CODES: UNEQUAL PROBABILITIES.,
UNEQUAL LETTER COSTS

BY

DORIS ALTENKAMP AND KURT MEHLHORN
A 78/18 1X/1978

Fachbereich lo
Universitdt des
Saarlandes

BRD-6600 Saarbriicken

A preliminary version of this paper was
presented at the 5th International Colloquium
on Automata, Languages and Programming, Udine,
Italy, July 17-21, 1978

Abstract

The construction of alphabetic prefix codes with unequal
letter costs and unequal probabilities is considered. A
variant of the noiseless coding theorem is proved giving
closely matching lower and upper bounds for the cost of
the optimal code. Furthermore, an algorithm is described

which constructs a nearly optimal code in linear time.

I. Introduction

We study the construction of prefix codes in the case of
unequal probabilities and unequal letter costs. The investi-
gation is motivated by and oriented towards the following
problem. Consider the following ternary search tree. It has

3 internal nodes

(¢ ,3)] {(3,4)] [(4,5)] [(10,12)] (12,)]

and 6 leaves. The internal nodes contain the keys £3,4,5,10,12}
in sorted order and the leaves represent the open intervals
between keys. The standard strategy to locate X in this tree 1is

best described by the following recursive procedure SEARCH

roc SEARCH (int X ; node v)

if v 1s a leaf

then "X is not in the tree"

else begin let K ,K, be the keys in node v;

1 2
X < K, then SEARCH (X, left son of wv)

i
ii X = K, then exit (found);

af K2 does not exist

then SEARCH (X, right son of v)

else begin if X < K2 then SEARCH (X, middle son of v);
if X = K,
SEARCH (X, right son of v)

then exit (found);

end

end

end
Apparently, the search strategy is unsymmetric. It is cheaper to
follow the pointer to the first subtree than to follow the pointer
to the second subtree and it is cheaper to locate K, than to locate
K,.
We will also assume that the probability of access is given for each
key and each interval between keys. More precisely, suppose we have

n keys B ..,Bn out of an ordered universe with B < B_< ...< B_.

1*° 1 2

Then Bi denotes the probability of accessing Bi’ 1 < i <n, and uj
denotes the probability of accessing elements X with Bj < X < Bj+l’
0 < j <n. o and Bn have obvious interpretations. In our example

n = 5, BZ is the probability of accessing 4 and %, is the probability
of accessing X € (4,5). We will always write the distribution of

e obabilitie 5%l 8
access proba ties as GO,BI,GI, ’Bn’un

Ternary trees, in general (t+l)-ary trees, correspond
to prefix codes in a natural way. We are given letters

ao,ai,az,...,aZt of cost Co’cl’CZ""’CZt respectively;

cy >0 for 0 < £ < 2t., Here letter a corresponds to

24
following the pointer to the (&+1)-st subtree, 0 < % < t,

and letter a5 041 corresponds to a successful search

terminating in the (L+1)-st key of a node, 0 < £ < t.

In our example, t = 2. The code word corresponding to
4, denoted Wz is a ag - The code word corresponding
to (lo, 12), denoted V4 is a, a_.

In general, a search tree is a prefix code

C = {VO,WI,VI,...,WH,VH} with
V., € 1* W. € Z¥Z
j i end
Where Z = {30,321345"')azt} and Zend - {al,aB’-.-’azt_l}’
0 <j<mn, I <1i < n. Z*¥ denotes the set of all words over

alphabet Z. wi describes the search process leading to key Bi
and Vj describes the search process leading to interval

(BB,)

Remark: In the binary case, t = |, letters a_,a ,a have the

]2
natural interpretation <,= and >. Letter a, (=) ends successful

searches and letter a, is never used in unsuccessful searches.

In signaling codes applications alphabet Ze might save synchro-

nd
nizing purposes. (cf. the example of an alphabetic Morse code at

the end of section III).

Note that the use of the letters in Ze is very restricted.

nd
They can only be used at the end of code words and they can
only be used in words wi. Furthermore, the code words must

reflect the ordering of the keys, i.e.
(*) V. < W. < V,_,

for j <1 < j' and < denotes the lexicographic ordering of strings

based on the ordering a_ < a, < a, v B a,. of letters. The cost
of a word a, a, a, ... a, is equal to es oo, Fove® By o
1 *g 3 k | 2 k

i.e. the sum of the costs of the letters. The (expected) cost

of code C 1is then defined as

Cost(C) =
i

1 Bi Cost (Wi) +
J

[LI =1

Remark: In the binary equal cost case (t = 1, By ™ By W kg = 1)

this definition coincides with the definitions of weighted path

length used in the literature [e.g. Bayer, Itai, Knuth, Mehlhorn].

We will address the following two problems:

1) Given letters, their costs and a probability distribution, find

a code with nearly minimal cost.

2) Give good a-priori bounds for the cost of the optimal code.

We refer to these problems as the alphabetic coding problems.

We will also have to consider non-alphabetic codes, i.e. codes
which do not have the ordering requirement (*) on the code words
and which have unlimited usage of letters. Formally, given letters
a sy and their costs CurrresCy and a probability distribution

o
P;>+-+sP » We want to find a prefix code C = {Ul,...,Un} such that

n
Cost(C) = z P; Cost (U;)

1s minimal.

