
CODES: UNEQUAL PROBABILITIES,
UNEQUAL LETTER COSTS

BY

DORIS ALTENKAMP AND
A 78118

KURT MEHLHORN
IXI1978

Fachbereich 10

Universitat des

Saarlandes

BRD -66 oo SaarbrGcken

A preliminary version of this paper was

presented at the 5th International Colloquium

on Automata , Languages and Programming, Udine,

Italy , July 17 - 21. 1978

- I

Ab s t ra ct

The c onstruction of alphabetic prefi x codes with unequal

l ette r co sts and unequal probabilities is considered. A

variant of the noiseless c oding theorem is proved giving

c losely matching lower and upper bounds for the cost of

the optimal code . Furthermore, an algorithm is described

whi c h co nstructs a nearly optimal code in linear time .

I. Introduction

We study the c onstruction of pref ix co cles in the case of

unequal probabilities and unequal letter costs . The investi ­

g a tion is motivated by and ori e nt e d towards the following

problem . Consider the following ternary search tree. It has

3 internal nodes

. 3 4 I 2

I(,3)1 1(3,4)1 1(4 , 5)1 1(1 0 , 1 2) I

and 6 leaves . The internal nodes contain the keys (3,4 , 5,10, IZ}

in sorted order an d the leaves represent the ope n intervals

be tween keys. The s t andard stra t egy to locate X in this tree is

best described by the following r ec ursive procedure SEARCH

- 2 -

~ SEARCH (int X node v)

if v is a leaf

then !Ix is not in the treel!

else begin let K
J

,K
Z

be the keys 1n node V;

if X < K
j

then SEARCH (X, le f t son of v)

if X K
j

then exit (found);

if K
Z

does not exist

then SEARCH (X, right son of v)

else begin if X < K2 then SEARCH (X, middle son of v);

end

end

if X KZ then exit (found);

SEARCH (X, right son of v)

end

Apparently, the search strategy is unsymmetric. It is cheaper to

follow the pointer to the f irst subtree than to follow the pointer

to the second subtree and it is cheaper to locate K) than to locate

K2 ·

We will also assume that the probability of access 15 given for each

key and each interval between keys. More precisely, suppose we have

n keys B} , ... ,B n out of an ordered universe with B) < B
Z

< ... < Bn"

Then 8· denotes the probability of accessing B., < i ~ n, and a.
l l J

denotes the probability of accessing elements X with B. < X < B. j
J J +

o < j ~ n. a and ~ have obvious interpretations. a n In our example

n 5 , ~2 is the probability of accessing 4 and 0 4 is the probability

of a c cessing X E (4,5). We will always write the distribution of

access probabiliti e s as a ,aj,a j , ... ,e ,a .
ann

Ternar y trees , in general (t+I) -ar y trees, correspond

to pre f ix cocles in a natural way . We are given letters

ao,a l , a 2 ,·· .,a 2t of cost co' c 1, c Z ' " .,e 2t respectiv e ly;

> 0 f or 0 < 9, < 2t. Here letter a
2 i

corresponds to

following the pointer to the (£+ I)-st subtree , 0 < £ < t ,

and lett e r aZ£+l corresponds to a successful search

termin a ting in the (£+ I)-st key of a node, 0 < t < t .

In our exampl e , t = 2. The c od e word correspondin g to

4 , d e n o ted W
2

to (I 0 , I 2) ,

is a
o

denoted V
4

The c ode word c orresponding

is a
o

In ge n e ral, a search tree is a prefix c ode

c::: { V ,W I ,VI, ..• ,W ,V } with o n n

V . E l:*
J

W. E l:*l:
1 end

- 3 -

O .::j< n, < i < n. L* denot e s the set of all words over

alpll a b e t L. W. describes the se a r c h process
1

and V. des c ribes the search pro c ess leading
J

(B.,S. I).
J J +

leading to key B.
1

to interval

Remark: In the binary case, t letters a
o

,a
1
,a

2
have the

natu r al interpretation <,= and > . Letter a
1

(=) ends suc c essful

s ea r c h e s and letter a
1

is never used in unsuccessful searches .

In signaling c odes applic a tions alphabet ~ d might save syn ch ro ­
en

nizing purposes . (cf . the example o f an alphabeti c Morse c ode at

th e e nd o f se c tion III).

_ 4 _

Note that the use of the letters in Lend is very re s tri c ted.

They can only be used at the end of code words and they can

only be used in words W.O Furthermore, the code words must
1

reflect the ordering of the keys, i.e.

(*) V. <\.J'. <V.,
J 1 J

for j < i 2 j' and < denotes the lexicographic ordering of strings

based on the ordering a
a

of a word a. a. a.
'1 ' 2 '3

i . e . the sum of the costs

of code C is then defined

n

< a
2

< . . • < a
2t

of lett e rs. The cost

a . is equal to c. + c . + •.• + c.
'k '1 ' 2 'k

of the letters. The (expected) cost

as

n
Cost(C) L ~ . Cos t (W.) + L ex. Cost (V.)

i=1 1 1
j=o J

Remark: In the binary equal cost case (t I, c

this de f inition co in c id es with

length used in the literature

a
the definitions of

[e. g . Bayer, ltai,

We will address the following two problems:

J

=c
1

= c
2

I)

weighted path

Knuth, Mehlhorn]

1) Given letters, their costs and a probability distribution, find

a code with nearly minimal co st.

2) Give goo d a-priori bounds for the co st of the optimal code .

We re fer to these problems as the alphabetic codin g problems.

