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Abstrakt

In den vergangenen Jahren haben sich rechnerische Technologien sowie die Entwick-
lung von anspruchsvollen Algorithmen und Software schnell entwickelt. Diese tech-
nologischen Fortschritte spielen einen entscheidende Rolle für die bioinformatische
Forschung, da die biologischen Daten in Bezug auf Quantität, Qualität und Kom-
plexität exponentiell zunehmen. In dieser Arbeit haben wir in drei Projekten, die auf
die Charakterisierung von funktionellen Eigenschaften von Membrantransportsyste-
men sowie deren Wechselwirkungen mit Substraten und Nicht-Substraten abzielen,
Bioinformatik-Werkzeuge/-Techniken entwickelt, umgesetzt und angewendet.

Membrantransporter sind eine sehr wichtige Klasse von integralen Transmem-
branproteinen, die für den Materialaustausch zwischen Zellen und deren Umge-
bungen verantwortlich sind. Aufgrund der starken Beziehung mit verschiedenen
Krankheiten und abnormen medizinischen Bedingungen wurde und wird die Wech-
selwirkung von Transportern mit kleinen Arzneimittelmolekülen intensiv untersucht.
Im ersten Projekt haben wir eine neuartige Methode für die MdfA-Substratklassifizierung
entwickelt. MdfA ist ein Multidrug-Membrantransporter von E. coli, der für die
Erkennung und den Transport eines breiten Spektrums von Substraten mit nicht ver-
wandten Eigenschaften verantwortlich ist. Im Gegensatz zu anderen herkömmlichen
Verfahren, die allgemeine Merkmale wie aus den sequenzen abgeleitete Informatio-
nen, molekulare Deskriptoren usw. verwenden, umfasst das neue Verfahren Protein-
Ligand-Struktur-Wechselwirkungen und potentielle Energieinformationen, die aus
molekulardynamischen Simulationen abgeleitet sind. Allerdings stieß das Verfahren
immer noch auf Schwierigkeiten mit dem strukturellen Ähnlichkeitsproblem zwischen
Substraten und Nichtsubstraten. Die neue Methode erreichte eine zufriedenstellende
Genauigkeit mit 73,12% Klassifizierungsgenauigkeit. Es ist die erste Methode, die
Protein-Ligand-Wechselwirkungen bei einem Klassifizierungsproblem für Membran-
transport berücksichtigt.

Im nächsten Projekt analysierten wir Proteomikdaten aus Sec61α und TRAP-
Stummschaltungsexperimenten, um TRAP-Substrate zu identifizieren und zu charak-
terisieren. TRAP ist eine assistierende Komponente des Translocon-Komplexes, der
für die Protein-Translokation verantwortlich ist. Wir identifizierten erfolgreich einen
Satz von TRAP-abhängigen Proteinen aus Massenspektrometrie-Proteomik-Daten.
Darüber hinaus zeigte unsere Analyse, dass die Signalpeptide von TRAP-Substraten
eine geringe Hydrophobie-Tendenz sowie einen signifikant erhöhten Glycin- und
Prolin-Gehalt aufwiesen. Wir schlugen vor, dass TRAP dafür verantwortlich sein
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kann, diejenigen Proteine bei der Migration durch den Sec61α-Kanal zu unterstützen,
die Signalpeptide mit hohem Glycin-Prolin-Gehalt und geringer Hydrophobizität
haben.

Im letzten Projekt haben wir die molekulare Docking-Technik angewendet, um
die Bindungsmodi von mehreren Eeyarestatin-Verbindungen (ES1, ES24, ES35 und
ES47) mit einem Homologiemodell von humanem Sec61α Protein zu untersuchen.
Der Sec61α-Kanal ist nicht nur für die Proteintranslokation verantwortlich, sondern
fördert auch Ca2+ Leckage. Die Docking-Ergebnisse ergaben, dass sich die ener-
getisch günstigste Bindungsposition von ES1 und ES24 zwischen den H2- und H7-
Helices befindet, die die “Türen” des lateralen Tores sind. Daher ist es wahrschein-
lich, dass sie die Tor-Funktion behindern können und nach der Bindung den Kanal
offen halten. Daher haben wir postuliert, dass ES1 und ES24 die potentiellen “Gate
Blocker” sein können, die Ca2+ Leckage durch Sec61α fördern. Diese Ergebnisse
stimmen mit den Ergebnissen der Calcium-Imaging-Experimente überein, die von
unseren Kollegen durchgeführt wurden.

In dieser Arbeit haben wir verschiedene Rechentechniken eingesetzt, um neue
mechanistische Einblicke in Transmembran-Transporter zu gewinnen und wichtige
Informationen aus der Analyse von Proteomik-Daten zu erhalten. Wir hoffen, dass
unsere Arbeit nützliche mikroskopische Details und mögliche Mechanismen für die
experimentellen Biologen, die an transmembranen Proteinen arbeiten, zur Verfügung
stellt.
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Abstract

Recent years have seen fast improvements in computational technologies as well as in
the development of sophisticated algorithms and softwares. These technological ad-
vances are crucial for bioinformatics research since biological data are exponentially
increasing in terms of quantity, quality and complexity. In this thesis, we developed,
implemented and applied bioinformatics tools/techniques in three projects that aim
at characterising functional properties of membrane transport systems as well as
their interactions with substrates and non-substrates.

Membrane transporters are a very important class of integral transmembrane
proteins which are responsible for material exchange between cells and their envi-
ronments. Due to the strong association with various diseases and abnormal medical
conditions, the interactions of transporters with small drug molecules are subject of
intense studies. In the first project, we developed a novel method for MdfA sub-
strate classification. MdfA is a multidrug membrane transporter of E. coli, which
is responsible for recognising and transporting a wide spectrum of substrates with
unrelated properties. Unlike other conventional methods that utilised general fea-
tures such as sequence derived information, molecular descriptors, etc. , the new
method incorporates protein-ligand structural interactions and potential energy in-
formation derived from molecular dynamics simulations. However, the method still
encountered difficulties with the structural similarity problem between substrates
and non-substrates. The new method achieved a decent performance with 73.12%
of classification accuracy. Regardless, this is the first method that considers protein-
ligand interactions in a classification problem related to membrane transport.

In the next project, we analysed the proteomics data from Sec61α and TRAP
silencing experiments to reveal and characterise TRAP substrates. TRAP is an as-
sisting component of the translocon complex, which is responsible for protein translo-
cation across the membrane of the endoplasmic reticulum. We successfully identified
a set of TRAP dependent proteins from mass spectrometry proteomics data. Fur-
thermore, our analysis revealed that the signal peptides of TRAP substrates showed
a low hydrophobicity tendency as well as significantly increased glycine and proline
content. We propose that TRAP may be responsible for helping those proteins car-
rying signal peptides with high glycine-proline content and low hydrophobicity to
migrate easily through the Sec61α channel.

In the last project, we applied molecular docking to investigate the binding modes
of several eeyarestatin compounds (ES1, ES24, ES35 and ES47) to a structural ho-
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mology model of human Sec61α protein. The Sec61α channel is not only responsible
for protein translocation but also promotes Ca2+ leakage. Based on the docking re-
sults, we found that the energetically most favourable binding positions of ES1 and
ES24 are located in between the H2 and H7 helices, which are the “doors” of the
lateral gate. Hence, they are likely to hamper the gate function, keeping it open
upon binding. Therefore, we postulated that ES1 and ES24 can be potential “gate
blockers” which promote Ca2+ leakage via Sec61α. These findings are consistent
with the results from calcium imaging experiments which were conducted by our
colleagues.

In this thesis, we used various computational techniques to provide new mecha-
nistic insight for transmembrane transporters as well as to reveal important infor-
mation from the analysis of proteomics data. We hope that our work will provide
useful microscopic details and possible mechanisms to the experimental biologists
who are working on transmembrane proteins.
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Chapter 1

Introduction

1.1 Biological membrane

Membranes are basic components of prokaryotic and eukaryotic cells. Biological
membranes act as a barrier, separating cellular and sub-cellular compartments/organelles
from their surroundings. Cellular membranes are made of three main components:
lipids, carbohydrates and membrane proteins [1–3].

Figure 1.1: A lipid bilayer membrane including peripheral and transmembrane pro-

teins. Figure taken from [2]

Glycerophospholipids (Fig. 1.2), phospholipids and cholesterol are three common
types of lipids that are found in biological membranes. Membrane lipids are com-
posed of two major regions: a hydrophilic phosphate head and hydrophobic tails
of fatty acids. Because of these two-faced properties, lipid molecules tend to as-
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1.1. BIOLOGICAL MEMBRANE

semble into a bilayer geometry (with the hydrophilic heads facing outward and the
hydrophobic tails bury deep inside bilayers interior) without any use of energy, or,
alternatively, into small vesicles. About 50% of the mass of membranes is composed
of lipids. In the plasma membranes of animal cells, cholesterol is accounted for 20%
of the lipid amount while it is absent in bacterial membranes or mitochondrial mem-
branes. Cholesterol promotes the stiffness of membranes. The other lipids also take
part in cell signalling and and cell recognition.

Figure 1.2: Structure of a glycerophospholipid molecule. Figure is adapted from [1]

At physiological condition, cell membranes behave like two dimensional fluids.
When the temperature decreases, they become gel-like. The fluidity of the mem-
brane is also affected by fatty acid composition and cholesterol content. Unsatu-
rated fatty acids have bends at the double bonds, hampering the packing of lipid
molecules, hence, lowering the transition temperature from gel-like to fluid state (or
vice versa). Also, short hydrocarbon chains of lipid molecules have a lower affinity
for packing with each other than longer chains, consequently, affecting the transition
temperature. The fused-ring structure of cholesterol (Fig. 1.3) interacts with the hy-
drocarbon chain of neighbouring glycerophospholipids or phospholipids, making the
membrane stiffer.

Besides lipid molecules, two other main components of biological membranes are
membrane proteins and carbohydrates (i.e. sugars). The functionality and different
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1.2. TRANSMEMBRANE PROTEINS

Figure 1.3: Structure of a cholesterol molecule.

types of transmembrane proteins are described in the next section (1.2). Carbohy-
drates can be attached to either membrane proteins or lipid molecules on the outer
side of the membrane (Fig. 1.1). Due to the large number of varieties and combina-
tions of carbohydrates on the cell surface, they are involved in various recognition
mechanisms. Therefore, in recent years, more and more studies focus on carbohy-
drates of cell membrane, experimenting new therapies for cancer and various dis-
eases.

1.2 Transmembrane proteins

1.2.1 Membrane and membrane proteins

Cellular membranes function as barriers and gatekeepers of the cell. They allow
some molecules to travel across the lipid bilayer but others cannot. In fact, most
of the biological functions/activities which occur at membranes are related to mem-
brane proteins which are embedded in membranes. Membrane proteins play many
important roles in the cells of all organisms such as: they transport a wide range
of materials (water, ions, metabolites, proteins. . . ) through the membrane, they
transmit electrical impulses, they catalyse enzymatic reactions, connect neighbour-
ing cells or extracellular matrix, or keep other proteins to stay in specific locations
(anchoring), etc. [4]

There are two types of membrane proteins. The first type includes proteins that
span the entire membrane (Fig. 1.1). Those membrane proteins are called trans-
membrane or integral proteins. The second type are peripheral membrane proteins
which are bound at the peripheral surface of the membrane, or bound to other inte-
gral membrane proteins. Since this thesis concentrates on membrane transporters,
we will focus on transmembrane proteins from now on.

Due to the non-polar, hydrophobic environment of the transmembrane region,
transmembrane proteins cannot form any hydrogen bonds or electrostatic interac-
tions with the membrane except of van der Waals interactions. Therefore, amino
acid residues of transmembrane proteins can only establish hydrogen bonds among
themselves. As a result, there are only two structural options for the membrane-
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1.2. TRANSMEMBRANE PROTEINS

Figure 1.4: Functions of membrane proteins. Figure from [1]

spanning part of transmembrane proteins: α-helices and β-sheets (Fig. 1.5). Those
secondary structures are connected by loops.

Figure 1.5: Left: α-helical transporter (3GIA). Right: β-barrel transmembrane pro-

tein (1QD6)

The β-barrels can only be found in the outer membranes of Gram-negative bacte-
ria and in organelles such as mitochondria and chloroplasts where they allow passive
diffusion for small molecules. In contrast, the α-helical bundle transmembrane pro-
teins can be found in all cellular membranes. They are more common and diverse
in functionality compared to β-barrels transmembrane proteins. Almost all medi-
cally important membrane proteins (enzymes, receptors, channels, transporters. . . )
belong to this group [4].

1.2.2 Transport proteins

Only gas molecules (like oxygen and carbon dioxide) and small hydrophobic molecules
can directly travel across phospholipid bilayer membranes by passive diffusion. A
net flux is established driven by the concentration gradient across the membrane.
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1.2. TRANSMEMBRANE PROTEINS

No active transport proteins are needed. Others substances like ions, sugars, amino
acids cannot diffuse across the bilayer membrane to fulfil the cell’s requirements.
Those molecules must be transported across the membrane by a group of integral
membrane proteins, transport proteins. Sometimes, passage of some molecules such
as water or urea which can also diffuse across the phospholipid bilayer are facili-
tated by transport proteins. There are three major classes of transport proteins:
ATP-powered pumps (or pumps for simplification), channels and transporters (Fig.
1.6a).

Figure 1.6: (a) The three major types of transport proteins. (b) The three groups

of transporters. Gradients are illustrated by triangles pointing toward lower concen-

tration or electrical potential or both. Image from [5]

• ATP-powered pumps are ATPases that utilise energy generated by ATP hy-
drolysis to drive ions or small molecules across the bilayer membrane against
the gradient concentration or electrical potential. This kind of transport is
described as active transport.

• Channels allow passage of water or come specific ions across the membrane
toward lower concentration or along the electrical potential gradient. They
form tunnel-like passages which span the entire membrane, allow multiple
water or ion molecules to travel across the membrane at the same time.

• Transporters transport a wide range of ions and molecules across cell mem-
branes. Unlike channel proteins, they can only transport one molecule (or a
few) at a time. To initiate the transportation, the substrate molecule binds
to the transporter. After the substrate is bound, the transporter undergoes a
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1.2. TRANSMEMBRANE PROTEINS

conformation change which allows the substrate (and only) to be transported
across cell membranes. Based on the transport mechanisms, transporter pro-
teins are classified into three classes (Fig. 1.6b):

– Uniporters only transport one molecule downhill the concentration or
electrical potential gradient.

– Symporters can accelerate the movement of 2 type of molecules: one
toward lower gradients and the other type against its gradients. Those
molecules travel in the same direction.

– The mechanism of Antiporters is similar to that of symporters but two
types of molecules move in opposite directions. Unlike ATP pumps, sym-
porters and antiporters do not utilise the energy from ATP hydrolysis
during the transportation. Symporters and antiporters are also referred
as cotransporters because they are able to transport two different types
of molecules simultaneously.

