CODES: UNEQUAL PROBABILITIES, UNEQUAL LETTER COSTS

BY

DORIS ALTENKAMP AND KURT MEHLHORN A 78/18

IX/1978

Fachbereich 10
Universität des
Saarlandes
BRD-660o Saarbrücken

A preliminary version of this paper was presented at the 5th International Colloquium on Automata, Languages and Programming, Udine, Italy, July 17-21, 1978

Abstract

$=======$

The construction of alphabetic prefix codes with unequal letter costs and unequal probabilities is considered. A variant of the noiseless coding theorem is proved giving closely matching lower and upper bounds for the cost of the optimal code. Furthermore, an algorithm is described which constructs a nearly optimal code in linear time.
I. Introduction
$==============$

We study the construction of prefix codes in the case of unequal probabilities and unequal letter costs. The investigation is motivated by and oriented towards the following problem. Consider the following ternary search tree. It has 3 internal nodes

and 6 leaves. The internal nodes contain the keys $\{3,4,5,10,12\}$ in sorted order and the leaves represent the open intervals between keys. The standard strategy to locate X in this tree is best described by the following recursive procedure SEARCH

```
proc SEARCH (int \(X\); node v)
if \(v\) is a leaf
then "X is not in the tree"
else begin let \(K_{1}, K_{2}\) be the keys in node \(v\);
    if \(X<K_{1}\) then SEARCH ( \(X\), left son of \(v\) )
    if \(X=K_{1}\) then exit (found);
    if \(K_{2}\) does not exist
    then SEARCH ( \(X\), right son of \(v\) )
    else begin if \(X<K_{2}\) then SEARCH ( \(X\), middle son of \(v\) );
    if \(X=K_{2}\) then exit (found);
    SEARCH (X, right son of \(v\) )
    end
    end
end
```

Apparently, the search strategy is unsymmetric. It is cheaper to follow the pointer to the first subtree than to follow the pointer to the second subtree and it is cheaper to locate K_{1} than to locate K_{2} 。

We will also assume that the probability of access is given for each key and each interval between keys. More precisely, suppose we have n keys B_{1}, \ldots, B_{n} out of an ordered universe with $B_{1}<B_{2}<\ldots<B_{n}$. Then β_{i} denotes the probability of accessing $B_{i}, 1 \leq i \leq n$, and α_{j} denotes the probability of accessing elements X with $B_{j}<x<B_{j+1}$, $0 \leq j \leq n . \alpha_{0}$ and β_{n} have obvious interpretations. In our example $n=5, \beta_{2}$ is the probability of accessing 4 and α_{4} is the probability of accessing $X \in(4,5)$. We will always write the distribution of access probabilities as $\alpha_{0}, \beta_{1}, \alpha_{1}, \ldots, \beta_{n}, \alpha_{n}$.

Ternary trees, in general (t+1)-ary trees, correspond to prefix codes in a natural way. We are given letters $a_{o}, a_{1}, a_{2}, \ldots, a_{2 t}$ of $\cos t_{0}, c_{1}, c_{2}, \ldots, c_{2 t}$ respectively; $c_{\ell}>0$ for $0 \leq \ell \leq 2 t$. Here letter $a_{2 \ell}$ corresponds to following the pointer to the $(\ell+1)-s t$ subtree, $0 \leq \ell \leq t$, and letter $a_{2 \ell+1}$ corresponds to a successful search terminating in the $(\ell+1)-s t$ key of a node, $0 \leq \ell<t$.

In our example, $t=2$. The code word corresponding to 4, denoted W_{2} is $a_{o} a_{3}$. The code word corresponding to (10, 12), denoted V_{4} is $a_{4} a_{0}$.

In general, a search tree is a prefix code
$C=\left\{v_{o}, W_{1}, v_{1}, \ldots, W_{n}, v_{n}\right\}$ with

$$
\mathrm{V}_{\mathrm{j}} \in \Sigma^{*} \quad \mathrm{~W}_{\mathrm{i}} \in \Sigma^{*} \Sigma_{\mathrm{end}}
$$

where $\Sigma=\left\{a_{0}, a_{2}, a_{4}, \ldots, a_{2 t}\right\} \quad$ and $\Sigma_{\text {end }}=\left\{a_{1}, a_{3}, \ldots, a_{2 t-1}\right\}$, $0 \leq j \leq n, 1 \leq i \leq n . \Sigma^{*}$ denotes the set of all words over alphabet $\Sigma ._{i}$ describes the search process leading to key B_{i} and V_{j} describes the search process leading to interval $\left(B_{j}, B_{j+1}\right)$.

Remark: In the binary case, $t=1$, letters a_{o}, a_{1}, a_{2} have the natural interpretation $<,=$ and $>$. Letter $a_{1}(=)$ ends successful searches and letter a_{1} is never used in unsuccessful searches.

In signaling codes applications alphabet $\sum_{\text {end }}$ might save synchronizing purposes. (cf. the example of an alphabetic Morse code at the end of section III).

Note that the use of the letters in $\Sigma_{\text {end }}$ is very restricted. They can only be used at the end of code words and they can only be used in words W_{i}. Furthermore, the code words must reflect the ordering of the keys, i.e.
(*) $\quad V_{j}<W_{i}<V_{j}$ '
for $j<i \leq j^{\prime}$ and $<$ denotes the lexicographic ordering of strings based on the ordering $a_{0}<a_{1}<a_{2}<\ldots<a_{2 t}$ of letters. The cost of a word $a_{i_{1}} a_{i_{2}}{ }^{a} i_{3} \ldots a_{k}$ is equal to $c_{i_{1}}+c_{i_{2}}+\ldots+c_{i_{k}}$, i.e. the sum of the costs of the letters. The (expected) cost of code C is then defined as

$$
\operatorname{Cost}(C)=\sum_{i=1}^{n} \beta_{i} \operatorname{Cost}\left(W_{i}\right)+\sum_{j=0}^{n} \alpha_{j} \operatorname{Cost}\left(V_{j}\right)
$$

Remark: In the binary equal cost case $\left(t=1, c_{0}=c_{1}=c_{2}=1\right)$ this definition coincides with the definitions of weighted path length used in the literature [e.g. Bayer, Itai, Knuth, Mehlhorn].

We will address the following two problems:

1) Given letters, their costs and a probability distribution, find a code with nearly minimal cost.
2) Give good a-priori bounds for the cost of the optimal code.

We refer to these problems as the alphabetic coding problems. We will also have to consider non-alphabetic codes, i.e. codes which do not have the ordering requirement (*) on the code words and which have unlimited usage of letters. Formally, given letters a_{o}, \ldots, a_{s} and their costs c_{o}, \ldots, c_{s} and a probability distribution p_{1}, \ldots, p_{n}, we want to find a prefix $\left.\operatorname{code} C=U_{1}, \ldots, U_{n}\right\}$ such that

$$
\operatorname{Cost}(C)=\sum_{i=1}^{n} p_{i} \operatorname{Cost}\left(U_{i}\right)
$$

is minimal.

Remark: We use the notation p_{1}, \ldots, p_{n} for the probability distribution in the non-alphabetic case and $\alpha_{o}, \beta_{1}, \ldots, \beta_{n}, \alpha_{n}$ in the alphabetic case. This should help the reader keeping things apart.

