
Scalable Optimization Algorithms
for Recommender Systems

Faraz Makari Manshadi

Thesis for obtaining the title of

Doctor of Engineering

of the Faculties of Natural Sciences and Technology I

of Saarland University

Saarbrücken, Germany

2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Acronym

https://core.ac.uk/display/196652042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Colloquium 2014-07-15
Saarbrücken

Dean of the Faculty Prof. Dr. Markus Bläser

Examination Board

Chairman Prof. Dr. Christoph Weidenbach

Adviser and First Reviewer Prof. Dr. Rainer Gemulla

Second Reviewer Prof. Dr. Gerhard Weikum

Third Reviewer Dr. Mauro Sozio

Academic Assistant Dr. Pauli Miettinen

iii

iv

Abstract

Recommender systems have now gained significant popularity and been widely
used in many e-commerce applications. Predicting user preferences is a key step to
providing high quality recommendations. In practice, however, suggestions made to
users must not only consider user preferences in isolation; a good recommendation
engine also needs to account for certain constraints. For instance, an online video
rental that suggests multimedia items (e.g., DVDs) to its customers should consider
the availability of DVDs in stock to reduce customer waiting times for accepted
recommendations. Moreover, every user should receive a small but sufficient number
of suggestions that the user is likely to be interested in.

This thesis aims to develop and implement scalable optimization algorithms that
can be used (but are not restricted) to generate recommendations satisfying certain
objectives and constraints like the ones above. State-of-the-art approaches lack
efficiency and/or scalability in coping with large real-world instances, which may
involve millions of users and items. First, we study large-scale matrix completion in
the context of collaborative filtering in recommender systems. For such problems,
we propose a set of novel shared-nothing algorithms which are designed to run on a
small cluster of commodity nodes and outperform alternative approaches in terms
of efficiency, scalability, and memory footprint. Next, we view our recommendation
task as a generalized matching problem, and propose the first distributed solution for
solving such problems at scale. Our algorithm is designed to run on a small cluster of
commodity nodes (or in a MapReduce environment) and has strong approximation
guarantees. Our matching algorithm relies on linear programming. To this end,
we present an efficient distributed approximation algorithm for mixed packing-
covering linear programs, a simple but expressive subclass of linear programs. Our
approximation algorithm requires a poly-logarithmic number of passes over the
input, is simple, and well-suited for parallel processing on GPUs, in shared-memory
architectures, as well as on a small cluster of commodity nodes.

v

vi

Kurzfassung

Empfehlungssysteme haben eine beachtliche Popularität erreicht und werden in
zahlreichen E-Commerce Anwendungen eingesetzt. Entscheidend für die Gener-
ierung hochqualitativer Empfehlungen ist die Vorhersage von Nutzerpräferenzen.
Jedoch sollten in der Praxis nicht nur Vorschläge auf Basis von Nutzerpräferen-
zen gegeben werden, sondern gute Empfehlungssysteme müssen auch bestimmte
Nebenbedingungen berücksichtigen. Zum Beispiel sollten online Videoverleihfir-
men, welche ihren Kunden multimediale Produkte (z.B. DVDs) vorschlagen, die
Verfügbarkeit von vorrätigen DVDs beachten, um die Wartezeit der Kunden für
angenommene Empfehlungen zu reduzieren. Darüber hinaus sollte jeder Kunde eine
kleine, aber ausreichende Anzahl an Vorschlägen erhalten, an denen er interessiert
sein könnte.

Diese Arbeit strebt an skalierbare Optimierungsalgorithmen zu entwickeln und
zu implementieren, die (unter anderem) eingesetzt werden können Empfehlungen
zu generieren, welche weitere Zielvorgaben und Restriktionen einhalten. Derzeit
existierenden Ansätzen mangelt es an Effizienz und/oder Skalierbarkeit im Um-
gang mit sehr großen, durchaus realen Datensätzen von, beispielsweise Millio-
nen von Nutzern und Produkten. Zunächst analysieren wir die Vervollständigung
großskalierter Matrizen im Kontext von kollaborativen Filtern in Empfehlungssyste-
men. Für diese Probleme schlagen wir verschiedene neue, verteilte Algorithmen
vor, welche konzipiert sind auf einer kleinen Anzahl von gängigen Rechnern zu
laufen. Zudem können sie alternative Ansätze hinsichtlich der Effizienz, Skalier-
barkeit und benötigten Speicherkapazität überragen. Als Nächstes haben wir die
Empfehlungsproblematik als ein generalisiertes Zuordnungsproblem betrachtet und
schlagen daher die erste verteilte Lösung für großskalierte Zuordnungsprobleme vor.
Unser Algorithmus funktioniert auf einer kleinen Gruppe von gängigen Rechnern
(oder in einem MapReduce-Programmierungsmodel) und erzielt gute Approxima-

vii

tionsgarantien. Unser Zuordnungsalgorithmus beruht auf linearer Programmierung.
Daher präsentieren wir einen effizienten, verteilten Approximationsalgorithmus
für vermischte lineare Packungs- und Überdeckungsprobleme, eine einfache aber
expressive Unterklasse der linearen Programmierung. Unser Algorithmus benötigt
eine polylogarithmische Anzahl an Scans der Eingabedaten. Zudem ist er einfach
und sehr gut geeignet für eine parallele Verarbeitung mithilfe von Grafikprozes-
soren, unter einer gemeinsam genutzten Speicherarchitektur sowie auf einer kleinen
Gruppe von gängigen Rechnern.

viii

Acknowledgements

Foremost, I would like to express my deepest gratitude to my adviser Rainer Gemulla
for his expertise, invaluable support, and encouragements. His excellent scientific
advice and exemplary guidance made this work possible. I would like to express my
sincere gratitude for this. I also would like to thank Mauro Sozio for his continuous
support and for the stimulating discussions. I am sincerely grateful to Gerhard
Weikum for giving me the opportunity to pursue doctoral studies and ensuring a
great atmosphere in the research group. Furthermore, I would like to acknowledge
and thank my co-authors, Julián Mestre, Rohit Khandekar, and Christina Teflioudi,
without their support this work would have not been possible.

I owe many thanks to the International Max Planck Research School for my financial
support, which allowed me to focus on my research. I am also thankful to all the
friends and colleagues in the Database and Information Systems group. Last but not
least, I am greatly indebted to my wife for her constant encouragement and support
throughout these years.

ix

x

Contents

1 Introduction 1

2 Distributed Matrix Completion 7
2.1 The Matrix Completion Problem 9
2.2 Matrix Completion via Stochastic Gradient Descent 13

2.2.1 Gradient Descent (GD) 13
2.2.2 Stochastic Gradient Descent (SGD) 13

2.3 Parallelizing SGD-based Methods 16
2.3.1 Shared-Nothing Setting 16
2.3.2 Shared-Memory Setting 25

2.4 Matrix Completion via Alternating Minimizations 27
2.4.1 Alternating Least Squares (ALS) 27
2.4.2 Cyclic Coordinate Descent (CCD++) 29

2.5 Alternating Minimizations Versus SGD 30
2.5.1 Complexity Analysis . 30
2.5.2 Experimental Evaluation 34

2.6 Summary . 42

3 Distributed Mixed-Packing-Covering
Linear Programming 43
3.1 The MPC Linear Programs . 43
3.2 Solving MPC-LPs (Feasibility) 45
3.3 Solving MPC-LPs (Optimization) 59
3.4 Parallelizing MPCSolver . 60
3.5 Implementing MPCSolver . 62

xi

3.5.1 Starting Point . 63
3.5.2 Adaptive Error Bounds 64
3.5.3 Adaptive Step Size . 64
3.5.4 Convergence Test . 65
3.5.5 Multiple Updates . 65

3.6 Experimental Study . 66
3.7 Related Work . 67

3.7.1 PLP Solvers . 68
3.7.2 MPC-LP Solvers . 69
3.7.3 General Solvers . 70

3.8 Summary . 71

4 Generalized Bipartite Matching 73
4.1 Problem Definition . 75
4.2 Algorithms . 77

4.2.1 MPCSolver for GBM . 77
4.2.2 Obtaining an Integral Solution 78

4.3 Related Work . 83
4.4 Experimental Results . 84

4.4.1 Experimental Setup . 85
4.4.2 Results for GBM-LP (Feasibility) 87
4.4.3 Results for GBM-LP (Optimality) 93
4.4.4 Results for Distributed Rounding 94
4.4.5 Results for GBM . 95

4.5 Summary . 96

5 Conclusion and Outlook 99

Bibliography 103

A Basic Notations 115

List of Figures 117

List of Tables 119

List of Algorithms 121

xii

1
Introduction

Recommender systems have now attained considerable interest both in industry and
in the research community. They are being extensively used in many e-commerce
applications that expose the users to a large collection of items. Such systems intend
to provide the users with suggestions that they might appreciate and thus assist them
with finding appropriate items in the collection. Predicting user preferences over
unseen items lies at the heart of any recommender system and is the key step to
providing personalized recommendations. To this end, various approaches have
been proposed in the literature, among which matrix completion techniques have
been especially popular and obtained impressive performance in the context of
collaborative filtering in recommender systems (Chen et al. 2012; Hu et al. 2008;
Koren et al. 2009; Zhou et al. 2008). They are currently considered as one of the best
single approaches in collaborative filtering but often combined with other models.

Consider for example an online DVD rental that offers a large collection of DVDs
to its customers. Online video services like Netflix1 or Amazon’s Prime Instant
Video2 give their customers the opportunity to submit ratings on movies they have
watched; this dataset can be naturally represented in matrix form where the rows
correspond to customers, the columns to movies, and the entries to ratings provided
by the customers. Matrix completion methods can be used to predict missing ratings
for unseen movies based on the past available feedback and produce personalized
recommendations. Once the preferences of users over movies are inferred, for
each user, top-k movies with highest predicted ratings are typically selected and
recommended for viewing. In practice, however, recommendations must not only

1
www.netflix.com

2
www.amazon.de/Prime-Instant-Video

1

www.netflix.com
www.amazon.de/Prime-Instant-Video

take account of user preferences in isolation; a good recommendation engine also
needs to take various constraints into consideration. For instance, an online video
store should consider the availability of DVDs to reduce customer waiting times for
accepted recommendations. Moreover, each user should be supplied with a small
but sufficient number of suggestions for DVDs that the user is likely to be interested
in. This problem can be naturally modeled as a generalized (i.e., many-to-many)
bipartite matching problem in which a set of users must be matched to DVDs
subject to certain objectives and constraints on the overall matching. Predicted
ratings obtained by matrix completion represent the preference of users over movies
and reflect the quality of matching a given DVD to a user in “isolation”. The goal is
to provide recommendations of DVDs to users such that (1) users are recommended
items that they are likely to be interested in, (2) every user gets neither too few nor
too many suggestions, and (3) only available items are recommended to users.

Large applications may involve millions of users and items and billions of ratings;
for instance, Netflix offers tens of thousands of movies for rental or streaming to
more than 20M customers. In order to cope with datasets of such massive scales,
parallel approaches are essential to achieve reasonable performance.

This thesis deals with key aspects of recommender systems and provides scalable
solutions. In particular, we propose scalable optimization algorithms for matrix
completion as well as graph matching problems like the one mentioned above.
Figure 1.1 illustrates a simple basic framework3 utilizing the optimization algorithms
developed in this thesis to generate recommendations “under constraints”. The basic
framework comprises two steps: We first apply matrix completion techniques to
predict missing entries of the partially observed rating matrix. Next, we treat the
recovered ratings as a metric, which captures user preferences over movies and use
graph optimization to determine recommendations satisfying certain objectives and
constraints. Our matching algorithm is based on linear programming techniques.
To this end, we propose a distributed algorithm to approximately solve a “simple”
yet expressive subclass of linear programs (LP), the so-called mixed packing-
covering LPs (MPC-LP). These problems arise as LP relaxation of certain important
combinatorial problems including the generalized matching problems.

In order to cope with datasets at massive scales, we consider a general shared-
nothing architecture which allows asynchronous communication between processors.
The main challenge in such a shared-nothing environment is how to effectively
manage the communication between the compute nodes. The goal is to distribute
the data across the compute nodes such that (1) each node operates preferably on
non-overlapping subsets of the data so to minimize the communication between the

3Note that real recommender systems are usually more involved; they might consist of several
components and might combine various complex models.

2

Observed ratings

U
se

rs
Items

? 4 ?
? 2 1
4 ? 2

Prediction of
missing ratings

Observed and predicted
ratings

5 4 3
3 2 1
4 4 2

Final objectives
and constraints

Recommendation
matrix

5 4 3
3 2 1
4 4 2

Figure 1.1: A basic framework to generate recommendations under constraints.
Observed ratings are shown in black, predicted in red, and selected
for recommendation circled. Adapted from Charlin et al. (2012).

compute nodes, and (2) the workload of each node is balanced as much as possible
so to maximize the efficiency.

Contributions

This thesis provides efficient and scalable solutions to various optimization problems
that arise at the heart of recommender systems. In particular, we deal with the task
of predicting user preferences over unseen items, and generating recommendations
satisfying certain objectives and constraints. We discuss each of these problems in
Chapters 2, 3, and 4, respectively. Our contributions can be summarized as follows.

Matrix Completion

Chapter 2 concerns with matrix completion problems in the context of collaborative
filtering in recommender systems. We review existing sequential, shared-memory,
and shared-nothing approaches based on stochastic gradient descent as well as
alternating-minimization ideas, and propose novel shared-nothing algorithms for
large-scale matrix completion problems with millions of rows, millions of columns,
and billions of entries. We focus on in-memory algorithms that run on a small
cluster of commodity nodes, i.e., we assume that the input data fits into the aggregate
memory of the cluster nodes. In contrast, most existing shared-nothing approaches
for matrix completion are mainly designed for MapReduce (Das et al. 2010; Gemulla
et al. 2011c; Liu et al. 2010; Zhou et al. 2008). In fact, it has been observed that
MapReduce can be inefficient for the kind of iterative computations performed by
matrix completion algorithms (Gemulla et al. 2011c). In the shared-nothing setting,
there have been almost no studies of in-memory matrix completion algorithms based
on programming models like MPI (2013) that allow asynchronous communication
between processors and exploit multithreading.

Our algorithms are cache-friendly and exploit thread-level parallelism, in-memory
processing, and asynchronous communication. Moreover, they are faster, more scal-

3

able, and less memory-intensive than existing MapReduce algorithms. We conduct
a comprehensive comparison of the performance of both new and existing shared-
nothing algorithms via a theoretical complexity analysis as well as an extensive
experimental study. Our complexity analysis illuminates the various performance
trade-offs and provides guidance in applying the algorithms to specific problems.
We report results of an extensive set of experiments on both real-world and synthetic
datasets of varying sizes.

Mixed Packing-Covering Linear Programming

In Chapter 3, we investigate scalable solutions for approximately solving MPC-LPs.
MPC-LPs can be solved exactly using standard general-purpose solvers. However,
these solvers fall short in coping with large practical problems. Parallel approaches,
such as algorithms for shared-memory (Luby and Nisan 1993; Young 2001) or
shared-nothing (Awerbuch and Khandekar 2009; Kuhn et al. 2006; Young 2001)
architectures are essential for achieving reasonable performance at massive scales.
Unfortunately, most of these algorithms can either handle only special cases, or
suffer from high running times in practice.

We propose MPCSolver, a novel efficient distributed algorithm for approximately
solving MPC-LPs and establish its convergence via a full theoretical analysis.
MPCSolver requires a poly-logarithmic number of passes over the input, is simple,
and easy to parallelize; it can be implemented in a few lines of code and is well-
suited for parallel processing on GPUs, in shared-memory and shared-nothing
architectures, as well as on MapReduce. We provide implementation issues that
facilitate good performance in practice. In particular, we show how to distribute
data effectively across the nodes in the cluster to minimize the communication costs
and present a number of simple techniques to speed up MPCSolver in practice.

Generalized Bipartite Matching

Chapter 4 studies approximate solutions for large-scale generalized bipartite match-
ing problems containing millions of vertices and billions of edges. We propose the
first distributed algorithm for computing near-optimal solutions to such problems;
in contrast, existing scalable solutions for bipartite matching problems (e.g., Huang
and Jebara (2011); Morales et al. (2011)) can solely deal with special cases. Our
approach rests on linear programming and randomized rounding. In particular,
we utilize MPCSolver developed in Chapter 3 and present DDRounding, an effi-
cient distributed randomized rounding algorithm. As a case study, we focus on
an application in recommending multimedia items under certain constraints and
conduct an extensive experimental study on both real and synthetic datasets of
varying sizes. Our experiments indicate that both DDRounding and MPCSolver
significantly outperform alternative approaches in terms of scalability and efficiency.

4

Finally, Chapter 5 concludes this thesis with a summary and a discussion of possible
directions for future work. For a summary of notation used in this manuscript see
Appendix A.

5

6

2
Distributed Matrix Completion

In this chapter,1 we are concerned with low-rank matrix completion, an effective
technique for statistical data analysis which recently has gained considerable at-
tention in the data mining and machine learning community. At its heart, matrix
completion is a variant of low-rank matrix factorization and involves recovering a
partially observed and potentially noisy data matrix. Its most prominent application
is perhaps in the context of collaborative filtering in recommender systems. Several
other problems can be cast as a matrix completion problem, examples include, link
prediction (Liben-Nowell and Kleinberg 2007), sensor localization (Drineas et al.
2006; Singer 2008), relation extraction (Riedel et al. 2013), etc.

In the setting of recommender systems, which we focus on in this chapter, matrix
completion techniques are currently considered as one of the best single approaches
and have attained remarkable performance in practice (Chen et al. 2012; Das et al.
2010; Gemulla et al. 2011c; Hu et al. 2008; Koren et al. 2009; Mackey et al. 2011;
Recht and Ré 2013; Recht et al. 2011; Yu et al. 2012; Zhou et al. 2008). In such a
setting, the rows in the data matrix correspond to users or customers, the columns to
items such as movies or music pieces, and entries to feedback provided by users for
items; the provided feedback is either explicit, e.g., in the form of numerical ratings,

1Parts of the material in this chapter have been jointly developed with Rainer Gemulla, Peter J. Haas,
Yannis Sismanis, and Christina Teflioudi. The chapter is based on Gemulla et al. (2011b), Teflioudi
et al. (2012), and Makari et al. (2014). The copyright of Gemulla et al. (2011b) is held by
NIPS; the original publication is available at http://biglearn.org/2011/files/papers/
biglearn2011_submission_15.pdf. The copyright of Teflioudi et al. (2012) is held by
IEEE; the original publication is available at http://doi.ieeecomputersociety.org/10.
1109/ICDM.2012.120. The copyright of Makari et al. (2014) is held by Springer; the original pub-
lication is available at www.springer.com and http://dx.doi.org/10.1007/s10115-
013-0718-7.

7

http://biglearn.org/2011/files/papers/biglearn2011_submission_15.pdf
http://biglearn.org/2011/files/papers/biglearn2011_submission_15.pdf
http://doi.ieeecomputersociety.org/10.1109/ICDM.2012.120
http://doi.ieeecomputersociety.org/10.1109/ICDM.2012.120
www.springer.com
http://dx.doi.org/10.1007/s10115-013-0718-7
http://dx.doi.org/10.1007/s10115-013-0718-7

which directly captures users’ personal taste, or implicit, e.g., page reviews, which
indirectly reflects users opinion about the item. Matrix completion is an effective
tool for analyzing such dyadic data in that it discovers and quantifies the interactions
between users and items.

The key principle in matrix completion is to fit a low-rank model,2 which captures
the important aspects of the data matrix from available past feedback. To this
end, both users and items are mapped to a joint latent vector space of a small
dimensionality r ≥ 1 (usually less than 100). In particular, we associate r features
to each user and to each item. For a particular item, the feature values reflect the
extent to which the item possesses those feature. For a given user, the elements of
the corresponding feature vector measure the relevance of those features for the
user. These features are usually latent in that they do not have explicit semantic
interpretations; feature values are learned from available entries. In the simplest
case, which we focus on in this chapter, interactions between users and items are
measured as the inner product of the feature vectors of the corresponding users
and items in that latent vector space. In general, the estimations might depend on
other additional data such as the time stamp of rating, user and item biases, implicit
feedback, and so on.

Many real-world applications involve matrices with millions of rows, millions
of columns, and billions of entries. Meanwhile, many online movie stores like
Netflix have large volume of data available, which captures users’ satisfaction
about numerous movies. For example, Netflix collected over five billion ratings
for more than 80k movies from its more than 20M customers (Amatriain and
Basilico 2012; Bennett and Lanning 2007). Similarly, Yahoo! Music gathered
billions of user ratings for musical pieces (Dror et al. 2011). Clearly, algorithms for
matrix completion must be parallelized to be able to cope with such large instances
efficiently.

Our goal is to develop efficient and scalable algorithms for large matrix completion
problems. We focus on in-memory algorithms that run on a small cluster of com-
modity nodes, i.e., we assume that the data and feature vectors fit in the aggregate
memory of the cluster nodes. A wide range of matrix completion tasks can be
handled effectively in such a setup. Consider, for example, an extremely large
hypothetical problem instance in which the input matrix contains 20M rows, 1M
columns, and 1% of the entries are observed. (By comparison, the data in Bennett
and Lanning (2007); Dror et al. (2011) imply that 0.3% of Netflix ratings and 0.4%
Yahoo! Music entries are revealed, and the Netflix problem has fewer rows and
columns than the hypothetical problem.) If a rank-100 factorization is used and
assuming that each entry is a 64-bit number, then the total data and model size is

2Note that the user-movie-rating matrix may be low-rank since it is commonly believed that only a
few features contribute to individual’s preferences (Koren 2008).

8

2.1. The Matrix Completion Problem

approximately 1.5TB.3 Small shared-nothing clusters can easily handle this amount
of data. In such a setting, there have been almost no studies of in-memory matrix
completion algorithms based on programming models, such as MPI (2013), that
allow asynchronous communication between processors. Similarly, the possibilities
for exploiting multithreading have not been considered. In a multithreaded shared-
nothing architecture, different processing nodes do not share memory, but threads
at the same node can share memory. However, most existing distributed shared-
nothing algorithms for matrix factorization are designed for MapReduce (Das et al.
2010; Gemulla et al. 2011c; Liu et al. 2010; Zhou et al. 2008). Compared to our
setting, MapReduce algorithms have multiple drawbacks: (1) they need to repeat-
edly read the input from disk into memory, (2) they are limited to the MapReduce
programming model, and (3) they may suffer from runtime overheads of popular
implementations such as Hadoop (which has been designed for much larger clusters
and different workloads).

Popular algorithms for large-scale matrix completion are based on stochastic gradi-
ent descent (SGD) (Koren et al. 2009) or alternating minimization ideas (Yu et al.
2012; Zhou et al. 2008). We review parallel (shared-memory and shared-nothing)
and MapReduce variants of these algorithms. We propose a set of shared-nothing
algorithms that are faster, more scalable, and less memory-intensive than existing
MapReduce algorithms. More specifically, our Asynchronous SGD (ASGD) and
DSGD++ are novel variants of the SGD algorithm. ASGD is inspired by recent
work on distributed LDA (Smola and Narayanamurthy 2010) and DSGD++ is based
on the MapReduce algorithm of Gemulla et al. (2011c). Both algorithms are cache-
friendly, and exploit thread-level parallelism and asynchronous communication.
Our DALS is a scalable variant of the alternating least-squares (ALS) algorithm
of Zhou et al. (2008) that exploits thread-level parallelism to speed up processing
and reduce the memory footprint.

This chapter is organized as follows. In Section 2.1, we state the matrix comple-
tion problem formally. In Section 2.2, we focus on stochastic gradient descent.
In Section 2.3, we first present our novel shared-nothing algorithms ASGD and
DSGD++, and then proceed with a survey of prior shared-memory SGD algorithms.
Algorithms based on alternating minimization approaches are reviewed afterwards
in Section 2.4. Finally in Section 2.5, different algorithms are compared both via a
theoretical complexity analysis as well as an extensive set of experiments.

2.1 The Matrix Completion Problem

As already mentioned, a special instance of matrix completion is the “Netflix
problem” (Bennett and Lanning 2007) of recommending movies to customers.

3Here we assume that the input matrix is stored in sparse format.

9

2.1. The Matrix Completion Problem

Consider a vendor (e.g., Netflix) that offers movies for rental to its customers each
of whom are given the opportunity to provide feedback about their preferences
by rating movies (e.g., Netflix customers may rate movies with 1 to 5 stars). The
feedback can be represented in matrix form, for example

Avatar Inception Shrek
Alice ? 4 2

Bob 3 2 ?

Charlie 5 ? 3

.

In addition to the actual ratings, other forms of feedback might also be available
such as time of rating and click history. The task is to estimate the missing entries
(denoted by “?”), so the movies with high predicted values can potentially be
recommended to users for watching. This approach has proven successful in
practice; see Koren et al. (2009) for an excellent discussion of the underlying
intuition.

In the following, we first introduce some notation and then proceed with the problem
statement. Along with the notation from Appendix A, we use the notation sum-
marized in Table 2.1 throughout this chapter. Let training set Ω = { ω1, . . . , ωN }
denote the set of observed entries in m × n input matrix V , where ωk = (ik, jk),
k ∈ [1, N], ik ∈ [1, m], and jk ∈ [1, n]. In what follows, we assume without
loss of generality that m ≥ n.4 Let Ni∗ and N∗j denote the number of revealed
entries in row i and column j, respectively. Finally, let r � min(m, n) denote the
rank parameter. The task is to find an m × r row-factor matrix L and an r × n

column-factor matrix R such that V ≈ LR, i.e., we aim to approximate V by
the low-rank matrix LR. The quality of the approximation is controlled by an
application-dependent loss function L(L, R) that measures the difference between
the observed entries in V and the corresponding entries in LR (we suppress the
dependence on V for brevity). The matrix completion problem asks to find the
loss-minimizing factor matrices, i.e.,

(L∗
, R∗

) = argmin
L,R

L(L, R). (2.1)

The matrix L∗R∗ can be considered as a “completed version” of V , and each
unrevealed entry V ij is predicted by [L∗R∗

]ij .

The loss function L may also encode additional information including user and item
biases, implicit feedback, temporal aspects, confidence level, as well as regulariza-
tion terms to avoid over-fitting. Table 2.2 summarizes some popular loss functions.

4Under this assumption, algorithms in the shared-nothing environment move mostly column-factor
data between the nodes.

10

2.1. The Matrix Completion Problem

Table 2.1: Notation for matrix completion algorithms

Symbol Description

V Data matrix
m, n Number of rows & columns of V

Ω Set of revealed entries in V
N Number of revealed entries in V

Ni∗ Number of revealed entries in row i of V
N∗j Number of revealed entries in column j of V
r Rank of the factorization

L, R Factor matrices
E Residual matrix
w Number of compute nodes
t Number of threads per compute node
p Total number of threads
b Number of row/column blocks (SSGD)
T Repetition parameter (CCD++)
s Number of shufflers (Jellyfish)

The most basic loss function is the squared loss

LSl(L, R) =
�

(i,j)∈Ω
(V ij − [LR]ij)

2
.

LL2 incorporates L2 regularization and is closely related to the problem of mini-
mizing the nuclear norm of the reconstructed matrix (Recht and Ré 2013). LL2w

incorporates weighted L2 regularization (Zhou et al. 2008), in which the amount
of regularization depends on the number of revealed entries. This particular loss
function was a key ingredient in the best performing solutions of both the Netflix
competition and the 2011 KDD-Cup (Chen et al. 2012; Koren et al. 2009; Zhou
et al. 2008).

Our formulation of the matrix completion is motivated by its applications in data
mining settings where a fixed set of training data and a loss function are provided,
and the goal is to compute loss-minimizing factor matrices as efficiently as possible.
There is a large body of work in the literature that assumes a “true” underlying
V matrix together with a stochastic process that generates the training data from
V ; both noiseless and noisy cases have been studied. The task is to statistically
infer the true V matrix from the training data, where the inference algorithm may
exploit knowledge about the stochastic process. In general, exact low-rank matrix
completion is impossible without making any assumptions about the structure of
the input matrix V and the training set Ω. A typical assumption (among other

11

2.1. The Matrix Completion Problem

Table 2.2: Popular loss functions for matrix completion

Loss Definition

LSl
�

(i,j)∈Ω(V ij − [LR]ij)2

LL2 LSl + λ

��
ik L2

ik +
�

kj R2
kj

�

LL2w LSl + λ

��
ik Ni∗L2

ik +
�

kj N∗jR2
kj

�

Loss Local loss

LSl (V ij − [LR]ij)2

LL2 (V ij − [LR]ij)2 + λ
�

k(N
−1
i∗ L2

ik + N
−1
∗j R2

kj)

LL2w (V ij − [LR]ij)2 + λ
�

k(L2
ik + R2

kj)

assumptions) in this setting is that the training set Ω is generated uniformly at
random; see for example the results in Candes and Recht (2009); Krishnamurthy
and Singh (2013); Recht (2011) for the noiseless setting and in Candès and Plan
(2010); Negahban and Wainwright (2012) for the case in presence of Gaussian noise.
Note that these settings differ from ours as well as many real applications where
the training set is assumed to be fixed. In fact, most available datasets (e.g., the
Netflix dataset) for recommendation tasks are highly non-uniform in the sense that
the number of available ratings for each individual movie varies widely.

In this chapter, we focus on loss functions that admit a summation form; follow-
ing Chu et al. (2006), we say that a loss function is in summation form if it is written
as a sum of local losses Lij that occur at only the revealed entries of V , i.e.,

L(L, R) =
�

(i,j)∈Ω
Lij(Li∗, R∗j).

Table 2.2 shows examples of loss functions in summation form together with the
corresponding local losses. We refer to the gradient of a local loss as a local gradient;
by the linearity of the differentiation operator, the gradient of a loss function having
summation form can be represented as a sum of local gradients:

L
�
(L, R) =

�

(i,j)∈Ω
L

�
ij(Li∗, R∗j).

In the following, we focus on popular algorithms based on stochastic gradient
descent (Section 2.2) and alternating minimizations (Section 2.4), which have been
shown to be effective in the collaborative filtering setting (Gemulla et al. 2011c;
Recht and Ré 2013; Recht et al. 2011; Zhou et al. 2008).

12

2.2. Matrix Completion via Stochastic Gradient Descent

2.2 Matrix Completion via Stochastic Gradient Descent

We first describe the basic SGD algorithm and then discuss various parallelization
strategies. For brevity, we write L(θ) and L�(θ), where θ = (L, R), to denote
the loss function and its gradient. Denote by ∇LL (resp. ∇RL) the m × r (resp.
r × n) matrix of the partial derivatives of L w.r.t. to the entries in L (resp. R). Then
L� = (∇LL, ∇RL). For example,

[∇LLSl]ik = −2
�

j:(i,j)∈Ωi∗

Rkj(V ij − [LR]ij),

where Ωi∗ denotes the set of revealed entries in row V i∗.

2.2.1 Gradient Descent (GD)

A number of gradient-based methods have been proposed in the literature for matrix
completion. Perhaps, the most basic one is the gradient descent (GD). Starting from
some initial point, GD iteratively takes small steps in the opposite direction of the
gradient:

θn+1 = θn − �nL
�
(θn),

where n denotes the step number and { �n } is a sequence of decreasing step sizes.
(Throughout, we assume that each �n is non-negative and finite.) Note that −L�(θn)

corresponds to the direction of steepest descent. Under appropriate conditions, GD
achieves a linear rate of convergence; faster convergence rates can be obtained by
deploying second order methods, e.g., quasi-Newton methods such as L-BFGS-
B (Byrd et al. 1995).

2.2.2 Stochastic Gradient Descent (SGD)

Stochastic gradient descent is based on GD, however, instead of using the function’s
gradient L�(θ), it utilizes a noisy estimate L̂�(θ) of L�(θ). In order to find a mini-
mizer θ∗ of L(θ), SGD starts with some initial value θ0, and refines the parameter
value by iterating the stochastic difference equation

θn+1 = θn − �nL̂
�
(θn).

Thus, SGD can be seen as a noisy version of GD. The gradient estimate is obtained
by scaling up just one of the local gradients, i.e., L̂�(θ) = NL�

ij(θ) for some
(i, j) ∈ Ω. At each SGD step a different training point (i, j) is selected according
to a training point schedule; see below. Note that the local gradients at point (i, j)

depend only on V ij , Li∗ and R∗j . Therefore, only a single row Li∗ and a single
column R∗j are updated during each SGD step; all other rows and columns remain
unaffected.

