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Abstract

Executive Summary

The extremely fast advances in wet-lab techniques lead to an exponential growth of

heterogeneous and unstructured biological data, posing a great challenge to data in-

tegration in nowadays system biology. The traditional clustering approach, although

widely used to divide the data into groups sharing common features, is less powerful in

the analysis of heterogeneous data from n different sources (n ≥ 2). The co-clustering

approach has been widely used for combined analyses of multiple networks to address

the challenge of heterogeneity. In this thesis, novel methods for the co-clustering of

large scale heterogeneous data sets are presented in the software package n-CluE:

one exact algorithm and two heuristic algorithms based on the model of bi-/n-cluster

editing by modeling the input as n-partite graphs and solving the clustering problem

with various strategies.

In the first part of the thesis, the complexity and the fixed-parameter tractability

of the extended bicluster editing model with relaxed constraints are investigated,

namely the Π-bicluster editing model and its NP-hardness is proven. Based on the

results of this analysis, three strategies within the n-CluE software package are then

established and discussed, together with the evaluations on performances and the

systematic comparisons against other algorithms of the same type in solving bi-/n-

cluster editing problem.

To demonstrate the practical impact, three real-world analyses using n-CluE are

performed, including (a) prediction of novel genotype-phenotype associations by clus-

tering the data from Genome-Wide Association Studies; (b) comparison between

n-CluE and eight other biclustering tools on GEO Omnibus microarray data sets;

(c) drug repositioning predictions by co-clustering on drug, gene and disease net-

works. The outstanding performance of n-CluE in the real-world applications shows
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its strength and flexibility in integrating heterogeneous data and extracting biological

relevant information in bioinformatic analyses.

Kurzzusammenfassung

Die enormen Fortschritte im Bereich Labortechnik haben in jüngster Zeit zu einer

exponentiell wachsenden Menge an heterogenen und unstrukturierten Daten geführt.

Dies stellt eine große Herausforderung für systembiologische Forschung dar, innerhalb

derer diese Datenmengen durch Datenintegration und Datamining zusammengefasst

und in Kombination analysiert werden. Traditionelles Clustering ist eine vielseitig

eingesetzte Methode, um Entitäten innerhalb grosser Datenmengen bezüglich ihrer

Ähnlichkeit bestimmter Attribute zu gruppieren (“clustern"). Beim Clustern von

heterogenen Daten aus n (n ≥ 2) unterschiedlichen Quellen zeigen traditionelle Clus-

teringmethoden jedoch Schwächen. In solchen Fällen bieten Co-clusteringmethoden

dadurch Vorteile, dass sie Datensätze gleichzeitig partitionieren können. In dieser Dis-

sertation stelle ich neue Clusteringmethoden vor, die in der Software n-CluE zusam-

mengeführt sind. Diese neuen Methoden wurden aus dem bi-/n-cluster editing her-

aus entwickelt und lösen durch Transformation der Eingangsdatensätze in n-partite

Graphen mit verschiedenen Strategien das zugrundeliegende Clusteringproblem.

Diese Dissertation ist in zwei verschiedene Teile gegliedert. Der erste Teil be-

fasst sich eingehend mit der Komplexitätanalyse verschiedener erweiterter bicluster

editing Modelle, die sog. Π-bicluster editing Modelle und es wird der Beweis der

NP-Schwere erbracht. Basierend auf diesen theoretischen Gesichtspunkten präsen-

tiere ich im zweiten Teil drei unterschiedliche Algorithmen, einen exakten Algorith-

mus und zwei Heuristiken und demonstriere ihre Leistungsfähigkeit und Robustheit

im Vergleich mit anderen algorithmischen Herangehensweisen. Die Stärken von n-

CluE werden anhand von drei realen Anwendungsbeispielen untermauert: (a) Die

Vorhersage neuartiger Genotyp-Phänotyp-Assoziationen durch Biclustering-Analyse
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von Daten aus genomweiten Assoziationsstudien (GWAS);(b) Der Vergleich zwischen

n-CluE und acht weiteren Softwarepaketen anhand von Bicluster-Analysen von Mi-

croarraydaten aus den Gene Expression Omnibus (GEO); (c) Die Vorhersage von

Medikamenten-Repositionierung durch integrierte Analyse von Medikamenten-, Gen-

und Krankeitsnetzwerken. Die Resultate zeigen eindrucksvoll die Stärken der n-CluE

Software. Das Ergebnis ist eine leistungsstarke, robuste und flexibel erweiterbare Im-

plementierung des Biclustering-Theorems zur Integration grosser heterogener Daten-

mengen für das Extrahieren biologisch relevanter Ergebnisse im Rahmen von bioin-

formatischen Studien.
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Chapter 1

Motivation

Modern biology has entered into an era where quantitative tools play an indispens-

able role. Mathematical and statistical models as well as computer science techniques

become widely applied and critically important in biological research, helping to store

and to synthesize relevant data. A particular challenge is the integration of hetero-

geneous information from various sources in order to better reveal the underlying

mechanisms of biological processes.

The focus of this thesis is one of the classic problems of data integration in bioin-

formatics which has been extensively studied by computer scientists and bioinfor-

maticians — the clustering problem [80, 95, 96, 136]. Clustering is one of the most

widely used unsupervised learning techniques for exploratory analysis in computer

science, economics, social science and biological research. It is regarded as “unsu-

pervised machine learning” because no pre-defined classes or labeled gold standard

examples are provided. Clustering algorithms seek to extract the relations between

the given data entities, by grouping them into different clusters based on certain key

features. Such data processing methods are particularly meaningful in the context

of biological studies, to discover “similar behavior” in a biological system, e.g. pro-

teins with the same functional annotation or co-regulated genes. Compared to the
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traditional clustering algorithms such as k-means [122, 123], graph-based clustering

methods possess a list of remarkable advantages (see Chapter 2). In this thesis, we

focus on a sub-branch of the traditional clustering problem, namely “biclustering” and

“n-clustering” problems which refer to data mining techniques allowing simultaneous

clustering of several data sets. The robustness of bi-/n-clustering on integrating het-

erogeneous data have been proven by a number of different studies (see Chapter 2 and

Chapter 3). With this thesis we seek to investigate and prove important mathemat-

ical properties of the bi-/n-clustering problems and provide paradigms for practical

applications of bi-/n-clustering in the context of biomedical data sets.

Before proceeding to the next chapters where details of the studies in this thesis

are described, the first chapter is to introducing the background and the motivation

of the work presented here.

1.1 The “-omics” Age

In the last two decades, we experienced an “explosion of information” in biological

research, where an enormous amount of data has been generated through modern

high-throughput wet-lab technology. The large amount of data provides on one hand

unprecedented opportunities to understand the structures and functions of the cellular

components on molecular level; on the other hand, challenges are induced by the sheer

amount and complexity of data of heterogeneous types. To meet this challenge, a num-

ber of well-known integrated databases are established. For instance, the GenBank

[159], as the largest database of genes, now stores over 197,000,000 sequences [13],

including the whole genome sequences of ∼ 600 eukaryotes, ∼ 6, 000 prokaryotes and

∼ 5, 900 viruses. The Genomes Online Database (GOLD) (https://gold.jgi.doe.gov)

contains curated data from 26, 117 studies, 97, 212 sequencing projects, 78, 579 anal-

ysis projects, 239, 100 organisms and 15, 887 biosamples [131]. Similar trends can be
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found in other databases like UniProtKb/Swiss-Prot [36] and GenExpressionOmibus

(GEO) [11, 50]: UniProtKb/Swiss-Prot is a database containing more than 553, 000

annotated sequences, extracted and integrated from 205, 244 published references.

Protein Data Bank (PDB) has incorporated over 124, 000 molecule structures [155].

GEO has incorporated over 1.6 million gene expression samples on over 15, 000 plat-

forms. Fig. 1.1 illustrates the rapid growth of the three databases, which is just one

glimpse of the dramatic progress resulting from the remarkable advances in wet-lab

technology. One of the most outstanding developments emerged by the advent of Next

Generation Sequencing (NGS) techniques, enabling scientists to process thousands of

DNA sequences in a parallel manner and enhancing the throughput at exponential

rates [129, 164, 215].

Nevertheless, the huge amount of raw and unstructured data inevitably leads

to higher and stricter requirements regarding the data mining algorithms and more

adequate mathematical models to extract interesting and meaningful information for

further investigations, not only in terms of speed, but also in terms of robustness: in

most cases, the heterogeneous raw data tends to be noisy and may contain a large

extent of redundancy, on the one hand, but also suffer from missing values, on the

other, especially regarding metadata. Great efforts have been put into mainstream

thesauri like Medical Subject Heading (MeSH) [119] and OMIM [76], which have

been proven to be highly valuable resources for drug target screening [106], disease

similarity network building [66] and human metabolomics data integration[199]. Yet

large amount of incompatible data exists in the terminology and ontology and, thus,

mapping between vocabularies becomes indispensable [135].
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1.2 Clustering and Biclustering

System biology is an interdiscplinary research field that focuses on building data-

oriented models to extract and analyze the currently available heterogeneous data

in order to gain relevant insights into the underlying complex biological processes.

To this end, clustering analysis is one of the most powerful tools for system biology

research. Its main aim is simple: to find a partition of biomedical objects into groups

such that objects within one group are similar and objects in different groups are

dissimilar to each other based on a given similarity function. Data clustering is widely

used for data compression [193] and dimensionality reduction [214], which becomes

increasingly important in Big Data processing. In the area of computational biology,

clustering analysis plays a critical role in many research fields, e.g., taxonomy analysis,

protein-complex prediction, microarray data mining, etc. In many other disciplines,

clustering analysis is also widely applied: for instance, economics [24], information

science [158] and computational linguistics [158].

Although clustering has been widely accepted and utilized in various studies,

yet in some particular scenarios, the traditional clustering approach needs a further

“refinement” to meet special requirements of heterogeneous data. For instance, mi-

croarray technology best exemplifies the astounding advances and developments in

high-throughput wet-lab technology in the last two decades. One of the most com-

mon applications of microarray is to detect gene expression levels at genome scale

under different conditions. Traditional clustering of microarray data, such as hierar-

chical clustering, aims to group similar genes (in most cases, rows in the matrix refer

to genes) based on their expressions value across a set of conditions present in the

matrix (columns in the matrix refer to experimental conditions), or to group similar

conditions based on all genes. This procedure has been successfully applied for long

and has been regarded as a standard data processing step in microarray data pro-

cessing. However, clusters of genes emerging only in a subset of specific conditions,
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Figure 1.1: The growth of the sequences in GenBank (left), the samples in GEO
(middle) and the protein records in UniProtKB/Swiss-Prot.

are simply ignored by traditional clustering. A different kind of approach, called

“biclustering” or “co-clustering”, offers a new direction to solve the problem, based

on the algorithms that are able to cluster rows and columns simultaneously, forming

rectangle blocks. Fig. 1.2 depicts the difference.

The strategy of biclustering has been proven advantageous over the traditional

clustering in many ways. First, it is possible that the microarray contains a certain

amount of genes or conditions that are not relevant for the experimental purpose.

These irrelevant genes and conditions present noise in non-biclustering since informa-

tion of all genes and conditions is considered. Second, the “consistent behaviors”, e.g.

up-regulated, down-regulated within only a subset of conditions, i.e. the “ local pat-

terns”, would be difficult to detect. Third, biclustering approaches have been widely

used to handle heterogeneous data coming from different sources [140, 153, 190]. A

systematic comparison between biclustering and clustering on microarray data can

be found in [148].

One strategy for solving the biclustering problem is to state biclustering in terms

of graph theory by converting the biclustering of a matrix to clustering of a bipartite

5



Figure 1.2: Demonstration of the difference between traditional clustering of
rows(left), traditional clustering of columns (middle) and biclustering (right).

graph, i.e., the graph with two separate sets of nodes, and edges only between the

two node sets (refer to Chapter 2 for details). This transformation from a matrix to a

bipartite graph was first introduced by Hartigan et al. [77] in this context. A number

of studies have followed this strategy and proven the power of biclustering by using

bipartite graph models [22, 46, 121, 184].

The model of bicluster editing, expanded from the classic cluster editing problem

(sometimes called “Transitivity Editing”), provides a possible solution for the bipartite

clustering problem converted from the matrix biclustering. Given a bipartite graph,

the aim is to convert the input to a solution graph with only disjoint bicliques by

“virtually” inserting and deleting edges, such that the cost paid for the changes on

the input graph (including insertions and deletions) are minimized. See Chapter 2 for

more information.

Many studies on bicluster editing have been carried out, both on its theory and

practical applications, forming the background of this thesis (see Chapter 2 and Chap-

ter 3 for details). One of the major advantages of the bicluster editing model, com-

pared to other biclustering algorithms, is that no particular prior knowledge or distri-
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Figure 1.3: The basic rationale behind the thesis.

bution is assumed [202]. Furthermore, the bicluster editing model can be extended to

n-partite graphs where the data entities are divided into n different groups, providing

a general approach of integrating an arbitrary number of heterogeneous data sets.

1.3 The Thesis Structure

Chapter 2 and Chapter 3 introduce biclustering and parameterized theory. In Chap-

ter 4, proofs regarding the time complexity of Π-bicluster editing are presented. Af-

terwards in Chapter 5, the main contribution of this thesis, a software package for

weighted bi-/n-cluster editing, named n-CluE, is introduced. The following chapters

mainly focus on the biomedical utilities of n-CluE: Chapter 6 presents the predic-

tion of novel genotype-phenotype associations by modeling Genome-Wide Association

Study (GWAS) data as bipartite graphs. Chapter 7 provides a systematic compari-

son between n-CluE and eight other prevailing biclustering tools on gene expression
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data sets, showing that our strategy outperforms all other tools presented in the

study. Chapter 8 illustrates another promising application of n-CluE by performing

n-clustering on a drug – gene – disease network to integrate heterogeneous data and

predict novel drug repositionings. In conclusion, we studied the model of bi-/n-cluster

editing in depth and demonstrated its power in different biomedical contexts. Note

that some of the content of this thesis has already been published in the following list

of publications.

1.4 List of Publications

• Peng Sun, Jiong Guo, and Jan Baumbach. Integrated simultaneous analysis of

different biomedical data types with exact weighted bi-cluster editing. J Integr

Bioinform, 17, 2012

• Richard Röttger, Prabhav Kalaghatgi, Peng Sun, Siomar de Castro Soares,

Vasco Azevedo, Tobias Wittkop, and Jan Baumbach. Density parameter

estimation for finding clusters of homologous proteins-tracing actinobacterial

pathogenicity life styles. Bioinformatics, pages 215–222, 2012

• Peng Sun, Jiong Guo, and Jan Baumbach. Biclue-exact and heuristic algo-

rithms for weighted bi-cluster editing of biomedical data. In BMC proceedings,

volume 7, page S9. BioMed Central Ltd, presented at GLBIO2013, 2013

• Peng Sun, Nora K Speicher, Richard Röttger, Jiong Guo, and Jan Baumbach.

Bi-force: large-scale bicluster editing and its application to gene expression data

biclustering. Nucleic Acids Research, page gku201, 2014

• Peng Sun, Jiong Guo, and Jan Baumbach. Complexity of dense bicluster editing

problems. Computing and Combinatorics, pages 154–165, 2014
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• Peng Sun, Jan Baumbach, and Jiong Guo. Efficient large-scale bicluster editing.

In German Bioinformatics Conference 2014, pages 54–60

• Peng Sun, Jiong Guo, Rainer Winnenburg, and Jan Baumbach. Integrated

literature mining and drug-gene-disease triangulation reveals ten thousand new

purposes for existing medication. Drug Discovery Today, (In press), 2016
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Chapter 2

Background: Biclustering and

Bicluster Editing

In this chapter, we introduce the concept “biclustering”, the algorithms developed in

previous studies to solve the biclustering problem, and major applications of biclus-

tering.

2.1 Clustering

Data clustering is an important approach in unsupervised machine learning proce-

dures that has been applied in almost every area of system biology (two comprehen-

sive reviews can be found here [16, 96]), for instance: (1) gene and protein clustering,

including the database Clusters of Orthologous Genes (COG) [110, 126, 186], the soft-

ware packages of TransClust [130, 200, 203] and non-complete TransClust [157]; (2)

phylogenetic analysis on pathogens [156]; and (3) microarray data mining [124, 179].

The clustering of differentially expressed genes is usually performed as the initial

step in microarray data mining to discover a rough “relation network” amongst all

genes, before proceeding to the actual detection on specific pathways or regulatory

processes. Gene expression data is arranged in a matrix where rows refer to differ-
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ent genes and columns refer to the varying experimental conditions. The elements

in the matrix represent the intensities of the expressions of the genes under certain

conditions. Data clustering algorithms thus focus on the analysis of the matrix ele-

ments, usually pursuing one of the following objectives: (a) to cluster genes based on

their complete expression profiles (the expression levels across all experimental condi-

tions), and (b) to cluster the experimental conditions based on expression patterns of

all involved genes. The two objectives mentioned above refer to two distinct cluster-

ing directions in gene expression data mining, referred to as “traditional ” clustering.

Many common clustering methods can be used to implement this strategy: for in-

stance, hierarchy clustering [51], k-means clustering [79], self-organizing maps (SOM)

[108] ; several other groups have developed software tools implementing traditional

clustering strategies [27, 28, 91, 151, 172, 180].

However, the traditional approach is not perfect in many cases, which largely limits

its applications in real world. In fact, many interesting clusters of gene expression

data fall into local rectangles in the microarray matrix, meaning that a group of genes

are co-regulated only under a subset of conditions but not all. This also concurs with

our knowledge about the cellular processes where a small group of genes correlate

with each other only under specific conditions but do not correlated in other cases.

In this respect, using the clustering methods considering expression profiles under all

conditions might introduce unnecessary noise. For instance, a microarray experiment

may contain 1,000 genes extracted from 10 samples, where only 200 genes are up-

regulated in 3 samples. The expression intensities of the other 800 genes and 7

samples provide no useful information. In order to detect the groups of genes sharing

a common pattern only under a subset of conditions, a new methodology is required,

to cluster genes and conditions simultaneously and to extract local patterns hidden

in the matrix. Such simultaneous clustering on microarrays is called biclustering.
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2.2 Biclustering

2.2.1 Introduction

The concept of biclustering was first introduced by Hartigan [77], referred to as “block

clustering”. However, Hartigan’s research focused rather on the algorithmic perspec-

tive of biclustering than its bioinformatic applications. The first biclustering method

applied on microarray data was designed by Cheng and Church [30], to identify groups

of genes with significantly less variance in their expression profiles than others. Since

then, various biclustering algorithms have been designed and applied in real-world

data analysis. Before we proceed to the discussion on bicluster models, we need some

preliminary definitions. As mentioned in the previous paragraphs, gene expression

data forms a matrix with rows representing genes and columns representing condi-

tions. Given a matrix M , denote the row set and the columns set as R and C, where

R = {r1, r2, ..., rm} and C = {c1, c2, ..., cn}. ri and cj refer to the row i and column j

in M , respectively. The element mij ∈ M (mij ∈ ri and mij ∈ cj) is the expression

level of gene i under condition j. A set of rows is denoted as X, X ⊆ R and a set of

columns is denoted as Y , Y ⊆ C. MXY refers to a “sub-matrix” inside M defined by

X and Y . A bicluster MXY in the matrix M can be defined as a subgroup of rows

X and columns Y where the elements belonging to MXY exhibit certain “common

behavior” (e.g. up-regulated or down-regulated). The aim of biclustering is: given

a matrix Mmn where R = {r1, r2, ..., rm} and C = {c1, c2, ..., cn}, try to identify a

subset of rows and columns, MXY with X ⊆ R and Y ⊆ C, such that MXY satisfies

certain criteria.

In a matrix MIJ with I rows and J columns, we denote the mean of ith row as

miJ , the mean of jth column as mIj, and the mean of the whole matrix as mIJ . The
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quantities are defined as follows:

miJ =
1

|J |
∑
j∈J

mij (2.1)

mIj =
1

|I|
∑
i∈I

mij (2.2)

mIJ =
1

|I||J |
∑

i∈I,j∈J

mij (2.3)

Another common strategy for solving biclustering problem is to convert the input

matrix into a weighted bipartite graph, as shown in Fig. 2.1. A bipartite graph is

a special type of graph, often denoted as G = (U, V,E), where U and V represent

two sets of nodes and E refers to the edge set. All edges e ∈ E in a bipartite graph

have only one end node located in U and the other end node located in V . No edge

is allowed to link nodes in the same set. A data matrix MRC can be easily converted

into a bipartite graph. Denote the constructed bipartite graph as G = (U, V,E): for

each row in the matrix, a node u ∈ U is created, for each column in the matrix,

a node v ∈ V is created. The elements in the matrix are regarded as pairwise

similarities between the nodes in U and the nodes in V . A user-specified threshold t

is used to construct the edges. A node pair (u, v) with the corresponding similarity

s(u, v) given by mu,v in the matrix is connected with an edge e ∈ E in the resulting

bipartite graph if and only if the similarity s(u, v) > t. Note that in our study, unless

otherwise specified, we only deal with simple undirected graphs with no self-loops.The

transformation from matrix into bipartite graph allows the strategies applied on graph

clustering to be extended to solve the matrix biclustering problem (e.g. spectral

clustering).
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Figure 2.1: The transformation from a matrix into a bipartite graph. For each row and
each column, a node is constructed in the resulting bipartite graph. The elements in
the matrix are modeled as the edges in the bipartite graph. A user-specific threshold
is used to judge if the two nodes are connected.

2.2.2 Bicluster Models

In biclustering, the type of the local patterns which the biclustering algorithms are

seeking for are referred to as bicluster models.

The identification of biclusters in either matrices or bipartite graphs varies greatly

regarding to the different bicluster models, namely the criteria of being a bicluster.

We distinguish four cases of biclusters [124]: (1) biclusters with constant values; (2)

biclusters with constant values in rows or columns; (3) biclusters with coherent values;

(4) biclusters with coherent evolutions.
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The first three bicluster models, i.e., biclusters with constant values, biclusters

with constant values on rows or columns and biclusters with coherent values, are

defined with regard to the numeric values, describing certain relations between the

bicluster and the background. Such biclusters are to be extracted by searching a

sub-matrix with values significantly different from the rest of the matrix (the “back-

ground”). For instance, the values in the bicluster may be significantly higher (up-

regulated) or lower (down-regulated) than the background values. The implementa-

tions to search such biclusters vary greatly, e.g. greedy iterative searching strategy,

exhaustive enumeration, etc. See Section 2.2.4 for more details.

The fourth bicluster model — the biclusters with coherent evolutions — are based

on non-numerical information. Subareas in the data matrix with preserved order,

rank, or consistent positive or negative changes are considered as coherent evolutions.

In the coherent evolution model, the elements in the matrix are treated in a non-

parametric way. The detection of such biclusters is discussed in the Section 2.2.4.

Fig.2.2 illustrates all four bicluster models with simple 3 x 3 matrices. The details

and the underlying mechanisms are explained the in the following.

In gene expression, the constant model indicates a stable and similar expression

level across genes and conditions. Bicluster with constant rows or columns refers to

a situation where a subset of genes have stable expression changes across a subset

of genes or conditions (Fig. 2.2 (2-3)). Bicluster with coherent values presents more

complex relations between genes and conditions. In a bicluster with coherent values,

the numeric values do not necessarily remain constant across rows or columns, but are

assumed to follow an underlying model, either additive or multiplicative. Bicluster

with coherent evolution is useful when the researcher is focusing on finding non-

parametric relations between genes and conditions, for instance: up-regulation, down-

regulation or preserved ranks.
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Figure 2.2: Demostration of bicluster models. (1) Constant bicluster, (2) Constant
rows, (3) Constant columns, (4) Coherent values with additive model, (5) Coher-
ent values with additive model, (6) Coherent values with multiplicative model, (7)
Coherent values with multiplicative model, (8) Coherent evolution with constant up-
regulation, (9) Coherent evolution with constant up-regulation and down-regulation
arranged by rows, (10) Coherent evolution with constant status arranged by columns,
(11) Coherent evolution with preserved order, (12) Coherent evolution with preserved
(positive/negative) changes.

The evaluation of the clustering algorithms is also highly dependent on the chosen

bicluster models. The scoring functions for evaluation should be carefully designed

to reflect the specific characteristics of the assumed model. For instance, variances

are commonly used as a quality indicator for constant biclusters. In the following
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section, the features of the four bicluster models will be discussed in detail, showing

how bicluster structures influence the corresponding biclustering algorithms.

Biclusters with Constant Values

Biclusters with constant values are the simplest of the four models. Given a submatrix

MIJ , a perfect constant bicluster should follow the rule that all values within the

bicluster are equal:

mij = σ (2.4)

In a real-world data set, a perfect constant bicluster is often unrealistic. The elements

in the matrix are inevitably affected by noise. Thus, the elements inside a constant

bicluster are better modeled as:

mij = σ + εij, (2.5)

where εij is noise associated with element mij. To search for constant biclusters, one

of the most straightforward methods is to re-arrange the order of rows and columns

in a way that rows and columns with equal elements are located closer to each other,

with score functions carefully designed to remove the effect of noise.

The most commonly used scoring function to evaluate the quality of the constant

biclusters, as mentioned in the previous section, is the variance of the sub-matrix,

defined as follows:

Var(MIJ) =
∑
i∈Ij∈J

(mij −mIJ) (2.6)

However, using such scoring function may lead to over-segmentation of the bicluster-

ing results, i.e., the matrix is partitioned into biclusters with only one row and one

column. Apparently, such biclusters will have zero variance but little biological mean-

ing. To avoid obtaining such “optimal” solutions, additional restrictions controlling
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the sizes or the number of the biclusters are usually employed to achieve maximal

sizes of the resulting biclusters.

For instance, the partition-based algorithm named block clustering, designed by

Hartigan [77] continuously splits the matrix into sub-matrices and tries to find a

sub-matrix with lowest variance. To avoid the over-segmentation, block clustering

requires a parameter K as the assumed number of biclusters in the results. The

scoring function is modified to:

Var(MIJ)K =
K∑
k=1

∑
i∈Ij∈J

(mij −mIJ) (2.7)

Rather than seeking for the biclusters with lowest individual variances, the algorithm

now searches for K biclusters with an overall minimized variance computed by the

formula above.

The strategy of Hartigan [77] was then further refined by Tibshirani et al. [187]

by adding to the original algorithm a backward pruning step to filter off the high

variance parts in the resulting biclusters.

Biclusters with Constant Rows or Columns

The assumption of an overall constant value in a bicluster with constant values is

apparently over-simplified. A more complex bicluster model — biclusters with con-

stant rows or columns — is thus of more practical interest. It is reported that the

biclusters with constant rows or columns (Fig. 2.2 (2) and (3)), compared to the

constant biclusters, are closer to the real world and chosen as the bicluster model by

many algorithms [124].

Two models are commonly used as underlying mechanism for biclusters with con-

stant rows or columns: additive model and multiplicative model. These two model

the relation between the baseline row (or column) and other rows (or columns) in the
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bicluster. The additive model is formulated as:

mij = σ + αi (2.8)

mij = σ + βj (2.9)

The multiplicative model is formulated as:

mij = σ × αi (2.10)

mij = σ × βj (2.11)

A simple strategy to identify biclusters with constant rows or columns is to perform

normalization on rows or columns in the data matrix. This will transform the bi-

clusters with constant rows or columns into the simple case of constant biclusters

mentioned in the previous section, such that all algorithms for biclusters with con-

stant values can be applied. Whether to normalize rows or columns differs from case

to case: the row normalization is intended for biclustering with constant rows and

column normalization is for biclusters with constant columns. Getz et al.’s study has

proven the effectiveness of this normalization approach. Getz et al. also introduced

a strengthened normalization method, enabling their tool to detect biclusters with

constant rows or columns, as shown in Fig. 2.2 (2), (3), and biclusters with coherent

values as well, as shown in Fig. 2.2 (4), (5), (6) and (7).

Non-normalizing tools to detect biclusters with constant rows or columns usually

add noise to the bicluster model formula or try to identify biclusters with rows or

columns falling in certain intervals. This relaxed restriction greatly enhances the

robustness of the biclustering algorithm against the unexpected noise [23].

For instance, Califano et al. [23] defined a “σ-valid ks-pattern” bicluster. A sub-

matrix MIJ satisfies a “σ-valid ks-pattern” if |I| = k, |J | = s and the difference
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between the maximum and the minimum values in each row inside the sub-matrix

satisfy:

max{ri} −min{ri} < σ ∀i ∈ I, (2.12)

where ri represents the set of values in ith row in the sub-matrix. Califano et al. [23]’s

method seeks to detect the largest sub-matrix that satisfies the σ-valid ks-pattern in

the input data matrix and conducted statistical tests to show the significance of the

resulting biclusters.

Probabilistic models can also be applied to perform biclustering. For instance,

Sheng et al. [165] modeled the matrix using a Bayesian framework and a Gibbs

sampling strategy. This model approaches the biclustering problem by modeling each

bicluster model with a probabilistic model of posterior frequencies. The data in a

bicluster are considered to follow multinomial distributions and different columns

within the bicluster are independent from each other. Assuming a gene-condition

orientation, Sheng et al. checks by Gibbs sampling whether the values within a

bicluster are consistent. With this approach, Sheng et al. [165] managed to identify

biclusters with constant rows.

