
General Analysis Tool Box for

Controlled Perturbation Algorithms

and

Complexity and Computation of

Θ-Guarded Regions

Dissertation

zur Erlangung des Grades des

Doktors der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

vorgelegt von

Ralf Osbild

Saarbrücken
November 2012

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Acronym

https://core.ac.uk/display/196651995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Kolloquium

Datum

02. August 2013

Dekan

Professor Dr. Mark Groves

Prüfungsausschuss

Professor Dr. Joachim Weickert (Vorsitzender)
Professor Dr. Dr. h.c. mult. Kurt Mehlhorn (Gutachter)
Professor Dr. Raimund Seidel (Gutachter)
Dr. Tobias Mömke (Akademischer Beisitzer)

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die
aus anderen Quellen oder indirekt übernommenen Daten und Konzepte sind unter
Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher
Form in einem Verfahren zur Erlangung eines akademischen Grades vorgelegt.

Saarbrücken, den

Kurzzusammenfassung

Diese Dissertation auf dem Gebiet der Algorithmischen Geometrie beschäftigt sich
mit den folgenden zwei Problemen.

1. Die Implementierung von verlässlichen und effizienten geometrischen Algorith-
men ist eine herausfordernde Aufgabe. Controlled Perturbation verknüpft die Ge-
schwindigkeit von Fließkomma-Arithmetik mit einem Mechanismus, der die Verläss-
lichkeit garantiert. Wir präsentieren einen allgemeinen ,,Werkzeugkasten” zum Ana-
lysieren von Controlled Perturbation Algorithmen. Dieser Werkzeugkasten ist in un-
abhängige Komponenten aufgeteilt. Wir präsentieren drei alternative Methoden für
die Herleitung der wichtigsten Schranken. Des Weiteren haben wir alle Prädikate, die
auf Polynomen und rationalen Funktionen beruhen, sowie Objekt-erhaltende Pertur-
bationen in die Theorie miteinbezogen. Darüber hinaus wurde der Werkzeugkasten
so entworfen, dass er das tatsächliche Verhalten des untersuchten Algorithmus ohne
vereinfachende Annahmen widerspiegelt.

2. Illumination und Guarding Probleme stellen ein breites Gebiet der Algorithmi-
schen und Kombinatorischen Geometrie dar. Hierzu tragen wir die Komplexität und
Berechnung von Θ-bewachten Regionen bei. Sie stellen eine Verallgemeinerung der
konvexen Hülle dar und sind mit α-hulls und Θ-maxima verwandt. Die Schwierig-
keit beim Studium der Θ-bewachten Regionen ist die Abhängigkeit ihrer Form und
Komplexität von Θ. Für alle Winkel Θ beweisen wir grundlegende Eigenschaften
der Region, leiten untere und obere Schranken ihrer worst-case Komplexität her und
präsentieren einen Algorithmus, um die Region zu berechnen.

4

Abstract

This thesis belongs to the field of computational geometry and addresses the following
two issues.

1. The implementation of reliable and efficient geometric algorithms is a challeng-
ing task. Controlled perturbation combines the speed of floating-point arithmetic
with a mechanism that guarantees reliability. We present a general tool box for the
analysis of controlled perturbation algorithms. This tool box is separated into in-
dependent components. We present three alternative approaches for the derivation
of the most important bounds. Furthermore, we have included polynomial-based
predicates, rational function-based predicates, and object-preserving perturbations
into the theory. Moreover, the tool box is designed such that it reflects the actual
behavior of the algorithm at hand without simplifying assumptions.

2. Illumination and guarding problems are a wide field in computational and com-
binatorial geometry to which we contribute the complexity and computation of Θ-
guarded regions. They are a generalization of the convex hull and are related to
α-hulls and Θ-maxima. The difficulty in the study of Θ-guarded regions is the de-
pendency of its shape and complexity on Θ. For all angles Θ, we prove fundamental
properties of the region, derive lower and upper bounds on its worst-case complexity,
and present an algorithm to compute the region.

5

Danksagung

Mein Dank gilt vor allem Kurt Mehlhorn, der mich als Promotionsstudent am
Max-Planck-Institut für Informatik angenommen und mir eine komplexe Aufgaben-
stellung anvertraut hat. Insbesondere danke ich ihm für den Freiraum, den er mir,
trotz seiner konkreten Vorstellung, bei der Behandlung der Themen eingeräumt hat.

Michael Sagraloff verdanke ich speziell wichtige und anregende Impulse zur An-
fangszeit. Bei Domagoj Matijević möchte ich mich für die intensive und motivierende
Zusammenarbeit bedanken.

Danksagen möchte ich auch meinen Eltern, die für mich stets eine unerschöpfliche
Quelle der Zuversicht und Stärkung sind. Mein innigster Dank gilt schließlich Bettina
Strauß für ihr tiefes Vertrauen und verständnisvolle Geduld.

6

Contents

1 Introduction 9

1.1 General Analysis Tool Box for Controlled Perturbation 10

1.2 Complexity and Computation of Θ-Guarded Regions 12

2 General Analysis Tool Box for Controlled Perturbation 15

2.1 Controlled Perturbation Algorithms 16

2.1.1 Floating-point Arithmetic . 16

2.1.2 Basic Controlled Perturbation Implementations 17

2.2 Fundamental Quantities and Definitions 19

2.2.1 Perturbation, Predicate, Function 19

2.2.2 Success Probability, Grid Points 20

2.2.3 Fp-safety Bound, Critical Set, Region of Uncertainty 27

2.2.4 The Grid Unit Condition . 29

2.2.5 Overview: Classification of the Input 31

2.2.6 Applicability and Verifiability of Functions 32

2.3 General Analysis Tool Box (Introduction) 35

2.4 Necessary Conditions for the Analysis of Functions (Interface) 37
2.4.1 Analyzability of Functions . 37

2.4.2 Overview: Function Properties 41

2.5 The Method of Quantified Relations (2nd Stage) 43

2.5.1 Presentation . 43

2.5.2 Properties . 45

2.5.3 Example . 47

2.6 The Direct Approach Using Estimates (1st Stage, rv-suit) 49

2.6.1 Presentation . 49

2.6.2 Examples . 50

2.7 The Bottom-up Approach Using Calculation Rules (1st Stage, rv-suit) 52

2.7.1 Lower-bounding Rule . 52

2.7.2 Product Rule . 53

2.7.3 Min Rule, Max Rule . 55

2.7.4 General Rule . 56

2.7.5 Example: Multivariate Polynomials 57

2.8 The Top-down Approach Using Replacements (1st Stage, rv-suit) . . . 63

2.8.1 Definitions . 63

2.8.2 Single Replacement . 65

2.8.3 Sequence of Replacements . 67

7

Contents

2.8.4 Derivation and Correctness of the Bounds 69
2.8.5 Examples . 74
2.8.6 Further Remarks . 77

2.9 Determining the Lower Fp-safety Bound (1st Stage, s-suit) 79
2.9.1 Implementing Guarded Evaluations 79
2.9.2 Analyzing Guards With Fp-safety Bounds 81

2.10 The Treatment of Range Errors (All Components) 84
2.10.1 Extending the Implementation 84
2.10.2 Extending the Analysis of Functions 84

2.11 The Analysis of Rational Functions . 88
2.12 General Analysis of Algorithms (Composition) 89

2.12.1 Necessary Conditions for the Analysis of Algorithms 89
2.12.2 Overview: Algorithm Properties 93
2.12.3 The Method of Distributed Probability 94
2.12.4 Example . 95

2.13 General Controlled Perturbation Implementations 98
2.14 Perturbation Policy . 100

2.14.1 Pointwise Perturbation . 100
2.14.2 Object-preserving Perturbation 101

2.15 Appendix: List of Identifiers . 103

3 Complexity and Computation of Θ-Guarded Regions 107

3.1 The Θ-Guarded Region . 108
3.2 Boundary, Complexity and Computation for Θ ≥ π 110
3.3 Boundary, Complexity and Computation for Θ < π 113

3.3.1 Boundary . 113
3.3.2 Upper Bounds on the Worst-Case Complexity 115
3.3.3 Lower Bound on the Worst-Case Complexity 119
3.3.4 Computation . 124

3.4 Summary: Complexity Bounds . 130

Bibliography 131

8

1 Introduction

This thesis belongs to the field of computational geometry and addresses two issues,
which we introduce briefly below.

The implementation of reliable and efficient geometric algorithms is a challenging
task. The reason is the following conflict: On the one hand, computing with rounded
arithmetic may call into question the reliability of programs while, on the other
hand, computing with exact arithmetic may be too expensive and hence inefficient.
Many schemes have been suggested to bridge over this gap. One suggestion is the
implementation of controlled perturbation algorithms which combines the speed of
floating-point arithmetic with a protection mechanism that guarantees reliability.
The first topic of this thesis is concerned with the performance analysis of controlled
perturbation algorithms in theory. We answer this question with the presentation of

a general analysis tool box for controlled perturbation algorithms.

Our tool box is separated into independent components which are presented individ-
ually with their interfaces. This way, the tool box supports alternative approaches
for the derivation of the most crucial bounds: We present three approaches for this
task. Even more, the framework can be applied to different perturbation policies.
Furthermore, we have thoroughly reworked the concept of controlled perturbation
in order to include rational function-based predicates into the theory; former re-
search on the topic and, especially, polynomial-based predicates are included into
the framework anyway. Moreover, the tool box is designed such that it reflects the
floating-point behavior of the controlled perturbation algorithm at hand.

Illumination and guarding problems are another wide field in computational and
combinatorial geometry. Problems of this class are often referred to for the modelling
of real-world problems for two reasons: first, to find an algorithmic solution for the
problem at hand and, second, to determine the complexity of the problem at hand.
Our second topic contributes the

complexity and computation of Θ-guarded regions

to this area. Θ-guarded regions are related to well-known geometrical structures:
They are a generalization of the convex hull, are equivalent to the α-hulls in certain
situations, and can be derived from Θ-maxima for certain angles. The difficulty in
the study of Θ-guarded regions is that their shape and complexity vary with the
angle Θ. For all cases of Θ, we prove fundamental properties of the Θ-guarded
region, prove lower and upper bounds on its worst-case complexity, and present an
algorithm to compute the region.

9

1 Introduction

1.1 General Analysis Tool Box for Controlled
Perturbation Algorithms

It is a notoriously difficult task to cope with rounding errors in computing [32,
20]. In computational geometry, predicates are decided on the sign of mathematical
expressions. If rounding errors cause a wrong decision of the predicate, geometric
algorithms may fail in various ways: inconsistency of the data (e.g., contradictory
topology), loops that do not terminate, or loops that terminate unexpectedly [50].
In addition, the thoughtful processing of degenerate cases makes the implementation
of geometric algorithms laborious [8]. The meaning of degeneracy always depends
on the context (e.g., three points on a line, four points on a circle). There are several
ways to overcome the numerical robustness issues and to deal with degenerate inputs.

The exact computation paradigm [47, 48, 57, 33, 79, 58] suggests an implementation
of an exact arithmetic. This is established by a number representation of variable
precision (i.e., variable bit length) or by the use of symbolic values which are not
evaluated (e.g., roots of integers). There are several implementations of such number
types [14, 54, 64, 63, 58]. Each program must be developed carefully such that it
can deal with all possible degenerate cases. The software libraries Leda and Cgal

follow the exact computation paradigm [58, 51, 28]. The paradigm was also taken
as a basis in [7, 73, 38].

As opposed to that, the topology oriented approach [74, 45, 75] is based on an
arithmetic of finite precision. To avoid numerical robustness issues, the main guide-
line is the maintenance of the topology. This objective requires individual alterations
of the algorithm at hand, and it seems that it cannot be turned into an easy-to-use
general framework. Furthermore, this approach must also cope with degenerate in-
puts. However, the speed of floating-point arithmetic may be worth the trouble; in
addition to other accelerations, Held [42] has implemented a very fast computation
of the Voronoi diagram of line segments.

There are also problem-oriented solutions. In computational geometry, the sign
of determinants decides an interesting class of predicates. For example, the side-
of-line or the in-circle predicate in the plane belong to this class and are used in
the computation of Delaunay diagrams. Some publications deal with the numerical
issues in the evaluation of determinants directly [5, 9].

The previous approaches have in common that they primarily focus on the nu-
merical issues. Other approaches are originated from the degeneracy issue. A slight
perturbation of the input seems to solve this problem. There are different approaches
based on perturbation. The symbolic perturbation [23, 78, 77, 25, 26, 72, 61] provides
a general way to distort inputs such that degeneracies do not occur. This definitely
provides a shorter route for the presentation of geometric algorithms. Practically,
this approach requires exact arithmetic to avoid robustness issues. Therefore, the
pitfall in this approach is that if the concept requires very small perturbations, it
may implicate a high precision and a possibly slow implementation.

In this paper, we focus on controlled perturbation. It was introduced by Halperin

10

1.1 General Analysis Tool Box for Controlled Perturbation

et al. [41] for the computation of spherical arrangements. In the context of con-
trolled perturbation, a perturbed input is a random point in the neighborhood of
the initial input. The basic module of the algorithm is a repeating perturbation
process with two objectives: finding an input that does not contain degeneracies and
that leads to numerically robust floating-point evaluations. Halperin et al. have pre-
sented mechanisms to respond to inappropriate perturbations. Moreover, they have
argued formally under which conditions there is a chance for a successful termination
of their algorithm. Controlled perturbation leads to numerically robust implementa-
tions of algorithms which use non-exact arithmetic and which do not need to process
degenerate cases.

This idea of controlled perturbation has since been applied to further geomet-
ric problems: the arrangement of polyhedral surfaces [40], the arrangement of cir-
cles [39], Voronoi diagrams and Delaunay triangulations [52, 35]. However, the
presentation of each specific algorithm has required a specific analysis of its perfor-
mance. This broaches the subject of a general method to analyze controlled pertur-
bation algorithms.

We remark that controlled perturbation also has a drawback: Although it solves
the problem for the perturbed input exactly, it does not necessarily solve it for the
initial input. Furthermore, it is non-obvious how to derive the solution for the initial
input from solutions of perturbed inputs in general. In case the input is highly
degenerated, the running time of the algorithm may increase significantly after the
permutation [12, 4]. In this case, the specialized treatment of degeneracies may be
much faster.

Our contribution

The study of a general method to analyze controlled perturbation algorithms is a
joint work with Kurt Mehlhorn and Michael Sagraloff. We first presented the idea
in [59]. Then Caroli [13] studied the applicability of the method for predicates
used for the computation of arrangements of circles (according to [39]) and for the
computation of Voronoi diagrams of line segments (according to [10, 71]). Our
significantly improved journal article contains, furthermore, a detailed discussion
of the analysis of multivariate polynomials [60].

This thesis redevelops the topic completely to design a sophisticated tool box
for the analysis of controlled perturbation algorithms. The tool box is valid for
floating-point arithmetic, guides the user step by step through the analysis, and
allows alternative components. We want to emphasize that former research fits into
this refined framework. Moreover, the solution to an open problem is integrated into
the theory. We briefly present our achievements below.

We present a general tool box to analyze algorithms and their predicates. The
tool box is subdivided into independent components and their interfaces. Step-by-
step instructions for the analysis are associated with each component. Interfaces
represent the bounds that are used in the analysis. The components of the tool box
can be chosen such that the result is a precision function or a probability function.

11

1 Introduction

Furthermore, necessary conditions for the analysis are derived from the interfaces.

We present alternative approaches to derive necessary bounds. Because we have
subdivided the tool box into independent components and their interfaces, it is possi-
ble to make alternative components available in the most crucial step of the analysis.
The direct approach is based on the geometric meaning of predicates, the bottom-up
approach is based on the composition of functions, and the top-down approach is a
coordinate-wise analysis of functions. Similar direct and top-down approaches are
presented in [59, 60]. This is the first time that a bottom-up approach is presented
for this task.

The result of the analysis is valid for floating-point arithmetic. A random floating-
point number generator that guarantees a uniform distribution was introduced in [60].
However, the result of the analysis has not yet been proven valid for the finite set
of floating-point numbers since the Lebesgue measure cannot take sets of measure
zero into account. To overcome this problem, we define a specialized perturbation
generator and pay attention to the finiteness in the analysis, namely, in the suc-
cess probability, in the (non-)exclusion of points, and in the usage of the Lebesgue
measure.

We present an alternative analysis of multivariate polynomials. An analysis of mul-
tivariate polynomials, which resembles the top-down approach, is presented in [60].
We present an alternative analysis here which makes use of the bottom-up approach.

We solve the open problem of analyzing rational functions. We include poles of
rational functions into the theory and describe the treatment of floating-point range
errors in the analysis. We suggest a general way to guard rational functions in
practice, and we describe how to analyze the behavior of these guards in theory.

We integrate different perturbation policies into the analysis. We present a pertur-
bation generator that makes it possible to perturb the location of input objects with
or without deforming the objects themselves. To achieve this goal, we have designed
the perturbation process such that the relative floating-point input specifications of
the objects can be preserved despite using rounded arithmetic.

We suggest an implementation that is in accordance with the analysis tool box. We
define a fixed-precision perturbation generator and extend it to be object-preserving.
We explain the particularities in the practical treatment of range errors that occur
especially in the case of rational functions. Finally, we show how to realize guards
for rational functions.

1.2 Complexity and Computation of Θ-Guarded Regions

The second chapter belongs to the fields of computational and combinatorial geom-
etry. In contrast to the first chapter, some terms have totally different meanings
here: The term guard refers to a point in the plane, the term region refers to the
Θ-guarded region, and by π we denote Archimedes’ constant.

Illumination and guarding problems are another wide field in computational and
combinatorial geometry. One instance in this class of problems is the classical one

12

1.2 Complexity and Computation of Θ-Guarded Regions

posed by Victor Klee [66]: How many guards are necessary, and how many are
sufficient, to patrol the paintings and works of art in an art gallery with n walls?
While this particular problem was solved shortly thereafter by Chvátal [16], proving
a tight ⌊n3 ⌋ bound, many variants of guarding problems appeared subsequently. A
survey on the topic is contained in [76].

In this chapter of the thesis, we consider the following planar guarding problem.
We are given a finite point set G in the plane, whose points we call guards, and an
angle Θ ∈ [0, 2π]. A Θ-cone is a cone with the apex angle Θ. We say that the Θ-cone
is empty (with respect to G) if it does not contain any point of G in its interior. A
point p ∈ R2 is Θ-guarded if every Θ-cone whose apex is located at p is non-empty.
Furthermore, the set of all Θ-guarded points is called the Θ-guarded region, or the
Θ-region for short.

Previous work

For a given set G of n points in the plane, Avis et al. [3] were the first to introduce
the notion of unoriented Θ-maxima. They say that some point g ∈ G is a Θ-maxima
if there exists an empty Θ-cone with its apex at g. Hence, a point g is Θ-maxima
if it is not Θ-guarded with respect to G. They present an O(nΘ log n) algorithm for
computing the unoriented Θ-maximum of the set G, or in other words, an algorithm
to query each point in G whether it is Θ-guarded or not. A slight variation of their
algorithm can in fact query any finite point set P in O(n+|P |

Θ log(n + |P |)) time, as
we show in Lemma 3.15. They further show that the unoriented π

2 -maxima can be
computed in O(n) expected time.

Abellanas et al. [1] extend the guarding model, which they refer to as good Θ-
illumination, by a range r, i.e., a guard g ∈ G can only guard points inside the circle
of radius r that is centered at g. Besides other results, they show how to check if a
query point p is Θ-guarded in O(n) time and how to output the necessary range and
guards as witnesses.

Since the π-region is equivalent to the standard convex hull of a point set, we can
also regard the Θ-region as a generalization of the convex hull. Several generalizations
have been proposed, like the α-hull [22], the k-th iterated hull [15], and the related
concept of the k-hull (k-depth contour) [17].

Our contribution

This chapter is based on the journal article [55] which is a joint work with Domagoj
Matijević. Furthermore, an improved computation of the Θ-region for π

2 ≤ Θ < π
in O(n log n) time is contributed in this thesis.

The difficulty in the study of Θ-guarded regions is that their shape and complexity
vary with the angle Θ. First, we consider the case Θ ≥ π. We analyze the shape
of the Θ-guarded region, show its general relation to the convex hull, prove that
its complexity equals the complexity of the convex hull, show its specific relation to

13

1 Introduction

positive α-hulls for certain guard sets and angle ranges, and develop an easy and
efficient O(n log n) time algorithm to compute its boundary.

In the main part, we consider the case Θ < π. For these angles the problem
becomes much more involved, and the boundary of the Θ-region becomes more dif-
ficult to understand. We show that the boundary of the Θ-region is contained in an
arrangement of circular arcs. Further, we bound this set of circular arcs by O(nΘ).
In case π

2 ≤ Θ < π, we prove that the complexity of the Θ-region is O(n) and
present an algorithm to compute the region in O(n log n) time. For smaller angles
δ ≤ Θ < π

2 , where δ is a positive constant, we show that the complexity is O(n1+ε)
for any ε > 0. In case we consider the asymptotic complexity bound in n and 1

Θ ,

we prove O(n
2

Θ2). Furthermore, we construct a generic example for this case which
has complexity Ω(n2). Finally, we present an algorithm to compute the Θ-region for
Θ < π

2 and an analysis of its running time.
We would like to note that there is an independent publication by Abellanas et

al. [2] on the same topic. It claims that the complexity of the Θ-region (called the
α-embracing contour) is claimed to be O(n) for all constant Θ, and an algorithm that
runs in O(n2 log n) time and O(n2) space is proposed. After personal communication
with the authors, we agree that the claims are unfortunately not generally true for
small angles.

14

2 General Analysis Tool Box for
Controlled Perturbation Algorithms

In this chapter, we present a tool box for the general analysis of controlled perturba-
tion algorithms. In Section 2.1, we present the basic design principles of controlled
perturbation from a practical point of view. Fundamental quantities and definitions
of the analysis are introduced in Section 2.2. In addition, we point to the difficulty to
validate the result of the analysis for floating-point arithmetic. The general analysis
tool box and all of its components are briefly introduced in Section 2.3. Geometric
algorithms base their decisions on geometric predicates which are decided by signs
of real-valued functions. Therefore, the analysis of algorithms requires a general
analysis of such functions. The presentation is structured in two parts: the function
analysis and the algorithm analysis.

The function analysis is performed with real arithmetic and works in two stages.
The required bounds form the interface between the stages and are presented in
Section 2.4. The method of quantified relations represents the actual analysis in
the second stage and is introduced in Section 2.5. The derivation of the bounds in
the first stage follows the direct approach from Section 2.6, the bottom-up approach
from Section 2.7, or the top-down approach from Section 2.8, together with an error
analysis, which is introduced in Section 2.9. In Section 2.10, we extend the analysis
and the implementation such that both properly deal with floating-point range errors.
As examples, we present the analysis of multivariate polynomials in Section 2.7 and
the analysis of rational functions in Section 2.11. The function analysis is visualized
in Figure 2.7 on Page 35.

The algorithm analysis is also performed in two stages. In the first stage, we make
use of the introduced function analysis and derive some algorithm specific bounds.
The analysis itself in the second stage is represented by the method of distributed
probability. The algorithm analysis is presented in Section 2.12 and is visualized in
Figure 2.25 on Page 89.

Furthermore, we present a general way to implement controlled perturbation algo-
rithms in Section 2.13 such that our analysis tool box can be applied to them. Even
more, we suggest a way to implement object-preserving perturbations in Section 2.14.
A quick reference to the most important definitions of this chapter can be found in
Section 2.15.

15

2 General Analysis Tool Box for Controlled Perturbation

2.1 Controlled Perturbation Algorithms

This section contains an introduction to the basic principles for controlled pertur-
bation algorithms. We already have mentioned that implementations of geometric
algorithms must address degeneracy and numerical robustness issues. We review
floating-point arithmetic in Section 2.1.1 and present the basic design principles of
controlled perturbation algorithms in Section 2.1.2.

2.1.1 Floating-point Arithmetic

Variable precision arithmetic is necessary for a general implementation of controlled
perturbation algorithms. We explain this statement with the following thought ex-
periment,1 which can be skipped during the first reading: Assume we compute an
arrangement of n circles incrementally with a fixed precision arithmetic. Let us fur-
ther assume that there is an upper bound on the radius of the circles. Then, because
of the fixed precision, the number of distinguishable intersections per circle must
be limited. Hence, the computation of dense arrangements cannot work in general
unless we allow circles to be moved (perturbed) further away from their initial posi-
tion. Asymptotically, this policy would transform a very dense arrangement into an
arrangement of almost uniformly distributed circles. Therefore, we demand that the
precision of the arithmetic can be chosen arbitrarily large.

A floating-point number is given by a sign, a mantissa, a radix, and a signed
exponent. In the regular case, its value is defined as

value := sign ·mantissa · radixexponent.

Without loss of generality, we assume the radix to be 2. The bit length of the
mantissa is called precision L. We denote the bit length of the exponent by K. The
discrete set of regular floating-point numbers is a subset of the rational numbers.
Furthermore, this set is finite for fixed L and K.

A floating-point arithmetic defines the number representation (the radix, L and
K), the operations, the rounding policy, and the exception handling for floating-point
numbers (see Goldberg [37]). A technical standard for fixed precision floating-point
arithmetic is IEEE 754-2008 (see [44]). Nowadays, the built-in types single, double
and quadruple precision are usual for radix 2.

There are several software libraries that offer variable2 precision floating-point
arithmetic. Cgal provides the multi-precision floating-point number type MP Float

(see the Cgal manual [14]). Core provides the variable precision floating-point
number type CORE::BigFloat (see [54]). And Leda provides the variable precision
floating-point number type leda bigfloat (see the Leda book [58]). Be aware that
the rounding policy and exception handling of certain libraries may differ from the

1This consideration is absolutely conform to Halperin et al. [39]: If the augmented perturbation
parameter δ exceeds a given threshold ∆, the precision is augmented and δ is reset.

2With variable we subsume all types of arithmetic that support arbitrarily large precisions. Some
are called variable precision, multiple precision or arbitrary precision.

16

2.1 Controlled Perturbation Algorithms

IEEE standard. Since our analysis partially presumes this standard,3 we must ensure
that the arithmetic in use is appropriate. The Gnu Multiple Precision Floating-
Point Reliable Library, for example, “provides the four rounding modes from the
IEEE 754-1985 standard, plus away-from-zero, as well as for basic operations as for
other mathematical functions” (see the Gnu Mpfr manual [64]). Moreover, Gnu

Mpfr is used for the multiple precision interval arithmetic, which is provided by the
Multiple Precision Floating-point Interval library (see the Gnu Mpfi manual [63]).

Variable precision arithmetic is more expensive than built-in fixed precision arith-
metic. In practice, we try to solve the problem at hand with built-in arithmetic
first and, in addition, try to make use of floating-point filters. We use the following
notations throughout the chapter.

Definition 2.1 (floating-point). Let L,K ∈ N. By FL,K we denote:

1. The set of floating-point numbers with radix 2, precision L, andK-bit exponent.
2. The floating-point arithmetic that is induced by the set characterized in 1.

Furthermore, we define the suffix |F for sets and expressions:

1. Let k ∈ N, and let X ⊂ Rk. Then X|F := X ∩ Fk.
2. f(x)|F denotes the floating-point value of f(x) evaluated with arithmetic F.

That means, we denote by X|F the restriction of X to its subset that can be rep-
resented with floating-point numbers in F. To simplify the notation, we omit the
indices L or K of FL,K whenever they are given by the context. For the same reason,
we have already skipped the dimension k in the suffix |F.

2.1.2 Basic Controlled Perturbation Implementations

Rounding errors of floating-point arithmetic may influence the result of predicate
evaluations. Wrong predicate evaluations may cause erroneous results of the algo-
rithm and even lead to non-robust implementations (see Kettner et al. [50]). In
order to get correct and robust implementations, we introduce guards which testify
the reliability of predicate evaluations (see [34, 11, 60]).

Definition 2.2 (guard). Let F be a floating-point arithmetic, and let f : X → R be
a function with X ⊂ Rk. We call a predicate Gf : X → {true, false} a guard for f
on X if

Gf (x) is true ⇒ sign(f(x)|F) = sign(f(x))

for all x ∈ X|F. Presuming that there is such a predicate Gf , we say that an input
x ∈ X|F is guarded if Gf (x) is true and unguarded if Gf (x) is false.

That means, a guard confirms that the sign of the function evaluation is correct. A
design of guards is presented in Section 2.9. By means of guards, we can implement
geometric algorithms such that they can either verify or disprove their results.

3A standardized behavior of floating-point operations is presumed in Section 2.9.

17

2 General Analysis Tool Box for Controlled Perturbation

Definition 2.3 (guarded algorithm). We call an algorithm AG a guarded algorithm
if there is a guard for each predicate evaluation and if the algorithm halts either with
the correct combinatorial result or with the information that a guard has failed. If
AG halts with the correct result, we also say that AG is successful, and we say that
AG has failed if a guard has failed.

Let ȳ be an input of AG. In case AG(ȳ) is successful, we obtain the desired result
for input ȳ. Of course, the situation is unsatisfying if AG fails. Therefore, we intro-
duce controlled perturbation (see Halperin et al. [39]): We execute AG for randomly
perturbed inputs y (i.e., random points in the neighborhood of ȳ) until AG termi-
nates successfully. Furthermore, we increase the precision L of the floating-point
arithmetic F after each failure in the hope to improve the chance to succeed. (It is
the task of the analysis to provide evidence.) We summarize this idea in the provi-
sional controlled perturbation algorithm basic-ACP, which is shown in Algorithm 1.
The general controlled perturbation algorithm is presented on page 98, Section 2.12.

Algorithm 1 : basic-ACP(AG, ȳ,Uδ)
/* initialization */
L← precision of built-in floating-point arithmetic

repeat

/* run guarded algorithm */
y ← random point in Uδ(ȳ)|FL

ω ← AG(y,FL)

/* adjust parameters */
if AG failed then

L← 2L
end if

until AG succeeded

/* return perturbed input y and result ω */
return (y, ω)

We see that there is an implementation of basic-ACP(AG) for every guarded al-
gorithm AG, or in other words, for every algorithm that is only based on geometric
predicates that can be guarded. It is important to note that this does not neces-
sarily imply that basic-ACP performs well. It is the main objective of this chapter
to develop a general method to analyze the performance of controlled perturbation
algorithms ACP.

18

2.2 Fundamental Quantities and Definitions

2.2 Fundamental Quantities and Definitions

Before we begin with the analysis, we introduce some fundamental quantities. The
situation we want to analyze is defined in Section 2.2.1. We encounter and discuss
many issues during the definition of the success probability in Section 2.2.2. We see
that there are two important dependencies:

1. The precision controls the floating-point error.

2. The precision controls the density of the floating-point numbers.

In Section 2.2.3, we introduce controlled perturbation-specific quantities and focus on
the first dependency. In Section 2.2.4, we learn how to embed the second dependency
in the analysis. The overview in Section 2.2.5 summarizes the classification of inputs
in practice and in the analysis. In Section 2.2.6, we present conditions under which
we may apply controlled perturbation to a predicate in practice and under which we
can actually justify its application in theory.

2.2.1 Perturbation, Predicate, Function

We next define the quantities that are needed to describe the initial situation: the
original input, the perturbation area, the perturbation parameter, the perturbed in-
put, the input value bound, functions that realize geometric predicates, and predicate
descriptions.

In the analysis, we assume that the original input ȳ of a controlled perturbation
algorithm ACP consists of n floating-point numbers, that is, ȳ ∈ Fn or, as we prefer
to say, ȳ ∈ Rn|F. At this point, we do not care for a geometrical interpretation of
the input of ACP. We remark that this is no restriction: a complex number can
be represented by two numbers; a vector can be represented by the sequence of its
components; geometric objects can be represented by their coordinates and measures;
and so on. A circle in the plain, for example, can be represented by a 6-tuple (the
coordinates of three distinct points in the circle) or a 3-tuple (the coordinates of the
center and the radius). And, continuing the example, an input of m circles can be
interpreted as a tuple ȳ ∈ Rn|F with n := 6m if we choose the first variant.

We define the perturbation of ȳ as a random additive distortion of its components.4

We call Uδ(ȳ) ⊂ Rn a perturbation area with perturbation parameter δ if

1. δ ∈ Rn>0,
2. y ∈ Uδ(ȳ) implies |yi − ȳi| ≤ δi for 1 ≤ i ≤ n, and
3. Uδ(ȳ) contains an (open) neighborhood of ȳ.

Note that Uδ(ȳ) is not a discrete set, whereas Uδ(ȳ)|F is finite. In our example, if
we allow a circular perturbation of the 3m points which define the m input circles,
the perturbation area is the Cartesian product of 3m planar discs. We make the
observation that even if we consider the input as a plain sequence of numbers, the

4There is no unique definition of perturbation in geometry (see the introduction in [72]).

19

2 General Analysis Tool Box for Controlled Perturbation

perturbation area may look very special—we cannot neglect the geometrical inter-
pretation here. In this context, we define an axis-parallel perturbation area Uδ(ȳ) as
a box which is centered in ȳ and has edge length 2δi parallel to the i-th main axis
(and always denote it by the latin letter U instead of U). This definition significantly
simplifies the shape of the perturbation area.

The perturbed input must also be a vector of floating-point numbers. For now,
we denote the perturbed input by y ∈ U(ȳ)|F. (This definition is refined on page 23).

The analysis of ACP depends on the analysis of AG and its predicates (see Sec-
tion 2.12). We remember that a geometric predicate, which is either true or false,
is decided by the sign of a real-valued function f . Therefore, we introduce further
quantities to describe such functions. We assume that f is a k-ary real-valued func-
tion and that k ≪ n. We further assume that we evaluate f at k distinct perturbed
input values, so we evaluate f(yσ(1), . . . , yσ(k)) where σ : {1, . . . , k} → {1, . . . , n} is
injective. The mapping σ is injective to guarantee that the variables in the formula
of f are independent of each other. In order not to confuse the indices in the analysis,
we change the names in the argument list of f in xi := yσ(i) for 1 ≤ i ≤ k. In the
same way, we also rename the affected input values x̄i := ȳσ(i). We denote the set of
valid arguments for f by A.

In the analysis, emax implicitly describes an upper-bound on the absolute value of
perturbed input values where

emax := min
{

e′ ∈ N : |ȳi|+ δi ≤ 2e
′

for all 1 ≤ i ≤ n
}

. (2.1)

We call emax the input value parameter. Be aware that this is just a bound on the
arguments of f and not a bound on the absolute value of f . At the moment, we
assume that the absolute value of f is bounded on A and that the size K of the
exponent of the floating-point arithmetic FL,K is sufficiently large to avoid overflow
errors during the evaluation of f . In Section 2.10, we abandon this assumption and
discuss the treatment of range issues.

