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Abstract
In this thesis we study three different topics from the field of algorithms and data
structures. First, we investigate a problem from statistics. We give two ran-
domised algorithms that can round matrices of fractional values to integer-valued
matrices. These matrices will exhibit only small rounding errors for sums of initial
row or column entries. Both algorithms also round each entry up with probability
equal to its fractional value. We give a derandomisation of both algorithms.

Next, we consider the analysis of evolutionary algorithms (EAs). First, we
analyse an EA for the Single Source Shortest Path problem. We give tight up-
per and lower bounds on the optimisation time of the EA. For this, we develop
some new techniques for such analyses. We also analyse an EA for the All-Pairs
Shortest Path problem. We show that adding crossover to this algorithm prov-
ably decreases its optimisation time. This is the first time that the usefulness of
crossover has been shown for a non-constructed combinatorial problem.

Finally, we examine how to retrieve the implicit geometric information hidden
in the communications graph of a wireless sensor network. We give an algorithm
that is able to identify wireless nodes close to a hole in this network based on the
connectivity information alone. If the input fulfils several preconditions, then the
algorithm finds a node near each boundary point and never misclassifies a node.
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Zusammenfassung
Diese Dissertation befasst sich mit drei Bereichen aus dem Gebiet der Algorith-
men und Datenstrukturen. Zuerst betrachten wir ein Problem aus der Statistik. Wir
präsentieren zwei randomisierte Algorithmen, die Matrizen von Kommazahlen
in ganzzahlige Matrizen runden. Die berechneten Matrizen haben einen kleinen
Rundungsfehler in allen Summen zusammenhängender Zeilen- oder Spaltenele-
mente. Außerdem ist die Wahrscheinlichkeit, dass eine Zahl aufgerundet wird,
gleich ihrem Nachkommawert. Für beide Algorithmen zeigen wir derandomisier-
te Varianten.

Dann beschäftigen wir uns mit der Analyse Evolutionärer Algorithmen (EAs).
Zuerst analysieren wir einen EA für das Single Source Shortest Path Problem. Wir
zeigen scharfe obere und untere Schranken für die Optimierungszeit dieses EAs.
Dazu entwickeln wir neue Techniken für solche Analysen. Außerdem untersuchen
wir einen EA für das All-Pairs Shortest Path Problem. Wir zeigen, dass Rekombi-
nation die Optimierungszeit dieses EAs beweisbar beschleunigt. Dies ist das erste
kombinatorische Problem, für das der Nutzen von Rekombination gezeigt werden
konnte.

Abschließend untersuchen wir, wie man implizite geometrische Informatio-
nen im Kommunikationsgraphen eines Sensornetzes finden kann. Wir entwickeln
einen Algorithmus, der Knoten nahe eines Loches im Netzwerk anhand der Kon-
nektivitätsinformation identifizieren kann. Unter gewissen Bedingungen findet der
Algorithmus einen Knoten nahe aller Randpunkte und markiert auch nur solche
Knoten.
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Chapter 1

Introduction

This introduction gives a short overview on the research I conducted during my
PhD studies. I had the opportunity to work on three different topics during my
time in the algorithms and complexity department at the Max-Planck-Institut für
Informatik, namely randomised rounding, evolutionary algorithms and wireless
sensor networks. For the sake of clarity, this thesis only contains the main results
of my research. In the following overview, a short summary of each omitted pub-
lication is given after discussing the results from which this thesis was distilled.

Randomised Rounding
If a problem has several possible solutions for a given input, then the use of ran-
domised algorithms might be of interest to ensure that the output is chosen ran-
domly from all valid solutions. This is the case for the following problem that is
motivated by a scenario from statistics. Given a table of statistical data, one wants
to round the data entries to hide small entries that may otherwise allow the identi-
fication of single individuals. Obviously, there are several possible ways to round
such a table. It is often desirable to use a randomised algorithm to ensure that the
output is chosen such that each table entry is rounded up with probability equal
to its fractional value. This ensures that the expected value of any sum of entries
in the rounded table is equal to their sum in the original table. In statistics this
is known as “unbiased rounding”, while it is known as “randomised rounding” in
computer science.

Of course, we want to ensure that a rounding of a table is still as close as pos-
sible to the original data. Especially, it is desirable that the rounding process does
not change the row and column totals. Such roundings are known as “controlled
roundings”.

In Chapter 2 we give two algorithms to compute such unbiased controlled
roundings. Furthermore, our algorithms will ensure that the rounding errors for

1



2 CHAPTER 1. INTRODUCTION

each sum over the first i elements of any row or column is less than one. Since
many statistical attributes are linearly ordered, this allows to answer queries about
a range of entries.

Our first algorithm works on tables where each entry is a binary number. If
the fractional part of each number has at most ` bits, it will compute such a ran-
domised rounding in time O(mn`) if the table has m × n entries.

However, if one wants to round to multiples of ten, the numbers in the input
might not have a finite binary representation. For this case we give a second
algorithm that allows us to deal with arbitrary rational numbers. If all numbers
have a common denominator q which has factorisation q =

∏`
i=1 qi, then our

algorithm will compute a rounding in expected time O(mn
∑`

i=1 q2
i ).

For both algorithms we also give a derandomised variant. Although these
variants will of course no longer compute an unbiased rounding, they have the
same run time as their randomised counterparts.

The first algorithm is joint work with Benjamin Doerr, Tobias Friedrich and
Ralf Osbild. It was published in [DFKO06b]. The algorithm for rational numbers
was published in [DK06] and is joint work with Benjamin Doerr.

Further Work on Randomised Rounding

We also studied a simpler version of the rounding problem, which is however not
discussed in this thesis. Again considering a real-valued matrix, we studied how
to compute a rounding such that the rounding errors of all column sums and all
initial row sums are less than one. In other words, we drop the constraint on the
error for initial column sums. Another interpretation of this relaxed problem is
that we are given a sequence of n-dimensional vectors which we have to round
while not changing the norm of each of them. Hence, it is an extension of the
classical problem of rounding a sequence of numbers to the n-dimensional case.
This problem can be used to model various scheduling problems like the max-
imum deviation just-in-time scheduling problem, where balanced schedules on
machines with negligible switch-over-costs are sought. In [DFKO06a], we show
that this problem can be solved in linear time by a one-pass algorithm.

Evolutionary Algorithms
Randomness is also used as the main engine to power many meta-heuristics that
can be used as generic frameworks to solve specific problems. A special variant
of those meta-heuristics are so called “evolutionary algorithms”. These utilise an
abstract form of the principles of evolution to tackle hard problems. A set (called
population) of possible solutions (called individuals) is repeatedly modified by ap-
plying variation operators (i.e., mutation and crossover) and selection. Selection
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is based on the fitness of each individual which is normally given by a so-called
fitness function. While meta-heuristics can often be beaten by a problem-specific
algorithm, they are easy to adapt to new problems. Designing a custom-tailored
algorithm, on the other hand, often requires a thorough understanding of the un-
derlying problem.

The theoretical analysis of the optimisation time1 of such algorithms is still
in its infancy. Also, the ramifications of using different variants of crossover,
mutation and selection (or not using them at all) on the optimisation time are still
not fully understood.

In Chapter 3 we discuss some of our contributions to the above questions. We
give a tight analysis of the optimisation time of an evolutionary algorithm for the
single source shortest path problem. The algorithm itself was proposed in earlier
work by Scharnow, Tinnefeld and Wegener. However, they only give an upper
bound on the optimisation time. We improve on their result to show a tight upper
bound and a matching lower bound for this problem. In doing so, we develop
several interesting techniques for the analysis of evolutionary algorithms. This
analysis is joint work with Benjamin Doerr and Edda Happ and was published in
[DHK07, DHK11].

Furthermore, we tackle the problem of whether crossover is a useful ingredient
in evolutionary algorithms. While practitioners like to add a pinch of crossover
to their algorithms, there have been very few theoretical justifications to do so.
The only papers that showed that crossover might improve the optimisation time
consider synthetic problems that are constructed to show just that. We give the
first analysis of a non-artificial problem that profits from crossover. Namely, we
will show that an evolutionary algorithm for the all pairs shortest path problem
can be sped up by adding a crossover operator. This is joint work with Benjamin
Doerr and Edda Happ and was published in [DHK08, DHK12].

Further Work on Evolutionary Algorithms

Apart from the two results discussed above, we published several more results on
evolutionary algorithms that are not discussed in this thesis.

Together with Benjamin Doerr and Tobias Storch we gave a new representa-
tion for individuals in problems that have cyclic permutations as solutions. We
analysed two variants of evolutionary algorithms for the Eulerian cycle problem
based on this representation. Our analysis shows that, compared to previous so-
lutions, the new representation indeed improves the optimisation time of both
algorithms. This has been published in [DKS07].

1Roughly speaking, the optimisation time of an evolutionary algorithm is the number of times
that variation and selection is applied until an optimal solution is found.
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Furthermore we studied the effect of adding more fitness functions to a multi-
objective optimisation problem. We analyse how such additional objectives can
both improve or degrade the optimisation time. This result has been published in
[BFH+07, BFH+09]. It is joint work with Dimo Brockhoff, Tobias Friedrich, Nils
Hebbinghaus, Frank Neumann and Eckart Zitzler.

In [HJKN08] we analyse the effects of using different selection methods in
evolutionary algorithms. For linear pseudo-Boolean functions it is known that
elitist selection (always selecting the fittest individual) leads to an O(n log n) opti-
misation time. However, for fitness-proportional selection where each individual
is selected with probability proportional to its fitness, we show that an exponential
number of steps is needed to find the optimum. In particular, we can prove that all
solutions generated by the algorithm during an exponential number of steps differ
with high probability in linearly many bits from the optimal solution. This is joint
work with Edda Happ, Daniel Johannsen and Frank Neumann.

Another interesting question arising in evolutionary computation is for which
problems randomised local search (RLS) and the (1 + 1)-EA perform equiva-
lently. In the classic bit-string model RLS flips one random bit per step while
the (1 + 1)-EA flips every bit with probability 1

n . Hence, in expectation, the
(1 + 1)-EA behaves like RLS. It has long been known that for some problems
the (1 + 1)-EA is exponentially faster than RLS, as the later can get stuck in lo-
cal optima. The (1 + 1)-EA, however, seems to be at least as powerful as RLS.
Indeed, the only known examples where RLS outperforms the (1 + 1)-EA only
work if the start point lies in a very specific part of the search space. Most of the
search space, however, consists of a deceptive area that leads to a local optimum
that is far away from the global optimum. RLS, started in the right region, will
follow a narrow path to the optimum without a chance to find the deceptive area.
The (1 + 1)-EAon the other hand, can (and likely will) leave the path and enter the
deceptive area, where it is lured to a local optimum. Of course this example has a
fatal flaw. If RLS starts in the deceptive area it will be trapped forever, while the
(1 + 1)-EA will, albeit after exponentially many steps, find the optimum. Hence,
one might suppose that under reasonable conditions the (1 + 1)-EA will never be
worse than RLS. In [DJK08] we show that this is not the case. We present an uni-
modal function (i.e., a function having no local optima) which RLS optimises in
expected polynomial time while the (1 + 1)-EA needs a weakly exponential num-
ber of steps. Also, this example needs no artificial constraints on the start points.
This is joint work with Thomas Jansen and Benjamin Doerr.

Wireless Sensor Networks
Finally, we study a computational geometry problem arising in the field of wire-
less sensor networks. Here, one typically has many very simple sensor nodes that
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are randomly distributed over some area. To cover large areas, these nodes must
be cheap and energy-efficient. Hence, they only have a very limited communica-
tions range and also lack a power-hungry GPS unit.

A major challenge is to compute the topology of such networks. Due to the
lack of absolute positioning information, the only information available is the
communication graph of the underlying network. In Chapter 4 we give a linear-
time algorithm that can identify the boundary of holes in the communication graph
from connectivity information alone. The algorithm can be implemented in a
distributed and localised way. Also, our algorithm does not need the nodes to be
uniformly distributed but works with arbitrary node distributions. We prove the
correctness of our algorithm (i.e. that it only finds nodes close to a boundary and
that it finds a node close to each boundary point) for well-formed holes and a
sufficiently high node density. While this theoretical analysis turns out to be quite
conservative, our actual implementation of the algorithm shows that it works well
under less stringent conditions.

This result is joint work with Stefan Funke and has been published in [FK06].
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Chapter 2

Matrix Rounding

Rounding an m × n matrix while keeping the errors in all rows, columns and
the whole matrix small is a classical problem. It has applications in hypergraph
colouring, in scheduling and in statistics.

In this Chapter, we present two algorithms that round a real matrix to an integer
matrix. The roundings are such that the rounding errors in all initial intervals of
rows and columns, as well as in the whole matrix, are less than one.

Often, it is also desirable to round each entry randomly such that the probabil-
ity of rounding it up equals its fractional part. This is known as unbiased rounding
in statistics and as randomised rounding in computer science. Both our algorithms
compute an unbiased rounding.

We present a highly efficient algorithm to compute rounding in Section 2.3.
This algorithm will work for matrices where each number has a finite binary rep-
resentation. It can compute such roundings in time O(mn log(mn)).

However, the input may not always consist of such numbers. Especially in
statistics, one may want to round fractional numbers where the denominators are
multiples of 3 or 10. In Section 2.4, we show how to compute unbiased roundings
for matrices of arbitrary rational numbers. The algorithm needs expected time
O(mnq2), where q is the common denominator of the matrix entries. We also
show that, if the denominator can be written as q =

∏`
i=1 qi for some integers

qi, the expected runtime can be reduced to O(mn
∑`

i=1 q2
i ). Our algorithm can be

derandomised efficiently using the method of conditional probabilities.
Finally, we give a lower bound on the error in arbitrary intervals in Section 2.5.
Section 2.3 is based on joint work with Benjamin Doerr, Tobias Friedrich and

Ralf Osbild published in [DFKO06b]. Section 2.4 is based on joint work with
Benjamin Doerr published in [DK06]. The lower bound given in Section 2.5
is based on joint work with Benjamin Doerr, Tobias Friedrich and Ralf Osbild
published in [DFKO06a].

7
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2.1 Introduction
In this Chapter, we analyse a rounding problem with connections to different areas
in discrete mathematics, computer science and statistics. We give several algo-
rithms that efficiently round a matrix to an integer one in such a way that rounding
errors in intervals of rows and columns as well as in the whole matrix are small.
Furthermore, those algorithms will compute a so called randomised or unbiased
rounding. This means that each matrix entry is rounded up with probability equal
to its fractional value.

This result extends the famous rounding Lemma of Baranyai [Bar75] and sev-
eral results on controlled rounding in statistics to small rounding errors in all initial
segments of rows and columns. While the existence of such roundings can also
be derived from Knuth’s two-way rounding result [Knu95] as well as from the
work of Asano, Katoh, Obokata and Tokuyama [AKOT03] on rounding 2-laminar
systems, both of these works use a formulation as flow problem and thus are less
efficient than our approach.

2.1.1 Our Contribution

We now state the main theorems of this chapter. For this we introduce the follow-
ing notation. Let a, b ∈ R be real numbers. Then we define [a, . . . , b] := {z ∈ Z |
a ≤ z ≤ b}. For x ∈ R we define bxc := max{z ∈ Z | z ≤ r}, dxe := min{z ∈ Z | z ≥
r} and {x} := x − bxc. For q ∈ N let 1

qZ := { p
q | p ∈ Z}.

The algorithms presented by us compute controlled roundings which fulfil the
additional constraint that all rounding errors in initial row and column intervals
are less than one. This is formalised by the following definition.

Definition 2.1 (Locally Consistent Controlled Rounding). Let X ∈ Rm×n be a real-
valued matrix. A matrix Y ∈ Zm×n is called locally consistent controlled rounding
if

∀b ∈ [1, . . . , n] , i ∈ [1, . . . ,m] :

∣∣∣∣∣∣∣
b∑

j=1

(xi j − yi j)

∣∣∣∣∣∣∣ < 1, (2.1)

∀b ∈ [1, . . . ,m] , j ∈ [1, . . . , n] :

∣∣∣∣∣∣∣
b∑

i=1

(xi j − yi j)

∣∣∣∣∣∣∣ < 1, (2.2)∣∣∣∣∣∣∣
m∑

i=1

n∑
j=1

(xi j − yi j)

∣∣∣∣∣∣∣ < 1 (2.3)

holds.
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The randomised variants of our algorithms have the additional property that
each matrix entry is rounded up with probability equal to its fractional value. This
is known as randomised rounding in computer science [Rag88] and as unbiased
rounding in statistics [Cox87, Fel75]. Here, a controlled rounding is computed
such that the expected values of each matrix entry (including the totals) equals its
fractional value in the original matrix.

Definition 2.2 (Randomised Rounding). Let x ∈ R. A random variable y is called
randomised rounding of x, denoted by x ≈ y, if

Pr(y = bxc + 1) = {x}
Pr(y = bxc) = 1 − {x}.

For a matrix X ∈ Rm×n, we call a Zm×n-valued random variable Y randomised
rounding or unbiased rounding of X if

∀i ∈ [1, . . . ,m] , j ∈ [1, . . . , n] : xi j ≈ yi j

holds.

Note that if x ≈ y, then Pr(|y − x| < 1) = 1 and E(y) = x. In fact, the converse
holds as well. The randomised algorithms discussed in this chapter will adhere to
the following definition.

Definition 2.3 (Randomised Locally Consistent Controlled Rounding). Let X ∈
Rm×n be a real-valued matrix. We call an integer-valued random variable Y ∈
Zm×n randomised locally consistent controlled rounding or unbiased locally con-
sistent controlled rounding of X if

∀b ∈ [1, . . . , n] , i ∈ [1, . . . ,m] :
b∑

j=1

xi j ≈

b∑
j=1

yi j,

∀b ∈ [1, . . . ,m] , j ∈ [1, . . . , n] :
b∑

i=1

xi j ≈

b∑
i=1

yi j,

m∑
i=1

n∑
j=1

xi j ≈

m∑
i=1

n∑
j=1

yi j

holds.

With these definitions we can now characterise our algorithms. Their be-
haviour is summarised by the following four theorems.
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Theorem 2.1. Let X ∈ Rm×n be a real-valued matrix. Assume that the fractional
part of each matrix entry has binary length at most `. Then, a randomised locally
consistent controlled rounding Y ∈ Zm×n of X can be computed in time O(mn`).

The algorithm that yields this theorem can also be modified to calculate an,
albeit not randomised, rounding of arbitrary matrices.

Theorem 2.2. For all X ∈ Rm×n, a locally consistent controlled rounding Y ∈ Zm×n

can be computed in time O(mn log(mn)).

Note that Theorem 2.1 only works for matrices of numbers with finite binary
expansion. Hence, it cannot round non-binary fractions, as is often required in
applications. We will give another algorithm to compute randomised roundings
of such matrices. For this algorithm, the following variant of Theorem 2.1 holds.

Theorem 2.3. For all X ∈ 1
qZ

m×n, a randomised locally consistent controlled
rounding Y ∈ Zm×n can be computed in expected time O(mn

∑`
i=1 p2

i ), where q =∏`
i=1 pi, pi ∈ N is a factorisation of q.

The result above can be derandomised using the method of conditional prob-
abilities. This leads to a deterministic algorithm having the same asymptotic run-
time.

Theorem 2.4. For all X ∈ 1
qZ

m×n, a locally consistent controlled rounding Y ∈
Zm×n can be computed in time O(mn

∑`
i=1 p2

i ), where q =
∏`

i=1 pi, pi ∈ N is a
factorisation of q.

A Lower Bound

We also present a non-trivial lower bound for the error in arbitrary intervals. Ear-
lier works only regarded errors in initial intervals [1, . . . , t]. For upper bounds, a
triangle inequality argument extends any upper bound for initial intervals to twice
this bound for arbitrary intervals. For lower bounds, things are more complicated.
In particular, an example of Brauner and Crama [BC04] showing a lower bound of
1− 1

m for initial intervals yields no better bound for arbitrary intervals. We present
a family of 3 × n-matrices such that any rounding contains a non-initial interval
having an error of at least 1.5 − ε.

As a corollary, this also yields an error of 0.75− ε for initial intervals of 3× n-
matrices.
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2.1.2 Related Work

Baranyai’s Rounding Lemma and Applications in Statistics

Baranyai [Bar75] used a weaker version of Theorem 2.2 to obtain his famous
results on colouring and partitioning complete uniform hypergraphs. He showed
that any matrix can be rounded in a way that the errors in all rows, all columns
and the whole matrix are less than one. In other words, the entries of the original
matrix are rounded such that the row sums, column sums and the total matrix sum
of the rounded matrix differ by less than one from the corresponding sums in the
unrounded matrix. Baranyai used a formulation as flow problem to prove this
statement. This yields a worse runtime than the bound in Theorem 2.2. However,
algorithmic issues were not the focus of his work.

With statistics applications in mind, Baranyai’s result was independently ob-
tained by Causey, Cox and Ernst [CCE85] and, in a slightly weaker form, by
Bacharach [Bac66]. In statistics, there are two applications for such rounding
results (cf. [CE82]). Note first that instead of rounding to integers, our results
also apply to rounding to multiples of any other base (e.g., whole multiples of
one percent). This can be used in statistics to improve the readability of data ta-
bles. A second reason to apply such rounding procedures is confidentiality protec-
tion [WW01]. Frequency counts that directly or indirectly disclose small counts
may permit the identification of individual respondents. This risk can be reduced
by rounding all numbers to multiples of a small integer, e.g., 10. However, in both
applications one wants to keep rounding errors in columns and rows small. This
allows to use the rounded matrix to obtain information on the row and column
totals.

Our result allows to retrieve further reliable information from the rounded
matrix, namely also on the sums of consecutive elements in rows or columns.
Such queries may occur if there is a linear ordering on statistical attributes. Here
is an example. Let xi j be the number of people in country i that are j years old. Say
Y is such that 1

1000Y is a rounding of 1
1000 X as in Theorem 2.3. Now

∑40
j=20 yi j is the

number of people in country i that are between 20 to 40 years old, apart from an
error of less than 2000. Note that such guarantees are not provided by the results
of Baranyai [Bar75], Bacharach [Bac66] and Causey, Cox and Ernst [CCE85].

Also, our result is highly efficient. Baranyai, who was not interested in al-
gorithmic issues, as well as both Bacharach and Causey, Cox and Ernst used a
reduction of the rounding problem to a flow or transportation problem. Though
such problems can be solved relatively efficiently, our almost linear time solution
clearly beats their runtimes.

There exist various extensions to the controlled rounding problem. Kelly,
Assad and Golden [KAG90] show that three-dimensional controlled rounding is
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NP-hard. They also show that such a rounding does not always exist. Various
heuristics to compute controlled roundings of linked or multi-dimensional tables
have been studied (cf. [KGAB90, RGK97, SGLY+04]). Hell, Kirkpatrick and
Li [HKL96] studied the problem of rounding symmetric matrices in such a way
that symmetry is preserved.

Knuth’s Two-way Rounding

Knuth [Knu95] showed how to round a sequence x1, . . . , xn ∈ R of n real numbers
to yi ∈ {bxic, dxie} such that for two given permutations σ1, σ2 ∈ S n, we have
|
∑k

i=1(xσ1(i) − yσ1(i))| ≤ n
n+1 and |

∑k
i=1(xσ2(i) − yσ2(i))| ≤ n

n+1 for all k. Knuth’s proof
uses integer flows in a certain network [FF62]. On account of this his worst-case
runtime is super-linear.

One application mentioned in [Knu95] is that of matrix rounding. For this, first
assume that the input matrix has integral row and column sums. As we will see
later this is no real restriction. Then apply Knuth’s algorithm using a permutation
that enumerates the xi j row by row, and a permutation that enumerates the xi j

column by column. Obviously, the rounding errors in all initial intervals of the
first row and column will be smaller than one. Because of the integrality of the
row and column sums the error occurring after rounding any number of rows or
columns will be zero, hence all initial intervals of any row or column will exhibit
an error smaller than one.

Rounding 2-Laminar Families and Halftoning

Motivated by the digital halftoning problem from image processing, Asano, Ka-
toh, Obokata and Tokuyama [AKOT03] showed that rounding with small errors
with respect to a 2-laminar family of sets is always possible. A family S of sets
is called laminar, if S 1 ⊆ S 2 or S 1 ∩ S 2 = ∅ holds for all S 1, S 2 ∈ S. It is called
2-laminar, if it is the union of two laminar families of sets.

Asano et al. show that a 2-laminar set system is unimodular. A set system
(i.e. a hypergraph) is called unimodular if it has a totally unimodular incidence
matrix, which means that the determinant of each square submatrix is −1, 0, or 1.
In consequence, if S is 2-laminar, then any family of numbers x1, . . . , xn can be
rounded to integers y1, . . . , yn such that |

∑
s∈S xs−

∑
s∈S ys| < 1 for all S ∈ S. They

also show that such a rounding problem can be solved in time O(n2 log3(n)) via
convex-cost flow algorithms. Note that in general unimodular set systems admit
roundings with all errors at most 1− 1

n+1 . This was shown in [Doe04] and [BH04],
but both works don’t seem to yield more efficient solutions for 2-laminar rounding
problems.
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Since the set of all initial segments of rows and columns of a two-dimensional
grid is a 2-laminar family, this result yields the existential statement of Theo-
rem 2.2. However, the run-time of this approach is larger by more than a linear
factor. Also, our approach only uses elementary combinatorial arguments.

2.2 Preliminaries

2.2.1 Simple Extensions

We now provide an easy extension of the results stated in the introduction. Also,
we will show that it suffices if we can compute roundings of matrices having
integral row and column sums. This will help us simplify our main proofs.

We immediately obtain rounding errors of less than two in arbitrary intervals
in rows and columns. This is supplied by the following lemma.

Lemma 2.1. Let Y be a rounding of a matrix X such that the errors |
∑b

j=1(xi j−yi j)|,
i ∈ [1, . . . ,m], b ∈ [1, . . . , n], in all initial intervals of rows are at most d. Then the
errors in arbitrary intervals of rows are at most 2d. That is, for all i ∈ [1, . . . ,m]
and all 1 ≤ a ≤ b ≤ n it holds that∣∣∣∣∣∣∣

b∑
j=a

(xi j − yi j)

∣∣∣∣∣∣∣ ≤ 2d.

This also holds for column intervals, i.e., if the errors |
∑b

i=1(xi j − yi j)| in all initial
intervals of columns are at most d′, then the errors |

∑b
i=a(xi j − yi j)| in arbitrary

intervals of columns are at most 2d′.

