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Abetract, We show that 3 maximum flow in a network with n vertices can be computed
deterministically in O(n*flog n) time on a uniform-cost RAM. For demse graphs, this improves
the previous best bound of O(n?).

The bottleneck in our algorithm is a combinatorial problem on (unweighted) graphs. The
number of operations executed on flow variables is O(n*/?(logn)*/?), in contrast with f2(nm) flow
operations for all previous algorithms, where m denotes the number of edges in the network. A
randomised version of our algorithm executes O(n*2m' 3(log 2)>'2 4 n?(log n)?) Bow operativns
with high probability.

Specializing to the case in which all capacities are integers bounded by [f, we show that a
maximum flow can be computed using O(n>?m'’? ¢ n?({log U)*/?) dow operations. Finally, we
argue that several of our results yield optimal parallel algorithms.

1. Introduction

The fasteat deterministic and randomised algorithma for computing 8 maximum flow in a
network with n vertices and m edges have running times of O(min{nmlogn, nm + n*>logn})
(Alen's [(Al89) dersadomization of (CH89)) and O(min{nm Yogn, nm + n?(logn)?}) (Tarjan’s
(Ta29) improved analyss of (CH89]), respectively. Despite intensive research for over three
dacades, no algorithm with a running time of o[nm) has ever been reported for any combination
of n and m. Thia ia true even for natwarks with integer capacities, provided that the bound IS
on the maximum capacity is moderately large, say, U' = (1(n) [AOT89].

Our main result is a3 maximum-fow algorithm that runs in O(n?/ logn) time. For dense
notwarks with m = w(n?/log n), this answers the question posed ia the title in the affirmative.

Our algerithm is based on earlier work in [CH89), [GT88], and [AO87], all of whkich in
turn uses the generic maximum-fAow algorithm of Goldberg and Tarjian [GT28), which works
by manipulating a so-called preflow in the given network. We design an extensioa of the generic
algorithm, called the incremental geseric algoritam, which uses a new operation called add edge.
The new algorithm manipulates a preflow on a subnetwork and, as the exccution progresses,
gradually adds the remaining edges to the current subnetwork.

Adding the edges in the arder of decreasing capacities allows instancee of the incremental
gemeric algorithm to save on the number of operations on fiow variables. In particular, the
number of fow operations execated by our main algorithm is O(n*/3(log n)*/3). All previous
algorithms execute {}(nmn) Sow operations. Using randomisation, we can do even better: A
maximum Bow can be computed using O(n¥?m!/3(log n)*'? + n?(log n)?) flow operations with

Thie research was partially supported by the ESPRIT 1l Basic Rescarch Actions Program
of the EC under contract No. 3075 (project ALCOM).



high probability. [n fact, our deterministic algorithm is obtained from the randomised algorithm
by applying a derandomization technique due to Alon [Al89).

The bottleneck in our algorithms turas out to be a simple combinasorial problem on (un-
wuighted) grapha, that of repeatedly identifying the so-callod current edge of a given vartex.
Indeed, given a sufficiently efficient solution tc the curreat-edge problem, the ruaning time of
each of our algorithms would match the number cf flow operations. A straightforward solution
to the current-edge problem contributes 8(nm) time  the ruaning time of the maximum-Bow
algorithm. The ides behind our improvement of this bound for dense networks, by a factor of
B(log n), 1 to represent the residual graph by ite adjacency matrix and to partition the matrix
into 1 x |logn| submatrices. This enables vs to process a submatrix in constant time by table
look-up while searching for a carrent edge. This method depends critically on the use of the
(standard) uniforin coet measure for defining rapning time.

For networks with integer capacities, we give an incremental algorithm based on the excess
scaling algorithm of Ahuja and Orlin [AO87]). The algorithm is simple; however, its araly.
s3s hinges on a nontrivial potential function. We show that the number of Bow operations is
O(n*m*? 4 n'logU!). Using the wave scaling technique of [AOTS9), the number of flow
operations can be reduced to O(n?2m?/? + nl(log U)}/2] We mention that our use of “visible
excesoes® in some ways s similar to the uae of "available excenses® in [AOT89).

The geaeric incremental algorithm is introduced in Section 3, arnd the algorithm for integer
networks 15 described in Section 4. Section 5 discusses the current edge problem. The strongly
polynomial algorithm i3 presented in Section 6 and analysed in Sections 7-9.

2. Definitions and notation

For any set ¥ and any ¢ = (v, w) € V x V let tard(e]) = v, Arad(e) = w, and revie) = (w, »).

v and w are the tad of ¢ and the Aesd of ¢, reapectively. For any E C V' x V, denote by E the
closure of E' under reversal, ie.,, £ = EU {rev(e): ¢ € E}. Further, for any function ¢ : £ -+ R,
let ¢ : E — R be given by 4(c) = ¢(¢) fore € F, ¢(e]) =0 fore € E\E. A network is a taple
G = (V, E.cap, ¢,t), where (V, E, cap) iz an edge-weighted directed graph, cap - £ — R, U {0},
and 2 and t are distinet vertices in V. A preflov in G is a function f : © — R with the following
properties:

(1) f{rev{e)) = —f(e), for all e € E (antisymmeery constraint);

(2) fle) < T@F(e), for all e € B [capacity constraint);

(3) &, verdie)-» [ 18) = 0, for all v € Vi{s} (nonnegativity comstraint).

