
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science
2015

On Efficiency and Reliability in
Computer Science

A dissertation submitted towards the degree Doctor of
Natural Sciences (Dr. rer. nat.) of the Faculties of Natural

Sciences and Technology of Saarland University

submitted by

Adrian Neumann

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Acronym

https://core.ac.uk/display/196652083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Date of the defense: 19. June 2015

Dean of the Faculty

Prof. Dr. Markus Bläser

Examination Board

Prof. Dr. Dr. h.c. mult. Reinhard Wilhelm (Vorsitzender)
Prof. Dr. Dr. h.c. mult. Kurt Mehlhorn
Dr. Andreas Wiese
Dr. Mayank Goswami (Beisitzender)

ii

iv

Contents

1 Introduction 3

2 Certifying Algorithms for 3-Connectivity 7

2.1 Introduction . 8

2.2 Related Work . 10

2.3 Preliminaries . 10

2.4 Chain Decompositions . 12

2.5 Chains as Mader-paths . 13

2.6 A First Algorithm . 16

2.7 A Classification of Chains . 17

2.8 A Linear Time Algorithm . 18

2.9 Verifying the Mader Sequence 24

2.10 The Cactus Representation of 2-Cuts 24

2.10.1 Verifying a Cactus Representation 25

2.11 Computing a Cactus Representation 26

2.11.1 Properties and Representation of 2-cuts on Chains . . 27

2.11.2 An Incremental Cactus Construction 29

2.12 Computing all 3-Vertex-Connected Components 31

2.13 A Simplified Certifying Algorithm for 3-Vertex Connectivity 32

2.14 Caterpillars . 34

2.14.1 The Greedy Vertex-Connectivity Algorithm 36

2.15 Conclusion . 39

v

3 Online Checkpointing with Improved Worst-Case Guarantees 41

3.1 Introduction . 42

3.2 Notation and Preliminaries 44

3.3 Introductory Example—A Simple Bound for k = 3 46

3.4 An Upper Bound for Large k 47

3.5 An Improved Upper Bound for Large k 49

3.5.1 The Algorithm BINARY 49

3.5.2 Discrepancy Analysis 51

3.6 Upper Bounds via Combinatorial Optimization 53

3.7 Existence of Optimal Algorithms 56

3.8 Lower Bound . 61

3.9 Conclusion . 64

4 Inapproximability of the Robust k-Median Problem and Heuristic
Solutions 65

4.1 Introduction . 66

4.2 Preliminaries . 68

4.3 Hardness of Robust k-Median on Uniform Metrics 70

4.3.1 Integrality Gap . 71

4.3.2 Reduction from r-Hypergraph Label Cover to Mini-
mum Congestion Set Packing 71

4.3.3 Analysis . 72

4.4 Hardness of Robust k-Median on Line Metrics 75

4.5 Heuristics . 77

4.5.1 Methods . 77

4.5.2 Results . 79

4.6 Conclusion . 80

Appendices 85

A Computing a Spanning Subgraph of an Overlap Graph . . . 85

B Hypergraph Label Cover . 87

vi

Acknowledgments

This thesis would not have been possible without the great help of my
advisors and my fellow researchers. Here I want to thank especially Prof.
Kurt Mehlhorn for meeting with me week in and week out and always
asking the right questions whenever I was stuck on a problem. I also want
to thank my co-authors for, true to the nature of modern science, most of
these results, and indeed some of the problems, were found during lively
discussions. Last but not least I want to thank Andreas Schmidt for diligently
reading this thesis and pointing out many mistakes and suggesting many
improvements.

Declaration of original authorship

I hereby declare that this dissertation is my own original work except where
otherwise indicated. All data or concepts drawn directly or indirectly from
other sources have been correctly acknowledged.

This dissertation has not been submitted in its present or similar form to
any other academic institution either in Germany or abroad for the award
of any other degree.

Adrian Neumann

Zusammenfassung

Effizienz von Algorithmen und Zuverlässigkeit gegen Fehlern in ihrer Implemen-
tierung oder Unsicherheiten in der Eingabe ist in der Informatik von großem
Interesse. Diese Dissertation präsentiert Ergebnisse für Probleme in diesem The-
menfeld.

Zertifizierende Algorithmen ermöglichen zuverlässige Implementierungen durch
Berechnung eines Zertifikats für ihre Antworten. Ein einfaches Programm kann die
Antworten mit den Zertifikaten überprüfen. Der Nutzer muss nur dem einfachen
Programms vertrauen. Wir präsentieren einen neuen zertifizierenden Algorithmus
für 3-Kantenzusammenhang und einen vereinfachten zertifizierenden Algorithmus
für 3-Knotenzusammenhang.

Den Zustand einer Berechnung gelegentlich zu speichern, sog. Checkpointing,
verbessert die Zuverlässigkeit. Im Fehlerfall kann ein gespeicherter Zustand wieder-
hergestellt werden ohne die Berechnung neu zu beginnen. Wir zeigen Strategien für
Checkpointing mit begrenztem Speicher, die die Neuberechnungszeit minimieren.

Traditionell sind die Eingaben für Probleme präzise und wohldefiniert. In der
Praxis beinhalten die Eingaben allerdings Unsicherheiten und man braucht robuste

Lösungen. Wir betrachten eine robuste Variante des k-median Problem. Hier
sind die Kunden in Gruppen eingeteilt und wir möchten die Kosten der teuer-
sten Gruppe minimieren. Dies macht die Lösung robust gegenüber welche der
Gruppen letztlich bedient werden soll. Wir zeigen, dass dieses Problem schwer zu
approximieren ist und untersuchen Heuristiken.

Abstract

Efficiency of algorithms and robustness against mistakes in their implementation or
uncertainties in their input has always been of central interest in computer science.
This thesis presents results for a number of problems related to this topic.

Certifying algorithms enable reliable implementations by providing a certificate with
their answer. A simple program can check the answers using the certificates. If the
the checker accepts, the answer of the complex program is correct. The user only
has to trust the simple checker. We present a novel certifying algorithm for 3-edge-
connectivity as well as a simplified certifying algorithm for 3-vertex-connectivity.

Occasionally storing the state of computations, so called checkpointing, also helps
with reliability since we can recover from errors without having to restart the
computation. In this thesis we show how to do checkpointing with bounded
memory and present several strategies to minimize the worst-case recomputation.

In theory, the input for problems is accurate and well-defined. However, in practice
it often contains uncertainties necessitating robust solutions. We consider a robust
variant of the well known k-median problem, where the clients are grouped into
sets. We want to minimize the connection cost of the expensive group. This solution
is robust against which group we actually need to serve. We show that this problem
is hard to approximate, even on the line, and evaluate heuristic solutions.

2

Chapter 1

Introduction

3

Since the first electronic computers were invented there has been an astonishing
amount of progress. The first machines were slow behemoths that filled buildings,
required kilowatts of power and a large crew of technicians working relentlessly
to keep them running. Nowadays much more powerful machines fit in every
pocket, run for days from a small battery and require no maintenance at all. Due to
these developments from 1986 to 2007 the total computational power available to
humanity has increased by four orders of magnitude [38]. Going even further back,
our ability for calculation has increased by fifteen orders of magnitude from a clerk
in the nineteenth century to the modern supercomputers we have today [58].

The hardware that we use made tremendous strides in both efficiency and reliability.
Similarly, the algorithms we use are much more efficient today than they were at
the dawn of the computer age. Algorithmic improvements are harder to quantify,
since often not just the speed improvement, but the quality of results as well.
Progress in numerical algorithms is relatively easy to quantify. For example, in the
field of optimization, the speed-up from algorithmic improvements equals or even
exceeds the speed-up from improved hardware [12]. In other areas, like artificial
intelligence, progress is harder to put into numbers. For chess software, it took
five decades of effort from the early attempts of Shannon [67] and Turing [74] until
the special-purpose supercomputer Deep Blue beat the reigning world champion
Kasparov in 1997 [24]. In 2009, Pocket Fritz 4 achieved a grand master ranking even
though it ran on a handheld computer [16].

The reliability of computers and algorithms also plays a big role in computer science
and computer engineering. The hardware we use has become a lot more reliable
as technology progressed. The earliest computers that used vacuum tubes instead
of transistors suffered from frequent failures as the tubes burnt out. ENIAC, the
first general purpose digital computer, had a failure on average every two days [1],
whereas the typical user today doesn’t experience any hardware failures over the
useful lifetime of a machine. Nevertheless, the number of machines in use has
increased so much, that even rare failures occur regularly in large datacenters, with
multiple machines failing each day [23]. Similarly, the tools we have for writing
software have improved tremendously, but writing security critical software is still
extremely expensive. Techniques to ameliorate failures in hardware and mistakes
in programs have therefore been of interest from the beginnings of the field.

In this thesis we consider a number of problems in computer science related to
efficiency and reliability. In the first chapter is connected to the reliability of pro-
grammers. We discuss 3-connectivity of graphs and present an efficient certifying
algorithm for 3-node- and 3-edge-connectivity. Certifying algorithms are designed
such that the user only has to trust a very simple program to be sure that the
answers of the program that implements the actual algorithm are correct.

The second chapter introduces a different kind of reliability problem. We examine
how to store the state of a long running computation if memory is limited. This tech-
nique is called checkpointing and has applications in error recovery after hardware
failures but is also useful in “regular” computation, for example compression.

The last chapter considers an optimization problem. Here we want to open a
set of facilities to cheaply serve clients. This is a classic problem in the field of
optimization, called facility location. Typically it is assumed that the locations of the
clients are known inputs to the algorithm. In our setting, we’re not so sure about
these locations. Instead we consider the setting where we have a set of possible

4

client locations and want to find a solution that is not too bad, regardless of which
of these positions are realized.

5

6

Chapter 2

Certifying Algorithms for
3-Connectivity

7

2.1 Introduction

Advanced graph algorithms answer complex yes-no questions such as “Is this
graph planar?” or “Is this graph k-vertex-connected?”. These algorithms are
not only nontrivial to implement, it is also difficult to test their implementations
extensively, as usually only small test sets are available. It is hence possible that
bugs persist unrecognized for a long time. An example is the implementation of
the linear time planarity test of Hopcroft and Tarjan [39] in LEDA [53, 52]. A bug in
the implementation was discovered only after two years of intensive use.
Certifying algorithms [50] approach this problem by computing an additional certifi-
cate that proves the correctness of the answer. This may, e.g., be either a 2-coloring
or an odd cycle for testing bipartiteness, or either a planar embedding or a Kura-
towski subgraph for testing planarity. Certifying algorithms are designed such
that checking the correctness of the certificate is substantially simpler than solving
the original problem and can be accomplished by a short and easy to understand
program.
Since the checker is comparably simple, it is easy to be reasonably sure of its
correctness. Then, unlike for normal algorithms, where testcases have to carefully
constructed so that the correct solution is known beforehand, for a certifying
algorithm any input can serve as a testcase, since the checker verifies that the output
is correct.
Ideally, checking the correctness is so simple that a formal verification of the checker
is feasible. In that case, the solution of every instance that passes the checker is
correct by a formal proof. This level of confidence has already been achieved for a
number of checkers in LEDA [3].
The notion of verifying the output after running an algorithm has a long history.
The method of casting out nines to (partially) verify the result of arithmetic has
been known to the ancient Greeks and has even older roots [36]. Certifying algo-
rithms can be viewed as a special case of N-version programming [21]. In N-version
programming an instance of a problem is solved by multiple independently im-
plemented algorithms and only if their answers agree are they accepted. This of
course requires extra resources. A certifying algorithm can be seen as a pair of inde-
pendent algorithms. Here the first algorithm helps the other along by producing
the certificate. Using the certificate, a simpler and faster program, the checker, can
be used instead of an alternative implementation of a full-blown algorithm. This
notion was first explored in [69].
Independently, Blum [13, 14] introduced the concept of program checkers. Blum’s
program checkers check correctness probabilistically, for example by using results
from the field of interactive proofs, and receives no help in form of additional
output from the program. Hence these checkers are independent of the algorithm
that solves the original problem. To force the checkers to be simpler to verify than
the original program, Blum requires them to run asymptotically faster than the
original program.
Certifying algorithms as we understand them today were first used in the context
of the LEDA project. Initially the term Program Checking or Result Checking was
used. In [43] the term “Certifying Algorithm” was used for the first time.
The main result of this chapter is a linear time certifying algorithm for 3-edge-
connectivity that uses a result of Mader [49] for the certificate. This is joint work

8

with Kurt Mehlhorn and Jens M. Schmidt [54]. We also show a certifying algorithm
for 3-vertex-connectivity. For this problem a linear time algorithm was presented
in [65]. Our algorithm does not run in linear time, but it is considerably easier
prove its correctness.

Mader showed that every 3-edge-connected graph can be obtained from K3
2, the

graph consisting of two vertices and three parallel edges, by a sequence of three
simple operations that each introduce one edge and, trivially, preserve 3-edge-
connectivity. We show how to compute such a sequence in linear time for 3-
edge-connected graphs. If the input graph is not 3-edge-connected, a 2-edge-cut
is computed. The previous algorithms [31, 55, 70, 72, 73] for deciding 3-edge-
connectivity are not certifying; they deliver a 2-edge-cut for graphs that are not
3-edge-connected but no certificate in the yes-case.

Our algorithm uses the concept of a chain decomposition of a graph introduced in [64].
A chain decomposition is a special ear decomposition [47]. It is used in [63] as a
common and simple framework for certifying 1- and 2-vertex, as well as 2-edge-
connectivity. Further, [65] uses them for certifying 3-vertex-connectivity. Chain
decompositions are an example of path-based algorithms (see, e.g., Gabow [30]),
which use only the simple structure of certain paths in a DFS-tree to compute
connectivity information about the graph.

We use chain decompositions to certify 3-edge-connectivity in linear time. Thus,
chain decompositions form a common framework for certifying k-vertex- and k-
edge-connectivity for k ≤ 3 in linear time. We use many techniques from [65], but
in a simpler form. Hence this description may also be used as a gentle introduction
to the 3-vertex-connectivity algorithm in [65].

We state Mader’s result in Section 2.3 and introduce chain decompositions in
Section 2.4. In Section 2.5 we show that chain decompositions can be used as a basis
for Mader’s construction. This immediately leads to an O((m + n) log(m + n))
certifying algorithm (Section 2.6). The linear time algorithm is then presented in
Sections 2.7 and 2.8. In Section 2.9 we discuss the verification of Mader construction
sequences.

The mincuts in a graph can be represented succinctly by a cactus representation [26,
56, 29]; see Section 2.10. The 3-edge-connected components of a graph are the
maximal subsets of the vertex set such that any two vertices in the subset are
connected by three edge-disjoint paths. These paths are not necessarily contained
in the subset.

Our algorithm can be used to turn any algorithm for computing 3-edge-connected
components into a certifying algorithm for computing 3-edge-connected compo-
nents and the cactus representation of 2-cuts (Section 2.10). An extension of our
algorithm computes the 3-edge-connected components and the cactus representa-
tion directly (Section 2.11). A similar technique can be used to extend the 3-vertex-
connectivity algorithm in [65] to an algorithm for computing 3-vertex-connected
components.

In Section 2.13 we show how ideas from Section 2.6 can be used to dramatically
simplify the certifying 3-vertex-connectivity algorithm from [65]. The simplified
algorithm no longer runs in linear time, but the its proof of correctness is much
shorter.

9

2.2 Related Work

Deciding 3-edge-connectivity is a well studied problem, with applications in diverse
fields such as bioinformatics [25] and quantum chemistry [22]. Consequently, there
are many different linear time solutions known [31, 55, 70, 72, 73, 56]. None of
them is certifying. All but the first algorithm also compute the 3-edge-connected
components. The cactus representation of a 2-edge-connected, but not 3-edge-
connected graph G, can be obtained from G by repeatedly contracting the 3-edge-
connected components to single vertices [56].

The paper [50] is a recent survey on certifying algorithms. For a linear time certify-
ing algorithm for 3-vertex-connectivity, see [65] (implemented in [57]). For general
k, there is a randomized certifying algorithm for k-vertex connectivity in [46] with
expected running time O(kn2.5 + nk3.5). There is a non-certifying algorithm [41] for
deciding k-edge-connectivity in time O(m log3 n) with high probability.

In [31], a linear time algorithm is described that transforms a graph G into a
graph G′ such that G is 3-edge-connected if and only if G′ is 3-vertex-connected.
Combined with this transformation, the certifying 3-vertex-connectivity algorithm
from [65] certifies 3-edge-connectivity in linear time. However, that algorithm is
much more complex than the algorithm given here. Moreover, we were unable to
find an elegant method for transforming the certificate obtained for the 3-vertex-
connectivity of G′ into a certificate for 3-edge-connectivity of G.

2.3 Preliminaries

We consider finite undirected graphs G with n = |V(G)| vertices, m = |E(G)|
edges, no self-loops, and minimum degree three, and use standard graph-theoretic
terminology from [15], unless stated otherwise. We use u v to denote an edge with
endpoints u and v.

A set of edges that leaves a disconnected graph upon deletion is called edge cut. For
k ≥ 1, let a graph G be k-edge-connected if n ≥ 2 and there is no edge cut X ⊆ E(G)
with |X| < k. Let v →G w denote a path P between two vertices v and w in G
and let s(P) = v and t(P) = w be the source and target vertex of P, respectively
(as G is undirected, the direction of P is given by s(P) and t(P)). Every vertex in
P− {s(P), t(P)} is called an inner vertex of P and every vertex in P is said to lie on
P.

Let T be an undirected tree rooted at vertex r. For two vertices x and y in T, x is an
ancestor of y and y is a descendant of x if x ∈ V(r →T y), where V(r →T y) denotes
the vertex set of the path from r to y in T. If additionally x 6= y, x is a proper ancestor
and y is a proper descendant. We write x ≤ y (x < y) if x is an ancestor (proper
ancestor) of y. The parent p(v) of a vertex v is its immediate proper ancestor. The
parent function is undefined for r. Let Km

2 be the graph on 2 vertices that contains
exactly m parallel edges.

Let subdividing an edge u v of a graph G be the operation that replaces u v with a
path u z v, where z was not previously in G. All 3-edge-connected graphs can be
constructed using a small set of operations starting from a K3

2.

10

Figure 2.1: Two ways of constructing the 3-edge-connected graph shown
in the rightmost column. The upper row shows the construction accord-
ing to Theorem 2.1. The lower row shows the construction according to
Corollary 2.2. Branch (non-branch) vertices are depicted as filled (non-filled)
circles. The black edges exist already, while dotted gray vertices and edges
do not exist yet.

Theorem 2.1 (Mader [49]): Every 3-edge-connected graph (and no other graph)
can be constructed from a K3

2 using the following three operations:

• Adding an edge (possibly parallel or a loop).

• Subdividing an edge x y and connecting the new vertex to any existing vertex.

• Subdividing two distinct edges w x, y z and connecting the two new vertices.

A subdivision G′ of a graph G is a graph obtained by subdividing edges of G zero or
more times. The branch vertices of a subdivision are the vertices with degree at least
three (we call the other vertices non-branch-vertices) and the links of a subdivision
are the maximal paths whose inner vertices have degree two. If G has no vertex
of degree two, the links of G′ are in one-to-one correspondence to the edges of G.
Theorem 2.1 readily generalizes to subdivisions of 3-edge-connected graphs.

Corollary 2.2: Every subdivision of a 3-edge-connected graph (and no other graph)
can be constructed from a subdivision of a K3

2 using the following three operations:

• Adding a path connecting two branch vertices.

• Adding a path connecting a branch vertex and a non-branch vertex.

• Adding a path connecting two non-branch vertices lying on distinct links.

In all three cases, the inner vertices of the path added are new vertices.

Each path that is added to a graph H in the process of Corollary 2.2 is called a
Mader-path (with respect to H). Note that an ear is always a Mader-path unless both
endpoints lie on the same link.

Figure 2.1 shows two constructions of a 3-edge-connected graph, one according to
Theorem 2.1 and one according to Corollary 2.2. In this paper, we show how to find
the Mader construction sequence according to Corollary 2.2 for a 3-edge-connected
graph in linear time. Such a construction can be easily turned into one according to
Theorem 2.1.

11

1 2 3 4 5 6 7

C1

C2

C3

C4

C5

C1

C2

C4

interlacing

C3

nested

C5

nested

Figure 2.2: The left side of the figure shows a DFS tree with root 1 and
a possible chain decomposition; tree-edges are solid and back-edges are
dashed. C1 is (1 6, 6 5, 5 4, 4 3, 3 2, 2 1), C2 is (1 7, 7 6), C3 is (2 4), C4 is (3 7),
and C5 is (4 5). C3 and C5 are nested children of C1 and C4 is an interlacing
child of C2. Also, s(C4) s-belongs to C1.

2.4 Chain Decompositions

We use a very simple decomposition of graphs into cycles and paths. The de-
composition was previously used for linear-time tests of 2-vertex- and 2-edge-
connectivity [63] and 3-vertex-connectivity [65]. In this paper we show that it
can also be used to find Mader’s construction for a 3-edge-connected graph. We
define the decomposition algorithmically; a similar procedure that serves for the
computation of low-points can be found in [61].

Let G be a connected graph without self-loops and let T be a depth-first search tree
of G. Let r be the root of T. We orient tree-edges towards the root and back-edges
away from the root, i.e., v < u for an oriented tree-edge u v and x < y for an
oriented back-edge x y. Note that this is exactly opposite to the usual orientation.

We decomposeG into a set C = {C1, . . . , C|C|} of cycles and paths, called chains, by
applying the following procedure for each vertex v in the order in which they were
discovered during the DFS: First, we declare v visited (initially, no vertex is visited),
if not already visited before. Then, for every back-edge v w, we traverse the path
w→T r until a vertex x is encountered that was visited before; x is a descendant of
v. The traversed subgraph v w ∪ (w→T x) forms a new chain C with s(C) = v and
t(C) = x. All inner vertices of C are declared visited. Observe that s(C) and t(C)
are already visited when the construction of the chain starts.

Figure 2.2 illustrates these definitions. Since every back-edge defines one chain,
there are precisely m− n + 1 chains. We number the chains in the order of their
construction.

We call C a chain decomposition. It can be computed in time O(n + m). For 2-edge-
connected graphs the term decomposition is justified by Lemma 2.3.

Lemma 2.3 ([63]): Let C be a chain decomposition of a graph G. Then G is 2-edge-
connected if and only if G is connected and the chains in C partition E(G).

Since the condition of Lemma 2.3 is easily checked during the chain decomposition,
we assume from now on that G is 2-edge-connected. Then C partitions E(G) and
the first chain C1 is a cycle containing r (since there is a back-edge incident to r). We

12

say that r strongly belongs (s-belongs) to the first chain and any vertex v 6= r s-belongs
to the chain containing the edge v p(v). We use s-belongs instead of belongs since a
vertex can belong to many chains when chains are viewed as sets of vertices.

We can now define a parent-tree on chains. The first chain C1 is the root. For any
chain C 6= C1, let the parent p(C) of C be the chain to which t(C) s-belongs. We
write C ≤ D (C < D) for chains C and D if C is an ancestor (proper ancestor) of D
in the parent-tree on chains.

The following lemma summarizes important properties of chain decompositions.

Lemma 2.4: Let {C1, . . . , Cm−n+1} be a chain decomposition of a 2-edge-connected
graph G and let r be the root of the DFS-tree. Then

(1) For every chain Ci, s(Ci) ≤ t(Ci).

(2) Every chain Ci, i ≥ 2, has a parent chain p(Ci). We have s(p(Ci)) ≤ s(Ci) and
p(Ci) = Cj for some j < i.

(3) For i ≥ 2: If t(Ci) 6= r, t(p(Ci)) < t(Ci). If t(Ci) = r, t(p(Ci)) = t(Ci).

(4) If u ≤ v, u s-belongs to C, and v s-belongs to D then C ≤ D.

(5) If u ≤ t(D) and u s-belongs to C, then C ≤ D.

(6) For i ≥ 2: s(Ci) s-belongs to a chain Cj with j < i.

Proof. (1) to (3) follow from the discussion preceding the Lemma and the construc-
tion of the chains. We turn to (4). Consider two vertices u and v with u ≤ v and
let u s-belong to C and let v s-belong to D. Then C ≤ D, as the following simple
induction on the length of the tree path from u to v shows. If u = v, C = D by the
definition of s-belongs. So assume u is a proper ancestor of v. Since v s-belongs
to D, by definition v 6= t(D) and v p(v) is contained in D. Let D′ be the chain to
which p(v) s-belongs. By induction hypothesis, C ≤ D′. Also, either D = D′ (if
p(v) s-belongs to D) or D′ = p(D) (if p(v) = t(D)) and hence p(v) s-belongs to
p(D). In either case C ≤ D.

Claim (5) is an easy consequence of (4). If t(D) = r, C = C1, and the claim follows.
If t(D) 6= r, t(D) s-belongs to p(D). Thus, C ≤ p(D) by (4).

The final claim is certainly true for each Ci with s(Ci) = r. So assume s(Ci) > r and
let y = p(s(Ci)). Since G is 2-edge-connected, there is a back-edge u v with u ≤ y
and s(Ci) ≤ v. It induces a chain Ck with k < i and hence s(Ci)y is contained in a
chain Cj with j ≤ k.

2.5 Chains as Mader-paths

We show that, assuming that the input graph is 3-edge-connected, there are two
chains that form a subdivision of a K3

2, and that the other chains of the chain
decomposition can be added one by one such that each chain is a Mader-path
with respect to the union of the previously added chains. We will also show that
chains can be added parent-first, i.e., when a chain is added, its parent was already
added. In this way the current graph Gc consisting of the already added chains is
always parent-closed. We will later show how to compute this ordering efficiently.

13

We will first give a simple O((n + m) log(n + m)) algorithm and then a linear time
algorithm.

Using the chain decomposition, we can identify a K3
2 subdivision in the graph as

follows. We may assume that the first two back-edges explored from r in the DFS
have their other endpoint in the same subtree T′ rooted at some child of r. The
first chain C1 forms a cycle. The vertices in C1 − r are then contained in T′. By
assumption, the second chain is constructed by another back-edge that connects r
with a vertex in T′. If there is no such back-edge, the tree edge connecting r and
the root of T′ and the back-edge from r into T′ form a 2-edge cut. Let x = t(C2).
Then C1 ∪ C2 forms a K3

2 subdivision with branch vertices r and x. The next lemma
derives properties of parent-closed unions of chains.

Lemma 2.5: Let Gc be a parent-closed union of chains that contains C1 and C2.
Then

(1) For any vertex v 6= r of Gc, the edge v p(v) is contained in Gc, i.e., the set of
vertices of Gc is a parent-closed subset of the DFS-tree.

(2) s(C) and t(C) are branch vertices of Gc for every chain C contained in Gc.

(3) Let C be a chain that is not in Gc but a child of some chain in Gc. Then C is
an ear with respect to Gc and the path t(C)→T s(C) is contained in Gc. C is a
Mader-path (i.e., the endpoints of C are not inner vertices of the same link of
Gc) with respect to Gc if and only if there is a branch vertex on t(C)→T s(C).

Proof. (1): Let v 6= r be any vertex of Gc. Let C be a chain in Gc containing the
vertex v. If C also contains v p(v) we are done. Otherwise, v = t(C) or v = s(C). In
the first case, v s-belongs to p(C), in the second case v s-belongs to some C′ ≤ C by
Lemma 2.4.(4). Hence, by parent-closedness, v p(v) is an edge of Gc.

(2): Let C be any chain in Gc. Since C1 and C2 form a K3
2, r and x = t(C2) are branch

vertices. If s(C) 6= r, the edge s(C) p(s(C)) is in Gc by (1), the back-edge s(C) v
inducing C is in Gc, and the path v→T s(C) is in Gc by (1). Thus s(C) has degree
at least three. If t(C) 6∈ {r, x}, let Ĉ be the chain to which t(C) s-belongs, i.e. Ĉ is
the parent of C. As Gc is parent-closed Ĉ is contained in Gc. By the definition of
s-belongs, t(C) has degree two on the chain Ĉ. Further, it has degree one on the
chain C. Since chains are edge-disjoint, it has degree at least three in Gc.