Remark: We use the notation PjrweaP for the probability

distribution in the non-alphabetic case and uo,Bl,...,Bn,an

in the alphabetic case. This should help the reader keeping

things apart.

We show that the cost of an optimal alphabetic code Copt

satisfies the following inequalities. Here H = H(GO,BI,GI,...,BH,GH)

= —ZBi log Bi = Zaj log aj is the entropy of the probability
t
9 deoy = 1

distribution, B = ZBi, and c,d € R are such that I
k=0
et e -d -c
z 2 k 1. Numbers 2 g 2 are sometimes called the "roots
k=0

of the characteristic equation of the letter costs'" [cf. Cot]

Also log denotes logarithm base 2 and ln denotes natural logarithm.

(1) H < d+Cost{C)+L c*B max c.[l+ln(uv<Cost(C y1+1/(eu)
— opt u i odd 1 opt

for some constants u,v and e = 2,71

(2) Cost (C) < H/d + (Za.)[1/d + max ¢,] + (ZB.) [max ¢,]
g = J k even k t k odd %

Note that lower and upper bound differ essentially by ln COSt(Copt)'

Inequality (1) is proved in Corollary 3. Theorem 2 gives a better
bound than Corollary 3 but the bound is harder to state. Inequality
(2) is proved in Theorem 4 by explicit construction of a code C

satisfying (2). Moreover, this code can be constructed in linear

time O0(t.n) (Theorem 5).

Inequalities (1) and (2) provide us with a "Noiseless Coding
Theorem'" for alphabetic coding with unequal letter costs and

unequal probabilities.

The construction of prefix codes is an old problem. We close the

introduction by briefly reviewing some results.

Case |1: Equal letter costs; i.e. c; = I for all i, 0 < i < s.

In the nonalphabetic case an algorithm for the construction of

an optimal code dates back to Huffmann; it can be implemented to
run in time O(n log n) [van Leeuwen]. The noiseless coding theorem

[Shannon] gives bounds for the cost of the optimal code, namely

1

1
H(p;,--.5>p) < Cost(C) & =———[H (P g->~aP,)} + 1]
log(s+1) log(s+1)
where H(pl,...,pn) = - Zpi log P; is the entropy of the distribution.

The binary alphabetic case was solved by Gilbert & Moore, Knuth,
: ; : ; ; 2
Hu & Tucker . The time complexity of their algorithm is O(n") and

0(n log n) resp.Cost is usually called weighted path length in this context.

Bounds were proved by Bayer and Mehlhorn, namely

2 Y =1
H(GO,BI,...,Bn,Gn) < Cost(COpt)+(loge) + log Cost (Copt)

Cost (Copt) < H(GO,BI,...,Bn,un) + 1+ Zaj

Various approximation algorithms exist which construct codes in
linear time in the binary case. The cost of these codes lie within

the above bounds [Bayer, Mehlhormn, Fredman].

Case 2: Equal Probabilities

i g P; = 1/n for 1 < i < n. The problem was solved by Perl , Garey
s . 3 : ; ; 2

and Even. The time complexity of their algorithm is O(min(t n,tn

log n)). The alphabetic case is identical to the nonalphabetic case

and noa-priori bounds for the cost of an optimal code do exist.

Case 3: Unequal Probabilities, Unequal Letter Costs

This case was treated by Karp. He reduced the problem to integer
programming and thus provides us with an algorithm of exponential
time complexity. No better algorithm is known at present. However
it is also mot known whether the corresponding recognition problem
(is there a code of cost < m) is NP-complete. A-priori bounds were

proved by Krause, Csiszar and Cot.

The alphabetic case was treated by Itai. He describes a clever
dynamic programming approach which constructs an optimal alphabetic

code in time O(tz-n3). No a-priori bounds are known.

II. The Lower Bound

In this section we want to prove a lower bound on the cost of
every prefix code. We will first treat the non-alphabetic case

and then extend the results to the alphabetic case.

ITI. 1 The non-alphabetic case

II. 1.1 Preliminary Considerations

Consider the binary case first. There are two letters of cost

c, and c, respectively. In the first node of the code tree we

1
split the set of given probabilities into two parts of probability

p and 1-p respectively. (Fig. 1).

Figure 1

The local information gain per unit cost is then

H(p,1-p)
CI'P"'CZ(I"P)

G(p) =

where H(p,q) = -p log p -q log q. This is equivalent to

=p log P =(1=p) Llog (l=p)
G(p) = for all ¢ % o
-CC] _C(.‘.z 1
¢prlog 2 -{I=-p) log 2) e

The following fact shows that G(p) is maximal for

-cc —ce,
p = 2 , 1l=-p = 2 where ¢ is chosen such that

[a*]
+

(]
]

So G(p) < c for all p

and
—cc
G(2) = ¢
Fact (cf. e.g. Ash)
Let x,, y:. > 0 for 1 € 1 < ny; Zx; = 1 = 3y ., Then

This shows that the maximal local information gain per unit

cost is c¢. Hence every code for probabilities Pys---sPy should

have cost at least 1/c * H(pl,...,pn). This is made precise in

the next section.

The plausibility argument also suggestsan approximation algorithm:

try to split the given set of probabilities into two parts of pro-
—ec

bability p and 1-p respectively so as to make p-2 II as small

as possible. We discuss this approach in section ITII.