A preflow f 1 G isa flow if 30 7 \asie)=, F(€) = O for all v C ¥\ (s,1) {flow conservation
constraint). The valae of f ia 3° 5 \.pyiey=y (€], and & mazimum flow in G is & flow in G of

maximuin value. An edge ¢ € E is residual (with respect to f) if f(e) < Tap(e). A pusk on e
of value ¢ € R i» a2 increase in f(e) by c. The push is satsrating iff flc) = Tap(e) afterwards.
A labeling of G i3 a function d: V — NU {0}, The labeling is vaiid for G and a preflow [ in G
exactly if d{v) < d(w) + 1 for each edge (v,t2) € F that is residual with reapect to f.

We use what we comsider to be the traditional model for the study of problems on net.
warks. Capacities and fow values are represented by real nxymders, on which the only allowed
arithmetical operations are addition and subtraction, and all other quantitizs are represented
by integers, on which we allow addition, subtraction, multiplication and integer division. In
addition, we szaume for both data types standard operations for comparisons, data movement,
the conatant 1, etc. For n-vertex input networks, we allow integers of absolute value n®f?)
and we charge constant time for each basic operation on real aumbers or integers (uniform cost
measure). ln keeping with common wsage, we employ the term “fow operation® o mean any
operation oa real numbers.



3. The incremental generic algorithm

In this section we generalize the gemeric maximum-flow algorithm of [GT&8] by extending
it to include one additional operation, add edge.

The goal of the algorithm 3s to compute 3 maximum Bow in a symmetric netwock G =
(V,E, cap,s,t). Let n= V| and m = |E|. In order to avoid trivialities, we assume m > n > 3.
Let V* = V\{s,t}. The main variables used by the incremental generic algorithin are

(1) A network G* — [V, E*, cop*,s,1), where E* C E and cap® is the restriction of cap to E°.
G*° i the exrrent network, on which the algorithm mostly operates. E* = @ initially, and
edges in E are gradually added to E°. Let G* = (V, E*, cop’, s,1).

(2) A preflow f: E* — R, which gradually evolves into a maximum flow in G*.

(3) A labeliag d: V — N u {0}, valid for f and G".

An edge (v, u) € E* is called eligible exactly if it ia residual with respect to f aad d{v) = d(w) +1.

For alle € E*, the residual capacity rescap(e) of ¢ is defined as cap(e) — fle), and forallv € V,

the excess e(v] and the wsible ezcess e*(v) of v are given as follows:

els)= D fle) e*(v) = max{e(s) — D _ cap(e).0}.

«cB*, hecdis)=v cEB\ X", taul(r)=v

Although the functione e and ¢ in principle can be computed from f and E”, efficiency dictates
that they must be represented explicitly. In the description of the algorithm, however, we omit
thia trivial elaboration.
Since f by definition 3= antisymmetric, low-level law maaipulation is carried out by the

procedure
procedure eet flow(e: edge; c: real);

fle) i= ; fleesle)) = -c;
with the special case
procedure raturates(e: edge);

set flow(e, cap(e));
The main routines of the incremental generic algorithm and the algorithm itself follow.
procedure push(c: edge; c: real);
Precondition: ¢ — (v,w) € E*, v € V*, ¢ is eligible, aad 0 < ¢ < min{c*(v), rescap(e)).

set flow(e, fle) + ¢);
procedure reiabel(v: vertez);
Precondition: v € V1, e*(v) > 0, and no edge in E* with tail v ia aligible.

d(v) :=~d{v) + I;
procedure addedge(e: edge),;
Precondition: ¢ € B\ E*.

E® := E* U {e};

if d(tai(e)) > d(Aead(¢)) then saturate(e);
procedure gencric initialize;

for all = € E do eet low(e,0); (o sero Bow is defavlt for new edges »)

for all v € V\{s} do d(v) := 0; d(s) := n;

E* =0

for all e € E with s € {tail(e), head(e)} do odd edge(e);
Incrementsl generic algorithm:

generic initialize;

while max{e(v): > € V~} >0

do execute some push, relabel or add edpe operation

whose precondition is satisfied. (¢ there always is one s)



An execution of push(e, ¢) and of relabel(t) is called a pushk on ¢ and a relebeling of v, respectively.
We next show the partial correctness of the algorithm and give a few additional properties. In
stating invariants for the algorithm, we consider se! flow and addedge to be atomic operations,
1.e., we ignore possible violations of the invariants while these routines are being executed. We
also implicitly restrict attention to the part of the execution that follows the initialization.
Fact 1: For v € V, let A{v) = S‘GB.“.'H““]___, cap(e). For all v € V', if ¢(v) > A(v) at some
time during the execution, then ¢(v) > A(v) forever after. In particular, for all v ¢ V\(s],
e(v) < h(v) = d(v) =0.

Lemma 3.1: At all times during an execution of the incremental generic algerichm,

(1) / = a preflow;

(2) 4 ix & valid labeling.
Proof: (1) and (2) hold iamitially, and they are not invalidated by calls of pusk or relabel (cf.
Lemma 3.1 of [GT28)). Furthermore calls of sdd edge are casily scen to preserve (2). The only
remaining isaue i that a saturating push over an edge (v, w) performed during a call of add edge
might invalidate the nonnegativity constraint e{v) > 0. However, when the push takes place,
d(v) > d{w) > 0, and it follows from Fact 1 that ¢(v) > O after the push. §

Lemma 3.2: Suppose that the algarithm terminates. Then, at termination, the extension
J:E —=Rof f with f(e) =0 for all ¢ € E\E* is a maximum Bow in G.