(3) We first observe that t(C) and s(C) belong to Gc. For t(C), this holds since t(C)
s-belongs to p(C) and p(C) is part of Gc by assumption. For s(C), this follows from
s(C) ≤ t(C) and (1). No inner vertex u of C belongs to Gc, because otherwise the
edge u p(u) would belong to Gc by (1), which implies that C would belong to Gc,
as Gc is a union of chains. Thus C is an ear with respect to Gc, i.e., it is disjoint from
Gc except for its endpoints. Moreover, the path t(C)→T s(C) belongs to Gc by (1).

If there is no branch vertex on t(C)→T s(C), the vertices t(C) and s(C) are inner
vertices of the same link of Gc and hence C is not a Mader-path with respect to Gc.
If there is a branch vertex on t(C) →T s(C), the vertices t(C) and s(C) are inner
vertices of two distinct links of Gc and hence C is a Mader-path with respect to
Gc.

We can now prove that chains can always be added in parent-first order.

14

Theorem 2.6: Let G be a graph and let Gc be a parent-closed union of chains such
that no child of a chain C ∈ Gc is a Mader-path with respect to Gc and there is at
least one such chain. Then the extremal edges of every link of length at least two in
Gc are a 2-cut in G.

Proof. Assume otherwise. Then there is a parent-closed union Gc of chains such
that no child of a chain in Gc is a Mader-path with respect to Gc and there is at least
one such chain outside of Gc, but for every link in Gc the extremal edges are not a
cut in G.

Consider any link L of Gc. Since the extremal edges of L, that is, the edges in L that
are incident to the end vertices of L, do not form a 2-cut, there is a path in G− Gc
connecting an inner vertex on L with a vertex that is either a branch vertex of Gc or
a vertex on a link of Gc different from L. Let P be such a path of minimum length.
By minimality, no inner vertex of P belongs to Gc. Note that P is a Mader-path with
respect to Gc. We will show that at least one edge of P belongs to a chain C with
p(C) ∈ Gc and that C can be added, contradicting our choice of Gc.

Let a and b be the endpoints of P, and let z be the lowest common ancestor of all
points in P. Since a DFS generates only tree- and back-edges, z lies on P. Since
z ≤ a and the vertex set of Gc is a parent-closed subset of the DFS-tree, z belongs
to Gc. Thus z cannot be an inner vertex of P and hence is equal to a or b. Assume
w.l.o.g. that z = a. All vertices of P are descendants of a. We view P as oriented
from a to b.

Since b is a vertex of Gc, the path b→T a is part of Gc by Lemma 2.4 and hence no
inner vertex of P lies on this path. Let a v be the first edge on P. The vertex v must
be a descendant of b as otherwise the path v→P b would contain a cross-edge, i.e.
an edge between different subtrees. Hence a v is a back-edge. Let D be the chain
that starts with the edge a v. D does not belong to Gc, as no edge of P belongs to Gc.

We claim that t(D) is a proper descendant of b or D is a Mader-path with respect
to Gc. Since v is a descendant of b and t(D) is an ancestor of v, t(D) is either a
proper descendant of b, equal to b, or a proper ancestor of b. We consider each case
separately.

If t(D) were a proper ancestor of b the edge b p(b) would belong to D and hence
D would be part of Gc, contradicting our choice of P. If t(D) is equal to b then
D is a Mader-path with respect to Gc. This leaves the case that t(D) is a proper
descendant of b.

Let y x be the last edge on the path t(D) →T b that is not in Gc and let D∗ be the
chain containing y x. Then D∗ ≤ D by Lemma 2.4.(5) (applied with C = D∗ and
u = y) and hence s(D∗) ≤ s(D) ≤ a by part (4) of the same lemma. Also t(D∗) = x.
Since x = t(D∗) ∈ Gc, p(D∗) ∈ Gc.

As a and b are not inner vertices of the same link, the path x = t(D∗) →T b →T
a→T s(D∗) contains a branch vertex. Thus D∗ is a Mader-path by Lemma 2.5.

Corollary 2.7: If G is 3-edge-connected, chains can be greedily added in parent-first
order.

Proof. If we reach a point where not all chains are added, but we can not proceed
in a greedy fashion, by Theorem 2.6 we find a cut in G.

15

2.6 A First Algorithm

Corollary 2.7 gives rise to an O((n + m) log(n + m)) algorithm, the Greedy-Chain-
Addition Algorithm.In addition to G, we maintain the following data structures:

• The current graph Gc. Each link is maintained as a doubly linked list of
vertices. Observe that all inner vertices of a link lie on the same tree path
and hence are numbered in decreasing order. The vertices in G are labeled
inactive, branch, or non-branch. The vertices in G−Gc are called inactive. Every
non-branch vertex stores a pointer to the link on which it lies and a list of all
chains incident to it and having the other endpoint as an inner vertex of the
same link.

• A list L of addable chains. A chain is addable if it is a Mader-path with
respect to the current graph.

• For each chain its list of children.

We initialize Gc to C1 ∪ C2. It has three links, t(C2) →T r, r →C1 t(C2), and
r →C2 t(C2). We then iterate over the children of C1 and C2. For each child, we
check in constant time whether its endpoints are inner vertices of the same link. If
so, we associate the chain with the link by inserting it into the lists of both endpoints.
If not, we add the chain to the list of addable chains. The initialization process takes
time O(n + m).

As long as the list of addable chains is non-empty, we add a chain, say C. Let u and
v be the endpoints of C. We perform the following actions:

• If u is a non-branch vertex, we make it a branch vertex. This splits the link
containing it and entails some processing of the chains having both endpoints
on this link.

• If v is a non-branch vertex, we make it a branch vertex. This splits the
link containing it, and entails some processing of the chains having both
endpoints on this link.

• We add C as a new link to Gc.

• We process the children of C.

We next give the details for each action.

If u is a non-branch vertex, it becomes a branch vertex. Let L be the link of Gc
containing u; L is split into links L1 and L2 and the set S of chains having both
endpoints on L is split into sets S1, S2 and Sadd, where Si is the set of chains having
both endpoints on Li, i = 1, 2, and Sadd is the set of chains that become addable
(because they are incident to u or have one endpoint each in L1 and L2). We show
that we can perform the split of L in time O(1 + |Sadd| + min(|L1| + |S1|, |L2| +
|S2|)). We walk from both ends of L towards u in lockstep fashion. In each step
we either move to the next vertex or consider one chain. Once we reach u we stop.
Observe that this strategy guarantees the time bound claimed above.

When we consider a chain, we check whether we can move it to the set of addable
chains. If so, we do it and delete the chain from the lists of both endpoints. Once,
we have reached u, we split the list representing the link into two. The longer part

16

of the list retains its identity, for the shorter part we create a new list header and
redirect all pointers of its elements.

Adding C to Gc is easy. We establish a list for the new link and let all inner vertices
of C point to it. The inner vertices become active non-branch vertices.

Processing the children of C is also easy. For each child, we check whether both
endpoints are inner vertices of C. If so, we insert the child into the list of its
endpoints. If not, we add the child to the list of addable chains.

If L becomes empty, we stop. If all chains have been added, we have constructed a
Mader sequence. If not all chains have been processed, there must be a link having
at least one inner vertex. The first and the last edge of this link form a 2-edge-cut.

It remains to argue that the algorithm runs in time O((n + m) log(n + m)). We only
need to argue about the splitting process. We distribute the cost O(1 + |Sadd|+
min(|L1|+ |S1|, |L2|+ |S2|)) as follows: O(1) is charged to the vertex that becomes
a branch vertex. All such charges add up to O(n). O(|Sadd|) is charged to the chains
that become addable. All such charges add up to O(m). O(min(|L1|+ |S1|, |L2|+
|S2|)) is charged to the vertices and chains that define the minimum. We account
for these charges with the following token scheme inspired by the analysis of the
corresponding recurrence relation in [51].

Consider a link L with k chains having both endpoints on L. We maintain the
invariant that each vertex and chain owns at least log(|L|+ k) tokens. When a link
is newly created we give log(n + m) tokens to each vertex of the link and to each
chain having both endpoints on the link. In total we create O((n + m) log(n + m))
tokens. Assume now that we split a link L with k chains into links L1 and L2 with
k1 and k2 chains respectively. Then min(|L1| + k1, |L2| + k2) ≤ (|L| + k)/2 and
hence we may take one token away from each vertex and chain of the sublink that
is charged without violating the token invariant.

Theorem 2.8: The Greedy-Chain-Addition algorithm runs in time

O((n + m) log(n + m)).

2.7 A Classification of Chains

When we add a chain in the Greedy-Chain-Addition algorithm, we also process its
children. Children that do not have both endpoints as inner vertices of the chain
can be added to the list of addable chains immediately. However, children that
have both endpoints as inner vertices of the chain cannot be added immediately
and need to be observed further until they become addable. We now make this
distinction explicit by classifying chains into two types, interlacing and nested.

We classify the chains {C3, . . . Cm−n+1} into two types. Let C be a chain with parent
Ĉ = p(C). We distinguish two cases1 for C.

• If s(C) is an ancestor of t(Ĉ) and a descendant of s(Ĉ), C is interlacing. We
have s(Ĉ) ≤ s(C) ≤ t(Ĉ) ≤ t(C).

1In [65], three types of chains are distinguished. What we call nested is called Type 1
there and what we call interlacing is split into Types 2 and 3 there. We do not need this finer
distinction.

17

• If s(C) is a proper descendant of t(Ĉ), C is nested. We have s(Ĉ) ≤ t(Ĉ) <
s(C) ≤ t(C) and t(C)→T s(C) is contained in Ĉ.

These cases are exhaustive as the following argument shows. Let s(Ĉ) v be the
first edge on Ĉ. By Lemma 2.4, s(Ĉ) ≤ s(C) ≤ v. We split the path v →T s(Ĉ)
into two parts corresponding to the two cases above, namely t(Ĉ) →T s(Ĉ), and
(v→T t(Ĉ))\t(Ĉ). Depending on which of these paths s(C) lies, it is classified as
interlacing or nested.
The following simple observations are useful. For any chain C 6= C1, t(C) s-belongs
to Ĉ. If C is nested, s(C) and t(C) s-belong to Ĉ. If C is interlacing, s(C) s-belongs
to a chain which is a proper ancestor of Ĉ or Ĉ = C1. The next lemma confirms that
interlacing chains can be added once their parent belongs to Gc.

Lemma 2.9: Let Gc be a parent-closed union of chains that contains C1 and C2, let
C be any chain contained in Gc, and let D be an interlacing child of C not contained
in Gc. Then D is a Mader-path with respect to Gc.

Proof. We have already shown in Lemma 2.5 that D is an ear with respect to Gc,
that the path t(D) →T s(D) is part of Gc, and that s(C) and t(C) are branching
vertices of Gc. Since D is interlacing, we have s(C) ≤ s(D) ≤ t(C) ≤ t(D).
Thus t(D)→T s(D) contains a branching vertex and hence D is a Mader-path by
Lemma 2.5.(3).

2.8 A Linear Time Algorithm

According to Lemma 2.9, interlacing chains whose parent belongs to the current
graph are always Mader-paths and can be added. Nested chains have both end-
points on their parent chain and can only be added once the tree-path connecting its
endpoints contains a branching point. Consider a chain nested in chain Ci. Which
chains can help its addition by creating branching points on Ci? First, interlacing
chains having their source on some Cj with j ≤ i, and second, chains nested in
Ci and their interlacing offspring having their source on Ci. Chains having their
source on some Cj with j > i cannot help because they have no endpoint on Ci.
This observation shows that chains can be added in phases. In the i-th phase, we
try to add all chains having their source vertex on Ci.
The overall structure of the linear-time algorithm is given in Algorithm 1. An imple-
mentation in Python is available at https://github.com/adrianN/edge-connectivity.
The algorithm operates in phases and maintains a current graph Gc. Let C1, C2,
. . . , Cm−n+1 be the chains of the chain decomposition in the order of creation. We
initialize Gc to C1 ∪ C2. In phase i, i ∈ [1, m− n + 1], we consider the i-th chain Ci
and either add all chains C to Gc for which the source vertex s(C) s-belongs to Ci to
Gc or exhibit a 2-edge-cut. As already mentioned, chains are added parent-first and
hence Gc is always parent-closed. We maintain the following invariant:

Invariant: After phase i, Gc consists of all chains for which the source vertex
s-belongs to one of the chains C1 to Ci.

Lemma 2.10: For all i, the current chain Ci is part of the current graph Gc at the
beginning of phase i or the algorithm has exhibited a 2-edge-cut before phase i.

18

https://github.com/adrianN/edge-connectivity

Algorithm 1: Certifying linear-time algorithm for 3-edge connectivity.
Input: G = (V, E)
Let {C1, C2, . . . , Cm−n+1} be a chain decomposition of G as described
in Sect. 2.4;
Initialize Gc to C1 ∪ C2;
for i from 1 to m− n + 1 do

/* Phase i: add all chains whose source s-belongs to Ci
*/

Group the chains C for which s(C) s-belongs to Ci into segments;
/* Part I of Phase i: add segments with interlacing

root */

Add all segments whose minimal chain is interlacing to Gc;
/* Part II of Phase i: add segments with nested root */

Either find an insertion order S1, . . . , Sk on the segments having a
nested minimal chain or exhibit a 2-edge-cut and stop;
for j from 1 to k do

Add the chains contained in Sj parent-first;

Proof. The initial current graph consists of chains C1 and C2 and hence the claim
is true for the first and the second phase. Consider i > 2. The source vertex s(Ci)
s-belongs to a chain Cj with j < i (Lemma 2.4.(6)) and hence Ci is added in phase
j.

The next lemma gives information about the chains for which the source vertex
s-belongs to Ci. None of them belongs to Gc at the beginning of phase i (except for
chain C2 that belongs to Gc at the beginning of phase 1) and they form subtrees of
the chain tree. Only the roots of these subtrees can be nested. All other chains are
interlacing.

Lemma 2.11: Assume that the algorithm reaches phase i without exhibiting a 2-
edge-cut. Let C 6= C2 be a chain for which s(C) s-belongs to Ci. Then C is not part
of Gc at the beginning of phase i. Let D be any ancestor of C that is not in Gc. Then:

(1) s(D) s-belongs to Ci.

(2) If D is nested, it is a child of Ci.

(3) If p(D) is not part of the current graph, D is interlacing.

Proof. We use induction on i. Consider the i-th phase and let C 6= C2 be chains
whose source vertex s(C) s-belongs to Ci. We first prove that C is not in Gc. This
is obvious, since in the j-th phase we add exactly the chains whose source vertex
s-belongs to Cj.

(1): Let D be any ancestor of C which is not part of Gc. By Lemma 2.4, we have
s(D) ≤ s(C) and hence s(D) belongs to Cj for some j ≤ i. If j < i, D would have

19

been added in phase j, a contradiction to the assumption that D does not belong to
Gc at the beginning of phase i.

(2): s(D) s-belongs to Ci by (1). If D is nested, s(D) and t(D) s-belong to the same
chain. Thus D is a child of Ci.

(3): If p(D) is not part of the current graph, p(D) 6= Ci by Lemma 2.10 and hence
D is not a child of Ci. Hence by (2), D is interlacing.

We can now define the segments with respect to Ci by means of an equivalence
relation. Consider the set S of chains whose source vertex s-belongs to Ci. For
a chain C ∈ S , let C∗ be the minimal ancestor of C that does not belong to Gc.
Two chains C and D in S belong to the same segment if and only if C∗ = D∗. In
Figure 2.2 on page 12, if we start with Gc = C1 ∪ C2, we form three segments in
the first phase, namely {C4}, {C3}, and {C5}. The first segment can be added
according to Lemma 2.9. Then C3 can be added and then C5.

Consider any C ∈ S . By part (1) of the preceding lemma either p(C) ∈ S or p(C)
is part of Gc. Moreover, C and p(C) belong to the same segment in the first case.
Thus segments correspond to subtrees in the chain tree. In any segment only the
minimal chain can be nested by Lemma 2.11. If it is nested, it is a child of Ci (parts
(2) and (3) of the preceding lemma). Since only the root of a segment may be a
nested chain, once it is added to the current graph all other chains in the segment
can be added in parent-first order by Lemma 2.9. All that remains is to find the
proper ordering of the segments faster than in the previous section. We do so in
Lemma 2.15. If no proper ordering exists, we exhibit a 2-edge-cut.

Lemma 2.12: All chains in a segment S can be added in parent-first order if its
minimal chain can be added.

Proof. By Lemma 2.11 all but the minimal chain in a segment are interlacing. Thus
the claim follows from Lemma 2.9.

We come to part I of phase i, the addition of all segments whose minimal chain
is interlacing. As a byproduct, we will also determine all segments with nested
minimal chain. We iterate over all chains C whose source s(C) s-belongs to Ci. For
each such chain, we traverse the path C, p(C), p(p(C)), . . . until we reach a chain
that belongs to Gc or is already marked (initially, all chains are unmarked). We now
distinguish cases. If the last chain on the path is nested we mark all chains on the
path with the nested chain. If we hit a marked chain we copy the marker to all
chains in the path. Otherwise, i.e., all chains are interlacing and unmarked, we add
all chains in the path to Gc in parent-first order, as these segments can be added
according to Corollary 2.12.

It remains to compute a proper ordering of the segments in which the minimal chain
is nested or to exhibit a 2-edge-cut. We do so in part II of phase i. For simplicity, we
will say ‘segment’ instead of ‘segment with nested minimal chain’ from now on.

For a segment S let the attachment points of S be all vertices in S that are in Gc.
Note that the attachment points must necessarily be endpoints of chains in S and
hence adding the chains of S makes the attachment points branch vertices. Nested
children C of Ci can be added if there are branch vertices on t(C)→T s(C), therefore
adding a segment can make it possible to add further segments.

20

Lemma 2.13: Let C be a nested child of Ci and let S be the segment containing C.
The attachment points of S consist of s(C), t(C), and the vertices s(D) of the other
chains in the segment. All such points lie on the path t(C)→T s(C) and hence on
Ci.

Proof. Let D be any chain in S different from C. By Lemma 2.11, C is the minimal
chain in S. Since S is a subtree of the chain tree, we have C < D and hence
by Lemma 2.4 t(C) ≤ t(D). Since none of the chains in S is part of Gc, parent-
closedness implies that no vertex on the path (t(D) →T t(C))− t(C) belongs to
Gc. In particular, either t(D) = t(C) or t(D) is not a vertex of Gc and hence not
an attachment point of S. It remains to show s(C) ≤ s(D) ≤ t(C). Since C ≤ D,
we have s(C) ≤ s(D) by Lemma 2.4. Since s(D) ≤ t(D) and t(C) ≤ t(D) we have
either s(D) ≤ t(C) ≤ t(D) or t(C) < s(D) ≤ t(D). In the former case, we are
done. In the latter case, s(D) is not a vertex of Gc by the preceding paragraph, a
contradiction, since s(D) s-belongs to Ci by Lemma 2.11.

For a set of segments S1, . . . , Sk, let the overlap graph be the graph on the segments
and a special vertex R for the branch vertices on Ci. In the overlap graph, there
is an edge between R and a vertex Si, if there are attachment points a1 ≤ a2 of Si
such that there is a branch vertex on the tree path a2 →T a1. Further, between two
vertices Si and Sj there is an edge if there are attachment points a1, a2 in Si and b1,
b2 in Sj, such that a1 ≤ b1 ≤ a2 ≤ b2 or b1 ≤ a1 ≤ b2 ≤ a2. We say that Si and Sj
overlap.

Lemma 2.14: Let C be a connected component of the overlap graph H and let S be
any segment with respect to Ci whose minimal chain C is nested. Then S ∈ C if and
only if

(i) R ∈ C and there is a branch vertex on t(C)→T s(C) or

(ii) there are attachments a1 and a2 of S and attachments b1 and b2 of segments in
C with a1 ≤ b1 ≤ a2 ≤ b2 or b1 ≤ a1 ≤ b2 ≤ a2.

Proof. We first show S ∈ C if (i) or (ii) holds. For (i) the claim follows directly
from the definition of the overlap graph. For (ii), assume S 6∈ C for the sake of a
contradiction. Then either R 6∈ C or there is no branch vertex in t(C)→T s(C) by
(i). Further, no segment in C overlaps with S and hence any segment in C has its
attachments points either strictly between a1 and a2 or outside the path a2 →T a1.
Moreover, both classes of segments are non-empty. However, segments in the two
classes do not overlap and R cannot be connected to the segments in the former
class. Thus C is not connected, a contradiction.

If neither (i) nor (ii) hold, there can be no segment in C overlapping S and either S
is not connected to R or no segment in C is connected to R.

Lemma 2.15: Assume the algorithm reaches phase i. If the overlap graph H in-
duced by the segments with respect to Ci is connected, we can add all segments of
Ci. If H is not connected, we can exhibit a 2-edge-cut for any component of H that
does not contain R.

21

Proof. Assume first that H is connected. Let R, S1, . . . , Sk be the vertices of H in
a preorder, e.g. the order they are explored by a DFS, starting at R, the vertex
corresponding to the branch vertices on Ci. An easy inductive argument shows
that we can add all segments in this order. Namely, let k ≥ 1 and let C be the
minimal chain of Sk. All attachment points of Sk lie on the path t(C)→T s(C) by
Lemma 2.13, and there is either an edge between R and Sk or an edge between Sj
and Sk for some j < k. In the former case, there is a branch vertex on t(C)→T s(C)
at the beginning of the phase, in the latter case there is one after adding Sj. Thus
the minimal chain of Sk can be added and then all other chains by Lemma 2.12.

On the other hand, suppose H is not connected. Let C be any connected component
of H that does not contain R, and let CR be the connected component that contains
R. Let x and y be the minimal and maximal attachment points of the segments
in C, and let Gc be the current graph after adding all chains in CR. We first show
that there is no branch vertex of Gc on the path y →T x. Assume otherwise and
let w be any such branch vertex. Observe first that there must be a chain C ∈ C
with s(C) ≤ w ≤ t(C). Otherwise, every chain in C has all its attachment points at
proper ancestors of w or at proper descendants of w and hence C is not connected.
Let S be the segment containing C. By Lemma 2.13, we may assume that C is the
minimal chain of S. Since S 6∈ CR, R S is not an edge of H and hence no branch
vertex exists on the path t(C) →T s(C) at the beginning of part II of the phase.
Hence w is an attachment point of a segment in CR. In particular CR contains at
least one segment. We claim that CR must also have an attachment point outside
t(C)→T s(C). This holds since all initial branch vertices are outside the path and
since CR is connected. Thus S ∈ CR by Lemma 2.14, a contradiction.

We show next that the tree-edge x p(x) and the edge z y from y’s predecessor z on
Ci to y form a 2-edge-cut; z y may be a tree-edge or a back-edge. The following
argument is similar to the argument in Theorem 2.6, but more refined.

Assume otherwise. Then, as in the proof of Theorem 2.6, there is a path P = a→ b
such that a ≤ u for all u ∈ P, and either a lies on y →T x and b does not, or
vice versa, and no inner vertex of P is in Gc. Moreover, the first edge a v of P is a
back-edge and v is a descendant of b. Note that unlike in the proof of Theorem 2.6,
a and b need not lie on different links, as we want to show that x p(x) and z y form
a cut and these might be different from the last edges on the link containing x and
y.

Let D be the chain that starts with the edge a v. D does not belong to Gc, as no edge
of P belongs to Gc. In particular, a does not s-belong to Cj for j < i (as otherwise, D
would already be added). Since a ≤ b and one of a and b lies on y→T x (which is a
subpath of Ci), a s-belongs to Ci. By the argument from the proof of Theorem 2.6,
t(D) is a descendant of b.

Let D∗ be the chain that contains the last edge of P. If t(D) = b, D = D∗. Otherwise,
t(D) is a proper descendant of b. Let u b be the last edge on the path t(D) →T b.
We claim that u b is also the last edge of P. This holds since the last edge of P
must come from a descendant of b (as ancestors of b belong to Gc) and since it
cannot come from a child different from y as otherwise P would have to contains a
cross-edge. Thus D∗ ≤ D by Lemma 2.4.(5) and hence s(D∗) ≤ s(D) ≤ a by part
(4) of the same lemma.

D and D∗ belong to the same segment with respect to Ci, say S, and a and b are
vertices in S∩Gc. This can be seen easily. Since a s-belongs to Ci, D belongs to some

22

1 2 3 4 1 2 3 40

Figure 2.3: Intervals for the solid segment with respect to the dashed chain.
It has the attachment points 1,2,4. Filled vertices are branching points.

segment with respect to Ci and since D∗ ≤ D, D∗ belongs to the same segment.
Since t(D∗) = b and b is a vertex of Gc, D∗ is the minimal chain in S. Thus D∗ is
nested and hence b s-belongs to Ci. Hence a and b are attachment points of S.
Thus S overlaps with C and hence S ∈ C by Lemma 2.14. Therefore x and y are not
the extremal attachment points, that is the minimal (or maximal) vertices in S ∩ Gc,
of C, a contradiction.

It remains to show that we can find an order as required in Lemma 2.15, or a 2-edge-
cut, in linear time. We reduce the problem of finding an order on the segments
to a problem on intervals. W.l.o.g. assume that the vertices of Ci are numbered
consecutively from 1 to |Ci|. Consider any segment S, and let a0 ≤ a1 ≤ . . . ≤ ak be
the set of attachment points of S, i.e., the set of vertices that S has in common with
Ci. By Lemma 2.13, a0 and ak are the endpoints of the minimal chain in S and each
ai, 0 < i < k, is equal to s(D) for some other chain in S. We associate the intervals

{[a0, a`]|1 ≤ ` ≤ k} ∪ {[a`, ak]|1 ≤ ` < k},

with S and for every branch vertex v on Ci we define an interval [0, v]. See Figure 2.3
for an example.
We say two intervals [a, a′], [b, b′] overlap if a ≤ b ≤ a′ ≤ b′. Note that overlapping
is different from intersecting; an interval does not overlap intervals in which it is
properly contained or which it properly contains. This relation naturally induces
a graph H′ on the intervals. Contracting all intervals that belong to the same
segment into one vertex makes H′ isomorphic to the overlap graph as required for
Lemma 2.15. Hence we can use H′ to find the order on the segments.
A naive approach that constructs H′, contracts intervals, and runs a DFS will fail,
since the overlap graph can have a quadratic number of edges. However, using a
method developed by Olariu and Zomaya [59], we can compute a spanning forest
of H′ in time linear in the number of intervals. The presentation in [59] is for the
PRAM and thus needlessly complicated for our purposes. A simpler explanation
can be found in the appendix.
The number of intervals created for a chain Ci is bounded by

|NestedChildren(Ci)|+ 2|Interlacing(Ci)|+ |Vbranch(Ci)|,

where NestedChildren(Ci) are the nested children of Ci, Interlacing(Ci) are the
interlacing chains that start on Ci, and Vbranch(Ci) is the set of branch vertices on
Ci. Note that we generate the interval [s(C), t(C)] for each nested child C, and
the intervals [s(C), s(D)] and [s(D), t(C)] for each interlacing chain D belonging to
a segment with nested minimal chain C. Thus the total time spend the ordering
procedure is O(m). From the above discussion follows:

23

Theorem 2.16: For a 3-edge-connected graph, a Mader construction sequence can
be found in time O(n + m).

2.9 Verifying the Mader Sequence

Our algorithm computes a certificate alongside its answer. The certificate is either
a 2-edge-cut, or a sequence of Mader-paths. In this section we discuss how to
verify that the certificate is correct. We will see that this is a very simple procedure
compared to connectivity testing.

If the graph is not 3-connected, that is, the certificate is a 2-edge-cut, we simply
remove the two edges and verify that G is no longer connected.

For checking the Mader sequence, we doubly-link each edge in a Mader-path to
the corresponding edge in G. Let G′ be a copy of G. We remove the Mader-paths,
in reverse order of the sequence, suppressing vertices of degree two as they occur.
This can create multiple edges and loops. Let G′i be the multi-graph before we
remove the i-th path Pi. We need to verify the following:

• G must have minimum degree three.

• The union of Mader-paths must be isomorphic to G and the Mader-paths
must partition the edges of G. This is easy to check using the links between
the edges of the paths and the edges of G.