Proof. Let i ∈ [1, . . . ,m] and 1 ≤ a ≤ b ≤ n. Then∣∣∣∣∣∣∣
b∑

j=a

(xi j − yi j)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
b∑

j=1

(xi j − yi j) −
a−1∑
j=1

(xi j − yi j)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
b∑

j=1

(xi j − yi j)

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
a−1∑
j=1

(xi j − yi j)

∣∣∣∣∣∣∣ ≤ 2d.

�

The following lemma shows how computing roundings for matrices having ar-
bitrary row and column sums can be reduced to computing roundings of matrices
having integral row and column sums.
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Lemma 2.2. Assume that for any X ∈ Rm×n with integral column and row sums a
locally consistent controlled rounding Y ∈ Zm×n can be computed in time T (m, n).
Then for all X̃ ∈ Rm×n with arbitrary column and row sums a locally consistent
controlled rounding Ỹ ∈ Zm×n can be computed in time T (m + 1, n + 1) + O(mn).

Proof. Given an arbitrary matrix X̃ ∈ Rm×n, we add an extra row taking what is
missing towards integral column sums and add an extra column taking what is
missing towards integral row sums. Hence, let X ∈ R(m+1)×(n+1) be such that

xi j = x̃i j for all i ∈ [1, . . . ,m] , j ∈ [1, . . . , n] ,

xm+1, j =


m∑

i=1

x̃i j

 −
m∑

i=1

x̃i j for all j ∈ [1, . . . , n]

xi,n+1 =


n∑

j=1

x̃i j

 −
n∑

j=1

x̃i j for all i ∈ [1, . . . ,m + 1] .

Clearly, X has integral row and column sums. Therefore, it can be rounded to a
locally consistent controlled rounding Y ∈ Z(m+1)×(n+1) in time T (m + 1, n + 1).

Observe that for any X ∈ R(m+1)×(n+1) with integral row and column sums the
total matrix error is zero. This stems from the fact that the total error for X̃ is the
rounding error of the lower right entry of X, as the following calculation shows.∣∣∣∣∣∣∣

m∑
i=1

n∑
j=1

(xi j − yi j)

∣∣∣∣∣∣∣ =

∣∣∣∣∣ m+1∑
i=1

n+1∑
j=1

(xi j − yi j) −
m+1∑
i=1

(xi,n+1 − yi,n+1)

−

n+1∑
j=1

(xm+1, j − ym+1, j) + (xm+1,n+1 − ym+1,n+1)
∣∣∣∣∣

=
∣∣∣0 − 0 − 0 + (xm+1,n+1 − ym+1,n+1)

∣∣∣
≤ |xm+1,n+1 − ym+1,n+1| < 1.

The above calculation uses the fact that the row and column sums of X are integral
and hence the rounding error for a whole row or a whole column must be zero.
Since we remove both the last row and the last column from X to get X̃, we have
to add (xm+1,n+1− ym+1,n+1) again as it was subtracted twice. This is the only part of
the sum which is non-zero. But by definition of a rounding, the error in a single
entry must be less than 1.

By setting ỹi j = yi j for all i ∈ [1, . . . ,m] and j ∈ [1, . . . , n], we obtain the
desired rounding Ỹ ∈ Zm×n. �
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2.2.2 Random Walks
We need some well known facts about one-dimensional random walks with ab-
sorbing barriers. These are random processes that take random steps back and
forward along a discrete line, until the first or last point of the line is reached.
More precisely, consider a set of n + 1 vertices labelled v0 to vn. From vertex
vi, i ∈ [1, . . . , n − 1], one can either take a step to vertex vi+1 or vi−1, both with
probability 1

2 . After reaching one of the endpoints v0 or vn the process stops and
no further steps can be taken.

We are interested in the probability Pr(vi ↗ vn) that a random walk starting
from vertex vi will reach vn instead of v0.

Lemma 2.3. Pr(vi ↗ vn) = i
n .

Proof. From the definition of random walks we obtain the following system of
linear equations

Pr(vn ↗ vn) = 1

Pr(vn−1 ↗ vn) =
1
2

Pr(vn−2 ↗ vn) +
1
2

Pr(vn ↗ vn)
. . .

Pr(v1 ↗ vn) =
1
2

Pr(v0 ↗ vn) +
1
2

Pr(v2 ↗ vn)

Pr(v0 ↗ vn) = 0.

It can easily be checked that this system has the unique solution Pr(vi ↗ vn) =
i
n . �

From this Lemma it follows immediately that

Pr(vi ↗ v0) = 1 − Pr(vi ↗ vn) =
n − i

n
.

Next, we consider the expected number of steps E(Steps(vi)) that a random
walk starting in vertex vi needs to reach either vertex v0 or vn.

Lemma 2.4. E(Steps(vi)) = i(n − i).

Proof. The random walk needs one step to reach either vi−1 or vi+1 from vertex vi

for i ∈ [1, . . . , n − 1]. Since both vertices are reached with equal probability 1
2 , we

get the following system of linear equations:

E(Steps(v0)) = E(Steps(vn)) = 0

E(Steps(vi)) = 1 +
1
2
E(Steps(vi−1)) +

1
2
E(Steps(vi+1)), i ∈ [1, . . . , n − 1] .

Again, it is easy to check that this system has the unique solution E(Steps(vi)) =

i(n − i). �
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2.3 Bit-wise Rounding
We now present an algorithm to compute locally consistent controlled roundings.
For this, we first study a simpler problem, namely that of computing locally con-
sistent controlled roundings of half-integral matrices. We call a matrix X half-
integral, if it only has entries 0 or 1

2 , i.e. if X ∈ {0, 1
2 }

m×n holds.
For such matrices our rounding problem turns out to be much simpler. In fact,

it can be solved in linear time.

2.3.1 Half-Integral Rounding
We will now consider the rounding problem for half-integral matrices. According
to Lemma 2.2 it suffices to consider matrices with integral row and column sums.

Here is an outline of our approach. For each row and column, we consider
the sequence of its 1

2 -entries and partition them into disjoint pairs of neighbours.
From the two 1

2s forming such a pair, exactly one is rounded to 1 and the other to
0. Thus, if such a pair is fully contained in an initial interval, it does not contribute
to the rounding error.

To make the idea precise, assume some row contains exactly 2K entries of
value 1

2 . For each k ∈ [1, . . . ,K] we call the (2k − 1)-th and (2k)-th 1
2 -entry of this

row a row pair. The 1
2s of a row pair are mutually referred to as row neighbours.

Similarly, we define column pairs and column neighbours. Figure 2.1(a) shows a
half-integral matrix together with row and column pairs indicated by boxes.

Our solution makes use of an auxiliary graph GX which contains the neces-
sary information about row and column neighbours. Each 1

2 -entry is represented
by a vertex that is labelled with the corresponding matrix indices. Each pair is
represented by an edge connecting the vertices that correspond to the paired 1

2s.
Figure 2.1(b) shows the auxiliary graph that belongs to the matrix of Figure 2.1(a).

We collect some properties of this auxiliary graph.

Lemma 2.5. Let X ∈ {0, 1
2 }

m×n be a matrix with integral row and column sums.

a) Every vertex of GX has degree 2.

b) GX is a disjoint union of even cycles.

c) GX is bipartite.

Proof. a) Because of the integrality of the row and column sums, the number of
1
2 -entries in each row and column is even. Hence each 1

2 -entry has a row and
a column neighbour. In consequence, each vertex is incident with exactly two
edges.
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(a) (b)

Figure 2.1: Example for the construction of an auxiliary graph. (a) Input matrix X
with its row and column pairs. (b) Auxiliary graph GX. Vertices are labelled with
matrix indices and edges connect vertices of row and column pairs.

b) The edge sequence of a path in GX corresponds to an alternating sequence
of row and column pairs. Therefore any cycle in GX consists of an even number
of edges. Since each vertex has degree two, GX is a disjoint union of cycles.

c) Clearly, every even cycle is bipartite. �

With this result, we are able to find the desired roundings.

Lemma 2.6. Let X ∈ {0, 1
2 }

m×n and let V0∪̇V1 be a bipartition of GX. Define
Y = (yi j) ∈ {0, 1}m×n by

yi j =


0, if xi j = 0
0, if xi j = 1

2 and (i, j) ∈ V0

1, if xi j = 1
2 and (i, j) ∈ V1.

Then Y has the property that

∀b ∈ [1, . . . , n] , i ∈ [1, . . . ,m] :

∣∣∣∣∣∣∣
b∑

j=1

(xi j − yi j)

∣∣∣∣∣∣∣ ≤ 1
2
, (2.4)

∀b ∈ [1, . . . ,m] , j ∈ [1, . . . , n] :

∣∣∣∣∣∣∣
b∑

i=1

(xi j − yi j)

∣∣∣∣∣∣∣ ≤ 1
2
. (2.5)

Proof. Because 0s of X are maintained in Y , it suffices to consider 1
2 -entries to

determine the rounding error in initial intervals. Since the rounded values for the
(2k − 1)-th and (2k)-th 1

2 -entry sum up to 1 by construction, there is no error in
initial intervals that contain an even number of 1

2s, and an error of 1
2 if they contain

an odd number of 1
2s. �
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After these considerations, we are able to present an algorithm that solves
the problem in two steps. First we compute the auxiliary graph and afterwards
the output matrix. To construct GX, we transform the input matrix X column by
column from left to right. Generating the labelled vertices is trivial. The column
neighbours can be detected by just numbering the 1

2 -entries within a column from
top to bottom. Assume there are 2k such entries. Then we insert an edge between
the vertices with number 2i − 1 and 2i for i ∈ [1, . . . , k]. The strategy to detect
row neighbours is the same but we need more information. Therefore we store for
each row the parity of its 1

2 -entries so far and, if the parity is odd, further a pointer
to the last occurrence of 1

2 in this row. Then, if the current 1
2 is an even occurrence,

we have a pointer to the preceding 1
2 , and are able to insert an edge between the

corresponding vertices in GX.
The output matrix Y can be computed from X as follows. Every 0 in X is

kept and every 1
2 -sequence that corresponds to a cycle in GX is substituted by an

alternating 0-1-sequence. By Lemma 2.5, this is always possible. It does not
matter which of the two alternating 0-1 sequences we choose.

The graph GX can be realised with adjacency lists (the vertex degree is always
2). The additional information per row can be realised by a simple pointer-array
of length m (a special nil-value indicates even parity).

Since the runtime of each step is bounded by the size of the input matrix, the
entire algorithm takes time O(mn). In addition to the constant amount of data we
store for each of the m rows, we store all k entries of value 1

2 in the auxiliary graph.
This leads to a total space consumption of O(m + k).

Summarising the above, we obtain the following lemma.

Lemma 2.7. Let X ∈ {0, 1
2 }

m×n. Then a rounding Y ∈ {0, 1}m×n satisfying the
inequalities (2.4) and (2.5) from Lemma 2.6 can be computed in time O(mn).

2.3.2 Binary Rounding

We now discuss how we can use the algorithm for half-integral matrices discussed
in the last section to compute roundings of generic matrices. The following round-
ing method was introduced by Beck and Spencer [BS84] in 1984. They used it to
prove the existence of two-colourings of N having small discrepancy in all arith-
metic progressions of arbitrary length and bounded difference.

Assume that we have some numbers in [0, 1] which have to be rounded. As-
sume that they all have a finite binary expansion. Then we repeat rounding the last
digit (to zero or twice its value) and thus reduce the length of the binary expansion
until we obtain numbers in {0, 1}. To round a single digit, we only need to under-
stand the corresponding rounding problem for half-integral numbers. The finally
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resulting rounding errors are at most twice the ones incurred by the half-integral
roundings.

If some numbers do not have a finite binary expansion, one can use a suffi-
ciently large finite length approximation. To get rid of additional errors caused
by this, we invoke a slight refinement of the binary rounding method. In [Doe04]
it was proven that the extra factor of two can be reduced to an extra factor of
2(1 − 1

2r ), where r is the number of rounding errors we want to keep small.
In our setting, the number of rounding errors is the number of all initial row

and column intervals, i.e., r = 2mn.

Lemma 2.8. Assume that for any X ∈ {0, 1
2 }

m×n a rounding Y ∈ {0, 1}m×n can be
computed in time T (which is Ω(mn)) that satisfies

∀b ∈ [1, . . . , n] , i ∈ [1, . . . ,m] :

∣∣∣∣∣∣∣
b∑

j=1

(xi j − yi j)

∣∣∣∣∣∣∣ ≤ D,

∀b ∈ [1, . . . ,m] , j ∈ [1, . . . , n] :

∣∣∣∣∣∣∣
b∑

i=1

(xi j − yi j)

∣∣∣∣∣∣∣ ≤ D.

Then for all ` ∈ N and X ∈ [0, 1)m×n a rounding Y ∈ {0, 1}m×n such that

∀b ∈ [1, . . . , n] , i ∈ [1, . . . ,m] :

∣∣∣∣∣∣∣
b∑

j=1

(xi j − yi j)

∣∣∣∣∣∣∣ ≤ 2(1 −
1

4mn
)D + 2−`b,

∀b ∈ [1, . . . ,m] , j ∈ [1, . . . , n] :

∣∣∣∣∣∣∣
b∑

i=1

(xi j − yi j)

∣∣∣∣∣∣∣ ≤ 2(1 −
1

4mn
)D + 2−`b

can be computed in time O(` T ).

To give an outline of the underlying algorithm we now give a brief sketch of
the main ideas found in [Doe00].

Let X ∈ [0, 1)m×n. Assume first that all entries of X := X(`) have binary length
`, that is, 2`X is an integral matrix. Let `0 := blog2(2mn)c + 1.

Having defined X(i) with binary length i for some i > 1, we obtain X(i−1) as
follows. Let X(i) = X′ + 2−i+1X′′ with X′ ∈ [0, 1]m×n having binary length i − 1
and X′′ ∈ {0, 1

2 }
m×n. Using the assumptions of the lemma, we compute a rounding

Y ′′ ∈ {0, 1}m×n of X′′ such that

∀b ∈ [1, . . . , n] , i ∈ [1, . . . ,m] :

∣∣∣∣∣∣∣
b∑

j=1

(x′′i j − y′′i j)

∣∣∣∣∣∣∣ ≤ D, (2.6)

∀b ∈ [1, . . . ,m] , j ∈ [1, . . . , n] :

∣∣∣∣∣∣∣
b∑

i=1

(x′′i j − y′′i j)

∣∣∣∣∣∣∣ ≤ D. (2.7)
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This takes time T . Let X(i−1) = X(i) + 2−i+1(Y ′′−X′′). Then X(i−1) has binary length
i − 1. In particular, Y := X(0) is a rounding of X = X(`). Note that by construction,
Y −X =

∑`
i=1 2−i+1(X(i−1)−X(i)). In consequence we can bound the rounding errors

in initial intervals of rows by

b∑
j=1

(yi j − xi j) =
∑̀
i=1

2−i+1
b∑

j=1

(
x(i−1)

i j − x(i)
i j

)
,

which leads to an estimate of 2D for all these rounding errors. For initial intervals
of columns the same argument holds.

The key observation leading to the improvement is the following. Say we have
computed Y ′′ as above in some iteration. Define Ỹ ′′ by 2X′′−Y ′′, that is, in Ỹ ′′ each
1
2 -entry of X is rounded to the opposite value of the one in Y ′′. Note that this Ỹ ′′

in place of Y ′′ still satisfies (2.6) and (2.7). However, as (Ỹ ′′ − X′′) = −(Y ′′ − X′′),
all rounding errors have the opposite sign.

We may use this observation in the last `0 iterations to ensure that for each
initial interval of a row or column, the corresponding sums in X(`0) −X(`), X(`0−1) −

X(`0), . . ., X(0) − X(1) do not all have the same sign (where we distinguish the three
signs positive, zero, and negative). This is done by choosing Y ′′ or Ỹ ′′ in that way
that at least half of the still critical initial intervals receive such a sign change.

The worst thing that can happen now is that the corresponding sums of some
initial interval in X(`0−1) − X(`0), . . . , X(0) − X(1) all equal D or −D, but are zero in
X(`0) − X(`). This leads to a rounding error of

`0∑
i=1

2−i+1D = 2
(
1 − 2−`0

)
≤ 2

(
1 −

1
4mn

)
.

If the binary length of X is larger than ` we arbitrarily round its entries to
numbers having binary length `. For an initial interval of length b, this inflicts an
additional error of at most 2−`b.

By combining the binary rounding method from Lemma 2.8 and the half-
integral rounding method from Lemma 2.7, we obtain the following result.

Theorem 2.5. For all ` ∈ N and X ∈ [0, 1)m×n a rounding Y ∈ {0, 1}m×n such that

∀b ∈ [1, . . . , n] , i ∈ [1, . . . ,m] :

∣∣∣∣∣∣∣
b∑

j=1

(xi j − yi j)

∣∣∣∣∣∣∣ ≤ 1 −
1

4mn
+ 2−`b,

∀b ∈ [1, . . . ,m] , j ∈ [1, . . . , n] :

∣∣∣∣∣∣∣
b∑

i=1

(xi j − yi j)

∣∣∣∣∣∣∣ ≤ 1 −
1

4mn
+ 2−`b

can be computed in time O(`mn).
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Note that we can round any matrix X ∈ Rm×n by simply ignoring the integral
part of the matrix. Choosing ` > log2(4mn max{m, n}) in the theorem above yields
Theorem 2.2 in the introduction.

2.3.3 Unbiased Binary Rounding

In this section we give a randomised algorithm that computes a randomised locally
consistent controlled rounding satisfying Theorem 2.1. First observe that the {0, 1

2 }

case has a very simple randomised solution. Whenever it has to round a cycle,
it chooses one of the two alternating 0-1-sequences for each cycle uniformly at
random. Then, each xi j = 1

2 is rounded up with probability 1
2 .

Now consider the output of the bitwise rounding algorithm using this ran-
domised rounding variant for the half-integral case as subroutine. We adapt the
methods of [Doe06] to show that this algorithm computes an unbiased controlled
rounding.

Theorem 2.6. Let X ∈ [0, 1)m×n be a matrix containing entries with binary repre-
sentation of length at most `. Let Y be a random variable modelling the output of
the randomised algorithm. Then Y is a randomised locally consistent controlled
roundingof X.

Proof. We prove Y ≈ X by induction. For ` = 1 it is clear that Pr(yi j = 1) = xi j. If
` > 1, write xi j = x′i j + 1

2 x′′i j, where x′i j ∈ {0,
1
2 } and x′′i j ∈ [0, 1) has bit-length ` − 1.

Let y′′i j be the rounding computed for x′′i j. Then Pr(y′′i j = 1) = x′′i j by induction.
Now the algorithm will round x̃i j := x′i j + 1

2y′′i j ∈ {0,
1
2 , 1} to yi j. If y′′i j = 1, then x̃i j

will be rounded up with probability 1 if x′i j = 1
2 and with probability 1

2 otherwise.
If, on the other hand, y′′i j = 0, then x̃i j will be rounded up with probability x′i j. Thus

Pr(yi j = 1) = x′′i j(
1
2

+ x′i j) + (1 − x′′i j)x′i j = x′i j +
1
2

x′′i j = xi j.

To prove that for any initial column interval a randomised rounding is com-
puted, observe that sy :=

∑b
j=1 yi j is a rounding of sx :=

∑b
j=1 xi j by Lemma 2.8 for

i ∈ [1, . . . ,m] and b ∈ [1, . . . , n]. Furthermore it holds that E(sy) =
∑b

j=1 E(yi j) =

sx by linearity of expectation. But also

E(sy) = Pr(sy = bsxc)bsxc + Pr(sy = bsxc + 1)(bsxc + 1),

which is only possible if sy ≈ sx. The proof for initial row intervals is analo-
gous. Hence the computed rounding is a randomised locally consistent controlled
rounding according to Lemma 2.3. �
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2.4 Rational Rounding
We will now give a different algorithm for computing randomised locally consis-
tent controlled roundings. While the algorithm that we studied in the previous
section can handle binary data, applications may require to round fractions that
don’t have a finite binary representation. This is especially useful in statistics. For
confidentiality protection, one often wants to round to multiples of 3. If the goal is
to improve the readability of tabular data, on the other hand, rounding to multiples
of 10 may be desirable.

2.4.1 The Algorithm
Index Intervals

What properties does a locally consistent controlled rounding Y of X fulfilling the
inequalities of Definition 2.1 have? Substituting b = n in inequality (2.1), we can
deduce that the ith row of Y must contain exactly

∑n
j=1 xi j many 1-entries. To fulfil

the inequality for b , n, there must be b
∑b

j=1 xi jc or d
∑b

j=1 xi je many 1-entries in
column 1 to b of the ith row of Y . Inequality (2.2) gives analogous statements
for columns. This observation suggests that we should put one 1 in each interval
bounded by two positions where the integral part of the partial row (resp. column)
sum increases. This motivates the following definition.

Definition 2.4. The kth index interval of the ith row of X is defined as

IX
i (k) :=

 j ∈ [1, . . . , n] | xi j , 0 ∧
j∑

`=1

xi` > k − 1 ∧
j−1∑
`=1

xi` < k

 .
The kth index interval of the jth column of X is defined analogous.

Observe that the sum over all entries of an index interval is at least one. Be-
cause of this, each index interval consists of at least two non-zero elements. If the
sum is more than one, then the interval shares an entry with a neighbouring inter-
val. The following example shows a row of values and the corresponding index
intervals.

I(1)︷            ︸︸            ︷
0.2 0.7 0 .

I(2)︷︸︸︷
8 0 .

I(3)︷            ︸︸            ︷
6 0.4 0.3

I(4)︷               ︸︸               ︷
0.5 0.4 0.1

The idea now is to “concentrate the total value of all entries” of an index interval
into a single entry until it has value 1. For this, observe what happens if we pick
two non-zero entries in the same row index interval and modify one by +1

q and
the other by −1

q . Obviously this doesn’t change any of the partial sums left of
the first or right of the second entry. In particular, the total sum of this row stays
unchanged. The same holds for columns.
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Round(X ∈ (1
qZ ∩ [0, 1))m×n)

1 t = 0
2 X(0) = X
3 Compute row and column index intervals of X(0)

4 while X(t) < {0, 1}m×n do
5 C = FindCycle(X(t))
6 Choose a ∈ {+1

q ,−
1
q }

7 X(t+1) = alternatingly augment X(t) along C by ±a
8 t = t + 1
9 Update row and column index intervals of X(t).

10 return Y := X(t)

Algorithm 2.2: The rounding algorithm.

The Algorithm

The algorithm now iteratively modifies the matrix until all elements are 0 or 1.
In each step it first constructs a cycle in the current matrix that alternatingly pairs
two directly adjacent fractional elements in the same row interval resp. column
interval1. This way each element of the cycle has one horizontal and one vertical
neighbour in the cycle. How to construct such cycles will be discussed later. The
algorithm then traverses this cycle and alternatingly adds 1

q and subtracts 1
q to each

cycle entry.
The current matrix is stored in a two-dimensional doubly linked list where

every non-integral entry has a pointer to the next non-integral entry in each direc-
tion. For the cycle finding step the algorithm must keep track of the index inter-
vals of the current matrix X(t). To do this, the fractional parts scol

i j := {
∑i

k=1 xk j}

and srow
i j := {

∑ j
k=1 xik} of the partial row and column sums of each entry xi j, i ∈

[1, . . . ,m] , j ∈ [1, . . . , n] are computed for the initial matrix and updated during
the augmentation step. With these values the algorithm can decide if the neigh-
bour of an entry belongs to the same index interval or not, based on the value of
the neighbour entry and on the fractional part of the current entry. Whenever two
neighbouring elements inside the same index interval are augmented, only their
partial sums change, hence the cost of an update is linear in the size of the current
cycle.

If an augmentation changes an element to 0 or 1, it is removed from the data

1There is a special case where this is not true, as we will see later.
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structure. Also, when updating the intervals, such element are ignored. By disre-
garding entries changed to 1, the corresponding row and column sums decrease by
1 and thus also the number of intervals decreases by 1 if this happens. Since the
fractional part of an element that changes to 0 or 1 is also 0, this does not change
the values scol

i j or srow
i j for any other element.

Runtime and Unbiasedness

For the moment let us assume that the call in line 5 of the algorithm always re-
turns a cycle and takes time proportional to the cycle size. Does the algorithm
terminate? As we will see, this depends on how we choose a in line 6. Each of the
two possible choices corresponds to one of the two possible augmentations along
the cycle. Either we start by adding +1

q to the first element on the cycle, then −1
q

to the second and so on, or we start by adding −1
q then +1

q and so on. If one of this
possibilities is chosen uniformly at random, we have the following theorem.

Theorem 2.7. Assume that in line 6 of Algorithm 2.2, the value a is chosen inde-
pendently at random such that Pr(a = 1

q ) = Pr(a = −1
q ) = 1

2 . Then the following
holds.

a) The algorithm terminates in expected time O(mnq2).

b) Each xi j, i ∈ [1, . . . , n] , j ∈ [1, . . . , n] is rounded to one with probability xi j.

Proof. a) Consider an entry xi j, i ∈ [1, . . . ,m] , j ∈ [1, . . . , n] of the cycle. Each
time the algorithm considers this entry, it will either add or subtract 1

q from it. Both
augmentations happen with probability 1

2 . But this is equivalent to doing a random
walk on a line with q + 1 elements, starting from position q · xi j. From Lemma 2.4
it follows that the element becomes 0 or 1 after an expected number of O(q2)
augmentations. As soon as this happens, xi j will no longer belong to any index
interval, and hence will no longer be chosen during the cycle construction. Since
the matrix has mn entries, the first claim follows. Claim b) follows immediately
from Lemma 2.3. �

Finding Cycles

We now specify the function FindCycle used by the algorithm to find a cycle along
which it can round. As we will see, the fact that we aim at low errors in all initial
intervals (and not only whole rows and columns) imposes some subtle additional
difficulties.

First an arbitrary non-integral matrix entry a1 is chosen as current entry. Then,
alternatingly pick a non-integral entry directly adjacent to the current entry in the
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ak ak+1a`a`ak−1 ak

Figure 2.3: The two possibilities during cycle construction.

same row interval resp. in the same column interval as new current entry. This
way, a sequence (a1, . . . , a`) of matrix entries is constructed. Since each index
interval contains at least two fractional entries, the cycle construction routine can
not fail to construct a cycle C as long as the matrix is not integral. The algorithm
stops as soon as an element already picked before, say ak, k ∈ [1, . . . , ` − 1], can
be chosen as current element. Assume that ak and a` share a row interval2. By
construction, either ak−1 or ak+1 will also be an element of this row. If ak−1 is an el-
ement of this row, C := (ak, . . . , a`) is a cycle alternatingly pairing row and column
elements sharing common intervals as needed by the main algorithm. However, if
ak+1 is an element of this row, the above cycle would contain two successive edges
pairing row entries, namely (a`, ak) and (ak, ak+1).