Below, we summarize the basic quantities needed for the analysis of a function f .

Definition 2.4. We call (f, k,A, δ, emax) a predicate description if:

1. k ∈ N,
2. A ⊂ Rk,
3. δ ∈ Rk>0,
4. emax is as it is defined in Formula (2.1),
5. Ūδ(A) ⊂ [−2emax , 2emax]k, and
6. f : Ūδ(A)→ R.

Predicate descriptions are frequently used in this chapter. We extend the notion in
Definition 2.9 on page 29 and in Definition 2.10 on page 30.

2.2.2 Success Probability, Grid Points

The controlled perturbation algorithm ACP eventually terminates if there is a pos-
itive probability that AG terminates successfully. The latter condition is fulfilled if

20

2.2 Fundamental Quantities and Definitions

f has the property: The probability of a successful evaluation of f gets arbitrarily
close to the certain event by merely increasing the precision L. We call this property
applicability and specify it in Section 2.2.6.

In this section we derive a definition for the success probability that is appropriate
for the analysis and that is valid for floating-point evaluations. We begin with the
question: What is the least probability that a guarded evaluation of f is successful
in a run of AG under the arithmetic F? We assume that each random point is chosen
with the same probability. Then the answer is

pr(f|F) := min
x̄∈A

∣

∣

{

x ∈ Ūδ(x̄)|F : G(x) is true
} ∣

∣

∣

∣ Ūδ(x̄)|F
∣

∣

.

Indeed, the definition reflects the actual behavior of f . The probability is the number
of guarded (floating-point) inputs divided by the total number of inputs and considers
the worst-case for all perturbation areas.

Issue 1: Floating-point arithmetic is hard to analyze directly.

Because floating-point arithmetic and its rounding policy can hardly be analyzed
directly, we aim to derive a corresponding formula for real arithmetic. In real space,
we use the Lebesgue measure5 µ to determine the volume of areas. Therefore, we
are looking for a formula like

pr(f) := min
x̄∈A

µ
({

x ∈ Ūδ(x̄) : G′(x) is true
})

µ(Ūδ(x̄))
(2.2)

where the predicate G′ : Ūδ(A)→ {true, false} equals G at arguments with floating-
point representation.

Issue 2: The set of floating-point numbers has measure zero.

It is well-known that the set Ūδ(x̄)|F is finite and that its superset Ūδ(x̄)|Q is a set
of measure zero. Be aware that the fraction in Formula (2.2) does not change if we
redefine f on a set of measure zero. This implies possible deviations from normal
situations. For example,6 let ffalse : Ūδ(A)→ R be

ffalse(x) :=

{

f(x) : x 6∈ Ūδ(A)|Q
0 : otherwise,

and let ftrue : Ūδ(A)→ R be

ftrue(x) :=

{

f(x) : x 6∈ Ūδ(A)|Q
B : otherwise

5Measure Theory: The Lebesgue measure is defined in Forster [31].
6Note that there are finite sets of exceptional points that lead to similar counter-examples since
every exception influences the practical behavior of the function (and L is finite).

21

2 General Analysis Tool Box for Controlled Perturbation

where B ∈ R>0 is large enough to guarantee that the guard G evaluates to true in
the latter case. Be aware that pr(ffalse) = pr(ftrue) due to Formula (2.2), whereas
both implementations “AG with ftrue” and “AG with ffalse” are conflictive: The
former is always successful, whereas the latter never succeeds. We remark that the
assumption “f is (upper) continuous almost everywhere” does not solve the issue
because “almost everywhere” means “with the exception of a set of measure zero.”
We introduce several restrictions to be able to deal with situations of this kind.

Issue 3: There is no general relation between pr(f|F) and pr(f).

This problem already becomes visible in the 1-dimensional case.

Example 2.1. Let F = F2,3 be the floating-point arithmetic with L = 2 and K = 3.
In addition, let U = [0, 2], R1 = [0, 1], and R2 = [1, 2] be intervals. The situation is
depicted in Figure 2.1.

0 1
2

1 21
4

1
8

Figure 2.1: Distribution of the discrete set F2,3 within the interval [0, 2].

What is the probability that a randomly chosen point x ∈ U lies inside of R1,
respectively R2, for points in U or U|F? Note that R1 and R2 have the same length.
For R1 = [0, 1], we have

pr(R1) =
1

2
< pr(R1|F) =

17

21
,

so that the probability is higher for floating-point arithmetic. On the other hand,
for R2 = [1, 2], we have

pr(R2) =
1

2
> pr(R2|F) =

5

21
,

which means that the probability is higher for real arithmetic. ©

We derive from Example 2.1 that there is no general relation between pr(f|F) and
pr(f) because of the distribution of F.

Issue 4: The distribution of F is non-uniform.

Because the discrete set of floating-point numbers is non-uniformly distributed in
general, we modify the perturbation policy: We restrict the random choice of floating-
point numbers to selected numbers that lie on a regular grid.

Definition 2.5 (grid). Let emax be as it is defined in Formula (2.1), and let FL,K
be a floating-point arithmetic (with emax ≪ 2K−1). We define

τ := 2emax−L−1. (2.3)

22

2.2 Fundamental Quantities and Definitions

We call

GL,K,emax := {λτ : λ ∈ Z and λτ ∈ [−2emax , 2emax]} (2.4)

the grid points induced by emax with respect to FL,K, and we call τ the grid unit of
GL,K,emax. Furthermore, we denote the grid points G inside of a set X ⊂ Rk by

X|G := X ∩Gk.

We again omit the indices wherever they do not require special attention. We
observe that the grid unit τ is the maximum distance between two adjacent points
in F ∩ [−2emax , 2emax]. We further observe that the grid points G form a subset of F.
Be aware that the symbol F represents a set or an arithmetic, whereas the symbol G
always represents a set. It is important to see that the underlying arithmetic is still
F. We have introduced G only to change the definition of the original perturbation
area to Uδ(ȳ)|G. This leads to the final version of the success probability of f : The
least probability that a guarded evaluation of f is successful for inputs in G under
the arithmetic F is

pr(f|G) := min
x̄∈A

∣

∣

{

x ∈ Ūδ(x̄)|G : G(x) is true
} ∣

∣

∣

∣ Ūδ(x̄)|G
∣

∣

. (2.5)

Remark 2.1. How can we implement the random perturbation in Uδ(ȳ)|G? Because
the points in G are uniformly distributed, the implementation of the perturbation is
significantly simplified to the random choice of integer λ in Formula (2.4). This func-
tionality is made available by most, if not all, higher programming languages. Apart
from that, we generate floating-point numbers with the largest possible number of
trailing zeros. This possibly reduces the rounding error in practice. ©

Issue 5: The projection of U δ(ȳ)|G is non-uniform.

The original perturbation area Uδ(ȳ)|G is a discrete set of uniformly distributed
points, of which every point is chosen with the same probability. As a consequence,
the predicate perturbation area Ūδ(x̄)|G is also uniformly distributed. This does not
imply that all points in the projected grid appear with the same probability! We
illustrate, explain, and solve this issue in Section 2.12. For now, we continue our con-
sideration under the assumption that all points in Ūδ(x̄)|G are uniformly distributed
and randomly chosen with the same probability.

Issue 6: Analyses for various perturbation areas may differ.

In the determination of pr(f|G) in Formula (2.5), we encounter the difficulty of find-
ing the minimum ratio between the guarded and all possible inputs for all possible
perturbation areas, that is, for all x̄ ∈ A. We can address this problem with a simple
worst-case consideration if we cannot, or do not wish to, gain further insight into

23

2 General Analysis Tool Box for Controlled Perturbation

the behavior of f : We just expect that whatever could negatively affect the analy-
sis of f within the total predicate perturbation area Ūδ(A) affects the perturbation
area Ūδ(x̄) under consideration. This way, we safely obtain a lower bound on the
minimum.

Issue 7: There is no general relation between pr(f|G) and pr(f).

Example 2.2. We continue Example 2.1. In addition, let R3 = [1
10 ,

9
10] be an

interval. Because U ⊆ [−21, 21], we have emax = 1, and τ = 2emax−L−1 = 1
4 . The

situation is depicted in Figure 2.2.

0 1 2R1 R2

R3ε 1− ε

Figure 2.2: The distribution of the grid points G2,3,1 within the interval [0, 2].

We again compare the continuous and the discrete case: What is the probability
that a randomly chosen point x ∈ U lies inside of R1 (R2 or R3, respectively)? The
probability is now higher for R1 and R2 in the discrete case

pr(R1) = pr(R2) =
1

2
< pr(R1|G) = pr(R2|G) =

5

9
,

and higher for R3

pr(R3) =
2

5
> pr(R3|G) =

1

3

in the real case. ©

We observe that the restriction to points in G does not entirely solve the initial
problem: We still cannot relate the probability pr(f) with pr(f|G) in general. To
improve the estimate, another modification is necessary which we indicate in Exam-
ple 2.3: If we make the interval slightly larger, we can safely determine the inequality.

Example 2.3. Let τ be the grid unit of G. We define three intervals R ⊂ Raug ⊂ U .
Let U ⊂ R be a closed interval of length λ0τ with λ0 ∈ N. Let Raug ⊂ U be an
interval of length at least τ that has the limits Raug := [a − τ

2 , b +
τ
2] for a, b ∈ R.

Finally, we define R := [a, b]. In addition, let λ ∈ N be such that

λτ ≤ µ(Raug) < (λ+ 1)τ.

We observe that the number of grid points in R|G and Raug|G is bounded by

λ− 1 ≤ |R|G | ≤ λ ≤ |Raug|G | ≤ λ+ 1.

24

2.2 Fundamental Quantities and Definitions

Moreover, we see that

|R|G |
|U|G |

≤ λ

λ0 + 1
≤ λ

λ0
=

λτ

λ0τ
≤ µ(Raug)

µ(U)
.

So, it is more likely that a random point in U lies inside of Raug than that a random
point in U|G lies inside of R|G. The inequality

pr(R|G) ≤ pr(Raug)

is valid independently of the actual choice or location of R. ©

Issue 8: There is still no general relation between pr(f|G) and pr(f).

The probability pr(f) is defined as the ratio of volumes. The definition is, in par-
ticular, independent of the location and shape of the involved sets. As an example,
we consider the three different (shaded) regions in Figure 2.3 that all have the same
volume.

x2

x1

x2

x1

x2

x1

(a) (b) (c)

Figure 2.3: The volume of the shaded region R is the same in all three pictures.
Depending on the shape and location of R, it covers various fractions of
the discrete set G. For example: (a) a quarter, (b) a half, (c) nothing.

We observe that the shape and the location matter if we derive the induced ratio for
points in G. The discrepancy between the ratios is caused by the implicit assumption
that the grid unit τ is sufficiently small. (Asymptotically, the ratios approach the
same limit in the three illustrated examples for τ → 0.) Making this assumption
explicitly leads to a second constraint on the precision L, which we call the grid unit
condition. To solve this issue, we need a way to adjust the grid unit τ to the shape
of R. We solve this problem in Section 2.2.4.

Summary and validation of pr(f|G)
We summarize our considerations so far. The analysis of a guarded algorithm must
reflect its actual behavior. Therefore, we have defined the success probability of

25

2 General Analysis Tool Box for Controlled Perturbation

a floating-point evaluation of f in Formula (2.5) such that it is based on the be-
havior of guards. Furthermore, we have studied the interrelationship between the
success probability for floating-point and real arithmetic to prepare the analysis in
real space. Keep in mind that we have introduced a specialized perturbation on a
regular grid G (in practice and in analysis), which is necessary for the derivation of
the interrelationship. Moreover, we now make this relationship explicit for a single
interval. (The general relationship is formulated in Section 2.2.4.)

Example 2.4. (Continuation of Example 2.3). Let f : U → R. We assume the
following property of R: If x ∈ U|G lies outside of R, then the guard G(x) is true.
Then we have

pr(f|G) =
| {x ∈ U|G : G(x) is true} |

|U|G |

≥ 1 − |R|G ||U|G |

≥ 1 − µ(Raug)

µ(U)
.

We conclude: If we prove by means of abstract mathematics that

1 − µ(Raug)

µ(U)
≥ p

for a probability p ∈ (0, 1), we have implicitly proven that

pr(f|G) ≥ p

for a randomly chosen grid point in G. Be observe that pr(f|G) is defined only by
discrete quantities. ©

Warning: processing exceptional points

We explain in this paragraph why it is absolutely non-obvious how to process excep-
tional points in general. Assume that we want to exclude the set D ⊂ A from the
analysis. This changes our success probability from Formula (2.5) into

pr(f|G) = min
x̄∈A

∣

∣

{

x ∈ Ūδ(x̄)|G : G(x) is true
}

\D
∣

∣

∣

∣ Ūδ(x̄)|G
∣

∣

≥ min
x̄∈A

max
{

0,
∣

∣

{

x ∈ Ūδ(x̄)|G : G(x) is true
}∣

∣− |D|
}

∣

∣ Ūδ(x̄)|G
∣

∣

.

To obtain a practicable solution, it is reasonable to assume that D is finite and,
moreover, that |D| ≪

∣

∣ Ūδ(x̄)|G
∣

∣. This changes the relation in Example 2.4 into:

pr(f|G) ≥ max

{

0, 1− µ(Raug)

µ(U)
− |D|
∣

∣ Ūδ(x̄)|G
∣

∣

}

.

26

2.2 Fundamental Quantities and Definitions

This estimate still contains two quantities that depend on the floating-point arith-
metic. But our plan was to eliminate this dependency. In spite of the simplifying
assumptions, it is non-obvious how to perform the analysis in real space in general.
Our suggested solution to this problem is to avoid exceptional points. Alternatively,
we declare them critical (see next section), which triggers an exclusion of their envi-
ronment.

2.2.3 Fp-safety Bound, Critical Set, Region of Uncertainty

The fp-safety bound

The sign of a floating-point evaluation is verified by a guard G. The essential part of
its realization is the fp-safety bound. We show in Section 2.9 that there are fp-safety
bounds for a wide class of functions.

Definition 2.6 (lower fp-safety bound). Let (f, k,A, δ, emax) be a predicate descrip-
tion. Let Sinf f : N → R≥0 be a monotonically decreasing function that maps a
precision L to a non-negative value. We call Sinf f a (lower) fp-safety bound for f on
A if the statement

|f(x)| > Sinf f (L) ⇒ sign(f(x)|FL
) = sign(f(x)) (2.6)

is true for every precision L ∈ N and for all x ∈ Ūδ(A)|FL
.

For the time being, we consider K to be a constant. We abandon this assumption
in Section 2.10 where we introduce upper fp-safety bounds. Until then, we only
consider lower fp-safety bounds.

The critical set

We next introduce a classification of the points in Ūδ(A) in dependence on their
neighborhood. (We refine the definition on Page 85.)

Definition 2.7 (critical). Let (f, k,A, δ, emax) be a predicate description. We call a
point c ∈ Ūδ(x̄) critical if

inf
x∈Uε(c)\{c}

|f(x)| = 0 (2.7)

on a neighborhood Uε(c) for infinitesimal small ε > 0. Furthermore, we call zeros of
f that are not critical less-critical. Points that are neither critical nor less-critical
are called non-critical. We define the critical set Cf,δ of f at x̄ ∈ A with respect to
δ as the union of critical and less-critical points within Ūδ(x̄).

In other words, we call c critical if there is a Cauchy sequence7 (ai)i∈N in Ūδ(x̄)\{c}
where limi→∞ ai = c and limi→∞ f(ai) = 0. We remember that the metric space8

Rk is complete, that is, the limit of the sequence (ai) lies inside of the closure Ūδ(x̄).
We sometimes omit the indices of the critical set C if they are given by the context.

7Analysis: The Cauchy sequence is defined in Forster [30].
8Topology: Metric space and completeness are defined in Jänich [46].

27

2 General Analysis Tool Box for Controlled Perturbation

Example 2.5. We consider the three functions that are depicted in Figure (2.4).
Let f1(x) = x2. Let f2(x) = x2 for x 6= 0, and f2(0) = 2. Let f3(x) = x2 + 1 for
x 6∈ {−2, 1}, and f3(−2) = 0, and f3(1) = 0.2.

f3(x)f2(x)f1(x)

0 0x x x1−2

(a) (b) (c)

Figure 2.4: Examples of critical, less-critical and non-critical points.

The point x = 0 in Picture (a) is a zero and a critical point for f1. In (a), every
argument x 6= 0 is non-critical for f1. In (b), f2 is non-zero at x = 0, but x = 0
is a critical point for f2. In (c), the argument x = −2 is less-critical for f3 and the
argument x = 1 is non-critical for f3. ©

What is the difference between critical and less-critical points? We observe that the
point c is excluded from its neighborhood in Formula (2.7). Zeros of f would trivially
be critical otherwise. Furthermore, we observe that zeros of continuous functions are
always critical. For our purpose, it is important to see that the infimum of |f |
is positive if we exclude the less-critical points itself and neighborhoods of critical
points. We could technically treat both kinds differently in the analysis and still
ensure that the result of the analysis is valid for floating-point arithmetic. Only
for simplicity do we deal with them in the same way by adding these points to the
critical set. Only for simplicity do we also add exceptional points to the critical set.

The region of uncertainty

The next construction is a certain environment of the critical set.

Definition 2.8 (region of uncertainty). Let (f, k,A, δ, emax) be a predicate descrip-
tion. In addition, let γ ∈ Rk>0. We call

Rf,γ(x̄) := Ūδ(x̄) ∩

⋃

c∈Cf,δ(x̄)

Uγ(c)

 (2.8)

the region of uncertainty for f induced by γ with respect to x̄.

In our presentation we use the axis-parallel boxes Uγ(c) to define the specific γ-
neighborhood of C; other shapes require adjustments, see Section 2.2.4. The sets

28

2.2 Fundamental Quantities and Definitions

Uγ(c) are open, and the complement of Rf,γ(x̄) in Ūδ(x̄) is closed. We omit the
indices of the region of uncertainty R if they are given by the context.

The vector γ defines the tuple of componentwise distances to c. The presentation
requires a formal definition of the set of all admissible γ. This set is either a box or
a line. Let γ̂ ∈ Rk>0. Then we define the unique open axis-parallel box with vertices
0 and γ̂ as

Γ-box γ̂ :=
{

γ′ = (γ′1, . . . , γ
′
k) : γ

′
i ∈ (0, γ̂i) for all i ∈ I

}

and the open diagonal from 0 to γ̂ inside of Γ-box γ̂ as

Γ-line γ̂ := {γ : γ = λγ̂ with λ ∈ (0, 1)} .

It is important that the γi can be chosen arbitrarily small, whereas the upper bounds
γ̂i are only introduced for technical reasons; we assume that γ̂ is “sufficiently” small.9

Occasionally, we omit γ̂.
We have already seen that there is need to augment the region of uncertainty (see

Issue 7 and 8 in Section 2.2.2). This is accomplished by the mapping γ 7→ aug(γ) := γ
t

for t ∈ (0, 1). Later on we use the fact that γ ∈ Γ-box γ̂ if aug(γ) ∈ Γ-box γ̂ , and
γ ∈ Γ-line γ̂ if aug(γ) ∈ Γ-line γ̂ . We call Rf,aug(γ) the augmented region of uncertainty
for f under aug(γ). We denote by Γ the set of valid augmented γ and include it in
the predicate description.

Definition 2.9. We extend Definition 2.4 and call (f, k,A, δ, emax ,Γ) a predicate
description if: 7. Γ = Γ-line γ̂ or Γ = Γ-box γ̂ for a sufficiently small γ̂ ∈ Rk>0.

2.2.4 The Grid Unit Condition

We must base the analysis on a reliable relation between the success probability
for floating-point arithmetic and the one for real arithmetic. We can ensure such a
relation with an additional constraint on the precision. We stress that we do not
consider function values here; we consider the size of the subset of floating-point
numbers which are covered by the region of uncertainty. This is the first time the
precision of the floating-point arithmetic has been adjusted to the shape of the region
of uncertainty.

We adjust the distance of grid points (i.e., the grid unit τ) to the “width” of the
region of uncertainty γ. As we have seen in Issue 8 in Section 2.2.2, the grid unit
τ must be sufficiently small (i.e., L must be sufficiently large) to derive a reliable
probability pr(f|G) from pr(f). The problem is illustrated in Figure 2.3 on page 25.
We call this additional constraint on L the grid unit condition

L ≥ Lgrid (2.9)

for a certain Lgrid ∈ N and expect that this constraint guarantees τ ≪ γ. We derive
the threshold Lgrid in the following. We refine the concept of the augmented region

9This information can be ignored in first reading. More information and the formal bound is given
in Remark 2.2.2 on Page 38.

29

2 General Analysis Tool Box for Controlled Perturbation

of uncertainty which we mentioned briefly in Section 2.2.2. The discussion of Issue 7
suggests an additive augmentation γ = aug(γ′) that fulfills

τ0
(I)

≤ γ′i
(II)

≤ γi − τ0
for all 1 ≤ i ≤ k, where τ0 is an upper bound on the grid unit. However, in the
analysis, it is easier to handle a multiplicative augmentation

γ
(III)
:=

γ′

t

for a factor t ∈ (0, 1), so that we define aug(γ′) := γ′

t
. We call 1

t
the augmentation

factor for the region of uncertainty. Together, this leads to the implications

(I) and (III) ⇒ τ0 ≤ t · min
1≤i≤k

γi,

(II) and (III) ⇒ τ0 ≤ (1− t) · min
1≤i≤k

γi,

and consequently, ⇒ τ0
(IV)

≤ min {t, 1− t} · min
1≤i≤k

γi.

Furthermore, we demand that τ0 is a power of 2 which turns (IV) into the equality

τ0
(V)
= 2⌊log2(min{t,1−t}·min1≤i≤k γi)⌋.

Due to Formula (2.3) in Definition 2.5, we also know that

τ0
(V I)
= 2emax−Lgrid−1.

Therefore, we can deduce Lgrid from (V) and (V I) as

Lgrid(γ) :=

⌈

emax − 1− log2

(

min {t, 1− t} · min
1≤i≤k

γi

)⌉

. (2.10)

As an example, we obtain Lgrid(γ) = ⌈emax − log2 min1≤i≤k γi⌉ for t = 1
2 . Without

loss of generality, we restrict the choice of the parameter t to values of at least 1
2

from now on. This way, we get rid of the min expression in the Formulas. We refine
the notion of a predicate description.

Definition 2.10. We extend Definition 2.9 and call (f, k,A, δ, emax,Γ, t) a predicate
description if: 8. t ∈

[

1
2 , 1
)

.

We are now able to summarize the construction above.

Theorem 2.1. Let (f, k,A, δ, emax,Γ, t) be a predicate description. Then

µ (Rγ(x̄))

µ (Uδ(x̄))
≥ |Rtγ(x̄)|GL

|
|Uδ(x̄)|GL

| (2.11)

for all precisions L ≥ Lgrid(γ), where Lgrid is defined in Formula (2.10).

30

2.2 Fundamental Quantities and Definitions

We add some remarks on the grid unit condition. First, Unequation (2.11) guar-
antees that the success probability for grid points is at least the success probability
for real arithmetic. This justifies the analysis in real space.

Second, the grid unit condition is a fundamental constraint: It does not depend
on the function that realizes the predicate, the dimension of the (projected or full)
perturbation area, the perturbation parameter, or the critical set. The threshold
Lgrid mainly depends on the augmentation factor 1

t
and γ. In particular, we observe

that an additional bit of the precision is sufficient to fulfill the grid unit condition
for γ

2 , i.e.,

Lgrid

(γ

2

)

= Lgrid(γ) + 1.

Third, we have defined the region of uncertainty Rf by means of axis-parallel
boxes Uγ(c) for c ∈ Cf in Definition 2.8. If Rf is defined in a different way, we must
appropriately adjust the derivation of Lgrid in this section.

Finally, we observe that the grid unit condition solves Issue 8 from Section 2.2.2.
We reconsider the example in Figure 2.3 on page 25 and observe that the grid unit in
Picture (a) fulfills the grid unit condition, whereas the condition fails in Pictures (b)
and (c). Obviously, τ ≫ γ in the latter cases.

2.2.5 Overview: Classification of the Input

In practice and in the analysis, we deal with real-valued functions whose signs decide
predicates. The arguments of these functions belong to the perturbation area. In
this section we give an overview of the various characteristics for function arguments
that we have introduced so far. We strictly distinguish between terms of practice
and terms of the analysis.

The diagram of the practice-oriented terms is shown in Figure 2.5. We consider
the discrete perturbation area Uδ |G. Controlled perturbation algorithms ACP are
designed with the intent to avoid the implementation of degenerate cases and to
compute the combinatorial correct solution. Therefore, the guards in the embedded
algorithm AG must fail for the zero set and for arguments whose evaluations lead to
wrong signs. The guard is designed such that the evaluation is definitely fp-safe if
the guard does not fail (light-shaded region). Unfortunately, there is no convenient
way to count (or bound) the number of arguments in Uδ |G for which the guard fails.
For this reason we perform the analysis with real arithmetic and introduce further
terms.

The diagram of the analysis-oriented terms is shown in Figure 2.6. We consider
the real perturbation area Uδ . Instead of the zero set, we consider the critical set
(see Definition 2.7). The critical set is a superset of the zero set. Then we choose the
region of uncertainty as a neighborhood of the critical set (see Definition 2.8). We
augment the region of uncertainty to obtain a result that is also valid for floating-
point evaluations. We intend to prove fp-safety outside of the augmented region of
uncertainty (i.e., on the light-shaded region). Therefore, we design a fp-safety bound

31

2 General Analysis Tool Box for Controlled Perturbation

In Practice

guard fails
zero set

wrong sign

fp-safe evaluation

Figure 2.5: The diagram of the practice-oriented terms.

In the Analysis

augmented
region of uncertainty

fp-safety bound fails

region of uncertainty

critical set
zero set

wrong sign

guard fails

provable fp-safe evaluation

Figure 2.6: The diagram of the analysis-oriented terms (shown in black).

that is true outside of the region. This way, we can guarantee that the evaluation of
a guard (in practice) only fails on a subset of the augmented region (in the analysis).

2.2.6 Applicability and Verifiability of Functions

We study the circumstances under which we may apply controlled perturbation to
a predicate in practice and under which we can actually verify its application in
theory. We stress that we are talking about a qualitative analysis here; the desired
quantitative analysis is derived in the following sections.

Actually, verifiability is not necessary for the presentation of the analysis tool
box. However, the distinction between applicability, verifiability, and analyzability
was important during the development of the topic for this dissertation. We keep
it in the presentation because it may also be helpful to the reader. Anyway, it is
possible to skip this section, and even assuming equality between verifiability and
analyzability will do no harm.

In practice

We specify the function property that the probability of a successful evaluation of f
gets arbitrarily close to the certain event by increasing the precision.

Definition 2.11 (applicable). Let (f, k,A, δ, emax) be a predicate description. We
call f applicable if for every p ∈ (0, 1) there is Lp ∈ N such that the guarded evalua-

32

2.2 Fundamental Quantities and Definitions

tion of f is successful at a randomly perturbed input x ∈ Ūδ(x̄)|GL
with probability

at least p for every precision L ∈ N with L ≥ Lp and every x̄ ∈ A.

Applicable functions can safely be used in guarded algorithms: Since the precision
L is increased (without limit) after a predicate has failed, the success probability gets
arbitrarily close to 1 for each predicate evaluation. As a consequence, the success
probability of AG gets arbitrarily close to 1, too.

In the qualitative analysis

Unfortunately, we cannot check directly if f is applicable. Therefore, we introduce
two properties that imply applicability.

Definition 2.12. Let (f, k,A, δ, emax,Γ-line, t) be a predicate description.

• (region-condition). For every p ∈ (0, 1), there is γ ∈ Rk>0 such that the geo-
metric failure probability is bounded in the way

µ(Rγ(x̄))

µ(Uδ(x̄))
≤ (1− p) (2.12)

for all x̄ ∈ A. We call this condition the region-condition.

• (safety-condition). There is a fp-safety bound Sinf f : N→ R>0 on Ūδ(A) with
10

lim
L→∞

Sinf f (L) = 0. (2.13)

We call this condition the safety-condition.

• (verifiable). We call f verifiable on Ūδ(A) for controlled perturbation if f fulfills
the region-condition and the safety-condition.

The region-condition guarantees the adjustability of the volume of the region of
uncertainty. Note that the region-condition is actually a condition on the critical
set. It states that the critical set is sufficiently “sparse”.

The safety-condition guarantees the adjustability of the fp-safety bound. It states
that for every ϕ > 0, there is a precision Lsafe ∈ N with the property that

Sinf f (L) ≤ ϕ (2.14)

for all L ∈ N with L ≥ Lsafe. We give an example of a verifiable function.

Example 2.6. Let A ⊂ R be an interval, let δ ∈ R>0 and let f : Ūδ(A) → R be a
univariate polynomial11 of degree d with real coefficients, i.e.,

f(x) = ad · xd + ad−1 · xd−1 + . . .+ a1 · x+ a0.

10Technically, the assumption Sinf f (L) > 0 is no restriction.
11We avoid the usual notation f ∈ R[x] to emphasize that the domain of f must be bounded.

33

2 General Analysis Tool Box for Controlled Perturbation

We show that f is verifiable.
Part 1 (region-condition). Because of the fundamental theorem of algebra (see, e.g.,
Lamprecht [53]), f has at most d real roots. Therefore, the size of the critical set Cf
is bounded by d, and the volume of the region of uncertainty Rγ(x̄) is upper-bounded
by 2dγ. For a given p ∈ (0, 1), we then choose

γ :=
(1− p)δ

d

which fulfills the region-condition because of

µ(Rγ(x̄))

µ(Uδ(x̄))
≤ 2γd

2δ
= 1− p.

Part 2 (safety-condition). Corollary 2.18 on page 82 provides the fp-safety bound

Sinf f (L) := (d+ 2) max
1≤i≤d

|ai| 2(d+1)emax+1−L

for univariate polynomials. Since Sinf f (L) converges to zero as L approaches infinity,
the safety-condition is fulfilled. Therefore, f is verifiable. ©

We show that if a function is verifiable, it has a positive lower bound on its absolute
value outside of its region of uncertainty.

Lemma 2.2. Let (f, k,A, δ, emax,Γ-line, t) be a predicate description, and let f be
verifiable. Then, for every γ ∈ Rk>0, there is ϕ ∈ R>0 with

ϕ ≤ |f(x)| (2.15)

for all x ∈ Ūδ(x̄) \Rγ(x̄) and for all x̄ ∈ A.
Proof. We assume the opposite. That means, in particular, for every i ∈ N, there
is ai ∈ Ūδ(x̄) \ Rγ(x̄) such that |f(ai)| < 1

i
. Then (ai)i∈N is a bounded sequence

with accumulation points in Ūδ(x̄) \Rγ(x̄). These points must be critical and hence
belong to Rγ(x̄). This is a contradiction.

Finally, prove that verifiability of functions implies applicability.

Lemma 2.3. Let (f, k,A, δ, emax,Γ-line, t) be a predicate description, and let f be
verifiable. Then f is applicable.

Proof. Let p ∈ (0, 1). Then the geometric success probability is bounded by p.
Therefore, there must be an upper bound on the volume of the region of uncertainty
(see Definition 2.12). In addition, there is a precision Lgrid such that we may interpret
this region as an augmented region Raug(γ) (see Theorem 2.1). Furthermore, there
must be a positive lower bound on |f | outside of Rγ (see Lemma 2.2). Moreover, there
must be a precision Lsafe for which the fp-safety bound is smaller than the bound
on |f |. This implies that the guarded evaluation of f is successful at a randomly
perturbed input with probability at least p for every precision L ≥ max{Lsafe, Lgrid}.
So, f is applicable (see Definition 2.11).

34

2.3 General Analysis Tool Box (Introduction)

2.3 General Analysis Tool Box

The general analysis tool box to analyze controlled perturbation algorithms is pre-
sented in the remainder of this chapter. We call the presentation a tool box because
its components are strictly separated from each other and sometimes allow alterna-
tive derivations. In particular, we present three ways to analyze functions. Here, we
briefly introduce the tool box and refer to the detailed presentation of its components
in the subsequent sections. The decomposition of the analysis into well-separated
components and their precise description is an innovation of this presentation.

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

forward

error

analysis

(a) (c)(b)

direct

approach

f

forward

error

analysis

f

forward

error

analysis

f

approachapproach

bottom-up top-down

method of

quantified relations quantified relations

method of method of

quantified relations

2n
d
st
ag
e:

1s
t
st
ag
e:

d
et
er
m
in
e
b
ou

n
d
s

d
er
iv
e
re
la
ti
on

safety-s.value-s.region-s. region-s. value-s. safety-s. region-s. value-s. safety-s.

precision function Lf precision function Lf precision function Lf

Figure 2.7: Illustration of the various ways to analyze functions.

The tool box is subdivided into components. We begin by explaining the analysis
of functions. The diagram in Figure 2.7 illustrates three ways to analyze functions.
We subdivide the function analysis in two stages. The analysis itself in the sec-
ond stage requires three necessary bounds, also known as the interface, which are
defined in Section 2.4: region-suitability, value-suitability and safety-suitability. In
Section 2.5, we introduce the method of quantified relations, which represents the
actual analysis in the second stage. In the first stage, we pay special attention to the
derivation of two bounds of the interface and suggest three different ways to solve
the task. We show in Section 2.6 how the bounds can be derived in a direct approach
from geometric measures. Furthermore, we show how to build up the bounds for
the desired function from simpler functions in a bottom-up approach in Section 2.7.
Moreover, we present a derivation of the bounds by means of a “sequence of bounds”
in a top-down approach in Section 2.8. Finally, we show how we can derive the third
necessary bound of the interface with an error analysis in Section 2.9.

We deal with the analysis of algorithms in Section 2.12. The idea is illustrated in
Figure 2.25 on page 89. We again subdivide the analysis into two stages. The actual
analysis of algorithms is the method of distributed probability, which represents the

35

2 General Analysis Tool Box for Controlled Perturbation

second stage and is explained in Section 2.12.3. The interface between the stages is
subdivided in two groups. (1) There are algorithm prerequisites (to the left of the
dashed line in the figure). These bounds are defined and derived in Section 2.12.1:
evaluation-suitability, predicate-suitability and perturbation-suitability. (2) There are
predicate prerequisites (to the right of the dashed line in the figure). These are
determined by means of function analyses.