• The paths we remove must be ears. More precisely, at step i, Pi must have
been reduced to a single edge in G′i , as inner vertices of Pi must have been
suppressed if Pi is an ear for G′i .

• The Pi must not subdivide the same link twice. That is, after deleting the
edge corresponding to Pi, it must not be the case that both endpoints are still
adjacent (or equal, i.e. Pi is a loop) but have degree two.

• When only two paths are left, the graph must be a K3
2.

2.10 The Cactus Representation of 2-Cuts

We review the cactus representation of 2-cuts in a 2-connected but not 3-connected
graph and show how to certify it.

A cactus is a graph in which every edge is contained in exactly one cycle. Dinits,
Karzanov, and Lomonsov [26] showed that the set of mincuts of any graph has a
cactus representation, i.e., for any graph G there is a cactus C and a mapping φ :
V(G)→ V(C) such that the mincuts of G are exactly the preimages of the mincuts
of C, i.e., for every mincut2 A ⊆ V(C), φ−1(A) is a mincut of G, and all mincuts
of G can be obtained in this way. The pair (C, φ) is called a cactus representation of
G. Fleiner and Frank [29] provide a simplified proof for the existence of a cactus

2For this theorem, a cut is specified by a set of vertices, and the edges in the cut are the
edges with exactly one endpoint in the vertex set.

24

representation. We will call the elements of V(G) vertices, the elements of V(C)
nodes, and the preimages of nodes of C blobs.

In general, a cactus representation needs to include nodes with empty preimages.
This happens for example for the K4; its cactus is a star with double edges where
the central node has an empty preimage and the remaining nodes correspond
to the vertices of the K4. For graphs whose mincuts have size two, nodes with
empty preimages are not needed, and a cactus representation can be obtained by
contracting the 3-edge-connected components into a single node.

Lemma 2.17 ([56, Section 2.3.5]): Let G be a 2-edge-connected graph that is not
3-edge-connected. Contracting each 3-edge-connected components of G into a node
yields a cactus representation (C, φ) of G with the following properties:

i) The edges of C are in one-to-one correspondence to the edges of G that are
contained in a 2-cut.

ii) For every node c ∈ V(c), φ−1(c) is a 3-edge-connected component of G.

Proof. Consider the graph C′ whose nodes correspond to the 3-edge-connected
components of G and there is an edge between two nodes u, v in C′ if there is an
edge between the subgraphs in G induced by u and v. Alternatively, C′ is obtained
from G by contracting each 3-edge-connected component of G into a node. Clearly,
the edges of C′ correspond to the edges of G that are contained in 2-edge-cuts.

We show that C′ is a cactus. Assume first that there is an edge u v in C′ contained
in two distinct cycles X and Y. Let P be a maximal path in X − Y; note that P
is non-empty. Then the endpoints a and b of P are connected by at least three
edge-disjoint paths in G, namely P and the two a-b-paths in Y. This contradicts that
a and b are in different 3-edge-connected components. Assume next that there is an
edge u v in C′ that is not contained in any cycle. Then this edge is a 1-edge-cut in G,
a contradiction.

2.10.1 Verifying a Cactus Representation

Let G be a graph and let (C, φ) be an alleged cactus-representation of its 2-cuts
in the sense of Lemma 2.17. We show how to certify an cactus representation
in linear time. To verify the cactus representation, we need to check two things.
First, we need to ensure that C is indeed a cactus graph, that is, every edge of C
is contained in exactly one cycle, that φ is a surjective mapping and hence there
are no empty blobs, and that every edge of G either connects two vertices in the
same blob or is also present in C. Second, we need to verify that the blobs of C are
3-edge-connected components of G. For this purpose, the cactus representation
is augmented by a Mader construction sequence for each blob B. The verification
procedure from Sect. 2.9 can then be applied.

We first verify that C is a cactus. We compute a chain decomposition of C and verify
that every chain is a cycle. We label all edges in the i-th cycle by i. We have now
verified that C is a cactus.

Surjectivity of φ is easy to check. We then iterate over the edges u v of G. If its
endpoints belong to the same blob, we associate the edge with the blob. If its
endpoints do not belong to the same blob, we add the pair φ(u) φ(v) to a list.

25

Having processed all edges, we check whether the constructed list and the edge
list of C are identical by first sorting both lists using radix sort and then comparing
them for identity.

We finally have to check that the blobs of C correspond to 3-edge-connected com-
ponents of G. Our goal is to use the certifying algorithm for 3-edge-connectivity
on the substructures of G that represent 3-edge-connected components. Let B be
any blob. We already collected the edges having both endpoints in B. We also
have to account for the paths using edges outside B. We do so by creating an edge
u v for a every path in G leaving B at vertex u and returning to B at vertex v. It is
straightforward to compute these edges; we look at all edges having exactly one
endpoint in the blob. Each such edge corresponds to an edge in C. For each such
edge, we know to which cycle it belongs. The outgoing edges pair up so that the
two edges of each pair belong to the same cycle.

The maximality of each blob B is given by the fact that every edge of C is contained
in a 2-edge-cut of C and hence contained in a 2-edge-cut of G.

Every algorithm for computing the 3-edge-connected components of a graph,
e.g. [55, 70, 72, 73, 56], can be turned into a certifying algorithm for computing
the cactus representation of 2-cuts. We obtain the cactus C and the mapping
φ by contraction of the 3-edge-connected components (Lemma 2.17). Then one
applies our certifying algorithm for 3-edge-connectivity to each 3-edge-connected
component. The drawback of this approach is that it requires two algorithms that
check 3-connectivity. In the next section we will show how to extend our algorithm
so that it computes the 3-edge-connected components and the cactus representation
of 2-cuts of a graph directly.

2.11 Computing a Cactus Representation

We discuss how to extend the algorithm to construct a cactus representation. We
begin by examining the structure of the 2-cuts of G more closely to extend our
algorithm such that it finds all 2-cuts of the graph and encodes them efficiently.

We will first show that the two edges of every 2-edge-cut of G are contained in
a common chain. This restriction allows us to focus on the 2-edge-cuts that are
contained in the currently processed chain Ci only. In the subsequent section, we
show how to maintain a cactus for every phase i of the algorithm that represents all
2-edge-cuts of the graph of the branch vertices and links of C1 ∪ . . . ∪ Ci in linear
space. The final cactus will therefore represent all 2-edge-cuts in G.

There is one technical detail regarding the computation of overlap graphs: For the
computation of a Mader-sequence in Section 2.8, we stopped the algorithm when
the first 2-edge-cut occurred, as then a Mader-sequence does not exist anymore.
Here, we simply continue the algorithm with processing the next chain Ci+1. This
does not harm the search for cuts in subsequent chains, as the fact that 2-edge-cuts
are only contained in common chains guarantees that every 2-edge-cut that contains
an edge e in Ci has its second edge also in Ci.

For simplicity, we assume that G is 2-edge-connected and has minimum degree
three from now on. Then all 3-edge-connected components contain at least two
vertices.

26

2.11.1 Properties and Representation of 2-cuts on Chains

In phase i of the algorithm, using Lemma 2.15, we can find a 2-edge-cut for each
connected component of the overlap graph H that does not contain R (R is the
special vertex in H that represents the branch vertices on Ci). Lemma 2.19 shows
that the set of edges contained in these cuts is equal to the set of edges contained in
any cut on Ci. Lemma 2.18 states easy facts about 2-edge-cuts, in particular, that the
edges of any 2-edge-cut are contained in a common chain. The proofs can be found
in many 3-connectivity papers, e.g. [55, 70, 72, 73]. As in the previous sections, all
DFS-tree-edges are oriented towards the root, while back-edges are oriented away
from the root.

Lemma 2.18: Let T be a DFS-tree of a 2-edge-connected graph G. Every 2-edge-cut
(u v, x y) of G satisfies the following:

(1) At least one of u v and x y is a tree-edge, say x y.

(2) G − u v − x y has exactly two components. Moreover, the edges u v and x y
have exactly one endpoint in each component.

(3) The vertices u, v, x, and y are contained in the same leaf-to-root path of T.

(4) If u v and x y are tree-edges and w.l.o.g. u ≤ y, the vertices in y→T u and {x, v}
are in different components of G− u v− x y.

(5) If u v is a back-edge, then x y ∈ (v →T u) and, additionally, the vertices in
v→T x and y→T u are in different components of G− u v− x y.

Let C be a chain decomposition of G. For every 2-edge-cut {u v, x y} of G, u v and
x y are contained in a common chain C ∈ C.

In phase i of the algorithm, using Lemma 2.15, we can find a 2-edge-cut for any
connected component of the overlap graph H that does not contain R (R is the
special vertex in H that represents the branch vertices on Ci). The next lemma
shows that the set of edges contained in these cuts is equal to the set of edges
contained in any cut on Ci.

Lemma 2.19: Let E be the set of edges that are contained in the 2-edge cuts induced
by the connected components of the overlap graph H at the beginning of part II of
phase i. Then any 2-edge-cut {x y, u v} on Ci is a subset of E .

Proof. Assume for the sake of contradiction that there is an edge u v in the 2-edge-
cut that is not in E . We distinguish the following cases.

First assume that both u v and x y are tree-edges and w.l.o.g. v < u ≤ y < x. Since
G has minimal degree three, every node on Ci has an incident edge that is not on
Ci. Hence it is either a branch vertex, or belongs to some segment with respect to
Ci (incident back-edges start chains in segments w.r.t. Ci, incident tree edges are
the last edges of chains in segments w.r.t. Ci). As s(Ci) ≤ v is a branch vertex, by
Lemma 2.18.(4) the path y→T u can not contain a branch vertex. In particular, u is
not a branch vertex.

Let Su be any segment having u as attachment vertex. All segments in the connected
component of Su in H must have their attachment vertices on y →T u and the

27

1 1 2 2 23 3 3

Figure 2.4: The intervals induced by the connected components of the
overlap graph H form a laminar family. The levels of this family encode
which edges form pairwise 2-cuts. Two edges in the figure are labeled with
the same number if they form a cut. Filled vertices are branch vertices.

connected component does not contain R. Hence this connected component induces
a cut containing u v.

Now assume that one of u v and x y is a back-edge. If u v is the back-edge, then
u = s(Ci) and we have u < y < x < v by Lemma 2.18. The path v →T x cannot
contain a branch vertex. Let Sv be any segment that has v as attachment vertex. All
segments in the connected component of Sv must have their attachment vertices on
v→T x and the connected component does not contain R. Hence u v is contained
in a cut induced by this connected component.

If on the other hand u v is the tree-edge we have y < v < u < x basically the same
argument applies when we replace Sv by a segment Su containing u.

In this section we show how to compute a space efficient representation of all 2-cuts
on the chain Ci. Using this technique we can store all 2-cuts in G in linear space. In
the next section we will then use this to construct the cactus-representation of all
2-cuts in G.

Number the edges in Ci as e1, e2, . . . , ek. Here e1 is a back-edge and e2 to ek are tree
edges. We start with a simple observation. Let h < i < j. If (eh, ei) and (ei, ej) are
2-edge-cuts, then (ei, ej) is a 2-edge-cut.

Using this observation, we want to group the edges of 2-edge-cuts of Ci such that
(i) every two edges in a group form a 2-edge-cut and (ii) no two edges of different
groups form a 2-edge-cut. The existence of such a grouping has already been
observed in [55, 70, 73]. We show how to find it using the data structures we have
on hand during our algorithm.

Consider the overlap graph H in phase i of our algorithm. We need some notation.
Let I be the set of intervals on Ci that contains for every component of H (except
the component representing the branch vertices on Ci) with extremal attachment
vertices a and b the interval [a, b]. Since the connected components of H are maximal
sets of overlapping intervals, I is a laminar family, i.e. every two intervals in I are
either disjoint or properly contained in each other. In particular, no two intervals in
I share an endpoint. The layers of this laminar family encode which edges form
pairwise 2-cuts in G, see Figure 2.4. We define an equivalence relation to capture
this intuition.

For an interval [a, b], a < b, let `([a, b]) and r([a, b]) be the edges of Ci directly
before and after a and b, respectively. We call {`([a, b]), r([a, b])} the interval-cut of
[a, b]. For a subset S ⊆ I of intervals, let ES be the union of edges that are contained
in interval-cuts of intervals in S. According to Lemma 2.19, every 2-edge-cut in Ci
consists of edges in EI .

28

We now group the edges of EI using the observation above. Let two intervals
I1 ∈ I and I2 ∈ I contact if r(I1) = `(I2) or `(I1) = r(I2). Clearly, the transitive
closure ≡ of the contact relation is an equivalence relation. Every block B of ≡ is a
set of pairwise disjoint intervals which are contacting consecutively. This allows
us to compute the blocks of ≡ efficiently. We can compute them in time |I| and
store them in space |I| by using a greedy algorithm that iteratively extracts the
inclusion-wise maximal intervals in I that are contacting consecutively.

Lemma 2.20 ([55, 70, 73]): Two edges e and e′ in Ci form a 2-edge-cut if and only if
e and e′ are both contained in EB for some block B of ≡.

2.11.2 An Incremental Cactus Construction

In this section we show how to construct a cactus representation incrementally
along our algorithm for constructing a Mader sequence. At the beginning of each
phase i, we will have a cactus for the graph Gi whose vertices are the branch vertices
that exist at this time and whose edges are the links between these branch vertices.
We assume that G is 2-edge-connected but not 3-edge connected and that G has
minimum degree three. This ensures that in phase i every vertex on the current
chain Ci belongs to some segment or is a branch vertex.
We will maintain a cactus representation (C, φ), i.e., for every node v of C, the blob
B = φ−1(v) is the vertex-set of a 3-edge-connected component in Gi. We begin with
a single blob that consists of the two branch vertices of the initial K3

2, which clearly
are connected by three edge-disjoint paths.
Consider phase i, in which we add all chains whose source s-belongs to Ci. At
the beginning of the phase, the endpoints of Ci and some branch vertices on Ci
already exist in Gi. We have a cactus representation of the current graph. The
endpoints of Ci are branch vertices and belong to the same blob B, since 2-edge-cuts
are contained in chains.
We add all segments that do not induce cut edges and tentatively assign all vertices
of Ci to B. If the algorithm determines that Ci does not contain any 2-edge-cut,
the assignment becomes permanent, the phase is over and we proceed to phase
i + 1. Otherwise we calculate the efficient representation of 2-edge-cuts on Ci from
Sect. 2.11.1.
Let e1 be the first edge on Ci in a 2-edge-cut, let A be a block of the contact equiva-
lence relation described in the last section containing e1 and let EA = {e1, e2, . . . , e`}
such that ej comes before ej+1 in Ci for all j. Then every two edges in EA form a
2-edge-cut. We add a cycle with `− 1 empty blobs B2, . . . , B` to B in C. The ` new
edges correspond to the ` edges in EA.
For every pair ej = (a, b), ej+1 = (c, d) in EA we remove the vertices between these
edges from B. Since the edges in Ci are linearly ordered, removing the vertices in a
subpath takes constant time. We place the end vertices b and c of the path between
ej and ej+1 in the blob Bj, add the segments that induced this cut and recurse on
the path between b and c. That is, we add all vertices on the path from b to c to Bj,
check for cut edges on this path, and, should some exist, add more blobs to the
cactus. The construction takes constant time per blob. Figure 2.5 shows an example.
Graphs that contain nodes of degree two can be handled in the same way, if we
add a cycle to each degree two node u. This cycle creates a segment w.r.t. the chain

29

Ci: 0 1
a

2
b

3
c

4
d

5
e

6
f

7
g

8
h

0, 8

6, 71, 4, 5

2, 3

ha

b

d

f

Figure 2.5: The segments attached to chain Ci and the corresponding part of
the cactus. We first tentatively assign vertices 1–7 to the blob containing the
endpoints {0, 8} of Ci. The top level cuts are the pairs in the block {a, f , h}.
So we create a cycle with three edges and attach it to the blob containing 0
and 8. We move vertices 1–5 to the blob between a and f , vertices 6–7 to the
blob between f and h, and keep vertices 0 and 8 in the parent blob. We then
recurse into the first blob. The second level cuts are the pairs in the block
{b, d}. So we create a cycle with two edges and move vertices 2 and 3 to the
new blob.

to which u s-belongs and hence the algorithm correctly identifies the two incident
edges as cut edges.

Lemma 2.21: The above incremental procedure constructs a cactus representation
of the 2-edge-cuts in G in linear time.

Proof. Each vertex in G s-belongs to some chain. In the phase in which that chain is
treated, all its vertices are added to a blob. Whenever we move a vertex to different
blob, we remove it from its previous blob. Therefore each vertex of G is contained
in exactly one blob.

Whenever we add edges to the cactus, we do so by adding a cycle that shares
exactly one node with the existing cactus. Hence every edge in the cactus lies on
exactly one cycle.

Let {e1, e2} be a 2-edge-cut in G. The two edges must lie on a common cycle in the
cactus, since the edges in the cactus are in one-to-one correspondence with edges
of G and cutting a cycle in only one place cannot disconnect a graph. As the cycles
of the cactus touch in at most one vertex, e1 and e2 are a cut in the cactus as well.

Conversely let e′1, e′2 be a cut in the cactus and let e1, e2 be the corresponding edges
in G. Then e′1, e′2 must lie on some common cycle which, upon their removal, is split
into two non-empty parts H1, and H2. Assume that G− e1 − e2 is still connected,

30

then there must be a path from a vertex in the preimage of H1 to a vertex in the
preimage of H2 in G − e1 − e2. This path must contain at least one edge u v that
does not participate in any 2-edge-cut, as otherwise it would be a path in the cactus
as well. Moreover, u and v must lie in different blobs Bu and Bv of the cactus.

The one that was created last, say Bu, must be different from the initial blob.
Consider the time when Bu was created in the incremental construction of the
cactus. We introduced a cycle to some preexisting blob B∗ on which all edges where
cut edges, in particular the two cut edges incident to Bu. However, the edge u v still
connects Bu to the rest of graph, since Bv also exists at this time, a contradiction.

2.12 Computing all 3-Vertex-Connected Components

By applying the idea of the last section, the certifying algorithm for 3-vertex-
connectivity [65] (which is also based on chain decompositions) can be used to
compute the 3-vertex-connected components of a graph. This has been conjectured
in [64, p. 18] and yields a linear-time certifying algorithm to construct a SPQR-tree
of a graph; we refer to [40, 34] for details about 3-vertex-connected components
and SPQR-trees.

A pair of vertices {x, y} is a separation pair of G if G − x − y is disconnected.
Similarly to the edge-connectivity case, it suffices to compute all vertices that are
contained in separation pairs of G in order to compute all 3-vertex-connected
components of G. We assume that G is 2-vertex-connected and has minimum
degree 3.

For a rooted tree T of G and a vertex x ∈ G, let T(x) be the subtree of T rooted at x.
The following lemmas show that separation pairs can only occur in chains. Weaker
variants of Lemma 2.22 can be found in [40, 75, 76].

Lemma 2.22: Let T be a DFS-tree of a 2-connected graph G and C be a chain
decomposition of G. For every separation pair {x, y} of G, x and y are contained in
a common chain C ∈ C.

Proof. The following simple observation will be useful. Let r be the root of T and
let x 6= r be any vertex. Then for every t ∈ T(x)− x, there is a path P from t to a
vertex s ∈ G− T(x) such that P consists only of vertices in T(x)− x ∪ s.

We first prove that x and y are comparable in T, i.e., contained in a leaf-to-root path
of T. Assume they are not. Then G − x − y consists of at most three connected
components: one containing the least common ancestor of x and y in T and the
at most two connected components that contain the proper descendants of x and
y, respectively. According to the observation above, these components coincide,
contradicting that {x, y} is a separation pair.

Let x′ be the child of x in T that lies on the path y→T x. Clearly, if x′ = y, the chain
containing the edge xy is a common chain containing x and y. Otherwise, x′ 6= y.
If x = r, then there is a back-edge rt such that t ∈ T(y), according to the fact that
G− r is connected by T − r and due to the observation above. This back-edge rt
implies that the first chain C that traverses a vertex of T(y) starts at r and, hence,
contains x and y.

31

In the remaining case, x′ 6= y and x 6= r. Let st be a back-edge that connects an
ancestor s of x with a descendant t of x′ (possibly x′ itself) such that s is minimal;
this edge st exists, since G is 2-vertex-connected. According to [63], C1 is the only
cycle in C and it follows that s < x. If t ∈ T(y), the first chain C in C that contains
such a back-edge contains x and y and, hence, satisfies the claim. Otherwise, t is a
vertex in T(x′)− T(y). Due to the back-edge st, G− x− T(y) is contained in one
connected component of G− x− y. According to the observation above (applied on
y), {x, y} can form a separation pair only if y has a child y′ such that all back-edges
that end in T(y′) start either in T(y) or at x. Since G is 2-connected, there must be a
back-edge from x to T(y′). The first chain C in C containing such a back-edge gives
the claim, as it contains x and y.

Similarly to edge-connectivity, the connected components of the overlap graph for
Ci represent all vertices in separation pairs that are contained in Ci. The connected
components of the overlap graph can be computed efficiently [65, Lemma 51].
After finding all these vertices for Ci, a simple modification allows the algorithm
in [65, p. 508] to continue, ignoring all previously found separation pairs: For every
separation pair {x, y}, x < y, that has been found when processing Ci, there is a
vertex v strictly between x and y in Ci. Furthermore, by doing a preprocessing [65,
Property B, p. 508] one can assume that also t(Ci)→T s(Ci) has an inner vertex w.
We eliminate every separation pair {x, y} after processing Ci by simply adding the
new back-edge vw to G. As the new chain containing vw is just an edge, this does
not harm future processing steps.

According to Lemma 2.22, this gives all vertices in the graph that are contained
in separation pairs. The 3-vertex-connected components can then be computed
in linear time by iteratively splitting separation pairs and gluing together certain
remaining structures, as shown in [40, 34].

2.13 A Simplified Certifying Algorithm for 3-Vertex
Connectivity

In section 2.6 we gave a simple algorithm for checking 3-edge-connectivity. A very
similar algorithm can be used to check 3-vertex-connectivity. In [65] a linear time
certifying algorithm is presented. In this section we describe a much simpler greedy
algorithm that runs in time O((n + m) log(n + m)).

The certificate for 3-vertex-connectivity is almost identical to the one for 3-edge-
connectivity. It is a construction sequence that uses three operations and starts from
a K3

2.

Theorem 2.23 ([9]): Every 3-vertex-connected graph (and no other graphs) can be
constructed from a K3

2 using the following three operations

1. Adding an edge (possibly parallel).

2. Subdividing an edge x y and connecting the new vertex to any existing vertex,
except x or y.

3. Subdividing two distinct edges w x, y z and connecting the two new vertices.
Except for the first step that turns the K3

2 into a K4, the edges must not be parallel.

32

(Emphasis on the differences to Theorem 2.1)

Just like Theorem 2.1, this theorem readily generalizes to adding paths to a subdivi-
sion.

For edge-connectivity, an ear is always a Mader-path, unless the endpoints lie on
the same link. Vertex-connectivity is slightly more restrictive. The endpoints of
the ear must not lie on the same link or on parallel links. Furthermore, if exactly
one endpoint of the ear is a branch vertex, it must not lie at the end of the link that
contains the non-branch vertex. We must therefore be more careful when adding
chains greedily in the algorithm.

We will in fact impose additional restrictions on the construction sequence we find:

1. We only add a path a→ b if the tree path a→T b contains a branch vertex as
an inner node.

2. We never construct two parallel links L1, L2 such that one of them consists
only of tree edges.

The following lemmas shows under which circumstances a path is a Mader-path in
the case of vertex connectivity that does not violate the above restrictions.

Lemma 2.24: [66, Lemma 72] A path P = a→ b is a Mader-path w.r.t. a parent-first
subdivision Gc that respects restriction 2 if

1. P is an ear w.r.t. Gc: P ∩ Gc = {a, b}

2. The vertices a and b are either both branch vertices, one is a branch vertex
and the other does not lie on an incident link, or both are non-branch vertices
and lie on different links.

Proof. We begin by showing that a path that fulfills these requirements is a Mader-
path. Assume for the sake of contradiction that a path P = a →T b like in the
lemma is not a Mader-path. It is easy to see that the only thing that can prevent P
from being a Mader-path is that a and b lie on parallel links Q and Z, so assume
this to be the case.

Both Q and Z must contain at least one back-edge because of restriction 2. Let
Cq and Cz be the chains that contain Q and Z. As these chains contain only one
back-edge, this implies that s = s(Cq) = s(Cz) and s ∈ Q ∩ Z. Let t = Q ∩ Z− s be
the other common vertex of the two links. By construction the vertices of Q and Z
lie in different subtrees of the DFS tree. Since P links these two subtrees and the tree
does not contain a cross-edge, P must contain an ancestor of t. As Gc is parent-first,
this ancestor is part of Gc, contradicting P ∩ Gc = {a, b}.

As we can see from Lemma 2.24, restriction 2 makes it easier to add new paths,
as we do not have to check whether the endpoints lie on parallel links. Note that
Gc may violate restriction 2 after we add a Mader-path with this lemma. The next
lemma shows when we can add a Mader-path without violating the restriction.

Lemma 2.25: A Mader-path P = a→ b can be added to a parent-first subdivision
Gc that respects restriction 2 if P contains a back-edge and the tree path a →T b
contains a branch vertex as inner vertex.

33

Proof. We show that Gc still respects restriction 2 after adding P. The path P
becomes a new link in Gc. Moreover, a and b become branching vertices and split
the links on which they lie. As a→T b contains a branch vertex, P is not parallel to
a link that contains only tree edges. Similarly, splitting the links on which a and
b lie can not create a new link that consists only of tree edges and is parallel to
another link in Gc, unless this was already the case before the splitting.

Lemma 2.25 implies that we can add a chain C if s(C)→T t(C) contains a branch
vertex as an inner vertex and s(C) and t(C) lie on different links.

The general idea for the algorithm stays the same as in the edge-connectivity case.
We compute a chain decomposition and want to find a construction sequence by
adding chains. Chains are addable if the conditions of Lemma 2.25 are satisfied. We
keep track of the chains that are currently addable and add them greedily. Adding
chains creates new branch vertices and makes the adding of other chains possible.
So after every adding of a chain we check whether new chains can be added.

However, sometimes this procedure gets stuck, that is, no chain can be added,
even though there is no cut in the graph. See for example Figure 2.6. In the
figure, C1 ∪ C2 form the initial K3

2. The chain C3 is the only ear with respect to
this subgraph. However, we are not allowed to add this chain, since this would
constitute subdividing the a c edge in the K3

2 and connecting the new vertex d to a,
which is forbidden by operation 2 in Theorem 2.23. Note however that the path
b f e d is a Mader-path and after adding this path, the remaining edges a f and a e
can be added. The structures that cause this situation are called caterpillars in [65].

2.14 Caterpillars

Caterpillars are collections of chains that can be decomposed into a set of Mader-
paths under certain conditions. A chain D starts a caterpillar if its parent D̂ is not
added and s(D̂) = s(p(D̂)). Let D, D̂, p(D̂), . . . , D∗ be all ancestors of D such that
none is added and all except D itself start at the same node as their parent. This
collection of chains forms a caterpillar. To find caterpillars after adding a chain C,
we examine the chains D with s(D) on C and check whether they are interlacing
and have a parent D̂ that has the same source vertex as its parent, i.e. s(D̂) = p(D̂).
If so, we collect all the chains belonging to the caterpillar by traversing the chain
tree upwards until we reach a chain that is already added to the graph, or the chain
does no longer begin at the same node as its parent.

Next we discuss under which circumstances caterpillars can be added and how to
detect the necessary conditions during the execution of the algorithm.

Let Ck be the least common ancestor of all chains in the caterpillar. In Figure 2.7
we see the two conditions under which a caterpillar can be decomposed into a
set of Mader-paths. If s(D) is an inner vertex of t(Ck) →T s(Ck) (case 1), the
caterpillar can be added as soon as Ck is added (left side of the figure). If on
the other hand s(D) lies on Ck (case 2), then the caterpillar can be added if the
path s(Ck) →Ck t(D∗) contains a branch node. We call a caterpillar that fulfills
one of these conditions good. See Lemma 76 in [66] why these are the only cases
were caterpillars can be decomposed to Mader-paths (this Lemma is however
unnecessary for the correctness of our algorithm).

