immediately. For Condition (b), let γ1 ⊕p γ2 be an arbitrary
splitting of γ. Now γ ==⇒ µ as γ Z=⇒ µ2 By the definition of ==⇒ , it is easy to derive that there
must exist µ1 and µ2 such that µ = µ1 ⊕p µ2 and γ1 ==⇒ mu1 and γ2 ==⇒ µ2. As µ is tangible,
so are µ1 and µ2. Thus, also γ1 Z=⇒ µ1 and γ2 Z=⇒ µ2. Together, this implies (γi, µi) ∈ R for
i ∈ {1, 2}. Finally, the premise of Condition (c), γ↓, is only true if γ is tangible, and thus γ = µ
must hold. Then trivially µ↓.

Proposition 4 provides us with a kind of correctness criterion for the setup we presented. The
MA weak bisimulation semantics indeed conservatively extends the classical semantics. Further-
more, many traditionally ill-defined and confused nets can still be related to a CTMC modulo
weakly bisimilarity. This is linked to the fact that weak bisimilarity embodies the notion of
lumpability, apart from immediate transition fusing.

12.4.2. Timeless Traps
Cycles of immediate transitions are an intricate problem in classical GSPN theory, their circu-
lar firing is often called a timeless trap [Bau+02], see Figure 12.7a for an example. GSPN with
timeless traps are traditionally excluded from the analysis, basically because the firing precedence
of immediate over timed transitions makes the system diverge on the cycle without letting time
progress. This is an awkward phenomenon, related to Zeno computations. In our MA reformula-
tion, timeless traps are represented as cycles in the MA, and as such do not pose specific semantic
problems. Furthermore, weak bisimilarity is sensitive to cycles of immediate transitions, but
only to those that cannot be escaped by firing an alternative immediate transition. This is due
to a built-in fairness notion in the weak bisimulation semantics, (rooted in the inclusion of a
2Strictly, from Z=⇒ we can only defer that γ ==⇒c µ. But as µ is unique in our context, we also obtain γ ==⇒ µ.

217

12. A Semantics for Every GSPN

p2

p1 t1

t2

t3

p3 p5

p4 p6

λ

λ

(a)

2λ λ
s1 s2 s3

(b)

Figure 12.7.: A timeless trap that can be escaped by an immediate transition firing (a), and the
smallest MA weakly bisimilar to its semantics (b). In (b), state s1 subsumes
markings {p1}, {p2, p4}, and {p3, p4}. State s2 subsumes markings {p3, p6}, and
{p4, p5}, while state s3 represents marking {p5, p6}.

tangibility check inside the definition of the abbreviation a−−→). As a consequence, if a time-
less trap can be left by firing a (finite sequence of) immediate transitions leading to a tangible
marking, this is equivalent to a single immediate transition firing. This implies that the net in
Figure 12.7a is in fact weak bisimilar to the small chain-structured 3-state CTMC in Figure 12.7b.
And thus the net is analysable via the classical CTMC machinery. This example shows that the
combination of lumping and fusing of immediate transitions as supported by weak bisimulation
can have powerful effects. Variations to the definition of a−−→ can induce more liberal notions of
weak bisimilarity, including the option to escape timeless traps unconditionally [LDH05]. That
option is not supported by our current setup, since it has originally been designed to support
strong compositionality properties (see the discussions in Section 8.2.2 and Section 8.2.4). Since
compositionality is not a first-class concern in the Petri net world, this avenue seems worthwhile
to be investigated further.

12.5. Summary and Discussion
This chapter has presented a semantics of GSPN in terms of Markov automata. We have shown
that for well-defined GSPN, our semantics is weak distribution bisimilar to the CTMC semantics
existing in the literature [Bal07; Chi+93; Chi+93; Mar+94]. Since weak distribution bisimi-
larity coincides with lumping equivalence on CTMC (cf. Section 8.7 on page 152), this result
establishes “backward compatibility” of our semantics in the sense that it is the same as the clas-
sical GSPN semantics, up to an equivalence that preserves all quantitative measures of interest
such as transient, steady-state probabilities and CSL (without next) formulae [Bai+03b; Bai+05].
Thus, any tool based on our MA-semantics yields the same results as popular GSPN tools such as
GreatSPN, SMART, and MARCIE.

The main contribution of this chapter is that our semantics applies to every GSPN. That is to
say, our semantic framework is not restricted to well-specified or confusion-free nets. The key
to treating confused nets is (not surprisingly) the use of non-determinism. We claim that our
approach can also be applied to other stochastic net formalisms such as SANs [MMS85; SM].

The semantics closes a gap in the formal treatment ofGSPN, which is now no longer restricted
to well-defined nets. This abandons the need for any check, either syntactically or semantically,

218

12.5. Summary and Discussion

for well-definedness. This gap was particularly disturbing because several published semantics
for higher-level modelling formalisms—e.g., UML, AADL, WSDL—map onto GSPN without
ensuring the mapping to be free of confusion, thereby inducing ill-defined models. Our Markov
automata semantics provides the basis to also cover the confused and ill-specified semantic frag-
ments of these formalisms. Indeed, we were able to relax both notions by considering the Markov
automata semantics modulo weak bisimulation. To proceed this way seemed like a natural way
forward for quite some time to us, but to arrive there was an astonishingly difficult notational
and technical endeavour.

219

Part IV.

Conclusion

221

13. Conclusion
This chapter first summarizes the main contributions of this thesis and discusses in how far the
principles of Markov automata are now settled. Since this thesis has focussed on the foundational
side, it has not put any emphasis on analysis approaches for or applications of Markov automata
in the context of real systems. Instead, this chapter continues with a survey of a variety of
research activities focussing on the algorithmic analysis of properties of specific Markov automata
models. We conclude the chapter with a discussion of directions for further research.

13.1. The Foundations of Markov Automata
Markov automata intend to be a model for concurrent systems with both discrete and timed
stochastic behaviour.

The Model We have introduced Markov automata as a mathematical model that

(i) provides expressiveness for concurrency and discrete as well as continuous-time stochastic-
ity,

(ii) is amenable to automated analysis methods, and finally

(iii) is free from unnecessary semantic intricacies that might lead to modelling pitfalls.

To arrive there, Markov automata are extending labelled transitions systems by blending the
established models of probabilistic automata and interactive Markov chains. All three models
can be fully recovered from Markov automata as strict submodels. We have provided a natural
and fully compositional semantics for Markov automata with respect to parallel composition and
abstraction.

The Bisimulations We initially have proposed the following requirements on a suitable
notion of equality for Markov automata.

(i) It should be a congruence relation with respect to the composition operators.

(ii) It should preserve the non-deterministic branching structure.

(iii) It should enable abstraction from internal details as much as possible.

We have discussed that for probabilistic systems, be it probabilistic automata or Markov au-
tomata, the known bisimilarities fail to satisfactorily address the third requirement, with respect
to an intuitive notion of observability of probabilistic behaviour: We demand that rolling a four-
sided die cannot be distinguished from throwing a two-sided coin two times in direct succession.

223

13. Conclusion

This motivation has led us to the development of a novel bisimulation relation for Markov
automata that is based on distributions instead of states: relaxed bisimilarity. While it has the
above mentioned property, it fails to be a congruence relation. To remedy this, we have in-
troduced weak distribution bisimilarity, which we have proven to be the coarsest bisimulation
relation contained in relaxed bisimilarity. Most notably, it still abstracts from internal details as
desired. And it enjoys the congruence property.
Concerning our second demand, the preservation of the non-deterministic branching struc-

ture, a principle remark is needed. Among the known variants of weak bisimulation only branch-
ing bisimulation preserves the non-deterministic branching structure in a strict sense and thus
fully preserves properties in CTL∗ and similar logics. Though, without the next operator, which
expresses that a certain property will hold in the next state to occur, a notion that is difficult to
make use of in asynchronous concurrent systems anyhow. As weak distribution bisimulation
stems from (ordinary) weak bisimulation, it does not satisfy our second demand to the fullest
extend possible. Our choice to yet adapt weak bisimulation instead of branching bisimulation
for Markov automata is rooted in weak bisimulation’s prevailing importance in the history and
theory of PA and IMC, the formalism MA are based upon. A branching variation of weak distri-
bution bisimulation can, however, be defined as well (cf. Section 8.6.2).

We have established various further properties that give insight into the inner workings of
weak distribution bisimilarity, among them a state-based characterization, which allows for a
direct comparison with the well-known bisimilarities on LTS, PA and IMC. In addition, we have
provided distribution-based characterizations of the latter bisimilarities. The most notable find-
ing here has been that weak distribution bisimilarity is the bisimulation kernel of probabilistic
forward simulation, the coarsest sensible known process relation on PA.

In summary, we have succeeded in establishing a notion of process equivalence that satisfies the
three requirements we have formulated and that in addition comes with several other favourable
properties.

Comparative Semantics To deepen the comparative analysis of the novel bisimilarities
we have provided a simple MA process algebra and a set of axioms for weak distribution bisim-
ilarity, that is sound and complete for the recursion-free fragment. While doing so we fixed an
inaccuracy in the published axiomatic treatment of PA (see the discussion in Section 6.3). We
have identified a single axiom, the elimination axiom

a.(δ(τ.D ′)⊕p D) = a.(D ′ ⊕p D),

as the one that distinguishes weak distribution bisimilarity from the well-known weak bisimilar-
ities for PA and IMC: If any probable successor state of an action can only exhibit an internal step
as its next behaviour, this step can be eliminated.

Decision and Minimization We have developed a decision algorithm for weak distri-
bution bisimilarity that, as a side-result, computes the quotient state-space based on our state-
based characterization. As a draw-back, the current decision algorithm has exponential time-
complexity. It is, however, not clear whether this is strictly needed.
Building on the quotienting technique, we have investigated further size-compression tech-

niques fo Markov automata and its submodels based on the three metrics number of states, num-
ber of transitions and transition fanout, i.e. the number of states in the support of probabilistic

224

13.2. System Specification and Quantitative Analysis

transitions. For all strict submodels and its corresponding notion of bisimilarity, we have pro-
vided algorithmic reduction techniques that lead to normal forms that are minimal with respect
to each of the three metrics. For Markov automata in combination with weak distribution bisim-
ilarity, we have shown that a reduction in the number of states and in the number of transitions
is only possible at the cost of an non-minimum fanout, and vice versa.

Generalized Stochastic Petri Net Semantics We have presented a semantics for
GSPN based on MA and weak distribution bisimilarity that is a conservative extension of the
standard semantics, but extends to arbitrary GSPN, including so called confused nets. Applying
weak distribution bisimilarity recovers the original CTMC semantics whenever the latter exists.
It allows to explain the phenomenon of confusion in terms of internal non-determinism.

13.2. System Specification and Quantitative
Analysis

Markov Automata for System Specification. This thesis has developed the foun-
dational aspects of Markov automata. The importance of our investigations is underlined by the
fact that Markov automata are a very expressive model. This makes them applicable in a wide
range of industrial and business contexts, for instance as the semantic underpinning of modelling
standards and tools, such as the Architectural Analysis and Design Language (AADL) [FG12;
Boz+09c; Boz+11], dynamic fault trees [BBB92; BCS10; BCS07b; BCS07a; KK15; Bäc+16], or
Generalized Stochastic Petri Nets (Chapter 12).

The compositionality properties established in Part II of this thesis (first published
in [EHZ10a]) make it possible to design expressive process algebraic languages that can then
be used as assembly languages for more high-level formalisms. Indeed, in parallel to our founda-
tional investigations on Markov automata, the Markov Automata Process Algebra, MAPA, has
been coined by Timmer [Tim13], exploiting compositionality in a very elegant and far reaching
manner. The MAPA language is at the core of the MAMA and SCOOP tool family [Tim+12;
Guc+13]. Generalized Stochastic Petri Nets can be transformed into MAPA by means a tool
component called GEMMA [Bam12]. This tool family demonstrates convincingly that the base
theory ofMarkov automata can be wrapped into very practical and useable modelling approaches.
In fact, SCOOP applies a variety of state space reduction techniques during a fully compositional
model construction, in order to make sure that the intermediate models and the finally resulting
Markov automata are of tractable size.

Markov Automata for Quantitative Analysis. While models of systems are in
itself of value as engineering artefacts when designing complex systems, their true value lies in
model-based analysis. The core analysis technique for models akin to Markov automata is stochas-
tic model checking [Bai+10]. In the stochastic model checking approach, properties of models
are analysed based on a deep algorithmic inspection of the model. These properties are usually
defined by means of a temporal logic. Especially logics like Probabilistic Computation Tree
Logic (PCTL) [HJ94; BA95] or Continuous Stochastic Logic (CSL) [Bai+03a; ZN10] are used.
Indeed, it is possible to combine and lift these logics to the setting of Markov automata [HH12],

225

13. Conclusion

and the corresponding algorithms for model checking can be lifted as well. This yields a mod-
elling and analysis framework where system models and desirable system properties are specified
on the same level of abstraction, and submitted to a Markov automata model checker for their
quantitative analysis. This approach has been implemented in the IMCA [Guc+13; GTB14;
Guc+14] model checker, which can be used as a backend for the MAMA toolset mentioned
above. This approach has also been extended, so as to be able to deal with cost annotations at
states and transitions of the Markov automaton, leading to so called Markov reward automata
(MRA). In this way, it is possible to express and quantify complex properties relating resource
consumption, financial investments, profit and the like.
It is worthwhile to mention that the analysis, albeit being a quantitative analysis, can not

be based on quantifying the probability of certain events to happenx. This is because non-
determinism is a core feature of Markov (reward) automata. We stipulate that such probabilities
depend on the resolution of non-determinism. Rather than considering, e.g., the probability
to reach a state (i.e., a marking), it is common to instead determine minimum and maximum
reachability probabilities.
The base algorithmic challenges faced when model checking of Markov (reward) automata

have received dedicated attention. They can roughly be split into the following categories.

Long-run average objectives Long-run analyses usually treat the time horizon of the analysis
to be infinite. They then look at the average behaviour in the limit. In this way, average re-
source consumptions, average profit increases, or average time spendings can be computed.
The base algorithm [Guc+14] to solve this problem first identifies all maximal end com-
ponents C of the MRA and then analyses each of the C in isolation, and finally combines
these results with a stochastic shortest path analysis performed for each C. The difficult
step is the isolated analysis of each of the components, for which linear programming is
used. As an alternative, there is a very recent and much more efficient approach which
views an MRA as a compact encoding of a potentially exponentially larger continuous-
time Markov decision process (CTMDP) and exploits this insight for a drastically more
efficient and scaleable long-run average analysis [BWH17], based on relative value iteration
and dynamic programming.

Time bounded objectives Time-bounded analysis relates to a class of very natural problems,
imposing a finite time horizon as a bound, and studying the model behaviour up to this
bound. Typical quantities of interest are time-bounded reachability probabilities. The
basic approach to timed analysis for Markov automata is a generalization of the analysis
for IMC [ZN10]. The problem can be cast into the ERR framework [Hat16] discussed
next, and so the results discussed there apply as well.

Expected ressource bounded reward The problem of computing expectations of reward ac-
cumulation in the presence of resource bounds is a very general problem formulation
that for finite time horizons admits a uniform treatment of many important prob-
lems [Hat+15; Hat16]. Central to this analysis is the problem of computing the optimal
expected resource-bounded reward (ERR), in a setting supporting transient, instantaneous
and final reward collection as well as transient resource consumption. The state-of-the art
in this context is marked by a stable approximation scheme with a strict error bounds to
solve the problem in an efficient way [Hat16].

This brief overview demonstrates that quantitative analysis of Markov automata is a very ac-
tive field of research. A variety of case studies and examples have been studied in this context

226

13.3. Open Challenges and Further Work

[Tim13; Hat16; BWH17], ranging from stochastic job-shop scheduling problems, to a depend-
ability study of a fault tolerant workstation cluster and a performance analysis of file system used
at Google. Furthermore model simplification and compression techniques have been developed
for Markov (reward) automata [Tim13; Bra16], so as to make the Markov automaton model
checking approach scale to larger and more complex problem settings.
As a whole, these activities witness that the conception of Markov automata, which is rounded

off with this thesis, has captured the scientific pulse of time.

13.3. Open Challenges and Further Work
The findings of this thesis give way to various new challenges and further research directions.

Diversifying Bisimilarity While the overall setup of weak distribution bisimulation is
very much driven by the requirements initially put forward, certain aspects of it still leave room
for variation. One aspect concerns the way timed self-loops are treated. [Bra02] defines a varia-
tion of bisimulation for IMC that is slightly coarser than the original definition of [Her02], and
treats timed self-loops differently. This change appears to be orthogonal to our considerations
and we believe that also our bisimilarities can be adapted similarly.
Another aspect is the treatment of divergence, i.e. the ability to perform an infinite sequence

of internal transitions. In the context of stochastic time this phenomenon is called Zenoness,
it allows an infinite number of actions to occur in finite time. We have shortly discussed this
phenomenon in Section 12.4.2. The way divergence is treated currently is inherited from weak
IMC bisimulation. Other approaches of dealing with divergence seem possible, but is yet to be
investigated. The axiomatic perspective on possible alternatives is discussed in [LDH05].

Finer GSPN semantics More specifically for the purpose of providing a semantics for
GSPN, weak distribution bisimilarity is arguably too coarse in some respects and abstracts pos-
sibly important information specific to GSPN. For instance, we have not considered the preser-
vation (by the notion of weak bisimulation) of more detailed marking information such as the
exact token occupancy in a place. It is, however, straightforward to include this information by a
simple extension of weak bisimulation that respects a certain state labelling, and this is fairly rou-
tine [Des+10; Bai+03b]. The same is true for other reward structures—except rewards attached
to immediate transitions, which are more involved to handle.

Completing Completeness The axiomatization we have provided in Chapter 9 only
addresses the recursion-free fragment of MA processes. While we conjecture that the axiomatiza-
tion can be extended to recursive processes, we have failed to establish a proof of completeness.
We have discussed the problems that arise in Section 9.5, together with various routes we have
explored in vain.

Polynomial-Time Decision Algorithm The decision algorithm for weak distribution
bisimilarity, which we have provided in Chapter 10, has exponential time-complexity. This is
rooted in our current inability to establish – or refute – the result that both the partition refine-
ment and the computation of the set of preserving transitions can be computed at the same time.
Currently, we need to have the set of preserving transitions guessed by an oracle beforehand,

227

13. Conclusion

and then verify it during the partition refinement loop. In the worst-case, the (albeit systematic)
guessing takes an exponential number of tries. Once a more targeted polynomial approach of
computing the set of preserving transitions is found, the whole algorithm will become polyno-
mial in its time-complexity, and this carries over to the minimization algorithm.

228

Appendix

229

A. Alternative Definition of Weak
(Hyper)Transitions

A few proofs in this thesis, whose lemmas focus on properties of weak (hyper)transitions, are
based on a different formalization as the one given in the main part of the thesis, namely proba-
bilistic execution ([Seg95]). In [Bre13] it has been shown that the formalizations are effectively
equivalent. The reason why two variants appear in this thesis is that for different proof ap-
proaches the definitions are (subjectively) differently well-suited.

Transitions. A transition tr = (s, a, µ) ∈ , also denoted by s a µ, is said to leave
from state s, to be labelled by a, and to lead to µ, also denoted by µtr . We denote by src(tr) the
source state s, by act(tr) the action a, and by trg(tr) the target distribution µ. We also say that s
enables action a, that action a is enabled from s, and that (s, a, µ) is enabled from s. Finally, we
denote byD(s) the set of transitions enabled from s, i.e.,D(s) = { tr ∈ | src(tr) = s }, and
similarly by D(a) the set of transitions with action a, i.e., D(a) = { tr ∈ | act(tr) = a }.

Weak Transitions. An execution fragment of a PA A is a finite or infinite sequence of alter-
nating states and actions α = s0a1s1a2s2 . . . starting from a state s0, also denoted by first(α),
and, if the sequence is finite, ending with a state denoted by last(α), such that for each i > 0

there exists a transition (si−1, ai, µi) ∈ such that µi(si) > 0. The length of α, denoted by
|α|, is the number of occurrences of actions in α. If α is infinite, then |α| = ∞. Denote by
frags(A) the set of execution fragments of A and by frags∗(A) the set of finite execution frag-
ments ofA. An execution fragment α is a prefix of an execution fragment α′, denoted by α ⩽ α′,
if the sequence α is a prefix of the sequence α′. The trace trace(α) of α is the sub-sequence of
external actions of α; we denote by ϵ the empty trace. Similarly, we define trace(a) = a for
a ∈ E and trace(τ) = ϵ.

A scheduler for a PA A is a function σ : frags∗(A) → Subdist() such that for each finite
execution fragment α, σ(α) ∈ Subdist(D(last(α))). Note that by using sub-probability distri-
butions, it is possible that with some non-zero probability no transition is chosen after α, that
is, the computation stops after α. A scheduler is determinate [CS02] if for each pair of execution
fragments α, α′, if trace(α) = trace(α′) and last(α) = last(α′), then σ(α) = σ(α′). A sched-
uler is Dirac if for each α, σ(α) is a Dirac distribution. Given a scheduler σ and a finite execution
fragment α, the distribution σ(α) describes how transitions are chosen to move on from last(α).
A scheduler σ and a state s induce a probability distribution µσ,s over execution fragments as
follows. The basic measurable events are the cones of finite execution fragments, where the cone
of α, denoted by Cα, is the set {α′ ∈ frags(A) | α ⩽ α′ }. The probability µσ,s of a cone Cα is

231

A. Alternative Definition of Weak (Hyper)Transitions

recursively defined as:

µσ,s(Cα) =

0 if α = t for a state t ̸= s,

1 if α = s,

µσ,s(Cα′) ·
∑

tr∈D(a) σ(α
′)(tr) · µtr (t) if α = α′at.

Standard measure theoretical arguments ensure that µσ,s extends uniquely to the σ-field gener-
ated by cones. We call the resulting measure µσ,s a probabilistic execution fragment of A and we
say that it is generated by σ from s. Given a finite execution fragment α, we define µσ,s(α) as
µσ,s(α) = µσ,s(Cα)·σ(α)(⊥), where σ(α)(⊥) is the probability of terminating the computation
after α has occurred.

We say that there is a weak combined transition from s ∈ S to µ ∈ Dist(S) labelled by
a ∈ Actχ, denoted by s

a
==⇒c µ, if there exists a scheduler σ such that the following holds for the

induced probabilistic execution fragment µσ,s:

1. µσ,s(frags
∗(A)) = 1;

2. for each α ∈ frags∗(A), if µσ,s(α) > 0 then trace(α) = trace(a)

3. for each state t, µσ,s({α ∈ frags∗(A) | last(α) = t }) = µ(t).

In this case, we say that the weak combined transition s
a

==⇒c µ is induced by σ.
We remark that trace(α) = trace(a) is equivalent to trace(α) = ϵ for a = τ and trace(α) = a

for a ∈ Actχ\{τ}. Moreover, the first two conditions can be equivalently replaced by µσ,s({α ∈
frags∗(A) | trace(α) = trace(a) }) = 1.

Given a set of allowed transitions Ǎ ⊆ , we say that there is an allowed weak combined
transition [HT12] from s to µ with label a respecting Ǎ, denoted by s

a⇂Ǎ
===⇒c µ, if there exists a

scheduler σ inducing s a
==⇒c µ such that for each α ∈ frags∗(A), Supp(σ(α)) ⊆ Ǎ.

Albeit the definition of weak combined transitions is somewhat intricate, this definition is
just the obvious extension of weak transitions on labelled transition systems to the setting with
probabilities. See [Seg06] for more details on weak combined transitions.

Example A.1. As an example of weak combined transition, consider the probabilistic automa-
ton depicted in Fig. A.1 and the probability distribution µ = {(: 3

4), (5 : 1
4)}. It is immedi-

ate to verify that the weak combined transition 1
τ

==⇒c µ is induced by the Dirac determinate
scheduler σ defined as follows: σ(1) = δ(tr1), σ(1 τ 2) = δ(tr2), σ(1 τ 3) = δ(tr3),
σ(1 τ 2 τ 4) = σ(1 τ 3 τ 4) = δ(tr4), and σ(α) = δ(⊥) for each other finite execution frag-
ment α. If we consider all transitions but tr2 as allowed transitions Ǎ, then there is no scheduler
inducing 1

τ⇂Ǎ
===⇒c µ. In fact, using this set of allowed transitions, the maximal probability of

reaching from 1 is 1
4 by the execution fragment 1 τ 3 τ 4 τ . ◁

We say that there is a weak (allowed) hyper transition from ρ ∈ Subdist(S) to µ ∈ Subdist(S)

labelled by a ∈ Actχ, denoted by ρ
a

==⇒c µ (ρ a⇂Ǎ
===⇒c µ), if there exists a family of (al-

lowed) weak combined transitions {s a
==⇒c µs}s∈Supp(ρ) ({s a⇂Ǎ

===⇒c µs}s∈Supp(ρ)) such that
µ =

⊕
s∈Supp(ρ) ρ(s) · µs.

232

1

2

3

4

5

6
τ

τ

τ

τ

τ

τ

c c

τtr1

1
2

1
2

tr2

tr3

1
2

1
2

tr4

tr5
1
4

3
4

Figure A.1.: A probabilistic automaton

Usage Summary. The probabilistic execution approach of defining transitions only ap-
pears in the appendix and is used in the proofs of Lemma D.11, Lemma D.12, Lemma D.15,
Lemma 11.4 and Definition D.3.

233

B. Proofs of Chapter 5

B.1. Lemma 5.1
Definition 5.7 and 5.8 agree.

Before we proceed with the proof of the lemma, we introduce helpful lemmas.

Lemma B.1. Let si, s′i and ti, t
′
i for i = 1, 2, 3, . . . , n be states for an odd number n. For each

i = 1, 2, . . . n − 1 they satisfy si ==⇒ ti and ti ≈IMC t′i and t′i ==⇒ s′i+1 and s′i+1 ≈IMC si+1. And
furthermore, s′n ≈IMC s1 = sn.

Then s1 ≈IMC t2.

Note that we can generalize this lemma easily to the case where n is even by formally by
duplicating the last state. As s ==⇒ s for every s and also s ≈IMC s, we can satisfy the premise of
the lemma.

Proof. As s1 ==⇒ t1, it is obvious that whatever behaviour t1 exhibits according to Definition 5.7,
s1 can mimic it weakly by first transitioning to t1 and then repeating its behaviour exactly up
to I, and thus also up to ≈IMC. If we can now show that t1 must be able to accordingly mi-mick
every behaviour of s1 weakly up to ≈IMC. Then, it follows easily that {(s1, t2)}∪ ≈IMC is a weak
IMC bisimulation. As ≈IMC is the largest weak IMC bisimulation, it must already contain (s1, t1).
Hence assume that s1

a
==⇒ s′ with a ∈ Act. Then,

• as s1 ≈IMC s′n by assumption, s′n
a

==⇒ ŝ′n and s′ ≈IMC ŝ′n for some ŝ′n.

• Then, as t′n−1 ==⇒ s′n, clearly also t′n−1 ==⇒ ŝ′n.

• As t′n−1 R tn−1, also tn
a

==⇒ t̂n−1 for some t̂n−1 and t̂n−1 ≈IMC ŝ′n. By transitivity of ≈IMC,
also t̂n−1 ≈IMC s′.

We can repeat exactly these arguments with decreasing indices until we reach t1, which establishes

the claim. The case that s1
χ(r)
===⇒ µ follows completely analogously, as well as the final weak

stability condition.

Lemma B.2. Let A = (S, s̄,Act, ,). Let µ1 and µ2 be two distributions over S. If

∃µ′
2 : µ2 ==⇒c µ

′
2 ∧ µ1 L(≈IMC) µ

′
2

and accordingly

∃µ′
1 : µ1 ==⇒c µ

′
1 ∧ µ2 L(≈IMC) µ

′
1.

Then µ1 L(≈IMC) µ2.

235

B. Proofs of Chapter 5

Proof. Let [s] denote the equivalence class of s with respect to ≈IMC.
It suffices to show that µi L(≈IMC) µ

′
i for i ∈ {1, 2}. By symmetry, it suffices to consider the

problem for i = 1. Let µ1 := µ1 and µ2 := µ′
1.

We first note that as ≈IMC is a weak IMC bisimulation, it is straightforward to derive that when-
ever µ L(≈IMC) µ

′ and µ ==⇒c γ then also µ′ ==⇒c γ
′ for some γ′ and γ L(≈IMC) γ

′.

Coming back to the proof, recall that we have just said that whenever µ L(≈IMC) µ
′ and µ ==⇒c γ

then also µ′ ==⇒c γ′ for some γ′ and γ L(≈IMC) γ′. With this we can conclude that from
the premises of the lemma it follows that µ1 ==⇒c µ2 ==⇒c µ3 ==⇒c µ4 ==⇒c µ5 . . . with
µ1 L(≈IMC) µ

3 L(≈IMC) µ
5 . . . and µ2 L(≈IMC) µ

4 L(≈IMC) µ
6 As our state space is finite, each

state can thus only reach a finite number of different states. Thus, only finitely many different
distributions µk with k ∈ {1, 2, 3, 4, . . . } can exist. Hence, for some k, k′ ∈ N with k′ > k we
have µk = µk′

. If k have different parity we are done. To see this, that without loss of generality,
k is odd and k′ is even. Then µ1 L(≈IMC) µ

k = µk′ L(≈IMC) µ
2. Now assume they have the same

parity. Without loss of generality, assume k is odd and pick any even number k < l < k′. Then
µk ==⇒c µl and µl ==⇒c µk must hold and furthermore, µk L(≈IMC) µ1 and µl L(≈IMC) µ2. If
we can now show that µk L(≈IMC) µl, we are done. Thus, it suffices to show that for arbitrary
distributions µ and µ′ over states it holds that

if µ ==⇒c µ
′ and µ′ ==⇒c µ then µ L(≈IMC) µ

′.

Let C and C′ be two different equivalence classes of S/≈IMC . We write C ⇝ C′ if µ(C) > 0
and there is a state s in C ∩ Supp(µ) such that within the transition µ ==⇒c µ′, s reaches a state
t ∈ C′ with non-zero probability. More formally, to one of the weak hyper transitions of µ that
constitute the weak combined hyper transition to µ′, the state s contributes the weak transition
s ==⇒ t. Intuitively, C ⇝ C′ denotes that some probability mass of C is converted into mass of
C′ when µ ==⇒c µ

′. We write C ⇝′ C′ if the above holds with the roles of µ and µ′ exchanged.
From these definitions, we can derive that if for no single class C there exists C′ such that

C ⇝ C′, then µ L(≈IMC) µ′. Now assume the contrary, and let C ⇝ C′, and assume that
C′ ̸⇝′ and C′ ̸⇝. This means that neither in the transition µ ==⇒c µ′ nor in the transition
µ′ ==⇒c µ states contained in C′ transition to a state of another class. Thus, it must by the case
that µ(C′) ≥ µ′(C′) and µ′(C′) ≥ µ(C′), as in every transition it can only be the case that C′ gains
probability mass. As a consequence µ(C′) = µ′(C′). At the same time, as C ⇝ C′, it must be
the case that µ′(C′) > µ(C). A contradiction. Thus, it cannot be the case that C′ ̸⇝ and C′ ̸⇝′

for any class C′ that has an incoming flow. As a consequence, there must be a infinite sequence
of classes Ci such that Ci ⇝ Ci+1 or Ci ⇝′ Ci+1. As we have a finite state space, there must
exist indices i, j with i > j and Ci = Cj . For a convenient notation, let D1 := Ci, D2 := Ci+1

and so on, ending with Dn := Cj , where n := j − i+ 1. By the definition of ⇝ and ⇝′, this
implies that for every i ∈ {1, . . . , n − 1} there must exist states si ∈ Di, si+1 ∈ Di+1 such
that si ==⇒ si+1. Finally, there must also exist a state sn ∈ Dn with sn ==⇒ s′n with s′n ∈ D1.
By Lemma B.1, this immediately implies that s1 ≈PA s2, which in turn implies that D1 = D2.
However, this is a contradiction to the definition of⇝ and⇝′.