13

2.2. Matrix Completion via Stochastic Gradient Descent

The convergence properties of SGD can be established by using stochastic approxi-
mation theory. In particular, it can be shown that under certain conditions (Kushner
and Yin 2003), SGD converges to a set of stationary points satisfying L�(θ) = 0.
These stationary points can be minima, maxima, or saddle points. However, the
noisy gradient estimations reduce the likelihood of getting stuck in maxima or
saddle points so that the SGD algorithm usually converges to a (local) minimum
of L. To increase the likelihood of finding a global minimum, one could run SGD
multiple times, starting from a set of randomly chosen initial points.

Note that SGD performs many quick-and-dirty steps in each pass over the training
data, whereas GD (or a quasi-Newton method like L-BFGS-B) performs a single
careful step. For large matrices, the increased number of SGD steps results in a
faster convergence compared to GD (see, e.g., Gemulla et al. (2011c)). Moreover,
the noisy estimation of the descent direction helps the algorithm escaping from local
minima, especially during the early stages of the descent. The performance of SGD
highly depends on the step size sequence and the training point schedule. In the
following, we discuss these two issues in detail.

Step size sequence. A number of schemes for choosing the step size in each SGD
step have been proposed in the literature. Often step size sequences of the form
�n =

1
nα with α ∈ (0.5, 1] are used; this choice of step sizes ensures asymptotic

convergence (Kushner and Yin 2003).5 In practice, however, one may follow other
steps size choices to achieve faster convergence. A simple adaptive scheme for
selecting the step size, termed the bold driver heuristic (Battiti 1989), has been
shown to be very effective in practice (Gemulla et al. 2011c), even though without
asymptotic convergence guarantees. In all of our SGD implementations, we applied
this heuristic, which has worked extremely well in our experiments. The bold driver
heuristic exploits the fact that current loss can be computed after every epoch and
proceeds as follows. We refer to one GD step or a sequence of N SGD steps as
an epoch; an epoch roughly corresponds to a single pass over the training data.
Starting from an initial step size �0, the algorithm increases the step size by a small
percentage (say by 5%) if the loss after every epoch has decreased, or drastically
decreases the step size (say by 50%) if the loss has increased. Within each epoch,
the step size remains unchanged. The initial step size �0 is obtained by trying
different values on a small sample (say 0.1%) of the training points and selecting
the best-performing one.

Training point schedule. We focus on three common training point schedules
for processing the training data:

5“Convergence” refers to running the algorithm until some convergence criterion is met; “asymp-
totic convergence” means that the algorithm converges to the true solution as the runtime goes to
+∞.

14

2.2. Matrix Completion via Stochastic Gradient Descent

• SEQ: Processing Ω sequentially in some fixed order,

• WR: Sampling from Ω with replacement, and

• WOR: Sampling from Ω without replacement.

All of these training point schedules guarantee convergence, however, they require
different number of epochs until convergence. WR provides the best convergence
rates. In fact, the provable rates for WOR are considerably slower (Nedic and
Bertsekas 2000). In practice and on large datasets, however, WOR often outperforms
WR in terms of the number of epochs to convergence (Bottou and Bousquet 2007).
As discussed in Recht and Ré (2013), one reason is due to the coupon collector
phenomenon. According to this phenomenon, for a large number N of data points,
on average N log N samples are required in order to see each data point at least
once. Clearly, in WOR, exactly N samples are required to touch all of N data
points. As the size of the dataset increases, this discrepancy becomes more evident.
SEQ requires significantly more epochs than both WR and WOR, and converges to
an inferior solution. On the other hand, each individual SGD step is faster under
SEQ. This is due to the fact that SEQ exhibits better memory locality compared to
WR and WOR (see Section 2.5.2D).

SGD++

As discussed above, SEQ benefits from a sequential memory access pattern. In
contrast, WR and WOR access data in memory discontinuously, which in turn leads
to a high cache-miss rate and performance degradation. To reduce this performance
gap, we will enhance WOR with latency-hiding techniques. In more details, we
prefetch the required data into the CPU cache before it is accessed by the SGD
algorithm (e.g., using gcc’s __builtin_prefetch macro). In the beginning of
each epoch, we precompute and store a permutation Π of { 1, . . . , N } that indicates
the order in which training points are to be processed. In the n-th step, the SGD
algorithm accesses the values V iΠ

n jΠ
n

, LiΠ
n ∗, and R∗jΠ

n
, whose common index value

(iΠ
n , jΠ

n) is determined from the Π(n)-th entry of Ω. We access Π and then prefetch
the index value (iΠ

n , jΠ
n) during SGD step n − 2 (so that it is in the CPU cache at

step n − 1), and the values V iΠ
n jΠ

n
, LiΠ

n ∗, and R∗jΠ
n

in SGD step n − 1 (so that they
are in the CPU cache at step n). Note that Π itself is accessed sequentially so that
no explicit prefetching is needed. We refer to SGD with prefetching as SGD++;
see Algorithm 1. In our experiments, SGD++ was up to 13% faster than SGD (see
Section 2.5.2C).

15

2.3. Parallelizing SGD-based Methods

Algorithm 1 The SGD++ algorithm for matrix completion
Require: Incomplete matrix V , initial values L and R

1: while not converged do // epoch
2: Create random permutation Π of { 1, . . . , N } // WOR schedule
3: for n = 1, 2, . . . , N do // step
4: Prefetch indexes (iΠ

n+2, jΠ
n+2) ∈ Ω for next but one step

5: Prefetch data V iΠ
n+1jΠ

n+1
, LiΠ

n+1∗, R∗jΠ
n+1

for next step
6: L�

iΠ
n ∗ ← LiΠ

n ∗ − �nN∇L
iΠ
n ∗

LiΠ
n jΠ

n
(L, R)

7: R∗jΠ
n

← R∗jΠ
n

− �nN∇R∗jΠ
n

LiΠ
n jΠ

n
(L, R)

8: LiΠ
n ∗ ← L�

iΠ
n ∗

2.3 Parallelizing SGD-based Methods

Sequential methods for matrix completion are effective only for problems at small
scale. However, even on problems of moderate size they may require substantial
amount of time until convergence and scalability becomes a bottleneck. Therefore,
parallel (shared-memory or shared-nothing) versions of SGD have been developed.

The key challenge in parallelizing SGD is that SGD steps might depend on each
other. In particular, if two SGD steps select the training points that lie in the same
row (resp. column), both of these steps modify the same row (resp. column) and
updates to the same row (resp. column) will be overwritten. In the following,
we describe some approaches to overcome this issue for shared-nothing parallel
processing environments. All shared-nothing approaches partition the data and
factor matrices into a carefully chosen set of blocks; we refer to such a partitioning
as a blocking. Denote by w the number of compute nodes and by t the number of
threads per node; the total number of available threads is thus p = wt. We defer the
discussion of parallel shared-memory algorithms to Section 2.3.2.

2.3.1 Shared-Nothing Setting

Distributed shared-nothing algorithms are designed for large-scale problems which
exceed the main memory capacity of a single compute node. We now discuss why,
in general, distributing SGD effectively is challenging. Throughout, we assume
that t is no larger than the number of available (physical or virtual) threads at each
compute node. The main challenge in a shared-nothing environment is to effectively
manage the communication between the compute nodes. Ideally, our goal is to
partition the input data and factors across the cluster such that (1) each node operates
on a disjoint subset of the data and factors so that each partition can be processed
independently, and (2) each node receives roughly the same amount of data so
that the workload is balanced and distributed processing is effective. In general,

16

2.3. Parallelizing SGD-based Methods

however, these goals are not achievable at the same time. To see this, assume to the
contrary that there exists such a partitioning of input matrix V , and factor matrices
L and R and that some node k is responsible for training points Ωk ⊆ Ω. Moreover,
suppose that training point (i, j) ∈ Ωk. Note that performing an SGD step on (i, j)

updates Li∗ and R∗j using the gradient estimate L�
ij . Since by assumption these

parameters are not updated by any other node, all of the training points in row i

and column j must also be in Ωk, i.e., (i, j) ∈ Ωk =⇒ Ωi∗ ∪ Ω∗j ⊆ Ωk. Thus,
Ωk forms a submatrix of V that contains all revealed entries of any of its rows or
columns. We can form w balanced partitions if and only if the rows and columns
of V can be permuted to obtain a w × w block-diagonal matrix with a balanced
number of revealed entries in each diagonal block. This is not possible in general;
indeed, most (or even all) revealed entries usually concentrate in a single block.

In the sequel, we discuss two different approaches to circumvent this difficulty:
stratified SGD (Gemulla et al. 2011c) and asynchronous SGD. With the exception
of DSGD-MR discussed in Section 2.3.1C, all algorithms that we describe here
assume that nodes can directly communicate with each other asynchronously, using
a protocol such as MPI.

A. Asynchronous SGD (ASGD)

Assume that V and conformingly L are blocked row-wise w × 1 while R is
blocked column-wise 1 × w. At each node k, we store blocks V k∗, Lk, and Rk.
Note that under this blocking, updates to L are node-local and can be performed
independently, whereas updates to R are either local or remote. We refer to R∗j

as the master copy of the j-th column of R and to the node that stores R∗j as the
master node. A naive way to parallelize SGD in a distributed shared-nothing setting
is as follows: To process training point (i, j) at some node k, the master copy R∗j

is first locked at its master node. Next, R∗j is fetched and Li∗ and R∗j are updated
locally. Finally, the new value of R∗j is sent back to its master node and the lock is
released. This asynchronous algorithm is clearly impractical, since performing SGD
steps is inexpensive so that most of the time is spent on communicating columns of
R.

Our ASGD algorithm avoids this problem by maintaining a working copy R̂k
∗j of

each column R∗j at each node k. Initially, all the working copies agree with their
corresponding master copies. We now run SGD updates at each node as above, but
update the working copy R̂k

∗j instead of the master copy when processing (i, j).
Note that up to this point there is no need for obtaining locks and synchronous
communication. However, the working copies still need to be coordinated to ensure
correctness. In the context of perceptron training, McDonald et al. (2010) proposed
averaging the working copies once at the end of every epoch. In our case, however,
nodes can communicate continuously, which allows us to perform averaging more

17

2.3. Parallelizing SGD-based Methods

Lk V k∗
r

RRk

V
∗k c L

(a) DALS

Lk Ek∗
r

Rf∗Rk

E
∗k c

L
∗f

(b) DCCD++

Lk V k∗

R̂k

∆R̂k

Rk

(c) ASGD

Lk V k∗

Rk RSl(k)

(d) DSGD-MR
(in-memory)

Lk V k∗
red V k∗

blue

R
S l+

1(
k)

R
S l−

1(
k)

R
S l(k

)

(e) DSGD++

Figure 2.1: Memory layout used on node k by the shared-nothing algorithms
(t = 1). Node-local data is shown in white, master copies in light
gray, and temporary data in dark gray.

frequently, namely also during each epoch. To this end, each node sends its update
vector ∆R̂k

∗j to the master node from time to time, where ∆R̂k
∗j refers to the

sum of updates to R̂k
∗j since the last averaging. Once a master node receives all

the update vectors ∆R̂1
∗j , . . . , ∆R̂w

∗j , it adds their average to the master copy and
broadcasts the result. Each node k then updates its working copy and integrates
all local changes that have been accumulated meanwhile. The memory layout of
ASGD is shown in Figure 2.1c. In the figure, R̂k

=
�
R̂k

∗1
�� R̂k

∗2
�� · · ·

�� R̂k
∗n

�
and

similarly for ∆R̂k.

In ASGD, each node operates on different working copies of R in parallel. There-
fore, updates to a column of R̂∗j at some node are not immediately visible to the
other nodes. However, when the delay between updating a column and broadcasting
the update is bounded, asynchronous SGD provably converges to a stationary point
of L (Tsitsiklis et al. 1986). Note that under our blocking scheme, we only need

18

2.3. Parallelizing SGD-based Methods

to average a subset of parameters, i.e., R but not L; this idea is motivated by the
distributed LDA method for text mining (Smola and Narayanamurthy 2010). In
our actual implementation, ASGD sends updates continuously during and once
after every epoch. As a result, updates are communicated as often as possible and
the local copies are consistent with the master copy after every epoch. The latter
property also allows us to compute the loss across compute nodes after every epoch
and apply the bold driver heuristic for step size selection. Furthermore, we make
sure that averaging is non-blocking. Finally, rather than running ordinary sequential
SGD on each node, we run a multithreaded version of SGD called PSGD, which is
described in Section 2.3.2A. In addition to the threads performing PSGD, one single
thread takes care of averaging. Note that this latter thread has low CPU utilization
since the time to compute the update vectors is swamped by communication costs.

B. Stratified SGD (SSGD)

Gemulla et al. (2011c) presented an alternative approach to parallelizing SGD,
which utilizes a stratification technique and avoids inconsistent updates. We refer to
this method as stratified SGD (SSGD). SSGD serves as a basis for DSGD-MR and
DSGD++ algorithms for the shared-nothing environment. We now discuss the main
ideas behind SSGD in more details.

Assume that the input matrix is blocked b × b, where b is chosen to be larger than or
equal to the number available threads; the corresponding factor matrices are blocked
conformingly:

R1 R2 · · · Rb

L1 V 11 V 12 · · · V 1b

L2 V 21 V 22 · · · V 2b

...
...

...
. . .

...
Lb V b1 V b2 · · · V bb

.

In order to ensure that all b2 blocks contain N/b2 training points in expectation, we
randomly shuffle rows and columns of V before blocking. To run SGD on some
block V ij , the algorithm requires access to matrices Li and Rj only. It is easy
to see that SGD can process each block on the main diagonal (i.e., V 11

, . . . , V bb)
independently in parallel. Following Gemulla et al. (2011c), we say that two
different blocks V ij and V i�j�

are interchangeable whenever i �= i� and j �= j�, i.e.,
they share neither rows nor columns. Moreover, a set of b pairwise interchangeable
blocks is called a stratum; the set of all strata is denoted by S ; see Figure 2.2 for
an example. Thus, we can process all b blocks in s ∈ S in parallel. We can think
of a stratum as a bijective map from a row-block index k to a column-block index

19

2.3. Parallelizing SGD-based Methods

V 11V 12V 13

V 21V 22V 23

V 31V 32V 33

V 11V 12V 13

V 21V 22V 23

V 31V 32V 33

V 11V 12V 13

V 21V 22V 23

V 31V 32V 33

V 11V 12V 13

V 21V 22V 23

V 31V 32V 33

V 11V 12V 13

V 21V 22V 23

V 31V 32V 33

V 11V 12V 13

V 21V 22V 23

V 31V 32V 33

SA SB SC SD SE SF

Figure 2.2: Strata used by SSGD for a 3 × 3 blocking of V

Algorithm 2 The SSGD algorithm for matrix completion (Gemulla et al. 2011c)
Require: Incomplete matrix V , initial values L and R, blocking parameter b

1: Block V / L / R into b × b / b × 1 / 1 × b blocks
2: while not converged do // epoch
3: Pick step size �

4: for s = 1, . . . , b do // subepoch
5: Pick w blocks {V 1j1 , . . . , V bjb} to form a stratum
6: for k = 1, . . . , b do // in parallel
7: Run SGD on the training points in V kjk with step size �

j = S(k); here k corresponds to a processing unit such as a nodes or thread. In our
example, we have SB(1) = 2, SB(2) = 3, and SB(3) = 1.

The key point in SSGD is how to select strata such that all training points are
sampled correctly and the convergence is guaranteed. The SSGD algorithm is
summarized in Algorithm 2. SSGD repeatedly selects and processes a stratum
s ∈ S ; the selection is based on a stratum schedule (see below). All blocks in the
selected stratum are processed in parallel: processing unit k processes block V kS(k).
For example, assume that stratum SC has been selected during the execution of
SSGD; in this case, blocks V 13, V 21, and V 32 are processed in parallel by nodes
1, 2, and 3, respectively. In what follows, we refer to processing a single stratum
as a subepoch and to a sequence of b subepochs as an epoch. Note that an epoch
roughly corresponds to one single pass over the training data: each block contains
N/b2 training points in expectation, each epoch consists of b subepochs, and we
process b blocks in each subepoch.

Stratum schedule. Stratum schedule determines which strata are chosen in each
subepoch. More specifically, it consists of a (possibly random) sequence S1, S2, . . .

fromS ; Sl is the stratum visited in the l-th subepoch. The convergence properties of
SSGD are established in Gemulla et al. (2011a). In particular, it has been shown that
SSGD asymptotically converges to a stationary point of L under natural conditions
on the stratum schedule. For instance, a stratum schedule must guarantee that every
training point is processed equally often in a long run; for details see Gemulla et al.
(2011a). Stratum schedule affects the convergence properties of SSGD in practice.

20

2.3. Parallelizing SGD-based Methods

In Gemulla et al. (2011a) three possible strategies for stratum selection have been
examined:

• Sequential selection (SEQ),

• With replacement selection (WR), and

• Without replacement selection (WOR).

The simplest correct schedule is to select exactly b strata such that they jointly
cover all the training data, and process them in a sequential order (SEQ); this
selection strategy ensures that all training points are chosen exactly once in every
epoch. For example, we can use the stratum schedule (SA, SB, SC) for every
epoch. This strategy is similar to a cyclic partitioning of the training data which
is used in the Jellyfish algorithm (see Section 2.3.2B). An alternative schedule is
to uniformly sample d strata from S with replacement in every subepoch (WR);
e.g., the schedule (SA, SC , SA) might be selected in a given subepoch. Finally, we
may select strata randomly but ensure that every block is processed exactly once in
every epoch (WOR). This strategy can be seen as selecting a schedule according to
SEQ uniformly at random in every epoch; in our example, all possible permutations
of (SA, SB, SC) and all possible permutations of (SD, SE , SF) are valid schedules;
in each epoch, one of these 12 schedules is selected at random. Our experiments
show that WOR outperforms the other strategies in terms of the number epochs to
convergence. The reason is that selecting strata according WOR randomizes the
order of blocks as much as possible while ensuring that all the training points are
processed in every epoch.

The generic SSGD forms the basis of various algorithms for different settings.
In the sequel, we first describe DSGD-MR (Gemulla et al. 2011c) designed for
the shared-nothing MapReduce framework and then our novel DSGD++, an in-
memory algorithm for shared-nothing architectures in which nodes or threads can
communicate directly.

C. Distributed SGD-MapReduce (DSGD-MR)

DSGD-MR implements the SSGD algorithm in the MapReduce framework. In
MapReduce, the data is partitioned and stored in a distributed file system and is
loaded into memory for processing. In this framework, the computation is divided
into a sequence of map and reduce phases; after each phase the data is written back
into disk to avoid data loss if a compute node fails. Note that in MapReduce, the
compute nodes do not communicate directly, but rather indirectly through reading
and writing of files.

21

2.3. Parallelizing SGD-based Methods

Consider a stratification of the data based on a w × w blocking of V ; each node k

stores blocks V k1
, . . . , V kw of the input matrix together with blocks Lk and Rk

of the factor matrices. This memory layout is depicted in Figure 2.1d (as before,
V k∗ refers to the k-th row of blocks of V). Note that our implementation of DSGD-
MR differs from the disk-based Hadoop implementation proposed in Gemulla et al.
(2011c) in that it stores the input data and the factor matrices in main memory instead
of in a distributed file system. This modification avoids the I/O costs incurred by the
disk-based Hadoop implementation; moreover, it facilitates comparison with other
algorithms. To process a stratum, a single map-only job consisting of w map tasks
is executed. To this end, the k-th map task requires access to blocks Lk, V kSl(k),
and RSl(k). Note that blocks Lk and V kSl(k) are node-local, whereas RSl(k) needs
to be fetched from node Sl(k) and stored back afterwards. Therefore, only blocks
of R need to be communicated while processing a stratum.

D. DSGD++

The MapReduce environment has a number of limitations; for example, nodes
communicate via a distributed file systems but cannot communicate directly, and the
data is stored on disk and loaded into memory when required. Our novel DSGD++
is an in-memory algorithm that can run on a small cluster of commodity nodes.
DSGD++ utilizes a novel data partitioning and stratum schedule, and exploits
asynchronous communication, as well as direct memory access and multithreading.
In the sequel, we discuss in detail various features of DSGD++, which allow us to
improve on DSGD-MR.

Direct fetches. Denote by Sl the stratum used in subepoch l and by S
−1
l (j)

the node that updates block Rj in the l-th subepoch. While running subepoch l,
DSGD++ moves the blocks of R directly between the nodes, i.e., the algorithm
avoids writing back the results to disk as in DSGD-MR. More specifically, node
k fetches the block RSl(k) directly from node S

−1
l−1(Sl(k)), which processed this

block in the previous subepoch. A similar approach, but in the context of the Spark
cluster-computing framework, has been explored in the Sparkler system (Li et al.
2013); this system focuses on issues orthogonal to those of this chapter, such as
cluster elasticity, fault-tolerance, and ease of programming.

Overlapping subepochs. In DSGD++, node k starts processing block V kSl(k) as
soon as RSl(k) has been received. As a result, this strategy allows for overlapping
of subepochs. For example, assume that all nodes are working on stratum SA as in
Figure 2.2. In the meanwhile, nodes 1 and 2 finish their jobs, but node 3, which is
slower, still operates on block V 33. Instead of forcing both nodes 1 and 2 to wait
for node 3 to finish, node 1 can immediately proceed to SB and start working on
block V 12 (because node 2 has finished and can send R2 to node 1). However,

22

2.3. Parallelizing SGD-based Methods

node 2 needs to wait until node 3 has finished processing V 23 before moving to
stratum SB , since it cannot start updating R3 until it receives R3 from node 3. Note
that this protocol prevents inconsistent updates, e.g., on R3. In this way, DSGD++
gracefully handles varying processing speeds across the compute nodes.

Asynchronous communication. Observe that the subepochs in DSGD-MR are
separated into two phases: (1) a communication phase, in which next blocks of
R are communicated, and (2) a computation phase, in which the blocks of V are
processed. DSGD++, on the contrary, overlays communication and computation by
using a w×2w blocking of V instead of a w×w blocking. In each epoch, DSGD++
conceptually partitions V and conformingly R at random into two matrices V red

and V blue, each consisting of w of the 2w column blocks. The algorithm then
alternates between running a subepoch on V red and a subepoch on V blue. As a
result, the red and blue subepochs work on disjoint blocks of R (cf. Figure 2.1e).
This approach enables us to overlay communication and computation as follows:
Suppose that some node k runs subepoch l (say, blue). Node k now simultaneously
fetches the block of R required in the (l + 1)-th subepoch (red) from the node
that processed it in the (l − 1)-th subepoch (also red). Thus, communication and
computation are overlaid.

Multithreading. Given w compute nodes and t threads per node, DSGD++ ex-
ploits thread-level parallelism by using a more fine-grained p × 2p blocking (rather
than w × 2w), where p = wt. Each node then stores 2tp blocks of V , t blocks of L,
and 2t blocks of R. This blocking allows us to process t blocks of V in t parallel
threads during a subepoch. In contrast to using multiple independent processes per
node, multithreading enables us to share memory between the threads. In more
detail, when the block required in subepoch l (say, blue) has been processed at the
same node in subepoch l − 2 (also blue), no communication cost is incurred (local
fetch). Data only needs to be communicated if the required block is stored on some
other node (remote fetch).

Locality-aware scheduling. A consequence of the distinction between local and
remote fetches is that different stratum schedules have different communication
costs, depending on the (expected) number of remote fetches of the required blocks
of R; thus, the more the (expected) number of remote fetches, the higher the
communication costs. Note that with respect to the communication costs, SEQ is
significantly more efficient than WR or WOR. The reason is that in every subepoch
only a single remote fetch occurs per node and the other t − 1 fetches are all local.
Nevertheless, the increased randomization of WOR leads to superior convergence
properties.

DSGD++ utilizes a locality-aware scheduling (LA-WOR) that strikes a compromise
between the compute-efficiency of SEQ and the desirable randomness of WOR.

23

2.3. Parallelizing SGD-based Methods

The goal is to use a scheduling to maximize the number of local fetches while
preserving randomness. The key idea is to apply the stratification technique twice:
once at the node-level and once at the thread-level. In more details, we proceed as
follows: After V red and V blue have been determined at the beginning of an epoch,
randomly group the wt column blocks of V red (and independently V blue) into w

groups. Similarly, group the wt row blocks of V red by the node at which they are
stored. We thus obtain a w × w coarse-grained blocking of V red. Each of the
coarse-grained blocks is then broken up into t × t fine-grained blocks. A node-level
(resp. thread-level) stratification of the input and factor matrices is based on this
coarse-grained (resp. fine-grained) blocking. To illustrate the main idea, assume
that w = t = 2 and that V red consists of column blocks V ∗1

, . . . , V ∗4. Moreover,
suppose that row blocks V 1∗ and V 2∗ (resp. V 3∗ and V 4∗) are stored at node 1
(resp. 2). Then one possible blocking is:

Node 1
�

V 11 V 14

V 21 V 24

� �
V 12 V 13

V 22 V 23

�

Node 2
�

V 31 V 34

V 41 V 44

� �
V 32 V 33

V 42 V 43

�

.

Note that in this example the column blocks V ∗1 and V ∗4 (resp. V ∗2 and V ∗3)
have been grouped together. To process a red stratum (a blue stratum is processed
similarly), two WOR schedules are used: (1) a WOR schedule over the coarse-
grained blocking to distribute across nodes, and (2) a WOR schedule, which is
chosen independently for each coarse-grained block, to parallelize across threads. In
this way, whenever a coarse-grained block is processed at a node, the corresponding
fine-grained blocks of R have to be communicated only once. Continuing the
example, we might obtain the following LA-WOR schedule for V red:

S1 S3 S5 S7

Node 1, thread 1 V 11 V 14 V 13 V 12

Node 1, thread 2 V 24 V 21 V 22 V 23

Node 2, thread 1 V 32 V 33 V 31 V 34

Node 2, thread 2 V 43 V 42 V 44 V 41

.

Here the column entries for a stratum Si correspond to the blocks of V that comprise
the stratum, and the strata S1, S3, . . . , S7 are displayed in the order that they are
processed during a given sequence of red subepochs (hence the odd-numbered
stratum indexes). As before, we only need to communicate blocks of R. Assume
that in this example blocks R1 and R2 are initially stored on node 1, while blocks

24

2.3. Parallelizing SGD-based Methods

R3 and R4 are at node 2. Denote by thread(i, j) the j-th thread at node i. Stratum S1
is processed first. To process V 11, thread(1, 1) fetches R1, a local fetch, whereas
thread(1, 2) fetches R4 to process V 24, a remote fetch. Similarly, thread(2, 1)

and thread(2, 2) need to fetch R2 and R3, resulting in one remote and one local
fetch. Next, S3 is processed. In this stratum, R4 and R1 are fetched by thread(1, 1)

and thread(1, 2), while R3 and R2 are retrieved by thread(2, 1) and thread(2, 2),
respectively. Because these blocks of R were all fetched during the processing
of S1, they are now local, so that no remote fetches are required. Overall, the
processing of S1–S7 incurs 10 local fetches and only 6 remote fetches.

2.3.2 Shared-Memory Setting

We now review some existing parallel shared-memory SGD-based methods designed
to run on a single powerful compute node. Shared-memory algorithms are suited
for the case when both the data matrix and the factor matrices can be loaded in the
memory of a single compute node. As before, t denotes the number of available
threads on a single node.

A. Parallel SGD (PSGD)

One natural approach to parallelize SGD across multiple threads is to partition the
training point schedule evenly among available t threads; each thread then performs
N/t SGD steps per epoch. To prevent the overwriting of updates, each thread locks
row Li∗ and column R∗j before processing training point (i, j). This approach is
effective when the number of available threads t is small (say, t ≤ 8). However,
the overhead of locking and random memory access becomes substantial for larger
number of threads. Recht et al. (2011) proposed a lock-free approach in which SGD
steps are performed without locking and inconsistent updates are allowed. We refer
to this lock-free variant of parallel SGD as PSGD. Since the number of rows and
columns are usually significantly larger than the available threads, it is unlikely
that two threads process training points that share a common row or column at the
same time. For matrix completion tasks, Recht et al. found virtually no difference
between the parallel SGD with and without locking in terms of running time and
quality.

B. Jellyfish

Recht and Ré (2013) presented a parallel SGD algorithm, termed Jellyfish. Similar
to SSGD, the main idea of Jellyfish is to partition the data into interchangeable
blocks that can be processed independently in parallel. In particular, it makes use
of a cyclic partitioning of the training data which enables performing SGD steps
in parallel without obtaining locks. This partitioning scheme is precisely the same

25

2.3. Parallelizing SGD-based Methods

as the SEQ stratum schedule in SSGD; it ensures that multiple threads operate on
data points (i.e., blocks) that do not share a common row or column. Jellyfish uses
a t × t blocking of the input matrix; the factor matrices are blocked accordingly.
However, in contrast to SSGD, Jellyfish changes the blocking of V in every epoch
by reshuffling the entire data points. This reshuffling step randomizes the order of
the data points to the extent possible for faster convergence. After this phase, the
data is accessed and SGD steps are performed sequentially. For improved efficiency,
Jellyfish overlaps the gradient computations in a given epoch with the reshuffling
of the data points. To this end, the algorithm maintains s copies of the data, where
s ≥ 2 is a small number. While one copy is being processed, s − 1 parallel threads
reorder the data in the remaining s − 1 copies. Similar to SSGD, Jellyfish operates
on a copy of data using t parallel threads. Note that Jellyfish has high memory
requirements, since multiple copies of the input matrix need to be stored. Moreover,
parallel reorganizations of the data may also lead to memory bottlenecks.

C. Cache-Conscious Parallel SGD (CSGD)

Recall from Section 2.3.2A that PSGD conducts updates to the training points in a
random order. Thus, a main drawback of PSGD is that its memory access pattern is
highly discontinuous. This in turn results in a high cache-miss rate and performance
degradation. This effect is even more emphasized when N is large. Makari et al.
(2014) proposed a variant of SSGD, termed CSGD, designed for a shared-memory
setting. The key principle in CSGD is to deploy a fine-grained blocking of the
input matrix so that each block V ij and the corresponding factor matrices Li and
Rj fit into the L2 cache of a single core. To enhance better memory locality, the
training points within a block are laid out in consecutive memory locations. More
specifically, CSGD partitions matrix V evenly across available threads such that
each row block is assigned to exactly one single thread. Thus, no inconsistent
updates will be performed on row-factor matrix L. Note that overwriting of updates
to column-factor matrix R may still occur. However, since the number of blocks is
much larger than the available threads, i.e., b � t, we expect this to happen rarely.

D. Fast Parallel SGD (FPSGD)

Recently, Zhuang et al. (2013) has presented an SGD-based algorithm, called
FPSGD, tailored to a shared-memory environment. To improve upon PSGD, the
key ideas of FPSGD are (1) to improve the performance by keeping the available
threads busy and (2) to alleviate the discontinuous memory-access pattern of PSGD.
More specifically, FPSGD uses a b × b blocking of input matrix V where b ≥ t + 1;
the corresponding factor matrices are blocked accordingly. At a given point of
time, a block is called free if it is interchangeable with all blocks being processed.
Otherwise, it is a non-free block. In the course of the algorithm, a scheduler assigns

26

2.4. Matrix Completion via Alternating Minimizations

a randomly chosen block which has been processed least frequently from the set of
all free blocks. Similar to CSGD, FPSGD stores the training points within a block
in consecutive memory locations such that the cache-miss rates are minimized. A
comparison between FPSGD and CSGD in an experimental study remains for future
work.

2.4 Matrix Completion via Alternating Minimizations

We now discuss some common algorithms for large-scale matrix completion based
on the techniques of “alternating minimizations”. For each method, we first focus
on a sequential setting and then continue with parallel shared-memory and shared-
nothing variants.