34

a

b

c

d

e

f

C4
C2

C1

C3

C5

Figure 2.6: A graph where no chain can be added to the K3
2 (blue edges). The

green path b f e d is a Mader-path. After adding it, the remaining paths can
be added.

35

Which of the two cases apply can be decided as the caterpillar is first detected. A
type 1 caterpillar can be added as soon as Ck is added. A type two caterpillar can
be added as soon as s(Ck)→Ck t(D∗) contains a branch vertex. Both cases are easy
to detect during the algorithm.

Lemma 2.26: If a caterpillar is good, it can be added.

Proof. We distinguish between the two possible configurations for good caterpillars
as shown in Figure 2.7. First consider the case where s(D) ∈ t(Ck)→T s(Ck).
The path P = s(D) →D t(D) →T t(D∗) (green in Figure 2.7) can be added with
Lemma 2.25, as it is an ear and its endpoints lie on different links. It is easy to see
that the paths that remain of the caterpillar after adding P can be added as well.
In the other case s(D) ∈ Ck and there is a branch vertex a on the path s(Ck) →Ck
s(D). The green path P = s(D)→D t(D)→D∗ s(D∗) in Figure 2.7 can be added by
Lemma 2.25. Next we add the path t(D)→T t(D∗). As this path does not contain
a back-edge, we need an additional argument why it can be added. Clearly, it is a
Mader-path, as it is an ear and the branch vertex a prevent the link on which t(D∗)
lies to be parallel to the link created by P (even in the case where s(D) = t(Ck)). It
also does not violate restriction 2, as there is no parallel link to it. The remaining
paths of this caterpillar can then by added according to Lemma 2.25.

2.14.1 The Greedy Vertex-Connectivity Algorithm

The algorithm is basically identical to the greedy chain addition algorithm for
edge-connectivity from Section 2.6. Let us re-examine the algorithm to see where
changes are necessary.
We begin by computing a chain decomposition and a K3

2 = C1 ∪ C2. During the
chain decomposition we check that the graph is 2-vertex-connected.3 As before
we maintain the links of the current subdivision as doubly linked lists and label
all vertices as inactive, branch, or non-branch. Also as before, we manage a list of
addable structures and for each chain store the list of its children.
To detect caterpillars we also store for each vertex v which chains start at v. For
every caterpillar starting at some chain D that we detect while updating this
information, we add a reference to the caterpillar to the end of the chain Ck that
contains s(D). This way, we can easily detect when a type 2 caterpillar (Figure 2.7,
right side) becomes addable.
For initialization, we iterate over the children of C1 and C2. We add the first chain,
say C, whose endpoints are not inner vertices of the same link and thus create a K4.4

It might happen that there is no such chain, for example in the case of Figure 2.6.
In that case we detect the presence of a good caterpillar and add it completely.
For each chain that is a child of the chains in the subdivision at this point, we
check whether it is addable using Lemma 2.25 and if so add it to the list of addable
structures L. We also initialize for every vertex v the list of chains starting at v and
detect caterpillars.

3The graph is 2-vertex-connected if the minimum degree is at least 2 and C1 is the only
chain that forms a cycle. See Lemma 11 in [65].

4We do this because of the exception in operation 3 in Theorem 2.23.

36

t(D)

s(Ck)

s(D)

t(Ck)

t(D∗)

Ck

t(D)

a

s(Ck)

s(D)

t(Ck)

t(D∗)
Ck

Figure 2.7: The two configurations when a caterpillar can be added. Left:
s(D) lies on the tree path t(Ck)→T s(Ck). Right: s(D) s-belongs to Ck and
there is a branch vertex a on the path s(Ck)→Ck s(D). In green are shown
the first Mader-paths into which the caterpillars are decomposed.

37

As long as there are elements in L, we take one and add it. This makes the
attachment points5 of the structure branch vertices (if they have been non-branch
before) and splits the links on which they lie. As in the edge-connectivity algorithm,
process the children of D and check the applicability of Lemma 2.25 to update L and
compute the necessary extra information stored at the vertices of D. Furthermore,
we traverse the links that are split by the adding of D and add the structures that
have become addable to L.

Lemma 2.27: If the Greedy-Chain-Addition Algorithm stops before all chains are
added, the graph contains a cut.

Proof. This proof is very similar to the proof of Theorem 2.6.

Let Gc be the current subdivision. For the sake of contradiction, suppose the
following

a) The graph is 3-connected.

b) No chain or caterpillar can be added to the subdivision.

c) Gc 6= G.

Because of c) and the fact that we add only (collections of) chains, there is at least
one chain that is not added. W.l.o.g. it is a child of a chain that is already added.

There must be a non-branch node in the subdivision. Otherwise all vertices are
branch vertices and every child of a chain that is already added can be added.

Let L be a link of length at least two (i.e. it contains at least one non-branch vertex).
Because of a), there must be a path P in G − Gc (vertex disjoint from Gc) that
connects a vertex on L, to a vertex of the subdivision that is not on L (including its
endpoints). If no such path exists, the endpoints of L form a cut.

Note that P is a Mader-path for Gc. Let a and b be the endpoints of P. Let z be the
LCA of all vertices on P. Since DFS trees do not contain cross edges, z is equal to a
or b. Say a. We view P as oriented from a to b. Let v be the first node of P.

Note that by construction, every path in Gc between a and b contains a branch
vertex as an inner vertex, since we chose at least one of them to be a non-branch
vertex.

The tree path b→T a is part of Gc and hence disjoint from P. The vertex v must be
a descendant of b, otherwise P contains a cross edge. Since a < b, a v is a back-edge
and starts a chain, D. D is not yet added, since P is disjoint from Gc.

Let y x be the last edge on the path t(D) →T b that is not in Gc and let D∗ be the
chain that contains y x. Note that y x need not be an edge of P, if the last edge of P
is a back-edge. Since y x is a tree-edge, D∗ does not consist of a single back-edge.
We claim that if G is 3-connected either D∗ can be added alone, or D∗ is part of a
caterpillar that can be added.

By Lemma 2.4, D∗ ≤ D and hence s(D∗) ≤ s(D) ≤ a.

5The attachment points of a structure S to a subdivision Gc are the vertices in S ∩ Gc.

38

Claim: D∗ is either addable or part of an addable caterpillar.

There is a branch vertex on b→T a and a and b lie on different links by our choice
of P. Since s(D∗) ≤ s(D) = a and t(D∗) = x ≤ b, there is a branch vertex on
t(D∗)→T s(D∗). If D∗ is a Mader-path, we can thus add with with Lemma 2.25.

Assume then that D∗ is not a Mader-path. The vertices s(D∗) and t(D∗) do not lie
on the same link because of the branch vertex on t(D∗)→T s(D∗) and neither do
they lie on parallel links, since P is a Mader-path.

The only possibility left is that s(D∗) and t(D∗) lie on links that share one endpoint.
Then s(D∗) = s(D̂∗) and D∗ is part of a caterpillar. W.l.o.g. we can assume that D∗

is the minimal chain in the caterpillar.

Now we show that we can add this caterpillar.

The path P is a Mader-path that uses an edge of the caterpillar. Ck is already added,
hence s(Ck) ≤ lca(a, b). Moreover a, b ∈ Ck ∪ t(Ck)→t s(Ck). Therefore a = s(Ck).

If s(D) is on s(Ck) →T t(Ck), then the caterpillar is good and can be added. Oth-
erwise s(D) is on Ck. Since D is the minimal interlacing chain that enters the
caterpillar, s(D) ≤ b. As P is a Mader-path, the caterpillar is good.

It easily follows from this theorem that if the algorithm does not find a construction
sequence and instead stops at some subdivision Gc, the endpoints of any link of
size at least three in this subdivision form a cut in the graph.

By the argument from Section 2.6, the runtime of this algorithm is also O((n +
m) log(n + m)).

2.15 Conclusion

We presented a certifying linear time algorithm for 3-edge-connectivity based
on chain decompositions of graphs. It is simple enough for use in a classroom
setting and can serve as a gentle introduction to the certifying 3-vertex-connectivity
algorithm of [65]. We also provide an implementation in Python, available at https:
//github.com/adrianN/edge-connectivity. We also show how the algorithm
from [65] can be simplified using a greedy approach.

We also show how to extend the algorithm to construct and certify a cactus represen-
tation of all 2-edge-cuts in the graph. From this representation the 3-edge-connected
components can be readily read off. The same techniques are used to find the 3-
vertex-connected components using the algorithm from [65], and thus present a
certifying construction of SPQR-trees.

Mader’s construction sequence is general enough to construct k-edge-connected
graphs for any k ≥ 3, and can thus be used in certifying algorithms for larger
k. Even though Mader proves the existence of the sequences, it remains unclear
how to compute them. We hope that the chain decomposition framework can be
adapted to work in these cases too.

39

https://github.com/adrianN/edge-connectivity
https://github.com/adrianN/edge-connectivity

40

Chapter 3

Online Checkpointing with
Improved Worst-Case
Guarantees

41

3.1 Introduction

In the previous chapter, we discussed a certifying algorithm which, by design,
provides protection against implementation errors and intermittent hardware faults
like flipped memory bits. In many scenarios it is necessary to prepare for more faults
that make it impossible to continue a computation, for example an interruption in
power supply.
Checkpointing is a technique that allows reverting a long computation to an arbi-
trary previous state quickly by storing selected intermediate states and restarting
the computation from a stored state (instead of redoing everything from the begin-
ning). Checkpointing is one of the fundamental techniques in computer science.
Classic results date back to the seventies [18], more recent topics are checkpointing
in distributed [27], sensor network [60], or cloud [77] architectures.
Checkpointing usually involves a careful trade-off between the speed-up of re-
versions to previous states and the costs incurred by setting checkpoints (time,
memory). Much of the classic literature (see [32] and the references therein) studies
checkpointing with the focus of gaining fault tolerance against immediately de-
tectable faults. Consequently, only reversions to the most recent checkpoint are
needed. However, setting a checkpoint can be expensive, because the whole system
state has to be copied to secondary memory. In such scenarios, the central question
is how often to set a checkpoint such that the expected time spent on setting check-
points and redoing computations from the last checkpoint is minimized (under a
stochastic failure model and further, possibly time-dependent [71], assumptions on
the cost of setting a checkpoint).
In this chapter, we will regard a checkpointing problem of a different nature. If not
fault-tolerance of the system is the aim of checkpointing, then often the checkpoints
can be kept in main memory. Applications of this type arise in data compression [10]
and numerics [37, 68]. In such scenarios, the cost of setting a checkpoint is small
compared to the cost of the regular computation. Consequently, the memory used
by the stored checkpoints is the bottleneck. Memory can of course also become
a bottleneck for fault-tolerance applications. A prominent example are backup
solutions like Apple’s TimeMachine. The memory for backups is limited, but one
wants to have a record of the history that is as complete as possible.
The first to provide an abstract framework for memory-limited checkpointing
independent of a particular application were Ahlroth, Pottonen and Schumacher [2].
They do not make assumptions on which reversion to previous states will be
requested, but simply investigate how checkpoints can be set in an online fashion
such that at all times their distribution is balanced over the total computation
history.
They assume that the system is able to store up to k checkpoints (plus a free
checkpoint at time 0). At any point in time, a previous checkpoint may be discarded
and replaced by the current system state as new checkpoint. Costs incurred by such
a change are ignored. However, as it turns out, good checkpointing algorithms do
not set checkpoints very often. For all algorithms discussed in the remainder of this
section, each checkpoint is changed only O(log T) times up to time T.

The max-ratio discrepancy measure. Each set of checkpoints, together with
the current state and the state at time 0, partitions the time from the process start to

42

the current time T into k + 1 disjoint intervals. Clearly, without further problem-
specific information, an ideal set of checkpoints would lead to all these intervals
having identical length. Of course, this is not possible at all points in time due
to the restriction that new checkpoints can only be set on the current time. As
discrepancy measure for a checkpointing algorithm, Ahlroth et al. mainly regard
the maximum gap ratio, that is, the maximum ratio of the longest interval vs. the
shortest interval (ignoring the last interval, which can be arbitrarily small), over all
current times T. They show that there is a simple algorithm achieving a discrepancy
of two: Start with all checkpoints placed evenly, e.g., at times 1, . . . , k. At an even
time T, remove one of the checkpoints at an odd time and place it at T. This will
lead to all checkpoints being at the even times 2, 4, . . . , 2k when T = 2k is reached.
Since these checkpoints form a scaled copy of the initial ones, we can continue
in this fashion forever. It is easy to see that at all times, the intervals formed by
neighboring checkpoints have at most two different lengths, the larger being twice
the smaller in case that not all lengths are equal. This shows the discrepancy of two.

It seems tempting to believe that one can do better, but, in fact, not much improve-
ment is possible for general k as shown by the lower bound of 21−1/d(k+1)/2e =
2(1− o(1)). For small values of k, namely k = 2, 3, 4, and 5, better upper bounds of
approximately 1.414, 1.618, 1.755, and 1.755, respectively, were shown.

The maximum distance discrepancy measure. In this work, we shall regard
a different, and, as we find, more natural discrepancy measure. Recall that the
actual cost of reverting to a particular state is basically the cost of redoing the
computation from the preceding checkpoint to the desired point in time. Adopting
a worst-case view on the time to revert to, our aim is to keep the length of the
longest interval small (at all times). Note that with time progressing, the interval
lengths necessarily grow. Hence a fair point of comparison is the length T/(k + 1)
of a longest interval in the (at time T) optimal partition of the time frame into
equal length intervals. For this reason, we say that a checkpointing algorithm
(using k checkpoints) has maximum distance discrepancy (or simply discrepancy) q if
it places the checkpoints in such a way that at all times T, the longest interval has
length at most qT/(k + 1). We denote by q∗(k) the infimum discrepancy among all
checkpointing algorithms using k checkpoints.

This maximum distance discrepancy measure was suggested in [2]. There it was
remarked that an upper bound of β for the gap-ratio discrepancy implies an upper
bound of β(1 + 1

k) for the maximum distance discrepancy. Furthermore, for all k
an upper bound of 2 and a lower bound of 1 + 1

k is shown for q∗(k). For k = 2, 3, 4,
and 5, stronger upper bounds of 1.785, 1.789, 1.624, and 1.565, respectively, were
shown.

Our results. In this section, we show that the optimal discrepancy q∗(k) is
asymptotically bounded away from both one and two by a constant. We present
algorithms that achieve a discrepancy of 1.59 + O(1/k) for all k (Theorem 3.5), and
a discrepancy of ln(4) + o(1) ≤ 1.39 + o(1) for k being any power of two (Theo-
rem 3.6). For small values of k, and this might be an interesting case in applications
with memory-consuming states, we show superior bounds by suggesting a class
of checkpointing algorithms and optimizing their parameters via a combination

43

of exhaustive search and linear programming (Table 3.1). Experiments suggest
q∗(k) ≤ 1.7 for all k (Sect. 3.6). We complement these constructive results by a
lower bound for q∗(k) of 2− ln(2)−O(1/k) ≥ 1.3−O(1/k) (Theorem 3.17). We
round off this work with a natural, but seemingly nontrivial result: We show that
for each k there is indeed a checkpointing algorithm having discrepancy q∗(k) (The-
orem 3.10). In other words, the infimum in the definition of q∗(k) can be replaced
by a minimum.

The results of this chapter are joint work with Karl Bringmann, Benjamin Doerr,
and Jacub Sliacan [17].

3.2 Notation and Preliminaries

In the checkpointing problem with k ≥ 2 checkpoints, we consider a long running
computation during which we can choose to replace an old checkpoint with the
current state. We assume that our storage can hold at most k checkpoints simulta-
neously, and that there are implicit checkpoints at time t = 0 and the current time.
We ignore any costs for placing or maintaining checkpoints. Consequently, we may
assume that we only delete a previous checkpoint when a new one is placed.

A checkpointing algorithm for checkpoint placement can be described by two
infinite sequences. First, the time points where new checkpoints are placed, i.e.,
a non-decreasing infinite sequence of reals t1 ≤ t2 ≤ . . . such that limi→∞ ti = ∞,
and second, a rule that describes which old checkpoints to delete when a new one
is installed, that is, an injective function d : [k + 1..∞)→N satisfying di < i for all
i ≥ k + 1.

The algorithm A described by (t, d) will start with t1, . . . , tk as initial checkpoints
and then for each i ≥ k + 1, at time ti remove the checkpoint at tdi

and set a new
checkpoint at the current time ti. We call the act of removing a checkpoint and
placing a new one a step of A. Note that there is little point in setting the first k
checkpoints to zero, so to make the following discrepancy measure meaningful, we
shall always require that tk > 0.

We call the checkpoints that exist at time T active. The active checkpoints, together
with the two implicit checkpoints at times 0 and T, define a sequence of k + 1
interval lengths LT = (`0, . . . , `k). The discrepancy q(A, T) of an algorithm A at
time T ≥ tk is a measure of how long the maximal interval is, normalized to be one
if all intervals have the same length. It is calculated as

q(A, T) := (k + 1) ¯̀T/T,

where ¯̀T = ||LT ||∞ denotes the length of the longest interval. We also use the term
discrepancy when we refer to the scaled length of a single interval.

The discrepancy Discr(A) of an algorithm A then is the supremum over the dis-
crepancy over all times T, i.e.,

Discr(A) := sup
T≥tk

q(A, T).

Hence the discrepancy of an algorithm would be 1, if it kept its checkpoints evenly
distributed at all times. We denote the infimum discrepancy of a checkpointing

44

algorithm using k checkpoints by

q∗(k) := inf
A

Discr(A),

where A runs over all algorithms using k checkpoints. We will see in Sect. 3.7 that
algorithms achieving this discrepancy actually exist.
Note that we allow checkpointing algorithms to work in a continuous time scale.
One can convert any such algorithm to an algorithm with integral checkpoints
by rounding down all checkpointing times ti. Our bounds for the discrepancy
accurately bound the number of recomputation steps in this setting, since btic −
bti−1c ≤ ti − ti−1 + 1, but with discrete time there are at most btic − bti−1c − 1
steps to recompute in this interval.
In the definition of the discrepancy, the supremum is never attained at some T with
ti < T < ti+1 for any i, as shown in the following lemma.

Lemma 3.1: In the definition of the discrepancy it suffices to consider times T = ti
for all i ≥ k, i.e., we have

Discr(A) = sup
i≥k

q(A, ti).

Proof. Let T be a time with ti < T < ti+1 for some i ≥ k. We show that

q(A, T) ≤ max{q(A, ti), q(A, ti+1)}.

Denote the active checkpoints at time T by x1, . . . , xk. Note that xk = ti, since ti
was the last time we set a checkpoint. Consider the last interval Ik = [xk, T]. Its
discrepancy is

(k + 1)
T − xk

T
≤ (k + 1)

ti+1 − xk
ti+1

≤ q(A, ti+1).

Any other interval at time T is of the form Ij−1 = [xj−1, xj] for some 1 ≤ j ≤ k
(where we set x0 := 0). Its discrepancy is

(k + 1)
xj − xj−1

T
≤ (k + 1)

xj − xj−1

ti
≤ q(A, ti).

This proves the claim.

To bound the discrepancy of an algorithm we need to bound the largest of the
q(A, ti) over all i ≥ k. For this purpose, it suffices to look at the two newly created
intervals at time ti for each i, as made explicit by the following lemma.

Lemma 3.2: Let i > k and let `1, `2 be the lengths of the two newly created intervals
at time ti due to the removal and the insertion of a checkpoint. Then

max{q(A, ti−1), q(A, ti)} = max
{

q(A, ti−1),
(k + 1)`1

ti
,
(k + 1)`2

ti

}
.

Proof. If `1 or `2 is the longest interval at time ti the claim holds. Any other interval
existed already at time ti−1 and had a larger discrepancy at this time, as we divide
by the current time to compute the discrepancy. Thus, if any other interval is the
longest at time ti, then we have q(A, ti−1) ≥ q(A, ti) and the claim holds again.

45

Lemma 3.3: We can assume without loss of generality that tk = 1 for any algorithm.

Proof. Let A = (t, d) be an algorithm such that tk 6= 1. Then there is an algorithm
A′ = (t′, d) with t′i = ti/tk such that Discr(A) = Discr(A′) and t′k = 1. This can be
easily seen as our discrepancy measure is invariant under scaling.

Often, it will be useful to use a different notation for the checkpoint that is removed
in step i. Instead of the global index d, one can also use the index p : [k + 1..∞)→
[1..k] among the active checkpoints, i.e.,

pi = di − |{j ∈ [1..i− 1] | dj < di}|.

We call an algorithm A = (t, p) cyclic, if the pi are periodic with some period n,
i.e., pi = pi+n for all i, and after n steps A has transformed the intervals to a scaled
version of themselves, that is, Ltk+jn = γjLtk for some γ > 1 and all j ∈N. We call
γ the scaling factor. For a cyclic algorithm A, it suffices to fix the pattern of removals
P = (pk+1, . . . , pk+n) and the checkpoint positions t1, . . . , tk, tk+1, . . . , tk+n, where
tk = 1 and tk+n = γ.

Since cyclic algorithms transform the starting position to a scaled copy of itself, it is
easy to see that their discrepancy is given by the maximum over the discrepancies
during one period, i.e., for cyclic algorithms A with period n we have

Discr(A) = max
i∈[k+1..k+n]

q(A, ti).

This makes this class of algorithms easy to analyze.

3.3 Introductory Example—A Simple Bound for k = 3

For the case of k = 3 there is a very simple algorithm, SIMPLE, with a discrepancy
of 4/φ2 ≈ 1.53, where φ = (

√
5 + 1)/2 is the golden ratio. We use it to familiarize

ourselves with the notation we introduced in Sect. 3.2. The algorithm is cyclic with
a pattern of length one. We prove the following theorem.

Theorem 3.4: For k = 3 there is a cyclic algorithm SIMPLE with period length one
and

Discr(SIMPLE) =
4

φ2 .

Proof. We fix the pattern to be P = (1), that is, the algorithm SIMPLE always
removes the oldest checkpoint. For this simple pattern it is easy to calculate the
discrepancy depending on the scaling factor γ. Since the intervals need to be a
scaled copy of themselves after just one step and we can fix t3 = 1 by Lemma 3.3,
we know immediately that

t1 =
1

γ2 , t2 =
1
γ

, t3 = 1, t4 = γ.

46

Hence, the discrepancy is determined by considering the situation at time t4, where
we just deleted the checkpoint at t1,

4 ·max
{

t2 − 0
t4

,
t3 − t2

t4
,

t4 − t3

t4

}
= 4 ·max

{
1

γ2 ,
γ− 1

γ2 ,
γ− 1

γ

}
.

Since γ > 1, the second term is always smaller than the third and can be ignored.
As 1/γ2 is decreasing and (γ− 1)/γ is increasing, the maximum is minimal when
they are equal. A simple calculation shows this to be the case at γ = φ.

Hence for k = 3 the algorithm with pattern (1) and checkpoint positions t1 = 1/φ2,
t2 = 1/φ, t3 = 1, and t4 = φ has discrepancy 4/φ2 ≈ 1.53.

The experiments in Sect. 3.6 indicate that for k = 3 this is optimal among all cyclic
algorithms with a period of length at most 6.

3.4 An Upper Bound for Large k

In this section we present an algorithm, LINEAR, with a discrepancy of roughly
1.59 for large k. This improves upon the asymptotic bound of 2 from [2].

Like the algorithm SIMPLE of the previous section, the algorithm LINEAR is cyclic.
It has a simple pattern of length k. The pattern is just (1, . . . , k), that is, at the i-th
step of a period LINEAR deletes the i-th active checkpoint. Overall, during one
period LINEAR removes all checkpoints at times ti with odd index i, as shown in
Figure 3.1.

This removal pattern is identical to the one of the POWERS-OF-TWO algorithm
from [2]. However, that algorithm starts with a uniform checkpoint distribution
where removing any checkpoint doubles the maximum interval. This leads to an
asymptotic discrepancy of two. In contrast, LINEAR places checkpoints using a
polynomial function. For i ∈ [1..2k] we set ti = (i/k)α, where α is a constant. In the
analysis we optimize the choice of α and set α := 1.302. For this algorithm we show
the following theorem.

Theorem 3.5: The algorithm LINEAR has a discrepancy of at most

Discr(LINEAR) ≤ 1.586 + O(k−1).

Experiments show that the discrepancy of the algorithm LINEAR is close to the
bound of 1.586 even for moderate sizes of k. Comparisons using the optimization
method from Sect. 3.6 indicate that for the pattern (1, . . . , k) of algorithm LINEAR,
different checkpoint placements can yield only improvements of about 4.5% for
large k. Experimental results are summarized in Figure 3.4 on page 57.

Proof. As the algorithm LINEAR is cyclic, we can again compute the discrepancy
from the 2k checkpoint positions and the pattern,

Discr(LINEAR) = max
k<i≤2k

(k + 1) ¯̀ti /ti,

47

step 0
step 1
step 2
step 3
step 4
step 5

T = 1

T = 2.46

Figure 3.1: One period of the algorithm LINEAR from Sect. 3.4 for k = 5.
After one period all intervals are scaled by the same factor.

where ¯̀ti is the length of the longest interval at time ti. By Lemma 3.2 it suffices to
consider newly created intervals at times tk+1, . . . , t2k. Note that at time ti we create
the intervals [ti−1, ti] (from insertion of a checkpoint at ti) and [t2(i−k)−2, t2(i−k)]
(from deletion of the checkpoint at t2(i−k)−1). The discrepancy of the new interval
by insertion is, for k < i ≤ 2k,

(k + 1)
ti − ti−1

ti
= (k + 1)

iα − (i− 1)α

iα
≤ (k + 1)

(k + 1)α − kα

(k + 1)α
.

Using (x + 1)c − xc ≤ c(x + 1)c−1 for any x ≥ 0 and c ≥ 1, this simplifies to

(k + 1)
ti − ti−1

ti
≤ (k + 1)

α(k + 1)α−1

(k + 1)α
= α,

for any constant α ≥ 1.

For the new interval from deleting the checkpoint at t2(i−k)−1 we get a discrepancy
of

(k + 1)
t2(i−k) − t2(i−k)−2

ti
= (k + 1)

(2(i− k))α − (2(i− k)− 2)α

iα

≤ (k + 1)2α α(i− k)α−1

iα
,

where we used again (x + 1)c − xc ≤ c(x + 1)c. An easy computation shows that
(i− k)α−1/iα is maximized at i = αk over k < i ≤ 2k. Hence, we can bound this
discrepancy by

(k + 1)
t2(i−k) − t2(i−k)−2

ti
≤
(

1 +
1
k

)
2α α(α− 1)α−1

αα
= 2α

(
1− 1

α

)α−1
+ O(1

k).

We optimize the latter term numerically and obtain for α = 1.302 an upper bound
of

1.586 + O(k−1).

Note that this bound is larger than the bound α = 1.302 from the new intervals
from insertion. Hence, overall we get the desired upper bound.

48

3.5 An Improved Upper Bound for Large k

In this section we present the algorithm BINARY that yields a discrepancy of roughly
ln(4) ≈ 1.39 for large k. Compared to the algorithm LINEAR from the last section,
BINARY has a considerably better discrepancy at the price of a more involved
analysis, and it only works for k being a power of two. Algorithm BINARY is cyclic
with period length k/2.

Theorem 3.6: For k ≥ 8 being any power of 2, the algorithm BINARY has discrep-
ancy

Discr(BINARY) ≤ ln(4) +
0.05

lg(k/4)
+ O

(1
k

)
.

Here and in the remainder of this chapter, let ‘lg’ denote the binary and ‘ln’ the
natural logarithm. Note that the term O(1/k) quickly tends to 0, whereas the
Θ(1/ lg(k/4)) term is small due to the constant 0.05. Hence, this discrepancy is
close to ln(4) already for moderate k. Also note that ln(4) is less than 0.1 larger
than our lower bound from Sect. 3.8, leaving room for less than a 6% improvement
over the upper bound for algorithm BINARY for large k. We verified experimentally
that the algorithm BINARY yields very good bounds already for relatively small k.
The results are summarized in Figure 3.5 on page 57.