We will also have to co nsider non-alphabeti c codes, i . e. codes

which do not have the ordering requirement (*) on the co de words

and whi ch have unlimited usage of Ie tters. Formall y, given letters

a o ' and their

we wan t

Cost(C)

is minimal.

cos ts c , ... ,c and a probability distribution
o s

to find a prefix code C (UI, ••• , U
n

} such that

n
L

i= 1
p.

1
Cost (Ui)

Remark: We use the notation PI ""'Pn for the probability

distribution in the non-alphabetic case and ex ,6 1 ""'~ ,0:
o n n

in the alphabetic case. This should help the reader keeping

things apart.

code C
opt

_ 5

We show that the cost of an optimal alphabeti c

satis f ies the following inequalities. Here H H(ao'f'! ,0: 1
, ... ,6,0)

n n

: -ra. log 6. - to:. log o. is the entropy of the probability
1 1] J t

. . . h 2-dc2k = distribution, B rSi' and c,d E ~ are such t at r
k=o

-d
I. Numbers 2 2- C are sometimes c alled the "roots

of the characteristi c equation of the letter costs" [cf. Cot]

Also lo g denotes logarithm base 2 and In denotes natural logarithm.

(I) H
I < d.Cost (C)+- c·B max c. [I+ln(u ·v·Cost(C)] +I/(eu)

opt U i odd lOp t

f or some constants u, v a nd e 2 • 7 I

(2) Cost (C) < H/d + (La .) [I/d + max c
k

]
op t J k even

+ (L6·) ,

Note t ha t lower and upper bound differ essentially by In Cost(C).
o p t

Inequality (I) is proved in Corollary 3. Theorem 2 g ives a better

bound than Corollary 3 but the bound is harder to state. Inequality

(2) is proved in T heorem 4 by ex p lic it co n struction o[a co d e C

s a tis f ying (2). }loreo v e r, this code ca n b e co n st ru c t e d in l in e ar

t im e O(t . n) (Theo r e m 5) .

Inequalities (1) and (2) provide us with a "Noiseless Coding

Theorem" for alphabetic coding with unequal letter costs and

unequal pr o babilities.

The construction of pre f ix codes is an old problem. We close the

introduction b y briefly reviewing some results.

Case I: Equal letter costs; i . e. C.
1

- 6

for all i, 0 < i < s.

In the nonalphabetic case an algorithm for the construction of

an optimal code dates back to Hu f fmann; it can be implemented to

run in time D(n log n) [van Leeuwen 1. The noiseless coding theorem

[Shannon] gives bounds for the cost of the optimal code, namely

1
-'------ H (p 1
lo g (s +l)

, ... , p)
n

< Cost(C) <
1

--'---[H(Pl
log(s+l)

, .•• , p)
n

+ 1 1

- Lp. log p. is the entropy of the distribution.
1 1

The binary alphabetic case was solved by Gilbert & Moore, Knuth,

Hu & Tucker The time complexity of their algorithm is O(n
2

) and

Oen log n) r esp. Cost i s usually called weighted path leng th in this context .

Bounds were proved by Bayer and Hehlhorn, namely

H(exo,el""'~ ,ex) < Cost(C)+(loge)-l + log Cost (Copt) n n - opt

Cost < H(ex ,el, .• • ,e ,ex)
ann

+ + :Lo:.
J

Various approximation algorithms exist which construct codes in

linear time in the binary case, The cost of these codes lie within

the above bounds [Bayer, Mehlhorn, Fredman],

Case 2: Equal Probabilities

i ,e. p.
1

l/n f or < i < n. The problem was solved

and Even. The time complexity of their algorithm is

by Perl, Garey

o (min(t
2
n, tn

log n». The alphabetic case is identical to the nonalphabetic case

and noa - priori bounds for the cost of an optimal code do exist .

Case 3: Unequal Probabilities, Unequal Letter Costs

This case was treated by Karp. He reduced the problem to integer

programming and thus provides us with an algorithm o f exponential

time complexity. No better algorithm is known at present. However

it is also not known whether the corresponding recognition problem

(is there a code of cost ~ m) is NP-complete. A-priori bounds were

proved by Krause, Csiszar and Cot.

- 7 -

The alphabetic case was treated by Itai. He describes a clever

dynamic programming approach which

d · . D(2 3) .. co e In tlme t·n • No a-prlorl

II. The Lower Bound

constructs an optimal alphabetic

bounds are known.

In this section we want to prove a lower bound on the cost of

every prefix code. We will first treat the non-alphabetic case

and then extend the results to the alphabetic case.

II. 1 The non-alphabetic case

II. 1.1 Preliminary Considerations

Consider the binary case first. There are two letters of cost

c
1

and c 2 respectively. In the first node of the code tree we

split the set of given probabilities into two parts of probability

p and I-p respectively. (Fig. I).

p 1 -p

Figure I

The local information gain per unit cost is then

G (p) ~
H(p,l-p)

where H(p,q) -p log p -q log q. This is equivalent to

_ 8 _

-p log p - (I -p) log (I-p)
G(p) for all c + 0

-e el
~polog 2 - (I-p) log

- cc 2 I
2) 0 -

c

The following fact shows that G(p) is maximal for

- cc
p : 2 I I-p

- cc
2 2 where c is chosen such that

- cc - cc
2 I + 2 2 I 0 So G(p) < c for all p

and -cc
G (2 I) c.