We show that the cost of an optimal alphabetic code C opt satisfies the following inequalities. Here $H=H\left(\alpha_{o}, \beta_{1}, \alpha_{1}, \ldots, \beta_{n}, \alpha_{n}\right)$ $=-\Sigma \beta_{i} \log \beta_{i}-\Sigma \alpha_{j} \log \alpha_{j}$ is the entropy of the probability distribution, $B=\Sigma \beta_{i}$, and $c, d \in \mathbb{R}$ are such that $\sum_{k=0}^{t} 2^{-d c} 2 k=1$ $\sum_{k=0}^{2 t} 2^{-c c} k=1$. Numbers $2^{-d}, 2^{-c}$ are sometimes called the "roots of the characteristic equation of the letter costs" [cf. Cot]. Also log denotes logarithm base 2 and $1 n$ denotes natural logarithm.
(1) $H \leq d \cdot \operatorname{Cost}\left(C_{o p t}\right)+\frac{1}{u} c \cdot B \max _{i} c_{i}\left[1+\ln \left(u \cdot v \cdot \operatorname{Cost}\left(C_{o p t}\right)\right]+1 /(e u)\right.$ for some constants u, v and $e=2.7 .1 \ldots$
(2) Cost $\left.\left(C_{\text {opt }}\right) \leq H / d+\left(\Sigma \alpha_{j}\right)\left[1 / d+\max _{k \operatorname{even}} c_{k}\right]+\left(\Sigma \beta_{i}\right) \underset{k \text { odd }}{[\max } c_{k}\right]$

Note that lower and upper bound differ essentially by $1 n$ Cost (Copt). Inequality (1) is proved in Corollary 3. Theorem 2 gives a better bound than Corollary 3 but the bound is harder to state. Inequality (2) is proved in Theorem 4 by explicit construction of a code C satisfying (2). Moreover, this code can be constructed in linear time $0(t \cdot n)$ (Theorem 5).

Inequalities (1) and (2) provide us with a "Noiseless Coding Theorem" for alphabetic coding with unequal letter costs and unequal probabilities.

The construction of prefix codes is an old problem. We close the introduction by briefly reviewing some results.

Case 1: Equal letter costs; i.e. $c_{i}=1$ for all i, $0 \leq i \leq s$. In the nonalphabetic case an algorithm for the construction of an optimal code dates back to Huffmann; it can be implemented to run in time $0(n \log n)$ [van Leeuwen]. The noiseless coding theorem [Shannon] gives bounds for the cost of the optimal code, namely

$$
\frac{1}{\log (s+1)} H\left(p_{1}, \ldots, p_{n}\right) \leq \operatorname{Cost}(C) \leq \frac{1}{\log (s+1)}\left[H\left(p_{1}, \ldots, p_{n}\right)+1\right]
$$

where $H\left(p_{1}, \ldots, p_{n}\right)=-\Sigma p_{i} \log p_{i}$ is the entropy of the distribution.

The binary alphabetic case was solved by Gilbert \& Moore, Knuth, $H u$ \& Tucker. The time complexity of their algorithm is $O\left(n^{2}\right)$ and $O(n \log n)$ resp. Cost is usually called weighted path length in this context. Bounds were proved by Bayer and Mehlhorn, namely

$$
\begin{aligned}
& H\left(\alpha_{o}, \beta_{1}, \ldots, \beta_{n}, \alpha_{n}\right) \leq \operatorname{Cost}\left(C_{o p t}\right)+(\operatorname{loge})-1+\log \operatorname{Cost}\left(C C_{o p t}\right) \\
& \text { Cost }\left(C_{o p t}\right) \leq H\left(\alpha_{o}, \beta_{1}, \ldots, \beta_{n}, \alpha_{n}\right)+1+\Sigma \alpha_{j}
\end{aligned}
$$

Various approximation algorithms exist which construct codes in linear time in the binary case. The cost of these codes lie within the above bounds [Bayer, Mehlhorn, Fredman].

Case 2: Equal Probabilities

i.e. $p_{i}=1 / n$ for $1 \leq i \leq n$. The problem was solved by Perl, Garey and Even. The time complexity of their algorithm is 0 (min ($\mathrm{t}^{2} \mathrm{n}$, tn log n)). The alphabetic case is identical to the nonalphabetic case and noa-priori bounds for the cost of an optimal code do exist.

Case 3: Unequal Probabilities, Unequal Letter Costs

This case was treated by Karp. He reduced the problem to integer programming and thus provides us with an algorithm of exponential time complexity. No better algorithm is known at present. However it is also not known whether the corresponding recognition problem (is there a code of cost $\leq m$) is NP-complete. A-priori bounds were proved by Krause, Csiszar and Cot.

The alphabetic case was treated by Itai. He describes a clever dynamic programming approach which constructs an optimal alphabetic code in time $0\left(t^{2} \cdot n^{3}\right)$. No a-priori bounds are known.
II. The Lower Bound
$=================$

In this section we want to prove a lower bound on the cost of every prefix code. We will first treat the non-alphabetic case and then extend the results to the alphabetic case.
II. 1 The non-alphabetic case

II. 1.1 Preliminary Considerations

Consider the binary case first. There are two letters of cost c_{1} and c_{2} respectively. In the first node of the code tree we split the set of given probabilities into two parts of probability p and $1-p$ respectively. (Fig. 1).

Figure 1

The local information gain per unit cost is then

$$
G(p)=\frac{H(p, 1-p)}{c_{1} \cdot p+c_{2}(1-p)}
$$

where $H(p, q)=-p \log p-q \log q$. This is equivalent to

$$
G(p)=\frac{-p \log p-(1-p) \log (1-p)}{\left(-p \cdot \log 2^{-c c_{1}}-(1-p) \log 2^{-c c_{2}}\right) \cdot \frac{1}{c}} \quad \text { for all } c \neq \circ
$$

The following fact shows that $G(p)$ is maximal for

$$
\begin{aligned}
& p=2^{-c c_{1}}, 1-p=2^{-c c_{2}} \text { where } c \text { is chosen such that } \\
& 2^{-c c_{1}}+2^{-c c_{2}}=1 \text {. So } G(p) \leq c \text { for all } p
\end{aligned}
$$

and

$$
G\left(2^{-c c_{1}}\right)=c
$$

Fact (cf.e.g. Ash)
Let $x_{i}, y_{i} \geq 0$ for $1 \leq i \leq n, \Sigma x_{i}=1=\Sigma y$. Then

$$
-\Sigma x_{i} \log x_{i} \leq-\Sigma x_{i} \log y_{i}
$$

This shows that the maximal local information gain per unit cost is c. Hence every code for probabilities p_{1}, \ldots, p_{n} should have cost at least $1 / c \cdot H\left(p_{1}, \ldots, p_{n}\right)$. This is made precise in the next section.

The plausibility argument also suggestsan approximation algorithm: try to split the given set of probabilities into two parts of probability p and 1 -p respectively so as to make $\left|p-2^{-c \mathrm{c}}\right|$ as small as possible. We discuss this approach in section III.

II. 1.2 The Lower Bound in the Non-alphabetic Case

Theorem 1: Let p_{1}, \ldots, p_{n} be a probability distribution and let $C=\left\{U_{1}, \ldots, U_{n}\right\}$ be a prefix code over code alphabet $\left\{a_{o}, \ldots, a_{s}\right\}$. Let $c_{i}>0$ be the cost of $a_{i}, 0 \leq i \leq s$. Let c be such that

$$
\sum_{i=0}^{s} 2^{-c c} i=1
$$

a) $[$ Krause $] \quad \operatorname{Cost}(C) \geq H\left(p_{1}, \ldots, p_{n}\right) / c$
where $H\left(p_{1}, \ldots, p_{n}\right)=-\Sigma p_{i} \log p_{i}$ is the entropy of the frequency distribution.
b) Let $h \in \mathbb{R}, h \geq o$ and

$$
L_{h}=\left\{i ; c \quad \operatorname{cost}\left(U_{i}\right) \leq \log p_{i}-h\right\}
$$

Then

$$
\sum_{i \in L_{h}} p_{i} \leq 2^{-h}
$$

Remark: Inequality a) reads in its full form

$$
\sum_{i=1}^{n} p_{i}\left[c \quad \operatorname{cost}\left(U_{i}\right)\right] \geq \sum_{i=1}^{n} p_{i}\left[-\log p_{i}\right]
$$

It is an extension of the noiseless coding theorem to arbitrary letter costs. Part b) shows that this inequality is almost satisfied termwise by the expressions in square brackets. More precisely the fraction of probabilities which violates the termwise inequality by more than h is less than 2^{-h}.