3.5.1 The Algorithm BINARY

The initial checkpoints t1, . . . , tk satisfy the equation

ti = αti/2 (3.5.1)

for each even 1 ≤ i ≤ k and some α = α(k) ≥ 2. Precisely, we set

α := 21+ lg(
√

2/ ln 4)
lg(k/4) ≈ 21+ 0.029

lg(k/4) .

However, the usefulness of this expression becomes clear only in the analysis of the
algorithm.

During one period we delete all odd checkpoints t1, t3, . . . , tk−1 and insert the new
checkpoints

tk+i := αtk/2+i, (3.5.2)

for 1 ≤ i ≤ k/2. Then after one period we end up with the checkpoints

(t2, t4, . . . , tk−2 , tk , tk+1 , tk+2 , . . . , tk+k/2)
= α· (t1, t2, . . . , tk/2−1, tk/2, tk/2+1, tk/2+2, . . . , tk/2+k/2) = α(t1, t2, . . . , tk),

which proves cyclicity. Note that (3.5.1) and (3.5.2) allow us to compute all ti from
the values tk/2+1, . . . , tk, however, we still have some freedom to choose the latter
values. By Lemma 3.3 we can set tk := 1, then tk/2 = α−1. In between these two
values, we interpolate lg ti linearly, i.e., we set for i ∈ (k/2..k]

ti := α2i/k−2, (3.5.3)

49

step 0
step 1
step 2
step 3
step 4
step 5
step 6
step 7
step 8

T = 1

T = 2.012

Figure 3.2: One period of the algorithm BINARY for k = 16. Note that,
recursively, checkpoints are removed twice as often from the right half of the
initial setting (at steps i where i ≡ 1 (mod 2)) as from the second quarter.

completing the definition of the ti. Note that this equation also works for i = k and
i = k/2.

There is one more freedom we have with this algorithm, namely in which order
we delete all odd checkpoints during one period, i.e., we need to fix the pattern of
removals. In iteration 1 ≤ i ≤ k/2 we insert the checkpoint tk+i and remove the
checkpoint td(i+k), defined as follows. For m ∈ N = N≥1 let 2σ(m) be the largest
power of 2 that divides m. We define S : N→N, S(m) := m/2σ(m). Note that S(m)
is an odd integer. Using this definition, we set

d(k + i) := S
(k

2
+ i
)

, (3.5.4)

finishing the definition of the algorithm BINARY. If we write this down as a pattern,
then we have pi = 1 + k/(21+σ(i)) for 1 ≤ i < k/2 and pk/2 = 1. The example in
Figure 3.2 provides intuition for this pattern.

The following lemma implies that during one period we delete all odd checkpoints
t1, t3, . . . , tk−1 (and no point is deleted twice).

Lemma 3.7: The function S induces a bijection between {k/2 < i ≤ k} and {1 ≤
i ≤ k | i is odd}.

Proof. Let A := {k/2 < i ≤ k} and B := {1 ≤ i ≤ k | i is odd}. Since S(m) ≤ m
and S(m) is odd for all m ∈ N, we have S(A) ⊆ B. Moreover, A and B are of the
same size. We present an inverse function to finish the proof. Let x ∈ B. Note that
there is a unique number y ∈ N such that x2y ∈ A, since A is a range between
two consecutive powers of 2 and x ≤ k. Setting S−1(x) = x2y we have found the
inverse.

50

3.5.2 Discrepancy Analysis

We now bound the largest discrepancy encountered during one period, i.e.,

Discr(BINARY) = max
1≤i≤k/2

q(BINARY, tk+i) = (k + 1) max
1≤i≤k/2

`tk+i /tk+i.

We first compute the maximum and later multiply with the factor k + 1. By
Lemma 3.2, we only have to consider intervals newly created by insertion and
deletion at any step.

Intervals from Insertion: We first compute the discrepancy of the interval
newly added at time tk+i, 1 ≤ i ≤ k/2. Its length is tk+i − tk+i−1, so its discrepancy
(without the factor k + 1) is

tk+i − tk+i−1
tk+i

= 1− tk+i−1
tk+i

= 1− tk/2+i−1

tk/2+i
(3.5.3)
= 1− α−2/k,

where the second equality holds because of (3.5.2) if i > 1 or (3.5.1) if i = 1.
Using ex ≥ 1 + x for x ∈ R yields a bound on the discrepancy of

tk+i − tk+i−1
tk+i

≤ ln(α2/k) =
1
k

ln(α2)).

Deleting t1: We show similar bounds for the intervals we get from deleting
an old checkpoint. We first analyze the deletion of t1. This case needs separate
treatment, since t1 has no predecessor. Note that t1 is deleted in step k/2 at time
t3k/2. The deletion of t1 creates the interval [0, t2]. This interval has discrepancy

t2

t3k/2

(3.5.2),(3.5.1)
=

αt1

αtk

(3.5.1)
= α− lg k ≤ 1/k,

since we choose α ≥ 2. Hence, this discrepancy is dominated by the one we get
from newly inserted intervals.

Other Intervals from Deletion: It remains to analyze the discrepancy of the
intervals we get from deletion in the general case, i.e., at some time tk+i, 1 ≤
i < k/2. At this time we delete the checkpoint d(k + i), so we create the interval
[td(k+i)−1, td(k+i)+1] of discrepancy

qi :=
td(k+i)+1 − td(k+i)−1

tk+i

(3.5.2),(3.5.4)
=

tS(k/2+i)+1 − tS(k/2+i)−1

αtk/2+i
.

Let h := σ(k/2 + i), so that 2h is the largest power of 2 dividing k/2 + i, and
2h S(k/2 + i) = k/2 + i. Then tS(k/2+i)+1 = α−htk/2+i+2h by (3.5.1), and a similar
statement holds for tS(k/2+i)−1, yielding

qi = α−1−h tk/2+i+2h − tk/2+i−2h

tk/2+i
.

51

Using (3.5.3) we get tk/2+i = α2i/k−1. Comparing this with the respective terms for
tk/2+i+2h and tk/2+i−2h yields

qi = α−1−h
(

α2h+1/k − α−2h+1/k
)

= α−1−h · 2 sinh
(

ln
(

α2
)

2h/k
)

.

By elementary means one can show that the function f (x) = x−A sinh(Bx), A ≥
1, B > 0, is convex on R≥0. Since convex functions have their maxima at the
boundaries of their domain, and since by the above equation qi can be expressed
using f (2h) (for A = lg α and B = ln(α2)/k), we see that qi is maximal at (one of)
the boundaries of h. Recall that we treated i = k/2 separately, and observe that the
largest power of 2 dividing k/2 + i, 1 ≤ i < k/2 is at most k/4. Hence, we have
0 ≤ 2h ≤ k/4 and

qi ≤ max
{

2α−1 sinh(ln(α2)/k), 2α−1(k/4)− lg α sinh(ln(α)/2)
}

.

We simplify using α ≥ 2 and sinh(x) = x + O(x2) to get

qi ≤ max
{

ln(α2)/k + O(1/k2), (k/4)− lg α sinh(ln(α)/2)
}

. (3.5.5)

The first term is already of the desired form. For the second one, note that by setting
α = 2 we would get a discrepancy of 4 sinh(ln(2)/2)/k =

√
2/k. We get a better

bound by choosing

α := 21+ c
lg(k/4) ,

with c := lg(
√

2/ ln(4)) ≈ 0.029. Then the second bound on qi from above becomes

(k/4)− lg α sinh(ln(α)/2) =
4
k

2−c sinh
(

ln(2)
2

(
1 +

c
lg(k/4)

))
.

The particular choice of c allows to bound the derivative of sinh((1 + x) ln(2)/2)
for x ∈ [0, c] from above by

ln(2)
2

cosh((1 + c) ln(2)/2) < 0.39.

This yields

sinh
(

ln(2)
2

(
1 +

c
lg(k/4)

))
≤ sinh(ln(2)/2) +

0.39c
lg(k/4)

.

Thus, in total the second bound on qi from inequality (3.5.5) becomes

(k/4)− lg α sinh(ln(α)/2) ≤ 4
k

2−c sinh(ln(2)/2) +
4 · 2−c · 0.39c

k lg(k/4)
.

Since c = lg(
√

2/ ln(4)) = lg(4 sinh(ln(2)/2)/ ln(4)), this becomes

≤ ln(4)/k + 0.044/(k lg(k/4)).

52

Overall discrepancy: In total, we can bound the discrepancy q := Discr(BINARY)
of our algorithm (now including the factor of k + 1) by

q ≤ (k + 1)max
{

ln(α2)/k + O(1/k2), ln(4)/k + 0.044/(k lg(k/4))
}

.

Using (k + 1)/k = 1 + O(1/k) and

ln(α2) = ln(4)
(

1 +
c

lg(k/4)

)
≤ ln(4) +

0.040
lg(k/4)

,

this bound can be simplified to

q ≤ max{ln(4) + 0.040/ lg(k/4) + O(1/k), ln(4) + 0.044/ lg(k/4) + O(1/k)},

which proves Theorem 3.6.

3.6 Upper Bounds via Combinatorial Optimization

In this section, we show how to find upper bounds on the optimal discrepancy q∗(k)
for fixed k. We do so by constructing cyclic algorithms using an exhaustive enu-
meration of all short patterns in the case of very small k or randomized local search
on the patterns for larger k, combined with linear programming to optimize the
checkpoint positions. This yields good algorithms as summarized in Table 3.1. In
the following we describe our algorithmic approach.

Finding Checkpoint Positions: First we describe how to find a nearly optimal
cyclic algorithm for a given pattern P and a scaling factor γ, i.e., how to optimize
the checkpoint positions. To do so, we construct a linear program that is feasible
if a cyclic algorithm with discrepancy λ and scaling factor γ exists. We use three
kinds of constraints: We fix the ordering of the checkpoints, enforce that the i-th
active checkpoint after one period is a factor γ larger than the i-th initial checkpoint,
and bound the discrepancy of each interval during the period from above by λ. We
then use binary search to optimize λ.

Lemma 3.8: For a fixed pattern P of length n and scaling factor γ, let q∗ =
infA Discr(A) be the optimal discrepancy among algorithms A using P and γ.
Then finding an algorithm with discrepancy at most q∗ + ε reduces to solving
O(log ε−1) linear feasibility problems with O(nk) inequalities and k + n variables.

Proof. For a fixed pattern and scaling factor, we can tune the discrepancy of the
algorithm by cleverly choosing the time points when to remove an old checkpoint
and place a new one. By solving a linear feasibility problem we can check whether
a cyclic algorithm with scaling factor γ and pattern P exists that guarantees a
discrepancy of at most λ. We can then optimize over λ to find an approximately
optimal algorithm.
We construct a linear program with the k + n time points (t1, . . . , tk+n) as vari-
ables (where we can set tk = 1 without loss of generality). It uses three kinds of
constraints. The first kind is of the form

ti ≤ ti+1,

53

for all i ∈ [1..k + n). There are thus n + k constraints of this form. These constraints
are satisfied if the checkpoint positions have the correct ordering, i.e. checkpoints
with larger index are placed at later times.

The second kind of constraints enforces the scaling factor. Since the pattern is
fixed, we can compute at all steps which checkpoints are active. For i ∈ [1..k] and
j ∈ [0..n], let τ

j
i be the variable of the i-th active checkpoint in step j and let τ

j
0 be 0

for all j. It is easy to see that the algorithm has a scaling factor of γ if the i-th active
checkpoint in the n-th step is by a factor of γ larger than in the first step. We encode
this as k constraints of the form

τn
i = γτ0

i ,

for all i ∈ [1..k]. Lastly we encode an upper bound of λ for the discrepancy. Since
the discrepancy of a cyclic algorithm is given by

max
k<i≤k+n

(k + 1) ¯̀ti /ti,

and each ¯̀ti can be expressed by a maximum over k terms, we can encode a
discrepancy guarantee of λ with nk constraints of the form

τ
j
i+1 − τ

j
i ≤ λτ

j
k/(k + 1),

for all i ∈ [0..k) and j ∈ [0..n].

A feasible solution of this system of inequalities corresponds to a sequence of
checkpoint positions and, together with the pattern P, provides an algorithm with
discrepancy at most λ. Since algorithms with discrepancy 2 are known [2], we can
restrict our attention to λ ≤ 2. Using a simple binary search over λ ∈ [1, 2] we can
find an approximately optimal algorithm for this value of γ and the pattern P.

Finding Scaling Factors: Next we show how to find scaling factors γ for which
algorithms with good discrepancy exist. We first show an upper bound for γ.

Lemma 3.9: A cyclic algorithm with k checkpoints, discrepancy λ < k, and a period
length of n can have a scaling factor of at most

γ ≤
(

1
1− λ/(k + 1)

)n
.

Proof. Consider any checkpointing algorithm A = (t, d) with k checkpoints and
discrepancy λ. We bound the time the algorithm can delay setting a new checkpoint
before the last interval violates the performance guarantee. At any time ti, i ≥ k,
the largest interval has length ¯̀ti ≥ ti − ti−1, as there is no checkpoint in the time
interval [ti−1, ti]. Hence, we have

(k + 1)
ti − ti−1

ti
≤ λ.

Rearranging, this yields

ti ≤
1

1− λ/(k + 1)
ti−1.

54

k 3 4 5 6 7 8 9 10
Discr. 1.529 1.541 1.472 1.498 1.499 1.499 1.488 1.492

k 15 20 30 50 100
Discr. 1.466 1.457 1.466 1.481 1.484

Table 3.1: Upper bounds for different k. For k < 8 all patterns up to length
k were tried. For k = 8 all patterns up to length 7 were tried. For larger k,
patterns were found via randomized local search.

Iterating this n times, we get

tk+n ≤
(

1
1− λ/(k + 1)

)n
tk.

Hence, for any cyclic algorithm (with discrepancy λ, k checkpoints, and a period
length of n) we get the desired bound on the scaling factor γ = tk+n/tk.

For any given pattern length n, Lemma 3.9 yields an upper bound on γ, while a
trivial lower bound is given by γ > 1. Now, for any given pattern P we optimize
over γ using a linear search with a small step size over the possible values for γ.
For each tested γ, we optimize over the checkpoint positions using the linear
programming approach described above.

Finding Patterns: For small k and n, we can exhaustively enumerate all kn

removal patterns of period length n. Some patterns can be discarded as they
obviously cannot lead to a good algorithm or are equivalent to some other pattern:
No pattern that never removes the first checkpoint can be cyclic. Furthermore,
patterns are equivalent under cyclic shifts, so we can assume without loss of
generality that all patterns end with removing the first checkpoint. Lastly, it never
makes sense to remove the currently last checkpoint. Hence, for k checkpoints there
are at most (k− 1)n−1 interesting patterns of length n. This finishes the description
of our combinatorial optimization approach.

Results: We ran experiments that exhaustively try all patterns of length n with
n ≤ k for k ∈ [3..7]. For k = 8 we stopped the search after examining patterns of
length 7. For larger k we used a randomized local search to find good patterns.
The upper bounds we found are summarized in Table 3.1 , and for k ≤ 8 the
removal patterns and time points when to place new checkpoints can be found
in Figure 3.3. Note that for k = 3 this procedure re-discovers the golden ratio
algorithm of Sect. 3.3.

When we combine the results presented in Table 3.1 with the algorithm LINEAR
(Theorem 3.5 and Figure 3.4), we can read off a global upper bound of q∗(k) ≤ 1.6
for the optimal discrepancy for any k.

For a fixed pattern, the method is efficient enough to find good checkpoint positions
for much larger k. For k ≤ 1000 we experimentally compared the algorithm LINEAR
of Sect. 3.4 with algorithms found for its pattern (1, . . . , k). The experiments show

55

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

k=3
Pattern=1

0 1 2 3 4 5 6 7
0.0

0.5

1.0

1.5

2.0

k=4
Pattern=3,1

0 1 2 3 4 5 6 7 8 9
0.0

0.5

1.0

1.5

2.0

2.5

3.0

k=5
Pattern=2,3,1

0 2 4 6 8 10 12
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

k=6
Pattern=2,3,5,1,3,1

0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

k=7
Pattern=3,4,1,5,3,1

0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

2.5

3.0

k=8
Pattern=4,7,2,3,4,1

Figure 3.3: Time points where the i-th checkpoint is placed to achieve the
bounds of Table 3.1. Time is on the y-axis, iteration is on the x-axis.

that for k = 1000 LINEAR is within 4.5% of the optimized bounds. For the algorithm
BINARY of Sect. 3.5, this comparison is even more favorable. For k = 1024 the
algorithm places its checkpoints so well that the optimization procedure improves
discrepancy only by 1.9%. The results are summarized in Figure 3.4 and Figure 3.5.

Quality of the constructed algorithms. There are two steps in the above
optimization algorithm that make it difficult to estimate how close the discrepancies
in Table 3.1 are to the optimal ones. First, we are only optimizing over short
patterns, and it might be that much larger pattern lengths are necessary for optimal
checkpointing algorithms. Second, we do not know how smoothly the optimal
discrepancy for fixed pattern P and scaling factor γ behaves with varying γ, i.e.,
we do not know whether our linear search for γ yields any approximation on the
discrepancy λ. In experiments we tried all patterns of length n with n ≤ 2k for
k ∈ {3, 4, 5} and found no better algorithm than for the shorter patterns of length
up to k. Moreover, smaller step sizes in the linear search for γ lead only to small
improvements, indicating that the discrepancy is continuous in γ. This suggests
that the reported algorithms might be near optimal.

3.7 Existence of Optimal Algorithms

In this section, we prove that optimal algorithms for the checkpointing problem
exist, i.e., that there is an algorithm having discrepancy equal to the infimum

56

101 102 103

k

1.50

1.55

1.60

1.65

1.70

1.75

1.80

D
is

cr
e
p
a
n
cy

Asymptotic

Algorithm

Optimized

Figure 3.4: The discrepancy of algorithm LINEAR from Sect. 3.4 for different
values of k compared to the upper bounds for its pattern found via the
combinatorial method from Sect. 3.6. For large k LINEAR is about 4.5%
worse.

23 24 25 26 27 28 29 210

k

1.35

1.40

1.45

1.50

1.55

1.60

D
is

cr
e
p
a
n
cy

Asymptotic

Algorithm

Optimized

Figure 3.5: The discrepancy of algorithm BINARY from Sect. 3.5 for some
values of k, compared to the upper bounds for its pattern found via the com-
binatorial method from Sect. 3.6. For k = 1024, the optimization procedure
finds a checkpoint placement with only 1.9% better discrepancy.

57

discrepancy q∗(k) := infA Discr(A) among all algorithms for k checkpoints.

Theorem 3.10: For each k there exists a checkpointing algorithm A for k checkpoints
with Discr(A) = q∗(k), i.e., there is an optimal checkpointing algorithm.

As we will see throughout this section, this a non-trivial statement. From the proof
of Theorem 3.10, we gain additional insight in the behavior of good algorithms. In
particular, we show that we can assume without increasing discrepancy that for
all i the i-th checkpoint is set by a factor of at least (1 + 1/k)Θ(i) later than the first
checkpoint.
An initial set of checkpoints can be described by a vector x = (x1, . . . , xk), 0 ≤ x1 ≤
. . . ≤ xk. By Lemma 3.3, we can assume that xk = 1. We denote by X the set of all
initial sets of checkpoints (described by vectors x 6= 0 as above).
We say that A = (t, d) is an algorithm for an initial set x ∈ X of checkpoints if
ti = xi for all i ∈ [1..k]. We denote by q(x) := infA Discr(A), where A runs over all
algorithms for x, the discrepancy of x. An initial set of checkpoints x ∈ X is called
optimal if q(x) = infx∈X q(x) = q∗(k).

Lemma 3.11: Optimal initial sets of checkpoints exist.

Proof. It is not hard to see that q(·) is continuous on X: Let x, x′ ∈ X with |x −
x′|∞ ≤ ε and consider an algorithm A = (t, d) for x. We construct an algorithm
A′ = (t′, d) for x′ by setting t′i = ti for i > k. Then |Discr(A)−Discr(A′)| ≤ 2ε,
since any interval’s length is changed by at most 2ε. This implies |q(x)− q(x′)| ≤ 2ε
and, thus, shows continuity of q(·).
Now, since q(·) is continuous on X and X is compact, there exists an x ∈ X such
that q(x) = infx∈X q(x) = q∗(k).

An easy observation is that if some checkpointing algorithm leads to a vector x of
checkpoints at some time, then we may continue from there using any other algo-
rithm for x. The discrepancy of this combined algorithm is at most the maximum
of the two discrepancies. We next formalize this notion.

Definition 3.12: Let A = (t, d) be a checkpointing algorithm. Let i > k. We call
qA,i = maxj∈[k..i]

¯̀tj(k + 1)/tj the partial discrepancy of A observed in the time up to
ti.

Observation 3.13: Assume that when running A, at time ti the checkpoints x =
(x1, . . . , xk = ti) are active. Let A′ = (t′, d′) be an algorithm for x. Then the
checkpointing algorithm obtained from running A until time ti and then continu-
ing with algorithm A′ is a checkpointing algorithm that has discrepancy at most
max{qA,i, Discr(A′)}. If we run this combined algorithm only until some time t′j,
then the partial discrepancy observed till then is max{qA,i, qA′ ,j}.

The above observation implies that in the following we may instead of looking at
an arbitrary time simply assume that the algorithm just started, that is, that the
current set of checkpoints is the initial one.
The following lemma shows that we can, without loss of generality (i.e., without
losing discrepancy), assume that an algorithm for the checkpointing problem does
not set checkpoints too close together. While also of independent interest, among
others because it shows how to keep additional costs for setting and removing
checkpoints low, we will need this statement in our proof of Theorem 3.10.

58

Lemma 3.14: Let A = (t, d) be an algorithm for the checkpointing problem with
Discr(A) < k + 1. Then there is an algorithm A′ = (t′, d′) with the same starting
position such that

(i) Discr(A′) ≤ Discr(A) and

(ii) t′k+3 ≥ t′k

(
1 +

Discr(A)

k + 1−Discr(A)

)
≥ t′k

(
1 +

1
k

)
.

Proof. Let r = Discr(A)/(k + 1−Discr(A)) for convenience. By way of contra-
diction, assume that the lemma is false. Let A be a counter-example such that
i := min{i ∈N | tk+i ≥ 1 + r} is minimal (the minimum is well-defined, since for
any algorithm the sequence (ti)i tends to infinity). Note that i ≥ 4, since A is a
counter-example.
Assume that there is a j ∈ [1..i− 1] such that tk+j in the further run of A is removed
(and replaced by the then current time tx) earlier than both tk+j−1 and tk+j+1.
Consider the Algorithm A′ that arises from A by the following modifications. Let
ty be the checkpoint that was removed to install the checkpoint tk+j. Let A′ be
the checkpointing algorithm that proceeds as A except that ty is not replaced by
tk+j, but by tx, and tk+j is never created. The only interval which could cause
this algorithm to have a worse discrepancy than A is [tk+j−1, tk+j+1]. However,
this interval contributes (k + 1)(tk+j+1 − tk+j−1)/tk+j+1 ≤ (k + 1)r/(1 + r) =

Discr(A) to the discrepancy of A′. Hence, Discr(A′) ≤ Discr(A) and A′ has fewer
checkpoints in the interval [1, 1 + r] contradicting the minimality of A. Thus, there
is no j ∈ [1..i− 1] such that tk+j is removed earlier than both tk+j−1and tk+j+1 (*).
We consider now separately the two cases that tk+1 is removed earlier than tk+i−2
and vice versa. Note first that k + 1 < k + i− 2 by assumption that i ≥ 4.
Assume first that tk+1 is removed (at some time tx) earlier than tt+i−2. Then tk
must have been removed even earlier (at some time ty), otherwise we found a
contradiction to (*). Let A′ be an algorithm working identically as A, except that at
time ty the checkpoint tk+1 is removed (instead of tk) and at time tx the checkpoint
tk is removed (instead of tk+1). Since the checkpoint at tt+i−2 is still present, the
only interval affected by this exchange, namely the one with tk as left endpoint,
has length at most r. Hence as above, this contributes at most Discr(A) to the
discrepancy of A′. The algorithm A′ has the property that there is a checkpoint
between tk and tk+i−2 which is removed before these two points. The earliest such
checkpoint, call it tk+j, has the property that tk+j is removed earlier than both tk+j−1
and tk+j+1, contradicting earlier arguments.
A symmetric argument shows that also tk+i−2 being removed before tk+1 leads to a
contradiction. Consequently, our initial assumption that i ≥ 4 cannot hold, proving
the claim.

The following is a global variant of Lemma 3.14. It shows that any reasonable
checkpointing algorithm does not store new checkpoints too often.

Theorem 3.15: Let A = (t, d) be a checkpointing algorithm with Discr(A) < k + 1.
Then there is an algorithm A′ = (t′, d′) with the same starting position such that

(i) Discr(A′) ≤ Discr(A) and

59

(ii) t′i+3 ≥ (1 + 1/k) · t′i for all i ≥ k.

Proof. Let j ≥ k be the smallest index with a small jump, tj+3 < (1 + 1/k)tj. Using
Lemma 3.14 (on the remainder of algorithm A starting at time tj) we can remove
this small jump and get an algorithm A′ = (t′, d′) with Discr(A′) ≤ Discr(A) and
t′i+3 ≥ (1 + 1/k) · t′i for all k ≤ i ≤ j, i.e., we patched the earliest small jump.
Iterating this patching procedure infinitely often yields the desired algorithm.

Lemma 3.16: For any optimal initial set x = (x1, . . . , xk), there is an algorithm
A = (t, d) such that

(i) qA,k+3 = maxj∈[k..k+3] `tj(k + 1)/tj ≤ q∗(k),

(ii) tk+3 ≥ tk(1 + 1/k), and the set of checkpoints active at time tk+3 is again
optimal.

Proof. By the definition of optimality, for each n ∈ N there is an algorithm A(n)

for x that has discrepancy at most q∗(k) + 1/n. Let (t(n)k+1, t(n)k+2, t(n)k+3) denote the

corresponding next three checkpoints. By Lemma 3.14, we may assume that t(n)k+3 ≥
tk(1 + 1/k) for all n ∈ N.

Note that (using the same arguments as in Lemma 3.9) any algorithm having
discrepancy at most 2.5 satisfies tk+i ≤ 6itk for any k ≥ 2. Hence, (t(n)k+1, t(n)k+2, t(n)k+3)n

is a sequence in the compact space [tk, 63tk]
3. This sequence has a convergent

subsequence with limit (tk+1, tk+2, tk+3). Also, since there are only finitely many
values possible for (d(n)k+1, d(n)k+2, d(n)k+3), this subsequence can be chosen such that
this d-tuple is constant, say (dk+1, dk+2, dk+3). For this subsequence, also all k +
1 intervals existing at the three times of interest converge. Consequently, the
discrepancy caused by each of them also converges to a value of at most q∗(k). This
defines the three steps of algorithm A, satisfying qA,k+3 ≤ q∗(k).

Similarly, we observe that the set of checkpoints x(n) active at time t(n)k+3 when
running algorithm A(n) has discrepancy at most q∗(k) + 1/n. Consequently, the
active checkpoints we get from the limit checkpoints (tk+1, tk+2, tk+3) and deletions
(dk+1, dk+2, dk+3) are again optimal.

Finally, since all t(n)k+3 ≥ tk(1 + 1/k), this also holds for tk+3.

We are now in position to prove the main result of this section, Theorem 3.10. For
this, we repeatedly apply Lemma 3.16: We start with an optimal set of checkpoints x.
Then we run the algorithm delivered by Lemma 3.16 for three steps. This creates
no partial discrepancy larger than q∗(k) and we end up with another optimal set
of checkpoints. From this, we continue to apply Lemma 3.16 and execute three
steps of the algorithm obtained. By Observation 3.13, the partial discrepancy of
the combined algorithm is again at most q∗(k). Iterating infinitely, this yields an
optimal algorithm, which proves Theorem 3.10.

60

3.8 Lower Bound

In this section, we prove a lower bound on the discrepancy of all checkpointing
algorithms. For large k we get a lower bound of roughly 1.3, so we have a lower
bound that is asymptotically larger than the trivial bound of 1. Moreover, it shows
that algorithm BINARY from Sect. 3.5 is nearly optimal, as for large k the presented
lower bound is within 6% of the discrepancy of BINARY.

