
Random Combinatorial Structures

and Randomized Search Heuristics

Dissertation
zur Erlangung des Grades des

Doktors der Naturwissenschaften
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

vorgelegt von

Daniel Johannsen

Saarbrücken
7. April 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Acronym

https://core.ac.uk/display/196651475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Tag des Kolloquiums:
15. Juli 2010

Dekan der Naturwissenschaftlich-Technischen Fakultät I:
Prof. Dr. Holger Hermanns

Prüfungsausschuss:
Prof. Dr. Benjamin Doerr
Prof. Dr. Kurt Mehlhorn
Prof. Dr. Thomas Lengauer (Vorsitzender des Prüfungsausschusses)
Dr. Tobias Friedrich (Akademischer Beisitzer)

Berichterstatter:
Prof. Dr. Benjamin Doerr
Prof. Dr. Kurt Mehlhorn
Prof. Xin Yao

3

Abstract

This thesis is concerned with the probabilistic analysis of random combinatorial struc-
tures and the runtime analysis of randomized search heuristics.

On the subject of random structures, we investigate two classes of combinatorial
objects. The first is the class of planar maps and the second is the class of generalized
parking functions. We identify typical properties of these structures and show strong
concentration results on the probabilities that these properties hold. To this end, we
develop and apply techniques based on exact enumeration by generating functions. For
several types of random planar maps, this culminates in concentration results for the
degree sequence. For parking functions, we determine the distribution of the defect,
the most characteristic parameter.

On the subject of randomized search heuristics, we present, improve, and unify
different probabilistic methods and their applications. In this, special focus is given
to potential functions and the analysis of the drift of stochastic processes. We apply
these techniques to investigate the runtimes of evolutionary algorithms. In particular,
we show for several classical problems in combinatorial optimization how drift analysis
can be used in a uniform way to give bounds on the expected runtimes of evolutionary
algorithms.

Zusammenfassung

Diese Dissertationsschrift beschäftigt sich mit der wahrscheinlichkeitstheoretischen
Analyse von zufälligen kombinatorischen Strukturen und der Laufzeitanalyse rando-
misierter Suchheuristiken.

Im Bereich der zufälligen Strukturen untersuchen wir zwei Klassen kombinatori-
scher Objekte. Dies sind zum einen die Klasse aller kombinatorischen Einbettungen
planarer Graphen und zum anderen eine Klasse diskreter Funktionen mit bestimm-
ten kombinatorischen Restriktionen (generalized parking functions). Für das Studium
dieser Klassen entwickeln und verwenden wir zählkombinatorische Methoden die auf
erzeugenden Funktionen basieren. Dies erlaubt uns, Konzentrationsresultate für die
Gradsequenzen verschiedener Typen zufälliger kombinatorischer Einbettungen plana-
rer Graphen zu erzielen. Darüber hinaus erhalten wir Konzentrationsresultate für den
charakteristischen Parameter, den Defekt, zufälliger Instanzen der untersuchten dis-
kreten Funktionen.

Im Bereich der randomisierten Suchheuristiken präsentieren und erweitern wir ver-
schiedene wahrscheinlichkeitstheoretische Methoden der Analyse. Ein besonderer Fo-
kus liegt dabei auf der Analyse der Drift stochastischer Prozesse. Wir wenden diese
Methoden in der Laufzeitanalyse evolutionärer Algorithmen an. Insbesondere zeigen
wir, wie mit Hilfe von Driftanalyse die erwarteten Laufzeiten evolutionärer Algorith-
men auf verschiedenen klassischen Problemen der kombinatorischen Optimierung auf
einheitliche Weise abgeschätzt werden können.
Diese Arbeit ist in englischer Sprache verfasst.

4

Acknowledgments

I want to thank my supervisor Benjamin Doerr. I am grateful for his great support
during my PhD studies. His constant guidance was of immense help while at the same
time he granted me the freedom to find and pursue my own line of research. He was
a permanent source of inspiration. I also want to thank Kurt Mehlhorn for providing
me with the opportunity to work in the unique research environment of his group at
the Max Planck Institute for Informatics.

Many thanks to all my coauthors, especially to Benjamin Doerr, Peter Cameron,
Thomas Prellberg, Konstantinos Panagiotou, and Pascal Schweitzer. The results of
our collaboration contributed strongly to the contents of this thesis. I am particu-
larly indebted to the latter two who were always there for fruitful discussions and for
feedback on earlier versions of this thesis.

5

Contents

1. Introduction 7
1.1. Random Combinatorial Structures . 8
1.2. Randomized Search Heuristics . 10
1.3. Further Contributions . 12

I Random Combinatorial Structures 13

2. Vertex Degrees in Random Planar Maps 15
2.1. Map Compositions and the Cores of Random Maps 19
2.2. Random Maps in the Boltzmann Model 22
2.3. Degree Inheritance for Large Cores . 24
2.4. Biconnected Maps . 31
2.5. c-Nets . 33
2.6. Loopless and Bridgeless Maps . 37

3. Counting Defective Parking Functions 39
3.1. A Functional Equation . 41
3.2. An Explicit Formula . 43
3.3. Abel’s Binomial Identity . 45
3.4. Asymptotics . 47
3.5. Conclusion . 50

II Randomized Search Heuristics 51

4. Probabilistic Methods 53
4.1. Preliminaries . 53
4.2. Drift Analysis . 54
4.3. The Gambler’s Ruin . 58
4.4. Dominance of Stochastic Processes . 61

5. Evolutionary Computation in Combinatorial Optimization 65
5.1. The BasicCombinatorial (1+1)EvolutionaryAlgorithm 66
5.2. Matroids — The Realm of the Greedy Algorithm 67
5.3. Multiplicative Drift Analysis . 69
5.4. Lower Bounds and Typical Runs . 71
5.5. A Hard Problem for the (1+1) Evolutionary Algorithm 74

6

5.6. Shortest Path Problems . 80
5.7. Multi-Criteria Optimization . 83
5.8. Permutation Based Search Spaces . 85
5.9. Asymmetric and Adjacency-Based Variation Operators 87
5.10. Population and Recombination . 91
5.11. Conclusion . 96

A. Further Contributions 99

Bibliography 101

7

1
Introduction

General purpose algorithms are solution strategies that can be applied to a wide range
of problems. Examples of such algorithms are linear programming, greedy algorithms,
dynamic programming, branch and bound algorithms, and randomized search heuris-
tics (see, for example, Mehlhorn and Sanders (2009)). Such generic algorithms can
be easily implemented, adapted, and reused. They are frequently applied when no or
little knowledge on a given problem is available. As a drawback, it is hard to tell for
which problems it is useful to apply them. To this end, we address this subject from
two perspectives.

The first focusses on a particular problem class and asks

“Which general purpose algorithms successfully solve this problem?”

The second focusses on a particular generic algorithmic approach and asks

“Which problems does this general purpose algorithm solve successfully?”

We address these two questions by two orthogonal approaches. To answer the first
question, we focus on the actual instances of specific problems. We take an adversarial
view and ask for properties of these instances that cause the problem to be tractable or
hard. Moreover, we ask whether these properties are typical, that is, occur with high
probability in a random problem instance. This leads us to the first subject of this
thesis, the analysis of the typical properties of random combinatorial structures. We
apply exact counting techniques and probabilistic methods to approach this subject.

The second question focusses on the properties of a specific algorithm. A central
property of an algorithm is its runtime. Therefore, our approach to the second question
is runtime analysis. We are particularly interested in randomized search heuristics.
For these, the runtime is not deterministic but described by a random variable. The
runtime analysis of randomized search heuristics is the second subject of this the-
sis. The techniques we apply have a strong emphasis on drift analysis and are again
probabilistic.

8 Introduction

1.1. Random Combinatorial Structures

The first part of this thesis addresses our first question. For the class of NP-hard
problems, no algorithms with polynomial runtime guarantees are known. However,
instances of NP-hard problems that appear in practical applications can often be
solved routinely and effectively by general purpose approaches like those mentioned
above.

One reason for this is that contrary to a worst case instance, a typical instance
of such a problem may have certain properties that can be exploited by a heuristic
algorithm. Therefore, we devote the first part of the thesis to the typical properties
of random combinatorial structures.

The structures we study are several types of planar maps, on the one hand, and
generalized parking functions, on the other. We discuss each type of structure in a
self-contained chapter, planar maps in Chapter 2 and parking functions in Chapter 3.

1.1.1. Planar Maps

Typical instances of graphs have been studied extensively in the Gn,p random graph
model, where the edges of a graph of size n are present mutually independently with
probability p. However, real-world graph instances often follow certain restriction or
belong to specific graph classes.

This leads us to the investigation of random graphs from constrained classes, for
example, random planar graphs. Here, the challenge lies in the strong stochastic
dependencies imposed by the constraints. For example, the existence of certain edges
in a random planar graph may exclude that of others. Already the task to formulate
an efficient algorithm to uniformly generate a random planar graph of given size is far
from trivial, see for example Bodirsky, Gröpl, Johannsen, and Kang (2007).

A seminal result in this area (Duchon, Flajolet, Louchard, and Schaeffer (2004))
was the introduction of Boltzmann samplers. These algorithms rely on the exact enu-
meration of the respective structures by means of generating functions. They generate
random graphs such that the resulting distribution satisfies three key properties. First,
all graphs of the same size are equally likely. Second, by carefully choosing the al-
gorithm’s main parameter, it is possible to enforce that graphs of size n are drawn
with a probability in the order of n−α. Third, these random graphs decompose into
subgraphs which are stochastically independent. The first two properties imply the
possibility to uniformly generate a random graph of given size in an expected time of
order nα by using the technique of rejection sampling.

Only recently, the concept of Boltzmann samplers also gave rise to structural in-
sights into uniformly generated random graphs (Bernasconi, Panagiotou, and Steger
(2008)). The key idea is to conceptually assume that the random object in question
was generated by a Boltzmann sampler. Tracing back the steps of the algorithm then
allows to exploit the third property described above, the stochastic independence of
specific substructures.

In Chapter 2, we extend this technique and apply it to analyze the vertex degree
distribution in random (planar) maps. Maps are planar graphs embedded in the
plane, and are commonly used to describe the topology of geometric arrangements.

1.1. Random Combinatorial Structures 9

In particular, the class of all 3-connected planar maps is combinatorially equivalent to
the class of all 3-dimensional convex polyhedra.

Since the pioneering work of Tutte (1963), maps have become popular combinato-
rial objects, and in the meantime a rich theory studying various aspects of maps has
evolved (see Chapter 2). However, little is known about statistical properties of ran-
dom maps, that is, maps drawn uniformly at random from the class of all maps with a
given number of edges. A major achievement in this context is the precise description
of the so-called core-size of a random map, which was provided by Banderier, Flajolet,
Schaeffer, and Soria (2001). Among several other results, they showed that a random
map contains typically a giant (that is, linear-size) biconnected submap.

In Chapter 2, we study the degree sequences of several types of random maps,
which, among others, includes fundamental map classes like those of biconnected maps,
3-connected maps, and triangulations. In particular, we develop a general framework
that allows us to derive relations and exact asymptotic expressions for the expected
number of vertices of degree k in random maps from these classes, and also provide
accompanying large deviation statements. More precisely, building on the work of Gao
and Wormald (2003) on random general maps, we obtain as results of our framework
precise information about the number of vertices of degree k in random biconnected,
3-connected, loopless, and bridgeless maps.

Indication of source. The content of Chapter 2 has been previously published in the
Proceedings of SODA ’10 (Johannsen and Panagiotou (2010)).

1.1.2. Parking Functions

In Chapter 3, we consider discrete functions of the type f : [m]→ [n], where [k] denotes
the set {1, . . . , k} for all k ∈ N. A parking function is a function f : [n]→ [n] such that
for every k ∈ [n], the preimage of the set [k] is of size at least k, that is, |f−1

(
[k]
)
| ≥ k.

In the context of hashing, Konheim and Weiss (1966) showed that there exists
exactly (n+ 1)n−1 different parking functions on the set [n]. Since then, a substantial
theory of parking functions has been developed, with links to trees and priority queues
(Gilbey and Kalikow (1999)), partitions (Stanley (1997)), and representation theory
(Haiman (1994)). More recently, generalizations of parking functions have found ap-
plication in areas of statistical physics like the modelling of percolation (Majumdar
and Dean (2002)), the Abelian sandpile model (Postnikov and Shapiro (2004)) and
branching processes (Dumitriu, Spencer, and Yan (2003)).

The name parking function is motivated by the following process: Suppose that m
drivers each choose a preferred parking space in a linear car park with n spaces. Each
driver goes to the chosen space and parks there if it is free, and otherwise takes the
first available space with a larger number (if any). If all drivers park successfully, the
sequence of choices is called a parking function. In general, if k drivers fail to park,
we have a defective parking function of defect k. This concept generalizes further to
x-parking functions (Pitman and Stanley, 2002), which will not be discussed in this
thesis.

In Chapter 3, we establish a recurrence relation for the exact numbers cp(n,m, k)
of parking functions from [n] to [m] of defect k, and express this as an equation for

10 Introduction

a three-variable generating function. We solve this equation using the kernel method,
and extract the coefficients explicitly: it turns out that the cumulative totals are
partial sums in Abel’s binomial identity.

Finally, we compute the asymptotics of cp(n,m, k). In particular, for the case
m = n, we show that if choices are made independently at random, the limiting
distribution of the defect (the number of drivers who fail to park), scaled by the square
root of n, is the Rayleigh distribution. On the other hand, in the case m = ω(n), we
show that the probability that all spaces are occupied tends asymptotically to one.

Indication of source. The content of Chapter 3 has been previously published in the
Electronic Journal of Combinatorics (Cameron, Johannsen, Prellberg, and Schweitzer
(2008)).

1.2. Randomized Search Heuristics

The second part of this thesis addresses our second question. We perform runtime
analyses of a randomized search heuristic on a number of classical problems in combi-
natorial optimization.

Mathematically, an optimization problem can be modeled by a search space con-
taining all potential solutions and an objective function on this space. To optimize
this function, a randomized search heuristic successively generates random candidate
solutions according to some distribution. This distribution usually depends on the
objective values of the previously generated solutions and some kind of neighborhood
structure on the search space.

For example, consider the randomized search heuristic Randomized Local Search.
For this heuristic, search points are considered to be vertices in a finite and connected
graph such that the edges of the graph define the neighborhood structure of the search
space. Starting with an arbitrary candidate solution, the candidate solution generated
by Randomized Local Search in each subsequent iteration is generated by choosing a
random neighbor of the best candidate solution seen so far.

We are interested in the optimization times of a given randomized search heuristic
on different optimization problems. The optimization time is the random variable
that counts the number of candidate solutions to be tested until a solution of optimal
objective value is found.

The optimization time of a randomized search heuristic on a given problem can be
infinite. For example, Randomized Local Search finds a local optimum with probability
one but is not able to find a better search point afterwards. Thus, unless the first local
optimum found by Randomized Local Search is also a global optimum, the expected
optimization time is infinite.

During the last two decades the analysis of the optimization time of randomized
search heuristics has become a growing research field and seminal results have be shown
for Randomized Local Search (Papadimitriou, Schäffer, and Yannakakis (1990)), simu-
lated annealing (Sasaki and Hajek (1988)), and evolutionary algorithms (Beyer, Schwe-
fel, and Wegener (2002); Droste, Jansen, and Wegener (2002); He and Yao (2002)).

In the last years, combinatorial optimization problems became the benchmark of

1.2. Randomized Search Heuristics 11

theoretical research on evolutionary algorithms (see Chapter 5). On the one hand,
these problems are general enough to make meaningful comparisons among different
evolutionary algorithms. On the other hand, combinatorial optimization problems
have enough structural properties to make the theoretical analysis of such algorithms
possible.

Among evolutionary algorithms, the optimization time has been studied most for
the (1+1) Evolutionary Algorithm. In the terminology above, the (1+1) Evolutionary
Algorithm is a variant of Randomized Local Search. Instead of choosing a random
neighbor of the currently best candidate solution, we generate a new candidate solu-
tion by performing a random walk. The number of steps in this walk is given by the
Poisson distribution with parameter one1. Consequently, on average, the random walk
performs a single step which corresponds to the behavior of Randomized Local Search.
However, in every iteration each point of the search space has a positive probability to
be the candidate solution of the (1+1) Evolutionary Algorithm. Therefore, in contrast
to Randomized Local Search, the expected optimization time of the (1+1) Evolution-
ary Algorithm is always bounded by a function of the size of the search space.

The content of the second part is split in two chapters. The first chapter (Chap-
ter 4) introduces probabilistic techniques for the analysis of randomized search heuris-
tics. The second chapter (Chapter 5) applies these techniques to the runtime analysis
of evolutionary algorithms.

1.2.1. Probabilistic Methods for Randomized Search Heuristics

In Chapter 4, we introduce the probabilistic techniques as used in the analysis of the
evolutionary algorithms in Chapter 5 and put them into the context of related tech-
niques for the analysis of randomized search heuristics. The main focus of Chapter 4
is on drift analysis. We further discuss dominance of stochastic precesses and the
random process commonly referred to as the gambler’s ruin.

Indication of source. The content of Chapter 4 contains parts that have been pre-
viously published in the Proceedings of GECCO ’08 (Happ, Johannsen, Klein, and
Neumann (2008)) and the Proceedings of GECCO ’10 (Doerr, Johannsen, and Winzen
(2010b)) and results that will appear in the Proceedings of CEC ’10 (Doerr, Johannsen,
and Winzen (2010a)).

1.2.2. Evolutionary Computation in Combinatorial Optimization

Chapter 5 has been written for the purpose of being a survey included in the book
Theory of Randomized Search Heuristics (Auger and Doerr (2010)) and is presented as
such. This chapter gives a concise overview over the runtime analysis of the (1+1) Evo-
lutionary Algorithm on polynomially solvable combinatorial optimization problems. In
the spirit of our first guiding question to study different problems for the same search

1On the search space of n-bit vectors we flip each bit independently with probability 1/n instead of
performing a random walk. However, conceptually this is not significant as the binomial distribution
converges towards the Poisson distribution.

12 Introduction

heuristic, the main focus of this chapter is to present the discussed problem specifica-
tions, algorithms, and solution methods in a unified and consistent way.

Indication of source. The content of Chapter 5 will appear in the book Theory of
Randomized Search Heuristics (Auger and Doerr (2010)). Chapter 5 contains results
that have been previously published in the Proceedings of GECCO ’07 (Doerr and
Johannsen (2007b)) and in the Proceedings of GECCO ’10 (Doerr and Johannsen
(2010)).

1.3. Further Contributions

Not all of the author’s work fits the structure of this thesis. In Appendix A, we list
further contributions that are part of the authors PhD research but that are not further
discussed in this thesis.

13

Part I

Random Combinatorial Structures

15

2
Vertex Degrees in Random Planar Maps

A map is a combinatorial embedding of a connected planar graph to the sphere, where
generally multiple edges and loops are admissible1. We can completely characterize
a map by its underlying (multi-)graph, together with a cyclic ordering of the edges
around each vertex or, equivalently, by the sets of it vertices, edges, and faces. Fol-
lowing standard definitions, we say that a map is biconnected, if its edge set cannot
be partitioned into two non-empty subsets, such that there is only one vertex incident
with edges from both sets. We say that a map is 3-connected, if the underlying planar
graph is 3-connected and has neither loops nor multiple edges. We shall refer to rooted
3-connected maps as c-nets, since this is their common name in the literature.

The study of maps has a long history. Already Euler asked for the number of
isomorphism types of convex polyhedra (Federico (1975)), which, by a well-known the-
orem of Steinitz (1922), are combinatorially equivalent to 3-connected planar graphs.
Subsequently, Whitney (1932) showed that all combinatorial embeddings of such a
graph are topologically equivalent, thus implying the existence of a simple one-to-
one correspondence between c-nets and 3-connected planar graphs. However, Euler’s
question still remains unanswered.

A general theory of map enumeration was initiated by Tutte (1963) in the early 60’s,
who studied systematically the number of maps in several fundamental classes. Since
then, maps have been investigated extensively as combinatorial as well as geometric
objects, and a rich theory highlighting several properties and aspects of maps has
evolved. We mention here selectively two recent results. First, Fusy, Poulalhon, and
Schaeffer (2005) discovered a beautiful bijection between the class of c-nets and a class
of plane trees, which not only provides a combinatorial interpretation of the formula
enumerating c-nets with a given number of vertices and faces, but it also solves the
problem of compressing efficiently the connectivity information encoded in such a map.
Second, Aleardi, Devillers, and Schaeffer (2006) gave, among other results, optimal

1We use the two terms planar map and map synonymously.