36

2.4 Necessary Conditions for the Analysis of Functions (Interface)

2.4 Necessary Conditions for the Analysis of Functions

The method of quantified relations, which is introduced in the next section, actu-
ally performs the analysis of real-valued functions. We prepare its applicability be-
low. In Section 2.4.1, we present three necessary conditions: the region-, value- and
safety-suitability. Together, these conditions are also sufficient to apply the method.
Because these conditions are deduced in the first stage of the function analysis (see
Section 2.6–2.9) and are used in the second stage (see Section 2.5), we also refer to
them as the interface between the two stages (see Figure 2.8). This is the first time
that we precisely define the prerequisites of the function analysis. The definitions are
followed by an example. In Section 2.4.2, we summarize all function properties.

region-suitable value-suitable safety-suitable

Figure 2.8: The interface between the two stages of the analysis of functions.

2.4.1 Analyzability of Functions

We define and explain the three function properties that are necessary for the anal-
ysis. Their associated bounding functions constitute the interface between the two
stages. Informally, the properties have the following meanings:

• We can reduce the volume of the region of uncertainty to any arbitrarily small
value (region-suitability).

• There are positive and finite limits on the absolute value of f outside of the
region of uncertainty (value-suitability).

• We can reduce the rounding error in the floating-point evaluation of f to any
arbitrarily small value (safety-suitability).

The region-suitability

The region-suitability is a geometric condition on the neighborhood of the critical
set. We demand that we can adjust the volume of the region of uncertainty to any
arbitrarily small value. For technical reasons we need an invertible bound.

Definition 2.13 (region-suitable). Let (f, k,A, δ, emax ,Γ-line, t) be a predicate de-
scription. We call f region-suitable if the critical set of f is either empty or if there
is an invertible upper-bounding function12

νf : Γ-line→ R>0

12Instead of νf we can also use its complement χf . See the following Remark 2.2.4 for details.

37

2 General Analysis Tool Box for Controlled Perturbation

on the volume of the region of uncertainty with the property: For every p ∈ (0, 1),
there is γ ∈ Γ-line such that

µ(Rγ(x̄))

µ(Uδ(x̄))
≤ νf (γ)

µ(Uδ(x̄))
≤ (1− p) (2.16)

for all x̄ ∈ A.
Remark 2.2. We add several remarks on the definition above.

1. Region-suitability is related to the region-condition in the following way: The
criterion for region-suitability results from the replacement of µ(Rγ(x̄)) in For-
mula (2.12) with a function νf . This changes the region-condition in Definition 2.12
into a quantitative bound.

2. Of course, controlled perturbation cannot work if the region of uncertainty
covers the entire perturbation area of x̄. We have said that we consider γ ∈ Γ-line γ̂
for a “sufficiently” small γ̂ ∈ Rk>0. More formally, we postulate ν(γ̂) ≪ µ(Uδ(x̄)).
To keep the notation as plain as possible, we are aware of this fact and do not make
this condition explicit in our statements.

3. The invertibility of the bonding function νf is essential for the method of
quantified relations as we see in the proof of Theorem 2.6. It is used there to deduce
the parameter γ from the volume of the region of uncertainty—with the exception
of an empty critical set that does not imply any restriction on γ.

4a. The function νf provides an upper bound on the volume of the region of
uncertainty within the perturbation area of x̄. It is sometimes more convenient to
consider its complement

χf (γ) := µ (Uδ(x̄)) − νf (γ). (2.17)

The function χf (γ) provides a lower bound on the volume of the region of provable
fp-safe inputs.

4b. The special case νf ≡ 0 corresponds to the special case χf ≡ µ (Uδ(x̄)). Then
the critical set is empty and there is no region of uncertainty. This implies that
ϕf (γ) can also be chosen as a constant function (see the value-suitability below).

4c. Based on Formula (2.17), we can demand the existence of an invertible function
χf : Γ-line → R>0 instead of νf in the definition of region-suitability. That means,
either χf ≡ µ (Uδ(x̄)) or χf : Γ-line→ R>0 in an invertible function.

5. We make the following observations about region-suitability: (a) If the critical
set is finite, f is region-suitable. (b) If the critical set contains an open set, f cannot
be region-suitable. (c) If the critical set is a set of measure zero, it does not imply
that f is region-suitable. Be aware that these properties are not equivalent: If f is
region-suitable, the critical set is a set of measure zero. But a critical set of measure
zero does not necessarily imply that f is region-suitable: In topology, we learn that
Q is dense13 in R; hence, any open ε-neighborhood of Q equals R. In set theory, we
learn that14 |Q| = ℵ0 < 2ℵ0 = |R|; hence, f cannot be region-suitable if the critical
set is (locally) “too dense.” ©
13Topology: “Q is dense in R” means that Q = R. For example, see Jänich [46, p. 63].
14Set Theory: Cardinalities of (infinite) sets are denoted by ℵi. For example, see Deiser [19, 162ff].

38

2.4 Necessary Conditions for the Analysis of Functions (Interface)

The inf-value-suitability

The inf-value-suitability is a condition on the behavior of the function f . We demand
that there is a positive lower bound on the absolute value of f outside of the region
of uncertainty.

Definition 2.14 (inf-value-suitable). Let (f, k,A, δ, emax,Γ-line, t) be a predicate
description. We call f (inf-)value-suitable if there is a lower-bounding function

ϕinf f : Γ-line→ R>0

on the absolute value of f with the property: For every γ ∈ Γ-line, we have

ϕinf f (γ) ≤ |f(x)| (2.18)

for all x ∈ Ūδ(x̄) \Rγ(x̄) and for all x̄ ∈ A.

We extend this definition by an upper bound on the absolute value of f in Sec-
tion 2.10 and call this property sup-value-suitability; until then, we call the inf-
value-suitability simply the value-suitability and also write ϕf instead of ϕinf f . The
criterion for value-suitability results from the replacement of the constant ϕ in For-
mula (2.15) with the bounding function ϕf . This changes the existence statement of
Lemma 2.2 into a quantitative bound.

The inf-safety-suitability

The inf-safety-suitability is a condition on the error analysis of the floating-point
evaluation of f . We demand that we can adjust the rounding error in the evaluation
of f to any arbitrarily small value. For technical reasons, we demand an invertible
bounding function.15

Definition 2.15 (inf-safety-suitable). Let (f, k,A, δ, emax) be a predicate descrip-
tion. We call f (inf-)safety-suitable if there is an injective fp-safety bound Sinf f (L) :
N→ R>0 that fulfills the safety-condition in Formula (2.13) and if

S−1
inf f : (0, Sinf f (1)]→ R>0

is a strictly monotonically decreasing real continuation of its inverse.

We extend the definition by sup-safety-suitability in Section 2.10; until then we
call the inf-safety-suitability simply the safety-suitability.

15We leave the extension to non-invertible or discontinuous functions to the reader. We see in
Section 2.9 that predicates of a wide class lead to continuous bounding functions.

39

2 General Analysis Tool Box for Controlled Perturbation

The analyzability

Based on the definitions above, we next define analyzability, relate it to verifiability,
and give an example for the definitions.

Definition 2.16 (analyzable). We call f analyzable if it is region-, value- and safety-
suitable.

Lemma 2.4. Let f be analyzable. Then f is verifiable.

Proof. If f is analyzable, f is especially region-suitable. Then the region-condition
in Definition 2.12 is fulfilled because of the bounding function νf . In addition, f
must also be safety-suitable. Then the safety-condition in Definition 2.12 is fulfilled
because of the bounding function Sinf f . Together, both conditions imply that f is
verifiable.

We support the definitions above with the example of univariate polynomials.
Because we refer to this example later on, we formulate it as a lemma.

Lemma 2.5. Let f be the univariate polynomial

f(x) = ad · xd + ad−1 · xd−1 + . . .+ a1 · x+ a0 (2.19)

of degree d and let (f, k,A, δ, emax,Γ-line, t) be a predicate description for f . Then f
is analyzable on Ūδ(A) with the following bounding functions

νf (γ) := 2dγ, (2.20)

ϕf (γ) := |ad| · γd, and (2.21)

Sinf f (L) := (d+ 2) max
1≤i≤d

|ai| 2(d+1)emax+1−L.

Proof. For a moment, we consider the complex continuation of the polynomial, i.e.,
f ∈ C[z]. Because of the fundamental theorem of algebra (see, e.g., Lamprecht [53]),
we can factorize f in the way

f(z) = ad ·
d
∏

i=1

(z − ζi)

since f has d (not necessarily distinct) roots ζi ∈ C. Let γ ∈ R>0. Then we can
lower bound the absolute value of f by

|f(z)| ≥ |ad| · γd

for all z ∈ C whose distance to every (complex) root of f(z) is at least γ. This
estimate is especially true for real arguments x whose distance to the orthogonal
projection of the complex roots ζi onto the real axis is at least γ. So, we set the

40

2.4 Necessary Conditions for the Analysis of Functions (Interface)

critical set to16 Cf (x̄) := {Re(ζi) : 1 ≤ i ≤ d} ∩ Ūδ(x̄). This validates the bound ϕf
and implies that f is value-suitable.

Furthermore, the size of Cf is upper-bounded by d for all x̄ ∈ A. This validates
the bound νf . Because νf is invertible, f is region-suitable.

The bounding function Sinf f (L) is proven in Corollary 2.18 in Section 2.9. Because
Sinf f (L) is invertible, f is also safety-suitable. As a consequence, f is analyzable with
the given bounds.

We admit that we have chosen a quite simple example; however, a more com-
plex example would have been a waste of energy since we present three general
approaches to derive the bounding functions for the region- and value-suitability in
Sections 2.6, 2.7, and 2.8. That means, for more complex examples we use more
convenient tools. A well-known approach to derive the bounding function for the
safety-bound is given in Section 2.9.

2.4.2 Overview: Function Properties

At this point, we have introduced all properties that are necessary to precisely char-
acterize functions in the context of the analysis. So, let us review what we have
defined and related so far. We have summarized the most important implications
in Figure 2.9. Controlled perturbation is applicable to a certain class of functions.

applicable

region-suitable

analyzablevalue-suitable

(quantitative) (not quantitative)

verifiable

safety-suitable

Illustration: Function Properties

In Practice
In the Analysis In the Analysis

Figure 2.9: The illustration summarizes the implications of the various function prop-
erties that we have defined in this chapter. A function that is at the
same time region-, value- and safety-suitable is also analyzable (see Def-
inition 2.16). An analyzable function is also verifiable (see Lemma 2.4).
A verifiable function is also applicable (see Lemma 2.3).

For a subset of those functions, we can verify that controlled perturbation works in
practice—without the necessity, or even ability, to analyze their performance. We
remember that no condition on the absolute value is needed for verifiability because
it is not a quantitative property. A subset of the verifiable functions represents the

16Complex Analysis: The function Re(z) maps a complex number z to its real part. For example,
see Fischer et al. [29].

41

2 General Analysis Tool Box for Controlled Perturbation

set of analyzable functions in a quantitative sense. For those functions, there are
suitable bounds on the maximum volume of the region of uncertainty, on the mini-
mum absolute value outside of this region, and on the maximum rounding error. In
the remaining part of the chapter, we are only interested in the class of analyzable
functions.

42

2.5 The Method of Quantified Relations (2nd Stage)

2.5 The Method of Quantified Relations

The method of quantified relations actually performs the function analysis in the
second stage. The component and its interface are illustrated in Figure 2.10. We
introduce the method in Section 2.5.1. Its input consists of three bounding functions
that are associated with the three suitability properties from the last section. The
applicability does not depend on any other condition. The method provides general
instructions to relate the three given bounds. The prime objective is to derive a
relation between the probability of a successful floating-point evaluation and the
precision of the floating-point arithmetic. More precisely, the method provides a
precision function L(p) or a probability function p(L). These are the first step-by-
step instructions for the second stage of the function analysis. An example of its
application follows in Section 2.5.3.

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

method of

quantified relations

2n
d
st
ag
e:

d
er
iv
e
re
la
ti
on

safety-s.value-s.region-s.

precision function Lf

Figure 2.10: The method of quantified relations and its interface.

2.5.1 Presentation

There are no further prerequisites than the three necessary suitability properties
from the last section. Therefore, we can immediately state the main theorem of this
section, whose proof contains the method of quantified relations.

Theorem 2.6 (quantified relations). Let (f, k,A, δ, emax ,Γ-line, t) be a predicate de-
scription, and let f be analyzable. Then there is a method to determine a precision
function Lf : (0, 1) → N such that the guarded evaluation of f at a randomly per-
turbed input is successful with probability at least p ∈ (0, 1) for every precision L ∈ N

with L ≥ Lf (p).

Proof. We show in six steps how we can determine a precision function Lf (p) that
has the property: If we use a floating-point arithmetic with precision Lf (p) for a
given p ∈ (0, 1), the evaluation of f(x)|G is guarded with success probability of at
least p for a randomly chosen x ∈ Ūδ(x̄)|G and for any x̄ ∈ A. An overview of the
steps is given in Table 2.1. We usually begin with Step 1. However, there is an
exception: In the special case that νf ≡ 0, we know that the bounding function ϕ is

43

2 General Analysis Tool Box for Controlled Perturbation

Step 1: relate probability with volume of region of uncertainty (define εν)
Step 2: relate volume of region of uncertainty with distances (define γ)
Step 3: relate distances with floating-point grid (choose t)
Step 4: relate new distances with minimum absolute value (define ϕ)
Step 5: relate minimum absolute value with precision (define Lsafe)
Step 6: relate Lsafe with Lgrid (define Lgrid and Lf)

Table 2.1: Instructions for performing the method of quantified relations.

constant, see Remark 2.2.4 for details. Then we simply skip the first four steps and
begin with Step 5.

Step 1 (define εν). We derive an upper bounding function εν(p) on the volume of
the augmented region of uncertainty from the success probability p in the way

εν(p) := (1− p) · µ(Uδ) (2.22)

= (1− p) ·
k
∏

i=1

(2δi).

That means, a randomly chosen point x ∈ Uδ(x̄) lies inside of a given region of
volume εν(p) with probability at least p. The argumentation of this step is based on
real arithmetic.

Step 2 (define γ). We know that there is γ ∈ Rk>0 that fulfills the region-condition
in Definition 2.12 because f is verifiable. Since f is even region-suitable, we can
also determine γ ∈ Γ-line by means of the inverse of the bounding function νf . The
existence and invertibility of νf is guaranteed by Definition 2.13. Hence, we define
the function

γ(p) := ν−1
f (εν(p)) ∈ Γ-line. (2.23)

We remember that there is an alternative definition of the region-suitability we men-
tioned in Remark 2.2.4. Surely, it is also possible to use the bounding function χf
instead of νf in the method of quantified relations directly; the alternative Steps 1′

and 2′ are introduced in Section 2.5.2.
Step 3 (choose t). We aim for a result that is valid for floating-point arithmetic

although we base the analysis on real arithmetic (see Section 2.2.4). We choose17 t ∈
(0, 1) and define Rtγ as the normal sized region of uncertainty. Due to Theorem 2.1,
the probability that a random point x ∈ Uδ(x̄)|G lies inside of Rtγ(x̄)|G is smaller than
the probability that a random point x ∈ Uδ(x̄) lies inside of Rγ(x̄). Consequently,
if a randomly chosen point lies outside of the augmented region of uncertainty with
probability p, it lies outside of the normal sized region of uncertainty with probability
at least p. Our next objective is to guarantee a floating-point safe evaluation outside
of the normal sized region of uncertainty.

17The analysis works for any choice. However, finding the best choice is an optimization problem.

44

2.5 The Method of Quantified Relations (2nd Stage)

Step 4 (define ϕ). We now want to determine the minimum absolute value outside
of the region of uncertainty Rtγ(x̄). We have proven in Lemma 2.2 that a positive
minimum exists. Because f is value-suitable, we can use the bounding function ϕf
for its determination (see Definition 2.14). That means, we consider

ϕ(p) := ϕf (t · γ(p)).
Step 5 (define Lsafe). So far, we have fixed the region of uncertainty and have

determined the minimum absolute value outside of this region. We now can use the
safety-condition from Definition 2.12 to determine a precision Lsafe, which implies
fp-safe evaluations outside of Rtγ . That means, we want Formula (2.14) to be valid
for every L ∈ N with L ≥ Lsafe. We again use the property that f is analyzable and
use the inverse of the fp-safety bound S−1

inf f in Definition 2.15 to deduce the precision
from the minimum absolute value ϕ(p) as

Lsafe(p) =
⌈

S−1
inf f

(

ϕf

(

t · ν−1
f (εν (p))

))⌉

. (2.24)

Step 6 (define Lgrid and Lf). We numerate the component functions of ν−1
f in

the way ν−1
f (ε) = (ν−1

1 (ε), . . . , ν−1
k (ε)). Then we deduce the bound Lgrid from For-

mula (2.10) and Formula (2.23) in the way

Lgrid(p) :=

⌈

emax − 1− log2

(

(1− t) · min
1≤i≤k

ν−1
i (εν(p))

)⌉

. (2.25)

Finally, we define the precision function Lf (p) pointwise as

Lf (p) := max {Lsafe(p), Lgrid(p)} . (2.26)

Due to the used estimates, any precision L ∈ N with L ≥ Lf (p) is a solution.

2.5.2 Properties

We focus our attention on four properties of the method of quantified relations which
are important for the general analysis.

First, Lsafe is derived from the volume of Rf and is based on the region- and safety
condition in Definition 2.12, whereas Lgrid is derived from the narrowest width of Rf
and is based on the grid unit condition in Section 2.2.4. Of course, Lf (p) must be
large enough to fulfill both constraints.

Second, as we have seen, we can also use the function χf to define the region-
suitability in Definition 2.13. Therefore, we can modify the first two steps of the
method of quantified relations as follows:

Step 1′ (define εχ). Instead of Step 1, we define a bounding function εχ(p) on the
volume of the complement of Rf from the given success probability p. That means,
we replace Formula (2.22) with

εχ(p) := p · µ(Uδ)

= p ·
k
∏

i=1

(2δi) .

45

2 General Analysis Tool Box for Controlled Perturbation

Step 2′ (define γ). Then we can determine γ(p) with the inverse of the bounding
function χf . That means, we replace Formula (2.23) with

γ(p) := χ−1
f (εχ(p)) ∈ Γ-line,

which finally changes Formula (2.24) into

Lsafe(p) =
⌈

S−1
inf f

(

ϕf

(

t · χ−1
f (εχ (p))

))⌉

and Formula (2.25) into

Lgrid(p) :=

⌈

emax − 1− log2

(

(1− t) · min
1≤i≤k

χ−1
i (εχ(p))

)⌉

. (2.27)

All of these changes do not affect the correctness of the method of quantified relations.
Third, the method of quantified relations is absolutely independent of the deriva-

tion of the bounding functions which are associated with the necessary suitability
properties. Especially in Step 2, γ is determined solely by means of the function
ν−1. We illustrate this generality with the examples in Figure 2.11. The three pic-

(a) (b) (c)

2γ

2γ

2γ

Figure 2.11: Visualization of ν−1(εν) in Step 2 of the method of quantified relations.

tures show different regions of uncertainty for the same critical set and the same
volume εν . This is because the region of uncertainties result from different functions
ν−1. We could say that the function ν−1 “knows” how to distribute the region of
uncertainty around the critical set because of its definition in the first stage of the
analysis, for example: (a) as local neighborhoods, (b) as axis-parallel stripes, or (c)
as neighborhoods of local minima of f (the dashed line). (We remark that case (c)
presumes that f is continuous.) Different functions ν−1 naturally lead to different
values of γ as is illustrated in the pictures. Be aware that the method of quantified
relations itself is absolutely independent of the derivation of ν and especially inde-
pendent of the approach by which ν is derived. (We will soon present three different
approaches.)

Forth, the components of the analysis framework can often be replaced by alterna-
tive components. This is why we call the framework analysis tool box. Consider, for

46

2.5 The Method of Quantified Relations (2nd Stage)

example, the variation of the method of quantified relations that derives the success
probability p from a precision L. In addition to the analyzability of f , we merely
require that ϕf is invertible. We observe that the function εν in Formula (2.22) is
always invertible. Therefore, we can transform Formula (2.24) and (2.25) into

pinf(L) := ε−1
ν

(

νf

(

1

t
· ϕ−1

f (Sinf f (L))

))

pgrid(L) := ε−1
ν

(

ν∗

(

2−L+emax−1

1− t

))

,

respectively, where ν−1
∗ is the least growing component function of ν−1

f and ν∗ is the

inversion of ν−1
∗ . This leads to the (preliminary) probability function pf : N→ (0, 1),

pf (L) := min {pinf(L), pgrid(L)}

for parameter t ∈ (0, 1). We develop the final version of the probability function in
Section 2.10.2. Of course, we can also derive appropriate bounding functions for χ
instead of ν as we have explained in the second remark.

2.5.3 Example

In order to become familiar with the usage of the method of quantified relations, we
give a detailed application in the proof of the following lemma.

Lemma 2.7. Let f be a univariate polynomial of degree d as shown in Formula (2.19),
and let (f, k,A, δ, emax,Γ-line, t) be a predicate description. Then we obtain for f :

Lsafe(p) := ⌈−d log2(1− p) + cu⌉ (2.28)

where

cu := log2
(d+ 2) ·max1≤i≤d |ai| · 2(d+1)emax+1

|ad| · (tδ/d)d
.

Proof. The polynomial f is analyzable because of Lemma 2.5. Therefore, we can
determine Lsafe with the first 5 steps of the method of quantified relations (see
Theorem 2.6).
Step 1: Since the perturbation area Uδ(x̄) is an interval of length 2δ, the region of
uncertainty has a volume of at most

εν(p) := 2δ(1 − p).

Step 2: We next deduce γ from the inverse of the function in Formula (2.20), which
means, from ν−1

f (ε) = ε
2d . We obtain

γ(p) := ν−1
f (εν(p)) =

εν(p)

2d
=

δ(1− p)
d

.

47

2 General Analysis Tool Box for Controlled Perturbation

Step 3: We choose t ∈ (0, 1).
Step 4: Due to Formula (2.21), the absolute value of f outside of the region of
uncertainty is lower-bounded by the function

ϕ(p) := |ad| · (t · γ(p))d = |ad| ·
(

tδ(1 − p)
d

)d

.

Step 5: A fp-safety bound Sinf f is provided by Corollary 2.18 on page 82. The
inverse of this function at ϕ(p) is

S−1
inf f (ϕ(p)) = log2

(d+ 2) ·max1≤i≤d |ai| · 2(d+1)emax+1

ϕ(p)
.

Due to Formula (2.24), this leads to

Lsafe(p) :=
⌈

S−1
inf f (ϕ(p))

⌉

=

⌈

log2
(d+ 2) ·max1≤i≤d |ai| · 2(d+1)emax+1

|ad| · (tδ(1 − p)/d)d

⌉

=

⌈

−d log2(1− p) + log2
(d+ 2) ·max1≤i≤d |ai| · 2(d+1)emax+1

|ad| · (tδ/d)d

⌉

as was claimed in the lemma.

Since the formula for Lsafe(p) in the lemma above seems rather complicated, we
interpret it here. We observe that cu is a constant because it is defined only by
constants: The degree d and the coefficients ai are defined by f , and the parameters
emax and δ are given by the input. We make the asymptotic behavior Lsafe(p) =
O (−d log2(1− p)) for p → 1 explicit in the following corollary: We show that d
additional bits of the precision are sufficient to halve the failure probability.

Corollary 2.8. Let f be a univariate polynomial of degree d and let Lsafe : (0, 1)→ N

be the precision function in Formula (2.28). Then

Lsafe

(

1 + p

2

)

= Lsafe(p) + d.

Proof. Due to Formula (2.28), we have:

Lsafe

(

1 + p

2

)

=

⌈

−d log2
(

1−
(

1 + p

2

))

+ cu

⌉

=

⌈

−d log2
(

1− p
2

)

+ cu

⌉

= ⌈−d (log2(1− p)− log2(2)) + cu⌉
= ⌈−d log2(1− p) + d+ cu⌉
= Lsafe(p) + d.

Because d is a natural number, we can pull it out of the brackets.

48

2.6 The Direct Approach Using Estimates (1st Stage, rv-suit)

2.6 The Direct Approach Using Estimates

This approach derives the bounding functions that are associated with region- and
value-suitability in the first stage of the analysis (see Figure 2.12). It is partially
based on the geometric interpretation of the function f at hand. More precisely, it
presumes that the critical set of f is embedded in geometric objects for which we
know simple mathematical descriptions (e.g., lines, circles, etc.). The derivation of
bounds from geometric interpretations is also presented in [59, 60]. In Section 2.6.1,
we explain the derivation of the bounds. In Section 2.6.2, we show some examples.

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

direct

approach

f

1s
t
st
ag
e:

d
et
er
m
in
e
b
ou

n
d
s

value-s.region-s.

forward

error

analysis

safety-s.

Figure 2.12: The direct approach and its interface.

2.6.1 Presentation

The steps of the direct approach are summarized in Table 2.2. To facilitate the pre-
sentation of the geometric interpretation, we assume that the function f is continuous
everywhere and that we do not allow any exceptional points. Then the critical set
of f equals the zero set of f . Hence, the region of uncertainty is an environment of
the zero set in this case. We define the region of uncertainty Rγ as it is defined in
Formula (2.8). In the first step, we must define the domain for γ, which we denote by
Γ-line. Or in other words, we choose γ̂. Certain choices of Γ-line may sometimes be
more useful than others, e.g., cubic environments where γ̂i = γ̂j for all 1 ≤ i, j ≤ k.

Now, assume that we have chosen Γ-line. In the second step, we estimate (an
upper bound on) the volume of the region of uncertainty Rγ by a function νf (γ) for
γ ∈ Γ-line. In the direct approach, we hope that a geometric interpretation of the
zero set supports the estimation. For that purpose it would be helpful if the region
of uncertainty were embedded in a line, a circle, or any other geometric structure
that we could easily describe mathematically.

Assume further that we have fixed the bound νf . In the third step, we need to
determine a function ϕf (γ) on the minimum absolute value of f outside of Rγ . This
is the most difficult step in the direct approach: Although geometric interpretation
may be helpful in the second step, mathematical considerations are necessary to derive
ϕf . Therefore, we hope that ϕf is “obvious” enough to be guessed. If there is no

49

2 General Analysis Tool Box for Controlled Perturbation

chance to guess ϕf , we need to try one of the alternative approaches from the next
sections, namely, the bottom-up approach or the top-down approach.

Step 1: choose the set Γ-line (define γ̂)
Step 2: estimate νf (γ) in dependence on Γ-line (define νf)
Step 3: estimate ϕf (γ) in dependence on νf (γ) (define ϕf)

Table 2.2: Instructions for performing the direct approach.

2.6.2 Examples

We present two examples that use the direct approach to derive the bounds for the
region-value-suitability.

Example 2.7. We consider the in box predicate in the plane. Let u and v be two
opposite vertices of the box, and let q be the query point. Then in box(u, v, q) is
decided by the sign of the function

f(u, v, q) = f(ux, uy, vx, vy, qx, qy)

:= max {(qx − ux) (qx − vx) , (qy − uy) (qy − vy)} . (2.29)

The function is negative if x lies inside of the box, it is zero if x lies in the boundary,
and it is positive if x lies outside of the box.

Step 1: We choose an arbitrary γ̂ = (γ̂ux , γ̂uy , γ̂vx , γ̂vy , γ̂qx , γ̂qy) ∈ R6
>0.

Step 2: The box is defined by u and v. This fact is truly independent of the choices
for γux , γuy , γvx and γvy . We observe that the largest box inside of the perturbation
area Uδ is the boundary of Uδ itself. This observation leads to the upper bound

νf (γ) = νf (γux , γuy , γvx , γvy , γqx , γqy)

:= 4
(

γqxδy + γqyδx
)

on the volume of the region of uncertainty if we take into account the horizontal
distance γqx and the vertical distance γqy from the boundary of the box. That
means, νf depends on the distances γqx and γqy of the query point q from the zero
set.

Step 3: The evaluation of Formula (2.29) at query points where qx has distance
γqx from ux or vx, and qy has distance γqy from uy or vy, leads to

ϕf (γ) := min
{

∣

∣γ2qx − γqx · |vx − ux|
∣

∣ ,
∣

∣

∣
γ2qy − γqy · |vy − uy|

∣

∣

∣

}

.

The derived bounds fulfill the desired properties. ©

50

2.6 The Direct Approach Using Estimates (1st Stage, rv-suit)

Example 2.8. We consider the in circle predicate in the plane. Let c be the center of
the circle, let r > 0 be its radius, and let q be the query point. Then in circle(c, r, q)
is decided by the sign of the function

f(c, r, q) = f(cx, cy, r, qx, qy)

:= (qx − cx)2 + (qy − cy)2 − r2. (2.30)

The function is negative if x lies inside of the circle, it is zero if x lies on the circle,
and it is positive if x lies outside of the circle.

Step 1: We choose γ̂ = (γ̂cx , γ̂cy , γ̂r, γ̂qx , γ̂qy) ∈ R5
>0 where γ̂qx = γ̂qy . In addition,

we choose γ̂r < r for simplicity.
Step 2: The largest circle that fits into the perturbation area Uδ has radius

min {δx, δy}. If we intersect any larger circle with Uδ, the total length of the cir-
cular arcs inside of Uδ cannot be larger than 2π ·min {δx, δy}. This bounds the total
length of the zero set.

We now define the region of uncertainty by spherical environments: The region of
uncertainty is the union of open discs of radius γqx, which are located at the zeros.
Then the width of the region of uncertainty is given by the diameter of the discs,
i.e., by 2γqx . As a consequence,

νf (γ) = νf (γcx , γcy , γr, γqx , γqy)

:= 4πγqx ·min {δx, δy}

is an upper bound on the volume of Rδ. That means, νf depends on the distance
γqx of the query point q from the zero set.

Step 3: The absolute value of Formula (2.30) is minimal if the query point q lies
inside of the circle and has distance γqx from it. This leads to

ϕf (γ) :=
∣

∣

∣(r − γqx)
2 − r2

∣

∣

∣

= γqx (γqx − 2r) .

The derived bounds fulfill the desired properties. ©

51

2 General Analysis Tool Box for Controlled Perturbation

2.7 The Bottom-up Approach Using Calculation Rules

In the first stage of the analysis, this approach derives the bounding functions as-
sociated with the region- and value-suitability (see Figure 2.13). We can apply this
approach to certain composed functions. That means, if f is composed by g and
h, we can derive the bounds for f from the bounds for g and h under certain con-
ditions. We present some mathematical constructs that preserve the region- and
value-suitability and introduce useful calculation rules for their bounds. Namely, we
introduce the lower-bounding rule in Section 2.7.1, the product rule in Section 2.7.2,
and the min rule and max rule in Section 2.7.3. We point to a general way to for-
mulate rules in Section 2.7.4. The list of rules is by far not complete. Nevertheless,
these rules are already sufficient to derive the bounding functions for multivariate
polynomials, as we show in Section 2.7.5. With the bottom-up approach, we present
an entirely new approach to derive the bounding functions for the region-suitability
and value-suitability. Furthermore, we present a new way to analyze multivariate
polynomials.

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

1s
t
st
ag
e:

d
et
er
m
in
e
b
ou

n
d
s

f

approach

bottom-up

region-s. value-s. safety-s.

analysis

error

forward

Figure 2.13: The bottom-up approach and its interface.

2.7.1 Lower-bounding Rule

Our first rule states that every function is region-value-suitable if there is a lower
bounding function that is region-value-suitable. Note that there are no further re-
strictions on f .

Theorem 2.9 (lower bound). Let (f, k,A, δ, emax,Γ-line, t) be a predicate descrip-
tion. If there is a region-value-suitable function g : Ūδ(A)→ R and c ∈ R>0 where

|f(x)| ≥ c |g(x)|, (2.31)

then f is also region-value-suitable with the following bounding functions:

νf (γ) := νg(γ)

ϕf (γ) := cϕg(γ).

If f is in addition safety-suitable, f is analyzable.

52

2.7 The Bottom-up Approach Using Calculation Rules (1st Stage, rv-suit)

Proof. Part 1 (region-suitable). Let (ai)i∈N be a sequence in the set Uδ(x̄) with
limi→∞ f(ai) = 0. Then Formula (2.31) implies that limi→∞ g(ai) = 0. That means,
critical points of f are critical points of g. Therefore, we set Cf (x̄) := Cg(x̄). As a
consequence, the region bound νf (γ) := νg(γ) is sufficient for the region-suitability
of f .

Part 2 (value-suitable). Because we set Cf (x̄) = Cg(x̄), we have Rf (x̄) = Rg(x̄).
Due to Formula (2.31), the minimum absolute value of f outside of the region of
uncertainty Rf (x̄) is bounded by the minimum absolute value of g outside of the
(same) region of uncertainty Rg(x̄). Hence, the bound ϕf (γ) = cϕg(γ) is sufficient
for the value-suitability of f .

Part 3 (analyzable). Trivial.

2.7.2 Product Rule

The next rule states that the product of region-value-suitable functions is also region-
value-suitable. Furthermore, we show how to derive appropriate bounds.

Theorem 2.10 (product). Let (f, k,Ag ×Agh ×Ah, δ, emax,Γ-line, t) be a predicate
description where Ag ⊂ Rj, Agh ⊂ Rℓ−j and Ah ⊂ Rk−ℓ for j ∈ N0 and ℓ, k ∈ N with
j ≤ ℓ ≤ k. If there are two region-value-suitable functions

g : Ū(δ1,...,δℓ)(Ag ×Agh)→ R

and

h : Ū(δj+1,...,δk)(Agh ×Ah)→ R

such that

f(x1, . . . , xk) = g(x1, . . . , xℓ) · h(xj+1, . . . , xk),

then f is also region-value-suitable with the following bounding functions:

ϕf (γ) := ϕg(γ1, . . . , γℓ) · ϕh(γj+1, . . . , γk) (2.32)

νf (γ) := min

{

k
∏

i=1

(2δi),

νg(γ1, . . . , γℓ)

k
∏

i=ℓ+1

(2δi) + νh(γj+1, . . . , γk)

j
∏

i=1

(2δi)

}

. (2.33)

Furthermore, if j = ℓ, we can replace the last equation by the tighter bound

χf (γ) := χg(γ1, . . . , γj) · χh(γj+1, . . . , γk). (2.34)

If f is in addition safety-suitable, f is analyzable (independent of j = ℓ).

