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Abstract

In this thesis, we introduce subsequence invariants, a new class of invariants
for the specification and verification of systems. Unlike state invariants, which
refer to the state variables of the system, subsequence invariants characterize
the behavior of a concurrent system in terms of the occurrences of sequences of
synchronization events.

The first type of such invariants, pure subsequence invariants, are linear
constraints over the possible numbers of such occurrences, where we allow every
occurrence of a subsequence to be interleaved arbitrarily with other events. We
then describe the more general class of phased subsequence invariants, in which
additional restrictions can be placed on the events that may occur between those
of a given sequence. In either case, subsequence invariants are preserved when
a given process is composed with additional processes. subsequence invariants
can therefore be computed individually for each process and then be used to
reason about the full system.

We present an efficient algorithm for the computation of subsequence in-
variants of finite-state systems. Our construction can be applied incrementally
to obtain a growing set of invariants given a growing set of event sequences.
We then address the problem of proving subsequence invariants of infinite-state
systems. For this we use an abstraction refinement procedure that uses small,
incrementally transformed graph-based abstractions. In order to explain the
techniques we use, we first introduce a simpler version of this method for state-
based properties, and then show how to verify subsequence invariants.
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Zusammenfassung

Inhalt dieser Arbeit sind Subsequenzinvarianten, eine neue Klasse von Invari-
anten für die Systemspezifikation und -verifikation. Im Gegensatz zu zustands-
basierten Invarianten, die über den Zustandsvariablen des Systems definiert
sind, beschreiben Subsequenzinvarianten das gewünschte Systemverhalten an-
hand des Auftretens verschiedener Synchronisationsfolgen.

Wir beschreiben zunächst reine Subsequenzinvarianten, welche durch lineare
Gleichungen auf den möglichen Häufigkeiten solcher Folgen von Events gegeben
sind, zwischen denen jeweils beliebige andere Events autreten dürfen. Im An-
schluss verallgemeinern wir diese zu Subsequenzinvarianten mit Phasen, in de-
nen eine Synchronisationsfolge neben der eigentlichen Folge von Events auch
durch Beschränkungen auf den dazwischen auftretenden Events gegeben sein
kann. Beide Klassen von Invarianten bleiben gültig, wenn ein Prozess, für den
sie gelten, mit beliebigen anderen Prozessen kombiniert wird. Sie können daher
für jeden einzelnen Prozess berechnet und dann zur Verifikation des gesamten
Systems verwendet werden.

Wir präsentieren einen effizienten Algorithmus für die Berechnung von Sub-
sequenzinvarianten auf Systemen mit endlichen Zustandsräumen. Diese Kon-
struktion kann auch inkrementell angewandt werden, wenn die Menge der be-
trachteten Subsequenzen allmählich wächst. Für die Berechnung von Subse-
quenzinvarianten für Systeme mit unendlichem Zustandsraum führen wir eine
Methode ein, die auf dem Prinzip der Abstraktionsverfeinerung basiert. Un-
sere Version dieses Ansatzes zeichnet sich durch die Verwendung sehr kleiner,
graphenbasierter Abstraktionen aus. Wir präsentieren zunächst eine einfachere
Variante des Verfahrens für zustandsbasierte Fehlerbedingungen, an der sich die
verwendeten Operationen leichter demonstrieren lassen, und beschreiben dann
die Anpassungen für die Verifikation von Subsequenzinvarianten.



iii

Acknowledgments

I would like to thank my advisor, Bernd Finkbeiner, for his tireless support and
many inspiring discussions. This thesis would not have been possible without
his insightful advice.
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Gerke, Lars Kuhtz, Andrey Kupriyanov, Hans-Jörg Peter, Markus Rabe, Christa
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Chapter 1

Introduction

The importance of formal verification of reactive systems, i.e. systems which
are engaged in an ongoing interaction with an environment, has become more
and more obvious as the impact of such systems on our daily lives has become
ubiquitous. Such spectacular cases as the Ariane 5 disaster already made the
case for verification of mission-critical software, but nowadays, systems whose
errors can cause significant damage are everywhere, from systems governing
financial transactions to automotive electronics.

The properties we will be treating are safety properties, which express that
some “bad” behavior can never occur in a given system. The usual approach is to
describe the desired system behavior in terms of its states, using a specification
language such as temporal logic. The inherent problem of this idea is that many
critical systems consist of a large number of components, and the state of such a
system is then given by the combination of the component states. The number
of such states therefore grows exponentially with the size of the system.

This inherent state explosion problem has inspired many clever methods
which can mitigate its effect, such as modular verification [41], symmetry and
partial order reduction [35], and directed model checking [76]. Our approach,
on the other hand, introduces an alternative to the state-based approach itself.
We present subsequence invariants, a language for specifying systems in terms
of component interaction.

These subsequence invariants are compositional. This means that an invari-
ant which holds for some component of the system, automatically also holds for
the system as a whole. We can therefore generate the invariants for each process
individually and simply combine to obtain a set of system invariants.

We present invariant generation algorithms for finite-state processes, which
generate all subsequence invariants involving a given set of subsequences in time
linear in the size of the process and cubic in the number of subsequences. This
low time-complexity is another major advantage of our approach.

Many important system classes, such as real-time systems, involve data from
infinite domains. The most successful way of verifying such systems is abstrac-
tion refinement, which is based on a sequence of finite-state abstractions of the
system. We present a version of the abstraction refinement approach which,
using local refinements of a graph-based abstraction, allows the verification of
subsequence invariants of infinite-state systems.

2
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Figure 1.1: Arbiter tree: Access to a shared resource is controlled by binary
arbiters arranged in a tree, with a central root process.

1.1 Subsequence Invariants

A subsequence invariant is a linear constraint over the possible numbers of
occurrences of a finite set of subsequences of synchronization events. Each oc-
currence of a subsequence may be scattered over a sequence of synchronization
events: for example, the sequence acacb contains two occurrences (acacb and
acacb) of the subsequence ab. This robustness with respect to arbitrary inter-
leavings with other events ensures that subsequence invariants are preserved
when a given process is composed with additional processes. Subsequence in-
variants can therefore be computed individually for each process and then be
used to reason about the full system.

As an example, consider the arbiter tree shown in Figure 1.1. The environ-
ment represents the clients of the system, which may request access to a shared
resource from one of the leaf nodes of the arbiter tree. The arbiter node then
sends a request to its parent in the tree. This request is forwarded up to the
central root process, which generates a grant as soon as the resource is available.
The grant is propagated down to a requesting client, which then accesses the
resource and eventually sends a release signal when it is done. Each arbiter node
should satisfy the following subsequence invariants:

(1) Whenever a grant is given to a child, the number of grants given to the
other child so far equals the number of releases received from it. For ex-
ample, for Arbiter 1, each occurrence of gr2 in an event sequence w is
preceded by an equal number of occurrences of gr1 and rel1. As we will
see in the following, this can be expressed in terms of subsequences as:

|w|gr1gr2
= |w|rel1gr2

and, symmetrically, |w|gr2gr1
= |w|rel2gr1

.
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(2) Whenever a grant is given to a child, the number of grants received from
the parent exceeds the number of releases sent to it by exactly 1. For
example, for Arbiter 1, each occurrence of gr1 or gr2 is preceded by one
more occurrence of gr0 than of rel0. This corresponds to the subsequence
invariant

|w|gr0gri
= |w|rel0gri

+ |w|gri
, for i = 1, 2.

(3) Whenever a release is sent to, or a grant received from, the parent, the
number of releases received from each child equals the number of grants
given to that child. For Arbiter 1:

|w|grigr0
= |w|religr0

and |w|grirel0
= |w|relirel0 , for i = 1, 2.

(4) The differences between the corresponding numbers of grants and releases
only take values in {0, 1}. For Arbiter 1, this can be expressed by

|w|grireli
+ |w|religri

= |w|grigri
+ |w|relireli + |w|reli , for i = 0, 1, 2.

Combined, the subsequence invariants (1) - (4) of all arbiter nodes imply
that the arbiter tree guarantees mutual exclusion among its clients.

Phased subsequence invariants. The subsequence invariants we have seen
so far have been pure subsequence invariants, by which we mean that they are
defined in terms of sequences of events without any restrictions on what may
occur in between. Introducing such restrictions increases the expressive power.
In particular, we will present an extension, phased subsequence invariants, which
takes into account possible sets of events which must not occur in between two
successive elements of the sequence. These invariants are thus linear constraints
on expressions such as |w|a{b,c}d: the number of occurrences of a, followed by
an occurrence of d, with no b or c in between.

For example, consider again the arbiter tree. Another property that one
usually wants to require is the following kind of liveness property: After receiving
the grant, an arbiter can only give finitely many grants to its children before
returning the grant to its parent. One way of guarantee this is to impose a
stronger (safety) requirement: Any grant the arbiter receives must be returned
after giving at most one grant to each of its children. This can be expressed
(for Arbiter 1) using a phased sequence invariant which forbids two occurrences
of the event gr i (i = 1, 2) with no occurrence of rel0 in between, i.e. that the
sequence gr i{rel0}gr i never occurs:

|w|gri{rel0}gri
= 0.

In order to additionally specify that, upon receiving a grant, an outstanding
request must be satisfied before the grant is returned, one can use the invariant

|w|reqi{gri}gr0{gri}rel0
= 0.

Note that specifying this property using pure subsequence invariants is not
possible: The closest one can get is something like

|w|reqirel0
= |w|grirel0

,

requiring that whenever the arbiter returns its grant, the child has been given
one grant per request. Unless the clients are restricted from making multiple
requests, this does not capture the intended behavior.
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1.2 Invariant Generation

As we will see in Chapter 2, the behavior of the numbers of subsequence oc-
currences follows some simple linear recurrence relations. In particular, for any
event a and subsequences U = {u1, . . . , un}, there is a matrix Fa such that, for
any w ∈ Σ∗, 


|w.a|u1

...
|w.a|un


 = Fa



|w|u1

...
|w|un


 .

For example, if Σ = {a, b} and U = {ǫ, a, b, ab, ba}, then the matrices are

Fa =




1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 1



, Fb =




1 0 0 0 0
0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 0 0 1



,

so that, starting from the values |ǫ|ǫ = 1 and |ǫ|u = 0 for all other u, we can
obtain the values |abaa|u:




1
0
0
0
0




Fa→




1
1
0
0
0




Fb→




1
1
1
1
0




Fa→




1
2
1
1
1




Fa→




1
3
1
1
2



.

Since subsequence invariants are linear equalities, they can be computed for
a finite-state system by determining, for each state q, the vector space spanned
by the vectors associated to those words for which there is a run to q. This can
be done in time linear in the size of the process and cubic in the number of
subsequences, as we will show in Chapter 3.

Due to the compositionality of subsequence invariants, any invariants ob-
tained for the processes of a system are automatically also system invariants.
There are, however, ways to obtain additional invariants, which we also treat in
Chapter 3. In particular, we will make use of the algebraic and combinatorial
structure of the sets of subsequence occurrences.

We will also show how the set of subsequence invariants of a process can
be extended to accommodate a larger set of subsequences. This allows an in-
cremental invariant generation procedure, which starts with a small core of
subsequences and then gets gradually refined.

1.3 Infinite-State Systems

Many important systems that one wants to verify involve data from infinite
domains, such as the real numbers or a priori unbounded data structures. We
will represent such systems as transition systems consisting of

• a finite set of system variables,

• an initial condition, describing the possible starting states,
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init i = 0, u = 1, v = 1, x = 1, y = 1
rda i < MAX, x = 1, y = 1, u := u+ v, i := i+ 1
rdb i < MAX, x = 1, y = 1, v := u+ v, i := i+ 1
sha i > 0, u > v, u := u− v, x := x+ y, i := i− 1
shb i > 0, u < v, v := v − u, y := x+ y, i := i− 1
wra i = 0, u = 1, v = 1, x > y, x := x− y

wrb i = 0, u = 1, v = 1, x < y, y := y − x

mty i = 0, u = 1, v = 1, x = 1, y = 1
inv |w|rda.rda.mty − |w|wra.wra.mty = 0,

|w|rda.rdb.mty − |w|wra.wrb.mty = 0,
|w|rdb.rda.mty − |w|wrb.wra.mty = 0,
|w|rdb.rdb.mty − |w|wrb.wrb.mty = 0

Figure 1.2: Message buffer example. The table shows the initial condition init ,
the transition relations, and the subsequence invariants.

• a finite set of labeled transitions, representing the possible state transfor-
mations, and

• a set of invariants to be satisfied.

For example, consider the system given in Figure 1.2. It represents a simple
message buffer using a two stacks, each encoded into a pair of integer variables.
After a number of messages (not exceeding a predefined bound MAX) has been
read, the buffer moves the contents of the first stack to the second stack, revers-
ing the order of the messages, and then flushing the second stack to the output,
reversed for the second time. The buffer then is ready to accept messages again.
The invariants specify that, whenever the buffer is empty, the output stream
contains equally many occurrences of aa, ab, ba, and bb as the input stream.

In order to check subsequence invariants on infinite-state systems, we com-
bine the fixed-point iteration introduced for the finite-state case with a special
version of the abstraction refinement approach [36, 21, 5, 18, 25, 39, 56], which
we describe in Chapters 4 and 5. Chapter 4 will concentrate on the refinement
procedure as such, which is also suitable for state-based invariants, in order to
introduce the underlying concepts. Chapter 5 will then describe the handling
of subsequences, in particular the integration of the invariant generation and
abstraction refinement loops.

1.4 Related work

Property specification. Formal specifications of system requirements are an
essential prerequisite for any verification effort. For reactive systems, the allowed
system behavior is usually given in terms of state assertions, using temporal
logics such as LTL [62], CTL [17], and PSL [33], or automata-based models such
as statecharts [38]. While such specifications are expressive, their verification is
inherently state-based and therefore plagued by the state explosion problem.

In order to avoid this problem, it is desirable to not have to explicitly deal
with the system state at all. This can be achieved by specifying the desired
system behavior in terms of the sequences of interactions between processes.
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The treatment of the states and transitions of a process is then only necessary
in order to determine the properties satisfied by the interface of the process.

This kind of specification was pioneered by the stream- and trace-based
approaches of [48, 78, 60, 10]. These approaches make use of operators on se-
quences such as concatenation and projection. A set of sequences can then be
specified by logical formulas involving predicates such as the prefix order, and
linear expressions over lengths of sequences. In particular, constraints such as
(4) in the arbiter example, or more generally linear inequalities on event coun-
ters, are expressible using trace logic formulas. Unlike this subclass of trace
properties, Subsequence Invariants can only specify a finite range of values for
a linear expression, but can involve arbitrary sequences of events. Trace-based
specification logics are very general and expressive, for example the trace logic
of [78, 60] can express any recursively enumerable set of traces (Theorem 4.2.5
in [60]).

By contrast, subsequence invariants are decidable. They condense whole sets
of sequences to a set of linear expressions, thus allowing for fast computation of
an abstraction of the set of interaction sequences in which a process can engage.
Since the precision of this abstraction can be adapted by expanding the set of
subsequences, and the computation can be done incrementally, this provides a
set of efficient algorithmic tools for interaction-based system analysis.

Invariants. There is a significant body of work on the generation of invariants
over program variables, ranging from heuristics (cf. [34]), to methods based on
abstract interpretation (cf. [23, 8, 7, 70]) and constraint solving (cf. [20]). The
key difference to our approach is that, while these approaches aim at finding a
concise characterization of a complex state space, we aim at finding a concise
representation of a complex process interaction. T-invariants, which relate the
number of firings of different transitions in a Petri net, have a similar motiva-
tion (cf. [59]), but are not applied in the compositional manner of subsequence
invariants.

Subsequences. Subsequence occurrences have, to the best of our knowledge,
not been used in verification before. However, there has been substantial interest
in subsequences in the context of formal languages, in particular in connection
with Parikh matrices and their generalizations; see, for example, [65, 53, 66, 24],
as well as Parikh’s original paper [61], introducing Parikh images.

Subsequences are also used in machine learning, in the context of kernel-
based methods for text classification [50]; here the focus is on their use as char-
acteristic values of given pieces of text, not on the characterization of languages
or systems by constraints on their possible values.

Weighted automata. The invariant generation algorithms we investigate can
be formalized in the setting of weighted automata [30]. The general idea is to
associate with each event a a linear transformation over a semiring (in our case,
the field of real numbers). One can then characterize sequences of events by the
vector that is obtained by applying the corresponding sequence of transforma-
tions to some initial vector. The relation to subsequences is given by the fact
that the subsequence counters |w|u evolve according to linear transformations
over the real numbers, see Section 2.2.
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This very general formalism has received a lot of attention for applications
such as natural language processing [58], image processing [47] or enumerative
combinatorics [64], and also for the formal specification of systems [30, 22, 54].
In particular, weights over suitable semirings can be used to model probabilistic
aspects or costs of actions. Unlike our approach, the focus in the latter works is
on the verification of properties of systems which are weighted automata, rather
than the use of weighted automata for the specification of properties. Closest
to our ideas is the recent work of Baier [2] on recognizability of ω-languages by
probabilistic automata.

The general setting of weighted automata is an interesting field for future
extensions of our approach. The generality comes at a price, however: Even
usually simple concepts such as linear independence become nontrivial in general
semirings [1], and even over relatively tame semirings like the integers, properties
of weighted automata can quickly become undecidable [37].

Abstraction. There is a rich literature on predicate abstraction and the ab-
straction refinement loop [36, 21, 5, 18, 25]. Similar to our approach, the model
checker BLAST [40] also uses Craig interpolation [55] for predicate discovery.
Other verification tools, such as the C-code verifier MAGIC [15], propagate
predicates from branch and loop conditions using the weakest precondition op-
erator. Standard approaches to reduce the size of the abstraction are to detect
redundant predicates [19] and to approximate the abstraction, for example by
Cartesian approximation [4, 3, 51].

The key difference between our approach and standard predicate abstraction
is that we use new predicates only locally in order to split individual nodes, while
predicate abstraction interprets every predicate globally in every abstract state.
Our approach can be seen as a generalization of lazy abstraction [39, 56], which
incrementally refines the abstraction with new predicates as the control flow
graph is searched in a forward manner to find an error path. New predicates in
lazy abstraction only affect the subgraph reachable from the current node. Lazy
abstraction thus exploits locality in branches of the control flow graph while our
approach exploits locality in individual nodes of the abstraction.

Our abstraction process is similar to deductive model checking [67], which
also refines an explicit abstraction by splitting individual nodes. While we only
handle safety conditions, deductive model checking provides rules for full linear-
time temporal logic. However, deductive model checking is only partly auto-
mated, relying on the user to select the nodes and predicates for splitting.

Slicing and state space reduction. Program slicing, introduced by
Weiser [75], is a static analysis technique widely used in debugging, program
comprehension, testing, and maintenance. Essentially, slicing extracts the parts
of a program which might affect some given slicing criterion (e.g., a variable at
some control point). Slicing has become one of the standard reduction techniques
in finite-state model checking (for instance in SAL [71], Bandera [31], SPIN [57],
and IF [9]). As a preprocessing step, slicing is both cheap and effective (see [31]
for an experimental evaluation). More recently, slicing has been used in auto-
mated abstraction refinement to simplify abstract error paths (thus analyzing
individual paths, not the full abstraction). Path slicing [46] removes irrelevant
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parts of the abstract error path before the path is passed to the theorem prover
to verify if the path can be concretized.

Usually, the slice is determined by a dependency analysis on the control flow
graph of the program. A more refined technique, taking additional information
about the property under interest into account, is conditioned slicing [14]. Here,
an assumption about the initial (forward conditioning) or final states (backward
conditioning) is added in the form of a predicate, and slicing then only keeps
the statements which can be executed from an initial state or which lead to a
final state satisfying the predicate.

Closest to our work is the backward conditioning approach of [32] (used for
program comprehension, not verification). Backward conditioning proceeds by
a symbolic execution of the program and the use of a theorem prover to prune
the execution paths which do not lead into a desired final state. The analysis
is however always carried out on the concrete program, not its abstraction, and
the technique will – due to its objective of program comprehension – preserve
all paths to the given final states. A use of conditioned slicing in verification can
be found in [72], where the condition is extracted from a temporal logic formula
of the form G(p → q). A conditioning method operating on an abstraction of
the program is presented in [45]. On this abstraction it can be determined under
which conditions one statement might affect another (while for verification we
need to find out whether some condition might hold at all).

Target enlargement [6, 26, 77] is often used in model checking to help de-
tect error paths. Typically, this is done using a size-bounded backward explo-
ration starting from the error states; the resulting underapproximation of the
backwards-reachable states replaces the original error condition in the subse-
quent forward exploration. The rule presented in Section 4.5.4 represents a single
(forward or backward) exploration step, so that the enlargement is incremental
and can be interleaved with the refinement and other slicing operations. Partial
order reduction [44, 35] is a standard method to accelerate the exploration of
the state space during model checking, applied in tools like SPIN [57] and Java
Pathfinder [73]. To the best of our knowledge, the application to an abstraction
during the refinement loop as described in Section 4.5.5 is new.

1.5 Contributions

This thesis introduces subsequence invariants, a specification language for con-
current systems based on their interaction instead of the system state. These
invariants are expressive, yet efficiently computable and compositional, i.e. the
system satisfies all subsequence invariants satisfied by any of its processes.

We show how to compute the set of subsequence invariants over a given set of
subsequences for a finite-state process in time linear in the size of the process.
This algorithm can be further optimized for pure subsequence invariants of
strongly connected processes, and can be extended to an incremental procedure,
capable of dealing with a growing set of subsequences.

We further show how to compute additional system invariants beyond the
ones inherited directly from the processes. In particular, we prove the existence
of classes of tautological subsequence invariants, based on algebraic and combi-
natorial properties of subsequence occurrences.
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We introduce a verification procedure for subsequence invariants of infinite-
state systems, which integrates the invariant generation algorithm for the finite-
state case with abstraction refinement. For this, we use a special refinement
loop which uses strictly local refinement steps and slicing operations on the
abstraction in order to both keep the abstraction small and allow the fixpoint
iteration for the subsequence invariants to proceed incrementally, interleaved
with the refinement loop.

1.6 Organization of the thesis

• In the next chapter, we introduce the class of subsequence invariants. We
present the necessary preliminaries from automata theory and linear alge-
bra, and present a number of useful properties, such as compositionality
and closure under disjunction.

• We then show how to compute these invariants for a finite-state machine,
and discuss ways of obtaining additional invariants. In particular, we intro-
duce a number of families of universally valid linear constraint satisfied by
subsequence counters, which can be used to strengthen the system invari-
ants obtained from processes, and consider the case of an incrementally
growing set of subsequences.

• Next, we introduce the Slicing Abstractions approach to abstraction refine-
ment. In Chapter 4, we first introduce the simpler version of the procedure
for state-based invariants, describing the refinement and slicing operations
involved in the gradual transformation of an abstraction.

• Finally, in Chapter 5, we present the Slicing Abstractions approach for
Subsequence Invariants of infinite-state systems. This procedure integrates
the refinement and slicing operations introduced in the previous chapter
with the invariant generation approach for Subsequence Invariants.

1.7 Publications and Collaborations

The contents of Chapters 2 to 4 is partially based on the following publications:

[11] I. Brückner, K. Dräger, B. Finkbeiner, H. Wehrheim:
Slicing Abstractions.
Fundamentals of Software Engineering (FSEN), 2007.

[12] I. Brückner, K. Dräger, B. Finkbeiner, H. Wehrheim:
Slicing Abstractions.
Extended version of [11], Fundamenta Informaticae (FI), 2008.

[27] K. Dräger, B. Finkbeiner:
Subsequence Invariants.
International Conference on Concurrency Theory (CONCUR), 2008.

[28] K. Dräger, B. Finkbeiner :
Subsequence Invariants.
Extended version of [27], AVACS Technical Report 42, 2008.
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[29] K. Dräger, A. Kupriyanov, B. Finkbeiner, H. Wehrheim:
SLAB: A Certifying Model Checker for Infinite-State Concurrent Systems.
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2010.

The second version of SLAB has been implemented in collaboration with
Andrey Kupriyanov.



Chapter 2

Subsequence Invariants

In this chapter, we introduce the class of subsequence invariants and examine
their properties. We start with an overview of the underlying concepts from
linear algebra and formal language theory.

2.1 Preliminaries

2.1.1 Linear algebra

For a given finite set U , the real vector space RU generated by U consists of all
tuples φ = (φu)u∈U of real numbers indexed by the elements of U .

For a given set of vectors φ1, . . . , φk ∈ RU , the subspace spanned by
φ1, . . . , φk consists of all linear combinations of the φi:

span(φ1, . . . , φk) = {λ1φ
1 + . . . λkφ

k | λi ∈ R}.

Note that we use superscripts for indices in a tuple of vectors or words, and
subscripts for indices within a vector or word. We hope this increases the clarity
of our notation.

A set B = {φ1, . . . , φk} ⊆ RU is linearly independent if the linear combina-
tion λ1φ

1 + · · · + λkφ
k is 0 only for λ1 = · · · = λk = 0. A basis for a subspace

H ⊆ RU is a linearly independent set B with H = span(B).
We assume that the set U is equipped with a total ordering <, i.e.,

U = {u1, . . . , um} with u1 < · · · < um. We write vectors as tuples φ =
(φu1 , . . . , φum)T according to this order. The pivot element pivot(φ) of a vector
φ 6= 0 is the <-least element u such that φu is nonzero.

A set B of nonzero vectors is in reduced echelon form if φpivot(ψ) = 0 for all
φ, ψ ∈ B with φ 6= ψ. Such a B is obviously linearly independent, since for any
linear combination ψ = λ1φ

1 + · · ·+λkφ
k with φi ∈ B, the coefficient ψpivot(φi)

is just λi · φ
i
pivot(φi), which is 0 only if λi = 0.

Given a sequence φ1, φ2, . . . of vectors, we can incrementally compute bases
of span(φ1, . . . , φm) in reduced echelon form using Gauß-Jordan elimination as
follows: Let a basis for span(φ1, . . . φm) be {ψ1, . . . , ψk}, and let φm+1 be the
next vector. We then do the following:

1. Compute a vector η = reduce(φm+1, {ψ1, . . . , ψk}) satisfying

12
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• span(η, ψ1, . . . , ψk) = span(φm+1, ψ1, . . . , ψk), and

• ηui = 0 for all i, where ui = pivot(φi),

by subtracting (φm+1
ui /ψi

ui)ψi from φm+1 for each i.

2. if η = 0, we are done (φm+1 was linearly dependent and therefore redun-
dant).
Otherwise, let v be its pivot element. We reduce each ψi such that ψiv = 0
by subtracting (ψiv/ηv)η, and add η to the set.

The reduce operation generalizes to sets of vectors by

reduce(A,B) := {reduce(η,B)|η ∈ A} \ {0};

a basis in reduced echelon form for span(A ∪B) is then

join(A,B) := reduce(A,B) ∪ reduce(B, reduce(A,B)).

Example: Consider the vectors φ1 = (1, 0,−1, 2)T and φ2 = (0, 1, 1, 1)T in
R{1,...,4}, with pivot elements 1 and 2, respectively. A new vector η = (1, 1, 1, 0)T

would first be reduced to (0, 1, 2,−2)T (by subtracting φ1), and then to
(0, 0, 1,−3)T = η′ (by subtracting φ2), with pivot element 3. Reducing φ1, φ2

with η′, we obtain (1, 0, 0,−1)T and (0, 1, 0, 4)T . We thus get the new basis
{(1, 0, 0,−1)T , (0, 1, 0, 4)T , (0, 0, 1,−3)T }.

The scalar product on RU is given by ψ · φ =
∑
u∈U ψuφu. It extends to a

subspace H ⊆ RU by ψ ·H = {ψ · φ | φ ∈ H}. The orthogonal complement H⊥

of a subspace H ⊆ RU consists of the vectors that are orthogonal to those in
H, i.e., all vectors ψ for which ψ ·H = {0}. Given a basis B in reduced echelon
form for H, a basis for H⊥ is obtained as follows:

Let N ⊆ U be the set of all u ∈ U which are not the pivot element of
any φ ∈ B. For each u ∈ N , define a vector ψu by ψuu = 1, ψuv = 0 for all
v ∈ N \ {u}, and for each φ ∈ B, ψupivot(φ) = −φu/φpivot(φ). For example, given

the basis B = {(1, 0, 0,−1)T , (0, 1, 0, 4)T , (0, 0, 1,−3)T }, we have that N = {4},
and therefore obtain the basis vector ψ4 = (1, 4, 3, 1)T for span(B)⊥.