Hence, we arrive at a contradiction as soon as we assume that there exists a class C with C ⇝.
Hence, µ L(≈IMC) µ

′.

Proof of the Lemma. We show that ≈IMC satisfies the conditions of Definition 5.8, and is thus a
bisimulation in that sense. Furthermore, we show that every bisimulation satisfying the condi-
tions of Definition 5.8 also satisfies Definition 5.7.

236

B.1. Lemma 5.1

The first condition of the two definitions only differs by the use of combined weak transitions.
As every non-combined weak transition is also a combined transition, it is obvious that every
weak IMC bisimulation satisfies the conditions of the lemma. Now assume that s a−−→ s′ and
t

a
==⇒c µ and δ(s′) L(R) mu. The last statement implies that for every t′ ∈ Supp(µ) it holds

that s′ R t′. Now, in an IMC, the weak transitions of which the weak combined transition from
t is composed of, must all end in Dirac distributions. Hence, for an arbitrary t′ ∈ Supp(µ) we
can derive that t a

==⇒ t′ and s′ R t′.
It is easy to see by the laws of logic that the third clause of Definition 5.7 follows immediately

from the second clause of Definition 5.8.
Only the second clause remains to be considered. First, recall that ≈IMC is a weak IMC bisimula-

tion as given by Definition 5.7 by Theorem 5.2, i.e. it satisfies

s
χ(r)−−−→ µ for some r ∈ R≥0 implies t

χ(r)
===⇒c γ for some γ and µ L(≈IMC) γ.

We now show that it also satisfies

s↓ implies t ==⇒ t′ and t′↓ for some t′ and∑
(s,x,s′)∈(∩ S×R>0×C)

x =
∑

(t′s,x,t′′)∈(∩ S×R>0×C)

x.

Observe that the notation s
χ(r)−−−→ µ implies that s↓, and t

χ(r)
===⇒c γ implies that t ==⇒ t′ for

some t′ with t′↓ and t′
χ(r)−−−→ ◦ ==⇒c γ. The first observation follows immediately from the

definitions. For the second observation, we use the fact that whenever s ==⇒c µ then s ==⇒ s′

for every s′ ∈ Supp(µ) in an IMC. Obviously, these observations satisfy the statements in the
first line of the second clause concerning stability.
For the rest, consider that if t ==⇒ t′↓, then also s ≈IMC t′, as s ≈IMC t by assumption and

since s↓, s must match the transition of t directly. The distributions µ1 and µ2 that s and t

reach respectively via
χ(r)−−−→ are unique. Thus, s

χ(r)−−−→ µ1 and t
χ(r)−−−→ µ2. Furthermore, by

the bisimulation condition, there must exist µ′
1 such that µ1 ==⇒c µ′

1 and µ′
1 L(≈IMC) µ2, and

accordingly, there must exist µ′
2 such that µ2 ==⇒c µ′

2 and µ1 L(≈IMC) µ
′
2. By Lemma B.2, this

implies that already µ1 L(≈IMC) µ2. However, this condition obviously implies∑
(s,x,s′)∈(∩ S×R>0×C)

x =
∑

(t′s,x,t′′)∈(∩ S×R>0×C)

x

for every class C, and thus also for a fixed class, as demanded by Definition 5.8.

It remains to show that any bisimulation R according to Definition 5.8 satisfies the second con-
dition of Definition 5.7. The only challenge is to show that if t ==⇒ t′↓ in order to satisfy∑

(s,x,s′)∈(∩ S×R>0×C)

x =
∑

(t′s,x,t′′)∈(∩ S×R>0×C)

x

for a fixed class C, then exactly the same state t′ is also suited to satisfy the equation for an
arbitrary other class C′. To see this, it suffices to show that actually s R t′, since then t′ has to

237

B. Proofs of Chapter 5

be able to satisfy this equation immediately, as it cannot perform any further τ transitions. Now
s R t′ follows as s R t and t ==⇒ t′ implies that s ==⇒ s′ and s′ R t′, but by assumption, s′↓ and
thus s = s′.

238

C. Proofs of Chapter 7

C.1. Lemma 7.5
Let A = (S, s̄,Act, ,) be a Markov automaton. Let ⟨γi⟩i∈N and ⟨γ′

i⟩i∈N be sequences of
distribution over S. Let furthermore

(a) ⟨γi⟩i∈N −→ γ for some distribution γ, and

(b) γi
a

==⇒c γ
′
i.

Then, there exists a distribution γ′ such that

(A) ⟨γ′
j⟩j∈J −→ γ′ for some subsequence ⟨γ′

j⟩j∈J with J ⊆ N, and

(B) γ
a

==⇒c γ
′.

Additionally, if each γ′
j satisfies γ′

j↓ for j ∈ J , then also γ′↓.

Proof. The following proof relies on our compactness assumption for Markov automata (cf.
Chapter 7) and Lemma 7.3 (i).

Assumptions (a) and (b) provide that ⟨γi⟩i∈N −→ γ for some distribution γ, and γi
a

==⇒c γ′
i

for each i ∈ N. As a preliminary step we show that then also γ
a

==⇒c. Assume the contrary, i.e.
there must exist a state s ∈ Supp(γ) with s ̸ a

==⇒ . Let ε = γ(s), and let γj denote a distribution
with d(γ, γj) < ε. Then, also s ∈ Supp(γ) must hold, because otherwise the absence of s
in Supp(γj) would at least provoke a difference of ε in the metric distance between the two
distributions, i.e. d(γ, γj) ≥ ε. This is clearly a contradiction to our choice of γj .

Now, that we know that γ is able to perform weak a-transitions, we will show that is can
simulate the a-transitions of each of the γi up to some small error. Whenever γi

a
==⇒c γ′

i, by
Lemma 4.3, we know that

γ′
i =

⊕
s∈Supp(γi)

γi(s)µ
′
s

for suitable distributions µ′
s, of which each satisfies s a

==⇒c µ′
s. From here we construct a weak

combined transition γ
a

==⇒c γ
′′
i of the distribution γ as follows: Let

γ′′
i =

⊕
s∈Supp(γ)

γ(s)γ′
s

where for each state s ∈ Supp(γ) the distribution γ′
s is either

• µ′
s if s ∈ Supp(γi), or

239

C. Proofs of Chapter 7

• some arbitrary distribution ρ satisfying s a
==⇒c ρ.

By the construction of γ′′
i , it follows that

d(γ′
i, γ

′′
i) ≤ d(γi, γ). (C.1)

By Lemma 7.3 (i), there is a converging subsequence ⟨γ′′
i ⟩i∈J . We then choose the distribution γ′,

whose existence we want to prove (conclusion (B)), to be the limiting distribution of ⟨γ′′
i ⟩i∈J ,

i.e.

⟨γ′′
j ⟩j∈J −→ γ′. (C.2)

Now, we establish that γ′ indeed satisfies all desired properties:

1. By the compactness assumption for Markov automata and by Corollary 7.1, from γ
a

==⇒c

γ′′
j and Equation C.2, it immediately follows that γ a

==⇒c γ′. This establishes conclu-
sion (B) of the lemma.

2. As d(γ′
i, γ

′′
i) ≤ d(γi, γ) (Equation C.1) and ⟨γi⟩i∈N −→ γ (assumption (a)), also

d(γ′
i, γ

′′
i) −→ 0.

This and Equation C.2 together immediately imply

⟨γ′
j⟩j∈J −→ γ′. (C.3)

Hence, ⟨γ′
j⟩j∈J is the subsequence we sought to establish conclusion (A) of the lemma.

For the additional condition, assume P(γ′
j). Due to Equation C.3, every state s ∈ Supp(γ′)

must also be a state of Supp(γ′
k) for some γ′

k. Because otherwise, d(γ′, γ′
k) ≥ γ′(s) for all k,

which is a contradiction to γ′ being the limiting distribution. As every state s ∈ Supp(γ′
j) must

satisfy P(s) (as P(γ′
j)), hence also P(γ′).

C.2. Lemma 7.6
Let A = (S, s̄,Act, ,) be a Markov automaton. Let ⟨γi⟩i∈N and ⟨γ′

i⟩i∈N be sequences of
distribution over S. Let furthermore

(i) ⟨γi⟩i∈N −→ γ for some distribution γ, and

(ii) γi
a

==⇒c ξi for some ξi, and

(iii) γ
a

==⇒c γ
′.

Then, there exist distributions γ′
i such that

• γi
a

==⇒c γ
′
i, and

• ⟨γ′
j⟩j∈J −→ γ′ for some subsequence ⟨γ′

j⟩j∈J with J ⊆ N.

In addition: if γ ==⇒c γ
′ is a finitary transitions, also all γi

a
==⇒c γ

′
i are finitary transitions.

240

C.2. Lemma 7.6

Proof. When γ
a

==⇒c γ
′, we know by Lemma 4.3 that

γ′ =
⊕

s∈Supp(γ)

γ(s)µ′
s

for suitable distributions µ′
s, of which each satisfies s a

==⇒c µ
′
s for some µ′

s. By Precondition (ii)
of the lemma, we know that each distribution γi can perform a finitary transition with action
label a to some distribution ξi. This implies that each state s ∈ Supp(γi) can perform some
finitary weak transition s

a
==⇒c γ

′
s (⋆). We claim, that each of the distributions γi can perform a

weak combined transition γi
a

==⇒c γ
′
i where

γ′
i =

⊕
s∈Supp(γ)

γi(s)γ
′
s

where for each state s ∈ Supp(γ) the distribution γ′
s is either

• µ′
s if s ∈ Supp(γ), or

• γ′
s, otherwise.

By the construction of γ′
i, it follows that

d(γ′, γ′
i) ≤ d(γi, γ).

As d(γ′, γ′
i) ≤ d(γi, γ) and ⟨γi⟩i∈N −→ γ, also d(γi, γ) −→ 0, and hence

d(γ′, γ′
i) −→ 0 and therefore⟨γ′

i⟩j∈N −→ γ′

The additional property concerning preservation of finitary transitions follows immediately
from the construction and (⋆).

241

D. Proofs of Chapter 8

D.1. Lemma 8.5
The proof of this lemma makes use of another variant of weak challenger weak distribution
bisimulation, finitary transitions weak challenger weak distribution bisimulation. This variant is
defined exactly as weak challenger weak distribution bisimulation, with the restriction, that in
each condition the transition of the challenger may only be finitary.

Lemma D.1. In weakly image-finite MA, every finitary transitions weak challenger weak distri-
bution bisimulation is contained in some weak challenger weak distribution bisimulation.

Proof. Let R be a finitary transitions weak challenger weak distribution bisimulation. Let ∞(µ)
be the set of all distributions µ′ that are reachable by an infinitary hyper-transition of the distri-
bution µ. More formally, let µ′ be an element of∞(µ) if and only if µ a

==⇒c µ
′ with an infinitary

transition and arbitrary action a.
We now construct a binary relation R′ ⊇ R that we will show to be a weak challenger weak

distribution bisimulation. We let R′ contain the pair (µ′, γ′) if and only if (µ′, γ′) ∈ R or

1. there exists a convergent sequence ⟨µi⟩i∈N with limiting distribution µ′, and

2. there exists a convergent sequence ⟨γ⟩i∈N with limiting distribution γ′, and

3. µi R γi for each i ∈ N.

We call the infinite sequences of distributions the witness sequences of (µ′, γ′). Note that it might
be the case that a single pair has several witness sequences or distributions.

It remains to show that R′ is a weak challenger weak distribution bisimulation. We proceed
by a case distinction between the pairs in R′ that are contained in R, and the additional pairs
that are unique to R′.

Case 1 Let µ R′ γ because µ R γ. Each of the three bisimulation conditions is met immediately
for finitary challenger transitions, sinceR ⊆ R′. Thus, we focus our attention to infinitary
transitions.
The proof is structured according to the three bisimulation condition of Definition 8.9.

Condition (a) We assume that µ a
==⇒c µ

′ and µ′ ∈ ∞(µ′) for some action a and distribu-
tion µ′.
Case 1.1 First assume that a = τ . We now construct a sequence ⟨µi⟩i∈I limiting

distribution µ′ satisfying µ ==⇒c µi for each i ∈ I . Basically, we take the original
transition tree inducing µ ==⇒c µ′ and “cut” it at level i. The µi are then the
distributions induced by the cut transitions trees. Formally, if T is the transition
tree of our original transition, we define the cut transition tree Ti by letting

243

D. Proofs of Chapter 8

dom(Ti) = {σ ∈ dom(T) | |σ| ≤ i }, for all inner nodes σ letting Ti(σ) = T (σ)
and for all leave nodes σ, letting

StaTi(σ) = StaT (σ)
ProbTi(σ) = ProbT (σ)
ActTi(σ) = ⊥

Since µ R γ, for each µi there must exists a γi with γ ==⇒c γi and µi R γi. By
Lemma 7.3 (ii), it follows that there is an infinite subset J of I such that ⟨γi⟩i∈J

has a limiting distribution γ′. By definition µ′ R γ′. This suffices to establish
Condition (a) for the case a = τ .

Case 1.2 Now assume a ̸= τ . Again, we proceed by a case distinction.

Case 1.2.1 Assume, that there exists µ′′ /∈ ∞(µ) and µ′′′ with µ ==⇒c µ′′ a−−→
µ′′′ ==⇒c µ′. In words, this means that the infinitary transition of µ has
a transition tree that is finitary up to the point where action a occurs, and
becomes infinitary only afterwards. In this case, also µ′′′ /∈ ∞(µ). Then,
since µ R γ, it immediately follows that there is γ′′′ with γ

a
==⇒c γ′′′ and

µ′′′ R γ′′′. Now, by assumption µ′′′ ==⇒c µ′ and µ′ ∈ ∞(µ′′′). It remains
to show that also γ′′′ ==⇒c γ′ for some γ′ and µ′ R′ γ′, since then we
could join the transition sequence of γ a

==⇒c γ
′′′ ==⇒c γ

′ into one transition
γ

a
==⇒c γ′, which suffices to prove this case. The existence of such a γ′

however immediately follows from the Case 1.1, since µ′′′ R γ′′′.

Case 1.2 We again rewrite µ a
==⇒c µ

′ as µ ==⇒c µ
′′ a−−→ µ′′′ ==⇒c µ

′. However
this time, let µ′′ ∈ ∞(µ). This means that the transition of µ is infinitary
already before action a occurs. By the already proven Case 1.1, we know
that there exists γ′′ such that γ ==⇒c γ

′′ and µ′′ R′ γ′′. If we can now show
that the infinitary transition µ′′ a

==⇒c µ
′ can be matched by γ′′, we are done

by combining transitions again. The proof of this fact will follow in Case 2.4
below.

Case 1.2.3 We now assume that both µ′′ and µ′′′ are contained in ∞(µ). This
case is a combination of the two cases before. We skip the details here.

Condition (b) For Condition (b), let µ ==⇒c µ
a ⊕p µ

b for some distributions µa and µb

with µa ⊕p µ
b ∈ ∞(µ).

Let ⟨µi⟩i∈N be a convergent infinite sequence of distributions with limiting distribu-
tion µ′ satisfying µ ==⇒c µi for each i ∈ N. We have already argued that such a se-
quence exists in Case 1.1. Now, in addition, we demand that for each µi there exists a
splitting µa

i ⊕pi
µb
i such that ⟨µa

i ⟩i∈N has limiting distribution µa and ⟨µb
i ⟩i∈N has lim-

iting distribution µb and ⟨pi⟩i∈N has limit p. Constructing such splittings is straight-
forward: For every state s ∈ Supp(µa)∩Supp(µi), we let µa

i (s) = min(µa(s), µi(s)),
and let µb

i = µi⊖µa
i . Furthermore, we choose pi = p for each i ∈ N.

As in the last case, since µ R γ, with Condition (b), for each µi exists γi with
γ ==⇒c γi and γi has a splitting γa

i ⊕pi γ
b
i such that µa

i R γa
i and µb

i R γb
i . We thus

have two infinite sequences ⟨γa
i ⟩i∈N and ⟨γb

i ⟩i∈N. Applying Lemma 7.3 (ii) two times
in sequence, we obtain an infinite subset J of N such that both sequences ⟨γa

i ⟩i∈J and

244

D.1. Lemma 8.5

⟨γb
i ⟩i∈J have limiting distributions γa and γb, respectively. In summary, this suffices

to show µa R′ γa and µb R′ γb. By the compactness assumption and Corollary 7.1
furthermore γ ==⇒c γ

a ⊕p γ
b follows, which ends this case.

Condition (c) For Condition (c), assume µ ==⇒c µ
′ and µ′↓. With an argument as in the

Case 1.1, there must exist a converging sequence ⟨µi⟩i∈N with limiting distribution
µ′ and µ ==⇒c µi for each i ∈ N. We split every µi into µ↓

i ⊕pi µ′
i, where µ↓

i

has only stable states in its support, while µ′
i only unstable states. Since µ R γ,

and since µ ==⇒c µ↓
i ⊕pi

µ′
i is a finitary transition, there must exist γ↓

i ⊕pi
γ′
i with

µ ==⇒c γ
↓
i ⊕pi γ

′
i and µ↓

i R γ↓
i . Using Condition (c), from there it follows that there

must exist γ↓
i

′
with γ↓

i

′
↓ and γ↓

i ==⇒c γ↓
i

′
. By combining the two weak transitions,

we obtain γ ==⇒c γ
↓
i

′
⊕pi

γ′
i.

Since µ′↓, the value sequence ⟨pi⟩i∈N must have limit 1. Since γ↓
i

′
↓, any limiting

distribution γ′ of any subsequence of ⟨γ↓
i

′
⊕pi

γ′
i⟩i∈N must also be stable, i.e. γ′↓! The

existence of such a subsequence and its limiting distribution γ′ follows by Lemma 7.3.
By the compactness property of MA and Corollary 7.1, we obtain γ ==⇒c γ′, which
ends the proof.

Case 2 Let µ R′ γ but not µ R γ. Then, by the definition of R′ there exist convergent
infinite sequences ⟨µi⟩i∈N and ⟨γi⟩i∈N with limiting distribution µ and γ, respectively,
and µi R γi for each i ∈ N.
The proof is again structured according to the three bisimulation condition of Defi-
nition 8.9.
Condition (a) Assume µ a

==⇒c µ
′. We distinguish several cases.

Case 2.1 Assume a = τ and µ′ /∈ ∞(µ). Since Lemma 7.6, there exist finitary
transitions µi ==⇒c µ′

i for each i ∈ N with ⟨µi⟩i∈N −→ µ′. Since the tran-
sitions are finitary, and since µi R γi, there exist transitions γi ==⇒c γ′

i for
each i ∈ N. By Lemma 7.3 (i), there exists an infinite index J ⊆ N such
that ⟨γ′

i⟩i∈J has a limiting distribution γ′. Note that since ⟨µi⟩i∈N has limit-
ing distribution µ′, also its subsequence ⟨µi⟩i∈J has limiting distribution µ′,
and thus, by definition, µ′ R′ γ′. It only remains to show that γ ==⇒c γ

′ to
finish our first case. This follow immediately from Lemma 7.5.

Case 2.2 Assume a = τ and µ′ ∈ ∞(µ). In principle, we can proceed as in the
last case. However, our construction of the transitions for each µi slightly
differs. Now, the transitions s ==⇒c µ′

s are not guaranteed to be finitary
transition anymore, which is crucial for the further proof. We construct a
finitary transition as follows. For each i ∈ N, we take the transition tree of
s ==⇒c µ′

s for each s, but cut it at a specific level, which we will determine
soon. Before, let us say that this yields a finitary transition s ==⇒c µ

′
(s,i) for

each s ∈ Supp(Supp())µi ∩ Supp(µ) and i ∈ N. As before, the distribu-
tion (

⊕
s∈T µi(s) · µ′

(s,i)) ⊕ (µ̄i) converges against µ′, if we guarantee that
d(µ′

s, µ
′
(s,i)) has limit 0. To ensure this, it suffices to cut the transition tree

for each i at level i, for instance.
Case 2.3 Assume a ̸= τ and µ

a−−→c µ′. First note that there may not exist
µ′
i such that µi

a−−→c µi in general, as there might exist states in Supp(µi) \

245

D. Proofs of Chapter 8

Supp(µ). Let hence µa
i be the subdistribution of µi containing all states of

Supp(µi) that are also in Supp(µ). Before we continue to work with µa
i , we

normalize it to a full distribution. Since µ a−−→c , also for each i,

µa
i

a−−→c ξi (D.1)

for some distribution ξi. Furthermore, as ⟨µi⟩i∈N −→ µ, it must be the
case that also ⟨µa

i ⟩i∈N −→ µ. Since the transition of Equation D.1 is clearly
finitary, by Lemma 7.6, there are distributions µ′a

i with µa
i

a
==⇒c µ

′a
i (with a

finitary transition) and ⟨µ′a
i ⟩i∈N −→ µ′. Since µi R γi, there exists distribu-

tions γa
i ⊕pi γ

b
i such that γi ==⇒c γ

a
i ⊕pi γ

b
i and µa

i R γa
i by Condition (b)

for R. By Lemma 7.3, there is an infinite index set J ⊆ N such that

⟨γa
i ⟩i∈N −→ γa (D.2)

for some distribution γa. Furthermore, as ⟨pi⟩i∈N −→ 1, also

⟨γa
i ⊕pi γ

b
i ⟩i∈N −→ γa (D.3)

From µa
i R γa

i and µa
i

a
==⇒c µ′a

i it follows that for some distribution γ′a
i ,

also γa
i

a
==⇒c γ

′a
i and µ′a

i R γ′a
i . By Lemma 7.3, there is a sequence ⟨γ′a

i ⟩i∈K

for some infinite subset K ⊆ J of N that has some limiting distribution γ′a.
By Corollary 7.1 and Equation D.2, also

γa a
==⇒c γ

′a. (D.4)

So far, the existence of the sequences ⟨µ′a
i ⟩i∈K and ⟨γ′a

i ⟩i∈K and the fact that
µ′a
i R γ′a

i for all i ∈ K, suffice to establish µ′ R′ γ′a.

It remains to show that γ a
==⇒c γ′a. By Lemma 7.5, γ ==⇒c γa. Together

with Equation D.4 and joining the weak hypertransitions, we obtain the
desired result.

Case 2.4 Assume a ̸= τ and µ
a

==⇒c µ′. Then there exist µ′′ and µ′′′ with
µ ==⇒c µ′′ a−−→c µ′′′ ==⇒c µ′. From Cases 2.1 and 2.2, we know that there
exists γ′′ such that γ ==⇒c γ′′ and µ′′ R′ γ′′. With Case 2.3, we derive that
there exists γ′′′ such that γ′′ a

==⇒c γ
′′′ and µ′′′ R′ γ′′′. Finally with Cases 2.1

and 2.2, we derive again that there exists γ′ with γ′′′ a
==⇒c γ′ and µ′ R′ γ′.

By joining the weak hypertransitions we finally obtain γ
a

==⇒c γ
′.

Condition (b) The proof for Condition (b) reiterates the same ideas as the proof
of Condition (a). The only difference is the initial argument, where we need
to make clear that if µ ==⇒c µa ⊕p µb and ⟨µi⟩i∈N −→ µ, we can then con-
struct transitions and splittings µi ==⇒c µ

a
i ⊕p µ

b
i such that ⟨µa

i ⟩i∈N −→ µa and
⟨µb

i ⟩i∈N −→ µb. We leave the details to the reader.
Condition (c) Again, the general proof idea follows the same technical detail. As

for Condition (b), only the initial argument is unique. Assume µ ==⇒c µ′↓ for
some µ′. Then as in the proof of Case 1.1, we construct transitions of the µi

246

D.1. Lemma 8.5

with ⟨µi⟩i∈N −→ µ as follows: for each i, we cut the infinite state transition tree
of µ ==⇒c µ

′ at level i. Call the distribution induced by this transition tree µ′
i By

construction, it is obvious that ⟨µ′
i⟩i∈N −→ µ′. Note that µ′

i↓ is not necessarily
satisfied for any i ∈ N. This situation is hence completely analogous to Case 2.3,
and can be shown following the ideas there.

D.1.1. Proof of Lemma 8.5
On weakly image-finite MA, two distribution µ and γ are weak distribution bisimilar if and only
if they are related by some weak challenger weak distribution bisimulation.

Proof. It is obvious that a weak challenger weak distribution bisimulation is also a weak distribu-
tion bisimulation, as we strengthen the conditions of the challenger in all of the three conditions.
In Condition (a’), we allow a weak combined transition instead of a strong transition transitions.
In Conditions (b’) and (c’), we add the ability to the challenger to perform an additional weak
combined internal hyper-transition.
For the proof of the other direction, i.e. that every weak distribution bisimulation is also a

weak challenger weak distribution bisimulation, we actually show in the following that every
weak distribution bisimulation is also a finitary transitions weak challenger weak distribution
bisimulation. We can then obtain the desired result by applying Lemma D.1.

In fact, weak distribution bisimulation is not a finitary transitions weak challenger weak distri-
bution bisimulation itself in general. However, we will show that each such bisimulation can
be amended by additional pairs of distributions, such that the amended relation is a finitary
transitions weak challenger weak distribution bisimulation, while remaining a weak distribution
bisimulation. More formally, we show that there exists a weak distribution bisimulation R′ sat-
isfying R⊆R′, that is also a finitary transitions weak challenger weak distribution bisimulation.
Concretely, we chooseR′ := R⊕. By Lemma 8.3,R′ is then also a weak distribution bisimula-

tion. For simplicity of notation, we assume R = R⊕ in the following without loss of generality.
Consider an arbitrary pair µ R γ. We first consider Condition (a) vs Condition (a’). We

will show that if µ R γ, then also whenever µ a
==⇒c µ′ for some µ′, then there also must exist

a γ′ such that γ a
==⇒c γ′ and µ′ R γ′ (which is exactly Condition (a’)). It suffices to give the

proof only for non-combined transitions, as the general case follows immediately by the fact that
R = R⊕ and the definition of combined transitions.
Let µ

a
==⇒ µ′ be a weak hyper-transition of the challenger. By the definition of hyper-

transitions, for each state s ∈ Supp(µ), there must exist a weak transitions s
a

==⇒ µ′
s such

that
µ′ =

⊕
s∈Supp(µ)

µ(s)µ′
s.

As we only consider weakly image-finite MA, and finitary transitions, we may proceed by induc-
tion over the sum of the sizes of the transition trees inducing the transitions s a

==⇒ µ′
s for each

s ∈ Supp(µ). We now represent the transition µ
a

==⇒ µ′ as the combination of two transitions:

1. either there exists µ1 such that µ a−−→ µ1 and µ1 ==⇒ µ′, or

2. there exists µ2 ̸= µ′ such that µ ==⇒ µ2 and µ2
a

==⇒ µ′.

247

D. Proofs of Chapter 8

Note that the two cases are indeed complete, as the second decomposition, where µ starts by
performing a weak τ -transitions, is valid as soon as at least one of the states in Supp(µ) starts its
hypertransition s

a
==⇒ µ′

i with an internal transition. In the first case, µ a−−→ µ1. Clearly, then
from µ R γ it immediately follows that there exists γ1 such that γ a

==⇒c γ1 with µ1 R γ1. Now,
µ1 ==⇒ µ′ by assumption. As the total size of the transition trees inducing this hypertransition
is smaller, we can apply induction. We conclude that there exists γ′ such that γ1 ==⇒c γ′ and
µ′ R γ′. All that remains to be shown is that indeed also γ

a
==⇒c γ

′. But this holds by Lemma 4.2.
In the second case, we can use the induction hypothesis twice, as both the transition from µ to
µ2 and the transition from µ2 to µ′ is constructed with in total smaller transition trees. Then,
the proof proceeds as for the first case.
Now, for Condition (b) vs Condition (b’), we first note that by our preceding proof-step for

Condition (a’), we can conclude that when µ ==⇒c µ1 ⊕p µ2, then surely there exists γ′ such
that γ ==⇒c γ′ and µ1 ⊕p µ2 R γ′. With this, we have reduced the problem to Condition (b)
of Definition 8.4, applied to µ1 ⊕p µ2 and γ′. From there, it follows that γ′ ==⇒c γ1 ⊕p γ2 and
µ1 R γ1 and µ2 R γ2. Again with Lemma 4.2, we conclude that γ ==⇒c γ1 ⊕p γ2 is possible
immediately.
The proof of Condition (c’) follows the same pattern as the last proof.

D.2. Lemma 8.7
Let

⊕
i∈J

piµi be a splitting of µ with a possibly infinite index set J ⊆ N.

If µ ∼∼∼ γ then there exist γi for each i ∈ J such that

(A) γ ==⇒c

⊕
i∈J piγi, and

(B) µi
∼∼∼ γi for each i ∈ J .

Proof. For readability, we will use for a splitting µ =
⊕
i∈J

piµi the notation (µ1 : p1, µ2 : p2, . . .).

Furthermore, without loss of generality, we assume that the index set J is contiguous in the sense
that if n ∈ J for any n ∈ N then also n′ ∈ J for each n′ < n.

From the possibly infinite splitting, we first construct a (possibly infinite) sequence of finite
splittings as follows: for each k ∈ N, the finite splitting agrees with the infinite splitting in the
first k components. The last component of the finite splitting is then the union of all remaining
components of the infinite splitting. Let Nk = { i ≤ k | i ∈ N }. We then define the k-th finite
splitting as

(µ1 : p1, . . . , µk : pk,
⊕

i∈J\Nk

piµi : 1−
∑
i∈Nk

pi).

By construction, this is a finite splitting of µ with k + 1 components.

By an inductive argument, we now prove that for every k ∈ N there is a suitable splitting ξk

according to the lemma, i.e. ξk = (γk
1 : p1, . . . , γ

k
2 : p2, . . . , γ

k
k : pk, γ

k
k+1 : 1−

∑
i∈Nk

pi) with

1. γ ==⇒c ξ
k and

2. for each i ∈ {1, . . . , k} : µi
∼∼∼ γk

i and also
⊕

i∈J\Nk
piµi

∼∼∼ γk
k+1.

248

D.2. Lemma 8.7

3. In addition, we will ensure that for every i the splittings ξi and ξi+1 agree on the first i
components. Formally, ⊕

l≤i

piγ
i
l =

⊕
l≤i

piγ
i+1
l . (D.5)

Before we come to the inductive argument, we will show how the last condition helps us
to establish the lemma. By construction it holds that d(ξi, ξi+1) −→ 0, as the sum of the
probability masses of the splitting components that are identical converges to 1 while i goes to
infinity. Hence, the sequence ⟨ξi⟩i∈N has a limiting distribution ξ. As we only consider compact
MA, it must furthermore hold by Corollary 7.1 that γ ==⇒c ξ. This establishes Condition (A)
of the lemma. For the Condition (B), i.e. µi

∼∼∼ γi for each i ∈ J , we assume that j is the smallest
index for which the condition does not hold. By construction of the splittings ξi, γj is the j-
th component of the splitting ξj and all later splittings, i.e. ξl with l > j and thus also of the
limiting distribution ξ. From property b), however, it follows that µj

∼∼∼ γj , contradicting our
assumption of j being the smallest index where this property does not hold.

We now proceed with the inductive proof. The case k = 0 is trivial, as the splitting has only
one component. For k > 0, assume the induction hypothesis holds for the splitting

(µ1 : p1, . . . , µk−1 : pk−1,
⊕

i>k−1

µi :
∑

i>k−1

pi).

Hence there exist a splitting

ξk−1 = (γ1 : p1, . . . , γk−1 : pk−1, γ̂k :
∑

i>k−1

pi)

for some distribution γ̂k, and distributions γi with i ∈ {1, . . . , k − 1} with γ ==⇒c ξk−1 and
µi

∼∼∼ γi for i ∈ {1, . . . , k − 1} and ⊕
i>k−1

µi
∼∼∼ γ̂k. (D.6)

We can rewrite
⊕

i>k−1 µi as µk ⊕q

⊕
i>k µi with q = pk∑

i>k−1 pi
. From Equation D.6 we can

immediately infer that γ̂k ==⇒c γk⊕q γ̂k+1 for some distributions γk and γ̂k+1 with µk
∼∼∼ γk and⊕

i>k µi
∼∼∼ γ̂k+1. This allows us to construct a new splitting

ξk = (γ1 : p1, . . . , γk−1 : pk−1, γk : pk, , γ̂k+1 :
∑
i>k

pi)

which satisfying the inductive proof obligations.
Furthermore, ξk−1 and ξk are identical in the first k − 1 components, which is enough to

satisfy the condition of Equation D.5.

