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Ab s t ra ct 

The c onstruction of alphabetic prefi x codes with unequal 

l ette r co sts and unequal probabilities is considered. A 

variant of the noiseless c oding theorem is proved giving 

c losely matching lower and upper bounds for the cost of 

the optimal code . Furthermore, an algorithm is described 

whi c h co nstructs a nearly optimal code in linear time . 

I. Introduction 

We study the c onstruction of pref ix co cles in the case of 

unequal probabilities and unequal letter costs . The investi ­

g a tion is motivated by and ori e nt e d towards the following 

problem . Consider the following ternary search tree. It has 

3 internal nodes 

. 3 4 I 2 

I( ,3)1 1(3,4)1 1(4 , 5)1 1(1 0 , 1 2) I 

and 6 leaves . The internal nodes contain the keys (3,4 , 5,10, IZ} 

in sorted order an d the leaves represent the ope n intervals 

be tween keys. The s t andard stra t egy to locate X in this tree is 

best described by the following r ec ursive procedure SEARCH 
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~ SEARCH (int X node v) 

if v is a leaf 

then !Ix is not in the treel! 

else begin let K
J 

,K
Z 

be the keys 1n node V; 

if X < K
j 

then SEARCH (X, le f t son of v) 

if X K
j 

then exit (found); 

if K
Z 

does not exist 

then SEARCH (X, right son of v) 

else begin if X < K2 then SEARCH (X, middle son of v); 

end 

end 

if X KZ then exit (found); 

SEARCH (X, right son of v) 

end 

Apparently, the search strategy is unsymmetric. It is cheaper to 

follow the pointer to the f irst subtree than to follow the pointer 

to the second subtree and it is cheaper to locate K) than to locate 

K2 · 

We will also assume that the probability of access 15 given for each 

key and each interval between keys. More precisely, suppose we have 

n keys B} , ... ,B n out of an ordered universe with B) < B
Z

< ... < Bn" 

Then 8· denotes the probability of accessing B., < i ~ n, and a. 
l l J 

denotes the probability of accessing elements X with B. < X < B. j 
J J + 

o < j ~ n. a and ~ have obvious interpretations. a n In our example 

n 5 , ~2 is the probability of accessing 4 and 0 4 is the probability 

of a c cessing X E (4,5). We will always write the distribution of 

access probabiliti e s as a ,aj,a j , ... ,e ,a . 
ann 



Ternar y trees , in general (t+I) -ar y trees, correspond 

to pre f ix cocles in a natural way . We are given letters 

ao,a l , a 2 ,·· .,a 2t of cost co' c 1, c Z ' " .,e 2t respectiv e ly; 

> 0 f or 0 < 9, < 2t. Here letter a
2 i 

corresponds to 

following the pointer to the (£+ I)-st subtree , 0 < £ < t , 

and lett e r aZ£+l corresponds to a successful search 

termin a ting in the (£+ I )-st key of a node, 0 < t < t . 

In our exampl e , t = 2. The c od e word correspondin g to 

4 , d e n o ted W
2 

to ( I 0 , I 2) , 

is a 
o 

denoted V
4 

The c ode word c orresponding 

is a 
o 

In ge n e ral, a search tree is a prefix c ode 

c::: { V ,W I ,VI, ..• ,W ,V } with o n n 

V . E l:* 
J 

W. E l:*l: 
1 end 
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O .::j< n, < i < n. L* denot e s the set of all words over 

alpll a b e t L. W. describes the se a r c h process 
1 

and V. des c ribes the search pro c ess leading 
J 

(B.,S. I). 
J J + 

leading to key B. 
1 

to interval 

Remark: In the binary case, t letters a
o

,a
1
,a

2 
have the 

natu r al interpretation <,= and > . Letter a
1 

(=) ends suc c essful 

s ea r c h e s and letter a
1 

is never used in unsuccessful searches . 

In signaling c odes applic a tions alphabet ~ d might save syn ch ro ­
en 

nizing purposes . (cf . the example o f an alphabeti c Morse c ode at 

th e e nd o f se c tion III). 
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Note that the use of the letters in Lend is very re s tri c ted. 

They can only be used at the end of code words and they can 

only be used in words W.O Furthermore, the code words must 
1 

reflect the ordering of the keys, i.e. 

(*) V. <\.J'. <V., 
J 1 J 

for j < i 2 j' and < denotes the lexicographic ordering of strings 

based on the ordering a 
a 

of a word a. a. a. 
'1 ' 2 '3 

i . e . the sum of the costs 

of code C is then defined 

n 

< a
2 

< . . • < a
2t 

of lett e rs. The cost 

a . is equal to c. + c . + •.• + c. 
'k '1 ' 2 'k 

of the letters. The (expected) cost 

as 

n 
Cost(C) L ~ . Cos t (W. ) + L ex. Cost (V. ) 

i=1 1 1 
j=o J 

Remark: In the binary equal cost case ( t I, c 

this de f inition co in c id es with 

length used in the literature 

a 
the definitions of 

[e. g . Bayer, ltai, 

We will address the following two problems: 

J 

=c
1

= c
2 

I) 

weighted path 

Knuth, Mehlhorn] 

1) Given letters, their costs and a probability distribution, find 

a code with nearly minimal co st. 

2) Give goo d a-priori bounds for the co st of the optimal code . 

We re fer to these problems as the alphabetic codin g problems. 