2.4.1 Alternating Least Squares (ALS)

Note that our formulation of matrix completion according to (2.1) is a non-convex
problem for all loss functions from Table 2.2. However, when fixing one of the
factor matrices L or R, it becomes a least-squares problem with a globally optimal
solution. ALS is a common approach to solve such quadratic problems. The basic
idea is to repeatedly keep one of the unknown matrices (L or R) fixed, so that the
other one can be optimally recomputed. ALS then alternates between recomputing
the rows of L in one step and the columns of R in the subsequent step. For the
basic case of LSl this amounts to solving a set of least-squares subproblems: one
for each row of L and one for each column of R

Compute Ln+1: (∀i) Li∗R(i)
n = V i∗, (2.2)

Compute Rn+1: (∀j) L(j)
n+1R∗j = V ∗j , (2.3)

where the unknown variable is underlined, V i∗ (resp. V ∗j) denotes the revealed
entries in row i (column j), and R(i)

n (resp. L(j)
n+1) refers to the corresponding

columns of Rn (rows of Ln+1). These equations can be solved using a method of
choice; for example, for the basic squared loss we obtain the closed from solutions

L�
n+1,i∗ ← (R(i)

n [R(i)
n]

�
)
−1RnV �

i∗,

Rn+1,∗j ← ([L(j)
n+1]

�
L(j)

n+1)
−1L�

n+1V ∗j ,

where Ln+1,i∗ (resp. Rn+1,∗j) denotes the i-th row of Ln+1 (resp. j-th column
of Rn+1). Note that during the computation of the least-squares solutions, matrix
V needs to be accessed once by row when updating L (Equation (2.2)), and once
by column when updating R (Equation (2.3)). Therefore, ALS implementations
require two copies of the data matrix V : one in row-major order (denoted by
V r) and one in column-major order (denoted by V c). Loss functions LL2 and

27

2.4. Matrix Completion via Alternating Minimizations

LL2w can also be handled as in Zhou et al. (2008). For solving each least-squares
problem, ALS requires O(Nr2) time to form all the r × r matrices R(i)

n [R(i)
n]

�
and

[L(j)
n+1]

�
L(j)

n+1, and additional O(r3) time to solve the least-squares problem. Thus,
under our running assumption that m ≥ n, an ALS epoch takes O(Nr2 + mr3).

Despite the wide practical applicability of ALS, its convergence properties is less
understood. Recently, there has been some work on the analysis of the ALS method
for matrix completion. For instance, Keshavan (2012) and Jain et al. (2013) studied
theoretical guarantees of ALS on the global optimality. In particular, they proved
geometric convergence of ALS when some natural conditions are imposed on the
problems; for details see Keshavan (2012) and Jain et al. (2013).

A. Parallel ALS (PALS)

Parallelization of ALS underlies the observation that the involved least-squares
subproblems can be solved independently (Zhou et al. 2008). In particular, an
update to a row (resp. column) of L (resp. R) does not affect other rows (resp.
columns) of L (resp. R). Thus, PALS partitions the rows of L uniformly among
available threads; each partition is processed in parallel by its corresponding thread.
The columns of R are processed in a similar way.

B. Distributed ALS (DALS)

Following Zhou et al. (2008), we extend PALS to a distributed shared-nothing
setting. The basic assumption is that each node has enough memory to store 2/w of
the entries of V , together with a full copy of the factor matrices L and R. DALS
uses a w × 1 blocking for V r and a 1 × w blocking for V c; the factor matrices
are blocked accordingly. Each node k stores the following blocks: V k∗

r , V ∗k
c , Lk,

and Rk (V k∗
r refers to the k-th row block of V r, V ∗k

c refers to the k-th column
block of V c). This memory layout is depicted in Figure 2.1a. In DALS, each
node k updates its corresponding blocks V k∗

r and V ∗k
c alternately. While updating

V k∗
r at node k, block V k∗

r and the entire matrix R need to be accessed. Note
that V k∗

r and Lk are stored locally at node k whereas R is not. Therefore, DALS
broadcasts blocks R1

, . . . , Rk to create a local copy of the entire R. The DALS
algorithm proposed in Zhou et al. (2008) uses multiple processes (each with its own
address space) on each node. In contrast, our DALS implementation utilizes the
available threads (which share the same memory space and variables) on each node.
This modification allows DALS to exploit shared-memory and reduce the memory
footprint significantly.

28

2.4. Matrix Completion via Alternating Minimizations

2.4.2 Cyclic Coordinate Descent (CCD++)

Cyclic coordinate descent (CCD) is a well-known optimization technique (Bertsekas
1999; Section 2.7) which has been shown to be effective for numerous large-
scale problems (Cichocki and Phan 2009; Hsieh et al. 2008; Hsieh and Dhillon
2011; Hsieh et al. 2011; Yu et al. 2011). It can be considered as an alternating
minimization approach in that it optimizes a single entry of the factor matrices at a
time while keeping all other entries fixed. Therefore, the optimization subproblems
are significantly simpler than the least-squares problems of ALS and each single
variable update can be performed more efficiently than in ALS. Practical variants
of CCD adapt the approach of “hierarchical” ALS (Cichocki and Phan 2009):
they do not operate on the original input matrix but instead maintain and process
the residual matrix E with entries Eij = V ij − [LR]ij for (i, j) ∈ Ω. This
modification improves the time required for a single variable update.

Recently, Yu et al. (2012) has proposed a variant of CCD, termed CCD++, for
matrix completion tasks. The memory requirement of CCD++ is similar to that
of ALS. That is two copies of the residual matrix E need to be stored: one in
row-major order, denoted Er, and one in column-major order, denoted Ec. The
key idea of CCD++ is to perform a feature-wise sequence of updates, i.e., to loop
over all features f ∈ [1, r]. For each feature f , CCD++ performs T updates to the
corresponding feature-vector of L (i.e., L∗f), where T is an automatically tuned
parameter of the algorithm which is independent of the data size. The algorithm
then updates the corresponding feature-vector of R (i.e., Rf∗) T times. Next, both
copies of the residual matrix are updated and the algorithm continues with feature
f + 1. Note that for each feature, the residual matrix is scanned 2T times during
the updates to matrices L and R, and twice to update Er and Ec. An iteration of
CCD++, i.e., the processing of all features, thus consists of 2r(T + 1) epochs and
requires O(TNr) time in total. Overall, our experiments as well as results in Yu
et al. (2012) show that, CCD++ is computationally less expensive than ALS and
can handle larger ranks more efficiently.

A. Parallel CCD++ (PCCD++)

Parallelizing CCD++ follows the same ideas as for ALS: similar partitioning scheme
for the input matrix and the factor matrices is used; here again the involved subprob-
lems are independent and can be optimized in parallel (Yu et al. 2012). We refer to
the parallel shared-memory variant of CCD++ as PCCD++.

29

2.5. Alternating Minimizations Versus SGD

B. Distributed CCD++ (DCCD++)

Distributed shared-nothing variant of CCD++ (Yu et al. 2012), termed DCCD++,
utilizes the same partitioning scheme and data distribution as for DALS. The memory
layout of DCCD++ is illustrated in Figure 2.1b. The only difference between DALS
and DCCD++ lies in the communication of data: DCCD++ broadcasts only a
single feature-vector instead of the entire factor matrix as in DALS. However, the
communication is performed every time a feature-vector is being updated, i.e., 2Tr

times per iteration. Therefore, the synchronization costs between the nodes can
potentially be substantial.

2.5 Alternating Minimizations Versus SGD

In this section, we provide a comprehensive comparison of the algorithms based on
alternating minimizations with the SGD-based approaches first in terms of a com-
plexity analysis and next through an extensive experimental evaluation. Table 2.3
summarizes various shared-nothing algorithms discussed in this chapter. Before
continuing with the comparison, we make the following remarks. Since ALS in-
volves solving a large number of least-squares problems, it is computationally much
more expensive than SGD. When the rank of the factorization is sufficiently small
(say, r ≤ 50), this computational overhead is however acceptable. An advantage
of both ALS and CCD++ over SGD is that the former methods are parameter-free,
whereas SGD methods make use of a step size sequence. In fact, the convergence
properties of SGD is significantly influenced by the choice of step size sequence.
Our experiments suggest, however, that SGD is the method of choice when the
step size sequence is chosen judiciously, e.g., using the bold driver method of
Section 2.2.2. In terms of memory consumption, both ALS and CCD++ are inferior
to SGD since they need to store two copies of the data matrix. Finally, SGD-based
methods apply to a wide range of loss functions, whereas ALS and CCD++ target
quadratic loss functions.

2.5.1 Complexity Analysis

In this section, we compare various shared-nothing matrix completion algorithms
via a complexity analysis; we do not theoretically analyze shared-memory methods,
as the results heavily rely on the assumptions about the memory architecture and
cache behavior, which can vary widely. Afterwards in Section 2.5.2, empirical
results are presented.

The main purpose of this section is to identify conditions under which distributed
processing is effective. To simplify the analysis, we make the following assump-
tions:

30

2.5. Alternating Minimizations Versus SGD

T
a

b
le

2
.3

:
O

ve
rv

ie
w

of
sh

ar
ed

-n
ot

hi
ng

m
et

ho
ds

(s
ee

Ta
bl

e
2.

1
fo

r
no

ta
tio

n)

M
et

ho
d

Pa
rti

tio
ni

ng
M

em
or

y
co

ns
um

pt
io

n/
no

de
Ep

oc
hs

/it
.

Ti
m

e/
it.

C
om

m
un

ic
at

io
n/

no
de

/it
.

D
A

LS
V

&
L

by
ro

w
s

2
V

/
w

+
L

+
R

2
O

(
p

−
1 [

N
r

2
+

(
m

+
n

)
r

3]
)

O
(
[m

+
n

]r
)

(Z
ho

u
et

al
.2

00
8)

V
&

R
by

co
lu

m
ns

D
C

C
D

++
E

&
L

by
ro

w
s

(
2
E

+
L

+
R

)
/
w

2
r
(
T

+
1
)

O
(
p

−
1 T

N
r
)

O
(
T

[m
+

n
]r

)

(Y
u

et
al

.2
01

2)
E

&
R

by
co

lu
m

ns

A
SG

D
(n

ew
)

V
&

L
by

ro
w

s
(
V

+
L

+
R

)
/
w

+
2
R

1
O

(
p

−
1 N

r
+

n
r
)
∗

O
(
n

r
)
∗

D
SG

D
-M

R
V

bl
oc

ke
d,

(
V

+
L

+
2
R

)
/
w

1
O

(
p

−
1 N

r
)

O
(
n

r
)

(G
em

ul
la

et
al

.2
01

1c
)

L
by

ro
w

,R
by

co
lu

m
n

D
SG

D
++

(n
ew

)
V

bl
oc

ke
d

re
ct

.,
(
V

+
L

+
1
.5

R
)
/
w

1
O

(
p

−
1 N

r
)

O
(
n

r
)

L
by

ro
w

,R
by

co
lu

m
n

∗ A
ss

um
in

g
as

yn
ch

ro
no

us
av

er
ag

in
g

is
pe

rf
or

m
ed

a
co

ns
ta

nt
nu

m
be

ro
ft

im
es

pe
ri

te
ra

tio
n.

31

2.5. Alternating Minimizations Versus SGD

1. computation and communication are not overlaid,

2. each revealed entry of V and each entry of L and R requires O(1) words of
memory and O(1) time to communicate,

3. each compute node possesses a constant number t of threads,

4. r, n ≤ m, and

5. N = O(mr).

In what follows, we give bounds on the memory consumption per node as well as
the time required for computation and communication per node and per epoch.

Memory consumption per node. In DALS, each node stores in memory two
partitions of the input matrix V (one partition from V r and one from V c) as well
as both factor matrices L and R; the overall memory requirement is therefore
O(N/w + mr) words. Note that DALS also maintains a row-partition of L and a
column-partition of R, however, these two partitions are negligible compared to the
other data. DCCD++ stores the following data: two partitions of the residual matrix
(i.e., Er and Ec), two feature vectors (i.e., a row of R and a column of L), a row-
partition of L, and a column-partition of R. Thus, the total memory consumption
is O((N + mr)/w + m) words. ASGD maintains a partition of the input matrix
together with the corresponding partitions of L and R as well as the smaller
factor matrix R entirely; its memory requirement is thus O((N + mr)/w + nr)

words. Finally, DSGD++ fully partitions the factor matrices and thus requires
O((N + mr)/w) words in total. We conclude that DSGD++ is most memory-
efficient, followed by DCCD++ and ASGD, and then DALS.

Computation/communication trade-off. A crucial factor which affects the per-
formance of shared-nothing methods is the relationship between computation and
communication costs. We say that a distributed-processing algorithm is effective if
the computation costs dominate the communication costs. The reason is that com-
putation costs are linearly reduced by distributed processing, while communication
costs are increased. Under our assumptions, we can derive the following compu-
tation and communication costs for the algorithms under consideration. DALS
requires O(mr3/w) time for computation and O(mr) time for communication per
epoch. As m, r, w → ∞, computation dominates communication if the rank of the
factorization is sufficiently large: r2 = ω(w). In practice, we often have r > w so
that we expect DALS to be effective. Analogously, DCCD++ has computation cost
O(mr/w) and communication cost O(m) for updating and communicating a single
factor. Thus, DCCD++ is effective when r = ω(w), i.e., under tighter conditions
than DALS.

32

2.5. Alternating Minimizations Versus SGD

For DSGD-MR, the time required for computation and communication is O(Nr/w)

and O(nr), respectively. The latter cost is due to the fact that DSGD-MR only
communicates factor matrix R. Denote by N̄ = N/n the average number of
revealed entries per column of V ; N̄ measures the amount of work per column and
reflects how well we can parallelize SGD. To see this, rewrite the computational
cost as O(N̄nr/w) and observe that computation dominates communication only
for large values of N̄ , i.e., N̄ = ω(w). Thus, we expect DSGD-MR to be effective
when the data matrix is not too sparse or has few columns. The same conclusions
hold for DSGD++ and ASGD, even though they do not satisfy Assumption 1 above.
Indeed, the analysis for DSGD-MR carries over to DSGD++ directly and to ASGD
under the additional assumption that working copies are averaged at least once per
epoch.

Theoretical analysis and actual performance. The asymptotic analysis pre-
sented above may not fully conform to the actual performance of the algorithms.
The reason is that our theoretical analysis is based on some assumptions which may
not be true in practice.

The first cause of concern is that the data size and the number of available nodes
are in fact finite. Our experiments confirm our theoretical analysis even in the case
where the data is small enough to fit on a single machine. In particular, we observed
that DALS is effective and considerably outperformed PALS for problems of a given
size. Moreover, the relative time for a DSGD-MR or ASGD epoch compared to that
of a PSGD epoch depends on N̄ . For DSGD++, however, our theoretical analysis
diverged somewhat from our empirical results in that the algorithm proved to be
effective even for small values of N̄ . The reason is that—unlike the assumption that
we used for the complexity analysis—computation and communication are in fact
overlaid.

Another potential inaccuracy in our complexity analysis is that distributed processing
may affect the convergence behavior of the algorithms. This issue is not relevant
for algorithms based on alternating minimizations: DALS and PALS, as well as
DCCD++ and PCCD++, perform identically, as they solve exactly the same least-
squares problems. On the contrary, DSGD-MR, DSGD++, and ASGD may require
more epochs to converge compared to PSGD. The reasons are that the stratification
used in DSGD-MR and DSGD++ reduces the randomness in training point selection,
and asynchronous averaging used in ASGD introduces delay in broadcasting updates.
As a consequence, the processing time per epoch itself is not an accurate indicator
of the overall performance; convergence rates must also be taken into account. The
following section contains an extensive set of experiments providing further insight
into the performance of the algorithms.

33

2.5. Alternating Minimizations Versus SGD

2.5.2 Experimental Evaluation

We compared all shared-nothing algorithms in an extensive experimental study
along the following dimensions: the time per epoch (excluding loss computations),
the number of epochs until convergence, and the total time to convergence (including
loss computations). Recall that an epoch corresponds roughly to one single pass
over the input data. Thus, the number of epochs reflects the number of data scans.
When comparing two algorithms A and B, we say that A is more compute-efficient
than B if it requires less time per epoch, more data-efficient than B if it needs less
epoch to converge (and thus less scans of the input data), and faster if it requires
less total time.

A. Overview of Results

On our large-scale experiments and in all configurations, DSGD++ was the best-
performing method. It was up to 12.8x faster than DALS, up to 5x faster than DSGD-
MR, and up to 12.3x faster than ASGD. Indeed, DSGD++ even outperformed PSGD,
by a large margin, in some of our experiments with data of moderate size for which
both algorithms were applicable. DSGD++ was the only shared-nothing method that
outperformed PSGD, which validates its high communication efficiency. ASGD
was faster than DSGD++ in two experiments with few nodes and large N̄ , but its
performance degraded as more nodes were added. Thus, ASGD and to a lesser
extent DSGD-MR, were much more sensitive to communication overhead than
DSGD++ and DALS. Finally, as with PALS, DALS was the most data-efficient but
the least compute-efficient method. In terms of total time, it was competitive only
when the rank r was small.

B. Experimental Setup

Implementation. We implemented SGD, SGD++, ALS, PSGD, PALS, DSGD-
MR, DSGD++, ASGD, and DALS in C++. For communication, all shared-nothing
algorithms used the MPICH2 implementation of MPI.6 We used the GNU Scien-
tific Library (2013) (GSL) for solving the least-squares problems of ALS; in our
experiments, GSL was significantly faster than LAPACK (2012) and, in contrast to
LAPACK, also supports multithreading.

Hardware. We ran our experiments on a 16-node compute cluster; each node had
48GB of main memory and was equipped with an Intel Xeon 2.40GHz processor
with 8 cores.

6
http://www.mcs.anl.gov/mpi/mpich/

34

http://www.mcs.anl.gov/mpi/mpich/

2.5. Alternating Minimizations Versus SGD

Table 2.4: Summary of datasets

m n N N̄ Size L λ

Netflix 480k 18k 99M 5.5k 2.2GB LL2w 0.05
KDD 1M 625k 253M 0.4k 5.6GB LL2w 1
Syn1B-rect 10M 1M 1B 1k 22.3GB LSl -
Syn1B-sq 3.4M 3M 1B 0.3k 22.3GB LSl -
Syn10B 10M 1M 10B 10k 223.5GB LSl -

Real-world datasets. We used two real-world datasets: Netflix and KDD. The
Netflix dataset (Bennett and Lanning 2007) consists of roughly 99M ratings (ranging
from 1 to 5) of 480k Netflix users for 18k movies; it occupies 2.2GB to store in main
memory. The KDD dataset of Track 1 of KDD-Cup 2011 (Dror et al. 2011) consists
of approximately 253M ratings of 1M Yahoo! Music users for 625k musical pieces;
it occupies 5.5GB of main memory. Detailed statistics of these datasets, as well as
for synthetic datasets described below, are summarized in Table 2.4. Netflix and
KDD differ significantly in the value of N̄ (large for Netflix, small for KDD). For
both real-world datasets, we used the official validation sets and focused on LL2w

because it performs best in practice (Chen et al. 2012; Koren et al. 2009; Zhou et al.
2008). We did not tune the regularization parameter for varying choices of rank r

but used the values given in Table 2.4 throughout.

Synthetic datasets. For our large-scale experiments, we generated three synthetic
datasets that differ in the choice of m, n, and N . We generated each dataset
by first creating two rank-50 matrices L∗

m×50 and R∗
50×n with entries sampled

independently from the Normal(0, 10) distribution. We then obtained the data
matrix by sampling N random entries from L∗R∗ and adding Normal(0, 1) noise.
Note that the resulting datasets are very structured. We use them here to test the
scalability of the various algorithms; the matrices can potentially be factored much
more efficiently by exploiting their structure directly. To judge the impact of the
shape of the data matrix, we generated two large datasets with 1B revealed entries
and identical sparsity: Syn1B-rect is a tall rectangular matrix (high N̄ , easier to
distribute), Syn1B-sq is a square matrix (low N̄ , harder to distribute). Note that we
need to learn more parameters to complete Syn1B-rect (550M) than to complete
Syn1B-sq (320M). We also generated a very large dataset with 10B entries (Syn10B)
to explore the scalability of each method; Syn10B is significantly larger than the
main memory of each individual machine.

Methodology. For all datasets, we centered the input matrix around its mean.
To investigate the impact of the factorization rank, we experimented with ranks
r = 50 and r = 100; in practice, values of up to r = 1000 can be beneficial (Zhou

35

2.5. Alternating Minimizations Versus SGD

et al. 2008). The starting points L0 and R0 were chosen by taking i.i.d. samples
from the Uniform(−0.5, 0.5) distribution; the same starting point was used for each
algorithm to ensure a fair comparison. For all SGD-based algorithms, we selected
the initial step size based on a small sample of the data (1M entries): 0.0125 for
Netflix (r = 50), 0.025 for Netflix (r = 100), 0.00125 for KDD (r = 50, r = 100)
and 0.000625 for Syn1B and Syn10B. Throughout, we used the bold driver heuristic
for step size selection, which was fully automatic. We used the WOR training
point schedule and the WOR stratum schedule throughout our experiments unless
stated otherwise, and ran a truncated version of SGD that clipped the entries in the
factor matrices to [−100, 100] after every SGD step. Also, unless stated otherwise,
all SGD-based algorithms make use of prefetching as in the SGD++ algorithm of
Section 2.2.2. For each algorithm, we declared convergence as soon as it reached a
point within 2% of the overall best solution.

We mainly focus on experimental results for the shared-nothing setting and briefly
present the results of sequential and shared-memory algorithms.

C. Sequential and Parallel Algorithms

For the sequential and shared-memory settings, we used the real (Netflix, KDD)
datasets. We start with a brief discussion of sequential algorithms, which form a
baseline for shared-memory and shared-nothing methods.

SGD step size sequence (Table 2.5). In this experiment, we compared the perfor-
mance of different step size sequences for SGD on Netflix for r = 50. In Table 2.5,
Standard(α) refers to s sequence of form �0

nα , where n denotes the epoch and α is
a parameter that controls the rate of decay; such sequences are commonly used in
stochastic optimization. For this experiment only, we declared SGD as converged if
the improvement in loss after one epoch falls below 0.1%. For SGD with the bold
driver heuristic, we checked for convergence only in epochs following after a drop
in the step size. We observed that the bold driver heuristic greatly outperformed
other standard step size sequences, even though it does not guarantee asymptotic
convergence. On Netflix, all step size sequences converged in roughly the same
number of epochs, but the bold driver heuristic converged to a significantly better
solution.

SGD, SGD++, ALS. We found that SGD++ is up to 13% more compute-efficient
than the plain SGD (7.4 vs. 8.4min for KDD, r = 100); thus, prefetching is
beneficial. Compared to ALS, SGD++ required up to 5x more epochs to converge
(31 epochs for SGD++ vs. 6 epoch for ALS on Netflix, r = 50). However, SGD++
is more compute-efficient so that it was overall faster. This effect is strongest when
r is high as SGD++ is less sensitive to the factorization rank; e.g., SGD++ was

36

2.5. Alternating Minimizations Versus SGD

Table 2.5: SGD step size sequence (Netflix, r = 50)

Bold driver Standard(1) Standard(0.6)

Epochs 40 36 42
Loss (x107) 7.936 9.267 8.469

Table 2.6: Impact of stratum schedules on DSGD++ (2x8)

Netflix, r = 100 KDD, r = 100

SEQ WOR LA-WOR SEQ WOR LA-WOR

Time/ep. (s) 10.47 11.5 10.61 32.13 40.8 32.62
Epochs 200 65 106 88 62 69
Total time (s) 2426 861 1300 3750 3182 2976

≈5.5x faster than ALS on Netflix, r = 100 (52.8 vs. 290min), but only ≈1.8x faster
for r = 50 (48 vs. 85min).

PSGD, PALS. We compared PSGD and PALS on real datasets using a single
node with 8 threads (i.e., w = 1 and t = 8). On Netflix, PALS converged to
a slightly better solution (1% lower loss) than PSGD. On KDD, however, both
methods led to almost identical overall loss. On both Netflix and KDD, PALS was
7–8x faster than its sequential counterpart and equally data-efficient. Similarly,
PSGD was 5x–6.8x faster than SGD; the speedups were less than for ALS since
memory latency became a bottleneck. On the KDD data (where the larger number
of rows and columns slowed down ALS), PSGD converged significantly faster (e.g.,
21 vs. 162min, r = 100).

D. Shared-Nothing Algorithms

For the shared-nothing setting, we experimented with both real (Netflix, KDD) and
synthetic datasets and used between 2 and 16 compute nodes with 8 threads each.
We write w × t to refer to a setup with w compute nodes, each running t threads.

DSGD++ stratum schedule (Table 2.6). Recall that the DSGD++ stratum sched-
ule affects both the time per epoch (governed by the relative number of local and
remote fetches) and the number of epochs to convergence (governed by the degree
of randomization). In Table 2.6, we compare the performance of DSGD++ with
the SEQ, WOR, and LA-WOR schedules for the 2x8 setup. First, observe that
WOR is more data-efficient than LA-WOR, which in turn is more data-efficient than
SEQ. As with the SGD training point schedule, more randomness leads to better
data-efficiency. Regarding compute-efficiency, we found that all three approaches

37

2.5. Alternating Minimizations Versus SGD

0 200 400 600 800

8
9

10
11

12

Time (s)

Lo
ss

 (
x1

07)

DALS
ASGD
DSGD MR
DSGD++

(a) Netflix on 4x8

0 500 1500 2500

1.
4

1.
8

2.
2

Time (s)

Lo
ss

 (
x1

011
)

DALS
ASGD
DSGD MR
DSGD++

(b) KDD on 4x8

Figure 2.3: Performance of shared-nothing algorithms on real-world datasets,
r = 100

performed similarly on Netflix, because N̄ is large and thus communication costs
are relatively small. In such a setting, WOR is the method of choice. On KDD,
where N̄ is small so that communication becomes significant, LA-WOR outper-
formed both WOR and SEQ. These results are in accordance with the analysis in
Section 2.5.1, and we therefore recommend the WOR schedule for datasets with
large N̄ and LA-WOR for those with small N̄ .

Netflix (Figure 2.3a). Even though the Netflix dataset is only moderately large,
we found that distributed processing can speed up the factorization significantly;
e.g., DALS achieved 22x–29x speedup on 4x8 (290 vs. 10min for r = 100). First,
we observed that DSGD++ was up to 2.3x faster than DSGD-MR and ≈3x (4.6x–
6.1x) more compute-efficient than PSGD on 2x8 (4x8). These superlinear speedups
arise since DSGD++ exhibits better cache utilization. However, DSGD++ was
less data-efficient than PSGD so that DSGD++ was only 1.7x–2.9x faster on 4x8
overall. Second, ASGD was less compute-efficient than DSGD++ (12.6 vs. 5.9s
for r = 50); this is due to the overhead of averaging copies. The data-efficiency
of ASGD dropped drastically as we increased the number of nodes (25 epochs on
2x8 vs. 60 epochs on 4x8, r = 50). The reason is that more working copies need
to be averaged during an epoch when we use more nodes; as a result, the delay of
propagating updates increases. For example, we performed on average 65 rounds of
averaging per epoch on 2x8, but only 15 rounds on 4x8 (less time per epoch and
at the same time more nodes to synchronize). Nevertheless, ASGD outperformed
all other methods on 2x8 for r = 100. Finally, DALS was the fastest method for
r = 50 but was outperformed by DSGD++ for higher ranks (5.8 vs. 10.7min on 4x8
for r = 100).

38

2.5. Alternating Minimizations Versus SGD

KDD (Figure 2.3b). For the KDD dataset, DALS provided similar speedups as
for Netflix and was the overall fastest method for r = 50 on 4x8. In contrast, the
compute-efficiency of DSGD-MR and ASGD was penalized since N̄ is small for
KDD. This effect was most pronounced for ASGD (51min on 2x8 vs. 125min on 4x8,
r = 100). DSGD++ remained unaffected since communication and computation
are overlapped. In all cases, shared-nothing SGD-based methods were less data-
efficient than PSGD, which was faster overall. A reason for this behavior might be
the specifics of the KDD dataset and our choice of loss. For example, when using
LL2, we observed a 3x overall speedup for DSGD++ on 4x8 and r = 50, when
compared to PSGD.

Large-scale experiments (Figure 2.4). For our large-scale experiments in the
shared-nothing setting, we used the Syn1B-rect, Syn1B-sq, and Syn10B datasets,
and varied the number of nodes (2–16) and threads per node (2–8). When running
DSGD++, we used the LA-WOR schedule for Syn1B-sq and Syn1B-rect, and
the WOR schedule for Syn10B. The results are summarized in Figure 2.4. The
plots show the total time to convergence required by each of the shared-nothing
methods and, if applicable, the corresponding shared-memory baselines. Note that
the available memory was insufficient to run PALS for all datasets (since it requires
two copies of the data in memory) and to run PSGD for Syn10B. In the remainder
of this section, we describe the results in more detail for each of the three datasets.

Syn1B-rect (Figure 2.4a). We applied the shared-nothing algorithms to Syn1B-
rect on the 1x8, 2x8, 4x8, and 8x8 setups. Syn1B-rect has a high value of N̄ , so that
distributed processing should be relatively effective, at least for smaller numbers of
nodes. DSGD-MR confirmed this expectation as it performed better than the PSGD
baseline in all cases, though the communication and synchronization overheads
of DSGD-MR caused its performance to deteriorate slightly when using beyond 4
nodes. ASGD also outperformed the baseline on 2 and 4 nodes but, in contrast to
DSGD-MR, did not behave gracefully when using beyond 4 nodes. Specifically, on
8 nodes ASGD required significantly longer than PSGD. Even though ASGD was
more compute-efficient on 8 nodes, the increased synchronization overhead led to
increased delays between parameter updates and drastically reduced data efficiency.

DSGD++ performed best in all setups. It was 2.4x faster than PSGD on 2 nodes and
4.7x faster on 4 nodes. It achieved superlinear speedup, presumably due to larger
overall cache sizes. The communication overheads of DSGD++ did not adversely
affect performance because of asynchronous communication and use of the LA-
WOR schedule. On 8 nodes, the overhead of communication starts to become
visible (7.5x speedup). Nevertheless, DSGD++ was able to factor Syn1B-rect in
88min on 8 nodes; its closest competitor was ASGD, which required 186min on 4
nodes.

39

2.5. Alternating Minimizations Versus SGD

1x8 2x8 4x8 8x8

Nodes x threads

T
ot

al
 t

im
e

(h
)

0
2

4
6

8
10

12
14 16.8

PSGD
DALS
ASGD
DSGD MR
DSGD++

(a) Rectangular matrix, 1B entries (Syn1B-rect)

1x8 2x8 4x8 8x8

Nodes x threads
0

1
2

3
4

5
6

7 9.8

(b) Square matrix, 1B entries (Syn1B-sq)

1x8 2x8 4x8 8x8

Nodes x threads

T
ot

al
 t

im
e

(h
)

0
2

4
6

8
10

12
14

16.8
PSGD
DALS
ASGD
DSGD MR
DSGD++

8x8 16x8

Nodes x threads

0
1

2
3

4

DALS
ASGD
DSGD MR
DSGD++

7.98 8.6

In
su

ffi
ci

en
t

m
em

or
y

(c) Rectangular matrix, 10B entries (Syn10B)

2x8 4x4 8x2

Nodes x threads

0
5

10
15

20

(d) Overhead of distributed processing (Syn1B-
rect)

Figure 2.4: Performance of shared-nothing algorithms on synthetic datasets

Our final observation is that, even though Syn1B-rect is inherently amenable to
distributed processing because of its high N̄ value, DALS did not converge to an
acceptable solution; its loss being four orders of magnitude larger than all other
methods. We therefore report the running time of DALS until the change in its loss
fell below 0.1% in two consecutive epochs. Such erratic behavior of DALS was
not observed on any other dataset. Moreover, DALS exhibited sublinear speedup.
This sublinearity indicates that the time required to broadcast the factor matrices
becomes significant as the number of nodes increases.

Syn1B-sq (Figure 2.4b). On Syn1B-sq, all methods were faster than on Syn1B-
rect since there were fewer factors to learn. Our other observations were as follows.

40

2.5. Alternating Minimizations Versus SGD

First, we found that DALS (now working correctly) was consistently slower than
the PSGD baseline. As before, increasing the number of nodes led to a sublinear
speedup due to increased communication overhead. Second, neither ASGD nor
DSGD-MR were able to improve on the PSGD baseline. Indeed, Syn1B-sq is our
“hard” dataset (low N̄) so that communication overheads dominate potential gains
due to use of multiple processing nodes. Note that ASGD behaves more gracefully
than on Syn1B-rect for a large number of nodes. We conjecture that the low value
of N̄ decreases the effect of delayed parameter updates since fewer SGD updates
are run per column and time unit (but, as before, the time per epoch decreased and
the number of epochs increased). Our final observation was that DSGD++ was
the only method that was able to improve upon PSGD. It achieved speedups of
1.6x (2 nodes), 2.3x (4 nodes), and 3.5x (8 nodes). As expected, the speedups are
lower than the ones for Syn1B-rect but nevertheless significant. Overall, our results
indicate that DSGD++ is the only SGD-based method that can handle matrices with
low N̄ gracefully.