Fact (cf. e . g . Ash)

Let xi' y . > 0 for <; i < n, LX. ~ I - Ly . Then , - ,

- LX . log x. < - LX. log Yi· , , ,

This s hows that the maximal local information gain per unit

cost is c . Hence every code for probabil ities PI ,0 "'P n should

have c ost at least 1 Ie . H(Pl"" ,P n) ' This is made pre c ise in

the next section.

The plausibility argument also suggests an approximation algorithm:

try to split the given set of probabilities into two parts of pro-

I - cc I I
bability p and I-p respectively so as to make p-2 as smal l

as possible. We discuss this approach in section III.

_ 9 _

II. 1 . 2 The Lower Bound in the Non-alphabetic Case

Theorem I : Let P1""'P n
be a probability distribution and

let C = (UI ' ••• , U) be a prefix code over code alphabet {a , .. . , a }.
n 0 s

Let c. > 0 be the cost of ai' 0 < i < s. Let c be such that
C

5 -cc.
l:: Z C I •

i=o

a) [Krause]

- LP· log p. is the entropy of the frequency
C C

distribution.

b) Let h E IR, h > 0 and

Lh (i ; c Cost(U.)
C

< log p.
C

- h }

-h
Then l:: p. < Z

iEL
h

C -

Remark: I n equality a) reads in its full form

n
l:

i=1
p. [c

C
Co st(U.)] >

C

n
l:

i=1
p.

C
[-logp.]

C

It is an extension of the noiseless coding theorem to arbitrary

letter c osts. Part b) shows that this inequality is almost satis­

fied termwise by the expressions in square brackets. More precisely

the fraction

by more than

Proo f : a) Let

of probabilities which violates the termwise
-h

h is less than 2 .

U. a. a. a. . Define
C C I C z ct-

C

t.
C -ceo

q. := n z
C

k=1

ck < i < n.

inequality

n
Q:= L

i=l
q .•

1

Then Q ~ 1 by a simple induction argument

property is needed here. Furthermore,

9..
1

on max t,.
1

log q.
1

-c· L c,
k= I 'k

- c Cost (U.)
1

and hence by the fact above

- Lp. log p.
1 1

< - Lp. log (q. / Q)
1 1

c Cost (C) + log Q

< c·Cost (C)

b) Let h > 0 and

I i; c Cost (U.) < -log p. - h }.
1 1

Then

> Q
n
L 2- C Cost (U.)

1

i=l

L 2- c Cost (U i)
>

iELh

log p.+h
Zh > L Z 1

L . P .•
iELh iELh

1

- 10 -

The prefix

[J

- I I

I1.2 The alphabetic case

Every alphabetic code C = { V ,wl, ... ,W ,V } is a non-alphabetic
o n n

code and hence Theorem applies. It shows

where

Cost (C) >

2t
L

k=o

-e e
2 k

I/e H(o< '~I' ••• '~ ,0<) o n n

1. In this section we will 1mprove upon

this lower bound and essentially show that for every alphabetic

code C

where

Cost (C)

t -de
2k

L 2
k=o

> I/d ·[H(o< '~I' ... '~'O<) o n n
e

• ma x
U i edd

e.
c

in H (0< , BI ' ••• , B ,0<) 1 o n n

I and u is some constant. Note that only

the letters in L but not the ones 1U L d are u s ed to define
en

d and hence the new bound is much better for large H.

Example: Consider ternary trees with

Then c = log 5 a nd d : log 3 .

e
o C I I .

The a l phabetic case differs from the non-alphabetic case in two

respects.

I) the letters in

W. and not at
c

L can only be used at
end

the end of code words

all in words V.
J

2) the lexicographic ordering of c ode words must re f lect the

underlying ordering of the keys.

We will only use restriction 1) to improve upon the lower bound.

There see ms to be no way to in c orporate this (comb ina toria l)

r es tr ic tion into the proo f of Theo r e m I. Rather we turn th e

co mbi na torial restriction into a c onstrai n t on costs by art i -

ficially in c r eas ing t he c ost o f l e tters in:r: d en
Then we us e

th e fac t that letters in L d are used at most on ce in words
en

W. and not at all in words V . in o rder to r e lat e the c ost of
1 J

a co d e under the old and the new co st function. Fin a lly, we

apply Theorem to the new co st f un c tion. Let < x < 00

b e arbitrary, let

c. z c. for i even
1 1

c. x ·c. for i odd
1 1

2 t - c (x)Zk
and let c (x) E IR be such that r 2

k=o

Remark: In the n e w cost f unctio n c., 0 < i ~ 2 t, we i nc reased
1

the c ost o f l ette rs in:r: d by fac tor
e n

x. For x the new

cost f un c tion is identi ca l with the old one and hen c e c(l) c ,

for x = ~ th e cos t o f letters in L d is in f inite and hence
en

c (~) = d .

Let C = {V , w l, V 1, ••• ,W,V} b e an alphabe t ic code fo r proba-
o n n

12 -

bilit y distribution (0 ,13 1 '''1, ... ,13 ,0) . I n parti cul ar, V. E r*
o n n J

--..J
and W. E L* r

1. end Let Cost(C) be the cost of C with respect to

Lemma

< x

Proo f :

' ~2t and l e t Cos t(C) be the c os t of C with re s p ect

~

1 : Gost(G) < Gost(G)
n

< ~ B = r ~ ..
i= 1 ~

For W. E r * r let
~ en d

W.
1

a.
J .

1

+ (x - I) 'B ' ma x
i odd

a. E r d
J i en

c .
1

for eve r y x ,

r--J

Then Cost(W.)
1

Hence
~

Cost(C)

"-../

Cost(W!)
1

+ c.
J .