For simplification, from now on, all transport proteins are referred to as trans-
porters. But what makes transporters so important?

1.2.3 Transporters and Channelopathies

Transporting ions and molecules across the cell membrane is critical for essential
biological processes, especially in the human body. Therefore, mutations that dis-
rupt or alter the functionality of transport proteins could deliver devastating effects.
Diseases caused by disturbing the function of ion channels or their regulatory pro-
teins are called channelopathies [6]. Up until now, many mutations that cause
channelopathies have been reported and the number is still increasing [6, 7]. For
instance:

• Mutations in sodium channels and potassium channels in the central nervous
system lead to epilepsy and migraine [7].

• Disrupting peripheral nerve potassium channels may result in neuromyotonia
(a.k.a. Isaac’s syndrome) [8].

• Mutations in KCNH2 (human ether-a-go-go related gene) cause type 2 long
QT syndrome, a rare genetic disease associated with life-threatening abnormal
heartbeat, by disrupting IKr which is an ion channel subunit [9].

• Disturbance in Kir6.2, a major subunit in potassium channels located in pan-
creatic β cells, by mutations in the KCNJ11 gene lead to hyposecretion of
insulin which cause diabetes mellitus [6].

• Disorders in voltage-gated ion channels cause inherited muscle diseases (non-
dystrophic myotonias and familial periodic paralyses) [8].
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1.3. BIOINFORMATICS AND TRANSMEMBRANE PROTEINS

Because of the wide range of diseases which are caused by abnormal functionality
of transport proteins, transmembrane transporters have become an important target
family for pharmaceutical research.

Another problem regarding transporters that attracted the attention of many
scientists is the antibiotics resistance of bacteria due to multidrug efflux pumps [10].
This problem is a headache for many pharmaceutical companies since their drugs
are becoming ineffective when bacteria can develop a defense mechanism by emerg-
ing mutations in efflux pumps to fight against the new drugs (Fig. 1.7). Moreover,
due to the ability of recognising, targeting and extruding a wide range of pharma-
ceutical drugs out of the cells, some transporters also cause difficulties in tumour
chemotherapy and other diseases (e.g. P-glycoprotein).

Figure 1.7: Drug uptake and efflux. AcrB is a multidrug efflux pump of E. coli.

Image from [11]

1.3 Bioinformatics and transmembrane proteins

In the past, the majority of bioinformatics studies of transmembrane proteins has
focused on their structural features. For instance, TMX [12] and BTMX [13] assign
the burial status of amino acid residues in α-helical and β-barrel transmembrane
proteins, respectively. Other bioinformatics tools such as MEMSAT-SVM [14] and
TOPCONS [15] determine the topology of transmembrane proteins including the
positions of transmembrane helices, re-entrant helices, signal peptides, etc. TMH-
con [16] and MEMPACK [17] predict the helix-helix contact map of α-helical trans-
membrane proteins. Recently, the Pore-Lining Residues (PLR) of transporters can
also be predicted by PRIMSIPLR [18] or MEMSAT-SVM. Those methods men-
tioned above utilised the primary protein sequence to predict the structural features
due to the limitation in the number of transmembrane protein 3D structures that
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1.3. BIOINFORMATICS AND TRANSMEMBRANE PROTEINS

existed until recently. At first, from a set of known transmembrane protein 3D
structures, they extracted various features such as evolutionary information, amino
acid composition, physicochemical properties, etc. Then, they used machine learn-
ing approaches such as Support Vector Machines (SVM), Artificial Neural Networks
(ANN) and Hidden Markov Models (HMM) to construct classifiers based on the
extracted features.

For the transmembrane proteins for which their 3D structures could be deter-
mined, there are various bioinformatics tools/algorithms which were developed for
structural traits analysis. For example, TMDET [19] and PPM [20] servers can esti-
mate the position and orientation of the transmembrane proteins inside the biological
membrane. Tools such as POCKET [21], LIGSITE [22,23], HOLLOW [24], CAVER
[25], PROPORES [26] and PoreWalker [27] can identify pores/pockets/channels in-
side proteins as well as the PLRs that made up their cavities.

Due to various essential functions of transmembrane proteins as well as their
particular distribution in cells (on the membrane which acts as the entrance into
the cells), transmembrane proteins are considered as potential drug targets in drug
discovery. In fact, the tendency being membrane bound is one of the indicators
of drug target likeliness, alongside with hydrophobicity, in vivo half-life, non-polar
amino acid composition, etc. [28]. Therefore, several substrate/non-substrate clas-
sification methods have been developed during the past decades. One of the most
popular methods for substrate classification are Quantitative Structure-Activity Re-
lationships (QSAR) models. Initially based on the idea that similar compounds
with respect to physicochemical properties possess similar biological effects, QSAR
models were often used to validate the affinity of various ligands towards a common
protein target. Over the years, QSAR methods have matured and are now widely
used. Based on the dimensionality, QSAR methods are categorised as follows [29]:

• 1D-QSAR: only one-value descriptors are considered such as pKa, logP , etc.

• 2D-QSAR: contains descriptors with structural patterns such as connectivity,
2D pharmacophore, etc.

• 3D-QSAR: 3D structure of ligands is included.

• 4D-QSAR: multiple representations of ligands are considered.

• 5D-QSAR: including 4D-QSAR and the representation of various induced-fit
models.

• 6D-QSAR: including 5D-QSAR and multiple solvation schemes.

Besides QSAR models, machine learning approaches such as SVM, random forest,
etc. were also applied for substrates classification [30–32]. However, most of the
descriptors for classification of mentioned approaches are rather general and do not
capture the structural details how proteins interact with their substrates [33].
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1.4. RESEARCH TOPICS ADDRESSED IN THIS THESIS

1.4 Research topics addressed in this thesis

As previously mentioned, most of the substrate classification methods rely on gen-
eral basic descriptors, neglecting actual interactions between proteins and their lig-
ands. Therefore, in chapter 3, we present a novel substrate classification method
which overcomes these issues by integrating Molecular Dynamics (MD) simulations
of protein-ligand complexes. The main idea is to observe and extract various po-
tential energy information as well as protein-ligand interactions. Then, by using a
machine learning approach, we constructed a substrate classification model based
on the information extracted from MD simulations.

In chapter 4, we studied the effects of Sec61α and TRAP silencing. Those are
important components of the translocon complex, which is responsible for targeting
most of the proteins to their destination in eukaryotic cells. In particular, we mainly
investigated the distinct characteristics of the proteins that were affected by TRAP
silencing due to the fact that TRAP function and mechanism still remain unknown.

Finally, in chapter 5, we applied a docking algorithm to provide microscopic
information, structural features as well as possible mechanisms to explain the Ca2+

leakage caused by eeyarestatin compounds binding into the Sec61α cavity.

1.5 Aim of this thesis

In this thesis, we developed and implemented multiple approaches (from MD simu-
lations to differential expression analysis, as well as structural analysis of different
protein-ligand complexes) to study transmembrane proteins and their function. Our
purpose is to provide useful information for experimental biologists who are working
on transmembrane proteins.
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Chapter 2

Theory

2.1 Molecular Dynamics Simulation

Since the very first MD simulation of a biological macromolecule back in 1977 [34],
MD simulations have been established as a reliable computational method to study
the properties of individual biomolecules and their assemblies by observing their
structures, movements, interactions, etc. at the microscopic level. MD simulations
can provide the positions and motions of individual particles of an N-body system,
as well as ‘predict’ the interactions between molecules and system properties. There-
fore, they can serve as a bridge between theory and experiment: either one conducts
a simulation first and tests the predictions of the model by comparing with exper-
imental results; or they act as a complement to existsing experiments, enabling us
to discover new knowledge that cannot be found in other ways.

In MD simulations, the position of an individual particle after a short time step
is determined by solving the classical equation of motion based on Newton’s second
law:

~F = m~a (2.1)

where ~F is the force applied on the particle, m is its mass and ~a is its accelera-
tion. The force can be expressed as the gradient of the potential energy U and the
acceleration is the second derivative of the position ~r. Hence, we have:

−∇U = m
d2~r

dt2
(2.2)

By solving the classical equation of motion, the position of a particle can be
expressed as:

~r = ~r0 + ~v0t+
1

2
~at2 (2.3)

11
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where r0 and v0 are initial position and initial velocity, respectively. Additionally,
according to Eq. 2.2, a is determined by the potential energy function:

~a = − 1

m
∇U (2.4)

The potential energy is a function of the Cartesian positions of all particles in
the system. Due to the complex nature of this function, the equations of motion
(Eq. 2.2) cannot be solved analytically, and must be solved by numerical methods.

In short, to calculate the trajectory, one only needs the initial positions of the
particles and the initial distribution of velocities. The initial positions can be ob-
tained from experimental structures (X-ray, NMR, etc.) or by structural modelling,
whereas the initial distribution of velocities are chosen randomly from a Maxwell-
Boltzmann or Gaussian distribution with an appropriate magnitude for a given tem-
perature. The initial velocities are generated in such a way that there is initially no
overall momentum in the system:

~P =
N∑
i=1

mi~vi = 0 (2.5)

where N is the number of particles in the system.
After a certain number of iteration steps, any occurring center of mass motion

is set back to zero so that the simulation system remains at rest.

2.1.1 Potential Energy Function and Molecular Interactions

As described in Eq. 2.2, the force acting on all particles in the system can be derived
from the potential energy function U , which is a function of positions, ~R, of the
N particles in the system. The potential energy is composed of intramolecular
interactions, or bonded energy terms and external, or non-bonded energy terms:

Utotal(~R) = Ubonded + Unon-bonded (2.6)

Bonded Interactions

The bonded interactions are described by three main components which correspond
to three types of atom movements: bond-stretching (bond distance), bond angle
bending and bond torsion (or dihedral angle). Figure 2.1 illustrates the geometry of
the three main components.

Ubonded = Ubonds + Uangles + Udihedrals

=
∑
bonds

kb(b− b0)2 +
∑
angles

kθ(θ − θ0)2 +
∑

dihedrals

kφ(1 + cos(nφ− δ)) (2.7)
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2.1. MOLECULAR DYNAMICS SIMULATION

Figure 2.1: Illustration of bond distance r23, bend angle θ234 and dihedral angle φ1234

in a simple molecule (image is adapted from [35]).

In Eq. 2.7, the first term is a harmonic potential which represents the 2-body
interaction between two atoms connected by a covalent bond. This term approxi-
mates the energy of a bond as its length b deviates from the equilibrium distance
b0. The constant kb dictates the strength of the bond. Both kb and b0 are specific
for each pair of bonded atoms.

The second term is also described by a harmonic potential, which represents the
additional energy of a shifted bond angle θ from its ideal value θ0. The force constant
kθ and θ0 are determined by the atoms which make up the bond angle.

The last term describes the 4-body torsion angle which is the angle between the
planes formed by the first three and last three atoms of four consecutively bonded
atoms. The term n indicates the periodicity of the torsion angle and δ acts as the
phase shift angle.

Consistent sets of force constants, equilibrium values, and other essential pa-
rameters for macromolecules MD simulation constitute molecular force fields such
as CHARMM [36], AMBER [37], GROMOS [38], etc. Usually, their parameters
are determined using quantum mechanics calculation in conjunction with empirical
evidence. However, the mentioned force fields only contain parameters for biological
macromolecule such as protein, DNA, RNA, etc. For MD simulations of smaller,
general molecules (drugs, ligands), one has to manually derive the parameters, which
is called “parameterisation”, or use any of the suitable force fields for such molecules
such as the CHARMM General Force Field (CGenFF) [39] or the Generalized AM-
BER Force Field (GAFF) [40].

13
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Non-bonded Interactions

The non-bonded potential terms consider interactions between all pair of atoms,
excluding pairs of atoms that are already involved in the bonded potential energy
terms. Therefore, the computational cost of non-bonded potentials is quite de-
manding during an MD simulation. In biological macromolecules, the dominant
non-bonded interactions are van der Waals and electrostatic interactions. There-
fore, the non-bonded potentials are usually comprised of 2 terms: the Lennard-Jones
potential and the Coulomb potential:

Unon-bonded = ULJ + Uelec

=
∑

atoms i,j

εij

[(Rmin
ij

rij

)12 − 2
(Rmin

ij

rij

)6]
+

∑
atoms i,j

q1q2
4πε0rij

(2.8)

The van der Waals interaction between 2 atoms is the balance between the at-
tractive and the repulsive forces. The attractive force is due to the instantaneous
dipole formation caused within an atom or molecule, which induces a dipole in a
neighbouring atom or molecule. These instantaneous dipoles arise from the fluctu-
ations in the charge distribution in the electron clouds. As a result, these effects
between temporary dipoles on neighbouring atoms give rise to an attractive force.
The repulsive force, in the other hand, appears when the distance between two atoms
becomes closer, when the electron clouds of two atoms are unfavourably coming into
contact. As two atoms or molecules are moving further away from each other, the
van der Waals force gradually vanishes.

Based on the characteristics of the van der Waals force, the Lennard-Jones poten-
tial is commonly used for representing the van der Waals interactions between pair
of atoms by two parameters: the potential well depth ε and the Rmin

ij distance where
the potential reaches its minimum. Figure 2.2 describes how the Lennard-Jones po-
tential approximates van der Waals interactions. At close range, the repulsive force
shows a steep increase when the electron clouds of the two atoms start to overlap,
but it decreases when the distance increases. When the distance reaches the optimal
length Rmin, the potential energy becomes most favourable at that point, i.e. the
two atoms are at their equilibrium position. The energy is getting get weaker and
gradually vanishes when two atoms are separated by a large distance.

The electrostatic interaction takes into account the atomic charges q of parti-
cles. It becomes repulsive when the charges have the same sign and attractive for
charges with opposite sign. The electrostatic interaction is represented by Coulomb
potential where rij is the distance between two charged atoms i and j, and 1

4πε0
is

the Coulomb’s constant.
As mentioned before, the most time-consuming part during MD simulation is the

calculation of non-bonded potential energy because one have to take into account
every pair of atoms in the whole system. In this naive approach, the complexity of
the calculation is O(N2) since all combinations are evaluated. To reduce the com-
putational cost, other fast evaluation methods have been developed. The common
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Figure 2.2: The Lennard-Jones 6–12 potential (blue) and the SWITCH cutoff

method (red). Image taken from [41].

method to speed up Lennard-Jones potential calculation is cutoff distance, where the
interactions between two atoms decay faster (SWITCH) or are completely ignored
(TRUNCATION). In the case of the electrostatic potential, the force decays much
slower to zero compared to the Lennard-Jones potential. Several studies have shown
the importance of long range electrostatic effects in biological molecules [42–44].
Therefore, neglecting long range electrostatic interactions using a cutoff method may
severely affect the simulation quality, especially for highly charged systems [45, 46].
The Edward summation has proved to correctly approximate long-range electro-
static interactions for simulations of proteins and enzymes [47]. The particle-mesh
Edward (PME) method has also been applied successfully to periodic systems [48].
Although those methods require a larger computational cost than neglecting the
long-range electrostatic, they are still remarkably faster than simply summation of
the Coulomb potential of all atom pairs in the system.

