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I

Abstract

Internal combustion engines operate on the principle of injecting a fuel and an oxi-
dizer into a combustion chamber and igniting the gas mixture in the chamber. The
resulting chemical reaction releases heat which causes the gas to expand. The in-
crease in pressure inside the chamber is converted into mechanical energy, which can
now be utilized elsewhere.

The effectiveness of such engines relies heavily on the characteristics of the fuel
injection procedure. Acquiring visual data of this process and performing an optical
analysis of the recorded data gives important insights into the design of modern
injectors. To being able to evaluate the data in a meaningful and mathematically
well-founded way, image processing methods are an indispensable tool.

In this work, we will investigate several image processing methods for analyzing such
data. The main research focus will be on region-based active contour segmentation
methods, using motion information as an additional input feature. To obtain such
motion data, we will apply state-of-the-art variational optical flow methods.

This work is a joint teaching and research effort by the Mathematical Image Analysis
Group at Saarland University and Delphi Automotive Systems, Technical Center
Luxembourg.

t = 48.75µs

t = 243.75µs

t = 438.75µs

t = 633.75µs

t = 828.77µs

t = 1023.77µsFigure 1: Image sequence of a fuel injection process
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1 Introduction

1.1 Motivation

The purpose of an internal combustion engine is to convert chemical energy into
mechanical energy. This is achieved by having two substances interact with
each other in an exothermic redox-reaction, also known as combustion. An
exothermic reaction is a type of chemical reaction in which energy is released.
A redox-reaction is a chemical reaction between a reducing- and an oxidizing
agent in which atoms have their oxidation state changed. A reducing agent
loses electrons and is oxidized while an oxidizing agent gains electrons and is re-
duced. The oxidizing agent must be a chemical species or mixture that con-
tains molecular oxygen, typically air. The reducing agent must be a material
that stores potential energy, usually in the form of some hydrocarbon compounds.

Figure 1.1: The cylinder of a gaso-
line engine. The injector (blue) in-
jects the fuel into the combustion
chamber where the spray is formed
(red). After the combustion, the pis-
ton (black) is pushed outwards by
the increase in pressure.

In an engineering context, the reducing agent is
referred to as fuel . Fuels occur in solid, liquid
and gaseous form and can either occur in nature
or be created artificially. For a classification of
fuels, see table 1.1.

To being able to exploit the energy that is re-
leased during a combustion, the reaction has to
take place in an enclosed space of the engine,
the combustion chamber . The engine component
enclosing the combustion chamber is referred to
as cylinder. Using electronically controlled high
pressure valves, called injectors, the fuel and
air mixture is now introduced into the chamber.
The heat that is released during the combustion
leads to an expansion of the gas which increases
the pressure in the combustion chamber. The
piston, a moving engine component that is con-

Table 1.1: Types of chemical fuels

Naturally occurring fuels Artificially created fuels

Solid fuels wood, coal,. . . coke, charcoal
Liquid fuels petroleum diesel, gasoline, kerosine, ethanol,. . .
Gaseous fuels natural gas hydrogen, propane,. . .
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tained in the cylinder, is pushed outside by the pressure. An engine usually consists
of multiple cylinders, working in conjunction. A crank mechanism forces the pis-
tons to move reciprocally in and out of the cylinder. The crankshaft converts this
reciprocal motion into rotational motion. This mechanical energy in the form of
rotational motion is now available to be used elsewhere.

In this work, we will only be concerned with injection sequences of Diesel engines
as opposed to those of gasoline engines. In gasoline engines, the fuel air mixture is
ignited externally via a spark. In a Diesel engine, the air in the combustion chamber
is compressed and heats up. When the fuel is injected, the gas mixture ignites itself.
The injection of fuel into the chamber is a crucial step in a Diesel engine. For the
combustion to be effective, the liquid fuel has to be vaporized by injecting it into
the combustion chamber under very high pressure. The injection process has a huge
influence on the effectiveness, durability and emissions of an engine. Therefore, the
design of injectors is an important research topic in engineering.

The optical analysis of an injection process is a very important tool in this context.
The visual recording and the analysis of the data can give helpful insights. To
being able to perform a thorough and convincing analysis, the image data has to be
processed in a mathematically accurate manner, using advanced image processing
methods.

1.2 Goals of Injection and Combustion Engineering

The research goals of injection and combustion engineering are to increase the effi-
ciency, the power output and the reliability of engines while reducing fuel consump-
tion, emissions and costs.

• The chemical reaction that occurs during a combustion usually leaves residues
in the form of soot. This increases the friction of the piston inside the cylin-
der [GL08]. A more effective combustion process reduces the amount of soot
residues. This enhances the overall durability and reliability of the engine and
helps to reduce maintenance costs. Less friction inside the cylinder also allows
for an increase in torque which leads to a performance increase and a higher
power output of an engine.

• The ignition of the air fuel mixture in the combustion chamber leads to a rapid
pressure rise that results in vibrations and audible noise [NKM12]. Having a
more homogeneous distribution of fuel allows for a reduced ignition time which,
in turn, helps in reducing noise emissions.

• The combustion and the friction cause an intense heat. An injector has to
withstand temperatures of -30 up to 100 ◦C. If one assumes a life expectancy
of 10 years or 300,000 km, an injector will perform over 2 billion injections.
An important design goal is to prevent deterioration and increase the overall
driveability and smooth operation of the engine.
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• The combustion reaction turns fuel in the form of carbohydrate compounds
(CxHyOz), and air (N2, O2) into nitrogen (N2), carbon dioxide (CO2) and
water (H2O). This process usually produces several byproducts and leaves
residues. The incomplete oxidation of carbon in Diesel fuel (caused by low
temperatures or poor oxygen areas) emits carbon monoxide (CO). Particu-
lates matters (soot), are set free by the incomplete fuel vaporization in the
combustion chamber, referred to as liquid fuel coking. Unburned hydrocarbon
(HC) deposits are created when fuel gets in contact with the colder combus-
tion chamber walls. The oxidation of nitrogen in the air only occurs at high
temperatures and a great excess of air. This causes emissions of oxidized ni-
trogen (NOx), mostly occurring as species of nitric oxide (NO) and nitrogen
dioxide (NO2). Su et al. [SFN95] have shown that it is possible to reduce
exhaust emissions and increase the range of environmental operation in Diesel
engines if the injector nozzle produces smaller and more dispersed droplets.

• By modifying the injection flow, the timing and the pressure, it is possible to
improve combustion control. This allows to reduce fuel consumption and gives
rise to new possibilities for engine tuning. Since the whole injection process
is controlled electronically, advances in injector design can also increase the
diagnostic capability of an engine.

• Several different kinds of engines are required to accommodate alternative types
of fuel. Investigating the injection characteristics of different types of fuel is
therefore also an important research topic.

• The introduction of new injector designs also allows to reduce the
manufacturing- and assembly costs of engine components.

1.3 Diesel Injector Characteristics and Design

The purpose of an injector is to admit fuel into the combustion chamber in a con-
trolled manner. In contrast to carburetors that rely on the principle of suction, an

Figure 1.2: Cross section of a Delphi Multec Solenoid Diesel Injector (DFI1.5). The fuel is
injected through the red tube. The blue tube channels the back-leak.
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injector atomizes the fuel by injecting it under high pressure into the combustion
chamber. The injector propels the fuel through tiny holes, usually with an exit di-
ameter between 100 and 150 µm, into the chamber and turns the liquid fuel into an
aerosol. In each injection, around 40,000 droplets of 15 µm diameter each enter the
combustion chamber. High vaporization rates are achieved by applying pressures
of up to 3000 bar. The separation between injections is usually around 100 µs. A
single injection often comprises multiple pre- and post injections. The cross-section
of an injector is depicted in figure 1.2.

Figure 1.3: Illustration of an in-
jector: After entering the injec-
tor under high pressure, the fuel
flows along the needle and is col-
lected in a chamber near the noz-
zle. When the needle lifts, the fuel
is released. The nozzle breaks the
fuel into droplets which form a spray
pattern.

The central component of an injector is the nee-
dle. When the fuel is inserted into the injector,
it flows through conduits and notches, guided
alongside the needle. At the pinpoint of the nee-
dle (needle tip), the fuel is collected in a small
chamber, the sac. When the needle is in a low-
ered position, the area where the needle touches
the injector body is called the needle seat. Ev-
ery time the needle is lifted via a mechanism of
springs, the fuel is admitted into the combustion
chamber through tiny holes in the nozzle tip, the
nozzle holes. The dispersed fuel in the combus-
tion chamber is referred to as spray. An injec-
tor nozzle usually has between 3 and 12 holes.
The spray released from a single nozzle hole is
referred to as a jet. A cross section of this mech-
anism is shown in figure 1.3.

The injection process can be classified into four
phases. When fuel enters the chamber, it is still
in liquid form (liquid phase). After the droplets
break apart, the fuel is now in the vapor phase.
As soon as the gas mixture ignites, the combus-
tion phase starts. The soot formation takes place
when the chemical reaction has ended. In this
work, we will only be concerned with the analy-
sis of the liquid and vapor phases of an injection
process.

There are certain aspects in the design of an in-
jector, that have a huge influence on the goals
outlined in section 1.2. Variations in the injection pressure, the amount of fuel or
the spacing and geometry of the holes have an impact on spray symmetry, spray
momentum, spray dispersion and the swirl1 of the spray.

1 When the spray enters the combustion chamber, it undergoes a spiraling effect, also
called swirl, which affects the homogeneity and distribution of the fuel in the combustion
chamber.
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Another important aspect is injection timing. High injection frequencies cause severe
vibrations and noise. The superimposition of such high frequencies can even reinforce
these effects and lead to cracks in the injector. The frequency of injections is always
a compromise. A high injection frequency causes more noise and stress while a
lower injection frequency decreases the power output of the engine. By modifying
the timing of injections, one can also achieve a higher power density and prevent
back-leak of fuel into the injector.

The injector needle is also a crucial component. It allows for many modifications,
such as the seat angle, the surface treatment (different coatings), the diameter, the
spring load or the shape of the needle tip (truncated or not). The nozzle hole
geometry can be modified by changing the angle, the shape or the diameter of the
holes. Nozzle holes can also be tapered, sealed or coated. Additionally, the volume
and shape of the sac also affect the spray behavior.

Figure 1.4: Optical single cylinder setup for Schlieren imaging at Delphi Technical Center
Luxembourg

Despite the availability of methods from computational physics, such as flow simu-
lations, it is still vital to see an injector perform under real world conditions. Once
an injector prototype is available, it is installed in a laboratory setup, such as the
one displayed in figure 1.4 and a visual analysis of the actual injection process is
conducted.
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2 Image Acquisition and Processing

This section will give a concise overview on the methods and tools that were used
to acquire the data as well as the mathematical notations and image processing
methods used in this work.

2.1 Interaction of Light with Media

Light propagates uniformly through homogeneous media. When we consider the
geometrical model for optics, we observe four basic phenomena that occur when
light interacts with matter in inhomogeneous media, namely absorption, reflection,
refraction and scattering.

Absorption is the phenomenon when electromagnetic radiation is transformed into
internal energy of the matter it interacts with. If the radiation is only absorbed
partially, this is referred to as attenuation. Reflection is the change in direction of
light at an interface between two different media such that the light returns into the
medium from which it originated. Refraction is the phenomenon of light changing
direction at the interface between two media, when entering the second medium.
The angle of the change in direction is controlled by the speed of light in the two
different media. The refractive index is defined as

Definition 2.1 Refractive Index

n =
c0

c1

where c0 and c1 are the speed of light in the two respective media.

When light travels through a medium containing many small particles, the reflection
and refraction phenomena that occur on a microscopic level (surface interactions on
a particle) are referred to as scattering on the macroscopic level (when looking at a
medium as a whole instead of the single particles).

In order to understand the spray characteristics, we have to apply image acquisition
methods that provide us with information on the density of the spray. Scattering
phenomena play a major role in the visual analysis of fuel sprays. One distinguishes
between three different mathematical models to represent scattering phenomena.
Scattering models are usually classified based on the average circumference of parti-
cles in the medium and the wavelength of the incident radiation. The interaction of
light with particles that are small compared to the wavelength of the light is referred
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to as Rayleigh scattering . If the particles are much larger than the wavelength of the
light, one talks about geometric scattering . The Mie scattering model is preferred
when the size of the particles roughly matches the wavelength of the light. For high
pressure injections of Diesel fuel, the Mie scattering model is the most suitable one.
It is only applicable if the droplets are more or less of spherical shape. However,
because of the high injection pressure and the surface tension of fuel droplets, this
assumption is reasonable.

2.2 Image Acquisition Techniques

Injected sprays are types of compressible flows1. To being able to capture the char-
acteristics of an injection process and to evaluate it correctly, it makes sense to
investigate different image acquisition techniques. These techniques enable us to
capture data such as density changes in a medium that would remain hidden with
conventional photography.

Medium

Lightsource

Sensor

Figure 2.1: Illustration of scattering in visible light photography

2.2.1 Shadowgraphy

Shadowgraphy is an optical image acquisition method that allows to visualize non-
uniformities in otherwise transparent media. Such non-uniformities can for example
be caused by temperature or pressure differences in a medium. In regular visible
light photography, these disturbances remain hidden. A simplified visible light pho-
tography setup is shown in figure 2.1.

In a shadowgraph setup, a parallel light source is placed on the opposite side of
the sensor, with the medium in between the two. The medium refracts the light
rays and casts shadows of the disturbances onto the sensor. Since the refractive
index depends upon the density of a medium, the refraction of light waves in an
otherwise transparent medium is visualized on the image plane. A simple illustration
is displayed in figure 2.2.

1 Compressible flows are flowing gases with variable density, caused by mixing dissimilar
materials or by variations in speed, pressure or temperature
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Medium SensorLightsource

Figure 2.2: Illustration of optics in direct/parallel light shadowgraphy

2.2.2 Schlieren Photography

Schlieren imaging is based on the same principle as shadowgraphy, but uses a more
sophisticated setup, which allows to reveal even more information. Human eyes have
no way to discern phase differences in light beams. They only capture differences in
amplitude and contrast. Schlieren imaging helps to translate phase differences into
amplitude. The word Schlieren imaging is derived from the german word Schliere
(smear). It describes gradient disturbances of inhomogeneous media. Optical inho-
mogeneities bend or refract light rays in proportion to their gradients of the refractive
index of the respective materials. The illuminance level in a Schlieren image there-
fore responds to the first spatial derivative of the refractive index of the Schliere
[Set01]. After the parallel light rays have traversed the medium, the light is refo-
cused before hitting the image sensor. An obstacle, called a knife edge, is placed at
this focal point. The rays that were refracted in the medium are partially blocked,
which enables the observer to see the first derivative of the density of the medium
in the direction of the knife-edge. If the knife is a straight edge, that is placed in
orthogonal direction of the x/y-dimension of the image plane, the sensor will cap-
ture the gradient data in x/y-dimension. Instead of a rectangular knife edge, it is
also possible to use an aperture shaped knife edge, which results in a mixture of the
gradient information in both dimensions.