ILI. 1.2 The Lower Bound in the Non-alphabetic Case

Theorem 1: Let Pys-sesPy be a probability distribution and

let ¢ ={U ...,Un} be a prefix code over code alphabet {ao,...,as}.

1 >

Let c, > 0 be the cost of a;, 0 <i < s. Let ¢ be such that

—CccC.

Mo
N
-
1

a) [Krause] Cost(C) > H(p],---,Pn)/C

where H(p],...,pn) = - Zpi log P; is the entropy of the frequency

distribution.

b) Let h € R, h > o and

L, = {i; ¢ Cost(Ui) < log P; - h }
-h

Then z p. < 2

i€L .

h
Remark: Inequality a) reads in its full form
n n
151 p;lec Cost(Uu.)] > ifl p; [~ log p;l

It is an extension of the noiseless coding theorem to arbitrary
letter costs. Part b) shows that this inequality is almost satis-
fied termwise by the expressions in square brackets. More precisely

the fraction of probabilities which violates the termwise inequality

by more than h is less than Z_h.
Proof: a) Let U, = a. a, ... a, . Define
—_— i i i i

1 2 L

i
L.
i =ece
q. = 1 2 'k , 1 <i<n

Then Q < 1 by a simple induction argument on max Ri. The prefix

property is needed here. Furthermore,

£
log gy ¥ € - zZ c - ¢ Cost (Ui)

and hence by the fact above

H(p],...,pn) =i = Zpi log P
< - Zp; log (q,/Q)
= ¢ Cost (C) + log Q
< c-Cost (C)
b) Let h > 0 and
Lh = {i; ¢ Cost (Ui) < -log P; ~ h 1.
Then 0
1 >Q= = 57 C Cost (Ui)
i=1
> 5 ,7C Cost (Uj)
1€Lh
log p.+h
> ¥ 2 L - P ¥ g o

I1.2 The alphabetic case

Every alphabetic code C = {VD,WI,...,WH,VH} is a non-alphabetic
code and hence Theorem 1 applies. It shows

Cost (C) > 1/c - H(ao’Bl""’Bn’an)

2t =gy
where z 2 =]. In this section we will improve upon
k=o

this lower bound and essentially show that for every alphabetic

code C
Cost (C) > 1/d «[H(O ,B,sev.sB ,0) - < emax c,
— o’ "1 n’ n u s 1
1 oeodd
In H(ao, 1)---:Bn9un)]
t —dc2k
where r 2 = 1] and u is some constant. Note that only
k=0
the letters inm X but not the ones in Zend are used to define

d and hence the new bound is much better for large H.

Example: Consider ternary trees with B, W H Gy oy TR, = 1.
Then ¢ = log 5 and d = log 3.
The alphabetic case differs from the non-alphabetic case in two

respects.

1) the lettersin Ze can only be used at the end of code words

nd
Wi and not at all in words Vj.

2) the lexicographic ordering of code words must reflect the

underlying ordering of the keys.

We will only use restrictionm 1) to improve upon the lower bound.

There seems to be no way to incorporate this (combinatorial)
restriction into the proof of Theorem 1. Rather we turn the
combinatorial restriction into a constraint on costs by arti-

ficially increasing the cost of letters in Zend' Then we use

the fact that letters 1in zend are used at most once in words

Ui and not at all in words Vj in order to relate the cost of

a code under the old and the new cost function. Finally, we
apply Theorem 1 to the new cost function. Let | < x <@ __,

be arbitrary, let

T. = c. for i even
i i
c. = x-c. for i odd
i 1l
2 —c(x)gk
and let c(x) € IR be such that X 2 = 1
k=0

Remark: In the new cost function Ei’ 0 <i < 2t, we increased

by factor x. For x = | the new

the cost of letters in X
end

cost function is identical with the old one and hence c (1) = ¢,

for x = o the cost of letters in Eend is infinite and hence

c(eo) = d.

Let C = {Vo’wl’vl’°"’wn’vn} be an alphabetic code for proba-

bility distribution (GO,BI,G],...,Bn,an). In particular, Vj E

—~—
and W, € b3 Ie Let Cost(C) be the cost of C with respect to

nd’
go,g],gz,...,gzt and let Cost(C) be the cost of C with respect

to ¢ C o s vyl »
o’ 1° L

—~
Lemma 1: Cost(C) < Cost(C) + (x-1)*B- max ¢ for every x,
n 1 odd
]l < x <o , B= I B..
= = . i
1=1
Proof: For W. € ¥ let
—— i end
W. = W! a: a £ E
i i i] end

E*

~ ~
Cost(W!) + c.
1]

~—
Then Cost(wi)
i

Cost(W!) + x.c.
i i

]

Cost(W.) + (x-1)c.
i i

Hence
— —~

—~
Cost(C) = ZBi Cost(wi) + Zaj Cost(Vj)

Cost(C) + (x-1)-B max c.
i odd

| A

o
We next use Theorem 1 for the costs gi’ 0 < i < 2¢t.
Zt -c(x)g
Theorem 2: Let c(x) be such that X 2 k 1
k=0
Then
Cost(C) > max {H(uo,ﬁl,...,Bn,un)/c(x)
- (x=-1)+B*max c. ;3 I < x <o 1)
i odd
Proof: By Theorem 1,
L .
Cost (C) > H(GO:B]’-'-’anan)/C(X)
Substituting into Lemma 1 yields the result. o