249

D. Proofs of Chapter 8

D.3. Theorem 8.6
To arrive at the congruence result for parallel composition, we need to establish a series of helpful
lemmas. The section accumulates into Lemma D.6, which establishes the congruence result. As
for most results of this thesis, we assume all Markov automata considered here to be compact.

Lemma D.2. If µ
χ(r)−−−→ µ′ and ξ

χ(s)−−−→ ξ′ then for p = r
r+s

µ ||A ξ
χ(r+s)−−−−−→ µ′ ||A ξ ⊕p µ ||A ξ′

Proof. Recall that the notation
χ(r)−−−→ (cf. Notation 5.2) summarizes the individual timed tran-

sitions of a process and expresses them as one single (pseudo) transition leading to the
distribution over states that is induced by the timed transitions. The exit rate of µ, i.e. the exit
rate of each state in its support, r, is preserved in the form of the action label.

Also recall that µ ||A ξ is a short-hand notation for

⟨ s ||A t : µ(s)ξ(F) | s ∈ Supp(µ) ∧ t ∈ Supp(ξ) ⟩ .

First note that

µ ||A ξ =
⊕

s∈Supp(µ)

⊕
t∈Supp(ξ)

µ(s) · ξ(t) · δ(s ||A t) (D.7)

by definition of ||A. Now for each s ||A t above, we can derive the following behaviour with a
repeated application of parRM and parLM. The left summand is generated by applications of
parLM and the right by parRM. As r is the exit rate of s, and s is the exit rate of t, the exit rate
of s ||A t must be r + s, as every timed transition of both s and t is fully preserved by the rules
with respect to their rates.

s ||A t
χ(r+s)−−−−−→

 ⊕
s

λ
s′

λ

r
δ(s′ ||A t)

⊕ r
r+s

⊕
t
ν

t′

ν

s
δ(s ||A t′)

Note that, as is a multirelation, several summands above may occur more than once in
the expression. By the definition of lifting state-based transition relations to distribution, and
Equation D.7 we infer

µ ||A ξ
χ(r+s)−−−−−→

⊕
s∈Supp(µ)

⊕
t∈Supp(ξ)

µ(s)·ξ(t)·

 ⊕

s
λ

s′

λ

r
δ(s′ ||A t)

⊕ r
r+s

⊕
t
ν

t′

ν

s
δ(s ||A t′)

By Lemma 2.4, we can rewrite the right-hand side to

⊕
s∈Supp(µ)

⊕
t∈Supp(ξ)

µ(s) · ξ(t)

⊕
s

λ
s′

λ

r
δ(s′ ||A t)

⊕ r
r+s

µ(s) · ξ(t)
⊕
t
ν

t′

ν

s
δ(s ||A t′)

250

D.3. Theorem 8.6

Then two applications of Lemma 2.3 yield

 ⊕
s∈Supp(µ)

⊕
t∈Supp(ξ)

µ(s) · ξ(t)
⊕

s
λ

s′

λ

r
δ(s′ ||A t)

⊕ r
r+s

 ⊕
s∈Supp(µ)

⊕
t∈Supp(ξ)

µ(s) · ξ(t)
⊕
t
ν

t′

ν

s
δ(s ||A t′)

 .

We now swap the sums in the first summand by Lemma 2.2

 ⊕
t∈Supp(ξ)

⊕
s∈Supp(µ)

µ(s) · ξ(t)
⊕

s
λ

s′

λ

r
δ(s′ ||A t)

⊕ r
r+s

 ⊕
s∈Supp(µ)

⊕
t∈Supp(ξ)

µ(s) · ξ(t)
⊕
t
ν

t′

ν

s
δ(s ||A t′)

In the first summand, we bracket ξ(t), and in the second µ(s)

 ⊕
t∈Supp(ξ)

ξ(t) ·
⊕

s∈Supp(µ)

µ(s)
⊕

s
λ

s′

λ

r
δ(s′ ||A t)

⊕ r
r+s

 ⊕
s∈Supp(µ)

µ(s) ·
⊕

t∈Supp(ξ)

ξ(t)
⊕
t
ν

t′

ν

s
δ(s ||A t′)

(D.8)

It is straightforward by the definitions of χ−−→ that

µ′ =
⊕

s∈Supp(µ)

µ(s)
⊕

s
λ

s′

λ

r
δ(s′)

and

ξ′ =
⊕

t∈Supp(ξ)

ξ(t)
⊕
t
ν

t′

ν

s
δ(t′)

 .

251

D. Proofs of Chapter 8

We now use this to simplify Equation D.8 and obtain ⊕
t∈Supp(ξ)

ξ(t) · (µ′ ||A δ(t))

⊕ r

r+s

 ⊕
s∈Supp(µ)

µ(s) · (δ(s) ||A ξ′)

 ,

which we rewrite by the definition of ||A to (µ′ ||A ξ)⊕ r
r+s

(µ ||A ξ′)

Lemma D.3.

1.) a) if a /∈ A ∪ {χ(r) | r ∈ R≥0 } and µ
a

==⇒c µ
′ then

µ ||A γ
a

==⇒c µ
′ ||A γ,

b) if a /∈ A ∪ {χ(r) | r ∈ R≥0 } and γ
a

==⇒c γ
′ then

µ ||A γ
a

==⇒c µ ||A γ′,

2.) if a ∈ A and µ
a

==⇒c µ
′ and γ

a
==⇒c γ

′ then

µ ||A γ
a

==⇒c µ
′ ||A γ′,

3.) If µ
χ(r1)
===⇒c µ

′ and γ
χ(r2)
===⇒c γ

′ then exist µ∗ and γ∗ such that

µ ==⇒c µ
∗ and µ∗↓ and γ ==⇒c γ

∗ and γ∗↓

and
µ ||A γ

χ(r1+r2)
======⇒c (µ

′ ||A γ∗)⊕p (µ
∗ ||A γ′)

with p = r1
r1+r2

.

These claims are basically liftings of the transition rules for parallel composition from states to
weak hypertransitions. In Claim 3 it is surprising that it is not a straightforward generalization
of Lemma D.2, but instead stable distributions µ∗ and and γ∗ need to be introduced. Stability is
needed here to enable the execution of the timed transitions. A transition

µ ||A γ
χ(r1+r2)
======⇒c (µ

′ ||A γ)⊕p (µ ||A γ′)

cannot exist, if γ and/or µ are unstable.

Proof. We prove each of these claims only for the special case that µ = δ(s) and γ = δ(t). It is
straightforward to iterate these results on the elements of the support of arbitrary distributions µ
and γ to prove the full claim. Furthermore, we only consider weak transitions, and not combined
weak transitions. As the latter are obtained from weak transitions by a weighted combination

252

D.3. Theorem 8.6

with some wights ci from the former, the result can be easily lifted to combined transitions by
constructing a convex combination of the obtained distributions, using the weights ci.
We want to remark that the weak combined transitions in this lemma are in general infinitary.

Hence, a simple inductive proof is not possible. Therefore, we need to follow an approach where
suitable transition trees are constructed in order to show the desired result.
For Claim 1 and 2 we only treat the case for non-combined weak hypertransition, as it is

the core of our argumentation. The general case is obtained in the usual way by repeating the
argument for each weak hypertransition of which the combined transition is composed of.

For Claim 1.), it suffices to proof Claim 1.a), as the other case is completely symmetric. Consider
for some s and ξ a transition s

a
==⇒ ξ. Let this transition be induced by the transition tree T .

Define S to be the transition tree that coincides with T except that for each node σ : StaS(σ) =
StaT (σ) ||A F . Using the definition of parallel composition (Definition 7.9), it is straightforward
to verify that S is indeed a transition tree, using that every transition in the tree is either labelled
by a /∈ A ∪ {χ(r) | r ∈ R≥0 } or τ , which implies that the transitions of the left-hand-side
operand of the ||A-operator are completely independent of the right hand side operand. Then by
construction, S induces the transition s ||A t

a
==⇒ ξ ||A t.

For Claim 2.) consider for some s and t and ξ and ν the transitions s a
==⇒ ξ and t

a
==⇒ ν. Let this

transition be induced by the transition tree T and S respectively. Let T ′ and S ′ be the respective
maximal subtrees, which are internal transition trees. Note that the for every leaf σ of T ′, the
corresponding node in T represents an a-transition (that has been cut off in T ′); an analogous
observation holds for every leaf of S ′ and S. Using the same construction as in Claim 1, it is easy
to construct a transition tree R1 such that the nodes of R1 are identical to those of T ′, except
that for each node σ : StaR1(σ) = StaT ′(σ) ||A F . Since for each leaf σ, StaR1(σ) is then of the
form u ||A t for some state u, we can use the construction from Claim 1 again. But this time we
fix u, and let t perform its transitions. This gives for each leaf σ of R1 a tree Rσ, where each
node σ′ of Rσ satisfies StaRσ

(σ′) = StaR1
(σ) ||A StaS′(σ′), for some leaf node σ′ of S. We can

now construct a new transition tree R2 from R1 by gluing the tree Rσ onto every leaf node
σ. Then by our construction, the set of leaves of R2 is exactly the set of all leaves σ′′ that with
some σT ′ ∈ Leaf(T ′) and some σS′ ∈ Leaf(S ′) satisfy StaR2(σ

′′) = StaT ′(σT ′) ||A StaS′(σS′)
and ProbR2(σ) = ProbT ′(σT ′)ProbS′(σS′). Thus, we have so far proven that the parallel combi-
nation of s and t can perform a transition that is an interleaving of the respective transitions of s
and t up to and excluding the point where the transitions labelled by a are performed.
We now continue with the a-transitions. By construction, each leaf is now labelled by the

parallel composition of two states, say u and v, that perform an a-transition in the tree T and S,
respectively. Say u a µu and v a µv for some µu and µv. Therefore, following Definition 7.9,
we get u ||A v a µu ||A µv. Clearly, we can extend our transition tree at the leaves to reflect this.

Thus, so far we have constructed a transition tree that proves that the parallel combination of
s and t can perform a transition that is an interleaving of the respective transitions of s and t up
to and including the point where the transitions labelled by a are performed. After this point,
still a series of internal transition may follow. At this point, the transition tree construction
proceeds exactly as in the first part of the proof of Claim 2 for every leaf of the so far constructed
tree. This finishes our proof of Claim 2. In this way, we obtain a transition tree that proves our
claim.

For Claim 3, let s,t,T ,S, T ′, S ′ and R2 be exactly as in the proof of Claim 2. Obviously, T ′

253

D. Proofs of Chapter 8

and S ′ induce some distributions µT ′ and µS′ . These distribution will be the distributions from
which the distributions µ∗ and γ∗ from the claim are constructed. In fact, they obviously satisfy
s ==⇒ µT ′ and t ==⇒ µS′ , respectively. And by the choice of T ′ and S ′ also µT ′↓ and µS′↓.
Let alsoR2 be constructed as in Claim 2. Since µT ′↓ and µS′↓, trivially for every leaf σ ofR2

with Star2(σ) = G ||A H we get u↓ and v↓. As in Claim 2, by construction, both constituents,
say u and v of the parallel state in the leaves performs an χ-transition in the trees T and S
respectively, say u

χ(r1)−−−→ µu and v
χ(r2)−−−→ µv.

By the way χ−−→ was defined and Definition 7.9, we get u ||A H
χr1+r2−−−−−→ r1

r1+r2
µu ||A µs′ ⊕

r2
r1+r2

µt′ ||A µv. We then continue our construction inf analogy to Claim 2.

Lemma D.4.

• (
⊕

i∈J piµi) ||A γ =
⊕

i∈J pi(µi ||A γ).

• γ ||A(
⊕

i∈J piµi) =
⊕

i∈J pi(γ ||A µi).

Proof. We only prove the first statement. The second is exactly symmetric. Denote (
⊕

i∈J piµi)
by µ. By the definitions, we derive

µ ||A γ(s ||A t) = µ(s) · γ(t)

= (
⊕
i∈J

piµi(s)) · γ(t)

=
⊕
i∈J

pi(µi(s) · γ(t))

=
⊕
i∈J

pi((µi ||A γ)(s ||A t))

= (
⊕
i∈J

pi(µi ||A γ))(s ||A t)

Lemma D.5. Let µ ∈ Dist(S) satisfy µ↓ and let γ ∈ Dist(S) satisfy µ ∼∼∼ γ.
Then, whenever γ ==⇒c γ

′, then µ ∼∼∼ γ′.

Proof. Since µ↓ there exist no outgoing internal transitions for µ. Hence µ ∼∼∼ γ′ follows immedi-
ately from the other premises of the lemma and Definition 8.4, Condition (a).

We are now in the position to show that weak bisimulation is a congruence with respect to
parallel composition. To arrive at the congruence result for automata composition, it suffices to
show that the respective initial states are bisimilar.

Lemma D.6. Let A and A′ be two MA with A ∼∼∼δ A′. Let s and t be their respective initial
states. Let A∗ be an arbitrary MA with initial state u. Then

s ||A u ∼∼∼δ t ||A u.

254

D.3. Theorem 8.6

Proof. To establish this theorem, it suffices by Lemma 8.4 to find a bisimulation-up-to-splitting
R containing the pair (δ(s ||A u), δ(t ||A u)). A suitable relation is

R= { (µ ||A ξ, γ ||A ν) | µ ∼∼∼ γ ∧ ξ ∼∼∼ ν }

where µ is an arbitrary distribution over states of A, γ is an arbitrary distribution over states of
A′, and ξ and ν are arbitrary distribution over states of A∗.
We will now check the three conditions of Definition 8.8. For Condition (a), we distinguish

several cases:

• Let µ ||A ξ
a−−→ µ′ ||A ξ because µ a−−→ µ′ by rule parL of Definition 7.9. Then clearly, a /∈

A and a ̸= χ(r). Then, as µ ∼∼∼ γ, there must exist a transition γ
a

==⇒c γ
′ with µ′ ∼∼∼ γ′. By

Lemma D.3 1.), we can derive that γ ||A ν
a

==⇒c γ′ ||A ν. Immediately, µ′ ||A ξ R γ′ ||A ν
follows.

• The case that µ ||A ξ
a−−→ µ ||A ξ′ because ξ a−−→ ξ by rule parR of Definition 7.9 is com-

pletely symmetric.

• Let a ∈ A and µ ||A ξ
a−−→ µ′ ||A ξ′ because µ a−−→ µ′ and ξ

a−−→ ξ′ by rule sync of Defini-
tion 7.9. Then, as µ ∼∼∼ γ, there must exist a transition γ

a
==⇒c γ

′ with µ′ ∼∼∼ γ′. Accordingly,
as ξ ∼∼∼ ν, there must exist a transition ν

a
==⇒c ν′ with ξ′ ∼∼∼ ν′. By Lemma D.3 2.), it then

follows that also γ ||A ν
a

==⇒c γ
′ ||A ν′. Clearly, again µ′ ||A ξ′ ∼∼∼ γ′ ||A ν′.

• The last case is the case where a stochastic timed transitions are considered. By Lemma D.2,

µ ||A ξ
χ(r+s)−−−−−→ µ′ ||A ξ ⊕p µ ||A ξ′ if µ

χ(r)−−−→ µ′ and ξ
χ(s)−−−→ ξ′.

Continuing with our proof, as µ ∼∼∼ γ, there must exist a transition γ
χ(r)
===⇒c γ′ with

µ′ ∼∼∼ γ′. Accordingly, as ξ ∼∼∼ ν, there must exist a transition ν
χ(s)
===⇒c ν′ with ξ′ ∼∼∼ ν′. By

Lemma D.3 3.), it then follows from γ
χ(r)
===⇒c γ

′ and ν
χ(s)
===⇒c ν

′ that distributions γ∗ and
ν∗ exist, such that

γ ==⇒c γ
∗ and γ∗↓ and ν ==⇒c ν

∗ and ν∗↓

and
γ ||A ν

χ(r+s)
=====⇒c (γ

′ ||A ν∗)⊕p (γ
∗ ||A ν′)

with p = r
r+s . Unfortunately, We cannot directly show that

(µ′ ||A ξ)⊕p (µ ||A ξ′) R (γ′ ||A ν∗)⊕p (γ
∗ ||A ν′).

However, as R is a bisimulation-up-to-splitting, it suffices show that

µ′ ||A ξ R γ′ ||A ν∗ and µ ||A ξ′ R γ∗ ||A ν′

Note that by Lemma D.5
γ ∼∼∼ γ∗ and ν ∼∼∼ ν∗.

Then, by transitivity of ∼∼∼, it is straightforward to check that the two pairs are contained
in R.

255

D. Proofs of Chapter 8

We now check Condition b. Therefore, assume that we split µ ||A ξ into two distribution
ρ1 ⊕p ρ2. As µ ∼∼∼ γ and ξ ∼∼∼ ν, using Lemma 8.7, we can derive that

γ ==⇒c

⊕
s∈Supp(µ)

µ(s)γs and ν ==⇒c

⊕
t∈Supp(ξ)

ξ(s)νt

with the distributions γs and νt satisfying

δ(s) ∼∼∼ γs and δ(t) ∼∼∼ νt (D.9)

for every s ∈ Supp(µ) and t ∈ Supp(ξ), respectively. By Lemma D.3,

γ ||A ν ==⇒c (
⊕

s∈Supp(µ)

µ(s)γs) ||A (
⊕

t∈Supp(ξ)

ξ(s)νt).

By applying Lemma D.4 twice, it follows that

(
⊕

s∈Supp(µ)

µ(s)γs) ||A (
⊕

t∈Supp(ξ)

ξ(s)νt)

=
⊕

s∈Supp(µ),t∈Supp(ξ)

µ(s)ξ(t)(γs ||A νt).

Now, it is straightforward to define a suitable splitting χ1 ⊕p χ2 of this distribution that
matches the splitting ρ1 ⊕p ρ2 = µ ||A ξ. We simply let χl(γs ||A νt) = ρl(s ||A t) for
l ∈ {1, 2}. Now again, we cannot directly show that ρl R χl for l ∈ {1, 2}. However,
we only need to establish that R is a bisimulation-up-to-splitting. This is obvious from
Equation D.9.

D.4. Theorem 8.8
∼∼∼=≃⋆.

Proof. ∼∼∼ ⊆ ≃⋆ follows immediately from Theorem 8.6 and 8.7. It remains to show≃⋆⊆∼∼∼. Recall
that ≃⋆ is defined as the coarsest observational bisimulation, that is a congruence with respect to
parallel composition (||A). Note especially that this means that ≃⋆ satisfies Definition 8.3.

We now establish that ≃⋆ is also a weak distribution bisimulation. Let µ ≃⋆ γ. Condition (c)
follows immediately, as they are identical. Condition (a) of Definition 8.4 is a special case of
Condition (a) of Definition 8.3 with p = 1. The most interesting case is thus to establish
Condition (b) Definition 8.4. Let µ = µ1 ⊕p µ2 be an arbitrary splitting of µ. To show that γ
can react accordingly, we use compositionality of ≃⋆ with respect to ||∅. Let a1 and a2 and b be
fresh actions that neither occur in µ nor in γ. Consider the process

T = b.0 + τ.a1.0 + τ.a2.0.

Then, as ≃⋆ is a congruence with respect to ||∅,

µ ||∅ T ≃⋆ γ ||∅ T.

256

D.4. Theorem 8.8

Then µ ||∅ T ==⇒c µ1 ||∅ a1.0 ⊕p µ2 ||∅ a2.0. To see this, recall that µ ||∅ T is the distribution
⟨ (s ||∅ T : µ(s)) | s ∈ Supp(µ) ⟩. To justify the weak hyper-transition, it is enough to provide a
suitable combined transition for each s ∈ Supp(µ ||∅ T) that justifies this transition. We choose

s ||∅ T ==⇒c s ||∅ a1.0⊕qs s ||∅ a2.0,

where
qs =

µ1(s)

µ1(s) + µ2(s)
.

In turn, each of these combined transitions is justified by the two transitions s ||∅ T τ a1.0 and
s ||∅ T τ a2.0. Then, as µ ||∅ T ≃⋆ γ ||∅ T , there must exist a transition γ ||∅ T ==⇒c ξ with

µ1 ||∅ a1.0⊕p µ2 ||∅ a2.0 ≃⋆ ξ.

The states in Supp(ξ)must all have the form t ||∅ T ′. As µ1 ||∅ a1.0⊕p µ2 ||∅ a2.0 cannot execute
action b, as b was fresh for µ, also ξ may not be able to execute b. As b is also fresh for γ, T ′ must
be of form a1.0 or a2.0. We can thus observe that

ξ =
⊕
i∈I1

p1i (γ
1
i ||∅ a1.0) ⊕p

⊕
i∈I2

p2i (γ
2
i ||∅ a2.0).

with γ ==⇒c γ1 ⊕p γ2 and γ1 =
⊕

i∈I1
p1i γ

1
i and γ2 =

⊕
i∈I2

p2i γ
2
i . In summary, we can write

ξ = γ1 ||∅ a1.0⊕p γ2 ||∅ a2.0. It remains to show that µ1 ≃⋆ γ1 and µ2 ≃⋆ γ2. To show this, we
will make use of a new claim.

Claim D.1. The relation

R = { (µ, γ) | ∃µ′, γ′ and a fresh action c : (µ ||∅ c.0)⊕p µ
′ ≃⋆ (γ ||∅ c.0)⊕p γ

′ } ∪ ≃⋆

is a relaxed bisimulation and a congruence with respect to ||∅.

To establish the congruence property, we have to show that µ ||∅ ρ R γ ||∅ ρ, when µ R γ.
Since µ R γ, there exist µ′, γ′ and a fresh action c such that

(µ ||∅ c.0)⊕p µ
′ ≃⋆ (γ ||∅ c.0)⊕p γ

′.

Since ≃⋆ is a congruence with respect to parallel composition, also[
(µ ||∅ c.0)⊕p µ

′] ||∅ ρ ≃⋆

[
(γ ||∅ c.0)⊕p γ

′] ||∅ ρ.
Distributing ρ between the probabilistic sum, we obtain

(µ ||∅ ρ ||∅ c.0)⊕p (µ
′ ||∅ ρ) ≃⋆ (γ ||∅ ρ ||∅ c.0)⊕p (γ

′ ||∅ ρ)

By definition, this implies (µ ||∅ ρ) R (γ ||∅ ρ).

To show that R is a relaxed bisimulation, we begin with Condition (a). Assume µ ==⇒c µ
′′. We

need to show that then there exists γ′′ such that γ ==⇒c γ
′′ and µ R γ′′.

From µ R γ follows (µ ||∅ c.0) ⊕p µ
′ ≃⋆ (γ ||∅ c.0) ⊕p γ

′ for some µ′, γ′ and a fresh action c.
Assuming µ ==⇒c µ′′ for some µ′′, we also can derive (µ ||∅ c.0) ⊕p µ′ ==⇒c (µ′′ ||∅ c.0) ⊕p µ′.
Hence, (γ ||∅ c.0) ⊕p γ′ ==⇒c (γ′′ ||∅ c.0) ⊕p γ′′′ for some γ′′ and γ′′′ and (µ′′ ||∅ c.0) ⊕p µ′ ≃⋆

257

D. Proofs of Chapter 8

(γ′′ ||∅ c.0)⊕p γ
′′′. Furthermore, γ ==⇒c γ

′′ (⋆) and γ′ ==⇒c γ
′′′. Now (⋆) is already the first part

of our proof obligation. It remains to show that µ′ R γ′′. Therefore, it suffices to mention that

(µ′′ ||∅ c.0)⊕p µ
′ ≃⋆ (γ′′ ||∅ c.0)⊕p γ

′′′.

already satisfies the defining condition of R.

To establish Condition (b), we begin with an observation. When

(µ ||∅ c.0)⊕p µ
′ c|p
==⇒c µ ||∅ 0

then also
(γ ||∅ c.0)⊕p γ

′ c|p
==⇒c ρ

′ and µ ||∅ 0 ≃⋆ ρ′

for some ρ′, since (µ ||∅ c.0) ⊕p µ
′ ≃⋆ (γ ||∅ c.0) ⊕p γ

′ and ≃⋆ is a relaxed bisimulation. As c is
fresh, γ′ cannot have contributed to the transition. Hence, µ ||∅ 0 ≃⋆ ρ′ implies that ρ′ = γ′′ ||∅ 0
and, in addition, we can also derive that γ ==⇒c γ′′ for some γ′′, since the splitting factor p that

appears in (γ ||∅ c.0) ⊕p γ′ is fully applied also in the transition
c|p
==⇒c If the parameter of the

transition would have been a number smaller than p, it could have been the case that only a
sub-distribution of γ actually engages in the transition. It is straightforward to finally establish
that µ ||∅ 0 ≃⋆ γ′′ ||∅ 0 implies µ ≃⋆ γ′′. In summary, we have thus shown that there exists γ′′

such that

γ ==⇒c γ
′′ (D.10)

and

µ ≃⋆ γ′′. (D.11)

Now, in order to establish Condition (b), assume µ
a|q
==⇒c µ′′ for some q ∈ [0, 1]. As µ ≃⋆ γ′′,

also γ′′ a|q
==⇒c γ

′′′ and µ′′ ≃⋆ γ′′′ for some γ′′′. Together with Equation D.10, we obtain γ ==⇒c

γ′′ a|q
==⇒c γ

′′′, i.e. γ
a|q
==⇒c γ

′′′. Finally, µ′′ ≃⋆ γ′′′ implies µ′′ R γ′′′ by the definition of R.
For Condition (c), assume µ↓. From µ ≃⋆ γ′, the fact that ≃⋆ is a relaxed bisimulationand

γ ==⇒c γ
′ everything follows.

We want to remark that many crucial insights in this proof have been strongly inspired by the
proof of Lemma 4.11 in [DH12].

D.5. Proof of Theorem 8.10
Lemma D.7. The union of two semi-weak bisimulations on a finite PA A is again a semi-weak
bisimulation on A.

We are now ready to prove Theorem 8.10:
On finite PA, it holds that

◦∼∼∼↚
δ = ≈PA

258

D.5. Proof of Theorem 8.10

Proof. We first show that
◦∼∼∼↚
δ ⊆ ≈PA. Therefore, we prove that

◦∼∼∼ ↚
δis also a weak probabilistic

bisimulation according to Definition 4.19. The crucial point in this proof is the claim, that
µ

◦∼∼∼ ↚ γ implies ∀C ∈ S/
◦∼∼∼↚
δ : µ(C) = γ(C), since then the conditions of Definition 4.19 are met

almost immediately. By LemmaD.7,
◦∼∼∼ ↚ is a semi-weak bisimulation. Then, by a simple inductive

argument, it can be shown that using the Condition ((b)) in the definition of
◦∼∼∼↚ (Definition 8.12)

repeatedly, γ can simulate any (finite) splitting of µ (⋆).1 Thus, split µ in such way that every
state in its support is isolated, i.e. we split µ into

⊕
s∈Supp(µ) µ(s) · δ(s). Then, by (⋆), γ can be

split into a family of distribution {γs}s∈Supp(µ), such that for every s ∈ Supp(µ),

δ(s)
◦∼∼∼↚ γs. (D.12)

We now use the symmetry of semi-weak bisimilarity, we iterate this idea with exchanged roles.
We propose for each γs a splitting into

⊕
F∈Supp(γs)

γs(F)δ(F), which now must be simulated
by δ(s) according to Condition ((b)) again, due to Equation D.12. Clearly, as Supp(δ(s)) is a
singleton set, every component of the splitting must be again δ(s). Thus, it must hold that

δ(s)
◦∼∼∼ ↚ δ(F). (D.13)

In summary, we have split µ and γ into sets of matching Dirac distributions. From the con-
dition, that splittings must preserve the splitting factor p, the matched Dirac distributions must
contribute the same relative amount of probability mass to µ and γ. From here we can immedi-
ately conclude that

µ
◦∼∼∼↚ γ implies ∀C ∈ S/

◦∼∼∼ ↚
δ : µ(C) = γ(C). (D.14)

We are now ready to show that
◦∼∼∼ ↚
δ satisfies Definition 4.19. First, by Theorem 8.9,

◦∼∼∼ ↚
δ is an

equivalence relation on S. Second, let s
◦∼∼∼ ↚
δ t and let s a−−→ µ for some a ∈ Act and µ ∈ Dist(S).

Then, by Condition (a)) of Definition 8.12, also t
a

==⇒c γ for some distribution γ and µ
◦∼∼∼↚ γ.

The latter implies by D.14 µ L(
◦∼∼∼↚
δ) γ. This ends the proof that

◦∼∼∼↚
δ is a weak probabilistic

bisimulation, and thus
◦∼∼∼ ↚
δ ⊆ ≈PA.

For the other direction, we show that the relation

R = L(≈PA)

is a semi-weak stability insensitive distribution bisimulation i.e. it satisfies Definition 8.12. From
here we can conclude that whenever s ≈PA t, the pair (δ(s), δ(t)) is contained in the semi-weak
stability insensitive distribution bisimulation R, which implies s

◦∼∼∼↚
δ t. Hence, ≈PA ⊆

◦∼∼∼ ↚
δ.

To prove that R is a semi-weak stability insensitive distribution bisimulation, let us consider
an arbitrary pair (µ, γ) ∈ R. Assume for Condition (a), µ a−−→ µ′. Then, by the definition
of weak hypertransition, every s ∈ Supp(µ) contributes a transition s

a−−→ µ′
s such that µ′ =⊕

s∈Supp(µ) µ(s)·µ′
s. Since µ R γ implies µ L(≈PA) γ by our choice ofR, for every s ∈ Supp(µ)

1In this argument, the finiteness assumption is needed in order to guarantee that the repeated application of the left-hand
side condition finally terminates.

259

D. Proofs of Chapter 8

satisfies γ([s]≈PA) = µ([s]≈PA). For each t ∈ [s]≈PA ∩ Supp(γ), there exists for some distribution
γ′
s,t a weak combined transition

t
a

==⇒c γ
′
s,F with µ′

s L(≈PA) γ
′
s,F . (D.15)

We now split µ into

⊕
s∈Supp(µ),t∈Supp(γ)∩[s]≈PA

µ(s) · γ(F)

γ([s]≈PA)
· δ(s), (D.16)

which is a valid splitting, since for every s ∈ Supp(µ),

∑
F∈Supp(γ)∩[s]≈PA

γ(F)

γ([s]≈PA)
= 1. (D.17)

We see then by Lemma 4.3 that

µ′ =
⊕

s∈Supp(µ),t∈Supp(γ)∩[s]≈PA

µ(s) · γ(F)

γ([s]≈PA)
· µ′

s. (D.18)

We can also split γ accordingly into

γ
a

==⇒c

⊕
s∈Supp(µ),t∈Supp(γ)∩[s]≈PA

µ(s) · γ(F)

γ([s]≈PA)
· δ(F). (D.19)

By D.15 and Lemma 4.3, it then follows that

γ
a

==⇒c γ
′ :=

⊕
s∈Supp(µ),t∈Supp(γ)∩[s]≈PA

µ(s) · γ(F)

γ([s]≈PA)
· γ′

s,F (D.20)

Since already µ′
s L(≈PA) γ

′
s,t (which we know from D.15), we immediately see that µ′ L(≈PA)

γ′ by our construction.
For Condition (b), let µ = µ1 ⊕p µ2 be an arbitrary splitting of µ. A matching splitting of

γ = γ1 ⊕p γ2 can be constructed by defining

γ1 =
1

p

⊕
C∈S/≈PA,t∈C

µ1(C)
γ(F)

γ(C)
δ(F) (D.21)

and

γ2 =
1

1− p

⊕
C∈S/≈PA,t∈C

µ2(C)
γ(F)

γ(C)
δ(F). (D.22)

260

D.6. Proof of Theorem 8.13

Straightforward calculations yield

γ1 ⊕ γ2 =

1
p

⊕
C∈S/≈PA,t∈C

µ1(C)
γ(F)

γ(C)
δ(F)

⊕p

 1

1− p

⊕
C∈S/≈PA,t∈C

µ2(C)
γ(F)

γ(C)
δ(F)

=

⊕
C∈S/≈PA,t∈C

(
1

p
· p · µ1(C)

γ(F)

γ(C)
δ(F) +

1

1− p
· (1− p) · µ2(C)

γ(F)

γ(C)
δ(F)

)

=
⊕

C∈S/≈PA,t∈C

(µ1(C) + µ2(C))
γ(F)

γ(C)
δ(F)

=
⊕

C∈S/≈PA,t∈C

µ(C) · γ(F)

γ(C)
δ(F)

=
⊕

C∈S/≈PA,t∈C

γ(F)δ(F) since γ() = µ(C), as by assumption µ L(≈PA) γ

= γ

D.6. Proof of Theorem 8.13
Notation D.1. Let S be a set of states. If µ and γ ∈ Dist(S), we write µL̂(R)γ if and only if
∃γ′ ∈ Dist(Dist(S)) : flatten(γ′) = γ ∧ µL̂(R)γ′.