2.1.2 Alphabets and sequences

An alphabet is a finite set of symbols. For an alphabet Σ, Σ∗ is the set of finite
sequences over Σ. The empty sequence is denoted by ǫ, the composition of two
sequences v, w ∈ Σ∗ by v.w, and the length of a sequence w by |w|.

For alphabets Σ1 ⊆ Σ2, the projection w ↓Σ1
of a sequence w ∈ Σ∗

2 onto Σ1

is defined recursively by

ǫ ↓Σ1
= ǫ, (w.a) ↓Σ1

=

{
(w ↓Σ1

).a if a ∈ Σ1,

w ↓Σ1
otherwise.

We assume given some some total order < on Σ, and equip Σ∗ with the
corresponding length-lexicographical ordering given by u <llex v iff either

• |u| < |v| or

• |u| = |v|, and there are x, y, z ∈ Σ∗, a, b ∈ Σ with a < b, u = xay, v = xbz.
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In particular, elements φ of the vector space RU , generated by a finite subset
U ⊂ Σ∗, are written according to this order, i.e., φ = (φu1 , . . . , φun) for U =
{u1, . . . , un}, u1 <llex · · · <llex u

n.

2.1.3 Communicating automata

The systems that we consider in the first half of this thesis are finite-state
concurrent systems that are given as a set of communicating finite automata.

A (nondeterministic) finite automaton P = (QP ,ΣP , Q
0
P , Q

e
P , TP ) consists

of

• a finite set QP of locations,

• a finite alphabet ΣP of synchronization events,

• sets Q0
P ⊆ QP and QeP ⊆ QP of initial and error locations, and

• a transition relation TP ⊆ QP × ΣP ×QP .

When dealing with automata P1, . . . , Pn, we use i as the subscript instead of
Pi. We omit subscripts whenever they are clear from the context.

We denote (q, a, r) ∈ TP by q
a
→P r. For a sequence w = w1 . . . wn ∈ Σ∗

P ,

q
w
→P r iff q

w1→P · · ·
wn→P r. The language of a location q ∈ QP is the set

L(q) := {w ∈ Σ∗
P : q0

w
→P q for some q0 ∈ Q0}; q is reachable iff L(q) 6= ∅.

We assume in the following that our automata only contain reachable locations.
For a subset Q′ ⊆ QP , the language of Q′, denoted by L(Q′), is the union of
all languages of the locations in Q′. The language of an automaton P is the
language of its locations, L(P ) := L(QP ).

The system automaton P1 ⊗ · · · ⊗ Pn of a system S = (P1, . . . , Pn) of finite
automata is given by (Q,Σ, Q0, Qe,→), where Q = Q1×· · ·×Qn, Σ = Σ1∪· · ·∪

Σn, Q
0 = Q0

1× · · · ×Q
0
n, Q

e = Qe1× · · · ×Q
e
n, and (q1, . . . , qn)

a
→ (r1, . . . , rn) iff

for all i ∈ {1, . . . , n} either

• a ∈ Σi and qi
a
→i ri, or

• a /∈ Σi and qi = ri.

Note that this corresponds to the parallel composition ‖ of Hoare’s CSP [43].
The language L(S) = L(P1⊗· · ·⊗Pn) of S thus consists of all sequences w over
Σ, such that, for each automaton Pi, the projection w↓Σi

to the alphabet Σi is
in the language L(Pi).

2.2 Pure Subsequence Invariants

Throughout this section, we assume given a finite automaton P =
(Q,Σ, Q0, Qe, T ) and a finite, prefix-closed set U = {u1, . . . , un} ⊂ Σ∗, which
we call the set of subsequences.
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2.2.1 Subsequence occurrences

Given two sequences u = u1 . . . uk and w = w1 . . . wn ∈ Σ∗, the set of occur-
rences of u as a subsequence in w is

[w]u := {(i1, . . . , ik) : 1 ≤ i1 < · · · < ik ≤ n,wil = ul for 1 ≤ l ≤ k}.

The set of occurrences is equipped with the product order

(i1, . . . , ik) ≤ (j1, . . . , jk)⇔ il ≤ jl for all l.

Example: For w = aababb and u = ab, there are eight occurrences of u as a
subsequence in w:

aababb,aababb,aababb, aababb, aababb, aababb, aababb, aababb,

which boils down to

[aababb]ab = {(1, 3), (1, 5), (1, 6), (2, 3), (2, 5), (2, 6), (4, 5), (4, 6)}.

The cardinalities of these sets define the numbers of occurrences |w|u :=
card([w]u). These numbers can be computed recursively, using the recurrence
[65]

|w|ǫ = 1, |ǫ|u.b = 0, |w.a|u.b =

{
|w|u.b + |w|u if a = b,

|w|u.b otherwise,

for all u,w ∈ Σ∗, a, b ∈ Σ. The initial case |w|ǫ = 1 may not be immediately
obvious, but can be seen as a consequence of [w]u becoming the singleton set
{()} for u = ǫ, independent of w.

The individual functions w 7→ |w|u give rise to a mapping |.|U from Σ∗ into
RU defined by |w|U = (|w|u1 , . . . , |w|un). For any subsetQ′ ⊆ Q, the subsequence
hull of Q′ is the subspace H(Q′) of RU spanned by the subsequence occurrences
{|w|U : w ∈ L(Q′)}. Subsequence invariants are linear equalities satisfied by
|w|U for all w ∈ L(Q′) or, equivalently, by all φ ∈ H(Q′):

Definition 2.1 A subsequence invariant for Q′ ⊆ Q over U is a vector φ ∈ RU

such that for all w ∈ L(Q′),
∑
u∈U φu|w|u = 0.

Note that although by this definition, subsequence invariants are always
homogeneous, we will in the following often encounter inhomogeneous equations.
In any such case, the constant term c is actually a shorthand for c · |w|ǫ.

The subsequence invariants for Q′ define a linear subspace Γ(Q′) ⊆ RU ,
which is the orthogonal complement of H(Q′) in RU . Special cases are:

• the local subsequence invariants Γ(q) = Γ({q}) at q ∈ Q,

• the global invariants of P , Γ(P ) = Γ(Q), and

• the error conditions Γ(Qe).

The spaces of the invariants satisfy the relation Γ(Q′) =
⋂
q∈Q′ Γ(q).

Requiring invariants to be linear equalities may appear restrictive. In the
remainder of this section we illustrate the expressive power of subsequence in-
variants by translating two useful types of invariants, event conditions and dis-
junctive invariants, to equivalent global subsequence invariants.
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2.2.2 Event conditions.

Properties (1)–(3) of the arbiter tree discussed in the introduction are examples
of situational constraints, stating that a linear equality over the numbers |w|u
should hold whenever some event a ∈ Σ occurs (equivalently, since the invariants
are required to hold for all possible traces, whenever a can occur). This equality
must then be in the space Γ(a) := Γ(Ea) of event conditions for a, where
Ea = {q ∈ Q : (q, a, r) ∈ T for some r} is the set of locations in which an
outgoing a-transition exists. We can resolve event conditions to obtain a global
statement, using subsequences at most one symbol longer than those in U , using
the following theorem:

Theorem 2.2 Let a ∈ Σ and Ea := {q ∈ Q : ∃r, q
a
→ r}. Then

∑
u∈U φu|w|u =

0 for all w ∈ L(Ea) if and only if
∑
u∈U φu|w|u.a = 0 for all w ∈ L(P ).

Proof:

⇒: Proof by induction over w ∈ L(P ), using the assumption
∑
u∈U φu|w|u = 0

for all w ∈ L(Ea).

For w = ǫ, the claim is obviously true since |ǫ|u.a = 0 for all u and a.
For a word w = v.b ∈ L(P ), first note that L(P ) is prefix closed, so that
v ∈ L(P ) can be assumed to satisfy the induction hypothesis.

If b 6= a, then |v.b|u.a = |w|u.a for all u, and the claim follows immediately
from the induction hypothesis.

If b = a, we have |v.a|u.a = |w|u.a + |w|u for all u, and therefore
∑
u∈U φu|v.a|u.a =

∑
u∈U φu|v|u.a +

∑
u∈U φu|v|u.

The first summand is again zero by the induction hypothesis. By definition
of Ea, in order for v.a to be in L(P ), v must be in L(Ea), and therefore,
by the assumption, the second summand is also zero.

⇐: Assume that
∑
u∈U φu|w|u.a = 0 for all w ∈ L(P ), and that there is some

w ∈ L(Ea) for which
∑
u∈U φu|w|u 6= 0. It follows from w ∈ L(Ea) that

both w and w.a are in L(P ). But then, by the second assumption,
∑
u∈U φu|w.a|u.a =

∑
u∈U φu|w|u.a +

∑
u∈U φu|w|u 6=

∑
u∈U φu|w|u.a.

In particular, they cannot both be zero, contradicting the first assumption.

�

Thus, for example, the condition that the left child must have returned all
grants it has received whenever a grant is given to the right child, i.e. that
|w|gr1

= |w|rel1 for all w ∈ L(Egr2
), is equivalent to requiring |w|gr1.gr2 =

|w|rel1.gr2 for all w ∈ L(P ).

2.2.3 Resolving disjunctions.

Consider now the fourth statement in the introductory example: The differences
between the corresponding numbers of grants and releases only take values in
{0, 1}. Such a disjunctive condition can be translated in two steps into an equiv-
alent linear equation: The condition is first transformed into a polynomial equa-
tion (Step 1), and then reduced, using algebraic dependencies, to an equivalent
linear equation (Step 2).
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The first step is standard: The condition

(
∑

u∈U

φ1u|w|u = 0) ∨ (
∑

u∈U

φ2u|w|u = 0)

is equivalent to

(
∑

u∈U

φ1u|w|u) · (
∑

u∈U

φ2u|w|u) = 0.

For the second step, i.e. the transformation of the resulting polynomial equa-
tion into a linear equation, we define, as an auxiliary notion, the set of coverings
of x ∈ Σ∗ by u and v to be

[x]u,v := {((i1, . . . , ik), (j1, . . . , jm)) : i1 < · · · < ik, j1 < · · · < jm,

u = xi1 . . . xik , v = xjl . . . xjm ,

{i1, . . . , ik, j1, . . . , jm} = {1, . . . , |x|}},

i.e., the set of pairs of occurrences of u and v as subsequences of x such that
every index in 1, . . . , |x| is used in at least one of them.

Example: Let x = aabaa, u = aaa, v = aba. The sets of oc-
currences of u and v in x are {(1, 2, 4), (1, 2, 5), (1, 4, 5), (2, 4, 5)} and
{(1, 3, 4), (1, 3, 5), (2, 3, 4), (2, 3, 5)}, respectively. Then [x]u,v consists of those
pairs from [x]u × [x]v satisfying the covering condition:

[aabaa]aaa,aba ={((1, 2, 4), (1, 3, 5)), ((1, 2, 4), (2, 3, 5)), ((1, 2, 5), (1, 3, 4)), ((1, 2, 5), (2, 3, 4)),

((1, 4, 5), (2, 3, 4)), ((1, 4, 5), (2, 3, 5)), ((2, 4, 5), (1, 3, 4)), ((2, 4, 5), (1, 3, 5))}.

Let |w|u,v = card([w]u,v) denote the number of coverings, which can be
computed recursively as follows:

|w|u,ǫ = |w|ǫ,u =

{
1 if u = w,

0 otherwise,
|ǫ|u,v =

{
1 if u = v = ǫ,

0 otherwise,

|w.a|u.b,v.c =





|w|u,v + |w|u.b,v + |w|u,v.c if b = a = c,

|w|u,v.c if b = a 6= c,

|w|u.b,v if b 6= a = c,

0 if b 6= a 6= c.

It is easy to see that for every u, v ∈ Σ∗, the set C(u, v) := {x ∈ Σ∗ : [x]u,v 6= ∅}
of sequences coverable by u and v is finite, since it cannot contain sequences
longer than |u|+ |v|.

Theorem 2.3 (See Theorem 6.3.18 in [65] for an equivalent statement to (2))

1. For all u, v, w ∈ Σ∗, there is a bijection between [w]u × [w]v and⊎
x∈C(u,v)([x]u,v × [w]x), and therefore,

2. For all u, v, w ∈ Σ∗, |w|u · |w|v =
∑
x∈C(u,v) |x|u,v · |w|x.
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Proof:

1. Let u, v, w ∈ Σ∗. For two occurrences i = (i1, . . . , im) ∈ [w]u and j =
(j1, . . . , jn) ∈ [w]v, the shuffle tuple s(i, j) = (s1, . . . , sp) is the unique
ordered tuple containing all elements of the set {i1, . . . , im, j1, . . . , jn}. It
gives rise to ordered embedding tuples l(i, j) = (l1, . . . , lm) and r(i, j) =
(r1, . . . , rn) defined uniquely by ik = slk for k = 1, . . . ,m and jk = srk for
k = 1, . . . , n.

For the word x = ws1 . . . wsp , we obviously have s ∈ [w]x . Also, the
embedding tuples satisfy (l(i, j), r(i, j)) ∈ [x]u,v, because

• for k = 1, . . . ,m, xlk = wslk = wik = uk,

• for k = 1, . . . , n, xrk = wsrk = wjk = vk,

• {l1, . . . , lm, r1, . . . , rn} = {1, . . . , p}.

Together, l, r, s map each pair of occurrences (i, j) ∈ [w]u × [w]v to an
element (l(i, j), r(i, j), s(i, j)) ∈

⊎
x∈C(u,v)([x]u,v × [w]x). We are going to

show that this is a bijection.

For injectivity, assume that for two pairs of tuples (i1, j1) and (i2, j2),
(l(i1, j1), r(i1, j1), s(i1, j1)) = (l(i2, j2), r(i2, j2), s(i2, j2)).

Then for k = 1, . . . ,m,

i1k = slk(i1,j1)(i
1, j1) = slk(i2,j2)(i

2, j2) = i2k,

and for k = 1, . . . , n,

j1k = srk(i1,j1)(i
1, j1) = srk(i2,j2)(i

2, j2) = j2k.

Therefore (i1, j1) = (i2, j2).

For surjectivity, let x ∈ C(u, v), s′ = (s1, . . . , sp) ∈ [w]x, and
(l′, r′) = ((l′1, . . . , l

′
m), (r′1, . . . , r

′
n)) ∈ [x]u,v. Defining i = (i1, . . . , im) =

(s′l′
1

, . . . , s′l′m) and j = (j1, . . . , jn) = (s′r′
1

, . . . , s′r′n), it is easy to check that

• since (l′, r′) ∈ [x]u,v, we have {l
′
1, . . . , l

′
m, r

′
1, . . . , r

′
n} = {1, . . . , p}, and

therefore {i1, . . . , im, j1, . . . , jn} = {s
′
1, . . . , s

′
p}, implying s(i, j) = s′;

• for k = 1, . . . ,m, lk(i, j) is defined to be the unique index such that
ik = slk(i,j)(i, j); in this case, ik = s′l′

k
, for all k, implies l(i, j) = l′;

• analogously, we get r(i, j) = r′.

2. Immediately from the first item, we have

|w|u|w|v = card([w]u × [w]v)

= card(
⊎

x∈C(u,v)

([x]u,v × [w]x))

=
∑

x∈C(u,v)

|x|u,v|w|x.

�

Simple examples for Theorem 2.3 are the equalities |w|2a = 2|w|aa + |w|a
and |w|a|w|b = |w|ab + |w|ba. For u = ab and v = ba, we obtain the equality
|w|ab|w|ba = |w|aba + |w|bab + |w|abab + 2|w|abba + 2|w|baab + |w|baba.



2.2. PURE SUBSEQUENCE INVARIANTS 19

The degree k polynomial equation p(|w|u1 , . . . , |w|un) = 0 resulting from
Step 1 can then be transformed into a linear equation using the equalities from
Theorem 2.3. This linear equation involves subsequences of length up to k · l,
where l is the maximum length of any u ∈ U .

Example: For property (4) from the introduction, we obtain

|w|gri
− |w|reli ∈ {0, 1}
⇔ (|w|gri

− |w|reli)(|w|gri
− |w|reli − 1) = 0

⇔ |w|2gri
− 2|w|gri

|w|reli + |w|
2
reli
− |w|gri

+ |w|reli = 0

⇔ |w|gri.gri
+ |w|reli.reli + |w|reli = |w|gri.reli

+ |w|reli.gri
.

This technique can also be applied to more complicated constraints: An
alternative characterization of Arbiter 1 is given by the requirement that for all
w ∈ L(P ),



|w|gr0

− |w|rel0
|w|gr1

− |w|rel1
|w|gr2

− |w|rel2


 ∈







0
0
0


 ,



1
0
0


 ,



1
0
1


 ,



1
1
0





 .

Note that the possible values for the linear expressions are mutually dependent.
The set of vectors on the right-hand side can be characterized as the set of all
(x, y, z)T for which x2 − x, y2 − y, z2 − z, xy − y, xz − z and yz are all zero.
Plugging x = |w|gr0

− |w|rel0 , y = |w|gr1
− |w|rel1 , z = |w|gr2

− |w|rel2 into these
polynomials using Theorem 2.3, we can again obtain an equivalent set of linear
subsequence constraints. In general, we have:

Theorem 2.4 Let card(U) = n, M ∈ Rk×n, and φ1, . . . , φm ∈ Rk. Then the
constraint given by M |w|U ∈ {φ

1, . . . , φm} is equivalent to a finite set of linear
subsequence constraints involving subsequences of length ≤ l ·m, where l is the
maximum length of any u ∈ U .

Proof: Using standard methods from algebraic geometry, one can find polyno-
mials p1, . . . , pN of degree at most m, such that

{φ1, . . . , φm} = {φ ∈ R : pi(φ) = 0 for all i}.

One straightforward, though usually inefficient, way of finding such a set of
polynomials consists of:

• picking for each i a system li1 = 0, . . . , lik = 0 of linear equations whose sole

solution is φi, so that the solutions of
∨m
i=1

∧k
j=1 l

i
j = 0 are φ1, . . . , φm,

• transforming this formula into conjunctive normal form, and

• obtaining from each conjunct l1j1 = 0 ∨ · · · ∨ lmjm = 0 the equivalent poly-

nomial equation l1j1 · · · · · l
m
jm

= 0.
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In the example, choosing equalities that hold for as many points as possible,
this gives:

{(0, 0, 0)T , (1, 0, 0)T , (1, 0, 1)T , (1, 1, 0)T }
= {(x, y, z)T | (x = y + z ∧ y = 0 ∧ z = 0) ∨ (x = 1 ∧ y = 0 ∧ z = 0)∨

(x = y + z ∧ x = 1 ∧ y = 0) ∨ (x = y + z ∧ x = 1 ∧ z = 0)}
= {(x, y, z)T | (x = y + z ∨ x = 1) ∧ (x = y + z ∨ y = 0) ∧ (x = y + z ∨ z = 0)∧

(x = 1 ∨ y = 0) ∧ (x = 1 ∨ z = 0) ∧ (y = 0 ∨ z = 0)}
= {(x, y, z)T | (x− y − z)(x− 1) = (x− y − z)y = (x− y − z)z =

(x− 1)y = (x− 1)z = yz = 0}
= {(x, y, z)T | x2 − x = y2 − y = z2 − z = xy − y = xz − z = yz = 0}

As before, by Theorem 2.3, there is an equivalent linear subsequence invariant
for each of the conditions pi(|w|U ) = 0, involving subsequences no longer than
l · deg(pi) ≤ l ·m. �

2.3 Phased Subsequences

In this section, we generalize subsequences to obtain more expressive classes of
invariants. We use an extension of subsequences which can additionally restrict
the sets of events that may occur between the events of the actual sequence.
The resulting phased subsequence invariants can, for example, express properties
such as bounded overtaking.

Phased subsequence invariants behave almost as nicely as pure subsequence
invariants. In particular, they can also be efficiently computed for individual
processes, and allow similar handling of event conditions and disjunctions.

2.3.1 Phased subsequence occurrences

Definition 2.5 A phased subsequence u = σ0e1σ1 . . . enσn over an alphabet Σ
of events is given by

• required events e1, . . . , en ∈ Σ, and

• sets σ0, . . . , σn ⊆ Σ of forbidden events.

We define the length |u| of a phased subsequence to be the number n of required
events. For a word w ∈ Σ∗, the set [w]u of occurrences of u in w consists of all
index tuples i = (i1, . . . , in) satisfying

• 1 ≤ i1 < · · · < in ≤ |w|,

• wik = ek for 1 ≤ k ≤ n,

• wj ∈ Σr σk for ik < j < ik+1, 0 ≤ k ≤ n,

where we extend i by i0 = 0, in+1 = |w| + 1. We again denote the number of
occurrences by

|w|u := card([w]u).
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Example: The occurrences of the phased subsequence u = ∅ a{b}a ∅ in w
correspond to those pairs of occurrences of a in w with no intervening b. In
particular, for w = aabacaab, we get |w|u = 4, where the occurrences are

aabacaab, aabacaab, aabacaab, aabacaab,

corresponding to the index tuples

{(1, 2), (4, 6), (4, 7), (6, 7)}.

Note that phased subsequences with σi = ∅ for all i are equivalent to pure
subsequences; we will usually omit ∅, so that for example the above u will simply
be written as a{b}a.

Just as for pure subsequence invariants, there are linear recurrences which
can be used to compute |w|u: For an arbitrary word w ∈ Σ∗, phased subsequence
u, events a, e ∈ Σ and set of events σ ⊆ Σ,

|w|σ =

{
1 w ∈ (Σr σ)∗

0 otherwise
, |ǫ|u.e.σ = 0,

|w.a|u.e.σ =

{
|w|u.e.σ a /∈ σ

0 otherwise
+

{
|w|u a = e

0 otherwise.

Subsequence invariants then generalize in a straightforward manner: Let
P = (Q,Σ, Q0, Qe, T ) be a finite automaton, and let U be a set of phased
subsequences which is prefix-closed, in the sense that for each u.e.σ ∈ U , u is
also contained in U . We again assume given some order on U . For a word w,
we get the phased subsequence image |w|U = (|w|u1 , . . . , |w|un) ∈ RU , where
u1, . . . , un are the elements of U ordered according to <. A phased subsequence
invariant of Q′ ⊆ Q is then a vector φ ∈ RU such that for all w ∈ L(Q′),∑
u∈U φu|w|u = 0.

Example: One common requirement for automated teller machines is that
after three consecutive failures to enter the correct PIN, the machine should
refuse the transaction. One way of specifying this kind of requirement is

|w|fail{ok}fail{ok}fail.proceed = 0,

i.e. whenever a proceed event occurs, the number of occurrences of
fail{ok}fail{ok}fail must be zero. This is again an example of an event con-
dition, which we can treat just as for pure subsequence invariants:

Theorem 2.6 Let a ∈ Σ and Ea := {q ∈ Q : q
a
→ r for some r ∈ Q}. Then∑

u∈U φu|w|u = 0 for all w ∈ L(Ea) if and only if
∑
u∈U φu|w|u.a = 0 for all

w ∈ L(P ).

Proof: We proceed just as in the case of pure subsequence invariants, keeping
in mind that u.a is a shorthand for u.a.∅:

⇒: Induction over w ∈ L(P ). For w = ǫ, we have |w|u.a = 0 by definition. For
the step w → w.b, we consider the two cases:
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If b 6= a, then by the recurrence and the induction hypothesis

|w.b|u.a =

{
|w|u.a a /∈ ∅

0 otherwise
= |w|u.a = 0.

If b = a, then

|w.b|u.a =

{
|w|u.a a /∈ ∅

0 otherwise
+ |w|u = |w|u.a + |w|u = |w|u,

which is again 0 since by definition of Ea, w must be in L(Ea).

⇐: Assume that
∑
u∈U φu|w|u.a = 0 for all w ∈ L(P ), and that there is some

w ∈ L(Ea) for which
∑
u∈U φu|w|u 6= 0.

It follows from w ∈ L(Ea) that both w and w.a are in L(P ). But then, by
the second assumption, and using a /∈ ∅,
∑
u∈U φp|w.a|u.a =

∑
u∈P φu|w|u.a +

∑
u∈U φu|w|u 6=

∑
u∈U φu|w|u.a.

In particular, they cannot both be zero, contradicting the first assumption.

�

2.3.2 Resolving disjunctions.

Slightly more complicated is the proof that phased subsequence invariants are
also able of expressing disjunctive invariants. Just as in Section 2.2.3, the first
step is to transform the disjunction

(
∑

u∈U

φ1u|w|u = 0) ∨ (
∑

u∈U

φ2u|w|u = 0)

into the equivalent polynomial equation

(
∑

u∈U

φ1u|w|u) · (
∑

u∈U

φ2u|w|u) = 0.

In order to obtain from this an equivalent linear equation, we extend the
notion of covering from Section 2.2.3 to phased subsequences:

Definition 2.7 Let u = σu0 e
u
1σ

u
1 . . . e

u
l σ

u
l , v = σv0e

v
1σ

v
1 . . . e

v
mσ

v
m, and x =

σx0 e
x
1σ

x
1 . . . e

x
nσ

x
n be phased subsequences over Σ. A covering of x by u and v

is a pair of index tuples ((i1, . . . , il), (j1, . . . , jm)) such that

1. ((i1, . . . , il), (j1, . . . , jm)) is a covering of the pure subsequence ex1 . . . e
x
n by

eu1 . . . e
u
l and ev1 . . . e

v
m in the sense of Section 2.2.3:

(a) 1 ≤ i1 < · · · < il ≤ n, 1 ≤ j1 < · · · < jm ≤ n,

(b) exip = eup for 1 ≤ p ≤ l, exjp = evp for 1 ≤ p ≤ m,

(c) {i1, . . . , il} ∪ {j1, . . . , jm} = {1, . . . , n},
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u ∅ b {c} b {c} a ∅
x {c} b {c} b {a, c} a {b, c} a {b}
v {c} b {a} a {b}

Figure 2.1: A covering of phased subsequences: In addition to the covering con-
ditions for pure subsequences, events in x which are not used by u (resp. v)
must be allowed by the relevant set of forbidden events. For example, the first
b in x is not used by v, but is allowed by σv0 = {c}.

2. The sets of forbidden events in x are the unions of those in u, v at the
corresponding positions, and the interleaving of the eup and evq is consistent
with the σvq , σ

u
p .

To make this precise, set i0 = j0 = 0 and il+1 = jm+1 = n+1, and define
bi(p) = max{q | iq ≤ p} and bj(p) = max{q | jq ≤ p} for p ∈ {0, . . . , n}.
Then i, j need to satisfy:

(a) σxp = σubi(p) ∪ σ
v
bj(p)

for 0 ≤ p ≤ n,

(b) for 0 ≤ q ≤ l and iq < p < iq+1, e
x
p /∈ σ

u
q ,

(c) for 0 ≤ q ≤ m and jq < p < jq+1, e
x
p /∈ σ

v
q .

Example: Consider the phased subsequences in Figure 2.1,

u = ∅ b{c}b{c}a ∅, v = {c}b{a}a{b}, x = {c}b{c}b{a, c}a{b, c}a{b}.

The pair of index tuples i = (1, 2, 4), j = (2, 3) is a covering of x by u and v,
because:

1. ((1, 2, 4), (2, 3)) is a (pure subsequence) covering of bbaa by bba and ba,

2. the conditions involving the σk are satisfied: The functions bi, bj in this
case take the values
bi : [0 7→ 0, 1 7→ 1, 2 7→ 2, 3 7→ 2, 4 7→ 3] ,
bj : [0 7→ 0, 1 7→ 0, 2 7→ 1, 3 7→ 2, 4 7→ 2], and

(a) σx0 = {c} = ∅ ∪ {c} = σu0 ∪ σ
v
0 ,

σx1 = {c} = {c} ∪ {c} = σu1 ∪ σ
v
0 ,

σx2 = {a, c} = {c} ∪ {a} = σu2 ∪ σ
v
1 ,

σx3 = {b, c} = {c} ∪ {b} = σu2 ∪ σ
v
2 ,

σx4 = {b} = ∅ ∪ {b} = σu3 ∪ σ
v
2 ,

(b) ex3 = a /∈ {c} = σu2 ,

(c) ex1 = b /∈ {c} = σv0 , and e
x
4 = a /∈ {b} = σv2 .