We will also have to co nsider non-alphabeti c codes, i . e. codes 

which do not have the ordering requirement (*) on the co de words 

and whi ch have unlimited usage of Ie tters. Formall y, given letters 

a o ' and their 

we wan t 

Cost(C) 

is minimal. 

cos ts c , ... ,c and a probability distribution 
o s 

to find a prefix code C (UI, ••• , U
n

} such that 

n 
L 

i= 1 
p. 

1 
Cost ( Ui) 



Remark: We use the notation PI ""'Pn for the probability 

distribution in the non-alphabetic case and ex ,6 1 ""'~ ,0: 
o n n 

in the alphabetic case. This should help the reader keeping 

things apart. 

code C 
opt 
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We show that the cost of an optimal alphabeti c 

satis f ies the following inequalities. Here H H(ao'f'! ,0: 1 
, ... ,6,0 ) 

n n 

: -ra. log 6. - to:. log o. is the entropy of the probability 
1 1 ] J t 

. . . h 2-dc2k = distribution, B rSi' and c,d E ~ are such t at r 
k=o 

-d 
I. Numbers 2 2- C are sometimes c alled the "roots 

of the characteristi c equation of the letter costs" [cf. Cot] 

Also lo g denotes logarithm base 2 and In denotes natural logarithm. 

( I) H 
I < d.Cost ( C )+- c·B max c. [ I+ln( u ·v·Cost(C ) ] +I/(eu) 

opt U i odd lOp t 

f or some constants u, v a nd e 2 • 7 I 

(2) Cost (C ) < H/d + (La . ) [ I/d + max c
k

] 
op t J k even 

+ (L6·) , 

Note t ha t lower and upper bound differ essentially by In Cost(C ). 
o p t 

Inequality (I) is proved in Corollary 3. Theorem 2 g ives a better 

bound than Corollary 3 but the bound is harder to state. Inequality 

(2) is proved in T heorem 4 by ex p lic it co n struction o[ a co d e C 

s a tis f ying ( 2). }loreo v e r, this code ca n b e co n st ru c t e d in l in e ar 

t im e O(t . n ) (Theo r e m 5) . 

Inequalities (1) and (2) provide us with a "Noiseless Coding 

Theorem" for alphabetic coding with unequal letter costs and 

unequal pr o babilities. 

The construction of pre f ix codes is an old problem. We close the 

introduction b y briefly reviewing some results. 



Case I: Equal letter costs; i . e. C. 
1 
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for all i, 0 < i < s. 

In the nonalphabetic case an algorithm for the construction of 

an optimal code dates back to Hu f fmann; it can be implemented to 

run in time D(n log n) [ van Leeuwen 1. The noiseless coding theorem 

[ Shannon] gives bounds for the cost of the optimal code, namely 

1 
-'------ H ( p 1 
lo g ( s +l) 

, ... , p ) 
n 

< Cost(C) < 
1 

--'---[H(Pl 
log(s+l) 

, .•• , p ) 
n 

+ 1 1 

- Lp. log p. is the entropy of the distribution. 
1 1 

The binary alphabetic case was solved by Gilbert & Moore, Knuth, 

Hu & Tucker The time complexity of their algorithm is O( n
2

) and 

Oen log n) r esp. Cost i s usually called weighted path leng th in this context . 

Bounds were proved by Bayer and Hehlhorn, namely 

H(exo,el""'~ ,ex ) < Cost(C )+(loge)-l + log Cost (Copt) n n - opt 

Cost < H(ex ,el, .• • ,e ,ex ) 
ann 

+ + :Lo:. 
J 

Various approximation algorithms exist which construct codes in 

linear time in the binary case, The cost of these codes lie within 

the above bounds [Bayer, Mehlhorn, Fredman], 

Case 2: Equal Probabilities 

i ,e. p. 
1 

l/n f or < i < n. The problem was solved 

and Even. The time complexity of their algorithm is 

by Perl, Garey 

o (min(t
2
n, tn 

log n». The alphabetic case is identical to the nonalphabetic case 

and noa - priori bounds for the cost of an optimal code do exist . 

Case 3: Unequal Probabilities, Unequal Letter Costs 

This case was treated by Karp. He reduced the problem to integer 

programming and thus provides us with an algorithm o f exponential 

time complexity. No better algorithm is known at present. However 

it is also not known whether the corresponding recognition problem 

( is there a code of cost ~ m) is NP-complete. A-priori bounds were 

proved by Krause, Csiszar and Cot. 
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The alphabetic case was treated by Itai. He describes a clever 

dynamic programming approach which 

d · . D( 2 3) .. co e In tlme t·n • No a-prlorl 

II. The Lower Bound 

constructs an optimal alphabetic 

bounds are known. 

In this section we want to prove a lower bound on the cost of 

every prefix code. We will first treat the non-alphabetic case 

and then extend the results to the alphabetic case. 

II. 1 The non-alphabetic case 

II. 1.1 Preliminary Considerations 

Consider the binary case first. There are two letters of cost 

c
1 

and c 2 respectively. In the first node of the code tree we 

split the set of given probabilities into two parts of probability 

p and I-p respectively. (Fig. I). 

p 1 -p 

Figure I 

The local information gain per unit cost is then 

G (p) ~ 
H(p,l-p) 

where H(p,q) -p log p -q log q. This is equivalent to 
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-p log p - (I -p) log (I-p) 
G(p) for all c + 0 

-e el 
~polog 2 - ( I-p) log 

- cc 2 I 
2 ) 0 -

c 

The following fact shows that G(p) is maximal for 

- cc 
p : 2 I I-p 

- cc 
2 2 where c is chosen such that 

- cc - cc 
2 I + 2 2 I 0 So G(p) < c for all p 

and -cc 
G (2 I ) c. 