Definition D.1. Let (S, s̄,Act,) be a PA. A relation R over Dist(S) is a simulation-up-to-
splitting, if for each pair of distributions (µ, γ) ∈ R for every a ∈ Act

(a) µ
a−−→ µ′ implies γ a

==⇒c γ
′ for some γ′ ∈ Dist(S) and µ′ R⊕ γ′,

(b) for every p ∈ [0, 1] and µ1, µ2 ∈ Dist(S) such that µ = µ1 ⊕p µ2 there exist γ1, γ2 ∈
Dist(S) such that γ ==⇒c γ1 ⊕p γ2 and µi R⊕ γi for i ∈ {1, 2}.

◁

This definition is a straightforward adaption of Definition 8.8, bisimulation-up-to-splitting. It
comes without the symmetry condition. Furthermore, it demands that a ∈ Act and has the third
condition removed. Therefore, simulation-up-to-splitting is suited to establish that two PA are
weak stability insensitive distribution similar. This is stated in the following lemma.

Lemma D.8. Whenever R is a simulation-up-to-splitting then R⊆⪯ ↚ .

Proof. Completely analogous to the proof of Lemma 8.4. This holds as the proof did not depend
on the symmetry condition of ∼∼∼ nor on stability preservation.

Lemma D.9. Let µ =
⊕
i∈J

piµi be a splitting of µ with a possibly infinite index set J ⊆ N.

If µ ⪯ ↚ γ then there exist γi for each i ∈ J such that

γ ==⇒c

⊕
i∈J

piγi and µi ⪯ ↚ γi.

261

D. Proofs of Chapter 8

Proof. Follows completely analogously to the proof of Lemma 8.7. This holds as the proof did
not depend on the symmetry condition of ∼∼∼ nor on stability preservation.

Recall that for a distribution µ ∈ Dist(Dist(S)),

flatten(µ) =
⊕

γ∈Supp(µ)

µ(γ) · γ.

The flattening operations closely corresponds to what we call a splitting of a distribution, i.e. a
decomposition of a distribution in weighted distributions.

Remark D.1. Let γ = flatten(µ). Then µ =
⊕

γinSupp(µ) µ(γ) · γ is a splitting of γ.

Lemma D.10. If µL̂(⪯fwd)γ, then there is are splittings

µ =
⊕
i∈I

piδ(si) and γ =
⊕
i∈I

piγi

where si ∈ Supp(µ) and
δ(si) ⪯fwd γi.

Note that it may well be that case that si = sj for i ̸= j.

Proof. Let w be the weight function that justifies µL̂(⪯fwd)γ. Let I be a index set that provides
an index for each pair (s, γ′) ∈ Supp(µ) × Supp(γ) with w(s, γ′) > 0. If i ∈ I is the index of
the pair with index i, we denote by si its first component and by γi its second component. Let
furthermore pi = w(s, γ′).
Then by the definition of the weight w,

µ =
⊕
i∈I

piδ(si) and γ =
⊕
i∈I

piγi

are the desired splittings.

D.6.1. Proof of Theorem 8.13
We are now ready to prove Theorem 8.13. Note that the following formulation is shorter than
the original version of the lemma, as we make use of Notation D.1 here (and throughout the
whole section).

⪯ ↚ = L̂(⪯fwd)

Proof. We first show that the relation L̂(⪯fwd) is a simulation-up-to-splitting. Consider a pair
µL̂(⪯fwd)γ. For the first condition of simulation-up-to-splitting, consider µ a µ′. By the
definition of hypertransitions, there must be a transitions s a µ′

s for each s ∈ Supp(µ). From
Lemma D.10, we derive the existence of a splitting

µ =
⊕
i∈I

piδ(si) and γ =
⊕
i∈I

piγi.

262

D.6. Proof of Theorem 8.13

As δ(si) ⪯fwd γi for each i ∈ I , there must exist a transition γi
a

==⇒c γ′
i with µ′

sL̂(⪯fwd)γ
′
i. We

can recompose the γ′
i to a distribution that is reachable from γ, i.e.

γ
a

==⇒c

⊕
i∈I

piγ
′
i =: γ′.

By construction, the distributions µ′ and γ′ can be split into distributions µ′
s and γ′

i with i ∈ I .
For each i ∈ I , they satisfy µ′

sL̂(⪯fwd)γ
′
i. Thus, µ′L̂(⪯fwd)

⊕
γ′

This satisfies the first condition we need to show in order to establish that L̂(⪯fwd) is a
simulation-up-to-splitting.
We now consider the second condition. Let µ = µa ⊕p µb be an arbitrary splitting of µ. Let

µ =
⊕
i∈I

piδ(si) and γ =
⊕
i∈I

piγi

be splittings of µ and γ according to Lemma D.10. We now define a new splitting for µ that is a
refinement of both splittings for µ. Let pai := pi · µa(s)

µ(s) and pbi := pi · µb(s)
µ(s) . Let both µa

i := µi

and µb
i := µi. Then,

µ = (
⊕
i∈I

p · pai µa
i)⊕ (

⊕
i∈I

(1− p) · pbiµb
i)

is a splitting of µ. Note that we use operator ⊕ without index to indicate that the two sums that
it joins, actually form one distribution, constructed from two substochastic distributions. Note
that

(
∑
i∈I

p · pai) + (
∑
i∈I

(1− p) · pbi) = 1.

Furthermore, (
⊕

i∈I p
a
i µ

a
i) and (

⊕
i∈I(1 − p) · pbiµb

i) are obviously splittings of µa and µb,
respectively.
We now show how to construct a splitting γa⊕γb such that µaL̂(⪯fwd)

⊕
γa and µbL̂(⪯fwd)

⊕
γb.

This then immediately satisfies the second and also last condition of simulation-up-to-splitting.
We let γa

i := γb
i := γi. Then,

µa =
⊕
i∈I

pai γ
a
i and µb =

⊕
i∈I

pbiγ
b
i

are splittings of µa and µb, respectively. By construction, µa
i L̂(⪯fwd)γ

a
i and µb

i L̂(⪯fwd)γ
b
i . As

the splittings of µa and γa, and of µb and γb are constructed with the same weights pai and pbi ,
respectively, this suffices to state that µaL̂(⪯fwd)γa and µbL̂(⪯fwd)γb. This ends the first half of
our proof.

We now show that the relation R = { (s, µ) | δ(s) ⪯ ↚ µ } is a probabilistic forward simulation.
The crucial part of the second half of our proof is the following claim.

Claim D.2. If µ ⪯↚ γ, then there also must exist a distribution γ∗ with γ ⪯ ↚

flatten(γ∗) that satisfies µL̂(R)γ∗.

We first proof the claim: Let µ ⪯↚ γ. By Lemma D.9, there are distributions γs, indexed by
the states s ∈ Supp(µ), such that γ ==⇒c

⊕
s∈Supp(µ) µ(s)γs := γ and for each s ∈ Supp(µ):

263

D. Proofs of Chapter 8

δ(s) ⪯ ↚ γs. We let γ∗ be defined such that γ∗(γs) = µ(s) for s ∈ Supp(µ), and 0 for all other
distributions.
Let the function w be defined as

w(s, γs) =

{
µ(s) s ∈ Supp(µ)

0 otherwise

By construction, this is a weight function and establishes µL̂(R)γ∗.
It is now easy to show that the relation

R= { (s, γ) | δ(s) ⪯ ↚ γ }

is a probabilistic forward simulation. To see this assume s a µ′. Then since δ(s) ⪯ ↚ γ,
there exists γ′ such that γ a

==⇒c γ′ with µ′ ⪯↚ γ′. By our claim, γ′ ==⇒c flatten(γ∗) for a
distribution γ∗ that satisfies µ′L̂(R)γ∗, which established the condition of probabilistic forward
simulation, except for the last detail: by compositionality of weak combined hypertransitions,
we immediately can conclude that γ a

==⇒c flatten(γ∗).

D.7. Proof of Theorem 8.14
Proof step: t ∼∼∼δ t′ implies t ∼∼∼s t

′ The central insights to prove this implication are that the
relation ∼∼∼δ is a weak state bisimulation, with the set P := { (s, τ, µ) ∈ D | δ(s) ∼∼∼ µ } being a
suitable set of preserving transitions.
In order to prove this implication, we need several auxiliary results. Note that throughout this

paragraph, we assume R =∼∼∼s when we use the short-hand notation PZ=⇒ for P,RZ=⇒.

Definition D.2. Given a MA A and a set P ⊆ D, let ρ⊥P denote that ρ τ⇂P
===⇒c ρ′ implies

ρ′ = ρ. ◁

Thus, ρ⊥P indicates that ρ cannot perform any (non-trivial) weak transition using only tran-
sitions in P . In mec-contracted MA, this statement is equivalent to the second condition of the
special transition predicate P,RZ=⇒ for R =∼∼∼s. All of the following arguments will be based on mec-
contracted MA, and strongly rely on the predicate ⊥P . However, by Lemma 8.9 we know that
s =mec t implies s ∼∼∼δ t. Therefore, ρ P,RZ=⇒ ρ in an arbitrary MA A if ρ⊥P in the mec-contracted
version of A.

Lemma D.11. Given a mec-contracted weakly image-finite MA A and a set P ⊆ D, for every
distribution ρ there exists a distribution ρ′ with ρ

τ⇂P
===⇒c ρ

′ and ρ′⊥P .

Proof. Let M be the set of distributions reachable from ρ with Dirac determinate scheduler
with a = τ , only using transitions from P . Using [CS02, Prop. 1, 2], this is a finite set.
Furthermore, every distribution ρ′ reachable from ρ with a weak allowed combined transition,
i.e., ρ τ⇂P

===⇒c ρ′ is a convex combination of the elements of M . Consider the finite directed
graph (M, { (µ, µ′) | µ τ⇂P

===⇒c µ′ }). , and for all µ ∈ M and µ′ ∈ Dist(S). µ τ⇂P
===⇒c µ′ in the

MA implies that µ′ is a convex combination of distributions in M , reachable from node µ inside
the graph. Reachability arguments inside the graph thus immediately translate to reachability

264

D.7. Proof of Theorem 8.14

arguments in the MA. As this graph is finite, it must contain a bottom strongly connected
component. Within the proof, we will see that those bottom strongly connected components
reduce to one single distribution without behaviour (we will refer to this statement as ⋆ in the
following). We will now show that any bottom strongly connected component µ can be chosen
as ρ′⊥P as demanded in the lemma. By the construction of the graph, for all distributions
γ, γ′ ∈ M , we know γ

τ
==⇒c γ′ in the graph implies γ τ⇂P

===⇒c γ′ in the MA, and furthermore,
that every distribution γ ∈ M is reachable from ρ. Thus, ρ τ⇂P

===⇒c µ. Now we prove that µ
satisfies the maximality condition, i.e., µ⊥P .

In order to show that all distribution µ′ in the maximal strongly connected component of
µ satisfy µ = µ′, i.e. not only all mecs on states are contracted, but also on distributions. We
assume that there exists µ′ ̸= µ in the mec. As every distribution γ such that µ τ⇂P

===⇒c γ
must be a convex combination of the distributions in this strongly connected component, as M
represents such transitions in the MA faithfully up to convex combinations, and furthermore, the
equality = is preserved by convex combinations of distributions. For simpler notation, we now
construct a new MA A′, whose set of states is Supp(µ)∪Supp(µ′), and whose transition relation
is derived from certain weak combined transitions µ and µ′ can perform. In order to define the
transition relation of A′, consider some arbitrary (but fixed) weak combined hyper transition
µ

τ⇂P
===⇒c µ′. We split µ′ according to Lemma 4.3, and thus obtain for each s ∈ Supp(µ) a

distribution µs with Supp(µs) ⊆ Supp(µ′) and s
τ⇂P
===⇒c s′. We let for each s the transition

(s, τ, µs) be a transition of A′. With a complete symmetric construction we add a transition
for the states in Supp(µ′). Note that by this construction, every state s of A′ has exactly one
outgoing transition (probably s

τ−−→ δ(s)).

A′ now has the property that whenever γ τ
==⇒ γ′ for some distributions γ and γ′ in A′, then

γ
τ⇂P
===⇒c γ′ in the original MA. Thus, if we can prove in A′ that for two states s and t it holds

that s ==⇒c δ(t), then this implies s τ⇂P
===⇒c δ(t) in the original MA, which in turn implies

s
τ

==⇒c δ(t). Thus, s ==⇒ δ(t) and t ==⇒ δ(s) in A′ implies s =mec t in the original MA. As all
mecs are contracted, it immediately follows s = t even syntactically (call this statement ⋆1).

In the following, whenever we talk about states and transitions, we consider those of A′.
Furthermore, we will use the notation γ

τ−−→ γ′ to mean that γ′ =
⊕

s∈Supp(γ) γ(s)·γ′
s where for

each s ∈ Supp(γ), γ′
s results from the unique transition s

τ−−→ γ′
s (note that by the construction

of A′, for every state s this transition exists and is unique).

For two states s and t, we write s 99Kϵ t where ϵ ∈ R>0, if there is a finite sequence of
transitions s τ−−→ γ1

τ−−→ γ2
τ−−→ · · · τ−−→ γk for some k with γi(t) = 0 for i < k and γk(t) = ϵ >

0. If this sequence exists, it is unique. If the exact value of ϵ does not matter, we write s 99K t.
We are now ready to prove (⋆). We first show that s 99K t implies t 99K s. Without loss

of generality, let µ(s) = κ > 0 and s 99Kϵ t, but assume that t 99K s does not hold. By
definition of 99K, there is a unique finite sequence s

τ−−→ γ1
τ−−→ γ2 . . .

τ−−→ γk = γs with
γi(t) = 0 for 1 ≤ i < k and γs(t) = ϵ. In the following, we will express that s reaches γs
in k − 1 τ -transitions by s(

τ−−→)kγs. For improved readability, we will write distributions as
compositions of subdistributions by ⊕ in a vector notation emphasizing a splitting of (weak)
transition behaviour according to Lemma 4.3.

Assume first that k is even. As every state of A′ has exactly one outgoing transition, and by

265

D. Proofs of Chapter 8

the property that µ τ−−→ µ′ and µ′ τ−−→ µ, and as k is even, clearly µ(
τ−−→)kµ. Consider

µ =

 (µ⊖s)

⊕
µ(s) · δ(s)

 (
τ−−→)k

µ⊖(µ(s) · γs)
⊕

µ(s) · γs

 = µ.

Then, by assumption, µ(s) = κ, and by the left equality of µ we have just arrived, µ(t) ≥ µ(s) · ϵ
follows from γs(t) = ϵ.

Let γt be the subdistribution such that (µ⊖t)(
τ−−→)kγt. Consider

µ =

 (µ⊖t)

⊕
µ(t) · δ(t)

 (
τ−−→)k

(µ⊖γt)

⊕
γt

 = µ.

As µ(s) = κ and t ̸99K s and thus γt(s) = 0, it must be the case that (µ⊖γt)(s) = µ(s) = κ.
Now let γ′

t be the unique subdistribution such that γt(
τ−−→)kγ′

t. Consider

µ =

(µ⊖γt)

⊕
γt

 (
τ−−→)k

(µ⊖γ′
t)

⊕
γ′
t

 = µ.

Now, as t(τ−−→)kγt and t ̸99K s also γt ̸99K s and thus, γ′
t(s) = 0. This and our right equality

with µ above implies that then (µ⊖γ′
t)(s) = µ(s) = κ. Furthermore, (µ⊖γt)(s) = κ (as we

have shown already above), and s(
τ−−→)kγs and γs(t) = ϵ, also (µ⊖γ′

t)(t) ≥ µ(s) · ϵ must hold.
Now let γ1

t := γ′
t⊕((µ⊖γ′

t)⊖t). Note that |γ1
t | ≥ 2·µ(s)·ϵ, as |γ′

t| ≥ ϵ and (µ⊖γ′
t)(t) ≥ µ(s)·ϵ.

Let γ1
t
′ be the subdistribution such that γ1

t (
τ−−→)kγ1

t
′. Consider

µ =

(µ⊖γ1
t)

⊕
γ1
t

 (
τ−−→)k

(µ⊖γ1
t
′
)

⊕
γ1
t
′

 = µ.

We can derive that as t ̸99K s, and γ1
t only consists of a convex combination of distribu-

tions reachable from t, also γ1
t ̸99Ks and thus γ1

t
′
(s) = 0. As above, we hence conclude

that (µ⊖γ1
t
′
)(s) = µ(s) = κ and, also exactly as above, that (µ⊖γ1

t
′
)(t) = µ(s) · ϵ since

(µ⊖γ1
t)(s) = κ and s(

τ−−→)kγs and γs(t) = ϵ.
Analogously to the above, set γ2

t := γ1
t
′ ⊕ ((µ⊖γ1

t
′
)⊖t). Again analogously, we can derive

that |γ2
t | ≥ 3 · µ(s) · ϵ.

Proceeding with this argumentation, it is straightforward to inductively define γi
t for every

0 < i ∈ N and show that |γi
t | ≥ (i + 1) · µ(s) · ϵ. As µ(s) and ϵ are fixed numbers, this implies

that for some i′, |γi′

t | > 1. This is a clear contradiction to the fact that γi′

t is a subdistribution.
Hence, our initial assumption that t ̸99K s must have been false. The case for k odd a bit more
technical, but is based on the same ideas.
With the just proven property, it is straightforward to establish that W= { (s, t) | s 99K t }

is an equivalence relation. We now show that for every state s, µ([s]W) = µ′([s]W). Recall
first that µ τ−−→ µ′ and µ′ τ−−→ µ. Furthermore, whenever s τ−−→ γ for some γ, for every state

266

D.7. Proof of Theorem 8.14

t ∈ Supp(γ), we have [t]W = [s]W . Thus, for every state s ∈ Supp(µ), µ′([s]W) ≥ µ([s]W), and
analogously with µ and µ′ swapped. Thus, µ([s]W) = µ′([s]W) follows.
We will now show, that for every two states t, t′ ∈ [s]W , we have t ==⇒ δ(t′) and t′ ==⇒ δ(t).

By (⋆1), this implies t = t′. Thus, [s]W consists of a single state and µ([s]W) = µ′([s]W) also
implies µ(s) = µ′(s), which completes the proof. Now, in order to show that for every two states
t, t′ ∈ [s]W , we have t ==⇒ δ(t′) and t′ ==⇒ δ(t), it suffices to show that every state t ∈ [s]W can
reach every other state t′ ∈ [s]W with probability 1. For this, it suffices to construct a sequence
of distributions ⟨ρi⟩i∈N with t ==⇒ ρi for every i ∈ N, that in infinity converge against δ(t′), i.e.
⟨ρi⟩i∈N −→ δ(t′). Let κ = min{ ϵ | s′ ∈ [s]W ∧ s′ 99Kϵ t′ }. The minimum κ exists, as [s]W
is finite. Let γ be the distribution that establishes t 99Kϵ t′. Obviously, γ(t′) ≥ κ. As every
state s′ ∈ [s]W satisfies s′ 99Kϵs′ t′ for some ϵs′ ≥ κ, there must exist a distribution γ′ such that
(γ⊖t′) ==⇒ γ′ and γ′(t′) ≥ κ. Let γ1 := (γ⊖t′)⊕ γ′. Thus, γ1(t′) ≥ κ+(1−κ)κ. We construct
γi analogously for every i ∈ N. Clearly, ⟨γi(t′)⟩i∈N −→ 1. Thus, the distributions must be equal.
This finishes our proof.

Corollary D.1. Given a weakly image-finite MA A and a set P ⊆ D, for every distribution ρ there
exists a distribution ρ′ with ρ

P,∼∼∼sZ=⇒ ρ′.

Proof. This result follows immediately from Lemma D.11 and Lemma 8.9.

Lemma D.12. Given a weakly image-finite MA A and the set P = { (s, τ, µ) ∈ D | δ(s) ∼∼∼ µ },
if µ τ⇂P

===⇒c µ
′, then µ ∼∼∼ µ′.

Proof. Let {s τ⇂P
===⇒c µs}s∈Supp(µ) be the family of allowed weak combined transitions justifying

µ
τ⇂P
===⇒c µ

′, i.e., µ′ =
⊕

s∈Supp(µ) µ(s) · µs.

For each state s ∈ Supp(µ), let σs be a determinate scheduler inducing the transition s
τ⇂P
===⇒c

µs; for each n ∈ N and each α ∈ frags∗(A), define σn
s (α) as follows:

σn
s (α) =

{
σs(α) if |α| < n,

δ(⊥) otherwise.

It is worthwhile to note that for each 0 < n ∈ N and each α ∈ frags∗(A), σn−1
s (α) = σn

s (α) =
σs(α) when |α| < n− 1, σn−1

s (α) = δ(⊥) and σn
s (α) = σs(α) for |α| = n− 1, and σn−1

s (α) =
σn
s (α) = δ(⊥) when |α| ≤ n. Moreover, when |α| = n − 1, we can split the probability 1

of stopping as σn−1
s (α) = δ(⊥) · (σn

s (α)(⊥) + σn
s (α)(D(τ))), i.e., the probability of stopping

according to σs plus the probability of stopping instead of performing some transition according
to σs.
Let µn

s be the target probability distribution of the allowed weak combined transition s
τ⇂P
===⇒c

µn
s as induced by σn

s . It is immediate to see that limn→∞ σn
s = σs and hence limn→∞ µn

s = µs.
We now prove by induction that µn

s
∼∼∼ δ(s): if n = 0, then by definition of σ0

s , µ0
s = δ(s), hence

µ0
s

∼∼∼ δ(s) trivially holds. If n > 0, then consider the two distributions µn−1
s and µn

s where µn
s is

obtained by extending µn−1
s with a single step according to σn

s . Let νn−1
s , νn⊥s , and νns be three

267

D. Proofs of Chapter 8

sub-probability distributions such that for each t ∈ Supp(µn−1
s),

νn−1
s (t) =

∑
α∈F (t,<,n−1)

µσn−1
s ,s(α),

νn⊥s (t) =
∑

α∈F (t,=,n−1)

µσn−1
s ,s(Cα) · σn

s (α)(⊥), and

νns (t) =
∑

α∈F (t,=,n−1)

µσn−1
s ,s(Cα) · σn

s (α)(D(τ)),

where t(v,�,m) is the set {α ∈ frags∗(A) | last(α) = v, |α| � m }, It is easy to verify, by
simple manipulation on probabilistic execution fragments, that µn−1

s = νn−1
s ⊕ νn⊥s ⊕ νns =

νn−1
s ⊕ νn⊥s ⊕

⊕
t∈Supp(νn

s) ν
n
s (t) · δ(t) and that µn

s = νn−1
s ⊕ νn⊥s ⊕

⊕
t∈Supp(νn

s) ν
n
s (t) ·∑

tr∈D(τ)
σn
s (t)(tr)

σn
s (t)(D(τ)) · µtr . Since δ(t) =

⊕
tr∈D(τ)

σn
s (t)(tr)

σn
s (t)(D(τ)) · δ(t) for t ∈ Supp(νns), by the

choice of P and by Corollary 8.2, it follows that
⊕

t∈Supp(νn
s) ν

n
s (t) · δ(t) ∼∼∼

⊕
t∈Supp(νn

s) ν
n
s (t) ·∑

tr∈D(τ)
σn
s (t)(tr)

σn
s (t)(D(τ)) ·µtr , thus µn−1

s = νn−1
s ⊕νn⊥s ⊕

⊕
t∈Supp(νn

s) ν
n
s (t) ·δ(t) ∼∼∼ νn−1

s ⊕νn⊥s ⊕⊕
t∈Supp(νn

s) ν
n
s (t) ·

∑
tr∈D(τ)

σn
s (t)(tr)

σn
s (t)(D(τ)) · µtr = µn

s , hence δ(s) ∼∼∼ µn
s follows by induction

hypothesis δ(s) ∼∼∼ µn−1
s and transitivity of ∼∼∼.

This completes the proof that for each n ∈ N, µn
s

∼∼∼ δ(s), thus µs
∼∼∼ δ(s) as limn→∞ µn

s = µs.
Since µ =

⊕
s∈Supp(µ) µ(s)·δ(s), µ′ =

⊕
s∈Supp(µ) µ(s)·µs and µs

∼∼∼ δ(s) for each s ∈ Supp(µ),
by Corollary 8.2, it follows that µ ∼∼∼ µ′.

Definition D.3. Given a MA A and an allowed weak hyper transition µ
τ⇂Ǎ
===⇒c ν, let

{σs}s∈Supp(µ) be the family of schedulers each one inducing the allowed weak combined transi-

tion s
τ⇂Ǎ
===⇒c νs such that ν =

⊕
s∈Supp(µ) µ(s) · νs.

We say that ι is an intermediate distribution in µ
τ⇂Ǎ
===⇒c ν if ι =

⊕
s∈Supp(µ) µ(s) ·ιs where the

transition s
τ⇂Ǎ
===⇒c ιs is induced by a scheduler σ′

s such that for each finite execution fragment α
and transition tr , σ′

s(α)(tr) ∈ {0, σs(α)(tr)}. ◁

Intuitively, ι is any possible distribution we can reach from µ in the weak hyper transition to
ν by stopping before reaching ν.

Lemma D.13. Given a MA A, an allowed weak hyper transition µ
τ⇂Ǎ
===⇒c ν, and an interme-

diate distribution ι, it holds that µ τ⇂Ǎ
===⇒c ι and ι

τ⇂Ǎ
===⇒c ν.

Lemma D.14. If s τ−−→ µ and δ(s) ̸∼∼∼ µ, then also for every distribution γ and 0 < k ≤ 1:

δ(s)⊕k γ ̸∼∼∼ µ⊕k γ.

Proof. For a concise notation, let ξ = kδ(s) and γ0 = (1 − k)γ and µ0 = kµ. To arrive at a
contradiction, assume ξ ⊕ γ0 ∼∼∼ µ′ ⊕ γ0. Then some ρ must exist such that µ′ ⊕ γ0 ==⇒c ρ and
ρ ∼∼∼ ξ ⊕ γ0 must hold. Without loss of generality, say ρ = µa

0 ⊕ µb
0 ⊕ γa

0 ⊕ γb
0 where ξ ∼∼∼ µa

0 ⊕ γb
0

and γ0 ∼∼∼ µb
0 ⊕ γa

0 and γ0 ==⇒c γ
a
0 ⊕ γb

0 and µ0 ==⇒c µ
a
0 ⊕ µb

0.
As γ0 ∼∼∼ µb

0 ⊕ γa
0 and γ0 ==⇒c γa

0 ⊕ γb
0 there must exist distributions µs

1, µ
c
1, γ

s
1 , γ

c
1 such that

γa
0 ==⇒c γ

s
1 ⊕ γc

1 and µb
0 ==⇒c µ

s
1 ⊕ µc

1 and γa
0

∼∼∼ µc
1 ⊕ γs

1 and γb
0

∼∼∼ µs
1 ⊕ γc

1.
By replacing equals by equals (with respect to ∼∼∼), we can infer that ξ ∼∼∼ µa

0 ⊕ µs
1 ⊕ γc

1.

268

D.7. Proof of Theorem 8.14

Similarly, as γa
0

∼∼∼ µc
1⊕γs

1 and γa
0 ==⇒c γ

s
1 ⊕γc

1 there must exist distributions µcs
2 , µcc

2 , γss
2 , γsc

2

such that γs
1 ==⇒c γ

ss
2 ⊕ γsc

2 and µc
1 ==⇒c µ

cs
2 ⊕ µcc

2 and γs
1

∼∼∼ µcc
2 ⊕ γss

2 and γc
1

∼∼∼ µcs
2 ⊕ γsc

2 . By
again replacing the last component of this sum of distributions by the equivalent term we have
just derived, we obtain ξ ∼∼∼ µa

0 ⊕ µs
1 ⊕ µcs

2 ⊕ γsc
2 .

We can now repeat this argument completely analogously. Starting the argumentation
from γs

1 ==⇒c γss
2 ⊕ γsc

2 and γs
1

∼∼∼ µcc
2 ⊕ γss

2 , we see that there must exist distributions
µccs
3 , µccc

3 , γssc
3 , γssc

3 such that γss
2 ==⇒c γ

sss
3 ⊕γssc

3 and µcc
2 ==⇒c µ

ccs
3 ⊕µccc

3 and γss
2

∼∼∼ µccc
3 ⊕γsss

3

and γsc
2

∼∼∼ µccs
3 ⊕ γssc

3 . By again replacing the last component of this sum of distributions by the
equivalent term we have just derived, we obtain ξ ∼∼∼ µa

0 ⊕ µs
1 ⊕ µcs

2 ⊕ µccs
3 ⊕ γssc

3 .
Repeating this pattern, we find that for every i ∈ N we can inductively draw the following

conclusion: there must exist distributions µc···cs
i+1 , µc···cc

i+1 , γs···sc
i+1 , γs···sc

i+1 such that γs···s
i ==⇒c

γs···ss
i+1 ⊕ γs···sc

i+1 and µc···c
i ==⇒c µ

c···cs
i+1 ⊕µc···cc

i+1 and γs···ss
i

∼∼∼ µc···cc
i+1 ⊕ γs···ss

i+1 and γs···sc
i

∼∼∼ µc···cs
i+1 ⊕

γs···sc
i+1 . Note that the number of c and s in the superscript always is the number stated in the

subscript of the distributions. By successively repeating our replacement of equals by equals as
shown above, we derive for the general case that ξ ∼∼∼ µa

0 ⊕µs
1⊕µcs

2 ⊕µccs
3 ⊕· · ·⊕µc···cs

i+1 ⊕γs···sc
i+1 .