We let [x]u,v be the set of all coverings of x by u and v, and |x|u,v = card([x]u,v)
its cardinality. Obviously, the set C(u, v) := {x : [x]u,v 6= ∅} must be finite for
any u, v. Again, there is a linear recurrence which allows the values |x|u,v to be
computed recursively:
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|σx|u,v =

{
1 if u = σu, v = σv with σ = σu ∪ σv

0 otherwise,

|x.ex.σx|u.eu.σu,σv =

{
|x|u,σv if ex = eu /∈ σv, σx = σu ∪ σv

0 otherwise,

|x.ex.σx|σu,v.ev.σv =

{
|x|σu,v if ex = ev /∈ σu, σx = σu ∪ σv

0 otherwise,

|x.ex.σx|u.eu.σu,v.ev.σv =

{
|x|u,v.ev.σv if ex = eu /∈ σv, σx = σu ∪ σv

0 otherwise

+

{
|x|u.eu.σu,v if ex = ev /∈ σu, σx = σu ∪ σv

0 otherwise

+

{
|x|u,v if ex = eu = ev, σx = σu ∪ σv

0 otherwise.

We can now state the analogue of Theorem 2.3 for phased subsequences:

Theorem 2.8 1. For all w ∈ Σ∗ and all phased subsequences u, v over Σ,
there is a bijection between [w]u × [w]v and

⊎
x∈C(u,v)([x]u,v × [w]x), and

therefore,

2. For all w ∈ Σ∗ and all phased subsequences u, v over Σ, |w|u|w|v =∑
x∈C(u,v) |x|u,v|w|x.

Proof:

1. Let w ∈ Σ∗, and let u, v be two phased subsequences over Σ. For two
occurrences i = (i1, . . . , im) ∈ [w]u and j = (j1, . . . , jn) ∈ [w]v, the shuffle
tuple s(i, j) = (s1, . . . , st) is the unique ordered tuple containing all ele-
ments of the set {i1, . . . , im, j1, . . . , jn}. It gives rise to ordered embedding
tuples l(i, j) = (l1, . . . , lm) and r(i, j) = (r1, . . . , rn) defined uniquely by
ik = slk for k = 1, . . . ,m and jk = srk for k = 1, . . . , n. We also use the
bottom functions bl(p) = max{q : lq ≤ p} and br(p) = max{q : rq ≤ p} for
1 ≤ p ≤ t, where again we set i0 = j0 = 0, such that bl(p) = 0 for p < l1,
br(p) = 0 for p < r1.

Define a new phased subsequence x = σx0 e
x
1σ

x
1 . . . e

x
t σ

x
t by

• exp = wsp for 1 ≤ p ≤ t,

• σxp = σubl(p) ∪ σ
v
br(p)

for 0 ≤ p ≤ t.

We will show first that s is an occurrence of x in w, and (l, r) is a covering
of x by u and v.

• s ∈ [w]x:
The definitions of s and x directly give us

– 1 ≤ min(i1, j1) = s1 < · · · < st = max(im, jn) ≤ |w|, and

– wsp = exp for 1 ≤ p ≤ t.
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For the intermediate words, let sp < q < sp+1 for some p. Then, by
the definition of bl and br,

ibl(p) < q < ibl(p)+1 and jbr(p) < q < jbr(p)+1.

Since i and j are occurrences of u and v, it follows that wq /∈ σ
u
bl(p)

and wq /∈ σ
v
br(p)

. Therefore, by the definition of σxp ,

wq ∈ Σr σxp .

• (l, r) ∈ [x]u,v:
For the covering conditions, we get directly from the definitions of s,
l and r that

– 1 ≤ l1 < · · · < lm ≤ t and 1 ≤ r1 < · · · < rn ≤ t,

– xlp = wslp = wip = up for 1 ≤ p ≤ m and xrp = wsrp = wjp = vp
for 1 ≤ p ≤ n,

– For 1 ≤ p ≤ t, there is some q such that sp = iq, and therefore
p = lq, or sp = jq, and therefore p = rq. Since 1 ≤ lq ≤ t and
1 ≤ rq ≤ t for all q, {l1, . . . , lm, r1, . . . , rn} = {1, . . . t}.

From the definition of σxp ,

– σxp = σu
bl(p)
∪ σv

br(p)
.

– If lq < p < lq+1, then iq < sp < iq+1, and, since i is an occurrence
of u, exp = wsp /∈ σ

u
q .

– analogously, if rq < p < rq+1, then e
x
p /∈ σ

v
q .

Together, l, r, s map each pair of occurrences (i, j) ∈ [w]u × [w]v to an
element (l(i, j), r(i, j), s(i, j)) ∈

⊎
x∈C(u,v)([x]u,v × [w]x).

Bijectivity can then be proved exactly as in the proof of theorem 2.3:

For injectivity, assume that for two pairs of tuples (i1, j1) and (i2, j2),
(l(i1, j1), r(i1, j1), s(i1, j1)) = (l(i2, j2), r(i2, j2), s(i2, j2)).

Then for k = 1, . . . ,m,

i1k = slk(i1,j1)(i
1, j1) = slk(i2,j2)(i

2, j2) = i2k,

and for k = 1, . . . , n,

j1k = srk(i1,j1)(i
1, j1) = srk(i2,j2)(i

2, j2) = j2k.

Therefore (i1, j1) = (i2, j2).

For surjectivity, let x ∈ C(u, v), s′ = (s1, . . . , su) ∈ [w]x, and
(l′, r′) = ((l′1, . . . , l

′
m), (r′1, . . . , r

′
n)) ∈ [x]u,v. Defining i = (i1, . . . , im) =

(s′l′
1

, . . . , s′l′m) and j = (j1, . . . , jn) = (s′r′
1

, . . . , s′r′n), it is easy to check that

• since (l′, r′) ∈ [x]u,v, we have {l
′
1, . . . , l

′
m, r

′
1, . . . , r

′
n} = {1, . . . , p}, and

therefore {i1, . . . , im, j1, . . . , jn} = {s
′
1, . . . , s

′
u}, implying s(i, j) = s′;

• for k = 1, . . . ,m, lk(i, j) is defined to be the unique index such that
ik = slk(i,j)(i, j); in this case, ik = s′l′

k
, for all k, implies l(i, j) = l′;

• analogously, we get r(i, j) = r′.
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2. Immediately from the first item, we have

|w|u|w|v = card([w]u × [w]v)

= card(
⊎

x∈C(u,v)

([x]u,v × [w]x))

=
∑

x∈C(u,v)

|x|u,v|w|x.

�





Chapter 3

Computing Subsequence

Invariants

In this chapter, we present algorithms that automatically compute all invariants
of an automaton for a given set of subsequences. Since the set of invariants is in
general infinite, it is represented algebraically by a finite set of generators. Based
on the synthesis algorithms, we propose the following verification technique for
subsequence invariants:

To prove a desired system property ϕ, we first choose, for each process, a
set U of relevant subsequences and then synthesize a basis of the subsequence
invariants over U . The invariants computed for each individual process translate
to invariants of the system. If ϕ is a linear combination of the system invariants,
we know that ϕ itself is a valid invariant.

The only manual step in this technique is the choice of an appropriate set
of subsequences, which depends on the complexity of the interaction between
the processes. A practical approach is therefore to begin with a small set of
subsequences and then incrementally compute a growing set of invariants based
on a growing set of subsequences until ϕ is proved.

3.1 Computing Process Invariants

In this section, we present two algorithms for computing the subsequence invari-
ants of a given finite automaton P = (Q,Σ, Q0, Qe, T ) with respect to a finite,
prefix-closed set U of subsequences. The first algorithm is generally applicable.
The second algorithm is a more efficient solution that is applicable if the state
graph is strongly connected, and the subsequences are all pure.

The underlying principle is the same for both algorithms: We use a fix-
point iteration to compute, for each location q, the subsequence hull H(q) =
span(|w|U : w ∈ L(q)). The tuple formed by the H(q) is the minimal tuple of the
form (Vq)q∈Q such that for each initial q, Vq contains |ǫ|U , and for all transitions

q
a
→ r, Vr contains the image of Vq under the linear transformation Fa which

represents the effect of appending an a, i.e. which satisfies Fa|w|U = |w.a|U for
all w. The orthogonal complement of the sum of the Hq is the set of subsequence
invariants.

28
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Data: Automaton P = (Q,Σ, q0, T ), finite prefix-closed U ⊂ Σ∗

Result: Bases Bq for the subspaces H(q) = span(|w|U : w ∈ L(q))
// Initialization:

foreach q ∈ Q do Bq := ∅;
// Bq0 initially contains {|ǫ|U}
Bq0 := {|ǫ|U};
// The open list, containing pairs (q, ψ) to be explored

O := {(q0, |ǫ|U )};
// Basis construction:

while O 6= ∅ do
take (q, ψ) from O;

foreach q
a
→ r do

η := Faψ;
begin reduce η with Br:

foreach φ ∈ Br do
v := pivot(φ);
η := η − (ηv/φv)φ;

end

if η 6= 0 then
v := pivot(η);
foreach φ ∈ Br do

φ := φ− (φv/ηv)η;

Br := Br ∪ {η};
O := O ∪ {(r, η)};

Algorithm 1: Fixpoint iteration computing the subspaces H(q).

3.1.1 The general algorithm

The starting point of the computation of the H(q) is the initial vector |ǫ|U .
From the base case of the recurrence relations for |w|u, we get the definition

|ǫ|U = (|ǫ|u)u∈U : |ǫ|u =

{
1 if |u| = 0

0 otherwise.

The fact that for any transition q
a
→ r and any word w ∈ L(q), the word w.a

must be in L(r) is then reflected by requiring that for any vector φ ∈ H(q), the
vector Faφ must be in H(r), where Fa is a matrix such that Fa|w|U = |w.a|U
for any w. This means that Fa consists of the coefficients of the recurrences for
|w.a|U in terms of |w|U , i.e.

Fa = (fu,v)u,v∈U : fu,v =

{
1 if u = v.a.σ or u = v, a /∈ σu

|u|,

0 otherwise.

For example, for U = {ǫ, a{a}, a{b}, a{a}b, a{b}a},

|ǫ|U =

(
1

0

0

0

0

)
, |w.a|U =

(
1 0 0 0 0

1 0 0 0 0

1 0 1 0 0

0 0 0 1 0

0 0 1 0 1

)
|w|U , |w.b|U =

(
1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 1 0 1 0

0 0 0 0 1

)
|w|U .
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To compute the invariants, we determine, for all q ∈ Q, a basis of the subse-
quence hull H(q) = span({|w|U : w ∈ L(q)}), using the fixpoint iteration shown
in Figure 1.

Theorem 3.1 1. The sets Bq computed by the fixpoint iteration shown in
Figure 1 are bases for the vector spaces H(q) spanned by {|w|U : w ∈ L(q)}.

2. When called for an automaton P = (Q,Σ, Q0, Qe, T ) with card(T ) = m
and U ⊂ Σ∗ with card(U) = n, the fixpoint iteration terminates in time
O(mn3).

Proof:

1. Note first that the elements ofBq are linearly independent. This is achieved
by the reduction step; if a vector ψ is a linear combination of the elements
of Bq found so far, it will be reduced to 0 and discarded.

We can prove inductively that all elements of the Bq are linear combina-
tions of the vectors {|w|U : w ∈ L(q)}:

• Initially, the only elements of any Bq are |ǫ|U ∈ Bq0 for all q0 ∈ Q0.
This fulfills the condition, since ǫ ∈ L(q0).

• Let ψ = Faφ be generated from a vector φ ∈ Bq, for a transition

q
a
→ r. By the induction hypothesis, φ = λ1|w

1|U + · · ·+ λk|w
k|U for

some λi ∈ R and wi ∈ L(q). But then ψ = Faφ = λ1Fa|w
1|U + · · ·+

λkFa|w
k|U = λ1|w

1.a|U + · · ·+ λk|w
k.a|U ∈ H(r), since wi.a ∈ L(r).

The reduction with the existing elements of Br, which are also in
H(r) by the induction hypothesis, does not change this.

Assume now that there are r ∈ Q and w ∈ L(r) such that |w|U is not in
span(Br). Obviously, w 6= ǫ, since the only r with ǫ ∈ L(r) are the r ∈ Q0,
and for them Br is initialized such that it contains |ǫ|U .

So we have w = v.a for some v ∈ Σ∗ and a ∈ Σ, and there is a q ∈ Q
satisfying v ∈ L(q) and q

a
→ r.

We can assume without loss of generality that r, w were picked such that
w is a minimal unrepresented word, in the sense that the vector |v|U
associated to its prefix v is in span(Bp) for all p ∈ Q with v ∈ L(p). But
then we have that |v|U = λ1φ

1+ · · ·+λkφ
k, where Bq = {φ

1, . . . , φk}, and
therefore |w|U = Fa|v|U = λ1Faφ

1 + · · · + λkFaφ
k. Each of the vectors

Faφ
i is generated in the course of the algorithm, and only discarded if it is

linearly dependent of the existing elements of Br; in particular, all Faφ
i,

and therefore also |w|U , are in the space spanned by Br, a contradiction.

2. Obviously, the time used by the initialization is trivial, and the relevant
part of the algorithm is the while loop.

Observe that each transition q
a
→ r is used for computation of a vector

ψ = Faφ exactly once for every basis element φ ∈ Bq, i.e., dimH(q) ≤ n
times. This gives a total of O(mn) iterations, each with

• a matrix-vector multiplication; the special form of the Fa allows this
to be done in time O(n) - basically, for each u ∈ U , ψu = φu or
ψu = φu + φv, where u = v.a,



3.1. COMPUTING PROCESS INVARIANTS 31

Data: Automaton P = (Q,Σ, Q0, Qe, T ), finite prefix-closed U ⊂ Σ∗

Result: Bases Bq for the subspaces H(q) = span(|w|U : w ∈ L(q))
// Initialization:

pick s ∈ Q; Ms := Id ; Bs := ∅; O := {s};
C := ∅; D := ∅;
if s ∈ Q0 then D := D ∪ {Id};
while O 6= ∅ do

take q from O;
foreach r

a
→ q do

N :=MqFa;
if Mr not yet defined then

define Mr := N ;
O := O ∪ {r};
if r ∈ Q0 then D := D ∪ {Mr} ; // new prefix r → s

else if Mr 6= N then

C := C ∪ {NM−1
r }; // new cycle through r

foreach M ∈ D do O := O ∪ {M(1, 0, . . . , 0)T };
while O 6= ∅ do

take η from O; begin reduce η with Bs:
foreach φ ∈ Bs do

v := pivot(φ);
η := η − (ηv/φv)φ;

end

if η 6= 0 then
foreach M ∈ C do O := O ∪ {Mη};
begin reduce Bs with η:

v := pivot(η);
foreach φ ∈ Bs do φ := φ− (φv/ηv)η;

end

Bs := Bs ∪ {η};

foreach q ∈ Q \ {s} do
Bq := {M

−1
q φ : φ ∈ Bs}

Algorithm 2: Local fixpoint iteration computing the subspaces H(q).

• a reduction of the vector ψ, using the ≤ n vectors already in Br, with
a time complexity of O(n2).

The reduction is the dominant step here, resulting in the overall complex-
ity of O(mn3).

�
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3.1.2 An optimized algorithm for strongly-connected au-

tomata

For a set U of pure subsequences, the recurrence matrices are given by

Fa = (fu,v)u,v∈U : fu,v =

{
1 if u ∈ {v, v.a},

0 otherwise.

For example, for U = {ǫ, a, b, aa, ab, ba, bb},

|w.a|U =




1 0 0 0 0 0 0

1 1 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 0 0 1 0 0

0 0 1 0 0 1 0

0 0 0 0 0 0 1


|w|U , |w.b|U =




1 0 0 0 0 0 0

0 1 0 0 0 0 0

1 0 1 0 0 0 0

0 0 0 1 0 0 0

0 1 0 0 1 0 0

0 0 0 0 0 1 0

0 0 1 0 0 0 1


|w|U .

These matrices are unit lower triangular matrices (recall that U is ordered by
<llex) and thus have determinant 1; their inverses are

F−1
a = (bu,v)u,v∈U : bu,v =

{
(−1)k if u = v.ak, k ≥ 0,

0 otherwise.

For the above example, this gives us

|w|U =




1 0 0 0 0 0 0

−1 1 0 0 0 0 0

0 0 1 0 0 0 0

1 −1 0 1 0 0 0

0 0 0 0 1 0 0

0 0 −1 0 0 1 0

0 0 0 0 0 0 1


|w.a|U =




1 0 0 0 0 0 0

0 1 0 0 0 0 0

−1 0 1 0 0 0 0

0 0 0 1 0 0 0

0 −1 0 0 1 0 0

0 0 0 0 0 1 0

1 0 −1 0 0 0 1


|w.b|U .

If P is also strongly connected, i.e., there is a path from q to r for all
locations q, r ∈ Q, we can improve the construction of the invariants. Since the
matrices Fa are invertible, for w = w1 . . . wn such that q

w
→ r, the composition

Fw = Fwn
. . . Fw1

is an isomorphism from H(q) to its image Fw(H(q)) ⊆ H(r),
implying in particular dim(H(q)) ≤ dim(H(r)). In the strongly connected case,
this implies dim(H(q)) = dim(H(r)) for all q, r, and H(r) = Fw(H(q)), i.e., Fw
is an isomorphism from H(q) to H(r) when q

w
→ r.

The local fixpoint iteration shown in Figure 2 exploits this observation by
effectively ”pulling back” the computation of the subsequence hulls to a single
location. It does so by finding, for some chosen location s,

• isomorphisms Mq : H(q)→ H(s) for all q ∈ Q,

• a set C of automorphisms of H(s) corresponding to a cycle basis of the
automaton, and

• a set D containing one isomorphism from H(q) to H(s) for each q ∈ Q0,
corresponding to some prefix leading from q to s.

The construction of the basis of H(s) starts with the vectors M(1, 0, . . . , 0)T ,
for M ∈ D. The full basis then consists of the closure of this set with respect
to the matrices in C. For all other q ∈ Q, H(q) is obtained from H(s) via Mq.
The main advantage of this algorithm is the lower number of reduction steps if
the cycle degree card(T )− card(Q) + 1 of P is small compared to card(T ):

Theorem 3.2 1. The set Bs computed by the local fixpoint iteration shown
in Figure 2 forms a basis of H(s).
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2. When called for an automaton P = (Q,Σ, Q0, Qe, T ) with card(T ) = m
and cycle degree γ := card(T )− card(Q)+1, and U ⊂ Σ∗ with card(U) =
n, the local fixpoint iteration terminates in time O(mn2 + γn3).

Proof:

1. As in the general algorithm, reduction of each candidate vector ψ with
the existing elements of Bs keeps Bs linearly independent.

The proof for Bs ⊂ H(s) relies on the above observation that in the
strongly connected case, Fa is an isomorphism from H(q) to H(r) for all

q
a
→ r. The initial elements M(1, 0, . . . , 0)T =M |ǫ|U for M ∈ D are again

obviously in H(s), since they correspond directly to words w ∈ L(s).

Assume ψ = Ciφ is obtained by the fixpoint iteration, where φ ∈ H(s).

By construction, Ci = MrFaM
−1
q for some q, r ∈ Q with r

a
→ q. Ci is

a composition of isomorphisms and thus an automorphism of H(s), such
that Ciφ ∈ H(s).

Now, let w = w1 . . . wl ∈ L(s), which implies that there is a path q0
w1→

q1 · · · ql−1
wl→ ql = s, with q0 ∈ Q

0. For each step qi−1
wi→ qi, define a matrix

Ni := MqiFwi
M−1
qi−1

. Each of these matrices will equal either the identity

(if qi−1
wi→ qi was used to defineMqi during the exploration) or an element

Ci ∈ C.

Now,

|w|U = Fwl
· · ·Fw1

|ǫ|U

=MqlFwl
M−1
ql−1

Mql−1
Fwl−1

M−1
ql−2
· · ·M−1

q1
Mq1Fw1

M−1
q0
|ǫ|U

(since Mql =Ms = Id and all the M−1
qi
Mqi cancel)

= Nl · · ·N1Mq0 |ǫ|U ,

and it suffices to prove that ψi := Ni · · ·N1Mq0 |ǫ|U ∈ span(Bq0) for i =
0, . . . , l. But during the exploration,Mq0 gets added to D, and Bs therefore
contains Mq0 |ǫ|U , and the fixpoint iteration ensures Ciφ ∈ span(Bq0) for
all φ ∈ span(Bq0) and Ci ∈ C.

2. The algorithm has two main parts:

• The computation of the matrices Mq and Ci ∈ C:

The operations involved are a matrix-matrix multiplication for each
q

a
→ r, which only takes time O(n2) due to the special form of the

Fa, and a matrix inversion and matrix-matrix multiplication (both
feasible in time O(n3)1) for each cycle.

• The fixpoint iteration: for each of the dimH(s) ≤ n basis vectors
and each of the γ cycle matrices, this requires the computation of a
Matrix-vector product and a reduction with the existing elements of
Bq0 , each feasible in time O(n2).

Altogether, this results in the complexity O(mn2 + γn3).

�

1Algorithms with lower complexity exist, such as the Coppersmith-Winograd algorithm
with asymptotic complexity O(n2.376). n needs to be rather large for these benefits to manifest,
though.
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q0

q1

q2

q3

a b

c

bc

C1 =























1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 0 1 0 0 0 0

−1 0 0 1 0 0 0

0 1 0 0 1 0 0

0 0 1 0 0 1 0

−1 0 0 1 0 0 1























C2 =























1 0 0 0 0 0 0

0 1 0 0 0 0 0

1 0 1 0 0 0 0

2 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1























Figure 3.1: Example for the local fixpoint construction.

Example: Consider the automaton in Figure 3.1. Using U = {ǫ, a, b, c, aa,
ba, ca}, we compute Bq2 as follows:

1. Initialization: Mq2 = Id , C = ∅, D = ∅, B = ∅;

2. Exploration:

q0
c
→ q2 : Mq0 = Fc; add Fc to D;

q1
b
→ q2 : Mq1 = Fb;

q0
a
→ q1 : add C1 = FbFaF

−1
c to C;

q3
c
→ q0 : Mq3 = F 2

c ;

q2
b
→ q3 : add C2 = F 2

c Fb to C;

C1 and C2 correspond to the basic undirected cycles q2
c
← q0

a
→ q1

b
→ q2

and q2
b
→ q3

c
→ q0

c
→ q2.

3. Basis construction: Starting with φ0 = Fc|ǫ|U , and successively extending
B by reducing and adding those Ciφ

j which do not reduce to 0, we obtain
basis vectors

φ0 = (1, 0, 0, 1, 0, 0, 0)T ,
φ1 = (0, 1, 0, −3, 0, 0, 0)T ,
φ2 = (0, 0, 1, 2, 0, 0, 0)T ,
φ3 = (0, 0, 0, 0, 1, 0, −3)T ,
φ4 = (0, 0, 0, 0, 0, 1, 2)T ,

4. Local invariant generation: Computing the orthogonal complement, we
obtain the following basis for Γ(q0):

ψ1 = (1, −3, 2, −1, 0, 0, 0)T ,
ψ2 = (0, 0, 0, 0, 3, −2, 1)T ,

All words w ∈ L(q2) thus satisfy the invariants 3|w|a − 2|w|b + |w|c = 1,
and 3|w|aa − 2|w|ba + |w|ca = 0.
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5. Global invariant generation: Collecting the vectors M−1
q φi for all q ∈ Q

and computing the orthogonal complement, we obtain the global invariant
3|w|aa − 2|w|ba + |w|ca = 0.

3.2 From Process to System Invariants

A key advantage of subsequence invariants is that invariants that have been
computed for an individual automaton are immediately inherited by the full
system and can therefore by composed by simple conjunction.

Theorem 3.3 Let S be a system of finite automata communicating over a sys-
tem alphabet Σ, and let P be one of these automata with local alphabet ΣP ⊆ Σ.
If U is a set of subsequences over ΣP and

∑
u∈U φu|w|u = 0 is a subsequence

invariant for P over U , then
∑
u∈U φu|w|u = 0 also holds for all w ∈ L(S).

Proof: Note that since U is a set of subsequences over ΣP , any u ∈ U has the
form σ0e1σ1 . . . enσn with ek ∈ ΣP , σk ⊆ ΣP for all k. If w ∈ Σ∗, a ∈ Σ \ ΣP
and u ∈ U , then obviously a 6= ek and a /∈ σk for all k, and therefore |w.a|u =
|w|u. Applying this argument inductively, we obtain |w|u = |w ↓ΣP

|u for all
w ∈ Σ∗. Since w ↓ΣP

∈ L(P ) for w ∈ L(S), this implies
∑
u∈U φu|w|u = 0 for all

w ∈ L(S). �

The system S may satisfy additional invariants, not covered by Theorem 3.3,
that refer to interleavings of sequences from Σ∗

i with sequences from a different
Σ∗
j . In the following, we present several methods for obtaining such additional

invariants.

3.2.1 Invariants obtained by projection

The first approach works similarly to the resolution of conditions in Section 2.2.
It uses the fact that given any subsequence invariant for S, we can obtain a
new subsequence invariant by appending the same symbol to all involved sub-
sequences:

Theorem 3.4 Let
∑
u∈U φu|w|u = 0 for all w ∈ L(S), and a ∈ Σ. Then we

also have
∑
u∈U φu|w|u.a = 0 for all w ∈ L(S).

Proof: We prove the theorem by induction over w. For w = ǫ, the property
holds, because ǫu.a = 0 for all u, a. Assume that

∑
u∈U φu|w|u.a = 0 holds for

some w, and let b ∈ Σ.
If b 6= a, then |w.b|u.a = |w|u.a for all u, and the claim follows immediately

from the induction hypothesis.
If b = a, we have from the recurrence relations |w.b|u.a = |w|u.a+ |w|u for all

u, and therefore
∑
u∈U φu|w.b|u.a =

∑
u∈U φu|w|u.a +

∑
u∈U φu|w|u. The sum∑

u∈U φu|w|u.a equals 0 by the induction hypothesis, and
∑
u∈U φu|w|u equals

0 because of the original invariant. �

Example: Consider a system containing the automaton from Figure 3.1. From
the invariant

3|w|aa − 2|w|ba + |w|ca = 0
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we obtain the new invariants

3|w|aad − 2|w|bad + |w|cad = 0,

3|w|aaad − 2|w|baad + |w|caad = 0, and

3|w|aada − 2|w|bada + |w|cada = 0

by appending d, ad, and da, respectively.

3.2.2 Invariants obtained by algebraic dependencies

The equalities in Theorem 2.3 can be used to derive new invariants from a given
set of subsequence invariants:

Let
∑
u∈U φu|w|u = 0 for all w ∈ L(S), and v be some phased subse-

quence. Then obviously,
∑
u∈U φu|w|u|w|v is also zero; Using the equalities

|w|u|w|v =
∑
x∈C(u,v) |x|u,v|w|x, this can be transformed into new linear subse-

quence invariants
∑
u∈U

∑
x∈C(u,v) φu|x|u,v|w|x = 0.

Example: Consider a system containing the automaton from Figure 3.1. It
contributes the invariant 3|w|aa−2|w|ba+|w|ca = 0 for all w ∈ L(S). For v = ad,
Theorem 2.3 provides the algebraic dependencies

|w|aa|w|ad = 2|w|aad + |w|ada + 3|w|aaad + 2|w|aada + |w|adaa,
|w|ba|w|ad = |w|bad + |w|abad + |w|abda + |w|adba + 2|w|baad + |w|bada,
|w|ca|w|ad = |w|cad + |w|acad + |w|acda + |w|adca + 2|w|caad + |w|cada,

which can be used to obtain from (3|w|aa − 2|w|ba + |w|ca)|w|ad = 0 the new
subsequence invariant
6|w|aad+3|w|ada+9|w|aaad+6|w|aada+3|w|adaa−2|w|bad−2|w|abad−2|w|abda−
2|w|adba − 4|w|baad − 2|w|bada + |w|cad + |w|acad + |w|acda + |w|adca +2|w|caad +
|w|cada = 0.
Using the invariants from the previous example, the new invariant reduces to
3|w|aad+3|w|ada+3|w|aaad+3|w|aada+3|w|adaa−2|w|abad−2|w|abda−2|w|adba+
|w|acad + |w|acda + |w|adca = 0.