2.1.2 Integration Algorithms

As mentioned above, because of the complicated nature of potential energy function,
the equations of motion can only be solved by numerical methods. Many numerical
algorithms have been developed for solving the equations of motion such as Ver-
let [49], Velocity Verlet [50], Leap-frog [51], and Beeman’s algorithm [52, 53]. All
of the integration algorithms were developed around the Taylor series expansion,
assuming that the positions, velocities and accelerations after a short time step can
be approximated from their current values. For brevity, we will omit the vector
symbols for coordinates, velocities and accelerations in the following:
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r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2 + . . .

v(t+ δt) = v(t) + a(t)δt+
1

2
b(t)δt2 + . . .

a(t+ δt) = a(t) + b(t)δt+ . . .

(2.9)

Verlet algorithm

This is the very first algorithm developed for solving the integration problem of
equations of motion. Verlet considers the summation of the Taylor expansion in
both directions of time (forward and reverse time step). Note that this is perfectly
fine for a system governed by deterministic dynamics. In the end, all of the odd
order derivations cancel out since they have opposite sign:

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2

r(t− δt) = r(t)− v(t)δt+
1

2
a(t)δt2

(2.10)

Summing those two equations, we have:

r(t+ δt) + r(t− δt) = 2r(t) + a(t)δt2

r(t+ δt) = 2r(t)− r(t− δt) + a(t)δt2
(2.11)

In short, the Verlet algorithm calculates the next position at t+ δt by using the
current position and acceleration at time t without using the velocity term. It is
pretty straightforward and simple but has moderate accuracy.

The Velocity Verlet and Leap-frog algorithm are quite similar to Verlet algo-
rithm. In both algorithms, the position calculation makes use of the velocity term
besides the position and acceleration terms and the velocity of the next phase is also
calculated.

Velocity Verlet algorithm

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2

v(t+ δt) = v(t) +
1

2

[
a(t) + a(t+ δt)

]
δt

(2.12)

Leap-frog algorithm

r(t+ δt) = r(t) + v
(
t+

1

2
δt
)
δt

v
(
t+

1

2
δt
)

= v
(
t− 1

2
δt
)

+ a(t)δt
(2.13)
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The velocity calculation is a bit different in the Leap-frog algorithm. As one can
see in Eq. 2.13, the velocity is calculated at time t + 1

2
δt instead of t + δt, and it

is used to calculate the position in time t + δt. This expains where the name of
the algorithm comes from: the velocities leap over the positions by 1

2
δt and then

the positions leap over the velocities by the same amount of time. As a result, the
velocities and the positions have never been calculated at the same time. However,
the velocity at a given time can be approximated by:

v(t) =
1

2

[
v
(
t− 1

2
δt
)

+ v
(
t+

1

2
δt
)]

(2.14)

Beeman’s algorithm

r(t+ δt) = r(t) + v(t)δt+
2

3
a(t)δt2 − 1

6
a(t− δt)δt2

v(t+ δt) = v(t) + v(t)δt+
1

3
a(t)δt+

5

6
a(t)δt− 1

6
a(t− δt)δt

(2.15)

The Beeman’s algorithm is also a relative of the Verlet algorithm. The advantage
of the Beeman’s algorithm is the higher precision due to the better expressions for
the position and velocity approximation. However, because of the more complex
expression, the Beeman’s algorithm requires more computing time compared to the
Verlet algorithm.

2.1.3 Neighbour Lists

As mentioned in the previous section, the most expensive task during an MD sim-
ulation is the evaluation of the non-bonded interactions, especially when one has
to evaluate all possible atom pairs for the calculations. Several methods have been
developed to reduce the computational cost such as cutoff methods or Edward sum-
mation. Let us consider the TRUNCATION cutoff approach, where only short range
interaction potentials are evaluated to avoid the expensive calculations. Still, the
time to examine and search for the pairs which satisfy the condition rij 6 rcut is quite
time consuming. Loup Verlet suggested to construct lists of close pairs of atoms,
which are called the neighbour lists, to speed up the calculation process [49]. The
construction of neighbour lists is depicted in Fig. 2.3. Basically, the neighbour list
of a particular atom i contains all atoms j whose distance from i is smaller than a
predefined distance rlist with the condition that rlist > rcut. During the non-bonded
interaction calculation step, only the atoms inside the neighbour list are taken into
account. From time to time, the lists are updated before atoms from outside rlist
(black dots in Fig. 2.3) come close to and interact with central atoms (white dots in
Fig. 2.3).
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Figure 2.3: The construction of the Verlet neighbour list. From left to right: initial,

later and “too late” state. The solid circle and dashed circle depict the potential

cutoff range (rcut) and the list range (rlist), respectively. Image taken from [35].

2.1.4 Periodic Boundary Conditions

When performing an MD simulation with a relatively small number of particles and
the surface effects are not of interest, the Periodic Boundary Conditions (PBC) are
applied so that the particles are simulated as if they were in a bulk solution. For
example, let us consider a simulation box of five particles in Fig. 2.4. The central
box containing original particles (grey circles) is surrounded by eight replicas of itself
by simple translations. During MD simulation, the forces calculated on an original
particle take into account the particles inside the original box as well as the particles
in the replicated boxes. Usually, the size of the box is defined in such a way that a
particle cannot interact with its images in the replicated boxes. As soon as a particle
moves out of the original simulation box, an image particle moves in to replace it.

2.1.5 Setting up a Molecular Dynamics Simulation

As described earlier, in MD simulations, the time dependent positions of the particles
in the molecular system are obtained by solving the equations of motion, using
approximation methods and the potential energy function. In the end, the result
of an MD simulation is a time series of conformations, which is called a trajectory,
of the molecular system, as well as the time series of many different energy terms
which were calculated during the MD simulation. To be able to mimic experimental
conditions, most molecular MD simulations are performed in the NPT ensemble,
which means at a constant number of particles (N ), pressure (P) and temperature
(T ). A typical MD simulation workflow consists of the following steps (Fig. 2.5):

• Initialisation: the first step of ann MD simulation begins with choosing a start-
ing point of the system. Usually, in the simulation of biomolecules, the initial
structure of interest is obtained from the Protein Data Bank (http://www.rcsb.org/pdb/).
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Figure 2.4: Periodic boundary conditions. Image taken from [35].

Sometimes, theoretical models for the structures such as homology models can
also be used as a starting point for an MD simulation. However, the models
must be chosen with great care since the quality of the models does affect
the quality of the simulation. When the initial structures has been chosen,
the biomolecules should be put into their innate environment: a water box
for soluble proteins or insertion into lipid bilayer for membrane proteins, etc.
Finally, the water and the ion molecules are added to neutralise the whole
system at the physiological salt concentration.

• Minimisation: before any MD simulation is started, it is advisable to perform
an energy minimisation to minimise the whole system. The goal of this process
is to remove any strong clashes/interactions that could distort the system,
resulting in an unstable simulation.

• Assign initial velocities: first, initial velocities for each atom are assigned at
low temperature and the whole system is propagated in time by simulation.
Once the whole system is equilibrated, the temperature is slightly increased
and new velocities are reassigned and the whole process is repeated until the
desired temperature has been reached.

• Equilibration: once the system has reached the desired temperature, the simu-
lation is continued in the NPT ensemble. During this stage, several properties
of the system are monitored: the pressure, the temperature, the energy, the
structure, etc. The goal of this equilibration step is to run the simulation until
those properties are stable with respect to time.

• Production: once the system has been equilibrated, which means the important
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properties have become stable over time, one can begin to run the simulation
in production phase for the desired time length.

• Analysis: during MD simulation, the positions, velocities as well as various
energy terms are saved. Once the simulation is finished, one can use this
information to visualise and study the energetic and structural changes at the
atomic level during the simulation time, and ultimately, answer the scientific
question of the whole MD study.

Figure 2.5: A typical MD simulation workflow.

2.2 Machine Learning by Random Forest

The Random Forest (RF) method was introduced by Breiman in 2001 [54] and soon
became one of the most popular machine learning methods, especially in bioinfor-
matics studies. The random forest is an ensemble learning method. The main prin-
ciple of an ensemble method is the combination of many “weak” classifiers to form a
“stronger” classifier. In particular, the random forest is a large collection of decision
trees which are uncorrelated to each other. The random forest implementation can
be summarised as follows [55]:

1. For b = 1 to B:

(a) Draw a bootstrap sample Z∗ of size N from the training data

(b) Grow a decision tree Tb to the bootstrapped data, by recursively repeating
the following steps for each terminal node of the tree, until the minimum
node size nmin is reached.

i. Randomly select m variables from all predictor variables

ii. Pick the best variable/split-point among the m

iii. Split the node into 2 daughter nodes

2. Output the ensemble of trees (the random forest) {Tb}B1
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For the classification problem, the resulting class will be the class that has the
majority vote from all the decision trees in the forest. For the regression problem,
the end result is the average of all decision trees’ results.

In various studies, the random forest approach was found to yield a pretty good
classification performance. Moreover, due to the small number of parameters, the
tuning process of a random forest is much simpler and cost effective than that of other
popular machine learning methods such as neural network (NN) or support vector
machine (SVM). In fact, there are only two parameters that need to be optimised
in the tuning step for a random forest model: the number of decision trees and the
number of variables used to build each tree.

Another advantage of random forest over NN and SVM is the interpretability of
predictor variables. In data mining and machine learning applications, the impact of
various predictor variables onto the model performance is rarely comparable. In most
cases, only a small number of variables have significant influence on the response.
Therefore, it is quite useful to assess the importance of each input variable in the
predictive model. In random forest, the Gini Index is commonly used to evaluate the
contribution of predictor variables. The Gini Index at a particular node is defined
as:

G =
nc∑
i=1

pi(1− pi) (2.16)

where nc is the number of classes and pi is the ratio of class i in the dataset. The
importance is then calculated as:

I = Gparent −Gsplit1 −Gsplit2 (2.17)

The overall variable importance is the average of all splits in the forest.
A common problem that many machine learning methods have to deal with is

the imbalance of datasets where the number of observations in a particular class is
heavily dominant in the entire dataset. This circumstance could significantly affect
the performance of the prediction model and one has to devise various strategies to
overcome this problem such as collecting more data, data sampling, etc. However,
Dittman et al. has shown that the random forest approach is quite robust against
the imbalanced data problem, at least for bioinformatics data [56,57].

2.3 Proteomics Data Analysis

Due to the advances in molecular biotechnology, biological data have become eas-
ier and cheaper to generate with greater volumes and various types. As a result,
omics data analysis techniques need to be improved and need to become more accu-
rate to adapt and accommodate the exponential growth of the data. In genomics,
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transcriptomics or proteomics studies, one of the most common tasks is evaluating
the expression levels of genes, RNAs or proteins in different conditions, which is
often referred to as differential expression analysis. However, before analysing the
expression levels of genes/proteins, the pre-processing data procedure is also quite
important for the accuracy of the analysis. Usually, the most important steps in
pre-processing data are data normalisation and imputation of missing data.

2.3.1 Data Normalisation

Normalisation is an essential procedure in the analysis of omics data. The main
goal of normalisation is to remove the non-biological variation between samples (or
between different arrays of a microarray experiment). In other words, normalisa-
tion helps canceling the technical variation while keeping the biological variation un-
touched. Many normalisation methods have been developed, however, which method
is the most suitable and gives the best result depends on various factors such as the
type of data, the design of the experiment, the assumptions made about the data,
etc. Therefore, to determine the best method, one has to try several methods and
visually inspect the results with the controls. The common normalisation methods
are:

Scale normalisation

This is probably the simplest normalisation method. Basically, the method simply
adjusts the scale of the data, for example, by setting the range of the data from 0
to 1 using the following formula:

xnormalised =
x− x̄

xmax − xmin
(2.18)

where xmin and xmax are the minimum and maximum values in the dataset; or
by setting the median to 0:

xnormalised = x− xmedian (2.19)

Quantile normalisation

The objective of quantile normalisation is making two or more distributions of ex-
pression values to be identical with respect to statistical properties. The idea comes
from the quantile-quantile plot technique, which shows that the two distributions
are identical if the plot forms a straight diagonal line. The quantile normalisation
could be carried out with or without a reference distribution.

For quantile normalisation with a reference distribution, given the X matrix with
p × n dimensions that need to be normalised and the reference vector Xref with p
elements, the procedure consists of the following steps:
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1. Sort each column in X to give X ′ and Xref to give X ′ref .

2. Get Xnormalised by setting the highest ordered entry in each column of X ′ as
the value of the highest ordered entry in the reference vector X ′ref , then move
on with the next highest ordered entry and so on, until the Xnormalised is a
perturbation of the reference distribution Xref .

For quantile normalisation without a reference distribution, the procedure is
slightly modified [58]:

1. Sort each column in X to give X ′.

2. Calculate the mean in each row of X ′ and assign the mean to each element in
the row to get X ′mean.

3. Get Xnormalised by rearranging each column of X ′mean to have the same order
as the original X.

Loess (or Lowess) normalisation

Firstly introduced by Dudoit et al. [59], the main idea of this method is based on
the M/A plot (Fig. 2.6) and Loess local weighted regression method [60]. M and
A stand for the difference and the average of the log expression values, respectively.
The normalisation is applied for 2 samples (or arrays) at a time. The normalised
data points should scatter around the M = 0 axis (Fig. 2.6, right image). The
normalisation procedure for a matrix X with p × n dimension can be summarised
as follows:

1. For any two columns i, j with expression values xki and xkj, where k stands
for the kth of p rows (which represent genes/probes/proteins in the exper-
iment), calculate the difference Mk = log2(xki/xkj) and the average Ak =
1
2
log2(xkixkj).

2. Fit a loess curve to the M/A plot using the loess regression method to obtain
the normalised curve M̂k.

3. Calculate the normalisation adjustment by M ′
k = Mk−M̂k and the normalised

expression values can be obtained by x′ki = 2Ak+
M′

k
2 and x′kj = 2Ak−

M′
k

2

4. Repeat the whole procedure with all distinct pairwise combinations of columns
in the matrix X.

Since this method iterates over all distinct pairs of samples, therefore, it is quite
time consuming compared to other methods.
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Figure 2.6: Loess normalisation on an cDNA experiment. The coloured lines repre-

sent loess curves from different samples. The left image and the right image represent

the dataset before and after normalisation. Image taken from [59].

Housekeeping genes

Housekeeping genes are genes that are essential for basic cellular functions. Under
normal conditions, they are expressed at a relatively constant rates in all cells.
Based on their unique properties, housekeeping genes can serve as “references” to
scale other genes. To increase the accuracy and reliability, multiple housekeeping
genes are used to normalise the data. However, the expression of some housekeeping
genes may vary due to different experimental conditions. Therefore, housekeeping
genes should be chosen with care.