Now first note that for each i ∈ N, µ0 ==⇒c µ
a
0 ⊕µs

1 ⊕µcs
2 ⊕µccs

3 ⊕ · · · ⊕µc···cs
i+1 ⊕µc···cc

i+1 must
hold by transitivity of ==⇒c and our derivations above.
As |ξ| is bound and distributions have non-negative size, the sequence

⟨µa
0 ⊕ µs

1 ⊕ µcs
2 ⊕ µccs

3 ⊕ · · · ⊕ µc···cs
i+1 ⟩i∈N

must be increasing, and thus, the sequence ⟨γs···sc
i+1 ⟩i∈N must be decreasing (not necessarily strictly,

though). Thus, there must exist λ ∈ R≥0 such that ⟨γs···sc
i+1 ⟩i∈N −→ λ. First assume λ = 0. This

implies that the difference of ξ and µa
0 ⊕ µs

1 ⊕ µcs
2 ⊕ µccs

3 ⊕ · · · ⊕ µc···cs
i+1 ⊕ γs···sc

i+1 can become
arbitrarily small up to ∼∼∼. More formally, when ρ is the distribution, such that

⟨µa
0 ⊕ µs

1 ⊕ µcs
2 ⊕ µccs

3 ⊕ · · · ⊕ µc···cs
i+1 ⊕ γs···sc

i+1 ⟩i∈N −→ ρ,

then ρ ∼∼∼ ξ. Formally, this can be shown using Corollary D.4.
As |γc···cc

i+1 | = |µc···cc
i+1 | for all i ∈ N and ⟨|γs···sc

i+1 |⟩ −→ 0, also ⟨|µc···cc
i+1 |⟩ −→ 0. This implies also

⟨µa
0 ⊕ µs

1 ⊕ µcs
2 ⊕ µccs

3 ⊕ · · · ⊕ µc···cs
i+1 ⊕ µc···cc

i+1 ⟩i∈N −→ ρ.
As for each i ∈ N, µ0 ==⇒c µ

a
0⊕µs

1⊕µcs
2 ⊕µccs

3 ⊕· · ·⊕µc···cs
i+1 ⊕µc···cc

i+1 holds, and by [EHZ10c,
Lemma 2]) then also µ0 ==⇒c ρ ∼∼∼ ξ. Since ξ = kδ(s) and µ0 = kµ, this is a contradiction to the
premise of the lemma that δ(s) ̸∼∼∼ µ. Thus, our initial assumption that ξ ⊕ γ0 ∼∼∼ µ′ ⊕ γ0 must
have been wrong.
Now assume λ > 0. Then there must exist 0 < λ′ < λ and k′ ∈ N such that for every k′ > k,

|γs···sc
k | ≥ λ′. As for every i ∈ N, γs···s

i ==⇒c γs···ss
i+1 ⊕ γs···sc

i+1 , clearly |γs···ss
i+1 ⊕ γs···sc

i+1 | = |γs···s
i |

and hence for i ≥ k also |γs···ss
i+1 | = |γs···s

i | − |γs···sc
i+1 | ≤ |γs···s

i | − λ′. Using these inequalities, we
can bound |γs···ss

k+m | for an arbitrary m ∈ N from above by |γs···ss
k+m | ≤ |γs···ss

k | −mλ′. But for m
large enough the right-hand side of the inequality becomes negative, which is a contradiction to
the fact that distributions have non-negative size. Thus, the case λ > 0 leads to a contradiction.
Thus, again, our initial assumption that ξ ⊕ γ0 ∼∼∼ µ′ ⊕ γ0 must have been wrong.

Lemma D.15. Given a weakly image-finite MA A and the set P = { (s, τ, µ) ∈ D | δ(s) ∼∼∼ µ },
if µ ==⇒c µ

′ and µ ∼∼∼ µ′, then also µ
τ⇂P
===⇒c µ

′.

Proof. By definition of weak hyper transition, µ τ
==⇒c µ′ implies that there exists a family of

weak combined transitions {s τ
==⇒c µs}s∈Supp(µ) such that µ =

⊕
s∈Supp(µ) µ(s) · µs. If each

269

D. Proofs of Chapter 8

transition s
τ

==⇒c µs is already an allowed weak combined transition s
τ⇂P
===⇒c µs, then this

implies that {s τ
==⇒c µs}s∈Supp(µ) is actually the family {s τ⇂P

===⇒c µs}s∈Supp(µ), hence µ
τ⇂P
===⇒c

µ′, as required.
Suppose, on the contrary, that there exists some transition s

τ
==⇒c µs that is not an allowed

weak combined transition s
τ⇂P
===⇒c µs. Let σs be the determinate scheduler inducing s τ

==⇒c µs

(cf. [HT12, Th. 2]) and define σ′
s as σs except for the fact that σ′

s chooses ⊥ when σs schedules
a transition not in P . Formally, for each finite execution fragment α and each transition tr ,

σ′
s(α)(tr) =

{
σs(α)(tr) if tr ∈ P ,

0 otherwise.

Similarly, given a transition tr t = t
τ−−→ µt /∈ P , define σ′′

s as follows: for each finite execution
fragment α and each transition tr ,

σ′′
s (α)(tr) =

σs(α)(tr) if tr ∈ P , tr ̸= tr t,

σs(α)(tr) if α = α′τt, last(α′) ̸= t, and tr = tr t, and

0 if α = α′τv, v ̸= t, and last(α′) = t.

It is immediate to see that σ′
s induces an allowed weak combined transition s

τ⇂P
===⇒c ιs for some

distribution ιs; and that σ′′
s induces a weak combined transition s

τ
==⇒c ι

′
s for the distribution ι′s

that is ιs extended from state t with the transition tr t. Since we have an allowed weak combined
transition s

τ⇂P
===⇒c ιs for each s ∈ Supp(µ), then there exists a family of allowed weak combined

transitions {s τ⇂P
===⇒c ιs}s∈Supp(µ) inducing the allowed hypertransition µ

τ⇂P
===⇒c ι where ι =⊕

s∈Supp(µ) µ(s) · ιs is an intermediate distribution and thus, by Lemma D.12, we have µ ∼∼∼ ι.
Also ι′ =

⊕
s∈Supp(µ) µ(s) · ι′s is an intermediate distribution; however ι′ ̸∼∼∼ ι by Lemma D.14

where k = ι(t) ·
∑

s∈Supp(µ) µ(s) · σ′
s(t)(tr t) and γ = (ι⊖t)⊕ (ι(t)− k)δ(t).

Since ι′ is an intermediate transition, Lemma D.13 implies that µ τ
==⇒c ι

′ and ι′ τ
==⇒c µ

′, hence
by Lemma 8.2 we have ι′ ∼∼∼ µ′, thus ι ∼∼∼ µ ∼∼∼ µ′ ∼∼∼ ι′, that is, ι ∼∼∼ ι′ by transitivity of ∼∼∼ but this
contradicts ι ̸∼∼∼ ι′. This implies that tr t ∈ P , hence µ τ⇂P

===⇒c µ
′, as required.

Lemma D.16. Let A be a mec-contracted weakly image-finite Markov automaton and P =

{ (s, τ, µ) ∈ D | δ(s) ∼∼∼ µ }. Then µ ∼∼∼ γ implies there exist µ∗ and γ∗ such that µ PZ=⇒ µ∗ and
γ

PZ=⇒ γ∗ and µ∗ L(∼∼∼δ) γ
∗. Furthermore, µ∗ and γ∗ are unique up to L(∼∼∼δ).

Proof. Let µ ∼∼∼ γ and P = { (s, τ, µ) ∈ D | δ(s) ∼∼∼ µ }. Choose some arbitrary µ∗ and γ∗

such that µ PZ=⇒ µ∗ and γ
PZ=⇒ γ∗. They exist by Corollary D.1. As we do not impose any

further restrictions on µ∗ and γ∗, we will also prove their uniqueness up to L(∼∼∼δ) by showing
that µ∗ L(∼∼∼δ) γ

∗ now.
It remains to establish µ∗ L(∼∼∼δ) γ∗. If already µ∗ L(∼∼∼δ) γ∗, we are done. Hence assume

not µ∗ L(∼∼∼δ) γ∗. From our choice of P , the first condition in Definition 8.15, Corollary 8.2,
and transitivity of ∼∼∼, we conclude µ ∼∼∼ µ∗, and γ ∼∼∼ γ∗. Then, from Theorem 8.15, we see that
there must exist µ′ and γ′ with µ∗ ==⇒c µ′, γ∗ ==⇒c γ′, µ′ L(∼∼∼δ) γ′, µ∗ ∼∼∼ µ′, and γ∗ ∼∼∼ γ′.
By Lemma D.15, it immediately follows that µ∗ τ⇂P

===⇒c µ′ and γ∗ τ⇂P
===⇒c γ′ must hold. By

Condition 2 of Definition 8.15, this implies that already µ∗ L(∼∼∼δ) µ
′ and γ∗ L(∼∼∼δ) γ

′. Thus, by
transitivity of ∼∼∼δ and µ′ L(∼∼∼δ) γ

′, we conclude µ∗ L(∼∼∼δ) γ
∗.

270

D.7. Proof of Theorem 8.14

Proposition 5. Given a mec-contracted, weakly image-finite MA A, let

P := { (s, τ, µ) ∈ D | δ(s) ∼∼∼ µ }.

The pair (∼∼∼δ, P) is a weak state bisimulation pair.

Proof.

• We first check the necessary condition of weak state bisimulation according to Defini-
tion 8.19. Let hence s ∼∼∼δ t.

1. If s a
==⇒c µ′, then there exists µ′, γ′ and γ such that µ′ PZ=⇒ µ and t

a
==⇒c γ′ PZ=⇒ γ

and µ L(R) γ. As δ(s) ∼∼∼ δ(t), clearly t
a

==⇒c γ′ holds for some γ and µ′ ∼∼∼ γ′.
By Lemma D.16, there exist µ∗ and γ∗, which are a suitable choice for µ and γ
respectively.

2. Assume s↓ then by the definition of weak distribution bisimulation it immediately
follows that t ==⇒c γ with γ↓.

• To establish that P is indeed a set of preserving transitions, let (s, τ, µ) ∈ P , and let
s

a
==⇒c γ for some distribution γ. Using Lemma 8.5, as δ(s) ∼∼∼ µ, it must hold that there

exists γ̂ such that µ a
==⇒c γ̂ and γ ∼∼∼ γ̂. Applying Lemma D.16 to γ and γ̂, we see that

there exist γ′ and γ̂′ such that γ PZ=⇒ γ′, γ̂ PZ=⇒ γ̂′, and γ′ L(∼∼∼δ) γ̂
′.

Proof step: t ∼∼∼s t
′ implies t ∼∼∼δ t′

Let in the following A be a weakly image-finite MA and (R, P) a weak state bisimulation pair.
As usual, we omit R in the notation P,RZ=⇒ in the following.

Lemma D.17. Let R be an arbitrary equivalence relation over S. Let P be a predicate over S
such that P(s) holds if and only if there exists no distribution µ such that s τ⇂P

===⇒c µ and not
δ(s) L(R) µ. We lift P to distributions over S by the usual state-wise extension.
For an arbitrary distribution µ∗ P(µ∗) holds if and only if whenever τ⇂P

===⇒c µ
′, then µ∗ L(R)

µ′.

Proof. Let s ∈ Supp(µ∗) and assume that ¬P(s) and thus also ¬P(µ∗). Clearly, s τ⇂P
===⇒c µ

implies that there is a transition µ∗ τ⇂P
===⇒c µ ⊕µ∗(s) (µ

∗⊖s) := µ′. As not µ L(R) δ(s), it
cannot either be the case that µ∗ L(R) µ′. Hence, with µ′ we have a witness that shows that
the right-hand side of the if-and-only-if must be false, either. For the other directions, assume
that the condition on the right-hand side is violated. This means that there exists µ′ such that
µ∗ τ⇂P

===⇒c µ
′, and not µ∗ L(R) µ′. Trivially, there must be at least one state in Supp(µ∗) that, as

part of this hypertransition of µ∗, reaches a distributions µ′
s that does not satisfy δ(s) L(R) µ′

s,
as otherwise µ∗ L(R) µ′ must hold. Immediately, ¬P(µ∗) follows.

Corollary D.2. Let A = (S, s̄,Act, ,) be a weakly image-finite Markov automaton. Let
⟨γi⟩i∈N be a sequence of distribution over S converging against the distribution γ. Let ⟨γ′

i⟩i∈N be a
sequence of distribution satisfying

γi
τ⇂P
===⇒c γ

′
i.

Then, there exists a distribution γ′ such that

271

D. Proofs of Chapter 8

• γ
τ⇂P
===⇒c γ

′,

• ⟨γ′
j⟩j∈J −→ γ′ for some subsequence ⟨γ′

j⟩j∈J with J ⊆ N.

In addition, let P be an arbitrary predicate over states that is lifted to distributions by letting P(γ)
hold if and only if P(s) holds for every s ∈ Supp(γ). Then, if each γ′

j satisfies P(γ′
j) for j ∈ J , then

also P(γ′).

Proof. The transition relation τ⇂P
===⇒c in an automaton A can be interpreted as an ordinary weak

hyper transition in the automaton A′ that results from A by removing all transitions not in
P and labelled different from τ . As we consider weakly image-finite MA only, the structure
graph of A′ consists of possibly infinitely many finite connected components. Thus, A′ must be
compact, as each of its unconnected components is by Lemma 7.2. With compactness, the proof
of Lemma 7.5 carries over immediately to A′ and from there to A.

Corollary D.3. Let A = (S, s̄,Act, ,) be a weakly image-finite Markov automaton. Let R
be an equivalence relation over S. Let ⟨γi⟩i∈N be a sequence of distribution over S converging against
the distribution γ. Let ⟨γ′

i⟩i∈N be a sequence of distribution satisfying

γi
P,RZ=⇒ γ′

i.

Then, there exists a distribution γ′ such that

• γ
P,RZ=⇒ γ′,

• ⟨γ′
j⟩j∈J −→ γ′ for some subsequence ⟨γ′

j⟩j∈J with J ⊆ N.

Proof. Recall that we write µ P,RZ=⇒ µ∗ to denote a weak combined transition from µ to µ∗ with
the following properties:

1. µ
τ⇂P
===⇒c µ

∗.

2. whenever µ∗ τ⇂P
===⇒c µ

′, then µ∗ L(R) µ′.

Without the second condition, the lemma would be an immediate instance of Corollary D.2.
However, Condition 2 is not obviously covered by the lemma. In Lemma D.17, we have shown
that this condition can, however, be interpreted as a predicate over states, according to Corol-
lary D.2. Thus, Corollary D.2 does indeed apply here.

The following lemma is the core of our proof.

Lemma D.18. Let µ τ⇂P
===⇒c γ for two otherwise arbitrary distributions µ and γ.

Whenever µ a
==⇒c ξ

′ for some distribution ξ′ then there exist distributions ν, ν′ and ξ such that

• γ
a

==⇒c ν
′, and

• ξ′
PZ=⇒ ξ and ν′

PZ=⇒ ν and ξ L(R) ν.

272

D.7. Proof of Theorem 8.14

Proof. We first consider the case where µ
τ⇂P
===⇒c γ is a non-combined and finitary weak hy-

pertransition. We may thus proceed by induction on the size of transition tree inducing the
transition µ

τ⇂P
==⇒ γ.

Let µ τ⇂P
==⇒ γ′ by a smaller transition tree with γ′ chosen such that γ′ τ⇂P−−−→ γ. Now consider

µ
a

==⇒c ξ′. By induction, there exist ξ1, ν′1 and ν1 such that ξ′ PZ=⇒ ξ1 and γ′ a
==⇒c ν′1 and

ν′1
PZ=⇒ ν1 and ξ L(R) ν1. To finish the induction step, we first remark that γ′ a

==⇒c ν′1 and
ν′1

PZ=⇒ ν1 it immediately follows that γ′ a
==⇒c ν1. As γ′ τ⇂P−−−→ γ and by the definition of

preserving transitions (Definition 8.19), it is then clear that there exist ν′1, γ′ and γ′′ such that
ν1

PZ=⇒ ν′1 and γ
a

==⇒c γ′ and γ′ τZ=⇒ Pγ′′ and ν1 L(R) γ′′. But by the second clause of the
definition of PZ=⇒, it is clear that ν1 L(R) ν′1. As R is an equivalence relation, this immediately
implies ν1 L(R) γ′′ and as in turn ξ L(R) ν1 furthermore ξ L(R) γ′′.
We have shown the lemma for the case where µ

τ⇂P
===⇒c γ is a non-combined and finitary

weak hypertransition. We now proceed with the argument how to generalize our result to non-
combined, but infinitary weak hypertransitions. Assume µ

τ⇂P
===⇒c γ by an infinitary weak

hypertransition. From the transition tree inducing this transition we obtain a infinite sequence
of finitary weak transitions µ τ⇂P

===⇒c γi whose induced distributions γi converge against γ by
cutting the infinitary transition tree at level i.
For each of these γi we can already apply the lemma with the precondition µ

τ⇂P
===⇒c γi. To

distinguish between the different instances of applying the lemma, we use the notation ηi where
η ∈ {γ, ν′, ν, ξ} to refer to the respective distribution η from the lemma. Note that µ and ξ′ are
the same in each instance. In the following, we will use Corollary D.3 and Lemma 7.4 in order
to establish the limit case, i.e. µ τ⇂P

===⇒c γ. Figure D.1 illustrates the following lines. We apply

∞

∞

∞

∞

γi

ν′i

γ

νi

γ′

ν

ξ′ ξi

ξ′ ξ

L(R)

L(R)

by Corollary D.3

a
==⇒

c

a==⇒
c

PZ=⇒

PZ=⇒
PZ=⇒

Figure D.1.: Graphical Proof Sketch

Lemma 7.5 on the γi, the ν′i and γ to derive the existence of a distribution γ′ such that γ a
==⇒c γ

′.
Then, we apply Corollary D.3 on the ν′i, the νi and γ′ to derive the existence of a distribution

273

D. Proofs of Chapter 8

ν with γ′ PZ=⇒ ν, which is in addition the limiting distribution of some subsequence with some
index set J ′ of the ξi. Then, on ξ′ and the ξi, (however, only applied to the subsequence with
index set J ′) we apply Corollary D.3 to derive the existence of a distribution ξ with ξ′

PZ=⇒
ξ, which in addition is the limiting distribution of the ξi. More correctly, it is the limiting
distribution of some subsequence with some index set J ′′, which is a subset of J ′. This allows
us to apply Lemma 7.4 on ν, ξ, and the subsequences of the νi and the ξi with index set J ′′,
to derive ν L(R) ξ. This establishes that the lemma also holds for the case that µ τ⇂P

===⇒c γ is
induced by an infinitary transition tree, but is not a convex weak hypertransition.
We now finally show the most general case, where µ

τ⇂P
===⇒c γ may also be a convex weak

hyper transitions.
Let γ =

⊕
i∈I ciγi for a family of weights ci ∈ [0, 1] and distributions γi satisfying µ

τ⇂P
===⇒c γi

with a non-combined weak hypertransition. Obviously, we can apply the lemma for each of the
γi already by our preceding proof steps.
To distinguish between the different instances of applying the lemma, we use the notation ηi

where η ∈ {γ, ν′, ν, ξ} to refer to the respective distribution η from the lemma. Note that µ and
ξ′ are the same in each instance.
Immediately, by Lemma 4.3, we can conclude that γ a

==⇒c

⊕
i∈I ciν

′
i. As Z=⇒ is also composed

of combined transitions, we may also conclude by the same lemma that ν′ PZ=⇒ ⊕
i∈I ciνi and

that ξ′ PZ=⇒ ⊕
i∈I ciξi. Finally, we only need to establish that

⊕
i∈I ciξi L(R)

⊕
i∈I ciνi. But

this follows easily from Lemma 4.1.

Proposition 6. S = { (µ, γ) | ∃µ′∃γ′.µ
PZ=⇒ µ′ ∧ γ

PZ=⇒ γ′ ∧ µ′ L(R) γ′ } is a weak distribution
bisimulation.

Proof. We will now check the three conditions of weak distribution bisimulation. Let (µ, γ) be
an arbitrary pair in S, and let µ′ and γ′ be as above.

1. Assume µ a−−→ ξ for an arbitrary µ′. By Lemma D.18, there exist ξ′, ξ′′ and ξ′′′ such that
µ′ a

==⇒c ξ′′ and ξ′′
PZ=⇒ ξ′ and ξ

PZ=⇒ ξ′′′ and ξ′′′ L(R) ξ′. Since µ′ L(R) γ′, clearly there
exist ξ∗, ν′ and ν′ such that ξ′ PZ=⇒ ξ∗ and γ′ a

==⇒c ν′ and ν′
PZ=⇒ ν and ξ∗ L(R) ν. By

the second clause of the definition of PZ=⇒ and since R is an equivalence relation and thus
transitive, it follows that ξ′ L(R) ν and thus with the same argument ξ′′′ L(R) ν. Finally,
as γ PZ=⇒ γ′ and γ′ a

==⇒c ν′ and ν′
PZ=⇒ ν we can infer γ a

==⇒c ν. It only remains to be
established that ξ L(S) ν. This follows by the witnesses ξ′′′ and the fact that ν PZ=⇒ ν by
our choice of ν.

2. Let µ = µ1 ⊕p µ2. It is straightforward to establish that there is a splitting µ′ = µ′
1 ⊕p µ

′
2

with µi
PZ=⇒ µ′

i for i ∈ {1, 2}. By the definition of L(R) it follows that then there is also a
splitting γ′ = γ′

1 ⊕p γ
′
2. By the definition of S, as γ PZ=⇒ γ′, it follows that also γ ==⇒c γ

′.
These facts, together with the remark that γ′

i
PZ=⇒ γ′

i allow to finally establish that µi S γ′
i

for i ∈ {1, 2}.

3. Let µ↓. Then immediately µ L(R) γ′ follows. Then, by the definition of weak state
bisimulation, it follows that γ′ ==⇒c γ

′′ and γ′′↓. Clearly, as γ PZ=⇒ γ′, also γ ==⇒c γ
′′.

274

D.8. Proof of Theorem 8.15

Proof of Theorem 8.14
On finite MA, ∼∼∼s=∼∼∼δ.

This result is an immediate consequence of Proposition 5 and Proposition 6.

D.8. Proof of Theorem 8.15
Necessary Lemmas
Lemma D.19. Let A = (S, s̄,Act, ,) be a Markov automaton and let R ⊆ Dist(S) ×
Dist(S) contain all pairs (µ, γ) satisfying

1. there is a (infinite) sequence ⟨µi⟩i∈N with
a) ⟨µi⟩i∈N −→ µ,
b) whenever µ a−−→ for some a ∈ Actχ, then µi

a
==⇒ for all i ∈ N,

c) if µ↓ then there exists µ′
i such that µi ==⇒ µ′

i and µ′
i↓ for all i ∈ N,

2. there is a (infinite) sequence ⟨γi⟩i∈N with
a) ⟨γi⟩i∈N −→ γ,
b) whenever γ a−−→ for some a ∈ Actχ, then γi

a
==⇒ for all i ∈ N,

c) if γ↓ then there exists γ′
i such that γi ==⇒ γ′

i and γ′
i↓ for all i ∈ N,

3. for each i ∈ N : µi
∼∼∼ γi

Then R is a weak distribution bisimulation.

Proof. We begin our proof with a claim.

Claim 1: Whenever µ a−−→ µ′, then for each i ∈ N, there exists a distribution
µ′
i such that µi

a
==⇒ µ′

i and d(µ′, µ′
i) ≤ d(µ, µi).

Proof. We know by the definition of hyper transitions (Definition 4.14) that

µ′ =
⊕

s∈Supp(µ)

µ(s)µ′
s

for suitable distributions µ′
s satisfying s

a−−→ µ′
s. With the help these distribu-

tions we can construct the sought-for distribution µ′
i as follows

µ′
i =

⊕
t∈Supp(µ′

i)

µ′′
t

where we let µ′′
t = µ′

t if t ∈ Supp(µ′), and otherwise, we let it be an arbitrary
distribution ρ satisfying t

a−−→ ρ. That ρ must exist follows from Assump-
tion 1.b) of this lemma. By construction, d(µ′

i, µ
′) ≤ d(µ, µi) holds.

275

D. Proofs of Chapter 8

We now continue with the actual proof of this lemma. First of all, obviously, R is symmetric.
Now, to check Condition a.) of weak distribution bisimulation, assume µ

a−−→ µ′. Then, by
Claim 1, for each i ∈ N, there exists a distribution µ′

i such that µi
a

==⇒ µ′
i and d(µ′, µ′

i) ≤
d(µ, µi). Hence, the sequence ⟨µ′

i⟩i∈N −→ µ′. As µi
∼∼∼ γi, there also exists a distribution γ′

i for
each i ∈ N, such that γi

a
==⇒c γ′

i and µ′
i
∼∼∼ γ′

i. By Lemma 7.5, there then exists a distribution γ′

such that γ a
==⇒c γ′ and ⟨γ′

i⟩i∈N −→ γ′. As both ⟨µ′
i⟩i∈N −→ µ′ and ⟨γ′

i⟩i∈N −→ γ′, the pair
(µ′, γ′) is contained in R. This ends the proof of the first condition.

For Condition b.), let us assume that µ = µ0 ⊕p µ
1 for some arbitrary p ∈ [0, 1] and suitable

distributions µ0, µ1. We now construct a splitting of µi = µ0
i⊕p µ

1
i such that ⟨µk

i⟩i∈N −→ µk

for k ∈ {0, 1}. Let for k ∈ {0, 1}

µk
i (s) =

{
µk(s)

µk(s)+µ1−k(s)
µi(s) if s ∈ Supp(µ)

1
2 µi(s) else

Given this splitting for each µi, by µi
∼∼∼ γi, it follows that γi ==⇒c γ′

i = γ0
i ⊕ γ1

i and µk
i

∼∼∼ γk
i

for k ∈ {0, 1}. By Lemma 7.5, it is clear that γ ==⇒c γ′ where γ′ is the limiting distribution
of a subsequence ⟨γ′

i⟩j∈J with a suitable index set J ⊆ N. It now remains to be shown that for
k ∈ {0, 1}

⟨γk
j ⟩j∈J −→ γk for some distribution γk

and that
γ′ = γ0 ⊕ γ1.

This is not completely obvious, as even though the sequence converges against the distribution
γ′, it could be possible that the splitting always happens in a non-converging way. Actually, we
cannot show that the sequence converges against one single splitting. We can, however, show that
there must exist a subset of indexes J ′ ⊆ J such that the corresponding subsequence converges
for ⟨γ0

j ⟩j∈J′ and ⟨γ1
j ⟩j∈J′ . More precisely, we will show that there exists an infinite index set

J ′ ⊆ J such that for every ε ∈ R>0 there is a number N ∈ N such that for every n,m ∈ J ′ with
n,m > N

Condition 1 |γk
n(s)− γk

m(s)| ≤ ε for every s ∈ Supp(γ′) and k ∈ {0, 1}, and

Condition 2 ⟨γ0
j (s) + γ1

j (s)⟩j∈J′ −→ γ′(s) for every s ∈ Supp(γ′).

The first statement means that ⟨γk
j (s)⟩j∈J′ for both k = 0 and k = 1 is a Cauchy sequence over

the set R for every s ∈ Supp(γ′). Thus, the sequence must have a limit in R. We now define
γk(s) as the respective limiting distribution for each s ∈ Supp(γ′) and k ∈ {0, 1}. By the second
statement, it follows that γ′ = γ0 ⊕p γ

1, and everything is shown.
It remains to prove the existence of the index set J ′. We construct the sequence as the limit

of a sequence of index set. Let {s1, s2, . . . } = Supp(γ′) and without loss of generality let
γ′(si) ≤ γ′(si−1). Let J0 = J . We derive Jl from Jl−1 as follows. The sequence ⟨γ0

j (sl)⟩j∈Jl−1

is a bounded sequence of real numbers. Clearly, there must be a subsequence J l−1 of the sequence
Jl−1 such that rl ∈ R exists with

⟨γ0
j (sl)⟩j∈Jl−1

−→ rl.

Without loss of generality, we may demand that J l−1 agrees with l−1 for the first l elements (⋆).
This is possible, as any finite prefix of a sequence is irrelevant for the possible accumulation
points of the sequence. We choose Jl := J l−1.

276

D.8. Proof of Theorem 8.15

We now define
J ′ =

∩
sl∈Supp(γ′)

Jl.

By (⋆), it is ensured that J ′ is an infinite set. Furthermore, J ′ ⊆ Jl. Hence, it guarantees that

⟨γ0
j (sl)⟩j∈J′ −→ rl.

We now check that J ′ satisfies the two conditions we have required. Condition 2 is obvious,
as already

⟨γ0
j + γ1

j ⟩j∈J0
−→ γ′,

and therefore clearly also
⟨γ0

j + γ1
j ⟩j∈J′ −→ γ′

as J0 ⊇ J ′. Trivially, this implies ⟨γ0
j + γ1

j ⟩j∈J′ −→ γ′ for every s ∈ Supp(γ′). For Condition 2,
let ε ∈ R>0 be given. There exists a a number N0 ∈ J0, such that for every n > N0

|γ′(s)− γ′
n(s)| ≤ ε1

for every s ∈ Supp(γ′) for arbitrarily small ε1 ∈ R>0. Furthermore, for every sl ∈ Supp(γ′)
there exists a number Nl ∈ Jl such that for every n > Nl

|γ0
n(sl)− γ0

m(sl)| ≤ ε2 (D.23)

for arbitrarily small ε2 ∈ R>0. As γ′
n = γ0

n ⊕ γ1
n, also

|γ1
n(sl)− γ1

m(sl)| ≤ ε1 + ε2. (D.24)

For any arbitrarily small ε3, there exists a number o such that

γ′({Supp(γ′) \ {s1, s2, . . . , so}}) ≤ ε3. (D.25)

As our last step, we now show that in order to satisfy Condition 1, we can chooseN to be any
N ∈ J ′ with N ≥ maxN0, N1, . . . , No, and ε1 = ε2 = ε3 = 1

2ε. We check the condition now
for every s ∈ Supp(γ′) and we distinguish two cases.

Case 1: s = si for i ∈ {1, . . . , o} As N ≥ Ni, by Equation (D.23) and (D.24) everything fol-
lows.

Case 2: s = si for i > o From Equation (D.25), we can infer that γ′(s) ≤ ε. Thus, also
γk
n(s) ≤ ε1 + ε3 = ε for every n > N . Hence, |γk

n(s)γ
k
m(s)| ≤ ε for n,m > N , as

in the worst case, in one distribution the probability of s is ε and in the other 0.

For Condition c.), let us assume µ↓. Then, for all µi there exists µ′
i with µ′

i↓ and µi ==⇒c µ
′
i by

the assumptions of the Lemma. As µi
∼∼∼ γi also γi ==⇒c γ

′
i with γ′

i↓. Immediately, by Lemma 7.5,
everything follows.

Corollary D.4. Let A = (S, s̄,Act, ,) be a Markov automaton γ be a distribution over S.
Let ⟨µi⟩i∈N be a sequence of distributions over S with ⟨µi⟩i∈N −→ µ, satisfying in addition for every
i ∈ N

µi
∼∼∼ γ.

Then µ ∼∼∼ γ.

277

D. Proofs of Chapter 8

Proof. We use Lemma D.19 to prove this corollary. Clearly, the sequence ⟨γi⟩i∈N with γi = γ for
every i ∈ N trivially satisfies all necessary preconditions. It remains to check the preconditions
for the sequence ⟨µi⟩i∈N. In detail, it remains to check that

1. whenever µ a−−→ for some a ∈ Actχ, then µi
a

==⇒ for all i ∈ N, and

2. if µ↓ then there exists µ′
i such that µi ==⇒ µ′

i and µ′
i↓ for all i ∈ N.

For the first part, we will establish that γ a
==⇒ if µ a−−→. Then, it immediately follows from

µi
∼∼∼ γ that also µi

a
==⇒ for every i ∈ N. Assume the contrary, i.e. µ a−−→ but not γ a

==⇒ .
Let γa ⊕p γa = γ be a splitting of γ with γa a

==⇒ and γa ̸ a
==⇒ . We can now show that

this statement cannot hold for any fixed p > 0. To see this, consider an arbitrary fixed p > 0.
Choose i large enough such that d(µi, µ) < 1

2p. From this we may conclude the existence of
states X ⊆ Supp(µi) ∩ Supp(µ) with µi(X) ≥ 1− 1

2p. From µ
a−−→ it follows that each s ∈ X

can perform an a-transition. Intuitively speaking, the probability for a transition, that cannot
perform an a-transition is less than 1

2p. Thus, whenever ξ ∼∼∼ µi, then there cannot be a splitting
ξ = ξa ⊕p ξ

a with ξa ̸ a
==⇒ (⋆).

On the other hand, as µi
∼∼∼ γ, for µi there must exist a splitting µi ==⇒ µa

i ⊕p µ
a
i with µa

i
a

==⇒
and µa

i ̸ a
==⇒ . From Lemma 8.6, we know that µa

i ⊕p µa
i

∼∼∼ µi. But this directly contradicts
(⋆). This ends the proof of the first statement. The proof of the second statement is completely
analogue.