Segal et al. [160, 161] derived a probabilistic Bayesian network, implementing a

general strategy that gives probabilities of gene expressions depending on different

conditions. Based on the conditional probabilities, a Bayesian network of the gene

expression dependencies is then built using a Probabilistic Relation Model (PRM)

[160, 161], a rich representation language extending Bayesian networks with proba-

bilistic semantics [58, 109], to measure the dependencies of the gene expression levels

on certain conditions. Based on the probabilistic dependencies, Segal et al. managed

to find biclusters with constant rows or columns, biclusters with coherent values and

biclusters with coherent evolutions (see the following sections). The structure and

the parameters of the Bayesian network are obtained by using a Condition Probabil-

ity Distribution-tree (CPD-tree), which is an extended Bayesian network designed to

20

GGTTF
Hervorheben



learn the local structures in conditional probability distributions, followed by a greedy

strategy combined with a simulated annealing procedure to avoid local optima [57].

Biclusters with Coherent Values

The underlying models for biclusters with coherent values are more complex than

the previously mentioned models. In biclusters with coherent values, the elements

are affected by both row and column effects. This model also has two underlying

mechanisms, namely the additive model and multiplicative model. Given a sub-

matrix MIJ , the additive model regards the element mij as:

mij = σ + αi + βj (2.13)

The additive model decomposes a value into three effects: the bicluster effect µ, the

row effect αi and the columns effect βj. Fig. 2.2 (4) and (5) show two examples of

biclusters with coherent values of additive model.

Biclusters with multiplicative coherent values models the elements as follows:

mij = σ × αi × βj (2.14)

The only difference is that the multiplicative model uses the product of the three

effects (Fig. 2.2 (6) and (7)). Multiplicative models can easily be transformed into

additive ones by computing the logarithm of each effect:

σ′ = log(σ) (2.15)

α′i = log(αi) (2.16)

β′j = log(βj) (2.17)
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log(mij) = σ′ + α′i + β′j (2.18)

A number of biclustering algorithms were developed to discover biclusters with co-

herent values. The first biclustering tool applied on microarray data, developed by

Cheng and Church [30], was mainly focusing on the discovery of coherent biclusters

generated by an additive model. In Cheng and Church’s study, a bicluster was defined

as a sub-matrix with small “mean square residue”. The mean square residue H(I, J)

is the scoring function for assessing the quality of biclusters, defined as:

H(I, J) =
1

|I||J |
∑

i∈I,j∈J

r(mij)
2 (2.19)

where,

r(mij) = mij −mIj −miJ +mIJ . (2.20)

mij is the element at row i and column j, miJ is the mean of the row i, mIj is the mean

of the columns j, and mIJ is the mean of the complete sub-matrix. According to the

assumption of Cheng and Church [30], a perfect bicluster would have H(I, J) = 0.

In such a bicluster, the element mij is exclusively determined by the row mean miJ ,

the column mean mIj and the subset mean mIJ , as follows:

mij = miJ +mIj −mIJ (2.21)

Cheng and Church also introduced the concept of δ-bicluster. For a certain δ ≥

0, a sub-matrix is a δ-bicluster if and only if H(I, J) ≤ δ. The perfect bicluster

mentioned in the previous paragraph is a special case with δ = 0.

In addition to the commonly used mean square residue as the scoring function,

other measures were also developed to evaluate the quality of biclusters with coherent
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values. One of them developed by Hartigan [77] is defined as:

r′(mij) = mij −mIJ (2.22)

This quality measure has been adopted by Cheng and Church [30] and Yang et al.

[208] to assess the consistency of the biclusters,

Other algorithms like that by Cho et al. [32], compute all biclusters simultane-

ously, using total squared residue as the scoring function HT (I, J), defined as:

HT (I, J) =
B∑
b=1

Hb(I, J) (2.23)

where Hb(I, J) is the mean square residue of bicluster b in sub-matrix MIJ .

In the algorithm Flexible Overlapped biClustering (FLOC) [207, 208], an addi-

tional occupancy threshold θ is defined over the δ-bicluster, as the fraction of “specific

elements” in each row and column. Given a sub-matrix MIJ , the number of specific

values in row i is denoted as |J ′i | and the number of specific values in column j as

|I ′j|. The scoring functions measuring the quality of the biclusters are defined as:

miJ =
1

|J ′i |
∑
j∈J ′i

mij (2.24)

mIj =
1

|I ′j|
∑
i∈I′j

mij (2.25)

mIJ =
1

vIJ

∑
i∈I′j ,j∈J ′i

mij (2.26)

mij =


mij −miJ −mIj +mIJ if mij is specified.

0 otherwise
(2.27)
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where vIJ is the number of the specific values in the sub-matrix mIJ , defined as the

volume of the sub-matrix.

Yang et al. [208] also considered other mean measures like geometric mean and

the square mean, defined as:

H(I, J) =
1

vIJ

∑
i∈I′j ,j∈J ′i

|r(mij)| (2.28)

H(I, J) =
1

vIJ

∑
i∈I′j ,j∈J ′i

r(mij)
2 (2.29)

Wang et al. [192] designed δ-pClusters with an additional measure named “pscore”.

A pscore is defined over a 2 × 2 sub-matrix MRC , where R = {r1, r2}, C = {c1, c2}.

The pscore is computed as follows:

pscore(MRC) = |(mr1c1)− (mr1c2)− (mr2c1 −mr2c2)| (2.30)

A sub-matrix MIJ is a δ-pCluster if and only if for all 2× 2 matrix MRC ⊆MIJ , we

have pscore(MRC) ≤ δ. The model of δ-pClusters can also be used to detect additive

bicluster model.

In addition to the additive and multiplicative models, Lazzeroni and Owen pre-

sented the plaid model [114]. Its major distinction is that the interactions between

biclusters are considered as a contributing factor to the matrix elements. The plaid

model models the matrix elements as a linear combination of different layers, repre-

senting various effects that influence the values, defined as:

mij =
K∑
k=0

θijkρikκij (2.31)

Here, θijk indicates the effect of biclusters k on element i, j; ρik and κjk are two

binary indicators (ρik ∈ {0, 1}, κjk ∈ {0, 1}), representing whether the row i and
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the column j are in the bicluster k or not. In the plaid model, the element mij is

represented as the sum of the effects from all biclusters that contain mij, with each

bicluster modeled as a layer. The plaid model aims to minimize the square error

formulated as follows:

1

2

n∑
i=1

m∑
j=1

(mij − θij0 −
K∑
k=1

θijkρikκjk)
2 (2.32)

This scoring function describes the squared error between the real value in the ma-

trix and the theoretical value resulting from the plaid model. θij0 is considered as the

background. Notably, by varying θijk, the plaid model is flexible in identifying biclus-

ters of different types: when θijk = µk the plaid model represents a simple constant

model; by setting θijk = µk + αik and θijk = µk + βjk, the plaid model can be used

to discover biclusters with constant columns and rows; a complete additive formula

such as θijk = µk + αik + βjk enables the plaid to model the biclusters with coherent

values.

Biclusters with Coherent Evolution

The model of biclusters with coherent evolution focuses more on the trends or changes

in the data matrix, regardless of the exact values, as represented in Fig. 2.2 (8), (9),

(10), (11) and (12).

Ben-Dor et al. [12] developed the Order-Preserving Sub-Matrix (OPSM) algo-

rithm based on a non-parametric statistical model, under which the biclusters are

defined as groups of rows with preserved linear ranks. The algorithm aims at finding

a certain subset of the columns such that the rank of the rows is strictly increasing

after permutation, as shown in Fig. 2.2 (11).

Another algorithm developed to search for coherent evolution patterns is xMO-

TIFs, designed by Murali and Kasif [134]. xMOTIFs has been proven successful in
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finding preserved gene expression biclusters (called motifs in [134]), defined as a sub-

set of rows (genes) with their expression levels preserved under a certain subset of

conditions. The genes are first categorized into several states, pre-defined according

to the actual values in the data matrix, e.g. up-regulated or down-regulated. The

xMOTIFs method then aims to find the largest subset such that the state of the genes

is preserved. Two user-specified parameters — α, β, representing the minimum frac-

tions of the rows and the columns in the resulting biclusters over the total numbers of

the rows and the columns in the matrix, are required to control the sizes. No bicluster

with sizes smaller than the specified size-fractions are reported.

Similarly, Tanay et al. [183] defined the biclusters with coherent evolution as a

subset of rows that have the same response across a subset of columns. Here, the

concept “same response” is defined as the significant up-regulations/down-regulations

of expression levels relative to the background signal.

2.2.3 Problem Complexity

The complexity of the biclustering problem depends on the required characteristics of

the biclusters, specifically on the complexity of judging whether a sub-matrix satisfies

the requirements. Most of the common variants of the biclustering problem are proven

to be NP-complete. Consider the simplest case where the matrix consists of only 0s

and 1s, and the task is to find a sub-matrix of 1s with maximum size. If we consider

the matrix as a graph, where e(ui, vj) ∈ E if and only if mij = 1, then it is trivial

to show that this biclustering problem is equivalent to the problem of finding the

maximum biclique in the graph, to which the classic NP-complete “clique problem”

[20] can be reduced. More complex cases arise when the elements in the matrix

are numeric values and the qualitites of the biclusters are dependent on the matrix

elements. Provided that the large majority of the biclustering problems are NP-

hard, algorithms designed to seek for exact solutions are apparently too expensive
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since searching for exact solutions always suffers from exponential increase in running

times. Heuristic approaches are often used for biclustering which significantly reduces

the running times without much compromise on accuracy.

2.2.4 Biclustering Algorithms

The biclustering methods differ in several aspects. First, many methods are designed

for particular bicluster model(s) and thus vary mostly in their scoring functions. Sec-

ond, some methods identify one bicluster in one run while the others simultaneously

discover all biclusters satisfying the criteria. Third, biclustering algorithms follow

various strategies to detect biclusters, such as greedy iterative strategy, exhaustive

enumeration, statistical models, divide and conquer, etc.. Additionally, some meth-

ods require training to refine their parameters. In the following part of this section I

briefly introduce several algorithms that represent the state of the art.

The most straightforward method is to integrate the data analysis results of two

separate clustering runs applied on the rows and the columns. Several studies used

this strategy to find biclusters with constant values and biclusters with constant rows

or columns. For instance, Getz et al. [64] developed a method named Coupled Two-

Way Clustering (CTWC). In CTWC, the rows and the columns are first repeatedly

clustered by a hierarchical clustering algorithm, forming two lists of row and column

clusters. The algorithm then integrates the results from the row and column clus-

tering. To avoid exhaustive enumeration of all cluster combinations, Getz et al. [64]

identifies only the stable clusters based on the in-bicluster variances and discards all

others. Afterwards, the biclusters are computed by merging small stable clusters or

breaking up the large ones into smaller but more stable biclusters. A parameter T

is used to control the bicluster size. Usually the algorithm starts with T = 0 and

T increases as the algorithm proceeds, until T reaches a certain level. All biclusters

which survive the procedure are believed to be qualified and reported. Note that the

27



rows and the columns can be clustered by any appropriate clustering method, e.g.

hierarchical clustering, k-means, etc.

Tang et al. [185] developed the Interrelated Two-Way Clustering (ITWC) method

following a similar strategy. ITWC also combines the clustering results obtained

from rows and columns separately. In the first step, clustering is performed on rows

and columns to obtain one-dimensional clusters, with a user-specified parameter K

required to control the cluster numbers. Afterwards, ITWC selects a set of heteroge-

neous biclusters from the combinations as the representative biclusters. All generated

biclusters are then sorted in descending order based on the cosine distances between

them and the representative biclusters. Finally, the biclusters with higher scores are

regarded as final output.

Block clustering developed by Hartigan [77] follows a divide-and-conquer ap-

proach. The algorithm starts with the entire data matrix as one large bicluster,

called block. In each iteration, it searches for the best bipartition of the large block

into two pieces that achieves the highest reduction of variances (see Section 2.2.2).

The iteration stops when the total number of biclusters reaches a pre-defined value

K.

Cheng and Church [30] applied biclustering analysis to gene expression analysis

for the first time. The algorithm performs a greedy search on the data matrix and

uses a scoring function to search for the local optima. This is a trade-off between

the optimized solution and running time. Cheng and Church’s algorithm [30] starts

with an initial sub-matrix that contains all rows and columns. A specified threshold

δ is used as the upper bound for the mean squared residue (See Section 2.2.2). In

a greedy manner, the algorithm iteratively removes the rows or columns that could

achieve the largest decrease in mean square residue, until the mean square residues of

the remaining bicluster falls below δ. This deletion phase is followed by a row/column
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addition phase where one row/column is added back in each iteration to achieve

maximum sizes of the biclusters without exceeding the upper bound δ.

The FLOC [207, 208] algorithm uses a modified mean square residue definition

presented in Section 2.2.2. Unlike Cheng and Church’s method where only one bi-

cluster is discovered on each run, FLOC applies a two-phase procedure to identify all

biclusters in the solution simultaneously. In the first phase, K initial bicluster candi-

dates are generated by a stochastic process that adds and deletes rows and columns

from the entire matrix. In the second phase, the quality of the initial biclusters is

improved iteratively. The algorithm stops when the overall mean square residue can

no longer be reduced.

Iterative signature algorithm (ISA) is a nondeterministic algorithm that greedily

searches biclusters with two major requirements [15]: (1) each row in a bicluster must

have an average value larger than a certain threshold TR; (2) likewise each column

in a bicluster must have an average value larger than a certain threshold TC . The

algorithm starts with a random seed bicluster and iteratively updates the bicluster

until convergence. The algorithm re-runs the iteration step with different seeds.

BiMax is a divide-and-conquer algorithm that seeks sub-matrices in the data ma-

trix containing as many 1s as possible [149]. Thus BiMax only works on binary data

sets. Therefore, before applying BiMax on the data sets, a common strategy is to se-

lect a threshold and set all the elements above the threshold to be 1, the others to be

0. Then BiMax recursively divides the matrix into smaller sub-matrices to optimize

biclusters enriched with 1s.

In Factor analysis for bicluster acquisition (FABIA) [87] model, a bicluster is a

subset of similar rows/columns. The multiplicative model is used to define similar

vectors (a vector is a row/column), i.e., two vectors are similar to each other if the

angle between them is zero. Such linear dependency can thus be formulated as the

outer product of two vectors, λ and z, where λ refers to a baseline vector and z refers
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to a vector of factors. Zeros in z indicates the part of the vector not present in the

bicluster. The bicluster can thus be formulated as [87]:

X =

p∑
i=1

λiz
T
i + ε = ΛZ + ε (2.33)

Variational expectation maximization is used to maximize the posterior of the model

variables given the data matrix. Thresholds are given to decide the membership of

columns and rows in each bicluster.

The plaid algorithm fits the data to an artificial model called plaid model [114]

(See Section 2.2.2). In a plaid model, the value of a data element mij is affected by

several effects: bicluster effect µ, i.e. the effect of all the biclusters within the data

matrix; background effect θ; row effect α; column effect β and the random error e.

Xij is formulated as follows:

mij = θ +
K∑
k=1

(µk + αik + βjk)ρikκjk + eij (2.34)

k refers to the kth bicluster in a the data set of K biclusters. The plaid algorithm

iteratively fits the data to the plaid model and updates the parameters in the for-

mula such that the minimum squared error between the model and the true data is

minimized.

QUBIC is a deterministic algorithm that converts the problem of biclustering to

finding dense subgraphs on a bipartite graph [117]. Bipartite graphs are generated

based on the discrete data matrices. In the algorithm biclusters with non-zero con-

stant columns are located. Then the matrices (graphs) are divided into down and

up-regulated ranks. The biclusters are generated by iterative expansion of a seed

edge. Afterwards, they are expanded based on the requirement on the values of the

columns: the algorithm first requires all columns to be constant in the first iteration,

then this requirement is relaxed to allow the addition of rows.
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Spectral clustering uses singular value decomposition (SVD) to find a checkerboard

pattern of biclusters in the data set such that each bicluster has a variance lower than

a given threshold [105].

As mentioned in Section 2.2.2, Segal et al. [160, 161] used a Bayesian network and

built a Probabilistic Relation Model (PRM) to measure the conditional and the joint

distributions to infer the inter-relations between subsets of genes and conditions. The

Bayesian structures are constructed using a Condition Probability Distribution-tree

(CPD-tree)[57], followed by a greedy strategy combined with a simulated annealing

procedure to avoid local optima. Afterwards the parameters in the distributions are

computed by maximum likelihood. Segal et al. [160, 161] assumed multinomial distri-

bution for discrete variables and Gaussian distribution for continuous variables. Then

the algorithm is used to group the genes and the conditions such that the conditional

probabilities of the gene expressions on experiment conditions are maximized.

Califano et al. [23] followed a pattern alignment strategy to discover the biclusters

in the matrix, by modeling the column profiles as strings. A density constraint was

applied to decrease the influence of random matching on large data sets. The approach

searches a bicluster satisfying the δ-valid ks-pattern in a greedy manner, then expands

the bicluster as much as possible without breaking the δ-valid ks-pattern rule. It

starts with a bicluster with all columns, then tries to find a pattern match of all

subsets satisfying the δ-valid rule. Afterwards, redundant biclusters are removed.

The evaluation of the final biclusters, however, is not based on variance since the

matrix is not normalized. A statistical test was applied to compute this statistical

significance.

Tanay et al. [183] developed a Statistical-Algorithmic Method for Bicluster Anal-

ysis (SAMBA) based on exhaustive enumeration. SAMBA works on bipartite graphs

converted from the matrix (See Section 2.2.1 for details). The edges within the graph

represent the significant expression changes. Two models — one simpler model and
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one refined model — are developed to search for biclusters with different confidence

levels.

Table 2.1 shows a summary and comparison of the biclustering algorithms men-

tioned here.

Table 2.1: Summary and comparison of the biclustering algorithms.

Method Name Bicluster Model Strategy

Cheng and Church [30] Constant & Constant Values Divide and conquer

FLOC [207, 208] Constant Values Greedy

CTWC [64] Coherent Values Combined Clusters

ITWC [185] Coherent Values Combined Clusters

Spectral [105] Coherent Values Greedy

OPSM [12] Coherent Evolution Greedy

SAMBA [183] Coherent Evolution Exhaustive Enumeration

xMOTIFS [134] Coherent Evolution Greedy

ISA2 [15] Coherent Values Greedy

FABIA [87] Coherent Values Probabilistic Model

PRM [160, 161] Constant Row/Column Probabilistic Model

QUBIC [117] Constant Row/Column Divide and conquer

Plaid [115] Coherent Values Probabilistic Model

Bimax [149] Constant Row/Column Divide and conquer

2.2.5 Biclustering Structures

Biclustering algorithms often involve different assumptions with regard to the biclus-

ter structures. Many algorithms like [30, 63, 64, 77, 114, 161, 185] assume multiple

biclusters in the matrix while other models focus on finding just the best bicluster
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[12, 82]. For example, the algorithms aiming at finding only one bicluster in the input

matrix do not consider the interactions between biclusters. The search strategies also

differ largely. See [124] for more details.

2.2.6 Application of Biclustering

Biological Applications

One of the most common applications of biclustering is gene expression data mining.

The wide application of gene expression microarray technology enables establishing

the connections between gene expressions and phenotypes. Such experiments linking

the underlying genes and the phenotypes provide fundamental knowledge to func-

tional genomics and transcriptomics, promoting the understanding in the mechanisms

of gene regulations, the interactions between genes and pathways, the development

and the evolution of individuals, and pathogenesis [9].

Table 2.2 (taken from [124]) shows a list of applications reported using biclustering

techniques on microarrays.

Note that all previous studies using biclustering techniques were conducted using

microarrays, yet the biclustering models are not limited to gene expression mining but

also fit to be applied on any interesting issues with the underlying model of matrices or

bipartite graphs. For example, Lazzorni et al. conducted biclustering analysis using

biclustering on food and nutrition data to find food classes with similar nutrition facts

[114].

Other applications

Biclustering can deal with data from heterogeneous sources. Such examples include

not only expression studies or drug repositioning, but also research in the economic

areas such as marketing or customer behavior. In the context of marketing, biclus-

tering is used to find customers with similar behavior such as purchasing preferences,
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service preferences or reading habits. A number of investigations were conducted,

especially in E-commerce [88, 90, 189, 192, 207, 208].

In information retrieval, studies have been carried out on grouping documents

based on the similarities of certain properties, such as key words, sentence structure,

texts or images. In biclustering, the documents are modeled as rows and the specific

properties (text, images, etc.) are modeled as columns [17, 45]. Similarly, the doc-

uments can also be modeled as bipartite graphs and the document clusters can be

retrieved by performing graph biclustering [183].

Table 2.2: Taken from [124]. Applications of biclustering algorithms on gene expres-

sion analyses.

Data Set Applications References

Yeast Yeast Cell Cycle

1 [169]

Gene Functional

Annotation &

Coregulation

Identification

[169] [184]

Yeast Cell Cycle

2 [33]

Coregulation

Identification

[30] [32] [120] [192] [207] [208]

Yeast Stress 1

[63]

Gene Functional

Annotation &

Coregulation

Identification

[160] [161] [184]

Yeast Stress 2

[62]

Gene Functional

Annotation

[184]

Yeast Com-

pendium [90]

Gene Functional

Annotation

[160] [161] [184]
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Yeast Galactose

Utilization [92]

Gene Functional

Annotation

[184]

Human Response of

Fibroblasts to

Serum [94]

Sample Classifi-

cation

[187]

Lymphoma

Microarray

(B-Cells) [1]

Coregulation

Identification

Sample Classifi-

cation

[30] [32] [105] [134] [184]

Lymphoma Af-

fimetrix [103]

Sample Classifi-

cation

[105]

Leukemia Af-

fimetrix I (All

/AML ) [67]

Sample Classifi-

cation

[21] [105] [134]

Leukemia Af-

fimetrix 2 [8]

Sample Classifi-

cation

[165]

Colon cancer [3] Sample Classifi-

cation & Coreg-

ulation Identifi-

cation

[64] [134]

Multiple Sclero-

sis [212]

Sample Classifi-

cation

[185]

Cancer Cell Line

Affimetrix [195]

Sample Classifi-

cation

[23]

Breast Cancer 1

[82]

Coregulation

Identification

[12]
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Breast Cancer 2

[104]

Sample Classifi-

cation

[105]

CNS Embryonal

Tumor [147]

Sample Classifi-

cation

[105]
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Chapter 3

Background: Bicluster Editing and

Parameterized Tractability

One common strategy to solve biclustering algorithms is to convert the matrix into

bipartite graphs, as shown in Fig. 2.1. Through such conversion, graph clustering

approaches can be directly applied to biclustering. In this chapter, an important

graph clustering model, namely bicluster editing is introduced. Bicluster editing is

the basic model behind n-CluE and thereby of central importance for this thesis.

In this chapter, the theoretical background of bicluster editing and the concept of

parameterized tractability are presented, which provides the theoretical support to

solve bicluster editing problem both exactly and heuristically.

3.1 Cluster Editing

The problem of data clustering has been a research focus in data mining for decades.

Clustering on graphs, as one of the most important branches in the clustering, has

been extensively studied and reviewed in [78, 83, 128, 168].

A common strategy for clustering is to choose a similarity threshold and to con-

struct the corresponding graph according to the following rules: (1) create a node in
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the graph for each entity/object, and (2) edges are drawn between two nodes if and

only if they are labeled as “similar”. Under such setting, we denote the end points u

and v of an edge as “similar”, written as u ∼ v. The edge set of the similarity graph

is the collection of all similar node pairs, E = {(u, v)|u ∼ v}.

The graphs constructed from the above strategy are not necessarily “transitive”,

which means for arbitrary three nodes u,v and w, u ∼ v and v ∼ w does not nec-

essarily imply u ∼ w. We aim to convert the preliminarily constructed graph into

a transitive graph only consisting of disjoint clusters with minimum number of edge

deletions/insertions (for an unweighted input graph) or minimum sum of penalty (for

a weighted input graph). In the context of graph theory, if the graph satisfies any of

the equivalent conditions below, then we call it “transitive”:

1. For any three vertices u, v and w ∈
(
V
3

)
, we have (u, v) ∈ E and (v, w) ∈ E =⇒

(u,w) ∈ E.

2. An acyclic connected subgraph of 3 vertices does not exist, i.e., for each u, v

and w ∈
(
V
3

)
, we have E ∩ {(u, v), (v, w), (u,w)} 6= 2.

3. G is a disjoint union of cliques (a clique is a complete graph).

Under this setting, the definition of the unweighted cluster editing problem can

then be formulated as follows:

Unweighted Cluster Editing: Given a graph G = (V,E), can G be converted

into a transitive graph with a minimum number of edge insertions and deletions?

Cluster editing is one of the classic problems in theoretical computer science re-

search and has been widely used in practical applications. However, fixing the edge

weight to +1,-1 and 0 cannot accurately describe the similarities between different

biological entities. Thus the cluster editing problem on graphs with real-numbered

edge weights, namely weighted cluster editing, provides a better model for the biolog-

ical applications. The setting of the weighted cluster editing problem is derived from
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its unweighted version. Given an input graph G = (V,E), where V is the set of nodes

and E is the set of the edges.
(
V
k

)
is denoted as the set of k-element subsets of V .

{u, v} is an unordered pair of {u, v} ∈
(
V
2

)
. The similarity between two nodes is a

symmetric function s
(
V
2

)
→ R. Given a specific threshold δ, we call u and v similar,

denoted as u ∼ v, if and only if s(u, v) > δ. The edge set is therefore defined as the

set of all similar node pairs, E = {{u, v}|u ∼ v}. Self-loops are not allowed in the

graph. Our aim is to convert the input graph G into a transitive graph with edge

insertions and deletions. Each insertion and deletion of {u, v} incurs a certain cost

dependent on the edge weight and the threshold. For edge deletion, the cost is defined

as the edge weight minus the threshold, cost(u, v) = s(u, v) − δ; for edge insertion,

the cost is cost(u, v) = δ − s(u, v). The total cost of the conversion cost(G → G′) is

defined as: cost(G → G′) = cost(E\E ′) − cost(E ′\E). The weighted cluster editing

problem can be formulated as follows:

Weighted Cluster Editing: Given a weighted input graph G = (V,E) and a

similarity function s
(
V
2

)
→ R, try to convert the input graph G into a transitive

graph G′ with edge insertions and edge deletions such that the total conversion cost

cost(G→ G′) is minimum.

Apparently the unweighted graph can be regarded as a special case of the weighted

graph with a similarity function of s
(
V
2

)
= {−1,+1} and the threshold is fixed to 0.

The editing cost is defined as cost(G→ G′) = |E\E ′|+ |E ′\E|.

Both versions have been investigated and shown to be NP-complete by Shamir et

al. [163].

3.2 Bicluster Editing

In the spectrum of the problem formulations for biclustering, the transformation of

biclustering on matrices to the clustering on bipartite graphs is one of the most
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important directions to solve the problem from a graph theory perspective. A matrix

MIJ can be easily converted into a bipartite graph where for each row ri ∈ I and

each column cj ∈ J , a corresponding node is constructed. The edge weight can be

formulated in different ways, depending on the application cases. Usually, one models

edge weights as the similarities between the nodes based on some specific criterion.

After the graph is constructed, different models can be applied to solve the biclus-

tering problem. Other than the bicluster editing models, a number of other models

on bipartite graphs have contributed in this direction.

Maximum Vertex Weight Biclique: Given a vertex-weighted bipartite graph,

find a biclique of maximum total vertex weight.

A biclique is a complete bipartite graph. The problem of maximum vertex

weighted biclique has been solved in polynomial time by the algorithm proposed by

Yanakakis [210].

Exact Cardinality Biclique: Given a bipartite graph G = (U, V,E) and two

positive integers k and l, ask whether there exists a biclique B = (U ′, V ′, E ′), such

that B ⊆ G, |U ′| = k and |V ′| = l.

Maximum Balanced Vertex Cardinality Biclique: Given a bipartite graph

G = (U, V,E) and a positive integer k, ask whether there exists a biclique B =

(U ′, V ′, E ′), such that B ⊆ G, |U ′| = |V ′| ≥ k.

Dawande et al. [41, 61] have proven that both of the above two problems are

NP-complete.

Maximum Edge Cardinality Biclique: Given a bipartite graph G = (U, V,E),

try to find a biclique (U ′, V ′, E ′) in G such that |E ′| is maximal.

The maximum edge cardinality biclique has been shown to be NP-complete by

Peeters et al [145].

Minimum Edge Deletion Biclique: Given a bipartite graph G = (U, V,E),

find a biclique (U ′, V ′, E ′) in G such that |E\E ′| is minimal.
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Minimum Edge Deletion Weighted Biclique: Given a weighted bipartite

graph G = (U, V,E) and a similarity function s: s(e) → R+ (e ∈ E), find a biclique

(U ′, V ′, E ′) in G such that
∑
e∈E′

s(e) is minimal.

Dawanade et al. have proven both the weighted and unweighted version of min-

imum edge deletion biclique to be NP-complete [42]. Hochbaum has provided an

approximation algorithm with worst-case approximation factor 2 [85].

In this thesis the model of bicluster editing is adopted to solve the biclustering

problem. The bicluster editing problem is the counterpart of cluster editing on bi-

partite graphs.

The bipartite graphs are constructed following the same strategy: (1) for each

entity/object we construct a node in the graph; (2) edges are inserted between the

“similar” node pairs. Two endpoints of an edge u and v is thus called “similar”, written

as u ∼ v.