Fact (cf. e . g . Ash) 

Let xi' y . > 0 for <; i < n, LX. ~ I - Ly . Then , - , 

- LX . log x. < - LX. log Yi· , , , 

This s hows that the maximal local information gain per unit 

cost is c . Hence every code for probabil ities PI ,0 "'P n should 

have c ost at least 1 Ie . H(Pl"" ,P n ) ' This is made pre c ise in 

the next section. 

The plausibility argument also suggests an approximation algorithm: 

try to split the given set of probabilities into two parts of pro-

I - cc I I 
bability p and I-p respectively so as to make p-2 as smal l 

as possible. We discuss this approach in section III. 



_ 9 _ 

II. 1 . 2 The Lower Bound in the Non-alphabetic Case 

Theorem I : Let P1""'P n 
be a probability distribution and 

let C = ( UI ' ••• , U ) be a prefix code over code alphabet {a , .. . , a }. 
n 0 s 

Let c. > 0 be the cost of ai' 0 < i < s. Let c be such that 
C 

5 -cc. 
l:: Z C I • 

i=o 

a) [Krause] 

- LP· log p. is the entropy of the frequency 
C C 

distribution. 

b) Let h E IR, h > 0 and 

Lh ( i ; c Cost(U. ) 
C 

< log p. 
C 

- h } 

-h 
Then l:: p. < Z 

iEL
h 

C -

Remark: I n equality a) reads in its full form 

n 
l: 

i=1 
p. [c 

C 
Co st(U.)] > 

C 

n 
l: 

i=1 
p. 

C 
[-logp.] 

C 

It is an extension of the noiseless coding theorem to arbitrary 

letter c osts. Part b) shows that this inequality is almost satis­

fied termwise by the expressions in square brackets. More precisely 

the fraction 

by more than 

Proo f : a) Let 

of probabilities which violates the termwise 
-h 

h is less than 2 . 

U. a. a. a. . Define 
C C I C z ct-

C 

t. 
C -ceo 

q. := n z 
C 

k=1 

ck < i < n. 

inequality 



n 
Q:= L 

i=l 
q .• 

1 

Then Q ~ 1 by a simple induction argument 

property is needed here. Furthermore, 

9.. 
1 

on max t,. 
1 

log q. 
1 

-c· L c, 
k= I 'k 

- c Cost (U.) 
1 

and hence by the fact above 

- Lp. log p. 
1 1 

< - Lp. log (q. / Q) 
1 1 

c Cost (C) + log Q 

< c·Cost (C) 

b) Let h > 0 and 

I i; c Cost (U.) < -log p. - h }. 
1 1 

Then 

> Q 
n 
L 2- C Cost (U. ) 

1 

i=l 

L 2- c Cost (U i) 
> 

iELh 

log p.+h 
Zh > L Z 1 

L . P .• 
iELh iELh 

1 

- 10 -

The prefix 

[J 
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I1.2 The alphabetic case 

Every alphabetic code C = { V ,wl, ... ,W ,V } is a non-alphabetic 
o n n 

code and hence Theorem applies. It shows 

where 

Cost ( C ) > 

2t 
L 

k=o 

-e e 
2 k 

I/e H(o< '~I' ••• '~ ,0< ) o n n 

1. In this section we will 1mprove upon 

this lower bound and essentially show that for every alphabetic 

code C 

where 

Cost (C) 

t -de
2k 

L 2 
k=o 

> I/d ·[H(o< '~I' ... '~'O<) o n n 
e 

• ma x 
U i edd 

e. 
c 

in H (0< , BI ' ••• , B ,0< ) 1 o n n 

I and u is some constant. Note that only 

the letters in L but not the ones 1U L d are u s ed to define 
en 

d and hence the new bound is much better for large H. 

Example: Consider ternary trees with 

Then c = log 5 a nd d : log 3 . 

e 
o C I I . 

The a l phabetic case differs from the non-alphabetic case in two 

respects. 

I ) the letters in 

W. and not at 
c 

L can only be used at 
end 

the end of code words 

all in words V. 
J 

2) the lexicographic ordering of c ode words must re f lect the 

underlying ordering of the keys. 

We will only use restriction 1) to improve upon the lower bound. 



There see ms to be no way to in c orporate this (comb ina toria l) 

r es tr ic tion into the proo f of Theo r e m I. Rather we turn th e 

co mbi na torial restriction into a c onstrai n t on costs by art i -

ficially in c r eas ing t he c ost o f l e tters in:r: d en 
Then we us e 

th e fac t that letters in L d are used at most on ce in words 
en 

W. and not at all in words V . in o rder to r e lat e the c ost of 
1 J 

a co d e under the old and the new co st function. Fin a lly, we 

apply Theorem to the new co st f un c tion. Let < x < 00 

b e arbitrary, let 

c. z c. for i even 
1 1 

c. x ·c. for i odd 
1 1 

2 t - c (x)Zk 
and let c (x) E IR be such that r 2 

k=o 

Remark: In the n e w cost f unctio n c., 0 < i ~ 2 t, we i nc reased 
1 

the c ost o f l ette rs in:r: d by fac tor 
e n 

x. For x the new 

cost f un c tion is identi ca l with the old one and hen c e c( l) c , 

for x = ~ th e cos t o f letters in L d is in f inite and hence 
en 

c (~) = d . 