2.3.2 Data Imputation

Missing observations are frequently encountered in biological data. In proteomics
data from Mass Spectrometry (MS) experiments, there are several reasons which
may cause missing data: the peptide is actually present, but it’s not detected or
falsely identified; or the peptide abundance level is below the detection limit of the
instrument; or the peptide is not present at all. The easiest solution for this case
is simply ignoring the missing data. However, this could also mean discarding a
portion of potential data, and as a result, could significantly affect the result of
downstream analysis. Many imputation methods have been developed to tackle this
problem, but due to the complicated nature of the missing data, different imputation
methods should be used depending on which mechanism that led to missing data. In
the scope of this thesis, we applied two imputation methods to handle two different
cases of missing data:
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Completely missing

The “completely missing” case is the situation when the protein/gene entries do not
have any valid data at all. For such cases, low values of expression level are generated
based on the current data distribution. The main idea behind this method is to
impute missing proteomics data which have expression below the detection limit
of the instruments. This method is integrated in Perseus, a proteomics analysis
software which is developed and maintained by Tyanova et al. [61]. However, visual
inspection must be carried out after imputation to accordingly adjust the imputed
distribution parameters until desirable results are obtained. Fig. 2.7 shows the
imputation with different parameters. The left plot depicts the imputation where
the mean is set equal to the overall distribution’s mean. Therefore, this strategy
does not mimic case when missing data caused by detection limit. The right plot
depicts imputation with extremely low values which yields an undesirable bi-modal
distribution. The central plot comes from the correctly imputed data with the
assumption of low abundant proteins/genes giving rise to missing values.

Figure 2.7: Imputation method based on given data distribution. The orange bars

represents the imputed data while the blue bars depicts the overall distribution.

Three plots come from three imputations with different parameters. Image taken

from [61].

Partially missing

In contrast to the “completely missing”, the case of “partially missing” data con-
tains at least one valid data point. The safe solution for this case is to impute the
new data based on the existing data. The Local Least Squares (LLS) imputation
method, which was introduced by Kim et al. [62], was used to deal with this problem.
Assuming we need to impute missing data in a m× n DNA microarray experiment,
the LLS method consists of 2 steps:

1. Select k genes that are correlated to the missing data by Pearson correlation
or `2-norm. The selected genes are called k-nearest neighbour genes.
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2. Apply the local least squares for imputation:

(a) Based on the k-nearest neighbour genes, derive the matrix A ∈ Rk×(n−1)

and the two vectors b ∈ Rk×1 and w ∈ R(n−1)×1

(b) The least squares problems for imputation is formulated as:

min
x
‖ATx− w‖2 (2.20)

(c) The missing value α is determined as follows:

α = bTx = bT (AT )†w (2.21)

where (AT )† is the pseudoinverse of AT .

In their study, Kim showed that the LLS method outperforms its predecessor,
the KNNimpute method. Furthermore, the LLS method is also robust and performs
pretty well in multiple situations [63].

2.3.3 Significance Analysis of Microarrays – SAM

Modern omics technologies such as microarray or MS can identify and measure the
expression of thousands of genes and proteins in a short amount of time and in
different experimental conditions. As a consequence, fast and accurate methods are
needed to compare and determine the changes or differences in expression between
different biological conditions. One of the most popular, well-respected method in
differential expression analysis is Significance Analysis of Microarrays (SAM), which
was introduced by Tusher et al. in 2001 [64]. Initially developed for microarray
experiments, SAM identifies genes which are significantly different in term of ex-
pression by using a modified t test in conjunction with the False Discovery Rate
(FDR) technique. Basically, each gene i is assigned a “relative difference score” d(i)
and then compared with a threshold to determine whether it is significantly different
or not. The formula for d(i) is:

d(i) =
x̄I(i)− x̄U(i)

s(i) + s0
(2.22)

where x̄I(i) and x̄U(i) are the average expression level of gene i in conditions I
and U , respectively. s(i) is the standard deviation of experiment replicates:

s(i) =

√
1/n1 + 1/n2

n1 + n2 − 2

{∑
m

[
xm(i)− x̄I(i)

]2
+
∑
n

[
xn(i)− x̄U(i)

]2}
(2.23)

where
∑

m and
∑

n are the summations of expression level in conditions I and
U , respectively. n1 and n2 are the number of replicates in conditions I and U.
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By observing Eq. 2.22, one can see that the d(i) calculation is quite similar to
the t test formula except the s0 term. The s0 is a small positive constant, which
is inserted into the formula to make the variance of d(i) is independent of gene
expression, hence, the value of s0 is chosen in such a way that it minimise the
variation of d(i).

Additionally, to tackle the problem of small sample size, instead of performing
more experiments, FDR method was applied by permutations of samples and calcu-
late dp(i) from the permutations. The “expected relative difference” dE(i) is defined
as the average of dp(i) over all permutations. If the difference of d(i) and dE(i) is
larger than the predefined threshold ∆, gene i is significantly different in terms of
expression level in different experimental conditions.

The authors has proven that SAM outperforms the conventional methods of
microarray analysis [64]. Even though SAM was initially developed for microarray
analysis, it can also be applied to other types of experimental data, for instance,
MS proteomics data. In summary, SAM is a robust method and can accommodate
various experimental situations.

2.4 Molecular docking and AutoDock

With the development of sophisticated algorithms and software tools and the in-
creasing performance of computing hardware, computer aided drug design has be-
come more and more feasible and crucial for modern drug discovery. In the field
of computer aided drug design as well as structural bioinformatics, one of the most
popular and well-developed methods is molecular docking. The main goal of docking
is finding and evaluating binding conformations between two molecules, usually, a
receptor and its ligand. Also, docking can approximate the strength of the bind-
ing, the so-called binding affinity, by a scoring function which mimics the potential
energy calculations. In this section, we use AutoDock [65–67], a popular docking
software, to explain the ideas and algorithm of receptor-ligand docking.

The molecular docking method consists of two main components: the scoring
function, which estimates the binding affinity of receptor-ligand binding positions
(or poses), and the search algorithm.

Scoring function

The scoring function of AutoDock is quite similar to the potential energy function
(section 2.1.1) and is composed of 5 terms:
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∆G = Wvdw

∑
i,j

( Aij

r12ij −
Bij

r6ij

)
+Whbond

∑
i,j

E(t)
(Cij
r12ij
− Dij

r10ij

)
+Welec

∑
i,j

qiqj
ε(rij)rij

+Wsol

∑
i,j

(
SiVj + SjVi

)
e−r

2
ij/2σ

2

+WconfNtors

(2.24)

The first term adopts the 12-6 Lennard-Jones potential to represent the van der
Waals interaction, while the 12-10 potential mimics the hydrogen bonding with E(t)
as a function of the angle t between atoms that form the hydrogen bond. The third
term represents the Coulombic potential for electrostatic interactions. The fourth
term is the desolvation energy where S stands for solvent accessible surface area of
the ligand and V is the volume surrounded by receptor atoms (or the other way
around). The last term is the estimation of entropy loss upon ligand binding, which
is proportional to the number of rotatable bonds of the ligands. Wvdw, Whbond, Welec,
Wsol and Wconf are the weights of each term. To obtain the optimal weight for each
term, the authors of AutoDock performed empirical fitting of the scoring function
against the experimental binding affinities from receptor-ligand complexes.

There are other scoring functions which are developed by different techniques
or concepts such as machine learning based scoring function, knowledge based scor-
ing function and consensus scoring function. Machine learning based scoring func-
tions utilise the nonlinear mapping capability of machine learning methods to map
the receptor-ligand interactions to docking scores. In the knowledge based scoring
function approach, the occurrence frequency of contacting atoms is observed and
converted into a Boltzmann weighted potential by the so-called Boltzmann inver-
sion. However, no single perfect scoring function has been developed yet. Therefore,
the main idea of the consensus scoring method is to combine several scoring func-
tions by a voting regime. It thus provides a good agreement of different scoring
functions [68–70].

Search algorithm

The Lamarkian genetic algorithm was adapted as a conformational search algorithm
in AutoDock. The algorithm imitates the process of population evolution under se-
lection based on Lamarkian ideology, which means the traits acquired during an
individual’s lifetime can be inherited by its offsprings. A binding pose represents
an individual in a population. During a generation, mutations may occur and, as
a result, new variants (offsprings) are generated. Only the fittest individual may
survive under the evolutional selection. In the docking method, the scoring function
plays a role as an external pressure to select the best receptor-ligand binding poses
while discarding the worst fitting poses. After several generations with mutations
and selection pressure, the population will converge and reach a stationary state
with better fitness compared to the original population. The optimal binding poses
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are likely present in the converged population. Aside from the Lamarkian genetic al-
gorithm, other searching algorithms have been implemented in docking applications
such as Monte Carlo simulation, simulated annealing, ant colony optimisation [71],
etc.

Additionally, to shorten the calculating time, AutoDock also precomputes the
interaction energies of the receptor with different predefined atom types within a
user-defined docking grid box. Therefore, during the calculations of receptor-ligand
binding affinity, the estimated binding free energy can be quickly computed by
summing up the precomputed values.

Currently, AutoDock only allows partial flexibility of the receptor by treating
a list of user-defined residues as flexible ligands during docking, hence, limits the
searching result. However, the fully flexible scheme (flexible-ligand-flexible-receptor)
is definitely computationally expensive.
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Chapter 3

Substrates/Non-substrates

classification for the MdfA

multidrug transporter

3.1 Background and Motivation

Membrane transporters are a very important class of integral transmembrane pro-
teins that facilitate the exchange of materials between cells and their environments.
They are typically grouped into channels/pores, electrochemical potential-driven
transporters, primary active transporters, group translocators and transport elec-
tron carriers. Each of them plays a vital role for the cell and organism. Overall,
approximately 10% of the human genome is related to transporting functions [72].
Due to the strong connection with diseases and abnormal medical conditions, the
interaction of transporters with small molecules/drugs has caught a lot of attention
and many studies have been carried out to investigate these relationships.

Nowadays, multidrug resistance has become a serious threat to public health.
Multidrug transporters such as ABC proteins, AcrB, EmrD, MdfA, etc. play a vital
role in the drug defense mechanism of bacteria by expelling drugs out of the cells.
They can recognise, attach and eliminate a wide range of chemically unrelated drugs
by pushing them out of the cells. Additionally, due to the ability to transport a wide
range of chemotherapeutic agents, multidrug transporters also create difficulties in
chemotherapeutic treatments. An example for this is the P-glycoprotein 1 (P-gp),
an ABC transporter that pumps many foreign substances out of the cells, including
cancer chemotherapeutic agents. Consequently, over-expression of P-gp in cancer
cells limits the efficacy of anticancer drugs.

Therefore, computer-assisted identification/classification of transporter substrates
will make an important contribution to understanding their roles in cells and how
they interact with small molecules. Also, it will facilitate selecting better drug can-
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didates in the early phase of drug discovery. However, most of the existing substrate
classification methods for membrane transporters rely on simple sequence-derived
information such as amino acid composition, physicochemical properties, and se-
quence conservation during evolution [33, 73, 74]. Those descriptors are quite gen-
eral and do not capture the structural details how membrane proteins interact with
their substrates in the internal translocation pores. Such information was simply
not available until very recently. Fortunately, this situation has now changed when
more and more crystallographic structures of multidrug transporters have been de-
termined. These exciting developments now open up the possibility of integrating
structural and dynamic data derived from molecular dynamics simulations of these
systems into transporter substrate classification.

3.2 Materials and Methods

The workflow of the substrates classification study is summarised in Fig. 3.1. Basi-
cally, the project contains the following steps:

1. Data collection and preparation: in this very first step, the protein structure
and its associated ligands were collected and the whole molecular system was
prepared.

2. Docking: this step determines the initial binding positions of protein-ligand
complexes.

3. System equilibration and relaxation: the main goal of this step is to equilibrate
the whole system, keeping it stable and relaxed before the main MD simulation.

4. MD production: the main MD simulation.

5. Analysis: the results were retrieved and analysed.

3.2.1 MdfA structure and collection of ligands

In this chapter, we selected as subject of a substrate classification study MdfA, a well-
studied multidrug/proton antiporter of E. coli. MdfA contains 12 transmembrane
helices, which are divided into 2 pseudo-symmetrical domains, each consisting of 6
helices (Fig. 3.2). Various studies have shown that MdfA can recognise and transport
a wide spectrum of substrates with unrelated properties: basic, neutral, lipophilic,
hydrophilic, aromatic, zwitterionic, etc. [75,76]. Although many studies were carried
out, the transport mechanism of MdfA is still unclear. However, Bibi et al. showed
that E26 and D34 residues play critical roles in the transport mechanism [77, 78].
Recent findings on the very first X-ray structures of MdfA also emphasised the
importance of E26 and D34 as MdfA-ligand binding positions [79].
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Figure 3.1: The summarised workflow of the substrate classification study.

As it is biochemically well-characterised and of relatively small size (410 amino
acids), MdfA is quite suitable for a substrate classification study using MD simula-
tions. One of the very first crystal structures of MdfA from Heng’s study [79] (PDB
ID: 4ZP0) was chosen as the initial structure for the MD simulations. However, the
4ZP0 structure contains the Q131R engineered mutation. Therefore, the structure
was subjected into the Swiss-Pdb Viewer [80] to revert the mutated residue to the
original.

Information on known ligands of MdfA was retrieved from various studies [75–
78,81,82] and their molecular structures were downloaded from CHEMBL [83] and
ZINC15 [84] databases. The detailed information on this ligand collection is listed
in Table 3.1. Interestingly, there are 2 cases where substrate and non-substrate
molecules are highly similar with respect to chemical structure: ethidium bromide
vs. propidium iodide; and tetracycline vs. CHEMBL339030, or CHEMBL125158,
CHEMBL332172 which are derivatives of tetracycline (Fig. 3.3).

In the scope of this thesis, due to limitations of available computing time, only
16 out of 30 ligands were selected for MD simulations. The 16 selected ligands are
composed of 10 substrates, which can be transported by MdfA, and 6 non-substrates,
which cannot be transported even though they may bind in the central cavity of
MdfA. We also included 4 interesting ligands which are mentioned before: ethidium
bromide, propidium iodide, tetracycline and CHEMBL339030. The selection was
performed in such a way that the ligands vary with respect to molecular structures
and chemical properties. The similarity between two molecules are estimated by the
coefficient:

Tanimoto coefficient =

∑k
j=1(aj × bj)∑k

j=1 a
2
j +

∑k
j=1 b

2
j −

∑k
j=1(aj × bj)

(3.1)

where a and b are two drug molecules with k dimensions (chemical fingerprint).
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Figure 3.2: X-ray structure of MdfA in the sideview and topview from the cytosolic

side. The magenta stick model represent chloramphenicol, one of the most well-

known substrate of MdfA. The red spheres represent E26 and D34 residues. The

dot-area depicts the inward-facing cavity. Transmembrane helices are numbered in

the right image. Image taken from [79].