The resulting bipartite graph is not always “transitive”. For a bipartite graph

G = (U, V,E), we have the following equivalent conditions characterizing if it is

transitive:

1. For each subset of four nodes, {u, v, w, x} ∈
(
V
4

)
, where {u,w} ∈

(
U
2

)
, (v, w) ∈(

V
2

)
, we have {u, v} ∈ E, {w, v} ∈ E and {w, x} ∈ E =⇒ {u, x} ∈ E.

2. G does not contain an acyclic connected subgraph of four nodes, i.e.,

for each {u, v, w, x} ∈
(
V
4

)
, where {u,w} ∈

(
U
2

)
, {v, w} ∈

(
V
2

)
, we have

|E ∩ {{u, v}, {w, v}, {w, x}, {u, x}}| 6= 3.

3. G is a disjoint union of bicliques (i.e. complete bipartite graphs).

The aim of bicluster editing is to convert the given input bipartite graph (weighted

or unweighted) to transitive bipartite graphs with minimum editing cost. The defini-

tions of edge weights and editing costs remain the same as those in cluster editing.
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The unweighted bipartite graph is a special case of the weighted bipartite graph

where the edge weights of all connected node pairs are assigned to +1 and the weights

of all non-connected node pairs are assigned to -1. The threshold in the bipartite graph

is fixed to 0.

The bicluster editing problem can be formulated as:

Unweighted Bicluster Editing: Given an unweighted bipartite graph G =

(U, V,E) where U and V are the nodes sets and E is the edge set, can G be converted

into a transitive bipartite graph with minimal number of edge insertions and edge

deletions?

Weighted Bicluster Editing: Given a weight bipartite graph G = (U, V,E)

and a similarity function s
(
V
2

)
→ R, convert the input graph G into transitive bipar-

tite graph G′ with edge insertions and edge deletions such that the conversion cost

cost(G→ G′) is minimal.

The bicluster editing model tries to capture the exclusive row and column biclus-

ters, since no overlapping between different bicliques are allowed.

3.3 NP-hardness

The NP-completeness of the unweighted bicluster editing problem was proven by

[5] by a polynomial reduction from the classic NP-complete problem of the 3-Exact

3-Cover problem, formulated as:

3-Exact 3-Cover:Given a collection C of triplets of elements from a set U =

{1, 2, ..., 3n}, such that each element of U is a member of at most 3 triplets, determine

if there exist a sub-collection I ⊆ C of size n that covers U .

Apparently, the weighted version of bicluster editing is also NP-complete by a

simple reduction from the unweighted bicluster editing problem.
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3.4 Parameterized Tractability

Both unweighted and weighted bicluster editing problems have been proven to be NP-

complete. To overcome the challenge of exponential explosion (i.e., running times

grow exponentially or worse with the sizes of the input instance) caused by NP-

hardness, research efforts have been pivoted to parameterzied complexity theory and

fixed-parameter algorithms. The parameterized complexity theory provides a strategy

to solve the NP-hard problem by restricting as much as possible the exponential

growth in running times [137]. The main theory of parameterized tractability strives

for the insight of a specific problem by investigating the influences on time complexity

of the parameters closely related to the given problem [137]. By restricting some

critical parameters to small values, the original problem might be able to be solved

efficiently. Consider the well-known graph problem of vertex cover:

Vertex cover: Given an input graph G = (V,E), try to find a subset of vertex

V ′ with minimum size, such that for each edge e ∈ E, e has at least one end vertex

in V ′.

For the vertex cover problem, if the size of the final cover, as the critical param-

eter, is kept as a small value, then the solution can be found with a relatively small

exponential factor, unrelated to the size of the input graph. One of such solutions can

be found in [138] with the exponential factor as 1.29k, where k is the fixed parameter

of the size of the vertex cover.

Following the strategy of fixed-parameter tractability, the NP-hard problem might

be solved with a running time of O(f(k)|̇I|c), where f is a function that solely depends

on a parameter k, usually exponentially or worse; |I| is the input size of the problem

and c is a non-negative constant. A recent review of fixed-parameter tractability

can be found in [175]. Notably, not all NP-hard problems can be solved using fixed-

parameter techniques. For instance, the running time of the NP-hard problem of
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Dominating Set cannot be reduced using an analogous strategy to fixed-parameter

tractability, as explained in [47].

Kernelization is an essential pre-processing step in the development of a fixed-

parameter algorithm. By proper reduction rules, the sizes of the input problems can

be further cut down, yielding a reduced problem instance, namely the problem kernel.

The goal of a kernelization is to design a function of f , such that an input instance

with the size I and parameter k is transformed into a new problem instance I ′ and

new parameter k′ with k′ ≤ k and |I ′| ≤ g(k), where g is a function only dependent

on k. The original problem instance (I, k) has a solution if and only if the reduced

instance (I ′, k′) has a solution, see [47] for the formal mathematical framework of the

fixed-parameter tractability and kernelization.

Investigations in the direction of parameterized tractability of cluster editing and

bicluster editing turned out to be a fruitful research area. A series of different algo-

rithms have been developed for the unweighted cluster editing problem with sophis-

ticated kernelizations and refined branching strategies [47, 56, 69]. The latest kernel-

ization pipeline has a result of only 4k vertices in the reduced instance [71]. Gram

et al. [44, 70] have proposed an algorithm with time complexity of O(2.27k + |V |3)

where V is the vertex set in the given input graph. Böcker et al. further refined the

branching strategy and achieved a lower running time bound by O(1.83k + |V |3) [18].

In the same study of Böcker et al. [18], the authors contributed also to the weighted

version of cluster editing, and achieved a problem kernel of k2 + 3k + 2 vertices and

1
2
k3 + 5

2
k2 + 5k + 2 edges.

For bicluster editing, Protti et al. [150] proved that the running times can be

bound by O(4k+ |E|) by a simple branching strategy, where E stands for the edge set

in the input graph. A problem kernel consisting of 4k2+6k vertices was also proposed

in Protti et al.’s report [150]. Guo et al. [72] further improved the kernelization for

bicluster editing to a linear problem kernel of 4k vertices, using a similar strategy
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applied previosly on cluster editing problems [71]. The running time was thereby cut

down to O(3.24k + |E|). The weighted version of bicluster editing has not, however,

been fully investigated, which is one of the focuses of this thesis. We followed a

similar strategy as in Böcker et al. [18] and brought forward a new kernelization and

branching strategy for weighted bicluster editing.

3.5 Fixed-Parameter Algorithm for Cluster Editing

As mentioned in the previous section, fixed-parameter algorithms are a special class

of algorithms based on fixed-parameter tractability, aiming to solve NP-hard problem

with higher efficiency. According to the rules of “transitivity” explained in Section

3.1, no P3 (a path of 3 nodes) is allowed in the result graph. The key to solve

cluster editing problems is to “repair” all existing P3s into disjoint cliques. In order

to achieve this goal, for each P3 found in the input graph, we have the following three

possibilities:

Given a graph G = (V,E), suppose three nodes {u, v, w} form a P3, where

{{u, v}, {v, w)}} ⊆ E, we can choose one of the following editing actions to repair

the P3.

• Remove the edge {u, v}.

• Remove the edge {v, w}.

• Insert the missing edge {u,w}.

Fig. 3.1 illustrates the three editing possibilities. The most straightforward way

to solve the cluster editing problem, namely the brute force branching strategy starts

with randomly selecting one P3 found in the input graph and recursively tries the

three editing possibilities. After each edge insertion/deletion, the algorithm checks

the whole graph for un-repaired P3s. If there exists any unfixed P3, the algorithm
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then proceeds to repair the newly found P3; if there is no P3 left, then the current

graph is recorded as one solution and the algorithm backtracks. In this manner, the

algorithm searches the complete solution space and picks up the final solution with

minimal editing cost. The whole algorithm finishes within O(3n). Fig. 3.2 illustrates

two different solutions.

Apparently, the brute force branching strategy is inefficient in processing large

input instances. The width of the branching tree grows exponentially with the in-

creasing input sizes and leads to an exponential growth of running times. Applying

the parameterized theory on cluster editing changes the landscape of the problem. As

explained in the beginning of this section, the time complexity of a given problem is

related not only to the input sizes but also to the parameterized solution size. Param-

eterized theory is set to focus on the cases when the parameter is relatively small. For

unweighted cluster editing, if we choose the sum of the minimum number of required

edge insertions and deletions as the parameter k, then the selected parameter k can

be significantly smaller than the whole input size n. This might greatly reduced the

required running time. In the context of parameterized theory, cluster editing can be

re-formulated as:

Unweighted Cluster Editing (Reformulated): Given a graph G = (V,E)

and a nonnegative integer k, can G be converted into a transitive graph with no more

than k edge modifications?

Weighted Cluster Editing (Reformulated): Given a graph G = (V,E) and

a nonnegative real number k, can G be converted in to a transitive graph with cost

no more than k?

It is easy to show that the time complexity of the brute force strategy is O(3k).

With a data reduction procedure (kernelization) and a refined branching strategy,

Gramm et al. [70] achieve a time complexity of O(2.27k + n3).
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Figure 3.1: The three editing possibilities for a given P3. (a) The given P3 consisting
of nodes u, v and w. (b) Repairing of P3 by the deletion of the edge {w, v} (c)
Repairing by deletion of the edge {u, v}. (d) Repairing by the insertion of {w, u}.

The fixed-parameter strategy for bicluster editing, which is part of the main con-

tributions of this thesis, will be thoroughly demonstrated and discussed in Chapter

5

47



Figure 3.2: An example of solving the cluster editing problem. The upper part is the
input instance. The lower-left and the lower-right part are two possible solutions.
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Chapter 4

Complexity of The Dense Bicluster

Editing Problem

Before we proceed to our implementation for solving practical problems, it is ben-

eficial to first present my theoretical research regarding the classic bicluster editing

problem and some of its useful variants. In this chapter, we focus on Π-bicluster

editing, which is by definition a relaxed version of the bicluster editing problem. The

theoretical study here investigates the possibility to solve efficiently the variant of

bicluster editing, namely Π-Bicluster Editing, given the fact that the classic bicluster

editing problem is NP-hard.

The content of this chapter is based on the published research article listed below:

• Peng Sun, Jiong Guo, and Jan Baumbach. Complexity of dense bicluster editing

problems. Computing and Combinatorics, pages 154–165, 2014

4.1 Preliminaries

An undirected graph G = (U, V,E), where U and V are two sets of nodes and E is

the set of edges, is a bipartite graph if ∀e ∈ E, edge e has exactly one end vertex
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in U and the other end vertex in V . Let W = U ∪ V . For an arbitrary W ′ ⊆ W ,

the induced subgraph G[W ′] is the subgraph over the vertex set W ′ with the edge set

{{u, v} ∈ E|u, v ∈ W ′}. An induced subgraph G[W ′] = (U ′, V ′, E ′) is a biclique if

∀u ∈ U ′ and ∀v ∈ V ′, we have {u, v} ∈ E. The open neighborhood N(v) of v ∈ W

is the set of vertices that are adjacent to v in G. The degree of a given vertex v is

denoted by d(v), referring to the cardinality of N(v). The closed neighborhood of v

is denoted by N [v], i.e., N [v] = N(v) ∪ {v}. The open and closed neighborhoods

of a set of vertices W ′ ⊆ W are defined as N(W ′) =
⋃
u∈W ′ N(u)\W ′ and N [W ′] =

N(W ′) ∪ W ′, respectively. Let W ′ ⊆ W , we use G − W ′ as the abbreviation for

G[W\W ′] and for a vertex v ∈ W , let G − v denote G − {v}. If G − v has more

connected components than G, then we call v as a cut vertex. Similarly, let E ′

be a set of edges, then G − E ′ denotes the graph G′ = (U, V,E\E ′). For a graph

G = (U, V,E), denote E = {{u, v}|u ∈ U ∧ v ∈ V ∧ {u, v} /∈ E} as the set of

missing edges. A pair of vertices {u, v} is called a missing edge if {u, v} ∈ E. For

two sets of vertices X and Y , let E(X, Y ) be the set of edges between X and Y , i.e.,

E(X, Y ) = {{u, v} | u ∈ X ∧ v ∈ Y ∧ {u, v} ∈ E}. For a vertex set X, denote

E(X) as the abbreviation for E(X,X). For a set of vertex X ′ and a bipartite graph

H = (X, Y,E), denote the intersection between X ′ and H as the set of common

vertices, i.e., X ′ ∩H = (X ′ ∩X) ∪ (X ′ ∩ Y ).

A problem is fixed-parameter tractable (FPT) with respect to a certain parameter

k, if there is an algorithm that decides the problem in f(k) · nO(1) time. Here, n

denotes the size of the input and f is a computable function. The framework of fixed-

parameter tractability was developed by Downey and Fellows [55]. A crucial tool

in the development of fixed-parameter algorithms is polynomial-time preprocessing

data reduction. Its goal is for a given instance x with parameter k, to transform

the problem into a new instance x′ with parameter k′, such that the size of the new

instance x′ is upper-bounded by some function only depending on k. The instance
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(x, k) is a yes-instance if and only if (x′, k′) is a yes-instance and k′ ≤ k. The reduced

instance must be computable in polynomial time. The whole data reduction process

is called reduction to a problem kernel or kernelization and the reduced instance is

called problem kernel.

4.2 Introduction

In graph-based data clustering methodologies, data entities are modeled as vertices

and a certain function is defined to quantify the “relationship” between two vertices

(e.g. similarities). The clustering problem could also be viewed from the graph

modification angle, i.e., to modify the graph by edge insertions and deletions into a

Π-cluster graph, the so-called Π-cluster editing problems. Here, a graph is a Π-cluster

graph, if each of its connected components satisfies Π, where Π is a certain density

measure. The most famous problem among the Π-cluster editing is cluster editing,

where Π is “being a clique”. cluster editing has been extensively studied and proved

as NP-complete among the earliest NP-complete problems [10, 163].

In some real-world applications, “being a clique” is increasingly criticized as over-

restrictive [162]. Thus some relaxed models might be more advantageous in a variety

of application scenarios. Theoretical studies have also been conducted on relaxed

versions of cluster editing. Guo et al.[74] studied the fixed-parameter tractability of

s-plex editing. In another study, Guo et al. extended their research further to several

other relaxed models: s-defective cliques, average-s-plexes and µ-cliques [73], in which

the NP-completeness and the fixed-parameter tractability are proved.

Similarly to Π-cluster editing, an s-biplex is a connected bipartite graph G =

(U, V,E) with d(u) ≥ |V |−s for all u ∈ U and d(v) ≥ |U |−s for all v ∈ V . Note that

a normal biclique is thus a 0-biplex. A bipartite graph G is called an s-biplex cluster

graph if all its connected components are s-biplexes. Therefore, s-biplex editing is the
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special case of bicluster editing with Π equal to “s-biplex”. Here, the NP-completeness

of s-biplex editing is shown. Then the sizes of minimal forbidden induced subgraphs

are upper-bounded by O(s) and a branching strategy can be derived which indicates

the fixed-parameter tractability of s-biplex editing.

In general graphs, average-s-plex is proposed as a “density measure”, defined as the

mean of the degrees of all vertices in a given graph [74]. In a bipartite graph, we define

the average degree for two vertex sets separately: dU = |E|/|U | and dV = |E|/|V |.

A connected graph G = (U, V,E) is thus an average-s-biplex if dU ≥ |V | − s and

dV ≥ |U | − s, with 1 ≤ s ≤ min{|U |, |V |}. This density measure can be considered

as a further relaxation of s-biplex, with no requirement on the minimum degree. In

this work, we show the NP-completeness of average-s-biplex editing. Afterwards, a

reduction to a more general problem is conducted, followed by a polynomial-time

kernelization procedure which produces a graph with at most 2k((s+ 1)(4k+ 6s) + 1)

vertices. This implies fixed-parameter tractability for average-s-biplex editing.

The concept of defective clique has been reported previously to be useful in bio-

logical network analysis [213]. NP-completeness and fixed-parameter tractability of

s-defective clique editing and deletions are already known [73]. A connected bipar-

tite graph G = (U, V,E) is an s-defective biclique if |E| ≥ |U | · |V | − s. We prove

that s-defective bicluster editing is NP-complete. Then, the sizes of minimal fobid-

den induced subgraphs of s-defective bicluster graphs are shown to be bounded by

2s+ 3, which leads directly to the fixed-parameter tractability of s-defective bicluster

editing with respect to the parameter (s, k). For more information on parameterized

complexity, we refer to [55] and [137]. Due to limited space, some proofs are deferred

to Appendix A.1.
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4.3 s-Biplexes

4.3.1 NP-Completeness

In this section, we show the NP-completeness of s-biplex editing by a reduction from

3-exact-3-cover.

Theorem 4.1. For every constant s ≥ 0, s-biplex editing is NP-complete.

Proof. If s=0, then the problem is equivalent to bicluster editing and thus is NP-

complete. For any s ≥ 1, we reduce the NP-complete 3-exact-3-cover (3X3C), where

given a collection C of triplets (a set of 3 elements is called a triplet) from an element

set A = {a1, a2, a3, ..., a3n} such that each element of A is a member of at most three

triplets, one asks to find out a sub-collection I ⊆ C of size n that covers A, i.e., every

element of A appears in some triplet in I. The set I is called an “exact cover”.

We construct an s-biplex editing instance as follows: Let m = (72 + s)n. A

bipartite graph G = (U, V,E) is then constructed, based on the following procedure:

For each element in A, one corresponding vertex is created in U , and for each triplet

S ∈ C, a set of m vertices is added to U . The same construction is performed to

create vertices in V , that is: U = U1 ∪ U2, V = V1 ∪ V2, U1 = {u1, u2, ..., u3n},

V1 = {v1, v2, ..., v3n}, U2 =
⋃
S∈C{uS1 , uS2 , ..., uSm}, V2 =

⋃
S∈C{vS1 , vS2 , ..., vSm}.

The edge set E in G consists of five subsets: First, we connect every ui ∈ U1 to its

corresponding vi ∈ V1, 1 ≤ i ≤ 3n. Second, for each triplet S ∈ C, let S = {ax, ay, az},

(1 ≤ x, y, z ≤ 3n). We connect ui ∈ U1 and vj ∈ V1 for all i, j ∈ {x, y, z} with i 6= j.

Third, between U2 and V2, for each S ∈ C, denote Um
S = {uS1 , uS2 , , ..., uSm} and

V m
S = {vS1 , vS2 , ..., vSm}. We connect uSi

∈ Um
S to vSj

∈ V m
S for all 1 ≤ i, j ≤ m.

Finally, for each S = {ax, ay, az} ∈ C, (1 ≤ x, y, z ≤ 3n), every ui ∈ U1(i ∈ {x, y, z})

is connected to all vertices in V m
S ⊆ V2, and every vi ∈ V1 (i ∈ {x, y, z}) is connected

to all vertices in Um
S ⊆ U2. More precisely: E =

⋃5
i=1Ei, E1 = {{ui, vi}| i =

1, ..., 3n}, E2 = {{ui, vj}| ∃S = {ax, ay, az} ∈ C ∧ i, j ∈ {x, y, z} ∧ i 6= j},
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Figure 4.1: The construction of the reduction. u1, u3 and u3n belong to the same
triplet in C; v1, v3 and v3n belong to the same triplet in C. Each Um

S and V m
S has

m = (72 + s)n vertices.

E3 = {{uSi
, vSj
}| ∃S ∈ C ∧ uSi

∈ Um
S ∧ vSj

∈ V m
S }, E4 = {{ui, vSj

}| ∃S =

{ax, ay, az} ∈ C ∧ i ∈ {x, y, z} ∧ vSj
∈ V m

S }, E5 = {{vi, uSj
}| ∃S = {ax, ay, az} ∈

C ∧ i ∈ {x, y, z} ∧ uSj
∈ Um

S }.

For each triplet set S ∈ C, we denote: US = {ux, uy, uz|{ax, ay, az} ∈ S}, VS =

{vx, vy, vz|{ax, ay, az} ∈ S}, WS = US ∪VS, Um
S = {uS1 , ..., uSm}, V m

S = {vS1 , ..., vSm},

Wm
S = Um

S ∪ V m
S .

Obviously, the construction can be carried out in polynomial time. Let M =

2m(3|C| − 3n) and N = |E2| − 6n. The parameter k is equal to M +N . For the rest

of the proof, please refer to Appendix A.1.

4.3.2 Forbidden Induced Subgraphs

In this section, we describe a set of forbidden induced subgraphs GF . A graph G

is an s-biplex cluster graph if and only if G does not contain any forbidden induced

subgraphs in GF . If s = 0, then we have a bicluster editing problem and the forbidden

subgrah is a path of four vertices. If s ≥ 1, the structures of forbidden induced

subgraphs are much more complex and we are faced with an exponentially increasing
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number of different possibilities. To solve the problem, we show in the following that

the numbers of vertices in forbidden induced graphs are bounded by O(s) vertices.

Based on this characterization, a branching strategy solving s-biplex editing can be

established.

We start with some preliminaries. A connected induced subgraph in G, H =

(R, T,E ′) is minimal forbidden induced subgraph if H is not an s-biplex cluster graph

but every induced proper subgraph of H is an s-biplex cluster graph. We call a vertex

v in H “forbidden” if v is incident to more than s missing edges (we call u incident to

a missing edge to v if {u, v} /∈ E). A subset of vertices R′ is called “forbidden subset”

if R′ contains at least one forbidden vertex. To show the upper-bound for minimal

forbidden induced subgraphs, two distinct cases are studied separately: (1) subgraph

H contains forbidden vertex (vertices) only in R (or T ), and (2) H contains forbidden

vertices in both R and T . We first prove four claims regarding the properties of a

minimal forbidden induced subgraph. Next, we show that every minimal forbidden

induced subgraph of biplexes contains at most 3s + 3 vertices in both the two cases

mentioned above, for all s ≥ 1.

Lemma 4.2. Let H = (R, T,E ′) be a minimal forbidden induced subgraph. If R is a

forbidden subset, then min
u∈R
{d(u)} = |T | − s− 1

Proof. See the proof in Appendix A.1.2.

Lemma 4.3. Let H = (R, T,E ′) be a minimal forbidden induced subgraph. If H has

forbidden vertices both in R and T , then H can only be a path of length 2s + 3, and

only the two endpoints of the path are forbidden vertices.

Proof. First we prove the claim that H contains no more than two forbidden vertices

if H has forbidden vertices both in R and T . Conversely, we assume that there are

> 2 forbidden vertices in H, since we know that in every graph, there are at least 2
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non-cut vertices. Let u, v be the 2 non-cut vertices. We have 6 cases with respect to

u and v:

Case i: u, v are both forbidden vertices, and u, v ∈ R. Then we can remove u

without separating H. In the subgraph H − u, we have dH−u(v) = |T | − s − 1 and

H − u is also forbidden, contradicting with minimal forbidden induced subgraph. If

u, v ∈ T , same proof applies.

Case ii: u, v are both non-forbidden vertices, and u, v ∈ R. Since R, T are both

forbidden subsets, there exists a forbidden vertex w ∈ R, such that d(w) = |T |−s−1.

The subgraph H − u is also forbidden since dH−u(w) = |T | − s − 1. If u, v ∈ T , the

same proof applies.

Case iii: u is a forbidden vertex, v is a non-forbidden vertex and u, v ∈ R. Then

just remove v and H − v is still forbidden.

Case iv: u is a forbidden vertex in R, v is a non-forbidden vertex in T . Since R, T

are both forbidden subsets, there exists a vertex w ∈ T , such that d(w) = |R|− s−1.

We remove v from T . Then dH−v(w) = |R| − s− 1 and thus H − v is still forbidden.

Case v: u is a non-forbidden vertex in U and v is a non-forbidden vertex in V . A

proof similar to Case iv applies.

Case vi: u is a forbidden vertex in R, v is a forbidden vertex in T . Let w be a

forbidden vertex in H and w 6= u, w 6= v. Without loss of generality, we assume

w ∈ R. Then we can remove u from H. Then dH−v(w) = |T | − s− 1 and thus H − v

is still forbidden.

To summarize the six cases, since we have two non-cut vertices and at least three

forbidden vertices with at least one forbidden vertex in R and at least one in T , we

can always find a forbidden vertex x and a non-cut vertex y in the same vertex set (in

R or in T ). Clearly, removing y does not affect the property of the forbidden vertex

x and thus the subgraph H − y is still forbidden. This contradicts the assumption.
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Figure 4.2: Example of a minimal forbidden induced subgraph with s = 2. The vertex
R2 has no edge between itself and T1, T3 and T4 (R2 is incident to three missing edges).
Thus the subgraph is forbidden. However, any induced subgraph of it is a s-biplex.

Hence, if H is a minimal forbidden induced subgraph with forbidden vertices in both

R and T , then H cannot contain more than two forbidden vertices.

Next, we prove that H can only be a path of 2s+ 3 vertices. Let u∗ and v∗ be the

two forbidden vertices in H. Suppose u∗ ∈ R and v∗ ∈ T . Consider a third vertex

w∗, w∗ 6= u∗ and w∗ 6= v∗. Clearly, such vertex w∗ exists. If w∗ is a non-cut vertex,

then consider the subgraph H − w∗. If w∗ ∈ R, in H − w∗, u∗ is still a forbidden

vertex; if w∗ ∈ T , then in H − w∗, v∗ is still a forbidden vertex. In either case, H is

not minimal. Therefore, we know that in H, all vertices other than u∗ and v∗ must

be cut vertices. Thus in H, we have |R|+ |T |− 2 cut vertices. Obviously, H can only

be a path and u∗, v∗ can only be the two endpoints of the path in R and T .

Lemma 4.4. Let H = (R, T,E ′) be a minimal forbidden induced subgraph with for-

bidden vertices only in R. Let R0 ⊆ R be the subset of all forbidden vertices and

R1 = R\R0. Let T0 = N(R0) and T1 = T\T0. Then we have:

1. ∀u ∈ R1, u is a cut vertex.

2. ∀v ∈ T0, v is a cut vertex.
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3. If |R0| > 1, then ∀u ∈ R0, u is a cut vertex.

4. If |T0| > 1, then for an arbitrary vertex v∗ ∈ T0 , let H = {H1, H2, ..., Hl} be the

set of disjoint components after removing v∗. Then for each Hi = (Xi, Yi, Ei),

1 ≤ i ≤ l, we have Xi ∩R1 6= ∅.

5. There exists at least one vertex v ∈ T1 with d(v) = 1.

Proof. See the proof in Appendix A.1.3.

Lemma 4.5. Let H = (R, T,E ′) be a minimal forbidden induced subgraph with forbid-

den vertices only in R. Let R0 ⊆ R be the subset of all forbidden vertices, R1 = R\R0.

Let T0 = N(R0) and T1 = T\T0. Then we have |R|+ |T | ≤ 3s+ 3.

Proof. Consider an arbitrary vertex v∗ ∈ T0. By Lemma 3, v∗ is a cut vertex. Let

H = {H1, H2, ..., Hr}, r > 1, Hi = (Xi, Yi, Ei) be the set of disjoint connected

components after removing v∗. Without loss of generality, let {H1, H2, ..., Hl} be the

subset of H, l ≤ r, such that Xi ∩ R0 6= ∅, for all 1 ≤ i ≤ l. We have the following

two cases:

Case i. If l ≥ 2, we know there is at least two disjoint components that intersect

with R0. Hence consider ∀u ∈ X1 and ∀v ∈ Yj (1 < j ≤ l), we have {u, v} /∈ E ′.

Similarly, we have {u′, v′} /∈ E ′, for all u′ ∈ Xj (1 < j ≤ l) and all v′ ∈ Y1.

Thus, we have |Y1| ≤ s + 1 and
l∑

j=2

|Yj| ≤ s + 1, since otherwise we would have

a u ∈ R incident to more than s + 1 missing edges, contradicting with Lemma 1.

Because the number of missing edges incident to any vertex in R cannot be larger

than s + 1, we have |Y1| + |T1| ≤ s + 1 and
l∑

j=2

|Yj| + |T1| ≤ s + 1. Thus we have

|T | = |Y1| +
l∑

j=2

|Yj| + |T1| ≤ s + 1 + s + 1 = 2s + 2. Moreover, since we know

min
w∈T

d(w) = 1 and T does not contain forbidden vertex, we have |R| ≤ s+1. Thus the

total size of the forbidden induced subgraph H is |R|+ |T | ≤ 2s+ 2 + s+ 1 = 3s+ 3.
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Case ii. if ∀v ∈ T0, we have l = 1, then for all v ∈ T0, the removal of v will

not separate R0. For an arbitrary vertex v∗ in T0, let H = {H1, H2, ...Hr}, Hi =

(Xi, Yi, Ei) be the disjoint connected components after removing v∗. Without loss

of generality, let R0 ⊆ X1. Then T0 ⊆ Y1 and we can find at least one u∗ with

u∗ ∈ (N(v∗) ∩ R1), such that u∗ /∈ N(v′) for v′ ∈ T0, v′ 6= v∗. Therefore, each vertex

v∗ in T0 has at least one “unique” neighbor in R1. Thus |T0| ≤ |R1| ≤ s+1−|R0| ≤ s.

Moreover, we have |T1| ≤ s + 1, since otherwise the vertices in R0 are incident to

more than s+1 missing edges. Then the total size of the forbidden induced subgraph

H is |R|+ |T | ≤ s+ 1 + s+ s+ 1 ≤ 3s+ 2. In summary, the claim is proved.

Combining Lemma 2 and Lemma 4, we have the following theorem:

Theorem 4.6. If a graph G is not an s-biplex cluster graph, then we can find a

forbidden subgraph in G in polynomial time with the size bounded by 3s+3.

