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Zusammenfassung

Chair of Software Engineering and Compiler Design Lab

Department of Computer Science

Dissertation

Efficient Runtime Systems for Speculative Parallelization

by Clemens Hammacher

Manuelle Parallelisierung ist zeitaufwändig und fehleranfällig. Au-

tomatische Parallelisierung andererseits findet häufig nur einen Bruch-

teil der verfügbaren Parallelität. Mithilfe von Spekulation kann je-

doch auch für komplexere Programme ein Großteil der Parallelität

ausgenutzt werden. Spekulativ parallelisierte Programme benötigen

zur Ausführung immer ein Laufzeitsystem, um die spekulativen An-

nahmen abzusichern und für den Fall des Nichtzutreffens die korrekte

Ausführungssemantik sicherzustellen. Solche Laufzeitsysteme sollen

die Ausführungszeit des parallelen Programms so wenig wie möglich

beeinflussen. In dieser Arbeit untersuchen wir, inwiefern aktuelle Sys-

teme, die Speicherzugriffe explizit und in Software beobachten, diese

Anforderung erfüllen, und stellen Änderungen vor, die die Laufzeit

massiv verbessern. Außerdem entwerfen wir zwei neue Systeme, die

mithilfe von virtueller Speicherverwaltung das Programm indirekt

beobachten und dadurch eine deutlich geringere Auswirkung auf die

Laufzeit haben. Eines der vorgestellten Systeme ist mittels eines

Moduls direkt in den Linux-Betriebssystemkern integriert und bietet
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so die bestmögliche Effizienz. Darüber hinaus bietet es weitreichen-

dere Sicherheitsgarantien als alle bisherigen Techniken, indem sogar

Systemaufrufe zum Beispiel zur Datei Ein- und Ausgabe in der speku-

lativen Isolation mit eingeschlossen sind. Wir zeigen an einer Reihe

von Benchmarks die Überlegenheit unserer Spekulationssyteme über

den derzeitigen Stand der Technik. Sämtliche unserer Erweiterungen

und Neuentwicklungen stehen als open source zur freien Verfügung.

Diese Arbeit ist in englischer Sprache verfasst.
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Manual parallelization is time consuming and error-prone. Automatic

parallelization on the other hand is often unable to extract substantial

parallelism. Using speculation, however, most of the parallelism can

be exploited even of complex programs. Speculatively parallelized

programs always need a runtime system during execution in order to

ensure the validity of the speculative assumptions, and to ensure the

correct semantics even in the case of misspeculation. These runtime

systems should influence the execution time of the parallel program

as little as possible. In this thesis, we investigate to which extend

state-of-the-art systems which track memory accesses explicitly in

software fulfill this requirement. We describe and implement changes

which improve their performance substantially. We also design two

new systems utilizing virtual memory abstraction to track memory

changed implicitly, thus causing less overhead during execution. One

of the new systems is integrated into the Linux kernel as a kernel

module, providing the best possible performance. Furthermore it

provides stronger soundness guarantees than any state-of-the-art
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system by also capturing system calls, hence including for example

file I/O into speculative isolation. In a number of benchmarks we

show the performance improvements of our virtual memory based

systems over the state of the art. All our extensions and newly

developed speculation systems are made available as open source.
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Chapter 1

Introduction

The increase in the density of integrated circuits continues till today.

Since the beginning of the millennium, however, processor manufac-

turers struggle to translate this to increased clock speeds, and thus

increased single-thread performance. The limiting factor is mostly

power consumption: It increases exponentially with a linear increase

of frequency. Figure 1.1 shows that around the year 2000, power

consumption reached the critical level of 100 watts. Dissipating the

produced heat becomes increasingly difficult if this level is exceeded,

making such processor designs uneconomical. However, Figure 1.1

also shows that the number of transistors continues to grow exponen-

tially. This is because the size of the semiconductors—constituting

the transistors—can still be reduced, allowing Moore’s law to hold

true at least for the next couple of years1. These additional transistors

are used by processor vendors to place multiple processor cores on a

single die. From 2005 onwards we see an exponential growth of the

1The current manufacturing process uses 14 nm structures, with 10 nm tech-
nology being developed. At about 5 nm, the structures cannot be reduced any
further on silicon based dies due to increasing quantum tunneling effects.

1
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40 Years of Microprocessor Trend Data

Number of
Logical Cores

Frequency (MHz)
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(SpecINT x 103)
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(thousands)
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(Watts)

Figure 1.1: The number of transistors is growing exponentially
over the full time range, while frequency and power consumption
stopped increasing shortly after the year 2000. Instead, the number

of cores starts rising exponentially from that time on.
Original data up to the year 2010 collected and plotted by
M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Ham-
mond, and C. Batten. New plot and data collected for 2010–2015

by K. Rupp [93].

number of logical cores in a processor. This development, however,

shifts the burden to translate advances on the processor’s side into

increased software performance to the software developers.

In order to benefit from the computational power of multiple cores,

software needs to be parallelized. The traditional approach is manual

parallelization. It requires expert programmers that fully comprehend

the dependencies within the software that should be parallelized, and

are able to introduce the right set of synchronization mechanisms

to still guarantee correctness of the program while exposing the

maximum amount of parallelism. As manual parallelization is a
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tedious and error-prone task, and the resulting program is fragile

with respect to later changes of the code, it is only done for specific

and important software. Nowadays the majority of software still

executes single-threaded.

The alternative to manual parallelization is automatic parallelization.

It does not require the skill set and investment of time of manual par-

allelization. Instead, the traditionally developed sequential program

is analyzed and automatically transformed into a parallel program.

Over the last decades, many approaches have been presented which

are able to handle different classes of programs. All these paral-

lelization schemes, however, necessitate precise information about

dependences in the code. Such dependence analysis is successful

for computation kernels with regular memory access patterns, as

they often occur in scientific or mathematical computations. If pro-

grams get bigger, the picture changes. Dynamic data structures built

around pointers often pose hard to solve problems for static analyses.

In those cases, dependence analyses typically overapproximate and

detect a potential dependence. As modern programs use many of

such dynamic data structures, traditional automatic parallelization

approaches fail to find a substantial amount of parallelism there.

Speculation is a technique that allows to parallelize such programs

anyway. By making optimistic assumptions—e.g. assuming that a

potential dependence will not manifest at runtime—parallel code

can be generated. The execution of speculatively parallelized code

is not guaranteed to succeed at runtime, however. If one of the

optimistic assumptions does not hold, the program might produce

wrong output or might even crash. Hence, a runtime system is needed

to guard the execution against such misspeculations, and bring it
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back to a safe and correct execution state. This thesis investigates

and improves the state of the art in software-only runtime systems

for speculative parallelization, and argues that such systems are often

insufficient for automatic speculative parallelization. We then present

novel approaches that use facilities of the operating system and the

underlying hardware, and show that using these systems, automatic

speculative parallelization often provides great speedups. Our main

contributions are as follows:

• We apply implicit memory tracking in the form of software

transactional memory (STM) to the problem of automatic spec-

ulative parallelization. We identify the main sources of overhead

and propose and implement different solutions. We show that

these changes reduce the overhead by orders of magnitude.

• We describe a virtual-memory based runtime system for spec-

ulative execution along the lines of previously published ap-

proaches. We evaluate its performance on several real-world

programs and demonstrate an enormous performance benefit

compared to STM.

• We further improve both performance as well as the isolation

guarantees of the virtual-memory based system by implementing

the main functionality directly in the Linux kernel. This is the

first work describing such an implementation. In the evaluation,

we demonstrate a further significant performance gain.

• We describe a novel approach to address the problem of coarse

granularity of virtual-memory based systems. By instrumenting

the program and keeping minimal metadata about the mem-

ory operation of the program, the granularity can be chosen
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arbitrarily down to individual bytes. We show that this can be

done with moderate overhead.

• We make all systems developed in this thesis available as open

source.

1.1 Thesis Organization

The thesis is organized as follows:

• After introduction and clarification of general terms in Chap-

ter 1, we review the state of the art in automatic paralleliza-

tion in general, speculative parallelization, as well as runtime

systems for speculative execution in Chapter 2.

• In Chapter 3, we introduce the Sambamba framework we de-

veloped to integrate the different approaches developed in this

thesis and automatic parallelization approaches by my colleague

Kevin Streit.

• Chapter 4 applies the state of the art software transactional

memory system TinySTM to the problem of speculative paral-

lelization, and shows how to improve the performance substan-

tially.

• In Chapter 5 we introduce our U-TLS system, which imple-

ments a virtual-memory based runtime system for speculative

parallelization in user space.

• Chapter 6 shows how to transfer the same concepts to the kernel

space, and evaluates the performance gain of this system called
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K-TLS. In Section 6.2, we supplement K-TLS with instrumen-

tation for variable granularities and evaluate the performance

impact of this addition. We call this system K-TLS+.

• Finally, Section 7 concludes this thesis and lists ideas for future

work.

1.2 Terminology

As different authors in the literature use different names for the

same concepts, and sometimes mean different concepts by a specific

term, we clarify the vocabulary used in this thesis in the following

compilation of general terms related to speculative parallelization.

Parallelization. Parallelizing a piece of software means preparing

it for parallel execution. There is a variety of approaches for

parallelization. It can either be done statically (at or before

compile-time), or dynamically (at run-time). In either case

it can optionally be speculative. All these cases are further

detailed below.

Static Parallelization. Parallelization is called static if it happens

before actually executing the program. It can either be per-

formed manually by a developer (potentially assisted by lan-

guage extensions, libraries or compiler hints), or by a compiler

which automatically determines appropriate code transforma-

tions and performs them at some stage during compilation.

Also in static parallelization, there might exist different paral-

lel variants of the same code, or also a sequential variant. If
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just the decision which of these variants to execute is made at

run-time, we still consider this static parallelization.

Static parallelization may also utilize profiling information gen-

erated at previous runs of the program.

Dynamic Parallelization. In dynamic parallelization, the deci-

sions where to parallelize as well as the generation of the par-

allel code happen at run-time. This means that a just in time

(JIT) compiler needs to be available to dynamically recom-

pile parallelized functions. Typically, profiling information or

other dynamic data is used to guide the dynamic parallelization

decisions.

All dynamic parallelization approaches that we are aware of are

automatic approaches.

Automatic Parallelization. As the name suggests, automatic par-

allelization is performed without involving interaction of a de-

veloper. Instead, static or dynamic parallelization analyses,

typically consisting of points-to, alias or shape analyses, are

used to find parallelizable locations in the program.

Speculative Parallelization. The parallelization of a specific code

region is called speculative, if the soundness of its execution (with

regards to the sequential semantics) cannot be inferred before

actually starting the execution. This execution is then also

called speculative. The sequential semantics might be violated

with respect to the memory effects, i.e. the modifications to

the virtual memory performed by the code, termination effects

(non-termination or abortion), or other side effects like system

calls executed, for example due to I/O effects.
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In order to still provide soundness guarantees when execut-

ing speculatively parallelized code, runtime checks have to be

installed to determine misspeculations.

Thread Level Speculation (TLS). Speculative execution is any

execution that is performed without knowing whether the result

can or will be used afterwards. Modern processors for exam-

ple include instruction level parallelism (ILP): They fetch and

execute instructions in parallel or out-of-order in order to in-

crease the throughput. By speculatively executing instructions—

even memory instructions— without knowing yet whether they

should really be executed, the amount if ILP can be drastically

increased. This is mainly driven by branch prediction. Similarly,

TLS is used to extract parallelism at the thread level as opposed

to the instruction level by executing code either without know-

ing whether it would be executed in sequential execution, or

by ignoring data dependences and thus potentially producing

wrong results. Both of these techniques are described in the

following.

Control Flow Speculation. This form of speculation assumes that

certain branches will not be executed, hence it ignores all effects

of these blocks. The decision where to speculate can be based

on statistical execution frequencies, value profiles, or benefit

driven (e.g. speculate that blocks containing calls to the abort

function will not execute).

Detecting misspeculations of control flow speculation is cheap

and does not require collecting any further data. Whenever the

corresponding branch is taken, a misspeculation has happened.
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Memory Speculation. This is the kind of speculation we mostly

focus on. Memory speculation means to ignore possible memory

effects of parallelized code or to assume non-aliasing of parallel

memory accesses without being able to prove this beforehand.

The goal is to reduce the number of data dependencies between

speculative tasks.

Memory speculation always requires a sophisticated runtime

system which tracks the memory regions accessed within parallel

tasks, checks for overlaps and performs appropriate actions to

recover from misspeculation.

Memory Conflict. A memory conflict (also called memory viola-

tion) is reported by the runtime system if it determines that

the memory state produced by speculatively parallelized code

might not be correct, thus it is a special case of misspeculation.

In most cases, these checks are not precise, hence memory con-

flict must be overapproximated, leading to false conflicts being

reported.

A memory conflict generally occurs if a speculative task has

read a value from memory which was subsequently overwritten

by another task which commits first (a minor relaxation of the

Bernstein condition [5]). The detection of such conflicts can

happen eagerly during transactional read or write operations,

lazily (or delayed) during transactional commit, or concurrently

by another processing unit.

False Sharing / False Conflict. In memory speculation systems

(see above), most often memory is not tracked at the granularity

of individual bytes, but in larger chunks. For TLS systems,

this often is even the granularity of memory pages (4 kB on



10 Chapter 1. Introduction

most architectures). Hence disjoint objects in memory share

the same metadata which tracks accesses to this memory, if

they are located within the same memory block (defined by the

granularity). Since accesses to those disjoint memory regions

cannot be distinguished by the runtime system, memory con-

flicts have to be reported pessimistically whenever speculative

tasks compete for the same block. If a finer granularity had

resolved this memory conflict, we would call it false conflict,

because another tracking scheme would not have reported it.

Runtime System. A runtime system is a software library which is

available to the program under execution during its run-time,

but does not belong to the program itself. It is often triggered

by the executing program via callbacks (function calls into the

runtime system) placed in the executed code, but it can also

run concurrently to the executed program and interact with it

proactively.

Examples of runtime systems are just in time compilers, soft-

ware transactional memory or other speculation guarding sys-

tems.

Sequential Execution. Sequential (sometimes also called serial)

execution is the execution of code on one single thread, hence

it is the opposite of parallel execution. In some cases, also

parallelized code will be executed sequentially, for example if

speculative parallelization was detected to fail at run-time.

Speculative Task. A speculative task is the dynamic instantiation

of one piece of speculative work. In the context of parallelization,

speculative tasks are often optimistically executed in parallel
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to each other, while a runtime system or the code itself checks

for misspeculations. Each task will in the end either commit

its changes, i.e. merge it into the non-speculative state, or roll

back and re-execute either speculatively or non-speculatively.

Strong Atomicity vs. Weak Atomicity. A transactional mem-

ory guarantees that the effect of each transaction is either

seen completely by other tasks or not at all. This concept is

called atomicity. Also TLS systems want the individual tasks

to execute atomically. There are two degrees of atomicity: A

strongly atomic system guarantees atomicity with respect to all

tasks, independent of whether they are using the same runtime

system or not. Strong atomicity in general requires hardware

support or special operating system support in order to prevent

concurrent code from seeing partial updates during commit.

Software TM or TLS solutions typically provide weak atomicity

only, meaning that atomicity is only provided for other tasks

using the same runtime system. If all memory operations for

example are executed via the respective STM functions, then

tasks observing inconsistent state are detected and re-executed,

providing weak atomicity for all the committed tasks.

Single Global Lock (SGL) Semantics. This is the most simple

semantics for executing multiple critical sections in parallel

threads. The semantics is as if a single global lock would be

taken before entering a section, and released then leaving it.

This definition makes it very easy to reason about the semantics

of a parallel program, as race conditions are excluded and the

amount of nondeterminism is reduced significantly.
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(Ir-)Regular Data Structure. Regular data structures are data

structures with a well-defined shape in memory, like C-strings

and arrays. As those structures occupy contiguous bytes in

memory, they are typically easy to analyze statically.

Irregular data structures on the other hand are scattered over

the memory space (often in the heap) and connected via point-

ers. Since pointers to different objects might be placed in the

same memory, static analyses often have to overapproximate,

making accesses to disjoint parts of the irregular data struc-

ture undistinguishable. Those data structures therefore cause

problems for automatic parallelizers. If corresponding program

locations are to be parallelized anyway, memory speculation is

a resort.

1.3 Publications

This thesis builds on the following publications (in chronological

order):

• Thread-Level Speculation with Kernel Support. In Pro-

ceedings of the 25th International Conference on Compiler Con-

struction (CC), March 2016. Clemens Hammacher, Kevin Streit,

Andreas Zeller, and Sebastian Hack.

• Generalized Task Parallelism. In ACM Transactions on

Architecture and Code Optimization (TACO), Volume 12, Num-

ber 1, January 2015. Kevin Streit, Johannes Doerfert, Clemens

Hammacher, Andreas Zeller, and Sebastian Hack.
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• Sambamba: Runtime Adaptive Parallel Execution. In

Proceedings of the 3rd International Workshop on Adaptive Self-

Tuning Computing Systems (ADAPT), January 2013. Kevin

Streit, Clemens Hammacher, Andreas Zeller, and Sebastian

Hack.

• SPolly: Speculative Optimizations in the Polyhedral

Model. In Proceedings of the 3rd International Workshop on

Polyhedral Compilation Techniques (IMPACT), January 2013.

Johannes Doerfert, Clemens Hammacher, Kevin Streit, and

Sebastian Hack.

• Sambamba: A Runtime System for Online Adaptive

Parallelization. In Proceedings of the 21st International Con-

ference on Compiler Construction (CC), March 2012. Kevin

Streit, Clemens Hammacher, Andreas Zeller, and Sebastian

Hack.

• Profiling Java Programs for Parallelism. In Proceed-

ings of the ICSE Workshop on Multicore Software Engineering

(IWMSE), 2009. Clemens Hammacher, Kevin Streit, Sebastian

Hack, and Andreas Zeller.





Chapter 2

State of the Art

In this chapter we investigate the state of the art in the field of

speculative parallelization. To this end, we first review the most

prominent and also recent automatic parallelization approaches, and

then specifically focus on speculative parallelization and the runtime

systems used during the execution of the resulting programs.

2.1 Automatic Parallelization

As there have been decades of research on parallelization, we focus

on work which is relevant and related to the topic of this thesis. We

thus exclude any languages or language extensions for manual paral-

lelization, even if automatisms for extracting or enhancing parallelism

were presented (like e.g. Galois [57] or PetaBricks [3]). As we focus

on statically compiled languages, we also exclude previous work for

languages which are executed in an interpreter or virtual machine

(like e.g. Jrpm [18]).

15
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In automatic parallelization, an essential step is determining the data

dependencies and control dependencies within a program. In 1987,

Ferrante et al. [33] came up with the notion of a program dependence

graph (PDG) which encapsulates those dependencies and has since

then often been used as the basis for parallelization and other program

optimizations. If the nodes in the PDG carry information about the

actual operation to be performed, it fully describes the semantics of

a program, and can thus be used as an alternative representation.

Burke et al. [13] use the PDG to statically detect fork-join based

parallelism. In contrast to other authors they not only focus on loops,

but also detect parallelization opportunities in straight-line code. As

their output is a source-code program again, they describe a Fortran-

like target language featuring a DOALL construct for parallelizing

loops and the COBEGIN and COEND keywords for marking parallel

code sections. In order to remove some data dependencies they in-

clude a privatization analysis. Their parallelization algorithm works

by first marking everything to be parallel, and then handling each

data dependency by either privatizing the corresponding memory or

serializing the respective tasks. They also consider low-level synchro-

nization primitives to fulfill data dependencies between parallel tasks,

but decide against them for performance and simplicity reasons.

Sarkar [101] describes a quite similar system which also statically

generates structured parallelism from Fortran programs by parti-

tioning the PDG. In contrast to Burke et al., Sarkar allows for data

dependencies between parallel tasks and adds explicit synchronization

via the WAITING keyword. He also discusses the trade-off between

ideal parallelism exploiting all the parallelism in the program and

useful parallelism excluding certain non-profitable opportunities. His
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solution is the definition of a cost function containing overhead for

task spawning and synchronization, and also includes profile data

like loop frequencies and branch probabilities [102]. Based on this

objective function, he iteratively merges parallel tasks if this decreases

the predicted parallel execution time.

Saltz et al. [100] detect wavefront-parallelizable loops by using a

combination of static and dynamic analyses. They statically detect

so called start-time schedulable loops, for which the access pattern

does not depend on any values computed inside the loop. Then they

extract inspector code which assigns a wavefront number to each loop

iteration, such that each iteration only has dependencies to iterations

with smaller wavefront ids. They place code to execute the wavefronts

in increasing order, and parallelize the inner loop, which executes

all iterations within that wavefront. Overall, this builds a dynamic

variant of loop skewing.

In 1994, the SUIF compiler infrastructure [123] is presented. It

features its own intermediate representation (IR) and contains several

analyses and transformations, including a loop parallelizer. It is based

on an array dependence analysis, and optimizes for both parallelism

and locality. For code generation, it translates back to C code, which

is compiled by a traditional compiler and linked against a runtime

library featuring parallel execution. Hall et al. [38] later extend this

approach with a better parallelization analysis, including reduction

and privatization detection.

Still in 1994, Rauchwerger and Padua publish the first dynamic and

speculative parallelization approach, called the privatizing DOALL

test [87]. They statically extract inspector code from loops which
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determines whether there are any cross-iteration dependencies. If this

is the case at runtime, the loop is executed sequentially. Otherwise,

it is executed as a DOALL loop. They later extend this approach

to also detect partially parallel loops [85]. Based on the information

computed by the inspector code, the scheduler dynamically generates

an execution schedule, which is then executed by the executor code.

Their approach is also able to detect privatization and reduction

opportunities during inspection. The applicability, however, is limited:

In order to generate inspector code, the accessed memory locations

must be known before entering the loop. They mainly focus on

applications operating on one shared array, where only the subscripts

of the array accesses need to be recorded.

One year later, they come up with an improved scheme known as

the LRPD test [86]. It does not inspect the loop before executing

it, but rather speculatively executes it as a DOALL loop and at

the same time keeps track of the accessed memory locations (i.e.

array subscripts). Afterwards it checks whether the loop was in fact

fully parallel, and otherwise rolls back and re-executes sequentially.

The problem of restoring the non-speculative state, however, is not

addressed. They briefly discuss ideas how to solve this in software,

but in the evaluation they instrument all programs manually.

Another important model, which can also be used for parallelization

purposes, is the polytope model [29, 30, 76]. It describes a perfect

loop nest of depth k as a convex k-dimensional polytope, where each

integer point corresponds to one iteration of the innermost loop, and

its position determines the values of the iteration variables of the

surrounding loops. Also the dependencies between loop iterations are

described by polyhedra. This allows to model most of the classical
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loop transformations as affine transformations of these polyhedra. In

fact, the problem of optimally scheduling the execution of a polyhe-

dron subsumes most of these transformations. The scheduler often

tries to minimize an objective function over the polyhedra. This

way, also parallelization can be included in the output model of the

scheduler, and can thus be seen as an optimization problem in the

polytope model, as shown by Lengauer [60]. Beside generating max-

imum parallelization, the objective function can also include other

factors like locality in the memory accesses, or it can be restricted

by adding resource constraints. Also Feautrier explicitly describes

automatic parallelization in the polytope model [28] and provides a

nice summary of previous work. Others build on this work by also

integrating loop splitting [22] or porting it to modern concepts like

OpenMP-based parallelization [10].

Lim and Lam describe a similar system [62] which also maps iterations

of a loop nest to a new domain using affine expressions, subsuming

many existing loop transformations. In contrast to polyhedral tech-

niques, they explicitly focus on parallelization, and they also support

pipeline parallelism. Also, they do not overapproximate dependencies

by dependence vectors.

In 1999, Rugina and Rinard [91] approach the problem of inaccura-

cies in state-of-the-art points-to analyses when it comes to pointer

arithmetic and recursive algorithms. They generate a symbolic ex-

pression for each memory access, and propagate the expressions up

to the method start. Using a fixed-point analysis, they recursively

inline the expressions for called functions into the callee. They then

analyze whether the memory accesses of adjacent function calls are

disjoint, and parallelize independent function calls accordingly. The
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evaluation demonstrates that this approach can be used for many

classical divide-and-conquer algorithms like matrix multiplication or

mergesort.

Rus et al. in 2003 describe a hybrid static and dynamic analysis to

detect DOALL loops [95]: They statically construct the symbolic

dependence set for a loop, and either prove it empty statically, or

generate code to do the test dynamically when the actual input

values are known. In 2007, they improve the approach by statically

generating a disjunction of predicates which prove the dependence set

empty [94], and then generate code to check the predicates at runtime.

This improves the performance compared to the full emptiness check

they were performing before.