Table 3.2 shows the Tanimoto coefficient of chemical similarity of the ligands
in the selected set. The “Tanimoto avg.” is the overall average of the Tanimoto
coefficient of a single ligand against the others in the selected set. Taking amp as
an example, the Tanimono coefficients of amp with 15 other ligands in the selection
are computed, and “Tanimoto avg.” is obtained by averaging those 15 Tanimoto
coefficients. The Tanimoto coefficient, ranging from 0 (no similarity) to 1 (identical),
represents the similarity between two molecules in terms of chemical structures.
From the Table 3.2, we can see that the ligands in the selection are quite varied
in terms of chemical structures since the averaged Tanimoto coefficients fluctuate
around 0.2, which high dissimilarity among the selected ligands.

In summary, for the substrate classification study, we have collected: an MdfA
3D structure (4ZP0); 30 ligands, 16 out of 30 ligands were further selected for
MD simulations. The selection, containing 10 substrates and 6 non-substrates, was
ensured to vary with respect to chemical structure.

3.2.2 System preparation and equilibration

To accurately simulate the MdfA transporter in its innate environment, the protein
was inserted into a pre-equilibrated POPC lipid bilayer membrane model, generated
by Visual Molecular Dynamics (VMD) software [85]. All lipid molecules which were
located within 0.6 Å from the protein structure after the set-up stage were removed.
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Table 3.1: Ligand collection of MdfA multidrug transporter. The charge information

was retrieved from the ZINC15 database at pH 7.

Full name
Abbrevi-

ation

Charge

(e)

Substrate/Non-

substrate

Ampicillin* amp -1 substrate

Benzalkonium bzk 1 substrate

Chloramphenicol* cam 0 substrate

Carbonyl cyanide

m-chlorophenylhydrazone
ccc 0 substrate

Chlorhexidine* chx 2 substrate

Ciprofloxacin cip 0 substrate

Daunomycin* dau 1 substrate

Dequalinium deq 2 substrate

Deoxycholic acid* dxc -1 substrate

Ethidium bromide* ebr 1 substrate

Erythromycin ery 1 substrate

Kanamycin kan 4 substrate

Neomycin neo 4 substrate

Norfloxacin* nor 0 substrate

Pentamidine* pen 2 substrate

Puromycin pur 1 substrate

Pyronin pyr 1 substrate

Rhodamine 6g rho 0 substrate

Rifampicin rif 0 substrate

Thiamphenicol tpc 0 substrate

Tetraphenylphosphonium* tpp 1 substrate

Tetracycline* ttc 0 substrate

4’,6-diamidino-2-

phenylindole*
dap 2 non-substrate

Diminazene* dmn 2 non-substrate

Methyl viologen* mev 2 non-substrate

Nalidixic acid* nal -1 non-substrate

Propidium iodide* pio 2 non-substrate

CHEMBL339030* tc1 0 non-substrate

CHEMBL125158 tc2 0 non-substrate

CHEMBL332172 tc3 0 non-substrate

(*) Selected ligands for MD simulations.
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Figure 3.3: Substrates and non-substrates that have similar structures.

Table 3.2: Tanimoto average score of selected ligands.

Ligand
Tanimoto

avg.
Ligand

Tanimoto

avg.

amp 0.1506 mev 0.1765

cam 0.1910 nal 0.2227

chx 0.1424 nor 0.2216

dap 0.2228 pen 0.1709

dau 0.1430 pio 0.2485

dmn 0.1708 tc1 0.1606

dxc 0.0602 tpp 0.0635

ebr 0.2494 ttc 0.1725

Afterwards, the protein-membrane system was solvated and any water molecules
that positioned inside the POPC membrane were removed. Finally, sodium and
chloride ions were added to neutralise and maintain the whole system at the physi-
ological salt concentration (0.15 M NaCl). Overall, the complete system has dimen-

36



3.2. MATERIALS AND METHODS

sion of 90 Å× 90 Å× 90 Å with 57 764 atoms. This is large enough to satisfy the
periodic boundary conditions.

Figure 3.4: Embedded MdfA (red ribbon) in the POPC lipid bilayer membrane

(cyan tails) with water (blue mass) and ions (yellow beads - sodium, cyan beads -

chloride).

After the complete system (protein, membrane, water and ions) was assembled,
it was subjected to a short MD simulation to “melt” the added lipids and system
equilibration. Since the membrane patch was generated by VMD, it has not been
equilibrated. Therefore, it is essential to perform a short MD simulation in which
everything (protein, water, ions, lipid headgroups) except the lipid tails is fixed to
obtain the disordered, fluid-like model for the lipid bilayer. The “melting” process
included 10 000 steps of minimisation, followed by an MD simulation in the NPT
ensemble over 1 ns with 1 fs timestep. After the “melting” run was completed, the
system underwent a further equilibration over 2 ns with harmonically restrained
protein, followed by a 10 ns simulation without any restraint at all (free system).
The resulting system is depicted in Fig. 3.4. In this thesis, we adopted the NAMD
package [86] and CHARMM36m force field [87] for MD simulations. Temperature
and pressure during simulation were controlled by Langevin dynamics. Further
details on simulation parameters are given in the theory section.

37



3.2. MATERIALS AND METHODS

3.2.3 Ligand parameterisation

As briefly mentioned in section 2.1.1, force fields such as CHARMM, AMBER,
GROMOS, etc. are not suitable for simulating small molecules (ligands, drugs, etc.)
because their parameters only describe a relatively limited set of macromolecules
such as protein, DNA, lipids, etc. Therefore, force fields for small, general, drug-like
molecules have been specifically developed such as CGenFF and GAFF. However,
even those force fields cannot possibly cover every existing small molecule. They
only provide the parameters for typical elements of many chemically/biologically
relevant small molecules. Hence, to address these limitations, one has to refine or
even re-parameterise the parameter set. Since different force fields were developed
based on different philosophies, and we have used CHARMM36m force field to sim-
ulate the protein-membrane system, thus for consistency, CGenFF was adopted for
parameterising the MdfA ligands.

Parameters for a new molecule are evaluated and generated by CGenFF based on
a set of parameters from pre-determined, chemically/biologically relevant molecules.
Every new parameter is associated with a penalty score based on the similarity be-
tween the input molecule and the pre-determined molecules. In CGenFF, a penalty
score > 50 indicates a poor analogy (Fig. 3.5), hence, the input molecule need to be
manually re-parameterised. The Force Field Toolkit (ffTK) [88] was designed and
implemented for the ease of developing CHARMM compatible force field parame-
ters. Basically, the parameters that need to be optimised for a small molecule are:
partial atomic charges, bonds, angles and dihedrals.

Figure 3.5: A sample parameter file generated by CGenFF. The red arrows indicate

the parameters with high penalty (penalty = 180.737).

According to CHARMM philosophy [89], the partial charge of an atom is deter-
mined by its interactions with water molecules. The interaction profile was obtained
from quantum mechanical (QM) calculations performed by me using the Gaussian
software [90]. Subsequently, ffTK evaluates and computes the atomic charges using
molecular mechanics (MM) theory until they reasonably fit the QM interaction pro-
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file. This two-step procedure is also applied for parameterising bonds, angles and
dihedral, where target data is obtained by QM calculations, and followed by param-
eter validation/optimisation until they match the QM target data at an acceptable
threshold (Fig. 3.6).

Figure 3.6: Dihedral optimisation by matching MM profile (blue) to QM profile

(red).

After the parameterisation for all 16 selected ligands is completed, they are
ready for MD simulation. But before the actual MD simulations, we need to place
the ligands inside the MdfA central cavity.

3.2.4 Docking and relaxation

We adopted the AutoDock package to determine the initial binding positions of the
ligands. To ensure that the ligands are positioned inside MdfA, a docking gridbox
(Fig. 3.7a) was defined in such a way that it covers the internal space inside the
MdfA structure, hence it only allows the ligands to be placed inside the cavity. The
docking was carried out using the default parameters: 2.5× 106 energy evaluations,
27× 103 generations.

After the docking was finished, all the resulting poses were clustered using
AutoDock based on their similarity, which means ligands that occupy the same
space and have a similar orientation are assigned to the same group (cluster). Af-
terwards, we chose the most favourable pose (lowest estimated binding free energy)
in each cluster to be the initial conformation for an MD simulation.

39



3.2. MATERIALS AND METHODS

(a) (b)

Figure 3.7: (a) Docking gridbox (green) for MdfA ligands. (b) Different docking

poses (red, blue and green) of methyl viologen inside the central cavity of MdfA

(gray).

When a ligand is inserted into the protein-membrane system, a short equili-
bration step (1 ns with 0.5 fs timestep) is required to maintain the stability of the
system. Also, water molecules which overlap with the ligand should be removed.

3.2.5 Production MD simulation

After all these preparation steps, we have:

• an equilibrated protein-membrane system

• ligand force field parameters for MD simulations

• initital binding positions of ligands inside MdfA cavity

Since we had assembled all necessary components, the production MD simu-
lations could be prepared and carried out. All production MD simulations were
performed in the NPT ensemble over a length of 100 ns using a 2 fs timestep. The
trajectory of the whole system as well as many energy terms were recorded. Ad-
ditionally, for the analysis of energy change upon ligand binding, the protein in its
apo form (protein-membrane only) and isolated ligands in a water box were also
simulated (100 ns, 2 fs timestep). All production MD simulations were carried out
on Titan Cray XK7 of the Oak Ridge Leadership Computing Facility.
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3.2.6 MD result analysis

After the production MD simulations were finished, all log files which contain sys-
tem trajectory and energy terms (Fig. 3.8) were retrieved by Perl scripts for further
analysis. Information was retrieved for the last 20 ns of the production MD sim-
ulations since at the last 20 ns, the ligands had spent some time to accommodate
and interact with the protein, in particular, with the PLRs. Therefore, at first,
the extracted MD information such as energies, contacts, etc. were the average of
the last 20 ns. Because we were investigating protein-ligand interactions, the intra-
and intermolecular energies in various states (protein-ligand complex, protein in apo
form and isolated ligands) were considered: bond, angle, dihedral, improper, Van
der Waals and electrostatic. We also calculated the changes in terms of bonded
(bond, angle, dihedral, improper) and non-bonded (VdW, electrostatic) energies of
the ligands upon binding to the protein and the protein upon binding of the ligands.

Figure 3.8: A sample from a log file which contains records of various energy terms

(output from NAMD).

Additionally, we also monitored the contacts between protein and ligands which
can be represented by hydrogen bonds and hydrophobic interactions between the
Pore-Lining Residues (PLRs) of MdfA and the ligands. The pore-lining residues,
which are residues that form the cavity inside MdfA, were determined by PoreWalker
[27]. The interaction information was extracted from the trajectory files. Using tcl

scripting in VMD, hydrogen bond and hydrophobic interactions were defined as
follows:

• Hydrogen bond: is defined if hydrogen bond donor and hydrogen bond acceptor
between MdfA and ligand are within 3 Å [91] (Fig. 3.9a).

• Hydrophobic interaction: if hydrophobic atoms (C and S) between MdfA and
ligand are within 3.9 Å [91] (Fig. 3.9b).

Finally, by utilising this information that we derived from MD simulations (en-
ergy terms, interactions), docking result (estimated binding energy), as well as other
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(a) (b)

Figure 3.9: Examples for (a) hydrogen bond and (b) hydrophobic interaction be-

tween chloramphenicol and MdfA.

molecular descriptors (PaDEL [92]) as predictive features, we trained a substrate/non-
substrate classification model using the random forest approach. The classification
model was implemented and optimised with the randomForest R package [93].

3.2.7 Training and testing scheme for classification model

Similarly to other machine learning methods, one has to come up with an appropriate
training and testing scheme to validate the performance of the prediction model and
overcome common “obstacles” such as imbalance data or overfitting. Even though
the random forest model is unlikely to be susceptible to imbalanced data (see section
2.2), one should pay attention to the overfitting problem while training classification
model.

Therefore, we adopted a modified Leave-One-Out Cross-Validation (LOOCV)
scheme. Normally, in the LOOCV approach, for data with n observations, only one
observation is set aside to be the test set (unknown data), the rest (n−1) will become
the training set to build the prediction model. The performance of the model will
be validated by the single test observation. Iteratively, in the next round, another
observation will be left out to be the test set until all observations in the data have
become the test set once. The overall performance is the average performance of all
models over the iteration.

In our situation, let us assume that we have n MD simulations (observations)
from n protein-ligand poses, which represent the docking results of 16 selected lig-
ands (clustered docking poses). Apparently, one ligand could have more than 1
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Figure 3.10: Training and testing scheme for classification model.

binding pose. Thus, if we only exclude one observation, the training set still con-
tains information of the left out data due to the other relevant binding poses of the
same ligand. Therefore, instead of following the conventional LOOCV, we decided
to put aside all binding poses of a particular ligand to be the test set, and the rest
will become the training set. The modified LOOCV is illustrated in Fig. 3.10.

The performance of the prediction will be assessed by the common measurement
of accuracy:

ACC =
TP + TN

TP + TN + FP + FN
(3.2)

where TP, TN, FP and FN stand for the number of true positives, true negatives,
false positives and false negative, respectively.
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3.3 Results and Discussion

3.3.1 Docking result and feature extraction

The docking runs gave 94 binding positions for the 16 selected ligands. The detailed
number of binding positions for 16 ligands are given in Table 3.3.

Table 3.3: Number of binding positions for 16 selected ligands inside the MdfA

cavity.

Substrates
No. of

poses

Non-

Substrates

No. of

poses

amp 4 dap 6

cam 7 nal 4

chx 9 mev 3

dau 8 dmn 9

dxc 4 pio 7

ebr 3 tc1 8

nor 3

pen 10

tpp 2

ttc 7

Total: 94 (57 for substrates and 37 for non-substrates)

Consequently, there are 94 protein-ligand complexes for MD simulations, in addi-
tion to the protein in apo form and 16 isolated ligands. In total, we have conducted
11 100 ns (or 11.1µs) of MD simulations. The isolated ligand simulations are much
less compute intensive due to the obviously small size compare to the full-size system
(protein-membrane-ligand).

The PoreWalker software identified 74 PLRs inside MdfA and we have collected
2756 molecular descriptors from PaDEL. Including various energy terms that we
extracted from the MD simulations and docking runs, in total , we obtained 2929
features for the substrate classification model. The feature set includes:

• 8 energy terms from protein-ligand complex simulations with respect to bond,
angle, dihedral, improper, VdW, electrostatic and their combinations (bonded
= bond + angle + dihedral + improper and non-bonded = VdW + electro-
static).

• 8 energy terms which describe the changes of a ligand upon binding: ∆Elig =
Ecomplex − Eisolated ligand
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• 8 energy terms which describe the changes of the protein upon ligand binding:
∆Epro = Ecomplex − Epro apo

• 148 features of hydrogen bonds and hydrophobic interactions of 74 PLRs

• 2756 molecular descriptors from the PaDEL software

• Docking estimated binding energy

During the pre-process of implementing the classification model, we removed
those features which have more than 50% invalid data or are correlated with other
features.