Medium
SensorLightsource

Figure 2.3: Illustration of optics in parallel light Schlieren photography

2.3 Image Acquisition

In order to record image data of an injection process, an elaborate and costly setup
is necessary. The injector is mounted on a rig and injects the spray into an enclosed
chamber. The chamber usually has multiple optical accesses for cameras and light
sources. In order to prevent a combustion, the chamber is filled with nitrogen instead
of air. The spray consists of conventional Diesel fuel. A Schlieren image sequence
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recorded with the setup from figure 1.4 is shown in figure 2.11. All the Schlieren
image sequences in this work were created using an aperture-shaped knife edge, thus
mixing the first derivative density data in both spatial dimensions.

2.4 Objectives of Optical Analysis

The goal of optical spray analysis is to analyze the distribution and interactions of
the spray, once it is released from the injector. The rate of a chemical reaction can
be raised by increasing the surface area of a solid reactant [GW64], meaning that the
reaction is sped up if the fuel is in a vaporized state. To analyze the spray behavior,
it can therefore be helpful to distinguish between the formation of the liquid and
the vapor phases. The goal is to have a uniform distribution of vaporized fuel in
the chamber when the reaction starts. A high vaporization is also favorable, since
large droplets will not be combusted completely and leave residues [Dry97]. It is
also desirable for the combustion to occur before the fuel droplets get in contact
with the walls of the combustion chamber, in order to prevent soot deposits.

To asses the quality of an injection, we need a set of criteria and measurements. The
most commonly used measurements are the tip penetration, the dispersion angle, the
spray volume and the spray homogeneity.

The tip penetration measures the maximum distance between the exit point of the
nozzle hole and the spray of a single jet, depicted in figure 2.4a. Since the recorded
images are only a two-dimensional projection and the angle of the spray is not
exactly parallel to the image plane, the angle has to be taken into account when
computing this distance. The dispersion angle measures the angle up to which the
spray disperses in lateral direction. The vertex of the dispersion angle is the center
of the injector. An example can be seen in figure 2.4b.

A useful analysis of an injector design is only possible when the spray modeling is
predictive. Ten repetitions (cycles) are performed for each injector under the same

(a) Tip penetration: The tip penetration
measures the largest distance between
the nozzle hole and the spray cloud.

(b) Dispersion angle: The dispersion angle
measures the lateral propagation of a jet.

Figure 2.4: Characterization of spray patterns
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conditions in a single run. Statistical measure such as the standard deviation and
variance are used to make the data more reliable by reducing outliers.

2.5 Mathematical Representation of Image Data

Images can be mathematically represented as a function

Definition 2.2 Image

f(x) : Ω→ R

where x := (x, y)> is the image plane and Ω ∈ R2 is the image domain. For
three-dimensional image data, we have x := (x, y, t)> and Ω ∈ R3, where x and
y are the spatial dimensions and t denotes the time direction. The co-domain
of f (x) describes the intensity value (gray value) at locations x := (x, y)>

(x := (x, y, t)>, respectively).

The intensity value is proportional to the amount of photons hitting the sensor
during the acquisition of the image (see section 2.2). To being able to store and
process these data, a discretization of both the image plane as well as the image
domain are inevitable. A discrete image is defined as

Definition 2.3 Discrete Image

f (x) := Γ→ N

where Γ := {1, ..., nx} × {1, ..., ny} (or Γ := {1, ..., nx} × {1, ..., ny} × {1, ..., nt}
for three-dimensional data) The elements of the set Γ are referred to as pixels for
two-dimensional data (picture elements) and voxels for three-dimensional data
(volume elements).

The discretization of the spatial domain is referred to as spatial sampling . The
discretization of the image domain in temporal direction is referred to as temporal
sampling.

As a result of the spatial sampling, one obtains data arranged in a pixel grid Γ :=
{1, ..., nx} × {1, ..., ny}. As a result of the spatiotemporal sampling one obtains
frames arranged in an image sequence on a three-dimensional grid Γ := {1, ..., nx}×
{1, ..., ny}×{1, ..., nt}. The variables nx,ny and nt are the image dimensions in x, y
and t direction, respectively. The grid size hx, hy and ht represents the grid spacing
between the data points in all the three dimensions.

For a two-dimensional image, we obtain a discretized image f (xi, yj) with data
points and spacing

xi :=
(
i− 1

2

)
hx with i ∈ {1, ..., nx}
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yj :=
(
j − 1

2

)
hy with j ∈ {1, ..., ny}.

For a three-dimensional image, we obtain a discretized image f (xi, yj, tk) with data
points and spacing

xi :=
(
i− 1

2

)
hx with i ∈ {1, ..., nx}

yj :=
(
j − 1

2

)
hy with j ∈ {1, ..., ny}

tk :=
(
k − 1

2

)
ht with k ∈ {1, ..., nt}

The discretization of the co-domain is referred to as quantization. Sampling and
quantization of a continuous one-dimensional function is illustrated in figure 2.5.

1

1

x

f(x)

(a) A continuous signal

nx + 1
2

1

x

f(x)

(b) Dirac Comb function, used for spa-
tial sampling

hx nx + 1
2

1

x

f(x)

(c) Spatial sampling of the function
from a) by multiplication with the sam-
pling function from b)

hq

nx + 1
2

23 − 1

x

f(x)

(d) Quantization of the sampled signal from
c) with a bit depth of 3, resulting a range of
values of 23 = 8

Figure 2.5: Sampling and quantization of a one-dimensional signal
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2.6 Frequency Filtering

−2

0

2−2

0

2
0

0.2

0.4

x1 x2

Figure 2.6: A two dimensional Gaussian kernel com-
posed of two one-dimensional Gaussian kernels

Noise is always existent when
recording images from electro-
magnetic radiation. This is es-
pecially true for data acquired
with high speed cameras. To
achieve extremely short expo-
sure times, the camera sensor
has to have a high sensitivity,
which makes it even more sus-
ceptible to noise. Since noise
mostly occurs in the high fre-
quency spectrum, frequency fil-
tering methods are a useful tool
for removing noise in images.
However, one has to be careful
since any type of filtering usu-
ally also removes valuable im-
age data in this respective part of the spectrum. A lowpass filter removes high
frequencies from the signal. In the spatial domain, lowpass filtering can be achieved
by convolving the signal with a Gaussian kernel [Wei15].

It is useful to mention that one n-dimensional Gaussian Kernel is separable into n
one-dimensional Gaussian kernels, which allows for a much more efficient compu-
tation. Additionally, Gaussian kernels are rotationally invariant, which means that
they behave the same way, no matter how the image or the kernel are rotated in
the image plane. A Gaussian kernel in two dimensions is depicted in figure 2.6. An
image can be lowpass filtered by a simple convolution with a Gaussian kernel.

Definition 2.4 Gaussian Convolution

f(x, y, t) = (Kσ ∗ f0)(x, y, t) :=

∫
Ω

Kσ(x̃, ỹ, t̃)f0(x− x̃, y − ỹ, t− t̃) dx̃ dỹ dt̃

where Kσ = Kσx · Kσy · Kσt is the product of three one-dimensional Gaussian
kernels

Kσi(i) :=
1√

2πσi
exp

(
− i2

2σ2
i

)
with standard deviation σi in all three dimensions.

The effects of filtering a gray value image with a Gaussian kernel are depicted in
figure 2.7.
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σxy = 0.0 σxy = 1.0 σxy = 2.0

Figure 2.7: Lowpass filtering of image data: Effect of modifying the standard deviation of
the Gaussian Kernel

2.7 Partial Differential Equations

Partial differential equations (PDEs) are a versatile tool in image processing. They
enable us to use optimization approaches from the calculus of variations to solve im-
age analysis problems. They also allow us to formulate our model in the continuous
setting by postponing the discretization to a later stage. The partial derivative of a
function f in dimension x is given as

Definition 2.5 Partial Derivative

∂

∂x
f = ∂xf = fx

The first derivative of a vector valued function f (x), also called the gradient, is
defined as

Definition 2.6 Gradient

∇nf =

 fx1
...

fxn



The gradient of an image points in direction of the greatest change in value. There-
fore, the gradient is a useful tool to detect edges in image data. The magnitude of
the gradient is defined as:

Definition 2.7 Gradient Magnitude

|∇nf | =
√
f 2
x1

+ · · ·+ f 2
xn
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In contrast to the gradient, the gradient magnitude is rotationally invariant, since
it discards directional information. If it is clear from the context, we just write ∇
instead of ∇n.

The divergence is a vector operator that describes the magnitude of sources or sinks
in vector-valued data, defined as

Definition 2.8 Divergence

div j = ∇>n j = (∂x1 , · · · , ∂xn)

 j1
...
jn


where j = (j1 (x1, · · · , xn) , · · · , jn (x1, · · · , xn))>

In some cases, we will have to apply finite differences in order to approximate deriva-
tives. The forward-, backward- and central differences can be used to approximate
the first derivative at location i. They will be denoted as follows

Definition 2.9 Forward Difference

f+
x (i) =

fi+1 − fi
hx

Definition 2.10 Backward Difference

f−x (i) =
fi − fi−1

hx

Definition 2.11 Central Difference

fx (i) =
fi+1 − fi−1

h2
x

2.8 Variational Methods

Variational methods are an image transformation that satisfies an optimality crite-
rion based on an energy functional in the general form of

Definition 2.12 Energy Functional

E (u) =

∫
Ω

F (x1, · · · , xn, u, ux1 , · · · , uxn) dx
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The functional rates the quality of a function w.r.t. certain model assumptions. The
goal is to find those parameters that allow the energy to obtain its minimum/maxi-
mum value. The function that attains the minimum/maximum value and therefore
fits best to the model assumptions is called the minimizer/maximizer.

The first variation of the energy, better known as Euler Lagrange equation is given
as

Definition 2.13 Euler Lagrange Equation

∇E = Fu − ∂x1Fux1 − · · · − ∂xnFuxn

with natural boundary conditions n>

 Fux1...
Fuxn

 = 0 at the image boundary

with normal vector n

∇E points in direction of the greatest positive change. Extrema occur at locations
where ∇E = 0. If it is strictly convex, it has a unique minimizer.

2.9 Optical Flow Computation

Detecting motion in an image sequence can be an important source of information.
The goal of optical flow computation is to estimate apparent motion patterns in an
image sequence and or motion patterns of the camera itself. The motion information
will be represented as a two-dimensional vector field, the optical flow field (also
displacement field, image velocity field). Using only one camera in each setup, one
obtains a two-dimensional flow field which is computed from the projection of the
actual motion onto the camera plane.

To find correspondences between objects at different points in time of an image
sequence, one needs to extract features from the image sequence and then search for
correspondences between these features. The two most obvious features in image
data also turn out to be the most useful ones for our purpose. The gray value of
the image sequence and its gradient. For the gray value, one obtains the so called
brightness constancy assumption:

Definition 2.14 Brightness Constancy Assumption

f(x, y, t) = f(x+ u, y + v, t+ 1) ⇔

0 = f(x+ u, y + v, t+ 1)− f(x, y, t)

This formula postulates the assumption that the gray value f(x, y) remains constant
between the frame t at image coordinates (x, y) and the frame t+ 1 at the displaced
image coordinates (x+ u, y + v).
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Since the image gradient is vector-valued, we obtain two constancy assump-
tions:

Definition 2.15 Gradient Constancy Assumption

fx (x, y, t)− fx (x+ u, y + v, t+ 1) = 0

fy (x, y, t)− fy (x+ u, y + v, t+ 1) = 0

The gradient constancy assumption makes the method more robust under illumina-
tion changes. However, while both assumptions are invariant under global additive
illumination changes, the gradient constancy assumption may prove to be disadvan-
tageous for situations with rotational motion, since it is inherently built on direc-
tional information. We are able to include both of these assumptions in our model
by assigning weights to the two terms. The weights have to be adjusted depending
on the type of image data.

As detailed in figure 2.8, instead of the ordinary quadratic penalization, we use a a
subquadratic penalizer ΨD for the data term, introduced by [BA91]. This reduces
the penalty for outliers and helps to make the method more robust. A more detailed
introduction to subquadratic penalization in the context of image processing is given
in [BWS05]. Such a function ΨD should be strictly convex, differentiable, positive,
increasing and symmetric along the y-axis.

x

y

L2-Norm

L1-Norm

Figure 2.8: Error measure functions: |x| de-
notes the deviation from the assumption,
while the value of y denotes the applied
penalty. As the deviation becomes larger,
the quadratic L2-Norm penalizes deviations
much more severely compared to other reg-
ularizers such as the linear L1-Norm

At many locations of the image se-
quence, it will not be possible to com-
pute a flow vector, since there is not
enough information available in the
data. In order to still obtain a dense
solution, the model is augmented with
a smoothness term. This term allows us
to model the assumption that the flow
field only varies smoothly in spatial di-
rection. The parameter that controls
the weighting of the smoothness term is
referred to as regularization parameter.
We apply the same subquadratic penal-
ization as in the data term and obtain
an isotropic flowdriven smoothness as-
sumption in the spatiotemporal domain.
The concept of using a smoothness assumption on the optical flow field was intro-
duced by [SH89].

Since we are working with image derivatives, we have to make sure that the function
is differentiable. As explained in section 2.6, the strong regularization properties of a
Gaussian filtering ensure that the signal becomes infinitely many times differentiable.
Finally, we are able to formulate the optical flow method of Brox et al. [Bro+04]
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Definition 2.16 Optical Flow Method of Brox et al.

E (w) =

∫
Ω×T

ΨD

(
(f (x)− f (x+w))2 + γ |∇f (x)−∇f (x+w)|2

)
dx

+ α

∫
Ω×T

ΨS

(
|∇3u|2 + |∇3v|2

)
dx

To find an optimal solution for the optical flow field w, we use the minimization
strategy explained in section 2.8. One obtains the following Euler Lagrange equa-
tions:

Definition 2.17 Euler Lagrange Equations of E (w)

0 = Ψ′D
(
(f (x)− f (x+w))2 + γ |∇f(x)−∇f(x+w)|2

)
·
(
fx (x+w) (f (x)− f (x+w))

+ γfxx (x+w) (fx (x)− fx (x+w))

+ γfyx (x+w) (fy (x)− fy (x+w))
)

+ α div
(
Ψ′S
(
|∇3u|2 + |∇3v|2

)
∇3u

)
0 = Ψ′D

(
(f (x)− f (x+w))2 + γ |∇f(x)−∇f(x+w)|2

)
·
(
fy (x+w) (f (x)− f (x+w))

+ γfxy (x+w) (fx (x)− fx (x+w))

+ γfyy (x+w) (fy (x)− fy (x+w))
)

+ α div
(
Ψ′S
(
|∇3u|2 + |∇3v|2

)
∇3v

)
To find a numerical solution, we now apply a coarse-to-fine strategy as explained in
detail in [Pap+06].