Proof: At termination, f ia a flow in G, »0 f in a flow in G. If § ia not A maximum flow in G, it
follows from Theorem 3.2 of [(GT88] that there is a simple patk pin G from s to t all of whose
cdges are residual with respect to f. Let v be the last vertex on p reachable from s over a path
of edges on p belonging to E*. If v + ¢, the edge on p wilh tail v belongs to E\E*, and Fact 1
implies that d(v) = O, which is true for v — ¢ as well. But since d(2) = n and v is reachable from
s over a path of length < n - 1 all of whose edges are residual with reapect to f, thia contradicta
the validity of d. B

Fact 2: An ineligible edge (v, u) € E can become eligible only during & relabeling of v,

Lemma 3.3: For all v &£ V and at all times during the execution, d{v) < 2n - 1. In particular,
the total number of relabelings executed by the algorithm is < 2n2,

Proof: See Leinmas 3.7 and 3.8 of (GT828).

4. The incremental excess scaling algorithm

Recaus» it illustrates our main ideas in s very simple setting, we describe in this section an
incremental excess scaling algorithm for the case where all edge capscities are integers bounded
by U. The algorithm is an adaptation of the excess scaling algorithm of Ahuja and Orlin (AO47)
to the incremental paradigm.

For each ¢ € E°, define the wndirected copacsty of ¢ as ucap(e) = cap(e) + cap(reo(e)).
The execution s divided into phases parameterized by the value of a scaling psrameter A. The
algorithm repeatedly chocses a vertex v € V* with e (v) > A and minimal d(v) and either pushes
flow on an edge (v,w) or relabels v. When there are no more vertices v € V* with ¢°(v) > 4,
the current phase ends, A is replaced by A/2, all edges e € E\E*® with ucap(e) > A/8 arc added
to B*, and the next phase begine. Here 3> 1 is an integer to be chosen later.

We assume E° to be represented by a set of adjaceacy lists. For all v ¢ V, the first eligible
edge in the adjacency list of v (i any) is called the current edge of . The complete program
follows.
function ce(v: werter): edge;

Return the current edge of v, or n¥ if v has no carrent edge;



Incremental scaling algorithm:
generiz smitsalize;
a:= zllag,u_';
while A > §
do begin
for all ¢ € B\ E* with ucap(e) > A/0 do vdd edye(e);
while max{¢*(v): v € V*} > 4
do begin
Among the vertices v € V* with ¢*(v) > A, choose v as one with minimal d(v);
if ce(v) — ndd
then relabel(r)
elae push(ce(w), min{A, rescap(ce(e))});
end;
A:=Af2
end.
The algorithm is easily seen to be an instance of the incremental generic algorithm, and hence
to be partially correct. We now amalyre ita running time. Denote by fpushes the total number
of pushes executed by the algorithm, and by 7., the total time spent in the routine ¢e. T, will
be analysed in the following section.

Lemma 4.1: The algorithm uses O(q) low operaticns and T, + O(q) time, where ¢ = fpushes |
nlog U + n? + mlog(n3).
Proof: Ahuja and Orlin [AO87] have described 3 vimple implementation that allows the total
time spent in testing the condition of the inner loop of the program and in choosing v to be
bounded by O(8pushes + nlog U'). Each relabeling takes constant time, and the total number
of relabelings & O(n?) by Lemma 3.3. A single update of £° following a decrease of A can be
time-consuming. However, if the edge: are initially zorted by their undirected capacities, the
necessary time is O(1) per edge added to E*, for a total tima of O(r). Finally, there are O{log U)
phases, each contributes O(1) time that has nat yet been accounted for, and O(mlag(n3)) time
suffices for the initialisation (Q(mlogn) time for sorting the edges, and O(mlogd) time for
multiplying their capacities by 3). B

Forve V and v =1,2,..., denote by deg,(v) the number of cdges with tail v added to E*
between phase s — 1 and phase i (for 3 = 1: before the first phase). Further, fori=1,2,..., let
my = 3 cy deg;(v) and denote by $relabels; the number of relabelings carried out in phase i.
The following observations are immediate:
Fact 3: Consider a push on an edge ¢ = (v, w) carried out during a phase (i e., not in & call of
add edge). At the time of the push, e is a current edge, the value of the push ia < 2A, and if
we VY, then e*(w) < A immediately before the push.
Fact ¢: Forallz€ V* and fori = 1,2,..., ¢*(v) < 3A + 2deg,(v)A/0 throughout phase .

Using arguments similar to those of (GT88) and [AOA8T7], it is easy to bound the number
of saturating pushes by O(nm) and the number of nonsaturating pushes by O(nm/G +n? log U).
In order to obtain a tighter bound on the number of saturating pushes, we define a push on
an edge (u,v) to be terminal if |{w € V : d[w) = d(*)}| < 3 at the time of the push, and
we partition the 2aturating pushes into three classes: (1) pushes of value < A/3; (2) terminal
pushes of value > A/3; (3) nonterminal pushes of value > A/S3. The first two classea are easy
to handle, whereas the number of pushes in the third class is bounded using Lemma 4.2 below.
The lemma generalizes the potential function argement of (CH89, Lemma 2). For V' C V and
v 2 1, call a push on an edge (u,v) a (V’,v)-pusd if |{w C V" : d(w) = d{v)}; > 7 at the time
of the push. A nonterminal push is just a (V, 5)-push; the more general form of the lemma is
needed in Sections 7 and 8. Compared with Lemma 2 of (CHE&9], which carrespands to the case



¥ = 1, the present lemma bounda the amount of flow moved by [V, y)-pushea by a quanatity
essentially inversely proportional to .