3.3.2 MdfA substrate classification model

Due to the extremely large number of features (2929) but a relatively small dataset
(94), the features were carefully assessed to optimise the performance of the classifier.
In fact, a “naive” model was initially built based on the whole feature set but its
accuracy was only slightly better than random (overall ACC ≈ 56.2%).

PaDEL molecular descriptors

Although the majority of features are molecular descriptors from PaDEL(≈ 94%),
they were simply extracted from the 2D and 3D information of ligands, not consider-
ing any interactions between protein and ligands. Hence, the molecular descriptors
are somewhat redundant due to the fact that all binding poses of the same ligand
have identical molecular descriptors. In fact, there are only 16 distinct sets of molec-
ular descriptors for 16 selected ligands. A Principal Component Analysis (PCA) was
carried out on 16 distinct molecular descriptor set and showed that, with such a small
dataset (16 data points), there is no clear separation between substrates and non-
substrates with respect to PaDEL descriptors (Fig. 3.11a). Additionally, due to the
massive amount of molecular descriptors, they may hinder the contribution of other
features because only a portion of the feature set will be randomly selected for tree
building in the random forest method. Hence, it is beneficial to exclude molecular
descriptors from model training.

Protein-ligand interactions and ligand trajectories

Even after removing the PaDEL molecular descriptors, the prediction performance
did not improve much. In fact, it was practically similar to the naive model with
ACC ≈ 56.6%. Therefore, the same PCA analysis was also done for hydrogen
bonds and hydrophobic interactions (Fig. 3.11b). Surprisingly, from the PCA result,
it is unfeasible to differentiate substrates and non-substrates based on MdfA-ligand
interactions in the last 20 ns of the MD simulation. Additionally, in the first principal
component, the top contributors are among the hydrophobic interactions and the
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(a) (b)

Figure 3.11: PCA analysis of (a) PaDEL molecular descriptors; and (b) hydrogen

bonds, hydrophobic interactions between ligands and MdfA.

contribution of the two known important PLRs, E26 and D34, are not substantial
at all (Fig. 3.12).

Therefore, to investigate the sources of this observation, we visually inspected
the trajectories of all 16 selected ligands during the MD simulations (Fig. 3.13 to
3.16). As one can see in the trajectories, in most of the cases, the ligands were
moving forward to and finally populated the same central area of the cavity. These
events could somehow explain why Mdfa-ligand interactions are indistinguishable
between substrates and non-substrates in the last 20 ns of the MD simulations.

Being aware of the problems that could potentially hinder the classification per-
formance, instead of using the information from the last 20 ns of the MD simulations,
we extracted the energies and interaction information from the first 20 ns and started
re-training and re-testing the classification model. The model’s performance now im-
proved to 73.1% in accuracy, which means nearly 20% improvement compared to
the previous model. The details of the model’s performance are given in Table 3.4.

The model was further analysed and the variable importance revealed that, un-
expectedly, the bonded energy terms were the key players in the substrates/non-
substrates classification (Tab. 3.5). In the beginning, we speculated that the differ-
ence between substrates and non-substrates may come from the protein-ligand inter-
actions, which means the non-bonded energies such as VdW and electrostatic should
be the most important contributors to the classification. However, the analysis of
the prediction model has forsaken that theory. Instead, from the obtained result, we
could infer that the protein conformation needs to be rearranged in response to ac-
comodating various ligands. And since the protein conformation adjusts differently
according to the nature of the ligand, whether it is substrate or non-substrate, which
in turn, leads to different bonded energies between protein-substrate and protein-
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Figure 3.12: The contribution of hydrogen bonds (blue bars) and hydrophobic in-

teractions (blue bars) in PC1. “hyd 26” and “hbond 26” represent hydrophobicity

interaction and hydrogen bond contribution at residue E26. The same notation is

applied for residue D34.

Table 3.4: Performance of classification models (in accuracy percentage) using the

training and testing regime described in section 3.2.7.

Test ligand ACC Test ligand ACC

amp 100.00 mev 100.00

cam 85.71 nal 100.00

chx 100.00 nor 100.00

dap 66.67 pen 30.00

dau 87.50 pio 0.00

dmn 100.00 tc1 0.00

dxc 100.00 tpp 0.00

ebr 100.00 ttc 100.00

Averaged ACC: 73.12%

nonsubstrate complexes.
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(a) Ampicillin (b) Chloramphenicol

(c) Chlorhexidine (d) 4,6-diamidino-2-phenylindole

Figure 3.13: Trajectories during 100 ns MD simulation of (a) ampicillin, (b) chlo-

ramphenicol, (c) chlorhexidine and (d) 4,6-diamidino-2-phenylindole. The beads

represent the center of mass of the ligands. The blue beads indicate the starting

positions, the red beads indicate the final positions and the grey beads indicate the

intermediate positions. The coloured dashed lines depict the trajectories of different

initial binding positions. Lipid molecules and waters are not shown for clarity.
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(a) Daunomycin (b) Diminazene

(c) Deoxycholic acid (d) Ethidium bromide

Figure 3.14: Trajectories during 100 ns MD simulation of (a) daunomycin, (b) dim-

inazene, (c) deoxycholic acid and (d) ethidium bromide. The colouring scheme is

similar to Fig. 3.13.
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(a) Methyl viologen (b) Nalidixic acid

(c) Norfloxacin (d) Pentamidine

Figure 3.15: Trajectories during 100 ns MD simulation of (a) methyl viologen, (b)

nalidixic acid, (c) norfloxacin and (d) pentamidine. The colouring scheme is similar

to Fig. 3.13.
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(a) Propidium iodide (b) CHEMBL339030

(c) Tetraphenylphosphonium (d) Tetracycline

Figure 3.16: Trajectories during 100 ns MD simulation of (a) propidium iodide, (b)

CHEMBL339030, (c) tetraphenylphosphonium and (d) tetracycline. The colouring

scheme is similar to Fig. 3.13.
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Table 3.5: Some of the top important features from the random forest classification

model.

Feature Gini Index Feature Gini Index

Ecomplex bonded 7.17 Ecomplex bond 0.98

Ecomplex angle 3.76 Ecomplex nonbonded 0.83

Ecomplex dihedral 3.62 Ecomplex VdW 0.77

∆Eligand electrostatic 1.87 hyd 127 0.77

Estimated Ebinding 1.79 hyd 353 0.76

∆Eligand nonbonded 1.70 Ecomplex electrostatic 0.74

Ebonded = Ebond + Eangle + Edihedral + Eimproper

Enonbonded = EVdW + Eelectrostatic

Problematic cases

Although the model has been significantly improved, it still performed poorly for
several ligands (Tab. 3.4). Interestingly, both problematic cases that we mentioned
before (Fig. 3.3) all suffered poor performance. We speculate that those two prob-
lematic pairs adversely affect the classification performance due to the structural
similarity between substrates and non-substrates. Therefore, we carried out two
tests to verify that theory:

1. Training and testing the classifiers without propidium iodide and CHEMBL339030
(both are non-substrates)

2. Training and testing the classifiers without ethidium bromide and tetracycline
(both are substrates)

While the performance was significantly enhanced with 89.29% accuracy in the
first test (Tab. 3.6), the model in the second test still suffered from a mediocre
accuracy at 55.99%. These tests showed that the structural similarity does affect
the classifier performance. Moreover, from the result of these tests, we can also infer
that the two problematic non-substrates, propidium iodide and CHEMBL339030,
do behave similarly to other substrates inside the MdfA cavity, at least in the first
20 ns, which is quite troublesome for substrates/non-substrates classification even
with the aid of MD simulations.

Summary

In this project, we developed a novel method for MdfA substrate classification.
Unlike other conventional classification methods which utilise general features (se-
quence derived information, molecular descriptors, etc.), the new method incorpo-
rates protein-ligand structural interactions and potential energy information derived
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Table 3.6: Performance of classification models in the first test - without propidium

iodide (pio) and CHEMBL339030 (tc1).

Test ligand ACC Test ligand ACC

amp 100.00 mev 100.00

cam 100.00 nal 100.00

chx 100.00 nor 100.00

dap 66.67 pen 50.00

dau 100.00 pio NA

dmn 33.33 tc1 NA

dxc 100.00 tpp 100.00

ebr 100.00 ttc 100.00

Averaged ACC: 89.29%

from MD simulations of different protein-ligand complexes. Although the method
encountered difficulties with the structural similarities between substrates and non-
substrates, it still reached a decent performance with 73.12% accuracy. However,
due to the limit of computational facility, the project was conducted with a rela-
tively small dataset (16 selected ligands) and basic MD simulation setup (only 1 MD
run per binding pose). Regardless, this is the first method that considers protein-
ligand interactions into a classification problem, hence, paving the way for further
developments in drug discovery and other applications.
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Chapter 4

Gene silencing combined with

quantitative proteomics reveals

client spectrum of TRAP complex

This work is submitted as “Nguyen D, Stutz R, Schorr S, Lang S, Pfeffer S, Freeze
HH, Förster F, Helms V, Dudek J, Zimmermann R. Proteomics explains client
specificity of the translocon-associated protein in ER protein import”. My
contribution in this work was to conduct all proteomics data analysis.

4.1 Background and Motivation

In mammalian cells, the Endoplasmic Reticulum (ER) is involved in protein syn-
thesis, protein folding and acts as a gateway into endocytic and exocytic pathways
for the majority of soluble proteins [94, 95]. Typically, proteins are transported
into the ER membrane by the ER protein translocon in a co-translational mode.
The translocon is composed of Sec61 complex and additional components (Fig. 4.1)
which are involved in nascent precursor polypeptides processing and translocation.
When the nascent precursor polypeptide emerges from the ribosomes, the Signal
Recognition Particle (SRP) recognise Signal Peptide (SP) and Transmembrane He-
lix (TMH) of the nascent chain. Afterwards, the whole complex, which comprises
of ribosome, nascent chain and SRP, is guided to the ER membrane by an SRP
receptor (SR) [96, 97]. Then the precursor polypeptide is inserted into the Sec61
complex [98–100], which either happens spontaneously or with the aid of other as-
sisted components [101–104], e.g. the TRanslocon-Associated Protein (TRAP) com-
plex [103–111].

The TRAP complex, originally termed the Signal-Sequence Receptor (SSR), was
revealed to be associated with nascent chain [113,114] and Sec61 [106,107]. In an in
vitro study, TRAP complex stimulates the translocation of many proteins, but not
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4.1. BACKGROUND AND MOTIVATION

Figure 4.1: Subtomogram average of ribosome/translocon/nascent chain (magenta

density) complex. Image is adopted from [112].

all, in a manner that is influenced by their SP [104]. A recent study also showed that
TRAP may affect protein topology [111]. Additionally, mutations in human SSR3
and SSR4 (two subunits of TRAP complex) cause the loss of TRAP and Congenital
Disorder of Glycosylation (CDG), which suggests that TRAP may be involved in
protein N-glycosylation [115,116].

However, in the mentioned studies, the experiments were designed in cell-free
conditions with a small set of synthesised precursor proteins [104], or are biased
towards a model precursor. They do not clearly clarify the precursor polypeptides’
properties that make them dependent on TRAP complex under normal physiologi-
cal conditions. In this work, we combined siRNA-mediated gene silencing in HeLa
cells with label-free mass spectrometry-based (MS) proteomics analysis and differ-
ential expression analysis to properly identify and characterise the TRAP dependent
precursor polypeptides in human cells.

The summarised workflow is represented in Figure 4.2. In summary, the workflow
is composed of the following steps:

1. TRAP and Sec61α silencing by siRNA-mediated method. Two different siR-
NAs were used for each target.
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2. Perform label-free MS proteomics analysis to obtain the protein abundance
profile in HeLa cells in both control and siRNA-mediated samples.

3. Perform differential expression analysis to identify TRAP clients.

4. Characterise TRAP clients.

In this work, my contribution was to perform all analysis in steps 3 and 4.

Figure 4.2: The workflow to characterise TRAP clients.

4.2 Materials and Methods

4.2.1 Differential expression analysis

Mass Spectrometry proteomics data pre-processing

The MS proteomics data was prepared and processed by Dr. Nagarjuna Nagaraj
(Max-Planck Institue of Biochemistry, Biochemistry core facility, Martinsried, Ger-
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many) using the MaxQuant package [117]. The resulting data contains Label-Free
Quantification (LFQ) intensities for the whole proteome in the cells. For the ease
of calculations, all protein intensities were transformed into log2 values. A siRNA-
mediated gene silencing dataset consists of 3 replicates for each condition: 1 control
and 2 different siRNA-treated samples (Fig. 4.3). Two proteins were targeted in
the silencing experiments: Sec61α and TRAP. Two independent (but identical) si-
lencing experiments were carried out on Sec61α while there were three independent
experiments for TRAP. In total, we have:

• Sec61α silencing experiment:

– 6 control replicates

– 12 replicates of 2 different siRNAs

• TRAP silencing experiment:

– 9 control replicates

– 18 replicates of 2 different siRNAs

Figure 4.3: The design of a siRNA gene silencing experiment.

Due to the fact that the silencing experiments of the same target protein were
conducted independently and at different points of time, even though the experi-
ment setup was identical, the proteomics data from those experiments showed clear
differences (Fig. 4.4) due to cell ageing and batch effects. Therefore, the normalisa-
tion method should be chosen with care to minimise those effects. In this work we
adopted a gene-based quantile normalisation. Compared to the traditional quantile
normalisation (see section 2.3.1), instead of normalising proteomics data across all
experiments to make them statistically identical, this modified quantile normalisa-
tion was executed in a manner that the distributions of a gene across all experiments
are statistically identical. This modified method can remove the batch effects that
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only affect specific subsets of genes and/or affect different genes in different ways,
which cannot be achieved by traditional normalisation methods [118].

Similar to other proteomics data analysis methods, MS also encounters the prob-
lem of missing data. In this work, we adopted the data imputation strategy as de-
scribed in section 2.3.2. However, the proteins that have more than 50% missing
data in the control samples will be removed.

Figure 4.4: Hierarchical clustering heat map of 3 unnormalised independent TRAP

silencing experiments. “control” columns represent cells in control condition while

“trap 2” and “trap 3” represent cells in two different siRNA-mediated conditions.

The three coloured bars indicate three independent experiments: blue - 1st, magenta

- 2nd, pink - 3rd.
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Differential expression analysis

The differential expression analysis was carried out using the Significance Analysis
of Microarrays (SAM) method. Even though the SAM method was originally de-
veloped for microarray analysis, it is still applicable for MS proteomics data. By
combining modified t-test with False Discovery Rate (FDR) method, SAM has over-
come the problem of small sample size in the majority of proteomics data (see section
2.3.3 for more details). In this work, a protein is defined as significantly different
(either negatively or positively) if its FDR in comparison against control samples is
lower or equal to 5% by SAM test. Since we conducted the silencing experiments
with two different siRNAs, only the overlapped significantly affected proteins were
considered, e.g. a protein is considered as negatively affected (down-regulated) by
TRAP silencing if it is negatively affected in both siRNA conditions.