53

2 General Analysis Tool Box for Controlled Perturbation

Ag

Ah

x1, ..., xj

xℓ+1, ..., xk

Rg,(γ1,...,γj)(Ag)

Rh,(γℓ+1,...,γk)(Ah)

Figure 2.14: Case j = ℓ: The (dark-shaded) complement of Rf is the Cartesian
product of the complement of Rg and the complement of Rh.

Proof. Part 1 (value-suitable). Let x ∈ Uδ(x̄) such that (x1, . . . , xℓ) does not lie in
the region of uncertainty18 of g, i.e.,

(x1, . . . , xℓ) 6∈ Rg,(γ1,...,γℓ)(x̄1, . . . , x̄ℓ), (2.35)

and that (xj+1, . . . , xk) does not lie in the region of uncertainty of h, i.e.,

(xj+1, . . . , xk) 6∈ Rh,(γj+1,...,γk)(x̄j+1, . . . , x̄k). (2.36)

Because g and h are value-suitable, we obtain:

|f(x)| = |g(x1, . . . , xℓ)| · |h(xj+1, . . . , xk)|
≥ ϕg(γ1, . . . , γℓ) · ϕh(γj+1, . . . , γk)

= ϕf (γ)

on the absolute value of f .

Part 2 (region-suitable). Because of the argumentation above, we must construct
the region of uncertainty Rf such that x ∈ Rk lies outside of Rf only if the conditions
in Formula (2.35) and (2.36) are fulfilled.

Case j = ℓ. Then the arguments of g and h are disjoint. This case is illustrated in
Figure 2.14. We observe that for each point (x1, . . . , xj) outside of Rg and for each
point (xℓ+1, . . . , xk) outside of Rh, their concatenation x lies outside of Rf . There-
fore, we determine the volume of the complement of Rf inside of the perturbation

18To avoid confusion, we occasionally add the function name to the index of the region of uncertainty
or the perturbation area within the proof, e.g. Rf,γ and Uf,δ .

54

2.7 The Bottom-up Approach Using Calculation Rules (1st Stage, rv-suit)

Ah

Ag

Agh

xℓ+1, ..., xk

x1, ..., xj

xj+1, ..., xℓ Rg,(γ1,...,γℓ)(Ag × Agh)

Rh,(γj+1,...,γk)(Ah × Agh)

Figure 2.15: Case j < ℓ: The (light-shaded) region of uncertainty Rf is the union of
two Cartesian products.

area as

µ (Uf,δ(x̄) \Rf,γ(x̄)) = µ
(

Ug,(δ1,...,δj)(x̄1, . . . , x̄j)

\Rg,(γ1,...,γj)(x̄1, . . . , xj)
)

· µ
(

Uh,(δℓ+1,...,δk)(x̄ℓ+1, . . . , x̄k)

\Rh,(γℓ+1,...,γk)(x̄ℓ+1, . . . , xk)
)

.

As a consequence, Formula (2.34) is true.
Case j < ℓ. In contrast to the discussion above, g and h share the arguments

xj+1, . . . , xℓ. This case is illustrated in Figure 2.15. We denote the projection of the
first j (respectively, the last k − ℓ) coordinates by π≤j (respectively, π>ℓ). In this
case, Formula (2.34) does not have to be true. This is why we define Rf as

Rf,γ(x̄) := Rg,(γ1,...,γℓ)(x̄1, . . . , x̄ℓ)× π>ℓ(Ūδ(x̄))
∪ π≤j(Ūδ(x̄))×Rh,(γj+1,...,γk)(x̄j+1, . . . , x̄k).

We now can upper-bound the volume of Rf by means of νg and νh, which leads
immediately to the sum in the last line of Formula (2.33). Of course, the volume of
the region of uncertainty is bounded by the volume of the perturbation area, which
justifies the first line of Formula (2.33). This finishes the proof.

2.7.3 Min Rule, Max Rule

The next two rules state that the minimum and maximum of finitely many region-
value-suitable functions are also region-value-suitable. Furthermore, we show how
to derive appropriate bounds.

55

2 General Analysis Tool Box for Controlled Perturbation

Theorem 2.11 (min, max). Let g and h be two region-value-suitable functions as
defined in Theorem 2.10. Then the functions

fmin, fmax : Ūδ(Ag ×Agh ×Ah)→ R,

fmin(x1, . . . , xk) := min{g(x1, . . . , xℓ), h(xj+1, . . . , xk)}
fmax(x1, . . . , xk) := max{g(x1, . . . , xℓ), h(xj+1, . . . , xk)}

are region-value-suitable with bounds ϕfmin
and νfmin

for fmin and bounds ϕfmax and
νfmax for fmax where

ϕfmin
(γ) := min{ϕg(γ1, . . . , γℓ), ϕh(γj+1, . . . , γk)}

ϕfmax(γ) := max{ϕg(γ1, . . . , γℓ), ϕh(γj+1, . . . , γk)} (2.37)

νfmin
(γ) := νfmax(γ) := νf (γ) (see Formula (2.33)).

Furthermore, if j = ℓ, we can replace νfmin
(γ) and νfmax(γ) by the tighter bounds

χfmin
(γ) := χfmax(γ) := χg(γ1, . . . , γj) · χh(γj+1, . . . , γk).

If fmin (respectively fmax) is in addition safety-suitable, it is also analyzable (inde-
pendent of j = ℓ).

Proof. The line of argumentation follows the proof of Theorem 2.10 exactly.

2.7.4 General Rule

We do not claim that the list of rules is complete. On the contrary, we suggest that
the approach may be extended by further rules. We emphasize that the bottom-up
approach is constructive; we build new region-value-suitable functions from already
proven region-value-suitable functions. The argumentation always follows the proof
of the product rule, which means that the compound of g and h inherits the desired
property from g and h: (a) outside of the union of the regions of uncertainty for
shared arguments, and (b) inside of the Cartesian product of the complement of the
regions of uncertainty for disjoint arguments (see Figure 2.14).

We remark that if we want to derive the bounds for a specific function f , we
first need to determine the parse tree of f according to the known rules; this may
be a non-obvious task in general. The instructions of the bottom-up approach are
summed up in Table 2.3.

Step 1: determine parse tree according to the rules
Step 2: determine bounds bottom-up according to the parse tree

Table 2.3: Instructions for performing the bottom-up approach.

56

2.7 The Bottom-up Approach Using Calculation Rules (1st Stage, rv-suit)

2.7.5 Example: Multivariate Polynomials

It is important to see that the rules lead to a generic approach to constructing entire
classes of region-value-suitable functions. In the following, we use this approach to
analyze multivariate polynomials. (A different way to analyze multivariate polyno-
mials was presented before in [60].) So far, we know that univariate polynomials
are region-value-suitable. We now show how we transfer the region-value-suitability
property of (k − 1)-variate polynomials to k-variate polynomials by means of the
product rule and the lower bound rule. Moreover, we completely analyze k-variate
polynomials afterwards.

Preparation

We prepare the analysis of multivariate polynomials with further definitions. Let
k ∈ N. For β ∈ Nk0 and x ∈ Rk, we define xβ as the term xβ := xβ11 · . . . · xβkk .

We next define the reverse lexicographic order19 on k-tuples. Let α, β ∈ Nk0. Then
we define α≺β if and only if there is ℓ ∈ {1, . . . , k} such that αj = βj for all ℓ < j ≤ k
and αℓ < βℓ.

In addition, we denote by P(k) the set of bijective functions σ : {1, . . . , k} →
{1, . . . , k}. In other words, P(k) is the set of permutations20 of {1, . . . , k}.

Let α, β ∈ Nk0, and let σ ∈ P(k). We define the permutation σ of a tuple
α = (α1, . . . , αk) by σ(α) :=

(

ασ−1(1), . . . , ασ−1(k)

)

. We further define the reverse
lexicographic order after the permutation σ as

α≺σ β :⇐⇒ σ(α)≺ σ(β).

Let I ⊂ Nk0 be finite. We denote the set of largest elements in I by

Imax := {β ∈ I : there is σ ∈ P(k) such that α≺σβ for all α ∈ I, α 6= β} .

We observe that there may be β ∈ I which do not belong to Imax. We further
observe that different permutations may lead to the same local maximum. For each
β ∈ Imax, we collect these permutations in the set

Pβ(k) := {σ ∈ P(k) : β = max≺σ I} .

The region- and value-suitability

We prove that all multivariate polynomials are region-value-suitable.

Lemma 2.12. Let (f, k,A, δ, emax,Γ-line, t) be a predicate description for the k-
variate polynomial (k ≥ 2)

f(x) :=
∑

ι∈I
aιx

ι

19For lexicographic order see Cormen et al. [18].
20Algebra: For permutation see Lamprecht [53].

57

2 General Analysis Tool Box for Controlled Perturbation

where I ⊂ Nk0 is finite and aι ∈ R 6=0 for all ι ∈ I. Then f is region-value-suitable.
There are bounding functions for every β ∈ Imax:

ϕf (γ) := |aβ | · γβ

χf (γ) :=

k
∏

i=1

2 (δi − βiγi) .

Proof. Preparing consideration. Let β ∈ Imax and let σ ∈ Pβ(k). Once chosen, β
and σ are fixed in this proof. Because of the reverse lexicographic order, the maximal
exponent of xσ(k) in f(x) is βσ(k). Therefore, we can write f as

f(x) = bβσ(k)
· xβσ(k)

σ(k) + bβσ(k)−1 · x
βσ(k)−1

σ(k) + . . . + b1 · xσ(k) + b0

where the bi(xσ(1), . . . , xσ(k−1)) are (k−1)-variate polynomials for 0 ≤ i ≤ βσ(k). We
consider for a moment the complex continuation of the polynomial f , i.e., f ∈ C[z].
Furthermore, we assume21 that the value of bβσ(k)

is not zero. Then there are βσ(k)
(not necessarily distinct) functions ζi : C

k−1 → C such that we can write f as

f(z) = bβσ(k)
(zσ(1), . . . , zσ(k−1)) ·

βσ(k)
∏

i=1

(zσ(k) − ζi(zσ(1), . . . , zσ(k−1))).

We remark that if we consider f as a polynomial in zσ(k) with parameterized coeffi-
cients bi, then the functions ζi define the parameterized roots. Even if the location
of the roots is variable, the total number of the roots is definitely bounded by βσ(k).
In case zσ(k) has a distance of at least γσ(k) to the values ζi, we can lower bound the
absolute value of f by

|f(z)| ≥
∣

∣

∣
bβσ(k)

(

zσ(1), . . . , zσ(k−1)

)

∣

∣

∣
· γβσ(k)

σ(k)
. (2.38)

Therefore, this bound is especially true for real arguments. Before we end the con-
sideration in the complex space, we add a remark. Sagraloff et al. [70, 60] suggested
a way to improve this estimate: While preserving the total region-bound ϕf , it is
possible to redistribute the region of uncertainty around the zeros of f in a way
that the amount of the individual region-contribution per zero may differ; they have
shown that a certain redistribution improves the estimate in Formula (2.38). Next,
we use mathematical induction to prove that f is region-value-suitable.

Part 1 (basis). Let j = 1. Due to Lemma 2.5 univariate polynomials are region-
value-suitable.

Part 2 (inductive step). Let 1 < j ≤ k. We define the function gj as

gj
(

zσ(1), . . . , zσ(j−1)

)

:= bβσ(j)

(

zσ(1), . . . , zσ(j−1)

)

.

21We discuss this assumption in Part 2 of the proof.

58

2.7 The Bottom-up Approach Using Calculation Rules (1st Stage, rv-suit)

Since gj is a polynomial in j − 1 variables, gj is region-value-suitable by induction.
Because of Theorem 2.9, the function |gj | is region-value-suitable with the same
bounds. Furthermore, we define the functions

hj(zσ(j)) := γ
βσ(j)

σ(j)

ϕhj (γσ(j)) := γ
βσ(j)

σ(j)

νhj(γσ(j)) := 2βσ(j)γσ(j).

Obviously, hj is region-value-suitable. We have |fj| ≥ |gj | · hj. Then the product
|gj | · hj is also region-value-suitable because of Theorem 2.10. Be aware that the
construction of the estimate in Formula (2.38) is based on the assumption that the
coefficient bβσ(j)

of fj is not zero. We observe that this is only guaranteed outside
of the region of uncertainty of gj . We further observe that the construction in the
proof of Theorem 2.9 preserves the region of uncertainty, that means, Rgj ⊂ Rfj .
Therefore, the assumption is justified and we can conclude that fj is region-value-
suitable. It remains to be shown that the claimed bounding functions ϕf and νf are
true.

Part 3 (ϕf). The basis j = 1 follows from Lemma 2.5:

ϕf1
(

γσ(1)
)

:= |aβ| · γ
βσ(1)

σ(1) .

(Be aware that the real coefficient aβ is contained in every gj for 1 < j ≤ k.) For
the induction step, let 1 < j ≤ k. We need the following observation: Because of the
reverse lexicographic order, the maximal exponent of xσ(j−1) in the parameterized
coefficient bβσ(j)

(xσ(1), . . . , xσ(j−1)) is βσ(j−1). We have

ϕfj
(

γσ(1), . . . , γσ(j)
)

:= |aβ | ·
j
∏

ℓ=1

γ
βσ(ℓ)

σ(ℓ) .

The case j = k proves the claim.

Part 4 (χf). The basis j = 1 follows from Lemma 2.5:

χf1
(

γσ(1)
)

:= 2
(

δσ(1) − βσ(1)γσ(1)
)

.

For the induction step, let 1 < j ≤ k. Because the argument list of gj and hj are
disjoint, we apply Formula (2.34) and obtain

χfj
(

γσ(1), . . . , γσ(j)
)

:=

j
∏

ℓ=1

2
(

δσ(ℓ) − βσ(ℓ)γσ(ℓ)
)

.

The case j = k proves the claim.

59

2 General Analysis Tool Box for Controlled Perturbation

The analysis

We prove the analyzability of multivariate polynomials and apply the approach of
quantified relations to derive a precision function.

Theorem 2.13 (multivariate polynomial). Let f be a k-variate polynomial (k ≥ 2)
of total degree d as defined in Lemma 2.12, and let (f, k,A, δ, emax,Γ-line, t) be a
predicate description for f with cubical neighborhoods δi = δj and γi = γj for all
1 ≤ i, j ≤ k. Then f is analyzable. Furthermore, we obtain the bounding function

Lsafe(p) = ⌈−β∗ log2 (1− k
√
p) + cm(β)⌉ (2.39)

where

cm(β) := log2
(d+ 1 + ⌈log2 |I|⌉) · |I| ·maxι∈I |aι| · 2demax+β∗+1 · β̂β∗

|aβ | · (tδ1)β
∗

and the bound

Lgrid(p) :=

⌈

emax − 1− log2

(

(1− t) · δ1
(

1− k
√
p
)

β̂

)⌉

.

for β ∈ Imax, β
∗ :=

∑k
1=i βi, and β̂ := max1≤i≤k βi.

We observe that β̂ ≤ d and β∗ ≤ d. Note that the choice of β ∈ Imax is an
optimization problem: We suggest to choose β such that the constant β∗ in the
asymptotic bound Lsafe(p) = O

(

−β∗ log(1− k
√
p)
)

for p→ 1 is small.

Proof. Part 1 (analyzable). Let β ∈ Imax. Due to Lemma 2.12, f is region-value-
suitable. In addition, Corollary 2.19 provides a fp-safety bound Sinf f (L) for k-
variate polynomials in Formula (2.55). The function Sinf f (L) converges to zero and
is invertible. It follows that f is safety-suitable and thus analyzable.

Part 2 (analysis). We apply the approach of quantified relations. Let δ1, γ1 ∈ R>0

and δ1 = δi and γ1 = γi for all 1 ≤ i ≤ k. In addition, let β̂ := max1≤i≤k βi. Step 1′:
We first derive an upper bound εχ on the volume of the complement of the region of
uncertainty according to the precision p. We obtain

εχ(p) := p
k
∏

i=1

2δi = p (2δ1)
k .

Step 2′: Because of the cubical neighborhood, we redefine

χf (γ) := 2k
(

δ1 − β̂γ1
)k

.

60

2.7 The Bottom-up Approach Using Calculation Rules (1st Stage, rv-suit)

Then we use εχ and χf to determine γ1:

χf (γ) = εχ(p)

⇔ 2k
(

δ1 − β̂γ1
)k

= p 2k δk1

⇔
(

1− β̂γ1
δ1

)k

= p

⇒ 1− β̂γ1
δ1

= k
√
p

⇔ γ1(p) :=
δ1
(

1− k
√
p
)

β̂
. (2.40)

Step 3: Since γ represents the augmented region of uncertainty, the normal sized
region is induced by tγ.
Step 4: We fix the bound ϕf on the absolute value and set

ϕ(p) = ϕf (tγ(p))

= |aβ | · (tγ(p))β

= |aβ | ·
k
∏

i=1

(tγi(p))
βi

= |aβ | · (tγ1(p))β
∗

= |aβ | ·
(

tδ1
(

1− k
√
p
)

β̂

)β∗

where β∗ :=
∑k

i=1 βi.
Step 5: To derive the bound on the precision, we consider the inverse of For-
mula (2.55), which is

S−1
inf f (ϕ(p)) = log2

(d+ 1 + ⌈log2 |I|⌉) · |I| ·max |aι| · 2demax+1

ϕ(p)

= log2
(d+ 1 + ⌈log2 |I|⌉) · |I| ·max |aι| · 2demax+1 · (2β̂)β∗

|aβ| · (tδ1
(

1− k
√
p
)

)β∗

= −β∗ log2 (1− k
√
p)

+ log2
(d+ 1 + ⌈log2 |I|⌉) · |I| ·max |aι| · 2demax+1 · (2β̂)β∗

|aβ| · (tδ1)β
∗ .

This way, we obtain the bound

Lsafe(p) :=
⌈

S−1
inf f (ϕ(p))

⌉

.

We further obtain

Lgrid(p) :=

⌈

emax − 1− log2

(

(1− t) · δ1
(

1− k
√
p
)

β̂

)⌉

.

61

2 General Analysis Tool Box for Controlled Perturbation

if we replace the min expression in Formula (2.27) with the right side of For-
mula (2.40).

Since the formula for Lsafe(p) in the lemma above seems rather complicated, we in-
terpret it here. We exemplify the asymptotic behavior Lsafe(p) = O

(

−d log(1− k
√
p)
)

for p→ 1 in the following corollary: We show that “slightly” more than d additional
bits of the precision are sufficient to halve the failure probability.

Corollary 2.14. Let f be a k-variate polynomial (k ≥ 2) of total degree d and let
Lsafe : (0, 1) → N be the precision function in Formula (2.39). Then

Lsafe

(

1 + p

2

)

≤ Lsafe(p) + ⌈λβ∗⌉

where β∗ =
∑k

i=1 βi ≤ d and

λ := log2

1− k
√
p

1− k

√

1+p
2

 .

Proof. All quantities are as defined in Theorem 2.13. We obtain

Lsafe

(

1 + p

2

)

=

⌈

−β∗ log2

(

1− k

√

1 + p

2

)

+ cm(β)

⌉

=

−β∗ log2

(1− k
√
p) ·

1− k

√

1+p
2

1− k
√
p

 + cm(β)

=

−β∗ log2 (1− k
√
p)− β∗ log2

1− k

√

1+p
2

1− k
√
p

 + cm(β)

≤ Lsafe(p) +

β∗ log2

1− k
√
p

1− k

√

1+p
2

.

This proves the claim.

62

2.8 The Top-down Approach Using Replacements (1st Stage, rv-suit)

2.8 The Top-down Approach Using Replacements

This approach derives the bounding functions associated with region- and value-
suitability in the first stage of the analysis (see Figure 2.16). In the bottom-up
approach, we consider a sequence of functions that is incrementally built-up from
simple functions and ends up at the function f under consideration. In contrast to
that, we now construct a sequence of functions top-down that begins with f and
leads to a (different) sequence by dealing with the arguments of f coordinatewise.
However, the top-down approach works in two phases: We only derive the auxiliary
functions in the first phase, and we determine the bounds for the region- and value-
suitability bottom-up in the second phase. This is why we also call this approach
pseudo-top-down.

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

1s
t
st
ag
e:

d
et
er
m
in
e
b
ou

n
d
s

f

approach

top-down

region-s. value-s.

forward

error

analysis

safety-s.

Figure 2.16: The top-down approach and its interface.

The idea of developing a top-down approach is not new and was first introduced
by Mehlhorn et al. [59], followed by their journal article appeared in [60]. As opposed
to previous publications, our top-down approach is different for several reasons: It
is designed to fit to the method of quantified relations, and it is based on our gen-
eral conditions to analyze functions. (We do not need auxiliary constructions like
exceptional points, continuity or a finite zero set.)

New definitions are introduced in Section 2.8.1. We define the basic idea of a
replacement in Section 2.8.2. Subsequently, we show how we can apply a sequence
of replacements to the function under consideration in Section 2.8.3. We present the
top-down approach to derive the bounding functions in Section 2.8.4 and consider
an example in Section 2.8.5. Finally, for clarity, we answer selected questions in
Section 2.8.6.

2.8.1 Definitions

We prepare the presentation with various definitions and begin with a projection.
Let ℓ, k ∈ N with ℓ ≤ k, let I := {1, . . . , k} and let

s : {1, . . . , ℓ} → I

63

2 General Analysis Tool Box for Controlled Perturbation

be an injective mapping. We then define the projection

πs(x) :=
(

xs(1), . . . , xs(ℓ)
)

.

We extend the projection in a natural way to sets X ⊂ Rk by

πs(X) := {πs(x) : x ∈ X} .

Since we often make use of the projection π in the context of an index i ∈ I, we
define the following abbreviations in their obvious meanings:

πi(x) := (xi),

π<i(x) := (x1, . . . , xi−1),

π>i(x) := (xi+1, . . . , xk),

π 6=i(x) := (x1, . . . , xi−1, xi+1, . . . , xk).

We remark on these contextual definitions that the greatest index k is always given
implicitly by the set I of indices. The usage of such orthogonal projections leads to
the following condition on the set A of projected inputs: It is a necessary condition
in the top-down analysis that A as well as the perturbation area Ūδ(A) are closed
axis-parallel boxes without holes.

We briefly motivate the next notation: Assume that the function f has a k-ary
argument. During the analysis of f , we often bind k − 1 of these variables to values
given in a (k − 1)-tuple, say ξ. We do this to study the local behavior of f in
dependence on a single free argument, say xi.

Definition 2.17 (free-variable star). Let (f, k,A, δ, emax,Γ-box, t) be a predicate
description where A is an axis-parallel box without holes. In addition, let I :=
{1, . . . , k}, and let i ∈ I. For each (k − 1)-tuple ξ := (ξ1, . . . , ξi−1, ξi+1, . . . , ξk) ∈
π 6=i(A), we define the function f∗iξ (xi) as

f∗iξ : πi(A)→ R,

xi 7→ f∗iξ (xi) = f(x1, . . . , xk)|xj=ξj ∀j∈I, j 6=i = f(ξ1, . . . , ξi−1, xi, ξi+1, . . . , ξk).

In other words, we consider f∗iξ as the function f where xi is a free variable and
all remaining variables are bound to the tuple ξ. We illustrate the definition with
an example and consider the function f(x1, x2, x3) := 3x21 + 2x32 − 4x3. Then f∗2(4,7)
is a function in x2, and we have

f∗2(4,7)(x2) = f(x1, x2, x3)|x1=4∧ x3=7

= 3 · 42 + 2x32 − 4 · 7 = 2x32 − 20.

We sometimes do not attach the tuple ξ to f∗i to relieve the reading if ξ is uniquely
defined by the context.

64

2.8 The Top-down Approach Using Replacements (1st Stage, rv-suit)

Once we focus on the function f∗iξ in one variable, say xi, we are interested in its
induced critical set. This critical set surely depends on the choice of ξ. We have
seen that the region-suitability is a necessary condition for the analyzability of the
function. Therefore, the next definition is used to mark those ξ for which f∗iξ is or
is not region-suitable.

Definition 2.18 (region-regularity). Let (f, k,A, δ, emax,Γ-box, t) be a predicate
description where A is an axis-parallel box without holes. We call ξ ∈ π 6=i(A) region-
regular if f∗iξ is region-suitable on πi(A). Otherwise, we call ξ non-region-regular.

The region-suitability of f∗iξ implies that the functions νf∗iξ
and χf∗iξ

exist. If i is

fixed, there are families of functions f∗iξ (and hence families of functions νf∗iξ
and

χf∗i
ξ
) that depend on the region-regular ξ. We examine these families in the next

paragraph.

2.8.2 Single Replacement

We hereafter consider the following setting: Let (f, k,A, δ, emax,Γ-box, t) be a predi-
cate description where A is an axis-parallel box without holes, and let I := {1, . . . , k}.
In addition, we denote the domain of f by dom(f).

We develop the top-down approach step-by-step. For a given index i ∈ I, our first
aim is to lower-bound the absolute value of f by a function g, whose argument lists
differ solely in the i-th position. While f depends on xi ∈ πi(Uδ(A)), the function g
depends on a new variable γi ∈ πi(Γ-box). Hence, we say that the construction of g
is motivated by the replacement of xi with γi in the argument list of f .

We present the construction of the function g for a fixed index i ∈ I. We focus
on the functions f∗iξ to study the local behavior of f in its i-th argument. We are

interested in tuples ξ ∈ π 6=i(dom(f)) for which f∗iξ is region-suitable. We collect
these points in the set

Xf,i := {ξ ∈ π 6=i(dom(f)) : ξ is region-regular} .
To understand our interest in the set Xf,i, we remind ourselves of the following fact:
For region-regular ξ, open neighborhoods of the critical set Cf∗iξ

are guaranteed to

exist for any given (arbitrarily small) volume. This is not true for non-region-regular
points which, therefore, must belong to the critical set of the objective function. We
next define the objective function g. Let

g : π<i(dom(f))× πi(Γ-box)× π>i(dom(f))→ R≥0

be the function with the pointwise definition

g(ξ1, . . . , ξi−1, γi, ξi+1 . . . , ξk) :=

0 : ξ 6∈ Xf,i

inf
(C1)

inf
(C2)

∣

∣

∣
f∗iξ (xi)

∣

∣

∣
: ξ ∈ Xf,i

(2.41)

(C1) : x̄i ∈ πi(A)
(C2) : xi ∈ Ūf∗i,δi(x̄i) \Rf∗i,γi(x̄i)

65

2 General Analysis Tool Box for Controlled Perturbation

for all ξ ∈ π 6=i(dom(f)) and all γi ∈ πi(Γ-box). The domains dom(f) and dom(g)
only differ in the i-th coordinate. Whenever ξ is non-region-regular, we set g to zero.
(This is essential for the sequence of replacements in Section 2.8.3 since this handling
triggers the exclusion of an open neighborhood of ξ—and not just the exclusion of
the point ξ itself.) In case ξ is region-regular, we set g to the infimum of the absolute
value of f outside of the region of uncertainty for the various x̄i. Note that we must
consider the infimum in the definition of g in Formula (2.41) because |f∗iξ | does not
need to have a minimum. We do not assume that f is continuous or semi-continuous.

Definition 2.19. We call the presented construction of the function g the function
resulting from the replacement of f ’s argument xi with γi. We denote the replacement
by rep(f, xi → γi).

We summarize the steps during the replacement of an argument of f and empha-
size the relation between the quantities: Let f be given. We then begin with the
consideration of the auxiliary function f∗iξ . We use it to determine the auxiliary
set of region-regular points Xf,i. To determine the function g afterwards, we again
examine f∗iξ , but now only for the points in Xf,i.

In the proof of the analysis in Section 2.8.4, we use the statement that the replace-
ment rep(f, xi → γi) results in a positive function that lower bounds the absolute
value of f in a certain sense. We formalize and prove this statement in the next
lemma.

Lemma 2.15. Let (f, k,A, δ, emax,Γ-box, t) be a predicate description where A is
an axis-parallel box without holes, let I := {1, . . . , k}, and let i ∈ I. Moreover, let
g := rep(f, xi → γi). We then have

|f(ξ1, . . . , ξi−1, xi, ξi+1 . . . , ξk)| ≥ g(ξ1, . . . , ξi−1, γi, ξi+1 . . . , ξk) > 0 (2.42)

for all region-regular points ξ ∈ Xf,i, for all γi ∈ πi(Γ-box), for all x̄i ∈ πi(A), and
for all xi ∈ Ūf∗i,δi(x̄i) \Rf∗i,γi(x̄i).
Proof. The left unequation in Formula (2.42) follows immediately from the construc-
tion of the function g = rep(f, xi → γi) because we only consider points lying outside
of the region of uncertainty Rf∗i,γi(x̄i).

To prove the right unequation in Formula (2.42), we assume that there is a region-
regular ξ ∈ Xf,i and γi ∈ πi(Γ-box) such that g(ξ1, . . . , ξi−1, γi, ξi+1 . . . , ξk) = 0.
This implies that, for x̄i ∈ πi(A), there must be a sequence (aj)j∈N in the area
Ūf∗i,δi(x̄i) \Rf∗i,γi(x̄i) for which limj→∞ f∗iξ (aj) = 0. Consequently, a := limj→∞ aj
must belong to the critical set. Since the region of uncertainty Rf∗i,γi guarantees the
exclusion of the open γi-neighborhood of the critical set (which includes the open γi-
neighborhood of a), almost all points of the sequence (aj)j∈N must also lie in Rf∗i,γi .
This leads to a contradiction to the assumption and proves the claim.

We add that the right unequation in Formula (2.42) presumes that ξ is region-
regular as is stated in the lemma. We obtain g ≡ 0 if Xf,i is the empty set. We
continue with a simple example that illustrates the method to determine rep(f, xi →
γi).

66

2.8 The Top-down Approach Using Replacements (1st Stage, rv-suit)

Example 2.9. Let f(x1, x2) = x21 + x22. Then I = {1, 2}. In addition, let i = 2,
and let A be an axis-parallel rectangle that contains the origin (0, 0). We consider
f∗2ξ1 (x2) = ξ21 +x

2
2. Since f

∗2 is region-suitable, this leads to Xf,2 = π 6=2(A) = π1(A).
We obtain

g(ξ1, γ2) :=

{

γ22 : ξ1 = 0

ξ21 : otherwise.

The critical set of g contains a single point in the case ξ1 = 0 and is empty in the
other case. ©

We end this subsection with two observations. First, although g(ξ1, γ2) > 0 in the
example above, the limit

inf
ξ1∈Xf,2 ∧ ξ1 6=0

g(ξ1, γ2) = 0.

Second, if the lower-bounding function g is region-value-suitable, the function f is
also region-value-suitable because of Theorem 2.9. This observation is the driving
force of the top-down approach.

2.8.3 Sequence of Replacements

We know so far how a variable xi of the argument list of the function f under
consideration can be replaced with a new variable γi. The advantage of the new
variable γi is that it reflects the distance to the critical set, somehow. We announce
that, opposed to xi, the variable γi is appropriate for the analysis. A benefit of γi is
that it is not necessary to study the precise location of the critical set; the knowledge
about the “width” of the critical set is sufficient.

The idea behind the top-down approach is to apply the replacement procedure
k times in a row to replace all original arguments (x1, . . . , xk) of f by the new
substitutes (γ1, . . . , γk) ∈ Γ-box. To keep the presentation as general as possible,
we maintain the order of the k replacements variable. Let σ : I → I be a bijective
function that defines the order in which we replace the arguments of f . We interpret
σ(i) = j as the replacement of xj with γj in the i-th step.

We now look for a recursive definition to derive the sequence g1, . . . , gk of functions
that result from these replacements. We define the basis of the recursion as g0 := f
with g0 : Ūδ(A) → R and dom(g0) = Ūδ(A). We set gi := rep(gi−1, xσ(i) → γσ(i))
for i ∈ I. In other words, we focus on the replacement of xσ(i) in step i ∈ I, which
means that we assume that we have just derived the functions g1, . . . , gi−1. We then
determine the set of region-regular points

Xgi−1,σ(i) :=
{

ξ ∈ π 6=σ(i)(dom(gi−1)) : ξ is region-regular
}

,

so we check if the function

g
∗σ(i)
i−1,ξ : πσ(i)(dom(gi−1))→ R≥0,

g
∗σ(i)
i−1,ξ

(

xσ(i)
)

7→ gi−1

(

ξ1, . . . , ξσ(i)−1, xσ(i), ξσ(i)+1, . . . , ξk
)

67

2 General Analysis Tool Box for Controlled Perturbation

�������
�������
�������

�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

Xgi−1,σ(i)

gi−1 g
∗σ(i)
i−1,ξ

χ
g
∗σ(i)
i−1,ξ

χ̂
g
∗σ(i)
i−1

gi

resultsauxiliary constructionsprevious function

Figure 2.17: Illustration of the dependencies during the i-th replacement. The white-
colored quantities are defined in Section 2.8.3 and the striped quantities
in Section 2.8.4. Here, “A→ B” means that B is derived from A.

is region-suitable for a given ξ. Thereafter, we define the domain of the succeeding
function gi as

gi : π<σ(i)(dom(gi−1))× πσ(i)(Γ-box)× π>σ(i)(dom(gi−1))→ R≥0

and use Xgi−1,σ(i) to define gi(ξ1, . . . , ξσ(i)−1, γσ(i), ξσ(i)+1 . . . , ξk)

:=

0 : ξ 6∈ Xgi−1,σ(i)

inf
(C1)

inf
(C2)

∣

∣

∣g
∗σ(i)
i−1 (xσ(i))

∣

∣

∣ : ξ ∈ Xgi−1,σ(i)
(2.43)

(C1) : x̄σ(i) ∈ πσ(i)(dom(gi−1))

(C2) : xσ(i) ∈ Ūg∗σ(i)
i−1 ,δσ(i)

(x̄σ(i)) \Rg∗σ(i)
i−1 ,γσ(i)

(x̄σ(i))

for all ξ ∈ π 6=σ(i)(dom(gi−1)) and all γσ(i) ∈ πσ(i)(Γ-box). We summarize the relation
between the quantities during the i-th replacement in Figure 2.17. (The striped
quantities are introduced later.)

The definitions above are chosen such that the function gi exists. After the k-th
step, the recursion ends with gk : Γ-box → R≥0. We remark that if we apply
this mechanism to functions that are not admissible for controlled perturbation, the
sequence of replacements will end up with a function gk that fails the analysis from
the next section.