Let C = {V , w l, V 1, ••• ,W,V} b e an alphabe t ic code fo r proba-
o n n 

12 -

bilit y distribution ( 0 ,13 1 '''1, ... ,13 ,0 ) . I n parti cul ar, V. E r* 
o n n J 

--..J 
and W. E L* r 

1. end Let Cost(C ) be the cost of C with respect to 

Lemma 

< x 

Proo f : 

' ~2t and l e t Cos t(C) be the c os t of C with re s p ect 

~ 

1 : Gost(G) < Gost(G) 
n 

< ~ B = r ~ .. 
i= 1 ~ 

For W. E r * r let 
~ en d 

W. 
1 

a. 
J . 

1 

+ ( x - I ) 'B ' ma x 
i odd 

a. E r d 
J i en 

c . 
1 

for eve r y x , 



r--J 

Then Cost(W.) 
1 

Hence 
~ 

Cost(C) 

"-../ 

Cost(W!) 
1 

+ c. 
J . 

1 

Cost(W~) + x·c. 
~ J i 

Cost(W.) + (x-I)c. 
~ J i 

r---/ 

r8. Cost(W.) + ra. 
1 1 J 

r---/ 

cost(V.) 
J 

< Cost (C) + (x-I)·B max 
i odd 

c. 
1 

We next use Theorem I fo r the costs o < i 

2t 
Theorem 2: Let c (x) be such that L 

k:O 

Then 

Cost(C) > max ( H(a ,8
1

, •.• ,8,a )/c(x) 
o n n 

< 2 t. 

(x-I)·B·max c. 
i odd ~ 

< x < 00 } 

Proo f: By Theor em I, 

~ 

Cost(C) > H(a ,8
1

, ..• ,8 ,a )/c(x) 
o n n 

Substituting i nto Lemma yiel ds the result. 
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o 

o 

We were unable to find a closed form expression for the maximal 

value of the right hand side in Theorem 2. An approximate value 

can be foun d as follows. Recall that e(l) 

c (x) de c reas es for < x < 00, Write c(x) 

c, c (CD) = d and 

d + o (x). 



c 

d 

---------~C(X) 

x 

with 0 :s. 6(x) < c-d. We will show r( ) -u(x-I) 
u x < v·e for 

some constants u,v (Lemma 2 below), Then Theorem I can be 

written as: (We write H instead of Hen ,13
1

, .. ,,13 ,0 ». 
o n n 

H < c(x)'Cost(C) + (x-I)'c(x)'B 

< d'Cost(C) + 6(x)'Cost(C) + 

max c. 
1 

i odd 

(x-I)·c·B· max c . 
1 

i odd 

-u( x -I) 
< d·Cost(C) + v.e .Cost(C) + (x-I)·c·B. max c. 

i odd 1 

This inequality 15 true for all x, < x < 00, 

The right hand side is minimal (differential calculus) for 

(x-I) = 

Hence 

(in[u·v Cost(C)/c.B. max 
i odd 

c·B H < d·Cost(C) + max C. 
1 

u i odd 

c.])/u 
1 

[ 1 
u,v'Cost(C) 1 

+ in 
c'B- max 

i odd 
c· 

1 

- 14 
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cB max ci 
Using finally y in I/y < lie for all y>O(in par tic ular y 

we obtain 

Corollary 3: Let C be an alphabetic code for distribution 

ex '~I,exl""'S ,Q with respect to costs o n n 

Let c,d be such that: 

2 t -cc 
r 2 k 

k=o 

Let B = LS .. Then there are constants u,v (depending on 
1 

but not on Cost(C) and a ,SI""'S ,0 ) o n n 

such that 

H(ex '~I' ... ,~ ,ex ) < d·Cost(C) + 
o n n 

cB 
u 

max 
i odd 

c. 
1 

[ I + In(u.v Cost(C))l + 

Proof: By the preceeding argument. 

e·u 

u 

" 

Corollary 3 shows that the lower bound for the alphabetic code 

is essentially the lower bound (d.Cost(C)) for the non-alphabetic 

code where only the letters of even index a re used p lus a 

small correction of order (coB' max 
i odd 

c. in Cost(C)) which re-
1 

fleets the restricted usage of the letters in r d. en 

A special case of Theorem 2 and Corollary 3 was proved by Bayer. 

He considered the binary alphabetic case with equal letter costs, 

i.e. t = 



It remains to prove Lemma 2. We will only show the 

existence o f constants u,v but not derive a bound for 

them. This is justified since we recommend to always 

use Theorem 2 and to compute the maximal value of the 

right hand side by numerical methods. Corollary 3 is 

only given in order to indicate the order of the bound 

in Theorem 2. 

Lemma 2: Let 6 (x) be defined as above. Then 

6(x) -u(x-I) 
< v·e 

for some constants U,V • 

- \ 6 

Proof: 6 (x) 
-u(x-I) 

< v·e is equivalent to (x-I) < -In(6(x)/v)/u. 