Lemama 4.2: For ¢ — 1,2,... and for all V' C V and v > 1, the total value of all (V',5)-pushes
in phase ¢ is at moat (3nA; + 2myA/8)|V'|/y + SA; - Jrelabels,.
Proof: Let h — |V'| and V' = {v;,...,vs} and for all v € V, define the fooling Aeight of v as
V= s ™25 5 oy 70 ST < d(v) and [{E:dn = j}H 2 7}

Intuitively, ¢'(») counts the maxisnuin nuimber of “dense virtual distance levels® between v and
t, where a vertex vy € V' ia sllowed to occupy any one virtual distance level numbered at least
d(vy), and where a dense virtual discance level is one that contains at least ¥ vertices in V.
d’ has the following properties:

(YYveV:0<d(v) <M

(2) Yu,v € ¥V : d(u) > d(v) = ¢'(u) > d(v):

(3) Yu,v € V : (d(u) > d(t) and |{w € V' :d(w) = d(v)}] 2 v) = d'(a) > d'(v);

(4) A relabeling of a vertex v € V* increases d’(v) by at most 1 and does not increase d’(w)

for any w € V\{v}.
Define the potential function

®= E e (v)-d'(v) + Z: e‘(v)-A/y.
SEV+ e°le)cld; wEV<, ev(v)2)A,

At the start of phase i, € < (3n4; + 2myA,/B)h/7 (by Face 4), and © > D always. ¢ does
not increase due to push operations (by property (2) and Pact 3), and a relabeling increases
® by at most 3A,; (by property (4)). It follows that the total increase in @ during phase ¢
is at most 34, - Jrelabels,. Consequently, the total decrease in @ during phase i is at most
(3nd, + 2m A, /B)A /v + 34, -$relabels,. Finally note that each (V', v)-push of value ¢ causes &
to decrease by at least ¢ (by property (3)). W

Lemma 4.3: fpushes — O(nm /8 + n?8 + n? Jog U).
Proof: Call a push emall if its value is < A/S. We prove the following ¢laima:

(1) The total number of small ssturating pushes s O(nm /G + n?log U).

(2) The total number of terminal saturating pushes is O(n3g).

(3) For i = 1,2,..., the number of nonsmall nonterminal saturating pushes in phase & is

O(nmy /83 + n? + §relabels; - 3).

(4) Por i = 1,2,..., the number of nonsaturating pushes in phase 1 is O(nm, /8 + n? 4 frelabels;).
Each push is counted at least once. Since 3 §relabels;, ~ O(n?) by Lemma 3.3 and 3_, m; < m,
the lemma follows by saumming the contributioas of (3) and (4] aver all phases and adding those
of (1) and (2). We next prove (1)—{4).

(1) Each ¢ € E* which i» not incident on # has ucap(e) > A/3. Hence between any two
small saturating pushes on an edge ¢ C E*, there is a nonsaturating push on one of the edges ¢
and res(e). The claim now follows from (4) by summation over all phases.

(2) By Fact 2, each terminal push ont of a vertex v € V is followed by fewer than 3 saturating
pushes out of v before the next relabeling of v. Summirg over all » € V and all possible values
of d(s), this gives O(n*3) pushes.

(3) Apply Lemma 4.2 with V' = V and v = 3.

(¢) Note that the value of each nonsaturating push is at least A and that every push is a
(V. 1)-push and apply Lemma 4.2 as in (3], bat withy=1. B

Using the definition of T7_(n, ¢) given in the following section [for the time being, interpret
7T..(n,g) a3 T.,), we can sum up the indings of this section as follows:



Theorem 1: A maximmum flaw in a netwark with n vertices, m edges and integer capacities
bounded by U' can be computed deterministically using O(q) Bow operations and O(q + T, (n.q))
time, where ¢ = n¥Im!/? 4 n? log U.

Proof: Put 8 = |[\/m/n| and combine Lemmas 4.1 and 4.3. @

Remark: Using the wave scaling tachnique of {AOT39], the value of ¢ in Theorem 1 can be
reduced to n*/?m!/? + n?(log U)*/2.

5. Finding current edges

This section discusses the implementation of the function ce. We contider the following
abetraction of the problem: Let n € W and V ~ {1,...,n}. The task is to maintain two
functions r: V x V . (0,1} and d:V . {0,...,2n - 1} and n permutations x,,..., s of ¥
under the operations specified below. Elements of VV and of ¥V x V are called vertices and edges,
respectively, and an edge (v, w) € V x V is eipsbie of (v, w) = 1 and d(v) = d(uw)+1. ForvE V,
let E(v) = {we€ V:(v,w)is eligible}.

LT (TYRT N

Precondition: uj,..., 4. are permutations of V.

Sets d(v) :=~ 0 and ji ;= pf, for all ¢ € V and (v, w) := 0 for all (v,w) € V x V;

push((v,15), b).

Precondition: [v,w) € V x V, b € {0,1}, and (v, w) 3 eligible.

Seta r(w, v) :=~ 1 and r(v, t2) 1= &,

reladel(v).

Precoadition: £(v) =@ and d(v) < 2n - 1.

Executea d(v) := d(v) + 1.

add edge (v, w).

Precondition: [v,w) € V x V and d(v) < d{w).

Sets r(v, w) := 1,

ce(v).

Precondition: v € V,

Returna (v, uy {min{i € V' : p,(¢) € F(v)})) if E(v) + D, nad otherwise.

The interpretation is as follows: Vertices and edges correspond to vertices and edges of G, u,
represents the crdenng of the adjacency It of », for all v € V, r(v,w) = 1 corresponds to
(v, w) being residual, for all (v.w) € E°, relobel, add edge and ce correspond to the routines of
the saine names in the maxizmm flow algorithms, and pusk (e,0) and push(e, 1) correspond to a
saturating push and a noasaturating push on ¢, respectively.

For n,q € N, deaote by T,.(n, q) the time needed to execute any legal sequence of one wnit
operation followed by q push, relabel, add edge and ce operations. Note that the symbol T, is
used without arguments in a related, but different sense.