16 Vertex Degrees in Random Planar Maps

representations for several classes of maps and triangulations.
We now advance to the question about “typical” properties of maps. This means

that we ask for structural properties of random maps (for example, maps drawn uni-
formly at random from, say, the set of all maps with n edges) that are observed with
high probability, that is, with probability tending to one as n → ∞. Not much is
known about random maps. One reason for this lack of understanding is that maps
are heavily constrained combinatorial objects, in the sense that the appearance of
specific edges highly depends on the presence or absence of other edges. Therefore, we
resort to exact counting techniques to obtain precise results. One aim of this chapter
is to attack precisely this problem and to demonstrate that maps contain in a well-
defined sense enough “independence”, allowing us to study their typical asymptotic
properties by using well-established methods from classical random graph theory.

Following the standard approach in the literature, we consider rooted maps, that is,
maps with a distinguished oriented edge called the root. Note that the direction of the
root edge implies the existence of a distinguished root vertex. Moreover, together with
the orientation of the sphere, the direction of the root edge also implies the existence of
a distinguished root face incident with the root edge. This common restriction has the
advantage of greatly simplifying the analysis, without affecting statistical properties,
since a result by Richmond and Wormald (1995) implies that almost all large maps
are asymmetric. From now on, all considered maps are rooted objects.

For n ∈ N, let Fn be a class of maps with n edges, and denote by Fn a map
that is drawn uniformly at random from this set. Our main objective in this chapter
is to study the number deg(k; Fn) of vertices of degree k in Fn. In the special case
that Fn is the class Gn of all (general) maps with n edges, Gao and Wormald (2003)
determined an asymptotic expression for the expected value E[deg(k; Fn)], and showed
accompanying concentration statements that become sharp as the size n of the maps
tends to infinity.

Before we state this result we introduce some additional notation. For a func-
tion F (x) that has a Taylor expansion of F (x) around x = 0 we denote by [xk]F (x)
the coefficient of xk in this Taylor expansion. By (1± ε)N , we denote the open inter-
val ((1− ε)N, (1 + ε)N). We denote by α(n) ∼n β(n) that limn→∞ α(n)/β(n) = 1.

Theorem 2.1 (Gao and Wormald (2003)). Let ε > 0, k ∈ N. Let Gn be a map drawn
uniformly at random from the class Gn of all maps with n edges. Then, for sufficiently
large n

Pr[deg(k; Gn) ∈ (1± ε) gk n] ≥ 1−O(ε−2(gk n)−1 log20 n) , (2.0.1)

where gk = [zk]DG(z) and DG(z) = 1
4

(√
6+3z
6−5z − 1

)
. Furthermore,

gk ∼k 1√
10π

k−1/2
(

5
6

)k
.

In Gao and Wormald (2003) the quantities gk were given in a slightly different
form. However, simple algebraic manipulations lead to the above expression, which is
more suitable for our intended application.

If we proceed to more complex classes of maps far less is known. In this context,
Liskovets (1999) determined for the classes of biconnected, Eulerian and loopless maps

17

Figure 2.1. Decomposition of a general map into a biconnected map and attached
submaps. The roots are indicated by arrows.

as well as for bi- and 3-connected triangulations the limiting probability that a vertex
has degree k. This result can be used to derive the expected number of vertices of
degree k in a random map from the corresponding class; however, it does not provide
any other information about the underlying distribution.

Our Results Our main contribution is a universal framework, which allows us to di-
rectly transfer concentration results concerning the total number of vertices of degree k
in a random map from a classM to concentration results concerning a random map
from another class C, which depends in a suitable way onM. In particular, we con-
sider so-called composition schemata, where “simple” classes of maps are constructed
out of maps that have a “higher” complexity (for example, higher connectivity). Let us
mention one example. Any general map decomposes uniquely into the maximal bicon-
nected submap containing the root, and a set of other maps, which are each attached
to B at a single vertex, see Figure 2.1. So, any general map can be (recursively) con-
structed from a biconnected map by replacing each vertex of the biconnected map with
an appropriate set of attachment maps. Using our framework, we exploit this relation-
ship and derive for random biconnected maps the following theorem as a consequence
of and a counterpart to Theorem 2.1.

Theorem 2.2. Let ε > 0, k ∈ N. Let Bn be a map drawn uniformly at random from
the class Bn of all biconnected maps with n edges. Then, for sufficiently large n

Pr[deg(k; Bn) ∈ (1± ε) bk n] = 1− o(1) , (2.0.2)

where

bk ∼k 3√
2π
k−1/2

(
2
3

)k
.

It turns out that many other important classes of maps, like c-nets, loop- and
bridgeless maps, and several classes of triangulations, can be described by appropriate
composition schemata, see the very detailed survey in Banderier et al. (2001). Our
main result (Theorem 2.12) addresses precisely those classes, and asserts essentially
that for all of them we can derive appropriate concentration results for the number of

18 Vertex Degrees in Random Planar Maps

vertices of degree k. In Section 2.4, we prove the previous theorem. Equivalent results
for random loopless and bridgeless maps are given in Section 2.6 . We refer the reader
to Section 2.1 and Section 2.2 for a formal description of the properties of the maps
that we consider, and to Section 2.3 for our general framework.

We conclude the chapter with a concentration result on the degree sequence of
random c-nets (that is, 3-connected maps). Recall that by Whitney’s theorem the
classes of c-nets and 3-connected planar graphs coincide. Thus, the following theorem,
which is proven in Section 2.5 is also the first non-trivial result about the distribution
of the number of vertices of degree k in random 3-connected planar graphs.

Theorem 2.3. Let ε > 0, k ∈ N. Let Tn be a map drawn uniformly at random from
the class Tn of all c-nets with n edges. Then, uniformly for sufficiently large n

Pr[deg(k; Tn) ∈ (1± ε) tk n] = 1− o(1) , (2.0.3)

where

tk ∼k 9
√

3√
2π
k−1/2 2−k .

Techniques Let us discuss on a high level our proof strategy. We shall restrict
this exposition to the special case of Theorem 2.2; the main line of reasoning for
Theorem 2.12 is very similar. As a starting point for our argument we use the results
in Banderier et al. (2001), where, the authors showed that with probability Θ(n−2/3)
a random map G on 3n edges contains one giant maximal biconnected submap B on
exactly n edges (B is called the core of G). In other words, G decomposes into B
and 2n possibly empty (that is, consisting of no edges) maps G1, G2, . . . , G2n, each of
which is combinatorially embedded in a face of B, attached to B at one vertex, and
disjoint from the remaining Gi’s otherwise (recall Figure 2.1).

Since the total number of edges contained in the Gi’s is |G|−|B| = 2n, each Gi has
on average exactly one edge. Intuitively, this suggests that the single Gi’s shouldn’t
contain too many edges. We can confirm this intuition and show that with exponen-
tially high probability all but o(n) many of the Gi’s are “small”. Since any pair of
maps Gi and Gj intersect at most in the single vertex they share with B, we then
infer by using large deviation bounds (see Chapter 4) that the total number of vertices
of degree k that are in the Gi’s but not in B is extremely sharply concentrated. What
remains is to handle the vertices in B.

In the next step of our proof we show an important stochastic property of G.
More specific, we argue that we can “generate” a random map G by first choosing
uniformly at random a core B of size n, and then choosing independently the maps Gi
according to the Boltzmann distribution. Unfortunately, the Boltzmann distribution
cannot guarantee that the resulting map G is of size 3n. However, we can condition
on the event “|G| = 3n” at a multiplicative loss of Θ(n2/3) to the probability bounds
we want to obtain. Compared to the order of bounds we derive afterwards, this loss
is acceptable.

Having this fact, completing the proof is routine: as in the Boltzmann model
everything behaves independently, the relevant random variables are extremely sharply
concentrated. Then, by assuming that the number of vertices of degree k is not

2.1. Map Compositions and the Cores of Random Maps 19

concentrated for random biconnected maps, we infer that a similar non-concentration
result must be true for general maps — a contradiction to Theorem 2.1.

Outline This chapter is structured as follows. Section 2.1 deals with basic facts
from the enumerative theory of maps and introduces the relevant known results for
random maps. In Section 2.2 we describe the Boltzmann model, tailored to our specific
application. Subsequently, in Section 2.3, we introduce our framework for transferring
concentration results between different map classes and present in Theorem 2.12 our
main result. Finally, in Sections 2.4, 2.5, and 2.6 we apply the framework to random
biconnected, 3-connected, loopless and bridgeless maps.

Basic Notation For any map M we write V (M) for the set of its vertices and E(M)
for the set of its edges. Each edge can be marked or not. In our case, all edges in E(M)
are marked with the possible exception of the root, which may or may not be marked.
We denote maps where the root is not marked by M ◦, that is, the only difference
betweenM andM ◦ is that inM the root is marked and inM ◦ it is not. The size |M |
of M is equal to the number of marked elements in E(M); thus, |M ◦| = |M | − 1.
Finally, the degree of the root vertex of M is denoted by rdeg(M). Again, only
marked edges contribute to the degree of a vertex, that is, rdeg(M ◦) = rdeg(M)− 1.

Let F be any class of maps for which the roots are marked. By F ◦ we denote the
maps obtained from the maps in F by unmarking the root, with the exception of the
two maps on one edge (the single loop “• 	” and the single edge “•→•”), which are
never elements of F ◦. By Fn and F◦n we denote the subsets of maps in F and F ◦ that
have exactly n marked edges (including and excluding the root, respectively).

For a class F of maps, we write F (x) and F (x, z) for the ordinary generating
functions enumerating all maps in F , where x marks the number of edges and z the
root-degree, that is, F (x) =

∑
M∈F x

|M | and F (x, z) =
∑

M∈F x
|M |zrdeg(M). Let

z > 0. By ρF we denote the dominant singularity of F (x, z) with respect to x. Note
that in general ρF may depend on z; however, in all classes of maps considered here
this is not the case.

2.1. Map Compositions and the Cores of Random Maps

In a seminal work, Tutte (1963) laid the basis of an enumerative theory of maps, where
he determined exact formulas for the number of general maps, biconnected maps and
c-nets on a given number of edges. Since then this theory has been largely developed
and extended, revealing deep insights in the combinatorial structure and properties of
maps. In this section we introduce some basic facts about the enumeration of maps.
Moreover, we present the notions and concepts given by Banderier et al. (2001) which
we use to develop the methods in Section 2.3 and to obtain the results in Sections 2.4.

Let M be a class of maps and C a subset of M defined by additional properties
(typically, higher connectivity or more complex structure). We say that the class C is
the class of core maps ofM with respect to the class of substitution maps H, if for all
elementsM ∈M there is at most one element C ∈ C such thatM can be composed by

20 Vertex Degrees in Random Planar Maps

substituting in a unique way all edges of C by maps in H as follows2. First, we assign
directions to all edges of C (this is done canonically with respect to the direction of
the root edge of C). Second, we substitute all marked edges of C by maps in H such
that the roots of those replace the edges of C while respecting their direction. Finally,
we replace all former root edges of the substituted maps by ordinary undirected and
marked edges if they were marked before or remove them otherwise (if the root was
substituted, the root of the substitution map becomes the new root). If for anM ∈M
there is a C ∈ C with the above properties, then we write C(M) = C, and C(M) = ⊥
otherwise.

Following the symbolic method as in Flajolet and Sedgewick (2009), we can de-
scribe this composition by the schema

M = C ◦ H+D , (2.1.1)

where D is the subclass of maps inM that have an empty core, that is, for anyM ∈ D
we have C(M) = ⊥. Here, “◦” represents precisely the edge substitution described
above, and “+” denotes the disjoint union of two combinatorial classes. Let M be a
map inM with a core C = C(M) and let the corresponding set of substitution maps
be H(M) = {H1, . . . ,H|C|}. We then write M = C ◦ (H1, . . . ,H|C|) with slight abuse
of notation.

The schema (2.1.1) directly translates to a relation for the corresponding generating
functions,

M(x) = C(H(x)) +D(x) , (2.1.2)

where x marks the edges of the maps. The generating functions of the map classes we
study show common analytic properties.

Definition 2.4. Let F be a generating function that is analytic at x = 0 and has
radius of convergence ρF . Then F is called singular with exponent 3/2 if there
exist positive constants ε, f0, f1, f3/2 such that

(i) F (x) is analytic on all x ∈ C for which |x| = ρF and x 6= ρF ;

(ii) F (x) is continuable in ∆ = {x ∈ C : |x| < ρF + ε with x 6∈ [ρF , ρF + ε]};

(iii) F (x) = f0 +f1(1−x/ρF)+f3/2(1−x/ρF)3/2 +O
(
(1−x/ρF)2

)
as x→ ρF in ∆ .

For example, the generating functions for the classes of general maps, biconnected
maps and c-nets are singular with exponent 3/2. Table 2.1 summarizes the respective
constants for those classes and for some other classes that become relevant in Sec-
tion 2.4. If the generating function of a class of maps F is singular with exponent 3/2,
then the following statement allows us to determine an asymptotic expression for its
coefficients.

Theorem 2.5 (see e. g., Corollary VI.1 of Flajolet and Sedgewick (2009)). Assume
that f(z) is analytic in ∆ := ∆(φ,R) = {z : z 6= 1, |z| < R, | arg(z − 1)| > φ}, where

2For the example in the introduction, we replace each edge by a new edge with two pending maps,
thus effectively attaching maps to the vertices of the core.

2.1. Map Compositions and the Cores of Random Maps 21

F class of maps ρF f0 f1 f3/2

G general maps 1
12

1
3 −4

3
8
3

B non-separable (biconnected) maps 4
27

1
3 −4

9
8
√

3
81

T ◦ 3-connected maps (c-nets), root unmarked 1
4

1
540 −

167
8100

32
729

L loopless / bridgeless 27
256

32
27 −32

81
32
√

6
81

Table 2.1. Parameters for the singular expansions corresponding to different map
classes (see also Banderier et al. (2001)).

R > 1 and 0 < φ < π/2. If, as z → 1 in ∆, f(z) = (1− z)−α + o((1− z)−α) holds for
some α 6∈ {0,−1,−2, . . . }, then

[zn]f(z) ∼ nα−1

Γ(α)
,

where Γ(x) denotes the Gamma function.

For example, we obtain precise asymptotic estimates for the quantities |Fn|.

Theorem 2.6. Let F be a class of maps for which the corresponding generating func-
tion F (x) is singular with exponent 3/2. Then

|Fn| ∼
3f3/2

4
√
π
n−5/2 ρ−nF .

With all the above facts at hand we are ready to define the properties of the
composition schemata that are of interest in the remainder of this chapter.

Definition 2.7. Let M, C, H, and D be classes of maps related by the composition
schema M = C ◦ H + D. We say this schema is of singular type (3/2 ◦ 3/2) if the
generating functions C and H are singular with exponent 3/2. We say it is critical if
ρM = ρC = H(ρH). Finally, we call it a proper map composition schema if it is
of singular type (3/2 ◦ 3/2), critical, and H is closed under inversion of the orientation
of the root edge. In addition, neither the root of any map in H nor the marked edges
of any map in C are allowed to be loops.

Random maps from classes that are related through proper map decomposition
schemata have been studied extensively by Gao and Wormald (1999) and by Banderier
et al. (2001). In particular, in Banderier et al. (2001) a precise characterization of the
probability that a random map has a core of a given size. Here we state a suitable
special case of this far more general result, tailored to our specific application.

Theorem 2.8 (Theorem 5 from Banderier et al. (2001)). LetM = C ◦ H+D be a
proper map composition schema. Moreover, set cH = −h1/h0, where h0 and h1 are
the first two coefficients in the singular expansion of H(x), and let MdcH ne be drawn
uniformly at random fromMdcH ne. Then there exists a constant c > 0 such that for

22 Vertex Degrees in Random Planar Maps

large n

Pr
[
C(MdcH ne) ∈ Cn

]
∼ c n−2/3 .

2.2. Random Maps in the Boltzmann Model

All classes of maps considered in this chapter allow a so-called decomposition, which
is a (recursive) description in terms of other classes of higher complexity. One sub-
stantial benefit of such a decomposition is that it enables us to mechanically develop
algorithms that sample maps from the class in question by using the framework of
Boltzmann samplers. Such sampling algorithms are an important ingredient in our
proofs, and were used for the first time systematically by Bernasconi et al. (2008) to
study properties of random structures.

The Boltzmann model was introduced by Duchon et al. (2004). Let F be any class
of maps and F (x) the corresponding generating function. The Boltzmann distribu-
tion ΓF (x) with parameter x assigns to each map M ∈ F the probability

Pr[M] =
x|M |

F (x)
, (2.2.1)

if this expression is well-defined. Note that the above probability depends just on |M |
if x is fixed; hence, all maps of the same size have the same probability of being drawn.
In other words, ΓF (x) is uniform for each size n. In the following section we see that
this model turns out to be useful in proving properties of maps drawn uniformly at
random from Fn.

Let F be a random map from F drawn according to the Boltzmann distribu-
tion ΓF (ρF), that is, with the dominant singularity ρF of F (x) as parameter. Here
we silently assume that F (ρF) is finite, which is the case for all classes considered in
this thesis, see Table 2.1. We denote by PF (x) the probability generating function
for the size of F, by RF (z) the probability generating function for the degree of the
root vertex of F, and by EF (z) the function whose k-th coefficient is the expected
number of vertices of degree k in F. These functions can be expressed in terms of the
univariate and bivariate generating functions F (x) and F (x, z). Recall that [xn]F (x)
is the number of maps in F with n edges and [xnzk]F (x, z) is the number of maps in
F with n edges and root degree equal to k. In particular, F (x) = F (x, 1).

Proposition 2.9. Let F be a class of maps and F be a random map drawn from F
according to the Boltzmann distribution ΓF (ρF). Then,

PF (x) :=
∑
n≥0

Pr
[
|F| = n

]
xn =

F (ρFx)
F (ρF)

RF (z) :=
∑
k≥0

Pr
[
rdeg(F) = k

]
zk =

F (ρF , z)
F (ρF)

.

Moreover, if F is closed under re-rooting (where re-rooting means that we replace the
root edge of a map by an ordinary edge and then choose one of the other edges to be

2.2. Random Maps in the Boltzmann Model 23

the new root edge with an arbitrary direction), then

EF (z) :=
∑
k≥0

E
[
deg(k; F)

]
zk =

2 ρF
F (ρF)

∫ z

0

1
t
· ∂(F (x, t)− F (x, 0))

∂x

∣∣∣∣
x=ρF

dt+
F (0)
F (ρF)

.

Proof. The first two equations follow directly from the definitions of F (x), F (x, z),
and that of the Boltzmann distribution ΓF (ρH). For the third equation, let n, k ∈ N
and let Fn be chosen uniformly at random from Fn. By double counting in Fn all pairs
(v, e), where v is a vertex of degree k, and e is an edge incident with v, we obtain the
relation

2n · Pr[rdeg(Fn) = k] = k · E[deg(k; Fn)]

and again apply the definition of F (x) and F (x, z). The last term is obtained by
considering the special case k = 0.

For a map class F whose associated generating function is singular with expo-
nent 3/2, the next statement gives asymptotic estimates for probabilities of certain
events in the Boltzmann model.

Corollary 2.10. Let n ∈ N. Let F be a class of maps that is singular with expo-
nent 3/2 and let F be a random map from F drawn according to the Boltzmann
distribution ΓF (ρF). Set dF = 3f3/2

4
√
π f0

. Then, E
[
|F|
]

= −f1/f0 and furthermore

Pr
[
|F| = n

]
∼ dF n−5/2 ,

Pr
[
|F| ≥ n

]
∼ 2

3 dF n
−3/2 ,∑

k≥n
k · Pr

[
|F| = k

]
∼ 2 dF n−1/2 .

Proof. The first statement follows directly from Theorem 2.6. The second statement
can then be derived from the first statement, since

Pr
[
|F| ≥ n

]
=
∑
k≥n

Pr
[
|F| = n

]
∼
∑
k≥n

dF k
−5/2 ∼ dF

∫ ∞
n

t−5/2dt = 2
3 dF n

−3/2 .

Similarly, the third statement follows, since∑
k≥n

k · Pr
[
|F| = k

]
∼
∑
k≥n

dF k
−3/2 ∼ dF

∫ ∞
n

t−3/2dt = 2 dF n−1/2 .

The main strength of the Boltzmann model is that composition schemata of com-
binatorial classes can be translated into a relation of the corresponding Boltzmann dis-
tributions. This gives rise to efficient algorithms to generate objects according to the
distribution ΓF (x), called Boltzmann samplers. Duchon et al. (2004), and moreover
Fusy (2005), gave several general procedures which translate common combinatorial
construction rules like union, set, substitution etc. into Boltzmann samplers. Here,
we only need the relation of between the Boltzmann distributions ΓM , ΓC, and ΓH
given by the composition schemaM = C ◦ H .

24 Vertex Degrees in Random Planar Maps

Lemma 2.11 (Fusy (2005)). LetM = C ◦ H be a composition schema for a class of
maps. Let M be a map inM such that M = C ◦ (H1, . . . ,H|C|) where the core C is
drawn from C according to the Boltzmann distribution ΓC(H(x)) and the substitu-
tion maps (Hi)1≤i≤|C| are drawn independently from H according to the Boltzmann
distribution ΓH(x). Then the distribution ofM is the Boltzmann distribution ΓM(x).