Theorem 3.17: All checkpointing algorithms with k checkpoints have a discrepancy
of at least

2− ln 2−O(k−1) ≥ 1.306−O(k−1).

The remainder of this section is devoted to the proof of the above theorem.

Let A = (t, d) be an arbitrary checkpointing algorithm and let q′ := Discr(A)
be its discrepancy. For convenience, we define q = kq′/(k + 1) and bound q.
Since q < q′ this suffices to show a lower bound for the discrepancy of A. For
technical reasons we add a gratis checkpoint at time tk that must not be removed
by A. That is, even after the removal of the original checkpoint at tk, there still is
the gratis checkpoint active at tk. Clearly, this can only improve the discrepancy.
We analyze the discrepancy of A from time tk until it deleted k/(2q) of the initial
checkpoints1. More formally, we let t′ be the minimal time at which the number of
active checkpoints of A contained in [0, tk] is k− k/(2q). We show that it cannot
happen that the checkpointing algorithm A never deletes k/(2q) points from [0, tk].

Lemma 3.18: We have t′ < ∞.

Proof. Consider a large i > k and the algorithm’s discrepancy at time ti. By assump-
tion, there are at most k/(2q) active checkpoints in (tk, ti]. Hence, by comparing
with an equidistant spread we can bound the discrepancy (at time ti) by

Discr(A) ≥ k + 1
ti
· ti − tk

k/(2q)
= 2q

k + 1
k

(
1− tk

ti

)
= 2 Discr(A)

(
1− tk

ti

)
.

Letting i→ ∞, so that ti → ∞, we obtain the contradiction Discr(A) ≥ 2 Discr(A).

Hence, in the following we can assume that t′ < ∞. We partition the intervals that
exist at time t′ into three types:

1. Intervals existing both at time tk and t′. These intervals are contained in
[0, tk].

2. Intervals that are contained in [0, tk], but did not exist at time tk. These
intervals were created by the removal of some checkpoint in [0, tk] after
time tk.

3. Intervals contained in [tk, t′].

1To be precise we should round k
2q to one of its nearest integers. When doing so, all

calculations in the remainder of this section go through as they are; this only slightly increases
the hidden constant in the error term O(k−1).

61

Note that we need the gratis checkpoint at tk in order for these definitions to make
sense, as otherwise there could be an interval overlapping tk.

Let Li denote the set of intervals of type i for i ∈ {1, 2, 3}, and set ki := |Li|.
Let L2 = {I1, . . . , Ik2}, where the intervals are ordered by their creation times
τ1 ≤ . . . ≤ τk2 . Since each interval in L2 contains at least one deleted point we have

k2 ≤
k

2q
,

and we set m := k
2q − k2. Then m counts the number of deleted checkpoints in [0, tk]

that did not create an interval in L2, but some strict sub-interval of an interval in
L2. We call these m removed checkpoints free.

We first bound the length of the intervals in L1 and L2.

Lemma 3.19: The length of any interval in L1 is at most qtk/k.

Proof. As all intervals in L1 already are present at time tk and the algorithm has
discrepancy q′, we have for any I ∈ L1

(k + 1)|I|/tk ≤ q′ = (k + 1)q/k.

The bound follows.

Lemma 3.20: The length of any interval Ii ∈ L2 is at most

|Ii| ≤
tk

k/q−m− i
.

Proof. As the algorithm has discrepancy q′, we know

|Ii| ≤ qτi/k. (3.8.1)

In the following we bound τi, the time of creation of Ii. At time τi there are at most
m + i intervals in L3, since at most m free checkpoints and i checkpoints from the
creation of I1, . . . , Ii are available. Comparing with an equidistant spread of m + i
checkpoints in [tk, τi] and the algorithm’s discrepancy, the longest interval L in
[tk, τi] (at time τi) has length

τi − tk
m + i

≤ |L| ≤ qτi
k

.

Rearranging the outer inequality yields a bound on τi of

τi ≤
ktk

k− (m + i)q
.

Substituting this into (3.8.1) yields the desired result.

Furthermore, we need a relation between k1, k, m, and q.

Lemma 3.21: We have
k1 = k + m− k/q + 1.

62

Proof. As the intervals in L1 and L2 partition [0, tk], there are k1 + k2 intervals left
in [0, tk] at time t′. Note that each but one such interval has its left endpoint among
the k active checkpoints from time tk (the one exception having as left endpoint 0).
Hence, there are k1 + k2 − 1 checkpoints left in [0, tk]. Comparing with the number
k2 + m of deleted checkpoints in [0, tk] until time t′ and their overall number k
yields

(k2 + m) + (k1 + k2 − 1) = k.

Rearranging this and plugging in k2 = k
2q − m (which holds by definition of m)

yields the desired result.

Now we use our bounds on the length of intervals from L1 and L2 to find a bound
on q. Note that the intervals in L1 and L2 partition [0, tk], so that

tk = ∑
I∈L1

|I|+ ∑
I′∈L2

|I′|.

Using Lemmas 3.19 and 3.20, we obtain

tk ≤ k1
qtk
k

+
k2

∑
i=1

tk
k/q−m− i

.

Substituting k1 using Lemma 3.21 yields

tk ≤ (k + m− k/q + 1) qtk/k +
k/(2q)−m

∑
i=1

tk
k/q−m− i

= tk

(
q− 1 + m

q
k
+ O(k−1) +

k/(2q)−m

∑
i=1

1
k/q−m− i

)
. (3.8.2)

Recall that Hn = ∑1≤i≤n i−1 is the n-th harmonic number. Rearranging (3.8.2)
yields

q ≥ 2−m
q
k
−O(k−1)− Hk/q−m−1 + Hk/(2q)−1.

Observe that we have m q
k + Hk/q−m−1 ≤ Hk/q−1, implying

q ≥ 2 + Hk/(2q)−1 − Hk/q−1 −O(k−1)

≥ 2 + Hk/(2q) − Hk/q −O(k−1),

since we can hide the last summands of Hk/(2q) and Hk/q by O(k−1). In combination
with the asymptotic behavior of Hn = ln n + γ + O(n−1), where γ is the Euler-
Mascheroni constant, we obtain

q ≥ 2 + ln(k/(2q))− ln(k/q)−O(k−1)

= 2− ln(2)−O(k−1).

This finishes the proof of Theorem 3.17.

63

3.9 Conclusion

In this chapter we considered the problem of maintaining a set of k checkpoints
(each one storing a state of a long computation) such that the longest time interval
between two checkpoints is kept small. This allows to rewind an ongoing computa-
tion to an arbitrary previous state with small recomputation time. Our performance
measure was scarcely studied before; the most relevant work [2] mainly regarded
a less natural measure. We improved the best guarantee from 2− o(1) [2] to a
constant smaller than 2 and the best lower bound from 1 + o(1) [2] to a constant
greater than 1. In particular, for k being a power of 2 our lower bound is just 6% less
than our upper bound. Moreover, we proved the existence of optimal algorithms.

There remain some open problems to investigate. For the checkpointing problem
some natural greedy algorithms exist. For example, an algorithm could always
remove the old checkpoint that creates the smallest new interval. It would be
interesting to bound the performance of such algorithms, however, it seems difficult
to keep track of the interval lengths during the execution. Empirically, greedy
heuristics seem to become periodic after a sufficient number of steps, but this
property also seems difficult to prove.

Additionally, other discrepancy measures might be of interest. In our setting we
optimize the worst-case recomputation time. One could also try to optimize the
expected recomputation time, by keeping the sum of the squares of interval lengths
small. In some applications, one might even know some probability distribution on
the past states to which one wants to rewind. Here, better checkpoint placements
could be possible.

64

Chapter 4

Inapproximability of the
Robust k-Median Problem and
Heuristic Solutions

65

4.1 Introduction

In the previous two chapters we studied problems related to the reliability of the
implementation of algorithms as well as the hardware they run on. In this chapter
we study a variation of the k-median problem where the input contains uncertainty.

In the classical k-median problem, we are given a set of clients located on a metric
space with distance function d : V ×V → R. The goal is to open a set of facilities
F ⊆ V, |F| = k, so as to minimize the sum of the connection costs of the clients in
V, i.e., their distances from their nearest facilities in F. This is a central problem in
approximation algorithms, and has received a large amount of attention in the past
two decades [19, 7, 20, 45, 44].

At SODA 2008 Anthony et al. [4] introduced a generalization of the k-median
problem. In their setting, the set of clients that are to be connected to some facility
is not known in advance, and the goal is to perform well in spite of this uncertainty
about the future. They formulated the problem as follows.

Definition 4.1 (Robust k-Median): An instance of this problem is a triple (V,S , d).
This defines a set of locations V, a collection of m sets of clients S = {S1, . . . , Sm},
where Si ⊆ V for all i ∈ {1, . . . , m}, and a metric distance function d : V ×V → R.
We have to open a set of k facilities F ⊆ V, |F| = k, and the goal is to minimize the
cost of the most expensive set of clients, i.e. minimize maxm

i=1 ∑v∈Si
d(v, F). Here,

d(v, F) denotes the minimum distance of the client v from any location in F, i.e.
d(v, F) = minu∈F d(u, v).

Robust k-Median is a natural generalization of the classical k-median problem (for
m = 1). The different sets Si can be interpreted as guesses as to which clients will
want to connect to the facilities in the future. As the set that is actually realized is
unknown, the min-max optimization ensures that no set of clients leads to especially
high costs. Additionally, we can think of it as capturing a notion of fairness. To see
this, interpret each set Si as a group of clients who pay ∑v∈Si

d(v, F) for connecting
to a facility. The objective ensures that no single group pays too much, while
minimizing the cost. Anthony et al. [4] gave an O(log m)-approximation algorithm
for this problem, and a lower bound of (2− ε) by a reduction from Vertex Cover.
The lower bound was improved to logα n for small constant α > 0 in [8]. Note that
their lower bound does not hold in the line metric.

Our Results. We prove nearly tight hardness of approximation for Robust k-
Median. We show that, unless NP ⊆ ∩δ>0DTIME(2nδ

), it admits no poly-time
o(log m/ log log m)-approximation, even on uniform and line metrics. Moreover, we
examine several natural heuristics for this problem.

Our first hardness result is tight up to a constant factor, as a simple rounding
scheme gives a matching upper bound on uniform metrics (Sect. 4.3.1). Our second
result shows that Robust k-Median is a rare problem with super-constant hardness
of approximation even on line metrics. This surprising result puts Robust k-Median
in sharp contrast to most other geometric optimization problems which admit
polynomial time approximation schemes, e.g. [5, 42].

Despite our hardness results, the heuristics we tried perform well experimentally.
This is especially true if the clients are distributed uniformly in the plane and

66

assigned to groups uniformly at random. This suggests that some restrictions on
the client distribution might make the problem tractable.

The results of this chapter are joint work with Sayan Bhattacharya, Parinya Chalermsook
and Kurt Mehlhorn. The publication is available at [11].

Our Techniques. First, we note that Robust k-Median on uniform metrics is
equivalent to the following variant of the set cover problem: Given a set U of
ground elements, a collection of sets X = {X ⊆ U}, and an integer t ≤ |X |, our
goal is to select t sets from X in order to minimize the number of times an element
from U is hit (Lemma 4.7). We call this problem Minimum Congestion Set Packing
(MCSP). This characterization allows us to focus on proving the hardness of MCSP,
and to employ the tools developed for the set cover problem.

We now revisit the reduction used by Feige [28], building on results of Lund and
Yannakakis [48], to prove the hardness of the set cover problem and discuss how
our approach differs. Intuitively, they compose a Label Cover instance with a
set system that has some desirable properties. Informally speaking, in the Label
Cover problem, we are given a graph where each vertex v can be assigned a label
from a set L, and each edge e is equipped with a constraint Πe ⊆ L× L specifying
the accepting pairs of labels for e. Our goal is to find a labeling of vertices that
maximizes the number of accepting edges. This problem is known to be hard to
approximate to within a factor of 2log1−ε |E| [6, 62], where |E| is the number of edges.
Thus, if we manage to reduce Label Cover to MCSP, we would hopefully obtain a
large hardness of approximation factor for MCSP as well.

From a given Label Cover instance, [48] creates an instance of Set Cover by having
sets of the form S(v, `) for each vertex v and each label ` ∈ L. Intuitively the set
S(v, `) means choosing label ` for vertex v in the Label Cover instance. Now, if we
assume that the solution is well behaved, in the sense that for each vertex v, only
one set of the form S(v, `) is chosen in the solution, we would be immediately done
(because each set indeed corresponds to a label). However, solutions need not have
this form, e.g. choosing sets S(v, `) and S(v, `′) translates to having two labels `, `′

for the Label Cover instance. To prevent an ill-behaved solution, partition systems
were introduced and used in both [48] and [28]. Feige considers the hypergraph
version of Label Cover to obtain a sharper hardness result of ln n − O(ln ln n)
instead of 1

4 ln n in [48]; here n denotes the size of the universe.

Now we highlight how our reduction is different. The high level idea stays the
same, i.e. we have sets of the form S(v, `) that represent assigning label ` to vertex
v. However, we need a different partition system and a totally different analysis.
Moreover, while a reduction from standard Label Cover gives nearly tight O(log n)
hardness for Set Cover, it can (at best) only give a 2− ε hardness for MCSP. For
our results, we do need a reduction from Hypergraph Label Cover. This suggests
another natural distinction between MCSP and Set Cover.

Finally, to obtain the hardness result for the line metric, we embed the instance
created from the MCSP reduction onto the line while preserving values of optimal
solutions. This way we get the same hardness gap for line metrics.

In the experimental part of this work we study how different heuristics perform.
We wanted to see how the structure of the input instance affects the performance of

67

these heuristics. This might give insights into which classes of instances are hard,
and which might be tractable.

We compare instances in which the groups of clients are distributed uniformly in
the plane with instances where the groups form actual groups, that is, the members
of a group are spatially clustered together.

As exact solutions for the problem are difficult to find, we use the natural Linear
Programming relaxation of the problem as a performance baseline.

4.2 Preliminaries

We will show that Robust k-Median is Ω(log m/ log log m) hard to approximate,
even for the special cases of uniform metrics (Sect. 4.3) and line metrics (Sect. 4.4).
Recall that d is a uniform metric iff we have d(u, v) ∈ {0, 1} for all locations u, v ∈ V.
Further, d is a line metric iff the locations in V can be embedded into a line in such
a way that d(u, v) equals the euclidean distance between u and v, for all u, v ∈ V.
Throughout this chapter, we will denote any set of the form {1, 2, . . . , i} by [i]. Our
hardness results will rely on a reduction from the r-Hypergraph Label Cover (HGLC)
problem, which is defined as follows.

Definition 4.2 (r-Hypergraph Label Cover (HGLC)): An instance of this problem
is a triple (G, π, r), where G = (V , E) is a r-partite hypergraph with vertex set
V =

⋃r
j=1 Vj and edge set E . Each edge h ∈ E contains one vertex from each part

of V , i.e. |h ∩ Vj| = 1 for all j ∈ [r]. Every set Vj has an associated set of labels Lj.

Further, for all h ∈ E and j ∈ [r], there is a mapping π
j
h : Lj → C that projects the

labels from Lj to a common set of colors C.

The problem is to assign to every vertex v ∈ Vj some label σ(v) ∈ Lj. We say
that an edge h = (v1, . . . , vr), where vj ∈ Vj for all j ∈ [r], is strongly satisfied
under σ iff the labels of all its vertices are mapped to the same element in C, i.e.

π
j
h(σ(vj)) = π

j′

h (σ(vj′)) for all j, j′ ∈ [r]. In contrast, we say that the edge is weakly
satisfied iff there exists some pair of vertices in h whose labels are mapped to the

same element in C, i.e. π
j
h(σ(vj)) = π

j′

h (σ(vj′)) for some j, j′ ∈ [r], j 6= j′.

For ease of exposition, we will often abuse the notation and denote by j(v) the part
of V to which a vertex v belongs, i.e. if v ∈ Vj for some j ∈ [r], then we set j(v)← j.
The next theorem will be crucial in deriving our hardness result. The proof of this
theorem follows from Feige’s r-Prover system [28] (Appendix B).

Theorem 4.3: Let r ∈N be a parameter. There is a polynomial time reduction from
n-variable 3-SAT to r-HGLC with the following properties:

• (Yes-Instance) If the formula is satisfiable, there is a labeling that strongly
satisfies every edge in G.

• (No-Instance) If the formula is not satisfiable, every labeling weakly satisfies
at most a 2−γr fraction of the edges in G, for some universal constant γ.

• The number of vertices in the graph is |V| = nO(r) and the number of edges
is |E | = nO(r). The sizes of the label sets are |Lj| = 2O(r) for all j ∈ [r], and

68

|C| = 2O(r). Further, we have |Vj| = |Vj′ | for all j, j′ ∈ [r], and each vertex
v ∈ V has the same degree r|E |/|V|.

We use a partition system that is motivated by the hardness proof of the Set Cover
problem [28] but uses a different construction.

Definition 4.4 (Partition System): Let r ∈N and let C be any finite set. An (r, C)-
partition system is a pair (Z, {pc}c∈C), where Z is an arbitrary (ground) set, such
that the following properties hold.

• (Partition) For all c ∈ C, pc =
(

A1
c , . . . , Ar

c
)

is a partition of Z, that is⋃r
j=1 Aj

c = Z, and Aj′
c ∩ Aj

c = ∅ for all j, j′ ∈ [r], j 6= j′.

• (r-intersecting) For any r distinct indices c1, . . . , cr ∈ C and not-necessarily
distinct indices j1, . . . , jr ∈ [r], we have that

⋂r
i=1 Aji

ci 6= ∅. In particular,

Aj
c 6= ∅ for all c and j.

In order to achieve a good lower bound on the approximation factor, we need
partition systems with small ground sets. The most obvious way to build a partition
system is to form an r-hypercube: Let Z = [r]|C|, and for each c ∈ C and j ∈ [r], let
Aj

c be the set of all elements in Z whose c-th component is j. It can easily be verified
that this is an (r, C)-partition system with |Z| = r|C|. With this construction,
however, we would only get a hardness of Ω(log log m) for our problem. The
following lemma shows that it is possible to construct an (r, C)-partition system
probabilistically with |Z| = rO(r) log |C|.

Lemma 4.5: There is an (r, C)-partition system with |Z| = rO(r) log |C| elements.
Further, such a partition system can be constructed efficiently with high probability.

Proof. Let Z be any set of rO(r) log |C| elements. We build a partition system
(Z, {pc}c∈C) as described in Algorithm 2. By construction each pc is a partition of Z,
i.e. the first property stated in Definition 4.4 is satisfied. We bound the probability
that the second property is violated.

Algorithm 2: A randomized construction of an (r, C)-partition system.
Input: A ground set Z, a parameters r ∈N, and a set C.
foreach c ∈ C do

/* Construct the partition pc = (A1
c , . . . , Ar

c) */

Initialize Aj
c to the empty set for all j ∈ [r]

foreach ground element e ∈ Z do
Pick a j ∈ [r] independently and uniformly at random and add
e to Aj

c

Fix any choice of r distinct indices c1, . . . , cr ∈ C and not necessarily distinct indices
j1, . . . , jr ∈ [r]. We say that a bad event occurs when the intersection of the corre-
sponding sets is empty, i.e.

⋂r
i=1 Aji

ci = ∅. To upper bound the probability of a bad

69

event, we focus on events of the form Ee,i – this occurs when an element e ∈ Z is
included in a set Aji

ci . Since the indices c1 . . . cr are distinct, it follows that the events
{Ee,i} are mutually independent. Furthermore, note that we have Pr[Ee,i] = 1/r for
all e ∈ Z, i ∈ [r]. Hence, the probability that an element e ∈ Z does not belong to
the intersection

⋂r
i=1 Aji

ci is given by 1− Pr[
⋂r

i=1 Ee,i] = 1− 1/rr. Accordingly, the
probability that no element e ∈ Z belongs to the intersection, which defines the bad
event, is equal to (1− 1/rr)|Z|.
Now, the number of choices for r distinct indices c1, . . . , cr and r not-necessarily
distinct indices j1, . . . , jr is equal to (|C|r) · rr. Hence, by a union-bound over all bad
events, the second property stated in Definition 4.4 is violated with probability at
most (|C|r) · rr · (1− rr)|Z| ≤ (|C|r)r · exp(−|Z|/rr). If we set |Z| = d · rd·r log |C|
with sufficiently large constant d, the property is satisfied with high probability.

4.3 Hardness of Robust k-Median on Uniform Metrics

First, we define Minimum Congestion Set Packing (MCSP), and then show a reduction
from MCSP to Robust k-Median on uniform metrics. In Sect. 4.3.2, we will then
show that MCSP is hard to approximate by reducing HGLC to MCSP.

Definition 4.6 (Minimum Congestion Set Packing (MCSP)): An instance of this
problem is a triple (U,X , t), where U is a universe of m elements, i.e. |U| = m,
X is a collection of sets X = {X ⊆ U} such that

⋃
X∈X X = U, and t ∈ N and

t ≤ |X |. The objective is to find a collection X ′ ⊆ X of size t that minimizes
CONG(X ′) = maxe∈U CONG(e,X ′). Here, CONG(X ′) refers to the congestion of
the solution X ′, and CONG(e,X ′) = |{X ∈ X ′ : e ∈ X}| is the congestion of the
element e ∈ U under the solution X ′.
Lemma 4.7: Given any MCSP instance (U,X , t), we can construct a Robust k-
Median instance (V,S , d) with the same objective value in poly(|U|, |X |) time,
such that |U| = |S|, |X | = |V|, d is a uniform metric, and k = |V| − t.

Proof. We construct the Robust k-Median instance (V,S , d) as follows. For every
e ∈ U we create a set of clients S(e), and for each X ∈ X we create a location v(X).
Thus, we get V = {v(X) : X ∈ X}, and S = {S(e) : e ∈ U}. We place the clients
in S(e) at the locations of the sets that contain e, i.e. S(e) = {v(X) : X ∈ X , e ∈ X}
for all e ∈ U. The distance is defined as d(u, v) = 1 for all u, v ∈ V, u 6= v, and
d(v, v) = 0. Finally, we set k← |V| − t.
Now, it is easy to verify that the Robust k-Median instance (V,S , d) has a solution
with objective ρ iff the corresponding MCSP instance (U,X , t) has a solution with
objective ρ. The intuition is that a location v(X) ∈ V is not included in the solution
F to the Robust k-Median instance iff the corresponding set X is included in the
solution X ′ to the MCSP instance. Indeed, let F be any subset of X of size k (= the
set of open facilities) and let X ′ = X − F. Further, let [X ∈ X ′] be an indicator
variable that is set to 1 iff X ∈ X ′. Then

CONG(X ′) = max
e∈U

CONG(e,X ′) = max
e∈U

∑
X;e∈X

[X ∈ X ′]

= max
e∈U

∑
X;e∈X

min
Y∈F

d(X, Y) = max
S(e)∈S

∑
v(X)∈S(e)

d(v(X), F).

70

We devote the rest of Sect. 4.3 to MCSP and show that it is Ω(log |U|/ log log |U|)
hard to approximate. This, in turn, will imply a Ω(log |S|/ log log |S|) hardness
of approximation for Robust k-Median on uniform metrics. We will prove the
hardness result via a reduction from HGLC.

4.3.1 Integrality Gap

Before proceeding to the hardness result, we show that a natural LP relaxation
for the MCSP problem [4] has an integrality gap of Ω(log m/ log log m), where
m = |U| is the size of the universe of elements. In the LP, we have a variable y(X)
indicating that the set X ∈ X is chosen, and a variable z which represents the
maximum congestion among the elements. The formulation is as follows:

min z

s.t. ∑
X∈X :e∈X

y(X) ≤ z for all e ∈ U

∑
X∈X

y(X) = t

The Instance: Now, we construct a bad integrality gap instance (U,X , t). Let d
be the intended integrality gap, let η = d2, and let U = {I : I ⊆ [η], |I| = d} be
all subsets of [η] of size d. The collection X consists of η sets X1, . . . , Xη , where
Xi = {I : I ∈ U and i ∈ I}. Note that the universe U consists of |U| = m = (η

d)
elements, and each element I is contained in exactly d sets, namely I ∈ Xi if and
only if i ∈ I. Finally, we set t← η/d.

Analysis: The fractional solution simply assigns a value of 1/d to each variable
y(Xi); this ensures that the total (fractional) number of sets selected is η/d = t.
Furthermore, each element is contained (fractionally) in exactly one set, so the
fractional solution has cost one. Any integral solution must choose η/d = d sets,
say Xi1 . . . Xid . Then I = {i1, . . . , id} ∈ Xiλ for all λ ∈ [d] and hence the congestion
of I is d, and this also means that any integral solution has cost at least d. Finally,
since |U| = m ≤ ηd ≤ (d2)d, we have d = Ω(log m/ log log m).

Tightness of the result: The bound on the hardness and integrality gap is tight for
the uniform metric case, as there is a simple O(log m/ log log m)-approximation
algorithm. Pick each set X with probability equal to min(1, 2y(X)). The expected
congestion is 2z for each element. By Chernoff’s bound [35], an element is covered
by no more than z ·O(log m/ log log m) sets with high probability. A similar algo-
rithm gives the same approximation guarantee for Robust k-Median on uniform
metrics.

4.3.2 Reduction from r-Hypergraph Label Cover to Minimum Con-
gestion Set Packing

The input is an instance (G, π, r) of r-HGLC (Definition 4.2). From this we construct
the following instance (U,X , t) of MCSP (Definition 4.6).

71

• We define the universe U as a union of disjoint sets. For each edge h ∈ E
in the hypergraph we have a set Uh. All these sets have the same size m∗

and are pairwise disjoint, i.e. Uh ∩Uh′ = ∅ for all h, h′ ∈ E , h′ 6= h. The
universe U is then the union of these sets U =

⋃
h∈E Uh. Since the Uh are

mutually disjoint, we have m = |U| = |E | · m∗. Recall that C is the target
set of π. Each set Uh is the ground set of an (r, C)-partition system (Defini-
tion 4.4) as given by Lemma 4.5. In particular we have m∗ = rO(r) log |C|.
We denote the r-partitions associated with Uh by {pc(h)}c∈C, where pc(h) =(

A1
c (h), . . . , Ar

c(h)
)
.

• We construct the collection of sets X as follows. For each j ∈ [r], v ∈ Vj and

` ∈ Lj, X contains the set X(v, `), where X(v, `) =
⋃

h:v∈h Aj
π j

h(`)
(h). That is,

X(v, `) ∩Uh is empty if v 6∈ h and is equal to Aj
π j

h(`)
(h) if v ∈ h. Intuitively,

choosing the set X(v, `) corresponds to assigning label ` to the vertex v.

• We define t← |V|. Intuitively, this means each vertex in V gets one label.

We assume for the sequel that the r-HGLC instance is chosen according to Theo-
rem 4.3. We assume that the parameter r satisfies r72−γr < 1. In the proof of the
main theorem, we will fix r to a specific value.

4.3.3 Analysis

We show that the reduction from HGLC to MCSP satisfies two properties. In
Lemma 4.8, we show that for Yes-Instances (see Theorem 4.3) the correspond-
ing MCSP instance admits a solution with congestion one. For No-Instances,
Lemma 4.13 shows that any solution to the corresponding MCSP instance has
congestion at least r.

Lemma 4.8 (Yes-Instance): If the HGLC instance (G, π, r) admits a labeling that
strongly satisfies every edge, then the MCSP instance (U,X , t) as in Sect. 4.3.2
admits a solution where the congestion of every element in U is exactly one.

Proof. Suppose that there is a labeling σ that strongly satisfies every edge h ∈ E . We
will show how to pick t = |V| sets from X such that each element in U is contained
in exactly one set. This implies that the maximum congestion is one. For each
j ∈ [r] and each vertex v ∈ Vj, we choose the set X(v, σ(v)). Thus, the total number
of sets chosen is exactly |V|.
To see that the congestion is one, we concentrate on the elements in Uh, where
h = (v1, . . . , vr), vj ∈ Vj for all j ∈ [r], is one of the edges in E . The picked sets that
intersect Uh are X(vj, σ(vj)), where j ∈ [r]. Since h is strongly satisfied, πh maps

all vertex labels in h to a common c ∈ C, i.e. π
j
h(σ(vj)) = c for all j ∈ [r]. Thus

Uh ∩ X(vj, σ(vj)) = Aj
c(h). By definition (Definition 4.4), the sets A1

c (h) . . . Ar
c(h)

partition the elements in Uh. This completes the proof.