1

Cost(W~) + x·c.
~ J i

Cost(W.) + (x-I)c.
~ J i

r---/

r8. Cost(W.) + ra.
1 1 J

r---/

cost(V.)
J

< Cost (C) + (x-I)·B max
i odd

c.
1

We next use Theorem I fo r the costs o < i

2t
Theorem 2: Let c (x) be such that L

k:O

Then

Cost(C) > max (H(a ,8
1

, •.• ,8,a)/c(x)
o n n

< 2 t.

(x-I)·B·max c.
i odd ~

< x < 00 }

Proo f: By Theor em I,

~

Cost(C) > H(a ,8
1

, ..• ,8 ,a)/c(x)
o n n

Substituting i nto Lemma yiel ds the result.

- 13

o

o

We were unable to find a closed form expression for the maximal

value of the right hand side in Theorem 2. An approximate value

can be foun d as follows. Recall that e(l)

c (x) de c reas es for < x < 00, Write c(x)

c, c (CD) = d and

d + o (x).

c

d

---------~C(X)

x

with 0 :s. 6(x) < c-d. We will show r() -u(x-I)
u x < v·e for

some constants u,v (Lemma 2 below), Then Theorem I can be

written as: (We write H instead of Hen ,13
1

, .. ,,13 ,0 ».
o n n

H < c(x)'Cost(C) + (x-I)'c(x)'B

< d'Cost(C) + 6(x)'Cost(C) +

max c.
1

i odd

(x-I)·c·B· max c .
1

i odd

-u(x -I)
< d·Cost(C) + v.e .Cost(C) + (x-I)·c·B. max c.

i odd 1

This inequality 15 true for all x, < x < 00,

The right hand side is minimal (differential calculus) for

(x-I) =

Hence

(in[u·v Cost(C)/c.B. max
i odd

c·B H < d·Cost(C) + max C.
1

u i odd

c.])/u
1

[1
u,v'Cost(C) 1

+ in
c'B- max

i odd
c·

1

- 14

15 _

cB max ci
Using finally y in I/y < lie for all y>O(in par tic ular y

we obtain

Corollary 3: Let C be an alphabetic code for distribution

ex '~I,exl""'S ,Q with respect to costs o n n

Let c,d be such that:

2 t -cc
r 2 k

k=o

Let B = LS .. Then there are constants u,v (depending on
1

but not on Cost(C) and a ,SI""'S ,0) o n n

such that

H(ex '~I' ... ,~ ,ex) < d·Cost(C) +
o n n

cB
u

max
i odd

c.
1

[I + In(u.v Cost(C))l +

Proof: By the preceeding argument.

e·u

u

"

Corollary 3 shows that the lower bound for the alphabetic code

is essentially the lower bound (d.Cost(C)) for the non-alphabetic

code where only the letters of even index a re used p lus a

small correction of order (coB' max
i odd

c. in Cost(C)) which re-
1

fleets the restricted usage of the letters in r d. en

A special case of Theorem 2 and Corollary 3 was proved by Bayer.

He considered the binary alphabetic case with equal letter costs,

i.e. t =

It remains to prove Lemma 2. We will only show the

existence o f constants u,v but not derive a bound for

them. This is justified since we recommend to always

use Theorem 2 and to compute the maximal value of the

right hand side by numerical methods. Corollary 3 is

only given in order to indicate the order of the bound

in Theorem 2.

Lemma 2: Let 6 (x) be defined as above. Then

6(x) -u(x-I)
< v·e

for some constants U,V •

- \ 6

Proof: 6 (x)
-u(x-I)

< v·e is equivalent to (x-I) < -In(6(x)/v)/u.

6(x) is defined by

t

L
k=o

-(d+6(x»c
Zk Z +

-(d+6(x»·x·c Zk-I
Z

Consider the left hand side as a function f(x,6) of two arguments

x and 0, i.e. replace 6(x) by 6 in the left hand side. For fixed

6 this function is decreasing in x. Also f(x,6(x» I. Suppose

we know f(z,6(x» ~ I for some z. Then x < z since z < x implies

f(x,6(x» < f(z, o (x») ~ 1, a contradiction. It therefore suffices

to show that there are constants u,v such that for all x

(I I)
t
L Z-(d+6(x»cZk + Z-(x+6(x»ZCZk-1 <

k=o

where Z := l-ln(6(x)/v)/u. Replacing c i ' 0 < i .::. Zt by

c. = min{c.; 0 < i < Zt } > 0 in the left hand side of (II)
m~n ~

only increases the left hand side. It therefore suffices to show

(I Z)
t

L
k=o

t
for some constants u,v. Using L

k=o

of 12 is of the form

Z-dcZk = I the left hand side

17 -

g(y)
-y

: = b 1

t 2-dcmin > 0, b
3

= (de. In 2)/u > 0
m1n

and y

Then

o(x). Hence 0 < y < c-d. Choose u such that b
3

= 1.

g(y)

It remains to show that we can choose v such that g(y) < for

o < Y < c -d. Note that g(O) and that

g' (y) (-In
-y

b 1) b 1 + b 2 /v

< (-In b)b-(c-d)
1 1 + b 2 /v since 0 < Y < c-d

< 0

for sufficiently large v. Hence g(y) < for 0 < Y < d. This

shows the existence of u and v.

III. The Upper Bound

In this section we describe an algorithm for constructing

alphabetic codes and derive a bound on the cost of the code

constructed. The algorithm is a generalization of the one in

[Gilb ert and Moore, Mehlhorn].