3.2.3 Invariants obtained from nonnegativity constraints

One obvious property of subsequence counters |w|u is that they can only take
nonnegative values. This property is not represented in the subsequence invari-
ants as such, but can be used to strengthen existing invariants.

In particular, if the set of system invariants implies an invariant of the form
φ1|w|u1 + · · ·+φk|w|uk = 0 such that φi > 0 for all i, then we can add |w|ui = 0
to the set of invariants, for all i. Such invariants can be found using standard
linear programming methods.

For example, the processes in figure 3.2 satisfy the invariants 2|w|cc+ |w|c−
|w|ac+ |w|bc = 0 and 2|w|cc+ |w|ac − |w|bc = 0, respectively; adding these gives
the system invariant 4|w|cc + |w|c = 0, which we can split into |w|cc = 0 and
|w|c = 0, representing the fact that the c transition can never be taken.

This method can be further improved by taking into account linear inequal-
ities on the numbers of occurrences. Obtaining invariants of this form can be
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c

c
a

b b
a a

b

a

b

Figure 3.2: Combining invariants from these two processes gives the new invari-
ant 4|w|cc + |w|c = 0, which has only nonnegative coefficients and can be split
into |w|cc = 0 and |w|c = 0.

a challenging problem [23, 20], but for subsequences, there are some inequali-
ties other than |w|u ≥ 0 which are always satisfied, such as |w|baaab + |w|bab −
|w|baab ≥ 0[53]. In particular, there are several infinite families of such univer-
sally valid inequalities:

Inequalities from nonnegative polynomials. Using Theorem 2.8, we get
for any polynomial p ∈ R[x1, . . . , xn] which is nonnegative for all nonnegative
integer arguments, and for any subsequences v1, . . . , vn, a linear combination∑
u∈U φu|w|u whose value equals that of p(|w|v1 , . . . , |w|vn), and is therefore

nonnegative, for all w.
For example, the polynomial p(x) = x2 − 5x + 6 satisfies p(n) ≥ 0 for all

n ∈ N. Applying Theorem 2.8 to p(|w|a{a}b) gives the inequality

|w|a{a}ba{a}b + |w|a{a}b{a}b − 2|w|a{a}b + 3 ≥ 0,

which holds for all w ∈ Σ∗.

Graph-theoretical inequalities. Let u,w ∈ Σ∗ with |u| = n. In the follow-
ing, we will assume |w|u > 0, since otherwise the inequality we will derive holds
trivially. For any k ∈ {1, . . . , n}, we define the k-equivalence relation on [w]u by
i ∼k j ⇔ il = jl for all l 6= k. The occurrence graph for u in w is G = (V,E),
where V = [w]u and E = {(i, j) | i 6= j, i ∼k j for some k} (see figure 3.3).

Let m be the minimal element of [w]u. For any i ∈ [w]u, we can define
occurrences j0, . . . , jn ∈ [w]u with

jkl =

{
il if l ≤ k

ml otherwise,

such that j0 = m, jn = i, and for k = 1, . . . , n, jk ∼k j
k−1, i.e. either jk = jk−1

or (jk−1, jk) ∈ E. This means that there is a path from m to i in G for all i ∈ V .
Therefore G is connected, and in particular |E| ≥ |V | − 1.

For k = 1, . . . , n, define the k-th stuttering subsequence ck(u) =
a1 . . . akak . . . an, i.e. the subsequence obtained by duplicating ak. Given i, j ∈
[w]u such that i ∼k j, i < j, the shuffle tuple s(i, j) = (s1, . . . , sn+1) is given by

sl =

{
il if l ≤ k

jl−1 otherwise.
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(1, 2, 3) (1, 2, 5) (1, 2, 7)

(1, 4, 5) (1, 4, 7)

(1, 6, 7)

(3, 4, 5) (3, 4, 7)

(3, 6, 7)

(5, 6, 7)

abaa abaa

abaa

abaa

abba abba

abba

abba

aaba aaba

aaba

aaba

abaa

abba

aaba

Figure 3.3: The occurrence graph for aba in abababa. Edges are labeled with the
stuttering subsequence corresponding to the shuffle of the incident vertices.

It is easy to check that this is an occurrence of ck(u), and in fact (i, j) 7→ s(i, j)
is a bijection from {(i, j) | i ∼k j, i < j} to [w]ck(u).

Since from this we get |E| = |w|c1(u) + · · · + |w|cn(u), and |V | = |w|u, we
have for every pure subseqence u ∈ Σ∗ an inequality

|u|∑

k=1

|w|ck(u) − |w|u + 1 ≥ 0

which holds for all w ∈ Σ∗.
As an example, consider u = aba. The stuttering subsequences for u are

aaba, abba, and abaa, and for any w ∈ Σ∗, the inequality

|w|aaba + |w|abba + |w|abaa − |w|aba + 1 ≥ 0

is satisfied.

3.2.4 Invariants obtained from nested subsequences

For pure subsequences, transitivity of the order � given by u � v ⇔ |v|u > 0
implies another obvious way of deriving new invariants: if u � v and u � w,
then v � w, i.e. we get |w|v = 0 from |w|u = 0.

This can be generalized as follows: We define the order � on phased sub-
sequences by u � v if and only if there is an index tuple (i0, . . . , in+1), where
n = |u|, such that

• 0 = i0 < · · · < in+1 = |v|+ 1,

• eup = evip for 1 ≤ p ≤ n,
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• σup ⊆ σ
v
q for 0 ≤ p ≤ n and ip ≤ q < ip+1,

• evq /∈ σ
u
p for 0 ≤ p ≤ n and ip < q < ip+1.

Note that u � v if and only if there is some u′ such that u, u′ cover v. It is easy
to prove that � is indeed a partial order on the set of phased subsequences.

Now if (j1, . . . , jm) is an occurrence of v in w ∈ Σ∗ and (i0, . . . , in+1) is a
tuple witnessing u � v, it is easy to check that (ji1 , . . . , jin) is an occurrence of
u in w, and we again get that for u � v, |w|u = 0 implies |w|v = 0.

3.3 Universal Invariants

A subsequence invariant is universal iff it holds for all w ∈ Σ∗. For pure sub-
sequences, there are no nontrivial universal invariants (note that the equation
|w|ǫ = 1 actually is trivial, since by definition, a subsequence invariant is a ho-
mogeneous linear equation, and any constant term c is really just a shorthand
for c|w|ǫ).

Lemma 3.5 Let U ⊆ Σ∗ be a set of pure subsequences, and let φ ∈ RU be such
that

∑
u∈U φu|w|u = 0 for all w ∈ Σ∗. Then φu = 0 for all u ∈ U .

Proof: Assume that φ is a nontrivial universal invariant over some set U ⊆ Σ∗

of pure subsequences. Let u be of minimal length such that φu 6= 0. Since for
any v ∈ Σ∗ such that |u|v 6= 0, we have that either v = u or |v| < |u|, there is
exactly one v ∈ Σ∗ with both φv 6= 0 and |u|v 6= 0, namely u itself. But then

∑

v∈U

φv|u|v = φu|u|u = φu 6= 0,

which contradicts the assumption.
�

For phased subsequences, on the other hand, this changes. In the following,
we present some classes of universal phased subsequence invariants.

3.3.1 Prefix splits

Consider the phased subsequence {a}a. An occurrence of u in w is essentially just
an index i such that wi = a, and there is no j < i with wj = a. This subsequence
matches the first occurrence of a, if there is one, and nothing otherwise, so that
we have

|w|{a}a =

{
1 |w|a > 0

0 |w|a = 0.

On the other hand, |w|{a} = 1 if |w|a = 0, and 0 otherwise, giving the invariant

|w|{a}a + |w|{a} = 1 for all w ∈ Σ∗.

This result can be generalized:Let u = a1 . . . an ∈ Σ∗ be a pure sub-
sequence. The prefix split for u is the set of phased subsequences Pu =
{p0(u), . . . , pn(u)}, where pk(u) = {a1}a1 . . . {ak}ak{ak+1} for k < n, and
pn(u) = {a1}a1 . . . {an}an. Then |w|pk(u) is 1 if the longest prefix of u which
occurs as a subsequence in w has length k, and 0 otherwise:
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Lemma 3.6 Let u = a1 . . . an ∈ Σ∗.

1. For k < n, |w|pk(u) =

{
1 if |w|a1...ak > 0 and |w|a1...ak+1

= 0

0 otherwise,

2. |w|pn(u) =

{
1 if |w|u > 0

0 if |w|u = 0.

Proof:

1. Let k < n, and w ∈ Σ∗. Any occurrence (i1, . . . , ik) of p
k(u) in w is obvi-

ously also an occurrence of a1 . . . ak, so that |w|pk(u) = 0 if |w|a1...ak = 0.
Assume now that |w|a1...ak > 0, and let (j1, . . . , jk) ∈ [w]a1...ak . If
(i1, . . . , ik) ∈ [w]pk(u), then wl 6= a1 for all l < i1, so that j1 ≥ i1. Since
also wl 6= am for im < l < im+1,m = 1 . . . , k−1, we get by induction that
jl ≥ il for all l, i.e. i is minimal in [w]a1...ak . In particular, this implies
|w|pk(u) ≤ 1.
Let now i = (i1, . . . , ik) be the minimal element of [w]a1...ak . Then
|w|a1...ak+1

= 0 if and only if there is no l > ik with wl = ak+1,which
is equivalent to i being an occurrence of pk(u).

2. Analogously to the first part, we get that i = (i1, . . . , in) is an occurrence
of pn(u) if and only if it is the minimal occurrence of u. [w]pn(u) is therefore
empty if [w]u is, and a singleton set otherwise.

�

It immediately follows from this lemma that

n∑

i=0

|w|pi(u) = 1,

so that for example

|w|{a} + |w|{a}a{b} + |w|{a}a{b}b{a} + |w|{a}a{b}b{a}a = 1

for all w ∈ Σ∗.
One intuitively appealing way of getting further universal invariants from

Pu is to use the fact that for any subset U ⊆ Pu,
∑
v∈U |w|v is in {0, 1}, using

the standard approach for resolving disjunctions. It turns out, however, that the
results are trivial:

Lemma 3.7 Consider pk(u), pl(u) ∈ Pu for some pure subsequence u =
a1 . . . an ∈ Σ∗ and k, l ≤ n. Then the set C(pk(u), pl(u)) of subsequences cover-
able by pk(u), pl(u) satisfies

C(pk(u), pl(u)) =

{
{pk(u)} if k = l

∅ otherwise,

and therefore for any x

[x]pk(u),pl(u) =

{
1 if x = pk(u) = pl(u)

0 otherwise.
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Proof: Let ((i1, . . . , ik), (j1, . . . , jl)) be some covering of x ∈ C(pk(u), pl(u)).
Let us assume that there is some minimal m ≤ k, l such that im 6= jm. Without

loss of generality, we can take im to be less that jm. Then exim = am ∈ σ
pl(u)
m

and jm−1 < im < jm, contradicting the conditions for j to be an occurrence of
pl(u).
We therefore must have im = jm for m ≤ k, l. Assume now that k 6= l; without

loss of generality, k < l. But then exjk+1
= ak+1 ∈ σ

pk(u)
k+1 , and i cannot be an

occurrence of pk(u).
It follows that k = l and i = j = (1, . . . , k). From this, we also get pk(u).

�

Therefore, the linear invariant one obtains from
∑
v∈U |w|v ∈ {0, 1} using

Theorem 2.8 is trivial: For any U ⊆ Pu, the linearization of (
∑
v∈U |w|v)

2 is
∑

v1,v2∈U

∑

x∈C(v1,v2)

|x|v1,v2 |w|x =
∑

v∈U

|w|v,

And (
∑
v∈U |w|v)(

∑
v∈U |w|v − 1) = 0 reduces to the trivial invariant 0 = 0.

Symmetrically to Pu, one can define the suffix split Su = {s0(u), . . . , sn(u)}
for u, where sk(u) = {an−(k+1)}an−1{an−1} . . . an{an} for k < n, and sn(u) =
a1{a1} . . . an{an}. The above lemmata hold mutatis mutandis. There is no
straightforward relation between the occurrences of pi(u) and si(u), except for
i = n, for which we get

|w|pn(u) = |w|sn(u) for all w ∈ Σ∗.

3.3.2 Spanning tree invariants

Another way of obtaining universal invariants is based on phased subsequences
capturing spanning trees in a generalization of the occurrence graph.

Let u = a1 . . . an ∈ Σ∗, and for k = 1, . . . , n, define the k-th stuttering
subsequence ck(u) = σ0e1σ1 . . . en+1σn+1 by

• ei =

{
ai if i ≤ k

ai−1 otherwise,

• σi =

{
{ai} if k ≤ i ≤ n

∅ otherwise.

For example, if u = abc, then

c1(u) = a{a}a{b}b{c}c, c2(u) = ab{b}b{c}c, c3(u) = abc{c}c.

We are going to show that

|w|u −
n∑

k=1

|w|ck(u) =

{
1 if |w|u > 0

0 otherwise.

Let us call an occurrence i ∈ [w]u k-minimal if it is minimal in its ∼k-class.
For any i 6= min([w]u), there is at least one k such that i is not k-minimal. We
call the maximal such k the rank rk(i) of i. We also define, for any i 6= min([w]u),
the parent of i to be π(i) = max{j ∈ [w]u | j ∼rk(i) i, j < i}. Note that, since
for all i except min([w]u), π(i) is defined and satisfies π(i) < i, it is in fact the
parent function of a tree, with [w]u as its set of nodes and min([w]u) as its root.
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(1, 2, 3) (1, 2, 5) (1, 2, 7)

(1, 4, 5) (1, 4, 7)

(1, 6, 7)

(3, 4, 5) (3, 4, 7)

(3, 6, 7)

(5, 6, 7)

aba{a}a aba{a}a

aba{a}a

aba{a}a

ab{b}b{a}a

ab{b}b{a}a

ab{b}b{a}a

a{a}a{b}b{a}a

a{a}a{b}b{a}a

Figure 3.4: The tree of occurrences of aba in abababa, edges labeled with the
corresponding stuttering subsequences.

Example. Figure 3.4 shows the tree of occurrences of u = aba in w = abababa.
Of the elements of [w]u,

• (1, 2, 5), (1, 2, 7), (1, 4, 7), (3, 4, 7) are not 3-minimal, and therefore have
rank 3,

• (1, 4, 5), (1, 4, 7), (1, 6, 7), (3, 6, 7) are not 2-minimal, and therefore
(1, 4, 5), (1, 6, 7), (3, 6, 7) have rank 2,

• (3, 4, 5), (3, 4, 7), (3, 6, 7), (5, 6, 7) are not 1-minimal, and therefore
(3, 4, 5), (5, 6, 7) have rank 1.

This results in the parent function indicated by the arrows.

Lemma 3.8 1. For any k ∈ {1, . . . , n}, there is a bijection between the set
of edges {(i, π(i)) | rk(i) = k} and [w]ck(u).

2. |w|u −
∑n
k=1 |w|cn(u) =

{
1 if |w|u > 0

0 if |w|u = 0.

3. |w|u −
∑n
k=1 |w|cn(u) = |w|pn(u) = |w|sn(u).

Proof:

1. For any pair of tuples i, j ∈ [w]u with i ∼k j, i > j we can construct the
shuffle s(i, j) = (s1, . . . , sn+1) such that sl = jl for l ≤ k and sl = il−1 for
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l > k. Then

i, j ∈ [w]u, rk(i) = k and j = π(i)

⇔ 1≤ i1=j1<. . .<ik−1=jk−1<jk<ik<ik+1=jk+1<. . .<in=jn≤|w|,

wil = wjl = al for all l,

wp 6= ak for jk < p < ik,

wp 6= al for il < p < il+1, l ≥ k

⇔ s(i, j) ∈ [w]ck(u).

Since (for any given k) i, j can be reconstructed from s(i, j), this is a
bijection.

2. From the first item, we get that
∑n
k=1 |w|cn(u) is the number of edges in

the tree T = ([w]u, {(i, π(i)) | i 6= min([w]u)}), and therefore equals 0 if
|w|u = 0, and |w|u − 1 otherwise.

3. Immediately from the previous item and Lemma 3.6.

�

Example. Using u = ab, we get that for all w ∈ Σ∗,

|w|ab − |w|ab{b}b − |w|a{a}a{b}b − |w|{a}a{b}b = 0

and

|w|ab − |w|ab{b}b − |w|a{a}a{b}b − |w|a{a}b{b} = 0.

3.4 Incremental Invariant Generation

For the invariant generation algorithm of Section 3.1, we considered the set
U of subsequences as given and fixed. In practice, however, the set of subse-
quences depends on the complexity of the interaction between the processes,
and is therefore not necessarily known in advance. In this section, we present
an incremental method that allows for growing sets of subsequences.

Let P = (QP ,ΣP , q
0
P , TP ) be an automaton and U ⊂ Σ∗ be finite and

prefix-closed. Let V = U ⊎ {v} again be prefix-closed, i.e. v = u.a for some
u ∈ U, a ∈ Σ.

Theorem 3.9 Assume that for q ∈ QP and the set of subsequences U , a basis of
the space HU (q) = span(|w|U : w ∈ L(q)) has already been computed, consisting
of the vectors φ1, . . . , φk. Then either

1. HV (q) is spanned by vectors ψ1, . . . , ψk such that ψju = φju for all u ∈ U ,
or

2. HV (q) is spanned by the vectors ψ1, . . . , ψk, η given by:

• ψju = φju for all u ∈ U , and ψjv = 0;

• ηu = 0 for all u ∈ U , and ηv = 1.
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Proof: For any w ∈ Σ∗, the orthogonal projection of |w|V = (|w|u)u∈V onto
RU is just (|w|u)u∈U = |w|U ; since any ψ ∈ HV (q) is a linear combination of
the form ψ = µ1|w

(1)|V + · · ·+ µm|w
(m)|V , this means that the projection of ψ

onto RU also lies in HU (q).
An immediate consequence of this is that the elements of HV (q) satisfy

all local invariants over U that hold for HU (q), and its dimension is either
dimHU (q) or dimHU (q) + 1.

If dimHV (q) = dimHU (q), then for each vector φ(j) =
∑m
i=1 λi|w

(i)|U
of the existing basis for HU (q), define the corresponding vector ψ(j) to be∑m
i=1 λi|w

(i)|V ; then for all u ∈ U , ψu = φu. These form a basis of HV (q)
and satisfy the conditions in (1).

Note that the vector η given in (2) cannot be in HV (q) in this case: If it
were, it would have to be a linear combination of the ψ(j) in which at least one
coefficient is nonzero; but then its projection onto RU , which is 0, would be a
linear combination of the φ(j) with the same coefficients, which is impossible
since the φ(j) are linearly independent.

If dimHV (q) = dimHU (q) + 1, then HV (q) must be the space of all vectors
in RV satisfying the invariants in Iq,U . The vectors given in (2) form a linearly
independent (k + 1)-tuple of such vectors, and thus a basis of HV (q). �

All invariants obtained for U remain valid; in the first case, we additionally
obtain a new invariant |w|v −

∑k
i=1(ψ

i
v/ψ

i
ui)|w|ui = 0, where ui = pivot(ψi) for

all i, while in the second case, the set of invariants is unchanged.

Example: Consider again the automaton in Figure 3.1. Starting with
the smaller set of subsequences U = {ǫ, a, b, c}, we obtain the basis
{(1, 0, 0, 0)T , (0, 1, 0,−3)T , (0, 0, 1, 2)T } for HU (q

0), along with the single local
invariant 3|w|a−2|w|b+|w|c = 0 for q0. When U is extended to V = U∪{aa, ab}
by first adding aa and then ab, case (2) of Theorem 3.9 holds each time.
HV (q

0) has the basis {(1, 0, 0, 0, 0, 0)T , (0, 1, 0,−3, 0, 0)T , (0, 0, 1, 2, 0, 0)T ,
(0, 0, 0, 0, 1, 0)T , (0, 0, 0, 0, 0, 1)T }. Extending V to W = V ∪ {ac}, case
(1) holds: HW (q0) has the basis {(1, 0, 0, 0, 0, 0, 0)T , (0, 1, 0,−3, 0, 0,−3)T ,
(0, 0, 1, 2, 0, 0, 0)T , (0, 0, 0, 0, 1, 0,−3)T , (0, 0, 0, 0, 0, 1, 2)T }, and we obtain a
new invariant, 3|w|a + 3|w|aa − 2|w|ab + |w|ac = 0.

We compute HV (q) incrementally from HU (q) as follows:

• for each basis vector φ, except for the initial unit vector |ǫ|U , we remember
by which multiplication Faψ it was obtained and how it was reduced; these
steps are repeated for the new index v.

• we also remember which successors Faψ are reduced to zero; when ex-
tending U by v = u.a, where u ∈ U , we check for all such ψ whether the
reductions result in a nonzero vector, indicating that case (2) of Theo-
rem 3.9 holds.

If case (2) holds for some location q, then the new basis vector η of H(q)
is invariant under all Fa,V , because, by choice, v cannot be a prefix of another
sequence in V . Therefore, η is also contained in the subspace H(r) for all lo-
cations r reachable from q. The check for case (2) therefore only needs to be
performed in one location of each strongly connected component.





Chapter 4

Abstraction-Based

Verification

4.1 Introduction

We now extend our approach to infinite-state systems. We do this by integrat-
ing the fixpoint iteration algorithm we presented in the previous chapter with
abstraction refinement. This integrated method will work with two data struc-
tures:

• a finite-state abstraction of the infinite-state system, which is gradually
refined to eliminate spurious errors, and

• a forest, with vertices labeled by subsequence images, which covers the
abstraction. This forest represents the state of the fixpoint iteration on
the abstraction. It is occasionally pruned when the abstraction is refined.

We split the description of this method into two parts: In this chapter, we
first introduce the infinite-state systems with which we work, as well as the
abstractions we use, and the refinement and slicing operations. We will use
simple state-based error conditions as a source of counterexamples to drive the
refinement loop.

The topic of the next chapter is then the integration of subsequence invari-
ants. In particular, we introduce subsequence forests and discuss their behaviour
in the course of the refinement loop.

Transition systems. We use a general representation of concurrent systems
as transition systems, which can be defined using an assertion language based
on first-order logic. We use the following underlying concepts, for any set V of
system variables and alphabet Σ of events:

• For each v ∈ V we define a primed variable v′ ∈ V ′, which indicates the
value of v in the next state.

• We call the set Asrt(V) of first-order formulas over the system variables
the state predicates and the set Asrt(V ∪V ′) of assertions over the system
variables and the primed variables the transition relations. For a state

46
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predicate ϕ, let ϕ′ denote the assertion where each variable v is replaced
by v′.

• T(V,Σ) is the set of labeled transitions τ = (wτ , ρτ ) over V and Σ. For
each τ,

– wτ ∈ Σ∗ is the label of τ . We call a transition τ atomic if wτ ∈ Σ.
We assume that the system specification contains only atomic tran-
sitions, but applying the Bypass Transition rule to the abstraction
may produce non-atomic transitions during the refinement.

– ρτ ∈ Asrt(V ∪ V ′) is the transition relation of τ . It is in turn a
conjunction ρτ (V,V

′) =
∧
i gi(V) ∧

∧
i ti(V,V

′) of guards gi and
updates ti. In the special case where, for a given set W of variables,
ρτ is of the form ρτ (V,V

′) =
∧
i gi(V) ∧

∧
v∈W (v′ = ev(V)), i.e.,

each variable in W is assigned a value defined over V, we say that τ
is a guarded W -assignment.

A transition system S = (V, init , T ) consists of the following components:

• V: a finite set of system variables.

• init(V) ∈ Asrt(V): the initial condition, a state predicate characterizing
all states in which the computation of the system can start.

• T ⊂ T(V,Σ): a finite set of system transitions.

In addition to S, in this chapter we assume given error(V) ∈ Asrt(V), a
state predicate characterizing all error states.

A state of S is a valuation of the system variables V. A run is an alternating
sequence s0, τ0, s1, τ1, . . . τn−1, sn of states and transitions such that init(s0)
holds and for all positions 0 ≤ i < n, ρτi(si, si+1) holds.

In addition to S, we assume given a specification for a set of errors, which
is a subset of the runs of S. In this chapter, this condition will be given by
error(V) ∈ Asrt(V), a state predicate characterizing a set of error states. A
run s0, τ0, s1, . . . , τn−1, sn is an error if there is a position 0 ≤ i ≤ n such that
error(si) holds. In chapter 5, a run will be an error if the sequence formed by
the transition labels violates the subsequence invariants. We say S is correct if
it has no errors.

Predicate abstraction. The abstractions that are commonly used for ab-
straction refinement are based on sets of predicates describing a finite partition
of the concrete state space:

A predicate abstraction A = (Q,Q0, T ) of a transition system S =
(V, init , T ) with respect to a finite set Φ ⊆ Asrt(V) consists of the following
components:

• An abstract state space Q = 2Φ. Each abstract state a ⊆ Φ represents the
set γ(a) of all concrete states satisfying exactly those predicates from Φ
which are in a, i.e. γ(a) = {s | s |= ψa}, where ψa =

∧
ϕ∈a ϕ∧

∧
ϕ∈Φ\a ¬ϕ.

• A set Q0 ⊆ Q of abstract initial states: It contains exactly those abstract
states for which the corresponding set of concrete states contains an initial
state. In other words, Q0 = {q ∈ Q | ψq ∧ init satisfiable}.
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initial abstraction

empty?correct

find abstract error path spurious? incorrect

refine abstraction

no

yes

yes

no

Figure 4.1: Abstraction refinement loop.

• A set T ⊆ 2Q×Q containing for each transition relation τ ∈ T an abstract
transition relation τA , such that wτA = wτ , and ρτA(a1, a2) if and only if
there are s1 ∈ γ(a1), s2 ∈ γ(a2) with ρτ (s1, s2).

For the error condition error , we get a corresponding set Qe = {q ∈ Q | ψq∧
error satisfiable} of abstract error states, which are exactly those abstract states
containing an error state.

Since the initial and error states and the transition relation are overapprox-
imated in the abstraction, it can be proved by a simple induction that the same
is true for the set of errors. In particular, if the abstraction is correct, then so is
the original system. In order to find such an abstraction, one can use abstraction
refinement.

Abstraction Refinement. The standard abstraction refinement algorithm
follows the loop in figure 4.1: Starting from a suitable initial abstraction, one
checks for the existence of an error. If none exists, the system is correct; oth-
erwise, one finds a counterexample which either corresponds to an actual error
in the system, or is an artifact of the abstraction. In the latter case, one uses
the way in which the counterexample fails to be reproducible in the system to
extract a new predicate to add to Φ.

The way in which the new predicates are obtained is an important choice
in a refinement-based approach. A very general and successful method is Craig
interpolation. For a given pair of formulas ϕ(X) and ψ(Y ), such that ϕ ∧ ψ
is unsatisfiable, a Craig interpolant η(X ∩ Y ) is a formula over the variables
common to ϕ and ψ such that η is implied by ϕ and ¬η is implied by ψ. In
particular, one can split a spurious counterexample at some intermediate point
and then obtain an interpolant η for the formulas corresponding to the two
halves, such that

• any concrete run corresponding to the first half of the counterexample
ends in a state satisfying η, and

• any concrete run corresponding to the second half of the counterexample
starts in a state satisfying ¬η.

Adding η to Φ therefore results in an abstraction in which the counterexample
no longer exists, see figure 4.2.
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a1 a2 a3 a4 a5

a1, η a2, η a3, η a4, η a5, η

a1,¬η a2,¬η a3,¬η a4,¬η a5,¬η

Figure 4.2: Refinement with the Craig interpolant η eliminates a spurious coun-
terexample.

Craig interpolants can be automatically generated for a number of theories,
including systems of linear inequalities over the reals combined with uninter-
preted function symbols [55].