In the next section we see how to make use of the previous statement. On the one
hand, in the Boltzmann model, a random map from M is composed of a number of
maps chosen independently from H. On the other hand, if we condition on the event
that a map in the Boltzmann model has a specific size, then it is uniformly distributed
over all maps of that size. This combination allows us in the next section to condition
on suitable events in the uniform model while still exploiting the independence of the
Boltzmann model.

2.3. Degree Inheritance for Large Cores

Let M = C ◦ H + D be a proper map composition scheme. Let k ∈ N be fixed,
let n ∈ N be sufficiently large, and let m = dcH ne with cH as in Theorem 2.8. In
this section we show that if the number of vertices of degree k in a map Mm drawn
uniformly at random fromMm is concentrated around its expectation, then so is the
number deg(k; Cn), where Cn is chosen uniformly at random from Cn. In particular,
we show that if there exists a function DM(z) such that

deg
(
k; Mm

)
∈ (1± ε) [zk]DM(z)m (2.3.1)

with probability 1− o
(
n−2/3

)
, then there exists a function DC(z) such that

deg
(
k; Cn

)
∈ (1± ε) [zk]DC(z)n (2.3.2)

with probability 1− o(1).
In order to show (2.3.2) first recall that any map M ∈ M that has a non-empty

core can be represented as M = C ◦ (H1, . . . ,H|C|), where the core of M is C, and
the substitution maps (Hi)1≤i≤|C| replace the marked edges of C. Our main strategy
splits the vertices of degree k in M into two sets and counts them separately. The
first set contains all vertices of degree k which lie in one of the maps (Hi)1≤i≤|C| but
not in C (that is, this set contains all non-root vertices of degree k in the Hi’s). More
formally, set

adeg(k; M) :=
∣∣{v ∈ V (M) \ V (C(M)) : deg(v;M) = k}

∣∣ .
The second set contains all vertices of degree k that lie in the core C of M . These
vertices can have neighbors inside the core and outside the core. To obtain the desired
concentration results, we have to distinguish them further by their degree ` in C. We
set

bdeg(k, `; M) :=
∣∣{v ∈ V (C) : deg(v; M) = k and deg(v; C) = `}

∣∣.

2.3. Degree Inheritance for Large Cores 25

Using these definitions we infer that

deg(k; M) = adeg(k; M) +
k∑
`=0

bdeg(k, `; M). (2.3.3)

Now suppose that (2.3.1) holds and that the core C(Mm) of Mm is in Cn, that is,
contains precisely n edges. Recall, that by Theorem 2.8 this happens with proba-
bility Θ(n−2/3). Note that in this case C(Mm) is uniformly distributed in Cn, and
so we can write Mm = Cn ◦ (H1, . . . ,Hn), where Cn is a map drawn uniformly at
random from the class Cn, and the (Hi)1≤i≤|C| are random maps from H such that∑

i=1 |Hi| = dcH ne.
Let us look a little closer at the quantities adeg(k; Mm) and bdeg(k, `; Mm).

First, adeg(k; Mm) enumerates all non-root vertices in the Hi’s that have degree k.
Moreover, theHi’s contain in total dcH ne edges, which means that the average number
of edges (and consequently also the average number of vertices) in each Hi is in O(1).
So the impact of a typical Hi on adeg(k; Mm) is not too large. This allows us to prove
that there is a quantity ak such that with high probability

adeg(k; Mm) ∈ (1± ε) ak n. (2.3.4)

Let us set A(z) =
∑

i≥0 aiz
i. In a similar way we can think about bdeg(k, `; Mm),

which counts the number of vertices in Cn = C(Mm) that have degree k in Mm, and
degree ` ≤ k in Cn. Let v ∈ Cn, and note that deg(v; Mm) equals the sum of the
root degrees of deg(v; Cn) of the Hi’s, namely those that replace the edges of Cn that
are incident with v. Again, as the Hi’s are in average small, we show that there are
quantities bk,` such that with high probability

bdeg(k, `; Mm) ∈ (1± ε) bk,` deg(`; Cn). (2.3.5)

In fact, we show later that there is a function B(z) such that bk,` = [zk]B(z)`.
With these considerations at hand, we obtain a recursive definition for the expected

values of the quantities deg(`; Cn) by combining (2.3.1) with (2.3.3)–(2.3.5). More
precisely, if we let DC(z) be the generating function

DC(z) =
1
n

∑
`≥0

E[deg(`; Cn)]z` ,

then the above discussion suggests that

cH[zk]DM(z) = [zk]A(z) +
k∑
`=0

[zk]B(z)` · [z`]DC(z) ,

that is,

cHDM(z) = A(z) +DC(B(z)).

We now show that the above statement is indeed true, thus confirming the obtained
intuition. Recall that we denote by RH(z) the probability generating function for the

26 Vertex Degrees in Random Planar Maps

degree of the root vertex of H, and by EH(z) the function whose k-th coefficient is the
expected number of vertices of degree k in H, where H is a map drawn according to
the Boltzmann distribution ΓH(ρH) (see (2.2.1) and Proposition 2.9 in the previous
section).

Theorem 2.12. LetM = C ◦ H+D be a proper map composition schema and let cH
be as in Theorem 2.8. Let k ∈ N, and let Mn be a map drawn uniformly at ran-
dom from Mn. Suppose that there exist a generating function DM(z) and a func-
tion g : (0, 1)× N → [0, 1], that is monotone decreasing in both arguments, such that
for ε > 0 and large n

∀ 0 ≤ ` ≤ k : Pr
[
deg(`; Mn) ∈ (1± ε) [z`]DM(z)n

]
≥ 1− g(ε, n). (2.3.6)

Furthermore, define the function DC(z) implicitly by

cHDM(z) =
(
EH(z)− 2RH(z)

)
+DC

(
RH(z)

)
. (2.3.7)

Finally, let the function hα : (0, 1)× N→ [0, 1] with α(n) ∈ ω(1) be defined by

hα(ε, n) = max
{
e−ε

2 n/α(n), α(n)n2/3 g(ε/6, n)
}
.

If Cn is drawn uniformly at random from Cn then for any α(n) ∈ ω(1) and ε > 0

Pr
[
deg(k; Cn) ∈ (1± ε) [zk]DC(z)n

]
≥ 1− hα(ε, n).

The remainder of the section is devoted to the proof of the previous theorem. In
this, we follow the argument sketched above. In particular, we first show that under
the condition C(Mm) ∈ Cn, the relations (2.3.4) and (2.3.5) hold with sufficiently high
probability.

Proposition 2.13. LetM = C◦H+D be a proper map composition schema. Let ε > 0,
k ∈ N, α(n) ∈ ω(1), and n sufficiently large. Furthermore, let C ∈ Cn and m = dcH ne
with cH as in Theorem 2.8. Then,

Pr
[
adeg(k; Mm) ∈ (1± ε) ak n

∣∣C(Mm) = C
]
≥ 1− e−ε2 n/α(n),

where Mm is drawn uniformly at random fromMm and ak = [zk]
{
EH(z)− 2RH(z)

}
.

Proof. Let us first consider the case ak = 0. Then, [zk]{EH(z)− 2RH(z)} = 0 holds,
which implies that not a single graph in H has a vertex different from the endpoints
of the root edge with degree equal to k. Hence, as M = C ◦ (H1, . . . ,H|C|), we have
adeg(k; Mm) = 0 with probability 1.

Suppose in the remainder that ak > 0, and set β(n) = min{α(n)1/4, log n}. Let M
be a random map fromM, drawn according to the Boltzmann distribution ΓM(ρM).
Consider the two events

(A) adeg(k; M) 6∈ (1± ε) ak n and
(B) M ∈Mm ∧ C(M) = C.

2.3. Degree Inheritance for Large Cores 27

Since in the Boltzmann distribution ΓM(ρM) all maps with a given number of edges
have the same probability of being M, we obtain

Pr
[
adeg(k; Mm) 6∈ (1± ε) ak n

∣∣C(Mm) = C
]

= Pr
[
A
∣∣B] . (2.3.8)

Suppose that C(M) = C and recall that |C| = n. By Lemma 2.11 and the fact that
M = C ◦ H + D is a proper composition schema, M decomposes into its core C and
exactly n substitution maps H(1), . . . ,H(n) drawn independently from H according to
the Boltzmann distribution ΓH(ρH). Thus, (2.3.8) is equivalent to

Pr[A | B] = Pr
[n∑
i=1

deg∗(k; H(i)) 6∈ (1± ε) ak n
∣∣∣B] (2.3.9)

where deg∗(k; H) counts in H ∈ H the number of vertices of degree k distinct from
the endpoints of the root edge. Let

X :=
n∑
i=1

|H(i)| · χ{|H(i)|≤β(n)} and

Y :=
n∑
i=1

deg∗(k; H(i)) · χ{|H(i)|≤β(n)} ,

where χG ∈ {0, 1} is the indicator function of the event G, that is, χG is one if the
event occurs and zero otherwise. We consider the two events

(E) X ≤
(

1− ε ak n

2m

)
m and

(F) Y /∈
(

1± ε

2

)
ak n .

Suppose B holds. We show that in this case ¬E and ¬F together imply ¬A and thus
(2.3.9) infers that

Pr[A | B] ≤ Pr[E ∨ F | B] . (2.3.10)

Indeed, suppose M ∈Mm. Then m =
∑n

i=1 |H(i)| and ¬E implies

n∑
i=1

|H(i)| · χ{|H(i)|>β(n)} ≤
ε

2
ak n .

Since deg∗(k; H) ≤ |H| for all H ∈ H (these maps are connected and the end-vertices
of the root ignored), also

n∑
i=1

deg∗(k; H(i)) · χ{|H(i)|>β(n)} ≤
ε

2
ak n .

Thus, together with ¬F this implies ¬A and thus (2.3.10). Elementary probability
theory now gives us

Pr[A | B] ≤ Pr[E] + Pr[F]
Pr[B]

(2.3.11)

28 Vertex Degrees in Random Planar Maps

and finally frees us from the condition B. Applying Theorem 2.8 and Corollary 2.10
yields

Pr[B] = Pr[C(Mm) ∈ Cn | M ∈Mm] · Pr[M ∈Mm] = Θ(n−19/6). (2.3.12)

Moreover, again by Corollary 2.10, if we denote by H a map drawn from H according
to the Boltzmann distribution ΓH(ρH), then

E
[n∑
i=1

|H(i)| · χ{|H(i)|>β(n)}

]
=
∑

`>β(n)

` · Pr
[
|H| = `

]
n = O(n1/2) .

Since, deg∗(k; H) ≤ |H| for any H ∈ H, also

E
[n∑
i=1

deg∗(k; H(i)) · χ{|H(i)|>β(n)}

]
= O(n1/2).

Thus, E[X] = m+ o(n) and E[Y] = ak n+ o(n) holds by the definition of ak.
In order to show that with high probability X and Y do not deviate much from

their expectations we apply the inequality by Azuma and Hoeffding (see Theorem 4.3
in Part II, Chapter 4). For i ∈ {1, . . . , n}, the choice of H(i) can change the values
of X or Y by at most β(n). Thus, by the Azuma-Hoeffding inequality,

Pr[E] ≤ e−ε2 n/β(n)3 and

Pr[F] ≤ e−ε2 n/β(n)3 .

The proof completes by combining (2.3.11), (2.3.12), the two previous inequalities and
the fact that β(n)4 ≤ α(n).

The next proposition asserts that also (2.3.4) holds with high probability under
the condition C(Mm) ∈ Cn.

Proposition 2.14. Let M = C ◦ H + D be a proper map composition schema. Let
ε > 0, γ > 0, k, ` ∈ N, α ∈ ω(1), and n ∈ N sufficiently large. Furthermore, let C ∈ Cn
with deg(`; C) ≥ γ n, and m = dcH ne with cH as in Theorem 2.8. Then,

Pr
[
bdeg(k, `; Mm) ∈ (1± ε) bk,` deg(`; C)

∣∣C(Mm) = C
]
≥ 1− e−ε2 n/α(n),

where Mm is a map drawn uniformly at random fromMm and bk,` = [zk]RH(z)`.

Proof. Suppose that bk,` > 0 (otherwise, the statement holds trivially). Let n ∈ N be
sufficiently large, and let β(n) = α(n)1/2. Let M be a random map from M, drawn
according to the Boltzmann distribution ΓM(ρM). Consider the two events

(A) bdeg(k, `; M) /∈ (1± ε) bk,` deg
(
`; C

)
and

(B) M ∈Mm ∧ C(M) = C.

Since in the Boltzmann distribution all maps with a given number of edges have the
same probability of being M, we obtain

Pr[bdeg(k, `; Mm) ∈ (1± ε) bk,` deg
(
`; C

) ∣∣C(Mm) = C] = Pr[A | B] . (2.3.13)

2.3. Degree Inheritance for Large Cores 29

Elementary probability theory then implies

Pr[A | B] ≤
Pr[A

∣∣C(M) = C]
Pr[M ∈Mm | C(M) = C]

(2.3.14)

Suppose C(M) = C. Then by Lemma 2.11, M = C ◦ (H(1), . . .H(n)) where the
maps (H(i))1≤i≤n are drawn mutually independent from H according to the Boltz-
mann distribution ΓH(ρH). Furthermore

bdeg(k, `; M) =
∑
v∈C

χ{deg(v,C)=`∧ deg(v,M)=k} (2.3.15)

where χG ∈ {0, 1} is the indicator function of the event G.
Next, let v ∈ C such that deg(v;C) = ` and let H(σ1), . . . ,H(σ`) be the substitution

maps from H containing v (that is, the edges incident with v in C were replaced by
precisely those H(i)’s). Then, by the symmetry of the H(i)’s with respect to the root,

deg(v,M) =
∑̀
j=1

rdeg(H(σj)) .

Thus, since bk,` = [zk]RH(z)` is the probability that the sum of the root degrees of `
maps drawn mutually independently from H according to the Boltzmann distribu-
tion ΓH(ρH) equals k, we obtain

E
[
χ{deg(v,C)=`∧ deg(v,M)=k}

]
= bk,` · χ{deg(v,C)=`} .

Thus, by (2.3.15),

E[bdeg(k, `; M) | C(M) = C] = bk,` deg(`; C) .

For i ∈ {1, . . . , n}, the influence of the single substitution map H(i) on bdeg(k, `; M) is
at most two, as the endpoints of the root edge of H(i) are identified with the endpoint
of some edge in C, and no other vertices of C are affected. Thus, if we condition
on C(M) = C, then for sufficiently large n the Azuma-Hoeffding bounds (see Theo-
rem 4.3 in Part II, Chapter 4) yield

Pr[bdeg(k, `; M) 6∈ (1± ε) bk,` deg(`; C)
∣∣C(M) = C] ≤ e−ε2 n/β(n) .

Moreover, Pr[M ∈ Mm | C(M) = C] = Θ(n−2/3) holds by Corollary 2.10. Then, the
claimed statement follows from (2.3.14), the previous inequality, and the definition
of β(n).

With the previous two propositions at hand we are finally able to prove Theo-
rem 2.12.

Proof of Theorem 2.12. Let for brevity dM,` = [z`]DM(z) and dC,` = [z`]DC(z). We
show by induction on k that for ε ∈ (0, 1), α(n) ∈ ω(1) and sufficiently large n

Pr[deg(k; Cn) ∈ (1± ε) dC,k n] ≥ 1− hα(ε, n).

30 Vertex Degrees in Random Planar Maps

For k = 0 this statement holds trivially since deg(0; Cn) = 0. Thus, let k ≥ 1,
ε ∈ (0, 1), α(n) ∈ ω(1) and n sufficiently large. Let β(n) = α(n)1/3, and m = dcH ne.
By the induction hypothesis, for sufficiently large n we may assume that

∀ 0 ≤ ` < k : Pr[deg(`; Cn) ∈ (1± ε/6) dC,` n] ≥ 1− hβ(ε/6, n) . (2.3.16)

Let Mm be drawn uniformly at random from Mm and let C = C(Mm). If C ∈ Cn,
then C is distributed uniformly and thus

Pr[deg(k; Cn) ∈ (1± ε) dC,k n] = Pr[deg(k; C) ∈ (1± ε) dC,k n | C ∈ Cn] . (2.3.17)

Consider the two events

(A) bdeg(k, k; Mm) ∈ (1± ε/2) bk,k deg(k; C) and
(B) bdeg(k, k; Mm) ∈ (1± ε/2) bk,k dC,k n .

If A and B hold simultaneously, then also deg(k; C) ∈ (1± ε) dC,k n. Thus,

Pr[deg(k; C) ∈ (1± ε) dC,k n | C ∈ Cn] ≥ Pr[A | B ∧ C ∈ Cn] · Pr[B | C ∈ Cn] .
(2.3.18)

Suppose B holds. Then, deg(k; C) ≥ bdeg(k, k; Mm) ≥ γ n for some γ > 0. Thus,
we can apply Proposition 2.14 to show that

Pr[A | B ∧ C(Mm) ∈ Cn] ≥ 1− hβ2(ε, n) .

Thus, if we also show

Pr[B | C(Mm) ∈ Cn] ≥ 1− (2k + 2)hβ2(ε, n) . (2.3.19)

then Theorem 2.12 follows for sufficiently large n from (2.3.17), (2.3.18) and the fact
that β(n) = α(n)1/3. Recall that by (2.3.3)

bdeg(k, k; Mm) = deg(k; Mm)− adeg(k; Mm)−
k−1∑
`=0

bdeg(k, `; Mm) (2.3.20)

and that by (2.3.7)

bk,k dC,k = dM,k cH − ak −
k−1∑
`=0

bk,` dC,` (2.3.21)

with ak = [zk]{EH(z) − 2RH(z)} and bk,` = [zk]{RH(z)`} for all k, ` ∈ N. We
show that with high probability each quantity on the right-hand side of (2.3.20) is
concentrated around n times the corresponding quantity in (2.3.21).

Since n is sufficiently large, (2.3.6) together with Theorem 2.8 implies by elemen-
tary probability theory that

Pr[deg(k; Mm) ∈ (1± ε/2) dM,k cH n | C(Mm) ∈ Cn] ≥ 1− hβ(ε, n) . (2.3.22)

2.4. Biconnected Maps 31

since n is sufficiently large, m ≥ n, and g is monotone in both arguments. Next, by
Proposition 2.13 and n sufficiently large,

Pr[adeg(k; Mm) ∈ (1± ε/2) ak n | C(Mm) ∈ Cn] ≥ 1− hβ2(ε, n). (2.3.23)

Finally, by Proposition 2.14 and the induction hypothesis (2.3.16), and again n suffi-
ciently large,

Pr[bdeg(k, `; Mm) ∈ (1± ε/2) bk,` n | C(Mm) ∈ Cn] ≥ 1− hβ(ε, n)− hβ2(ε, n)
(2.3.24)

for all 0 ≤ ` < k. Hence, for sufficiently large n, (2.3.19) holds by (2.3.20) and (2.3.21),
together with (2.3.22)–(2.3.24). This concludes the proof of Theorem 2.12.

2.4. Biconnected Maps

In this section, we apply the framework from the previous section. Our main strategy
is to prove that the preconditions of Theorem 2.12 are satisfied. First, we show that the
class G of general maps, and the class B of biconnected maps can be related through
a proper map composition schema.

Lemma 2.15 (Tutte (1963)). Let “•→•” be the map that consists of two vertices and
a single edge, and “•” the empty map that consists of a single vertex (and no edge).
The classes of general maps G and biconnected maps B satisfy the relation

G = B ◦ H ,

where

H = {•→•} × (G + {•})2 .

Combinatorially, H is the class of general maps where the root edge is a bridge,
that is, every H ∈ H consists of two submaps G1, G2 ∈ G + {•} whose root vertices
are joined through an additional edge that is distinguished as the root edge of the
composed map (where G1 or G2 may be the empty map “•”). See Figure 2.2 for an
example.

We see that H is closed under inversion of the orientation of the root edge,
and moreover, Table 2.1 guarantees that the generating functions G(x) and B(x)

Figure 2.2. Composing maps in H out of maps in G.

32 Vertex Degrees in Random Planar Maps

are singular with exponent 3/2. Finally, a straightforward calculation shows that
also H(x) = x(G(x) + 1)2 is singular with exponent 3/2, admitting the expansion

H(x) = 4
27 −

4
9

(
1− x

ρG

)
+ 16

27

(
1− x

ρG

)3/2 +O
((

1− x
ρG

)2) (2.4.1)

as x→ ρH = ρG = 1
12 .

The above facts together with Theorem 2.1 imply that the preconditions of Theo-
rem 2.12 are satisfied. So, we obtain Theorem 2.2, where the function DB(z) is given
by the relation

3DG(z) = EH(z)− 2RH(z) +DB
(
RH(z)

)
, (2.4.2)

where DG(z) is given in Theorem 2.1. Moreover, the next lemma gives explicit expres-
sions for RH(z) and EH(z), and derives an asymptotic expression for [zk]DB(z).