We were unable to find a closed form expression for the maximal
value of the right hand side in Theorem 2. An approximate value
c, c(=) = d and

d + §(x).

can be found as follows. Recall that c(1)

c(x) decreases for 1 < x < e, Write c(x)

-u(x-1)

with O < 6(x) < c-d. We will show &(x) < v-e for

some constants u,v (Lemma 2 below). Then Theorem | can be

written as: (We write H instead of H(‘%’B]""’Bn’an))'

oo
A

< c(x)+Cost(C) + (x-1)-c(x)+-B max ¢
i odd

[A

d*Cost(C) + §(x)*Cost(C) + (x-1)+c'B- max c;
i odd

d-Cost(C) + v-e_u(x—l)-Cost(C) + (x-1)+.c-B+ max c.

i odd

| A

This inequality is true for all x, 1 < x < o,

The right hand side is minimal (differential calculus) for

(x-1) = (ln[u+v Cost(C)/c+.B. max c.])/u
iodd *

Hence

u-v-Cc:st(C):|

H < d-Cost(C) + cie b max c. [1 + 1ln
u 1 odd ¢c*B* max c.
i odd

14

cB max ci
Using finally y Lln 1/y < 1/e for all y>0(in particulary =‘__7ff”_)
we obtailn
Corollary 3: Let C be an alphabetic code for distribution
ao,Bl,ul,...,Bn,an with respect to costs co,c],...,c2t.
Let c,d be such that:
2¢ =T t -dc
r 2 Fajg g kg
k=0 k=0
Let B = ZBi. Then there are constants u,v (depending on
CosCpservsCyy but not on Cost(C) and ao,Bl,...,Bn,an)
such that
H(aO,Bl’."’Bﬂ’o{n) £d°COSt(C) +
cB 1
~— « max c¢. [1 + In(u-v Cost(C))] +
. 1 e u
1 odd
Proof: By the preceeding argument. O

Corollary 3 shows that the lower bound for the alphabetic code

is essentially the lower bound (d-Cost(C)) for the non-alphabetic
code where only the letters of even index are used plus a

small correction of order (c:B: max c¢. 1ln Cost(C)) which re-

i odd

flects the restricted usage of the letters in Zend'

A special case of Theorem 2 and Corollary 3 was proved by Bayer.
He considered the binary alphabetic case with equal letter costs,

i,e. £t =1 and ¢ = ¢, = ¢, = 1.
o] 1 2

It remains to prove Lemma 2. We will only show the
existence of constants u,v but not derive a bound for
them., This is justified since we recommend to always
use Theorem 2 and to compute the maximal wvalue of the
right hand side by numerical methods. Corollary 3 is
only given in order to indicate the order of the bound

in Theorem 2.

Lemma 2: Let ¢6(x) be defined as above. Then

§(x) < v-e_u(x_l)

for some constants u,vVv

“u(x—-1)

Proof: §(x) < v-e is equivalent to (x-1) < =1n(8(x)/v)/u.

§(x) is defined by
—(d+6(x))c2k -(d+6(x))-x'c2k_1

t
2 + X 2 = 1
0o k=1

™M

Consider the left hand side as a function f(x,8) of two arguments
x and 6, i.e. replace 6(x) by 6 in the left hand side. For fixed
6 this function is decreasing in x. Also f(x,8(x)) = 1. Suppose
we know f(z,6(x)) < 1 for some z. Then x < z since z < x implies
f(x,8(x)) < £(z,8(x)) < 1, a contradiction. It therefore suffices
to show that there are constants u,v such that for all x

(Il) ; 2_(d+6(x))C2k + ; 2_(X+6(X))ZC2k_] < 1

k=o k=1 o
where z := 1-1n(d(x)/v)/u. Replacing o @ £ i € 2t by

ey = min{ci; 0 <i < 2t} > 0 in the left hand side of (Il)

only increases the left hand side. It therefore suffices to show

(12) z—ﬁ(x)cmin ,"dC2k , [p7dZCmin

et

k=0

=g .
2 €2k - I the left hand side

oo

for some constants u,v. Using
k

(o]

of I2 1s of the form

b
g(y) := b;y + bz(y/v)

(dec . In 2)/u >

. _ »Cmin - —dcpin =
with b 2 > 1, b & 2 > 0, by min

1 2
and y = &(x). Hence 0 < y < c-d. Choose u such that b3

i1

Then

gly) = b;y + bz(y/v)

It remains to show that we can choose v such that g(y) < 1 for

0 <y < c-d. Note that g(0) = 1 and that
g'(y) = (-1n b)b” + b,/v
L =~in b])b;(c_d) + bz/v since 0 < y < c-d
<0

for sufficiently large v. Hence g(y) < I for 0 < y < d. This

shows the existence of u and v.

III. The Upper Bound

In this section we describe an algorithm for constructing
alphabetic codes and derive a bound on the cost of the code
constructed. The algorithm is a generalization of the one in

[Gilbert and Moore, Mehlhorn].

The code 1s constructed top—-down by repeated splitting of

the ordered set {GO,B],u],...,un_l,ﬁn,an} of probabilities.
In each step we try to split the set as described in II.I1.1 .