In this case, the cycle C := (ak+1, . . . , a`) is chosen instead which again al-
ternatingly pairs row and column elements (See Figure 2.3 for details.). As this
cycle now contains an edge pairing an element to its neighbours neighbour, the al-
gorithm has to modify one additional partial sum during the augmentation, namely
the one of ak by ±1

q depending on how the pair (a`, ak+1) is augmented. Observe
that if ak belongs to two overlapping index intervals, then a` and ak+1 belong to
different intervals. As we will see in the analysis, this will not influence the cor-
rectness of the algorithm.

We finally argue that FindCycle has an amortised runtime of Θ(|C|), where |C|
is the length of the cycle computed. Because augmenting along C only changes
the local structure between two paired elements, the remaining elements of the
sequence that were not chosen for C still alternatingly connect entries of the same
row resp. column interval. Hence, the next time FindCycle is called, it can reuse
the part of the sequence not used to construct the cycle. Thus, over the whole
algorithm, each element is touched during cycle construction as often as it is part
of a cycle.

2Again the same holds for columns.
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Correctness

We will now show that our algorithm indeed computes a randomised locally con-
sistent controlled rounding. In the following we only consider rows. The argu-
ments for columns are analogous. Hence, let (x(t)

1 , . . . , x
(t)
n ) := (x(t)

i1 , . . . , x
(t)
in ) be the

elements of the ith row of X(t) for an arbitrary i ∈ [1, . . . ,m]. Let I(t)(1), . . . , I(t)(k)
be the k :=

∑n
j=1 x(t)

j index intervals of this row. For ` ∈ [1, . . . , k] we write
L(I(t))(`) := min(I(t)(`)) and R(I(t))(`) := max(I(t)(`)) for the position of the left-
most and rightmost entry of the `th interval. If L(I(t))(`) (resp. R(I(t))(`)) does
not belong to two intervals, we call it proper. If both L(I(t))(`) and R(I(t))(`) are
proper, we call the corresponding index interval I(t)(`) proper.

The interior of an interval I(t)(`)◦ is defined as the set of all elements that only
belong to this interval. Hence, I(t)(`)◦ = I(t)(`) if and only if the interval is proper.

By the definition of index intervals, R(I(t))(`) is proper if and only if the partial
sum up to this entry is integral. L(I(t))(`) is proper if and only if R(I(t))(` − 1) is
proper. Hence, I(t)(`) is proper if the sum over all entries in I(t)(`) is 1.

In the special case where we constructed a cycle pairing two entries x(t)
a , x

(t)
b

from neighbouring row intervals, those intervals share a common element x(t)
j ,

0, j ∈ [a, . . . , b]. Augmenting along this cycle introduces no inconsistencies in the
columns, as all other pairs of entries are taken from a common interval. Modifying
x(t)

a , x
(t)
b to, say, x(t)

a + 1
q , x

(t)
b −

1
q , can, for the analysis, be viewed as modifying

x(t)
a + 1

q , x
(t)
j −

1
q and x(t)

j + 1
q , x

(t)
b −

1
q independently. Since x(t)

j is a non-zero multiple
of 1

q shared by both intervals, this is always possible.
First we show that as long as no element of an interval is set to one, the interval

will only contract.

Lemma 2.9. Let I(t)(`) be the `th interval at time t. Assume that no entry of I(t)(`)
changes to 1. Let I(t+1)(`′) be an interval at time t + 1 that intersects I(t)(`).

a) If R(I(t))(`) is proper, then R(I(t+1))(`′) is proper and R(I(t))(`) ≥ R(I(t+1))(`′).

b) If L(I(t))(`) is proper, then L(I(t+1))(`′) is proper and L(I(t))(`) ≤ L(I(t+1))(`′).

c) If L(I(t))(`) and L(I(t+1))(`′) are not proper, then L(I(t))(`) = L(I(t+1))(`′).

d) If L(I(t))(`) is not proper, but L(I(t+1))(`′) is proper, then
R(I(t+1))(`′ − 1) ≤ R(I(t))(`) = L(I(t))(`) ≤ L(I(t+1))(`′).

Proof. First observe that if L(I(t))(`) (resp. R(I(t))(`)) is proper, it can only be
paired with an element to its right (left). Since augmenting a pair does not change
the partial sum of the right element of the pair, the first statement follows. For
the second statement observe that the partial sum up to L(I(t))(`) has the same
fractional value as this element. Hence before it can be made small enough to
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belong to the (` − 1)th interval, it will be zero, since all changes are done in steps
of 1

q . Statement c) follows from the fact that a shared element always has value
larger than 1

q . Since the augmentation only changes each value by at most 1
q , this

also proves d). �

Lemma 2.10. Let I(t)(`) be the `th interval at time t and let x(t)
a be an element of

I(t)(`) that changes to 1. If x(t)
a is shared with I(t)(` + 1), both intervals will merge.

Otherwise I(t)(`) vanishes and both the rightmost border of the interval to the left
as well as the leftmost border of the interval to the right become proper.

Proof. Surely x(t)
a =

q−1
q or it could not change to 1. First, assume that x(t)

a is shared
with I(t)(` + 1). Then the partial sum for x(t)

a must have fractional value smaller
than x(t)

a , hence the intervals will merge.
Now assume that x(t)

a is an inner element of I(t)(`). Then the partial sum for
x(t)

a must either be q−1
q and L(I(t))(`) = a is proper, or it must be integral and

R(I(t))(`) = a is proper. Note that in both cases the other border of I(t)(`) is the
only non-integral element of this interval. If this element is also proper, the lemma
obviously holds. Hence assume it is a shared entry (and thus has value at least 2

q ).
If a = L(I(t))(`), then the augmentation will cause the partial sum for x(t)

a to be-
come integral, making R(I(t))(`) the proper left border of I(t)(` + 1). Otherwise the
augmentation will cause the partial sum for L(I(t))(`) to become integral, making
it the proper right border of I(t)(` − 1). �

Lemma 2.11. Let Y be a rounding of X as computed by Algorithm 2.2. Then
for each row there exists a bijective mapping between elements rounded to 1 and
index intervals of this row in X, mapping each element to an interval containing
it. The same holds for columns.

Proof. Let K := (Ia, . . . , Ib) be a maximum collection of neighbouring intervals
in an arbitrary row of X such that I j ∩ I j+1 , ∅ for j ∈ [a, . . . , (b − 1)]. In other
words, exactly L(Ia) and R(Ib) are proper. Clearly, it suffices to prove the lemma
for such subcollections.

First assume that at time t no element is changed to 1. If none of the bor-
ders shared by intervals in K become proper, then nothing changes according to
Lemma 2.9. Otherwise, K decomposes into smaller collections of intervals which
can be treated separately.

Now assume that at time t an inner element x(t)
j of a current interval changes to

1. By Lemma 2.10, this interval was obtained by merging d − c + 1 neighbouring
intervals Ic, . . . , Id, a ≤ c ≤ d ≤ b of the initial collection. This means that their
d − c shared entries were set to 1 during the algorithm. Hence we can assign 1
to the interval of the initial collection containing x(t)

j , and the remaining d − c 1s
to the other intervals. Since by Lemma 2.10 the borders of the neighbours of this
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ComputeRounding(X ∈ 1
q1·q2
Zm×n)

1 Compute X′ ∈ 1
q1
Zm×n, X′′ ∈ 1

q2
Zm×n such that X = X′ + 1

q1
X′′

2 Y ′′ = Round(X′′)∈ {0, 1}m×n

3 X̃ = X′ + 1
q1

Y ′′ ∈ 1
q1
Zm×n

4 Y = Round(X̃)∈ {0, 1}m×n

5 return Y ∈ {0, 1}m×n

Algorithm 2.4: The factor rounding algorithm.

interval become proper in this case, we get two smaller subcollections which can
be treated separately. �

Theorem 2.8. If Y is a rounding of X computed by Algorithm 2.2, then

∀b ∈ [1, . . . , n] , i ∈ [1, . . . ,m] :

∣∣∣∣∣∣∣
b∑

j=1

(xi j − yi j)

∣∣∣∣∣∣∣ < 1,

∀b ∈ [1, . . . ,m] , j ∈ [1, . . . , n] :

∣∣∣∣∣∣∣
b∑

i=1

(xi j − yi j)

∣∣∣∣∣∣∣ < 1.

Proof. Let b ∈ [1, . . . , n] and i ∈ [1, . . . ,m]. If xib = 0 then yib = 0. Hence
it suffices to regard the case xib , 0. Let ` ∈ N be maximal such that xib is
contained in the `th interval of the ith row of X. By definition, this means that
` − 1 <

∑b
j=1 xi j ≤ `. By Lemma 2.11, ` − 1 ≤

∑b
j=1 yi j ≤ ` holds. If

∑b
j=1 xi j < `,

this shows the theorem. In the other case, xib must be the last element of the `th
interval, hence

∑b
j=1 yi j = `. For columns, the proof is analogous. �

2.4.2 Speeding it up

Assume that q has a non-trivial factorisation q = q1 ·q2 with q1, q2 ∈ N≥2. Then we
can exploit this fact to severely the runtime given in Theorem 2.7. Our approach
resembles the one used in [Doe06] for powers of 2.

Lemma 2.12. Let X ∈ 1
qZ

m×n be a rational matrix with q = q1q2 and q1, q2 ∈ N.
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Then Algorithm 2.4 will compute an unbiased rounding Y of X satisfying

∀b ∈ [1, . . . , n] , i ∈ [1, . . . ,m] :

∣∣∣∣∣∣∣
b∑

j=1

(xi j − yi j)

∣∣∣∣∣∣∣ < 1,

∀b ∈ [1, . . . ,m] , j ∈ [1, . . . , n] :

∣∣∣∣∣∣∣
b∑

i=1

(xi j − yi j)

∣∣∣∣∣∣∣ < 1.

Proof. First note that each matrix entry xi j, i ∈ [1, . . . ,m] , j ∈ [1, . . . , n] is decom-
posed into x′i j ∈

1
q1
Z and x′′i j ∈

1
q2
Z. To show unbiasedness observe that in line 2

an unbiased rounding y′′i j ∈ {0, 1} of x′′i j is computed according to Theorem 2.7. In
other words, x̃i j computed in line 3 will have value x′i j + 1

q1
with probability x′′,

and value x′i j otherwise. From line 4 it follows that

Pr(yi j = 1) = Pr(x̃i j ↗ 1) = x′′i jPr((x′i j +
1
q1

)↗ 1) + (1 − x′′i j)Pr(x′i j ↗ 1)

= x′′i j(x′i j +
1
q1

) + (1 − x′′i j)x′i j

=
1
q1

x′′i j + x′i j = xi j.

Hence the algorithm computes an unbiased rounding of X.
To see that the rounding computed in Figure 2.4 is a controlled rounding sat-

isfying our additional constraints, let si j(X) :=
∑i

k=1 xk j for i ∈ [1, . . . ,m] , j ∈
[1, . . . , n] be the sum over the first i elements of the jth column of X. In line 2
the algorithm computes a controlled rounding Y ′′ of X′′ satisfying our additional
constraints. Hence ∣∣∣si j(X′′ − Y ′′)

∣∣∣ ≤ 1 −
1
q2
.

A similar statement holds for Y and X̃ in line 4, namely∣∣∣si j(X̃ − Y)
∣∣∣ ≤ 1 −

1
q1
.

Together with the triangle inequality these two error bounds yield∣∣∣si j (X − Y)
∣∣∣ =

∣∣∣∣∣∣si j

(
X′ +

1
q1

X′′ −
1
q1

Y ′′ +
1
q1

Y ′′ − Y
)∣∣∣∣∣∣

≤

∣∣∣∣si j

(
X̃ − Y

)∣∣∣∣ +
1
q1

∣∣∣si j
(
X′′ − Y ′′

)∣∣∣
≤ 1 −

1
q1

+
1
q1

(
1 −

1
q2

)
= 1 −

1
q
.
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Hence the error in all initial column intervals is at most 1 − 1
q . The proof for the

error in initial row intervals and in single elements is analogous. �

Now let q =
∏`

i=1 qi, qi ∈ N be a factorisation of the denominator of X. Then
the algorithm in Figure 2.4 can be applied recursively to get the main result as
stated in Theorem 2.3.

Now consider the case of half-integral matrices X ∈ {0, 1
2 }

m×n. Here an aug-
mentation of an element by ±1

2 will always change the element to either 0 or 1.
Hence Algorithm 2.2 will run in deterministic time O(mn) for this special case.
Using this observation and choosing q = 2` we get another proof of Theorem 2.1
for unbiased rounding of matrices of `-bit numbers.

Corollary 2.1. Let X ∈ [0, 1)m×n. Assume that each entry of X has binary length
at most `. Then a randomised locally consistent controlled rounding Y of X can
be computed in time O(mn`).

2.4.3 Derandomisation
We will now show how to derandomise Algorithm 2.2. For this we use the method
of conditional probabilities. An introduction to this technique can be found in the
paper by Spencer [Spe94].

First observe that by Lemma 2.4 the expected number E(Steps(X)) of augmen-
tations needed to round a given matrix X ∈ (1

qZ ∩ [0, 1))m×n is

E(Steps(X)) =

m∑
i=1

n∑
j=1

xi j(q − xi j) = O(mnq2).

The derandomisation now works as follows. At the beginning of Algorithm 2.2
the expected number of augmentations E(Steps(X)) is computed. Each time one
of the two possible ways to augment along a cycle C in line 6 of the algorithm
must be chosen we don’t choose randomly. Instead, the augmentation for which
the algorithm would need the fewer number of expected steps if it would continue
choosing randomly is picked. By Lemma 2.4 it follows that

E(Steps(X)) = |C| +
1
2
E(Steps(X − XC)) +

1
2
E(Steps(X + XC)),

where XC is the matrix for one of the two possible augmentations along C. From
this formula it follows that E(Steps(X −XC)) and E(Steps(X + XC)) cannot both be
larger than E(Steps(X)) − |C|. Hence, each time the algorithm augments along a
cycle C, E(Steps(X)) decreases by at least |C|, since the augmentation giving the
smaller expected value is picked.
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Calculating E(Steps(X)) for the input matrix needs time O(mn). Deciding
which augmentation to use for cycle C in step t can be done in time O(|C|) while
constructing the cycle. The value E(Steps(X(t))) can be derived from the expected
value of the previous matrix E(Steps(X(t−1))) in O(|C|) time while doing the actual
augmentation. This gives the following theorem.

Theorem 2.9. For all X ∈ 1
qZ

m×n a locally consistent controlled rounding Y ∈
Zm×n can be computed in time O(mnq2).

Together with Lemma 2.12, this yields Theorem 2.4 from the introduction.

2.5 A Lower Bound
As we have seen in the previous sections, it is always possible to compute a locally
consistent controlled rounding of a rational matrix. Such a rounding exhibits an
error of less than one in initial intervals and, by the triangle inequality, of less than
two in arbitrary intervals. But what is the minimum error we have to tolerate when
computing a locally consistent controlled rounding? We now give a lower bound
on the errors in initial and arbitrary intervals.

In [SY93], Steiner and Yeomans show that the error in initial intervals may be
arbitrary close to one. More precisely, for every n ∈ N there exists a n × n matrix
that has an error of 1− 1

n in at least one initial interval. To see this simply consider
the matrix ((1

n )i, j)i=1...n, j=1...n. Obviously, all locally consistent controlled roundings
of this matrix are permutations of the identity matrix. Hence, there is one row that
has n − 1 zeroes followed by a one. The initial interval containing the first n − 1
entries of this row has an error of∣∣∣∣∣∣∣

n−1∑
i=1

(
1
n
− 0

)∣∣∣∣∣∣∣ = 1 −
1
n
.

This example gives the same lower bound for arbitrary intervals. However, one
might conjecture that investigating arbitrary intervals should create larger errors.
As we show next, this is indeed the case.

We now give an improved lower bound on the errors in arbitrary intervals.
In particular, we give a 3 × n matrix such that any locally consistent controlled
rounding of this matrix contains an interval with error 1.5 − ε. As a corollary, this
gives an error of 0.75 − ε for initial intervals. While this is not as good as the
above example by Steiner and Yeomans, it needs only 3 rows instead of n.

Theorem 2.10. For any ε > 0 there exists an n ∈ N and a matrix X ∈ R3×n such
that for any locally consistent controlled rounding Y ∈ Z3×n there are i ∈ {1, 2, 3}
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and 1 ≤ a ≤ b ≤ n with ∣∣∣∣∣∣∣
b∑

j=a

(
xi j − yi j

)∣∣∣∣∣∣∣ ≥ 1.5 − ε.

Proof. Let ε′ := 1
4ε and n > 1.5

ε′2
. Set X ∈ R3×n with

X :=

 1 − ε′ 1 − ε′ 1 − ε′

ε′ − ε′2 ε′ − ε′2 · · · ε′ − ε′2

ε′2 ε′2 ε′2


Assume that there is a locally consistent controlled rounding Y ∈ Z3×n of X that
exhibits a rounding error of less than 1.5 − ε in all intervals. The row sum of the
third row of X is at least nε′2 > 1.5

ε′2
ε′2 = 1.5, hence there is at least one column j

having a one in the third row. Since all column sums are 1, the first and second
entry of column j must hence be zero. Let p ≥ 0 and q ≥ 0 be the number of
consecutive columns of Y of the form (1, 0, 0)T to the left and right of the jth
column. In other words, the matrix Y has the form

Y =


0 1 . . . 1 0 1 . . . 1 0

· · · ? 0 . . . 0 0 0 . . . 0 ? · · ·

? 0 . . . 0︸︷︷︸
p times

1︸︷︷︸
jth column

0 . . . 0︸︷︷︸
q times

?

 .
Now consider the interval [( j− p−1)..( j+q+1)] in the first row. It has a rounding
error of ∣∣∣∣∣∣∣

( j+q+1)∑
`=( j−p−1)

(x1` − y1`)

∣∣∣∣∣∣∣ = (p + q + 3)(1 − ε′) − (p + q)

= 3(1 − ε′) − (p + q)ε′.

By assumption, this must be less than 1.5 − ε. Hence we can bound p + q by

p + q >
1
ε′

(
3(1 − ε′) − 1.5 + 4ε′

)
=

1.5
ε′

+ 1.

With this the rounding error of the interval [(j-p)..(j+q)] in the second row can be
bound by ∣∣∣∣∣∣∣

( j+q)∑
`=( j−p)

(x2` − y2`)

∣∣∣∣∣∣∣ = (p + q + 1)(e′ − e′2)

> (
1.5
ε′

+ 2)(ε′ − ε′2)

= 1.5 + 0.5ε′ − 2ε′

> 1.5 − 4ε′,

which contradicts the assumption �
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Corollary 2.2. For any ε > 0 there exists a matrix such that any locally consistent
controlled rounding of that matrix contains an initial interval with rounding error
at least 0.75 − ε.
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Chapter 3

Evolutionary Algorithms

An interesting class of randomised algorithms are those that are inspired by var-
ious principles found in nature. Among them are ant colony optimisation algo-
rithms, simulated annealing and evolutionary algorithms. Since it is simple to
adapt them to new problems, such nature-inspired randomised search heuristics
are often used to tackle complex or hard problems. Due to this there exists a large
body of experimental work on such heuristics.

To gain a deeper insight into how nature-inspired algorithms work they are
also often studied for simple and well-known problems. But even those studies
are often based on experimental results alone. The last decade, however, produced
a growing interest in a theory-founded understanding of these algorithms.

In this chapter, we will study evolutionary algorithms for the single source
shortest path and the all-pairs shortest path problem.

Section 3.2 discusses some preliminaries that we will use in the analysis of
the algorithms. Also, we exhibit two simple Chernoff type inequalities that are
used throughout the analysis. The first is for sums of independent geometrically
distributed random variables. The second can be used for sequences of random
variables that are not independent, but show a desired behaviour independent of
the outcomes of the previous random variables.

In Section 3.3, we analyse an evolutionary algorithm for the single source
shortest path problem. This algorithm was proposed by Scharnow, Tinnefeld and
Wegener. We prove a bound on the optimisation time of this algorithm that holds
with high probability. We also show that this bound is tight by constructing a class
of worst-case graphs for the algorithm. To obtain such sharp bounds, we develop a
new technique that overcomes the coupon collector behaviour of previously used
arguments.

In Section 3.4, we study the all-pairs shortest path problem. For this prob-
lem we show that a natural evolutionary algorithm is significantly faster with a
crossover operator than without. This is the first theoretical analysis proving the

35
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usefulness of crossover for a non-artificial problem. Previous studies that tried to
prove the usefulness of crossover considered simple problems especially tailored
to exhibit this behaviour.

This Chapter is based on joint work with Benjamin Doerr and Edda Happ. The
results have been published in [DHK07, DHK11, DHK08, DHK12].

3.1 Introduction
The paradigm of evolutionary computation is to use principles inspired by nat-
ural evolution, e.g., mutation, crossover and selection, to build algorithms. Ge-
netic algorithms (GA), genetic programming (GP) and evolution strategies (ES)
are prominent examples. Together with related approaches like randomised lo-
cal search (RLS), the Metropolis algorithm [MRR+53], and simulated anneal-
ing [KGJV83] they all belong to a class of algorithms known as randomised search
heuristics.

Whereas early hopes that these ideas might make notoriously hard problems
become tractable did not fulfil, randomised search heuristics nowadays are fre-
quently used as a generic way to obtain algorithms. Naturally, such generic ap-
proaches cannot compete with a custom-tailored algorithm. Practitioners still like
to use them, because they are easy and cheap to implement, need fewer analysis
of the problem to be solved, and can be reused easily for related problems.

Typically, evolutionary algorithms have a collection (“population”) of solution
candidates (“individuals”), which they try to improve gradually. Improvements
may be generated by applying different variation operators, most notably mutation
and crossover, to certain individuals. The quality of solutions is measured by a
so-called fitness function. Based on this fitness value, a selection procedure may
replace some individuals by fitter ones. The cycle of variation and replacement is
repeated until a solution of sufficient fitness is found. See, e.g., [For93] for a short
introduction to genetic algorithms.

One strength of this general approach is that each component can be adapted
to the particular problem under consideration. This adaptation can be guided by
an experimental evaluation of the actual behaviour of the algorithms or by pre-
viously obtained experience. Also, not all evolutionary algorithms need to have
all components described above. For example, the simple variants of randomised
local search and the (1+1) evolutionary algorithm have a population size of only
one, and consequently, no crossover operator.

Using such evolutionary approaches has proven to be extremely successful in
practice (see, e.g., the Proceedings of the annual ACM Genetic and Evolutionary
Computation Conferences (GECCO)). In contrast to this, a theoretical understand-
ing of such methods is still in its infancy. One reason for this is that genetic al-
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gorithms can be seen as non-linear (namely quadratic) dynamical systems, which
are inherently more powerful, but “usually impossible to analyze” (c.f. [RRS95]).

Rigorous run-time analyses of evolutionary algorithms for classical algorith-
mic problems became a hot topic in the last years. The aim is to obtain a theoreti-
cally founded understanding of the basic principles of evolutionary computation.
As mentioned above, we are in the situation that we have seen many highly suc-
cessful applications of evolutionary algorithms, but hardly can explain why they
are so successful in practice. Such an understanding, however, would be very
helpful in the future design of such algorithms.

Theoretical run-time analyses started on artificial problems like maximising
simple pseudo-boolean functions f : {0, 1}n → R, e.g., the number of ones
(ONEMAX(x) :=

∑n
i=1 xi), the number of leading ones (LO(x) := max{i ∈ N0 |

∀ j ≤ i : x j = 1}) or monotone linear functions and polynomials [Weg01, DJW02,
WW05]. Analysing such artificial problems already lead to some insight on how
evolutionary algorithms work and on how to analyse them.

More recently, the focus moved on to classical problems from computer sci-
ence. In one of the first papers in this direction, [STW04] proposed and analysed
evolutionary algorithms for sorting and shortest path problems. Other results on
evolutionary algorithms for combinatorial optimisation problems include papers
on the problem of computing Eulerian cycles [Neu04, DHN06, DKS07, DJ07],
minimum spanning trees [NW04, NW05], maximal matchings [GW03] and par-
titions [Wit05].

For such problems, the design and analysis of evolutionary algorithms be-
comes more interesting. One simple reason is that we typically have the choice
between several natural representations of individuals, fitness functions and vari-
ation operators.

To avoid misunderstandings, let us stress that the focus of this line of research
is not to find superior algorithms for the particular underlying optimisation prob-
lem. Since these are classical and important problems, they have been investi-
gated thoroughly and hence very good custom-tailored algorithms already exist.
The focus rather is to analyse how such problems can be tackled with generic ap-
proaches, to understand how their components like particular representations or
variation operators work, and, finally, to develop methods to analyse evolutionary
algorithms. More information on theoretical analyses of bio-inspired randomised
search heuristics can be found in the recent books [NW10, AD11].

Surprisingly, even for extremely simple evolutionary algorithms on simple
problems a tight analysis of their run-time behaviour can be very complicated.
Note that we only aim at determining its order of magnitude, that is, we ignore
constant factors and lower order terms. Also, we only regard the optimisation
time, that is, the number of fitness evaluations needed to find the desired solution.

A classical example for the difficulties one faces when analysing evolutionary
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algorithms is the O(n log(n)) bound for the optimisation time of a simple (1 + 1)
evolutionary algorithm maximising a monotone linear function on {0, 1}n. Here,
classical methods from the analysis of randomised algorithms lead to a highly
technical proof [DJW02]. Subsequent efforts put into this problem resulted in the
so-called drift analysis becoming a major tool in the run-time analysis of evolu-
tionary algorithms (see [HY04] for the first use and [Jäg08, DJW12, DG10] for
recent simplifications).

The Single-Source Shortest Path Problem

The first work on evolutionary algorithms for combinatorial problems is the anal-
ysis of the single source shortest path problem by Scharnow, Tinnefeld and We-
gener [STW04]. Naturally, analyses are even harder for problems that carry a
richer structure. Hence it is not surprising that their analysis is only tight for cer-
tain instances. As we shall see in this work, for many graphs the optimisation
time needed to solve the single source shortest path problem is better than what is
proven in [STW04].