Lemma 2.16. [zk]DB(z) ∼k
√

9
2πk
−1/2

(
2
3

)k . Moreover, RH(z) and EH(z) are given
explicitly by

RH(z) =
3z2 − 36z + 36−

√
3 (z + 2) (6− 5z)3

8z (1− z)
and

EH(z) =
18− 3z −

√
9 (z + 2) (6− 5z)
2z

.

Let us make two auxiliary preparations before we actually prove the lemma. In
the case of G the ordinary generating function G(x) can be determined explicitly, see
e.g. Banderier et al. (2001). It is given by

G(x) =
−1 + 18x+ (1− 12x)3/2

54x2
− 1. (2.4.3)

Moreover, the bivariate function G(x, z), where x marks the size and z the root face
degree of a map is defined through

G(x, z) = xz2 (G(x, z) + 1)2 + xz
(G(x) + 1)− z (G(x, z) + 1)

1− z
. (2.4.4)

Proof of Lemma 2.16. First of all, note that as the root degree of a random map from
H is one plus the root degree of a random map from G + {•}. Thus, we obtain by
Proposition 2.9,

RH(z) = z
G(ρG , z) + 1
G(ρG) + 1

.

By using the explicit expressions for G(x) and G(x, z) from (2.4.3) and (2.4.4) and
the fact ρG = 1

12 from Table 2.1 we arrive at the explicit expression for RH(z)
in Lemma 2.16.

In order to obtain EH(z) we first determine EG(z). By applying again Proposi-
tion 2.9, this time the third statement, we obtain an explicit expression for EG(z).

2.5. c-Nets 33

Then, by linearity of expectation EH(z) = 2(EG+{•}(z)−RG+{•}(z)) + 2RH(z), which
implies the explicit expression for EH(z) in Lemma 2.16.

To obtain the asymptotic form of the coefficients first note that the function RH(z)
is strictly increasing for z ∈ [0, 6

5], and that RH(6
5) = 3

2 . Hence, RH is uniquely
invertible in [0, 6

5], the inverse being

F (z) =
27 + 36z + 4z2 −

√
729− 1512z + 1080z2 − 288z3 + 16z4

2(24 + 3z + 4z2)
.

We thus obtain

DB(z) = 3DG(F (z))− EH(F (z)) + 2RH(F (z)).

Now, as DG , EH, RH, and F are given explicitly, we obtain an explicit expression for
DB(z). We see that the dominant singularity of DB(z) is at 3

2 , and that

DB(z) =
√

9
2

(
1− 2

3 z
)−1/2 +O(1)

as z → 3
2 .

The proof finishes by applying the Transfer Theorem (Theorem 2.5) to the above
local expansion.

2.5. c-Nets

This section deals with the proof of Theorem 2.3. Again, we use the framework from
Section 2.3 and show that the preconditions of Theorem 2.12 are satisfied. The proofs
in this section follows the same lines as those of the previous section, but the details
are considerably more involved. In particular, we now consider classes of maps where
the root is not marked.

Let F be a class of maps where all edges (including the root edge) are marked.
Let • 	 be the map that contains a single loop, and •→• be the map containing a
single edge. We define the unmarked class F ◦ by removing • 	 and •→• from F , and
by unmarking the root-edge of any other graph that remains in F . More formally, F
and F ◦ are related through

F = F ◦ × {•→•}+ {• 	}+ {•→•} ,

where “F ◦ × X ” means that we identify the roots of maps from F ◦ and X , resulting
in a map with a marked root. It follows for the corresponding generating functions
that

F (x) = xF ◦(x) + 2x and

F (x, z) = xz F ◦(x, z) + xz2 + xz .

With all the above notation at hand we can describe the composition of biconnected
maps by c-nets. First of all, let B be the class of biconnected maps, where by convention
we assume that • 	, •→• ∈ B. The core C(B) of a biconnected map B ∈ B is obtained
by cutting all maximal 2-separators and by replacing the removed components by
edges. It can be shown that the core of a biconnected map is either a c-net or empty.
More precisely, Tutte (1963) showed the following combinatorial relation.

34 Vertex Degrees in Random Planar Maps

Lemma 2.17 (Tutte (1963)). Let D ⊂ B be the class of biconnected maps that have
an empty 3-connected core. The classes B and T satisfy the relation

B ◦ = T ◦ ◦ B ◦ +D ◦ .

In words, any map in B ◦ has either an empty core, or it is obtained from a c-net
by substituting every non-root edge by a map in B ◦, and then removing that roots of
the substitution maps (see also Section 2.1).

In order to apply Theorem 2.12 we develop further the composition schema that is
described in Lemma 2.17. More specifically, our aim is to find an explicit relation be-
tween the class of c-nets and the class of general maps G, for which we have sufficiently
strong concentration results for the number of vertices of degree k, see Theorem 2.1.
To this purpose we reconsider the composition scheme from Lemma 2.15, but this time
applied to maps from B ◦, that is, biconnected maps with unmarked roots. Let H be
defined as in Lemma 2.15, see also Figure 2.2. Define the class of maps G∗ by

G∗ = B ◦ ◦ H .

Note that the root edges of the maps in G∗ are not marked, and moreover that G∗ is
a proper subset of G ◦, that is, G∗ 6= G ◦. In particular, in order to generate all maps
in G (except for • 	 and •→•), we need to substitute the roots from the maps in G∗ by
maps in H and not by edges. (this can be seen from Lemma 2.15). Thus,

G = G∗ ×H+ {• 	} ◦ H+ {•→•} ◦ H (2.5.1)

and if we substitute H(x) = x (G(x) + 1)2 and H(x, z) = x z (G(x) + 1) (G(x, z) + 1)
in the corresponding generating functions, we obtain (with extra care for the term
corresponding to {• 	} ◦ H),

G∗(x) =
G(x)

x (G(x) + 1)2
− 2 and (2.5.2)

G∗(x, z) =
G(x)− xz2 (G(x, z) + 1)2

x z (G(x) + 1) (G(x, z) + 1)
− 1 . (2.5.3)

Hence, we can transfer results for G to G∗. Moreover, we can relate G∗ to T ◦ by
substituting the edges of all maps from the composition schema in Lemma 2.17 by
maps from H and then applying the definition of G∗.

Lemma 2.18. Let D ⊂ B be the class of biconnected maps that have an empty 3-
connected core. The classes G∗ and T satisfy the relation

G∗ = T ◦ ◦ G∗ +D ◦ ◦ H .

With the previous lemma at hand, our proof strategy for Theorem 2.3 is as follows.
We will check that the preconditions of Theorem 2.12 are satisfied. In particular, we
show (i) that the degree sequence of a map G∗n chosen uniformly at random from G∗n
is asymptotically the same as that of a map Gn chosen uniformly at random from the
class of general maps Gn; (ii) we assert that G∗ = T ◦ ◦ G∗ + D ◦ ◦ H is a proper map
composition schema; and (iii) we determine the generating function DT (z) and its
asymptotic behavior.

We first carry out step (i).

2.5. c-Nets 35

Proposition 2.19. Let ε > 0, k ∈ N. Let G∗n be a map drawn uniformly at random
from G∗n. Then, uniformly for large n

Pr
[
deg(k; G∗n) ∈ (1± ε) gk n

]
≥ 1−O

(
ε−2(gk n)−1 log20 n

)
, (2.5.4)

where gk = [zk]DG(z) and DG(z) as in Theorem 2.1.

Proof. Let k ∈ N be fixed and n ∈ N be sufficiently large. Let G be drawn from G
according to the Boltzmann distribution ΓG(ρG), let G∗n be drawn uniformly at random
from G∗n, land Gn be drawn uniformly at random from Gn. Then

Pr
[
deg(k; Gn) /∈ (1± ε) gk n

]
= Pr

[
deg(k; G) /∈ (1± ε) gk n

∣∣G ∈ Gn] and
Pr
[
deg(k; G∗n) /∈ (1± ε) gk n

]
= Pr

[
deg(k; G) /∈ (1± ε) gk n

∣∣G ∈ G∗n × {•→•}] ,
where G ∈ G∗n × {•→•} is defined as in (2.5.1). Whenever G ∈ G∗n × {•→•}, then
certainly G ∈ Gn. Thus,

Pr
[
deg(k; G∗n) /∈ (1± ε) gk n

]
≤

Pr[G ∈ Gn
]

Pr
[
G ∈ G∗n × {•→•}

] · Pr
[
deg(k; Gn) /∈ (1± ε) gk n

]
.

Now, Pr[G ∈ Gn
]

= Θ(n−5/2) by Corollary 2.10. Moreover, by exploiting (2.5.2)
and (2.4.3) we can derive the singular expansion of G∗(x) = G(x)

H(x) − 2, which has the
expansion

G∗(x) =
1
4
− 9

4
(
1− x

ρ∗G

)
+ 9

(
1− x

ρ∗G

)3/2 +O
((

1− x
ρ∗G

)2) (2.5.5)

as x→ ρ∗G = ρG = ρH = 1
12 .

Hence, G∗(x) is singular with exponent 3/2, and an application of Theorem 2.6
yields

Pr
[
G ∈ G∗n × {•→•}

]
=

[xn]xG∗(x) · ρnG
G(ρG)

= Θ(n−5/2) .

The statement follows from Theorem 2.1.

Next, we show that G∗ = T ◦ ◦ G∗ +D ◦ ◦ H is a proper map composition schema.
It can be seen that since G and H are closed under inversion of the orientation of
the root, so is G∗. Table 2.1 guarantees that the generating functions M(x), H(x),
and T ◦(x) are singular with exponent 3/2. Moreover, in (2.5.5) we showed also that
G∗(x) is singular with exponent 3/2.

The above facts together with Proposition 2.19 imply that the preconditions of
Theorem 2.12 are satisfied. We obtain Theorem 2.3, where DT (z) = DT ◦(z) is given
by the relation

9DG∗(z) = EG∗(z)− 2RG∗(z) +DT
(
RG∗(z)

)
, (2.5.6)

where DG∗(z) = DG(z) is given in Theorem 2.1 and cG∗ = −9/4
1/4 = 9. Moreover, the

proof of the next lemma derives explicit expressions for RG∗(z) and EG∗(z), albeit the
second is omitted.

36 Vertex Degrees in Random Planar Maps

Lemma 2.20. [zk]DT (z) ∼k 9
√

3√
2π
k−1/2

(
1
2

)k .
Proof. From (2.5.2) and the explicit expressions for G(x) and G(x, z) from (2.4.3)
and (2.4.4) we can directly derive an explicit expression for RG∗(z).

RG∗(z) =
180z − 144− 21z3 − 24z2 + (5z2 − 26z + 24)

√
3 (2 + z) (6− 5z)

(1− z)
(
3z2 − 36z + 36 + (6− 5z)

√
3 (2 + z) (6− 5z)

) .

Since G∗ is not closed under re-rooting, we cannot directly apply (2.9) to ob-
tain EG∗(z). Still, by linearity of expectation, we obtain with ρ := ρ∗G = ρG = ρH = 1

12
from (2.5.1) that

EG∗(z) =
G∗(ρ)H(ρ)EG∗×H(z) +H(ρ)E{• 	}◦H(z) +H(ρ)E{•→•}◦H(z)

G(ρ)
. (2.5.7)

For maps drawn in the Boltzmann model from G∗×H, the expected number of vertices
of a given degree is that of the map from G∗ (without root vertices), plus that of the
map from H (again without root vertices), plus the expected number of root vertices
that are of the given degree. Thus,

EG∗×H(z) =
(
EG∗(z)− 2RG∗(z)

)
+
(
EH(z)− 2RH(z)

)
+ 2RG∗(z)RH(z) . (2.5.8)

Maps in {• 	}◦H are composed out of two maps drawn from G+{•} in the Boltzmann
model that are attached to each other at their root vertices and separated by an
additional root edge. Thus for maps drawn in the Boltzmann model from {• 	} ◦ H,
the expected number of vertices of a given size is twice the expected number of those
vertices in a map from G+ {•} (without the root vertex) plus the probability that the
new root vertex composed of the two old root vertices and the new root edge has the
requested degree. Thus,

E{• 	}◦H(z) = 2EG+{•}(z)− 2RG+{•}(z) + z2RG+{•}(z)
2 . (2.5.9)

Since {•→•} ◦ H = H, we have E{•→•}◦H(z) = EH(z). If we substitute this, (2.5.8),
and (2.5.9) in (2.5.7) and solve for EG∗(z), we obtain an expression in RG∗(z), EG(z),
RH(z), EG+{•}(z), and RG+{•}(z), that is, all functions are given explicitly. Putting
everything together yields an explicit expression for EH∗(z) which we omit.

To obtain the asymptotic form of the coefficients first note that the function RG∗(z)
is strictly increasing for z ∈ [0, 6

5], and that RG∗(6
5) = 2. Hence, RG∗ is uniquely

invertible in [0, 6
5], the inverse being

F (z) =
20 + 46z + 17z2 − (2− z)

√
(50− z) (2− z)

34 + 26z + 16z2
.

We thus obtain

DT ◦(z) = 9DG∗(F (z))− EG∗(F (z)) + 2RG∗(F (z)).

Now, as DG∗ = DG , EG∗ , RG∗ and F are given explicitly, we obtain an explicit expres-
sion for DB(z). We see that the dominant singularity of DB(z) is at 2, and that

DT ◦(z) = 9
√

3
2

(
1− z

2

)−1/2 +O(1) as z → 2.

The proof finishes by applying the Transfer Theorem (Theorem 2.5) to the above local
expansion.

2.6. Loopless and Bridgeless Maps 37

2.6. Loopless and Bridgeless Maps

For random loopless maps and random bridgeless maps we derive similar concentration
results as for biconnected maps and c-nets. Note that the planar dual of a loopless
map is a bridgeless map and vice versa, hence we only need to investigate one of the
two classes.

Theorem 2.21. Let ε > 0, k ∈ N. Let Ln be a map drawn uniformly at random
from the class Ln of all loopless maps (or, equivalently, bridgeless maps) with n edges.
Then, uniformly for sufficiently large n

Pr[deg(k; Ln) ∈ (1± ε) `k n] = 1− o(1) , (2.6.1)

where `k = [zk]DL(z) and the explicit expression of DL(z) can be derived from (2.6.3).
Furthermore,

`k ∼k 3
4
√
π
k−1/2

(
3
4

)k
.

Let L be the class of loopless maps. We define the loopless core of a map G ∈ G
by removing all maximal loops and their interior from G (where a loop is maximal if
it not contained within any other loop). If the root of G is a maximal loop, then the
loopless core is empty. Tutte (1963) showed the following combinatorial relation.

Lemma 2.22 (Tutte (1963)). Let D ⊂M be the class of general maps that have an
empty loopless core. The classesM and L satisfy the relation

M = L ◦ H+D ,

where

H = Seq(M+ {•})× {•→•} × Seq(M+ {•})

and Seq(X) denotes a possibly empty sequence of elements in X .

In words, any map inM has either an empty loopless core, or it is obtained from a
loopless map substituting every edge by a map in H. Here, H consists of all maps that
are composed by attaching an arbitrary number of general maps that are enclosed in
loops to the two endpoints of a single (root) edge.

By construction, H is closed under inversion of the orientation of the root edge,
and moreover, Table 2.1 guarantees that the generating functions G(x) and L(x)
are singular with exponent 3/2. Finally, a straightforward calculation shows that
also H(x, z) = xz (1−x(G(x)+1))−1 (1−xz2(G(x, z)+1))−1 is singular with exponent
3/2, admitting the expansion

H(x) =
27
256
− 81

512
(
1− x

ρG

)
+

27
512

(
1− x

ρG

)3/2 +O
((

1− x
ρG

)2)
, (2.6.2)

as x→ ρH = ρG = 1
12 .

38 Vertex Degrees in Random Planar Maps

The above facts together with Theorem 2.1 imply that the preconditions of Theo-
rem 2.12 are satisfied. So, we obtain Theorem 2.2, where the function DB(z) is given
by the relation

3
2
DG(z) = EH(z)− 2RH(z) +DB

(
RH(z)

)
, (2.6.3)

and DG(z) is given in Theorem 2.1. Since we know H(x, z) explicitly, the functions
RH(z) can be derived straightforwardly. The function EH(z) can also be calculated
explicitly by decomposing H to its components from M. In particular, a simple
calculation yields that

EH(z) = 1
4

(
EM+{•}(z)− 2RM+{•}(z)

)
+ 2RH(z) .

From this, we infer that the expansion of DL(z) at its dominant singularity 4/3 is

DL(z) = 4
3

(
1− 3z

4

)−1/2 +O(1) as z → 4/3 .

We apply the Transfer Theorem (Theorem 2.5) to the above expansion and obtain
Theorem 2.21.

Indication of source. The content of this chapter has been previously published in
the Proceedings of SODA ’10 (Johannsen and Panagiotou (2010)).

39

3
Counting Defective Parking Functions

A car park consists of n numbered spaces in a line. The drivers of m cars have
independently chosen their favorite parking spaces. Each driver arrives at the car
park and proceeds to his chosen space, parking there if it is free. If the chosen space
is occupied, the driver continues on towards the larger-numbered spaces and takes
the first available space if any; if no such space is available, the driver leaves the
car park and goes home. What is the probability that everybody parks successfully?
Equivalently, how many of the nm sequences of choices by the drivers lead to everyone
parking? (Such a sequence is called a parking function.)

This problem was first raised in the 1960s in connection with hashing (Konheim
and Weiss (1966)). In the case of m = n, a short and elegant proof of the formula
(n + 1)n−1 was given by Pollak (Foata and Riordan (1974)). From these beginnings,
a substantial theory of parking functions has been developed, with links to trees (as
one would expect from the formula above) and priority queues (Gilbey and Kalikow
(1999)), partitions (Stanley (1997)), and representation theory (Haiman (1994)). More
recently, generalizations of parking functions have found application in areas like the
modelling of percolation (Majumdar and Dean (2002)), the Abelian sandpile model
(Postnikov and Shapiro (2004)) and branching processes (Dumitriu et al. (2003)).

In this chapter, we are concerned with the probability that k drivers fail to park
successfully. We call the corresponding assignments a defective parking function of
defect k. Suppose that m cars attempt to park in a linear car park with n spaces
according to the above rules; let cp(n,m, k) be the number of choices which result in
exactly k drivers failing to park.

The concept is related to that of x–parking functions introduced by Pitman and
Stanley (2002): For a tuple of integers x = (x1, . . . , xn) with n ∈ N, an x–parking
function is a sequence (a1, . . . , an) whose ordered permutation (b1, . . . , bn) satisfies
bi ≤ x1 + . . .+ xi for all 1 ≤ i ≤ n.

These generalized parking functions have been extensively studied. Pitman and
Stanley (2002) related their number to the volume polynomials of certain types of

40 Counting Defective Parking Functions

polytopes and to that of plane partitions. Later, Kung and Yan (2003a,b) investigated
moments of sums of their numbers by using Gončarov polynomials.

Classical parking functions correspond to (1, 1, . . . , 1)–parking functions while de-
fective parking functions of defect k correspond to (n− (m−k) + 1, 1, . . . , 1, 0, . . . , 0)–
parking functions which in addition are not (n − (m − k), 1, . . . , 1, 0, . . . , 0)–parking
functions. For tuples x = (a, b, . . . , b, c, 0, . . . , 0), an explicit formula was derived in
Pitman and Stanley (2002) using the connection to polytope volumes and was reproven
by Yan (2001) with combinatorial means.

We establish a new recurrence relation for the number of defective parking func-
tions, allowing us to formulate an equation defining the corresponding three-variable
generating function. Applying the kernel method (Flajolet and Sedgewick (2009);
Prodinger (2004)), we solve this equation explicitly, and then extract the coefficients.
We reobtain the fact that the cumulative totals turn out to be partial sums in Abel’s
binomial formula (Abel (1826)) as shown in Pitman and Stanley (2002) and Yan (2001)
within the context of x–parking functions. In fact, the parking function approach may
be used to prove special cases of this identity.

We then investigate the asymptotical behavior of defective parking for prominent
cases. Spencer and Yan (2001) have studied asymptotics of parking functions with a
defect equal to the difference between the number of cars and the number of spaces
(the case in which all parking spaces end up being taken). We extend these results to
the case of arbitrary defects. In particular, we include the case in which the number
of cars is less than the number of spaces.

First, we show that, for fixed k and `, the limit of cp(n, n + `, k)/ cp(n, n + `, 0)
exists, and compute its value. For example, the limiting value of cp(n, n, 1)/ cp(n, n, 0)
is 2e− 3.

To survey the limiting shape of the distribution, we need appropriate scaling, which
turns out to be by the square root of n. We show that, if m = n + by

√
nc, then the

limiting probability of at most bx
√
nc drivers failing to park is

lim
n→∞

1
nm

bx
√
nc∑

k=0

cp(n,m, k) =

{
1− e−2x(x−y) if x > y,

0 otherwise;

a surprisingly simple result, given the complicated form of the exact formula.
For y = 0 (that is, in the case of m = n), this limiting distribution is the Rayleigh

distribution with parameter 1/2. (This occurs as the distribution of the length of
a random vector in the plane whose coordinates are independent normal variables
with standard deviation 1/2. We do not know of a direct connection of this with our
problem.)