Finally, we have:

Corollary 4.7. S-biplex cluster editing is fixed-parameter tractable with respect to

(s,k).

4.4 Average-s-Plexes

In this section, we consider the average-s-biplex editing problem, proving its NP-

completeness and its fixed parameter tractability. with respect to parameters (s, k).

To show its NP-hardness, a two-step reduction is presented: First, we reduce a well-

known NP-complete maximum balanced biclique (MBB) to equal-size bicluster edit-

ing, afterwards, a reduction from equal-size bicluster editing to average-s-biplex edit-

ing is conducted. The equal-size bicluster editing (ESBE) is defined as follows:

Input: An undirected bipartite graph G = (U, V,E) and two integers

k, d ≥ 0.
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Question: CanG be transformed by editing at most k edges into d disjoint

bicliques {C1, C2, C3, ...Cd}, Ci = (Ui, Vi, Ei), 1 ≤ i ≤ d, such that |Ui| =

|Uj| and |Vi| = |Vj| for all 1 ≤ i, j ≤ d?

The edge deletion version of this problem requires only edge deletions.

Theorem 4.8. Equal-size bicluster editing is NP-complete.

Proof. See the proof in Appendix A.1.4.

Theorem 4.9. For every constant s ≥ 1, average-s-biplex editing is NP-complete.

Proof. See the proof in Appendix A.1.5.

We present a kernalization procedure for average-s-biplex editing with respect

to the parameter (s, k). In order to show this, first we reduce the problem into an

integer-weighted version and afterwards we describe three reduction rules that can be

carried out within polynomial time.

We introduce two types of weights to describe the weighted version of average-s-

biplex editing: Vertex weights and edge weights, inspired by the idea of the reduction

of the weighted version of cluster editing, i.e. for any pair of vertices that cannot

be separated by k edge modifications, we merge them into one “multi-vertex”. Obvi-

ously, for all vertices merged, they end up in the same average-s-biplex in all optimal

solutions.

We denote the vertex weight as σ(u) which keeps track of the number of vertices

merged into u. The vertex weight of a set of vertices S is defined as: σ(S) =
∑
v∈S

σ(v).

Moreover, let δ(u) be the subset of vertices {u1, u2, ..., ur}, r ≥ 1 that merged into

u, i.e., σ(u) = |δ(u)|. The edge weight, ω(u, v), is defined between two arbitrary

entities (The concept “entity” represents vertices, multi-vertices and sets of vertices),

storing the number of edges between them. The degree of a vertex u is defined as:

d′(u) = ω(u,N(u)). Thus, for a weighted bipartite graph G = (U, V,E), the average

degree of the vertices in U is defined as: dU = ω(U,V )
σ(U)

.
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Hence a bipartite graph G = (U, V,E) is a weighted average-s-biplex, if dU ≥

σ(V )− s and dV ≥ σ(U)− s. The weighted version of the problem can be defined as:

Input: A graph G = (U, V,E), with vertex weight σ(u) as a function:

σ(u) :

 U → [ 1, |U | ]

V → [ 1, |V | ]

and edge weight ω(u, v) as a function:

ω(u, v) : E → [ 1, |U ||V | ]

and a nonnegative integer k.

Question: With edge modifications whose total weight is at most k, can

G be edited into a weighted average-s-biplex cluster graph?

Note that if we set σ(u) := 1, δ(u) := {u} and for each {u, v} ∈ E, ω(u, v) :=

1, an instance of average-s-biplex editing can be easily reduced to an instance of

WEIGHTED average-s-biplex editing. In this reduction, parameters k and s are not

changed.

The following three reduction rules are designed for weighted average-s-biplex

editing, which lead to a problem kernel with no more than 2k((s + 1)(4k + 6s) + 1)

vertices.

• Rule 1. Remove all connected components in G that are already weighted

average-s-biplexes.

• Rule 2. For two vertices u, v ∈ U or u, v ∈ V , let S(u, v) := N(u) ∩N(v). If

min{ω(u, S(u, v)), ω(v, S(u, v))} > k, then we merge u and v, by replacing u

and v with a new vertex v′, such that v′ satisfies:

- σ(v′) = σ(u) + σ(v)

- ω(v′, x) = ω(u, x) + ω(v, x) for every x with {u, x} ∈ E, {v, x} ∈ E
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Lemma 4.10. Rule 2. is correct.

Proof. See the proof in Appendix A.1.6

The function of Rule 2. is to merge (or replace) the vertices that we cannot afford

separating. Based on the same idea, we consider another scenario: If a vertex u

has a large set of neighbors that only connects to u but to no other vertex, then

we cannot possibly delete the edges between u and all its “unique” neighbors. Let

N∗(u) ⊆ N(u) be a set of vertices such that ∀v ∈ N∗(u), v satisfies: (1) N(v) = {u}

and (2) σ(v) = 1. Rule 3. is then presented to reduce the size of N∗(u):

• Rule 3 For each u ∈ G, if |N∗(u)| > k, then we replace N∗(u) with a subset

of vertices containing (k + 1) vertices: {v0, v1, v2, ..., vk}, such that ω(u, v0) =

ω(u,N∗(u))− k and ω(u, vi) = 1 for all 1 ≤ i ≤ k.

Lemma 4.11. Rule 3 is correct.

Proof. See proof in Appendix A.1.7.

Theorem 4.12. (Weighted) average-s-biplex editing is fixed-parameter tractable with

respect to parameter (s, k) and admits a kernel of at most 2k((s + 1)(4k + 6s) + 1)

vertices.

Proof. See proof in Appendix A.1.8.

4.5 Defective Bicliques

We prove now the NP-completeness of s-defective bicluster editing

Theorem 4.13. For every s ≥ 0, s-defective bicluster editing is NP-complete.

Proof. See proof in Appendix A.1.9.
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Next, we show the fixed-parameter tractability of s-defective bicluster editing by

proving that for every s ≥ 1, all minimal forbidden induced subgraphs contain at

most 2s + 3 vertices and hence we are able to find a minimal forbidden subgraph in

polynomial time.

Lemma 4.14. For every s ≥ 1, every minimal forbidden induced subgraph of s-

defective bicluster graphs contains at most 2s+ 3 vertices. Given a graph that is not

an s-defective bicluster graph, a minimal forbidden induced subgraph can be found in

O((|U |+ |V |) · |E|) time.

Proof. Denote H = (R, T,E ′) as a minimal forbidden induced subgraph of s-defective

bicluster graph. Clearly, H is connected. Towards contradiction we assume H con-

tains more than 2s+ 3 vertices. We distinguish 2 cases:

Case i. There exists a cut vertex in H. Let u∗ ∈ R be a cut vertex. Obviously,

by s + 4 ≤ 2s + 3 for s ≥ 1, we can always find in H a connected subgraph H ′

such that H ′ contains u∗ and other s + 3 vertices and u∗ is a cut vertex in H ′. Let

H ′ = (R′, T ′, E ′′) We prove that H ′ is forbidden. By removing u∗, we obtain a set

of disjoint connected components H = {H1, H2, ..., Hl}, Hi = (Ri, Ti, Ei). Thus, we

63



have the number of missing edges em in H ′ is at least:

em ≥
1

2

l∑
i=1

(|Ri|(|T ′| − |Ti|) + |Ti|(|R′| − 1− |Ri|))

=
1

2

l∑
i=1

|Ri||T ′|+
1

2

l∑
i=1

|Ti|(|R′| − 1)−
l∑

i=1

|Ri||Ti|

= (|R′| − 1)|T ′| − (|R1||T1|+
l∑

i=2

|Ri||Ti|)

≥ (|R′| − 1)|T ′| − (|R1||T1|+ (
l∑

i=2

|Ri|)(
l∑

i=2

|Ti|)) (∗)

= (|R′| − 1)|T ′| − (|R1||T1|+ (|R′| − 1− |R1|)(|T ′| − |T1|))

= |T1|(|R′| − 1− |R1|) + |R1|(|T ′| − |T1|)

≥ |R′|+ |T ′| − 3 (∗∗)

Inequality (*) holds because for any integer a1, b1, a2, b2 > 0, we have a1 · b1 +

a2 · b2 ≤ (a1 + b1)(a2 + b2). Inequality (**) is the minimum value of the function

f(|T1|, |R1|) = |T1|(|R′| − 1 − |R1|) + |R1|(|T ′| − |T1|), with 1 ≤ |R1| ≤ |R′| − 1 and

1 ≤ |T1| ≤ |T ′|. Thus, we have em ≥ s + 1. Since |R′| + |T ′| = s + 4, we have H ′

being a forbidden subgraph, thus contradicts the assumption.

Case ii. If there is no cut vertex in H, then we know that ∀v ∈ H, v must be

incident to missing edge(s), otherwise we can just remove v from H without changing

the forbidden subgraph property. Let n = |U |+|V |, m0 be the minimum “anti-degree”

( “anti-degree” is the number of missing edges incident to a given vertex) in H and

mt be the total number of missing edges in H. Hence we have the inequalities: (1)

1
2
· n ·m0 ≤ mt and (2) mt −m0 ≤ s.

Inequality (1) holds because each vertex is incident to at least m0 missing edges

and altogether we have no more than mt missing edges. Inequality (2) holds because

H is a minimal forbidden subgraph and the removal of vertex v will decrease the

number of total missing edges by at least m0. Since H is minimal, ∀u ∈ H, H − u is
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not forbidden and thus has no more than s missing edges. Solving the inequalities,

we have: n ≤ 2s+2m0

m0
= 2

m0
s+ 2 ≤ 2s+ 3.

Thus if n > 2s + 3, then at least one inequality above is not satisfied and hence

H is not a minimal forbidden induced subgraph. To locate a minimal forbidden

induced subgraph, we first check if the given connected graph G is an s-defective

bicluster. If not, we check for each v ∈ G, the subgraph G − v. If G − v is still not

an s-defective biclique, then we remove v from G. Thus to find a minimal forbidden

induced subgraph takes at most O((|U |+ |V |)|E|) time.

Theorem 4.15. s-defective bicluster editing is fixed-parameter tractable with respect

to (s,k).

4.6 Outlook

For all three problems, further algorithmic improvements are possible: For s-biplex

and s-defective bicluster editing, a more elegant and efficient problem kernel is pos-

sible, and for average-s-biplex editing, an efficient branching strategy other than

brute-force is beneficial to be applied on the reduced problem kernel. Moreover,

in many practical applications, for example in computational biology, high-quality

heuristic algorithms should always be taken into account. Finally, it is also interest-

ing to consider other meaningful density measurements and study their classical and

parameterized complexity.
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Chapter 5

n-CluE

In this chapter, we introduce a software package “n-CluE” for solving biclustering

problems and n-clustering problems in the framework of bicluster editing and n-cluster

editing. The package “n-CluE” implements one exact algorithm and two heuristic

algorithms. The exact algorithm is based on the fixed-parameter tractability theory

discussed in the Section 3.4. A kernelization procedure and a branching strategy is

developed to traverse all possible editing behaviors and find the best set of insertions

and deletions that leads to smallest editing cost.

The edge deletion heuristic improves the running time of the fixed-parameter 

algorithm by locating the edge deletions that are most beneficial to convert the input 

graph into disjoint bicliques, in a greedy iterative manner. This reduces the running 

time to O(|E|(|E| + |V |2) + |V |3).

The second heuristic is inspired by a well-known graph layout algorithm: the

Fruchterman-Reingold algorithm [59]. The basic goal of this algorithm is to find an

arrangement in an u-dimensional (u > 1) space such that similar nodes are located

closer to each other than the dissimilar nodes. The first version of this “ layout-based ”

algorithm — Bi-Force, is designed for biclustering problems on bipartite graphs and
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matrices [179]. We then extended Bi-Force to n-Force to deal with n-partite graphs

of n-cluster editing.

The content of this chapter is based on the published research articles listed below:

• Peng Sun, Jiong Guo, and Jan Baumbach. Biclue-exact and heuristic algo-

rithms for weighted bi-cluster editing of biomedical data. In BMC proceedings,

volume 7, page S9. BioMed Central Ltd, presented at GLBIO2013, 2013

• Peng Sun, Jiong Guo, and Jan Baumbach. Integrated simultaneous analysis of

different biomedical data types with exact weighted bi-cluster editing. J Integr

Bioinform, 17, 2012

• Peng Sun, Nora K Speicher, Richard Röttger, Jiong Guo, and Jan Baumbach.

Bi-force: large-scale bicluster editing and its application to gene expression data

biclustering. Nucleic Acids Research, page gku201, 2014

• Peng Sun, Jan Baumbach, and Jiong Guo. Efficient large-scale bicluster editing.

In German Bioinformatics Conference 2014, pages 54–60

5.1 Introduction

The major part of n-CluE contains three algorithms: one exact algorithm based on

fixed-parameter tractability, one faster-running heuristic algorithm based on optimal

edge deletion estimation, and another heuristic algorithm named n-Force, motivated

by the well-known physics-inspried graph layout algorithm of Fruchterman and Rein-

gold [59].

The three algorithms are designed for different scenarios: The exact fixed-

parameter algorithm is developed for small input graphs. The edge deletion heuristic

performs best on medium-size graphs where edge deletions are more important than

edge insertions. N-Force is the only method that can solve n-cluster editing problems
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to deal with heterogeneous data of n (n > 2) different sources and is designed for

large-scale input graphs with thousands of nodes.

Assuming |s(u, v)| > 1 for all possible u and v, the fixed-parameter algorithm

finishes in O(4k) time; the edge deletion heuristic algorithm needs O(|E|(̇|E|+ |V |2)+

|V |3) time and n-Force is bounded by O(D2 · n2) for D2 iterations.

We first introduce and discuss the three algorithms. Afterwards, a systematic

evaluation is conducted to compare the performances of the three algorithms in n-

CluE on artificially generated graphs.

5.2 Fixed-Parameter Algorithm

The strategy based on fixed-parameter tractability to solve Cluster Editing has been

briefly introduced in Section 3.5. Fixing the “P3s” is the central part.

Bicluster editing is similar to its counterpart — cluster editing: we transform a

given bipartite graph into a transitive bipartite graph by edge insertions and deletions

with minimal costs for these modifications. We consider a bipartite graph G =

(U, V,E) transitive if it satisfies any of the following equivalent conditions:

• For an arbitrary subset of four vertices, (u, v, w, x), where (u,w) ∈ U and

(v, x) ∈ V , we have (u, v) ∈ E , (w, v) ∈ E and (w, x) ∈ E ⇒ (u, x) ∈ E.

• No acyclic connected subgraph of four vertices exists, i.e., for each (u, v, w, x) in

the graph, where (u,w) ∈ U and (v, x) ∈ V , we have |E∩{(u, v), (w, v), (u, x), (w, x)}| 6=

3.

• G is a union of disjoint bicliques (i.e. complete bipartite graphs).

We assume that the input graph consists of only one single connected component

since we can apply the algorithms on each connected component separately, without

loss of generality. An optimal solution of the bicluster editing problem would never
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join separate components, since we can always find a cheaper solution where all

separated components remain separate [74].

In this study, we use “P4” in short for “an acyclic connected subgraph of four

vertices”. As mentioned before, a bipartite graph is transitive if and only if it contains

no P4. Denote B(G) to be the set of all P4s, i.e. B(G) = {(u, v, w, x) | |E ∩

{(u, v), (w, v), (u, x), (w, x)}| = 3}. G is transitive if and only if B(G) = ∅.

Our fixed-parameter algorithm performs two major steps: Data Reduction and

Branching Strategy.

5.2.1 Data Reduction

Data reduction is a preprocessing step of the fixed-parameter algorithm that reduces

the instance size by removing those parts of the problem instance that do not need

to be repaired and thereby do not need to be considered in the following steps. We

first recognize all connected components as individual inputs. Then the algorithm

checks whether each component is already a biclique or not. If this is the case, then

the algorithm removes the whole component from the input and reports it as a part

of the solution. This procedure finishes within O(|V |+ |E|) time.

5.2.2 Branching Strategy

Branching refers to a search tree procedure to find and edit the P4s using edge

insertions and deletions. We have four possibilities to convert a P4 into bicliques:

removing one of the three edges, resulting in two bicliques, or complete the P4 with

one edge insertion (Fig. 5.1). More specifically:

Suppose (u, v, w, x) is an arbitrary P4 and let (u, v), (w, v), (w, x) be the three

edges in the P4. The following four cases are checked recursively,

• Insert (u, x) by setting the weight of (u, x) to “permanent” (Fig. 5.1 b)
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• Delete (u, v) by setting the weight of (u, v) to “forbidden” (Fig. 5.1 c)

• Delete (w, v) by setting the weight of (w, v) to “forbidden” (Fig. 5.1 d)

• Delete (w, x) by setting the weight of (w, x) to “forbidden” (Fig. 5.1 e)

The search tree procedure starts when a P4 is located. Four branches are created

for one P4 in the search tree; each represents one of the editing possibilities. Then

we recursively visit the four branches one by one, performing the corresponding edge

insertions or deletions and update k to k′ = k−(insertion or deletion cost). We

implement the whole algorithm in a recursive manner. If the editing in a certain

branch leads to k′ < 0, then the corresponding branch is skipped. The algorithm

stops when the entire tree is visited, and returns the optimal solution found. This

branching strategy checks in worst case running time of O(4k) if a solution of at most

cost k exists.

5.3 Edge Deletion Heuristic

In the fixed-parameter algorithm, we are aiming for repairing all the P4s to make

G transitive. The repairing action is either an edge insertion or edge deletion. It is

obvious that the difficult part of the problem is to correctly locate the edge deletions,

for the edge deletions determine the number of resulting disjoint bicliques. Therefore,

it would be beneficial to find the most promising positions of edge deletions first.

Then edge insertions can easily be carried out by inserting all edges required to make

each disjoint component transitive. This is the main idea behind our edge deletion

heuristic algorithm.

We define a function to score the edge removal candidates and greedily delete

the edge with highest score in each step, until further deletions do not improve the

solution. For each P4 (u, v, w, x) (where (u, v), (w, v), (w, x) ∈ E), we define deviation

from transitivity of G — D(G) as:
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Figure 5.1: Blue dashed lines correspond to edge deletions and red dashed lines
correspond to edge insertions. Four possibilities of repairing a P4 are presented: (b)
Insertion of the missing edge (u, x); (c) deletion of the edge (u, v); (d) deletion of the
edge (w, v); and (e) deletion of the edge (w, x).

D(G) =
∑

{u,v,w,x}∈P4

min{|s{u, v}|, |s{v, w}|, |s{w, x}|, |s{x, u}|}

The scores of edge deletions are computed as follows: Let (u, v) be an arbitrary

edge in G = (U, V,E, s). G′ = (U, V,E\(u, v), s′) is G after the removal of (u, v),

where s′(x, y) = s(x, y) for all possible x, y pairs, except s′(u, v) = −∞ ((u, v) set to

“forbidden”). Then we define:

∆uv(G) = D(G)−D(G′)− s(u, v)
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as the transitivity improvement of edge (u, v) where s(u, v) is the cost of edge deletion.

The edge deletion heuristic algorithm consists of three functions: REMOVE_CULPRIT(G),

TRANSITIVE_CLOSURE_COST(G) and EDGE_DEL_MAIN(G). REMOVE_CULPRIT(G)

returns the edge with highest transitivity improvement (argmax(u,v)∈E{∆uv(G)})

and removes it from G; TRANSITIVE_CLOSURE_COST(G) returns the total cost

of all edge insertions required to convert G into a biclique, assuming G is connected;

EDGE_DEL_MAIN(G)is the main function of the edge deletion heuristic.

The first invocation of REMOVE_CULPRIT(G) can be finished in O(|E| · |V |2)

time, since computing each ∆uv(G) can be finished in O(|V |2) time, for only those

P4s that contain (u, v) are considered. The subsequent routine calls require O(|V |2)

time to update the scores of the edges that were influenced by the deletion of (u, v),

and finally O(|E|) time to find the maximum scored edge. This results in a total

running time of O(|V |2 + |E|). TRANSITIVE_CLOSURE_COST(G) sums up the

cost for a transitive closure, accepting a running time of O(|V |2).

EDGE_DEL_MAIN(G) returns a solution object, containing the edge modifica-

tions and the costs needed for converting the input graph into a transitive one. We

keep the assumption that G is connected.

In our heuristic, checking for connected components requires O(|E|+|V |) time and

REMOVE_CULPRIT(G) requiresO(|V |2+|E|) time. TRANSITIVE_CLOSURE_COST(G)

takes O(|V |2) time for each disjoint component. Therefore, the total running

time of our algorithm is O(|E|(|E| + |V |2) + |V |3). Find pseudo-code of the

EDGE_DEL_MAIN(G) in Appendix A.2.

5.4 n-Force

n-Force mainly seeks to arrange all nodes of a graph in a two-dimensional plane (or

n-dimensional space) such that “similar” nodes are located closer to each other than
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to others. n-Force, afterwards, assigned the nodes in each “dense” part of the graph

layout to one bicluster by single linkage clustering or k-means clustering based on

the Euclidean distances. The algorithm is carried out in a three-step procedure: (a)

layout generation, (b) bicluster partitioning, and (c) post-processing.

5.4.1 Layout Generation

In this stage, the coordinates of all nodes are generated and re-arranged in a way that

the nodes with higher similarities are located next to each other, and far away from

those that are dissimilar. n-Force computes “physical forces” between all pieces of

nodes, i.e., the magnitudes of the forces with which similar nodes attract each other,

dragging them closer while dissimilar nodes repel each other, pushing them farther

away. The whole algorithm starts with an initial layout where nodes are evenly lo-

cated on the surface of an n-dimensional sphere. The radius R of the sphere is a

parameter of n-Force. The strengths of attracting/repelling forces depend on the cur-

rent positions of the two nodes, attraction/repulsion coefficient and the corresponding

cost to delete the edge or to insert the missing edge between the two nodes. The re-

arrangement is performed in an iterative manner. In each round, the movement of

each node is the cumulative effect of the attractions and repulsions of all other nodes.

Afterwards, all nodes are re-positioned to the new locations simultaneously according

to the magnitudes of the movements. The whole procedure is repeated for I times.

The attracting/repelling effect from node v to u is computed by the following formula:

fu←v =


cost(uv) · fatt · log(d(u, v) + 1)

|V |
for attraction

cost(uv) · frep
|V | · log(d(u, v) + 1)

for repulsion

In the formula above, fu←v represents the attracting/repelling effect from node

v to u, i.e., the magnitude of the movement of u caused by v. When there is an
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edge between u and v, the two nodes attract each other and if otherwise, they repel

each other. fatt and frep are the attractive and repulsive factors, respectively. d(u, v)

represents the Euclidean distance between node u and v. Obviously, the threshold

t, which controls whether two nodes are connected with an edge or not, affects the

density/granularity of the bicluster editing model: the smaller t is, the fewer biclusters

there are and the larger their sizes, and vice versa.

To accelerate the convergence of the nodes to stable positions, a cooling parameter

is used to limit the maximal magnitudes of attractions and repulsions, similar to self-

organizing maps [107]. This means in a certain iteration i, the movement magnitude

cannot exceed the current cooling parameter Mi. The cooling parameter starts with

an initial value M0 as a parameter in n-Force and decreases with every iteration.

At the end of this stage, the positions of all nodes are fixed and similar nodes

should be close to each other. In the next step, we make use of this assumption and

partition the layouted graph in a way that optimizes the editing costs.

5.4.2 n-Cluster Partitioning

Based on the coordinates of the nodes obtained in the previous stage, we partition

the graph into disjoint n-clusters using either of two different geometric clustering

methods (user selection): single-linkage clustering (SLC) and k-means. Both, SLC

and k-means are standard methods in computational cluster analysis [204]. The den-

sity parameters of the two algorithms (distance threshold δ for SLC and the number

of clusters k for k-means) are varied systematically (SLC: δ = 0, σ, 2σ, . . . ,M0 +R in

steps of σ, k-means: k = 2, 3, 4, . . . , |V |/3). For each clustering result we compute

the editing costs necessary to create this solution. Finally, we keep the solution that

has minimum editing costs before we proceed to post-processing.

SLC is parameterized by a maximum distance δ where the distance between two

clusters is represented as the distance between two closest elements in the two clusters.
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The distance between two given clusters c1 and c2, for instance, is computed as:

d(c1, c2) = min
u∈c1,v∈c2

d(u, v). Note that we use the Euclidean distance here. We start

with an arbitrary node u and define it to be in bicluster b1. Next, for each unassigned

node x and a distance d(x, b1) < δ, we include x into b1. This step is repeated until

no such node x can be found anymore. Then the procedure starts again: Pick an

undefined node u′ and define it to be in b2 and all the nodes located close enough to

u′ are assigned as b2. The clustering procedure is finished until all nodes are assigned

to clusters.

To optimize the clustering result, the distance threshold δ is varied in a certain

range to seek for the lowest n-cluster editing cost. We start with δ0 = 0 and increase

δ by a certain step σ until it reaches a given δmax. In the default setting of n-Force,

δmax is set to M0 + R. This is to insure that almost all possible δs are evaluated.

N-Force also accepts a user-defined δmax. However, note that although smaller δmax

can speed up the algorithm, it risks overlooking the possibly better threshold options.

K-means is a common method in cluster analysis, aiming to partition n elements

into k clusters. K-means starts with a random partition of all the elements into k

different clusters and iteratively updates their centroids. In this study, we applied

k-means with k ranging from 2 to |V |/3, with a ceiling value of 500. The partition

with smallest n-cluster editing cost is reported. Finally, we compare the optimized

results of single-linkage clustering and K-means and pick up the result with lowest

editing cost.

5.4.3 Post-Processing

Here, we try to further reduce the clustering costs, which includes two steps: (a)

n-cluster merging and (b) nodes moving.

To reduce the number of redundant n-clusters, particularly the singletons, we try

to merge n-clusters. First, all n-clusters are ordered by the number of nodes in an

75



ascending order. Let B = (b1, b2, ..., bl) be the l ordered n-clusters, where |bi| ≤ |bj|,

for all i ≤ j. For all pairs of n-clusters bi and bj with 1 ≤ i < j ≤ l, we calculate the

cost that would emerge from merging the two, i.e., cost(b1, b2, ..., bi∪bj, ..., bl). Once a

B′ with a lower overall cost than before is found, we re-define the n-clusters according

to B′ by merging bi and bj. This step is repeated until no beneficial merging can be

done anymore.

After merging the clusters, another post-processing step similar to Restricted

Neighborhood Search Clustering [100] is carried out. Let B = (b1, b2, ..., bl′) be the

biclusters after the merging step, for each bi and bj, such that 1 ≤ i < j ≤ l, we

compute the costs that would result from moving v ∈ bi to bj. If the overall cost can

thereby be reduced in this step, v is moved to bj. Similarly, this step is repeated until

no node move is beneficial.

This is the final result of the n-Force algorithm. The software implementation’s

output is a list of nodes together with their n-cluster memberships and their final

layout positions. For each instance, we also report the number of editing actions

(edge insertion and deletions) as well as the total cost to compute this solution.

5.4.4 Demonstration of Layout Concept

See Fig. 5.2 for how the nodes are re-arranged during the “ layout generation” step:

the nodes with higher similarities tend to move closer as the algorithm proceeds. The

input graph is generated by the following rules:

• The input graph contains 180 nodes.

• The 180 nodes are evenly divided into 3 sets.

• In the input graph, we randomly selected 7 pre-defined n-clusters.

• The edge weights are generated following Gaussian distribution. The edge

weights of the intra-cluster edges follow a Gaussian distribution with mean
76



Figure 5.2: The movements of the nodes during layout generation step. The colors
of the nodes indicate the different pre-defined groups assigned to the corresponding
node before the start of n-Force.

= 15, std= 10. The cross-cluster edges follow the Gaussian distribution with

mean = -15, std = 10.

The input graph was created to simulate the real biological data set under the

assumption that the real-world data sets are not far from transitive. The nodes in the

same pre-defined cluster are more similar to each other than to the ones in different

pre-defined clusters. The aim of n-Force is to move similar nodes (in this case, the

nodes belonging to the same pre-defined cluster) closer to each other. As shown in Fig.

5.2, in the final results, most of the nodes with same color were located comparatively

close to each other, with only a few outliers (such as the pink nodes). Moreover, it

took n-Force only 40 iterations to generate the preliminary final layout, indicating

that the similar nodes are grouped together in an efficient way.
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5.4.5 Training

n-Force is a heuristic algorithm with several parameters to be optimized: The number

of iterations I, the attraction and repulsion coefficients, fatt and frep, the initial

maximum magnitudeM0 and the radius for initial layout R. Hence, two evolutionary

training strategies were implemented: A general training procedure and an input-

specific parameter training.

General Training

The “general training” was conducted to obtain the default setting of the parameters.

We tried to find a set of parameters that fits a “general scenario”, i.e. graphs with

varying error-edge-rates (for the definition of error-edge-rate, see Sec. 5.5). Graphs

for general training were generated according to the protocol described in Sec. 5.5.

By varying the deviations of the two Gaussian distributions, graphs with 9 different

error-edge-rates were generated: 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50,

with 10 repeats for each error-edge-rate resulting in a training graph set of 90 graphs.

The training was conducted in an evolutionary manner: First we randomly se-

lected 1000 parameter sets within certain ranges: (0, 10) for fatt and frep, (0, 300) for

the iterations I, (0, 1000) for initial maximum magnitude M0, and (0, 400) for radius

R. Then we applied the randomly selected 1000 parameter sets on our artificial graph

set and picked the best three parameter sets (minimal n-cluster editing total costs).