They proposed a natural (1 + 1) evolutionary algorithm for the problem of
finding shortest paths from a single node (“source”) to all other vertices in a graph
with edge weights. For a graph on n vertices they show an upper bound of O(n3)
for the expected optimisation time. This bound is tight if (and only if, as we shall
see) the graph and edge weights are such that there is a vertex such that all shortest
paths to the source contain Ω(n) edges.

The proof given by [STW04] for the single-source shortest path problem re-
veals an in fact stronger upper bound of O(n2 ∑n

i=1 log(ni + 1)), where ni is the
number of vertices for which a shortest path to the source with the minimum
number of edges consists of exactly i edges. Since

∑n
i=1(ni + 1) = 2n, this yields

a bound of O(n2` log(2n
`

)), where ` is the smallest integer such that any vertex can
be reached from the source via a shortest path having at most ` edges.

Crossover and Evolutionary Algorithms

The paradigm of evolution-inspired computing suggests to use both a mutation
operator and a crossover operator. Mutation means that a new individual is gener-
ated by slightly altering a single parent individual, whereas the crossover operator
generates a new individual by recombining information from two parents. Most
evolutionary algorithms used in practice use both a mutation and a crossover op-
erator.

In contrast to this, there is little evidence for the need of crossover. In fact,
early work in this direction suggests the opposite. In [MHF93], Mitchell, Holland
and Forrest experimentally compared the run-time of a simple genetic algorithm
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(using crossover) and several hill-climbing heuristics on so-called royal road func-
tions. According to Holland’s [Hol75] building block hypothesis, these functions
should be particularly suited to be optimised by an algorithm employing crossover.
The experiments conducted in [MHF93], however, clearly demonstrated that this
advantage does not exist. In fact, an elementary randomised hill-climbing heuris-
tic (repeated mutation and survival of the fitter one of parent and offspring) was
found to be far superior to the genetic algorithm.

The first theoretical analysis indicating that crossover can be useful was given
by Jansen and Wegener [JW99] in 1999 (see also [JW02]). For m < n, they
defined a pseudo-Boolean jump function jm : {0, 1}n → R such that (more or less)
jm(x) is the number of ones in the bit-string x if this is at most n − m or equal to
n, but small otherwise. A typical mutation based evolutionary algorithm (flipping
each bit independently with probability 1

n ) will easily find an individual x such that
jm(x) = n − m, but will need expected time Ω(nm) to flip the remaining m bits (all
in one mutation step). However, if we add the uniform crossover operator (here,
each bit of the offspring is randomly chosen from one of the two parents) and
use it sufficiently seldom compared to the mutation operator, then the run-time
reduces to O(n2 log n + 22mn log n). While the precise computations are far from
trivial, this behaviour stems naturally from the definition of the jump function.

The work of Jansen and Wegener [JW99, JW02] was subsequently extended
by different authors in several directions [SW04, JW05], partly to overcome the
critique that in the first works the crossover operator necessarily had to be used
very sparingly. While these works enlarged the theoretical understanding of dif-
ferent crossover operators, they could not resolve the feeling that all these pseudo-
Boolean functions were artificially tailored to demonstrate this particular phe-
nomenon. In [JW05], the authors state that “It will take many major steps to
prove rigorously that crossover is essential for typical applications.”

The only two works (that we are aware of) that address the use of crossover
for other problems than maximising a pseudo-Boolean function are “Crossover is
Provably Essential for the Ising Model on Trees” [Sud05] by Sudholt and “The
Ising Model on the Ring: Mutation Versus Recombination” [FW04] by Fischer
and Wegener. They show that crossover also helps when considering a simplified
Ising model on special graph classes, namely rings and trees. The simplified Ising
model, however, is equivalent to looking for a vertex colouring of a graph such that
all vertices receive the same colour. While it is interesting to see that evolutionary
algorithms have difficulties addressing such problems, proving “rigorously that
crossover is essential for typical applications” remains an open problem.
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3.1.1 Our Contribution

We give a tight analysis of the algorithm for the single-source shortest path (SSSP)
problem proposed in [STW04]. This leads to an improved upper bound for the
expected optimisation time of O(n2 max{`, log(n)}). In addition, we show that this
bound not only holds in expectation, but is fulfilled with high probability. That is,
for any constant c > 0 the implicit constants in the optimisation time bound can be
chosen such that after that many iterations, the optimum is found with probability
at least 1−n−c. The bound on the optimisation time is tight for all `. For all values
of ` we present a problem instance such that all shortest paths have length at most
`, but the optimisation time is Ω(n2 max{`, log(n)}) with high probability.

To prove strong bounds like this, we develop several tools that might see fur-
ther applications in the future. To prove the upper bound, we closely analyse how
nodes become connected to the source via shortest paths. The speed of growth
of such shortest paths (note that they do not have to be unique) displays a strong
concentration behaviour. Although we use a union bound argument over all paths
needed, it is still strong enough to obtain bounds that hold with high probability.
To show the lower bound, we prove a Chernoff type strong concentration bound
for sums of geometrically distributed random variables. To the best of our knowl-
edge, such bounds have not been published so far in a mathematics or computer
science journal. For both the upper and the lower bound, we encounter a situation
where a sequence of random variables is not independent, but has the property that
each member of the sequence has a desired property for all possible outcomes of
the previous random variables. For such situations, we prove Chernoff type con-
centration bounds. We are optimistic that all these tools see more applications in
the near future.

Apart from the analysis of the SSSP problem we also present the first non-
artificial problem for which crossover provably reduces the order of magnitude of
the optimisation time. This problem is the all-pairs shortest path (APSP) problem,
that is, the problem to find, for all pairs of vertices of a directed graph with edge
lengths, the shortest path from the first vertex to the second. This is one of the
most fundamental problems in graph algorithms, see for example the books by
Mehlhorn and Näher [MN99] or Cormen et al. [CLRS09].

There are two classical algorithms for this problem. The Floyd-Warshall al-
gorithm [Flo62, War62] has a cubic runtime and is quite easy to implement. In
contrast, Johnson’s algorithm [Joh77] is more complicated, but has a superior
runtime on sparse graphs. Since the problem is NP-hard [GJ79] if negative cy-
cles exist and simple paths are sought, we will always assume that all weights are
non-negative.

We present a natural evolutionary algorithm for the APSP problem. It has a
population consisting of at most one path for every pair of vertices (connecting the
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first to the second vertex). Initially, it contains all paths consisting of one edge.
A mutation step consists of taking a single path from the population uniformly at
random and adding or deleting a (Poisson distributed) random number of times an
edge at one of its endpoints. The newly generated individual replaces an existing
one (connecting the same vertices) if it is not longer. Hence, our fitness function
(which is to be minimised) is the length of the path.

We analyse this algorithm and prove that, in the worst case, it has with high
probability an optimisation time of Θ(n4), where n is the number of vertices of the
input graph.

We then state three different crossover operators for this problem. They all
take two random individuals from the population and try to combine them to form
a new one. In most cases, of course, this will not generate a path. In this case, we
define the fitness of the new individual to be infinite (or some number larger than
n times the longest edge). Again, the new individual replaces one having the same
endpoints and not smaller fitness.

Using an arbitrary constant crossover rate for any of these crossover opera-
tors, we prove an upper bound of O(n3.5

√
log n) for the expected optimisation

time. Hence, for the APSP problem, crossover leads to a reduction of the optimi-
sation time. While the improvement of order n0.5−ε might not be too important,
this work solves a long-standing problem in the theory of evolutionary computa-
tion. It justifies to use both a mutation and crossover operator in applications of
evolutionary computation.

We employ similar methods as in the SSSP case to obtain a tight analysis
for the APSP problem. Furthermore, we propose another interesting tool for the
analysis of evolutionary algorithms. A classical problem in the analysis of such al-
gorithms is that the mutation operator may change an individual at several places
(multi-bit flips in the bit-string model). Hence, unlike for the heuristic of ran-
domised local search, with evolutionary algorithms we cannot rely on the fact that
our offspring is in a close neighbourhood of the original search point. While this is
intended from the view-point of algorithm design (to prevent being stuck in local
optima), this is a major difficulty in the theoretical analysis of such algorithms.
Things seem to become even harder if we do not use bit-strings as representations
for the individuals. We overcome these problems via what we call c-trails. These
are hypothetical ways of how to move from one individual to another using simple
mutations only.
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3.2 Preliminaries

3.2.1 Evolutionary Algorithms

We now give a framework for the evolutionary algorithms studied by us in this
chapter. The algorithms we consider repeatedly apply variation and replacement
to a set of individuals. We study both an algorithm that only uses mutation and
an algorithm that uses both mutation and crossover. Both algorithms share the
following common framework.

First, the population of initial individuals is initialised. How this is done and
how big this initial population is depends on the concrete algorithm.

In evolutionary computation, new individuals are generated by variation op-
erators, namely by mutation or crossover (or both). In our case it is decided
randomly with a certain fixed probability if a mutation or a crossover step should
be done. If a mutation step is done, the algorithm picks an individual uniformly
at random from the population and applies the mutation operator to it to generate
a new individual. If a crossover step is done, the algorithm picks two individuals
uniformly at random from the population and applies a crossover operator to gen-
erate a new individual. Note that we may choose a crossover probability of zero,
giving an algorithm where only mutation is applied.

The next step is then (selection for) replacement. The aim is to prevent the
population from growing too big as well as to get rid of individuals that are
not considered to be useful solution candidates anymore. Typically, replacement
is guided by a fitness function assigning each individual a non-negative fitness.
Strict replacement operators, like truncation, eliminate the unfittest individuals.
There are also other replacement operators like fitness proportionate (also called
roulette-wheel) or tournament selection that favour fitter individuals more moder-
ately. The first can lead to a faster fitness increase in the population, the latter has
the advantage of a higher degree of diversity in the population.

We will only consider selection by truncation. During the replacement step it
is checked if there is an individual in the population that is comparable to the new
individual. The fitness of both individual is then compared. If the old individual is
not fitter than the new individual, it will be replaced by the new individual. If no
comparable individual exists and the new individual does not have infinite fitness,
it will also be added to the population. Hence the population size can increase
to a certain maximum size in this step. This will indeed happen in the case of
the all-pairs shortest path problem studied by us. For the single source shortest
path problem, on the other hand, our population will always contain exactly one
individual.

Variation and replacement are then repeated as long as wanted. Algorithm 3.1
illustrates this procedure.
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Algorithm Framework for (≤ µ + 1)-EA and (≤ µ + 1)-GA
Input: Crossover Probability p⊗ ∈ [0, 1]
// Initialisation:

1 I = Set of initial Individuals.
2 repeat
3 x = 1 with probability p⊗
4 if x = 1

// Crossover:
5 I1 = RandomlyChooseFrom(I)
6 I2 = RandomlyChooseFrom(I)
7 I′ = Crossover(I1, I2)
8 else

//Mutation:
9 I′ = RandomlyChooseFrom(I)

10 s = Pois(λ = 1)
11 for i = 0 to s do
12 I′ = Mutation(I′)

// Selection:
13 forall I in I do
14 if I and I′ are comparable and Fittness(I′) ≥ Fittness(I)
15 I = I \ {I}
16 I = I ∪ {I′}
17 forever

Algorithm 3.1: Pseudo-Code for the two algorithms studied by us. If p⊗ is a con-
stant greater than zero, both mutation and crossover are used and the resulting
algorithm will be called (≤ µ + 1)-GA. For p⊗ = 0, only mutation is used as vari-
ation operator. We call the resulting algorithm (≤ µ + 1)-EA. µ is the maximum
population size that can occur.

Note that this framework is already somewhat tailored to our problem. In
general there are evolutionary algorithms that not only select for replacement but
also use a specialised selection step to choose the individuals for the variation
step. Also, if the population can have a certain maximum size greater one, one
often already initialises the population to this size and assume that all individuals
are comparable.

If only mutation is used, we get an algorithm that strongly resembles the algo-
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rithm called (µ+1)-EA by various authors [JDJW05, Wit06, OHY07]. Indeed, for
the SSSP problem where we will deal with mutation only and have a population
of size one, we get the classical (1 + 1)-EA. For the APSP problem the population
size will not be fixed but can grow up to some value µ. We call the mutation-only
algorithms (≤ µ + 1)-EA in that case.

The variant using crossover will be called (≤ µ + 1)-GA to differentiate the
cases with and without crossover. This can be justified since it strongly resembles
a classical genetic algorithm. We do see that these names are not ideal in the sense
that usually evolutionary algorithms are a more general concept, including genetic
algorithms, genetic programming and evolution strategies.

The optimisation time of an evolutionary algorithm is the number of evalua-
tions of the fitness function the algorithm executes until it finds an optimal so-
lution. This is the usual complexity measure used when analysing evolutionary
algorithms. Observe that the time needed by the algorithm for “bookkeeping”, i.e.
the creation of new individuals by mutation or crossover or the execution of the
fitness function is usually disregarded.

A mutation of an individual changes it slightly at some random positions. For
the classical case of bit-strings of length n, mutation is often performed by flip-
ping each bit of an individual independently with probability 1

n . As this might be
infeasible for more complex representations, this behaviour must be simulated.

In [STW04], Scharnow, Tinnefeld and Wegener propose the following method
to do this. First, a number s is chosen at random according to a Poisson distribu-
tion Pois(λ = 1) with parameter λ = 1. An individual is then mutated by applying
an elementary mutation operator (s+1) times. The use of the Poisson distribution
is motivated by the fact that it is the limit of the binomial distribution for n trials
with probability 1

n each.
A crossover of two individuals combines parts of them to a new individual.

We will only consider the so-called 1-point crossover. If the individuals are bit-
strings of length n it is defined as follows. First pick a random position between 1
and n. Then merge the initial part of the first individual up to the chosen position
with the ending part of the second individual starting from the chosen position.

3.2.2 Graphs and Shortest Paths
As both problems studied by us deal with shortest paths, we will now fix some
notation.

Let G = (V, E) be a directed graph with n := |V | vertices and m := |E| edges.
Let w : E → N be a function that assigns to each edge e ∈ E a weight w(e).

A walk from u to v is a sequence u = v0, v1, . . . , vk = v of vertices such that
(vi−1, vi) ∈ E for all i ∈ [1, . . . , k]. The walk is called path if it contains each
vertex at most once. We will usually describe a walk by the sequence (e1, . . . , ek),
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ei = (vi−1, vi) of edges it traverses. The weight of a walk is defined as the sum of
the weights of all its edges.

The Single Source Shortest Path Problem

Given a vertex s ∈ V called “source”, the Single Source Shortest Path Problem
(SSSP problem) is the problem of finding a shortest path from s to all other ver-
tices v ∈ V . A simple implementation of Dijkstra’s famous algorithm [Dij59]
solves the problem in time O(n2).

When analysing the SSSP problem we can easily restrict ourselves to the com-
plete (bi-directed) graph Kn. For this we simply allow the weight w(e) = ∞ for
previously not existing edges e. A problem instance then is given by the distance
matrix D = (di j)1≤i, j≤n of the graph, where di j = w((i, j)) ∈ N ∪ {∞}.

The All-Pairs Shortest Path Problem

The All-Pairs Shortest Path Problem (APSP problem) is defined as follows. Given
a weighted graph G = (V, E), compute a shortest path from every vertex u ∈ V to
every other vertex v ∈ V .

In general, a pair of vertices may be connected by more than one shortest
path, and these different paths may consist of different numbers of edges. In our
analysis of the APSP problem we will often deal with all shortest paths having at
most a given number of edges. To ease the language, we introduce the following
notation.

Definition 3.1. Let G = (V, E) be a graph and let ` ∈ N. We define

V2
` := {(u, v) ∈ V2 | u , v and there exists a shortest path

from u to v consisting of at most ` edges}.

3.2.3 Chernoff Bounds

As mentioned earlier, the optimisation time of an evolutionary algorithm not only
depends on the input but also on the random decisions done by the algorithm.
Thus it can be modelled as a random variable. To estimate the optimisation time
one can bound the expected value of this random variable. However, depending
on the variance of this variable, the expected value alone may not be as useful as it
seems on first glance. Hence we not only want to bound the expected value of the
random variable, but are also interested in giving a bound that holds “with high
probability”. The following definition formalises this idea.
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Definition 3.2. Let X(n) be a random variable depending on n. We say that X(n) ∈
O( f (n)) holds with high probability (w.h.p.) if for any c ∈ N there exists a constant
c′ such that

Pr[X(n) ≤ c′ f (n)] ≥ 1 −
1
nc .

We say that X(n) ∈ Ω( f (n)) holds with high probability (w.h.p.) if for any c ∈ N
there exists a constant c′ such that

Pr[X(n) ≥ c′ f (n)] ≥ 1 −
1
nc .

In other words, the probability that X differs by more than a constant factor
from f can be made arbitrarily small. To achieve such bounds we will mainly use
so-called Chernoff Bounds. Those allow us to bound the probability that the sum
of some independent random variables will vary too widely from the expected
value. The following Theorem summarises some Chernoff Bounds that we will
use in this Chapter. Those are classical results from probability theory and can be
found in most textbooks on the topic, for example in [AS08].

Theorem 3.1 (Chernoff Bound). Let X1, . . . , Xt be mutually independent 0-1-
random variables with Pr[Xi = 1] = p and Pr[Xi = 0] = 1 − p for all i. Let
X :=

∑t
i=1 Xi. Then the following holds.

a) For all δ ∈ (0, 1] it holds that

Pr [X < (1 − δ)E[X]] ≤ exp
(
−
E[X]δ2

2

)
.

a’) For all α < 1 it holds that

Pr [X < αE[X]] ≤ exp
(
−

(1 − α)2E[X]
2

)
.

b) For all δ > 0 it holds that

Pr [X ≥ (1 + δ)E[X]] ≤ exp
(
−

min{δ, δ2}E[X]
3

)
.

c) For all β > 1 it holds that

Pr
[
X ≥ βE[X]

]
<

(
exp(β − 1)β−β

)E[X]
.
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Observe that the Chernoff bounds a) and a’) are basically the same, just sub-
stitute α = 1− δ. However, we will need both variants of this bound and by listing
them here we can save some calculations later.

While the above bounds allow us to handle sums of 0 − 1 variables, we will
later also need a bound for sums of geometrically distributed variables. For this
we prove the following Chernoff Bound.

Theorem 3.2. Let Xi, i ∈ [1, . . . , n], be independent geometrically distributed ran-
dom variables with Pr[Xi = j] = (1 − p) j−1 p for all j ∈ N where p ∈ (0, 1). Let
X :=

∑n
i=1 Xi, and and δ > 0. Then it holds that

Pr [X ≥ (1 + δ)E[X]] ≤ exp
(
−
δ2

2
(n − 1)
1 + δ

)
.

Proof. Let Y1,Y2, . . . be an infinite sequence of identically distributed indepen-
dent, biased, binary random variables such that Yi is one with probability Pr[Yi =

1] = p and zero with probability Pr[Yi = 0] = 1 − p. Note that the random
variable “smallest j such that Y j = 1” has the same distribution as each Xi. In
consequence, X has the same distribution as “smallest j such that exactly n of the
variables Y1, . . . ,Y j are one”. In particular it holds that

∀ j ∈ N : Pr
[
X ≥ j

]
= Pr

 j−1∑
i=1

Yi ≤ n − 1

 .
This manipulation reduces our problem to the analysis of independent Bernoulli
trials and will enable us to use the classical Chernoff bounds.

The expected value of each Xi is E[Xi] = 1
p , thus E[X] = n

p . Let Y :=∑d(1+δ)E[X]−1e
i=1 Yi. By the above,

Pr[X ≥ (1 + δ)E[X]] = Pr[Y ≤ n − 1].

The expected value of Y is bounded by

E[Y] = d(1 + δ)E[X] − 1ep ≥ (1 + δ)n − p > (1 + δ)(n − 1).

Now let δ′ := 1− n−1
E[Y] . Then 0 < δ′ ≤ 1 and Pr[Y ≤ n− 1] = Pr[Y ≤ (1− δ′)E[Y]].

Hence we can apply the Chernoff bound from Theorem 3.1a) to get

Pr [X ≥ (1 + δ)E[X]] = Pr
[
Y ≤ (1 − δ′)E[Y]

]
≤ exp

(
−

1
2
E[Y](1 −

n − 1
E[Y]

)2
)

≤ exp
(
−

1
2
E[Y](1 −

1
1 + δ

)2
)

≤ exp
(
−

1
2

(n − 1)(1 + δ)(
δ

1 + δ
)2
)
.

�
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The Chernoff Bounds allow us to deal with sums of independent random vari-
ables. However, this is not enough. In our proofs we will often encounter sums
of dependent random variables. For those the above Theorems cannot be applied
directly.

To still be able to apply Chernoff Bounds we use the following Lemma. It
allows us to approximate sums of dependent random variables by sums of inde-
pendent random variables. Those can then be handled using Chernoff Bounds.

Lemma 3.1. For t ∈ N let X1, . . . , Xt ∈ N0 be arbitrary random variables taking
non-negative integers as values. Let X∗1, . . . , X

∗
t ∈ N0 be mutually independent

non-negative random variables such that for all i ∈ [1, . . . , t] , X∗i is independent
of X1, . . . , Xi−1. Then for all k ≥ 0 the following holds.

a) If for all i ∈ [1, . . . , t], all x1, . . . , xi−1 ∈ N0 and all m > 0

Pr [Xi = m|X1 = x1, . . . , Xi−1 = xi−1] ≤ Pr
[
X∗i = m

]
,

then

Pr

 t∑
i=1

Xi ≥ k

 ≤ Pr

 t∑
i=1

X∗i ≥ k

 .
b) If for all i ∈ [1, . . . , t], all x1, . . . , xi−1 ∈ N0 and all m > 0

Pr [Xi = m|X1 = x1, . . . , Xi−1 = xi−1] ≥ Pr
[
X∗i = m

]
,

then

Pr

 t∑
i=1

Xi ≥ k

 ≥ Pr

 t∑
i=1

X∗i ≥ k

 .
c) If for all i ∈ [1, . . . , t], all x1, . . . , xi−1 ∈ N0 and all m > 0

Pr [Xi = m|X1 = x1, . . . , Xi−1 = xi−1] ≥ Pr
[
X∗i = m

]
,

then

Pr

 t∑
i=1

Xi < k

 ≤ Pr

 t∑
i=1

X∗i < k

 .
Proof. Define Pt

j := Pr[
∑ j

i=1 Xi +
∑t

i= j+1 X∗i ≥ k] for j ∈ [1, . . . , t]. Also define
Xt

k = {(x1, . . . , xt) ∈ {0, 1}t|
∑t

i=1 xi = k}.
Now consider part a) of the Lemma. Since Pr[Xi = m|X1 = x1, . . . , Xi−1 =

xi−1] ≤ Pr[X∗i = m] for all x1, . . . , xi−1 and m > 0, it follows that

Pr[Xi ≥ m|X1 = x1, . . . , Xi−1 = xi−1] ≤ Pr[X∗i ≥ m]
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holds for all non-negative m.
Comparing the outcome of the sequence of events X1, . . . , X j, X∗j+1, . . . , X

∗
t

with the outcome of X1, . . . , X j+1, X∗j+2, . . . , X
∗
t for j ∈ [1, . . . , t] gives

Pt
j+1 = Pr

 j+1∑
i=1

Xi +

t∑
i= j+2

X∗i ≥ k


= Pr

 j∑
i=1

Xi +

t∑
i= j+2

X∗i ≥ k

 +

k∑
m=1

Pr

 j∑
i=1

Xi +

t∑
i= j+2

X∗i = k − m

 · Pr[X j+1 ≥ m]


= Pr

 j∑
i=1

Xi +

t∑
i= j+2

X∗i ≥ k

 +

k∑
m=1

∑
(x1,...,x j,x j+2,...,xt)∈Xt−1

k−m

Pr
[
X1 = x1, . . . , X j = x j

]
·

Pr
[
X j+1 ≥ m|X1 = x1, . . . , X j = x j

]
·

t∏
i= j+2

Pr
[
X∗i = xi

]
≤ Pr

 j∑
i=1

Xi +

t∑
i= j+2

X∗i ≥ k


+

k∑
m=1

Pr

 j∑
i=1

Xi +

t∑
i= j+2

X∗i = k − m

 · Pr
[
X∗j+1 ≥ m

]
= Pr

 j∑
i=1

Xi +

t∑
i= j+1

X∗i ≥ k


= Pt

j.

Thus, we have that

Pr

 t∑
i=1

Xi ≥ k

 = Pt
t ≤ Pt

t−1 ≤ · · · ≤ Pt
1 ≤ Pt

0 = Pr

 t∑
i=1

X∗i ≥ k

 .
To prove part b) observe that from Pr[Xi = m|X1 = x1, . . . , Xi−1 = xi−1] ≥

Pr[X∗i = m] for all x1, . . . , xi−1 and m > 0, it follows that

Pr[Xi ≥ m|X1 = x1, . . . , Xi−1 = xi−1] ≥ Pr[X∗i ≥ m]
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holds for all non-negative m. With this the same computation as for a) holds with
just the inequality reversed. Hence we get

Pr

 t∑
i=1

Xi ≥ k

 = Pt
t ≥ Pt

t−1 ≥ · · · ≥ Pt
1 ≥ Pt

0 = Pr

 t∑
i=1

X∗i ≥ k

 .
Inequality c) follows immediately from b) because

Pr

 t∑
i=1

Xi < k

 = 1 − Pr

 t∑
i=1

Xi ≥ k


≤ 1 − Pr

 t∑
i=1

X∗i ≥ k


= Pr

 t∑
i=1

X∗i < k

 .
�

Later we need to bound the expected number of mutations that happen in Al-
gorithm 3.1. However, we only need this for the special case of the (≤ µ + 1)-EA,
i.e. if the crossover probability p⊗ = 0 is zero.

For this we use the following Chernoff bound on Poisson distributed random
variables. The Lemma can be found as Theorem A.1.15 in [AS08].

Lemma 3.2. Let P have Poisson distribution with mean λ. For ε > 0

Pr [P ≥ λ(1 + ε)] ≤
(
eε(1 + ε)−(1+ε)

)
.

As the number of mutations done by the (≤ µ + 1)-EA is Poisson distributed,
we can now easily bound the number of expected elementary mutations.

Lemma 3.3. The expected number of elementary mutations that happen during
k iterations of the (≤ µ + 1)-EA is exactly 2k. Furthermore, the probability that
more than 3k mutations happen is less than

(
e
4

)k
.