We also investigate the limiting probability that all parking spaces are occupied.
Obviously, for m strictly smaller than n this probability is zero. We show that for
m = bλnc with fixed λ ∈ R+ and k = m− n,

lim
n→∞

cp(n,m, k)
nm

=

{
0 if λ ≤ 1,

1− e−λ
∑

i≥1
(λi/eλ)i−1

i! if λ > 1.

An alternative interpretation of the above car park problem involves a variation
on the coupon collector problem. In the original problem, there are n distinct items.

3.1. A Functional Equation 41

n k = 0 1 2 3 4 5 6 7 8 9
1 1
2 3 1
3 16 10 1
4 125 107 23 1
5 1296 1346 436 46 1
6 16807 19917 8402 1442 87 1
7 262144 341986 173860 41070 4320 162 1
8 4782969 6713975 3924685 1166083 176843 12357 303 1
9 100000000 148717762 96920092 34268902 6768184 710314 34660 574 1

10 2357947691 3674435393 2612981360 1059688652 256059854 36046214 2743112 96620 1103 1

Table 3.1. The table shows the numbers cp(n, n, k) for n = 1, . . . , 10 and for
k = 0, . . . , 9 which count all car parking assignments of n cars to n spaces, such
that k cars are not parked.

If a collector acquires random items, she will have approximately n/e duplicates after
collecting the first n items and will need to collect about n log n items before she has
a complete set. But suppose the items are of strictly decreasing value and she has the
option of trading duplicate items; each item may be traded for any other one of lower
value. Ideally, she trades duplicates against the next most valuable item she does not
yet possess. Then, we show that she will receive only about

√
n duplicates among

the first n items and a complete collection already with n f(n) items for any function
f : N→ N for which limn→∞ f(n) =∞ holds.

We conclude this introduction with Pollak’s lovely proof, adapted to the general
case: for m cars and n spaces (with m ≤ n), the number of ways in which every driver
parks successfully is (n+ 1−m)(n+ 1)m−1. To see this, consider a circular car park
with n+ 1 spaces, for which the same rules apply. Now everyone will park successfully
and there will be n+ 1−m empty spaces; such a choice will be a parking function (for
the original problem), if and only if space number n+ 1 is empty. By symmetry, this
will happen in a fraction (n+ 1−m)/(n+ 1) of the total number (n+ 1)m of choices.
We will see later that our argument reproduces this result as an essential step in the
working-out of the kernel method.

3.1. A Functional Equation

Let cp(n,m, k) be the number of assignments of m drivers to a car park with n
spaces, that result in exactly k drivers leaving in the end, where the parking strat-
egy of the drivers is as described in the introduction above. There are nm such as-
signments. Then cp(n,m, k) can be concisely expressed as the number of functions
f : {1, . . . ,m} → {1, . . . , n} for which the set f−1({n + 1 − i, . . . , n}) has a size of at
most k+i for all i ∈ {1, . . . , n}, and at least one of these sets has a size of exactly k+i.

Values of cp(n, n, k), the case in which the number of drivers and the number of
spaces coincide, can be found in Table 3.1.

We will now derive a recursion formula by transforming the parameters so that
they are more suitable for our purpose. Let r be the number of spaces that end up
unoccupied, and let s be the number of occupied spaces.

42 Counting Defective Parking Functions

Definition 3.1. For r, s, k ∈ N0 let a(r, s, k) denote the number of choices for which r
spaces remain unoccupied, s spaces are occupied in the end, and k people drive home.

This obviously means that there are n = r+ s spaces in total, and that m = k+ s
drivers arrive. Observe that cp(n,m, k) = a(n − m + k,m − k, k) is the number of
assignments for the car parking problem with n parking spaces, m visitors, and k
drivers going home. Correspondingly, cp(n, n, k) = a(k, n − k, k). Thus, finding a
solution for a(r, s, k) will yield a solution for the original problem. We extend this
definition to all integers by setting a(r, s, k) = 0 whenever r, s, or k is smaller than 0.
For the newly introduced numbers, we get the following recursive formula.

Lemma 3.2. For r, s, k ∈ N0, the number of assignments of s + k drivers to r + s
spaces, such that r spaces remain empty, s spaces are occupied, and k drivers leave,
is recursively defined by

a(r, s, k) =

1 if r = s = k = 0,

a(r − 1, s, 0) +
∑k+1

i=0

(
s+k
k+1−i

)
a(r, s− 1, i) if k = 0 ∧ (r > 0 ∨ s > 0),∑k+1

i=0

(
s+k
k+1−i

)
a(r, s− 1, i) if k > 0.

Proof. If r = s = k = 0, there exists exactly one assignment. Next, let k > 0, as in
the third case. Since k > 0 drivers leave in the end, there are at least k + 1 drivers
that arrive at parking space number r + s, counting the ones that actually chose it,
as well as the ones that did not. An assignment of the s + k drivers to the r + s
parking spaces satisfies this condition, if and only if for some i ∈ {1, . . . , k + 1} there
are k+ 1− i drivers that actually choose the last space and i drivers that arrive at the
space, although they have not chosen it. For different values of i, the corresponding
assignments of the drivers must differ.

There are
(
r+k
k+1−i

)
ways to choose the k + 1− i drivers that actually pick the last

space and a(r, s−1, i) assignments of the remaining s−1+i drivers to the first r+s−1
spaces, such that exactly i of them will arrive at the last space. Since these assignments
are independent of the choice of k+1−i drivers that choose the last space, the claimed
recursion holds.

Finally, let k = 0 but r > 0 or s > 0. If some driver arrives at the last parking
space, whether actually choosing it or just taking it due to lack of other spaces, the
same recursion as for k > 0 holds. Otherwise, the last space will be empty and the
number of assignments in which this happens is equal to the number of ways all s
drivers can be assigned to the first r + s− 1 spaces, such that no driver has to leave.
For this, there are exactly a(r − 1, s, 0) ways.

We restate the recursion formula from the previous lemma as

a(r, s, k) = 1{r=s=k=0}(r, s, k) +1{k=0}(k) a(r− 1, s, 0) +
k+1∑
i=0

(
s+ k

k + 1− i

)
a(r, s− 1, i) ,

where 1{k=0}(k) and 1{r=s=k=0}(r, s, k) are the characteristic functions which are one,
if k = 0 respectively r = s = k = 0 and zero, otherwise. Dividing both sides by

(
s+k
k

)

3.2. An Explicit Formula 43

yields

a(r, s, k)(
s+k
k

) = 1{r=s=k=0}(r, s, k)+1{k=0}(k)
a(r − 1, s, 0)(

s+0
0

) +
s

k+1

k+1∑
i=0

(
k+1
i

)
a(r, s− 1, i)(
s−1+i
i

) .

(3.1.1)
The previous equation suggests to represent a(r, s, k) by a generating function which
is ordinary in u and exponential in a combination of v and t.

Lemma 3.3. Let A be the formal power series in the three variables u, w, and t defined
by

A(u, v, t) :=
∑

r,s,k≥0

a(r, s, k)ur vstk

(s+k)! .

Then A is the unique solution of

0 = (vt e
t − 1)A(u, v, t) + (u− v

t)A(u, v, 0) + 1

in the ring of formal power series in u, v and t.

Proof. Multiplying both sides of (3.1.1) by ur v
s

s!
tk

k! and summing both sides over the
parameters r, s, and k, followed by the usual manipulation, such as index-shifts and
factorizing the product of A(u, v, t) and et, shows that the definition of A and the
equation stated in this lemma are equivalent.

3.2. An Explicit Formula

We will now proceed to find an explicit formula for the coefficients of the generating
function. In general, equations like the equation in Lemma 3.3 cannot be solved di-
rectly, since both A(u, v, t) and A(u, v, 0) are unknown. Instead, we resort to using the
so-called kernel method (Flajolet and Sedgewick (2009); Prodinger (2004)). Writing
the equation in Lemma 3.3 as

K(v, t)A(u, v, t) = (u− v
t)A(u, v, 0) + 1

with the kernel K(v, t) = 1 − v
t e
t, we solve for A(u, v, 0) by setting the kernel equal

to zero, which is here equivalent to finding a formal power series t(v) for which
K(v, t(v)) = 0. The solution to t = vet is the well-known tree function t = T (v)
enumerating rooted trees on i labelled nodes, which is standardly expressed in terms
of the Lambert W-function (Corless, Gonnet, Hare, Jeffrey, and Knuth (1996)) as
T (v) = −W (−v) and has series expansion

T (v) =
∞∑
i=1

ii−1

i!
vi .

Therefore

A(u, v, 0) =
eT (v)

1− ueT (v)
, (3.2.1)

which can be substituted into the equation of Lemma 3.3 to derive an explicit expres-
sion for A(u, v, t). This proves the following lemma.

44 Counting Defective Parking Functions

Lemma 3.4. The generating function for the car parking problem is given by

A(u, v, t) =
1

1− v
t e
t

+
u− v

t

1− v
t e
t

eT (v)

1− ueT (v)
.

Applying Lagrange inversion to (3.2.1), we obtain the explicit expression

A(u, v, 0) =
∑
r,s≥0

(r + 1) (r + s+ 1)s−1 ur v
s

s! . (3.2.2)

The coefficients of A(u, v, 0) have already been obtained in the introduction by a
direct combinatorial method. It becomes apparent that we can express the car parking
numbers cp(n,m, k) = a(n −m + k,m − k, k) in terms of the following sums, which
also have a direct combinatorial interpretation.

Definition 3.5. For n,m, k ∈ N0, let

S(n,m, k) :=

nm if k ≤ m− n,
m−k∑
i=0

(
m
i

)
(n−m+k) (n−m+k+i)i−1 (m−k−i)m−i otherwise.

The car parking numbers then calculate as follows.

Theorem 3.6. Let n,m, k ∈ N0. Then, the sum S(n,m, k) counts the number of car
parking assignments of m cars on n spaces, such that at least k cars do not find a
parking space, that is,

S(n,m, k) =
m∑
j=k

cp(n,m, j) .

Equivalently, the car parking numbers cp(n,m, k) are given by

cp(n,m, k) = S(n,m, k)− S(n,m, k + 1) .

Proof. Expanding the explicit form of A(u, v, t) in Lemma 3.4 with the help of (3.2.2)
leads, after some lengthy manipulations, to

A(u, v, t) =
∑
s≥0

∑
k≥0

ss+k vs tk

(s+k)! +
∑
r≥1

∑
s≥0

∑
k≥0

s∑
i=0

(
s+k
i

)
r (r + i)i−1 (s− i)s+k−i ur vstk

(s+k)!

−
∑
r≥0

∑
s≥1

∑
k≥0

s−1∑
i=0

(
s+k
i

)
(r + 1) (r + 1 + i)i−1 (s− 1− i)s+k−i ur vstk

(s+k)!

=
∑

r,s,k≥0

(
S(r + s, s+ k, k)− S(r + s, s+ k, k + 1)

)
ur vstk

(s+k)! .

From this, we read off directly that

a(r, s, k) = S(r + s, s+ k, k)− S(r + s, s+ k, k + 1) .

The statement of the theorem follows from the relation between cp(n,m, k) and
a(r, s, k).

3.3. Abel’s Binomial Identity 45

Note that we can rewrite S(n,m, k) for k > m− n as

S(n,m, k) =
m−k∑
i=0

(
m

i

)
cp(n−m+ k + i− 1, i, 0) (m− k − i)m−i .

This observation (Francesco (2008)) leads to a direct combinatorial proof of Theorem
3.6.

Alternative proof. If at least k cars do not find a parking space, then there are at least
` = n+k−m empty parking spaces. Assuming the `-th empty space occurs at position
`+ i, there are i cars successfully parked in the `+ i− 1 spaces to the left of it, which
is counted by cp(`+ i− 1, i, 0). Selecting these i cars out of all m cars can be done in(
m
i

)
different ways. The remaining m− i cars are assigned to the n− `− i rightmost

spaces in (n− `− i)m−i different ways. Summing over all possible values of i leads to

S(n,m, k) =
n−∑̀
i=0

(
m

i

)
cp(`+ i− 1, i, 0) (n− `− i)m−i .

Another way to derive this theorem is to reinterpret defective parking functions
in terms of x–parking functions as described in the introduction and then apply the
results from Pitman and Stanley (2002).

3.3. Abel’s Binomial Identity

In the last section we saw that the number of assignments of m cars to n spaces, such
that at least k drivers fail to park, is the sum S(n,m, k). Interestingly, S(n,m, k)
turns out to be a partial Abel-type sum as it appears in Abel’s Binomial identity
(Abel (1826)).

Lemma 3.7 (Abel’s Binomial Identity).

m∑
i=0

(
m

i

)
a (a+ i)i−1 (b− i)m−i = (a+ b)m for all a, b ∈ R,m ∈ N0.

In fact, our approach gives a proof of this identity for the case a, b,m ∈ N0 and
b = m. (Put k = 0, a = n − m and b = m in the defining equation of S(n,m, k)
in Definition 3.5). We use this identity to find the following short expressions of
S(n,m, k) and S(n, n, k).

S(n,m, k) =

nm if k ≤ m−n,

nm −
k−1∑
i=0

(
m

i

)
(−1)i (n−m+k) (k−i)i (n+k−i)m−1−i otherwise,

S(n, n, k) =nn −
k−1∑
i=0

(
n

i

)
(−1)i k (k−i)i (n+k−i)n−1−i .

46 Counting Defective Parking Functions

We now give S(n, n, k) for values of k close to zero or n:

S(n, n, 0) =nn ,

S(n, n, 1) =nn − (n+ 1)n−1 ,

S(n, n, 2) =nn − 2 (n+ 2)n−1 + 2n (n+ 1)n−2 ,

S(n, n, 3) =nn − 3
2 n (n− 1) (n+ 1)n−3 + 6n (n+ 2)n−2 − 3 (n+ 3)n−1 ,

...

S(n, n, n− 3) = 3n + n (n− 3) 2n−1 + 1
2 n (n− 1)2 (n− 3) ,

S(n, n, n− 2) = 2n + n (n− 2) ,
S(n, n, n− 1) = 1 ,

S(n, n, n) =

{
1 if n = 0 ,
0 otherwise .

It follows that for m = n+ ` with k > ` and ` ∈ Z

lim
n→∞

n

(
S(n,m, k)

nm
− 1
)

= − (k − `)
k−1∑
i=0

(−1)i

i!
(k − i)i ek−i =: φ(`, k) .

(This limit is trivially zero if k ≤ `.) This implies that for ` ≤ 0 the limit

lim
n→∞

cp(n, n+ `, k)
cp(n, n+ `, 0)

= lim
n→∞

φ(`, k)− φ(`, k + 1)
φ(`, 0)− φ(`, 1)

is finite (for ` > 0 the denominator is zero). For example, we find

lim
n→∞

cp(n, n, 1)
cp(n, n, 0)

= 2e− 3 and lim
n→∞

cp(n, n, 2)
cp(n, n, 0)

= 3e2 − 8e+ 7/2 .

We conclude that in a random instance, we do not expect the number of drivers
having to leave to be bounded by a constant.

Abel’s binomial identity also gives us a first bound on S(n,m, k). We obtain it by
bounding the binomial coefficient appearing within the sum: Since for k > m− n, we
know that

S(n,m, k) =
m−k∑
i=0

h(n,m, k)
(
m− k
i

)
(n−m+ k) (n−m+ k+ i)i−1 (m− k− i)m−k−i

with

h(n,m, k) =
(m− k − i)k (m− k − i)!m!

(m− i)! (m− k)!
≤ m!

(m− k)!
.

It follows that
S(n,m, k) ≤ m!

(m− k)!
nm−k .

We have seen how the formula for S(n,m, k), derived by Abel’s identity, allows us
to obtain asymptotic results for fixed values of k. In the following section, we analyze
the case in which k grows as a function of n. Some of the upcoming results may be
elementary proven using the previous inequality.

3.4. Asymptotics 47

3.4. Asymptotics

For the parking problem with m cars and n spaces, the probability that at least k
drivers cannot park their cars is S(n,m, k)/nm with S(n,m, k) as defined in Defini-
tion 3.5. The case k = 0 corresponds to partially filled hash tables and has been ana-
lyzed at length in Chassaing and Louchard (2002), with the most interesting asymp-
totic behavior obtained for n−m = O(

√
n). Similarly, we find non-trivial behavior in

the regime where both n−m and k are of order O(
√
n).

Theorem 3.8. Let x ∈ R+ and y ∈ R. Then, the limiting probability that in a random
assignment of n+ by

√
nc drivers to n spaces at least bx

√
nc drivers fail to park is

lim
n→∞

S(n, n+ by
√
nc, bx

√
nc)

nn+by
√
nc =

{
e−2x(x−y) if x > y,

1 otherwise.

Proof. Let p(n,m, k) = S(n,m, k)/nm. First note that the case x ≤ y corresponds to
the case m ≥ n + k, where p(n,m, k) = 1. The case x > y corresponds to the case
m < n+ k, where

p(n,m, k) =
m−k∑
i=0

p(n,m, k, i)

with p(n,m, k, i) given by

p(n,m, k, i) =
1
nm

(
m

i

)
(m− k − i)m−i (n−m+ k + i)i−1 (n−m+ k) .

A straightforward but slightly tedious calculation establishes that for α ∈ [0, 1]

lim
n→∞

n p(n, n+ y
√
n, x
√
n, αn) =

x− y√
2πα3(1− α)

exp
(
−(x− (1− α)y)2

2α(1− α)

)
.

As we have uniform convergence to a bounded limiting function for α ∈ [0, 1], it
is permissible to approximate p(n, n + by

√
nc, bx

√
nc) for large n by an integral as

follows:

lim
n→∞

p(n, n+ by
√
nc, bx

√
nc) = lim

n→∞

n−bx
√
nc∑

i=0

p(n, n+ by
√
nc, bx

√
nc, i)

= lim
n→∞

∫ 1−x/
√
n

0
n p(n, n+ y

√
n, x
√
n, αn) dα

=
∫ 1

0

x− y√
2πα3(1− α)

exp
(
−(x− (1− α)y)2

2α(1− α)

)
dα .

Under the substitution α = u(x−y)
x+u(x−y) , this integral simplifies to

1√
2π

∫ ∞
0

√
x(x− y)

u3
exp

(
−x (x− y)

(1 + u)2

2u

)
du = exp(−2x(x− y)) .

48 Counting Defective Parking Functions

k
0 5 10 15 20 25

r

0

0.1

0.2

0.3
r 100, 90, k

k
0 5 10 15 20 25

r

0

0.1

0.2

0.3
r 100, 100, k

k
0 5 10 15 20 25

r

0

0.1

0.2

0.3
r 100, 110, k

Figure 3.1. A comparison of the probabilities ρ(n,m, k) = cp(n,m, k)/nm,
that m cars park randomly on n spaces such that k drivers fail to park, and their
asymptotic approximation for n = 100 and m = 90 (left), m = 100 (middle) and
m = 110 (right), respectively.

This theorem implies that for m < n+ k, a good approximation is given by

cp(n,m, k)
nm

≈ 2
n

(2k −m+ n) e−2k(k−m+n)/n .

Figure 3.1 shows a comparison between cp(n,m, k)/nm and this approximation for the
three qualitatively different scenarios m < n, m = n and m > n.

Theorem 3.8 also shows that in the special case m = n, where the number of
drivers and the number of parking spaces coincide, a random assignment will result in√
n drivers leaving. In particular we get the following corollary:

Corollary 3.9. Let k : N→ N. Then, the limiting probability that in a random assign-
ment of n drivers to n spaces at least k(n) drivers fail to park is

lim
n→∞

S(n, n, k(n))
nn

=

{
0 if limn→∞ k(n)/

√
n =∞,

1 if limn→∞ k(n)/
√
n = 0.

Another question one may wish to ask is how the number m of cars needs to
scale with the number n of parking spaces to fill the car park with a finite limiting
probability, and when this probability reaches one. Similarly, from the viewpoint of
the coupon collector, it is reasonable to ask how many coupons are needed to obtain
a complete set.

Recall that the quantity S(n,m,m − n + 1) counts the number of car parking
assignments of m cars on n spaces, such that at least m − n + 1 cars do not find a
parking space, or, equivalently, such that at most n− 1 cars do find a parking space.
Therefore, the probability that the car park is full is given by

cp(n,m,m− n)
nm

= 1− S(n,m,m− n+ 1)
nm

.

We find non-trivial behavior when m depends linearly on n as stated in the following
theorem, a similar version of which can be found in Spencer and Yan (2001).

3.4. Asymptotics 49

Theorem 3.10. Let λ ∈ R+. Then, the limiting probability that in a random assign-
ment of bλnc drivers to n spaces all spaces are occupied is

lim
n→∞

cp(n, bλnc, bλnc − n)
nbλnc

=

{
0 if λ ≤ 1,
1− 1

λ T
(
λe−λ

)
if λ > 1.