Bhowmik and Franklin [6] build on the SUIF platform [38, 123]

to create a speculative parallelization framework. They argue that

speculation is absolutely necessary in order to extract larger amounts

of thread-level parallelism from general-purpose applications. Using

profile information, they statically find the best spawn point for each

basic block and loop iteration. For the speculative execution they

assume hardware support for lightweight thread spawning, detecting

memory conflicts, and rollback. Even though they make optimistic

assumptions about the performance of such hardware extensions,

they also note that the thread formation is essential for guaranteeing

success. After all, already in 1986 Sarkar and Hennessy showed

that finding the optimal thread partitioning of a program is NP-

complete [103].

Another important work is decoupled software pipelining (DSWP),

as described by Rangan et al. in 2004 [84]. The original idea is a
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hardware extension which can be used for (manual) parallelization.

It allows to efficiently forward values from one thread to another in

a FIFO manner, and is designed to efficiently implement pipeline

parallelism. Parallel threads just issue produce and consume instruc-

tions annotated by an integer tag, where a consume returns the first

unused produced value with the same tag, or blocks until such a value

is produced by another thread. The proposed programming model

would be to split a loop into several pipeline stages where each stage

only has dependencies to previous stages or to itself. By explicitly

forwarding the values for each dependence, the sequential semantic is

preserved. Ottoni et al. [74] describe how to automatically generate

such parallel programs using static analyses and transformations.

Later extensions include support for multiple parallel instances of

individual pipeline stages in order to compensate unbalanced stages

and provide more parallelism [83]. Vachharajani et al. [117] add

speculation support, but it only allows for control-flow speculation

and assumes versioned memory for efficient rollbacks. Huang et al.

[50] propose to parallelize individual pipeline stages using other inde-

pendent parallelization techniques, and in other work propose to also

parallelize iterations of different loops [49]. Even though no paper

explicitly mentions this, later work like Parcae [82] suggests that

DSWP now also works without special hardware support. Parcae

itself, however, does not focus on parallelization, but on the automatic

platform-wide tuning of parallelization in order to maximize overall

throughput.

POSH [63], built on top of gcc, also assumes special hardware with

support for thread level speculation (TLS). Using profiling data, it

speculatively spawns loop iterations, loop continuations, function calls
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or their continuation before reaching their actual sequential execution

point. The assumption here is that the programmer gave enough

structure to the program by encapsulating independent computations

in subroutines or computing independent values in disjoint loop

iterations. Thus, no loop transformations or preprocessing on basic

block or instruction level is performed. If data dependencies are

not fulfilled at the time when a speculative task is spawned, value

prediction provides a probable input value.

Zhong et al. present another approach for speculative DOALL execu-

tion of loops [124]. They increase the amount of parallelism detected

by identifying privatization and reduction opportunities and specula-

tively apply loop fission and other transformations. Also, they ignore

long-distance cross-iteration data dependencies, as they are unlikely

to cause rollbacks at runtime. During execution, they assume full

hardware support for TLS, covering both the memory and register

values. Additionally, they assume a hardware network to efficiently

send register values between different cores.

In 2010, Vandierendonck et al. describe the Paralax [118] infrastruc-

ture, which aims to automatically parallelize irregular pointer- and

control-intensive C applications. As static analyses are not good

enough to precisely analyze such applications, they often have to

fall back to overapproximations. Therefore, a set of annotations is

proposed which can be used by the programmer to facilitate alias

analysis or dependence analysis. Using the information provided via

these annotations in combination with powerful analyses like the

data structure analysis (DSA) [59], the authors are able to extract a

substantial amount of pipeline parallelism from programs like bzip2

that were previously considered as hard to parallelize.
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Campanoni et al. provide an interesting new usage for sibling proces-

sors sharing the same first-level cache (as in hyper-threading on Intel

architectures). Their HELIX [16] system is a classic loop parallelizer

with explicit synchronization for control and data dependencies. They

noticed that processors often stall while waiting for a cache line which

was previously written by another core. This not only happens when

forwarding values between parallel tasks, but also when acquiring

a lock which was previously released by another core. In order to

reduce these stalls, they use the second (virtual) core for prefetching

values needed by the first core. This allows the first core to execute

the actual code much faster since the chances for the accessed data

to be present in the cache are increased. Later, they propose to

add an explicit hardware mechanism for implementing locks more

efficiently [15]. To that end, they propose an ISA extension with

signal and wait instructions and a ring architecture which proac-

tively forwards the state of locks to all other cores. This improves

performance especially for short-running parallel loop iterations.

2.2 Runtime Systems for Speculative Paral-

lelization

This thesis focuses on a specific kind of speculation, namely memory

speculation. This kind of speculation optimistically ignores certain

memory dependencies during parallelization (cf. Section 1.2). In

the presence of irregular data structures, it is often a key technique

for being able to extract any parallelism. This was discovered and

described in many publications by different authors during the last

decades (e.g. [6, 63, 110, 119]).



24 Chapter 2. State of the Art

Memory speculation, however, requires runtime support to dynami-

cally check the validity of the speculative execution. In order to detect

overlaps in the accessed memory locations, every access to potentially

shared memory needs to be tracked and compared against accesses by

concurrent tasks. There are several options for implementing these

runtime systems. The most important and most prominent options

are discussed in this section.

2.2.1 Software Transactional Memory

Even before the potential of thread-level speculation for automatic

parallelization was discovered in the late 1990s (e.g. [73, 110], see

Section 2.2.4), a quite similar concept was introduced as transactional

memory (TM) by Herlihy and Moss in 1993 [44]. It was designed

as an alternative to lock-based programming, which is known to

be prone to many kinds of errors, like priority inversion, where a

high-priority task has to wait for a lower-priority task which holds

a lock, convoying, where a task holding a lock is interrupted for a

longer time by a page fault or any system call, and hence other tasks

waiting for the lock cannot proceed either, and—probably most well

known—deadlocks, which happen if two tasks take the same locks in

different order.

Because of these problems, and also for efficiency reasons, researchers

proposed to use lock-free (or non-blocking) concurrent data struc-

tures [35, 42, 46, 58, 111]. These are often hard to implement using

the single word compare-and-swap (CAS) operation. TM provides the

same semantics as CAS, but on a much larger number of independent

memory locations. Therefore, one of its first uses was implementing
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lock-free concurrent data structures. In this setting, critical sections

are most often rather short, and just a few memory locations are

accessed. Therefore, the original design only features these short

critical sections.

Memory transactions are often compared to database transactions,

featuring the ACID properties: Atomicity guarantees that each trans-

action appears to either have executed completely, or not at all.

This is given for TM because each transaction either commits all

its changes, or it rolls back, discarding all changes to visible state.

In concurrent systems, atomicity also implies that no intermediate

state is observable at any time. Here, the literature differentiates

weak atomicity, where only concurrently executing speculative tasks

are not allowed to observe intermediate states, and strong atomicity

where this also extends to non-transactional code. The latter is hard

to achieve without hardware support, since multiple independent

memory locations cannot be written simultaneously in software. Con-

sistency defines the property that each transaction transfers the sys-

tem from one valid state to another valid state. In TM, this property

strongly depends on the semantics of the individual tasks: If they

are consistent under the single global lock semantics, however, TM

guarantees consistency, too. Isolation means that there exists a total

order in which the critical sections would have produced the same

outcome if executed sequentially. This feature requires atomicity, but

provides more guarantees. Especially, it requires the effects of all

transactions to be applied to the global state in the end. The durabil-

ity feature defines that state changes by committed transactions will

be persistent even in the case of hardware failures or other events. It

does not apply to TM since all changes remain in main memory.
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Even though it was designed as an alternative to lock-based parallel

programming, TM can also be used to implement thread level spec-

ulation (TLS) [66, 96, 97]. Since transactional memory in general

does not impose any ordering between transactions executing in par-

allel, special care has to be taken by the generated code to ensure

correctness. Some approaches require a TM system which provides a

global commit order, others establish a commit order themselves. In

the remainder of this section, we review the evolution and the state

of the art in TM implementations in software. The next section will

introduce hardware implementations and discuss their use for TLS.

After the introduction of the concept of transactional memory, Shavit

and Touitou describe and implement the first pure software imple-

mentation in 1995, since then called STM [106]. It already features

word-level conflict detection and hence can be used for any impera-

tive language—in contrast to all the approaches for object-oriented

languages, where transactional metadata can easily be stored in the

object header [40, 41, 90, 121, 122]. The authors provide proofs for

the correctness and the liveness of their implementation. However,

it is specialized to so called static transactions, where the full data

set the transaction operates on is known in advance, making it easy

to privatize and access speculative state. As an example application,

they implement a k-word compare-and-swap using their STM.

In 2003, Herlihy et al. describe the first dynamic STM implementation,

called DSTM [43]. It supports an arbitrary and unknown number

of objects to be accessed by each transaction. It is however still not

tailored towards automatic application by a compiler, since objects

accessed transactionally need to be accompanied by a TMObject

object with the same live range, making this system an object-based



2.2. Runtime Systems for Speculative Parallelization 27

STM system. If transactions work on irregular data structures like

trees or linked lists, these data structures need to be changed to also

include the TMObject objects.

In 2006—after the rise of multi-core processors—several new designs

and implementations were proposed: Saha et al. present McRT-

STM [99], a dynamic word-based STM implementation which is

executed inside the Multi-Core RunTime (McRT) environment. In

contrast to DSTM, transactional metadata is not stored within indi-

vidual objects, but in a global data structure indexed by the cache-

line address of the accessed object. This allows for a straight-forward

code instrumentation via a compiler, but raises other issues like false

sharing, leading to false conflicts. McRT-STM allows for different

STM configurations: In the reader locking configuration, each mem-

ory location is associated with a reader-writer lock, which is taken on

each transactional access. In read versioning on the other hand, no

locks are taken on reading accesses, instead the read version number

is recorded and compared against the current state on commit. A

second choice is write buffering, where speculative changes are stored

in private memory and only written back during commit, versus undo

logging, where changes are written to main memory directly and

the original value is kept in private memory for restoring it during

rollback. For different applications different configurations perform

best, depending on the access patterns of the speculative tasks, but

also on the execution platform. In their evaluation, read versioning

and undo logging performed best. However, McRT-STM leverages

the scheduler of the McRT system to increase performance and avoid

deadlocks, so it can only be used within that system. McRT-STM

also provides object-based conflict detection like the other approaches
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mentioned before, but in a statically compiled language, which is not

strictly object-oriented. This is achieved by modifying the McRT

internal memory allocator, so it is only applicable to objects on the

heap, and only works within the McRT execution environment.

Still in 2006, Riegel et al. [89] as well as Dice et al. [24] introduce

the concept of a global version-clock (or timestamp) to efficiently re-

validate the read set and to detect read-after-write (RAW) violations

(missing an update from an already committed transaction). Just

as Saha et al., they are using a single global array of locks for write

locking and storing version numbers. For assigning locks to memory

stripes, they generally use simple hash functions.

Dice et al. [24] implement these techniques in their Transactional

Locking II (TL2) system, which since then serves as a reference

implementation that many follow-up approaches compare against. In

contrast to Saha et al. (see above), they are using write-buffering and

commit-time locking. Write-buffering simplifies the rollback process,

but introduces overhead at each memory load, since the write-log

has to be searched for an entry before reading from main memory.

Commit-time locking again reduces the rollback cost and ensures that

write locks are held as shortly as possible, but delays the detection

of memory conflicts and requires to re-validate the read set after

acquiring all write locks.

Riegel et al. [89] call their approach Lazy Snapshot Algorithm (LSA)

and provide an implementation called TinySTM [31, 32]. They use a

global timestamp to establish a validity range for each transaction.

This range is narrowed on a memory read which is younger (i.e. larger

version number) than the start of the range. Once the validity range
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becomes empty, the read-log is re-validated to make sure that the

transaction operates on any valid “memory snapshot” (hence the name

LSA). TinySTM can be configured for either undo-logging or write-

buffering (also called write-through and write-back), and commit-time

or encounter-time locking1. In the performance evaluation, TinySTM

outperforms TL2 in all configurations, especially if the benchmark

shows high contention rates. This is because encounter-time locking

detects memory conflicts earlier and thus avoids useless work.

In 2007, Wang et al. [120] extend McRT-STM by a timestamp mech-

anism similar to that of TL2, and introduce language constructs for

using STM in C and C++ programs. They also describe the compiler

transformations and optimizations to generate efficient transactional

programs.

In 2009, Mehrara et al. propose the STMlite system [66], which is the

first STM system specifically targeted at automatic parallelization,

in this case focusing on loops only. They use a central commit unit

called transaction commit manager (TCM), which checks for conflicts

between transactions. Additionally, each transaction stores read- and

write-signatures similar to bloom filters [8], but—in contrast to earlier

proposals [17]—implemented entirely in software. Those signatures

are then also transferred to the TCM for conflict detection. This

ensures fast transactional reads and writes, since only thread-local

data structures are updated. In return, one single processing unit—

the TCM—has to do all conflict checking, which might become a

bottleneck. STMlite uses lazy updates (write-back) in combination

with lazy conflict detection (at commit time). This adds the risk of

1Commit-time locking was added to TinySTM after the papers [31, 32] were
published.



30 Chapter 2. State of the Art

“zombie transactions”, which are defeated by periodically checking

the incomplete read- and write-signatures for conflicts with already

committed transactions.

Even though STMlite specifically targets automatically parallelized

programs, the specific requirements that those applications pose to

STMs are not further investigated. In the evaluation, they use the

standard STAMP [80] benchmark suite and several smaller applica-

tions from different domains, but it remains unclear how STMlite

would perform on larger programs.

In the same year, Dragojević et al. present another word-based STM

implementation called SwissTM [27]. It was designed with a focus

on good performance on a broad range of atomic sections, especially

long running ones. The authors claim that especially non-expert

programmers and automatically parallelizing compilers might produce

those large transactions. Similarly to TL2 and TinySTM, SwissTM

uses a global lock table of fixed size to resolve read-after-write and

write-after-write conflicts. Beside the usual STAMP benchmarks,

the authors also evaluate SwissTM on Lee-TM [2], STMBench7 [37]

and a red-black tree implementation. In these benchmarks, SwissTM

performs better than any other tested STM system.

In 2010, Dalessandro et al. publish about an STM design without any

ownership records (like for example locks), which are typically used in

STM systems for tagging which transaction holds speculative writes

on specific memory locations. The proposed NOrec [21] system instead

validates the entire read set after each commit of any concurrent

transaction, using value-based validation. They later extend their

system [20] to also include hardware transactions utilizing the HTM
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features of Sun’s prototype Rock processor, and AMD’s proposed

advanced synchronization features (ASF).

In the same year, Gottschlich et al. develop another implementation

called InvalSTM [36]. Instead of validating the read set before com-

mitting, they use the opposite approach of invalidating concurrently

executing transactions before committing any transaction. They

use bloom filters to store the read and write sets, which enables

efficient lookup and intersection. This approach is later extended by

incorporating hardware transactions by Calciu et al. [14]. By some

modifications to the STM system and careful design of the hardware

transactions utilizing Intel’s RTM technology, they allow for concur-

rent execution of hardware transactions and software transactions

based on InvalSTM. Transactions are first executed in the HTM

setting, and if this fails repeatedly, the STM is used as a fallback.

The STM2 implementation by Kestor et al. [54] uses simultaneous

multithreading to hide some of the STM overhead by offloading it to

a sibling hardware thread. The main thread still manages the write

set, because it needs to be traversed at each speculative read, but the

validation of values read from main memory and acquiring ownership

for written memory locations is performed by the sibling thread. Both

are connected via a lock-free queue. Since both threads are pinned to

neighbouring cores, they are likely to share most cache levels, such

that communication is cheap. The evaluation shows that by removing

part of the TM validation work from the application threads, STM2

outperforms traditional STM systems for many applications.

Most STM systems do not discuss the problem of commit ordering,

because it is not relevant for the targeted uses. Note that lock-based
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synchronization does also not enforce any specific ordering. When-

ever STM systems are used for speculative parallelization though,

commit ordering becomes an issue ([23, 97]). It is often not solved

by modifying the STM system itself, but by waiting for a certain

program state before allowing a transaction to commit. This can by

achieved by placing additional synchronization code just before each

commit point.

2.2.2 Hardware Transactional Memory

Instead of implementing transactional memory in software, several

designs for hardware-supported execution have been proposed. Al-

ready the initial description of the concept of transactional memory

by Herlihy and Moss [44] suggests an implementation entirely in

hardware. This is achieved by adding an additional first-level trans-

actional cache, where each cache line is tagged with one of four trans-

actional tags. Both caches (regular and transactional) are exclusive.

Additional memory instructions are added for loading and storing

memory transactionally. Each execution of one of these instructions

automatically starts a transaction if none is executing yet. Separate

instructions are provided for querying the current transaction status,

aborting the transaction, or committing changes to main memory.

Since all caches snoop on the memory bus, the state of the cache

lines is updated whenever any processor core touches the same lines.

Memory conflicts are hence detected eagerly at no additional cost;

however, it is up to the software to check the transactional state

frequently enough to detect conflicts and re-execute accordingly.

Rajwar and Goodman propose an approach called Transactional
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Lock Removal [79], which executes traditional lock-based parallel

programs in a hardware transactional memory system via a technique

called Speculative Lock Elision (SLE) [78]. By eliminating a lock

and instead treating it as the defining scope of a transaction, they

transparently transform a program into a non-blocking speculative

program. By serializing transactional tasks in the case of conflicts,

they provide progress guarantees without any software back-off imple-

mentation. They propose to implement the buffering of speculative

state completely in hardware, by utilizing the existing store buffer

for delaying speculative stores until commit, and utilizing the reorder

buffer together with register checkpointing for buffering speculative

register changes. Hence they do not require any additional hardware,

but extend existing structures by additional tags.

Although we do also wish for such a hardware mechanism, we do not

see it coming yet. Lately, Intel added limited support for HTM in the

Haswell architecture, called transactional synchronization extensions

(TSX). It supports SLE and is implemented very similarly to the

design proposed by Rajwar and Goodman and later detailed by

Steffan et al. [108, 109] and Steffan and Mowry [110]. Even though

this looks promising, we quickly discovered that it is unusable for

thread level speculation, as there is no ordering between the individual

tasks. They also cannot be added in software, as this would require

communication between the involved cores, and any communication

by definition violates the constraints of a transactional task. Also, the

amount of transactional memory is limited by the size of the first-level

cache, and the execution of many instructions immediately leads to

abortion of the task. This restricts the uses of TSX to short-running

unordered transactions.
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2.2.3 Thread Level Speculation

As mentioned in Section 2.2.1, software transactional memory (STM)

systems can in general be used to implement thread level speculation

(TLS). Since the characteristics of typical STM tasks greatly differ

from those arising from speculative parallelization, and the latter

impose more constraints on the ordering of transactions, specialized

systems for TLS have been developed. The most promising ones

make use of the virtual memory system implemented in the operating

system with hardware support in most architectures. This section

gives an overview of the origin and state of the art of these kinds of

systems.

Similar to transactional memory, TLS can either be implemented

entirely in software, or with hardware support. The first work de-

scribing speculative parallelization of loops with runtime checks was

the LRPD test by Rauchwerger and Padua [88]. The main purpose of

this work was removing dependencies by privatization and reduction

recognition; any data dependence which could not be resolved via one

of these techniques would cause sequential re-execution. All checks

and rollback are executed in software. Three years later—in 2002—

the first software-only dynamic TLS implementation was presented

by Rundberg and Stenström, called S-TLS [92] and written in pure

assembly. It uses shadow memory to track read and written memory

regions and take ownership locks on them, and to hold the updated

values for a fixed number of parallel tasks. This scheme was later

improved by Cintra and Llanos [19] by significantly reducing the mem-

ory overhead, improving the access structures and eliminating the

need for explicit locks. Years later, more advanced implementations
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have been proposed for both write-back [116] and write-through [72]

designs. The latter, called SpLIP, is particularly interesting because

it updates memory in-place instead of buffering speculative stores,

thereby avoiding most of the overhead of speculative loads. In the

best case, this system performs much better than write-buffered sys-

tems. However, if rollbacks are expected to occur the performance

drops dramatically, since rollbacks are much more expensive and

also invalidate concurrent work which might have read the invalid

memory update. Also, this system requires hardware which provides

a sequentially consistent memory model, which is not provided by

most of today’s off-the-shelf processors.

Since all these software-only approaches introduce significant runtime

overhead, other research made use of different hypothetical hardware

extensions in order to speed up management of speculative data.

Interestingly, implementing TLS in hardware was proposed already

long before multi-core processors became mainstream, e.g. in the

Hydra CMP [39] and others [107, 110]. The STAMPede project by

Steffan et al. [108, 109] and Steffan and Mowry [110] proposes similar

extensions to Rajwar and Goodman, but describe the extensions to

the cache coherence protocol in much more detail. They extend the

regular first-level cache with speculative cache line states, and add

several new messages to the regular MESI cache coherence protocol

for managing speculative accesses. These messages also carry an

epoch number, which encodes the sequential order of the speculative

tasks, making the system a real TLS system and not just HTM. As

this approach does not target a specific architecture, they do not

focus on the instruction set extensions, but only on the hardware and

protocol extensions.
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In 2006, Liu et al. published the POSH compiler [63], which aims

to extract speculative parallelism to be executed in a hardware TLS

system with simple spawn and commit instructions. One vehicle to

implement these instructions in hardware is via versioned memory :

Speculative tasks generate a new version of the memory, which can

later be committed, or can easily be discarded. This can be seen as a

restricted variant of hardware transactional memory which provides

encapsulation and atomicity, but does not check for misspeculation.

Hence these checks need to be done explicitly in software. If only

control flow speculation is used (effectively ignoring the memory

effects of certain code paths during analysis), a rollback is triggered

whenever such a path is taken. This is implemented for example

in Spec-DSWP [117], a speculative extension of Decoupled Software

Pipelining (DSWP) [84].

Johnson et al. [51] provide performance measures of their paralleliza-

tion approach on a simulated speculative multi-core processor. This

hardware precisely detects true data dependencies at no cost and

without limitations in the transaction size, so the reported speedup

can merely serve as upper bound on the speedup to be expected

on real hardware. Hertzberg and Olukotun [47] also evaluate on

simulated hardware with full TLS support, but they describe the

expected hardware extensions in detail and take care to make reason-

able assumptions there. They utilize the first-level cache to store the

speculative read set per processor core, and add an additional specu-

lative store buffer for the write set. Whenever one of them overflows,

a rollback is triggered. Also, speculative stores are broadcast within

a cluster of four cores, sharing one second-level cache, in order to

detect violations eagerly.
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2.2.4 Virtual-Memory Based Memory Tracking

A third category of TLS systems is neither pure software, nor does it

rely on special hardware. It utilizes the virtual memory system to

separate speculative from committed state and track memory accesses

for later validation. Since all modern processor architectures handle

virtual address translation in hardware, this can be very efficient.

The idea of protecting individual memory pages and transferring

their content and modifying ownership information in the page fault

handler originates from earlier work on distributed shared memory

(DSM), starting in the mid 1980s. Li and Hudak [61] provide a nice

overview of the early work in this area and the different design choices

to implement it. In contrast to the hardware this thesis focusses on,

their work assumes a cluster of workstations that communicate via

network connections. Thus the transfer of a page between processing

units takes much longer, leading to different design decisions. In order

to keep track of the state of each page, they propose a centralized or

distributed manager. They simulate their approach using different

memory page sizes and argue that the best choice is system and

application dependent. Fleisch and Popek [34] use the same idea

but implement it directly in the operating system kernel. Keleher

et al. [52] later implement the same protocol as a user-space library.

Schoinas et al. [104] propose different schemes for improving the

granularity of access control in DSM. One of the solutions instruments

the program by inserting a lookup in a global data structure to

determine the state of a memory block before each access to shared

memory. In their evaluation, this software solution is up to two times

slower than a simulated hardware-only solution.
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More recently, Sadini et al. [98] implement a replicated-kernel op-

erating system based on Linux to run on clusters of machines with

different instruction set architectures (ISAs). The cluster should be

transparent to the applications running on it, so they are provided

with a shared memory view. This is implemented by a page coherency

protocol similar to the MSI cache coherency protocol and along the

lines of the already mentioned approaches. Sadini et al. implement

this by extending the kernels struct page, which holds important

information about the current state of each physical memory page.

They add additional flags to store the owner and the replicate state

of the respective page. Such changes can only be done if the whole

kernel is recompiled, not by a kernel module.

Papadimitriou and Mowry were the first ones to use similar techniques

in order to implement TLS, described in a technical report in 2001 [75].

