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Abstract

Quantifier elimination methods for real closed fields are an intensively studied
subject from both theoretical and practical points of view. This thesis studies
quantifier elimination based on virtual substitution with a particular focus on
practically applicable methods and techniques. We develop a novel, stand-
alone, and modular quantifier elimination framework for virtual substitution
that can in principle be extended to arbitrary but bounded degrees of quantified
variables. The framework subsumes previous virtual substitution algorithms.
Quantifier elimination algorithms are obtained via instantiation of our quantifier
elimination algorithm scheme with three precisely specified subalgorithms. We
give instantiations of our scheme up to degree three of a quantified variable,
which yields a quantifier elimination algorithm by virtual substitution for the
cubic case. Compared to previous virtual substitution-based approaches, we
propose novel improvements like smaller elimination sets and clustering.

Furthermore, we exploit the Boolean structure and develop a structural
quantifier elimination algorithm scheme. This allows us to take advantage of
subformulas containing equations or negated equations, simplify virtual substi-
tution results, and develop flexible bound selection strategies. We also revisit
the established technique of degree shifts and show how to generalize this within
our structural quantifier elimination algorithm scheme.

Restricting ourselves to existential problems, we address the established con-
cept of extended quantified elimination, which in addition to quantifier-free
equivalents yields answers for existentially quantified variables. We show how to
realize this concept within our quantifier elimination algorithm scheme. More-
over, we generalize our post-processing method for eliminating nonstandard
symbols from answers to the general case.

Our implementation of most of the concepts developed in this thesis is the
first implementation of a cubic virtual substitution method. Experimental re-
sults comparing our implementation with the established original implementa-
tion of the quadratic virtual substitution in the Redlog computer logic system
demonstrate the relevance of our novel techniques: On more than two hundred
quantifier elimination problems—considered in more than sixty scientific publi-
cations during the past twenty years—we never eliminate fewer quantifiers than
the Redlog’s original implementation. For a considerable number of problems
we eliminate more quantifiers.
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Zusammenfassung

Quantoreneliminationsverfahren für reelle abgeschlossene Körper sind sowohl
von der theoretischen als auch von der praktischen Seite ein intensiv studier-
tes Thema. Diese Dissertation befasst sich mit Quantorenelimination basierend
auf virtueller Substitution. Im Mittelpunkt stehen praktisch anwendbare Me-
thoden und Techniken. Wir entwicklen ein neues, unabhängiges und modulares
Quantoreneliminationsrahmenkonzept für virtuelle Substitution, das im Prinzip
auf beliebige Grade von quantifizierten Variablen erweitert werden kann. Unser
Rahmenkonzept subsumiert existierende auf virtueller Substitution beruhende
Algorithmen. Konkrete Algorithmen enstehen als Instanzen unseres Quantore-
neliminationsalgorithmusschemas mit drei genau spezifizierten Subalgorithmen.
Wir präsentieren Instanzen bis zu Grad drei einer quantifizierten Variable. Die
liefern einen Algorithmus beruhend auf virtueller Substitution für den kubischen
Fall. Im Vergleich mit anderen Verfahren basierend auf virtueller Substitution
präsentieren wir zahlreiche Verbesserungen wie etwa kleinere Eliminationsmen-
gen oder Clustering.

Außerdem nutzen wir die Boolsche Struktur aus und entwickeln ein struk-
turelles Quantoreneliminationsalgorithmusschema. Somit können wir Gleichun-
gen oder negierte Gleichungen ausnutzen, Ergebnisse der virtuellen Substitution
vereinfachen und flexible Schrankenauswahlstrategien entwickeln. Wir studie-
ren auch die bekannte Technik des „degree shifts“, die in manchen Fällen den
Grad der quantifizierten Variablen reduzieren kann. Wir zeigen wie man die-
se Technik in unserem Quantoreneliminationsalgorithmusschema realisiert und
verallgemeinert.

Für reelle existentielle Probleme diskutieren wir das Konzept der erweiter-
ten Quantorenelimination, die zu quantorenfreien Äquivalenten auch Antworten
für die quantifizierten Variablen liefert. Wir zeigen wie sich dieses Konzept in
unserem Quantoreneliminationsalgorithmusschema realisieren lässt. Zusätzlich
verallgemeinern wir unser Postprocessingverfahren zur Elimination von Nicht-
standardsymbolen aus Antworten.

Unsere Implementierung unterstützt die meisten in dieser Arbeit vorgestell-
te Konzepte und stellt damit die erste Implementierung einer kubischen Me-
thode basierend auf virtueller Substitution dar. Praktische Rechenexperimente,
in denen wir unsere Implementierung mit bekannten im Computerlogik-System
Redlog implementierten Verfahren für quadratische virtuelle Substitution ver-
glichen, zeigen die Relevanz unserer Techniken: Auf mehr als 200 in mehr als
sechzig wissenschaftlichen Publikationen beschriebenen Quantoreneliminations-
problemen eliminiert unsere Implementierung niemals weniger Quantoren als
die existierende Implementierung in Redlog. Für eine signifikante Anzahl von
Problemen können wir sogar mehr Quantoren eliminieren.
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Chapter 1

Introduction

Since the breakthrough results by Gödel [39] and Turing [79], the concepts of
Turing machines, computability, and decidability have gradually become central
concepts of modern mathematics, logic, and computer science. On the one hand
their results showed that Hilbert’s program was an unreachable goal in general.
On the other hand they triggered an intense work on studying the decidability
of various mathematical and algebraic theories, to accomplish at least partially
the goals of Hilbert’s program. A number of algebraic theories has played a
central role in this endeavor from the beginning. In fact, Presburger’s famous
result [60] from 1929 on the completeness of what is today known as “Presburger
Arithmetic” implied the decidability of the theory he considered even before the
term was coined in the works of Gödel and Turing.

Quantifier elimination (QE) served as a key method for obtaining complete-
ness and thus decidability results right from the beginning. Indeed, Presburger’s
result was a constructive proof, which yielded a quantifier elimination method as
well. Another prominent and well-known algebraic theory, whose completeness
and decidability was proven by providing a quantifier elimination algorithm, is
the theory of real closed fields. In his breakthrough work [78] from 1948, Tarski
gave a quantifier elimination algorithm for that theory, which plays a central
role for geometry, physics, and the sciences in general.

Since the study of quantifier elimination methods for the theory of real closed
fields is the main subject of this thesis, we give a few technical details already
here. The Tarski language is given by L = (0, 1,+,−, ·, 6=, <,≤,≥, >). The
symbol “=” and its interpretation as equality are considered part of interpreted
first-order logic so that it does not occur in L. The constants, function symbols,
and relation symbols of L are interpreted in the Tarski algebra (R, 0, 1,+,−, ·, 6=,
<,≤,≥, >) with their usual meaning. The theory of real closed fields is the first-
order theory of that Tarski Algebra.

A countable axiomatization of real closed fields [55, Chapter 8] can be ob-
tained by adding to the theory of ordered fields the following axioms:

1. an axiom asserting that every positive number has a square root, formally:
∃x
(
y > 0 −→ x2 = y

)
and

2. an axiom scheme asserting that every polynomial of odd degree has at least
one root, formally: ∃x

(
c2n+1 6= 0 −→ c2n+1x

2n+1 + · · ·+ c1x+ c0 = 0
)
for

each n ∈ N ∪ {0}.

1



2 CHAPTER 1. INTRODUCTION

Besides its nice logical and model-theoretic properties, the theory of real
closed fields turned out to be of great practical importance in the sciences and
engineering. A giant step towards the practical applicability of the theory was
made by Collins [21] in 1975. His doubly exponential Cylindrical Algebraic
Decomposition (CAD) algorithm for real quantifier elimination was a tremen-
dous improvement over Tarski’s non-elementary algorithm. During the following
decades, a number of improvements [22, 52] were proposed by Collins and his
students, and a number of CAD-based algorithms [10, 18] and variants [14, 16]
have been developed. Despite the doubly exponential worst-case complexity,
efficient implementations of CAD [13, 66] have been successfully applied in the
sciences and engineering [42, 15].

The inherent time complexity of the problem of real decision and quantifier
elimination remained open until the late 1980s, when Davenport and Heintz [23]
and Weispfenning [81] independently proved double exponential lower bounds.
Remarkably, Weispfenning’s bound even holds for linear formulas, which con-
tain no products of quantified variables. This result, which was quite disap-
pointing from a practical point of view, triggered another line of research on
quantifier elimination and decision procedures of better asymptotic time com-
plexity with respect to particular complexity parameters like numbers of quan-
tifier alternations, quantifiers, and polynomials, or even degrees of polynomi-
als [19, 7, 61, 6, 38]. Being tremendously important in their own right from the
theoretical point of view, there are no practical applications or even implemen-
tations so far, and there are theoretical arguments for the principal infeasibility
of those approaches [41].

A completely different line of research explored virtual substitution-based
methods, which originate from the proof of Weispfenning’s above-mentioned
complexity result. This field was pioneered by Weispfenning and his collabora-
tors [81, 51, 84, 67, 25]. Virtual substitution is an alternative approach that is
strong for formulas with low degrees of the quantified variables. Its main advan-
tage is that it is not as sensitive to the number of parameters as CAD. Another
advantage of virtual substitution is that it is singly exponential for formulas
with a bounded number of quantifier alternations. This is of great practical
importance, because mathematical theorems as well as real-world models often
lead to real quantifier elimination instances containing rather small numbers of
quantifier alternations.

The original description of the virtual substitution method as well as practi-
cally all existing improvements and implementations [27, 44] have been focusing
on linear and quadratic formulas. The first and probably the best known im-
plementation of the linear and quadratic virtual substitution was done within
the computer logic system Redlog [27], which itself is a package of the computer
algebra system Reduce. Redlog’s original implementation of virtual substitu-
tion in practice nicely complements CAD-based algorithms [13, 66, 18] by often
coping with quantifier elimination instances that are out of reach for such al-
gorithms. This naturally led to successful applications of virtual substitution-
based methods: Redlog was cited more than 350 times in the scientific literature
and its linear and quadratic virtual substitution for the reals was successfully
applied in various areas of computer science [71], engineering [75, 43], and the
sciences [74, 30, 68, 69, 86, 72, 73, 80, 36, 34, 35].

The only notable exception in the “exclusively” linear and quadratic vir-
tual substitution mindset in the literature is, surprisingly, an early work by
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Weispfenning [83], where he made precise how to perform virtual substitution
up to degree three. Indeed, this approach was quite different from the ap-
proaches to linear and quadratic virtual substitution. However, it has never
been improved, implemented, or tried in practice.

The motivation and the aim of this dissertation in the context of previous
work is to make the next step towards better practical applicability of virtual
substitution-based methods by developing novel theoretical as well as practi-
cal techniques and software implementations on the grounds of more than two
decades of theoretical and practical experiences from linear, quadratic, and cu-
bic virtual substitution. Since virtual substitution can in principle be extended
to arbitrary but bounded degrees [84, Section 6], another aim of this dissertation
is to show how to do this efficiently, and to lift techniques that are currently
applicable only in the linear and quadratic cases to higher degrees.

1.1 The Virtual Substitution Method
Any quantifier-free Tarski formula ϕ can be equivalently rewritten as a positive
formula, which is an ∧-∨-combination of atomic formulas. This is done by using
“∧,” “∨,” “¬,” along with de Morgan’s laws to move logical negation inside the
scopes of conjunction and disjunction until only atomic formulas occur in its
scope, and finally eliminating it altogether by changing the relations of the
atomic formulas. For example, an atomic formula ¬(a > b) is replaced with
a ≤ b. Notice that our set of equality and relation symbols {=, 6=, <,≤,≥, >} of
the Tarski language L is closed under negation. We will thus restrict ourselves
to positive formulas and furthermore we will assume that the right hand side of
each atomic formula is zero, which can be easily achieved by subtraction of the
right hand side.

Consider ∃x
(
ϕ(u, x)

)
, where ϕ is positive and u = u0, . . . , um−1 are the

parameter variables different from x. The original idea of virtual substitution
is to compute a finite elimination set E for ϕ and x consisting of elimination
terms e and substitution guards γ such that

∃x(ϕ)←→
∨

(γ,e)∈E

γ ∧ ϕ[x // e]. (1.1)

Here e are substituted into the quantifier-free formula ϕ by means of virtual
substitution [x // e] applied to every atomic formula in ϕ. Virtual substitution
[x // e] is a generalization of regular term substitution that maps atomic formulas
to quantifier-free formulas.

Let us get an impression what elimination terms and guards look like, how
to compute an elimination set, and how to perform virtual substitution. For
the sake of simplicity, we restrict ourselves here in the Introduction to formulas
containing only relations “=,” “≤,” and “≥.”

Without loss of generality, the left hand side term f of an atomic formula
f % 0 is a polynomial from Z[u][x]. Fixing arbitrary real values a ∈ Rm for
the parameters u, the satisfying set

{
c ∈ R | R |= (f % 0)(a, c)

}
of an atomic

formula f % 0 becomes a finite union of disjoint intervals: The polynomial f is
for fixed parameter values a either identically equal to zero or has finitely many
real roots. Since % ∈ {=,≤,≥}, the intervals constituting the satisfying set of
f % 0 for a are either closed or unbounded from above or below (or from above
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and below simultaneously). Obviously, all real endpoints of these intervals are
real roots of the polynomial f .

Since ϕ is a positive formula, the satisfying set S =
{
c ∈ R | R |= ϕ(a, c)

}
is obtained from the satisfying sets of atomic formulas occurring in ϕ by union
and intersection. Consequently, S is a finite union of disjoint intervals as well,
and, again, the endpoints of these intervals are real roots of the left hand sides
of the atomic formulas in ϕ.

Using this observation we deduce that ∃x(ϕ) holds for a if and only if there
exists a real root α of the left hand side of some atomic formula in ϕ such that
R |= ϕ(a, α). In other words, the roots of the left hand sides of the atomic
formulas in ϕ provide finitely many points to try for any parameter values a.
Intuitively, one replaces in this way an the existential quantifier ∃x ranging over
R with a finite disjunction over the real roots of the left hand sides of atomic
formulas in ϕ.

Weispfenning’s key idea was to use the equivalence of an existential quantifier
with a finite disjunction over the roots of the left hand sides to compute a finite
elimination set for ϕ and x as follows: Since for any parameter values a the
finitely many roots of the left hand sides of ϕ provide sufficiently many points α
to test the validity of ϕ(a, α), a uniform description of these finitely many points
in terms of the parameters u yields a finite set of, so to say, “uniform parametric
numbers” to try. Consequently, testing for which parameter values ϕ holds at
some of these “uniform parametric numbers” gives a quantifier-free equivalent
of ∃x(ϕ). These two constructs are the underlying concepts of elimination terms
and virtual substitution, respectively.

For the linear case, the elimination terms are obtained by symbolically solv-
ing for x to obtain a uniform parametric representation of the root. Consider
ax+ b % 0 with % ∈ {=,≤,≥} and a, b ∈ Z[u]. One takes the formal solution of
ax+ b = 0, i.e., − b

a . Since division is obviously not in the Tarski language, one
formally constructs the formal solution − b

a in a suitable extension language con-
taining a function symbol for multiplicative inverse. Observe that − b

a is defined
over R only when a is not zero. To this end, the formula a 6= 0 is introduced as
a guard of the elimination term − b

a .
We are now in the situation of Equation (1.1), where we have found γ =

(a 6= 0) and e = − b
a . As an example, for virtual substitution consider (cx+ d ≤

0)
[
x //− b

a

]
, which yields the quantifier-free Tarski formula −abc + a2d ≤ 0.

Notice how in (1.1) that transformation is carried out in conjunction with the
guard γ = (a 6= 0), which is sufficient for its correctness. Whenever, in contrast
a = 0, then the corresponding conjunction becomes false. In those cases, the
atomic formula ax+ b % 0 producing our test point does not contain a relevant
occurrence of x.

For a quadratic atomic formula ax2 + bx + c % 0, where % ∈ {=,≤,≥} and
a, b, c ∈ Z[u], one takes elimination terms −b+

√
∆

2a and −b−
√

∆
2a , where ∆ is the

discriminant of ax2 + bx+ c. These are terms in a suitable extension language
L′ of L, which contains function symbols for multiplicative inverse and square
root. Both of these elimination terms are defined in R if and only if a is nonzero
and ∆ is non-negative. Consequently, a 6= 0 ∧ b2 − 4ac ≥ 0 will be introduced
as a guard of both of these test points. The virtual substitution of −b±

√
∆

2a into
an atomic formula is based on substitution and arithmetic in L′ combined with
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equivalences like

a+ b
√
c ≤ 0←→ (a ≤ 0 ∧ 0 ≤ a2 − b2c) ∨ (b ≤ 0 ∧ a2 − b2c ≤ 0)

that yield a resulting equivalent Tarski formula for virtual substitution into any
atomic formula. For further details we refer the reader to [84].

This approach based on extensions of the language L using n-th root func-
tion symbols and multiplicative inverse cannot work beyond degree four because
of the famous Abel-Ruffini theorem. The uniform description of finitely many
relevant roots in terms of parameters for higher degrees requires a consider-
ably generalized approach. For the cubic case Weispfenning suggested one such
possible approach in [83]. The idea there was to look at what a third degree
polynomial can look like after fixing parameter values and using the information
on the shape of the polynomial to perform virtual substitution using a differ-
ent type of elimination terms and guards. This thesis picks up on that idea to
construct a novel framework for virtual substitution, which can be extended to
arbitrary but bounded degree.

Finally, observe that the approach for elimination of ∃x from ∃x(ϕ) can be
iterated to eliminate all quantifiers: First, compute a prenex normal form of an
input formula. Then proceed by processing the quantifier prefix from the inside
to the outside, eliminating one quantifier at a time. In that course, universal
quantifiers are translated to existential quantifiers by means of the equivalence
∀x(ψ)←→ ¬∃x(¬ψ).

1.2 Plan of the Thesis
This Introduction is followed by five core chapters, a concluding chapter, and
two appendices.

Chapter 2 is the central chapter of this thesis. We first introduce the no-
tions of parametric root descriptions and candidate solutions, which will be
used throughout the whole thesis. Building on these we formally define vir-
tual substitution and show how to perform it. With these tools at hand, we
then present the main result of the chapter—a quantifier elimination algorithm
scheme. That scheme is subsequently instantiated, by providing three specified
subalgorithms, to obtain a standalone virtual substitution-based quantifier elim-
ination algorithm up to degree three of a quantified variable. Then we discuss
a new technique called clustering, which has the potential to reduce the size of
output formulas obtained by virtual substitution. Finally, we discuss our frame-
work in the context of other existing virtual substitution-based approaches.

In Chapter 3 we extend the framework of Chapter 2 to take the Boolean
structure of an input formula into account. We begin by decomposing an input
formula into prime constituents, which are subformulas of an input formula that
can to some extent be regarded as atomic formulas during quantifier elimina-
tion. Then we define the notions of conjunctive associativity and “the DNF”
of a Tarski formula. We use these notions to prove a technique called Mark-
ing, which underlies the correctness proofs of the structural virtual substitution
approach and its variants. Prime constituent decompositions, condensing, and
deletion operators are the main blocks of the structural virtual substitution al-
gorithm scheme, which we present and prove correct next. Finally, we propose
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novel bound selection strategies based on 0-1 integer linear programming, which
exploit the Boolean structure of the input formula as well.

In Chapter 4 we integrate the established technique of degree shift into our
virtual substitution framework. We first show how to model a degree shift by
virtual substitution. Then we introduce the concept of structural degree shift
and show how this can be combined with the ideas from Chapter 3. Furthermore,
we discuss connections between structural degree shift and the computation of
the DNF.

Chapter 5 focuses on existential Tarski formulas. We discuss the concept
of extended quantifier elimination as a method for obtaining in addition to
quantifier-free equivalents also parametric sample solutions for the quantified
variables. Then we show how to perform extended quantifier elimination by
our virtual substitution framework. We also discuss the similarities and differ-
ences with respect to extended QE between traditional quadratic QE by virtual
substitution and our framework in the context of extended QE. Afterwards we
generalize a post-processing method for the quadratic case, which we have in-
troduced in [47], to our new framework. Finally, we report on computational
results obtained by our implementation of the post-processing method for the
quadratic case from [47].

Chapter 6 reports on our implementation within the computer logic system
Redlog and computational experiments carried out with it. Our implementa-
tion is standalone up to degree three of a quantified variable, and implements a
number of novel concepts developed in this thesis, most notably the structural
quantifier elimination algorithm scheme and the clustering technique. It is pre-
pared to be supplemented with other techniques presented in this thesis, e.g.,
efficient bound selection strategies. We also discuss practical issues one deals
with while implementing procedures for elimination of one existential quantifier
and of an entire block of existential quantifiers. Furthermore, we present results
of comprehensive computational experiments conducted with our implementa-
tion.

Chapter 7 summarizes the results obtained throughout this thesis and gives
a number of promising future research directions.

Appendix A contains formula schemes used in Chapter 2 to instantiate our
QE algorithm scheme for the quadratic and cubic cases. Appendix B contains
tables with detailed results and timings from Chapter 6.

1.3 Main Contributions
This thesis contributes to both theory and practice of real quantifier elimination
by virtual substitution. Our main contributions can be summarized as follows:

1. a novel framework for virtual substitution: We develop a modular algo-
rithm scheme for virtual substitution and precisely specify what needs to
be done to obtain complete virtual substitution algorithms via instanti-
ation. Our scheme unifies and improves on the existing approaches for
degrees one, two, and three by using our enhancements like smaller elimi-
nation sets and clustering. We instantiate the framework for degrees up to
three to obtain complete virtual substitution-based QE algorithms. Fur-
thermore, we make clear how to extend the scheme beyond degree three
and take first steps into this direction.
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2. structural virtual substitution: We propose and prove correct an exten-
sion of our virtual substitution framework that takes into account the
Boolean structure of an input formula. We show how to compute a prime
constituent decomposition, develop structural elimination sets, and struc-
tural virtual substitution along with novel bound selection strategies.

3. degree shift transformations: Revisiting an established heuristic to de-
crease the degree of a quantified variable in an input formula, we reanalyze
that transformation within our framework as another instance of virtual
substitution. Furthermore, we generalize degree shifts to our structural
setting of Chapter 3 and study their potential and limitations.

4. answers and standard answers: We show how to perform extended real QE
within our framework. We generalize our answer post-processing approach
from [47] for obtaining standard answers for existential problems when the
values of the parameters are fixed beforehand.

5. implementation: We present the first complete implementation of a virtual
substitution-based QE method beyond degree two. Extensive computa-
tional experiments on more than two hundred QE problems that have been
considered in the scientific literature over the past twenty years point to
a great practical potential of our techniques: Our implementation, which
is a part of the computer logic system Redlog, never eliminates a lower
number of quantifiers than the Redlog’s original implementation of linear
and quadratic quantifier elimination by virtual substitution. In fact, it
often eliminates even more quantifiers.
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Chapter 2

A Uniform Framework for
Virtual Substitution

In the previous chapter we have given an overview of the existing quantifier
elimination methods based on virtual substitution, and briefly sketched their
key properties. Our discussion there shows that it is not possible to talk about
“the” quantifier elimination by virtual substitution, because of the heterogeneity
of the existing approaches: The linear [51] and quadratic [84] virtual substitution
proceed in a rather algebraic manner, using formal fractions and root expres-
sions to represent the solutions of polynomial constraints. The cubic virtual
substitution [83], in contrast, is based on a geometric viewpoint, where roots
of a multivariate polynomial are represented as possible shapes of that polyno-
mial after fixing the values of its parameters. In this chapter we introduce and
prove correct our general and homogeneous framework unifying all notable vir-
tual substitution-based approaches. The mathematical basis of our framework
is the geometric viewpoint of Weispfenning that he used with his cubic virtual
substitution algorithm [83].

The main properties of our framework are the following: First, the frame-
work makes no difference between the linear, quadratic, cubic, or even higher
degree virtual substitutions. Second, established enhancements like bound se-
lection [85] or factorization will be included in the framework as its inherent
parts. Third, we will show how to model all notable virtual substitution-based
approaches within our framework. Fourth, the framework can be easily ex-
tended beyond degree three by providing three sub-algorithms, which we are
going to precisely specify here. Finally, the framework provides a solid basis
for an efficient implementation. Our corresponding implementation along with
computational experiments will be discussed in Chapter 6.

Recall the principal idea of virtual substitution from Section 1.1. We consider
one existential quantifier ∃x at a time. We want to eliminate it from ∃x(ϕ(u, x)),
where ϕ a positive formula. During the elimination of ∃x, all other variables
u = (u0, . . . , um−1) are regarded as parameters. The first step of the actual
elimination is essentially done by determining in a uniform way all possible
roots of the left hand sides in ϕ in terms of the parameters u. Given such a
“uniform parametric number” r and some values a ∈ Rm for the parameters u,
r possibly represents a real root. Each “uniform parametric number” r is then

9
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substituted into the whole formula ϕ so that the following holds for any fixed
parameter values a: The resulting formula ϕ[x // r] is satisfied by a if and only
if the solution r exists, and ϕ is satisfied by a and the real number described
by the solution r for parameter values a.

Using, e.g., the famous Cardano’s formulas, it would be possible to use
the ideas of quadratic virtual substitution [84] to obtain virtual substitution
algorithms when the degree of x is at most four. However, this was never done
explicitly. Even if it was, it would work only for degree three or four, because
of the well-known negative results on solvability of polynomial equations with
root expressions.

At the same time, it is important to understand that in spite of these negative
results, virtual substitution is not at all limited by them. We decided to take
the theoretical results of Weispfenning [83] as a basis for our framework. We use
his geometric viewpoint and completely avoid the use of formal fractions, root
expressions, and higher root symbols. We are going to show how to perform
virtual substitution for degree three and that a generalization for arbitrary but
bounded degrees is possible.

Our framework not only unifies existing virtual substitution approaches [81,
51, 83, 84, 31], it improves them by employing novel features that are its inherent
parts. The following are the most important of these features:

• In the linear case we obtain stronger guards as described in [25, Section 3.6]
for granted.

• In comparison with the existing quadratic quantifier elimination, we are
able to discard one out of two parametric zeroes of f when considering an
atomic formula f % 0, where % ∈ {<,>,≤,≥}. This lifts to degree three
and beyond.

• Using our clustering technique, we are able to substitute “more parametric
zeroes at once,” obtaining shorter quantifier-free equivalents in the cubic
case than the existing approach [83].

This chapter is organized as follows: In Section 2.1 we introduce real types
and parametric root descriptions. The latter will serve as the fundamental ob-
ject to represent all roots of a multivariate polynomial w.r.t. parameters. In
Section 2.2 we introduce the notion of a candidate solution set, which is in
principle a finite set of parametric root descriptions representing all “interest-
ing points” of a satisfying set of a Tarski formula ϕ(u, x) for any parameter
values a. Section 2.3 develops a formal basis for virtual substitution by spec-
ifying its semantics and proving its properties. In Section 2.4 we develop a
quantifier elimination algorithm scheme based on the notions of previous sec-
tions. The scheme is an algorithm parameterized by three precisely specified
sub-algorithms. We prove that any quantifier elimination algorithm obtained
by instantiating the scheme is correct under the assumption of the correctness
of the three sub-algorithms. Then, in Section 2.5 we show how to actually ob-
tain concrete quantifier elimination algorithms by instantiating the algorithm
scheme. In Section 2.6 we summarize the properties of the scheme and instan-
tiations thereof and compare them with the existing approaches. Finally, let us
note here that the first four sections of this chapter are presented on a rather
abstract level, because their main aim is to provide a theoretical basis that will
be used throughout the rest of this thesis.
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2.1 Parametric Root Descriptions
Univariate Polynomials and Real Types

Let f ∈ R[x] be a real univariate polynomial of degree d. The real type of f
is the finite sequence of distinct signs of f(b) as b ∈ R traverses the real line
from −∞ to ∞. If f has no real root, then the sign sequence consists of a
single element; it is (1) if and only if f is positive definite and (−1) if and only
if f is negative definite. The real type of f is (0) if and only if f = 0. If f
has n ≥ 1 distinct real roots, then these roots divide the real line into 2n + 1
alternating intervals and points over each of which f has constant sign. Hence,
the sign sequence has length 2n + 1 in this case. Accordingly, the real type of
f is an alternating sequence consisting of nonzero and zero signs in this case.
Real types generally have an odd length.

Example 1. For a univariate polynomial f ∈ R[x] one can compute all its real
roots using established real root isolation methods. With these real roots at
hand, it is straightforward to determine the real type of f : Evaluate the sign
of f for x at −∞, between each pair of successive real roots of f , and for x at
∞. Evaluation of the sign of f as x tends to ±∞ can be done using, e.g., the
well-known Cauchy upper bound on the magnitude of all roots of f .

The real type of −5x + 3 is (1, 0,−1). The real type of x2 + 1 is (1),
because x2 + 1 is positive definite. The real type of f = x3 − 2x2 − x + 2
is (−1, 0, 1, 0,−1, 0, 1) because f = (x + 1)(x − 1)(x − 2). The real type of
−x4 + 4x3 − 2x2 − 4x+ 3 = (−x− 1)(x− 1)2(x− 3) is (−1, 0, 1, 0, 1, 0,−1). 3

In the following we will also say that f realizes a real type t or that t is
realized by f . In both cases we mean that f has real type t.

A sign sequence t is a real d-type if there exists a univariate polynomial
f ∈ R[x] of degree exactly d realizing t. Using the fundamental theorem of
algebra we obtain an upper bound on the number of real d-types:

Proposition 2. Let d be a positive integer. Then there exist at most 2d+2 − 2
real d-types.

Proof. Consider a real univariate polynomial f ∈ R[x] of positive degree d, and
assume that f has n ≤ d distinct real roots. The n distinct real roots divide the
real line into n+ 1 open intervals, each with either positive or negative sign of
f . This yields at most 2n+1 possible real types of f . Hence, the number of real
d-types is at most

d∑
n=0

2n+1 = 2 · (2d+1 − 1) = 2d+2 − 2.

The given upper bound is not tight, because not all 2n+1 combinations of
signs are necessarily realized by a given d-degree polynomial. In the following
we will show how to compute the exact number of real d-types. In contrast to
Proposition 2, this computation will not lead to a closed-form expression. We
begin with the following lemmas:

Lemma 3. Consider f ∈ R[x] of positive degree d. Let m be the number of real
roots of f counting multiplicities. Then m ≡ d mod 2.
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Proof. By the fundamental theorem of algebra there are exactly d complex
roots. The non-real roots of a univariate polynomial with real coefficients come
in conjugate pairs, which preserves the parity of the number of real roots.

Lemma 4. Let (s1, . . . , s2n+1) be a real type of a positive-degree polynomial
f ∈ R[x] with n distinct real roots β1 < · · · < βn with multiplicities m1, . . . , mn,
respectively. Then for each j ∈ {1, . . . , n} we have s2j+1 = (−1)mjs2j−1.

Proof. First observe that f = (x − βj)mjr, where r ∈ R[x]. Since f has only
finitely many real roots, there exists n ∈ N \ {0} such that f(βj − 1

n ) 6= 0,
f(βj + 1

n ) 6= 0, and there is exactly one real root, namely βj , in the interval
[βj − 1

n , βj + 1
n ]. Therefore we have:

s2j−1 = sgn
(
f
(
βj −

1
n

))
= sgn

((
− 1
n

)mj)
sgn
(
r
(
βj −

1
n

))
s2j+1 = sgn

(
f
(
βj + 1

n

))
= sgn

(( 1
n

)mj)
sgn
(
r
(
βj + 1

n

))
.

The sign of r is constant and nonzero in the interval [βj − 1
n , βj + 1

n ], because
f has exactly one real root in that interval. Putting this together with the
equations above we finally obtain that s2j+1 = (−1)mjs2j−1.

Lemma 3 and Lemma 4 together imply: A real type t = (s1, . . . , s2n+1) is
realized by some d-degree polynomial with a positive leading coefficient if and
only if there exists f ∈ R[x] with the following properties:

(i) the degree of f is d, and the leading coefficient of f is positive,

(ii) f has exactly n distinct real roots β1, . . . , βn, and the multiplicities of
these roots are m1, . . . , mn, respectively,

(iii) we have s1 = (−1)d and s2j+1 = (−1)mjs2j−1 for each j ∈ {1, . . . , n}, and

(iv) the following integer constraint system is satisfied:

n∑
j=1

mj ≡ d mod 2,
n∑
j=1

mj ≤ d. (2.1)

The following lemma shows that we can without loss of generality assume
that mj ∈ {1, 2}.

Lemma 5. Consider a real type t = (s1, . . . , s2n+1). There exists a d-degree
f ∈ R[x] with real type t if and only if there exists a d-degree g ∈ R[x] with
real type t, and the n distinct real roots β1 < · · · < βn of g are either simple or
double roots of g.

Proof. Assume that there exists f ∈ R[x], deg f = d, with real type t. If
the multiplicity of some root βj is greater than two, then we compute g =

f
(x−βj)2 (x2 + 1). Observe that the degree of g is d and that the real type of
g is t. Applying this step finitely many times we obtain a polynomial g with
real type t whose all real roots have multiplicity one or two. The converse
implication is obvious.
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Consequently, a particular real type t is realized by f ∈ R[x] if and only if
the conditions (i)–(iv) above hold for f , and mj ∈ {1, 2} for each j ∈ {1, . . . , n}.
Lemma 4 guarantees that s1, . . . , s2n+1 are uniquely determined by root mul-
tiplicities m1, . . . , mn and by the sign of the leading coefficient of f , so we
obtain: The number R(d, n) of real types realizable by d-degree polynomials
with a positive leading coefficient and exactly n distinct real zeroes is the num-
ber of distinct solutions of the following integer constraint system:

n∑
j=1

mj ≡ d mod 2,
n∑
j=1

mj ≤ d,

where mj are now variables such that mj ∈ {1, 2}. Modeling an assignment to
2 by an assignment to 0 and simplifying yields that this system is equivalent to:

n∑
j=1

mj ≡ d mod 2,
n∑
j=1

mj ≥ 2n− d, (2.2)

where mj ∈ {0, 1}. To sum up, the number R(d, n) of real types realized by
d-degree polynomials with a positive leading coefficient and exactly n distinct
real roots is the number of solutions of (2.2). Since the solutions of (2.2) are
simply binary vectors of length n containing at least 2n−d nonzero entries, and
the parity of the number of the nonzero entries is the same as the parity of d,
we just directly count the number of binary vectors satisfying these constraints.
We obtain that

R(d, n) =
∑
j≥0

(
n

(2n− d) + 2j

)
.

To compute the total number of real d-types we have to take into account
polynomials with a negative leading coefficient. For this we use the following
lemma, which follows directly from our definition of real type:

Lemma 6. Let f ∈ R[x]. Polynomial f is of real type t = (s1, . . . , s2n+1) if
and only if −f is of real type −t = (−s1, . . . ,−s2n+1).

Using Lemma 6 and the fact that a d-degree polynomial can have at most d
distinct real roots we obtain that the total number T (d) of real d-types is

T (d) = 2 ·
d∑

n=0
R(d, n) = 2 ·

d∑
n=0

∑
j≥0

(
n

(2n− d) + 2j

)
. (2.3)

It is known [59] that a sum of the form
∑
j≥l
(
n
j

)
cannot be expressed in closed

form as a function of n and l, unless one resorts to hypergeometric functions.
Therefore, it is very unlikely that T (d) can be expressed in a “nice” closed form.
Table 2.1 lists the exact numbers T (d) of real d-types for degree up to ten. We
computed these numbers by evaluating the sum in (2.3).

Multivariate Polynomials and Parametric Root Descriptions

We now leave the “univariate world” and proceed to multivariate polynomials.
Let f ∈ Z[u][x] be a polynomial of positive degree d. The m variables u0,
. . . , um−1 denoted by u are called the parameters. We call x the main variable
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d 1 2 3 4 5 6 7 8 9 10
T (d) 2 6 8 16 24 42 66 110 176 288

Table 2.1: Exact numbers of real d-types for d ∈ {1, . . . , 10}.

of Z[u][x]. Throughout the rest of this thesis we use a recursive representation
that views f as a sum cdx

d + · · · + c1x + c0, where ci ∈ Z[u] and cd 6= 0. We
define lc f = cd and red f = cex

e + · · · + c1x + c0, where e ∈ {0, . . . , d − 1}
is maximal such that ce 6= 0. If there is no such e, then we define red f = 0.
Furthermore, we define coeffs f = {c0, . . . , cd}. We denote the first derivative of
f with respect to the main variable x by f ′.

Denote by 〈·〉 : Z[u]→ R the evaluation homomorphism in postfix notation,
i.e., for parameter values a ∈ Rm we have f〈a〉 ∈ R[x]. In case there are no
parameters, i.e., f ∈ Z[x], we have f〈〉 = f . A sign sequence t is a realizable
real d-type of f if there exist a ∈ Rm such that f〈a〉 has degree d and real type
t. It is obvious that each realizable real d-type of f is also a real d-type. The
converse, however, is not true, as the following example illustrates:

Example 7. • Realizable real 2-types of f = x2 + u1x + u0 ∈ Z[u0, u1][x]
are: (1), (1, 0, 1), and (1, 0,−1, 0, 1). The real 2-type (−1, 0,−1), for exam-
ple, is not realizable by f , because the leading coefficient of f is positive.

• Realizable real 2-types of u2x
2 + u1x + u0 ∈ Z[u0, u1, u2][x] are: (1),

(1, 0, 1), (1, 0,−1, 0, 1), (−1), (−1, 0,−1), and (−1, 0, 1, 0,−1). These are
actually all the real 2-types.

• Realizable real 1-types of u1x + 5 ∈ Z[u1][x] are (1, 0,−1) and (−1, 0, 1).
Again, these two real types are all real 1-types. 3

Let f ∈ Z[u][x] with d = deg f > 0. Let t = (s1, . . . , s2n+1) be a real d-type
containing n ≤ d zero entries. Let r ∈ {1, . . . , n} be the number of some root
when counting the distinct real roots of f〈a〉 from the left to the right, whereas
a ∈ Rm are arbitrary parameter values such that f〈a〉 is of real d-type t. The
number r is called a root index, and the pair (t, r) is called a root specification
of f . Let k ∈ N \ {0}. Consider a k-element set S =

{
(t1, r1), . . . , (tk, rk)

}
of

root specifications of f such that ti are pairwise distinct real d-types. The pair
(f, S) is called a parametric root description of f . If S consists of a single pair
(t, r), then we will for simplicity write (f, (t, r)) instead of (f, {(t, r)}).

Let f ∈ Z[u][x] with d = deg f > 0. Let t be a real d-type. A guard of
real d-type t for f is a quantifier-free Tarski formula in the parameters u that is
satisfied by some a ∈ Rm if and only if f〈a〉 is of real d-type t. Let k ∈ N \ {0}.
Consider a k-element set S =

{
(t1, r1), . . . , (tk, rk)

}
of root specifications of f

such that ti are pairwise distinct real d-types. A guard of the parametric root
description (f, S) is a quantifier-free Tarski formula γ in the parameters u that
is satisfied by a ∈ Rm if and only if there exists j ∈ {1, . . . , k} such that f〈a〉
is of real d-type tj . Notice that for any parameter values a there either exists
none or exactly one tj occurring in S such that f〈a〉 is of real d-type tj , because
the real types occurring in S are pairwise distinct.

The fact that R admits quantifier elimination guarantees the existence of a
guard of any parametric root description:
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Proposition 8 (Existence of Guards). Let f ∈ Z[u][x] with deg f = d > 0 and
let k ∈ N \ {0}. Consider a k-element set S =

{
(t1, r1), . . . , (tk, rk)

}
of root

specifications of f such that ti are pairwise distinct real d-types. Then there
exists a guard of the parametric root description (f, S).

Proof. Let j ∈ {1, . . . , k} and let tj = (s1, . . . , s2n+1) be such that n ≥ 0, s2i = 0
for each i ∈ {1, . . . , n}, and s2i+1 ∈ {−1, 1} for each i ∈ {0, . . . , n}. We define
γ′j to be the following Tarski formula:

∃y2 . . . ∃y2n

(
lc f 6= 0 ∧

n−1∧
i=1

y2i < y2(i+1) ∧
n∧
i=1

f [x / y2i] = 0 ∧

∀z
(
z < y2 −→ f [x / z] %1 0

)
∧ ∀z

(
z > y2n −→ f [x / z] %2n+1 0

)
∧

n−1∧
i=1
∀z
(
y2i < z < y2(i+1) −→ f [x / z] %2i+1 0

))
,

where for every i ∈ {0, . . . , n} we define %2i+1 to be “<” if s2i+1 = −1 and %2i+1
to be “>” if s2i+1 = 1. The usual substitution of a term v for a variable x into
a term f is denoted by f [x / v].

The formula γ′j asserts that the leading coefficient of f is nonzero, and that
there exist exactly n distinct real roots of f . Moreover, γ′j also specifies the
signs of f at ±∞ and the signs of f between its n distinct real roots. Therefore,
it is not hard to see that a ∈ Rm satisfies γ′j if and only if f〈a〉 has degree
d and real type tj , i.e., γ′j is a guard of real d-type tj for f . Since R admits
quantifier elimination, there exists a quantifier-free equivalent γj of γ′j . We
define γ as

∨k
j=1 γj . Then a ∈ Rm satisfies the quantifier-free Tarski formula γ

in the parameters u if and only if f〈a〉 has degree d and real type tj for some
j ∈ {1, . . . , k}.

The purpose of Proposition 8—whose proof is nonconstructive—is merely to
show that a guard as we specified it exists. Later we will show how to compute
guards of real types and parametric root descriptions for polynomials of degree
up to three.

Let f ∈ Z[u][x] with d = deg f > 0, and let S = {(t1, r1), . . . , (tk, rk)} be
a k-element set of root specifications such that ti are pairwise distinct real d-
types. For the parametric root description (f, S) we define a partial mapping
(f, S)〈a〉 from Rm to R as follows:

• If a ∈ Rm does not satisfy any guard γ of (f, S), then (f, S)〈a〉 is unde-
fined.

• If, in contrast, a ∈ Rm satisfies some guard γ of (f, S), then there exist
exactly one j ∈ {1, . . . , k} such that (tj , rj) ∈ S, and f〈a〉 is of real d-type
tj . In this case we define (f, S)〈a〉 to be the rj-th real root of f〈a〉 when
counting the distinct real roots of f〈a〉 from the left to the right.

Notice that (f, S)〈a〉 is well-defined when a satisfies some guard γ, because the
real d-types contained in S are pairwise distinct, and for every (tj , rj) ∈ S we
defined that rj is a valid root index for real d-type tj .

We say that (f, S) covers β ∈ R for parameter values a if (f, S)〈a〉 = β. In
case there are no parameters, we say that (f, S) covers β ∈ R if (f, S)〈〉 = β. If
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the parameter values a will be clear from the context, then we will simply say
that (f, S) covers β.

Consider an atomic formula f % 0, where f ∈ Z[u][x] and the relation symbol
% is one of {=, 6=, <,≤,≥, >}, and let a ∈ Rm. The satisfying set of f % 0 for
parameter values a is defined as

Φ(f % 0,a) =
{
b ∈ R | R |= (f % 0)(a, b)

}
.

If there are no parameters, i.e., if f ∈ Z[x], we shortly write Φ(f % 0). Since
f〈a〉 is a polynomial—and in particular a continuous function—with finitely
many roots, the satisfying set Φ(f % 0,a) is a finite union of disjoint intervals.
Furthermore, every endpoint of these intervals is a real root of f〈a〉:
Proposition 9. Let f ∈ Z[u][x] and let a ∈ Rm. The satisfying set Φ(f % 0,a)
is a finite union of pairwise disjoint intervals I1 ·∪ . . . ·∪ Il. Each interval Ij is
of one of the following eight forms:

]β1, β2[, [β1, β2], β1,

]β1,∞[, [β1,∞[,
]−∞, β1[, ]−∞, β1[,
]−∞,∞[,

for some β1, β2 ∈ R. Moreover, we have f〈a〉(β1) = f〈a〉(β2) = 0.
A real number β is a boundary point of the satisfying set Φ(f % 0,a) =

I1 ·∪ . . . ·∪ Il if it is the infimum or the supremum of some interval Ij . Since f ∈
Z[u][x], each boundary point β ∈ R of Φ(f % 0,a) is a real root of f〈a〉 ∈ R[x].
Moreover, β is of exactly one of the six types listed below. The satisfying set
Φ(f % 0,a) near β can be illustrated as follows:

1. isolated point: β ∈ Φ(f % 0,a), and there exists
a positive η ∈ R such that for all positive η′ ∈ R
smaller than η we have β − η′ /∈ Φ(f % 0,a) and
β + η′ /∈ Φ(f % 0,a), β

2. excluded point: β /∈ Φ(f % 0,a), and there exists
a positive η ∈ R such that for all positive η′ ∈ R
smaller than η we have β − η′ ∈ Φ(f % 0,a) and
β + η′ ∈ Φ(f % 0,a), β

3. strict lower bound: β /∈ Φ(f % 0,a), and there exists
a positive η ∈ R such that for all positive η′ ∈ R
smaller than η we have β − η′ /∈ Φ(f % 0,a) but
β + η′ ∈ Φ(f % 0,a), β

4. weak lower bound: β ∈ Φ(f % 0,a), and there exists
a positive η ∈ R such that for all positive η′ ∈ R
smaller than η we have β − η′ /∈ Φ(f % 0,a) but
β + η′ ∈ Φ(f % 0,a), β

5. strict upper bound: defined analogously as the strict
lower bound,

β
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6. weak upper bound: defined analogously as the weak
lower bound.

β

The definitions of satisfying sets and boundary points naturally generalize to
quantifier-free Tarski formulas ϕ(u, x). Accordingly, we denote the satisfying set
of ϕ for parameter values a ∈ Rm by Φ(ϕ,a). In the special case of a univariate
formula we simply write Φ(ϕ). Since ϕ is merely a Boolean combination of
atomic formulas, and “∧,” “∨,” “¬,” correspond to intersection, union, and
complement on satisfying sets, respectively, we obtain:

Proposition 10. Let ϕ(u, x) be a Tarski formula and let a ∈ Rm. The satisfy-
ing set Φ(ϕ,a) is a finite union of pairwise disjoint intervals I1 ·∪ . . . ·∪ Il. Each
interval Ij is either of one of the eight forms listed in Proposition 9 or of one
of the following two additional forms:

]β1, β2], [β1, β2[,

where β1, β2 ∈ R. Moreover, there exist polynomials f1 and f2 occurring as
the left hand sides of some atomic formulas in ϕ such that f1〈a〉(β1) = 0 and
f2〈a〉(β2) = 0.

The two new interval forms in Proposition 10 are introduced by the Boolean
structure of ϕ, as the following example illustrates:

Example 11. Consider polynomials f = x3 + u2x
2 + u0, g = x2 + u1x+ u0 ∈

Z[u0, u1, u2][x]. Let ϕ be f < 0 ∧ g ≥ 0.
For parameter values a = (1,−4,−5) we obtain f〈a〉 = x3− 5x2 + 1, g〈a〉 =

x2 − 4x + 1, and the satisfying set Φ(ϕ,a) = ]−∞, β1[ ·∪ [β2, β3[, where β1 ≈
−0.42917 is the first root of f〈a〉, β2 = 2 +

√
3 is the second root of g〈a〉, and

β3 ≈ 4.95935 is the third root of f〈a〉.
For parameter values a = (−15,−20,−5) we obtain Φ(ϕ,a) = ]−∞, β1],

where β1 = 10−
√

115 is the first root of g〈a〉 = x2 − 20x− 15.
Notice that Φ(ϕ,a) is unbounded from below for any parameter values a ∈ R,

because the leading coefficients of both f and g are positive. Since f is cubic
and g is quadratic, it follows that there always exists some negative real number
satisfying f < 0 ∧ g ≥ 0. 3

2.2 Candidate Solutions
A candidate solution is a triple (f, S, τ), where (f, S) is a parametric root de-
scription of f ∈ Z[u][x] and τ is one of the tags “IP,” “EP,” “SLB,” “WLB,”
“SUB,” or “WUB.” We define (f, S, τ)〈a〉 as (f, S)〈a〉. Let ϕ(u, x) be an arbi-
trary quantifier-free Tarski formula, and let a be a set c of candidate solutions.
Then c is a set of candidate solutions for ϕ if for any parameter values a ∈ Rm
the following holds: Every boundary point β ∈ R of the set Φ(ϕ,a) is properly
covered by c in the following sense:

(i) If β is an isolated point, then there exists a candidate solution (f, S, IP) ∈ c
such that (f, S)〈a〉 = β, or there exist candidate solutions (f1, S1,WLB),
(f2, S2,WUB) ∈ c such that (f1, S1)〈a〉 = (f2, S2)〈a〉 = β.
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(ii) If β is an excluded point, then there exists a candidate solution (f, S,EP) ∈
c such that (f, S)〈a〉 = β, or there exist candidate solutions (f1, S1,SLB),
(f2, S2,SUB) ∈ c such that (f1, S1)〈a〉 = (f2, S2)〈a〉 = β.

(iii) If β is a strict lower bound, then there exists (f, S,SLB) ∈ c such that
(f, S)〈a〉 = β, or there exist (f1, S1,WLB), (f2, S2,EP) ∈ c such that
(f1, S1)〈a〉 = (f2, S2)〈a〉 = β.

(iv) If β is a weak lower bound, then there exists (f, S,WLB) ∈ c such that
(f, S)〈a〉 = β, or there exist (f1, S1,SLB), (f2, S2, IP) ∈ c such that
(f1, S1)〈a〉 = (f2, S2)〈a〉 = β.

(v) If β is a strict upper bound, then the definition is analogous to the case
of a strict lower bound.

(vi) If β is a weak upper bound, then the definition is analogous to the case of
a weak lower bound.

Notice that the notion of “properly covered” demands that any boundary point
β is covered by candidate solutions with tags that fit the actual type of the
boundary point β: It is not sufficient that there exist parametric root descrip-
tions occurring in c covering β. Tags of the covering parametric root descrip-
tions, i.e., candidate solutions, have to be correct as well.

Observe that the syntactic concept of candidate solutions does not one-to-
one correspond with the semantic concept of boundary points. This is reflected
by the “or” clauses in the above definition.

Notice that if the formula ϕ does not contain x, then ∅ is a set of candidate
solutions for ϕ. Furthermore, any superset of a set of candidate solutions c for
ϕ is a set of candidate solutions for ϕ as well.

Example 12. Consider an atomic formula f ≤ 0, where f = ax2 + 5x− c and
a, c ∈ Z[u]. The following is one possible set of candidate solutions for f ≤ 0:

1. (f, ((1, 0,−1, 0, 1), 1),WLB),

2. (f, ((1, 0,−1, 0, 1), 2),WUB),

3. (f, ((1, 0, 1), 1), IP),

4. (f, ((−1, 0, 1, 0,−1), 1),WUB),

5. (f, ((−1, 0, 1, 0,−1), 2),WLB),

6. (5x− c, ((−1, 0, 1), 1),WUB).

Observe that the first five candidate solutions properly cover all boundary
points of the set Φ(f ≤ 0,a) when a〈a〉 6= 0. For showing this we systematically
enumerate all possible real 2-types and analyze what kinds of boundary points
the roots of f constitute. Notice that for the real 2-type (−1, 0,−1) there
exist no real boundary point, because if f〈a〉 is of real 2-type (−1, 0,−1), then
Φ(f ≤ 0,a) = ]−∞,∞[

The sixth candidate solution originates from red f . It properly covers bound-
ary points of the set Φ(f ≤ 0,a) when a〈a〉 = 0. 3
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β1 β2

Figure 2.1: A simple picture showing the situation discussed in Example 13.

Example 13. Consider the following formula ϕ(u, x):

a− b < 0 ∧ 2x− a− b ≥ 0 ∧ x2 − (a+ b)x+ ab ≥ 0,

where a, b ∈ Z[u]. Even though ϕ looks quite complicated, there exists a set
of candidate solutions for ϕ with only one element (x− b, ((−1, 0, 1), 1),WLB).
The reason for this is best explained on a simple picture. For any parameter
values a ∈ Rm with R |= (a − b < 0)〈a〉 the polynomials (2x − a − b)〈a〉 and
(x2−(a+b)x+ab)〈a〉—when graphed as functions of the main variable x— have
the shape shown in Figure 2.1. Furthermore, we have β1 = a〈a〉 and β2 = b〈a〉.
From the picture it is obvious that the satisfying set Φ(ϕ,a) has exactly one
weak lower bound, namely β2 = b〈a〉. This is because β1 = a〈a〉 and the root of
(2x−a−b)〈a〉—lying between β1 and β2—are both not relevant for the purpose
of parametric root description. 3

Examples 12 and 13 demonstrate two rather different approaches to compute
a set of candidate solutions for a given formula. The approach in Example 12
systematically treats all cases to properly cover all possible boundary points.
Example 13 uses in addition geometric information and exploits the structure of
the formula to obtain a very simple candidate solution set. Later in this chapter
we will show how to systematically compute a set of candidate solutions for ϕ
by doing an “exhaustive case analysis,” i.e., we will proceed similarly as in
Example 12.

The idea with the picture in Example 13, in contrast, actually hides another
quantifier elimination problem. Solving that problem we were able to deduce
that some roots are generally irrelevant, and compute a simpler candidate so-
lution set. Even though we will not mimic this costly approach in general, in
Chapter 3 we will show how a careful analysis of the formula structure can
considerably reduce the sizes of the computed candidate solution sets.

Now we continue our exposition and prove some properties of candidate
solutions, which will play a central role within the correctness proof of our
proposed framework for virtual substitution.

Proposition 14. Let ϕ1(u, x) and ϕ2(u, x) be two equivalent quantifier-free
Tarski formulas. Let c be a set of candidate solutions for ϕ1. Then c is a set of
candidate solutions also for ϕ2.

Proof. Let a ∈ Rm be some values for parameters u. We need to show that
any boundary point of the satisfying set Φ(ϕ2,a) is properly covered by c. Let
β ∈ R be a boundary point of Φ(ϕ2,a). Since ϕ2 is equivalent to ϕ1, we deduce
that Φ(ϕ1,a) = Φ(ϕ2,a). Therefore, β is a boundary point of Φ(ϕ1,a) as well.
Finally, the assumption that c is a set of candidate solutions for ϕ1 ensures that
β is properly covered by c. This proves that c is a set of candidate solutions for
ϕ2.
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Proposition 15. Let ϕ1(u, x) and ϕ2(u, x) be quantifier-free Tarski formulas.
Let c1 and c2 be sets of candidate solutions for ϕ1 and ϕ2, respectively. Then
c1 ∪ c2 is a set of candidate solutions for the formulas ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2.

Proof. We prove the proposition only for the formula ϕ1 ∧ ϕ2. The proof for
ϕ1 ∨ ϕ2 is similar.

Let a ∈ Rm be some values for parameters u. We need to prove that any
boundary point of the satisfying set Φ(ϕ1∧ϕ2,a) is properly covered by c1∪ c2.
To begin with, observe that Φ(ϕ1 ∧ ϕ2,a) = Φ(ϕ1,a) ∩ Φ(ϕ2,a). Let β ∈ R be
a boundary point of Φ(ϕ1 ∧ ϕ2,a). We distinguish the following cases:

(a) β is an isolated point: Since β ∈ Φ(ϕ1 ∧ ϕ2,a) = Φ(ϕ1,a) ∩ Φ(ϕ2,a), we
have one of the following two cases:

(aa) β is an isolated point of both sets Φ(ϕ1,a) and Φ(ϕ2,a), or
(ab) β is w.l.o.g. a weak upper bound of Φ(ϕ1,a) and a weak lower bound

of Φ(ϕ2,a).

In case (aa), β is properly covered by some (f, S, IP) ∈ c1 or by some
(f1, S1,WUB) ∈ c1 and (f2, S2,WLB) ∈ c1. In either case β is properly
covered by c1 ∪ c2.
In case (ab), there are four subcases to consider. However, in all of those
subcases we can deduce that β is properly covered by (f, S, IP) ∈ c1 ∪ c2
or by (f1, S1,WUB), (f2, S2,WLB) ∈ c1 ∪ c2. In either case, β is properly
covered by c1 ∪ c2.

(b) β is a strict lower bound: Here we have one of the following two cases:

(ba) β is a strict lower bound of both sets Φ(ϕ1,a) and Φ(ϕ2,a), or
(bb) β is w.l.o.g. a weak lower bound of Φ(ϕ1,a) and an isolated point of

Φ(ϕ2,a).

In case (ba), β is properly covered by some (f, S,SLB) ∈ c1 or by some
(f1, S1,WLB) ∈ c1 and (f2, S2,EP) ∈ c1. In either case β is properly
covered by c1 ∪ c2.
In case (bb), there are again four subcases to consider. In all of them
we can deduce that β is properly covered by (f, S,SLB) ∈ c1 ∪ c2 or by
(f1, S1,WLB) ∈ c1 ∪ c2 and (f2, S2,EP) ∈ c1 ∪ c2.

(c) If β is a weak lower bound, a strict upper bound, a weak upper bound, or
an excluded point, then we proceed in the same fashion as in cases (a) and
(b): Either β is the same boundary type of both Φ(ϕ1,a) and Φ(ϕ2,a),
or we need to distinguish four subcases what the situation could exactly
look like. In either of the four subcases we can show that β is properly
covered by c1 ∪ c2.

We have shown that β is properly covered by c1 ∪ c2 regardless of its boundary
type, i.e., the proof of the proposition for ϕ1 ∧ ϕ2 is finished.

Proposition 15 does not hold for Boolean operator “¬.” Consider the atomic
formula f ≤ 0, where f = ax2 + 5x − c and a, c ∈ Z[u], from Example 12,
where we had given a six element candidate solution set c. Here we show that
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c is not a set of candidate solutions for ¬(f ≤ 0), which is obviously equivalent
to f > 0. Assume that we have parameter values a such that a〈a〉 = 25

4 and
c〈a〉 = −1. Then f〈a〉 = 1

4 (5x + 2)2, so f〈a〉 is of real 2-type (1, 0, 1). The
set Φ(f > 0,a) has therefore one boundary point, namely the excluded point
− 2

5 . This point is not properly covered by c, because it is only covered by a
candidate solution with tag “IP.” Since Boolean operators “−→,” and “←→”
implicitly use negation, one easily shows that Proposition 15 does not hold for
those either.

Notice that we could define a kind of negation of a candidate solution set in
the sense that lower bounds would become upper bounds, strict bounds would
become weak bounds and vice-versa. An analogy of Proposition 15 would then
hold for the remaining Boolean operators (of course when appropriately negating
the involved candidate solution sets). However, we do not need this, because
we will work only with positive formulas.

Before we continue our exploration of the properties of candidate solution
sets, we introduce nonstandard extensions of the real numbers. Recall that L
denotes the Tarski language, and consider the extension language Lε = L ∪
{ε,∞}. By the compactness theorem of first-order logic, there exists a real
closed Lε-field R∗ where the interpretation of ε is a positive infinitesimal with
inverse∞, i.e., ε is greater than zero but smaller than any positive real number,
and ε·∞ = 1. The L-restriction of R∗ is a proper real closed extension field of R.
Since real closed fields admit quantifier elimination, they establish in particular
a model complete class, so that the extension is an elementary one. Formally,
R∗|L ⊃ R and R∗|L ∼= R. Throughout the rest of this thesis we will denote by ε
a positive infinitesimal with multiplicative inverse ∞, and by R∗ we will denote
a real closed extension Lε-field we have just described.

Lemma 16. Let ϕ(u, x) be a Tarski formula. Let a ∈ Rm be parameter values
and let β ∈ R. The following statements are equivalent:

(i) There exists a positive η ∈ R such that R |= ϕ(a, β ± η′) for any positive
η′ ∈ R smaller than η.

(ii) For any positive η ∈ R there exists positive η′ ∈ R smaller than η such
that R |= ϕ(a, β ± η′) holds.

(iii) R∗ |= ϕ(a, β ± ε).

Proof. To prove the lemma we show that (i) ⇒ (ii) ⇒ (iii) ⇒ (i):

• If (i) holds, then (ii) obviously holds as well; just pick for any positive η a
small η′ with R |= ϕ(a, β ± η′) whose existence is guaranteed by (i).

• Assume (ii). Assume for a contradiction that R∗ 6|= ϕ(a, β± ε), i.e., R∗ |=
¬ϕ(a, β ± ε). It follows that R∗ |= ¬ϕ[x /x± ε](a, β). Let n ∈ N \ {0}.
Then we can conclude that R∗ |= ψ[y / ε](a, β), where

ψ = (0 < y ∧ ny < 1 ∧ ¬ϕ)[x /x± y],

because ε is a positive infinitesimal, and R∗ |= (0 < ε ∧ nε < 1) holds.
Generalizing we obtain that R∗ |= ∃yψ(a, β). Since ε does not occur
in ψ, we restrict from structure R∗ to structure R∗|L ∼= R and use the
elementary equivalence to obtain that R |= ∃yψ(a, β). We have just shown
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that for any n ∈ N \ {0} there exists a0 ∈ R, 0 < a0 < 1
n , such that

R |= ¬ϕ(a, β ± a0). It follows that inf S = 0, where

S = { a ∈ R | 0 < a and R |= ¬ϕ(a, β ± a) }.

At the same time, Proposition 10 guarantees that the satisfying Φ(¬ϕ,a)
is a finite union of intervals, so the fact that the infimum of S is zero
implies that there exists some positive b0 ∈ R such that R |= ¬ϕ(a, β ± b)
for every positive b smaller than b0. On the other hand, (ii) ensures that
there exists a positive b smaller than b0 such that R |= ϕ(a, β ± b); which
is obviously a contradiction. Thus, (iii) holds.

• Assume that (iii) holds. We prove that (i) holds as well. The key idea
here is essentially the same as the idea of the proof of the implication
from (ii) to (iii). Since we have R∗ |= ϕ(a, β ± ε), we deduce that for any
n ∈ N \ {0} there exists a0 ∈ R, 0 < a0 <

1
n , such that R |= ϕ(a, β ± a0).

Thus, inf S = 0, where

S = { a ∈ R | 0 < a and R |= ϕ(a, β ± a) }.

Proposition 10 guarantees that the satisfying Φ(ϕ,a) is a finite union of
intervals, so the fact that the infimum of S is zero implies that there exists
some positive η ∈ R such that R |= ϕ(a, β±η′) for every positive η′ smaller
than η. Thus, (i) holds.

We have proven that (i) ⇒ (ii) ⇒ (iii) ⇒ (i), so the proof is finished.

Lemma 17. Let ϕ(u, x) be a Tarski formula. Let a ∈ Rm be parameter values.
The following statements are equivalent:

(i) There exists η ∈ R such that R |= ϕ(a, η′) for any η′ ∈ R strictly
greater/smaller than η.

(ii) For any η ∈ R there exists η′ ∈ R strictly greater/smaller than η such that
R |= ϕ(a, η′) holds.

(iii) R∗ |= ϕ(a,±∞).

Proof. The proof is similar to the proof of Lemma 16, i.e., we show that (i) ⇒
(ii) ⇒ (iii) ⇒ (i):

• If (i) holds, then (ii) obviously holds as well; just pick for any η ∈ R a real
number η′ greater/smaller than η with R |= ϕ(a, β ± η′) whose existence
is guaranteed by (i).

• We prove that (ii) implies (iii) for the case∞. The proof for −∞ is similar.
Assume that for any η ∈ R there exists η′ ∈ R greater than η such that
R |= ϕ(a, η′). We prove that R∗ |= ϕ(a,∞). Assume for a contradiction
that R∗ 6|= ϕ(a,∞), i.e., R∗ |= ¬ϕ(a,∞). Let n ∈ N. Then we can
conclude that R∗ |= ψ[x /∞](a), where ψ = (n < x ∧ ¬ϕ), because ∞ is
the multiplicative inverse of a positive infinitesimal ε, and R∗ |= n < ∞
holds. Generalizing and using the elementary equivalence of R∗ and R
we obtain that R |= ∃xψ(a). We have shown that for any n ∈ N we
have R |= ¬ϕ(a, n). It follows that the set Φ(¬ϕ,a) is unbounded from
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above. At the same time, Proposition 10 guarantees that the set Φ(¬ϕ,a)
is a finite union of intervals, so we obtain that there exists b0 ∈ R such
that R |= ¬ϕ(a, b) for any b ∈ R greater than b0. On the other hand,
(ii) ensures that there exists b greater than b0 such that R |= ϕ(a, b); a
contradiction. Thus, (iii) holds.

• The proof of (iii) ⇒ (i) is similar to the proof of implication (ii) ⇒ (iii),
so we omit it.

We have shown that (i) ⇒ (ii) ⇒ (iii) ⇒ (i), so the proof of the lemma is
finished.

Lemma 18. Let g ∈ Z[u][x], and let a ∈ Rm be parameter values such that
g〈a〉 is not identically zero. Let β ∈ R. Then the following hold:
(i) Let % ∈ {<,>}. If R |= (g % 0)(a, β), then R∗ |= (g % 0)(a, β ± ε).

(ii) R∗ |= (g 6= 0)(a, β ± ε).
Proof. (i) We prove this part of the lemma only for “<.” The proof for “>”

is similar, so we omit it.
Suppose that R |= (g < 0)(a, β). Assume for a contradiction that R∗ 6|=
(g < 0)(a, β ± ε), i.e., R∗ |= (g ≥ 0)(a, β ± ε). Lemma 16 then ensures
that there exists a positive η ∈ R such that R |= (g ≥ 0)(a, β± η′) for any
positive η′ ∈ R smaller than η. Since we assume that g〈a〉 6= 0, it follows
that g〈a〉 ∈ R[x] has finitely many zeroes. Therefore, there exists a positive
ν ∈ R smaller than η such that R |= (g > 0)(a, β ± ν′) for any positive
ν′ ∈ R smaller than ν. Recall that we assume R |= (g < 0)(a, β), i.e., g〈a〉
is negative at β. This is a contradiction, because we have just shown that
continuous function g〈a〉 changes its sign on an interval without hitting
the zero. This finishes the proof of (i).

(ii) We again proceed by contradiction. Assume that R∗ 6|= (g 6= 0)(a, β ± ε),
i.e., R∗ |= (g = 0)(a, β ± ε). Lemma 16 then guarantees that there exists
a positive η ∈ R such that R |= (g = 0)(a, β ± η′) for any positive η′ ∈ R
smaller than η. This is a contradiction, because we assume that g〈a〉 6= 0,
i.e., g〈a〉 has at most finitely many zeroes.

Now we are ready to prove a crucial property of candidate solution sets,
which can be intuitively formulated as follows: If c is a set of candidate solutions
for ϕ, then for any choice of parameter values a for which Φ(ϕ,a) 6= ∅ it is
guaranteed that c describes at least one “interesting point β” such that (a, β)
satisfies ϕ.
Theorem 19. Let ϕ(u, x) be a quantifier-free Tarski formula. Let c be a set
of candidate solutions for ϕ. Let a ∈ Rm be parameter values. We define two
finite subsets of R∗ as follows:

L =
{

(f, S)〈a〉 ∈ R | (f, S, τ) ∈ c and τ is “IP” or “WLB”
}
∪{

(f, S)〈a〉+ ε ∈ R∗ | (f, S, τ) ∈ c and τ is “EP” or “SLB”
}
∪ {−∞},

L′ =
{

(f, S)〈a〉 ∈ R | (f, S, τ) ∈ c and τ is “IP” or “WLB”
}
∪{

(f, S)〈a〉+ ε ∈ R∗ | (f, S, τ) ∈ c and τ is “WLB” or “SLB”
}
∪ {−∞}.

If Φ(ϕ,a) 6= ∅, then the following hold:
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(i) There exists ξ ∈ L such that R∗ |= ϕ(a, ξ).

(ii) There exists ξ ∈ L′ such that R∗ |= ϕ(a, ξ).

Proof. Assume that Φ(ϕ,a) is nonempty, so Φ(ϕ,a) is the union of pairwise
disjoint intervals I1, . . . , Il. We prove both parts of the theorem:

(i) Let I be a maximal connected satisfying subset. To begin with, observe
that if I is unbounded from below, then Lemma 17 ensures that R∗ |=
ϕ(a,−∞). Since we obviously have −∞ ∈ L, (i) follows.
If I is bounded from below, then denote by β ∈ R its infimum, and
distinguish the following two cases:

(a) If β ∈ I, then β is either an isolated point or a weak lower bound of
the satisfying set Φ(ϕ,a). Since c is a set of candidate solutions for
ϕ, this guarantees that there exists (f, S, τ) ∈ c such that τ is “IP” or
“WLB” and β = (f, S, τ)〈a〉. In either case β ∈ L. By the definition
of the satisfying set, we also have R∗ |= ϕ(a, β).

(b) If β /∈ I, then β is either an excluded point or a strict lower bound
of the satisfying set Φ(ϕ,a). Since c is a set of candidate solutions
for ϕ, this implies that there exists (f, S, τ) ∈ c such that τ is “EP”
or “SLB” and β = (f, S, τ)〈a〉. In either case we have β + ε ∈ L.
By the definition of the satisfying set, we now know that there exists
positive η ∈ R such that R |= ϕ(a, β + η′) for any positive η′ ∈ R
smaller than η. Lemma 16 now ensures that R∗ |= ϕ(a, β + ε).

This shows that (i) actually holds for any maximal connected satisfying
subset of Φ(ϕ,a), so the proof of part (i) is finished.

(ii) To begin with, observe that if the satisfying set Φ(ϕ,a) is unbounded from
below, then Lemma 17 ensures that R∗ |= ϕ(a,−∞). Since we obviously
have −∞ ∈ L′, (ii) follows.
If Φ(ϕ,a) is bounded from below, then denote by β ∈ R its infimum, and
distinguish the following two cases:

(a) If β ∈ Φ(ϕ,a), then the same arguments as given in the proof of
part (i) of the theorem show that there exists β ∈ L′ such that
R∗ |= ϕ(a, β).

(b) If β /∈ Φ(ϕ,a), then β is either an excluded point or a strict lower
bound of Φ(ϕ,a).
If β was an excluded point of Φ(ϕ,a), then there would exist a real
number β′ ∈ Φ(ϕ,a) such that β′ < β; a contradiction with the
assumption that β is the infimum of Φ(ϕ,a).
Therefore, β is a strict lower bound of Φ(ϕ,a), and since c is a set
of candidate solutions for ϕ, there exists (f, S,SLB) ∈ c properly
covering β, or there exist (f1, S1,WLB) ∈ c and (f2, S2,EP) ∈ c
properly covering β. In both cases we have β + ε ∈ L′. On the other
hand, the definition of the satisfying set ensures that there exists
positive η ∈ R such that R |= ϕ(a, β + η′) for any positive η′ ∈ R
smaller than η. Lemma 16 now ensures that R∗ |= ϕ(a, β + ε).
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In both cases we have just shown that there exists some ξ ∈ L′ such that
R∗ |= ϕ(a, ξ), so the proof of part (ii) is finished.

Note that the set L is obtained by taking those parametric root descriptions
that describe lower bounds, and adjusting strict lower bounds by ε. The set
L′ is obtained by taking lower bounds while ignoring all exception points, and
adjusting both strict and weak lower bounds by ε.

It is straightforward to adjust the proof of Theorem 19 to show that it holds
also for the following two finite subsets of R∗:

U =
{

(f, S)〈a〉 ∈ R | (f, S, τ) ∈ c and τ is “IP” or “WUB”
}
∪{

(f, S)〈a〉 − ε ∈ R∗ | (f, S, τ) ∈ c and τ is “EP” or “SUB”
}
∪ {∞},

U ′ =
{

(f, S)〈a〉 ∈ R | (f, S, τ) ∈ c and τ is “IP” or “WUB”
}
∪{

(f, S)〈a〉 − ε ∈ R∗ | (f, S, τ) ∈ c and τ is “WUB” or “SUB”
}
∪ {∞}.

Similarly as with L and L′, the set U is obtained by taking those paramet-
ric root descriptions that describe upper bounds, and adjusting strict upper
bounds by −ε. The set U ′ is obtained by taking upper bounds while ignoring
all exception points, and adjusting both strict and weak upper bounds by −ε.