Syn10B (Figure 2.4c). We could not run experiments on Syn10B using four or
fewer nodes due to insufficient aggregate memory. We therefore show results only
for 8x8 and 16x8. Even in this setting, we could not run DALS on 8 nodes because
the available memory is insufficient to store the required two copies of the data
matrix and a full copy of both factor matrices simultaneously (DALS requires at
least 11 nodes to do this). On 16 nodes, DALS took 2h to converge; the increased
density of the Syn10B matrix simplifies the completion problem so that only 11
epochs were needed. In contrast to DALS, all of the SGD-based methods were
able to run on both 8x8 and 16x8. Since these methods store the data matrix only
once and also fully partition the factor matrices, they are more memory efficient and
can thus be used on smaller clusters. Strikingly, DSGD-MR was faster on 8 nodes
than DALS on 16 nodes. ASGD did not converge to a satisfactory point in this
experiment (2 orders of magnitude off the best loss) and was much slower than all
other methods (as before, we declared convergence when the loss reduced by less
than 0.1%). This is another indication that ASGD is not robust enough for larger
clusters. Finally, DSGD++ required 1.1h on 8 nodes and 0.7h on 16 nodes. Thus,
DSGD++ was faster on 8 nodes than any other method on 16 nodes, and was almost
twice as fast on 16 nodes as its closest competitor (DSGD-MR).

Impact of distributed processing (Figure 2.4d). In our final experiment on
Syn1B-rect, we investigated the behavior of the various algorithms as we increased
the number of nodes, while keeping the overall number of threads constant (2x8,
4x4, 8x2). Since the number of threads is identical in each setup, this allowed
us to directly measure the impact of distributed processing. We observed that all
approaches except ASGD handle the increased cluster size gracefully. The runtime
of DALS increases slightly (increased cost of broadcasting), while the runtimes of

41

2.6. Summary

DSGD++ and DSGD-MR decrease slightly (more cache per thread). Thus, even
when less powerful compute nodes are available, these methods perform well. In
contrast, the runtime of ASGD again increases sharply as we go beyond 4 nodes;
see the discussion above.

2.6 Summary

The matrix completion problem, i.e., predicting missing entries of a partially re-
vealed matrix, arises in various applications in data mining including collaborative
filtering in recommender systems, latent semantic indexing, and link prediction in
social networks.

In this chapter, we have studied parallel algorithms for large-scale matrix completion
with millions of rows, millions of columns, and billions of revealed entries. Our
shared-nothing algorithms are designed to run on a small cluster of commodity
nodes, have less memory consumption, and offer better scalability than previous
MapReduce alternatives. More specifically, our ASGD and DSGD++ algorithms are
novel variants of the popular stochastic gradient descent algorithm. Both algorithms
are cache-conscious and exploit thread-level parallelism, in-memory processing,
and asynchronous communication. Furthermore, our in-memory DALS algorithm is
a scalable variant of the alternating least-squares algorithm that utilizes thread-level
parallelism to speed up processing and reduces the memory footprint; it is closely
related to the shared-nothing algorithm of Zhou et al. (2008). Finally, we have
provided the key metrics of the input data that play a crucial role in the performance
of distributed matrix completion by both a theoretical complexity analysis as well
as an experimental study. To this end, we have compared all the algorithms in an
extensive set of experiments on both real-world and synthetic datasets of varying
sizes. On large datasets, DSGD++ consistently outperformed alternative approaches
with respect to speed, scalability, and memory consumption.

42

3
Distributed Mixed-Packing-Covering

Linear Programming

3.1 The MPC Linear Programs

In this chapter,1 we investigate linear programs that contain only non-negative
coefficients and non-negative variables. Such LPs are referred to as mixed packing-
covering LPs and have general form

max w�x

s.t. P x ≤ p
Cx ≥ c

x ≥ 0,

(MPC-LP)

where x ∈ �n
+ denotes a vector of variables, w ∈ �n

+ a vector of weights, P ∈
�m×n

+ a packing-constraint matrix with right-hand side p ∈ �m
+ , and C ∈ �k×n

+ a
covering-constraint matrix with right-hand side c ∈ �k

+. Special cases of MPC-LPs
include pure packing LPs, which only contain packing constraints, i.e., max{w�x :

P x ≤ p, x ≥ 0}, and pure covering LPs, which only contain covering constraints,
i.e., min{w�x : Cx ≥ c, x ≥ 0}. Both pure packing and pure covering LPs are
also referred to as positive linear programs (PLPs) in the literature.

1Parts of the material in this chapter have been jointly developed with Baruch Awerbuch, Rainer
Gemulla, Rohit Khandekar, Julián Mestre, and Mauro Sozio. The chapter is based on Makari et al.
(2013) and Makari and Gemulla (2013). The copyright of Makari et al. (2013) is held by VLDB
Endowment; the original publication is available at http://dl.acm.org/citation.cfm?
id=2536362. The copyright of Makari and Gemulla (2013) is held by NIPS; the original publica-
tion is available at http://biglearn.org/2013/files/papers/biglearning2013_
submission_14.pdf.

43

http://dl.acm.org/citation.cfm?id=2536362
http://dl.acm.org/citation.cfm?id=2536362
http://biglearn.org/2013/files/papers/biglearning2013_submission_14.pdf
http://biglearn.org/2013/files/papers/biglearning2013_submission_14.pdf

3.1. The MPC Linear Programs

MPC-LPs constitute a “simple” but still expressive subclass of LPs. These pro-
grams commonly arise as LP relaxations of a number of important combinatorial
problems and therefore play a crucial role in designing approximation algorithms
for such problems. Examples include various multicommodity flow problems (Garg
and Könemann 2007; Karakostas 2002; Klein et al. 1994; Leighton et al. 1995;
Shahrokhi and Matula 1990), min-max/max-min resource sharing problems (Grigo-
riadis and Khachiyan 1994; 1996; Grigoriadis et al. 2001; Jansen and Zhang 2002),
generalized bipartite matching (Chapter 4), finding (approximate) solutions to non-
negative system of linear equations, and so on.

MPC programs can be solved exactly using standard solvers. Today’s commercial
LP solvers deploy highly tuned implementations of widely used Simplex (Danzig
1963) and interior-point methods (Karmarkar 1984); they can usually deal with
problem instances containing up to millions of non-zero entries, even though, their
running times can vary largely depending on the structure of the underlying problem.
These solvers, however, may fall short in coping with practical problems of possibly
extreme scale with billions of non-zero entries. Therefore, it has become of central
importance to develop algorithms that are scalable enough to process large-scale
datasets in a parallelized fashion and achieve reasonable performance at massive
scales.

It is well-known that solving a general LP or even approximating its objective value
is P-complete (Dobkin et al. 1979; Khachiyan 1979; Megiddo 1992; Serna 1991).
Therefore, solving general LPs is inherently sequential, i.e., there is no fast parallel
algorithm for solving or even approximating general LPs, unless P = NC, where
NC refers to the set of decision problems solvable in poly-logarithmic time using
a parallel computer with a polynomial number of processors. In fact, Trevisan
and Xhafa (1998) showed that even solving the special class of PLPs exactly is
P-complete, unless P = NC. Thus, this is also the case for the more general class
of MPC-LPs (which we are interested in solving). Nevertheless, special classes
of PLPs or MPC-LPs accept efficient parallel approximation algorithms; see the
related work in Section 3.7.

In this chapter, we develop a parallel approximation algorithm for solving any
explicitly given MPC-LP. We consider an approximate variant of MPC-LP in which
we seek for a near-optimal solution and additionally allow for a small violation of
packing and covering constraints. This “relaxation” allows us to develop a scalable
distributed approximation algorithm for MPC-LPs. In particular, denote by � > 0

a small error bound. We say that x ∈ �n
+ is an �-feasible solution to MPC-LP if

packing and covering constraints are violated by at most a factor of 1 + � and 1 − �,
respectively, i.e., P x ≤ (1 + �)p and Cx ≥ (1 − �)c. For 1 > η > 0, an �-feasible
solution is called an (�, η)-approximation if it obtains an objective value within a
factor of (1 − �)(1 − η) of the optimal solution to MPC-LP.

44

3.2. Solving MPC-LPs (Feasibility)

In the sequel, we first present our algorithm called MPCSolver that obtains an
�-feasible solution to any MPC-LP (Section 3.2). MPCSolver requires a poly-
logarithmic number of passes over the data (in the input size and the width of the
LP). Next, we show how MPCSolver can be used to obtain an (�, η)-approximation
to MPC-LPs (Section 3.3). MPCSolver is simple and efficient in practice, and can
be readily implemented on GPUs, shared-memory and shared-nothing architectures,
as well as MapReduce. Parallelizing MPCSolver in a shared-nothing environment
is described afterwards (Section 3.4). Finally, we discuss some implementation
details to improve the performance of our algorithm in practice (Section 3.5) and
conclude with an overview of the results of a case study with instances of generalized
bipartite matching problems (Section 3.6) and a review of related work (Section 3.7).
Throughout this chapter, we use the notation from Appendix A.

3.2 Solving MPC-LPs (Feasibility)

In this section, we discuss how to solve MPC-LP feasibility problems, i.e., ignoring
the objective function. MPCSolver (given as Algorithm 3) is inspired by, but more
general than, the work of Awerbuch and Khandekar (2009), which can handle pure
packing and covering constraints. To simplify our discussion, we first describe our
algorithm in a centralized environment and then generalize to the distributed setting
in Section 3.4.

Recall the definition of MPC-LP given above. Without loss of generality, we assume
that p = and c = , where denotes an all-one vector of the appropriate
dimensionality, and that each of the non-zero entries in P and C is equal to or
larger than 1. Denote by M the largest entry in P and C; this is referred to as the
width of LP. Note that any MPC-LP can be transformed in this form: This can be
achieved by first rescaling the rows, then the columns of the coefficient matrices.
The former step ensures that all right-hand sides are equal to 1, while the latter
step guarantees that all entries of the coefficient matrices are at least 1. Let P � and
C �, respectively, denote the packing- and covering-constraint matrices before this
transformation. Notice that we can assume that pi > 0 for all i (since otherwise
all variables xij with P �

ij > 0 must be set to zero). Similarly, we can assume that
ci > 0 for all i (since otherwise constraint i trivially holds and can be removed).
We proceed as follows. Let πj = min{πP

j , πC
j }, where πP

j = mini,P �
ij �=0

P �
ij

pi
and

πC
j = mini,C�

ij �=0
C�

ij

ci
. We replace P �

ij by P ij =
P �

ij

piπj
and C �

ij by Cij =
C�

ij

ciπj
.

Note that column scaling will change the solution; instead of working with the
original variables xj , we work with the modified variables x�

j = xjπj . We can now
recover the solution to the original problem by “inversely” scaling the result of the
modified problem, i.e., xj =

x�
j

πj
.

45

3.2. Solving MPC-LPs (Feasibility)

Thus, we aim to find a vector x such that

P x ≤
Cx ≥

x ≥ 0.

(3.1)

For any value of x ∈ �n
+, let y(x) = (y1, . . . , ym) ∈ �m

+ and z(x) = (z1, . . . , zk) ∈
�k

+ be given as follows

yi(x) = exp
�
µ

�
P i∗x − 1

��
(3.2)

zi(x) = exp
�
µ

�
1 − Ci∗x

��
, (3.3)

where µ is a scaling factor (defined in Algorithm 3). For brevity, we suppress
the dependence of y(x) and z(x) on x when the value of x is clear from context.
One may think of yi as an exponential “penalty” function of packing constraint
P i∗x ≤ 1. Penalty yi is small if the constraint is satisfied (yi ≤ 1 if P i∗x ≤ 1)
and large otherwise (yi > 1 if P i∗x > 1). Similarly, zi is a penalty function for
covering constraint Ci∗x ≥ 1. In what follows, we refer to yi and zi as the dual
variable of the corresponding constraint. Our algorithm tries to minimize the overall
penalty, i.e., the potential function

Φ(x) =

m�

i=1
yi(x) +

k�

i=1
zi(x).

The scaling constant µ is chosen sufficiently large so that if Φ is (approximately)
minimized, the corresponding solution is �-feasible given that the MPC-LP is
feasible (see the analysis of Theorem 1). Since Φ is differentiable and convex in x,
we use a version of gradient descent to find the optimal solution (i.e., the one with
lowest penalty). Consider the partial derivative of Φ w.r.t. xj :

∂Φ

∂xj
= µP �

∗jy − µC�
∗jz.

At the minimum, all partial derivatives are zero. When the derivative is negative
(positive), we will increase (decrease) x by a carefully chosen amount.

A description of our algorithm is given in Algorithm 3; we refer to this algorithm
as MPCSolver. Here parameter �� is an internal error bound, α acts as an update
threshold, β as a multiplicative step size, and δ as an additive increase; each
parameter is chosen carefully and depends on error bound �. The algorithm starts
with an arbitrary initial point x(0) ∈ �+. In each round (i.e., each iteration of
the repeat-until loop), we first compute the values of the dual variables y and z.
We update variable xj only if its partial derivative is sufficiently far away from
zero. The algorithm terminates once all variables are left unmodified (or one

46

3.2. Solving MPC-LPs (Feasibility)

Algorithm 3 MPCSolver for mixed packing-covering LPs
Require: packing constraint P , covering constraints C, error bound �

1: �� = �/10 // internal error bound
2: µ ← ln(mkM/��)/�� // scaling constant
3: α ← ��/4 // update threshold
4: β ← α/(20µ) // multiplicative step size
5: δ ← β/nM // additive increase
6: Start with any x ∈ �n

+
7: repeat
8: Compute yi(x) = exp

�
µ

�
P i∗x − 1

��
for i = 1, . . . , m

9: Compute zi(x) = exp
�
µ

�
1 − Ci∗x

��
for i = 1, . . . , k

10: for j = 1, . . . , n do
11: if P �

∗jy(x)
C�

∗jz(x) ≤ 1 − α then
12: xj ← max{xj(1 + β), δ}
13: if P �

∗jy(x)
C�

∗jz(x) ≥ 1 + α then
14: xj ← xj(1 − β)

15: until convergence (Section 3.5.4)

of the alternative convergence tests of Section 3.5.4 applies); we then obtain an
approximate minimizer of Φ. In particular, we update xj if and only if the ratio

rj =
P �

∗jy(x)
C�

∗jz(x) lies outside (1 − α, 1 + α); thus α acts as an update condition. If
the ratio rj exceeds 1 + α (positive gradient), we decrease xj ; if the ratio is below
1 − α (negative gradient), we increase xj . Step size parameter β determines how
quickly we move through the parameter space. Updates are multiplicative: We add
or subtract βxj from xj ; thus the larger xj , the more it is changed. Finally, we
ensure that xj ≥ δ after an increase so that we can quickly move away from 0 when
xj is very small. Note that our algorithm can be implemented in a few lines of code.

MPCSolver is designed such that it converges quickly to an �-feasible solution. Our
main theoretical result is as follows:

Theorem 1 (Main). For 0 < � ≤ 0.5, Algorithm 3 produces an �-feasible solution
after

Õ

�
1

�5 ln
3
(kmMnxmax)

�

rounds, where xmax = max { δ, x1(0), . . . , xn(0) } and xj(0) denotes the j-th
element of starting point x(0) (note that δ � �). Once the solution becomes �-
feasible, it will stay �-feasible in subsequent rounds. For � > 0.5, all properties are
retained w.r.t. O(�).

47

3.2. Solving MPC-LPs (Feasibility)

The theorem asserts that the number of rounds required by MPCSolver is poly-
logarithmic in the input, which ensures fast convergence. Here we used Õ-notation
to hide lower-order terms; a more precise bound is given by

O

�
1

�5 ln
3 1

�
ln

2
(kmM) ln(k ln(m)Mnxmax)

�

(see below for the derivation). Note that MPCSolver uses an internal error bound
��, which is set to �

10 in Algorithm 3. For sufficiently small � ≤ 0.5, this ensures
convergence to an �-feasible solution. In Section 3.5.2, we show how to dynamically
adapt �� to improve performance in practice.

In the sequel, we give an outline of the proof; the full proof appears afterwards.
The key ideas underlying our proof are due to Awerbuch and Khandekar (2009)
(who considered packing LPs or covering LPs, but not MPC-LPs); here we adapt
the proof to our setting. We make use of the internal step size parameter �� =

�
10

throughout. We start by discussing our choice of parameters. First, parameters β

and δ are chosen such that if x satisfies P x ≤ 3 · in the beginning of a round, the
value of P �

∗jy(x) changes by at most a factor of α
4 in that round, 1 ≤ j ≤ n. We

set
β =

α

20µ
= Θ

�
�

µ

�
, and δ =

α

20µnM
= Θ

�
�

µnM

�
.

With these values, we ensure that if the solution x in the beginning of a round
satisfies P i∗x ≤ 3 for some i, then the maximum change (increase or decrease)
in P i∗x (upper bounded by 3β + nMδ) is at most α

5µ in that round. Thus, yi(x)

changes by a factor of at most exp(
α
5) ≤ 1 +

α
4 . Similarly, if x in the beginning

of a round satisfies Ci∗x ≤ 3, then the value of C�
∗jz(x) for any j changes by at

most α
4 in that round.

Analysis

Proof sketch. Assume for now that the MPC-LP is feasible. We start by partitioning
the rounds of MPCSolver into a set of disjoint intervals, each consisting of a
sequence of consecutive rounds. The first interval is a “warm-up” interval consisting
of a poly-logarithmic number τ0 of rounds. We show that after τ0 rounds, the
potential is sufficiently small, i.e., at most Φinit = m exp(µ(1 + 2��)) + k exp(µ)

(implied by Lemma 1). More specifically, using the values of β and δ as specified
above, we have

τ0 = O

�
1

β
ln(

kMnxmax

δ
)

�

= O

�
1

�2 ln(
kmM

�
) ln(

1

�2 kM
2
n

2
xmax ln(

kmM

�
))

�

= O

�
1

�2 ln(
kmM

�
) ln(

1

�
k ln(m)Mnxmax)

�
. (3.4)

48

3.2. Solving MPC-LPs (Feasibility)

Next, we prove that after the warm-up interval, the potential Φ is monotonically non-
increasing, and that its decrease per round can be bounded from below (Lemma 3).
We then divide the remaining intervals into stationary and unstationary intervals of
length τ1, where

τ1 = O

�
1

β
ln

1

δ

�

= O

�
1

�2 ln(
kmM

�
) ln(

Mn

�2 ln(
kmM

�
)

�

= O

�
1

�2 ln(
kmM

�
) ln(

Mn

�
ln(km))

�
. (3.5)

An interval is stationary if the potential does not change significantly (specified in
Definition 1); as soon as we see a stationary interval, we show that the solution is
θ(�)-feasible (�-feasible for � ≤ 0.5, Lemma 5). All other intervals are unstationary;
in these intervals, the potential decreases by a factor of at least Ω(�2) (Lemma 4).
Note that with our choice of µ, the solution becomes feasible and the algorithm
terminates when the potential drops below Φfin = m+k. We conclude that there are
at most O(

1
�2 log

Φinit
Φfin

) unstationary intervals. Putting all pieces together, x becomes
θ(�)-feasible after τ = τ0 + O(

τ1
�2 log

Φinit
Φfin

) rounds, which matches the bound of
Theorem 1 as follows

τ = τ0 + O

�
τ1
�2 log

Φinit

Φfin

�

= O

�
1

�2 ln(
kmM

�
) ln(

1

�
k ln(m)Mnxmax) +

1

�5 ln
2
(
kmM

�
) ln(

Mn

�
ln(km))

�

= O

�
1

�5 ln
3 1

�
ln

2
(kmM) ln(k ln(m)Mnxmax)

�

= Õ

�
1

�5 ln
3
(kmMnxmax)

�
.

Here we used (3.4), (3.5), and Φinit
Φfin

= O(exp(µ)). Since after the warm-up interval
the potential Φ is monotonically non-increasing, the solution stays θ(�)-feasible
in subsequent rounds. Finally, to handle infeasible problem instances, we always
terminate Algorithm 3 after τ rounds, whether or not a solution has been found.

Denote by x(t), y(t), and z(t) the values of x, y(x), and z(x) in round t. The
potential in round t is then given by

Φ(t) = · y(t) + · z(t).

Note that y and z are fast-growing functions of x: Any “significant” change in
the value of x leads to a “significant” change in the value of Φ. We assume
throughout that the problem instance is feasible; otherwise, our analysis implies
that if Algorithm 3 does not find a solution after the poly-logarithmic number of
rounds asserted by Theorem 1, the MPC-LP is infeasible.

49

3.2. Solving MPC-LPs (Feasibility)

E. Warm-Up Interval

We show in Lemma 1 that after a warm-up interval of poly-logarithmic length, we
do not violate the packing and covering constraints by too much. This allows us to
bound the value of function Φ so that we can bound the number of stationary and
unstationary intervals later on.

Lemma 1. Let the algorithm start from a point x(0) ∈ �n
+ and let xmax =

maxj xj(0). After τ0 = O

�
1
β log(

nkM
δ (xmax + δ))

�
rounds, as long as x(t) does

not form a feasible solution to (3.1), we have

� 1 − 2�
� ≤ max

i
P i∗x(t) < 2 + 2�

�
, and (3.6)

� min
i

Ci∗x(t) ≤ 1 + 2�
�
. (3.7)

Proof. We first prove maxi P i∗x(t) < 2 + 2��. Assume that maxi P i∗x > 2 + ��

holds initially. Note that for all packing constraints i with P i∗x > 2 + ��, we have

yi > exp(µ(1 + �
�
)) =

mkM

�� exp(µ).

Note also that zi ≤ exp(µ) for all covering constraints i. Thus, for all variables j

such that P ij �= 0 for some i with P i∗x > 2 + ��, it holds that

P �
∗jy

C�
∗jz

>
m

�� > 1 + α.

Thus, all these variables decrease by a factor of β. Hence after O(
1
β log(nMxmax))

rounds, it holds that maxi P i∗x ≤ 2 + ��. Moreover, since P i∗x in a single round
increases to at most (1+β)P i∗x+nMδ, we conclude that maxi P i∗x can increase
to at most

(2 + �
�
)(1 + β) + nMδ < 2 + 2�

�

in any subsequent round.

We now show maxi P i∗x(t) ≥ 1 − 2��. Consider the duration in which x does not
form an O(��)-feasible solution to (3.1). Also assume that maxi P i∗x ≤ 1 − ��.
Thus, yi ≤ ��

mkM for all packing constraints i. Note that since x is not a feasible
solution, we have mini Ci∗x < 1. Since Ci∗x < 1 implies zi > 1, we have that
all variables j with Cij �= 0 for some i with Cix ≤ 1 satisfy

P �
∗jy

C�
∗jz

≤ ��

k
< 1 − α.

50

3.2. Solving MPC-LPs (Feasibility)

Thus, all these variables increase by factor (1 + β) and therefore after O(
1
β log

1
δ)

rounds, we have maxi P i∗x > 1 − ��. Since any xj decreases by a factor of at most
(1 − β) in any single round, we always have

max
i

P i∗x > (1 − �
�
)(1 − β) ≥ 1 − 2�

�

in any subsequent round.

Next, we show mini Ci∗x(t) ≤ 1 + 2��. Assume that mini Ci∗x ≥ 1 + ��. Thus,
zi ≤ ��

mkM for all covering constraints i. Note that since x is not a feasible solution,
we have maxi P i∗x > 1. Since P i∗x > 1 implies yi > 1, we have that all
variables j with P ij �= 0 for some i with P i∗x > 1 satisfy

P ∗jy

C∗jz
≥ m

�� > 1 + α.

Thus, all these variables decrease by factor (1−β). Hence after O(
1
β log(kMxmax))

rounds, we have mini Ci∗x < 1 + ��. Since any xj increases by a factor of at most
(1 + β) in any single round, we always have

min
i

Ci∗x < (1 + �
�
)(1 + β) ≤ 1 + 2�

�

in any subsequent round.

Note that Lemma 1 implies that after τ0 rounds the potential is at most

Φinit = m exp(µ(1 + 2�
�
)) + k exp(µ).

The following rather technical lemma will be needed in the proof of Lemma 5.

Lemma 2. After τ0 rounds, we have

� (max
i

P i∗x − �
�
)(· y) ≤ (1 + �

�
) y�P x, and (3.8)

� (min
i

Ci∗x + �
�
)(· z) ≥ z�Cx. (3.9)

Proof. We first show (3.8). Let 1 ≤ i0 ≤ m be such that P i0∗x = maxi P i∗x and
define Sp = {i | P i∗x < P i0∗x − ��}. Thus, for all i ∈ Sp it holds that

yi < exp(µ(P i0∗x − �
� − 1)) < yi0 exp(−�

�
µ) <

��yi0

m
.

Hence
�

i∈Sp
yi ≤ ��yi0 and we get

· y =
�

i∈Sp

yi +
�

i�∈Sp

yi < �
�yi0 +

�

i�∈Sp

yi < (1 + �
�
)

�

i�∈Sp

yi. (3.10)

51

3.2. Solving MPC-LPs (Feasibility)

Therefore, we get the desired assertion as follows

(max
i

P i∗x − �
�
)(· y) < (max

i
P i∗x − �

�
)(1 + �

�
)

�

i�∈Sp

yi (3.11)

≤ (1 + �
�
)

�

i�∈Sp

yi · P i∗x (3.12)

≤ (1 + �
�
) y�P x,

where (3.11) follows from (3.10) and (3.12) holds since P i∗x ≥ P i0∗x − �� for all
i �∈ Sp.

Next, we show (3.9). Let 1 ≤ i0 ≤ k be such that Ci0∗x = mini Ci∗x and define
Sc = {i | Ci∗x > Ci0∗x + ��}. From Lemma 1, we get that Ci0∗x ≤ 1 + 2��. It
is easy to check that

�
�zi0 = �

�
exp(µ(1 − Ci0∗x)) ≥ k(Ci0∗x + �

�
) exp(µ(1 − Ci0∗x − �

�
)).

Now fix i ∈ Sc and let η = Ci∗x. Note that η exp(µ(1 − η)) is a decreasing
function of η for η ≥ 1

µ . Since Ci0∗x + �� ≥ 1
µ , we obtain

k(Ci0∗x + �
�
) exp(µ(1 − Ci0∗x − �

�
)) ≥

�

i∈Sc

zi · Ci∗x,

and therefore ��zi0 ≥
�

i∈Sc
zi · Ci∗x. This implies

�
�zi0 +

�

i�∈Sc

zi · Ci∗x ≥
�

i∈Sc

zi · Ci∗x +
�

i�∈Sc

zi · Ci∗x = z�Cx.

Finally from the definition of Sc, we get the desired assertion as follows

(min
i

Ci∗x + �
�
)(· z) ≥

�

i�∈Sc

zi · Ci∗x + �
�zi0 ≥ z�Cx.

F. Non-Increasing Potential

The following lemma shows that the potential is monotonically non-increasing after
τ0 rounds, and that its decrease can be bounded from below (w.r.t. the current
values of x, y, and z). Before proceeding with Lemma 3, we need the following
elementary property of differentiable convex functions.

Fact 1. Let f : �n → � be a differentiable convex function. For any x0, x1 ∈ �n

we have

f
�
(x0

)(x1 − x0
) ≤ f(x1

) − f(x0
) ≤ f

�
(x1

)(x1 − x0
),

where f �(x) = (
∂f
∂x1

, . . . ,
∂f

∂xn
)� denotes the gradient of f evaluated at x.

52

3.2. Solving MPC-LPs (Feasibility)

Proof. Let η ∈ [0, 1]. Since f is a convex function, we have

f(x0
+ η(x1 − x0

)) = f((1 − η)x0
+ ηx1

) ≤ (1 − η)f(x0
) + ηf(x1

).

The inequality on the left is obtained by first subtracting f(x0) from both sides,
then dividing by η on both sides, and finally taking limit as η → 0. The inequality
on the right follows from exchanging the role of x0 and x1.

Lemma 3. Let ∆Φ(t) = Φ(t + 1) − Φ(t) denote the increase in Φ in round t.
Similarly let ∆xj(t) = xj(t + 1) − xj(t), ∆yi(t) = yi(t + 1) − yi(t), and
∆zi(t) = zi(t + 1) − zi(t). After τ0 rounds, we have

� − ∆Φ(t) ≥ Ω(α)
�

i

|∆yi(t)| , (3.13)

� − ∆Φ(t) ≥ Ω(α)
�

i

|∆zi(t)| , (3.14)

� − ∆Φ(t) ≥ Ω(βµ)
�
z(t)

�Cx(t) − (1 + α)y(t)
�P x(t)

�
, (3.15)� − ∆Φ(t) ≥ Ω(βµ)

�
(1 − α)y(t)

�P x(t) − z(t)
�Cx(t)

�
. (3.16)

Proof. Note that the potential Φ is a convex differentiable function of x. According
to Fact 1, for any two vectors x0 and x1, we have

Φ
�
(x0

)(x1 − x0
) ≤ Φ(x1

) − Φ(x0
) ≤ Φ

�
(x1

)(x1 − x0
),

where Φ�(x) is the gradient of Φ evaluated at x. Note that

Φ
�
j(x) = µ(P �

∗jy(x) − C�
∗jz(x))

for all j (Φ�
j(x) denotes the partial derivative of Φ w.r.t. xj , i.e., Φ�

j(x) =
∂Φ
∂xj

).
Thus,

∆Φ(t) ≤ µ
�

j

∆xj(t)(P �
∗jy(t + 1) − C�

∗jz(t + 1)).

We first prove (3.13). Define

S
+

= {j |
P �

∗jy(t)

C�
∗jz(t)

≤ 1 − α} and S
−

= {j |
P �

∗jy(t)

C�
∗jz(t)

≥ 1 + α}.

Note that ∆xj(t) > 0 for all j ∈ S+ and ∆xj(t) < 0 for all j ∈ S−. Moreover, if
j /∈ S+ ∪ S−, then ∆xj(t) = 0.

Fix j and assume j ∈ S+. Note that Lemma 1 and our choices of the parameters
ensure that, P �

∗jy(t) does not increase by a factor of more than α
4 in round t + 1,

i.e.,
P �

∗jy(t + 1) ≤ (1 +
α

4
)P �

∗jy(t).

53

3.2. Solving MPC-LPs (Feasibility)

Similarly, C�
∗jz(t) does not decrease by a factor of more than α

4 in round t + 1, i.e.,

P �
∗jy(t + 1) ≤ (1 +

α

4
)P �

∗jy(t).

Thus,

P �
∗jy(t + 1) − C�

∗jz(t + 1) ≤ (1 +
α

4
)P �

∗jy(t) − (1 − α

4
)C�

∗jz(t)

≤ (1 +
α

4
)P �

∗jy(t) −
(1 − α

4)

(1 − α)
P �

∗jy(t) (3.17)

≤ (−α

2
)P �

∗jy(t)

≤ −Ω(α)P �
∗jy(t),

where inequality (3.17) follows from the fact that j ∈ S+.

Now fix j and assume j ∈ S−. Following similar arguments as above we have

P �
∗jy(t + 1) − C�

∗jz(t + 1) ≥ (1 − α

4
)P �

∗jy(t) − (1 +
α

4
)C�

∗jz(t)

≥ (1 − α

4
)P �

∗jy(t) −
(1 +

α
4)

1 + α
P �

∗jy(t)

≥ Ω(α)P �
∗jy(t).

From the above analysis, we have

∆Φ(t) ≤ −Ω(α)µ
�

j

|∆xj(t)| P �
∗jy(t). (3.18)

Now note that for any i, we have

∆yi(t) ≤
�

j

µP ijyi(t + 1)∆xj(t) ≤ (1 +
α

4
)

�

j

µP ijyi(t)∆xj(t).

The first inequality follows from Fact 1 (since yi(x) is a convex differentiable
function of x) and the second inequality is due to the fact that yi does not change
by a factor of more than α

4 in any single round.

Therefore,
|∆yi(t)| ≤ (1 +

α

4
)

�

j

µP ijyi(t) |∆xj(t)| .