Let d be such that

t -dc
r 2 2k .
k=o
5 = —oo =
and let I , Sn+1 oo
S, = © /2
s; T o v By ...+ B+ oa./2 for 1 < i < n.
s and s are defined as "stoppers'.

i n+l

17

0]

Example: Let Cy = L c, = Iz ¢, = %S ¢y = Y c, = 23
Then d = 1. Let @, = o, = Bi = 1/7 for 1 < i < 3. Then
s; = (4i+1)/14 for 0O <1 < 3. We draw the distribution

(aO,B],al,...,an_l,Bn,an) as a partition of the unit

interval and split the unit interval in the ratio

-dc -dc -dc
(o]

2 : 2 2 s 7 é.
i:o S1 82 53
l l i | l I ! l l | l I
[T T T T T T 1
5 By & IBz a, By B
S WSS | | SN
-dc -dc —-dc
g 9 p 2 p &
Fig. 2

From Fig. 2, it looks reasonable to assign letter a to

QO,BI,GI, to assign letter a, to ®y s letter a, to o 3

2 4

letter a, to BZ and letter a3 to 53. In other words we

set W, = a W v = a

2 10 Vs 55 Wy F dgm Ty 4 37

and let V ,W
o

1 1

start with a - Next we have to work on the subproblem
-dc
{ao,Bl,a]}. We split the interval [0,2 0]in the same

way and obtain Fig. 3

r I T 1
&___\’___j
-dec -dec -dc
As2 i A.2 2 A2 4

— 4
_‘\,f
-dc

b =3 °

This suggests to use letter a (a],az) as the second
letter of the code words assigned to ao (Bl,al). Note

that we used letter 32 for al since more than half of
-de

probability o, falls into the interval of length A.2 2.

In general, the construction process can be described as

a recursive procedure CODE with parameters

L,x we work on the subproblem

GR’B!LH""’Br’ar ’

(1) L,R L,R ER, L < sy < s_ < R
* = - s 3 * - i 1
u U € x {ao,az,. aZt} U is a common prefix of
code words Vﬁ’ W£+], v£+l,...,wr, Vr and
(2) R-1 = 2—d'Cost(U)
Initially £ = 0, r = n, L = 0, R =1 and U = & where £ 1is

the empty word. Consider now any call of the procedure CODE
with parameters £,r,L,R,U satisfying the invariants (1) and

(2) stated in their definition.
Case 1: £ = r : Then we define Vr = U and return

Case 2: & < r. We split the interval (L,R) in the ratio

-de -dc -dc

1 ; . .

2 = on Yoaasm & 2 2t. The 1-th subinterval, 0 < 1 <
i-1 _dCZk

has boundaries L. = L + (R-L) - z 2 and R. = L. +

1 1 i
k=o
“heag
(R-L):2 . We then determine for each subinterval the set
of s, 's which lie in that subinterval, say

k

- 20 -

S < L. < 8§ and S. < R. < S§S. for the 1-th interval.
h-1 — "1 h i — i j+1

If h <j, i.e. some sk's actually lie in the i-th subinterval,

then we call procedure CODE recursively with parameters

£ =h, r = 3j, L =L., R=R.,, U-= Ua2i

Furthermore, if in addition j + 1 < r, then we assign code

word Ua,. to B 1.e. we set wj+1 = Ua2i+1.

2i+1 j+1?

Example: Suppose t = 3 and Lo L8, % »xe 58 % L, < L2

< 55 X s 5737 < L3 < Sg < R3. Then the recursive calls are

CODE(0,4,L_,L ,Ua_), Code(5,7,L Ry, T,).

an) and CODE(B,S,L3,

1, 2’L3,

Furthermore, we set WS = Ual and WS = Uas. A pictorial repre-

sentation 1s given by Fig. 4.

{ao,B],...,aa}

Fig. 4.

In the remainder of this section we derive an upper bound on the
cost of the code constructed by procedure CODE. It is obvious that
the properties stated in the definitions of L,ry,L,R,U are invariants

of the recursive procedure, i.e. they hold for all values of the

actual parameters.

Consider the cmkzwordwi = Uak constructed for Bi; U € z*
i

and a € T .The word W. was constructed by the procedure
ki end 1

CODE with actual parameters £,r,L,R,U where < i < r.

Hence
E'i 3 01/2 * B£+] T Oggq TEseT aq * 0‘1'/2

since Bi appears 1in that sum

2—d Cost (U)

by invariants (1) and (2) of procedure CODE. Hence

Cost(W.) < Cost(U) + max c
17 3
K odd

% [-log B.] + max c
K odd

=

Consider next code word Vj. Word Vj was constructed by
procedure CODE with actual parameters (j,j, ,Vj). CODE
with actual parameters (j,J, ,Vj) was called by CODE

with actual parameters (%,r,L,R,U) with 2 < r, & < j < r and

V. = Ua for some a € . Hence
] k. k.
J]
ujfz < “1/2 Byt Oy, +---t B+ ar/2
o E = B R z—d Cost (U)

21

by the same reasoning as above. Hence

[-log a«. + 1] + max ¢

AL —

Cost(Vj) <

] k even
We summarize
Theorem 4: Let (uo,Bl,...,Bn,an) be a probability
distribution, B. > 0, a. > 0, ZIB. + Zo. = 1.
L =] = 1]

i + i e .
Let a »a, ,a be (2t+1) symbols with costs € 2% 3Coy € R

2E +

Then procedure CODE constructs an alphabetic code with

a) Cost (Wi)

A

[-log ﬁi]/d + max c

k odd *

b) Cost (V.) < [-log a.+1]/d + max c
J J k even

c) Cost (C) < H(ao’ﬁl’al""’Bn’an)/d +

(Zuj) [1/d + max ck] +

k even

(ZBi)[max c
k odd

K3

Proof a) and b) are proved by the discussion above. c¢) follows
from a) and b) by multiplication with [E’:.1 and uj respectively and

summation. o

Example: An ordered Morse code. The Morse code is over a
three letter alphabet: dot (cost 1), dash (cost 2) and
letter space (cost 1). We assume the ordering dot < letter

space < dash i.e. X = {dot, dash} and zend = {letter spacel}.