The initial abstraction is usually chosen in such a way that it is exact with
respect to the property and the enabledness conditions of the transitions in T .
This means that Φ initially contains all predicates that occur in init , error , and
the guards gi of all τ ∈ T .

The advantage of predicate abstraction is its precision: when successful, the
refinement loop automatically produces a set of predicates that eliminates all
spurious counterexamples. On the other hand, the abstract systems generated
by predicate abstraction tend to become prohibitively large: the size of the
abstract system, and hence the complexity of the verification step of the loop,
grows exponentially with the number of predicates.

Additionally, in those cases where the systems consists of a large number
of processes, the initial abstraction can already be very large, since Φ then
already contains the variables specifying the control state of each process. The
abstract state space therefore spans the product of the control skeletons, which
is exponentially large in the number of components.

Slicing abstractions. Abstraction and slicing are both techniques for reduc-
ing the size of the state space to be inspected during verification. We are going to
present a model checking procedure for infinite-state concurrent systems that
interleaves automatic abstraction refinement, which splits abstract states ac-
cording to new predicates obtained by Craig interpolation, with slicing, which
removes irrelevant states and transitions from the abstraction. The effects of
abstraction and slicing complement each other. As the refinement progresses,
the increasing accuracy of the abstract model allows for a more precise slice;
the resulting smaller representation gives room for additional predicates in the
abstraction. The procedure terminates when an error path in the abstraction
can be concretized, which proves that the system is erroneous, or when the slice
becomes empty, which proves that the system is correct.

We maintain an explicit graph representation of the abstract model: each
node represents a set of concrete states, identified by a set of predicates; each
edge represents a set of concrete transitions, identified by their transition rela-
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n0:init ∧
¬error

n1:¬init ∧
¬error

n2:¬init ∧
error

n3:init ∧
error

T T

T

T

Figure 4.3: Initial abstraction, based on the predicates init , characterizing the
initial states, and error , characterizing the error states.

initial abstraction

slice abstraction

empty?correct

find abstract error path

spurious? incorrect

refine abstraction

no

yes

yes

no

Figure 4.4: Abstraction refinement loop with interleaved refinement and slicing
steps.

tions. Since we are interested in small abstract models, we do not insist on the
abstract system representing all possible concrete behaviors. Instead, we call an
abstraction sound if the abstraction has some concretizable error path whenever
the system is incorrect.

Consider, for example, the initial abstraction for a state-based error con-
dition. The abstraction initially consists of four nodes over the predicates init
(characterizing the initial states) and error (characterizing error states). The
set of edges contains all pairs (m,n) ∈ N ×N , and every edge is labelled with
the full set of transitions.

One of the simplification transformations, presented in section 4.5.3, that
can be applied during the refinement loop, eliminates incoming edges into nodes
labeled by init and outgoing edges from nodes labeled with error : for any error
path that traverses such an edge, there is a shorter error path that visits exactly
one node labeled with init and one node labeled with error . The corresponding
transformation for subsequence invariants is given in section 5.6.3. This results
in the reduced initial abstraction which is shown in Figure 4.3.

Figure 4.4 shows the abstraction refinement loop. Starting with the initial
abstraction, the abstract model is transformed by refinement and slicing steps
until the model either becomes empty (which indicates that the system is cor-
rect) or a concretizable error path is found (which indicates that the system
is incorrect). Refinement steps increase the precision of the abstraction by in-
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0

12 3

init

requestready

up down

moveUp moveDn

ready ready

init pc=0 ∧ cur≤Max ∧ in≤Max

request pc=0 ∧ pc′=1 ∧ cur ′=cur

∧ req ′=in

ready pc≥1 ∧ req=cur ∧ pc′=0
∧ cur ′=cur ∧ req ′=req ∧ in ′≤Max

up pc=1 ∧ req>cur ∧ pc′=2
∧ cur ′=cur ∧ req ′=req

down pc=1 ∧ req<cur ∧ pc′=3
∧ cur ′=cur ∧ req ′=req

moveUp pc=2 ∧ req>cur ∧ pc′=2
∧ cur ′=cur + 1 ∧ req ′=req

moveDn pc=3 ∧ req<cur ∧ pc′=3
∧ cur ′=cur − 1 ∧ req ′=req

error cur>Max

Figure 4.5: Simple elevator example. The table shows the initial condition init ,
the error condition error , and the transition relations.

troducing a new predicate, which is obtained by Craig interpolation from the
unsatisfiable formula corresponding to some spurious error path. To minimize
the increase in the size of the graph, the new predicate is not applied to the
entire graph, but only to a specific node on the error path. This node is split
into two copies, such that the label of one copy now additionally contains the
predicate and the label of the other copy now additionally contains its negation.
The slicing steps consist of a collection of reduction rules that maintain sound-
ness in the sense described above. Elimination rules drop nodes and edges from
the abstraction if they have become unreachable or if their label has become
unsatisfiable. Simplification rules remove constraints from transition relations
that have become irrelevant and simplify the graph structure of the abstrac-
tion. Unlike the elimination rules, applicability of simplification rules depends
strongly on the kind of error condition, since the irrelevance criteria are quite
sensitive to it.

In Section 4.2, we informally explain the various refinement and slicing steps
using a motivating example. Formal definitions and proofs for the abstraction
mechanism and the refinement and slicing steps follow in Sections 4.3 to 4.5.5.

4.2 A Motivating Example

We motivate our approach with a simple elevator example. As shown in
Figure 4.5, the elevator accepts a request for a certain floor and then moves
up or down accordingly. Once the requested floor is reached, the elevator is
ready for a new request. The system variables include the program counter
pc, the current floor cur , the requested floor req , and a nondeterministic
input variable in (in is constrained to be in the valid range in≤Max when
the elevator is ready to receive its next request). We verify the correctness
of the elevator by showing that the error condition cur > Max is never satisfied.

Step 1. The verification starts with the initial abstraction as shown in
Figure 4.3. As discussed in the introduction, there are no incoming edges into
nodes labeled with init , and no outgoing edges from nodes labeled with error .
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Step 2. Since init∧error is unsatisfiable, node n3 is eliminated. Similarly, tran-
sition relations that are inconsistent with the labels on the nodes are removed
from the edges. For example, all transitions on the edge from node n0 to node
n2 (and hence the entire edge) are eliminated. The ready transition no longer
appears in the abstraction. The transition relation for moveUp on edge (n1, n2)
simplifies to pc=2 ∧ req > cur ∧ cur ′=cur + 1, resulting in the new transition
moveUp#, because the variables req and pc are not live in n2 (¬init ∧ error
simplifies to cur > Max , which does not contain req or pc.)

n0:init ∧
¬error

n1:¬init ∧
¬error

n2:¬init ∧
error

n3:init ∧
error

{request} {moveUp#}

T \ {ready}

∅

Step 3. The first refinement step splits node n1 with predicate pc=1. All edges
leading into or out of n1, including its self loop, are duplicated. After slicing
inconsistent parts of the abstraction, transition moveDn on the self loop at n5
commutes with both outgoing transitions moveUp and moveUp#. It is therefore
removed by partial order reduction; since the successor node n3 is an error
node, moveDn is effectively postponed until after the error is reached, and thus
removed from consideration.

n0:init ∧
¬error

n1:¬init ∧
¬error ∧
pc=1

n4:¬init ∧
¬error ∧
pc 6= 1

n2:¬init ∧
error

{request}

∅
{up, down}∅

∅

{moveUp#}

∅

{moveUp}

Step 4. After splitting node n4 with predicate pc=2, the edge (n5, n4) can be
removed. As a consequence, there are no more paths from node n5 to an error
state, and it is deleted.
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n0:init ∧
¬error

n1:¬init ∧
¬error ∧
pc=1

n4:¬init ∧
¬error ∧
pc=2

n5:¬init ∧
¬error ∧
pc 6= 1∧
pc 6= 2

n2:¬init ∧
error

{request} {up}

{down}

∅

∅

{moveUp#}

{moveUp}

∅

Step 5a: Source enlargement adds new initial nodes: Splitting n1 with the
strongest postcondition of request with respect to the label of n0 results in a
node whose label is only satisfied by reachable concrete states. Node n1 can
therefore be added to the set of initial nodes even though the label does not
imply init . As n1 is initial, we can remove the incoming edge (n0, n1). The second
copy of node n1, node n6, is unreachable after slicing inconsistent transitions
and empty edges, and is therefore removed. Finally, node n0 is deleted because
it no longer has a path to an error node.

n0:init ∧
¬error

n1:¬init ∧
¬error ∧
pc=1∧
req≤Max

n6:¬init ∧
¬error ∧
pc=1∧
req>Max

n4:¬init ∧
¬error ∧
pc=2

n2:¬init ∧
error

{request}

∅

{up}

{up}
{moveUp#}

{moveUp}

Step 5b: As an alternative to source enlargement, node n1 can be bypassed via
transition relation request◦n1

up, which summarizes the two transition relations
and the node label.
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n0:init ∧
¬error

n1:¬init ∧
¬error ∧
pc=1

n4:¬init ∧
¬error ∧
pc=2

n2:¬init ∧
error

{request ◦n1
up} {moveUp#}

{moveUp}

Step 6: We continue with the result from Step 5b by splitting node n4 with
predicate req≤Max . After the elimination of inconsistent transitions, the ini-
tial and error nodes are in different connected components of the abstraction.
Therefore all nodes are eliminated and the abstraction is empty. The correctness
of the elevator system has been proved.

n0:init ∧
¬error

n4:¬init ∧
¬error ∧
pc=2∧
req≤Max

n7:¬init ∧
¬error ∧
pc=2∧
req > Max

n2:¬init ∧
error

{request ◦n1 up}

∅

∅∅
∅

{moveUp#}

{moveUp}

{moveUp}

4.3 Abstraction

Our abstractions are graphs where the nodes are labeled with sets of predicates
and the edges are labeled with sets of transition relations. They contain a subset
N0 of initial nodes, representing the initial states of the system. For a state-
based error condition error , we assume additionally a subset Ne of error nodes,
representing the error states given by error .

Definition 4.1 An abstraction A = (N,N0, E, ν, η) of a transition system S =
(V, init , T ) consists of the following components:

• a finite set N of nodes,

• a subset N0 ⊆ N of initial nodes,

• a subset Ne ⊆ N of error nodes,
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• a set E ⊆ N ×N of edges,

• a labeling ν : N → Asrt(V) of nodes with assertions, and

• a labeling η : E → 2T(V,Σ) of edges with finite sets of transitions.

A path of an abstraction is a finite alternating sequence of nodes and tran-
sitions n0, τ1, n1, τ1, . . . , τk, nk such that for all 1 ≤ i ≤ k, (ni−1, ni) ∈ E and
τi ∈ η(ni−1, ni).

An error path is a path n0, τ1, n1, . . . , τk, nk which starts with an initial node
n0 ∈ N

0 and violates the property that we want to verify. In this chapter, that
amounts to nk belonging to Ne.

A path n0, τ1, n1, . . . , τk, nk is concretizable in S if there exist states s0, . . . , sk
such that for every position 0 ≤ i ≤ k, ν(ni)(si) holds and for every position
1 ≤ i ≤ k, τi(si−1, si) holds. We call the alternating sequence of system states
and transitions s0, τ1, s1, . . . , τk, sk a concretization of n0, τ1, n1, . . . , τk, nk. An
abstract error path that is not concretizable is called spurious. An abstraction A
of a transition system S is sound if there exists a concretizable error path in A if
and only if S is not correct. Our abstraction refinement procedure starts with a
sound initial abstraction and then preserves soundness in each transformation.
The verification process terminates as soon as the abstraction has a concretizable
error path (in which case the system is incorrect) or is empty (in which case the
system is correct).

4.3.1 Initial abstraction

We now define the initial abstraction. Since we assume a state-based error con-
dition, which we can represent in the abstraction itself, we obtain four abstract
states corresponding to the possible boolean combinations of init and error .

Definition 4.2 The initial abstraction A0 = (N,N0, Ne, E, ν, η) of a transi-
tion system S = (V, init , T ) with respect to an error condition error ∈ Asrt(V)
consists of the following components:

• N = {ie, ie, ie, ie},

• N0 = {ie, ie},

• N0 = {ie, ie},

• E = {(ie, ie), (ie, ie), (ie, ie), (ie, ie)},

• ν(n) =





init ∧ error if n = ie,

¬init ∧ error if n = ie,

init ∧ ¬error if n = ie,

¬init ∧ ¬error if n = ie

,

• η(e) = T for all e ∈ E.

The initial abstraction is shown in Figure 4.3. The edge set E is already
reduced according to the Initiality Subsumption and Error Subsumption rules,
as explained in the introduction.
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Proposition 4.3 The initial abstraction A0 of a transition system S with re-
spect to error is sound.

Proof: By definition, the concretization of an error path of A0 is the prefix of a
run of S that leads to a state that satisfies the error condition. Hence, the exis-
tence of a concretizable error path implies that S is not correct. Suppose, on the
other hand, that S is not correct, i.e., there exists a run s0, τ1, s1, . . . , τm, sm
such that error(sk) holds for some 0 ≤ k ≤ m. Let i be the greatest index
between 0 and k such that init(si) holds, and let j be the smallest index be-
tween i and k such that error(j) holds. Then si, τi+1, si+1, . . . , τj , sj defines a
concretizable abstract path ni, τi+1, ni+1, . . . , τj , nj as follows: for l = i, . . . , j,

nl =





ie if init(sl) ∧ error(sl),

ie if ¬init(sl) ∧ error(sl),

ie if init(sl) ∧ ¬error(sl),

ie if ¬init(sl) ∧ ¬error(sl).

Since ni ∈ N
0 and nj ∈ N

e, ni, τi+1, ni+1, . . . , τj , nj is an error path.
�

4.3.2 Abstraction Refinement

We first introduce the refinement step for a given predicate and node, show that
it maintains soundness of the abstraction, and then discuss how both can be
obtained automatically by analysis of a spurious error path.

Node splitting. Given some new predicate q, we split an abstract node la-
beled ϕ into two copies, one labeled ϕ ∧ q, the other ϕ ∧ ¬q.

Node split Let A = (N,N0, Ne, E, ν, η) be an abstraction of a transition sys-
tem S = (V, init , T ) with respect to error , and let n ∈ N be some abstract
node and q(V) some predicate. Splitting node n with q results in the new

abstraction A′ = (N ′, N0′, Ne′, E′, ν′, η′), where

• N ′ = N ∪ {n−} where n− 6∈ N is a fresh node;

• N0′ =

{
N0 ∪ {n−} if n ∈ N0,
N0 otherwise,

• Ne′ =

{
Ne ∪ {n−} if n ∈ Ne,
Ne otherwise.

• E′ =
⋃
e∈E split(e), where

split(e) =





{e, (n, n−), (n−, n), (n−, n−)} if e = (n, n),

{e, (m,n−)} if e = (m,n),m 6= n,

{e, (n−,m)} if e = (n,m),m 6= n,

{e} otherwise,

• ν′(m) =





ν(n) ∧ q if m = n,

ν(n) ∧ ¬q if m = n−, and

ν(m) otherwise,

• η′(e′) = η(e) for all e′ ∈ split(e) .



4.3. ABSTRACTION 57

The elevator example involves several node splits. For instance, in Step 3, node
n1 is split into the new nodes n4 and n5 with the predicate pc=1.

Proposition 4.4 Let A = (N,N0, Ne, E, ν, η) be a sound abstraction of a tran-
sition system S = (V, init , T ) with respect to error ∈ Asrt(V), and let n ∈ N
be some abstract node and q(V) be a predicate. Then the result of applying node
split to A with respect to n and q is also a sound abstraction of S with respect
to error.

Proof: If S is not correct, then the sound abstraction A contains an error path
n0, τ1, n1, . . . , τk, nk which has a concretization s0, τ,s1, . . . , τk, sk. In this case,
the node split A′ of A with respect to n and q contains the concretizable error
path n′0, τ1, n

′
1, . . . , τk, n

′
k where, for all 0 ≤ i ≤ k,

n′i =





ni if ni ∈ N r {n},

n if ni = n and q(si),

n− if ni = n and ¬q(si).

Suppose, on the other hand, that A′ contains a concretizable error path
n′0, τ

′
0, n

′
1, τ

′
1, . . . , τ

′
k−1, n

′
k, then A contains the concretizable error path

n0, τ
′
0, n1, τ

′
1, . . . , τ

′
k−1, nk where ni = n′i if n′i ∈ N , and ni = n if n′i = n−,

implying that S is not correct. Hence, A′ is also a sound abstraction of S with
respect to error .

�

Error path analysis. The refinement process is driven by the analysis of
spurious error paths. Our technique is based on Craig interpolation. In order
to obtain the new predicate, we use a variation of a standard error path cut-
ting technique [40] from predicate abstraction, which splits the path into two
subsequences such that the new predicate is an interpolant for the first-order
formulas corresponding to the first and second parts. To ensure that the new
predicate affects as many error paths as possible, we focus on minimal spurious
subpaths:

For a spurious error path n0, τ0, n1, τ1, . . . , τk−1, nk, we call a subpath
ni, τi, ni+1, τi+1, . . . , τj−1, nj with 0 ≤ i < j ≤ k minimal if the subpath is not
concretizable but both ni+1, τi+1, . . . , τj−1, nj and ni, τi+1, . . . , nj−1 are con-
cretizable.

We translate paths to first-order formulas in the following way. Let, for
each i ∈ N, Vi be a set of fresh variables such that for each v ∈ V, Vi
contains a corresponding fresh variable vi ∈ Vi. Given a finite path p =
ni, τi, ni, τi+1, . . . , τj−1, nj in an abstraction A, we define two first-order for-
mulas

Γ1(p) = ν(ni)(Vi) ∧ ρτi(Vi,Vi+1) ∧ ν(ni+1)(Vi+1) ∧ . . . ∧ ν(nj−1)(Vj−1),
Γ2(p) = ρτj−1

(Vj−1,Vj) ∧ ν(nj)(Vj)

and their conjunction Γ(p) = Γ1(p) ∧ Γ2(p). The path p is concretizable
iff the formula Γ(p) is satisfiable. We analyze a given spurious error path
n0, τ0, n1, τ1, . . . , τk−1, nk in two steps:

1. We find a minimal subpath p = ni, τi, ni+1, τi+1, . . . , τj−1, nj . This deter-
mines the node n = nj−1 which will be split.
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2. We compute the interpolant of Γ1(p) and Γ2(p). The interpolant η(Vj−1)
defines the new predicate q = η(V) on which we split node n.

After Step 2 of the elevator example, we obtain the abstract error path
p = n0, request, n1,moveUp#, n2, corresponding to the formula

Γ(p) = pc0=0 ∧ cur0≤Max ∧ in0≤Max
∧ pc0=0 ∧ pc1=1 ∧ cur1=current0 ∧ req1=in0

∧ (pc1 6= 0 ∨ in1 > Max ) ∧ cur1≤Max
∧ pc1=2 ∧ req1 > cur1 ∧ pc2=2 ∧ cur2=cur1 + 1
∧ cur2 > Max.

Because of the conjuncts pc1=1 (from request(V0,V1)) and pc1=2 (from
moveUp#(V1,V2)), the formula is unsatisfiable. The error path is minimal, since
both n1, request, n2 and n2,moveUp#, n3 are concretizable. Hence, n2 is selected
for the split. The interpolant of Γ1(p) and Γ2(p) is the predicate pc1 = 1, which
is implied by Γ1(p) and contradicts Γ2(p).

4.4 Elimination Rules

4.4.1 Eliminating transitions

The abstraction may contain transitions that are irrelevant because the pred-
icates on the source and target nodes of the edge contradict the transition
relation. Such transitions are eliminated in the slice:

Inconsistent Transition Let A = (N,N0, Ne, E, ν, η) be an abstraction that
contains a transition τ ∈ η(m,n) on some edge (m,n) ∈ E that is incon-
sistent with the node labels, i.e., the formula ν(m)∧ρτ ∧ν(n)

′ is unsatisfi-
able. We remove τ , resulting in the abstraction A′ = (N,N0, Ne, E, ν, η′),
where

η′(e) =

{
η(e)r {τ} if e = (m,n)

η(e) otherwise.

Empty Edges Let A = (N,N0, Ne, E, ν, η) be an abstraction that contains an
edge e ∈ E with η(e) = ∅. Any such edge can be removed, resulting in the
abstraction A′ = (N,N0, Ne, E′, ν, η|E′), where E′ = {e ∈ E | η(e) 6= ∅}.

In Step 2 of the elevator example, all transition relations on the edge between
nodes n0 and n2 are contradicted by the predicates on the nodes: there is no
transition that leads directly from an initial state to an error state (the only
transition enabled in the initial state is request, which does not modify cur ;
but init requires cur ≤ Max , and error requires cur > Max ). As a result, all
transitions are removed from the label according to the Inconsistent Transition
operation, and the empty edge is removed from the abstraction according to the
Empty Edges operation.

Proposition 4.5 Let A = (N,N0, Ne, E, ν, η) be a sound abstraction of a tran-
sition system S = (V, init , T ) with respect to error ∈ Asrt(V), and let A′ be the
result of applying Inconsistent Transition or Empty Edges. Then A′ is also a
sound abstraction of S with respect to error.
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Proof: We show that A has a concretizable error path iff A′ has a concretiz-
able error path. Obviously, every error path in A′ is also an error path in A.
Conversely, suppose that p = n0, τ1, n1, . . . , nk is a concretizable error path in
A and that transition τi has been eliminated. Then ν(ni)∧ρτi+1

∧ν(ni+1)
′ must

be unsatisfiable, contradicting the assumption that p is concretizable.
�

4.4.2 Eliminating nodes

Nodes are removed from the abstraction if they are either labeled with an in-
consistent combination of predicates or do not occur on any error paths.

Inconsistent Node Let A = (N,N0, Ne, E, ν, η) be an abstraction that con-
tains a node n ∈ N such that ν(n) is unsatisfiable. We remove n, resulting

in the abstraction A′ = (N ′, N0′, Ne′, E′, ν|N ′ , η|E′), where N ′ = Nr{n},
N0′ = N0 r {n}, Ne′ = Ne r {n}, and E′ = E ∩ (N ′ ×N ′).

Unreachable Node Let A = (N,N0, Ne, E, ν, η) be an abstraction that con-
tains a node n ∈ N which is unreachable from initial nodes or from
which no error node can be reached. We remove n, resulting in A′ =
(N ′, N0′, Ne′, E′, ν|N ′ , η|E′), where N ′ = N r {n},N0′ = N0 r {n},
Ne′ = Ne r {n}, and E′ = E ∩ (N ′ ×N ′).

In Step 2 of the elevator example, the inconsistent node n3 is removed, since the
conjunction init ∧error implies cur ≤ Max ∧cur > Max , which is unsatisfiable.
Unreachable nodes are removed in Step 4 (node n5), Step 5a (nodes n0 and n6),
Step 5b (node n1), and Step 6 (the entire abstraction).

Proposition 4.6 Let A = (N,E, ν, η) be a sound abstraction of a transition
system S = (V, init , T ) with respect to error ∈ Asrt(V), and let A′ be the result
of applying Inconsistent Node or Unreachable Node. Then A′ is also a sound
abstraction of S with respect to error.

Proof: The reduction of the graph does not eliminate any concretizable error
paths, because, by definition, each node along such a path has a consistent com-
bination of predicates and occurs on an error path. Hence, A has a concretizable
error path iff the same path is a concretizable error path in A′.

�

4.5 Simplification Rules

4.5.1 Simplifying transition relations

The next slicing mechanism removes constraints from transition relations that
are irrelevant for the existence of a concretizable error path. For this purpose
we assign to each node n ∈ N a set of live variables L(n) ⊆ V, containing all
variables whose value may possibly affect the existence of a concretizable path
from n to the error.

Just as in program slicing, the set of live variables is computed by a fixpoint
computation. Initially, the live variables of a node n ∈ N are those appearing in
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r s t u

r′ = r + s s′ = t t′ < s t′ > u u′ = t+ 1

r′ s′ t′ u′

Figure 4.6: Finding the set of dependencies for r′.

its labeling ν(n) and in the enabling conditions of the transitions on outgoing
edges: L0(n) = vars(ν(n)) ∪

⋃
(n,m)∈E,τ∈η(n,m) vars(enabled(τ)).

Then, this labeling is updated according to dependencies through transition
relations on edges. For a predicate q, we let vars(q) denote the set of its free
variables. For a transition τ and a set of variables X, we let dependτ (X) denote
the set of variables that potentially influence the value of variables inX when τ is
taken: for ρτ =

∧
i gi(V) ∧

∧
i ti(V,V

′), dependτ (X) =W ∩V, whereW ⊆ V∪V ′

is the smallest set of variables such that X ′ ⊆ W , for all i, vars(gi) ⊆ W , and
for all i with vars(ti)∩W 6= ∅, vars(ti) ⊆W . The labeling is updated as follows
until a fixpoint is reached: Li+1(n) = Li(n)∪

⋃
(n,m)∈E,τ∈η(n,m) dependτ (Li(m)).

Example: Consider the transition relation

ρτ : r′ = r + s ∧ s′ = t ∧ t′ < s ∧ t′ > u ∧ u′ = t+ 1.

Starting with X = {r}, we get from τ :

r′ ∈W ⇒ r, s ∈W ⇒ t′ ∈W ⇒ u ∈W.

Therefore dependτ ({r}) = V ∩ {r′, r, s, t′, u} = {r, s, u}. Figure 4.6 illustrates
this iteration: In the graph whose nodes are the variables in V and V ′ and
the constraints of ρτ , with edges connecting each constraints to the variables
it contains, the variables which can influence the value of r′ are exactly those
occurring in its connected component.

Assume that an abstraction contains an error node ne with label ν(ne) =
r > 2, and a node n with (n, ne) ∈ E, η(n, ne) = {τ}, and (n, n′) /∈ E for
n′ 6= ne. From ν(ne) (and the fact that error nodes have no successors) we get
L(ne) = {r}, and L(n) = {r, s, u}; therefore the transition τ can be replaced in
η(n, ne) by τ

# : r′ = r + s ∧ t′ < s ∧ t′ > u. Note that while t /∈ L(ne), the two
inequalities involving t′ combine to give an implicit guard s < u, and removing
them might therefore introduce errors.

Given the set of live variables for all nodes, we simplify the transition rela-
tions by eliminating constraints that do not refer to live variables. We assume
that the conjunction of all such constraints is satisfiable (which can be achieved
by a prior application of Rule Inconsistent Transition).
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Simplify Transition Let A = (N,N0, Ne, E, ν, η) be an abstraction and let
L(n) ⊆ V indicate the set of live variables for each node n. The simplifica-
tion simplify(τ,m, n) of a transition τ on an edge (m,n) ∈ E is obtained
by removing from ρτ all conjuncts φ with vars(φ) ∩ (L(m) ∪ L(n)′) = ∅.
In the special case of a guarded W -assignment τ , the simplification
simplify(τ,m, n) is obtained by removing from ρτ all conjuncts v′ = ev(V)
with v 6∈ L(n).

Simplifying all transitions results in the new abstraction A′ =
(N,N0, Ne, E, ν, η′) where η′(m,n) = {simplify(τ,m, n) | τ ∈ η(m,n)}
for all (m,n) ∈ E.

In Step 2 of the elevator example, node n2 is labeled with the set {cur , in}
and nodes n0 and n1 are labeled with the full set of variables. As a result of
the slicing operation Simplify Transition, the transition relation moveUp on the
edge from n1 to n2 is simplified to moveUp# by dropping the conjuncts req ′=req
and pc′=2.

Proposition 4.7 Let A = (N,N0, Ne, E, ν, η) be a sound abstraction of a tran-
sition system S = (V, init , T ) with respect to error ∈ Asrt(V), and let A′ be the
result of applying Simplify Transition. Then A′ is also a sound abstraction of S
with respect to error.

Proof: We show that A has a concretizable error path iff A′ has a con-
cretizable error path. The implication from A to A′ is straightforward since
SimplifyTransition eliminates conjuncts from transition relations and thus ev-
ery concretization of an error path in A is a concretization of the corresponding
modified error path in A′.