During the execution of a legal sequence of the above operations, starting with init, if
an edge (v,w) is incligible at some time, then it remains ineligible wntil the next exection
of reladel(v) (4. Fact 2). Hence we can implement ce(v) by letting a pointer z|v. sweep over
1,...,n until an element of 4 *(F(v)) is found, raving z[n] between calla of ce(r), and resetting
z{v] to 1 ia each call of relabel(v]). Since the total number of calls of relabel is O(n?), it follows
that Tee(n,¢) = O(g + n?) (another immediate bound is Ti.(n,q) = O(g + nm), where m is che
number of add edge operations).

We now give a faster solution for the special case in which the arguments uf,...,p% of
191t are all the identity permutation /dy of V. For n,g € N, Jet T/, (n,9) be the quantity
defined as 7,,(n, ¢) for this special case. If we represent the functioa d nct only directly, but



aban through an array D @ {0,...,2n — 1} x V — {0,1} such that for all 0 < & < 2n -1
and all v ¢ V, D{(k,v] = 1 if and only if d(v) = k, the edge (v,z]v]) is eligible if and omly if
r(v, z[v])- D[d(v) — 1,z]v]] + 0. We combine this observation with the *four Russians’ trick® (see
(AHU, Section 6.8)) to obtain a faster algorithm. Considering » and D as (two-dimensional)
bit matrices, note that for ¢y = .- = i, = [dy,, the search for an eligible edge with tail v is a
left-to-rigld scan of one Bxed row of r and one fixed row of . Partitioning r and D into blocks,
Le., 1x |logy n} submatrices, we can store the |logy n) bits of each block in a single RAM word,
i.e., a8 one integer, and process the block in constant time using tsble look-up. This speeds up
the scan by a factor of O(logn) and allows g operations, starting with init, to be execuled in
O(q + n°/logn) time. The necessary tables can be constructed in Or?) time. We hence have

Lemma 5.1: T7,(n.q) = O(q + n®/logn). 1

6. The incremental strongly polynomial algorithm

In addition to the data structures of the generx algorithm, the incremontal strongly poly-
nomial algorithm uses, 38 do several previous algorithms, am cdge-weighted directod graph
F = (V,Ep,val), where Ep C E* and wal : Ep — R. F at all times is a directed forest,
i.e., a3 acyclic directed graph with maximum outdegree at most one. A vertex ¢ € V is called a
rovt exactly if its outdegree in F is zsero. The following operations are applied to F:
initfF.

Se“ Ep - 9.

link(e,c).

Precondition: ¢ € B*, c €R, and (V, Ep U {c}) s 8 directed foreat.

Replaces Ex by Ep U (¢} and sets 1alfe) : - c.

cut(e).

Precondition: ¢ € Bp.

Replaces Ep by Ep\{c}.

Sind voloefe).

Precondition: ¢ € By,

Returns sol(e).

find bottlsneck(w, c).

Precondition: v€ V and c e R.

Returns the first edge ¢ with wai(e) < ¢ on the maximal path in F starting at », or ru if no such
odge exiats.

add velue(v, ).

Precondition: v £ V and c € R.

Replaces val(e] by val(e) + ¢ far each edge ¢ on the maximal path in F starting at v.

Using the dynamic trees data structure of Sleator and Tarjan [STB5), the six operations
defined above can be implemented to take O(logn) amortised time each, ie., a sequence of ¢
operstions on P, starting with initF, can be executed in O(glogn) time (the find dottleneck
operation is monstandsrd, but can be implemented within this time bound).

The preflow f ia represented in one of two ways: For e € £°, while ¢ ¢ E» and rev(c) ¢ Ep,
/(e) is stoced directly as g|¢), where ¢ : B — R is an array. While e € L'p, f(e) is given implicitly
ans cap(e) — wal(e), and f(rew(e)) as - f(e). Accordingly, we redefine the basic procedure set flow
and incorporste the conventions for the representation of f into new versions of hink and cxut.
procedure set flow{c: ¢dye; c: real);

sle):= ci glravlelj := -



procedure Link(e: edge);
link(e, rescap(e));
procedure Cs((e: edge);
2et flow(e, cap(e) — find salue(e));
cut(e);
The procedure tree push defined below works as follows: A call tree push(e, c) first inserts e into
Ep, o it is not already in Fp, and then sends ¢ units of Bow from the tail of ¢ along the unique
path in F as far as powmsible without saturating any edge. If the flow does not reach a root, the
first adge 2’ on the path with rescap(e’) < ¢ i removed from Ep and saturated.
procedure tree push(e: edge; ¢: real);
if ¢e ¢ Er then Lisk(e);
v := tasi(e);
¢' := find bottlencck(v, c);
if ¢ + nid then Cul(e);
add salue(z,c);
if & % nl then saturate(e’');
Az in Section 4, an execution of the algorithm is divided into phases parametenized by Lhe value
of a vaniable A. Fori=1,2,..., let &; be the value of & in phases. For:1 = 1,2,..., 4, satisfies
the following requirements:
[l) A, <48...2/2 (take ac = OO].
(2) At the heginning of phase ¢, ¢*(v) < 24, + 2deg, {v)A;/ffor allve VT,
(3) At the beginning of phase i, e*(v) > A, for at least one vertex v C V+.
If requirement (3) cannot be ratisfied for any A, > O, the algorithm terminates.
The routime select returns a vertox v € V' with ¢*(sv) > A, If necessary, the carrent phase
is irst ended, and a new phase is begun.
function select: vertez;
while max{e*(v):vcV*} < A
do begin
A := min{A/2,max({e*(v) : v € V*+}U {3 ucap(e) : (¢) € E\E"))};
if A =0 then stop;
(*Ve eV :e*(v) <248; Ye € E\E’:wcap(e) <24/8 )
far all e € E\F” with ucap(e) > A/ do add edpe(e);
end;
Among the vertices v € V* with e°(v) > A, return one with minimal d(v);
We finally extend the routine relabe! and give the main program.
procedure relabel(v: vertes);
for all u € V with ce(u) = (u,v) € Er do Cut(w,v);
d(v) :=d(v) + };
Incremental strongly polynomial algorithin:
generve intralize;
Suitably permute the adjacency lists of G (see Section 9);
wnstF; A := oo;

repeat
v = select;
If ce(v) = mi

then relabdel(v)
else tree push(ce(v), if ¢*(v) 2 2A then A else e*(v));
forever.
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7. Analysis of the strongly polynomial algorithm