Lemma D.20. Let s ==⇒ µ and δ(s) ̸∼∼∼ µ. Then for every 0 ≤ k < 1

s ≁∼∼ δ(s)⊕k µ.

Proof. Assume that on the contrary for a fixed k in fact s ∼∼∼ δ(s) ⊕k µ holds. Since s ̸∼∼∼ µ,
but s ==⇒ µ, there either must be a transition s a γ such that whenever µ

a
==⇒c γ′, then

γ′ ̸∼∼∼ γ or if a ̸= τ , then possibly directly µ ̸ a
==⇒c. We will refer to this fact by (⋆). The

second case immediately implies δ(s) ⊕k µ ̸ a
==⇒c, which is a contradiction to our assumption.

We now consider the first case that whenever µ a
==⇒c γ′ then γ′ ̸∼∼∼ γ. By our assumption that

s ∼∼∼ δ(s)⊕k µ, there must, however, exists some ξ and some γ′ such that s a
==⇒c ξ and µ

a
==⇒c γ

′

and ξ ⊕k γ′ ∼∼∼ γ holds. We will refer to this fact by (⋆1).
Again, it cannot be the case that µ can simulate the transition s

a
==⇒c ξ. To see this, assume the

contrary. Then, for some ξ′ : µ a
==⇒c ξ

′ and ξ ∼∼∼ ξ′. But then also µ ==⇒c (ξ
′)⊕k γ

′ ∼∼∼ ξ⊕k γ
′ ∼∼∼ γ.

A contradiction to (⋆)!
Nevertheless, by our assumption that s ∼∼∼ δ(s)⊕k µ, we must be able to repeat this argument

as above, such that there must exist a π such that µ a
==⇒c π and a ν such that s a

==⇒c ν and
ν ⊕k π ∼∼∼ ξ. We will refer to this fact by (⋆2).

With the help of these results, it can be shown that not only δ(s) ⊕k µ can simulate the chal-
lenging transition s

a−−→ γ, but also δ(s) ⊕k2 µ. (We will show this step in the next paragraph.
Before, we finish the train of thoughts for this proof.) Then, we can repeat the proofs argumen-
tation so far for δ(s)⊕k2 µ, to see that everything also must hold for δ(s)⊕k22 µ. Repeating this
argument over and over again, we see that it even must hold for δ(s)⊕k2i µ for every i ∈ N.

As in our proof, we made no specific assumptions on the concrete value of a or the challenging
transition itself, this means that every transition of s can be mimicked by δ(s) ⊕k2i µ for every

278

D.8. Proof of Theorem 8.15

i ∈ N. At the same time, s ==⇒ µ by the premise of the lemma, which implies that s can
simulate every behaviour of µ, we can easily establish that indeed δ(s) ∼∼∼ s⊕k2i µ must hold. It
is well-known that the countable infinite sequence ⟨ki⟩i∈N with ki = k2

i

has limit 0. Hence, this
implies immediately that ⟨s⊕ki

µ⟩i∈N −→ µ. This is enough to use Corollary D.4 to establish
s ∼∼∼ µ. A contradiction!
We now prove the missing step we deferred above. We state it again for convenience. If

δ(s) ⊕k µ can simulate the challenging transition s
a−−→ γ, then also δ(s) ⊕k2 µ can simulate it.

For a better readability, in the following paragraph, we use the notation kµ ⊕ (1 − k)γ instead
of µ⊕k γ when convenient. With straightforward transformations we obtain

k2δ(s)⊕ (1− k2)µ

= k2δ(s)⊕ (1− k)(k + 1)µ

= k2δ(s)⊕ k(1− k)µ⊕ (1− k)µ

= k(kδ(s)⊕ (1− k)µ)⊕ (1− k)µ

= (δ(s)⊕k µ)⊕k)µ.

From (⋆2), we know that
δ(s)⊕k µ

a
==⇒c ν ⊕k π

and from (⋆1), we know that µ a
==⇒ γ′. Hence,

(δ(s)⊕k µ)⊕k µ
a

==⇒c (ν ⊕k π)⊕k γ′.

But from (⋆1) and (⋆2), we also know that ν ⊕k π ∼∼∼ ξ and ξ ⊕k γ′ ∼∼∼ γ. In summary, we obtain

k2δ(s)⊕ (1− k2)µ
a

==⇒c (ν ⊕k π)⊕k γ′ ∼∼∼ γ.

Corollary D.5. Let µ1
∼∼∼ µ2

∼∼∼ δ(s) and µ ̸∼∼∼ δ(s), but s τ µ. Then ∀0 ≤ k < 1 : µ1 ̸∼∼∼
kµ2 ⊕ (1− k)µ.

Proof. Assume the contrary. Then for some 0 ≤ k < 1 : δ(s) ∼∼∼ µ1
∼∼∼ kµ2 ⊕ (1 − k)µ ∼∼∼

kδ(s)⊕ (1− k)µ. A contradiction to Lemma D.20

Proof of Theorem 8.15
Let A = (S, s̄,Act, ,) be a Markov automaton, and µ, γ ∈ Dist(S).
If µ ∼∼∼ γ then there exist µ∗ and γ∗ such that µ ==⇒c µ

∗, γ ==⇒c γ
∗,

µ ∼∼∼ µ∗ L(∼∼∼δ) γ
∗ ∼∼∼ γ.

Proof. We first define a set of internal transition trees that we will prove to be suited to reach our
sought-for distributions µ′ and γ′. The construction is identical for each element s in Supp(µ)∪
Supp(γ). Readers familiar with the notion of schedulers, can regard the following construction
as a variant of deterministic schedulers.

279

D. Proofs of Chapter 8

Let T be an internal transition tree with StaT (ε) = s that is stepwise constructed as follows.
Consider a leaf σ. Let StaT (σ) = s. If s τ µ and µ ∼∼∼ δ(s) and ∃u ∈ Supp(µ) : u ̸∼∼∼δ s, then
continue T with this transition. If s allows several different internal transitions, we choose for
every node of T , that is labelled by s, the same internal transition. In all other cases, we do not
continue the tree here.
If a state is continued, following the construction above, we call it a running state. Otherwise,

a stopping state.
For simplicity, we will now speak of state s in the tree T , when formally we mean a node σ

with StaT (σ) = s. Since we continue every such node σ with the same internal transition, this
is well justified.
In general, this transition tree has an infinite depth, and thus, it is not fully clear whether it

indeed induces a transition. We will thus not directly work with this tree, but use it as a blueprint
for a sequence of finite trees. This sequence is constructed by cutting the infinite tree at level i
for each i ∈ N. This sequence of trees induces a sequence of distributions ⟨µi⟩i∈N with µ ==⇒ µi

for each i ∈ N, and accordingly for γ. In the following, we restrict our considerations to µ, as
the case for γ is completely analogue.
As we consider compact Markov automata, this sequence of distributions must have a subse-

quence that converges against a distribution µ, and furthermore by Corollary 7.1, also µ ==⇒ µ.
We choose µ∗ := µ.

We now show that every s ∈ Supp(µ∗) is stopping. Assume the contrary and let µ∗ = µ1⊕pµ2

be a splitting of µ∗ where every state in the support of µ1 is running, and every state in µ2 is
stopping. Whenever we talk about (weak) transitions in the following, we refer to the transitions
possible in this automaton. Note that this automaton is completely deterministic. First, note that
no state in Supp(µ1) can reach any state of µ2, as otherwise the probability with what they would
be reached, can never reach µ1 again, and thus, µ∗ could not be a valid limiting distribution. As
µ1 consists of running states, there must exist a non-trivial weak transition µ1

τ ◦ ==⇒ µ1. If
this was not possible, then µ1 could not be a limiting distribution.

We now proceed with two final steps.

1. Show that there exists a state t ∈ Supp(µ1) such that t τ ◦==⇒ δ(t).

2. Show that this implies that the transition that makes t running actually contradicts our
definition for running transitions.

The second statement implies that t should be stopping and thus contradicts our assumption that
t ∈ Supp(µ1), as µ1 consists only of running states. Thus, our assumption that we can split µ∗

into a running and stopping part must be wrong. Thus, all states in Supp(µ∗) must be stopping,
and we have proven our claim. We now prove the two statements

1. Recall that µ1
τ ◦ ==⇒ µ1. We can thus, for every i ∈ N, construct the weak hyper-

transition
µ1 ==⇒ µ1 ==⇒ · · · ==⇒︸ ︷︷ ︸

i times

µ1,

where we assume that each of the i weak hypertransitions are induced by the same transi-
tion tree. We call in the following i the size of the weak hypertransition. Let t be an arbi-
trary state in the support of µ1 and let ξ′i be the distribution that t contributes to the weak
hyper-transition of size i ∈ N, i.e. there exists a distribution ξ

′
i such that µ1 = ξ′i ⊕µ1(F) ξ

′
i

280

D.8. Proof of Theorem 8.15

and t ==⇒ ξ′i. Let ξi be a distribution that is obtained from a transition tree resembling the
one that induces the transition to ξ′i, but which is cut at every node labelled with t. Let ξ
be a distribution, such that

⟨ξi⟩i∈J −→ ξ for some infinite J ⊆ N.

ξ must exist, as A is compact by Lemma 7.3 Let now δ(F) ⊕p ξ′ = ξ be a splitting of
ξ for p ∈ [0, 1], such that δ(t) /∈ Supp(ξ′). The states in Supp(ξ′) cannot reach t with
any probability greater 0, i.e. for every u ∈ ξ′ there is no weak transition u ==⇒ ξ′′ with
t ∈ Supp(ξ′′). This holds because otherwise, ξ would not be a valid limiting distribution of
our sequence. This, however, means that t the larger the size i of the weak hypertransition

µ1 ==⇒ µ1 ==⇒ · · · ==⇒︸ ︷︷ ︸
i times

µ1,

the less the probability µ′
i(t)must be. Therefore, µ1⊖δ(t)⊖ξ′ must be able to compensate

for the missing probability mass, i.e. it can reach t with probability at least (1 − p)µ1t, as
this is exactly the probability mass that t loses. However, this means that on the long run,
also (1− p) percent of this probability will be lost in ξ′. A contradiction.

2. Assume t τ ◦ ==⇒ δ(t). Then either t τ δ(F) or there exists another distribution
ξ with t τ ξ ==⇒ δ(F). The first case is an immediate violation of our definition of
running states, as t ∼∼∼δ F . We will now show that every state u ∈ Supp(ξ) can reach t with
probability 1 and vice versa. Formally,

t ==⇒ δ(G) and u ==⇒ δ(F).

If this is the case, then it straightforward to see that t ∼∼∼δ G, again contradicting our
assumption that the transition t τ ξ qualifies t as a running state. For the first direction,
we consider a weak transition that is induced by a transition tree that resembles the one
from the transition t

τ−−→ ξ ==⇒ δ(t), but cut it at the nodes labelled by u. Then this
distribution, call it ξ′ satisfies ξ′(u) ≥ ξ(u) and Supp(ξ′) = {G,F}. Then from ξ, we can
continue repeat this construction. Obviously, the limiting distribution of this sequence of
distributions is δ(t), which establishes the first direction. The other direction immediately
follows from the fact that u ∈ Supp(ξ) and ξ ==⇒ δ(t).

This ends the first part of our proof.

Let now µ ∼∼∼ γ and let µ ==⇒ µ∗ be the transition obtained by repeating the above construction
for each s ∈ µ. And analogously for γ ==⇒ γ∗. Clearly, µ ∼∼∼ µ∗ and γ ∼∼∼ γ∗.
We will now show that whenever µ∗ ==⇒c µ

′, then

either µ∗ ̸∼∼∼ µ′, or µ∗ L(∼∼∼δ) µ
′.

And analogously for γ∗. We skip the analogous proof. Assume the contrary, i.e. µ′ ∼∼∼ µ∗, but
not µ′ L(∼∼∼δ) µ

∗.
The weak combined hypertransition µ∗ ==⇒c µ

′ is justified by a family of non-combined weak
hypertransitions and their respective weights (Definition 4.15). For each hypertransition, there
must exist one transition for each s ∈ Supp(µ∗) that together justify the hyper-transition by

281

D. Proofs of Chapter 8

Definition 4.14. If, as we assumed, (µ′ L(∼∼∼δ) µ
∗) does not hold, then one of these transitions –

denote it by s ==⇒ µ′′ – must be induced by a transition tree T that contains a node σ with the
following properties:

• it is labelled with a state s′ (StaT (σ) = s′), with s′ ∼∼∼δ s,

• s′ τ µb where µb is determined by the children of σ in T , and

• µb ̸∼∼∼ δ(s′).

Let 0 < c ∈ [0, 1] be the weight with what this transition contributes to the weak combined
transition µ∗ ==⇒c µ

′.
Without loss of generality, we assume that no such transition has occurred in the tree on a

smaller tree node level. Let T ′ be the subtree of T up to and including the level of σ plus the
children of σ, which represent the distribution µb. Then the distribution induced by this tree T ′

can be characterized as ξb = µb ⊕ProbT (σ) ξ
′, where ξ′ is a distribution only consisting of states

that are equivalent to s with respect to ∼∼∼δ. Then by Corollary D.5, ξb = µb ⊕ProbT (σ) ξ
′ ̸∼∼∼ δ(s).

We can rewrite µ∗ as
µ∗ = (δ(s))⊕µ∗(s) (µ

∗⊖s)

We can clearly further rewrite µ∗ to

(δ(s)⊕c δ(s))⊕µ∗(s) (µ
∗⊖E)

for any c ∈ [0, 1]. Recall that by cwe denoted the weight that the transition s ==⇒ µ′′ contributes
to the weak combined transition µ∗ ==⇒c µ

′. Then, we can construct a weak combined transition
of µ∗ where we let all states stand idle, while only s performs a transition to ξb, with fraction c.
In summary,

µ∗ ==⇒c(ξb ⊕cδ(s))⊕µ∗(s) (µ
∗⊖s)

=(µb ⊕ProbT (σ) ξ
′) ⊕cδ(s))⊕µ∗(s) (µ

∗⊖s).

As ξ ∼∼∼ δ(s) and δ(s′) ∼∼∼ δ(s), by Corollary 8.2 we get

µ∗ ∼∼∼ (δ(s′)⊕ProbT (σ) ξ
′)⊕c δ(s))⊕µ∗(s) (µ

∗⊖s)︸ ︷︷ ︸
:=ρ

.

By Lemma D.14, we furthermore derive

ρ ̸∼∼∼ (µb ⊕ProbT (σ) ξ
′)⊕c δ(s))⊕µ∗(s) (µ

∗⊖s)︸ ︷︷ ︸
:=ρb

By our choice of ρb, we know that µ∗ ==⇒c ρb and also ρb ==⇒c µ′. But as now µ′ ∼∼∼ µ∗, this
immediately implies by Lemma 8.2 that also ρb ∼∼∼ µ∗. A contradiction.

It is now easy to see that in indeed µ∗ L(∼∼∼δ) γ
∗ must hold. By Lemma 8.7, γ∗ ==⇒c γ

′ for some
γ′ that can be split in such a way that for each s ∈ Supp(µ∗) there exists a component of the
splitting, call it γ′

s, such that δ(s) ∼∼∼ γ′
s. But in fact, whenever γ∗ ==⇒c γ′, as detailed out above,

γ∗ L(∼∼∼δ) γ′ or γ∗ ̸∼∼∼ γ′, which, however, would be a contradiction to the lemma. So it must

282

D.8. Proof of Theorem 8.15

hold that already γ∗ can be split according to the lemma. Name the components of the splitting
γ∗
s , analogously to γ′

s above.
If now γ∗

s contains states t with t ̸∼∼∼δ s, then with an argument symmetric to the last, it must
be possible to directly split s suitably. Since splitting s only yields s again all states in Supp(γ∗

s)
are already equivalent to s and hence also equivalent to each other. A contradiction to our
assumption.

283

E. Proof of Lemma 9.7
Throughout the chapter, we write E ≡ F , if E = F only by the axioms (COM) and (ASS).
Recall that a process is in normal form, if it is weak saturated, weak tangible, convex reduced,
∆-expanded, and in sum form. We will show that the following statements hold:

1. Every process can be rewritten into normal form with AMA, and

2. For two processes E and F in normal form, E ≃MA F implies E ≡ F .

Proof. We strengthen the statement as follows:

1. Every process can be rewritten into normal form with AMA, and

2. For two processes E and F in normal form,

a) E ≃MA F implies E ≡ F , and

b) E ∼∼∼ F implies E ≡ F , τ.δ(E) ≡ F or E ≡ τ.δ(F).

By Lemma 9.2, we may assume that E and F are already in sum form and ∆-expanded. The
proof is by induction on the maximum of D(E) and D(F). We call this value n in the following.
If n = 0, both E and F must be the terminated process 0, or ∆(0). By the maximal progress
condition, we derive that E ≃MA F implies that it cannot be the case that one of them is 0 while
the other is ∆(0). Furthermore, by definition, 0 and ∆(0) are already expressions in sum form
and E ≡ F must hold.
Let n = 1 and let without loss of generality D(F) ≤ D(E). Let E be of the form ∆(G). In

fact, whenever E is in this form, then n = 1 must hold. To see this, consider that since E is ∆-
expanded and in sum form, G cannot contain further ∆ expressions nor any prefix expressions,
as the first is forbidden by sum form, and the later violates our assumption that E is∆-expanded,
since then E would consist of multiple summands. So G must by 0. E is thus in normal form,
which proves Statement 1. Since E ≃MA F and D(F) ≤ D(E), F must be ∆(0) as well, and
we immediately obtain E ≡ F . This proves Statement 2.a.). For Statement 2.b.) very similar
arguments can be applied.
Let now n > 2 and let without loss of generality D(F) ≤ D(E) = n. As we have shown

above, we do not need to consider the case that E is a ∆ expression in the following.

Proof step for Statement 1)
By Lemma 9.2, 9.4, and 9.5, we may assume that E is saturated, convex reduced, ∆-expanded

and in sum form. It thus remains to show that E can, in addition, be made weak tangible, while
maintaining the (weak) saturation, convex reduction, ∆-expanded and sum form properties.
By induction and the definition of D, we can assume that all statements already hold for the

successor processes of E.
Assume E is not weak tangible already. Then E cannot be tangible, and it must have at least

two summands A and B with the following possible cases:

285

E. Proof of Lemma 9.7

1. A = ∆(G), E ∼∼∼ A and B = ∆(H)

2. A = ∆(G), E ∼∼∼ A and B = a.
⊕

j∈J qjFj with a ∈ Act

3. A = τ.
⊕

i∈I piEi, E ∼∼∼ ⟨ (Ei : pi) | i ∈ I ⟩ and B = a.
⊕

j∈J qjFj with a ∈ Act

4. A = τ.
⊕

i∈I piEi, E ∼∼∼ ⟨ (Ei : pi) | i ∈ I ⟩ and B = ∆(H)

Note that as we assumed that E is in sum form already, the presence of the τ -prefixed, or ∆
summand excludes the existence of a summand prefixed by λ ∈ R>0, hence we can guarantee
a ∈ Act.

Proofs of the cases:

1. By the definition of sum form, G and H may not contain summands of the form τ.D or
∆(L), thus are unable to perform any τ transitions. If now G andH are weak distribution
bisimilar, then also G ≃MA H , since they cannot perform any τ transitions. Thus, by
induction, we can rewrite G and H to some terms G′ and H ′ with G′ ≡ H ′ and then
clearly also∆(G′) ≡ ∆(H ′). This allows us to eliminate one of the summands by (∆-6)MA.
If there are no other summands, E is now tangible after this transformation. Otherwise,
we continue with other summands and one of our four cases.
But now assume thatG andH are not weak distribution bisimilar. Then, since∆(G) ∼∼∼ E,
it must hold that ∆(G)

τ
==⇒ µ with µ ∼∼∼ δ(∆(H)), since also E τ δ(∆(H)). But since G

cannot perform any τ transitions, this is impossible, contradicting our assumption, that G
and H are not weak distribution bisimilar.

2. With a similar argument as before, it cannot be the case that a = τ , except if
⊕

j∈J qjFj

is itself weak distribution bisimilar to E. But then we can treat this as an instance of the
next case. So if a ̸= τ , let G′ by the normalized variant of G, which exists by induction.
Then there must be a summand a.D of G′ with D ∼∼∼

⊕
j∈J qjFj . We then proceed as in

Case 3, which we refer the reader to.

3. The proof idea now is the following: As E ∼∼∼ ⟨ (Ei : pi) | i ∈ I ⟩, intuitively it must be
the case that the distribution

⊕
i∈I piEi must contain the summand a.

⊕
j∈J qjFj already,

such that with an application of Axiom (D-τ -3) from right to left, we can remove the sum-
mand from E. Repeating this argument for all remaining summands (except τ.

⊕
i∈I piEi

itself), it is clear that only τ.
⊕

i∈I piEi will remain solely. From here, it remains to show
that all the Ei can be saturated and made tangible, as then, E itself will be weakly tangible
and weakly saturated.
We now proceed to formally show why the individual summands are already contained
in
⊕

i∈I piEi, and as a necessary step, we will show how the Ei can be rewritten
into a saturated and tangible form. As a.

⊕
j∈J qjFj is a summand of E, clearly

E
a−−→ ⟨ (Fj : qj) | j ∈ J ⟩. Call this distribution µ. As E ∼∼∼ ⟨ (Ei : pi) | i ∈ I ⟩ also

⟨ (Ei : pi) | i ∈ I ⟩ a
==⇒c γ and µ ∼∼∼ γ must hold for some γ. For simplicity, first assume

that ⟨ (Ei : pi) | i ∈ I ⟩ a
==⇒ γ instead of ⟨ (Ei : pi) | i ∈ I ⟩ a

==⇒c γ. Then, as the Ei are by
induction weakly saturated, they must be of shape either

Ei ≡ E′
i + a.

⊕
k∈Ki

rkGk or Ei ≡ τ.(E′
i + a.

⊕
k∈Ki

rkGk)

286

with
⟨ (Gk : pirk) | i ∈ I, k ∈ Ki ⟩ = γ.

Which of the two shapes actually is attained depends on whether Ei is already saturated
or only weakly saturated. For the general case, that ⟨ (Ei : pi) | i ∈ I ⟩ a

==⇒c γ, we can use
Axiom (CC) to first add a suitable a-prefixed summand to each Ei first. We will now show
that actually µ L(≡) γ holds. Having shown this, we can apply Axiom (D-τ -3) to reach
our goal and remove the summand a.

⊕
j∈J qjFj from E.

It now remains to show that µ L(≡) γ. We know that

⟨ (Fj : qj) | j ∈ J ⟩ = µ ∼∼∼ γ = ⟨ (Gk : pirk) | i ∈ I, k ∈ Ki ⟩ .

We will now show that by application of Axiom (D-τ -1)MA, we can rewrite
⟨ (Fj : qj) | j ∈ J ⟩ and ⟨ (Gk : pirk) | i ∈ I, k ∈ Ki ⟩ into two new distributions µ′ and
γ′ that satisfy the stronger statement

µ′ L(∼∼∼δ) γ
′. (⋆)

Recall that by Theorem 8.15, two distributions µ′ and γ′ must exist with µ ==⇒c µ′ and
µ ∼∼∼ µ′ and also γ ==⇒c γ

′ and γ ∼∼∼ γ′ with µ′ L(∼∼∼δ) γ
′.

We proceed with our arguments only for µ. The case for γ is fully analogous. By induction
hypothesis, all processes Fj in the support of µ are in normal form, and thus in particular,
also weak tangible and weak saturated.
Hence, each Fj must be either already saturated and tangible, or be of the shape

Fj ≡ τ.
⊕
k∈Kj

rkHk

with suitable tangible and saturated Hk. If Fj is already saturated and tangible, then Fj

must be in support of µ′ itself, as it cannot perform any internal transition Fj
τ−−→ ξ

without violating Fj
∼∼∼ ξ; if this equality is violated, however, also the equality µ ∼∼∼ µ′

must be violated by Lemma D.14 and Lemma 8.2. In case that Fj is of shape Fj ≡
τ.
⊕

k∈Kj
rkHk then the only possible transition it can take is the internal transition to

⟨ (Hk : rk) | k ∈ Kj ⟩. From this distribution, no further weak transitions are possible
with exactly the same argument which we have just given for saturated and tangible Fj , as
theHk must be saturated and tangible themselves. Thus, we can deduce that µ′ must be of
shape

µ′ =
⊕
j∈J

qjµj

where either µj = δ(Fj) or µj = ⟨ (Hk : rk) | k ∈ Kj ⟩. We can now apply Axiom
(D-τ -1)MA on every Fj , that is not tangible and saturated already, i.e. it is of the form
Fj ≡ τ.

⊕
k∈Kj

rkHk, since the Fj are part of a prefix expression a.
⊕

j∈J qjFj , which
allows the application of the axiom. With these transformations, we (indirectly) rewrite⊕

j∈J qjFj in such a way that
(i) every process in its support is tangible and saturated, as they then are exactly either

the saturated and tangible Fj or the Hks, which are also tangible and saturated, and

287

E. Proof of Lemma 9.7

(ii) our goal, Equation ⋆, is met, as after this transformation, we exactly obtain µ′ from
above. If we apply the same procedure to the Gk, which are the support of γ, we
obtain γ′ from above.

With this, we have reduced our problem of showing that we can apply Axiom (D-τ -3) to
remove the summand a.

⊕
j∈J qjFj from E to the problem of showing that if µ′ ∼∼∼δ γ′,

then also µ′ ≡ γ′. To state the idea for the remaining proof simply, assume for a second
that ∼∼∼ and ≃MA coincide. Then by using induction hypothesis with the second claim, we
can assume that for everyH,H ′ ∈ Supp(µ)∪Supp(γ) withH ∼∼∼δ H ′ alsoH ≡ H ′. Then,
from µ′ ∼∼∼δ γ′ and the use of axioms (D-COM) and (D-ADD), our claim follows.
Clearly, as in general ∼∼∼ and ≃MA do not coincide for arbitrary processes, we now need to
show how we can still ensure that the induction hypothesis can be applied. It suffices to
show that the H,H ′ ∈ Supp(µ) ∪ Supp(γ) with H ∼∼∼δ H ′ can always be rewritten with
the axioms to processes Ĥ and Ĥ ′ in such a way that Ĥ ≃MA Ĥ ′.
With this result at hand, we can use Axiom (D-τ -1)MA from right to left in order to prefix
H or H ′ as needed by τ .
This almost ends the induction step for the first claim, as we now have ensured that E is
indeed weak tangible and also weak saturated. Only convex reducedness may have been
violated by the applications of (D-τ -3) above. We then must undo these changes again with
the same axiom.

4. If also B ∼∼∼ E, then this in an instance of Case 2. Otherwise, there must be transition⊕
i∈I piEi

τ µ for some µ with µ ∼∼∼ δ(B) = δ(∆(H)). First, since µ is bisimilar to a
Dirac-distribution, all processesGi in the support of µmust be weak distribution bisimilar
to each other and to B. Furthermore, the Gi (and hence µ) can be chosen such that all Gi

are ∆ expresions. Then D(Gi) and D(H) is smaller then n. Furthermore, from the fact
that ∆(Gi) ∼∼∼ ∆(H) we can infer that ∆(Gi) ≃MA ∆(H) due to the presence of ∆, which
gurantees any necessary initial τ -transitions. Given these facts, we can apply induction
to establish that we can rewrite H to some H ′ and the Gi to some G′

i, respectively, with
H ′ ≡ G′

i. From here, we can now eliminate summand B by applying (∆-1)MAand (D-τ -3)
multiply times.

Proof step for Statement 2.a.) As the processes are in normal form, and thus also in sum
form, it suffices to proof that every summand of E is also a summand of F and vice versa. We
now show that every summand of E must also be a summand of F . We skip the completely
symmetric case that every summand of F is also a summand of E.
Let a.

⊕
i∈I piEi with a ∈ Act be a summand of E. Hence E a−−→ ⟨ (Ei : pi) | i ∈ I ⟩ := µ.

As E ≃MA F , there must exist a distribution γ such that F a
==⇒c γ and µ ∼∼∼ γ. As F is saturated,

this means that also F
a−−→c γ. We can now use Axiom (CC) to ensure the existence of a

suitable summand a.
⊕

j∈J qjFj in F with γ = ⟨ (Fj : qj) | j ∈ J ⟩. As the Ei and the Ej are
saturated and tangible, we can apply the induction hypothesis with Statement 2.b) to show that
a.
⊕

i∈I piEi ≡ a.
⊕

j∈J qjFj .
As we can repeat this argument for every summand of both E and F accordingly, it is clear

that the distributions reachable by a-prefixed summands (for each a ∈ Act) of both E and F
agree up to ≡, and convex combinations. Thus, our usage of Axiom (CC) before has actually not
been necessary, as both E and F are convex reduced. Thus, also without the additional use of
Axiom (CC), we can establish E ≡ F .

288

Finally, let λ.
⊕

i∈I piEi with λ ∈ R>0 be a summand of E. As E is in sum form, this is the
only delay-prefix summand of E. For the same reason, E must be stable. Hence, if E ≃MA F ,
it must hold that F λ

==⇒c γ and ⟨ (Ei : pi) | i ∈ I ⟩ ∼∼∼ γ. Furthermore, F must be stable, and
posses one delay-prefix summand λ.

⊕
j∈J qjFj . Then, (i) immediately ⟨ (Fj : qj) | j ∈ J ⟩ = γ,

and no weak internal transition has occurred. In this case, we continue our argument as before.
Alternatively, (ii), the weak combined transition of F must be representable as a sequence

of two transitions F λ−−→ ⟨ (Fj : qj) | j ∈ J ⟩ ==⇒c γ. As the Fj are saturated and tangible,
it must hold that ⟨ (Fj : qj) | j ∈ J ⟩ ̸∼∼∼ γ. As clearly ⟨ (Fj : qj) | j ∈ J ⟩ can mimic every be-
haviour of γ, it must be the case that γ cannot match every transition of ⟨ (Fj : qj) | j ∈ J ⟩
up to ∼∼∼. As ⟨ (Ei : pi) | i ∈ I ⟩ ∼∼∼ γ, also ⟨ (Ei : pi) | i ∈ I ⟩ cannot mimic every behaviour of
⟨ (Fj : qj) | j ∈ J ⟩. If we now repeat all these arguments with the roles of E and F exchanged,
we find the existence of a distribution µ with µ ∼∼∼ ⟨Fj : qj | j ∈ J ⟩ but µ ̸∼∼∼ ⟨Ei : pi | i ∈ I ⟩.
As before, we can derive that

⊕
i∈I piEi must posses some behaviour µ cannot mimic. If we

now denote ⟨Fj : qj | j ∈ J ⟩ in the following by γ∗, and ⟨Ei : pi | i ∈ I ⟩ by µ∗, we see that
this means that µ∗ cannot be mimicked by µ, which is equivalent to γ∗, which in turn cannot be
mimicked by γ, which, however, is equivalent to µ∗. But from this chain of arguments we can
infer that µ cannot mimic every behaviour of itself. A contradiction. Thus, either µ = µ∗ or
γ = γ∗ must hold, as the Ei and Fj are tangible. Assume that µ = µ∗. But then, as µ ∼∼∼ γ∗ and
µ∗ ∼∼∼ γ, also γ ∼∼∼ γ∗ must hold, which is again a contradiction to our assumption, that the Fj

are tangible. Thus γ = γ∗ must hold, too. In summary, µ∗ ∼∼∼ γ∗ must hold, and thus, the weak
internal transition that we assumed in this case, does not exist.

Finally, assume there is a summand ∆(G) in E. Then E τ δ(∆(G)). Since E ≃MA F , process
F can weakly simulate this behaviour. Since F is weakly saturated, an even stronger condition
holds: either F has a summand ∆(H) such that δ(∆(H)) ∼∼∼ δ(∆(G)), or it has a summand
τ. ⟨Hi : pi | i ∈ I ⟩, such that δ(Hi) ∼∼∼ δ(∆(G)) for all i ∈ I .
In the first case, we use induction onG andH with statement 2.a.), and our claim follows, since

then we have found a corresponding summand in F up to ≡. To do so, we need to establish that
indeed G ≃MA H . This can be seen by ∆(G) ∼∼∼ ∆(H) and the fact that neither G nor H can
exhibit internal transitions due to them being in sum form inside a ∆-expression.