For the reverse direction assume n0, τ1, n1, . . . , nk to be a concretizable er-
ror path in A′ with concretization s0, . . . , sk. Let τ̂i be the corresponding non-
simplified version of τi in A. We inductively construct a concretization ŝ0, . . . , ŝk
of n0, τ̂1, n1, . . . , nk. For a state s and a set of variables X ⊆ V, we write s|X
to stand for the valuation s restricted to X. We use the operator ⊕ to conjoin
valuations over disjoint sets of variables. The construction of the concretization
starts with ŝ0 = s0. ŝ0 can be written as s0|L(n0) ⊕ t0 for some valuation t0 of
variables in V \ L(n0). Then we set ŝ1 to s1|L(n1) ⊕ t1, where t1 is a valuation
of V \ L(n1) such that φ(t0, t1) for all removed conjuncts φ of τ̂1. Such a t1
exists since we assumed that the conjunction of all φ is satisfiable and φ fur-
thermore contains no variables from enabled(τ̂1). Then τ̂1(ŝ0, ŝ1) since φ does
not constrain variables in L(n1) (definition of depends) and the enabledness
of τ̂1 is independent of φ (vars(enabled(τ̂1)) ⊆ L(n0)). This construction can
analogously be continued for all states. �

4.5.2 Bypass transitions

The following construction allows us to bypass nodes without self loops. For a
node n with an incoming transition τ1 and an outgoing transition τ2, we define
the bypass relation ρτ1 ◦nρτ2(V,V

′) = ∃V ′′ . τ1(V,V
′′) ∧ ν(n)(V ′′) ∧ τ2(V

′′,V ′),
and the bypass transition τ1 ◦n τ2 = (wτ1 .wτ2 , ρτ1 ◦nρτ2).

Bypass Transitions Let A = (N,N0, Ne, E, ν, η) be an abstraction and let
n ∈ N r (N0 ∪ Ne), (n, n) /∈ E be a node which is not an initial node,
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not an error node, and does not have a self loop. Every pair (τ1, τ2) ∈
η(m,n)× η(n, n′) of an incoming transition τ1 and an outgoing transition
τ2 is modified to bypass node n, resulting in the new abstraction A′ =
(N ′, N0′, Ne′, E′, ν, η′), where

• N ′ = N r {n},

• N0′ = N0 r {n},

• Ne′ = Ne r {n},

• E′ = E ∩ (N ′ ×N ′) ∪ {(m,n′) | (m,n), (n, n′) ∈ E}, and

• η′(m,n′) = η(m,n′) ∪ {τ1 ◦n τ2 | τ1 ∈ η(m,n), τ2 ∈ η(n, n
′)}

for all (m,n′) ∈ E′ (with η(m,n′) = ∅ for (m,n′) 6∈ E).

In Step 5b of the elevator example, node n1 is bypassed via request ◦n1
up. As

a result, n1 becomes unreachable and is eliminated. The new transition relation
is computed as follows:

ρrequest◦n1
ρup ⇔∃V

′′ . ρrequest(V,V
′′) ∧ ν(n4)(V

′′) ∧ ρup(V
′′,V ′)

⇔∃V ′′ . pc=0 ∧ pc′′=1 ∧ cur ′′=cur ∧ req ′′=in

∧ ¬init ′′ ∧ ¬error ′′ ∧ pc′′=1

∧ pc′′=1 ∧ req ′′>cur ′′ ∧ pc′=2 ∧ cur ′=cur ′′ ∧ req ′=req ′′

⇔ pc=0 ∧ cur≤Max ∧ in>cur ∧ pc′=2 ∧ cur ′=cur ∧ req ′=in.

Proposition 4.8 Let A = (N,N0, Ne, E, ν, η) be a sound abstraction of a tran-
sition system S = (V, init , T ) with respect to error ∈ Asrt(V), and let A′ be the
result of applying Bypass Transitions. Then A′ is also a sound abstraction of S
with respect to error.

Proof: We show that A has a concretizable error path iff A′ has a concretiz-
able error path. Assume that n0, τ1, n1, . . . , nk is a concretizable error path
in A and that node ni is bypassed. Then A′ has a concretizable error path
n0, τ1, n1, . . . , ni−1, τi−1 ◦ni

τi, ni+1, . . . , nk. Conversely, whenever A
′ has a con-

cretizable error path containing a bypass transition τ , then there was an inter-
mediate node n and two transitions τ1, τ2 such that τ = τ1 ◦n τ2 and thus a
corresponding concretizable error path of A can be constructed. �

4.5.3 Initiality and Error Subsumption

It is intuitively clear that, for a state-based error condition, an error path that
contains more than one initial or error node has at least one subpath which is
also an error path. Any error paths lost by removing edges leading into N0 or
out of Ne are thus expendable.

Initiality Subsumption Let A = (N,N0, Ne, E, ν, η) be an abstraction that
contains an edge e = (m,n) ∈ E such that n ∈ N0. We remove e, resulting
in the new abstraction A = (N,N0, Ne, E r {e}, ν, η).

Error Subsumption Let A = (N,N0, Ne, E, ν, η) be an abstraction, and let
e = (m,n) ∈ E be an edge with m ∈ Ne. We remove e, resulting in the
new abstraction A = (N,N0, Ne, E r {e}, ν, η).
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Proposition 4.9 Let A = (N,E, ν, η) be a sound abstraction of a transition
system S = (V, init , T ) with respect to error ∈ Asrt(V). Applying Initiality
Subsumption or Error Subsumption to remove (m,n) from A results in another
sound abstraction A′ of S with respect to error.

Proof: We show that A has a concretizable error path iff A′ has a concretiz-
able error path. Obviously, every error path in A′ is also an error path in A.
Conversely, suppose that p = n0, τ1, n1, . . . , nk is a concretizable error path in
A. Let i ∈ {1, . . . , k} be the largest index such that ni ∈ N

0, and let j be the
smallest index in {j, . . . , k} with nj ∈ N

e.
p′ = ni, τi+1, ni+1, . . . , nj is obviously also a concretizable error path, and

since it contains no edges (m,n) with m ∈ Ne or n ∈ N0, p′ still exists in A′.
�

4.5.4 Source and Target Enlargement

The Source Enlargement and Target Enlargement transformations reduce the
length of error paths by identifying parts of the state space that are guaranteed
to be forward reachable from the initial states or backward reachable from the
error states. Nodes representing such state sets can be included in the set of
initial and error nodes, respectively.

In the definition of the transformations we use the standard preimage and
strongest postcondition operators pre and post: pre(ρ, φ)(V) ⇔ ∃V ′(ρ(V,V ′) ∧
φ(V ′)), post(ρ, φ)(V ′)⇔ ∃V(ρ(V,V ′) ∧ φ(V)).

Source Enlargement Let A = (N,N0, Ne, E, ν, η) be an abstraction that
contains a node n ∈ N such that ν(n) ⇒

∨
i∈N0

∨
τ∈η(i,n) post(ρτ , ν(i)).

We add n to N0, obtaining A = (N,N0 ∪ {n}, Ne, E, ν, η).

Target Enlargement Let A = (N,N0, Ne, E, ν, η) be an abstraction that
contains a node n ∈ N such that ν(n) ⇒

∨
f∈Ne

∨
τ∈η(n,f) pre(ρτ , ν(f)).

We add n to Ne, obtaining A = (N,N0, Ne ∪ {n}, E, ν, η).

A node that satisfies the conditions of Source Enlargement can be obtained
by splitting a successor n of an initial node i with the strongest postcondition
of a transition connecting i with n.

Example: Consider Step 5a of the elevator verification. Splitting node n1 with

ϕ = post(ρrequest, init ∧ ¬error) ≡ pc=1 ∧ cur ≤Max ∧ req≤Max ,

we obtain two nodes, n1 with ν(n1) = ¬init ∧ ¬error ∧ pc=1 ∧ req≤Max and
n6 with ν(n6) = ¬init ∧ ¬error ∧ pc=1 ∧ req>Max . Source Enlargement adds
n1 to N0, and Initiality Subsumption then deletes the edge (n0, n1). Node n6 is
eliminated by the slicing rules. Node n0 then has no more outgoing edges and
is also removed.

For Target Enlargement, a node that satisfies the conditions can analogously
be obtained by splitting the predecessor n of an error node f with the preimage
of a transition connecting n with f .
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m : ϕ n : ψ
T2

T1

Figure 4.7: Abstraction with self loop in node m. Partial order elimination re-
moves a transition τ ∈ T1 on the self loop if τ is unblocked by every other
transition in T1 ∪ T2.

Proposition 4.10 Let A = (N,N0, Ne, E, ν, η) be a sound abstraction of a
transition system S = (V, init , T ) with respect to error ∈ Asrt(V), and let A′

be the result of applying Source Enlargement or Target Enlargement to a node
n ∈ N . Then A′ is also a sound abstraction of S with respect to error.

Proof: Let A′ be the result of applying Source Enlargement to node n in A. We
show that A contains a concretizable error path iff A′ contains a concretizable
error path.

Any error path that exists in A obviously still exists in A′.
For the implication from A′ to A, let p′ = n′0, τ

′
1, n

′
1, τ

′
2, . . . , τ

′
k, n

′
k be a

concretizable error path in A′ such that n0 = n, and let s′0, s
′
1, . . . s

′
k be a

concretization of p′. Since ν(n′0)⇒
∨
i∈N0

∨
τ∈η(n′

0
,f) post(ρτ , ν(i)), there exists

a node i ∈ N0, a state t that satisfies ν(i), and a transition τ such that ρτ (t, s)
holds. We therefore obtain an error path p = i, τ, n′0, τ

′
1, n

′
1, τ

′
2, . . . , τ

′
k, n

′
k in A

with concretization t, s′0, s
′
1, . . . s

′
k.

The proof for Target Enlargement is analogous. �

4.5.5 Partial Order Reduction

Partial order reduction (cf. [35]) identifies commuting transitions in order to
eliminate redundant interleavings. The central concept of our version of this idea
is that of unblocked transitions: Consider a system in which, whenever transition
τ followed by transition τ ′ leads from a state s to some state s′, τ ′ followed by
τ also leads from s to s′. If a sequence t of transitions can be transformed into
another sequence t′ by swapping replacing the subsequence τ, τ ′ with τ ′, τ , then
for any concretization of t there is a corresponding concretization of t′, and t is
redundant if both sequences are possible in S.

In an abstraction, we can define a specialized partial order reduction rule that
is useful to eliminate transitions from self loops in the abstraction. Consider the
abstraction in Figure 4.7. We define τ ∈ T1 to be unblocked by τ ′ ∈ T2 if for any
concretization of p = m, τ,m, τ ′, n there is a concretization of p′ = m, τ ′, n, τ, n
with the same concrete source and target states.

In terms of the node labels and transition relations, this means that τ is
unblocked by τ ′ with respect to m,n if

ν(m) ∧ (ρτ1 ◦mρτ2) ∧ ν(n)
′ ⇒ ν(m) ∧ (ρτ2 ◦nρτ1) ∧ ν(n)

′,

using the same notation

ρ1 ◦n ρ2(V,V
′) = ∃V ′′ . ρ1(V,V

′′) ∧ ν(n)(V ′′) ∧ ρ2(V
′′,V ′)
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n1 : true

n2 : x ≤ 5

n3 : x = 5

n4 : y ≥ 1

τ1 : y′ = 0

τ2 : x′ = x+ 1, y′ = y + 1

τ2 : x′ = x+ 1, y′ = y + 1

τ3 : x′ = x, y′ = y

τ3 : x′ = x, y′ = y

Figure 4.8: Taking only the transition constraints into account would lead to
an unsound partial order reduction rule: The identity transition τ3 commutes
trivially with τ2, but τ2 cannot be removed, since there are concrete paths
corresponding to n2

τ2→ n2
τ3→ n3, but none for n2

τ3→ n3
τ2→ n3.

as for the Bypass Transitions rule.
Any transition τ ∈ T1 on the self loop in node m that is unblocked by every

other transition in T1 ∪ T2 is redundant: all states reachable through τ (on the
self loop) followed by some transition τ ′ ∈ T1 ∪T2 are also reachable through τ ′

followed by τ . It is therefore sound to eliminate τ from the self loop in node m.
Note that we need to take into account the constraints of the respective

intermediate nodes. For example, consider the abstraction given in Figure 4.8.
Since transition τ3 is the identity, it commutes with any other transition, and in
particular we have s1

τ3→
τ2→ s2 whenever s1

τ2→
τ3→ s2 for states s1, s2. Removing τ2

would, however, remove the concretizable error path n1
τ1→ n2

τ2→ n2
τ3→ n3

τ3→ n4,
and the resulting abstraction would contain no more errors.

Partial Order Reduction Let A = (N,N0, Ne, E, ν, η) be an abstraction
containing a node m ∈ N with (m,m) ∈ E and a transition τ1 ∈ η(m,m).
If for all nodes n ∈ N such that (m,n) ∈ E and transitions τ2 ∈ η(m,n),
ν(m) ∧ (ρτ1 ◦m ρτ2) ∧ ν(n)

′ ⇒ ν(m) ∧ (ρτ2 ◦n ρτ1) ∧ ν(n)
′, then τ1 is

removed from η(m,m), resulting in A′ = (N,N0, Ne, E, ν, η′), where
η′(m,m) = η(m,m)r {τ1} and η′(e) = η(e) for e 6= (m,m).

In Step 3 of the verification of the elevator, we can remove transition
moveDn ∈ η(n4, n4):

• moveDn is trivially unblocked by moveUp ∈ η(n4, n4), in the sense that
ν(n4)∧(ρmoveDn◦n4

ρmoveUp)∧ν(n4) is unsatisfiable: moveDn can never

be immediately followed by moveUp, since it leads to pc=3, while moveUp
requires pc=2.

• moveDn is also trivially unblocked by moveUp# ∈ η(n4, n2), for the same
reason.

As another example, consider the abstraction in Figure 4.7, where we assume
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• φ ≡ y > 0,

• ψ ≡ y ≤ 0,

• T1 = {τ1} with ρτ1 ≡ x
′ ≥ x+ y ∧ y′ = y, and

• T2 = {τ2} with ρτ2 ≡ x
′ = x ∧ y′ = 0.

The formulas we need to compare are:

∃x′′, y′′ : φ ∧ ρτ1(V,V
′′) ∧ φ′′ ∧ ρτ2(V

′′,V ′) ∧ ψ′

⇔ ∃x′′, y′′ : y > 0 ∧ x′′ ≥ x+ y ∧ y′′ = y ∧ y′′ > 0 ∧ x′ = x′′ ∧ y′ = 0 ∧ y′ ≤ 0

⇔ y > 0 ∧ x′ ≥ x+ y ∧ y′ = 0

and

∃x′′, y′′ : φ ∧ ρτ2(V,V
′′) ∧ ψ′′ ∧ ρτ1(V

′′,V ′) ∧ ψ′

⇔ ∃x′′, y′′ : y > 0 ∧ x′′ = x ∧ y′′ = 0 ∧ y′′ ≤ 0 ∧ x′ ≥ x′′ + y′′ ∧ y′ = y′′ ∧ y′ ≤ 0

⇔ y > 0 ∧ x′ ≥ x ∧ y′ = 0.

It is easy to check that (y > 0∧x′ ≥ x+ y∧ y′ = 0)⇒ (y > 0∧x′ ≥ x∧ y′ = 0),

so that for any concretization of m
τ1→ m

τ2→ n there is a concretization of
m

τ2→ n
τ1→ n leading from the same concrete source state to the same concrete

target state, and therefore τ1 can be removed.

Proposition 4.11 Let A = (N,N0, Ne, E, ν, η) be a sound abstraction of a
transition system S = (V, init , T ) with respect to error ∈ Asrt(V), and let A′ be
the result of applying Partial Order Reduction to τ ∈ η(n, n). Then A′ is also
a sound abstraction of S with respect to error.

Proof: We show that A as a concretizable error path iff A′ has a concretizable
error path. The implication from A′ to A is straightforward, since every path
in A′ also exists in A.

For the reverse direction, we assume there exists a concretizable error path p
in A and construct a concretizable error path p′ in A′. Without loss of generality,
we can assume p to be minimal, i.e. contain exactly one initial and one error
node. Let t be the number of occurrences of n, τ, n in p. We prove the claim by
induction on t. If t = 0, then p′ = p. For t > 0, we construct a path p′′ in A
with t− 1 occurrences of n, τ, n. Let p = n0, τ1, . . . , τk, nk and let i be the least
index such that ni = ni+1 = n, τi+1 = τ .

If i+1 = k, the error path p ends with n, τ, n, and n ∈ Ne. We can therefore
use p′′ = n0, τ1, n1, . . . , ni, which is also a concretizable error path and contains
t− 1 occurrences of n, τ, n.

Let i + 1 be smaller than k. Partial Order Reduction guarantees that τ is
unblocked by with τi+2. Let j, i < j ≤ k, be the largest index such that τ is
unblocked by every transition in {τi+2, . . . , τj}.

If j = k, we eliminate the first occurrence of n, τ, n by transforming p into

p′′ = n0, τ1, . . . , τi, ni, τi+2, ni+2, . . . , τk, nk.

The path p′′ leads to the error node nk and is concretizable, because it can be
extended to the sequence n0, τ1, . . . , τi−1, ni, τi+1, ni+1, . . . , τk, nk, τ, nk, which
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is obtained from the concretizable path p by Partial Order Reduction and thus
also concretizable.

For the case that j < k, we show that A must contain a self loop in nj+1 that
contains τ . Since p is minimal, nj+1 can neither be an initial node nor an error
node. Node nj+1 has therefore been constructed in a series of node splits from
the node ie in the initial abstraction, which has a self loop with τ ∈ η(ie, ie).

If τ is not in η(nj+1, nj+1), it must have been removed by either Inconsistent
Transition or by Partial Order Reduction. It is impossible that τ was removed
by Inconsistent Transition, because this transformation requires ν(nj+1)∧ ρτ ∧
ν(nj+1)

′ to be unsatisfiable; since the path n, τi+1, . . . , τj , nj+1, τ, nj+1 is con-
cretizable, however, ν(nj+1)∧ρτ∧ν(nj+1)

′ is satisfiable. Likewise, it is impossible
that τ was removed by Partial Order Reduction, because τ is not unblocked by
τj+1. We use the self loop in nj+1 to transform p into the error path

p′′ = n0, τ1, . . . , τi−1, ni, τi+1, ni+1, . . . , τj , nj+1, τ, nj+1, . . . , nk+1.

Since p′′ is obtained from p by Partial Order Reduction, p′′ is concretizable.
Since τ is not unblocked by τj+1, nj+1 must be different from n. The path p
thus has one more occurrence of n, τ, n than p′′. �

4.6 SLAB

We have implemented our approach as a prototype verification tool named
SLAB (for sl icing abstractions). The current version, SLAB 2, is written in
C++ and uses the MathSAT 4 SMT solver [13] as an underlying mechanism
for satisfiability checking and Craig interpolation. In this section, we discuss the
main implementation decisions in SLAB and report on experimental results.

Error path selection and analysis. SLAB annotates each node n in the
abstraction with the distance di(n) to the closest initial node and the distance
de(n) to the closest error node. Node splits and most slicing steps do not affect
the distances; an update is only necessary when a complete edge is removed.

To find a minimal subpath of an error path, SLAB traverses the abstraction
backwards from some error node such that di(n) decreases in each step. Along
the way, the node labels and transition relations are collected and checked for
satisfiability. If the entire path to an initial node is concretizable, the system
has been proved incorrect; otherwise, the backward traversal stops as soon as
the formula corresponding to the suffix has become unsatisfiable, and the suffix
is reexplored forwards until the shortest spurious prefix of the suffix is found.

Slicing strategy. SLAB maintains a reduced abstraction: after the initial ab-
straction and after each node split all applicable slicing steps are performed. Sup-
pose a minimal error subpath ~p = n0, τ1, n1, . . . , nj−1, τj−1, nj has been identi-
fied. SLAB splits node nj−1 with an interpolant φ for Γ1(~p) and Γ2(~p). The labels
of the new nodes n+ and n− are ν(n+) = ν(nj−1)∧φ and ν(n−) = ν(nj−1)∧¬φ,
respectively, the labels of all other nodes remain the same. The slicing after the
node split can be restricted to the affected parts of the abstraction as follows.

• It is never necessary to apply Rule Inconsistent Node after a node split,
because labels remain satisfiable: For node n+, Γ1(~p) implies φ(Vj−1).
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Therefore, if ν(nj−1)∧φ(Vj−1) were unsatisfiable, ~p would have a spurious
subpath n0, τ1, n1, . . . , τj−1, nj−1, which cannot be the case because ~p is
minimal. For node n−, the conjunction τj(Vj−1, Vj) ∧ ν(nj)(Vj) implies
¬φ(Vj−1). Hence, if ν(nk) ∧ ¬φ were unsatisfiable, then τk+1 would have
been removed previously by Inconsistent Transition, because ν(nj−1)∧τj∧
ν(nk+1)

′ is inconsistent. Rule Inconsistent Node is therefore only applied
to the initial abstraction.

• Rule Inconsistent Transition is applied to all transitions in η(n, n′), where
n or n′ is one of the new nodes n+ or n−.

• As a result of the elimination of transitions, edges may become empty.
We update the annotation with the distances to the closest error and
initial nodes as follows. Let (n, n′) be an edge that was removed by Rule
Empty Edge. If there is no longer a node n′′ such that (n, n′′) ∈ E and
de(n) = de(n

′′) + 1, we set de(n) := ∞, and repeat this update with
all predecessors of n. Analogously, if there is no longer a node n′′ such
that (n′′, n′) ∈ E and di(n) = di(n

′′) + 1, set di(n
′) := ∞, and repeat

this update with all successors of n′. After this iteration terminates, we
recompute the values of di(.), de(.) using breadth-first search, starting from
each node n with di(n) =∞, but di(n

′) <∞ for some n′ with (n′, n) ∈ E,
and each node n with de(n) = ∞, but de(n

′) < ∞ for some n′ with
(n, n′) ∈ E, respectively.

• Rule Unreachable Nodes eliminates all nodes n with di(n) =∞ or de(n) =
∞.

• The integration of the simplification rules into SLAB 2 is work in progress
at the time of writing.

4.6.1 Experiments

Table 4.1 shows the running time of SLAB for a collection of benchmarks. For
comparison, we also give the running times of the Abstraction Refinement Model
Checker ARMC [63] and the Berkeley Lazy Abstraction Software Verification
Tool BLAST [42] and the New Symbolic Model Checker NuSMV [16], where
applicable. The benchmarks include a finite-state concurrent systems (Deque
and Philosophers), an infinite-state discrete system (Bakery), and a real-time
system (Fischer). Because NuSMV is able to verify only finite state systems, the
integer variables for its version of the benchmarks are bounded to 100 values.

Deque. The Deque benchmark is an abstract version of a cyclic buffer for
a double-ended queue. We model the cells of the buffer by n flags, where
true indicates a currently allocated cell. Initially, all but the first flag are
false. Adding or deleting an element at either end is represented by tog-
gling a flag under the condition that the values of the two neighboring flags
are different: (true, true, false) ↔ (true, false, false) and (false, true, true) ↔
(false, false, true). The error condition is satisfied if there are no unallocated
cells left in the buffer.
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SLAB ARMC BLAST NuSMV
Benchmark time time time time
Deque 5 0.06 1.81 0.55 5.64
Deque 10 0.18 776.33 2.32 13.89
Deque 15 0.40 timeout 6.40 22.71
Deque 20 0.69 timeout 13.41 36.08
Bakery 2 0.43 2.26 21.71 0.72
Bakery 3 1.45 33.44 134.72 6.44
Bakery 4 4.00 753.15 error 293.65
Bakery 5 10.26 timeout 879.71 timeout
Philosophers 3 0.76 125.82 15.02 7.82
Philosophers 4 3.05 timeout 92.04 25.16
Philosophers 5 11.50 timeout 658.80 554.86
Philosophers 6 42.57 timeout timeout timeout
Fischer 2 0.65 1.45 N/A N/A
Fischer 3 9.16 48.68 N/A N/A
Fischer 4 122.77 1842.85 N/A N/A

Table 4.1: Experimental results of SLAB, comparing its performance on a range
of benchmarks to the tools ARMC, BLAST and NuSMV. Running times are
given in seconds, with a timeout of 1 hour. All benchmarks were measured on
AMD Opteron 2.6Ghz processors.(BLAST and NuSMV are not applicable to
the real-time system Fischer.)

Bakery. The Bakery protocol [49] is a mutual exclusion algorithm that uses
tickets to prevent simultaneous access to a critical resource. Whenever a process
wants to access the shared resource, it acquires a new ticket with a value v that
is higher than that of all existing tickets. Before the process accesses the critical
resource, it waits until every process that is currently requesting a ticket has
obtained one, and every process that currently holds a ticket with a lower value
than v has finished using the resource. An error occurs if two processes access
the critical resource at the same time.

Philosophers. The Dining Philosophers problem is a standard example of
concurrency. It features a number of philosophers seated around a table, with
one chopstick on the table between each pair of neighbors. In order to eat, a
philosopher needs to pick up both adjacent chopsticks. The naive solution can
easily lead to a deadlocked state, with each philosopher holding one chopstick.

One solution to this problem, modeled in this benchmark, involves giving
the philosophers the ability to go to sleep, and requiring at least one of them to
be asleep at any time. This suffices to ensure starvation-freedom.

Fischer. Fischer’s algorithm, as described in [52], is a real-time mutual ex-
clusion protocol. Access to a resource shared between n processes is controlled
through a single integer variable lock and real-time constraints involving two
fixed bounds C1 < C2. Each process uses an individual (resettable) clock c to
keep track of the passing of time between transitions. Each process first checks
if the lock is free, then, after waiting for no longer than bound C1, sets lock
to its (unique) id. It then waits for at least C2, and if the value of the lock is
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Figure 4.9: Number of abstract states in relation to the number of predicates in
intermediate abstractions during the verification of a benchmark example.

unchanged, accesses the critical resource. When leaving, it frees up the lock. As
in the previous benchmark, an error occurs if two processes access the critical
resource at the same time.

On our benchmarks, SLAB outperforms the other tools, and scales much
better to larger systems. The abstract state space constructed by SLAB grows
much more slowly in the number of predicates than the (fully exponential)
state space considered by standard predicate abstraction: Figure 4.9 depicts the
relation between the number of predicates and the number of abstract states in
intermediate abstractions from the verification of a benchmark modelling two
parallel processes computing a product of two numbers.





Chapter 5

Abstraction Refinement for

Subsequence Invariants

5.1 Introduction

We now show how the Slicing Abstractions procedure works for properties given
by subsequence invariants over a set of transition labels. Note that state-based
error conditions could, if desired, be easily transferred to this setting by intro-
ducing a dedicated error transition having the error condition as a guard, and
requiring the system language to satisfy the invariant |w|error = 0.

In principle, it is also possible to introduce new state variables representing
the subsequence counters occurring in a set of subsequence invariants. One could
then add the appropriate recurrence equations for the |w|U to all transition
relations, and turn the invariants themselves into state assertions. However,
this would obfuscate the characteristic features of the subsequence invariants
that make their analysis efficient.

As before, we maintain a labeled graph representations of the abstract state
space. In addition, we successively construct a forest of subsequence images
which covers the graph. We add new vectors as in the exploration in Section 3.1,
pruning branches which lead to linearly dependent vectors, and performing a
refinement step when encountering a vector which violates one of the invariants.
In this case, we preserve as much as possible of the existing trees through the
refinement and slicing operations, and continue the exploration afterward. If the
forest becomes saturated in the sense that there are no more unpruned branches,
the iteration terminates – the system is correct.

Like in the state-based case, we only require the refinement procedure to
preserve the (non-)existence of error paths, allowing a number of simplifications;
however, since a search state now consists of both an abstract state and a
synchronization history (represented by its subsequence image), the conditions
under which these simplifications can be applied are more complex.

Since we have no designated error states, our initial abstraction, which is
shown in Figure 5.1, only has one initial and one noninitial node. Unlike the
initial abstraction in Chapter 4, we cannot simply eliminate incoming edges into
nodes labeled by init ; like the other simplification rules, Initiality Subsumption
now has additional conditions to be applicable.
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n0 : init n1 : ¬init
|ǫ|U

T

T

T T

Figure 5.1: Initial abstraction, based on the predicate init characterizing the
initial states.
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Figure 5.2: Abstraction refinement loop with exploration, refinement and slicing
steps.