Example 2.10. We return to the 2-dimensional in box-predicate. It is sufficient for
this example to assume that the box is fixed somehow and that the only argument
of the predicate is the query point q = (x1, x2). We this time consider the various
domains and critical sets of the functions gi that result from the sequence of re-
placements. (The order of the replacements is not important for this example.) The
situation is illustrated in Figure 2.18. Picture (a) shows the domain (shaded region)
of the function f = g0. We know that the critical set is the boundary of the query
box.

68

2.8 The Top-down Approach Using Replacements (1st Stage, rv-suit)

x2 x2

γ2 Cg2 = ∅

γ1

γ1

x1

Cg0

dom(g0) dom(g1)

dom(g2)

Cg1

1st phase1st phase

(a) (b) (c)

Figure 2.18: Illustration of the various domains and critical sets that result from the
sequence of replacements for the 2-dimensional in box-predicate.

After the replacement rep(g0, x1 → γ1), the first argument belongs to the set
π1(Γ-box) resulting in an altered domain (see Picture (b)). We make two observa-
tions. First, the critical set of g1 is formed by two horizontal lines that are caused
by the top and bottom part of the box Cg0 . What is the reason for this? If we
consider the absolute value of g0 while moving its argument along a horizontal line
that passes through the top or bottom line segment of the box (x2 is then fixed),
it leads to a mapping that is zero on an open interval; in this case, the mapping
cannot be region-suitable. Second, there are no further contributions to the critical
set of g1. What is the reason? If we consider the absolute value of g0 along a hori-
zontal line that passes through the interior of the box, it leads to a mapping that is
region-suitable.

Picture (c) shows the situation after the second replacement rep(g1, x2 → γ2). The
function g2 is positive on its entire domain Γ-box. The reason for this is that if we
consider the absolute value of g1 along a vertical line (γ1 is then fixed), it leads to a
mapping that is region-suitable. ©

2.8.4 Derivation and Correctness of the Bounds

Although we have replaced each xi with γi in the argument list of f in a top-down
manner, we are not able to determine the bounds νf and ϕf in the same way. To
achieve this goal, we need to go through the collected information bottom-up again.
The reason is that at the time we arrive at a function, say gi−1, we cannot check
directly if gi−1 is region- and value-suitable. Instead, we want the predecessor to
inherit these properties from the successor gi. We will see that, once we arrive at gk,
we can easily check if gk has the desired properties. This way, we can possibly show
that g0 (i.e., f) is also region-value-suitable.

Therefore, we divide the analysis in two phases. The first phase consists of the
deduction of gk via the sequence of replacements and was already presented in the
last section. The second phase consists of the deduction of the bounding functions

69

2 General Analysis Tool Box for Controlled Perturbation

ϕf and χf and is the subject of this section. We begin with an auxiliary statement
which claims that gk is non-decreasing in each argument under certain circumstances.

Lemma 2.16. Let (f, k,A, δ, emax,Γ-box, t) be a predicate description where A is an
axis-parallel box without holes, and let I := {1, . . . , k}. Let σ : I → I be bijective, i.e.,
an order on the elements of I. Finally, let g0 := f and gj := rep(gj−1, xσ(j) → γσ(j))
for all 1 ≤ j ≤ k, i.e., gk is the resulting function after the k replacements. If the
function gk is positive22, it is non-decreasing in γi on πi(Γ-box) for all i ∈ I.
Proof. We refer to the explicit definition of gi in Formula (2.43) that reflects the
replacement of the i-th argument: For growing γσ(i), we shrink the domain for xσ(i)
due to condition (C2). Formally, for γ′, γ′′ ∈ πσ(i)(Γ-box) with γ′ < γ′′, the corre-
sponding regions of uncertainty are related in the way

R
g
∗σ(i)
i−1 ,γ′

(x̄σ(i)) ⊂ R
g
∗σ(i)
i−1 ,γ′′

(x̄σ(i)).

Because the function value of gi is defined by the infimum absolute value, the func-
tion gi must be non-decreasing in its i-th argument γσ(i) for region-regular ξ by
construction.

The same argumentation is true for each of the k replacements and is independent
of the actual sequence of replacements. This finishes the proof.

The domain of the function gk is naturally Γ-box. Even if Γ-box has the same
cardinality than R for k ≥ 2, it is non-obvious how to define an invertible function χgk
on Γ-box. Please note that such a bound is required to use the method of quantified
relations. For this purpose, we restrict the domain in the analysis to Γ-line: It is
true that the elements of γ ∈ Γ-line are now interlinked, but the important fact is
that we can still choose them arbitrarily close to zero.

To further prepare the analysis, we have to focus on a peculiarity of the auxiliary

function g
∗σ(i)
i−1,ξ for a given i ∈ I. Remember that ν

g
∗σ(i)
i−1,ξ

and χ
g
∗σ(i)
i−1,ξ

are families

of functions with parameter ξ ∈ Xgi−1,σ(i). Therefore, we are facing the following
issue: For a given i ∈ I, how can we deal with these two families of functions?
The first solution that occurs to us is to replace each family with just one bounding
function—so this is what we do. We define the pointwise limits of these families as

ν̂
g
∗σ(i)
i−1

(

γσ(i)
)

:= sup
ξ∈Xf,i

ν
g
∗σ(i)
i−1,ξ

(

γσ(i)
)

and

χ̂
g
∗σ(i)
i−1

(

γσ(i)
)

:= inf
ξ∈Xf,i

χ
g
∗σ(i)
i−1,ξ

(

γσ(i)
)

(2.44)

for γ ∈ Γ-box and make use of these new bounds in the analysis. To illustrate this
part in the analysis, we have added the two striped quantities in Figure 2.17.

We are now ready to present the top-down approach to analyze real-valued func-
tions. We claim and prove the results in the following theorem.

22This is why we have defined Γ-box as an open set.

70

2.8 The Top-down Approach Using Replacements (1st Stage, rv-suit)

0
γ

γ̂

γ′

Γ-box γ̂

Γ-line γ̂ Γ-safe γ

Γ-region γ

Figure 2.19: This is an exemplified 2-dimensional illustration of the decomposition
of the Γ-box into the sets Γ-safe γ and Γ-region γ for γ ∈ Γ-line.

Theorem 2.17 (top-down approach). Let (f, k,A, δ, emax,Γ-box, t) be a predicate
description where A is an axis-parallel box without holes, and let I := {1, . . . , k}. Let
σ : I → I be bijective, i.e., an order on the elements of I. Finally, let g0 := f and
gj := rep(gj−1, xσ(j) → γσ(j)) for all 1 ≤ j ≤ k. We define ϕf and χf as

ϕf (γ) := gk(γ)

χf (γ) :=
k
∏

j=1

χ̂
g
∗σ(j)
j−1

(

γσ(j)
)

.

If gk is positive on Γ-box and χf is invertible on23 Γ-line, then f is region-value-
suitable with the bounding functions24 ϕf and χf .

Proof. We prove the claim in three parts. First, we show that there are certain
bounding functions ϕgk and χgk for which gk is region-value-suitable. Second, we
prove that if the function gi has such bounding functions, then gi−1 also has appro-
priate bounding functions. Finally, we deduce the claim of the theorem.

Part 1 (basis). We assume that gk is positive on the open set Γ-box, that means,
we consider the function gk : Γ-box → R>0. To begin with, we decompose the
domain in two parts (see Figure 2.19). Let γ ∈ Γ-line. We define the unique open
axis-parallel box with opposite vertices γ and25 γ̂ as

Γ-safe γ :=
{

γ′ ∈ Γ-box : γi ≤ γ′i for all i ∈ I
}

.

We denote its complement within the Γ-box by

Γ-region γ := Γ-box \ Γ-safe γ .

We think of Γ-region γ as the region of uncertainty and Γ-safe γ as the region whose
floating-point numbers are guaranteed to evaluate fp-safe. We claim that gk is region-

23We know that Γ-line ⊂ Γ-box.
24We can use νf instead of χf because of Formula (2.17).
25We have introduced γ̂ to define Γ-box γ̂ and Γ-line γ̂ . More information and the formal bound is

given in Remark 2.2.2 on Page 38.

71

2 General Analysis Tool Box for Controlled Perturbation

value-suitable on Γ-box in the following sense: We set the bounding functions to

ϕgk(γ) := gk(γ)

χgk(γ) :=
k
∏

j=1

(γ̂j − γj)

and claim that two statements are fulfilled for every γ ∈ Γ-line. They are:

1. The absolute value of gk(γ
′) is at least ϕgk(γ) for all points γ

′ ∈ Γ-safe γ .

2. The volume of Γ-safe γ is χgk(γ).

To prove the first statement, we consider the function value of gk along a path of k
axis-parallel line segments from γ to γ′. The path starts at γ = (γ1, . . . , γk), connects
the (k−1) points (γ′1, . . . , γ

′
j , γj+1 . . . , γk) with 1 ≤ j < k in ascending order of j and

ends at γ′ = (γ′1, . . . , γ
′
k). Along this path, the function value of gk is non-decreasing

because of Lemma 2.16: For all i ∈ I, the function gk is non-decreasing in its i-th
argument γi ∈ πi(Γ-box) for fixed ξ ∈ π 6=i(Γ-box).

The proof of the second statement is straight forward: Because the box is axis-
parallel, its volume is the product of its edge-lengths. We make the observation that
the function χgk(γ) is strictly monotonically increasing on Γ-line and hence must be
invertible on this domain.

We conclude the first part of the proof: For a given γ ∈ Γ-line, we have shown
that the function value of gk is at least ϕgk(γ) on an area of volume χgk(γ). This
way we have found evidence that gk is region-value-suitable in the meaning above.

Part 2 (induction). We claim: For i ∈ I and γ ∈ Γ-line, the function value of gi−1

is at least ϕgi−1(γ) on an area of volume χgi−1(γ) with

ϕgi−1(γ) := ϕgi(γ) (2.45)

χgi−1(γ) := χgi(γ) ·
χ̂
g
∗σ(i)
i−1

(

γσ(i)
)

γ̂σ(i) − γσ(i)
. (2.46)

We prove the claim by mathematical induction for descending i ∈ I. Basis (i = k).
Due to the first part, we can base the proof on the bounding functions ϕgk and χgk .
Induction step (i ∈ I). We assume that the bounding functions are true for all j ∈ I
with i ≤ j ≤ k and prove the claim for i− 1. We do this next.

Remember the definition gi := rep
(

gi−1, xσ(i) → γσ(i)
)

. In the step backwards
from gi to gi−1, we observe the following difference in their two axis-parallel domains
due to condition (C2) of Formula (2.43): The counterpart to the situation in which
the σ(i)-th argument of gi lies in πσ(i) (Γ-safe γ) is the situation in which the σ(i)-th
argument of gi−1 lies in

Ū
g
∗σ(i)
i−1,δσ(i)

(

x̄σ(i)
)

\ R
g
∗σ(i)
i−1,γσ(i)

(

x̄σ(i)
)

(2.47)

72

2.8 The Top-down Approach Using Replacements (1st Stage, rv-suit)

and belongs to the region-regular case. Furthermore, the volume of this area is
guaranteed to be at least χ̂

g
∗σ(i)
i−1

(

γσ(i)
)

due to Formula (2.44). Because the axis-

parallel domains of gi and gi−1 do not differ in directions different to the σ(i)-th
main axis, their volumes (which are the product of edge lengths) solely differ in a
factor. Therefore, we can estimate the volume χgi−1(γ) at the product χgi(γ) where
we replace the factor (γ̂σ(i) − γσ(i)) by χ̂g∗σ(i)

i−1

(γσ(i)); this validates Formula (2.46).

Because of Lemma 2.15, the lower-bounding function ϕgi is also a lower-bounding
function on the volume of the area, which is defined in Formula (2.47). This validates
Formula (2.45).

Part 3 (conclusion). We have shown so far that for a given γ ∈ Γ-line, the function
value of f = g0 is at least ϕf (γ) on an area of volume χf (γ) because

ϕf (γ) = ϕg0(γ) = ϕg1(γ) = · · · = ϕgk(γ) = gk(γ)

and because

χf (γ) = χg0(γ)

= χg1(γ) ·
χ̂
g
∗σ(1)
0

(

γσ(1)
)

γ̂σ(1) − γσ(1)

= χg2(γ) ·
χ̂
g
∗σ(2)
1

(

γσ(2)
)

γ̂σ(2) − γσ(2)
·
χ̂
g
∗σ(1)
0

(

γσ(1)
)

γ̂σ(1) − γσ(1)
...

= χgk(γ) ·
k
∏

i=1

χ̂
g
∗σ(i)
i−1

(

γσ(i)
)

γ̂σ(i) − γσ(i)

=

k
∏

j=1

(γ̂j − γj) ·
k
∏

i=1

χ̂
g
∗σ(i)
i−1

(

γσ(i)
)

γ̂σ(i) − γσ(i)

=
k
∏

i=1

(

γ̂σ(i) − γσ(i)
)

·
k
∏

i=1

χ̂
g
∗σ(i)
i−1

(

γσ(i)
)

γ̂σ(i) − γσ(i)

=
k
∏

i=1

χ̂
g
∗σ(i)
i−1

(

γσ(i)
)

.

If χf is in addition invertible on the domain Γ-line, f is region-value-suitable. This
finishes the proof.

One prerequisite in the last theorem is that gk is positive on the open Γ-box. We
make the observation that we cannot validate this property unless we have deter-
mined the entire sequence of replacements from f = g0 down to gk. So, it is possible
that the analysis fails at the end of the first phase.

73

2 General Analysis Tool Box for Controlled Perturbation

top

bottom

0 k k + 1 2k + 1 steps
phase 1 phase 2

g1, χ̂
g
∗σ(1)
0

gk−1, χ̂
g
∗σ(k−1)
k−2

gk, χ̂
g
∗σ(k)
k−1

g0

ϕgk , χgk

ϕgk−1
, χgk−1

ϕg1 , χg1

ϕg0 , χg0

Figure 2.20: Instructions for performing the top-down approach. This illustration
reflects the steps in which the quantities are determined according to
Theorem 2.17.

Furthermore, we make the observation that the bounding functions ϕf and χf
are actually derived bottom-up in the the second phase of their derivation. That
means, although we technically determine the sequence of functions gi in a top-down
manner on the surface, the validity of the formulas is derived bottom-up afterwards.
We summarize the steps of the top-down approach in Figure 2.20.

2.8.5 Examples

Example 2.11. We use the top-down approach to determine the bounding functions
ϕin box and χin box for the predicate in box. We assume that the box is fixed somehow
and that the only argument for the predicate is the query point. (There is not
much influence on the analysis by the remaining parameters.) The predicate can be
realized, for example, by the function

f(x) := min
1≤i≤k

{

ℓ2i − (xi − ci)2
}

where c ∈ Rk is the center of the axis-parallel box, and its edge lengths are given by
2ℓ. We eliminate the variables in ascending order from x1 to xk, that means, we set
σ(i) := i for all 1 ≤ i ≤ k.

Part 1 (ϕin box). To determine ϕin box, we need gk; to determine gk, we need the
entire sequence of replacements; and, to determine gi, we need to determine the value
of the “inf inf” expression in dependence on γi in Formula (2.43). We do this next.
Because of the symmetry of f , the following discussion is valid for all coordinates xi.

74

2.8 The Top-down Approach Using Replacements (1st Stage, rv-suit)

ci + ℓi

γi γiγi γi

ci xi

ℓi

ci − ℓi

ci + ℓi − γi

Figure 2.21: An illustration that supports the relation between the quantities of f∗i

for the region-regular case of the predicate in box.

To prepare the replacement of variables, we examine the function f∗i for the
region-regular case (see Figure 2.21). The critical set Cf∗i contains two points,
namely, ci − ℓi and ci + ℓi. We denote by γi the minimal distance of xi to a point
in Cf∗i . (We assume that γ̂i must be less than ℓi; otherwise, the interior of the box
would be covered entirely by the region of uncertainty and the predicate would lose
its meaning.) The absolute value of f grows in the distance to Cf∗i . To determine a
guaranteed lower bound on the absolute value of f , we assume that the distance of
xi to Cf∗i is exactly γi. In addition, we make the observation that |f | grows slower
towards the interior of the box than away from the box; therefore, we must also
assume that xi lies between ci − ℓi and ci + ℓi to obtain a convincing bound. This
leads to the worst-case consideration |xi − ci| = |ci + ℓi − γi|. We make use of the
binomial theorem to derive the unequation

∣

∣

∣
ℓ2i − (xi − ci)2

∣

∣

∣
≥

∣

∣

∣
ℓ2i − (ci + ℓi − γi)2

∣

∣

∣

=
∣

∣2ℓiγi − γ2i
∣

∣

= |(2ℓi − γi) γi| .

We next define the functions gi as

gi(γ1, . . . , γi, xi+1, . . . , xk) := min
(

{

(2ℓj − γj)γj : 1 ≤ j ≤ i
}

∪
{

ℓ2j − (xj − cj)2 : i < j ≤ k
}

)

,

and in the end, the sequence of replacements leads to

ϕin box(γ) := gk(γ)

= min
1≤j≤k

(2ℓj − γj) γj.

Part 2 (χin box). We now determine a bound on the volume of the complement of

75

2 General Analysis Tool Box for Controlled Perturbation

γ2 Cg2 = ∅

γ1

ΓS

x2

x1

Cg0

x2

γ1

Cg1

ΓR

γ

γ̂
2nd phase2nd phase

Rg1Rg0

(c)(a) (b)

Figure 2.22: Illustration of the regions of uncertainty for the various domains in the
analysis of the 2-dimensional in box-predicate.

the region of uncertainty. For every i ∈ I, a valid bounding function is given by

χ̂g∗ii−1
(γi) = 2δi − 4γi.

This results in the following bound on the total volume:

χin box (γ) =
k
∏

i=1

χ̂g∗ii−1
(γi)

=

k
∏

i=1

(2δi − 4γi) .

Once we have determined the bounding functions ϕin box and χin box, it would be
possible to finish the analysis with the method of quantified relations—but, this is
not the goal of this section. ©

Example 2.12. This is the continuation of Examples 2.10 and 2.11. Below, we want
to investigate the regions of uncertainty for the various functions gi. More precisely,
we are interested in the correlation between the regions that are defined bottom-up
in the second phase of the approach.

Figure 2.22 visualizes the regions of uncertainty for the functions gi. The regions
of uncertainty are light-shaded, whereas their complements are dark-shaded. The
decomposition is initiated by the choice of γ ∈ Γ-box. Since each component γi is
positive, neighborhoods of the critical set are added to the region of uncertainty on
the way back up to g0.

The upper line segment of Cg0 causes the upper line of Cg1 as we have seen in
Example 2.10. Conversely, we can now see that the upper line of Cg1 causes a region
of uncertainty around the line that passes through the upper line segment of Cg0 . Be
aware that our top-down approach is designed such that this behavior is forced for
all non-region-regular situations. This implies that our method does not need any

76

2.8 The Top-down Approach Using Replacements (1st Stage, rv-suit)

x11−1

g(x1, γ2)

Figure 2.23: Exemplified drawing of the “in unit circle” predicate after the first re-
placement. The function values on the interval [−1, 1] vary with γ2.

kind of exceptional sets. On the contrary, there are no restrictions on the measure
of the critical sets at all; the only thing that matters is the criterion whether f is
region-suitable or not. ©

2.8.6 Further Remarks

To avoid misunderstandings in the presentation of our approach and to gain a deeper
insight into it, we end this section with selected questions.

Does f have to be (upper- or lower-) continuous to be top-down analyzable? No,
we do not assume any kind of continuity in our approach. Points of discontinuity
may be critical, but they do not have to be.

May we assume that f is continuous? No, the top-down approach is defined
recursively and the auxiliary functions gi are not continuous in general. Consider,
for example, the continuous polynomial f(x1, x2) := x21 +x22− 1, which is the planar
“in unit circle” predicate. Then g1(x1, γ2) is not continuous in four points for fixed
γ2. The function is illustrated in Figure 2.23. This is why the top-down approach
must work for discontinuous functions.

Does a critical set of measure zero imply that f is region-suitable? No, not in
general. A notorious example is the density of Q in R. Let A ⊂ R be an interval.
Although A∩Q is a set of measure zero, there is no ε > 0 such that the neighborhood
Uε(A ∩ Q) has a volume smaller than µ(A). This property contradicts the region-
suitability.

Does region-suitability imply a finite critical set? No. A counter-example is the
function x · sin

(

1
x

)

, which is region-suitable although it has infinitely many zeros in
any neighborhood of zero. (By the way, this function is also value-suitable.) We
summarize: Critical sets of region-suitable functions are countable, but not every
countable critical set implies region-suitability.

Is it possible to neglect isolated points in the analysis? We may never exclude
critical points from the analysis because the definition of the region of uncertainty
is based on them. We may exclude less-critical points, provided that we adjust the
success-probability “by hand”. We may neglect non-critical points, provided that we
still determine the correct inf-value-suitable bound ϕinf f . (See also Section 2.2.2.)

May we add additional points to the critical set? Yes, we may add points to

77

2 General Analysis Tool Box for Controlled Perturbation

the critical set provided that f is still guaranteed to be region-suitable. (See also
Section 2.2.2.)

Can we decide if f is top-down analyzable without developing the sequence of re-
placements? It is a necessary condition for the top-down analyzability of f that gk
is positive everywhere. It is not clear how we can guarantee this property in general
without deriving gk.

78

2.9 Determining the Lower Fp-safety Bound (1st Stage, s-suit)

2.9 Determining the Lower Fp-safety Bound

We next introduce the design of guards and fp-safety bounds. Guards are necessary
to implement guarded evaluations in AG. In Section 2.9.1, we explain how guards
can be implemented for a wide class of functions, including polynomials. To analyze
the behavior of guards, we introduce fp-safety bounds in Section 2.9.2. We explain
how we determine the fp-safety bound in the analysis (see Figure 2.24). Furthermore,
we prove the fp-safety bounds used in previous sections.

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

any

approach

f

forward

error

analysis1s
t
st
ag
e:

d
et
er
m
in
e
b
ou

n
d
s

safety-s.region-s. value-s.

Figure 2.24: An error analysis is used to derive the bounding function for the safety-
suitability in the first stage of the analysis.

2.9.1 Implementing Guarded Evaluations

Our presentation of guarded evaluations is based on rounding error analyses following
the approach in [34, 11, 60]. A further development is presented in the appendix
of [60].

Rounding Error Analysis

The implementation of guards is based on maximum error bounds. To determine the
error bounds, we use rounding error analyses. Note that the error bound of a function
f depends on the formula E that realizes f and, especially, on the chosen sequence of
evaluation. We cite some rules to determine error bounds in Table 2.4. Expressions
E that are composed of addition, subtraction, multiplication and absolute value can
be bounded by the value BE in the last row of the table. This includes the evaluation
of polynomials; for further operators see [34, 11, 60]. The quantities indE and supE
are derived according to the sequence of evaluation of E. The value indx is 0 if
x ∈ FL, and it is 1 if x is rounded.

Example 2.13. We determine the error bound for the expression

E(x1, . . . xk)|F = (((a · x1) · x2) · · · xk)|F

79

2 General Analysis Tool Box for Controlled Perturbation

E supE indE

x | x|F | 0 or 1

E1 ± E2 (supE1
+ supE2

)|F 1 + max {indE1 , indE2}

E1 ·E2 (supE1
· supE2

)|F 1 + indE1 + indE2

|E| supE indE

BE := indE · supE · 2−L

Table 2.4: This table reprints parts of Table 2.1 in Funke [34, p. 11]. The row for
|E| is added by us.

where k ∈ N, a ∈ R is a coefficient, and x ∈ Uδ(x̄)|G ⊆ [−2emax , 2emax]k. A worst-case
consideration leads to inda = 1, and supa = | a|F | for the coefficient and indxi = 0,
and supxi = |xi|F | for 1 ≤ i ≤ k. Then we obtain indax1 = 2 and supax1 = | ax1|F |
after the first multiplication. Taking all multiplications into account, we get indE =
k+1 and supE = | ax1 · · · xk|F |. According to Table 2.4, we obtain the dynamic error
bound

BE(L, x) = (k + 1) · | ax1 · · · xk|F | · 2−L

and the static error bound

BE(L) = (k + 1) · | a|F | · 2kemax−L

where 2emax is an upper bound on the absolute value of a perturbed input. ©

Remark 2.3. We make the observation that the bound BE(L) approaches zero when
L approaches infinity, that means,

lim
L→∞

BE(L) = 0.

Furthermore, we observe that all error bounds derived from Table 2.4 have this prop-
erty. ©

Guarded Evaluation

In guarded algorithms AG every predicate evaluation f(x)|F must be protected by a
guard Gf (x) that verifies the sign of the result. Guards can be implemented using

80

2.9 Determining the Lower Fp-safety Bound (1st Stage, s-suit)

the dynamic (or the weaker static) error bounds. Let Bf (L, x) be an upper bound
on the rounding error of f(x)|F for floating point arithmetic FL, that means,

Bf (L, x) ≥ | f(x)|FL
− f(x) |. (2.48)

We then can immediately derive the implication

| f(x)|F | > Bf (L, x) ⇒ sign(f(x)|FL
) = sign(f(x)). (2.49)

We use the unequation on the left hand side to construct a guard Gf for f where

Gf (x) :=
(

| f(x)|F | > Bf (L, x)
)

.

If Gf (x) is true, f(x) has the correct sign. Note that this definition is in accordance
with Definition 2.2 on Page 17.

Example 2.14. Let u and v be two points in the plane and let ℓ be the unique line
that passes through u and v. The side-of-line predicate sol determines for a query
point q if it lies to the left of ℓ, to the right of ℓ, or on ℓ. We decide this predicate
by the sign of the function

sol(u, v, q) = sol(ux, uy, vx, vy, qx, qy)

= det

ux uy 1
vx vy 1
qx qy 1

= uxvy − uxqy − qxvy + vxuy − vxqy + qxuy.

If the result is positive, q lies to the left of ℓ; if the result is negative, q lies to the
right of ℓ; and if the result is zero, q lies on the line. Determining the evaluation
order to

((uxvy − uxqy)− (qxvy − vxuy))− (vxqy − qxuy), (2.50)

implies the error bound

Bsol = 24 · 22emax−L

according to the presented rounding error analysis. ©

2.9.2 Analyzing Guards With Fp-safety Bounds

We now explain how to analyze the behavior of guards according to [34, 11, 60].
Remember that we perform the analysis in real space. The implication

| f(x) | > 2Bf (L, x) ⇒ | f(x)|F | > Bf (L, x) (2.51)

81

2 General Analysis Tool Box for Controlled Perturbation

is true because of Formula (2.48). The inequality on the left hand side is a relation
that we can safely verify in real space. We can always use the static error bound to
construct a fp-safety bound Sinf f for f as

Sinf f (L) := 2Bf (L) (2.52)

where Bf (L) is the static error bound. Note that this definition is in accordance with
Definition 2.6 on Page 27 because the implications in Formulas (2.49) and (2.51)
guarantee the desired implication in Formula (2.6). Because of Remark 2.3, the fp-
safety bound Sinf f (L) fulfills the safety-condition on page 33 by construction. We
next derive a fp-safety bound for univariate polynomials.

Corollary 2.18. Let f be a univariate polynomial

f(x) = ad · xd + ad−1 · xd−1 + . . .+ a1 · x+ a0 (2.53)

of degree d. Then

Sinf f (L) := (d+ 2) · max
1≤i≤d

|ai| · 2(d+1)emax+1−L (2.54)

is a fp-safety bound for f on [−2emax , 2emax] where emax ∈ N.

Proof. We apply the error analysis of this section. We evaluate Formula (2.53) from
the right to the left. We obtain the static error bound

Bf (L) := indf · supf · 2−L = (d+ 2) ·
(

max
1≤i≤d

|ai| · 2(d+1)emax

)

· 2−L.

Finally, we set the fp-safety bound to Sinf f (L) := 2Bf (L).

Multiplications usually cause larger rounding errors than additions. Surprisingly,
the evaluation of univariate polynomials with the Horner scheme26 (which minimize
the number of multiplications) does not lead to a smaller error bound than the one we
have derived in the proof. We next derive an error bound for k-variate polynomials.
We define xι := xι11 · . . . · xιkk for ι ∈ Nk0 and x ∈ Rk.

Corollary 2.19. Let f be the k-variate polynomial (k ≥ 2)

f(x) :=
∑

ι∈I
aιx

ι

where I ⊂ Nk0 is finite, and aι ∈ R 6=0 for all ι ∈ I. Let d be the total degree of f ,
and let NT be the number of terms in f . Then

Sinf f (L) := (d+ 1 + ⌈logNT⌉) ·NT ·max
ι∈I
|aι| · 2demax+1−L (2.55)

is a fp-safety bound for f on [−2emax , 2emax]k where emax ∈ N.

26For Horner scheme see Hotz [43].

82

2.9 Determining the Lower Fp-safety Bound (1st Stage, s-suit)

Proof. We begin with the determination of the error bound Bf . The maximum
absolute value of the term aιx

ι is obviously upper-bounded by the product of a
bound on aι and a bound on xι. Because |xi| ≤ 2emax for all 1 ≤ i ≤ k, we have

supaιxι ≤ max
ι∈I
|aι| · 2demax .

Since we know the number NT of terms in f, we can then upper-bound supf by

supf ≤ NT ·max
ι∈I
|aι| · 2demax .

In addition, we have indaιxι = d+1 since we evaluate d multiplications, and only aι
may not be in the set F. (Remember that, because of the perturbation, the values
xi belong to the grid G which is a subset of F.)

To keep indf as small as possible, we sum up the NT terms pairwise such that
the tree of evaluation has depth ⌈logNT⌉. This leads to indf = d + 1 + ⌈logNT⌉.
Therefore, we conclude that

Bf (L) = (d+ 1 + ⌈logNT⌉) ·
(

NT ·max
ι∈I
|aι| · 2demax

)

· 2−L.

As usual, we set Sinf f (L) := 2Bf (L).

Example 2.15. (Continuation of Example 2.14). According to Formula (2.52), the
lower floating-point safety bound of the side-of-line predicate is

Sinf,sol = 48 · 22emax−L.

Unfortunately, it is necessary to perform the error analysis step-by-step to achieve
this result. We now see that we can also use Corollary 2.19 to determine the safety
bound. We easily derive d = 2, NT = 6, and maxι∈I |aι| = 1 from Formula (2.50).
Due to Formula (2.55), this leads to the safety bound

S′
inf,sol = (2 + 1 + 3) · 6 · 1 · 22emax+1−L

= 72 · 22emax−L.

We observe that the step-by-step analysis may lead to better a result, but the derived
corollaries can help us to accelerate the overall analysis for polynomials. ©

83

2 General Analysis Tool Box for Controlled Perturbation

2.10 The Treatment of Range Errors (All Components)

In this section, we address a floating-point issue that is caused by poles of rational
functions. So far, the implementation and analysis of functions has been based on
the fact that signs of floating-point evaluations are only non-reliable on certain en-
vironments of zero. We argue that signs of evaluations may also be non-reliable on
environments of poles. We do this for the purpose of embedding rational functions
into our theory. In Section 2.10.1, we extend the previous implementation consider-
ations such that they can deal with range errors. In Section 2.10.2, we expand the
analysis to range errors of the floating-point arithmetic F. This is the first time that
we present the practical and theoretical treatment of range errors in order to include
rational functions in the analysis.

2.10.1 Extending the Implementation

We examine the simple rational function f(x) = 1
x
. It is well-known that the function

value of f at the pole x = 0 does not exist in R (unless we introduce the unsigned
symbolic value ±∞, see Forster [30]). We observe that we cannot determine the
function value of f in a neighborhood of a pole with floating-point arithmetic FL,K
because the absolute value of f may be too large. Moreover, we observe that the sign
of f may change on a neighborhood of a pole. Both observations suggest that poles
play a role similar to that of zeros in the context of controlled perturbation. We now
extend the implementation such that it becomes able to deal with range errors.

We extend the implementation of guarded evaluations in the following way: If the
absolute value of f cannot be represented with the floating-point arithmetic FL,K
because it is too large, we abort AG with the notification of a range error. We do not
concern ourselves with the source of the range error: It may be “division by zero”
or “overflow.” The implementation of the second guard per evaluation is straight
forward. Some programming languages provide an exception handling that can be
used for this objective.

In addition, we must change the implementation of the controlled perturbation
algorithm ACP. If AG fails because of a range error, we increase the bit length K
of the exponent (instead of the precision L). Be aware that we are talking about
the exponent, so an additive augmentation of the bit length implies a multiplicative
augmentation of the range. These simple changes guarantee that the floating-point
arithmetic FL,K gets adjusted to the necessary dimensions in neighborhoods of poles
or in regions where the function value is extremely large.

2.10.2 Extending the Analysis of Functions

For the purpose of dealing with range errors in the analysis, we need to adapt several
parts of the analysis tool box. Below we present the necessary changes and extensions
in the same order in which we have developed the theory.

84

2.10 The Treatment of Range Errors (All Components)

Criticality and the region-suitability

The changes to deal with range errors affect the interface between the two stages of
the analysis of functions. First, we extend the definition of criticality. We demand
that certain points (e.g., poles of rational functions) are critical, too, and refine
Definition 2.7 in the following way.

Definition 2.20 (critical). Let (f, k,A, δ, emax) be a predicate description. We call
a point c ∈ Ūδ(x̄) critical if

inf
x∈Uε(c)\{c}

|f(x)| = 0 or sup
x∈Uε(c)\{c}

|f(x)| =∞

on a neighborhood Uε(c) for infinitesimal small ε > 0. Furthermore, we call c less-
critical if c is not critical, but f(c) = 0 or c is a pole. Points that are neither critical
nor less-critical are called non-critical.

For simplicity and as before, we define the critical set Cf,δ to be the union of
critical and less-critical points within Ūδ(x̄). Be aware that the new definition of
criticality may expand the region of uncertainty. As a consequence, it affects the
region-suitability and the bound νf , respectively χf . Note that Definition 2.20 guar-
antees that we exclude neighborhoods of poles from now on. Because we have inte-
grated poles into the definition of criticality, we have implicitly adapted the region-
suitability.

The sup-value-suitability

We have only considered inf |f | outside of the region of uncertainty so far. To get
a quantified description of range issues in the analysis, we need to consider sup |f |
as well. What we have called value-suitability so far is now called, more precisely,
inf-value-suitability. Its bounding function, that we have called ϕf (γ) so far, is now
called ϕinf f (γ).

In addition to Definition 2.14, we introduce sup-value-suitability, that means, there
is an upper-bounding function ϕsup f (γ) on the absolute value of f outside of the
region of uncertainty Rf . We show how the new bound is determined with the
bottom-up approach later on. Based on the new terminology, we call f (totally)
value-suitable if f is both inf-value-suitable and sup-value-suitable.