Surprisingly, it did not get much attention in the community. The

authors were involved in the hardware TLS implementation in the

STAMPede project [108–110], which uses a single-chip multiprocessor

with extended hardware and an extended instruction set to support

TLS. Now they describe a TLS system which does not rely on any

special hardware or compiler support, and can be integrated by just

linking against a software library. The speculative memory region

which is to be protected by the TLS system has to be allocated

manually, however; thus the protection does not extend to arbitrary

memory objects on the heap, stack or data segment. Individual

unix processes are spawned to execute speculative tasks. By making

the memory pages inaccessible in a speculatively forked process and

installing a custom page fault handler, all pages read and written by

a process can be recorded with only constant overhead per accessed
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page. Conflicts are then checked at the granularity of memory pages

(4 kB on most current architectures). Finished tasks are first validated,

then put in a queue of completed tasks. Processes executing later

tasks use this queue to validate their changes, and also to update their

own memory view before executing the next task (hence memory

changes are replayed by each single processor). The authors are

aware of the problem of false sharing, leading to false conflicts, and

propose to use diffing on changed memory pages to eliminate some

write-after-write dependencies. As this does only work if no memory

on the respective page was read by the task, this is no general solution

for improving the granularity.

The first approach extending the idea of utilizing the virtual memory

system to arbitrary memory pages is behavior oriented programming

(BOP) by Ding et al. in 2007 [25]. Instead of replaying memory

changes in all other processes, they copy back modified memory

pages to the main process. BOP solves the problem of false sharing

for global variables by allocating each of them on an individual page,

but this comes with an increased number of page faults and added

overhead for copying unused memory space. Even though BOP is not

tailored to fork-join parallelization, it could potentially be modified

for this use as well. A similar approach by a subset of the authors

uses the same technique for Fast Track [53], where optimistically

optimized code is executed in the main process, while the original

code is executed in concurrent processes for validation.

Later, Berger et al. [4] describe a quite similar system used to detect

and prevent concurrency errors in multi-threaded programs. By

turning threads into processes, they achieve strong atomicity and

avoid deadlocks, and by committing changes sequentially, they prevent
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any data races. Raman et al. [81] also use separate address spaces to

separate speculative states, but still track memory accesses explicitly

and replay them in a central commit unit. Pyla et al. [77] use process-

separation to support speculation in the form of different algorithms

solving the same problem concurrently, and only committing the first

one to complete. Kim et al. [55] describe a TLS based on memory

page protection designed for clusters, with a dedicated validator and

commit process.

2.2.5 The Importance of Granularity

Papadimitriou and Mowry [75] raised the issue of a coarse granularity

implied by only being able to protect and observe memory accesses

on whole memory pages. In their evaluation, they show how an

increase in the block size translates to many more false conflicts being

detected, and also more memory being copied during privatization of

speculative state, and for committing successful transactions. They

conclude that access tracking at finer granularities is needed, but

that the overhead of such techniques would probably render them

impractical for automatic parallelization.

Burcea et al. [12] evaluate several applications from the SpecINT

benchmark suite. They track the number of tracking elements and

the number of false conflicts for different granularities, and define

the ideal granularity per code region as the coarsest granularity

which does not cause any false conflicts. For the evaluation, they

build on the STAMPede simulator [109] by Steffan et al. Similarly

to Papadimitriou and Mowry, their numbers show that the share of

false conflicts increases for coarser granularities while the number
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of tracking elements decreases. Both effects strongly depend on the

memory access pattern of the application. The ideal granularity

per code region varies between 2 and 2048 bytes, and often varies

heavily within one program. Therefore the authors propose to not

only choose one granularity per program, but even adapt it for each

speculatively parallelized region within a program.

Mannarswamy and Govindarajan [64] evaluate the effect of different

granularities on the STAMP [67] benchmark suite. They modified the

TL2 STM implementation [24] to support varying granularities within

the same application. A static analysis then determines a suitable

granularity per atomic section, based on the data structures involved

in the computation. The compiler adds code to switch the global

granularity setting before starting an atomic section. This switch has

to be global since a different lock table is used for each granularity, so

consistency is only guaranteed if all concurrently executing tasks use

the same granularity. Hence a switch is only performed if no atomic

sections are currently executing. This still ensures that in different

phases of the execution different granularities can be chosen.

2.3 Conclusion and Open Issues

The need for speculative parallelization has often been demonstrated

(cf. Section 2.1). The most successful approaches just assume a

hardware TLS system tailored to the special needs of the respective

approach, and get respectable speedup when simulating parallelized

programs on such hardware. It is questionable, though, whether

hardware vendors will ever provide the means assumed in these
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approaches and whether the performance penalty will be as low as

often assumed.

Several TLS approaches thus use the hardware features we have

today. The simplest designs just record memory accesses explicitly

by instrumenting the program (cf. Section 2.2.1). Such approaches,

however, impose a substantial performance penalty, as we will inves-

tigate in Section 4.3. More advanced designs try to reduce overhead

by using the virtual memory system to track and isolate memory

changes (cf. Section 2.2.4). Often, however, the exact implementation

of such approaches is not described in the papers, as they focus on

parallelization or other techniques. This makes it hard to compare

with them or use them for further research. Also, most of the systems

are not publicly available.

Therefore, this thesis presents three easy-to-use open source solutions

for virtual memory based TLS. One is implemented in user space

only, the second one includes a Linux kernel module for maximum

performance. The third one builds on the latter by augmenting it

with instrumentation for more precise memory access tracking. This

provides much better granularity (down to byte level), thus reducing

the amount of false sharing and hence the amount of rollbacks being

executed. These systems are the subject of this thesis and are

described in the following chapters.
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The Sambamba

Framework

In order to implement and evaluate one’s own parallelization and

speculation approaches, one typically extends an existing compiler.

This allows to reuse its front end, back end and existing analyses

and transformations. There currently exist two important compiler

suites for C/C++ that are open-source and can be used for this: gcc

and clang/LLVM. We decided for LLVM for several reasons: First, it

has a much cleaner codebase, which makes it easier to understand

existing code and build on it. Secondly, it consistently uses a single

intermediate representation which is fully documented. Thirdly, it

has an active community, which is willing to help should any LLVM-

related problems arise.

The individual components we are developing should work together

and be reusable. Speculative parallelization for example should be

able to use any of the presented runtime systems during execution.

43
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Therefore, we create our own framework to integrate all our compo-

nents. We call it Sambamba, which is a Swahili adverb for parallel or

side by side.

This chapter describes the general design of Sambamba, the structure

of the output files and the internal phases during compilation and

execution of the compiled programs. The design and development of

the Sambamba framework is joint work together with my colleague

Kevin Streit. Different aspects of Sambamba were already introduced

in several publications [112–114].

3.1 General Design

Sambamba is split in two parts: a static part which consists of a

number of analyses and code transformations, and a dynamic part

which is used during program execution. The interface to the static

part is the sambamba command line tool which is invoked like any

other compiler (cf. Figure 3.1). The only difference is that it does

not contain any front end. It expects linked and executable LLVM IR

as input, meaning it should contain a main function, and all symbols

must be resolvable either within the program itself or via referenced

shared libraries.

In the default mode, sambamba outputs another LLVM IR file. The

typical next step is to compile this file to object code and link it

against the Sambamba shared library and others like pthreads and

TBB. In order to facilitate this step, sambamba also contains a switch

to directly produce a linked executable.
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Sambamba Shared Library
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Clang
(front end)
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Code
C/C++
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(compiler tool)LLVM-IR
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Program Entry

Original IR

Analysis Results

Figure 3.1: Overview of the compilation phase of Sambamba.
The Sambamba compiler tool replaces your default back end: it
takes LLVM IR as input and produces an executable file. This
executable holds the original LLVM bitcode and analyses results.
At Runtime, it calls back to the Sambamba shared library to

trigger execution.

The original idea was for Sambamba to form an open platform which

can be extended by an arbitrary number of modules providing the

actual functionality like parallelization. Such a module would consist

of a static part which is loaded and invoked during the compilation

phase, and an optional dynamic part which is provided via LLVM

bitcode. This dynamic part would then be copied into the executable

file, and its entry point would be invoked after initializing the Sam-
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bamba runtime system but before starting the execution of the actual

program. It turned out that this flexibility was not needed later on

and it complicates the reuse of functionality between modules. There-

fore, we implement most functionality directly inside the Sambamba

system itself (so it is part of the Sambamba shared library) and just

invoke it during compile time or run time as needed. This also allows

to change runtime functionality without recompiling all programs

compiled with Sambamba.

The output of the sambamba compiler tool is not a static compilation

of the original source code. Instead, the LLVM bitcode of the program

is encoded as a constant in the data section, and the main function

just contains a call to the Sambamba runtime system implemented

in the shared library. It passes a pointer to the bitcode and some

analysis results which are also stored in the data section. When

executed, the runtime system will decode the passed data and initiate

execution via a just-in-time compiler as described in Section 3.3.

3.2 Phases During Compilation

Figure 3.2 shows the phases of compilation with Sambamba. First,

some preparation passes are executed, like constant folding, trans-

forming certain memory operations to SSA operations, reducing

computations by global value numbering, inlining or loop strength

reduction. The exact set of optimizations can be modified with

command-line switches. The purpose of these passes is to bring

the input program to a form which reveals most parallelism, while

still preserving most of the structure the programmer gave to the

implementation. Experiments have shown that other transformations
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Figure 3.2: The steps executed during compilation with Sam-
bamba.

like loop invariant code motion can reduce parallelism by introducing

additional dependencies.

After these preparations, dependence information is computed by

running the data structure analysis (DSA) [59]. This is a sophisticated
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interprocedural points-to analysis which is both flow-sensitive and

context-sensitive. It is able to prove far more memory references

disjoint than state-of-the-art alias analyses shipped with LLVM. The

result of DSA is the basis for computing a program dependence graph

(PDG) per function. Since the PDGs are also needed at runtime,

they are stored in the object file. To this end, Sambamba provides

a so called static data store to store arbitrary statically computed

values and make them available at runtime. At compile time, the

static data store is just a map which is filled by various static passes

with key-value pairs of type string.

Based on the PDGs, Sambamba now precomputes schedules for

individual functions as described by Streit et al. [112]. Code or

bitcode for these schedules is not generated yet. A schedule describes

the order in which the basic blocks of the function should be executed,

and contains fork and join points. Those schedules are also stored

in the static data store and will be used at runtime to generate the

actual parallel code.

At the end of this pipeline, the LLVM bitcode of the whole module

is serialized in LLVM’s binary bitcode format. Then, all code and all

data are removed from the compilation unit. They are replaced by

two constant strings containing the bitcode of the application and

the serialized static data store, and a single main function. The code

of this function just calls into the Sambamba runtime—implemented

in the shared library—and passes the pointers to the bitcode and

the data store. If requested by the user (see previous section), this

new module is then translated to assembly using LLVM’s assembler

tool llc and finally linked against the Sambamba shared library to

produce an executable binary.
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3.3 Phases During Execution

When the compiled program is executed, its main method will call

into the Sambamba runtime, passing pointers to the bitcode and

the static data store holding analysis results. Sambamba’s runtime

system will then decode the bitcode. This original instance of the

bitcode will always be kept, such that later re-compilation can start

from the unmodified code. Also, the runtime interface to the static

data store is initialized as follows. The compiler tool prepared the

data such that it can be accessed efficiently without copying anything.

The serialization of the static data store starts with a list of 〈key ptr,

key len, value ptr, value len〉 tuples sorted lexicographically by the

key string, followed by a concatenation of the actual key and value

strings. This allows to look up elements using a simple binary search.

Thus, the runtime interface to the static data store just stores a

pointer to the list of tuples and the total number of elements.

After the input data is read, Sambamba proceeds by initializing

the execution engine which will later execute the program using the

integrated just-in-time compiler. Then, it initializes all the runtime

modules which registered at a central registry in Sambamba. Most

notably, this will trigger parallel code generation in the parallelization

module. Based on the PDGs and the schedules read from the static

data store, the parallelizer will generate bitcode for the concrete

parallelization per function. Depending on whether speculation is

involved and which speculation system was chosen from the command

line, parts of this generated bitcode are then instrumented. For STM

instrumentation, the code will contain callbacks into the runtime

system for each single memory operation, and for setup and commit
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Figure 3.3: The phases executed at runtime of a program com-
piled with Sambamba.

of each transaction (see Section 4.2 for details). For the pure virtual-

memory based approaches (cf. Chapters 5 and 6), no instrumentation

is needed, but the code calls into the runtime to set up the task

list, and to trigger its execution. For the virtual-memory based

system with improved granularity, the code will again be heavily

instrumented (cf. Section 6.2.3).
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After all these transformations, the execution engine is instructed to

run the main function. Whenever a function is entered for the first

time, the just-in-time compiler will produce the respective machine

code and then execute it.

The runtime system only becomes active when called from the com-

piled code, or via the profiler. The profiler performs light-weight

sampling-based execution time profiling on a function basis. Profil-

ing of individual functions can be enabled or disabled at runtime,

typically triggered by the parallelizer. Initially and also whenever a

function is replaced in the module which is being executed, the profiler

checks whether profiling has been requested for this function. In this

case, at function entry a new block is placed which checks whether

the current run should be profiled, and if so, stores a monotonously

increasing timestamp with nanosecond granularity. Also, all returns

are redirected to a block which checks whether the first timestamp

was taken, and if so gets another timestamp, computes the differ-

ence and updates the average execution time of this function using

an exponentially floating average. The update is executed using a

compare-and-swap operation, such that profiling is thread-safe. The

flag whether the next run should be profiled is updated by a dedicated

thread according to a defined sampling rate. This approach turned

out to be the most efficient with respect to runtime overhead. For

external functions however, this approach does not work since their

implementation is not under the control of Sambamba. Therefore,

if such a function should be profiled, all call sites are instrumented

instead. This results in a larger code bloat and a scan of all functions

in order to find all call sites. This is why we decided against using

this approach universally for all profiling.





Chapter 4

Preparing STM for

Speculative

Parallelization

Software Transactional Memory (STM) is a technique to observe

and isolate the memory operations of individual tasks, check for con-

flicts between concurrently executing transactions and either commit

or roll back the changes. Hence it provides the basic functionality

needed for automatic speculative parallelization. However, practi-

cal implementations of STM have not been implemented for this

particular use case. This chapter describes the shortcomings of ex-

isting STM implementations (see Section 2.2.1 for an overview) and

the modifications we did in order to use it in the context of auto-

matic parallelization. Section 4.3 then evaluates the performance of

an unmodified state-of-the-art STM implementation as well as our

optimized implementation.
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4.1 Changes in STM Design

We chose to base our work on the TinySTM system. In several

performance evaluations [26, 31] it proved to be among the fastest

systems. Also, it is freely available and provides an API which makes

it easily usable for automatic transactification by a compiler.

This section describes the modifications we made to TinySTM in

order to make it usable for TLS and to improve its performance when

used in the context of automatic speculative parallelization.

4.1.1 Commit Ordering

In order to use TinySTM for speculative multithreading, we first

had to add support for commit ordering (CO). This is essential in

the context of speculative parallelization to guarantee conformance

to sequential semantics. As of its newest version (1.0.5 at the time

of writing), TinySTM has some support for CO, but for our use it

is too limited: First, the sequence number of each transaction is

only determined by its starting time, and this is nondeterministic if

several threads are spawned at the same time. Second, the way it

is implemented is problematic when executing long-running transac-

tions: Before committing, TinySTM waits in a busy loop until all

its predecessors have committed their changes. This design decision

was probably made for very small transactions, were the overhead of

taking a look or suspending the thread is larger than just waiting for

the other task(s) to finish.

Therefore, we add our own CO protocol on top of TinySTM. This

protocol assumes the dependencies to form a set of trees, i.e. each
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task has at most one dependency. In Sambamba, we just build one

chain of dependencies for all the transactions that might conflict with

any other transaction in the same parallel section. The order of the

tasks in this chain is determined by their original sequential order.

The protocol is implemented by just adding a semaphore to each task,

plus a pointer to the immediate predecessor task. Since Sambamba

uses the Intel Threading Building Blocks (TBB) library [115] to imple-

ment parallel execution, we also use the semaphore implementation

provided by TBB such that a waiting transaction can already start

executing another waiting task. Before a transaction with commit

dependencies is allowed to commit, it has to wait on the predecessor’s

semaphore. Upon completion, it signals its own semaphore to wake

up the potentially waiting successors.

Note that our extension is not implemented within TinySTM itself,

but in the surrounding compiler-generated code. As a consequence, it

does not impact the performance of transactions which do not require

commit ordering.

4.1.2 Hash Tables for Transactional Logs

Even though STM systems are designed to isolate potentially con-

flicting parallel tasks from each other, the workload they are exposed

to is typically quite different from the one generated by an automati-

cally parallelizing compiler. The benchmarks used to evaluate STM

(mainly STAMP [80]) often spawn tasks which execute in parallel for

a longer period, but the code section covered by the STM system

constitutes only a very small portion of the overall running time



56 Chapter 4. Preparing STM for Speculative Parallelization

of the parallel tasks. Also, one parallel task not only executes one

transaction, but often a large number of them.

In automatic parallelization on the other hand, a transaction covers

an entire parallel task, and the goal of the parallelizer is typically

to produce long-running tasks in order to reduce synchronization

cost and other task management overhead. Therefore, the design

decisions taken by state-of-the-art STM systems have to be revised

in this setting.

Looking into the implementation of modern STM systems (McRT-

STM, TL2, TinySTM), we observe that all of them use the most

simple data structure for storing the read and write logs: an array

of structs. McRT-STM organizes this data structure as a sequential

store buffer (SSB) according to Hosking et al. [48]. While this allows

for a more efficient overflow detection, the data is still stored in an

unordered array and the runtime for a lookup is not improved.

Even the STMlite system, which is specifically designed for executing

automatically parallelized code, uses arrays for the read and write

logs. In order to reduce the lookup cost, this systems adds a hash map

based cache to the write log. This cache contains the latest written

addresses and values, and helps reducing the overhead for some cases.

Additionally, they use signatures similar to bloom filters [8] in order

to prove transactional memory effects disjoint. Again, this only works

reasonably well if the sets remain small.

When the read or write sets become very large, these data structures

with linear lookup cost quickly become a bottleneck. At the scale

of STAMP programs, where each task only updates a very small

number of memory locations, an array might indeed be the fastest
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possible data structure. For sizes growing to hundreds of elements

or far beyond, this choice is questionable though. Remember that

a write-buffering implementation needs to traverse the write set for

each transactional read, in order to check for an updated value by

the transaction itself. Also, the avoidance of duplicates in the read

and write set needs linear time per update, and is essential to avoid

running out of memory when executing large transactions. Together,

this leads to an overhead of transactional read and write operations

which grows quadratically in the number of elements in the respective

set. We will evaluate the overhead caused by these data structures

in Section 4.3.

In order to improve the lookup cost for large sets, the use of a hash

table seems natural, and has already been proposed by Harris et al.

as an optimization for an object-based STM implementation [41]. We

thus replaced the write set by a hash map implementation. Since

a lookup in the write set is performed on each transactional read

and write operation, this should reduce the overhead significantly.

In TinySTM, each write log entry already contains six fields, and is

padded to 64 byte. The padded space is sufficient to additionally

store a pointer to the next entry in the same hash table bucket, thus

we implement a chained hash table. The hash function (mapping

each memory address to a hash table entry) has to be efficiently

computable, but also distribute addresses evenly across the table. In

line with these requirements, we chose the following hash function

with N being the current size of the hash map:

hash(a) := [ (a� 3)⊕ (a� 8) ] mod N

In our implementation, N is chosen to always be a power of two,
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allowing to efficiently compute the modulus by using a bitwise and

operation. Since the STM system only permits aligned accesses,

in a 64-bit environment the three least significant bits are always

zero, hence they are ignored by the hash function. The goal of also

incorporating some more significant bits is to ensure that also memory

accesses with a constant stride are mapped to the full range of the

hash table.

In the next step, we also implement the read set as a hash table.

Since a read set entry only contains 16 bytes, adding a next pointer

would double its size (including the padding). Thus we decided to

implement an open-addressed hash table with linear probing instead.

This way, the definition of a read set entry stays the same and the

lookup code requires only a marginal change: Instead of searching

from the beginning until the searched entry or an empty slot is

found, we now start at the offset which the hash function computes.

This linear probing also provides a good data locality during lookup

operations.

4.1.3 Adaptive Initial Sizes of Hash Table

Both of the hash tables as described in the previous section are

initialized to a size of 16, and once filled to 75 %, the table is resized

by a factor of two, and all elements are copied to their respective

bucket in the new table. Even though the cost for this operation

amortizes over the number of elements added, resulting in just a

logarithmic overhead per element added, experiments show that

some programs spend more than 90 % of their execution time in the

resize operation. Especially if the data structure does not fit into
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the processor’s caches any more, the resize seems to put too much

pressure on the memory bus. We aim to reduce this cost by choosing

a better initial size of the hash table. To this end, each application

maintains two exponentially smoothed averages of the final size of

its read and write sets, respectively. These averages are updated on

each transaction commit according to the following formula:

update avg(old, new) =

old ∗ 15
16 + new ∗ 1

16 if new ≤ old

old ∗ 3
4 + new ∗ 1

4 if new > old

avg read = update avg(avg read, current read size)

avg write = update avg(avg write, current write size)

This definition of the update avg function gives more weight to values

that are larger than the current average than to smaller values. This

results in the average being shifted towards the maximum observed

value during the last few transactions. This is especially useful if

multiple transactions of different size are executed in an interleaved

manner. In this case, all the transactions would start with a hash

table big enough to hold the largest occurring sets, or only requiring

one resize operation. We pay for this with a larger overhead for the

smaller sets, but this overhead is much less than having to resize large

hash tables repeatedly. One alternative would be to store the average

read / write set size not globally per application, but per parallel

section, or even per task within each section. In experiments however,

the performance improvement was negligible, so we stick to one

average per application. Since many of our benchmark programs only

execute a small number of transactions, we implemented persistence

of these values in order to start with meaningful values also for the
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first transactions executed. The average values are stored in a simple

database in the user’s home directory, using the module id generated

by LLVM as the identifier for the application. This ensures that the

average not only persists across individual executions of the same

binary, but also across recompilation.

On transaction initialization, the latest computed average is increased

by a factor of 1
75% = 4

3 in order to accommodate for the maximum fill

rate of 75 %, and then rounded up to the next power of two. This size

is then used as the initial size for the read and write set, respectively:

initial read set size = 2dlog2(avg read set size∗ 4
3
)e

initial write set size = 2dlog2(avg write set size∗ 4
3
)e

4.1.4 Hopscotch Hashing

Even when using the adaptive initial size as described in the previous

section, we still observe program runs that spend most of their time in

transactional read and write operations. Profiling and investigating

this artifact revealed that this stems from very unbalanced hash tables:

We observe that for some programs, the read memory addresses are

clustered to a small number of buckets in the hash table. This

basically leads to a linear lookup and insertion time, since the linked

list of elements in the respective bucket has to be traversed each time.

This obviously is a problem of the used hash function, so we tried dif-

ferent shifting widths and measured the performance influence. None

of the options we chose provided a consistently better performance

for all programs and the whole range of reasonable input sizes. We

spot the problem in the memory access patterns induced by some of
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the benchmarks (see Section 5.3.2 for more information about the

characteristics of these benchmarks): The LU decomposition and the

blocked matrix multiplication for example work on differently sized

blocks of a large matrix. These blocks form a stride of the consecutive

memory of the matrix, and depending on the size of the blocks, the

presented hash function will always map them to the same hash table

bucket if the table size N is not increased proactively.

One option to overcome this problem would be to use a significantly

better hash function providing a uniform distribution independent of

any pattern in the input values. One could even use a cryptographic

hash function. This would introduce another significant overhead

though. So we decided to replace the whole algorithm to trigger a

hash map resize operation. But since detecting that buckets exceed

a certain fill rate would require additional resources to be spent on

each insertion into the map, we decided to replace the whole hash

map implementation instead. In 2008, Herlihy et al. introduced an

interesting new approach called hopscotch hashing [45]. This hash

map by design provides good data locality for both lookups and

insertions. Each element is inserted within a certain neighborhood

around the bucket selected by the hash function, and the table is

increased when this neighborhood is fully filled and no entry can be

moved out. This allows for some hash collisions to occur, but if too

many values are mapped to the same or neighboring buckets, a resize

operation is triggered.

We changed the hash map implementation for read sets to use this

approach, and managed to keep the allocated size of read set entries

unchanged, even though it now contains additional bookkeeping in-

formation for the hopscotch hash map. We achieved this by replacing
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a pointer into the locks array by an index into the array, and using

the remaining bits to store the hop info. We found the neighborhood

size H = 8 to provide a good balance between locality and fill rate of

the map. As the write log was performing well, we kept the chained

hash table implementation for this data structure.

4.2 Instrumentation

TinySTM provides a C interface with the functions as listed in

Table 4.1. Calls to these functions are directly instrumented into the

code. The implementation itself is not compiled and linked into the

shared library of Sambamba (see Chapter 3). Instead, the LLVM

bitcode of the different parts of TinySTM is linked together and

compiled as a string constant into the Sambamba shared library. The

runtime system (see Section 3.3) then decodes this bitcode and links it

into the application before the actual transactification. This allows to

apply a number of interprocedural optimizations to the transactified

code, especially to inline the STM functions and then optimize for

the specific call sites. Especially the stm load u8 . . . stm store u64

functions contain different code paths for different alignments, falling

back to the stm load bytes function if the address is not aligned

properly. This check can often be eliminated by utilizing the alignment

information from the replaced load or store instruction.