For the second case, we first note that whenever Hi
τ−−→ D for some D , then D ∼∼∼ δ(∆(G)).

This holds since δ(Hi) ∼∼∼ δ(∆(G)) and since G is in sum form, G may not exhibit any τ tran-
sitions, and thus ∆(G) could never mimick the τ -transition of Hi if D ̸∼∼∼ δ(∆(G)) would
hold. Thus, whenever Hi

τ
==⇒ D ′, also D ′ ∼∼∼ δ(∆(G)) and each H ′

i ∈ Supp(D ′) satisfies
δ(H ′

i)
∼∼∼ δ(∆(G)). Since we only consider processes without recursion, there must exist D ′ such

that τ.δ(H)
τ

==⇒ D ′, D ′ ∼∼∼ δ(∆(G)) and each H ′
i ∈ Supp(D ′) satisfies δ(H ′

i)
∼∼∼ δ(∆(G)) and,

additionally, H ′
i has no summand of the form τ.D ′′ for some D ′′. But since δ(H ′

i)
∼∼∼ δ(∆(G)),

H ′
i cannot be stable, since ∆(G) is not stable. Thus, it must be the case that H ′

i ≡ ∆(H ′′
i) for

some H ′′
i . Hence, in summary we see that F τ

==⇒ ⟨∆(H ′′
i) : pi | i ∈ I ⟩ for some index set I ,

processess expressionsH ′′
i and probabilities pi and the additional property δ(∆(H ′′

i))
∼∼∼ δ(∆(G))

for all i ∈. From this property we can infer that δ(∆(H ′′
i))

∼∼∼ δ(∆(H ′′
j)) for each i, j ∈ I . It

further follows that also δ(∆(H ′′
i)) ≃MA δ(∆(H ′′

j)) due to the presence of ∆, which gurantees
any necessary initial τ -transitions. Since D(H ′′

i) < n for all i ∈ N , since the are contained in a τ
summand of F , we can apply induction to assume that all the∆(H ′′

i) are already in normal form
and that thus ∆(H ′′

i) ≡ ∆(H ′′
j) for all i, j ∈ I . By saturatedness of F , it must also be the case

289

E. Proof of Lemma 9.7

that F τ ⟨∆(H ′′
i) : pi | i ∈ I ⟩. Furthermore, since F is in sum form, ⟨∆(H ′′

i) : pi | i ∈ I ⟩
must in fact be a Dirac distribution δ(∆(H ′′

i)), since sum form implies that syntactically iden-
tical process expressions in the support of a distribution expression are merged. Now we have
established that F must have a summand τ.∆(δ(H ′′

i)). Again, by saturatedness, ∆(δ(H ′′
i)) itself

must be a summand of F and we in fact have arrived at an instance of our first case.

Proof step for Statement 2.b.) Similar as in the proof of Statement 2.a.), we can show that
the processes E and F have the same summands, except for the following case: without loss of
generality, if E τ µ and δ(E) ∼∼∼ µ, then it may be the case that F does not exhibit an actual
summand, as immediately, F ∼∼∼ µ ∼∼∼ E holds. In this case, however, E ∼∼∼ τ.δ(F) then satisfies the
desired property. Clearly, τ.δ(F) exhibits the missing summand. All summands of F , which are
now not top-level, can be reinstalled by applying (D-τ -3). This also holds for summands that are
∆ expressions, when we apply (∆-1)MA first to convert them into a τ -prefixed summand.

290

F. Proofs of Chapter 11

F.1. Lemma 11.4
1. A ≍

; A′ implies A ≍ A′ for each A,A′ ∈ MA and ≍ ∈ B.

2. A C
; A′ implies A ≍ A′ for each A,A′ ∈ MA and ≍ ∈ {∼PA,∼MA}.

3. A T
; A′ implies A ≍ A′ for each A,A′ and ≍ ∈ {≈LTS,≈PA}.

4. A T
;↓ A′ implies A ≍ A′ for each A,A′ and ≍ ∈ {≈IMC,≈MA,∼∼∼δ}.

5. A L
; A′ implies A ≍ A′ for each A,A′ ∈ MA and ≍ ∈ {≈PA,≈MA,∼∼∼δ}.

6. A R
; A′ implies A ∼∼∼δ A′ for weakly image-finite MA.

7. A M
; A′ implies A ≍ A′ for each A,A′ ∈ MA and ≍ ∈ {∼IMC,≈IMC,≈MA,∼∼∼δ}.

8. A Σ
; A′ implies A ≍ A′ for each A,A′ ∈ MA and ≍ ∈ {∼IMC,≈IMC,≈MA,∼∼∼δ}.

Proof. Proof of 1. The result follows immediately from the definitions of the reductions.

Proof of 2. Follows immediately from the definitions.

Proof of 3. As S = S′, we can take the symmetric and transitive closure of the identity relation
as a bisimulation, irrespective of which notion of bisimulation we want to establish. Then ev-
erything follows by noting that reachability with respect to weak combined transitions is fully
preserved by the reduction.
Also the second condition of weak distribution bisimilarity, the splitting condition follows

immediately in this way.

Proof of 4. Everything follows similarly to the last proof. The only interesting case we need
to consider, however, is the last condition of the three bisimulations. It states that whenever
s R t by some bisimulation R, then s↓ implies t ==⇒c µ and µ↓. As we only remove immediate
transitions, it is guaranteed that if a state was stable in A, then it must still be stable in A′.
Similarly, if s ==⇒c µ and µ↓ in A, this also holds in A′, as reachability is preserved, too, by
the reduction. Finally, let as assume that s↓ in A′, but s cannot reach a stable distribution in A.
Then this means that all immediate transitions have been removed while preserving reachability.
But this means that s τ−−→c ◦==⇒cµ with at least one τ -transition, must imply µ = δ(s). But by
the definition of T

;↓, in this case a transition s τ δ(s) exists in A′.
Proof of 5. Since by definition of L

;, A and A′ have the same set of states, we use ν to refer
to distributions from both A and A′; however, we write s′ when we mean the state s ∈ A′ in
comparison to s ∈ A.

291

F. Proofs of Chapter 11

Let I be the equivalence relation on S ⊎ S′ whose set of classes is { {s, s′} | s ∈ S }, i.e., we
relate each state s with its primed counterpart inA′. We now show that I is a weak probabilistic
bisimulation for A and A′. We treat the case for weak distribution bisimilarity later. As I is
an equivalence relation, it also contains pairs s I s or s′ I s′, i.e. pairs, where both states are
taken from the same automaton. Since the proof is trivial here, we skip it. Let s I s′ and
s

a−−→ ν; if a ̸= τ , then also s′ enables exactly the same transition s′
a−−→ ν, as the reduction

only affects internal transitions, and thus ν L(I) ν. Now, consider a ̸= τ : s′ is able to match
such transition by the weak combined transition s′

τ
==⇒c ν as induced by the scheduler σ such

that σ(s′)(⊥) = ν(s), σ(s′)(tr) = 1− ν(s), and σ(α)(⊥) = 1 for each finite execution fragment
α ̸= s′, where tr = (s′, τ, ν⊖s). Note that this applies also when ν = δ(s) as the resulting
scheduler assigns σ(s′)(⊥) = ν(s) = 1 so the induced weak combined transition is s′ τ

==⇒c δ(s
′)

and δ(s) L(I) δ(s′).
Now, we exchange roles and let s′ a−−→ ν. If a ̸= τ , the case is straightforward as before.

Otherwise, by the definition of the reduction, there must exist a distribution ρ such that ν =

ρ⊖s′ or ν = ρ⊖s, respectively, as s = s′, and s
τ−−→ ρ. But then, there clearly also exists a weak

combined transition s ==⇒c ν, which is obtained from a scheduler that infinitely often executes
the transition s

τ−−→ ρ, whenever it sees s, and stops for any other state. This proves that I is a
weak probabilistic bisimulation.

The proof for ≈MA is completely analogue.

Similarly, we can establish that the straightforward lifting of I to distributions over states is a
weak distribution bisimulation. For the first condition, the argument is completely analogous
to the above proof. For the second condition, consider an arbitrary pair µ I µ′ together with a
splitting µ = µ1 ⊕p µ2. Recall that A and A′ consist of exactly the same states; and we only used
the primed notation for states of A′ to make a clearer distinction. As µ and µ′ are identical then,
µ1 ⊕p µ2 is also a splitting for µ′, and by definition µ1Iµ1 and µ2Iµ2. For the last case, we note
that the reduction does not change the actions enabled from a state. Thus, it preserves stability.
This suffices to establish the last condition of weak distribution bisimulation.

Proof of 6. In the reduced automatonA′, the state space consists of non-redundant states ofA
only. Furthermore, by construction of the transition relations of A′, every reachable redundant
distribution is associated with non-redundant distributions via the relation PZ=⇒. To recall this,
we repeat the definition for the relation for convenience:

Remark F.1 (Reminder). is the smallest relation containing for every weak hypertransition
s

a
==⇒ µ′ of A, a transition s a ′µ for some µ satisfying µ′ PZ=⇒ µ.
Our idea is to show that the symmetric closure of

R:= { (µ, γ) ∈ Dist(S)×Dist(S′) | µ PZ=⇒ ◦L(∼∼∼δ)γ } ∪ {(δ(s̄), δ(s̄′))}

is a weak distribution bisimulation containing the pair of the initial states, i.e. (δ(s̄), δ(s̄′)) ∈R.
We denote by R−1 the symmetric complement of R.

The definition of R has been constructed as the union of two sets. Containment of the initial
states follows immediately by the definition of the second set. In the case that s̄ is non-redundant,
s̄ = s̄′ by construction of A′, adding the pair (δ(s̄), δ(s̄′)) to R explicitly is not really necessary,
as the states are also included in the first set defining R. In the case that s̄ is redundant, s̄′ is a

292

F.1. Lemma 11.4

fresh state t′ and thus δ(t′) /∈ Dist(S′), which prevents the pair of initial states to be in the first
set already.
In order to establish that the symmetric closure of R is indeed a weak distribution bisimu-

lation, we need to check the bisimulation condition for every pair of this relation. The pairs
stemming from the second set, i.e. the initial states, needs treatment only in the case where s̄ has
been redundant, since in the other case, the pair is already included in the first set defining R,
and we will hence provide its proof implicitly when we treat pairs from this set. The proof of
the case that s̄ is redundant is not identical, but very similar to the proofs for pairs taken from
the first set.
We omit it and immediately proceed with the proof for an arbitrary pair (µ, γ) from the first

set. Let hence (µ, γ) ∈ Dist(S)×Dist(S′) and µ
PZ=⇒ ◦L(∼∼∼δ)γ.

Assume that according to Condition (a) of Definition 8.4, µ a−−→ µ′ in A. As µ PZ=⇒ γ (in A),
it holds that γ a

==⇒c ◦
PZ=⇒ γ′ for some γ′ and also µ′ PZ=⇒ µ′′ for some µ′′ satisfying µ′′ L(∼∼∼δ) γ

′

by the fact that ∼∼∼δ is a weak state bisimulation on weakly image-finite MA (Theorem 8.14). By
the definition of combined hypertransition, the definition γ

a
==⇒c ◦ PZ=⇒ γ′ can be split into

non-combined hypertransitions γ a
==⇒ γ′

i such that together with suitable weight pi it holds that
γ′ =

⊕
i pi · γ′

i.
For each of these non-combined transitions, we know from the construction of A′ (cf. the

remark above), that there exists a transition γ a γ′′
i inA′ with the property that γ′

i
PZ=⇒ γ′′

i . As
γ′
i already resulted from an application of the relation PZ=⇒ and the definition of Z=⇒, we know

that γ′′
i L(∼∼∼δ) γ

′
i.

Combing these transitions, we see that hence γ a
==⇒c

⊕
i piγ

′′
i , and furthermore,

γ′ =
⊕
i

pi · γ′
i L(∼∼∼δ)

⊕
i

pi · γ′′
i

holds because γ′′
i L(∼∼∼δ) γ

′
i for each i. Thus, by transitivity of L(∼∼∼δ), in summary, we obtain

µ′ PZ=⇒ µ′′ and µ′′ L(∼∼∼δ)
⊕
i

pi · γ′′
i .

By definition, this implies
µ′ R

⊕
i

pi · γ′′
i ,

which suffices to satisfy Condition (a) of Definition 8.4.
Condition (b) can be shown by using Lemma 4.3 and the fact that PZ=⇒ is, after all, an ordinary

weak combined hypertransition. If µ1 ⊕p µ2 is the splitting of µ, Lemma 4.3 allows us to obtain
a splitting γ1 ⊕p γ2 of γ satisfying the property that µi

PZ=⇒ γi for i ∈ {1, 2}. The last condition
suffices to establish µi R γi as well.
Condition (c) is straightforward, as µ↓ implies that µ = γ.
We finally proceed with the proof for pairs taken from the symmetric complement R−1. Let

(γ, µ) be such a pair and let, for Condition (a), γ a−−→ γ′ in A′. By the construction of A′, this
transition is represented in A in the form of a weak combined hypertransition γ

a
==⇒c γ

′ (more
precisely, as an instance of the relation a

==⇒c ◦ PZ=⇒). Thus, γ in A can weakly simulate every

293

F. Proofs of Chapter 11

transition of γ in A′. Together with the fact that µ PZ=⇒ γ, which implies µ ==⇒c γ, we obtain
µ

a
==⇒c γ

′. Clearly γ′ R γ′ (as by construction of A′, γ′ is non-redundant).

Conditions (b) and (c) follow with a similarly simply argument relying on µ
PZ=⇒ γ.

Proof of 7 The only conditions dealing with timed transitions in the definitions of the bisimu-

lations use the predicate µ
χ(λ)−−−→ µ′ in the premise of an implication (Condition a in all cases).

This predicate, however, becomes logically false as soon is µ is unstable i.e. there is a state in
Supp(µ) that enables an internal transition. Hence, in this case, the implication becomes triv-
ially true immediately, without actually being concerned with the timed transitions of µ. Thus,
they are not affected by removing or adding timed transitions from unstable states. Clearly, the
other conditions are not affected, too, as timed transitions are not mentioned there.

Proof of 8 As in the last case, this follows immediately from the definition of the notation

µ
χ(λ)−−−→ µ′, as there, the accumulation of rates as issued by Σ

; already takes place implicitly.

F.2. Lemma 11.5
For every MA A, a MA A′ with A ; A′ can be computed in

• polynomial time if ; =
≍
; and ≍ ∈ {∼LTS,≈LTS,∼PA,≈PA}

• polynomial time if ; ∈ { C
;,

T
;,

T
;↓,

L
;,

M
;,

Σ
;},

• exponential time if ; =
∼∼∼δ
; ◦ R

;.

Proof. The polynomial time result for ≍
; follows by the corresponding polynomial decision

procedures [CS02; HT12; FM91; PT87; KS83; Her02] and reachability analysis. Further details
can also be found in Chapter 3, 4 and 5. The exponential time result for

∼∼∼δ
; comes from the

exponential time algorithm to decide ∼∼∼δ (cf. Chapter 10). This complexity is, however, only an
upper bound. The actual complexity is currently unknown. The rest follows as before.

C
; requires for each state and each enabled action to solve O(|D|) linear programming prob-

lems (cf. [CS02, Sec. 6]) in order to find the set of generators of reachable distributions; L
; can

be obtained by computing for each transition s
τ−−→ ν the distribution ν⊖s that requires at most

O(|S|) operations; finally, T
; and T

;↓ can be a computed by iteratively removing transitions
and checking, if reachability with respect to weak combined transitions has changed by opera-
tion. The check can be done in polynomial time by a convex reachability analysis from state
s to distribution µ if s a−−→ µ is the transition that has been removed in each of the successive
elimination, using techniques from [HT12], where similar problems are described as a variation
of flow problems. If it turns out that a transition cannot be removed without breaking reachabil-
ity, this cannot change after removing further (reachability preserving) transitions. Thus, every
transition in is considered exactly once for removal. Σ

; and M
; can obviously be computed

by considering every state and its outgoing transitions exactly once.

294

F.3. Lemma 11.11

F.3. Lemma 11.11
Let A be a ≺|S|

≈PA
-minimal MA, A T

; ◦ L
; A′, and A′

m be a ≺|S|
≈PA

and ≺|D|

≈PA
-minimal MA satisfying

A′
m ≈PA A. Now let A′

m
L
; Am for some Am. Then A′ =iso Am.

Proof. Let Am and A′ be chosen as in the claim. We then proceed similarly as in the proof of
Lemma 11.9 to show that b = ≈PA ∩ (Sm × S′) is a bijection. Then we will be able to establish
that b is a suitable mapping to establish Am =iso A′.
Assume, to derive a contradiction, that b is not an isomorphism. Since b is a bijection between

Sm and S′ (note that all automata in this lemma must be ≺|S|
≍ -minimal), in order to haveAm ̸=iso

A′ there must exist s ∈ Sm, t ∈ S′ with s ≈PA t (i.e. b(s) = t), and

(i) either a transition s
a

νs ∈ m but there does not exist t a
νt ∈ ′ such that

νs L(≈PA) νt, i.e. there does not exist a transition t
a

νt ∈ ′ such that νt = b(νs), or

(ii) a transition t
a

νt ∈ ′ but there does not exist s a
νs ∈ m such that νs L(≈PA)

νt. We proceed with the proof of (i).

Note that this cannot be caused by two transitions with νt ̸= b(νs) but b(νs⊖s) = νt⊖t, since
both automata are rescaled. However, since s ≈PA t, it follows that there exists t a

==⇒c νt such
that νs L(≈PA) νt. Now, there are two cases: either a ∈ E, or a ∈ H . We provide the detailed
proof for a = τ whose schematic proof idea is depicted below; the case a ̸= τ is similar.

s

νs
tνt

γi
s

γ1
t
⊕

⊕
γn
t

ρs

ν′s
νs⊕ L(≈PA)=

τ
c

τ

τ
c

τ
c

τc

τ
c

τ

τ

Let σt be the scheduler inducing t
τ

==⇒c νt and t
τ−−→ γ1

t , . . . , t
τ−−→ γn

t be all transitions such
that σt(t)(t

τ−−→ γi
t) > 0 and γi

t ̸L(≈PA) νs, that is, t
τ−−→ γi

t is a transition used in the first step
of the weak combined transition t

τ
==⇒c νt; it is immediate to see that (

⊕n
i=1 γ

i
t)

τ
==⇒c νt. Since

s ≈PA t, it follows that there exists γi
s for each 1 ≤ i ≤ n such that s τ

==⇒c γi
s and γi

s L(≈PA) γ
i
t .

Furthermore, (
⊕n

i=1 γ
i
s)

τ
==⇒c νs, as (

⊕n
i=1 γ

i
t)

τ
==⇒c νt and νt = b(νs).

Now, consider a generic γj
s ; there are two cases depending on whether s τ−−→ νs is used to

reach νs. If it is not used by any of the γi
s, then there exists the weak combined transition

s
τ

==⇒c (
⊕n

i=1 γ
i
s)

τ
==⇒c νs that does not involve s

τ−−→ νs, hence s
τ−−→ νs can be omitted. This

contradicts the ≺|D|

≈PA
-minimality of Am.

So, suppose that s τ−−→ νs is used in order to reach νs. Since (
⊕n

i=1 γ
i
s)

τ
==⇒c νs, we may split

this hyper-transition into two parts according to Lemma 4.3, depending on whether s τ−−→ νs
is chosen by the scheduler with non-zero probability: (

⊕n
i=1 γ

i
s)

τ
==⇒c ν′s with weight c1 ≥ 0

that does not involve s
τ−−→ νs, and (

⊕n
i=1 γ

i
s)

τ
==⇒c δ(s) with weight c2 > 0 that involves

s
τ−−→ νs such that c1 + c2 = 1 and there exists ρs such that (s τ−−→ νs and) νs

τ
==⇒c ρs

295

F. Proofs of Chapter 11

and νs = (c1ν
′
s ⊕ c2ρs). Note that we use ρs instead of νs since it may be that, in order to

reach distribution equivalent to νs, we have to adjust probabilities by performing more steps.
Now, consider the convex combination of the two weak combined transitions Tr1 = s

τ
==⇒c

(
⊕n

i=1 γ
i
s)

τ
==⇒c ν

′
s and Tr2 = s

τ
==⇒c (

⊕n
i=1 γ

i
s)

τ
==⇒c δ(s)

τ−→ νs
τ

==⇒c ρs, with weights c1 and
c2, respectively. Since (c1ν′s⊕ c2ρs) = νs, we have that such convex combination corresponds to
the weak transition s

τ
==⇒c νs, so we can replace the transition s

τ−−→ νs by the weak combined
transition Tr = c1 · Tr1 ⊕ c2 · Tr2 with νs = c1ν

′
s ⊕ c2ρs. Since s

τ−−→ νs still occurs in
Tr2 = s

τ
==⇒c δ(s)

τ−−→ νs
τ

==⇒c ρs, we can recursively replace it by the same weak combined
transition Tr , hence, after k replacements, we have that νs = c1ν

′
s ⊕ c2c1ν

′
s ⊕ c22c1ν

′
s ⊕ · · · ⊕

ck2ρs = (
⊕k−1

l=0 c1c
l
2ν

′
s) ⊕ ck2ρs, that is, (

⊕k−1
l=0 (1 − c2)c

l
2ν

′
s) ⊕ ck2ρs. If we tend k to infinite,

since c2 < 1, we derive that νs = ν′s, therefore there exists the weak combined transition
s

τ
==⇒c (

⊕n
i=1 γ

i
s)

τ
==⇒c νs that does not involve s

τ−−→ νs, hence again s
τ−−→ νs can be omitted.

This contradicts the ≺|D|

≈PA
-minimality of Am. The proof of case (ii) is completely analogous,

except that the contradictions will be derived with respect to ⊆D, which is a result of the fact
that A′ has been reduced according to T

;.
As final note, consider the weight c2 and suppose that c2 = 1. Since s τ

==⇒c (
⊕n

i=1 γ
i
s)

τ
==⇒c

δ(s) with (
⊕n

i=1 γ
i
s) ̸L(≈PA) δ(s), it follows that each state in the support of

⊕n
i=1 γ

i
s is actually

weak bisimilar to s as the states touched in the loop s
τ

==⇒c (
⊕n

i=1 γ
i
s)

τ
==⇒c δ(s) form a strongly

connected component. But this contradicts the ≺|S|
≈PA

-minimality of Am.

296

Bibliography
[AB01] S. Andova and J. C. M. Baeten. “Abstraction in Probabilistic Process Algebra”. In:

TACAS 2001. Vol. 2031. LNCS. 2001, pp. 204–219.
[Abr06] S. Abramsky. “What are the Fundamental Structures of Concurrency?: We still

don’t know!” In: Electronic Notes in Theoretical Computer Science 162 (2006),
pp. 37–41.

[ABW06] S. Andova, J. C. M. Baeten, and T. A. C.Willemse. “A Complete Axiomatisation of
Branching Bisimulation for Probabilistic Systems with an Application in Protocol
Verification”. In: CONCUR 2006. Vol. 4137. LNCS. 2006, pp. 327–342.

[AG09] S. Andova and S. Georgievska. “On Compositionality, Efficiency, and Applicabil-
ity of Abstraction in Probabilistic Systems”. In: SOFSEM 2009: Theory and Practice
of Computer Science. Springer, 2009, pp. 67–78.

[AGT08] S. Andova, S. Georgievska, and N. Trcka. Probabilistic Process Algebra of Communi-
cating Processes with Abstractions. 2008.

[AGT12] S. Andova, S. Georgievska, and N. Trka. “Branching Bisimulation Congruence for
Probabilistic Systems”. In: Theoretical Computer Science 413.1 (2012), pp. 58–72.

[AGU72] A. Aho, M. Garey, and J. Ullman. “The Transitive Reduction of a Directed Graph”.
In: SIAM Journal on Computing 1.2 (1972), pp. 131–137.

[AHJ01] L. de Alfaro, T. A. Henzinger, and R. Jhala. “Compositional Methods for Prob-
abilistic Systems”. In: CONCUR 2001. Ed. by K. G. Larsen and M. Nielsen.
Springer, 2001, pp. 351–365.

[Alf97] L. d. Alfaro. “Formal Verification of Probabilistic Systems”. PhD thesis. Stanford
University, 1997.

[And02] S. Andova. “Probabilistic Process Algebra”. PhD thesis. Eindhoven University of
Technology, 2002.

[And99] S. Andova. “Process Algebra with Probabilistic Choice”. In: Formal Methods for
Real-Time and Probabilistic Systems. Ed. by J.-P. Katoen. Vol. 1601. LNCS. Springer,
1999, pp. 111–129.

[AW06] S. Andova and T. A. C. Willemse. “Branching Bisimulation for Probabilistic Sys-
tems: Characteristics and Decidability”. In: Theoretical Computer Science 356.3
(2006), pp. 325–355.

[BA95] A. Bianco and L. d. Alfaro. “Model Checking of Probabilistic and Nondeterminis-
tic Systems”. In: FSTTCS 1995. LNCS. Springer, 1995, pp. 499–513.

[Bäc+16] O. Bäckström, Y. Butkova, H. Hermanns, J. Krcál, and P. Krcál. “Effective Static
and Dynamic Fault Tree Analysis”. In: SAFECOMP 2016. LNCS. Springer, 2016.

[Bae+10] J. C. Baeten, T. Basten, T. Basten, and M. Reniers. Process Algebra: Equational The-
ories of Communicating Processes. Vol. 50. Cambridge University Press, 2010.

297

BIBLIOGRAPHY

[Bae05] J. C. Baeten. “A Brief History of Process Algebra”. In: Theoretical Computer Science
335.2-3 (2005), pp. 131–146.

[Bae93] J. C. Baeten. The Total Order Assumption. Springer, 1993.
[Bai+03a] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. “Model-Checking Al-

gorithms for Continuous-Time Markov Chains”. In: IEEE TSE 29.10 (2003).
[Bai+03b] C. Baier, H. Hermanns, J.-P. Katoen, and V. Wolf. “Comparative Branching-Time

Semantics for Markov Chains (Extended Abstract)”. In: CONCUR 2003. Vol. 2761.
LNCS. 2003, pp. 492–507.

[Bai+05] C. Baier, J.-P. Katoen, H. Hermanns, and V. Wolf. “Comparative Branching-Time
Semantics for Markov Chains”. In: Information and Computation 200.2 (2005),
pp. 149–214.

[Bai+10] C. Baier, B. R. Haverkort, H. Hermanns, and J. Katoen. “Performance Evaluation
and Model Checking Join Forces”. In: Communications of the ACM 53 (2010).

[Bai96] C. Baier. “Polynomial Time Algorithms for Testing Probabilistic Bisimulation and
Simulation”. In: CAV 1996. Ed. by R. Alur and T. Henzinger. Vol. 1102. LNCS.
Springer, 1996, pp. 50–61.

[Bai98] C. Baier.On Algorithmic Verification Methods for Probabilistic Systems. Habilitation
Thesis. Universität Mannheim, 1998.

[Bal00] G. Balbo. “Introduction to Stochastic Petri Nets”. In: European Educational Forum:
School on Formal Methods and Performance Analysis. Vol. 2090. LNCS. Springer,
2000, pp. 84–155.

[Bal07] G. Balbo. “Introduction to Generalized Stochastic Petri Nets”. In: Formal Meth-
ods for Performance Evaluation: 7th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems, SFM 2007, Bertinoro,
Italy, May 28-June 2, 2007, Advanced Lectures. Ed. by M. Bernardo and J. Hillston.
Vol. 4486. LNCS. Springer Berlin Heidelberg, 2007, pp. 83–131.

[Bam12] R. Bamberg. “Non-Deterministic Generalised Stochastic Petri Nets Modelling and
Analysis”. MA thesis. University of Twente, 2012.

[Bar+11] B. Barbot, T. Chen, T. Han, J.-P. Katoen, and A. Mereacre. “Efficient CTMC
Model Checking of Linear Real-Time Objectives”. In: TACAS 2011. Vol. 6605
LNCS. Springer, 2011, pp. 128–142.

[Bau+02] F. Bause, H. Beilner, M. Fischer, P. Kemper, and M. Völker. “The ProC/B Toolset
for the Modelling and Analysis of Process Chains”. In: Computer Performance Eval-
uation, Modelling Techniques and Tools. Vol. 2324. LNCS. Springer, 2002, pp. 51–
70.

[BB87] T. Bolognesi and E. Brinksma. “Introduction to the ISO Specification Language
LOTOS”. In: Computer Networks 14.1 (1987), pp. 25–59.

[BBB92] J. Bechta Dugan, S. J. Bavuso, and M. A. Boyd. “Dynamic Fault-Tree Models
for Fault-Tolerant Computer Systems”. In: Reliability, IEEE Transactions on 41.3
(1992), pp. 363–377.

[BBK87] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. “Ready-Trace Semantics for Con-
crete Process Algebra with the Priority Operator”. In: The Computer Journal 30
(1987).

298

BIBLIOGRAPHY

[BBS95] J. Baeten, J. Bergstra, and S. Smolka. “Axiomatizing Probabilistic Processes: ACP
with Generative Probabilities”. In: Journal of Information and Computation. Ed. by
W. R. Cleaveland. Vol. 121. LNCS 2. Springer, 1995, pp. 234–255.

[BCS07a] H. Boudali, P. Crouzen, and M. Stoelinga. “A Compositional Semantics for Dy-
namic Fault Trees in Terms of Interactive Markov Chains”. In: ATVA 2007.
Vol. 4762. 642. Springer, 2007, p. 441.

[BCS07b] H. Boudali, P. Crouzen, and M. Stoelinga. “Dynamic Fault Tree Analysis Using
Input/Output Interactive Markov Chains”. In: DSN 2007. IEEE, 2007, pp. 708–
717.

[BCS10] H. Boudali, P. Crouzen, and M. Stoelinga. “A Rigorous, Compositional, and Ex-
tensible Framework for Dynamic Fault Tree Analysis”. In: IEEE Transactions on
Dependable and Secure Computing 7.2 (2010), pp. 128–143.

[BDL13] M. Bernardo, R. De Nicola, and M. Loreti. “A Uniform Framework for Modeling
Nondeterministic, Probabilistic, Stochastic, or Mixed Processes and their Behav-
ioral Equivalences”. In: Information and Computation (2013).

[BEM00] C. Baier, B. Engelen, and M. Majster-Cederbaum. “Deciding Bisimilarity and Sim-
ilarity for Probabilistic Processes”. In: Journal of Computer and Systes Science 60.1
(2000), pp. 187–231.

[BG98] M. Bernardo and R. Gorrieri. “A Tutorial on EMPA: A Theory of Concurrent
Processes with Nondeterminism, Priorities, Probabilities and Time”. In: Theoreti-
cal Computer Science 202 (1998).

[BH97] C. Baier and H. Hermanns. “Weak Bisimulation for Fully Probabilistic Processes”.
In: CAV 1997. Vol. 1254. LNCS. 1997, pp. 119–130.

[BIM95] B. Bloom, S. Istrail, and A. R. Meyer. “Bisimulation Can’t Be Traced”. In: Journal
of the ACM 42.1 (1995), pp. 232–268.

[BK00] C. Baier and M. Kwiatkowska. “Domain Equations for Probabilistic Processes”. In:
Mathematical. Structures in Comp. Sci. 10 (2000).

[BK08] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
[BK97] C. Baier and M. Kwiatkowska. “Domain Equations for Probabilistic Processes”. In:

EXPRESS 1997. Elsevier, 1997.
[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. New York, NY, USA:

Cambridge University Press, 1998.
[Böd+09] E. Böde, M. Herbstritt, H. Hermanns, S. Johr, T. Peikenkamp, R. Pulungan, J.