As already mentioned in the proof of Theorem 19, statement (i) of the the-
orem actually holds for any maximal connected satisfying subset I of Φ(ϕ,a)
when L is taken. A careful look at the proof of (ii) reveals that this is not
the case when L′ is taken, because there could possibly exist an interval Ij ,
j ∈ {1, . . . , l}, whose infimum is an excluded point of the satisfying set Φ(ϕ,a)
that is covered exclusively by a candidate solution with tag “EP.” The following
simple example shows such a situation:

Example 20. Consider the atomic formula x− 5 6= 0. The candidate solution
(x− 5, ((−1, 0, 1), 1),EP) constitutes a set of candidate solutions for x− 5 6= 0,
because Φ(x−5 6= 0) = ]−∞, 5[ ·∪ ]5,∞[. Part (ii) of Theorem 19, however, does
not hold for maximal connected satisfying subset ]5,∞[. The reason is that the
infimum 5 of this interval is an excluded point of the satisfying set, which is
covered only by a candidate solution with tag “EP.” 3

2.2.1 Candidate Solutions and Factorization
So far we have analyzed the properties of parametric root descriptions and
candidate solutions. We did so for arbitrary quantifier-free Tarski formulas.
Here, in contrast, we restrict ourselves to atomic formulas of the form f % 0,
where f ∈ Z[u][x] and the relation % is one of {=, 6=, <,≤,≥, >}. We investigate
the special case when we can factorize f into c · f1 · · · fk, where c ∈ Z[u] and
fi ∈ Z[u][x] for all i ∈ {1, . . . , k}.

Since f % 0 translates to a set of sign conditions involving fi, it is quite
natural to expect that it is sufficient to consider any sets of candidate solutions
for atomic formulas fi % 0, i ∈ {1, . . . , k}, to derive a set of candidate solutions
for f % 0. We make things precise and show how to derive a set of candidate
solutions for f % 0 from any sets of candidate solutions for atomic formulas
involving the polynomials fi. We begin our exposition with the following key
proposition:
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Proposition 21. Let f ∈ Z[u][x] with deg f > 0. Let f = c · f1 · · · fk be
a factorization of f such that c ∈ Z[u], fi ∈ Z[u][x], and deg fi > 0 for all
i ∈ K = {1, . . . , k}. Denote by cςi , where ς is one of {=, 6=, <,≤,≥, >}, a set of
candidate solutions for the atomic formula fi ς 0. Then the following hold:

(i) If % ∈ {=, 6=}, then the set c =
⋃
i∈K

c%i is a set of candidate solutions for

the atomic formula f % 0.

(ii) If % ∈ {<,>}, then the set c =
⋃
i∈K

(c<i ∪ c>i ) is a set of candidate solutions

for the atomic formula f % 0.

(iii) If % ∈ {≤,≥}, then the set c =
⋃
i∈K

(c≤i ∪ c
≥
i ) is a set of candidate solutions

for the atomic formula f % 0.

Proof. Let a ∈ Rm and consider a boundary point β ∈ R of the satisfying set
Φ(f % 0,a). In all three parts of the proposition we have to prove that β is
properly covered by c.

To begin with, notice that the fact that β is a boundary point of the set
Φ(f % 0,a) ensures that f〈a〉 is not identically zero, i.e., c〈a〉 ∈ R \ {0} and
fi〈a〉 ∈ R[x] \ {0} for every i ∈ K. Recall that Proposition 9 guarantees that
each boundary point of the set Φ(f % 0,a) is a root of f〈a〉, so in particular
f〈a〉(β) = 0. Since f = c · f1 · · · fk and c〈a〉 ∈ R \ {0}, this implies that
fi〈a〉(β) = 0 for at least one i ∈ K.

Now we are ready to prove the three parts of the proposition:

(i) We show (i) for the case when % is “=.” The proof for the case when % is
“ 6=” is similar. Since we consider the atomic formula f = 0 and f〈a〉 is
not identically zero, β has to be an isolated point such that fi〈a〉(β) = 0
for at least one i ∈ K. Recall that fi〈a〉 ∈ R[x] \ {0}, so β is a boundary
point of the set Φ(fi = 0,a) as well. On the other hand, we assume
that c=i is a set of candidate solutions for fi = 0, so there exists either
(f, S, IP) ∈ c=i ⊆ c such that (f, S) covers β, or there exist (f1, S1,WLB),
(f2, S2,WUB) ∈ c=i ⊆ c such that both (f1, S1) and (f2, S2) cover β. In
either case we deduce that β is properly covered by c. This finishes the
proof of (i).

(ii) We show (ii) for the case when % is “<.” The proof for the case when % is
“>” is similar. Let I = {i ∈ K | fi〈a〉(β) = 0}. Since f = c · f1 · · · fk and
c〈a〉 ∈ R \ {0}, fi〈a〉 ∈ R[x] \ {0} for every i ∈ K, we deduce that I 6= ∅.
In the following we denote by ε a positive infinitesimal. The definition of
I together with Lemma 18 ensure that the following two equations hold:

sgn
(
f〈a〉(β − ε)

)
= sgn

(
c〈a〉(β − ε)

)
·
∏
i∈K

sgn
(
fi〈a〉(β − ε)

)
=

sgn
(
c〈a〉

)
·
∏
i∈I

sgn
(
fi〈a〉(β − ε)

)
·
∏

i∈K\I

sgn
(
fi〈a〉(β)

)
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and

sgn
(
f〈a〉(β + ε)

)
= sgn

(
c〈a〉(β + ε)

)
·
∏
i∈K

sgn
(
fi〈a〉(β + ε)

)
=

sgn
(
c〈a〉

)
·
∏
i∈I

sgn
(
fi〈a〉(β + ε)

)
·
∏

i∈K\I

sgn
(
fi〈a〉(β)

)
.

All sign expressions in both of these equations are nonzero, because both
sgn
(
f〈a〉(β−ε)

)
and sgn

(
f〈a〉(β+ε)

)
are nonzero. Isolating in both equa-

tions the common term sgn(c〈a〉), and putting these together we obtain
that

sgn
(
f〈a〉(β − ε)

)∏
i∈I sgn

(
fi〈a〉(β − ε)

) =
sgn
(
f〈a〉(β + ε)

)∏
i∈I sgn

(
fi〈a〉(β + ε)

) . (2.4)

Since we consider the atomic formula f < 0 and f〈a〉 is not identically
zero, β has to be a strict lower bound, a strict upper bound, or an exception
point of the set Φ(f < 0,a). We distinguish these three cases:

1. β is a strict lower bound: In this case we have sgn(f〈a〉(β − ε)) = 1
and sgn(f〈a〉(β+ε)) = −1: Plugging these values into Equation (2.4)
yields

−
∏
i∈I

sgn
(
fi〈a〉(β − ε)

)
=
∏
i∈I

sgn
(
fi〈a〉(β + ε)

)
.

Thus, sgn(fi〈a〉(β − ε)) 6= sgn(fi〈a〉(β + ε)) for at least one i ∈ I.
Now there are two cases to consider:
If sgn(fi〈a〉(β + ε)) = −1, then β is a strict lower bound of the set
Φ(fi < 0,a). Since c<i is a set of candidate solutions for fi < 0,
c<i ⊆ c properly covers β.
If sgn(fi〈a〉(β + ε)) = 1, then β is a strict lower bound of the set
Φ(fi > 0,a). Since c>i is a set of candidate solutions for fi > 0,
c>i ⊆ c properly covers β.
We have proven that β is properly covered by c in both cases, so the
proof of (ii) for the case when β is a strict lower bound is finished.

2. β is a strict upper bound: Now we have sgn(f〈a〉(β − ε)) = −1 and
sgn(f〈a〉(β + ε)) = 1. Similarly as in the previous case, plugging
these values into Equation (2.4) we obtain that there exists at least
one i ∈ I such that sgn(fi〈a〉(β − ε)) 6= sgn(fi〈a〉(β + ε)). Using
similar arguments as in the previous case, we show that β is properly
covered by c. This finishes the proof of (ii) for the case when β is a
strict upper bound.

3. β is an exception point: It holds that sgn(f〈a〉(β − ε)) = −1 and
sgn(f〈a〉(β+ ε)) = −1: Plugging these values into Equation (2.4) we
obtain ∏

i∈I
sgn
(
fi〈a〉(β − ε)

)
=
∏
i∈I

sgn
(
fi〈a〉(β + ε)

)
.

This implies that
(a) there exists at least one i ∈ I such that

sgn
(
fi〈a〉(β − ε)

)
= sgn

(
fi〈a〉(β + ε)

)
, or
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(b) there exist i, j ∈ I, where i 6= j ∈ I such that

sgn
(
fi〈a〉(β − ε)

)
= sgn

(
fj〈a〉(β + ε)

)
= 1,

sgn
(
fi〈a〉(β + ε)

)
= sgn

(
fj〈a〉(β − ε)

)
= −1.

In case (a), β is either an exception point of the set Φ(fi < 0,a), or
β is an exception point of the set Φ(fi > 0,a). Therefore, c = c<i ∪c>i
properly covers β.
In case (b), β is a strict lower bound of the set Φ(fi < 0,a) and
a strict upper bound of the set Φ(fj < 0,a). Therefore, there ex-
ists (f, S,EP) ∈ c<i ∪ c>j such that (f, S) covers β, or there exist
(f1, S1,SLB) and (f2, S2,SUB) from c<i ∪ c>j such that both (f1, S1)
and (f2, S2) cover β. This means that β is properly covered by
c = c<i ∪ c>j .

(iii) The proof is similar to the proof of part (ii), so we omit it.

Let us at this point state a few well-known equivalences that hold in the
theory of the real closed fields:

Proposition 22. The following equivalences hold in R for any f , g ∈ Z[u][x]
and any positive integer m:

f · g = 0 ←→ f = 0 ∨ g = 0,
f · g 6= 0 ←→ f 6= 0 ∧ g 6= 0,
f · g > 0 ←→ f > 0 ∧ g > 0 ∨ f < 0 ∧ g < 0,
f · g < 0 ←→ f < 0 ∧ g > 0 ∨ f > 0 ∧ g < 0,
g2m = 0 ←→ g = 0,
g2m 6= 0 ←→ g 6= 0,
g2m < 0 ←→ false,
g2m ≤ 0 ←→ g = 0,
g2m ≥ 0 ←→ true,
g2m > 0 ←→ g 6= 0,

g2m+1 % 0 ←→ g % 0, where % ∈ {=, 6=, <,≤,≥, >}.

With these equivalences at hand, we sketch an alternative proof of Propo-
sition 21: Consider an atomic formula of the form c · f1 · · · fk = 0. The first
equivalence of Proposition 22 ensures that this atomic formula is equivalent to
c = 0 ∨ f1 = 0 ∨ · · · ∨ fk = 0. Now we repeatedly apply Proposition 15 to
deduce that the union of candidate solutions for formulas fi = 0 yields a set of
candidate solutions for c = 0∨f1 = 0∨· · ·∨fk = 0. Proposition 14 then ensures
that this set is also a set of candidate solutions for the formula c · f1 · · · fk = 0.
This proves part (i) of Proposition 21 for the case when % is “=.”

Consider now an atomic formula of the form c · f1 · · · fk < 0. Applying
repeatedly the third and the fourth equivalence of Proposition 22 we end up
with a formula of length O(2k) containing only atomic formulas of the form c>< 0
and fi >< 0. Repeatedly applying Proposition 15 then ensures that the union of
candidate solutions for formulas fi >< 0 yields a set of candidate solutions for
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formula c · f1 · · · fk < 0. This proves part (ii) of Proposition 21 for the case
when % is “<.”

Observe that we do not need to write down the equivalent formula of length
O(2k) explicitly to construct a set of candidate solutions for c · f1 · · · fk < 0.
In fact, the formula c · f1 · · · fk < 0 hides the Boolean complexity behind the
algebraic complexity exhibited by a polynomial of higher degree. This way of
“hiding” the Boolean complexity behind the algebraic complexity has an inter-
esting consequence: A set of candidate solutions for c · f1 · · · fk < 0 obtained by
Proposition 21, i.e., by considering the factors of f , possibly contains redundant
candidate solutions. The actual reason for this will become clear in Chapter 3
in the context of conjunctive associativity, where we will analyze the Boolean
structure of such a formula. Here we illustrate this redundancy on a simple
example:

Example 23. Consider the atomic formula f1·f2 < 0, where f1 = x2−47 ∈ R[x]
and f2 = −x+ 5 ∈ R[x]. Sets of candidate solutions for atomic formulas f1

>
< 0

and f2
>
< 0 are listed in Table 2.2. Note that these sets are minimal, i.e., no

candidate solution can be removed from them.
Proposition 21 guarantees that the union of the sets listed in Table 2.2 is

a set of candidate solutions for atomic formula f1 · f2 < 0. This is indeed
the case, because the satisfying set Φ(f1 · f2 < 0) is ]−

√
47, 5[ ∪ ]

√
47,∞[,

and (f1, ((1, 0,−1, 0, 1), 1),SLB) covers −
√

47, (f1, ((1, 0,−1, 0, 1), 2),SLB) cov-
ers
√

47, and (f2, ((1, 0,−1), 1),SUB) covers 5. Therefore, all boundary points
are properly covered. At the same time, we see that the candidate solution
(f2, ((1, 0,−1), 1),SLB) is redundant, because it covers the boundary point 5,
which is not a strict lower bound. Similarly, (f1, ((1, 0,−1, 0, 1), 1),SUB) cov-
ers −

√
47, and (f1, ((1, 0,−1, 0, 1), 2)},SUB) covers

√
47, but neither −

√
47 nor√

47 is a strict upper bound of the satisfying set Φ(f1 · f2 < 0). It would be
actually sufficient to take{

(f1, ((1, 0,−1, 0, 1), 1),SLB),
(f1, ((1, 0,−1, 0, 1), 2),SLB),
(f2, ((1, 0,−1), 1),SUB)

}
to obtain a set of candidate solutions for f1 · f2 < 0.

Our example also shows that Proposition 21 cannot be strengthened in the
sense that we need to include both sets of candidate solutions generated by “<”
as well as by “>:” In our example, taking the union of the sets of candidate
solutions only for f1 < 0 and f2 < 0 does not yield a set of candidate solutions
for f1 · f2 < 0, because the strict lower bound

√
47 is not properly covered, and

the strict upper bound 5 is not properly covered. Similarly, taking the union
of the sets of candidate solutions for f1 > 0 and f2 > 0 does not yield a set of
candidate solutions for f1 · f2 < 0, because the strict lower bound −

√
47 is not

properly covered. 3

2.3 Semantics of Virtual Substitution
Let f ∈ Z[u][x] be a polynomial of positive degree d. Let (f, S), where S =
{(t1, r1), . . . , (tk, rk)}, be a parametric root description of f . A virtual substitu-
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atomic formula set of candidate solutions
f1 < 0

{
(f1, ((1, 0,−1, 0, 1), 1),SLB),
(f1, ((1, 0,−1, 0, 1), 2),SUB)

}
f1 > 0

{
(f1, ((1, 0,−1, 0, 1), 2),SLB),
(f1, ((1, 0,−1, 0, 1), 1),SUB)

}
f2 < 0

{
(f2, ((1, 0,−1), 1),SLB)

}
f2 > 0

{
(f2, ((1, 0,−1), 1),SUB)

}
Table 2.2: Sets of candidate solutions for atomic formulas in Example 23.

tion [x // (f, S)] of (f, S) for x is a mapping from atomic formulas to quantifier-
free formulas. We denote the quantifier-free formula obtained by virtual substi-
tution applied to an atomic formula g % 0 by (g % 0)[x // (f, S)]. Semantically,
(g % 0)[x // (f, S)] is a formula F in the parameters u such that for any param-
eter values a ∈ Rm the following implication holds: If a satisfies a guard γ of
(f, S), then a satisfies F if and only if R |= (g % 0)(a, (f, S)〈a〉). Notice that
the assumption that a satisfies γ ensures that (f, S)〈a〉 is defined and yields a
real number.

Proposition 24 (Existence of Virtual Substitution). Let (f, S), where S =
{(t1, r1), . . . , (tk, rk)}, be a parametric root description of f ∈ Z[u][x]. Let g % 0
be an atomic formula. Then there exists a quantifier-free Tarski formula F in
the parameters u meeting our specification of virtual substitution.

Proof. Let j ∈ {1, . . . , k} and let tj = (s1, . . . , s2n+1) be such that n ≥ 0, s2i = 0
for each i ∈ {1, . . . , n}, and s2i+1 ∈ {−1, 1} for each i ∈ {0, . . . , n}. Let γj be a
guard of the real type tj for f . We define F ′j to be the following Tarski formula:

γj ∧ ∃y1 . . . ∃yn

(
n−1∧
i=1

yi < yi+1 ∧
n∧
i=1

f [x / yi] = 0 ∧ (g % 0)[x / yrj ]
)
.

Since R admits quantifier elimination, there exists a quantifier-free equivalent
Fj of F ′j . We define F as

∨k
j=1 Fj .

Let now a ∈ Rm be some parameter values satisfying a guard γ of (f, S).
Since the real types {t1, . . . , tk} occurring in S are pairwise distinct, there exists
exactly one tj such that f〈a〉 is of real type tj = (s1, . . . , s2n+1). Consequently,
the guard γj of the real type tj for f is satisfied by a and the guards γi, i 6= j
of the real types ti for f are not satisfied. This means that f〈a〉 has exactly
n distinct real roots β1, . . . , βn, and (f, S)〈a〉 = βrj because (tj , rj) ∈ S.
Therefore, F ′j is satisfied if and only if yi are assigned the real numbers βi,
respectively, such that R |= (g % 0)(a, (f, S)〈a〉) holds.

Proposition 24 is similar to Proposition 8, which stated the existence of a
guard for a parametric root description. The purpose of Proposition 24 is also
similar: It merely states that a virtual substitution formula with the specified se-
mantics exists. To actually compute a virtual substitution formula we could use
any quantifier elimination algorithm for the reals and eliminate the quantifiers
from the formulas F ′j in the proof of Proposition 24.
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Computing quantifier-free equivalents of the formulas F ′j when f = anx
n +

· · · + a0 and g = bmx
m + · · · + b0, where ai and bj are parameters, would

yield a finite number of “offline” formula schemes that could be used to perform
virtual substitution as we have defined it at the beginning of this section when
the degrees of “producing” and “target” polynomials are not higher than n
and m, respectively. However, in practice this turned out to be infeasible by
methods like CAD already for n = 3 and m = 1 because of a high number
of the parameters. In Section 2.5 we will develop a self-contained approach
that derives “offline” virtual substitution formula schemes and guards without
any external quantifier elimination algorithm. We will make explicit virtual
substitution formulas for the case when n ≤ 3 and show how our approach
generalizes to arbitrary but bounded degree of f .

The term substitution of a rational a
b , a ∈ Z, b ∈ N \ {0}, for x into an

atomic formula g % 0, where g = cdx
d + · · · + x1x + c0 ∈ Z[u][x], ci ∈ Z[u],

and % ∈ {=, 6=, <,≤,≥, >}, yields the following atomic formula in a suitable
extension language L′ of L:

cd

(a
b

)d
+ · · ·+ c1

(a
b

)
+ c0 % 0.

Equivalently rewriting the result as an L-formula we obtain:

cda
db0 + · · ·+ c1ab

d−1 + c0a
0bd % 0.

In the following we overload the notation for the L′-term substitution, and
denote this atomic L-formula by (g % 0)[x / ab ]. According to our definition of
virtual substitution, this atomic L-formula is equivalent to the formula (g %
0)
[
x //

(
bx− a, ((−1, 0, 1), 1)

)]
for the following reasons:

(i) bx− a ∈ Z[x] is of real type (−1, 0, 1) regardless of parameter values a,

(ii) a guard of the parametric root description
(
bx−a, ((−1, 0, 1), 1)

)
is there-

fore “true,” and

(iii)
(
bx−a, ((−1, 0, 1), 1)

)
〈a〉 = a

b , because the first and only real root of bx−a
is obviously a

b for any parameter values a.

This shows that

R |=
(

(g % 0)
[
x //

(
bx− a, ((−1, 0, 1), 1)

)]
←→ (g % 0)

[
x /

a

b

])
(a)

for arbitrary parameter values a ∈ Rm. Observe that the L′-term substitution
[x / t] of an arbitrary L′-term t for x is modeled by virtual substitution in a
similar fashion as the L′-term substitution of a rational [x / ab ] we have just
described.

The mapping [x // (f, S)] naturally generalizes to quantifier-free Tarski for-
mulas ϕ, by applying [x // (f, S)] to each atomic formula occurring in ϕ. This is
compatible with our definition of virtual substitution:

Theorem 25 (Semantics of Virtual Substitution). Let ϕ(u, x) be a quantifier-
free Tarski formula. Let (f, S), where f ∈ Z[u][x], be a parametric root descrip-
tion with a guard γ(u). Let a ∈ Rm be parameter values satisfying γ. Then
R |= ϕ[x // (f, S)](a) if and only if R |= ϕ(a, (f, S)〈a〉).
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Proof. Let a ∈ Rm be parameter values satisfying γ. Therefore, (f, S)〈a〉 is
defined and yields a real number. We proceed by structural induction on the
Boolean structure of ϕ. To begin with, observe that if ϕ is an atomic formula,
then the theorem directly follows from our definition of virtual substitution
[x // (f, S)].

Assume that ϕ is of the form ϕ1 ∧ ϕ2, and that the theorem holds for ϕ1
and ϕ2. Since ϕ[x // (f, S)] is obtained by applying [x // (f, S)] to each atomic
formula of ϕ, we have ϕ[x // (f, S)] = ϕ1[x // (f, S)] ∧ ϕ2[x // (f, S)]. By the
induction hypothesis, R |= ϕi[x // (f, S)](a) if and only if R |= ϕi(a, (f, S)〈a〉)
for i ∈ {1, 2}. Therefore,

R |= (ϕ1 ∧ ϕ2)[x // (f, S)](a) if and only if R |= (ϕ1 ∧ ϕ2)(a, (f, S)〈a〉),

which proves the statement of the theorem for the case when ϕ = ϕ1 ∧ ϕ2.
Assume now that ϕ is of the form ¬ϕ′, and that the theorem holds for

ϕ′. We have ϕ[x // (f, S)] = ¬(ϕ′[x // (f, S)]), and by the induction hypothesis
R 6|= ϕ′[x // (f, S)](a) if and only if R 6|= ϕ′(a, (f, S)〈a〉). Thus,

R |= (¬ϕ′)[x // (f, S)](a) if and only if R |= (¬ϕ′)(a, (f, S)〈a〉).

The proof is similar for other Boolean operators, so we omit it.

At this point we would like to explain a rather subtle fact: If we allowed
root specifications with duplicate real types to occur in the set S of root spec-
ifications of a parametric root description (f, S), then Theorem 25 would not
hold. Another natural consequence is that (f, S)〈a〉 would then be a mapping
from Rm into finite subsets of R. We illustrate this on a simple example.

Consider f = x2 − 4x + 3 ∈ Z[u][x]. This polynomial has two real roots
(namely 1 and 3), and it is of real type t = (1, 0,−1, 0, 1). Consider set
S = {(t, 1), (t, 2)} of root specifications, which obviously contains duplicate real
types. Since f contains no parameters, the parametric root description (f, S)
has guard “true,” and specifies both real roots of f at once, i.e., (f, S)〈a〉 would
yield {1, 3} for any parameter values a. Now we consider two formulas:

• (x − 2 < 0 ∧ x − 2 > 0)[x // (f, S)]: Semantically, this formula should be
obviously “false,” because neither the first nor the second real root of f is
both smaller and greater than 2.

• (x−2 < 0)[x // (f, S)]∧(x−2 > 0)[x // (f, S)]: According to our definition of
virtual substitution, both formulas evaluate to “true,” because there exists
a real root of f specified by (t, 1) ∈ S—namely 1—that is smaller than
2. Similarly, there exists a real root of f that is specified by (t, 2) ∈ S—
namely 3—that is greater than 2. Therefore, the whole formula evaluates
to “true.”

This is definitely not what we expect from a reasonable definition of virtual
substitution. Therefore, the constraint in our definition of parametric root de-
scription does not allow the set of root specifications to contain duplicate real
types, so we cannot substitute more than one real root per real type, and The-
orem 25 holds. Finally, notice that there exists a virtual substitution of para-
metric root description (f, S) from our example, but this virtual substitution is
not compatible with the Boolean connective “∧,” as we have just shown.
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2.3.1 Virtual Substitution and Pseudo Remaindering
Our definition of virtual substitution is nonconstructive, and we postponed its
realization to later sections. At the same time, Proposition 24 guarantees the
existence of an algorithm with the following specification:

Specification of Algorithm vs-prd-at
(
g % 0, (f, S), x

)
:

Input: an atomic formula g % 0 and a parametric root description (f, S) such
that g, f ∈ Z[u][x], % ∈ {=, 6=, <,≤,≥, >}, and deg g < deg f .
Output: (g % 0)[x // (f, S)], i.e., a quantifier-free formula in the parameters u
meeting our specification of virtual substitution.

Regardless of the actual realization of algorithm vs-prd-at, we introduce
here a variant of pseudo remaindering that will allow us to extend the applica-
bility of vs-prd-at to target atomic formulas g % 0, where g is of arbitrarily
high degree:

Algorithm pseudo-sgn-rem(g, f, x).
Input: polynomials g, f ∈ Z[u][x] such that deg f > 0.
Output: a polynomial h ∈ Z[u][x] with the following properties:

(i) deg h < deg f

(ii) For any parameter values a ∈ Rm such that (lc f)〈a〉 6= 0 and for any
value β ∈ R of x the following implication holds: If f〈a〉(β) = 0, then
sgn
(
h〈a〉(β)

)
= sgn

(
g〈a〉(β)

)
.

1. While deg g ≥ deg f do

1.1. If lc f divides lc g, then

g := red g − lc g
lc f x

deg g−deg f red f.

1.2. If lc f is positive semi-definite, then

g := lc f red g − (lc g)xdeg g−deg f red f.

1.3. If lc f is negative semi-definite, then

g := − lc f red g + (lc g)xdeg g−deg f red f.

1.4. If none of the conditions above holds, then

g := (lc f)2 red g − (lc f)(lc g)xdeg g−deg f red f.

2. Return g.

Lemma 26. Algorithm pseudo-sgn-rem meets its specification.

Proof. To begin with, observe that if deg g < deg f , then the lemma holds,
because h = g. Therefore, we assume that deg g ≥ deg f . It is not hard to
check that the degree of g lowers with each iteration of the while loop, so the
algorithm terminates and returns a polynomial of strictly lower degree than f .
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Let us now analyze one iteration of the while loop. Denote the value of
g before the iteration by g1. Denote the value of g after the iteration by g2.
Assume that property (ii) holds for g1. We show that property (ii) holds for g2
as well.

Let a ∈ Rm be parameter values such that (lc f)〈a〉 6= 0 and let β ∈ R be
such that f〈a〉(β) = 0. We need to show that sgn

(
g2〈a〉(β)

)
= sgn

(
g1〈a〉(β)

)
.

To achieve this, we first show that for polynomial

r = (lc f)2 red g1 − (lc f)(lc g1)xdeg g1−deg f red f

we have sgn
(
r〈a〉(β)

)
= sgn

(
g1〈a〉(β)

)
. Using the obvious fact that for any

p ∈ Z[u][x] we have p = (lc p)xdeg p + red p, we obtain the following:

(lc f)2g1 − (lc f)(lc g1)xdeg g1−deg ff =

= (lc f)2((lc g1)xdeg g1 + red g1
)

− (lc f)(lc g1)xdeg g1−deg f((lc f)xdeg f + red f
)

=

= (lc f)2(lc g1)xdeg g1 + (lc f)2 red g1

− (lc f)2(lc g1)xdeg g1 − (lc f)(lc g1)xdeg g1−deg f red f =

= (lc f)2 red g1 − (lc f)(lc g1)xdeg g1−deg f red f =
= r.

Recall that we assume f〈a〉(β) = 0. Using this together with the identity
r = (lc f)2g1− (lc f)(lc g1)xdeg g1−deg ff shows that r〈a〉(β) =

(
(lc f)2g1

)
〈a〉(β).

On the other hand, we also assume (lc f)〈a〉 6= 0, so sgn
(
(lc f)2〈a〉

)
= 1. Thus

sgn
(
r〈a〉(β)

)
= sgn

(
g1〈a〉(β)

)
,

and we distinguish four cases, which correspond to the four cases in the body
of the while loop:

1. lc f divides lc g: In this case we obtain g2 = r
(lc f)2 . Since sgn

(
(lc f)2〈a〉

)
=

1, this implies that sgn
(
g2〈a〉(β)

)
= sgn

(
g1〈a〉(β)

)
.

2. lc f is positive semi-definite: Here we have g2 = r
lc f and sgn

(
(lc f)〈a〉

)
=

1, because we assume that sgn
(
(lc f)〈a〉

)
6= 0. Thus, we conclude that

sgn
(
g2〈a〉(β)

)
= sgn

(
g1〈a〉(β)

)
in this case as well.

3. lc f is negative semi-definite: Now we have g2 = r
− lc f , and it follows that

sgn
(
(− lc f)〈a〉

)
= 1, because we assume sgn

(
(lc f)〈a〉

)
6= 0. Again, we

obtain sgn
(
g2〈a〉(β)

)
= sgn

(
g1〈a〉(β)

)
.

4. none of the above: Here we have g2 = r, so sgn
(
g2〈a〉(β)

)
= sgn

(
g1〈a〉(β)

)
follows.

We showed that in each of the four cases we have sgn
(
g1〈a〉(β)

)
= sgn

(
g2〈a〉(β)

)
.

Finally, by induction on the number of iterations of the while loop, we obtain
that sgn

(
h〈a〉(β)

)
= sgn

(
g〈a〉(β)

)
, i.e., the property (ii) holds for h returned

by the algorithm.



2.3. SEMANTICS OF VIRTUAL SUBSTITUTION 35

Lemma 26 guarantees that it is correct to use pseudo-sgn-rem as a prepro-
cessing that ensures that the degree of g is strictly smaller than the degree of f
when calling vs-prd-at:

Proposition 27. Let (f, S), where S = {(t1, r1), . . . , (tk, rk)}, be a parametric
root description of f ∈ Z[u][x]. Let g % 0, where g ∈ Z[u][x], be an atomic
formula. Denote by h the polynomial returned by pseudo-sgn-rem(g, f, x). De-
note by ψ the formula returned by vs-prd-at(h % 0, f, x). Then for a ∈ Rm
satisfying a guard γ of (f, S) we have

R |=
(
(g % 0)[x // (f, S)]←→ ψ

)
(a).

Proof. We need to show that a satisfies (g % 0)[x // (f, S)] if and only if a satisfies
formula ψ.

Assume that R |= (g % 0)[x // (f, S)](a). Since a satisfies γ, f〈a〉 is of
some real type tj , whereas (tj , rj) ∈ S. Using Theorem 25 we obtain that
R |= (g % 0)(a, (f, S)〈a〉). At the same time, γ is satisfied by a if and only if f〈a〉
is of some real type tj occurring in S and the degree of f〈a〉 is deg f . This ensures
that f〈a〉 is a polynomial of degree deg f , i.e., (lc f)〈a〉 6= 0. Since (f, S)〈a〉 is
a root of f〈a〉, the specification of algorithm pseudo-sgn-rem guarantees that
sgn
(
h〈a〉(β)

)
= sgn

(
g〈a〉(β)

)
. Therefore, R |= (h % 0)(a, (f, S)〈a〉). Theo-

rem 25 together with the specification of Algorithm vs-prd-at and Lemma 26
now ensure that R |= ψ(a).

The proof of the converse implication is similar, so we omit it.

We would like to emphasize that the polynomial h computed by algorithm
pseudo-sgn-rem is not exactly the pseudo remainder of g pseudo divided by f .
Our algorithm pseudo-sgn-rem is more careful about the sign of lc f to ensure
that condition (ii) holds. The following example illustrates the difference:

Example 28. Consider polynomials g = x2 + u2 ∈ Z[u0, u1, u2][x] and f =
u0x

2 − x + u1 ∈ Z[u0, u1, u2][x]. The pseudo remainder of g and f is r =
x+ u0u2 − u1, and we have u0g = f + r. The polynomial r, however, does not
satisfy condition (ii): For u0 = −2, u1 = 6, u2 = 1, x = −2 we have f = 0
and g = 5 but r = −10, so in particular sgn g 6= sgn r for these values of the
parameters and x. On the other hand, the polynomial h = u0x + u2

0u2 − u0u1
computed by pseudo-sgn-rem satisfies condition (ii) for any assignment to the
parameters u0, u1, u2, and the variable x. 3

2.3.2 Virtual Substitution with Nonstandard Symbols
Let us remind ourselves of the key idea of quantifier elimination by virtual
substitution: To obtain a necessary and sufficient condition for ∃x(ϕ) to hold we
evaluate ϕ(u, x) at finitely many “interesting” test points. These “interesting”
test points have the following property for any parameter values a ∈ Rm: If
Φ(ϕ,a) is nonempty, then there exists an “interesting” test point that is in the
set Φ(ϕ,a). This replaces the existential quantification ∃x over the infinite field
R with evaluation of ϕ at a finite set of test points.

One way to obtain an “interesting” set of test points for ϕ is by means of
candidate solutions as introduced in Section 2.2. These are parametric root de-
scriptions that represent potential interval endpoints of the satisfying set Φ(ϕ,a)
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for any a. The actual evaluation of ϕ at a test point is subsequently realized by
virtual substitution of a parametric root description using algorithm vs-prd-at.

This approach has the following caveat: If, for some parameter values a, the
satisfying set of Φ(ϕ,a) contains an open interval, for example when we allow
relations {6=, <,>} to occur in ϕ, we may simply miss that open interval: We
evaluate ϕ exactly at interval endpoints. This could then lead to a quantifier-
free “equivalent” that is not satisfied by a even though Φ(ϕ,a) is nonempty.
Therefore, the adjustment by ε and −∞ in Theorem 19 is necessary: We need
a concept that would evaluate ϕ infinitesimally close to a test point, so that
we can guarantee to hit an open interval as well. For similar reasons, it may
be necessary to evaluate ϕ as x tends to ±∞. This is where the virtual sub-
stitution involving nonstandard symbols enter the game. The description of
what exactly is sufficient to substitute to guarantee the correctness of the quan-
tifier elimination approach will be made precise in Section 2.4, where we will
give a quantifier elimination algorithm scheme. Now we continue with defining
semantics of virtual substitutions involving nonstandard symbols.

Formally, we define the virtual substitution of the nonstandard symbol ∞
into an atomic formula as follows: (g % 0)[x //∞] is a quantifier-free Tarski
formula in the parameters u that is satisfied by parameter values a ∈ Rm if and
only there exists η ∈ R such that R |= (g % 0)(a, η′) holds for any η′ ∈ R greater
than η. Intuitively, a satisfies (g % 0)[x //∞] if and only if g〈a〉 has “the correct”
sign as x tends to ∞. The virtual substitution of −∞ is defined analogously.

Algorithm vs-inf-at performs the specified virtual substitution of nonstan-
dard symbols ±∞.

Algorithm vs-inf-at(g % 0, ι, x).
Input: an atomic formula g % 0, where g = cdx

d + · · · + c1x + c0 ∈ Z[u][x],
ci ∈ Z[u], and % ∈ {=, 6=, <,≤,≥, >}. The nonstandard part ι is ±∞.
Output: a quantifier-free Tarski formula (g % 0)[x // ι].

1. If deg g < 1, then return g % 0.

2. If % is “=,” then return
∧d
i=0 ci = 0.

3. If % is “ 6=,” then return
∨d
i=0 ci 6= 0.

4. If ι =∞ or deg g is even, then h := lc g, else h := − lc g.

5. If % ∈ {<,≤}, then assign “<” to ς. If % ∈ {≥, >}, then assign “>” to ς.

6. Return
(
h ς 0 ∨ (h = 0 ∧ vs-inf-at(red g % 0, ι, x))

)
.

Proposition 29. Algorithm vs-inf-at meets its specification.

Proof. We prove the proposition only for the case when ι is ∞. The proof for
ι = −∞ is similar, so it is omitted. We proceed by induction on the degree d
of g. To begin with, observe that when d = deg g < 1, then vs-inf-at trivially
meets its specification.

In the following we assume that d > 0 and that vs-inf-at meets its speci-
fication when given a polynomial of degree strictly smaller than d. Let a ∈ Rm
be arbitrary parameter values. We distinguish cases depending on the relation
symbol %:
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• % is “=:” A real univariate polynomial has arbitrarily large real roots
if and only if it is identically zero. Therefore, g〈a〉 ∈ R[x] is zero for
arbitrarily large real numbers if and only if its coefficients simultaneously
vanish, or equivalently g〈a〉 = 0. This is equivalent to the statement that
formula

∧d
i=0 ci = 0 returned by the algorithm is satisfied by parameter

values a. This proves that (g = 0)[x //∞] is
∧d
i=0 ci = 0, so the algorithm

meets its specification in this case.

• % is “<:” Now observe that real univariate polynomial g〈a〉 ∈ R[x] is
negative for arbitrarily large values of x if and only if its leading coefficient
is negative, or when its leading coefficient is zero but (red g < 0)[x //∞]
holds. Since ι = ∞ the algorithm sets h to lc g. Therefore, the returned
formula is of the form lc g < 0 ∨

(
lc g = 0 ∧ vs-inf-at(red g % 0,∞, x)

)
,

which holds exactly when the leading coefficient is negative or when the
leading coefficient vanishes but (red g < 0)[x //∞] holds. Since we assume
that vs-inf-at meets its specification for polynomials of degree strictly
smaller than d, we obtain that vs-inf-at(red g % 0,∞, x) is (red g <
0)[x //∞], so the resulting formula is indeed (g < 0)[x //∞].

If % ∈ {6=,≤,≥, >}, then the proof is done by a similar case distinction on the
sign of lc g as for “=” and “<,” so we omit it.

To illustrate the algorithm on an example, let us consider the virtual sub-
stitution (g ≤ 0)[x //−∞] for g = u4x

4 + (u2 − 7)x2 − 5x + u0 ∈ Z[u0, . . . , u4].
The output of Algorithm vs-inf-at(g ≤ 0,∞, x) is

u4 < 0 ∨
(
u4 = 0 ∧

(
u2 − 7 < 0 ∨ (u2 − 7 = 0 ∧ (5 < 0 ∨ 5 = 0 ∧ u0 < 0))

))
.

Obviously, this formula is equivalent to

u4 < 0 ∨ (u4 = 0 ∧ u2 − 7 < 0).

Now we continue with virtual substitutions involving ±ε. The virtual sub-
stitution of a parametric root description (f, S) plus a positive infinitesimal ε
into an atomic formula g % 0 is a quantifier-free Tarski formula in the parame-
ters u denoted by (g % 0)[x // (f, S) + ε]. Semantically, (g % 0)[x // (f, S) + ε] is
a formula F such that for parameter values a ∈ Rm the following implication
holds: If a satisfies a guard γ of (f, S), then a satisfies F if and only if there
exists a positive η ∈ R such that R |= (g % 0)(a, (f, S)〈a〉 + η′) for all positive
η′ ∈ R smaller than η. Similarly as with the virtual substitution of (f, S), the
assumption that a satisfies γ ensures that (f, S)〈a〉 is defined and yields a real
number. The virtual substitution [x // (f, S)− ε] is defined analogously.

The virtual substitution [x // (f, S)± ε] can be indirectly realized by the vir-
tual substitution [x // (f, S)] as follows: First expand the target atomic formula
g % 0 using algorithm expand-eps-at, and then apply the virtual substitution
[x // (f, S)] to the obtained formula. The intuitive idea behind this expansion
algorithm is the following: If, for some parameter values a ∈ Rm, the sign of
g〈a〉 is nonzero at β ∈ R, then the sign does not change infinitesimally close to
β. However, if β is a zero of g〈a〉, then the sign of g〈a〉 infinitesimally close to
β depends on the signs of the derivatives of g〈a〉 at β.



38 CHAPTER 2. A FRAMEWORK FOR VIRTUAL SUBSTITUTION

Algorithm expand-eps-at(g % 0, ι, x).
Input: an atomic formula g % 0, where g = cdx

d + · · · + c1x + c0 ∈ Z[u][x],
ci ∈ Z[u], and % ∈ {=, 6=, <,≤,≥, >}. The nonstandard part ι is ±ε.
Output: a quantifier-free Tarski formula ψ(u, x) such that for any parameter
values a ∈ Rm and any β ∈ R we have: R∗ |= (g % 0)(a, β + ι) if and only if
R |= ψ(a, β).

1. If deg g < 1, then return g % 0.

2. If % is “=,” then return
∧d
i=0 ci = 0.

3. If % is “ 6=,” then return
∨d
i=0 ci 6= 0.

4. If ι = ε, then h := g′, else h := −g′.

5. If % ∈ {<,≤}, then assign “<” to ς. If % ∈ {≥, >}, then assign “>” to ς.

6. Return
(
g ς 0 ∨ (g = 0 ∧ expand-eps-at(h % 0, ι, x))

)
.

To prove the correctness of algorithm expand-eps-at we will need the fol-
lowing lemma:

Lemma 30. Let g ∈ Z[u][x], and let a ∈ Rm be parameter values such that
g〈a〉 6= 0. Let β ∈ R. If R |= (g = 0)(a, β), then the following hold:

R∗ |= (g < 0)(a, β + ε) if and only if R∗ |= (g′ < 0)(a, β + ε),
R∗ |= (g > 0)(a, β + ε) if and only if R∗ |= (g′ > 0)(a, β + ε),
R∗ |= (g < 0)(a, β − ε) if and only if R∗ |= (g′ > 0)(a, β − ε),
R∗ |= (g > 0)(a, β − ε) if and only if R∗ |= (g′ < 0)(a, β − ε).

Proof. We are going to prove that R∗ |= (g < 0)(a, β + ε) is equivalent to the
statement R∗ |= (g′ < 0)(a, β+ε). The proof of the three remaining equivalences
is similar.

Assume that R∗ |= (g < 0)(a, β + ε). We assume for a contradiction that
R∗ |= (g′ ≥ 0)(a, β+ ε). Our assumption that g〈a〉 6= 0 together with R |= (g =
0)(a, β) implies that g〈a〉 is a non-constant polynomial with finitely many roots,
so g′〈a〉 is a nonzero polynomial with finitely many roots. Lemma 16 ensures
that there exists positive η ∈ R such that R |= (g′ > 0 ∧ g 6= 0)(a, β + η′) for
all positive η′ ∈ R strictly smaller than η. By the mean value theorem we have:
For any α ∈ ]β, β+η[ there exists δ ∈ ]β, α[ such that g′〈a〉(δ) = g〈a〉(α)−g〈a〉(β)

α−β .

Since g〈a〉(β) = 0, g′〈a〉(δ) > 0, and α − β > 0, this proves that R |= (g >
0)(a, α) for all α ∈ ]β, β+η[. Using Lemma 16 we obtain R∗ |= (g > 0)(a, β+ε),
which contradicts our assumption R∗ |= (g < 0)(a, β + ε). This shows that
R∗ |= (g′ < 0)(a, β + ε) indeed holds.

To prove the converse implication, assume that R∗ |= (g′ < 0)(a, β + ε) and
that R∗ |= (g ≥ 0)(a, β + ε). Using similar arguments as above we deduce that
there exists positive η ∈ R such that R |= (g′ < 0 ∧ g 6= 0)(a, β + η′) for all
positive η′ ∈ R strictly smaller than η. By the mean value theorem we again
obtain: For any α ∈ ]β, β + η[ there exists δ ∈ ]β, α[ such that g′〈a〉(δ) =
g〈a〉(α)−g〈a〉(β)

α−β . Since g〈a〉(β) = 0, g′〈a〉(δ) < 0, and α − β > 0, this proves
that R |= (g < 0)(a, α) for any α ∈ ]β, β + η[. Using Lemma 16 we obtain
that R |= (g < 0)(a, β + ε). This contradicts our assumption that R∗ |= (g ≥
0)(a, β + ε).
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Lemma 31. Algorithm expand-eps-at meets its specification.

Proof. We prove the case when ι = ε. The proof for ι = −ε is similar. We
proceed by induction on the degree d of g. To begin with, observe that when
d = deg g < 1, then expand-eps-at trivially meets its specification.

In the sequel we assume that d > 0 and that expand-eps-at meets its
specification for polynomials of degree strictly smaller than d. Let a ∈ Rm be
arbitrary parameter values and let β ∈ R. We distinguish cases depending on
the relation symbol %:

• % is “=:” A real univariate polynomial g〈a〉 has a real root β + ε with
a nontrivial infinitesimal part if and only if g〈a〉 is identically zero. As
a consequence, g ∈ Z[u][x] has a real root with a nontrivial infinitesimal
part if and only if

∧d
i=0 ci = 0 is satisfied by a. Therefore, R∗ |= (g =

0)(a, β + ε) is equivalent to R |= (g = 0)(a). This is in turn equivalent to
the statement that a satisfies the formula ψ returned by the algorithm.

• % is “<:” In this case the formula ψ returned by the algorithm is of
the form g < 0 ∨ (g = 0 ∧ ψ′), where ψ′ is the formula returned by
expand-eps-at(g′ < 0, ε, x). Since deg g′ is strictly smaller than deg g,
the induction hypothesis ensures that R∗ |= (g′ < 0)(a, β + ε) if and only
if R |= ψ′(a, β). We now have to show the following equivalence:

R∗ |= (g < 0)(a, β + ε) if and only if R |= ψ(a, β).

The statement on the right hand side of the equivalence translates to
R |= (g < 0 ∨ (g = 0 ∧ ψ′))(a, β), which is obviously equivalent to R |=
(g ≥ 0 −→ (g = 0 ∧ ψ′))(a, β).
To prove the equivalence, we first assume that R∗ |= (g < 0)(a, β+ε), and
show that R |= (g ≥ 0 −→ (g = 0 ∧ ψ′))(a, β) follows. Let us therefore
assume R |= (g ≥ 0)(a, β). We show that R |= (g = 0 ∧ ψ′)(a, β).
Assume for a contradiction that R |= (g > 0)(a, β). Then it follows by
Lemma 18 (i) that R∗ |= (g > 0)(a, β+ε). This is a contradiction, because
we assume R∗ |= (g < 0)(a, β + ε).
Therefore we have R |= (g = 0)(a, β), and Lemma 30 ensures that R∗ |=
(g′ < 0)(a, β + ε). This is by the induction hypothesis equivalent to
R |= ψ′(a, β). We have just shown that R |= (g = 0 ∧ ψ′)(a, β), hence
R |=

(
g < 0 ∨ (g = 0 ∧ ψ′)

)
(a, β).

To prove the converse implication we assume that R |= (g ≥ 0 −→ (g =
0 ∧ ψ′))(a, β), i.e., R |= (g < 0)(a, β) or R |= (g = 0 ∧ ψ′)(a, β). We show
that R∗ |= (g < 0)(a, β + ε) follows in both cases:

– If R |= (g < 0)(a, β), then R∗ |= (g < 0)(a, β + ε) follows by
Lemma 18 (i).

– If R |= (g = 0∧ψ′)(a, β), then the induction hypothesis ensures that
R∗ |= (g′ < 0)(a, β + ε).

For % ∈ {6=,≤,≥, >} the proof requires a similar case distinction combined with
the application of Lemmas 18 and 30 as for the cases “=” and “<.”
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We are finally ready to prove that using expand-eps-at as a preprocessing
step and then carrying out a virtual substitution [x // (f, S)] leads to equivalent
results as the direct application of virtual substitution [x // (f, S)± ε].

Proposition 32. Let g % 0, where g ∈ Z[u][x] and % ∈ {=, 6=, <,≤,≥, >}, be
an atomic formula. Let (f, S) be a parametric root description of f ∈ Z[u][x].
Let ι be −ε or ε. Let a ∈ Rm be parameter values satisfying a guard γ of (f, S).
Then the following holds:

R |= (g % 0)[x // (f, S) + ι](a) if and only if R |= φ[x // (f, S)](a),

where φ is the Tarski formula returned by expand-eps-at(g % 0, ι, x).

Proof. Let a ∈ Rm be parameter values satisfying γ. We prove the proposition
only for the case when ι is ε, because the proof for −ε is similar.

Assume that a satisfies (g % 0)[x // (f, S) + ι]. By the definition of vir-
tual substitution [x // (f, S) + ι], there exists a positive η ∈ R such that for
any positive η′ ∈ R smaller than η we have R |= (g % 0)(a, (f, S)〈a〉 + η′).
By Lemma 16 it follows that R∗ |= (g % 0)(a, (f, S)〈a〉 + ε). The specifica-
tion of algorithm expand-eps-at together with Lemma 31 imply that R |=
φ(a, (f, S)〈a〉). Thus, by Theorem 25 (Semantics of Virtual Substitution), it
follows that R |= φ[x // (f, S)](a).

To prove the converse implication we assume that a satisfies φ[x // (f, S)].
Using Theorem 25 we obtain that R |= φ(a, (f, S)〈a〉). The correctness of
algorithm expand-eps-at ensures that R∗ |= (g % 0)(a, (f, S)〈a〉 + ε). By
Lemma 16, there exists a positive η ∈ R such that for any positive η′ ∈ R
smaller than η we have R |= (g % 0)(a, (f, S)〈a〉+ η′). Finally, this means that
a satisfies (g % 0)[x // (f, S) + ε].

For the sake of an example let us consider polynomial g = u3x
3 − u2x

2 −
5x + u0 ∈ Z[u0, . . . , u3]. Calling expand-eps-at(g > 0,−ε, x) then yields the
following Tarski formula:

u3x
3 − u2x

2 − 5x+ u0 > 0 ∨ (u3x
3 − u2x

2 − 5x+ u0 = 0 ∧
(−2u2x+ 3u3x

2 − 5 < 0 ∨ (−2u2x+ 3u3x
2 − 5 = 0 ∧

(−2u2 + 6u3x > 0 ∨ (−2u2 + 6u3x = 0 ∧ 6u3 < 0))))).

Here note that g′ = −2u2x+ 3u3x
2 − 5, g′′ = −2u2 + 6u3x, and g′′′ = 6u3.

We can see that the virtual substitution of a parametric root description
(f, S) plus (or minus) a positive infinitesimal ε into atomic formula g % 0 is
expensive: Algorithm expand-eps-at expands g % 0 in the worst-case to a
quantifier-free Tarski formula of depth d containing 2d+ 1 atomic formulas tak-
ing all the d derivatives of the d-th degree polynomial g into account. This
means that we have to substitute (f, S) into 2d+ 1 atomic formulas. Therefore,
it would make sense to somehow shorten the formula computed by the expan-
sion algorithm so that (f, S) would be substituted to a shorter and/or simpler
formula. One particularly nice simplification of the expansion—motivated by
the specification of algorithm pseudo-sgn-rem—would be an algorithm with
the following specification:
Input: polynomials g, f ∈ Z[u][x] such that deg f > 0.
Output: a polynomial h ∈ Z[u][x] such that
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(i) deg h < deg f

(ii) For parameter values a ∈ Rm such that (lc f)〈a〉 6= 0 and any β ∈ R the
following implication holds: If f〈a〉(β) = 0, then

sgn
(
g〈a〉(β + ε)

)
= sgn

(
h〈a〉(β + ε)

)
.

We would then use an algorithm meeting this specification to obtain h with the
same sign as g near any root of f . Afterwards we would expand h % 0. The
length of this expanded formula would be independent of the degree of g; it
would depend exclusively on the degree of f . This would simplify the Boolean
structure of the expanded formula is some cases. The following example shows
that the polynomial h computed by algorithm pseudo-sgn-rem does not meet
our specification:

Example 33. Consider polynomials g = x2+u2x+u3 and f = u0x
2−x+u1 from

Z[u0, u1, u2, u3][x]. Then pseudo-sgn-rem(g, f, x) yields h = (u0 + u2
0u2)x −

u0u1+u2
0u3. For parameter values a = (−1, 2, 1,−2) we obtain g〈a〉 = x2+x−2,

f〈a〉 = −x2−x+2, and h〈a〉 = 0. Observe that (lc f)〈a〉 6= 0 and f〈a〉 = −g〈a〉.
At the same time, f〈a〉(β1) = 0 for β1 = −2 but

sgn
(
g〈a〉(β1 + ε)

)
= −1 and sgn

(
h〈a〉(β1 + ε)

)
= 0.

Similarly, f〈a〉(β2) = 0 for β2 = 1 but

sgn
(
g〈a〉(β2 + ε)

)
= 1 and sgn

(
h〈a〉(β2 + ε)

)
= 0.

This shows that part (ii) of the specification above does not hold for h computed
by pseudo-sgn-rem. 3

The problem with polynomial h from Example 33 occurs when the param-
eters u are assigned values a ∈ Rm such that g〈a〉 and f〈a〉 have a common
real root, and the signs of g〈a〉 and f〈a〉 near this common root differ. If we
considered only cases when f〈a〉 and g〈a〉 cannot have a common real root, then
we would be on a safe side: In fact, if the resultant of g and f is nonzero for any
parameter values a ∈ Rm, then h computed by pseudo-sgn-rem(g, f, x) meets
both parts of our specification above. If the resultant of g and f has a real root,
then the following example shows that not only algorithm pseudo-sgn-rem does
not compute h meeting the desired specification, but no polynomial meeting the
specification exists.

Example 34. Consider polynomials g = u0x+ 1 and f = x− 1 from Z[u0][x].
We search for a polynomial h ∈ Z[u0][x] with the following properties:

(i) deg h < deg f = 1, i.e., h ∈ Z[u0]

(ii) For any parameter value a ∈ R such that (lc f)〈a〉 6= 0 and any β ∈ R the
following implication holds: If f〈a〉(β) = 0, then

sgn
(
g〈a〉(β + ε)

)
= sgn

(
h〈a〉(β + ε)

)
.

Assume for a contradiction that there exists h ∈ Z[u0] meeting (ii).
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To begin with, observe that for any parameter value a ∈ R the following
hold: (lc f)〈a〉 6= 0, and f〈a〉(β) = 0 implies that β = 1, because f = x − 1.
Moreover, (f, S), where S =

{
((−1, 0, 1), 1)

}
, is a parametric root description

with guard “true” such that (f, S)〈a〉 = β = 1 for any parameter value a ∈ R.
Without loss of generality we therefore assume that β = 1.

Observe that for any parameter value a ∈ R we have sgn
(
g〈a〉(β+ ε)

)
= 0 if

and only if R∗ |= (g = 0)(a, β + ε). Since (f, S)〈a〉 = β for any parameter value
a ∈ R, this is equivalent to R∗ |= (g = 0)(a, (f, S)〈a〉 + ε). Using Algorithm
expand-eps-at(g = 0, ε, x) we obtain that this is the case if and only if

R |=
(
u0 = 0 ∧ 1 = 0

)
[x // (f, S)](a).

This is obviously equivalent to R |=
(
false)[x // (f, S)](a). This means that

sgn
(
g〈a〉(β + ε)

)
= 0 does not hold for any a ∈ R. By (ii) we then obtain that

sgn
(
h〈a〉(β + ε)

)
6= 0 for all a ∈ R. Since h does not contain variable x, this

ensures that h〈a〉 6= 0 for any a ∈ R.
At the same time, observe that sgn

(
g〈a〉(β + ε)

)
= 1 holds if and only if

R∗ |= (g > 0)(a, β + ε). This is equivalent to R∗ |= (g > 0)(a, (f, S)〈a〉 + ε),
because (f, S)〈a〉 = β. Using Algorithm expand-eps-at(g > 0, ε, x) we obtain
that this is equivalent to

R |=
(
u0x+ 1 > 0 ∨ (u0x+ 1 = 0 ∧ u0 > 0)

)
[x // (f, S)](a).

Carrying out the virtual substitution of a rational as we described it in the
beginning of this section we obtain

R |=
(
u0 + 1 > 0 ∨ (u0 + 1 = 0 ∧ u0 > 0)

)
(a).

Simplification of the formula yields an equivalent statement R |= (u0+1 > 0)(a).
Picking a = 7 obviously satisfies u0 +1 > 0, and we deduce that h〈7〉 is positive,
because sgn

(
g〈a〉(β + ε)

)
= sgn

(
h〈a〉(β + ε)

)
for any a ∈ R.

Similarly, we have sgn
(
g〈a〉(β+ε)

)
= −1 if and only if R∗ |= (g < 0)(a, β+ε).

Using the fact that (f, S)〈a〉 = β for any a ∈ R, we obtain that this holds if and
only if R∗ |= (g < 0)(a, (f, S)〈a〉 + ε). Algorithm expand-eps-at(g < 0, ε, x)
then yields an equivalent condition

R |=
(
u0x+ 1 < 0 ∨ (u0x+ 1 = 0 ∧ u0 < 0)

)
[x // (f, S)](a),

which simplifies to R |= (u0+1 ≤ 0)(a) after carrying out the virtual substitution
of a rational. Parameter value a = −5 obviously satisfies u0 + 1 ≤ 0, so using
(ii) we deduce that h〈−5〉 is negative.

We have just shown that h〈7〉 is positive and h〈−5〉 is negative. Since h is
continuous, there exists a real root of h in the interval ]−5, 7[; a contradiction.

An informal description of the problem here is rather simple: The polynomial
u0(1 + ε) + 1 = u0 + εu0 + 1—obtained by substituting 1 + ε into g—does not
have a real root, but, at the same time, changes its sign in the real interval
]−5, 7[. This cannot be modeled by a polynomial from Z[u0]. Our formalism
makes this intuition precise and shows that this is indeed the case. 3

The mappings [x //±∞] and [x // (f, S)± ε] introduced in this section nat-
urally generalize to any quantifier-free Tarski formula ϕ, so by ϕ[x //±∞] and
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ϕ[x // (f, S)± ε] we denote the formula obtained by applying the respective vir-
tual substitution to each atomic formula occurring in ϕ. In analogy to Theo-
rem 25 we show that this generalization is indeed compatible with our definitions
of virtual substitutions involving nonstandard symbols:

Theorem 35 (Semantics of Virtual Substitution with Nonstandard Symbols).
Let ϕ(u, x) be a quantifier-free Tarski formula. Then the following hold:

(i) Let (f, S) be a parametric root description. Let a ∈ Rm be parameter
values satisfying a guard γ of (f, S). Then R |= ϕ[x // (f, S)± ε](a) if and
only if there exists positive η ∈ R such that R |= ϕ(a, (f, S)〈a〉 ± η′) holds
for any positive η′ ∈ R smaller than η.

(ii) R |= ϕ[x //±∞](a) if and only if there exists η ∈ R such that R |= ϕ(a, η′)
holds for any η′ ∈ R greater/smaller than η.

Proof. (i) We prove this part of the theorem only for (f, S) + ε. The proof
for (f, S)− ε is similar, so it is omitted.
Let a ∈ Rm be parameter values satisfying γ, i.e., (f, S)〈a〉 yields a real
number. We proceed by structural induction on the Boolean structure of
ϕ. To begin with, observe that if ϕ is an atomic formula, then the theorem
directly follows from our definition of virtual substitution [x // (f, S) + ε].
Assume now that ϕ is of the form ϕ1 ∧ϕ2, and that the theorem holds for
ϕ1 and ϕ2. Since we defined that ϕ[x // (f, S) + ε] is obtained by applying
[x // (f, S) + ε] to each atomic formula of ϕ, we have ϕ[x // (f, S) + ε] =
ϕ1[x // (f, S) + ε]∧ϕ2[x // (f, S) + ε]. By the induction hypothesis, for i ∈
{1, 2} we have: R |= ϕi[x // (f, S) + ε](a) if and only if there exists positive
ηi ∈ R such that for any positive η′i ∈ R smaller than ηi we have R |=
ϕi(a, (f, S)〈a〉+ η′i). Now we need to show that R |= ϕ[x // (f, S) + ε](a)
if and only if there exists positive η ∈ R such that for any positive η′ ∈ R
smaller than η we have R |= ϕ(a, (f, S)〈a〉+ η′).
First assume that R |= (ϕ1∧ϕ2)[x // (f, S) + ε](a) holds. By the induction
hypothesis, for η = min{η1, η2} we have: R |= ϕi(a, (f, S)〈a〉 + η′) holds
for any positive η′ ∈ R smaller than η, i.e., R |= (ϕ1∧ϕ2)(a, (f, S)〈a〉+η′)
holds for any positive η′ ∈ R. This proves one implication.
To prove the converse implication, we assume that there exists η ∈ R
such that for any positive η′ ∈ R smaller than η we have R |= (ϕ1 ∧
ϕ2)(a, (f, S)〈a〉 + η′). The induction hypothesis then yields R |= (ϕ1 ∧
ϕ2)[x // (f, S) + ε](a). This finishes the proof for the case when ϕ is of the
form ϕ1 ∧ ϕ2.
We continue with the case when ϕ is of the form ¬ϕ′. Assume that
the theorem holds for ϕ′. Similarly as in the previous case, we have
ϕ[x // (f, S) + ε] = ¬(ϕ′[x // (f, S) + ε]), and the induction hypothesis en-
sures that R |= ϕ′[x // (f, S) + ε](a) holds if and only if there exists pos-
itive η ∈ R such that for any positive η′ ∈ R smaller than η we have
R |= ϕ′(a, (f, S)〈a〉+ η′). We need to prove that R |= ϕ[x // (f, S) + ε](a)
if and only if there exists positive η ∈ R such that R |= ϕ(a, (f, S)〈a〉+η′)
holds for any positive η′ ∈ R smaller than η.
First assume that R |= ϕ[x // (f, S) + ε](a) holds. Therefore, we obtain
R |= (¬ϕ′)[x // (f, S) + ε](a), i.e., R 6|= ϕ′[x // (f, S) + ε](a) holds. By
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the induction hypothesis we obtain: For all positive η ∈ R there exists
a positive η′ ∈ R smaller than η such that R |= ¬ϕ′(a, (f, S)〈a〉 + η′),
i.e., R |= ϕ(a, (f, S)〈a〉+ η′) holds. By Lemma 16 this is equivalent to the
statement “There exists a positive η ∈ R such that R |= ϕ(a, (f, S)〈a〉+η′)
for any positive η′ ∈ R smaller than η.” This finishes the proof of one
implication.
Now assume that there exists positive η ∈ R such that for any posi-
tive η′ ∈ R smaller than η we have R |= ϕ(a, (f, S)〈a〉 + η′), i.e., R 6|=
ϕ′(a, (f, S)〈a〉 + η′). By the induction hypothesis we obtain: For all
positive η ∈ R there exists η′ ∈ R smaller than η such that we have
R |= ¬ϕ′(a, (f, S)〈a〉+η′), i.e., R |= ϕ(a, (f, S)〈a〉+η′). Again, Lemma 16
ensures that this is equivalent to “There exists a positive η ∈ R such that
R |= ϕ(a, (f, S)〈a〉+ η′) for any positive η′ ∈ R smaller than η,” and the
proof of the converse implication is finished.
The proof is similar for other Boolean operators, so we omit it.

(ii) The proof is done along the same lines as the proof of (i)—but instead of
using Lemma 16 we use Lemma 17—so we omit it.

2.4 Quantifier Elimination Algorithm Scheme
In this section we give a scheme for quantifier elimination algorithms based on
virtual substitution. The scheme is presented as algorithm vs-scheme, which is
parameterized by three precisely specified sub-algorithms. An instantiation of
the scheme is obtained by providing concrete sub-algorithms meeting the specifi-
cations and “plugging” them into their places in the scheme. Each instantiation
yields a quantifier elimination algorithm using virtual substitution. The scheme
is indeed based on the notions of parametric root descriptions, candidate solu-
tions, and virtual substitution introduced in previous sections. Our main aim
here is to prove the correctness of the scheme as a whole, i.e., any algorithm
obtained by instantiation of the scheme is correct and its complexity is given as
a function of complexities of the provided sub-algorithms.

We begin our exposition by specifying the three mentioned sub-algorithms:

1. Algorithm at-cs(f % 0, x):
Input: an atomic formula f % 0, where f ∈ Z[u][x] and the relation % is
one of {=, 6=, <,≤,≥, >}.
Output: a set of candidate solutions for f % 0.

2. Algorithm guard
(
(f, S), x

)
:

Input: a parametric root description (f, S), where f ∈ Z[u][x] and S is a
finite set {(t1, r1), . . . , (tk, rk)} of root specifications of f .
Output: a quantifier-free guard of (f, S).

3. Algorithm vs-prd-at
(
g % 0, (f, S), x

)
:

Input: an atomic formula g % 0 and a parametric root description (f, S)
such that g, f ∈ Z[u][x], % ∈ {=, 6=, <,≤,≥, >}, and deg g < deg f .
Output: (g % 0)[x // (f, S)], i.e., a quantifier-free formula in the parameters
u meeting our specification of virtual substitution.
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Note that the specification of algorithm vs-prd-at was also given in Section 2.3.
We repeat the definition here for completeness; all results of Section 2.3 remain
valid. In the rest of this section we assume that the mentioned algorithms exist
and regard them as black-boxes.

We continue with a description of algorithm vs-at. This algorithm will be
called by our scheme to carry out a virtual substitution of a single test point
into a single atomic formula.

Algorithm vs-at(g % 0, e, x).
Input: an atomic formula g % 0, where g ∈ Z[u][x] and % ∈ {=, 6=, <,≤,≥, >},
test point e is one of the following:

(a) parametric root description (f, S), where f ∈ Z[u][x],

(b) parametric root description plus/minus a positive infinitesimal (f, S)± ε,
where f ∈ Z[u][x],

(c) nonstandard symbol ±∞.

Output: a quantifier-free Tarski formula ψ equivalent to (g % 0)[x // e].

1. If e is (f, S), then

1.1. h := pseudo-sgn-rem(g, f, x)
1.2. Return vs-prd-at

(
h % 0, (f, S), x

)
.

2. If e is (f, S) + ι, where ι is ±ε, then

2.1. φ := expand-eps-at(g % 0, ι, x)
2.2. Replace each atomic formula h % 0 occurring in φ with quantifier-

free formula vs-at(h % 0, (f, S), x), and return the resulting formula
obtained this way.

3. If e is ±∞, then

3.1. Return vs-inf-at(g % 0, e, x).

The correctness of algorithm vs-at is a straightforward consequence of the
results of Section 2.3:

Lemma 36. Algorithm vs-at meets its specification.

Proof. We distinguish three cases depending on the type of test point e:

1. If e is (f, S), then the correctness of vs-at follows from Proposition 27.

2. If e is (f, S) + ι, where ι is ±ε, then the correctness of vs-at follows from
Proposition 32.

3. If e is ±∞, then the correctness of vs-at follows from Proposition 29.

Now we are ready to present our algorithm scheme. The scheme proceeds
as follows: Using algorithm at-cs it first computes a set of candidate solutions
c for an input Tarski formula ϕ. Afterwards, this set of candidate solutions
is converted into a set of test points by selecting appropriate parametric root
descriptions from c, adjusting them by adding a positive infinitesimal, if needed.
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Finally, each test point obtained this way is substituted into the input formula
ϕ by applying algorithm vs-at to each atomic formula of ϕ.

Algorithm vs-scheme(ϕ, x).
Input: a quantifier-free Tarski formula ϕ(u, x), which is an ∧-∨-combination of
atomic formulas, a variable x.
Output: a quantifier-free Tarski formula ψ(u) equivalent to ∃x(ϕ).

1. Extract from ϕ the set A of all atomic formulas containing x.

2. c := ∅

3. For each atomic formula f % 0 in A do

3.1. c := c ∪ at-cs(f % 0, x)

4. E := {−∞}

5. For each candidate solution (f, S, τ) ∈ c do

5.1. If τ is “IP” or “WLB,” then add (f, S) to E.
5.2. If τ is “EP” or “SLB,” then add (f, S) + ε to E.

6. ψ := false

7. For each test point e ∈ E do

7.1. If e is (f, S), then
7.1.1. Copy ϕ to ϕ′.
7.1.2. γ := guard

(
(f, S), x

)
7.1.3. Compute ϕ′[x // (f, S)] by replacing each atom g % 0 occurring

in ϕ′ with quantifier-free formula vs-at(g % 0, (f, S), x).
7.1.4. ψ := ψ ∨

(
γ ∧ ϕ′[x // (f, S)]

)
7.2. If e is (f, S) + ε, then

7.2.1. Copy ϕ to ϕ′.
7.2.2. γ := guard

(
(f, S), x

)
7.2.3. Compute ϕ′[x // (f, S) + ε] by replacing each atom g % 0 occur-

ring in ϕ′ with quantifier-free formula vs-at
(
g % 0, (f, S)+ε, x

)
.

7.2.4. ψ := ψ ∨
(
γ ∧ ϕ′[x // (f, S) + ε]

)
7.3. If e is −∞, then

7.3.1. Copy ϕ to ϕ′.
7.3.2. Compute ϕ′[x //−∞] by replacing each atom g % 0 occurring in

ϕ′ with quantifier-free formula vs-at(g % 0,−∞, x).
7.3.3. ψ := ψ ∨ ϕ′[x //−∞]

8. Return ψ.

Theorem 37. Algorithm vs-scheme meets its specification.
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Proof. We have to prove that for any parameter values a ∈ Rm the following
equivalence holds: R |= ψ(a) if and only if there exists β ∈ R such that R |=
ϕ(a, β), i.e., the satisfying set Φ(ϕ,a) is nonempty. Let therefore a ∈ Rm
be arbitrary parameter values. We show that a satisfies ψ if and only if the
satisfying set Φ(ϕ,a) is nonempty.

Assume first that a satisfies ψ. Observe that ψ returned by vs-scheme is
a quantifier-free disjunction obtained in step 7 by consecutively substituting all
the test points from E into ϕ. There are three cases to consider:

1. a satisfies γ ∧ ϕ[x // (f, S)] for some test point (f, S) ∈ E: Since vs-at
meets its specification, and a satisfies a guard γ of (f, S), we use Theo-
rem 25 to deduce that R |= ϕ(a, (f, S)〈a〉), i.e., Φ(ϕ,a) is nonempty.

2. a satisfies γ∧ϕ[x // (f, S) + ε] for some test point (f, S)+ε ∈ E: Similarly
to the previous case, since vs-at meets its specification, and a satisfies
a guard γ of (f, S), we use Theorem 35 (i) to deduce that there exists a
positive η ∈ R such that R |= ϕ(a, (f, S)〈a〉 + η′) for any positive η′ ∈ R
smaller than η, i.e., Φ(ϕ,a) is obviously nonempty.

3. a satisfies ϕ[x //−∞]: Since vs-at meets its specification, we use Theo-
rem 35 (ii) to deduce that there exists η ∈ R such that R |= ϕ(a, η′) for
any η′ ∈ R smaller than η, i.e., Φ(ϕ,a) is unbounded from below and in
particular nonempty.

Now we prove the converse implication. Assume that the satisfying set
Φ(ϕ,a) is nonempty. Since at-cs returns a set of candidate solutions for an
atomic formula, and ϕ is an ∧-∨-combination of atomic formulas, Proposition 15
ensures that the set c computed by algorithm vs-scheme in step 3 is a set of
candidate solutions for ϕ. We assume that Φ(ϕ,a) 6= ∅, so Theorem 19 (i)
ensures that there exists ξ ∈ L such that R∗ |= ϕ(a, ξ). According to the
definition of the set L, now there are three cases to consider:

1. There exists ξ ∈ L such that ξ = (f, S, τ)〈a〉 for some (f, S, τ) ∈ c, where
τ is “IP” or “WLB.” In this case we have R∗ |= ϕ(a, ξ) and in particular
R |= ϕ(a, ξ), because ξ ∈ R and R∗ is an extension field of R. Since
ξ = (f, S, τ)〈a〉, a satisfies a guard γ of (f, S). Theorem 25 then guarantees
that R |= ϕ[x // (f, S)](a), so we obtain that R |= (γ ∧ ϕ[x // (f, S)])(a).
Now observe that (f, S) ∈ E, because τ is “IP” or “WLB.” Thus, (f, S)
was substituted into ϕ in step 7.1. This implies that R |= ψ(a), because
ψ is a disjunction containing γ ∧ ϕ[x // (f, S)] as a disjunct.