Now each transaction is instrumented by placing code at the beginning

and the end of the respective region, and also instrumenting all

instructions in-between. At the start of the transaction, code is

added to call the stm start function and then stm get env to obtain

a pointer to the buffer where the longjmp data should be stored for
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Table 4.1: C interface of TinySTM, used for automated instru-
mentation of speculatively parallelized regions.

stm init initialize the STM infrastructure; resets the locks
array, installs signal handler, reads average read and
write set size from previous runs

stm exit cleanup STM data before exiting; stores current aver-
age read and write set size to disk

stm get env get a buffer for storing the longjmp environment

stm start start a transaction by initializing thread-local book-
keeping data structures

stm commit commit a transaction; check for memory conflicts and
write back data

stm load bytes transactionally load an arbitrary and/or dynamic
number of bytes into a thread-private buffer

stm store bytes transactionally store an arbitrary and/or dynamic
number of bytes from a thread-private buffer

stm load u8 transactionally load one byte (8 bit) of memory

stm load u16 transactionally load two bytes (16 bit) of memory

stm load u32 transactionally load four bytes (32 bit) of memory

stm load u64 transactionally load eight bytes (64 bit) of memory

stm store u8 transactionally store one byte (8 bit) of memory

stm store u16 transactionally store two bytes (16 bit) of memory

stm store u32 transactionally store four bytes (32 bit) of memory

stm store u64 transactionally store eight bytes (64 bit) of memory

stm store2 transactionally store up to one machine word (32 or 64
bit) of memory by specifying an aligned address, the
new word and a mask encoding which bits to update

stm set bytes transactionally fill a dynamically-sized memory range
with a constant value

stm memmove transactionally copy a dynamically-sized memory re-
gion; source and destination may overlap

stm malloc transactionally allocate memory on the heap; is auto-
matically freed on rollback

stm calloc transactionally allocate zeroed memory on the heap;
is automatically freed on rollback

stm free transactionally free memory; will be deferred until
commit

stm abort externalcall abort the current transaction because an external
function would be called in the original code
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executing a rollback. Then a call to setjmp is added to fill this buffer.

The stm start function returns a pointer to the stm tx struct holding

all the bookkeeping data for the current transaction. This pointer is

passed to all functions called in the transactional code. At the end of

the transaction stm commit will be called, passing the same pointer.

Some instructions in the code within the transaction are instrumented

based on the type of the instruction as described in the following:

load A memory load instruction which is not statically known to

access the top stack frame is replaced by one of the stm load *

functions, depending on the size of the loaded value. If this size

is precisely 8, 16, 32 or 64 bit, then the respective function is

used. Depending on the alignment and the size of a machine

word, those functions may redirect to the stm load bytes func-

tion. If none of those functions matches the loaded size, then

respective stack memory is allocated and the stm load bytes

function is called directly to load from main memory to the

stack slot. Then, a load instruction of the original type loads

from the stack slot.

store Similar to a load instruction, we first check whether we can

use any of the optimized functions to store a value of size

8, 16, 32 or 64 bits. These functions again redirect to the

stm store bytes function if the alignment seen at runtime is not

sufficient. Otherwise if the loaded memory is less than a machine

word, the stm store2 function is called. If statically none of

the fixed-width store functions matches, we call stm store bytes

directly.
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function call For function calls, we distinguish between three cases:

Direct function calls, indirect function calls, and calls to intrinsic

functions of LLVM. For all three though, we first check whether

instrumentation is actually needed. If the call site or the called

function or intrinsic is labelled with the readnone attribute, we

totally ignore the function call. Also, we whitelist some of the

intrinsic functions like lifetime start , lifetime end or objectsize,

since they will not be translated to any instructions at runtime,

and hence have no memory effect. We also whitelist functions

from the C standard library like the trigonometric functions

and other mathematical functions without (relevant) memory

side effects. Apart from this, we instrument function calls as

follows:

direct calls Direct calls are calls where the callee is statically

known. If the called function is defined within the module

itself, we also know the bitcode of this function. In this

case, we look up whether we already transactified the called

function, and if not, we (recursively) create a transactified

version of the callee. The call site is then redirected

to this transactified version. A pointer to the stm tx

struct holding all transactional metadata is passed as an

additional argument to this function.

There are some externally defined functions for which spe-

cial STM wrappers exist: malloc, free, calloc and realloc.

For these, we just redirect to the wrapper.

In all other cases—if no definition is known for the function

and no special wrapper exists—we replace the call by a

call to the stm abort externalcall function, which aborts
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the current transaction and passes a special value encoding

the reason for the abort.

LLVM intrinsic calls There is a small number of memory-

related intrinsic calls, for which special instrumentation

is implemented: memcpy , memmove and memset . The

first two are redirected to the stm memmove function, the

latter to stm memset . All other intrinsics which are not

known to be side effect free will trigger an abortion.

indirect calls For indirect function calls, the callee cannot

be determined statically. In most cases, a pointer to

the function is loaded from memory, either explicitly, or

because of the implementation of dynamic dispatch in

C++. We resolve indirect calls by managing a per-call-

site cache mapping function pointers to their transactified

version. To this end, we introduce a new static variable

per indirect call site, pointing to an array of function

pointers. Initially, all those cache-pointers point to an

array containing only null pointers. If the respective call

site is executed, the inserted code scans through the array

to find an entry at an even position that matches the

function pointer that would originally be executed. If it

finds such an entry, it uses the next (odd) entry as the

pointer to the transactified function. If it encounters a

null pointer at an even position before finding a matching

entry, it calls into a runtime function which resolves the

function to be called based on the function pointer, and

creates a transactional version of it if possible. The runtime

function then updates the cache and potentially also the

cache pointer if it still pointed to the shared null-array. If
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no transactional version of the function can be created—if

the function is external or the pointer is invalid—, then

the stm abort externalcall function will be called directly

by the runtime function. This keeps the amount of code to

be inserted per call site small. When the runtime function

returns, it also returns the resolved function pointer, such

that no additional scan needs to be performed for this call.

In any case, the inserted code just calls the transactified

version—either found in the cache or returned by the

runtime function.

4.3 Evaluation

In this section, we evaluate the performance of the original TinySTM

system, as well as the version with our modifications, which we call

TinySTM+. For both systems, we measure the overall runtime of

automatically parallelized and instrumented programs. Additionally,

we provide a breakdown of the different sources of overhead.

4.3.1 State-of-the-Art Performance

For evaluating the performance of STM on automatically parallelized

programs, we chose the programs from the Cilk [9] example suite.

For those programs, we know that there exists a substantial amount

of parallelism, and it is easy to reduce the programs to their so

called serial elision, which is a fully sequential version obtained by

serializing all Cilk program parts. We then ran Sambamba on these
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sequential programs to search for automatically parallelizable code

regions.

The Cilk programs contain recursive algorithms that pass pointers or

values calculated on passed pointer values to subroutines. This often

makes it impossible for the parallelizer to prove memory accesses dis-

joint statically. Hence, speculation is needed in order to automatically

parallelize those programs. We identified eight programs from the

Cilk suite containing at least one speculatively parallelizable region.

For each such region, we automatically generate parallel code and

instrument the speculative tasks as described in the previous section.

In case of a memory conflict between two speculative tasks, the later

task (according to the original sequential order) and all subsequent

tasks roll back and re-execute sequentially.

In order to assess the performance of a state-of-the-art STM system

on the large transactions that result from automatic parallelization,

we configure TinySTM for write-back with commit-time locking (cf.

Section 2.2.1). Commit-time locking is the only choice in our setting

because when waiting for a commit-predecessor to finish (see Sec-

tion 4.1.1), the thread should not hold any STM lock yet. Otherwise

a high risk of deadlocks would arise. Write-back has been reported

previously to perform better than write-through [32], especially when

rollbacks are expected to happen.

Running the speculatively parallelized programs from Cilk using this

TinySTM configuration, we were surprised about the performance

impact: None of the eight programs, which ran between 1.2 and 49

seconds sequentially, finished within a timeout of 12 hours. For all

but the longest-running matmul program this means a slowdown
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of at least 2000×. We re-ran matmul with a timeout of 30 hours

to confirm that also in this case the execution time of the parallel

program instrumented with the original TinySTM implementation is

at least 2000× the sequential runtime.

We manually checked that the code transformation and the instru-

mentation was correct, and that no deadlock occurred at runtime.

In the following, we present an in-depth analysis of the overhead we

measured in our benchmarks.

4.3.1.1 Overhead Breakdown

The usage of a software transactional memory system obviously

introduces overhead to the execution of the application. This overhead

can be dissected into the following categories:1

1. Transaction Startup. Starting a new transaction (i.e. en-

tering an atomic block) requires setting up bookkeeping data.

This includes initializing empty data structures like the read

log, write log or undo log, saving program state for rollback,

and fetching the value of the global clock.

2. Memory Read. If a write-buffering (i.e. write-back) ap-

proach is used, then on each memory read the write log has to

be searched for an earlier write to the accessed location. Also,

a new entry in the read log is allocated and filled, which implies

updating several memory locations. A time-based implementa-

tion also fetches and stores the timestamp of the last update

1Depending on the type of the STM system, some of the listed work might be
executed in different stages; the listing gives a general overview though.
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of this location (i.e. its version) in order to detect inconsistent

memory reads.

3. Memory Write. In case of encounter-time locking, the lock

associated with the accessed memory address is acquired. Ad-

ditionally, an entry in the write log is allocated and filled.

4. Commit. During commit, typically the read set needs to

be revalidated, and memory data might need to be written

back. Also, locks are taken and/or released using costly atomic

instructions like compare-and-swap. Finally, memory used for

bookkeeping needs to be reset or released.

5. Rollback. The cost of a rollback is largest if the undo-logging

approach is used, because the original values need to be restored

in memory. Also, if encounter-time locking is chosen (which is

mandatory for undo-logging), then also all acquired locks are

released in case of a rollback. Additionally, the bookkeeping

data of the transaction is reset, just like on transaction startup.

6. Superfluous work. A rollback not only implicates the over-

head for executing the rollback as described above. It also

renders all the work done since the transaction started useless—

except possibly filling some cache entries, thus decreasing the

number of cache misses during re-execution. Often however,

the time for re-executing the transaction by far outweighs the

immediate rollback cost.

The relative influence of each of these factors strongly depends on

the target application and the memory access patterns within atomic

regions. We measured them on a system with 8 GB of RAM and
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(a) Overhead on the STAMP suite.
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(b) Overhead on automatically parallelized Cilk programs.

Figure 4.1: Breakdown of TinySTM overhead on different pro-
grams from STAMP and the Cilk example programs, executed us-
ing four threads. Numbers are relative to total execution time. On
STAMP, the overhead is between 0.003 and 0.58, and distributed
among different overhead sources. On the Cilk programs, nearly
all execution time is STM overhead, mostly in transactional read

and write operations.
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an Intel i7-870 processor with four cores running at 2.93 GHz and

supporting hyper-threading. Turbo Boost mode was disabled during

the execution of all experiments. We ran a Linux kernel 4.1.12 with

glibc 2.21.

In order to influence the program’s performance as little as possible,

the measuring method has to be very lightweight. We decided against

a sampling-based (statistical) approach, since we need to differentiate

time in rollbacked code from time in productive executions, and this

is only decided on commit or rollback. Therefore, we instrumented

the code to measure the wall clock time spent in the TinySTM code

parts of interest. We use the POSIX clock gettime function with

clock id CLOCK MONOTONIC to get a monotonically increasing time

stamp with a granularity of one nanosecond (ns). On our system we

measured 6 nanoseconds for this function to execute. As the time

span to measure is between a tenth of a microsecond and several

microseconds, this overhead is tolerable. Getting the per-thread cpu

time would have taken more than 150 ns, thus would have introduced

too much bias to the measurement. The accumulated times are stored

in the thread-private transactional metadata in order to avoid costly

atomic memory instructions. Only after commit or rollback, the

times are added to a global data structure.

All tests have been executed with four parallel threads, so that no

transactions have to share a core for execution. Each test was executed

ten times on an idle machine, and the median of the recorded values

is reported.

For STAMP—a traditional benchmark for STM performance, see

Section 2.2.1—the breakdown is shown in Figure 4.1a. For each of the
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six overhead categories, the time is measured and shown in relation to

the overall execution time of the program. First of all, we observe that

over all programs, the relative amount of time spent in transactional

operations is below 60 %. This translates to a theoretical slowdown

factor of 2.5× or below, which conforms to the performance numbers

reported in earlier papers [26, 67, 89]. While some programs show

a mostly even distribution of execution time in the different STM

functions, most of them are read-dominated, especially the vacation

program.

Figure 4.1b shows the overhead breakdown for the speculatively paral-

lelized programs of the Cilk suite. Remember that these programs did

not finish within a timeout of twelve hours per execution. We report

the statistics collected up to the point of abortion due to the exceeded

timeout. The distribution of the overhead for these programs looks

quite different than for STAMP: First, we see that each program

spends nearly all of its execution time in STM functions, thus little

productive work is executed. Also, only three of the programs show

significant overhead due to rollbacks, so the huge overhead is not

a problem of misspeculation. Apart from rollbacked code, the only

noticable bars are transactional read and write operations, which are

the real source of the observed slowdowns. As the rollbacked code

was also executed transactionally, the distribution within that part

is probably similar. Thus nearly all the execution time is spent for

transactionally loading and storing memory.

The distribution of overheads differs a lot between Cilk programs

and STAMP programs. The cause for these shifted overhead charac-

teristics has to be related to the entirely different properties of the

executed transactions, like for instance different memory access pat-
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Table 4.2: Characteristics of the STAMP benchmark suite pro-
grams usually used to evaluate STM performance. Note the small
fraction of time spent inside each transaction, and the low number

of read and write accesses within transactions.
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bayes 0.5 19.1 528 7 7.0 1.0

bayes-custom 0.3 17.5 516 15 7.0 1.0

genome 14.6 4.6 2.5e6 3.5e3 30.0 0.0

intruder 93.8 2.7 24.7e6 1.2e6 21.0 1.0

kmeans (high) 19.6 3.8 4.1e6 0 24.0 12.0

kmeans (low) 54.3 3.9 9.9e6 0 24.0 12.0

labyrinth 73.9 60.0e3 1.1e3 48 171.0 168.0

ssca2 42.7 0.7 22.4e6 99 0.0 1.0

vacation (high) 112.0 25.8 4.2e6 0 387.0 6.0

vacation (low) 81.4 18.5 4.2e6 0 280.0 4.0

yada 228.1 0.09 2.4e6 0 19.0 10.0

terns. In order to check this hypothesis, we also collected quantitative

statistics of the executed applications. The result of this analysis is

shown in Tables 4.2 and 4.3. In contrast to Figure 4.1, these tables

show absolute numbers, like the average time spent in one trans-

action, from initialization to commit or rollback (labelled “avg tx

time”). This time includes all transactional read and write operations.

We collected all numbers using TinySTM+, our improved variant of

TinySTM. Otherwise, the programs would not have terminated and
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Table 4.3: Characteristics of the Cilk example programs, au-
tomatically parallelized and instrumented using STM to guard
against misspeculation. In contrast to STAMP, most of the time is
spent in long-running transaction, with lots of memory reads and
writes. Comparison of quantitative and runtime characteristics of
the STAMP and Cilk programs we used to evaluate STM perfor-
mance. STAMP spends most time outside of transactions, and
transactions are short and with a very low memory footprint. In
Cilk , only very few transactions are executed, but those are long-
running and the touched memory regions are orders of magnitude

larger.
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Cilksort 145 4.5 13 5 645.3e3 6.2e6

Fft 67 2.1 18 13 89.9e3 405.9e3

Heat 32875 108.4 202 101 346.5e3 1.4e6

Lu 11694 15.4 756 3 6.8e3 10.9e3

Matmul 1558 329.7 3 1 502.1e3 666.7e3

Plu 8683 0.4 13707 4023 3.4e3 10.4e3

Spacemul 172 5.9 20 6 78.6e3 3.5e6

Strassen 3407 0.0 951242 10050 634.0 1.0e3

we would not have gotten complete results.

For STAMP (Table 4.2), this time is mostly in the order of microsec-

onds, where the applications typically run for several seconds. Thus,

transactions finish shortly after they have started. In return, most

STAMP programs execute millions of transactions. The exceptions

are those three programs which also spend very little execution time
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in transactional contexts (compare Figure 4.1), namely the two bayes

programs and labyrinth. labyrinth on the other hand executes by far

the longest transactions, they run for about one tenth of a percent of

the execution time. However, within the transactions, most work is

executed directly in main memory without making use of the STM

system. Thus, the overhead per read and write, and also the size of

the read and write set, remain very low. In summary we see that

the STAMP programs execute only very small transactions with a

minimal memory footprint—often just a handful of memory locations

are touched.

The same measurements of characteristics for the Cilk programs are

presented in Table 4.3. First, note that the unit of the average trans-

action time has been changed from nanoseconds to seconds. This

already shows the huge difference between those test suites. A similar

difference can be observed in the memory footprint of transactions.

The Cilk programs touch thousands up to millions of memory loca-

tions. The program with the smallest footprint is Strassen, which

implements the Strassen algorithm of matrix multiplication. Here,

the read set grows to 634 entries on average, which is nearly twice

the size of the largest read set average seen in STAMP, and the write

set grows to 1013 entries—still six times the largest write set seen in

the STAMP executions.

The largest write sets with 6.2 million entries on average are created

by the Cilksort program. These are more than 36,000 times larger

than the largest average write sets of STAMP. These large data sets of

course post completely different requirements for the data structures.
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4.3.2 Improved Implementation

This section evaluates how the changes described in Section 4.1

affect the performance of TinySTM. We investigate this both on

automatically parallelized Cilk programs, as well as the STAMP

programs, in order to check that there are no severe regressions for

those small transactions where TinySTM already performed well.

Figure 4.2 compares the runtime of different variants of TinySTM.

The blue bar shows the original implementation. Bars reaching below

the vertical limit of the plot represent executions running into the

timeout of at least twelve hours. As explained in Section 4.3.1, this

means a slowdown of more than 2000× for each program. The red

bar shows the performance if hash sets are used for both the read set

and the write set. In this configuration, most of the programs run to

completion within the timeout. The overhead over sequential execu-

tion is still tremendous, though. The third column adds the feature

of storing the final sizes of the read and write sets, and using those

numbers as initial sizes for new transactions. This change generally

improves the performance, but its effectiveness differs between appli-

cations: While Fft and Lu improve by about 40 %, other applications

like Cilksort or Spacemul improve by a factor of 100× or more. This

effect is only partly caused by the reduced amount of re-hashing,

involving expensive copying of the whole set. Initializing the hash set

to a much larger size also reduces the risk of hash collisions. Another

way to mitigate hash collisions or clustering of hash table entries is

hopscotch hashing, as introduced in Section 4.1.4. By enlarging the

hash table based on local fill rates within a certain neighbourhood, it

is another solution to hash collisions that only occur for small hash



78 Chapter 4. Preparing STM for Speculative Parallelization

C
il

k
so

rt

F
ft

H
ea

t

L
u

M
at

m
u

l

P
lu

S
p

a
ce

m
u

l

S
tr

a
ss

en

ge
om

ea
n

1

1
10

1
100

1
1000

3
0
0
×

1
3
8
×

7
0
7
×

1
8
4
×

4
9
×

1
2
7
×

1
7
1
×

2
7
1
×

3
.3
×

8
8
×

9
2
×

1
0
8
×

6
×

7
9
×

1
4
.9
×

7
.2
×

2
4
.8
×

3
.5
×

8
.3
×

9
5
×

1
0
4
×

6
.8
× 4
.7
×

1
6
.5
×

8
.4
×

1
3
.7
×

Subject

S
p
e
e
d
u
p
o
v
e
r
se

q
u
e
n
t
ia
l
e
x
e
c
u
t
io
n

TinySTM

TinySTM with hash tables

TinySTM with adaptive hash tables

TinySTM+

5
0
5
6
×

Figure 4.2: Runtime comparison of different data structures for
read and write sets in STM, evaluated on automatically paral-
lelized Cilk programs, executed in four threads. While the original
TinySTM implementation (left bar) does not finish on any program
within 12 hours, the addition of more sophisticated data structures

reduces the overhead by orders of magnitude.
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table sizes. The runtime of the full system including the hopscotch

approach is shown by the gray bar. For some programs which greatly

benefitted from adapting the initial hash table size, switching to

hopscotch hashing results in a slight performance regression. The

Fft and Plu programs on the other hand, which still trigger lots of

hash collisions even with adaptive table sizes, greatly profit from

the hopscotch hashing scheme. The geometric mean over all eight

programs improves by another 45 % by using hopscotch hashing.

Now that we have seen that the redesigned data structures perform

reasonably well on programs with large to huge memory footprints, we

evaluate how this implementation performs on the STAMP programs.

Table 4.2 showed that these programs often only read, and write to,

a very small number of disjoint memory locations. For these cases

the cost of a sophisticated hashing scheme may not pay off.

The performance breakdown we got on these programs using the mod-

ified TinySTM+ are shown in Figure 4.3a. The overall distribution

across the different STM operations is similar to the breakdown of

the unmodified TinySTM shown in Figure 4.1a. For most programs

the overall STM overhead is larger, but the difference is smaller than

expected. These programs particularly profit from the adaptation of

the initial size of the hash table. We always allocate a table with at

least four entries, but even in the cases of just one write set entry,

this small hash map does not seem to perform substantially worse

than a simple array.

Figure 4.3b shows the corresponding breakdown for the cilk programs.

The overall time spent in STM code is dramatically reduced in

comparison to Figure 4.1b, where it was mostly reaching 100 %. The
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(a) Overhead on the STAMP suite.
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(b) Overhead on automatically parallelized Cilk programs.

Figure 4.3: Breakdown of TinySTM+ overhead on different
programs from STAMP and the Cilk example programs, executed
in 4 threads. While the distribution on STAMP shows a slight
regression compared to TinySTM (see Fig. 4.1a), the performance

on the cilk programs is orders of magnitude better.
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ratio between read and write overhead is about the same as before,

but these operations are now performed much faster. The program

hence reaches a point at which it detects misspeculation and performs

rollbacks, making rollback cost visible more often.

4.3.3 Case study: Runtime Improvement in a Real-

World Application

Beside the benchmark programs shown in the previous section, we

also want to evaluate how the improved TinySTM implementation

performs for parallelizing larger and modern C++ implementations.

In order to keep the environment controlled, we implement our own

application from scratch: an indexer for C files, written in C++. It

consists of a Lexer, returning the next token as a C++ object, and a

Parser for a subset of the C language. The command line interface

accepts a list of source files. It then processes all files in parallel,

and puts all parsed definitions and usages of variables in a global

database, implemented as a hash-table mapping symbols to lists of

definitions. As data races might occur on this shared database, the

parallel execution is wrapped in a transaction. All parallel code is

instrumented offline, to avoid any influence of a runtime system. The

source code for this case study is publicly available (see Section 7.2).

It consists of 1,662 lines of code.

We execute this program called cindex with varying file sizes, but

adapt the number of files such that the overall workload is always

the same. The total number of lines in all files is always 220, and

each line either uses or defines a variable. We vary the number of

lines in each file between 2 and 214, hence the number of files varies
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Figure 4.4: Runtime for speculative indexing of C files of varying
size and with a varying number of conflicts, executed either se-
quentially, or speculatively parallelized in TinySTM or TinySTM+.
The overall workload is always the same. While the overhead of
TinySTM grows quadratically with the file size, TinySTM+ shows
a consistent overhead. Both, however, clearly fail to provide a

speedup on four cores.
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between 219 and 26. We generate the files using a small python script

which allows to set the number of conflicts between the files. In our

experiment, we set the conflict rate to 0 %, 20 %, 50 %, or 80 %. We

again execute each configuration ten times, and report the arithmetic

mean over the first three quartiles, thus excluding the 25 % longest

runs. The maximum sequential execution time over all configurations

is 103 milliseconds, so we set the timeout for parallel execution to

210 seconds, which is more than 2000× the sequential execution time.

Figure 4.4 shows the results of this experiment. The first observa-

tion is that both TinySTM and TinySTM+ take a multiple of the

sequential execution time in all cases. Second, we see that while

TinySTM+ shows a consistent overhead independent of the size of the

files, the overhead of the original TinySTM implementation increases

quadratically with the file size, and always reaches the execution

timeout for larger files. The overhead of TinySTM+ over sequential

execution varies between 9× and 56× for no conflicts, and between

22× and 56× for 80 % conflict rate.

In order to understand the causes of this large overhead, we again

measured the relative execution time of individual STM overhead

sources. This is plotted in Figure 4.5. We see that for low conflict

rates and small file sizes about 50 % of execution time is spent in

transactified code, meaning a slowdown of about 2×. However, for

those small file sizes the overhead of thread management is the

dominant factor, making parallelization non-profitable. For larger file

sizes however, we quickly observe a large amount of rollback overhead,

even if the actual conflict rate on the used and defined symbols is low.