The code ~s constructed top-down by repeated splitting of

the ordered set {CXo,131'CXI""'CXn_l,13n'CXn} of probabilities.

In each step we try to split the set as described in 11.1.1

Let d be such that

t -dc
2k L 2

k=o

and let s
-I -00,5 n +

1

s ,,/2
o 0

s.
1 "0 + BI + ••• + B. + (J../2

1 1

S _I and sn+l are defined as I'stoppers".

for 1 < i < n.

c

Example: Let e I , e I 3, e Z
: Z , e 3

I , e 4
: Z .

0

Then d : I . Let () (). 6· 1/7 for < i < 3 . Then
0 1 1

8. (4i+I)/14 for 0 < i < 3 . We draw the distribution
1

(0 '~I,al' .. "O I'~ ,0) as a partition of the unit o n- n n

interval and split the unit interval in the ratio

-de
Z 0

-de
Z Z

8

~
r
a 6 I 0

" -de
Z 0

Fig. Z

From Fig. Z , it

-de
Z 4

8 I

1
()I

looks

8 Z 8 3

1 I I 1 I
6 z ()Z 163 ()3
,j~~

-de
Z Z

-de
Z 4

reasonable to ass~gn letter a to
0

°o'~l,al' to assign letter a Z to ()Z' letter a 4 to () 3 '

letter a
l

to 6 Z

8et Wz = a I ' Vz
start with a

0

{()o,6 1 '()I}' We

way and obtain

8
0

1
()

and letter a
3

to 6 3 . In other words we

:

a Z ' W3 : a
3

, V3 : a
4

and let Vo,W1,V j

Next we have to work on the subproblem
-de

split the interval [0,2 o]in the same

Fig. 3

8 I

"- 0
y

6 1
~--_./

-de -de -de
0 A'Z

"-
A.Z Z A'Z 4

~----------~-------------~
Fig. 3

-d e
A :: Z 0

18 _

This suggests to use letter a
o

as the second

letter of the code words assigned to " o
Note

that we used letter a
Z

for oJ

probability 01 falls into the

since more than half of
-de

interval of length A.2 2

In general , the construction process can be described as

a recursive pro c edure CODE with parameters

~,r we work on the subproblem

°t,a t + I ,··· ,ar'Or ~ < r

(I) L,R L,R E tR, L < < s
r

< R

(2)

U U E L* = {a
o

,a
2

, .. "aZtJ*. U is a common prefix of

code words

R-L 2-doCost(U)

Initially t = 0, r = n, L = 0, R

V and
r

and U = E where E is

the empty word. Consider now any call of the procedure CODE

with parameters £,r,L,R,U satisfying the invariants (I) and

(2) stated in their definition.

Case r Then we define V
r

U and return

Case 2 : 9, < r. We split the interval (L,R) in the ratio

-de -de

19 -

o

-d e
2 0 2 I 2 2t The i-th subinterval,

i-I -de
o < i < t,

has boundaries L.
1

-dc .

L + (R-L) L 2 2k and Ro
~

L 0 +
1

(R-L) 02 21 We th en determine for each subinterval the set

of skis which lie in that subinterval, say

- 20

and for the i-th interval.

If h ~ j, i.e. some SkiS actually lie in the i-th subinterval,

then we call procedure CODE recursively with parameters

h,r=J,L L., R
c

R., U
c

Furthermore, if in addition j +

word Ua 2i + 1 to 6· I' J +

Example: Suppose t

i.e. we set

< S5~ .•• '::8 7 <L3 <SS'::R3'

< r, then we ass~gn code

Ua 2i + 1 .

Then the recursive calls are

CODE(O,4,L o ,L 1 ,Ua
o
)' Code(5,7,L 2 ,L 3 ,Ua

4
) and CODE(8,8,L 3 ,R 3 ,Ua 6).

Furthermore, we set Ws = Ual and Ws = VaS' A pictorial repre­

sentation is given by Fig. 4.

Fig. 4.

a
o

f
• U

In the remainder of this section we derive an upper bound on the

cost of the code constructed by procedure CODE. It is obvious that

the properties stated in the definitions of t,r,L ,R,U are invariants

of the recursive procedure, i.e. they hold for all values of the

actual parameters.

- 21

Conside r t he code word W. = Uak. constructed for ~. ; U € >:* e e
e

and a k . € L . The word W. was constructed by the procedure
end e

e
CODE with actual parameters i,r,L,R,U where t< i

Hence

~ . < "t /2 + ~i+1 +
"i+1 + ••• + ~q + " 12 e r

s~nce ~ . appears en that sum e

s - St r

-d Cost(U)
< R - L 2

by invariants (1) and (2) of procedure CODE. Hence

Cost(W.)
e

< Cost(U) + max c K
K odd

1
< d [-log 6 .]

e
+ max c

K
K odd

< r .

Consider next code word v .. Word V. was constructed by
J J

procedure CODE with actual parameters (j,j, , V .). CODE
J

with actual parameters (j, j, , V .) was called by CODE
J

with actual parameters (i,r,L,R,U) with t < r, t < j < r

V. Uak. for some a k . € L Hence
J

J J

< R - L 2-d Cost(U)

and

by the same reasoning as above. Hence

I Cost(V.) < - [-log
J - d

a.
J

+ I 1 + max
k even

We summari ze

Theorem 4: Let (0: '~I, ..• ,a , 0) be a probability
o n n

distribution, e. > 0, a. > 0, La. + ra.
~ - J - 1 J

I .