Proof. By the definition of the (≤ µ + 1)-EA the number of elementary mutations
done in a single iteration is distributed as Pois(λ = 1) + 1. Due to the additivity of
the Poisson distribution the number of elementary mutations done in k iterations
has distribution Pois(λ = k) + k. Hence the expected number of elementary mu-
tations is 2k. Using Lemma 3.2, the probability that more than k extra mutations
happen can be bound by Pr[Pois(λ = k) ≥ 2k] ≤

(
e
4

)k
. �
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Figure 3.2: The graph representation and the vector representation of an individual
not representing a tree. The fitness of vertex 7 is d18 + d84 + d47, as represented
by the arrows below the vector representation. The fitness of vertex 2 is ∞, since
there is no path from vertex 2 to vertex 1, as shown by the arrows above the vector
representation.

3.3 A Tight Analysis of the SSSP Problem

In this section we study a simple (1 + 1)-EA for the Single Source Shortest Path
(SSSP) problem.

In [STW04], Scharnow, Tinnefeld and Wegener gave a first upper bound for
this problem. We will derive tight upper and lower bounds on the optimisation
time of the (1 + 1)-EA for the SSSP problem which hold both in expectation and
with high probability. For this we will consider the same (1 + 1)-EA as studied
in the above mentioned paper. During the analysis of the (1 + 1)-EA we will
use a new technique that helps us to overcome the coupon collector behaviour of
previously used arguments.

3.3.1 A Representation for the SSSP Problem

We want to analyse the (1 + 1)-EA for the SSSP problem introduced and studied
in [STW04].

For this, consider the following variant of Algorithm 3.1. We set the crossover
probability p⊗ = 0 and consider only µ = 1 individuals. This gives the classical
(1 + 1) evolutionary algorithm ((1 + 1)-EA).

Note that the algorithm also works for undirected graphs. For each undirected
edge e = {i, j} simply set di j = d ji = w(e).
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Individuals and Population

It is easy to see that we can choose shortest paths from s to any other vertex in
such a way that the union of these paths forms a tree. Hence, we may represent
solutions to the SSSP problem by giving for each vertex i ∈ V its predecessor p(i)
on a shortest path from s to i. Without loss of generality, we will from now on
always assume that the source vertex is vertex s = 1. Candidate solutions (i.e.
individuals) for the evolutionary algorithm can then be represented as vectors of
predecessors

I = (p(2), . . . , p(n)) ∈ {1, . . . , n}n−1.

Note that this representation does not imply that an individual forms a tree. See
Figure 3.2 for an example.

Fitness and Selection for Replacement

To select the individuals, a multi-criteria fitness function is used. The fitness of an
individual I is defined as f (I) := ( f2(I), . . . , fn(I)) with

fi(I) :=

∞ if I does not connect s to i,
w(P(s, i)) otherwise.

Here, w(P(s, i)) is the cost of the path P from s to i induced by I. If this path is
P = (s = v1, v2, . . . , v j = i) for v1, . . . , v j ∈ V , then w(P(s, i)) = dv1v2 + · · · + dv j−1v j .
See again Figure 3.2 for an example.

The selection step accepts I′ if f (I′) ≤ f (I), which is the case if fi(I′) ≤
fi(I) for all 2 ≤ i ≤ n. Therefore, once we have found an optimal path for a vertex
v, the (1 + 1)-EA does not accept mutations that would cause s to be connected to
v using a sub-optimal path.

Mutation

At the beginning, the (1 + 1)-EA generates an initial individual I by assigning to
each vertex v ∈ V \ {s} a predecessor p(v) ∈ V \ {v} uniformly at random. In the
mutation step, I is modified to generate a new individual I′. Then, a selection
step is done replacing the individual I by I′ if the fitness of I′ is not worse than
the one of I. Mutation and selection are repeated as long as desired.

An elementary mutation of the vector I consists of randomly choosing a ver-
tex v ∈ V \ {s}. Then, the predecessor p(v) of v is set to a vertex chosen uniformly
at random from V \ {v}. Obviously, there are (n − 1)2 possible ways to choose a
vertex and its new predecessor. Hence this is the number of different elementary
mutations that can be applied to an individual I.
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3.3.2 The Upper Bound
In this section we show that the optimisation time of the (1 + 1)-EA for the SSSP
problem is O(n2 max{log(n), `}) with high probability. Here, ` is the maximum
number of edges of all shortest paths with a minimum number of edges. This
leads to the following definition.

Definition 3.3 (Edge radius). Let G be a weighted graph and s a vertex of G. Then
the edge radius `G(s) of s in G is the minimum number r such that for all vertices
v ∈ V \ {s}, there is a shortest path from s to v having at most r edges. In other
words,

`G(s) := max
v∈V

min{`(P) | P is a shortest path from s to v},

where `(P) is the number of edges of the path P.

Now we can prove the upper bound.

Theorem 3.3. The optimisation time of the (1 + 1)-EA is O(n2 max{log(n), `}) with
high probability.

This follows immediately from the following Lemma.

Lemma 3.4. Let ` := `G(s) be the edge radius of s in G, `∗ = max{`, log(n)},
λ ≥ 2 and t = λ(n− 1)2`∗. Then the optimisation time needed by the (1 + 1)-EA to
find all shortest paths is less than t with probability p > 1 − n1− λ8 .

Proof. Because of the multi-criteria fitness function, the (1 + 1)-EA cannot re-
place any path in the individual I by a longer path. Thus, any successful mutation
step that would apply more than one mutation can be simulated by a number of
successful mutation steps applying a single mutation. Since the probability for
such a single mutation step is constant, it suffices to assume that only single mu-
tation steps are applied for the sake of the upper bound analysis.

The (1 + 1)-EA has to find n − 1 shortest paths from the source s to all other
vertices vertex v. Note that there may be many different possible shortest paths
for a vertex v.

Pick a vertex v and a shortest path P := (v1, . . . , v`
′+1) from s = v1 to v =

v`
′+1. Note that by the definition of the edge radius ` we can pick P so that it has

`′ ≤ ` edges. We call a single mutation step the j-th improvement of P if prior
to the mutation the individual I contains a shortest path from s to v j for some
j ∈ [1, . . . , `′] and after the mutation step the predecessor of v j+1 is p(v j+1) = v j.
Hence, after the j-th improvement, I contains a shortest path from s to v j+1. Note
that I might have already contained such a shortest path before. If the (1 + 1)-EA
has performed the `′-th improvement, we say that it has followed P. Obviously, a
shortest path from s to v = v`

′+1 has been found by then.
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Let t′ be the number of steps the (1 + 1)-EA needs to follow P. Define the
random variables Xi for i ∈ [1, . . . , t′] as Xi = 1 if the i-th mutation step is an
improvement of P and Xi = 0 otherwise. Then Pr[Xi = 1] ≥ p = 1

(n−1)2 , since
either the corresponding predecessor was already set correctly before or the i-th
mutation step picks the correct vertex with probability 1

n−1 and sets it to its correct
predecessor with probability 1

n−1 . For i > t′, define the random variables Xi by
Pr[Xi = 1] := p and Pr[Xi = 0] := 1 − p. Since we only consider single mutation
steps, the Xi are mutually independent. Hence, the expected value of X :=

∑t
i=1 Xi

is E[X] ≥ pt.
If the (1 + 1)-EA has not found an optimal path from s to v, it obviously has

not followed P and thus X < `. Hence, the probability of not finding a shortest
path from s to v in time t can be bounded by

Pr
[
no shortest path from
s to v found in time t

]
≤ Pr

[
P not followed

in time t

]
≤ Pr[X < `]
≤ Pr[X < `∗].

For t = λ(n − 1)2`∗ and 0 < δ =
(λ−1)
λ
≤ 1 we have

(1 − δ)E[X] ≥
(
1 −

(λ − 1)
λ

)
1

(n − 1)2λ(n − 1)2`∗

= `∗.

Hence, by Theorem 3.1a), we can bound the probability of not finding a short-
est path from s to v in time t = λ(n − 1)2`∗ by

Pr[X < `∗] ≤ Pr[X < (1 − δ)E[X]]

≤ exp
(
−
E[X]δ2

2

)
= exp

(
−

(λ − 1)2`∗

2λ

)
≤ exp

− (λ2 )2`∗

2λ


≤ exp

(
−
λ

8
`∗

)
for λ ≥ 2.
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`1 2 3 4 `+1

Figure 3.3: The SSSP tree of the worst-case graph Gn,` with source v1.

Using an union bound argument we get

Pr

not for all vi a shortest
path from s to vi

found in time t

 ≤ n∑
i=2

Pr

no shortest path
from s to vi

found in time t


≤

n∑
i=2

exp
(
−
λ

8
`∗

)
≤ n exp

(
−
λ

8
log(n)

)
≤ n1− λ8 .

Hence, by choosing λ appropriately, we can achieve a failure probability of O(n−c)
for any c. Note that we did not optimise for λ. �

3.3.3 The Lower Bound

In this section we show a lower bound that matches the upper bound presented
in the previous section. For this, we will define a worst-case graph Gn,` for all
n ∈ N and ` ∈ [1, . . . , n − 1] having edge radius `Gn,`(s) = `. We will then
show that with high probability the (1 + 1)-EA has an optimisation time of at
least Ω(n2 max{log(n), `}) for this graph.

A Worst Case Graph Class

Let n ∈ N, V = [1, . . . , n]. For all ` ∈ [1, . . . , n − 1] we must define Gn,` = (V, E)
such that the source of the SSSP tree to be computed is s = 1 and the edge radius
of s is `Gn,`(s) = `.

To enforce worst-case behaviour of the (1 + 1)-EA, we need to ensure that
finding the shortest path to the vertex maximising the edge radius is hard. For
this, we set the weights in such a way that (1, 2, . . . , `, ` + 1) is the unique shortest
path from s = 1 to ` + 1. For all other vertices k with k > ` + 1, the edge (s, k)
shall be the unique shortest path from s to k. Figure 3.3 shows the SSSP tree of
Gn,`. For simplicity, we assign the weight 1 to all edges in the SSSP tree.
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1 2 3 4

7

5

6

Figure 3.4: The graph G7,3. The solid edges have weight one and form the shortest
path tree. All other edges have weight 14. The dotted edges are the second-best
shortest path from 1 to vertices 3, 4 and 5.

To guarantee that the optimisation time depends linearly on `, the graph must
contain the right weights for edges that do not belong in the SSSP tree. For
each vertex i ∈ [2, . . . , ` + 1] on the shortest path maximising the edge radius,
we should ensure that its edge with s is not too expensive. As long as its prede-
cessor i − 1 is not yet connected via the unique shortest path, this will ensure
that it is cheaper to connect s and i directly than to connect s to i via i − 1.
This will enforce that most of the edges on the shortest path are added in the
order they appear in the shortest path. The formal definition of the edge weights
w(i, j), i, j ∈ [1, . . . , n] , i , j is then as follows.

w(i, j) :=


1, if j = i + 1 ≤ ` + 1,
1, if i = 1 ∧ j > ` + 1,
2n, otherwise.

A concrete example is given in Figure 3.4 for the graph G7,3 with seven vertices
and edge radius 3. Note that Gn,1 is the graph with edge weight 1 for each edge
(s, i), i ∈ [2, . . . , n] and 2n for all other edges.

A Lower Bound

We now give a lower bound on the number of steps needed by the (1 + 1)-EA
depending on n and `. To prove that Ω(n2 max{log(n), `}) is a lower bound on the
optimisation time of the (1 + 1)-EA, we first prove that Ω(n2 log(n)) is a lower
bound on the optimisation time. Observe that this bound does not depend on our
special graph Gn,` but holds for all graphs that have a unique SSSP tree.

Lemma 3.5. Let G = (V, E) be a graph on n vertices. Let s ∈ V be such that
the SSSP tree of G with source s is unique. Then the number of steps needed by
the (1 + 1)-EA to find the SSSP tree of G with source s is Ω(n2 log(n)) with high
probability.
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Proof. Since the shortest path tree is unique, each vertex has a unique predecessor.
Hence, the (1 + 1)-EA has found the optimal solution as soon as for all v ∈ V \ {s}
the predecessor pointer p(v) is set to this unique predecessor. This process can be
modelled as a coupon collector process.

In this proof, we say that v is fine after iteration t, if p(v) points to the desired
predecessor during any of the t iterations. Note that if the predecessor is not
already connected to s via a shortest path, v might change its predecessor to a
different vertex than the one in the shortest path tree. Hence, the time until all
vertices are fine is clearly a lower bound for the optimisation time.

After the initialisation, each vertex is fine with probability exactly 1
n−1 . In

consequence, with probability 1 − exp(−Θ(n)), less than n
2 vertices are fine. We

call the remaining k ≥ n
2 vertices interesting.

Assume that the (1 + 1)-EA runs for T = 1
12 (n − 1)2 ln( n

2 ) iterations after the
initialisation. By Lemma 3.2, the algorithm applies at most 3T elementary mu-
tations during these T iterations (apart from a super-exponentially small failure
probability).

For an elementary mutation, the probability of choosing an interesting vertex
and correctly setting its unique predecessor is

(
k

n−1

) (
1

n−1

)
. Hence, a sequence of

3T elementary mutations produces at most 6T k
(n−1)2 good events with probability

1− exp(Θ(n log n)). Each of this series of good events can be viewed as the action
of buying one out of k different coupons. By the coupon collector Theorem (see
for example [MR95]), these 6T k

(n−1)2 ≤
1
2k ln(k) trials do not suffice to obtain all k

coupons. This holds with probability 1 − exp(−Θ(n)). �

By the above Lemma, our lower bound is tight as long as ` ∈ O(log(n)). To
complete our claim, however, we need to prove that for larger ` the optimisation
time linearly depends on `.

Lemma 3.6. Let n ∈ N and ` ∈ ω(log(n)). Then the optimisation time of the
(1 + 1)-EA on Gn,` is Ω(n2`) with high probability.

Proof. The idea of this proof is similar to the one used in [DJW02] for the proof
of the lower bound on the runtime of the (1 + 1)-EA on the leading ones function.
To prove the claim, we analyse how long it takes until the individual I contains
the path P := (s = 1, 2, . . . , `, ` + 1). To this aim, we analyse how the length L(I)
of the longest subpath of P starting in s that is contained in I grows. Note that this
length L(I) never decreases, since for each vertex on P this subpath is the unique
shortest path to s.

The proof basically proceeds by showing the following three claims. (i) Ini-
tially L(I) is constant. (ii) In Θ(n2`) iterations L(I) increases at most O(`) times.
(iii) The total increase in these O(`) relevant iterations (plus the initial constant
length) is less than `.
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The probability that in the initial individual some vertex i ∈ [2, . . . , ` + 1] is
already linked to i−1 is exactly 1

n−1 . Hence the probability that L(I) ≥ c is O(n−c)
for all constants c ∈ N, that is, with high probability L(I) is initially constant.

Let t∗ be the time step in which L(I) increases to the maximal possible value
of `. For i ∈ [1, . . . , t∗], we define a binary random variable Xi by Xi = 1 if L(I)
increases in step i. To increase L(I), one of the S + 1 elementary mutations in the
current step has to connect vertex L(I) + 2 to vertex L(I) + 1. The probability
that an elementary mutation succeeds in doing so is 1

(n−1)2 . By Lemma 3.3, the
probability that one iteration does so is at most 2

(n−1)2 . Hence we have

Pr[Xi = 1] ≤ p :=
2

(n − 1)2 .

For i > t∗ define Xi by Pr[Xi = 1] := p and Pr[Xi = 0] := 1 − p, independent of all
other random variables.

Let t := η(n − 1)2`, where η is a constant to be chosen later. Let X∗1, . . . , X
∗
t be

mutually independent random variables with Pr[X∗i = 1] := p and Pr[X∗i = 0] :=
1 − p for all i. Then

Pr[X∗i = 1] ≥ Pr[Xi = 1|X1 = x1, . . . Xi−1 = xi−1]

holds for all x1, . . . , xi−1 ∈ {0, 1}. For the sum X∗ :=
∑t

i=1 X∗i the expected value is

E[X∗] = pt = η(n − 1)2`
2

(n − 1)2 = 2η`.

Hence, applying part a) of Lemma 3.1 and using the Chernoff bound b) from
Theorem 3.1 with δ = 1, we get

Pr
[ t∑

i=1

Xi ≥ 4η`
]
≤ Pr[X∗ ≥ 2E[X∗]]

≤ exp
(
−
E[X∗]

3

)
= exp

(
−

2η`
3

)
= exp

(
−

2η
3

log(n)
`

log(n)

)
= n−

2η
3

`
log(n)

= n−ω(1).

In the last lines we used that since ` = ω(log(n)) we have η`

log n = ω(1) for any
constant η. Since

∑t
i=1 Xi is an upper bound on the number of improvements in the
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first t iterations, this means that with high probability the (1 + 1)-EA did at most
t′ := 4η` improvements during these t iterations.

Finally, we analyse which value of L(I) results from these t′ improvements.
Clearly, each improvement increases L(I) by at least one. However, there are
two ways how an additional vertex i can be connected to the longest subpath of
P starting in s. One is that an elementary mutation in the iteration causes the
improvement that changes the pointer of i to its predecessor i − 1 in P. The other
is that i is coincidentally connected to i − 1 and i − 1 itself becomes part of the
subpath by one of the two ways. We shall argue that both events happen only with
a probability of at most 1

2 .
Suppose first that i is added to the path of interest through an elementary muta-

tion. For this to happen (among other things), the following has to occur. Among
the possibly more than one elementary mutations in the current step that connect
i to some other vertex, the last one has to connect i to its predecessor in P. By
definition of the mutation operator, this happens with a probability of 1

n−1 ≤
1
2 .

Now consider the case that i − 1 becomes part of the subpath of interest. We
argue that the probability that i is coincidentally connected to i − 1 is at most the
probability that it is pointing to s and in consequence, at most 1

2 . As all vertices
in the initial individual have equal probability of being the predecessor of i, this
obviously holds for the initial individual.

Now consider an iteration that does not result in making i − 1 part of the
subpath of interest. Fix a sequence of elementary mutations to be conducted in this
iteration. Assume that at the start of the iteration vertex i has some predecessor
j ∈ [1, . . . , t] for which the path from s in I has length w(s, j). There are two
possibilities. If at the end of the iteration i−1 is further from s as j, i.e. w(s, i−1) >
w(s, j), the algorithm would not accept i − 1 as new predecessor but it would
accept s. On the other hand, if at the end of the iteration we have w(s, i − 1) ≤
w(s, j), then changing is predecessor to i−1 would be acceptable. But so would be
changing it to s due to the construction of the edge weights with both possibilities
being equally likely. Summing over both possibilities, we see that choosing s as
predecessor of i is more likely than choosing i−1. In consequence, the probability
that i coincidentally points at i − 1 in the iteration in which i − 1 becomes part of
the subpath of interest, is at most 1

2 .
Summarising, an additional vertex could be coincidentally connected with

probability p1 ≤
1
2 . With probability 1 − p1 this is not the case and it may be-

come connected by an elementary mutation which also has probability p2 ≤
1
2 .

Hence, the probability that an additional vertex becomes connected is at most

p1 + (1 − p1)p2 ≤
1
2

p1 +
1
2
≤

3
4
.

Let t′′ be the number of improvement steps the (1 + 1)-EA performs until it
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finds the optimal solution. Recall that with high probability, t′′ ≤ t′ = 4η`. For
i ∈ [1, . . . , t′′] let Yi be the random variable describing the total number of vertices
which are added in the i-th improvement step. By the above arguments, indepen-
dent of the outcome of previous random choices, we have

Pr[Yi = m] ≤
(
3
4

)m−1 1
4

for all m ≥ 1.
If t′′ < t′ = 4η`, let Yi for i ∈ [t′′ + 1, . . . , t′] be defined by Pr[Yi = m] :=

(3
4 )m−1 1

4 independent from all other Y j. Define Y∗i for i ∈ [1, . . . , t′] to be mutually
independent random variables that are geometrically distributed with parameter
q = 1

4 , that is, Pr[Y∗i = m] := ( 3
4 )m−1 1

4 for all m ≥ 1. The expected value of Y∗i is
E[Y∗i ] = q−1 = 4. Let Y :=

∑t′
i=1 Yi and Y∗ :=

∑t′
i=1 Y∗i . Then E[Y∗] = 4t′.

Applying part a) of Lemma 3.1 and the Chernoff bound for geometrically dis-
tributed random variables from Theorem 3.2 with δ = 1 and assuming t′ ≥ 2 we
get

Pr[Y ≥ 8t′] ≤ Pr[Y∗ ≥ 8t′]
= Pr[Y∗ ≥ 32η`]

≤ exp
(
−

(t′ − 1)
4

)
≤ exp

(
−

t′

2 · 4

)
= exp

(
−
η`

2

)
= exp

(
−
η

2
log(n)

`

log(n)

)
= n−

η
2

`
log(n)

= n−ω(1).

Thus, with high probability during up to t′ = 4η` improvements at most 32η`
additional vertices become part of the shortest path. Choosing η = 1

64 , we see that
with high probability, L(I) is at most c + 32η` = c + 1

2` < ` after t = η(n − 1)2`
iterations, that is, the path P hast not been found in this time. �

Combining Lemma 3.5 and Lemma 3.6 yields the following theorem.

Theorem 3.4 (Lower Bound). The optimisation time needed by the (1 + 1)-EA to
solve the SSSP problem is Ω(n2 max{log(n), `}) with high probability.
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3.4 Crossover and the APSP Problem
After having studied the (1 + 1)-EA for the single-source shortest path problem
we will now consider the all-pairs shortest path problem. Here we will not only
study a simple evolutionary algorithm but also analyse the influence of crossover
on this problem. As a result we will show that adding crossover to the evolutionary
algorithm for this problem indeed improves its optimisation time.

3.4.1 Components of the Genetic Algorithm
We now discuss the ingredients needed to apply our framework given in Algo-
rithm 3.1 to the APSP problem.

Individuals and Population

As discussed in Subsection 3.2.1 genetic algorithms usually keep a population of
individuals, which is gradually improved. In the APSP problem we are aiming for
a population containing a shortest path for each pair of distinct vertices. Hence it
makes sense to allow paths or walks in the graph G = (V, E) as individuals. To
have more freedom in defining the crossover operator, an individual will simply be
a sequence of edges, (e1, . . . , ek), e1, . . . ek ∈ E, k ∈ N. However, the replacement
operator will ensure that only individuals that are walks can enter the population.

For the APSP problem, a natural choice for the initial population is the set
I := {(e) | e ∈ E} of all paths consisting of one edge.

Fitness and Selection for Replacement

To apply the algorithmic framework given in Algorithm 3.1 we also need a proper
fitness function and a selection mechanism for our individuals.

The natural choice for the fitness of an individual is the length of the walk it
represents. This value should be minimised by the algorithm. As a result of the
crossover operations discussed below, we may however generate individuals that
aren’t walks. For such individuals their fitness is defined as ∞. This will ensure
that they are never included in the population.

In our model of the APSP problem diversity is an issue as we need to ensure
that the final solution contains one path for each pair of vertices. With the fitness
function chosen above, shortest paths for vertices that are far apart will always
seem unfitter than those for vertices that are close. Hence we must ensure that we
don’t end up with a population that only contains many (near-)optimal individuals
for a small set of nearby vertices. One could try to achieve this by choosing a
non-strict replacement mechanism. However, for our approach we rather enforce
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I1 :

I1 ⊗1 I2 :

I1 ⊗2 I2 :

I1 ⊗3 I2 :

I2 :

I′1 I′′1 I′2 I′′2

I′1 I′′2

I′2 I′′2I′1 I′′1

I′1 I′2 I′′2

Figure 3.5: The effects of the three crossover operators.

this directly by ensuring that the algorithm will never eliminate all paths between
a pair of vertices. Such an approach is called a diversity mechanism. Ensuring
diversity this way, we can be strict in the replacement otherwise. In fact, for each
pair (u, v) of vertices we eliminate all but the fittest individual connecting u to
v. If a new individual with the same fitness is created for a pair of vertices, we
will favour it over previously generated individuals. This is a form of truncation
selection.

With a truncation selection operator guiding the replacement of individuals,
it makes sense to select individuals as parents of mutation and crossover in a
way that produces less selection pressure. We therefore choose these individuals
uniformly at random from our population.

Mutation and Crossover

The last missing ingredients for Algorithm 3.1 is the definition of the variation
operators for the APSP problem.

Considering our individuals, it seems natural to define the following elemen-
tary mutation operator. Let (u, v) ∈ E be the first edge of the individual I and
(u′, v′) ∈ E be the last edge. Pick an edge e from the set of all edges incident to
u or v′ uniformly at random. If this edge is (u, v) or (u′, v′), remove it from the
individual. Otherwise, append the edge at the corresponding end of the individ-
ual. Observe that this could erase an individual consisting of a single edge (u, v).
Hence, in this case, we will pick an edge uniformly at random from the set of all
edges incident to u or v except (u, v) and append it.

Since our individuals differ in length, we cannot simply apply the same def-
inition for the 1-point crossover as in the bit-string case. Instead, we propose
the following three variants of the 1-point crossover operator that combine two
individuals I1,I2 consisting of `1 and `2 edges respectively.

The crossover operator ⊗1 simply combines both individuals by appending I2

to I1. The second operator, ⊗2, chooses a random number i ∈ [0, . . . , `1] and
appends I2 to the first i edges of I1. Finally, the operator ⊗3 chooses two random
numbers i ∈ [0, . . . , `1] and j ∈ [0, . . . , `2]. The new individual created by this
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operator consists of the first i edges of I1 and the last `2 − j edges of I2. In
Figure 3.5 the effects of the three crossover operators are depicted.

Observe that, unlike mutation, crossover may combine two individuals repre-
senting walks to a new individual that no longer represents a walk, and hence has
infinite fitness.

3.4.2 Upper Bound for the (≤ µ + 1)-EA
The main ideas to prove the upper bound of O(n4) for the (≤ µ + 1)-EA are as fol-
lows. Being pessimistic, we may assume that shortest paths are found exclusively
by adding edges to already found shortest paths. More specifically, we assume
that only a single edge is added in each iteration. Then, to find a shortest path
from u to v for (u, v) ∈ V2

` , it suffices that the (≤ µ + 1)-EA chooses ` times the ad-
equate shortest path already in the solution. Each time it has to add the appropriate
edge to enlarge it. Choosing the right path has probability O(n−2)) and choosing
the appropriate edge to add has probability O(n−1). If ` ≥ log n, the time needed
for this is that sharply concentrated around the mean of Θ(`n3), that we may use a
union bound argument over all (u, v) ∈ V2

` .