6(x) is defined by 

t 

L 
k=o 

-(d+6(x»c
Zk Z + 

-(d+6(x»·x·c Zk-I 
Z 

Consider the left hand side as a function f(x,6) of two arguments 

x and 0, i.e. replace 6(x) by 6 in the left hand side. For fixed 

6 this function is decreasing in x. Also f(x,6(x» I. Suppose 

we know f(z,6(x» ~ I for some z. Then x < z since z < x implies 

f(x,6(x» < f(z, o (x») ~ 1, a contradiction. It therefore suffices 

to show that there are constants u,v such that for all x 

(I I) 
t 
L Z-(d+6(x»cZk + Z-(x+6(x»ZCZk-1 < 

k=o 

where Z := l-ln(6(x)/v)/u. Replacing c i ' 0 < i .::. Zt by 

c. = min{c.; 0 < i < Zt } > 0 in the left hand side of (II) 
m~n ~ 

only increases the left hand side. It therefore suffices to show 

(I Z) 
t 

L 
k=o 

t 
for some constants u,v. Using L 

k=o 

of 12 is of the form 

Z-dcZk = I the left hand side 
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g(y) 
-y 

: = b 1 

t 2-dcmin > 0, b
3 

= (de. In 2)/u > 0 
m1n 

and y 

Then 

o(x). Hence 0 < y < c-d. Choose u such that b
3 

= 1. 

g(y) 

It remains to show that we can choose v such that g(y) < for 

o < Y < c -d. Note that g(O) and that 

g' (y) (-In 
-y 

b 1 ) b 1 + b 2 /v 

< (-In b )b-(c-d) 
1 1 + b 2 /v since 0 < Y < c-d 

< 0 

for sufficiently large v. Hence g(y) < for 0 < Y < d. This 

shows the existence of u and v. 

III. The Upper Bound 

In this section we describe an algorithm for constructing 

alphabetic codes and derive a bound on the cost of the code 

constructed. The algorithm is a generalization of the one in 

[Gilb ert and Moore, Mehlhorn]. 

The code ~s constructed top-down by repeated splitting of 

the ordered set {CXo,131'CXI""'CXn_l,13n'CXn} of probabilities. 

In each step we try to split the set as described in 11.1.1 

Let d be such that 

t -dc
2k L 2 

k=o 

and let s 
-I -00,5 n +

1 

s ,,/2 
o 0 

s. 
1 "0 + BI + ••• + B. + (J../2 

1 1 

S _I and sn+l are defined as I'stoppers". 

for 1 < i < n. 

c 



Example: Let e I , e I 3, e Z 
: Z , e 3 

I , e 4 
: Z . 

0 

Then d : I . Let () (). 6· 1/7 for < i < 3 . Then 
0 1 1 

8. (4i+I)/14 for 0 < i < 3 . We draw the distribution 
1 

(0 '~I,al' .. "O I'~ ,0 ) as a partition of the unit o n- n n 

interval and split the unit interval in the ratio 

-de 
Z 0 

-de 
Z Z 

8 

~ 
r 
a 6 I 0 

" -de 
Z 0 

Fig. Z 

From Fig. Z , it 

-de 
Z 4 

8 I 

1 
()I 

looks 

8 Z 8 3 

1 I I 1 I 
6 z ()Z 163 ()3 
,j~~ 

-de 
Z Z 

-de 
Z 4 

reasonable to ass~gn letter a to 
0 

°o'~l,al' to assign letter a Z to ()Z' letter a 4 to () 3 ' 

letter a
l 

to 6 Z 

8et Wz = a I ' Vz 
start with a 

0 

{()o,6 1 '()I}' We 

way and obtain 

8 
0 

1 
() 

and letter a
3 

to 6 3 . In other words we 

: 

a Z ' W3 : a
3

, V3 : a
4 

and let Vo,W1,V j 

Next we have to work on the subproblem 
-de 

split the interval [0,2 o]in the same 

Fig. 3 

8 I 

"- 0 
y 

6 1 
~--_./ 

-de -de -de 
0 A'Z 

"-
A.Z Z A'Z 4 

~----------~-------------~ 
Fig. 3 

-d e 
A :: Z 0 

18 _ 



This suggests to use letter a 
o 

as the second 

letter of the code words assigned to " o 
Note 

that we used letter a
Z 

for oJ 

probability 01 falls into the 

since more than half of 
-de 

interval of length A.2 2 

In general , the construction process can be described as 

a recursive pro c edure CODE with parameters 

~,r we work on the subproblem 

°t,a t + I ,··· ,ar'Or ~ < r 

(I) L,R L,R E tR, L < < s 
r 

< R 

(2) 

U U E L* = {a
o

,a
2

, .. "aZtJ*. U is a common prefix of 

code words 

R-L 2-doCost(U) 

Initially t = 0, r = n, L = 0, R 

V and 
r 

and U = E where E is 

the empty word. Consider now any call of the procedure CODE 

with parameters £,r,L,R,U satisfying the invariants (I) and 

(2) stated in their definition. 

Case r Then we define V 
r 

U and return 

Case 2 : 9, < r. We split the interval (L,R) in the ratio 

-de -de 

19 -

o 

-d e 
2 0 2 I 2 2t The i-th subinterval, 

i-I -de 
o < i < t, 

has boundaries L. 
1 

-dc . 

L + (R-L) L 2 2k and Ro 
~ 

L 0 + 
1 

(R-L) 02 21 We th en determine for each subinterval the set 

of skis which lie in that subinterval, say 
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and for the i-th interval. 

If h ~ j, i.e. some SkiS actually lie in the i-th subinterval, 

then we call procedure CODE recursively with parameters 

h,r=J,L L., R 
c 

R., U 
c 

Furthermore, if in addition j + 

word Ua 2i + 1 to 6· I' J + 

Example: Suppose t 

i.e. we set 

< S5~ .•• '::8 7 <L3 <SS'::R3' 

< r, then we ass~gn code 

Ua 2i + 1 . 