Proof: a) Let $U_{i}=a_{i_{1}} a_{i_{2}} . . . a_{i_{\ell}}$. Define

$$
Q:=\sum_{i=1}^{n} q_{i} .
$$

Then $Q \leq 1$ by a simple induction argument on max ℓ_{i}. The prefix property is needed here. Furthermore,

$$
\log q_{i}=-c \cdot \sum_{k=1}^{\ell_{i}} c_{i_{k}}=-c \operatorname{Cost}\left(U_{i}\right)
$$

and hence by the fact above

$$
\begin{aligned}
H\left(p_{1}, \ldots, p_{n}\right) & =-\Sigma p_{i} \log p_{i} \\
& \leq-\Sigma p_{i} \log \left(q_{i} / Q\right) \\
& =c \operatorname{Cost}(C)+\log Q \\
& \leq c \cdot \operatorname{Cost}(C)
\end{aligned}
$$

b) Let $h \geq 0$ and

$$
L_{h}=\left\{i ; c \operatorname{Cost}\left(U_{i}\right) \leq-\log p_{i}-h\right\} .
$$

Then

$$
\begin{aligned}
1 & \geq Q=\sum_{i=1}^{n} 2^{-c \operatorname{Cost}\left(U_{i}\right)} \\
& \geq \sum_{i \in L_{h}} 2^{-c \operatorname{Cost}\left(U_{i}\right)} \\
& \geq \sum_{i \in L_{h}} 2^{1 \log p_{i}+h}=2^{h} \cdot \sum_{i \in L_{h}} p_{i}
\end{aligned}
$$

II. 2 The alphabetic case

Every alphabetic code $C=\left\{V_{o}, W_{1}, \ldots, W_{n}, V_{n}\right\}$ is a non-alphabetic code and hence Theorem 1 applies. It shows

$$
\operatorname{Cost}(C) \geq 1 / c \cdot H\left(\alpha_{0}, \beta_{1}, \ldots, \beta_{n}, \alpha_{n}\right)
$$

where $\sum_{k=0}^{2 t} 2^{-c c_{k}}=1$. In this section we will improve upon
this lower bound and essentially show that for every alphabetic code C

Cost (C) $\geq 1 / d \cdot\left[H\left(\alpha_{0}, \beta_{1}, \ldots, \beta_{n}, \alpha_{n}\right)-\frac{c}{u} \cdot \max c_{i}\right.$.

$$
\left.\ln H\left(\alpha_{0}, \beta_{1}, \ldots, \beta_{n}, \alpha_{n}\right)\right]
$$

where $\sum_{k=0}^{t} 2^{-d c} 2 k=1$ and u is some constant. Note that on $1 y$
the letters in Σ but not the ones in $\Sigma_{\text {end }}$ are used to define d and hence the new bound is much better for large H.

Example: Consider ternary trees with $c_{0}=c_{1}=c_{2}=c_{3}=c_{4}=1$. Then $\mathrm{c}=\log 5$ and $\mathrm{d}=1 \mathrm{og} 3$.

The alphabetic case differs from the non-alphabetic case in two respects.

1) the letters in Σ end can only be used at the end of code words W_{i} and not at all in words V_{j}.
2) the lexicographic ordering of code words must reflect the underlying ordering of the keys.

We will only use restriction l) to improve upon the lower bound.

There seems to be no way to incorporate this (combinatorial) restriction into the proof of Theorem l. Rather we turn the combinatorial restriction into a constraint on costs by artificially increasing the cost of letters in $\Sigma_{\text {end }}$. Then we use the fact that letters in $\Sigma_{\text {end }}$ are used at most once in words W_{i} and not at all in words V_{j} in order to relate the cost of a code under the old and the new cost function. Finally, we apply Theorem 1 to the new cost function. Let $1 \leq x<\infty$... be arbitrary, let

$$
\begin{array}{ll}
\tilde{c}_{i}=c_{i} & \text { for } i \text { even } \\
\tilde{c}_{i}=x \cdot c_{i} & \text { for } i \text { odd }
\end{array}
$$

and let $c(x) \in \mathbb{R}$ be such that $\sum_{k=0}^{2 t} 2^{-c(x) \tilde{c}_{k}}=1$

Remark: In the new cost function $\widetilde{c}_{i}, 0 \leq i \leq 2 t$, we increased the cost of letters in $\sum_{\text {end }}$ by factor x. For $x=1$ the new cost function is identical with the old one and hence $c(1)=c$, for $x=\infty$ the cost of letters in $\Sigma_{\text {end }}$ is infinite and hence $c(\infty)=d$.

Let $C=\left\{V_{0}, W_{1}, V_{1}, \ldots, W_{n}, V_{n}\right\}$ be an alphabetic code for probability distribution $\left(\alpha_{0}, \beta_{1}, \alpha_{1}, \ldots, \beta_{n}, \alpha_{n}\right)$. In particular, $V_{j} \in \Sigma^{*}$ and $W_{i} \in \Sigma^{*} \Sigma_{\text {end }}$. Let $\widetilde{C o s t}(C)$ be the cost of C with respect to $\tilde{c}_{0}, \tilde{c}_{1}, \tilde{c}_{2}, \ldots, \tilde{c}_{2 t}$ and let Cost(C) be the cost of C with respect to $c_{0}, c_{1}, \ldots, c_{2 t}$.

Lemma 1: $\widetilde{\operatorname{Cos}}(C) \underset{\mathrm{n}}{\leq} \operatorname{Cost}(C)+(x-1) \cdot B \cdot \underset{i \max }{\bmod } \mathrm{C}_{\mathrm{i}}$ for every x, $1 \leq x \leq \infty, B=\sum_{i=1} \beta_{i}$.

Proof: For $W_{i} \in \Sigma^{*} \Sigma_{\text {end }}$ let

$$
W_{i}=W_{i}^{\prime} \cdot a_{j_{i}} \quad a_{j_{i}} \in \Sigma_{e n d}
$$

Then $\widetilde{\operatorname{Cost}}\left(W_{i}\right)=\widetilde{\operatorname{Cost}}\left(W_{i}^{\prime}\right)+\widetilde{c}_{j_{i}}$

$$
\begin{aligned}
& =\operatorname{cost}\left(W_{i}^{\prime}\right)+x \cdot c_{j} \\
& =\operatorname{Cost}\left(W_{i}\right)+(x-1) c_{j_{i}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \widetilde{\operatorname{Cos} t}(C)=\Sigma \beta_{i} \widetilde{\operatorname{Cos} t}\left(W_{i}\right)+\Sigma \alpha_{j} \widetilde{\operatorname{Cos} t}\left(V_{j}\right) \\
& \leq \operatorname{Cost}(C)+(x-1) \cdot B \max c_{i}
\end{aligned}
$$

We next use Theorem 1 for the $\operatorname{costs} \widetilde{c}_{i}, 0 \leq i \leq 2 t$.