2. There exists ξ ∈ L such that ξ = (f, S, τ)〈a〉 + ε for some (f, S, τ) ∈ c,
where τ is “EP” or “SLB.” In this case we have R∗ |= ϕ(a, ξ+ε). Lemma 16
ensures that there exists a positive η ∈ R such that R |= ϕ(a, ξ+η′) for any
positive η′ ∈ R smaller than η. Since ξ = (f, S, τ)〈a〉, a satisfies a guard γ
of (f, S). Theorem 35 (i) then implies that R |= ϕ[x // (f, S) + ε](a), so we
obtain that R |= (γ∧ϕ[x // (f, S) + ε])(a). Now observe that (f, S)+ε ∈ E,
because τ is “EP” or “SLB.” Thus, (f, S)+ε was substituted into the input
formula ϕ in step 7.2. This implies that R |= ψ(a), because ψ contains
γ ∧ ϕ[x // (f, S) + ε] as a disjunct.

3. We have ξ ∈ L for ξ = −∞. In this case we have R∗ |= ϕ(a,−∞).
Lemma 17 ensures that there exists η ∈ R such that R |= ϕ(a, η′) for
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any η′ ∈ R strictly smaller than η. Theorem 35 (ii) then implies that
R |= ϕ[x //−∞]. Since −∞ ∈ E, we know that −∞ was substituted into
ϕ in step 7.3 of the algorithm. Again, this implies that R |= ψ(a), because
the formula ψ contains γ ∧ ϕ[x //−∞] as a disjunct.

We have shown that in each of the three cases a satisfies the output formula ψ,
so the proof of the theorem is finished.

The crucial idea behind the proof of Theorem 37 is the following: Since c is
a set of candidate solutions for ϕ, the computed test points together with −∞
are guaranteed to intersect a nonempty satisfying set Φ(ϕ,a) for any parameter
values a ∈ Rm. To this end observe that the set E of test points obtained in
step 5 is generated only from those candidate solutions that are necessary to use
Theorem 19 (i). If we wanted to use part (ii) of Theorem 19, we would have to
remove candidate solutions with tag “EP” and add candidate solutions with tag
“WLB” in step 5.2 of the algorithm. This would make sense when there were
many excluded points, but only a few weak lower bounds candidate solutions.

Observe that the set E of test points obtained in step 5 is an elimination set
for ϕ and x in the following sense: Substituting all test points from E into ϕ
using virtual substitution yields a quantifier-free equivalent of ∃x(ϕ). Algorithm
vs-scheme adds to set E all parametric root descriptions that possibly represent
a lower bound of a satisfying set. It is straightforward to adjust the algorithm
and its proof to use those parametric root descriptions that possibly represent
an upper bound of a satisfying set instead—leading to a different elimination
set for ϕ and x. Moreover, it is also correct to first analyze the set of candidate
solutions c, and then decide whether the upper or the lower bounds parametric
root descriptions should be used. This corresponds to the idea of bound selection
introduced in [85].

A careful inspection of algorithm vs-scheme reveals that the algorithms
guard and vs-prd-at need to handle only such parametric root descriptions
(f, S) that are possibly produced as candidate solutions by vs-at. This in
particular means that for a fixed degree d, vs-prd-at need not be specified
for all possible sets S of root specifications of a polynomial f with deg f ≤ d,
but only for such root specification sets that represent a candidate solution
returned by vs-at. We will extensively take advantage of this observation when
instantiating the scheme in Section 2.5.

Later in Section 2.6 we will show that all existing quantifier elimination
algorithms based on virtual substitution can be obtained by an appropriate
instantiation of our scheme.

2.5 Instantiating the Scheme

Now we change our abstract perspective and discuss how to instantiate the algo-
rithm scheme of Section 2.4. Our aim here is to obtain self-contained quantifier
elimination algorithms for degree at most three. We will also prove that our
approach is extensible beyond this degree bound.
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2.5.1 Linear Virtual Substitution
Let us illustrate the instantiation process on the case when the variable x to be
eliminated occurs only linearly in the input formula ϕ(u, x).

There exist only two real 1-types, namely (−1, 0, 1) and (1, 0,−1), so a poly-
nomial f = ax + b, where a, b ∈ Z[u] has at most two realizable real 1-types.
It is also not hard to see that f〈a〉 is of real type (−1, 0, 1) if and only if
R |= (a > 0)(a), and f〈a〉 is of real type (1, 0,−1) if and only if R |= (a < 0)(a).
With these observations in mind we can directly write correct realizations of
the three sub-algorithms for the linear case:

Algorithm at-cs-1(f % 0, x):
Input: an atomic formula f % 0, where f ∈ Z[u][x] has degree one and the
relation % is one of {=, 6=, <,≤,≥, >}.
Output: a set of candidate solutions for f % 0.

1. If % is “=,” then c :=
{(
f, ((−1, 0, 1), 1), IP

)
,
(
f, ((1, 0,−1), 1), IP

)}
.

2. If % is “ 6=,” then c :=
{(
f, ((−1, 0, 1), 1),EP

)
,
(
f, ((1, 0,−1), 1),EP

)}
.

3. If % is “<,” then c :=
{(
f, ((−1, 0, 1), 1),SUB

)
,
(
f, ((1, 0,−1), 1),SLB

)}
.

4. If % is “≤,” then c :=
{(
f, ((−1, 0, 1), 1),WUB

)
,
(
f, ((1, 0,−1), 1),WLB

)}
.

5. If % is “≥,” then c :=
{(
f, ((−1, 0, 1), 1),WLB

)
,
(
f, ((1, 0,−1), 1),WUB

)}
.

6. If % is “>,” then c :=
{(
f, ((−1, 0, 1), 1),SLB

)
,
(
f, ((1, 0,−1), 1),SUB

)}
.

7. Return c.

Algorithm guard-1
(
(f, S), x

)
:

Input: a parametric root description (f, S), where f ∈ Z[u][x] has degree one.
Output: a quantifier-free guard of (f, S).

1. If S =
{(

(−1, 0, 1), 1
)}

, then return lc f > 0.

2. If S =
{(

(1, 0,−1), 1
)}

, then return lc f < 0.

Algorithm vs-prd-at-1
(
g % 0, (f, S), x

)
:

Input: an atomic formula g % 0 and a parametric root description (f, S) such
that g, f ∈ Z[u][x] and deg g < deg f = 1, i.e., g ∈ Z[u].
Output: (g % 0)[x // (f, S)], i.e., a quantifier-free Tarski formula.

1. Return g % 0.

All we need now is to prove that these three algorithms meet their specifi-
cations.

Theorem 38. Algorithms at-cs-1, guard-1, and vs-prd-at-1 meet their
specifications.

Proof. Consider a polynomial f = ax + b, where f = ax + b and a, b ∈ Z[u].
Recall that f has at most two realizable real 1-types: (−1, 0, 1) and (1, 0,−1).
Guards of these types are a > 0 and a < 0, respectively, so the correctness of
guard-1 follows.
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To prove the correctness of at-cs-1, we need to prove that the returned
set c is a set of candidate solutions for the input formula f % 0. We prove
this only for f < 0, because the proof for the other relation symbols is similar.
Observe that for any parameter values a ∈ Rm we have a〈a〉 > 0, a〈a〉 < 0,
or a〈a〉 = 0. In the first case the first real root of f〈a〉—with real 1-type
(−1, 0, 1)—is the only boundary point “strict upper bound” of the satisfying
set Φ(f < 0,a). In the second case the first root of f〈a〉 is the only boundary
point “strict lower bound” of Φ(f < 0,a). In the third case a〈a〉 = 0, so there
exists no boundary point of the set Φ(f < 0,a), which is either ∅ or R. This
proves that the set

{(
f, ((−1, 0, 1), 1),SUB

)
,
(
f, ((1, 0,−1), 1),SLB

)}
returned

by at-cs-1(f < 0, x) is indeed a set of candidate solutions for f < 0.
Finally, the correctness of vs-prd-at-1 follows from the fact that g does

not contain x, so g % 0 is the correct result of substituting (f, S) for x into g % 0
by means of virtual substitution as we defined it in Section 2.3.

Theorem 38 together with the correctness of algorithm vs-scheme ensure
that plugging these three algorithms into vs-scheme yields a correct quantifier
elimination algorithm for formulas ∃x(ϕ(u, x)) where x occurs linearly in ϕ.

2.5.2 Quadratic and Cubic Virtual Substitution
Here we assume that the degree of the variable x to be eliminated from ϕ(u, x)
is at most three. Before we discuss the realizations of algorithms at-cs, guard,
and vs-prd-at let us first investigate all realizable real d-types for d ∈ {1, 2, 3}.

Let f ∈ Z[u][x] be a polynomial of degree d ∈ {1, 2, 3}. Recall that each
realizable real d-type of f is indeed a real d-type, so Table 2.1 ensures that there
exist at most 2, 6, and 8 realizable real d-types of f for d ∈ {1, 2, 3}. We list
here all relevant real d-types along with their respective guards for f . Lemma 6
implies that for each “positive” real d-type there exists a “negative” real d-type.
Below we list the real types according to this “positive-negative” pattern; first
all real types for the case when lc f is positive are listed, and then we list the
“negative” counterpart for each of them, i.e., the real type of −f〈a〉 when f〈a〉
is of real type t.

For each real d-type t we also sketch a simple picture that shows the relevant
part of the graph of the function y = f〈a〉, where f〈a〉 ∈ R[x] is of degree d and
real type t. On all our pictures we draw the x-axis as the horizontal axis. Of
course, the actual slope, curvature, or even the multiplicity of the real roots of
the graphed functions possibly depend on actual parameter values. Neverthe-
less, the sign and the relative position of the real roots remain unchanged for
any parameter values a satisfying the respective guard γ.

Let f = ax + b ∈ Z[u][x] be such that coeffs f ⊂ Z[u] and lc f 6= 0. All the
real 1-types along with their respective guards for f are:

1. (−1, 0, 1) with guard γ:
a > 0

−1. (1, 0,−1) with guard γ:
a < 0
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Let f = ax2 + bx+ c ∈ Z[u][x] be such that coeffs f ⊂ Z[u] and lc f 6= 0. All
the real 2-types along with their respective guards for f are:

1. (1, 0,−1, 0, 1) with guard γ:

a > 0 ∧ b2 − 4ac > 0

2. (1, 0, 1) with guard γ:

a > 0 ∧ b2 − 4ac = 0

3. (1) with guard γ:

a > 0 ∧ b2 − 4ac < 0

−1. (−1, 0, 1, 0,−1) with guard γ:

a < 0 ∧ b2 − 4ac > 0

−2. (−1, 0,−1) with guard γ:

a < 0 ∧ b2 − 4ac = 0

−3. (−1) with guard γ:

a < 0 ∧ b2 − 4ac < 0

Let f = ax3+bx2+cx+d ∈ Z[u][x] be such that coeffs f ⊂ Z[u] and lc f 6= 0.
Denote by Df the discriminant of f :

Df = −b2c2 + 4c3a+ 4b3d+ 27d2a2 − 18abcd.

All the real 3-types along with their respective guards for f are:

1. (−1, 0, 1) with guard γ:

a > 0 ∧ (−b2 + 3ac ≥ 0 ∨Df > 0)

2. (−1, 0,−1, 0, 1) with guard γ:

a > 0 ∧ −b2 + 3ac < 0 ∧Df = 0 ∧ 2b3 + 27da2 − 9abc < 0

3. (−1, 0, 1, 0, 1) with guard γ:

a > 0 ∧ −b2 + 3ac < 0 ∧Df = 0 ∧ 2b3 + 27da2 − 9abc > 0



52 CHAPTER 2. A FRAMEWORK FOR VIRTUAL SUBSTITUTION

4. (−1, 0, 1, 0,−1, 0, 1) with guard γ:

a > 0 ∧ −b2 + 3ac < 0 ∧Df < 0

−1. (1, 0,−1) with guard γ:

a < 0 ∧ (−b2 + 3ac ≥ 0 ∨Df > 0)

−2. (1, 0, 1, 0,−1) with guard γ:

a < 0 ∧ −b2 + 3ac < 0 ∧Df = 0 ∧ 2b3 + 27da2 − 9abc > 0

−3. (1, 0,−1, 0,−1) with guard γ:

a < 0 ∧ −b2 + 3ac < 0 ∧Df = 0 ∧ 2b3 + 27da2 − 9abc < 0

−4. (1, 0,−1, 0, 1, 0,−1) with guard γ:

a < 0 ∧ −b2 + 3ac < 0 ∧Df < 0

From now on we will refer to a real d-type, d ∈ {1, 2, 3}, by its respective
number given in the real type lists given above instead of its full sequence of
signs. E.g., the real 3-type (1, 0,−1) is simply “real 3-type −1,” and the real
2-type (1, 0,−1, 0, 1) is simply “real 2-type 1.”

The completeness of these real type lists and the correctness of their respec-
tive guards follow directly from the result of Weispfenning [83, Corollary 2.2].
We rephrase this result here in our setting and notation:

Theorem 39 (Real Types and Guards up to Degree Three). Let f be a poly-
nomial from Z[u][x] of degree d ∈ {1, 2, 3}. Then the following hold:

(i) Let a ∈ Rm be parameter values such that deg f〈a〉 = d. Then f〈a〉 is of
exactly one of the real d-types listed above.

(ii) Let a ∈ Rm be arbitrary parameter values. The polynomial f〈a〉 is of some
listed real d-type t if and only if a satisfies the given guard γ of t.

Now we are ready to describe the three crucial algorithms. We begin with
algorithm at-cs that computes a set of candidate solutions for a given atomic
formula f % 0:

Algorithm at-cs(f % 0, x).
Input: an atomic formula f % 0, where f ∈ Z[u][x], is a polynomial of degree d
and % ∈ {=, 6=, <,≤,≥, >}.
Output: a set c of candidate solutions for f % 0.

1. If d = 0, then return ∅.

2. c := ∅
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3. If (lc f)〈a〉 = 0 for some a ∈ Rm, then

3.1. c := at-cs(red f % 0, x)

4. If % is “=,” then

4.1. For each real d-type t = (s1, . . . , s2k+1) do
4.1.1. For each i ∈ {1, . . . , k} add (f, (t, i), IP) to c.

5. If % is “ 6=,” then

5.1. For each real d-type t = (s1, . . . , s2k+1) do
5.1.1. For each i ∈ {1, . . . , k} add (f, (t, i),EP) to c.

6. If % is “<,” then

6.1. For each real d-type t = (s1, . . . , s2k+1) do
6.1.1. For each i ∈ {1, . . . , k} such that s2i−1 = −1 and s2i+1 = 1 add

(f, (t, i),SUB) to c.
6.1.2. For each i ∈ {1, . . . , k} such that s2i−1 = 1 and s2i+1 = −1 add

(f, (t, i),SLB) to c.
6.1.3. For each i ∈ {1, . . . , k} such that s2i−1 = −1 and s2i+1 = −1

add (f, (t, i),EP) to c.

7. If % is “≤,” then

7.1. For each real d-type t = (s1, . . . , s2k+1) do
7.1.1. For each i ∈ {1, . . . , k} such that s2i−1 = −1 and s2i+1 = 1 add

(f, (t, i),WUB) to c.
7.1.2. For each i ∈ {1, . . . , k} such that s2i−1 = 1 and s2i+1 = −1 add

(f, (t, i),WLB) to c.
7.1.3. For each i ∈ {1, . . . , k} such that s2i−1 = 1 and s2i+1 = 1 add

(f, (t, i), IP) to c.

8. If % is “≥,” then

8.1. For each real d-type t = (s1, . . . , s2k+1) do
8.1.1. For each i ∈ {1, . . . , k} such that s2i−1 = 1 and s2i+1 = −1 add

(f, (t, i),WUB) to c.
8.1.2. For each i ∈ {1, . . . , k} such that s2i−1 = −1 and s2i+1 = 1 add

(f, (t, i),WLB) to c.
8.1.3. For each i ∈ {1, . . . , k} such that s2i−1 = −1 and s2i+1 = −1

add (f, (t, i), IP) to c.

9. If % is “>,” then

9.1. For each real d-type t = (s1, . . . , s2k+1) do
9.1.1. For each i ∈ {1, . . . , k} such that s2i−1 = −1 and s2i+1 = 1 add

(f, (t, i),SLB) to c.
9.1.2. For each i ∈ {1, . . . , k} such that s2i−1 = 1 and s2i+1 = −1 add

(f, (t, i),SUB) to c.
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9.1.3. For each i ∈ {1, . . . , k} such that s2i−1 = 1 and s2i+1 = 1 add
(f, (t, i),EP) to c.

10. Return c.

Before we go on we make a few comments on algorithm at-cs. First, observe
that the algorithm does not generate any candidate solutions for the cases when
f has no real roots. For example, no candidate solution with real 2-type 3 or
−3 will ever be generated. Second, the question whether the leading coefficient
of f can vanish—which we ask in step 3—is an optimization that can be left
out. If it is too hard to decide whether the leading coefficient can vanish, then
it is sufficient to simply include the candidate solutions at-cs(red f % 0, x) in
c. Third, it is noteworthy that the algorithm is not limited to degree three; it
can be used for any d-degree polynomial as soon as we provide it with all real
d-types.

We continue with algorithm guard, which simply uses the guards for f listed
above. Similarly as with at-cs, it is obvious that this algorithm works for a
higher degree d as soon as we deliver a guard γt for each real d-type t:

Algorithm guard
(
(f, S), x

)
.

Input: a parametric root description (f, S), where f ∈ Z[u][x] with deg f ≤ 3
and S = {(t1, r1), . . . , (tk, rk)}.
Output: a quantifier-free Tarski formula γ, which is a guard of (f, S).

1. Let T = {ti}ki=1 be the set of all real d-types occurring in S.

2. γ :=
∨
t∈T γt, where γt is the guard of real d-type t for f listed above

3. Return γ.

Indeed the most challenging part is to give algorithm vs-prd-at, which ac-
tually “does the work.” We first explain its main idea on two example situations.

As the first example consider the situation when we want to substitute para-
metric root description λ = (f, (1, 1)), where f = x2 + bx− 7 and b ∈ Z[u], into
atomic formula g ≥ 0, where g = a∗x+b∗ and a∗, b∗ ∈ Z[u]. We want necessary
and sufficient conditions in the parameters u for g to be non-negative at the
first root of f under the assumption that f is of real 2-type 1, i.e., we want a
Tarski formula equivalent to (g ≥ 0)[x // λ]. Let a ∈ Rm be parameter values
such that f〈a〉 is of real 2-type 1. Denote by α the first real root of f〈a〉. We
distinguish the following three cases:

1. If a∗〈a〉 is positive, then g〈a〉(α) is non-negative if and only if the root
β = − b∗〈a〉

a∗〈a〉 of g〈a〉 is less than or equal to α, i.e., β is identical with or
lies to the left of α.

2. If a∗〈a〉 is negative, then g〈a〉(α) is non-negative if and only if the root
β = − b∗〈a〉

a∗〈a〉 of g〈a〉 is greater than or equal to α, i.e., β is identical with
or lies to the right of α.

3. If a∗〈a〉 is zero, then g〈a〉(α) is non-negative if and only if b∗〈a〉(α) = b∗〈a〉
is non-negative.
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The conditions “β lies to the left of α” and “β lies to the right of α” can
be expressed by sign constraints on f〈a〉 at the root β = − b∗〈a〉

a∗〈a〉 of g〈a〉 and
g〈a〉 at the root − b〈a〉2 of f ′〈a〉. Using these observations we obtain equivalent
conditions in the parameters u:

1. a∗ > 0 ∧ f(− b∗

a∗ ) ≥ 0 ∧ g(− b
2 ) > 0,

2. a∗ < 0 ∧
(
f(− b∗

a∗ ) ≤ 0 ∨ g(− b
2 ) > 0

)
,

3. a∗ = 0 ∧ b∗ ≥ 0,

where f(− b∗

a∗ ) is obtained by replacing in f each occurrence of x with − b∗

a∗ , and
g(− b

2 ) is obtained by replacing in g each occurrence of x with − b
2 . Even though

this is not a Tarski formula, it is not hard to see that this semantically makes
sense. Observe that this can, in fact, be expressed by linear virtual substitution
as follows:

1. a∗ > 0 ∧ (f ≥ 0)[x // (a∗x+ b∗, (1, 1))] ∧ (g > 0)[x // (f ′, (1, 1))],

2. a∗ < 0 ∧
(
(f ≤ 0)[x // (a∗x+ b∗, (−1, 1))] ∨ (g > 0)[x // (f ′, (1, 1))]

)
,

3. a∗ = 0 ∧ b∗ ≥ 0.

Carrying out the linear virtual substitutions using algorithms pseudo-sgn-rem
and vs-prd-at-1 and forming a disjunction of the three formulas, we finally
obtain a Tarski formula equivalent to (g ≥ 0)[x // λ]:

a∗ > 0 ∧ −7a∗2 − ba∗b∗ + b∗2 ≥ 0 ∧ −a∗b+ 2b∗ > 0 ∨
a∗ < 0 ∧

(
−7a∗2 − ba∗b∗ + b∗2 ≤ 0 ∨ −a∗b+ 2b∗ > 0

)
∨

a∗ = 0 ∧ b∗ ≥ 0.

As the second example imagine that we want to substitute a parametric root
description λ = (f, (4, 1)), where f ∈ Z[u][x] is a polynomial of degree 3, into
an atomic formula g < 0, where g ∈ Z[u][x] is a polynomial of degree 2. Assume
that we are given parameter values a ∈ Rm such that f〈a〉 is of real 3-type 4 and
g〈a〉 is of real 2-type 1. Let β1 = (g, (1, 1)) and β2 = (g, (1, 2)) be parametric
root descriptions describing the first and the second real root of g, respectively.
Then we have R |= (g < 0)(a, λ〈a〉) if and only if β1〈a〉 lies to the left of the
point λ〈a〉 and β2〈a〉 lies to the right of the point λ〈a〉.

In Figure 2.3 we depict two possible situations what the relative positions
of λ〈a〉, β1〈a〉, and β2〈a〉 could look like. In the first case we obviously have
R |= (g < 0)(a, λ〈a〉) and in the second case we have R 6|= (g < 0)(a, λ〈a〉). The
pictures make clear that the “to-the-left and to-the-right of λ〈a〉” view indeed
precisely characterizes those parameter values a such that R |= (g < 0)(a, λ〈a〉)
under the assumptions that f〈a〉 is of real 3-type 4 and g〈a〉 is of real 2-type 1.

Our aim now is to obtain necessary and sufficient conditions in the param-
eters u for the statement “β1〈a〉 is to the left of λ〈a〉.” We achieve this by
carefully analyzing the possible signs and shapes of the derivatives of f〈a〉 rela-
tive to g〈a〉. Figure 2.2 shows f〈a〉 together with its derivatives. Notice that the
curvature or even the relative position of the first root of f ′′〈a〉 and the second
root of f〈a〉 possibly depend on parameter values a. The real types of f ′〈a〉
and f ′′〈a〉, in contrast, remain in this case the same for any parameter values
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f〈a〉f ′〈a〉f ′′〈a〉

λ〈a〉

Figure 2.2: A polynomial f〈a〉 of real 3-type 4 with its derivatives and its root
λ〈a〉 = (f, (4, 1))〈a〉.

a such that f〈a〉 is of real 3-type 4. Therefore, we can deduce that “β1〈a〉 is
to the left of λ〈a〉” if and only if f〈a〉 is negative at β1〈a〉, f ′〈a〉 is positive at
β1〈a〉, and f ′′〈a〉 is negative at β1〈a〉, because we assume that f〈a〉 is of real
3-type 4 and g〈a〉 is of real 2-type 1. Under these assumptions, the definition
of virtual substitution ensures that “β1〈a〉 is to the left of λ〈a〉” if and only if

R |=
(
(f < 0)[x // β1] ∧ (f ′ > 0)[x // β1] ∧ (f ′′ < 0)[x // β1]

)
(a).

Proceeding in a similar fashion, we obtain a necessary and sufficient condition
in the parameters u for the statement “β2〈a〉 is to the right of λ〈a〉:” Observe
that this is the case if and only if f〈a〉 is positive at point β2〈a〉, or g〈a〉 is
smaller than zero at point α1〈a〉, where α1 = (f ′, (1, 1)), i.e., α1 describes the
first root of the first derivative of f . Since g〈a〉 is of real 2-type 1, the latter
case covers the case when β2〈a〉 is to the right of the first root of f〈a〉, but f〈a〉
is non-positive at β2〈a〉. The definition of virtual substitution therefore ensures
that “β2〈a〉 is to the right of λ〈a〉” if and only if

R |=
(
(f > 0)[x // β2] ∨ (g < 0)[x //α1]

)
(a).

Putting these together, we have just proven the following for any parameter
values a ∈ R: If f〈a〉 is of real 3-type 4 and g〈a〉 is of real 2-type 1, then
(g < 0)[x // (f, (4, 1))] holds if and only if R |= ψ(a) holds, where

ψ :
(
(f < 0)[x // β1] ∧ (f ′ > 0)[x // β1] ∧ (f ′′ < 0)[x // β1]

)
∧(

(f > 0)[x // β2] ∨ (g < 0)[x //α1]
)
.

Observe that all the virtual substitutions occurring in ψ are quadratic and
linear virtual substitutions, so they can be realized by algorithms for quadratic
and linear virtual substitution, respectively.

Analyzing all relevant situations in a similar fashion, we derive all finitely
many formula schemes that yield necessary and sufficient conditions in the pa-
rameters u for g % 0 to hold at a root of f for any cubic polynomial f and a linear
or quadratic polynomial g. We systematically list these formula schemes along
with formula schemes for the quadratic virtual substitution in Appendix A.1
and Appendix A.2. Each formula presented there is a simplified equivalent of
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g〈a〉

λ〈a〉β1〈a〉 β2〈a〉

g〈a〉

λ〈a〉 β1〈a〉 β2〈a〉

Figure 2.3: Two different potential situations of position λ〈a〉 relative to g〈a〉:
On the left picture the formula g < 0 is satisfied by (a, λ〈a〉), because β1〈a〉
is to the left and β2〈a〉 to the right of λ〈a〉. On the right picture the formula
g < 0 is not satisfied by (a, λ〈a〉), because β1〈a〉 is not to the left of λ〈a〉.

a formula obtained by an analysis of one relevant situation. For concrete poly-
nomials f and g, a necessary and sufficient condition for (g % 0)[x // (f, S)] to
hold is obtained by substituting the coefficients of f and g into the appropri-
ate scheme. With these formula schemes at hand, it is straightforward to give
algorithms vs-prd-at-2 and vs-prd-at-3:

Algorithm vs-prd-at-2
(
g % 0, (f, S), x

)
:

Input: an atomic formula g % 0 and a parametric root description (f, S) such
that g, f ∈ Z[u][x], % ∈ {=, 6=, <,≤,≥, >}, and deg g < deg f = 2.
Output: (g % 0)[x // (f, S)], i.e., a quantifier-free formula in the parameters u
meeting our specification of virtual substitution.

1. If deg g = 0, then return g % 0.

2. If there is no formula scheme in Appendix A.1 involving the set S, then

2.1. (f, S) := (−f,−S)

3. If % ∈ {=, <,≤}, then

3.1. ψ := (g % 0)[x // (f, S)]
Use the appropriate formula scheme for (f, S) from Appendix A.1.

4. If % ∈ {6=,≥, >}, then

4.1. ψ :=
(
¬(g % 0)

)
[x // (f, S)]

Use the appropriate formula scheme for (f, S) from Appendix A.1.
4.2. ψ := ¬ψ

5. Return ψ.

Algorithm vs-prd-at-3
(
g % 0, (f, S), x

)
:

Input: an atomic formula g % 0 and a parametric root description (f, S) such
that g, f ∈ Z[u][x], % ∈ {=, 6=, <,≤,≥, >}, and deg g < deg f = 3.
Output: (g % 0)[x // (f, S)], i.e., a quantifier-free formula in the parameters u
meeting our specification of virtual substitution.

1. If deg g = 0, then return g % 0.
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2. If there is no formula scheme in Appendix A.2 involving the set S, then

2.1. (f, S) := (−f,−S)

3. If % ∈ {=, <,≤}, then

3.1. ψ+ := (g % 0))[x // (f, S)]
ψ− := (−g % 0)[x // (f, S)]
ψ0 := vs-prd-at-3

(
red g % 0, (f, S), x

)
Use the appropriate formula scheme for (f, S) from Appendix A.2.

4. If % ∈ {=, <,≤}, then

4.1. ψ+ :=
(
¬(g % 0)

)
[x // (f, S)]

ψ− :=
(
¬(−g % 0)

)
[x // (f, S)]

ψ0 := vs-prd-at-3
(
¬(red g % 0), (f, S), x

)
Use the appropriate formula scheme for (f, S) from Appendix A.2.

4.2. ψ+ := ¬ψ+; ψ− := ¬ψ−; ψ0 := ¬ψ0

5. Return lc g > 0 ∧ ψ+ ∨ lc g < 0 ∧ ψ− ∨ lc g = 0 ∧ ψ0.

For a set of root specifications S = {(t1, r1), . . . , (tk, rk)} we define −S to
be the set {(−t1, r1), . . . , (−tk, rk)}. To justify the correctness of algorithms
vs-prd-at-2 and vs-prd-at-3 we will use the following two lemmas stating
that (f, S) and (−f,−S) are equivalent in the following sense: They have equiv-
alent guards, and they yield equivalent formulas when substituted by means of
virtual substitution. It is therefore correct to use a formula scheme for (−f,−S)
when we want to realize the virtual substitution of (f, S) and vice versa.

Lemma 40. Let f ∈ Z[u][x]. Let (f, S), where S = {(t1, r1), . . . , (tk, rk)}, be a
parametric root description of f . Let γ be a guard of (f, S). Let γ′ be a guard
of (−f,−S). Then R |= γ ←→ γ′.

Proof. Let a ∈ R be some parameter values. We show that a satisfies γ if and
only if a satisfies γ′.

Assume first that a satisfies γ. Since γ is a guard of (f, S), the univariate
polynomial f〈a〉 is of some real type tj . This ensures that −(f〈a〉) is of real
type −tj for some j ∈ {1, . . . , k}. At the same time we have −(f〈a〉) = (−f)〈a〉,
because 〈·〉 is a homomorphism. The assumption that γ′ is a guard of (−f,−S)
together with the fact that (−f)〈a〉 is of real type −tj imply that a satisfies γ′.
This proves that a satisfies γ′ as well, i.e., R |= γ −→ γ′.

Assume now that a satisfies γ′. Since γ′ is a guard of (−f,−S), the univariate
polynomial (−f)〈a〉 is of some real type −tj . This ensures that (−f)〈a〉 =
−(f〈a〉) is of real type tj , j ∈ {1, . . . , k}. Since we assume that γ is a guard of
(f, S), we obtain that a satisfies γ. This shows that R |= γ′ −→ γ, so the proof
is finished.

Lemma 41. Let g % 0, where g ∈ Z[u][x] and % ∈ {=, 6=, <,≤,≥, >}, be an
atomic formula. Let f ∈ Z[u][x], and let (f, S), where the set of root specifica-
tions S is {(t1, r1), . . . , (tk, rk)}, be a parametric root description of f . Let γ be
a guard of (f, S). Then

R |= γ −→
(
(g % 0)[x // (f, S)]←→ (g % 0)[x // (−f,−S)]

)
.
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Proof. Let a ∈ Rm be some parameter values. Assume that a satisfies γ.
We need to prove that a satisfies the formula (g % 0)[x // (f, S)] ←→ (g %
0)[x // (−f,−S)] as well.

Let us first assume that a satisfies (g % 0)[x // (f, S)]. Since we assume that
a satisfies γ, this means that there exists j ∈ {1, . . . , k} such that f〈a〉 is of
real type tj , and g % 0 is satisfied by the rj-th real root of f〈a〉. We show
that a satisfies (g % 0)[x // (−f,−S)] as well. Observe that −(f〈a〉) = (−f)〈a〉
is of real type −tj . This ensures that the rj-th real root of (−f)〈a〉 and the
rj-th real root of f〈a〉 are actually the same real number. By assumption, g % 0
holds at this root. On the other hand, Lemma 40 ensures that γ is a guard of
(−f,−S). Therefore, the definition of a virtual substitution ensures that the
statement that g % 0 holds at the rj-th root of (−f)〈a〉 is equivalent to the
statement that a satisfies (g % 0)[x // (−f,−S)]. This proves that a satisfies
(g % 0)[x // (−f,−S)] as well.

The proof of the converse implication is similar, so we omit it.

Observe that the formula schemes of Section A.1 and Section A.2 cover only
the cases when % ∈ {=, <,≤} and the real type of f is “positive,” i.e., lc f is
greater than zero. Negating appropriately and using Lemmas 40 and 41 it is
easy to see that all the remaining cases can be converted to these cases. We
exploit this in vs-prd-at-2 and vs-prd-at-3.

We are using these symmetries to reduce the number of cases for which we
need to derive a formula scheme. Notice that using these symmetries does not
enlarge the resulting formulas, because we do not rewrite “≤” as “= or <.” Even
though this would have reduced the number of cases, the size of the formulas
(g ≤ 0)[x // (f, S)] would grow. Therefore we explicitly give formula schemes
also for the cases when % is “≤.”

Theorem 42. Algorithms at-cs, guard, vs-prd-2, and vs-prd-3 meet their
specifications.

Proof. To prove the correctness of algorithm at-cs, we first fix values a ∈ Rm
for the parameters u, and proceed by the induction on d.

If d = 0, then Φ(f % 0,a) is either ∅ or R, so there is no boundary point to
cover. Consequently, ∅ is a set of candidate solutions.

Assume that d > 0, and that at-cs meets its specification for polynomials
of degree smaller than d. If (lc f)〈a〉 = 0, then c is the satisfying set for red f % 0
by the induction hypothesis, so each boundary point of Φ(f % 0,a) is properly
covered. If (lc f)〈a〉 6= 0, then Φ(f % 0,a) is a finite union of intervals, and f〈a〉
is of some real d-type (s1, . . . , s2k+1). If % is “=,” then Φ(f % 0,a) consists of k
isolated points, which are obviously all properly covered by c. Assume that % is
“<,” and consider the i-th root of f〈a〉. There are four possibilities what f〈a〉
looks like near each of this root:

1. s2i−1 = −1 and s2i+1 = 1: The i-th root is a strict upper bound boundary
point of Φ(f % 0,a).

2. s2i−1 = 1 and s2i+1 = −1: The i-th root is a strict lower bound boundary
point of Φ(f % 0,a).

3. s2i−1 = −1 and s2i+1 = −1: The i-th root is an excluded point boundary
point of Φ(f % 0,a).
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4. s2i−1 = 1 and s2i+1 = 1: The i-th root is not a boundary point.

Looking at the pseudocode of vs-at, we see that all boundary points are prop-
erly covered by c. This finishes the proof for the case when % is “<.” The proof
is similar for other relations, so we omit it. This proves that at-cs meets its
specification.

The correctness of algorithm guard follows directly from Theorem 39.
The correctness of Algorithms vs-prd-2 and vs-prd-3 follows from the

correctness of the formula schemes given in Appendix A.1 and Appendix A.2
combined with Lemmas 40 and 41. In this subsection we have shown on an
example how to derive and prove correct one concrete formula scheme. We did
a similar analysis and proof for each formula scheme given in the appendix.
This finishes the proof of the theorem.

To conclude this subsection let us note that the idea to consider all the
possible relative positions of f and g for the cubic case and to “draw pictures”
appeared already in [83]. Here we made this idea explicit within our framework
and formalism.

2.5.3 Clustering
Looking closer at the instantiations of vs-scheme described in the previous sub-
sections we observe the following: The set S of any parametric root description
(f, S) consists of exactly one root specification. Consequently, each parametric
root description substituted into a formula ϕ by means of virtual substitution
schemes of Appendix A.1 and Appendix A.2 contains exactly one root specifi-
cation as well. Here we propose virtual substitution with clustering that merges
two compatible parametric root descriptions (f, S1) and (f, S2) into (f, S1∪S2),
so that they can be substituted into ϕ simultaneously in one go.

We first illustrate the core idea of clustering on a linear atomic formula.
Assume that an atomic formula f = 0, where f is ax+ b and a, b ∈ Z[u], occurs
in ϕ. According to our instantiation described in Subsection 2.5.1, at-cs-1 adds
candidate solutions

(
f, (1, 1), IP

)
and

(
f, (−1, 1), IP

)
to a candidate solution set

for ϕ. This means that the instantiation of vs-scheme eventually computes the
following two formulas:

a > 0 ∧ ϕ[x // (f, (1, 1))] and a < 0 ∧ ϕ[x // (f, (−1, 1))].

The idea of clustering is to compute only one formula

a 6= 0 ∧ ϕ[x // (f, {(1, 1), (−1, 1)})]

instead. This essentially means that we substitute (f, (1, 1)) and (f, (−1, 1))
simultaneously and replace

a > 0 ∧ ϕ[x // (f, (1, 1))] ∨ a < 0 ∧ ϕ[x // (f, (−1, 1))]

with a 6= 0∧ϕ[x // (f, {(1, 1), (−1, 1)})] in the quantifier-free equivalent of ∃x(ϕ)
computed by the instantiation of vs-scheme. Here note that a 6= 0 is a guard
of (f, {(1, 1), (−1, 1)}).

To illustrate the difference between formulas obtained by simple and clus-
tered virtual substitution we consider parametric root descriptions (f, (1, 1))
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and (f, (−1, 1)), where f = ax + 1. Imagine we want to substitute them into
atomic formula bx + c ≥ 0. Using algorithms pseudo-sgn-rem and vs-at-1
we obtain a2c − ab ≥ 0 in both cases. Since in the first case we have a guard
a > 0 and in the second case we have a guard a < 0, the obtained formula
can be simplified to ac − b ≥ 0 and ac − b ≤ 0, respectively. Using cluster-
ing, we merge the two parametric root descriptions into (f, {(1, 1), (−1, 1)}). It
is obvious that vs-at-1 meets its specification also when given the paramet-
ric root description (f, {(1, 1), (−1, 1)}) as an argument. Therefore, algorithms
pseudo-sgn-rem and vs-at-1 ensure that (bx+ c ≥ 0)[x // (f, {(1, 1), (−1, 1)})]
is equivalent to a2c − ab ≥ 0. To sum up, using clustering we obtain formula
a2c− ab ≥ 0 instead of two formulas ac− b ≥ 0 and ac− b ≤ 0 obtained by two
simple (non-clustered) virtual substitutions followed by simplification.

Indeed, lifting the idea of clustering to higher degrees is more challenging,
because we need to provide algorithms vs-at-2 and vs-at-3 that are able to
handle clustered parametric root descriptions, i.e., parametric root descriptions
containing more than one root specification. Before doing this, let us prove the
following lemma that guarantees the correctness of clustering in general:

Lemma 43 (Clustering Lemma). Let f ∈ Z[u][x]. Let (f, S1) and (f, S2) be
two parametric root descriptions such that no real type occurs in both S1 and
S2. Let γ1 be a guard of (f, S1) and let γ2 be a guard of (f, S2). Then γ1 ∨ γ2
is a guard of the parametric root description (f, S1 ∪ S2), there exists a virtual
substitution [x // (f, S1 ∪ S2)], and we have

R |= γ1 −→
(
ϕ[x // (f, S1)]←→ ϕ[x // (f, S1 ∪ S2)]

)
, and

R |= γ2 −→
(
ϕ[x // (f, S2)]←→ ϕ[x // (f, S1 ∪ S2)]

)
.

Proof. To begin with, observe that the assumption that S1 and S2 do not share
a real type directly implies that γ1 ∨ γ2 is a guard of (f, S1 ∪S2). Furthermore,
Proposition 24 ensures the existence of virtual substitution [x // (f, S1 ∪ S2)].

Let now a ∈ Rm be arbitrary parameter values such that R |= γ1(a) holds,
i.e., f〈a〉 is of some real type t occurring in S1. We need to prove that R |=
ϕ[x // (f, S1)](a) if and only if R |= ϕ[x // (f, S1 ∪ S2)](a).

First assume that a satisfies ϕ[x // (f, S1)]. The definition of virtual substitu-
tion together with the assumption R |= γ1(a) ensures that R |= ϕ(a, (f, S1)〈a〉).
Since no real type occurs in both S1 and S2, we have (f, S1)〈a〉 = (f, S1∪S2)〈a〉,
so R |= ϕ(a, (f, S1 ∪S2)〈a〉). The definition of virtual substitution ensures that
R |= ϕ[x // (f, S1 ∪ S2)](a), because a obviously satisfies a guard of (f, S1 ∪S2).

Now assume that a satisfies ϕ[x // (f, S1 ∪ S2)](a). Since we assume that a
satisfies a guard of (f, S1∪S2), the definition of virtual substitution implies that
R |= ϕ(a, (f, S1∪S2)〈a〉). Since no real type occurs in both S1 and S2, and f〈a〉
is of some real type occurring in S1, we obtain (f, S1 ∪ S2)〈a〉 = (f, S1)〈a〉, so
in particular R |= ϕ(a, (f, S1)〈a〉). Finally, the definition of virtual substitution
together with the assumption R |= γ1(a) guarantee that R |= ϕ[x // (f, S1)](a).
This finishes the proof of the equivalence.

The proof of the second statement is similar, so we omit it.

It is noteworthy that the assumption that no real type occurs in both S1
and S2 cannot be dropped. This follows directly from our discussion below
Theorem 35 where we argued that a virtual substitution of a parametric root
description (f, S) such that S contains duplicate real types is not reasonable.
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Figure 2.4: Two root specification clusters for f = ax2 + bx+ c: The cluster at
the first line corresponds to (f, {(1, 1), (2, 1), (−1, 2), (−2, 1)}); in this case the
root can be expressed as −b−

√
∆

2a . The cluster at the second line corresponds
to (f, {(1, 2), (2, 1), (−1, 1), (−2, 1)}); in this case the root can be expressed as
−b+
√

∆
2a .

To lift now the idea of clustering to the quadratic case we investigate all the
four real types of f = ax2 + bx + c, where a, b, and c ∈ Z[u], when f has a
real root. Let a ∈ Rm be such that f〈a〉 has a real root, i.e., f〈a〉 is of real
2-type 1, 2, −1, or −2. Then the marked root of f〈a〉 depicted at the first line
of Figure 2.4 can be expressed in terms of the parameters a as

−b〈a〉 −
√
b〈a〉2 − 4a〈a〉c〈a〉
2a〈a〉 .

Similarly, each marked root of f〈a〉 depicted at the second line of Figure 2.4
can be expressed as

−b〈a〉+
√
b〈a〉2 − 4a〈a〉c〈a〉
2a〈a〉 .

Using this insight and substituting square-root expressions into an atomic for-
mula g % 0, where g ∈ Z[u][x], deg g < 2, and % ∈ {=, <,≤}, as described in [84,
Section 2], we derive formula schemes for virtual substitution with clustering.
We list all the obtained schemes after simplification in Appendix A.3. Results
of [84] ensure the correctness of all formula schemes derived in this way. Ob-
serve that the schemes there work exclusively with parametric root descriptions
depicted in Figure 2.4, namely:

(f, {(1, 1), (2, 1), (−1, 2), (−2, 1)}) and (f, {(1, 2), (2, 1), (−1, 1), (−2, 1)}).

We show that these two parametric root descriptions are sufficient to real-
ize quadratic virtual substitution with clustering on an example: Consider a
quadratic atomic formula f ≥ 0, where f = ax2 + bx + c and a, b, c ∈ Z[u]
contained in a formula ϕ to which we apply an instantiation of vs-scheme. Al-
gorithm vs-at returns the following candidate solutions for this atomic formula:

(f, (1, 1),WUB), (f, (1, 2),WLB),
(f, (−1, 1),WLB), (f, (−1, 2),WUB), (f, (−2, 1), IP),
(red f, (1, 1),WLB), (red f, (−1, 1),WUB).

Assume that vs-scheme simply selects lower bounds. Therefore, we have to
substitute parametric root descriptions (f, (1, 2)), (f, (−1, 1)), and (f, (−2, 1)).
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Instead of computing

γ1 ∧ ϕ[x // (f, (1, 2))] ∨ γ−1 ∧ ϕ[x // (f, (−1, 1))] ∨ γ−2 ∧ ϕ[x // (f, (−2, 1))],

where γ1, γ−1, and γ−2 are guards for (f, (1, 2)), (f, (−1, 1)), and (f, (−2, 1)),
respectively, we would like to employ clustering and rather compute formula

γ{1,−1,−2} ∧ ϕ[x // (f, {(1, 2), (−1, 1), (−2, 1)})],

where γ{1,−1,−2} is a guard of (f, {(1, 2), (−1, 1), (−2, 1)}). Observe, however,
that we can use our schemes from Appendix A.3, and compute

γ{1,2,−1,−2} ∧ ϕ[x // (f, {(1, 2), (2, 1), (−1, 1), (−2, 1)})]

instead for the following reasons: First, it is never a problem to substitute too
many test points; the only criterion is to guarantee that all test points generated
by vs-scheme are substituted. Therefore, the implicit substitution of (f, (2, 1))
is correct, but seemingly redundant. Second, the substitution of (f, (2, 1)) is for
free: The formulas in Appendix A.3 were derived to hold for all involved root
specifications. Third, we can even use a simpler guard: Instead of using a guard
γ{1,−1,−2} ←→ a > 0 ∧ b2 − 4ac > 0 ∨ a < 0 ∧ b2 − 4ac ≥ 0 we can use a guard
γ{1,2,−1,−2} ←→ a 6= 0 ∧ b2 − 4ac ≥ 0.

To measure the benefit of clustering in the quadratic case we consider a poly-
nomial f of degree two, and compare the numbers of atomic formulas obtained
by substituting all of the following six parametric root descriptions

(f, (1, 1)), (f, (1, 2)), (f, (2, 1)), (f, (−1, 1)), (f, (−1, 2)), (f, (−2, 1)) (2.5)

into atomic formula g % 0, where g ∈ Z[u][x] is of degree smaller than two.
Table 2.3 lists these numbers. The columns “simple” list the sum of the numbers
of atomic formulas in six virtual substitution results obtained when substituting
(2.5) using virtual substitution formula schemes of Appendix A.1 into g % 0.
The columns “clustering” list the sum of the numbers of atomic formulas in two
virtual substitution results obtained using virtual substitution formula schemes
with clustering of Appendix A.3. We point to the fact that a substitution of the
six parametric root descriptions (2.5) is a completely realistic example, because
all the six parametric root descriptions need to be substituted into ϕ whenever
f = 0 occurs in ϕ. Therefore, according to Table 2.3, the overall resulting
quantifier-free equivalent should be definitely shorter when we use clustering.
We will measure this on practical examples in Chapter 6.

The idea of clustering in the cubic case is indeed more challenging. Com-
pared with the degree two, we do not use any root expressions that indicate
what to cluster. Nevertheless, the quadratic case motivates us to somehow
minimize the sum of the lengths of the results when using clustered virtual sub-
stitution of a set of parametric root descriptions into an atomic formula. Re-
call that one simple cubic virtual substitution boils down to multiple linear or
quadratic virtual substitutions. Our aim is to empirically minimize this number
of lower-degree virtual substitutions. Using human intelligence along with ma-
chine simplifications we propose a clustering strategy that tries to minimize the
number of lower-degree virtual substitutions. Our strategy clusters root speci-
fications according to Figure 2.5. All virtual substitution formula schemes for
these clustered cubic parametric root specifications are given in Appendix A.4.
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% deg g = 0 deg g = 1
simple clustering simple clustering

= 6 2 10 4
< 6 2 22 10
≤ 6 2 18 8

Table 2.3: Numbers of atomic formulas obtained by virtual substitution of six
parametric root descriptions (2.5) of a quadratic polynomial f ∈ Z[u][x] into an
atomic formula g % 0, where g ∈ Z[u][x] is a polynomial with deg g < 2.

Figure 2.5: Four root specification clusters for polynomial f = ax3 + bx2 +
cx + d: (f, {(1, 1)}), (f, {(2, 1), (3, 1), (4, 1)}), (f, {(2, 1), (3, 2), (4, 2)}), and
(f, {(2, 2), (3, 2), (4, 3)}).

To prove the correctness of the schemes of Appendix A.4, one proceeds
similarly as in Subsection 2.5.2. Since more than one root specification can now
be present in a set of root specifications S, one has to ensure that a Tarski
formula formalizing a condition like “the first real root of f〈a〉 lies to the right
of the second real root of g〈a〉” holds whenever f〈a〉 is of one of the real types
from S. Therefore, instead of constructing a formula for one concrete situation,
we construct a formula covering more situations at once.

In Table 2.4 we summarize the numbers of lower-degree virtual substitu-
tions of simple and clustered virtual substitution in the following setting: We
count lower-degree virtual substitutions when we substitute the following eight
parametric root descriptions

(f, (1, 1)), (f, (2, 1)), (f, (2, 2)), (f, (3, 1)), (f, (3, 2)),
(f, (4, 1)), (f, (4, 2)), (f, (4, 3)), (2.6)

into an atomic formula g % 0, whereas f , g ∈ Z[u][x] such that deg f = 3 and
deg g < deg f . The columns “simple” list the sum of the numbers of lower-
degree virtual substitutions needed for substitution of the eight parametric root
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% deg g = 0 deg g = 1 deg g = 2
simple clustering simple clustering simple clustering

= 0 0 14 8 28 18
< 0 0 13 8 24 16
≤ 0 0 13 8 25 17

Table 2.4: Numbers of lower-degree (i.e., linear and quadratic) virtual substi-
tutions induced by virtual substitution of eight parametric root descriptions
(2.6) of a cubic polynomial f ∈ Z[u][x] into an atomic formula g % 0, where
g ∈ Z[u][x] is a polynomial with deg g < 3.

descriptions (2.6) into g % using Appendix A.2, while the columns “clustering”
list the sum of the numbers of lower-degree virtual substitutions needed when
substituting (2.6) using Appendix A.4. It is noteworthy that the numbers of
lower-degree virtual substitutions using clustering are smaller despite the fact
that some parametric root descriptions are covered more than once when using
clustering. We will compare the lengths of quantifier-free equivalents obtained
by simple and clustered virtual substitution on practical examples in Chapter 6.

Integrating the clustering technique developed here into our scheme is now
straightforward: Instead of substituting each test point in step 7 of algorithm
vs-scheme separately, we first partition the set E of test points with respect to
polynomials and infinitesimal types. Test points in a partition are then covered
by the minimum number of parametric root descriptions from Figure 2.4 and
Figure 2.5. Afterwards, formula schemes of Appendix A.3 and Appendix A.4
are used in algorithm vs-at to realize clustered virtual substitutions.

Finally, we point to the fact that all our correctness results regarding guards,
virtual substitution, and infinitesimals remain valid, so that the correctness of
the scheme using clustering follows from our previous results, Lemma 43, and
the correctness of formula schemes of Appendix A.3 and Appendix A.4.

2.5.4 Towards Higher Degrees
The instantiations of vs-scheme described above work when the target variable
x has degree at most three in the input formula ϕ. If the degree of x is greater
than three, then the algorithms fail, because we did not show how to compute a
guard of a higher-degree polynomial, and we did not provide an algorithm vs-at
for substituting a parametric root description of a higher-degree polynomial.
Here we discuss two topics: First, how to use the developed algorithms for
degrees at most three to handle higher degrees of x in some special cases. Second,
how to extend the framework and provide complete instantiations beyond degree
three.

We discuss algorithm at-cs-fac, which computes a set of candidate solu-
tions for f % 0 by first factorizing f and applying algorithm at-cs afterwards
to each obtained factor:
Algorithm at-cs-fac(f % 0, x).
Input: an atomic formula f % 0, where f ∈ Z[u][x] and % ∈ {=, 6=, <,≤,≥, >}.
Output: a set c of candidate solutions for f % 0.

1. If f does not contain x, then return ∅.
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2. Let e, fm1
1 , . . . , fmkk be a factorization of f with the following properties:

(i) f = e · fm1
1 · · · fmkk ,

(ii) e ∈ Z[u], and
(iii) each fi ∈ Z[u][x] has degree di > 0 and multiplicity mi ≥ 1.

3. If % is “=” or “6=,” then

3.1. c := ∅
3.2. For each i ∈ {1, . . . , k} do

3.2.1. c := c ∪ at-cs(fi % 0, x)
3.3. Return c.

4. If k = 1 and the sign s of e〈a〉 is constant and nonzero regardless of
a ∈ Rm, then

4.1. If s = −1, then
4.1.1. If % is “<” (“≤”), then set % to “>” (“≥”).
4.1.2. If % is “>” (“≥”), then set % to “<” (“≤”).

4.2. If m1 is even, then
4.2.1. If % is “>,” then return at-cs(f1 6= 0, x).
4.2.2. If % is “≤,” then return at-cs(f1 = 0, x).
4.2.3. Return ∅.

4.3. Return at-cs(f1 % 0, x).

5. c := ∅

6. For each i ∈ {1, . . . , k} do

6.1. If mi is even, then
6.1.1. If % is “<” or “>,” then c := c ∪ at-cs(fi 6= 0, x).
6.1.2. If % is “≤” or “≥,” then c := c ∪ at-cs(fi = 0, x).

6.2. If mi is odd, then
6.2.1. If % is “<” or “>,” then

c := c ∪ at-cs(fi < 0, x) ∪ at-cs(fi > 0, x).
6.2.2. If % is “≤” or “≥,” then

c := c ∪ at-cs(fi ≤ 0, x) ∪ at-cs(fi ≥ 0, x).

7. Return c.

The correctness of algorithm at-cs-fac follows directly from Proposition 21
and Proposition 22. Observe that algorithm at-cs-fac fails for f % 0 whenever
f has an irreducible factor of degree greater than three in x. To integrate
algorithm at-cs-fac into vs-scheme we just call in step 3.1 at-cs-fac instead
of at-cs.

One interesting aspect of algorithm at-cs-fac is that it takes any factor-
ization of f in step 2, so fi need not be irreducible. This freedom means that,
e.g., a factor of degree two and a factor of degree one can be regarded as one
factor of degree three. It is not clear whether something like this is helpful, or
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what the best strategy looks like. Clearly, we should definitely try whether f
splits to factors of degrees at most three, so that we can continue instead of
failing. For now we propose to factor f into irreducible factors, and leave closer
investigation for future work.

Another technique that can help to handle higher degrees is degree shift.
Since the whole Chapter 4 is devoted to this technique and its generalizations,
we do not discuss it here.

Now we turn to generalizations of our approach beyond degree three. Recall
from Section 2.4 that for a generalization to degree d we have to provide al-
gorithms at-cs, guard, and vs-prd-at that are able to handle polynomials of
degree d. Algorithm at-cs of Subsection 2.5.2 works for degree d whenever we
know all the real d-types. Therefore, for a successful instantiation of vs-scheme
handling degree d we need to provide:

1. Enumeration of all real d-types along with their respective guards, which
are quantifier-free Tarski formulas in the parameters.

2. A correct substitution procedure vs-prd-at
(
g % 0, (f, S), x

)
that works

for arbitrary g, f ∈ Z[u][x], and % ∈ {=, 6=, <,≤,≥, >} such that deg g <
deg f = d, while assuming that S contains exactly one root specification
of f . For simplicity we can even assume that the leading coefficients of g
and f are positive.

Before discussing real types and guards, we first provide evidence that al-
gorithm vs-prd-at for degree d can always be realized using the geometric
approach of Subsection 2.5.2: Assume we are given a parametric root descrip-
tion (f, (t1, r)) with deg f = d1 and a polynomial g with deg g = d2 such that
d2 < d1. The core idea is to express the necessary and sufficient conditions for
g % 0 to hold at the r-th real root of f as a set of constraints on the relative po-
sitions of the real roots of f〈a〉 and g〈a〉 for any parameter values a ∈ Rm such
that f〈a〉 is of real d1-type t1 and g〈a〉 is of real d2-type t2. More specifically,
given parameter values a ∈ Rm such that f〈a〉 is of real d1-type t1 and g is of
real d2-type t2, g % 0 holds at the r-th real root of f if and only if each root
of g〈a〉 lies in a finite union of disjoint intervals induced by the roots of f〈a〉.
The actual intervals for each of the roots of g〈a〉 are indeed determined by the
relative positions of f and g. Thom’s lemma [8] guarantees that we can describe
these intervals in terms of sign conditions on f and its derivatives. Substituting
parametric root descriptions of the roots of g into sign conditions on f and its
derivatives we then obtain necessary and sufficient conditions on g % 0 to hold
at the r-th real root of f .

We illustrate this with an example when deg f = 4 and deg g = 2. Assume
that we are given parameter values a such that f〈a〉 is of real 4-type t =
(1, 0,−1, 0, 1, 0,−1, 0, 1) and g〈a〉 is of real 2-type 1. We derive necessary and
sufficient conditions in the parameters for (g < 0)[x // λ], λ = (f, (t, 2)), to hold
under the assumptions that f〈a〉 is of real 4-type t and g〈a〉 is of real 2-type 1.
These assumptions ensure that g〈a〉 is negative at the second real root of f〈a〉
if and only if both of the following hold:

(i) The first real root of g〈a〉 lies to the left of the second real root of f〈a〉.

(ii) The second real root of g〈a〉 lies to the right of the second real root of
f〈a〉.
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f〈a〉f ′〈a〉f ′′〈a〉f ′′′〈a〉

λ〈a〉

Figure 2.6: A polynomial f〈a〉 of real 4-type t = (1, 0,−1, 0, 1, 0,−1, 0, 1) with
its derivatives and its root λ〈a〉 = (f, (t, 2))〈a〉.

Denote (g, (1, 1)) by β1 and (g, (1, 2)) by β2. With the help of Figure 2.6 that
depicts f〈a〉 along with its derivatives it is easy to see that β1〈a〉 lies to the left
of λ〈a〉 if and only if (

f ′′′ < 0 ∧
(
f < 0 ∨ f ′ < 0

))
[x // β1]

is satisfied by a. Similarly, β2〈a〉 lies to the right of λ〈a〉 if and only if(
f ′′′ ≥ 0 ∨

(
f > 0 ∧ f ′′′ < 0 ∧ (f ′ > 0 ∨ f ′′ < 0)

))
[x // β2]

is satisfied by a. To sum up, we obtained a virtual substitution formula scheme
that works for a under the assumption that f is of real 4-type t and g is of real
2-type 1.

Observe that the approach we just discussed is a kind of bootstrapping: If
one can realize virtual substitutions of parametric root descriptions of polyno-
mials with degrees 1, . . . , d−1, then one can use it to realize virtual substitution
for parametric root descriptions of degree d. We think that it should be pos-
sible to automatize this bootstrapping process to derive conditions on f and
its derivatives to simplify the tedious derivation of virtual substitution formula
schemes. Another topic related to this is clustering. We believe that it could
be also automatized to some extent, especially for some “similar” real types of
f . At the end of the day, it should be possible to formulate the question about
which parametric root specifications to cluster as an optimization problem with
the target of minimizing the number of lower-degree virtual substitutions. We
leave all these questions to further work.

The last thing to discuss in this context is the enumeration of all real d-
types and the derivation of a guard for a real d-type. In Section 2.1 we precisely
counted the number of real d-types by counting the number of solutions of a
certain integer constraint system. We think that a clever adjustment of this
technique could lead to an algorithm enumerating all the real d-types explicitly
as sign lists. The actual work then would be to give a guard for every single real
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d-type. Using tricks like linear transformation as in [83, Section 2] and using
automated tools like Qepcad [13] this should be feasible up to degree five without
much effort. As an example, we computed guards of all seven potential real 4-
types of f = x4+ax2+bx+c by running Qepcad on formulas from Proposition 8
without using preprocessing or applying some tricks or transformations. Despite
this the time of the whole computation was not higher than three minutes. For
higher degrees, in contrast, this naive approach will definitely not work and
clever mathematical tricks will be probably needed.

To conclude this subsection we can say that the framework developed in this
chapter can be instantiated to obtain a complete stand-alone quantifier elimina-
tion procedure handling degrees of the quantified variable beyond degree three.
We believe that it is even possible to automatize and optimize this process. We
regard the derivation of guards as the main bottleneck of any potential auto-
mated approach. Finally, other incomplete heuristics like factorization discussed
here are certainly of practical interest as well.

2.6 Comparison with Existing Approaches
In this section we summarize the similarities and differences of our framework
with existing real quantifier elimination techniques. To begin with, we look at
our framework in the context of other virtual substitution-based methods.

The linear virtual substitution method [51] of Weispfenning was the first
method based on the idea of substituting formal solutions of polynomials in-
volved in an input formula ϕ into the formula to eliminate an existential quan-
tifier. Extending this idea by using root expressions as formal solutions of a
quadratic polynomial led to quadratic virtual substitution [84]. The cubic vir-
tual substitution [83], in contrast, uses real types and root indices to represent
real roots of a cubic polynomial.

The main advantages of our framework compared to any of the approaches
mentioned above are:

1. Independence of degrees and extensibility: Our framework makes no prin-
cipal difference between a test point coming from a linear or a higher-
degree atomic formula. No quotients or root expressions are part of it, so
the well-known Abel-Ruffini theorem represents no principal boundary for
extensibility of the framework.

2. Reducing the number of test points: All mentioned approaches treat all
test points of the involved polynomials equally, and do not care much
about the atomic formula generating a particular test point. The bound
selection is therefore limited compared to our approach. The concept of
candidate solutions sets developed in Section 2.2 enables us to represent all
the parametric root descriptions needed. Consequently, we can distinguish
easily between lower bounds and upper bounds, and discard redundant
test points originating from atomic formulas with relation symbols ≤, ≥,
<, and >.

3. Stronger guards: Compared with the linear virtual substitution we obtain
stronger guards as mentioned in [25, Section 3.6]. This happens automat-
ically thank to the candidate solutions concept, which is an intermediate
step between polynomials and test points.
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4. Clustering: Compared with the cubic virtual substitution we substitute
more parametric root descriptions at once to obtain shorter quantifier-free
equivalents.

Another idea of Weispfenning to use Thom codes to represent roots of a
polynomial, and use these for virtual substitution were made explicit in our
publication [46]. We discuss its relation to our framework here below in a
separate subsection.

One of our main motivations for the development of a framework for vir-
tual substitution was the lack of theoretical concepts and data structures that
would provide a basis for an easily extensible and modular implementation. In
this chapter we filled this gap. An implementation based on the framework
developed here will be the subject of Chapter 6. There we will present the first
implementation of a virtual substitution-based quantifier elimination algorithm
for degree three and discuss its applications. It will turn out that the imple-
mentation based on our framework is easily extensible beyond degree three; a
property inherited from the framework developed in this chapter.

We again emphasize that our goal here was not to develop an asymptotically
faster approach that would beat the existing approaches. We focus on rather
practical aspects and heuristics related to quantifier elimination. Our aim is not
to compete with other methods achieving better worst-case complexity.

Now we briefly discuss the relation of our framework with quantifier elimina-
tion by CAD. As we argued above, our framework subsumes and improves upon
all existing quantifier elimination methods based on virtual substitution. These
methods were shown to perform much better than CAD especially on problems
involving low-degree variables and a higher number of parameters. Therefore,
these observations hold for our framework here as well. Nevertheless, for prob-
lems involving higher-degree variables, CAD remains the only practical choice.
We think that the most successful general strategy is: First use virtual substitu-
tion, i.e., our framework, to eliminate as much low-degree variables as possible.
If this is not successful, and some quantifiers remain because of high degrees of
quantified variables, then apply CAD.

2.6.1 A Few Remarks on a Thom Code-Based Framework
Starting from a suggestion by Weispfenning [84, Section 6], we developed in
our recent publication [46] a framework for virtual substitution based on Thom
codes. A test point in that framework is a root of f ∈ Z[u][x] represented as
a sign sequence s of length deg f . A guard of a test point (f, s) and virtual
substitution of (f, s) are defined as follows: A guard is a quantifier-free formula
in the parameters u that gives necessary and sufficient conditions for the ex-
istence of a root of f with signs of the derivatives of f being s. The virtual
substitution of a test point (f, s) into an atomic formula yields necessary and
sufficient conditions in the parameters u for the atomic formula to hold at the
root of f described by the sign sequence s. The framework uses an external
real quantifier elimination algorithm A to compute guards and virtual substi-
tution of test points. Practical experiments suggest that the framework cannot
compete with the existing quadratic and cubic virtual substitution approaches.

Here we would like to point to several differences between the framework
of [46] and our framework developed in this chapter:
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1. According to [46, Lemma 3], the virtual substitution of (f, s) into an
atomic formula yields a formula that implies a guard of (f, s). This leads in
practice to many redundant formulas in virtual substitution results, which
are hard to detect and simplify by standard simplification techniques. It
turns out that a guard of (f, s) can be “masked” in a virtual result, so it
is not easy to detect such guard.
Our framework here, in contrast, uses a guard of a parametric root de-
scription exactly once and writes it conjunctively in front of the whole
formula obtained by virtual substitution.

2. The framework of [46] makes no link between virtual substitution for de-
gree d and degree d+ 1. Virtual substitution formula schemes for degree
d+1 need to be derived from scratch without taking advantage of existing
virtual substitution. This makes a practical extension of the framework
to higher degrees inconvenient.
We saw that we take advantage of lower-degree virtual substitutions in
all of our instantiations of vs-scheme. An instantiation of vs-scheme for
degree four or higher will definitely do so as well.

3. The test points of the form (f, s) reveal no geometric information about
f , so it is not easy to interpret what is actually being substituted. This
makes the development of clustering or other test point reducing tech-
niques harder.

4. The number 3d − 1 of test points for a d-degree atomic formula seems
to be too high. For example, our framework would generate for a d-
degree atomic formula, d = 1, 2, 3, 4 at most 2, 8, 24, 60 test points
in total, respectively. These numbers suggest that our framework here
naturally merges more test points of the framework of [46] even without
using clustering.

For these reasons the framework of [46] is not the right choice from the practical
point of view. The mentioned deficiencies and limitations of that framework ac-
tually served as a starting point for the framework developed in this chapter. Of
course, further theoretical and practical investigations of the framework of [46]
and our framework here could lead to improvements on both sides. We leave
this for future work.

2.7 Conclusions
In this chapter we developed a framework for virtual substitution. We first in-
troduced real types, parametric root descriptions, and candidate solutions. All
these concepts are used to represent, analyze, and generate test points for an
input Tarski formula ϕ. A test point is a representation of a root of a polyno-
mial contained in ϕ. We formally defined virtual substitution of a test point
and proven its existence and semantic correctness. Using all these concepts we
then presented an abstract approach vs-scheme and proven its correctness. The
scheme was then instantiated by providing three precisely specified algorithms.
In this way we obtained complete and self-contained quantifier elimination algo-
rithms for degree at most three. The correctness of the algorithms is automati-
cally guaranteed by the correctness of vs-scheme. All of these algorithms were
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shown to subsume and improve on all existing virtual substitution approaches.
Extensibility of the scheme beyond degree three and its properties were dis-
cussed afterwards, and concrete ideas on extending it to degree four were given.
Finally, we compared our framework with other existing approaches.



Chapter 3

Structural Virtual
Substitution

In this chapter we explore the potential of exploiting the Boolean structure
of a quantifier-free Tarski formula ϕ during quantifier elimination of ∃x from
∃x(ϕ). The idea to take the Boolean structure into account during the process
of elimination of a single quantifier was first mentioned by Dolzmann in [25].
He introduced the concepts of “structural elimination sets” and “condensing.”
Similar concepts in the context of Presburger arithmetic were studied in [48].
Building on this previous work, we propose new improvements like our Marking
technique and novel bound selection strategies. We give concrete algorithms that
we integrate into our framework for virtual substitution presented in Chapter 2.

The starting point for our discussion here is the quantifier elimination algo-
rithm scheme presented and proven correct in Chapter 2, which can be described
as a sequence of the following three phases:

Phase 1 Extract from ϕ the set S of all atomic formulas containing x. Ana-
lyze each atomic formula in S separately: Factorize the left hand side, and
compute a set of candidate solutions for the atomic formula by appropri-
ately using the obtained factors. Collect all candidate solutions obtained
this way into one set c, which constitutes a set of candidate solutions for
ϕ and x.

Phase 2 From c select either the candidate solutions representing the upper
bounds or the candidate solutions representing the lower bounds. Convert
the selected candidate solutions into a set of test points E adjusting by
±ε where needed and finally adding ∓∞. The set E is an elimination set
for ϕ and x.

Phase 3 Substitute each test point from E—preferably using clustering—into
ϕ by means of virtual substitution, and construct a disjunction of the
results. Since E is an elimination set for ϕ and x, the obtained formula is
a quantifier-free equivalent of ∃x(ϕ).

In this chapter we are going to make every single of the above steps sensitive
to the Boolean structure of ϕ. We will integrate a careful analysis of the Boolean

73
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structure of the input formula ϕ into our quantifier elimination algorithm scheme
of Section 2.4.

Instead of throwing all atomic formulas of ϕ into one pot in Phase 1, we first
decompose ϕ into a set of so-called prime constituents. A prime constituent
represents either an atomic or a more complex subformula of ϕ along with a
set of candidate solutions for that particular subformula. The idea is to group
atomic formulas based on the Boolean structure of ϕ, so that some atomic
formulas are not taken into account during the computation of a candidate
solution set for ϕ at all. We will identify equations and negated equations at
certain particularly favorable positions within ϕ in order to identify non-atomic
prime constituents, which will produce significantly fewer candidate solutions
than the atomic formulas contained in there.

We abandon the global bound selection paradigm in Phase 2. We instead
propose a more liberal bound selection strategy using 0-1 Integer Linear Pro-
gramming that is not restricted to the “either take all upper bounds or all lower
bounds” approach. It will be possible that our strategy picks lower bounds from
some prime constituent and upper bounds from another. To achieve this, the
Boolean structure of ϕ will be taken into account to detect dependent subfor-
mulas w.r.t. bound selection. To analyze the dependency, we will introduce the
notion of conjunctive associativity.

Substituting a test point into ϕ during Phase 3 we will take advantage of
the Boolean structure of ϕ again. For this we assign to each test point its
structural origin, i.e., the prime constituent of ϕ that generated that test point
during the test points generation process. This structural origin is then used
during the substitution to trim ϕ—it turns out that a test point needs not to
be substituted into the whole ϕ in some special cases; some atomic formulas
of ϕ can be simply replaced with “false” instead of applying a costly virtual
substitution to them. The above-mentioned notion of conjunctive associativity
will be playing a central role here as well. Furthermore, to argue the correctness
of our approach we will be looking at a particular DNF of ϕ.

Observe that even when we focus here exclusively on the elimination of
a single variable and that our techniques presented here benefit more from a
richer Boolean structure of an input formula, the results of this chapter are
relevant in a broader context: As we have seen in Chapter 2, virtual substitution
introduces richer Boolean structure while eliminating a quantifier. Therefore,
successive quantifier elimination steps can exploit the Boolean structure of an
intermediate result obtained by virtual substitution. In this way the techniques
of this chapter become applicable even when one starts with a seemingly simple
formula having a flat Boolean structure; whenever the target is to eliminate
more than one quantifier it is possible that intermediate results will exhibit
properties that can be exploited by techniques of this chapter. In fact, many
applications of quantifier elimination and decision in practice ask for elimination
of significantly more than one variable.

3.1 Prime Constituent Decompositions
Let ϕ be a quantifier-free Tarski formula, which is an ∧-∨-combination of atomic
formulas. In the following we represent the Boolean structure of ϕ by the struc-
tural tree for ϕ. It is a rooted tree whose leaves correspond to the atomic
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formulas occurring in ϕ. Inner nodes of the tree are either ∧-nodes or ∨-nodes,
whereas the children of a node represent the operands of the respective Boolean
operator in the same order as they appear in ϕ. The root of the tree is the top-
level Boolean operator of ϕ. If ϕ is an atomic formula, then the root is defined
to be this atomic formula. A subtree of the structural tree for ϕ represents a
subformula of ϕ. Note “true” and “false” are atomic formulas as well.

A position π = (p1, . . . , pk) is a finite, possibly empty, sequence of nonzero
natural numbers pi identifying a particular node in a structural tree. The empty
position is denoted by “().” If π represents a leaf of the tree, then we call it
leaf or atomic position. Otherwise we call π an inner position. We denote the
concatenation operator by “|,” so for a position π = (p1, . . . , pk) and nonzero
natural p we have π|p = (p1, . . . , pk, p), and ()|p = (p). The set of all valid
positions in ϕ is denoted by Pos(ϕ).