The sup-safety-suitability and analyzability

We also extend Definition 2.15. What we have called safety-suitability so far is now
called, more precisely, inf-safety-suitability. Its bounding function Sinf f (L) is now
called the lower fp-safety bound.

In addition we introduce sup-safety-suitability, that means, there is an invertible
upper-bounding function Ssup f (K) on the absolute value of f with the following
meaning: If we know that

|f(x)| ≤ Ssup f (K),

85

2 General Analysis Tool Box for Controlled Perturbation

then f(x)|F is definitely a finite number in FL,K . We call Ssup f (K) the upper fp-safety
bound. Such a bound is trivially given by27

Ssup f (K) := 22
K−1 − Sinf f (L).

Based on the new terminology, we call f (totally) safety-suitable if f is both inf-
safety-suitable and sup-safety-suitable. As a consequence, we call f analyzable if f is
region-suitable, value-suitable (both subtypes) and safety-suitable (both subtypes).

The method of quantified relations

We next extend the method of quantified relations such that the new bounds on the
range of floating-point arithmetic are included into the analysis. In addition to the
precision function Lf (p), we determine the bounding function

Kf (p) :=
⌈

S−1
sup f

(

ϕsup f

(

t · ν−1
f (εν (p))

))⌉

.

We deduce the maximum absolute value of f outside of the region of uncertainty from
the probability; then, we use the upper fp-safety bound to deduce the necessary bit
length of the exponent. The derivation ofKf (p) is absolutely analog to the derivation
of Lsafe(p) in Steps 1–5 of the method of quantified relations.

We summarize our results so far: If we have the bounding functions of the interface
of the function analysis, we know that the floating-point arithmetic FLf (p),Kf (p) is
sufficient to safely evaluate f at a random grid point in the perturbation area with
probability p.

Furthermore, we can derive a probability function pf if f is analyzable and ϕinf f

and ϕsup f are both invertible. Analog to the definition of pinf(L) in Section 2.5.2,
we derive the additional bound on the probability

psup(K) := ε−1
ν

(

νf

(

1

t
· ϕ−1

sup f (Ssup f (K))

))

from Kf (p). This leads to the final probability function pf : N× N→ (0, 1) where

pf (L,K) := min {pinf(L), psup(K), pgrid(L)}

for parameter t ∈ (0, 1).

The bottom-up approach

We now extend the calculation rules of the bottom-up approach to also derive the
bounding function ϕsup f (γ) from simpler sup-value-suitable functions. First, we
replace the lower-bounding rule in Theorem 2.9 with the following sandwich-rule.

27First, the largest floating-point number that is representable with FL,K is (2−2−L)22
K−1

. Second,
we must take the maximal floating-point rounding error into account.

86

2.10 The Treatment of Range Errors (All Components)

Theorem 2.20 (sandwich). Let (f, k,A, δ, emax,Γ-line, t) be a predicate description.
If there is a region-value-suitable function g : Ūδ(A)→ R and c1, c2 ∈ R>0 where

c1 |g(x)| ≤ |f(x)| ≤ c2 |g(x)|,

then f is also region-value-suitable with the following bounding functions:

νf (γ) := νg(γ)

ϕinf f (γ) := c1ϕinf g(γ)

ϕsup f (γ) := c2ϕsup g(γ).

If f is in addition safety-suitable, f is analyzable.

Proof. The region-suitability and inf-value-suitability follows from the proof of The-
orem 2.9. The sup-value-suitability is proven in a similar way to Part 2 of the same
proof.

We next extend the product rule in Theorem 2.10. We merely add the assignment

ϕsup f (γ) := ϕsup g(γ1, . . . , γℓ) · ϕsup h(γj+1, . . . , γk)

after Formula (2.32). Its proof follows Part 1 of the proof of Theorem 2.10.
Finally, we extend the min-rule and the max-rule in Theorem 2.11. We add the

two assignments

ϕsup fmin
(γ) := min{ϕsup g(γ1, . . . , γℓ), ϕsup h(γj+1, . . . , γk)} and

ϕsup fmax(γ) := max{ϕsup g(γ1, . . . , γℓ), ϕsup h(γj+1, . . . , γk)}

after Formula (2.37). Their proofs follow Part 1 of the proof of Theorem 2.10.

The top-down approach

Similar to the functions ϕinf gi , which are simply called ϕgi in the overview in Fig-
ure 2.20, we determine the functions ϕsup gi in the second phase of the pseudo-top-
down approach in a bottom-up fashion.

This completes the integration of the range considerations into the analysis tool
box. Please note that none of the changes presented in this section restrict the
applicability of the analysis tool box in any way. On the contrary, they are necessary
for the correctness and generality of the tool box.

87

2 General Analysis Tool Box for Controlled Perturbation

2.11 The Analysis of Rational Functions

We have solved the arithmetical issues that occur in the implementation and analysis
of rational functions. In addition, we must solve technical issues in the implemen-
tation of guards and, moreover, provide a general technique to derive a quantitative
analysis for rational functions. This is the first time that we include rational func-
tions in the analysis.

Let f := g
h
be a rational function, that means, let g and h be multivariate poly-

nomials. Let k be the number of arguments of f , i.e., we consider f(x) where
x = (x1, . . . , xk). The arguments of g and h may be any subsequence of x, but each
xi is at least an argument of g or an argument of h. We know that g and h are
analyzable (see Section 2.7.5).

First, we discuss the implementation of guards for rational functions. We make the
observation that—independent of the evaluation sequences of g and h—the division
of the value of g by the value of h is the very last operation in the evaluation of f .
Because of the standardization of floating-point arithmetic (e.g., see [44]), the sign
of f is computed correctly if the signs of g and h are computed correctly. Therefore,
it is sufficient for an implementation of a predicate that branches on the sign of a
rational function f to use the guard Gf := (Gg ∧ Gh).

How do we analyze this predicate, that means, how can we relate the known
quantities? Let x be given. In the case that the (dependent) arguments of g and h
lie outside of their region of uncertainty, we can deduce the relation

Sinf g
Ssuph

≤ f(x) ≤ Ssup g
Sinf h

. (2.56)

Unfortunately, this is not what we need. In this way, we can only deduce the value
of f from the values of g and h, but not vice versa: If f(x) fulfills Formula (2.56),
we cannot deduce that the guards Gg and Gh are true. For example, assume that
f(x) = 1; then we know that the values of g and h are equal, but we do not know if
their values are fp-safe or close to zero.

Therefore, we choose a different way to analyze the behavior of guard Gf . Since g
and h are multivariate polynomials, we can analyze the behavior of Gg and Gh and
derive the precision functions Lg(p) and Lh(p), as we have seen in earlier sections. If
we demand that g and h evaluate successfully with probability 1+p

2 each, f evaluates
successfully with probability p since the sum of the failure probability of g and h is
at most (1− p). This leads to the precision function

Lf (p) := max

{

Lg

(

1 + p

2

)

, Lh

(

1 + p

2

)}

,

which reflects the behavior of Gf and, therefore, analyzes the behavior of an imple-
mentation of the rational function evaluation of f .

88

2.12 General Analysis of Algorithms (Composition)

2.12 General Analysis of Algorithms (Composition)

We have only presented components of the tool box so far that are used to analyze
functions. We now introduce the components that are used to analyze an entire
controlled perturbation algorithm ACP. Figure 2.25 illustrates the analysis of algo-
rithms. Similar to the analysis of functions, the algorithm analysis has two stages.
The interface between the stages is introduced in Section 2.12.1. It consists of nec-
essary algorithm properties (to the left of the dashed line) and the analyzability of
the used predicates (to the right of the dashed line). We also explain how to de-
termine the bounds associated with the algorithm properties. In Section 2.12.2, we
give an overview of the algorithm properties. The method of distributed probability
represents the actual analysis of algorithms and is presented in Section 2.12.3. It is
followed by an example in Section 2.12.4.

������
������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������

������
������
������
������

���
���
���
���

���
���
���
���

������
������
������
������
������
������
������

������
������
������
������
������
������
������

controlled perturbation algorithm ACP

resulting precision function LACP

complexity

analysis
counting measuring

analysis of

L2

function f2

analysis of

function f1

analysis of

L1

method of distributed probability

function fNP

LNP
predicate-s.evaluation-s. perturbation-s.

Figure 2.25: Illustration of the analysis of controlled perturbation algorithms.

2.12.1 Necessary Conditions for the Analysis of Algorithms

We introduce some properties of controlled perturbation algorithms. Sometimes we
use the same names for algorithm and function properties to emphasize the analog.
We describe to which algorithms we can apply controlled perturbation, for which ones
we can verify that they terminate, and which ones can be analyzed in a quantitative
way because they are suitable for the analysis.

Definition 2.21 (applicable.). Let ACP be a controlled perturbation algorithm. We
call ACP applicable if there is a precision function LACP

: (0, 1) × N→ N and η ∈ N

with the property: At least one from η runs of the embedded guarded algorithm AG

is expected to terminate successfully for a randomly perturbed input of size n ∈ N

with probability at least p ∈ (0, 1) for every precision L ∈ N with L ≥ LACP
(p, n).

The applicability of an algorithm has a strong meaning: For every success prob-
ability p ∈ (0, 1) and for every input size n ∈ N there is still a finite precision that
fulfills the requirements. As a matter of fact, a controlled perturbation algorithm

89

2 General Analysis Tool Box for Controlled Perturbation

reaches this precision in finite many steps. This means if the algorithm ACP is
applicable, its execution is guaranteed to terminate.

In the definition of applicability, we define the precision function LACP
(p, n) as

a function in the desired success probability p and the input size n. The bound
also depends on other quantities like the perturbation parameter δ, an upper bound
on the absolute input values, or the maximum rounding-error. However, the latter
quantities have some influence on the determination of the bounding functions in
the analysis of functions; they occur as parameters in formula LACP

and are not
mentioned as arguments.

Definition 2.22 (verifiable.). Let ACP be a controlled perturbation algorithm. We
call ACP verifiable if the following conditions are fulfilled:
1. All used predicates are verifiable.
2. The perturbation area UACP,δ(ȳ) contains an open neighborhood of ȳ.
3. The total number of predicate evaluations is bounded.
4. The number of predicates is bounded.

Three properties are necessary for the analyzability of algorithms: evaluation-,
predicate- and perturbation-suitability. However, the three conditions are not suf-
ficient for the analysis of algorithms since there are also prerequisites on the used
predicates. In the following, we define the various properties, explain how we obtain
the bounding functions that are associated with the necessary conditions, and show
how the algorithm properties are related to each other.

Definition 2.23. Let ACP be a controlled perturbation algorithm.

• (predicate-suitable). We call ACP predicate-suitable if the number of different
predicates is upper-bounded by a function NP : N → N in dependence on the
input size n.

• (evaluation-suitable). We call ACP evaluation-suitable if the total number of
predicate evaluations is upper-bounded by a function NE : N → N in depen-
dence on the input size n.

• (perturbation-suitable). Let UACP,δ(ȳ) be the perturbation area of ACP around
ȳ; we assume that UACP,δ(ȳ) is scalable with parameter δ and that it has a fixed
shape, e.g., cube, box, sphere, ellipsoid, etc. We call ACP perturbation-suitable
if there is a bounding function V : Rk>0 → R>0 such that there is an open axis-
parallel box UACP,δ(ȳ) with volume at least V (δ) and UACP,δ(ȳ) ⊂ UACP,δ(ȳ).

• (analyzable). We call ACP analyzable if the following conditions are fulfilled:
1. All used predicates are analyzable.
2. ACP is predicate-suitable, evaluation-suitable, and perturbation-suitable.

In the definition of the predicate-suitability, the number NP ∈ N of different
predicates is usually fixed for a geometric algorithm. Our motivation was to keep
the presentation as general as possible.

90

2.12 General Analysis of Algorithms (Composition)

x1 x1 x1

x2

π1

(a) (b) (c)

p(x1)

Figure 2.26: (a) The original perturbation area UACP,δ is an axis-parallel box. (b)
Its projection is uniformly distributed. (c) The points in the projection
are chosen with the same probability.

We allow any shape of the perturbation area UACP,δ that fulfills the condition in
the definition. As opposed to that, we have assumed that the perturbation area
Uf,δ in the analysis of functions is an axis-parallel box. This seems contradictory
and needs further explanation. After each perturbation y ∈ UACP,δ(ȳ)|GL,K

of the
input, we try to evaluate the whole sequence of predicates. We assume that the
random perturbation is chosen from a discrete uniform distribution in a subset of
the n-dimensional space. As opposed to that, function fi has just ki ≪ n arguments
x = (x1, . . . , xki). Mathematically speaking, we determine the input x of fi by an
orthogonal projection of y onto a ki-dimensional plane. We now make the following
observation: If we examine the orthogonal projection onto a ki-dimensional plane, the
projected points do not occur with the same probability in general if the perturbation
area is not an axis-parallel box. We illustrate an example in Figures 2.26 and 2.27.
However, we prove in Section 2.12.3 that there is an implementation of ACP that
we can analyze—given that we know the bounding function V mentioned in the
definition of perturbation-suitability.

We next explain how we can determine the three bounding functions associated
with the three necessary algorithm properties (see Figure 2.25). We count the num-
ber NP of used predicates to determine the bounding function NP(n). We usually
obtain the bounding function NE(n) on the number of predicate evaluations with a
complexity analysis. The bound η results from a geometric consideration: We only
need to determine the volume of the perturbation area. If the perturbation area has
an ordinary shape, its computation is straight forward. We consider an example.

Example 2.16. Let the input of ACP bem points in the plain, that means, n = 2m.
In addition, let the perturbation area around each point be a disc of radius δ. Then
the axis-parallel box of maximum volume inside of such a disc is a square and has

91

2 General Analysis Tool Box for Controlled Perturbation

x1 x1

(a) (b) (c)

x2

x1

π1

p(x1)

Figure 2.27: (a) The original perturbation area UACP,δ is a sphere. (b) Its projection
is uniformly distributed. (c) The points in the projection are not chosen
with the same probability.

edge length δ
√
2. We obtain:

η :=

⌈

µ(Uδ)
µ(Uδ)

⌉

=

⌈

µ(m discs of radius δ)

µ(m cubes of edge length δ
√
2)

⌉

=

⌈

m · πδ2
m · 2δ2

⌉

= 2.

We observe that the bound η does not depend on m (or n). ©
We prove two implications.

Lemma 2.21. Let algorithm ACP be analyzable. Then ACP is verifiable.

Proof. This is trivially true.

Lemma 2.22. Let algorithm ACP be verifiable. Then ACP is applicable.

Proof. To show that ACP is applicable, we prove the following existence. There is
η ∈ N such that for every p ∈ (0, 1) and every n ∈ N, there is a precision Lp,n with
the property: For a randomly perturbed input of size n, at least one from η runs of
AG is expected to terminate successfully with probability at least p for every precision
L ∈ N with L ≥ Lp,n. Then the function LACP

(p, n) := Lp,n has the desired property,
which proves the claim.

First, we show that there is an appropriate η ∈ N. Because ACP is verifiable, the
perturbation area UACP,δ(ȳ) contains an open set around ȳ. Therefore, there is an
open axis-parallel box around ȳ with Uδ(ȳ) ⊂ UACP,δ(ȳ). Then there is also a natural
number

η :=

⌈

µ (UACP,δ(ȳ))

µ (Uδ(ȳ))

⌉

.

92

2.12 General Analysis of Algorithms (Composition)

are analyzable

all predicates

Illustration: Algorithm Propertiesevaluation-suitable

perturbation-suitable

predicate-suitable

applicableanalyzable verifiable

(not quantitative) In Practice
In the Analysis

(quantitative)
In the Analysis

Figure 2.28: The illustration summarizes the implications of the various algorithm
properties we have defined in this section.

That means, if we randomly choose η points from a uniformly distributed grid in
UACP,δ(ȳ)|GL,K

, we may expect that at least one point lies also inside of Uδ(ȳ).
Let p ∈ (0, 1), and let n ∈ N. In addition, let y ∈ Uδ(ȳ)|GL,K

be chosen randomly.
Since ACP is verifiable, there is an upper-bound NE ∈ N on the total number of
predicate evaluations. Therefore, we can distribute the total failure probability (1−p)
among the NE predicate evaluations. We call this failure probability

̺ :=
1− p
NE

.

Obviously, AG(y) is successful with probability p if every predicate evaluation fails
with probability at most ̺.

Let NP ∈ N be the number of different predicates in AG that are decided by the
functions f1, . . . , fNP

. Because ACP is verifiable, all used predicates are verifiable
and thus applicable. Then Definition 2.11 implies the existence of precision functions
Lf1 , . . . , LfNP

. Therefore, there is a precision

Lp,n := max
1≤i≤NP

Lfi (1− ̺) ,

which has the desired property because of Definition 2.11. This finishes the proof.

As a consequence of Lemma 2.21 and Lemma 2.22, the controlled perturbation
implementation ACP terminates with certainty and yields the correct result for the
perturbed input if ACP is analyzable.

2.12.2 Overview: Algorithm Properties

An overview of the defined algorithm properties is shown in Figure 2.28. They
can be summarized as follows: A controlled perturbation algorithm ACP is guaran-
teed to terminate if ACP is applicable. If ACP is verifiable, we can prove that ACP

terminates—even if we are not able to analyze its performance. And finally, we can
give a quantitative analysis of the performance of ACP if ACP is analyzable.

93

2 General Analysis Tool Box for Controlled Perturbation

The implications are: An evaluation-, perturbation- and predicate suitable algo-
rithm that uses solely analyzable predicates is analyzable (see Definition 2.21). An
analyzable algorithm is also verifiable (see Lemma 2.21). And finally, a verifiable
algorithm is also applicable (see Lemma 2.22).

2.12.3 The Method of Distributed Probability

In this section, we introduce the method of distributed probability, which is used to
analyze complete algorithms. Figure 2.25 shows the component and its interface.

Theorem 2.23 (distributed probability). Let ACP be analyzable. Then there is
a general method to determine a precision function LACP

: (0, 1) × N → N and
KACP

: (0, 1) ×N→ N and η ∈ N with the property: At least one from η runs of the
embedded guarded algorithm AG is expected to terminate successfully for a randomly
perturbed input of size n with probability at least p ∈ (0, 1) for every arithmetic FL,K
where L ≥ LACP

(p, n) and K ≥ KACP
(p, n).

Proof. We prove the claim in three steps: First, we derive η ∈ N from the shape of
the region of uncertainty. Then we determine a bound on the failure probability of
each predicate evaluation. And finally, we analyze each predicate type to determine
the worst-case precision. An overview of these steps is given in Table 2.5.

Step 1 (define η). We define η as the ratio

η =

⌈

V (δ)

µ(Uδ(ȳ))

⌉

.

That means, if we randomly choose η points from a uniformly distributed grid in
UACP,δ(ȳ)|GL,K

, we may expect that at least one point lies also inside of UACP,δ(ȳ).
Step 2 (define ρ). Let p ∈ (0, 1) be the desired success probability of the guarded

algorithm AG. Then (1 − p) is the failure probability of AG. There are at most
NE(n) predicate evaluations for an input of size n. The guarded algorithm succeeds
if and only if we evaluate all predicates successfully in a row for the same perturbed
input. We observe that the evaluations do not have to be independent. Therefore,
we define the failure probability of each predicate evaluation as the function

̺(p, n) :=
1− p
NE(n)

in dependence on p and n.

Step 1: determine number of runs (define η)
Step 2: determine “per evaluation” probability (define ρ)
Step 3: compose precision function (define LACP

and KACP
)

Table 2.5: Instructions for performing the method of distributed probability.

94

2.12 General Analysis of Algorithms (Composition)

Step 3 (define LACP
and KACP

). There are at most NP(n) different predicates. Let
f1, . . . , fNP(n) be the functions that realize these predicates. Since all functions are
analyzable, we determine their precision function Lfi with the presented methods of
our analysis tool box. Then we define the precision function for the algorithm as

LACP
(p, n) := max

1≤i≤NP(n)
Lfi(1− ̺(p, n))

= max
1≤i≤NP(n)

Lfi

(

1− 1− p
NE(n)

)

.

Analogically, we define

KACP
(p, n) = max

1≤i≤NP(n)
Kfi

(

1− 1− p
NE(n)

)

.

Then every arithmetic FL,K with L ≥ LACP
(p, n) and K ≥ KACP

(p, n) has the
desired property by construction.

2.12.4 Example

We conclude this section with an example for the analysis. For comprehensibility, we
consider a simple computation of the well-known convex hull in the plane28. First,
the algorithm sorts the input points by their x-coordinate. Second, it constructs the
upper hull incrementally. Third, it computes the lower hull with a similar strategy.
Finally, it clues the upper and lower hull together.

The first and last step are trivial. We add further explanation to the computation
of the upper hull. We insert the points from the left to the right one at a time.
As soon as the construction contains at least three points, we examine the three
rightmost points in their order of insertion. If they form a right turn, we proceed
with the insertion of the next input point. Otherwise, we remove the middle point
and repeat the test for the three rightmost points (in case there are at least three
points left). The resulting sequence of points defines the upper hull. The lower hull
is computed similarly.

The algorithm can be realized with two predicates: The less-than predicate and the
side-of-line predicate. The sign of the less-than predicate is reliable for floating-point
arithmetic, so we neglect this predicate in the analysis. The side-of-line predicate
sol is introduced on Page 81.

Our aim is to analyze the algorithm in a general way: What precision L is sufficient
to guarantee a successful termination of AG with probability p in case we insert n
random points from the area [−2emax , 2emax]2 while we allow circular perturbations
with radius r.

A scalable spherical perturbation area with radius r contains an axis-parallel box
with edge lengths 2δi where δi =

r√
2
for i ∈ {1, 2}. The ratio between the volume of

28We refer to Algorithm ConvexHull on Page 6 in [8].

95

2 General Analysis Tool Box for Controlled Perturbation

the spherical and the squared perturbation area is bounded by

η =

⌈ |UACP,r(ȳ)|
|UACP,δ1(ȳ)|

⌉

=

⌈

πr2

(2δ1)2

⌉

=

⌈

πr2

2r2

⌉

= 2.

Therefore, ACP is perturbation-suitable. This implies Step 1 of the method of dis-
tributed probability.

ACP is also predicate-suitable since we only have to consider the side-of-line pred-
icate sol in the analysis, i.e., NP(n) = 1.

During the construction of the upper hull, we insert n points and remove at most
n − 2 points. This upper-bounds the number of sol evaluations to 2(n − 2) since
at least three points are necessary to apply sol. The same argumentation is true
for the lower hull. Therefore, the total number of sol evaluations is bounded by
NE(n) = 4(n − 2). Consequently, ACP is evaluation-suitable. The maximum failure
probability per evaluation is then

̺(p, n) =
1− p
NE(n)

=
1− p

4(n− 2)

according to Step 2 of the method of distributed probability.

The predicate sol(ux, uy, vx, vy, qx, qy) is analyzable due to Theorem 2.13 on Page 60.
We easily derive the necessary quantities from the evaluation order

((uxvy − uxqy)− (qxvy − vxuy))− (vxqy − qxuy)

and obtain: k = 6, d = 2, β∗ = 2, β̂ = 1, |I| = 6, maxι∈I |aι| = 1, and |aβ | = 1.
(The choice of β does not matter here.) Therefore, the theorem provides the bound

Lsafe,sol(p) =

⌈

− β∗ log2 (1− k
√
p) +

log2
(d+ 1 + ⌈log2 |I|⌉) · |I| ·maxι∈I |aι| · 2demax+β∗+1 · β̂β∗

|aβ | · (tδ1)β
∗

⌉

=

−2 log2 (1− 6
√
p) + log2

(2 + 1 + 3) · 6 · 1 · 22·emax+2+1 · 12

1 ·
(

t r√
2

)2

=
⌈

− 2 log2 (1− 6
√
p) + 2 log2 6 + 2emax + 4− 2 log tr

⌉

.

In addition, we obtain the bound

Lgrid,sol(p) :=

⌈

emax − 1− log2

(

(1− t)δ1
(

1− k
√
p
)

β̂

)⌉

:=

⌈

emax − 1− log2

(

(1− t) r√
2
(1− 6

√
p)

)⌉

.

96

2.12 General Analysis of Algorithms (Composition)

Finally, we conclude from the above that ACP is analyzable and perform the remain-
ing Step 3 of the method of distributed relations. This leads to

LACP
(p, n) = max

1≤i≤NP(n)
Lfi(1− ̺(p, n))

= Lsol(1− ̺(p, n))
= max {Lsafe,sol(1− ̺(p, n)), Lgrid,sol(1− ̺(p, n))}

= max

{

Lsafe,sol

(

1− 1− p
4(n − 2)

)

, Lgrid,sol

(

1− 1− p
4(n − 2)

)}

We now use the result to analyze an exemplified situation: What precision L is
sufficient to guarantee a successful termination of AG with probability p = 1

2 in case
we insert up to n = 10000 random points from the square [−1000, 1000]2 while we
allow circular perturbations with radius r = 8. The range of the input values is
obviously emax = 10. If we choose t = 1

2 , we calculate

LACP

(

1

2
, 10000

)

= max

{

Lsafe,sol

(

1− 1− 1
2

4(10000 − 2)

)

,

Lgrid,sol

(

1− 1− 1
2

4(10000 − 2)

)}

= max

{

Lsafe,sol

(

79983

79984

)

, Lgrid,sol

(

79983

79984

)}

= max {⌈62.914...⌉, ⌈26.372...⌉}
= 63

97

2 General Analysis Tool Box for Controlled Perturbation

2.13 General Controlled Perturbation Implementations

We present a general way to implement controlled perturbation algorithms ACP to
which we can apply our analysis tool box. The algorithm template is illustrated as
Algorithm 2. It is important to see that all statements necessary for the controlled
perturbation management are simply wrapped around the function call of AG.

Algorithm 2 : ACP(AG, ȳ,Uδ, ψ, η)
/* initialization */
L← precision of built-in floating-point arithmetic
K ← exponent bit length of built-in floating-point arithmetic
emax ← determine upper bound 2emax on |ȳi|+ δ

repeat

/* run guarded algorithm */
for i = 1 to η do

y ← random point in Uδ(ȳ)|GL,K,emax

ω ← AG(y,FL,K)
if AG succeeded then

leave the for-loop
end if

end for

/* adjust parameters */
if AG failed then

if floating point overflow error occurred then

/* guard failed because of range error */
K ← K + ψK

else

/* guard failed because of insufficient precision */
L← ⌈ψL · L⌉

end if

end if

until AG succeeded

/* return perturbed input y and result ω */
return (y, ω)

Remember that the original perturbation area is Uδ(ȳ)|G. The implementation of
a uniform perturbation seems to be a non-obvious task for most shapes. Therefore,
we propose axis-parallel perturbation areas in applications. (For example, we can
replace spherical perturbation areas with cubes that are contained in them.) Axis-
parallel areas have the added advantage that the perturbation is composed of random
integral numbers as we have explained in Remark 2.1.

An argument of the controlled perturbation algorithm is the tuple ψ = (ψL, ψK) ∈

98

2.13 General Controlled Perturbation Implementations

R × N of constants, which are used for the augmentation of L and K. The real
constant ψL > 1 is used for a multiplicative augmentation of L, and the natural
number ψK is used for an additive augmentation of K.

Using the multiplicative constant ψL has also a positive effect on the running time
of ACP. The running time of ACP is basically the sum of the running times of the
series of unsuccessful runs of AG plus the running time of the first successful run of
AG. Summing up the times for the unsuccessful runs of AG leads to a geometric
series. The total time of the unsuccessful runs is therefore a constant multiple of
the running time of the successful run of AG. This constant vanishes in the Landau
notation.

There is a variant of Algorithm 2 that also allows the increase of perturbation
parameter δ. Beginning with δ = δmin ∈ Rk>0, we augment the perturbation param-
eter δ by a real factor ψδ > 1 each time we repeat the for-loop. When we leave the
for-loop, we reset δ to δmin. We observe that this strategy implies an upper-bound
on the perturbation parameter by δmax := δmin · ψη−1

δ . This is the bound we use in
the analysis. To keep the presentation clear, we do not express variable perturbation
parameters explicitly in the code.

A variable precision floating-point arithmetic is necessary for an implementation
of ACP. When we increase the precision in order to evaluate complex expressions
successfully, the evaluation of subsequent simple expressions may last longer than
necessary. Therefore, we suggest floating-point filters as they are used in interval
arithmetic. That means, we use a multi-precision arithmetic that refines the precision
on demand up to the given L. If it is necessary to exceed L, AG fails. In the analysis,
we use this threshold on the precision.

99

2 General Analysis Tool Box for Controlled Perturbation

2.14 Perturbation Policy

The meaning of perturbation is introduced in Section 2.2.1, and its implementation
is explained in Remark 2.1 on Page 23. So far, we have considered the original
input to be the point ȳ ∈ Rn, which is the concatenation of all coordinates of all
input points for the geometric algorithm ACP. In contrast to that, we now concern
ourselves with the geometric interpretation of the input and consider it as a sequence
of geometric objects O1, . . . ,Om. Then a perturbation of the input is the sequence
of perturbed objects. In this section, we define two different perturbation policies:
The pointwise perturbation in Section 2.14.1 and the object-preserving perturbation
in Section 2.14.2. The latter has the property that the topology of the input object
is preserved.

2.14.1 Pointwise Perturbation

For pointwise perturbations, we assume that the geometric object is given by a se-
quence of points. A circle in the plane, for example, is given by three points. Another
example is the polygon in Figure 2.29(a), which is represented by the sequence of
four vertices abcd. The pointwise perturbation of a geometric object is the sequence

a′

b′ c′

(b)(a)

d′

b

c

a

c

a

b

d d

Figure 2.29: Example of a pointwise perturbation in the plane: (a) original input and
(b) perturbed input.

of individually perturbed points of its description, i.e., randomly chosen points of
their neighborhoods. Figure 2.29(b) shows a pointwise perturbed polygon a′b′c′d′

for our example. Because the perturbations of points are independent of each other,
this policy is quite easy to implement. We observe that pointwise perturbations do
not preserve the structure of the input object in general: The original polygon abcd
is simple, whereas the perturbed polygon a′b′c′d′ in our example is not. And, the
orientation of a circle that is defined by three perturbed points may differ from the
orientation of the circle that is defined by the original points. Be aware that our
analysis is particularly designed for pointwise perturbations. We suggest to apply
this perturbation policy to inputs that are inherently disturbed, e.g., scanned data.

100

2.14 Perturbation Policy

2.14.2 Object-preserving Perturbation

For object-preserving perturbations, we assume that the geometric object is given
by an anchor point and a sequence of fixed measurements.29 A circle in the plane,
for example, is given by a center (anchor point) and a radius (fixed measurement).
Another example is the polygon abcd in Figure 2.30(a), which is given by an anchor
point, say a, and implicitly by the sequence of vectors (the measurements) pointing
from a to b, from a to c, and from a to d. The object-preserving perturbation of a

c

b

a

d

(b)(a)

b

c

a

τ0

d

a′

d′

c′

b′~b− ~a

~c−~b

~d− ~c

~a− ~d

b− a

c− a

d− a

Figure 2.30: Example of an object-preserving perturbation in the plane: (a) original
input and (b) perturbed input.

geometric object is a pointwise perturbation of its anchor point while maintaining
all given measurements. Figure 2.30(b) shows polygon a′b′c′d′ that results from an
object-preserving perturbation. We have b′ := a′ + b− a, etc. We observe that this
perturbation is actually a translation of the object and hence preserves the structure
of the input object in any respect: Its orientation, measurements and angles. The
object-preserving perturbation of a circle, for example, changes its location but not
its radius or orientation.

The input must provide further information to support object-preserving pertur-
bations. For the explicit representation, this policy requires a labeling of input values
as anchor points (perturbable) or measurements (constant). For the implicit repre-
sentation, the policy requires the subdivision of the input into single objects; then,
we make one of these points the anchor point and derive the measurements for the
remaining points. To allow the object-preserving perturbation, the implementation
must offer the labeling of values or the distinction of input objects.

In this context, we are pleased to observe that our perturbation area Uδ(A)|G sup-
ports object-preservation because it is composed of a regular grid. If the original
object is represented without rounding errors, the perturbed object is represented ex-
actly as well. Of course, we can always apply object-preserving perturbations to
finite-precision input objects.30 As an example, assume that the input objects were

29The measurements may be given explicitly or implicitly. Both are acceptable.
30This is true because we can derive a sufficient grid unit from the given fixed-precision input.

101

2 General Analysis Tool Box for Controlled Perturbation

created with a computer-aided design (CAD) system such that their coordinates are
multiples of a certain unit. Then object-preserving perturbations are possible.

How can we analyze object-preserving perturbations? We consider the analysis of
function f that realizes a predicate. For pointwise perturbations, we demand in Sec-
tion 2.2.1 that f only depends on input values. For object-preserving perturbations,
we only allow dependencies on anchor points: Every other point in the description of
the object must be replaced in the formula by an expression that depends on the an-
chor point of the affected object. The dependency of the function on the variables is
analyzed as before. Finally, we remark that we do not recommend perturbation poli-
cies that are based on scaling, stretching, sheering, or rotation since the perturbed
input cannot be represented error free in general.

102

2.15 Appendix: List of Identifiers

2.15 Appendix: List of Identifiers

The page numbers refer to the definitions of the identifiers. References to preliminary
definitions are parenthesized.

Algorithms Page

A the given geometric algorithm A(ȳ). -

AG the guarded version AG(y,FL,K) of algorithm A, i.e., all
predicate evaluations are guarded.

18

ACP the controlled perturbation version ACP(AG, ȳ, δ, ψ) of algo-
rithm A. The implementation of ACP makes usage of AG.

98

Sets and Number Systems Page

C the set of complex numbers. -

FL,K 1. the set of floating point numbers with radix 2 whose
precision has up to L digits and whose exponent has up to
K digits.
2. the floating point arithmetic that is induced this way.

17

GL,K,emax the set of grid points. They are a certain subset of the float-
ing point numbers FL,K within the interval [−2emax , 2emax].

22

N; N0 the set of natural numbers; set of natural numbers including
zero.

-

Q the set of rational numbers. -

R; R>0; R 6=0 the set of real numbers; set of positive real numbers; set of
real numbers excluding zero.