To represent a displacement field graphically, instead of the arrow plot that is com-
monly used in physics (also called vector plot or quiver plot), shown in Figure 2.9b,
we are going to use a pseudocolor representation scheme from Bruhn [Bru06], where
the hue represents the direction of the vector (u(x, y, t), v(x, y, t))> at location (x, y)>

and time t, while the saturation represents its magnitude. A distinct advantage of
the pseudocolor representation is that it allows to display motion information in the
vector field much more precisely (especially at motion discontinuities) compared to
the coarse representation of the arrow plot.

The optical flow method of Brox et al. was implemented in MATLAB as well as
C, using the approach presented in [Bro+04]. An example of the optical flow field
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between two frames of a Schlieren sequence is shown in figure 2.10.

The optical flow field of the Schlieren sequence from figure 2.11 computed with the
method from definition 2.16 is shown below. Figure 2.12 shows the optical flow of
a sequence in color-coded representation, figure 2.13 shows the same sequence with
an overlay of the arrow plot of the flow field. The following parameters were used:
α = 10.0, γ = 0.0, σxy = 0.4, σt = 0.2

(a) Pseudocolor
scheme to represent
displacement vectors

−2 −1 0 1 2
−2

−1

0

1

2

(b) Gradient vector field of
the function x exp(−x2−y2) us-
ing an arrow representation

(c) Gradient vector
field of the same
function as in b) us-
ing the color-coded
representation from a)

Figure 2.9: Visualization of vector fields using a color-coded representation

Frame 22 Frame 23 Optical flow

Figure 2.10: Optical flow result of Brox et al. method between two frames of a sequence.
Parameters used: α = 8.0, γ = 0.2, σxy = 0.6, σt = 0.3
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Frame 2 Frame 5 Frame 8 Frame 11

Frame 14 Frame 17 Frame 20 Frame 23

Frame 26 Frame 29 Frame 32 Frame 35

Frame 38 Frame 41 Frame 44 Frame 47

Frame 50 Frame 53 Frame 56 Frame 59

Figure 2.11: Schlieren sequence of an injection process (Sequence S3-1-6)



2 Image Acquisition and Processing

2

21

Frame 4 to 5 Frame 9 to 10 Frame 14 to 15

Frame 19 to 20 Frame 24 to 25 Frame 29 to 30

Frame 34 to 35 Frame 39 to 40 Frame 44 to 45

Frame 49 to 50 Frame 54 to 55 Frame 59 to 90

Figure 2.12: Color coded representation of the optical flow field of sequence S3-1-6



22 2 Image Acquisition and Processing

Frame 4 to 5 Frame 9 to 10 Frame 14 to 15

Frame 19 to 20 Frame 24 to 25 Frame 29 to 30

Frame 34 to 35 Frame 39 to 40 Frame 44 to 45

Frame 49 to 50 Frame 54 to 55 Frame 59 to 90

Figure 2.13: Arrow representation of the optical flow field of sequence S3-1-6
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3 Optical Analysis Part I: Feature Detection

The goal of optical spray analysis is to evaluate the characteristics of the spray
when injected into the combustion chamber. Features of interest are for example
the dispersion angle of the jets or the penetration curve of each jet. The first step
in processing the data is to extract suitable features from the sequence.

3.1 Histogram Equalization

Depending on the type of input data, it can make sense to perform a histogram
equalization on the input image data. Histogram equalization is a method to increase
the global contrast of the image, using the image’s histogram [Wei15]. To perform
a histogram equalization on a sequence, we use MATLAB’s histeq method. An
example of an image with its histogram before histogram equalization (figure 3.1)
and after histogram equalization (figure 3.2) is shown below.

In a histogram equalized sequence, it becomes easier to distinguish the spray from
the background, since the difference in gray value between the different phases is
increased. The segmentation also becomes more robust under parameter adjust-
ments which makes the segmentation result more precise and reliable. Histogram
equalization is an idempotent image processing operation, meaning that applying it
to the same input data multiple times has the same effect as applying it once.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5
·104

Figure 3.1: A Schlieren sequence and its histogram before performing a histogram equal-
ization
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1,000
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Figure 3.2: A Schlieren sequence and its histogram after performing a histogram equal-
ization

3.2 Detection of First Sight of Light

Because of the need for high temporal resolution and steady illumination, the back-
ground laser light source and the electronic controls of the injector are coupled and
synchronized with the camera. The camera usually starts recording before the laser
light reaches the image sensor. Since these dark frames of the sequence are of no
interest and might interfere with other image processing operations, they should be
discarded.

The first sight of light (FSOL) tFSOL is determined by comparing the average gray
value of subsequent frames within a certain time window. If we know that the FSOL
occurs within the first n frames of the sequence, we only consider the time interval
[t0, tn]. Since we do not have any prior information on the brightness of the light
source or the distribution of light over the image plane, we use a simple thresholding
to determine tFSOL The sequence is processed in succession from t0 to tn. If the
difference exceeds a threshold thrFSOL between frames ti and ti+1, the light reaches
the sensor in frame ti+1 and we assign tFSOL = ti+1.

t = 1 t = 2 t = 3

Figure 3.3: The first three frames of a shadowgraph sequence. The first sight of light is
detected as tFSOL = 2.
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The FSOL detection algorithm was implemented in MATLAB. The user interface
also allows to set tFSOL manually, in case the automatic detection should be unreli-
able.

3.3 Spatial Localization of the Injector Nozzle

Because of the circular nature of the images, it makes sense to perform certain image
processing operations in polar coordinates. To this end, it is necessary to detect the
location of the nozzle tip of the injector in the image sequence.

There are some aspects to consider, when trying to detect the center of the nozzle:

• The nozzle itself is not visible. Since the injector is only illuminated from the
opposite side of the camera, the nozzle lies in the shadow of the injector.

• The nozzle is not guaranteed to be located at the center of the image.

• Depending on how the injector is installed in the mounting, the outer circle
(the shadow of the optical access to the chamber) is not necessarily centered
around the inner circle (the shadow of the injector).

• The outer circle is not always guaranteed to be located completely inside the
boundaries of the images.

Figure 3.4: Result of a Hough trans-
formation

By performing a circular Hough transformation,
we are able to find circular structures in images.
Since an injector, by design, always has a circu-
lar shape when seen from below, we can apply a
circular Hough transformation to find this circle.
If we assume that the injector is aligned in nor-
mal direction to the camera plane and the nozzle
is located at the center of the injector shadow,
we are able to estimate the coordinates of the
nozzle. Depending on the shape of the obstacles,
the algorithm might detect multiple circles in the
image. In such a case, the circle with its center
closest to the image center (nx

2
, ny

2
) in terms of

Euclidean distance is chosen.

Our implementation of the Hough transforma-
tion is partially based on the MATLAB function
imcircles.
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3.4 Localization of Obstacles

Since the injector has to be mounted to the rig and has to be connected to a fuel sup-
ply, the light travelling alongside the shadow of the injector is partially obstructed.
Only very limited information of the jets in front of these obstacles can be obtained.
That is why it makes sense to identify which jets are located in front of obstacles
and to neglect those jets for further processing. Depending on the setup, there can
be multiple obstacles at arbitrary angles and locations. We use only a single frame,
tFSOL, to automatically identify the angular range in which the obstacles are located.
Since we know that for all frames t > tFSOL, the light source is visible and that the
first sight of fuel will occur after the first sight of light tFSOF > tFSOL, the frame
tFSOL gives an unperturbed view of the obstacles.

(a) The frame tFSOL is used to detect
obstacles. The area that is transformed
to polar coordinates is displayed with a
color overlay.

(b) The area marked with the color over-
lay is converted to the polar coordinate
system. Using the polar data, it is possible
to partition the jets.

Figure 3.5: Conversion to polar coordinates

Since we are interested in the angular range of the obstacles, we convert the col-
ored area of the image shown in figure 3.5a to the polar domain, centered around
the nozzle. The resulting image in polar coordinates is shown in figure 3.8. The
vertical axis represents the angular axis of the polar image while the horizontal axis
represents the radial axis of the polar domain. To account for noise and variations
in shape of the obstacles, we perform a dimensionality reduction, by computing the
mean of the values in radial dimension. One obtains a one-dimensional function in

Figure 3.6: The marked area from figure 3.5a transformed to polar coordinates.
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(a) The polar image from figure 3.5a af-
ter dimensionality reduction.
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(b) The obstructed angular areas that
are below the threshold throbstacle are
marked with dark blue.

Figure 3.7: Obstacle curve in polar coordinates

the domain [0, 360], shown in figure 3.7a. The curve reflects the average gray value
along the donut shaped area from figure 3.5a. The values of this function which are
below a threshold throbstacle are considered to be obstructed, since the light from the
background light source does not reach them. Consequently, we will ignore the jets
located inside these angular areas (shown in figure 3.7b).

In addition to this automatic detection algorithm that was implemented, our MAT-
LAB graphical user interface also allows to define these angular areas manually.

3.5 Angular Partitioning of the Jets

In order to partition the jets into jet regions, it is necessary to identify the number
and angles of the jets. As mentioned before, we can assume that the number of
jets NJets is within the interval [3, 12] and that the nozzle holes are distributed at
equidistant angle around the nozzle tip. Since the injector is backlit, the nozzle holes
cannot be detected visually. However, using a similar polar coordinate conversion
as before, we are able to partition the jets themselves. Instead of the frame tFSOL,
we now use a frame where the jets are already visible. The frame tFSOF + 15, 15
frames after the first sight of fuel is shown in figure 3.5b.

To detect the angles of the jets, we again convert the region shown in figure 3.5b to
polar coordinates and obtain the gray value curve fang seen in figure 3.9.

Figure 3.8: Representation in polar coordinates of the marked area from figure 3.5b.
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Figure 3.9: Dimensionality
reduction of the polar im-
age from figure 3.8 by av-
eraging over the radial di-
mension of the polar plot.
We obtain a one dimen-
sional function of the av-
erage gray value in polar
dimension. The local max-
ima represent the bright
areas of the polar image
(the background area be-
tween jets), while the local
minima correspond to the
dark areas of the polar im-
age (the jets).

The locations of the jets now correspond to the local minima of the function. We
compute the angle by fitting the equidistant points to the minima of the function.
This can be formulated as a minimization problem:

Definition 3.1 Angular Jet Partitioning

argmin
Φ

numjets∑
i=1

fang(i) (3.1)

with i ∈ [0, 360] where j ∗ Φ is the desired angle for jet j. A solution for this
optimization problem and the resulting partitioning are shown in figure 3.10.

Our MATLAB implementation also allows to set the number of jets and the spacing
of the jets manually. If a jet region is only partially obstructed, it is possible to keep
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Figure 3.10: Partitioning result of sequence 3-1-7 frame 18 using the method from 3.1
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the region, but restrict it by a certain degree on each side.

3.6 Detection of First Sight of Fuel

To being able to correctly measure the propagation of the jets, it is necessary to
determine the exact point in time when the first sight of fuel (FSOF) occurs, denoted
as tFSOF . The detection of tFSOF proves to be a difficult task, since the nozzle is
illuminated differently, depending on the setup. In some setups, the nozzle tip might
be coated to prevent reflections. To determine tFSOF , we will only consider a circular
region around the nozzle and discard the rest of the image, since it doesn’t contribute
any useable information.

By performing the Hough transformation from section 3.3, we obtain the radius rinj
and the center point

(
cinjx , cinjy

)
of the circle that is cast by the shadow of the

injector. The masked region consists of a donut shaped area with a radius between
0.1 ∗ rinj and 0.5 ∗ rinj We can use prior information, since we already know that
tFSOF will occur in the time window [tFSOL + 1, tFSOL + n], where n is usually 15.
Therefore we only consider this subsequence of 15 frames.

To detect the first sight of fuel, we will use a background subtraction. Since the
background is static, we are able to use a frame differencing method, where tFSOL is
chosen as the reference frame (or background frame). We compute for each frame t
the average difference, shown in figure 3.13.

nx∑
i=1

ny∑
j=1

|fi,j,tFSOL
− fi,j,t| (3.2)

When this difference rises above a threshold thrFSOF at time t, we know that the
first fuel is visible and we assign tFSOF = t.

3.7 Detection of the End of the Injection

Using the same method as for the detection of the first sight of fuel, it is also
possible to determine the point in time when the injection stops. We know that the
last sight of fuel (LSOF) occurs shortly after the end of the injection. We can now
automatically crop the sequence which facilitates the computation.
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Figure 3.11: The area marked with the color overlay used to compute the background
subtraction for the detection of the first sight of fuel.

t = 1 t = 2 t = 3 t = 4 t = 5

Figure 3.12: The first five frames of the injection sequence 3-1-2 (inverted for better visibil-
ity). The first sight of fuel occurs at t = 4.
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Figure 3.13: Bar plot of
the background subtrac-
tion from sequence 3-1-2.
The x-axis shows the single
frames while the value on
the y-axis reflects the dif-
ference in gray value be-
tween frames t and frame
tFSOL. The bar marked in
yellow corresponds to the
frame that is selected as
tFSOF . The according im-
ages are shown in figure
3.12.
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4 Optical Analysis Part II: Image
Segmentation

In order to correctly analyze the data, it is crucial to distinguish the liquid and vapor
phases from each other as well as from the background. To this end, we will perform
a segmentation of the image sequence. Segmentation is the process of partitioning an
image into a set of distinct regions, which differ in some qualitative or quantitative
way. The segmentation of visual data is an essential step in nearly all higher level
object recognition tasks.

4.1 Active Contour Models

To perform a segmentation on the injection sequences, we will implement an active
contour model (also called snakes, energy minimizing curves). The essential idea of
active contour models is to evolve a curve in direction of an object boundary subject
to certain constraints on the curve itself (internal energy/force) as well as on the
image data (external energy/force, image force). Active contours were introduced
by Kass, Witkin and Terzopoulus [KWT88].

The requirements on such an algorithm are that it should be robust under illumina-
tion changes, that the model parameters should be easy and intuitive to understand
and that the method should not rely on any manual interaction besides the choice of
the parameters. Also, the computational complexity and the memory requirements
need to be reasonable, in order to being able to handle frequent and large amounts
of data.

4.2 Level Set Representation

The segmentation methods that we are going to investigate make use of an im-
plicit level set formulation in an Eulerian framework to represent a segmentation
mathematically. This allows numerical computations of contours such as curves and
(hyper-)surfaces on a Cartesian coordinate system without the need to parameterize
these objects. This representation offers many advantages compared to the paramet-
ric formulation in a Lagrangian framework, as we will see later. Level set methods
are popular in fields such as medical image analysis and were introduced by Osher
and Sethian [OS88].