Proof. Let p(n,m) = S(n,m,m− n+ 1)/nm. We have

p(n,m) =
1
nm

n−1∑
i=0

(
m

i

)
(i+ 1)i−1 (n− 1− i)m−i .

Choosing m = bλnc, we exchange summation with taking the limit and compute the
limit term-wise, arriving at

lim
n→∞

p(n, bλnc) =
∞∑
i=0

λi

i!
(i+ 1)i−1 e−λ(1+i) . (3.4.1)

Exchanging summation with taking the limit is justified by the Lebesgue dominated
convergence theorem, as each term is bounded by the limiting expression, that is,

0 ≤ 1
nm

(
m

i

)
(i+ 1)i−1 (n− 1− i)m−i+ ≤ (m/n)i

i!
(i+ 1)i−1 e−(1+i)m/n .

The sum in (3.4.1) converges for |λe−λ| ≤ 1 (in particular for all positive λ). It
can be expressed using the tree function T (v) with v = λe−λ, and we find

lim
n→∞

p(n, bλnc) =
1
λ
T
(
λe−λ

)
.

Recalling that t = T (v) solves v = te−t, we find that determining t = T
(
λe−λ

)
reduces to solving te−t = λe−λ. For λ ≤ 1, we find t = λ, however, for λ > 1 no such
simplification is possible.

Figure 3.2 shows a comparison between cp(n,m,m − n)/nm with m = bλnc and
finite values of n and the limiting curve given by 1− T (λe−λ)/λ.

We conclude with a corollary of the previous theorem which emphasizes the thresh-
old character of its statement. In this sense, the relation between the following corol-
lary and the previous theorem reflects the relation between Corollary 3.9 and Theo-
rem 3.8.

Since 1
eλ−1−λ is an upper bound for T (λe−λ)/λ which converges to zero for λ→∞,

almost all random assignments of m = m(n) drivers to n parking spaces will result in
all spaces being occupied if m/n tends to infinity.

Corollary 3.11. Let m : N → N. Then, the limiting probability that in a random
assignment of m(n) drivers to n spaces all spaces are occupied is

lim
n→∞

cp(n,m(n),m(n)− n)
nm(n)

=

{
0 if limn→∞m(n)/n ≤ 1,
1 if limn→∞m(n)/n =∞.

50 Counting Defective Parking Functions

l
0 1 2 3 4

0

0.2

0.4

0.6

0.8

1.0

Figure 3.2. A comparison of the probabilities cp(n,m,m − n)/nm for n = 10,
n = 20, and the limiting curve given by 1 − T (λe−λ)/λ from top to bottom,
respectively. Here, m = bλnc.

3.5. Conclusion

We have derived the generating function with coefficients cp(n,m, k) for the defective
car parking numbers and have used it to solve the problem of their exact and asymp-
totic enumeration. They are closely connected to the x–parking functions for which
numerous structural interpretations exist, and these interpretations therefore trans-
fer. However, we expect applications of our results in different areas, since parking
functions, with or without defect, naturally capture various time-dependent models.

For example, motivated by hashing with linear probing, a drop-push model for
percolation was proposed in Majumdar and Dean (2002). Here, particles are dropped
sequentially on a substrate, followed by the transport of the dropped particles via a
pushing mechanism, caused by a local hard-core repulsion between particles on the
substrate. If the transport is unidirectional, this is identical to the parking problem
studied in this chapter.

Another example, the Abelian sandpile model, allows a decrease in the quantity of
the system that corresponds to the number of cars. Such a decrease is not only possible
but even necessary to prove certain stability properties of the system. Translated to
parking functions, the notion of a defect naturally appears (Dhar (1990)).

A further potential field of application is queueing theory. For instance, the branch-
ing process described in Dumitriu et al. (2003) can by viewed in this context. With
respect to queueing, parking spaces are interpreted as time slots, at each of which
exactly one task (represented by one car) can be processed. Whereas in a branching
process, at least one unprocessed task must exist at every point in time; there is no
reason to forbid idle time in a more general queueing process.

Related results have been independently obtained by Panholzer (2008), notably a
detailed description of limiting distributions.

Indication of source. The content of this chapter has been published in the Electronic
Journal of Combinatorics (Cameron, Johannsen, Prellberg, and Schweitzer (2008))

51

Part II

Randomized Search Heuristics

53

4
Probabilistic Methods

In this chapter, we present existing as well as new probabilistic techniques as used in
the analysis of random search heuristics. In this, we focus on the techniques applied
in the next chapter and put them into the context of related probabilistic methods.

We start with a section that reviews well-known tail bounds like the Markov in-
equality, the Chernoff bounds, and the Azuma-Hoeffding inequality (which we already
applied in Chapter 2).

The second section introduces drift analysis. The theorem on multiplicative drift
(Theorem 4.5), a variant of which is published in Doerr, Johannsen, and Winzen
(2010b), is the main method of analysis for the problems discussed in the next chapter.

The third section is concerned with the random process known as to as gambler’s
ruin. We discuss how the understanding of a generalized version of this process can
be applied in the analysis of randomized search heuristics. The content of this section
has been published in Happ, Johannsen, Klein, and Neumann (2008).

In the fourth and last section, we develop a theorem on dominance of stochastic
processes. We will see that under proper assumptions we are can bound a sequence of
dependent random variable by a sequence of independent random variables.

4.1. Preliminaries

In this section we state three well-known tail inequalities (see, for example, McDiarmid
(1989) and Alon and Spencer (2008)) which we apply repeatedly in this thesis, for
example, in Section 2.3 of Chapter 2 and in the next chapter.

The Markov inequality is a basic yet for many applications sufficient bound that
links the tail probability of a random variable with its expectation.

54 Probabilistic Methods

Theorem 4.1 (Markov Inequality). Let X be a non-negative random variable. Then,
for all t ∈ R+,

Pr
[
X ≥ t

]
≤ E[X]

t
.

If we know more about the properties of a random variable, we are able to give
better bounds. The Chernoff bounds provide us with sharp concentration statements
for sums of independent and identically-distributed binary random variables.

Theorem 4.2 (Chernoff Bounds). Let X1, . . . , Xn be independent and identically-
distributed random variables over {0, 1}. Furthermore, let X :=

∑n
i=1Xi and let

µ := E[X]. Then, for all δ ∈ [0, 1],

Pr
[
X ≤ (1− δ)µ

]
≤ e−

δ2µ
2 and

Pr
[
X ≥ (1 + δ)µ

]
≤ e−

δ2µ
3 .

The following version of the Azuma-Hoeffding’s inequality (McDiarmid (1989))
provides us with sharp concentration for a random variable over a product probability
space if the effect of the single coordinates is small.

Theorem 4.3 (Azuma-Hoeffding). Let X1, . . . , Xn be independent random variables
with Xi taking values in a set Ai for each i ∈ {1, . . . , n}. Suppose there exist a
(measurable) function f :

∏
i=1Ai → R and constants c1, . . . , cn ∈ R such that for

all i ∈ {1, . . . , n}, the function f satisfies

|f(x)− f(x′)| ≤ ci

whenever the vectors x and x′ differ only in the i-th coordinate. Let X be the random
variable X := f(X1, . . . , Xn) and µ = E[X]. Then, for all t ∈ R+,

Pr
[
|X − E[X]| ≥ t

]
≤ 2e−2t2/

Pn
i=1 c

2
i .

4.2. Drift Analysis

The drift of a sequence {X(t)}t∈N of random variables over R+
0 is its expected change

over time. More precisely, the drift of {X(t)}t∈N at time t ∈ N is the expected value
of ∆(t) := X(t) −X(t+1).

For such a sequence and a value x0 ∈ R+
0 , the first hitting time with respect to x0

is the random variable that denotes the first point in time t ∈ N for which X(t) = x0.
In our case, x0 is typically zero. Drift analysis aims at deriving knowledge on the first
hitting time of a sequence from knowledge on its drift.

In this section, we give an overview over probabilistic techniques for the study of
randomized search heuristics that are based on drift analysis. Most of these techniques
are based on the work of He and Yao (2001, 2004) and go back to the work of Hajek

4.2. Drift Analysis 55

(1982) and have been adapted to the specific setting we encounter when analysing
randomized search heuristics.

Several of the results we present in this section have been formulated for sequences
of random variables that describe Markov chains (He and Yao (2004); Giel and Lehre
(2006); Happ et al. (2008); Oliveto and Witt (2010)). However, this limitation is not
necessary. All proofs in these works are based on He and Yao (2001) and on Hajek
(1982), neither of both using any Markov chain arguments (nor do the proofs of the
derived results). Instead, the proofs (implicitly) use the fact that the preconditions of
the respective statements guarantee that the considered sequences are submartingales
or supermartingales (Hajek (1982)). We therefore can formulate all results in this
section for general sequences.

4.2.1. Upper Bounds on the Expected First Hitting Time

The first theorem of this subsection (He and Yao (2001)) enables us to give upper
bounds on the first hitting times of random processes for which we know constant
lower bounds on the drift.

Theorem 4.4 (Constant drift). Let {X(t)}t∈N be a sequence of random variables over a
finite state space S ⊆ R+

0 . Furthermore, let T be the random variable that denotes the
first point in time t ∈ N for whichX(t) = 0. Suppose that there exists a constant C > 0
such that

E
[
X(t) −X(t+1)

∣∣ t < T
]
≥ C .

Then,

E
[
T
∣∣X(0)

]
≤ X(0)

C
.

In the random processes we will consider in the next chapter, the drift is usually
bounded by a multiple of X(t) instead of a mere constant. In the corresponding upper
bounds on the expected first hitting times (Theorem 5.4, Theorem 5.10, Theorem 5.26,
and Theorem 5.36), This property accounts for the logarithmic factor. A variant of
the following theorem is published in Doerr, Johannsen, and Winzen (2010b).

Theorem 4.5 (Multiplicative drift). Let {X(t)}t∈N be a sequence of random variables
over a finite state space S ⊆ R+

0 and let xmin := min{x ∈ S : x > 0}. Furthermore,
let T be the random variable that denotes the first point in time t ∈ N for which
X(t) = 0.

Suppose that there exists a constant C > 0 such that

E
[
X(t) −X(t+1)

∣∣X(t)
]
≥ C X(t)

holds for all t < T . Then, if X(0) 6= 0,

E
[
T
∣∣X(0)

]
≤ 1
C

(
1 + ln

X(0)

xmin

)
.

56 Probabilistic Methods

The previous theorem is a corollary of the following, more general result, which is
derived from Theorem 4.4 and builds on the results in He and Yao (2004).

Theorem 4.6 (Variable drift). Let {X(t)}t∈N be a sequence of random variables over
a finite state space S ⊆ R+

0 and let xmin := min{x ∈ S : x > 0}. Furthermore, let T
be the random variable that denotes the first point in time t ∈ N for which X(t) = 0.
Suppose that there exists a continuous and monotone increasing function h : R+

0 → R+

such that

E
[
X(t) −X(t+1)

∣∣X(t)
]
≥ h(X(t))

holds for all t < T . Then,

E
[
T
∣∣X(0)

]
≤ xmin

h(xmin)
+
∫ X(0)

xmin

1
h(x)

dx .

Proof. Let g : R+
0 → R+

0 be the function defined by

g(z) :=

{
z

h(xmin) if 0 ≤ z < xmin ,
xmin

h(xmin) +
∫ z
xmin

1
h(x) dx if z ≥ xmin .

The function g is strictly monotone increasing, continuous on all z ∈ R+, and right-
continuous at z = 0. Moreover, g is differentiable on R+ with

g′(z) =

{
1

h(xmin) if 0 ≤ z < xmin ,
1

h(z) if z ≥ xmin .

We now apply the mean-value theorem and show that for all x, y ∈ R+
0 with x ≥ xmin

it holds that

g(x)− g(y) ≥ x− y
h(x)

. (4.2.1)

If x = y equation (4.2.1) holds trivially.
If x < y then by the mean-value theorem there exists a ξ ∈ (x, y) such that

g′(ξ) =
g(y)− g(x)
y − x

.

If x > y then by the mean-value theorem there exists a ξ ∈ (x, y) such that

g′(ξ) =
g(x)− g(y)
x− y

.

In both cases, after manipulation of the inequalities, equation (4.2.1) follows because g′

is monotone decreasing.
Since g is strictly monotone increasing, its inverse g−1 exists. Moreover, the vari-

able T from the theorem describes also the first point in time t ∈ N for which g
(
X(t))

is zero. Thus, for all t < T it holds that

E
[
g(X(t))− g(X(t+1))

∣∣ g(X(t))
]
≥ E

[
X(t)−X(t+1)

h(X(t))

∣∣∣X(t)
]
≥ 1 .

4.2. Drift Analysis 57

The proof concludes with application of the drift theorem for upper bounds (Theo-
rem 4.4). We obtain

E
[
T
∣∣X(0)

]
= E

[
T
∣∣ g(X(0))

]
≤ g(X(0))

and the result follows by substituting g(X(0)).

4.2.2. Lower Bounds on the Expected First Hitting Time

In the previous subsection, we have seen how a positive lower bound on the drift
implies upper bounds on the expected first hitting time. In this section, we see how
lower bounds on the expected first hitting time can be derived from upper bounds on
the drift.

First, we state an analogue of Theorem 4.4 for lower bounds on first hitting times.

Theorem 4.7 (Constant drift (lower bound)). Let {X(t)}t∈N be a sequence of random
variables over a finite state space S ⊆ R+

0 . Furthermore, let T be the random variable
that denotes the first point in time t ∈ N for which X(t) = 0. Suppose that there
exists a constant C > 0 such that

E
[
X(t) −X(t+1)

∣∣ t < T
]
≤ C .

Then,

E
[
T
∣∣X(0)

]
≥ X(0)

C
.

This theorem deals with the situation where the drift is small but potentially
positive. If the drift is guaranteed to be negative, we can derive exponential lower
bounds on the first hitting time that hold with high probability. The following theorem
(Giel and Lehre (2006)) is based on the work of Hajek (1982) and He and Yao (2001).

Theorem 4.8. Let {X(t)}t∈N be a sequence of random variables over a state space S
and g : S → R+

0 a function mapping each state to a non-negative real number. Pick two
real numbers a(n) and b(n) depending on a parameter n such that 0 ≤ a(n) < b(n)
holds. Let the random variable T denote the first point in time t ≥ 0 satisfying
g(X(t)) ≤ a(n). If there are constants λ > 0 and D ≥ 1 and a polynomial p(n) > 0
such that the four conditions

1. g(X(0)) ≥ b(n),

2. b(n)− a(n) = Ω(n),

3. E
[
e−λ (g(X(t+1))−g(X(t)))

∣∣X(t)
]
≤ 1− 1

p(n) for all X(t) with a(n) < g(X(t)) < b(n)
and t ≥ 0,

4. E
[
e−λ (g(X(t+1))−b(n))

∣∣X(t)
]
≤ D for all t ≥ 0 and X(t) with g(X(t)) ≥ b(n)

hold then for all time bounds B ≥ 0

P [T ≤ B] ≤ eλ (a(n)−b(n))BDp(n)

holds.

58 Probabilistic Methods

Whenever we apply the previous result directly, we have to analyze the moment
generating function E

[
eλ (g(X(t))−g(X(t+1)))

∣∣X(t)
]
of g(X(t)) − g(X(t+1)) conditioned

on X(t). This is avoided in the following special case (Oliveto and Witt (2010)) of the
previous theorem. It is applied in the proof of Theorem 5.19 in the next chapter to
prove an exponential lower bound on the runtime of the (1+1) Evolutionary Algorithm
on the maximum matching problem.

Theorem 4.9 (Negative drift). Let {X(t)}t∈N be a sequence of random variables over
a finite state space S. Let g : S → {0, . . . , n} with n ∈ N be a potential function on S.
Moreover, let T be the random variable that denotes the first point in time t ∈ N for
which g(X(t)) = 0.

Suppose that there exists three constants δ > 0, ε > 0, r > 0 such that for all t ≥ 0

1. E
[
g(X(t))− g(X(t+1))

∣∣ g(X(t)) = k
]
≤ −ε for all 0 < k < n,

2. Pr
[
g(X(t))− g(X(t+1)) = `

∣∣ g(X(t)) = k
]
≤
(

1
1+δ

)`−r
for all 0 < k ≤ n, ` ≥ 1.

Then there exist constants α, β > 0 such that

Pr
[
T ≤ eαn

∣∣ g(X(0)) = n
]
≤ e−β n .

4.3. The Gambler’s Ruin

The gambler’s ruin, a stochastic process, is of special interest to us since it can be
used to describe the behavior of a randomized search heuristics in certain situations
(see, for example, Happ et al. (2008)).

In the classical gambler’s ruin problem (see, for example, Feller (1968)), the follow-
ing process is studied. Let x be the amount of dollars a gambler owns at the beginning
of a series of bets. With every bet the gambler wins one dollar with probability p and
looses one dollar with probability q = 1 − p. In this setting we are interested in the
probability that the gambler wins z−x dollars in total, that is, that his capital reaches
an amount of z > x dollars before it attains the amount of zero dollars.

Theorem 4.10 (Gambler’s Ruin). Let p be the probability of winning one dollar and
q = 1 − p be the probability of loosing one dollar in a single bet and let δ = q/p.
Starting with x dollars, the probability of reaching z > x dollars before attaining zero
dollars is

px =

{
x
z if p = q = 1/2 ,
δx−1
δz−1 otherwise.

The previous theorem (see, for example, Feller (1968)) on the gambler’s ruin pro-
cess is well suited to prove lower bounds on the runtime behavior of the search heuristic
Randomized Local Search which we have described in Section 1.2 of the introduction.

Consider a search space with a neighborhood structure represented by a graph.
Let X(t) be the distance between the currently best candidate solution of Randomized
Local Search and a specific search point (vertex in the graph). In each iteration,

4.3. The Gambler’s Ruin 59

Randomized Local Search takes (at most) one step in the graph. Therefore, X(t)

changes by at most one and we can reduce the analysis of this change to the analysis
of the gambler’s ruin process.

Theorem 4.11. Let n ∈ N and {X(t)}t∈N be a sequence of random variables over the
state space N0 with X(t+1) −X(t) ∈ {−1, 0, 1} for all t ≥ 0. Let a, b ∈ R be constants
with 0 ≤ a < b ≤ 1 and let the random variable T denote the first point in time t ∈ N
that satisfies X(t) ≤ an.

If there exists a constant δ > 1 such that the two conditions

(a) Pr[X(0) ≥ bn] = 1− 2−Ω(n) and

(b) Pr[X(t+1)−X(t) = 1 | X(t)] ≥ δ Pr[X(t+1)−X(t) = −1 | X(t)] holds for all t ≥ 0
and an < X(t) < bn,

hold then T ≥ δ1/3 (b−a)n with probability at least 1− 2−Ω(n).

Proof. For t ≥ 0 let X(t), 0 ≤ a < b ≤ 1, and δ > 1 be defined as above and suppose
that conditions (a) and (b) hold.

Condition (a) guarantees that if we condition on the event that X(0) ≥ bn then the
theorem still holds with probability 1− 2−Ω(n). Thus, we may assume that X(0) ≥ bn.

Let p = 1/(1 + δ) and q = δ/(1 + δ). By condition (b), we have

Pr[X(t+1) −X(t) = −1 | X(t)] ≤ p and

Pr[X(t+1) −X(t) = 1 | X(t)] ≥ q

for all t ≥ 0 and X(t) such that an < X(t) < bn.
Let t ∈ N with t < T . By Corollary 4.14, there exists a independent random

variables ∆(0), . . . ,∆(t) such that Pr[∆(t) = −1] = p and ∆(t) ≤ X(t+1) −X(t) holds.
Then, X̃(t) :=

∑t
s=0 ∆(t) dominates X(t).

Since the previous statement holds for all t ∈ N with t < T , we can apply the
Gambler’s Ruin Theorem (Theorem 4.10) to {X̃(t)}t∈N with values z = b(b − a)nc
and x = bz/2c and choose n sufficiently large such that z − x ≥ 4/9 (b − a)n. Since
δ = q/p > 1, the probability px of reaching z before attaining zero is at most δ−(z−x).

Thus, starting with X(0) ≥ bn, the probability that X(t) reaches a value of at
most an after passing the value bbnc − x is at most δ−4/9 (b−a)n. Given less then
δ1/3 (b−a)n such tries, the probability to succeed is still at most δ−1/9 (b−a)n. Hence,
T ≥ δ1/3 (b−a)n with probability 1− 2−Ω(n).

Unlike Randomized Local Search, the (1+1) Evolutionary Algorithm (which we
analyze in the next section) can perform more than one step on the graph that models
the search space in each iteration (a description of the (1+1) Evolutionary Algorithm
can be found in Section 1.2 of the introduction and a precise definition in the next
chapter). For this situation, we provide a generalized version of the previous theorem,
which is again a specialization of Theorem 4.8.