This is because of the hash table involved: Even though parallel tasks

insert different symbols, they might end up in the same hash table



84 Chapter 4. Preparing STM for Speculative Parallelization

init commit read
write rollback rollbacked code

1 4 16 64 256
1024
4096
16384

0

0.5

1

File Size

R
e
l
.
O
v
e
r
h
e
a
d

(a) 0 % conflicts

1 4 16 64 256
1024
4096
16384

0

0.5

1

File Size

R
e
l
.
O
v
e
r
h
e
a
d

(b) 20 % conflicts

1 4 16 64 256
1024
4096
16384

0

0.5

1

File Size

R
e
l
.
O
v
e
r
h
e
a
d

(c) 50 % conflicts

1 4 16 64 256
1024
4096
16384

0

0.5

1

File Size

R
e
l
.
O
v
e
r
h
e
a
d

(d) 80 % conflicts

Figure 4.5: Overhead breakdown for the cindex program ex-
ecuted in TinySTM+. File sizes again vary between 2 and 214,
while the total workload is constant. We see that rollbacks quickly

become the bottleneck in this benchmark.
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bucket. The probability for this increases rapidly with the number of

symbols added in each transaction, and quickly reaches nearly 100 %

(similar to the well known birthday paradox ).

4.4 Conclusion

In this chapter we have shown that using STM systems for spec-

ulative parallelization is not feasible in general. Even though the

overhead of the most important STM functions can be improved

substantially by using more scalable data structures, there is still a

severe performance penalty for each single memory operation. This

makes it hard to achieve any speedup with a number of processors

as they are available in today’s consumer hardware. STM in general

can be sped up by using hardware extensions as they are available in

many off-the-shelf processors nowadays. As discussed in Section 2.2.2,

such extensions can not be used for implementing speculative paral-

lelization though. The further part of this thesis will thus focus on

systems that completely avoid the implicit tracking of each memory

access.





Chapter 5

Virtual-Memory Based

Speculation in User

Space

A speculative runtime system for Thread-Level Speculation (TLS)

can be implemented in many different ways, implicating different

restrictions on the execution environment and inducing overhead

at different points in time. The previous chapter evaluated the

usage of Software Transaction Memory (STM) as a runtime system

for TLS. STM tracks memory accesses explicitly by instrumenting

the executed code such that memory operations do not directly

operate on the main memory any more, but instead call a function

of the STM runtime library to get the speculative value of a memory

cell or store it respectively. As this imposes large overheads on the

execution of speculative tasks, this chapter describes and evaluates an

alternative technique which tracks memory changes without required

instrumentation.

87
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As discussed in Section 2.2.4, recent approaches for thread level

speculation propose to make use of the virtual memory system im-

plemented in the operating system and hardware architectures to

isolate speculative from non-speculative state. This requires execut-

ing speculative tasks in separate processes instead of threads, thus

turning multi-threaded into multi-process programs. By protecting

the memory pages of the respective tasks and catching the resulting

page faults, the runtime system observes which memory pages each

process reads and writes. This information is used during commit to

validate that the state produced by a speculative task is semantically

correct and to commit its changes back to the main process.

This chapter describes a new runtime system based on these ideas,

called U-TLS. It fully operates in user space, and communicates with

the operating system via various system calls. U-TLS resembles the

state of the art in virtual memory based TLS systems. Unfortunately,

we could not reuse any existing approach, as none of them are publicly

available. However, implementing U-TLS from scratch allowed us to

explore different design decisions, and gave us valuable insights about

the shortcomings of existing techniques.

5.1 Interface

This section describes the interface of U-TLS. The design goal is

generalizability: The interface should be general enough to be used by

all implementations of TLS which do not require code instrumenta-

tion. In particular, we use the very same interface also in our K-TLS

approach described in the next chapter. Apart from this generaliz-

ability, the interface should also be easy to use by a developer as well
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Table 5.1: TLS interface to be called from generated code.

function parameters description

tls newList – allocate a new task list

tls deleteList task list deallocate a task list

tls addTask task list , input size,
output size, func ptr

add a new task to the
list, executing func ptr
with input size bytes of
input and output bytes
bytes of output

tls getTasks task list get a pointer to the
start of the storage for
this list

tls getTasksEnd task list get a pointer past the
last byte of the storage
for this list

utls run task list execute a task list in
U-TLS

as by a parallelizing compiler. Hence it should consist of a handful

of functions with clear semantics, such that the code to invoke these

functions can easily be emitted or written by hand. The interface

itself is implemented in C++, but C bindings exist for those functions

which are invoked by the compiler. Table 5.1 shows the functions that

are called by placing function calls in the generated code. Compared

to the interface of an STM system (see Table 4.1 on page 63), we

see that many fewer functions are involved, and they operate on a

very different level than STM functions. This is because the U-TLS

functions are not designed to be notified about each single memory

operation of the program, but instead they set up individual tasks

and manage their execution.
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The central data structure of the interface is a task list. It contains

all the tasks to be executed in parallel. Each task consists of a

pointer pointing to the user code to be executed (func ptr), some

space for the input of the task and some space to write the output

to. Pointers to the input and output space are passed to the user

function, but only the second one may be written to. Hence the

signature of the user function in C notation is void (*fn)(const

void*, void*). The order of the tasks in the list determines their

commit order, hence it should match the sequential order of the tasks

in the original program. The restriction to a list, implicating the

requirement to establish a linear commit order, is a mere technical

one. The extension to a directed acyclic commit graph, allowing

for more flexible commit orders or even parallel commits, is left for

future work. In our benchmarks it turned out that the tasks in most

parallel sections are constrained to a linear commit order anyway,

thus we would not profit from parallel commit or more relaxed commit

orderings. The task list is passed to the respective runtime system

for speculative parallel execution. In the case of U-TLS, this is

the utls run function. This invocation only returns once all tasks

have executed and committed successfully. If there are tasks which

fail repeatedly in speculative execution, e.g. because they abort the

program, they are re-executed sequentially and non-speculatively by

the runtime system.

The whole task list with all the input and output values is stored

in one consecutive chunk of memory. This design is needed in the

K-TLS implementation (see Chapter 6) in order to transfer the whole

list to the kernel. U-TLS uses the C++ interface to the task list to

access the individual tasks.
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5.2 Design of U-TLS

In contrast to STM implementations, which fully operate in user-

space, U-TLS communicates with the operating system via system

calls. This removes the need to instrument the speculatively paral-

lelized code. Because of this, it is possible to call external functions,

e.g. from a pre-compiled library, within transactions. This not only

lessens the requirements for code blocks to be parallelized, but also

makes it easy to use for manual parallelization, because no compiler

assistance is needed. U-TLS can be linked as an external library

and be used via its interface as described above without taking any

further steps. As U-TLS only handles memory accesses from within

the speculative tasks, some restrictions have to be considered though,

as detailed in Section 5.2.6.

The remainder of this section gives all the details of the design

and implementation of the U-TLS system. The implementation is

sketched in pseudo-code in Algorithms 5.1 and 5.2. Section 7.1 gives

details about the concrete implementation and how to access it.

5.2.1 Data Structures

The sole input to the main routine of U-TLS is the task list as

described in Section 5.1. The three pointers for the user function,

input data and output data are named funcPtr , input and output in

Algorithm 5.1. Additionally, U-TLS makes use of the following data

structures: A global TLSContext holds information about the execu-

tion of the overall task list. In this simplified code this only consists

of the set of pages modified by any committed task (modified pages).
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Algorithm 5.1 Pseudo-code implementation of U-TLS (first part;
continued in Algorithm 5.2)

1: procedure utlsRun(tasks) . main routine
2: N ← len(tasks)
3: ctx ← allocate TLSContext
4: states ← allocate shared TaskState[N ]
5: for t← 0 to N − 1 do
6: states[t].pipe ← pipe( )
7: states[t].pid ← fork(runTask , tasks[t], states[t])

8: for t← 0 to N − 1 do
9: if not commit(tasks[t], states[t], ctx) then

10: for i← t to N − 1 do
11: kill(states[i].pid)

12: for i← t to N − 1 do
13: runUserCode(tasks[i])

14: break

15: procedure runTask(task , state) . child process
16: save state pointer into global variable (process-local)
17: allocate a new stack and set RSP
18: protect whole memory (except own stack)
19: install segmentation fault handler segFault
20: state.read pages ← ∅
21: state.modified pages ← ∅
22: runUserCode(task)
23: state.finished ← true
24: notify(state.ready)
25: for each page addr in state.modified pages do
26: write(state.pipe, page addr ,PAGE SIZE)

27: procedure runUserCode(task) . execute the code of one task
28: functionPtr ← task .funcPtr
29: functionPtr(task .input , task .output)

30: procedure segFault(page addr) . segfault handler
31: if page addr ∈ state.modified pages then
32: abort
33: if page addr ∈ state.read pages then
34: add page addr to state.modified pages
35: grant write access to page (with COW)
36: else
37: add page addr to state.read pages
38: grant read-only access to page
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Algorithm 5.2 Pseudo-code implementation of U-TLS (second part;
continuation of Algorithm 5.1)

39: procedure commit(task , state, ctx ) . commit one task
40: wait(state.ready or killed(state.pid))
41: success ← state.finished and validate(state, ctx )
42: if not success then
43: state.finished ← false
44: state.pid ← fork(runTask , task , state)
45: wait(state.ready or killed(state.pid))
46: success ← state.finished

47: if success then
48: for each page addr in state.modified pages do
49: read(state.pipe, page addr ,PAGE SIZE)
50: add page addr to ctx .modified pages

51: return success

52: procedure validate(state, ctx ) . conflict checking
53: for each page addr in state.read pages do
54: if page addr ∈ ctx .modified pages then
55: return false

56: return true

It is updated during commit and used for validating later tasks. The

second structure allocated is an array of TaskStates. Each TaskState

holds the following fields:

• pipe to hold the file descriptor of a unidirectional pipe for com-

municating modified pages from the child task to the parent.

• pid the process id of the forked child process.

• read pages the set of pages read by this task.

• modified pages the set of pages modified by this task (always a

subset of read pages).
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• finished a flag to indicate whether the task successfully finished

the execution of the user code (false indicates premature termi-

nation, e.g. because of a signal).

• ready a condition variable to communicate to the parent that the

execution of user code finished.

5.2.2 Forking Speculative Tasks

In order to execute a task list in U-TLS, the developer or the auto-

matic parallelizer invokes the utlsRun routine. Before forking the

actual processes to execute the user code, U-TLS allocates a TLSCon-

text (line 3) to hold the set of pages modified since the process forked

(ctx .modified pages). Also, for each task a TaskState structure is

allocated to hold information about the respective task with the fields

as described before. Since some of this information is updated by the

child, but read by the parent, we allocate the TaskState structures

in memory shared between the main process and its children. The

parent also opens a unidirectional communication channel (a pipe)

per process (line 6) to transfer back changed memory pages in the

commit phase.

After this setup, the actual child processes are forked to execute

the runTask routine (line 7), and then committed in order (lines 8

to 14, cf. Section 5.2.4). If this commit fails repeatedly for any of the

tasks, e.g. because the task was killed by a signal, then the processes

executing the remaining tasks are killed, and the respective code is

re-executed in the main process sequentially (lines 10 to 13).



5.2. Design of U-TLS 95

5.2.3 Execution of a Speculative Task

Each spawned process starts execution in the runTask routine.

Before the actual user code is executed, the child process needs to

be set up properly (lines 16 to 21). First, the state pointer, which is

passed from the parent, is saved to a global variable, such that it is

available to the segmentation fault handler. Note that this change

of the global variable is only visible to this specific child, since the

operating system automatically creates private copies of all changed

memory pages. As this page is written before any pages are protected,

this change will not cause memory conflicts and the respective page

will not be copied to the parent because of this write. Next, a new

memory region for the stack is allocated, such that stack operations

of the different child processes do not collide. By setting the stack

pointer (RSP) to the top of this new region, the user code will allocate

all new stack frames there.

Apart from the newly allocated stack and the TaskState structures,

all writable memory regions are made inaccessible by mprotect system

calls. The memory regions of the process are determined dynamically

from the virtual /proc/self/maps file. This ensures that a segmenta-

tion fault (segfault) is triggered whenever the user code tries to access

(read or write) any memory in these regions. This segfault is handled

by a custom segfault handler (lines 30 to 38), which records that the

page was accessed by the process, and makes it available read-only.

On the second segfault per page, we know that this must be a writing

access, since reads were already allowed. Hence, also write access is

granted, and the page is stored in the set of modified pages. If a third

segmentation fault happens, this can only mean that the previous
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mprotect calls did not succeed, hence the memory address is illegal.

This happens for example when a task accesses memory through

a pointer which should have been updated by a previous task, but

this update is not visible to the process. In this case, we just abort

the execution of the process, and the main process retries execution

later, when all previous tasks have committed (see Section 5.2.4).

In fact, we check the return code of the previous mprotect system

calls directly, in order to detect such situations already on the first

segmentation fault.

After returning from the actual user code of the respective task

(line 22), the finished flag in the TaskState is set to signal that the task

terminated regularly. Then, the parent is notified of the completion

of the process, and all modified memory pages are transmitted to

the parent process via the pipe established before forking (line 26).

If available, we use the vmsplice system call for this, which has

potentially better performance than just writing the data page by

page.

5.2.4 Validating and Committing Speculative State

Before starting the actual commit phase, the parent process first

waits until the child process either signals that it finished execution

of the task code via the state.ready condition, or the task exits

prematurely (line 40). The latter might happen if the code tries to

access inaccessible memory, e.g. via an invalid pointer, or because

the program aborts explicitly, e.g. via an assertion. In this case,

state.finished is still false, and the task is considered failed. Otherwise,

validation is performed (line 41) by checking for an intersection
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between all pages read by the child process (state.read pages) and

all pages modified since forking it (ctx .modified pages). If there is an

intersection, the child process might have read outdated data, and is

also considered failed.

If any of these two checks fail, the task needs to re-execute (lines 43

to 46). This new fork will now see all memory updates by previous

tasks, and thus no validation needs to be performed afterwards, as

there cannot be any read-after-write conflicts. If this new process

still does not execute the user code without aborting in between, the

commit is aborted. Subsequently, it will be executed in the main

process directly (line 13), such that any signals will be delivered to

the main process.

Finally, if either the first execution or the re-execution succeeded,

the actual commit is performed (lines 48 to 50). The content of all

modified pages is read from the pipe connecting the two processes,

and written to the corresponding location in the non-speculative

memory. All modified pages are registered in the ctx .modified pages

set for validation of subsequent tasks.

5.2.5 Optimizations

Since the first task in each task list can never conflict with any other

task, we do not need to track the pages read by this process. Hence,

all memory is initially read-only instead of inaccessible for the first

task, and the segfault handler immediately grants write access. The

same reasoning applies for re-executed tasks: Since they are spawned

only when all preceding tasks have already committed, they require no

validation, hence no read set needs to be tracked. This optimization
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saves a lot of unnecessary context switches due to page faults induced

by read accesses.

Also, if there are more tasks than hardware threads available in

the system, it makes sense to only spawn as many tasks initially as

there are hardware threads, and spawn the next task whenever a

task finishes. This would call for a more sophisticated verification

scheme: Instead of just memorizing which pages have been modified,

a global clock (or version number) can be associated with each page,

tracking which task modified the page last. When forking a new

process, the version of the global memory (i.e. the sequence number

of the last committed task) can be stored, and a memory conflict is

only reported if at commit time any read page has a version number

greater than this stored version. Thus a conflict is only detected if

the process actually used an outdated memory page. This concept is

similar to time-based STM systems [24, 89]. We did not implement

this optimization in U-TLS yet, since our benchmarks do not spawn

more tasks than the number of available hardware threads. Most

automatic parallelization systems follow this principle, so the value

of adding the optimization to U-TLS is questionable, and would not

be observable in our evaluation. We thus leave it for future work.

5.2.6 Restrictions of U-TLS

Obviously, the U-TLS system can only be used on operating systems

offering the facilities used in the implementation. These include in

particular copy-on-write process forking, protecting individual mem-

ory pages for either read-only or no access, customized segmentation
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fault handlers, and inter-process communication to copy back changed

data. All POSIX compliant systems provide these functions.

Apart from that, there are also restrictions on the executed user code.

Since conflict checking and commit only handles memory effects,

there should be no other side effects within a task. Uncaught side

effects include any file operations, like opening or closing file handles,

or reading or writing to them. Those effects will neither be applied

in order, nor can they be rolled back. Even though the parent can be

protected from damage by these side effects by not inheriting the file

descriptor table, but creating a copy for the child, this still does not

guarantee to preserve the semantics of sequential execution. Other

side effects, like creating new memory mappings, (un-)protecting

memory regions, any file system operation or other externally visible

effects cannot be prevented by this approach either. Depending on

the type of the operation, its effect will either not be applied to

the main process (e.g. for mmap or sigaction calls), or the order of

the operations might be different than in sequential execution (e.g.

for file operations). Because those changes are not included in the

rollback, they might even be applied a second or third time during

re-execution.

Also, care has to be taken if the original application is already multi-

threaded. As U-TLS only handles data dependencies between the

speculative tasks, data races with concurrently executing threads

may still occur. Since U-TLS exchanges whole memory pages during

commit, new data races may even be introduced by overwriting

unrelated sections within pages. Hence we only evaluate U-TLS and

all other TLS systems on single-threaded applications. This is a

common requirement for automatic parallelization approaches.
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5.3 Evaluation

In order to evaluate the performance of the U-TLS system, we run

micro-benchmarks to assess aspects of U-TLS itself, and execute

parallelized programs with both U-TLS and our improved STM

system called TinySTM+ (see Section 4). The system used for this

evaluation is equipped with a quad-core Intel i7 870 CPU running at

2.93 GHz and 16 GB of main memory. We execute each benchmark

at least ten times and report the arithmetic mean over the first three

quartiles. This excludes runs that were unexpectedly interrupted

by unrelated events or processes running concurrently on the same

machine.

5.3.1 TLS Overhead

The first part of the evaluation measures the overhead of the primitive

operations of a TLS system: the time for spawning tasks, the overhead

that the speculation system induces during the parallel execution of

the tasks, and the validation and commit time. In order to measure

those numbers, we run some micro-benchmarks as described in the

following sections.

5.3.1.1 Spawning Tasks

Most runtime systems that track memory accesses explicitly (like

STM) execute parallel tasks in individual threads. U-TLS needs

different virtual memory mappings for each task and therefore has to
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Figure 5.1: Overhead of spawning a task list of varying size in
U-TLS against TinySTM+. Since TinySTM+ just as most STM
systems uses threads instead of processes, it spawns tasks the
fastest (around 0.3 ms per task). U-TLS uses a fork system call
per task, which takes around 1.2 ms, plus initial 4 ms per task list.
The time increases further if more page table entries have to be

copied.

fork individual processes. Hence, its initial overhead is larger, whereas

the overhead during task execution is potentially much smaller.

In this benchmark, each run creates a task list of N tasks, where

N varies between 1 and 64. We measure the overall wall-clock

execution time of executing this task list for both TinySTM+ and

U-TLS. We execute two benchmarks per system. First, we spawn the

tasks immediately after starting the application, i.e. without having

performed any work yet. In the second benchmark, we allocate 1 GB
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of memory and initialize it to zero. This causes physical pages to

be allocated for this memory and the page table to be filled with

these pages. In all cases, the time for validating and committing

the empty transactions is negligible; the times reported are indeed

caused by spawning the threads or processes, and protecting the

memory. Many numbers are in the range of milliseconds. Therefore,

we cross-validated the experiment with 100 and 1000 iterations and

validated that the measurements are reliable.

Figure 5.1 shows the result of this benchmark. As expected, forking

processes takes considerably longer than spawning threads, as the

operating system has to clone more resources like the signal table,

the page table and other internal data structures. STM takes around

0.2 ms per task if the number of threads spawned is below the number

of cores, and up to 0.5 ms otherwise. As this number is independent of

the allocated memory, we only plot one line for TinySTM+. Spawning

a single task without much memory consumption in U-TLS via the

fork system call takes about 4 ms, and 1.2 ms for each additional

one. Additional tasks cause less overhead than the first task, since

some setup work of the tasks—like protecting writable memory via

mprotect calls—is executed in parallel by all tasks. When additional

1 GB of memory were allocated before the fork , the time for the first

task increases to 24 ms, and 9.5 ms are spent for each additional task.

This additional time is spent in iterating over the page table for the

additionally allocated memory range, creating the respective page

table entries in the forked process, making the respective pages shared

between the processes by removing write access in the parent process,

and for clearing the page table entries again when the memory range

is mprotected during the setup of the child process.
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5.3.1.2 Execution Overhead

The second type of overhead happens during execution of the actual

task in order to track the memory accesses during runtime. In STM,

this is done explicitly in software by keeping a read and a write set

which is inspected and updated during transactional load and store

operations (cf. Section 4.3.1.1). In U-TLS, the overhead is mainly

caused by two actions: the context switches between user space

and kernel space for each page fault, and creating private copies of

pages which are modified by the transaction. The number of context

switches is quite large. Whenever a page is accessed for the first time,

or first accessed via a writing operation, one to two page faults are

triggered, leading to six to eight context switches as illustrated in

Figure 5.2:

1. from user space to kernel space for handling the page fault,

triggered by the MMU, part of the CPU;

2. from kernel space to user space for handling the segmentation

fault triggered by the page fault handler because the access

right of the respective page does not allow for the given memory

access;

3. from user space to kernel space for executing the mprotect

system call to allow the respective memory operation on that

page;

4. back to user space when returning from the mprotect ;

5. back to kernel space when returning from the segfault handler,

telling the operating system to retry execution of the instruction

which triggered the segmentation fault;
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user program kernel

program 
code

pagefault 
handler

segfault 
handler

mprotect

User Space Kernel Space

1: access page

2: trigger SEGV

3: grant access

5: "reexecute"

6: reexecute

4: "success"

7: write to page pagefault 
handler

copy-on-
write

8: reexecute

Figure 5.2: Handling of page faults during execution in U-TLS.
On the first access to a page, the page fault handler will be invoked,
leading to six context switches (1–6). On a later writing access,
two additional page faults will be triggered, leading to another
eight context switches (1–8). In total, 14 context switches are

required for each modified page.
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6. back to user space for reexecuting the memory operation;

7. (only for writing accesses) again from user space to kernel space

for handling the second page fault on the same page;

8. (only for writing accesses) back from kernel space to user space

after creating a private copy of the previously shared page.

The first access to a page will always only make it accessible read-only,

thus executing only the first six steps. If the page is later accessed by

a writing memory operation, another two page faults will be triggered,

leading to all eight steps being executed. Thus, a writing access to

a previously untouched memory page leads to a total of 14 context

switches to make the page accessible for writes. Later reads or writes,

however, do not trigger any page faults any more.

In order to compare this runtime overhead of U-TLS against that of

TinySTM+, we run a benchmark in which four parallel tasks perform

random write accesses to disjoint memory blocks. The memory area

which is updated by each task has a size of 16 MB. Figure 5.3a

shows the runtime of both systems plus the sequential execution with

respect to a varying number of memory accesses. Figure 5.3b shows

the corresponding speedup over sequential execution. Note that all

numbers are reported on a logarithmic scale on both axes.

In this benchmark TinySTM+ never succeeds to beat the sequential

runtime. This is mainly because of the huge overhead caused by

the explicit tracking of memory accesses (see Section 4.3), but also

because of the rollbacks it performs. TinySTM maps written memory

addresses to a lock array of fixed size, so there are hash collisions

which provoke false rollbacks. From 216 on TinySTM+ executes
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Figure 5.3: Performance of TinySTM+ and U-TLS in an artificial
benchmark, in which each task randomly updates memory cells
within a 16 MB memory block. For a small number of memory
accesses, the STM system performs best, but still falls behind
sequential execution. U-TLS shows problems in the mid-range, but
performs significantly better than TinySTM+ for large workloads.
It reaches a speedup over sequential execution of about 3× for

large workloads.
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on average more than one rollback per execution of four tasks and

reaches a 50 % rollback rate for more writes.

U-TLS starts with moderately more overhead than TinySTM+ for

small workloads. This is expected since for the random memory

accesses many pages are copied just for a few memory updates per-

formed on each page. Also, the setup cost per task are larger. For a

mid-sized number of writes U-TLS shows surprisingly large overheads.

Profiling reveals that the repeated change of access rights on individ-

ual memory pages fragments the virtual memory descriptor in the

kernel, and increases the number of virtual memory areas (VMAs) up

to several thousand. The Linux kernel organizes the virtual memory

descriptor as a linked list, with an additional red-black tree for faster

lookup. Because it is traversed on each page fault (and on other oper-

ations), this leads to a severe slowdown in the kernel code. As more

and more pages get unprotected, the respective memory areas are

merged again, mitigating this slowdown for larger memory footprints.