Theorem 2: Let $c(x)$ be such that $\sum_{k=0}^{2 t} 2^{-c(x) \tilde{c}_{k}}=1$
Then

$$
\begin{aligned}
\operatorname{Cost}(C) \geq \max \{ & H\left(\alpha_{0}, \beta_{1}, \ldots, \beta_{n}, \alpha_{n}\right) / c(x) \\
- & \left.(x-1) \cdot B \cdot \max c_{i} ; \quad 1 \leq x \leq \infty\right\}
\end{aligned}
$$

Proof: By Theorem 1,

$$
\widetilde{\operatorname{Cos} t}(C) \geq H\left(\alpha_{0}, \beta_{1}, \ldots, \beta_{n}, \alpha_{n}\right) / c(x)
$$

Substituting into Lemma 1 yields the result.

We were unable to find a closed form expression for the maximal value of the right hand side in Theorem 2. An approximate value can be found as follows. Recall that $c(1)=c, c(\infty)=d$ and $c(x)$ decreases for $1 \leq x \leq \infty$. Write $c(x)=d+\delta(x)$.

with $0 \leq \delta(x) \leq c-d$. We will show $\delta(x) \leq v \cdot e^{-u(x-1)}$ for some constants u, v (Lemma 2 below). Then Theorem 1 can be written as: (We write H instead of $H\left(\alpha_{0}, \beta_{1}, \ldots, \beta_{n}, \alpha_{n}\right)$).

$$
\begin{aligned}
& H \leq c(x) \cdot \operatorname{Cost}(C)+(x-1) \cdot c(x) \cdot B \quad \max c_{i} \\
& i \operatorname{odd} \\
& \leq d \cdot \operatorname{Cost}(C)+\delta(x) \cdot \operatorname{Cost}(C)+(x-1) \cdot c \cdot B \cdot \max c_{i} \\
& i \text { odd } \\
& \leq d \cdot \operatorname{Cost}(C)+v \cdot e^{-u(x-1)} \cdot \operatorname{Cost}(C)+(x-1) \cdot c \cdot B \cdot \max c_{i} \operatorname{modd}_{i}
\end{aligned}
$$

This inequality is true for all $x, 1 \leq x \leq \infty$.

The right hand side is minimal (differential calculus) for $(x-1)=\left(1 n\left[u \cdot v \operatorname{Cost}(C) / c \cdot B \cdot \max _{i \operatorname{odd}} c_{i}\right]\right) / u$

Hence

$$
H \leq d \cdot \operatorname{Cos} t(C)+\frac{c \cdot B}{u} \underset{i \max }{ } c_{i}\left[1+\ln \frac{u \cdot v \cdot \operatorname{Cost}(C)}{c \cdot B \cdot \max c_{i}}+\right.
$$

Using finally y $\ln 1 / y \leq 1 / e$ for all $y>0$ (in particular $y=\frac{c B \max c_{i}}{u}$) we obtain
Corollary 3: Let C be an alphabetic code for distribution $\alpha_{0}, \beta_{1}, \alpha_{1}, \ldots, \beta_{n}, \alpha_{n}$ with respect to costs $c_{0}, c_{1}, \ldots, c_{2 t}$. Let c, d be such that:

$$
\sum_{k=0}^{2 t} 2^{-c c_{k}}=1 \quad \sum_{k=0}^{t} 2^{-d c_{2}} 2 k=1
$$

Let $B=\Sigma \beta_{i}$. Then there are constants u, v (depending on $c_{0}, c_{1}, \ldots, c_{2 t}$ but not on $\operatorname{Cost}(C)$ and $\alpha_{o}, \beta_{1}, \ldots, \beta_{n}, \alpha_{n}$) such that

$$
\begin{aligned}
& H\left(\alpha_{0}, \beta_{1}, \ldots, \beta_{n}, \alpha_{n}\right) \leq d \cdot \operatorname{Cost}(C)+ \\
& \frac{c B}{u} \cdot \max _{i \text { odd }} c_{i}[1+\ln (u \cdot v \operatorname{Cost}(C))]+\frac{1}{e \cdot u}
\end{aligned}
$$

Proof: By the preceeding argument.

Corollary 3 shows that the lower bound for the alphabetic code is essentially the lower bound (d.Cost (C)) for the non-alphabetic code where only the letters of even index are used plus a small correction of order (c.B. $\left.\underset{i \max }{\operatorname{mad}} c_{i} \ln \operatorname{Cost}(C)\right)$ which reflects the restricted usage of the letters in $\Sigma_{\text {end }}$. A special case of Theorem 2 and Corollary 3 was proved by Bayer. He considered the binary alphabetic case with equal letter costs, i.e. $t=1$ and $c_{0}=c_{1}=c_{2}=1$.

It remains to prove Lemma 2. We will only show the existence of constants u, v but not derive a bound for them. This is justified since we recommend to always use Theorem 2 and to compute the maximal value of the right hand side by numerical methods. Corollary 3 is only given in order to indicate the order of the bound in Theorem 2.

Lemma 2: Let $\delta(x)$ be defined as above. Then

$$
\delta(x) \leq v \cdot e^{-u(x-1)}
$$

for some constants u, v.

Proof: $\delta(x) \leq v \cdot e^{-u(x-1)}$ is equivalent to $(x-1) \leq-1 n(\delta(x) / v) / u$. $\delta(x)$ is defined by

$$
\sum_{k=0}^{t} 2^{-(d+\delta(x)) c} 2 k+\sum_{k=1}^{t} 2^{-(d+\delta(x)) \cdot x \cdot c} 2 k-1=1
$$

Consider the left hand side as a function $f(x, \delta)$ of two arguments x and δ, i.e. replace $\delta(x)$ by δ in the left hand side. For fixed δ this function is decreasing in x. Also $f(x, \delta(x))=1$. Suppose we know $f(z, \delta(x)) \leq 1$ for some z. Then $x \leq z$ since $z<x$ implies $f(x, \delta(x))<f(z, \delta(x)) \leq 1, a \operatorname{contradiction.~It~therefore~suffices~}$ to show that there are constants u, such that for all x

$$
\begin{equation*}
\sum_{k=0}^{\mathrm{t}} 2^{-(d+\delta(x)) c_{2 k}+\sum_{k=1}^{t} 2^{-(x+\delta(x)) z c} 2 k-1 \leq 1} \tag{Ill}
\end{equation*}
$$

where $z:=1-\ln (\delta(x) / v) / u$. Replacing $c_{i}, 0 \leq i \leq 2 t \quad b y$ $c_{\min }=\min \left\{c_{i} ; 0 \leq i \leq 2 t\right\}>0$ in the left hand side of (I 1) only increases the left hand side. It therefore suffices to show (I 2) $2^{-\delta(x) c_{m i n}} \cdot \sum_{k=0}^{t} 2^{-\mathrm{dc}} 2 \mathrm{k}+\mathrm{t}^{-\mathrm{dzcmin}} \leq 1$
for some constants u, v. Using $\sum_{k=0}^{t} 2^{-d c} 2 k=1$ the left hand side of 12 is of the form

$$
g(y):=b_{1}^{-y}+b_{2}(y / v)^{b_{3}}
$$

with $b_{1}=2^{c_{m i n}^{m}}>1, b_{2}=t 2^{-d c_{m i n}}>0, b_{3}=\left(d c_{\min } \ln 2\right) / u>0$ and $y=\delta(x)$. Hence $0 \leq y \leq c-d$. Choose u such that $b_{3}=1$. Then

$$
g(y)=b_{1}^{-y}+b_{2}(y / v)
$$

It remains to show that we can choose verh that $g(y) \leq 1$ for $0 \leq y \leq c-d$. Note that $g(0)=1$ and that

$$
\begin{aligned}
g^{\prime}(y) & =\left(-\ln b_{1}\right) b_{1}^{-y}+b_{2} / v \\
& \leq\left(-\ln b_{1}\right) b_{1}^{-(c-d)}+b_{2} / v \quad \text { since } 0 \leq y \leq c-d \\
& \leq 0
\end{aligned}
$$

for sufficiently large v. Hence $g(y) \leq 1$ for $0 \leq y \leq d . T h i s$ shows the existence of u and v.
III. The Upper Bound
$==================$

In this section we describe an algorithm for constructing alphabetic codes and derive a bound on the cost of the code constructed. The algorithm is a generalization of the one in [Gilbert and Moore, Meh1horn].