Then Co =1, ¢, =1, ¢

] =2, 2% =0.618 and d = 0.6942.

We encode the 27 English letters (including the word space)
in alphabetical ordering, i.e. B, = probability of letter

a, B2 = probability of letter b,..., B probability of

27
word space. We refer the reader to [Bauer, Goos] for the

T
exact values of BI’BZ""’BZ7' All Gj S are zero.
Then H(GO,BI,...,BZ7,G27) = 4.1 . The lower bound of

Theorem 2 1is

Cost(C) > max {4.1/c(x) - (x=1) ; I < x oo}

| A

-xc(x)

—elx) | 572¢(x) 2 = 1.

where c(x) 1s such that 2
The maximal value of the right hand side is about 3.24
with x = 1.44 and c¢(x) = 1.19. The upper bound of theorem 4

is 5.85 . The code actually constructed 1is

word space

t
e
/\ ¢ /\
g /\ S v
m
///i\ \\) ///"\\\
IS d ¢ / \ u z
h K P\\ ////
/// \\\\ x
i 2 4 /// \\\
W ¥
, 1.e, r is encoded by letter space, i is encoded by dot
letter space, n by dot dash letter space. The cost of this
code is 4.3025., In comparison, the cost of the morse code

is 4.055. The morse code is non-alphabetic.

(*)

(e

IV Implementation

In this section we describe an implementation of procedure

CODE. Our implementation has running time O(t.n). As above

T -dc2k
let d € IR be such that Z 2 = 1. Furthermore, let
k=0
i —dc2k
z, = % 2 for 0 < i < t. Procedure CODE has the
k=0
following global structure.
procedure CODE(Z,r,L,R,U);
begin
if d=x
then V£ U
else begin
for all i; 0 £ 1 <€ ¢t do
begin Li := L + (R—L)zi_];
Ri i= L+(R—L)zi;
let h and j be such that
; 5 o I : H
Sh—l < L1 < sh and sJ £ RJ sJ+l
if h < j then CODE(h,j,L;,R;,Ua,)3
if j#1 < T then Wj+] * Ua2i+l
end
end

end

- 24

Three problems remain to be solved:

a) In what order do we process the different values of i

in loop (*)
b) How do we find h and j in line (*%*)

c) What should we do if all si's, L€ i %2, lie in
the same subinterval. Note that problem c) does not affect
the analysis given in section III, however it will affect

running time.

Consider problem b) first., We describe a solution for the

O-th subinterval., By definition L0 = L and hence So-1 2 L0 < s,

by assumption. Hence we only have to find j such that Sj < R0< Si”

We find] by exponential + binary search [Fredman] . We first

compare R0 with

Spe1® Se42 * Spes4 * Sps48 until

S g4k > Ro or L + 2 > r

In the second case we have s < R

, i.e. all s.'s fall into
r i

(o]

the same interval. In the first case we have s k > R and
L+2 o

Sgeok-1 < R0 or k = 0. If k is equal to O then either j =2+ |
(1f Sy o Ro) or j = & (if R0 < SZ)' If k is not equal to O

k=1 . k . .
then £ + 2 < j <2 + 2, We determine the exact value of j

by binary search on the interval £-F2k—l s wadle F 2k in time O(k).

Let n = =2+ 1, i.e. n is the number of si's which lie

in the O-th interval. Equivalenty, the recursive call CODE(Z%,j,.

constructs Do 1 code words Wi.

; ; e . - .
Since j - & > 2k where k is determined as above it follows
that j can be determined in time < a(l + log (n0+l)) where

a 1is a suitable constant.

Next we address problem a). Let ni, 0 < i < t, be the number

of si's which lie in the i-th interval. The obvious way to

y++2s0, 1in that order. Note

proceed is to determine no,nlyn &

2

that the solution given to b) applies to all ni's. However,

this strategy may waste a lot of time; e.g. if n is large and

n

t

2,...,nP are small. Note that n, actually does not have to

be computed because it 1s uniquely determined once the other
values are found. It would be much cheaper in this case to
compute DysDgs e in reverse order. These considerations lead

to the following strategy:

Determine n_ and n, in parallel, stop when anyone of them 1is

found. Say n_ was determined first. Forget everything about n .

Now determine n, and n, in parallel

In this way one can find O se-esny in time

a'es (X (]+log(ni+l)) - max (1+log(ni+l)))
i=0 0<i<t

for some constant a' .

-y

It remains to treat problem c). Suppose all but one n. are o,
BAY By = n. In this case we either artificially assign the
leftmost probability &, to the 0-th subinterval (if j > 1)

or the rightmost probability ®_ to the t-th subinterval

(if j < t). More precisely, suppose j > 1. Then we set

V, * Uao, W£+1 4 Ual and call CODE recursively with parameters
L+1, r, Lj’ Rj’ UaZj' Note that the analysis of section III is
still valid. By this modification we guarantee that at least

one code word Wi is constructed by every call of procedure CODE.