Again, the algorithm is easily seen to be an instance of the incremeatal generic algorithm.
Note that P remains acyclic, as required, since £y at all times is a subset of the sct of current
edges. Thie and the following sections investigate the running time of the algorithm. The
symbols ucap, 3, Te., deg,(v), m;, and frelsbels, are used with the same meaning as in Section 4.

Define a cycle to be one iteration of the main loop of the algorithm. An execution of Link(e)
and Cut|e) is called a lsnk on ¢ and a cut on ¢, respectively. A call of select will be called a select
step, and » v-select if it returns the vertex v. Let Jselects and fcets denote the total number of
select steps and cuts, reapectively. Facts 1-4 and Lemma 4.2 still hold. In addition, we have

Fact 5 While v € V 3 not a root, ¢*(v) does not increase due to nonsaturating pushes into v.
Fact 6: At the end of a cycle containing a t-sebect, wither v is 8 root, ¢*(v) — 0, or e*(v) > A.
Fact 7: Following exch cut on ar edge ¢ € E and in the same cycle, ¢ becomes ineligible.

Lemma 7.1: The algoritkm uses O(Q) flow aperations and 7., + O(Q) time, where Q = §selects -
log n + mlox(nd).

Proof: In order to efficiently compute the maxims and mirnima needed in seclect, we mantain
two heaps, the d-heap, contaiaing all vertices v € V wicth ¢*(v) > A, ordered according w the
key d(v), and the e-heap, containing all vertices v € V with ¢®(v) < A, ordered according to the
key —¢*(v). We assume a standard heap implementation with s logarithmic time bound for each
operation. In particular, a push operation, which must update at moat two valnes stored in the
heape, can be executed in O(logn) time. Decreasing A is expensive, since possibly many vertices
must be transferved from the e-heap to the d-besp. However, only one vertex is removed from
the d-heap per select step, 30 that the total time apent in decreasing A is O(($sclects + n) Jog n).
The operations that modify E* can be executed in O(mlog n) time. Altogether, hence, the totsl
time spent in calls of selezt m O($eelecte + m)logn).

Each call of trecpusk executes O(1) operations on F, and the number of cut operations
executed in relabe! cannot exceed the number of lint operations execuled in (reepush. Hence the
total number of operations executed on F is O(fs¢electa), for a total time of O(§sclects - Jogn).
The remaining parts of treepush and reiabel can be executed in Offsclects -logn) time, provided
that a list of the edges in Ep entering t 1s maiatained for each v € V. Finally, O(mlog(nf))
time suffices for the initialization. B

Lemma 7.2: §aclects = O(fcuts 4 n?),

Proof: Define a v-select to be decreasing if ¢* (o) decreases by st least A in the same cycle. A
nondecreasing =-select is followed in the same cycle by a relabeling of v or & cut on an edge with
tail v. By Lemma 3.3, it therefore suffices to count the number of decreasing select stepe,

Call a vertex v € V* special if ¢*(v) > 34, and call a select step special if it returns a
special vertex. Since ro vertices become special during a phase and since e°(v) never increases
in a phase while v is special (by Face 3), the total number of special decreasing uv-selects in
phase i is seen by Fact 4 to be at most 2deg;(v)/3. Summing over all vertices and all phases
ahows the total nember of special decreasing select steps to be at most 2m /(3.

In oeder to count the remaining select steps, define a major event for a vertex v to he a
relabeling of v, a saturating push into v, a link or a cut on an edge leaving v, the addition to
E* of an edge with head v, or program initialisation or terminstion. We will count the number
of nonepacisl decreasing 1-selects in a particular period between two successive major events for
v. Either v ia a root throughout the period {Case 1), or v is a nonrcot throughout the period
(Case 2).

Csse 1: AL most one decreasiag v-select can occur during the period.

Cese 2: By Fact 5, ¢*(v) never increases during the period. At the time of the first noaspecial
uv-seloct in the period, e*(v) < 3A, and if A is changed during the period, ¢*(v) first decreases
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to sero (by Fact 6). Hence there are at most 2 nonspecial decreasing v-sedects during the period.
Summing over all periods and all vertices, we find that the total number of nonspecial decreasing
select steps is at most 2n plus twice the number of major events, which is O(fcuts + n?). B

Define the status of an edge ¢ € F as follows: While ¢ € E\E®, ¢ is absent. Fore € E°, ¢
is medium if seap(e) < 20n3A, and ¢ is huge if wcap(c) > 20n3A.

Lemma 7.3: Let ¢ £ F be huge. Then at Jeast one of the edges ¢ aad rev(e) s never again
saturated.

Proof: Applying Lemma 4.2 with V' = V and 9 = 1 shows the total value of all pushes in
phase i to be at most (3n? + 2mn + 6n?)A; < $n?4,, for ¢ = 1,2,..., and hence the increase in
f(¢) in phase i and all subsequent phases to be at most 10n°A,. 1

Define a cut to be a PTR event if it happens during sn execution of relobel, and denote
by §ptr the total namber of PTR events during the execution. PTR eventa were introduced in
(Clig9]).