By π(ϕ) we denote the subtree of the structural tree for ϕ rooted at position
π. We overload the notation and denote by π(ϕ) also the subformula of ϕ
represented by the subtree π(ϕ). It will be always clear from the context whether
π(ϕ) stands for the subtree or for the subformula of ϕ at position π.

Let π1 = (p1, . . . , pk) and π2 = (r1, . . . , rl) be two positions. The lowest com-
mon ancestor of π1 and π2, denoted by lca(π1, π2), is the position (p1, . . . , pm),
where m ∈ {1, . . . ,min(k, l)} is maximal with the property pi = ri for all
i ∈ {1, . . . ,m}. If p1 6= r1, then lca(π1, π2) is (). If lca(π1, π2) = π1 and
π1 6= π2, then we say that π1 is a parent position of π2, or equivalently π2 is a
subposition of π1. We denote that π2 is a subposition of π1 by π2 < π1. Note
that π2 < π1 directly implies that π2(ϕ) is a subformula of π1(ϕ). If π1 = π2
or π2 < π1, then we write π2 v π1. If not π2 v π1, then we write π2 6v π1. If
π1 6v π2 and π2 6v π1, then we say that positions π1 and π2 are independent.
Observe that lca(π1, π2) of two independent positions is always an inner node
of a structural tree.

Example 44. To make our definitions clear we illustrate them on an example.
Consider a quantifier-free Tarski formula ϕ:(

(x− a = 0 ∧ x− c ≥ 0) ∨ x+ 1 < 0
)
∧
(
x− 1 > 0 ∨ (x− 1 = 0 ∧ x− b ≤ 0)

)
.

In Figure 3.1 we can see the structural tree for ϕ. The set Pos(ϕ) is{
(), (1), (2), (1, 1), (1, 2), (2, 1), (2, 2), (2, 2), (1, 1, 1), (1, 1, 2), (2, 2, 1), (2, 2, 2)

}
.

The subformula at position (2, 1) is x− 1 > 0, formally (2, 1)(ϕ) yields x− 1 >
0. The positions (1, 1, 1) and () are not independent, more specifically () is
a parent position of the atomic position (1, 1, 1), formally (1, 1, 1) < (). All
parent positions of (1, 1, 1) are (1, 1), (1), and (). Positions (1, 1, 2) and (1, 2)
are independent because (1, 1, 2) 6v (1, 2) and (1, 2) 6v (1, 1, 2). The lowest
common ancestor of (1, 1, 2) and (1, 2) is (1), formally lca

(
(1, 1, 2), (1, 2)

)
= (1).

The inner node (1) is an ∨-node and the formula (1)(π) is (x− a = 0 ∧ x− c ≥
0) ∨ x + 1 < 0. Children positions of (1) are (1)|1 = (1, 1) and (1)|2 = (1, 2).
They represent subformulas x−a = 0∧x−c ≥ 0 and x+1 < 0 respectively. 3

3.1.1 Prime Constituents
To generate a set of test points for an input formula ϕ, the framework of Chap-
ter 2 considers a set of candidate solutions for every atomic formula occurring in
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∧

()

∨ (2)

∧ (2, 2)

x− b ≤ 0
(2, 2, 2)

x− 1 = 0
(2, 2, 1)

x− 1 > 0
(2, 1)

∨(1)

x+ 1 < 0
(1, 2)

∧(1, 1)

x− c ≥ 0
(1, 1, 2)

x− a = 0
(1, 1, 1)

Figure 3.1: The structural tree for formula ϕ from Example 44. Each node is
labeled with its position in the tree.

ϕ. Here we introduce the notion of a prime constituent, which enables us to also
consider more complex subformulas of ϕ, and obtain a set of candidate solu-
tions for them directly. In this way we will be able to discard candidate solutions
of some atomic formulas that would have been considered by vs-scheme, and
would have yielded test points afterwards. Equations and negated equations will
play a prominent role here. As usual we work in the context where we deal with
the elimination of ∃x from ∃x(ϕ(u, x)). Recall that ϕ is an ∧-∨-combination of
atomic formulas in the Tarski language L and u = (u0, . . . , um−1) are parame-
ters. We begin with two definitions.

Let G(u, x) be a Tarski formula such that
(i) there exists a candidate solution set c =

{
(f1, S1, IP), . . . , (fk, Sk, IP)

}
,

consisting exclusively of “IP” candidate solutions, for G(u, x), and

(ii) for any parameter values a ∈ Rm the satisfying set Φ(G,a) is finite.
Then we say that G(u, x) is a Gauss formula. The parametric root descrip-
tions (fi, Si) are called Gauss solutions. Note that a Gauss formula can be
unsatisfiable.

Let C(u, x) be a Tarski formula such that
(i) there exists a candidate solution set c =

{
(f1, S1,EP), . . . , (fk, Sk,EP)

}
,

consisting exclusively of “EP” candidate solutions, for C(u, x), and

(ii) for any parameter values a ∈ Rm the satisfying set Φ(C,a) is co-finite,
i.e., R \ Φ(C,a) is finite.

Then we say that C(u, x) is a co-Gauss formula. The parametric root descrip-
tions (fi, Si) are called co-Gauss exception points. Note that a co-Gauss formula
can be valid. Furthermore, observe that no Tarski formula can be Gauss and
co-Gauss at the same time.

Natural candidates for Gauss and co-Gauss formulas are indeed equations
and negated equations, respectively. Such atomic formulas have candidate so-
lution sets consisting exclusively of “IP” and “EP” candidate solutions, respec-
tively. However, if the left hand side of such atomic formula vanishes for some
parameter values, then point (ii) of either of the two definitions is not satisfied:
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Example 45. Atomic formula f = 0, where f = u1x+u0 ∈ Z[u0, u1][x] is not a
Gauss formula even though

{
(f, (1, 1), IP), (f, (−1, 1), IP)

}
is a set of candidate

solutions for f = 0. The reason is that for parameter values (0, 0) the polynomial
f vanishes, so Φ

(
f = 0, (0, 0)

)
= R, which is obviously an infinite set.

Consider now an atomic formula f 6= 0, where f = ax2+(a+1)x+b ∈ Z[u][x]
and a, b are arbitrary polynomials from Z[u]. Algorithm at-cs of Subsec-
tion 2.5.2 obviously computes a set of candidate solutions for f 6= 0 consisting
exclusively of “EP” candidate solutions. Since a and a+ 1 cannot vanish simul-
taneously, the satisfying set Φ(f 6= 0,a) is infinite for any parameter values a.
Therefore, we conclude that this formula is co-Gauss.

As the third example we consider a non-atomic formula f = 0 ∧ ψ, where
f = x3 + bx− 7, for some b ∈ Z[u], and ψ is an arbitrary quantifier-free Tarski
formula. Obviously, there exists a set of “IP” candidate solutions for f = 0, and
since f is identically zero for no parameter values, the formula f = 0 is a Gauss
formula. Observe now that for any parameter values a the formula f = 0 ∧ ψ
can possibly hold only at the roots of f〈a〉. Consequently, the whole formula
f = 0 ∧ ψ is a Gauss formula with Gauss solutions obtained for the atomic
formula f = 0. 3

Example 45 illustrates a phenomenon we would like to take advantage of:
If a Gauss formula occurs in a conjunction, then the whole conjunction is a
Gauss formula. Similarly, if a co-Gauss formula occurs in a disjunction, then
the whole disjunction is a co-Gauss formula. Before presenting an algorithm for
finding Gauss and co-Gauss subformulas in the input formula ϕ, we introduce
the central notion of this chapter:

A prime constituent (PC) µ of formula ϕ(u, x) is a tuple (π,Υ, c,F , B) with
the following properties:

(i) The position of µ in ϕ is π. The subformula π(ϕ) contains x.

(ii) The type Υ of µ is exactly one of the following:

(a) a Gauss formula (Υ = GAUSS),
(b) a co-Gauss formula (Υ = COGAUSS),
(c) an atomic formula (Υ = AT).

(iii) The set c is a set of candidate solutions for the formula π(ϕ). If we
were unable to determine a set of candidate solutions for π(ϕ), then c is
FAILED. We will explain the exact meaning of a failure below.

(iv) A false replacement set F is a finite set of pairwise independent positions.
The set F is also independent with π, i.e., π 6v π′ and π′ 6v π for every
π′ ∈ F .

(v) A bound choice B is a subset of {l, u}.

A prime constituent decomposition of ϕ (PC decomposition) is a set P of
prime constituents such that:

(i) The positions of the prime constituents in P are pairwise independent.

(ii) If α is a position of an atomic formula in ϕ containing x, then there exists
exactly one PC in P with position π such that α v π.
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Recall the formula ϕ from Figure 3.1:(
(x− a = 0 ∧ x− c ≥ 0) ∨ x+ 1 < 0

)
∧
(
x− 1 > 0 ∨ (x− 1 = 0 ∧ x− b ≤ 0)

)
.

One natural PC decomposition of ϕ is obtained by taking all the atomic formulas
in ϕ. This leads to a set of atomic prime constituents with positions{

(1, 1, 1), (1, 1, 2), (1, 2), (2, 1), (2, 2, 1), (2, 2, 2)
}
.

Another PC decomposition of ϕ is obtained by discovering the two Gauss sub-
formulas in ϕ with positions (1, 1) and (2, 2). This yields a PC decomposition
with positions and types as follows:{

((1, 1),GAUSS), ((1, 2),AT), ((2, 1),AT), ((2, 2),GAUSS)
}
.

Here we only mentioned the position and the type of prime constituents. The
role of the entities c, F , B, how to compute and use them will become clear
later.

Before we present and prove correct our PC decomposition algorithm, let
us discuss the FAILED case. In the following we will use our infrastructure
developed in Chapter 2. In particular, we will use at-cs-fac to compute a
set of candidate solutions for prime constituents of ϕ. The FAILED case can
occur only as a result of at-cs-fac; whenever FAILED is returned by some
algorithm in this chapter, this can be traced back to a at-cs-fac call that
returned FAILED.

In the following we therefore slightly change the specification of at-cs-fac:
Whenever at-cs-fac returns a set of candidate solutions c we guarantee that we
are able to substitute any parametric root descriptions occurring in c by means
of virtual substitution given in Chapter 2. This behavior was there ensured
simply by assuming that the degree of x in ϕ is not greater than three. Here
we do not bound the degree of x in ϕ explicitly; we allow all our algorithms to
return FAILED instead.

The real reason for failure is therefore an occurrence of a high-degree ir-
reducible factor of a left hand side of an atomic formula in ϕ. Since we do
not use any external quantifier elimination methods, “a high-degree factor” cur-
rently means an irreducible factor of degree greater than three. As discussed
in Chapter 2, this bound is not inherent and can be extended to arbitrary but
bounded degrees by providing suitable algorithms for computing guards and
virtual substitutions.

Finally, we mention that an occurrence of a high-degree irreducible factor
does not necessarily mean that the algorithms here will fail. We will see cases
for which our structural approach will be able to handle them even without
higher-degree virtual substitution. Before showing such example, we continue
by presenting our PC decomposition algorithm.

3.1.2 Computing a PC Decomposition
Algorithm PC-decomposition presented here computes a PC decomposition
of the input formula ϕ. The algorithm first computes positions of Gauss, co-
Gauss, and all atomic subformulas of ϕ containing x (lines 1–3). For this it uses
algorithms gaussposl, cogaussposl, and atposl given below. Each of these
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three algorithms returns a set of pairwise independent positions. Put together,
however, these positions will be dependent whenever at least one Gauss or co-
Gauss subformula was discovered. We therefore filter these dependent positions
and decide which of them to include in the final PC decomposition.

This is done at lines 4–6. The strategy there is that “bigger and special wins,”
i.e., whenever a position of one type is a parent of or equal to another position the
latter position is deleted. Furthermore, we prefer Gauss and co-Gauss formulas
to atomic formulas. In steps 4–5 we intentionally use “<” instead of “v,”
because a formula cannot be simultaneously Gauss and co-Gauss by definition.
The reason why we always pick the “bigger” position (a position representing
a bigger subformula) will become clear at the end of this subsection where we
give an example run of PC-decomposition.

Lines 8–10 of the algorithm construct prime constituents from the com-
puted positions, while storing all the necessary information into each prime
constituent. Here we point to the fact that an implicit ordering of Gauss posi-
tions is used. Preceding Gauss positions of a prime constituent constitute the
false replacement set of the prime constituent. Here note that a Gauss prime
constituent contains positions of the preceding Gauss positions, and co-Gauss
and atomic prime constituents contain positions of all Gauss prime constituents.
All this information will be used later by our quantifier elimination algorithm
scheme in Section 3.3.

Algorithm PC-decomposition(ϕ, x).
Input: an ∧-∨-combination of Tarski atomic formula ϕ, a variable x.
Output: a PC decomposition P of ϕ, or FAILED.

1. gpl := gaussposl(ϕ, x, ())

2. cgpl := cogaussposl(ϕ, x, ())

3. atpl := atposl(ϕ, x, ())

4. For each Gauss position π ∈ gpl do

4.1. If π < $ for some $ ∈ cgpl, then delete π from gpl.

5. For each co-Gauss position $ ∈ cgpl do

5.1. If $ < π for some π ∈ gpl, then delete $ from cgpl.

6. For each atomic position α ∈ atpl do

6.1. If α v β for some β ∈ gpl ∪ cgpl, then delete α from atpl.

7. If there exists π ∈ gpl ∪ cgpl ∪ atpl such that c(π) is FAILED, then

7.1. Return FAILED.

8. Let gpl be {π1, . . . , πn}. For i := 1 to n do

8.1. Let c(πi) be the set of candidate solutions for the formula πi(ϕ)
computed by gaussposl.

8.2. Add (πi,GAUSS, c(πi), {π1, . . . , πi−1}, ∅) to P .

9. Let cgpl be {$1, . . . , $m}. For i := 1 to m do
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9.1. Let c($i) be the set of candidate solutions for the formula $i(ϕ)
computed by cogaussposl.

9.2. Add ($i,COGAUSS, c($i), {π1, . . . , πn}, ∅) to P .

10. Let atpl be {α1, . . . , αl}. For i := 1 to l do

10.1. Let c(αi) be the set of candidate solutions computed for the formula
αi(ϕ) by atposl.

10.2. Add (αi,AT, c(αi), {π1, . . . , πn}, ∅) to P .

11. Return P .

The aim of algorithms gaussposl and cogaussposl is to discover Gauss
and co-Gauss subformulas of the input formula ϕ. We do not guarantee that
all Gauss or all co-Gauss subformulas are found. If we wanted to guarantee
this, then we would have to decide for each subformula π(ϕ) of ϕ whether the
solution set Φ(π(ϕ),a) is finite/infinite for any parameter values a ∈ Rm, which
is indeed too costly.

Here we focus on the Boolean structure of ϕ instead. The core idea of
algorithm gaussposl is as follows: We recursively traverse ϕ and whenever
we find a Gauss formula occurring in a conjunction we deduce that the whole
conjunction is a Gauss formula as well. If there are more Gauss conjuncts,
we are free to pick one of them with the best candidate solution set. For a
disjunction, in contrast, all disjuncts have to be Gauss.

Algorithm gaussposl(ϕ, x, π).
Input: an ∧-∨-combination of Tarski atomic formulas ϕ, a variable x, a position
π in ϕ.
Output: a set {π1, . . . , πn} of pairwise independent positions such that each
πj(ϕ) is a Gauss formula; for each j ∈ {1, . . . , n} we also obtain a set of candidate
solutions c(πj) for the formula πj(ϕ) or FAILED, which means that we were
unable to compute a set of candidate solutions for the Gauss subformula πj(ϕ).

1. If π(ϕ) is an atomic formula f % 0, then

1.1. If % is “=,” x occurs in f ∈ Z[u][x], and the coefficients of f cannot
all vanish simultaneously, then

1.1.1. c(π) := at-cs-fac(f = 0, x)
1.1.2. Return {π}.

1.2. Return ∅.

2. For each child position π|1, . . . , π|n of π do

2.1. Gi := gaussposl(ϕ, x, π|i)

3. Denote by G the set of all Gauss child positions of π, i.e., π|i ∈ G if and
only if Gi = {π|i}.

4. If the top-level operator of π(ϕ) is “∧” and |G| > 0, then

4.1. Select one π|i ∈ G with “the best” c(π|i).
4.2. c(π) := c(π|i)
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4.3. Return {π}.

5. If the top-level operator of π(ϕ) is “∨” and |G| = n, then

5.1. c(π) :=
⋃
π|i∈G c(π|i)

5.2. Return {π}.

6. Return
⋃n
i=1Gi.

Algorithm cogaussposl is a kind of dual version of gaussposl: Whenever
a co-Gauss formula occurring in a disjunction is found during the traversal of ϕ,
we deduce that the whole disjunction is a co-Gauss formula. Similarly, if a con-
junction consists of exclusively co-Gauss conjuncts, then the whole conjunction
is a co-Gauss formula.

Algorithm cogaussposl(ϕ, x, π).
Input: an ∧-∨-combination of atomic formulas ϕ, a variable x, a position π in
ϕ.
Output: a set {$1, . . . , $m} of pairwise independent positions such that each
$j(ϕ) is a co-Gauss formula; for each j ∈ {1, . . . ,m} we also obtain a set
of candidate solutions c($j) for the formula $j(ϕ) or FAILED, which means
that we were unable to compute a set of candidate solutions for the co-Gauss
subformula $j(ϕ).

1. If π(ϕ) is an atomic formula f % 0, then

1.1. If % is “6=,” x occurs in f ∈ Z[u][x], and the coefficients of f cannot
all vanish simultaneously, then

1.1.1. c(π) := at-cs-fac(f 6= 0, x)
1.1.2. Return {π}.

1.2. Return ∅.

2. For each child position π|1, . . . , π|n of π do

2.1. Ci := cogaussposl(ϕ, x, π|i)

3. Denote by C the set of all co-Gauss child positions of π, i.e., π|i ∈ C if
and only if Ci = {π|i}.

4. If the top-level operator of π(ϕ) is “∨” and |C| > 0, then

4.1. Select one π|i ∈ C with “the best” c(π|i).
4.2. c(π) := c(π|i)
4.3. Return {π}.

5. If the top-level operator of π(ϕ) is “∧” and |C| = n, then

5.1. c(π) :=
⋃
π|i∈C c(π|i)

5.2. Return {π}.

6. Return
⋃n
i=1 Ci.
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At this point we would like to clarify the test “coefficient of f cannot all
vanish simultaneously” we use in step 1.1 of both gaussposl and cogaussposl.
For atomic formula f % 0, f = ckx

k+· · ·+c1x+c0, this means to decide whether
the conjunction

∧k
i=0 ci = 0 is satisfiable. In practice this is done by incomplete

methods; whenever we cannot guarantee that the conjunction is unsatisfiable we
simply declare the formula f % 0 as not being Gauss or co-Gauss, respectively, by
returning ∅ in step 1.2. Our aim here is not to apply costly complete methods;
in practice we rather use fast but powerful simplification techniques as described
in [28], and detection of obviously unsatisfiable special cases like an occurrence
of a nonzero integer coefficient ci occurring in f .

Next we present algorithm atposl that traverses the formula ϕ to compute
for each atomic position of ϕ a set of candidate solutions. Algorithms gaussposl
and cogaussposl proceed similarly, so the whole computation of Gauss, co-
Gauss, and atomic positions of ϕ is done in three separate traversals of the
structural tree for ϕ, i.e., in linear time.

Algorithm atposl(ϕ, x, π).
Input: an ∧-∨-combination of Tarski atomic formulas ϕ, a variable x, a position
π in ϕ.
Output: a set {α1, . . . , αl} of atomic positions of all atomic subformulas of ϕ
containing x; for each position αj we also obtain a set of candidate solutions
c(αj) for the formula αj(ϕ) or FAILED, which means that we were unable to
compute a set of candidate solutions for the atomic subformula αj(ϕ).

1. If π(ϕ) is an atomic formula f % 0, then

1.1. If f contains x, then
1.1.1. c(π) := at-cs-fac(f % 0, x)
1.1.2. Return {π}.

1.2. Return ∅.

2. For each child position π|1, . . . , π|n of π do

2.1. Ai := atposl(ϕ, x, π|i)

3. Return
⋃n
i=1Ai.

Now we are ready to prove the correctness of algorithm PC-decomposition.
We begin with the following lemma, which follows directly from the definitions
of finite and co-finite sets:

Lemma 46. Let F1 and F2 be finite subsets of R. Let C1 and C2 be co-finite
subsets of R, i.e, both R\C1 and R\C2 are finite. Let M be an arbitrary subset
of R. Then the following hold:

(i) F1 ∩M is finite.

(ii) F1 ∪ F2 is finite.

(iii) C1 ∪M is co-finite.

(iv) C1 ∩ C2 is co-finite.
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An indirect consequence of Lemma 46 is that a formula is not guaranteed
to be a Gauss formula even when it consists exclusively of Gauss prime con-
stituents. For example, the formula ϕ: (u0x − 1 = 0 ∨ u1 > 0) ∧ u0 ≥ 0
contains only one Gauss prime at position (1, 1), namely the Gauss atomic for-
mula u0x − 1 = 0. For parameter values a = (0, 1), however, the satisfying set
Φ(ϕ,a) is the whole R. The reason for this is that the satisfying set of u0 ≥ 0
is infinite for some parameter values.

Using Lemma 46 we now prove the correctness of the three Gauss, co-Gauss,
and atomic position finding algorithms. With these lemmas at hand we then
prove the correctness of PC-decomposition.

Lemma 47. Algorithms gaussposl, cogaussposl, and atposl meet their re-
spective specifications.

Proof. We first prove the correctness of gaussposl. We proceed by structural
induction.

Observe that the algorithm meets its specification whenever the input posi-
tion π is an atomic position: It reports an atomic formula f % 0 to be Gauss by
returning {π} if and only if % is “=,” and the coefficients of f ∈ Z[u][x] cannot
all vanish simultaneously. This guarantees that the solution set Φ(f % 0,a) is
finite for any parameter values a ∈ Rm. Furthermore, at-cs-fac obviously
returns only “IP” test points for f = 0.

Assume that gaussposl meets its specification for each child position of π.
We prove that gaussposl meets its specification for π. We distinguish three
cases:

(a) the top-level operator is “∧” and at least one child position π|i is Gauss:
By Lemma 46 (i), the whole formula π(ϕ) is a Gauss formula, and c(π|i)
is a set of “IP” candidate solutions for π(ϕ) for any child position π|i ∈ G.

(b) the top-level operator is “∨” and all child positions π|i are Gauss: By
Lemma 46 (ii), the whole formula π(ϕ) is a Gauss formula, and the union
of all candidate solutions for child formulas is a set of “IP” candidate
solutions for π(ϕ).

(c) none of the above: In this case we return all Gauss positions found in all
child formulas π|i(ϕ). The assumed correctness of gaussposl for all child
positions π|i ensures that

⋃n
i=1Gi is a set of pairwise independent Gauss

positions of π(ϕ).

The proof of the correctness of cogaussposl using Lemma 46 (iii) and (iv)
is similar, so we omit it.

Finally, algorithm atposl obviously meets its specification, because it merely
collects all atomic formulas of ϕ containing x along with their positions and
candidate solution sets.

Theorem 48. Algorithm PC-decomposition meets its specification.

Proof. We need to prove that the positions of PCs in P returned by the al-
gorithm are pairwise independent positions that cover each atomic formula of
ϕ containing x. By Lemma 47, atpl computed at line 3 is a set of pairwise
independent positions that cover each atomic formula of ϕ containing x.
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Since Lemma 47 ensures that the sets gpl, cgpl, and atpl computed at
lines 1–3 are pairwise independent sets of positions of Gauss, co-Gauss, and
atomic positions, the following holds: On each path from the root of ϕ to
any leaf of ϕ there is at most one position of each of these three types. The
deletions in steps 4–6 of the algorithm ensure that on each path only the first
position of these is left in gpl∪cgpl∪atpl. Moreover, the fact that only parent
or equal positions are deleted together with the fact that atpl already covers
each atomic formula of ϕ containing x imply: The set of pairwise independent
positions gpl ∪ cgpl ∪ atpl after step 6 still covers each atomic formula of ϕ
containing x. Therefore, P constructed in steps 8–10 of the algorithm is a PC
decomposition of ϕ, which finishes the proof of the theorem.

Theorem 48 together with Proposition 15 directly imply the following:

Corollary 49. Let P = {µ1, . . . , µk} be a PC decomposition of ϕ computed by
PC-decomposition. Denote by ci the candidate solution set of µi, and assume
that no ci is FAILED. Then c =

⋃k
i=1 ci is a set of candidate solutions for ϕ.

At this point we would like to point to the following fact: Since Corollary 49
guarantees that the set c is a set of candidate solutions for ϕ, we could use c
in the context of vs-scheme from Chapter 2. Instead of analyzing each atomic
formula of ϕ separately in step 3 of vs-scheme, we could first compute a PC de-
composition of ϕ and then extract c using Corollary 49. The results of Chapter 2
guarantee that such a modified scheme is indeed correct.

Example 50. Here we show an example run of PC-decomposition on the
quantifier-free formula ϕ depicted in Figure 3.2. The atomic formulas there are
labeled by their respective types: Gauss, co-Gauss, and other atomic formulas.
PC-decomposition first computes sets gpl, cgpl, and atpl by invoking the
respective algorithms.

During the call to gaussposl, a recursive invocation of gaussposl first
finds a Gauss formula at atomic position (1, 1, 1). Since (1, 1) is an ∨-node,
and its child (1, 1, 2)(ϕ), i.e., x > 1 is not a Gauss formula, this is the only
Gauss position returned by the algorithm, i.e., gpl is {(1, 1, 1)} after step 1 of
PC-decomposition.

Recursive invocations of cogaussposl find that (1, 3, 1), (1, 3, 2), (2, 1), and
(2, 2) are co-Gauss positions. Since (1, 3) is an ∨-node, and there are two co-
Gauss children, the algorithm deduces that (1, 3) is a co-Gauss formula; it can
even decide whether candidate solutions from x 6= 2 or x 6= b should be taken.
Returning from a recursive call on ∧-node (1), we obtain that (1) is not a co-
Gauss formula. In contrast, returning to node (2) we see that both children
of this ∧-node are co-Gauss formulas, so (2) is a co-Gauss formula—with a
candidate solution set obtained from both x 6= 3 and x 6= 4. Furthermore, at the
root of the tree, which is an ∨-node, we have one co-Gauss child, so the whole
formula is co-Gauss. Therefore, the set returned by cogaussposl at line 2 of
PC-decomposition is {()}.

Algorithm atposl simply returns the set of all atomic positions in ϕ con-
taining x, i.e.,{

(1, 1, 1), (1, 1, 2), (1, 2), (1, 3, 1), (1, 3, 2), (2, 1), (2, 2)
}
.
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∧

x 6= 4
C

x 6= 3
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∧

∨

x 6= b

C
x 6= 2
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x47 + bx3 − a < 0
A

∨

x > 1
A

x = a

G

Figure 3.2: An example input formula ϕ for PC-decomposition discussed in
Example 50. Leaf positions are labeled as “G” (Gauss), “C” (co-Gauss), and
“A” (other atomic formulas).

Notice, however, that the candidate solution set for the prime constituent at
position (1, 2) is FAILED, because of the high-degree irreducible polynomial
x47 + bx3 − a.

After step 6 of PC-decomposition the sets gpl and atpl are empty, and
cgpl is {()} with candidate solution set obtained by taking candidate solution
sets for formulas x 6= 3 and x 6= 4. The remaining steps of PC-decomposition
merely compute a set of prime constituents from this position and candidate
solution set.

To conclude the discussion of this example we point to two advantages of
PC-decomposition it demonstrates: First, an atomic formula that would nor-
mally cause a failure of the virtual substitution approach can be omitted, and
we do not need to compute candidate solutions for it at all. Second, even when
other atomic formulas are not critical, we see that they can be found redun-
dant: Notice that from the seven atomic formulas in ϕ we used only two for the
generation of candidate solutions and prime constituents. 3

We conclude this section with a few remarks on the usefulness of PC decom-
positions and similarities between them and CAD. First recall that the notion
of a prime constituent is a generalization of the notion of atomic formula. A
prime constituent decomposition is an efficient tool used primarily to take ad-
vantage of equations and negated equations occurring in ϕ. Indeed, Gauss and
co-Gauss prime constituents will play a special role in the quantifier elimination
algorithm scheme presented in the upcoming sections.

For Gauss prime constituents we will benefit from the finiteness of their
satisfying sets for any parameter values a ∈ Rm. The intuition is that after sub-
stituting the finitely many test points generated by a Gauss prime constituent
into ϕ we can replace the Gauss subformula with “false” while substituting the
other test points. The reason for this is that whenever this particular Gauss sub-
formula has to be true for ϕ to be true, there are only finitely many choices how
the Gauss prime constituent can be made true—and these choices are described
by its candidate solutions that generated “Gauss” test points afterwards.

For co-Gauss prime constituents, in contrast, this intuition is not correct.
Therefore, we cannot simply replace a co-Gauss subformula with “false” after
substituting its candidate solutions into ϕ. Nevertheless, a co-Gauss prime
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constituent containing more complex subformulas can allow us to ignore parts
of the formula during the test point generation process—as we have seen in
Example 50.

Thank to these properties, we can view the Gauss and co-Gauss prime con-
stituents of ϕ as a kind of equational and negated equational constraints for ϕ
and its subformulas, respectively. Equational constraints—which are equations
implied by ϕ—are a well-established concept that allows one to optimize a CAD
construction in two ways: First by omitting some resultant computations dur-
ing the CAD projection phase, and afterwards during the lifting phase to lift
only w.r.t. equational constraints [53, 54, 33]. Even though we look primarily at
the Boolean structure of ϕ and not at some equational constraint of the whole
formula ϕ, the facts that a Gauss prime constituent prevents some atomic for-
mulas from generating test points, or that it can be replaced with “false” during
substitution of other test points are similarities that resemble the avoidance of
some resultant computations and root isolations in the CAD world. Therefore,
it seems to be a promising research direction to investigate possible connections
between our Gauss and co-Gauss prime constituents on one side and equational
constraints in the CAD context on the other.

3.2 Conjunctive Associativity and Marking
Let π1 and π2 be two independent positions in ϕ. Let π = lca(π1, π2). If
π identifies an ∧-node in the structural tree for ϕ, i.e., the top-level Boolean
operator of π(ϕ) is “∧,” then the positions π1 and π2 are said to be conjunctively
associated. The conjunctive associativity definition excludes dependent (and in
particular equal) positions π1 and π2. Observe that the formulas π1(ϕ) and
π2(ϕ) can be equal Tarski formulas even when π1 is by definition different from
position π2.

Example 51. Consider a quantifier-free Tarski formula ϕ:(
(x− b = 0 ∧ x− a ≤ 0) ∨ x− 1 > 0

)
∧ x < 0 ∧

(
x− 2 6= 0 ∨ x− a ≤ 0

)
.

In Figure 3.3 we can see the structural tree for ϕ. Observe that (2) is conjunc-
tively associated with (1, 2). On the other hand, () is not conjunctively associ-
ated with (1, 1, 1) even though lca

(
(), (1, 1, 1)

)
= () is an ∧-node. The reason is

that the positions (1, 1, 1) and () are not independent, more specifically () is a
parent position of the atomic position (1, 1, 1), formally (1, 1, 1) < (). Similarly,
(3, 1) and (3, 2) are not conjunctively associated, because they are independent
and their lowest common ancestor () is an ∨-node. 3

In the following we denote the fact that π1 and π2 are conjunctively as-
sociated positions in ϕ by π1 fϕ π2. Observe that the binary relation fϕ ⊆
Pos(ϕ)× Pos(ϕ) of conjunctive associativity on positions is:

(i) anti-reflexive: Since π1 and π2 need to be independent to be conjunctively
associated, π1 fϕ π2 implies π1 6= π2.

(ii) symmetric: π1 fϕ π2 whenever π2 fϕ π1, because lca(π1, π2) = lca(π2, π1).

(iii) not always transitive: As we can see from Figure 3.3, (1, 1, 1) fϕ (2) and
(2) fϕ (1, 2). At the same time, (1, 1, 1) is not conjunctively associated
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∧

()

∨ (3)

x− a ≤ 0
(3, 2)

x− 2 6= 0
(3, 1)

x < 0
(2)

∨(1)

x− 1 > 0
(1, 2)

∧(1, 1)

x− a ≤ 0
(1, 1, 2)

x− b = 0
(1, 1, 1)

Figure 3.3: The structural tree for a quantifier-free Tarski formula.

with (1, 2). Similarly, (3, 1) fϕ (2) and (2) fϕ (3, 2), but (3, 1) fϕ (3, 2)
does not hold. It is not hard to see that fϕ is transitive whenever ϕ does
not contain positions π1, π2 such that π1 < π2 and π1 is an ∨-node and
π2 is an ∧-node.

In the following we will simply write π1 f π2 instead of π1 fϕ π2 whenever the
formula ϕ will be clear from the context.

Our aim in the following is to prove that a pair of atomic positions in ϕ
is conjunctively associated if and only if there exists a disjunct of a particular
disjunctive normal form of ϕ containing the atomic formulas at both positions.

To begin with, we precisely define “the DNF” of ϕ: Whenever we say “the
DNF” of an ∧-∨-combination of atoms ϕ, we mean the output of Algorithm
the-dnf(ϕ, ()) given below. We emphasize that our aim here is not to compute
the DNF of ϕ during the quantifier elimination of ∃x from ∃x(ϕ). We use the
DNF only to prove properties of the conjunctive associativity relation fϕ. Of
course we will use these properties in later sections to prove the correctness of
our structural quantifier elimination scheme given there.

Algorithm the-dnf(ϕ, π).
Input: an ∧-∨-combination of atoms ϕ, a position π ∈ Pos(ϕ).
Output: a nonempty multiset L = {C1, . . . , Cn} of formulas such that each Ci is
an atomic formula or a conjunction of atomic formulas, and π(ϕ)←→

∨n
i=1 Ci.

1. If π(ϕ) is an atomic formula, then return {π(ϕ)}.

2. For each child position π|1, . . . , π|k of π do

2.1. Lj := the-dnf(ϕ, π|j)
2.2. nj := |Lj |

3. If the top-level operator of π(ϕ) is “∨,” then

3.1. Return
⊎k
j=1 Lj .

4. If the top-level operator of π(ϕ) is “∧,” then
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∧

()

∨ (3)

b ≤ 0
(3, 2)

a ≥ 0
(3, 1)

true
(2)

∨(1)

b ≤ 0
(1, 2)

b ≤ 0
(1, 1)

π the-dnf(ϕ, π)
(1, 1) {b ≤ 0}
(1, 2) {b ≤ 0}

(1) {b ≤ 0, b ≤ 0}
(2) {true}

(3, 1) {a ≥ 0}
(3, 2) {b ≤ 0}

(3) {a ≥ 0, b ≤ 0}
() {b ≤ 0 ∧ true ∧ a ≥ 0, b ≤ 0 ∧ true ∧ b ≤ 0,

b ≤ 0 ∧ true ∧ a ≥ 0, b ≤ 0 ∧ true ∧ b ≤ 0}

Figure 3.4: An ∧-∨-combination ϕ with the output of the-dnf(ϕ, π) for every
position π ∈ Pos(ϕ).

4.1. Denote the product {1, . . . , n1} × · · · × {1, . . . , nk} by M .

4.2. Return
{∧k

j=1 Cmj | (m1, . . . ,mk) ∈M and Cmj ∈ Lj
}
.

It is not hard to see that Algorithm the-dnf meets its specification, and that
the-dnf(ϕ, π) = the-dnf(π(ϕ), ()). The output of the algorithm for a simple
input formula ϕ is for illustration shown in Figure 3.4.

It is well-known that the length of the DNF of ϕ can indeed be exponential
in the length of ϕ. Nevertheless, we prove a precise formulation of this result
for completeness here, because we will use it later in this thesis:

Proposition 52. Let ϕ be a Tarski formula meeting the following specification:

1. The structural tree for ϕ is a full binary tree with height 2h, i.e., each
inner node has exactly two children, and ϕ has 22h atomic positions.

2. An inner node with an odd distance from the root is an ∨-node.

3. An inner node with an even distance from the root is an ∧-node.

Let L = {C1, . . . , Cn} be the DNF computed by the-dnf(ϕ, ()). Then the fol-
lowing hold:

(i) The number n of the members of the DNF of ϕ is 22h+1−2.

(ii) Each formula Ci is a conjunction of 2h atomic formulas occurring in ϕ.
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Proof. (i) Denote by T2k the number of DNF members of the DNF computed
by the-dnf(ψ2k, ()) for a Tarski formula ψ2k with height 2k meeting the
specification 1–3. The specification ensures that ψ2k is of the following
form: (

ψ1,1
2(k−1) ∨ ψ

1,2
2(k−1)

)
∧
(
ψ2,1

2(k−1) ∨ ψ
2,2
2(k−1)

)
,

where ψ1,1
2(k−1), ψ

1,2
2(k−1), ψ

2,1
2(k−1), and ψ2,2

2(k−1) are formulas with height
2(k − 1) meeting the specification 1–3. Looking at algorithm the-dnf we
can conclude that the following recurrence relation holds for T2k:

T0 = 1,
T2k = (2 · T2(k−1))2 if k > 0.

We prove by induction on k that T2k = 22k+1−2 is the solution of this
recurrence: If k = 0, then T0 = 1. At the same time, 22k+1−2 = 221−2 = 1.
Let now k > 0 and assume that the identity holds for k − 1. Expanding
the recurrence relation and using the induction hypothesis we obtain that

T2k = (2 · T2(k−1))2 = (2 · 22k−2)2 = 22k+1−2.

This shows that T2k = 22k+1−2 for every k ≥ 0, which proves (i).

(ii) Denote by S2k the number of atomic formulas in each DNF member Ci
computed by the-dnf(ψ2k, ()) for a Tarski formula ψ2k with height 2k
meeting the specification 1–3. Similarly as in the proof of (i), we deduce
that the following recurrence relation holds for S2k:

S0 = 1,
S2k = 2 · S2(k−1) if k > 0.

From this recurrence it is clear that S2k = 2k, which proves (ii).

Having defined “the DNF” of ϕ, we now continue with the notions of con-
densing and deletion.

Let π be a position in ϕ. The condensing of ϕ with respect to π is the formula
Γ(ϕ, π) obtained by replacing all atomic formulas of ϕ at positions independent
from and not conjunctively associated with π with “false.” For example, for
formula ϕ in Figure 3.3 we have Γ

(
ϕ, (1, 1)

)
= Γ

(
ϕ, (1, 1, 1)

)
= Γ

(
ϕ, (1, 1, 2)

)
,

which all yield(
(x− b = 0 ∧ x− a ≤ 0) ∨ false

)
∧ x < 0 ∧

(
x− 2 6= 0 ∨ x− a ≤ 0

)
,

and Γ
(
ϕ, ()

)
= Γ

(
ϕ, (1)

)
= Γ

(
ϕ, (2)

)
= Γ

(
ϕ, (3)

)
, which all yield ϕ.

Let π1, . . . , πn be n positions in ϕ. The deletion of π1, . . . , πn from ϕ is the
formula ∆(ϕ, {π1, . . . , πn}) obtained by replacing all atomic subformulas of the
n formulas π1(ϕ), . . . , πn(ϕ) in ϕ with “false.” Since a replacement of atomic
formulas in ϕ with “false” does not change the structural tree of the whole
formula ϕ, the order in which these n replacements take place is unimportant.
For example, using again formula ϕ from Figure 3.3, ∆

(
ϕ, {()}

)
yields(

(false ∧ false) ∨ false
)
∧ false ∧

(
false ∨ false

)
,
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∆
(
ϕ, {(1), (3)}

)
yields(
(false ∧ false) ∨ false

)
∧ x < 0 ∧

(
false ∨ false

)
,

and ∆
(
ϕ, {(1, 1, 1), (1, 1), (2), (3, 2)}

)
yields(

(false ∧ false) ∨ x− 1 > 0
)
∧ false ∧

(
x− 2 6= 0 ∨ false

)
.

Let π1, . . . , πn, and π be n + 1 positions in ϕ. In the following we denote
∆(ϕ, {π1, . . . , πn}) by ϕ{π1,...,πn} and Γ(ϕ, π) by ϕπ. Obviously, ϕ∅ = ϕ. Fur-
thermore, we denote Γ(ϕ{π1,...,πn}, π) by ϕ{π1,...,πn}

π , i.e., we formally first apply
the deletion operator and then the condensing operator. Observe, however, that
the replacement order does not play any role here either, because both operators
leave the structure of a structural tree intact.

Denote by Sf(ϕ) the set of all subformulas of ϕ. Denote by At(ϕ) ⊆ Sf(ϕ)
the set of all atomic subformulas of ϕ. The conjunctive associativity relation
fSF
ϕ ⊆ Sf(ϕ)×Sf(ϕ) on subformulas is defined as follows: α1fSF

ϕ α2 if there exist
two conjunctively associated positions π1, π2 ∈ Pos(ϕ) such that π1(ϕ) = α1 and
π2(ϕ) = α2.

Similarly as with the conjunctive associativity relation fϕ on positions, the
conjunctive associativity relation fSF

ϕ on subformulas is symmetric but not nec-
essarily transitive. In contrast to fϕ, the relation fSF

ϕ is not necessarily anti-
reflexive, because a subformula can occur in ϕ at two different conjunctively
associated positions. For example, we have x − a ≤ 0 fSF

ϕ x − a ≤ 0 for for-
mula ϕ from Figure 3.3, because (3, 2)(ϕ) = (1, 1, 2)(ϕ) = x − a ≤ 0, and
(3, 2) fϕ (1, 1, 2).

At this point we change our perspective: From “the Tarski world” we switch
to “the Boolean world” for a while. Note that the definitions of Sf, At, con-
junctive associativity relation on positions and on subformulas carry over to the
Boolean world. Our aim is to investigate some properties that are completely
independent of the Tarski world, i.e., already the Boolean structure of a for-
mula ensures their validity. Afterwards we will indeed apply these properties to
quantifier-free Tarski formulas.

Proposition 53. Let ϕ be an ∧-∨-combination of Boolean atoms. Let π1,
π2 ∈ Pos(ϕ) and D1, D2 ⊆ Pos(ϕ) be such that π1 v π2 and D2 ⊆ D1. Then
ϕD1
π1
−→ ϕD2

π2
.

Proof. Assume that ϕD1
π1

holds. We have to prove that ϕD2
π2

holds as well.
Let Xi be the set of all atomic positions of ϕ that are independent from

and not conjunctively associated with πi. Since π1 v π2, i.e., π2 is not deeper
in ϕ than π1, we conclude that X2 ⊆ X1. Similarly, let Yi be the set of all
atomic positions of ϕ that are descendants of some position in the set Di. Since
D2 ⊆ D1, we obviously have Y2 ⊆ Y1.

Observe that formula ϕDiπi is obtained from ϕ by replacing atomic formulas
at positions Xi ∪ Yi with “false.” Since (X2 ∪ Y2) ⊆ (X1 ∪ Y1), we deduce
that ϕD1

π1
can be obtained from ϕD2

π2
by replacing atomic formulas at positions

(X1 ∪ Y1) \ (X2 ∪ Y2) in formula ϕD2
π2

with “false.” We assume that ϕD1
π1

holds,
so the fact that ϕ is an ∧-∨-combination of atomic formulas ensures that ϕD2

π2
holds as well.
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The following lemma follows directly from the definition of the conjunctive
associativity relation on subformulas:

Lemma 54. Let ϕ be an ∧-∨-combination of Boolean atoms. Let ϕ′ ∈ Sf(ϕ)
and let ϕ1, ϕ2 ∈ Sf(ϕ′). Assume that ϕ1 fSF

ϕ′ ϕ2. Then ϕ1 fSF
ϕ ϕ2.

Now we are finally ready to prove a characterization of conjunctive associa-
tivity relation fSF

ϕ on subformulas based on the DNF of ϕ.

Theorem 55. Let ϕ be an ∧-∨-combination of Boolean atoms. Let π ∈ Pos(ϕ),
and let L = {C1, . . . , Cn} be the output of the-dnf(ϕ, π). Let α1, α2 ∈ At(ϕ) be
two (not necessarily distinct) atomic formulas. Then α1 fSF

ϕ α2 if and only if
there exists Ci ∈ L such that α1 and α2 occur at two distinct positions in Ci.

Proof. We proceed by structural induction on the structure of the position π.
To begin with, observe that the theorem holds whenever π is an atomic position
of ϕ: In that case we have fSF

π(ϕ) = ∅, and the-dnf(ϕ, π) = {π(ϕ)}, so the
equivalence asserted by the theorem obviously holds.

Let now π be an inner position in ϕ with k children. Assume that the the-
orem holds for every child position π|j, j ∈ {1, . . . , k}. For each j ∈ {1, . . . , k}
denote by Lj the result of the-dnf(ϕ, π|j) and denote |Lj | by nj . We prove
that α1 fSF

π(ϕ) α2 if and only if there exists Ci ∈ L such that α1 and α2 occur at
two distinct positions in Ci. We distinguish two cases:

1. the top-level operator of π(ϕ) is “∨:” In this case we have L =
⊎k
j=1 Lj .

Assume first that α1 fSF
π(ϕ) α2. Then the lowest common ancestor λ of

some two conjunctively associated positions of α1 and α2 is an ∧-node.
Thus, λ v π|j for some j ∈ {1, . . . , k}. Therefore, α1 fSF

π|j(ϕ) α2, and
the induction hypothesis ensures that α1 and α2 occur at two distinct
positions in Ci for some Ci ∈ Lj ⊆ L.
Assume now that α1 and α2 occur at two distinct positions in Ci for
some Ci ∈ L. Since L =

⊎k
j=1 Lj , α1 and α2 occur in some Ci ∈ Lj

for some j ∈ {1, . . . , k}. The induction hypothesis therefore ensures that
α1 fSF

π|j(ϕ) α2. Using Lemma 54 we obtain that α1 fSF
π(ϕ) α2.

2. the top-level operator of π(ϕ) is “∧:” In this case we have L =
{∧k

j=1 Cmj |
(m1, . . . ,mk) ∈M

}
, where M = {1, . . . , n1} × · · · × {1, . . . , nk}.

Assume first that α1fSF
π(ϕ)α2. Denote by λ the lowest common ancestor of

some two conjunctively associated positions of α1 and α2. We distinguish
two cases:

(a) If λ 6= π, then the induction hypothesis ensures that α1 and α2 occur
at two distinct positions in some Cmj ∈ Lj for some j ∈ {1, . . . , k}
and mj ∈ {1, . . . , nj}. Thus, the construction of L ensures that α1

and α2 indeed occur at two distinct positions in some
∧k
j=1 Cmj ∈ L

as well.
(b) If λ = π, then w.l.o.g. α1 occurs at a position in Cm1 and α2

occurs at a position in some Cm2 , where m1 ∈ {1, . . . , n1} and
m2 ∈ {1, . . . , n2}. The construction of L ensures that α1 and α2
occur at two distinct positions in some

∧k
j=1 Cmj ∈ L as well.
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Assume now that α1 and α2 occur at two distinct positions in some∧k
j=1 Cmj ∈ L. W.l.o.g. there are two cases to consider:

(a) If both α1 and α2 occur in some Cmj ∈ Lj for some j ∈ {1, . . . , k}
and mj ∈ {1, . . . , nj}, then the induction hypothesis ensures that
α1 fSF

π(ϕ)|j α2. Using Lemma 54 we obtain that α1 fSF
π(ϕ) α2.

(b) The case when α1 occurs in some Cm1 and α2 occurs in some Cm2 ,
where m1 ∈ {1, . . . , n1} and m2 ∈ {1, . . . , n2}. This means that the
lowest common ancestor of the positions of α1 and α2 is π, which
is an ∧-node, because we assume that the top-level operator of π(ϕ)
is “∧.” This means, by definition, that α1 and α2 are conjunctively
associated in π(ϕ), i.e., α1 fSF

π(ϕ) α2.

Since the-dnf does not delete any duplicates in its output formulas Ci,
we can use Theorem 55 to deduce: An atomic formula α occurring in ϕ is
conjunctively associated with itself, formally αfSF

ϕ α, if and only if there exists
Ci ∈ L containing α at least twice.

As the final result of this section we present the so-called Marking technique.
The technique uses condensing and deletion to obtain an equivalent reformula-
tion of ϕ. Informally, it can be described as follows: Mark n arbitrary atoms
in an ∧-∨-combination of Boolean atoms ϕ. Then condense w.r.t. each of the
marked atoms. Afterwards replace in ϕ each marked formula with “false.” The
disjunction of the n condensed formulas and of the “rest after the deletion” is
then equivalent to the original formula:

Theorem 56 (Marking). Let ϕ be an ∧-∨-combination of pairwise distinct
Boolean atoms α1, . . . , αm. Denote by π1, . . . , πm the positions of these atoms,
respectively. Let n ∈ {1, . . . ,m}. Let D ⊆ {π1, . . . , πn}. Then the following
equivalence holds:

ϕ←→ ϕπ1 ∨ · · · ∨ ϕπn ∨ ϕD.

Proof. To begin with, we show that each formula from {ϕπ1 , . . . , ϕπn , ϕ
D} im-

plies ϕ. The formula ϕ is an ∧-∨-combination of atoms, and each of the formulas
{ϕπ1 , . . . , ϕπn , ϕ

D} was obtained from ϕ by replacing some of its subformulas
with “false.” Thus, the monotonicity of ϕ ensures that if at least one of the
formulas from {ϕπ1 , . . . , ϕπn , ϕ

D} holds, then ϕ holds as well.
Now assume that ϕ holds. We show that ϕπ1 ∨ · · · ∨ϕπn ∨ϕD holds as well.

Since ϕ holds, a formula Ci ∈ the-dnf(ϕ, ()) holds as well. Without loss of
generality we can assume that the formula Ci is of the form αi,1 ∧ · · · ∧ αi,k for
some k ∈ {1, . . . ,m}. In other words, if the atoms αi,1, . . . , αi,k hold, then the
formula ϕ holds as well. We distinguish two cases:

(a) There exists j ∈ {1, . . . , n} such that αj occurs in Ci: By Theorem 55,
the atoms αi,1, . . . , αi,k occurring in Ci are pairwise conjunctively asso-
ciated in ϕ. Since we assume that the Boolean atoms in ϕ are pairwise
distinct, and the condensing operator never replaces conjunctively associ-
ated formulas with “false,” we deduce that none of the atoms αi,1, . . . , αi,k
occurring in Ci was replaced with “false” to obtain ϕπj from ϕ. The fact
that Ci holds together with the monotonicity of ϕ ensure that ϕπj holds.

(b) For all j ∈ {1, . . . , n} we have that αj does not occur in Ci: Observe
that ϕD is obtained from ϕ by replacing some of its atomic subformulas
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at positions π1, . . . , πn with “false.” Since we assume that the Boolean
atoms are pairwise distinct, none of the atoms αi,1, . . . , αi,k occurring in
Ci was replaced with “false” to obtain ϕD. The fact that Ci holds together
with the monotonicity of ϕ thus ensure that ϕD holds.

In both cases we have proven that a formula from {ϕπ1 , . . . , ϕπn , ϕ
D} holds.

This finishes the proof of the theorem.

Here we return to “the Tarski world.” It is not hard to see that Proposi-
tion 53, Lemma 54, and Theorem 55 remain valid when we replace “Boolean
atom” with “Tarski atomic formula” in their statements. Furthermore, Theo-
rem 56, which we will use in the next section, remains valid even when we sub-
stitute for the pairwise distinct Boolean atoms arbitrary quantifier-free Tarski
formulas. We conclude this section with a simple example of this approach:

Example 57. Consider the Tarski formula ϕ in Figure 3.5 with two Gauss
prime constituents G1 and G2 at positions π1 and π2, respectively. Treating
the subformulas G1, G2, x+ 1 < 0, and x− 1 > 0 as pairwise distinct Boolean
atoms and applying Marking (Theorem 56) to π1 and π2 leads to an equivalent
of ϕ shown in Figure 3.6. At the same time, it is possible to first apply Marking
to position π1 and afterwards to position π2 in ϕ{π1}, because π1 and π2 are
independent. This leads to formula in Figure 3.7. For the sake of simplicity we
made obvious simplifications involving “false” in Figure 3.6 and Figure 3.7. To
sum up, Theorem 56 ensures that ϕπ1 ∨ϕπ2 ∨ϕ{π1,π2} and ϕπ1 ∨ϕ

{π1}
π2 ∨ϕ{π1,π2}

are equivalent to ϕ. 3

∧

ϕ

∨

∧
G2

x− b ≤ 0x− 1 = 0

x− 1 > 0

∨

x+ 1 < 0∧
G1

x− c ≥ 0x− a = 0

Figure 3.5: Formula ϕ from Example 57.

∧

ϕπ1

∨

G2x− 1 > 0

G1

∧

ϕπ2

G2∨

x+ 1 < 0G1

∧

ϕ{π1,π2}

x− 1 > 0x+ 1 < 0

Figure 3.6: The result of Marking applied to π1 and π2 in ϕ.
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∧

ϕπ1

∨

G2x− 1 > 0

G1 ∧

ϕ
{π1}
π2

G2x+ 1 < 0

∧

ϕ{π1,π2}

x− 1 > 0x+ 1 < 0

Figure 3.7: The result of Marking applied to π1 in ϕ and π2 in ϕ{π1}.

3.3 Structural QE Algorithm Scheme
In Section 3.1 we have shown how to compute a prime constituent decomposition
of ϕ. In Corollary 49 we have shown that a PC decomposition of ϕ gives rise to
a set of candidate solutions for ϕ. Such a set of candidate solutions can indeed
be directly used in the context of vs-scheme of Chapter 2.

In this section we show a more clever use of a PC decomposition of ϕ. We
present an enhanced QE algorithm scheme svs-scheme that takes advantage of
the positional origin and structural information stored in prime constituents of
the input formula ϕ.

To begin with, we turn to the definition of a structural test point. This notion
generalizes its corresponding “non-structural” variant introduced in Chapter 2
to allow for tracing the structural origin of such a “non-structural” test point.
A structural test point is a triple (e, π,F) with the following properties:

(i) e is a test point as defined in Chapter 2, i.e., e is of the form (f, S),
(f, S)± ε, where (f, S) is a parametric root description, or ±∞,

(ii) π is a position in the input formula ϕ, and

(iii) F is a set of pairwise independent positions in ϕ.

In Chapter 2 we defined an elimination set for ϕ and x as a set of test
points that when substituted into ϕ by means of virtual substitution, yield
a quantifier-free equivalent of ∃x(ϕ). Here we proceed in a similar way and
define a structural elimination set E for ϕ and x as a finite set of structural
test points that yield a quantifier-free equivalent of ∃x(ϕ) when substituted into
ϕ. To exploit the structural information of E, however, we will use structural
virtual substitution, which substitutes (e, π,F) into ϕFϕ . This contrasts with the
“usual” virtual substitution of Chapter 2, which substitutes a test point e into
the whole formula ϕ. In this way we replace all atomic formulas at positions
lying at or under the false replacement positions F and at positions independent
from and not conjunctively associated with π with “false” instead of applying a
costly virtual substitution [x // e] to them.

Before presenting the enhanced QE algorithm scheme we first show how to
turn a PC decomposition of ϕ into a set of structural test points:

Algorithm PC-to-TPs(P,ϕ, x).
Input: a PC decomposition P of ϕ w.r.t. x containing exclusively PCs with
precomputed bound choices B.
Output: a set E of structural test points.
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1. If there exists no candidate solution (f, S, τ) of a PC in P with tag τ equal
to “IP,” “WLB,” or “SLB,” then return

{
(−∞, (), ∅)

}
.

2. If there exists no candidate solution (f, S, τ) of a PC in P with tag τ equal
to “IP,” “WUB,” or “SUB,” then return

{
(∞, (), ∅)

}
.

3. E := ∅

4. For each prime constituent (π,Υ, c,F , B) ∈ P do

4.1. For each candidate solution (f, S, τ) ∈ c do
4.1.1. If l ∈ B and τ ∈ {IP,WLB}, then add

(
(f, S), π,F

)
to E.

4.1.2. If l ∈ B and τ ∈ {EP,SLB}, then add
(
(f, S) + ε, π,F

)
to E.

4.1.3. If u ∈ B and τ ∈ {IP,WUB}, then add
(
(f, S), π,F

)
to E.

4.1.4. If u ∈ B and τ ∈ {EP,SUB}, then add
(
(f, S)− ε, π,F

)
to E.

5. If there exists a prime constituent (π,Υ, c,F , B) ∈ P such that l ∈ B,
then add (−∞, (), ∅) to E.

6. If there exists a prime constituent (π,Υ, c,F , B) ∈ P such that u ∈ B,
then add (∞, (), ∅) to E.

7. Return E.

Algorithm PC-to-TPs is rather straightforward; as such it is an adjustment
of step 5 of vs-scheme. Steps 1–2 detect whether the satisfying set Φ(ϕ,a)
has no lower (upper) bound for any parameter values a ∈ Rm. In such special
cases it is sufficient to substitute ±∞ into ϕ to obtain an equivalent of ∃x(ϕ),
so an elimination set can be returned directly. Step 3 is reached if and only if
there exist PCs µ1, µ2 ∈ P such that µ1 has a candidate solutions of type from
{IP,WLB,SLB} and µ2 has a candidate solution of type from {IP,WUB,SUB}.
In step 4 the candidate solutions are extracted from the prime constituents and
structural test points are produced from them. For this the algorithm uses the
bound choice B ⊆ {l, u} of each prime constituent. The bound choice B denotes
whether lower bound or upper bound (or both) parametric root descriptions
should be taken for a prime constituent. Steps 5–6 then include ±∞ into E if
needed.

The bound choice B of each prime constituent has to be precomputed be-
fore calling PC-to-TPs. A precomputation of bound selections thus represents
a bound selection strategy. A novel bound selection strategy will be the topic
of Section 3.4. Our aim there will be to make meaningful bound choices by an-
alyzing the structure of ϕ along with a PC decomposition P of ϕ. Furthermore,
we will show that the set of test points computed by PC-to-TPs is indeed a
structural elimination set for ϕ. In the meantime we will simply set B either to
{l} or to {u} to denote whether lower or upper bounds should be taken.

3.3.1 Two Preparatory Lemmas
Before presenting the structural QE scheme, we prove here two lemmas that we
will use in the correctness proof of the scheme.
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Lemma 58. Let ϕ(u, x) be an ∧-∨-combination of atomic formulas. Let π be a
position in ϕ such that π(ϕ) is a Gauss formula with a set of candidate solutions
c. Then ϕπ is a Gauss formula, and c is a set of candidate solutions for ϕπ.

Proof. To begin with, observe that ϕπ ←→ π(ϕ) ∧ ϕ′ for some quantifier-free
Tarski formula ϕ′. The reason for this is that we replaced all atomic formulas in
ϕ at positions independent from and not conjunctively associated with π in ϕ
with “false.” This replacement can be structurally seen as follows: Each ∨-node
on the path from the root of ϕ to position π in ϕ is replaced by its child lying
on this path. In this way ϕπ consists either of π(ϕ) (if there is no ∧-node on
the path) or contains π(ϕ) at some position, and the path from the root of ϕπ
to this position contains only ∧-nodes.

Let now a ∈ Rm be arbitrary parameter values. The equivalence we have
just proven ensures that the following implication holds for any real number ξ:
If ξ ∈ Φ

(
Γ(ϕ, π),a

)
, then ξ ∈ Φ(π(ϕ),a). Since Φ(π(ϕ),a) is finite and c is

a set of candidate solutions for π(ϕ), we obtain that each boundary point of
Φ
(
Γ(ϕ, π),a

)
is properly covered by c. This shows that c is a set of candidate

solutions for Γ(ϕ, π), which finishes the proof of the lemma.

Notice that Lemma 58 does not hold for co-Gauss or atomic subformulas:
Consider formula x−1 6= 0∧x−a ≥ 0. Its subformula at position (1) is obviously
co-Gauss. At the same time, ϕ(1) = ϕ, but ϕ is not co-Gauss because for any
parameter values a, there exist infinitely many real numbers that do not satisfy
ϕ(a)—namely those that are strictly smaller than a〈a〉—i.e., the satisfying set
of the formula is not co-finite.

Lemma 59. Let ϕ be a Gauss formula. Let c be a set of candidate solutions for
ϕ containing only “IP” candidate solutions. Let a ∈ Rm be parameter values.
Define E =

{
(f, S)〈a〉 ∈ R | (f, S, IP) ∈ c

}
. Assume that Φ(ϕ,a) 6= ∅. Then

there exists ξ ∈ E such that R |= ϕ(a, ξ).

Proof. Since c is a candidate solution set consisting only of “IP” candidate
solutions, Theorem 19 guarantees that there exists ξ ∈ E ∪ {−∞} such that
R∗ |= ϕ(a, ξ). If ξ = −∞, then Lemma 17 implies that the satisfying set
Φ(ϕ,a) is unbounded from below. On the other hand, ϕ is a Gauss formula, so
the satisfying set Φ(ϕ,a) is finite; a contradiction. Thus, ξ ∈ E , and the lemma
follows.

3.3.2 The Scheme
Now we are finally ready to present a quantifier elimination scheme using struc-
tural virtual substitution. As usual we consider the elimination of ∃x from
∃x
(
ϕ(u, x)

)
, where ϕ is an ∧-∨-combination of atomic formulas in the Tarski

language L.

Algorithm svs-scheme(ϕ, x).
Input: a quantifier-free Tarski formula ϕ(u, x), which is an ∧-∨-combination of
atomic formulas, a variable x.
Output: a quantifier-free Tarski formula ψ(u) equivalent to ∃x(ϕ) or FAILED.

1. P := PC-decomposition(ϕ, x)

2. If P is FAILED, then return FAILED.
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3. For each prime constituent (π,Υ, c,F , B) ∈ P do

3.1. Set bound choice B of (π,Υ, c,F , B) to {l}.

4. E := PC-to-TPs(P,ϕ, x)

5. ψ := false

6. For each structural test point (e, π,F) ∈ E do

6.1. If e is (f, S), then
6.1.1. γe := guard

(
(f, S), x

)
6.1.2. Compute ϕFπ [x // (f, S)] by replacing each atom g % 0 occurring

in ϕFπ with quantifier-free formula vs-at(g % 0, (f, S), x).
6.1.3. ψ := ψ ∨

(
γe ∧ ϕFπ [x // (f, S)]

)
6.2. If e is (f, S) + ε, then

6.2.1. γe := guard
(
(f, S), x

)
6.2.2. Compute ϕFπ [x // (f, S) + ε] by replacing each atom g % 0 occur-

ring in ϕFπ with quantifier-free formula vs-at
(
g % 0, (f, S)+ε, x

)
.

6.2.3. ψ := ψ ∨
(
γe ∧ ϕFπ [x // (f, S) + ε]

)
6.3. If e is ±∞, then

6.3.1. Compute ϕFπ [x //±∞] by replacing each atom g % 0 occurring in
ϕFπ with quantifier-free formula vs-at(g % 0,±∞, x).

6.3.2. ψ := ψ ∨ ϕFπ [x //±∞]

7. Return ψ.

Algorithm svs-scheme first computes a prime constituent decomposition in
step 1. If this is successful, then it continues with step 3, which denotes by
setting B to {l} that candidate solutions representing lower bounds should be
taken. The call to PC-to-TPs in step 4 extracts from P structural test points,
adjusting them by +ε when needed. Step 6 of the algorithm then substitutes
the structural test points in E into ϕ by means of structural virtual substitution
that takes advantage of the positional origin of a structural test point and the
Boolean structure of ϕ.

Observe that e in step 6 is usually of the form (f, S), (f, S) + ε, or −∞,
because we take candidate solutions representing lower bounds. Nevertheless,
it is possible that E obtained in step 4 is

{
(∞, (), ∅)

}
. This happens when P

does not contain prime constituents with “IP,” “WUB,” or “SUB” candidate
solutions, i.e., the satisfying set Φ(ϕ,a) is guaranteed to be unbounded from
above for any parameter values a ∈ Rm. For this reason step 6.3 handles ∞ as
well.

Next we prove that this quantifier elimination algorithm scheme is correct:

Theorem 60. Algorithm svs-scheme meets its specification.

Proof. We proceed similarly as in the proof of Theorem 37, where we have
proven that vs-scheme meets its specification. Let a ∈ Rm be arbitrary param-
eter values. We prove that the following equivalence holds: R |= ψ(a) if and
only if the satisfying set Φ(ϕ,a) is nonempty.
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Assume first that a satisfies ψ. Observe that ψ returned by svs-scheme is
a quantifier-free disjunction obtained in step 6 by substituting each structural
test point (e, π,F) ∈ E into ϕFπ . Since a satisfies ψ, a has to satisfy at least one
disjunction member of ψ. We distinguish three cases depending on the type of
the structural test point that yielded this satisfied disjunction member:

1. a satisfies γ∧ϕFπ [x // (f, S)] for some
(
(f, S), π,F

)
∈ E: Since vs-at meets

its specification, and a satisfies a guard γ of (f, S), we use Theorem 25
to deduce that R |= ϕFπ (a, (f, S)〈a〉). At the same time, ϕFπ was obtained
from ϕ by replacing some of its subformulas with “false.” Since ϕ is an ∧-
∨-combination of atomic formulas, this implies that R |= ϕ(a, (f, S)〈a〉),
i.e., Φ(ϕ,a) is nonempty.

2. a satisfies γ ∧ϕFπ [x // (f, S) + ε] for some
(
(f, S) + ε, π,F

)
∈ E: Similarly

to the previous case, since vs-at meets its specification, and a satisfies
a guard γ of (f, S), we use Theorem 35 (i) to deduce that there exists
a positive η ∈ R such that R |= ϕFπ (a, (f, S)〈a〉 + η′) for any positive
η′ ∈ R smaller than η. Again, using the fact that ϕFπ was derived from
ϕ by replacing some of its subformulas with “false” we obtain that R |=
ϕ(a, (f, S)〈a〉+ η′) for any positive η′ ∈ R smaller than η. Thus, Φ(ϕ,a)
is obviously nonempty.

3. a satisfies ϕFπ [x //±∞]: Since vs-at meets its specification, we use Theo-
rem 35 (ii) to deduce that there exists η ∈ R such that R |= ϕFπ (a, η′) for
any η′ ∈ R greater/smaller than η. Observe that PC-to-TPs always pro-
duces only structural test points of the form (±∞, (), ∅), so ϕFπ is in this
case identical with ϕ. Therefore, Φ(ϕ,a) is unbounded from above/below
and in particular nonempty.

Now we prove the converse implication. Assume that the satisfying set
Φ(ϕ,a) is nonempty. We prove that R |= ψ(a), i.e., a satisfies at least one
disjunct constructed in step 6 of svs-scheme.

If E obtained in step 4 of svs-scheme is
{

(∞, (), ∅)
}
, then P does not

contain prime constituents with “IP,” “WUB,” or “SUB” candidate solutions.
This means that the satisfying set Φ(ϕ,a) is guaranteed to be unbounded from
above for any parameter values a ∈ Rm, so a satisfies ϕ[x //∞], which is the
only disjunct of ψ in this case. In the following we assume that this special case
does not occur, i.e., P is nonempty and E 6=

{
(∞, (), ∅)

}
.

Similarly, if E obtained in step 4 of svs-scheme is
{

(−∞, (), ∅)
}
, then P

does not contain prime constituents with “IP,” “WLB,” or “SLB” candidate so-
lutions, and we deduce that a satisfies ϕ[x //−∞]. In the following we therefore
assume that there exist PCs µ1, µ2 ∈ P with candidate solutions of types from
{IP,WUB,SUB} and from {IP,WLB,SLB}, respectively.

Let π1, . . . , πn be the positions of Gauss prime constituents in the order as
found by PC-decomposition (cf. line 8 of that algorithm). Using Theorem 56
incrementally n-times—as was demonstrated in Example 57—for these n Gauss
positions we obtain:

ϕ←→ ϕπ1 ∨ ϕ{π1}
π2
∨ · · · ∨ ϕ{π1,...,πn−1}

πn ∨ ϕ{π1,...,πn}.

Since we assume Φ(ϕ,a) 6= ∅, we obtain that the satisfying set of at least one of
the n+ 1 disjuncts on the right hand side of the equivalence above is nonempty.
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Let i be an index, counting from the left to the right, with this property. We
distinguish two cases.

In the first case we have i ∈ {1, . . . , n}. This means that the satisfying
set Φ

(
ϕ
{π1,...,πi−1}
πi ,a

)
is nonempty. Lemma 58 ensures the following: First,

ϕ
{π1,...,πi−1}
πi is a Gauss formula. Second, a candidate solution set for πi(ϕ)

is also a candidate solution set for ϕ{π1,...,πi−1}
πi . Since the formula πi(ϕ) was

found by PC-decomposition as a Gauss formula, its candidate solution set
consists exclusively of IP candidate solutions. Lemma 59 therefore ensures that
there exists ξ ∈ R such that R |= ϕ

{π1,...,πi−1}
πi (a, ξ), where ξ = (f, S)〈a〉 for a

candidate solution (f, S, IP), which is in the candidate solution set for πi(ϕ).
Since ξ = (f, S)〈a〉, a satisfies a guard γ of (f, S). Theorem 25 then ensures
that R |= γ ∧

(
ϕ
{π1,...,πi−1}
πi

)
[x // (f, S)](a). Algorithms PC-decomposition and

PC-to-TPs now ensure that
(
(f, S), πi, {π1, . . . , πi−1}

)
∈ E. Thus, a satisfies

the disjunct γ ∧
(
ϕ
{π1,...,πi−1}
πi

)
[x // (f, S)] constructed during an iteration of the

loop in step 6 of svs-scheme.
In the second case we have i = n+ 1, so Φ(ϕ{π1,...,πn},a) is nonempty. Since

ϕ{π1,...,πn} is an ∧-∨-combination of atomic formulas, the union of the candidate
solution sets of all prime constituents in P with type COGAUSS or AT yields,
by Proposition 15 and induction, a candidate solution set for ϕ{π1,...,πn}. We
distinguish three cases:

1. The satisfying set Φ(ϕ{π1,...,πn},a) is bounded from below, and contains
its infimum β. Since ϕ{π1,...,πn} is an ∧-∨-combination of atomic formulas,
there exists a prime constituent at position π such that β is an isolated
point or a weak lower bound of Φ(π(ϕ),a). Therefore, there exists a
candidate solution (f, S, τ) of the formula π(ϕ) such that β = (f, S)〈a〉
and τ is equal to “IP” or “WLB.” Algorithms PC-decomposition and
PC-to-TPs ensure that

(
(f, S), π, {π1, . . . , πn}

)
∈ E. Since β = (f, S)〈a〉,

a satisfies a guard γ of (f, S). Theorem 25 then ensures that a satisfies
γ ∧ ϕ{π1,...,πn}[x // (f, S)].

Now we prove that we also have R |= γ ∧
(
ϕ
{π1,...,πn}
π

)
[x // (f, S)](a).

Observe that (a, β) satisfy both ϕ{π1,...,πn} and its subformula π(ϕ) =
π(ϕ{π1,...,πn}). Therefore, (a, β) satisfy the formula ϕ

{π1,...,πn}
π as well:

The reason is that each subformula rooted at an ∨-node lying on the path
from the root of ϕ to the node at position π is satisfied by (a, β) whenever
π(ϕ) is satisfied by (a, β). Consequently, replacing each atomic formula
of ϕ{π1,...,πn} at a position independent from and not conjunctively asso-
ciated with π with “false” does not make the formula unsatisfied at (a, β).
Thus, (a, β) satisfy ϕ{π1,...,πn}

π . Recall that β = (f, S)〈a〉, so Theorem 25
ensures that R |= γ ∧

(
ϕ
{π1,...,πn}
π

)
[x // (f, S)](a), where γ is a guard of

(f, S).

2. The satisfying set Φ(ϕ{π1,...,πn},a) is bounded from below, but it does not
contain its infimum β. We proceed similarly as in the previous case:
Since ϕ{π1,...,πn} is an ∧-∨-combination of atomic formulas, there ex-
ists a prime constituent at position π such that β is an excluded point
or a strict lower bound of Φ(π(ϕ),a). Therefore, there exists a candi-
date solution (f, S, τ) of π(ϕ) such that β = (f, S)〈a〉 and τ is equal
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to “EP” or “SLB.” Algorithms PC-decomposition and PC-to-TPs en-
sure that

(
(f, S) + ε, π, {π1, . . . , πn}

)
∈ E. Since β = (f, S)〈a〉, a sat-

isfies a guard γ of (f, S). Theorem 35 (i) then ensures that a satisfies
γ ∧ ϕ{π1,...,πn}[x // (f, S) + ε].