The code is constructed top-down by repeated splitting of the ordered $\operatorname{set}\left\{\alpha_{0}, \beta_{1}, \alpha_{1}, \ldots, \alpha_{n-1}, \beta_{n}, \alpha_{n}\right\} \quad$ of probabilities. In each step we try to split the set as described in II.l.1. Let d be such that

$$
\sum_{k=0}^{t} 2^{-d c} 2 k=1
$$

and let $s_{-1}=-\infty, s_{n+1}=\infty$

$$
\begin{aligned}
& s_{o}=\alpha_{0} / 2 \\
& s_{i}=\alpha_{0}+\beta_{1}+\ldots+\beta_{i}+\alpha_{i} / 2 \text { for } 1 \leq i \leq n
\end{aligned}
$$

s_{-1} and s_{n+1} are defined as "stoppers".

Example: Let $c_{0}=1, c_{1}=3, c_{2}=2, c_{3}=1, c_{4}=2$.
Then $\mathrm{d}=1$. Let $\alpha_{0}=\alpha_{i}=\beta_{i}=1 / 7$ for $1 \leq i \leq 3$. Then $s_{i}=(4 i+1) / 14$ for $0 \leq i \leq 3$. We draw the distribution $\left(\alpha_{0}, \beta_{1}, \alpha_{1}, \ldots, \alpha_{n-1}, \beta_{n}, \alpha_{n}\right)$ as a partition of the unit interval and split the unit interval in the ratio
$2^{-d \mathrm{c}} \mathrm{o}: 2^{-\mathrm{dc}} 2: 2^{-\mathrm{dc}} 4$.

Fig. 2

From Fig. 2, it looks reasonable to assign letter a_{0} to $\alpha_{0}, \beta_{1}, \alpha_{1}$, to assign letter a_{2} to α_{2}, letter a_{4} to α_{3}, letter a_{1} to β_{2} and letter a_{3} to β_{3}. In other words we set $W_{2}=a_{1}, V_{2}=a_{2}, W_{3}=a_{3}, V_{3}=a_{4}$ and let V_{0}, W_{1}, V_{1} start with a_{o}. Next we have to work on the subproblem $\left\{\alpha_{0}, \beta_{1}, \alpha_{1}\right\}$. We split the interval $\left[0,2^{-d c} o\right.$ in the same way and obtain Fig. 3

Fig. 3
A $:=2$

This suggests to use letter $a_{o}\left(a_{1}, a_{2}\right)$ as the second letter of the code words assigned to $\alpha_{0}\left(\beta_{1}, \alpha_{1}\right)$. Note that we used letter a_{2} for α_{1} since more than half of probability α_{1} falls into the interval of length A. $2^{-\mathrm{dc}} 2$.

In general, the construction process can be described as a recursive procedure CODE with parameters
$\ell, r \quad$ we work on the subproblem

$$
\alpha_{\ell}, \beta_{\ell+1}, \ldots, \beta_{r}, \alpha_{r} ; \quad \ell \leq r
$$

(1) L, R $\mathrm{L}, \mathrm{R} \in \mathbb{R}, \mathrm{L} \leq \mathrm{s}_{\ell} \leq \mathrm{s}_{\mathrm{r}} \leq \mathrm{R}$

U
$U \in \Sigma^{*}=\left\{a_{o}, a_{2}, \ldots, a_{2 t}\right\}^{*}$. U is a common prefix of code words $\quad V_{\ell}, W_{\ell+1}, V_{\ell+1}, \ldots, W_{r}, V_{r}$ and
(2)

$$
R-L=2^{-d \cdot \operatorname{Cost}(U)}
$$

Initially $\ell=0, r=n, L=0, R=1$ and $U=\varepsilon$ where ε is the empty word. Consider now any call of the procedure CODE with parameters ℓ, r, L, R, U satisfying the invariants (1) and (2) stated in their definition.

Case 1: $\ell=r$: Then we define $V_{r}=U$ and return

Case 2: $\ell<$. We split the interval (L, R) in the ratio
$2^{-d c_{0}}: 2^{-d c_{1}}: \ldots: 2^{-d c_{2}}$. The i-th subinterval, $0 \leq i \leq t$, has boundaries $L_{i}=L+(R-L) \cdot \sum_{k=0}^{i-1} 2^{-d c} 2 k$ and $R_{i}=L_{i}+$ $(R-L) \cdot 2^{-d c} 2 i$. We then determine for each subinterval the set of $s_{k}{ }^{\prime} s$ which lie in that subinterval, say
$S_{h-1} \leq L_{i}<S_{h}$ and $S_{j} \leq R_{i}<S_{j+1}$ for the i-th interval.
If $h \leq j, i . e$. some s_{k} 's actually lie in the i-th subinterval, then we call procedure CODE recursively with parameters
$\ell=h, r=j, L=L_{i}, R=R_{i}, U=U a_{2}$

Furthermore, if in addition $j+1 \leq r, t h e n$ we assign code word $U a_{2 i+1}$ to β_{j+1}, i.e. we set $W_{j+1}=U a_{2 i+1}$.

Example: Suppose $t=3$ and $L_{0} \leq \mathrm{s}_{\mathrm{o}} \leq \cdots \leq \mathrm{s}_{4}<\mathrm{L}_{1}<\mathrm{L}_{2}$ $<\mathrm{s}_{5} \leq \cdots \leq \mathrm{s}_{7} \leq \mathrm{L}_{3}<\mathrm{s}_{8} \leq \mathrm{R}_{3}$. Then the recursive calls are $\operatorname{CODE}\left(0,4, \mathrm{~L}_{\mathrm{o}}, \mathrm{L}_{1}, \mathrm{Ua}_{\mathrm{o}}\right), \operatorname{Code}\left(5,7, \mathrm{~L}_{2}, \mathrm{~L}_{3}, \mathrm{Ua}_{4}\right)$ and $\operatorname{CODE}\left(8,8, \mathrm{~L}_{3}, \mathrm{R}_{3}, \mathrm{U} \mathrm{a}_{6}\right)$. Furthermore, we set $W_{5}=U a_{1}$ and $W_{8}=U a_{5}$. A pictorial representation is given by Fig. 4.

Fig. 4.

In the remainder of this section we derive an upper bound on the cost of the code constructed by procedure CODE. It is obvious that the properties stated in the definitions of ℓ, r, L, R, U are invariants of the recursive procedure, i.e. they hold for all values of the actual parameters.