We are now ready to set up recursion equations for an upper
bound T on the running time of our implementation of algorithm
CODE. Let T(n+l,t) be the maximal time needed by CODE in order
to construct a code for probability distribution

{ao,B!,...,Bn,an) and code alphabet A 58 s esdy s Ay

with costs €2 C Note that n+l is equal to the number

ORI P

Then
T(O,t) =0 T(l,t) = a

for some constant a.

Let n+l > 1, 1.e. we have to construct a code for

(GO,B],...,BH,GH). We first determine D os0ps...,n_ as

described above in time
|

a ® (Z (l+log(n.+1) - max (1+log(ni+l)))
i=0 o 0<i<t

Since n; is the number of sj's which fall in the i-th subinterval

we have n+l = n + n

+...+ n_. Also 0 < n. and n. < n by our
o] 1 t — 1 1 —

modification above., For every n, > 0 we have to call CODE

recursively; this recursive call takes time at most T(ni,t)

...28 -

For the sequel, it will be convenient to modify CODE
slightly. If max n., > 4 then we proceed as described above
If max n, < 4 then we avoid recursive calls altogether.
Rather we solve each subproblem directly in time O(t). This
gives the following recursion equation for T (we replace

n+l by n throughout)

t
Tl(n,t) = max [T (T(n.,t) + a(l+log(n.+1)))
n +...+nt=n 1=1 L *
n.<n
max n.>4 Wi a(l+10g(ni+l))]'
b 0<i<t
t
Tz(n,t) = max [= (iﬁrni#o then a(t+1) else 0 +
n +...+n_=n i=0
o] t
s et a(l+log(n,+1)))

- max a(l+log(n.+1))].
o<i<t =

T(n,t) = max (T](n,t),Tz(n,t)).

Here a is some constant; w.l.o.g. we can use the same a in

all equations.

Theorem 5: T(n,t) = 0((t+1)-n)

Proof:
We show by induction omn n

(%) T(n,t) < d(t+1)-n - e(t+1)-log(n+1)

for some suitable constants d and e (to be determined later).

Induction base: n = 0, n = 1| or n = n0+...+nt,

0 < n. < n, max n, < 4 and T(n,t) = Tz(n,t). Then
T{(O0,t) =0 T(l1,t) = a

and

T(n,t) < a(t+1):(number of ni's + 0) + a(t+1)(i+log 5)

a(t+1)+'n + a(t+l) log 10

| A

In either case we can find for every choice of e a suitable

d such that (*) is true.

Induction step: Let mn n+...+n_, 0 < n. < n,

Lo} t — i
max n. > 4 and T(n,t) = T](n,t) . Then by induction hypothesis
[
T(n, t) < =z [d(t+])ni—e(t+]) log(ni+])+a(l+log(ni+l)] -
1=0
max a(1+10g(ni+1))
0<i<t
We may assume w.l.o.g. that n = max n,.

Then

T(n,t) < d(t+l)-n - e(t+1) log(n+l)

t t
+ e(t+1) log(n+l1) + X a(I+log(ni+l)) i e(t+1ﬂ0gha+l)
i=1 1=0

It suffices to show

t
e(t+1) log(n+l) + at < e(t+l)log (nO+I) + (e(t+l)-a) X log(ni+1)
i=1

t
Since I log (ni+l) is smallest when all but one n.
i=1 &
1 < i < t, are zero we have X log (ni+1) > log (n—n0+l).

i=1

Thus it suffices to show

e(t+1)log(n+l)+at < e(t+1)log(no+])+(e(t+1)—a)log(n—no+1)

The derivative of the right hand side with respect to n_ is

] e(t+l)n+a+(a-2e(t+1))n,

In 2 (n0+l)(n—n0+l)

f(no) =

For 0 < n <n the denominator is positive. The numerator

is a linear function of n_ which is positive for n = 0.
Hence there exists some real m such that f(no) > 0 for
0 < n < m and f(no) < 0 for m < n_ < n. (It is conceivable

that m > n). Hence it suffices to check the inequality for the

extremal values of no: n_ o= n—-1 and n_ = max (n/(t+1),5).

For n_ = n—-1 the inequality reduces to

e(t+l)log(n+l)+at < e(t+l)log n + (e(t+l)=-a)

or

e(t+l) log E%l < (e-a)(t+l)

since n > n_ > 5 one only has to choose e such that
log 7/6 < (e-a)/e

Suppose now n0 = max{(n/(t+l1),5). If n_ = n/(t+1) > 5 and hence

n > 5(t+1) the inequality reduces to

n+
n_+1
o]

e(t+l1) log + at < (e(t+l)-a) log(EéT n+l)

Sinece & > I, (n+])/(n0+]) < t+l and tn/(t+1)+1 > 5t+1 = 5(t+1)-4

it suffices to show

e(t+1)log(t+l)+at < (e(t+l1)-a)log(5(t+1)-4)

or

5(t+1)-4
t+1

a(t+log(5(t+1)=-4)) < e(t+1)-log

Since t > | and hence (5(t+1)-4)/(t+1) > 3 it suffices to

choose e such that

log(5(t+1)-4)

a(l + P) <
for t > 1.
Finally if B, = 5 > n/(t+1) and hence n < 5(t+1) the inequality

reduces to

e(t+1)log(n+l)+at < e(t+l) log 6 + (e(t+l)-a)log(n-4)

or
n+l

e(t+])logn-4

+alog(n-4) < e(t+l)log 6 - at
Since 5 = o < n < 5(t+1) it suffices to show

e(t+1) log 7/2 + a log 5t < e(t+l) log 6 - at
or

a(t+log 5t) < e(t+1) log 12/7
for t > 1. Hence we only need to choose e sufficiently large.