To prove that a also satisfies γ ∧
(
ϕ
{π1,...,πn}
π

)
[x // (f, S) + ε] one proceeds

as follows: First observe that our assumptions guarantee that there exists
a positive η ∈ R such that for each positive η′ ∈ R smaller than η we
have β + η′ ∈

(
Φ(ϕ{π1,...,πn},a) ∩ Φ(π(ϕ),a)

)
. Then use the same struc-

tural argument as in the previous case to deduce that the replacement of
each atomic formula of ϕ{π1,...,πn} at a position independent from and not
conjunctively associated with π with “false” does not make the formula
unsatisfied at (a, β + η′) for any positive η′ smaller than η. Using Theo-
rem 35 (i) we then obtain that a satisfies γ ∧

(
ϕ
{π1,...,πn}
π

)
[x // (f, S) + ε].

3. The satisfying set Φ(ϕ{π1,...,πn},a) is unbounded from below. In this case
we use Theorem 35 (ii) to deduce R |= ϕ{π1,...,πn}[x //−∞](a), which
implies R |= ϕ[x //−∞](a). Since we set B of all prime constituents in
P to {l}, PC-to-TPs includes (−∞, (), ∅) in E. Therefore, ϕ[x //−∞] is
indeed a member of the disjunction ψ returned by svs-scheme.

In all there cases we have just proven that there exists a disjunct of ψ returned
by svs-scheme that is satisfied by a whenever the satisfying set Φ(ϕ,a) is
nonempty. This finishes the proof of the theorem.

Observe that Algorithm svs-scheme includes in E only test points that pos-
sibly represent a lower bound of a satisfying set. Similarly as with vs-scheme,
it is straightforward to change the scheme and the proof to argue that upper
bound test points can be used instead. Furthermore, it is also correct to decide
between these two options after an analysis of the PC decomposition P . Yet
another bound selection strategy looking at the Boolean structure of ϕ will be
the subject of the next section.

At this point let us remind ourselves that with vs-scheme we were also able
to construct a set of test points for ϕ and x à la Theorem 19 (ii). This meant that
we were able to use WLB candidate solutions instead of EP candidate solutions
when constructing an elimination set for ϕ and x. A careful analysis of the
proof of Theorem 60 reveals that we can proceed similarly in this case as well.
Even though we do not use Theorem 19 directly for the “non-Gauss” part of the
formula ϕ, the correctness proof can be adjusted so that EP candidate solutions
are exchanged for WLB candidate solutions when needed; of course, after a
corresponding straightforward adjustment of PC-to-TPs that adds a structural
test point of the form

(
(f, S) + ε, π,F

)
to E for WLB candidate solutions

instead of EP candidate solutions. Similarly as with vs-scheme of Chapter 2,
this strategy avoiding excluded points is beneficial whenever there are more
excluded points than lower bound candidate solutions. As a special case, the
correctness of this strategy ensures that both

{
(−∞, (), ∅)

}
and

{
(∞, (), ∅)

}
are

elimination sets for any formula whose PC decomposition consists of exclusively
co-Gauss prime constituents.

Before we delve into the topic of our bound selection strategy, we first discuss
one principle difference between vs-scheme and svs-scheme.
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∧

∨

x+ c ≥ 0
(2, 2)

ax− 3 ≥ 0
(2, 1)∨

x− 7 < 0
(1, 2)

∧

(1, 1)

x+ b ≤ 0ax− 3 = 0

Figure 3.8: Formula ϕ from Example 61.

3.3.3 Conflation
In contrast to non-structural elimination sets, it is possible in the structural con-
text here that one parametric root description occurs in more than one structural
test point. We illustrate such a situation with an example.

Example 61. Consider the quantifier-free formula ϕ in Figure 3.8. Algorithm
PC-decomposition discovers four prime constituents, namely one Gauss prime
constituent at position (1, 1) and three atomic prime constituents at positions
(1, 2), (2, 1), and (2, 2). Assume for simplicity that we do not use clustering
and that lower bound candidate solutions are taken. Therefore, we obtain from
PC-to-TPs a set E consisting of the following five structural test points for
ϕ. For clarity we annotated parametric root description, position, and false
replacement set in each structural test point:((

ax− 3, (1, 1)
)︸ ︷︷ ︸

e

, (1, 1)︸ ︷︷ ︸
π

, ∅︸︷︷︸
F

)
,
((
ax− 3, (−1, 1)

)︸ ︷︷ ︸
e

, (1, 1)︸ ︷︷ ︸
π

, ∅︸︷︷︸
F

)
,

((
ax− 3, (1, 1)

)︸ ︷︷ ︸
e

, (2, 1)︸ ︷︷ ︸
π

, {(1, 1)}︸ ︷︷ ︸
F

)
,
((
x+ c, (1, 1)

)︸ ︷︷ ︸
e

, (2, 2)︸ ︷︷ ︸
π

, {(1, 1)}︸ ︷︷ ︸
F

)
,

(
−∞︸︷︷︸
e

, ()︸︷︷︸
π

, ∅︸︷︷︸
F

)
.

As we can see, the parametric root description e =
(
ax − 3, (1, 1)

)
occurs here

twice with two distinct positions and false replacement sets. 3

When (e, π1,F1) and (e, π2,F2) occur in E we have to substitute e = (f, S)
(or e = (f, S) ± ε) into two different formulas, namely ϕF1

π1
and ϕF2

π2
. The

idea of conflation is to prevent this kind of redundancy, and substitute e into
one formula ϕF ′π′ instead. The position π′ and the false replacement set F ′ are
computed from π1, F1 and π2, F2 by “conflating” them together: π′ is the
lowest common ancestor of π1 and π2, and F ′ is the intersection of F1 and F2.
This is made explicit in the following algorithm:

Algorithm TPs-conflate(E).
Input: a set E of structural test points.
Output: a set E′ of structural test points, which is obtained from E by “con-
flating everything what can be conflated,” i.e., E′ contains no duplicates of
non-structural test points of the forms (f, S), (f, S) + ε, or (f, S)− ε.

1. E′ := ∅
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2. While E 6= ∅ do

2.1. Pop t1 =
(
(f1, S1) + ι1, π1,F1

)
from E.

2.2. T := E

2.3. While T 6= ∅ do
2.3.1. Pop t2 =

(
(f2, S2) + ι2, π2,F2

)
from T .

2.3.2. If f1 = f2 and ι1 = ι2 and S1 ⊆ S2, then
2.3.2.1. t1 :=

(
(f2, S2) + ι2, lca(π1, π2),F1 ∩ F2

)
2.3.2.2. Delete t2 from E.

2.3.3. If f1 = f2 and ι1 = ι2 and S2 ⊆ S1, then
2.3.3.1. t1 :=

(
(f1, S1) + ι1, lca(π1, π2),F1 ∩ F2

)
2.3.3.2. Delete t2 from E.

2.4. E′ := E′ ∪ {t1}

3. Return E′.

Observe that TPs-conflate meets its specification and runs in time O
(
|E|2

)
.

Note that the nonstandard parts ι1, ι2 in the loop in step 2.3 can be 0, ε, or
−ε. Since we will call TPs-conflate only on E obtained from PC-to-TPs for a
set of prime constituents computed by PC-decomposition, we will always have
either F1 ⊆ F2 or F2 ⊆ F1 in the loop in step 2.3.

For the set E from Example 61 we obtain TPs-conflate(E):((
ax− 3, (1, 1)

)
, (), ∅

)
,
((
ax− 3, (−1, 1)

)
, (1, 1), ∅

)
,((

x+ c, (1, 1)
)
, (2, 2), {(1, 1)}

)
,
(
−∞, (), ∅

)
.

Observe that without conflation svs-scheme ensures that {π}∪F is a set of
pairwise independent positions for any test point of the form (e, π,F) returned
by PC-to-TPs. Using conflation this is not guaranteed anymore, because we use
the lca operator that possibly causes that a position lca(π1, π2) is dependent
with a position from F1 ∩F2. At the same time this is not a formal problem at
all, because the deletion and condensing operators do not change the Boolean
structure of a formula.

The use of TPs-conflate in the context of svs-scheme is straightforward:
Call it to conflate the set of test points in svs-scheme before substituting them
into ϕ. The correctness of this approach is asserted by the following theorem:

Theorem 62 (Structural Quantifier Elimination Scheme with Conflation). Re-
place line 4 of svs-scheme with

E := TPs-conflate
(
PC-to-TPs(P,ϕ, x)

)
.

This modified scheme called “svs-scheme with condensing” is correct.

Proof. Let ψ be the formula returned by svs-scheme with condensing. Let
a ∈ Rm be arbitrary parameter values. We prove that the following equivalence
holds: R |= ψ(a) if and only if the satisfying set Φ(ϕ,a) is nonempty.

Assume first that a satisfies ψ. The proof of the fact that Φ(ϕ,a) 6= ∅ is
literally the same as in the proof of Theorem 60, and therefore we omit it here.
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Now assume that the satisfying set Φ(ϕ,a) is nonempty. In the following
we prove that R |= ψ(a), i.e., a satisfies at least one disjunct of ψ returned by
svs-scheme with condensing. We proceed similarly as in the proof of The-
orem 60. There we have proven that there exists (e, π,F) ∈ E such that
R |= γ ∧ ϕFπ [x // e](a). We emphasize that E here is the set of test points
computed by svs-scheme. In the following we denote the set computed by
svs-scheme with condensing by E′.

If e = ±∞, then observe that TPs-conflate does not modify structural test
points of the form (±∞, (), ∅), i.e., (±∞, (), ∅) ∈ E′. Therefore, ϕ[x //±∞] is a
disjunct constructed during the loop in step 6 of svs-scheme with condensing.
Since we have proven that R |= γ ∧ ϕFπ [x // e](a) in this case, it follows that a
satisfies a disjunct of ψ returned by svs-scheme with condensing.

Assume now that e is of the form (f, S) + ι, where ι is 0 or ε. There are two
cases to consider:

1. (e, π,F) ∈ E′: This means that (e, π,F) was left intact during the loop
in step 2 of TPs-conflate. In this case, again, γ ∧ ϕFπ was obviously
constructed by svs-scheme with condensing, and R |= γ ∧ ϕFπ [x // e](a)
holds. Thus, a satisfies ψ returned by svs-scheme with condensing.

2. (e, π,F) /∈ E′: This means that (e, π,F) was replaced by another struc-
tural test point during the loop in step 2 of TPs-conflate. The replace-
ment of structural test points in TPs-conflate is done in such a way
that there exists another structural test point (e′, π′,F ′) ∈ E′ such that
e′ = (f, S′) + ι, S ⊆ S′, π v π′, and F ′ ⊆ F . By the construction,
neither S nor S′ contain any duplicate root specifications, so (f, S′)〈a〉 is
well-defined, and (f, S′)〈a〉 = (f, S)〈a〉. Furthermore, any guard of (f, S)
implies any guard of (f, S′). At the same time, Proposition 53 together
with π v π′ and F ′ ⊆ F ensures that ϕFπ implies ϕF ′π′ .
Putting this all together we obtain: There exists

(
e′, π′,F ′

)
∈ E′ such

that R |= γ ∧ ϕFπ [x // e](a) implies R |= γ′ ∧ ϕF ′π′ [x // e′](a), where γ′ is a
guard of e′. Since we have proven that R |= γ ∧ ϕFπ [x // e](a), we obtain
that R |= γ′ ∧ ϕF ′π′ [x // e′](a).

Finally, the formula γ′ ∧ ϕF ′π′ [x // e′] was constructed during the loop in
step 6 of svs-scheme with condensing, so we obtain that a satisfies at
least one disjunct of the formula ψ returned by the modified scheme.

It is possible that other than the “conflate everything possible” strategy
lead to reasonable results. Nevertheless, the aggressive conflation strategy of
TPs-conflate, whose correctness we have just proven, plays a prominent role:
Using it we can really state that svs-scheme is a generalization of vs-scheme
in the following sense: Whenever (e, π,F) is substituted into ϕ, then e is substi-
tuted into ϕ by vs-scheme as well. Furthermore, e is not substituted into ϕ twice
(with different originating positions and false replacement sets) by svs-scheme
with conflation.

We conclude this section with an example where “non-conflation” could make
more sense than conflation: Consider a formula ϕ of the form ϕ1 ∨ ϕ2 ∨ ϕ3
and assume that structural test points (e, π1, ∅) and (e, π2, ∅), where πi lies
in subformula ϕi, are computed by svs-scheme. While substituting the two
structural test points into ϕ, the algorithm includes in the output disjunction the
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two formulas ϕπ1 [x // e] and ϕπ2 [x // e]. Using conflation the algorithm includes
the formula ϕ[x // e] in the output instead, because lca(π1, π2) = (). In the
former case the number of atoms we need to substitute e into is at most |ϕ1|+
|ϕ2|; in the latter case the number of atoms we need to substitute e into is at
most |ϕ1|+ |ϕ2|+ |ϕ3|, because the replacement with “false” during condensing
of ϕ w.r.t. π1 and π2 can be seen as simply deleting subformulas ϕ2, ϕ3 and ϕ1,
ϕ3, respectively. Obviously, this can make a difference—in both running time
and length of the computed quantifier-free equivalent—in cases when ψ3 is a
long formula. By |ϕi| we denote here the number of atomic formulas in ϕi.

In contrast, it is not hard to come up with an example where the strategy
“conflate everything possible” is more reasonable. It seems that one could use
optimization techniques along with counting the numbers of target atomic for-
mulas to decide whether and how e, occurring in a structural elimination set at
least twice, should be conflated before substitution. A systematic investigation
of this is left for future work.

3.4 Bound Selection
Our quantifier elimination schemes vs-scheme and svs-scheme globally decide
to take either exclusively lower or exclusively upper bound candidate solutions
to obtain a (structural) elimination set for ϕ and x. In this section we show how
to compute elimination sets, which are not obtained by such a global decision.
We present a bound selection strategy based on an analysis of the conjunctive as-
sociativity relation on positions combined with 0-1 Integer Linear Programming
(0-1 ILP). The approach possibly yields a heterogeneous structural elimination
set, which contains “a mixture” of structural test points obtained from lower
bound candidate solutions and upper bound candidate solutions.

As usual let ϕ be an ∧-∨-combination of Tarski atomic formulas. Let P be
a prime constituent decomposition of ϕ. The conjunctive associativity graph for
ϕ and P denoted by G(ϕ, P ) = (V,E) is defined as follows:

V =
{
π ∈ Pos(ϕ) | (π,Υ, c,F , B) ∈ P and Υ ∈ {COGAUSS,AT}

}
,

E =
{

(πi, πj) ∈ V × V | πi and πj are conjunctively associated in ϕ
}
.

An admissible coloring of G(ϕ, P ) = (V,E) is a mapping χ : V → 2{l,u}
such that for every π ∈ V we have χ(π) 6= ∅, and for every (πi, πj) ∈ E we
have χ(πi) ∩ χ(πj) 6= ∅. In the following we show that there is a one-to-one
correspondence between all admissible colorings of G(ϕ, P ) = (V,E) and all
solutions of the system∧

π∈V

(
xlπ + xuπ ≥ 1

)
,

∧
(πi,πj)∈E

(
xlπi + xuπj ≥ 1 ∧ xuπi + xlπj ≥ 1

)
(3.1)

of 0-1 ILP constraints in variables
⋃
π∈V {xlπ, xuπ}.

First we show that a solution of system (3.1) gives rise to an admissible
coloring of the conjunctive associativity graph G(ϕ, P ).
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Proposition 63. Let s be a 0-1 assignment to variables
⋃
π∈V {xlπ, xuπ} satisfy-

ing system (3.1). Define χ as follows:

χ(π) =


∅ if s(xlπ) = 0 and s(xuπ) = 0,
{l} if s(xlπ) = 1 and s(xuπ) = 0,
{u} if s(xlπ) = 0 and s(xuπ) = 1,
{l, u} if s(xlπ) = 1 and s(xuπ) = 1.

Then χ is an admissible coloring of G(ϕ, P ) = (V,E).

Proof. To begin with, observe that the condition s(xlπ) + s(xuπ) ≥ 1 implies
χ(π) 6= 0 for every π ∈ V .

Let (πi, πj) ∈ E, and assume that χ(πi) ∩ χ(πj) = ∅. Since χ(π) 6= ∅ for all
π ∈ V , we have

1. either χ(πi) = {u} and χ(πj) = {l}, or

2. χ(πi) = {l} and χ(πj) = {u}.

In the first case we obtain that s(xlπi) = s(xuπj ) = 0, i.e., s does not satisfy the
constraint xlπi + xuπj ≥ 1 of system (3.1); a contradiction. In the second case
we obtain that s(xuπi) = 0 and s(xlπj ) = 0, i.e., s does not satisfy the constraint
xuπi + xlπj ≥ 1 of system (3.1), which is again a contradiction. This proves that
χ is an admissible coloring of G(ϕ, P ).

Next we show that an admissible coloring can be converted to a solution of
system (3.1).

Proposition 64. Let χ be an admissible coloring of G(ϕ, P ) = (V,E). Define

s(xlπ) =
{

0 if l /∈ χ(π)
1 if l ∈ χ(π)

and s(xuπ) =
{

0 if u /∈ χ(π)
1 if u ∈ χ(π).

Then s satisfies system (3.1) of 0-1 ILP constraints.

Proof. To begin with, notice that for all π ∈ V the condition χ(π) 6= ∅ implies
that s satisfies the constraint xlπ + xuπ ≥ 1 of system (3.1).

Let (πi, πj) ∈ E. Since χ is an admissible coloring of G(ϕ, P ), we have
χ(πi) ∩ χ(πj) 6= ∅. There are two cases to consider:

1. l ∈ χ(πi) ∩ χ(πj): The definition of s ensures that s(xlπi) = s(xlπj ) = 1,
i.e., s satisfies constraints xlπi +xuπj ≥ 1 and xuπi +xlπj ≥ 1 of system (3.1).

2. u ∈ χ(πi) ∩ χ(πj): The definition of s ensures that s(xuπi) = s(xuπj ) = 1,
i.e., s satisfies constraints xlπi +xuπj ≥ 1 and xuπi +xlπj ≥ 1 of system (3.1).

This shows that s satisfies each and every constraint of system (3.1).

From now on we will not really distinguish between a solution s of sys-
tem (3.1), an admissible coloring χ of G(ϕ, P ), and bound choices for P induced
by χ. The following example illustrates a few admissible colorings of G(ϕ, P ),
bound choices for P induced by these colorings, and sets of structural elimina-
tion test points computed from P by PC-to-TPs using these bound choices.
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∧

ϕ

∨

x− b2 ≤ 0
π5

x− b1 ≤ 0
π4

x− a2 ≥ 0
π3

x− a1 ≥ 0
π2

x− 7 6= 0
π1

Figure 3.9: Formula ϕ from Example 65 and its PC decomposition P into five
prime constituents at positions π1, . . . , π5.

Example 65. Consider PC decomposition P of ϕ in Figure 3.9 into five prime
constituents at positions πi. The constituent at position π1 is a co-Gauss prime
constituent, and the other constituents are atomic prime constituents. The
conjunctive associativity graph G(ϕ, P ) is shown in Figure 3.10.

We discuss three admissible colorings of G(ϕ, P ):

1. χl(πi) = {l} for every i ∈ {1, . . . , 5}: This coloring encodes the global
decision to take lower bound candidate solutions. Using PC-to-TPs, this
coloring gives rise to the following four structural test points:((

x− a1, (1, 1)
)
, π2, ∅

)
,
((
x− a2, (1, 1)

)
, π3, ∅

)
,((

x− 7, (1, 1)
)

+ ε, π1, ∅
)
,
(
−∞, (), ∅

)
.

2. χu(πi) = {u} for every i ∈ {1, . . . , 5}: This coloring encodes the global
decision to take upper bound candidate solutions. Using PC-to-TPs we
obtain: ((

x− b1, (1, 1)
)
, π4, ∅

)
,
((
x− b2, (1, 1)

)
, π5, ∅

)
,((

x− 7, (1, 1)
)
− ε, π1, ∅

)
,
(
∞, (), ∅

)
.

3. Consider the following admissible coloring χ of Gϕ:

χ(π1) = {l, u}, χ(π2) = χ(π3) = {u}, χ(π4) = χ(π5) = {l}.

Using PC-to-TPs, χ leads to the following four of structural test points:((
x− 7, (1, 1)

)
− ε, π1, ∅

)
,
((
x− 7, (1, 1)

)
+ ε, π1, ∅

)
,(

−∞, (), ∅
)
,
(
∞, (), ∅

)
.

The results of the previous sections ensure that the first and the second set
of structural test points are structural elimination sets for ϕ and x. In the
following we will show that the third set of structural test points is a structural
elimination set for ϕ and x as well. 3

Observe that each solution of system (3.1) ensures that bound choices of a
pair of conjunctively associated prime constituents share at least one element
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π1

π5π4π3π2

Figure 3.10: The conjunctive associativity graph for ϕ and P from Figure 3.9.

from {l, u}. In an admissible coloring, prime constituents that are not con-
junctively associated do not need to share a bound choice, as we have seen in
Example 65, where χ(π2) 6= χ(π4) for an admissible coloring χ.

The intuition behind this approach is best explained on the DNF of ϕ:
Compute the DNF of ϕ in our head, treating prime constituents as atomic
formulas. Push the quantifier ∃x in front of each disjunct, which is a conjunction
of prime constituents. Then we are able to make a choice to take lower or upper
bounds in each disjunct separately. Therefore, it suffices to ensure that only
those prime constituents that are conjunctively associated in ϕ share at least
one element from {l, u}. The Gauss prime constituents are left out of this whole
process, because they contain only IP candidate solutions, which represent both
lower and upper bounds on x. Accordingly, PC-to-TPs produces the same
structural test points for bound choices {l}, {u}, and {l, u}. For Gauss prime
constituents we therefore only have to ensure that their bound choice B is not
∅ before calling PC-to-TPs.

In the following we give a QE scheme based on this intuition and prove its
correctness. Before doing so we first present an algorithm that for ϕ and P con-
structs system (3.1), solves it, and assigns bound choices to prime constituents
in P accordingly.

3.4.1 Procedure PC-bs-ILP

The following bound selection algorithm PC-bs-ILP is based on the idea that
bound choices of two prime constituents need to share an element from {l, u}
if and only if they are conjunctively associated. To achieve this the algorithm
constructs and solves the system (3.1) for any given PC decomposition P of ϕ.
As a result, the algorithm fixes the bound choice B of each prime constituent
in the PC decomposition P of ϕ.

Steps 1–2 of the algorithm solve the 0-1 ILP system (3.1) for a PC decom-
position P of ϕ. For this we use ILP-construct, which first constructs the
system (3.1) without explicitly constructing the conjunctive associativity graph
G(ϕ, P ).

Steps 4–6 ensure that the bound choice B of each Gauss prime constituent
is nonempty, and that B is not {l, u}. We ensure that the latter condition holds
only to prevent including both (−∞, (), ∅) and (∞, (), ∅) into E when P contains
exclusively Gauss prime constituents, because in such a case only one of ±∞ is
needed.

Algorithm PC-bs-ILP(P,ϕ, x).
Input: a PC decomposition P of ϕ w.r.t. x.
Output: a PC decomposition P ′ of ϕ w.r.t. x containing only prime constituents
with fixed bound choices B.
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1. (f, C) := ILP-construct(P,ϕ, x)

2. Compute a solution s of the system C.

3. For each µ ∈ P at position π with type Υ ∈ {COGAUSS,AT} do

3.1. B := ∅
3.2. If s(xlπ) = 1, then B := B ∪ {l}.
3.3. If s(xuπ) = 1, then B := B ∪ {u}.
3.4. Fix the bound choice of µ to B.

4. Bg := {l}

5. If there exists a variable xuπ such that s(xuπ) = 1, then Bg := {u}.

6. For each µ ∈ P with type Υ = GAUSS do

6.1. Fix the bound choice of µ to Bg.

7. Return P .

Algorithm ILP-construct(P,ϕ, x).
Input: a PC decomposition P of ϕ w.r.t. x.
Output: a system C of 0-1 ILP constraints for ϕ and P as in (3.1).

1. (C, P ′) := ILP-subroutine
(
P,ϕ, x, ()

)
2. For each µ = (π,Υ, c,F , B) ∈ P ′ do

2.1. C := C ∪ {xlπ + xuπ ≥ 1}

3. Return C.

Algorithm ILP-subroutine(P,ϕ, x, π).
Input: a PC decomposition P of ϕ w.r.t. x, a position π ∈ Pos(ϕ).
Output: a pair (C, P ′), where C is a system of 0-1 ILP constraints, and P ′ ⊆ P
is the set of co-Gauss and atomic prime constituents occurring in π(ϕ).

1. If π is a position of a co-Gauss or atomic prime constituent in P , then

1.1. Return (∅, {π}).

2. If π is a position of a Gauss prime constituent in P or a leaf position, then

2.1. Return (∅, ∅).

3. For each child position π|1, . . . , π|n of π do

3.1. (Ci, P ′i ) := ILP-subroutine(P,ϕ, x, π|i)

4. C :=
⋃n
i=1 Ci

5. P ′ :=
⋃n
i=1 P

′
i

6. If the top-level operator of π(ϕ) is “∨,” then
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6.1. Return (C, P ′).

7. If the top-level operator of π(ϕ) is “∧,” then

7.1. For each pair of PCs µi ∈ P ′i and µj ∈ P ′j such that i < j, do
7.1.1. Let πi and πj be the positions of µi and µj , respectively.
7.1.2. C := C ∪ {xlπi + xuπj ≥ 1, xuπi + xlπj ≥ 1}

7.2. Return (C, P ′).

It is easy to see that ILP-construct meets its specification and constructs
system (3.1) for a given PC decomposition P of ϕ. Its worst-case running time
is quadratic in the size of the structural tree for ϕ because of the loop in step 7
of ILP-subroutine. Consequently, algorithmPC-bs-ILP is correct as well.

Reasonable Solutions of 0-1 ILP System C

Algorithm PC-bs-ILP picks in step 2 any solution s of the system C. Therefore,
it is correct to assign each variable the value 1 to obtain a solution of C. However,
it is of huge practical importance to obtain as small elimination set E as possible.
Here we propose a few strategies towards achieving this goal. These strategies
are based on the observation that we have to be careful and minimize the number
of variables that are assigned the value 1 in a solution s.

To do this one first constructs a linear objective function κ in the variables⋃
π∈V {xlπ, xuπ}, where V is the set of vertices of the graph G(ϕ, P ) = (V,E),

i.e., the set of positions of all co-Gauss and atomic prime constituents in P .
Minimizing κ w.r.t. the system C then prevents unnecessary 1-assignments in s.
A simple objective function κ that ensures this is:

κ =
∑
π∈V

xlπ + xuπ. (3.2)

Here we point to the fact that it is straightforward to adjust ILP-construct to
also return this objective function κ for P and to minimize κ w.r.t. C in step 2
of PC-bs-ILP afterwards.

In practice one indeed wants to use an efficient 0-1 ILP solver [1] or a SAT
solver with optimization functionality [40] for finding a solution of C with the
smallest possible value of κ.

On the theoretical side observe that the facts that each constraint of (3.1)
contains exactly two variables and that the objective function κ from (3.2) is
linear ensure that this optimization problem can be reduced to the minimum
weighted vertex cover problem. This is a well-studied combinatorial optimiza-
tion problem [4, 5, 57, 24]. However, it is possible that the special structure
of the graph—that always comes to existence from G(ϕ, P )—allows for more
efficient approximation and kernelization algorithms.

Now we return to our Example 65 where we showed three colorings χl,
χu, and χ. The values of the objective function κ from (3.2) for these three
colorings are 5, 5, and 6, respectively. Observe, however, that the cost 5 of χl
does not really correspond with the produced structural test points: The prime
constituent at position π4 added one to the objective function value (because
s(xlπ4

) = 1 and s(xlπ4
) = 0 in this case) even though it does not produce any

test point.
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Therefore, it can make sense to multiply the variables in (3.2) by weights
wlπ and wuπ, respectively. Intuitively, it should be then possible to estimate the
costs of produced test points more precisely. Consequently, such an adjusted κ
should guide a solver towards such solutions of the system C that are expected
to yield “nicer” elimination sets after PC-to-TPs.

As an example that it can make a significant difference for a prime con-
stituent whether its lower bound candidate solutions or upper bound candidate
solutions are used to obtain test points we consider the atomic formula f ≤ 0,
where f = x3 + ax2 + bx + c and a, b, c ∈ Z[u]. For simplicity we do not
use clustering. Since the leading coefficient of f is positive, there are only four
potential real 3-types of f . What these real types look like was discussed in
Subsection 2.5.2. The following parametric root descriptions cover weak lower
bounds of Φ(f ≤ 0,a) for any parameter values a ∈ Rm:(

f, (3, 2)
)
,
(
f, (4, 2)

)
.

At the same time, parametric root descriptions covering weak upper bounds of
Φ(f ≤ 0,a) for any parameter values a ∈ Rm are(

f, (1, 1)
)
,
(
f, (2, 1)

)
,
(
f, (3, 1)

)
,
(
f, (3, 2)

)
,
(
f, (4, 1)

)
,
(
f, (4, 3)

)
.

Recall that, for example, the root specification (3, 1) of f represents the first
(counting from the left to the right) real root of f〈a〉 whenever f〈a〉 is of real
type (−1, 0, 1, 0, 1). Assuming that the costs, i.e., the time and the length of
the obtained formula, of substituting a parametric root description

(
f, (t, r)

)
are the same regardless of the root specification (t, r) one would set wlπ to 2 and
wuπ to 6. Therefore, xlπ + xuπ would be replaced with 2xlπ + 6xuπ in the objective
function (3.2). Here π is the position of the atomic prime constituent f ≤ 0 in
the formula ϕ.

For our Example 65 a weighted objective function κ based on the approach
we have just described would look as follows:

κ = xlπ1
+ xuπ1

+ xlπ2
+ 0 · xuπ2

+ xlπ3
+ 0 · xuπ3

+ 0 · xlπ4
+ xuπ4

+ 0 · xlπ5
+ xuπ5

.

The costs of the three admissible colorings χl, χu, and χ with respect to κ are
then 3, 3, and 2, respectively.

One could go even further and analyze the degree of f , the degrees of the
parameters occurring in f , the number of recursive lower-degree virtual substi-
tutions and lengths of the virtual substitution formula schemes of Appendix A
to adjust the weights wlπ and wuπ of prime constituents in P even more precisely.
However, in most cases counting the number of root specifications producing a
test point, as we have shown above, should already yield a good approximation
of the actual costs of a prime constituent when its lower/upper bound candidate
solutions are taken.

3.4.2 A Structural Scheme with Bound Selection
Now we are ready to present and prove the correctness of a structural quan-
tifier elimination scheme that employs the bound selection strategy described
above. This boils down to integrating PC-bs-ILP into svs-scheme, which is
straightforward. For completeness we present here the whole scheme obtained
this way:
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Algorithm svs-scheme-bs(ϕ, x).
Input: a quantifier-free Tarski formula ϕ(u, x), which is an ∧-∨-combination of
atomic formulas, a variable x.
Output: a quantifier-free Tarski formula ψ(u) equivalent to ∃x(ϕ) or FAILED.

1. P := PC-decomposition(ϕ, x)

2. If P is FAILED, then return FAILED.

3. P := PC-bs-ILP(P,ϕ, x)

4. E := PC-to-TPs(P,ϕ, x)

5. ψ := false

6. For each structural test point (e, π,F) ∈ E do

6.1. If e is (f, S), then
6.1.1. γe := guard

(
(f, S), x

)
6.1.2. Compute ϕFπ [x // (f, S)] by replacing each atom g % 0 occurring

in ϕFπ with quantifier-free formula vs-at(g % 0, (f, S), x).
6.1.3. ψ := ψ ∨

(
γe ∧ ϕFπ [x // (f, S)]

)
6.2. If e is (f, S)± ε, then

6.2.1. γe := guard
(
(f, S), x

)
6.2.2. Compute ϕFπ [x // (f, S)± ε] by replacing each atom g % 0 occur-

ring in ϕFπ with quantifier-free formula vs-at
(
g % 0, (f, S)±ε, x

)
.

6.2.3. ψ := ψ ∨
(
γe ∧ ϕFπ [x // (f, S)± ε]

)
6.3. If e is ±∞, then

6.3.1. Compute ϕFπ [x //±∞] by replacing each atom g % 0 occurring in
ϕFπ with quantifier-free formula vs-at(g % 0,±∞, x).

6.3.2. ψ := ψ ∨ ϕFπ [x //±∞]

7. Return ψ.

Similarly as svs-scheme, we first compute a PC decomposition of ϕ in step 1.
If this is successful, then we are able to continue and compute a quantifier-free
equivalent of ∃xϕ, otherwise we return FAILED. The loop in step 6 is almost
identical with its counterpart in svs-scheme; here we only need to treat the
case of both ±ε, which was not necessary there because of the simple bound
selection strategy of svs-scheme.

Theorem 66 (Structural Quantifier Elimination Scheme with Bound Selec-
tion). Algorithm svs-scheme-bs meets its specification.

Proof. Let a ∈ Rm be arbitrary parameter values. We need to prove that
R |= ψ(a) if and only if Φ(ϕ,a) 6= ∅.

If a satisfies the formula ψ returned by svs-scheme-bs, then the proof of
the fact that Φ(ϕ,a) 6= ∅ is essentially the same as in the proof of Theorem 60.
Therefore, we do not repeat it here.

Now assume that the satisfying set Φ(ϕ,a) is nonempty. In the following
we prove that R |= ψ(a), i.e., a satisfies at least one disjunct of ψ returned by
svs-scheme-bs. We proceed similarly as in the proof of Theorem 60.
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If E obtained in step 4 of svs-scheme is
{

(±∞, (), ∅)
}
, then we deduce

that a satisfies ϕ[x //±∞], which is the only disjunct of ψ in this case. In
the following we therefore assume that there exist PCs µ1 and µ2 ∈ P with
candidate solutions of types from {IP,WUB,SUB} and from {IP,WLB,SLB},
respectively.

Let π1, . . . , πn be the positions of Gauss prime constituents in the order as
found by PC-decomposition (cf. line 8 of that algorithm). Using Theorem 56
we obtain that ϕ←→ ϕπ1∨ϕ

{π1}
π2 ∨· · ·∨ϕ{π1,...,πn−1}

πn ∨ϕ{π1,...,πn}.We distinguish
two cases.

In the first case we have Φ
(
ϕ
{π1,...,πi−1}
πi ,a

)
6= ∅ for some i ∈ {1, . . . , n}.

Similarly as in the proof of Theorem 60, it follows by Lemma 58 and Lemma 59
that R |= γ ∧

(
ϕ
{π1,...,πi−1}
πi

)
[x // (f, S)](a) for some candidate solution (f, S)

originating from a candidate solution set for πi(ϕ). Since PC-bs-ILP assigns in
steps 4–6 the bound choice B of each Gauss prime constituent either to {l} or
to {u}, PC-to-TPs adds the structural test point

(
(f, S), πi, {π1, . . . , πi−1}

)
to

E. Therefore, γ∧
(
ϕ
{π1,...,πi−1}
πi

)
[x // (f, S)] is indeed a disjunct of ψ constructed

in step 6 of svs-scheme-bs satisfied by a.
In the second case we have Φ(ϕ{π1,...,πn},a) 6= ∅. For the sake of simplicity

we denote ϕ{π1,...,πn} by φ in the following. Let πn+1, . . . , πm, m ≥ n, be the
positions of all non-Gauss prime constituents, i.e., prime constituents of type
COGAUSS or AT, in P . Applying (m − n) times Theorem 60 on φ and its
positions πn+1, . . . , πm we obtain the following equivalence:

φ←→ φπn+1 ∨ φ{πn+1}
πn+2

∨ · · · ∨ φ{πn+1,...,πm−1}
πm ∨ φ{πn+1,...,πm}.

Since Φ(ϕ{π1,...,πn},a) 6= ∅ is nonempty, there are two cases to consider:

1. In the first case we have Φ
(
φ
{πn+1,...,πj−1}
πj ,a

)
6= ∅ for some index j ∈

{n+1, . . . ,m}. Since φ{πn+1,...,πj−1}
πj is an ∧-∨-combination of Tarski atoms

obtained from ϕ, and all atoms at or under positions {π1, . . . , πj−1} in ϕ
were replaced with “false,” the union of the candidate solution sets of PCs
at positions {πj , . . . , πm} is—by Proposition 15 and induction—a set of
candidate solutions for φ{πn+1,...,πj−1}

πj .
Let s be the solution of system C computed in step 2 of PC-bs-ILP.
Assume first that s(xlπj ) = 1, i.e., the PC at position πj was assigned
in step 3.4 of PC-bs-ILP a bound choice B such that l ∈ B. Observe
that φ{πn+1,...,πj−1}

πj consists of a subset of prime constituents at positions
{πj , . . . , πm} conjunctively associated with πj—those co-Gauss and atomic
prime constituents of ϕ that were not replaced with “false.” Therefore, the
fact that s is a solution of system C—constructed as in (3.1)—ensures that
l ∈ B holds for each prime constituent occurring in φ{πn+1,...,πj−1}

πj . Now
there are three cases to consider:

(a) The satisfying set Φ
(
φ
{πn+1,...,πj−1}
πj ,a

)
is bounded from below, and

contains its infimum β. Since φ{πn+1,...,πj−1}
πj is an ∧-∨-combination of

atomic formulas, there exists a prime constituent µ at position π such
that β is an isolated point or a weak lower bound of the satisfying set
Φ
(
π(φ{πn+1,...,πj−1}

πj ),a
)
. Therefore, there exists a candidate solution
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(f, S, τ) of the formula π(φ{πn+1,...,πj−1}
πj ) such that β = (f, S)〈a〉

and τ is “IP” or “WLB.” Recall that we have proven that l ∈ B
holds for the bound choice of µ, PC-to-TPs added structural test
point

(
(f, S), π, {π1, . . . , πn}

)
to E. At the same time, β = (f, S)〈a〉

implies that a satisfies a guard γ of (f, S), and Theorem 25 ensures
that a satisfies γ ∧

(
φ
{πn+1,...,πj−1}
πj

)
[x // (f, S)].

Using the same structural arguments as in the proof of Theorem 60
one can show that a also satisfies the formula

γ ∧∆
(
φ{πn+1,...,πj−1}
πj , {π}

)
[x // (f, S)].

Finally, using the fact that φ = ϕ{π1,...,πn} and that ϕ is an ∧-∨-
combination of atomic formulas we obtain that a satisfies the formula
γ ∧
(
ϕ
{π1,...,πn}
π

)
[x // (f, S)], which is a disjunct of the formula ψ con-

structed during an iteration of the loop in step 6 of svs-scheme-bs.

(b) The satisfying set Φ
(
φ
{πn+1,...,πj−1}
πj ,a

)
is bounded from below, but

it does not contain its infimum β. Proceeding similarly as in the
previous case, we obtain that there exists a prime constituent µ at
position π such that β is an excluded point or a strict lower bound of
the satisfying set Φ

(
π(φ{πn+1,...,πj−1}

πj ),a
)
. Therefore, there exists a

candidate solution (f, S, τ) of the formula π(φ{πn+1,...,πj−1}
πj ) such that

β = (f, S)〈a〉 and τ is equal to “EP” or “SLB.” Since we have shown
above that l ∈ B for the bound choice of µ, PC-to-TPs ensures that(
(f, S) + ε, π, {π1, . . . , πn}

)
∈ E. At the same time, β = (f, S)〈a〉

implies that a satisfies a guard γ of (f, S), and Theorem 35 (i) ensures
that a satisfies γ ∧

(
φ
{π1,...,πn}
πj

)
[x // (f, S) + ε].

Again, using the same structural arguments as in the proof of Theo-
rem 60 one can show that a also satisfies the formula

γ ∧∆
(
φ{πn+1,...,πj−1}
πj , {π}

)
[x // (f, S) + ε].

In analogy with the previous case, we then finally obtain that a
satisfies γ ∧

(
ϕ
{π1,...,πn}
π

)
[x // (f, S) + ε], which is a disjunct of the

formula ψ returned by svs-scheme-bs.

(c) The satisfying set Φ
(
φ
{πn+1,...,πj−1}
πj ,a

)
is unbounded from below. In

this case we deduce that R |= φ
{πn+1,...,πj−1}
πj [x //−∞](a), which im-

plies R |= ϕ[x //−∞](a). Since we assume that there exists a prime
constituent such that its bound choice B contains l, PC-to-TPs adds(
−∞, (), ∅

)
to E. Therefore, ϕ[x //−∞] is indeed a disjunct occurring

in ψ returned by svs-scheme-bs.

If the PC at position πj was assigned in PC-bs-ILP a bound choice B
such that u ∈ B, then the proof is done analogously using upper bounds,
so we omit it. In either case one can show that a satisfies ψ whenever
Φ
(
φ
{πn+1,...,πj−1}
πj ,a

)
6= ∅.

2. In the second case we have Φ
(
φ{πn+1,...,πm},a

)
6= ∅. Observe that the

formula φ{πn+1,...,πm} does not contain the variable x, so the assumption
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Φ
(
φ{πn+1,...,πm},a

)
6= ∅ implies that Φ

(
φ{πn+1,...,πm},a

)
= R. Thus, The-

orem 35 (ii) ensures that R |= φ{πn+1,...,πm}[x //±∞]. Since φ{πn+1,...,πm}

is obtained from ∧-∨-combination ϕ by replacing some of its atoms with
“false” we also have R |= ϕ[x //±∞]. At the same time, we assume that
there exists at least one prime constituent in P , and PC-bs-ILP guarantees
by solving system C that for each prime constituent we have either l ∈ B
or u ∈ B after step 3, so PC-to-TPs adds either

(
−∞, (), ∅

)
or
(
∞, (), ∅

)
to E. This finishes the proof of the fact that a satisfies ψ for the case
when Φ

(
φ{πn+1,...,πm},a

)
6= ∅.

To sum up, we have just proven that a satisfies the formula ψ returned by
svs-scheme-bs whenever the satisfying set Φ(ϕ{π1,...,πn},a) 6= ∅ is nonempty.
This finishes the proof of the theorem.

Similarly as with svs-scheme, it can happen here that the same test point is
generated more than once but with different positions and false replacement sets.
To prevent repetitive substitutions of such a test point one can use conflation:

Theorem 67 (Structural QE Scheme with Bound Selection and Conflation).
Replace line 4 of svs-scheme-bs with

E := TPs-conflate
(
PC-to-TPs(P,ϕ, x)

)
.

This modified structural quantifier elimination algorithm scheme with bound se-
lection and conflation is correct.

Proof sketch. The structure of the proof is the same as the structure of the proof
of Theorem 66. The only difference is in the proof of the fact that R |= ∃x(ϕ)(a)
implies R |= ψ(a) for ψ returned by svs-scheme-bs with conflation.

When we argue that there exists a structural test point (e, π,F) in the
elimination set computed by svs-scheme-bs such that substituting it into
some formula θFπ yields a formula satisfied by a we use here the correctness
of TPs-conflate to deduce that there exists a structural test point (e, π′,F ′)
in E such that π v π′ and F ′ ⊆ F . By E we denote here the set returned
by TPs-conflate

(
PC-to-TPs(P,ϕ, x)

)
. Proposition 53 then ensures that the

substitution of (e, π′,F ′) into θF ′π′ yields a formula satisfied by a as well. This
observation suffices to adjust the proof of Theorem 66 to prove this theorem.

Another similarity of svs-scheme-bs with svs-scheme is the possibility to
use Theorem 19 (ii) to exclude all candidate solutions of type “EP” and in-
clude “WLB” and “WUB” candidate solutions instead in procedure PC-to-TPs.
More specifically, replacing condition “τ ∈ {EP,SLB}” with condition “τ ∈
{WLB,SLB}” in step 4.1.2 and condition “τ ∈ {EP,SUB}” with condition
“τ ∈ {WUB,SUB}” in step 4.1.4 of PC-to-TPs and using this modification in
algorithm svs-scheme-bs (with conflation) yields a correct quantifier elimina-
tion algorithm scheme.

A difference between svs-scheme-bs and svs-scheme, in contrast, is that
the scheme with bound selection is not a generalization of vs-scheme from
Chapter 2 in the sense that a set of test points considered by svs-scheme-bs is a
subset of a set of test points considered by vs-scheme; we simply cannot guaran-
tee that when a structural test point (e, π,F) is substituted by svs-scheme-bs
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then e is substituted by vs-scheme as well. The reason for this is that algo-
rithm svs-scheme-bs possibly considers completely different elimination sets
thank to solving a 0-1 ILP system of the form (3.1). However, for solutions of
(3.1) that correspond to the global lower/upper bound selection this is indeed
the case, because the set of test points considered by svs-scheme-bs is then
identical with the set considered by svs-scheme.

Let us conclude the discussion of svs-scheme-bs with a few remarks on
computation of the DNF, complexity, and the practical applicability of our
bound selection algorithm.

Firstly, we would like to point to the following straightforward approach,
which actually triggered our interest in bound selection strategies: After com-
puting the DNF of ϕ and pushing ∃x inside the disjunction, one can make a
separate “global” decision in each of the DNF members separately. Indeed,
some parametric root descriptions will be considered more than once, but it is
possible that in this way we obtain very simple and small elimination sets for the
DNF members representing now completely independent real QE problems. The
drawback of this straightforward approach is that computing the DNF before
elimination of every single quantifier leads to an algorithm of non-elementary
worst-case complexity in cases when the number of quantifiers is not constant
in the length of the input formula.

Secondly, solving a 0-1 ILP instance despite its exponential worst-case com-
plexity does not change the doubly exponential worst-case complexity of real
quantifier elimination by virtual substitution. Therefore, our bound selection
strategy is so to say “for free” when the worst-case complexity is considered.

Thirdly, we expect our bound selection strategy to have a reasonable prac-
tical potential: Since the global bound selection strategy, first presented in [85],
was a giant step toward the practical applicability of real QE by virtual substi-
tution, we strongly believe that our bound selection strategy based on 0-1 ILP
should be a step forward from the practical point of view as well.

Finally, notice that our bound selection strategy is equivalent to the global
bound selection strategy when applied to a pure conjunction of atomic formulas.
At the same time, the elimination of a quantifier using virtual substitution
introduces richer Boolean structure. This makes our bound selection strategy
an appealing alternative to both the above-mentioned DNF computation as
well as the global bound selection strategy; especially when more than one
variable should be eliminated. The bound selection technique of this section
can thus be intuitively described as a heuristic that: “does hopefully something
useful even without computing the DNF,” generalizes the global bound selection
strategy, and does not increase the worst-case complexity of real QE by virtual
substitution.

3.5 Conclusions
In this chapter we have studied the potential of exploiting the Boolean structure
of an input formula ϕ to boost our quantifier elimination scheme of Chapter 2.
First we have introduced in Section 3.1 the notion of prime constituent decom-
position of ϕ. We continued with the notions of conjunctive associativity, DNF,
and the Marking technique in Section 3.2. The main result of this chapter is
the structural quantifier elimination scheme presented and proven correct in Sec-
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tion 3.3. Afterwards we discussed some extensions of the scheme like conflation
and bound selection. The latter was the subject of Section 3.4.

The main lesson learned from our investigations in this chapter can be
wrapped up as follows: It is helpful to analyze the Boolean structure during
quantifier elimination. The overhead caused by prime constituent decomposi-
tion computation, conflation, and bound selection is worth the effort. Without
bound selection we can even guarantee that we will never be worse as the ap-
proach of Chapter 2. With bound selection we possibly obtain simpler structural
elimination sets but cannot guarantee this.

The notion of prime constituent—which is a generalization of the notion
of atomic formula for the purposes of QE—allows us in some cases to reduce
the size of an elimination set, prevent failing, and take advantage of equational
constraints implied by subformulas of ϕ. The conjunctive associativity and con-
densing help us to obtain shorter resulting quantifier-free formulas. Moreover,
our bound selection algorithm based on 0-1 ILP has the potential to yield even
simpler structural elimination sets. Note also that all the techniques of this
chapter have been integrated quite naturally into the theoretical framework of
Chapter 2. On the practical side, this resulted in a robust framework that is
extremely easy and straightforward to implement.

Finally, we point to the fact that the techniques and notions of PC decom-
position, (co-)Gauss formulas, Marking, condensing, and bound selection are
independent of the real closed field domain we work with in this thesis. It is
an exciting future research direction to investigate their potential and possible
generalizations in other domains that admit quantifier elimination.



Chapter 4

Degree Shift

In the previous chapters we have developed a framework for virtual substitu-
tion. We have seen that various enhancements like clustering, structural virtual
substitution, and bound selection strategies nicely fit into the whole framework.
In this chapter we proceed further in this direction: We study and integrate an-
other technique called degree shift into our framework for virtual substitution.

Degree shift is a heuristic to reduce the degree of a quantified variable x.
The technique was first mentioned in [84] and later implemented and success-
fully applied in the area of automated theorem proving in geometry [30]. The
principal idea can be stated as follows: If a quantified variable x occurs in an
input formula ϕ exclusively with powers divisible by d > 1, then it is possible
to replace xd with x in ϕ to obtain an equivalent formula with strictly smaller
maximum degrees of x. Despite its applicability only in special cases, it became
clear that this technique is of great practical importance in the context of virtual
substitution for the following reasons:

1. If applicable, a degree shift decreases the maximum degree of a quantified
variable. Since virtual substitution comes with an upper degree bound on
its applicability, a degree shift can possibly transform a formula for which
virtual substitution fails (because of too high degrees of quantified vari-
ables) into an equivalent formula for which virtual substitution succeeds.

2. Even in cases when virtual substitution is directly applicable, it makes
sense to investigate whether ϕ allows for a degree shift beforehand. For
example, it can happen that a quadratic or a cubic variable would be
replaced by a linear one. This would be a twofold benefit: Firstly, a lower
degree of the quantified variable yields a shorter quantifier-free equivalent.
Secondly, the increase in the degrees of the other variables is in general
smaller when the degree of the eliminated variable is smaller. Decreasing
the degrees of the other variables in a quantifier-free equivalent can be
of crucial importance for subsequent quantifier eliminations by virtual
substitution.

3. Real-world quantifier elimination problems often exhibit structure that
allows for numerous applications of degree shifts during the quantifier
elimination process [30]. More importantly, without degree shifts some
problems would not be solvable by virtual substitution at all.

117
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To integrate degree shift into our framework we proceed in this chapter as
follows: We first describe the original approach, which decreases the degree of
x when the gcd of all occurrences of x in ϕ is greater than one [30]. Here
we refer to this approach as global degree shift. Building on our work [47], we
then show how to perform a global degree shift by virtual substitution as we
defined it in Chapter 2. We show that a global degree shift can be viewed as a
virtual substitution of a parametric root description, and we provide concrete
realizations of guard and vs-prd-at accordingly.

After this we study structural degree shift, which takes advantage of the
Boolean structure of the input formula ϕ. Unfortunately, our construction will
reveal that it is strongly related to the computation of the DNF (in the sense
of Section 3.2) of ϕ in the worst-case. Nevertheless, we discuss applicability
and various extensions of structural degree shift in practice. Along the way
we generalize the global degree shift and look closer at the connection between
decreasing the maximum degree of a variable in ϕ and the computation of the
DNF of ϕ.

4.1 Global Degree Shift
The idea of global degree shift first appeared in [84, Section 3]. Later it was
used as a heuristic to cope with higher than quadratic degrees in the context
of quantifier elimination for formulas originating from the area of automated
geometric theorem proving [30]. Since this technique is of general interest, and
we build on it in the following, we restate the original idea here:

As usual let ϕ be an ∧-∨-combination of Tarski atomic formulas. Let d > 0
be the gcd of all exponents of x in ϕ. We divide all exponents of x in ϕ by d
obtaining ϕ′. If d is odd, then we have ∃x(ϕ)←→ ∃x(ϕ′). If d is even, then we
have ∃x(ϕ)←→ ∃x(x ≥ 0 ∧ ϕ′). For d > 1 this reduces the degree of x in ϕ.

Notice that in order to obtain larger gcds and hence a better degree reduc-
tion, we may in advance “adjust” the degree k > 0 of x in an atomic formula of
the form cxk % 0, where x does not occur in c, using Proposition 22 as follows:
In equations and negated equations, i.e., % ∈ {=, 6=}, k may be equivalently
replaced with any k′ > 0. In ordering inequalities, i.e., % ∈ {<,≤,≥, >}, we
may choose any k′ > 0 of the same parity as k. During this adjustment one
should in general use k′ that is as small as possible to keep the degree of x in
ϕ′ low.

In [47, Section 5] we have shown how to realize global degree shift by virtual
substitution. This makes an integration of global degree shift into our framework
of Chapter 2 even easier. Next we therefore explain and prove the correctness
of the realization from [47], because we will build on it later.

Let f % 0 be an atomic formula such that f = ckx
k + · · · + c1x + c0, the

coefficients c0, . . . , ck are elements of Z[u], and % ∈ {=, 6=, <,≤,≥, >}. As
usual, u = u0, . . . , um−1 are the parameters. Let x̂ be a fresh variable, which
does not occur in f % 0. Let d > 0 be a natural number. We define the virtual
substitution [x // d

√
x̂] of d

√
x̂ for x within atomic formula f % 0 as follows:(

k∑
j=0

cjx
j % 0

)[
x //

d
√
x̂

]
=
(

k∑
j=0

cj x̂
b jdc % 0

)
. (4.1)



4.1. GLOBAL DEGREE SHIFT 119

The floor function is applied to make the definition complete; we will always
ensure that d | j for every j ∈ {0, . . . , k} when applying a degree shift by d

to atomic formula
∑k
j=0 cjx

j % 0. Note that the mapping [x // d
√
x̂] naturally

generalizes from atomic to arbitrary quantifier-free formulas.
Now we are ready to prove the semantic correctness of global degree shift

realized by virtual substitution as defined in (4.1):

Proposition 68 (Correctness of Global Degree Shift). Let ϕ(u, x) be an ∧-∨-
combination of Tarski atomic formulas. Let d ≥ 1 be a divisor of all exponents
of x occurring in ϕ. Let x̂ be a fresh variable that does not occur in ϕ. Then
we have:

(i) If d is even, then ∃x(ϕ)←→ ∃x̂
(
x̂ ≥ 0 ∧ ϕ[x // d

√
x̂]
)
.

(ii) If d is odd, then ∃x(ϕ)←→ ∃x̂
(
ϕ[x // d

√
x̂]
)
.

Proof. (i) Assume that d is even. Fix some real values a ∈ Rm for the
parameters u. We show that we have

R |=
(
∃x(ϕ)←→ ∃x̂

(
x̂ ≥ 0 ∧ ϕ[x // d

√
x̂]
))

(a).

First assume that there exists b ∈ R such that (a, b) satisfy ϕ. We show
that (a, bd) satisfy x̂ ≥ 0 ∧ ϕ[x // d

√
x̂]. Since d is even, bd indeed satisfies

x̂ ≥ 0. Now it suffices to prove the following: The atomic formula α̂ =∑k
j=0 cj x̂

b jdc % 0 at position π in ϕ[x // d
√
x̂]—obtained from the atomic

formula α =
∑k
j=0 cjx

j % 0 at position π in ϕ—is satisfied by (a, bd)
whenever (a, b) satisfy the atomic formula α. The fact that ϕ is an ∧-∨-
combination of atoms will then imply that (a, bd) satisfy ϕ[x // d

√
x̂].

Since we assume that d divides all exponents of x occurring in ϕ, we obtain
that cj = 0 for every j ∈ {0, . . . , k} such that d - j. Therefore, we have

k∑
j=0

cjx
j =

∑
0 ≤ j ≤ k
d | j

cjx
j and

k∑
j=0

cj x̂
b jdc =

∑
0 ≤ j ≤ k
d | j

cj x̂
j
d . (4.2)

This already ensures that whenever (a, b) satisfy the atomic formula α,
then (a, bd) satisfy the atomic formula α̂.
Now assume that there exists b ∈ R such that (a, b) satisfy the formula
x̂ ≥ 0∧ϕ[x // d

√
x̂]. We show that (a, d

√
b) satisfy ϕ. Since b satisfies x̂ ≥ 0,

d
√
b ∈ R. Similarly as above, it is sufficient to look at atomic formulas in

ϕ and their counterparts in ϕ[x // d
√
x̂]. Using equations (4.2) again, we

can show that whenever (a, b) satisfy
∑k
j=0 cj x̂

b jdc % 0—obtained from∑k
j=0 cjx

j % 0—then (a, d
√
b) satisfy

∑k
j=0 cjx

j % 0. Since we assume that
(a, b) satisfy x̂ ≥ 0∧ϕ[x // d

√
x̂], this ensures that (a, d

√
b) satisfy ϕ, so the

proof of (i) is finished.

(ii) The proof is similar to the proof of (i), so we omit it.

We illustrate the application of a global degree shift along with adjustments
that make it possibly on a simple example.
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Example 69. Consider the formula ∃x(ϕ):

∃x(u0x
2 > 0 ∧ x6 + u1x

3 + u0 < 0).

As such it does not allow for global degree shift, because the gcd of the degrees
of x in ϕ is 1. Observe, however, that ϕ is equivalent to

∃x(u0x
6 > 0 ∧ x6 + u1x

3 + u0 < 0).

This formula allows a degree shift with d = 3. Proposition 68 then guarantees
that this formula, and therefore also ϕ, is equivalent to

∃x̂(u0x̂
2 > 0 ∧ x̂2 + u1x̂+ u0 < 0).

Similarly, formula ϕ = u0x
14 ≥ 0 ∧ x8 + u1x

4 + u0 ≤ 0 allows for global
degree shift with d = 2. Equivalently adjusting the formula beforehand to
u0x

12 ≥ 0 ∧ x8 + u1x
4 + u0 ≤ 0 we see that a global degree shift with d = 4 is

possible, so ∃x(ϕ) is equivalent to ∃x̂(x̂ ≥ 0∧u0x̂
3 ≥ 0∧ x̂2 +u1x̂+u0 ≤ 0). 3

To integrate global degree shift into our framework of Chapter 2 we show how
to apply definitions and tools developed there to allow for objects like g

√
x̂ to be

substituted for x into a quantifier-free formula by means of virtual substitution
we have just defined and proven correct.

For this, we have to slightly generalize the framework by introducing shadow
quantifiers. Recall that we are considering the elimination of ∃x from the for-
mula ∃x

(
ϕ(u, x)

)
, where u are the parameters. As a first step we switch to

the equivalent problem ∃x̂∃x
(
ϕ(u, x)

)
, where the shadow variable x̂ does not

occur in {u0, . . . , um−1, x}, so x̂ does not occur in ϕ either. Proceeding in accor-
dance with the framework of Chapter 2 to obtain a quantifier-free equivalent of
∃x̂∃x(ϕ), the shadow quantifier ∃x̂ imposes a trivial elimination problem that
needs to be “solved” after eliminating ∃x from ∃x(ϕ).

Here notice that strictly following vs-scheme of Chapter 2 one would not
simply drop the quantifier ∃x̂ with the argument that the variable x̂ does not
occur in the quantifier-free equivalent of ∃x(ϕ). The scheme would yield a trivial
elimination set like E = {±∞}. Moreover, notice that using ∅ as an elimination
set E in vs-scheme always yields “false,” which is incorrect.

Observe that in contrast to all elimination sets studied so far we introduce
here a variable x̂ which was not present in ϕ before. That variable is bound by
shadow quantifier ∃x̂. Intuitively, for the elimination of ∃x̂∃x we switch from
one hard plus one trivial elimination step to two nontrivial elimination steps.
Semantically we view x̂ during the elimination of ∃x as a parameter.

The termination of quantifier elimination involving shadow quantifiers fol-
lows from the termination of the underlying quantifier elimination method plus
the fact that we will always use only finitely many shadow quantifiers for each
regular quantifier.

To keep the notation simple, we will in the sequel not formally introduce
shadow quantifiers for all quantifiers. Instead, we will always silently assume
their presence whenever we perform a degree shift.

Consider now the elimination of ∃x. Assume that we are in the situation
of Proposition 68, and d > 1 is the gcd of the degrees of x in ϕ. We use an
elimination set that depends on the parity of d: E =

{
d
√
x̂
}
, where d

√
x̂ is a
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global degree shift test point such that x̂ is a shadow variable for x and d > 1.
The symbol “ d

√
x̂” is merely a shorthand notation for the respective parametric

root description: If d is odd, then it stands for parametric root description

(f, S) =
(
xd − x̂, ((−1, 0, 1), 1)

)
with a guard true.

If d is even, then it stands for parametric root description

(f, S) =
(
xd − x̂,

{
((1, 0, 1), 1), ((1, 0,−1, 0, 1), 2)

})
with a guard x̂ ≥ 0.

Observe here that everything is semantically correct for f = xd− x̂. For any
value a ∈ Rm+1 of the parameters u and x̂ the following holds: f〈a〉 is of real
type (−1, 0, 1) when d is odd, and f〈a〉 is of real type (1, 0, 1) or (1, 0,−1, 0, 1) if
and only if R |= (x̂ ≥ 0)(a). Furthermore, Proposition 68 ensures the semantic
correctness of the virtual substitution of d

√
x̂ into an atomic formula g % 0

whenever d divides all the degrees of x in g. In such a case it is obvious that
(4.1) yields a formula with the following property: Whenever a satisfies a guard
of d
√
x̂, then a satisfies (g % 0)[x // d

√
x̂] if and only if the formula g % 0 holds

at (f, S)〈a〉, which is indeed a well-defined real number. Therefore, using the
above-mentioned guards along with (4.1) give us correct realizations of guard
and vs-prd-at, respectively, for d

√
x̂.

4.2 Structural Degree Shift
In this section we present an approach that performs a kind of structural degree
shift. Again, we aim at exploiting the Boolean structure of the input formula.
The approach presented here makes use of condensing and the Marking tech-
nique that we already applied in the context of structural virtual substitution
in Chapter 3. We generalize global degree shift by looking only at conjunc-
tively associated formulas during the gcd computation. The main idea of our
approach is best illustrated with an example.

Example 70. Consider a quantifier-free Tarski formula ϕ(a, b, x) in Figure 4.1.
Since the gcd of all exponents of x in ϕ is 1, no global degree shift for ϕ and
x is applicable. At the same time, observe that condensing ϕ w.r.t. positions
π3, π4, and π5, respectively, and adjusting the degrees of x in atomic formulas
bx 6= 0 and ax ≥ 0 when necessary we obtain:

ϕπ3 ←→ a(b− 1)x6 − b ≥ 0 ∧ bx3 6= 0 ∧ x3 + b ≥ 0,
ϕπ4 ←→ a(b− 1)x6 − b ≥ 0 ∧ bx2 6= 0 ∧ x2 − a ≤ 0,
ϕπ5 ←→ a(b− 1)x6 − b ≥ 0 ∧ bx3 6= 0 ∧ ax3 ≥ 0.

Realizing a global degree shift in these equivalents of ϕπ3 , ϕπ4 , and ϕπ5 by
d = 3, 2, and 3, respectively, we obtain:

∃x(ϕπ3) ←→ ∃x̂
(
a(b− 1)x̂2 − b ≥ 0 ∧ bx̂ 6= 0 ∧ x̂+ b ≥ 0

)
,

∃x(ϕπ4) ←→ ∃x̂
(
x̂ ≥ 0 ∧ a(b− 1)x̂3 − b ≥ 0 ∧ bx̂ 6= 0 ∧ x̂− a ≤ 0

)
,

∃x(ϕπ5) ←→ ∃x̂
(
a(b− 1)x̂2 − b ≥ 0 ∧ bx̂ 6= 0 ∧ ax̂ ≥ 0

)
.
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∧

ϕ

∨

ax ≥ 0
π5

x2 − a ≤ 0
π4

x3 + b ≥ 0
π3

bx 6= 0
π2

a(b− 1)x6 − b ≥ 0
π1

Figure 4.1: The structural tree for ϕ(a, b, x) from Example 70. Each node is
labeled with its position in the tree.

Applying the Marking technique (Theorem 56) on positions {π3, π4, π5} we
obtain that ϕ is equivalent to ϕπ3∨ϕπ4∨ϕπ5∨ϕ{π3,π4,π5}. Since the degree of x̂ is
at most three in the respective equivalents of ∃x(ϕπ3), ∃x(ϕπ4), and ∃x(ϕπ5), we
can use vs-scheme of Chapter 2 to successfully eliminate the quantifier ∃x̂ from
these equivalents. Finally, ϕ{π3,π4,π5} is equivalent to “false,” so the disjunction
of these equivalents yields a quantifier-free equivalent of ∃x(ϕ). 3

To take advantage of situations as the one shown in Example 70 we develop
in this section a technique called structural degree shift.

Similarly as with other structural test points in Chapter 3, we define here
a structural degree shift test point as a triple

(
d
√
x̂, π,F

)
, where d ≥ 1, π is a

position in ϕ, and F is a false replacement set. Consequently,
(
d
√
x̂, (), ∅

)
is

a structural degree shift test point representing the global degree shift by d.
Notice that when d = 1 the substitution of a test point

(
d
√
x̂, π,F

)
performs

only the renaming of x to x̂ in the formula ϕFπ . Therefore, we will always ensure
that d > 1 for structural degree shift test points we produce.

The algorithm s-shift-at below computes a set of structural degree shift
test points. Similarly as in Example 70, the algorithm condenses ϕ w.r.t. each
atomic position π in ϕ to determine where we could take advantage of a struc-
tural degree shift.

Observe that ∅ is returned when no structural degree shift w.r.t. an atomic
position is possible for ϕ. For formula ϕ from Example 70 s-shift-at(ϕ, x)
returns the set S =

{(
3
√
x, π3, ∅

)
,
(

2
√
x, π4, ∅

)
,
(

3
√
x, π5, ∅

)}
.

Algorithm s-shift-at(ϕ, x).
Input: an ∧-∨-combination of Tarski atomic formulas ϕ, a variable x.
Output: a set S of structural degree shift test points.

1. S := ∅

2. For each atomic position π ∈ Pos(ϕ) do

2.1. Compute the gcd d of all occurrences of x in the formula ϕπ, adjust-
ing the degree of x in atoms of the form cxk % 0 where necessary.

2.2. If d > 1, then
2.2.1. Add

(
d
√
x̂, π, ∅

)
to S.

3. Return S.



4.2. STRUCTURAL DEGREE SHIFT 123

Since s-shift-at computes the gcd of ϕπ for every atomic position π ∈
Pos(ϕ), the algorithm needs to call a routine computing the gcd of a pair of
integers at most O

(
|ϕ| log(|ϕ|)

)
times. Algorithm s-shift-at obviously meets

its specification. Next we prove that it is correct to use the algorithm as a
preprocessing step in the context of quantifier elimination:

Theorem 71. Let S =
{(

d1
√
x̂, π1, ∅

)
, . . . ,

(
dn
√
x̂, πn, ∅

)}
be the set of structural

degree shift test points returned by s-shift-at(ϕ, x). Then ∃x(ϕ) is equivalent
to

∃x̂
(
γ1 ∧ ϕπ1 [x // d1

√
x̂]
)
∨ · · · ∨ ∃x̂

(
γn ∧ ϕπn [x // dn

√
x̂]
)
∨ ∃x

(
ϕ{π1,...,πn}

)
, (4.3)

where γi is a guard of
(
di
√
x̂, πi, ∅

)
. We assume here that in ϕπi the same adjust-

ments as in step 2.1 of s-shift-at took place before substituting
(
di
√
x̂, πi, ∅

)
for every i ∈ {1, . . . , n}.

Proof. W.l.o.g. we assume that the atomic positions π1, . . . , πn are in the same
order as they were added to S in step 2.2.1 of s-shift-at. Since these posi-
tions are pairwise independent, applying Marking (Theorem 56) to {π1, . . . , πn}
guarantees that ϕ is equivalent to ϕπ1 ∨ ϕπ2 ∨ · · · ∨ ϕπn ∨ ϕ{π1,...,πn}. Observe
that di > 1 is—eventually after some degree adjustments of ϕπi ’s atomic subfor-
mulas of the form cxk % 0—the gcd of all x-exponents in ϕπi , so di divides the
degree of each x-occurrence in ϕπi as well. Therefore, Proposition 68 assures us
that ∃x(ϕπi) is equivalent to ∃x̂

(
γi ∧ ϕπi [x //

di
√
x̂]
)
, because γi is the formula

“true” when di is odd and the formula “x̂ ≥ 0” when di is even. This already
shows that ∃x(ϕ) is equivalent to the formula (4.3).

Observe that in practice one needs to store with a test point ( di
√
x̂, πi, ∅)

also the adjustments done in step 2.1 of s-shift-at, i.e., for each ϕπi ’s atomic
subformula of the form cxk % 0 one needs to remember k′ that equivalently
replaced k to ensure that di | k′. Only after this adjustment—which is done
tacitly in (4.3)—we can apply Proposition 68.

The maximum degree of x and x̂ in the formula (4.3) is guaranteed to be
strictly smaller than the maximum degree of x in ϕ whenever ϕ{π1,...,πn} does
not contain x. This is for example the case when ϕ{π1,...,πn} simplifies to “false.”

A natural possibility to integrate s-shift-at into svs-scheme is to use it
as a preprocessing before calling svs-scheme. This is done by the recursive
algorithm s-preproc-at below. The algorithm uses Marking and tries until
no degree shift is applicable anymore. In this way we try to take advantage of
structural shifts as much as possible. The correctness of s-preproc-at follows
directly from Theorem 71. Consequently, to obtain a quantifier-free equiva-
lent of ∃x(ϕ), one applies svs-scheme to each element of the set returned by
s-preproc-at(ϕ, x).

Algorithm s-preproc-at(ϕ, x).
Input: an ∧-∨-combination of atomic formulas ϕ, a variable x.
Output: a finite set of pairs

{
(ϕi, xi)

}
i
such that ϕi is an ∧-∨-combination of

Tarski atoms, xi is a variable, and ∃x(ϕ) is equivalent to
∨
i ∃xi(ϕi).

1. S := s-shift-at(ϕ, x)

2. If S = ∅, then
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2.1. Return {(ϕ, x)}.

3. T := ∅

4. Let S be
{(

d1
√
x̂, π1, ∅

)
, . . . ,

(
dn
√
x̂, πn, ∅

)}
. For i := 1 to n do

4.1. T := T ∪ s-preproc-at
(
γi ∧ ϕπi [x //

di
√
x̂], x̂

)
5. T := T ∪ s-preproc-at(ϕ{π1,...,πn}, x)

6. Return T .

Observe that repeated applications of subroutine s-shift-at within recur-
sive calls to s-preproc-at implicitly use more than one shadow variable for
x. It is correct to use one or even no shadow quantifiers at all. In this way
we would be carrying out only equivalent transformations on ∃x(ϕ). If one is
interested only in obtaining a quantifier-free equivalent of ∃x(ϕ), this is indeed
a correct approach. However, tracking the history of used shadow quantifiers
and the relation of shadow variables to the original “non-shadow” variable x
will be of crucial importance in Chapter 5. There we will consider existential
sentences and show how to compute concrete real values for each quantified
variable whenever an input sentence is satisfiable.

4.2.1 A Lower Bound for s-preproc-at

In the following we show how to construct for any h ∈ N \ {0} a Tarski formula
φ such that s-preproc-at(φ, x) eventually computes each disjunct of the DNF
of φ. In our construction we focus mainly on the degrees of x in the atomic
formulas of φ. We begin by constructing a “bad” degree formula δ. From
the bad degree formula we then construct a Tarski formula φ(a, b, x) such that
s-preproc-at(φ, x) eventually computes the DNF of φ.