We may interpret the following result by a generalized gambler’s ruin process. In
this case, the gambler can win or loose j ≥ 1 dollars with a certain probability in
every step. Similar to the previous theorem, we derive a first hitting time result from

60 Probabilistic Methods

the ratio between the probabilities of winning and losing j dollars for any fixed choice
of j.

Theorem 4.12 (Generalized Gambler’s Ruin). Let n ∈ N and {X(t)}t∈N be a sequence
of random variables over the state space N0. For constants a, b ∈ R with 0 ≤ a < b ≤ 1
let the random variable T denote the first point in time t ∈ N that satisfies X(t) ≤ an.

If there exist constants δ > 1 and C > 0 such that the three conditions

(a) Pr[X(0) ≥ bn] = 1− 2−Ω(n),

(b) Pr[X(t+1) − X(t) = j | X(t)] ≥ δj Pr[X(t+1) − X(t) = −j | X(t)] holds for all
j ≥ 1, t ≥ 0, and an < X(t) < bn, and

(c)
∑

j≥1 δ
j Pr[X(t+1) −X(t) = −j | X(t)] ≤ C holds for all t ≥ 0 and X(t) ≥ bn

hold then T ≥ δ1/3 (b−a)n with probability at least 1− 2−Ω(n).

Proof. Suppose that conditions (a) – (c) hold, and let ∆t = X(t+1) −X(t).
We apply the Drift Theorem with the same random variables, g = id, a(n) = an,

b(n) = bn, λ = ln(δ)/2, D = C + 1, and p(n) = (1 + δ−1)/(1 − δ−1/2)2. That is,
S = N+

0 , g(X) = X, eλ = δ1/2 > 1, and p(n) is a strictly positive constant. Let
µt := E(e−λ (g(X(t+1))−g(X(t))) | X(t)), then

µt =
∑
j∈Z

δ−j/2 Pr[∆t = j | X(t)] .

We check conditions 1. – 4. of the Drift Theorem.

1. If the statement follows for X(0) ≥ bn, then it also follows if X(0) ≥ bn with
probability 1− 2−Ω(n). Hence, condition 1 is satisfied by condition (a).

2. Clearly, b(n)− a(n) = (b− a)n = Ω(n).

3. Suppose that t ≥ 0 and X(t) are such that a(n) < g(X(t)) < b(n), that is,
an < X(t) < bn. We replace Pr[∆t = j | X(t)] for all j ∈ Z such that µt
increases. This is done in three steps:

First, we suppose that Pr[∆t = 0 | X(t)] < 1 for all an < X(t) < bn. We
can do so, because if X(t) takes a value such that Pr[∆t = 0 | X(t)] = 1 then
Pr[T ≥ B] = 1 for every B ≥ 0 since the process never leaves this state.

Second, we ignore whenever X(t) = X(t+1) for some t ≥ 0 in the definition of T .
Clearly, this never increases T . Formally, we replace Pr[∆t = 0 | X(t)] by zero
and Pr[∆t = j | X(t)] by Pr[∆t = j | X(t)]/(1− Pr[∆t = 0 | X(t)]) for all j 6= 0.
Thus,

µt ≤
∑
j 6=0

δ−j/2
Pr[∆t = j | X(t)]

1− Pr[∆t = 0 | X(t)]
.

Third, since δ > 1, the right hand-side of this inequality never decreases if we
increase Pr[∆t = −j | X(t)] by some amount and decrease Pr[∆t = 0 | X(t)] by

4.4. Dominance of Stochastic Processes 61

the same amount for any j ≥ 1. Thus, condition (b) implies that µt does not
decrease if we replace Pr[∆t = −j | X(t)] by δ−j Pr[∆t = j | X(t)] for every j ≥ 1
and Pr[∆t = 0 | X(t)] by 1−

∑
j≥1(1 + δ−j) Pr[∆t = j | X(t)]. Hence,

µt ≤ 1− (1− δ−1/2)2

1− Pr[∆t = 0 | X(t)]

∑
j≥1

Pr[∆t = j | X(t)] .

Now, again invoking condition (b),

Pr[∆t = j | X(t)] ≥ Pr[∆t = j | X(t)] + Pr[∆t = −j | X(t)]
1 + δ−1

and since Pr[∆t = 0 | X(t)] = 1−
∑

j 6=0 Pr[∆t = j | X(t)] we have µt ≤ 1−1/p(n).

4. Let t ∈ N and let X(t) be such that g(X(t)) ≥ b(n), that is, X(t) ≥ bn. Then
µt increases if we reduce Pr[∆t = j] to zero for all j ≥ 1 in combination with
replacing Pr[∆t = 0] by one. Thus,

µt ≤ 1 +
∑
j≥1

δj Pr[∆t = −j | X(t)]
(c)

≤ D .

Since conditions 1. – 4. of the Drift Theorem hold,

Pr[T ≤ δ1/3 (b−a)n] ≤ (C + 1)(1− δ−1/2)2

1 + δ−1
δ−1/6 (b−a)n .

This is bounded from above by 2−Ω(n), hence the statement of this theorem follows.

The theorem on negative drift (Theorem 4.9) in the last section is more recent
and also more general than the previous theorem. We use Theorem 4.9 to prove
Theorem 5.19 in the next chapter, yet using the previous theorem would be possible,
too.

4.4. Dominance of Stochastic Processes

In the analysis of randomized search heuristics, there are situations where (potentially
dependent) random variables can be bounded independently of each other (for exam-
ple, in the proofs of Proposition 5.22 and Proposition 5.40 in the next chapter). The
following theorem tells us that in these situation we can find independent random
variables that dominate these random variables on a one-to-one basis.

Theorem 4.13. Let {X(t)}t∈N be a sequence of random variables over a finite space
S ⊆ R. Let n ∈ N, let z ∈ S, and for each x ∈ S let px be a number in [0, 1] such
that

∑
x∈S px = 1. Suppose that

Pr
[
X(t) = x

∣∣X(t−1), . . . , X(0)
]
≥ px if x > z and

Pr
[
X(t) = x

∣∣X(t−1), . . . , X(0)
]
≤ px if x < z

holds for all t ∈ {0, . . . , n} and x ∈ S. Then, there exist a sequence of random
variables {Y (t)}t∈N over S such that

62 Probabilistic Methods

1. Pr[Y (t) = x] = px holds for all x ∈ S and t ∈ {0, . . . , n};

2. Y (t) ≤ X(t) holds for all t ∈ {0, . . . , n};

3. the random variables Y (0), . . . , Y (n) are mutually independent; and

4. the distribution of Y (t) depends only on X(0), . . . , X(t) for all t ∈ {0, . . . , n}.

Proof. Let S+ := {x ∈ S : x > z} and S− := {x ∈ S : x < z}. We define the random
variables Y (t) recursively.

For t ∈ {0, . . . , n} and x ∈ S, let q(t)
x := Pr[X(t) = x | Y (t−1), . . . , Y (0)] and

δ(t)
x :=

q

(t)
x − px if x ∈ S+ ,

px − q(t)
x if x ∈ S− ,

|q(t)
z − pz| if x = z .

By the assumption, δ(t)
x is positive for all x ∈ S since the distribution of Y (s)

depends only on X(0), . . . , X(s) for all s < t. For all t ∈ {0, . . . , n}, let

P (t)
x :=

∑
x∈S+

δ(t)
x and N (t)

x :=
∑
x∈S−

δ(t)
x .

Furthermore, since
∑

x∈S q
(t)
x = 1 =

∑
x∈S px, we have |P (t)

x −N (t)
x | = δ

(t)
z .

Let t ∈ {0, . . . , n} and x, y ∈ S. In the case that P (t)
x ≥ N (t)

x , let

s(t)
x,y :=

1 if x ∈ S− ∪ {z} and y = x ,
px

q
(t)
x

if x ∈ S+ and y = x ,

δ
(t)
x δ

(t)
y

P
(t)
x q

(t)
x

if x ∈ S+ and y ∈ S− ∪ {z},

0 otherwise.

In the case that P (t)
x < N

(t)
x , let

s(t)
x,y :=

1 if x ∈ S− and y = x ,
px

q
(t)
x

if x ∈ S+ ∪ {z} and y = x ,

δ
(t)
x δ

(t)
y

N
(t)
x q

(t)
x

if x ∈ S+ ∪ {z} and y ∈ S−,

0 otherwise.

In both cases, we choose Y (t) depending on X(t) and Y (t−1), . . . , Y (0) such that

Pr[Y (t) = y | X(t) = x, Y (t−1), . . . , Y (0)] = s(t)
x,y .

Note that this distribution is well-defined. In the case that P (t)
x ≥ N (t)

x we have

∑
y∈S

s(t)
x,y =

1 if x ∈ S− ∪ {z} ,
px

q
(t)
x

+
∑

y∈S∪{z}
δ
(t)
x δ

(t)
y

P
(t)
x q

(t)
x

= 1 if x ∈ S+ .

4.4. Dominance of Stochastic Processes 63

In the case that P (t)
x < N

(t)
x we have

∑
y∈S

s(t)
x,y =

1 if x ∈ S− ,
px

q
(t)
x

+
∑

y∈S−
δ
(t)
x δ

(t)
y

N
(t)
x q

(t)
x

= 1 if x ∈ S+ ∪ {z} .

In both cases it holds that Y (t) ≤ X(t) and that the distribution of Y (t) depends
only on X(0), . . . , X(t). Furthermore, we have

∑
x∈S s

(t)
x,y q

(t)
x = py for all y ∈ S. In the

first case,

∑
x∈S

s(t)
x,y q

(t)
x =

py

q
(t)
y

q
(t)
y = py if y ∈ S+ ,

q
(t)
y +

∑
x∈S+

δ
(t)
x δ

(t)
y

P
(t)
x q

(t)
x

q
(t)
x = py if y ∈ S− ∪ {z} .

In the second case,

∑
x∈S

s(t)
x,y q

(t)
x =

py

q
(t)
y

q
(t)
y = py if y ∈ S+ ∪ {z} ,

q
(t)
y +

∑
x∈S+∪{z}

δ
(t)
x δ

(t)
y

N
(t)
x q

(t)
x

q
(t)
x = py if y ∈ S− .

Summing up, we get

Pr[Y (t) = y | Y (t−1), . . . , Y (0)] =
∑
x∈S

s(t)
x,y q

(t)
x = py .

Hence, the Y (t)’s are mutually independent with Pr[Y (t) = y] = py.

The previous theorem implies the following corollary which is used in the proof of
Theorem 4.11.

Corollary 4.14. Let {X(t)}t∈N be a sequence of random binary variables over {0, 1}.
Furthermore, let n ∈ N and p ∈ [0, 1].

Suppose

Pr
[
X(t) = 1

∣∣X(t−1), . . . , X(0)
]
≥ p .

holds for all t ∈ {0, . . . , n}. Then, there exist a sequence of random variables {Y (t)}t∈N
over {0, 1} such that

1. Pr[Y (t) = 1] = p holds for all t ∈ {0, . . . , n};

2. Y (t) ≤ X(t) holds for all t ∈ {0, . . . , n};

3. the random variables Y (0), . . . , Y (n) are mutually independent; and

4. the distribution of Y (t) depends only on X(0), . . . , X(t) for all t ∈ {0, . . . , n}.

Indication of source. The content of this chapter contains parts that have been
previously published in the Proceedings of GECCO ’08 (Happ, Johannsen, Klein, and
Neumann (2008)) and the Proceedings of GECCO ’10 (Doerr, Johannsen, and Winzen
(2010b)) and results that will appear in the Proceedings of CEC ’10 (Doerr, Johannsen,
and Winzen (2010a)).

64 Probabilistic Methods

65

5
Evolutionary Computation in
Combinatorial Optimization

This chapter has been written for the purpose of being a survey included in the book
Theory of Randomized Search Heuristics (Auger and Doerr (2010)) and is presented
as such.

Classical combinatorial optimization problems play a central role in the theoretical
study of evolutionary algorithms. On the one hand, these problems are general enough
to make meaningful comparisons among different evolutionary algorithms. On the
other hand, combinatorial optimization problems have enough structural properties to
make the theoretical analysis of such algorithms possible.

This chapter gives a concise overview over the runtime analysis of the (1+1) Evo-
lutionary Algorithm (EA) on polynomially solvable problems in combinatorial opti-
mization. We conduct these analyses for the minimum spanning tree problem in the
context of maximum weight bases of matroids; for the single-source and all-pair short-
est path problem; for the maximum matching problem; and for the problem of finding
an Euler tour.

An extensive discussion of these problems and the corresponding problem-specific
polynomial time algorithms can be found in Mehlhorn and Sanders (2009) and in
Cormen, Leiserson, Rivest, and Stein (2001), for example.

We have selected these problems for two main reasons. First, they are among
the most studied combinatorial problems in the theory of evolutionary algorithms.
Second, these problems are particularly suited to demonstrate typical techniques used
in the runtime analysis of evolutionary algorithms. For example, we will present the
concepts of drift analysis; typical runs; dominance of stochastic processes; and large
deviation bounds.

66 Evolutionary Computation in Combinatorial Optimization

5.1. The Basic Combinatorial (1+1) Evolutionary Algorithm

A type of problem that occurs in classical combinatorics is to find a specific subgraph
in a given graph (we consider all graphs to be finite, simple, and undirected unless
explicitly stated otherwise). In particular, such problems assign an objective value
to each subgraph and ask to maximize or minimize this value over all subgraphs of a
given class. Prominent examples which we discuss in this chapter are the problems of
finding a minimum spanning tree (MST), a single-source shortest path tree (SSSP),
or a maximum matching (MM) in an edge-weighted graph.

Given a graph G = (V,E), we identify a subgraph F of G with its edge set,
that is, with slight abuse of notation we let F be an element of the power set 2E

of E. A subgraph optimization problem on G then consists of the space of feasible
subgraphs F ⊆ 2E and a partial order � on F . A subgraph Fopt ∈ F is optimal
if Fopt � F for all F ∈ F . For all problems we consider in this chapter, there exists
such an optimum.

Often, we define � implicitly by an objective function f : 2E → R. Then, F � H
if and only if f(F) ≥ f(H) in case f is to be maximized and F � H if and only
if f(F) ≤ f(H) in case f is to be minimized. In both cases, all optimal solutions
have the same objective value fopt. Such an objective function may be given by edge-
weights w : E → R+. In this case, the objective value of a subgraph F ⊆ E is the
cumulative weight of its edges w(F) :=

∑
e∈F w(e). As first example of a subgraph

optimization problem, we consider the MST problem.

Problem 5.1 (The Minimum Spanning Tree Problem).
Let G = (V,E) be a connected graph and w : E → R+ a weight function on E.
The minimum spanning tree (MST) problem asks for a spanning tree F ⊆ E that
minimizes w(F) :=

∑
e∈F w(e).

For the MST problem, the space of feasible subgraphs F contains all spanning
trees of G. For two spanning trees F and H, we let F � H (that is, F is “better”
than H) if and only if w(F) ≤ w(H).

We are interested in how the basic combinatorial (1+1) EA solves subgraph opti-
mization problems like the MST problem.

Algorithm 5.2 (The Basic Combinatorial (1+1) EA).
Let E be a finite set. Furthermore, let F ⊆ 2E be a set of feasible search points, let �
be a partial order relation on F , and let x(0) ∈ F be an initial search point. The
basic combinatorial (1+1) EA corresponding to the tuple (E,F ,�, x(0)) iteratively
generates a sequence of search points {x(t)}t∈N in F by the following procedure.

For all t ∈ N with t ≥ 1, the basic combinatorial (1+1) EA generates a random
candidate search point y(t) ⊆ E such that y(t) differs from x(t−1) in each edge e ∈ E
with probability 1/|E|. In other words, Pr[e ∈ x(t−1)4y(t)] = 1/|E| independently for
all e ∈ E (where 4 is the symmetric difference between two sets). Afterwards,

x(t) :=

{
y(t) if y(t) ∈ F and y(t) � x(t−1) ,

x(t−1) otherwise.

5.2. Matroids — The Realm of the Greedy Algorithm 67

In particular, we are interested in the optimization time of the basic combinatorial
(1+1) EA. This is the random variable T that describes the first point in time t ∈ N
for which x(t) is optimal.

Clearly, the basic combinatorial (1+1) EA is not only applicable to subgraph opti-
mization problems but to all combinatorial problems that can be formulated in terms
of a space F of feasible subsets over a ground set E and a partial order relation �
that represents an optimization objective.

We conclude this section with a theorem on the optimization time of the (1+1) EA
for the MST problem.

Algorithm 5.3 ((1+1) EAMST). The basic combinatorial (1+1) EA for the minimum
spanning tree problem, the (1+1) EAMST, is an instance of Algorithm 5.2.

Let G = (V,E) be a graph and w : E → R+ a weight function on E. Then, the
space of feasible search points F consists of all spanning trees of G and F � H holds
for F,H ∈ F if w(F) ≤ w(H) holds.

The following result follows from the analysis in Neumann and Wegener (2007). We
prove it in the more general setting of maximal weight bases in the following sections
(the upper bound in Theorem 5.10 and the lower bound in Theorem 5.14). In these
results we also specify leading constants of the given bounds and drop the restriction
to integral edge weights.

Theorem 5.4 (Neumann and Wegener (2007)). Let G = (V,E) be a connected
graph and let w : E → N+ be a weight function on E with maximum weight wmax.

The expected optimization time of the (1+1) EAMST on (G,w) starting with an
arbitrary initial search point x(0) is O

(
|E|2 (ln |V |+ lnwmax)

)
Furthermore, for every n ∈ N there exists a connected graph G = (V,E) on n

vertices and a weight function w : E → N+ such that expected optimization time
of the (1+1) EAMST (Algorithm 5.3) on (G,w) with the initial search point chosen
uniformly at random from all spanning trees on G is Θ

(
|E|2 ln |V |

)
.

Neumann and Wegener (2005) also analyzed multi-objective evolutionary algo-
rithms for the MST problem. They showed for two such algorithms a superior expected
optimization time of O

(
|V | |E| (ln |V |+ lnwmax)

)
.

5.2. Matroids — The Realm of the Greedy Algorithm

As a consequence of Theorem 5.4 from the previous section, the (1+1) EAMST solves
the MST problem in expected time O(|E|2 ln |V |) for polynomially bounded inte-
ger weights. In comparison, the two non-evolutionary greedy algorithms by Kruskal
(1956) and by Jarník and Prim (Jarník (1930); Prim (1957)) solve this problem in
times O(|E| ln |V |) and O(|E|+ |V | ln |V |), respectively.

As hill-climber strategies, greedy algorithms are one of the most basic tools in
black-box optimization. One of the most general problems known to be tractable for
greedy algorithms is the problem of finding a maximum weight basis of a matroid.

68 Evolutionary Computation in Combinatorial Optimization

Definition 5.5 (Matroid). Let E be a finite set and F ⊆ 2E be a set of subsets of E
which are called independent sets of M . Then the pair M = (E,F) is called an
independence system if the two conditions

(i) ∅ ∈ F and

(ii) ∀F ∈ F , H ⊆ F : H ∈ F

hold and is called a matroid if in addition the condition

(iii) ∀F,H ∈ F , |H| < |F | : ∃ e ∈ F \H such that H ∪ {e} ∈ F

holds. An inclusion maximal set B ∈ F of an independence system is called a basis
of M .

Condition (iii) in the previous definition implies that all bases of a matroid M
have the same size r(M), the rank of M . Another consequence of condition (iii) is the
following exchange property (confer Reichel and Skutella (2007)).

Lemma 5.6. LetM = (E,F) be a matroid, F an independent set ofM , and B a basis
of M . Furthermore, let HF := F \B and HB := B \ F . Then there exist an injective
map ϕ : HF → HB such that

(i) F ∪ {ϕ(f)} \ {f} is independent for all f ∈ HF and

(ii) F ∪ {b} is independent for all b ∈ HB \ ϕ(HF).

Proof. If F is not a basis then by condition (iii) of Definition 5.5 we can successively
add elements fromHB to F until F is a basis. These elements then satisfy condition (ii)
of the statement. Thus, we may suppose F is a basis. In this case |F | = |B| and we
only have to verify condition (i) of the statement.

Consider the bipartite graph on the two partitionsHF andHB such that for f ∈ HF

and b ∈ HB the pair (f, b) is an edge if F ∪ {b} \ {f} is independent. Suppose for
all H ⊆ HF the inequality |N(H)| ≥ |H| holds where N(H) is the neighborhood of H
in B. Then by the Theorem of Hall (see, e. g., Diestel (2005)) there exists a bipartite
matching that covers HF which defines the function ϕ satisfying condition (i) of the
statement.

For proof by contradiction, let us assume that there exists a subset H of HB such
that |N(H)| < |H|. Then, by condition (iii) of Definition 5.5, there exists a b ∈ H such
that (F \HF)∪N(H)∪{b} is independent. Again by (iii), we find f1, . . . , f|FH |−|N(H)|−1

in FH \ N(H) such that the set F ′ = (F \ FH) ∪ N(H) ∪ {b, f1, . . . , f|FH |−|N(H)|−1}
remains independent. Since |F ′| = |F |, there exists an element f ∈ FH \ N(H) that
is not in F ′. But then (f, h) is an edge — a contradiction to f /∈ N(H).