Lemma 7.4 ([CH89), Lemma 6): Over the whole execution, there are O(§pir + m) cuts on huge
edges.

8. Operations on medinm edges

In order to bound jeula, it tuarns aut to he easential to count the number of certain pushes
of value > A/ on medium edges. We next intrcduce some convenient terminology for speaking
about pushes. A push over an edge (u,v) happening while d(v) = & is represented by the triple
{u, o, k).

Define an event lis! to be a repetition-free sequence of triples of the form (u, v, k), where
(u,z) € E,0 < k < 2n — 1, and at some time duriag the execution, [z, v) is mediom while
simultaneously d(v) = &. Given an event list ¥ and triples t; and ¢;, we write ¢; <§ 3 to
indicate that t; and ty both occur in ¥, with t; preceding tg.

We also need to formalize the notion that a vertex is incident with a large number of
currently medium edges. For v € V', denote by deg(v) the number of edges in E with head ». A
phase (an integer k, respectively) is 3aid to Ast a vertex v if v is the head of at Jeast deg(v)/83
edges that are medium in that phase (throughout that part of the execution in which d(v) = k,
respectively). For i = 1,2,..., denote by V| the set of vertices hit by phase 1 and let n; = |V|.
A push occurring in phase 1 is called regular if it is a (V,, 3)-push and its value is at least A, /8.

Each push of interest will be either regular or associated with a terminal triple in a suitably
defined event list, where a triple (u, v, k) in an event list ¥ is called terminal (with respect to
v) if

Hw: {u,v,k) <¢ (u,w, k) and w is hit by £}| < 3.
Hence our immediate objective is to count terminal Lriples and regular pushes.

Lemma 8.1: The numbec of terminal triples in an event list is O(nm/3 + n?g).
Proofl: Since an edge changes its status at moat twice, ¥ containa O(m) triples {1, v, k) such
that (u, v) changes its status while d(v) = k. Let ¥’ be the set of remaining triples in ¥.

For each v € V and 0 < k < 2n — 1 such that v is not hit by k, ¥ contains less than
deg(v)/A triplea of the form (u, v, k). Summing over all v and &, this yields nm/3 triples. For
exh u€ Vand 0 <k < 2n -1, ¥ contains less than G terminal triples of the form {u, s, k),
where v is hit by k. Summing over all u and k gives O(n?3) triples. It is easy to see that each
terminal triple in ¥ has beea counted (at least once). B

Lemma 8.2: The total number of regular pushes is O(nm/8 + n?Slogn).
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Proof: One assily shows that each vertex ie hit by O(3)og n) phases. Hence 35, n; = O(nBlogn).
By Lemma 4.2, applied with V' = V| and 4 = 3, the total aumber of regular pushes is

O (rni /B + myn; /3 + frelatels,) - 5} = O(nm/S + n’Blogn). B

Lemma 8.3: Over the whole exccuticn, there are O(nm/3 + n?8logn + §ptr) cuts on medium
edges.

Proof: Consider a cut on a medium edge e ~ (u,v). We can assume that the cut is not the
first cut on ¢ and that both the previous cut on ¢ and the cut under conaideration happen in an
execution of treepueh (i.e.. they are not PTR events). Let T be the part of the execution between
the end of the cycle containing the previnna cut on ¢ and the end of the cycle containing the cut
under consideration. We consider two cases:

Case 1: rescap(e) < A/D throughout Z. In this case each of the > 1 cuts on rev(e) during
Z is a PTR event, Hance Caze 1 contributes O(fptr) cats.

Caze 2: rescap(¢) > A/8 at some time during T. Aseociate with the cul one distinguisked
push over ¢ during T that changes rescap(e) from > A/B to < A/S and note that the value
of this push is at Jeast A/3. Purthermore, if d(v) = k at the time of the distinguished push,
aasociate with the push the triple (u,v, }) and appead (%, v, k}, sl the time of the pusk, to an
initially empty sequence V.

The Bnal value of ¥ i3 am event list, and each push assoziated with & nonterminal triple in ¥
is regelar. [t now follows from Lemmas 8.1 and B.2 that Case 2 contributes Q(nm/3 + n?Flogn)
cuts. B

Lemma 8.4: The algonithm uses O(Q) flow operations and T, + O(Q) time, where Q =
n¥Im3(logn)¥? 4 gptr - logn.
Proof: Put § =1~ |m¥2n~*3(logn)~?/?] and combine Lemmas 7.1, 7.2, 7.4and 8.3. 1§

9. PTR events

The number of PTR events may depend on the ordering of the adjacency lists of GG, which
defines ce. We need some technical definitions to discuas this dependence.

Ror every finite set A, denote by Il the set cf all permutations of A, i.e., of all bijec-
tions = : {1,...,|Al} — A. Por every A" C A and every £ C ll4 and ¢ C Il,, denote
hy A(€,a) the length of a longest [not necesarily contiguous) ascending subsequence of the
sequence o~ (€(1)).....0 " (£(|A'])) or, equivalently, the length of a longest (not anecessarily
contiguons) common subsequence of the sequences £(1),...,€(|4‘|) and o(1)....,0(|4]). Fi-
nally, for any set {§,...,&w} of permutations of subeets of s finite et A, let A{y,...,f) ~
MaXeer, Xguy A7)

Let V={m, . vo}andfori=1...nletl={weV:(o,w)c F}andd, =|[;!. For
t = 1,...,n, the ordering of the adjacency list of v, may be viewed as 2 permutation § of I',,
i.e., (v, &())) is the jth edge in the adjacency list of v,, for 5 = 1,. .,d;. The following fact was
essentially proved in [CII89]) (Lemma 9 and Claim following Lemma 11):

Lemma 9.1: If the adjacency list of v; is ordered according to & € M, for i = 1,...,n, then
tptr < 2n-A(£y,....5). B
The fact below was also essentially proved in [CH89) and expressed there as Lemma 10

(put 8 = \/m/n).