Then the recursive calls are 

CODE(O,4,L o ,L 1 ,Ua
o
)' Code(5,7,L 2 ,L 3 ,Ua

4
) and CODE(8,8,L 3 ,R 3 ,Ua 6 ). 

Furthermore, we set Ws = Ual and Ws = VaS' A pictorial repre­

sentation is given by Fig. 4. 

Fig. 4. 

a 
o 

f 
• U 

In the remainder of this section we derive an upper bound on the 

cost of the code constructed by procedure CODE. It is obvious that 

the properties stated in the definitions of t,r,L ,R,U are invariants 

of the recursive procedure, i.e. they hold for all values of the 

actual parameters. 
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Conside r t he code word W. = Uak. constructed for ~. ; U € >:* e e 
e 

and a k . € L . The word W. was constructed by the procedure 
end e 

e 
CODE with actual parameters i,r,L,R,U where t< i 

Hence 

~ . < "t /2 + ~i+1 + 
"i+1 + ••• + ~q + " 12 e r 

s~nce ~ . appears en that sum e 

s - St r 

-d Cost(U) 
< R - L 2 

by invariants (1) and (2) of procedure CODE. Hence 

Cost(W.) 
e 

< Cost(U) + max c K 
K odd 

1 
< d [-log 6 . ] 

e 
+ max c

K 
K odd 

< r . 

Consider next code word v .. Word V. was constructed by 
J J 

procedure CODE with actual parameters (j,j, , V . ). CODE 
J 

with actual parameters (j, j, , V . ) was called by CODE 
J 

with actual parameters (i,r,L,R,U) with t < r, t < j < r 

V. Uak. for some a k . € L Hence 
J 

J J 

< R - L 2-d Cost(U) 

and 



by the same reasoning as above. Hence 

I Cost(V.) < - [ -log 
J - d 

a. 
J 

+ I 1 + max 
k even 

We summari ze 

Theorem 4: Let (0: '~I, ..• ,a , 0 ) be a probability 
o n n 

distribution, e. > 0, a. > 0, La. + ra. 
~ - J - 1 J 

I . 
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(2t+I) symbols with c osts c ,e
l

,o •• ,e
2 

EIR. 
o t + 

Then proced ure CODE constructs an alphabetic code with 

a) Cost (W . ) < 
1 

b) Cost (V . ) < 
J 

c) Cost (C) < 

[-10 g a. 11 d + max C
k 1 

k odd 

[ - 10 g a.+ 11 /d + max c
k J k even 

H(O:o,B1'OI'" . ,a , a)/d 
n n 

(l:a . ) 
J 

[ l id + max ck 1 
k even 

(l:a.) [ max ck 1 
1 k odd 

+ 

+ 

Proof a) and b) are prov e d by the d iscussion above. c ) follows 

fro m a) and b) by multiplication with Bi an d OJ respectively and 

summation. C 

Example: An ordered Morse code . The Morse co de is over a 

three letter alphabet: dot (cost I ), dash (cost 2) and 

letter space 

space < dash 

(cost I) . We assume the ordering dot < letter 

1.e . l: = ( dot , dash) and l: d = (letter space). 
en 



Then c 
o 

1 , c ~ 

1 
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1 , c
2 

~ 2, 2- d ~ 0.618 and d ~ 0.6942. 

We encode the 27 English letters (including the word space) 

in alphabetical ordering, i.e. e) = probability of letter 

a, e2 = probability of letter b, ... , a
27 

= probability of 

word space, We refer the reader to [Bauer, GODS] for the 

Theorem 2 is 

a.'sare 
J 

zero. 

. The lower bound of 

Cost(C) > max {4.I/c(x) - (x~l) < x < co} 

where c(x) cs such that 2- c (x) + 2- 2c (x) + 2- xc (x) 1 • 

The maximal value of the right hand side is about 3.24 

with x = 1.44 and c(x ) = 1.19. The upper bound of theorem 4 

is 5.85 The code actually constructed is 

r 

./ c word space 

o 
\, 

P" 
q 

i .e. r is encoded by letter space, i is encoded by dot 

letter space, n by dot dash letter space. The cost of this 

code is 4.3025. In comparison, the cost of the morse code 

is 4.055. The morse code is non-alphabetic. 



(*) 

(** ) 

IV Implementation 

In thi s section we describe an imp leme ntation of pr oce dure 

CODE . Our implementation has running time O(t·n). As a bove 
t -dc

2k let d E IR be such that L 2 ""' 1. Furthermor e , let 

Z, 
~ 

i 
L 

k=O 
for 0 

k=O 

< i < t. Procedure CODE has 

fol lowing global structure. 

procedure CODE(l ,r,L,R,U); 

begin 

if t = r 

else begin 

end 

end 

for all i, 0 < i < t do 

begin Li := L + (R-L)zi_1 

R, := L+(R-L)z,; 
~ , 

let hand j be such that 

sh_1 < Li < sh and Sj ~ Rj < Sj+l; 

if h < j then CODE(h,j,L"R, ,Ua 2 ,); 
~ ~ ~ 

,'f J'+I < th W + U r en j+l a Zi + 1 

end 

the 

- 24 
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Three problems remain to be solved: 

a) In what order do we process the different values of i 

in loop (*) 

b) How do we find hand j in line (**) 

c) What should we do if all s. IS, t < i < r, lie lTI 
~ 

the same subinterval. Note that problem c) does not affect 

the analysis given in section III, however it will affect 

running time. 