A segmentation algorithm can be expressed as a curve evolution. Let us consider
the general case of a curve evolution
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φ(x) > 0

φ(x) < 0

φ(x) > 0

x

φ(x)
Figure 4.1: A level set function:
The x-axis line represents the level
set. The dashed lines represent
the locations of the two contour
points. The level set function par-
titions the domain into three seg-
ments. The two segments where
φ > 0 belong to the foreground
phase (blue). The segment in the
middle where φ < 0 belongs to
the background phase (red).

Definition 4.1 Curve Evolution

ct = β (κ)n

where κ is the curvature, n is the normal vector and β is some function that
controls the local speed of the evolution.

As an example for a curve evolution, let us consider the motion by mean curvature,
which is the underlying principle of all segmentation techniques considered in this
work.

Definition 4.2 Mean Curvature Motion

−→
V = −bκ

−→
N

where κ is the curvature, b is a constant and
−→
N is a vector field representing the

local unit normal.

This definition tells us that the interface moves in normal direction with a velocity
proportional to its curvature. If b > 0, the motion will point inwards of the curve
and the interface will shrink. When b < 0, the curve will expand. This case may be
ill-posed and we do not need to consider it further in our context.

Instead of representing the segmentation process as a curve evolution, we can embed
the curve evolution into a higher dimensional evolution of a level set function. The
level set equation is given as

Definition 4.3 Level Set Equation

φt +
−→
V ∇φ = 0

where φ is the so called level set function and
−→
V is an arbitrary velocity field.
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To elevate a curve to the higher-dimensional level set representation, we can apply
the Euclidean signed distance function to the curve, defined as:

Definition 4.4 Euclidean Signed Distance Function

ψ(x) =

{
|x− φt(x)| x insideφ

− |x− φt(x)| otherwise

In case of curve evolution by mean curvature, the level set equation becomes

φt − bκn∇ (φ) = 0

It follows from n∇φ = |∇φ| that

φt − bκ|∇ (φ) | = 0

It can be shown that any curve evolution can be embedded into the evolution of a
level set function [Set99]. The curve is now implicitly represented as a level set.

Definition 4.5 C Level Set

Lc(φ) = {(x1, · · · , xn)|f(x1, · · · , xn) = c}

In two dimensions, the level set Lc(φ) = {(x, y)|f(x, y) = c} is referred to as level
curve, isoline, interface or contour line. In three dimensions, the level set is defined
as Lc(φ) = {(x, y, z)|f(x, y, z) = c} and is referred to as isosurface, contour surface
or level surface. If the level set function is n-dimensional, the interface is always n−1-
dimensional. Since c is just an arbitrary constant value, without loss of generality,
we set c = 0 in the following. L0(φ) is also called the zero level set .

The normal vector for points on this interface is exactly perpendicular to the contour
of our segmentation. The mean curvature on the interface is exactly the divergence
of the normal vector.

4.3 Chan Vese Active Contour Model

The active contour segmentation model by Chan and Vese [CV01] is a reduction
of the piecewise constant segmentation model introduced by Mumford and Shah
[MS89]. The idea is to start with some initial level set function φ and to evolve the
contour under certain constraints to obtain a useful segmentation. Because of the
level set formulation, the algorithm creates a partitioning of the data, which means
the resulting data will not have vacuums or overlaps. The level set representation
also allows us to automatically detect interior contours. A major restriction of the
original model is that it only allows two phases, namely the foreground phase and
the background phase. We will see later how to deal with this limitation. The model
consists of three terms; a length term, an area term and a data term . It is given as
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Definition 4.6 Chan Vese Active Contour Segmentation Model

ECV (uin, uout, C) =α · Length(C) + µ · Area(inside(C))

+ λ1

∫
inside(C)

(f(x)− uin)2 dx

+ λ2

∫
outside(C)

(f(x)− uout)2 dx

where f(x) is the image, C is the level set curve, uin and uout are the arithmetic
means of the foreground and the background phases respectively. λ1 and λ2

are the weights of the data term, penalizing the deviation of a gray value to
the average gray value within each phase. The length term penalizes the length
of the contour using a weighting parameter α. The area term with weighting
parameter µ > 0 penalizes the area of the foreground phase. If µ < 0, the area
of the background phase will be penalized.

Instead of using the level set curve C, we now introduce the aforementioned level
set function φ (x) : Ω 7→ R. φ must be a Lipschitz continuous function. This is to
ensure that it is differentiable everywhere and has a bounded first derivative.


C = ∂ω = {x ∈ Ω : φ (x) = 0}
inside (C) = ω = {x ∈ Ω : φ (x) > 0}
outside (C) = Ω\ω = {x ∈ Ω : φ (x) < 0}

(4.1)

where ∂ω is the border of ω.

Since it is mathematically very inconvenient to work with different integration do-
mains, using the Heaviside function

Definition 4.7 Heaviside Function

H(z) =

{
1 z ≥ 0

0 z < 0
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we can reformulate the single terms of the model from definition 4.6 in the previously
introduced level set formalism explained in section 4.2 as follows

Length (C) = Length {φ = 0} =

∫
Ω

|∇H (φ (x))| dx

Area (C) = Area {φ ≥ 0} =

∫
Ω

H(φ (x)) dx

∫
φ>0

(f (x)− uin)2 dx =

∫
Ω

(f (x)− uin)2H(φ (x)) dx

∫
φ<0

(f (x)− uout)2 dx =

∫
Ω

(f (x)− uout)2 (1−H(φ (x))) dx

(4.2)

and obtain the rewritten model in level set representation as

ECV (uin, uout, φ) = α

∫
Ω

|∇H (φ (x))| dx+ µ

∫
Ω

H(φ (x)) dx

+ λ1

∫
Ω

(f (x)− uin)2H(φ (x)) dx

+ λ2

∫
Ω

(f (x)− uout)2 (1−H(φ (x))) dx

(4.3)

We can now solve this minimization problem by alternately updating uin, uout and
φ.

For the first update step, the arithmetic means of the two phases are computed
(assuming a nonempty interior and exterior in Ω, to ensure that the values are well
defined):

uin (φ) =

∫
Ω

f (x)H (φ (x)) dx∫
Ω

H (φ (x)) dx
(4.4)

uout (φ) =

∫
Ω

f (x) (1−H (φ (x))) dx∫
Ω

(1−H (φ (x))) dx
(4.5)
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In the second update step, we compute the level set function φ using the fixed mean
values obtained from equations 4.4 and 4.5

ECV (φ) = α

∫
Ω

|∇H (φ (x))| dx+ µ

∫
Ω

H(φ (x)) dx

+ λ1

∫
Ω

(f (x)− uin)2H(φ (x)) dx

+ λ2

∫
Ω

(f (x)− uout)2 (1−H(φ (x))) dx

(4.6)

This process is repeated iteratively until convergence.

The computation of the mean values in each iteration is just a simple arithmetic
operation. The update of the level set function on the other hand turns out to be
a more challenging task. The energy functional from equation 4.6 is non-convex.
We solve it using a gradient descent approach. This involves the computation of
derivatives. Since the Heaviside function is not differentiable at x = 0, Chan and
Vese use a regularized version of the Heaviside function.

Definition 4.8 Regularized Heaviside Function

Hε(z) =
1

2

(
1 +

2

π
arctan

(z
ε

))

−2 2

1
ε = 0.1
ε = 0.2
ε = 0.5

(a) Regularized Heaviside function with
different values for ε

−2 2

1

2

3

ε = 0.1
ε = 0.2
ε = 0.5

(b) Regularized Dirac function

Figure 4.2: Regularization effect of Heaviside and Dirac functions

The distributional derivative of this function is now given as the regularized Dirac
function
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Definition 4.9 Regularized Dirac Function

δε (z) =
ε

π (ε2 + z2)

which is the first order approximation of original Dirac delta function. ε is a numer-
ical parameter that determines the size of the bandwidth of numerical smearing. A
small value approximates the original model better, but leads to numerical problems.
The closer ε approaches 0, the smaller the function values become. A high value for
ε makes the method numerically more stable, but increases the deviation from the
original model assumptions. According to Osher and Fedkiw [OF03], the error in
calculation for the regularized Heaviside function is in O (hx).

According to 2.13, we now deduce the Euler Lagrange equations from equation 4.6
which gives:

Definition 4.10 Euler Lagrange Equations of ECV

δε (φ (x))

(
λ2 (f (x)− uout)2 − λ1 (f (x)− uin)2 − µ+ α div

(
∇φ (x)

|∇φ (x)|

))
= 0

with the boundary condition

∂ε (φ (x))

|∇φ (x)|
∂φ (x)

∂n (x)
= 0

and x ∈ ∂Ω

With the Euler Lagrange Equations at hand, we can now embed definition 4.10 into
a gradient descent scheme as follows:

Definition 4.11 Gradient Descent of ECV

∂tφ (x) = δε (φ (x))

(
λ2 (f (x)− uout)2 − λ1 (f (x)− uin)2 − µ+ α div

(
∇φ (x)

|∇φ (x)|

))
with the boundary condition

∂ε (φ (x))

|∇φ (x)|
∂φ (x)

∂n (x)
= 0

φ (x, 0) = φ0 (x)

with x ∈ ∂Ω
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4.3.1 Discretization of the Chan Vese Model

In order to apply this approach to an actual discrete data set, we have to discretize
it first. The divergence term appearing in equations 4.6 and 4.10, which corresponds
to the length term from our original model can also be written as

div

(
∇φ (x)

|∇φ (x)|

)
= ∂x

 ∂xφ√
(∂xφ)2 + (∂yφ)2

+ ∂y

 ∂yφ√
(∂yφ)2 + (∂xφ)2

 (4.7)

To discretize this term, we use a mixture of forward- and backward differences. The
reasoning for using a combination of forward- and backward differences instead of
central differences is that the result will be better localized1. We obtain:

φn+1
,i,j − φni,j

τ
=δε

(
φni,j
)λ2 (fi,j − uout)2 − λ1 (fi,j − uin)2 − µ

+ α

∂−x
 ∂+

x φ
n+1
i,j√(

∂+
x φ

n
i,j

)2
+
(
∂yφni,j

)2


+∂−y

 ∂+
y φ

n+1
i,j√(

∂+
y φ

n
i,j

)2
+
(
∂xφni,j

)2


(4.8)

By using the following curvature terms

C1,i,j =
α√(

∂+
x φ

n
i,j

)2
+
(
∂yφni,j

)2

C2,i,j =
α√(

∂+
x φ

n
i−1,j

)2
+
(
∂yφni−1,j

)2

C3,i,j =
α√(

∂+
y φ

n
i,j

)2
+
(
∂xφni,j

)2

C4,i,j =
α√(

∂+
y φ

n
i,j−1

)2
+
(
∂xφni,j−1

)2

(4.9)

and by writing the data and area terms as

Di,j = λ2 (fi,j − uout)2 − λ1 (fi,j − uin)2 − µ (4.10)
1 When applying the central difference consecutively, the central pixel would not be even

be included in the computation once. When applying forward and backward differ-
ences, one also obtains a centralized result, but the central pixel actually occurs twice in
the computation. (see definition of finite differences 2.9-2.11
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we can now rewrite the whole problem as

φn+1
i,j − φni,j

τ
=δε

(
φni,j
) (
λ2 (fi,j − uout)2 − λ1 (fi,j − uin)2 − µ

+ C1,i,j

(
φni+1,j − φn+1

i,j

)
− C2,i,j

(
φn+1
i,j − φni−1,j

)
+C3,i,j

(
φni,j+1 − φn+1

i,j

)
− C4,i,j

(
φn+1
i,j − φni,j−1

)) (4.11)

Finally, we obtain a system of equations that we solve using Jacobi iterations:

φn+1
,i,j =

φni,j + τδε
(
φni,j
) (
Di,j + C1,i,jφ

n
i+1,j + C2,i,jφ

n+1
i−1,j + C3,i,jφ

n
i,j+1 + C4,i,jφ

n+1
i,j−1

)
1 + τδε (C1,i,j + C2,i,j + C3,i,j + C4,i,j)

(4.12)

The number of equations to solve corresponds to the number of pixels. Since there
are no dependencies between the equations, all the pixels in each iteration step can
be solved in parallel which makes the method extremely efficent. For a 320 x 320
image, we therefore have to solve 102,400 equations in each iteration step. The
integration domain must not necessarily be rectangular. It would also be possible
to use a masked region of the image domain.

The Chan Vese algorithm presented here was implemented both in MATLAB and in
C. A contour evolution of the Chan Vese method on a Schlieren sequence is shown in
figure 4.6. A two-dimensional heat map of the level set function of the same evolution
is shown in figure 4.7. A three-dimensional depiction of the level set evolution is
shown in figure 4.8.

4.3.2 Initialization of the Level Set Function

The iterative procedure described above needs to start with an initial value for the
level set function. In our implementation, we enable the user to choose between
several basic shapes (rectangle, circle, donut, gray value thresholding, cirular- or
rectangular patterns). Using some simple parameters such as the inner and outer
radius/diameter, the shapes can be easily adapted to the data at hand. Some pos-
sibilities are shown in figure 5.12. The choice of the initial level set also affects the
computation. The curve tends to evolve slowly if it has a low curvature and faster
if it has a higher curvature.

We initialize all level set functions, using the Euclidean signed distance function, as
proposed by [CV01]. With a gradient of 1, the Euclidean signed distance function
helps to avoid rapidly changing features, which makes the result numerically more
stable. Mulder, Osher and Sethian [MOS92] showed that initializing φ to a Eu-
clidean signed distance function results in more accurate numerical solutions than
an initialization with the Heaviside function.

Our implementation allows the user to choose between the Heaviside function and
the Euclidean signed distance function. The Euclidean signed distance function was
implemented using the bwdist method from MATLAB.
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x

φ(x)

x

φ(x)

Figure 4.3: Reinitialization of the level set function: Left: Original level set function. Right:
Level set function after reinitialization with the Euclidean signed distance function. The
dashed vertical lines denote the location of the contour.

4.3.3 Reinitialization of the Level Set Function

During a level set evolution, the level set function usually develops irregularities
which can cause numerical errors and harm the stability of the method. From a
numerical perspective, it is desirable to keep the evolving level-set function close
to the Euclidean signed distance function ([OF03], [Pen+99]). Level set functions
can develop shocks 2 during the evolution which makes further computations highly
inaccurate. If φ is not smooth or if φ is much steeper on one side of interface than on
the other, the contour can be moved incorrectly ([Set99], [Pen+99], [OF03]). In oder
to maintain a stable level set evolution, we apply a method called reinitialization.
Reinitialization is performed by periodically disrupting the level set evolution and
reshaping the degraded level set function as a Euclidean signed distance function
(Definition 4.4).