In order to validate this hypothesis, we ran another benchmark in

which each transaction writes linearly to a disjoint memory block.

The results are shown in Figure 5.4. In this test, the sequential

execution takes considerably shorter time (especially for large inputs),

since the cache utilization is much better. TinySTM+ and U-TLS still

have their constant overhead per transaction, thus showing slowdowns

again for very small tasks. TinySTM+ again stays between 14× and

100× slowdown for all inputs. Now in this benchmark—as projected—

U-TLS does not show the super-linear slowdown for mid-sized writes,

as the fragmentation of the virtual address space does not occur

here. Instead, the execution time stays flat up to about 216 writes,

since up to this point the initial overhead dominates the runtime
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Figure 5.4: Second benchmark comparing U-TLS performance
against TinySTM+. This time each task writes a linear block
of memory with varying size. All blocks are on disjoint memory
pages. Again, parallelized execution with TinySTM+ takes longer
than sequential execution in all cases, while U-TLS reaches 2.6×
speedup for a large number of writes. In contrast to Figure 5.3, the
performance of U-TLS increases monotonously with the workload.
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overhead for handling the page faults. The overall speedup for large

workloads only approaches 2.6× in this benchmark. This is caused

by the different access pattern. Each memory cell is only written

once, in contrast to the multiple updates of the same memory in the

previous benchmark. Because of this different pattern, the cost for

copying and later committing a page amortizes less over the execution

time. You can also see that the commit time for this benchmark

continues rising for larger input, where it stayed flat before as soon

as all memory pages were written at least once. But interestingly,

in this benchmark U-TLS shows speedup over sequential execution

already for smaller inputs—on 220 instead of 225.

5.3.1.3 Validation and Commit

After parallel execution, U-TLS validates the set of read and written

memory pages and then commits them by writing them to a pipe

connecting the child process to the parent process. TinySTM+ on the

other hand validates and commits memory changes at the machine

word granularity. Figures 5.3c and 5.4c show the absolute time taken

for validation of all tasks. In TinySTM+ validation and commit can

happen in parallel in the individual transactions. For the reported

number, we sum up the wall clock time in all parallel threads, thus

the number could even exceed the total runtime reported—which it

does not do in our benchmarks. In U-TLS we measure the validation

time as the time it takes the parent process to receive the information

about which pages were read and written by the respective task and

check them against the set of pages modified by previous tasks. For

the random writes within a 16 MB block of memory, the validation

time for U-TLS is negligible in all cases. For the linear write to
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memory it only crosses the 1ms boundary for very large workloads,

and compared to the overall execution time it is also negligible for all

inputs. For TinySTM+ it also never exceeds 1 % of the total execution

time, but grows much higher than for U-TLS, since each single written

memory address must be validated using atomic memory operations.

For more than 224 written bytes, the validation time drops by orders

of magnitude, since the falsely detected memory conflicts occur much

earlier during the validation.

The commit time is plotted in Figures 5.3d and 5.4d. In this bench-

mark, the commit times measured for TinySTM+ exceed the total

execution time for the random updates in the range from 26 to 211,

suggesting that a major part of the execution time is actually spent

for committing. For U-TLS we measure the time it takes the parent

process to receive the content of all modified pages and write them

to its own address space. This commit time is much larger than the

validation time, and reaches a maximum of 16.9 % of the total execu-

tion time for the linear memory updates. For the random writes, it

increases until about 4096 memory accesses, which is the point where

most memory pages in the 16 MB range have been touched at least

once. There it contributes 4.9 % of the total execution time. From

this point on, the commit time stabilizes since fewer pages are added

when increasing the number of accesses. It even slightly decreases,

since a more continuous block of memory can be transferred through

the pipe. TinySTM+ takes not much longer to commit for a small

number of updates, but then the gap increases as more bytes per page

are written. It increases until also most individual words have been

written at least once. For the benchmark executing linear memory

accesses, the commit time for U-TLS stays flat until a full page has



5.3. Evaluation 111

been written (at 212 bytes), then it increases linearly. TinySTM+

again consistently takes more time to commit—by more than a factor

of four for large workloads, and 15 – 30 % more for small inputs.

5.3.2 Usage in Automatic Parallelization

The previous section has shown that for large transactions, utilizing

the virtual memory system provides a much better performance than

tracking memory explicitly. This section evaluates how these perfor-

mance benefits translate into speedup of speculatively parallelized

real-world programs.

While the previous benchmarks were statically compiled programs,

this time we execute the programs in Sambamba (see Chapter 3)

for automatic parallelization. The benchmarks we have chosen for

this evaluation are the serial elision of the Cilk [9] program suite.

The serial elision of a (manually parallelized) Cilk program can be

generated easily by ignoring all spawn and sync keywords. This suite

contains mostly programs working in a divide-and-conquer manner,

writing the computed results in a shared array or matrix. This

shared object often causes false data dependencies to be detected

statically, because state-of-the-art alias analyses cannot proof the

accesses disjoint. Additionally, there are real data dependencies

caused by memory allocation, accesses to shared objects on the

heap, or premature termination via assertions or explicit aborts.

Hence speculation is needed in order to parallelize those programs

automatically.

We briefly introduce the eight programs from the Cilk suite which were

automatically speculatively parallelized by Sambamba. The input
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parameters used for the evaluation are listed together with more

statistical data and results of both U-TLS and K-TLS in Table 6.1

on page 150. Several programs from the Cilk suite were excluded

either because they do not operate on shared data (and therefore

need no TLS), use explicit locking, or use Cilk intrinsics like inlets

for which there exists no serial elision. The following programs were

used for this evaluation:

Cilksort a sorting algorithm which uses mergesort with parallel

sorting and parallel merging, and switches to quicksort for

smaller arrays.

Fft an implementation of fast fourier transform.

Heat simulates heat diffusion by running a number of Jacobi it-

erations. The rows of the grid which is transformed in each

iteration are allocated on the heap and accessed via two levels

on indirection.

Lu a naive implementation of LU decomposition, which factors a

matrix as the product of a lower triangular matrix and an upper

triangular matrix.

Matmul which implements the multiplication of two rectangular

matrices by divide and conquer.

Plu another implementation of LU decomposition with partial piv-

oting.

Spacemul an optimized implementation for matrix multiplication

of square matrices.
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Strassen which implements the Strassen algorithm for multiplying

square matrices.

Even though there are three implementations of matrix multiplication,

they show very different memory access patterns. Matmul recursively

splits the matrix along the largest dimension, which leads to striped

memory accesses if the largest dimension is not the x dimension.

Spacemul splits the square matrix in four quarters in each recursion

step, providing more parallelization opportunities. Strassen also

splits the matrix into four quarters, but processes them in a different

order, leading to less consecutive accesses.

For all programs we generated the serial elision, which resembles

a correct sequential execution of the program. We then placed

manual parallelization hints for speculation because the parallelization

analysis of Sambamba is not tailored towards speculation yet [112].

We changed the memory allocation in all programs such that large

objects are automatically aligned to 4096 bytes (the size of a memory

page). This ensures that partitions of the data by a power of two are

likely to reside on separate pages. This transformation could also be

fully automated by a parallelizing compiler by installing a custom

memory allocator or transforming the relevant memory allocation

sites.

In each program between one and four locations are parallelized. The

locations are always at the kernel of the computation, which is either a

recursive function or a loop. Speculation is often only needed because

of the imprecision of static analyses. Experts can reimplement these

algorithms without the need for speculation. Automatic approaches

however can not.
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Figure 5.5: Speedup of U-TLS achieved by automatic paralleliza-
tion of eight programs from the Cilk suite.

Figure 5.5 plots the speedups measured on the eight programs. We

observe that U-TLS is able to speed up five of the programs, but

only provides really good performance on the Spacemul program.

While the slowdown on Strassen is moderate, for Fft and Heat it is

severe. The geometric mean of the speedup of U-TLS is 1
2.69×, which

translates to a 2.69× slowdown. Without the Fft and Heat programs

it would be a 1.45× speedup. If we compare this to the numbers

generated with STM (see Section 4.3.2), we see the huge advantage

of U-TLS over TinySTM+: The latter had a 13.7× slowdown for the

same set of programs. Interestingly, though, for Fft and Heat , our

outliers in the above evaluation, TinySTM+ performed better.
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The large slowdowns of U-TLS are often caused by scattered memory

accesses, which cause fragmentation in the virtual memory descriptor

of the process (see Section 5.3.1.2). On Fft and Strassen this is

caused by the accesses to the shared array. Heat allocates the rows of

the grid as individual objects on the heap, so they are not consecutive

either. A further description of the characteristics of the different

programs and explanations for the performance observations are given

in Section 6.3.2.

5.4 Conclusion

In this chapter we presented the design and implementation of a

virtual memory based system for thread level speculation, called U-TLS.

Even though others proposed similar systems before, none is available

for evaluation. By using a very simple interface for creating task lists

and executing them in U-TLS, we allow for an easy use in manual as

well as automatic parallelization. The implementation is independent

from any embedder and even from the source language. It can be

compiled and executed on any POSIX compliant operating system

and consists of less than one thousand lines of code.

The evaluation shows that especially for large tasks which are typically

aimed for by automatic parallelization, U-TLS is indeed able to

provide a speedup close to full parallel execution without any runtime

system. The STM system as evaluated in Section 4.3 failed to provide

any speedup for those programs. However, U-TLS has a substantial

overhead for spawning the processes to execute the speculative tasks.

For small tasks, it therefore shows slowdowns that are similar to

execution in TinySTM+. Also, if the memory accesses executed by
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the speculative task are random within a large memory block, it

fragments the virtual address space, leading to large overheads for

handling further page faults in the kernel.

We conclude that utilizing the virtual memory system for TLS is a

promising approach, but certain operations need to be executed more

efficiently. We will try to achieve this by implementing major parts

of the TLS directly in the operating system, as described in the next

chapter.



Chapter 6

Virtual-Memory Based

Speculation in Kernel

Space

As shown in the previous chapter, U-TLS provides much better perfor-

mance than STM on typical automatically parallelized programs. It

still shows considerable overhead for all relevant phases of speculative

execution though: forking the processes to execute speculative tasks,

executing the user code itself, and writing back changes to the main

process. All of those operations can be sped up substantially by not

implementing them via system calls, but directly in the operating

system. Additionally, speculative tasks can be fully isolated from

each other even in the presence of arbitrary system calls inside the

speculative code.

This chapter describes the design, implementation and evaluation of

this novel approach called K-TLS.

117
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6.1 Design of K-TLS

As K-TLS executes major parts of the orchestration of speculative

tasks directly in the operating system, its implementation is split in

two parts: A Linux kernel module for the low-level process and mem-

ory management, and a user-space library which communicates with

the kernel module and handles sequential re-execution appropriately.

As the kernel module is able to intercept any system call executed

from within speculative tasks, it can effectively prohibit any action

which is not covered by the memory protection mechanisms involved.

This includes not only file I/O, but also sending signals to other

processes, starting new programs, forking a process, changing signal

handlers, starting timers, and many more.

K-TLS therefore poses no restrictions on the code to be executed

within speculative tasks, but guarantees sequential semantics in any

case. In uncertainly, K-TLS will conservatively abort a task and

trigger sequential re-execution.

This section describes the design and implementation of both the

kernel module as well as the user-space interface as shown in Algo-

rithm 6.1.

6.1.1 Data Structures

Similar to the U-TLS design, K-TLS also allocates one data structure

(KTLSContext) holding information about the execution of the whole

task list, and one structure (TaskState) per task. KTLSContext

consists of
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• parent task a pointer to the kernel structure describing the par-

ent process (the one which issued the ioctl system call to start

speculative execution).

• version an integer value containing the version of the main mem-

ory relative to the start of the whole task list. It is initialized

to zero and incremented each time a task commits.

• page versions a map containing the version of each single page

in memory. This map is updated during commit and used to

detect conflicts between speculative tasks (see Section 6.1.5).

A TaskState holds information about the execution of one single

speculative task:

• ctx a reference to the KTLSContext structure wrapping the exe-

cution of the whole task list.

• start version the version of committed state in main memory

when the first page fault happened.

• stack a pointer to the bottom of the memory region used for the

stack of this speculative task.

• proc a pointer to the memory structure describing the process

(also called task in Linux) which executes this speculative task.

• touched pages a set of all pages which were accessed during the

execution of this task.
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Algorithm 6.1 Pseudo-code implementation of K-TLS

1: procedure runTasks(tasks) . user-space interface
2: fd ← open(”/dev/ktls”)
3: numExec ← ioctl(fd ,KTLS RUN , tasks)
4: for i← numExec to len(tasks)− 1 do
5: functionPtr ← tasks[i].funcPtr
6: functionPtr(tasks[i].input , tasks[i].output)

7: procedure ktlsRun(tasks) . kernel-space entry
8: N ← len(tasks)
9: ctx ← allocate KTLSContext

10: ctx .parent task ← current
11: ctx .version ← 0
12: ctx .page versions ← allocate hash map
13: states[]← allocate N ∗ TaskState
14: for i← 0 to N − 1 do
15: states[i].ctx ← ctx
16: spawnTask(tasks[i], states[i])

17: exec ← 0
18: while exec < N do
19: waitForCompletion(states[exec].task)
20: valid ← validate(ctx , states[exec])
21: if not valid then
22: spawnTask(tasks[exec], states[exec])
23: waitForCompletion(states[exec].task)

24: if states[exec].task .exit code 6= 0 then
25: break
26: commit(ctx , states[exec])
27: exec ← exec + 1

28: for i← exec to N − 1 do
29: kill(states[i].task)

30: return exec

31: procedure spawnTask(task , state) . spawn new task
32: state.proc ← copyProcess(current)
33: protectMemory(state.proc)
34: state.touched pages ← allocate hash set
35: state.stack ← allocateVma(state.task , 16 ∗ 220)
36: stackTop ← state.stack + 16 ∗ 220

37: outputSpace ← stackTop − len(task .output)
38: inputSpace ← outputSpace − len(task .input)
39: inputSpace[0 : len(task .input)]← task .input [0 : len(task .input)]
40: state.proc.regs.rbp ← inputSpace
41: state.proc.regs.rsp ← inputSpace
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42: state.proc.regs.rip ← task .fun
43: state.proc.regs.rdi ← inputSpace
44: state.proc.regs.rsi ← outputSpace
45: scheduleTask(state.proc)

46: procedure protectMemory(proc) . setup virtual memory
47: for each vma in proc.vmas do
48: if vma.flags & VM WRITE then
49: clearPages(proc, vma)
50: vma.page fault handler ← pageFault
51: vma.vm private data ← proc

52: procedure pageFault(addr) . page fault handler
53: state ← findVma(current , addr).vm private data
54: if state.touched pages is empty then
55: state.start version ← state.ctx .version
56: page ← pageTableWalk(state.ctx .parent task , addr)
57: if page exists then
58: add addr to state.touched pages
59: return page
60: else
61: return NO PAGE

62: procedure validate(ctx , state) . pre-commit validation
63: if state.start version = ctx .version then
64: return true
65: for each addr in state.touched pages do
66: if ctx .page versions[addr ] > state.start version then
67: return false
68: return true

69: procedure commit(ctx , state) . commit speculative state
70: for each addr in state.touched pages do
71: newP ← pageTableWalk(state.task , addr)
72: oldP ← pageTableWalk(ctx .parent task , addr)
73: if newP 6= oldP then
74: pageTableUpdate(ctx .parent task , addr , newP)
75: ctx .page versions[addr]← ctx .version + 1

76: ctx .version ← ctx .version + 1
77: outputSpace ← state.stack + 16 ∗ 220 − len(task .output)
78: task .output [0 : len(task .output)]← outputSpace[0 : len(task .output)]
79: flushTlb(ctx .parent task)
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6.1.2 User-Space Interface

The interface for starting speculative parallel execution in K-TLS is

identical to the one of U-TLS (cp. Section 5.1). The difference in

the implementation is that the task list is not processed, but simply

passed on to the kernel module via an ioctl call. This call returns

the number of tasks which were executed and successfully committed

in the kernel. If this number is smaller than the number of tasks in

the list, the remaining tasks are executed in user space sequentially

(lines 4 to 6).

6.1.3 Kernel-Space Interface

The kernel-space routine that implements the ioctl call is ktlsRun,

which receives the task list from user space. It then allocates a

KTLSContext to store information about the execution of the current

task list, and an array of N TaskState structures, one for each task.

Then, the individual tasks are forked as described in the next section.

Afterwards, they are committed in order (lines 18 to 27). Just as for

U-TLS, the parent first waits for the completion of the task. Then, it

validates the recorded changes of the task (see Section 6.1.5). If this

validation fails, the task is re-spawned with an up-to-date view of all

memory changes committed so far (lines 22 to 23). This re-spawned

process does not need to be validated, since no other task committed

since its start. It is checked however, that the last spawned process

for this task (original or re-spawned) did complete the execution of

the user code (line 24). If this check fails, it means that the process

either received a signal because of illegal memory accesses, or exited
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explicitly by calling abort or triggering an assertion. If all checks

succeed, then the task’s memory changes are committed to the main

process (see Section 6.1.5).

6.1.4 Execution of Speculative Tasks

After a new child process is forked from the main process (line 32),

its memory is made inaccessible by iterating over all writable virtual

memory areas (VMAs) and clearing all pages corresponding to those

VMAs from the page table. Also, our own page fault handler is

registered for those VMAs. Then, a hash map for all accessed memory

pages is allocated, and a new memory area for the stack is created

with a size of 16 MB. This memory region is unprotected, and pages

are allocated on demand. The top of the stack is initialized with

a copy of the input data of the task, such that accessing this data

does not trigger a page fault. Also, space for the output of the task

is reserved there. The content of this space will be copied to the

original output location of the task during the commit phase. Then,

the registers of the newly forked task are set such that the process—

once scheduled—will use the newly allocated stack for its stack frames

(remember that the stack grows downwards), and will execute the

user code with the input and output spaces on the stack as arguments

(lines 40 to 44). Finally, the task is scheduled for execution by an

idle core.

During execution of a speculative task, the kernel module only be-

comes active if page faults or system calls happen (see Section 6.1.6).

Page faults are handled by a general routine in the kernel, which

looks up the VMA of the faulting address, and calls the page fault
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handler registered for this VMA. For the VMAs protected by K-TLS,

this will be the pageFault routine (line 52). It first resolves the

memory address to the VMA of the current process, to get a pointer

to the TaskState structure of the current task. If it then finds that

this is the first page fault in this task, it sets the start version of the

task to the committed version in main memory (task .ctx .version),

which is identical to the index in the task list of the last committed

task plus one. This ensures that there are no false conflicts reported

with tasks that commit between the fork point and the first memory

access of the current task. We could further reduce the number of

false conflicts by storing the read version for each single accessed

page. It is unclear, however, whether the additional resources for this

would pay off. We thus leave this for future work. The page fault

handler proceeds by looking up the page in the page table of the

parent task (line 56). If the page exists, its address is added to the

set of touched pages, and it is returned as the outcome of the page

fault. The operating system then adds the page to the page table of

the current task, or creates a private copy of it in the case of a write

page fault. If no corresponding page is found in the parent process,

NO PAGE is returned by the page fault handler, which results in a

segmentation fault being triggered.

6.1.5 Validation and Commit

The pre-commit validation of a task can be cut short if no task com-

mitted since the first memory access of the task (line 63). Otherwise,

all pages which have been touched by the process (read or written)

are checked against the page versions map in the context to detect if
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any of them was modified since the start of the task. If no conflict is

found during this validation, then the actual commit phase can start.

During commit, for each page which was accessed by the child task,

the kernel module compares the physical pages this address maps to

in the task and the parent process (lines 71 to 72). If those pages

differ, we can conclude that the kernel created a private copy of the

page via the copy-on-write semantics of shared pages, thus we know

that the page was modified. In this case, we update the page table of

the parent process to map addr to the modified page new , and register

the new version of this page in the ctx .page versions map. Note that

the physical page in the parent cannot have changed during execution

of this task by committing other tasks, because otherwise a conflict

would have been reported. After committing all changed memory

pages, we update the overall memory version (line 76) and copy the

direct output of the task (cf. Section 5.1) from the child’s stack back

to the parent (lines 77 to 78). Also, the translation lookaside buffer

(TLB) of the parent process is flushed such that it is refilled by the

hardware with the modified page table entries.

6.1.6 Handling of System Calls

TLS systems often promise full isolation of speculative tasks, but

this merely includes memory effects. As a kernel module, K-TLS

also provides full isolation in the presence of system calls like I/O

or low-level memory operations like mmap or mprotect. To this end,

the kernel module manipulates the system call table which stores

the pointers to the kernel-mode system call handlers. All entries
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corresponding to forbidden system calls1 are rewritten such that a

K-TLS routine is invoked on an attempt to perform a system call.

This routine first checks whether the current process executes a

speculative K-TLS task. If not, the routine jumps to the original

system call handler. This check only requires a small number of

memory accesses, and produces no observable overhead. If the process

executes a speculative task, the task is immediately aborted. Aborted

tasks are later detected as invalid executions, hence they will re-

execute sequentially.

6.1.7 Optimizations

For clarity of presentation, we slightly simplified some of the imple-

mentation details in the previous sections. For performance reasons,

the actual implementation sometimes deviates from the description

in the text. We give an overview over these optimizations below.

In the code shown in Algorithm 6.1, the main process first forks each

task, and then sets up the forked task for speculative execution. The

real implementation actually does most of the setup in the forked task

itself, thereby executing it in parallel to the setup of other tasks and

removing its delay from the critical path. This is achieved by setting

the instruction pointer initially to the newly allocated stack area,

and having the stack page fault handler execute the setup on the

first page fault (this handler otherwise just returns a newly allocated

page). The parent then only copies the current process, sets up the

1A small number of system calls is white-listed because they do not modify
any state in their process, e.g. nanosleep or gettimeofday.
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stack VMA and the instruction pointer, and schedules the task for

execution.

We also optimize the actual cloning of the process: Instead of per-

forming a deep copy of the parent page table—as it is usually done

in a fork—and then clearing all page table entries which belong to

protected memory (line 49), we just skip copying the respective VMAs

and associated page table entries, and allocate new VMAs during the

aforementioned setup. The new VMAs refer directly to the custom

page fault handler (line 52) which will be called by the kernel if a page

fault happens inside one of these VMAs. Similarly, the file descriptor

table does not need to be copied, since system calls working on these

open files are prohibited anyway.

Since spawning new processes still requires significant time (see Sec-

tion 5.3.1.1), we avoid repeated forking by reusing finished processes

for the execution of later tasks. To this end, after committing or

rolling back a finished task, the corresponding process does not exit.

Instead, it clears all page table entries belonging to writable VMAs,

puts itself in a waiting queue and sleeps until it is woken up to either

execute another speculative task, or because the parent process is

exiting. After waking up, it checks that its VMAs are still in line

with those in the parent process, and updates them otherwise.

6.2 Improving Granularity via Instrumenta-

tion

As discussed in Section 2.2.5, a general problem of isolating speculative

from non-speculative memory by protecting and communicating whole
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memory pages is the coarse granularity implied by these approaches.

Since only the first access to each page is observed, the validation

and commit phases have no information about which memory regions

inside the respective page have been read or written. By keeping the

version of each memory page at the starting time of a transaction,

the granularity for memory writes can be improved by diffing the

speculative against the original memory page. This however only

solves the problem for write-after-write conflicts on pages which were

not read by any of the participating transactions. As we also allow

read accesses on any write-enabled page, this approach would not

work in our setting.

In order to fully solve the problem of granularity, we propose to

add code instrumentation to the K-TLS approach, in order to track

memory accesses at runtime. We thus create a system with tunable

granularity, but performance comparable to the fastest known sys-

tems. The design and implementation of this addition—which we call

K-TLS+—is described in the remainder of this section. This work

was conducted together with Daniel Birtel and is partially described

in his Bachelor’s thesis [7].

6.2.1 Overall Design

Previous work (see Section 2.2.5) has shown that the ideal granularity

differs greatly between applications, as it heavily depends on the

memory access patterns of the transactional tasks. Also, the granu-

larity should not be fixed within one program run as it varies also

within one application. Therefore, we keep the choice of granularity

dynamic.
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As we want to be able to switch seamlessly between the TLS imple-

mentation, K-TLS+ uses the same interface as K-TLS and U-TLS

(see Section 5.1). The task list is extended by an integer field which

specifies the granularity used for instrumenting the code. Since typi-

cally a compiler is used for code instrumentation, it can easily fill in

the chosen granularity when generating the code for spawning the

speculative tasks.

The idea of K-TLS+ is simple: We associate two bits for each block

of memory as defined by the granularity. One bit stores whether

the corresponding block was read by the transaction, the other one

whether it was modified. These bits are then used during validation,

such that we now check for memory conflicts per memory block

instead of per memory page, thereby reducing the granularity of

conflict checking.