Consider problem b) first. We describe a solution for the 

O-th subinterval. By definition L 
a L and hence 5 R,-1 < L 

a 

by assumption. Hence we only have to find J such that s. < 
J 

< s ~ 

We find j by exponential + binary search [Fredma~ . We first 

compare R with 
a 

un til 

or 

In the second case we have s < R 
0' 

i . e . 
r 

the same interval. In the first case we 

s~ + 2k- j < R or k : O. If k is equal to - a 

(if s~ < R)orJ-~(ifR a a 
If k 

then ~ 
k-j 

+ 2 < j 

by binary search on 

We determine 

k-j 
the interval t. + 2 

all s. IS fall into 
~ 

have s~+2k > R and 
a 

0 then either j ~ t + 

~s not equal to a 

the exact value of J 

k 
... ~ + 2 in time O(k). 
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Let n 
o 

J-i+i,i.e. n is the number of s. 's which lie 
o 1 

in the O-th interval. Equivalenty, the recursive call CODE(t,j, ... ) 

constructs n 
o 

code words W .• 
1 

. _ ' > 2 k - 1 
Since J x, where k 15 determined as above it follows 

that J can be determined in time < a(1 + log (n +1)) where 
o 

a is a suitable constant. 

Next we address problem a). Let o < i < t, be the number 

of s. 's which lie in the i-th interval. The obvious way to 
1 

proceed 1 S to determine in that order. Note 

that the solution given to b) applies to all 

this strategy may waste a lot of time; e . g • 

n. IS. 
1 

if n l 

However, 

is large and 

small. Note that TIt actually does not have to 

be computed because it is uniquely determined once the other 

values are found. It would be much cheaper in this case to 

compute il 1 ,n 2 , ••• in reverse order. These considerations lead 

to the following strategy: 

Determine no and n
t 

~n parallel, stop when anyone of them is 

found. Say no was determined first. Forget everything about n t 
Now determine in parallel 

In this 

a' . 

way one can find 

t 
L 

i=O 
(l+log(n.+I)) 

1 

for some constant a ' 

max 
O<i<t 

1n time 

(l+log(n.+I))) 
1 
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It remains to treat problem c), Suppose all but one n. 
1 

are 0, 

say n. 
J 

n. In this case we either artificially assign the 

leftmost probability 09, to the Q-th subinterval (i£ j > 1) 

or the rightmost probability ex to the t -t h subi nte rval 
r 

(if j < t). More precisely, suppose J > I. Then we set 

V9, ~ Da o ' W9,+l + Val and call CODE recursively with parameters 

9, + 1 , r, L. , 
J 

R. 
J 

Note that the analysis of section III is 

still valid. By this modification we guarantee that at least 

one code word W. is const ru cted by every call of procedure CODE. 
1 

We are now ready to set up recu~sion equations for an upper 

bound T on the running time of our implementation of algorithm 

CODE. Let T(n+! ,t) be the maximal time needed by CODE in orde r 

to construct a code for probability distribution 

with costs Note that n+1 1.S equal to the number 

of o:.'s. 
J 

Then 
T(O, t) o T(I,t) = a 

for some constant a . 

Let n+l > 1, 1. .e. we have to construct a code for 

We first determine 00,n
1

, ••• ,n
t 

as 

described above in time 

t 

a • ( L (l+log(n.+I) 
i=O 1. 

- max (l+log(n.+I») 
O<i<t 1. 

Since n. is the number of s. s which fall in the i-th subinterval 
1 J 

we have n+1 Also 0 < n. and n . < n by our 
1 1 

modification above. For every n. > 0 we have to call CODE 
1 

recursively; this recursive call takes time at most T(ni,t) 



For the sequel, it will be convenient to modify CODE 

slightly. If max n. > 4 then we proceed as described above 
1 

If max n. < 4 then we avoid recursive calls altogether. 
1 

- 28 

Rather we solve each subproblem directly in time O(t). This 

gives the following recursion equation for T (we replace 

n+1 by n throughout) 

max 
n + ••• +n =n 

o t 
n.<n 

1 

max n.>4 
1 

max 
n + •.. +n =n 

o t 

n.<n 
1 

max n.<4 
1-

T (n , t) = rna x (T 1 (n, t) , T 2 (n , t) ) . 

t 

>: 
i=i 

t 
>:. 

i==D 

(T(n.,t) + a(l+log(n.+I))) 
1 1 

-max 
O<i<t 

a(l+log(n.+I))]. 
1 

(i f n .• O then a(t+l) 
1 

a(l+log(n.+I))) 
1 

else 0 + 

- max 
O<i<t 

a(l+log(n.+I))]. 
1 

Here a is some constant ; w.l.o.g. we can use the same a in 

all equations . 

Theorem 5: T(n,t) O«t+I)·n) 

Proo f : 

We show by induction on n 

(* ) T(n,t) < d(t+I)·n - e(t+I)·log(n+l) 

for some suitable constants d and e (to be determined later). 



Induction base: n = 0, n = or n n + ... +n , 
o t 

o < n. 
1 

T(O,t) 

and 

< n, 

o 

max n. 
1 

< 4 and T (n, t) - T 2 (n, t). The n 

T(I,t) ~ a 

- 29 -

T(n,t) < a(t+I)·(number of n. 's f 0) 
1 

+ a(t+l) (I +log 5) 

< a(t+I)'n + a(t+l) log 10 

In either case we can find for every choice of e a suitable 

d such that (*) is true. 