For a quantifier-free Tarski formula ϕ we obtain its degree formula δ by
simply replacing each atomic formula in ϕ with the gcd of the degrees of x
occurring in it. For a degree formula we will use the terms “atomic subformula”
and “integer” interchangeably, because the atoms of degree formulas are just
non-negative integers. Therefore, At(δ) is a set of integers occurring in δ. For
a formula ϕ and its degree-formula δ we define gcd(ϕ) = gcd(δ) to be the gcd
of all degrees of x-occurrences in At(ϕ). These definitions are illustrated in
Figure 4.2. Notice that concepts like condensing, deletion, and Marking carry
over naturally to degree formulas, so we will directly use these along with their
established notations without explicitly defining them for degree formulas.

To begin our construction, we fix h ∈ N \ {0}. Before constructing δ we first
construct a degree formula δ of height 2h meeting the following specification:

1. Every inner node of δ has exactly two children.

2. An inner node of δ with an odd distance from the root is an ∨-node.

3. An inner node of δ with an even distance from the root is an ∧-node.

4. The leaf positions of δ are pairwise distinct odd primes. We denote the
prime at an atomic position α by pα.
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∧

ϕ

∨

bx3 ≤ 0a+ 7 = 0

∨

x4 − 5x2 + b > 0x2 − ax < 0

∧
δ

∨

30

∨

21

Figure 4.2: A Tarski formula ϕ along with its degree formula δ. Observe that
we have gcd(ϕ) = gcd(δ) = 1 and gcd

(
(2)(ϕ)

)
= gcd

(
(2)(δ)

)
= 3.

∧
δ

∨

115

∨

73

∧
δ

∨

231105

∨

385165

Figure 4.3: An example degree formula δ meeting specification 1–4 for h = 1
and the degree formula δ constructed from δ using our construction. For δ we
have: gcd(δ(1,1)) = 3, gcd(δ(1,2)) = 7, gcd(δ(2,1)) = 5, and gcd(δ(2,2)) = 11.

Using δ we then construct the degree formula δ of height 2h with the same
Boolean structure as δ as follows: Each atomic position α of δ is the product of
the prime at position α and primes at atomic positions of δ that are conjunctively
associated with α. An example of this construction for h = 1 is shown in
Figure 4.3. Next we prove a few properties of δ that will be used for proving
our lower bound later:

Lemma 72. Let h ∈ N\{0}. Let δ and δ be degree formulas of height 2h whose
construction has been described above. Let α be an atomic position of δ. Let π
be a position of δ such that π 6= α. Then π f α if and only if pα divides each
integer in At(π(δ)).

Proof. If π is an atomic position, then (i) is directly implied by the construction
of δ. Next we assume that π is an inner position.

First we assume that π f α. This means that every atomic position under
π is conjunctively associated with α as well. The construction of δ now ensures
that pα divides each integer in At(π(δ)).

To prove the converse assume that pα divides each integer in At(π(δ)). The
construction of δ ensures that each atomic position under π is conjunctively
associated with α, i.e., the lowest common ancestor of each atomic position
under π and α is an ∧-node. This ensures that π and α are independent and
that lca(π, α) is an ∧-node, i.e., π f α.

Lemma 73. Let h ∈ N\{0}. Let δ and δ be degree formulas of height 2h whose
construction has been described above. Then the following hold:

(i) If α is an atomic position of δ, then gcd(δα) = pα.

(ii) If π is an inner position of δ, then gcd(δπ) = 1.
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Proof. (i) Let α be an atomic position of δ. Observe that the formula δα =
Γ(δ, α) consists of the atomic formula at position α and other atomic
formulas, all of which are either conjunctively associated with α or were
replaced with 0 to obtain δα from δ. This ensures that pα divides each
integer in At(δα), i.e., gcd(δα) ≥ pα. Next we show that gcd(δα) ≤ pα.
We assume for a contradiction that gcd(δα) > pα.
Notice that each integer in At(δ) is square-free, and there exists a one-to-
one correspondence between prime factors of At(δ) and atomic positions of
δ. Therefore, the assumption gcd(δα) > pα together with the construction
of δ ensure that there exists an atomic position α′ such that α′ 6= α, and
pα′ divides each integer in At(δα).
Using Lemma 72 we obtain that α′ is conjunctively associated with or
equal to every atomic position—that was not replaced with 0—in δα. In
particular, α′fα, i.e., lca(α, α′) is an ∧-node. Recall that α′ is an atomic
position, the height of δ is even, and all ∧-nodes have an even distance from
the root of δ. These facts ensure that there exists at least one ∨-node lying
on the path from lca(α, α′) to α′. Now α′ is conjunctively associated with
no atomic position lying under this ∨-node in the branch not containing
α′. This contradicts the fact that α′ is conjunctively associated with every
atom of δα, because each atomic position in the branch not containing α′
is conjunctively associated with α—the lowest common ancestor of such a
position and α is namely lca(α, α′), which is an ∧-node. This finishes the
proof of (i).

(ii) Let π be an inner position of δ, and assume for a contradiction that
gcd(δπ) > 1. Similarly as in the proof of (i), it follows that there exists
an atomic position α such that pα divides each integer in At(δπ). Again,
Lemma 72 assures us that α is conjunctively associated with every atomic
position in δπ that was not replaced with 0. Using the same argument
as in the proof of (i) we obtain that there exists an atomic position α′

that was not replaced with 0 in δπ such that α′ 6= α, and lca(α′, π) is
an ∧-node. Consequently, we deduce that α is not conjunctively associ-
ated with any atom lying under an ∨-node in the branch not containing
α′. This contradicts the fact that that α is conjunctively associated with
every nonzero atom in δ(π). This shows that (ii) holds.

Lemma 74. Let h ∈ N \ {0}. Let δ and δ be degree formulas of height 2h
whose construction has been described above. Let α1, . . . , αn be n pairwise
conjunctively associated atomic positions in δ. Put δ0 = δ and for i ∈ {1, . . . , n}
construct δi from δi−1 as follows:

1. Replace in δi−1 each integer at all atomic positions independent from αi
and not conjunctively associated with αi with zero.

2. Divide each atomic position in the obtained formula by pαi .

Let α be an atomic position of a nonzero integer. If α ∈ {α1, . . . , αn}, then
gcd(Γ(δn, α)) = 1. If α /∈ {α1, . . . , αn}, then gcd(Γ(δn, α)) = pα.

Proof. To begin with, observe that when n = 0 the lemma follows directly from
Lemma 73; for every atomic position α in δ0 we have gcd(Γ(δ0, α)) = pα.
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Let n > 0 and assume that the lemma holds for n − 1. Notice that the
equivalency and gcd preserving transformation in Figure 4.4 transforms both
Tarski and degree formulas to semantically equivalent formulas with the same
gcd of degrees of all occurrences of a variable. Observe that the output DNF
computed by the-dnf

(
δn−1, ()

)
can be obtained from δn−1 by finitely many

applications of the transformation.
Using Theorem 55 we therefore obtain that for any atomic position β we

have: The formula Γ(δn−1, β) is equivalent to the disjunction of those disjuncts
returned by the-dnf

(
δn−1, ()

)
that contain the integer originating from posi-

tion β. Consequently, the gcd of Γ(δn−1, β) and the gcd of these “β-disjuncts”
are equal. The latter gcd can be computed by computing the gcd of all dis-
junction members after replacing each atomic formula independent from and
not conjunctively associated with β with zero, because then pβ divides each and
every atomic formula in the DNF of δn−1.

Let now β1, β2 be two distinct nonzero atomic positions in δn−1. We define

g1 = gcd
(
Γ(δn−1, β1)

)
,

g2 = gcd
(
Γ(δn−1, β2)

)
,

g1,2 = gcd
(
Γ(Γ(δn−1, β1), β2)

)
.

Using Theorem 55 again we obtain that g1,2 is equal to the gcd of those disjuncts
of the-dnf

(
δn−1, ()

)
that contain both β1 and β2.

Since the sets of DNF members containing β1 and β2, respectively, are obvi-
ously supersets of the set of DNF members containing both β1 and β2 we have
g1 | g1,2 and g2 | g1,2. To prove that g1,2 = g1g2 we next show that g1,2 | g1g2.

Assume for a contradiction that g1,2 - g1g2. The induction hypothesis along
with the construction of δ then imply that there exists β /∈ {β1, β2} such that pβ
divides g1,2. Recall that g1,2 is the gcd of those disjuncts of the-dnf

(
δn−1, ()

)
that contain both β1 and β2. The assumption g1,2 - g1g2 implies means that
each DNF member in the set defined as the set of DNF members containing
both β1 and β2 necessarily contains β /∈ {β1, β2}, which is obviously not the
case for our construction of δ; a contradiction.

The process of obtaining δn from δn−1 can be simulated on the DNF of
δn−1 by deleting the DNF members that do not contain αn, and dividing
each atomic formula in the remaining members by pαn . Observe that no αi
was replaced with zero during this process, because {α1, . . . , αn} are pair-
wise conjunctively associated. These facts ensure that gcd

(
Γ(δn−1, αn)

)
/pαn =

gcd(Γ(δn, αn)). The induction hypothesis guarantees that gcd
(
Γ(δn−1, αn)

)
=

pαn , so gcd
(
Γ(δn, αn)

)
= 1. This shows that gcd(Γ(δn, α)) = 1 for any nonzero

α ∈ {α1, . . . , αn}.
Finally, since we constructed δ using pairwise distinct primes, the induction

hypothesis together with the fact that we carried out a division by pαn ensures
that gcd(Γ(δn, α)) = pα for any nonzero α /∈ {α1, . . . , αn}. This finishes the
induction step and also the proof of the lemma.

With these properties of the degree formula δ at hand, we are now ready
to construct the Tarski formula φ(b, c, x) such that s-preproc-at eventually
constructs the DNF of φ. Given a positive integer h and the degree formula
δ constructed for h, we construct φ(b, c, x) as follows: Replace each atomic
position in δ containing integer d with Tarski atomic formula bxd + c ≥ 0. In a
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Figure 4.4: The equivalency and gcd preserving transformation used in the
proof of Lemma 74 applied to a position π in δn−1. The subformula on the left
is transformed to the subformula on the right. Obviously, both subformulas are
equivalent and have the same gcd of all occurrences of a variable.

sense we are doing an “inverse” step of the step shown in Figure 4.2, constructing
in a uniform way for each integer in δ a Tarski atomic formula.

A maximal set of pairwise conjunctively associated atomic positions A has
the property that any atomic position α /∈ A is not conjunctively associated with
at least one position from A. Next we prove a key lemma that uses Lemma 74
and asserts that each maximal pairwise conjunctively associated set of atomic
positions in φ yields a pair in the result of s-preproc-at(φ, x):

Lemma 75. Let h ∈ N \ {0}. Let δ, δ, and φ(b, c, x) be formulas of height
2h whose construction has been described above. Let {α1, . . . , αn} be a maximal
set of pairwise conjunctively associated atomic positions in φ. Then there exists
a set D =

{(
d1
√
x̂1, α1, ∅

)
, . . . ,

(
dn
√
x̂n, αn, ∅

)}
of n structural degree shift test

points, where di = pαi for every i ∈ {1, . . . , n}, such that the pair (φn, x̂n) is an
element of the set of pairs T returned by s-preproc-at(φ, x). Here we use the
notation:

φ0 = φ[x / x̂0],

φi = Γ(φi−1, αi)[x̂i−1 //
di
√
x̂i] for i ∈ {1, . . . , n}.

Proof. To prove the lemma it suffices to prove that
(
dj

√
x̂j , αj , ∅

)
is an element

of the set S computed by s-shift-at in the (j−1)-th level recursive invocation
of s-preproc-at for every j ∈ {1, . . . , n}, whereas the top-level invocation has
level zero.

To begin with, observe that Lemma 73 ensures that for the top-level invo-
cation of s-preproc-at (j = 1) we have: The set S in line 4 of s-preproc-at
is
{(

pα
√
x̂, α, ∅

)}
α
, where α runs through all atomic positions of φ0. There-

fore, in some iteration of the loop in step 4 the test point ( d1
√
x̂1, α1, ∅) will be

substituted into φ0, and the recursive call s-preproc-at(φ1, x̂1) will follow.
Assume now that j > 1 and we are in the (j − 1)-th level recursive call of

s-preproc-at that was invoked on formula φj−1 obtained by substituting the
structural degree shift test points

{(
d1
√
x̂1, α1, ∅

)
, . . . ,

(
dj−1
√
x̂j−1, αj−1, ∅

)}
into

φ0 one by one. We show that this recursive call computes a structural degree
shift test point

(
dj
√
x̂, αj , ∅

)
, where dj = pαj , and uses it to make another j-th

level recursive invocation of s-preproc-at. In the following we denote by δj−1
the degree formula for φj−1.
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Observe now that the way we constructed the degree formulas δ1, . . . , δj−1
from δ0 can be mimicked by operations of Lemma 74: One step corresponds to
one application of structural degree shift. Here notice that we use the fact that
pα1 , . . . , pαj−i are odd primes, so guard “x̂ ≥ 0” is not introduced by a structural
degree shift, and Lemma 74 can be used. Since αj is conjunctively associated
with each position in the set {α1, . . . , αj−1}, αj was not replaced with 0 in δj .
This ensures that it is a nonzero integer, because it was divided only by pα1 ,
. . . , pαj−1 . Therefore, using Lemma 74 we obtain that gcd(Γ(δj−1, αj)) = pαj ,
so the next invocation of s-preproc-at argument with φj will be definitely
made.

Finally, observe that since {α1, . . . , αn} is a maximal set of pairwise con-
junctively associated atomic positions in φ for the n-th level invocation we
have: Each atomic position in δn is either zero or one. This ensures that in
the recursive invocation of the level n no structural degree shift w.r.t. an atomic
position is possible, and s-preproc-at just returns {(φn, x̂n)}.

Theorem 76. Let h ∈ N \ {0}. Let δ, δ, and φ(b, c, x) be formulas whose con-
struction has been described above. Then algorithm s-preproc-at eventually
constructs each member of the DNF of φ.

Proof. Let C1, . . . , Cn be the DNF of φ returned by the-dnf(φ, ()). First
observe that each Cj = αj,1 ∧ · · · ∧αj,m consists of a set of m atoms at pairwise
conjunctively associated positions in φ (Theorem 55). Next we prove that αj,1,
. . . , αj,m constitute a maximal set of pairwise conjunctively associated positions
in φ, i.e., for every atomic position α /∈ {αj,1, . . . , αj,m} there exists at least one
element of {αj,1, . . . , αj,m} that is not conjunctively associated with α.

Assume the opposite and let α be an atomic position that is conjunctively
associated with all atomic formulas in Cj . This means that algorithm the-dnf
appends α—or potentially some other atomic formulas—to the conjunction Cj
during the recursive scanning of φ. This means that Cj is too short and as such
does not appear in the output of the-dnf(φ, ()); it could appear as a subformula
of some longer conjunction though. This contradicts our assumption that Cj is
a disjunct of the DNF of φ.

Since each Cj = αj,1 ∧ · · · ∧ αj,m consists of a maximal set of pairwise
conjunctively associated atomic positions, we can apply Lemma 75 to deduce
that Cj is contained in the set returned by s-preproc-at(φ, x). This finishes
the proof of the theorem.

To illustrate Lemma 75 and Theorem 76 on an example we run algorithm
s-preproc-at on formula φ with degree formula showed in Figure 4.3. In
Figure 4.5, Figure 4.6, and Figure 4.7 we sketch degree formulas obtained during
execution by successive structural degree shifts.

Observe that s-preproc-at constructs possibly even more formulas than
the DNF members, and that a DNF member is possibly constructed more than
once by the algorithm. The reason for this is different order of applications
of various structural degree shifts leading to the same resulting formula. By
Proposition 52 we immediately obtain that the running time of s-preproc-at
on φ of height 2h—containing 22h distinct atomic formulas—is at least 22h+1−2.

From the practical point of view, our lower bound is not an issue at all:
First, it is highly improbable that a formula of such a special form as φ occurs
naturally in practice. Second, already for h = 1 every degree of an x-occurrence
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∨
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∨
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Figure 4.5: Degree formulas obtained from δ in Figure 4.3 by one structural
degree shift. We condense w.r.t. positions (1, 1), (1, 2), (2, 1), and (2, 2), respec-
tively.
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Figure 4.6: Degree formulas obtained from δ1 and δ2 in Figure 4.5 by one
structural degree shift.

in φ is higher than hundred. As such this is behind the boundary of what is
tractable at present by real quantifier elimination methods. After the DNF
computation of φ, however, the maximum degree of x was 11, what is in our
case tractable, e.g., by an efficient implementation of CAD but unfortunately
not with a virtual substitution due to its degree restriction. Third, for higher
values of h, where the DNF computation is really a bottleneck, the degrees are
so high that no present method is able to cope with them. For example, for
h = 8 the 22h-th odd prime, i.e., the maximum degree of φ, is 821647. Finally,
one could simply bound the depth of recursion of s-preproc-at by a fixed
constant to avoid exponential blowups.

4.2.2 Degree Shift Trying All Positions
It is not hard to see that the structural degree shift presented above is not
really a generalization of the global degree shift of Section 4.1: It cannot even
perform a global degree shift, because it tries a structural degree shift exclusively
w.r.t. atomic positions. Here we improve on this and try to apply a degree shift
w.r.t. any position in an input formula. Moreover, we also take advantage of
incremental applications of the Marking technique. In this way we can replace
already considered positions that yielded a structural degree shift test point
with “false” and continue searching for other shift possibilities. The approach
presented here is a generalization of the global degree shift, i.e., everything
realizable by a global degree shift is realizable by our approach presented here.

Next we present algorithm s-shift that computes a set of structural degree
shift test points by looking at all positions in an input formula when trying a
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Figure 4.7: Degree formulas obtained from δ3 and δ4 in Figure 4.5 by one
structural degree shift.

structural degree shift.

Algorithm s-shift(ϕ, x).
Input: an ∧-∨-combination of Tarski atomic formulas ϕ, a variable x.
Output: a set S of structural degree shift test points.

1. For each π ∈ Pos(ϕ) do

1.1. Compute the gcd d of all occurrences of x in the formula ϕπ, adjust-
ing the degree of x in atoms of the form cxk % 0 where necessary.

1.2. Annotate position π of ϕ with d.

2. S := ∅

3. R := get-indep(ϕ, ())

4. Let R be
{

(π1, d1), . . . , (πn, dn)
}
. For i := 1 to n do

4.1. Add
(
di
√
x, πi, {π1, . . . , πi−1}

)
to S.

5. Return S.

Algorithm get-indep(ϕ, π).
Input: a Tarski formula ϕ along with an integer annotation for every position
in ϕ, a position π ∈ Pos(ϕ).
Output: a set

{
(π1, d1), . . . , (πn, dn)

}
such that positions π1, . . . , πn are pairwise

independent and di is the integer annotation of πi for every i ∈ {1, . . . , n}.

1. If the annotation d of π is greater than 1, then return {(π, d)}.

2. If π is a leaf, then return ∅.

3. For each child position π|1, . . . , π|k of π do

3.1. Ri := get-indep(ϕ, π|i)

4. Return
⋃k
i=1Ri.

Algorithm s-shift condenses ϕ w.r.t. each position π ∈ Pos(ϕ) to determine
where we could take advantage of a degree shift (step 1). Afterwards in step 3
an independent subset of the set of positions allowing a structural degree shift
is computed. Finally, structural degree shift test points are constructed from
this independent set of positions and returned in step 5.
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Observe that ∅ is returned if and only if no structural degree shift is possi-
ble for ϕ. When a global degree shift is possible, then s-shift returns a set
containing a single element

(
d
√
x̂, (), ∅

)
for some d > 1. For formula ϕ from

Example 70 s-shift(ϕ, x) returns the same set of structural degree shift test
points as s-shift-at, because a structural degree shift in ϕ is possible only
after condensing w.r.t. atomic positions.

Since s-shift computes the gcd of ϕπ for every position π ∈ Pos(ϕ), the
algorithm needs to call a routine computing the gcd of a pair of integers at most
O
(
|ϕ| log(|ϕ|)

)
times. Moreover, the subroutine get-indep runs in time O(|ϕ|).

To prove the correctness of s-shift we use Theorem 56 and Proposition 68:

Theorem 77. Algorithms s-shift and get-indep meet their respective spec-
ifications. Let S =

{(
d1
√
x̂, π1,F1

)
, . . . ,

(
dn
√
x̂, πn,Fn

)}
be the set returned by

s-shift(ϕ, x). Then ∃x(ϕ) is equivalent to

∃x̂
(
γ1 ∧ ϕF1

π1
[x // d1

√
x̂]
)
∨ · · · ∨ ∃x̂

(
γn ∧ ϕFnπn [x // dn

√
x̂]
)
∨ ∃x

(
ϕ{π1,...,πn}

)
, (4.4)

where γi is a guard of
(
di
√
x̂, πi,Fi

)
and we assume that in ϕFiπi the same ad-

justments as in step 1.1 of s-shift were done for every i ∈ {1, . . . , n}.

Proof. To prove the theorem one proceeds similarly as in the proof of Theo-
rem 71. The only difference is that instead of using Marking (Theorem 56) once
we apply it here incrementally n times to deduce that ϕ is equivalent to the
formula ϕπ1 ∨ ϕ

{π1}
π2 ∨ · · · ∨ ϕ{π1,...,πn−1}

πn ∨ ϕ{π1,...,πn}.

Here we point to a rather subtle fact. The n incremental applications of
Marking in Theorem 77 suggest that an incremental computation of degree shift
test points is correct: Whenever π with gcd d > 1 of ϕπ is found in step 1.1, we
produce a structural degree shift test point from π and d, replace ϕ with ϕ{π},
and restart the loop. This could potentially lead to discovery of more shifting
possibilities, because fewer atomic formulas would be used for computing the
gcds in step 1.1.

Integrating algorithm s-shift into s-preproc-at is straightforward: Just
call s-shift instead of s-shift-at and use the returned degree shift test points.
In the following we refer to this algorithm as s-preproc.

On the theoretical side we strongly believe that s-preproc still exhibits
a “bad” behavior and computes the DNF of φ, whose construction has been
presented above. We even observed this behavior when running our prototype
implementation of s-preproc on φ for h ∈ {1, 2, 3, 4, 5, 6}. Observe, however,
that we cannot use the key Lemma 74 to model the behavior of s-preproc. The
reason is that s-preproc replaces atomic formulas at positions {π1, . . . , πi−1}
with “false” when substituting a degree shift test point

(
di
√
x̂i, πi, {π1, . . . , πi−1}

)
into φi−1. A formal proof of a lower bound result of s-preproc is therefore left
for future work.

On the practical side, we expect s-preproc to perform much better than
s-preproc-at, because it uses simpler formulas by using Marking incrementally.
This prevents many symmetries, and possibly allows for more structural degree
shifts. Similarly as with s-preproc-at, in the majority of practical applications
one does not spot so high degrees of the variables in such a specific structure that
a computation of the DNF would be triggered. Moreover, any degree lowering
can be decisive for the applicability of virtual substitution to other quantified
variables, so any improvement in comparison with the global degree shift counts.
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4.3 Degree Shift and DNF
The main reason for using a degree shift heuristic is its potential to quickly
reduce the maximum degree of a quantified variable in practice. In general,
one is interested in lowering the degree of x in ϕ(u, x) without raising the total
number of variables, i.e., one would like to construct an equivalent ϕ′(u, x̂) with
a strictly lower degree of x̂ possibly without raising the degrees of u. It seems
that it is at least as hard as quantifier elimination to decide whether there exists
such an equivalent ϕ′.

In this section we restrict ourselves to formulas that allow for lowering the
maximum degree of x in each member of their DNF, i.e., for every Ci of the
DNF C1 ∨ · · · ∨ Cn we can lower the maximum degree of x in Ci by applying
a global degree shift. Natural questions to ask are: Is it possible to detect
efficiently that a formula has this property? Is it possible to take advantage of
this property without computing the DNF of the formula?

The main result of this section is a lower bound result that states that one
cannot hope for an improvement, and that the DNF computation is unavoidable
in the worst-case. Similarly as in Section 4.2 we show how to construct for any
h ∈ N \ {0} a Tarski formula φ such that the naive approach to compute the
DNF of φ and to apply a degree shift in each DNF member is the best one can
hope for. We begin our exposition with the following rather technical lemma:

Lemma 78. Let m, k ∈ N \ {0} be such that m > k. Then there exists a set
A = {a1, . . . , am} of positive integers such that the following hold:

(i) For every subset B = {b1, . . . , bk} ⊆ A we have gcd(B) > 1.

(ii) For every subset C = {c1, . . . , ck+1} ⊆ A we have gcd(C) = 1.

Proof. Let l =
(
m
k

)
and let p1, . . . , pl be l distinct primes. Let g be arbitrary

bijective mapping from the set of all k-element subsets of {1, . . . ,m} into the
set {p1, . . . , pl}. For i ∈ {1, . . . ,m} we define

ai =
∏

K ⊆ {1, . . . ,m}
|K| = k

i ∈ K

g(K),

i.e., each ai is the product of those primes among p1, . . . , pl that are images of
k-element subsets of {1, . . . ,m} containing i. In the following we prove that (i)
and (ii) hold for A = {a1, . . . , am}:

(i) Let B = {b1, . . . , bk} ⊆ A. There exists a suitable permutation π of the
index set {1, . . . ,m} such that bi = aπ(i) for every i ∈ {1, . . . , k}. Let p
be the prime g

(
{π(1), . . . , π(k)}

)
. The definition of aπ(i) now ensures that

p divides aπ(i) for every i ∈ {1, . . . , k}, because π(i) ∈ {π(1), . . . , π(k)}.
Since bi = aπ(i) we deduce that p divides bi for every i ∈ {1, . . . , k}.
Moreover, there is no prime q 6= p that divides bi for every i ∈ {1, . . . , k}.
Assume the opposite. Then q = g(K) for some k-element subset of
{1, . . . ,m} such that K 6= {π(1), . . . , π(k)}. Therefore, there exists j ∈
{1, . . . , k} such that π(j) /∈ K. By the definition of aπ(j) we obtain that
q - bj = aπ(j); a contradiction. This proves that gcd(B) = p, so in partic-
ular (i) holds.
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(ii) Let C = {c1, . . . , ck, ck+1} ⊆ A. Similarly as in the proof of (i), we deduce
that there exists a suitable permutation π of the index set {1, . . . ,m}
such that ci = aπ(i) for every i ∈ {1, . . . , k}, and gcd

(
{c1, . . . , ck}

)
= p for

the prime p = g
(
{π(1), . . . , π(k)}

)
. Observe that the prime p does not

divide ck+1, because π(k+ 1) /∈ {π(1), . . . , π(k)}. This already shows that
gcd(C) = 1, i.e., (ii) holds.

Corollary 79. Let m, k ∈ N \ {0} be such that m > k. Then there exists a set
A = {a1, . . . , am} of positive odd integers such that the following hold:

(i) Let j ∈ {1, . . . , k}. For any B ⊆ A s.t. |B| = j we have gcd(B) > 1.

(ii) Let j ∈ {k + 1, . . . ,m}. For any C ⊆ A s.t. |C| = j we have gcd(C) = 1.

Proof. It suffices to take l =
(
m
k

)
odd primes in the proof of Lemma 78. The

corollary then follows directly from the fact that the gcd of a set of integers
divides the gcd of each of its subsets.

Now we are ready to construct a Tarski formula φ(b, c, x) for every h ∈ N\{0}
such that it is “bad” in the following sense: First, it allows for a degree shift in
each of its DNF disjuncts. Second, to take advantage of this property to lower
the total degree of x in φ, one has to compute the whole DNF C1, . . . , Cn of φ.

The idea here is to construct φ(b, c, x) whose atomic formulas have x-degrees
from the set A from Corollary 79, whereas the number m will be the number
of all atomic formulas in the formula, and the number k will be the number of
atomic formulas occurring in every DNF disjunct.

Let h be a positive integer. Corollary 79 guarantees that there exists a set
A = {a1, . . . , am} of m = 22h odd natural numbers such that every k-element
subset, k = 2h, of A has a nontrivial gcd, but every subset of A with at least
k + 1 elements has gcd 1. For every i ∈ {1, . . . ,m} we define the atomic
formula αi of x-degree ai to be bxai + c ≥ 0. Here b and c are the parameters.
We construct formula φ as a binary tree of height 2h, which meets the following
specification:

1. Every inner node has exactly two children.

2. An inner node with an odd distance from the root is an ∨-node.

3. An inner node with an even distance from the root is an ∧-node.

4. The leaves of φ are pairwise distinct atomic formulas αi.

Theorem 80. Let h ∈ N\{0}. Let φ(b, c, x) be the quantifier-free Tarski formula
whose construction we have just described above. Then the following hold:

(i) Each member Ci of the DNF of φ consists of exactly 2h distinct atomic
formulas of the formula φ.

(ii) Each member Ci of the DNF of φ allows for a global degree shift with some
prime number p.

(iii) Let ψ be an arbitrary ∧-∨-combination of any l > 2h distinct atomic
formulas from φ. Then no global degree shift for x is applicable to ψ.

(iv) The formula ∃x(φ) is equivalent neither with “true” nor with “false.”
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Proof. (i) Since φ meets specification 1–3 of Proposition 52, (i) follows di-
rectly from that proposition.

(ii) The construction of φ ensures that each member Ci of the DNF of φ is
a conjunction of the form

∧
j bx

aj + c ≥ 0, where j runs through some
2h-element subset of the set {1, . . . , 22h}. Corollary 79 ensures that a
global degree shift is applicable to the formula

∧
j bx

aj + c ≥ 0, because
the gcd of the degrees aj occurring in this formula is some odd prime
number p. Therefore, Proposition 68 ensures that ∃x(Ci) is equivalent to
∃x̂
(
Ci[x // p

√
x̂]
)
.

(iii) Observe that any ∧-∨-combination ψ containing at least 2h + 1 distinct
atomic formulas from φ contains formulas with at least 2h+1 pairwise dis-
tinct powers of x. These powers are members of the set A, so Corollary 79
guarantees that their gcd is one, i.e., no global degree shift is possible for
the formula ψ.

(iv) The construction of φ ensures that each member Ci of the DNF of φ is
a conjunction of the form

∧
j bx

aj + c ≥ 0. Since every aj ∈ A is odd,
it is easy to see that ∃x(Ci) is equivalent to b 6= 0 ∨ c ≥ 0. Therefore,
the whole formula ∃x(φ)—that is equivalent to

∨
i ∃x(Ci)—is equivalent

to b 6= 0 ∨ c ≥ 0 as well.

We conclude this section by presenting two concepts that relate to DNF,
shift, and detection of shifting possibilities in an input formula.

Partial DNF

The d-partial DNF of a formula ϕ is the formula obtained by computing the
DNF of ϕ using algorithm the-dnf while treating subformulas with depth d as
atomic formulas. Consequently, the disjuncts obtained from the-dnf are not
necessarily conjunctions of atomic formulas anymore. After computing the d-
partial DNF of ϕ one can try a degree shift in each of the obtained disjuncts.
This is made explicit in algorithm s-preproc-d-DNF:

Algorithm s-preproc-d-DNF(ϕ, x, d).
Input: an ∧-∨-combination of Tarski atoms ϕ, a variable x, a d ∈ N \ {0}.
Output: a finite set of pairs

{
(ϕi, xi)

}
such that ϕi is an ∧-∨-combination of

Tarski atoms, xi is a variable, and ∃x(ϕ) is equivalent to
∨
i ∃xi(ϕi).

1. Compute the d-partial DNF C1, . . . , Cn by calling the-dnf(ϕ, ()), while
treating the subformulas of ϕ with depth d as atomic formulas.

2. T := ∅

3. For i := 1 to n do

3.1. Compute Ti by calling s-preproc(Ci, x) while bounding the recur-
sion depth of s-preproc by one.

3.2. T := T ∪ Ti

4. Return T .
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Notice that Theorem 80 implies also the following: The computation of the
d-partial DNF of ϕ in s-preproc-d-DNF cannot guarantee that one will be able
to lower the degree of x whenever each disjunct of the DNF of the formula ϕ
allows this.

Conjunctive Associativity Degree Graph

As the final concept of this section we present the conjunctive associativity degree
graph for ϕ. Its main potential is in detecting the possibly of degree shift in each
DNF member of ϕ. It will turn out that a degree shift is possible in each DNF
member of ϕ if and only if every maximal clique of the conjunctive associativity
degree graph for ϕ has a nontrivial gcd. We first specify the properties of the
graph and show how to compute it for ϕ:

Algorithm conj-deg-graph(ϕ, x, π).
Input: an ∧-∨-combination of Tarski atoms ϕ, a variable x, a position π ∈
Pos(ϕ).
Output: a graph (V,E), where V is the set of atomic positions of π(ϕ) containing
x and (π1, π2) ∈ E if and only if π1 is conjunctively associated with π2 in π(ϕ).
Moreover, each π ∈ V is annotated by one of the following: (1) a positive
integer, (2) the symbol “∗∗,” (3) the symbol “∗0,” or (4) the symbol “∗1.”

1. If π(ϕ) is an atomic formula not containing x, then return (∅, ∅).

2. If π(ϕ) is an atomic formula containing x, then

2.1. V := {π}

2.2. If π(ϕ) is an atomic formula of the form cxk % 0, % ∈ {=, 6=}, then
annotate π with “∗∗.”

2.3. If π(ϕ) is an atomic formula of the form cxk % 0, % ∈ {<,≤,≥, >},
then annotate π with “∗l,” where l ∈ {0, 1} and l = k mod 2.

2.4. Otherwise, annotate π with the gcd of degrees of all x-occurrences
in π(ϕ).

2.5. Return (V, ∅).

3. For each child position π|1, . . . , π|n of π do

3.1. (Vi, Ei) := conj-deg-graph(ϕ, x, π|i)

4. If the top-level operator of π(ϕ) is “∧,” then

4.1. Return (V,E), where V =
⋃n
i=1 Vi and

E =
n⋃
i=1

Ei ∪
{

(πi, πj) ∈ Vi × Vj | i 6= j
}
.

5. If the top-level operator of π(ϕ) is “∨,” then

5.1. Return
(⋃n

i=1 Vi,
⋃n
i=1Ei

)
.
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The algorithm is straightforward and it is easy to see that it is correct. Its
running time depends on the size of the graph (V,E), i.e., it is at most quadratic
in the number of atomic formulas in ϕ. Note that the three starred annotations
encode cases when an atomic formula allows for a degree adjustment before
gcd computation with the semantic that any, even, or odd degree can be taken,
respectively.

Notice that condensing ϕ w.r.t. a position π containing x corresponds to
deleting the vertices not connected with π. Similarly, a deletion of an atomic
position π corresponds to deletion of the vertex π.

Although similar, note that the conjunctive associativity degree graph for ϕ
computed by conj-deg-graph

(
ϕ, x, ()

)
is different from the graph G(ϕ, P ) of

Chapter 3, which we considered for a PC decomposition P mainly for bound
selection strategies.

Proposition 81. Let (V,E) = conj-deg-graph
(
ϕ, x, ()

)
. Let C1 ∨ · · · ∨Cn be

the DNF of ϕ computed by the-dnf(ϕ, ()). Then there exists a member Ci =
α1 ∧ · · · ∧αk of the DNF of ϕ containing x if and only if there exists a maximal
set of pairwise conjunctively associated atomic positions π1, . . . , πl ∈ Pos(ϕ)
such that l ≤ k and αi = πi(ϕ) for every i ∈ {1, . . . , l}.

Proof. First notice that the k − l formulas possibly contained in Ci are those
that do not contain x. The key idea of the proof has been presented already in
the proof of Theorem 76, so we sketch here only the main points.

If π1, . . . , πl constitute a maximal pairwise conjunctively associated set of
atomic positions, then from the execution of the-dnf one obtains the existence
of a DNF member containing π1(ϕ), . . . , πl(ϕ).

For the converse, observe that whenever there exists a member Ci = α1 ∧
· · · ∧ αk there has to exist a maximal clique of (V,E). If this was not the case,
we could add another position α to the set α1 ∧ · · · ∧ αk, and deduce that Ci is
not a member of the DNF at all; a contradiction.

Observe that a maximal set of pairwise conjunctively associated atomic po-
sitions corresponds to a maximal clique of the conjunctive associativity degree
graph (V,E) by definition. Therefore, Proposition 81 guarantees that we can
detect whether a degree shift in every member of the DNF of ϕ is possible as
follows: First, compute (V,E) = conj-deg-graph

(
ϕ, x, ()

)
. Then enumerate

all maximal cliques of (V,E) one by one, using the annotations of V to com-
pute for each clique whether its gcd is greater than one. For maximal clique
enumeration one could use for example algorithms [11, 2].

4.4 Conclusions
In this chapter we have presented a technique used to lower the degree of a
quantified variable in ϕ called degree shift. First we have introduced the global
degree shift and shown how to realize it by virtual substitution of Chapter 2
using shadow quantifiers. Then we have shown how to take advantage of the
Boolean structure of ϕ when shifting. It has turned out that this structural
degree shift approach leads to the computation of the DNF of ϕ in the worst-
case. Afterwards, we have presented a generalization of the global degree shift
that tries to apply a structural degree shift w.r.t. any position in ϕ. Furthermore,
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we have shown that the following is an inherent problem when one wants to lower
the maximum degree of a variable in ϕ using shift: The computation of the DNF
of ϕ is unfortunately unavoidable in the worst-case. We have also discussed the
d-partial DNF and its potential for yielding more degree shifts. Finally, we
have introduced the conjunctive associativity degree graph for ϕ for detecting
whether a degree shift in each member of the DNF of ϕ is possible.

Here we mention that the lower bound result presented in Section 4.3 is
similar to the situation with bound selection in Chapter 3: We can try some
heuristics, but to obtain the best possible degree shifting strategy we have to
compute the DNF of an input formula. Doing this for every variable leads to an
algorithm of non-elementary worst-case complexity. Nevertheless, in practice
one should definitely try to take advantage of structural degree shift as much as
possible, i.e., use the recursive approach trying all positions of Subsection 4.2.2
as a preprocessing step before svs-scheme. Even a partial lowering of the degree
of a quantified variable in ϕ could allow us to continue with virtual substitution
for other quantified variables afterwards. To this end we mention that it would
be interesting to have other sufficient conditions that could help us to quickly
detect the possibility of structural degree shifts in practice. We leave derivation
of such conditions for future work.



Chapter 5

Nonstandard and Standard
Answers for Virtual
Substitution

In this chapter we restrict ourselves to existential problems. Extended quan-
tifier elimination generalizes the concept of regular quantifier elimination by
providing in addition answers, which are descriptions of possible assignments
for the quantified variables [82, 85]. Implementations of extended quantifier
elimination [27, 29, 26] for the quadratic case via virtual term substitution [81,
83, 84, 51, 31] have been successfully applied to various problems in science and
engineering [75, 74, 30, 67, 68, 69, 86, 72, 73, 71, 80, 36, 34, 35].

The answers produced by these implementations can include nonstandard
symbols (infinitesimals and infinities), which are hard to interpret in practice.
This has been explicitly criticized in the literature, e.g., in [20]. In our recent
work [47] we have introduced a post-processing procedure to convert, for fixed
values of parameters, all answers into standard real numbers when the degree
of eliminated variables is at most two. We have furthermore demonstrated the
successful application of an implementation of our method within the computer
logic system Redlog [27] to a number of extended quantifier elimination problems
from the scientific literature.

In addition to results presented elsewhere [47], we generalize here the post-
processing procedure beyond the quadratic case. We adjust the procedure to
our framework presented in the previous chapters.

We begin with Section 5.1 where we make ourselves familiar with the concept
of extended quantifier elimination. In Section 5.2 we then present a concrete
realization of this concept by virtual substitution and vs-scheme. For this we
show how to apply our framework in presence of several quantifiers, and how to
extract answers during the quantifier elimination process. Moreover, we discuss
what information is provided by virtual substitution and the principal differ-
ences between our framework and quadratic extended quantifier elimination by
virtual substitution considered in [47].

Section 5.3 is the technical core of this chapter; we describe and prove there
the correctness of our post-processing procedure for removing nonstandard sym-
bols from answers. We also show two example runs of the procedure and discuss
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those example runs in detail. In Section 5.4 we make clear how to generalize
our method to work in the structural setting of Chapter 3 and how to cope
with possible degree shifts during quantifier elimination. Moreover, we discuss
heuristics that can potentially improve the quality of obtained answers by find-
ing parametric root descriptions representing rationals or even integers.

In Section 5.5, which is taken from our work [47], we revisit examples from
the scientific literature where the application of quadratic extended quantifier
elimination to various problems from planning, modeling, science, and engi-
neering had yielded nonstandard answers. In all cases we can efficiently fix
all nonstandard symbols to standard values using our implementation of the
method for the quadratic case. This significantly improves the quality of the
results from a practical point of view.

5.1 Extended Quantifier Elimination
For our purposes here, we restrict ourselves to existential problems

ϑ(u) = ∃xn . . . ∃x1
(
ϕ(u, x1, . . . , xn)

)
,

where, as usual, u = (u0, . . . , um−1) are the parameters, and ϕ is an ∧-∨-
combination of Tarski atomic formulas. We also agree that all right hand sides
of the atomic formulas are zero, so the left hand sides of the atomic formulas
are polynomials from Z[u, x1, . . . , xn].

Extended quantifier elimination applied to ϑ yields an extended quantifier
elimination result (EQR) as follows: β1(u) x1 = e1,1 . . . xn = e1,n

...
...

. . .
...

βk(u) x1 = ek,1 . . . xn = ek,n

 .
The conditions βi(u) are quantifier-free Tarski formulas such that R |= ϑ ←→∨k
i=1 βi. In other words,

∨k
i=1 βi is a regular quantifier elimination result for ϑ,

and extended quantifier elimination generalizes regular quantifier elimination.
The answers ei = (ei,1, . . . , ei,n) are tuples of test points introduced in Chapter 2
meeting the following specification: Each ei,j , where i ∈ {1, . . . , k} and j ∈
{1, . . . , n}, is of one of the following forms:

(a) a parametric root description (f, S), where f ∈ Z[u, xi+1, . . . , xn][xi],

(b) a parametric root description plus/minus a positive infinitesimal (f, S)±ε,
where (f, S) is as specified in (a),

(c) the nonstandard symbol ±∞.

For any parameter values a ∈ Rm, if ϑ(a) holds, then at least one βi(a) holds,
and so does ϕ(a, ei〈a〉), where ei〈a〉 =

(
ei,1〈a〉, . . . , ei,n〈a〉

)
. We agree that

“false” never occurs as a condition βi. If ϑ itself is equivalent to “false,” we
possibly obtain the empty EQR [ ].

Here observe that the condition “ϕ(a, ei〈a〉) holds” in our definition of an
EQR is quite vague, because the interpretation of ei,j〈a〉 is not clear at all:
What do ∞〈a〉 or

(
(f, S)− ε

)
〈a〉 mean? In which structure should we interpret
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these symbols? Is it possible that ei,j〈a〉 is undefined when ei,j = (f, S)? The
main result of this chapter is that one can deal with something like this by
avoiding answers of the forms (b) and (c) for fixed parameters, so that the
obvious problem of interpreting something like ∞〈a〉 does not pop up at all.
We will do this by replacing all answers of the forms (b) and (c) by computing
answers of the form (a). Moreover, each ei,j〈a〉 will be defined whenever βi holds
by our construction. Before delving into this topic let us look at an example
where things are straightforward and easy to interpret.

Example 82. Consider the input formula ϑ = ∃x∃y(ϕ), where

ϕ(u, y, x) = uy + 3x2 + 4x− u ≤ 0 ∧ x− u ≥ 0 ∧ u− y ≥ 0.

A possible extended quantifier elimination result for ϑ is given by
u 6= 0 ∧ 4u+ 3 ≥ 0 y =

(
y + 3u+ 3,

(1, 1)

)
x =

(
x− u,
(1, 1)

)
u ≤ 0 ∧
3u2 − 3u− 4 ≤ 0

y =
(
y − u,
(1, 1)

)
x =

(
3x2 + 4x+ u2 − u,
{(1, 1), (2, 1)}

)
 .

From this extended quantifier elimination result we can derive a regular quan-
tifier elimination result

(u 6= 0 ∧ 4u+ 3 ≥ 0) ∨ (u ≤ 0 ∧ 3u2 − 3u− 4 ≤ 0),

which can be simplified to u ≥ 0 ∨ 3u2 − 3u − 4 ≤ 0. Hence, ϑ holds if and
only if the value a ∈ R of the parameter u is greater or equal to α, where
α ≈ −0.758306 is the first real root of the polynomial 3u2 − 3u− 4 ∈ Z[u].

In the extended quantifier elimination result, the first row covers the case
that −0.75 ≤ a and a 6= 0, while the second row covers α ≤ a ≤ 0. Let us now
consider some particular values a of the parameter u:

• For a = 2, the condition β1 in the first row holds, and the corresponding
answers

(
e1,1〈2〉, e1,2〈2〉

)
yield y = −9 and x = 2, because −9 is the first

real root of (y + 3u + 3)〈2〉 and 2 is the first real root of (x − u)〈2〉.
Indeed, we also have ϕ

(
2, e1,1〈2〉, e1,2〈2〉

)
. The condition β2 in the second

row, in contrast, does not hold for this parameter value. Considering the
polynomial

(
3x2 +4x+u2−u

)
〈2〉 = 3x2 +4x+2, which is of real type (1),

we see that e2,2〈2〉 =
(
3x2 + 4x + u2 − u, {(1, 1), (1, 2)}

)
〈2〉 is undefined.

Therefore, ϕ
(
2, e2,1〈2〉, e2,2〈2〉

)
does not make sense either.

• For α < a = −0.7525 < −0.75, the condition β2 in the second row holds,
and the corresponding answers yield y = −0.7525 and x =

√
6997−800

1200 .
Again, these three values satisfy ϕ, i.e., ϕ

(
a, e2,1〈a〉, e2,2〈a〉

)
. Now the

condition in the first row does not hold. If we plug a = −0.7525 into the
corresponding answers anyway, then we obtain y = e1,1〈a〉 = −0.7425 and
x = e1,2〈a〉 = −0.7525, which do not satisfy ϕ.

• For a = −0.5, both conditions hold and yield two different sets of values
satisfying ϕ, namely y = e1,1〈a〉 = −1.5, x = e1,2〈a〉 − 0.5 and y =
e2,1〈a〉 = −0.5, x = e2,2〈a〉 =

√
7−4
6 , respectively.
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• For a = 0 only the condition β2 in the second row holds, but the answers
in the first row happen to work as well. This shows that the conditions βi
are sufficient but not necessary for the answers to be valid. 3

Although we are focusing on the reals here, it is noteworthy that extended
quantifier elimination is an established concept, which exists also for a vari-
ety of other important algebraic theories including the linear theory of valued
fields [70], Presburger Arithmetic [49], initial Boolean algebras [63, 77], and
certain term algebras [76].

5.2 Extended Quantifier Elimination by Virtual
Substitution

Here we show how to realize extended quantifier elimination by our virtual sub-
stitution from Chapter 2. There we studied the elimination of a single existen-
tial quantifier. Therefore, we begin by introducing some notation and discussing
what happens when one considers more existential quantifiers.

Given ϑ(u) = ∃x
(
ϕ(u, x)

)
, we have shown in Chapter 2 how to compute a

finite elimination set E of test points e such that

∃x(ϕ)←→
∨
e∈E

γe ∧ ϕ[x // e]. (5.1)

In the elimination set E the e are test points substituted for the quantified
variable x via our virtual substitution [x // e]. We have shown how to construct
elimination sets so that each e is of one of the following three forms: (1) a
parametric root description (f, S), (2) a parametric root description plus/minus
a positive infinitesimal (f, S) ± ε, or (3) the nonstandard symbol ±∞. We
have shown how to realize our virtual substitution [x // e] by vs-at for target
atomic formulas and that [x // e] naturally generalizes to arbitrary quantifier-free
formulas. Each γe in (5.1) is a guard of e returned by guard(e, x).

Equation (5.1) formally describes regular quantifier elimination of one quan-
tifier ∃x from ϑ that is implicitly realized by vs-scheme. For the elimination of
several quantifiers, one assumes without loss of generality that the formula ϑ is
prenex and processes the prenex quantifier block from the inside to the outside.

Using this formalism and building on our framework for virtual substitution,
we now derive an extended quantifier elimination procedure for several existen-
tial quantifiers via virtual substitution. Given ∃xn . . . ∃x1

(
ϕ(u, x1, . . . , xn)

)
, our

intended result is a scheme β1(u) x1 = e1,1 . . . xn = e1,n
...

...
. . .

...
βk(u) x1 = ek,1 . . . xn = ek,n


as defined in Section 5.1. We successively apply (5.1) to variables x1, . . . , xn
using elimination sets E1, . . . , En, respectively, to obtain β1, . . . , βk as follows:∨

en∈En

· · ·
∨

e1∈E1

γen ∧
(
· · · ∧

(
γe1 ∧ ϕ[x1 // e1]

)
· · ·
)
[xn // en]︸ ︷︷ ︸

βi(u)

. (5.2)
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The index i of βi describes one choice of test points (e1, . . . , en) from the Carte-
sian product of elimination sets E1 × · · · × En. In practice, the βi obtained
this way undergo sophisticated simplification methods such as those described
in [28]. Recall from the previous section that βi which become “false” are ig-
nored. Moreover, we assume that the elimination of a variable xj is done by a
successful application of vs-scheme, while regarding all the remaining variables
different from xj as parameters.

Looking carefully at vs-scheme, the fact that all except of a current to-be
eliminated variable are regarded as parameters immediately implies that each
ej occurring in (e1, . . . , en) ∈ E1 × · · · × En is of one of the following forms:

(a) a parametric root description (fj , Sj), where fj ∈ Z[u, xj+1, . . . , xn][xj ],

(b) a parametric root description plus/minus a positive infinitesimal (fj , Sj)±
ε, where (fj , Sj) is as specified in (a),

(c) the nonstandard symbol ±∞.

To obtain an EQR as defined in Section 5.1, it is therefore sufficient to merely
collect those ei ∈ E1 × · · · × En that yield βi different from “false.”

Here we point to a difference between our EQR and EQR computed by
means of the quadratic virtual substitution-based extended quantifier elimina-
tion [82, 85, 47]. To obtain an answer, the quadratic approach first exploits the
quadratic virtual substitution in the same way as we do: It also remembers the
elimination terms that are generated during regular quantifier elimination and
pairs them with the quantifier-free formulas βi to obtain one row in an EQR.
Afterwards, however, the quadratic approach is able to straightforwardly per-
form a back-substitution on the obtained elimination terms, because all of the
elimination terms live in an extension L′ of the Tarski language L containing in
addition function symbols √ and −1. The back-substitution therefore leads to
a diagonalized EQR where each answer ei,j contains only the parameters. It is
obvious that something like this cannot be generalized beyond degree four.

Example 83. Consider the formula ϑ = ∃x∃y(ϕ), where ϕ is the quantifier-free
formula y2 − x + 1 = 0 ∧ x2 − u = 0. Using the quadratic virtual substitution
method based on root expressions one obtains the following EQR for ϑ:[

u− 1 ≥ 0 y =
√
x− 1 x =

√
u
]
.

Carrying out the back-substitution on terms
√
x− 1 and

√
u, one obtains the

following diagonalized EQR:[
u− 1 ≥ 0 y =

√√
u− 1 x =

√
u

]
,

where the answers for both y and x depend only on the parameter u. 3

In our context a diagonalized EQR is an EQR such that an answer for a
variable xj depends exclusively on the parameters u, i.e., for any parametric
root description (fj , Sj) in a diagonalized EQR we have fj ∈ Z[u][xj ] instead
of fj ∈ Z[u, xj+1, . . . , xn][xj ].

Since our framework does not use any extensions of the Tarski language L to
represent test points, it is not clear how to perform something similar to back-
substitution on our test points. To eliminate a variable xj+1 from an answer for
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xj , we essentially want to get a polynomial describing the common roots of the
answers for xj+1 and xj . This suggests to use the resultant for diagonalizing an
EQR. The following example shows that this does not always work.

Example 84. Consider the formula ϑ = ∃x∃y
(
ϕ(u, v, y, x)

)
, where ϕ is

yx2 + yv + 1 = 0 ∧ yx2 + x+ u = 0 ∧ 3x+ u− 1 < 0.

One row of an EQR obtained for ϑ by our approach extracting answers from
our virtual substitution scheme using (5.2) is:[

β y = ey x = ex
]
.

The condition β(u, v) is

u2 − 2u− 3v + 1 > 0 ∧ (v 6= 0 ∨ u− 1 > 0) ∧
4u4v − 12u3v + 8u2v2 + 12u2v + 20uv2 − 4uv + 4v3 − v2 ≤ 0,

and the two test points ey and ex in the EQR are parametric root descriptions:

ey =
(
fy,
{

(−1, 1), (1, 1)
})
, where fy = y(x2 + v) + 1,

ex =
(
fx,
{

(2, 1), (3, 1), (4, 1)
})
, where fx = x3 + x2(u− 1) + xv + uv.

Since fy contains x, the EQR is obviously not diagonalized. To diagonalize
this EQR, one has to eliminate x from fy while keeping the properties of an
EQR. A natural candidate for doing this is the resultant ry ∈ Z[u, v][y],

ry = u2y − 2uvy2 − 2uy + v2y3 + 2vy2 + vy + y + 1

of fy and fx w.r.t. x. To compute a parametric root description (ry, Sy), one
has to determine also root specifications Sy that specify which of the roots of ry
should be taken for concrete values of the parameters. In the following we prove
that this is not possible by showing that for one choices of the parameters the
root specification (4, 3) should be included in Sy and for other choices it should
not be included.

Fixing u = 0 and v = −20, the EQR specializes to:[
true y =

(
y(x2 − 20) + 1,
{(−1, 1), (1, 1)}

)
x =

(
x3 − x2 − 20x,

{(2, 1), (3, 1), (4, 1)}

) ]
,

which yields values y = 1
4 and x = −4. Indeed, these four values satisfy ϕ. The

resultant ry specializes for u = 0 and v = −20 to 400y3 − 40y2 − 19y + 1. This
polynomial is of real 3-type 4 and its third real root is 1

4 , which together with
values for u, v, and x satisfies ϕ as we have shown above. This implies that the
root specification (4, 3) should be definitely included in Sy.

On the other hand, for u = 0 and v = 3
16 satisfying β the specialized EQR

yields values y = − 16
3 and x = 0. Observe that the resultant ry specializes for

u = 0 and v = 3
16 to

9y3 + 96y2 + 304y + 256
256 .
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This univariate polynomial has three roots, namely − 16
3 < −4 < − 4

3 . Therefore,
(4, 3) should not be included in Sy in this case; (4, 1) should be included instead.
Recall that it is not possible to include both root specifications in Sy. The
reasons for this have been discussed below Theorem 25.

This shows that the computation of the resultant cannot be used to diago-
nalize an EQR. It seems that more information is needed to describe the values
of y in terms of the parameters. 3

The structure of the answers in an EQR resembles the structure of formulas
containing indexed root expressions as introduced by Brown [12] or cylindrical
algebraic formulas considered by Strzeboński [64, 65]. However, as we have
shown in Example 84, an answer polynomial fxj+1 ∈ Z[u, xj+2, . . . , xn][xj+1]
over a region described as the zero set of another answer polynomial fxj ∈
Z[u, xj+1, . . . , xn][xj ] is not necessarily delineable.

Now we leave the diagonalization of EQRs, and discuss EQRs containing
nonstandard symbols that are possibly introduced by vs-scheme. Looking at
vs-scheme we discover that test points of the form (f, S)±ε are taken for “EP,”
“SLB,” and “SUB” candidate solutions. These candidate solutions themselves
are returned by at-cs mostly for atomic formulas containing a strict relation
“ 6=,” “<,” or “>.” The reason for this is that for such strict atomic formulas
one needs a point from inside of its corresponding satisfying interval. This is
what we ensure by our candidate solution sets introduced in Section 2.2.

To prevent the use of nonstandard expressions, Weispfenning [81] used in
early versions of linear virtual substitution methods arithmetic means 1

2 (zi+zj)
for all pairs of terms (zi, zj) generated by strict atomic formulas. However, the
size of the elimination set then grows quadratically in the number of atomic
formulas. Furthermore, one cannot apply any bound selection strategy. In
experiments with early implementations this turned out to be critical for the
practical performance of the method [17, 51]. For the quadratic case, there is
an even more fundamental obstacle: Arithmetic means of two root expressions

1
2

(
a1 ± b1

√
c1

d1
+
a1 ± b2

√
c2

d2

)
are themselves not root expression of the form a±b

√
c

d , so that Weispfenning’s [84]
virtual substitution rules for the quadratic case are not applicable at all. From
a theoretical point of view, it easily follows from the existence of real quanti-
fier elimination that suitable virtual substitutions for arithmetic means of root
expressions exist. However, the practical applicability of this approach is quite
questionable so that it has never been explicitly studied.

For our framework developed in thesis the above arguments apply as well:
quadratic size of the elimination sets, impossibility to use bound selection strate-
gies, arithmetic means of parametric root descriptions demanding special virtual
substitution, and complications with structural elimination sets; all of these are
reasons against avoiding the nonstandard symbols. Therefore, we simply use
nonstandard symbols right from the start in all of our framework and show how
to substitute them à la [84].

Let us return to our approach that possibly introduces nonstandard sym-
bols. For the application of the elimination set as described in (5.1)—realized
implicitly by vs-scheme—and thus for the computation of the βi with extended
quantifier elimination, both ±ε and ±∞ are transparently translated into Tarski
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formulas via virtual substitution of Section 2.3. At the same time, these symbols
remain present in answers, as illustrated in the following example:

Example 85. On input of ϑ = ∃x∃y
(
ϕ(u, y, x)

)
, where ϕ is

uy + 3x2 < 0 ∧ x− y > 0 ∧ y − u > 0

we obtain an EQR containing nonstandard symbols:[
u < 0 y =

(
yu+ 3x2, (−1, 1)

)
+ ε1 x =

(
3x+ u, (1, 1)

)
− ε2

]
.

The condition u < 0 was obtained by successively substituting the answers e1,1
and e1,2 for y and x, respectively.

Here we mention that the extended quantifier elimination by quadratic vir-
tual substitution performs back-substitution of terms on the side of the answers
to obtain a diagonalized EQR. During back-substitution nonstandard symbols
cannot be removed but are propagated along the way. In the final result a
single answer can even contain several of such nonstandard symbols. Using
the quadratic extended quantifier elimination for the formula ϑ we obtain a
diagonalized EQR by using back-substitution:[

u < 0 y = −3ε1 − 3ε2 − u
3 x = −3ε1 − u

3

]
.

To distinguish infinitesimals introduced at different stages of the elimination we
indexed them accordingly. 3

Given answers containing nonstandard symbols, it follows from the seman-
tics of virtual substitution and from the correctness of vs-scheme that for any
fixed values a of the parameters u satisfying a condition βi there exist real
interpretations εi,j〈a〉 and ∞i,j〈a〉 of all nonstandard symbols εi,j and ∞i,j oc-
curring in the i-th row of an EQR such that ϕ

(
a, ei〈a〉

)
whenever a satisfy βi.

Here we use the notation
(
(fi,j , Si,j)± εi,j

)
〈a〉 = (fi,j , Si,j)〈a〉 ± εi,j〈a〉.

For Example 85 this means that for any value a ∈ R of the parameter u
satisfying the condition u < 0 there are positive real choices ε̃1 = ε1〈a〉 and
ε̃2 = ε2〈a〉 so that the answers (a, e1,1〈a〉+ ε̃1, e1,2〈a〉 − ε̃2) satisfy ϕ.

It is noteworthy that the values for the nonstandard symbols have to be
chosen differently in general, because they were introduced at different stages of
the elimination, so semantically there is no connection between them. This will
become clear in the next section where we constructively find an interpretation
for one nonstandard symbol at a time.

Until recently users of extended quadratic quantifier elimination were left
alone with nonstandard EQRs and the corresponding difficulties. Nevertheless,
there has been a considerable record of applications of extended quadratic quan-
tifier elimination in the literature. In [47] we have shown how to find standard
answers for the quadratic case. In the next section we generalize that approach
beyond the quadratic case to our framework in this thesis. Afterwards in Sec-
tion 5.5 we are going to discuss some of the applications of our approach.

We conclude this section with the important observation that for unfixed
parameters it is not possible in general to determine suitable real choices for
nonstandard symbols:
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Proposition 86 (No Constant Standard Answers for Unfixed Parameters).
Consider the formula ϑ(u) = ∃x(u − x < 0 ∧ x − 1 < 0) and the nonstandard
extended quantifier elimination result[

u− 1 < 0 x =
(
x− 1, (1, 1)

)
− ε1

]
.

There is no standard choice ε̃1 ∈ R such that[
u− 1 < 0 x =

(
(x+ ε̃1)− 1, (1, 1)

) ]
is an extended quantifier elimination result for ϑ as well.

Proof. Assume for a contradiction that ε̃1 ∈ R is a suitable choice. Denote by ẽ
the parametric root description

(
(x + ε̃1) − 1, (1, 1)

)
. Since ẽ does not contain

the parameter u, we have ẽ〈a〉 for any parameter value a ∈ R.
By definition of extended quantifier elimination it follows for all values a ∈

]−∞, 1[ of the parameter u that (a, ẽ〈a〉) satisfy ϕ, so in particular ẽ〈a〉 < 1.
Since ẽ〈a〉 = 1− ε̃1, we obtain ε̃1 > 0. Therefore, for parameter value b = 1− ε̃1

2
we have b ∈ ]−∞, 1[, so (b, ẽ〈b〉) satisfy ϕ; in particular b < ẽ〈b〉. Since ε̃1 is
positive and b = 1− ε̃1

2 , we obtain 1− ε̃1 < b. This means that ẽ〈b〉 < b, because
1− ε̃1 = ẽ〈b〉. Putting this all together we obtain b < b; a contradiction.

5.3 Elimination of Nonstandard Symbols from
Answers

Given an extended quantifier elimination result and prescribed values for all
parameters, our goal is to compute answers containing only parametric root
descriptions, i.e., containing no nonstandard symbols ±ε or ±∞. For instance,
considering the formula from Example 85 and fixing the value a = −2 for the
parameter u we are going to obtain[

true y =
(
16y − 7, (1, 1)

)
x =

(
2x− 1, (1, 1)

) ]
.

From the point-of-view of our method, it makes no difference whether the
parameters are fixed after extended quantifier elimination or in advance. For the
sake of a concise description, we are thus going to consider w.l.o.g. existential
decision problems from now on. Recall that if the regular quantifier elimination
result is “false,” then the extended quantifier elimination result is [ ], i.e.,
empty. If the result is “true,” then we assume for simplicity that the extended
quantifier elimination result contains only one row, like[

true x1 = e1,1 . . . xn = e1,n
]
. (5.3)

Our method is going to directly use an EQR containing the test points com-
puted by our quantifier elimination framework to remove nonstandard symbols.
It will turn out that the sole fact that the collected test points constitute an
EQR gives us enough information to compute a standard EQR yielding standard
values for the existentially quantified variables when the parameters are fixed.
We begin with two preparatory lemmas on the semantics of virtual substitution.
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Lemma 87. Consider a quantifier-free Tarski formula ϕ(x1, . . . , xn). Assume
that for each i ∈ {2, . . . , n} we have a parametric root description ẽi = (fi, Si)
such that fi ∈ Z[xi+1, . . . , xn][xi]. Assume furthermore that R |= ϕ −→ γi for a
guard γi of (fi, Si). For each i ∈ {2, . . . , n − 1} let αi = ẽi〈αi+1, . . . , αn〉, and
let αn = ẽn〈〉. Then{
α ∈ R | R |= ϕ[x2 // ẽ2] . . . [xn // ẽn](α)

}
=
{
α ∈ R | R |= ϕ(α, α2, . . . , αn)

}
.

Proof. The lemma follows directly from the semantics of virtual substitution
formulated and proven correct in Theorem 25.

Lemma 88 (Commutation of Independent Virtual Substitutions). Consider a
quantifier-free Tarski formula ϕ(x1, . . . , xn). Let e1 = (f1, S1), with f1 ∈ Z[x1]
such that a guard of (f1, S1) is equivalent to “true,” i.e., e1〈〉 is defined. Further-
more, let i ∈ {2, . . . , n}, let ei = (fi, Si) be such that fi ∈ Z[xi+1, . . . , xn][xi],
and let γi(xi+1, . . . , xn) be a quantifier-free formula that implies a guard of ei.
Then

R |= (γi ∧ ϕ)[xi // ei][x1 // e1]←→ (γi ∧ ϕ)[x1 // e1][xi // ei].

Proof. We need to prove that

R |= (γi ∧ ϕ)[xi // ei][x1 // e1]←→ (γi ∧ ϕ)[x1 // e1][xi // ei]

holds for any values a2, . . . , ai−1, ai+1, . . . , an ∈ R of {x1, . . . , xn} \ {x1, xi}.
Assume first that R |= (γi ∧ ϕ)[xi // ei][x1 // e1](a2, . . . , ai−1, ai+1, . . . , an).

Theorem 25 (regarding {x1, . . . , xn}\{x1} as parameters) then guarantees that

R |= (γi ∧ ϕ)[xi // ei]
(
e1〈〉, a2, . . . , ai−1, ai+1, . . . , an

)
,

because a guard of (f1, S1) is equivalent to “true,” and f1 ∈ Z[x1]. Since γi
contains only variables xi+1, . . . , xn, we obtain that (ai+1, . . . , an) satisfy γi, so
from our assumption follows that a guard of ei holds as well. Therefore, using
Theorem 25 (regarding {x1, . . . , xn} \ {xi} as parameters) we deduce

R |= (γi ∧ ϕ)
(
e1〈〉, a2, . . . , ai−1, ei〈ai+1, . . . , an〉, ai+1, . . . , an

)
.

Again, Theorem 25 (regarding {x1, . . . , xn} \ {x1} as parameters) yields

R |= (γi ∧ ϕ)[x1 // e1]
(
a2, . . . , ai−1, ei〈ai+1, . . . , an〉, ai+1, . . . , an

)
.

Finally, Theorem 25 (regarding {x1, . . . , xn} \ {xi} as parameters) ensures that

R |= (γi ∧ ϕ)[x1 // e1][xi // ei]
(
a2, . . . , ai−1, ai+1, . . . , an

)
.

The proof of the converse implication is similar, so we omit it.

Now we are ready to prove the main result of this chapter:

Theorem 89 (Computation of Standard Answers). Consider a closed Tarski
formula ϑ = ∃xn . . . ∃x1

(
ϕ(x1, . . . , xn)

)
. Assume that[

true x1 = e1 . . . xn = en
]

is an EQR for ϑ such that each ei is of one of the following forms:
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(a) a parametric root description (fi, Si), where fi ∈ Z[xi+1, . . . , xn][xi],

(b) a parametric root description plus/minus a positive infinitesimal (fi, Si)±
ε, where (fi, Si) is as specified in (a),

(c) the nonstandard symbol ±∞.

Then we can compute parametric root descriptions ẽ1, . . . , ẽn meeting the spec-
ification (a) above such that the following is an EQR for ϑ as well:[

true x1 = ẽ1 . . . xn = ẽn
]
.

Proof. For the sake of the proof, we are going to show that in addition to
the required ẽ1, . . . , ẽn and we can also compute real algebraic numbers α1,
. . . , αn such that each αi = ẽi〈αi+1, . . . , αn〉. We represent these real algebraic
numbers as pairs of univariate defining polynomials and open isolating intervals
with rational endpoints. Throughout the whole prove we use the convention
that γi denotes a guard of the test point ei and γ̃i denotes a guard of the test
point ẽi for any i ∈ {1, . . . , n}.

Given k ∈ {1, . . . , n}, it suffices to show that from[
true x1 = e1 . . . xk = ek xk+1 = ẽk+1 . . . xn = ẽn

]
and αk+1, . . . , αn we can compute suitable ẽk and αk. Define

ϕk(xk, . . . , xn) = (γk−1 ∧ · · · ∧ γ1 ∧ ϕ)[x1 // e1] . . . [xk−1 // ek−1],
ϕk+1(xk+1, . . . , xn) = (γk ∧ ϕk)[xk // ek],

and observe that[
true xk = ek xk+1 = ẽk+1 . . . xn = ẽn

]
(5.4)

and [
true xk+1 = ẽk+1 . . . xn = ẽn

]
(5.5)

are EQRs for ∃xn . . . ∃xk(ϕk) and ∃xn . . . ∃xk+1(ϕk+1), respectively. On the
basis of these definitions it is sufficient for our proof to compute suitable ẽk and
αk such that [

true xk = ẽk xk+1 = ẽk+1 . . . xn = ẽn
]

is an EQR for ∃xn . . . ∃xk(ϕk) as well. We define furthermore

ξ(xk, . . . , xn) = γ̃n ∧ · · · ∧ γ̃k+1 ∧ ϕk,
ξ′(xk) = ξ[xk+1 // ẽk+1] . . . [xn // ẽn].

Lemma 87 applied to the quantifier-free formula ξ(xk, . . . , xn), the root expres-
sions ẽk+1, . . . , ẽn, and the real algebraic numbers αk+1, . . . , αn yields

{α ∈ R | R |= ξ′(α) } = {α ∈ R | R |= ξ(α, αk+1, . . . , αn) }. (5.6)

We distinguish three cases depending on the type of ek:
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(a) We have ek = (fk, Sk), and γk is a guard of ek. We set ẽk = ek and γ̃k =
γk. Since (5.5) is an EQR for the formula ∃xn . . . ∃xk+1(ϕk+1) and the
real algebraic numbers αk+1, . . . , αn correspond to ẽk+1〈αk+2, . . . , αn〉,
. . . , ẽn〈〉, respectively, Theorem 25 ensures that R |= ϕk+1(αk+1, . . . , αn).
In particular R |= γk(αk+1, . . . , αn). This means that ẽk〈αk+1, . . . , αn〉
is well-defined. This allows us to compute real algebraic number αk =
ẽk〈αk+1, . . . , αn〉 from ẽk and αk+1, . . . , αn as follows: First plug the
real algebraic numbers αk+1, . . . , αn into fk, obtaining f〈αk+1, . . . , αn〉 ∈
R[xk]. This univariate polynomial is guaranteed to be of one particular
real type t specified by a root specification (t, r) ∈ Sk. Isolating all real
roots, and evaluating the sign of f〈αk+1, . . . , αn〉 to the left, between, and
to the right of the roots one finds the real type t of the polynomial. Finally,
extracting the r-th real root from the left yields αk.

(b) We have ek = (fk, Sk)± ε, and γk is a guard of ek. Since (5.4) is an EQR
for formula ∃xn . . . ∃xk(ϕk), we have

R |= ξ[xk // (fk, Sk)± ε][xk+1 // ẽk+1] . . . [xn // ẽn].

Using the fact that αk+1, . . . , αn are real algebraic numbers corresponding
to ẽk+1〈αk+2, . . . , αn〉, . . . , ẽn〈〉, respectively, together with Theorem 25,
we conclude that R |= ξ[xk // (fk, Sk)± ε](αk+1, . . . , αn). Theorem 35(i)
now guarantees the existence of some positive η ∈ R such that

R |= ξ
(
(fk, Sk)〈αk+1, . . . , αn〉 ± η′, αk+1, . . . , αn

)
for every real positive η′ strictly smaller than η. By (5.6) it follows that
R |= ξ′

(
(fk, Sk)〈αk+1, . . . , αn〉 ± η′

)
for all real positive η′ strictly smaller

than η.
Similarly as in case (a), we obtain from (fk, Sk) and αk+1, . . . , αn by real
root isolation a real algebraic number αk = (fk, Sk)〈αk+1, . . . , αn〉. Since
ξ′(αk ± η′) is guaranteed to hold for all positive real η′ strictly smaller
than η, we are guaranteed to find after finitely many refinements of the
isolating interval

]
l, u
[
of αk that R |= ξ′

(
l
)
when ek = (fk, Sk) − ε, or

R |= ξ′
(
u
)
when ek = (fk, Sk) + ε.

When ek = (fk, Sk) − ε, we set ẽk to be the parametric root description(
qxk − p, (1, 1)

)
, where l = p

q ∈ Q, q > 0, so qxk − p ∈ Z[xk]. When ek =
(fk, Sk)+ε we take u = p

q ∈ Q, q > 0. In either case it is straightforward to
construct a corresponding real algebraic number αk = ẽk〈αk+1, . . . , αn〉.
Moreover, we set γ̃k = true that is obviously a guard of ẽk. Then R |=
(γ̃k ∧ ξ′)[xk // ẽk], and n− k applications of Lemma 88 yield

R |= (γ̃n ∧ · · · ∧ γ̃k ∧ ϕk)[xk // ẽk][xk+1 // ẽk+1] . . . [xn // ẽn],

i.e., we have an EQR for ∃xn . . . ∃xk(ϕk) such that ẽk meets the specifi-
cation (a) above.