Lemma 3.7. Let ` ≥ log(n). Within O(`n3) steps, the (≤ µ + 1)-EA finds with high
probability a shortest path from u to v for all (u, v) ∈ V2

` .

Proof. Let (u, v) ∈ V2
` . We first analyse the probability that a shortest path from

u to v is not found within a certain time. For the analysis, we fix a path P =

((u, v1), (v1, v2), . . . , (v`′−1, v`′ = v)) of length `′ ≤ `. Note that P will be a technical
tool only and we do not aim at finding this particular path.

In the following, we shall only consider mutation steps that perform a single
elementary mutation. According to the properties of the Poisson distribution a
mutation consists of a single elementary mutation with probability 1

e .
We call a mutation step the j-th pessimistic improvement in P if the following

holds. (i) The mutation creates a shortest path from u to v j+1 out of a shortest
path from u to v j that is already in the population. (ii) The pessimistic improve-
ments 1, . . . , j − 1 have already been done. Note that this implies that pessimistic
improvements appear in ascending order. Obviously, when the (≤ µ + 1)-EA has
performed the (`′ − 1)-st pessimistic improvement in P, a shortest path from u to
v has been found.

Let the random variable t′ denote the number of steps the (≤ µ + 1)-EA ex-
ecutes until it performs the (`′ − 1)-st pessimistic improvement in P. For i ∈
[1, . . . , t′] define the random variable Xi by Xi = 1 if the i-th mutation step is a
pessimistic improvement in P and Xi = 0 otherwise. Then

Pr[Xi = 1] ≥
1
e

1
n(n − 1)2 >

1
e

1
n3 =: p,
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independent of the first i−1 steps, since the probability to pick the correct individ-
ual is at least 1

n(n−1) and the probability to pick the correct edge is at least 1
n−1 . For

every i > t′ we independently define Xi by Pr[Xi = 1] = p and Pr[Xi = 0] = 1 − p.
Let t := eη`n3 for some η > 2. If the (≤ µ + 1)-EA has not found a shortest

path from u to v after t steps, it obviously has not performed the (`′ − 1)-st pes-
simistic improvement in P, and thus X :=

∑t
i=1 Xi < `′. For every i ∈ [1, . . . , t]

the random variable Xi fulfils Pr[Xi = 1|X1 = x1, . . . , Xi−1 = xi−1] ≥ p for all
x1, . . . , xi−1 ∈ {0, 1}. Define the mutually independent binary random variables X∗i
by Pr[X∗i = 1] = p for i ∈ [1, . . . , t]. For some vertices u, v ∈ V define the set of
all shortest paths between them as

Puv := {P | P is shortest path from u to v}.

Using Lemma 3.1 c) and the Chernoff bound from Theorem 3.1 a’) with

α :=
`′

E[X∗]
≤
`

pt
=

1
η

the probability of not finding a shortest path from u to v in t steps can be bound by

Pr
[
no P ∈ Puv found in t steps

]
≤ Pr[X < `′]
≤ Pr[X∗ < `′]
= Pr[X∗ < αE[X∗]]

≤ exp(−1
2 (1 − α)2E[X∗])

≤ exp(−1
2 (1 − α)2 pt)

≤ exp(−1
8η`).

With this inequality we can now bound the probability that the (≤ µ + 1)-EA
does not succeed in t steps. For this we use a simple union bound argument to
bound the probability of not finding a shortest path for all vertex pairs (u, v) ∈ V2

`

in t steps as

Pr
[
∃(u, v) ∈ V2

` :
(
@P ∈ Puv : P found in t steps

)]
≤

∑
(u,v)∈V2

`

Pr
[
no P ∈ Puv found in t steps

]
≤ n(n − 1) exp(−1

8η`) (3.1)

< n2 exp(−1
8η log(n))

= n2− η8 .

For any constant k we can choose η := 8(k + 2). Thus, with probability 1−O(n−k)
the optimisation time is at most eη`n3. Note that we did not try to optimise the
constant η. �
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For ` = n − 1, Lemma 3.7 yields the following upper bound.

Theorem 3.5. With high probability, the optimisation time of the (≤ µ + 1)-EA is
O(n4).

We can also derive an expected optimisation time of O(n4) from the strong
concentration bound of equation (3.1) in Lemma 3.7.

Theorem 3.6. Let ` ≥ log(n). The expected number of steps until the (≤ µ + 1)-EA
finds a shortest path from u to v for all (u, v) ∈ V2

` is O(`n3). In particular it holds
that the expected optimisation time of the (≤ µ + 1)-EA is O(n4).

Proof. Let t` be the number of steps until the (≤ µ + 1)-EA has found a shortest
path from u to v for all (u, v) ∈ V2

` . In the proof of Lemma 3.7 we showed that the
probability that t` is greater than eη`n3 is Pr[t` > eη`n3] ≤ n2− η8 . Let η := νni for
some ν ≥ 24 and i ∈ N. Then,

Pr[eν`n4+i ≥ t` > eν`n3+i] ≤ Pr[t` > eν`n3+i]

≤ n2− νn
i

8

≤ n2−3ni
.

For n ≥ 2, the expected number of steps E[t`] needed to find a shortest path from
u to v for all (u, v) ∈ V2

` is thus

E[t`] =

∞∑
t′=1

t′ · Pr[t` = t′]

≤ eν`n3 +

∞∑
i=0

eν`ni+4∑
t′=eν`ni+3+1

t′ · Pr[t` = t′]

≤ eν`n3 +

∞∑
i=0

eν`ni+4 · n2−3ni

= eν`n3(1 +

∞∑
i=0

ni+3−3ni
)

≤ eν`n3(2 +

∞∑
i=1

n−ni
)

≤ eν`n3(2 + 2).

Setting ` = n we get the upper bound for the expected optimisation time. �



66 CHAPTER 3. EVOLUTIONARY ALGORITHMS

3.4.3 Lower Bound for the (≤ µ + 1)-EA

We now give a lower bound on the runtime of the (≤ µ + 1)-EA for the APSP
problem. For this we construct a worst-case graph. Let Kn be the complete di-
rected graph Kn = ([1, . . . , n] , {(u, v) | u, v ∈ [1, . . . , n] , u , v}) with edge lengths
defined as

w(u, v) =

1 if |v − u| = 1,
n else.

For two distinct vertices u, v the unique shortest path from u to v is ((u, u +

1), . . . , (v − 1, v)) if u < v and ((u, u − 1), . . . , (v + 1, v)) otherwise. These edge
lengths, together with our initialisation and selection for replacement, guarantee at
any time all individuals in the population consist of a single edge or are a shortest
path.

Definition 3.4. The distance of two paths is the minimal number of elementary
mutations needed to mutate one path into the other. A mutation step crosses a
distance of c if the path it chooses to mutate and the one it creates have distance
c.

Note that for the graph Kn with edge lengths w the distance of two shortest
paths P1, P2 is the size |E(P1)4E(P2)| of the symmetric difference 4 of the set of
edges E(P1), E(P2) of the two paths.

Lemma 3.8. For any c ∈ N, the probability that a mutation step crosses a distance
of c is at most 4c

e(n−2)c
n−2
n−3 = O(cn−c).

Proof. Let P1 be the shortest path the mutation step chooses for mutation and let
P2 be a shortest path that has a distance of c to P1. Each elementary mutation
of a sequence of elementary mutations applied to P1 either decreases or increases
the distance of the resulting solution to P2. Hence a shortest path P2 in distance
c from P1 can only be obtained via a sequence of c + 2i elementary mutations for
some i ∈ N0. In this case, c+ i of them decrease and i of them increase the distance
of the intermediate solution to P2. The probability that a certain mutation of the
c + 2i elementary mutations decreases this distance is at most (n − 2)−1. This is
because there are at most 2 additions/deletions that achieve the distance reduction
out of at least 2(n − 2) possible elementary mutations.

Assume in this paragraph that our mutation consists of exactly c + 2i elemen-
tary mutations. Then there are at most

(
c+2i

i

)
choices for the c + i ones that reduce

the distance to P2. In consequence, the probability to end up with P2 is at most(
c+2i

i

)
(n − 2)−(c+i).



3.4. CROSSOVER AND THE APSP PROBLEM 67

It is easy to see that there are at most 2c shortest paths P2 that are in distance
c of P1. Thus, the probability to end up with any shortest path P2 in distance c of
P1 is at most 2c

(
c+2i

i

)
(n − 2)−(c+i).

Recall that the probability that our mutation consists of c+2i elementary muta-
tions is (e(c + 2i−1)!)−1. Hence the probability that a single mutation step crosses
a distance c is at most

∞∑
i=0

1
e(c + 2i − 1)!

(
c + 2i

i

)
2c

(n − 2)c+i =
2c

e(n − 2)c

∞∑
i=0

c + 2i
i!(c + i)!

1
(n − 2)i

≤
4c

e(n − 2)c

∞∑
i=0

1
(n − 2)i

≤
4c

e(n − 2)c

n − 2
n − 3

= O(cn−c).

�

Lemma 3.9. For any constant k, there exists a constant c := c(k) such that with
probability O(n−k), during its optimisation time the (≤ µ + 1)-EA will only accept
mutation steps that cross at most a distance of c.

Proof. We know from Theorem 3.5 that the (≤ µ + 1)-EA has with high probabil-
ity an expected optimisation time of O(n4). Furthermore Lemma 3.8 tells us that a
distance of c is crossed with probability O(cn−c). Thus, the probability that during
the optimisation time a step crossing a distance of c is accepted is at most O(n4−c).
Choosing c appropriately, this probability turns into O(n−k). �

Let P∗ := ((1, 2), (2, 3), . . . , (n − 1, n)) be the shortest path from vertex 1 to
vertex n in Kn with edge lengths w. Consider a sequence of mutation steps (each
changing at least one edge) that may create P∗. Of these steps consider the last
b n−3

c c where c is the constant from Lemma 3.9. Let the paths that are created
during these steps be P0, P1, . . . Pb n−3

c c
= P∗. Since |P∗| = n − 1 and since P j has

at most c edges more than P j−1, we have that |P0| ≥ 2 and thus all P j are shortest
paths. Thus, these paths fulfil the requirements of the following definition.

Definition 3.5 (c-Trail). A c-trail T := (P0, P1, . . . , P
b

n−3
c c

) of P∗ is a sequence of

shortest paths such that P0 consists of at least 2 edges, P
b

n−3
c c

= P∗, and for all

j ∈
[
1, . . . , b n−3

c c
]
, P j−1 and P j have a distance of at most c.

Since there are at most (2c)2 shortest paths that have a positive distance of at
most c from P j, there are at most (4c2)b

n−3
c c such c-trails.



68 CHAPTER 3. EVOLUTIONARY ALGORITHMS

Theorem 3.7. With high probability, the optimisation time of the (≤ µ + 1)-EA on
Kn with edge lengths w is Ω(n4).

Proof. Let c be the constant from Lemma 3.9. While finding the shortest path P∗

the (≤ µ + 1)-EA must perform a sequence of mutations, each creating a shortest
path. By Lemma 3.9 we know that each two consecutive paths will have distance
at most c with high probability. Hence the (≤ µ + 1)-EA must perform all b n−3

c c

mutation steps that create P j out of P j−1 for j ∈
[
1, . . . , b n−3

c c
]

for one of the c-trails
of P∗. Note that we will ignore the mutation steps leading to P0 in this proof.

The proof will now proceed as follows. First, we will analyse the number
of steps the (≤ µ + 1)-EA needs to follow one particular c-trail of P∗. Then, we
will prove that with high probability the (≤ µ + 1)-EA will not follow any of the
c-trails of P∗ in less than Ω(n4) steps.

Fix one c-trail T = (P0, P1, . . . , Pb n−3
c c

) of P∗. We call a mutation step an
improvement in T if it creates P j out of P j−1 for some 1 ≤ j ≤ b n−3

c c. If all b n−3
c c

improvements in T have been done, we say that the (≤ µ + 1)-EA has followed T .
Let the random variable t′ denote the number of steps the (≤ µ + 1)-EA needs

to follow T . For i ∈ [1, . . . , t′] define the binary random variables Xi by Xi = 1 if
the i-th mutation step is an improvement in T . An improvement changes at least
1 and at most c edges of a path. In order to change c′ ∈ [1, . . . , c] edges, the algo-
rithm first has to pick the right individual and then change the c′ edges. Picking
the right individual has probability 1

n(n−1) . According to Lemma 3.8 changing the
c′ edges happens with probability 4c′

e(n−2)c′
n−2
n−3 . Thus, for n ≥ 6, i ∈ [1, . . . , t] and for

all x1, . . . , xi−1 ∈ {0, 1} we have that

Pr[Xi = 1|X1 = x1, . . . , Xi−1 = xi−1] ≤
c∑

c′=1

1
n(n − 1)

4c′

e(n − 2)c′
n − 2
n − 3

≤
4

en(n − 1)(n − 2)
·

n − 2
n − 3

·

c−1∑
c′=0

c′

(n − 2)c′

<
4c

en(n − 1)(n − 2)
·

n − 2
n − 3

·
n − 2
n − 3

<
8c

e(n − 1)3 .

For i > t′ define Xi by Pr[Xi = 1] = 8c
e(n−1)3 and for i ∈ [1, . . . , t] define the binary

random variables X∗i by Pr[X∗i = 1] = 4
e(n−1)3 . Let t := 1

80c4 (n − 1)4. The expected
value of X∗ :=

∑t
i=1 X∗i is

E[X∗] =

t∑
i=1

Pr[X∗i = 1] = t
8c

e(n − 1)3 =
n − 1
10ec3 .
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If the (≤ µ + 1)-EA has found P∗ in t steps by following the c-trail T , then obvi-
ously X :=

∑t
i=1 Xi ≥ |T | = b n−3

c c. Hence,

Pr[P∗ found in t steps by following T ] = Pr[X ≥ |T |].

Let β := |T |
E[X∗] . Then for n ≥ 5 + 2c it holds that

β ≥ b
n − 3

c
c ·

10ec3

n − 1
≥

n − 3 − c
c

·
2c

n − 1
· 5ec2 ≥ 5ec2.

Hence, by Lemma 3.1a) and the Chernoff bound Theorem 3.1c), the proba-
bility of finding P∗ in t = 1

80c4 (n − 1)4 steps by following c-trail T is bounded
by

Pr[X ≥ |T |] ≤ Pr[X∗ ≥ |T |]
= Pr[X∗ ≥ βE[X∗]]
< (eβ−1β−β)E[X∗]

≤ (
e
β

)βE[X∗]

≤ (5c2)−|T |

= (5c2)−b
n−3

s c.

Since the (≤ µ + 1)-EA has to follow one of the c-trails of P∗ in order to find
P∗, the probability that the (≤ µ + 1)-EA finds P∗ in t = 1

80c4 (n − 1)4 steps is
bounded by

Pr[P∗ found in t steps] ≤
∑
T∈T

Pr[P∗ found in t steps by following T ]

≤
∑
T∈T

(5c2)−b
n−3

c c

= (4
5 )b

n−3
c c.

Here T denotes the set of all c-trails of P∗. In the penultimate line we used the
fact that there are at most (4c2)b

n−3
c c c-trails of P∗. Since the (≤ µ + 1)-EA has to

find P∗ to solve the APSP it needs with high probability at least Ω(n4) steps. �

Observe that this theorem implies an expected optimisation time of Ω(n4).
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3.4.4 Analysing the (≤ µ + 1)-GA

With a tight bound for the (≤ µ + 1)-EA now established we next will analyse
what happens if we also use crossover in our algorithm. More precisely, we show
that we enrich the (≤ µ + 1)-EA with a crossover operator, then the expected op-
timisation time drops to O(n3.5

√
log n).

On first glance it seems natural that the additional use of powerful variation
operators should speed up computation. However, this behaviour could not be
proven for a non-artificial problem so far. Several reasons for this have been
discussed in the literature. In our setting, the following aspect seems crucial. The
hoped for strength of the crossover operator lies in the fact that it can advance a
solution significantly. E.g., it can combine two shortest paths consisting of `1 and
`2 edges to one consisting of `1 + `2 edges in one operation. On the negative side
this will only work if the two individuals we try to combine fit together. Thus with
relatively high probability, the crossover operator will produce an invalid solution.
In our setting this means that a crossover will not produce a walk at all. Often,
this disadvantage seems to outnumber the chance of faster progress.

Our analysis shows that this does not happen in our setting. In fact, from
the point on when our population contains all shortest paths having O(

√
n log n)

edges, crossover becomes so powerful that we would not even need mutation any-
more.

We can prove the claimed upper bound for all three crossover operators intro-
duced in Subsection 3.4.1. However, as the crossover operators we use become
more elaborate, we need to add the following restrictions for the proof.

R1: Among two shortest paths the fitness function prefers the path consisting of
fewer edges. (Needed for ⊗2.)

R2: The input graph has unique shortest paths. (Needed for ⊗3.)

With these restrictions we can show for each crossover operator that it successfully
creates a longer path by combining two shorter paths with a certain probability.
Using these success probabilities we then prove the expected optimisation time of
O(n3.5

√
log n).

Lemma 3.10. Let k > 1. Assume the population I contains a shortest path for
any pair of vertices (u′, v′) ∈ V2

k . Let ` ∈ [k + 1, . . . , 2k] and (u, v) ∈ V2
` . Then the

following holds.

a) A single execution of the ⊗1-operator generates a shortest path from u to v
with probability Ω(2k+1−`

n4 ).
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b) Assume that for all (u′, v′) ∈ V2
k , I contains a shortest path from u′ to v′

consisting of at most k edges. A single execution of the ⊗2-operator gen-
erates a shortest path from u to v having at most ` edges with probability
Ω( (2k+1−`)2

kn4 ).

c) Assume R2. A single execution of the ⊗3-operator generates the shortest
path from u to v with probability Ω( (2k+1−`)3

k2n4 ).

Proof. Claim a) The ⊗1-operator can generate a shortest path from u to v by pick-
ing a path Pu starting in u and a path Pv ending in v, such that Pu together with Pv

forms a path from u to v. A particular pair (Pu, Pv) is chosen with probability at
least

(n(n − 1))−2 = Ω( 1
n4 ).

This leaves the task of counting the number of pairs that generate a shortest path
from u to v. Let P = ((u,w1), (w1,w2), . . . , (w`−1, v)) be a shortest path from u to v
having ` edges. Then, for every vertex wi, i ∈ [` − k, . . . , k], a shortest path from
u to wi and a shortest path from wi to v are in the population. Hence, there are at
least 2k + 1 − ` pairs of paths that the ⊗1-operator can combine to a shortest path
from u to v. In summary, the probability that a single crossover step generates a
shortest path from u to v is at least Ω( 2k+1−`

n4 ).
Claim b) To generate a shortest path from u to v, it suffices that the ⊗2-operator
picks a path Pu starting in u, a path Pv ending in v, and a number i ∈ [0, . . . , |Pu|]
such that the first i edges of Pu together with Pv form a path from u to v. The
probability that a particular triple (Pu, Pv, i) with |Pu| ≤ k, |Pv| ≤ k, i ≤ |Pu| is
chosen is at least

(n(n − 1))−2(k + 1)−1 = Ω( 1
kn4 ).

It remains to count how many such triples generate a shortest path from u to
v. Let P = ((u,w1), . . . , (w`−1, v)) be such a shortest path having ` edges. Let
` − k ≤ j ≤ k. Then I contains a shortest path Pu = ((u,w′1), . . . , (w′j−1,w j)) from
u to w j having j edges. Since `− i ≤ k we also have that for each i ∈

[
` − k, . . . , j

]
,

I contains a shortest path Pv from w′i to v. Obviously, the first i edges of Pu

combined with Pv form a shortest path from u to v. Hence, the total number of
triples yielding a shortest path from u to v having ` edges is at least

k∑
j=`−k

( j − (` − k) + 1) = Ω((2k + 1 − `)2).

Thus, the probability that ⊗2 generates such a path in a single step is at least
Ω( (2k+1−`)2

kn4 ).
Claim c) To generate P, the ⊗3-operator has to pick a path Pu starting in u, a path
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Pv ending in v, and numbers i ∈ [0, . . . , |Pu|] , j ∈ [0, . . . , |Pv|] such that the first i
edges of Pu together with the last j edges of Pv form the path P. The probability
that a particular 4-tuple (Pu, Pv, i, j) with |Pu| ≤ k, |Pv| ≤ k, i ≤ |Pu|, j ≤ |Pv| is
chosen is at least

(n(n − 1))−2(k + 1)−2 = Ω( 1
k2n4 ).

It remains to count the number of such 4-tuples that generate P. For this,
consider two sub-paths of P, one starting at u, the other ending at v. Observe that
those sub-paths are also shortest paths. Since we assume all shortest paths to be
unique, both sub-paths will be in the population if they consist of at most k edges.
If the sum of the numbers of edges of both paths is some i ∈ [`, . . . , 2k], they have
i−` edges in common and the number of successful crossover positions is i−`+1.
The number of pairs of sub-paths that have i − ` edges in common is 2k + 1 − i.
Hence, the total number of 4-tuples yielding P is at least

2k∑
i=`

(i − ` + 1) · (2k + 1 − i) =

2k−∑̀
i=0

(i + 1) · (2k + 1 − i − `)

= Ω((2k + 1 − `)3).

Thus, the probability that ⊗3 generates the shortest path P in a single step is at
least Ω( (2k+1−`)3

k2n4 ). �

Corollary 3.1. Let k > 1 and ` = 3k
2 . Assume the population I contains for any

pair of vertices (u′, v′) ∈ V2
k a shortest path. Assuming R1 for ⊗2 and R2 for ⊗3

the following holds.

a) Let (u, v) ∈ V2
` . A single execution of the ⊗i-operator for i ∈ {1, 2, 3} will

create a shortest path from u to v with probability at least Ω( k
n4 ).

b) The expected number of crossover steps until I contains a shortest path
from u to v for all (u, v) ∈ V2

` is O( n4 log(n)
k ).

Proof. Claim a) This follows directly by plugging ` into Lemma 3.10.
Claim b) This proof is similar to the proof of the coupon collector’s theorem (cf.
[MR95]). Let r = |V2

` |− |V
2
k | = O(n2) be the number of paths that have to be found.

By Claim a) the first of the sought after paths will be found after an expected
number of O(n4

k
1
r ) steps. If i paths have been found, it will take an expected

number of O( n4

k
1

r−i ) steps until the (i + 1)-st path is found. Hence, finding all r
paths takes

r−1∑
i=0

O
(
n4

k

)
1

r − i
= O

(
n4

k

) r∑
i=1

1
i

= O
(
n4 log(n)

k

)
steps. �
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Theorem 3.8. Let i ∈ {1, 2, 3}. Assume that the conditions for the ⊗i-operator
hold. Then the (≤ µ + 1)-GA using mutation and the ⊗i-crossover operator with
any constant rate needs an expected number of O(n3.5

√
log(n)) steps to solve the

APSP problem.

Proof. Let k :=
√

n log(n). Both the ⊗i and the mutation operator happen with
constant probability and neither can decrease the fitness of the population. Thus,
for an upper bound we may consider the steps of one of the operators only. First
assume that only the mutation operator is used at the beginning of the algorithm.
According to Theorem 3.6 the algorithm will need an expected number of at most
O(n3.5

√
log(n)) steps to find a shortest path from u to v for every (u, v) ∈ V2

k . Note
that Theorem 3.6 also holds if a fitness function preferring fewer edges is used.
As soon as this happens, we only consider crossover until the remaining shortest
paths have been found. For this we simply apply Corollary 3.1 repeatedly for the
⊗i-operator until ` = n − 1. Hence the expected number of steps is

dlogc(n)e∑
j=blogc(k)c

O
(
n4 log(n)

c j

)
= O

n4 log(n)
dlogc(n)e∑

j=blogc(k)c

1
c j


= O

n4 log(n)
clogc(k)

dlogc( n
k )e∑

j=0

1
c j


= O

(
n3.5

√
log(n)

)
where c := 3

2 . �

The Restrictions R1 and R2

We now demonstrate where our proof of the optimisation time would fail without
the additional constraints for ⊗2 and ⊗3.

First we show why we need assumption R1 in our proof for the crossover oper-
ator ⊗1. For this consider for even n the complete graph Kn = ([1, . . . , n] , {(u, v) |
u, v ∈ [1, . . . , n] , u , v}) with edge lengths

w′(u, v) :=


1 if |v − u| = 1 and u, v ≤ n

2 + 1,
2
n if |v − u| = 1 and u, v ≥ n

2 + 2
2
n if (u, v) ∈ {(2, n

2 + 2), ( n
2 + 2, 2), (n, 1), (1, n)}

1 + w2
uv else

depicted in Figure 3.6. Here, wuv is the cost of the shortest path using the edges of
length 1 and 2

n from u to v.
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n
2 + 3n − 1

321

n 11 1

2
n

n
2 + 2

2
n

2
n

2
n

n
2

n
2 + 1

n
2 edges

Figure 3.6: The complete graph Kn with edge lengths w′. For this graph the
analysis of the ⊗2-operator fails if the fitness function does not prefer individuals
with fewer edges. The shown edge lengths apply to both directions of the indicated
edge while the edges not shown in the figure are longer than the shortest paths
shown.

(1, 1) (2, 1)

(1, 2) (2, 2)

( n
2 − 2, 1)

( n
2 − 2, 2)

(0, 1) ( n
2 , 1)

( n
2 − 1, 1)

( n
2 − 1, 2)

Figure 3.7: The complete graph K′′n with edge lengths w′′ for which the analysis
of the ⊗3-operator fails since the shortest paths are not unique. The edges shown
in the figure have length 1 in both directions and the ones not depicted are longer
than the shortest paths shown.

Assume, as in Lemma 3.10, that for all vertex pairs (u, v) ∈ V2
k a shortest path

is in the population I, and that ` ∈ [k + 1, . . . , 2k] and ` ≤ n
2 . Now consider the

computation of a shortest path from u := 1 to v := ` + 1 using the ⊗2-operator.
Two such shortest paths exist, namely P1 which uses the edge (1, 2) of cost 1 and
has ` edges and P2 which uses the n

2 edges of cost 2
n and has ` − 1 + n

2 edges. If
I contains for the paths from u to i for i ∈ [2, . . . , k + 1] the paths using the edge
(1, 2), the proof of Lemma 3.10b) works. However, what happens if I contains
the paths using the n

2 edges of cost 2
n? Observe that in this case there are Ω(n)

possible positions to cut Pu. Hence the probability that the ⊗2-operator picks a
convenient triple (Pu, Pv, i) drops from Ω( 1

kn4 ) to Ω( 1
n5 ).