Summing up over all i, we get
�

i

|∆yi(t)| ≤ µ(1 +
α

4
)

�

j

P �
∗jy(t) |∆xj(t)| . (3.19)

The desired assertion (3.13) follows from the inequalities (3.19) and (3.18). The
proof of (3.14) is similar to the above and is omitted.

54

3.2. Solving MPC-LPs (Feasibility)

We now prove (3.15):

∆Φ(t) ≤ µ
�

j

∆xj(t)
�
P �

∗jy(t + 1) − C�
∗jz(t + 1)

�

= µ
�

j∈S+
∆xj(t)

�
P �

∗jy(t + 1) − C�
∗jz(t + 1)

�
+

µ
�

j∈S−

∆xj(t)
�
P �

∗jy(t + 1) − C�
∗jz(t + 1)

�

≤ µ
�

j∈S+
∆xj(t)

�
P �

∗jy(t + 1) − C�
∗jz(t + 1)

�
(3.20)

≤ βµ
�

j∈S+
xj(t)

�
P �

∗jy(t + 1) − C�
∗jz(t + 1)

�
(3.21)

≤ βµ
�

j∈S+
xj(t)

�
(1 +

α

4
)P �

∗jy(t) − (1 − α

4
)C�

∗jz(t)
�

≤ Ω(βµ)
�

j∈S+
xj(t)

�
(1 + α)P �

∗jy(t) − C�
∗jz(t)

�

≤ Ω(βµ)
�

j

xj(t)
�
(1 + α)P �

∗jy(t) − C�
∗jz(t)

�
(3.22)

= Ω(βµ)
�
(1 + α)y(t)

�P x(t) − z(t)
�Cx(t)

�
.

The inequality (3.20) holds since

P �
∗jy(t + 1) − C�

∗jz(t + 1) ≥ 0

and ∆xj ≤ 0 for any j ∈ S−. The inequality (3.21) follows from the fact that if
j ∈ S+, then we indeed have ∆xj(t) ≥ βxj(t). The inequality (3.22) holds since

(1 + α)P �
∗jy(t) − C�

∗jz(t) > 0

for any j ∈ S−. The proof of (3.16) is similar to the above and is omitted.

G. Stationary and Unstationary Intervals

We proceed by defining stationary intervals in which the potential function does not
change significantly.

Definition 1 (Stationary interval). An interval τ = [t0, t1] of rounds is called
stationary if all of the following conditions hold:

•
�

t∈τ
�

i |∆yi(t)| ≤ κ1Φ(t0),

•
�

t∈τ
�

i |∆zi(t)| ≤ κ2Φ(t0),

• (1 − α)y(t)�P x(t) − z(t)�Cx(t) ≤ κ3Φ(t0) for all t ∈ τ , and

55

3.2. Solving MPC-LPs (Feasibility)

• z(t)�Cx(t) − (1 + α)y(t)�P x(t) ≤ κ4Φ(t0) for all t ∈ τ .

Here κ1, κ2, κ3, κ4 = θ(��) are small constants. An interval that is not stationary is
called unstationary.

Lemma 4 shows that the potential function decreases by a multiplicative factor in
any unstationary interval, which in turn bounds the total number of unstationary
intervals by a poly-logarithmic function.

Lemma 4. In any unstationary interval, the potential Φ decreases by a factor of
Ω(�� min{α, βµ}) = Ω(��2).

Proof. Let τ = [t0, t1] be any unstationary interval. According to Lemma 3, after
τ0 rounds, we can bound the potential decrease from below in any two consecutive
rounds. Using inequality (3.13) together with Definition 1, we can bound the overall
potential decrease in interval τ as follows

Φ(t0) − Φ(t1) ≥ Ω(α)
�

t∈τ

�

i

|∆yi(t)| > Ω(�
�
α)Φ(t0).

Similarly, we can apply inequality 3.16 and Definition 1 to get

Φ(t0) − Φ(t1) ≥ Ω(βµ)

�
(1 − α)y(t)

�P x(t) − z(t)
�Cx(t)

�
> Ω(�

�
βµ)Φ(t0).

Thus, the claim follows.

Lemma 5 completes the proof. It states that all solutions computed in a “sufficiently”
long stationary interval are θ(��)-feasible. The proof is included below.

Lemma 5. Consider a stationary interval τ = [t0, t1] where t0 ≥ τ0 and t1 − t0 ≥
τ1 where τ1 = O(

1
β log

1
δ). Let x0, y0, z0 denote the values of x, y, z at round t0.

Then x0 forms a θ(��)-feasible solution and, in particular, if 0 < �� ≤ 0.05, x0 is a
10��-feasible solution.

Since �� =
�

10 , we obtain �-feasibility for � ≤ 0.5.

Proof. Assume to the contrary that the solution x0 is not θ(��)-feasible, e.g., that
mini Ci∗x0

maxi P i∗x0 = λ ≤ 1 − 5��. We have

(maxi P i∗x0 − ��) (· y0)

≤ (1 + �
�
)(y0

)
�P x0 (3.23)

≤ 1 + ��

1 − α

�
(z0

)
�Cx0

+ κ3Φ(t0)

�
(3.24)

≤ 1 + ��

1 − α

�
(min

i
Ci∗x0

+ �
�
)(· z0

) + κ3Φ(t0)

�
(3.25)

≤ (1 +
5

3
�
�
)

�
(min

i
Ci∗x0

+ �
�
)(· z0

) + κ3Φ(t0)

�
,

56

3.2. Solving MPC-LPs (Feasibility)

where the inequalities (3.23) and (3.25) follow from (3.8) and (3.9), respectively,
and the inequality (3.24) follows from Definition 1. Now from Lemma 1, after the
warm-up interval it always holds that 1 − 2�� ≤ maxi P i∗x0 ≤ 2 + 2��. Therefore,

· y0 ≤
�
1 +

5

3
�
�
� �

λ maxi P i∗x0 + ��

maxi P i∗x0 − �� (· z0
) +

κ3Φ(t0)

maxi P i∗x0 − ��

�

≤ (1 − �
�
)(· z0

) + O(κ3)Φ(t0).

Note that y and z have low mileage in the interval τ . According to Definition 1 we
have

· y0
+

�

t∈τ

�

i

|∆yi(t)|

≤ (1 − �
�
)(· z0

) + O(κ3)Φ(t0) +
�

t∈τ

�

i

|∆yi(t)|

≤ (1 − �
�
)(· z0

) −
�

t∈τ

�

i

|∆zi(t)| + (κ1 + κ2)Φ(t0) + O(κ3)Φ(t0)

≤ (1 − �
�
)
�

· z0 −
�

t∈τ

�

i

|∆zi(t)|
�

+ O(κ1 + κ2 + κ3)Φ(t0),

where as before κ1, κ2, κ3, κ4 = θ(��) are small constants. Let κ123 = κ1 +κ2 +κ3.
Since Φ(t0) = · y0 + · z0, we have

· y0
+

�

t∈τ

�

i

|∆yi(t)|

≤ (1 − �
�
)
�

· z0 −
�

t∈τ

�

i

|∆zi(t)|
�

+ O(κ123)
�

· y0
+ · z0�

and

(1 − O(κ123))
�

· y0
+

�

t∈τ

�

i

|∆yi(t)|
�

≤ (1 − �
�
+ O(κ123))

�
· z0 −

�

t∈τ

�

i

|∆zi(t)|
�
.

Thus,

· y0 +
�

t∈τ
�

i |∆yi(t)|
· z0 −

�
t∈τ

�
i |∆zi(t)|

≤ 1 − �
�
+ O(κ123) ≤ 1 − α.

Since the given mixed LP is feasible, there exists x∗ ≥ 0 such that P x∗ ≤ and
Cx∗ ≥ . Thus we have

(y0)�P x∗ +
�

t∈τ
�

i |∆yi(t)| P x∗

(z0)�Cx∗ −
�

t∈τ
�

i |∆zi(t)| Cx∗ ≤ 1 − α.

57

3.2. Solving MPC-LPs (Feasibility)

Now divide both the numerator and the denominator of the left-hand side of the
above inequality by

�
j x∗

j . After rearranging the terms we have

1�
j

x∗
j

�
j x∗

j

�
P �

∗jy0 +
�

t∈τ
�

i |∆yi(t)| P �
∗j

�

1�
j

x∗
j

�
j x∗

j

�
C�

∗jz0 −
�

t∈τ
�

i |∆zi(t)| C�
∗j

� ≤ 1 − α.

Now think of the numerator (resp. denominator) on the left-hand side above as
the (weighted) average of the terms in square brackets in the numerator (resp.
denominator). Since the average is less than 1 − α, there exists j such that

P �
∗jy0 +

�
t∈τ

�
i

���P �
∗jy(t + 1) − P �

∗jy(t)

���

C�
∗jz0 −

�
t∈τ

�
i

���C�
∗jz(t + 1) − C�

∗jz(t)

���
≤ 1 − α.

Note that the first term in the numerator (resp. denominator) is the value of P �
∗jy

(resp. C�
∗jz) at round t0 and the second term corresponds to the absolute change in

P �
∗jy0 (resp. C�

∗jz0) throughout interval τ . Hence for this j and for all t ∈ τ , we
can conclude that

P �
∗jy(t)

C�
∗jz(t)

≤ 1 − α.

Our algorithm will increase this variable by a factor of β in each of the τ1 =

O(
1
β log

1
δ) rounds in τ . Note that xj increases to at least δ in each single round

and therefore would become larger than 4 in τ1 rounds. Considering the fact that
each non-zero entry in P is at least 1, the potential Φ becomes at least exp(3µ) and
thus larger than (m + k) exp(2µ) after τ1 rounds. However, this contradicts the fact
that the value of the potential always remains less than

Φinit = m exp(µ(1 + 2�
�
)) + k exp(µ)

after τ0 rounds (implied by lemma 1). Therefore, we can conclude that the solution
x0 is indeed θ(��)-feasible.

To establish the final assertion, observe that

mini Ci∗x0

maxi P i∗x0 > 1 − 5�
�
, (3.26)

as we proved above. Let �� ≤ 0.05. From (3.26) and (3.6), we obtain

min
i

Ci∗x0
> 1 − 7�

�
.

Moreover, (3.26) together with (3.7) imply that

max
i

P i∗x0
< 1 + 10�

�
.

Therefore, the solution is 10��-feasible.

58

3.3. Solving MPC-LPs (Optimization)

3.3 Solving MPC-LPs (Optimization)

Up to this point, we have described how to use MPCSolver to obtain an �-feasible
solution to MPC-LPs. In this section, we consider the optimization version of MPC-
LP and show, for given � > 0 and 1 > η > 0, how to derive an (�, η)-approximation,
i.e., we also optimize the objective function while maintaining �-feasibility. Our
techniques are an adaptation of the techniques of Young (2001) to our setting. The
key idea of Young (2001) is to push the objective into the constraints. In particular,
we consider the following optimization problem:

find λ
∗

= max{λ : (∃x)P x ≤ b, Cx ≥ d, w�x ≥ λ}.

Given the value of λ∗, we can determine x via solving a feasibility problem with
the additional covering constraint w�x ≥ λ∗. To obtain λ∗, we run a sequence
of feasibility problems of form {P x ≤ p, Cx ≥ c, w�x ≥ λ}, where λ is
determined via binary search. Our search strategy is close to the one of Young
(2001), but we use a fixed error bound and directly compute an (�, η)-approximation.
The following lemma allows us to select an initial value for λ.

Lemma 6. Let λmin = min{w�x : Cx ≥ c, x ≥ 0} and λmax = max{w�x :

P x ≤ p, x ≥ 0}. Moreover, let x̄ be any feasible solution to MPC-LP, and set
λ = w�x̄. Then λmin

λmax
λ∗ ≤ λ ≤ λ∗.

Proof. The right inequality holds since by definition λ ≤ λ∗. Consider the mini-
mization version of MPC-LP that includes only the covering constraints; we have
w�x ≥ λmin. Since we ignore packing constraints, λmin is a lower bound on
the objective value of any feasible solution to MPC-LP, i.e., λ ≥ λmin. Similarly,
consider the maximization version of MPC-LP that contains only the packing con-
straints. The optimal value of this problem is an upper bound on the objective
value of any feasible solution including the optimal one, i.e., λ∗ ≤ λmax. Thus,
λmin
λmax

λ∗ ≤ λmin ≤ λ and the assertion follows.

In order to obtain an estimate of λmin and λmax, we use the distributed algorithm
of Awerbuch and Khandekar (2009), which obtains a (1+�)-factor approximation for
covering problems (λ̂min) and a (1 − �)-factor approximation for packing problems
(λ̂max). Since MPCSolver is a generalization of the algorithm of Awerbuch and
Khandekar to MPC, we use our existing implementation and data partitioning; only
parameters, update condition, and update rules need to be changed.

We assume that MPC-LP is feasible so that MPCSolver is able to obtain an �-feasible
solution. Denote by λ̂ the objective realized by any such �-feasible solution x̂. We
distinguish between two cases:

59

3.4. Parallelizing MPCSolver

Case λ̂ > λ∗.2 This implies that x̂ is already an (�, η)-approximation.

Case λ̂ ≤ λ∗. Let ρ =
(1−�)λ̂min
(1+�)λ̂max

. According to Lemma 6, we have ρλ∗ ≤ λ̂ ≤ λ∗.

Our binary search algorithm proceeds as follows: We start with λ0 =
λ̂
ρ , then

ρ ≤ λ∗

λ0
≤ 1. We then aim to find the integer l∗ such that

(1 − η)
l∗+1

<
λ∗

λ0
≤ (1 − η)

l∗

via binary search (on l). Given any l, we run MPCSolver with λ = (1 − η)lλ0
as lower bound on the objective. If we obtain an �-feasible solution, then l∗ ≤ l.
Otherwise, the problem is infeasible so λ∗ < λ = (1 − η)lλ0 and hence l∗ > l.
Note that if the problem instance is not exactly feasible (i.e., λ > λ∗) but �-feasible,
MPCSolver still might return an �-feasible solution. The range used for binary
search is given by 0 ≤ l ≤ log1−η ρ (since l∗ must fall into this range). The solution
obtained at l = l∗ is now an (�, η)-approximation to the MPC-LP.

Lemma 7. Given � > 0 and 1 > η > 0, our binary search algorithm computes an
(�, η)-approximation to any feasible MPC-LP by solving at most

O

�
log log

λmax

λmin
− log log

1

1 − η

�

�-feasibility problems.

In practice, we need to solve only few �-feasibility problems (up to 7 in our experi-
ments).

3.4 Parallelizing MPCSolver

Note that each iteration of MPCSolver essentially involves a set of matrix-vector
products. Massively parallel computation of such products can be carried out effi-
ciently using modern GPUs. Moreover, MPCSolver is straightforward to parallelize
on a shared-memory architecture since both primal and dual variables are updated
independently of each other. In what follows, we focus on in-memory processing
in a shared-nothing setting and exploit shared-memory parallel processing when
multiple threads are available on each compute node. Denote by s the number of
compute nodes and by t the number of threads per node; the total number of threads
in the cluster is thus given by T = st.

Recall from Algorithm 3 that, in each round, MPCSolver first computes the dual
variables y and z associated with each packing and covering constraint, respectively

2This is possible since x̂ is �-feasible.

60

3.4. Parallelizing MPCSolver

(xb)�

C∗b
r C∗b

c

P ∗b
r P ∗b

c P ∗bxb

C∗bxb

y

z

Figure 3.1: Memory layout used on node b. Node-local data is shown in white
and temporary data in gray.

(lines 8 and 9). To distribute the computation, we conformingly partition x and
matrices P and C column-wise across the compute nodes. Denote by P ∗b, C∗b,
and xb the respective partitions stored at some node b (1 ≤ b ≤ s). Each node
computes the products P ∗bxb and C∗bxb independently and in parallel. The partial
results are then aggregated (i.e., summed up) and subsequently broadcast across
the compute cluster to obtain P x and Cx, i.e., P x =

�s
b=1 P ∗bxb and similarly

Cx =
�s

b=1 C∗bxb; see below for details on how this step can be implemented.

At this point, each node is able to compute the value of the duals and update the
primal variables in partition xb independently and in parallel (lines 10- 14). Since
matrices P and C are accessed once row-wise (to compute the partial products)
and once column-wise (to update the primal variables), we store at each node b two
copies of P ∗b and C∗b in memory: one in row-major (denoted by P ∗b

r and C∗b
r ,

respectively) and one in column-major order (denoted by P ∗b
c and C∗b

c , respectively).
This memory layout is depicted in Figure 3.1. Note that the constraint matrices are
partitioned only once before the algorithm starts.

Notice that computing P x and Cx involves similar operations as in Allreduce,
which in general, consists of the following three steps: (1) every compute node
provides a value, (2) values of all compute nodes are combined applying specified
operations into one single value, and (3) the resulting value is distributed to all
the compute nodes. Such an operation can be realized in multiple ways each with
different performance efficiency.

In the most basic implementation, each node sends its partial products to a single
node to which we refer as the master node; the actual aggregation and computation

61

3.5. Implementing MPCSolver

is then performed at the master node. Note that this simple implementation requires
a small number of messages (2s − 2 in total) to be transmitted. However, this
approach has a number of drawbacks when the number of constraints is large, i.e.,
when partial products contain a large number of elements. First, large messages
need to be exchanged resulting in a high memory-bandwidth usage, which in turn,
has a negative impact on the performance of the algorithm. Second, this realization
might introduce network contention especially at the master node. Finally, since all
computations are shifted to the master node, this single node implies a bottleneck.

An improved implementation, uses a reduction tree, i.e., a spanning tree over
the nodes for reducing (i.e., accumulating) s partial products. Compared to the
previous approach, the computational load is more balanced, while requiring the
same number of message to be exchanged. However, it still suffers from high
memory-bandwidth usage when the number of constraints is large. We can improve
on this approach by further splitting the partial results P ∗bxb and C∗bxb into s

partitions and deploying s different reduction trees: one at each node and for each
partition to obtain P x and Cx. Figure 3.2 illustrates an example for s = 4 and
t = 1 (M∗b

(S)x
b refers to partition S ∈ {A, B, C, D} of the partial products M∗bxb,

where M ∈ {P , C}). Compared to the previous implementations discussed above,
the number of messages to be communicated is larger (s log s − s in total) but the
size of each message is smaller (1

s times). Thus, this realization distributes the
computation evenly across cluster nodes while ensuring low latency.

Note that the performance efficiency of the implementations described above (based
on a column-wise partitioning of the data matrices) depends on the problem struc-
ture; for instance, this realization can suffer from high communication costs when
there are many more constraints than variables. In this case, a row-wise partitioning
of the data matrices might be more beneficial. In general, however, the communica-
tion costs can be reduced significantly by exploiting the sparsity of the constraint
matrices. Moreover, we can exploit shared-memory parallel processing when multi-
ple threads are available on each compute node as follows. On each compute node b,
we further partition matrices P ∗b and C∗b column-wise and conformingly xb across
the available t threads, and apply the same aggregation as described above to obtain
P ∗bxb and C∗bxb. Note that the aggregation step on each node can be performed
with practically no communication overhead as the required data is node-local.

3.5 Implementing MPCSolver

We provide some optimizations that can be applied to speed up the performance of
MPCSolver in practice. These practical techniques apply to general MPC problems.
In Section 4.4, we consider instances of generalized bipartite matching problems
and empirically show the effectiveness of these optimization techniques for such
problems.

62

3.5. Implementing MPCSolver

Partition D

Partition C

Partition B

Partition A

M∗1
(D)x

1

M∗1
(C)x

1

M∗1
(B)x

1

M∗1
(A)x

1

M∗2
(D)x

2

M∗2
(C)x

2

M∗2
(B)x

2

M∗2
(A)x

2

M∗3
(D)x

3

M∗3
(C)x

3

M∗3
(B)x

3

M∗3
(A)x

3

M∗4
(D)x

4

M∗4
(C)x

4

M∗4
(B)x

4

M∗4
(A)x

4

Node 1 Node 2 Node 3 Node 4

Figure 3.2: Reduction trees and data flow for partitions A–D, M = {P , C},
s = 4. In reduction trees, leaf nodes are colored white, internal nodes
light gray, and root nodes dark gray. Final results are aggregated at
root nodes and then distributed to all the compute nodes (not shown
in the figure).

3.5.1 Starting Point

MPCSolver can start from any arbitrary initial point x ∈ �n
+. However, in order

to reduce the number of iterations to convergence and improve the efficiency of
MPCSolver, we make use of the following special initializations: cold-start and
warm-start. For a single feasibility problem, we apply the cold-start initialization,
while the warm-start initialization is used when solving the optimization problems.

Cold-start. Denote by nnz(j) the largest number of non-zero entries in any row i

of P in which P ij �= 0. We then set

xj =
1

nnz(j) · maxi P ij
for j ∈ [1, n]. (3.27)

63

3.5. Implementing MPCSolver

Note that this special initial point ensures that no packing constraint exceeds the
right-hand side (i.e., 1) and thus all packing constraints are satisfied. Alternatively,
one could select a random initial point or choose an initial point that satisfies all
covering constraints. In such cases, however, some packing constraints might be
violated by a large amount resulting in a high value of the dual variables y. For
this reason, we only consider the initialization as in (3.27) when solving a single
feasibility problem.

Warm-start. Recall from Section 3.3 that we reduce the optimization problem
into a small sequence of feasibility problems; solving each feasibility problem
serves the purpose of computing a bound on the objective value. To facilitate our
binary search, we first need to obtain λ by computing λmin = min{w�x : Cx ≥
c, x ≥ 0} and λmax = max{w�x : P x ≤ p, x ≥ 0}. We can maintain either of
the solutions to the respective pure packing or covering problems and use it as the
starting point for the first feasibility problem in the binary search procedure. In order
to accelerate MPCSolver while solving each subsequent problem, we “warm-start”
each feasibility problem using the solution obtained from solving the previous
feasibility problem.

3.5.2 Adaptive Error Bounds

The internal error bound parameter �� controls the quality of the final solution, but it
also dramatically affects the number of rounds to convergence. Our experiments,
however, suggest that setting �� to values larger than �

10 has only a mild impact on
the quality of the final solution but leads to faster convergence; in fact, our analysis
of MPCSolver is somewhat loose so that our choice of �� =

�
10 is conservative.

We devise a simple adaptive method for choosing ��, which greatly improves the
running time while ensuring �-feasibility. We exploit the fact that the potential
function can be efficiently evaluated at the end of each iteration and proceed as
follows. Let � ≤ 0.5. We first set �� to some value larger than �

10 (e.g., 2). We
keep running with value �� as long as the potential improves significantly (e.g., by
0.001%). Whenever the potential stagnates, we decrease �� (e.g., by 1%)—but not
below �

10—and update parameters µ, α, β, and δ accordingly. This simple adaptive
scheme worked extremely well in our experiments (see Section 4.4).

3.5.3 Adaptive Step Size

Recall from Section 3.2 that the step size parameter β controls how fast we explore
the parameter space. From a theoretical standpoint, the preassigned value of the step
size β (as defined in Algorithm 3) guarantees convergence, however, this choice
may be quite conservative. In practice, we could choose β as to yield a maximum
potential decrease (so that we can make more progress in each single round of

64

3.5. Implementing MPCSolver

MPCSolver). To this end, we deploy a backtracking line search to select among a
few values of β, e.g., 10kβ for k = 0, 1, 2, 3. In particular, we maintain k temporary
variables x�

1, . . . x�
k, which we update separately in parallel using a different value

of β and evaluate the resulting potential function for the corresponding value of β.
The choice of β which yields the maximum potential decrease is selected for the
actual updates to the primal variables x. Note that, in this case, the cost of each
round increases by factor k; the increased cost per round, however, might or might
not pay off as it affects the number of round to convergence (see Section 4.4.2C).

3.5.4 Convergence Test

MPCSolver has converged as soon as one of the following criteria is met: (1) the
solution is �-feasible, (2) all variables remain unmodified, or (3) the number of
rounds exceeds the poly-logarithmic bound of Theorem 1. If (2) or (3) hold and the
solution is not �-feasible, the MPC-LP is infeasible. In practice, the poly-logarithmic
bound is usually too large to be useful (in particular when � is small). A heuristic
convergence test is to stop MPCSolver when the decrease in potential stagnates;
e.g., when it falls below some threshold (say, 0.001%) in two consecutive rounds.
For the adaptive scheme, we apply the heuristic convergence test only when �� has
been reduced to �

10 . Even though the guarantees of Theorem 1 do not hold when
this heuristic is used, our experiments suggest that the test is effective in practice.

3.5.5 Multiple Updates

Recall Algorithm 3. To update the primal variables x in any round t, MPCSolver
performs two passes over the data: one pass to compute the products P x(t) and
Cx(t) and to specify the values of the dual variables y(t) and z(t), and another

pass to calculate the ratio rj(t) =
P �

∗jy(t)
C�

∗jz(t) for all j. Depending whether the ratio

rj(t) is smaller than 1 − α or larger than 1 + α, the primal variable xj is increased
or decreased. If the ratio rj(t) lies in (1 − α, 1 + α), then xj remains unmodified.

First, note that the ratio rj for some primal variable xj might lie far away from
1 − α or 1 + α, particularly during the initial rounds of MPCSolver. Next, note that
our choice of the parameters of MPCSolver ensures an increase (resp. decrease) in
the value of P �

∗jy (resp. C�
∗jz) by a factor of at most α

4 in any single round,3 i.e.,

(1 − α

4
)P �

∗jy(t) ≤ P �
∗jy(t + 1) ≤ (1 +

α

4
)P �

∗jy(t),

(1 − α

4
)C�

∗jz(t) ≤ C�
∗jz(t + 1) ≤ (1 +

α

4
)C�

∗jz(t).

3These bounds on the maximum change of each packing and covering constraint hold under the
assumption that P x ≤ 3 · and Cx ≤ 3 · . In particular, this assumption is valid after the warm-up
interval (see Lemma 1).

65

3.6. Experimental Study

Let f = (1 +
α
4)/(1 − α

4). This implies that

rj(t)

f
≤ rj(t + 1) ≤ frj(t),

and thus we can bound the ratio rj in round t + 1. In fact, due to our conservative
choice of the parameters, it is unlikely that rj(t + 1) decreases (increases) to rj(t)

f

(frj(t)). Consequently, all variables xj for which the ratio rj(t) is too small (resp.
too large) compared to 1 − α (resp. 1 + α) will be increased (resp. decreased)
multiple times in several consecutive rounds. We can exploit this information to
update those primal variables multiple times in each single round of MPCSolver in
the hope to achieve faster convergence.

Based on the observation above, we devise a heuristic to update the primal variables
multiple times in each round as follows. In any round t, we first obtain the ratio rj(t)

for each individual primal variable xj . Next, we estimate the number of rounds
we can update xj and still make sure that rj remains outside (1 − α, 1 + α). To
this end, we increase xj(t), �logf

1−α
rj(t)� times if rj(t) ≤ 1 − α and decrease xj(t),

�logf
rj(t)
1+α � times if rj(t) ≥ 1 + α.

We have not yet fully analyzed how this simple technique affects the convergence
properties of MPCSolver; in our experiments, however, we observed a considerable
reduction in the number of rounds and the running time until convergence; e.g., up
to 70% reduction in the number of rounds and the running time (see Section 4.4.2C).

3.6 Experimental Study

We conducted a case study with instances of the generalized bipartite matching
problems. In such problems, we aim to find a maximum-weight matching (subset of
edges) of an undirected bipartite graph such that the degree (i.e., number of incident
edges) of each node in the matching lies between a specified lower and upper
bound. The LP relaxation of generalized bipartite matching is a mixed packing-
covering LP. Here, we give an overview of the results; generalized bipartite matching
problems are described in the next chapter and a detailed set of experiments are
given in Section 4.4. We compared MPCSolver with Young’s algorithm from Young
(2001) as well as with a start-of-the-art general LP solver on real and synthetic
datasets of varying sizes in terms of efficiency and scalability. We found that
MPCSolver scales to very large datasets and is significantly (multiple orders of
magnitude) faster than Young’s algorithm. Moreover, MPCSolver is competitive to
state-of-the-art LP solvers on moderately-sized datasets, but can handle much larger
problem instances. Finally, MPCSolver can be readily implemented and well-suited
for parallel processing on GPUs; it obtained up to 38.6x speedup compared to a
sequential execution on small-scale problem instances.

66

3.7. Related Work

3.7 Related Work

Lagrangian relaxation was one of the first methods proposed for solving (general)
linear programs. Efficient approximation algorithms for MPC-LPs (and their special
cases of PLPs) are mostly based on Lagrangian relaxation with LP decomposition
(a.k.a. Lagrangian decomposition, multiplicative weights) methods which can serve
as a useful alternative to interior-point or Simplex methods; see, e.g. Arora et al.
(2012); Bienstock (2002); Todd (2002), for an overview. In contrast to exact LP
algorithms, Lagrangian-relxation based techniques obtain an approximate solution:
for any � > 0, they return solutions which are either approximately feasible (i.e.,
constraints are satisfied within a multiplicative factor of 1 ± �), or approximately
optimal (i.e., whose costs are within a factor of 1 ± � of the optimal cost OPT).
However, compared to standard approaches, Lagrangian relaxation-based methods
can be faster, are simpler, and more amenable to parallelization.

At a high level, the key principle in such algorithms is to select some of the
constraints and replace them by a sum of smooth “penalties”, one for each selected
constraint. The algorithm then iteratively constructs a solution while trying to
maintain the remaining constraints and minimizing the increase in the sum of the
penalties.

In some algorithms, the penalties have exponential dependency in the constraint
violations as in Plotkin et al. (1995); Young (2001), whereas in the others the
penalties have logarithmic form as in Diedrich and Jansen (2007b); Grigoriadis and
Khachiyan (1994). Furthermore, some proposed methods rely on the first-order
approximations of the change in the sum of penalties (e.g., Plotkin et al. (1995)
and Young (2001)), while the others use second-order approximations (e.g., Bien-
stock (2002) and Bienstock and Iyengar (2004)).

MPCSolver shares some common features with Lagrangian-relaxation based meth-
ods; in particular, it utilizes exponential functions to penalize violations in the
constraints and iteratively tries to minimize the sum of the penalties. This is
achieved by minimizing a first-order approximation of the sum of the penalties.

In general, the running times of such iterative approximation algorithms increase as
the error parameter � gets small. For the algorithms that use a linear approximation of
the changes in the sum of penalties, the running times grow at least quadratically in
1
� (times a polynomial in the input), while the algorithms that rely on a second-order
approximation of the changes in the sum of penalties have a reduced dependency
on 1

� from quadratic to linear, but at the expense of an increased dependency on the
other parameters; compared to the algorithms of the first type, the algorithms of the
second type require fewer iterations but more time per iteration.

Unfortunately, most existing Lagrangian-relaxation based algorithms for packing

67

3.7. Related Work

Pure packing Pure covering

PLP

MPC-LP

General LP

Figure 3.3: Various types of LPs considered in Chapter 3

and covering problems deal with sequential settings (e.g., Diedrich and Jansen
(2007a;b); Khandekar (2004); Plotkin et al. (1995)) and lack efficiency when applied
to real instances at massive scales. In the following, we focus on a parallel (shared-
memory and shared-nothing) setting and review some existing approaches based
on Lagrangian relaxation techniques for PLPs (pure packing or covering LPs),
MPC-LPs, as well as general LPs. Figure 3.3 illustrates how these classes of LPs
relate to each other. The problems are arranged in form of a tree. A problem defined
in a node is a special case of the problem defined in the parent node. Unless other
specified, m refers to the number of constraints, n refers to the number of variables,
and N denotes the number of non-zero entries in the constraint matrix.

3.7.1 PLP Solvers

The first parallel approximation NC-algorithm for PLPs was presented in the seminal
work of Luby and Nisan (1993). The complexity class NC includes the set of
decision problems solvable in poly-logarithmic time using a parallel computer
with a polynomial number of processors. Their algorithm obtains a (1 + �)-factor
approximation in time polynomial in 1

� and log N , using O(N) processors.

Some previous research deals with solving PLPs in a distributed setting in which
multiple agents operate in a cooperative but uncoordinated manner. In this setting,
an agent is associated with each of n variables and controls the value of the corre-
sponding variable. Moreover, each agent has access to current values of only those
constraints in which it has non-zero coefficients. The goal is to generate feasible
solutions to PLPs using only information about local constraints (Linial 1992).