Proofing something similar for the no-case (Lemma 4.13) requires some preparation.
Towards this end, we fix a collection X ′ ⊆ X of size t and show that some element
in U has congestion at least r under X ′. The intuition being that many edges in

72

G = (V , E) are not even weakly satisfied, and the elements in U corresponding to
those edges incur large congestion. Recall that for a v ∈ V , we define j(v) ∈N to
be such that v ∈ Vj(v).

Claim 4.9: For v ∈ V , let Lv =
{
` ∈ Lj(v) : X(v, `) ∈ X ′

}
. For h ∈ E , let Λh =

{X(v, `) ∈ X ′ : v ∈ h} and λ(h) = |Λh|. If the solution X ′ has congestion less than
r then |Lv| < r2 and |Λh| < r3.

Proof. Since Λh =
⋃

v∈h Lv, it suffices to prove |Lv| < r2 for all v. Assume other-
wise, i.e., |Lv| ≥ r2 for some v ∈ Vj, j ∈ [r]. Let h be any hyper-edge with v ∈ h.

Consider the images of the labels in Lv under π
j
h. Either there are at least r distinct

images or at least r elements in Lv are mapped to the same c ∈ C.

In the former case, we have r pairwise distinct labels `1 to `r in Lv and r pairwise
distinct labels c1 to cr in C such that π

j
h(`i) = ci for i ∈ [r]. The set X(v, `i) contains

Aj
ci (h) and

⋂
i∈[r] Aj

ci (h) 6= ∅ by property (2) of partition systems (Definition 4.4).
Thus some element has congestion at least r.

In the latter case, we have r pairwise distinct labels `1 to `r in Lv and a label c in
C such that π

j
h(`i) = c for i ∈ [r]. The set X(v, `i) contains Aj

c(h) and hence every
element in this non-empty set (property (2) of partition systems) has congestion at
least r.

Definition 4.10 (Colliding Edge): We say that an edge h ∈ E is colliding iff there are

sets X(v, `), X(v′, `′) ∈ X ′ with v, v′ ∈ h, v 6= v′, and π
j(v)
h (`) = π

j(v′)
h (`′).

Claim 4.11: Suppose that the solution X ′ has congestion less than r, and more than
a r42−γr fraction of the edges in E are colliding. Then there is a labeling σ for G that
weakly satisfies at least a 2−γr fraction of the edges in E .

Proof. For each v ∈ V , we define Lv = {` ∈ Lj(v) : X(v, `) ∈ X ′}. Then |Lv| < r2

by Claim 4.9. We construct a labeling function σ using Algorithm 3.

Now we bound the expected fraction of weakly satisfied edges under σ from below.
Take any colliding edge h ∈ E . Then there are vertices v ∈ Vj, v′ ∈ Vj′ with j 6= j′,

and colors ` ∈ Lv, `′ ∈ Lv′ such that v, v′ ∈ h and π
j
h(`) = π

j′

h (`
′). By Claim 4.9,

|Lv| and |Lv′ | are both at most r2. Since the colors σ(v) and σ(v′) are chosen
uniformly and independently at random from their respective palettes Lv and
Lv′ , we have Pr[σ(v) = ` and σ(v′) = `′] ≥ 1/r4. In other words, every colliding

Algorithm 3: An algorithm for constructing a labeling function.

foreach vertex v ∈ V do
if Lv 6= ∅ then

Pick a color σ(v) uniformly and independently at random from
Lv

else
Pick an arbitrary color σ(v) from Lj(v)

73

edge is weakly satisfied with probability at least 1/r4. Since more than a r42−γr

fraction of the edges in E are colliding, from linearity of expectation we infer that
the expected fraction of edges weakly satisfied by σ is at least 2−γr.

Claim 4.12: Let Λh = {X(v, `) ∈ X ′ : v ∈ h} and λ(h) = |Λh|. Then ∑
h∈E

λ(h) =

r|E |.

Proof. This is a simple counting argument. Consider a bipartite graph H with
vertex set A∪̇B, where each vertex in A represents a set X(v, `), and each vertex in
B represents an edge h ∈ E . There is an edge between two vertices iff the set X(v, `)
contains some element in Uh. The quantity ∑h∈E λ(h) counts the number of edges
in H where one endpoint is included in the solution X ′. Since X ′ picks t = |V| sets
and each set has degree r|E |/|V| in the H (Theorem 4.3), the total number of edges
that are chosen is exactly |V| × (r|E |/|V|) = r|E |.

Let E ′ ⊆ E denote the set of colliding edges, and define E ′′ = E − E ′. Suppose that
we are dealing with a No-Instance (Theorem 4.3), i.e. the solution X ′ has congestion
less than r and every labeling weakly satisfies at most a 2−γr fraction of the edges
in E . Then λ(h) ≤ r3 for all h ∈ E by Claim 4.9, and no more than r42−γr|E | edges
are colliding, i.e. |E ′| ≤ r42−γr|E |, by Claim 4.11. Using these facts we conclude
that ∑h∈E ′ λ(h) ≤ r72−γr|E | < |E |, as by assumption r72−γr < 1. Now, applying
Claim 4.12, we get ∑h∈E ′′ λ(h) = r|E | − ∑h∈E ′ λ(h) > (r − 1)|E |. In particular,
there is an edge h ∈ E ′′ with λ(h) ≥ r.

Recall that Λh = {X(v, `) ∈ X ′ : v ∈ h} are the sets inX ′ that intersect Uh and note
that |Λh| = λ(h) ≥ r. LetX ∗ ⊆ Λh be a maximal collection of sets with the following
property: For every two distinct sets X(v, `), X(v′, `′) ∈ X ∗ we have π

j(v)
h (`) 6=

π
j(v′)
h (`′). Hence, from the definition of a partition system (Definition 4.4), it follows

that the intersection of the sets in X ∗ and the set Uh is non-empty.

Now, consider any set X(v, `) ∈ Λh − X ∗. Since the collection X ∗ is maximal,

there must be at least one set X(v′, `′) in X ∗ with π
j(v)
h (`) = π

j(v′)
h (`′). Since h

is not colliding, we must have j(v) = j(v′). Consequently we get X(v, `) ∩Uh =
X(v′, `′)∩Uh. In other words, for every set X ∈ Λh−X ∗, there is some set X′ ∈ X ∗
where X ∩Uh = X′ ∩Uh. Thus, Uh ∩ (

⋂
X∈Λh

X) = Uh ∩ (
⋂

X∈X ∗ X) 6= ∅. Every
element in the intersection of the sets in Λh and Uh will have congestion |Λh| ≥ r.
This leads to the following lemma.

Lemma 4.13 (No-Instance): If every labeling weakly satisfies at most a 2−γr fraction
of the edges in the hypergragph Label Cover instance (G, π, r), for some universal
constant γ and that r72−γr < 1 then the congestion incurred by every solution to
the MCSP instance (U,X , t) constructed in Sect. 4.3.2 is at least r.

We are now ready to prove the main theorem of this section.

Theorem 4.14: Robust k-Median (V,S , d) is Ω(log m/ log log m) hard to approxi-
mate on uniform metrics, where m = |S|, unless NP ⊆ ⋂δ>0 DTIME(2nδ

).

Proof. Assume that there is a polynomial time algorithm for Robust k-Median that
guarantees an approximation ratio in o(log |S|/ log log |S|). Then, by Lemma 4.7,

74

there is an approximation algorithm for the Minimum Congestion Set Packing
problem with approximation guarantee o(log |U|/ log log |U|).
Let δ > 0 be arbitrary and set r = bnδc, where n is the number of variables in
the 3-SAT instance (Theorem 4.3). Then r72−γr < 1 for all sufficiently large n.
We first bound the size of the MCSP instance (U,X , t) constructed in Sect. 4.3.2.
By Lemma 4.5, the size of an (r, C)-partition system is |Z| = rO(r) log |C|. By
Theorem 4.3, we have |C| = 2O(r). So each set Uh has cardinality at most rO(r) · r =
rO(r). Also recall that the number of sets in the MCSP instance is |X | = ∑j∈[r] |Vj| ·
|Lj| = nO(r), and that the number of elements is |U| = m = |E | · rO(r) ≤ (nr)O(r) =

nO(r) = nO(nδ) = 2O(r log r). Thus r ≥ Ω(log m/ log log m).

The gap in the optimal congestion between the Yes-Instance and the No-Instance is
at least r (Theorem 4.3 and Lemmas 4.8, 4.13). More precisely, for Yes-instances the
congestion is at most one and for No-instances it is at least r. Since the approxima-
tion ratio of the alleged algorithm is o(log m/ log log m), it is better than r for all
sufficiently large n and hence it can be used to decide SAT.

The running time is polynomial in the size of the MCSP instance, i.e., is poly(nO(nδ)) =

nO(nδ) = 2O(n2δ). Since δ > 0 is arbitrary, the theorem follows.

4.4 Hardness of Robust k-Median on Line Metrics

We modify the reduction from r-HGLC to Minimum Congestion Set Packing
(MCSP) to give a Ω(log m/ log log m) hardness of approximation for Robust k-
Median on line metrics as well, where m = |S| is the number of client-sets. For this
section, it is convenient to assume that the label-sets are the initial segments of the
natural numbers, i.e., Lj = {1, . . . , |Lj|} and C = {1, . . . , |C|}.
Given a HGLC instance (G, π, r), we first construct a MCSP instance (U,X , t)
in accordance with the procedure outlined in Sect. 4.3.2. Next, from this MCSP
instance, we construct a Robust k-Median instance (V,S , d) as described below.

• We create a location in V for every set X(v, `) ∈ X . To simplify the notation,
the symbol X(v, `) will represent both a set in the instance (U,X , t), and
a location in the instance (V,S , d). Thus, we have V = {X(v, `) ∈ X}.
Furthermore, we create a set of clients S(e) for every element e ∈ U, which
consists of all the locations whose corresponding sets in the MCSP instance
contain the element e. Thus, we have S = {S(e) : e ∈ U}, where S(e) =
{X(v, `) ∈ X : e ∈ X(v, `)} for all e ∈ U. This step is same as in Lemma 4.7.

• We now describe how to embed the locations in V on a given line. For every
vertex v ∈ Vj, j ∈ [r], the locations X(v, 1), . . . , X(v, |Lj|) are placed next to
one another in sequence, in such a way that the distance between any two con-
secutive locations is exactly one. Formally, this gives d(X(v, `), X(v, `′)) =
|`′ − `| for all `, `′ ∈ Lj. Furthermore, we ensure that any two locations
corresponding to two different vertices in V are not close to each other. To
be more specific, we have the following guarantee: d(X(v, `), X(v′, `′)) ≥ 2
whenever v 6= v′. It is easy to verify that d is a line metric.

• We define k← |X | − t.

75

Note that as k = |X | − t, there is a one to one correspondence between the solutions
to the MCSP instance and the solutions to the Robust k-Median instance. Specifically,
a set inX is picked by a solution to the MCSP instance iff the corresponding location
is not picked in the Robust k-Median instance.

Lemma 4.15 (Yes-Instance): Suppose that there is a labeling strategy σ that strongly
satisfies every edge in the HGLC instance (G, π, r). Then there is a solution to the
Robust k-Median instance (V,S , d) with objective one.

Proof. Recall the proof of Lemma 4.8. We construct a solution X ′ ⊆ X , |X ′| = t,
to the MCSP instance (U,X , t) as follows. For every v ∈ Vj, j ∈ [r], the solution
X ′ contains the set X(v, σ(v)). Now, focus on the corresponding solution FX ′ ⊆ V
to the Robust k-Median instance, which picks a location X iff X /∈ X ′. Hence, for
every vertex v ∈ Vj, j ∈ [r], all but one of the locations X(v, 1), . . . , X(v, |Lj|) are
included in FX ′ . Since any two consecutive locations in such a sequence are unit
distance away from each other, the cost of connecting any location in V to the set
FX ′ is either zero or one, i.e., d(X, FX ′) ∈ {0, 1} for all X ∈ V = X .

For the rest of the proof, fix any set of clients S(e) ∈ S , e ∈ U. The proof of
Lemma 4.8 implies that the element e incurs congestion one under X ′. Hence, the
element belongs to exactly one set in X ′, say X∗. Again, comparing the solution
X ′ with the corresponding solution FX ′ , we infer that S(e)− FX ′ = {X∗}. In other
words, every location in S(e), except X∗, is present in the set FX ′ . The clients
in such locations require zero cost for getting connected to FX ′ . Thus, the total
cost of connecting the clients in S(e) to the set FX ′ is at most: ∑X∈S(e) d(X, FX ′) =
d(X∗, FX ′) ≤ 1.

Thus, we see that every set of clients in S requires at most unit cost for getting
connected to FX ′ . So the solution FX ′ to the Robust k-Median instance indeed has
objective one.

Lemma 4.16 (No-Instance): If every labeling weakly satisfies at most a 2−γr fraction
of the edges in the HGLC instance (G, π, r), for some constant γ then every solution
to the Robust k-Median instance (V,S , d) has objective at least r.

Proof. Fix any solution F ⊆ V to the Robust k-Median instance (V,S , d), and let
X ′F ⊆ X denote the corresponding solution to the MCSP instance (U,X , t). By
Lemma 4.13 there is some element e ∈ U with congestion at least r under X ′F. In
other words, there are at least r sets X1, . . . , Xr ∈ X ′F that contain the element e. The
locations corresponding to these sets are not picked by the solution F. Furthermore,
the way the locations have been embedded on a line ensures that the distance
between any location and its nearest neighbor is at least one. Hence, we have
d(Xi, F) ≥ 1 for all i ∈ [r]. Summing over these distances, we infer that the total
cost of connecting the clients in S(e) to F is at least ∑i∈[r] d(Xi, F) ≥ r. Thus, the
solution F to the Robust k-Median instance has objective at least r.

Finally, applying Lemmas 4.15, 4.16, and an argument similar to the proof of
Theorem 4.14, we get the following result.

Theorem 4.17: The Robust k-Median problem (V,S , d) is Ω(log m/ log log m) hard
to approximate even on line metrics, where m = |S|, unlessNP ⊆ ∩δ>0DTIME(2nδ

).

76

4.5 Heuristics

Robust k-Median is a real-world problem and as such needs to be solved as well
as possible despite its hardness of approximation. In this section, we complement
our negative theoretical results with an experimental evaluation of different simple
heuristics for Robust k-Median. In particular we look at two variants of a greedy
strategy and two variants of a local search approach. We consider a slight general-
ization of the problem where clients and facilities are at separate locations. This
is more realistic and no easier than the original problem, as one can simply place
a facility at every client position to solve an instance of the problem as defined in
Definition 4.1.

This is by no means an exhaustive exploration of the possible solution space.
However, the results we obtain indicate that a heuristic treatment of Robust k-
Median can yield surprisingly good solutions, even if the heuristics are very naive.

For our experiments we consider instances in the plane, as these are closest to the
real-world motivation for the problem. We wanted to check how the structure of the
instance influences the performance of the heuristics. We suspected that instances
where the clients are distributed uniformly are easy, as intuitively a solution that is
good for one group of clients is good for all groups.

The robust version of k-median is considered because often the exact set of clients
is not known before choosing facility locations and one wants to perform well
even if the worst set of possible clients turns out to be realized. It is reasonable to
assume that every group of clients has something in common, for example that
they come from a similar region, like a city. Therefore more realistic instances for
Robust k-Median have the groups form clusters in space. We also generate such
instances for testing our heuristics.

4.5.1 Methods

Since solving Robust k-Median instances to optimality is infeasible for the instances
we consider1, we compare the performance of the various heuristics to the value
of a LP-relaxation. We have a variable xj for each possible median location and
variables yij that indicate whether client i is served by facility j. The LP is then as
follows.

min T
s.t. yij − xj ≤ 0 ∀i, j

∑
j

yij ≥ 1 ∀i

∑
i∈g

∑
j

d(i, j) · yij ≤ T ∀ groups of clients g

∑
j

xj ≤ k and 0 ≤ xj ≤ 1 ∀j

0 ≤ yij ≤ 1 ∀i, j

1We attempted solving three instances optimally, see Figure 4.2, but gave up on the third
after nearly half a year of CPU time was consumed.

77

To solve the LP we use the Gurobi solver [33], version 5.5.0, on a 64-bit Linux
system.

Note that the assignment of the yij variables is immediately clear from the assign-
ment of the xj. For location i, let j1, j2, . . . jn be the locations ordered by increasing
distance. Then yij` = min(xj` , 1− (yij1 + . . .+ yij`−1

)). The constraint yij` ≤ min(,)
is already expressed by the first two constraints. It could however be put into the
objective via the big M-method. Consider a minimization problem min T subject
to x = min(b, c). Let M be large integer and consider min T + Mt subject to x ≤ b,
x ≤ c, t ≤ b − x, and t ≤ c − x. Observe that t = min(b, c) − x in an optimal
solution. One needs to choose M big enough so that t must be zero in an optimal
vertex solution. It is however unclear whether this will speed up the solution. We
have not tried this method.

We implemented and compared the following heuristics:

Greedy Upwards. Initialize all facilities as closed. Open the facility that reduces
the cost maximally. Repeat until k facilities are open.

Greedy Downwards. Initialize all facilities as open. Close the facility that increases
the cost minimally. Repeat until k facilities are open.

Local Search. Open k random facilities. Compare all solutions that can be obtained
from the current solution by closing ` facilities and opening ` facilities. Replace the
current solution by the best solution found. Repeat until the current solution is a
local optimum. In the experiments we use ` = 2.

Randomized Local Search. Same as Local Search, but instead of considering all
solutions in the neighborhood, sample only a random subset. The size of the subset
is an additional parameter to the heuristic. In the experiments we use ` = 3 and
200 random neighbors.

Note that taking the solution of one of the greedy algorithms as starting point for a
local search is an obvious improvement, but this would prevent us from comparing
the local search algorithm with the greedy heuristic.

The local search heuristic is closely related to Lloyd’s algorithm for k-means. In
Lloyd’s algorithm, a random set of centers is chosen and iteratively updated by
moving the centers to the centroids of the clients that fall in their voronoi cell. This
improves the total distance from the centers to all clients in every iteration.

In our setting, we want to reduce the cost of the group of clients that currently
incurs the maximal cost. This can be done by moving a facility closer to this group
of clients, that is, closing one facility and opening another that reduces the objective
function. The local search algorithm, by closing and opening more than one facility
at a time, does this at least as well.

We create instances in the plane and use the euclidean distance. We create two types
of instances. In the first type the clients and facilities are uniformly distributed in a
100× 100 square. We call these instances the uniform instances. In these instances
all groups of clients contain the same number of clients. The k we use for the
experiments is 7.

The second kind uses random gaussian distributions to sample client positions.
To generate the gaussian distributions we sample a 2× 2-matrix M with v1, v2 on

78

(a) Uniform (b) Gauss-Const (c) Gauss-Exp

Figure 4.1: Examples for the kind of instances we generate. Circles are
clients, squares are facilities, colors indicate group membership.

the diagonal, where the two values are chosen uniformly at random from [0, 50].
This matrix describes the major axes of the gaussian ellipse. It is then rotated by
a uniformly random angle. The result is the covariance matrix of the gaussian
distribution. The mean is a random point in a 100× 100 square. These instances we
call gauss. We generate two subgroups of instances, in the first subgroup, gauss-const,
all groups of clients have the same number of clients, in the second subgroup, gauss-
exp, the number of clients in a group is sampled from an exponential distribution.
Figure 4.1 shows examples for the different kind of instances we generate.

As we didn’t put much effort into optimizing our heuristics for speed (for example
we do not use spatial search structures to find nearest neighbors), we do not report
execution time and focus solely on solution quality. Nevertheless it is clear that the
greedy strategies are much simpler to implement and much faster than the local
search heuristics.

We report average performance on instances where the solution is worse than the
LP value, as small, easy instances otherwise skew the results. To conclude relative
performance advantages between heuristics we use a Wilcoxon signed-rank test as
implemented in SciPy 0.12.0.

All computer code we wrote to run the experiments and analyze the results, as well
as the instances we solved, is available online at http://resources.mpi-inf.mpg.
de/robust-k-median/code-data.7z.

4.5.2 Results

Table 4.1 summarizes the results of the experiments, Table 4.2 shows the perfor-
mance for the different instance sizes for the Greedy Upwards and the Local Search
heuristic. The performance differences in Table 4.1 are statistically significant with a
very small two-sided p-value, except for the difference between Greedy Downward
and Randomized Local Search on Uniform and Gauss-Const instances. In these
cases the p-value is 0.66, respectively 0.08.

Since we use an LP relaxation as a comparison point, it is not immediately clear
what these numbers mean for the actual quality of the solution. If the heuristic and

79

http://resources.mpi-inf.mpg.de/robust-k-median/code-data.7z
http://resources.mpi-inf.mpg.de/robust-k-median/code-data.7z

Heuristic Uniform Gauss-Const Gauss-Exp

Greedy Up 1.65 (1.49) 5.18 (5.24) 6.63 (5.94)
Greedy Down 1.45 (1.42) 2.92 (2.92) 2.12 (2.05)
Local Search 1.13 (1.12) 1.63 (1.62) 1.41 (1.39)
Randomized Local Search 1.53 (1.48) 2.15 (2.29) 2.37 (2.36)

Table 4.1: Mean Performance as a multiple of the LP relaxation value,
rounded to three digits. In parentheses we provide the median. 1654 uni-
form instances, 1009 Gauss-Const instances, and 2029 Gauss-Exp instances
of varying sizes were solved. The reported performance is over the instances
where the heuristics perform worse that the LP relaxation.

the LP have similar costs, we know that the LP bound was good (as the heuristics
produce integer solutions). However, we do not know whether the instances where
the heuristics find a worse solution are actually hard for the heuristics or whether
the LP relaxation provides weak bound. To investigate this we had a closer look
at instances where both Greedy down and Local Search perform badly. For three
instances we attempted to solve the integer linear program and succeeded for two
of them. In Figure 4.2 we see different solutions. For these instances at least it was
indeed the case that the LP relaxation yielded a bad bound. This suggests that the
heuristics work even better than the numbers in Table 4.1 indicate.

4.6 Conclusion

We show a logarithmic lower bound for Robust k-median on the uniform and line
metrics. Despite this result, heuristics perform very well empirically.

As expected instances where the robust nature of Robust k-Median are not as
important because groups are distributed uniformly are easier than the more
realistic instances where groups form clusters. For the two better heuristics, Greedy
Downwards and Local Search, also perform better on instances with uneven group
sizes. Here too, one can speculate that few groups dominate the problem, and
finding a solution that minimizes maximum costs becomes easier.

The good performance of these simple heuristics indicate that although Robust
k-Median is hard to approximate in the worst case, a heuristic treatment can ef-
fectively find a very good approximation. Moreover, these results suggest that
Robust k-Median might become easier to approximate if some natural restrictions
are assumed.

For instance, if we assume that the diameter of each set Si is at most an ε fraction of
the diameter ∆ = maxu,v d(u, v), can we obtain a constant approximation factor?
This case captures the notion of “locality” of the communities. We note that in
our hardness instances the diameter of each set Si is ∆ for uniform metric and at
least ∆/2 in the line metric, so these hard instances would not arise if we have the
locality assumption. Another interesting case is a random instance where the sets
Si are randomly generated by an unknown distribution.

80

The problem is also interesting in a parametrized complexity setting. In particular,
can we obtain an O(1) approximation algorithm in time g(k)poly(n)?

81

Clients Facilities

10 110 210 310 410

Greedy Local Search GD LS GD LS GD LS GD LS
10 1.00 1.00 1.12 1.00 1.31 1.01 1.39 1.02 1.40 1.01
160 1.01 1.01 1.6 1.17 1.63 1.17 1.68 1.15 1.63 1.15
310 1.01 1.01 1.64 1.21 1.69 1.19 1.70 1.19 1.75 1.18
460 1.01 1.01 1.68 1.22 1.73 1.21 1.71 1.21 1.73 1.21

110 1.00 1.00 1.17 1.01 1.22 1.01 1.25 1.01 1.24 1.01
1760 1.0 1.0 1.28 1.06 1.33 1.06 1.34 1.06 1.34 1.06
3410 1.0 1.0 1.3 1.07 1.33 1.07

(a) Uniform

Clients Facilities

10 110 210 310 410

Greedy Local Search GD LS GD LS GD LS GD LS
10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
160 1.0 1.0 2.74 1.64 3.05 1.6 3.33 1.62 3.33 1.57
310 1.0 1.0 2.76 1.70 3.07 1.66 3.32 1.64

110 1.0 1.0 1.0 1.0 1.0∗ 1.0∗

3410 1.01 1.0 2.74 1.65 3.02∗ 1.63∗

(b) Gauss-Const

Clients Facilities

10 110 210 310 410

Greedy Local Search GD LS GD LS GD LS GD LS
10 1.0∗ 1.0∗ 1.0 1.0 1.0 1.0
110 1.0 1.0 1.34 1.16 1.66 1.28 1.65 1.26 1.91 1.34
210 1.0 1.0 1.9 1.41 2.14 1.45 2.31 1.46 2.46 1.49
310 1.0 1.0 2.23 1.48 2.6 1.48 2.69 1.51 2.78 1.50

110 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.01 1.0
1210 1.0 1.0 1.38 1.21 1.56 1.23 1.73 1.29 1.77 1.29
2310 1.0 1.0 1.94 1.38 2.09 1.44 2.48 1.41 2.29 1.44
3410 1.0 1.0 2.17 1.51 2.48 1.48 2.8 1.55

(c) Gauss-Exp

Table 4.2: Performance depending on instance size for the Greedy Down-
wards and Local Search heuristics. All values are averages over 50 instances,
except for those marked by ∗. For Gauss-Exp instances the number of clients
is the mean of the exponential distribution times the number of groups.
Values above the horizontal line come from instances with 10 clients per
group, below the line instances have 110 clients per group. Missing entries
took too long to solve, or aren’t interesting.

(a) Uniform: LP value 2806.4, Greedy value 5982.39, Local Search value 3426.43, OPT 3230.19.

(b) Gauss-Const: LP value 1360.26, Greedy value 8307.48, Local Search value 2541.21, OPT
2505.26

(c) Gauss-Exp: LP value 2362.06, Greedy value 10624.4, Local Search value 4354.54, 4192.31
≤ OPT ≤ 4354.54

Figure 4.2: Solutions of the different algorithms on particularly hard in-
stances. From left to right, the LP solution, the Greedy downwards solution,
the Local Search solution and the ILP solution. Darkness of facilities indi-
cates “how open” they are in the LP relaxation. In 4.2c we stopped the ILP
solver, after having consumed 177 days of CPU time and 46GB of memory.

84

Appendices

A Computing a Spanning Subgraph of an Overlap Graph

We say two intervals [a, b] and [c, d] overlap if a < c < b < d or vice versa. Given a
set of intervals this relation induces a graph, the overlap graph. This section explain
how to compute a spanning subgraph of this graph in linear time. We use this
result in Chapter 2 to compute an ordering in which to add chains to a subdivision.

We first assume that the endpoints of all intervals are pairwise distinct. We will
later show how to remove this assumption by perturbation.

For every interval I = [a, b] define its set of left and right neighbors:

L(I) = {I′ = [a′, b′]; a′ < a < b′ < b},
R(I) = {I′ = [a′, b′]; a < a′ < b < b′}.

If the set of left neighbors is non-empty, let the interval I′ ∈ L(I) with the rightmost
right endpoint be the immediate left neighbor of I. Similarly, if the set of right
neighbors is non-empty, the immediate right neighbor of I is the interval in R(I)
with the leftmost left endpoint.

Lemma .18: The graph G′ formed by connecting each interval to its immediate left
and right neighbor (if any) forms a spanning subgraph of the overlap graph G and
has exactly the same connected components.

Proof. Clearly, every edge of G′ is also an edge of G and hence connected compo-
nents of G′ are subsets of connected components of G.