- 22 -

(2t+I) symbols with c osts c ,e
l

,o •• ,e
2

EIR.
o t +

Then proced ure CODE constructs an alphabetic code with

a) Cost (W .) <
1

b) Cost (V .) <
J

c) Cost (C) <

[-10 g a. 11 d + max C
k 1

k odd

[- 10 g a.+ 11 /d + max c
k J k even

H(O:o,B1'OI'" . ,a , a)/d
n n

(l:a .)
J

[l id + max ck 1
k even

(l:a.) [max ck 1
1 k odd

+

+

Proof a) and b) are prov e d by the d iscussion above. c) follows

fro m a) and b) by multiplication with Bi an d OJ respectively and

summation. C

Example: An ordered Morse code . The Morse co de is over a

three letter alphabet: dot (cost I), dash (cost 2) and

letter space

space < dash

(cost I) . We assume the ordering dot < letter

1.e . l: = (dot , dash) and l: d = (letter space).
en

Then c
o

1 , c ~

1

- 23 -

1 , c
2

~ 2, 2- d ~ 0.618 and d ~ 0.6942.

We encode the 27 English letters (including the word space)

in alphabetical ordering, i.e. e) = probability of letter

a, e2 = probability of letter b, ... , a
27

= probability of

word space, We refer the reader to [Bauer, GODS] for the

Theorem 2 is

a.'sare
J

zero.

. The lower bound of

Cost(C) > max {4.I/c(x) - (x~l) < x < co}

where c(x) cs such that 2- c (x) + 2- 2c (x) + 2- xc (x) 1 •

The maximal value of the right hand side is about 3.24

with x = 1.44 and c(x) = 1.19. The upper bound of theorem 4

is 5.85 The code actually constructed is

r

./ c word space

o
\,

P"
q

i .e. r is encoded by letter space, i is encoded by dot

letter space, n by dot dash letter space. The cost of this

code is 4.3025. In comparison, the cost of the morse code

is 4.055. The morse code is non-alphabetic.

(*)

(**)

IV Implementation

In thi s section we describe an imp leme ntation of pr oce dure

CODE . Our implementation has running time O(t·n). As a bove
t -dc

2k let d E IR be such that L 2 ""' 1. Furthermor e , let

Z,
~

i
L

k=O
for 0

k=O

< i < t. Procedure CODE has

fol lowing global structure.

procedure CODE(l ,r,L,R,U);

begin

if t = r

else begin

end

end

for all i, 0 < i < t do

begin Li := L + (R-L)zi_1

R, := L+(R-L)z,;
~ ,

let hand j be such that

sh_1 < Li < sh and Sj ~ Rj < Sj+l;

if h < j then CODE(h,j,L"R, ,Ua 2 ,);
~ ~ ~

,'f J'+I < th W + U r en j+l a Zi + 1

end

the

- 24

- 25 -

Three problems remain to be solved:

a) In what order do we process the different values of i

in loop (*)

b) How do we find hand j in line (**)

c) What should we do if all s. IS, t < i < r, lie lTI
~

the same subinterval. Note that problem c) does not affect

the analysis given in section III, however it will affect

running time.

Consider problem b) first. We describe a solution for the

O-th subinterval. By definition L
a L and hence 5 R,-1 < L

a

by assumption. Hence we only have to find J such that s. <
J

< s ~

We find j by exponential + binary search [Fredma~ . We first

compare R with
a

un til

or

In the second case we have s < R
0'

i . e .
r

the same interval. In the first case we

s~ + 2k- j < R or k : O. If k is equal to - a

(if s~ < R)orJ-~(ifR a a
If k

then ~
k-j

+ 2 < j

by binary search on

We determine

k-j
the interval t. + 2

all s. IS fall into
~

have s~+2k > R and
a

0 then either j ~ t +

~s not equal to a

the exact value of J

k
... ~ + 2 in time O(k).

26 -

Let n
o

J-i+i,i.e. n is the number of s. 's which lie
o 1

in the O-th interval. Equivalenty, the recursive call CODE(t,j, ...)

constructs n
o

code words W .•
1

. _ ' > 2 k - 1
Since J x, where k 15 determined as above it follows

that J can be determined in time < a(1 + log (n +1)) where
o

a is a suitable constant.

Next we address problem a). Let o < i < t, be the number

of s. 's which lie in the i-th interval. The obvious way to
1

proceed 1 S to determine in that order. Note

that the solution given to b) applies to all

this strategy may waste a lot of time; e . g •

n. IS.
1

if n l

However,

is large and

small. Note that TIt actually does not have to

be computed because it is uniquely determined once the other

values are found. It would be much cheaper in this case to

compute il 1 ,n 2 , ••• in reverse order. These considerations lead

to the following strategy:

Determine no and n
t

~n parallel, stop when anyone of them is

found. Say no was determined first. Forget everything about n t
Now determine in parallel

In this

a' .

way one can find

t
L

i=O
(l+log(n.+I))

1

for some constant a '

max
O<i<t

1n time

(l+log(n.+I)))
1

- 27

It remains to treat problem c), Suppose all but one n.
1

are 0,

say n.
J

n. In this case we either artificially assign the

leftmost probability 09, to the Q-th subinterval (i£ j > 1)

or the rightmost probability ex to the t -t h subi nte rval
r

(if j < t). More precisely, suppose J > I. Then we set

V9, ~ Da o ' W9,+l + Val and call CODE recursively with parameters

9, + 1 , r, L. ,
J

R.
J

Note that the analysis of section III is

still valid. By this modification we guarantee that at least

one code word W. is const ru cted by every call of procedure CODE.
1

We are now ready to set up recu~sion equations for an upper

bound T on the running time of our implementation of algorithm

CODE. Let T(n+! ,t) be the maximal time needed by CODE in orde r

to construct a code for probability distribution

with costs Note that n+1 1.S equal to the number

of o:.'s.
J

Then
T(O, t) o T(I,t) = a

for some constant a .