-

Z the set of integer numbers. -

X|FL,K
the restriction of a set X to points in FL,K. 17

X|GL,K,emax
the restriction of a set X to points in GL,K,emax. 22

Identifiers of the Analysis Page

A the set of valid projected arguments x̄ for f . 20

BE(L) a floating point error bound on the arithmetic expression E. 80

Cf (·) the critical set of f . (27), 85

Gf a guard for f on the domain X. 17

K the bit length of the exponent (see FL,K). 16

103

2 General Analysis Tool Box for Controlled Perturbation

Kf (p) a lower bound on the bit length of the exponent. 86

L the bit length of the precision (see FL,K). 16

LACP
(p, n) the precision function of ACP. 89

Lf (p) the precision function of f . 45

Lgrid a bound on the precision; caused by the grid unit condition. (30), 45

Lsafe a bound on the precision; caused by the region- and safety-
condition.

45

NE(n) an upper-bound on the number of predicate evaluations. 90

NP(n) an upper-bound on the number of different predicates. 90

Rf,γ(·) the region of uncertainty of f . 28

Rf,aug(γ)(·) the augmented region of uncertainty of f . 29

Sinf f (L) the lower fp-safety bound. 27, (85)

Ssup f (K) the upper fp-safety bound. 86

Uf,δ(·) the perturbation area of f ; its shape is an axis-parallel box. 20

UACP,δ(·) the perturbation area of ACP; its shape is an axis-parallel
box.

90

UACP,δ(·) the perturbation area of ACP; it may have any shape. 90

emax the input value parameter (see Formula (2.1)). 20

f the real-valued function f : Ūδ(A)→ R under consideration.
We assume that the sign of f decides a geometric predicate.

20

k the arity of f . 20

n the size of input ȳ. 19

pf (L,K) the probability function of f . (47), 86

pgrid(L) a bound on the probability; caused by the grid unit condi-
tion.

47

pinf(L) a bound on the probability; caused by the region- and inf-
safety-condition.

47

psup(K) a bound on the probability; caused by the sup-safety-
condition.

86

pr(f|G) the least probability that a guarded evaluation of f is suc-
cessful for inputs in G under the arithmetic F.

23

1
t

the augmentation factor for the region of uncertainty. 30

x̄ the arguments of f ; projection of ȳ. 20

104

2.15 Appendix: List of Identifiers

x the perturbed arguments of f ; projection of y. 20

ȳ the original input to the algorithm. 19

y the perturbed input y ∈ Uδ(ȳ). 20

δ the perturbation parameter which bounds the maximum
amount of perturbation componentwise.

19

γ the tuple of componentwise distances to the critical set. 29

Γ the set of valid augmented γ. 29

Γ-box like Γ; the set is an axis parallel box. 29

Γ-line like Γ; the set is a line. 29

νf (γ) an upper-bound on the volume of Rf,γ . 37

τ the grid unit. 22

ϕinf f (γ) a lower-bound on the absolute value of f outside of Rf,γ . 39, (85)

ϕsup f (γ) an upper-bound on the absolute value of f outside of Rf,γ . 85

χf (γ) a lower-bound on the complement of νf within the pertur-
bation area.

38

ψ the tuple ψ = (ψL, ψK) ∈ R×N is used for the augmentation
of L and K.

98

Miscellaneous Page

µ(·) the Lebesgue measure. 21

π(·) the projection of points and sets, e.g., πi, π<i, π>i, π 6=i. 64

≺ the reverse lexicographic order. 57

≺σ the reverse lexicographic order after the permutation of the
operands.

57

105

3 Complexity and Computation of
Θ-Guarded Regions

In this chapter, we define and consider a planar guarding problem. We define the Θ-
guarded region in Section 3.1. We realize that the difficulty in the study of Θ-guarded
regions is that its shape and complexity varies with the angle Θ. We discuss the case
Θ ≥ π in Section 3.2. We analyze the shape of the Θ-guarded region, show its general
relation to the convex hull, prove that its complexity equals the complexity of the
convex hull, show its specific relation to positive α-hulls for certain guard sets and
angle ranges, and develop an easy and efficient O(n log n) time algorithm to compute
its boundary.

In the main part, in Section 3.3, we consider the case Θ < π. The problem
for these angles becomes much more involved, and the boundary of the Θ-region
becomes more difficult to understand. We show in Section 3.3.1 that the boundary
of the Θ-region is contained in an arrangement of circular arcs. In Section 3.3.2,
we bound this set of circular arcs by O(nΘ). In case π

2 ≤ Θ < π, we prove that
the complexity of the Θ-region is O(n). Even more, for smaller angles δ ≤ Θ < π

2
where δ is a positive constant, we show that the complexity is O(n1+ε) for any
ε > 0. In case we consider the asymptotic complexity bound in n and 1

Θ , we prove

O(n
2

Θ2). Furthermore, in Section 3.3.3, we construct a generic example for the latter
case, which has complexity Ω(n2). In Section 3.3.4, we present an algorithm that
computes the Θ-region for Θ < π. For the case π

2 ≤ Θ < π, we further present an
improved algorithm that takes O(n log n) time.

We summarize all complexity bounds in Section 3.4.

107

3 Complexity and Computation of Θ-Guarded Regions

3.1 The Θ-Guarded Region

We are given a finite point set G in the plane, which we call guards, and an angle
Θ ∈ [0, 2π]. A Θ-cone is a cone with apex angle Θ. We say that the Θ-cone is
empty (with respect to G) if it does not contain any point of G in its interior. A
point p ∈ R2 is Θ-guarded (with respect to G) if every Θ-cone whose apex is located
at p is non-empty. Furthermore, the set of all Θ-guarded points is called the Θ-
guarded region, or the Θ-region for short. The Θ-region is defined uniquely by the
pair (G,Θ). The motivation for this kind of guarding is that a point is well-guarded
only if it is guarded from “all” directions. We consider Θ-cones as open sets; hence,
the Θ-region is an open set, too. We always assume that G is non-empty. (If there
are no guards, there is trivially no Θ-region.)

Figure 3.1: An example with |G| = 50. The Θ-region is not necessarily connected
for 0 < Θ < π (left). The isolines of function f show how components of
the Θ-region disconnect for decreasing Θ in this example (right).

An example of a Θ-region is shown in the left picture of Figure 3.1. We remark that
the computer generated pictures are based on the value of the continuous function
f : R2 \ G → (0, 2π] where p 7→ max {Θ : ∃ empty Θ-cone with apex p}. The left
picture of Figure 3.1 and the two rightmost pictures in Figure 3.7 are generated by
plotting a grid point shaded if and only if f has a value below the threshold Θ. In
the right picture of Figure 3.1, we have mapped different intervals of function values
in [0, π] to different gray scale values to visualize isolines (along the boundary of
the gray scale value) of f in this example. Although these pictures visualize only
function values at grid points, we may rely on the pictures since we deal with cones
of a certain angle and not with arbitrarily thin stripes that could somehow pass
between grid points.

We make several observations. A point p ∈ R2 does not belong to the Θ-region if
there is an empty Θ-cone with apex p. Hence, no point inside an empty cone can

108

3.1 The Θ-Guarded Region

=θ π <0< θ π π< θπ <2

θ

i

j

Figure 3.2: For Θ < π (resp. Θ > π) the region lies inside (outside) the convex hull
CH (G) and the bounding arcs are bend inside (outside) the region.

belong to the region, and hence, the region cannot contain holes. A point p lies on
the boundary of a Θ-region if there is at least one empty (open) Θ-cone with apex
p and if the closure1 of each Θ-cone with apex p is non-empty. The example in
Figure 3.1 shows that the Θ-region is not necessarily connected for 0 < Θ < π. The
shape of the Θ-region is invariant under translation, rotation, and scaling of G.

The shapes of all Θ-regions can be classified according to Θ. The boundary of
the π-region is simply the convex hull CH (G) because the intersection of all half-
planes containing G (convex hull) is the same as removing every half-plane from R2

that does not contain any point of G (π-region). However, for 0 < Θ < π, empty
(convex) Θ-cones can enter the convex hull through the edges, while for π < Θ < 2π
the apexes of empty (concave) Θ-cones do not even have to touch the convex hull
(see Figure 3.2). Therefore, the Θ-region is connected if Θ ≥ π. The 2π-region is
obviously the plane R2, and the 0-region is the empty set.

Before we discuss the Θ-region for 0 < Θ < π, we discuss the simpler case π <
Θ < 2π in the next section. Throughout the chapter, we use the following property
of the Inscribed Angle Theorem (see Euklid [27, Book III, Proposition 20]): Given a
circular arc Cℓ,r from ℓ to r, then ∠lpr = ∠lqr holds for all p, q ∈ Cℓ,r. We write
Cαℓ,r if the inscribed angle is α. The arc end points are always given in counter-
clockwise order. Without loss of generality, the vertices of the convex hull are given
in clockwise order.

1By way of exception, we consider closed cones here.

109

3 Complexity and Computation of Θ-Guarded Regions

3.2 Boundary, Complexity and Computation for Θ ≥ π

We know that the π-region is the standard convex hull CH (G). We remark that
there are plenty of algorithms which compute CH (G), for example, using the plane-
sweep technique [8], the divide-and-conquer technique [69], or Graham’s scan [18].
All these algorithms take O(n log n) time.

Further, we know that every point in the interior of the convex hull of G is Θ-
guarded for Θ > π (see Figure 3.2). Intuitively, the boundary of the Θ-region is
drawn by the apex of an empty Θ-cone, which is rotated around the convex hull
CH (G) such that its rays are always tangent to CH (G). The following algorithm
computes the boundary of the Θ-region in this case.

First of all, we compute the clockwise sequence of guardsG′ = {g1, . . . , gk} defining
the convex hull (see for example [69]). Next, we construct an algorithm that outputs
the circular arcs that define the boundary of the Θ-region. Therefore, we want to
identify all pairs (gi, gj) ∈ G′ ×G′ with gi 6= gj for which there exists an empty Θ-
cone that is tangent to gi and gj and whose apex lies outside of the convex hull. We
say that the apex of the Θ-cone “sees” the polygonal chain of CH (G) from gi to gj .
The pairs (gi, gj) have the following property: The lines supporting the convex hull
edges (gj , gsucc(j)) and (gpred(i), gi) form an angle of intersection not less than Θ, and
the lines supporting (gi, gsucc(i)) and (gpred(j), gj) form an angle of intersection less
than Θ. The sequence of all these pairs (gi, gj) and the corresponding circular arcs
C2π−Θ
gj ,gi

are computed by a cyclic scan over the sequence G′. The arc end points of the

Θ-region boundary are computed as the intersection points of the circular arc C2π−Θ
gj ,gi

with the supporting lines through (gj , gsucc(j)) and (gpred(i), gi). Consequently, the Θ-
region has at most the complexity of the convex hull. (The left picture of Figure 3.3
shows an example with smaller complexity.) The running time of the algorithm is
dominated by the convex hull construction in O(n log n) time. We summarize the
discussion.

Lemma 3.1. For Θ > π, the boundary of the Θ-guarded region can be computed in
O(n log n) time, and its complexity is O(|CH (G)|).

Obviously, the Θ-region is a generalization of the convex hull. The constructive
algorithm does not only lead to a precise description of the Θ-region for Θ > π. It
also proves that the complexity of the Θ-region is bounded by the complexity of the
convex hull CH (G) in this case.

We next show situations in which the Θ-region is equivalent to the positive α-hull.
For angles Θ, which are slightly larger than π, the region resembles the hull with
outward bent edges. The following example illustrates this point of view.

Lemma 3.2. Let G be the vertices of a regular n-sided polygon for n ≥ 2. Then the
(n+1
n
π)-region of G is the disc that contains G in its boundary.

Proof. Let e be the center of the regular n-sided polygon, and let b and d be two
adjacent vertices of the polygon. The situation is illustrated in the left picture of

110

3.2 Boundary, Complexity and Computation for Θ ≥ π

γ

β

ε

bd
c

e

Figure 3.3: The (n+1
n
π)-region of a regular n-sided polygon is a disc (left). The

(n+2
n
π)-region of a regular n-sided polygon (right).

Figure 3.3. By ε we denote the angle ∠deb. Since |G| = n, the angle ε is 2π
n
. We set

ε′ := 2π − ε = n−1
n

2π. By β we denote the inner angle of the regular polygon at b.
We have β := π−ε = n−2

n
π. We set β′ := 2π−β = n+2

n
π. We now consider the point

c on the circle that passes through G and lies immediately between b and d. By γ
we denote the angle ∠bcd. Due to the Inscribed Angle Theorem (see Euklid [27]),
we have γ := 1

2ε
′ = n−1

n
π. We set γ′ := 2π − γ = n+1

n
π.

We next consider the n+1
n
π-region of G, that means, we set Θ := γ′. Because the

outer angle β′ of the regular n-sided polygon at b is larger than Θ, b is unguarded.
Consequently, no guard in G is Θ-guarded. Therefore, the points in G contribute to
the boundary of the n+1

n
π-region.

Furthermore, we have determined Θ such that the arc from b to d lies on the circle
through G. Because the polygon is regular, this argument is true for all arcs. It
follows that the n+1

n
π-region is the disc that contains G in its boundary.

Positive α-hulls are defined by Edelsbrunner et al. [22] as follows: Let G be a
point set in the plane, and let α be a positive real. Then the positive α-hull is the
intersection of all discs of radius 1

α
that contain the point set G.

Lemma 3.3. Let G be the vertices of a regular n-sided polygon for n ≥ 2, and let
π < Θ ≤ n+1

n
π. Then there is a positive α such that the Θ-region of G is equivalent

to the positive α-hull.

Proof. The claim follows from Lemma 3.2 and the definition of positive α-hulls.

Be aware that there is no way to derive the radius 1
α

from Θ directly, without
inspecting the coordinates of the guards.

To improve our understanding of Θ-regions for Θ ≥ π, we slightly extend the
example and derive further statements from Lemma 3.2, which are valid for the vertex
set G of a regular n-sided polygon. First, the arcs in the boundary of the Θ-region
of G are incident to the same guards as the respective hull edges for π ≤ Θ ≤ n+2

n
π

(see the right picture of Figure 3.3). Second, the set G of guards is detached from

111

3 Complexity and Computation of Θ-Guarded Regions

the Θ-region for angles Θ > n+2
n
π. Third, the region is convex for π ≤ Θ ≤ n+1

n
π

and non-convex for Θ > n+1
n
π.

112

3.3 Boundary, Complexity and Computation for Θ < π

3.3 Boundary, Complexity and Computation for Θ < π

We assume in this section that the angle is 0 < Θ < π. We describe the boundary of
the Θ-region in Section 3.3.1, consider an upper-bound on its worst-case complexity
in Section 3.3.2, prove a lower-bound on the worst-case complexity in Section 3.3.3,
and present an algorithm to compute the Θ-region in Section 3.3.4.

3.3.1 Boundary

We give a mathematical description of the Θ-region below. First, we come back to
the inscribed angles and explain its meaning for our setting. Let e = (ℓ, r) ∈ G×G be
any pair of guards. Then the set of points where we can place the apex of an empty
Θ-cone passing through the line segment (ℓ, r) in the same direction is bounded by
the circular arc, which is incident to ℓ and r with inscribed angles Θ, and the line
segment lr. We denote this closed circular segment by DΘ

ℓ,r (or De for short) and

its bounding circular arc by CΘ
ℓ,r (or Ce for short). Because of the orientation, the

circular segment is described uniquely.

The construction of the Θ-region is motivated by the idea of locally removing sets
Ti of unguarded points from the convex hull CH (G) such that the remaining part
matches the Θ-region (see Figure 3.2, middle), that means, we set

Θ-region := CH (G) \
(

⋃

i∈I
Ti

)

(3.1)

for specific sets Ti. We now give the construction for these sets Ti. Consider any
empty Θ-cone c that has at least one guard on each ray (see the left picture of
Figure 3.4). First, we turn the cone clockwise while pushing the cone towards the
point set, such that it always stays empty but touches a guard on each boundary
(see the middle picture of Figure 3.4). We end this motion when the apex of the
cone reaches the position of a guard, say ℓ0. Afterwards, we relocate the cone in
the original position and rotate the cone in a similar way counter-clockwise until the
apex reaches the position of another guard, say r0.

To describe the construction formally, we extend our notion. By Li (resp. Ri)
we denote the set of guards that are incident to the left (resp. right) ray of a cone
during the construction (the white points in the right picture of Figure 3.4). We call
the closure of the union of all cones, which are used during the construction, the
tunnel Ti with respect to Li and Ri, or tunnel for short (the shaded region in the
right picture of Figure 3.4). Note that the index set I in Formula (3.1) summarizes
the tunnels.

We observe that Formula (3.1) describes the Θ-region of G because each empty
Θ-cone that intersects CH (G) lies in at least one tunnel Ti: Let c be such a cone.
We identify a tunnel by moving c in the direction of its medial axis until one of
its rays is tangent to a guard. Then we let the empty cone slide along that point
without rotation until the second ray is also tangent to a guard. According to our

113

3 Complexity and Computation of Θ-Guarded Regions

ii

l0
r0

i

RL

U

Figure 3.4: The construction of a tunnel.

construction, there is a tunnel that contains this cone and hence the cone c in its
original position.

No point in Ti is Θ-guarded. Therefore, only its boundary possibly contributes to
the boundary of the Θ-region. First, we consider its straight-line boundaries. Since
Θ < π, each point of a straight-line boundary can be crossed (at least) infinitesimally
by an empty Θ-cone. That means, there are open neighborhoods of unguarded points
around each point of a straight-line boundary, and hence, they cannot contribute to
the Θ-region boundary. Due to our definition of a tunnel, points beyond the straight-
line boundaries belong to a different tunnel; such points are processed independently
of Ti.

Therefore, we only have to consider the curved boundary of Ti. Observe that
during the construction, the apex of the rotating cone draws a sequence of circular
arcs between ℓ0 and r0, which we will formalize next. We define the set

Ui :=
⋂

(ℓ,r)∈Li×Ri

DΘ
ℓ,r (3.2)

as the intersection of all circular segments for guard pairs in Li ×Ri. In the follow-
ing Lemma, we state how to derive the curved boundary of Ti from these circular
segments. Let hi be the closed half plane that is bounded by the line through ℓ0 and
r0 and contains the sequence of arcs.

Lemma 3.4. Let Ti, Ui and hi be as defined above. Then Ti ∩ hi = Ui.

Proof. (Superset.) Let p ∈ Ui. Assume there is no empty cone with apex p through
tunnel Ti. This means, there is at least one pair (ℓ, r) ∈ Li × Ri with the property
that ∠ℓpr < Θ. Hence, p 6∈ DΘ

ℓ,r, which is a contradiction to the construction of Ui.
(Subset.) Let p be the apex of an empty Θ-cone through tunnel Ti. This means

that ∠ℓpr ≥ Θ for all (ℓ, r) ∈ Li ×Ri, and hence, p lies in all corresponding circular
segments DΘ

ℓ,r.

It follows that the Θ-region boundary is contained in the curved boundary of the
union of the sets Ui, that means,

∂Θ-region ⊆ ∂
⋃

i∈I
Ui = ∂

⋃

i∈I

⋂

(ℓ,r)∈Li×Ri

DΘ
ℓ,r

 , (3.3)

114

3.3 Boundary, Complexity and Computation for Θ < π

where I enumerates the tunnels. We observe that the intersections of |Li| · |Ri|
circular segments Dℓ,r in Formulas (3.2) and (3.3) are too pessimistic. During the
construction of a tunnel, we collect all guard pairs (ℓ, r) ⊂ Li×Ri that are simulta-
neously incident to the rotating cone in Ei. Since the touching point of Li (resp. Ri)
can only change in one direction to its neighbor in the sequence of Li (resp. Ri), the
size of Ei is given by |Li| + |Ri| − 1. Therefore, we may reduce the intersection of
the circular segments in Formula (3.2) to

Ui :=
⋂

(ℓ,r)∈Ei

Dℓ,r ∩ hi, (3.4)

for which Lemma 3.4 is still valid. By C we denote the union of all circular arcs that
appear in the boundary of Ui for i ∈ I.

3.3.2 Upper Bounds on the Worst-Case Complexity

We now discuss the worst-case complexity of the Θ-region in dependence on the
number n of guards and the angle Θ. During the analysis of the complexity, we
distinguish different cases for Θ. The case Θ ≥ π is discussed in Section 3.2, and
the 0-region is trivially the empty set. So, in this section, we consider the case
0 < Θ < π. Because the set of guards G is a discrete set, there is a positive Θ for
every given G such that the Θ-region is also empty.

Lemma 3.5. The Θ-region is the empty set for Θ ≤ 2π
n
.

Proof. Consider the n rays emanating from a point p ∈ R2 \ G through the guards
in G. Then the rays form at least one empty cone with angle of at least 2π

n
, which

contains an empty Θ-cone. Hence, p is unguarded. A similar argumentation for a
guard p ∈ G proves the existence of a cone with angle of at least 2π

n−1 .

According to the right term in Formula (3.3), the complexity of the Θ-region is
hidden in an arrangement of circular arcs. Since there are at most O(n2) different
circular arcs, two for each guard pair, the complexity of the Θ-region is trivially
O(n4). We show that the set C of circular arcs is of O(nΘ) size. Therefore, the

complexity of the Θ-region is O(n
2

Θ2).

Theorem 3.6. The set C of circular arcs, which defines the boundary of the Θ-
region, has size O(nΘ).

Proof. Instead of counting the arcs directly, we count their end points. Let p be an
arc end point of a tunnel as shown in the left picture of Figure 3.5. In this position,
a ray of the rotating cone is incident to two guards at once while the other ray is
incident to at least one guard. (Note that three guards are necessary to define an
arc end point.) We assume without loss of generality that two guards lie on the left
ray. We focus on the guard ℓk that is closer to the apex and count how often this
guard can be in a situation like this. On the one hand, there are at most n − 1

115

3 Complexity and Computation of Θ-Guarded Regions

r j
l k

l k+1

l k

θ

θu

c

v
p

Figure 3.5: An end point p of two circular arcs in the boundary of the tunnel (left). A
situation that is described in the proof of Theorem 3.6 (middle). The aux-
iliary construction that is described in the proof of Theorem 3.7 (right).

different cones because there are only n − 1 different guards serving as the second
guard on the left ray. On the other hand, we observe that the empty Θ-cones in this
situation cannot intersect each other beyond the second guard on the left ray (see
Figure 3.5, middle). Hence, there can be at most ⌊2πΘ ⌋ different cones in this special
position. With the same argumentation for the right ray, we bound the number of
arc end points per guard by 2⌊2πΘ ⌋. Therefore, the total number of arc end points is
O(nΘ).

We derive from the last Theorem that if the angle Θ > δ is bounded by a constant
δ > 0, then the number of arcs in C is O(n), and the complexity of the Θ-region is
O(n2). Using an auxiliary construction, we improve this result even further.

Theorem 3.7. Let δ > 0 be a positive constant. If the angle Θ ∈ [δ, π2), the com-
plexity of the Θ-region is O(n1+ε) for any ε > 0.

Proof. We make use of the following construction. Let a ∈ C be an arc in the
boundary of tunnel Ti, and let u and v be the end points of a. The line segment
(u, v) and a are the boundary of a circular segment, say da. We next clue a triangle
ta at the edge (u, v) of da, which has an angle of min{Θ, π4 } at u and v, and denote
this new object by Fa := da ∪ ta (see the right picture of Figure 3.5). We state
and prove the following lemma: “The triangle ta is a subset of Ti.” Assume that
ta contains a guard g ∈ G. Then the angles ∠guv and ∠gvu are smaller than Θ.
Two empty Θ-cones with apexes u and v must, therefore, belong to different tunnels.
This is a contradiction to a ⊂ ∂Ti. As a consequence, ta cannot contain any guards.
Moreover, the union of empty Θ-cones with apexes at points in a covers ta because
of the angle at u and v. This completes the proof of the lemma.

We slightly change the construction above and collect the new objects Fa for all
a ∈ C in the set F . We repeat the definition of α-fatness from Efrat et al. [24]: An
object F is α-fat for some fixed α > 1, if there exist two concentric disks D ⊆ F ⊆ D′

such that the ratio ρ′

ρ
between radius ρ′ of D′ and radius ρ of D is at most α. We state

that there is an α > 1 such that the objects Fa ∈ F are α-fat. The worst-case scenario

116

3.3 Boundary, Complexity and Computation for Θ < π

occurs when the arc a is almost a straight-line. Therefore, we concentrate on the
proof that the triangle ta is α-fat (see the right picture of Figure 3.5). Remember that
the angle at u is min{Θ, π4 }. Then the ratio between the radius of the circumcircle
and the radius of the inscribed circle is bounded by the constant α where2

ρ′

ρ
=

1

sin(12 ·min{Θ, π4 })
≤ 1

sin(12 ·min{δ, π4 })
=: α.

The main Theorem in Efrat et al. [24] states: The combinatorial complexity of the
union of a collection F of α-fat objects, whose boundaries intersect pairwise in at
most s points, is O(|F|1+ε) for any ε > 0; the constant of proportionality depends
on ε, α, and s.

We have seen that α is a constant and that the objects in F are α-fat. The
boundary of each convex object Fa ∈ F has three edges: two line segments and a
circular arc. Therefore, the boundaries of each pair of objects in F intersect in at
most s = 10 points (each line segment has at most 2 points of intersection, the arc has
at most 6 points of intersection). Because Θ is bounded from below by the constant
δ, we have |C| ∈ O(n), and consequently, |F| ∈ O(n). Therefore, the construction
fulfills all preconditions to apply the Theorem of Efrat et al., which completes the
proof.

Our next result improves the worst-case complexity in the case π
2 ≤ Θ < π.

Theorem 3.8. The complexity of the Θ-region is O(n) for π
2 ≤ Θ < π.

Proof. We use the following result of Kedem et al. [49]: Let J be a set of m Jordan
curves, i.e., simply-closed curves. If any two curves in J intersect in at most two
points, the complexity of their union is O(m).

Remember the definition of Ui in Formula (3.4). We construct a Jordan curve Ji
for each set Ui. Let Ji be the curved boundary of Ui from ℓi0 to ri0 (i.e., the sequence

of arcs), which is glued to the auxiliary half circle C
π
2
ri0 ,ℓi0

, that means,

Ji := ∂
(

Ui ∪ D
π
2
ri0 ,ℓi0

)

.

We observe that the auxiliary half-circle lies in Ti because Θ is obtuse. We further
observe that Ji is the boundary of a convex region and that Ji lies inside of the disc

D
π
2
ri0 ,ℓi0

∪D
π
2
ℓi0 ,ri0

.

We repeat the construction of Jordan curves Ji for all tunnels Ti with i ∈ I. By
J we denote the total set of curves Ji. We prove the auxiliary statement: “Any two
curves in J intersect at most twice.” Assume that there are two curves Ji, Jj ∈ J
that intersect at more than two points. We distinguish the cases that are shown in
Figure 3.6. Let Ai (resp. Aj) denote the sequence of circular arcs of Ui (resp. Uj).

2Trigonometry: In a right-angled triangle, sine equals the quotient of the hypotenuse and the
opposite side (see Papula [68]).

117

3 Complexity and Computation of Θ-Guarded Regions

p

pp

c

a

d

b
c

a b

d a b
a bcd

cd

(1a) (1b) (2) (3)

Figure 3.6: All cases that possibly imply more than just two intersection points be-
tween the curves Ji and Jj in the proof of Theorem 3.8. Dotted curves
illustrate the sequence of arcs of Ui and Uj from a to b and from c to d,
respectively. Solid arcs illustrate the auxiliary half-circles.

In Case 1, the sequence of circular arcs Ai and Aj intersect in point p as is shown
in Pictures (1a) or (1b). That means, for each tunnel Ti and Tj, there exists an
empty Θ-cone with apex in p. Therefore, the angle ∠apb has to be at least 2Θ which
is at least π. This is a geometrical contradiction.

In Case 2, we consider a point p that lies on the sequence of arcs Aj outside Ji as
shown in Picture (2). The angle ∠cpd is at least Θ. By construction, the angle ∠bpa
is larger than ∠cpd, and hence, ∠apb > Θ. It is a contradiction that p does not lie
inside Ji.

In Case 3, we consider an empty Θ-cone with apex c through tunnel Tj . Assume
this cone passes between a and b. Then the angle ∠bca is at least Θ, and hence, c
must lie inside Ji. This is a contradiction. The cases where the empty Θ-cone with
apex c does not pass between a and b, but between b and c, or between a and d, lead
to similar geometric contradictions.

Further cases are excluded because no guard can lie inside of Ji or Jj . Because
the assumption of more than two points of intersection leads to a contradiction in all
cases, the auxiliary statement is true. Therefore, we can apply the mentioned result
of Kedem et al. to conclude that the right side in

Θ-region ⊂ ∂
⋃

i∈I

(

Ui ∪ D
π
2
ri0 ,ℓi0

)

has complexity O(n). This completes the proof.

We have seen that the worst-case complexity of the Θ-region is linear for angles
π
2 ≤ Θ < π. Because the region does not have to be connected in this case, we have
implicitly proven that the number of connected components is at most O(n).

Example 3.1. Let G be the set of vertices of a regular 5-sided polygon. We reuse
the definition of α in the proof of Lemma 3.2. Here, α = 2π

5 < π
2 . The center of

the 5-sided polygon is Θ-guarded for angles π
2 ≤ Θ < π. Be aware that this fact is

independent of the volume of the polygon used in the construction; the statement is
true for any arbitrarily small regular polygon with at least 5 sides.

118

3.3 Boundary, Complexity and Computation for Θ < π

4i

i

0

−i

−4i after the 1st step

0 i 4i−4i −i

after the 2nd step

Figure 3.7: We generate the highly fragmented Θi-region for Gi at the center of
the point set. The left picture shows the simplified Θ2-region. The
middle picture shows the center of the Θ8-region after the first step of
the construction. The right picture shows the center of the Θ8-region
after the second step of the construction.

Let n ∈ N. We construct ⌊n5 ⌋ regular (at least) 5-sided polygons next to each other
such that their center points are disjoint and lie on a straight line. The vertices of
the polygons mark the location of the guards. Because the angle π

2 ≤ Θ < π is
given, we can scale the polygons down until the Θ-region disconnects between the
polygons. In this way, we construct a set G of size n that has a Θ-region with O(n)
components. ©

3.3.3 Lower Bound on the Worst-Case Complexity

We prove that there is a sequence of inputs such that the asymptotic bound on the
complexity of the corresponding Θ-guarded regions is Ω(n2). For this purpose, we
develop a generic construction for point sets Gi with ni guards and angles Θi for
all i ∈ N with the property: The complexity of the Θi-region of the point set Gi is
lower bounded by c · n2i for some constant c and limi→∞ ni = ∞. In fact, ni is a
linear function in i, and Θi is of order

1
i
. Therefore, the complexity bound can also

be interpreted as Ω(nΘ).

First, we motivate the construction for a given i ∈ N. The main aim is to con-
struct the point set Gi such that the Θi-region is fragmented into c · n2i connected
components at the center of the point set where the complexity of each component
is constant. The left picture of Figure 3.7 illustrates the desired fragmentation. We
plan to force this decomposition by long, thin tunnels that penetrate the center al-
most axis parallel from above, below, left, and right. More precisely, the medial axis
of the cones that enter these tunnels deepest are parallel to the principal axes. In the
first step of the construction, we define these wanted tunnels by certain guards. Un-
fortunately, the same guards that define these tunnels define an even larger number
of unwanted diagonal tunnels, which can enter this area as well. Many components

119

3 Complexity and Computation of Θ-Guarded Regions

4i−4i

−4i

4i

0

2i

2ii

i

2i

i

4i

0

Pattern A
1

2i

i

4i

0

Pattern B
1

θθi i

Figure 3.8: Placement of the guards in the first step for i = 2 (left). The placement
follows the guard patterns A and B (right).

of the desired Θi-region in the center are erased by these unwanted tunnels; for ex-
ample, see the middle picture of Figure 3.7. Therefore, we have to place additional
guards in the second step of the construction with the intention to prevent unwanted
diagonal tunnels from entering this area. This way, we achieve the desired total
complexity; compare the example with the right picture of Figure 3.7. We announce
that, because of the construction in the second step, the actual convex hull of Gi is
huge compared to the box in which we count the connected components. The shape
of the Θi-region outside of the center is neglected since we cannot expect a significant
contribution to the asymptotic bound on the complexity. The detailed construction
is presented below.

First step: Determining the wanted tunnels

By Bi we denote the square of edge length 2i that is centered at the origin and
is oriented parallel to the principal axes. In this step, we place guards of Gi on
the boundary of the boxes B4i and B2i. The area where we expect the connected
components is Bi (see the left picture in Figure 3.8). The entire construction is
symmetric to the origin as well as to the principal axes. For this reason, we only give
the construction for the upper half of the box B4i; the constructions for the lower,
left, and right half of this box are done analogously.

We now introduce the guard patterns A and B (see Figure 3.8, right) which define
two ways to place guards inside of a cell with width 1 and height 4i. We use these
patterns to mark the location of guards in the upper half of B4i. We define Θi as
the angle3 between the rays emanating from (12 , 0) through the points (0, 4i) and
(1, 4i). To get guard pattern A, we place four guards on the boundary of this cone:
two with y = 2i and two with y = 4i. These four guards define a wanted tunnel

3We remark that Θi is related to i in the way Θi = arctan(1
8i
) ≤ 1

8i
.

120

3.3 Boundary, Complexity and Computation for Θ < π

4i−4i

4i

0 i−i4i−4i

4i

0−i i

B B B B B B A A A A B B B B B B 2i

Figure 3.9: Subdivision of the upper half of B4i in 8i cells and their guard patterns
(left). The resulting placement of guards in the upper half (right).

that is thin in the sense that the boundary of the tunnel stays inside of the lowest
quarter of the cell (i.e., for 0 ≤ y ≤ i); remember that the focus of the analysis is the
interior of Bi. We add guards at (0, 2i) and (1, 2i) to avoid some unwanted diagonal
tunnels between adjacent cells with guard pattern A. (These guards do not provide
a general protection.) To avoid tunnels inside of the lowest quarter of a cell, we use
pattern B: Three guards that are placed equidistant on the top edge of the pattern
are sufficient to protect against Θi-cones. How do we use these patterns to place
the guards? We subdivide the upper half of the box B4i in 8i cells of width 1 (see
Figure 3.9). Then the medial quarter is stamped with pattern A, and the remaining
cells are stamped with pattern B.

This way, we guarantee 2i wanted tunnels from above that penetrate Bi and touch
the x-axis. Afterwards, we repeat this construction for the lower, left, and right half
of B4i with appropriately rotated guard patterns. Then tunnels from above and
below touch at the x-axis, and tunnels from the left and the right touch at the y-
axis. This follows immediately from the symmetric construction. If we can manage
to remove only these tunnels from the center of the box Bi, the center is fragmented
into (2i+ 1)2 connected components.