68

3.7. Related Work

This study was initiated by Papadimitriou and Yannakakis (1993) who considered
approximately solving pure packing LPs by distributed decision-makers based
only on information from local constraints without performing any communication.
Bartal et al. (2004) extended this model to allow local communication and presented
a distributed approximation algorithm for PLPs, which trades off the quality of
approximation achieved against the amount of communication performed. More
specifically, their proposed algorithm obtains a logarithmic-factor approximation
after a constant number of rounds and a (1 + �)-factor approximation after a
logarithmic number of rounds. These results were further improved and generalized
by Kuhn et al. (2006). For pure covering LPs, they showed a constant-factor
approximation with high probability in O(log m) rounds. For pure packing LPs,
they gave a (1 + �)-factor approximation algorithm requiring logarithmic message
size, but the number of rounds depend on the input coefficients. Assuming that
agents are allowed to send and receive messages of unbounded size, they achieved a
constant-factor approximation in O(log m) rounds with high probability.

Koufogiannakis and Young (2009; 2011; 2013) presented efficient distributed ap-
proximation algorithms for a number of packing and covering combinatorial prob-
lems including PLPs. In particular, they gave a distributed ∆-factor approximation
algorithm for a more general class of covering problems that includes pure covering
LPs (with variable upper bounds) as a special case. Here ∆ denotes the maximum
number of variables in any constraint. Moreover, they proposed a distributed δ-factor
approximation algorithm for pure packing LPs, where δ refers to the maximum
number of constraints any variable appears in. Both algorithms are randomized and
return solutions in O(log

2
m) rounds in expectation and with high probability.

Awerbuch and Khandekar (2009) proposed a distributed stateless approximation
algorithm for PLPs. We refer to this algorithm as AK. AK is very simple and
achieves a (1 + �)-factor approximation to any packing LP in time proportional to
log(MN) and �−5. Here M denotes the width of the LP.4 A similar algorithm works
for covering LPs. MPCSolver is based on AK and shares with AK features like the
use of an exponential potential function and gradient descent with multiplicative
updates; key differences are that MPCSolver can handle mixed packing-covering
problems and can start from an arbitrary initial point. Awerbuch et al. (2009) further
generalized AK to the case of any implicitly given packing LP addressing problem
instances with exponentially (or even infinitely) many variables.

3.7.2 MPC-LP Solvers

Young (2001) developed a first parallel (1+�)-factor approximation algorithm for
MPC-LPs, which obtains a solution that satisfies all constraints within a (1±�) factor

4In Awerbuch and Khandekar (2009), for pure packing LPs, the width is defined as M =
mini,j

P ij

piwj
; similarly for pure covering LPs.

69

3.7. Related Work

in a poly-logarithmic number of rounds (in the input). Young’s algorithm has a better
theoretical bound than MPCSolver; in particular, its runtime is proportional to �−4

(and poly-logarithmic in the size of the input), and is independent of the width of
the problem (M). Young’s algorithm initially sets all variables to sufficiently small
values (all packing constraints satisfied), and then gradually increases but never
decreases variables until either approximate feasibility is achieved or infeasibility is
detected. In contrast to MPCSolver, variable increments cannot be undone. For this
reason, Young’s algorithm cannot start from arbitrary starting point and it does not
support adaptive changes of the error bound, which greatly affect performance in
practice (see Section 4.4). Both MPCSolver and Young’s algorithm make use of
exponential dual variables to penalize constraint violations.

3.7.3 General Solvers

The alternating direction method of multipliers (ADMM) is a general powerful
framework for distributed convex optimization including linear programming. It was
first introduced in the 1970s (Gabay and Mercier 1976; Glowinski 1975), with its
origin dating back to the 1950s. ADMM combines ideas from dual decomposition
and augmented Lagrangian methods. At a high level, it coordinates the solutions to
small local subproblems to derive a solution to a large global problem; see Boyd
et al. (2011) for an extensive literature survey and a review of the method.

Some previous research has studied the convergence properties of ADMM for the
case of linear programming (see,e.g., Boley (2013); Boyd et al. (2011); Eckstein
and Bertsekas (1990)); in particular, (Eckstein and Bertsekas 1990) showed that
for general LPs, ADMM converges at a global linear rate, and more recently Boley
(2013) established bounds on the local behavior of ADMM during the course of
iterations for LPs containing equality constraints. The latter work proves that
under normal conditions ADMM should pass through a number of stages each
with different convergence rates. More specifically, ADMM takes constant steps
in some stages but eventually achieves linear convergence in the vicinity of the
optimum. The author also showed via examples that the linear convergence can still
be very slow in practice. We postpone exploring the effectiveness of ADMM for
MPC-LPs for future work. As a final remark note that MPCSolver is substantially
simpler compared to ADMM. Nevertheless, ADMM can be applied to more general
optimization problems.

Very recently, Sridhar et al. (2013) presented a parallel algorithm, termed Thetis,
for approximately solving general LPs. The key idea of Thetis is to transform
the given LP into a convex quadratic formulation and apply stochastic coordinate
descent (SCD) to approximately solve the original LP. To facilitate fast convergence,
Thetis benefits from an asynchronous parallel SCD implementation given by Liu
et al. (2013) for solving the convex quadratic relaxation of the underlying LP. Note

70

3.8. Summary

that Thetis applies to general LPs whereas MPCSolver is designed for MPC-LPs.
Moreover, compared to MPCSolver, the runtime of Thetis grows as �−2 and is thus
less sensitive to approximation error �, however, the overall worst-case complexity
of Thetis depends polynomially in m and n. Overall, MPCSolver is significantly
easier to implement.

3.8 Summary

MPC-LPs capture a simple yet expressive subclass of linear programs. They com-
monly arise as linear programming relaxations of a number of important com-
binatorial problems including various network design and generalized matching
problems.

In this chapter, we have presented MPCSolver, a novel efficient distributed algorithm
for approximately solving mixed packing-covering linear programs and proved its
convergence via a full theoretical analysis. MPCSolver is inspired by, but more
general than the work of Awerbuch and Khandekar (2009), which can handle
either packing or covering constraints, but not both. MPCSolver requires a poly-
logarithmic number of passes over the input and is easy to implement and parallelize.
In particular, it is well-suited for parallel processing on GPUs, in shared-memory
architectures, or on small clusters of commodity nodes. We have first discussed
how to solve mixed packing-covering feasibility problems and then showed how
to solve the optimization version via a small sequence of feasibility problems. We
have described implementation issues that are key to good performance in practice.
In particular, we have discussed how to distribute data effectively across nodes
so that communication costs are minimized. Moreover, we have provided several
techniques to further improve the performance of MPCSolver. Finally, we have
reviewed some existing approaches for solving MPC-LPs and related problems and
have given an overview of the results of a case study with instances of generalized
bipartite matching problems whose LP relaxations are MPC-LPs.

71

3.8. Summary

72

4
Generalized Bipartite Matching

In this chapter,1 we are concerned with generalized bipartite matching problems.
Such matching problems are ubiquitous; they appear in a wide variety of applica-
tions, including trade markets (Penn and Tennenholtz 2000), computational advertis-
ing (Bhalgat et al. 2012; Charles et al. 2010), and semi-supervised learning (Jebara
et al. 2009).

Consider, for example, the problem of assigning DVDs to customers in online DVD
rentals. Online video vendors such as Netflix or Amazon’s Prime Instant Video
allow customers to specify which DVDs they would like to rent. Due to the limited
number of physical available DVDs, customers are encouraged to provide a large
ranked list of their favorite movies; the online video vendor then automatically
selects which DVDs to ship to customers based on both customers’ preferences
and availability. Moreover, customers are recommended movies that they might be
interested in; a good recommender engine should consider availability to reduce
customer waiting times for accepted recommendations.

The problem of assigning DVDs to customers is non-trivial: For shipping, we want
to make sure that users are sent movies ranked as high on their lists as possible,
while at the same time maintaining fairness, i.e., every user should be provided with
a sufficient number of DVDs without exceeding the user’s DVD budget. Similarly,
for recommendation, we want to recommend a few DVDs to each user such that the

1Parts of the material in this chapter have been jointly developed with Rainer Gemulla and
Mauro Sozio. The chapter is based on Makari et al. (2013) and Makari and Gemulla (2013). The
copyright of Makari et al. (2013) is held by VLDB Endowment; the original publication is available at
http://dl.acm.org/citation.cfm?id=2536362. The copyright of Makari and Gemulla
(2013) is held by NIPS; the original publication is available at http://biglearn.org/2013/
files/papers/biglearning2013_submission_14.pdf.

73

http://dl.acm.org/citation.cfm?id=2536362
http://biglearn.org/2013/files/papers/biglearning2013_submission_14.pdf
http://biglearn.org/2013/files/papers/biglearning2013_submission_14.pdf

user is likely to be interested in his recommendations and, in case of acceptance,
the recommended DVD is (likely to be) physically available.

As another example, consider the problem of recommending partners for relationship
to members of an online matchmaking service. For instance, eHarmony 2—an online
matchmaking company, which connects compatible members likely to enjoy long-
term relationships—predicts the compatibility between singles based on a detailed
questionnaire filled out by its users about their personality, values, attitudes, beliefs,
etc. The goal is to deliver high quality recommendations for partner relationships
to individual singles (so to increase the likelihood that the suggestions lead to
marriage), while preserving fairness, i.e., each single should receive sufficient
suggestions without overloading the user with recommendations.

We can naturally model problems like the ones above as generalized bipartite
matching problems. In such a problem, we are given a set of users and a set of
items. There is an edge between a user u and an item v if u is interested in v; each
edge is associated with a positive weight that captures the degree of interest of
u in v. Furthermore, each user u and each item v is associated with a lower and
upper bound on the number of edges adjacent to u and v that can participate in
the matching (the matching problem is “generalized” due to the presence of these
bounds). Our goal is to find a matching—i.e., subset of the edges—such that all
lower- and upper-bound constraints are satisfied and the total weight of the edges
participating in the matching is maximized. This problem is also known in the
literature as the maximum weight degree-constrained subgraph problem, while the
special case with only upper bounds is known as maximum weight b-matching.

The problems stated above can be solved in polynomial time via traditional max-
flow techniques given by Ahuja et al. (1993), linear programming solvers such
as Gurobi Optimization (2013), or using the combinatorial algorithm developed
in Gabow and Tarjan (1989). Unfortunately, these approaches cannot cope with
the massive scale of real-world problem instances which may involve millions of
users and items and billions of edges; for instance, Netflix offers tens of thousands
of movies for rental to its more than 20M customers. Similarly, eHarmony has
currently more than 33M members to whom it provides recommendation for long-
term partnership.

In this chapter, we propose a scalable distributed approximation algorithm for
large-scale generalized bipartite matching. Though several scalable algorithms for
b-matching have been proposed in the literature, our algorithm is the first distributed
(i.e., shared-nothing) algorithm for generalized bipartite matching problems, and it
can cope with massive real-world instances. Our algorithm can readily be adapted
to capture more complex matching problems with additional constraints; e.g., in

2
www.eHarmony.com

74

www.eHarmony.com

4.1. Problem Definition

the case of DVD recommendation, one may enforce that users are recommended at
most one movie per genre to encourage diversity.

Our algorithm is randomized and produces an approximate solution to the matching
problem with strong approximation guarantees. Given small error bounds � and
η, we compute a solution that is within a factor of (1 − �)(1 − η) of the optimal
solution in expectation, and satisfies the lower- and upper-bound constraints within
a factor of 1− � and 1+ �, respectively. Our method is based on linear programming
and consists of two phases: (1) Compute an approximate fractional solution to the
LP relaxation of the integer linear program formulation of the matching problem,
and (2) round the fractional solution to obtain an integral solution. In phase 1, we
utilize MPCSolver from Chapter 3 to compute an approximate fractional solution in
a distributed setting. Next, we combine the sequential rounding scheme of Gandhi
et al. (2006) with the recent work from Lattanzi et al. (2011) on “filtering” in the
MapReduce setting to obtain an efficient distributed rounding algorithm called
DDRounding in phase 2.

Finally, we experimentally compare the efficiency and scalability of our algorithms
to existing alternatives on both real-world and synthetic datasets of varying sizes.
Our experiments indicate that our algorithms can handle significantly larger problem
instances than LP solvers, and are orders of magnitude faster than existing alternative
distributed algorithms.

The remainder of this chapter is organized as follows: We formally define the
generalized bipartite matching problem in Section 4.1. In Section 4.2, we first
show how to implement MPCSolver to obtain an approximate fractional solution
for GBM in a distributed setting. We then provide details on how to efficiently
round the fractional solution to an integral solution in a distributed environment.
We summarize related work in Section 4.3 and finally give results of our extensive
experimental study in Section 4.4. Throughout this chapter, we use the notation
from Appendix A.

4.1 Problem Definition

We are given an undirected bipartite graph G = (U, V, E), where U represents a
set of users, V represents a set of items, and there is an edge (u, v) ∈ E if user u is
interested in item v. Each edge (u, v) is associated with a positive weight w(u, v)

measuring the degree of interest of u in v. For each user and item, we are additionally
given a lower bound l(v) and an upper bound b(v), where v ∈ U ∪ V . The bounds
constrain the degree of vertex v in the solution; e.g., bounds on the number of
recommendations for a user or the availability of a movie. More formally, denote
by Ē ⊆ E a subset of the edges in G, and by Ēv the set of edges incident to vertex
v in subgraph (U, V, Ē). We say that Ē is feasible if l(v) ≤ |Ēv| ≤ b(v) for all

75

4.1. Problem Definition

v ∈ U ∪ V , i.e., all lower- and upper-bound constraints are met. An instance of our
problem is feasible if there exists a feasible Ē. The generalized bipartite matching
(GBM) problem is to determine the best feasible matching between users and
movies, i.e., we seek to maximize the objective function f(Ē) =

�
(u,v)∈Ē w(u, v)

over all feasible Ē ⊆ E.

Although GBM can be solved in polynomial time via maximum-flow techniques
or integer linear programs, available solvers do not scale to the large problem
instances that occur in practice, i.e., instances with millions of users and movies,
and potentially billions of edges. In this chapter, we consider an approximate variant
of GBM in which we seek for a “good” (but not necessarily optimal) solution and
additionally allow for a small violation of lower- and upper-bound constraints. This
“relaxation” allows us to develop a scalable distributed approximation algorithm
for GBM. In particular, denote by � > 0 a small error bound. We say that Ē is
�-feasible if lower- and upper-bound constraints are violated by at most a factor of
1 − � and 1 + � (up to rounding), respectively. For 1 > η > 0, an �-feasible solution
Ē is called an (�, η)-approximation of the GBM if its objective value is within a
factor of (1 − �)(1 − η) of the optimal solution OPT to GBM. The relaxed problem
is stated formally as follows.

Problem 1 (GBM�,η). We are given � > 0, 1 > η > 0, and a GBM in terms of an
undirected bipartite graph G = (U, V, E), a weight function w : E → �+, and
lower- and upper-bound functions l : U ∪ V → N and b : U ∪ V → N, respectively.
If the GBM is feasible with optimum objective OPT, find a subset Ē ⊆ E such that

�(1 − �)l(v)� ≤ |Ēv| ≤ �(1 + �)b(v)�

for each v ∈ U ∪ V , and

�

(u,v)∈Ē

w(u, v) ≥ (1 − �)(1 − η)OPT

in expectation. If the GBM is infeasible, return any edge set Ē ⊆ E.

In Section 4.2, we develop a randomized algorithm to efficiently solve large problem
instances of GBM�,η in a distributed environment. Our algorithm produces a
solution which has an objective value at least (1 − �)(1 − η)OPT in expectation
and is guaranteed to be �-feasible. Although we do not make any formal claims
here, our experiment suggests that the objective is also concentrated around the
expected value, i.e., we obtained an objective that was close to or better than
(1 − �)(1 − η)OPT in every single run of our algorithm.

76

4.2. Algorithms

ILP Formulation and LP Relaxation

The GBM problem can be formulated as an integer linear program (ILP) as follows.
For each edge e ∈ E, we introduce a binary variable xe ∈ { 0, 1 }; xe = 1 if e is
included in the solution, otherwise xe = 0. The ILP is then given by

max
�

e∈E w(e)xe

s.t.
�

e∈Ev
xe ≤ b(v) ∀v ∈ U ∪ V,�

e∈Ev
xe ≥ l(v) ∀v ∈ U ∪ V,

xe ∈ {0, 1} ∀e ∈ E,

(GBM-ILP)

where Ev denotes the set of edges adjacent to vertex v in G. Here the first two
constraints express the upper- and lower-bound constraints, respectively. Since the
constraint matrix of GBM-ILP (see Section 4.2.1) is totally unimodular and the
right-hand sides are all integer-valued, an optimum solution can be computed in
polynomial time, e.g., using the algorithm of Ahuja et al. (1993). However, our
experiments in Section 4.4 suggest that state-of-the-art LP solvers cannot handle
very large problem instances.

We obtain the so-called LP relaxation, denoted GBM-LP, by allowing xe to be frac-
tional, i.e., to take any value in [0, 1]. As described in Section 4.2, we make use of
the LP relaxation in our algorithms in that we first compute an (�, η)-approximation
of GBM-LP, and then round the solution (sensibly) to obtain an integral one. Note
that GBM-LP belongs to the class of mixed packing-covering LPs (see Section 3.1).
The mapping of GBM-LP to MPC-LP is described in Section 4.2.1.

4.2 Algorithms

As mentioned in Section 4.1, we solve GBM�,η by computing a solution to the
corresponding LP relaxation, which is subsequently rounded to an integral solution.
To this end, we first utilize MPCSolver to compute an �-feasible solution (see
Sections 3.2 and 3.3). The special structure of GBM-LP makes MPCSolver very
attractive; this can be exploited to reduce communication costs (see Section 4.2.1).
We then combine ideas from randomized rounding presented in Gandhi et al. (2006)
with “filtering” techniques for MapReduce given by Lattanzi et al. (2011) to obtain
an integral solution (Section 4.2.2).

4.2.1 MPCSolver for GBM

Recall the definition of an MPC-LP from Section 3.1 and consider the LP relaxation
GBM-LP of a given GBM instance. Then n = |E| denotes the number of edges,
x = (x1, . . . , xn) the edge variables, and w the corresponding edge weights. Set
r = |U ∪V | and denote by M the r×n incidence matrix of bipartite graph G. Then

77

4.2. Algorithms

Cr×n = M (i.e., k = r), c is the vector of lower bounds, P (r+n)×n = (M� In)�

(i.e., m = r + n), where In is the n × n identity matrix, and p a vector of r upper
bounds followed by n ones. Thus, P handles both the upper-bound constraints and
the constraint that xj ≤ 1 for all j. Note that matrices C and P are usually sparse.

Recall Section 3.4 where we discussed how to parallelize MPCSolver in general.
Denote by yM and yI the subset of the dual variables corresponding to upper-
bound constraints and at-most-one constraints, respectively. For the computation
of both yM and z only product Mx is needed (according to (3.2) and (3.3),
(yI)i = exp [µ ((Mx)i − 1)] and zi = exp [µ (1 − (Mx)i)]). To obtain Mx, we
communicate partial products M∗bxb at node b in every round. However, for the
computation of yI no communication is needed; these variables can be computed
locally at each node. This is advantageous since the size of yI is linear in n (large)
but the size of Mx (as well as yM and z) is linear in r (small). Note that all
communicated values are vectors of length r, which makes MPCSolver especially
attractive for GBM-LP.

4.2.2 Obtaining an Integral Solution

In the following, we propose a distributed algorithm that takes as input a fractional
solution x, which is an (�, η)-approximation of the GBM-LP and generates an
�-feasible integral solution X such that E [w�X] = w�x. In particular, our
algorithm ensures that:

1. E [w�X] = w�x,

2. all edge variables Xe ∈ { 0, 1 },

3. when P i∗x ≤ (1 + �)pi, then P i∗X ≤ �(1 + �)pi�, and

4. when Ci∗x ≥ (1 − �)ci, then Ci∗X ≥ �(1 − �)ci�.

A naïve approach is to use an independent rounding scheme, which independently
rounds every edge variable such that P (Xe = 1) = xe. Such a scheme, however,
may not (and often does not) lead to an �-feasible solution. To see this, consider
the (packing) constraint X1 + X2 + X3 ≤ �1 + �� and the fractional solution
x1 = 0.2, x2 = 0.3, x3 = 0.5 + � for 1 > � > 0; independent rounding sets
X1 = X2 = X3 = 1 with non-zero probability but this solution is not �-feasible.
We thus need some form of dependent rounding, in which variables are rounded
dependent on the rounding of other variables.

Some methods have been proposed in the literature to generate randomized round-
ings for fractional variables defined on the edges of bipartite graphs that preserve

78

4.2. Algorithms

certain dependencies between the edge variables, e.g., so to satisfy cardinality con-
straints on the degree of each individual vertex. Call an edge integral if xe ∈ {0, 1}
and fractional if xe ∈ (0, 1). We refer to the sum of fractional edge variables
incident to vertex v ∈ U ∪ V , i.e.,

�
e∈Ev∧xe∈(0,1) xe, as the fractional degree of v.

Similarly, we define the integral degree of v to be
�

e∈Ev∧xe∈{0,1} xe. The bipartite
edge variable rounding asks for a rounding of x to X that guarantees marginal
preservation—i.e., E [Xe] = xe, addressing (1)—and degree preservation, i.e.
�
�

e∈Ev
xe� ≤

�
e∈Ev

Xe ≤ �
�

e∈Ev
xe� for all v ∈ U ∪ V , addressing (3)+(4).

Gandhi et al. (2006) proposed a randomized sequential rounding scheme based on
the deterministic pipage rounding given by Ageev and Sviridenko (2004) to solve
the bipartite edge variable rounding problem. We refer to the algorithm due to
Gandhi et al. as DRounding. In the sequel, we first discuss the key ideas of both the
pipage rounding (Section 4.2.2A) and DRounding (Section 4.2.2B). Next, we show
how to adapt DRounding to a distributed environment and present our distributed
rounding algorithm, termed DDRounding.

A. Pipage Rounding

Denote by F the set of fractional edges and let G� be the graph spanned by F , i.e.,
G� = (U ∪ V, F). The pipage rounding is based on the following key observation.
Suppose that G� contains a simple cycle3 C = (e1, . . . , e2k). Then, there exists an
� ∈ (0, 1) such that alternately adding and subtracting � to/from the edge values in
C modifies at least one edge value in C to 0 or 1 while preserving the fractional
degree of each individual vertex and keeping the remaining edge variables in [0, 1].
Similarly, we can modify the edge values of any maximal path P . Note that each
vertex is an end-vertex of a maximal path at most once. In this case, the fractional
degree of the two end vertices of P may change, but never exceed their floors and
ceilings; the fractional degrees of the remaining vertices of P remain unchanged.
Thus, performing this procedure iteratively up to m times moves all fractional edges
to integral values.

B. Dependent Rounding (DRounding)

DRounding can be seen as a randomized version of the deterministic pipage round-
ing algorithm. The algorithm additionally satisfies some negative correlation prop-
erties, which imply the usual Chernoff bounds; for details see Gandhi et al. (2006).
DRounding is summarized as Algorithm 4. In the following, we briefly describe the
algorithm. Similar to the pipage rounding, DRounding iteratively rounds fractional
edges until all edges become integral. Each iteration of DRounding finds either

3A simple cycle is a cycle with no repeated vertices or edges other than the starting and ending
vertices.

79

4.2. Algorithms

Algorithm 4 DRounding (Gandhi et al. 2006)
Require: U , V , E, solution x of GBM�-LP

1: I0 ← { (e, xe) : e ∈ E, xe ∈ { 0, 1 } } // integral edges
2: F0 ← { (e, xe) : e ∈ E, 0 < xe < 1 } // fractional edges
3: for i ∈ 1, 2, . . . do
4: if Fi−1 = ∅ then // all edges integral?
5: return

�i
j=0 Ij // output integral solution

6: else
7: Find a simple cycle or maximal path P = (e1, . . . , ek) and partition P

into two matchings M1 and M2
8: Let α=min{γ > 0 : (∃e ∈ M1 : xe +γ = 1)

�
(∃e ∈ M2 : xe −γ = 0)}

and β =min{γ > 0 : (∃e ∈ M1 : xe−γ = 0)
�

(∃e ∈ M2 : xe+γ = 1)}

9: Set xe = xe + α, ∀e ∈ M1 and xe = xe − α, ∀e ∈ M2 with prob. β
α+β

10: Set xe = xe − β, ∀e ∈ M1 and xe = xe + β, ∀e ∈ M2 with prob. α
α+β

11: Ii ← { (e, Xe) ∈ E : Xe ∈ { 0, 1 } }
12: Fi ← Fi \ Ii

a cycle or a maximal path in the subgraph spanned by the remaining fractional
edges. Once such a cycle or path is found, typically one (but possibly more) of its
edges are rounded. In particular, an iteration of the algorithm proceed as follows:
As before, denote by F the current set of fractional edges. If F = ∅, we are done
and the algorithm terminates. Otherwise, find a simple cycle or maximal path P

in the subgraph spanned by F , and partition P into two matchings M1 and M2.
Denote by α (resp. β) the minimum amount we can add to/subtract from the edges
variables in M1 (resp. M2) such that at least one edge in M1 (resp. M2) becomes
integral (line 8). Now, select α with probability β

α+β and β with the complementary
probability α

α+β to modify the edge variables in M1 and M2 (lines 9 and 10). Note
that the rounding of a cycle or maximal path does not require global information,
but only the values of the edge variables on the cycle or maximal path, respectively.
Thus, it suffices to maintain the set F of the fractional edges, which shrinks after
every rounding step. Since we can detect and process a cycle in O(r) time (via
depth-first-search), and since every iteration rounds at least one fractional edge,
the total running time of DRounding is O(rn), where as before r = |U ∪ V | and
n = |E|.

C. Distributed Dependent Rounding (DDRounding)

In what follows, we show how to adapt DRounding to a distributed environment. Our
distributed algorithm, called DDRounding, is inspired by recent work of Lattanzi
et al. (2011) on “filtering” in the MapReduce framework and, in particular, the

80

4.2. Algorithms

filtering algorithm for computing minimum spanning trees. We exploit the fact that
the approximation guarantees of DRounding do not depend on the order in which
cycles or maximal paths are processed; we are thus free to choose an order that
facilitates distributed processing. DDRounding is summarized as Algorithm 5. In
each iteration i, the algorithm checks whether the set Fi−1 of remaining fractional
edges is small. If so, we run DRounding on Fi−1 and output the solution. If not,
we evenly distribute Fi−1 across si compute nodes, where si is chosen carefully
(see below). In parallel, each node then runs on its local partition a version of
DRounding that rounds cycles (can be detected locally) but not maximal paths
(cannot be detected locally) (line 11). The reason why we only round cycles but
not maximal paths from local partitions is that any cycle in a local partition of
some node is also a valid cycle in the full graph, whereas a maximal path in a
local partition is not necessarily a maximal path in the global graph, as it could
potentially be extended by adding edges that are present in the full graph but not in
the local partition, to its end vertices. After a local partition is rounded, it contains
at most r − 1 remaining fractional edges (since cycles have been rounded so that
the remaining fractional edges form a forest). We then (conceptually) merge the
remaining fractional edges across partitions to construct the set Fi for the next
iteration.

Runtime and memory. The properties of DDRounding are similar to those of
the filtering techniques of Lattanzi et al. (2011); we describe them briefly here.
Assume without loss of generality that |Ev| ≥ 1 for all v ∈ U ∪ V , i.e., every
user and every item has at least one incident edge. Also assume that there are
more edges than vertices, i.e., n = r1+c for some 0 < c ≤ 1. Assume that each
compute node has insufficient memory to store the whole graph; in particular,
each node can store ν = O(r1+γ) edges for 0 < γ < 1 and γ < c. Further
assume that the input fits in the aggregate memory of all nodes, i.e., there are
Θ(

n
ν) = Θ(rc−γ) nodes available. Note that these assumptions imply that the

set of vertices can be stored on a single node, while the set of edges cannot. We
thus model the situation where there are many more edges than nodes, as it is
often the case in practice. Set ni−1 = |Fi−1|. In iteration i, we use si = Θ(

ni−1
ν)

nodes so that each node stores O(ν) edges; memory constraints are thus preserved.
Now observe that by the arguments above ni ≤ si(r − 1) = O(

ni−1
rγ). Since

n0 ≤ n = O(r1+c), we conclude that ni = O(
r1+c

riγ). The algorithm terminates
as soon as ni = O(ν), i.e., after O(� c

γ �) iterations. Since every node runs a
(less expensive variant of) DRounding independently and in parallel, each iteration
has time complexity O(νr) = O(r2+γ). The overall time complexity is thus
O(r2+γ� c

γ �).

Quality of approximation. �-feasibility of X follows directly from the degree
preservation property of DRounding. The marginal preservation property implies

81

4.2. Algorithms

Algorithm 5 DDRounding
Require: U , V , E, solution x of GBM�-LP

1: I0 ← { (e, xe) : e ∈ E, xe ∈ { 0, 1 } } // integral edges
2: F0 ← { (e, xe) : e ∈ E, 0 < xe < 1 } // fractional edges
3: for i ∈ 1, 2, . . . do
4: if |Fi−1| < ν then // few fractional edges?
5: Ii ← DRounding(U, V, Fi−1) // sequential rounding
6: return

�i
j=0 Ij // output integral solution

7: else
8: si ← Θ(|Fi−1|/ν) // number of compute nodes
9: Partition Fi−1 evenly across s compute nodes to obtain partitions

Fi−1,1, . . . , Fi−1,si

10: for j ∈ { 1, . . . , si } do // in parallel
11: T ← RemoveCyclesWithDRounding(U, V, Fi−1,j)

12: Ii,j ← { (e, Xe) ∈ T : Xe ∈ { 0, 1 } }
13: Fi,j ← T \ Ii,j

14: Ii =
�si

j=1 Ii,j // newly obtained integral edges
15: Fi =

�si
j=1 Fi,j // remaining fractional edges

that the objective function is within (1 − �)(1 − η) of the optimum in expectation,
since E [w�X] = w�x. Note that S = w�X is a bounded random variable (both
from below and above). Standard arguments then show that if we round sufficiently
often, then w�X is close to w�x with high probability. The number of required
rounding steps depend on the problem though (i.e., on the value of the optimal
solution). In our experiments, we found that even a single run of DDRounding
produces results close to or even above w�x.

Implementing DDRounding. Recall that, after MPCSolver has finished, each
node j already stores locally a subset F0,j = xj of the primal variables, where
|F0,j | ≤

�n
s

�
. We thus set s1 = s so that there is no need for any data redistribution

in the first iteration of DDRounding (i = 1). When available, we use multiple
threads on each node to remove cycles with DRounding. In each subsequent
iteration i > 1, we halve the number of available nodes so that si =

� si−1
2

�
.

We thus need to communicate only half of the remaining fractional edges , i.e.,
the remaining fractional edges of every second node. This procedure balances
communication cost evenly. Also note that iterations i > 1 are faster because every
node processes at most 2r + 2 edges; the bulk of the work is performed in the first
iteration.

Implementing DRounding. Cycle detection using depth-first-search (DFS) can
be implemented efficiently as follows. We start by selecting an arbitrary root

82

4.3. Related Work

node v0 ∈ U ∪ V and perform DFS starting from v0. Whenever we find a cycle
C = (vv1 · · · vivi+1 · · · vlv), some of its corresponding edges are rounded. Suppose
that by doing so, only edge (vi, vi+1) becomes integral.4 This removes an edge of
the current path of DFS, i.e., we are in an invalid state. To avoid restarting DFS from
scratch, we decompose C into two paths C1 = (vv1 · · · vi) and, in reverse order,
C2 = (vvl · · · vi+1). We replace the portion of the DFS stack that corresponds to
C by C1 or C2, whichever is longer. To the extent possible, this allows us to avoid
reprocessing the same paths over and over again. Moreover, once a node is fully
processed (i.e., there are no more cycles involving this node), we mark it so that we
never need to visit this node again. Both optimizations significantly improved the
efficiency of our implementation of DRounding.