Lemma 9.2: Suppose that £ is drawn randomly from the uniform distribution over Ilr,, for i =
1,...,n, and thet {;,...,{s are independent. Then for any r > /am + nlogn, A(§;....,€) -
O(r) with prabability at least 1-2"", §



13

Combining Lemmas 8.4, 9.1 and 9.2, we obtaia

Theorem 2: For any constant a > 0, a maximum flow in a network with n vertices and m edges
<an be computed uring O(Q) fow operations and O(Q + Teo(n, Q/log n)) time with probability
at least | — 2 @V"™1%* where Q = O(n*?m'/I(bgn)>? + n?(logn)?). B

Alon has given a deterministic construction of pseudo-random permutations with properties
similar to those exploited above.

Leroma 9.3 ([A189], Theorem 2): For every two integers n and A with n > A > 1 and every oot
V with |V| & A, n permutationa ;... ,&, of V with A(§;, ..., &) = O(nh?/?) can be constructed
in O(nh) time. 1

Theorem 3: A maximem flow in a network with n vertices can be computed deterministically
using O(Q) flow operations and O(Q + Tie(n, Q/logn)) time, where Q = O(n®logn). B

The fast aclution to the current-edge problem described in Section 5 assumes identical
arderinga of all adjacency lists. As we 2aw above, however, it is eswsentisl Lo order different
adjacency lists differently. Let B = {b,,....5,/,} be a partition of V into bocks by, ....&,,, of
sise T = |logy i) each and corruponding in the obvious way to the blocks defined in Secuon S.
Different permutations of the blocks in different adjacency liste is ecasily accommodated, but
the association between vertices and blocks is xed by the interpretation of D and must be the
same for all adjacency lists. Hence not all permutations of V represent possible adjacency list
orderings, and therefore Alon’s scheme (Lemma 9.3) cannot be used without modification. Our
solution is to apply the scheme to the ordering of blocks instead of to the ordering of vertices.

For every block permutation £ C [lp, define the induced full permutation as the permutation
£ € Ty obtained by first arranging the blocks according to {, and then replacing each block by
the sorved sequence of its elements (i.e., for v € b, and w € b, £71(v) < £ Y(w) <= (£3(d) <
£71(b;) or (i = ) and v < w])).

Lemma 9.4: For any §,,...,& € Mg, A({), ... ,f.) <z-A&y,. 0 Q)

Proof: Fix ¢ € Iy arbitrarily and let R C TTp be the set of thoee block permutations o that
can be obtained as follown: For 1 = 1,... ,n/e, sclect a represeatative r; € b, from 3,, and then
arrange the blocks in the order in which their representatives occur in @ (i.e., for 1 < i,5 < n/z,
p~ ) < (b)) = o7(n) < 07 (ry)). Wecall ry,... 7y, the defining sertices of p.
Now, for any block permutation £ € [1p,

Yo MEp) 2 5y | 1(6.01

PrER

To see this, note that each element of a xed longest common subsequence of £(1),...,¢(n) and
o(1),....c(n) contributes 1 to M, p) if it is & defining vertex of o, and that each v € V is a
defining vertex of exactly |R|/z parmutations p C R. Summing the abave inequality for £ equal

o €y,.. ..6n produces
LA({..a) < _zzm..p] T Ezzm.m

=1 1=1 p€R pER s
<= A ) =z Al u6a). B
IRl &

By Lemma 9.3, n block permutations €;,..., & € [Ip with A{éy,....6x) = O(n(n/logn)?’?) can
be constructed in O(n?/log u) time. By Lemmas 9.1 and 9.4, if the n adjacency liste of G are
ordered according to §,. .., £, then fptr < n®3(log n)”’ As argued above, Lemma 5.1 can be
generslized to the case where the arguments y), ..., ul of inst are arbitrary full permutations
induced by block permutations. Our main result follows by an appeal to Lemma 8.4.
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Theorem 4: A maximum flow iz a network with n vertices can be computed deterministically
using O(n*/3(log n)*/?) dow operations and O(n3/logn) time. B

10. Additional results

The analysis of the PLED algorithm (CH39) can be improved using the approach of Sec-
tion & This yields the following resnlt, which was first obtained by Tarjan [TaR9] using a
diffezent method.

Theorem 5: For any constant a >» 0, the PLED algorithm finds a maximum flow in O(nm +
3

n¥(logn)?) time with probability at least 1 — n-a%’,

Simce our aolution to the bottleneck current-edge problem trivially parallelites on most
patallel machines, it 18 possible to crank out a vanety of parallel algorithms for the maximum-
flow problem that are optimal, as measured by the best currently known sequential algorithms.
We mention just one example. As is Lo be expected because of the IP-completeness of the
maximum-flow problem [CSS82], the algorithms ate optimal only {or relatively long execution
times. No optimal paralle] algorithm for the maximum-flow prohlem [esing w(1) processors) was
previously known.

Theorem 6: For p < n¥/*(legn)~7/, a maximum flow in a network with n vertices can be
computed in (optimal) O(n®/(plogn)) time 02 a network of p processors interconnected to form
a complele binary tree.

Late note: Very recenlly we have Jiscovered alternatzve slgorithme 1hat allow the valos of @ in Thesrem 2 to be
redeced, with a alightly weabar peohability tound, to Q={n?? @’/ T wgate?(hgn}’) In the geaceal coss aad o
Q=000 22 42 b m) (5 +(n/m) R U )} in the case of integer capacities boandod by U.
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