For the other direction, assume I and I′ are overlapping intervals that are not
connected in G′ and for which the left endpoint of I is as small as possible. Then
a < a′ < b < b′, where I = [a, b] and I′ = [a′, b′]. Since I′ ∈ R(I), but I and I′ are
not connected, I has an immediate right neighbor J 6= I′. The left endpoint of J
must thus be smaller than a′ and the right endpoint of J must be larger than b (since
I overlaps with J). If the right endpoint is smaller than b′, J and I′ overlap. By
repeating this argument for J and I′, we must reach an interval U = [c, d] containing
I′. Thus

a < c < a′ < b < b′ < d.

Starting from I′ and going to left neighbors, we obtain in the same fashion an
interval U′ = [c′, d′] with

c′ < a < a′ < b < d′ < b′.

85

Algorithm 4: Finding a spanning forest of a overlap graph
Data: I = {[a0, a′0], . . . , [a`, a′`]}
stack = []
sort I lexicographically in descending order
for [l, r] in I do

while stack not empty and r > top(stack) right endpoint do
pop(stack)

if stack not empty and r ≥ top(stack) left endpoint then
connect [l, r], top(stack)

push(stack, [l, r])

stack = []
sort I lexicographically in ascending order where the key for [l, r] is
[r, l]
for [l, r] in I do

while stack not empty and l<top(stack) left endpoint do
pop(stack)

if stack not empty and l ≤ top(stack) right endpoint then
connect [l, r], top(stack)

push(stack, [l, r])

We conclude that U′ and U overlap, but are not connected in G′. Since the left
endpoint of U′ is to the left of the left endpoint of I, this contradicts the choice of I
and I′.

It is easy to determine all immediate right neighbors by a linear time sweep over
all intervals. We sort the intervals in decreasing order of left endpoint and then
sweep over the intervals starting with the interval with rightmost left endpoint. We
maintain a stack S of intervals, initially empty. If I1 = [a1, b1], . . . , Ik = [ak, bk] are
the intervals on the stack with I1 being on the top of the stack, then a1 < a2 < . . . <
ak and b1 < b2 < . . . < bk, I1 is the last interval processed, and I`+1 is the immediate
right neighbor of I` if I` has right neighbors. If I` does not have right neighbors,
a`+1 > b`. Let I = [a, b] be the next interval to be processed. Its immediate right
neighbor is the topmost interval I` on the stack with b` > b (if any). Hence we pop
intervals I` from the stack while b > b` and then connect I to the topmost interval
if b > a`, and push I. The determination of immediate left neighbors is symmetric.

It remains to deal with intervals with equal endpoints. We do so by perturbation. It
is easy to see that the following rules preserve the overlaps-relation and eliminate
equal endpoints.

(1) if a left and a right endpoint are at the same coordinate, then the left endpoint
precedes the right endpoint.

(2) if two left endpoints are equal, the one belonging to the shorter interval is
smaller.

86

(3) if two right endpoints are equal, the one belonging to the shorter interval is
larger.

(4) if two intervals are equal, one is slightly shifted to the right.

In other words, the endpoints of an interval Ii = [a, b] are replaced by ((a,−1, b−
a, i) and (b, 1, b− a, i)) and comparisons are lexicographic. The perturbation need
not be made explicitly, it can be incorporated into the sorting order and the condi-
tions under which edges are added, as described in Algorithm 4.

B Hypergraph Label Cover

An instance of r- is equivalent to the r-Prover system as used by Feige [28] in
proving the hardness of approximation for Set Cover. We discuss the equivalence
in this section. We use very similar techniques in the proof of Theorem 4.3 in
Chapter 4.

In the r-prover system, there are r provers P1, . . . , Pr and a verifier V. Each prover
is associated with a codeword of length r in such a way that the hamming distance
between any pair Pi, Pj is at least ham(Pi, Pj) = r/2; this is possible if r is a power
of two because we can use Hadamard code. Given an input 3-SAT formula φ, the
verifier selects r clauses uniformly and independently at random. Call these clauses
C1, . . . , Cr. From each such clause, the verifier selects a variable uniformly and
independently at random. These variables are called x1, . . . , xr. Prover Pi receives a
clause Cj if the jth bit of its codeword is 0; otherwise, it receives variable xj. The
property of Hadamard code guarantees that each prover would receive r/2 clauses
and r/2 variables.

Then each prover Pi is expected to give an assignment to all involved variables it
receives and sends this assignment to the verifier. The verifier then looks at the
answers from r provers and has two types of acceptance predicates.

• (Weak acceptance) At least one pair of answers is consistent.

• (Strong acceptance) All pairs of answers are consistent.

Applying parallel repetition theorem [62], Feige argues the following.

Theorem .19: ([28, Lemma 2.3.1]) If Φ is a satisfiable 3-SAT(5) formula, then there
is provers’ strategy that always causes the verifier to accept. Otherwise, the verifier
weakly accepts with probability at most r22−γr for some universal constant γ > 0.

Now we show how Theorem 4.3 follows by constructing the instance of (V, E) based
on the r-prover system. For each prover j, we create a set Vj consisting of vertices v
that correspond to possible query sent to prover j, so we have |Vj| = (5n/3)r/2nr/2.
For each possible random string x, we have an edge hx that contains r vertices,
corresponding to queries sent to the provers. It can be checked that the total number
of possible random strings is (5n)r, and the degree of each vertex is 3r/25r/2 = 15r/2;
notice that this is equal to r|E|/|V|. A prover strategy corresponds to the label of
vertices, and the acceptance probability is exactly the fraction of satisfied edges.
Moreover, for each possible query, the number of possible answers is at most 7r (for
each clause, there are 7 ways to satisfy it). This implies that |Lj| ≤ 7r.

87

88

Bibliography

[1] A lost interview with ENIAC co-inventor J. Presper Eckert. URL: https://
web.archive.org/web/20140912140810/http://www.computerworld.

com/article/2561813/computer-hardware/q-a--a-lost-interview-

with-eniac-co-inventor-j--presper-eckert.html.

[2] L. Ahlroth, O. Pottonen, and A. Schumacher. “Approximately Uni-
form Online Checkpointing with Bounded Memory”. In: Algorithmica
67.2 (2013), pp. 234–246. DOI: 10.1007/s00453-013-9772-5.

[3] E. Alkassar et al. “A Framework for the Verification of Certifying
Computations”. English. In: Journal of Automated Reasoning 52.3 (2014),
pp. 241–273. ISSN: 0168-7433. DOI: 10.1007/s10817-013-9289-2.

[4] B. M. Anthony et al. “A Plant Location Guide for the Unsure: Approx-
imation Algorithms for Min-Max Location Problems”. In: Math. Oper.
Res. 35.1 (2010 (Also in SODA 2008)), pp. 79–101.

[5] S. Arora. “Polynomial time approximation schemes for Euclidean
traveling salesman and other geometric problems”. In: J. ACM 45.5
(1998), pp. 753–782.

[6] S. Arora et al. “Proof Verification and the Hardness of Approximation
Problems”. In: J. ACM 45.3 (1998), pp. 501–555.

[7] V. Arya et al. “Local Search Heuristics for k-Median and Facility
Location Problems”. In: SIAM J. Comput. 33.3 (2004), pp. 544–562.

[8] N. Bansal et al. “On generalizations of network design problems with
degree bounds”. In: Math. Program. 141.1-2 (2013), pp. 479–506.

[9] D. W. Barnette and B. Grünbaum. “On Steinitz’s theorem concerning
convex 3-polytopes and on some properties of 3-connected graphs”.
In: Many Facets of Graph Theory. 1969, pp. 27–40.

[10] M. W. Bern et al. “On-Line Algorithms for Locating Checkpoints”. In:
Algorithmica 11.1 (1994), pp. 33–52.

89

https://web.archive.org/web/20140912140810/http://www.computerworld.com/article/2561813/computer-hardware/q-a--a-lost-interview-with-eniac-co-inventor-j--presper-eckert.html
https://web.archive.org/web/20140912140810/http://www.computerworld.com/article/2561813/computer-hardware/q-a--a-lost-interview-with-eniac-co-inventor-j--presper-eckert.html
https://web.archive.org/web/20140912140810/http://www.computerworld.com/article/2561813/computer-hardware/q-a--a-lost-interview-with-eniac-co-inventor-j--presper-eckert.html
https://web.archive.org/web/20140912140810/http://www.computerworld.com/article/2561813/computer-hardware/q-a--a-lost-interview-with-eniac-co-inventor-j--presper-eckert.html
http://dx.doi.org/10.1007/s00453-013-9772-5
http://dx.doi.org/10.1007/s10817-013-9289-2

[11] S. Bhattacharya et al. “New Approximability Results for the Robust
k-Median Problem”. In: Algorithm Theory - SWAT 2014 - 14th Scandi-
navian Symposium and Workshops, Copenhagen, Denmark, July 2-4, 2014.
Proceedings. 2014, pp. 50–61. DOI: 10.1007/978-3-319-08404-6_5.
URL: http://dx.doi.org/10.1007/978-3-319-08404-6_5.

[12] R. E. Bixby. “Solving Real-World Linear Programs: A Decade and
More of Progress”. In: Oper. Res. 50.1 (Jan. 2002), pp. 3–15. ISSN: 0030-
364X. DOI: 10.1287/opre.50.1.3.17780.

[13] M. Blum. “Program Result Checking: A New Approach to Making
Programs More Reliable”. In: Automata, Languages and Programming,
20nd International Colloquium, ICALP’93, Lund, Sweden, July 5-9, 1993,
Proceedings. 1993, pp. 1–14. DOI: 10.1007/3-540-56939-1_57.

[14] M. Blum and S. Kannan. “Designing Programs That Check Their
Work”. In: Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, May 14-17, 1989, Seattle, Washigton, USA. 1989, pp. 86–97.
DOI: 10.1145/73007.73015.

[15] J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008.

[16] Breakthrough performance by Pocket Fritz 4 in Buenos Aires. URL: http://
en.chessbase.com/post/breakthrough-performance-by-pocket-

fritz-4-in-buenos-aires.

[17] K. Bringmann et al. “Online Checkpointing with Improved Worst-
Case Guarantees”. In: Automata, Languages, and Programming - 40th
International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Pro-
ceedings, Part I. 2013, pp. 255–266. DOI: 10.1007/978-3-642-39206-
1_22.

[18] K. M. Chandy and C. V. Ramamoorthy. “Rollback and Recovery Strate-
gies for Computer Programs”. In: IEEE Transactions on Computers C-21
(1972), pp. 546–556. ISSN: 0018-9340. DOI: 10.1109/TC.1972.5009007.

[19] M. Charikar and S. Guha. “Improved Combinatorial Algorithms for
the Facility Location and k-Median Problems”. In: FOCS. IEEE Com-
puter Society, 1999, pp. 378–388.

[20] M. Charikar et al. “A Constant-Factor Approximation Algorithm for
the k-Median Problem”. In: J. Comput. Syst. Sci. 65.1 (2002), pp. 129–
149.

[21] L. Chen and A. Avizienis. “N-Version Programming: A fault-tolerance
approach to reliability of software operation”. In: Proc. 8th IEEE Int.
Symp. on Fault-Tolerant Computing (FTCS-8). 1978, pp. 3–9.

[22] J. N. Corcoran, U. Schneider, and H.-B. Schüttler. “Perfect Stochastic
Summation in High Order Feynman Graph Expansions”. In: Interna-
tional Journal of Modern Physics C 17.11 (2006), pp. 1527–1549.

90

http://dx.doi.org/10.1007/978-3-319-08404-6_5
http://dx.doi.org/10.1007/978-3-319-08404-6_5
http://dx.doi.org/10.1287/opre.50.1.3.17780
http://dx.doi.org/10.1007/3-540-56939-1_57
http://dx.doi.org/10.1145/73007.73015
http://en.chessbase.com/post/breakthrough-performance-by-pocket-fritz-4-in-buenos-aires
http://en.chessbase.com/post/breakthrough-performance-by-pocket-fritz-4-in-buenos-aires
http://en.chessbase.com/post/breakthrough-performance-by-pocket-fritz-4-in-buenos-aires
http://dx.doi.org/10.1007/978-3-642-39206-1_22
http://dx.doi.org/10.1007/978-3-642-39206-1_22
http://dx.doi.org/10.1109/TC.1972.5009007

[23] J. Dean. Underneath the Covers at Google: Current Systems and Future Di-
rections. 2008. URL: https://sites.google.com/site/io/underneath-
the-covers-at-google-current-systems-and-future-directions.

[24] Deep Blue. English. IBM. URL: https : / / web . archive . org / web /
20140822073803/http://www-03.ibm.com/ibm/history/ibm100/

us/en/icons/deepblue/.

[25] F. Dehne et al. “The cluster editing problem: Implementations and
experiments”. In: Parameterized and Exact Computation (2006), pp. 13–
24.

[26] E. Dinits, A. Karzanov, and M. Lomonosov. “On the structure of a
family of minimal weighted cuts in graphs”. In: Studies in Discrete
Mathematics (in Russian). 1976, pp. 290–306.

[27] E. N. M. Elnozahy et al. “A survey of rollback-recovery protocols in
message-passing systems”. In: ACM Computing Surveys 34.3 (2002),
pp. 375–408. ISSN: 0360-0300.

[28] U. Feige. “A threshold of ln n for approximating set cover”. In: J. ACM
45.4 (1998), pp. 634–652.

[29] T. Fleiner and A. Frank. A quick proof for the cactus representation of
mincuts. Tech. rep. QP-2009-03. Egerváry Research Group, Budapest,
2009.

[30] H. N. Gabow. “Path-based depth-first search for strong and bicon-
nected components”. In: Inf. Process. Lett. 74.3-4 (2000), pp. 107–114.
ISSN: 0020-0190. DOI: http://dx.doi.org/10.1016/S0020-0190(00)
00051-X.

[31] Z. Galil and G. F. Italiano. “Reducing edge connectivity to vertex
connectivity”. In: SIGACT News 22.1 (1991), pp. 57–61. ISSN: 0163-5700.
DOI: http://doi.acm.org/10.1145/122413.122416.

[32] E. Gelenbe. “On the Optimum Checkpoint Interval”. In: J. ACM 26.2
(1979), pp. 259–270. ISSN: 0004-5411. DOI: 10.1145/322123.322131.

[33] I. Gurobi Optimization. Gurobi Optimizer Reference Manual. 2013. URL:
http://www.gurobi.com.

[34] C. Gutwenger and P. Mutzel. “A Linear Time Implementation of
SPQR-trees”. In: Proceedings of the 8th International Symposium on Graph
Drawing (GD’00). 2001, pp. 77–90. ISBN: 3-540-41554-8.

[35] T. Hagerup and C. Rüb. “A guided tour of Chernoff bounds”. In:
Information Processing Letters 33.6 (1990), pp. 305 –308. ISSN: 0020-0190.
DOI: http://dx.doi.org/10.1016/0020-0190(90)90214-I.

[36] T. L. Heath. A History of Greek Mathematics. Vol. 1.

91

https://sites.google.com/site/io/underneath-the-covers-at-google-current-systems-and-future-directions
https://sites.google.com/site/io/underneath-the-covers-at-google-current-systems-and-future-directions
https://web.archive.org/web/20140822073803/http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
https://web.archive.org/web/20140822073803/http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
https://web.archive.org/web/20140822073803/http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/
http://dx.doi.org/http://dx.doi.org/10.1016/S0020-0190(00)00051-X
http://dx.doi.org/http://dx.doi.org/10.1016/S0020-0190(00)00051-X
http://dx.doi.org/http://doi.acm.org/10.1145/122413.122416
http://dx.doi.org/10.1145/322123.322131
http://www.gurobi.com
http://dx.doi.org/http://dx.doi.org/10.1016/0020-0190(90)90214-I

[37] V. Heuveline and A. Walther. “Online Checkpointing for Parallel Ad-
joint Computation in PDEs: Application to Goal-Oriented Adaptivity
and Flow Control”. In: Euro-Par 2006 Parallel Processing. Vol. 4128.
Lecture Notes in Computer Science. Springer, 2006, pp. 689–699. ISBN:
978-3-540-37783-2. DOI: 10.1007/11823285_72.

[38] M. Hilbert and P. López. “The World’s Technological Capacity to
Store, Communicate, and Compute Information”. In: Science 332.6025
(2011), pp. 60–65. DOI: 10.1126/science.1200970. eprint: http://
www.sciencemag.org/content/332/6025/60.full.pdf.

[39] J. Hopcroft and R. Tarjan. “Efficient planarity testing”. In: J. ACM 21.4
(1974), pp. 549–568.

[40] J. E. Hopcroft and R. E. Tarjan. “Dividing a graph into triconnected
components”. In: SIAM J. Comput. 2.3 (1973), pp. 135–158.

[41] D. R. Karger. “Minimum cuts in near-linear time”. In: J. ACM 47.1
(2000), pp. 46–76. ISSN: 0004-5411. DOI: 10.1145/331605.331608.

[42] S. G. Kolliopoulos and S. Rao. “A nearly linear-time approximation
scheme for the Euclidean k-median problem”. In: Algorithms-ESA’99.
Springer, 1999, pp. 378–389.

[43] D. Kratsch et al. “Certifying algorithms for recognizing interval graphs
and permutation graphs”. In: SIAM J. Comput. 36.2 (2006), pp. 326–353.

[44] S. Li and O. Svensson. “Approximating k-median via pseudo-approximation”.
In: STOC. ACM, 2013, pp. 901–910. ISBN: 978-1-4503-2029-0.

[45] J.-H. Lin and J. S. Vitter. “Approximation Algorithms for Geomet-
ric Median Problems”. In: Information Processing Letters 44.5 (1992),
pp. 245–249.

[46] N. Linial, L. Lovász, and A. Wigderson. “Rubber bands, convex em-
beddings and graph connectivity”. In: Combinatorica 8.1 (1988), pp. 91–
102. DOI: http://dx.doi.org/10.1007/BF02122557.

[47] L. Lovász. “Computing ears and branchings in parallel”. In: Proceed-
ings of the 26th Annual Symposium on Foundations of Computer Science
(FOCS’85). 1985. DOI: http://doi.ieeecomputersociety.org/10.
1109/SFCS.1985.16.

[48] C. Lund and M. Yannakakis. “On the Hardness of Approximating
Minimization Problems”. In: J. ACM 41.5 (1994), pp. 960–981.

[49] W. Mader. “A Reduction Method for Edge-Connectivity in Graphs”.
In: Advances in Graph Theory. Vol. 3. Annals of Discrete Mathematics.
1978, pp. 145–164. DOI: 10.1016/S0167-5060(08)70504-1.

[50] R. M. McConnell et al. “Certifying algorithms”. In: Computer Science
Review 5.2 (2011), pp. 119–161. ISSN: 1574-0137. DOI: DOI:10.1016/j.
cosrev.2010.09.009.

92

http://dx.doi.org/10.1007/11823285_72
http://dx.doi.org/10.1126/science.1200970
http://www.sciencemag.org/content/332/6025/60.full.pdf
http://www.sciencemag.org/content/332/6025/60.full.pdf
http://dx.doi.org/10.1145/331605.331608
http://dx.doi.org/http://dx.doi.org/10.1007/BF02122557
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/SFCS.1985.16
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/SFCS.1985.16
http://dx.doi.org/10.1016/S0167-5060(08)70504-1
http://dx.doi.org/DOI: 10.1016/j.cosrev.2010.09.009
http://dx.doi.org/DOI: 10.1016/j.cosrev.2010.09.009

[51] K. Mehlhorn. “Nearly Optimal Binary Search Trees”. In: Acta Informat-
ica 5 (1975), pp. 287–295.

[52] K. Mehlhorn, S. Näher, and C. Uhrig. The LEDA Platform of Combinato-
rial and Geometric Computing. Cambridge University Press, 1999.

[53] K. Mehlhorn and S. Näher. “LEDA a library of efficient data types
and algorithms”. In: Mathematical Foundations of Computer Science 1989.
Springer. 1989, pp. 88–106.

[54] K. Mehlhorn, A. Neumann, and J. M. Schmidt. “Certifying 3-Edge-
Connectivity”. In: Graph-Theoretic Concepts in Computer Science - 39th
International Workshop, WG 2013, Lübeck, Germany, June 19-21, 2013,
Revised Papers. 2013, pp. 358–369. DOI: 10.1007/978-3-642-45043-
3_31.

[55] H. Nagamochi and T. Ibaraki. “A linear time algorithm for computing
3-edge-connected components in a multigraph”. In: Japan Journal of
Industrial and Applied Mathematics 9 (2 1992), pp. 163–180. ISSN: 0916-
7005.

[56] H. Nagamochi and T. Ibaraki. Algorithmic Aspects of Graph Connectivity
(Encyclopedia of Mathematics and its Applications). Cambridge University
Press, 2008.

[57] A. Neumann. “Implementation of Schmidt’s Algorithm for Certifying
Triconnectivity Testing”. MA thesis. Universität des Saarlandes and
Graduate School of CS, Germany, 2011.

[58] W. D. Nordhaus. “Two Centuries of Productivity Growth in Comput-
ing”. In: The Journal of Economic History 67 (01 Mar. 2007), pp. 128–159.
ISSN: 1471-6372. DOI: 10.1017/S0022050707000058.

[59] S. Olariu and A. Y. Zomaya. “A Time- and Cost-Optimal Algorithm
for Interlocking Sets – With Applications”. In: IEEE Trans. Parallel
Distrib. Syst. 7.10 (1996), pp. 1009–1025. ISSN: 1045-9219. DOI: http:
//dx.doi.org/10.1109/71.539733.

[60] F. Österlind et al. “Sensornet Checkpointing: Enabling Repeatability
in Testbeds and Realism in Simulations”. In: Wireless Sensor Networks.
Vol. 5432. Lecture Notes in Computer Science. Springer, 2009, pp. 343–
357. ISBN: 978-3-642-00223-6. DOI: 10.1007/978-3-642-00224-3_22.

[61] V. Ramachandran. “Parallel Open Ear Decomposition with Applica-
tions to Graph Biconnectivity and Triconnectivity”. In: Synthesis of
Parallel Algorithms. 1993, pp. 275–340.

[62] R. Raz. “A Parallel Repetition Theorem”. In: SIAM J. Comput. 27.3
(1998), pp. 763–803.

93

http://dx.doi.org/10.1007/978-3-642-45043-3_31
http://dx.doi.org/10.1007/978-3-642-45043-3_31
http://dx.doi.org/10.1017/S0022050707000058
http://dx.doi.org/http://dx.doi.org/10.1109/71.539733
http://dx.doi.org/http://dx.doi.org/10.1109/71.539733
http://dx.doi.org/10.1007/978-3-642-00224-3_22

[63] J. M. Schmidt. “A Simple Test on 2-Vertex- and 2-Edge-Connectivity”.
In: Information Processing Letters 113.7 (2013), pp. 241–244. DOI: 10.
1016/j.ipl.2013.01.016.

[64] J. M. Schmidt. Contractions, Removals and Certifying 3-Connectivity in
Linear Time. Tech. Report B 10-04. Freie Universität Berlin, Germany,
2010.

[65] J. M. Schmidt. “Contractions, Removals and Certifying 3-Connectivity
in Linear Time”. In: SIAM Journal on Computing 42(2) (2013), pp. 494–
535.

[66] J. M. Schmidt. “Structure and Constructions of 3-Connected Graphs”.
PhD thesis. Freie Universität Berlin, Germany, 2011.

[67] C. E. Shannon. “Programming a computer for playing chess”. In:
Philosophical magazine 41.314 (1950), pp. 256–275.

[68] P. Stumm and A. Walther. “New Algorithms for Optimal Online
Checkpointing”. In: SIAM Journal on Scientific Computing 32.2 (2010),
pp. 836–854. DOI: 10.1137/080742439. eprint: http://epubs.siam.
org/doi/pdf/10.1137/080742439.

[69] G. F. Sullivan and G. M. Masson. “Using certification trails to achieve
software fault tolerance”. In: Fault-Tolerant Computing, 1990. FTCS-20.
Digest of Papers., 20th International Symposium. IEEE. 1990, pp. 423–431.

[70] S. Taoka, T. Watanabe, and K. Onaga. “A linear time algorithm for
computing all 3-edge-connected components of a multigraph”. In:
IEICE Trans. Fundamentals E75 3 (1992), pp. 410–424.

[71] S. Toueg and Ö. Babaoglu. “On the Optimum Checkpoint Selection
Problem”. In: SIAM Journal on Computing 13.3 (1984), pp. 630–649. DOI:
10.1137/0213039. eprint: http://epubs.siam.org/doi/pdf/10.
1137/0213039.

[72] Y. H. Tsin. “A Simple 3-Edge-Connected Component Algorithm”.
In: Theor. Comp. Sys. 40.2 (2007), pp. 125–142. ISSN: 1432-4350. DOI:
http://dx.doi.org/10.1007/s00224-005-1269-4.

[73] Y. H. Tsin. “Yet another optimal algorithm for 3-edge-connectivity”.
In: J. of Discrete Algorithms 7.1 (2009), pp. 130–146. ISSN: 1570-8667.
DOI: http://dx.doi.org/10.1016/j.jda.2008.04.003.

[74] A. M. Turing. “Faster than Thought”. In: Pitman & Sons Ltd., 1953.
Chap. Digital computers applied to games.

[75] K.-P. Vo. “Finding triconnected components of graphs”. In: Linear and
Multilinear Algebra 13 (1983), pp. 143–165.

[76] K.-P. Vo. “Segment graphs, depth-first cycle bases, 3-connectivity,
and planarity of graphs”. In: Linear and Multilinear Algebra 13 (1983),
pp. 119–141.

94

http://dx.doi.org/10.1016/j.ipl.2013.01.016
http://dx.doi.org/10.1016/j.ipl.2013.01.016
http://dx.doi.org/10.1137/080742439
http://epubs.siam.org/doi/pdf/10.1137/080742439
http://epubs.siam.org/doi/pdf/10.1137/080742439
http://dx.doi.org/10.1137/0213039
http://epubs.siam.org/doi/pdf/10.1137/0213039
http://epubs.siam.org/doi/pdf/10.1137/0213039
http://dx.doi.org/http://dx.doi.org/10.1007/s00224-005-1269-4
http://dx.doi.org/http://dx.doi.org/10.1016/j.jda.2008.04.003

[77] S. Yi, D. Kondo, and A. Andrzejak. “Reducing Costs of Spot Instances
via Checkpointing in the Amazon Elastic Compute Cloud”. In: IEEE
3rd International Conference on Cloud Computing (CLOUD 2010). 2010,
pp. 236–243. DOI: 10.1109/CLOUD.2010.35.

95

http://dx.doi.org/10.1109/CLOUD.2010.35

	Introduction
	Certifying Algorithms for 3-Connectivity
	Introduction
	Related Work
	Preliminaries
	Chain Decompositions
	Chains as Mader-paths
	A First Algorithm
	A Classification of Chains
	A Linear Time Algorithm
	Verifying the Mader Sequence
	The Cactus Representation of 2-Cuts
	Verifying a Cactus Representation

	Computing a Cactus Representation
	Properties and Representation of 2-cuts on Chains
	An Incremental Cactus Construction

	Computing all 3-Vertex-Connected Components
	A Simplified Certifying Algorithm for 3-Vertex Connectivity
	Caterpillars
	The Greedy Vertex-Connectivity Algorithm

	Conclusion

	Online Checkpointing with Improved Worst-Case Guarantees
	Introduction
	Notation and Preliminaries
	Introductory Example—A Simple Bound for k=3
	An Upper Bound for Large k
	An Improved Upper Bound for Large k
	The Algorithm Binary
	Discrepancy Analysis

	Upper Bounds via Combinatorial Optimization
	Existence of Optimal Algorithms
	Lower Bound
	Conclusion

	Inapproximability of the Robust k-Median Problem and Heuristic Solutions
	Introduction
	Preliminaries
	Hardness of Robust k-Median on Uniform Metrics
	Integrality Gap
	Reduction from r-Hypergraph Label Cover to Minimum Congestion Set Packing
	Analysis

	Hardness of Robust k-Median on Line Metrics
	Heuristics
	Methods
	Results

	Conclusion

	Appendices
	Computing a Spanning Subgraph of an Overlap Graph
	Hypergraph Label Cover