4.3 Related Work

The classical optimization task of finding an assignment of entities to users under
a given set of constraints has been extensively studied in various domains of com-
puter science. Entities could be items in an auction (Penn and Tennenholtz 2000),
advertisements (Charles et al. 2010), scientific papers (Garg et al. 2010), social
content (Morales et al. 2011), or multimedia items as in our case. Additionally,
matching problems (in particular weighted b-matching) have been shown to be a
useful tool in a wide variety of machine learning tasks, including semi-supervised
learning (Jebara et al. 2009), spectral clustering (Jebara and Shchogolev 2006),
graph embedding (Shaw and Jebara 2007), and manifold learning (Shaw and Jebara
2009). In some of the applications mentioned above, the input data is not immedi-
ately available and decisions need to be made as new data arrives; this is referred to
as the online version of the problem. The focus of our work is however on offline
algorithms, which can also help solving the corresponding online versions (Alon
et al. 2006).

The problem we studied in this chapter is also known in the literature as the maxi-
mum weight degree-constrained subgraph problem. The special case with upper
bounds only is known as maximum weight b-matching. In a centralized environment,
both problems can be solved in polynomial time via linear programming solvers,
maximum flow techniques as in Ahuja et al. (1993), or using the combinatorial
algorithm developed in Gabow and Tarjan (1989). Unfortunately, these algorithms
do not cope well with massive datasets.

In what follows, let n denote the number of vertices and m refer to the number of
edges. For b-matching in general graphs, a simple greedy algorithm can achieve an
approximation guarantee of 1

2 running in O(m log n), and there is a randomized
(

2
3 − �)-approximation algorithm with expected running time O(bm log

1
�) as shown

4We proceed similarly when more than one edge become integral.

83

4.4. Experimental Results

by Mestre (2006), where b = maxv∈V b(v). To the best of our knowledge, the
algorithm developed in Gabow and Tarjan (1989) with running time Ω(mn

1
2) is the

most efficient algorithm developed for exact b-matching to date.

Scalable algorithms for the weighted b-matching have been proposed in the literature.
Using the message passing model of distributed computation, Panconesi and Sozio
(2010) presented a distributed randomized algorithm for the bipartite case that
yields a 1

6+� -approximate solution requiring a poly-logarithmic number of rounds.
Furthermore, Koufogiannakis and Young (2011) gave a distributed 1

2 -approximation
algorithm for general graphs running in O(log m) rounds in expectation and with
high probability. Later, Morales et al. (2011) adapted the algorithm of Panconesi and
Sozio (2010) as well as a greedy algorithm to the MapReduce environment. More
specifically, they presented an algorithm called GreedyMR, which implements the
simple greedy algorithm in a MapReduce setting and achieves a 1

2 approximation
requiring a linear number of MapReduce steps, and an algorithm termed StackMR,
which allows to violate upper-bound constraints by a factor of 1 + � and yields
an approximation guarantee of 1

6+� , but requires a poly-logarithmic number of
MapReduce steps. Unfortunately, none of the above algorithms can handle lower-
and upper-bound constraints simultaneously.

For ordinary b-matching as well as the more difficult case of perfect b-matching in
bipartite graphs (a special case of generalized bipartite matching in which the degree
of each node in the matching is constrained to be equal to some prespecified integral
value) a belief propagation algorithm was first introduced by Bayati et al. (2011)
and further improved by Huang and Jebara (2007; 2011). In particular, Bayati et al.
(2011) showed that the belief propagation algorithm converges to the correct solution
if and only if the LP relaxation of the integer program formulation of the b-matching
has no fractional solution; in case that the LP relaxation has fractional solutions this
algorithm can be used to solve the corresponding LP. The proposed algorithms also
apply to general graphs and have worst-case complexity O(mn). Parallel versions of
the belief propagation algorithm seem be theoretically straightforward (Huang and
Jebara 2011), however, the performance of parallel implementations on large-scale
datasets has not been experimentally studied so far.

4.4 Experimental Results

In this section, we investigate the performance of MPCSolver (presented in Sec-
tions 3.2 and 3.3), DDRounding, and alternative algorithms for solving GBM in an
extensive experimental study on both (semi-)synthetic and real-world datasets. We
found that our algorithms are competitive with state-of-the-art LP solvers on small
to moderately large problem instances, and multiple orders of magnitude faster than
alternative methods on large instances.

84

4.4. Experimental Results

4.4.1 Experimental Setup

A. Computational Environment

We implemented MPCSolver, Young’s algorithm from Young (2001), and DDRound-
ing in C++. Additionally, we made use of a CUDA implementation of MPCSolver
for GPUs. To ensure a fair comparison, we used the data distribution techniques
of Section 3.5 when implementing Young’s algorithm, which greatly reduced its
communication cost. All C++ implementations employed MPICH2 for commu-
nication.5 We used three different setups to run our experiments: (1) a single
high-memory server, (2) a compute cluster consisting of 16 nodes (with significantly
less main memory), and (3) an NVIDIA GeForce GTX TITAN GPU with 6GB
device memory. The high-memory server had 512GB of main memory and was
equipped with 4 Intel Xeon 2.40GHz processors with 10 cores each (40 cores in
total). Each node in the compute cluster had 48GB of main memory and an Intel
Xeon 2.40GHz processor with 8 cores.

B. Real-World Datasets

Table 4.1 gives a brief overview of the datasets used in our experiments. We used the
following real-world datasets: the Movielens10M dataset consisting of 10M movie
ratings of 72k users over 10k items, the Netflix dataset (Bennett and Lanning 2007),
which consists of roughly 99M ratings (1–5) of 456k Netflix users for 18k movies,
the NetflixTop50 containing 24M movie ratings of 480k users over 18k items, and
the KDD dataset of Track 1 of KDD-Cup 2011 (Dror et al. 2011), which consists of
approximately 253M ratings of 1M Yahoo! Music users for 625k musical pieces.
We excluded users with less than 10 ratings from the Netflix dataset (this ensures
feasibility and is more realistic).

The real-world datasets above (Netflix, KDD, and Movielens10M) are somewhat
unrealistic because we recommend items to users that the users have already rated. A
more realistic setup is covered by NetflixTop50 (and our large-scale semi-synthetic
dataset, denoted Semi-syn; see below). To create the NetflixTop50 dataset, we first
applied the DSGD++ algorithm from Section 2.3.1D to predict unknown ratings
in the Netflix matrix, and then selected the set of items with the top-50 largest
predicted ratings for each user. In all datasets above, except for NetflixTop50, the
number of ratings per user is unbalanced, i.e., there are users with very few ratings
but also users with a large number of ratings. To construct a GBM instance, we
converted each dataset to a bipartite graph (users and items form vertices; ratings
correspond to weighted edges); our goal was to match (i.e., recommend) items to
users. We used a lower bound of 3 and an upper bound of 5 on the number of

5
http://www.mcs.anl.gov/mpi/mpich/

85

http://www.mcs.anl.gov/mpi/mpich/

4.4. Experimental Results

Table 4.1: Summary of datasets

Dataset |U | |V | |E|

Movielens10M 72k 10k 10M
NetflixTop50 480k 18k 24M
Netflix 456K 18k 99M
KDD 1M 625k 253M
Syn 10M 1M 1B
Semi-Syn 480k 18k 3.2B

recommendations given to each user. We did not enforce a lower bound for items,
but required each item to be recommended at most 200 times (Movielens10M,
Netflix, and NetflixTop50) and 2000 times (KDD). These choices of bounds ensured
that the resulting instances were feasible.

C. Synthetic and Semi-Synthetic Datasets

In order to investigate the scalability of our algorithms, we created two large-
scale datasets: a semi-synthetic dataset, denoted Semi-Syn, and a synthetic dataset,
denoted Syn. Semi-Syn is generated as follows: Similar to NetflixTop50, we first
predicted the missing ratings of the Netflix matrix with DSGD++. Next, we sampled
3.2B entries uniformly from this matrix; each sample corresponds to an edge in the
bipartite graph, weighted by the predicted rating. Note that this dataset is balanced,
i.e., each user has the same number of ratings in expectation. The Semi-Syn dataset
has a large number of edges but only a moderate number of vertices. In order to
investigate the performance of our algorithms with a large number of vertices, we
additionally generated Syn which consists of 10M users, 1M items, and 1B edges.
The edges and their corresponding weights (between 1 and 5) are sampled uniformly
at random. We generally use the same lower and upper bounds as for Netflix, except
for Syn, where we modify the upper bound on the number of recommendations for
each item to 50.

D. Optimal Solution

In order to compute the value of the optimum, we solved the LP relaxations us-
ing Gurobi Optimization (2013; 5.0), a state-of-the-art commercial solver for linear
programs (and other problems); Gurobi takes advantage of multiple cores if available.
Gurobi computed the optimal solution of small real-world datasets Movielens10M
and NetflixTop50 on a cluster node. Gurobi was not able to solve problem instances
of Netflix and KDD on one of our cluster nodes due to insufficient memory, even
though these datasets were moderately large. On the high-memory server, however,

86

4.4. Experimental Results

Gurobi did produce an optimal solution for the Netflix and KDD datasets. For Syn
and Semi-Syn, Gurobi ran out of memory even on the high-memory server; we thus
were not able to compute the value of the optimum. Moreover, in each experiment
with Gurobi, we tried both available Simplex and barrier LP solvers; the reported
running time is the time required by the fastest LP solver of Gurobi.

E. Convergence Test

When running MPCSolver and Young’s algorithm, we need to detect whether the
algorithms have “practically“ converged. Say that a solution has maximum violation
λ if it is barely λ-feasible (i.e., not λ�-feasible for any λ� < λ). For MPCSolver we
used the heuristic convergence test as described in Section 3.5.4. Young’s algorithm
was declared converged as soon as the maximum violation of only the packing
constraints and only the covering constraints became equal (or the solution had
maximum violation of �). This modified convergence bound for Young’s algorithm
ensures a fair comparison: If we ran the algorithm any further, the maximum
violation would increase (i.e., covering violation gets smaller, packing violation
gets larger).

4.4.2 Results for GBM-LP (Feasibility)

A. Experiments on Compute Cluster

In our first set of experiments, we compared MPCSolver and Young’s algorithm for
GBM-LP feasibility problems with respect to efficiency (in terms of both number
of iterations and total time to convergence) and (strong) scalability. Our goal was to
produce a 0.05-feasible solution, i.e., � = 0.05. As discussed below, running any of
the two algorithms directly with such a small error bound leads to poor performance
in practice. Instead, we ran the algorithms with some value �� ≥ � in the hope to
still get an �-feasible solution. For MPCSolver, we also considered the adaptive
scheme of Section 3.5 for selecting the error bounds (with the parameters given in
that section). The time for rescaling the input problem and computing the starting
point was negligible (a few seconds) and is not included in our plots.

Efficiency (Figures 4.1 and 4.2). We studied the effect of error bound parameter
�� for both MPCSolver and Young’s algorithm. For MPCSolver, �� refers to the
internal error bound, while for Young’s algorithm �� refers to the desired error bound
given to the algorithm. Note that the choice of �� affects both running time and the
feasibility of the final solution. Figures 4.1 and 4.2 plot the maximum violation
after every iteration until convergence for various choices of ��. Here we only used
a single cluster node with 8 parallel threads. All algorithms were run from the same
initial point.

87

4.4. Experimental Results

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Iterations

M
ax

 v
io

la
ti

on

!

(a) Young’s algorithm on Netflix

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Iterations
M

ax
 v

io
la

ti
on

!

ε

ε

ε

ε

ε

ε

Adaptive

!

 ' = 0.5
 ' = 1.0
 ' = 1.5
 ' = 2.0
 ' = 2.5
 ' = 3.0

(b) MPCSolver on Netflix

0 500 1000 2000 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Total time (s)

M
ax

 v
io

la
ti

on

!

(c) Young’s algorithm on Netflix

0 500 1000 2000 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Total time (s)

M
ax

 v
io

la
ti

on

!

(d) MPCSolver on Netflix

Figure 4.1: Efficiency of Young’s algorithm and MPCSolver for 0.05-feasibility
on Netflix (1x8)

First note that �� indeed affects time to convergence for both algorithms, which
is in accordance with theory (MPCSolver is linear in (��)−5, Young’s algorithm
linear in (��)−4). Nevertheless, both algorithms produce solutions with maximum
violation far less than �� (but above � = 0.05); this effect was more pronounced for
MPCSolver. For all choices of �� ≥ 1, MPCSolver converged faster and achieved
a higher precision (i.e., less maximum violation). Moreover, for both algorithms
and on both datasets, a choice of �� = 1 worked best within 1500 iterations; the
final maximum violation achieved by MPCSolver was slightly better than the
one obtained by Young’s algorithm (0.19 vs. 0.21 on Netflix, 0.13 vs. 0.16 on
KDD). For �� = 0.5, neither of the algorithms converged after 1500 iterations:
The iterate moved very slowly towards approximate feasibility. On Netflix (KDD)

88

4.4. Experimental Results

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Iterations

M
ax

 v
io

la
ti

on

!

(a) Young’s algorithm on KDD

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Iterations

M
ax

 v
io

la
ti

on

!

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Iterations

M
ax

 v
io

la
ti

on

!

ε

ε

ε

ε

ε

ε

Adaptive

!

 ' = 0.5
 ' = 1.0
 ' = 1.5
 ' = 2.0
 ' = 2.5
 ' = 3.0

(b) MPCSolver on KDD

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Total time (s)

M
ax

 v
io

la
ti

on

0 1000 2000 3000 4000 5000

!

(c) Young’s algorithm on KDD

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Total time (s)

M
ax

 v
io

la
ti

on

0 1000 2000 3000 4000 5000

!

(d) MPCSolver on KDD

Figure 4.2: Efficiency of Young’s algorithm and MPCSolver for 0.05-feasibility
on KDD (1x8)

the achieved error was 0.98 (0.99) for MPCSolver and 0.76 (0.43) for Young’s
algorithm, respectively.

For high values of ��, the maximum violation dropped quickly in the beginning, but
did not improve significantly in further iterations (in fact, both algorithms converged
quickly for large ��). For small values of ��, the maximum violation improved more
slowly but eventually reached a lower value. This behavior motivated our adaptive
method for selecting �� (denoted “adaptive”) discussed in Section 3.5. Recall that
Young’s algorithm cannot be run with adaptive error bound selection; see Section 3.7.
In contrast, MPCSolver is well suited to adaptive error bound selection because it
can start from an arbitrary starting point and is able to “undo” bad steps. As can

89

4.4. Experimental Results

be seen in Figures 4.1 and 4.2, MPCSolver with adaptive �� outperforms all fixed
choices of ��. As a consequence, MPCSolver with adaptive error bound selection
was the only method that achieved 0.05-feasibility in 1500 or less iterations. In
particular, the maximum violation fell below 0.05 within 1077s (Netflix) and 5317s
(KDD). In what follows, we focus on MPCSolver with adaptive ��.

Regarding running time, we found that an iteration of MPCSolver was faster than
an iteration of Young’s algorithm (1.8x faster on average). Communication costs
were similar, but Young’s algorithm is more computationally intensive (since it
needs to compute a global parameter from time to time). However, MPCSolver
required significantly less iterations to converge, mainly due to its flexibility in
terms of selecting ��. Overall, MPCSolver was multiple orders of magnitude faster
than Young’s algorithm.

As a final remark, Gurobi’s LP solver required about 2h (Netflix) and 3.5h (KDD)
to find a feasible solution on our high-memory server. To have a fair comparison to
MPCSolver, we also used Gurobi to find 0.05-feasible solution: the running times
decreased to 1.9h (Netflix) and 3.3h (KDD). Thus, MPCSolver was competitive in
terms of overall runtime to state-of-the-art parallel solvers for feasibility problems.

Strong scalability (Table 4.2). We investigated the runtime performance (mea-
sured as the average time per iteration and the total time until convergence) of
MPCSolver and Young’s algorithm as we increase the number of compute nodes
from 1 to 16, where each node runs 8 threads. We refer to these setups using a
“node x threads” abbreviation, i.e., 1x8, 2x8, . . ., 16x8. Our results are summarized
in Table 4.2.

We first discuss the results on the moderately-sized real-world datasets Netflix and
KDD (which do fit into the memory of a single cluster node). Compared to the
per-iteration execution time of Netflix (KDD) on 1x8, MPCSolver provided 1.6x
(1.7x) speedup on 2x8, and a 1.9x (2.4x) speedup on 4x8. Here communication
overhead becomes significant so that speedup is sublinear. Young’s algorithm has
slightly higher speedup than MPCSolver, but starts at a higher cost initially. In fact,
Young’s algorithm on 8 nodes takes more time per iteration as MPCSolver on 2
nodes. Similar to MPCSolver, the benefit of moving from 4 to 8 or more nodes was
marginal. Turning to overall time to convergence, we found that Young’s algorithm
did not converge after 24h. Note that we ran Young’s algorithm with �� = 0.05 to
ensure that we can actually find an �-feasible solution, which caused it to move very
slowly. In contrast, MPCSolver converged after 660 (1050) iterations on Netflix
(KDD); the total running time was less than 1h on 4x8 and above.

We also investigated the performance of MPCSolver and Young’s algorithm on the
large Syn and Semi-Syn datasets. For Syn (Semi-Syn), we give results for 4x8,
8x8, and 16x8 (8x8 and 16x8) only; a smaller number of nodes had insufficient

90

4.4. Experimental Results

Table 4.2: Performance of Young’s algorithm (Young) and MPCSolver (MPC) for
feasibility problems (� = 0.05)

1x8 2x8 4x8

Young MPC Young MPC Young MPC

Avg. time/iteration (s) on Netflix 5 2.8 3.5 1.8 2.7 1.5
Avg. time/iteration (s) on KDD 14 7.8 8.7 4.6 6.2 3.3
Avg. time/iteration (s) on Syn 29.2 15.7
Avg. time/iteration (s) on Semi-Syn

Time for feasibility (h) on Netflix >24 0.51 >24 0.33 >24 0.28
Time for feasibility (h) on KDD >24 2.3 >24 1.3 >24 0.96
Time for feasibility (h) on Syn >24 2.4
Time for feasibility (h) on Semi-Syn

8x8 16x8

Young MPC Young MPC

Avg. time/iteration (s) on Netflix 2.3 1.3 2 1.1
Avg. time/iteration (s) on KDD 5.2 3 4.4 2.7
Avg. time/iteration (s) on Syn 19.7 10.5 14.6 8
Avg. time/iteration (s) on Semi-Syn 21 11 13.1 6.9

Time for feasibility (h) on Netflix >24 0.24 >24 0.2
Time for feasibility (h) on KDD >24 0.87 >24 0.78
Time for feasibility (h) on Syn >24 1.6 >24 1.2
Time for feasibility (h) on Semi-Syn >24 3.4 >24 2.1

aggregate memory to store the data. On Syn, MPCSolver achieved 1.5x speedup
when moving from 4x8 to 8x8. However, the algorithm ran solely 1.3x faster when
using 16x8. This sublinear speedup is caused by increased communication cost (see
below). Young’s algorithm exhibited similar speedups. Each MPCSolver iteration
took 8s on average using 16x8; MPCSolver converged to a 0.05-feasible solution
after 551 iterations (1.2h). In contrast, iterations of Young’s algorithm took longer
(14.6s) and the algorithm did not converge within 24 hours. On Semi-Syn, though,
we observed a better scalability for both MPCSolver and Young’s algorithm; both
algorithms provided 1.6x speedup on 16x8.

To understand this behavior, recall that the communication cost of each MPCSolver
iteration is governed by the number of vertices, whereas the computation cost
depends on the number of edges. Semi-Syn has less vertices than Syn (less commu-
nication) and many more edges (more computation) so that Semi-Syn is easier to
parallelize. On Semi-Syn, each MPCSolver iteration required 6.9s on average using
16x8, and MPCSolver required 1120 iterations (2.1h) to compute a 0.05-feasible

91

4.4. Experimental Results

solution. Similar to Syn, iterations of Young’s algorithm took longer (13.1s) and the
algorithm did not converge within 24 hours.

We conclude that MPCSolver scales to very large datasets and is significantly faster
than Young’s algorithm. Moreover, MPCSolver is competitive to state-of-the-art LP
solvers, but can handle much larger problem instances.

B. Experiments on GPU

An attractive feature of MPCSolver is its simplicity; it can be implemented in a few
lines of code. Note that at each iteration, MPCSolver essentially computes a set
of sparse matrix-vector products. Modern GPU architectures allow for massively
parallel computation of such products, and GPU implementations can outperform
CPU implementations by orders of magnitude. In our next experiment, we made
use of a CUDA implementation for GPUs using CUSPARSE (Bell and Garland
2009) for matrix-vector products.

In Table 4.3, we report results of the performance of MPCSolver on the small-scale
real datasets Movielens10M and NetflixTop50 (which do fit in the device memory
of our GPU). Compared to a sequential CPU implementation, MPCSolver obtained
a 38.6x and 26x speedup on NetflixTop50 and Movielens10M, respectively, when
running on GPU. We also compared MPCSolver to Young’s algorithm. On both
datasets and when running with 8 threads, Young’s algorithm required a few hours
to obtain a 0.05-feasible solution. In the same setup, MPCSolver achieved the
desired precision within 9.8 and 3.7 minutes, respectively.

Table 4.3: Experimental results on Movielens10M and NetflixTop50

Dataset
Average time/iteration (ms) Time for 0.05-feasibility (s)
1x1 1x8 GPU 1x1 1x8 GPU

Movielens10M 727 250 28 652 223 25
NetflixTop50 2513 750 65 1971 588 51

C. Accelerating MPCSolver

In the next set of experiments, we explored the impact of the adaptive step size
selection (Section 3.5.3) as well as the multiple updates heuristic (Section 3.5.5) on
real-world datasets.To this end, we implemented the above techniques and measured
the change in the number of rounds and the overall running time to convergence
when compared to the plain MPCSolver. As before, our goal was to produce a 0.05-
feasible solution. We report the results when using the adaptive step size selection
(AS), using the multiple updates heuristic (MU), and using both the adaptive step

92

4.4. Experimental Results

size selection and the multiple updates heuristic combined (AS+MU), respectively,
for various datasets on 1x8 in Table. 4.4. For AS, we examined two values of the
step size: β and 10β; we selected the one which led to a lower potential value. First,
observe that using all techniques substantially reduced the number of rounds to
convergence on all datasets, however, each technique affected the overall running
time of MPCSolver differently. Using AS only, increased the execution time;
even though MPCSolver required less rounds until convergence, each round of the
algorithm required twice more (since the cost of each round increases by factor 2
when trying two different values for the step size) compared to a round of the plain
MPCSolver and the algorithm was overall slower (between 2% for NetflixTop50
and 60% for KDD). The MU heuristic, however, was very effective; it dramatically
reduced the running time of MPCSolver on all datasets (between 30% for KDD
and 70% for NetflixTop50). In fact, the most performance gain was obtained for all
datasets when using MU, except for NetflixTop50 where using both AS and MU
combined was most effective and led to 80% reduction in the overall running time.

Table 4.4: Effect of adaptive step size selection (AS) and multiple updates heuristic
(MU) for 0.05-feasibility on real datasets (1x8)

Dataset
Increase (+) or decrease (-) in # rounds (left)
and running time (right) to convergence (%)

AS MU AS+MU

Movielens10M -40 +20 -45 -45 -62 -24
NetflixTop50 -49 +2 -70 -70 -90 -80
Netflix -26 +48 -32 -32 -49 +2
KDD -20 +60 -30 -30 -45 +10

4.4.3 Results for GBM-LP (Optimality)

Recall that we need to run a sequence of feasibility instances to approximately solve
the optimization version of the GBM problem. We first present results for Netflix
and KDD with � = 0.05. We compared the solution of MPCSolver with the optimal
solution computed by Gurobi and found that the desired approximation ratio was
obtained (i.e., the value of the objective was at least 95% of the optimum). On 16x8,
MPCSolver required 2.9h (Netflix) and 7.4h (KDD) in total. On the high-memory
server, Gurobi required 2.2h (Netflix) and 3.8h (KDD).

For both Syn and Semi-Syn, Gurobi ran out of memory. In contrast, MPCSolver
required 9.5h (13.6h) for Syn and 14.7h (24h) for Semi-Syn on 16x8 (8x8), respec-
tively. Note that the high-memory server had sufficient memory for MPCSolver to
process both Syn and Semi-Syn; our algorithm required 9.7h (Syn) and 18h (Semi-
Syn) using all 40 cores. Thus, MPCSolver is faster on the high-memory server (with

93

4.4. Experimental Results

40 cores) than on the 8x8 cluster setup (with 64 cores). Although the hardware
in both setups is not identical, a key reason for the performance difference is that
communication between workers is fast in shared-memory systems (high-memory
server) but significantly slower in shared-nothing systems (compute cluster).

Overall, we found that MPCSolver is competitive in terms of overall runtime. It’s
key advantage is that it can scale over a compute cluster and thus to much larger
problem instances; it’s key disadvantage is that results are approximate up to �.

4.4.4 Results for Distributed Rounding

Recall that the approximate solution of GBM-LP is generally not integral. In our
next set of experiments, we evaluated the performance of DDRounding to produce
an integral solution. As before, we measured performance with respect to quality
(i.e., value of objective function after rounding), efficiency, and strong scalability.
We used the 1x8 to 16x8 setups described previously.

Quality. For all datasets, we took the fractional solution obtained by MPCSolver
with � = 0.05 as input to DDRounding. For each real-world dataset, we executed
10 independent runs of DDRounding, thereby obtaining 10 integral solutions. We
found that the value of the objective differed only marginally (within 0.5%) from
the value of the fractional solution across all 10 runs. Moreover, for Netflix (KDD)
the best run produced solutions that were slightly better than the fractional solution
(increase of 0.5% for Netflix, 0.1% for KDD); this increase is possible because
the fractional solution is �-feasible but not feasible. For Syn and Semi-Syn, we
only executed a single run. As before, the objective was close to the fractional
solution (≈ 0.01% off) for both datasets. Thus, the integral solutions obtained
by DDRounding rounding were of essentially the same quality as the fractional
solutions.

Efficiency and strong scalability (Figure 4.3). We studied the performance of
DDRounding with varying number of cluster nodes. As can be seen in Figure 4.3,
DDRounding clearly benefits from distributed processing, i.e., performance im-
proved significantly when adding more nodes: The local subgraph processed in the
DRounding step on each node becomes smaller so that cycles can be removed more
efficiently. We expect, however, that using too many nodes is not beneficial because
then the number of cycles per subgraph may become too small (so that there is little
work to do). Nevertheless, we found that the performance of DDRounding improves
even if we go beyond 8x8, even on our moderately-sized real-world datasets. On
16x8, we achieved an integral solution for all the real-world datasets within 1.6h.
For Syn, we obtained an integral solution after 9.4h, 5.8h, and 3.6h using 4x8, 8x8,
and 16x8, respectively; on smaller setups, the data did not fit into the main memory.
We observed similar speedups for Semi-Syn; the time to obtain an integral solution

94

4.4. Experimental Results

1x8 2x8 4x8 8x8 16x8

Nodes x threads

T
ot

al
 t

im
e

(h
)

0
2

4
6

8
10

12
14 Semi Syn

Syn
KDD
Netflix

In
su

ffi
ci

en
t

m
em

or
y

In
su

ffi
ci

en
t

m
em

or
y

In
su

ffi
ci

en
t

m
em

or
y

In
su

ffi
ci

en
t

m
em

or
y

In
su

ffi
ci

en
t

m
em

or
y

18

Figure 4.3: Scalability of DDRounding on different datasets

was reduced from 18h using 8x8 to 10.5h on 16x8; as before, the data exceeded the
main memory available when using less than 8 compute nodes.

Constraint violations (Table 4.5). Recall that DDRounding preserves the lower-
and upper-bound constraints (up to rounding). In our next experiment, we inves-
tigated the actual constraint violations obtained by MPCSolver, both before and
after applying DDRounding. Table 4.5 summarizes our results. First note that on
all datasets, both the fractional and the integral solution violated only very few
constraints (i.e., is almost feasible). As mentioned previously, our error analysis
is somewhat loose so that MPCSolver performs better than guaranteed by theory.
For Netflix and Semi-Syn, DDRounding further decreased the violations in the
constraints (slightly).

4.4.5 Results for GBM

In our final experiments, we put everything together and investigated how well we
can solve the GBM problem. Recall that computation of an optimal integral solution
with Gurobi on the high-memory server took 2.2h (3.8h) for Netflix (KDD). With
MPCSolver and DDRounding on 16x8 and for our choice of � = 0.05, we obtained
a 0.05-feasible solution in 4.5h (8.9h) that was 95.5% (95.1%) of the optimal
solution. Thus, the desired approximation ratio was indeed realized. Approximately
solving GBM-LP took 2.9h (7.4h), rounding to an integral solution took 1.6h (1.5h).

95

4.5. Summary

Table 4.5: Constraint violations before (fractional solution) and after (integral
solution) rounding

Dataset
satisfied constraints # �-feasible (but not feasible)

Fractional Integral Fractional Integral

Netflix 930 085 930 086 45 44
KDD 2 626 509 2 626 509 432 432
Syn 20 998 614 20 998 623 1386 1377
Semi-Syn 978 090 978 105 58 43

Dataset
Avg. rel. violation (infeasible) Max rel. violation (infeasible)
Fractional Integral Fractional Integral

Netflix 0.0473 0.0145 0.0496 0.015
KDD 0.0407 0.0409 0.0499 0.05
Syn 0.0485 0.0491 0.0499 0.05
Semi-Syn 0.0492 0.0163 0.0498 0.02

Observe that MPCSolver with rounding was slower than Gurobi. However, the
individual cluster nodes used by our algorithms were less powerful, both in terms
of memory and in terms of number of cores. Moreover, our approach can handle
much larger problem instances. For Syn and Semi-Syn, which cannot be handled by
Gurobi on our high-memory server, a 0.05-feasible solution to GBM was obtained
after 13.1h (9.5h for GBM-LP, 3.6h for rounding) and 25.2h (14.7h for GBM-LP,
10.5h for rounding), respectively, on 16x8. We expect that running time can be
further reduced by adding more compute nodes.

4.5 Summary

Graph matching problems continuously arise in a wide variety of applications,
e.g., in computational advertising, recommender systems, and trade markets. In
this chapter, we have studied the generalized bipartite matching problem and its
application in recommending multimedia items (e.g., DVDs) under constraints.
Our goal is to provide high quality recommendations to customers such that some
desired properties are satisfied.

We have proposed the first distributed approximation algorithm for computing near-
optimal solutions to large-scale generalized bipartite matching problems. Unlike
traditional methods that suffer from scalability issues, our algorithm is designed to
run on a small cluster of commodity nodes and scales to realistic-sized problems
which may involve millions of users and millions of items. Our method is based
on linear programming and randomized rounding. In particular, we have first

96

4.5. Summary

applied MPCSolver presented in Chapter 3 to compute an approximate fractional
solution to the LP relaxation of the integer linear program corresponding to the
matching problem. Next, we have developed DDRounding, a distributed randomized
rounding algorithm to transform the fractional solution to an integral one of high
quality. Our experiments on both real-world and synthetic datasets suggest that our
algorithms scale to very large problem sizes and can be orders of magnitude faster
than alternative approaches.

97

4.5. Summary

98

5
Conclusion and Outlook

The overall goal of this thesis is to obtain scalable solutions for a number of
optimization problems that can be applied in (but not restricted to) recommender
systems to generate personalized recommendations satisfying certain objectives and
constraints.

Matrix Completion

We addressed large-scale matrix completion problems, i.e., recovering a large par-
tially observed matrix from a small subset of its entries, with millions of rows,
millions of columns, and billions of revealed entries. We considered an application
in the context of collaborative filtering in recommender systems; in this setting
matrix completion techniques have proven very effective. The goal is to predict
missing entries of a large user-movie-rating matrix efficiently. We proposed novel
shared-nothing ASGD, and DSGD++ algorithms, which are designed to run on
a cluster of commodity nodes, have less memory consumption, and offer better
scalability than previous MapReduce approaches. Our algorithms are cache-friendly
and utilize thread-level parallelism, in-memory processing, and asynchronous com-
munication. We highlighted the key metrics that affect the performance of different
algorithms in practice and analyzed the performance of our novel algorithms with
existing approaches through a theoretical complexity analysis as well as an exten-
sive empirical study on real and synthetic datasets. On large datasets, DSGD++
consistently outperformed alternative algorithms in terms of efficiency, scalability,
and memory consumption.