In order to keep the overhead of the instrumented code low, we

restrict ourselves to granularities that are powers of two. The system

supports granularities between 20 and 212, where the latter merely

exists for comparison purposes, as it does not improve granularity

over K-TLS (212 is the size of a memory page on the x86 architecture).

The access bits are stored in shadow memory which is automatically

allocated by the kernel module. This shadow memory is located at a

fixed offset (see Section 6.2.2), and all accessible memory is mapped

linearly into this area, such that the computation of the shadow

memory address based on the accessed memory address is very cheap

(see Section 6.2.3). Note that we make use of lazy page allocation for

the shadow memory, such that we only allocate the shadow memory

pages which are actually accessed within each transaction.
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6.2.2 Accessing the Shadow Memory

The concept of shadow memory [68, 69] is used by different tools to

store additional information for every byte or larger block of memory.

This is particularly interesting for automatic approaches which should

not or can not alter the layout of the memory objects themselves.

Different schemes have been proposed to map arbitrary objects in

memory to corresponding shadow memory. Traditional approaches

like Valgrind [70, 71] or Dr. Memory [11] use single- or multi-level

translation schemes similar to hash tables or multi-level page tables

to implement the mapping. They speed up the lookup procedure

by optimizing for the case that the respective entry in the lookup

structure already exists, and accept larger overhead for the rare case

that new data needs to be allocated. This is achieved by initializing

all pointers such that an attempt to dereference them leads to a

signal, which is then caught by a special signal handler which sets

up the respective data. This allows to skip all explicit checks for

non-existing data. Using this technique, Valgrind and Dr. Memory

achieve small single-digit overhead factors.

If the address space is large enough though—which is the case nowa-

days on 64 bit architectures—the overhead can be further reduced

by completely eliminating memory loads to determine the address of

the shadow memory. In order to achieve this, the shadow memory

region must be located at a fixed offset, and be big enough to hold

the metadata for all application memory. In this case, the shadow

memory is just a projection of the real memory by shifting and scal-

ing the memory address. Hence, computing the shadow memory

address requires just a small number of arithmetic instructions. Such
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an approach is implemented for example in the AddressSanitizer

tool [105].

In the case of K-TLS+, the shadow memory can actually be much

smaller than the corresponding application memory, since we only

need to store two bits of information for each memory block as

defined by the granularity. Hence each byte of shadow memory stores

the information for four blocks of memory. Even though the x86-

64 architecture specifies memory addresses to be of 64 bit, current

hardware only supports 48-bit physical addresses [1, 65]. The Linux

kernel in its current version further restricts this to 47 bit which

are addressable from user space [56]. Hence, the size of the shadow

memory area required to cover all address is

bytesshadowMemory =
247

4 ∗ bytesmemoryBlock

For the finest granularity (bytesmemoryBlock = 1), the shadow memory

area has to hold 245 bytes. For K-TLS+, we chose the address

0x100000000000 (= 244) for the start of the shadow memory. This

area is typically empty, as it is located 17 terabytes ahead of the

starting address of the heap, which grows upwards.

6.2.3 Code Instrumentation

K-TLS+ relies on the user-space software to update the shadow

memory correctly during execution of speculative code. Similar to

STM systems, this can either be done manually by only accessing

potentially conflicting memory locations via special library functions,
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or automatically by an instrumenting compiler. Since the main

target of this work is automatic parallelization, we only consider the

automatic approach in this work.

The instrumentation is performed by iterating over a copy of the

transactional code and augmenting all memory operations by code to

set the corresponding bit in shadow memory. Accesses to the local

stack are skipped since they can never conflict with other transactions.

When function calls are encountered in the speculative code, and

the callee is statically known, a copy of the respective function is

instrumented recursively, while instrumented functions are reused for

all other call sites to the same function. If indirect function calls are

encountered and the Sambamba runtime system is available, then the

call is replaced by a callback to the runtime system to resolve the

respective function and dynamically create the instrumented copy

of the function if it is not available yet. A small callsite-local cache

is used to store the mapping from un-instrumented to instrumented

functions. This cache is updated after each callback to the runtime

system (see Section 4.2 for details).

Some intrinsic functions like memset and memcpy are handled sepa-

rately by marking the respective shadow memory bits explicitly (see

Section 6.2.3.2). The execution of any other intrinsic call, which is

not marked as readnone in LLVM (specifying that the respective

operation does not read or modify any memory) and is not explicitly

whitelisted leads to a rollback of the respective task. The same applies

to any external function call, like for example to the C library.

The remainder of this section details the instrumentation performed

for different LLVM instructions.
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6.2.3.1 Load and Store Operations

The most common instruction that needs to be instrumented is a

load or store instruction. In LLVM, each such instruction takes

the address of the memory object, and statically knows the type of

the accessed element. From the type, we can directly derive the size

of the element in terms of bytes. Also, each load or store carries

information about the guaranteed alignment of the memory object.

For most cases, it is statically known that only one memory block is

accessed, so only a single meta data unit (MDU) needs to be updated.

A single stream of instructions can be emitted to compute the address

of the shadow memory byte and the index of bit to be updated within

this byte, and then load the respective byte, set the computed bit,

and store it back. In this case, no control flow is involved, and a

single load and store is sufficient to update the information in shadow

memory.

This single-MDU update is sufficient if (a) the size of the accessed

element is not greater than a memory block, and (b) the alignment

is at least as large as the size of the element. If any of these two

conditions is not fulfilled, more complex code has to be emitted to

potentially update more than just one bit. Measurements on our

benchmarks have shown that for granularities of word-size or larger

most instrumented locations just require a single-MDU update (see

Table 6.3 on page 156). For the remaining cases the code is more

complex, as potentially more that one word in the shadow memory

has to be updated. This requires adding control flow. For this code,

we fall back to the more general case of updating a dynamically

sized memory region, as described in Section 6.2.3.2. As the size
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Algorithm 6.2 Computations done for a single-bit shadow memory
update. See Algorithm 6.3 for the actual LLVM instructions emitted
to implement this computation.

metadataUnit =

⌊
address

bytesmemoryBlock

⌋
shadowByteAddr = 0x100000000000 +

⌊
metadataUnit

4

⌋
bitInShadowByte = 2 ∗ (metadataUnit mod 4) + (isStore ? 1 : 0)

oldShadowByte = load(shadowByteAddr)

newShadowByte = oldShadowByte | 2bitInShadowByte

store(shadowByteAddr , newShadowByte)

of the memory to be updated is always known for loads and stores,

we always take advantage of the optimizations described there, and

hence never generate the full code necessary for the general case.

As described in Section 6.2.2, the shadow memory is located in such

a way that computing the shadow memory address for any given

memory address does not require additional memory operations.

Instead, it is computed via a number of arithmetic operations as

described in Algorithm 6.2.

First, the index of the metadataUnit is computed by dividing the

actual memory address by the size of a memory block (which is always

a power of two). Since each metadata unit consists of two bits, four

of these units are stored in each byte of shadow memory, as computed

in shadowByteAddr . The bit which represents the corresponding

memory operation inside of this shadow memory byte is computed

as the index of the metadata unit modulo 4 if it is a reading memory

operation, and one more for a writing memory operation. Then,
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Algorithm 6.3 Instrumentation of one store instruction in LLVM.
The %granularity value is a fixed constant during instrumentation,
so some of the computations are folded by later optimizations.

store <type > %value , <type >* %address

↓
store <type > %value , <type >* %address

%addressInt = ptrtoint %address to i64

%metadataUnit = lshr i64 %addressInt , %granularity

%metadataUnitInByte = and i64 3, %metadataUnit

%readBitOffsetInByte = shl i64 %metadataUnitInByte , 1

%writeBitOffsetInByte = add i64 %readBitOffsetInByte , 1

%updateMask = shl i8 1, %writeBitOffsetInByte

%metadataUnitOffset = lshr i64 %metadataUnit , 2

%shadowByte = add i64 0x100000000000 , %metadataUnitOffset

%shadowByteAddr = inttoptr i64 %shadowByte to i8*

%oldShadowByte = load i8* %shadowByteAddr

%newShadowByte = or i8 %oldShadowByte , %updateMask

store i8 %newShadowByte , i8* %shadowByteAddr

the shadow memory byte is loaded, and the respective bit is set by

conjunctively combining the loaded byte with a mask where only that

one bit is set. This new value is then written back to memory.

The actual computation as inserted via instrumentation of the LLVM

code is given in Algorithm 6.3. Note that the ptrtoint and inttoptr

just convert between different types on the LLVM level, and hence

are no-ops in the generated machine code. Also, %granularity is a

constant value at the time of instrumentation, so later optimization

phases often further optimize the instruction sequence by combining

redundant instructions. Statically known alignment information

might further reduce the amount of computations.

If the memory address is fully known at link time—as it is the case

for global variables—the arithmetic operations for computing both

the address of the shadow memory byte as well as the mask for the
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updated value are folded into so called constant expressions, which

are translated into constants at link time.

6.2.3.2 Updating Larger Memory Blocks

The above mentioned code sequences only work for those cases where

we can statically prove that only a single memory block will be

touched by the memory access—and hence, only a single bit needs to

be set in shadow memory. If the accessed memory region is too large,

or not aligned properly, or if its size is not statically known—like for

example on memset calls—, more general code is emitted which is

able to efficiently update an arbitrary number of MDUs.

Algorithm 6.4 shows the pseudo-code implementation of such a shadow

memory update involving potentially more than one MDU. Since it

contains several branches and a loop with unknown trip count, it is

much more heavy-weight than the simple procedure for updating a

single MDU as shown in Section 6.2.3.1. In the first step, the index

of the first and the last involved MDU is computed. Based on this,

we compute the address of the first and the last shadow memory

word to update, and the mask to update just the upper or lower

part of these words as appropriate. Now in the special case that

only a single word needs to be updated, we combine both computed

masks and update this one word. Otherwise, we update the first and

the last word, and then continue updating all full words in between.

The check for firstShadowWord < lastShadowWord is needed for the

special case that the length of the memory block is 0, which can

happen for intrinsic calls like memset .
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Algorithm 6.4 Pseudo-code implementation of a multi-MDU up-
date. See Algorithm 6.5 for the actual LLVM instructions emitted to
implement it.

1: input: void* startAddress, void* endAddress, bool isStore
2: global: uint64 t *shadowMemory

3: bitMask ← 0x5555555555555555� (isStore ? 1 : 0)
4: firstMDU ← (uint64 t)startAddress � granularity
5: lastMDU ← ((uint64 t)endAddress − 1)� granularity
6: firstShadowWord ← shadowMemory + (firstMDU � 5)
7: lastShadowWord ← shadowMemory + (lastMDU � 5)
8: firstWordMask ← bitMask � (2 ∗ (firstMDU & 31))
9: lastWordMask ← bitMask � (62− 2 ∗ (lastMDU & 31))

10: if firstShadowWord == lastShadowWord then
11: updateMask ← firstWordMask & lastWordMask
12: ∗firstShadowWord |= updateMask
13: else if firstShadowWord < lastShadowWord then
14: ∗firstShadowWord |= firstWordMask
15: ∗lastShadowWord |= lastWordMask
16: for word← firstShadowWord + 1 to lastShadowWord −1 do
17: ∗word |= bitMask

The actual bitcode emitted, as shown in Algorithm 6.5, contains

six new basic blocks which are inserted between the instrumented

instruction and its successor. It closely implements the code shown in

Algorithm 6.4, with the check for an empty length moved further up to

avoid partial dead code. Depending on static information computed at

instrumentation time some of the branches can be skipped completely.

In the case of an unaligned or too large load or store, where the size

of the accessed memory is always known, the check for zero length

and the branch depending on it can be skipped. Also, for all accesses

up to 32∗bytesmemoryBlock +1, we know that no more than two words

of shadow memory will be updated, since not more than 33 MDUs
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Algorithm 6.5 LLVM instructions emitted to implement a multi-
MDU update. Depending on further static information, the code can
be minimized by later optimization passes.

c a l l void @llvm . memset ( i 8 ∗ %address , i 8 %val , i 64 %len )

↓
c a l l void @llvm . memset ( i 8 ∗ %address , i 8 %val , i 64 %len )
%isZeroLen = icmp eq i64 %len , 0
br i 1 %isZeroLen , l a b e l %continuation , l a b e l %updateMDUs

updateMDUs :
%startAddr = p t r t o i n t %address to i64
%endAddr = add i64 %startAddr , %len
%firstMDU = l s h r i64 %startAddr , %granular i ty
%endAddrMinusOne = sub i64 %endAddr , 1
%lastMDU = l s h r i64 %endAddrMinusOne , %granular i ty
%firstWordOffset = l s h r i64 %firstMDU , 5
%firstWordAddr = gete l ementptr i64 ,

i 64 ∗ ( i n t t op t r i 64 0x100000000000 to i64 ∗ ) , i 64 %firstWordOffset
%lastWordOffset = l s h r i64 %lastMDU , 5
%lastWordAddr = gete l ementptr i64 ,

i 64 ∗ ( i n t t op t r i 64 0x100000000000 to i64 ∗ ) , i 64 %lastWordOffset
%firstMDUindex = and i64 %firstMDU , 31
%firstMDUbitnr = sh l %firstMDUindex , 1
%firstWordMask = sh l 0xaaaaaaaaaaaaaaaa , %firstMDUbitnr
%lastMDUindex = and i64 %lastMDU , 31
%lastMDUbitnr = sh l %lastMDUindex , 1
%lastWordNonAffectedBits = sub i64 62 , %lastMDUbitnr
%lastWordMask = l s h r 0xaaaaaaaaaaaaaaaa , %lastWordNonAffectedBits
%isSingleWordUpdate = icmp eq i64 ∗ %firstWord , %lastWord
br i 1 %isSingleWordUpdate ,

l a b e l %updateSingleWord , l a b e l %updateMultipleWords

updateSingleWord :
%updateMask = and i64 %firstWordMask , %lastWordMask
%oldSingleWord = load i64 ∗ %firstWordAddr
%newSingleWord = or i 8 %oldWord , %updateMask
s t o r e i 64 %newSingleWord , i 64 ∗ %firstWordAddr
br l a b e l %continuation

updateMultipleWords :
%oldFirstWord = load i64 ∗ %firstWordAddr
%newFirstWord = or i 8 %oldFirstWord , %firstWordMask
s t o r e i 64 %newFirstWord , i 64 ∗ %firstWordAddr
%oldLastWord = load i64 ∗ %lastWordAddr
%newLastWord = or i 8 %oldLastWord , %lastWordMask
s t o r e i 64 %newLastWord , i 64 ∗ %lastWordAddr
br l a b e l %updateWordsInBetween

updateWordsInBetween :
%prevWord = phi i 64 ∗ [ %firstWord , %updateMultipleWords ] ,

[ %nextWord , %updateWordsInBetween ]
%nextWord = gete l ementptr i64 , i 64 ∗ %prevWord , i 32 1
%f in i shed = icmp eq %nextWord , %lastWordAddr
br i 1 %finished , l a b e l %continuation , l a b e l %updateNextWord

updateNextWord :
%oldWord = load i64 ∗ %nextWord
%newWord = or i 8 %oldWord , 0xaaaaaaaaaaaaaaaa
s t o r e i 64 %newWord, i 64 ∗ %nextWord
br l a b e l %updateWordsInBetween

cont inuat i on :
[ . . . ]



6.2. Improving Granularity via Instrumentation 139

are involved. We can thus skip the whole loop consisting of the blocks

updateWordsInBetween and updateNextWord . Those optimizations

could potentially also be performed by later optimization stages, but

we implement them directly in the instrumentation pass to avoid

unnecessary overhead, and avoid relying on sophisticated compiler

analyses (at least for the second case).

6.2.4 Changes to the Kernel Module

Apart from the instrumentation of the target code in order to explicitly

mark accessed memory regions, also changes in the kernel module

are needed. For each task, a special virtual memory area (VMA)

for the shadow memory is allocated and it is used to improve the

granularity during validation and commit of a task’s changes. This

section describes the changes to the kernel module in detail.

6.2.4.1 Task Setup

During the setup of a task, before any of the actual code is executed,

a VMA for the shadow memory is created. Its size is determined by

the granularity according to the formula given in Section 6.2.2:

shadow memory size = 1� (45− granularity)

This accounts for the addressable address space of 247 bytes, and

the ability to store four MDUs in one byte. The VMA is allocated

directly after the setup of the task’s virtual memory descriptor, hence

in the child process itself (see Section 6.1.7). If a task is reused, we

ensure that the VMA for the shadow memory is at least as large
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as required for executing this task, i.e. we increase it if necessary,

but never decrease. Note that for this VMA no actual memory is

allocated yet, just the kernel structure is created to allow the user

code to access this memory. The memory pages are allocated on

demand during execution, and are initialized to zero.

6.2.4.2 Validation

During validation, the information stored in the shadow memory is

used to prove tasks memory-conflict-free, even though they accessed

the same memory page. For each page, we first run the usual valida-

tion of K-TLS (see Section 6.1.5). Only if this validation detects a

conflict with a previous task, we inspect the shadow memory of both

tasks for the respective page. We thus keep the shadow memory of

committed tasks present until all tasks which overlapped in execution

did also commit.

The validation against the shadow memory of another task is per-

formed by iterating over the shadow memory word by word and check-

ing whether any MDU was written in the previous task and read or

written by the current task. This comparison can be implemented

using bit operations:

if (current_word & (other_word | (other_word >> 1)) != 0) {

return MEMORY_CONFLICT;

}

If the granularity is large enough such that one shadow word covers

more than one memory page, then this simple check could return

true even though there is no conflict on the page we are currently

checking, but on another (neighboring) one. However, since we are
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only interested in the outcome for all modified pages, it is ok to

return MEMORY CONFLICT also in this case.

6.2.4.3 Commit

In K-TLS+, the commit procedure works very different from the

one of K-TLS. Instead of moving physical pages between the child

process and the parent by copying page table entries, we actually

copy the changed memory content from the child’s physical pages to

the parent’s. Even though for some of the changed pages it might

also be possible to use K-TLS’ approach, we decided against this in

order to be able to compare both approaches against each other. In

some cases copying might even be faster, especially if only a small

portion of the page was actually modified. Also, the complexity of

the implementation is simplified a lot, and we do not need to flush

the translation lookaside buffer (TLB) of the parent process after

commit, since no page table entries are changed.

For the commit itself, we iterate over the shadow memory of all

changed pages word by word and find ranges of modified memory

within that page. This procedure is again implemented using bit

operations and the count trailing zeros built-in, for which a hardware

instruction exists on most architectures. When a range is finished, we

use memcpy to copy over the respective part of the child’s physical

memory page to the parent’s. As the evaluation of this approach

showed surprising peaks in the commit time for low granularities

on some benchmarks (up to three times larger than K-TLS’ commit

time), we investigated this and found out that it happens if many

small regions are found within one page, and we hence call memcpy
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very often. It turned out that the performance can be improved

by more than a factor of two by replacing the memcpy by a macro

which first checks whether the length of the region is exactly 1, 2, 4

or 8 bytes and using a simple memory load/store combination for

those cases. As this check generally does not hurt the performance

significantly, we keep this implementation.

6.3 Evaluation

Since K-TLS requires loading a kernel module into the operating

system of the evaluation system, all evaluation is performed in a

virtual machine. Intel virtualization extensions (VT-x) are enabled

to minimize the runtime impact of virtualization.

We verified the measurements in the VM against executions directly

on the host system, and checked that the time measures match. The

host system is the same as before. It is equipped with a quad-core

Intel i7 870 CPU running at 2.93 GHz and 16 GB of main memory, and

is running the Linux kernel in version 4.1.12. The virtual machine has

access to all four CPUs, and 8 GB of memory. For each benchmark,

we run at least 10 runs and report the arithmetic mean over the first

three quartiles. No other processes were executing on both the host

and the guest system.

We compare the K-TLS system against U-TLS as described in Chap-

ter 5, and include TinySTM+ (see Chapter 4) for reference. In

Section 6.3.3 we compare K-TLS+ against K-TLS and also U-TLS.
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6.3.1 TLS Overhead

In this section we measure the performance of the primitive operations

of K-TLS and compare it against the same operations in U-TLS.

Analogous to Section 5.3.1, we measure the time for spawning tasks,

the overhead that the speculation system induces during the parallel

execution of the tasks, and the validation and commit time. The

microbenchmarks are the same as introduced in Section 5.3.1.

6.3.1.1 Spawning Tasks

Similarly to U-TLS, K-TLS spawns individual processes to execute

the individual tasks. By implementing the forking and all setup of

the processes directly in the kernel, it not only saves a lot of context

switches (for example to protect each VMA in the process), but it

also executes less redundant work. Instead of creating a deep copy of

the whole page table and then clearing it again via mprotect system

calls, K-TLS already skips the respective VMAs when cloning the

page table. Instead, it installs empty VMAs afterwards and registers

as the page fault handler for those areas.

We execute the benchmark already shown in Section 5.3.1.1 with

U-TLS, in order to evaluate the effect of this optimization and the

other minor changes mentioned in Section 6.1.7. The results are

shown in Figure 6.1. K-TLS takes about 2 ms for spawning the first

task, and between 0.5 and 0.6 ms per additional task. Since the page

table entries for all writable regions are omitted during the fork of

the child process, the spawn times in K-TLS are independent of the

amount of memory allocated in the process. We therefore show just
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Figure 6.1: Overhead comparison for spawning a task list of
varying size in K-TLS versus U-TLS and multi-threaded systems.
K-TLS forks the process directly in the kernel, requiring less
context switches than U-TLS for protecting memory. K-TLS takes
around 2.2 ms initially plus 0.5 ms per spawned task. Additionally,
it reuses tasks once they finish execution, leading to less actually

forked tasks for larger numbers.

one plot for K-TLS, just as for TinySTM+. The overhead of forking

a process in K-TLS is about a factor of two lower than for U-TLS. If

the task has access to 1 GB of user data, the factor increases to 11×.

Additionally, by reusing the processes after finishing the execution

of one task, K-TLS further reduces the cost per additional task to

below 0.2 ms, which becomes visible if a larger number of tasks is

spawned. For spawning 64 tasks, K-TLS even beats the time it takes
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an STM-based system to create the respective threads; K-TLS takes

on average 0.28 ms per task while U-TLS takes 1.23 ms to 9.74 ms

and TinySTM+ 0.41 ms.

6.3.1.2 Execution Overhead

The next benchmark evaluates the execution overhead of K-TLS.

Here, the overhead is mainly caused by handling the page faults

which are triggered by the MMU whenever the process executing

a speculative task accesses a memory page for the first time. In

contrast to U-TLS, the page fault will not result in a segmentation

fault which is then handled in user space, but instead, the page fault

will directly be handled in kernel space by the K-TLS kernel module.

So instead of six to eight context switches (see Section 5.3.1.2), just

two are needed: to kernel space and back.

The effect of this improvement can be seen in Figures 6.2a and 6.2b.

For a small number of write operations, no parallelization scheme

will be able to provide speedup, since the overall sequential execution

time is below one millisecond or just slightly above it. However, even

in this range, K-TLS performs significantly better than U-TLS. In

the mid-range, where U-TLS faces the problem of fragmenting the

virtual address space, K-TLS shows consistent performance. This is

because no kernel structures are changed when handling the page

faults. The new page is directly inserted into the page table, which

has null entries for all the non-accessible pages. From 215 write

accesses on, K-TLS performs better than sequential execution, even

though at this point sequential execution only takes 38 ms overall.
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Figure 6.2: Performance of the different runtime systems in
an artificial benchmark, in which each task randomly updates
memory cells within a 16 MB memory block (cf. Figure 5.3). K-TLS
performs much better than both U-TLS and TinySTM. It provides
speedups over sequential execution for mid-sized to large-sized
matrices, and finally comes close to the perfect speedup of 4×.
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Figure 6.3: Performance comparison of K-TLS, U-TLS and
TinySTM+ in a benchmark in which each task writes linearly to
a memory block of varying size (cf. Figure 5.4). Again, K-TLS
provides much better performance than U-TLS for small or medium
tasks, and is consistently better than TinySTM+. K-TLS commits
the written memory block between 5× and 18× faster than U-TLS.
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Also for the benchmark which linearly writes a memory block of

varying size, shown in Figure 6.3, there is a huge difference between

K-TLS and U-TLS performance especially for small to medium-sized

tasks. Only if tasks write a really huge memory block, U-TLS is

able to catch up. This suggests that for this setting, the TLS over-

head is hidden behind the performance loss due to frequent cache

misses. However, K-TLS still performs slightly faster, providing a

3.0× speedup for the largest input compared to 2.6× for U-TLS.