However, there are some practical and theoretical problems regarding the practice
of reinitialization. In a conventional level set formulation, the motion of the contour
should only be guided by some speed function that is purely based on the model
assumptions. It has been proven Barles et al. [BSS93] that solutions to the Hamil-
ton Jacobi Equation of such a form are not Euclidean signed distance functions.
Therefore one has to deal with a difference between theory and implementation. An
investigation on this problem is given by Gomes and Faugeras [GF00].

In the user interface, we allow the user to choose an arbitrary period of steps dur-
ing iterations in which to perform the reinitialization. The implementation of the
Euclidean signed distance function in MATLAB is based on Maurer, Rensheng and
Vijay [Mau+03]. In order to maintain a stable curve evolution, we apply a reini-
tialization after each single iteration step for the examples shown in this work. By
reinitializing more often, the method converges faster. Hence, there is barely any

2 Shocks are very sharp and/or flat shaped structures in the graph of a function.
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performance penalty when applying a frequent initialization.

4.3.4 Termination Criterion

As a termination criterion, we use the residual. For an equation system Au = b,
we obtain a residual rk = Auk − b. As soon as ||rk|| ≤ ε ∗ ||r0|| with ε = 0.001, we
stop. The implementation also allow to stop the process manually, either after a
user-predefined number of iterations or during live execution of the segmentation.

4.4 Multiphase Chan Vese Segmentation Model

Using one level set, it is possible to distinguish between two phases. Embedding
multiple level set functions in one model enables us to identify more than only two
phases. For example, by considering the zero level sets of two different level set
functions φ1 and φ2, we obtain the four phases:

φ1 < 0 ∧ φ2 < 0

φ1 ≥ 0 ∧ φ2 < 0

φ1 < 0 ∧ φ2 ≥ 0

φ1 ≥ 0 ∧ φ2 ≥ 0

The generalized multiphase Chan Vese model with m level set functions and n = 2m

phases is defined as

Definition 4.12 Multiphase Chan Vese Active Contour Segmentation Model

En
CVM(u,C) =

m∑
j=1

αj · Length(Cj) +
m∑
j=1

µj · Area(inside (χj (Cj)))

+
n∑

K=1

λK ·
∫
Ω

(f(x)− uK)2 dx

where χ is the characteristic function, used to distinguish the n phases

In the previously introduced level set formalism, the multiphase model is given as

En
CVM(u,φ) =

m∑
j=1

αj

∫
Ω

|∇H (φj (x))| dx

+
m∑
j=1

µj

∫
Ω

H (χj(φ (x))) dx

+
n∑

K=1

λK

∫
Ω

(f (x)− uK)2 dx

(4.13)
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Since we are interested in differentiating between four phases (liquid, vapor, cham-
ber, background), we restrict ourselves to the special case of two level set func-
tions

Definition 4.13 Four Phase Chan Vese Model

E4
CVM(u,φ) =

2∑
j=1

αj

∫
Ω

|∇H (φj (x))| dx

+
2∑
j=1

µj

∫
Ω

H (χj(φ (x))) dx

+
4∑

K=1

λK

∫
Ω

(f (x)− uK)2 dx

where u = (u1, u2, u3, u4)> and φ = (φ1, φ2)>

we can now rewrite the functional, just as in equation 4.3, as

E4
CVM (u,φ) = λ1

∫
Ω

(f (x)− u1)2H (φ1)H (φ2) dx

+ λ2

∫
Ω

(f (x)− u2)2H (φ1) (1−H (φ2)) dx

+ λ3

∫
Ω

(f (x)− u3)2 (1−H (φ1))H (φ2) dx

+ λ4

∫
Ω

(f (x)− u4)2 (1−H (φ1)) (1−H (φ2)) dx

+ µ1

∫
Ω

H (χ1(φ (x))) dx

+ µ2

∫
Ω

H (χ2(φ (x))) dx

+ α1

∫
Ω

|∇H (φ1 (x))| dx

+ α2

∫
Ω

|∇H (φ2 (x))| dx

(4.14)
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To obtain the arithmetic means in the first update step of the iterative procedure,
we compute

u1 (φ) =

∫
Ω

f (x)H (φ1 (x))H (φ2 (x)) dx∫
Ω

H (φ1 (x))H (φ2 (x)) dx

u2 (φ) =

∫
Ω

f (x)H (φ1 (x)) (1−H (φ2 (x))) dx∫
Ω

H (φ1 (x)) (1−H (φ2 (x))) dx

u3 (φ) =

∫
Ω

f (x) (1−H (φ1 (x)))H (φ2 (x)) dx∫
Ω

(1−H (φ1 (x)))H (φ2 (x)) dx

u4 (φ) =

∫
Ω

f (x) (1−H (φ1 (x))) (1−H (φ2 (x))) dx∫
Ω

(1−H (φ1 (x))) (1−H (φ2 (x))) dx

(4.15)

In the second update step, we now have to find a solution for the model

E4
CVM (φ) = λ1

∫
Ω

(f (x)− u1)2H (φ1)H (φ2) dx

+ λ2

∫
Ω

(f (x)− u2)2H (φ1) (1−H (φ2)) dx

+ λ3

∫
Ω

(f (x)− u3)2 (1−H (φ1))H (φ2) dx

+ λ4

∫
Ω

(f (x)− u4)2 (1−H (φ1)) (1−H (φ2)) dx

+ µ1

∫
Ω

H (χ1(φ (x))) dx

+ µ2

∫
Ω

H (χ2(φ (x))) dx

+ α1

∫
Ω

|∇H (φ1 (x))| dx

+ α2

∫
Ω

|∇H (φ2 (x))| dx

(4.16)
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In the two phase scenario, one obtains the following Euler Lagrange equations

Definition 4.14 Euler Lagrange Equations of E4
CVM

0 =δε (φ1 (x))

(
α div

(
∇φ1 (x)

|∇φ1 (x)|

)
− µ1

−
(
λ1 (f (x)− u1)2 − λ3 (f (x)− u3)2)H (φ1)

−
(
λ2 (f (x)− u2)2 − λ4 (f (x)− u4)2) (1−H (φ1))

)
0 =δε (φ2 (x))

(
α div

(
∇φ2 (x)

|∇φ2 (x)|

)
− µ2

−
(
λ1 (f (x)− u1)2 − λ3 (f (x)− u3)2)H (φ2)

−
(
λ2 (f (x)− u2)2 − λ4 (f (x)− u4)2) (1−H (φ2))

)
with the boundary conditions

∂ε (φ1 (x))

|∇φ1 (x)|
∂φ1 (x)

∂n (x)
= 0

∂ε (φ2 (x))

|∇φ2 (x)|
∂φ2 (x)

∂n (x)
= 0

with x ∈ ∂Ω

Using the same gradient descent approach as in equation 4.11, we now formulate a
gradient descent approach for the multiphase Chan Vese segmentation method. The
gradient descent scheme reads:

Definition 4.15 Gradient Descent of E4
CVM

∂tφ (x) =δε (φ1 (x))

(
α div

(
∇φ1 (x)

|∇φ1 (x)|

)
− µ1

−
(
λ1 (f (x)− u1)2 − λ3 (f (x)− u3)2)H (φ1)

−
(
λ2 (f (x)− u2)2 − λ4 (f (x)− u4)2) (1−H (φ1))

)
∂tφ (x) =δε (φ2 (x))

(
α div

(
∇φ2 (x)

|∇φ2 (x)|

)
− µ2

−
(
λ1 (f (x)− u1)2 − λ3 (f (x)− u3)2)H (φ2)

−
(
λ2 (f (x)− u2)2 − λ4 (f (x)− u4)2) (1−H (φ2))

)
with the boundary condition

∂ε (φ1 (x))

|∇φ1 (x)|
∂φ1 (x)

∂n (x)
= 0

φ1 (x, 0) = φ1,0 (x)
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∂ε (φ2 (x))

|∇φ2 (x)|
∂φ2 (x)

∂n (x)
= 0

φ2 (x, 0) = φ2,0 (x)

with x ∈ ∂Ω

4.4.1 Discretization of the Multiphase Model

The discretization approach in the two phase case is similar to the one phase scenario.

φn+1
1,i,j − φn1,i,j

τ
=δε

(
φn1,i,j

) ((
λ1 (fi,j − u1)2 − λ3 (fi,j − u3)2)H (φ2,i,j

)
−
(
λ2 (fi,j − u2)2 − λ4 (fi,j − u4)2) (1−H (φ2,i,j

))
− µ1

+ α

∂−x
 ∂+

x φ
n+1
1,i,j√(

∂+
x φ

n
1,i,j

)2
+
(
∂yφn1,i,j

)2


+∂−y

 ∂+
y φ

n+1
1,i,j√(

∂+
y φ

n
1,i,j

)2
+
(
∂xφn1,i,j

)2


(4.17)

φn+1
2,i,j − φn2,i,j

τ
=δε

(
φn2,i,j

) ((
λ1 (fi,j − u1)2 − λ3 (fi,j − u3)2)H (φ1,i,j

)
−
(
λ2 (fi,j − u2)2 − λ4 (fi,j − u4)2) (1−H (φ1,i,j

))
− µ2

+ α

∂−x
 ∂+

x φ
n+1
2,i,j√(

∂+
x φ

n
2,i,j

)2
+
(
∂yφn2,i,j

)2


+∂−y

 ∂+
y φ

n+1
2,i,j√(

∂+
y φ

n
2,i,j

)2
+
(
∂xφn2,i,j

)2


(4.18)

We rewrite the curvature terms the same way as shown in equation 4.9

C1,m,i,j =
α√(

∂+
x φ

n
m,i,j

)2
+
(
∂yφnm,i,j

)2

C2,m,i,j =
α√(

∂+
x φ

n
m,i−1,j

)2
+
(
∂yφnm,i−1,j

)2

C3,m,i,j =
α√(

∂+
y φ

n
m,i,j

)2
+
(
∂xφnm,i,j

)2

C4,m,i,j =
α√(

∂+
y φ

n
m,i,j−1

)2
+
(
∂xφnm,i,j−1

)2

(4.19)
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With the data term

Dm,i,j =−
((
λ1 (fi,j − u1)2 − λ3 (fi,j − u3)2)H (φm,i,j)

+
(
λ2 (fi,j − u2)2 − λ4 (fi,j − u4)2) (1−H (φm,i,j))) (4.20)

we now obtain the following discretization for our four phase model

φn+1
1,i,j − φn1,i,j

τ
=δε

(
φn1,i,j

)
(D2,i,j − µ1

+ C1,1,i,j

(
φn1,i+1,j − φn+1

1,i,j

)
− C2,1,i,j

(
φn+1

1,i,j − φn1,i−1,j

)
+C3,1,i,j

(
φn1,i,j+1 − φn+1

1,i,j

)
− C4,1,i,j

(
φn+1

1,i,j − φn1,i,j−1

)) (4.21)

φn+1
2,i,j − φn2,i,j

τ
=δε

(
φn2,i,j

)
(D1,i,j − µ2

+ C1,2,i,j

(
φn2,i+1,j − φn+1

2,i,j

)
− C2,2,i,j

(
φn+1

2,i,j − φn2,i−1,j

)
+C3,2,i,j

(
φn2,i,j+1 − φn+1

2,i,j

)
− C4,2,i,j

(
φn+1

2,i,j − φn2,i,j−1

)) (4.22)

Again, we solve the resulting system of equations with the Jacobi method

φn+1
1,i,j =

φn1,i,j + τδε
(
φn1,i,j

)
(D2,i,j)− µ1

1 + τδε (C1,1,i,j + C2,1,i,j + C3,1,i,j + C4,1,i,j)

+
τδε
(
φn1,i,j

) (
C1,1,i,jφ

n
1,i+1,j + C2,1,i,jφ

n+1
1,i−1,j + C3,1,i,jφ

n
1,i,j+1 + C4,1,i,jφ

n+1
1,i,j−1

)
1 + τδε (C1,1,i,j + C2,1,i,j + C3,1,i,j + C4,1,i,j)

(4.23)

φn+1
2,i,j =

φn2,i,j + τδε
(
φn2,i,j

)
(D1,i,j)− µ2

1 + τδε (C1,2,i,j + C2,2,i,j + C3,2,i,j + C4,2,i,j)

+
τδε
(
φn2,i,j

) (
C1,2,i,jφ

n
2,i+1,j + C2,2,i,jφ

n+1
2,i−1,j + C3,2,i,jφ

n
2,i,j+1 + C4,2,i,jφ

n+1
2,i,j−1

)
1 + τδε (C1,2,i,j + C2,2,i,j + C3,2,i,j + C4,2,i,j)

(4.24)

The multiphase Chan Vese model was implemented both in MATLAB and in C.
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4.5 Extension to the Spatiotemporal Domain

Since we are working with image sequences, it is sensible to include information
from the temporal domain in order to improve the segmentation result. Instead
of integrating over only the spatial domain and treating each image independently,
we can treat the image sequence as a three-dimensional image and perform the
segmentation of the whole sequence in one step. The disadvantage of this approach
is of course, that the sequence always has to be processed as a whole, using one large
system of equations. It is not possible to compute a segmentation of single frames
of the sequence independently from the other frames. However, the computation
remains as efficient as in the spatial domain, since we are still able to process every
voxel independently of the others, allowing for a high degree of parallelization.

The multiphase Chan Vese model in the spatiotemporal setting can be written
as

Definition 4.16 Spatiotemporal Multiphase Chan Vese Model

En
CVM3(u,C) =

m∑
j=1

αj · Surface(Cj) +
m∑
j=1

µj · Volume(inside (χj (Cj)))

+
n∑

K=1

λK

∫
Ω3

(f(x)− uK)2 dx

wherem is the number of level set functions and n = 2m is the number of phases.

The interface has now become a three-dimensional surface in four-dimensional space.
Instead of penalizing the length of a line, we now penalize the area of a surface. The
area term from the original model is now a volume in three-dimensional space.