Let n+l > 1, 1. .e. we have to construct a code for

We first determine 00,n
1

, ••• ,n
t

as

described above in time

t

a • (L (l+log(n.+I)
i=O 1.

- max (l+log(n.+I»)
O<i<t 1.

Since n. is the number of s. s which fall in the i-th subinterval
1 J

we have n+1 Also 0 < n. and n . < n by our
1 1

modification above. For every n. > 0 we have to call CODE
1

recursively; this recursive call takes time at most T(ni,t)

For the sequel, it will be convenient to modify CODE

slightly. If max n. > 4 then we proceed as described above
1

If max n. < 4 then we avoid recursive calls altogether.
1

- 28

Rather we solve each subproblem directly in time O(t). This

gives the following recursion equation for T (we replace

n+1 by n throughout)

max
n + ••• +n =n

o t
n.<n

1

max n.>4
1

max
n + •.. +n =n

o t

n.<n
1

max n.<4
1-

T (n , t) = rna x (T 1 (n, t) , T 2 (n , t)) .

t

>:
i=i

t
>:.

i==D

(T(n.,t) + a(l+log(n.+I)))
1 1

-max
O<i<t

a(l+log(n.+I))].
1

(i f n .• O then a(t+l)
1

a(l+log(n.+I)))
1

else 0 +

- max
O<i<t

a(l+log(n.+I))].
1

Here a is some constant ; w.l.o.g. we can use the same a in

all equations .

Theorem 5: T(n,t) O«t+I)·n)

Proo f :

We show by induction on n

(*) T(n,t) < d(t+I)·n - e(t+I)·log(n+l)

for some suitable constants d and e (to be determined later).

Induction base: n = 0, n = or n n + ... +n ,
o t

o < n.
1

T(O,t)

and

< n,

o

max n.
1

< 4 and T (n, t) - T 2 (n, t). The n

T(I,t) ~ a

- 29 -

T(n,t) < a(t+I)·(number of n. 's f 0)
1

+ a(t+l) (I +log 5)

< a(t+I)'n + a(t+l) log 10

In either case we can find for every choice of e a suitable

d such that (*) is true.

Induction step: Let n n + ... +n ~ 0 < n. < TI,
o t - 1

max n. > 4 and T(n,t)
1

T1 (n, t) . Then by induction hypothesis

t

I(n,t) < l.: [d(t+l)n.-e(t+l)
1

log(n.+I)+a(l+log(n.+I)] -
1 1 i=O

max
O<i<t

a(l+log(n.+I»
1

We may assume w.l.o.g. that n
o

max n ..
1

Then

I(a,t) < d(t+I)·n - e(t+l) log(n+l)

t

+ e(t+l) log(n+l) a(l+log(n.+I» -
1

l.: e(t+1)log(n.+I)
i =0 1

It suffices to show

e(t+l) log(n+l) + at < e(t+l)log (n +1)
o

t
+ (e(t+I)-a) l.: log(n.+I)

i = I 1

t

Since L
i:1

log (n.+I) ~s smallest when all but one n.
1 1

t

_ 30 _

< i < t, are zero we have L log (n.+I) > log (n-n +1).
1 - 0

i=!

Thus it suffices to show

e(t+l)log(n+I)+at < e(t+l)log(n +1)+(e(t+I)-a)log(n-n +1)
o 0

The derivative of the right hand side with respect to

e(t+l)n+a+(a-2e(t+I»no
(n +I)(n n +1)

o 0

n
o

For 0 < n < n the denominator is positive. The numerator
o

is a linear function of n which is positive for n = O.
o 0

Hence there exists some real m such that fen) > 0 for
o -

is

o < n < m and fen) < 0 for m < n < ll. (It is conceivable
00 - 0

that m > n). Hence it suffices to check the inequality for the

extremal values of n : n :E: n-I and n = max (n/(t+I),5).
000

For n z n-) the inequality reduces to
o

e(t+l)log(n+I)+at < e(t+l)log n + (e(t+I)-a)

or

e(t+l) n+1
log

n
< (e-a) (t+l)

Slnce n > n > 5 one only has to choose e such that
o

log 7/6 < (e-a)/e

Suppose now n = max(n/(t+I),5). If n
o 0

n/(t+l) > 5 and hence

n > 5(t+l) the inequality reduces to

e(t+l)
n+1

log + at < (e(t+I)-a)
n + 1

o

t
log(--I n+l) t+

- 31

Since t > I, (n+I)/(n +1) < t+1 and tn/(t+I)+1 > 5t+1
o

5(t+I)-4

it suffices to show

or

e(t+l)log(t+I)+at < (e(t+I)-a)10g(5(t+I)-4)

a(t+log(5(t+I)-4)) < e(t+I).log 5(t+I)-4
t+1

Since t > and hence (5(t+I)-4)/(t+l) > 3 it suffices to

choose e such that

a(1 + log(5(t+I)-4)) < e
t+1

fort>l.