Now consider the ⊗3-operator. In the proof of Lemma 3.10 we assumed that
assumption R2 holds, which requires that there exists one unique shortest path for
each pair of vertices. To see why this requirement is essential, we again construct a
problematic graph. Consider for even n the complete graph K′′n := (V, {(u, v)|u, v ∈
V, u , v}) with the vertex set defined as

V :=
[
1, . . . ,

n
2
− 1

]
× {1, 2} ∪

{
(0, 1) ,

(n
2
, 1

)}
.
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v

u

Set of Shortest Paths to v

Set of Shortest Paths from u

Figure 3.8: An example for sets of shortest paths in K′′n that do not overlap enough
and thus do not fulfil the requirements for the proof of Lemma 3.10c).

and edge lengths

w′′(u = (u1, u2), v = (v1, v2)) :=

1 if |v1 − u1| = 1,
1 + w2

uv else.

Again, wuv is the length of the shortest path using the edges of length 1 from u to
v. See Figure 3.7 for an example.

Observe that there are many different shortest paths connecting two vertices.
Since all shortest paths connecting two vertices have an equal number of edges
the graph fulfils assumption R1.

Now assume that I contains the shortest paths from u := (0, 1) to i for i ∈
[1, . . . , k]× {0, 1} and from j to v := (n

2 , 1) for j ∈
[

n
2 − k, . . . , n

2

]
× {0, 1} as given in

Figure 3.8. Then for any shortest path from u to v the population will not contain
all sub-paths of length up to k, as needed by the proof of Lemma 3.10. Even more,
any pair of paths, one starting in u, the other ending in v, will only overlap on at
most two vertices.

3.4.5 Experimental Results
In the previous sections we saw that the asymptotic worst case optimisation time
of the (≤ µ + 1)-EA is Θ(n4), while that of the (≤ µ + 1)-GA is O(n3.5

√
log n). In

this section we will show that this difference is in fact noticeable in practice. For
this we implemented Algorithm 3.1 given in Section 3.2.1 with the three different
crossover operators and ran it on the following three graph classes.

The first class consists of the weighted complete graphs Kn with edge lengths
w from Section 3.4.3. This graphs have edge weights 1 for all edges (u, v) with
|v − u| = 1, and weight n for all other edges.

The second and third graph classes are the ones used in Section 3.4.4 to argue
why we need additional restrictions in the proofs if the operators ⊗2 or ⊗3 are used.
Note however, that we only used this restrictions in the proof. Our algorithm does
not prefer paths with fewer edges. Nor does it need unique shortest paths.
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Figure 3.9: Optimisation time for the various crossover operators on Kn with edge
lengths w (see Section 3.4.3).

We ran four variations of Algorithm 3.1 on all three graph classes mentioned
above. The first variation only uses mutation while the remaining three varia-
tions used the three different crossover operators ⊗1, ⊗2 and ⊗3. The crossover
probability was set to p⊗ := 1

4 .
For all three graph classes we considered all graphs having an even number

of vertices between 8 and 100. On each instance the algorithm was run 50 times.
The average optimisation times for the experiments are shown in Figure 3.9, Fig-
ure 3.10, and Figure 3.11. To keep the plots legible we only plotted the standard
deviation for every fourth data point. For all instances of 40 or more edges, the
standard deviation in the data is below 10%.

It can clearly be seen that adding any of the crossover operators indeed speeds
up the computation considerably. The results also show that the “bad graphs” Kn

with edge lengths w′ and K′′n with edge lengths w′′ from Section 3.4.4 are not hard
to solve for the corresponding crossover operators. In comparison to the other
graph classes, the mutation operator is more effective on K′′n with w′′. The reason
is probably that, due to the structure of w′′, the mutation operator has a lot of
possibilities to create shortest paths. Thus, the difference between runs with and
without crossover are not quite as noticeable.

To estimate the different exponents of the optimisation times with and with-
out crossover, we additionally ran the algorithms another 20 times each on larger
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Figure 3.10: Optimisation time for the various crossover operators on K′n with
edge lengths w′ (see Figure 3.6).

instances of size 50, 60, 70, . . . , 250. We chose these bigger input sizes to weaken
the effect of the lower order terms on the optimisation time. To visualise the dif-
ferent exponents, we use log-log plots. This means that both the x-axis and the
y-axis are scaled logarithmically. The reason for this is that for any polynomial
f (x) = axn + o(xn), a log-log plot will plot the function

log
(

f
(
log−1 (x)

))
= log

(
a (ex)n + o

(
(ex)n)) = nx + o (x) ,

thus exposing the highest exponent of the polynomial.
Figure 3.12, Figure 3.13, and Figure 3.14 show the log-log plots. The dif-

ference in the exponent of the optimisation time between the mutation-only al-
gorithm and any of the algorithms using crossover can easily be discerned in the
plots. We also calculated the slope of the plots to approximate the order of growth
of the optimisation time. The results are shown in table 3.1. Only using mutation
may indeed cause a quartic optimisation time as the numbers for the graph Kn

with weights w and w′ show. Also, on all three examples crossover seems to be
slightly faster than the O(n3.5

√
log n) upper bound shown by us.

The experiments also show that ⊗1 seems to have a slight edge over ⊗2 which
in turn is slightly faster than ⊗3. We conjecture that this is caused by the fact that
the simpler crossover operators on average combine longer paths than the more
complicated ones.
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Figure 3.11: Optimisation time for the various crossover operators on K′′n with
edge lengths w′′ (see Figure 3.7).

3.5 Conclusion and Discussion

In this chapter we studied the behaviour of evolutionary algorithms for the single
source shortest path problem and the all-pairs shortest path problem.

We gave a tight analysis of the optimisation time of an evolutionary algo-
rithm for the SSSP problem that was given in [STW04]. This includes improv-
ing the upper bound of O(n2` log( n

`
)) that is implicit in a proof in that paper to

O(n2 max{`, log(n)}). Furthermore we gave a carefully selected lower bound graph
for all values of n and `.

At least as important as the precise bounds for this particular problem are
the methods we developed for this analysis. Past arguments suggested a coupon-
collector like behaviour in finding the shortest paths. Those, however, cannot be
employed to obtain such sharp bounds. Indeed, our analysis shows that the true
behaviour is different. Namely, the different shortest paths grow at comparable
speeds that are strongly concentrated around their expected values.

Armed with this methodology, we also gave an analysis of an evolutionary
algorithm for the all-pairs shortest path problem. Here we were able to show
a tight bound of Ω(n4) on the optimisation time if only mutation is used. We
defined a class of worst-case graphs for which the algorithm indeed has a quartic
optimisation time.
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Figure 3.12: Log-log plots for Kn with edge lengths w .

w w′ w′′

Mutation Only 4.00 4.01 3.90
Crossover (⊗1) 3.37 3.38 3.43
Crossover (⊗2) 3.41 3.42 3.41
Crossover (⊗3) 3.44 3.36 3.41

Table 3.1: The slope of the log-log plots in Figure 3.12, Figure 3.13 and Fig-
ure 3.14.

The most interesting result however is that a natural evolutionary algorithm us-
ing only mutation is provably outperformed by one using mutation and crossover.
Indeed, we showed that adding crossover to the evolutionary algorithm for the
APSP problem improves its optimisation time to O(n3.5

√
log n). Clearly, this can-

not compete with classical algorithms that are custom tailored for the all-pairs
shortest path problem. Still, although the difference is only by a factor of nearly
√

n, this is the first time that crossover was proven to be useful in the context of a
non-artificial problem. Hence this result gives a better theoretical foundation for
the use of crossover in practical applications than previous results on artificially
defined pseudo-boolean functions.

While our work is very satisfying from the methodological point of view, some
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Figure 3.13: Log-log plots for K′n with edge lengths w′.

interesting aspects remain open.
For the SSSP problem the most challenging question from a broader perspec-

tive is whether the multi-criteria fitness function is necessary. Recall that we ac-
cept a newly created individual only if for no vertex the distance to the source
is increased. A natural (single-criteria) alternative would be to consider the av-
erage distance. In [STW04] it is argued that the multi-criteria fitness function is
necessary for the algorithm to run properly. However, the counterexample given
there only works if vertices not connected to the source are assumed to have an
infinite distance to the source. In this case, changing the number of ∞–distance
vertices does not change the average distance, and hence the EA finds itself on
a large plateau of constant fitness. A simple way to overcome this (and the one
you would choose naturally in an implementation) would be to replace the infinite
distance of such vertices by a large, but finite number.

This problem resembles the one of maximising linear functions f : {0, 1}n →
R, x 7→

∑n
i=1 aixi with positive coefficients ai. Viewing f as the multi-criteria

fitness function x 7→ (a1x1, . . . , anxn), a simple coupon collector argument shows
an optimisation time of Θ(n log(n)). That the same bound also holds for the fitness
function f itself is the result of a highly complex analysis by [DJW02]. Attempts
to simplify this result later led to the invention of the drift analysis method in
evolutionary computation (cf. [HY04]). With this development in mind, it seems
likely that it is very difficult to prove that a single-criteria EA can solve the SSSP
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Figure 3.14: Log-log plots for K′′n with edge lengths w′′.

efficiently.
Still, some progress on this problem has been made in [BBD+09]. There it is

shown that the single-criteria formulation of the SSSP problem can be solved in
polynomial time. However, the run-time bounds obtained are not tight. Hence a
full understanding of this problem is still missing.

For the APSP problem it is interesting to note that we did not provide any
lower bound for the optimisation time of the algorithm with crossover. Indeed,
in [DT09], an improved upper bound together with a matching lower bound are
given which show that the optimisation time is Θ(n3.25 4

√
log n).

One more interesting aspect still remains open. We still miss a broader classi-
fication of which (non-artificial) problems can profit from using crossover.
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Chapter 4

Hole Detection

In this chapter we study how much geometric information hides in the communi-
cation graph of a wireless sensor network. More precisely, we give an algorithm
that can find holes in this graph by identifying the nodes on the boundary of a hole.
In Section 4.1 we introduce the problem and give an overview of our contribution.

Our algorithm is based on the intuition from a continuous scenario. We discuss
this idea in Section 4.2 and derive the concrete algorithm for (discrete) wireless
sensor networks.

After stating the algorithm we will then analyse its runtime in Section 4.3.
Another interesting aspect discussed there is the distributed and localised imple-
mentation.

The main part of this chapter consists of the correctness proof of our algorithm
in Section 4.4.

We implemented the algorithm and will discuss some experimental results
obtained by our implementation in Section 4.5.

This chapter is based on joint work with Stefan Funke [FK06].

4.1 Introduction
Imagine the following scenario: during a long summer drought, forest fires have
started in a large region of a remote nature preserve that is hardly accessible by
ground transportation. To be able to continuously assess the situation and plan
appropriate countermeasures, planes are sent out to deploy thousands of wireless
sensor nodes. Due to cost restrictions and to achieve the maximum life-time by
energy savings, these sensor nodes are rather low-capability devices. They are
only equipped with temperature and humidity sensors, a simple processing unit
and a small radio device that allows for communication between nearby sensor
nodes. One of the first goals is now to have this network organise itself such

83
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that messages are routed within the network, regions of interest (e.g. the current
fire-front) can be identified, and gathered data can be efficiently queried.

Achieving this goal becomes quite challenging since the only information a
node has about the global network topology are its immediate neighbours with
whom it can communicate. Lacking an energy-hungry GPS unit and being de-
ployed from a plane in a rather uncontrolled fashion, none of the sensor nodes is
aware of its geographic location.

Assume the area of interest is some region R. The planes have deployed suf-
ficiently many sensors such that the area of interest is completely monitored by
the sensors. Unfortunately, not all sensors will be operational upon reaching the
ground. Some of them might fall right into the flames and be destroyed, others
might plunge into a lake or pond and be unable to perform their monitoring task.
Paradoxically, we are particularly interested in those areas where there’s an ongo-
ing fire (and maybe also where there is a lake or pond). However, sensor nodes
that fell into these areas are unable to report this fact.

We want to detect the (boundaries of) such holes in the monitored space cre-
ated by fire or other phenomena via examination of the communication graph of
the wireless nodes.

In essence, the problem that we consider is that of identifying holes just by
examining a communication graph. If in a sufficiently large region sensors break
down, this hole will also manifest itself in the communication graph. Hence holes
identified using the communication graph are indicative of some large-scale spe-
cial event in the region to be monitored. By ’identifying holes’ we mean (a) that
for every point on the boundary of a hole we want the algorithm to mark a sen-
sor node nearby and (b) every sensor node marked by the algorithm lies near a
boundary of a hole.

Related Work

In Fang et al. [FGG06] the authors present an algorithm for detecting holes for
the case where the individual nodes know about their geographic location. Fekete
et al. in [FKP+04] describe a method to identify boundaries in a wireless net-
work which does not require the nodes to be aware of their geographic position.
However, their method assumes a uniform distribution of the network nodes in all
non-hole areas. In a more recent paper [KFPF06] the same authors present a de-
terministic approach for boundary recognition which does not rely on a uniform
node distribution. Their paper also proposes interesting methods to aggregate the
information gathered by the boundary recognition step in a higher-level topology
sketch of the network. But their boundary detection algorithm does not come with
a theoretical correctness guarantee. It also appears to require a rather high node
density in practice, too. In a recent contribution by Funke [Fun05] a heuristic
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boundary detection algorithm based on a similar intuition as the algorithm pre-
sented here is developed. Unfortunately, correctness cannot be proven for this
heuristic algorithm (see Section 4.2.1 for a brief explanation of the problems with
this approach). Furthermore its computation is not localised as it requires the
computation of distance fields over the whole network.

Newer work on this topic was recently published by Funke and Milosavljevic
[FM07] and Wang et al. [WGM06]. Those papers also work in a general setting.
They also allow to compute virtual coordinates for the sensor nodes.

Our Contribution

We present an algorithm for detecting hole boundaries in a wireless network that
is represented purely by its communication graph. If the structure of the commu-
nication graph is a unit-disk graph determined by the geographic locations of the
nodes, we can prove the correctness of our algorithm. More precisely, under some
additional conditions our algorithm correctly identifies nodes near boundaries and
never misclassifies any nodes. The employed proof technique and sampling con-
dition has some similarity to the one used in the area of shape reconstruction
[ABE98]. The algorithm is very simple and has running time linear in its input.
While the theoretical analysis is not very satisfying in that it makes rather strong
assumptions about the input setting, our experimental results show that the algo-
rithm performs much better in practice. Note that this is the case for many shape
reconstruction algorithms. The idea of using the geometry information hidden
in the connectivity structure of the communication graph to identify topological
features has only recently been addressed [KFPF06, FKP+04, Fun05]. The algo-
rithm presented here is to our knowledge the first that comes with some formal
guarantee.

As a general topic of interest we propose the problem of recovering geometric
information from purely combinatorial connectivity information as it arises for ex-
ample as communication graphs in the context of wireless networks. While such
communication graphs do not explicitly contain geographic location information,
they were created based on certain geometric properties and hence implicitly bear
some geometry information. Recovering or ’reverse engineering’ this information
appears to be an interesting challenge. We will show that the implicit geometry
information suffices to identify certain topological features of the network. The
question is how much more can be accomplished using geometry information hid-
den in the connectivity of the network.
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4.2 The Hole Detection Algorithm

4.2.1 The Continuous Case

Picture the following continuous variant of our problem. Given a (possibly non-
simply) connected region R ⊂ R2 and some point p ∈ R – we call that point
seed –, we consider the isolevels of the geodesic distance function dp from p in
the domain R as in Figure 4.1. That is, for any point x ∈ R, dp(x) denotes the
minimum Euclidean length of an open curve Γ ⊂ R with one endpoint being p,
the other x. Or, in other words, dp(x) is the length of the shortest path from p to x
which stays within R and avoids all holes.

Figure 4.1: The induced isolines for one seed and three triangular holes in the
continuous case.

The isolevel, isoline, or contour of level k of the distance function dp is the
set of points I(k) = {x ∈ R : dp(x) = k}. In Figure 4.1, we have depicted the
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HoleDetection(G = (V, E))
1 Compute a maximal independent set I of G.
2 M := ∅.
3 for each s ∈ I do
4 M := M∪ExamineSeedNeighbourhood(G, s).
5 return M

Algorithm 4.2: Pseudo-Code for the main hole-detection routine for UDGs.

contours of level 10, 30, 50, . . . . If the region R is free of holes and all points on
the boundary of R can be seen from p (without obstruction by a hole), the contour
of level k is a subset of the circle centred at p with radius k. In the more general
case with polygonal obstacles, though, the contour of level k is a collection of
(possibly disconnected) circular arcs.

What is interesting for our purposes is the observation that for almost every
point x of a hole boundary or the outer boundary, some contour is broken at that
point. We say a contour is broken at a point p or p is called an endpoint of that
contour, if the contour does not intersect an arbitrarily small ball around p in a
topological 1-disk. The only way that a boundary point x with dp(x) = k might
not be the endpoint of a component of the contour of level k is in case that the
tangents of the contour of level k and of the boundary agree at x. In Figure 4.1,
for example this is the case in the lower right and upper left corner of the region
R, where the ’wave-fronts’ hit the outer boundary tangentially. The same happens
at the upper left tip of the rightmost triangular hole in the picture. The ’reverse
observation’ that every breakpoint of a contour is also on a hole or outer boundary
is unfortunately not true, which was incorrectly claimed in [Fun05]. When several
holes are arranged in a particular order, broken isolevels that are not near any
boundary might appear. For example, consider three wave-fronts that meet each
other in a single point and induce a contour which consists of a single point.
However, if one assumes that all holes are circular and only considers isolevels
near the seed that do not interact with more than one hole, then every breakpoint
of a contour coincides with a hole or outer boundary point and vice versa.

4.2.2 The Discrete Case

The key idea of our hole detection routine is to make use of these ’broken iso-
lines’ to determine nodes that are close to the outer boundary or to a boundary of
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some hole. In the following we describe a rather straightforward translation of the
intuition from the continuous setting to the discrete setting.

In the discrete case we consider the communication graph of a wireless net-
work. It has a node for each wireless station and an unweighted edge between
two nodes if the respective stations can communicate with each other. For sim-
plicity, let us assume that two nodes can communicate with each other if they
are within distance of at most one (communication radius). The communication
graph arising from this assumption is a so-called unit disk graph (UDG).

A priori, the region of interest is the whole two-dimensional euclidean plane.
We subtract from it the set O of disjoint holes. This leaves us with the region
without holes, i.e. in which sensors have survived. Denote this region by

R := R2 \
⋃
o∈O

o.

In the absence of geographic location information, the only distance measure
available for the algorithm is the hop distance in the unit-disk graph. For a graph
G = (V, E) we denote the hop distance or graph distance between two vertices
u, v ∈ V by d(u, v). If we consider the distances in a subgraph U ⊆ V we will
write dU(u, v). In contrast, the Euclidean distance between two points p, q ∈ R2

will be denoted by |pq|.
With this we can then define the notion of isolevels for the discrete case.

Definition 4.1. Let S be the set of wireless nodes in the euclidean plane and let
s ∈ S . We then recursively define the isolevels of s as

L0(s) := {p ∈ R : |ps| ≤ 1}

Li+1(s) :=

p ∈

R \⋃
j≤i

L j(s)

 : ∃s′ ∈ S ∩ Li(s) : |s′p| ≤ 1

 .
In other words, the (i + 1)th isolevel consists of all points in the plane that are

in the communications range of some node in the ith isolevel but do not belong to
a smaller isolevel.

Formally, we have that for every point p ∈ R there would be at least one sensor
s within Euclidean distance |ps| ≤ rsense. Here rsense is the sensing radius of the
sensor nodes. In the example from the introduction that would be the radius within
which they can monitor or estimate temperature or humidity.

Typically, the communication radius is considerably larger than the sensing
radius rsense. Let κ = 1

rsense
be the ratio between these two quantities. Clearly,

the larger the value κ becomes, the denser the communication graph gets. We
formalise this as follows.
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ExamineSeedNeighbourhood(G = (V, E), s ∈ V)
1 M := ∅.
2 compute shortest distances from s to each v ∈ V up to distance hmax.
3 Li(s) := {v ∈ V | d(s, v) = i} ∀i ∈ [hmin, . . . , hmax].
4 for each i ∈ [hmin, . . . , hmax] do
5 M := M∪ExamineISOLevel(G,Li(s), s).
6 return M

Algorithm 4.3: Subroutine to inspect the neighbourhood of a node.

Definition 4.2. A set S of sensors is called an ε-good sensor distribution if

∀p ∈ R : ∃s ∈ S : |sp| ≤ ε.

In other words, for a set of sensors to be ε-good, there must be a sensor within
distance ε from each point outside the holes. This is a reasonable assumption if
one also wants to ensure that in ’regular’ areas of R2, where sensors have survived,
sensing coverage is guaranteed.

Mimicking the continuous case, we pick a set of nodes I in the network to
serve as seeds and determine hop-distances in a bounded neighbourhood of hmax

hops around each s ∈ I. We then examine the isolevels around s and try to detect
whether these isolevels form closed annuli or are broken up. This can be done
by repeated shortest path computations within the subgraph induced by the nodes
in the respective isolevel L. We first compute graph distances dL(v1, ·) within
L from some arbitrary node v1 ∈ L. We then set v2 to be a node furthest from
v1. Let v′2 be the node on a shortest path from v1 to v2 at distance b d(v1,v2)

2 c. We
remove all nodes within a two-hop neighbourhood of v′2 to get the the subgraph
L \ {v′ : d(v′, v′2) ≤ 2}. If there still exists a path from v1 to v2 in this induces
subgraph, we take this as an indication that the respective isolevel has a circular
shape. Hence we return without marking any nodes as being close to a boundary.
Otherwise we compute distances dL(v2, ·) from v2. Let v3 be a node furthest from
v2. After the same check for connectivity without the neighbourhood of a node
v′3 halfway between v2 and v3, we take it for granted that the isolevel is broken.
Furthermore we mark the nodes v2 and v3 as being close to the extreme points of
that isolevel.

The high-level description of the algorithm can be found in Algorithm 4.2.
A more detailed description of the node neighbourhood and isolevel examination
can be found in Algorithm 4.3 and Algorithm 4.4. See Figure 4.5 for a snapshot
of the algorithm when examining the isolevels three to five from one seed node.
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ExamineISOLevel
(
G = (V, E),Li(s) ⊆ V, s ∈ V

)
1 if Li(s) induces non-connected sub-graph
2 return ∅
3 Choose v1 ∈ L

i(s) arbitrary
4 Compute hop-distance function dL

i(s)(v1, ·) from v1 in Li(s)
5 v2 = argmax

(
dL

i(s)(v1, ·)
)

6 v′2 = v : dL
i(s)(v1, v) = bdL

i(s)(v1, v2)/2c on shortest path from v1 to v2

7 if ∃ path v1, . . . , v2 in Li(s) \ {v ∈ Li(s) | d(v, v′2) ≤ 2}
8 return ∅
9 Compute hop-distance function dL

i(s)(v2, ·) from v2 in Li(s)
10 v3 = argmax

(
dL

i(s)(v2, ·)
)

11 v′3 = v : dL
i(s)(v2, v) = bdL

i(s)(v2, v3)/2c on shortest path from v2 to v3

12 if ∃ path v2, . . . , v3 in Li(s) \ {v ∈ Li(s) | d(v, v′3) ≤ 2}
13 return ∅
14 return {v2, v3}

Algorithm 4.4: Subroutine to examine an Isolevel.

Restricting the seed set to a maximal independent set allows us to bound the
overall running time of the algorithm. The isolevel examination routine only con-
siders isolevels that are connected, since arguing about distances within small
connected components seems rather difficult. Nevertheless we will show later in
the theoretical analysis that our algorithm still doesn’t miss any boundary. This is
true because for any point p on the boundary of a hole, there is at least one seed
node s ∈ I such that some connected isolevel around s is cut near p. Hence some
node near p is actually marked as being on the boundary.

The outcome of the algorithm is a set of marked nodes that hopefully are all
close to some boundary and identifying all holes. As the marking happens inde-
pendently, it might be the case that a node is marked several times or neighbouring
nodes are marked. For a compact representation it might be desirable to only keep
a maximal independent set of the marked nodes. In fact, this is what we have done
in our implementation to allow for better visual inspection of the results. On the
other hand, if a closed boundary representation is desired, one can locally com-
pute connecting paths between the nodes of the maximal independent set of the
marked nodes.
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Figure 4.5: Snapshot while executing the algorithm. Isolevels examined from one
seed and marked nodes where levels 3,4,5 are broken (large black circles). Small
black circles denote the seed set I, little dots the remaining nodes.

4.3 Runtime

We now analyse the runtime of our algorithm. Obviously, the algorithm itself
could run on any undirected graph, be it an unit disk graph or not. However, for
arbitrary graphs the result of the algorithm does not hold any special meaning.
The UDG property is also needed to prove a linear runtime.

For our proof of the runtime we first discuss the runtime of the isolevel exami-
nation subroutine given by Algorithm 4.4. This result can then be easily extended
to compute the runtime needed to inspect the neighbourhood of each node in the
maximal independent set. These rather simple results do not depend on the fact
that the underlying graph is an unit disk graph. However, in the final proof we
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need this property to show that the algorithm has linear runtime.
Since the algorithm operates on various subsets of the whole graph, the fol-

lowing definition will come in handy.

Definition 4.3. For an undirected graph G(V, E) and a set of vertices U ⊆ V
defined the induced edge set

E(U) := {e = (u, v) ∈ E : u ∈ U}

Lemma 4.1. Let G(V, E) be a connected UDG and Li(s) the ith isolevel for some
node s ∈ V and constant i ∈ N. Then the examination of isolevel L := Li(s) by the
isolevel examination subroutine (see Algorithm 4.4) needs time at most c|E(L)| for
some positive constant c.

Proof. Computing a hop-distance function on L can be done by simply applying
BFS to L. This computation also provides nodes at maximum distance and half
the maximum distance induced by the hop-distance function. Marking all nodes
in a 2-neighbourhood of a vertex as removed can also be done by using BFS on L.
Finally, checking if a path between two nodes exists is just another application of
BFS on L without the 2-neighbourhood of some vertex. Obviously, BFS touches
each edge in E(L) at most a constant number of times. Hence the examination of
the isolevel L can be done in time at most c|E(L)| for some constant c > 0. �

Corollary 4.1. Let s ∈ V be a node of a connected UDG G(V, E). Denote by
N := Nhmax(s) := {v ∈ V : dG(v, s) ≤ hmax} the set of nodes within hop-distance
hmax of s. Then Algorithm 4.3 spends time at most c|E(N)| on input G(V, E) and s
for some positive constant c.