The four-dimensional level set function is consequently defined as


Ci = ∂ωi = {x ∈ Ω3 : φi (x) = 0}
inside (Ci) = ωi = {x ∈ Ω3 : φi (x) > 0}
outside (Ci) = Ω3\ωi = {x ∈ Ω3 : φi (x) < 0}

(4.25)
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For the special case of two level set functions, the multiphase spatiotemporal Chan
Vese model is given as

Definition 4.17 Four Phase Spatiotemporal Chan Vese Model

E4
CVM3(u,φ) =

2∑
j=1

αj

∫
Ω3

|∇3H (φj (x))| dx

+
2∑
j=1

µj

∫
Ω

H (χj(φ (x))) dx

+
4∑

K=1

λK

∫
Ω3

(f (x)− uK)2 dx

where u = (u1, u2, u3, u4)> and φ = (φ1, φ2)>

In our first update step of the alternating iterative procedure, again we have to
compute the means of all four phases in the spatiotemporal domain as follows:

u1 (φ) =

∫
Ω3

f (x)H (φ1 (x))H (φ2 (x)) dx∫
Ω3

H (φ1 (x))H (φ2 (x)) dx

u2 (φ) =

∫
Ω3

f (x)H (φ1 (x)) (1−H (φ2 (x))) dx∫
Ω3

H (φ1 (x)) (1−H (φ2 (x))) dx

u3 (φ) =

∫
Ω3

f (x) (1−H (φ1 (x)))H (φ2 (x)) dx∫
Ω3

(1−H (φ1 (x)))H (φ2 (x)) dx

u4 (φ) =

∫
Ω3

f (x) (1−H (φ1 (x))) (1−H (φ2 (x))) dx∫
Ω3

(1−H (φ1 (x))) (1−H (φ2 (x))) dx

(4.26)
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The second update step of the four phase spatiotemporal model reads:

E4
CVM3 (φ) = λ1

∫
Ω3

(f (x)− u1)2H (φ1)H (φ2) dx

+ λ2

∫
Ω3

(f (x)− u2)2H (φ1) (1−H (φ2)) dx

+ λ3

∫
Ω3

(f (x)− u3)2 (1−H (φ1))H (φ2) dx

+ λ4

∫
Ω3

(f (x)− u4)2 (1−H (φ1)) (1−H (φ2)) dx

+ µ1

∫
Ω3

H (χ1(φ (x))) dx

+ µ2

∫
Ω3

H (χ2(φ (x))) dx

+ α1

∫
Ω3

|∇3H (φ1 (x))| dx

+ α2

∫
Ω3

|∇3H (φ2 (x))| dx

(4.27)

Next, we compute the two Euler Lagrange equations of the four phase spatiotemporal
model:

Definition 4.18 Euler Lagrange Equations of E4
CVM3

0 =δε (φ1 (x))

(
α div

(
∇3φ1 (x)

|∇3φ1 (x)|

)
− µ1

−
(
λ1 (f (x)− u1)2 − λ3 (f (x)− u3)2)H (φ1)

−
(
λ2 (f (x)− u2)2 − λ4 (f (x)− u4)2) (1−H (φ1))

)
0 =δε (φ2 (x))

(
α div

(
∇3φ2 (x)

|∇3φ2 (x)|

)
− µ2

−
(
λ1 (f (x)− u1)2 − λ3 (f (x)− u3)2)H (φ2)

−
(
λ2 (f (x)− u2)2 − λ4 (f (x)− u4)2) (1−H (φ2))

)
with the boundary conditions

∂ε (φ1 (x))

|∇3φ1 (x)|
∂φ1 (x)

∂n (x)
= 0
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∂ε (φ2 (x))

|∇3φ2 (x)|
∂φ2 (x)

∂n (x)
= 0

with x ∈ ∂Ω

Using the same gradient descent approach as in 4.15, we end up with

Definition 4.19 Gradient Descent of E4
CVM3

∂tφ (x) =δε (φ1 (x))

(
α div

(
∇3φ1 (x)

|∇3φ1 (x)|

)
− µ1

−
(
λ1 (f (x)− u1)2 − λ3 (f (x)− u3)2)H (φ1)

−
(
λ2 (f (x)− u2)2 − λ4 (f (x)− u4)2) (1−H (φ1))

)
∂tφ (x) =δε (φ2 (x))

(
α div

(
∇3φ2 (x)

|∇3φ2 (x)|

)
− µ2

−
(
λ1 (f (x)− u1)2 − λ3 (f (x)− u3)2)H (φ2)

−
(
λ2 (f (x)− u2)2 − λ4 (f (x)− u4)2) (1−H (φ2))

)
with the boundary conditions

∂ε (φ1 (x))

|∇3φ1 (x)|
∂φ1 (x)

∂n (x)
= 0

φ1 (x, 0) = φ1,0 (x)

∂ε (φ2 (x))

|∇3φ2 (x)|
∂φ2 (x)

∂n (x)
= 0

φ2 (x, 0) = φ2,0 (x)

with x ∈ ∂Ω3
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4.5.1 Discretization of Spatiotemporal Multiphase Approach

The discretization of the length term in the multiphase spatiotemporal model looks
similar to the previous discretization, but now contains an additional term with
derivatives in time direction:

φn+1
1,i,j − φn1,i,j

τ
=δε

(
φn1,i,j

) ((
λ1 (fi,j − u1)2 − λ3 (fi,j − u3)2)H (φ2,i,j)

−
(
λ2 (fi,j − u2)2 − λ4 (fi,j − u4)2) (1−H (φ2,i,j))− µ1

+ α

∂−x
 ∂+

x φ
n+1
1,i,j,t√(

∂+
x φ

n
1,i,j,t

)2
+
(
∂yφn1,i,j,t

)2
+
(
∂tφn1,i,j,t

)2


+ ∂−y

 ∂+
y φ

n+1
1,i,j,t√(

∂+
y φ

n
1,i,j,t

)2
+
(
∂xφn1,i,j,t

)2
+
(
∂tφn1,i,j,t

)2


+∂−t

 ∂+
t φ

n+1
1,i,j,t√(

∂+
t φ

n
1,i,j,t

)2
+
(
∂xφn1,i,j,t

)2
+
(
∂yφn1,i,j,t

)2



(4.28)

φn+1
2,i,j − φn2,i,j

τ
=δε

(
φn2,i,j

) ((
λ1 (fi,j − u1)2 − λ3 (fi,j − u3)2)H (φ1,i,j)

−
(
λ2 (fi,j − u2)2 − λ4 (fi,j − u4)2) (1−H (φ1,i,j))− µ2

+ α

∂−x
 ∂+

x φ
n+1
2,i,j,t√(

∂+
x φ

n
2,i,j,t

)2
+
(
∂yφn2,i,j,t

)2
+
(
∂tφn2,i,j,t

)2


+ ∂−y

 ∂+
y φ

n+1
2,i,j,t√(

∂+
y φ

n
2,i,j,t

)2
+
(
∂xφn2,i,j,t

)2
+
(
∂tφn2,i,j,t

)2


+∂−t

 ∂+
t φ

n+1
2,i,j,t√(

∂+
t φ

n
2,i,j,t

)2
+
(
∂xφn2,i,j,t

)2
+
(
∂yφn2,i,j,t

)2



(4.29)
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We now obtain six curvature terms

C1,m,i,j,t =
α√(

∂+
x φ

n
m,i,j,t

)2
+
(
∂yφnm,i,j,t

)2
+
(
∂tφnm,i,j,t

)2

C2,m,i,j,t =
α√(

∂+
x φ

n
m,i−1,j,t

)2
+
(
∂yφnm,i−1,j,t

)2
+
(
∂tφnm,i−1,j,t

)2

C3,m,i,j,t =
α√(

∂+
y φ

n
m,i,j,t

)2
+
(
∂xφnm,i,j,t

)2
+
(
∂tφnm,i,j,t

)2

C4,m,i,j,t =
α√(

∂+
y φ

n
m,i,j−1,t

)2
+
(
∂xφnm,i,j−1,t

)2
+
(
∂tφnm,i,j−1,t

)2

C5,m,i,j,t =
α√(

∂+
t φ

n
m,i,j,t

)2
+
(
∂xφnm,i,j,t

)2
+
(
∂yφnm,i,j,t

)2

C6,m,i,j,t =
α√(

∂+
t φ

n
m,i,j,t−1

)2
+
(
∂xφnm,i,j,t−1

)2
+
(
∂yφnm,i,j,t−1

)2

(4.30)

and the new three-dimensional data term

Dm,i,j,t =−
((

(fi,j,t − u1)2 − (fi,j,t − u3)2)H (φm,i,j,t)

+
(
(fi,j,t − u2)2 − (fi,j,t − u4)2) (1−H (φm,i,j,t))

) (4.31)

This leads to the following discrete scheme:

φn+1
1,i,j,t − φn1,i,j,t

τ
=δε

(
φn1,i,j,t

)
(D2,i,j,t − µ1

+ C1,1,i,j,t

(
φn1,i+1,j,t − φn+1

1,i,j,t

)
− C2,1,i,j,t

(
φn+1

1,i,j,t − φn1,i−1,j,t

)
+ C3,1,i,j,t

(
φn1,i,j+1,t − φn+1

1,i,j,t

)
− C4,1,i,j,t

(
φn+1

1,i,j,t − φn1,i,j−1,t

)
+C5,1,i,j,t

(
φn1,i,j,t+1 − φn+1

1,i,j,t

)
− C6,1,i,j,t

(
φn+1

1,i,j,t − φn1,i,j,t−1

))
(4.32)

φn+1
2,i,j,t − φn2,i,j,t

τ
=δε

(
φn2,i,j,t

)
(D1,i,j,t − µ2

+ C1,2,i,j,t

(
φn2,i+1,j,t − φn+1

2,i,j,t

)
− C2,2,i,j,t

(
φn+1

2,i,j,t − φn2,i−1,j,t

)
+ C3,2,i,j,t

(
φn2,i,j+1,t − φn+1

2,i,j,t

)
− C4,2,i,j,t

(
φn+1

2,i,j,t − φn2,i,j−1,t

)
+C5,2,i,j,t

(
φn2,i,j,t+1 − φn+1

2,i,j,t

)
− C6,2,i,j,t

(
φn+1

2,i,j,t − φn2,i,j,t−1

))
(4.33)

We can solve this scheme using the Jacobi method. The system of equations now
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consists of nx × ny × nt × 2 equations which have to be solved

φn+1
1,i,j,t =

φn1,i,j,t + τδε
(
φn1,i,j,t

)
(D2,i,j,t)− µ1

1 + τδε (C1,1,i,j,t + C2,1,i,j,t + C3,1,i,j,t + C4,1,i,j,t + C5,1,i,j,t + C6,1,i,j,t)

+
τδε
(
φn1,i,j,t

) (
C1,1,i,j,tφ

n
1,i+1,j,t + C2,1,i,j,tφ

n+1
1,i−1,j,t + C3,1,i,j,tφ

n
1,i,j+1,t

)
1 + τδε (C1,1,i,j,t + C2,1,i,j,t + C3,1,i,j,t + C4,1,i,j,t + C5,1,i,j,t + C6,1,i,j,t)

+
τδε
(
φn1,i,j,t

) (
C4,1,i,j,tφ

n+1
1,i,j−1,t + C5,1,i,j,tφ

n
1,i,j,t+1 + C6,1,i,j,tφ

n+1
1,i,j,t−1

)
1 + τδε (C1,1,i,j,t + C2,1,i,j,t + C3,1,i,j,t + C4,1,i,j,t + C5,1,i,j,t + C6,1,i,j,t)

(4.34)

φn+1
2,i,j,t =

φn2,i,j,t + τδε
(
φn2,i,j,t

)
(D1,i,j,t)− µ2

1 + τδε (C1,2,i,j,t + C2,2,i,j,t + C3,2,i,j,t + C4,2,i,j,t + C5,2,i,j,t + C6,2,i,j,t)

+
τδε
(
φn2,i,j,t

) (
C1,2,i,j,tφ

n
2,i+1,j,t + C2,2,i,j,tφ

n+1
2,i−1,j,t + C3,2,i,j,tφ

n
2,i,j+1,t

)
1 + τδε (C1,2,i,j,t + C2,2,i,j,t + C3,2,i,j,t + C4,2,i,j,t + C5,2,i,j,t + C6,2,i,j,t)

+
τδε
(
φn2,i,j,t

) (
C4,2,i,j,tφ

n+1
2,i,j−1,t + C5,2,i,j,tφ

n
2,i,j,t+1 + C6,2,i,j,tφ

n+1
2,i,j,t−1

)
1 + τδε (C1,2,i,j,t + C2,2,i,j,t + C3,2,i,j,t + C4,2,i,j,t + C5,2,i,j,t + C6,2,i,j,t)

(4.35)

All the segmentation methods presented in this chapter were implemented both as
spatial and as spatiotemporal methods in MATLAB as well as in C.

Original image Initial contours Segmentation result

Figure 4.4: Spatiotemporal fourphase Chan Vese segmentation. The red square denotes
the contour of level set function 1, while the yellow lines denote the contour of level set
function 2. Segmentation parameters: λ1 = λ2 = λ3 = λ4 = 1.0, α1 = α2 = 0.3, µ1 = 2.0,
µ2 = 0.0, σxy = 0.8, σt = 0.5
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Original image Initial contours Segmentation result

Figure 4.5: Spatiotemporal fourphase Chan Vese segmentation of liquid and vapor
phases. The yellow square denotes the contour of level set function 1, while the red
circle denotes the contour of level set function 2. Segmentation parameters: λ1 = λ2 =
λ3 = λ4 = 1.0, α1 = α2 = 0.3, µ1 = 0.0, µ2 = 5.3, σxy = 0.9, σt = 0.6

4.6 Optical Flow as a Feature for Segmentation

Instead of only considering the gray value of the image sequence as input feature,
we can control the segmentation by adding more relevant features to the data term.
The assumption in the data term

λ1

∫
inside(C)

(f(x)− uin)2 dx

+λ2

∫
outside(C)

(f(x)− uout)2 dx

(4.36)

can be easily extended to a vector-valued data term as introduced by [CSV00]

1

V

∫
inside(C)

V∑
v=1

λv1 (f v(x)− uvin)2 dx

+
1

V

∫
outside(C)

V∑
v=1

λv2 (f v(x)− uvout)
2 dx

(4.37)

Since the liquid and vapor phase are governed by the laws of compressible flows, it
makes sense to incorporate an assumption from physics into the data term. Before
performing the segmentation, we compute the optical flow field u of the image
sequence, as explained in section 2.9. The magnitude of an optical flow vector
provides information about the speed of movement at a particular location in the
image. In our case, this is a useful input feature, since the liquid and vapor phases
propagate with slightly different speed. The further the particles are dispersed, the
slower their movement becomes.
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The vapor phase can not easily be distinguished from the background, since they
have very similar brightness. However, using motion information, it becomes easier
to distinguish the vapor phase from the background, since they follow different
motion patterns.

To include motion information in the Chan Vese model, we simply add an additional
data term (f(x)− |u|)2 to the vector valued data term from equation 4.37 and assign
a new weight ρ.
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Figure 4.6: Contour evolution of Chan Vese segmentation with 132 iterations. Parameters:
λ1 = 1.0, λ2 = 1.0, α = 0.3, µ = 4.8, σx = σy = σt = 0.8
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Figure 4.7: 2D level set evolution of Chan Vese segmentation with 132 iterations. Parame-
ters: λ1 = 1.0, λ2 = 1.0, α = 0.3, µ = 4.8, σx = σy = σt = 0.8
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Figure 4.8: 3D level set evolution of Chan Vese segmentation with 132 iterations. Parame-
ters: λ1 = 1.0, λ2 = 1.0, α = 0.3, µ = 4.8, σx = σy = σt = 0.8
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5 Results and Conclusions

5.1 Parameter Selection

In order to being able to interpret the results correctly, one has to understand
how the parameter values affect the resulting segmentation and how the parameters
influence each other.