Finally if

reduces to

n
o

5 > n/(t+l) and hence n < 5(t+l) the inequality

e(t+l)log(n+I)+at < e(t+l) log 6 + (e(t+I)-a)10g(n-4)

or
n+1

e(t+l)logn _4 + a 10g(n-4) < e(t+l)log 6 - at

Since 5 n < n < 5(t+l) it suffices to show
o

e(t+ l) log 7/2 + a log 5t < e(t+l) log 6 - at

or

a(t+log 5t) < e(t+l) log 12/7

for t> 1. Hence we only need to choose e sufficiently large.

In either case one only has to choose e sufficiently large in

order to make the induction step go through. Since the validity

of the induction base is independent of the value of e the

theorem follows.

Remark: If for-loop (*) ~n procedure CODE 15 realized

as for i from 0 to t .&.2.. then the following recursive equation

T(n , t) = max
n + ... +n =n
g.<n t
~

t

l:
i=i

T(n"t) +
~

t-I
l:

i=l
a(l+log(n. +I))]

~

with solution T(n,t) O(tnlogn) arises. So the modification

suggested above is essential .

c

- 32 -

Theorem 5 shows that a prefix code satisfying the inequality

of Theorem 4 can be constructed in linear time OCt·n}. Two

variants of the above recursion equations for T might some­

times be useful. An application can be found in [Altenkamp,

Mehlhorn].

Variant A:

T(n, t) max
nt+···+ns=n

l<n.<n
- 1

1<5<t

s
L

i=O
T(n.,t)+a(l+log n.)]

1 1

It has a solution T(n,t) z Oen log n} [Altenkamp, Mehlhorn].

Variant B:

T(n,t) = a for n < 4

T(n, t) max
n +u

1
+ ••• +n "'n

o s
1 <n. <n

- 1

1<5<t

s
L

i=O
(T(n. ,t)+a(l+log n.))

1 1
- max

O<i<s

It has a solution T(n,t) = O(n) [Altenkamp, Mehlhorn].

a(l+log n.)]
1

- 33

Bib 1 i 0 g rap h y

ALTENKAMP & MEHLHORN: Codes: Unequal Probabilities, Unequal

Letter Costs, Techn. Beri c ht, Fachbereich 10,

Universitat des Saarlandes, 6600 SaarbrUcken, A 77/13

ASH: Information Theory, Interscience Publishers, N.Y., 1965

BAUER & GODS: Informatik, Heidelberger TaschenbUcher, Springer­

Verlag, 1971

BAYER: Improved Bounds on the Costs of Optimal and Balanced

Binary Search Trees, to appear in Acta Informati c a

CS I SZ AR: Simple proofs of some theorems on noiseless channels,

Inf. and Control 14, pp. 285-298, 196 9

COT: Chara c terization and Design of Optimal Prefix Cocles,

Ph.D. Thesis, Stanford University, June 1977

FREDMAN: Two Applications of a Probabilistic Search Technique,

ACM, Conf . on Theory of Computing, 1975

GILBERT & MOORE: Variable Length Encodings, Bell System Te c hni c al

Journal, 38 (1959), 933-968

HU & T UCKER: Optimal Search Trees and Variable Length Alphabetic

Codes, SIAM J. Appl. Math. 2 1,1971, 514 - 53 2

HU F FMANN: A Method for the Constru c tion of Minimum-Redundan c y

Codes, Pro c . IRE 40, 1098-1101, 195 2

ITAI: Optimal Alphabetic Trees, SIAM J. Computing, (5) ,

1976, 9-18

KARP: Minimum Redundancy Coding for the Discrete Noiseless

Channel

KNUTH: Optimum Binary Search Trees, Acta Informatica, I, 1971,

pp. 14-25

KRA US E: Channels which transmit letters of unequal duration,

Inf. and Control 5, pp. 13-24, 1962

MEH LHORN: Eff i z iente Al g orithmen, Teubner Studienbli c her lnformatik,

Stuttgart 1977.

MEHLHORN: Best Possible Bounds on the Weighted Path Length

of Optimum Binary Search Trees, SIAM J. of Comp.,

Vol. 6, No 2, 1977, 235 -2 39

_ 3 4 _

PERL, GAREY & EVEN: Efficient Generation of Optimal Prefix

Code: Equiprobable Words Using Unequal Cost Letters,

JACM, Vol. 22, No 2, 202-214, April 1975

VAN LEEUWEN: On the construction of Huffmann trees, 3rd ICALP

(1976), 382-410, Ed. S. Michaelson and R. Milner,

Edinburgh University Press

	A_1978_18 0000_1heitscover
	A_1978_18 0002
	A_1978_18 0003
	A_1978_18 0004
	A_1978_18 0005
	A_1978_18 0006
	A_1978_18 0007
	A_1978_18 0008
	A_1978_18 0009
	A_1978_18 0010
	A_1978_18 0011
	A_1978_18 0012
	A_1978_18 0013
	A_1978_18 0014
	A_1978_18 0015
	A_1978_18 0016
	A_1978_18 0017
	A_1978_18 0018
	A_1978_18 0019
	A_1978_18 0020
	A_1978_18 0021
	A_1978_18 0022
	A_1978_18 0023
	A_1978_18 0024
	A_1978_18 0025
	A_1978_18 0026
	A_1978_18 0027
	A_1978_18 0028
	A_1978_18 0029
	A_1978_18 0030
	A_1978_18 0031
	A_1978_18 0032
	A_1978_18 0033
	A_1978_18 0034
	A_1978_18 0035
	A_1978_18 0036