These sets were used as starting point for the following training procedure:

One training iteration consists of two steps: (a) for each parameter set, compute

the sum of the costs for solving all graphs; (b) generate new parameter sets in an evo-

lutionary manner based on the old sets and their costs. After running the algorithm

on all input graphs, the parameter sets were ordered ascendingly by total costs. A

new list of parameters for the next training iteration was generated based on the first

three parameter sets with least costs in the previous iteration: We kept the two best
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Figure 5.3: General training.

parameter sets and put them directly in the new parameter list. The third parameter

set in the new list was computed as the mean of the best three parameter sets in

the previous iteration. Then, the best three sets were permuted to obtain the fourth,

fifth and sixth sets in the new list. The next three sets for the new iteration were

randomly picked up around the best set in the previous iteration. For each parameter

α (α: fatt, frep, M0, R and I), we randomly picked up a number within the range

of (0.9α, 1.1α). Finally, in a similar way, we randomly picked the last three sets in

the new list, only altering the ranges to (0, 2α). The resulting 12 new parameter sets

entered the next iteration of training. Then the whole procedure was repeated. After

a given number of iterations, we picked up the best set of parameters as the final

optimized set. Fig. 5.3 shows the work-flow of the general training.

The initial parameter combination obtained from general training is: I = 134,

fatt = 2.484, frep = 1.323, M0 = 51.84 and R = 112.5.
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Specific Training

Besides general training, an additional “specific training” is conducted by the software

for each specific input case to further refine our best general parameter set to fit

to each specific graph input. We make use of the following trick: Without loss

of generality, an n-cluster editing problem instance is assumed to contain only one

connected component, since disjoint components can be treated separately without

interfering the results of other components. Real biological data often contains more

than one connected component. We further assume that smaller components have

a similar graph structure as the larger ones. For a given input graph, we train the

input-specific parameters on the smaller disjoint components in order to adapt our

algorithm to the specific input data, without compromising the running time too

much (as smaller instances can be computed much faster than bigger ones). The

whole procedure works as follows: all connected components of a given input graph

are sorted by their numbers of nodes. Then, the parameter set, optimized via general

training, is further trained on the small disjoint components. We start with the

smallest components, following the same evolutionary training procedure as in the

general training. On the second-smallest component, we repeat this process but with

less training iterations (Tmax - 0.5 × size of the component). We stop this parameter

training when a connected component size of Tmax is reached (here we use Tmax = 40)

and apply the best parameter set found so far to all bigger problem instances.

5.4.6 Runtime Analysis

Let n = |U |+ |V | for an input graph G = (U, V,E). In the “layout generation” step,

where n-Force arranges the positions of all nodes, it consumes O(n2) time to compute

the mutual attracting/repulsing forces in each iteration. Thus the layout generation

step finishes in O(I · n2), where I is the number of iterations. The single-linkage

clustering runs in O(D1 · n2), where D1 is the number of different thresholds used.
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With the number of iterations limited to be 200, k-means terminates in O(n) time

[2, 125]. Finally for post-processing, each iteration takes O(n2) time and the total

running time is bounded by O(D2 ·n2) for D2 iterations. Since D2 might increase with

n, we added an empirical limit of 500 iterations to D2. In most cases (see Chapter 7

and Chapter 8), n-Force did not reach this limit and we observed only small numbers

of iterations before it terminated.

In summary, the overall running time for n-Force grows quadratic in the number

of nodes.

5.5 Performance Evaluation

The performance of the three algorithms was assessed by comparisons on artificial

graphs. Each artificial graph with n nodes was created by randomly assigning the

pairwise similarities based on the following rules: randomly picked up k (k ∈ [1, n])

nodes and defined them to be in one cluster. This step was repeated on the remaining

n − k nodes until no node was left. Similarities were computed with two Gaussian

distributions: N(µintra, σ
2
intra) and N(µinter, σ

2
inter). The first one was used to assign

the similarities between two nodes belonging to the same pre-defined bicluster (intra-

bicluster similarities), and the latter was used to assign the similarities between two

nodes from different pre-defined biclusters (inter-bicluster similarities). We adjusted

the parameters in the Gaussian distributions to control the “error-edge-rate”, i.e., the

probability of the occurrence of an intra missing edges (missing edges within a pre-

defined bicluster) or an inter edge (edge between two different pre-defined biclusters).

The edge threshold t0 was set to be 0. A set of such bipartite graphs with varying

error-edge-rates is created: From “almost-bicluster” (error-edge-rate of 0.14) graphs

to fully random graphs (error-edge-rate of 0.5). Almost-bicluster graphs with rela-

tively low error-edge-rates are used to simulate real-world biological networks, which
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usually need only a small number of edge modifications to turn a bipartite graph

into a bicluster graph. To evaluate the bicluster editing algorithms, we assessed their

robustness for input graphs with varying error-edge-rates.

Two experiments were conducted. 80 artificial graphs with various sizes but con-

stant small error-edge-rate (arbitrarily chosen as 0.14) were generated. For robustness

assessment, we fixed the sizes of input graphs to be 80 and varied the error-edge-rate

(0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4). Edge deletion heuristics and n-Force were applied

on the inputs to test their capacity of keeping low running time while error-edge-rates

increased. The running time for each input was limited to two hours.

5.6 Results and Discussion

5.6.1 Editing Strength

In this section, the performances of the three algorithms are compared. We used two

different data sets: Almost-bicluster graphs and graphs with various error-edge-rates.

The three algorithms were applied to all graphs, while recording the editing costs and

the running times. Maximum running time was set to two hours.

Table 5.1 shows the running times and accuracy of the three algorithms. The

fixed-parameter algorithm was able to achieve very small running times on small-

sized and medium-sized graphs, yet as the sizes of graphs grow, the performance of

the fixed-parameter algorithm suffered, indicating the NP-hardness of the underlying

problem. When the number of vertices exceeds 40, the fixed-parameter algorithm

could not finish within reasonable time. On the other hand, the edge deletion heuristic

algorithm required significantly less time than the fixed-parameter algorithm on bigger

graphs. In terms of costs, the performance of the edge deletion heuristics was almost

as good as that of the fixed-parameter algorithm. In summary, the heuristic finds

solutions that were almost equally good but in significantly less time.
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Table 5.1: Performance comparison between n-Force and the edge deletion heuristic
(EDH) as well as the fixed-parameter algorithm (FPA). The cost here refers to the
editing costs. The results here are the average of five repeated runs. P.T. stands for
“parameter training” (of n-Force’s heuristic parameters), R.T. is the run time (given
in seconds). The smallest editing cost and running time are marked with bold font.
Note that when the sizes of the input graphs grew larger than 100 nodes, no specific
training was conducted such that the two n-Force variants gave the same results.
Execution of all tools was stopped after two hours.

n-Force No P.T. n-Force P.T. EDH FPA
Vertices Edge Cost R.T. Cost R.T. Cost R.T. Cost R.T.
20 [20-36] 95.17 0.21 92.70 55.15 109.40 0.076 86.94 2.10
25 [30-49] 173.61 0.236 169.90 129.12 228.77 0.17 165.27 84.35
30 [46-89] 252.49 0.31 247.61 131.70 350.43 0.405 241.27 233.61
35 [47-115] 363.52 0.40 365.95 329.66 378.155 0.77 347.18 949.34
40 [86-114] 540.74 0.52 517.85 272.19 667.69 1.19 510.86 912.648
50 [142-204] 908.24 0.79 891.87 366.38 961.19 8.37 880.74 1523.21
60 [273-335] 1510.30 1.10 1510.30 1.17 1549.06 49.58 1498.30 3160.32
70 [223-438] 1853.43 1.56 1853.43 1.66 1852.086 73.32
80 [313-509] 2348.18 1.98 2348.18 2.064 2449.92 307.21
90 [417-641] 3252.69 2.54 3252.69 2.56
100 [525-1220] 3833.84 3.29 3833.84 3.11
110 [526-1378] 4840.47 3.91 4840.47 3.86
120 [770-1573] 5621.08 4.62 5621.08 4.60
130 [807-1773] 6928.51 5.71 6928.51 5.76
140 [890-1440] 7327.50 6.84 7327.50 6.85

As shown in Table 5.1, n-Force without parameter training (P.T.) was fastest.

With P.T. running time increased slightly. Note that P.T. was performed only for

smaller problem instances (up to 50 nodes; see algorithm description). Thus, running

times and costs were the same for larger graphs, since P.T. was switched off. n-Force

is generally fastest, followed by edge deletion heuristic (EDH) and the exact fixed-

parameter algorithm (FPA). As FPA is an exact algorithm, it always yielded the

smallest editing costs. For larger problem instances, FPA did not terminate anymore

within two hours.

Compared to the edge deletion heuristic (EDH), n-Force yielded editing costs

closer to those of fixed-parameter algorithm (FPA). Particularly, on the graphs with
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Figure 5.4: Running times against graph complexities. The running times are plotted
against the graph complexities of the input instances (|V | · |E|). Note the effect of
the parameter training (P.T.) of parameters, which is turned of for larger graphs (see
text).

30 and 40 vertices, n-Force algorithms (with and without P.T.) gave editing costs

around 40% and 30% smaller than those of EDH (38.79% and 41.53% for 30 nodes,

23.48% and 29.94% for 40 nodes). Generally, the n-Force algorithm with P.T. output

smaller results than without P.T..

We also compared the running times against graph complexities (see Fig. 5.4).

Here “graph complexity” refers to the product of the number of nodes and the number

of edges in a given graph. Clearly, n-Force outperforms the other two algorithms.

The accuracy of n-Force (with and without P.T) is plotted against that of the EDH

heuristic as a function of the differences in editing costs between the heuristic (EDH

and n-Force) and the exact algorithm (FPA) in Fig. 5.5 for smaller graphs (where

FPA terminated). n-Force clearly achieved better overall editing costs than EDH.

With the standard parameter set obtained from general training, n-Force managed

to achieve smaller costs than EDH. Nevertheless, in many cases, n-Force with P.T.
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Figure 5.5: Deviations (in editing costs) from the optimal solution of the FPA algo-
rithm.

returned solutions with lower cost. This justifies our strategy to evolutionarily train

the heuristic parameters on small problem instances (where this can be achieved fast)

and relying on the assumption that a parameter set will work for larger connected

components of the same graph similarly well.

5.6.2 Robustness

Fig. 5.6 illustrates the robustness of n-Force to varying error-edge-rates. Artificial

graphs with seven different error-edge-rates were generated, with 10 repeats for each

rate. We now compare the editing costs and the running times of n-Force and EDH

on these artificial data sets. As expected, Fig. 5.6 (a) shows that with increase of

error-edge-rates, the editing costs for both algorithms increases polynomially as well.

Fig. 5.6 (b) shows that the running times of both tools were generally quite robust

regarding changing graph structures and the running time correlates only with the

input sizes.
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Figure 5.6: Robustness of the Edge Deletion Heuristics (red) and n-Force (blue).
Input graphs are generated with different error-edge-rates and the running times are
measured. Note the log-scales of the y-axes.

5.7 Conclusion

We discussed n-CluE, a software package dedicated to solve (weighted) bi-/n-cluster

editing problems. It offers three algorithms: a fixed-parameter algorithm, an edge

deletion heuristic and a graph-layout motivated heuristic named n-Force. The perfor-

mances of the three algorithms were evaluated and compared on artificial graphs. We

showed that n-CluE is able to deal with graphs of various sizes and to meet different

requirements. The running times of the fixed-parameter algorithm explode when the

input size exceeds a certain value (50 vertices) while the edge deletion heuristic still

works fine for graphs of larger sizes. Also the two heuristics are very robust against

different levels of noise. The results of the evaluation indicate that our software pack-

age is powerful enough to deal with real-world data sets. In the next chapters, we

apply our tool to various biomedical data sets.
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Chapter 6

Prediction of Novel

Genotype-Phenotype Associations

In this chapter, we applied n-CluE to Genome-Wide Association Study (GWAS)

data sets to detect novel associations between genotypes and phenotypes. Two of the

three n-CluE algorithms were applied to two GWAS data sets and discovered. 86

novel associations.

The content of this chapter is based on the published research articles listed below:

• Peng Sun, Jiong Guo, and Jan Baumbach. Integrated simultaneous analysis of

different biomedical data types with exact weighted bi-cluster editing. J Integr

Bioinform, 17, 2012

• Peng Sun, Jiong Guo, and Jan Baumbach. Biclue-exact and heuristic algo-

rithms for weighted bi-cluster editing of biomedical data. In BMC proceedings,

volume 7, page S9. BioMed Central Ltd, presented at GLBIO2013, 2013
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6.1 Introduction

Genome Wide Association Study (GWAS) presents one of the fastest emerging areas

of today’s biological research. These studies examine the co-occurrence (association)

of genetic variants (genotypes) with a certain phenotypic trait. Typically, millions

of single-nucleotide polymorphisms (SNPs) are investigated as genetic variants and

major diseases are examined as traits. These studies normally compare the genotypes

of two groups of people: healthy people (controls) and diseased people (cases). Then

statistical tests are used to verify if there is any significant association. This is a

typical example of a bipartite data type, i.e. two types of measurements and relations

between concrete instances of the two types.

Since the first GWAS was published in 2005 on age-related macular degeneration

[102], the number of GWAS publications has been growing dramatically. Up to June

2014, there have been 1, 751 publications on GWAS, according to National Human

Genome Research Institute (NHGRI) Catalog of Published Genome-Wide Association

Studies [196]. Although the discovered associations have revealed many disease –

traits associations, yet how the interactions of the genes confer a risk to diseases

still remains widely unclear. Traditional analysis methodology of GWAS associates

one pair of SNP and phenotype in one statistical test, which tends to incur false

positives and false negatives. Moreover, many gene/SNP markers, conferring a low or

moderate risk by themselves, interact with each other and have a significant combined

risk. Hence, these markers often fail to be detected. Novel computational approaches

considering combined effects in analysing GWAS data might provide more meaningful

results and insights.

Here, GWAS associations are modeled as graphs, where vertices correspond to

SNPs (genotypes) and traits (phenotypes) while edges symbolize significant associa-

tions between them. We proceed one step further by associating a group of sequence

variations (SNPs) with a group of traits/diseases, forming a “group to group” as-
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sociation, rather than the traditional SNP-trait association. We applied n-CluE to

different GWAS data sets and discovered new associations that have not been re-

ported before. We believe such results, based on several associations instead of one

pair-wise relation, to be of higher confidence.

6.2 Materials and Methods

In order to demonstrate the applicability of n-CluE to real world biomedical data, we

studied GWAS data retrieved from two sources: (1) an online available database devel-

oped by A. D. Johnson et al. [97], containing 56,412 significant SNP associations with

52,554 unique SNPs and 87 different diseases/traits. (2) National Human Genome

Research Institute (NHGRI) Catalog of Published Genome Wide Association Studies,

an online catalogue of SNP-traits from published GWASs, with 5,476 unique SNPs

and 526 different diseases [84]. The edge weights are defined as: s(uv) = −log(P ), (P

is the p-value of the given association). We adopted the most frequently used p-value

threshold of 0.05, corresponding to log(0.05) = 1.301 in our graph.

6.3 Results and Discussions

Due to the incompatibility of terminologies utilized in these two data sources, we

did not merge them. The resulting graphs generated from our datasets contain 415

connected components in total, with 136 from the graph generated from Johnson’s

dataset and 279 from NHGRI dataset, respectively. Fig. 6.1 shows a histogram of

the initial distribution of component sizes |V |.

We applied our fixed-parameter algorithm and the edge deletion heuristics sep-

arately on each disjoint connected component and identified exact solutions for 413

components (99.5% of all the components). The two algorithms gave identical results.

We found in total 86 new associations that were not detected as significant in the two
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Figure 6.1: Distribution of the connected component sizes |V | of the graphs generated
from two GWAS data sources. The red bars represent the data from NHGRI and blue
bars represent data from Johnson’s online dataset. The figure does not include the
two biggest connected components; one from NHGRI (3,609 vertices) and one from
Johnson’s online dataset (50,161 vertices).

GWAS studies. Table 6.1 shows the distribution of the new associations and their

corresponding diseases/traits. For “Conduct disorder (case status)” and “Isochemic

Stroke”, 11 associations are found, followed by “Atrial fibrillation/atrial flutter” and

“Permanent tooth development”, each of which have 10 new associations. Note that

our predictions are largely related to the user-given similarity threshold, i.e. 0.05 in

our studies.

We applied n-CluE algorithms to two different GWAS datasets. Our results show

that the algorithms work well on most of the GWAS data, finding 86 new associations

in total. These newly discovered associations might be useful as guidelines for further

wet lab studies. Although the best way of estimating the accuracy of our method

is to verify the newly discovered associations experimentally, yet by comparing the

original associations and the new ones, we might be able to assess the confidence of our

results. Results show that our algorithm clustered related phenotypes together, i.e.
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most of the SNPs we found to be associated with new phenotypes were previously

reported to be associated with related phenotypes. For instance, rs10033464 was

reported previously to be associated with “atrial fibrillation/atrial flutter” and in our

results we found it associated with “atrial fibrillation”. rs17145713, rs1158867 and

rs6120849, which we assigned to be associated to “plasma coagulation factors”, are

labeled with “Plasma levels of Protein C” previously (Protein C is one of the important

plasma coagulation factors [127]). Besides, our algorithm clustered the phenotypes

that were found to be related by clinical studies. The 11 new SNPs we identified to

“isochemic stroke” are originally tagged as associated with “atrial fibrillation” and it’s

been reported that atrial fibrillation can increase the risk of isochemic stroke [197].

These results might imply the confidence of the newly discovered associations before

any experiments performed for verification.

Table 6.1: New associations obtained using biclustering editing. The items with “*”

come from the NHGRI data set while the remaining emerge from an online data set

by Johnson et al. [97].

Traits/Disease No. of Newly Found

Associations

Conduct disorder (case status) * 11

Ischemic stroke 11

Atrial fibrillation/atrial flutter* 10

Permanent tooth development* 10

Conduct disorder (symptom count) * 9

Primary tooth development (time to first tooth eruption) * 8

Cleft lip* 7

Primary tooth development (number of teeth) * 5

Alcoholism (alcohol dependence factor score)* 4
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Plasma coagulation factors* 3

Vitamin D insufficiency* 3

Vitamin D levels* 2

Atrial fibrillation* 1

Nonsyndromic cleft lip with or without cleft palate* 1

Plasma levels of Protein C* 1

Total 86
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Chapter 7

Biclustering of Gene Expression Data

As described in the first chapter, gene expression matrices form a perfect example

of bipartite graphs. Their hidden information is better extracted by simultaneous

clustering of both genes and conditions. In this chapter, to demonstrate the strength

of the bicluster editing model on gene expression data mining, we applied n-Force,

the layout-based heuristic, in the n-CluE package to artificial and real-world gene

expression data sets and compared the results with eight existing biclustering tools.

Our results indicated that the model of bicluster editing perfectly fits the scenario of

gene expression data mining and our heuristic algorithm can be applied on large-scale

data sets and finishes within reasonable running times.

The content of this chapter is based on the published research articles listed below:

• Peng Sun, Nora K Speicher, Richard Röttger, Jiong Guo, and Jan Baumbach.

Bi-force: large-scale bicluster editing and its application to gene expression data

biclustering. Nucleic Acids Research, page gku201, 2014

• Peng Sun, Jan Baumbach, and Jiong Guo. Efficient large-scale bicluster editing.

In German Bioinformatics Conference 2014, pages 54–60
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7.1 Introduction

Given gene expression data sets for different cellular conditions, biclustering is more

powerful than traditional clustering in capturing biologically meaningful subsets of

condition-specific genes. Biclustering approaches are generally capable of discover-

ing such local patterns and became increasingly popular due to their ability to si-

multaneously cluster biological data from different sources in order to discover local

bi-correlations patterns. Several systematic comparisons have been published, using

various measurements to evaluate a number of prevailing biclustering tools on both

synthetic and real-world data sets [53, 149, 188].

7.2 Materials and Methods

7.2.1 Synthetic Data Matrices

We only applied n-Force to the microarray data sets, for the large sizes of the input

graphs cannot be finished within reasonable times (two hours) by fixed-parameter

algorithm or edge deletion heuristic. For a comprehensive comparison of the per-

formance between n-Force and eight other biclustering tools, we created synthetic

data matrices based on six different models. Each synthetic data matrix consists of

300 rows and 200 columns, within which a pre-defined bicluster with 30 rows and 30

columns was randomly selected. For each of the following models, 10 data matrices

were generated for repetitive simulation. With this strategy we generally followed the

protocol suggested by Eren et al. [53].

• Constant biclusters: the values in the matrix of randomly selected 30 rows × 30

columns bicluster were set to a constant expression level of 0. The background

values, i.e., the elements in the matrix that are not within the pre-defined
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bicluster were chosen randomly but independently from Gaussian distribution

N(0, 1).

• Constant-upregulated biclusters: as in the previous model but the expres-

sion levels in the 30 × 30 bicluster were fixed to 5, i.e., simulating constant-

upregulation.

• Shift-scale biclusters: Before generating each data matrix, a base row Rb =

{ab,1, ab,2, ..., ab,200} was chosen. For every row ri in the pre-defined bicluster, a

scale factor αi and a shift factor βi were randomly generated. Each element aij

in the pre-defined bicluster was both shifted and scaled from the base row: aij =

αi · abj + βi. The selected rows in the pre-defined bicluster could be positively

or negatively shifted (or scaled), depending on the values of the shift (or scale)

factors. The elements in base row and background were drawn independently

from Gaussian distribution N(0, 1). All scale factors and shift factors were

drawn independently from distribution N(3, 1).

• Shift biclusters: similar to the Shift-scale model, but with fixed scale factors of

αi = 1.

• Scale biclusters: similar to Shift-scale model, but with fixed shift factors of

βi = 0.

• Plaid biclusters: this model is an additive bicluster model, first introduced in

[114]. Each matrix element is modeled as the sum of several different effects,

including background effect θ, cluster effect µ, row effect α, and column effect

β:

aij = θ +
K∑
k=1

(µk + αik + βjk)ρikκjk
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, where aij is the element in the matrix, ρ and κ are the indicators for the

membership in bicluster k for row i and column j. All effects were independently

and identically distributed according to the Gaussian distribution N(0, 1).

7.2.2 Comparison against Eight Biclustering Algorithms

To evaluate the performance of n-Force on biclustering problems, we refer to the work

of Eren et al. [53]. Eight (out of twelve) prevalent online available biclustering al-

gorithms were downloaded, including: Cheng and Church [29], BiMax [149], FABIA

[87], ISA [15], Plaid [114], QUBIC [117], Spectral [105] and xMOTIFs [134]. Five

of the eight methods are integrated in the R package “biclust”. The three remain-

ing software packages (FABIA, ISA and QUBIC) were downloaded from the project

web sites. Four other tools were not included in this study since no corresponding

online resources are available or errors exist in the programs. Note that the omitted

algorithms are not among the best-performing tools in the study of Eren et al.. The

details of the biclustering algorithms including the references and the important pa-

rameters influencing the performances of the algorithms are listed in the Table 7.1.

For the details of the eight algorithms, please refer to Section 2.2.4.

7.2.3 Parameters

Appropriate parameter setting is crucial to the performance of each algorithm. Al-

gorithms cannot simply be applied with default parameters as not all of them fit all

bicluster analysis scenarios. We carefully optimized the parameters of each tool such

that they show their best performances on both, the synthetic data as well as the

gene expression data.

For the synthetic data sets, all algorithms that require a user-given number of

biclusters were given the correct number. For gene expression data, the number was

set to be 50 biclusters. Parameters other than “number of biclusters” were optimized
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Table 7.1: The applied biclustering tools and their parameter space.

Algorithm References Parameters
n-Force – Edge threshold: t0.
FABIA [87] Number of biclusters: p.
QUBIC [117] Range of possible ranks: r;

Percentage of regulating
conditions for each gene: q;
Number of biclusters: p.

Cheng and Church [29] Variance threshold: δ;
Multi-deletion parameter:
α.

Plaid [114] Number of max. iterations
for each layer: MI ;
Max. number of layers: ML.

Bimax [149] Number of biclusters: n;
Min. row size: minr;
Min. column size: minc.

Spectral [105] Normalization method:
norm;
Min. row size: minr;
Min. column size: minc.

xMOTIFS [134] Number of biclusters: n.
ISA [15] Number of seeds: ns.

through performance on synthetic data sets, i.e., we tried various parameters (or com-

binations of parameters) for each algorithm and took the parameter (or combination

of parameters) that could achieve the best performance. Particularly, for the algo-

rithms requiring more than one parameter, a grid-search strategy was implemented.

7.2.4 Evaluation on Synthetic Data

The performance of all biclustering algorithms on synthetic data was evaluated by

comparing the set of result biclusters against the pre-defined biclusters. As suggested

in the work of Eren et al. [53], we chose the Jaccard coefficient to compute the
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similarity of two different biclusters. Let b1 and b2 be two biclusters, we define:

s(b1, b2) =
|b1 ∩ b2|
|b1 ∪ b2|

,

where |b1 ∪ b2| and |b1 ∩ b2| are the number of nodes in the union and intersection of

b1 and b2, respectively. Obviously, the largest value of Jaccard coefficient is 1 when

b1 and b2 are identical and the lowest value 0 is reached when two sets are disjoint.

It can be interpreted as the percentage of shared elements of two biclusters.

For two sets of biclusters, the pre-defined set of biclusters T (true set) and the

result set of biclusters R (from the nine algorithms), we calculated two scores: re-

covery and relevance scores, defined to quantify the similarities between T and R.

Recovery score indicates the percentage of the truth set that is found in the result. It

is maximized when T ⊆ R. Similarly, relevance score represents the percentage of the

result set that is overlapped with the true biclusters. It is maximized when R ⊆ T .

Formally:

Recovery : S(T,R) =
1

|T |
∑
b1∈T

max
b2∈R

s(b1, b2)

Relevance : S(R, T ) =
1

|R|
∑
b1∈R

max
b2∈T

s(b1, b2)

Again, note that we are in coherence with Eren et al. here [53].

7.2.5 Evaluation on Real Gene Expression Data

For gene expression data, a different evaluating method must be used since true

biclusters are unknown a priori. We validated the results by computing GO term

enrichments for all the biclusters. Principle Component Analysis (PCA) imputation

was used to compute the missing values in the gene expression data sets [170]. Enrich-

ment analysis was carried out by using GOstats [54], on three categories (Biological

Process Ontology, Molecular Function Ontology, Cellular Compartment Ontology).
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In hypergeometric tests, genes within each bicluster were used as the input vector,

and genes involved in the gene expression study were used as the gene universe. Af-

terwards, multiple test correction was performed to adjust the p-values by using the

method from Benjamini and Hochberg [86]. A bicluster was considered “enriched”

in a certain GO category if any adjusted p-value of any GO term was smaller than

P = 0.05. Again, we agreed and followed Eren et al.’s suggestions with this protocol

[53].

7.3 Results and Discussion

7.3.1 Synthetic Matrices

Given that n-Force, as shown in Chapter 5, solves the Bicluster Editing Model well

enough, we now seek to apply this model to biclustering of biological data sets. As

mentioned many times before, we follow the evaluation protocol published in a recent

review paper from Eren et al. of [53]. In Figure 7.1, we compare the relevance and

recovery of n-Force as well as of the above introduced existing tools. Figure 7.2

compares the running times of all the algorithms with inputs of fixed columns of 300

and rows of varying sizes.

We believe the Bicluster Editing model underlying n-Force to be more robust

regarding different data set types compared to the existing biclustering algorithms.

The main assumption behind bicluster editing, and thus n-Force, is that the average

similarities within the biclusters are above the user-given threshold while the mean

similarities between elements from different biclusters is below the threshold. This

way, the threshold as single density parameter controls the size and granularity of

the biclustering results. If n-Force is configured to output only the largest bicluster,

it seeks the largest sub-matrix in the data set with significant difference between

elements inside the bicluster compared to the background. Thus, n-Force successfully
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Figure 7.1: The comparison of n-Force against eight existing biclustering algorithms
on synthetic data sets. Each plot includes the average recovery vs. relevance of data
sets from five different data sampling models (see text).

recovered all the biclusters for the constant-upregulated model. For the inputs of shift

and shift-scale model, since elements inside the bicluster were shifted by a certain

magnitude, n-Force was also able to recover most of (around 85% ∼ 95%) the pre-

defined biclusters. In the scale model where data elements were comparatively weakly
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n-Force

Figure 7.2: Running times of the nine algorithms for increasing number of rows in
the expression matrix. The y-axis is in log-scale.

shifted from the background, the results were a little bit worse but still over half of

the pre-defined biclusters were recovered (60% ∼ 70% for the scale model). For the

plaid model where most of the elements were generated only based on the “background

effect”, we conducted biclustering to extract “high-deviated” data and over 60% of the

pre-defined biclusters were discovered. For the constant model, around 55%∼60% of

the pre-defined biclusters were successfully captured.

7.3.2 Gene Expression Data

We now continue with the protocol from Eren et al. and apply all nine algorithms to

real-world biological data: gene expression microarray data from the GEO database

(GDS181, GDS589, GDS1027, GDS1319, GDS1406, GDS1490, GDS2225, GDS3715,

and GDS3716; see Table 7.2 for a summary). Their performance was evaluated by

means of GO Term Enrichment Analysis.