Consider the code word $W_{i}=U a_{k_{i}}$ constructed for $\beta_{i} ; U \in \Sigma^{*}$ and $a_{k} \in \Sigma_{\text {end }}$.The word W_{i} was constructed by the procedure CODE with actual parameters ℓ, r, L, R, U where $\ell<i \leq r$. Hence

$$
\beta_{i} \leq \alpha_{\ell} / 2+\beta_{\ell+1}+\alpha_{\ell+1}+\ldots+\beta_{q}+\alpha_{r} / 2
$$

since β_{i} appears in that sum

$$
\begin{aligned}
& =s_{r}-s_{\ell} \\
& \leq R-L=2^{-d \operatorname{Cos} t(U)}
\end{aligned}
$$

by invariants (1) and (2) of procedure CODE. Hence

$$
\begin{aligned}
\operatorname{Cost}\left(W_{i}\right) & \leq \operatorname{Cost}(U)+\max _{K \operatorname{odd}} c_{K} \\
& \leq \frac{1}{d}\left[-\log \beta_{i}\right]+\max _{K \operatorname{odd}} c_{K}
\end{aligned}
$$

Consider next code word V_{j}. Word V_{j} was constructed by procedure CODE with actual parameters (jo, , V_{j}). CODE with actual parameters ($j, j,,_{j}$) was called by CODE with actual parameters ($\ell, r, L, R, U)$ with $\ell<r, \ell \leq j \leq r$ and $V_{j}=U a_{k_{j}}$ for some $a_{k_{j}} \in \Sigma$. Hence

$$
\begin{aligned}
\alpha_{j} / 2 & \leq \alpha_{\ell} / 2+\beta_{\ell+1}+\alpha_{\ell+1}+\ldots+\beta_{r}+\alpha_{r} / 2 \\
& =s_{r}-s_{\ell} \leq R-L=2^{-d \operatorname{cost}(U)}
\end{aligned}
$$

by the same reasoning as above. Hence

$$
\operatorname{Cost}\left(V_{j}\right) \leq \frac{1}{d}\left[-\log \alpha_{j}+1\right]+\max _{k \operatorname{even}} c_{k}
$$

We summarize

Theorem 4: Let $\left(\alpha_{0}, \beta_{1}, \ldots, \beta_{n}, \alpha_{n}\right)$ be a probability distribution, $\beta_{i} \geq 0, \alpha_{j} \geq 0, \Sigma \beta_{i}+\Sigma \alpha_{j}=1$.

Let $a_{o}, a_{1}, \ldots, a_{2 t}$ be $(2 t+1)$ symbols with $\operatorname{costs} c_{o}, c_{1}, \ldots, c_{2 t} \in \mathbb{R}_{+}$.

Then procedure CODE constructs an alphabetic code with
a) $\operatorname{Cost}\left(W_{i}\right) \leq\left[-\log \beta_{i}\right] / d+\max _{k \text { odd }} c_{k}$
b) Cost $\left(V_{j}\right) \leq\left[-\log \alpha_{j}+1\right] / d+\underset{k \max }{\max _{k}}$
c) Cost (C) $\leq H\left(\alpha_{o}, \beta_{1}, \alpha_{1}, \ldots, \beta_{n}, \alpha_{n}\right) / d+$

$$
\begin{aligned}
& \left(\Sigma \alpha_{j}\right)\left[1 / d+\max _{k \text { even }} c_{k}\right]+ \\
& \left(\Sigma \beta_{i}\right)\left[\max _{k \text { odd }} c_{k}\right]
\end{aligned}
$$

Proof a) and b) are proved by the discussion above. c) follows from a) and b) by multiplication with β_{i} and α_{j} respectively and summation.

Example: An ordered Morse code. The Morse code is over a three letter alphabet: dot (cost 1), dash (cost 2) and letter space (cost 1). We assume the ordering dot < letter space $<$ dash i.e. $\Sigma=\left\{\right.$ dot, dash\} and $\Sigma_{\text {end }}=\{1 e t t e r$ space $\}$.

Then $c_{o}=1, c_{1}=1, c_{2}=2,2^{-d}=0.618$ and $d=0.6942$. We encode the 27 English letters (including the word space) in alphabetical ordering, i.e. $\beta_{1}=$ probability of letter a, $\beta_{2}=$ probability of letter $b, \ldots, \beta_{27}=$ probability of word space. We refer the reader to [Bauer, Goos] for the exact values of $\beta_{1}, \beta_{2}, \ldots, \beta_{27}$. A11 $\alpha_{j}{ }^{\prime}$ s are zero.
Then $H\left(\alpha_{0}, \beta_{1}, \ldots, \beta_{27}, \alpha_{27}\right)=4.1$. The lower bound of
Theorem 2 is

$$
\operatorname{Cost}(C) \geq \max \{4.1 / c(x)-(x-1) ; 1 \leq x \leq \infty\}
$$

where $c(x)$ is such that $2^{-c(x)}+2^{-2 c(x)}+2^{-x c(x)}=1$.

The maximal value of the right hand side is about 3.24 with $x=1.44$ and $c(x)=1.19$. The upper bound of theorem 4 is 5.85 . The code actually constructed is

, i.e. r is encoded by letter space, i is encoded by dot letter space, n by dot dash letter space. The cost of this code is 4.3025. In comparison, the cost of the morse code is 4.055 . The morse code is non-alphabetic.

IV Implementation
$===============$

In this section we describe an implementation of procedure CODE. Our implementation has running time $0(t \cdot n)$. As above let $d \in \mathbb{R}$ be such that $\sum_{k=0}^{t} 2^{-d c} 2 k=1$. Furthermore, let $z_{i}=\sum_{k=0}^{i} 2^{-d c} 2 k$ for $0 \leq i \leq t$. Procedure CODE has the following global structure.
procedure $\operatorname{CODE}(\ell, r, L, R, U)$;
begin
if $\ell=r$
then $V_{\ell} \leftarrow U$
(*) else begin
end
end

$$
\begin{aligned}
& \text { for all } \mathrm{i}, 0 \leq \mathrm{i} \leq \mathrm{t} \text { do } \\
& \text { begin } L_{i}:=L+(R-L) z_{i-1} \text {; } \\
& R_{i}:=L+(R-L) z_{i} ; \\
& \text { let } h \text { and } j \text { be such that } \\
& s_{h-1} \leq L_{i}<s_{h} \text { and } s_{j} \leq R_{j}<s_{j+1} ; \\
& \text { if } h \leq j \text { then } \operatorname{CODE}\left(h, j, L_{i}, R_{i}, U a_{2 i}\right) \text {; } \\
& \text { if } j+1 \leq r \text { then } W_{j+1} \leftarrow U a_{2 i+1} \\
& \text { end }
\end{aligned}
$$

Three problems remain to be solved:
a) In what order do we process the different values of i in loop (*)
b) How do we find h and j in line (**)
c) What should we do if all $\mathrm{s}_{\mathrm{i}}{ }^{\prime} \mathrm{s}$, $\ell \leq \mathrm{i} \leq \mathrm{r}$, lie in the same subinterval. Note that problem c) does not affect the analysis given in section III, however it will affect running time.

Consider problemb) first. We describe a solution for the $0-t h$ subinterval. By definition $L_{o}=L$ and hence $s_{\ell-1} \leq L_{o} \leq s_{\ell}$ by assumption. Hence we only have to find j such that $s_{j} \leq R_{o}<s_{j+1}$ We find j by exponential + binary search [Fredman]. We first compare R_{o} with

$$
\begin{aligned}
& \mathrm{s}_{\ell+1}, \mathrm{~s}_{\ell+2}, \mathrm{~s}_{\ell+4}, \mathrm{~s}_{\ell+8} \quad \text { until } \\
& \mathrm{s}_{\ell+2} \mathrm{k}>\mathrm{R}_{\mathrm{o}} \quad \text { or } \ell+2^{\mathrm{k}}>\mathrm{r}
\end{aligned}
$$

In the second case we have $s_{r} \leq R_{o}$, i.e. all $s_{i}{ }^{\prime} s$ fall into the same interval. In the first case we have $s_{\ell+2 k}>R_{0}$ and $s_{\ell+2} k-1 \leq R_{o}$ or $k=0$. If k is equal to 0 then either $j=\ell+1$ (if $s_{\ell} \leq R_{o}$) or $j=\ell\left(i f R_{o}<s_{\ell}\right)$. If k is not equal to 0 then $\ell+2^{k-1} \leq j \leq \ell+2^{k}$. We determine the exact value of j by binary search on the interval $\ell+2^{k-1} \ldots \ell+2^{k}$ in time $0(k)$.