Proof. Computation of the hop distance and of the isolevels can be done by a
simple BFS run constrained to maximum depth hmax on G. Hence this step is
linear in |E(N)|.

Now consider the examination of the at most hmax isolevels. By Lemma 4.1
isolevel Li(s) can be examined in time at most ci|E(Li(s))| for some constant
ci > 0. Since each isolevel Li(s) is contained in E(N) the time needed for the
examination is bound by∑

1≤i≤hmax

ci

∣∣∣E(Li(s))
∣∣∣ ≤ hmax max

1≤i≤hmax
ci

∣∣∣E(Li(s))
∣∣∣ ≤ (

hmax max
1≤i≤hmax

ci

)
|E(N)| .

Since hmax and all ci are positive constants this concludes the proof. �

Theorem 4.1. For a connected UDG G(V, E) the hole detection algorithm (see
Algorithm 4.2) runs in time O(|V | + |E|).
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Proof. First the algorithm has to compute a maximal independent set I ⊆ V . This
can easily be done in a greedy fashion in time O(|V | + |E|). For this we repeatedly
select a node from the graph and delete its neighbourhood.

The second part consists of the computation of the isolevels for each node in
the independent set and their examination. By Corollary 4.1, the algorithm can
do this in time cs|E(Nhmax(s))| for each node s in the independent set. Hence with
constant c := maxs∈I cs the total runtime is∑

s∈I

cs

∣∣∣E(Nhmax(s))
∣∣∣ ≤ c

∑
s∈I

∑
e∈E

1E(Nhmax (s))(e) = c
∑
e∈E

∑
s∈I

1E(Nhmax (s))(e),

where 1F(e) := 0 if e < F and 1F(e) := 1 if e ∈ F is the characteristic function of
some subset F ⊆ E.

The last sum can also be read as the number of nodes in the independent set
that are at distance at most hmax from one of the endpoints of the edge e ∈ E.
To show that this sum is bound by a constant, we now need the fact that the
graph under consideration is a unit disk graph. Consider one of the endpoints of
e = (u, v), say u. Draw a ball of radius 1

2 around each node in the independent set
with hop-distance at most hmax+1 from u. Since each two nodes in the independent
set have euclidean distance more than one (or there would be an edge between
them) those balls are disjoint. On the other hand, those balls are all contained in a
ball of radius hmax + 2 around the node u. But then there can be at most

π(hmax + 2)2

π
(

1
2

)2 = O
(
h2

max

)
such balls. Thus we can conclude that the runtime of the algorithm is∑

s∈I

cs

∣∣∣E(Nhmax(s))
∣∣∣ ≤ c

∑
e∈E

∑
s∈I

1E(Nhmax (s))(e) = c
∑
e∈E

O
(
h2

max

)
= O (|E|) .

�

4.3.1 Distributed and Localised Implementation
For application in a wireless sensor network scenario, it is important that the em-
ployed algorithms can be implemented without a centralised control. Fortunately,
the formulation of our algorithm allows for a straightforward localised implemen-
tation. Many algorithms, as for example the one given in [MW05], are known
for computing a maximal independent set in a distributed manner. The isolevel
examinations themselves are inherently local (restricted to a constant size neigh-
bourhood of the respective seed nodes). This is an improvement on the heuristic
approach presented in [Fun05]. In that algorithm, four distance functions over the
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whole network need to be computed. Furthermore the (particularly outer) isolevels
computed by that approach extend over a long distance within the network and
cannot be examined by local computations.

4.4 Correctness
After discussing the runtime of our algorithm in the last section, we will now
show that it works as expected. In other words, we will show that under certain
conditions on the geometry of the holes there exists a lower bound on the node
density (in the area without holes) such that

a) for each point on a hole boundary, the algorithm marks a sensor node close
to it,

b) the algorithm only mark such nodes that are close to a hole boundary.

While the previous section only required that the input is a (connected) unit
disk graph, we need additional conditions to prove the correctness.

For one, we will only consider circular holes. Assume that all holes have
radius at least rhole and are at least some distance ∆hole apart from each other.

We will now prove several Lemmata, each of which requires certain con-
straints on the input parameters ∆hole, rhole and ε discussed above. Those con-
straints will also depend on the choice of the algorithmic parameters hmin and hmax

that determine the minimum and maximum isolevel inspected by the algorithm.
At the end, we will collect all the implied constraints on these parameters

and show that they can be chosen such that all Lemmata hold for the following
choice of the parameters. Assume that the algorithm inspects isolevels hmin = 4
to hmax = 8. If all holes have radius at least rhole = 115, the minimum distance
between two holes is at least ∆hole = 18, and the region is sampled with ε ≤ 1/64,
then we can guarantee correctness of the output.

4.4.1 Isolevels and Containing Annuli
We now argue about the shape of the isolevels. If no holes are present, L0(s) is
obviously just a unit disk. All other isolevels Li(s), i ≥ 1, should be similar to
annuli in this case, give or take some multiples of ε.

In the presence of holes however, the shape becomes more interesting. We
will now show that in this case an isolevel is still similar to an annuli (without
the hole of course). More precisely, we show that it both contains a somewhat fat
annulus and is contained in a not too large annulus.

Define the disk of radius r ∈ R around a point p ∈ R2 by B(p, r). Then we
have the following Lemma.
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Lemma 4.2. Assume each point in R is at most ε ≤ 1
4 away from a sensor node.

Then for all 0 ≤ i ≤ ∆hole
2 − 1 the following holds. If the radius of each hole is at

least rhole ≥
(i+2)2

8(
√
ε−ε) then

a)B(s, i − 4iε + 1) ∩ R ⊆
⋃

0≤ j≤i

L j(s)

b)
⋃

0≤ j≤i

L j(s) ⊆ B(s, (i + 1)) ∩ R.

Proof. Claim b) immediately follows from the fact that Li(s) contains points with
hop-distance i from s and each hop crosses a distance of at most 1.

To prove claim a) we use induction on i. For i = 0, we have

B(s, i − 4iε + 1) ∩ R = B(s, 1) ∩ R = Li(s).

Now consider the case i + 1. By induction, the Lemma holds for i and we have
B(s, i − 4iε + 1) ∩ R ⊆

⋃
0≤ j≤iL

j(s). Let p ∈ R be a point with

i − 4iε + 1 < |sp| ≤ (i + 1) − 4(i + 1)ε + 1.

Consider the intersection I := B(p, 1) ∩ B(s, i − 4iε + 1) of the unit disk around
p with the disk contained in the union of the first i isolevels. Our goal is to find
a disk of radius ε in I that is also contained in R. Such a disk would (since it is
contained in R) contain at least one sensor node. This sensor node would then be
at distance at most 1 from p and inside the union of the first i isolevels. Thus, p
must be in the union of the first i + 1 isolevels, proving the Lemma.

The difficulty lies in the fact that not necessarily all of I has to be contained in
R. However, we can use the fact that each hole is circular and rather large to show
that there indeed exists a suitable ε-disk in I.

For this we will now construct two points z, z′ and show that one of them is
the centre of a suitable ε-disk. Consider the point m on the line ps with distance
|pm| = 1− 2ε. Let M be the line through m perpendicular to ps. Now define z and
z′ as the two opposite points on M that are distance |zm| = |z′m| =

√
ε away from

m. See Figure 4.6 for a picture of this construction.
We will show that the ε-disks around both points lie in I by proving that z

and z′ lie by at least ε inside the corresponding disks around p and s. Using the
Pythagorean theorem and the fact that 3ε2 ≤ ε we get

|pz| = |pz′| =
√

(1 − 2ε)2 +
√
ε

2

=
√

1 − 3ε + 4ε2

≤
√

1 − 3ε + ε + ε2
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p

z

m
z′

s

Figure 4.6: Construction of the points z and z′.

= 1 − ε

hence the ε-disks around both points are inside B(p, 1).
Substituting x = i − 4iε + 1 and again using the Pythagorean theorem yields

|sz| = |sz′| =
√

(|sp| − |pm|)2 +
√
ε

2

≤
√

((x + 1 − 4ε) − (1 − 2ε))2 + ε

=
√

(x − 2ε)2 + ε

=
√

x2 − 4xε + 4ε2 + ε

=
√

(x − ε)2 + (−2xε + 3ε2 + ε)

=
√

(x − ε)2 + (−2iε + 8iε2 − 2ε + 3ε2 + ε)

=
√

(x − ε)2 + (2iε(4ε − 1) + ε(3ε − 1))

≤
√

(x − ε)2

= i − 4iε + 1 − ε

where the last inequality follows from ε ≤ 1
4 . This establishes that B(z, ε) ⊆ I and

B(z′, ε) ⊆ I.
To complete the proof we need to show that (at least) one of the ε-disks lies in

R. Since ∆hole ≥ 2(i + 1) only one hole can interfere with Li(s). Assume w.l.o.g.
that the centre of the respective circular hole o lies on the same side of ps as z′. In
the worst case, i.e. obstructing as much from I as possible, o has both s and p on
its boundary and ‘eats away’ the whole portion of I that lies below ps. S We now
will calculate an upper bound on the minimum radius that o needs to have to not
interfere with B(z, ε). As z lies

√
ε above ps the circular segment formed by ps

and o must have height at most
√
ε − ε. This ensures that z is at least ε away from

o, and thus that B(z, ε) is contained in R. With the height of the circular segment
fixed to h =

√
ε − ε the worst case radius will occur for the maximum possible

chord length |ps|. By construction this is at most c = |ps| ≤ (i + 1) − 4(i + 1)ε + 1.
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Using j := i + 1 the minimum radius needed can be bound by

rhole ≤
h
2

+
c2

8h

=
1
2

(
√
ε − ε) +

( j − 4 jε + 1)2

8(
√
ε − ε)

=
1

2(
√
ε − ε)

((√
ε − ε

)2
+

( j − 4 jε + 1)2

4

)
=

1
2(
√
ε − ε)

(
ε
(
1 −
√
ε
)2

+
j2 + 16 j2ε2 + 1 − 8 j2ε + 2 j − 8 jε

4

)
=

1
2(
√
ε − ε)

((
1
4

+ 4ε2 − 2ε
)

j2 +

(
1
2
− 2ε

)
j + ε

(
1 −
√
ε
)2

+
1
4

)
=

1
2(
√
ε − ε)

((
1
4
− 2ε (1 − 2ε)

)
j2 +

1
2

j +
1
4

+ ε
((

1 −
√
ε
)2
− 2 j

))
≤

1
2(
√
ε − ε)

(
1
4

j2 +
1
2

j +
1
4

)
≤

( j + 1)2

8(
√
ε − ε)

.

�

From this proof we can immediately deduce that the ith isolevel is “sand-
wiched” by two similar-sized annuli.

Corollary 4.2. Under the assumptions from Lemma 4.2, the ith isolevel Li(s) is
contained in the intersection of the annulus Ai

outer(s) := A(s, i − 4(i − 1)ε, i + 1)
with R.

Corollary 4.3. Under the assumptions from Lemma 4.2, the ith isolevel Li(s)
contains the intersection of the annulusAi

inner(s) := A(s, i, i − 4iε + 1) with R.

4.4.2 Non-Contractible Graph Cycles
When our algorithm examines the ith isolevel (or more precisely the set of nodes
contained in level Li(s)) it basically tries to decide whether there exists a cycle
containing s in its interior. We will now show that such a cycle exists if and only
if the isolevel is not broken.

Definition 4.4. We call a cycle in the graph induced by the nodes in the ith isolevel
a non-contractible cycle if its corresponding polygon cannot be contracted to a
single point without sweeping over the seed point s.
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Lemma 4.3. Let 4 ≤ i < 1−2ε
4ε , ε ≤ 1

12 andAinner(s, i, i− 4iε + 1) ⊆ Li(s). Then the
isolevel examination subroutine given in Algorithm 4.4 finds a non-contractible
cycle and returns without marking any nodes as being close to a boundary.

Proof. Since i < 1−2ε
4ε the annulus has width at least

width(Ainner(s, i, i − 4iε + 1)) = 1 − 4iε

> 1 − 4ε(
1 − 2ε

4ε
)

= 2ε.

Thus, for each point halfway between the inner and outer border there must be
a sensor node inside the annulus. While it is clear that the isolevel contains a
non-contractible cycle, we need to show that the algorithm will be able to find
one.

Let v1, v2, v′2 be the sensors picked by the algorithm. First consider the point
p where the line through v1 and the middle point s of the isolevel cuts the inner
boundary of the isolevel opposite to v1. There must be a node sp in Li(s) that is at
most 2ε away from p. By Corollary 4.2 we know that the inner boundary of Li(s)
is a circle of radius at least i − 4(i − 1)ε. Since i ≥ 4 and ε ≤ 1

12 its circumference
is

c = 2π(i − 4(i − 1)ε)
≥ 2π(4 − 12ε)
≥ 6π.

But this means that d(v1, v2) ≥ d(v1, sp) ≥ 9. Hence the node v′2 is at least four
hops away from v1 and v2. Thus when the algorithm removes the 2-neighbourhood
{v ∈ Li(s) : d(v, v′2) ≤ 2} of v′2 the remaining graph is still connected and v1 and v2

are not removed. Because of this the algorithm can find an alternative path from v1

to v2 inLi(s)\{v ∈ Li(s) : d(v, v′2) ≤ 2}. But this path cannot pass near v′2 since the
removal of its 2-hop neighbourhood has cut Li(s) there. Hence the original path
from v1 to v2 computed by the algorithm together with the path from v1 to v2 that
the algorithm finds in the augmented isolevel form a non-contractible cycle. �

Corollary 4.4. The hole detection algorithm will not mark any nodes in Li(s) if
the isolevel is not cut by a hole.

Let us now show that whenever our algorithm marks a node, there is some
boundary point nearby

Lemma 4.4. Let 4 ≤ i < 1−4ε
4ε and let isolevel Li(s) be cut by hole o ∈ O. Assume

the isolevel examination subroutine given in Algorithm 4.4 on input Li(s) marks
nodes v2, v3 as boundary nodes. Then there exist boundary points p1, p2 ∈ δo such
that |vi pi| ≤ 2.8. Furthermore it holds that dL

i(s)\o(v2, v3) ≥ π(i − 2(i − 1)ε).
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Ai
outer

v2

sl
sr 1 − O(ε)

Figure 4.7: Situation for v2 if nodes are marked.

Proof. Consider the neighbourhood within distance 2.8 of v2. If there is some
hole boundary nearby, we’re done, so assume otherwise. Consider the intersection
points of the boundary ofAi

inner(s) and B(v2, 2.8). Let tl1 and tl2 be the intersection
points on one side and tr1, tr2 be the intersection points on the other side. Further
let hl be the point on B(v2, 2.8) halfway between tl1 and tl2 and hr analogously
the point halfway between tr1 and tr2. Denote by sl, sr the closest nodes to hl, hr

respectively. See Figure 4.7 for an illustration. Clearly sl and sr are contained
withinAi

inner(s).
Obviously we have dL

i(s)(v1, sl) ≤ dL
i(s)(v1, v2) and dL

i(s)(v1, sr) ≤ dL
i(s)(v1, v2)

since v2 has maximum distance. Since sl and sr are at most 3 hops from v2 we
also have dL

i(s)(v1, v2) ≤ dL
i(s)(v1, sl) + 3 and dL

i(s)(v1, v2) ≤ dL
i(s)(v1, sr) + 3.

Without loss of generality let the shortest path from v1 to v2 pass by sl. Since
the algorithm marked some nodes as being close to the boundary it follows that no
shortest path exists after removing the 2-neighbourhood {v ∈ Li(s) : d(v, v′2) ≤ 2}
of v′2. Hence the shortest path from v1 to sr also has to pass by sl or this would yield
a different path to v2. But because sl and sr lie on opposite sides of B(v2, 2.8) this
implies that dL

i(s)(v1, sl) + 4 ≤ dL
i(s)(v1, sr). This however contradicts the inequali-

ties we derived above since combining them yields dL
i(s)(v1, sl) ≤ dL

i(s)(v1, sr) + 3.
Now consider v3. Obviously the second part of the isolevel examination sub-

routine given in Algorithm 4.4 is identical to the first part except that it starts from
v2. Hence the same argument as above shows that v3 must be close to a boundary.

Finally the fact that dL
i(s)\o(v2, v3) ≥ π(i − 2(i − 1)ε) follows since o can cut

away at most half of the isolevel. �

Together Corollary 4.4 and Lemma 4.4 show that the algorithm will only mark
nodes close to a hole. To complete our proof of the correctness of the algorithm
we still need to show that for each point on a hole boundary a node close to it will
be marked.

Lemma 4.5. Let p ∈ δo, o ∈ O be a point on a hole boundary. Consider the
isolevel examination subroutine given in Algorithm 4.4. There exists a seed node
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s ∈ I such that for some Li(s) with i ∈ [hmin, . . . , hmax] the subroutine reaches
the last step. Furthermore, one of the nodes marked by the subroutine will be at
distance at most 4.8 from p.

Proof. Consider the tangent To(p) to o at p and some point q on To(p) with |pq| =
hmax − 3. Because of the convexity of o and the fact that two holes are at least
∆hole > hmax apart, no hole is close to p. Due to the sampling condition we have
|qsq| ≤ ε for some node sq. Let s ∈ I be the closest seed to sq. Since a maximal
independent set in a graph is also a dominating set we have |sqs| ≤ 1. Hence, by
the triangle inequality |sq| ≤ 1 + ε holds. Let sp be the sensor closest to p. Then
|sp p| ≤ ε holds. We have

|sps| ≤ |sp p| + |pq| + |qs|
≤ ε + (hmax − 3) + (1 + ε)
≤ hmax − 1.

Hence there is an isolevel Li(s) of s which is considered by the subroutine and
contains sp.

As hmax < rhole, both the contained annulus Ai
inner(s) as well as the containing

annulusAi
outer(s) (and alsoLi(s)) are completely cut by o. But since 2hmax < ∆hole,

i.e. there is no other hole ’nearby’, they still remain connected. As the removal
of the 2-hop neighbourhood of v′2 again cuts Li(s) around v′2 there does not exist
an alternative path from v1 to v2 (same argumentation for v′3). Thus the algorithm
does not return before the last step.

We still need to show that the algorithm marks a node near p. Since i is small
compared to the radius of the obstacle o, Li(s) is almost orthogonally cut by o. So
the nodes within Li(s) that are at most ε away from o are grouped into two small
clusters of diameter at most two. Those clusters are far away from each other in
the graph distance. According to Lemma 4.4 our algorithm marks one node in
each of the clusters.

The distance of the marked node to p follows from the cluster diameter and
Lemma 4.4. �

4.4.3 Plugging Everything Together
With the above Lemmata we can now prove the correctness of the algorithm. We
require that we only have circular holes that are large and well-separated (relative
to the communication range 1 of the sensor nodes). Also the sensor nodes must be
distributed sufficiently dense. Note however, that there is no further requirement
on the distribution itself. In particular, we do not require a uniform distribution.
Under those assumptions, our algorithm faithfully marks nodes close to all points
on the boundaries of all holes but nowhere else.
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The previous Lemmata gave several conditions on the parameters ∆hole, rhole,
hmin, hmax and ε. For the inner annuli not getting too thin and the outer annuli
not getting too thick, we want 4hmaxε ≤

1
2 . By Lemma 4.2 we need ε ≤ 1

4 ,
hmax ≤

∆hole
2 − 1 as well as rhole ≥

(hmax+2)2

8(
√
ε−ε) . For Lemma 4.3 we require hmin ≥ 4,

hmax <
1−2ε

4ε and ε ≤ 1
12 . Additionally, for Lemma 4.4 we need hmax <

1−4ε
4ε Lastly,

Lemma 4.5 requires (hmax − hmin) ≥ 3. We haven’t tried hard to determine the best
parameter values, but the following values allow us to state the main theorem.

Theorem 4.2. Let O be a set of circular holes of radius at least rhole = 115 such
that all holes are at least ∆hole = 18 apart. Let S be a set of sensors that form an
ε good sensor distribution in the non-hole area for ε = 1

64 . Assume Algorithm 4.2
inspects isolevels between hmin = 4 and hmax = 8. Then it will mark a sensor
node within distance 4.8 of each boundary point and will only mark nodes that
are within distance 2.8 of a boundary point.

4.5 Experimental Results

Figure 4.8: Example output of Algorithm 4.2. Around 5000 randomly distributed
nodes, communication range of 30 and respective average degrees of the commu-
nication graph of 25.
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Figure 4.9: Example output of Algorithm 4.2. Around 5000 randomly distributed
nodes, communication range of 33 and respective average degrees of the commu-
nication graph of 27.

We have implemented our algorithm and simulated different deployments of
sensor nodes in the real plane. As to be expected, in practice the requirements on
the node density as well as on the shape and distance between holes are by far not
as strong as the theoretical analysis suggests. Our experiments were conducted
with algorithm parameters hmin = 2, hmax = 6. Also, instead of removing all nodes
within a 2-hop neighbourhood of v′2 and v′3 we only removed nodes within a 1-hop
neighbourhood. We first generated sensor nodes uniformly at random and then
built the unit-disk graph based on varying communication ranges.

Our observation was that for node distributions where the average degree in
the resulting communication graph was above around 25, our algorithm seems to
perform reasonably well. We note that for more regular node distributions like for
example a grid or a perturbed grid, even average node degrees of down to 10 seem
to give good results. Compared to the heuristic approach presented in [Fun05] the
algorithm does slightly worse. This is mainly because we have avoided to add any
heuristics that improve the practical performance but would make the algorithm
somewhat different from the one we have proven correctness for.
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Figure 4.10: Example output of Algorithm 4.2. Around 5000 randomly distributed
nodes, communication range of 33 and respective average degrees of the commu-
nication graph of 28.

Non-Uniform Node-Distributions

The whole reasoning why our algorithm actually works does not rely on a uniform
density of the sensor nodes in non-hole regions. This is a large improvement over
previous work like for example the algorithm presented in [FKP+04].

If one assumes a uniform distribution a much easier algorithm can be devised.
Roughly speaking, one can determine if a node is close to some boundary or not
by simply examining its degree in the communication graph, i.e. to how many
neighbours it can talk. For nodes not close to some boundary, this should always
roughly be the same number. On the other hand, if a node is close to any boundary,
it should have less immediate neighbours that it can talk to.

The output of our algorithm for an input with non-uniform sensor distribution
can be found in Figure 4.11.

Problematic Inputs

Of course there are settings where the algorithm does not perform as well as in
the previously discussed examples. One shortcoming is that it has problems to
distinguish holes that are close to each other. Recall that this also manifested
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Figure 4.11: Example output of Algorithm 4.2 for a non-uniform node distribu-
tion.

itself in the analysis as we required a certain minimum distance ∆hole between
holes. A particular bad example is given in Figure 4.12. The problem is that
for all seeds that could be used to detect the boundary nodes between the two
holes the respective isolevels consist of more than one component. Hence the
isolevel examination subroutine returns immediately without marking any nodes.
Of course one might let the algorithm examine all the connected components of
an isolevel if more than one exists. However, this would not allow for a proof of
correctness anymore. Note however, that the actual hole distance needed for the
algorithm to work is in practice much smaller than the bound on ∆hole given in
Theorem 4.2.

Another shortcoming of the algorithm is that it relies on the non-hole regions
being sufficiently densely sampled. Otherwise we cannot ensure that the isolevels
around a seed node form closed cycles. When decreasing the node density (or
equivalently decreasing the communication range) the algorithm starts to break
down more and more. See Figure 4.13, Figure 4.14 and Figure 4.15 for a sequence
of outputs with decreasing communication ranges. The roughly equivalent value
for ε is determined as ε ≈ 1√

avg.deg.
. In this particular sequence of examples this

yields 0.18, 0.21, and 0.25.
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Figure 4.12: Example output of Algorithm 4.2 for two holes that are too close to
each other to detect the boundary.

4.6 Conclusion and Discussion

The tight connection between geographic location and connectivity of wireless
networks gives rise to many interesting problems. While the topology of a wire-
less network does not explicitly hold any geometric information, the fact that
its connectivity is determined by geographic proximity relations allows for tech-
niques to extract (part) of the underlying geometry. In this Chapter we explored
that direction. However, there are still many challenging problems to be solved.
Ultimately, of course, one would like to recover the exact relative positions of the
network nodes. This is an NP-hard problem for general unit-disk graphs as was
shown by Kuhn et al. in [KMW04]. However, a constant approximation has not
yet been ruled out.

Apart from the application in the described scenario, the identification of hole
boundaries or holes as such has in fact many other applications. A topological
description of a network like ’The network has one large hole’ can be much more
compact than remembering the connectivity between all nodes. Furthermore,
since you need many changes to close a large hole or create another one, such
a topological descriptions tend to be more stable under small changes of nodes or
network links.

There are routing schemata like [BGJ06] which are based on such topolog-



106 CHAPTER 4. HOLE DETECTION

Figure 4.13: Example output of Algorithm 4.2 for for decreasing communication
ranges with range 35 and average degree 31.

ical sketches of the network. Simulation results show that they enjoy an inher-
ent stability against small network changes. The recent work by Fekete et al.
[KFPF06] also describes methods how to use boundary recognition to obtain a
compact topology sketch of the network.

There is also another class of problems where boundary detection algorithms
are useful. In [RRP+03] Rao et al. discuss a method that – in spite of its NP-
hardness – tries to find a faithful embedding of the whole unit-disk graph in the
plane. Their algorithm bases its decisions on the assumption that hop-distances
in an unit-disk graph in some sense approximate Euclidean distances in the plane.
This doesn’t have to be true in the presence of holes, though. In this case holes
might cause the geodesic and the graph distance to differ vastly from the Euclidean
distance. However, if holes are detected, then one could check whether a graph
distance – measured by a shortest hop path in the graph – is ’truthful’. For this
one must assure that the respective shortest path does not come close to any hole
boundary. Otherwise it might not reflect Euclidean distances.
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Figure 4.14: Example output of Algorithm 4.2 for for decreasing communication
ranges with range 30 and average degree 23.

Figure 4.15: Example output of Algorithm 4.2 for for decreasing communication
ranges with range 25 and average degree 16.
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