Rakow, R. Wimmer, and B. Becker. “Compositional Dependability Evaluation
for STATEMATE”. In: IEEE Transactions on Software Engineering 35.2 SPEC. ISS.
(2009), pp. 274–292.

[Bou+08] H. Boudali, P. Crouzen, B. R. Haverkort, M. Kuntz, and M. Stoelinga. “Archi-
tectural Dependability Evaluation with Arcade”. In: DSN 2008. LNCS. Springer,
2008, pp. 512–521.

[Boz+09a] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and M. Roveri. “The
COMPASS Approach: Correctness, Modelling and Performability of Aerospace
Systems”. In: Computer Safety, Reliability, and Security. Springer, 2009, pp. 173–
186.

299

BIBLIOGRAPHY

[Boz+09b] M. Bozzano, A. Cimatti, M. Roveri, J.-P. Katoen, V. Y. Nguyen, and T. Noll.
“Codesign of Dependable Systems: A Component-based Modeling Language”. In:
MEMOCODE 2009. IEEE, 2009, pp. 121–130.

[Boz+09c] M. Bozzano, A. Cimatti, M. Roveri, J.-P. Katoen, V. Y. Nguyen, and T. Noll. “Ver-
ification and Performance Evaluation of AADL Models”. In: ESEC/SIGSOFT FSE.
ACM, 2009.

[Boz+11] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and M. Roveri.
“Safety, Dependability and Performance Analysis of Extended AADL Models.” In:
Computer Journal 54.21171 (2011).

[BPS01] J. A. Bergstra, A. Ponse, and S. A. Smolka. Handbook of Process Algebra. Elsevier,
2001.

[Bra02] M. Bravetti. “Revisiting Interactive Markov Chains”. In: MTCS 2002. Vol. 68.
ENTCS. 2002, pp. 65–84.

[Bra08] M. Bravetti. Stochastic Semantics in the Presence of Structural Congruence: Reduction
Semantics for Stochastic Pi-Calculus. Tech. rep. University of Bologna (Italy). De-
partment of Computer Science, 2008.

[Bra16] B. Braitling. “Spielbasierte Abstraktion vonMarkow-Automaten”. PhD thesis. Uni-
versität Freiburg, 2016.

[Bre13] M. Brengel. “Probabilistic Weak Transitions”. Bachelor’s thesis. Saarland Univer-
sity, 2013.

[BS00] C. Baier and M. Stoelinga. “Norm Functions for Probabilistic Bisimulations with
Delays”. In: FoSSaCS 2000. Vol. 1784. LNCS. 2000, pp. 1–16.

[BS01] E. Bandini and R. Segala. “Axiomatizations for Probabilistic Bisimulation”. In:
ICALP 2001. Vol. 2076. LNCS. 2001, pp. 370–381.

[BW90] J. C. Baeten and W. P. Weijland. Process Algebra. Vol. 18. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1990.

[BWH17] Y. Butkova, R. Wimmer, and H. Hermanns. “Long-run Rewards for Markov Au-
tomata”. In: TACAS 2017. LNCS. to appear. 2017.

[CC92] L. Christoff and I. Christoff. “Efficient Algorithms for Verification of Equivalences
for Probabilistic Processes”. In: CAV 1992. Springer, 1992, pp. 310–321.

[CH11] K. Chatterjee and M. Henzinger. “Faster and Dynamic Algorithms for Maximal
End-Component Decomposition and Related Graph Problems in Probabilistic Ver-
ification”. In: SODA 2011. 2011, pp. 1318–1336.

[Che+96] G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, and F. Zulian. “Specification and
Verification of the PowerScale Bus Arbitration Protocol: An Industrial Experiment
with LOTOS”. In: FORTE 1996. 1996, pp. 435–450.

[Chi+93] G. Chiola, M. A. Marsan, G. Balbo, and G. Conte. “Generalized Stochastic Petri
Nets: A Definition at the Net Level and its Implications”. In: IEEE TSE 19.2 (1993),
pp. 89–107.

[Chr90] I. Christoff. “Testing Equivalences and Fully Abstract Models for Probabilistic Pro-
cesses”. In: CONCUR 1990. Springer, 1990, pp. 126–138.

300

BIBLIOGRAPHY

[CL11] P. Crouzen and F. Lang. “Smart Reduction”. In: FASE 2011. Vol. 6603. 2011,
pp. 111–126.

[Cla+07] A. Clark, S. Gilmore, J. Hillston, andM. Tribastone. “Stochastic Process Algebras”.
In: Formal Methods for Performance Evaluation. Springer, 2007, pp. 132–179.

[Cos+08] N. Coste, H. Garavel, H. Hermanns, R. Hersemeule, Y. Thonnart, and M. Zi-
douni. “Quantitative Evaluation in Embedded System Design: Validation of Multi-
processor Multithreaded Architectures”. In: Design, Automation and Test in Europe
(YEAR). IEEE, 2008, pp. 88–89.

[Cos+09] N. Coste, H. Hermanns, E. Lantreibecq, and W. Serwe. “Towards Performance
Prediction of Compositional Models in Industrial GALS Designs”. In: CAV 2009.
Vol. 5643. LNCS. Springer, 2009, pp. 204–218.

[CS02] S. Cattani and R. Segala. “Decision Algorithms for Probabilistic Bisimulation”. In:
CONCUR 2002. LNCS. Springer, 2002, pp. 371–386.

[CSV07] L. Cheung, M. Stoelinga, and F. W. Vaandrager. “A Testing Scenario for Probabilis-
tic Processes”. In: Journal of the ACM 54.6 (2007).

[CSZ92] R. Cleaveland, S. A. Smolka, and A. E. Zwarico. “Testing Preorders for Probabilis-
tic Processes”. In: ICALP 1992. Vol. 154. LNCS. Springer, 1992, pp. 93–148.

[CW87] D. Coppersmith and S. Winograd. “Matrix Multiplication via Arithmetic Progres-
sions”. In: STOC 1987. Vol. 9. ACM, 1987, pp. 251–280.

[CZ96] G. Ciardo and R. Zijal. “Well-Defined Stochastic Petri Nets”. In: MASCOTS 1996.
1996.

[CZM09] G. Chehaibar, M. Zidouni, and R. Mateescu. “Modeling Multiprocessor Cache
Protocol Impact on MPI Performance”. In: IEEE QuEST. 2009.

[DD07] Y. Deng and W. Du. “Probabilistic Barbed Congruence”. In: Electr. Notes Theor.
Comput. Sci. 190 (2007).

[De 99] L. De Alfaro. The Verification of Probabilistic Systems under Memoryless Partial-
Information Policies is Hard. Tech. rep. DTIC Document, 1999, pp. 19–32.

[Den+07] Y. Deng, R. van Glabbeek, M. Hennessy, C. Morgan, and C. Zhang. “Remarks
on Testing Probabilistic Processes”. In: Electronic Notes in Theoretical Computer Sci-
ence 172 (2007). Computation, Meaning, and Logic: Articles dedicated to Gordon
Plotkin, pp. 359–397.

[Den+08] Y. Deng, R. van Glabbeek, M. Hennessy, and C. Morgan. “Characterising Test-
ing Preorders for Finite Probabilistic Processes”. In: Logical Methods in Computer
Science 4.4 (2008), pp. 1–33.

[Den+09] Y. Deng, R. J. v. Glabbeek, M. Hennessy, and C. Morgan. “Testing Finitary Prob-
abilistic Processes”. In: CONCUR 2009. 2009, pp. 274–288.

[Den05] Y. Deng. “Axiomatisations and Types for Probabilistic andMobile Processes”. PhD
thesis. École des Mines de Paris, 2005.

[Des+10] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. “Weak Bisimulation is
Sound and Complete for PCTL*”. In: Inf. Comput. 208.2 (2010), pp. 203–219.

[Des+99] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. “Metrics for Labeled
Markov Systems”. In: CONCUR 1999. LNCS. 1999, pp. 258–273.

301

BIBLIOGRAPHY

[DH11] Y. Deng and M. Hennessy. “On the Semantics of Markov Automata”. In: ICALP
2011. 2011, pp. 307–318.

[DH12] Y. Deng and M. Hennessy. “On the Semantics of Markov Automata”. In: Informa-
tion and Computation 222 (2012), pp. 139–168.

[DHR08] L. Doyen, T. A. Henzinger, and J.-F. Raskin. “Equivalence of Labeled Markov
Chains”. In: International Journal of Foundations of Computer Science 19.03 (2008),
pp. 549–563.

[DP05] Y. Deng and C. Palamidessi. “Axiomatizations for Probabilistic Finite-State Behav-
iors”. In: FoSSaCS 2005. Vol. 373. LNCS 1-2. Springer Berlin Heidelberg, 2005,
pp. 110–124.

[DP07] Y. Deng and C. Palamidessi. “Axiomatizations for Probabilistic Finite-State Behav-
iors”. In: Theoretical Computer Science 373.1-2 (2007), pp. 92–114.

[DPP05] Y. Deng, C. Palamidessi, and J. Pang. “Compositional Reasoning for Probabilistic
Finite-State Behaviors”. In: Processes, Terms and Cycles: Steps on the Road to Infinity.
Springer, 2005, pp. 309–337.

[DS99] D. D. Deavours and W. H. Sanders. “An Efficient Well-Specified Check”. In: Petri
Nets and Performance Models, IEEE International Workshop on (1999).

[EHZ10a] C. Eisentraut, H. Hermanns, and L. Zhang. “On Probabilistic Automata in Con-
tinuos Time”. In: LICS 2010. IEEE, 2010, pp. 342–351.

[EHZ10b] C. Eisentraut, H. Hermanns, and L. Zhang. “Concurrency and Composition in a
Stochastic World”. In: CONCUR 2010. Vol. 6269 LNCS. LNCS. Springer, 2010,
pp. 21–39.

[EHZ10c] C. Eisentraut, H. Hermanns, and L. Zhang. On Probabilistic Automata
in Continuous Time. Reports of SFB/TR 14 AVACS 62. ISSN: 1860-9821,
http://www.avacs.org. SFB/TR, Aug. 2010.

[Eis+13a] C. Eisentraut, H. Hermanns, J.-P. Katoen, and L. Zhang. “A Semantics for Every
GSPN”. In: Application and Theory of Petri Nets and Concurrency. Springer, 2013,
pp. 90–109.

[Eis+13b] C. Eisentraut, H. Hermanns, J. Krämer, A. Turrini, and L. Zhang. “Deciding
Bisimilarities on Distributions”. In: QEST 2013. Vol. 8054 LNCS. Springer, 2013,
pp. 72–88.

[Eis+13c] C. Eisentraut, H. Hermanns, J. Schuster, A. Turrini, and L. Zhang. “The Quest for
Minimal Quotients for Probabilistic Automata”. In: TACAS 2013. LNCS. Springer,
2013, pp. 16–31.

[Eis+15] C. Eisentraut, J. C. Godskesen, H. Hermanns, L. Song, and L. Zhang. “Probabilis-
tic Bisimulation for Realistic Schedulers”. In: FM 2015. 2015, pp. 248–264.

[Eis07] C. Eisentraut. “Complete Completeness for Weak Bisimulation Semantics”. MA
thesis. Saarland University, 2007.

[EP03] G. E. Teruel and M. D. Pierro. “Well-Defined Generalized Stochastic Petri Nets:
A Net-Level Method to Specify Priorities”. In: IEEE Transactions on Software Engi-
neering 29.11 (2003), pp. 962–973.

302

BIBLIOGRAPHY

[Est+12] M.-A. Esteve, J.-P. Katoen, V. Y. Nguyen, B. Postma, and Y. Yushtein. “Formal
Correctness, Safety, Dependability and Performance Analysis of a Satellite”. In:
ICSE 2012. 2012, pp. 1022–1031.

[Fer90] J.-C. Fernandez. “An Implementation of an Efficient Algorithm for Bisimulation
Equivalence”. In: Science of Computer Programming 13 (1990), pp. 219–236.

[FG12] P. H. Feiler and D. P. Gluch. Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley, 2012.

[FM91] J.-C. Fernandez and L. Mounier. “A Tool Set for Deciding Behavioral Equiva-
lences”. In: CONCUR 1991. Vol. 527. Springer, 1991, pp. 23–42.

[FZ14] Y. Feng and L. Zhang. “When Equivalence and Bisimulation Join Forces in Proba-
bilistic Automata”. In: FM 2014. Vol. 8442. 2014, pp. 247–262.

[GA12] S. Georgievska and S. Andova. “Probabilistic May/Must Testing: Retaining Prob-
abilities by Restricted Schedulers”. In: Formal Aspects of Computing 24.4-6 (2012),
pp. 727–748.

[GD07] S. Giro and P. R. D’Argenio. “Quantitative Model Checking Revisited: neither De-
cidable nor Approximable”. In: FORMATS 2007. LNCS. Springer, 2007, pp. 179–
194.

[GHR92] N. Götz, U. Herzog, and M. Rettelbach. TIPP—a Language for Timed Processes and
Performance Evaluation. Tech. rep. University of Erlangen-Nürnberg, 1992.

[Gla+90] R. J. van Glabbeek, S. A. Smolka, B. Steffen, and C. M. N. Tofts. “Reactive, Gener-
ative, and Stratified Models of Probabilistic Processes”. In: LICS 1990. IEEE, 1990,
pp. 130–141.

[Gla90] R. J. van Glabbeek. “The Linear Time-Branching Time Spectrum”. In: CONCUR
1990. Springer Berlin Heidelberg, 1990, pp. 278–297.

[Gla93] R. J. v. Glabbeek. “The Linear Time - Branching Time Spectrum II”. In: CONCUR
1993. Springer Berlin Heidelberg, 1993, pp. 66–81.

[Göt94] N. Götz. “Stochastische Prozessalgebren – Integration von funktionalem Entwurf
und Leistungsbewertung verteilter Systeme”. PhD thesis. Universität Erlangen,
1994.

[GSS95] R. J. van Glabbeek, S. A. Smolka, and B. Steffen. “Reactive, Generative, and Strat-
ified Models of Probabilistic Processes”. In: Information and Computation 121.1
(1995), pp. 59–80.

[GTB14] D. Guck, M. Timmer, and S. C. C. Blom. “Extending Markov Automata with State
and Action Rewards”. In:QAPL 2014. Ed. by N. Bertrand and L. Bortolussi. 12238.
Inria, Apr. 2014.

[Guc+13] D. Guck, H. Hatefi, H. Hermanns, J.-P. Katoen, and M. Timmer. “Modelling, Re-
duction and Analysis of Markov Automata”. In:Quantitative Evaluation of Systems.
Vol. 8054. LNCS. Springer, 2013, pp. 55–71.

[Guc+14] D. Guck, M. Timmer, E. Ruijters, H. Hatefi, and M. Stoelinga. “Modelling
and Analysis of Markov Reward Automata”. In: ATVA 2014. Vol. 8837. LNCS.
Springer, 2014, pp. 168–184.

303

BIBLIOGRAPHY

[GW96] R. J. van Glabbeek and W. P. Weijland. “Branching Time and Abstraction in Bisim-
ulation Semantics”. In: Journal of the ACM 43.3 (1996), pp. 555–600.

[Hah+14] E. M. Hahn, Y. Li, S. Schewe, A. Turrini, and L. Zhang. “iscasMc: A Web-Based
Probabilistic Model Checker”. In: FM 2014. Vol. 8442. 2014, pp. 312–317.

[Han91] H. A. Hansson. “Time and Probability in Formal Design of Distributed Systems”.
PhD thesis. Department of Computer Systems, Uppsala University, 1991.

[Har02] J. den Hartog. “Probabilistic Extensions of Semantical Models”. PhD thesis. Upp-
sala University, Department of Computer Science, 2002.

[Har99] J. I. den Hartog. “Verifying Probabilistic Programs Using a Hoare Like Logic”. In:
ASIAN 1999. Springer, 1999.

[Hat+15] H. Hatefi, B. Braitling, R. Wimmer, L. M. F. Fioriti, H. Hermanns, and B. Becker.
“Cost vs. Time in Stochastic Games and Markov Automata”. In: SETTA 2015. Ed.
by X. Li, Z. Liu, and W. Yi. Vol. 9409. LNCS. Springer, 2015, pp. 19–34.

[Hat16] H. Hatefi Ardakani. “Finite Horizon Analysis of Markov Automata”. PhD thesis.
Universität des Saarlandes, 2016.

[Hav+10] B. R. Haverkort, M. Kuntz, A. Remke, S. Roolvink, and M. Stoelinga. “Evaluat-
ing Repair Strategies for a Water-Treatment Facility using Arcade”. In: Dependable
Systems and Networks. 2010, pp. 419–424.

[Hen12] M. Hennessy. “Exploring Probabilistic Bisimulations, Part I”. In: Formal Asp. Com-
put. 24.4-6 (2012), pp. 749–768.

[Her02] H. Hermanns. Interactive Markov Chains: The Quest for Quantified Quality.
Vol. 2428. LNCS. Springer, 2002.

[HH12] H. Hatefi and H. Hermanns. “Model Checking Algorithms for Markov automata”.
In: Electronic Communications of the EASST 53 (2012).

[HHK02] H. Hermanns, U. Herzog, and J.-P. Katoen. “Process Algebra for Performance
Evaluation”. In: Theoretical Computer Science 274 (2002), pp. 43–87.

[Hil96] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge Uni-
versity Press, 1996.

[HJ08] H. Hermanns and S. Johr. “May we reach it? Or must we? In what time? With
what probability?” In: MMB 2008. VDE. 2008, pp. 125–140.

[HJ94] H. Hansson and B. Jonsson. “A Logic for Reasoning about Time and Reliability”.
In: Formal Aspects of Computing 6 (1994).

[HK00] H. Hermanns and J.-P. Katoen. “Automated Compositional Markov Chain Gener-
ation for a Plain-old Telephone System”. In: Science of Computer Programming 36.1
(2000), pp. 97–127.

[HK10] H. Hermanns and J.-P. Katoen. “TheHow andWhy of InteractiveMarkov Chains”.
In: FMCO. Vol. 6286. LNCS. 2010, pp. 311–337.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[HT12] H. Hermanns and A. Turrini. “Deciding Probabilistic Automata Weak Bisimula-

tion in Polynomial Time”. In: FSTTCS 2012. Vol. 18. 2012, pp. 435–447.

304

BIBLIOGRAPHY

[HWZ08] H. Hermanns, B. Wachter, and L. Zhang. “Probabilistic CEGAR”. In: CAV 2008.
Vol. 5123. LNCS. Springer, 2008, pp. 162–175.

[JL91] B. Jonsson and K. G. Larsen. “Specification and Refinement of Probabilistic Pro-
cesses”. In: LICS 1991. IEEE, 1991, pp. 266–277.

[JS90] C.-C. Jou and S. A. Smolka. “Equivalences, Congruences, and Complete Axiom-
atizations for Probabilistic Processes”. In: CONCUR 1990. Vol. 458. LNCS. 1990,
pp. 367–383.

[JY02] B. Jonsson and W. Yi. “Testing preorders for probabilistic processes can be charac-
terized by simulations”. In: Theoretical Computer Science 282.1 (2002). Real-Time
and Probabilistic Systems, pp. 33–51.

[Kat+07] J.-P. Katoen, T. Kemna, I. S. Zapreev, and D. N. Jansen. “Bisimulation Minimisa-
tion Mostly Speeds Up Probabilistic Model Checking”. In: TACAS 2007. Vol. 4424.
LNCS. 2007, pp. 87–101.

[Kat12] J. Katoen. “GSPNs Revisited: Simple Semantics and New Analysis Algorithms”.
In: ACSD 2012. 2012, pp. 6–11.

[Kat13] J.-P. Katoen. “Concurrency Meets Probability: Theory and Practice”. In: CON-
CUR 2013. LNCS. Springer, 2013.

[KK15] J. Král and P. Král. “Scalable Analysis of Fault Trees with Dynamic Features”. In:
DSN 2015. IEEE, 2015, pp. 89–100.

[KN98] M. Kwiatkowska and G. Norman. “A Testing Equivalence for Reactive Probabilis-
tic Processes”. In: EXPRESS 1998. Vol. 16(2). Electronic Notes in Theoretical Com-
puter Science. Elsevier Science, 1998.

[KNP11] M. Z. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification of Prob-
abilistic Real-Time Systems”. In: CAV 2011. Vol. 6806. 2011, pp. 585–591.

[KS83] P. C. Kanellakis and S. A. Smolka. “CCS Expressions, Finite State Processes, and
Three Problems of Equivalence”. In: PODC 1983. 1983, pp. 228–240.

[KS90] P. C. Kanellakis and S. A. Smolka. “CCS Expressions, Finite State Processes, and
Three Problems of Equivalence”. In: Information and Computation 86.1 (1990),
pp. 43–68.

[LDH05] M. Lohrey, P. R. DArgenio, and H. Hermanns. “Axiomatising Divergence”. In:
Information and Computation 203.2 (2005), pp. 115–144.

[LS89] K. G. Larsen and A. Skou. “Bisimulation Through Probabilistic Testing”. In: POPL
1989. 1989, pp. 344–352.

[LS91] K. G. Larsen and A. Skou. “Bisimulation through Probabilistic Testing”. In: Infor-
mation and Computation 94.1 (1991), pp. 1–28.

[LS92] K. G. Larsen and A. Skou. “Compositional Verification of Probabilistic Processes”.
In: CONCUR 1992. 1992, pp. 456–471.

[LSV07] N. A. Lynch, R. Segala, and F. W. Vaandrager. “Observing Branching Structure
through Probabilistic Contexts”. In: SIAM Journal on Computing 37.4 (2007),
pp. 977–1013.

305

BIBLIOGRAPHY

[Mar+87] M. A. Marsan, G. Balbo, G. Chiola, and G. Conte. “Generalized Stochastic Petri
Nets Revisited: Random Switches and Priorities.” In: PNPM. IEEE, 1987, pp. 44–
53.

[Mar+91] M. A. Marsan, G. Balbo, G. Chiola, G. Conte, S. Donatelli, and G. Franceschinis.
“An Introduction to Generalized Stochastic Petri Nets.” In: Microel.\ and Rel. 31.4
(1991), pp. 699–725.

[Mar+94] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling
with Generalized Stochastic Petri Nets. John Wiley & Sons, 1994.

[MCB84] M. A. Marsan, G. Conte, and G. Balbo. “A Class of Generalized Stochastic Petri
Nets for the Performance Evaluation of Multiprocessor Systems”. In: ACM Trans-
actions on Computer Systems (TOCS) 2.2 (1984), pp. 93–122.

[Mil81] R. Milner. “A Modal Characterisation of Observable Machine-Behaviour”. In:
CAAP 1981. Vol. 112. Springer, 1981, pp. 25–34.

[Mil82] R. Milner. A Calculus of Communicating Systems. Springer, 1982.
[Mil89a] R. Milner. “A Complete Axiomatisation for Observational Congruence of Finite-

State Behaviours”. In: Information and Computation 81 (1989).
[Mil89b] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[ML12] E. Matsikoudis and E. A. Lee. “From Transitions to Executions”. In: Coalgebraic

Methods in Computer Science. Springer, 2012, pp. 170–190.
[MMS85] J. F. Meyer, A. Movaghar, and W. H. Sanders. “Stochastic Activity Networks:

Structure, Behavior, and Application”. In: PNPM 1085. IEEE, 1985, pp. 106–115.
[MS92a] R. Milner and D. Sangiorgi. “Barbed Bisimulation”. In: ICALP 1992. Vol. 623.

LNCS. Springer, 1992, pp. 685–695.
[MS92b] R. Milner and D. Sangiorgi. “Barbed Bisimulation”. In: Automata, Languages and

Programming. Ed. by W. Kuich. Vol. 623. LNCS. Springer, 1992, pp. 685–695.
[Neu10] M. R. Neuhäusser. “Model Checking Nondeterministic and Randomly Timed Sys-

tems”. PhD thesis. RWTH Aachen University / University of Twente, 2010.
[Nic+13] R. de Nicola, D. Latella, M. Loreti, and M. Massink. “A Uniform Definition of

Stochastic Process Calculi”. In: ACMComputing Surveys (CSUR) 46.1 (2013), pp. 1–
35.

[NV07] S. Nain and M. Y. Vardi. “Branching vs. Linear Time: Semantical Perspective”. In:
ATVA 2007. LNCS. Springer, 2007, pp. 19–34.

[NV09] S. Nain and M. Y. Vardi. “Trace Semantics is Fully Abstract”. In: LICS 2009. IEEE.
2009, pp. 59–68.

[Par81] D. Park. “Concurrency and Automata on Infinite Sequences”. In: Proceedings of the
5th GI-Conference on Theoretical Computer Science. Vol. 104. LNCS. 1981, pp. 167–
183.

[Phi87] I. Phillips. “Refusal testing”. In: Theoretical Computer Science 50.3 (1987), pp. 241–
284.

[PLS00] A. Philippou, I. Lee, and O. Sokolsky. “Weak Bisimulation for Probabilistic Sys-
tems”. In: CONCUR 2000. Vol. 1877. LNCS. 2000, pp. 334–349.

306

BIBLIOGRAPHY

[PS04] A. Parma and R. Segala. “Axiomatization of Trace Semantics for Stochastic Nonde-
terministic Processes”. In: QEST 2004. 2004, pp. 294–303.

[PT87] R. Paige and R. E. Tarjan. “Three Partition Refinement Algorithms”. In: SIAM
Journal on Computing 16.6 (1987), pp. 973–989.

[San95] D. Sangiorgi. “Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms”. PhD thesis. Department of Computer Science, University of
Edinburgh, 1995.

[Seg06] R. Segala. “Probability and Nondeterminism in Operational Models of Concur-
rency”. In: CONCUR 2006. Vol. 4137. 2006, pp. 64–78.

[Seg95] R. Segala. “Modeling and Verification of Randomized Distributed Real-Time Sys-
tems”. PhD thesis. Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 1995.

[Seg97] R. Segala. “Compositional Verification of Randomized Distributed Algorithms”.
In: COMPOS 1997. Vol. 1536. LNCS. Springer, 1997, pp. 515–540.

[SL94] R. Segala and N. A. Lynch. “Probabilistic Simulations for Probabilistic Processes”.
In: CONCUR 1994. Vol. 836. LNCS. 1994, pp. 481–496.

[SL95] R. Segala and N. A. Lynch. “Probabilistic Simulations for Probabilistic Processes”.
In: Nordic Journal of Computing 2.2 (1995), pp. 250–273.

[SM] W. H. Sanders and J. F. Meyer. “Stochastic Activity Networks: Formal Definitions
and Concepts”. In: FMPA 2000. Vol. 315-343. LNCS 9975019. Springer, pp. 315–
343.

[SS14] J. Schuster and M. Siegle. “Markov Automata: Deciding Weak Bisimulation by
Means Of Non-Naively Vanishing States”. In: Information and Computation 237
(2014), pp. 151–173.

[Sto02a] M. I. A. Stoelinga. “An Introduction to Probabilistic Automata”. In: Bulletin of the
EATCS 78 (2002).

[Sto02b] M. Stoelinga. “Alea Jacta Est: Verification of Probabilistic, Real-Time and Paramet-
ric Systems”. PhD thesis. University of Nijmegen, the Netherlands, 2002.

[SV03] M. Stoelinga and F. Vaandrager. “A Testing Scenario for Probabilistic Automata”.
In: ICALP 2003. LNCS. Springer, 2003.

[SV04] A. Sokolova and E. Vink. “Probabilistic Automata: System Types, Parallel Com-
position and Comparison”. In: Validation of Stochastic Systems. Ed. by C. Baier, B.
Haverkort, H. Hermanns, J.-P. Katoen, and M. Siegle. LNCS. Springer, 2004.

[SV99] M. Stoelinga and F. W. Vaandrager. “Root Contention in IEEE 1394”. In: AMAST
Workshop on Formal Methods for Real-Time and Probabilistic Systems. Vol. 1601.
LNCS. Springer, 1999, pp. 53–74.

[Tim+12] M. Timmer, J.-P. Katoen, J. van de Pol, and M. Stoelinga. “Efficient Modelling and
Generation of Markov Automata”. In: CONCUR 2012. Ed. by M. Koutny and I.
Ulidowski. LNCS CTIT Ph.D. Thesis Series No. 13-261. Springer, 2012.

[Tim13] M. Timmer. “Efficient Modelling, Generation and Analysis Of Markov Automata”.
PhD thesis. Enschede: University of Twente, Sept. 2013.

307

BIBLIOGRAPHY

[TSP11] M. Timmer, M. Stoelinga, and J. van de Pol. “Confluence Reduction for Probabilis-
tic Systems”. In: TACAS 2011. Ed. by P. Abdulla and K. Leino. Vol. 6605 LNCS.
LNCS. Springer, 2011, pp. 311–325.

[Van94] R. J. Van Glabbeek. “What is Branching Time Semantics and Why to Use It?” In:
Bulletin of the EATCS. Vol. 53. 1994, pp. 191–198.

[Var01] M. Vardi. “Branching vs. Linear Time: Final Showdown”. In: TACAS 2001. LNCS.
Springer, 2001, pp. 1–22.

[Wil12] V. V. Williams. “Multiplying Matrices Faster Than Coppersmith-Winograd”. In:
STOC 2012. ACM, 2012.

[WMB05] V. Wolf, M. Majster-Cederbaum, and C. Baier. “Trace Machines for Observing
Continuous-Time Markov Chains”. In: QAPL 2005. 2005.

[WZH07] B. Wachter, L. Zhang, and H. Hermanns. “Probabilistic Model Checking Modulo
Theories”. In: QEST 2007. IEEE. 2007, pp. 129–138.

[ZN10] L. Zhang and M. R. Neuhäusser. “Model Checking Interactive Markov Chains”.
In: TACAS 2010. LNCS. Springer, 2010, pp. 53–68.

308

	Introduction
	Models
	Observational Equivalence
	Contributions and Structure of the Thesis

	Preliminaries
	Sets and Multisets
	Elementary Topology
	Graphs
	Probability Theory

	Processes
	Labelled Transition Systems
	Model
	Bisimilarities
	Decision Algorithm
	Summary and Discussion

	Probabilistic Automata
	Model
	Bisimilarity
	Decision Algorithm
	Summary and Discussion

	Interactive Markov Chains
	Model
	Bisimilarities
	Decision Algorithm
	Summary and Discussion

	Comparative Semantics
	Languages
	Axiomatization
	Probabilistic Forward Simulation
	Summary and Discussion

	Markov Automata Theory
	Markov Automata
	Model
	Parallel Composition and Abstraction
	Summary and Discussion

	Bisimulations
	Strong Bisimilarity
	Weak Bisimilarities
	Revisiting State-Based (Bi)Simulations
	A State-Based Characterization
	Challenge Completed
	Related Work
	Summary and Discussion

	Axioms
	Calculus
	Axioms
	Soundness
	Completeness
	Open Challenges
	Summary and Discussion

	Markov Automata Algorithmics
	Decision Algorithms
	Challenges
	Algorithm
	Summary and Discussion

	Minimal Normal Forms
	Structural Preorders
	Reductions
	Normal Forms
	Summary and Discussion

	A Semantics for Every GSPN
	Confusion – A Question of Semantic Perspective
	Generalized Stochastic Petri Nets
	Markov Automata Semantics for GSPN
	Bisimulation Semantics
	Summary and Discussion

	Conclusion
	Conclusion
	The Foundations of Markov Automata
	System Specification and Quantitative Analysis
	Open Challenges and Further Work

	Appendix
	Alternative Definition of Weak (Hyper)Transitions
	Proofs of Chapter 5
	Lemma 5.1

	Proofs of Chapter 7
	Lemma 7.5
	Lemma 7.6

	Proofs of Chapter 8
	Lemma 8.5
	Lemma 8.7
	Theorem 8.6
	Theorem 8.8
	Proof of Theorem 8.10
	Proof of Theorem 8.13
	Proof of Theorem 8.14
	Proof of Theorem 8.15

	Proof of Lemma 9.7
	Proofs of Chapter 11
	Lemma 11.4
	Lemma 11.5
	Lemma 11.11

	Bibliography