6.3.1.3 Validation and Commit

Figures 6.2c and 6.2d show the validation and commit time for the

benchmark performing random updates within a constant-size block

of memory, Figures 6.3c and 6.3d for linearly writing to memory. Our

first observation is that K-TLS performs significantly better than

U-TLS for small to medium workloads. Since validation does not

require any communication between processes, K-TLS has benefits

especially if the amount of data to be communicated is low. As the

granularity we use for measuring execution times is one microsecond,

we see no time reported at all if the execution takes less than one

microsecond. Even though the validation times of U-TLS are also

negligible in relation to the overall execution time, it takes more than

50× longer for small to medium workloads. For larger workloads, the

validation times of both approaches converge, as they are dominated

now by the lookup in the hash table, which has about the same run

time in both implementations.

For the commit time, K-TLS also has a huge advantage over the full

range of inputs. It varies between 5× (for large tasks) and 11× (for
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small to medium tasks) improvement over U-TLS. For linear writes,

the commit phase contributes between 1 % and 1.5 % of the overall

run time. For random writes, it increases to 12.6 % at 210 writes,

and then decreases to less than 0.01 % for huge workloads. This is

because the number of written pages increases much faster than for

the linear write, but then stabilizes once all 4096 pages have been

written.

6.3.2 Usage in Automatic Parallelization

After evaluating the performance in micro-benchmarks to show the

benefit of implementing core TLS operations in the kernel, we want

to see how this effects the performance of automatically parallelized

real-world programs. For this, we run the benchmarks from the

Cilk suite as introduced in Section 5.3.2. Table 6.1 lists the input

parameters used for this evaluation, and some basic characteristics of

the execution.

Figure 6.4 shows the speedups of K-TLS and U-TLS over sequential

execution of the eight programs. We observe that while U-TLS is

only able to speed up five of the programs, K-TLS provides speedups

for seven of them. Also, K-TLS is superior to U-TLS in all cases

except for spacemul, where they are on a par. The independent

two-sample t-test verifies that the difference between K-TLS and

U-TLS is significant for each of the other programs (p ≤ 0.01). The

geometric mean of the speedup of K-TLS is 2.02×, while U-TLS

shows a slowdown of 2.69×. This sums up to a 5.45× speedup of

K-TLS over U-TLS.
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Table 6.1: Characteristics of eight programs from the Cilk pro-
gram suite, automatically parallelized using the Sambamba frame-
work [112]. All programs require speculation, either because of
possible side effects like termination in parallel tasks, because of
real data dependences, or because of imprecision in the static

analyses. The performance numbers are shown in Table 6.2.
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Cilksort 4194304 8 0 0 % 6148 4096

Fft 4194304 18 1 5.6 % 7769 1294

Heat 4096x1024x100 204 2 1.0 % 8088 4056

Lu 2048 756 147 19.44 % 49 18

Matmul 2048 2 0 0 % 8195 2048

Plu 2048 150 0 0 % 327 135

Spacemul 2048 8 0 0 % 6149 2048

Strassen 2048 8 0 0 % 6149 2048

Interestingly, both U-TLS and K-TLS still provide speedup for the

Lu program, where the percentage of rollbacks is close to 20 %. These

rollbacks are caused by the many small tasks which operate on data

which does not span multiple pages, resulting in false conflicts being

detected. Note that the average runtime of one task is only 16.9 ms

in this benchmark, and the number of read and written pages is the

lowest of all programs. This suggests that virtual-memory based TLS

systems even provide speedups for low to medium sized parallel tasks.

The programs with the lowest performance are Heat and Fft , which
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Table 6.2: Performance of eight programs from the Cilk pro-
gram suite automatically parallelized using the Sambamba frame-
work [112]. Characteristics of these programs are detailed in Ta-
ble 6.1. Speedups below 1 (like 1

S×) represent slowdowns of factor
S. K-TLS provides much better performance than user-space TLS

in all eight programs.
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Cilksort 347.3 ms 2.05 s 0.87 s 1.67 s 2.36× 1.23×

Fft 102.5 ms 1.21 s 0.92 s 87.31 s 1.32× 1
72.3
×

Heat 47.9 ms 3.69 s 4.15 s 1305.82 s 1
1.13
× 1

354
×

Lu 16.9 ms 13.43 s 6.01 s 7.12 s 2.23× 1.88×

Matmul 25764.2 ms 49.62 s 24.82 s 30.77 s 2.00× 1.61×

Plu 99.9 ms 12.95 s 5.88 s 6.95 s 2.20× 1.86×

Spacemul 2814.3 ms 17.85 s 5.14 s 4.98 s 3.47× 3.59×

Strassen 3467.8 ms 21.89 s 7.32 s 58.69 s 2.99× 1
2.68
×

Geometric mean: 2.02× 1
2.69
×

also had the biggest slowdowns in the U-TLS system. Section 5.3.2

already provided some insights why these programs suffer that much

from the isolated execution for speculation: Those programs do not

access a bigger consecutive memory region, but rather access smaller

structures spread over the heap. With the characteristics shown in

Table 6.1 we can confirm this hypothesis: Heat and Fft are the two

programs with the lowest ratio of runtime by number of accessed
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Figure 6.4: Comparison of the speedup achieved by automatic
parallelization of eight programs from the Cilk suite. K-TLS
significantly outperforms the state-of-the-art U-TLS in all test
cases except for spacemul, where they are on a par. In the geometric

mean, K-TLS performs 5.45× better than U-TLS.

pages2. This suggests that they often only read small portions of the

page, but the TLS system needs to make a private copy of the whole

page and in the case of U-TLS also copy back the content of the full

page at commit. In K-TLS, we do not need to copy back the content

of the page, but there is still a constant overhead per accessed page,

2We divide the average runtime per task by the sum of the average number of
read pages and written pages. This is 4 µs per page for Heat , 11 µs for Fft , 34 µs
for Cilksort and ≥216 µs for all others.
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which amortizes better if larger regions of the page are actually read

or modified.

6.3.3 Effect of Additional Instrumentation

In order to evaluate the effectiveness and performance of the K-TLS+

approach, we first run micro benchmarks to assess the impact on

the individual phases of execution, in particular the execution of

the instrumented program in user space, the validation phase in

kernel space and the commit phase in kernel space. We expect all of

those phases to be slowed down by the additional management of the

shadow data. We run both of the micro benchmarks introduced in

Section 5.3.1.1 and also used in Section 6.3.1. Then, we run the Cilk

programs parallelized in Sambamba in order to evaluate the impact

on automatically parallelized real-world programs.

The micro benchmarks perform random or linear writes to disjoint

memory blocks (see Section 5.3.1.2). We measure the times for user

space execution, validation and commit for all possible granularities

(from 20 to 212) and four different workloads. The results are shown

in Figure 6.5. For the validation time, no increase is measurable,

so we skip that plot. As described in Section 6.2.4, validation only

examines the shadow memory if a conflict on a memory page was

detected. As these benchmarks write to disjoint memory regions, this

filter already proves all tasks disjoint, hence the runtime is exactly

the same as for K-TLS. For the user-space execution time plotted

in 6.5a and 6.5c, we see that the overhead generally decreases towards

coarser granularities. This is expected, as less shadow memory is

accessed, hence the memory caches in hardware can be utilized better.
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Figure 6.5: Overhead introduced by K-TLS
+

for tracking mem-
ory accesses during execution (A and C) and using it during com-
mit (B and D). We use the same benchmarks as introduced in
Section 5.3.1.2. The execution time decreases if the granularity in-
creases, but between 50 % and 100 % degradation must be expected.
As commit only takes a small fraction of the overall execution time,
the increase on those numbers is not problematic. For validation,

the increase is not measurable.
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Remember that the instrumented code for different granularities

only differs by some constants, except for very small granularities

which require multi-MDU-updates (see Section 6.2.3.2). For random

updates (Figure 6.5a), there is the interesting case of 212 memory

operations, where the increase in execution time is around 0 % for

most granularities. In order to verify those measurements, we ran

another test with a fixed granularity of 4, and all powers of two

between 24 and 220, because at these boundaries, the plot shows

substantial slowdowns. Indeed, the overhead decreases between 24

and 28 operations, then stays around 0 % until 214, and then increases

again. The program code executed for these tests is always the same,

we just vary one input value. We profiled the program for inputs with

no measurable overhead, and detected that even though additional

memory operations are performed to update the shadow memory,

they do not cause any delay during execution. They seem to perfectly

hide in the stalls produced by the original memory updates.

The commit time is increased compared to K-TLS for two reasons:

First, for each modified memory the shadow memory needs to be

examined, and second, the memory content is copied to the respective

page in the parent process instead of replacing the page in the page

table (see Section 6.2.4). For random memory accesses (Figure 6.5b)

the commit time increases more than for linear accesses (Figure 6.5d),

especially for small or medium workloads. The commit procedure

prefers continuous modified memory regions, as they are copied in

one single memcpy operation, and also the examination of the shadow

memory is faster in these cases.

In the next experiment, we re-run the automatically parallelized Cilk

programs with K-TLS+. Table 6.3 on page 156 shows the number
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Table 6.3: Static number of meta data unit (MDU) updates for
the benchmark programs from the Cilk suite. For the different
granularities, we list the number of single-MDU updates, reduced
multi-MDU updates that touch at most two memory words, and
full multi-MDU updates. At the lowest granularity, most memory
accesses have to be instrumented for reduced multi-MDU updates,
since they touch more than one byte of memory. With coarser
granularities, most locations become single-MDU updates. The
remaining locations are either not sufficiently aligned, or update a

dynamically sized memory block.

Benchmark
static number of MDU updates

gran. 0 – 1 gran. 2 gran. 3 – 12

Cilksort 0 / 66 / 6 0 / 66 / 6 66 / 0 / 6

Fft 0 / 891 / 0 691 / 200 / 0 757 / 134 / 0

Heat 0–1 / 85–86 / 0 30 / 56 / 0 86 / 0 / 0

Lu 0 / 85 / 0 40 / 45 / 0 85 / 0 / 0

Matmul 0 / 66 / 0 48 / 18 / 0 66 / 0 / 0

Plu 0 / 119 / 0 105 / 14 / 0 119 / 0 / 0

Spacemul 0 / 312 / 0 4 / 308 / 0 312 / 0 / 0

Strassen 0 / 114 / 0 39 / 75 / 0 114 / 0 / 0

of memory operations that had were automatically instrumented

in each program. It also lists which of these operations required a

single-MDU update, a reduced multi-MDU update or a full multi-MDU

update (see Section 6.2.3 for details). The latter were only needed

in the Cilksort program for instrumenting memcpy calls with input-

dependent sizes. All of the other instrumented locations are ordinary

loads and stores with statically known sizes, and memcpy invocations

with statically known sizes. All of those could be represented either

by single-MDU updates or by reduced multi-MDU updates. This

means that none of them writes more than 33 bytes. In fact, the vast
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majority accesses structures of either 4 or 8 bytes, corresponding to

ordinary float , double, int or long values. At a granularity of 2 or 3

(i.e. 4 or 8 bytes), those accesses turn in single-MDU updates, such

that at all granularities greater or equal to 3, only a small number of

reduced multi-MDU updates remain. As seen in the table, they only

remain for the Fft program, where they are generated to copy structs

of two float values. These structs have a size of 8 bytes, but only an

alignment of 4 bytes, which potentially requires updating multiple

MDUs for all granularities.

Figure 6.6 shows the result of executing the Cilk programs in K-TLS+.

K-TLS was able to speed up seven out of the eight programs, with

more than 2× speedup on six of them. K-TLS+ however only speeds

up three to five of them, depending on the granularity level. In

order to illustrate the reason for this, we also plot the user-space

execution time, which is the run time of the instrumented program.

This is plotted in Figure 6.7. We see that the overhead relative to

K-TLS is often much larger than in the micro benchmarks we ran

before. Profiling this reveals that instead of executing roughly twice

the amount of memory operations, these programs execute 5 to 6

times the number of memory operations. Looking into the profile for

Spacemul reveals that most of the time is spent on the kernel function

which does the matrix multiplication for 16× 16 blocks. Its code size

increases by a factor of 3.2, and the size of the allocated stack slot by

a factor of 5.5. This is because the additional instructions inserted

during instrumentation require several registers during execution, so

many other values have to be spilled to the stack. In these large

functions operating repeatedly on dozens of memory cells, reloading

many more values either from the stack or the heap is required,
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Figure 6.6: The speedup of K-TLS
+

with different granulari-
ties over sequential execution on Cilk programs without memory
conflicts. For most applications, the overhead of tracking memory
updates does not pay off. Only for five out of the eight programs,

we still get speedups over sequential execution.

resulting in the large overheads observed.

In order to evaluate the effectiveness in reducing the number of

false conflicts reported, we took the Cilksort program, for which

K-TLS+ shows moderate overheads, and ran it with different sizes,

such that the memory accesses of the parallel tasks were not located

on disjoint pages. Figure 6.8 shows the result of this experiment.
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Figure 6.7: Overhead caused by tracking memory updates in
user space at different granularities, relative to execution in K-TLS.
In many applications, this overhead is much larger than in our
micro benchmarks, and is often caused more by the code bloat and
increased register pressure than the memory tracking itself. Only
the Cilksort and Fft programs show slowdowns in the expected

range.

The first size of 222 is the baseline. In this configuration, the four

quarters which are sorted in parallel will all be on disjoint pages,

so all configurations achieve a good speedup here. If the size is

decreased by 1024, the coarsest granularity of 212 (the size of a page)

already generates three false conflicts on the eight tasks which are

executed. For K-TLS, this is still enough to provide a little speedup,
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Figure 6.8: Performance of Cilksort for different sizes, executed

in K-TLS or K-TLS
+

with different granularities. We report
speedup over sequential execution. Finer granularities still achieve

speedup for less aligned array sizes.

for K-TLS+ with page-size granularity, we already see a slowdown.

For a decrease of 256, five tasks show conflicts and need to be re-

executed, resulting in a slowdown for both K-TLS and K-TLS+ with

page-size granularity. If we just reduce the size by 32, 8, or 1 element,

the four quarters of the array will be less and less aligned, resulting

in a finer granularity which is necessary to still detect that no conflict

has happened. Since Cilksort operates on machine words of 64 bit (or

8 byte), all granularities between 20 and 23 are sufficient to eliminate
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all false conflicts3. Hence they all provide speedup independent of

the alignment.

6.4 Conclusion

In this chapter we presented two novel virtual-memory based systems

for thread level speculation, K-TLS and K-TLS+. Both implement

major parts of their functionality directly in the operating system.

We demonstrated that this speeds up all operations substantially

in comparison to user-space only approaches. By spawning tasks

faster than the U-TLS system, we are able to successfully apply

speculative parallelization to tasks with execution times between a few

milliseconds up to several minutes and get performance improvements

for this full range. TinySTM+ fails to provide such speedups if the

tasks access too many memory locations. User-space implementations

suffer from large spawn cost per speculative task and from expensive

copying of memory during commit. K-TLS solves both of these

problems and provides additional safety guarantees which no user-

space solution provides. It isolates the speculative tasks even in

the presence of system calls and thus allows to call any—potentially

unknown or untrusted—code from speculative tasks.

The major drawback of virtual-memory based approaches is the gran-

ularity of access tracking. Traditionally, conflict detection is only

performed on whole memory pages of 4 kB. In order to solve this prob-

lem, we proposed to combine the kernel-based K-TLS approach with

instrumentation. This poses further restrictions on the code which

3assuming that the start address of the array is aligned to at least 8 byte,
which is the case in our implementation
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can be executed inside of transactions, in particular the intermediate

representation of all code must be available for instrumentation. Thus,

no external functions can be called. This condition is dynamic—if

calls to external code exist, they only trigger a rollback once they

are executed. Also, parallel sections executing instrumented code

can be mixed with uninstrumented code within the same program—

although all tasks which belong to the same dynamic instance of a

parallel section have to agree on the same technique. One could even

switch between different variants—uninstrumented, or instrumented

for various granularities—for the same parallel section based on run-

time information. Such dynamic adaptions are out of the scope of

this dissertation though. Whether the K-TLS+ system—combining

K-TLS with instrumentation—still provides a satisfying performance

depends on the characteristics of the code. We have shown that while

the overhead is often less than 50 % or even close to 0 %, it can also

go up to 5− 6×.



Chapter 7

Conclusions and Future

Work

In order to leverage the power of modern multi-core or many-core

machines, different automatic parallelization schemes were proposed.

The static analyses used to find parallelization opportunities, how-

ever, often have to fall back to overapproximations on complex pro-

grams, leading to pessimistic parallelization decisions. Many authors

found this to be a problem and propose to use speculation to allow

for optimistic assumptions. As these might be unsafe in general, a

mechanism is needed to detect at runtime whether the assumptions

hold. For some occurrences it is possible to prove the assumptions

before starting parallel computation. In the general case however,

runtime techniques are needed which check for misspeculations while

the parallel program is being executed. Some authors just assume the

availability of such a system in hardware and simulate its execution

with unverifiable performance assumptions. Others come up with ad

hoc implementations which are neither described in detail nor publicly

163
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Table 7.1: Characteristics of the different speculative runtime
systems examined in this thesis. STM resembles the state of the art
in explicit memory tracking. U-TLS implements virtual-memory
based speculation as proposed by different authors. K-TLS is novel

by utilizing a Linux kernel module. K-TLS
+

builds on K-TLS
but adds instrumentation to increase the granularity of memory

tracking.
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available. This makes it difficult to assess their generalizability or

reuse them for further research. The lack of a reusable and general

speculation system ties up resources that could otherwise be spent

on comping up and experimenting with more sophisticated specu-

lative parallelization schemes. Also, those schemes would be better

comparable with each other if they were using the same established

speculation system.

This thesis thus focussed on the development of a general, reusable

and easy-to-use runtime system for thread level speculation, providing

the best possible performance for a wide range of applications. To

this end, we made the following contributions:
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• We evaluated the performance of the state of the art STM

system TinySTM on different benchmarks, and discovered se-

vere performance problems when applying it to automatically

parallelized programs. We highlighted the differences in the

characteristics of these applications against the typical uses of

STM. Based on these findings, we proposed several changes to

the implementation, and evaluated the runtime impact of these

improvements. Even though the runtime improves by orders of

magnitude, the explicit memory tracking of STM still involves

too high overheads to be usable in the context of automatic

parallelization.

• We designed a virtual-memory based runtime system for thread

level speculation along the lines of designs proposed by dif-

ferent authors. In contrast to related work, we fully describe

the design and implementation of this system called U-TLS

and make it available as open source. We evaluated its per-

formance on automatically parallelized programs and found

it to perform significantly better than STM. For some of the

programs, U-TLS provides remarkable speedups. However, we

notice some drawbacks which cannot be avoided by a pure

user-space implementation.

• Based on the experience we made with U-TLS, we designed

and implemented a kernel-based runtime system for thread-level

speculation called K-TLS. It significantly improves the runtime

of all TLS operations: task creation, execution, validation and

commit. Furthermore, it provides stronger isolation guaran-

tees than any user-space implementation can ever provide: It

intercepts all system calls and triggers a rollback for each call
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that has a potential side effect on the process. This allows to

call any code from a speculative task, even if it is unknown or

untrusted.

• K-TLS+ is a combination of the K-TLS system and code in-

strumentation. By allocating a shadow memory region and

instrumenting all memory operations to set a respective bit in

this shadow memory, we have much more fine-grained infor-

mation about the accessed memory regions of each task. We

use this information to eliminate false conflicts during valida-

tion. The granularity can be chosen between 1 byte and the

size of a memory page (4096 bytes). We demonstrated that

this approach effectively eliminates false conflicts. Its overhead

over K-TLS is sometimes negligible, but it can also increase to

several times the original execution time.

7.1 U-TLS

The source code of U-TLS is available on GitHub, in the common

repository for all the runtime systems developed for this thesis:

https://github.com/hammacher/k-tls

The major part of the implementation of U-TLS is found in the file

lib/TLS/utls.cpp. It has a length of about 1000 lines of code, and

uses common functionality like the TLS task list implemented in

other files.

There are several ways to further improve the performance of U-TLS.

Some of the ideas are listed in the following:

https://github.com/hammacher/k-tls
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Reuse processes. Similar to K-TLS, one could try to reuse the

processes of finished tasks to execute later tasks. There are

some challenges though: First, one would need to reset the

page table of the process before reusing it. There is no system

call to do this for general memory mappings, so in order to

clear the page table entries, the whole mapping would need

to be removed using the munmap system call. But then re-

creating those mappings is not possible for anonymous mappings.

Therefore the whole memory management strategy of U-TLS

would need to change, such that the memory content is copied

from the parent process on demand. As this includes higher

cost per page fault, this whole change would probably only pay

off for rather small tasks which are dominated by the process

forking cost.

Improve commit time by using shared memory. In order to

reduce the commit time, one could avoid the copy operation

involved by using shared memory. The child process would

not write its changes to anonymous pages and transfer them

to the parent during commit, but would write to pages shared

between both processes. One option would be to use named

shared memory, and make the parent process map the indi-

vidual changed pages to its own address space during commit.

The other option is to use a preallocated anonymous shared

mapping, and make the child process remap individual pages

into its address space as needed. Instead of communicating

page contents to the parent during commit, it would then only

communicate which pages were mapped where, and the parent

would apply the same mapping. It has been found by others
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however that remapping individual pages takes several times

longer than copying the content of that page, so this method

would probably only pay off if larger continuous regions are

written by a task. Both of these implementations (named or

anonymous shared memory), however, would leave the virtual

memory view of the parent process changed after executing

speculative tasks, so they are way more intrusive than the

current implementation.

Recursive speculative parallelization. In order to extract scal-

able parallelism from divide-and-conquer algorithms, but also

for other applications, it would be beneficial to parallelize recur-

sively. This would allow to spawn speculative sub-tasks from

speculative tasks. The child process executing the recursive

spawn would then act as parent process to its children, forming

a tree of processes. During commit, the changes would be

copied into its own address space, and the respective pages

would be marked as changed. If a conflict is detected, just

that sub-child would re-execute. If one task is rolled back by

discarding its memory changes, also the effect of all sub-tasks

is discarded, hence they need to re-execute later. This scheme

is known as closed nesting.

7.2 K-TLS

Also the source code of K-TLS is available in the same repository on

GitHub:

https://github.com/hammacher/k-tls

https://github.com/hammacher/k-tls
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The kernel module is implemented in the lib/KTLS directory, and

consists of more than 3000 lines of code. It is compiled by the

included Makefile against the currently running kernel. The slim user-

space interface is implemented in lib/TLS/ktls.cpp. The cindex

benchmark used in Section 4.3.3 is available in the cindex-benchmark

branch.

Also for K-TLS, we have a few ideas of what could be improved

further:

Replay system calls. The current implementation allows a small

number of system calls for which we know that they have no

side effect. We could add support for some of the remaining

system calls by replaying them in the parent process later. It it

is a system call with an effect shared between both processes,

e.g. file output, we just do not run it in the child, and return a

speculative value signalling success. When the actual system

call replayed in the parent process later returns a different value,

we would not commit any of the memory changes of the child,

and re-execute it while omitting any system call which was

already replayed. This would require the speculative task to be

deterministic, however, such that the same sequence of system

calls is generated. For system calls which only have an effect on

the process executing them, like mapping new memory regions,

we would execute them both in the child and in the parent

process.

Recursive speculative parallelization. Just like for U-TLS, also

in K-TLS we could add support for recursive task spawning.

We would need to add special handling for the ioctl system call
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which is used to communicate with the kernel module. The

semantics of recursively spawned tasks would then be the same

as described for U-TLS.

More fine-granular page versioning. In its current implementa-

tion, each modified page carries a version representing the id

of the last task which modified this page. Each task stores a

start version, which is the id of the last committed task at the

moment when the current task reads the first page. A conflict

is detected if at commit time any read page has a higher version

than the start version of the task. Some conflicts can potentially

be avoided by storing the version number of each read page

instead of one version number per task. This would especially

make a difference if the tasks are unbalanced, such that some

task commits early and other tasks later read the page modified

by the earlier task. We already deliver the last committed page

in the parent whenever a child process first accesses a page, but

currently conservatively assign an older version id to it by only

storing one version per task.

7.3 Sambamba

The Sambamba framework contains the work of different authors,

and many parts are unstable or unusable in its current form. We

therefore decided to not publish the source code of Sambamba yet.

Interested research groups however get access to the source code with

a respective disclaimer.
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In order for Sambamba to effectively support speculation, a few

changes are needed:

Adaptive switching between runtime systems. As shown in

the individual evaluation sections, there is no single runtime

system for thread level speculation which provides the best

performance in all cases. Especially deciding which granularity

for K-TLS+ performs best is hard to do a priori. Sambamba

already supports dynamically generating the parallel code per

section for any of the presented runtime systems. What is

missing though is a feedback mechanism which iteratively tries

to find the best runtime system per section, potentially even

considering the input values which determine the behaviour of

the parallel tasks.

Include speculation in ILP-based parallelization. Sambamba

uses integer linear programming (ILP) in order to find the op-

timal parallel schedule per set of basic blocks with the same

control dependencies. In order to better detect speculative par-

allelization opportunities, this ILP formulation would need to

be extended such that it is able to ignore certain dependencies.

Information from previous runs can be used to make a more

qualified decision here.
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