Let $n_{o}=j-\ell+1$, i.e. n_{o} is the number of $s_{i}{ }^{\prime} s$ which lie in the $0-t h$ interval. Equivalenty, the recursive call $\operatorname{CODE}(\ell, j, \ldots)$ constructs $n_{o}-1$ code words W_{i}.

Since $j-\ell \geq 2^{k-1}$ where k is determined as above it follows that j can be determined in time $\leq a\left(1+\log \left(n_{0}+1\right)\right)$ where a is a suitable constant.

Next we address problem a). Let $n_{i}, 0 \leq i \leq t$, be the number of $s_{i}{ }^{\prime} s$ which lie in the $i-t h$ interval. The obvious way to proceed is to determine $n_{o}, n_{1}, n_{2}, \ldots, n_{t}$ in that order. Note that the solution given to b) applies to all $\mathrm{n}_{\mathrm{i}}{ }^{\prime} \mathrm{s}$. However, this strategy may waste a lot of time; e.g. if n_{1} is large and n_{2}, \ldots, n_{p} are small. Note that n_{t} actually does not have to be computed because it is uniquely determined once the other values are found. It would be much cheaper in this case to compute n_{1}, n_{2}, \ldots in reverse order. These considerations lead to the following strategy:

Determine n_{o} and n_{t} in parallel, stop when anyone of them is found. Say n_{o} was determined first. Forget everything about n_{t}. Now determine n_{1} and n_{t} in parallel

In this way one can find n_{o}, \ldots, n_{t} in time

$$
a^{\prime} \cdot\left(\sum_{i=0}^{t}\left(1+\log \left(n_{i}+1\right)\right)-\max _{0 \leq i \leq t}\left(1+\log \left(n_{i}+1\right)\right)\right)
$$

for some constant a^{\prime}.

It remains to treat problem c). Suppose all but one n i are 0 , say $n_{j}=n$. In this case we either artificially assign the leftmost probability α_{ℓ} to the $0-t h$ subinterval (if $j \geq 1$) or the rightmost probability α_{r} to the t-th subinterval (if $j<t$). More precisely, suppose $j \geq 1$. Then we set $V_{\ell} \leftarrow U a_{o}, W_{\ell+1} \leftarrow U a_{1}$ and call CODE recursively with parameters $\ell+1, r, L_{j}, R_{j}, U a_{2 j}$. Note that the analysis of section III is still valid. By this modification we guarantee that at least one code word W_{i} is constructed by every call of procedure CODE. We are now ready to set up recursion equations for an uper bound T on the running time of our implementation of algorithm CODE. Let $T(n+1, t)$ be the maximal time needed by CODE in order to construct a code for probability distribution $\left(\alpha_{0}, \beta_{1}, \ldots, \beta_{n}, \alpha_{n}\right)$ and code a1phabet $a_{o}, a_{1}, \ldots, a_{2 t-1}, a_{2 t}$ with $\operatorname{costs} c_{0}, c_{1}, \ldots, c_{2 t}$. Note that $n+1$ is equal to the number of $\alpha_{j}{ }^{\prime} s$.
Then

$$
T(0, t)=0 \quad T(1, t)=a
$$

for some constant a.

Let $n+1>1$, i.e. we have to construct a code for $\left(\alpha_{0}, \beta_{1}, \ldots, \beta_{n}, \alpha_{n}\right)$. We first determine $n_{o}, n_{1}, \ldots, n_{t}$ as described above in time

$$
a \bullet\left(\sum_{i=0}^{t}\left(1+\log \left(n_{i}+1\right)-\max _{0 \leq i \leq t}\left(1+\log \left(n_{i}+1\right)\right)\right)\right.
$$

Since n_{i} is the number of $s^{\prime}{ }^{\prime} s$ which fall in the $i-t h$ subinterval we have $n+1=n_{o}+n_{1}+\ldots+n_{t}$. Also $0 \leq n_{i}$ and $n_{i} \leq n$ by our modification above. For every $n_{i}>0$ we have to call CODE recursively; this recursive call takes time at most $T\left(n_{i}, t\right)$

For the sequel, it will be convenient to modify CODE slightly. If max $n_{i}>4$ then we proceed as described above If max $n_{i} \leq 4$ then we avoid recursive calls altogether. Rather we solve each subproblem directly in time $0(t)$. This gives the following recursion equation for T (we replace $\mathrm{n}+1$ by n throughout)

$$
\begin{aligned}
& \left.\max \mathrm{n}_{\mathrm{i}}>4 \quad-\max _{0 \leq \mathrm{i} \leq \mathrm{t}} a\left(1+\log \left(\mathrm{n}_{\mathrm{i}}+1\right)\right)\right] .
\end{aligned}
$$

$T(n, t)=\max \left(T_{1}(n, t), T_{2}(n, t)\right)$.

Here a is some constant; w.l.o.g. we can use the same a in a11 equations.

Theorem 5: $T(n, t)=O((t+1) \cdot n)$

Proof:

We show by induction on n

$$
\begin{equation*}
T(n, t) \leq d(t+1) \cdot n-e(t+1) \cdot \log (n+1) \tag{*}
\end{equation*}
$$

for some suitable constants d and e (to be determined later).

Induction base: $n=0, n=1$ or $n=n_{0}+\ldots+n_{t}$, $0 \leq n_{i}<n, \max n_{i} \leq 4$ and $T(n, t)=T_{2}(n, t)$. Then $T(0, t)=0 \quad T(1, t)=a$
and
$T(n, t) \leq a(t+1) \cdot\left(\right.$ number of $\left.n_{i}{ }^{\prime} s \neq 0\right)+a(t+1)(1+1 \log 5)$

$$
\leq a(t+1) \cdot n+a(t+1) \log 10
$$

In either case we can find for every choice of e a suitable d such that (*) is true.

Induction step: Let $n=n_{0}+\ldots+n_{t}, 0 \leq n_{i}<n$, $\max n_{i}>4$ and $T(n, t)=T_{1}(n, t)$. Then by induction hypothesis

$$
\begin{aligned}
T(n, t) \leq \sum_{i=0}^{t} & {\left[d(t+1) n_{i}-e(t+1) \quad \log \left(n_{i}+1\right)+a\left(1+\log \left(n_{i}+1\right)\right]-\right.} \\
& \max ^{0 \leq i \leq t} a\left(1+\log \left(n_{i}+1\right)\right)
\end{aligned}
$$

We may assume w. 1.o.g. that $n_{o}=\max n_{i}$.
Then

$$
\begin{aligned}
& T(n, t) \leq d(t+1) \cdot n-e(t+1) \log (n+1) \\
&+e(t+1) \log (n+1)+\sum_{i=1}^{t} a\left(1+\log \left(n_{i}+1\right)\right)-\sum_{i=0}^{t} e(t+1) \log \left(n_{i}+1\right)
\end{aligned}
$$

It suffices to show

$$
e(t+1) \log (n+1)+a t \leq e(t+1) \log \left(n_{o}+1\right)+(e(t+1)-a) \sum_{i=1}^{t} \log \left(n_{i}+1\right)
$$