Before GO term enrichment analysis was performed the biclusters identified by the

nine algorithms were further filtered to reduce redundancy: Biclusters with more than

80% overlap were removed. Afterwards, GO term enrichment analysis was conducted

on the filtered biclusters, for all three categories (Biological Process, Molecular Func-
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Table 7.2: GDS data sets
Data set Genes Samples Description
GDS181 12559 84 Gene expression profiles from diverse tissues, organs,

and cell lines with normal physiological state.
GDS589 8799 122 Examination of normal physiological gene expression in

11 peripheral and 15 brain regions in three common out-
bred rat strains.

GDS1027 15866 154 Sulfur mustard effect on lungs: dose response and time
course.

GDS1319 22548 123 Various C blastomere mutant embryos analyzed to de-
convolve C blastomere lineage-specific expression pat-
terns specified by the PAL-1 homeodomain protein.

GDS1406 12422 87 Analysis of 7 brain regions of 6 inbred strains of mouse.
GDS1490 12422 150 Mouse neural tissue profiling.
GDS2225 15923 6 Mechanical strain effect on fetal lung type II epithelial

cells.
GDS3715 12559 110 Insulin effect on human skeletal muscle.
GDS3716 22215 42 Breast cancer: histologically normal breast epithelium

tion and Cellular Compartment). Table 7.3 shows the number of enriched biclusters

in all three categories. Figure 7.3 gives the fractions for different significance levels

of the biclusters found by all algorithms. Bimax found the most biclusters, however

most of them were not enriched at reasonably high p-value cut-offs. Thus the average

enrichment level for Bimax is comparably low. Similarly, Cheng and Church, QUBIC

and Spectral have similar problems with high numbers of false positives. In contrast,

most of the biclusters found by n-Force and Plaid are highly enriched. Although

xMotifs also provided many enriched biclusters, it did not find any biclusters for the

data sets GDS1027, GDS1319 and GDS3715. n-Force clearly outperformed the other

tools as in average approximately 55% of the reported biclusters are also enriched

with high p-value confidence cut-offs, more than with the competing eight tools.

A wet lab analysis of the biological relevance of the biclusters identified is beyond

the scope of this study. However, the GO terms in the enriched biclusters found by

n-Force were also examined. The 12 GO terms with lowest p-values are given in Table

7.4, with 4 terms in each category. A further investigation into the results is necessary
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Figure 7.3: Proportions of GO-enriched biclusters for different algorithms on five
significance level (see text).

to validate the biological relevance of the biclusters found. However, some of the

most enriched GO terms might also be suggestive. For instance, GDS589 represents

the gene expression profiles in brain and peripheral regions and thus biosynthesis

is expected to be more active. n-Force identified bicluster enriched in GO:0009260,

which is related to ribonucleotide biosynthetic process. Another examples comes from
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Table 7.3: The results of GO enrichment analysis, including the numbers of reported
biclusters and the numbers of enriched biclusters.

Algorithm Found Enriched (%)
n-Force 129 76(58.91%)
FABIA 189 47(24.87%)
QUBIC 873 200(22.91%)
Cheng and Church 1962 107(5.45%)
Plaid 180 87(48.33%)
Bimax 2439 205(8.41%)
Spectral 1095 161(14.70%)
xMOTIFS 339 79(23.30%)
ISA 261 67(25.67%)

the dataset GDS3716, which focuses on the analysis of histological normal breast

epithelia from breast cancer patients. n-Force found biclusters heavily enriched in

GO terms related to translational regulations, for instance GO:0006415.

The proportions of enriched biclusters reported by n-Force support our conclu-

sion that the bicluster editing model is a well-working formulation for biclustering.

However, the numbers of biclusters discovered by n-Force is comparably low. This

might be because n-Force is no fuzzy partitioning approach such that by definition

all identified biclusters disjoint from each other.

7.4 Conclusion

We compared n-Force to eight existing tools by following an established evaluation

protocol from Eren et. al.’s review paper. We show that n-Force outperformed the

existing tools on synthetic data sets and on real-world gene expression data.
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Table 7.4: Four most enriched GO Term for each GO Category.
GO Term GO Category Dataset P-values Terms
GO:0006415 Biological Process GDS1316 9.66E-50 translational termina-

tion
GO:0006613 Biological Process GDS181 9.31E-18 cotranslational pro-

tein targeting to
membrane

GO:0009260 Biological Process GDS589 1.59E-06 ribonucleotide biosyn-
thetic process

GO:0042274 Biological Process GDS1027 4.10E-15 ribosomal small sub-
unit biogenesis

GO:0044424 Cellular Compartment GDS1319 3.10E-34 intracellular part
GO:0044444 Cellular Compartment GDS1406 1.57E-37 cytoplasmic part
GO:0005737 Cellular Compartment GDS1490 7.07E-50 cytoplasm
GO:0043229 Cellular Compartment GDS2225 4.77E-16 intracellular organelle
GO:0003735 Molecular Function GDS3715 6.57E-64 structural constituent

of ribosome
GO:0003723 Molecular Function GDS3716 1.15E-09 RNA binding
GO:0015078 Molecular Function GDS589 1.99E-10 hydrogen ion trans-

membrane transporter
activity

GO:0003735 Molecular Function GDS181 2.65E-13 structural constituent
of ribosome
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Chapter 8

Drug Repositioning

Drug design is very expensive, time-consuming and becoming economically increas-

ingly risky. Computational approaches for inferring potential new purposes of existing

drugs, referred to as drug repositioning, play an increasingly important role in current

pharmaceutical studies. Existing methods focus on chemical compound similarity, or

on drug-gene and gene-disease associations. Here we first summarize the recent devel-

opment of computational drug repositioning from the aspects of repurposing strategy

and the data source. Second, we integrate drug-gene-disease information and derive

an n-cluster editing triangulation model, which we further combine with a semantic

literature mining approach. The model predicts 31,731 new drug-disease associations

(“novel prediction set”) of which 11,517 (36.3%) co-occur in literature (“high confi-

dence set”) with 1,382 cases where the drug is explicitly mentioned to treat the disease

(“treats annotation set”). Model robustness was evaluated systematically by repeat-

edly removing and perturbing known drug-disease pairs. In conclusion, we suggest

that the utilization of drug-gene-disease triangulation coupled to sophisticated text

analysis provides a robust approach for identifying new drug candidates for repur-

posing. We anticipate this to be highly useful for treatment alternative identification

and cost reduction.
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The content of this chapter is based on the research article listed below:

• Peng Sun, Jiong Guo, Rainer Winnenburg, and Jan Baumbach. Integrated

literature mining and drug-gene-disease triangulation reveals ten thousand new

purposes for existing medication. Drug Discovery Today, (In press), 2016

8.1 Introduction

8.1.1 Challenges in Drug Development

The pharmaceutical industry is facing great challenges emerging from a decreased

speed in the discovery of new drugs and drug targets caused by various reasons.

Stricter regulations and scrutiny have been imposed on pharmaceutical companies

due to the rising safety concerns and the transparency of pharmaceutical manufac-

turers, which has a constant negative impact on the industry [7]. The major prob-

lem, however, is the lack of productivity in Research & Development which greatly

slows down the increase of profitability [143]. Although the number of approved

drugs resurged in 2015 [132], it is accompanied with continuously rising costs [146].

The classic conservative drug development strategy, limited to “one drug, one target”

paradigms, does not consider or evaluate the “off-target” effects or the probability

of multiple drug indications, yet some of them have proven successful in the market

later. Sildenafil and minoxidil are well-known examples. They have been repurposed

for the treatment of erectile dysfunction and hair loss, respectively. Similar exam-

ples also include: ropinirole, originally developed for anti-Parkinson disease but later

found effective against Restless Legs Syndrome and SSRI-induced sexual dysfunction

[142]; bevacizumab, originally developed to resistant metastatic tumor cells, has been

proven effective to treat abnormal retina vascularization [154].

Drug repositioning has strong potential to provide promising solutions in current

drug design. The development cycle through repositioning may be reduced by as long
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as five years compared to the traditional drug discovery pipelines [52]. Moreover, repo-

sitioned drugs incur significantly reduced safety risks for patients, as almost all known

drugs have been thoroughly studied with respect to their toxicity, their metabolism,

and possible side effects in human [48].

Successful drug repositioning stories are rare and rather random events [48]. Well-

known examples are either accidentally discovered side effects, or based on extensive

research on drug properties, which is infeasible in general and much too expensive

to be applied on a large scale [167]. Thus, a major medical bioinformatics challenge

is to predict promising drug repositioning candidates for pharmaceutical screening,

laboratory tests and clinical trials. Most existing methods for computational drug

repurposing follow one of the two major strategies: “drug-based” and “disease-based”

approaches, depending on the data sources. They predict putative novel drug indica-

tions by exploiting detailed information of either drugs or diseases [49]. Such studies

mainly focus on mining the shared properties between two drug molecules including

structures [68, 75] and side effects [191]. Other methods approach the problem by com-

puting drug-target binding properties [48] or searching for similar molecular activities

[93]. The existing studies yielded fruitful and insightful results. Yet, they exclusively

focus on one aspect of drug repositioning: either the drug, the target (gene), or the

disease. More recent studies have proven the potential of combining some of the dif-

ferent data types by using computational information fusion [38, 133, 152]. Here, we

show the recent progresses of data mining and data integration in the computational

drug repositioning research, followed by a detailed description of how n-CluE can be

used to integrate the information of drug, gene and disease networks.
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8.1.2 Repositioning Strategies

Methods Based on Drug Structures

A number of publicly available databases provide massive amounts of data on drug

molecular structures, chemical properties and high-throughput screening results per-

tain to drugs [139, 166, 181], offering great opportunities to perform structure –

property analysis useful for drug repurposing. The rationale behind this strategy is

the “Structure Determines Properties” paradigm, i.e., molecules with similar struc-

tures tend to have similar chemical properties and, thus, act similarly in biological

system. A variety of similarity measures based on different structural features have

been used to compute the similarity of two drug molecules. Such efforts include the

widely used chemo- and bioinformatics library Chemical Development Kit (CDK)

[171] which provides implementations for many common methods in structural chem-

istry/biology studies. Likewise, Swamidass et al. [181] constructed a drug – target

network based on structural similarity which leads to potential drug repositioning

provided the situation that multiple drugs or diseases share same target. A more

recent trend demonstrated the benefit of integrating chemical information with other

properties for computational drug repositioning. For example, Wang et al. [194] re-

ported a support vector machine (SVM)-based model named PreDR implementing

a customized kernel function to predict novel drug – disease associations. PreDR

integrates chemical structure, molecular activity and phenotype information, such as

side-effects. Its performance has been assessed by comparing to other similar meth-

ods. Similarly, Tan et al. [182] integrated chemical structure, drug-target binding

information and gene similarity for drug repurposing inferences.
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Methods Based on Omics Data

The fast growth of omics data provides an unprecedented opportunity for compu-

tational biology to reveal more insights in drug behaviors and disease mechanisms.

Genome-wide expression data, in particular, are widely used to profile the effect of

drug activity and have been explored for potential drug repurposing. The Connec-

tivity Map (CMap) project by Lamb et al. [113] is one of the remarkable efforts

aiming to construct a systematic map of the functional associations among diseases,

genetic perturbation and drug behaviors, based on the genome-wide expression pro-

files of the human cancer cells injected with different drugs and bioactive molecules.

Thus, CMap enables systematic comparison of drug associated gene expression pro-

files. Dudly et al. [49], for instance, followed the CMap’s strategy and computed a

therapeutic score for every drug repositioning candidate for Inflammatory Bowel Dis-

ease. The statistical significance was then derived based on a randomization model

using the therapeutic score. In vivo model validation was performed for the most

promising drug repositioning candidate.

Keiser et al. [98] have developed a systematic tool (Similarity Ensemble Approach,

short: SEA), to compute the drug target similarity by comparing the profiles of the

binding ligands. The drug off-target effects were then derived and captured from

the ligand-based target similarity. The top-scored repositioning candidate was later

validated in an in vivo rodent model.

Methods Based on Phenotypes

Drug-related phenotypes also provide valuable insights in order to profile drug effects.

Ye et al. [211] constructed a drug-drug network from clinical side-effect information

to generate putative drug-disease associations with the underlying hypothesis that

shared side-effect profiles may lead to shared indications. Yang et al. [209] also
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integrated side-effect profiles into drug repositioning features and built a Naïve Bayes

model to make suggestions of new drug uses.

Investigating the disease similarity is also a promising approach to identify drug

repurposing opportunities, based on the hypothesis that similar diseases may have

similar therapies. Chiang et al. [31] derived disease similarities from the shared

treatments, and subsequently executed a guilt-by-association approach to predict

new drug indications.

The recently developed concept of phenome, defined as the comprehensive set of

expressed phenotypes, provides new insights for drug repurposing. Phenome-wide as-

sociation studies (PheWAS), dedicated to systematically investigating the genotype-

to-disease associations, have proven their great potential in discovering the genetic

profiles of diseases [81]. Such analyses enhance the genotype-phenotype associations

detected by other studies (e.g. genome wide association study, GWAS, see Chapter 6)

and shed new light on drug repositioning. Rastegar-Mojarad et al. [152] constructed

a phenotype-genotype-drug network using PheWAS data to identify multiple diseases

sharing common genetic etiology, which may be as well treated by the same drug.

8.2 Materials

Table 8.1 summarizes the utilized data repertoire and data sources. Here, we give a

more detailed description on how the data was retrieved and pre-processed.

8.2.1 Drugs

Information on 1,543 drugs was collected from the database Drugbank (Version 4.3)

[198]. We only consider approved drugs for our analysis here. Other types, e.g. in-

vestigational or withdrawn drugs, have not been included. The chemical and the

molecular properties of the drugs are represented by the canonical Simplified Molec-
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ular Input Line Entry Specifications (SMILES) [6], which are afterwards hashed into

chemical fingerprints using the Chemical Development Kit (CDK) [171]. Our pipeline

then uses the well-known Tanimoto coefficient to compute similarities between two

hashed fingerprints. It is defined as the size of the shared structures/substructures

divided by the union of the two fingerprints, as follows:

sim(x1, x2) =
|f(x1) ∩ f(x2)|
|f(x1) ∪ f(x2)|

(8.1)

where f(x) refers to the fingerprint of drug. The resulting values form a symmetric

similarity matrix, which can be interpreted as weighted similarity graph with drugs

as nodes and edge weights ranging from 0 (totally dissimilar drugs) to 1 (identical

drugs). We applied Transitivity Clustering (TC) [201] to this matrix using a refined

threshold described in the following section, resulting in pre-clusters of similar drugs.

Note that TC guarantees that the average “Tanimoto similarity” within pre-clusters is

above the threshold, while the average similarity of drugs from different pre-clusters

are below. We executed the same pre-clustering procedure for the gene and disease

data sets as well (described below).

8.2.2 Genes and Drug-Gene Pairs

It has been widely argued that the drugs sharing similar targeted genes tend to have

common therapeutic functions [101, 111, 118], an assumption that we exploit system-

atically with our drug-gene-disease triangulation methodology. First, we extracted

11,802 drug-gene associations from Drugbank [198] together with 1,622 target genes

(sequences from NCBI) [14], also refer to summary Table 8.1. We computed a pair-

wise similarity matrix between all target genes by performing a reciprocal all-vs-all

BLAST amongst all amino acid sequences using E-value cutoff of 0.01. The −log10 of

the higher BLAST E-values was used as similarity and, hence, as edge weights in the
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corresponding gene similarity graph. This graph was processed with TC using the

homology detection protocol described by Röttger et al.’s [156] in order to identify

pre-clusters of homologous genes.

8.2.3 Diseases

3,407 diseases/phenotypes were mined from the Comparative Toxicogenomics

Database (CTD, released on Jan 26, 2015) [40], mapped to Concept Unique Iden-

tifiers (CUIs) using the Unified Language System (UMLS) [19]. UMLS (release

2015AA) is a knowledge framework of over 100 controlled terminologies and vocab-

ulary used in biomedical research, including useful nomenclature ontologies such as

Medical Subject Headings (MeSH, released on May 11. 2015) [119] and Systemized

Nomenclature of Medicine-Clinical Terms (SNOMED-CT, released on March 2015)

[116]. Pairwise disease similarities were derived by adopting the scoring scheme

developed by Pedeson et al. [144] that uses the Latent Semantic Indexing method

[43] by representing CUIs as co-occurrence vectors to profile the contexts of the

medical terms. Similarities of the medical terms are then calculated as the cosine

angle between the corresponding conceptual vectors. This vector-based approach,

extending Latent Semantic Indexing and Latent Semantic Analysis, has proven useful

in biomedical data retrieval [34] and clinical data mining [35], and it was shown to

be effective compared to alternative methodologies [89]. Applying this strategy to

compute all-vs-all similarities across the disease data set resulted in similarity values

ranging from 0 to 1. Again we used TC (threshold 0.9) to derive pre-clusters of

diseases.

8.2.4 Drug-Disease Pairs

We retrieved 271, 169 drug-disease associations from (CTD) [40] with links to our

disease data set. We used this later on as Gold Standard Positives (GSP) data set
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Table 8.1: Data sources used for triangulation.
Nodes and Edges Sizes Source(s)

Drugs 1,543 Drugbank [198, 106]
Genes 1,622 Drugbank [198, 106]

Diseases 3,407 Comparative Toxicogenomics Database(CTD) [39],
OMIM [76], MeSH [119]

Drug-gene associations 11,802 Drugbank [198, 106]
Drug-disease associations 271,169 CTD [39], Drugbank [198, 106]
Gene-disease associations 1,535,509 CTD [39], OMIM[76]

when evaluating the robustness of our strategy. CTD identifies diseases with various

names and heterogeneous identifiers, mainly from Online Mendelian Inheritance In

Man (OMIM) [76] and MeSH [119]. In order to handle the inconsistency caused by this

heterogeneity, we map disease terms to CUIs in the UMLS (version 2015AA). Because

MeSH is one of the vocabularies that are integrated into the UMLS, we retrieve UMLS

CUIs for MeSH terms (MeSH Unique IDs for Main Heading and Supplementary

Concept terms) accessing the UMLS terminology services (UTS) through their JAVA

API.

8.2.5 Gene-Disease Pairs

We extracted 1, 535, 509 gene-disease associations for the genes and diseases of this

study (see above) from CTD and OMIM (released on April 2015).

8.3 Methods

8.3.1 Triangulation

All the above described data sets have been integrated and combined into an 3-partite

graph, with nodes typed as drugs, genes and disease, respectively, and edges between

them referring to drugs targeting genes, gene-disease associations, and drugs being

registered to treat diseases. See Fig. 8.1 for an illustration. We refer to this network
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either as “3-partite graph” or as “integrated network”, dependent on the context. It

is built upon the pre-clusters described in the above sections, where the edge weights

are defined as the Jaccard Index of the two connected pre-clusters. Note that edges

only exist between pre-clusters coming from different entity sets. For arbitrary two

pre-clusters C1 = {a1, a2, . . . , am},C2 = {b1, b2, . . . , bn}, where ai and bi refer to the

members in the pre-clusters, the edge weight wC1,C2 is defined as:

wC1,C2 =
|EC1,C2|
mn

(8.2)

where,

EC1,C2 = {(ai, bj)|(ai, bj) ∈ E} (8.3)

Here, E stands for the union of the sets of drug-gene, drug-disease, and gene-disease

pairs. Then the n-Force algorithm in n-CluE (see Chapter 5 for details) was utilized

for computing the n-clusters in the integrated drug-gene-disease network.

The resulting n-clusters are collected and the inserted edges between drug pre-

clusters and disease pre-clusters are extracted. If drug pre-clusterD = {d1, d2, . . . , dn}

and disease pre-cluster K = {k1, k2, . . . , km} were connected, where di and kj are the

drugs and the diseases within the pre-clusters, then we regarded all drug-disease pairs

of (di, kj) in D and K are associated. These pairs are reported as putative novel drug-

disease associations, and we refer to this whole prediction process as “triangulation”.

Suggested drug-disease associations are then post-processed by using our literature

mining engine (see corresponding sections below).

8.3.2 Parameter Optimization

As choosing the optimal parameters is crucial, we have tested a range of different con-

figurations. For each of the three pre-clustering (drug, gene and disease networks) as

well as the clustering of the integrated network, n-CluE requires one density param-
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Figure 8.1: Overview about the input data, the main prediction principle and the
results.

eter, resulting in four density parameters. Finding optimized density parameter for

gene networks has been thoroughly discussed in Röttger et al. [156] and in our case,

the threshold was accordingly set to the optimized value of 37. To optimize the two

density parameters for drug and disease pre-clustering a grid search was performed.

For each density parameter in drug and disease pre-clustering, we searched among

the seven thresholds d ∈ {0.5, 0.6, 0.7, 0.8, 0.85, 0.9}. A 10-fold cross-validation was

performed by removing 10% of the drug-disease associations in the input graph and

by applying afterwards the n-CluE on the resulting graphs. We tried to recover the

removed drug-disease associations by n-clustering. For each combination of drug and

disease network density parameters, with varying Jaccard Index thresholds, the Re-

ceiver Operating Characteristic curve (ROC curve) was drawn and the Area Under

Curve (AUC) was computed, as shown in Table 8.2. The best AUC (0.864) occurred
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Table 8.2: The AUCs obtained by varying the thresholds for drug and disease pre-
clusterings. A grid search is conducted with pre-clustering thresholds selected from
{0.5,0.6,0.7,0.8,0.85,0.9,0.95}, generating 49 combinations. The largest 3 AUCs are
bolded and colored in red. 0.9 is chosen for both drug and disease pre-clustering.

Disease thresholds
Drug thresholds 0.5 0.6 0.7 0.8 0.85 0.9 0.95

0.5 0.686 0.680 0.686 0.725 0.733 0.739 0.768
0.6 0.688 0.687 0.702 0.720 0.729 0.740 0.768
0.7 0.707 0.715 0.705 0.733 0.735 0.740 0.769
0.8 0.717 0.726 0.734 0.762 0.768 0.792 0.767
0.85 0.741 0.750 0.757 0.762 0.765 0.772 0.768
0.9 0.726 0.738 0.747 0.749 0.781 0.864 0.766
0.95 0.734 0.722 0.713 0.722 0.725 0.772 0.766

Figure 8.2: The predictive powers of n-CluE for the three threshold combinations
with best AUCs.

when the density parameters were 0.9 for both drugs and disease pre-clustering. The

Jaccard Index threshold in the integrated clustering was then fixed to 0.4 which opti-

mizes the F1 score (the harmonic mean of precision and sensitivity, data not shown).

117



8.4 Results

8.4.1 Robustness Analysis

The classical graph cluster editing model has shown excellent robustness against miss-

ing data [205]. Here, we carry out two strategies to assess the robustness of the ex-

tended n-cluster editing model (evaluated using n-CluE) in different aspects. First,

10%, 20% and 30% of the edges in the integrated network (i.e. associations between

drugs, genes and disease) are removed. Second, 10%, 20% and 30% of the drug-

disease associations are removed. The known drug-disease pairs serve as positive test

set. The negative test set is generated by the following procedure: first, we ran-

domly selected a set of drug-disease pairs (detracted of the positive pairs) ten times

as large as the positive set. Second, based on the assumption that extremely dissim-

ilar diseases are much less likely to be treatable by the same drug, we generate an

“unlikely” drug-disease pair set as follows: if a drug d is related to disease k1 and in

the disease set ∃ k2, such that the similarity between the two diseases s(k1, k2) < tk,

then we regarded the drug-disease pair (d, k2) as “unlikely”. Here, we set tk = 0.3

(i.e. very un-similar disease [65]) and extract all corresponding pairs. Together with

the random drug-disease pairs from the first step, this results in a negative set of

2,428,400 pairs. We than use these sets to compute ROC plots for varying n-cluster

editing thresholds, displayed in Fig. 8.3, illustrating the performance of n-CluE for

predicting the known set of drug-disease pairs (positive test set) and not too many

of the (much bigger) negative control set. The AUC summarizes ROC plots into one

value and remains at comparably high levels even when we remove up to one third of

the input data indicating the robustness of n-CluE to missing input data.
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Figure 8.3: Robustness evaluation using receiver-operator characteristic (ROC) plots
for varying n-cluster editing thresholds and with known drug-disease pairs as gold
standard. We removed different amounts of edges from the “integrated network”
(left) and only from the known set of drug-disease pairs (right), respectively. The
brown dashed curve is the ROC achieved by n-CluE on the complete data set. Table
8.2 gives the AUCs of the ROCs.

Table 8.3: Robustness shown by the AUCs on the incomplete data sets.

Descriptions AUC
10% of the integrated networks removed 0.836
20% of the integrated networks removed 0.778
30% of the integrated networks removed 0.752

10% of the drug-disease associations removed 0.824
20% of the drug-disease associations removed 0.752
30% of the drug-disease associations removed 0.734

8.4.2 Repositioning

The above pipeline yields 31, 731 drug-disease pairs in the “novel prediction set”

emerging from n-CluE. To further assess their relevance for drug repositioning and to

filter for highly confident candidates we followed the assessment pipeline suggested by

Rastegar-Mojarad et al. [152] and measure the co-occurrences of the drug and disease

terms in MEDLINE, the U.S. National Library of Medicine bibliographic database
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that contains more than 22 million references to journal articles in life sciences with a

concentration on biomedicine. We implemented several assessment strategies provid-

ing different degrees of confidence. For the first strategy, we downloaded the titles and

abstracts of all articles in MEDLINE (as of 11/2015) and built dictionaries for drug

and disease synonyms that were retrieved from Drugbank and CTD, respectively. We

used Apache Lucene (version 5.3.1) to index our literature set with drug and disease

concepts from our dictionaries. We then retrieved evidence from the literature for the

predicted novel drug targets based on the co-occurrence of these terms in a given title

or abstract. To account for random drug-disease pair co-occurrences we only include

pairs co-occurring in more than five articles as “high confidence” pairs. In addition, to

overcome the limitation from co-occurrence based retrieval, i.e., the disregard of any

contextual information that would help determine, for example, whether a disease

is a potential indication or an adverse event for a given drug, we then developed a

semantic literature search strategy based on the information in the Semantic Medline

Database (SemMedDB) [99]. SemMedDB extracts pairs of biomedical concepts from

MEDLINE titles and abstracts and characterize their relationships by assigning them

one or several of 30 predicates, largely relating to clinical medicine (e.g. TREATS,

DIAGNOSES, ADMINISTERED_TO, PROCESS_OF). We follow two strategies to

retrieve drug-disease pairs from SemMedDB: retrieving drug and diseases that have

(1) any and (2) TREATS relationships. Based on this strategy we hope to provide

even more confidence for a given set of drug repositioning candidates, beyond term

co-occurrence, which enables us to further prioritize our predictions. We call this the

“treats annotation set”.

Altogether, we sort the new drug reposition candidate pairs derived by n-CluE

into three categories:

• (1) “novel prediction set”: The 31,731 new drug-disease pairs predicted by n-

CluE.
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• (2) “high confidence set”: A subset of 11,517 drug-disease pair identified by the

MEDLINE-based search engine to co-occur more than five times in the literature

pool.

• (3) “treats annotation set”: SemMedDB extracted 1,382 case where the drug is

mentioned to specifically TREAT the disease.

To further consolidate the significance of the “high confidence set” we permuted

the “novel prediction set” of 31,731 novel drug-disease pairs randomly 1,000 times

and repeated the literature mining pipeline that retrieved our 11,517 “high confidence

set” drug disease pairs on the unpermuted data. Now, on average only 1,745 (+/-

39) pairs (5.5% of the 11,517 original pairs) have been identified as “high confidence

set”, suggesting a significant enrichment of our triangulated drug-disease associations

(“novel prediction set”) through (co-occurrence) literature support.

N-CluE triangulation suggests the drug molecule chlorpromazine (Drugbank ID:

DB00477) to be associated with tuberculosis (Concept Unique Identifier: C0041327).

We found this to be co-occurred in the literature several times (hence the “high

confidence” level). Chlorpromazine has long been used for the therapy of psychotic

disorders such as schizophrenia [37]. Our pipeline indicates an additional purpose

for chlorpromazine, which is supported by several scientific articles. In the review

of [216], it is suggested that the antibacterial properties of chlorpromazine could be

used for anti-tubercular purpose. Another review discussed about the drug-resistance

of pathogenic bacteria and suggested chlorpromazine to be promising as an effec-

tive anti-tubercular compound [4]. Likewise, n-CluE triangulation suggest the drug

molecule dasatnib (Drugbank ID: DB01254) to be associated with thyroid cancer

(Concept Unique Identifier: C0238463). We found this to co-occur in the litera-

ture serveral times (hence “high confidence” level). Dasatinib is an oral Src family

kinase inhibitor approved by U.S. Food and Drug Administration (FDA) for the

treatment of lymphoblastic leukemia and chronic myelogenous leukemia [25]. Experi-
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ments demonstrated, both in vitro and in vivo the efficacy of dasatinib controlling the

growth of thyroid cancer by inhibiting the Src family kinases, which is up-regulated in

thyroid cancer cells [26]. An additional example for literature-supported reposition-

ing is penicillamine (Drugbank ID: DB00859) and pulmonary hypertension (Concept

Unique Identifier: C0020542), which has been suggested by Oroszlán et al. [141].