5.1.1 Weight of the Data Term

The data term ensures that the segmentation stays close to the original data by
penalizing the discrepancy between the input image and the arithmetic mean of
each phase. The influence of this term is controlled using a weighting parameters
λ1 (for the foreground phase) and λ2 (for the background phase). If λ1 < λ2, the
energy fits the background phase more accurately to the original image. If λ1 > λ2,
the energy will fit the foreground with higher priority. In our experiments, we keep
both weight fixed at λ1 = λ2 = 1.0.

λ2 > λ1 λ1 = λ2 λ1 > λ2

Figure 5.1: Effect of modifying the weights of data term. The foreground phase is shown in
white while the background phase is shown in black. Left: The segmentation tries to fit the
background phase with higher fidelity. Therefore, in the critical area of the vapor phase,
the minimum is attained by assigning more pixels to the foreground phase. Right: The
foreground phase is required to be more faithful to the input data. In the questionable
region of the vapor phase, the algorithm assigns less pixels to the foreground phase.

Beware: The gray value range of the input image has a direct effect on the weight
of the data term. For example, if the range of an image is normalized to [0, 1], the
maximum deviation between two values is only 1. However, if the input image has
a range of [0, 255], the deviation is as high as 255. Depending on the quantization
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of the input image (see section 2.5), the weight of the data term has to be adjusted
accordingly. Our implementation also allows to automatically normalize the input
data to the range [0, 1], if desired.

5.1.2 Weight of the Length Term

The weight α penalizes the length of the contour. When the weight is chosen low,
the contour is allowed to be longer, which results in a more detailed boundary
between the two phases. If one imagines the contour as an elastic band, than the
length parameter controls the tension on the band. A larger weight will increase
the tension and produce a smoother boundary between the two phases. The lower
the length penalty, the more detailed is the segmentation and the more objects will
be detected. To fit the vapor phase of the Schlieren sequences more accurately, we
usually choose a low value such as α = 0.3. A low value of the length parameter
can be susceptible to noise, but poses no problem if the data is lowpass filtered (see
section 2.6).

α = 1.7 α = 1.0 α = 0.0

Figure 5.2: Effects of modifying the weights of the length term. The foreground phase is
shown in white, the background phase in black. Left: A large value produces a smooth
boundary between the liquid phase and the background. Right: By neglecting the length
term, we obtain a much more detailed segmentation of the liquid phase.

5.1.3 Weight of the Area Term

The weight µ penalizes the area of the foreground phase (or the background phase
if µ < 0).

This term is only meaningful when there exists a prescribed inside and outside of
the segmentation boundary and one has a rough idea of the volume of each phase. If
the value is chosen large, the background phase will expand and move the boundary
in direction of the foreground phase. If the value is lower, the area of the foreground
phase will be expanded. Since we have a rough idea of the volume of each phase,
the area term µ provides us with a convenient tool to adjust the boundary between
the phases in an injection image sequence. When separating the vapor phase from
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the background, a larger value (µ > 4.0) is used. When separating the liquid from
the vapor phase, a smaller value is recommended (0 < µ < 4.0).

µ = −2.0 µ = 0.0 µ = 4.0

Figure 5.3: Effects of modifying the weights of the area term: The foreground phase is
shown in white. The background phase is displayed in black. Left: A negative penalty for
the volume of the foreground phase will increase the size of the foreground phase. Right:
A larger weight to penalize the foreground phase results in a shrinking of the foreground
phase.

5.1.4 Choice of Initialization

(a) (b) (c) (d)

Figure 5.4: Effect of initial level set on evolution time. The rectangular initialization on
the left leads to a similar result as the thresholding initialization on the right. However,
the rectangular initialization needs 159 iterations while the thresholding initialization only
needs 54 iterations with the same time step size.

Since the energy is non-convex, it has multiple local minimizers. By choosing the
appropriate type of initialization, we can influence the outcome of the segmentation.
Five different shapes are offered to the user to initialize the segmentation process.
A circular/donut-shaped contour, a rectangular contour, a thresholding boundary
contour and circular and rectangular pattern contours. By simply inverting a level
set function, it is possible to exchange the foreground- and background phase. This
can be important when working with more than one level set. All level set functions
created from these initial contours are designed as Euclidean signed distance func-
tions, as already mentioned in section 4.3.3. Some examples of initial contours and
their respective level sets are shown in figure 5.12.
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Rectangular and circular initializations are useful if one wants to enclose a certain
area of the image. A thresholding contour uses the average gray value of the data
as a threshold between the two phases. The image is lowpass filtered and each pixel
is assigned to a phase according to its gray value. A thresholding initialization can
be useful if the areas that should be segmented in the image differ in gray value.
Pattern contours are especially suitable as a general-purpose tool, for example if one
has no prior knowledge on the type of data to be segmented.

The initial contour not only influences the segmentation result, but also the evolution
time. Contours with higher curvature, such as the pattern contours, evolve distinctly
faster than contours with lower curvature, such as rectangles. An example is given
in figure 5.4.

5.1.5 Gaussian Kernel for Presmoothing

σxy = 0.0 σxy = 0.8 σxy = 1.6

Figure 5.5: Effect of modifying the standard deviation of the Gaussian kernel. Without
presmoothing, the contour of the liquid phase and along the convection boundaries of
the chamber is very crude. A high standard deviation creates a very smooth contour but
also overlooks subtleties in the contour of the liquid phase.

The parameters σx, σy and σt control the amount of presmoothing of the original
image data before performing the actual segmentation. Noise is always present as
a result of the image acquisition process. Schlieren photography poses additional
problems for image processing. The free convection boundary layer between the
hot chamber and the room air leads to a severe amount of background Schlieren.
Presmoothing the input data can be a helpful tool in discriminating the background
Schlieren from the Schlieren of the fuel. If the parameters are chosen very low,
the segmentation will be more faithful to the original data, including the noise.
By increasing the value, noise can be removed from the signal. (Remember that
Gaussian convolution acts as a lowpass filter 2.6.) On the downside, together with
the noise, also important high frequency image structures might get lost. In our
experiments with the sequence of figure 2.11, the best compromise was a spatial
presmoothing of σx = σy = 0.8 and a temporal presmoothing of σt = 0.5, depending
of course on the tyoe of input data. The effect of modifying the standard deviation
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of the Gaussian kernel on the segmentation result is shown in figure 5.5.

5.1.6 Reinitialization of Level Set Function

As mentioned in section 4.3.3, the level set function can develop shocks during evolu-
tion. A reinitialization helps to keep the level set function in shape, but also prevents
the growth of inner contours. How this affects the Schlieren data is explained in fig-
ure 5.6.

(a) Reinitialization after every 10 iterations (b) Reinitialization after every iteration

Figure 5.6: Effect of different reinitialization strategies: If the reinitialization is performed
only sparsely, inner contours such as droplets of liquid are still preserved (Figure a). A
reinitialization after every iteration discards the droplets. (Figure b)
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5.1.7 Choice of Integration Domain

The segmentation of an image sequence can either be performed on all single images
or on one three dimensional image object. When performing the segmentation in
2D, the algorithm can not exploit information in time direction. An example of a
segmentation using the same parameters both in the spatial and the spatiotemporal
domain is shown in figure 5.7

(a) Spatial domain (b) Spatiotemporal domain

Figure 5.7: Integration in the spatial and spatiotemporal domain. At the contour of the
liquid phase, the fuel breaks apart into droplets. The spatiotemporal approach carries
over information from neighboring frames. The droplets in b) are still detected as part of
the liquid phase.

5.1.8 Modifying the Grid Size

The grid size affects how fast the segmentation progresses in a certain dimension. By
modifying the spatial grid size in only one direction, it is possible to artificially speed
up the segmentation along only this dimension. Since we are only working with data
using a squared pixel grid, we keep both the spatial grid sizes at hx = hy = 1.0 and
only modify the temporal grid size ht accordingly. When choosing a small grid size
in time direction, the segmentation process will evolve faster in time direction, and
vice versa. The effects of modifying the temporal grid size is shown in figure 5.8.
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ht = 5.0 ht = 1.0 ht = 0.1

Figure 5.8: Effect of varying grid size in temporal direction. A small grid size adds more
droplets from the previous frames into the segmentation result (right). If the temporal grid
size is large, the segmentation will progress slower in time direction, therefore discarding
the droplets from the previous frames (left)

Table 5.1: Evaluation of optical analysis preprocessing

Correctly classified Within margin Falsely classified

Nozzle Detection 97.47% - 2.53%
FSOL Detection 82.28% 16.45% 1.27%
FSOF Detection 65.82% 27.85% 6.33%

5.2 Analysis and Results

5.2.1 Preprocessing

The preprocessing methods presented in chapter 3 were evaluated on a test dataset
of 79 injection sequences. The test dataset contained shadowgraph- and schlieren
sequences, sequences with one or multiple obstacles, coated and uncoated nozzle
tips and injection pressures ranging from 400 to 2000 bar. The sequences were first
evaluated manually by an optical diagnostics engineer and then processed by the
algorithm. The results were compared.

The algorithm for nozzle detection worked flawlessly on 97.47% of the scenes. In
most of the scenes, it is not possible to install the injector right in the center and
in normal direction to the image plane. If the injector is slightly skewed, the nozzle
tip is not located exactly in the center of the shadow circle. This is why it is
recommended to manually adjust the coordinates of the nozzle tip to within pixel
precision, since the exact location of the nozzle tip affects all other measurements.
In the few cases with multiple obstacles, the Hough transformation did not work as
desired and had to be readjusted manually by the user.
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The exact detection of the first sight of light and the first sight of fuel prove to be
a difficult task even for a trained and skilled human observer. If it is not possible
to pinpoint one exact frame as the correct one and there are two consecutive frames
in question, we consider those two frames to be within the margin. If the detected
frame by the algorithm lies outside of this margin, we consider it as falsely classified.

For the detection of the first sight of light, in 98.73% of the cases the algorithm was
able to obtain a result at least as good as a human. In 1.27% of the cases, the result
was falsely classified, especially in those sequences with severe fluctuations by the
laser light source across multiple frames.

The detection of the first sight of fuel was correctly classified in 93.67% of the cases.
In 27.85% of the cases where the FSOF could not be located exactly in one frame,
the FSOF detection was still within the margin of the two frames. In 1.34% of the
cases where the FSOF was falsely classified, the FSOF computed by the algorithm
was at a maximum off by one frame from the margin.

5.2.2 Penetration Curve

Using the segmentation result, we are able to compute the penetration curve of
each jet. An example is shown in figure 5.9. Since the jet plume drifts in clockwise
direction, it is advised to also move the partitioning boundaries in clockwise direction
by a few degrees to prevent the jet from crossing into the neighboring partition later
in the sequence.

Frame 8 Frame 10 Frame 12 Frame 14

Frame 16 Frame 18 Frame 20 Frame 22

Figure 5.9: Jet penetration of the vapor phase
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5.2.3 Chan Vese Segmentation with Optical Flow Data Term

Chan Vese segmentation is an active contour segmentation model, based on the
theory of curve evolution. It allows us to detect objects whose boundaries are not
necessarily defined by gradients. As we have seen for the case of injection sequences,
this is a very desirable property, since the phases of compressible flows usually have
a smeared and diffuse boundary and can not easily be distinguished using only edge
information. When working with image sequences of fluids, it makes sense to include
ideas from physics into the model, in order to better capture the characteristics of
such flow patterns.

Frame 17 Frame 18 Optical flow field

Initialization Segmentation result with-
out optical flow (ρ = 0)

Segmentation result using
optical flow (ρ = 0.2)

Figure 5.10: Chan Vese segmentation using the magnitude of the optical flow field of Brox
et al. in the data term. Optical flow parameters: α = 6.0, γ = 0.2, σxyt = 0.8Segmentation
parameters: λ1 = λ2 = λ3 = λ4 = 1.0, α1 = α2 = 0.3, µ1 = 5.5, µ2 = 0.3, σxy = 0.8, σt = 0.6,
ρ = 0.2. The yellow line denotes the contour of the first level set function, the red one of
the second.

As explained in section 4.6, the optical flow field can be included in the data term
of the Chan Vese model. The optical flow field contains valuable information that
can be used to improve the segmentation result. Using the optical flow in the data
term allows to better distinguish the vapor phase from the background, especially
in the area between the jets close to the image center. However, it can be tedious
to find a set of suitable parameters for both approaches, that yields a notable im-
provement compared to the regular data term. We obtained the best results by
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assigning a weight ρ = 0.2 to the optic flow term of the Chan Vese data term and by
choosing a larger smoothness term weight with around 6.0 < α < 10.0, in order to
avoid contradictory information from the optical flow to perturb the segmentation.
The temporal presmoothing should be kept low at σt < 0.3, otherwise, the speed
of the vapor phase can not be distinguished from the Schlieren movement of the
background. An example of a segmentation using the optical flow is shown in figure
5.10.

By extending the Chan Vese model to a multiphase scenario with more than just two
phases, we are able to distinguish the liquid and vapor phases from the background,
using only one consistent mathematical approach. We have seen that performing a
histogram equalization allows us to distinguish the four phases even better, especially
in the multiphase case. It was shown that, by using an appropriate initialization, the
four phases of the Chan Vese model can be exactly matched with the four physical
phases seen in the data (liquid phase, vapor phase, illuminated background, chamber
background).

Another advantage of the Chan Vese method is that it is very versatile and can
be applied to any type of input data. Figure 5.11 shows the Chan Vese algorithm
applied to a sequence acquired with the Mie scattering method, introduced in chapter
2.

Frame 80 Frame 80 Histogram equal-
ized

Segmentation result

Figure 5.11: Chan Vese segmentation of a Mie scattering image. Left: Original image.
Center: Histogram equalized image from a). Right: ChanVese segmentation result using
the parameters λ1 = λ2 = 1.0, α = 0.3, µ = 0.0, σxy = 0.3, σt = 0.1
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5.3 Future Work

• Increasing the temporal and/or spatial resolution of the data could improve
the optical flow results. This of course comes at the cost of hardware expenses
and increased computation time.

• Using an advanced camera setup that can record color images would also allow
to analyze the combustion and soot formation phases of a combustion and
would allow to distinguish the spray even better from the background light.

• Some additional image corrections (such as background subtraction, non-local
means or bilateral filtering) might be helpful in separating the actual Schlieren
created by the spray from the Schlieren of the gas in the background.