Induction step: Let n n + ... +n ~ 0 < n. < TI, 
o t - 1 

max n. > 4 and T(n,t) 
1 

T1 (n, t) . Then by induction hypothesis 

t 

I(n,t) < l.: [d(t+l)n.-e(t+l) 
1 

log(n.+I)+a(l+log(n.+I)] -
1 1 i=O 

max 
O<i<t 

a(l+log(n.+I» 
1 

We may assume w.l.o.g. that n 
o 

max n .. 
1 

Then 

I(a,t) < d(t+I)·n - e(t+l) log(n+l) 

t 

+ e(t+l) log(n+l) a(l+log(n.+I» -
1 

l.: e(t+1 )log(n.+I) 
i =0 1 

It suffices to show 

e(t+l) log(n+l) + at < e(t+l)log (n +1) 
o 

t 
+ (e(t+I)-a) l.: log(n.+I) 

i = I 1 



t 

Since L 
i:1 

log (n.+I) ~s smallest when all but one n. 
1 1 

t 
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< i < t, are zero we have L log (n.+I) > log (n-n +1). 
1 - 0 

i=! 

Thus it suffices to show 

e(t+l)log(n+I)+at < e(t+l)log(n +1)+(e(t+I)-a)log(n-n +1) 
o 0 

The derivative of the right hand side with respect to 

e(t+l)n+a+(a-2e(t+I»no 
(n +I)(n n +1) 

o 0 

n 
o 

For 0 < n < n the denominator is positive. The numerator 
o 

is a linear function of n which is positive for n = O. 
o 0 

Hence there exists some real m such that fen ) > 0 for 
o -

is 

o < n < m and fen ) < 0 for m < n < ll. (It is conceivable 
00 - 0 

that m > n). Hence it suffices to check the inequality for the 

extremal values of n : n :E: n-I and n = max (n/(t+I),5). 
000 

For n z n-) the inequality reduces to 
o 

e(t+l)log(n+I)+at < e(t+l)log n + (e(t+I)-a) 

or 

e(t+l) n+1 
log 

n 
< (e-a) (t+l) 

Slnce n > n > 5 one only has to choose e such that 
o 

log 7/6 < (e-a)/e 

Suppose now n = max(n/(t+I),5). If n 
o 0 

n/(t+l) > 5 and hence 

n > 5(t+l) the inequality reduces to 

e(t+l) 
n+1 

log + at < (e(t+I)-a) 
n + 1 

o 

t 
log(--I n+l) t+ 
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Since t > I, (n+I)/(n +1) < t+1 and tn/(t+I)+1 > 5t+1 
o 

5(t+I)-4 

it suffices to show 

or 

e(t+l)log(t+I)+at < (e(t+I)-a)10g(5(t+I)-4) 

a(t+log(5(t+I)-4)) < e(t+I).log 5(t+I)-4 
t+1 

Since t > and hence (5(t+I)-4)/(t+l) > 3 it suffices to 

choose e such that 

a(1 + log(5(t+I)-4) ) < e 
t+1 

fort>l. 

Finally if 

reduces to 

n 
o 

5 > n/(t+l) and hence n < 5(t+l) the inequality 

e(t+l)log(n+I)+at < e(t+l) log 6 + (e(t+I)-a)10g(n-4) 

or 
n+1 

e(t+l)logn _4 + a 10g(n-4) < e(t+l)log 6 - at 

Since 5 n < n < 5(t+l) it suffices to show 
o 

e(t+ l) log 7/2 + a log 5t < e(t+l) log 6 - at 

or 

a(t+log 5t) < e(t+l) log 12/7 

for t> 1. Hence we only need to choose e sufficiently large. 

In either case one only has to choose e sufficiently large in 

order to make the induction step go through. Since the validity 

of the induction base is independent of the value of e the 

theorem follows. 

Remark: If for-loop (*) ~n procedure CODE 15 realized 

as for i from 0 to t .&.2.. then the following recursive equation 

T(n , t) = max 
n + ... +n =n 
g.<n t 
~ 

t 

l: 
i=i 

T(n"t) + 
~ 

t-I 
l: 

i=l 
a(l+log(n. +I ))] 

~ 

with solution T(n,t) O(tnlogn) arises. So the modification 

suggested above is essential . 

c 
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Theorem 5 shows that a prefix code satisfying the inequality 

of Theorem 4 can be constructed in linear time OCt·n}. Two 

variants of the above recursion equations for T might some­

times be useful. An application can be found in [Altenkamp, 

Mehlhorn]. 

Variant A: 

T(n, t) max 
nt+···+ns=n 

l<n.<n 
- 1 

1<5<t 

s 
L 

i=O 
T(n.,t)+a(l+log n.)] 

1 1 

It has a solution T(n,t) z Oen log n} [Altenkamp, Mehlhorn]. 

Variant B: 

T(n,t) = a for n < 4 

T(n, t) max 
n +u

1
+ ••• +n "'n 

o s 
1 <n. <n 

- 1 

1<5<t 

s 
L 

i=O 
(T(n. ,t)+a(l+log n.)) 

1 1 
- max 

O<i<s 

It has a solution T(n,t) = O(n) [Altenkamp, Mehlhorn]. 

a(l+log n.)] 
1 
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