The label on the arrow into the initial node represents a related issue: When
applying Source Enlargement, we now need to keep track of the prefix that we
omit by starting in the new initial node. We do this by associating to each node
n its initial subspace π(n).

Figure 5.2 shows the abstraction refinement loop. Besides the abstraction
itself, we maintain an open list of tree vertices that have not yet been examined.
In each step, we take one of these vertices from the list. If the vector on the vertex
is linearly dependent, we discard it. If it violates an invariant, we have either
found a concretizable counterexample, in which case the system is incorrect, or
we can perform a refinement step, followed by a sequence of slicing steps. If
neither of these occurs, we generate the children of the selected vertex and add
them to the open list.

Refinement steps work much like they did in Chapter 4: From a spurious
counterexample, we obtain an interpolant representing the reason for spurious-
ness, and a node which we split to refine the abstraction. The effect on the
forest of subsequences is simply the duplication of all vertices corresponding to
the split node.

The slicing steps also mirror those in Chapter 4, but have more complex
interactions with the subsequence forest. For example, removing a transition in
the abstraction not only leads to the removal of all corresponding branches in the
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forest, but also requires re-examination of branches that used to be redundant.
Performing a source enlargement operation makes it necessary to keep track of
prefixes by which the new initial node could be reached from the original nodes,
and so on.

5.2 A Motivating Example

We first give an example for the subsequence-based refinement procedure.
Consider the system S = (V, init , T ), where

• V = {x, y},

• init ≡ y > 0,

• T = {τ1, τ2} with

– wτ1 = a, ρτ1 ≡ x+ y > 0 ∧ x′ = x− 3y ∧ y′ = 3x+ y,

– wτ2 = b, ρτ2 ≡ x
′ > x ∧ y′ = y + x′ − x.

We want to verify that this system satisfies the invariant |w|a{b}a{b}a = 0, i.e.
that τ1 cannot be taken three times in a row. The set of subsequences is U =
{ǫ, a{b}, a{b}a{b}, a{b}a{b}a}. The transformation matrices of our transitions
and the invariant vector are

Fτ1 =




1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1


 , Fτ2 =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 , and φ =




0
0
0
1


 .

We begin with the initial abstraction:

n0:y > 0 n1:y ≤ 0

(1, 0, 0, 0) T

T

T T

Step 1. We delete the inconsistent transitions n0
τ2→ n1 and n1

τ1→ n1.

n0:y > 0 n1:y ≤ 0

(1, 0, 0, 0) τ1

T

T τ2

Step 2. We can also apply Initiality Subsumption to delete τ2 on all edges
leading to n0, since Fτ2 maps any vector φ ∈ RU into the subspace spanned
(1, 0, 0, 0), which is the initial subspace of n0.
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n0:y > 0 n1:y ≤ 0

(1, 0, 0, 0) τ1

τ1

τ1 τ2

Step 3. We begin to explore the subsequence hulls of the abstraction, stopping
when we encounter a violation of the invariant (i.e. a vector whose last compo-
nent is nonzero). The path to this vertex corresponds to a counterexample in

the abstraction, in this case n0
τ1→ n0

τ1→ n0
τ1→ n0.

n0:y > 0 n1:y ≤ 0

(1, 0, 0, 0) τ1

τ1

τ1 τ2

(1, 0, 0, 0)

(1, 1, 0, 0)

(1, 1, 1, 0)

(1,1,1,1)

(1, 1, 0, 0)

(1, 0, 0, 0)

(1, 1, 1, 0)

Step 4. From the spurious counterexample, we obtain the interpolant x+y ≤ 0.
We use it to split node n0, getting a new node n2. The forest of subsequence
images gets a new (trivial) tree rooted over n2.

n0:y > 0
x+ y ≤ 0

n2:y > 0
x+ y > 0 n1:y ≤ 0

(1, 0, 0, 0) (1, 0, 0, 0)

τ1

τ1 τ1

τ1

τ1

τ1

τ1τ1
τ2

(1, 0, 0, 0)

(1, 1, 0, 0)

(1, 1, 1, 0)

(1, 1, 1, 1)

(1, 0, 0, 0) (1, 1, 0, 0)

(1, 0, 0, 0)

(1, 1, 1, 0)



76 CHAPTER 5. REFINEMENT FOR SUBSEQUENCES

Step 5. Removing inconsistent transitions and empty edges, we also lose all
subtrees in the forest which are only reachable through them, which in this case
leaves us with only the roots.

n0:y > 0
x+ y ≤ 0

n2:y > 0
x+ y > 0 n1:y ≤ 0

(1, 0, 0, 0) (1, 0, 0, 0)

τ1

τ1

τ1

τ1
τ2

(1, 0, 0, 0) (1, 0, 0, 0)

Step 6. We resume exploration of the subsequence forest, finding another coun-
terexample.

n0:y > 0
x+ y ≤ 0

n2:y > 0
x+ y > 0 n1:y ≤ 0

(1, 0, 0, 0) (1, 0, 0, 0)

τ1

τ1

τ1

τ1
τ2

(1, 0, 0, 0)

(1, 1, 0, 0)

(1, 1, 1, 0)

(1, 0, 0, 0)

(1, 1, 0, 0)

(1, 1, 1, 0)

(1,1,1,1)

(1, 1, 0, 0)

(1, 0, 0, 0)

(1, 1, 1, 0)

Step 7. After splitting with the new interpolant y > 3x and slicing, we again
lose part of the subsequence forest.

n0:y > 0
x+ y ≤ 0

n2:y > 0
x+ y > 0
y > 3x

n3:y > 0
x+ y > 0
y ≤ 3x

n1:y ≤ 0

(1, 0, 0, 0)
(1, 0, 0, 0) (1, 0, 0, 0)

τ1 τ1 τ1

τ1

τ2

(1, 0, 0, 0)

(1, 1, 0, 0)

(1, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 0)

(1, 0, 0, 0)

Step 8. The node label ν(n2) implies the postcondition post(τ1, ν(n3)), allowing
us to apply source enlargement. The result is a new basis vector (1, 1, 0, 0) of the
initial subspace at n2. The subsequence forest gets a corresponding root vertex,
resulting in a shorter counterexample when the exploration is resumed.
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n0:y > 0
x+ y ≤ 0

n2:y > 0
x+ y > 0
y > 3x

n3:y > 0
x+ y > 0
y ≤ 3x

n1:y ≤ 0

(1, 0, 0, 0)

(1, 0, 0, 0)
(1, 1, 0, 0) (1, 0, 0, 0)

τ1 τ1 τ1

τ1

τ2

(1, 0, 0, 0)

(1, 1, 0, 0)

(1, 1, 1, 0)

(1, 0, 0, 0)

(1, 1, 0, 0)

(1, 0, 0, 0)

(1, 1, 1, 0)

(1,1,1,1)

(1, 1, 0, 0)

(1, 0, 0, 0)

(1, 1, 1, 0)

Step 9. Splitting n1 with the interpolant y ≥ x produces a new node n5 which,
after slicing, becomes unreachable. The exploration of the subsequence forest
reaches a fixed point without encountering any more errors; the system is correct.

n0:y > 0
x+ y ≤ 0

n2:y > 0
x+ y > 0
y > 3x

n3:y > 0
x+ y > 0
y ≤ 3x

n5:y ≤ 0
y < x

n1:y ≤ 0
y ≥ x

(1, 0, 0, 0)

(1, 0, 0, 0)
(1, 1, 0, 0) (1, 0, 0, 0)

τ1 τ1 τ1

τ1

τ2

τ2
(1, 0, 0, 0)

(1, 1, 0, 0)

(1, 1, 1, 0)

(1, 0, 0, 0)

(1, 1, 0, 0)

(1, 0, 0, 0) (1, 1, 0, 0)

(1, 0, 0, 0)

(1, 1, 1, 0)

5.3 Preliminaries

As before, we work with a finite set V of state variables and a finite alpha-
bet of events Σ. We also assume given a fixed finite and prefix-closed set of
subsequences U , from which we obtain for each a the transformation matri-
ces Fa ∈ RU×U with |w.a|U = Fa|w|U for all w. For any labelled transi-
tion τ = (wτ , ρτ ) ∈ T(V,Σ), we have the associated transformation matrix
Fτ = Fan · · ·Fa1 , where wτ = a1 . . . an.

The specification is given by a labelled transition system S = (V, init , T ) and
a set Φ = {φ1, . . . , φn} ⊆ RU of subsequence invariants over U . We say S is cor-
rect with respect to Φ if the invariants in Φ hold on every run s0, τ1, s1, . . . , τn, sn
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of S, i.e. the word w := wτ1 . . . wτn satisfies the equations φ · |w|U = 0 for all
φ ∈ Φ.

5.4 Abstraction

Our abstractions are labeled graphs as in Chapter 4, except that nodes are now
additionally labeled with vectors representing possible event prefixes, and there
is no set of error nodes.

Definition 5.1 An abstraction A = (N,N0, E, ν, π, η) of a system S consists
of the following components:

• a finite set N of nodes,

• a subset N0 ⊆ N of initial nodes,

• a set E ⊆ N ×N of edges,

• a labeling ν : N → Asrt(V) of nodes with assertions,

• a labeling π : N → 2R
U

of nodes with finite sets of vectors, and

• a labeling η : E → 2T(V,Σ) of edges with finite sets of transitions.

The only new component is the label π, which assigns to each node a basis
of its initial subspace. For noninitial nodes, this is the trivial space {0}; for
initial n it is the subsequence hull of prefixes that can occur before starting in
this node. Initially, the only such prefix is the empty word; however, the Source
Enlargement transformation may introduce others.

To any path p = n0, τ1, n1, . . . , nk in this kind of abstraction we can associate
its image H(p) = Fτk · · ·Fτ1span(π(n0)), the space of vectors reachable from
the initial subspace at n0 via p. The path is an error path if, for some invariant
φ ∈ Φ, φ ·H(p) 6= {0}.

Definition 5.2 A subsequence forest Θ = (V, V 0, R, β, ψ) over an abstraction
A = (N,N0, E, ν, π, η) consists of

• A finite set V of vertices,

• a subset V 0 ⊆ V of initial vertices,

• a set R ⊆ V × T× V of edges,

• a function β : V → N assigning to each vertex its base node, and

• a function ψ : V → RU assigning to each vertex its image.

Given a subsequence forest Θ, we define for each node n ∈ N the fibre of Θ
over n to be β−1(n) = {v ∈ V : β(v) = n}, and the hull at n to be HΘ(n) =
span(ψ(β−1(n))) = span({ψ(v) : β(v) = n}).

A subsequence forest Θ over A is valid iff

• (V,R) is a directed forest, with V 0 as its set of roots,
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• for each n ∈ N , the vectors ψ(v) for v ∈ β−1(n) are linearly independent,

• for each v ∈ V 0, β(v) ∈ N0 and ψ(v) ∈ span(π(β(v))), and

• for all v, v′ ∈ V , if v
τ
→ v′, then β(v)

τ
→ β(v′) and ψ(v′) = Fτψ(v).

Θ is full iff

• for each n ∈ N0, span(ψ(V 0 ∩ β−1(n))) = span(π(n)), and

• For each v ∈ V and n ∈ N , if β(v)
τ
→ n, then Fτψ(v) ∈ VΘ(n).

Validity of Θ guarantees that for all n ∈ N , HΘ(n) contains only linear
combinations of subsequence images of runs inA. It also implies that there are no
redundant vectors in the forest. If Θ is also full, we actually haveHΘ(n) = H(n),
so that the abstraction is safe if Θ contains no vectors violating Φ:

Lemma 5.3 Let Θ = (V, V 0, R, β, ψ) be a valid and full subsequence forest over
an abstraction A = (N,N0, E, ν, π, η) such that φ · ψ(v) = 0 for all φ ∈ Φ and
v ∈ V . Then A contains no error paths.

Proof: Let p = n0, τ1, n1, . . . , τk, nk be a path in A. We show by induction that
for each i, the image H(pi) of the path pi = n0, τ1, n1, . . . , τi, ni is contained in
HΘ(ni):

For i = 0, this follows from the first condition for fullness. For any vector
η ∈ H(pi+1), there is η′ ∈ H(pi) such that η = Fτi+1

η′. By the induction
hypothesis, η′ ∈ HΘ(ni), i.e. η

′ can be written as a linear combination

η′ =
∑

v∈β−1(ni)

λvψ(v),

and thus
η = Fτi+1

η′ =
∑

v∈β−1(ni)

λvFτi+1
ψ(v),

which is in HΘ(ni+1).
But this implies that H(p) ⊆ HΘ(nk), and therefore φ · H(p) = 0 for all

φ ∈ Φ, so that p is not an error path.
�

5.4.1 Initial abstraction

Definition 5.4 The initial abstraction A0 = (N,N0, E, ν, π, η) of a transition
system S = (V, init , T ) and set Φ = {φ1, . . . , φn} of invariants over the set U
of subsequences consists of the following components:

• N = {i, i},

• N0 = {i},

• E = N ×N ,

• ν : i 7→ init , i 7→ ¬init,

• π : i 7→ {|ǫ|U}, i 7→ ∅,



80 CHAPTER 5. REFINEMENT FOR SUBSEQUENCES

• η : e 7→ T for all e ∈ E.

The initial abstraction is shown in Figure 5.1.

We use a similar notion of soundness as in Chapter 4: For a given set of
subsequence invariants Φ over U , we merely require the abstraction to contain
some concretizable error path iff the system is incorrect. This again allows us
to remove, under the right circumstances, redundant parts of the abstraction.

Proposition 5.5 The initial abstraction A0 of S is sound with respect to Φ.

Proof: By definition, the concretization of an error path of A0 is a run
s0, τ1, s1, . . . , τm, sm of S such that φ · |wτ1 . . . wτm |U 6= 0 for some invariant
φ ∈ Φ, implying that the system is incorrect.

Suppose, on the other hand, that S is not correct, i.e., there exists a run
s0, τ1, s1, τ1, . . . , τm, sm of S violating one of the invariants. Since the initial
abstraction has edges labeled with the full set of system transitions between each
pair of nodes, it has a corresponding run n0, τ1, n1, . . . , τm, nm, where nj = i if
sj |= init and nj = i otherwise. This is an error path, since it features the same
sequence of transitions as the run in S. It is concretizable, since the states sj by
assumption form a satisfying assignment for the corresponding set of constraints.

�

Definition 5.6 The initial subsequence forest of an abstraction A =
(N,N0, E, ν, π, η) is Θ0 = (V0, V

0
0 , R0, β0, ψ0), where

• V0 = V 0
0 contains one vertex v(n, φ) for each n ∈ N0 and φ ∈ π(n),

• R0 = ∅,

• β0(v(n, φ)) = n for all n, φ, and

• ψ0(v(n, φ)) = φ for all n, φ.

Proposition 5.7 The initial subsequence forest of an abstraction is valid.

Proof: Since Θ0 contains exactly one initial vertex for each initial node n of
A and each φ ∈ π(n), and no edges, we have that

• (V,R) is trivially a directed forest with root set V 0
0 ,

• β(v) ∈ N0 and ψ(v) ∈ π(β(v)) for all v by definition,

• The condition that for every edge in Θ there is a corresponding edge in A
holds vacuously, and

• for each n, the vectors ψ(v) for those v with β(v) = n are, by definition,
exactly the elements of the basis π(n) and thus linearly independent.

�
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5.4.2 Forest Exploration

The main change to the refinement loop itself is the exploration of the subse-
quence forest, which is interleaved with the refinement and slicing steps in the
abstraction. We now describe the relevant details of these steps.

Throughout the refinement loop, we maintain three lists of vertices:

• the open list of vertices that we still have to evaluate,

• the closed list of vertices that have already been evaluated and make up
the current set V of vertices in the subsequence forest Θ, and

• the suspend list of vertices that were pruned because the associated subse-
quence image was redundant. We need to keep these vertices because some
slicing steps may actually remove the redundancy, making it necessary to
add some of these vertices back to the open list.

Initially, the closed list contains the initial vertices V 0
0 of the initial subsequence

forest, the open list contains all children of the v ∈ V 0
0 , and the suspend list

is empty. Here we assume that the vectors ψ(v) for v ∈ V 0
0 do not violate any

invariants; otherwise, the system is incorrect and we can terminate immediately.
In each iteration of the loop, as long as the open list is not empty, we

1. pick a vertex v from the open list and compute its image ψ(v) = Fτψ(u),

based on its parent transition u
τ
→ v;

2. if the image is redundant, i.e. ψ(v) ∈ HΘ(β(v)), add v to the suspend list
and go to (1);

3. if the image satisfies the invariants, i.e. φ · ψ(v) = 0 for all φ ∈ Φ, then

add v to the closed list, and for each transition β(v)
τ ′

→ n in A ,add to the

open list a child v′ with β(v′) = n and v
τ ′

→ v′. Go to (1);

4. otherwise, we have a counterexample. Let u
τ0→ · · ·

τn→ v be the unique
path to v with u ∈ V 0, check the corresponding run β(u)

τ0→ · · ·
τn→ β(v)

for concretizability, and either terminate or refine the abstraction.

The refinement and slicing operations are affected in two ways by the addi-
tion of subsequence invariants:

• We have to be more careful about what parts of the abstraction are ac-
tually safe to remove. The removal of transitions into initial nodes is one
example: While in the original approach, this could only cut unnecessary
prefixes off possible error paths, those prefixes may now actually be im-
portant, since what we actually need to keep track of are combinations of
system states and synchronization histories.

• Transformations of the abstraction will have an impact on the subsequence
forest as well. We need to reflect operations such as node split or removal
of transitions in the forest. One approach would be to just start over with
the exploration, but we try to retain as much as possible of the forest, in
order to avoid unnecessary recomputations.
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5.4.3 Abstraction Refinement

We first introduce the refinement step for a given predicate and node, and show
that it maintains soundness of the abstraction and validity of the subsequence
forest.

Given some new predicate q, we again split an abstract node n labeled ϕ
into two new nodes, one labeled ϕ ∧ q, the other ϕ ∧ ¬q.

Given a subsequence forest Θ over A, we duplicate all vertices v for which
β(v) = n, along with the edges from their parent vertices. Note that we do not
duplicate any of the children of these vertices, since their image is identical to
that of the original. The copy of the child would therefore have both the same
base node and image as the original child, making it redundant.

Node split Let A = (N,N0, E, ν, π, η) be an abstraction of a transition system
S = (V, init , T ), let Θ = (V, V 0, R, β, ψ) be a subsequence forest over A,
and let n ∈ N be some node and q(V) some predicate. Splitting node n

with q results in the new abstraction A′ = (N ′, N0′, E′, ν′, π′, η′) and the

new subsequence forest Θ′ = (V ′, V 0′, R′, β′, ψ′) over A′, where

• N ′ = N ∪ {n−} where n− /∈ N is a fresh node;

• N0′ =

{
N0 ∪ {n−} if n ∈ N0,
N0 otherwise,

• E′ =
⋃
e∈E split(e), where

split(e) =





{e, (n, n−), (n−, n), (n−, n−)} if e = (n, n),

{e, (m,n−)} if e = (m,n),m 6= n,

{e, (n−,m)} if e = (n,m),m 6= n,

{e} otherwise,

• ν′(m) =





ν(n) ∧ q if m = n

ν(n) ∧ ¬q if m = n−, and

ν(m) otherwise,

• π′(m) =

{
π(n) if m = n−,

π(m) otherwise,

• η′(e′) = η(e) for all e′ ∈ split(e), e ∈ E,

• V ′ = V ∪ {s(v) : v ∈ β−1(n)}, where s(v) is a fresh node for each
v ∈ β−1(n),

• V 0′ = V 0 ∪ {s(v) : v ∈ (V 0 ∩ β−1(n))},

• R′ = R ∪ {(v′, τ, s(v)) : v ∈ β−1(n), (v′, τ, v) ∈ R)})

• β′(v) =

{
n− if v ∈ V ′ \ V

β(v) otherwise

• ψ′(v) =

{
ψ(v′) if v = s(v′) ∈ V ′ \ V

ψ(v) otherwise

Proposition 5.8 Let A = (N,N0, E, ν, π, η) be a sound abstraction of a transi-
tion system S = (V, init , T ), let Θ = (V, V 0, R, β, ψ) be a valid subsequence tree
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over A, and let n ∈ N be some abstract node and q(V) be a predicate. Then the
application of node split to A and Θ with respect to n and q produces another
sound abstraction A′ of S, and a valid subsequence forest Θ′ over A′.

Proof: If S is not correct, then the sound abstraction A contains an error path
n0, τ0, n1, τ1, . . . , τk−1, nk which has a concretization s0, τ0, s1, τ1, . . . , τk−1, sk.
In this case, the node split A′ of A with respect to n and q contains the con-
cretizable error path n′0, τ0, n

′
1, τ1, . . . , τk−1, n

′
k where, for all 0 ≤ i ≤ k, n′i = ni

if ni ∈ N r {n}, n′i = n if ni = n and q(si), and n
′
i = n− if ni = n and ¬q(si).

Suppose, on the other hand, that A′ contains a concretizable error
path n′0, τ

′
0, n

′
1, τ

′
1, . . . , τ

′
k−1, n

′
k, then A contains the concretizable error path

n0, τ
′
0, n1, τ

′
1, . . . , τ

′
k−1, nk where ni = n′i if n′i ∈ N , and ni = n if n′i = n−,

implying that S is not correct. Hence, A′ is also a sound abstraction of S.
The only changes from Θ to Θ′ are the addition of some vertices, each

possibly with an edge from a parent vertex. More precisely, the possibilities for
any new vertex v′ = s(v) ∈ V ′ \ V are:

1. v ∈ V 0 is an initial vertex. Then v′ is also initial in Θ′. By validity of Θ,
v has no parent, and by the definition of R′, neither does v′. We therefore
have added a new tree, consisting only of the root vertex v′ ∈ V 0′.

Also, since v ∈ V 0, n = β(v) ∈ N0, and therefore n− = β(v′) ∈ N0′. As
π′(n−) = π(n), ψ′(v′) = ψ(v) ∈ span(π′(n−)).

2. If v /∈ V 0, then again by the validity of Θ, there is a unique edge u
τ
→ v

in R, and R′ contains a matching new edge u
τ
→ v′. We thus have added

a new branch to an existing tree.

Since u
τ
→ v and Θ is valid, β(u)

τ
→ n in A, and therefore β(u)

τ
→ n− =

β(v′) in A′.

It only remains to show that the vectors ψ′(v′) for v′ ∈ β′−1(n−) are linearly
independent. This holds because each such v′ equals s(v) for some v ∈ β−1(n),
and ψ′(v′) = ψ(v) by definition, and Θ is valid.

�

5.5 Elimination Rules

We now show how to extend the elimination rules to the subsequence in-
variant case. Throughout this and the following section, we assume given
a sound abstraction A = (N,N0, E, ν, π, η) and a valid subsequence tree
Θ = (V, V 0, R, β, ψ) over A such that the vectors ψ(v) satisfy all invariants.
We will show that each transformation preserves soundness and validity.

The elimination rules all modify the abstraction by removing some
nodes, transitions, or edges, i.e. we get a new abstraction A′ = (N ′, N0 ∩
N ′, E′, ν|N ′ , π|N ′ , η′) such that

• N ′ ⊆ N ,

• E′ ⊆ E ∩ (N ′ ×N ′), and

• η′(e) ⊆ η(e) for all e ∈ E′.
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The transformation of Θ associated to each elimination rule will either be trivial
or consist of the removal of some subtrees. As long as this removal satisfies some
ocvious conditions, the resulting subsequence forest is again valid for A′:

Lemma 5.9 Let A,A′,Θ be as described above, and let Θ′ = (V ′, V 0 ∩ V ′, R ∩
(V ′ × V ′), β|V ′ , ψ|V ′) be a subsequence forest. such that

• V ′ ⊆ V is closed under the parent relation, i.e. if v /∈ V ′ and (v, τ, v′) ∈ R,
then v′ /∈ V ′,

• all vertices over removed nodes are also removed, i.e. for all v ∈ V ′,
β(v) ∈ N ′, and

• all vertices reached by a transition v
τ
→ v′ such that the corresponding

transition is removed in A′ are also removed, i.e. if v
τ
→ v′ in Θ′, then

β′(v)
τ
→ β′(v′) in A′.

Then Θ′ is a valid subsequence forest over A′.

Proof:

• A tree in the forest from which a subtree is removed either becomes empty
(in which case the root is removed both from V and from V 0), or is again
a tree with the same root as before. This takes care of the first condition.

• The values of β and ψ are unchanged for the remaining vertices, implying
the second condition.

• Also unchanged are the membership inN0 and the bases π(n) for the nodes
n ∈ N ′. As all vertices associated with removed nodes or transitions are
also removed, this implies the last two conditions.

�

5.5.1 Eliminating transitions

The effect of these rules on the abstraction is unchanged, and the effect on the
subsequence forest is straightforward:

Inconsistent Transition If A contains a transition τ ∈ η(m,n) on some edge
(m,n) ∈ E that is inconsistent with the node labels, i.e., such that the
formula ν(m) ∧ ρτ ∧ ν(n)

′ is unsatisfiable, we remove τ , resulting in the
abstraction A′ = (N,N0, E, ν, π, η′), where η′(m,n) = η(m,n)r {τ} and
η′(e) = η(e) for e 6= (m,n).
We transform Θ into a subsequence forest over A′ by pruning, for every
edge v

τ
→ v′ in R with β(v) = m and β(v′) = n, the subtree rooted in v′.

Empty Edges Let A contain an edge e ∈ E with η(e) = ∅. Any such edge
can be removed, resulting in the abstraction A′ = (N,N0, E′, ν, π, η|E′),
where E′ = {e ∈ E | η(e) 6= ∅}.
The subsequence forest Θ remains unchanged.

Proposition 5.10 Applying Inconsistent Transition or Empty Edges to A and
Θ results in another sound abstraction A′ of S, and a valid subsequence forest
Θ′ over A′.
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Proof: The soundness proof for A is the same as in chapter 4. Θ′ is valid by
lemma 5.9.

�

5.5.2 Eliminating nodes

Nodes are removed from the abstraction if they are either labeled with an in-
consistent combination of predicates or do not occur on any error paths.

Inconsistent Node Let A contain a node n ∈ N such that ν(n)
is unsatisfiable. We remove n, resulting in the abstraction A′ =
(N ′, N0′, E′, ν|N ′ , π|N ′ , η|E′), where N ′ = N r {n}, N0′ = N0 r {n},
and E′ = E ∩ (N ′ ×N ′).
We transform Θ into Θ′ = (V ′, V 0 ∩ V ′, R ∩ (V ′ × V ′), β|V ′ , ψ|V ′) by
removing all subtrees rooted in vertices v with β(v) = n.

Unreachable Node Let A contain a node n ∈ N which is unreach-
able from the initial nodes. We remove n, resulting in A′ =
(N ′, N0′, E′, ν|N ′ , π|N ′ , η|E′), where N ′ = N r {n},N0′ = N0 r {n}, and
E′ = E ∩ (N ′ ×N ′).
We transform Θ into Θ′ = (V ′, V 0 ∩ V ′, R ∩ (V ′ × V ′), β|V ′ , ψ|V ′) by
removing all subtrees rooted in vertices v with β(v) = n.

Proposition 5.11 Let A′ and Θ′ be the results of applying Inconsistent Node
or Unreachable Node. Then A′ is also a sound abstraction of S, and Θ′ is a
valid subsequence forest over A′.

Proof:

Again, the soundness proof is the same as in the previous chapter, and Θ′ is
valid by lemma 5.9.

�

5.6 Simplification Rules

Unlike elimination rules, the simplification rules remove parts of the abstrac-
tion in a way that potentially reduces the concrete behaviors represented by
the abstraction. As such, the arguments for their soundness are more subtle
already for state-based invariants. This issue becomes even more complex for
subsequence invariants. Nevertheless, there are corresponding transformations
for the simplifications presented in Section 4.5.

In the following, we describe exactly how the simplification rules have to be
adapted, and prove that these new versions preserve soundness of the abstraction
and validity of the subsequence forest.