Furthermore, Xu et al. [206] reported that idiopathic pulmonary arterial hyperten-

sion is related to low levels of vasodilator nitric oxide (NO), and that molecules like

S-nitroso-N-acetyl-D,L-penicillamine (SNAP), which provide NO in biochemical re-

actions, may serve as treatment. Additional (in vitro) experiments by Xu et al.

give further evidence of potential effectiveness of SNAP as NO donor [206]. Eleven

thousand additional such candidates are found for further laboratory validations and

clinical studies. Research groups studying tuberculosis, for instance, will find 10 in-

teresting repositioning records, including thalidomide, which has been suggested as

an adjuvant treatment for tuberculosis [60]. Likewise, for pancreatic cancer investi-

gators, we have identified 33 drug candidates with direct literature support, including

salbutamol, ifosfamide, capecitabine and phenylephrine. Note that both prediction

sets have not been filtered for potential side effects.

8.5 Related Methods

In Table 8.4 we summarize previously published methods integrating different data

types for drug repositioning, most of which follow either a supervised or semi-

supervised strategy to identify new drug targets or to predict new drug indications.

No method exists integrating all relevant information (drug-disease associations,

drug-gene associations, gene-disease associations as well as drug, gene and disease

similarity networks) into one single model to predict new potential drug indications.

With n-cluster editing we provide the first model for drug-gene-disease triangulation.
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Table 8.4: Summary of methods for integrative analysis in drug repositioning.
Method name Description Integrated data Learning

strategy
Ref.

PREDICT Drug respositioning
based on integrated
chemical similarity

Drug similarities
(chemical)

Supervised [68]

Network prop-
agation

Infer drug-disease net-
work from network
propagation.

Drug similarity
(chemical), Disease
similarity (semantic)

Unsupervised [89]

PreDr Inference of novel
drug-disease asso-
ciations by matrix
factorization

Drug and protein
structures (chemical),
side effects

Semi-supervised [194]

DDR Drug-disease pre-
diction from known
associations inte-
grated with multiple
drug similarities

Drug similarities
(chemical), Target
similarities (chemical)

Supervised [217]

And with n-CluE, we have developed the first method to compute the model on data

sets of real-world size. Finally, the literature mining post-processing identifies two

kinds of high confidence targets for future clinical trials.

8.6 Conclusion

We developed the first tri-cluster editing approach, applied it to drug-disease-gene

triangulation, integrated it with a literature mining pipeline, and applied it to sev-

eral databases for computational drug repurposing yielding over thirty thousand new

tricks for known drugs of which approximately eleven thousand significantly co-occur

in literature over 1, 300 have a semantic “treats” annotation. The utilized n-CluE

algorithm solves the longstanding weighted n-cluster graph editing computer science

problem. A side-effect filter based on according databases, such SIDER [112], may

further strengthen the confidence of our predictions. We anticipate that our method-

ology will be applied to other biomedical data processing problems in the future.
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Table 8.5: Discovered drug repositioning examples (see text for discussion). Four of
them have literature support while three are novel predictions.
Drugbank ID Drug name Concept

Unique Iden-
tifier

Disease name Literature
Support

DB00118 S-
adenosylmethionine
(SAM)

C0010068 Coronary dis-
ease

Yes

DB00959 Methylprednisolone C0003864 Arthritis Yes
DB00571 Propranolol C0677886 Ovarian epithe-

lial cancer
Yes

DB01181 Ifosfamide C2931037 Pancreatic can-
cer, adult

Yes

DB00762 Irinotecan C2931037 Pancreatic can-
cer, adult

Novel

DB00635 Prednisone C0030567 Parkinson’s dis-
ease

Novel

DB04942 Tamibarotene C1863051 Alzheimer dis-
ease type 2

Novel

In addition, we believe that our repositioning lists provide hot candidates for future

screening efforts and will prove highly useful as a starting point for future clinical

trials.
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Chapter 9

Conclusion

To overcome the challenges of clustering n-dimensional (n >= 2) heterogeneous data,

we have: (1) developed a software package n-CluE with exact and heuristic algorithms

based on the bi-/n-cluster editing model and, (2) applied n-CluE on three real-world

biomedical data sets to demonstrate its strength. We tackled the weighted bicluster

editing problem by developing the first exact algorithm based on fixed-parameter

tractability (FPT) with a kernelization procedure and a branching strategy to find the

best set of edge modifications by traversing all possible solutions. The edge deletions

heuristic improves the performance of the exact algorithm from exponential growth

of running times to O(|E|(|E| + |V |2) + |V |3) by searching for the most beneficial

edge deletions to convert the input graph into disjoint bicliques. N-CluE’s second

heuristic, n-Force, is designed to perform n-clustering by finding an arrangement in

u-dimensional (u > 1) space such that similar nodes are located closer to each other

than the dissimilar ones. A systematic evaluation on artificially generated graphs was

carried out to assess the performance of the three algorithms. Our results demonstrate

the robustness of n-CluE dealing with graph of various sizes. The fixed-parameter

algorithm, though with highest accuracy, is unfit to perform biclustering on graphs

larger than 50 vertices due to explosion of running time. Our edge deletion heuristic
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improves the running time and works fine for larger graphs, while n-Force shows the

best performance in dealing with n-clustering on large scale data sets.

We then applied two of the three n-CluE’s algorithms, the fixed-parameter al-

gorithms and the edge deletion heuristic to two Genome-Wide Association Study

(GWAS) to predict novel associations between genotypes and phenotypes. Two

GWAS data sets were used in the biclustering analysis. Totally 86 new associa-

tions were identified, of which the associated phenotypes were found to be related by

clinical studies.

To evaluate the performance of n-CluE on gene expression data, n-Force was

systematically compared with other eight existing biclustering tools, both on artificial

and real-world data sets. The results that n-Force outperformed other tools in both

scenarios have proven the strength of the underlying bicluster editing model for gene

expression data mining.

In the last application case, we suggest the utilization of drug-gene-disease tri-

angulation to discover drug repositioning. We first summarize the latest progress

of computational drug repositioning strategies from different aspects and afterwards

present our model based on n-cluster editing to integrate drug-gene-disease networks.

Combined with a semantic literature mining approach, n-CluE managed to predict

31,731 (“novel prediction set”) new drug-disease associations of which 11,517 (“high

confidence set”) co-occur in literature and 1,382 cases were marked as “treats annota-

tion set” where the drug is identified to treat the disease. The robustness of n-CluE

in the context of drug repositioning was also assessed. We anticipate that our results

and n-CluE to be valuable in identifying alternative indications for existing drugs and

cost reduction.
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Appendix A

Appendix

A.1 Appendix A: Additional Proofs

A.1.1 Proof of Theorem 4.1:

Proof. “⇒" Let I ⊆ C be an exact cover of A, define: F1 = {{ui, vSj
}| ui ∈ U1 ∧ vSj

∈

V m
S ∧ {ui, vSj

} ∈ E ∧ S /∈ I}, F2 = {{vi, uSj
}| vi ∈ V1 ∧ uSj

∈ Um
S ∧ {ui, vSj

} ∈

E ∧ S /∈ I}, F3 = E2\{{ui, vj}| S = {ax, ay, az} ∈ I ∧ i, j ∈ {x, y, z} ∧ i 6= j}.

Let F be the union of F1, F2 and F3. Since in I, each element must be contained

in exactly one triplet, then in the graph G − F , for all vertices u ∈ U1 ∪ V1, u is

connected with exactly one Wm
S . Hence G − F is a bicluster graph containing 2|C|

bicliques and clearly gives a solution to the s-BIPLEX EDITING instance.

Since |I| = n, then |C| − n is equal to the number of “surplus triplets", i.e., the

triplets that are not in I. Thus, we have |F1| = |F2| = 3(|C| − n) · m = M/2.

Moreover, in G − F , we have 3n + 6|I| = 9n edges between U1 and V1, thus we

can easily compute that |F3| = |E1| + |E2| − 9n = |E2| − 6n. Denote F as the set

of edited edges, i.e., the set of deleted edges and inserted missing edges. We have

|F | = |F1|+ |F2|+ |F3| = M +N .
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“⇐" In the reverse direction, if there exists an optimal solution for the s-BIPLEX

EDITING instance, let F be the set of edited edges. We prove that |F | ≥M +N .

Let F ′ = F1 ∪ F2 ∪ F3 where F1, F2 and F3 are defined in the “⇒" direction, and

thus |F ′| = M +N . Clearly F ′ gives a solution to the s-BIPLEX EDITING instance.

Before proving the lower-bound on |F |, we first show |F ′| < m(m+1
6

).

In 3X3C, each element can be covered by at most 3 triplets, thus |C| ≤ 3n. Hence

M = 2m(3|C| − 3n) ≤ 2m(9n − 3n) ≤ 12mn. Consider |E2|, |E2| = 9|C| − 3|C| =

6|C| ≤ 18n. Thus |F ′| = |F1| + |F2| + |F3| = M + N = 2m(3|C| − 3n) + |E2| − 6n ≤

12mn+ 18n− 6n = 12mn+ 12n = 12m · m
72+s

+ 12 · m
72+s
≤ m2

6
+ m

6
= m(m+1

6
)

Let G′ be the resulting graph of G after all edge insertions and edge deletions in

F are performed. We next prove the claim: For every WS and Wm
S , there is s-biplex

B in G′, such that Wm
S ⊆ B ⊆ (Wm

S ∪WS).

We proceed with the proof in two steps: In the first step, we show that for each

Wm
S , there is always an s-biplex B in G′, such that |B ∩Wm

S | ≥ 3
2
m+ 3.

By contradiction, if there is no such s-biplex in G′. Let B = {B1, B2, ..., Bl} be

the set of s-biplexes in the optimal solution G′, such that |Bi∩Wm
S | 6= ∅ for 1 ≤ i ≤ l.

According to the assumption, we have |Bi ∩Wm
S | ≤ 3

2
m + 2 for all 1 ≤ i ≤ l. Let

xi = |Bi ∩ Um
S |, yi = |Bi ∩ V m

S |, xi + yi ≤ 3
2
m + 2. Obviously, we have to delete all

the edges between Wm
S ∩ Bi and Wm

S − Bi. Hence the number of edge deletions CD

with respect to Wm
S is at least:
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CD ≥
1

2

l∑
i=1

(xi(m− yi) + yi(m− xi))

≥ 1

2

l∑
i=1

(m(xi + yi)−
1

2
(xi + yi)

2) (*)

=
1

2

l∑
i=1

((xi + yi)(m−
1

2
(xi + yi)))

≥ 1

2

l∑
i=1

((xi + yi)(m−
1

2
(
3

2
m+ 2))) (**)

=
1

2

l∑
i=1

((xi + yi)(
1

4
m− 1))

=
1

2
(
1

4
m− 1)

l∑
i=1

(xi + yi)

= m(
1

4
m− 1) =

1

4
m2 −m (***)

The inequality (*) holds since for all integers xi > 0 and yi > 0, we have xiyi ≤
1
4
(xi + yi)

2. The inequality (**) is correct because we have (xi + yi) ≤ 3
2
m + 2. The

equality (***) is correct since we have
l∑

i=1

(xi + yi) = |Wm
S | = |Um

S | + |V m
S | = 2m.

Thus we know that |F | ≥ 1
4
m2 − m. Consider |F | − |F ′|, we have: |F | − |F ′| ≥

1
4
m2 −m−m(m+1

6
) = 1

4
m2 − 1

6
m2 − 7

6
m = m

6
(m
2
− 7).

In our construction, m = (72 + s)n, thus m
6

(m
2
−7) > 0. This contradicts with the

assumption that F is optimal. Thereby we have proved that there exists an s-biplex

B in G′ with |B ∩Wm
S | ≥ 3

2
m + 3. For each Wm

S , denote BS as the s-biplex in the

optimal solution such that |BS ∩Wm
S | ≥ 3

2
m+ 3.

In the second step, we prove the claim that for each Wm
S , we have Wm

S ⊆ BS ⊆

(Wm
S ∪WS). By contradiction, we assume there is one vertex x ∈ Wm

S , such that

x /∈ BS. Without loss of generality, we assume x ∈ Um
S . Since 0 ≤ |BS ∩ Um

S | ≤ m,

the intersection between BS and V m
S must be at least 3

2
m + 3 − m = m

2
+ 3, i.e.,
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|BS ∩ V m
S | ≥ 1

2
m + 3. Thus to include x into BS, we need at most: (1) Remove the

edges between V m
s − BS and x, and (2) remove the edges between VS and x. This

gives a cost CI ≤ |V m
S − BS| + 3 ≤ m − (m

2
+ 3) + 3 = m

2
. On the other hand, to

have x not in BS, it requires at least to delete all edges between x and V m
S ∩B, which

gives a cost CD = |V m
S ∩BS| = |Wm

S ∩BS| − |Um
S ∩BS| ≥ 3

2
m+ 3−m = m

2
+ 3 ≥ CI .

Hence we know that it is always better to include x as part of BS than to leave x out.

The remaining part of the claim that BS ⊆ (Wm
S ∪ WS) is proved similarly by

contradiction. Suppose there exists a vertex y ∈ BS with y /∈ (Wm
S ∪WS). Without

loss of generality, we assume y ∈ U . Denote CI as the cost of including y as a

part of BS. Then we have to insert between y and V m
S at least (|V m

S | − s) edges.

CI ≥ |V m
S | − s = m − s. Consider the cost CD of removing y from BS. CD is at

most the number of edges between y and VS. Since |VS| = 3, we have CD ≤ 3 < CI ,

contradicting with the claim of optimal solution. Hence no vertex outside (WS∪Wm
S )

would end up in BS in any optimal solution.

W know that for each Wm
S , there is an s-biplex BS in the optimal solution, such

that Wm
S ⊆ BS ⊆ (Wm

S ∪WS). It remains to find out where the vertices in WS end

up. Examine an element ui ∈ U1, such that its corresponding element in A, ai, is

a member of (at least) two subsets S1, S2 ∈ C. In the proof above, we have already

shown that Wm
S1

and Wm
S2

are contained in distinct s-biplexes in any optimal solution.

Hence we have to delete the edges either between ui and V m
S1
, between ui and V m

S2

or both. Obviously, if each ui only connects to one V m
S , the total number of edge

deletions is at least 3m(|C| − n). For all such vertices in V1, the same argument

applies. Hence we have |F ∩ (E3 ∪ E4 ∪ E5)| ≥M .

Since for each s-biplex in G′, we have BS ⊆ (Wm
S ∪WS), we know that in the

optimal solution, every ui ∈ U1 is a neighbor of at most three vertices in V1. Since

|U1| = |V1| = 3n, there are at most 9n edges between U1 and V1 in the optimal
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solution. Thereby the edge deletions between U1 and V1 is at least |F ∩ (E1 ∪E2)| ≥

|E1|+ |E2| − 9n = |E2| − 6n = N .

In conclusion, we have that |F ∩ (E3 ∪ E4 ∪ E5)| ≥ M and |F ∩ (E1 ∪ E2)| ≥ N .

Hence |F | ≥ M + N . Therefore, we know that F ′ = F1 ∪ F2 ∪ F3 gives an optimal

solution to s-BIPLEX EDITING. Finally, let B∗ be a subset of all s-biplexes in the

optimal solution, such that ∀B ∈ B∗, we have B = Wm
S ∪WS. Then {S ∈ C|BS ∈ B∗}

gives a cover to the 3X3C instance.

A.1.2 Proof of Lemma 4.2:

Proof. By contradiction, suppose we have a vertex u∗ ∈ R with d(u∗) ≤ |T | − s− 2.

Then we can find a non-cut vertex v ∈ H. Such vertex must exist, since it is well-

known that in an arbitrary graph G, there are at least 2 non-cut vertices. Considering

H − v = (R′, T ′, E ′′) , we have 2 cases:

Case i: v ∈ N(u∗). Then in H − v, dH−v(u∗) = d(u∗) − 1 ≤ |T | − s − 2 − 1 =

|T ′| − s− 2, u∗ is still a forbidden vertex.

Case ii: v /∈ N(u∗). Then in H − v, dH−v(u∗) = d(u∗) ≤ |T | − s− 2 = |T ′| − s− i,

u∗ is still a forbidden vertex.

In summary, either case gives another forbidden subgraph which is a subgraph of

H, contradicting with H being minimal.

A.1.3 Proof of Lemma 4.4:

Proof. For the first and second claims, the proofs are simple: If a vertex u ∈ R1 is

a non-cut vertex, we can remove u from H without affecting all vertices in R0 being

forbidden vertices, thus H − u is still forbidden, contradicting with “minimal". If a

vertex v ∈ T0 is a non-cut vertex, we can remove v fromH. InH−v,min{dH−v(u)} ≤

|T ′| − s − 1, thus H − v is still forbidden. For Claim 3, if there is more than one
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forbidden vertex in R0, all vertices in R0 must be cut vertex, otherwise we could

remove an arbitrary vertex in R0 and the resulting graph is still forbidden.

Next we prove Claim 4. By contradiction, supposeX1∩R1 = ∅. We haveX1 ⊆ R0.

Then we have two cases:

Case i. Y1 = ∅. Then we know that for u0 ∈ X1, in the original subgraph H,

d(u0) = 1. Since u0 is in R0, we know by Lemma 1 that in the original subgraph

H, ∀u ∈ R0, we have d(u) = 1. Therefore, ∀u ∈ R0, u is a non-cut vertex. Hence

we can only have |R0| = 1, since otherwise R0 would contain non-cut vertex and

thus contradicts Claim 3. However, since R0 = {u} and d(u) = 1, we have |T0| = 1,

contradicting with |T0| > 1 in Claim 4.

Case ii. Y1 6= ∅. Since X1 ∩ R0 6= ∅, we have Y1 ∩ T0 6= ∅. In subgraph H1, there

must be at least two non-cut vertices. Assume a vertex v ∈ Y1 is a non-cut vertex.

then in H, v must be a non-cut vertex as well, contradicting Claim 2. Thus we know

that there must be at least two vertices u1, u2 ∈ X1, such that u1 and u2 are non-cut

vertices of H1. Consider u1 and u2, we have three following properties:(1) In H, u1

and u2 must be connected to v∗. This is obvious since otherwise u1 and u2 would be

non-cut vertices in H as well, contradicting with Claim 3. (2)∀x, y ∈ N(u1)\{v∗},

there exists a path P inH1 from x to y without passing u1. This is true since otherwise

u1 would be a cut vertex in H1. (3)∀x ∈ N(u1)\{v∗}, there exists a path Q in H1

from x to u2 without passing u1. This is also true since otherwise u1 would be a cut

vertex in H1.

Consider two arbitrary neighbours of u1, x, y ∈ N(u1). If x 6= v∗ and y 6= v∗,

then we already know that there exists a path P from x to y without passing u1. If

x = v∗, we can also find a path from y to v∗ without passing u1. This is true, because

we already know that there exists a path Q from y to u2 and u2 is connected to v∗,

Q′ = Q ∪ {v∗} is the path. In summary, ∀x, y ∈ N(u1) in H, there exists a path
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from x to y without passing u1. Thus u1 is a non-cut vertex in H. Moreover, since

u1 ∈ R0, this contradicting with Claim 3.

Finally, we prove Claim 5. For the purpose of contradiciton, suppose ∀v ∈ T ,

d(v) ≥ 2. Consider an arbitrary vertex u1 ∈ R1. Since u1 is a cut vertex, we can

find a connected component C1 = (UC1 , VC1 , EC1) in H − u1, such that all vertices

in VC1 ∩ R are cut vertices. Such C1 must exist when |R0| = 1. In the case of

|R1| > 1, we have already proved that all vertices in R are cut vertices in H. By

the assumption, we have VC1 ∩ R 6= ∅; let u2 ∈ VC1 ∩ R. The fact that u2 is a cut

vertex in H leads to that there exists a connected component C2 = (UC2 , VC2 , EC2)

in H − u2 which is also a connected component in H − {u1, u2}. Again, by the

assumption, VC2 ∩R 6= ∅; let u3 ∈ VC2 ∩R. The cut vertex u3 implies that there is a

connected component C3 = (UC3 , VC3 , EC3) inH−u3, which is a connected component

in H−{u1, u2, u3}. Since u1 and u2 are connected in H−u3. Then VC3∩R 6= ∅. Since

u1 and u2 are connected in H − u3, then VC3 ∩ R 6= ∅ follows our assumption. Note

that VC3 ⊂ VC2 ⊂ VC1 . Since H is finite, we will end up with a connected component

Ci = (UCi
, VCi

, ECi
where VCi

∩R = ∅. However, this would imply that the vertices in

VCi
∩ T are degree -1 vertices, contradicting to Claim 2 and our assumption.

A.1.4 Proof of Theorem 4.8:

Proof. Obviously, the problem is in NP. Then the NP-hardness of the problem is

shown by a reduction from MAXIMUM BALANCED BICLIQUE (MBB):

Input: An undirected bipartite graph G = (U, V,E), and and integer

k ≥ 0

Question: Does there exist an induced biclique C∗ = (UC∗ , VC∗ , EC∗) in

G, such that |UC∗| = |VC∗ | = k ?

Given an MBB instance G = (U, V,E) and a nonnegative integer k, we construct

an EQUAL-SIZE BICLUSTER EDITING (ESBE) instance as follows: (1) Add a set
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of components A to G, such that

A = {A1, A2, ..., A|U |−k}, Ai = (UAi
, VAi

, EAi
), 1 ≤ i ≤ |U | − k. For each Ai, we have

|UAi
| = k − 1, |VAi

| = k. We first connect all vertices in UAi
to all vertices in VAi

for

1 ≤ i ≤ |U | − k, and then connect all the vertices in U to all the vertices in
⋃

Ai∈A
VAi

.

(2) Add a set of components B to G, such that

B = {B1, B2, ..., B|V |−k}, Bj = (UBj
, VBj

, EBj
), 1 ≤ j ≤ |V |−k. For each Bj, we have

|UBj
| = k, |VBj

| = k− 1. We first connect all vertices in UBj
to all vertices in VBj

for

1 ≤ j ≤ |V | − k, and then connect all the vertices in V to all the vertices in
⋃

Bj∈B
UBj

.

Hence, we have the new graph for ESBE G′ = (U ′, V ′, E ′): U ′ =
⋃

Ai∈A
UAi
∪⋃

Bi∈B
UBi
∪ U , V ′ =

⋃
Ai∈A

VAi
∪
⋃
Bi∈B

VBi
∪ V . The edges of the new graph is: E ′ =

E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5, with E1 = E, E2 = {{u, v} | u ∈ UAi
∧ v ∈ VAi

}, E3 =

{{u, v} | u ∈ UBi
∧ v ∈ VBi

}, E4 = {{u, v} | u ∈ U ∧ v ∈ VAi
∧ 1 ≤ i ≤ |U |−k}

and E5 = {{u, v} | u ∈ V ∧ v ∈ UBi
∧ 1 ≤ i ≤ |V | − k}.

The sizes of U ′ and V ′ are: |U ′| = k(|U | − k) + k(|V | − k) + k and |V ′| =

k(|V | − k) + k(|U | − k) + k. The number of edges is: |E ′| = |E| + k(|U | − k)(|U | +

k − 1) + k(|V | − k)(|V |+ k − 1)

Let k′ and d be the parameters of the new instance: k′ = k(|U | − k)(|U | − 1) +

k(|V | − k)(|V | − 1) + |E| − k2 and d = |U |+ |V | − 2k + 1.

“⇒ " Suppose we have found a biclique C∗ = (UC∗ , VC∗ , EC∗) in G with |UC∗| =

|VC∗| = k. Then by the following steps, we can have a solution for the ESBE problem:

(1) For every vertex ui ∈ U\UC∗ = {u1, u2, ...u|U |−k}, we delete the edges

between ui and all vertices in Aj, i 6= j. For every vertex u′i ∈ UC∗ =

{u|U |−k+1, u|U |−k+2, ..., u|U |}, we delete all the edges between u′i and all vertices

in
⋃

Ai∈A
VAi

.

(2) For every vertex vi ∈ V \VC∗ = {v1, v2, ...v|V |−k}, we delete the edges between vi

and all vertices in Bj, i 6= j. For every vertex v′i ∈ VC∗ = {v|V |−k+1, v|V |−k+2, ..., v|V |},
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we delete all the edges between v′i and all vertices in
⋃

Bj∈B
UBj

.

(3) Delete the edges between C∗ and G− C∗.

Let k′1 = k(|U | − k)(|U | − 1), k′2 = k(|V | − k)(|V | − 1) and k′3 = |E| − k2.

Clearly, k′1 + k′2 + k′3 = k′. More specifically, step (1) requires k(|U | − k)(|U | −

k − 1) + k2(|U | − k) = k(|U | − k)(|U | − 1) = k′1 edge deletions. Step (2) requires

k(|V | − k)(|V | − k− 1) + k2(|V | − k) = k(|V | − k)(|V | − 1) = k′2 edge deletions. Step

(3) requires |E| − k2 = k′3 edges deletions. Thus altogether the 3 steps above need

k′1+k
′
2+k

′
3 = k′ edge deletions. Obviously the resulting graph contains |U |+|V |−2k+1

bicliques. This gives a solution to ESBE instance.

“⇐" Given the ESBE instance, we know |U ′| = |V ′| = k(|U | + |V | − 2k + 1).

First, we prove that each Ai (or Bi) will end up in a separated biclique in the optimal

solution. That is, let D = A∪B, for each Di ∈ D, in the optimal solution, there exists

a biclique Ci such that Di ⊆ Ci and Dj ∩ Ci = ∅ for all 1 ≤ i 6= j ≤ |U |+ |V | − 2k.

Denote C = {C1, C2, ..., Cd} as the d bicliques in the optimal solution and let

Ci = (Ui, Vi, Ei). Clearly, the bicliques in C are d equally-sized balanced bicliques,

thus we have |Ui| = |Vi| = |U ′|/d = |U ′|/(|U | + |V | + 2k + 1) = k. Thus, the total

number of edges in the optimal solution is dk2. Compute the difference between |E ′|

and the number of edges in the optimal solution, we have:
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|E ′| − dk2 = |E|+ k(|U | − k)(|U |+ k − 1)+

k(|V | − k)(|V |+ k − 1)− dk2

= k(|U | − k)(|U |+ k − 1− k)+

k(|V | − k)(|V |+ k − 1− k)+

|E| − k2

= k′

Since |E ′|−dk2 = k′, this indicates that only edge deletions are allowed, otherwise

we would have to convert G′ into d equally-sized bicliques with more than k′ edge

modifications. To show that each Di ends up in a separated biclique, we first show

that for every Di, there is a biclique Ci in the optimal solution, such that Di ⊆ Ci.

The proof is as follows:

For each Ai, we can always find a biclique Ci such that UAi
∩Ui 6= ∅ in the optimal

solution. Let u0 ∈ (UAi
∩ Ui). First, we show that ∀v ∈ VAi

, we have v ∈ Ci. By

contradiction, if there exists a vertex v0 ∈ VAi
and v0 /∈ Ci, since |Vi| = k, there must

exists a v′0 ∈ Vi such that v′0 /∈ VAi
. Then we have to insert at least an edge between

u0 and v′0 and thus contradicts with no edge insertion proved above. Second, we prove

that ∀u′0 ∈ UAi
, u′0 6= u0, we have u′0 ∈ Ci. By contradiction, if u′0 ∈ Cj, i 6= j, then

clearly, we have to insert the edges between u′0 and Vj thus contradicts with no edge

insertion. The same proof applies on Bi as well. Therefore, we have proved that, for

every Di, there exists a Ci such that Di ⊆ Ci.

Next, we show that Ci ∩Dj = ∅ for all i 6= j. By contradiction, if there exists an

integer j, such that Ci ∩ Dj 6= ∅, i 6= j, then we have to insert edges in Ci between
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Di and Dj ∩ Ci. This contradicts with no edge insertion. Thereby, we have proved

that every Di ends up in a separated biclique, 1 ≤ i ≤ |U |+ |V | − 2k.

Finally, we prove an optimal solution to ESBE will give a solution to MBB. With-

out loss of generality, we assume A1 ⊆ C1. Since |U1| = k and |UA1| = k − 1, clearly

there is one vertex u1 ∈ C1 but u1 /∈ A1. We next discuss where this u1 comes from.

As proved above, u1 cannot be from Ai, i > 1 or any Bj, 1 ≤ j ≤ |V | − k. Thus

we have u1 ∈ U . Therefore, for every Ai, 1 ≤ i ≤ |U | − k, there exists one vertex

ui in U , such that ui ends up in the same biclique with Ai. Similarly, we can show

that for every Bi, 1 ≤ i ≤ |V | − k, there exists one vertex vi in V , such that vi ends

up in the same biclique with Bi. That leaves us |U | − (|U | − k) = k vertices in U

and |V | − (|V | − k) = k in V . If these 2k vertices cannot form a balanced biclique

in G′, then we have to insert edges between them. This would lead to more than k′

edge modifications and thus contradicts with the assumption. Therefore, if we have a

solution to ESBE instance, we must be able to find a biclique with k vertices in each

vertex set in G, which gives a solution to the MBB instance.

A.1.5 Proof of Theorem 4.9:

Proof. We reduce ESBE to AVERAGE-s-BIPLEX EDITING. First, given an ESBE

instance G = (U, V,E), with k as the parameter of maximum number of edge mod-

ifications and d as the number of bicliques in the solution, we can safely assume

that |U | = |V |, an AVERAGE-s-BIPLEX EDITING instance G′ = (U ′, V ′, E ′) is

constructed by adding d components to each of U and V , respectively:

U ′ = U ∪ U1 ∪ U2 ∪ ... ∪ Ud,

V ′ = V ∪ V1 ∪ V2 ∪ ... ∪ Vd.