Since $\sum_{i=1}^{t} \log \left(n_{i}+1\right)$ is smallest when all but one n_{i}
$1 \leq i \leq t$, are zero we have $\sum_{i=1}^{t} \log \left(n_{i}+1\right) \geq \log \left(n_{0} n_{o}+1\right)$.
Thus it suffices to show

$$
e(t+1) \log (n+1)+a t \leq e(t+1) \log \left(n_{0}+1\right)+(e(t+1)-a) \log \left(n-n_{o}+1\right)
$$

The derivative of the right hand side with respect to n_{o} is

$$
f\left(n_{0}\right):=\frac{1}{1 n^{2}} \frac{e(t+1) n+a+(a-2 e(t+1)) n_{o}}{\left(n_{o}+1\right)\left(n-n_{o}+1\right)}
$$

For $0 \leq n_{0} \leq n$ the denominator is positive. The numerator is a linear function of n_{0} which is positive for $n_{o}=0$.
Hence there exists some real mach that $f\left(n_{0}\right) \geq 0$ for $0 \leq n_{0} \leq m$ and $f\left(n_{o}\right) \leq 0$ for $m \leq n_{o} \leq n$. (It is conceivable that $m \geq n$). Hence it suffices to check the inequality for the extremal values of $n_{0}: n_{o}=n-1$ and $n_{o}=\max (n /(t+1), 5)$. For $n_{o}=n-1$ the inequality reduces to

$$
e(t+1) \log (n+1)+a t \leq e(t+1) \log n+(e(t+1)-a)
$$

or

$$
e(t+1) \log \frac{n+1}{n} \leq(e-a)(t+1)
$$

since $n>n_{o} \geq 5$ one on $1 y$ has to choose e such that

$$
\log 7 / 6 \leq(e-a) / e
$$

Suppose now $n_{o}=\max (n /(t+1), 5)$. If $n_{o}=n /(t+1) \geq 5$ and hence $\mathrm{n} \geq 5(\mathrm{t}+1)$ the inequality reduces to

$$
e(t+1) \log \frac{n+1}{n_{0}+1}+a t \leq(e(t+1)-a) \log \left(\frac{t}{t+1} n+1\right)
$$

Since $t \geq 1,(n+1) /\left(n_{o}+1\right) \leq t+1$ and $t n /(t+1)+1 \geq 5 t+1=5(t+1)-4$ it suffices to show

$$
e(t+1) \log (t+1)+a t \leq(e(t+1)-a) \log (5(t+1)-4)
$$

or

$$
a(t+\log (5(t+1)-4)) \leq e(t+1) \cdot \log \frac{5(t+1)-4}{t+1}
$$

Since $t \geq 1$ and hence $(5(t+1)-4) /(t+1) \geq 3$ it suffices to choose e such that

$$
a\left(1+\frac{\log (5(t+1)-4)}{t+1}\right) \leq e
$$

```
for t \geq1.
```

Finally if $n_{o}=5>n /(t+1)$ and hence $n<5(t+1)$ the inequality
reduces to

$$
e(t+1) \log (n+1)+a t \leq e(t+1) \log 6+(e(t+1)-a) \log (n-4)
$$

or

$$
e(t+1) \log \frac{n+1}{n-4}+a \log (n-4) \leq e(t+1) \log 6-a t
$$

Since $5=n_{0}<n<5(t+1)$ it suffices to show

```
    e(t+1) log 7/2 + a log 5t\leqe(t+1) log 6 - at
```

or

$$
a(t+\log 5 t) \leq e(t+1) \log 12 / 7
$$

for $t \geq 1$. Hence we only need to choose e sufficiently large.

In either case one only has to choose e sufficiently large in order to make the induction step go through. Since the validity of the induction base is independent of the value of e the theorem follows.

ㅁ
Remark: If for-loop (*) in procedure CODE is realized as for i from 0 to t do then the following recursive equation

$$
\left.T(n, t)=\max _{\substack{n_{0}+\ldots+n_{t} \\ n_{i}<n}}=\sum_{i=1}^{t} T\left(n_{i}, t\right)+\sum_{i=1}^{t-1} a\left(1+\log \left(n_{i}+1\right)\right)\right]
$$

with solution $T(n, t)=O(t n l o g n)$ arises. So the modification suggested above is essential.

Theorem 5 shows that a prefix code satisfying the inequality of Theorem 4 can be constructed in linear time $0(t \cdot n)$. Two variants of the above recursion equations for T might sometimes be useful. An application can be found in [Altenkamp, Meh1horn].

Variant A :

$$
\begin{aligned}
T(n, t)= & \max _{n_{1}+\ldots+n_{S}=n}\left[\sum_{i=0}^{s} T\left(n_{i}, t\right)+a\left(1+1 o g n_{i}\right)\right] \\
& 1 \leq n_{i}<n \\
& 1 \leq s \leq t
\end{aligned}
$$

It has a solution $T(n, t)=0(n \log n) \quad$ [A1tenkamp, Meh1horn].

Variant B:
$T(n, t)=a \quad$ for $n \leq 4$
$T(n, t)=\max _{n_{0}+n_{1}+\ldots+n_{s}=n}\left[\sum_{i=0}^{s}\left(T\left(n_{i}, t\right)+a\left(1+\log n_{i}\right)\right)-\max _{0 \leq i \leq s} a\left(1+\log n_{i}\right)\right]$ $1 \leq \mathrm{n}_{\mathrm{i}}<\mathrm{n}$ $1 \leq s \leq t$

It has a solution $T(n, t)=O(n)$ [A1tenkamp, Meh1horn].

ALTENKAMP \& MEHLHORN: Codes: Unequal Probabilities, Unequal Letter Costs, Techn. Bericht, Fachbereich 10 , Universität des Saarlandes, 6600 Saarbrücken, A 77/13

ASH: Information Theory, Interscience Publishers, N.Y., 1965
BAUER \& GOOS: Informatik, Heidelberger Taschenbücher, SpringerVerlag, 1971

BAYER: Improved Bounds on the Costs of Optimal and Balanced Binary Search Trees, to appear in Acta Informatica

CSISZAR: Simple proofs of some theorems on noiseless channels, Inf. and Contro1 14, pp. 285-298, 1969

COT: Characterization and Design of Optimal Prefix Codes, Ph.D. Thesis, Stanford University, June 1977

FREDMAN: Two Applications of a Probabilistic Search Technique, ACM, Conf. on Theory of Computing, 1975

GILBERT \& MOORE: Variable Length Encodings, Bell System Technical Journa1, 38 (1959), 933-968

HU \& TUCKER: Optimal Search Trees and Variable Length Alphabetic Codes, SIAM J. Appl. Math. 21, 1971, 514-532

HUFFMANN: A Method for the Construction of Minimum-Redundancy Codes, Proc. IRE 4o, 1o98-11o1, 1952

ITAI: Optimal Alphabetic Trees, SIAM J. Computing, (5), 1976, 9-18

KARP: Minimum Redundancy Coding for the Discrete Noiseless Channel

KNUTH: Optimum Binary Search Trees, Acta Informatica, 1, 1971, pp. 14-25

KRAUSE: Channels which transmit letters of unequal duration, Inf. and Control 5, pp. 13-24, 1962

MEHLHORN: Effiziente Algorithmen, Teubner Studienbücher Informatik, Stuttgart 1977.

MEHLHORN: Best Possible Bounds on the Weighted Path Length of Optimum Binary Search Trees, SIAM J. of Comp., Vo1. 6, No 2, 1977, 235-239

PERL, GAREY \& EVEN: Efficient Generation of Optimal Prefix Code : Equiprobable Words Using Unequal Cost Letters, JACM, Vo1. 22, No 2, 2o2-214, April 1975

VAN LEEUWEN: On the construction of Huffmann trees, 3rd ICALP (1976), 382-41o, Ed. S. Michaelson and R. Milner, Edinburgh University Press