5.6.1 Simplifying transition relations

This transformation is actually unchanged from its version in Section 4.5. The
reason for this is that what gets removed are not actually nodes or transitions,
possibly corresponding to actually reachable concrete states and transitions, but
just constraints which have been shown to be irrelevant for concretizability of
any abstract runs.
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Simplify Transition Let A = (N,N0, E, ν, π, η) be an abstraction and let
L(n) ⊆ V indicate the set of live variables for each node n, as described
in Section 4.5. The simplification simplify(τ,m, n) of a transition τ on
an edge (m,n) ∈ E is obtained by removing from ρτ all conjuncts φ with
vars(φ)∩(L(m)∪L(n)′) = ∅. In the special case of a guardedW -assignment
τ , the simplification simplify(τ,m, n) is obtained by removing from τ all
conjuncts v′ = ev(V) with v 6∈ L(n).

Simplifying all transitions results in the new abstraction A′ =
(N,N0, E, ν, π, η′) where η′(m,n) = {simplify(τ,m, n) | τ ∈ η(m,n)} for
all (m,n) ∈ E.

Θ remains unchanged by Simplify Transition.

Proposition 5.12 Let A′ be the result of applying Simplify Transition. Then
A′ is also a sound abstraction of S, and Θ is still a valid subsequence forest over
A′.

Proof:

The proof of soundness is identical to the one in Chapter 4.3.2. Validity of
Θ is obvious, since the only change in the abstraction occurs in the ρτ , which
do not affect any of the validity conditions. �

5.6.2 Bypass transitions

In order to be able to apply this rule, we need to make sure that any violation
that might occur at the node to be bypassed will be preserved. There are several
ways in which this can be achieved. One option that is always possible is a version
of Bypass Transitions that only removes the edges going out of the bypassed
node n, not the node itself or its incoming transitions. The other possibilities
are showing that either

• no error can occur at n, or

• any error that might occur at n will be preceded by an error at another
node.

More formally, these conditions can be captured as follows:

Definition 5.13 Let B(n) be the set of nodes in N from which n is reachable.
We call n saturated by Θ if

• for all n′ ∈ N0 ∩B(n), π(n′) ⊆ HΘ(n
′), and

• for all n′ ∈ B(n) and all transitions m
τ
→ n′, Fwτ

HΘ(m) ⊆ HΘ(n
′).

Lemma 5.14 Let n ∈ N be saturated by Θ. Then HΘ(n
′) = H(n′) for all

n′ ∈ B(n).

Proof: HΘ(n
′) ⊆ H(n′), because it is spanned by the images H(p) of paths

leading to n′, and H(n′) is spanned by the images of all such paths.
Conversely, we show by induction on k that for any path p =

n0, τ1, n1, . . . , τk, nk with nk ∈ B(n), the image H(p) is contained in HΘ(nk).
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• For k = 0, H(p) = span(π(n0)) ⊆ HΘ(n0) by the definition.

• For k > 0, let p′ = n0, τ1, n1, . . . , τk−1, nk−1; by the induction hypothesis,
H(p′) ⊆ HΘ(nk−1). Then H(p) = FτkH(p′) ⊆ FτkHΘ(nk−1) ⊆ HΘ(nk).

Since H(n′) is spanned by the images of the paths leading to n′, it follows that
H(n′) ⊆ HΘ(n

′) for n′ ∈ B(n).
�

In particular, the subsequence forest being full corresponds to all n ∈ N be-
ing saturated by it. A node n being saturated implies that any possible violation
of an invariant in B(n) would have been found already.

Definition 5.15 An event a ∈ Σ is harmless with respect to the set of invari-
ants Φ ⊆ RU if the space Φ⊥ = {ψ ∈ RU : φ · ψ = 0 for all φ ∈ Φ} is closed
under Fa. This implies that for any w ∈ Σ, if w satisfies the invariants, then so
does w.a.

Call a node avoidable if n /∈ N0, and all incoming transitions m
τ
→ n satisfy

wτ ∈ h(Φ)
∗, where h(Φ) is the set of harmless events with respect to Φ.

For such an avoidable node n we get that for any concretizable error path
n0, τ1, n1, . . . , τk, nk = n, the prefix n0, τ1, n1, . . . , τk−1, nk−1 is already an (ob-
viously also concretizable) error path. A node which is saturated or avoidable
is disposable in the sense that we can actually delete it when it is bypassed,
without affecting the existence of concretizable error paths.

For a node n with an incoming transition τ1 and an outgoing transition τ2,
we define the bypass relation τ = τ1 ◦n τ2 by

• wτ = wτ1wτ2 , and

• ρτ (V,V
′) = ∃V ′′ . ρτ1(V,V

′′) ∧ ν(n)(V ′′) ∧ ρτ2(V
′′,V ′). If W = L(n) is the

set of live variables of n and τ1 is a guarded W -assignment ρτ1(V,V
′) =∧

i gi(V) ∧
∧
v∈W (v′ = ev(V)), then τ can be simplified to ρτ (V,V

′) =∧
i gi(V) ∧ ν(n)[ev/v](V) ∧ ρτ2 [ev/v](V,V

′).

Bypass Transitions Let n be a node which is not initial, and does not have a
self loop. Every pair (τ1, τ2) ∈ η(m,n)× η(n, n

′) of an incoming transition
τ1 and an outgoing transition τ2 is modified to bypass node n, resulting
in the new abstraction A′ = (N ′, N0, E′, ν, π, η′), where

• N ′ =

{
N r {n} if n is disposable

N otherwise
,

• E′ =

{
E ∩ (N ′ ×N ′) ∪ Eb if n is disposable

E r {n} ×N ∪ Eb otherwise
,

Eb = {(m,n
′) | (m,n), (n, n′) ∈ E}, and

• η′(m,n′) = η(m,n′) ∪ {τ1 ◦n τ2 | τ1 ∈ η(m,n), τ2 ∈ η(n, n
′)} for all

(m,n′) ∈ E′ (with η(m,n′) = ∅ for (m,n′) 6∈ E).

Since n is not initial, we know that any vertex v ∈ V with β(v) = n is not
initial either, i.e., there is a parent vertex p and a transition τ1 such that
p
τ1→ v. For all transitions τ2, we replace each edge v

τ2→ w in R by an edge
p
τ
→ m, where τ = τ1 ◦n τ2.
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n1 : x = 0n2 : x < 0 n3 : x > 0
τ3 : c, x′ = x+ 1

τ1 : a, x′ = x− 1

τ2 : b, x′ = x+ 1

Figure 5.3: Removing transitions into initial nodes may be unsound: The invari-
ant |w|ac = 0 does not hold for this abstraction, but would become true after
removing τ2.

Proposition 5.16 Let A′ and Θ be the results of applying Bypass Transitions.
Then A′ is a sound abstraction of S, and Θ is a valid subsequence forest over
A′.

Proof: We first show that A has a concretizable error path iff A′ has a con-
cretizable error path. Assume that n0, τ1, n1, . . . , nk is a concretizable error path
in A and that node n is bypassed. Let I be the set of all i ∈ N such that ni = n.

If k ∈ I, the error is obtained at the bypassed node, which cannot have been
saturated. In that case, either nk still exists, along with all incoming transitions,
or n was avoidable, in which case we have another concretizable error path
n0, τ1, n1, . . . , nk−1 in A.

For all i ∈ I r {k}, we can replace the steps ni−1, τi, ni, τi+1, ni+1 in the
error path by ni−1, τi ◦ni

τi+1, ni+1 to obtain a concretizable error path in A′.
Conversely, whenever A′ has a concretizable error path containing a bypass

transition τ , then there was an intermediate node n and two transitions τ1, τ2
such that τ = τ1 ◦n τ2 and thus a corresponding concretizable error path of A
can be constructed.

The changes to Θ cannot introduce any cycles, since any new edge p
τ
→ v′,

replaces a previously existing path p
τ1→ v

τ2→ v′, and thus Θ would have already
contained a cycle. The set of roots V 0 is unchanged after Bypass Transitions,
since n cannot have been initial.

The values of β and ψ also stay unchanged for all v ∈ V ′, and the label of
the bypass transition is the concatenation of those of the original transitions, so
that the remaining validity conditions are still satisfied.

5.6.3 Initiality Subsumption

In the original Slicing Abstractions approach, it was sound to remove all tran-
sitions into initial states, since any error trace that used such a transition could
be pruned, so that it started in the corresponding initial state instead. When
the safety property involves subsequence counters, which contain information
about the history of the system, matters are more complicated, since the prefix
that leads to the initial state in question may be necessary for the trace to lead
to an error at all. For example, the abstraction in figure 5.3 does not satisfy the
invariant |w|ac = 0: n1

τ1→ n2
τ2→ n1

τ3→ n3 is a counterexample. Removing the
transition τ2 would lead to the invariant being satisfied, making the simplified
abstraction unsound.
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We can, however, construct conditions under which this problem cannot
occur. Intuitively, if all subsequence images that can occur after a transition
m

τ
→ n are already contained in the initial subspace of n, i.e. Fτψ ∈ span(π(n))

for all ψ ∈ RU , then it is safe to remove τ . This condition can be relaxed: First
of all, it only really needs to hold for those ψ which do not already violate an
invariant. Secondly, it is enough for all such Fτψ to be indistinguishable from
vectors in span(π(n)) in the sense that

• For all φ ∈ Φ, φ · Fτψ is contained in φ · span(π(n)) and therefore 0 (we
can assume that all initial vectors satisfy the invariants, otherwise we can
terminate immediately), and

• for all transitions τ ′ leading out of the initial node, Fτ ′Fτψ is contained
in Fτ ′span(π(n)).

Initiality Subsumption Let ψ1, . . . , ψk be a basis of Φ⊥, the space of all
vectors satisfying the invariants in Φ. If n ∈ N0, and m

τ
→ n such that for

each ψj ,

• for all φ ∈ Φ, φ · Fτψ
j = 0, and

• for all n
τ ′

→ n′, Fτ ′Fτψ
j ∈ Fτ ′span(π(n)),

then we remove τ from ν(m,n), leading to the new abstraction A′ =
(N,N0, E, ν, π, η′), where η′(m,n) = η(m,n) r {τ}, and η′(e) = η(e) for
e 6= (m,n).
We transform Θ into a subsequence forest over A′ by pruning, for every
edge v

τ
→ v′ in R with β(v) = m and β(v′) = n, the subtree rooted in v′.

Proposition 5.17 Applying Initiality Subsumption to remove m
τ
→ n from A

and Θ results in another sound abstraction A′ of S, and a valid subsequence
forest Θ′ over A′.

Proof: We show that A has a concretizable error path iff A′ has a concretizable
error path. Obviously, every error path in A′ is also an error path in A. Con-
versely, suppose that p = n0, τ1, n1, . . . , nk is a concretizable error path in A.
Without loss of generality, we assume that p is minimal, i.e. none of its proper
prefixes is an error path. Suppose that transition τi has been eliminated, and
i is the maximal such index. Then obviously ni = n, and i < k since by the
conditions for Initiality Subsumption, τi cannot be the transition that leads to
the error.

The path ni, τi+1, ni+1, . . . , nk is again an error path: By the second condi-
tion for Initiality Subsumption, the image H(n0, τ1, n1, . . . , ni) is subsumed by
the initial space at n, i.e. we have Fτi+1

H(n0, τ1, n1, . . . , ni) ⊆ Fτi+1
span(π(n)).

This inclusion is preserved by the remaining transitions, so that H(p) ⊆
H(ni, τi+1, ni+1, . . . , nk), and in particular ni, τi+1, ni+1, . . . , nk is an error path.
Being a subpath of p, it is obviously also concretizable.

Validity of Θ′ again follows from lemma 5.9.

�
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5.6.4 Source Enlargement

When applying this transformation, we have to keep track of the initial subspace
associated to the node n which becomes initial. In order to do this, we need to
be a little more restrictive than in Section 4.5.4, requiring all states associated
with n to be reachable from one initial node m via one transition τ . We then
add the image of π(m) under Fτ to π(n). Note that, since there are transitions
into initial nodes, n may have already been initial, and π(n) nonempty.

We again use the standard strongest postcondition operator post(τ, φ)(V ′)⇔
∃V (τ(V, V ′) ∧ φ(V )).

Source Enlargement Let A contain a node n ∈ N such that for some
m ∈ N0 and m

τ
→ n, ν(n) ⇒ post(τ, ν(m)). We add n to N0, obtain-

ing A′ = (N,N0∪{n}, E, ν, π′, η), where π′(n) = join(Fτπ(m), π(n)), and
π′(n′) = π(n′) for n′ 6= n.
From Θ, we obtain a subsequence forest Θ′ over A′ by removing all sub-
trees rooted in vertices v with β(v) = n, and adding new initial vertices
v(n, ψ) ∈ V 0 for each basis element ψ ∈ π′(n).

A node that satisfies the conditions of Source Enlargement can again be
obtained by splitting a successor n of an initial node m with the strongest
postcondition of a transition connecting m with n.

Proposition 5.18 Let A′ and Θ′ be the results of applying Source Enlargement
to a node n ∈ N , using a transition m

τ
→ n from an initial node m. Then A′ is

also a sound abstraction of S, and Θ′ is a valid subsequence forest over A′.

Proof: We show that A contains a concretizable error path iff A′ contains
a concretizable error path. Note first that the sets of nodes and transitions
remain unchanged after Source Enlargement, so that any path that exists in A
also exists in A′ and vice versa. In particular, any concretizable error path in A
still exists in A.

For the implication from A′ to A, let p = n0, τ1, n1, . . . , τk, nk be a concretiz-
able error path in A′ such that n0 = n, and let s0, s1, . . . sk be a concretization
of p. The image H ′(p) of p in A′ is

H ′(p) =Fτ ′
k
· · ·Fτ ′

1
span(π′(n))

=Fτ ′
k
· · ·Fτ ′

1
(span(π(n))⊕ Fτ span(π(m)))

=H(p)⊕ Fτ ′
k
· · ·Fτ ′

1
Fτ span(π(m)),

where H(p) is the image of p in A. In particular, since H ′(p) contains a vector
ψ with φ · ψ 6= 0 for some invariant φ, either

• H(p) already contains such a vector, and p is an error path in A, or

• the image H(p′) of the extended path p′ = m, τ, n0, τ1, n1, . . . , τk, nk con-
tains such a vector, and p′ is an error path in A.

The transformation of Θ only deletes some subtrees and adds new initial
vertices v(n, ψ) for all ψ ∈ π(n), which obviously results in a correctly shaped
forest.

Since none of the labels except π change, the remaining validity conditions
remain true. �
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5.6.5 Partial Order Reduction

Applying partial order reduction in a context where the order of events is im-
portant for the properties under consideration is obviously problematic. In the
case where (the order of) some events is irrelevant, however, one can still apply
this transformation. We restrict ourselves to atomic transitions.

The most obvious case where Partial Order Reduction can be applied to a
transition τ ∈ η(m,m) is when (besides the usual condition on the transition
relations), each subsequence u occurring in an invariant either does not contain
the event wτ , or does not contain w

′
τ for any of the other transitions τ ′ out of m.

What one really needs, though, is the condition that for any such τ ′, the effect
of applying τ and τ ′ on the subsequence counters is independent of the order,
i.e. that Fτ and Fτ ′ commute. We therefore extend the notion of unblocked
transitions to the labeled case:

A transition τ is unblocked by a transition τ ′ if and only if

• ρτ is unblocked by ρτ ′ with respect to m,n, and

• FτFτ ′ = Fτ ′Fτ .

One additional issue is the possibility of an error path p ending at m. In this
case, there may be occurrences of m

τ
→ m in p which get postponed to the end

of the path, where it is not sound to remove them, because they may contribute
to the actual error. We eliminate this possibility by additionally requiring wτ
to be harmless (see Section 5.6.2 with respect to Φ.

Partial Order Reduction Let A contain a node m ∈ N with (m,m) ∈ E
and an atomic transition τ1 ∈ η(m,m). If

• wτ1 is harmless, i.e. for any ψ such that φ · ψ = 0 for all invariants
φ ∈ Φ, also φ · Fτ1ψ = 0 for all φ ∈ Φ,

• for all nodes n ∈ N such that (m,n) ∈ E and transitions τ2 ∈ η(m,n),

– Fτ1 commutes with Fτ2 , and

– ρτ1 is unblocked by ρτ2 , i.e.
ν(m) ∧ (ρτ1 ◦m ρτ2) ∧ ν(n)

′ ⇒ ν(m) ∧ (ρτ2 ◦n ρτ1) ∧ ν(n)
′,

then τ1 is removed from η(m,m), resulting in A′ = (N,N0, E, ν, π, η′),
where η′(m,m) = η(m,m)r {τ1} and η′(e) = η(e) for e 6= (m,m).

Θ is transformed into a subsequence forest over A′ be removing, for each
v
τ1→ v′ with β(v) = β(v′) = m, the subtree rooted in v′.

Proposition 5.19 Let A′ and Θ′ be the results of applying Partial Order Re-
duction to τ ∈ η(n, n). Then A′ is also a sound abstraction of S, and Θ′ is a
valid subsequence forest over A′.

Proof: We show that A has a concretizable error path iff A′ has a concretizable
error path. The implication from A′ to A is straightforward, since every path
in A′ also exists in A.

For the reverse direction, we assume there exists a concretizable error path
p in A and construct a concretizable error path p′ in A′. Let t be the number of
occurrences of n, τ, n in p. We prove the claim by induction on t. If t = 0, then
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p′ = p. For t > 0, we construct a path p′′ inA with t−1 occurrences of n, τ, n. Let
p = n0, τ1, . . . , τk, nk and let i be the least index such that ni−1 = ni = n, τi = τ .
If n0, τ1, . . . , τi−1, ni−1 is already an error path, we can use p′′ = n0, τ1, . . . , τi, ni.

Otherwise, Partial Order Reduction guarantees that τ is unblocked by τi+1.
Let j, i < j ≤ k, be the largest index such that ρτ is unblocked by every
transition in {τi+1, . . . , τj}.

If j = k, we eliminate the occurrence of n, τ, n by first transforming p into

p′′′ = n0, τ1, . . . , τi−1, ni−1, τi+1, ni+1, . . . , τk, nk, τ, nk.

Because Fτ commutes with Fτi+1
, . . . , Fτk , the image H(p′′′) equals that of

p, so that p′′′ is an error path. It is concretizable because τ is unblocked by
τi+1, . . . , τk and p is concretizable. Because τ is harmless, however, the path
p′′ = n0, τ1, . . . , τi−1, ni−1, τi+1, ni+1, . . . , τk, nk must already be an error path.
It is obviously also concretizable.

For the case that j < k, we show that A must contain a self loop in nj
that contains τ . Node nj has been constructed in a series of node splits from
one of the nodes n′ in the initial abstraction, each of which has a self loop with
τ ∈ η(n′, n′).

If τ is not in η(nj , nj), it must have been removed by either Inconsistent
Transition or by Partial Order Reduction. It is impossible that τ was removed by
Inconsistent Transition, because this transformation requires ν(nj)∧τ∧ν(nj)

′ to
be unsatisfiable; since the path n, τi+1, . . . , τj , nj , τ, nj is concretizable, however,
ν(nj)∧ τ ∧ ν(nj)

′ is satisfiable. Likewise, it is impossible that τ was removed by
Partial Order Reduction, because τ does not commute with τj+1. We use the
self loop in nj to transform p into the error path

p′′ = n0, τ1, . . . , τi−1, ni−1, τi+1, ni+1, . . . , τj , nj , τ, nj , τj+1, . . . , nk+1.

Again p′′ is an error path because its image H(p′′) coincides with H(p), and
is concretizable because τ is unblocked by τi+1, . . . , τj . Since τj+1 does not
commute with τ , nj must be different from n. The path p thus has one more
occurrence of n, τ, n than p′′. �

5.7 Experiments

We implemented our approach in a variant of the current version of SLAB,
and compared its performance on a number of examples to both the standard
version of SLAB 2 and ARMC, which were given a version of the examples with
a state-based error condition, in which the subsequence counters were added to
the state variables.

The main focus was therefore on checking whether the specialized treat-
ment of subsequences would indeed lead to the expected boost compared to the
translation-based approach.

The results in Table 5.1 indicate that this is the case. The benchmarks are
a version of the readers-writers problem (RW) and a message buffer (Buffer).

RW. The RW benchmark represents a solution to the readers-writers problem
with writers preference. The system keeps track of the current numbers of read
and write requests, and uses internal budget and mode variables for representing
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SUBSLAB SLAB 2 ARMC
specification iterations time (s) iterations time (s) time (s)
RW 2 29 0.70 78 4.57 4.36
RW 3 37 0.85 91 5.11 7.16
RW 4 41 0.99 103 6.00 11.46
RW 5 45 1.08 116 6.98 17.30
RW 6 48 1.25 128 8.07 29.32
RW 7 52 1.41 140 9.69 44.10
Buffer 1 17 0.42 127 1.72 9.90
Buffer 2 85 4.28 345 22.38 70.92
Buffer 3 134 10.38 timeout 909.86

Table 5.1: Experimental results for subsequence-aware SLAB (SUBSLAB) vs.
standard SLAB 2 and ARMC: number of iterations of the refinement loop and
running times in seconds on the benchmarks RW (with bounds 2, . . . , 7 on the
number of concurrent read accesses) and Buffer (with bound 1, . . . , 3 on the
height of the internal stacks).

the number of current read and write accesses (bounded by the parameter value
and 1, respectively, and mutually exclusive).

The invariants we verify are

• |w|ra.wa = |w|rr.wa,

• |w|wa.wa = |w|wr.wa,

• |w|wa.ra = |w|wr.ra,

where ra, rr, wa,wr are the labels of the read access, read release, write access,
and write release transitions, respectively. We thus show that nobody is cur-
rently using the resource when write access is granted, and nobody is writing
to it when read access is granted.

Buffer. The Buffer benchmark represents a message buffer implemented using
two stacks, each represented by a pair of integers, such that pushing and popping
is encoded into arithmetic operations. A received signal is pushed onto the first
stack. At any time, the buffer may flush its contents by suspending input, moving
the contents of the first stack to the second stack (in reverse order of receiving
it) and then outputting the contents of the second stack. When it is empty,
input is again enabled. The parameter is the number of signals the buffer can
accept before it needs to flush its contents.

The invariants we verify are:

• |w|ra.ra.ok = |w|oa.oa.ok,

• |w|rb.ra.ok = |w|ob.oa.ok,

• |w|ra.rb.ok = |w|oa.ob.ok,

• |w|rb.rb.ok = |w|ob.ob.ok,
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where ra, rb, oa, ob, ok are the labels of the transitions receiving an a, receiving
a b, outputting an a, outputting a b, and signifying the end of the flushing
procedure, respectively. These invariants specify that when the buffer is empty,
the output stream contains the same number of aa, ab, ba, and bb subsequences
as the input stream.





Chapter 6

Conclusions

6.1 Summary

The main results of this thesis are:

• the introduction of subsequence invariants,

• two efficient invariant generation algorithms, which compute the set of
subsequence invariants for a given finite-state process and set of subse-
quences,

• an analysis of combinatorial and algebraic properties of subsequence in-
variants, which imply several ways of obtaining additional invariants, and

• an abstraction refinement procedure for the verification of subsequence
invariants of infinite-state systems.

Subsequence invariants. In chapter 2, we have introduced subsequence in-
variants, which specify systems in terms of occurrences of sequences of synchro-
nization events. This allows us to completely avoid referring to the system state,
and the invariants we obtain are compositional, i.e. an invariant derived for one
process holds for the entire system as well.

Invariant generation. In chapter 3, we showed how to compute subsequence
invariants. The first algorithm we presented is a simple fixpoint iteration using
only linear algebra, and determines, for any finite-state process P and set of
subsequences U , the set of all subsequence invariants in time linear in the size
of P and cubic in the size of U . We also gave an optimized version for the
subclass of pure subsequence invariants over strongly connected processes. We
further showed that the invariant generation can be done incrementally, allowing
for a gradual refinement by extending the set of subsequences.

Combinatorics and algebra. We showed that subsequence invariants satisfy
very interesting combinatorial and algebraic properties. They allow, for exam-
ple, us to replace any disjunction of subsequence invariants by a subsequence
invariant, and to introduce additional, universally valid invariants beyond those
obtained from the processes of a system.

96
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Infinite-state systems. In order to handle infinite-state systems, we have
also introduced the Slicing Abstractions (SLAB) approach, an abstraction refine-
ment method augmented with slicing operations. This approach uses a graph-
based abstraction which is gradually refined using local node splits. Besides
producing very small abstractions, this makes SLAB the method of choice for
verifying subsequence invariants on infinite-state systems, since it allows the
tight integration of the invariant generation procedure into the refinement loop.
The practicality of both the basic SLAB approach and the version for subse-
quence invariants has been shown on a number of benchmarks.

6.2 Future Work

There are several promising directions for future work. We will sketch a number
of them.

More general subsequences. The concept of subsequences is related to the
language-theoretic concepts of marked products and products with counters [74].
The Straubing-Thérien hierarchy of star-free languages [68, 69] suggests one way
of generalizing phased subsequences, by counting occurrences of patterns such
as a{b{a}c}a: two occurrences of a, with no occurrence of b{a}c between them.

The questions, then, would be how to effectively count such occurrences, and
what properties they satisfy. In particular, it would be interesting if such closure
properties as given by Theorem 2.3 still hold for these more general patterns.

Inequalities. Properties given by linear inequalities over subsequence occur-
rences are a very promising extension. We have already shown in Section 3.2.3
that there are infinitely many such inequalities which hold for all w, even for
pure subsequences. This suggests the question [66] whether it is possible to
classify these tautological inequalities.

For verification purposes, an interesting approach would be to investigate
suitable invariant generation algorithms. The most promising approach would
be based on augmenting existing methods for linear transition systems [23, 20]
with knowledge about the behavior of subsequence occurrences.

Algebraic topology. The graph-based results in sections 3.2.3 and 3.3 are re-
lated to some applications of topological methods in combinatorics: The general
theme is to construct some kind of nice topological space (such as a cell com-
plex) from combinatorical structures, and then infer properties of these struc-
tures from standard topological invariants of the spaces, such as their cohomol-
ogy. Using this approach in the context of subsequence invariants seems quite
promising.

Compositional abstraction refinement. The refinement procedure in
Chapter 5 was based on the assumption that we are given a set of invariants for
each individual process, which imply the desired system invariant and can be
verified in isolation. There have been very interesting results [41, 51] on compo-
sitional approaches for abstraction refinement, in which the abstractions of the
processes in a system are refined in parallel in order to prove a global property. It
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would be interesting to adapt these methods for the verification of subsequence
invariants.

Conversely, subsequence invariants are very promising candidates for infor-
mation to be shared between the process abstractions, since their correctness is
independent of the rest of the system, and combining them only requires cheap
linear arithmetic.
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[29] K. Dräger, A. Kupriyanov, B. Finkbeiner, and H. Wehrheim. Slab: A cer-
tifying model checker for infinite-state concurrent systems. In Proceedings
of the 16th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, Lecture Notes in Computer Science.
Springer-Verlag, 2010.

[30] M. Droste, W. Kuich, and H. Voglerd, editors. Handbook of Weighted Au-
tomata, Monographs in Theoretical Computer Science. An EATCS Series.
Springer Berlin Heidelberg, 2009.

[31] M. B. Dwyer, J. Hatcliff, M. Hoosier, V. Ranganath, Robby, and T. Wal-
lentine. Evaluating the effectiveness of slicing for model reduction of con-
current object-oriented programs. In H. Hermanns and J. Palsberg, editors,
TACAS, volume 3920 of LNCS, pages 73–89. Springer, 2006.

[32] C. Fox, S. Danicic, M. Harman, and R. M. Hierons. Backward Conditioning:
A New Program Specialisation Technique and Its Application to Program
Comprehension. In IWPC, pages 89–97. IEEE Computer Society, 2001.

[33] D. Geist. The PSL/Sugar specification language. a language for all sea-
sons. In Correct Hardware Design and Verification Methods, volume 2860
of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2003.

[34] S. M. German and B. Wegbreit. A Synthesizer of Inductive Assertions.
IEEE transactions on Software Engineering, 1(1):68–75, Mar. 1975.

[35] P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems. PhD thesis, Université de Liege, 1994.
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