(c) We have ek = ±∞, and γk is “true.” Similarly to case (b), we observe
that (5.4) is an EQR for ∃xn . . . ∃xk(ϕk). This implies

R |= ξ[xk //±∞][xk+1 // ẽk+1] . . . [xn // ẽn].
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Using the fact that αk+1, . . . , αn are real algebraic numbers corresponding
to ẽk+1〈αk+2, . . . , αn〉, . . . , ẽn〈〉, respectively, and applying Theorem 25
we conclude that

R |= ξ[xk //±∞](αk+1, . . . , αn).

Theorem 35(ii) now guarantees that {α ∈ R | R |= ξ(α, αk+1, . . . , αn) }
is unbounded from above when ek = ∞ and from below when ek =
−∞. Thus by (5.6) the set {α ∈ R | R |= ξ′(α) } is unbounded from
above/below as well. Using well-known bounds [3] on the roots of the
univariate polynomials contained in ξ′, we compute a sufficiently large
(or sufficiently small when ek = −∞) p

q ∈ Q such that q > 0 satisfies
ξ′. We set ẽk to be the parametric root description

(
qxk − p, (1, 1)

)
and

construct a corresponding real algebraic number αk. Furthermore, we
set γ̃k = true that is obviously a guard of ẽk. Exactly as in case (b),
R |= (γ̃k ∧ ξ′)[xk // ẽk] together with n− k applications of Lemma 88 yield

R |= (γ̃n ∧ · · · ∧ γ̃k ∧ ϕk)[xk // ẽk][xk+1 // ẽk+1] . . . [xn // ẽn],

so in this case we also have an EQR for ∃xn . . . ∃xk(ϕk) such that ẽk meets
the specification (a) above.

Notice that the constructive proof of Theorem 89 suggests to recompute the
intermediate quantifier elimination results ϕk. In practice, there are arguments
for saving these ϕk during the extended quantifier elimination run. Consider,
e.g., the following common optimization: Whenever some ϕk heuristically sim-
plifies to a disjunction ϕk,1 ∨ · · · ∨ ϕk,s, then the virtual substitution procedure
would treat each ϕk,j separately, i.e., like originating from several elimination
set elements. In general, in the course of the application of Theorem 89 such
transformations cannot be reconstructed exclusively from the EQR.

In the rest of this section we are going to illustrate Theorem 89 by means of
two examples.

Example 90. We revisit Example 85 for the value a = −2 of the parameter u.
For this choice, the formula ϕ in ϑ = ∃x∃y

(
ϕ(y, x)

)
specializes to

3x2 − 2y < 0 ∧ x− y > 0 ∧ y + 2 > 0,

and our EQR containing nonstandard symbols becomes[
true y =

(
−2y + 3x2, (−1, 1)

)
+ ε1 x =

(
3x− 2, (1, 1)

)
− ε2

]
.

Following the constructive proof of the theorem, we compute

ϕ1(y, x) = 3x2 − 2y < 0 ∧ x− y > 0 ∧ y + 2 > 0,
ϕ2(x) = true ∧ ϕ1

[
y //
(
−2y + 3x2, (−1, 1)

)
+ ε
]

= true ∧ 3x2 − 2x < 0.

As in the proof, we proceed from the right to the left, i.e., our first step is fixing
x and computing a respective algebraic number αx. Since the answer for x is(
3x− 2, (1, 1)

)
− ε2, we are in case (b). Observe that[

true x =
(
3x− 2, (1, 1)

)
− ε2

]
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is an EQR for ∃x(ϕ2). For ξ = true ∧ ϕ2 we obtain that

R |= ξ
[
x //

(
3x− 2, (1, 1)

)
− ε
]
.

Theorem 35(i) guarantees that there exists a positive η ∈ R such that for all
positive η′ ∈ R strictly smaller than η we have R |= ξ

((
3x − 2, (1, 1)

)
〈〉 − η′

)
.

It follows that for all positive η′ ∈ R strictly smaller than η we also have
R |= ξ′

((
3x− 2, (1, 1)

)
〈〉 − η′

)
, where ξ′ = ξ in this case.

To compute the real algebraic number αx =
(
3x−2, (1, 1)

)
〈〉 we first find out

that the real 1-type of 3x− 2 is 1 with the only rational root 2
3 . The algebraic

number αx therefore represents 2
3 as the root of 3x − 2 in an isolating interval

]−1, 1[.
Refining the isolating interval of αx to ] 1

2 , 1[ we find out that R |= ξ′( 1
2 ).

Therefore we replace the nonstandard answer x =
(
3x− 2, (1, 1)

)
− ε2 with the

standard answer x =
(
2x − 1, (1, 1)

)
, which obviously represents the satisfying

rational number 1
2 found by interval refinement.

The second answer to consider is y =
(
−2y + 3x2, (−1, 1)

)
+ ε1, which is

again case (b). Now[
true y =

(
−2y + 3x2, (−1, 1)

)
+ ε1 x =

(
2x− 1, (1, 1)

) ]
is an EQR for ∃x∃y(ϕ1). Analogously to the previous step we obtain ξ = ϕ1,

ξ′ = ξ
[
x //

(
2x− 1, (1, 1)

)]
= true ∧ −8y + 3 < 0 ∧ −2y + 1 > 0 ∧ y + 2 > 0.

To compute the real algebraic number αy =
(
−2y + 3x2, (−1, 1)

)
〈αx〉 we

first determine that the real 1-type of (−2y+3x2)〈αx〉 is −1 with the root 3
8 , so

αy represents 3
8 as the root of (−2y + 3x2)〈αx〉 in an isolating interval ]−1, 1[.

Refining the isolating interval of αx to ]0, 7
16 [ we find that R |= ξ′( 7

16 ). We
can therefore replace the nonstandard answer for y with the standard answer
y =

(
16y − 7, (1, 1)

)
, which obviously represents the satisfying rational 7

16 .
Finally, the resulting standard EQR for ϑ looks as follows:[

true y =
(
16y − 7, (1, 1)

)
x =

(
2x− 1, (1, 1)

) ]
. 3

Example 91. Our second example addresses a rather straightforward but in-
teresting generalization of extended quantifier elimination, which we have not
discussed so far: Consider the valid sentence ∃x∃u(x − u < 0). After elimi-
nation of ∃u we essentially obtain ∃x(true). Our framework of Chapter 2 now
computes an elimination set {∞} for x, so we obtain a corresponding answer
x = ∞. In practice, however, we recognize that x can be chosen arbitrarily,
which implementations of extended quantifier elimination express using EQRs
like: [

true u =∞ x = arbitrary1
]
.

For applying Theorem 89 such arbitrary variables have to be replaced with
arbitrary but fixed answers that are interpretable in the context of the condition
“true.” It is easy to see that this is not a limitation of the theorem but a semantic
consequence similar to the observation in Proposition 86.



5.4. EXTENSIONS OF OUR APPROACH AND HEURISTICS 153

Choosing, e.g., arbitrary1 as
(
x−2, (1, 1)

)
and using Theorem 89 we compute

ϕ1 = x− u < 0
ϕ2 = true ∧ ϕ1[u //∞]

= true ∧ true.

For the answer x =
(
x − 2, (1, 1)

)
, we are in case (a), where we only have to

compute a suitable αx representing 2. Next, for u = ∞ we are in case (c) and
obtain

ξ′ = true ∧ 2− u < 0.

Using, e.g., the Cauchy bound 1 + max
{ 2

1
}

= 3 of u − 2, we replace u = ∞
with the standard answer u =

(
u− 4, (1, 1)

)
, representing the integer 4, i.e., the

Cauchy bound plus one. This yields the standard EQR[
true u =

(
u− 4, (1, 1)

)
x =

(
x− 2, (1, 1)

) ]
.

Choosing, in contrast, arbitrary1 as 3 we obtain the Cauchy bound 1 +
max

{ 3
1
}

= 4 and thus a standard EQR[
true u =

(
u− 5, (1, 1)

)
x =

(
x− 3, (1, 1)

) ]
. 3

5.4 Extensions of our Approach and Heuristics
Here we present extensions of our approach from the previous section. Further-
more, we also discuss heuristics for obtaining in our answers parametric root
descriptions representing rational numbers or even integers.

Recall that in Chapter 4 we have shown how to realize global degree shift
by virtual substitution. The idea was to model “ d

√
x̂” with a parametric root

description
(
xd − x̂, ((−1, 0, 1), 1)

)
when d is odd and with a parametric root

description
(
xd − x̂,

{
((1, 0, 1), 1), ((1, 0,−1, 0, 1), 2)

})
when d is even. This

modeling of a shift is extremely useful for our approach here: Assuming that an
answer xk = d

√
xk+1 is a part of a processed EQR, we know that this is the case

(a) in Theorem 89. Therefore, our construction obtains ek = ẽk, computes a real
algebraic number αk using ek and αk+1, . . . , αn, and continues with processing
the answer xk−1 = ek−1. This means that our approach can be “extended” to
handle global degree shift answers without any further adjustments.

Consider now the computation of ẽk for some ek. Recall that the ordering of
the variables within the given EQR is such that quantifier elimination has taken
place from the left to the right, while the construction of the standard answers
proceeds from the right to the left. Here, the quantifier elimination direction
has played an important role in the proof of Theorem 89: Although ek+1, . . . , en
have been replaced with ẽk+1, . . . , ẽn, the answer xk = ek is still valid. Taking
that idea a bit further, we may replace ek with any valid expression without
affecting the validity of either e1, . . . , ek−1 or ẽk+1, . . . , ẽn.

In fact, it is sometimes possible to replace a parametric root description
ek with a simpler one that represents a rational number or even an integer as
follows: Before processing ek, we check whether changing it to one of ek ± ε
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yields a valid EQR for ϑ as well. This can be done by means of the virtual
substitution

(γ̃n ∧ · · · ∧ γ̃k+1 ∧ γk ∧ · · · ∧ γ1 ∧ ϕ)
[x1 // e1] . . . [xk−1 // ek−1][xk // ek ± ε][xk+1 // ẽk+1] . . . [xn // ẽn].

In the positive case, i.e., when the above ground formula is equivalent to “true,”
we process ek ± ε instead of ek. In terms of the proof of Theorem 89 this
leads to the case (b), where we generally obtain parametric root description ẽk
representing a rational or even an integer; depending on whether a refined ]l, u[
interval with integer endpoints satisfying ξ′ can be found.

Observe, however, that this heuristic does not work for a nontrivial degree
shift ek: A virtual substitution of ek ± ε first expands every atomic formula
by constructing a formula containing all the derivatives of the left hand side
w.r.t. xk by using expand-eps-at. This means that a degree shift virtual sub-
stitution afterwards would not make sense because of degree divisibility restric-
tions we discussed in Section 4.1.

Notice that our approach is also compatible with the structural virtual sub-
stitution presented in Chapter 3: One can use svs-scheme in Section 5.2 to real-
ize extended quantifier elimination. In this way one obtains answers of the form
xk = (ek, πk,Fk). Consequently, in the construction of Theorem 89 we have
ϕk+1(xk+1, . . . , xn) =

(
γk ∧ (ϕk)Fkπk

)
[xk // ek] instead of ϕk+1(xk+1, . . . , xn) =

(γk ∧ ϕk)[xk // ek]. This is not a problem at all, and the proof remains valid,
because (ϕi)Fiπi implies ϕi for every i ∈ {1, . . . , n}. Therefore, using structural
virtual substitution to realize extended quantifier elimination and our answer
correction approach is much more an issue one has to deal with in implementa-
tion rather than in the formalism. To this end observe that the same arguments
for saving intermediate structural quantifier elimination results we have dis-
cussed below the proof of Theorem 89 remain valid.

Looking carefully at the proof of Theorem 89, one observes that the compu-
tation of the real algebraic number (fk, Sk)〈αk+1, . . . , n〉 involves computation
with a polynomial with algebraic number coefficients. For this one can either use
primitive elements to obtain gk ∈ Z[xk] such that gk(α) = fk〈αk+1, . . . , n〉(α)〉
for any α ∈ R. Another possibility is to use a recursive representation of real
algebraic numbers [62] that works directly with fk〈αk+1, . . . , n〉(α).

Finally, it is quite helpful in general to recognize rationals among all occur-
ring real algebraic numbers. This holds in particular for the final α1, . . . , αn, as
they correspond to the values of ẽ1〈α2, . . . , αn〉, . . . , ẽn〈〉, which may be roots of
complicated high degree polynomials. For this one can use the following lemma.

Lemma 92 (Rational Algebraic Numbers). Consider a real algebraic number
α that is represented as the only root of f = anx

n+ · · ·+a0 in the interval ]l, u[.
Here a0, . . . , an ∈ Z, a0 > 0, l, u ∈ Q, and l > 0. Assume furthermore that]
a0
u ,

a0
l

[
∩ Z = {z}. Then α ∈ Q if and only if α = a0

z .

Proof. Let α ∈ Q. From l > 0 it follows that α > 0, say α = p
q , where p, q ∈ Z,

p > 0, q > 0. Using the Gaussian Lemma this admits the following factorization
for suitable b0, . . . , bn−1 ∈ Z:

n∑
i=0

aix
i = (qx− p) ·

n−1∑
i=0

bix
i.
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It follows that a0 = −b0p, and we obtain α = −b0p
−b0q

= a0
−b0q

. On the other
hand, l < a0

−b0q
< u, which is equivalent to a0

u < −b0q < a0
l , and it follows that

−b0q = z. Together α = a0
−b0q

= a0
z . The converse implication is obvious.

The lemma can be straightforwardly generalized to arbitrary intervals ]l, u[.

5.5 Implementation and Application Examples
This section is taken from our work [47]. We include it here to illustrate the suc-
cess of the post-processing method for the quadratic case. Note that the answers
presented in this section are obtained by back-substitution on quadratic elim-
ination terms, i.e., all EQRs here contain root expressions (with nonstandard
symbols before our post-processing) rather than parametric root descriptions.

Recall that our framework generalizes and improves on the quadratic virtual
substitution based on root expressions. An immediate consequence of this fact
is that an implementation of our method from Section 5.3 would also be able
to successfully process all of the examples presented here.

We have implemented our post-processing method for the quadratic case in
Redlog, which is a part of the computer algebra system Reduce. Reduce is freely
available under a modified BSD license.1 Technically, our implementation is an
extension of Redlog’s original quadratic extended quantifier elimination rlqea
by a switch rlqestdans, which toggles the computation of standard answers.

We are going to revisit a number of applications of extended quadratic quan-
tifier elimination that have been documented in the scientific literature. In each
case we are going to briefly explain the underlying problem, recompute the so-
lutions with nonstandard answers, and finally compute solutions with standard
answers using our approach as described in [47] and generalized in this chapter.

Since Redlog is very actively developed and improved, and the considered
applications date back up to more than 15 years, the nonstandard answers
obtained here partly differ from those reported in the literature. Of course, in
such cases both variants are correct.

All computations have been carried out with the CSL variant of Reduce,
revision 2465, using 4 GB RAM on a 2.4 GHz Intel Xeon E5-4640 running
64 bit Debian Linux 7.3.

Computational Geometry
Besides many standard problems from computational geometry, the authors
in [74] consider in Example 10 the reconstruction of a cuboid wireframe from a
photography taken from the origin along the x3-axis with a lens of focal length
five.

The answers obtained by extended quantifier elimination is going to describe
vectors e1, e2, e3 ∈ R3 generating the cuboid together with a vector v ∈ R3

describing its translation from the origin. The input formula, which contains in
addition points i ∈ R2 on the camera sensor, contains 15 quantifiers:

∃e1∃e2∃e3∃v∀i
(
(ι′ ←→ π0) ∧ ∃k(59kv = (100, 200, 295k + 295))

)
.

1http://reduce-algebra.sourceforge.net

http://reduce-algebra.sourceforge.net
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The formula ι′(e1, e2, e3,v, i), which has been obtained by regular quantifier
elimination earlier, generically describes that a point i lies in the image of a
cuboid generated by e1, e2, e3, and translated by v. The formula π0(i) is a
quantifier-free description of one concrete image. The remaining part of the
input formula fixes i =

( 100
59 ,

200
59
)
to be the image of the origin of the cuboid.

Extended quantifier elimination yields “true” if and only if π0 is a picture of
a cuboid at all. In the positive case, the answers will provide suitable vectors
e1, e2, e3, and v.

For π0 as considered in [74, Example 10], the extended quantifier elimination
yields “true” together with the following nonstandard answers:

e1 =
(

5∞1,
7∞1

2 ,
5∞1

2

)
, e2 =

(
∞1, 2∞1,

−24∞1

5

)
,

e3 =
(
−109∞1

65 ,
53∞1

26 ,
∞1

2

)
, v =

(
5∞1, 10∞1,

59∞1 + 20
4

)
.

Our method fixes ∞1 = 1, which yields the following standard answers:

e1 =
(

5, 7
2 ,

5
2

)
, e2 =

(
1, 2,−24

5

)
,

e3 =
(
−109

65 ,
53
26 ,

1
2

)
, v =

(
5, 10, 79

4

)
.

The entire computation takes 189 s, of which the computation of the standard
answers takes less than 1ms.

Motion Planning
Weispfenning [86] has studied motion planning problems in dimension two. Both
the object to be moved and the free space between given obstacles are semilinear
sets. Extended quantifier elimination is used to decide whether a geometrical
object can be moved from an initial to a final destination in at most n moves,
where the trajectory of each move is a line segment. In the positive case, the
answers describe the coordinates u1, . . . , un ∈ R2 of the object after each of
the n moves. Accordingly, the input formulas contain 2n variables in the prenex
existential block.

We have applied our answer correction to three of the examples discussed
in [86]. For the concrete input formulas and pictures of the scenery we refer to
that publication.

For Example 6.4, we obtain the following nonstandard answers:

u1 = (5− ε1, 5− ε1) , u2 =
(

5− ε1,
−2ε1 + 1

2

)
, u3 =

(
9, 9

2

)
.

Our method fixes ε1 = 3
16 , which yields the following standard answers:

u1 =
(

77
16 ,

77
16

)
, u2 =

(
77
16 ,

5
16

)
, u3 =

(
9, 9

2

)
.

The entire computation takes 60ms, of which the computation of the standard
answers takes less than 1ms. Tables 5.1 and 5.2 summarize these results along
with the two other examples.
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Example u1 u2 u3 Time

6.4 (5− ε1, 5− ε1)
(
5− ε1,

−2ε1+1
2

) (
9, 9

2
)

0.06 s
6.8 (0, 3 + ε1) (3− ε1, 6) (7, 6) 9.5 s
6.9 (0, 3 + ε1) (3− ε1, 6) 0.28 s

Table 5.1: Summary of nonstandard answers and computation times for motion
planning examples considered in [86].

Example ε1 u1 u2 u3

6.4 3
16

( 77
16 ,

77
16
) ( 77

16 ,
5
16
) (

9, 9
2
)

6.8 1 (0, 4) (2, 6) (7, 6)
6.9 1 (0, 4) (2, 6)

Table 5.2: Summary of standard answers for motion planning examples consid-
ered in [86]. In all cases the time spent for the computation of ε1 was less than
1ms.

Models of Genetic Circuits

Recently, symbolic methods for the identification of Hopf bifurcations in vec-
tor fields arising from biological networks or chemical reaction networks have
received considerable attention in the literature [72, 73, 36, 80, 34]. Given a
polynomial vector field, in [32] the authors introduced a method, which au-
tomatically generates first-order Tarski formulas describing the existence of a
Hopf bifurcation in terms of the parameters. Then real quantifier elimination
is applied to obtain corresponding necessary and sufficient conditions. For ef-
ficiency reasons, one often existentially quantifies all parameters and applies
extended quantifier elimination. In the positive case, the answers provide one
set of parameter values giving rise to a Hopf bifurcation.

Based on models introduced in [9], the publications [72, 73] used the ap-
proach sketched above to automatically derive the existence of Hopf bifurca-
tions for the gene regulatory network controlling the circadian clock of a certain
unicellular green alga. The input formula is

∃(0 < v1 ∧ 0 < v3 ∧ 0 < v2 ∧ 0 < ϑ ∧ 0 < γ0 ∧ 0 < µ ∧ 0 < δ ∧ 0 < α

∧ ϑ · (γ0 − v1 − v1v9
3) = 0 ∧ λ1v1 + γ0µ− v2 = 0

∧ 9α(γ0 − v1 − v1v9
3) + δ(v2 − v3) = 0 ∧ 0 < ϑδ + ϑv9

3δ + 9λ1ϑv1v8
3δ

∧ 162ϑv17
3 αv1 + 162ϑαv1v8

3 + 162αv1v8
3δ + ϑ+ 2ϑv9

3δ + ϑ2v18
3 δ

+ ϑv9
3 + 2ϑδ + 81αv1v8

3ϑδ + 81αv1v17
3 ϑδ + δ2 + ϑδ2 + ϑ2δ + ϑ2

+ 2ϑ2v9
3 + ϑ2v18

3 + 6561α2v2
1v16

3 + 2ϑ2v9
3δ + δ + 81αv1v8

3 + ϑv9
3δ

2

− 9λ1ϑv1v8
3δ = 0),
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for which we obtain the following nonstandard answers:

γ0 = 8 9√∞2
19∞3+16 9√∞2

10∞3+8 9√∞2∞3
729∞2

1∞3
2+1458∞2

1∞2
2+729∞2

1∞2−486∞1∞2
2∞3−486∞1∞2∞3+9∞2∞2

3
,

µ = 729∞2
1∞

3
2+1458∞2

1∞
2
2+729∞2

1∞2−486∞1∞2
2∞3−486∞1∞2∞3+∞2∞2

3−8∞2
3

8∞2
2∞3+16∞2∞3+8∞3

,

ϑ =
−6561∞4

1∞
4
2−26244∞4

1∞
3
2−39366∞4

1∞
2
2−26244∞4

1∞2−6561∞4
1+4374∞3

1∞
3
2∞3

+13122∞3
1∞2

2∞3+13122∞3
1∞2∞3+4374∞3

1∞3−54∞1∞2∞3
3−54∞1∞3

3+∞4
3

6561∞4
1∞

5
2+32805∞4

1∞
4
2+65610∞4

1∞
3
2+65610∞4

1∞
2
2+32805∞4

1∞2+6561∞4
1

−8748∞3
1∞

4
2∞3−34992∞3

1∞
3
2∞3−52488∞3

1∞
2
2∞3−34992∞3

1∞2∞3−8748∞3
1∞3

+3078∞2
1∞

3
2∞

2
3+9234∞2

1∞
2
2∞

2
3+9234∞2

1∞2∞2
3+3078∞2

1∞
2
3−108∞1∞2

2∞
3
3

−216∞1∞2∞3
3−108∞1∞3

3+∞2∞4
3+∞4

3

,

v1 = 8 9√∞2
10∞3+8 9√∞2∞3

729∞2
1∞3

2+1458∞2
1∞2

2+729∞2
1∞2−486∞1∞2

2∞3−486∞1∞2∞3+9∞2∞2
3
,

v2 = 9
√
∞2, v3 = 9

√
∞2, α =∞1, δ = 1, λ1 =∞3.

Our method fixes ∞1 = 1, ∞2 = 9, and ∞3 = 87481, which yields the
following standard solution:

γ0 = 69984800 · 9
√

9
616061191401 , µ = 3827162521

69984800 , ϑ = 7652917261
76056937210 ,

v1 = 6998480 · 9
√

9
616061191401 , v2 = 9

√
9, v3 = 9

√
9,

α = 1, δ = 1, λ1 = 87481.

The entire computation takes 370ms, of which the computation of the standard
answers takes 140ms.

Mass Action Systems
We are now going to discuss another example about Hopf bifurcation. This
time, the considered system is a chemical reaction system, viz. the famous and
well-studied phosphofructokinase reaction. It has been firstly analyzed with
symbolic methods in [37, Example 2.1]. We adopt here the first-order for-
mulation discussed in [72, 73] following the approach sketched in the previous
subsection.

We obtain nonstandard answers of the following form:

k21 = K21(∞1,∞2,∞3,∞4, ε1), k34 =∞1, k43 =∞2,

k46 = K46(∞1,∞2,∞3,∞4,∞5, ε1), k64 =∞5, k65 =∞3,

k56 = K56(∞1,∞2,∞3,∞4,∞5, ε1), v1 = ∞2∞4

∞1
,

v2 = V2(∞1,∞2,∞3,∞4,∞5, ε1), v3 =∞4.

The nonstandard terms K21, . . . , K56, V2 are so large that we cannot explicitly
display them here. To give an idea, K46 would fill more than 16 pages in this
document.
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Our method fixes∞1 =∞2 =∞3 =∞4 = 1, ∞5 = 20, and ε1 = 2(
√

2−1),
which yields the following standard solution:

k21 = 3, k34 = 1, k43 = 1,

k46 =
√

3457 + 1
8 , k64 = 20, k65 = 1,

k56 = −
√

3457 + 159
6 , v1 = 1,

v2 = −
√

3457 + 159
24 , v3 = 1.

The entire computation takes 13.2 s, of which the computation of the standard
answers takes 0.1 s.

Sizing of Electrical Networks
Sturm [68, Section 5] has applied generic quantifier elimination to the sizing of
a BJT amplifier. Description of a circuit is given as a set of operating point
equations E1 and a set of AC conditions E2. For the concrete equations we
refer to the mentioned publication. The system E1 ∧E2 has to be solved w.r.t.
the main variables M = {r1, . . . , r8, c3} in terms of parameter variables P =
{vcc, ahigh, alow, p, zin, zout}. Fixing values of the parameters to

vcc = 3, ahigh = 3, alow = 2, p = 12, zin = 5, zout = 5,

the answers contain one nonstandard term:

r1 = 4457058395
5180672 , r2 = 4457058395

2590336 , r3 = −4457058395
1295168 ,

r4 = −4182864929375836679
128066211840000 , r5 =∞1, r6 = 282999424999

804520000 ,

r7 = 5, r8 = 25509595605337086755
20836792295619328 , c3 = 647584

13371175185 .

Our method fixes ∞1 = 1, which yields a standard answer for r5. The entire
computation takes less than 2ms, of which the computation of the standard
answer takes less than 1ms.

A Linear Feasibility Example
In [45, Section 9] the authors have considered a small linear existential problem
to demonstrate the difference between their conflict resolution method and the
Fourier–Motzkin elimination method. The following are nonstandard answers
for that problem computed by Redlog:

x1 = − 8
13 , x2 = 1− 65ε1

65 , x3 = −14 + 13ε2

13 ,

x4 = −302− 195ε1 + 65ε2

130 , x5 = −30 + 26ε2

39 .
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Our method fixes ε1 = 1
65 and ε2 = 1

13 , which yields the following standard
answers:

x1 = − 8
13 , x2 = 0, x3 = −1, x4 = −30

13 , x5 = −28
39 .

The entire computation takes 3ms, of which the computation of the standard
answers takes less than 1ms.

5.6 Conclusions
In this chapter we have introduced extended quantifier elimination as a general
concept that in addition to a quantifier-free equivalent of an existentially quanti-
fied formula returns answers for the quantified variables. Then we have focused
on our virtual substitution framework as one possible method for realization
of extended QE. We analyzed the differences between extended QE realized
within our framework and extended QE realized by quadratic virtual substitu-
tion. The main difference in this respect is the diagonalization of an EQR by
means of back-substitution on terms, which cannot be carried out straightfor-
wardly beyond degree two, and is impossible beyond degree four. Along the
way we mentioned the similarity of our extended quantifier elimination results
to cylindrical algebraic formulas.

The main result of this chapter was a generalization of the post-processing
method—that converts nonstandard answers to standard answers for fixed val-
ues of the parameters—of [47] to work with our virtual substitution framework
of Chapter 2. The main advantage of the generalization is that it is no longer
limited to degree two. Then we argued that the generalization is compatible
with the structural virtual substitution and degree shift presented in previous
chapters. We have also discussed heuristics that can used to find in some cases
simpler answers, i.e., parametric root descriptions representing rationals or even
integers.

To demonstrate the success and usefulness of our generalized method, we
have included in this chapter a section from our publication [47]. There we
have revisited a number of applications of extended quantifier elimination by
quadratic virtual substitution from the scientific literature, and computed stan-
dard answers by our implementation of the generalized method of this chapter
for the quadratic case. Since our virtual substitution framework generalizes the
quadratic virtual substitution approach, an implementation of the generalized
method of this chapter together with the framework will be able to successfully
process any of the examples considered in the section included from [47].



Chapter 6

Implementation and
Computational
Experiments

This chapter reports on our implementation of most of the concepts developed
in this thesis. The main result presented here is a number of concepts and
principles of our implementation of a virtual substitution-based real quantifier
elimination, which are of general interest for future implementations as well.
Our implementation is complete for degree three of a quantified variable. To the
best of our knowledge, this is the first implementation of virtual substitution for
the cubic case that is independent of other real quantifier elimination methods
like CAD.

It is a key feature of our implementation that its data structures are extensi-
ble to cope with arbitrary but bounded degree of quantified variables. The im-
plementation is modular and easily extensible beyond degree three: As we have
seen in Chapters 2 and 3, working instantiations of vs-scheme and svs-scheme
require implementations of the three procedures at-cs, guard, and vs-prd-at.
This is the central principle of our implementation as well: Procedures for re-
alizing the three algorithms constitute one independent submodule that can be
easily provided with procedures for degree four and higher. At present we pro-
vide instantiations until degree three using the formula schemes of Appendix A.

Our implementation is a module of the computer logic system Redlog,1 which
itself is a part of the computer algebra system Reduce.2 The whole system is
open source and freely available under a very liberal Free-BSD license.

The most important part of Redlog we use is its powerful simplifier of
quantifier-free Tarski formulas based on the techniques described in [28]. We
also use Redlog’s parser, and some standard formula manipulating procedures,
e.g., for computing prenex or negation normal forms. Apart from these com-
ponents, our implementation described here is independent of Redlog’s original
virtual substitution code for the quadratic case.

To demonstrate the efficiency of our implementation, we revisit around
200 real-world quantifier elimination problems from the sciences and engineer-

1http://www.redlog.eu
2http://reduce-algebra.sourceforge.net
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ing. We compare the performance of the Redlog’s original implementation of
quadratic quantifier elimination with the implementation of our approach with
and without clustering introduced in Chapter 2. The results of our computa-
tions are encouraging: Our implementation with clustering is generally able to
eliminate at least as many quantifiers as the Redlog’s original implementation.
In a number of cases we can even eliminate more quantifiers. On the other
hand, our implementation is on average 3.4 times slower than the Redlog’s orig-
inal implementation. The lengths of quantifier-free equivalents in comparison
with quantifier-free equivalents obtained with the Redlog’s original implemen-
tation are often very different: We observed cases when our implementation
computed much shorter quantifier-free equivalents than the Redlog’s original
implementation and vice versa. Nevertheless, the results of our experiments are
promising: Our research prototype implementation is able to compete with the
Redlog’s original implementation, which has been constantly being developed
and improved for twenty years now.

One of the goals of this chapter is to give an impression of the design decisions
and problems one faces when implementing a standalone virtual substitution-
based quantifier elimination algorithm. We propose and implement data struc-
tures, heuristics, and approaches, which are of general interest with the hope
that they will provide a basis for more efficient implementations.

The plan of this chapter is as follows: First we discuss how to implement a
method for elimination of a single quantifier ∃x from ∃x(ϕ) based on svs-scheme
developed earlier in this thesis. Then we show how to realize elimination of one
block of existential quantifiers and discuss variable selection heuristics, which
are of crucial practical importance here. Finally, we report on computational
experiments conducted with our implementation and obtained results.

6.1 Elimination of One Existential Quantifier
As usual, we consider here the elimination of ∃x from ∃x

(
ϕ(u, x)

)
, where ϕ is

w.l.o.g. a quantifier-free ∧-∨-combination of Tarski atomic formulas. The right
hand side of each atomic formula in ϕ is zero.

The main building block of our implementation is the procedure svs-scheme
for eliminating a single existential quantifier. Note, however, that we do not use
svs-scheme as one monolithic procedure. We divided it into four parts that are
used independently in our implementation:

1. degree shift,

2. prime constituent decomposition,

3. test points generation,

4. structural virtual substitution.

In the following we are going to describe each of these parts in detail.

6.1.1 Degree Shift and PC Decomposition
As the first step we always try to apply a degree shift on ϕ and x. At present
we support only the global degree shift technique of Section 4.1, though. If we
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are successful, then we directly obtain an elimination set { d
√
x̂} for ϕ and x.

Otherwise, we continue by computing a prime constituent decomposition of the
formula ϕ w.r.t. x.

The procedure PC-decomposition is implemented almost exactly as we de-
scribed it in Section 3.1: We first traverse the formula three times to find Gauss,
co-Gauss, and atomic positions, computing candidate solutions along the way.
After each of the first two traversals we temporarily replace found positions
with “false” for optimization. In this way no atomic formula that is known to
be a part of a Gauss or a co-Gauss prime constituent will be considered twice.
Then we construct an independent set of positions using the strategy “bigger
wins” discussed in Section 3.1. If we were able to compute a set of candidate
solutions for each of the remaining positions, we generate and return a set of
prime constituents accordingly. Otherwise, we return a FAILED message. This
is the only place where we can fail, so later during test points generation and
structural virtual substitution we rely on the fact that everything went well.

In the following we discuss a few points regarding the formula-traversing
procedures gaussposl, cogaussposl, and atposl looking for Gauss, co-Gauss,
and atomic positions of prime constituents in ϕ, respectively.

Each traversal procedure factorizes the left hand side of every atomic formula
it looks at. For example, if the atomic formula ax3−ax2 +bx−b > 0 is spotted,
then it is considered in its factorized form, i.e., (ax2 + b)(x− 1) > 0. According
to the results of Subsection 2.2.1, candidate solutions for four atomic formulas{

(ax2 + b)>< 0, (x− 1)>< 0
}
are computed afterwards. This leads to a candidate

solution set containing parametric root descriptions of ax2 + b and x− 1.
We decided to always factorize the left hand side of an atomic formula,

because we want to go as far with the virtual substitution method as possible:
We do not want some higher degree polynomial that splits into factors of lower
degrees to lead to a failure of the whole method.

In cases when a factor of a polynomial is of degree at most three and splits,
one could consider ignoring the factorization of that factor. In our example
we would view the left hand side ax3 − ax2 + bx − b as is. This would yield
candidate solutions containing exclusively parametric root descriptions of this
third-degree polynomial. Observe that higher degree parametric root descrip-
tions lead in general to longer and higher degree quantifier-free formulas after
virtual substitution. For this reason we have not investigated this option further.

Recall from the description of gaussposl and cogaussposl in Section 3.1
that we need to decide whether the coefficients ci ∈ Z[u] of f ∈ Z[u][x] in
f % 0, % ∈ {=, 6=}, vanish. For this we do not use an expensive and complete
real decision procedure. We rely on the efficient Redlog simplifier instead: If∧
i ci 6= 0 simplifies to “false,” then we know that f % 0 is a Gauss or co-Gauss

formula, respectively. If f splits, then this simplification is done for each of its
factors. Of course, this is an incomplete method, so we do not identify some
Gauss or co-Gauss prime constituents in the worst case.

Let us now return to the process of generating candidate solutions during
the formula traversals. Consider an atomic formula ax2 +bx+c > 0, where a, b,
c ∈ Z[u]. Recall than in algorithm at-cs of Section 2.5 we have to compute a set
of candidate solutions for the atomic formula bx+ c > 0 whenever a〈a〉 vanishes
for some parameter values a ∈ Rm. This yields test points containing parametric
root descriptions of bx+c with a guard b>< 0. It is absolutely correct to substitute
these parametric root descriptions into the whole formula afterwards. Observe,
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however, that such linear test points are really needed only for those a ∈ Rm
with a〈a〉 = 0. For this reason we added a relevance condition to every test
point in our implementation. The condition is by default “true.” However, in a
situation as mentioned above, we set the relevance conditions of the parametric
root descriptions yielded by bx+c > 0 to formula a = 0. The relevance condition
is used when substituting a test point containing a parametric root description:
The condition is then simply conjunctively added to the guard of a test point.
This can lead to simplifications of the resulting quantifier-free formula, or can
create Gauss prime constituents in later elimination steps, because a relevance
condition is always a conjunction of equations.

6.1.2 Test Points Generation and Substitution
After a successful PC decomposition, we are ready to compute a set of struc-
tural test points. For this we implemented a bound selection procedure and
algorithms PC-to-TPs and TPs-conflate of Section 3.3 that are guaranteed
to generate a structural elimination set for ϕ and x when given a valid PC
decomposition P of ϕ w.r.t. x.

In our implementation we have only a very simple bound selection strategy:
We simply count the number of upper and lower bound candidate solutions, and
take the smaller set. Note, however, that the modular architecture allows us to
easily extend our implementation with more sophisticated strategies like exclud-
ing the “EP” candidate solutions using Theorem 19 or the 0-1 ILP approach of
Section 3.4. This is planned as a natural next step.

With a set of test points—obtained by bound selection and PC-to-TPs—in
hand, we continue with conflation. As a conflation strategy we decided to “con-
flate everything what can be conflated.” We made this explicit in TPs-conflate.
The fact that this is not the only possible strategy along with the reasons for
using it were discussed below Theorem 62.

After this the framework guarantees that we have a structural elimination
set E for ϕ and x. We only need to substitute E into ϕ to obtain a quantifier-
free equivalent of ∃x(ϕ). The order in which one substitutes the test points into
ϕ does not play a role, and we do not do any special decision here either. Note,
however, that one could first try “simpler” test points with the hope for getting
“true.” In such a case the remaining test points do not need to be considered
at all. This would be of interest mainly with decision problems.

To substitute a test point (e, π,F) into ϕ we proceed as follows:

1. Construct a guard γe of the test point using guard.

2. If the guard simplifies to “false,” then return “false.”

3. Otherwise continue by constructing formula ϕFπ , and simplify it.

4. Then substitute e into each atomic formula of the obtained formula by
means of virtual substitution.

At this point we mention that step 1 is conceptually different from the Red-
log’s original implementation. A guard is there an inherent part of a test point
(elimination term), so it is constructed already during test point generation. An
advantage of our late guard construction is that only guards of those test points
are constructed that will be really substituted. At the same time, this can be a
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disadvantage for a bound selection strategy, when we take into account the irrel-
evant test points and make a decision that leads to a smaller set of test points,
whereas a bigger set of test points could actually contain many irrelevant test
points whose guards simplify to “false,” i.e., they do not need to substituted at
all—a better decision indeed.

To keep the Boolean structure of ϕ untouched, we intentionally did not
simplify ϕ throughout the whole process of degree shift, PC decomposition, and
test point generation. Otherwise, the whole framework of Chapter 3 would be
inapplicable. In step 3 this is not the case anymore, and we can replace ϕFπ
with any quantifier-free formula that is equivalent to it. Therefore, it is correct
to use Redlog’s simplifier of quantifier-free Tarski formulas at this point.

Notice that the substitution in step 4 could be done lazily taking again the
Boolean structure of the target formula into account. Along with simplifications
along the way, this could save some expensive virtual substitutions. In our
implementation, however, we simply substitute e into each atomic formula of
the target formula and simplify the result afterwards.

Recall that during virtual substitution of a parametric root description (f, S)
into an atomic formula g % 0, we first perform a pseudo division-like algorithm
pseudo-sgn-rem of g by f . As we can directly see from that algorithm, any
assumptions leading to the positive or negative definiteness of lc f can help
us to prevent the multiplication with (lc f)2. Since a guard often contains
conditions like lc f >< 0, we use the guard along with the relevance condition for
(f, S) to determine whether lc f is positive or negative definite before calling
pseudo-sgn-rem.

Finally, it is noteworthy that the static notion of “virtual substitution for-
mula scheme” we use throughout the whole theoretical exposition in this thesis
is imprecise from the implementation point of view. We implement virtual
substitution by executable code that is given an atomic formula g % 0 and a
parametric root description (f, S) and constructs (g % 0)[x // (f, S)]. Since a
virtual substitution formula scheme is obtained by combining virtual substi-
tution formulas for lower degrees, this is easily achieved by recursively calling
virtual substitution procedures for lower degrees.

6.2 Elimination of One Quantifier Block
Elimination of a block of existential quantifiers corresponds to a search through
a quantifier elimination tree, which is a data structure storing formulas with
partially eliminated quantifiers of an initial QE problem. A current state
of the quantifier elimination process of the block ∃xn . . . ∃x1 from a formula
∃xn . . . ∃x1

(
ϕ(u, x1, . . . , xn)

)
is recorded by an instance of QE tree.

Each node of a QE tree contains a set of existentially quantified variables
Y = {y1, . . . , yk} to be eliminated and an ∧-∨-combination of Tarski atomic
formulas φ. Notice that each variable in Y is either an original existentially
quantified variable from X or a shadow variable of some variable in X. The root
of the tree contains

(
{x1, . . . , xn}, ϕ

)
. Children of a node

(
Y, φ

)
are obtained by

structural virtual substitution of a structural elimination set E for φ and y ∈ Y
into φ. An edge of the tree represents structural virtual substitution of one
particular structural test point (e, π,F) ∈ E for y into φ. If (Y, φ) is an inner
node of a quantifier elimination tree, then ∃Y (φ) = ∃yk . . . ∃y1(φ) is equivalent
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to
∨
i ∃Y ′(φi), where

{
(Y ′, φi)

}
i
are all the children of (Y, φ) and Y ′ = Y \ {y}

for some y ∈ Y . By induction it follows that for each internal node (Y, φ) we
have ∃Y (φ)←→

∨
j ∃Yj(ψj), where

{
(Yj , ψj)

}
j
are all the leaves of the QE tree

lying below (Y, φ).
Starting with a QE tree containing only the root node

(
{x1, . . . , xn}, ϕ

)
,

actual leaf nodes of the tree are systematically expanded until no quantified
variable occurs in the leaves, or until a node cannot be expanded because of
a failure. Node expansion of (Y, φ) is done by selecting a variable y ∈ Y and
computing a structural elimination set for φ and y.

An example QE tree of a successful elimination of the block ∃z∃y∃x from
a Tarski formula ∃z∃y∃x

(
ϕ(u, v, x, y, z)

)
is shown in Figure 6.1. For space and

readability reasons we show on each edge only a test point e, but in fact each edge
stands for a structural virtual substitution of a structural test point (e, π,F).

Since we consider only existential quantifiers, a common optimization is to
split a disjunction and consider its members separately in the next elimination
step. This was done for example in the node ({z}, ϕ1,2), where we obviously
computed a structural elimination set

{
(∞, (), ∅)

}
, substituted∞ into ϕ1,2, and

obtained a disjunction ϕ1,2,1 ∨ ϕ1,2,2.
Notice that a (structural) degree shift can create a path from the root to a

leaf longer than |X|, whereX is the set of existentially quantified variables in the
initial block. The reason for this is that an “elimination” of a variable by a struc-
tural degree shift elimination set introduces a shadow variable. This happens in
our example in node ({y, z}, ϕ2), where we have obviously obtained a structural
elimination set for ϕ2 and x consisting of

( 3
√
ẑ, π1, ∅

)
and

( 2
√
ẑ, π2, {π1}

)
.

Observe that the order of variables is not necessarily the same for paths from
the root to two distinct leaves. As we can see, on the path from the root to
(∅, ϕ2,1,1,1) we eliminated the variables in the order x, z, ẑ, y, which is obviously
different from the order x, z, y, ẑ on the path from the root to (∅, ϕ2,2,1).

Finally, in the context of extended quantifier elimination discussed in Sec-
tion 5.2 we see that a path from the root to a leaf that is not “false” yields one
line of an EQR for ∃z∃y∃x

(
ϕ(u, v, x, y, z)

)
.

6.2.1 Data Types
For the purposes of our implementation we do not model the edges of a QE tree
explicitly. We instead include a virtual substitution s—that yields the node
from its parent—in each node. Therefore, a QE node for our purposes is from
now on a triple (Y, φ, s). The state when s = ∅ signalizes that φ is ready for
next elimination step. If s 6= ∅, then s needs to be applied to φ first in order to
continue with the elimination of the next variable. In that case s is of one of
the following three forms:

(a) y = arbitrary; This happens if and only if the variable y does not occur
in the parent of φ.

(b) y =
(
d
√
ŷ, π,F

)
; structural degree shift; Here d is the gcd of all occurrences

of y in φFπ , and ŷ is a shadow variable for y.

(c) y = (e, π,F); Here (e, π,F) is a structural test point produced during
elimination set computation for the parent formula of (Y, φ, s) and the
variable y.
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The nodes of a QE tree are divided into three disjoint categories containing
work, success, and failure nodes, respectively. The work nodes are internal QE
tree nodes that have not been expanded yet, success nodes are leaves that do
not contain a variable for elimination, and failure nodes are nodes that cannot
be properly expanded because of a failure. A container is a data structure
containing all nodes of one category. Usually it is a queue or a stack. We will
see that using a queue for the container of work nodes executes a breadth-first
search through the QE tree, and a stack of work nodes executes a depth-first
search through the QE tree. To prevent solving the same QE problem twice,
we also have a hash table H containing quantifier-free formulas. The hash table
H is populated during the search though a QE tree with formulas coming from
the nodes of the tree. Keys of H are pairs of the number of variables and the
number of atomic formulas, and values of H are quantifier-free formulas.

6.2.2 The Block Loop
The elimination of a block of quantifiers is done by block-loop given below.
It manipulates with containers of QE tree nodes, expands work nodes, and
calls elimination set computation and virtual substitution subroutines. In the
following we denote the three containers of work, success, and failure nodes by
W , S, and F , respectively.

Algorithm block-loop(X,ϕ).
Input: a set of variables X = {x1, . . . , xn} and an ∧-∨-combination of Tarski
atomic formulas ϕ.
Output: containers S and F containing QE nodes representing an equivalent of
∃X(ϕ) = ∃xn . . . ∃x1(ϕ). If F = ∅, then the elimination of ∃X from ∃X(ϕ) was
successful, and S contains a quantifier-free equivalent of ∃X(ϕ).

1. W := ∅; S := ∅; F := ∅; H := ∅

2. Insert node (X,ϕ, ∅) into W .

3. While W 6= ∅ do

3.1. Take a node (Y, φ, s) from W .
3.2. If s 6= ∅, then

3.2.1. Apply the structural virtual substitution s to φ and simplify.
3.2.2. For each disjunction member ψ of the resulting formula do
3.2.2.1. Insert (Y, ψ, ∅) into W .

3.2.3. Continue with step 3.
3.3. If φ is in the hash table H and s is not of the form y = arbitrary,

then continue with step 3.
3.4. If φ is not in the hash table H, then insert φ into H.
3.5. If φ is “true,” then

3.5.1. W := ∅; S := ∅; F := ∅
3.6. If Y = ∅, then

3.6.1. Insert (Y, φ, ∅) into S.
3.6.2. Continue with step 3.
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3.7. expand-node(Y, φ, ∅)

4. Return S and F .

Algorithm block-loop begins by inserting the root node of the to-be con-
structed QE tree into the container of working nodes W . Each iteration of
the block loop in step 3 first checks whether we need to apply s to the taken
working node. If this is the case, we carry out the structural virtual substitu-
tion s accordingly using the approach described in Subsection 6.1.2. Putting in
step 3.2.2 all the resulting disjuncts into the working container W , we ensure
that they will be taken later with s = ∅.

In step 3.3 we have s = ∅, i.e., no structural virtual substitution needs to be
applied to φ, and we can continue with the next variable. First we check whether
φ was already considered as a QE subproblem. If this is not the case, we add it
to the hash table H. If there is a variable to eliminate, then we expand the node
(Y, φ, ∅) in step 3.7. Otherwise, we are done with the node and insert it into the
success container. If we found “true,” then we empty all three containers. This
means that we will eventually add “true” to the success container after fixing
substitutions y = arbitrary for every remaining y in Y . This becomes clear from
expand-node that constructs the children of an internal node in the QE tree:

Algorithm expand-node(Y, φ, s).
Input: a node (Y, φ, s) of a QE tree with s = ∅.
Output: no meaningful return value; We directly modify W , S, and F .

1. For each variable y ∈ Y , considered in some prescribed ordering, do

1.1. If y does not occur in φ, then
1.1.1. Insert (Y \ {y}, φ, y = arbitrary) into W .
1.1.2. Return.

2. For each variable y ∈ Y , considered in some prescribed ordering, do

2.1. Ey := s-shift(φ, y)
2.2. If Ey 6= ∅, then

2.2.1. For each ( d
√
ŷ, π,F) ∈ Ey do

2.2.1.1. Insert
(
(Y \ {y}) ∪ {ŷ}, φ, y = ( d

√
ŷ, π,F)

)
into W .

2.2.2. Denote by P the positions of all structural degree shift test points
in Ey.

2.2.3. Insert
(
Y, φP , ∅

)
into W .

2.2.4. Return.

3. If variable selection strategy 1, then

3.1. Let y be the minimum variable in Y w.r.t. some prescribed ordering.
3.2. Compute a structural elimination set Ey for φ and y.
3.3. If this failed, then

3.3.1. Insert (Y, φ, ∅) into F .
3.3.2. Return.

3.4. For each (e, π,F) ∈ Ey do
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3.4.1. Insert
(
Y \ {y}, φ, y = (e, π,F)

)
into W .

3.5. Return.

4. If variable selection strategy 2, then

4.1. For each variable y ∈ Y , considered in some prescribed ordering, do
4.1.1. Compute a structural elimination set Ey for φ and y.
4.1.2. If this was successful, then
4.1.2.1. For each (e, π,F) ∈ Ey do

Insert
(
Y \ {y}, φ, y = (e, π,F)

)
into W .

4.1.2.2. Return.
4.2. Insert (Y, φ, ∅) into F .
4.3. Return.

5. M := ∅

6. For each variable y ∈ Y do

6.1. Compute a structural elimination set Ey for φ and y.
6.2. If this was successful, then add the pair (y,Ey) to M .

7. If M = ∅, then

7.1. Insert (Y, φ, ∅) into F .
7.2. Return.

8. If variable selection strategy 3, then

8.1. Pick a pair (y,Ey) from M with “the best” elimination set Ey.
8.2. For each (e, π,F) ∈ Ey do

8.2.1. Insert
(
Y \ {y}, φ, y = (e, π,F)

)
into W .

8.3. Return.

9. If variable selection strategy 4, then

9.1. For each pair (y,Ey) ∈M do
9.1.1. Substitute the set Ey for y into φ by means of structural VS.

9.2. Pick the pair (y,Ey) that yielded “the best” resulting formula.
9.3. For each (e, π,F) ∈ Ey do

9.3.1. Let ψ be the formula obtained by substituting e for y into φFπ .
9.3.2. Insert (X \{y}, ψ′, ∅) intoW for every disjunct ψ′ of the formula

ψ after simplification.
9.4. Return.

The procedure expand-node constructs the children of an internal node in
a QE tree. In step 1 we first check whether there exists a variable in Y , which
does not occur in φ.

Then the procedure s-shift of Subsection 4.2.2 tries a structural degree
shift w.r.t. each π ∈ Pos(φ). Since the resulting nodes are put into W and
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eventually considered in some later iteration of block-loop, this implicitly
simulates the recursive algorithm s-preproc discussed below Theorem 77 in
Subsection 4.2.2. If (Y, φ, s) was created from its parent by applying a struc-
tural degree shift y =

(
d
√
ŷ, π,F

)
, then the recursive depth could be bounded by

setting an upper bound on the number of consecutive structural degree shifts
w.r.t. shadow variables.

Our implementation does not call s-shift in step 2.1 though. It simply
tries whether a global degree shift for y and φ is applicable. Observe that this
cannot lead to a consecutive recursive calls as when using s-preproc, because
a global degree shift is applicable at most once w.r.t. any particular variable.
Furthermore, when a global degree shift is applicable, then φP is obviously
equivalent to “false” in step 2.2.3.

It is noteworthy that for a “successful” structural degree shift elimination
set we obtain in step 2.2.3 a formula φP that does not contain y. First, this
means that the maximum degree of ŷ after shift will be lower than the degree
of y in φ. Second, if φP is “false,” e.g., when using a global shift, then it can
be dropped directly instead of inserting it into W . This is what was implicitly
done in our example QE tree in Figure 6.1 in node ({y, z}, ϕ2).

In step 3 we know that each variable from Y in fact occurs in φ, and no struc-
tural degree shifts are applicable. Therefore, we enter the core of expand-node,
i.e., a variable selection strategy. We apply one of the following four variable
selection strategies:

1. Use the minimum variable y ∈ Y w.r.t. some prescribed total ordering.

2. Use the first feasible, i.e., “non-failing” variable in Y w.r.t. some prescribed
total ordering.

3. Decide which variable from Y to use by looking at the obtained structural
elimination sets.

4. Decide which variable from Y to use by eliminating each variable and by
looking at the resulting equivalents.

Each computation of a structural elimination set in any of the four strategies
is done as we have described in Subsection 6.1.1.

A natural total ordering of the variables used in strategies 1 and 2 satisfies
x1 ≺ · · · ≺ xn, whereas all the shadow variables x̂i,j introduced for xi satisfy
xi ≺ x̂i,j ≺ xi+1. Combined with strategy 1, this means that we eliminate
the quantifiers from the inside to the outside in ∃xn . . . ∃x1(ϕ), using as many
shadow quantifiers for xi as needed, eliminating them right after xi.

The default variable selection strategy of the Redlog’s original implementa-
tion, and also of our implementation, is strategy 3. However, our implementa-
tion selects “the best” structural elimination set just by counting the number
of test points. Note that this choice can be significantly improved by taking
the degrees and the number of other quantified variables and parameters in the
computed elimination sets into account.

The greedy strategy 4 might seem to be the best choice among the four
strategies. Note that it is the most costly one, and it does not guarantee to
obtain the best results after eliminating the whole quantifier block.

An implementation of block-loop needs to keep only the actual working
nodes and leaves of the tree in memory. Rest of the tree can be deleted by
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simply dropping the expanded nodes as we do it tacitly in block-loop. If
one is interested in obtaining the whole tree, it is straightforward to adjust
block-loop so that each node contains a reference to its parent. This can
be then used to investigate the whole quantifier elimination tree, or as a basis
for extended quantifier elimination of Section 5.1 and our EQR post-processing
method of Section 5.3.

6.3 Computational Experiments
Here we present computational experiments carried out with our implementation
whose underlying principles were described in previous sections. The aim is to
compare the Redlog’s original implementation of quadratic virtual substitution
with our implementation both without and with clustering. We are going to
compute a number of real quantifier elimination examples coming from three
different example sets. To begin with, we discuss each of these example sets.

Example Sets

The first example set is referred to as “Bath” in the following. This is an example
bank of various benchmark problems for CAD-based algorithms.3 This database
has been introduced and its examples thoroughly explained by Wilson in [87].
It contains 78 examples, but only 51 of them are real quantifier elimination
problems. The rest are quantifier-free Tarski formulas, and the task in each
case is to construct a CAD or a truth table invariant CAD [10] of the real
variable space w.r.t. the input formula. For this reason we consider here only
the 51 quantifier elimination problems.

The second example set we consider is called “Regressions.” These examples
are part of the Reduce’s source tree,4 where they are used mainly for daily-build
testing and benchmarking. Again, this set contains much more examples testing
also other parts of Redlog, but for our purposes here only 19 real quantifier
elimination problems among them are relevant.

The third example set “Remis” originates from an example database (Redlog
Example Management and Information System) that has been created and is
maintained by the senior Redlog developers.5 The subset of those examples
considered here takes all the 154 real quantifier elimination examples from the
Remis database.

We point to the fact that each of these three sets consists of relevant real-
world examples that have been considered in a wide variety of scientific and
engineering fields during the last more than twenty years. Since these examples
were thoroughly discussed in more than sixty scientific publications, it is not
possible to explain the examples in detail here.

To get an impression about the origin of a few of the examples though, we
mention here explicitly five of them, namely: “57-joukowsky-1,” “gatermann,”
“ab07hopf9,” “sturm99a_ex3-22,” and “linequadbe.” These are the names we
use to refer to the examples in Appendix B, where we give a thorough listing of
results of computational experiments.

3V4.0 hosted at http://www.cs.bath.ac.uk/~djw42/triangular/examplebank.html
4SVN revision 3765 of svn://svn.code.sf.net/p/reduce-algebra/code/trunk/packages/

redlog/regressions/reals
5State as of August 04, 2016, hosted at http://www.redlog.eu/remis

http://www.cs.bath.ac.uk/~djw42/triangular/examplebank.html
svn://svn.code.sf.net/p/reduce-algebra/code/trunk/packages/redlog/regressions/reals
svn://svn.code.sf.net/p/reduce-algebra/code/trunk/packages/redlog/regressions/reals
http://www.redlog.eu/remis


6.3. COMPUTATIONAL EXPERIMENTS 173

The first mentioned example is inspired by a Joukowski conformal map.
More precisely, one wants to decide the validity of an identity over the complex
plane [87, Chapter 6]. The second example comes from the area of algebraic biol-
ogy, more precisely from the oscillation analysis of gene regulatory networks [9].
The third example is a highly nonlinear formula coming from the area of Hopf
bifurcation analysis considered in [37]. The fourth example comes from the area
of automated geometric theorem proving and formalizes a variant of Steiner-
Lehmus theorem [67]. Finally, the fifth example originates from the engineering
field of computational mechanics, more particularly from the boundary element
analysis [43].

For a thorough explanation of each of the examples listed in Appendix B
we refer the reader to respective original publications, which can be found as
follows:

1. The name of each example in the Bath set consists of an index number
and a description shortcut in the CAD example bank, so each example is
easily found in the example bank using this information. Consequently,
the main reference point for any example from the CAD example bank is
the dissertation by Wilson [87]. It discusses the majority of the examples
in the example bank itself, and contains references to publications from
the CAD community, which originally considered particular examples.

2. The Regressions example set is best explored by downloading the test files
from the SVN repository, because the example names correspond with
test file names there. These test files contain comments and references to
scientific literature they are based on or taken from.

3. Finally, the Remis example set is thoroughly explained on its web page,
which contains detailed references and a number of papers ready for down-
load. To obtain detailed information on an example, it suffices to query
the web page for the example name.

Additional Features of the Redlog’s Original Implementation

Before discussing the actual experiments and outcomes, we need to point to
substantial differences between our research prototype implementation and the
Redlog’s mature original implementation of the quadratic virtual substitution.

Since Redlog has been actively developed and improved during the last two
decades, it contains a much richer palette of features than our implementation.
The features relevant for our experiments here are the following: positive real
quantifier elimination, generic real quantifier elimination, extended real quan-
tifier elimination with and without answers, and combinations thereof.

Positive real quantifier elimination assumes that every variable (a quantified
variable as well as a parameter) occurring in the input formula ϕ is strictly pos-
itive. This seemingly simple assumption has huge practical impact on the whole
quantifier elimination process, and can be exploited intensively to reduce the
sizes of elimination sets, speed up virtual substitution procedures, and simplify
quantifier-free formulas. Positive real QE is of tremendous importance for ex-
amples coming from biology and chemistry, where masses or volumes are often
exclusively positive quantities.
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Generic real quantifier elimination is allowed to make assumptions of the
form r 6= 0, where r ∈ Z[u]. As a result of a generic QE run on an input
formula ζ one obtains a pair

(
{ri 6= 0}i, ψ

)
such that

(∧
i ri 6= 0

)
−→ (ζ ←→ ψ)

for a quantifier-free formula ψ. In other words ψ is a “generic” quantifier-
free equivalent of ζ, i.e., ψ is guaranteed to be equivalent to ζ only when the
parameters have “generic” values satisfying

∧
i ri 6= 0. The method of generic

quantifier elimination was originally motivated by automated theorem proving
in geometry, where one usually rules out uninteresting situations by statements
like “Since three vertices of a triangle do not lie on a line, we w.l.o.g. have. . . ”
Something similar is done automatically by generic quantifier elimination by
making assumptions that some polynomials from Z[u] are nonzero during the
quantifier elimination process.

Extended quantifier elimination as a concept has been discussed in Chap-
ter 5, where we have also shown how to post-process nonstandard answers to
obtain standard real numbers for fixed values of the parameters. Moreover, we
have reported on our successful implementation of the post-processing method
within the quadratic quantifier elimination in Redlog’s original implementation.

Computations and Results

All of the Redlog additional features discussed above have been successfully
applied to many examples in our example sets. However, to make the compar-
ison with our implementation—that does not support any of these features—
meaningful, we simply modified the examples to use only the standard quadratic
quantifier elimination, i.e., to always call only rlqe instead of other calls of the
additional Redlog features.

Furthermore, some examples in the example sets Regressions and Remis
were originally records of interactive Redlog computations containing a number
of successive quantifier elimination calls. In such cases we manually extracted
the formulas that enter quantifier elimination. This often meant that some
simplifications were not done, or that more quantifiers were left in an input
formula for elimination. Of course, in each case a formula in our example set is
equivalent to its corresponding formula in the original example. In this way we
have obtained by our manual extraction, e.g., from “sw97_ex12” two examples,
namely “sw97_ex12-1” and “sw97_ex12-2,” as we can see in Appendix A.

Observe that with the Bath example set we simply had to convert the formula
from the Qepcad input format into the Redlog input format, because the Qepcad
input format allows one to provide exactly one prenex formula on the input.

After all this preprocessing we finally obtained our homogeneous sets of
examples, where each example is a Redlog file containing exactly one input
Tarski formula in the prenex normal form. The task of all three examined
implementations is to eliminate the quantifiers without using any additional
features, i.e., by using only the standard real quantifier elimination by virtual
substitution.

All computations have been carried out with the CSL variant of Reduce, revi-
sion 3765, using 4 GB RAM on a 2.4 GHz Intel Xeon E5-4640 running 64 bit De-
bian Linux 8.3 with the time limit of one hour user time per example. Since our
implementation is a part of Redlog, it is sufficient to go on ofsfvs; in a Redlog
session to activate its use instead of the Redlog’s original implementation, which
is in use by default. Note that clustering is on by default in our implementation;
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Original Without Clustering With Clustering

Bath Example Set
Timeout 0 0 0
Fail 6 2 2
Partial 8 11 11
Success 37 38 38

Regressions Example Set
Timeout 0 0 0
Fail 2 2 2
Partial 3 3 2
Success 14 14 15

Remis Example Set
Timeout 10 7 6
Fail 9 5 5
Partial 7 8 6
Success 128 134 137

Table 6.1: Summary of results of the computational experiments carried out
on the example sets Bath, Regressions, and Remis containing 51, 19, and 154
examples, respectively.

to turn it off, one executes symbolic; rlclustering!* := nil; algebraic;.
To measure in each case only the performance of the quantifier elimination by
virtual substitution, we furthermore disabled the Redlog’s default feature to
call a “fallback” QE method—which is usually a CAD algorithm—when virtual
substitution fails. This is done by executing off rlqefb; in a Redlog session.

Table 6.1 gives a summary of the computational results; detailed information
can be found in Appendix A. The columns “Original,” “Without Clustering,”
and “With Clustering” refer to the default Redlog’s original implementation of
quadratic quantifier elimination, our implementation without and with cluster-
ing, respectively.

For each example set and implementation, we divided the examples into
four groups: The “Timeout” row shows the number of examples on which an
implementation did not terminate within the one hour user time limit. The
“Fail” row lists the number of examples on which an implementation returned
a formula with the same number of quantifiers as the input formula, i.e., the
degrees of all the quantified variables in the input formula were too high for an
implementation to eliminate. The “Partial” row shows the number of examples
on which at least one quantifier was successfully eliminated. Finally, the “Suc-
cess” row contains the number of examples where an implementation was able
to eliminate all quantifiers from the input formula.

The main message of Table 6.1 is that our implementation with cluster-
ing never eliminates fewer quantifiers than the Redlog’s original implementa-
tion. Moreover, a careful look at the full listing in Appendix A reveals that
for every example our implementation with clustering was able to eliminate at
least as many quantifiers as the Redlog’s original implementation. Moreover, in
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cases when some quantifiers were left, our implementation left the same or even
smaller number of quantifiers than the Redlog’s original implementation.

At the same time, we point to the fact that the numbers of atomic formulas
of the resulting formulas with the same number of remaining quantifiers differ
dramatically in some cases. A few extreme cases are:

• sw97_ex20-2, where the Redlog’s original implementation returned a re-
sulting quantifier-free formula with 12,313 atomic formulas, whereas our
implementation with clustering returned a quantifier-free equivalent with
1,792 atoms,

• netan1-09, where the Redlog’s original implementation returned a result-
ing quantifier-free equivalent with 650 atoms, and the result obtained by
our implementation with clustering contained only 5 atoms,

• ab07hopf9, where the Redlog’s original implementation returned a formula
with two quantifiers left having 2,463 atoms, whereas our implementation
with clustering yielded a formula with two quantifiers and 30,143 atomic
formulas,

• dsw96_ex10, where with clustering we obtained a quantifier-free equiva-
lent with 815 atoms, whereas without clustering we computed a quantifier-
free formula with 20,497 atomic formulas,

• sw97_ex17, where our implementation with clustering yielded a quantifier-
free equivalent with 22,608 atoms, whereas without clustering it computed
a quantifier-free equivalent with only 572 atoms.

The reason that the resulting formulas obtained by our implementation are
sometimes longer is most probably the fact that our implementation uses a
simple variable selection heuristic and explores a completely different QE tree
than the Redlog’s original implementation.

The most probable reason why our implementation without clustering some-
times returns shorter formulas than with clustering is that longer non-clustered
formulas possibly allow for more simplifications, which can be sometimes bene-
ficial and greatly exploited by the simplifier.

Comparing the overall running time of our implementation using cluster-
ing with the running time of the Redlog’s original implementation on examples
where both implementations terminated within the one hour user time limit
we observed that our implementation is slower by factor ∼3.4. Most probably
this is caused by numerous factorizations, multiple formula traversals, and more
complex virtual substitution procedures. Besides these, one also has to take into
account that the implementations construct different QE trees containing dif-
ferent subproblems allowing different simplifications. To precisely compare the
running time of the implementations, one would need to compare the running
time on the same QE trees, which is in principle not possible.

To sum up, our experiments point to a great practical potential of the meth-
ods presented in this thesis. Observe that our implementation essentially im-
plements only virtual substitution for degree three, clustering, and structural
virtual substitution. More sophisticated degree shift techniques, bound selection
strategies, or variable selection heuristics were not implemented at all. Despite
these obvious limitations, our implementation never eliminates fewer quantifiers,
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and often outperforms the Redlog’s original implementation—which has been
developed and improved over the last two decades—in the number of eliminated
quantifiers on the problem sets considered in this section. This strongly sug-
gest that implementations extending our implementation with the mentioned
enhancements and optimizations along with features like positive or generic
quantifier elimination will significantly shift the boundary of applicable real
quantifier elimination in the sciences and engineering. Of course, this is left as
the most exciting future direction of this thesis.

6.4 Conclusions
In this chapter we have discussed practical issues one faces when implementing
a virtual substitution-based quantifier elimination algorithm. We have shown
how to efficiently implement some of the theoretical concepts presented earlier in
this thesis. Based on our structural virtual substitution scheme of Chapter 3, we
have discussed how to implement the elimination of one existential quantifier and
consequently of one existential quantifier block. We have shown on more than
200 relevant real-world quantifier elimination examples that our implementation
relying on the principles discussed in this chapter outperforms the Redlog’s
original implementation of the quadratic virtual substitution in the following
sense:

1. Our implementation never eliminates fewer quantifiers, and

2. in a number of cases it eliminates even more quantifiers.

This shows a great practical potential of the theoretical concepts developed in
this thesis.
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Chapter 7

Conclusions and Future
Directions

7.1 Summary
We have studied methods for effective quantifier elimination in real closed fields
based on virtual substitution.

We have devised a uniform framework for real quantifier elimination based
on virtual substitution, which can be instantiated to arbitrary but bounded de-
grees of quantified variables. Instantiation for a particular degree requires only
three algorithms for computing candidate solutions, guards, and performing vir-
tual substitution into an atomic formula, respectively. We have provided such
instantiations until degree three. Our work comprises numerous improvements,
like smaller elimination sets and clustering, which are applicable to and signif-
icantly improve even the traditional approaches with root expressions due to
Weispfenning [84].

In particular, we have shown how to take advantage of the Boolean structure
of an input formula using a structural quantifier elimination algorithm scheme
based on the concepts of Gauss and co-Gauss subformulas, prime constituents,
and prime constituent decompositions. We have shown how the Boolean struc-
ture can be used during substitution of a test point and during bound selection
to obtain smaller elimination sets compared to approaches ignoring the Boolean
structure. Our framework allowed us to reformulate as virtual substitution
and to even generalize heuristic of degree shifts, which decreases the degrees of
quantified variables in certain cases. We have made explicit limitations of that
heuristic technique by showing that a systematic exploitation of the idea can in
rare cases lead to naive DNF computation of the input formula.

For existential problems, we have described extended quantifier elimination
within our framework. The approach of extended quantifier elimination yields in
addition to quantifier-free equivalents also answers for the quantified variables.
On these grounds we have generalized a recent post-processing technique for
eliminating nonstandard symbols from answers, which we had presented for the
quadratic case in [47].

An implementation of our framework provides an extension of the computer
logic system Redlog with quantifier elimination by virtual substitution that is

179
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complete up to degree three of a quantified variable. We have discussed here
practical implementation aspects including data structures for elimination of a
block of quantifiers, prime constituent decomposition, and lazy structural virtual
substitution. We have conducted and interpreted comprehensive computational
experiments, which demonstrate the relevance of our theoretical concepts and
the efficiency of our implementation. The results are encouraging: Our research
prototype implementation never eliminates fewer quantifiers than the Redlog’s
original implementation of quadratic virtual substitution. In many cases of the
real quantifier elimination example instances, we were able to eliminate more
quantifiers than the Redlog’s original implementation.

7.2 Some Future Directions
The difficulties of the tasks discussed below range from technical implementation
improvements to open research questions. We organize the material according
to related parts of the thesis.

Virtual Substitution Framework

In Subsection 2.5.4 we have discussed how to derive guards and virtual substi-
tution formula schemes for degree four. The next step is to actually derive full
virtual substitution formula schemes as with the quadratic and cubic cases in
Appendix A. Recall that thanks to the modularity of our approach, integration
into our implementation would then be straightforward.

The central idea with the derivation of virtual substitution formula schemes
in Subsection 2.5.4 is to consider the mutual geometric position of two polynomi-
als to derive necessary and sufficient conditions on g % 0 to hold at a particular
root of f . As discussed there, the admissible regions of some particular root of
f for g % 0 to hold is described by sign conditions on the derivatives of f and g.
It would be a great step forward to produce practically useful sign conditions
automatically. This is in principle possible thanks to real quantifier elimination
but infeasible in practice. An efficient special-purpose algorithm would then rep-
resent a machine support for the production of implementations for increasing
degrees, which could be combined with subsequent human optimizations.

It is by no means clear whether the formula schemes of Appendix A are
of optimal length. Replacing them with shorter quantifier-free equivalents, if
possible, by combining automated methods and human intelligence is a natural
step that would significantly improve the performance of all virtual substitution
algorithms presented in this thesis. It is noteworthy that in the past, mathemati-
cians have been attracted to finding optimal solutions to particular quantifier
elimination problems, e.g., Kahan’s Problem [50]. Focusing those techniques
and efforts on our quantifier elimination formula schemes would improve not
only a single result but a powerful procedure for automatically producing such
results.

The principal difference between our test points, which are essentially para-
metric root descriptions, and the elimination terms in the context of quadratic
and linear virtual substitution is that the latter are viewed as terms in some
extension language L′ of the Tarski language L. It is clear that test points
within our framework could be formalized as terms in a suitable extension lan-
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guage of L as well. However, for practical applications it is important to find a
“natural” extension language that allows arithmetic or normal form computa-
tions of our test points regarded then as terms. This would allow us to carry
out back-substitution similarly to our discussion in Section 5.2. Furthermore,
computing from two parametric root descriptions a parametric root description
representing their arithmetic mean could be similar to what Weispfenning [81]
did to avoid infinitesimals in an early version of the linear virtual substitution,
or what Dolzmann [25, Section 3.7] did when considering formulas with only
one nonlinear quadratic constraint. Suitable extended terms would allow to lift
these approaches to higher degrees and try them in practice.