In either case one only has to choose e sufficiently large in
order to make the induction step go through, Since the validity
of the induction base is independent of the value of e the

theorem follows. m]

Remark : If for—-loop (#) in procedure CODE is realized

as for 1 from O to t do then the following recursive equation

t t—1
T(n,t) = max [T(ni,t) + ¥ a(l+10g(ni+1))]
n+...+n_=n i=1 1=1
0 C
n.<n
i
with solution T{(n,t) = O(tnlogn) arises. So the modification

suggested above is essential.

Theorem 5 shows that a prefix code satisfying the inequality
of Theorem 4 can be constructed in linear time O(t-n). Two
variants of the above recursion equations for T might some-

times be useful. An application can be found in [Altenkamp,
Mehlhorn].

Variant A:

s
T(n,t) = max [£ T(n.,t)+a(l+log n.)]
. i i
nj+...+tng=n i=0
l<n.<n
=g
I<s<t
It has a solution T(n,t) = 0(n log n) [Altenkamp, Mehlhorn].
Variant B:
T(n,t) = a for n < 4
s
T(n,t) = max [= (T(ni,t)+a(1+1og n.)) — max a(l+log ni)]
n+n +...+n =n 1=0 % O<i<s
o | s s bk
l<n.<n
i |
]Esft
It has a solution T{(n,t) = 0(n) [Altenkamp, Mehlhorn].

Bibliography

ALTENKAMP & MEHLHORN: Codes: Unequal Probabilities, Unequal
Letter Costs, Techn. Bericht, Fachbereich 10,

Universitidt des Saarlandes, 6600 Saarbriicken, A 77/13
ASH: Information Theory, Interscience Publishers, N.Y., 1965

BAUER & GOO0S: Informatik, Heidelberger Taschenbilicher, Springer-
Verlag, 1971

BAYER: Improved Bounds on the Costs of Optimal and Balanced

Binary Search Trees, to appear in Acta Informatica

CSISZAR: Simple proofs of some theorems on noiseless channels,

Inf. and Control 14, pp. 285-298, 1969

COT: Characterization and Design of Optimal Prefix Codes,

Ph.D. Thesis, Stanford University, Jume 1977

FREDMAN: Two Applications of a Probabilistic Search Technique,
ACM, Conf. on Theory of Computing, 1975

GILBERT & MOORE: Variable Length Encodings, Bell System Technical
Journal, 38 (1959), 933-968

HU & TUCKER: Optimal Search Trees and Variable Length Alphabetic
Codes, SIAM J. Appl. Math. 21, 1971, 514-532

HUFFMANN: A Method for the Construction of Minimum—-Redundancy
Codes, Proc. IRE 40, 1098-110l, 1952

ITAI: Optimal Alphabetic Trees, SIAM J. Computing, (5),
1976, 9-18

KARP: Minimum Redundancy Coding for the Discrete Noiseless

Channel

KNUTH: Optimum Binary Search Trees, Acta Informatica, I, 1971,

pp. 14-25

KRAUSE: Channels which transmit letters of unequal duration,

Inf. and Control 5, pp. 13-24, 1962

MEHLHORN: Effiziente Algorithmen, Teubner Studienbiicher Informatik,

Stuttgart 1977.

- 34

MEHLHORN: Best Possible Bounds on the Weighted Path Length
of Optimum Binary Search Trees, SIAM J. of Comp.,
Vol. 6, No 2, 1977, 235-239

PERL, GAREY & EVEN: Efficient Generation of Optimal Prefix
Code : Equiprobable Words Using Unequal Cost Letters,
JACM, Vol., 22, No 2, 202-214, April 1975

VAN LEEUWEN: On the construction of Huffmann trees, 3rd ICALP
(1976), 382-4lo0, Ed. S. Michaelson and R. Milner,

Edinburgh University Press

	A_1978_18 0000_1heitscover
	A_1978_18 0002
	A_1978_18 0003
	A_1978_18 0004
	A_1978_18 0005
	A_1978_18 0006
	A_1978_18 0007
	A_1978_18 0008
	A_1978_18 0009
	A_1978_18 0010
	A_1978_18 0011
	A_1978_18 0012
	A_1978_18 0013
	A_1978_18 0014
	A_1978_18 0015
	A_1978_18 0016
	A_1978_18 0017
	A_1978_18 0018
	A_1978_18 0019
	A_1978_18 0020
	A_1978_18 0021
	A_1978_18 0022
	A_1978_18 0023
	A_1978_18 0024
	A_1978_18 0025
	A_1978_18 0026
	A_1978_18 0027
	A_1978_18 0028
	A_1978_18 0029
	A_1978_18 0030
	A_1978_18 0031
	A_1978_18 0032
	A_1978_18 0033
	A_1978_18 0034
	A_1978_18 0035
	A_1978_18 0036