All the pre-processing steps (normalisation, imputation) and differential expres-
sion analysis were done in R with the following packages: preprocessCore [119]
for normalisation, pcaMethods and impute for data imputation [120], samr [121] for
differential expression analysis.

4.2.2 Downstream analysis

Sub-cellular localisation for significantly affected proteins

To verify the effectiveness of silencing experiments and applicability of MS method,
we identified the sub-cellular location of all affected proteins. Since Sec61α and
TRAP are critical components in the translocon complex that guides proteins into
endocytic and exocytic pathways, we expect that those proteins that are associated
with ER, golgi, membrane, endosome, secretory pathways, etc. should be affected
by the silencing. The sub-cellular localisation was carried out using GO slim anno-
tations [122–124].

TRAP clients characterisation

All Sec61α and TRAP clients/substrates (negatively affected proteins caused by
Sec61α/TRAP silencing) which were identified in the previous steps were further
analysed for the characterisation. Specifically, we analysed the hydrophobicity and
amino acid content of their N-terminal SP and TMH. To obtain the SP and TMH
information of affected proteins, the associated curated entries from UniProtKB [125]
were downloaded and extracted. Afterwards, the hydrophobicity score and amino
acid composition of SP and TMH were derived:

• Hydrophobicity score: is the average score of the accumulated hydrophobicity
values across all residues in the SP/TMH sequence. The hydrophobicity value
is based on the Kyte-Doolittle hydrophobicity scale [126].

60



4.3. RESULTS AND DISCUSSION

• Amino acid composition: is the contribution of amino acid types to the content
of the SP/TMH sequence:

AAC(i) =
Number of amino acids of type i

Total length of SP/TMH
(4.1)

Additionally, the N-glycosylation site information of the substrates was also re-
trieved from UniProtKB entries.

Furthermore, to investigate the distinct properties of TRAP clients, we also
compared the SP of TRAP clients with their homologs in S. cerevisiae due to the
fact that yeast does not possess TRAP complex. TRAP clients were processed by
the BLAST package [127] against 7904 yeast protein sequences from UniProtKB to
identify the homologs and their SP.

4.3 Results and Discussion

4.3.1 Data normalisation method

Fig. 4.5 shows the intensity distributions of SSR2, a subunit of TRAP complex,
before and after gene-based quantile normalisation.

(a) Before normalisation (b) After normalisation

Figure 4.5: The SSR2 intensity profile across all experiments (red - 1st experiment,

green - 2nd experiment, blue - 3rd experiment) before and after gene-based quantile

normalisation. The horizontal axis indicates sample conditions: 1 to 3 - control, 4

to 6 - 1st siRNA, 7 to 9 - 2nd siRNA.

Based on the visual inspection of the intensity distributions and the clustering
heat map (Fig. 4.6b), the gene-based quantile normalisation produces comparable
intensity distributions across all experiments even though they were conducted at
different points of time. Moreover, the comparison of hierarchical clustering heat
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maps indicates that the gene-based quantile normalisation outperforms the tradi-
tional quantile normalisation in terms of batch effects correction for the special data
sets available to us. As one can see in Fig. 4.6, the gene-based normalisation gives
better clustering result with clear separation between different experimental con-
ditions (control, 1st siRNA, 2nd siRNA) while the traditional normalisation still
suffers heavily from batch effects. In fact, there is visually no improvement when
comparing the traditional quantile normalisation heat map against unnormalised
data (Fig. 4.4).

(a) Traditional quantile normalisation (b) Gene-based quantile normalisation

Figure 4.6: Comparison between (a) traditional quantile normalisation and (b) gene-

based quantile normalisation. The labels are identical to Fig. 4.4

4.3.2 Sec61α silencing experiments: experimental strategy

for substrates identification

The Sec61 complexes in HeLa cells were knocked-out by the introduction of 2 differ-
ent siRNAs that target Sec61α. A previous study showed that the silencing effects
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reduces more than 90% of Sec61 complexes without affecting cell growth, cell via-
bility or cell morphology [102].

About 7000 distinct proteins were identified in Sec61α silencing experiments
by MS, roughly 50% of the human proteome. After removal of invalid data, the
unavailability of GO annotations and sample data, 5129 proteins that were detected
in all experiments were further analysed.

In the comparison of siRNA-treated samples against control samples, we have
identified 824 proteins significantly affected by Sec61α depletion: 482 were down-
regulated and 342 were up-regulated. Being the target of the silencing experiments,
Sec61α was clearly degraded (Fig. 4.7), as expected. In addition, the volcano plot
shows that, along with Sec61α, two other subunits of the Sec61 complex, Sec61β and
Sec61γ were negatively affected due to the depletion of Sec61α. Also, two subunits
of the SRP receptor (SRPRA and SRPRB), which were revealed as compensatory
components in a previous Sec61α silencing study [102], were among the positively
affected proteins.

Figure 4.7: Volcano plot of Sec61α silencing experiment. The points represent the

whole quantified proteins while the blue points indicate the significantly affected pro-

teins: the light blue points on the left and the dark blue points on the right represent

the negatively affected proteins and the positively affected proteins, respectively.

In Fig. 4.8, the sub-cellular localisation analysis has shown that 60.92% of the
negatively affected proteins were belong to organelles of the endocytic and exocytic
pathways (plasma membrane, ER, golgi, extracellular region, lysosome, endosome
and vacuole). This is a more than two-fold enrichment compared to the whole
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quantified proteome (25.71%).

(a) Total quantified proteins (b) Negatively affected proteins

Figure 4.8: Sub-cellular localisation of (a) the whole quantified proteome and (b)

the negatively affected proteins of Sec61α silencing experiments. The blue parts

indicates the organelles of endocytic and exocytic pathways.

Figure 4.9: Contribution of proteins containing SP, N-glycosylated sites and mem-

brane proteins in (upper row) the whole quantified proteome and (lower row) the

negatively affected proteins of Sec61α silencing experiments.

Additionally, we also detected a significant enrichment of proteins containing SP,
N-glycosylated sites and membrane proteins among the negatively affected proteins
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(Fig. 4.9). Those observations suggest that the down-regulated proteins are Sec61α
substrates and the up-regulated proteins could potentially serve as compensatory
components due to the silencing effects.

In short, we have successfully identified and analysed the substrate spectrum of
the Sec61 complex from MS proteomics data, paving the way for subsequent analysis
of specific substrates of other transport components, e.g. the TRAP complex.

4.3.3 TRAP silencing experiments: characterisation of TRAP

clients

Differential expression analysis

Similar silencing experiments were conducted for the TRAP complex with two dif-
ferent siRNAs, targeting the TRAPβ (or SSR2) subunit. In the previous study
with the same experiment design, the silencing depleted 90% of TRAP complexes,
without any significant effects on cell growth, cell viability or cell morphology [112].

Figure 4.10: Volcano plot of TRAP silencing experiment. The points represent all

quantified proteins while the green points indicate the significantly affected proteins:

the light green points on the left and the dark green points on the right represent

the negatively affected proteins and the positively affected proteins, respectively.

Approximately 8500 different proteins were quantified by MS in TRAP silenc-
ing experiments. Among those, 5911 proteins were detected in all experiments for
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(a) Total quantified proteins (b) Negatively affected proteins

Figure 4.11: Sub-cellular localisation of (a) the full quantified proteome and (b)

the negatively affected proteins of TRAP silencing experiments. The green parts

indicate the organelles of endocytic and exocytic pathways.

further analysis. Out of 5911, 257 were identified as significantly affected proteins:
180 negatively affected proteins, including the target protein TRAPβ; and 77 pos-
itively affected proteins. Besides, other TRAP subunits such as TRAPα, TRAPγ
and TRAPδ were negatively affected by TRAPβ depletion (Fig. 4.10). The posi-
tively affected proteins also included SRP receptor subunits. Sub-cellular localisation
analysis verified that 40.38% of the negatively affected proteins belong to organelles
of endocytic and exocytic pathways (Fig. 4.11). This is an about 1.5 fold enrich-
ment compared the full quantified proteome. The GO annotations of the negatively
affected proteins also revealed a significant enrichment of proteins containing sp, N-
glycosylated sites and membrane proteins (Fig. 4.12). Compared to Sec61α silencing
experiments, these number of substrates are expected since the TRAP complex is a
precursor-specific auxiliary transport component to the Sec61 complex.

TRAP clients characterisation

The hydophobicity analysis of Sec61 substrates showed that their SP were less hy-
drophobic compared to the overall hydrophobicity of all human SP (Fig. 4.13a),
indicating that Sec61 has a higher affinity to nascent chains with higher hydropho-
bic SP. Regarding TRAP substrates, their SP tend to have lower hydrophobicity
compared to the average. Interestingly, the SP of TRAP substrates showed a signif-
icantly higher content of glycine and proline (GP) (Fig. 4.13b) than all human SP
and all human proteins (Fig. 4.15a). Visual inspection of the TMH of proteins that
do not have cleavable SP showed a lower hydrophobicity tendency and higher GP
content although they are not statistically significant (Fig. 4.14).

To further verify the unusually high GP content in the SP of TRAP substrates,
we extracted SP sequences of TRAP substrates’ homologs from S. cerevisiae and
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Figure 4.12: Contribution of proteins containing SP, N-glycosylated sites and mem-

brane proteins in (upper row) the full quantified proteome and (lower row) the

negatively affected proteins of TRAP silencing experiments, respectively.

(a) (b)

Figure 4.13: Distribution of (a) hydrophobicity score and (b) GP content of SP

which belong to the full human proteome (black), Sec61 substrates (blue) and TRAP

substrates (green).
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(a) (b)

Figure 4.14: Distribution of (a) hydrophobicity score and (b) GP content of TMH (of

membrane proteins that do not have cleavable SP) which belong to the full human

proteome (black), Sec61 substrates (blue) and TRAP substrates (green).

analysed the SP of homologs in a similar fashion. Out of almost 8000 yeast protein
sequences from UniProtKB, over 800 contain cleavable SP. However, only 7 homologs
contain SP. By comparison, the SP set in yeast homologs showed a lower GP content
than human SP (Fig. 4.15b). Since yeast does not have TRAP complex, these
findings support the relevance of high GP content of TRAP substrates in human
cells.

4.3.4 Discussion

By applying unbiased experiments in living human cells, our investigation on pu-
tative TRAP substrates has revealed that they are enriched in the endocytic and
exocytic pathways as expected. Additionally, they showed a low hydrophobicity ten-
dency and significantly high GP content in their cleavable SP. In particular, the prion
protein (PrP), one of the TRAP dependent protein [104], fits these observations.

Since the high GP content could potentially impede the insertion of SP into the
channel, we speculated that TRAP activity may be necessary for those SP with high
GP content. The unusual high GP content in SP could come from mutations over the
course of evolution and TRAP may play a role to compensate this high accumulation
of GP content. On the contrary, due to the absence of the TRAP complex in yeast,
SP with high GP content could have been eliminated due to selection pressure.

Due to the high GP content and low hydrophobicity of the SP of TRAP sub-
strates, they may spend a longer period of time on the cytosolic surface of the Sec61
channel. Therefore, we further propose that the TRAP complex may stabilise SP
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(a) (b)

Figure 4.15: (a) GP content distribution of the whole human proteome; (b) GP con-

tent distributions of SP which belong to the full S. cerevisiae proteome (continuous

red line) and to homologs of TRAP clients (green dashed line).

on the cytosolic site for easier translocation through the Sec61 channel.
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Chapter 5

Enhancement of Sec61-mediated

Ca2+ leakage from endoplasmic

reticulum by eeyarestatin

compounds

This work is in preparation for submission as “Gamayun I, Klein MC, Lee PH,
Nguyen D, Flitsch SL, Whitehead R, Swanton E, High S, Helms V, Zimmermann R,
Cavalié A. Enhancement of Sec61-mediated Ca2+ leakage from endoplas-
mic reticulum by eeyarestatin compounds”. My contribution in this work is
conducting all docking experiments. Only my computational results are presented
in the following. They are accompanied by an extensive experimental part that is
not shown here.

5.1 Background and Motivation

Calcium ions (Ca2+) play important roles in many physiological and biological pro-
cesses of the cell such as signal transduction, cofactor of enzymes, bone formation,
etc. Therefore, calcium levels are tightly regulated, especially in mammals, by Ca2+

channels/transporters which can allow calcium entry or removal from the cell or
cellular compartments. Sec61 complexes are not only vital components in protein
biogenesis, they also operate as permeable Ca2+ ion channels in ER membrane [128].
Under normal conditions, the Ca2+ concentration is maintained at a low level (0.05–
0.1µM) by the control of two types of pumps: SERCAs (Sarcoplasmic Endoplasmic
Reticulum Calcium ATPases) and PMCAs (Plasma Membrane Calcium ATPases).
Meanwhile, the Ca2+ concentration inside the ER is high (100–800µM). However,
due to a constant Ca2+ leakage from the ER, this distribution is always under pres-
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sure. This leakage is supposed to relieve the stress for ER when the Ca2+ concen-
tration is too high, hence, inducing calcium signal transduction [129]. In Sec61α,
the lateral gate, which is composed of transmembrane helices 2 (position 77 to 96),
3 (118 to 138), 7 (289 to 309) and 8 (355 to 375), is believed to be responsible for
the insertion of transmembrane domains into the ER membrane [130]. Therefore, it
is possible that the open lateral gate is also responsible for Ca2+ leakage.

Eeyarestatin 1 (ES1) has been revealed as a potent inhibitor of ER Associated
protein Degradation (ERAD) and of protein translocation through ER by targeting
the Sec61 complex [131]. However, the inhibiting mechanism of ES1 is still unclear.
Additionally, because of the connection between Sec61 and Ca2+ leakage, the effect
of ES1 on the ER calcium homeostasis is also in question. Several Ca2+ imaging
experiments have been conducted by our colleague, Igor Gamayun, to address this
question. By observing the changes of Ca2+ concentration inside ER and cytosol
under the effect of ES1 and its analogues (ES24, ES35 and ES47), the experiments
revealed that ES1 and ES24 weaken the ER calcium homeostasis by promoting Ca2+

leakage from the ER. On the other hand, ES35 did not show any effect while ES47
slightly inhibited the Ca2+ leakage. To be able to understand these effects at the
molecular level, we carried out several docking experiments between a human Sec61α
structure and eeyarestatin compounds. Additionally, in a study about inhibition
effects of eeyarestatin 1 against p97/VCP and ERAD, Wang et al. showed that
the nitrofuran-containing (NFC) group (Fig. 5.4) is responsible for the inhibitory
effects [132]. Therefore, NFC was also included in the docking experiments.

5.2 Materials and Methods

5.2.1 Preparation of 3D structures

Due to the unavailability X-ray structure of human Sec61α in the open state, homol-
ogy modelling was used to construct a comparative human Sec61α structure. The
materials for homology modelling consisted of:

• the human Sec61α protein sequence

• the template 3D structure of a homologous protein

The sequence of the human Sec61α protein, which contains 476 amino acids,
was retrieved from the UniProtKB database (UniProt ID: P61619). As template
structure, the crystal structure 3JC2 [99] of canine Sec61α in an open conformation
was selected since both human and canine sequences share 99.8% sequence identity.