It would be interesting to try and adjust our algorithms to operate on non-
standard expressions directly, i.e., without calling an expansion algorithm like
expand-eps-at before substituting (f, S)±ε or ±∞. Instead one would simply
substitute (f, S) ± ε and ±∞ by means of some virtual substitution formula
schemes, obtaining formulas possibly containing nonstandard symbols. An ap-
proach working with nonstandard symbols would allow to eliminate all quan-
tifiers to obtain a quantifier-free equivalent over a nonstandard extension field
of R. Such nonstandard quantifier-free equivalent would afterwards have to be
equivalently rewritten into a Tarski formula. It should be investigated whether
this is practically useful, what simplifications of quantifier-free formulas would
be feasible in the presence of nonstandard symbols, and how one could efficiently
rewrite such nonstandard formulas into Tarski equivalents.

Structural Virtual Substitution

In [25, Section 3.7] Dolzmann considered formulas with only one nonlinear
quadratic constraint. He proposed elimination sets using the derivative of that
quadratic constraint along with other linear constraints, preventing the use of
quadratic elimination terms altogether.

First, we believe that this can be easily extended to the cubic and higher
degree cases. Second, it would be interesting to what extent this could be
combined with our concept of structural virtual substitution and conjunctive
associativity. This could yield concepts like special cases w.r.t. a subformula or
special cases w.r.t. other conjunctively associated formulas in a formula, possibly
generating elimination sets containing test points of lower degrees.

Degree Shift

In Section 4.2 we conjectured that the degree shift approach trying all positions
also constructs the DNF of certain “bad” formulas φ. However, Lemma 75 used
in the proof of this fact for s-prepoc-at does not hold. Possible future work in
this direction would be to prove that φ is “bad” also for s-preproc, or to come
up with some other “bad” formulas for which s-preproc computes the DNF.

In Section 4.3 we constructed “bad” formulas φ that allow for structural
degree shifts lowering the degree of a quantified variable only after full DNF
computation. The degrees of x in these formulas were extremely high, so it
would be interesting to asymptotically estimate the bit complexity of these for-
mulas using the Prime Number Theorem. Furthermore, it would be interesting
to investigate whether there exist shorter “bad” formulas.
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Answers for Virtual Substitution

Recall from our discussion in Section 5.4 on finding simple parametric root de-
scriptions representing rationals or even integers that there is often a consider-
able degree of freedom in how we achieve this. In the future this can be further
exploited in various interesting ways: For instance, using extended quantifier
elimination methods as a theory solver in the context of Satisfiability Modulo
Theory (SMT) solving [58], in particular when combining several theories in
a Nelson–Oppen [56] style, one is specifically interested in avoiding identical
answers for different variables.

A theoretically way more challenging step would be the generalization of
the method of Chapter 5 to the parametric case. Recall that Proposition 86
has shown that it is not possible in general to determine constant real standard
values for nonstandard symbols to straightforwardly transform the nonstandard
answers to standard answers. Nevertheless, it might well be possible to devise on
the basis of our work a complete method for symbolically replacing nonstandard
answers with standard ones. In the example we considered in Proposition 86 the
answer x =

(
x − 1, (1, 1)

)
− ε1 could be replaced, e.g., with a standard answer

x =
(
2x−u−1, (1, 1)

)
yielding a standard extended quantifier elimination result.

Another theoretical challenge would be to generalize the concept of extended
quantifier elimination and our answer correcting procedure for richer quantifier
prefixes by allowing at least one quantifier alternations. For existential variables
we should be then able to obtain from our quantifier elimination procedure an-
swers as “Skolem functions” of parameters and universally quantified variables.

Implementation

There is a big number of possible future developments of our implementation
described in Chapter 6. We therefore mention here only a few of them.

The easiest improvement is probably to hook into the traversal of the formula
when substituting an elimination term e into ϕ. One could save some time
consuming virtual substitutions by traversing the Boolean structure of ϕ and
stop substituting when after simplification “true” or “false” are with “∨” or “∧,”
respectively.

Our implementation does not yet support the 0-1 ILP-based bound selection
strategy discussed in Section 3.4, so a possible next step is to implement it and
integrate it into our implementation.

Our variable selection heuristic is currently very simple: We merely count
the number of test points in an elimination set. Here one could definitely do
better by preferring linear to quadratic to cubic test points. Such a detection
is already a part of the Redlog’s original implementation. Moreover, analyzing
other variables occurring in the parametric root descriptions during the com-
parison of elimination sets, one should prefer elimination sets containing fewer
quantified variables and with variables of lower degrees.

In [25, Chapter 4], Dolzmann introduced various theory concepts in the con-
text of simplification and quantifier elimination. A theory is here a set of Tarski
atomic formulas, which is assumed to holds. The various concepts can tremen-
dously simplify computed elimination sets or resulting quantifier-free equivalents
obtained by virtual substitution. Parts of these concepts have been successfully
implemented in the Redlog’s original implementation.
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The features of the Redlog’s original implementation we had to disable for
our computational experiments in Section 6.3 like positive or generic quantifier
elimination should definitely be added to our implementation. These techniques
are known to be crucial for the practical applicability of quantifier elimination
by virtual substitution with many problems from the sciences and engineering.

One effect of our smaller elimination sets and bound selection strategies is
that we can often strengthen a formula a 6= 0 occurring in a guard to a >

< 0,
i.e., we know the sign of a. In contrast, the Redlog’s original implementation
always takes a 6= 0. Using this fact could tremendously simplify subformulas,
e.g., by factoring out a where possible. However, one would have to adjust the
simplifier of quantifier-free Tarski formulas. Redlog’s simplifier is namely tuned
to work optimally in cooperation with the Redlog’s original implementation.

To conclude we would like to emphasize once more that in spite lacking all
features discussed above our implementation already competes well with the
Redlog’s original mature implementation of virtual substitution. Therefore, we
are confident that a more elaborate implementation of the novel framework de-
veloped in this thesis will significantly improve the applicability of real quantifier
elimination in computer science, engineering, and the sciences.
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Appendix A

Formula Schemes for
Virtual Substitution

In this appendix we list all virtual substitution formula schemes necessary to
realize algorithms vs-prd-at-2 and vs-prd-at-3 given in Chapter 2. Note that
here we also use the convention introduced in Section 2.5: Instead of referring
to a real d-type t by its full sequence of signs, we abbreviate this and use
the respective number of t in the list of real types given at the beginning of
Subsection 2.5.2.

A.1 The Quadratic Case
Let f = ax2 + bx+ c, where a, b, c ∈ Z[u].

Target Atomic Formula of Degree One

Let g = a∗x+ b∗, where a∗, b∗ ∈ Z[u]. Then we have:

(g = 0)
[
x // (f, (1, 1))

]
:

2aa∗b∗ − a∗2b ≥ 0 ∧ ab∗2 + a∗2c− a∗bb∗ = 0

(g = 0)
[
x // (f, (1, 2))

]
:

2aa∗b∗ − a∗2b ≤ 0 ∧ ab∗2 + a∗2c− a∗bb∗ = 0

(g = 0)
[
x // (f, (2, 1))

]
:

2ab∗ − a∗b = 0

(g < 0)
[
x // (f, (1, 1))

]
:

2ab∗ − a∗b < 0 ∧ ab∗2 + a∗2c− a∗bb∗ > 0 ∨
a∗ ≥ 0 ∧ (2ab∗ − a∗b < 0 ∨ ab∗2 + a∗2c− a∗bb∗ < 0)
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(g < 0)
[
x // (f, (1, 2))

]
:

2ab∗ − a∗b < 0 ∧ ab∗2 + a∗2c− a∗bb∗ > 0 ∨
a∗ ≤ 0 ∧ (2ab∗ − a∗b < 0 ∨ ab∗2 + a∗2c− a∗bb∗ < 0)

(g < 0)
[
x // (f, (2, 1))

]
:

2ab∗ − a∗b < 0

(g ≤ 0)
[
x // (f, (1, 1))

]
:

2ab∗ − a∗b ≤ 0 ∧ ab∗2 + a∗2c− a∗bb∗ ≥ 0 ∨
a∗ ≥ 0 ∧ ab∗2 + a∗2c− a∗bb∗ ≤ 0

(g ≤ 0)
[
x // (f, (1, 2))

]
:

2ab∗ − a∗b ≤ 0 ∧ ab∗2 + a∗2c− a∗bb∗ ≥ 0 ∨
a∗ ≤ 0 ∧ ab∗2 + a∗2c− a∗bb∗ ≤ 0

(g ≤ 0)
[
x // (f, (2, 1))

]
:

2ab∗ − a∗b ≤ 0

A.2 The Cubic Case
Let f = ax3 + bx2 + cx+ d, where a, b, c, d ∈ Z[u]. In the following we denote:

f ′ = 3ax2 + 2bx+ c,

f ′′ = 6ax+ 2b,
α1 = (f ′, (1, 1)),
α2 = (f ′, (1, 2)).

Target Atomic Formula of Degree One

Let g = a∗x+ b∗ be such that a∗ > 0. In the following we denote β = (g, (1, 1)).
Then we have:

(g = 0)
[
x // (f, (1, 1))

]
:

(f = 0)[x // β]

(g = 0)
[
x // (f, (2, 1))

]
:

(g = 0)[x //α1]

(g = 0)
[
x // (f, (2, 2))

]
:

(f = 0)[x // β] ∧ (g ≤ 0)[x //α2]

(g = 0)
[
x // (f, (3, 1))

]
:

(f = 0)[x // β] ∧ (g ≥ 0)[x //α1]

(g = 0)
[
x // (f, (3, 2))

]
:

(g = 0)[x //α2]
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(g = 0)
[
x // (f, (4, 1))

]
:

(f = 0)[x // β] ∧ (g ≥ 0)[x //α1]

(g = 0)
[
x // (f, (4, 2))

]
:

(f = 0)[x // β] ∧ (g ≤ 0)[x //α1] ∧ (g ≥ 0)[x //α2]

(g = 0)
[
x // (f, (4, 3))

]
:

(f = 0)[x // β] ∧ (g ≤ 0)[x //α2]

(g < 0)
[
x // (f, (1, 1))

]
:

(f > 0)[x // β]

(g < 0)
[
x // (f, (2, 1))

]
:

(g < 0)[x //α1]

(g < 0)
[
x // (f, (2, 2))

]
:

(f > 0)[x // β]

(g < 0)
[
x // (f, (3, 1))

]
:

(f > 0)[x // β] ∨ (g = 0)[x //α2]

(g < 0)
[
x // (f, (3, 2))

]
:

(g < 0)[x //α2]

(g < 0)
[
x // (f, (4, 1))

]
:

(f > 0)[x // β] ∨ (g ≤ 0)[x //α1]

(g < 0)
[
x // (f, (4, 2))

]
:

(g ≤ 0)[x //α2] ∨ (f < 0)[x // β] ∧ (g ≤ 0)[x //α1]

(g < 0)
[
x // (f, (4, 3))

]
:

(f > 0)[x // β] ∧ (g ≤ 0)[x //α2]

(g ≤ 0)
[
x // (f, (1, 1))

]
:

(f ≥ 0)[x // β]

(g ≤ 0)
[
x // (f, (2, 1))

]
:

(g ≤ 0)[x //α1]

(g ≤ 0)
[
x // (f, (2, 2))

]
:

(f ≥ 0)[x // β] ∧ (g ≤ 0)[x //α2]

(g ≤ 0)
[
x // (f, (3, 1))

]
:

(f ≥ 0)[x // β]

(g ≤ 0)
[
x // (f, (3, 2))

]
:

(g ≤ 0)[x //α2]
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(g ≤ 0)
[
x // (f, (4, 1))

]
:

(f ≥ 0)[x // β] ∨ (g ≤ 0)[x //α1]

(g ≤ 0)
[
x // (f, (4, 2))

]
:

(g ≤ 0)[x //α2] ∨ (f ≤ 0)[x // β] ∧ (g ≤ 0)[x //α1]

(g ≤ 0)
[
x // (f, (4, 3))

]
:

(f ≥ 0)[x // β] ∧ (g ≤ 0)[x //α2]

Target Atomic Formula of Degree Two

Let g = a∗x2 + b∗x + c∗, where a∗, b∗, c∗ ∈ Z[u]. Assume that a∗ > 0, and
denote Dg = b∗2 − 4a∗c∗, β1 = (g, (1, 1)), β2 = (g, (1, 2)). Then we have:

(g = 0)
[
x // (f, (1, 1))

]
:

Dg ≥ 0 ∧
(
(f = 0)[x // β1] ∨ (f = 0)[x // β2]

)
(g = 0)

[
x // (f, (2, 1))

]
:

(g = 0)[x //α1]

(g = 0)
[
x // (f, (2, 2))

]
:

Dg ≥ 0 ∧
(
(f = 0)[x // β1] ∧ (f ′′ ≥ 0)[x // β1] ∨
(f = 0)[x // β2] ∧ (f ′′ ≥ 0)[x // β2]

)
(g = 0)

[
x // (f, (3, 1))

]
:

Dg ≥ 0 ∧
(
(f = 0)[x // β1] ∧ (f ′′ ≤ 0)[x // β1] ∨
(f = 0)[x // β2] ∧ (f ′′ ≤ 0)[x // β2]

)
(g = 0)

[
x // (f, (3, 2))

]
:

(g = 0)[x //α2]

(g = 0)
[
x // (f, (4, 1))

]
:

Dg ≥ 0 ∧
(
(f = 0)[x // β1] ∧ (f ′ ≥ 0)[x // β1] ∧ (f ′′ ≤ 0)[x // β1] ∨
(f = 0)[x // β2] ∧ (f ′ ≥ 0)[x // β2] ∧ (f ′′ ≤ 0)[x // β2]

)
(g = 0)

[
x // (f, (4, 2))

]
:

Dg ≥ 0 ∧
(
(f = 0)[x // β1] ∧ (f ′ ≤ 0)[x // β1] ∨
(f = 0)[x // β2] ∧ (f ′ ≤ 0)[x // β2]

)
(g = 0)

[
x // (f, (4, 3))

]
:

Dg ≥ 0 ∧
(
(f = 0)[x // β1] ∧ (f ′ ≥ 0)[x // β1] ∧ (f ′′ ≥ 0)[x // β1] ∨
(f = 0)[x // β2] ∧ (f ′ ≥ 0)[x // β2] ∧ (f ′′ ≥ 0)[x // β2]

)
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(g < 0)
[
x // (f, (1, 1))

]
:

Dg > 0 ∧ (f < 0)[x // β1] ∧ (f > 0)[x // β2]

(g < 0)
[
x // (f, (2, 1))

]
:

(g < 0)[x //α1]

(g < 0)
[
x // (f, (2, 2))

]
:

Dg > 0 ∧
(
(f < 0)[x // β1] ∨ (f ′ = 0)[x // β1]

)
∧ (f > 0)[x // β2]

(g < 0)
[
x // (f, (3, 1))

]
:

Dg > 0 ∧ (f < 0)[x // β1] ∧
(
(f > 0)[x // β2] ∨ (f ′ = 0)[x // β2]

)
(g < 0)

[
x // (f, (3, 2))

]
:

(g < 0)[x //α2]

(g < 0)
[
x // (f, (4, 1))

]
:

Dg > 0 ∧
(
(f < 0)[x // β1] ∧ (f ′ ≥ 0)[x // β1] ∧ (f ′′ ≤ 0)[x // β1]

)
∧(

(f > 0)[x // β2] ∨ (g ≤ 0)[x //α1]
)

(g < 0)
[
x // (f, (4, 2))

]
:

Dg > 0 ∧
(
(f > 0)[x // β1] ∨ (g ≤ 0)[x //α1]

)
∧(

(f < 0)[x // β2] ∨ (g ≤ 0)[x //α2]
)

(g < 0)
[
x // (f, (4, 3))

]
:

Dg > 0 ∧
(
(f < 0)[x // β1] ∨ (g ≤ 0)[x //α2]

)
∧(

(f > 0)[x // β2] ∧ (f ′ ≥ 0)[x // β2] ∧ (f ′′ ≥ 0)[x // β2]
)

(g ≤ 0)
[
x // (f, (1, 1))

]
:

Dg ≥ 0 ∧ (f ≤ 0)[x // β1] ∧ (f ≥ 0)[x // β2]

(g ≤ 0)
[
x // (f, (2, 1))

]
:

(g ≤ 0)[x //α1]

(g ≤ 0)
[
x // (f, (2, 2))

]
:

Dg ≥ 0 ∧ (f ≤ 0)[x // β1] ∧ (f ≥ 0)[x // β2] ∧ (f ′′ ≥ 0)[x // β2]

(g ≤ 0)
[
x // (f, (3, 1))

]
:

Dg ≥ 0 ∧ (f ≤ 0)[x // β1] ∧ (f ′′ ≤ 0)[x // β1] ∧ (f ≥ 0)[x // β2]

(g ≤ 0)
[
x // (f, (3, 2))

]
:

(g ≤ 0)[x //α2]
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(g ≤ 0)
[
x // (f, (4, 1))

]
:

Dg ≥ 0 ∧
(
(f ≤ 0)[x // β1] ∧ (f ′ ≥ 0)[x // β1] ∧ (f ′′ ≤ 0)[x // β1]

)
∧(

(f ≥ 0)[x // β2] ∨ (g ≤ 0)[x //α1]
)

(g ≤ 0)
[
x // (f, (4, 2))

]
:

Dg ≥ 0 ∧
(
(f ≥ 0)[x // β1] ∧ (f ′ ≤ 0)[x // β1] ∨ (g ≤ 0)[x //α1]

)
∧(

(f ≤ 0)[x // β2] ∨ (g ≤ 0)[x //α2]
)

(g ≤ 0)
[
x // (f, (4, 3))

]
:

Dg ≥ 0 ∧
(
(f ≤ 0)[x // β1] ∨ (g ≤ 0)[x //α2]

)
∧(

(f ≥ 0)[x // β2] ∧ (f ′ ≥ 0)[x // β2] ∧ (f ′′ ≥ 0)[x // β2]
)

A.3 The Quadratic Case with Clustering
Let f = ax2 + bx+ c, where a, b, c ∈ Z[u].

Target Atomic Formula of Degree One

Let g = a∗x+ b∗, where a∗, b∗ ∈ Z[u]. Then we have:
(a∗x+ b∗ = 0)

[
x // (f, {(1, 1), (2, 1), (−1, 2), (−2, 1)})

]
:

2aa∗b∗ − a∗2b ≥ 0 ∧ ab∗2 + a∗2c− a∗bb∗ = 0

(a∗x+ b∗ = 0)
[
x // (f, {(1, 2), (2, 1), (−1, 1), (−2, 1)})

]
:

2aa∗b∗ − a∗2b ≤ 0 ∧ ab∗2 + a∗2c− a∗bb∗ = 0

(a∗x+ b∗ < 0)
[
x // (f, {(1, 1), (2, 1), (−1, 2), (−2, 1)})

]
:

2a2b∗ − aa∗b < 0 ∧ a2b∗2 + aa∗2c− aa∗bb∗ > 0 ∨
aa∗ ≥ 0 ∧ (2a2b∗ − aa∗b < 0 ∨ a2b∗2 + aa∗2c− aa∗bb∗ < 0)

(a∗x+ b∗ < 0)
[
x // (f, {(1, 2), (2, 1), (−1, 1), (−2, 1)})

]
:

2a2b∗ − aa∗b < 0 ∧ a2b∗2 + aa∗2c− aa∗bb∗ > 0 ∨
aa∗ ≤ 0 ∧ (2a2b∗ − aa∗b < 0 ∨ a2b∗2 + aa∗2c− aa∗bb∗ < 0)

(a∗x+ b∗ ≤ 0)
[
x // (f, {(1, 1), (2, 1), (−1, 2), (−2, 1)})

]
:

2a2b∗ − aa∗b ≤ 0 ∧ a2b∗2 + aa∗2c− aa∗bb∗ ≥ 0 ∨
aa∗ ≥ 0 ∧ a2b∗2 + aa∗2c− aa∗bb∗ ≤ 0

(a∗x+ b∗ ≤ 0)
[
x // (f, {(1, 2), (2, 1), (−1, 1), (−2, 1)})

]
:

2a2b∗ − aa∗b ≤ 0 ∧ a2b∗2 + aa∗2c− aa∗bb∗ ≥ 0 ∨
aa∗ ≤ 0 ∧ a2b∗2 + aa∗2c− aa∗bb∗ ≤ 0
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A.4 The Cubic Case with Clustering
Let f = ax3 + bx2 + cx+ d, where a, b, c, d ∈ Z[u]. In the following we denote:

f ′ = 3ax2 + 2bx+ c,

f ′′ = 6ax+ 2b,
α1 = (f ′, (1, 1)),
α2 = (f ′, (1, 2)).

Target Atomic Formula of Degree One

Let g = a∗x + b∗ be such that a∗, b∗ ∈ Z[u] and a∗ > 0. Let β = (g, (1, 1)).
Then we have:
(g = 0)

[
x // (f, (1, 1))

]
:

(f = 0)[x // β]
(g = 0)

[
x // (f, {(2, 1), (3, 1), (4, 1)})

]
:

(f = 0)[x // β] ∧ (g ≥ 0)[x //α1]

(g = 0)
[
x // (f, {(2, 1), (3, 2), (4, 2)})

]
:

(f = 0)[x // β] ∧ (f ′ ≤ 0)[x // β]

(g = 0)
[
x // (f, {(2, 2), (3, 2), (4, 3)})

]
:

(f = 0)[x // β] ∧ (f ′ ≥ 0)[x // β] ∧ (f ′′ ≥ 0)[x // β]

(g < 0)
[
x // (f, (1, 1))

]
:

(f > 0)[x // β]
(g < 0)

[
x // (f, {(2, 1), (3, 1), (4, 1)})

]
:

(f > 0)[x // β] ∨ (g < 0)[x //α1]

(g < 0)
[
x // (f, {(2, 1), (3, 2), (4, 2)})

]
:

(g < 0)[x //α2] ∨ ((f < 0)[x // β] ∧ (g < 0)[x //α1])

(g < 0)
[
x // (f, {(2, 2), (3, 2), (4, 3)})

]
:

(f > 0)[x // β] ∧ (g < 0)[x //α2]

(g ≤ 0)
[
x // (f, (1, 1))

]
:

(f ≥ 0)[x // β]
(g ≤ 0)

[
x // (f, {(2, 1), (3, 1), (4, 1)})

]
:

(f ≥ 0)[x // β] ∨ (g ≤ 0)[x //α1]

(g ≤ 0)
[
x // (f, {(2, 1), (3, 2), (4, 2)})

]
:

(g ≤ 0)[x //α2] ∨ ((f ≤ 0)[x // β] ∧ (g ≤ 0)[x //α1])

(g ≤ 0)
[
x // (f, {(2, 2), (3, 2), (4, 3)})

]
:

(f ≥ 0)[x // β] ∧ (g ≤ 0)[x //α2]
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Target Atomic Formula of Degree Two

Let g = a∗x2 + b∗x + c∗, where a∗, b∗, c∗ ∈ Z[u]. Assume that a∗ > 0, and
denote Dg = b∗2 − 4a∗c∗, β1 = (g, (1, 1)), β2 = (g, (1, 2)). Then we have:

(g = 0)
[
x // (f, (1, 1))

]
:

Dg ≥ 0 ∧ ((f = 0)[x // β1] ∨ (f = 0)[x // β2])

(g = 0)
[
x // (f, {(2, 1), (3, 1), (4, 1)})

]
:

Dg ≥ 0 ∧
(
(f = 0)[x // β1] ∧ (f ′ ≥ 0)[x // β1] ∧ (f ′′ ≤ 0)[x // β1] ∨
(f = 0)[x // β2] ∧ (f ′ ≥ 0)[x // β2] ∧ (f ′′ ≤ 0)[x // β2]

)
(g = 0)

[
x // (f, {(2, 1), (3, 2), (4, 2)})

]
:

Dg ≥ 0 ∧
(
(f = 0)[x // β1] ∧ (f ′ ≤ 0)[x // β1] ∨
(f = 0)[x // β2] ∧ (f ′ ≤ 0)[x // β2]

)
(g = 0)

[
x // (f, {(2, 2), (3, 2), (4, 3)})

]
:

Dg ≥ 0 ∧
(
(f = 0)[x // β1] ∧ (f ′ ≥ 0)[x // β1] ∧ (f ′′ ≥ 0)[x // β1] ∨
(f = 0)[x // β2] ∧ (f ′ ≥ 0)[x // β2] ∧ (f ′′ ≥ 0)[x // β2]

)
(g < 0)

[
x // (f, (1, 1))

]
:

Dg > 0 ∧ (f < 0)[x // β1] ∧ (f > 0)[x // β2]

(g < 0)
[
x // (f, {(2, 1), (3, 1), (4, 1)})

]
:

Dg > 0 ∧
(
(f < 0)[x // β1] ∧ (f ′ ≥ 0)[x // β1] ∧ (f ′′ ≤ 0)[x // β1]

)
∧(

(f > 0)[x // β2] ∨ (g < 0)[x //α1]
)

(g < 0)
[
x // (f, {(2, 1), (3, 2), (4, 2)})

]
:

Dg > 0 ∧
(
(f > 0)[x // β1] ∨ (g < 0)[x //α1]

)
∧(

(f < 0)[x // β2] ∨ (g < 0)[x //α2]
)

(g < 0)
[
x // (f, {(2, 2), (3, 2), (4, 3)})

]
:

Dg > 0 ∧
(
(f < 0)[x // β1] ∨ (g < 0)[x //α2]

)
∧(

(f > 0)[x // β2] ∧ (f ′ ≥ 0)[x // β2] ∧ (f ′′ ≥ 0)[x // β2]
)

(g ≤ 0)
[
x // (f, (1, 1))

]
:

Dg ≥ 0 ∧ (f ≤ 0)[x // β1] ∧ (f ≥ 0)[x // β2]

(g ≤ 0)
[
x // (f, {(2, 1), (3, 1), (4, 1)})

]
:

Dg ≥ 0 ∧
(
(f ≤ 0)[x // β1] ∧ (f ′ ≥ 0)[x // β1] ∧ (f ′′ ≤ 0)[x // β1]

)
∧(

(f ≥ 0)[x // β2] ∨ (g ≤ 0)[x //α1]
)
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(g ≤ 0)
[
x // (f, {(2, 1), (3, 2), (4, 2)})

]
:

Dg ≥ 0 ∧
(
(f ≥ 0)[x // β1] ∧ (f ′ ≤ 0)[x // β1] ∨ (g ≤ 0)[x //α1]

)
∧(

(f ≤ 0)[x // β2] ∨ (g ≤ 0)[x //α2]
)

(g ≤ 0)
[
x // (f, {(2, 2), (3, 2), (4, 3)})

]
:

Dg ≥ 0 ∧
(
(f ≤ 0)[x // β1] ∨ (g ≤ 0)[x //α2]

)
∧(

(f ≥ 0)[x // β2] ∧ (f ′ ≥ 0)[x // β2] ∧ (f ′′ ≥ 0)[x // β2]
)
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Appendix B

Results of the
Computational
Experiments

In this appendix we list detailed results of our computational experiments dis-
cussed in Section 6.3. There we have considered three real quantifier elimination
example sets referred to as “Bath,” “Regressions,” and “Remis.” The example
sets contain 51, 19, and 154 examples, respectively.

The results are listed in Tables B.1–B.12. The tables have the same form and
list one example per line. Each line contains the following information about
the example: name, input formula information, output formula information,
and the computation time. We consider three real QE implementations: (1) the
Redlog’s original implementation of the quadratic quantifier elimination, (2) our
implementation without clustering, and (3) our implementation with clustering.

Each example is a Tarski formula in the prenex normal form. Information
on the input formula are shown in columns “#q,” “#p,” and “#at” that list the
number of quantified variables, the number of parameters, and the number of
atomic formulas, respectively. For the sake of a concise description, we do not
list the number of quantifier alternations or the types of quantifier prefixes.

Information on computed equivalents of the input formula is shown in column
triples “Original,” “Without Clustering,” and “With Clustering.” Each column
triple consists of columns “#q,” “#at,” and “Time” that list the number of
quantified variables, the number of atomic formulas, and the computation time
of the respective implementation, respectively.

Observe that a zero in the input column “#p” means that the example is
actually a decision problem. A nonzero number of quantified variables on output
means that an implementation was not able to eliminate all quantifiers.

Finally, the number of atomic formulas in an output formula can be zero,
which means that either “true” or “false” was obtained. The reason for this is
that we count only nontrivial atomic formulas, i.e., “true” and “false” do not
count as atomic formulas, and do not occur in nontrivial output formulas thank
to simplification.
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Input
O
riginal

W
ithout

C
lustering

W
ith

C
lustering

#
q

#
p

#
at

#
q

#
at

T
im

e
#
q

#
at

T
im

e
#
q

#
at

T
im

e
42-collision-b

3
1

4
2

11
20m

s
2

32
30m

s
2

12
30m

s
43-collision-b-g

3
2

8
2

21
190m

s
2

40
340m

s
2

22
310m

s
44-off-center

2
1

3
1

4
10m

s
1

9
10m

s
1

7
10m

s
47-edges

3
2

12
0

92
10m

s
0

103
10m

s
0

90
10m

s
48-sim

pl-edges
1

2
11

0
235

30m
s

0
271

40m
s

0
239

30m
s

49-putnum
4

2
4

0
53

30m
s

0
114

90m
s

0
80

70m
s

50-sim
pl-putnum

2
2

2
0

53
30m

s
0

98
90m

s
0

62
60m

s
51-yang-xia

3
3

10
1

7
<
10m

s
1

7
10m

s
1

7
10m

s
52-sim

pl-yang-xia
1

3
9

1
7

<
10m

s
1

7
10m

s
1

7
<
10m

s
53-seit

4
7

15
0

19
40m

s
0

29
20m

s
0

19
30m

s
54-sim

pl-seit
1

7
16

0
32

129m
s

0
41

210m
s

0
30

139m
s

55-cyclic-3
2

1
3

0
0

<
10m

s
0

0
<
10m

s
0

0
<
10m

s
56-cyclic-4

3
1

4
0

1
<
10m

s
0

1
<
10m

s
0

1
10m

s
57-joukow

sky-1
4

0
6

4
6

<
10m

s
3

550
2s

2
345

1s
58-joukow

sky-2
4

0
6

4
6

10m
s

3
550

2s
2

345
1s

59-separate
4

0
5

4
5

10m
s

3
251

2s
2

149
1s

60-uhp
4

0
6

4
6

<
10m

s
3

371
1s

2
233

900m
s

Table
B
.3:

B
ath

exam
ple

set
results

Part
III.



199

In
pu

t
O
rig

in
al

W
ith

ou
t
C
lu
st
er
in
g

W
ith

C
lu
st
er
in
g

#
q

#
p

#
at

#
q

#
at

T
im

e
#
q

#
at

T
im

e
#
q

#
at

T
im

e
ab

07
ho

pf
9

9
0

13
2

24
63

2m
in

2
21
96
5

29
m
in

2
30
14
3

18
m
in

ac
i

2
8

4
0

29
10

m
s

0
59

10
m
s

0
35

<
10

m
s

as
5v

5
0

14
0

0
<
10

m
s

0
0

10
m
s

0
0

10
m
s

cc
on

3
0

2
0

0
<
10

m
s

0
0

<
10

m
s

0
0

<
10

m
s

el
l

2
3

2
0

52
20

m
s

0
60

20
m
s

0
39

20
m
s

ga
te
rm

an
n

10
0

15
0

0
19

s
0

0
2s

0
0

17
s

ho
ng

2
2

2
1

23
<
10

m
s

1
28

10
m
s

1
19

10
m
s

m
c4

3
0

3
0

0
40

m
s

0
0

30
m
s

0
0

30
m
s

m
tp
2

9
6

15
0

84
10

m
s

0
84

20
m
s

0
84

10
m
s

m
tp
3

27
27

54
0

14
56
78
5

15
m
in

0
14
51
19
6

54
m
in

0
14
51
19
6

53
m
in

p9
11

0
38

0
0

10
9m

s
0

0
21
0m

s
0

0
20
0m

s
qu

ar
tic

1
3

1
1

1
<
10

m
s

1
1

<
10

m
s

1
1

<
10

m
s

rp
2

7
3

56
0

13
5

80
m
s

0
60

12
9m

s
0

60
12
9m

s
rp
3

10
2

12
8

0
76
9

44
s

0
94

47
s

0
94

48
s

sl9
7

2
13

1
31
5

36
0m

s
2

24
91

9s
0

13
70

18
s

sn
ip

3
0

4
0

0
10

m
s

0
0

<
10

m
s

0
0

<
10

m
s

so
lo
2

2
2

12
0

2
<
10

m
s

0
2

10
m
s

0
2

<
10

m
s

w
ilk

1
0

3
1

3
10

m
s

1
3

20
m
s

1
3

30
m
s

w
ni
p

3
0

4
0

0
<
10

m
s

0
0

<
10

m
s

0
0

<
10

m
s

Ta
bl
e
B
.4
:
R
eg
re
ss
io
ns

ex
am

pl
e
se
t
re
su
lts

.



200 APPENDIX B. RESULTS OF THE EXPERIMENTS

Input
O
riginal

W
ithout

C
lustering

W
ith

C
lustering

#
q

#
p

#
at

#
q

#
at

T
im

e
#
q

#
at

T
im

e
#
q

#
at

T
im

e
acines

2
8

4
0

29
<
10m

s
0

59
10m

s
0

35
10m

s
clo-1

2
3

3
0

8
<
10m

s
0

14
<
10m

s
0

10
<
10m

s
clo-2

2
3

3
1

11
<
10m

s
0

30
<
10m

s
0

27
<
10m

s
clo-3

2
3

3
0

5
<
10m

s
0

8
<
10m

s
0

6
<
10m

s
clo-4

2
3

5
0

3
<
10m

s
0

6
<
10m

s
0

3
<
10m

s
clo-5

1
2

4
1

6
<
10m

s
0

98
50m

s
0

60
30m

s
clo-6

1
9

3
0

34
220m

s
0

109
510m

s
0

46
730m

s
coljoh-1

1
2

6
0

6
<
10m

s
0

0
10m

s
0

0
<
10m

s
coljoh-2

1
2

4
0

20
10m

s
0

19
<
10m

s
0

19
<
10m

s
collision-1

3
0

7
0

0
10m

s
0

0
<
10m

s
0

0
<
10m

s
collision-2

3
0

7
0

0
<
10m

s
0

0
<
10m

s
0

0
<
10m

s
consistency

3
0

2
0

0
<
10m

s
0

0
10m

s
0

0
<
10m

s
davhei

3
1

5
0

3
10m

s
0

3
<
10m

s
0

3
<
10m

s
dsw

96_
ex01

5
3

6
0

3
10m

s
0

19
30m

s
0

7
10m

s
dsw

96_
ex02

3
2

6
0

47
10m

s
0

10
10m

s
0

10
10m

s
dsw

96_
ex03

6
0

7
0

0
<
10m

s
0

0
10m

s
0

0
10m

s
dsw

96_
ex04

3
4

4
0

26
10m

s
0

68
10m

s
0

34
10m

s
dsw

96_
ex05

7
5

8
n/a

n/a
>
1h

n/a
n/a

>
1h

n/a
n/a

>
1h

dsw
96_

ex06
4

3
5

0
4

<
10m

s
0

10
30m

s
0

4
20m

s
dsw

96_
ex07

7
4

8
n/a

n/a
>
1h

0
5088

2s
0

279
200m

s

Table
B
.5:

R
em

is
exam

ple
set

results
Part

I.



201

In
pu

t
O
rig

in
al

W
ith

ou
t
C
lu
st
er
in
g

W
ith

C
lu
st
er
in
g

#
q

#
p

#
at

#
q

#
at

T
im

e
#
q

#
at

T
im

e
#
q

#
at

T
im

e
ds
w
96
_
ex
08

2
0

3
0

0
<
10

m
s

0
0

<
10

m
s

0
0

<
10

m
s

ds
w
96
_
ex
09

3
1

4
1

90
12
9m

s
0

1
20

m
s

0
1

10
m
s

ds
w
96
_
ex
10

9
3

10
n/

a
n/

a
>
1h

1
20
49
7

44
s

0
81
5

6s
ds
w
96
_
ex
11

4
3

6
0

0
10

m
s

0
0

<
10

m
s

0
0

10
m
s

ds
w
96
_
ex
12

7
4

8
1

12
80

61
0m

s
n/

a
n/

a
1m

in
0

20
84

4s
ds
w
96
_
ex
13

4
6

5
0

41
20

m
s

0
28
4

90
m
s

0
55

40
m
s

ds
w
96
_
ex
14

4
5

5
0

58
10

m
s

0
44
6

11
9m

s
0

78
50

m
s

el
lip

se
2

3
2

0
52

20
m
s

0
60

30
m
s

0
39

20
m
s

ex
1_

sq
ua

re
-1

2
2

11
0

10
<
10

m
s

0
18

<
10

m
s

0
18

10
m
s

ex
1_

sq
ua

re
-2

4
4

17
0

29
<
10

m
s

0
87

10
m
s

0
87

10
m
s

ex
1_

sq
ua

re
-3

4
4

17
0

25
<
10

m
s

0
83

10
m
s

0
83

10
m
s

ex
1_

sq
ua

re
-4

28
0

10
2

0
0

70
0m

s
0

0
94
0m

s
0

0
92
0m

s
ex
1_

sq
ua

re
_
pa

th
-1

2
2

11
0

10
<
10

m
s

0
18

<
10

m
s

0
18

10
m
s

ex
1_

sq
ua

re
_
pa

th
-2

4
4

17
0

29
<
10

m
s

0
87

10
m
s

0
87

10
m
s

ex
1_

sq
ua

re
_
pa

th
-3

4
4

17
0

25
<
10

m
s

0
83

10
m
s

0
83

10
m
s

ex
1_

sq
ua

re
_
pa

th
-4

28
1

10
3

0
1

3s
0

1
19

s
0

1
19

s
ex
1_

sq
ua

re
_
pa

th
-5

28
0

10
3

0
0

74
0m

s
0

0
96
0m

s
0

0
1s

ex
2_

lsh
ap

e-
1

2
2

16
0

10
<
10

m
s

0
16

10
m
s

0
16

<
10

m
s

ex
2_

lsh
ap

e-
2

4
4

22
0

27
10

m
s

0
12
9

20
m
s

0
12
9

20
m
s

ex
2_

lsh
ap

e-
3

4
4

22
0

24
10

m
s

0
12
9

20
m
s

0
12
9

20
m
s

Ta
bl
e
B
.6
:
R
em

is
ex
am

pl
e
se
t
re
su
lts

Pa
rt

II
.



202 APPENDIX B. RESULTS OF THE EXPERIMENTS

Input
O
riginal

W
ithout

C
lustering

W
ith

C
lustering

#
q

#
p

#
at

#
q

#
at

T
im

e
#
q

#
at

T
im

e
#
q

#
at

T
im

e
ex2_

lshape-4
28

0
132

0
0

4s
0

0
3s

0
0

3s
ex3_

direction-1
2

2
12

0
28

10m
s

0
31

<
10m

s
0

31
10m

s
ex3_

direction-2
4

4
18

0
91

10m
s

0
147

20m
s

0
147

20m
s

ex3_
direction-3

4
4

18
0

105
10m

s
0

167
20m

s
0

167
30m

s
ex3_

direction-4
28

0
108

0
0

6s
0

0
4s

0
0

4s
ex3_

direction-5
28

1
109

0
1

7s
0

1
10m

in
0

1
10m

in
ex3_

direction-6
28

0
109

0
0

6s
0

0
4s

0
0

4s
ex4_

w
alls-1

2
4

27
0

59
10m

s
0

66
10m

s
0

66
<
10m

s
ex4_

w
alls-2

2
4

27
0

93
10m

s
0

82
10m

s
0

82
10m

s
ex4_

w
alls-3

22
0

162
0

0
3s

0
0

3s
0

0
3s

ex5_
oblique-1

3
3

9
0

6
<
10m

s
0

6
<
10m

s
0

6
<
10m

s
ex5_

oblique-2
5

6
16

0
20

10m
s

0
21

10m
s

0
21

<
10m

s
ex5_

oblique-3
5

6
16

0
9

10m
s

0
16

10m
s

0
16

10m
s

ex5_
oblique-4

5
6

16
0

20
<
10m

s
0

29
10m

s
0

29
10m

s
ex5_

oblique-5
51

0
144

0
0

1s
0

0
930m

s
0

0
950m

s
ex6_

cube-1
3

3
18

0
45

<
10m

s
0

38
10m

s
0

38
<
10m

s
ex6_

cube-2
5

6
25

0
156

20m
s

0
160

30m
s

0
160

20m
s

ex6_
cube-3

5
6

25
0

165
20m

s
0

166
20m

s
0

166
30m

s
ex6_

cube-4
5

6
25

0
84

10m
s

0
137

20m
s

0
137

20m
s

Table
B
.7:

R
em

is
exam

ple
set

results
Part

III.



203

In
pu

t
O
rig

in
al

W
ith

ou
t
C
lu
st
er
in
g

W
ith

C
lu
st
er
in
g

#
q

#
p

#
at

#
q

#
at

T
im

e
#
q

#
at

T
im

e
#
q

#
at

T
im

e
ex
6_

cu
be

-5
51

0
22
5

n/
a

n/
a

>
1h

0
0

30
m
in

0
0

24
m
in

ex
7_

lsh
ap

e_
ob

st
-1

2
2

22
0

52
10

m
s

0
46

10
m
s

0
46

10
m
s

ex
7_

lsh
ap

e_
ob

st
-2

4
4

28
0

16
5

20
m
s

0
26
9

30
m
s

0
26
9

30
m
s

ex
7_

lsh
ap

e_
ob

st
-3

4
4

28
0

16
5

20
m
s

0
24
5

30
m
s

0
24
5

20
m
s

ex
7_

lsh
ap

e_
ob

st
-4

4
4

28
0

27
9

20
m
s

0
33
9

30
m
s

0
33
9

40
m
s

ex
7_

lsh
ap

e_
ob

st
-5

54
0

33
6

n/
a

n/
a

>
1h

n/
a

n/
a

>
1h

n/
a

n/
a

>
1h

ex
7_

lsh
ap

e_
ob

st
-6

68
0

42
0

n/
a

n/
a

>
1h

n/
a

n/
a

>
1h

n/
a

n/
a

>
1h

ex
8_

ob
liq

ue
_
ob

st
-1

2
2

20
0

74
<
10

m
s

0
62

10
m
s

0
62

10
m
s

ex
8_

ob
liq

ue
_
ob

st
-2

4
4

26
0

28
1

20
m
s

0
31
1

40
m
s

0
31
1

30
m
s

ex
8_

ob
liq

ue
_
ob

st
-3

4
4

26
0

25
6

20
m
s

0
30
8

40
m
s

0
30
8

40
m
s

ex
8_

ob
liq

ue
_
ob

st
-4

4
4

26
0

26
9

30
m
s

0
33
0

30
m
s

0
33
0

40
m
s

ex
8_

ob
liq

ue
_
ob

st
-5

54
0

31
2

n/
a

n/
a

>
1h

n/
a

n/
a

>
1h

n/
a

n/
a

>
1h

ex
9_

va
ria

nt
2_

ex
8-
1

2
2

20
0

74
<
10

m
s

0
62

10
m
s

0
62

10
m
s

ex
9_

va
ria

nt
2_

ex
8-
2

2
3

20
0

74
<
10

m
s

0
62

10
m
s

0
62

10
m
s

ex
9_

va
ria

nt
2_

ex
8-
3

2
3

20
0

74
10

m
s

0
62

10
m
s

0
62

10
m
s

ex
9_

va
ria

nt
2_

ex
8-
4

2
3

20
0

74
10

m
s

0
62

10
m
s

0
62

<
10

m
s

ex
9_

va
ria

nt
2_

ex
8-
5

26
0

15
6

0
0

38
s

0
0

2m
in

0
0

2m
in

ex
9_

va
ria

nt
_
ex
8-
1

2
2

20
0

74
<
10

m
s

0
62

10
m
s

0
62

10
m
s

ex
9_

va
ria

nt
_
ex
8-
2

4
4

26
0

28
1

20
m
s

0
31
1

40
m
s

0
31
1

30
m
s

Ta
bl
e
B
.8
:
R
em

is
ex
am

pl
e
se
t
re
su
lts

Pa
rt

IV
.



204 APPENDIX B. RESULTS OF THE EXPERIMENTS

Input
O
riginal

W
ithout

C
lustering

W
ith

C
lustering

#
q

#
p

#
at

#
q

#
at

T
im

e
#
q

#
at

T
im

e
#
q

#
at

T
im

e
ex9_

variant_
ex8-3

4
4

26
0

256
20m

s
0

308
40m

s
0

308
30m

s
ex9_

variant_
ex8-4

4
4

26
0

269
30m

s
0

330
40m

s
0

330
40m

s
ex9_

variant_
ex8-5

40
0

234
n/a

n/a
>
1h

n/a
n/a

>
1h

n/a
n/a

>
1h

gen5
1

15
8

0
393

99m
s

0
563

180m
s

0
283

80m
s

hongsbet
2

2
2

1
23

10m
s

1
28

10m
s

1
19

10m
s

hong
1

3
3

0
18

<
10m

s
0

48
10m

s
0

20
10m

s
linequadbe

1
3

3
0

25
<
10m

s
0

18
10m

s
0

16
10m

s
m
ccallum

-01
3

0
2

0
0

20m
s

0
0

10m
s

0
0

10m
s

m
ccallum

-02
3

0
2

0
0

10m
s

0
0

10m
s

0
0

<
10m

s
m
ccallum

-03
3

0
3

0
0

10m
s

0
0

<
10m

s
0

0
<
10m

s
m
ccallum

-04
3

0
3

0
0

50m
s

0
0

20m
s

0
0

20m
s

m
ccallum

-05
3

0
4

0
0

<
10m

s
0

0
<
10m

s
0

0
10m

s
m
ccallum

-06
3

0
4

0
0

10m
s

0
0

<
10m

s
0

0
10m

s
m
ccallum

-07
3

0
4

1
302

190m
s

1
270

190m
s

1
241

109m
s

m
ccallum

-08
3

0
2

3
2

10m
s

3
2

<
10m

s
3

2
<
10m

s
m
ccallum

-09
3

0
6

0
0

270m
s

0
0

109m
s

0
0

99m
s

m
ccallum

-10
3

0
6

3
5

<
10m

s
3

5
<
10m

s
3

5
<
10m

s
m
ccallum

-11
3

0
5

3
5

<
10m

s
3

5
10m

s
3

5
<
10m

s
m
ccallum

-12
3

0
7

3
7

<
10m

s
3

7
<
10m

s
3

7
<
10m

s

Table
B
.9:

R
em

is
exam

ple
set

results
Part

V
.



205

In
pu

t
O
rig

in
al

W
ith

ou
t
C
lu
st
er
in
g

W
ith

C
lu
st
er
in
g

#
q

#
p

#
at

#
q

#
at

T
im

e
#
q

#
at

T
im

e
#
q

#
at

T
im

e
m
ot
zk
in

2
0

1
0

0
<
10

m
s

0
0

<
10

m
s

0
0

10
m
s

m
tp
2

9
6

15
0

84
10

m
s

0
84

10
m
s

0
84

20
m
s

m
tp
3

27
27

54
0

14
56
78
5

15
m
in

0
14
51
19
6

53
m
in

0
14
51
19
6

53
m
in

ne
ta
n1

-0
1

8
0

14
0

0
10

m
s

0
0

10
m
s

0
0

10
m
s

ne
ta
n1

-0
2

8
0

14
0

0
<
10

m
s

0
0

10
m
s

0
0

<
10

m
s

ne
ta
n1

-0
3

18
0

31
0

0
10

m
s

0
0

30
m
s

0
0

30
m
s

ne
ta
n1

-0
4

8
1

14
0

1
10

m
s

0
1

10
m
s

0
1

10
m
s

ne
ta
n1

-0
5

9
0

14
0

0
<
10

m
s

0
0

10
m
s

0
0

10
m
s

ne
ta
n1

-0
6

9
0

14
0

0
<
10

m
s

0
0

10
m
s

0
0

10
m
s

ne
ta
n1

-0
7

9
0

14
0

0
<
10

m
s

0
0

10
m
s

0
0

10
m
s

ne
ta
n1

-0
8

9
0

14
0

0
30

m
s

0
0

20
m
s

0
0

10
m
s

ne
ta
n1

-0
9

13
5

18
0

65
0

2s
0

10
20

m
s

0
5

10
m
s

ne
ta
n1

-1
0

17
0

18
0

0
<
10

m
s

0
0

20
m
s

0
0

20
m
s

ne
ta
n1

-1
1

17
0

18
0

0
10

m
s

0
0

10
m
s

0
0

20
m
s

ne
ta
n2

-1
8

6
9

0
12
8

10
m
s

0
40
9

99
m
s

0
10
7

40
m
s

ne
ta
n2

-2
8

2
9

0
2

<
10

m
s

0
2

10
m
s

0
4

10
m
s

pe
rio

d9
11

0
38

0
0

99
m
s

0
0

22
0m

s
0

0
20
0m

s
pr
ob

1
2

1
1

1
1

<
10

m
s

1
1

<
10

m
s

1
1

<
10

m
s

pr
ob

2-
1

3
1

4
0

18
8

90
m
s

0
67

40
m
s

0
82

40
m
s

Ta
bl
e
B
.1
0:

R
em

is
ex
am

pl
e
se
t
re
su
lts

Pa
rt

V
I.



206 APPENDIX B. RESULTS OF THE EXPERIMENTS

Input
O
riginal

W
ithout

C
lustering

W
ith

C
lustering

#
q

#
p

#
at

#
q

#
at

T
im

e
#
q

#
at

T
im

e
#
q

#
at

T
im

e
prob2-2

3
2

4
3

4
<
10m

s
1

134006
10m

in
1

185705
10m

in
prob3

3
0

4
3

4
10m

s
3

7
10m

s
3

7
10m

s
prob4

4
0

9
4

9
10m

s
3

659
20s

3
473

14s
progruntim

eprop
8

0
8

0
0

10m
s

0
0

10m
s

0
0

10m
s

scheduling
11

2
37

0
58

190m
s

0
68

1s
0

68
1s

sturm
99a_

ex3-22
7

2
13

1
315

370m
s

2
2491

9s
0

1370
18s

sw
97_

ex01
4

9
5

0
12

10m
s

0
148

90m
s

0
76

40m
s

sw
97_

ex02
4

9
6

0
20

10m
s

0
136

109m
s

0
82

60m
s

sw
97_

ex03
4

9
6

0
11

<
10m

s
0

112
70m

s
0

70
50m

s
sw

97_
ex04

4
9

6
0

5
10m

s
0

160
89m

s
0

58
50m

s
sw

97_
ex05

4
9

5
0

12
10m

s
0

142
90m

s
0

49
30m

s
sw

97_
ex06

4
10

6
0

48
370m

s
0

103
1s

0
43

700m
s

sw
97_

ex07
35

0
58

n/a
n/a

>
1h

n/a
n/a

>
1h

n/a
n/a

>
1h

sw
97_

ex08
3

11
4

0
460

80m
s

0
2008

630m
s

0
459

160m
s

sw
97_

ex09
3

6
3

0
2954

6m
in

0
4758

46s
0

3380
37s

sw
97_

ex10
43

0
85

n/a
n/a

>
1h

29
2584

5s
29

482
3s

sw
97_

ex11
1

5
2

0
5

<
10m

s
0

9
10m

s
0

6
<
10m

s
sw

97_
ex12-1

10
5

24
0

544
70m

s
0

440
129m

s
0

440
129m

s
sw

97_
ex12-2

4
4

6
0

25
10m

s
0

37
20m

s
0

55
20m

s

Table
B
.11:

R
em

is
exam

ple
set

results
Part

V
II.



207

In
pu

t
O
rig

in
al

W
ith

ou
t
C
lu
st
er
in
g

W
ith

C
lu
st
er
in
g

#
q

#
p

#
at

#
q

#
at

T
im

e
#
q

#
at

T
im

e
#
q

#
at

T
im

e
sw

97
_
ex
13

3
4

4
1

2
<
10

m
s

0
96

10
9m

s
0

72
90

m
s

sw
97
_
ex
14
-1

2
3

5
0

68
<
10

m
s

0
16

<
10

m
s

0
18

10
m
s

sw
97
_
ex
14
-2

2
3

5
0

86
10

m
s

0
60

10
m
s

0
37

10
m
s

sw
97
_
ex
15

1
2

9
0

8
<
10

m
s

0
27

<
10

m
s

0
27

<
10

m
s

sw
97
_
ex
16

3
2

11
0

14
08

50
0m

s
0

92
0

44
0m

s
0

12
64

49
0m

s
sw

97
_
ex
17

3
4

14
0

33
13
7

4m
in

0
57
2

4s
0

22
60
8

5m
in

sw
97
_
ex
18

1
3

2
0

1
<
10

m
s

0
1

<
10

m
s

0
1

<
10

m
s

sw
97
_
ex
19

3
2

6
0

10
42

31
0m

s
0

35
2

10
9m

s
0

23
2

15
0m

s
sw

97
_
ex
20
-1

4
9

8
0

34
43
2

2m
in

0
10
70
25

3m
in

0
26
26
1

3m
in

sw
97
_
ex
20
-2

4
3

8
0

12
31
3

6s
0

66
79

2s
0

17
92

2s
sw

97
_
ex
20
-3

7
0

9
0

0
<
10

m
s

0
0

10
m
s

0
0

20
m
s

sw
97
_
ex
21
-1

1
10

81
0

29
95

23
0m

s
0

26
61

21
0m

s
0

21
06

22
0m

s
sw

97
_
ex
21
-2

1
12

98
0

45
45

38
0m

s
0

33
24

33
0m

s
0

33
24

33
0m

s
sw

97
_
ex
21
-3

1
2

81
0

41
<
10

m
s

0
8

10
m
s

0
41

<
10

m
s

sw
97
_
ex
21
-4

1
2

98
0

14
8

20
m
s

0
33

10
m
s

0
33

10
m
s

sw
97
_
ex
21
-5

3
0

10
1

0
0

10
m
s

0
0

<
10

m
s

0
0

10
m
s

sw
97
_
ex
21
-6

3
0

10
1

0
0

10
m
s

0
0

20
m
s

0
0

20
m
s

te
rm

in
at
io
n

3
0

3
0

0
70

m
s

0
0

10
m
s

0
0

30
m
s

tr
ia
ng

qu
ad

be
2

6
4

0
59
8

38
s

0
65
3

6s
0

36
2

54
s

Ta
bl
e
B
.1
2:

R
em

is
ex
am

pl
e
se
t
re
su
lts

Pa
rt

V
II
I.



208 APPENDIX B. RESULTS OF THE EXPERIMENTS



Bibliography

[1] T. Achterberg. Constraint Integer Programming. Doctoral dissertation,
Technische Universität Berlin, Germany, 2007.

[2] E. A. Akkoyunlu. The enumeration of maximal cliques of large graphs.
SIAM Journal on Computing, 2(1):1–6, 1973.

[3] A. G. Akritas. Linear and quadratic complexity bounds on the values of
the positive roots of polynomials. Journal of Universal Computer Science,
15(3):523–537, 2009.

[4] R. Bar-Yehuda and S. Even. A linear-time approximation algorithm for
the weighted vertex cover problem. Journal of Algorithms, 2(2):198–203,
1981.

[5] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the
weighted vertex cover problem. In Analysis and Design of Algorithms for
Combinatorial Problems, volume 109 of North-Holland Mathematics Stud-
ies, pages 27–45. North-Holland, 1985.

[6] S. Basu, R. Pollack, and M.-F. Roy. On the combinatorial and algebraic
complexity of quantifier elimination. Journal of the ACM, 43(6):1002–1045,
1996.

[7] M. Ben-Or, D. Kozen, and J. Reif. The complexity of elementary algebra
and geometry. Journal of Computer and System Sciences, 32(2):251–264,
1986.

[8] J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry. Springer,
1998.

[9] F. Boulier, M. Lefranc, F. Lemaire, P.-E. Morant, and A. Ürgüplü. On
proving the absence of oscillations in models of genetic circuits. In Pro-
ceedings of Algebraic Biology 2007, volume 4545 of LNCS, pages 66–80.
Springer, 2007.

[10] R. Bradford, J. H. Davenport, M. England, S. McCallum, and D. Wil-
son. Truth table invariant cylindrical algebraic decomposition. Journal of
Symbolic Computation, 76:1–35, 2016.

[11] C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of an undi-
rected graph. Communications of the ACM, 16(9):575–577, 1973.

209



210 BIBLIOGRAPHY

[12] C. W. Brown. Solution Formula Construction for Truth Invariant CAD’s.
Doctoral dissertation, University of Delaware, USA, 1999.

[13] C. W. Brown. QEPCAD B: A program for computing with semi-algebraic
sets using CADs. SIGSAM Bulletin, 37(4):97–108, 2003.

[14] C. W. Brown. Constructing a single open cell in a cylindrical algebraic
decomposition. In Proceedings of the ISSAC 2013, pages 133–140. ACM,
2013.

[15] C. W. Brown, M. El Kahoui, D. Novotni, and A. Weber. Algorithmic meth-
ods for investigating equilibria in epidemic modeling. Journal of Symbolic
Computation, 41(11):1157–1173, 2006.

[16] C. W. Brown and M. Košta. Constructing a single cell in cylindrical alge-
braic decomposition. Journal of Symbolic Computation, 70:14–48, 2015.

[17] K.-D. Burhenne. Implementierung eines Algorithmus zur Quantorenelim-
ination fur lineare reelle Probleme. Master’s thesis, Universität Passau,
Germany, 1990.

[18] C. Chen and M. M. Maza. Quantifier elimination by cylindrical algebraic
decomposition based on regular chains. Journal of Symbolic Computation,
75:74–93, 2016.

[19] A. Christov and D. Grigoriev. Complexity of quantifier elimination in the
theory of algebraically closed fields. In Proceedings of the MFCS 1984,
volume 176 of LNCS, pages 17–31. Springer, 1984.

[20] J.-F. Collard. Reasoning About Program Transformations. Springer, 2003.

[21] G. E. Collins. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In Automata Theory and Formal Languages 2nd
GI Conference Kaiserslautern, May 20–23, 1975, volume 33 of LNCS, pages
134–183. Springer, 1975.

[22] G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition for
quantifier elimination. Journal of Symbolic Computation, 12(3):299–328,
1991.

[23] J. H. Davenport and J. Heintz. Real quantifier elimination is doubly expo-
nential. Journal of Symbolic Computation, 5(1–2):29–35, 1988.

[24] I. Dinur and S. Safra. On the hardness of approximating minimum vertex
cover. Annals of Mathematics, 162(1):439–485, 2005.

[25] A. Dolzmann. Algorithmic Strategies for Applicable Real Quantifier Elimi-
nation. Doctoral dissertation, Universität Passau, Germany, 2000.

[26] A. Dolzmann, O. Gloor, and T. Sturm. Approaches to parallel quantifier
elimination. In Proceedings of the ISSAC 1998, pages 88–95. ACM, 1998.

[27] A. Dolzmann and T. Sturm. REDLOG: Computer algebra meets computer
logic. ACM SIGSAM Bulletin, 31(2):2–9, 1997.



BIBLIOGRAPHY 211

[28] A. Dolzmann and T. Sturm. Simplification of quantifier-free formulae over
ordered fields. Journal of Symbolic Computation, 24(2):209–231, 1997.

[29] A. Dolzmann and T. Sturm. Redlog user manual, 2nd edition. Technical
Report MIP-9905, FMI, Universität Passau, Germany, 1999.

[30] A. Dolzmann, T. Sturm, and V. Weispfenning. A new approach for auto-
matic theorem proving in real geometry. Journal of Automated Reasoning,
21(3):357–380, 1998.

[31] A. Dolzmann, T. Sturm, and V. Weispfenning. Real quantifier elimination
in practice. In Algorithmic Algebra and Number Theory, pages 221–247.
Springer, 1999.

[32] M. El Kahoui and A. Weber. Deciding Hopf bifurcations by quantifier
elimination in a software component architecture. Journal of Symbolic
Computation, 30(2):161–179, 2000.

[33] M. England, R. Bradford, and J. H. Davenport. Improving the use of equa-
tional constraints in cylindrical algebraic decomposition. In Proceedings of
the ISSAC 2015, pages 165–172. ACM, 2015.

[34] H. Errami, M. Eiswirth, D. Grigoriev, W. M. Seiler, T. Sturm, and A. We-
ber. Efficient methods to compute Hopf bifurcations in chemical reaction
networks using reaction coordinates. In Proceedings of the CASC 2013,
volume 8136 of LNCS, pages 88–99. Springer, 2013.

[35] H. Errami, M. Eiswirth, D. Grigoriev, W. M. Seiler, T. Sturm, and A. We-
ber. Detection of Hopf bifurcations in chemical reaction networks using
convex coordinates. Journal of Computational Physics, 291:279–302, 2015.

[36] H. Errami, T. Sturm, and A. Weber. Algorithmic aspects of Muldowney’s
extension of the Bendixson-Dulac criterion for polynomial vector fields. In
Polynomial Computer Algebra, pages 25–28, St. Petersburg, Russia, 2011.
The Euler International Mathematical Institute.

[37] K. Gatermann, M. Eiswirth, and A. Sensse. Toric ideals and graph theory
to analyze Hopf bifurcations in mass action systems. Journal of Symbolic
Computation, 40(6):1361–1382, 2005.

[38] D. Grigoriev. Complexity of deciding Tarski algebra. Journal of Symbolic
Computation, 5(1–2):65–108, 1988.

[39] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathemat-
ica und verwandter Systeme I. Monatshefte für Mathematik und Physik,
38(1):173–198, 1931.

[40] F. Heras, J. Larrosa, and A. Oliveras. MiniMaxSAT: An efficient weighted
Max-SAT solver. Journal of Artificial Intelligence Research, 31:1–32, 2008.

[41] H. Hong. Comparison of several decision algorithms for the existential the-
ory of the reals. Technical Report 91-41, RISC, Johannes Kepler University,
Linz, Austria, 1991.



212 BIBLIOGRAPHY

[42] H. Hong, R. Liska, and S. Steinberg. Testing stability by quantifier elimi-
nation. Journal of Symbolic Computation, 24(2):161–187, 1997.

[43] N. I. Ioakimidis. Automatic derivation of positivity conditions inside bound-
ary elements with the help of the REDLOG computer logic package. En-
gineering Analysis with Boundary Elements, 23(10):847–856, 1999.

[44] K. Korovin, M. Košta, and T. Sturm. Towards conflict-driven learning for
virtual substitution. In Proceedings of the CASC 2014, volume 8660 of
LNCS, pages 256–270. Springer, 2014.

[45] K. Korovin, N. Tsiskaridze, and A. Voronkov. Conflict resolution. In Pro-
ceedings of the CP 2009, volume 5732 of LNCS, pages 509–523. Springer,
2009.

[46] M. Košta and T. Sturm. A generalized framework for virtual substitution.
arXiv:1501.05826. 2015.

[47] M. Košta, T. Sturm, and A. Dolzmann. Better answers to real questions.
Journal of Symbolic Computation, 74:255–275, 2016.

[48] A. Lasaruk. Parametrisches Integer-Solving. Master’s thesis, Universität
Passau, Germany, 2005.

[49] A. Lasaruk and T. Sturm. Weak quantifier elimination for the full lin-
ear theory of the integers. A uniform generalization of Presburger arith-
metic. Applicable Algebra in Engineering, Communication and Computing,
18(6):545–574, 2007.

[50] D. Lazard. Quantifier elimination: Optimal solution for two classical ex-
amples. Journal of Symbolic Computation, 5(1–2):261–266, 1988.

[51] R. Loos and V. Weispfenning. Applying linear quantifier elimination. THE
Computer Journal, 36(5):450–462, 1993.

[52] S. McCallum. An Improved Projection Operation for Cylindrical Algebraic
Decomposition. Doctoral dissertation, University of Wisconsin-Madison,
USA, 1984.

[53] S. McCallum. On projection in CAD-based quantifier elimination with
equational constraint. In Proceedings of the ISSAC 1999, pages 145–149.
ACM, 1999.

[54] S. McCallum. On propagation of equational constraints in CAD-based
quantifier elimination. In Proceedings of the ISSAC 2001, pages 223–231.
ACM, 2001.

[55] B. Mishra. Algorithmic Algebra. Texts and Monographs in Computer Sci-
ence. Springer, 1993.

[56] G. Nelson and D. C. Oppen. Simplification by cooperating decision pro-
cedures. ACM Transactions on Programming Languages and Systems,
1(2):245–257, 1979.

http://arxiv.org/abs/1501.05826


BIBLIOGRAPHY 213

[57] R. Niedermeier and P. Rossmanith. On efficient fixed-parameter algorithms
for weighted vertex cover. Journal of Algorithms, 47(2):63–77, 2003.

[58] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo
theories: From an abstract Davis–Putnam–Logemann–Loveland procedure
to DPLL(T). Journal of the ACM, 53(6):937–977, 2006.

[59] M. Petkovšek, H. Wilf, and D. Zeilberger. A = B. A. K. Peters, 1996.

[60] M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige Operation her-
vortritt. In Comptes Rendus du Premier Congrès des Mathématiciens des
Pays Slaves, pages 92–101, Warsaw, Poland, 1929.

[61] J. Renegar. On the computational complexity and geometry of the first-
order theory of the reals. Part III: Quantifier elimination. Journal of Sym-
bolic Computation, 13(3):329–352, 1992.

[62] A. Seidl. Effiziente Realisierung reeller algebraischen Zahlen. Master’s
thesis, Universität Passau, Germany, 2001.

[63] A. M. Seidl and T. Sturm. Boolean quantification in a first-order context.
In Proceedings of the CASC 2003, pages 329–345. Technische Universität
München, Germany, 2003.

[64] A. Strzeboński. Computation with semialgebraic sets represented by cylin-
drical algebraic formulas. In Proceedings of the ISSAC 2010, pages 61–68.
ACM, 2010.

[65] A. Strzeboński. Solving polynomial systems over semialgebraic sets repre-
sented by cylindrical algebraic formulas. In Proceedings of the ISSAC 2012,
pages 335–342. ACM, 2012.

[66] A. W. Strzeboński. Cylindrical algebraic decomposition using validated
numerics. Journal of Symbolic Computation, 41(9):1021–1038, 2006.

[67] T. Sturm. Real Quantifier Elimination in Geometry. Doctoral dissertation,
Universität Passau, Germany, 1999.

[68] T. Sturm. Reasoning over networks by symbolic methods. Applicable Al-
gebra in Engineering, Communication and Computing, 10(1):79–96, 1999.

[69] T. Sturm. An algebraic approach to offsetting and blending of solids. In
Proceedings of the CASC 2000, pages 367–382. Springer, 2000.

[70] T. Sturm. Linear problems in valued fields. Journal of Symbolic Compu-
tation, 30(2):207–219, 2000.

[71] T. Sturm and A. Tiwari. Verification and synthesis using real quantifier
elimination. In Proceedings of the ISSAC 2011, pages 329–336. ACM, 2011.

[72] T. Sturm and A. Weber. Investigating generic methods to solve Hopf bi-
furcation problems in algebraic biology. In Proceedings of Algebraic Biology
2008, volume 5147 of LNCS, pages 200–215. Springer, 2008.



214 BIBLIOGRAPHY

[73] T. Sturm, A. Weber, E. O. Abdel-Rahman, and M. El Kahoui. Investigat-
ing algebraic and logical algorithms to solve Hopf bifurcation problems in
algebraic biology. Mathematics in Computer Science, 2(3):493–515, 2009.

[74] T. Sturm and V. Weispfenning. Computational geometry problems in RED-
LOG. In Proceedings of the ADG 1997, volume 1360 of LNCS, pages 58–86.
Springer, 1997.

[75] T. Sturm and V. Weispfenning. Rounding and blending of solids by a real
elimination method. In Proceedings of the IMACS 1997, volume 2, pages
727–732. Wissenschaft & Technik Verlag, Berlin, 1997.

[76] T. Sturm and V. Weispfenning. Quantifier elimination in term algebras.
The case of finite languages. In Proceedings of the CASC 2002, pages 285–
300. Technische Universität München, Germany, 2002.

[77] T. Sturm and C. Zengler. Parametric quantified SAT solving. In Proceed-
ings of the ISSAC 2010, pages 77–84. ACM, 2010.

[78] A. Tarski. A decision method for elementary algebra and geometry. Pre-
pared for publication by J. C. C. McKinsey. RAND Report R109, August
1, 1948, Revised May 1951, Second Edition, RAND, Santa Monica, CA,
1957.

[79] A. M. Turing. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
s2-42(1):230–265, 1937.

[80] A. Weber, T. Sturm, and E. O. Abdel-Rahman. Algorithmic global criteria
for excluding oscillations. Bulletin of Mathematical Biology, 73(4):899–916,
2011.

[81] V. Weispfenning. The complexity of linear problems in fields. Journal of
Symbolic Computation, 5(1–2):3–27, 1988.

[82] V. Weispfenning. Parametric linear and quadratic optimization by elimi-
nation. Technical Report MIP-9404, Universität Passau, Germany, 1994.

[83] V. Weispfenning. Quantifier elimination for real algebra—the cubic case.
In Proceedings of the ISSAC 1994, pages 258–263. ACM, 1994.

[84] V. Weispfenning. Quantifier elimination for real algebra—the quadratic
case and beyond. Applicable Algebra in Engineering, Communication and
Computing, 8(2):85–101, 1997.

[85] V. Weispfenning. Simulation and optimization by quantifier elimination.
Journal of Symbolic Computation, 24(2):189–208, 1997.

[86] V. Weispfenning. Semilinear motion planning in REDLOG. Applicable
Algebra in Engineering, Communication and Computing, 12(6):455–475,
2001.

[87] D. J. Wilson. Advances in Cylindrical Algebraic Decomposition. Doctoral
dissertation, University of Bath, UK, 2014.


	Introduction
	The Virtual Substitution Method
	Plan of the Thesis
	Main Contributions

	A Framework for Virtual Substitution
	Parametric Root Descriptions
	Candidate Solutions
	Candidate Solutions and Factorization

	Semantics of Virtual Substitution
	Virtual Substitution and Pseudo Remaindering
	Virtual Substitution with Nonstandard Symbols

	Quantifier Elimination Algorithm Scheme
	Instantiating the Scheme
	Linear Virtual Substitution
	Quadratic and Cubic Virtual Substitution
	Clustering
	Towards Higher Degrees

	Comparison with Existing Approaches
	A Few Remarks on a Thom Code-Based Framework

	Conclusions

	Structural Virtual Substitution
	Prime Constituent Decompositions
	Prime Constituents
	Computing a PC Decomposition

	Conjunctive Associativity and Marking
	Structural QE Algorithm Scheme
	Two Preparatory Lemmas
	The Scheme
	Conflation

	Bound Selection
	Procedure PC-bs-ILP
	A Structural Scheme with Bound Selection

	Conclusions

	Degree Shift
	Global Degree Shift
	Structural Degree Shift
	A Lower Bound for s-preproc-at
	Degree Shift Trying All Positions

	Degree Shift and DNF
	Conclusions

	Answers for Virtual Substitution
	Extended Quantifier Elimination
	Extended QE by Virtual Substitution
	Elimination of Nonstandard Symbols
	Extensions of our Approach and Heuristics
	Implementation and Application Examples
	Conclusions

	Implementation
	Elimination of One Existential Quantifier
	Degree Shift and PC Decomposition
	Test Points Generation and Substitution

	Elimination of One Quantifier Block
	Data Types
	The Block Loop

	Computational Experiments
	Conclusions

	Conclusions and Future Directions
	Summary
	Some Future Directions

	Formula Schemes
	The Quadratic Case
	The Cubic Case
	The Quadratic Case with Clustering
	The Cubic Case with Clustering

	Results of the Experiments