Let l = |U |/d. Each of Ui and Vi contains d4l4s4 vertices, i.e.:

|Ui| = |Vi| = d4l4s4.
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We denote Wi = Ui ∪ Vi. For each Ui, we divide the vertices in Ui into d4l4s3

vertex groups: Ui = U1
i ∪U2

i ∪ ...∪Ud4l4s3

i . |U j
i | = |U

j′

i | and U
j
i ∩U

j′

i = ∅ for all j 6= j′.

Hence we have |U j
i | = s for all 1 ≤ j ≤ d4l4s3. For each Vi, we divide them in the

same way.

Ui =
d4l4s3⋃
j=1

U j
i and Vi =

d4l4s3⋃
j=1

V j
i .

Then we connect: (1) all vertices in Ui to all vertices in V , and (2) all vertices

in Ui to all vertices in U . Next, inside each Wi, we connect all vertices in U j
i to all

vertices in
⋃
j 6=j′ V

j′

i , leaving the vertex pairs {u, v} with u ∈ U j
i , v ∈ V

j
i ) unconnected.

Finally, within each Wi, we further remove s · l arbitrary edges, which leaves |Ui| ·

|Vi| − s · |Ui| − sl = d8l8s8 − s(d4l4s4 + l) edges in each Wi. The new parameter

k′ = k + 2(d − 1)d5l5s4. Obviously, G′ is not an average-s-biplex cluster graph and

edge modifications are required. Note here we can assume that 1 ≤ s < d · l.

“⇒" If we have a solution for ESBE, i.e., a group of d bicliques with equal size l

which costs at most k modifications. Let B = {B1, B2, ..., Bd} be the set of d bicliques

in the solution. Then a solution for AVERAGE-s-BIPLEX EDITING is constructed

by disconnecting Bi with all constructed components Wj, 1 ≤ i 6= j ≤ d. Thus each

Bi is only connected to Wi, 1 ≤ i ≤ d. This asks for 2(d − 1)d5l5s4 edge deletions.

Denote Ci = Bi ∪Wi. Since |Ci ∩U ′| = |Ci ∩ V ′|, then it is sufficient just to consider

the average degree of the vertices in |Ci ∩ U ′|. The average degree in Ci is:

dCi
=

(|E(Ui, Vi)|+ |E(Ui, Bi)|+ |E(Vi, Bi)|+ |E(Bi)|)
(|Ui|+ |U ′ ∩Bi|)

Here, E(Ui, Vi) refers to the edges between Ui and Vi; E(Ui, Bi) and E(Vi, Bi)

refer to the edges between Bi and Ui, Bi and Vi, respectively; E(Bi) is the set of

edges within the biclique Bi. According to the construction of G′, |E(Ui, Vi)| =
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d8l8s8− s(d4l4s4 + l), |E(Ui, Bi)| = |E(Vi, Bi)| = s4d5l5. Since Bi is biclique, we have

|E(Bi)| = l2. Hence,:

dCi
=

(|E(Ui, Vi)|+ |E(Ui, Bi)|+ |E(Vi, Bi)|+ |E(Bi)|)
(|Ui|+ |U ′ ∩Bi|)

=
d8l8s8 − s(d4l4s4 + l) + 2d4l5s4 + l2

l + d4l4s4

=
(d4l4s4 + l)2 − s(d4l4s4 + l)

d4l4s4 + l

= d4l4s4 − s

= |Vi|+ |V ′ ∩Bi| − s

This average degree satisfies the average-s-biplex. This will give a solution to

AVERAGE-s-BIPLEX EDITING instance.

“⇐". We firstly prove that for each Wi there is an average-s-biplex Di in the

optimal solution, such that Wi ⊆ Di, 1 ≤ i ≤ d and Wj ∩ Di = ∅ for 1 ≤ j ≤ d,

i 6= j. In order to prove this claim, we proceed in several steps. First, we prove that,

for each Wi, there exists an average-s-biplex Di and |Di ∩Wi| ≥ d4l4s4.

By contradiction, if there does not exist such an average-s-biplex in the optimal

solution. Denote D = {D1, D2, ..., Dr} as the set of average-s-biplexes in the optimal

solution, r ≥ 1. Then we have ∀Dj ∈ D, |Wi ∩ Di| < d4l4s4, 1 ≤ j ≤ r, 1 ≤ i ≤ d.

Specifically, considerW1, without loss of generality, let D′ = {D1, D2, ..., Dt}, 1 ≤ t ≤

r be the set of average-s-biplexes in the optimal solution that intersect with W1. Let

Xi = U1 ∩Di, and Yi = V1 ∩Di, 1 ≤ i ≤ t. Thus we have to delete the edges between
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different average-s-biplexes. The corresponding number of edge deletions CD is:

CD ≥
1

2

t∑
i=1

(|Xi|(|V1| − |Yi|) + |Yi|(|U1| − |Xi|))− s(d4l4s4 + l)

=
1

2

t∑
i=1

(|Xi|(d4l4s4 − |Yi|) + |Yi|(d4l4s4 − |Xi|))

− s(d4l4s4 + l)

=
1

2

t∑
i=1

(d4l4s4(|Xi|+ |Yi|)− 2|Xi||Yi|)− s(d4l4s4 + l)

≥ 1

2

t∑
i=1

(d4l4s4(|Xi|+ |Yi|)−
1

2
(|Xi|+ |Yi|)2)

− s(d4l4s4 + l) (∗)

≥ 1

2

t∑
i=1

(d4l4s4(|Xi|+ |Yi| −
1

2
|Xi| −

1

2
|Yi|))

− s(d4l4s4 + l) (∗∗)

= d4l4s4 · 1

2

t∑
i=1

(
1

2
(|Xi|+ |Yi|))− s(d4l4s4 + l)

=
1

2
d8l8s8 − s(d4l4s4 + l) (∗ ∗ ∗)

Inequality (*) holds because for an arbitrary pair of integers (a, b) that are greater

than 0, we have ab ≤ 1
4
(a+ b)2. Inequality (**) holds because we assume |Xi|+ |Yi| <

d4l4s4 for all i, thus d4l4s4(|Xi| + |Yi|) − 1
2
(|Xi| + |Yi|)2 < d4l4s4(|Xi| + |Yi|) − 1

2
·

d4l4s4(|Xi|+ |Yi|). Equality (***) holds since we have
t∑

j=1

(|Xi|+ |Yi|) = |U1|+ |V1| =

2d4l4s4. Obviously, when d ≥ 2, l ≥ 1, s ≥ 1, we have CD > k′, contradicting with

the assumption that D is a solution.

Denote D1 as the average-s-biplex such that |D1∩W1| ≥ d4l4s4. Let X1 = D1∩U1

and Y1 = D1 ∩ V1. Next, we prove that |X1| ≥ 1
3
d4l4s4 and |Y1| ≥ 1

3
d4l4s4.
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By contradiction, assume |X1| < 1
3
d4l4s4. Then we have to delete all the edges

between W1 ∩D1 and W1−D1. The cost for edge deletions CD is lower-bounded by:

CD ≥ |X1|(|V1| − |Y1|) + |Y1|(|U1| − |X1|)− s(d4l4s4 + l)

≥ d4l4s4(|X1|+ |Y1|)−
1

2
(|X1|+ |Y1|)2 − s(d4l4s4 + 1)

≥ d4l4s4 · 4

3
d4l4s4 − 1

2
· 16

9
d8l8s8 − s(d4l4s4 + 1) (∗)

=
4

9
d8l8s8 − s(d4l4s4 + 1) ≥ k′

Inequality (*) holds, since d4l4s4(|X1|+ |Y1|)− 1
2
(|X1|+ |Y1|)2 reaches the maximum

value within the range of 0 ≤ |X1| ≤ 1
3
d4l4s4 and 2

3
d4l4s4 ≤ |Y1| ≤ d4l4s4, when

|X1| = 1
3
d4l4s4, |Y1| = d4l4s4. Thus we have a cost of edge deletion greater than k′,

contradicting with the assumption. Hence it is proved that |X1|, |Y1| ≥ 1
3
d4l4s4.

Next, consider D1, let P = (
d⋃
j=2

Uj ∩D1) and Q = (
d⋃
j=2

Vj ∩D1). That is, P and

Q together represent the set of vertices in D1 and in all other Wjs, 1 < j ≤ d. Next,

we prove: |P | ≤ 4s and |Q| ≤ 4s.

Since the vertices in P and Q belong to other Wjs, 1 < j ≤ d, thus to include

them in D1, we have to insert a certain number of edges between P , Q and W1.

Denote X∗1 = U ∩D1 and Y ∗1 = V ∩D1. We compare the cost of insertions to include

these vertices into D1 and the cost of deletions to remove them out from D1. Note

in the following computation, we compute only the average degree for the vertices in

U ′ ∩W1, since the average degree for V ′ ∩W1 gives the same result. To meet the
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condition of average degree, the insertion cost CI is lower-bounded as follows:

CI ≥ (|D1 ∩ U ′| − s)|D1 ∩ V ′| −max{|E(D1 ∩ U ′, D1 ∩ V ′)|}

≥ ((|Q|+ |Y1|+ |Y ∗1 |)− s)(|P |+ |X1|+ |X∗1 |)−

((|Q|+ |Y1|+ |Y ∗1 |)(|P |+ |X1|+ |X∗1 |)− |P ||Y1| − |Q||X1|) (∗)

≥ (|Y1| − s)|P |+ (|Q| − s)|X1| − s|X∗i |

Inequality (*) holds because to lower-bound CI , we use the maximum value of

|E(D1 ∩ U ′, D1 ∩ V ′)|. However, for edge deletions, we only need:

CD = |P ||Y ∗1 |+ |Q||X∗1 |

Thus, we have:

CI − CD ≥ (|Y1| − |Y ∗1 | − s)|P |+ (|Q| − s)(|X1| − |X∗1 |)−

2s|X∗1 |
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By contradiction, we assume |P | ≥ 4s, then:

CI − CD ≥ 4s|Y1| − 4s2 − 4s|Y ∗1 |+ (|Q| − s)(|X1| − |X∗1 |)−

2s|X∗1 |

≥ 4s|Y1| − 4s2 − 4s|Y ∗1 | − s|X1| − 2s|X∗1 | (∗)

≥ 4s · 1

3
d4l4s4 − 4s2 − 4s|Y ∗1 | − s · d4l4s4

− 2s · dl (∗∗)

≥ 4

3
d4l4s5 − 4s2 − 4sdl − d4l4s5 − 2sdl

≥ 1

3
d4l4s5 − 4s2 − 5sdl > 0

In inequality (*), we have (|Q|−s)(|X1|−|X∗1 |) = −s|X1|+ |Q|(|X1|−|X∗1 |)+s|X∗1 | ≥

−s|X1|. In inequality (**), we have |Y1| ≥ 1
3
d4l4s4, |X1| ≤ d4l4s4, |X∗i | ≤ dl and

|Y ∗i | ≤ dl. This CI −CD is clearly greater than 0, indicating it is better to remove all

vertices in P and Q. Thus we know that |P | ≥ 4s, we could remove all vertices in P

and Q out from D1, contradicting with D is an optimal solution.

By contradiction, if |Q| ≥ 4s, then:

CI − CD ≥ (|Y1| − |Y ∗1 | − s)|P |+ 3s · (|X1| − |X∗1 |)− 2s|X∗1 |

≥ 3s · (|X1| − |X∗1 |)− 2s|X∗1 |

≥ 3s(
1

3
d4l4s4 − dl)− 2sdl (∗)

= d4l4s5 − 5sdl > 0

Inequality (*) is correct since |X1| ≥ 1
3
d4l4s4 and |X∗1 | ≤ dl. Thus we know that

|Q| cannot be greater than 4s. Thus we proved that both |P |, |Q| are smaller than

4s, otherwise it would need less cost to delete these vertices from D1 than to include

them in D1.
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Now based on the claims above, we prove that ∀u ∈ W1, we have u ∈ D1. We

prove this by comparing the cost of including an arbitrary vertex u ∈ W1 into D1

(CI) and the cost of removing u from D1 (CD). Without loss of generality, we assume

u ∈ U1. For u, the cost of removing u from D1 is at least the edges between u and

Y1: CD ≥ |Y1| − s− sl ≥ 1
3
d4l4s4 − s− sl.

To include the u into D1, we need to delete the edges between u and the vertices

outside D1, insert all the missing edges incident to u and insert the missing edges

between u and Q: CI ≤ |Y ∗1 | + s + sl + 4s ≤ dl + 5s + sl. Clearly, CD > CI , then

we conclude for each u ∈ W1, we have u ∈ D1 in the optimal solution, i.e., W1 ⊆ D1.

Next we prove that for each vertex v ∈
⋃

1≤i≤d
Wi\W1, we have v /∈ D1 in any optimal

solution. In order to show this claim, we compare the cost of including v into D1

(CI) and the cost of deleting v from D1 (CD). Without loss of generality, we assume

v ∈ U ′. To have v in D1, we have to keep the average degree satisfying the criteria:

CI ≥ (1 + |X1|+ |X∗1 |+ |P |)(|Y1|+ |Y ∗1 |+ |Q|)

− ((1 + |P |+ |X1|+ |X∗1 |)(|Q|+ |Y1|+ |Y ∗1 |)− s(|Y1|+ l)− |Y1|)

= |Y1|+ sl − s|V ∗1 | − 4s

≥ d4l4s4 + sl − sdl − 4s

And to remove v from D1, we just need to delete at most the edges between v

and Y ∗1 and the edges between v and Q: CD ≤ dl+ 4s. Obviously, we have CI > CD,

thus it is better to remove every u /∈ W1 from D1. In summary, we have proved that

there are d disjoint components in the optimal solution, each of which contains one

Wi. For each vertex u ∈ G, in the optimal solution u must be connected to one of

the d components. This asks for k′ − k = 2(d− 1)d5l5s4 edge deletions.
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Finally, we show that for all Di, we have |Di ∩U | = |Di ∩ V | = l. First, we prove

that |Di∩U | ≥ l and |Di∩V | ≥ l, for all 1 ≤ i ≤ d. By contradiction, if |Di∩U | < l,

then the average degree of the vertices in Di ∩ U ′ is upper-bounded by:

dDi∩U ′ ≤
|Di ∩ V ′| · |Di ∩ U ′| − s(d4l4s4 + l)

|Di ∩ U ′|

= |Di ∩ V ′| −
s(d4l4s4 + l)

|Di ∩ U ′|

< |Di ∩ V ′| − s (∗)

Inequality (*) holds since |Di ∩ U | < l and thus we have |Di ∩ U ′| ≤ (d4l4s4 + l).

This contradicts with optimal solution. Similarly, we can prove that |Di ∩ V | ≥ l

for all 1 ≤ i ≤ d. Since |U | = |V | = dl and there are d bicliques in the optimal

solution, we know that |Di ∩ U | = |Di ∩ V | = l. Moreover, in the optimal solution,

the induced subgraph G′[Di ∩ (U ∪ V )] must form a biclique, otherwise Di would not

be an average-s-biplex. Thus, this requires that G be transformed into d equally-

sized balanced bicliques within k edge modifications. Therefore, in summary, in the

optimal solution, G must be converted into d disjoint equal-size bicliques and thus

gives a solution to ESBE instance.

A.1.6 Proof of Lemma 4.10:

Proof. Obviously, to separate u and v, we must not allow u and v to have any common

neighbors. Thus at least d = min{ω(u, S(u, v)), ω(v, S(u, v))} deletions are required.

If d > k, then we cannot afford the cost of deletions. Hence u and v must end up in

the same average-s-biplex.
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A.1.7 Proof of Lemma 4.11:

Proof. Without loss of generality, let L ⊆ N∗(u) be the subset of N∗(u) that end

up in the same average-s-biplex as u, and M = N∗(u)\L. Thus we have |M | ≤ k,

since otherwise we would have to delete more than k edges between M and u. Thus

|L| ≥ |N∗(u)| − k. Note that the vertices in M and L are “interchangeable", i.e. for

any vertex m ∈ M and l ∈ L, we can exchange the locations of m and l, by putting

m in L and l in M . Such location-exchange requires no further edge modification.

Suppose in an optimal solution, m ∈M is connected to a set of vertices Z. Obviously,

u /∈ Z. Thus to reconnect m to u, we have to re-insert the deleted edge between u

and m, and remove all the inserted edges between m and Z. That saves |Z| + 1

edge modifications. Next, to move l out and connect l with Z, we have to delete

the edge between l and u, and insert the edges between l and Z. This procedure

requires |Z| + 1 edge modifications. Therefore, M and L are interchangeable. Let

N∗(u) = {v1, v2, ..., vr}, r ≥ k+1. We can claim that the vertex set L′ = {vk+1, ..., vr}

is a subset of L and all vertices in L′ end up in the same average-s-biplex with u.

This claim is true because we cannot afford deleting the edges between u and more

than k vertices in N∗(u). Since all vertices in L′ end up in the same average-s-biplex,

we can merge them together. Thus, Rule 3. is correct.

A.1.8 Proof of Theorem 4.12:

Proof. Let G be a connected component in the optimal solution after applying the

reduction rules exhaustively. Since we have removed all existing average-s-biplexes,

G must be incident to edge modifications. Thus there exist at most 2k connected

components. Let G = (U, V,E) and without loss of generality, we assume |U | ≤ |V |.

First we prove |U | ≤ 4k + 6s.
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By contradiction, if |U | > 4k + 6s, then obviously we have |V | > 4k + 6s. Let u∗

be the vertex in U that has the largest degree. Obviously, d′(u∗) ≥ σ(V )−s ≥ |V |−s.

We distinguish in two cases:

Case i: σ(u∗) > 1
2
σ(U) > 2k + 3s. Note that for all edges incident to u∗, we can

have at most one edge with weight larger than k. This is true because by contradiction,

if we have v1, v2 ∈ V and ω(u∗, v1) > k, ω(u∗, v2) > k, then we could merge v1 and

v2 by Rule 2. Since u has at least |V | − s neighbors, we can compute the number of

missing edges me incident to u as:

me ≥ (|V | − s− 1)(σ(u∗)− k) (∗)

> (4k + 5s− 1) · σ(u∗)/2

> 4s · σ(u∗)/2

≥ 4s · σ(U)/4

= s · σ(U)

Thus the average degree of U is :

d(U) <
σ(U) · σ(V )− s · σ(U)

σ(U)

= σ(V )− s

Inequality (*) holds because there can be at most one edge incident to u∗ with

edge weight larger than k and then for the rest of the neighbors (at least |V | − s− 1

vertices), each of them is incident to at least (σ(u∗)−k) missing edges. Hence G does

not satisfy average-s-biplex, we have a contradiction.

Case ii: σ(u∗) ≤ 1
2
σ(U). Then we first prove that there must exist another vertex

u′, such that ω(u′, V ) ≥ |V | − 2s. Suppose there does not exist such a vertex, then
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we compute the number of missing edges me:

me > (σ(V )− (|V | − 2s))(σ(U)− σ(u∗)) (∗)

> 2s · σ(U)/2

> s · σ(U)

Thus the average degree of U is smaller than σ(V )−s. Inequality (*) holds because

the degrees of the vertices other than u∗ in U are all smaller than |V | − 2s. Then for

each of such vertices, there are at least σ(V ) − (|V | − 2s) missing edges incident to

it. Hence we proved that there must be a vertex u′ with d′(u′) ≥ |V | − 2s. Consider

u∗ and u′, the number of shared neighbors between them is at least:

≥ |V | − s+ |V | − 2s− |V |

≥ |V | − 3s

≥ 4k + 3s > k

This contradicts with Rule 2., since we can merge u∗ and u′ together. So far, we

have proved that |U | ≤ 4k+6s. Next we show |V | cannot be larger than (4k+6s)·s+k

vertices.

By contradiction, assume |V | > (4k+ 6s) · s+ k. Since G is already an average-s-

biplex, there can be at most σ(U)·s ≤ s(4k+6s) missing edges in G. Hence in V , there

can be at most s(4k+6s) vertices incident to missing edge(s). By |V | > (4k+6s)·s+k,

there are at least k vertices that are connected to all vertices in U . If |U | ≥ 2, then

for every pair of vertices in U , they share more than k common neighbors in V ,

contradicting with Rule 2. That leaves the only case of |U | = 1. Let U = {u}, We

consider two sub-cases:
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Case i: If σ(u) > k, then there are at least k vertices in v ∈ V , such that

ω(v, U) > k. This contradicts with Rule 2.

Case ii: If σ(u) ≤ k, then we prove the claim that: ∀v ∈ V , σ(v) = 1. By

contradiction, assume if there exists a vertex v′ such that σ(v′) > 1. Then consider

two vertices v1, v2 ∈ δ(v′), σ(v1) = 1, σ(v2) = 1. We must have the common neighbors

of v1 and v2 be a subset of δ(u), i.e., S(v1, v2) ⊆ δ(u). Thus |S(v1, v2)| < k. Then

we have ω(v1, S(v1, v2)) < k and ω(v2, S(v1, v2)) < k. Thus v1 and v2 would not be

merged, contradicting with Rule 2. Since we proved that ∀v ∈ V , σ(v) = 1, then |V |

cannot be bigger than k + 1; otherwise we could apply Rule 3. to reduce it.

In summary, we proved that |U | ≤ 4k + 6s and |V | ≤ (4k + 6s) · s+ k. Then the

total number of vertices in G is at most 2k(((s+ 1)(4k + 6s)) + k).

A.1.9 Proof of Theorem 4.13:

Proof. For s = 0, the problem is equivalent to BICLUSTER EDITING problem and

thus is NP-complete. For any s>1, we give a reduction from BICLUSTER EDITING.

The same construction also works for s-DEFECTIVE BICLUSTER DELETION.

Given a BICLUSTER EDITING instance: a bipartite graph G = (U, V,E) and a

nonnegative integer k, we construct a new graph G′ by adding n components (n =

|U |+ |V |) to G: {W1,W2, ...,Wn}. Wi = (Ui, Vi, Ei), |Ui| = |Vi| = n4 + s. We connect

all vertices u ∈ Ui to all vertices v ∈ V , all vertices v ∈ Vi to all vertices u ∈ U . Inside

each Wi, we have |Ei| = |Ui||Vi| − s edges, i.e. insert all but s edges. The parameter

k′ is equal to k + n(n− 1)(n4 + s).

“⇒" Let B1, B2, ..., Bl be the l (l < n) bicliques in the optimal solution for the

BICLUSTER EDITING instance. Then for all v ∈ Bi (1 ≤ i ≤ l), remove all the

edges between v and Wj for all i 6= j, 1 ≤ j ≤ n. Denote G∗ as the result graph

from G′ after the edge deletions. Clearly, G∗ is an s-defective bicluster. Moreover, the

total number of edge modifications is equal to the edge modification used for bicluster
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editing in G plus the edge deletions afterwards: k′ = k + n(n− 1)(n4 + s), satisfying

the edge modification upper-bound. Hence we have a solution for s-DEFECTIVE

BICLUSTER EDITING instance.

“⇐" Let {D1, D2, ..., Dr}, r ≥ 1 be the connected components in an optimal

solution of G′. Denote the resulting graph as G∗. Clearly, each Di, 1 ≤ i ≤ r, is an

s-defective biclique.

In order to prove solution for s-DEFECTIVE BICLUSTER EDITING is also

optimal solution for BICLUSTER EDITING, we first show for every Wi with 1 ≤

i ≤ n, there is a Di such that Wi ⊆ Di and Di ∩Wj = ∅ for all 1 ≤ j 6= i ≤ n.

By contradiction, we assume this is not the case. Then there must exist at least one

Wi, we assume it to be W1, such that there is no Di completely containing W1 in G∗.

Without loss of generality, we assume that D = {D1, D2, ..., Dt}, 1 ≤ t ≤ r, is the set

of components that intersect with W1. We then claim that there exists a Dj, such

that |Dj ∩W1| ≥ (n4 + s), 1 ≤ j ≤ t. Denote Xj = Dj ∩ U1 and Yj = Dj ∩ V1. If we

have |Dj ∩W1| < (n4 + s), for all 1 ≤ j ≤ t, then the edges between W1 ∩ Dj and

W1\Dj must be deleted. Thus the number of edge deletions CD that we need:

CD ≥
1

2

t∑
j=1

(|Xj|(|V1| − |Yj|) + |Yj|(|U1| − |Xj|))− s

=
1

2

t∑
j=1

((n4 + s)(|Xj + |Yj|)− 2|Xj||Yj|)− s

≥ 1

2

t∑
j=1

((n4 + s)(|Xj + |Yj|)−
1

2
(|Xj|+ |Yj|)2)− s

>
1

2

t∑
j=1

((n4 + s)(|Xj|+ |Yj| −
1

2
|Xj| −

1

2
|Yj|))− s (∗)

=
1

4
(n4 + s)

t∑
j=1

(|Xj|+ |Yj|)− s

=
1

4
(n4 + s)2 − s ≥ k′
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Inequality (*) is correct since we assume |Dj ∩W1| < n4 + s, for all 1 ≤ j ≤ t.

Thus we have 1
2
(|Xj| + |Yj|)2 < 1

2
(n4 + s)(|Xj| + |Yj|). The above inequality shows

that if we have |Dj ∩W1| < n4 + s for all 1 ≤ j ≤ t, then we need more than k′

edge modifications, contradicting with the assumption of optimal solution. Thus we

know that, for each Wi, there exists a Dj such that |Wi ∩Dj| ≥ (n4 + s). Consider

W1. Let D1 be the component such that |W1 ∩D1| ≥ (n4 + s). We next prove that

|X1| > 1
3
(n4 + s) and |Y1| > 1

3
(n4 + s).

By contradiction, without loss of generality, we assume |X1| ≤ 1
3
(n4 + s). Then

we compute the cost of deletions within W1:

CD ≥ |X1|(|V1| − |Y1|) + |Y1|(|U1| − |X1|)− s

= (n4 + s)(|X1|+ |Y1|)− 2|X1||Y1| − s

≥ (n4 + s)(|X1|+ |Y1|)−
1

2
(|X1|+ |Y1|)2 − s

≥ 4

3
(n4 + s)2 − 8

9
(n4 + s)2 − s (∗)

=
4

9
(n4 + s)2 − s ≥ k′

In the inequality (*), we compute the minimum value for (n4 + s)(|X1| + |Y1|)−
1
2
(|X1| + |Y1|)2, within the range of 0 ≤ |X1| ≤ 1

3
(n4 + s), 2

3
(n4 + s) ≤ |Y1| ≤ n4 + s.

The result shows that we must have more than k′ edge modifications if |X1| or |Y1| is

at most 1
3
(n4 + s), thus contradicting with the assumption of optimal solution.

Next, based on the claims proved above, we show that: (1) W1 ⊆ D1 and (2) for

all j that j 6= 1, we have Wj ∩D1 = ∅, 1 < j ≤ n. First, for each u ∈ Wj 1 < j ≤ n,

we prove u /∈ D1. We compute the CI as the cost of including u into D1 and the cost

CD as the cost of removing u from D1. Without loss of generality, we assume u ∈ Uj:
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CI ≥ |D1| − s

≥ 1

3
(n4 + s)− s

CD ≤ |V | ≤ n

Obviously, CI > CD, thus it is better to remove such u fromD1. Similarly, for each

v ∈ W1 we compute the cost CI of including it into D1 (to delete edges connecting v

and the vertices outside D1), and the cost CD of removing v out from D1. Without

loss of generality, we assume v ∈ U1:

CI ≤ |V | ≤ n

CD ≥ |D1| − s

≥ 1

3
(n4 + s)− s

Clearly, it is better to include these vertices as part of D1. So far, we have proved

that for each Wi, there is one Di such that Wi ⊆ Di. Hence in the optimal solution,

we have at least n components, which requires k′−k deletions. If G cannot be edited

within k edge modifications into disjoint set of bicliques, there must be more than s

missing edges in some component in the result graph G∗. Thus we must be able to

modify G into a set of disjoint bicliques, in order to have an optimal solution for s-

DEFECTIVE BICLUSTER EDITING. In conclusion, if we have an optimal solution

for s-DEFECTIVE BICLUSTER EDITING, then the induced subgraph of the result

graph G∗[U ∪ V ] gives a solution to BICLUSTER EDITING.
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A.2 Appendix B: Pseudo-code for Edge Deletion

Heuristics
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Algorithm 1 EDGE_DEL_MAIN(G)

1: cost = cost←TRANSITIVE_CLOSURE_COST(G);
2: if (cost == 0) then
3: return(null, 0);
4: end if
5: actions← null; delcost← 0;
6: while (G is still connected) do
7: uv ← REMOVE_CULPRIT(G);
8: actions.add(uv);
9: delcost+ = s(uv);

10: end while
11: // Adjust actions such that it only contains the edge removals contributing to

the separation of two subgraphs of G
12: //Assume G is cut into G1 and G2

13: while (uv in actions) do
14: if (both u, v are in G1 or G2) then
15: actions.remove(uv);
16: end if
17: end while
18: //Solve the problem in a recursive manner for G1 and G2, until no better solution

can be found
19: if (delcost >= cost) then
20: return(null, cost);
21: end if
22: (list1, cost1)← EDGE_DEL_HEURISTICS(G1);
23: if (delcost+ cost1 >= cost) then
24: return(null, cost);
25: (list2, cost2)← EDGE_DEL_HEURISTICS(G2);
26: end if
27: if (delcost+ cost1 + cost2 >= cost) then
28: return(null, cost);
29: end if
30: actions.add(list1);
31: actions.add(list2);
32: //add all the edge insertions required for the closure of transitivity
33: actions.add(insertions);
34: return(actions, delcost+ cost1 + cost2);
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