Two guards are sometimes placed at the same location because of the symmetric
construction. It is naturally sufficient to place only one guard there. Therefore, the
number of guards in Gi that are placed in the first step sums up to 80i+ 4.

Second step: Excluding the unwanted tunnels

Again, we begin with the construction for the upper half of B4i. Figure 3.10 illus-
trates the guards of the 2i cells with patterns A. In particular, we consider pairs
of guards through which empty cones can enter Bi from above. We denote the
guard pairs on the line y = 4i by P1, . . . , P2i and the guard pairs on the line y = 2i
by Q1, . . . , Q2i. An empty cone that enters Bi from above, therefore, has to pass
through Pk and Qℓ for some k, ℓ ∈ {1, . . . , 2i}. If k = ℓ, the tunnel is wanted. If
k 6= ℓ, however, we need a counter-measure to prevent the cone from entering Bi.
We formalize the problem.

Definition 3.1. Let t be the tunnel through Pk and Qℓ in the top part of B4i.

121

3 Complexity and Computation of Θ-Guarded Regions

Pi Pi+1

iQ i+1Q

P1

1Q 2iQ

P2i

10−1

4i

2i

−i −(i−1) ii−1

iBi

4iB

Figure 3.10: Guard pairs through which empty cones can enter Bi from above.

We say that an empty cone enters tunnel t the deepest if the y-value of its apex is
minimal among all empty cones in t. We define deepest cones analogously for the
other three sides of B4i.

Note that the deepest cone in a tunnel is unique and is tangent to at least one
guard on each ray. We define the slope of a cone as the slope of its medial axis.
Because of the regular structure of the cells with guard pattern A, we make the
observation that the slope of a deepest cone through Pj and Qj+h is independent of
j and is implicitly given by the offset h. We formalize this observation.

Lemma 3.9. Let h ∈ {0, . . . , 2i−1}. For all j ∈ {1, . . . , 2i−h}, let cj be the deepest
cone through Pj and Qj+h, and let dj be the deepest cone through Pj+h and Qj. Then
the cones cj for all j have the same slope, and the cones dj for all j have the same
slope.

For a given offset h, we consider the set of cones cj . (A similar argumentation
is true for the cones dj .) We derive from Lemma 3.9 that the intersection of all
deepest cones cj is a cone with the same slope (see the shaded region in the left
picture of Figure 3.11). Assume that we place a guard at a random position inside
of this intersection. Then none of the cones cj are empty anymore. That means, in
this altered situation, the new deepest cones must have different slopes and must be
tangent to the new guard (see Figure 3.11, middle). Imagine we pull the new guard
in the direction of the medial axis of the former deepest cones towards infinity.
While we move this guard, the current deepest cones are rotated and pushed away
from the x-axis. Because of the construction, we can enforce a rotation by an angle
that is arbitrarily close to half of the apex angle, i.e., Θi

2 − ε for any ε > 0 (see
Figure 3.11, right). Be aware that this construction is possible in general for all
h = {0, . . . , 2i− 1}. Of course, we may not place guards in the union of the deepest
cones for h = 0 since these tunnels are wanted. Nevertheless, we used this case in
Figure 3.11 since it depicts the worst-case scenario, which is considered in the proof
later on.

122

3.3 Boundary, Complexity and Computation for Θ < π

Figure 3.11: A set of deepest cones with the same slope (left). The new deepest
cones after the insertion of an additional guard (middle). The limit of
the rotation (right).

We are now able to complete the construction. First, we compute the 4i−2 slopes
of the deepest cones cj and dj of Lemma 3.9 for all h = {1, . . . , 2i−1}. For each s of
these slopes, we then place an additional guard at the intersection point of the ray
emanating from the origin with slope s and the boundary of a new huge box Bx (see
Figure 3.12, left). We have seen that the box Bx must be large enough to guarantee
that each intersection point lies

1. outside of the union of the wanted cones and

2. inside of the intersection of the deepest cones of the given slope.

The existence of such a box Bx follows from the discussion above. It remains to
show that the additional guards are sufficient to prevent all diagonal tunnels from
entering Bi.

Lemma 3.10. Box Bx can be chosen large enough such that no empty Θi-cone can
intersect Bi (with the exception of the wanted cones).

Proof. It is sufficient to prove the claim for the deepest cones whose apex y-value is
minimal amongst all deepest cones according to Lemma 3.9. Although these are the
cones for h = 1, we consider h = 0 here because it simplifies the proof. (Be aware
that we do not block tunnels for h = 0 in practice.)

Remember that we can place the additional guard such that the deepest cones are
rotated by an angle arbitrarily close to Θi

2 . Without loss of generality, we assume
that the cone is rotated clockwise.

Therefore, we consider an empty cone c with apex a = (14 , i) inside a cell with
guard pattern A (shaded region in Figure 3.12, right). Assume that its angle is
maximum, that means, one ray passes through the point (14 , 2i), and the other ray
passes through the point (1, 4i). This cone touches the boundary of Bi, and its left
ray is vertical as it is the case for maximal rotated deepest cones. If we can show
that the angle of c is smaller than Θi, it follows that c cannot enter Bi.

123

3 Complexity and Computation of Θ-Guarded Regions

θ
2 θi

0 i x

x

4i

2i
i

−4i

−x

−x −4i 4i2i

1

2i

i

4i

0

a

Figure 3.12: Final placement of the guards in both steps for i = 2 (left). Auxiliary
construction in the proof of Lemma 3.10 (right).

We crop c at the line y = 4i to make it a rectangular triangle. In addition, we
draw a (non-empty) vertical Θi-cone with apex a. We now divide the shaded triangle
along the right boundary of the Θi-cone (dashed line) through the point (58 , 4i); the
point of intersection is deduced from guard pattern A (see Figure 3.8). Then the left
shaded sub-triangle has angle Θi

2 at point a. Since the side of the shaded triangle,
which is opposite to a, is divided in the middle, the total angle of the shaded triangle
at a must be less than Θi. That means, vertical Θi-cones cannot enter the box Bi if
they are rotated by an angle of Θi

2 .
As a consequence, it is possible to prevent a series of empty Θi-cones with the

same slope from entering Bi by a single additional guard.

After repeating this construction for the lower, left, and right halves, we have
placed 16i− 8 additional guards. Together with the guards from the first step, they
define the set Gi with ni = 96i − 4 guards in total. We draw the conclusion that
the series of examples with guards Gi and angle Θi for i ∈ N proves the following
Theorem.

Theorem 3.11. The pairs (Gi,Θi) for i ∈ N define a sequence of Θ-regions whose
asymptotic bound on the complexity is Ω(n2) where n is the number of guards.

3.3.4 Computation

We also present a way to compute the boundary of the Θ-region. An overview of the
steps is given in Table 3.1. We remark that for any n and any Θ, there are sets G for
which the Θ-region is empty or extremely simple, for example, if the guards lie on
a straight line. Unfortunately, the presented algorithm has to consider the potential

124

3.3 Boundary, Complexity and Computation for Θ < π

Step 1: compute the set of relevant arcs (determine C′)
• convex hull (CH (G))
• Θ-maxima (gmin, gmax)
• extended partition tree (T)
• querying the extended partition tree (gℓ, gr)

Step 2: compute the arrangement of these arcs (determine A(C′))
Step 3: determine the Θ-guarded cells (color A(C′))
Step 4: report the boundary of the Θ-region (traverse A(C′))

Table 3.1: Instructions for computing the Θ-guarded regions.

arcs in C and is not output-sensitive in general. We further remark that there is a
slight modification of the algorithm: Instead of C, we consider the set C′ of arcs that
are longer on one side, i.e., |C| = |C′| and ⋃ C ⊂ ⋃C′.

Step 1 (determine C′). We distinguish two types of arcs: Arcs that are purely
induced by vertices of the convex hull and arcs that are induced by at least one
guard from the interior of the hull. Therefore, we begin with the computation of the
convex hull CH (G) in O(n log n) time [18]. The determination of arcs induced by
hull edges is quite simple: For each hull edge (u, v) in clockwise order, we add the
circular arc CΘ

u,v to the set C′.
The determination of the second type of arcs is much costlier. For each guard g

that lies in the interior of CH (G), we compute all empty cones of maximal angle
with apex g together with two guards (witnesses) gmin and gmax per empty cone that
lie on its rays (see the light-shaded cone in Figure 3.13). Of course, we are only
interested in empty cones whose angle is at least Θ; we disregard cones with smaller
angles. We determine the empty cones of maximal angle (also known as Θ-maxima)
with the algorithm of Avis et al. [3] in O(n log n) time and O(n) space for π

2 ≤ Θ < π
and in O(nΘ log n) time and O(n) space in general.

Following the proof of Theorem 3.6, we find the arcs in C via their end points. If
we move an empty Θ-cone with apex g and its left ray through gmin along the line
through g and gmin until the first time that another guard, say gr, touches the other
ray, the new apex marks an end point pr of two arcs in the set C (see Figure 3.13 and
remind the left picture of Figure 3.5). Since we do not know the other end points of
the arcs, we add the piece of CΘ

gmin,gr
to C′ that ends in gr and pr, and we add the

piece of CΘ
g,gr

to C′ that ends in g and pr. A similar construction for the line through
g and gmax adds two more arcs to C′. But how do we determine gr and gℓ?

By fixing the line through g and gmin, we could find gr naively by simply checking
all guards in G, and we could find gℓ in a similar way. However, we compute the
guards gr and gℓ faster with the help of the well-known Partition Theorem. We cite
the theorem for a planar point set.

Theorem 3.12. (Partition Theorem [56].) Any set S of n points in the plane can
be partitioned into O(r) disjoint classes by a simplicial partition such that every

125

3 Complexity and Computation of Θ-Guarded Regions

grgℓ

pℓ

gmaxgmin

pr

g

Figure 3.13: From each maximal empty cone at g with angle at least Θ, we derive
two arc end points pℓ and pr and four incident arcs.

simplex (i.e., triangle) contains between n
r
and 2n

r
points, and every line crosses at

most O(r
1
2) simplices (crossing number). Moreover, for any ξ > 0, such a simplicial

partition can be constructed in O(n1+ξ) time.

Using this theorem recursively, we construct a tree, called a partition tree. That
means, the root of the tree is associated with the entire set S, it has O(r) children,
each child is a triangle and is associated with a subset of the points from the previous
level, and so on. We assume that r is a constant. Then the partition tree is of O(n)
size and can be constructed in O(n1+ξ) time for any ξ > 0. We now claim that it is
possible to construct an extended partition tree T with the following property.

Lemma 3.13. For any ξ > 0, there is a data structure of O(n log n) size and O(n1+ξ)
construction time such that we can compute the guards gℓ (resp. gr) for a query line

through g and gmin (resp. g and gmax) in O(n
1
2
+ξ) time.

Proof. Assume we are given a partition tree. We consider the line through g and
gmax. Due to Theorem 3.12, the number of first level triangles that intersect this
line is bounded by O(r

1
2). Recurring on those triangles leads to a total of O(n

1
2)

triangles which are intersected by the line. That means, if gℓ belongs to one of these
triangles, it can be found in time O(n

1
2).

On the other hand, gℓ can also belong to a triangle lying completely to the left
of the line ggmax. There are O(r) such triangles. For each triangle in the partition
tree, we precompute the convex hull of the points associated with the triangle. This
increases the total space of the extended partition tree to O(n log n) since every level
in the tree is now of O(n) size. Then, for every triangle that lies to the left of ggmax,
guard gℓ can be found as an extreme point of the precomputed convex hulls. gℓ is
extreme in the direction perpendicular to the line that forms the Θ-cone with the
line through ggmax. The additional time to determine the extreme points is O(log n)
in total (see [67], Section 7.9). This way, we avoid recurring on the triangles that lie
completely to the left of ggmax.

Analogously, we prove the case for the line through g and gmin.

126

3.3 Boundary, Complexity and Computation for Θ < π

We query the extended partition tree T to determine gℓ and gr for each Θ-
maximum. We use these guards to determine four arcs of C′ as explained above.
Remember that the number of Θ-maxima is bounded by ⌊2πΘ ⌋ per guard. Therefore,
the querying takes total time O(n

3
2
+ξ/Θ). We summarize the construction of C′.

Lemma 3.14. For any ξ > 0, the set C′ can be computed in O(n
3
2
+ξ/Θ) time and

O(n log n) space.

Proof. The total construction time is the sum of the construction time for the convex
hull of G, all Θ-maxima, and the extended partition tree T , plus the query time for
all touching points. In the given order, this leads to

O

(

n log n +
n

Θ
log n + n1+ξ +

n
3
2
+ξ

Θ

)

= O

(

n
3
2
+ξ

Θ

)

.

The construction that consumes the most space is the extended partition tree T .

Step 2 (determine A(C′)). We now compute the arrangement A(C′) from the arc
set C′. By m we denote the number of arcs in C′, by ψ we denote the number of cells
in A(C′), and by µ we denote the total complexity of the arrangement A(C′), which
upper bounds the complexity of the Θ-region. Then µ ≥ m. Edelsbrunner et al. [21,
Theorem 5] showed that µ is at most

O
(

ψ
1
2 ·m · 2α(m)

)

= O
(

ψ
1
2 · n

Θ
· 2α(n

Θ
)
)

where α(·) is the inverse Ackermann function, which is an extremely slow-growing
function. Moreover, the arrangement A(C′) can be constructed in

O ((m+ µ) logm) = O
(

µ log
n

Θ

)

time by the plane-sweep algorithm of Bentley and Ottmann [6].

Step 3 (color A(C′)). We explain the computation of the Θ-guarded region from
the arrangement of circular arcs A(C′). The arcs in C′ contain the bounding circular
segments from Formula (3.3). Therefore, the cells in the arrangement A(C′) have the
property that they are either entirely Θ-guarded or entirely non-Θ-guarded. That
means, it suffices to query a random point from the interior of a cell to find out if
the entire cell is guarded or not. Hence, we chose a sample point from the interior
of each of the ψ different cells in A(C′) and denote the set of sample points by P .
To check which cells belong to the Θ-region, we use the following lemma.

Lemma 3.15 (Avis et al. [3]). Let G be a set of n guards, and let P be a set of ψ
query points in R2. The Θ-unguarded points of P can be reported together with their
witnesses gmin and gmax in O(n+ψΘ log(n+ ψ)) time.

127

3 Complexity and Computation of Θ-Guarded Regions

Proof. Avis et al. [3, Theorem 2] presented an algorithm to compute all Θ-unguarded
guards of G in O(nΘ log n) time. So far, the set of query points and the set of
guards are the same. But since their algorithm actually distinguishes between query
points and guards, it can be extended immediately: In Steps 2 and 3 of procedure
Unoriented Maxima on page 284f only guards are inserted into the convex hull
constructions, while tangents to these convex hulls are only computed through query
points. The running time of the algorithm is dominated by sorting the points in G∪P
for π

Θ many directions, which takes O(n+ψΘ log(n + ψ)) time. For more details, see
Sections 2 and 6 (Appendix) in [3].

This way, we color guarded cells black and non-guarded cells white.
Step 4 (traverse A(C′)). First, we remove all arcs from the arrangement A(C′)

that separate cells of the same color. Then we traverse A(C′) to detect and report
the connected components of the Θ-region. Each time we detect a black cell (i.e.,
a component of the Θ-region), we report the clockwise boundary of this cell as the
sequence of arc end points and arcs. We mark the cell as processed (we color it gray)
and continue traversing the arrangement until we have visited each arc once. We
can solve this task in O(µ) time.

We summarize the construction of the four steps in the theorem below.

Theorem 3.16. For Θ < π, the Θ-region can be computed in time

O

(

n
3
2
+ξ

Θ
+ µ log

n

Θ
+

n+ ψ

Θ
log(n+ ψ)

)

where ξ > 0, ψ is the number of cells in A(C′), and µ is the complexity of the
arrangement A(C′).

We refine the algorithm for angles π
2 ≤ Θ < π such that it has running time

O(n log n). For these angles, the Θ-region may resemble the convex hull. For ex-
ample, let G be the vertex set of a regular n-sided polygon where n ≥ 5; then,
the Θ-region is non-empty, has complexity n, and each arc of the Θ-region can be
associated with a convex hull edge of CH (G). In such cases, the running time is
optimal.

Theorem 3.17. For π
2 ≤ Θ < π, the Θ-region can be computed in time O(n log n).

Proof. We slightly change the construction and show that each step takes at most
O(n log n) time.

Step 1: Avis et al. [3] have shown that we can determine the Θ-maxima for angles
π
2 ≤ Θ < π in O(n log n) time. Their procedure Unoriented Maxima on page 284f
reports unguarded points per convex hull edge e (as a result of procedure Candi-

dates). Furthermore, these points are sorted along e (the first step of Unoriented

Maxima). Therefore, for each convex hull edge e = (u, v), we can construct the
chain of arcs with inscribed angles Θ from u through the ordered set of unguarded
candidates in G to v without extra time. We denote this chain by γe and the set of

128

3.3 Boundary, Complexity and Computation for Θ < π

all such chains by Γ. Because π
2 ≤ Θ, chain γe cannot be self-intersecting. Now, C′

is the set of all arcs in Γ. Each guard is a candidate at most four times. Hence, the
total complexity of C′ is linear.

Step 2: Computing A(C′) is equivalent to computing A(Γ). We also use the
algorithm of Bentley and Ottmann [6] in this case. The running time depends on
the output complexity, which we consider next. We have said that γe is a chain of
arcs that connects two vertices u and v of the convex hull. Imagine that we glue the
arc chains in Γ together at vertices of the convex hull. Then we obtain a cycle that
possibly intersects itself. Let ai and aj be two intersecting arcs in the cycle Γ. Then
the clockwise arc chain from ai to aj cannot intersect the clockwise arc chain from
aj to ai since it would imply a geometric contradiction (four angles sum up to more
than 2π). Therefore, the complexity of A(C′) is linear and the algorithm of Bentley
and Ottmann takes O(n log n) time.

Step 3 and 4: During the computation of A(C′), we color faces that lie on the
inscribed side of an arc white. That means, points in white-colored faces are un-
guarded. The unbounded face is clearly colored white, too. After the computation
of A(C′), we color each uncolored face black and report its boundary clockwise. The
additional time is bounded by the complexity of the arrangement, which is O(n).

129

3 Complexity and Computation of Θ-Guarded Regions

3.4 Summary: Complexity Bounds

We have seen that the boundary of the Θ-guarded region depends on the location
of the guards and the angle Θ. For all angles 0 ≤ Θ < 2π and n ∈ N, there are sets
of n guards whose Θ-regions are empty; this is particularly true if all guards lie on
a straight line.

The worst-case complexity, however, is defined by a set of at most O(nΘ) circular
arcs. The difficulty in the complexity analysis of the Θ-region itself appeared while
arguing about the complexity of the union of convex sets Ui, which are bounded by
these arcs (cf. Formula 3.3). We summarize our results on the worst-case complexity
of the Θ-region in dependence on the angle in Table 3.2. Furthermore, we have given
a series of inputs with decreasing angle and increasing number of guards whose
asymptotic complexity is Ω(n2).

angle Θ Θ-region worst-case complexity

2π R2 O(1)

π < Θ < 2π ⊃ CH (G) O(|CH (G)|)

π CH (G) |CH (G)|
π
2 ≤ Θ < π ⊂ CH (G) O(n)

δ < Θ < π
2 for δ > 0 ⊂ CH (G) O(n1+ε) for ε > 0

2π
n
< Θ ⊂ CH (G) O(n

2

Θ2) and Ω(n2)

0 ≤ Θ ≤ 2π
n

∅ O(1)

Table 3.2: The worst-case complexity of the Θ-region in dependence on the angle Θ.

130

Bibliography

[1] M. Abellanas, A. Bajuelos and I. Matos. Some Problems Related to Good
Illumination, International Conference on Computational Science and Its Ap-
plications, pp. 1–14, 2007.

[2] M. Abellanas, M. Claverol and I. P. Matos. The α-Embracing Contour. Interna-
tional Conference on Computational Science and Its Applications, pp. 365–372,
2008.

[3] D. Avis, B. Beresford-Smith, L. Devroye, H. Elgindy, E. Guévremont, F. Hur-
tado and B. Zhu. Unoriented Θ-Maxima in the Plane: Complexity and Algo-
rithms, SIAM Journal on Computing, Vol. 28, pp. 278–296, 1999.

[4] D. Avis, D. Bremner and R. Seidel. How Good Are Convex Hull Algorithms? In
Computational Geometry: Theory and Applications, Vol. 7, pp. 265–301, 1997.

[5] F. Avnaim, J.-D. Boissonnat, O. Devillers, F. P. Preparata and M. Yvinec.
Evaluating Signs of Determinants Using Single-Precision Arithmetic. In Algo-
rithmica, Vol. 17(2), pp. 111-132, 1997.

[6] J. L. Bentley and T. Ottmann. Algorithms for reporting and counting geometric
intersections, IEEE Transactions on Computers C, Vol. 28, pp. 643–647, 1979.

[7] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, L. Kettner, K. Mehlhorn,
J. Reichelt, S. Schmitt, E. Schömer and Nicola Wolpert. EXACUS: Efficient and
Exact Algorithms for Curves and Surfaces. In 13th Annual European Symposium
on Algorithms, pp. 155–166, 2005.

[8] M. de Berg, O. Cheong, M. van Kreveld and M. Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 3nd edition, 2008.

[9] H. Brönnimann and M. Yvinec. Efficient Exact Evaluation of Signs of Deter-
minants. In Algorithmica, Vol. 27(1), pp. 21–56, 2000.

[10] Ch. Burnikel. Exact computation of Voronoi diagrams and line segment in-
tersections. PhD Thesis, Max-Planck-Institut für Informatik, Universität des
Saarlandes, 1996.

[11] Ch. Burnikel, St. Funke, and M. Seel. Exact Geometric Computation Using
Cascading. In International Journal of Computational Geometry and Applica-
tions, pp. 245–266, 2001; preliminary version Symposium on Computational
Geometry, pp. 175–183, 1998.

131

Bibliography

[12] Ch. Burnikel, K. Mehlhorn and St. Schirra. On Degeneracy in Geometric Com-
putations. In Symposium on Discrete Algorithms, pp. 16–23, 1994.

[13] M. Caroli. Evaluation of a Generic Method for Analyzing Controlled-Perturba-
tion Algorithms. Master’s Thesis, Universität des Saarlandes, 2007.

[14] Cgal - User and Reference Manual: All Parts. Release 3.9, 2011.
http://www.cgal.org/Manual/latest/doc pdf/cgal manual.pdf

[15] B. Chazelle. On the convex layers of a point set, IEEE Transactions on Infor-
mation Theory, Vol. 31, No. 4, pp. 509–517, 1985.

[16] V. Chvátal. A Combinatorial Theorem in Plane Geometry, Journal of Combi-
natorial Theory B, Vol. 18, pp. 39–41, 1975.

[17] R. Cole, M. Sharir and C. Yap. On k-hulls and related problems, SIAM Journal
on Computing, Vol. 16(1), pp. 61–67, 1987.

[18] T. H. Cormen and C. E. Leiserson and R. L. Rivest and C. Stein. Introduction
to Algorithms. The MIT Press and McGraw-Hill, 1990.

[19] O. Deiser. Einführung in die Mengenlehre. Springer-Verlag, 2. Auflage, 2004.

[20] P. Deuflhard and A. Hohmann. Numerische Mathematik I: Eine algorithmisch
orientierte Einführung. de Gruyter Lehrbuch, 3. Auflage, 2002.

[21] H. Edelsbrunner, L. Guibas, J. Pach, R. Pollack, R. Seidel and M. Sharir. Ar-
rangements of curves in the plane—topology, combinatorics, and algorithms,
Theoretical Computer Science, Vol. 92, Issue 2, pp. 319–336, 1992.

[22] H. Edelsbrunner, D. G. Kirkpatrick and R. Seidel. On the Shape of a Set of
Points in the Plane, IEEE Transactions on Information Theory, Vol. 29, No. 4,
pp. 551–559, 1983.

[23] H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: A technique to
cope with degenerate cases in geometric algorithms. In ACM Transactions on
Graphics, Vol. 9(1), pp. 66–104, 1990.

[24] A. Efrat and M. Sharir. On the complexity of the union of fat objects in
the plane, SCG ’97: ACM Proceedings of the thirteenth annual symposium on
Computational geometry, pp. 104–112, 1997.

[25] I. Z. Emiris and J. F. Canny. A General Approach to Removing Degeneracies.
In SIAM Journal on Computing, Vol. 24(3), pp. 650–664, 1995.

[26] I. Z. Emiris, J. F. Canny and R. Seidel. Efficient Perturbations for Handling
Geometric Degeneracies. In Algorithmica, Vol. 19(1), pp. 219–242, 1997.

[27] Euklid von Alexandria. Die Elemente. Bücher I-XIII. Ostwalds Klassiker der
Exakten Wissenschaften, Band 235. Verlag Harri Deutsch, 3. Auflage, 1997.

132

Bibliography

[28] A. Fabri, G.-J. Giezeman, L. Kettner, St. Schirra and S. Schönherr. On the
design of CGAL a computational geometry algorithms library Software Practice
and Experience, Vol. 30(11), pp. 1167–1202.

[29] W. Fischer and I. Lieb. Funktionentheorie – komplexe Analysis in einer
Veränderlichen. Vieweg Studium, 9. Auflage, 2005.

[30] O. Forster. Analysis 1: Differential- und Integralrechnung einer Veränderlichen.
Vieweg-Verlag, 8. Auflage, 2006.

[31] O. Forster. Analysis 3: Maß- und Integrationstheorie, Integralsätze im Rn und
Anwendungen. Vieweg+Teubner, 6. Auflage, 2011.

[32] G. E. Forsythe. Pitfalls in Computation, or why a Math Book isn’t Enough. In
The American Mathematical Monthly, Vol. 77(9), 931–956, 1970. Or in Technical
Report No. CS 147, Computer Science Department, School of Humanities and
Sciences, Stanford University, 1970.

[33] S. Fortune and C. van Wyk. Static analysis yields efficient exact integer arith-
metic for computational geometry. In ACM Transactions on Graphics, Vol. 15,
pp. 223–248, 1996; preliminary version in 7th ACM Conference on Computa-
tional Geometry, pp. 163–172, 1993.

[34] St. Funke. Exact Arithmetic using Cascaded Computation, Master’s Thesis,
Universität des Saarlandes, 1997.

[35] St. Funke, Ch. Klein, K. Mehlhorn, and S. Schmitt. Controlled perturbation for
Delaunay triangulations. In Symposium on Discrete Algorithms, pp. 1047–1056,
2005.

[36] C. G. Gibson. Elementary geometry of algebraic curves. Cambridge University
Press, 1998.

[37] D. Goldberg. What Every Computer Scientist Should Know About Floating-
Point Arithmetic. In ACM Computing Surveys, Vol. 23(1), pp. 5–48, 1991.

[38] P. Hachenberger and L. Kettner. Boolean operations on 3D selective Nef com-
plexes: optimized implementation and experiments. In Symposium on Solid and
Physical Modeling, pp. 163–174, 2005.

[39] D. Halperin and E. Leiserowitz. Controlled perturbation for arrangements of
circles. In International Journal of Computational Geometry and Applications,
Vol. 14(4), pp. 277–310, 2004.

[40] D. Halperin and S. Raab. Controlled perturbation for arrangements of polyhe-
dral surfaces with application to swept volumes. In Symposium on Computa-
tional Geometry, pp. 163–172, 1999.

133

Bibliography

[41] D. Halperin and Ch. R. Shelton. A perturbation scheme for spherical arrange-
ments with application to molecular modeling. In Computational Geometry:
Theory and Applications, Vol. 10, pp. 183–192, 1998.

[42] M. Held. VRONI: An engineering approach to the reliable and efficient com-
putation of Voronoi diagrams of points and line segments. In Computational
Geometry: Theory and Applications, Vol. 18(2), pp. 95–123, 2001.

[43] G. Hotz. Einführung in die Informatik. Leitfäden und Monographien der Infor-
matik, Teubner, 1990.

[44] IEEE Standard 754-2008 for Floating-Point Arithmetic. 2008.

[45] T. Imai. A topology oriented algorithm for the Voronoi diagram of polygons.
In Proceeding of the 8th Canadian Conference on Computational Geometry,
Carleton University Press, Ottawa, Canada, pp. 107–112, 1996.

[46] K. Jänich. Topologie. Springer-Verlag, 7. Auflage, 2001.

[47] M. Jünger, G. Reinelt, and D. Zepf. Computing correct Delaunay triangulations.
In Computing, Vol. 47, pp. 43–49, 1991.

[48] M. Karasick, D. Lieber, and L.R. Nackman. Efficient Delaunay triangulation
using rational arithmetic. In ACM Transactions on Graphics, Vol. 10(1), pp. 71–
91, 1991.

[49] K. Kedem, R. Livne, J. Pach and M. Sharir. On the union of Jordan regions
and collision-free translational motion amidst polygonal obstacles, Discrete and
Computational Geometry, Vol. 1, pp. 59–71, 1986.

[50] L. Kettner, M. Mehlhorn, S. Pion, St. Schirra, and C.-K. Yap Classroom Ex-
amples of Robustness Problems in Geometric Computations. In Computational
Geometry: Theory and Applications, Vol. 40, pp. 702–713, 2008.

[51] L. Kettner and St. Näher. Two Computational Geometry Libraries: LEDA
and CGAL. In Jacob E. Goodman and Joseph O’Rourke, editors, Handbook of
Discrete and Computational Geometry, second edition, pp. 1435-1463, 2004.

[52] Ch. Klein. Controlled Perturbation for Voronoi Diagrams. Master’s Thesis,
Universität des Saarlandes, 2004.

[53] E. Lamprecht. Lineare Algebra I und II. Birkhäuser, 1993.

[54] C. Li, C. Yap, S. Pion and Z. Du. Core Library Tutorial. Courant Institute of
Mathematical Sciences, New York University, 2002.
http://www.cs.nyu.edu/exact/core/doc/tutorial.ps.gz

[55] D. Matijević and R. Osbild. Finding the Theta-guarded region. In Computational
Geometry: Theory and Applications, Vol. 43(2), pp. 207–218, 2010.

134

Bibliography

[56] J. Matoušek. Efficient Partition Trees, Discrete and Computational Geometry,
Vol. 8, pp. 315–334, 1992.

[57] K. Mehlhorn and S. Näher. The Implementation of Geometric Algorithms.
In Proceedings of the 13th International Federation for Information Processing
World Computer Congress, Vol. 1, pp. 223–231, Elsevier, 1994.

[58] K. Mehlhorn and S. Näher. The LEDA Platform for Combinatorial and Geo-
metric Computing. Cambridge University Press, 1999.
http://www.mpi-inf.mpg.de/∼mehlhorn/LEDAbook.html

[59] K. Mehlhorn, R. Osbild and M. Sagraloff. Reliable and Efficient Computa-
tional Geometry via Controlled Perturbation. In International Colloquium on
Automata, Languages and Programming, Vol. 4051 of LNCS, pp. 299–310, 2006.

[60] K. Mehlhorn, R. Osbild and M. Sagraloff. A General Approach to the Analysis
of Controlled Perturbation Algorithms. In Computational Geometry: Theory
and Applications, Vol. 44(9), pp. 507–528, 2011.

[61] D. Michelucci. An epsilon-Arithmetic for Removing Degeneracies. In Proceed-
ings of the 12th Symposium on Computer Arithmetic, pp. 230– 1995.

[62] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University
Press, 1995.

[63] MPFI 1.0 - Multiple Precision Floating-Point Interval Library. SPACES, INRIA
Lorraine and Arenaire, INRIA Rhone-Alpes, 2002.
http://perso.ens-lyon.fr/nathalie.revol/mpfi toc.html

[64] The MPFR team. GNU MPFR - The Multiple Precision Floating-Point Reliable
Library. Edition 3.1.0, 2011.
http://www.mpfr.org/mpfr-current/mpfr.pdf

[65] K. Mulmuley. Computational geometry - an introduction through randomized
algorithms. Prentice Hall, 1994.

[66] J. O’Rourke. Art gallery theorems and algorithms, Oxford University Press Inc.,
1987.

[67] J. O’Rourke. Computational Geometry in C, second edition, Cambridge Uni-
versity Press, 2000.

[68] L. Papula. Mathematische Formelsammlung für Ingenieure und Naturwis-
senschaftler. Vieweg + Teubner, 10. Auflage, 2009.

[69] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, New York, 1985.

135

Bibliography

[70] M. Sagraloff and C.-K. Yap. A simple but exact and efficient algorithm for com-
plex root isolation. In The International Symposium on Symbolic and Algebraic
Computation, pp. 353–360, 2011.

[71] M. Seel. An Accurate Arithmetic Implementation of Line Segment AVDs. Tech-
nical Report, Max-Planck-Institut für Informatik, 1996.

[72] R. Seidel. The Nature and Meaning of Perturbations in Geometric Computing.
In Discrete and Computational Geometry, Vol. 19(1), pp. 1–17, 1998.

[73] J. R. Shewchuk. Adaptive Precision Floating-Point Arithmetic and Fast Robust
Geometric Predicates. In Discrete and Computational Geometry, Vol. 18(3),
pp. 305–368, 1997.

[74] K. Sugihara and M. Iri. Construction of the Voronoi diagram for “one million”
generators in single-precision arithmetic. In Proceedings of the IEEE, Vol. 80(9),
pp. 1471–1484, 1992.

[75] K. Sugihara, M. Iri, H. Inagaki and T. Imai. Topology-Oriented Implementation
- An Approach to Robust Geometric Algorithms. In Algorithmica, Vol. 27(1),
pp. 5–20, 2000.

[76] J. Urrutia. Art Gallery and Illumination Problems, in Jörg-Rüdiger Sack and
Jorge Urrutia, editors, Handbook of Computational Geometry, pp. 973–1027,
2000.

[77] C.-K. Yap. Geometric Consistency Theorem for a Symbolic Perturbation
Scheme. In Journal of Computer and System Sciences, Vol. 40(1), pp. 2–18,
1990.

[78] C.-K. Yap. Symbolic Treatment of Geometric Degeneration. In Journal of
Symbolic Computation, Vol. 10(3), pp. 349–370, 1990.

[79] C.-K. Yap. Towards exact geometric computation. In Computational Geometry:
Theory and Applications, Vol. 7(1), pp. 3–23, 1997.

136