The 3JC2 structure shows Sec61α in an open conformation but is lacking struc-
tural information for the helical plug region (residue 63 to 69). Since in the open
conformation, the plug is believed to be out of the way of the translocation pathway,
we assumed that it does not form relevant interactions with the substrates.
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Homology modelling was carried out using the MODELLER 9.17 package [133].
The plug region was modelled and optimised as a loop structure. Subsequently, the
homology model was subjected to energy minimisation, using the NAMD package,
to relax side chain atoms. Afterwards, the resulting model was validated by the
ProSa-web server [134], along with other reference structures.

The 3D structures of eeyarestatin compounds (Fig. 5.1) were generated by the
Open Babel package [135].

(a) Eeyarestatin 1 (b) Eeyarestatin 24

(c) Eeyarestatin 35 (d) Eeyarestatin 47

Figure 5.1: Chemical structure of eeyarestatin compounds.

5.2.2 Docking protocols

The protonation states of protein residues and partial charges of ligands were as-
signed by the prepare receptor and prepare ligand modules of the AutoDock4
package [67]. Because the binding positions of eeyarestatin inside Sec61α are still
unknown, for each compound, the docking calculations were performed in two con-
secutive steps:

1. In the first docking step, we adopted a relatively large grid box (Fig. 5.2, black
box), covering the entire cavity of Sec61, to scan for energetically favourable
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conformations of the ligand inside the Sec61 pocket. The Lamarckian genetic
algorithm was used for the optimisation of the ligand conformations and ori-
entations (2.5× 106 energy evaluations and 27× 103 generations).

2. In the second docking step, the size of the grid box (Fig. 5.2, red box) was
scaled down based on the population of the most stable binding positions of
the ligand in the first run. In the second, finer run, more stringent parameters
(100× 106 energy evaluations and 0.5× 106 generations) were used.

Figure 5.2: Docking grid boxes, for coarse docking (black) and fine docking (red)

When the docking calculations finished, the results were visually inspected and
Sec61α-ligand interactions were visualised by LigPlot+ program [91].

5.3 Results and Discussion

5.3.1 Homology model

The resulting homology model of human Sec61α is depicted in Fig. 5.3a. At first,
we wondered how well the MODELLER protocol works for a transmembrane pro-
tein. The analysis of the homology model and other reference structures (two canine
Sec61α structures, a GPCR and an ABC transporter) from ProSa-web showed that
the Z-score of the homology model is within the range of scores typically found in
experimentally determined structures of protein chains (Fig. 5.3b). In other words,
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the structural integrity of the homology model is comparable to the experimen-
tal 3D structures, thus, the model appears of suitable quality for further docking
experiments.

(a) Human Sec61α homology model (b) Model validation

Figure 5.3: (a) Side view of the hSec61α model seen from the lateral gate that is

formed by the coloured transmembrane helices 2, 3, 7 and 8. The helical plug of

Sec61 is coloured green. The dashed line depicts the putative position of the ER

membrane. (b) Model validation using the ProSa-web server. The blue and light-

blue points represent the Z-scores of experimental protein structures (mostly soluble

proteins) while the black dots depict the Z-scores of 5A6U, 3JC2, 3P0G (GPCR),

3G5U (ABC transporter) and the human Sec61α model.

5.3.2 Docking results

Eeyarestatin 1 (ES1)

The binding pose with highest predicted affinity (estimated ∆G = −9.7 kcal/mol)
of ES1 inside the Sec61α cavity is shown in Fig. 5.4. In this conformation, ES1 forms
2 hydrogen bonds with K171 and G174 (the region at the end of H4 and loop con-
necting H4–H5) and is located inside the pocket facing towards the cytosol. In this
conformation, ES1 does not seem to have any interaction/hindrance to the gate he-
lices. However, in a slightly less favorable docking position (∆G = −9.62 kcal/mol),
the nitrofuran group of ES1 does interact with H7 and H8 at T286 and S376, re-
spectively, and is slightly shifted towards the area between H2 and H7 (Fig. 5.4c),
which could hamper the gate closure, hence, promoting the Ca2+ leakage.

75



5.3. RESULTS AND DISCUSSION

(a) ES1 binding position (side view) (b) ES1–Sec61α interactions

(c) Different poses of ES1

Figure 5.4: The predicted binding position of ES1 with the best score inside the

human Sec61α homology model. The lateral gate helices and the plug are coloured

as in Fig. 5.3a. The surface of ES1 is marked in magenta. All residues (K171,

G174) which form hydrogen bonds with ES1 and ES1 itself are illustrated in Licorice

model. (a) The binding pose in side view perspective towards the lateral gate.

(b) ES1–Sec61α interactions illustrated by the LigPlot+ program. (c) Different

docking positions of ES1: the red pose is equivalent to that shown in (a). It has

∆G = −9.7 kcal/mol. The green pose has ∆G = −9.62 kcal/mol.
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Eeyarestatin 24 (ES24)

The most favourable docking position of ES24 has an estimated binding energy of
−9.04 kcal/mol, and forms 3 hydrogen bonds with K282, T286 and N288 at the
N-terminal end of H7 (Fig. 5.5b). Compared to ES1, the aromatic group of ES24
is placed in the same area as the nitrofuran group of ES1, and is surrounded by
H2, H7 and H8, which could potentially hamper the closure of the lateral gate. The
aromatic group stays in similar positions in two other less favourable docking poses
of ES24 (Fig. 5.5c).

Eeyarestatin 35 (ES35)

The best pose of ES35 (with ∆G = −7.91 kcal/mol) forms 4 hydrogen bonds with
Y279, K282, Y285 and T286, in the loop region upstream of H7 (Fig. 5.6a). This
binding position is further away from the gate compared to ES1 and ES24. However,
alternative docking positions of ES35 (Fig. 5.6c) occupy the area between H2 and
H7, which could hinder the function of the gate. Especially, the binding position
with ∆G = −7.78 kcal/mol, forms 2 hydrogen bonds with V85 and I289, and may
have the potential to keep the gate open.

Eeyarestatin 47 (ES47)

The best pose of ES47 (∆G = −9.67 kcal/mol) forms 2 hydrogen bonds with K282,
Q456 and does not seem to interfere with the gate activity (Fig. 5.7a). Another less
favourable docking pose (∆G = −8.12 kcal/mol) is slightly shifted towards the area
between H2 and H7 but does not form any hydrogen bonds with Sec61α.

Nitrofuran–containing group (NFC)

Of all the docking poses of NFC, only one pose is located in the area between
the lateral gates helices. This is in fact the most favourable binding position with
∆G = −5.69 kcal/mol (Fig. 5.8c). In this case, NFC occupies a very similar area
as E24 (Fig. 5.8d).

5.3.3 Interpretation

Overall, the molecular docking can be reasonably well correlated with the experi-
mental findings on calcium leakage via Sec61α protein (ES1 and ES24 promote the
leakage whereas E35 and E47 do not):

• ES1: although the most favourable binding pose does not quite hamper the
gate mechanism, an alternative, slightly less favourable pose (only 0.08 kcal/mol
difference) sits between the gate helices, hence, restricts the gate movement.
Surprisingly, the nitrofuran group in this conformation occupies a similar area
as ES24 and NFC (Fig. 5.9a).
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(a) ES24 binding position (side view) (b) ES24–Sec61α interactions

(c) Different poses of ES24

Figure 5.5: The predicted binding position of ES24 with the best score inside the

human Sec61α homology model. The lateral gate helices and the plug are coloured

as in Fig. 5.3a. The surface of ES24 is marked in magenta. All residues (K282,

T286, N288) which form hydrogen bonds with ES24 and ES24 itself are illustrated

in Licorice model. (a) The binding pose in side view perspective towards the lateral

gate. (b) ES24–Sec61α interactions illustrated by the LigPlot+ program. (c) Differ-

ent docking positions of ES24: red - ∆G = −9.04 kcal/mol, equivalent to the pose

shown in (a); green - ∆G = −8.29 kcal/mol; yellow - ∆G = −7.55 kcal/mol.

78



5.3. RESULTS AND DISCUSSION

(a) ES35 binding position (side view) (b) ES35–Sec61α interactions

(c) Different poses of ES35

Figure 5.6: The predicted binding position of ES35 with the best score inside the

human Sec61α homology model. The lateral gate helices and the plug are coloured

as in Fig. 5.3a. The surface of ES35 is marked in magenta. All residues (Y279,

K282, Y285, T286) which form hydrogen bonds with ES35 and ES35 itself are illus-

trated in Licorice model. (a) The binding pose in side view perspective towards the

lateral gate. (b) ES35–Sec61α interactions illustrated by the LigPlot+ program. (c)

Different docking positions of ES35: red - ∆G = −7.91 kcal/mol, equivalent to the

pose shown in (a); green - ∆G = −7.78 kcal/mol; yellow - ∆G = −7.24 kcal/mol;

purple - ∆G = −6.78 kcal/mol.
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(a) ES47 binding position (side view) (b) ES47–Sec61α interactions

(c) Different poses of ES47

Figure 5.7: The predicted binding position of ES47 with the best score inside the

human Sec61α homology model. The lateral gate helices and the plug are coloured as

in Fig. 5.3a. The surface of ES47 is marked in magenta. All residues (K282, Q456)

which form hydrogen bonds with ES47 and ES47 itself are illustrated in Licorice

model. (a) The binding pose in side view perspective towards the lateral gate. (b)

ES47–Sec61α interactions illustrated by the LigPlot+ program. (c) Different docking

positions of ES47: red - ∆G = −9.67 kcal/mol, equivalent to the pose shown in (a);

green - ∆G = −8.12 kcal/mol.
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(a) NFC binding position (side view) (b) NFC–Sec61α interactions

(c) Different poses of NFC (d) NFC and E24

Figure 5.8: The predicted binding position of NFC with the best score inside the

human Sec61α homology model. The lateral gate helices and the plug are coloured

as in Fig. 5.3a. The surface of NFC is marked in magenta. All residues (N288, I289,

S376) which form hydrogen bonds with NFC and NFC itself are illustrated in Licorice

model. (a) The binding pose in side view perspective towards the lateral gate. (b)

NFC–Sec61α interactions illustrated by the LigPlot+ program. (c) Different docking

positions of NFC: red - ∆G = −5.69 kcal/mol, equivalent to the pose shown in (a);

green - ∆G = −5.45 kcal/mol; yellow - ∆G = −5.44 kcal/mol. (d) Docking poses

of NFC (red) and ES24 (blue)
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• ES24: most of the top docking poses of ES24 stay in the area between the
lateral gate helices.

• ES35: the best docking pose is consistent with leakage data. The other, less
favourable conformations seem to suggest that ES35 supports the calcium leak-
age by hindering the gate movement. But one has to note that the estimated
binding energy of ES35 is quite low compared to the other compounds.

• ES47: the docking result suggests that ES47 should not hamper lateral gate
movement: the best docking pose does not seem to affect the gate. The alter-
native docking pose is located between the gate helices but this conformation
is not stabilised by hydrogen bonds between ES47 and protein.

Additionally, we carried out a distance analysis of the best docking position of
the compounds to the shortest distance between H2 and H7 (Fig. 5.9b and Tab.
5.1). This analysis showed that E35 and E47 are located further away from the
gate compared to the rest, hence, the inhibitory effect is possibly decreased, which
is consistent with the result of Ca2+ imaging experiments.

(a) (b)

Figure 5.9: (a) Best docking poses of ES1 (green), ES24 (blue) and NFC (red).

(b) The shortest distance between H2 and H7 is illustrated by the green triangle

(composed of the Cα of T86, L89 and P290), the red sphere illustrates the center of

mass of the triangle.
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Table 5.1: Distance of the compounds to the red sphere marking the shortest distance

between H2 and H7 (Fig. 5.9b). The distances from the red sphere to the center of

mass and to the closest atom of the compounds are evaluated.

Compound Center of mass (Å) Closest atom (Å)

ES1 9.98 6.23

ES24 9.87 6.08

ES35 15.06 11.74

ES47 10.92 7.41

NFC 8.65 6.80

5.4 Summary

In this project, we applied molecular docking using AutoDock to investigate the
binding modes of several eeyarestatin compounds inside the homology model of
human Sec61α. From the docking results, we postulate that ES1 and ES24 can
potentially block the lateral gate function since docking predicted that they bind
between the H2 and H7 helices of the gate. As a consequence, they keep the gate
open as long as they bind in that position, hence, promoting Ca2+ leakage via
Sec61α. On the other hand, ES35 and ES47 were located further away (compared
to ES1 and ES24) from the gate. Therefore, they likely do not block the gate
and they do not stimulate Ca2+ leakage. These findings from the docking results
are consistent with the results from the calcium imaging experiments which were
conducted by our colleagues. In short, the results from the docking experiments
provided new mechanistic insight how the eeyarestatin compounds may bind to the
human Sec61α protein.
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Chapter 6

Conclusions

This thesis presents results from three different projects that aim at characterising
functional properties of membrane transport systems and of their interaction with
substrates and inhibitors. Chapter 3 on the MdfA transporter addresses an experi-
mentally well characterised transporter. Chapter 4 and 5 address the human Sec61
translocation and accessory proteins (chapter 4). In all cases, the computational
techniques provided new mechanistic insight (chapter 3 and 5) or were of integral
importance for analysis of the primary data (chapter 4).

In chapter 3, we presented a novel method for MdfA substrate classification.
The method incorporates protein-ligand interactions as well as various potential en-
ergy terms from multiple MD simulations. Overall, the method achieved a decent
performance with 73.12% in accuracy although the approach still has unsolved is-
sues with problematic cases, which is due to the similarity in chemical structure
among substrates and non-substrates. However, this is a challenging problem since
structurally similar compounds behave indistinguishably inside the Sec61α pocket,
at least on the timescale of 100 ns. The presented approach is the first method in
substrate classification that integrates the structural interactions and potential en-
ergies of protein-ligand complexes by running multiple MD simulations. Therefore,
this method could potentially promote further developments in drug discovery and
other applications.

In chapter 4, we successfully identified Sec61α and TRAP dependent proteins
from MS proteomics data. Furthermore, we also characterised TRAP clients to help
unravel TRAP function. Through our studies, we discovered that TRAP clients SP
have a tendency of low hydrophobicity and higher-than-average GP content. Based
on those observations, we have proposed that TRAP may be responsible for helping
the proteins that have SP with high GP content and less hydrophobicity to migrate
easily through the Sec61α channel.

In chapter 5, we suggested several binding modes of various eeyarestatin com-
pounds into a homology model of human Sec61α. By inspecting, analysing and
comparing binding positions of eeyarestatin compounds, we proposed that ES1 and
ES24 are likely to hamper the function of the lateral gate by sitting in between H2
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and H7, which are the “doors” of the lateral gate, hence, promoting Ca2+ leakage by
Sec61α. This observation is consistent with the findings from the calcium imaging
experiments which were conducted by our colleagues.
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