Future work. The SGD-based algorithms presented in this thesis are effective
for matrix completion tasks. One further step would be to examine and extend

99

these distributed SGD-based techniques to more general matrix factorization tasks
such as matrix reconstruction or non-negative matrix factorization. Note that matrix
reconstruction differs from matrix completion in that, unlike matrix completion,
zero entries in the input matrix encode actual information and need to be taken into
consideration while learning the factors. Therefore, loss functions used for matrix
reconstruction measure the error between all entries of the original matrix and the
reconstructed matrix. Consequently, the algorithm needs to iterate over all matrix
entries making the factorization more challenging. Moreover, our experimental
evaluation can be extended to include more algorithms, different loss functions, and
regularization terms.

Mixed Packing-Covering Linear Programming

We investigated distributed solutions for MPC-LPs, a simple yet expressive subclass
of LPs with an abundance of applications in combinatorial optimization. We
developed MPCSolver, a novel approximation algorithm for solving such LPs in
a shared-nothing setting and proved its convergence via a full theoretical analysis.
The key properties of MPCSolver are its simplicity and efficiency. It is well-suited
for parallel processing on GPUs, in shared-memory architectures, and on a small
cluster of commodity nodes. Moreover, we discussed how to distribute data across
nodes to minimize the communication costs and provided implementation details
to improve its performance in practice. A case study with instances of large-scale
GBM problems indicate that MPCSolver offers better scalability and efficiency than
alternative approaches.

Future work. We list some interesting questions related to MPCSolver worth
investigating.

• Our current implementation of MPCSolver deploys a heuristic to determine
whether the algorithm has converged, namely, if the potential function remains
almost unchanged in two consecutive rounds. Is it possible to perform a
feasibility check (after every round or from time to time) and detect the
infeasibility earlier without running the algorithm for several rounds?

• Recall that for the optimization version of MPC-LP, MPCSolver requires
solving a sequence of feasibility problems. To improve efficiency, it is worth
investigating how to optimize the objective function directly and avoid the
binary search procedure completely.

• In our experiments, we observed that the multiple updates heuristic is very
effective. It would be worth analyzing how this technique affects the conver-
gence of MPCSolver.

100

• A comparison between MPCSolver, Thetis (Sridhar et al. 2013), and ADMM
in an experimental evaluation in terms of efficiency, accuracy (i.e., violation in
the constraints), and quality (i.e., the actual approximation guarantee) would
be insightful.

• It would be also interesting to investigate whether similar techniques used in
MPCSolver would generalize to broader classes of mathematical programs,
e.g., more general LPs and convex problems including semidefinite programs.

Generalized Bipartite Matching

We studied generalized bipartite matching problems, which continuously appear in
a wide range of applications in computational advertising, recommender systems,
trade markets, etc. We considered an application in recommending multimedia
items (e.g., DVDs) to customers under a set of constraints. We presented the first
shared-nothing approximation algorithm for computing near-optimal solutions for
large-scale generalized bipartite matching problems involving millions or users
and millions of items. Our approach is based on LP relaxation and randomized
rounding: We first obtained an approximate fractional solution to the LP relaxation
of the integer linear programming formulation of the matching problem and then
rounded the fractional solution to an integral one. For the first step, we applied
MPCSolver and for the second step, we developed DDRounding, a randomized
rounding algorithm for obtaining high quality solutions in a shared-nothing environ-
ment. Experiments on real and synthetic datasets on varying sizes indicate better
scalability and efficiency compared to alternative approaches.

Future work. The algorithms presented in Chapter 4 can be generalized to con-
texts different from providing constrained recommendations. Exploring new appli-
cations and finding the limitations of the algorithms in practice is an interesting line
of research. Another line of research worth notice is to solve generalized matching
problems on other models of computations on massive datasets like streaming mod-
els (Alon et al. 1999; Henzinger et al. 1999) or semi-streaming models (Feigenbaum
et al. 2005), and finally to investigate solving such matching problems on more
general graphs of large-scale.

The contributions of this thesis can be seen as a step towards efficient large-scale
optimization algorithms for matrix completion, mixed packing-covering linear pro-
grams, and generalized bipartite matching problems. We believe that the techniques
presented in this thesis have the potential of great practical applicability. We hope
that the contributions of this thesis will be valuable for future research.

101

102

Bibliography

Ageev, A. A. and Sviridenko, M. (2004). Pipage rounding: A new method of
constructing algorithms with proven performance guarantee. Journal of Combi-
natorial Optimization, 8(3):307–328.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, Englewood Cliffs, NJ.

Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., and Naor, J. (2006). A gen-
eral approach to online network optimization problems. ACM Transactions on
Algorithms, 2(4):640–660.

Alon, N., Matias, Y., and Szegedy, M. (1999). The space complexity of approx-
imating the frequency moments. Journal of Computer and System Sciences,
58(1):137–147.

Amatriain, X. and Basilico, J. (2012). Netflix recommendations: Beyond the 5
stars (part 1). http://techblog.netflix.com/2012/04/netflix-
recommendations-beyond-5-stars.html.

Arora, S., Hazan, E., and Kale, S. (2012). The multiplicative weights update method:
a meta-algorithm and applications. Theory of Computing, 8(1):121–164.

Awerbuch, B., Fu, Z., and Khandekar, R. (2009). Brief announcement: Stateless
distributed algorithms for generalized packing linear programs. In Proceedings
of the ACM annual Symposium on Principles of Distributed Computing (PODC),
pages 270–271.

Awerbuch, B. and Khandekar, R. (2009). Stateless distributed gradient descent for
positive linear programs. SIAM Journal on Computing, 38(6):2468–2486.

103

http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html
http://techblog.netflix.com/2012/04/netflix-recommendations-beyond-5-stars.html

Bibliography

Bartal, Y., Byers, J. W., and Raz, D. (2004). Fast, distributed approximation
algorithms for positive linear programming with applications to flow control.
SIAM Journal on Computing, 33(6):1261–1279.

Battiti, R. (1989). Accelerated backpropagation learning: Two optimization methods.
Complex Systems, 3:331–342.

Bayati, M., Borgs, C., Chayes, J. T., and Zecchina, R. (2011). Belief propagation
for weighted b-matchings on arbitrary graphs and its relation to linear programs
with integer solutions. SIAM Journal on Discrete Mathematics, 25(2):989–1011.

Bell, N. and Garland, M. (2009). Implementing sparse matrix-vector multiplication
on throughput-oriented processors. In Proceedings of the ACM/IEEE Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis (SC), pages 1–11.

Bennett, J. and Lanning, S. (2007). The Netflix prize. In Proceedings of the KDD
Cup and Workshop, pages 3–6.

Bertsekas, D. (1999). Nonlinear Programming. Athena Scientific.

Bhalgat, A., Feldman, J., and Mirrokni, V. S. (2012). Online allocation of display
ads with smooth delivery. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1213–1221.

Bienstock, D. (2002). Potential function methods for approximately solving linear
programming problems : Theory and practice. International Series in Operations
Research and Management Science. Kluwer academic publishers.

Bienstock, D. and Iyengar, G. (2004). Solving fractional packing problems in
O∗(1/�) iterations. In Proceedings of the ACM Annual Symposium on Theory of
Computing (STOC), pages 146–155.

Boley, D. (2013). Local linear convergence of the alternating direction method
of multipliers on quadratic or linear programs. SIAM Journal on Optimization,
23(4):2183–2207.

Bottou, L. and Bousquet, O. (2007). The tradeoffs of large scale learning. In
Proceedings of the Conference on Advances in Neural Information Processing
Systems (NIPS), pages 161–168.

Boyd, S. P., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed
optimization and statistical learning via the alternating direction method of multi-
pliers. Foundations and Trends in Machine Learning, 3(1):1–122.

104

Bibliography

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. (1995). A limited memory algorithm
for bound constrained optimization. SIAM Journal on Scientific Computing,
16(5):1190–1208.

Candès, E. J. and Plan, Y. (2010). Matrix completion with noise. Proceedings of
the IEEE, 98(6):925–936.

Candes, E. J. and Recht, B. (2009). Exact matrix completion via convex optimization.
Foundations of Computational Mathematics, 9(6):717–772.

Charles, D. X., Chickering, M., Devanur, N. R., Jain, K., and Sanghi, M. (2010). Fast
algorithms for finding matchings in lopsided bipartite graphs with applications
to display ads. In Proceedings of the ACM Conference on Electronic Commerce
(EC), pages 121–128.

Charlin, L., Zemel, R., and Boutilier, C. (2012). Active learning for matching
problems. In Proceedings of the International Conference on Machine Learning
(ICML), pages 337–344.

Chen, P.-L., Tsai, C.-T., Chen, Y.-N., Chou, K.-C., Li, C.-L., Tsai, C.-H., Wu, K.-W.,
Chou, Y.-C., Li, C.-Y., Lin, W.-S., Yu, S.-H., Chiu, R.-B., Lin, C.-Y., Wang, C.-C.,
Wang, P.-W., Su, W.-L., Wu, C.-H., Kuo, T.-T., McKenzie, T., Chang, Y.-H.,
Ferng, C.-S., Ni, C.-M., Lin, H.-T., Lin, C.-J., and Lin, S.-D. (2012). A linear
ensemble of individual and blended models for music rating prediction. Journal
of Machine Learning Research: Proceedings Track, 18:21–60.

Chu, C.-T., Kim, S. K., Lin, Y.-A., Yu, Y., Bradski, G. R., Ng, A. Y., and Olukotun,
K. (2006). Map-reduce for machine learning on multicore. In Proceedings of
the Conference on Advances in Neural Information Processing Systems (NIPS),
pages 281–288.

Cichocki, A. and Phan, A. H. (2009). Fast local algorithms for large scale nonnega-
tive matrix and tensor factorizations. IEICE Transactions, 92-A(3):708–721.

Danzig, G. B. (1963). Linear Programming and Extensions. Princeton University
Press, Princeton, N.J.

Das, S., Sismanis, Y., Beyer, K. S., Gemulla, R., Haas, P. J., and McPherson, J.
(2010). Ricardo: integrating r and hadoop. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 987–998.

Diedrich, F. and Jansen, K. (2007a). An approximation algorithm for the general
mixed packing and covering problem. In Proceedings of the International Sym-
posium on Combinatorics, Algorithms, Probabilistic and Experimental Method-
ologies (ESCAPE), pages 128–139.

105

Bibliography

Diedrich, F. and Jansen, K. (2007b). Faster and simpler approximation algorithms
for mixed packing and covering problems. Theoretical Computer Science, 377(1-
3):181–204.

Dobkin, D. P., Lipton, R. J., and Reiss, S. P. (1979). Linear programming is
log-space hard for p. Information Processing Letters, 8(2):96–97.

Drineas, P., Magdon-Ismail, M., Pandurangant, G., Virrankoski, R., and Savvides, A.
(2006). Distance matrix reconstruction from incomplete distance information for
sensor network localization. In Proceedings of the Annual IEEE Communications
Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON), pages 536–544.

Dror, G., Koenigstein, N., Koren, Y., and Weimer, M. (2011). The Yahoo! Music
Dataset and KDD-Cup’11. In KDDCup 2011 Workshop.

Eckstein, J. and Bertsekas, D. P. (1990). An alternating direction method for
linear programming. In LIDS Technical Reports. Laboratory for Information and
Decision Systems, Massachusetts Institute of Technology.

Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., and Zhang, J. (2005). On
graph problems in a semi-streaming model. Theoretical Computer Science,
348(2-3):207–216.

Gabay, D. and Mercier, B. (1976). A dual algorithm for the solution of nonlinear
variational problems via finite element approximation. Computers and Mathe-
matics with Applications, 2(1):17–40.

Gabow, H. N. and Tarjan, R. E. (1989). Faster scaling algorithms for network
problems. SIAM Journal on Computing, 18(5):1013–1036.

Gandhi, R., Khuller, S., Parthasarathy, S., and Srinivasan, A. (2006). Dependent
rounding and its applications to approximation algorithms. Journal of the ACM,
53(3):324–360.

Garg, N., Kavitha, T., Kumar, A., Mehlhorn, K., and Mestre, J. (2010). Assigning
papers to referees. Algorithmica, 58(1):119–136.

Garg, N. and Könemann, J. (2007). Faster and simpler algorithms for multicom-
modity flow and other fractional packing problems. SIAM Journal on Computing,
37(2):630–652.

Gemulla, R., Haas, P. J., Nijkamp, E., and Sismanis, Y. (2011a). Large-
scale matrix factorization with distributed stochastic gradient descent.
Technical Report RJ10481, IBM Almaden Research Center, San Jose,

106

Bibliography

CA. http://researcher.watson.ibm.com/researcher/files/
us-phaas/rj10482Updated.pdf.

Gemulla, R., Haas, P. J., Sismanis, Y., Teflioudi, C., and Makari, F. (2011b).
Large-scale matrix factorization with distributed stochastic gradient descent.
In Proceedings of the NIPS Workshop on Big Learning: Algorithms, Systems,
and Tools for Learning at Scale. http://biglearn.org/2011/files/
papers/biglearn2011_submission_15.pdf.

Gemulla, R., Nijkamp, E., Haas, P. J., and Sismanis, Y. (2011c). Large-scale matrix
factorization with distributed stochastic gradient descent. In Proceedings of the
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 69–77.

Glowinski, R., M. A. (1975). Sur l’approximation, par éléments finis d’ordre un,
et la résolution, par pénalisation-dualité d’une classe de problémes de dirich-
let non linéaires. ESAIM: Mathematical Modelling and Numerical Analysis -
Modélisation Mathématique et Analyse Numérique, 9(R2):41–76.

GNU Scientific Library (2013). GNU Scientific Library. http://www.gnu.

org/software/gsl/.

Grigoriadis, M. D. and Khachiyan, L. G. (1994). Fast approximation schemes for
convex programs with many blocks and coupling constraints. SIAM Journal on
Computing, 4(1):86–107.

Grigoriadis, M. D. and Khachiyan, L. G. (1996). Coordination complexity of
parallel price-directive decomposition. Mathematics of Operations Research,
21(2):321–340.

Grigoriadis, M. D., Khachiyan, L. G., Porkolab, L., and Villavicencio, J. (2001).
Approximate max-min resource sharing for structured concave optimization.
SIAM Journal on Optimization, 11(4):1081–1091.

Gurobi Optimization, I. (2013). Gurobi optimizer reference manual.

Henzinger, M. R., Raghavan, P., and Rajagopalan, S. (1999). Computing on data
streams. Dimacs Series In Discrete Mathematics And Theoretical Computer
Science, pages 107–118.

Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S. S., and Sundararajan, S. (2008).
A dual coordinate descent method for large-scale linear svm. In Proceedings of
the International Conferenceon Machine Learning (ICML), pages 408–415.

Hsieh, C.-J. and Dhillon, I. S. (2011). Fast coordinate descent methods with variable
selection for non-negative matrix factorization. In Proceedings of the ACM

107

http://researcher.watson.ibm.com/researcher/files/us-phaas/rj10482Updated.pdf
http://researcher.watson.ibm.com/researcher/files/us-phaas/rj10482Updated.pdf
http://biglearn.org/2011/files/papers/biglearn2011_submission_15.pdf
http://biglearn.org/2011/files/papers/biglearn2011_submission_15.pdf
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/

Bibliography

SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 1064–1072.

Hsieh, C.-J., Sustik, M. A., Dhillon, I. S., and Ravikumar, P. D. (2011). Sparse
inverse covariance matrix estimation using quadratic approximation. In Proceed-
ings of the Conference on Advances in Neural Information Processing Systems
(NIPS), pages 2330–2338.

Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative filtering for implicit
feedback datasets. In Proceedings of the IEEE International Conference on Data
Mining (ICDM), pages 263–272.

Huang, B. C. and Jebara, T. (2007). Loopy belief propagation for bipartite maximum
weight b-matching. In Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 195–202.

Huang, B. C. and Jebara, T. (2011). Fast b-matching via sufficient selection belief
propagation. Journal of Machine Learning Research - Proceedings Track, 15:361–
369.

Jain, P., Netrapalli, P., and Sanghavi, S. (2013). Low-rank matrix completion using
alternating minimization. In Proceedings of the ACM Annual Symposium on
Theory of Computing (STOC), pages 665–674.

Jansen, K. and Zhang, H. (2002). Approximation algorithms for general packing
problems with modified logarithmic potential function. In Proceedings of the
Foundations of Information Technology in the Era of Networking and Mobile
Computing (IFIP) International Conference on Theoretical Computer Science
(TCS), pages 255–266.

Jebara, T. and Shchogolev, V. (2006). B-matching for spectral clustering. In
Proceeding of the European Conference on Machine Learning (ECML), pages
679–686.

Jebara, T., Wang, J., and Chang, S.-F. (2009). Graph construction and b-matching
for semi-supervised learning. In Proceedings of the International Conferenceon
Machine Learning (ICML), page 56.

Karakostas, G. (2002). Faster approximation schemes for fractional multicommodity
flow problems. In Proceedings of the ACM-SIAM Annual Symposium on Discrete
Algorithms (SODA), pages 166–173.

Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming.
In Proceedings of the ACM Annual Symposium on Theory of Computing (STOC),
pages 302–311.

108

Bibliography

Keshavan, R. H. (2012). Efficient Algorithms for Collaborative Filtering. PhD
thesis, Stanford University.

Khachiyan, L. G. (1979). A polynomial time algorithm in linear programming.
soviet mathematics doklady, 20:191–194.

Khandekar, R. (2004). Lagrangian relaxation based algorithms for convex program-
ming problems.

Klein, P. N., Plotkin, S. A., Stein, C., and Tardos, É. (1994). Faster approximation
algorithms for the unit capacity concurrent flow problem with applications to
routing and finding sparse cuts. SIAM Journal on Computing, 23(3):466–487.

Koren, Y. (2008). Factorization meets the neighborhood: a multifaceted collab-
orative filtering model. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 426–434.

Koren, Y., Bell, R. M., and Volinsky, C. (2009). Matrix factorization techniques for
recommender systems. IEEE Computer, 42(8):30–37.

Koufogiannakis, C. and Young, N. E. (2009). Distributed and parallel algorithms
for weighted vertex cover and other covering problems. In Proceedings of the
ACM annual Symposium on Principles of Distributed Computing (PODC), pages
171–179.

Koufogiannakis, C. and Young, N. E. (2011). Distributed algorithms for covering,
packing and maximum weighted matching. Distributed Computing, 24(1):45–63.

Koufogiannakis, C. and Young, N. E. (2013). Greedy δ-approximation algorithm for
covering with arbitrary constraints and submodular cost. Algorithmica, 66(1):113–
152.

Krishnamurthy, A. and Singh, A. (2013). Low-rank matrix and tensor completion
via adaptive sampling. In Proceedings of the Conference on Advances in Neural
Information Processing Systems (NIPS), pages 836–844.

Kuhn, F., Moscibroda, T., and Wattenhofer, R. (2006). The price of being near-
sighted. In Proceedings of the ACM-SIAM Annual Symposium on Discrete
Algorithms (SODA), pages 980–989.

Kushner, H. and Yin, G. (2003). Stochastic Approximation and Recursive Algorithms
and Applications. Applications of mathematics. Springer.

LAPACK (2012). Linear Algebra PACKage. http://www.netlib.org/

lapack.

109

http://www.netlib.org/lapack
http://www.netlib.org/lapack

Bibliography

Lattanzi, S., Moseley, B., Suri, S., and Vassilvitskii, S. (2011). Filtering: a method
for solving graph problems in mapreduce. In Proceedings of the ACM Annual
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 85–94.

Leighton, F. T., Makedon, F., Plotkin, S. A., Stein, C., Stein, É., and Tragoudas,
S. (1995). Fast approximation algorithms for multicommodity flow problems.
Journal of Computer and System Sciences, 50(2):228–243.

Li, B., Tata, S., and Sismanis, Y. (2013). Sparkler: Supporting large-scale matrix
factorization. In Proceedings of the ACM International Conference on Extending
Database Technology (EDBT), pages 625–636.

Liben-Nowell, D. and Kleinberg, J. M. (2007). The link-prediction problem for so-
cial networks. Journal of the Association for Information Science and Technology
(JASIST), 58(7):1019–1031.

Linial, N. (1992). Locality in distributed graph algorithms. SIAM Journal on
Computing, 21(1):193–201.

Liu, C., chih Yang, H., Fan, J., He, L.-W., and Wang, Y.-M. (2010). Distributed
nonnegative matrix factorization for web-scale dyadic data analysis on mapreduce.
In Proceedings of the International World Wide Web Conference (WWW), pages
681–690.

Liu, J., Wright, S. J., Ré, C., and Bittorf, V. (2013). An asynchronous parallel
stochastic coordinate descent algorithm.

Luby, M. and Nisan, N. (1993). A parallel approximation algorithm for positive
linear programming. In Proceedings of the ACM Annual Symposium on Theory
of Computing (STOC), pages 448–457.

Mackey, L. W., Talwalkar, A., and Jordan, M. I. (2011). Divide-and-conquer
matrix factorization. In Proceedings of the Conference on Advances in Neural
Information Processing Systems (NIPS), pages 1134–1142.

Makari, F., Awerbuch, B., Gemula, R., Khandekar, R., Mestre, J., and Sozio, M.
(2013). A distributed algorithm for large-scale generalized matching. Proceedings
of the VLDB Endowment, 6(9):613–624.

Makari, F. and Gemulla, R. (2013). A distributed approximation al-
gorithm for mixed packing-covering linear programs. In Proceedings
of the NIPS Workshop on Big Learning: Advances in Algorithms and
Data Management. http://biglearn.org/2013/files/papers/

biglearning2013_submission_14.pdf.

110

http://biglearn.org/2013/files/papers/biglearning2013_submission_14.pdf
http://biglearn.org/2013/files/papers/biglearning2013_submission_14.pdf

Bibliography

Makari, F., Teflioudi, C., Gemulla, R., Haas, P. J., and Sismanis, Y. (2014). Shared-
memory and shared-nothing stochastic gradient descent algorithms for matrix
completion. Knowledge and Information Systems.

McDonald, R., Hall, K., and Mann, G. (2010). Distributed training strategies for
the structured perceptron. In Proceedings of the Annual Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies (HLT-NAACL), pages 456–464.

Megiddo, N. (1992). A note on approximate linear programming. Information
Processing Letters, 42(1):53.

Mestre, J. (2006). Greedy in approximation algorithms. In Proceedings of the
Annual European Symposium on Algorithms (ESA), pages 528–539.

Morales, G. D. F., Gionis, A., and Sozio, M. (2011). Social content matching in
mapreduce. Proceedings of the VLDB Endowment, 4(7):460–469.

MPI (2013). Message Passing Interface Forum. http://www.mpi-forum.

org.

Nedic, A. and Bertsekas, D. (2000). Convergence Rate of Incremental Subgradient
Algorithms. Kluwer.

Negahban, S. and Wainwright, M. J. (2012). Restricted strong convexity and
weighted matrix completion: Optimal bounds with noise. Journal of Machine
Learning Research, 13:1665–1697.

Panconesi, A. and Sozio, M. (2010). Fast primal-dual distributed algorithms for
scheduling and matching problems. Distributed Computing, 22(4):269–283.

Papadimitriou, C. H. and Yannakakis, M. (1993). Linear programming without the
matrix. In Proceedings of the ACM Annual Symposium on Theory of Computing
(STOC), pages 121–129.

Penn, M. and Tennenholtz, M. (2000). Constrained multi-object auctions and
b-matching. Information Processing Letters, 75(1-2):29–34.

Plotkin, S. A., Shmoys, D. B., and Tardos, É. (1995). Fast approximation algo-
rithms for fractional packing and covering problems. Mathematics of Operations
Research, 20:257–301.

Recht, B. (2011). A simpler approach to matrix completion. Journal of Machine
Learning Research, 12:3413–3430.

Recht, B. and Ré, C. (2013). Parallel stochastic gradient algorithms for large-scale
matrix completion. Mathematical Programming Computation, 5:201–226.

111

http://www.mpi-forum.org
http://www.mpi-forum.org

Bibliography

Recht, B., Re, C., Wright, S. J., and Niu, F. (2011). Hogwild: A lock-free approach
to parallelizing stochastic gradient descent. In Proceedings of the Conference on
Advances in Neural Information Processing Systems (NIPS), pages 693–701.

Riedel, S., Yao, L., McCallum, A., and Marlin, B. M. (2013). Relation extraction
with matrix factorization and universal schemas. In Proceedings of the Annual
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (HLT-NAACL), pages 74–84.

Serna, M. J. (1991). Approximating linear programming is log-space complete for
p. Information Processing Letters, 37(4):233–236.

Shahrokhi, F. and Matula, D. W. (1990). The maximum concurrent flow problem.
Journal of the ACM, 37(2):318–334.

Shaw, B. and Jebara, T. (2007). Minimum volume embedding. Journal of Machine
Learning Research - Proceedings Track, 2:460–467.

Shaw, B. and Jebara, T. (2009). Structure preserving embedding. In Proceedings of
the International Conferenceon Machine Learning (ICML), pages 937–944.

Singer, A. (2008). A remark on global positioning from local distances. Proceedings
of the National Academy of Sciences, 105(28):9507–9511.

Smola, A. and Narayanamurthy, S. (2010). An architecture for parallel topic models.
Proceedings of the VLDB Endowment, 3(1–2):703–710.

Sridhar, S., Wright, S. J., Re, C., Liu, J., Bittorf, V., and Zhang, C. (2013). An
approximate, efficient lp solver for lp rounding. In Proceedings of the Conference
on Advances in Neural Information Processing Systems (NIPS), pages 2895–
2903.

Teflioudi, C., Makari, F., and Gemulla, R. (2012). Distributed matrix completion.
In Proceedings of the IEEE International Conference on Data Mining (ICDM),
pages 655–664.

Todd, M. J. (2002). The many facets of linear programming. Mathematical
Programming, 91(3):417–436.

Trevisan, L. and Xhafa, F. (1998). The parallel complexity of positive linear
programming. Parallel Processing Letters, 8(4):527–533.

Tsitsiklis, J., Bertsekas, D., and Athans, M. (1986). Distributed asynchronous
deterministic and stochastic gradient optimization algorithms. IEEE Transactions
on Automatic Control, 31(9):803–812.

112

Bibliography

Young, N. E. (2001). Sequential and parallel algorithms for mixed packing and
covering. In Proceedings of the Annual Symposium on Foundations of Computer
Science (FOCS), pages 538–546.

Yu, H.-F., Hsieh, C.-J., Si, S., and Dhillon, I. S. (2012). Scalable coordinate
descent approaches to parallel matrix factorization for recommender systems.
In Proceedings of the IEEE International Conference on Data Mining (ICDM),
pages 765–774.

Yu, H.-F., Huang, F.-L., and Lin, C.-J. (2011). Dual coordinate descent methods
for logistic regression and maximum entropy models. Machine Learning, 85(1-
2):41–75.

Zhou, Y., Wilkinson, D. M., Schreiber, R., and Pan, R. (2008). Large-scale parallel
collaborative filtering for the netflix prize. In Proceedings of the International
Confernece on Algorithmic Aspects in Information and Management (AAIM),
pages 337–348.

Zhuang, Y., Chin, W.-S., Juan, Y.-C., and Lin, C.-J. (2013). A fast parallel sgd
for matrix factorization in shared memory systems. In Proceedings of the ACM
Conference on Recommender Systems (RecSys), pages 249–256.

113

Bibliography

114

A
Basic Notations

We use the following notation throughout this manuscript. For a positive number
n, let [1, n] = {1, . . . , n}. Every vector v will be understood as a column-vector
and its transpose (a row-vector) will be v�. We write xi to refer to the i-th entry
of any vector x. For any m × n matrix A, denote by Ai∗ the i-th row of A (i.e.,
a 1 × n matrix), by A∗j the j-th column of A (i.e., an m × 1 matrix), and by Aij

the (i, j)-entry of A. Denote by a vector of all ones. The dimension of is left
unspecified and will be clear from the context. Denote by � the set of real numbers
and by �+ the set of non-negative real numbers. Thus, �n

+ refers to the set of all
n-dimensional vectors of non-negative real numbers. We use exp(x) = ex to denote
the exponential function. The expression ln x and log x refer to the logarithm of
x > 0 to the base e = 2.71828... and 2, respectively. Along with the standard
O-notation, we also use Õ-notation to hide poly-logarithmic factors, i.e., Õ(f)

refers to a function in O(f log
c
f) for a constant c ≥ 0. For a minimization (resp.

maximization) problem P , an algorithm A is an α-factor approximation for P , for
some α > 1 (resp. α < 1) if the objective value of any solution produced by A is at
most (resp. at least) α times the value of the optimal solution to P .

115

116

List of Figures

1.1 A basic framework to generate recommendations under constraints.
Observed ratings are shown in black, predicted in red, and selected
for recommendation circled. Adapted from Charlin et al. (2012). . 3

2.1 Memory layout used on node k by the shared-nothing algorithms
(t = 1). Node-local data is shown in white, master copies in light
gray, and temporary data in dark gray. 18

2.2 Strata used by SSGD for a 3 × 3 blocking of V 20

2.3 Performance of shared-nothing algorithms on real-world datasets,
r = 100 . 38

2.4 Performance of shared-nothing algorithms on synthetic datasets . 40

3.1 Memory layout used on node b. Node-local data is shown in white
and temporary data in gray. 61

3.2 Reduction trees and data flow for partitions A–D, M = {P , C},
s = 4. In reduction trees, leaf nodes are colored white, internal
nodes light gray, and root nodes dark gray. Final results are aggre-
gated at root nodes and then distributed to all the compute nodes
(not shown in the figure). 63

3.3 Various types of LPs considered in Chapter 3 68

4.1 Efficiency of Young’s algorithm and MPCSolver for 0.05-feasibility
on Netflix (1x8) . 88

117

List of Figures

4.2 Efficiency of Young’s algorithm and MPCSolver for 0.05-feasibility
on KDD (1x8) . 89

4.3 Scalability of DDRounding on different datasets 95

118

List of Tables

2.1 Notation for matrix completion algorithms 11

2.2 Popular loss functions for matrix completion 12

2.3 Overview of shared-nothing methods (see Table 2.1 for notation) 31

2.4 Summary of datasets . 35

2.5 SGD step size sequence (Netflix, r = 50) 37

2.6 Impact of stratum schedules on DSGD++ (2x8) 37

4.1 Summary of datasets . 86

4.2 Performance of Young’s algorithm (Young) and MPCSolver (MPC)
for feasibility problems (� = 0.05) 91

4.3 Experimental results on Movielens10M and NetflixTop50 92

4.4 Effect of adaptive step size selection (AS) and multiple updates
heuristic (MU) for 0.05-feasibility on real datasets (1x8) 93

4.5 Constraint violations before (fractional solution) and after (integral
solution) rounding . 96

119

List of Tables

120

List of Algorithms

1 The SGD++ algorithm for matrix completion 16
2 The SSGD algorithm for matrix completion (Gemulla et al. 2011c) 20
3 MPCSolver for mixed packing-covering LPs 47
4 DRounding (Gandhi et al. 2006) 80
5 DDRounding . 82

121

	Introduction
	Distributed Matrix Completion
	The Matrix Completion Problem
	Matrix Completion via Stochastic Gradient Descent
	Gradient Descent (GD)
	Stochastic Gradient Descent (SGD)

	Parallelizing SGD-based Methods
	Shared-Nothing Setting
	Shared-Memory Setting

	Matrix Completion via Alternating Minimizations
	Alternating Least Squares (ALS)
	Cyclic Coordinate Descent (CCD++)

	Alternating Minimizations Versus SGD
	Complexity Analysis
	Experimental Evaluation

	Summary

	Distributed Mixed-Packing-Covering Linear Programming
	The MPC Linear Programs
	Solving MPC-LPs (Feasibility)
	Solving MPC-LPs (Optimization)
	Parallelizing MPCSolver
	Implementing MPCSolver
	Starting Point
	Adaptive Error Bounds
	Adaptive Step Size
	Convergence Test
	Multiple Updates

	Experimental Study
	Related Work
	PLP Solvers
	MPC-LP Solvers
	General Solvers

	Summary

	Generalized Bipartite Matching
	Problem Definition
	Algorithms
	MPCSolver for GBM
	Obtaining an Integral Solution

	Related Work
	Experimental Results
	Experimental Setup
	Results for GBM-LP (Feasibility)
	Results for GBM-LP (Optimality)
	Results for Distributed Rounding
	Results for GBM

	Summary

	Conclusion and Outlook
	Bibliography
	Basic Notations
	List of Figures
	List of Tables
	List of Algorithms