• By extrapolating the data obtained from the penetration curve, it is possible
to determine tFSOF with subframe precision, which would help to make the
measurements even more precise.

• When the jets have penetrated deeply into the combustion chamber, they
start to drift. When using a partitioning scheme as described in section 3.5,
a jet might partially cross over into another partition, distorting the results.
Instead of the pie shaped partitioning scheme, it might be desirable to apply
a partitioning that respects the shape of the jets, for example by using a
clustering method such as a Voronoi partitioning on the segmented data.

• All the injection sequences are circular in nature. Performing a Fourier Trans-
formation and analyzing the data in the frequency domain might reveal addi-
tional information and simplify some of the operations from chapter 3.
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Level set Circular mask Inverted level set

Level set Rectangular mask Inverted level set

Level set Thresholding mask Inverted level set

Level set Circular pattern Inverted level set

Level set Rectang. pattern Inverted level set

Figure 5.12: Possible initializations for the level set function



71

List of Figures

1 Fuel injection process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

1.1 Cylinder of a gasoline engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Cross section of a Delphi Multec Solenoid Diesel Injector (DFI1.5) . . . . 3
1.3 Illustration of an injector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Optical single cylinder setup for Schlieren imaging . . . . . . . . . . . . . . . . . 5

2.1 Illustration of scattering in visible light photography . . . . . . . . . . . . . . . 8
2.2 Illustration of optics in direct/parallel light shadowgraphy . . . . . . . . . . . 9
2.3 Illustration of optics in parallel light Schlieren photography . . . . . . . . . . 9
2.4 Characterization of spray patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Sampling and quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Gaussian kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 Lowpass filtering of image data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Error measure functions: The L1- and L2-Norm . . . . . . . . . . . . . . . . . . 17
2.9 Visualization of vector fields using a color-coded representation . . . . . . 19
2.10 Optical flow Brox et al. method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.11 Schlieren sequence of an injection process . . . . . . . . . . . . . . . . . . . . . . 20
2.12 Color coded representation of optical flow field . . . . . . . . . . . . . . . . . . 21
2.13 Arrow representation of optical flow field . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Histogram and Schlieren sequence before histogram equalization . . . . . 23
3.2 Histogram and Schlieren sequence after histogram equalization . . . . . . 24
3.3 Detection of first laser light in image sequence . . . . . . . . . . . . . . . . . . . 24
3.4 Result of a Hough transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Conversion to polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Obstacle curve in polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.8 Polar coordinate image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.9 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.10 Partitioning result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.11 FSOF detection: Area for background subtraction . . . . . . . . . . . . . . . . 30
3.12 FSOF detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.13 Background subtraction result as bar plot . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Level set function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Regularized Heaviside and Dirac functions . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Reinitialization of the level set function . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Spatiotemporal fourphase Chan Vese segmentation . . . . . . . . . . . . . . . 53
4.5 Spatiotemporal fourphase Chan Vese segmentation (Liquid/Vapor phase) 54



72 LIST OF FIGURES

4.6 Contour evolution of Chan Vese segmentation . . . . . . . . . . . . . . . . . . . 56
4.7 2D level set evolution of Chan Vese segmentation . . . . . . . . . . . . . . . . 57
4.8 3D level set evolution of Chan Vese segmentation . . . . . . . . . . . . . . . . 58

5.1 Effects of modifying the weights of the data term . . . . . . . . . . . . . . . . 59
5.2 Effects of modifying the weights of the length term . . . . . . . . . . . . . . . 60
5.3 Effects of modifying the weights of the area term . . . . . . . . . . . . . . . . . 61
5.4 Effect of initial level set on evolution time . . . . . . . . . . . . . . . . . . . . . . 61
5.5 Effect of modifying the standard deviation of the Gaussian kernel . . . . 62
5.6 Effect of different reinitialization strategies . . . . . . . . . . . . . . . . . . . . . 63
5.7 Integration in the spatial and spatiotemproal domain . . . . . . . . . . . . . 64
5.8 Effect of varying the grid size in temporal direction . . . . . . . . . . . . . . . 65
5.9 Jet penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.10 Chan Vese segmentation using the optical flow magnitude in the data term 67
5.11 Chan Vese segmentation of a Mie scattering image . . . . . . . . . . . . . . . 68
5.12 Initialization of the level set function . . . . . . . . . . . . . . . . . . . . . . . . . . 70



73

List of Tables

1.1 Types of fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

5.1 Evaluation of optical analysis preprocessing . . . . . . . . . . . . . . . . . . . . . 65



74 LIST OF TABLES



75

References

[BA91] Michael Julian Black and P. Anandan. “Robust dynamic motion
estimation over time”. In: IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. Maui, Hawaii,
USA, 1991, pp. 296–302 (cit. on p. 17).

[Bro+04] Thomas Brox et al. “High accuracy optical flow estimation
based on a theory for warping”. In: European Conference
on Computer Vision. Vol. 3024. Prague, Czech Republic, 2004,
pp. 25–36 (cit. on pp. 17, 18).

[Bru06] Andrés Bruhn. “Variational Optic Flow Computation, Accurate
Modelling and Efficient Numerics”. PhD thesis. Saarland Univer-
sity, Saarbrücken, Germany, Aug. 2006 (cit. on p. 18).

[BSS93] Guy Barles, H Mete Soner, and Panagiotis E Souganidis. “Front
Propagation and phase field theory”. In: SIAM Journal on Con-
trol and Optimization 31.2 (1993), pp. 439–469 (cit. on p. 40).

[BWS05] Andrés Bruhn, Joachim Weickert, and Christoph Schnörr. “Lu-
cas Kanade Meets Horn Schunck: Combining Local and
Global Optic Flow Methods”. In: International Journal of Com-
puter Vision. Vol. 61. 3. Springer Science and Business Media,
2005, pp. 211–231 (cit. on p. 17).

[CSV00] Tony F. Chan, B. Yezrielev Sandberg, and Luminita A. Vese.
“Active Contours without Edges for Vector-Valued Images”. In:
Journal of Visual Communication and Image Representation
11 (2000), pp. 130–141 (cit. on p. 54).

[CV01] Tony Chan and Luminita Vese. “Active Contours Without
Edges”. In: IEEE Transactions on Image Processing 10.2 (2001)
(cit. on pp. 33, 39).

[Dry97] F Dryer. Physical and Chemical Aspects of Combustion: A Trib-
ute to Irvin Glassman. Taylor and Francis, 1997 (cit. on p. 10).

[GF00] Jose Gomes and Olivier D. Faugeras. “Reconciling Distance
Functions and Level Sets”. In: J. Visual Communication and Im-
age Representation 11.2 (2000), pp. 209–223 (cit. on p. 40).

[GL08] D. A. Green and R. Lewis. “The effects of soot-contaminated
engine oil on wear and friction: A review”. In: Proceedings of
the Institution of Mechanical Engineers, Part D: Journal of Au-
tomobile Engineering 222.9 (2008) (cit. on p. 2).



76 REFERENCES

[GW64] M L Goldberger and K M Watson. Collision Theory. New York:
Wiley, 1964 (cit. on p. 10).

[KWT88] Michael Kass, Andrew Witkin, and Demetri Terzopoulos.
“Snakes: Active contour models”. In: International Journal of
Computer Vision 1.4 (1988), pp. 321–331 (cit. on p. 31).

[Mau+03] Calvin R. Maurer et al. “A linear time algorithm for computing
exact Euclidean distance transforms of binary images in arbi-
trary dimensions”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence (2003), pp. 265–270 (cit. on p. 40).

[MOS92] W. Mulder, S. Osher, and James A. Sethian. “Computing inter-
face motion in compressible gas dynamics”. In: J. Comput.
Phys. 100.2 (June 1992), pp. 209–228 (cit. on p. 39).

[MS89] David Mumford and Jayant Shah. “Optimal approximations by
piecewise smooth functions and associated variational prob-
lems”. In: Communications on Pure and Applied Mathematics
42.5 (1989), pp. 577–685. ISSN: 00103640 (cit. on p. 33).

[NKM12] Tuan Anh Nguyen, Yuichiro Kai, and Masato Mikami. “Study on
Combustion Noise from a Running Diesel Engine Based on Tran-
sient Combustion Noise Generation Model”. In: Proceedings of
the Institution of Mechanical Engineers, Part D: Journal of Au-
tomobile Engineering 3.4 (2012) (cit. on p. 2).

[OF03] Stanley Osher and Ronald Fedkiw. Level Set Methods and Dy-
namic Implicit Surfaces. 1st ed. Vol. 153. Applied Mathematical
Sciences. Springer-Verlag New York, 2003 (cit. on pp. 37, 40).

[OS88] Stanley Osher and James A. Sethian. “Fronts Propagating with
Curvature-dependent Speed: Algorithms Based on Hamilton-
Jacobi Formulations”. In: J. Comput. Phys. 79.1 (Nov. 1988),
pp. 12–49 (cit. on p. 31).

[Pap+06] Nils Papenberg et al. “Highly Accurate Optic Flow Computa-
tion with Theoretically Justified Warping”. In: International Jour-
nal of Computer Vision 67.2 (2006), pp. 141–158 (cit. on p. 18).

[Pen+99] Danping Peng et al. “A PDE-Based Fast Local Level Set
Method”. In: Journal of Computational Physics 155 (1999) (cit.
on p. 40).

[Set01] G. S. Settles. Schlieren and Shadowgraph Techniques. Springer
Verlag, 2001 (cit. on p. 9).

[Set99] J.A. Sethian. Level Set Methods and Fast Marching Meth-
ods: Evolving Interfaces in Computational Geometry, Fluid Me-
chanics, Computer Vision, and Materials Science. Cambridge
Monographs on Applied and Computational Mathematics.
Cambridge University Press, 1999. ISBN: 9780521645577 (cit. on
pp. 33, 40).



REFERENCES 77

[SFN95] T. Su, P. Farrell, and R. Nagarajan. “Nozzle Effect on High Pressure
Diesel Injection”. In: SAE 1995 Transactions: Journal of Engines
104.3 (1995) (cit. on p. 3).

[SH89] D. Shulman and J.-Y. Herve. “Regularization of discontinuous
flow fields”. In: Proceedings of the Workshop on Visual Motion.
1989, pp. 81–86. DOI: 10.1109/WVM.1989.47097 (cit. on p. 17).

[Wei15] Joachim Weickert. Image Processing and Computer Vision
Lecture. 2015. URL: http://www.mia.uni- saarland.de/
Teaching/ipcv15.shtml (cit. on pp. 13, 23).

http://dx.doi.org/10.1109/WVM.1989.47097
http://www.mia.uni-saarland.de/Teaching/ipcv15.shtml
http://www.mia.uni-saarland.de/Teaching/ipcv15.shtml


78 REFERENCES



79

Additional Sources and Further Reading

[Ada14] Timo Florian Adam. “Object Tracking using Variational Optic
Flow Methods”. MA thesis. 66123 Saarbrücken, Germany: Uni-
versität des Saarlandes, 2014.

[Boo92] Rein van den Boomgaard. “The morphological equivalent of
the Gauss convolution”. In: Nieuw Archief voor Wiskunde 10.3
(1992), pp. 219–236.

[Dem14] Oliver Demetz. Correspondence Problems in Computer Vision
Lecture. 2014. URL: http://www.mia.uni- saarland.de/
Teaching/COPCV14/copcv14.shtml.

[GW06] Rafael C. Gonzalez and Richard E. Woods. Digital Image Pro-
cessing (3rd Edition). Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 2006. ISBN: 013168728X.

[Mül14] Sabine Müller. “Image Processing Methods for Analysing
Glioblastoma Multiforme in MRI Data”. MA thesis. 66123 Saar-
brücken, Germany: Universität des Saarlandes, 2014.

[OP03] Stanley Osher and Nikos Paragios. Geometric Level Set Meth-
ods in Imaging, Vision and Graphics. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2003. ISBN: 0387954880.

[SAS11] Delphi France SAS. Principles of Operation Common Rail.
DDGX200B(EN). Delphi Aftermarket, 2011.

[Sch13] Christian Schmaltz. Advanced Image Analysis Lecture. 2013.
URL: http://www.mia.uni-saarland.de/Teaching/aia13.
shtml.

http://www.mia.uni-saarland.de/Teaching/COPCV14/copcv14.shtml
http://www.mia.uni-saarland.de/Teaching/COPCV14/copcv14.shtml
http://www.mia.uni-saarland.de/Teaching/aia13.shtml
http://www.mia.uni-saarland.de/Teaching/aia13.shtml


80 ADDITIONAL SOURCES AND FURTHER READING



Images of figure 1.4, ©2016 Delphi Automotive LLC, J.Wildgoose, Julie Blanckaert
Illustration of figure 1.2, 1.3, 1.1, ©2016 Delphi Automotive LLC, Shirley Pickering

©2016 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The Math-
Works, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product
or brand names may be trademarks or registered trademarks of their respective holders.

LATEX-typesetting based on stylesheets created by Oliver Barth, 2013




	Introduction
	 Motivation
	 Goals of Injection and Combustion Engineering
	 Diesel Injector Characteristics and Design

	Image Acquisition and Processing
	 Interaction of Light with Media
	 Image Acquisition Techniques
	 Shadowgraphy
	 Schlieren Photography

	 Image Acquisition
	 Objectives of Optical Analysis
	 Mathematical Representation of Image Data
	 Frequency Filtering
	 Partial Differential Equations
	 Variational Methods
	 Optical Flow Computation

	Optical Analysis Part I: Feature Detection
	 Histogram Equalization
	 Detection of First Sight of Light
	 Spatial Localization of the Injector Nozzle
	 Localization of Obstacles
	 Angular Partitioning of the Jets
	 Detection of First Sight of Fuel
	 Detection of the End of the Injection

	Optical Analysis Part II: Image Segmentation
	 Active Contour Models
	 Level Set Representation
	 Chan Vese Active Contour Model
	 Discretization of the Chan Vese Model
	 Initialization of the Level Set Function
	 Reinitialization of the Level Set Function
	 Termination Criterion

	 Multiphase Chan Vese Segmentation Model
	 Discretization of the Multiphase Model

	 Extension to the Spatiotemporal Domain
	 Discretization of Spatiotemporal Multiphase Approach

	 Optical Flow as a Feature for Segmentation

	Results and Conclusions
	 Parameter Selection
	 Weight of the Data Term
	 Weight of the Length Term
	 Weight of the Area Term
	 Choice of Initialization
	 Gaussian Kernel for Presmoothing
	 Reinitialization of Level Set Function
	 Choice of Integration Domain
	 Modifying the Grid Size

	 Analysis and Results
	 Preprocessing
	 Penetration Curve
	 Chan Vese Segmentation with Optical Flow Data Term

	 Future Work