For a graph G = (V,E), let F be the set of edge sets F ⊆ E such that the
subgraph (V, F) is acyclic. Then MG = (E,F) is a matroid, called the graph matroid
of G. In MG, the spanning trees of G correspond to the bases of MG which have all
size n − 1. Thus, the maximum1 spanning tree problem is equivalent to the problem
of finding a maximum weight basis of the corresponding graph matroid.

1The minimum spanning tree and the maximum spanning tree problems can be easily transformed
into each other by replacing w(e) by wmax + 1− w(e) for all edges e ∈ E.

5.3. Multiplicative Drift Analysis 69

Problem 5.7 (The Maximum Weight Basis Problem).
Let M = (E,F) be an independence system and let w : E → R+ be a weight func-
tion on E. The maximum weight basis problem asks for a set F ∈ F that maxi-
mizes w(F) :=

∑
e∈F w(e). Note that such a set is necessarily a basis.

Given an independence systemM = (E,F), the greedy algorithm for the maximum
weight basis problem starts with the empty set. It then iteratively adds the element of
largest weight that does not violate the independence of the current set. This greedy
algorithm finds a maximum weight basis of M for every weight function w : E → R+

if and only if M is a matroid (see, e. g., Cormen et al. (2001)).
For a matroid M = (E,F) with known weights, the greedy algorithm can be

implemented by first sorting the elements in E and then checking independence in
decreasing order. The computation time of this procedure is O(|E| ln |E| + f(|E|))
where f(k) is the time needed to check k sets for independence.

Unlike the greedy algorithm, the basic combinatorial (1+1) EA solves the maxi-
mum weight basis problem also for non-matroidal independence systems. Since it is
more generic, we do not expect it to outperform the greedy algorithm if the problem in-
stance is a matroid. Still, in the next section we show an upper bound of O(|E|3 ln |E|)
on the expected optimization time of the basic combinatorial (1+1) EA which reduces
to O(|E|2 ln |E|) for polynomially bounded integer weights.

5.3. Multiplicative Drift Analysis

We next show an upper bound on the optimization time of the (1+1) EA on the
maximum weight basis problem.

Algorithm 5.8 ((1+1) EAMWB). The basic combinatorial (1+1) EA for the maximum
weight basis problem, the (1+1) EAMWB, is an instance of Algorithm 5.2.

Let M = (E,F) be a matroid and w : E → R+ a weight function on E. Then, F
is the space of feasible search points and F � H holds for F,H ∈ F if w(F) ≥ w(H)
holds.

We study the average weight increase in each iteration of this algorithm, confer Re-
ichel and Skutella (2007).

Proposition 5.9. Let M = (E,F) be a matroid and let w : E → R+ be a weight
function on E. Let wopt be the weight of a maximum weight basis of M . Further-
more, let {x(t)}t∈N be the sequence of search points generated by the (1+1) EAMWB
on (M,w). Then,

E
[
w(x(t+1))− w(x(t))

∣∣w(x(t))
]
≥ wopt − w(x(t))

e |E|2
,

for all t ∈ N where e = 2.718 . . . is the Euler constant.

Proof. Let t ∈ N and m := |E|. Let B be a maximum weight basis (w(B) = wopt)
and let F := x(t) with t ∈ N. Furthermore, let ϕ : HF → HB with HF := B \ F
and HB := F \B be the injective function that is provided by Lemma 5.6.

70 Evolutionary Computation in Combinatorial Optimization

For all f ∈ HF we define the indicator variable If by

If :=

{
1 if x(t+1) = x(t) ∪ {ϕ(f)} \ {f},
0 otherwise,

and for all b ∈ HB \ ϕ(HF) the indicator variable Ib by

Ib :=

{
1 if x(t+1) = x(t) ∪ {b},
0 otherwise.

Since the variables If with f ∈ HF and Ib with b ∈ HB \ ϕ(HF) indicate disjoint
events, ∑

f∈HF

If +
∑

b∈HB\ϕ(HF)

Ib ≤ 1

holds. Moreover, according to the definition of the (1+1) EA, it holds that w(x(t+1))
is at least as large as w(x(t)). Thus,

w(x(t+1))− w(x(t)) ≥
∑
f∈HF

(
w(b)− w(f)

)
If +

∑
b∈HB\ϕ(HF)

w(b) Ib .

With this inequality at hand, we bound the expected weight increase. For all f ∈ HF

and all b ∈ HB \ ϕ(HF) let pf := Pr[If = 1 | w(x(t))] and pb := Pr[Ib = 1 | w(x(t))].
Then,

E
[
w(x(t+1))− w(x(t))

∣∣w(x(t))
]
≥
∑
f∈HF

(
w(b)− w(f)

)
pf +

∑
b∈HB\ϕ(HF)

w(b) pb .

To conclude the proof of this proposition, it suffices to show that pf and pb are at
least p := e−1m−2 for all f ∈ HF with w(f) ≤ w(ϕ(f)) and for all b ∈ HB \ ϕ(HF).

Let f be an element of HF such that w(f) ≤ w(ϕ(f)). Then pf is the probability
of x(t+1) = x(t)∪{ϕ(f)}\{f}. That is, pf is the probability of x(t)4y(t+1) = {f, ϕ(f)}
where y(t+1) is the respective candidate search point of the (1+1) EA. Thus,

pf =
(

1− 1
m

)m−2 1
m2
≥ 1

em2
.

Similarly, if b ∈ HB \ ϕ(HF) then pb is the probability of x(t)4y(t+1) = {b}. Thus

pb =
(

1− 1
m

)m−1 1
m
≥ 1

em
.

The previous proposition shows that on average the distance in weights towards an
optimal search point decreases at least proportional to its current value in each itera-
tion. In such a situation, the expected optimization time can be bounded from above
using the theorem on multiplicative drift (Theorem 4.5) from the previous chapter.

Let M = (E,F) be a matroid and let w : E → R+ be a weight function on E.
Then, the previous theorem allows us to bound the expected optimization time of the
(1+1) EAMWB on a weighted matroid (M,w). Let wopt be the weight of a maximum
weight basis and let g(F) := wopt −w(F) for all F ∈ F be a potential function on F .
Then the following statement directly follows from Proposition 5.9.

5.4. Lower Bounds and Typical Runs 71

Theorem 5.10 (confer Reichel and Skutella (2007)). Let M = (E,F) be a matroid
and let w : E → R+ be a weight function on E. Let wopt be the weight of a max-
imum weight basis and w2nd-opt be the maximum weight over all bases that do not
have weight wopt. Furthermore, let T be the optimization time of the (1+1) EAMWB
(Algorithm 5.8) on (M,w). Then,

E[T | x(0)] ≤ e |E|2
(

1 + ln
wopt − w(x(0))
wopt − w2nd-opt

)
.

As a consequence of this theorem, the expected optimization time of (1+1) EAMWB
on (M,w) is O(|E|2 ln |E|) for integer weights that polynomially bounded in |E|.
For non-integer weights a weight-independent upper bound can be inferred from the
following theorem.

Theorem 5.11 (Reichel and Skutella (2009)). Let E be a finite index set, F ⊆ 2E a
search space, and w : E → N+ a weight function on E. Then there exists a bounded
weight function w̃ : E → {0, . . . , |E||E|/2} on E such that the two corresponding se-
quences of search points {x(t)}t∈N and {x̃(t)}t∈N generated by the basic combinatorial
(1+1) EA (Algorithm 5.2) are the same for all choices of x(0).

This theorem also holds for arbitrary weight functions w : E → R+. Since the
number of weights is finite, we can scale all weights by a very large constant until
rounding to the next integer does not change the behavior of the (1+1) EA anymore.
Then we apply the previous theorem. This implies that the expected optimization
time of the (1+1) EAMWB on (M,w) with an arbitrary weight function w : E → R+

is O(|E|3 ln |E|).

Theorem 5.12 (confer Reichel and Skutella (2009)). Let M = (E,F) be a matroid
and let w : E → R+ be a weight function on E. Furthermore, let T be the optimization
time of the (1+1) EAMWB (Algorithm 5.8) on (M,w). Then for |E| ≥ 2, independent
of x(0) ∈ F ,

E[T] ≤ e
2 |E|

3
(
1 + ln |E|

)
.

5.4. Lower Bounds and Typical Runs

In the previous section we have proven upper bounds on the optimization time of the
maximum weight basis problem. The following example will serve as instance for a
lower bound. It can be perceived as a graph matroid corresponding to the graph with
multiple edges depicted in Figure 5.1.

Definition 5.13. For all m ∈ N with m ≥ 3, let the matroid Mm = (E,F) and the
weight function wm : E → {1, 2,m,m+ 3} be defined as follows.

Let k := bm1/3c and E := {e1, . . . , ek, f1, . . . , fk, g, h1, . . . , hm−2k−1}. A subset F
of E is independent if for all i ∈ {1, . . . , k} it does not contain both, ei and fi, and at

72 Evolutionary Computation in Combinatorial Optimization

f1 f2 fk

eke2e1

m + 3

m

m + 3m + 3

m

hm−2k−1

2

m

g

h1

1

1

Figure 5.1. The above (multi-)graph is a chain of k pairs of parallel edges termi-
nated by a multi-edge consisting of m− 2k parallel edges. Each pair has an edge
of weight m+ 3 and one of weight m. Of the m− 2k parallel edges, one edge has
weight 2 and the others have weight 1. The independent sets of the corresponding
graph matroid are the cycle-free subgraphs of this graph, that is, an independent
set contains at most one edge of each pair and at most one of the m− 2k parallel
edges. For k := b 3

√
mc, the expected time for the (1+1) EA to find the optimal

search point for the minimum weight basis problem (which constitutes of the row
of upper edges) starting with a random feasible set of edges is Ω(m2 ln m).

most one of the elements g, h1, . . . , hm−2k−1. The weight function wm is defined by

wm(e) :=

m+ 3 if e = ei with i ∈ {1, . . . , k} ,
m if e = fi with i ∈ {1, . . . , k} ,
2 if e = g ,

1 if e = hi with i ∈ {1, . . . ,m− 2k − 1} .

For Mm with wm, we consider a typical run. This means, we show that the
sequence {x(t)}t∈N generated by the (1+1) EA has certain properties with a probability
that is bounded from below by a positive constant. These properties then imply an
optimum is not found within Ω(|E|2 ln |E|) iterations.

Theorem 5.14 (confer Neumann and Wegener (2007)). Let m ∈ N with m ≥ 3.
Furthermore, let Mm be the matroid and wm : E → R+ be the weight function from
Definition 5.13. Then the expected optimization time of the (1+1) EAMWB (Algo-
rithm 5.8) on (Mm, wm) with x(0) chosen uniformly at random from F is Ω(|E|2 ln |E|).

Proof. Since we prove an asymptotic result, we may suppose that in the following m is
sufficiently large. Let x(0) be chosen uniformly at random from F . Let {x(t)}t∈N be the
sequence of search points generated by the (1+1) EAMWB on (Mm, wm). Furthermore,
let T be the random variable that denotes the earliest point in time t ∈ N for which x(t)

is the maximum weight basis {e1, . . . , ek, g} of Mm.
Let I := {1, . . . , k}. For i ∈ I and t ∈ N we say that at time t position i is free if

neither ei nor fi is in x(t) and occupied otherwise. We call it critical if fi ∈ x(s) for
all s ≤ t. Clearly, a critical position is never free and T > t if there exist any critical
positions at time t.

5.4. Lower Bounds and Typical Runs 73

For the remainder of the proof, we neglect whether or not any one of the ele-
ments g, h1, . . . , hm−2k−1 is in x(t). We can do this, since these events have no influence
on the number of occupied and critical positions.

Since x(0) is chosen uniformly at random, in expectation k/3 positions are critical
at time t0 := 0. Consider the event that at time t0 there are at least k/4 positions that
are critical. Markov’s inequality (Theorem 4.1) guarantee this event with a probability
bounded from below by a positive constant.

First, we show that there are no free positions at time t1 := b2 em lnmc with a
probability that tends to one as m tends to infinity. .

Let i ∈ I be a position that is free at time t. Let p be the probability that i is
occupied at time t + 1. Then p is at least the probability that x(t)4y(t+1) = {ei}.
Thus,

p ≥
(

1− 1
m

)m−1 1
m
≥ 1

em
.

Now, let the potential function g : F → N measure the number of free positions
in an independent set. Since there are g(x(t)) free positions at time t, the expected
decrease in g between t and t+1 is at least g(x(t))/em. By Theorem 4.5, the expected
time until no free positions remain is at most em lnm. Thus, by the Chernoff bounds
(Theorem 4.2), the probability that there are no free positions after t1 iterations tends
to one as m tends to infinity.

Next, we show that at time t1 all positions that were critical at time t0 are still
critical with a probability that tends to one as m tends to infinity.

Let i ∈ I be critical at time t. The only way for i to become non-critical at
time t+1 is if x(t)4y(t+1) contains fi and at least one ej with j ∈ I or if it contains fj
with j ∈ I \ {i}. This happens with probability at most 2 km−2. Thus, by the union
bound, the probability that any position becomes non-critical at any point in time
prior to t1 is at most 4 e k2m−1 lnm which tends to zero as m tends to infinity.

Finally, we show that with a probability bounded from below by a positive constant,
at time t2 := b1

3m
2 lnmc there still exists a critical position.

We have already seen that with probabilities that tend to one as m tends to
infinity, the events (i) that there are at least k/4 critical positions at time t1 and (ii)
that there are no free positions at time t1 happen. Thus, by the union bound, (i)
and (ii) occur simultaneously with a probability that is bounded away from zero by a
positive constant if m is sufficiently large.

Suppose at time t1 there exists at least k/4 critical and no free positions. Then,
between the times t1 and t2 a critical position i ∈ I can only become non-critical if
the event “x(t)4y(t+1) ⊇ {fi, ei}” occurs. This happens with probability at most m−2.
Therefore, with probability at least(

1− 1
m2

) 1
3
m2 lnm

∼ 1
m1/3

position i remains critical until time t2.
Since the events “x(t)4y(t+1) ⊇ {fi, ei}” and “x(s)4y(s+1) ⊇ {fj , ej}” are mutually

independent for i 6= j and all combinations of s and t, the probability that there exist
no critical positions at time t2 is at most (1−m−1/3)k ∼ 1/e. Thus, with a probability

74 Evolutionary Computation in Combinatorial Optimization

m21
w(2)w(1) w(m)

Figure 5.2. Maximizing a linear pseudo-Boolean function f(x) =
∑m

i=1w(i)xi
with strictly positive weight w(1), . . . , w(m) is equivalent to finding a max-
imum spanning tree on the path of length m with edges 1, . . . ,m and
weights w(1), . . . , w(m). For this problem, the (1+1) EA finds an optimal search
point in expected time Θ(m lnm), independent of the weights w(1), . . . , w(m),
see Droste et al. (2002).

bounded from below by a positive constant, the optimization time is at least t2 which
concludes the proof.

With the previous theorem, we have seen that for matroids with an integer weight
function polynomially bounded in |E| the O(|E|2 ln |E|) bound on the expected opti-
mization time of the (1+1) EAMWB from the previous section is tight. However, for
unbounded and real weights we only know the weight dependent bound from Theo-
rem 5.10 and the general bound of O(|E|3 ln |E|) from Corollary 5.12.

It is a central open problem to close the gap between these two bounds. For the
special case of linear pseudo-Boolean functions this question can be answered positively
(see Figure 5.2). This leads us to conjecture that there exists a weight-independent
upper bound ofO(|E|2 ln |E|) on the expected optimization time of the (1+1) EAMWB.

5.5. A Hard Problem for the (1+1) Evolutionary Algorithm

In the previous sections we have seen that the basic combinatorial (1+1) EA solves
the MST and the SSSP problems in expected polynomial time if the weights are
integral and polynomially bounded. A third classical problem which is known to be
polynomially solvable is the maximum matching problem. Micali and Vazirani (1980)
showed that this problem can be solved in time O(|V |1/2 |E|).

Problem 5.15 (The Maximum Matching Problem).
Let G = (V,E) be a (multi-)graph. The maximum matching problem asks for a
maximum set of vertex disjoint edges.

The basic combinatorial (1+1) EA for this problem is defined as follows.

Algorithm 5.16 ((1+1) EAMM). The basic combinatorial (1+1) EA for the maximum
matching problem, the (1+1) EAMM, is an instance of Algorithm 5.2. Let G = (V,E)
be a graph. Then, the space of feasible search points F consists of all matchings on G
and F � H holds for F,H ∈ F if |F | ≥ |H| holds.

This algorithm was studied extensively by Giel and Wegener (2003, 2006) and
later by Oliveto, He, and Yao (2008) in the context of processes with negative drift.
For example, Giel and Wegener (2003) showed that the expected optimization time
(1+1) EAMM on paths is polynomially bounded in |E|.

5.5. A Hard Problem for the (1+1) Evolutionary Algorithm 75

e2
1

e1
1

e9
1

w2w1u1 u2

d2 dkd1 dk−1

wkukwk−1uk−1

e9
k−1

e2
k−1

e1
k−1

Figure 5.3. The multi-edged path Pk on 2k vertices and 10k− 9 edges for k ≥ 3.
Every odd edge di is a single edge and every even edge eji is one of nine parallel
edges. In an iteration of the (1+1) EA for the maximum matching problem it
is roughly nine times more likely to replace a specific odd edge by an arbitrary
neighboring even edge than vice versa. Because of this, augmenting paths on even
edges have a strong tendency to grow.

Theorem 5.17 (Giel and Wegener (2003)). Let m ∈ N. The expected optimization
time of the (1+1) EAMM (Algorithm 5.16) on a path of m edges is O(m4) independent
of the initial search point x(0).

Moreover, Giel and Wegener (2003) have shown that the (1+1) EAMM is a PRAS
for the maximum matching problem. However, they also studied an instance of a bipar-
tite graph due to Sasaki and Hajek (1988) for which the (1+1) EAMM has exponential
expected optimization time.

In this section we show such an exponential lower bound on the expected opti-
mization time for the multi-graph2 in Figure 5.3.

Definition 5.18. Let k ∈ N≥3 and let Pk be the multi-edged path on the set of ver-
tices {u1, w1, . . . , uk, wk} such that there is a single edge di between ui and wi for
all 1 ≤ i ≤ k and nine parallel edges e1

i , . . . , e
9
i between wi and ui+1 for all 1 ≤ i ≤ k−1.

Then, Pk has m = 10k − 9 edges in total. For simplicity, we call an edge di odd and
an edge eji even.

The choice of this graph over the original graph in Giel andWegener (2003) strongly
simplifies the analysis while preserving the main proof ideas. Furthermore, it exposes a
difficulty that exists for the (1+1) EAMM but not for problem-specific algorithms: We
can adapt any problem-specific algorithm for simple graphs to an equally efficient algo-
rithm for multi-graphs. The algorithm simply performs an initialization step where all
multi-edges are replaced by single edges. Then, a maximum matching on this modified
graph is also a maximum matching on the original multi-graph. In comparison, the
(1+1) EAMM solves the maximum matching problem on paths in expected polynomial
time. But, if we replace every second edge of a path of odd length by a multi-edge with
nine parallel edges, then the expected optimization time of the (1+1) EAMM becomes
exponential.

2A multi-graph is a graph with parallel edges.

76 Evolutionary Computation in Combinatorial Optimization

Theorem 5.19 (confer Giel and Wegener (2003)). Let k ∈ N≥3 and let Pk be the
multi-edged path on m = 10k−9 edges defined in Definition 5.18. Then, the expected
optimization time of the (1+1) EAMM (Algorithm 5.16) on Pk starting with a non-
optimal initial search point is 2Ω(m).

Before proving this theorem, we make a couple of preliminary observations. In
particular, we first show three propositions that then lead to the proof of the previous
theorem.

Let P := Pk with k ≥ 3 and m = 10k − 9. The set of odd edges of P forms the
only perfect matching M∗ on P . Thus, M∗ is the unique maximum matching on P .
It is of size k.

Let {x(t)}t∈N be the sequence of search points generated by the (1+1) EAMM for
the maximum matching problem on P initialized with an arbitrary matching x(0) other
than M∗. Furthermore, let T ∗ be the random variable that denotes the first point in
time t ∈ N for which x(t) = M∗, that is the optimization time of the (1+1) EAMM.

We call a matching almost perfect if it contains k − 1 edges. For example, let M◦

be the almost perfect matching M∗4{d1, e
1
1, d2}. We first show that we only loose

a factor of Θ(1/m3) on any lower bound for the expected optimization time of the
(1+1) EAMM if we condition on the event that x(0) = M◦.

Proposition 5.20.

E[T ∗ | x(0) 6= M∗] ≥ 1
2m3

E[T ∗ | x(0) = M◦] .

Proof. Let T be the random variable that denotes the first point in time t ∈ N for
which x(t) is either M◦ or M∗. We show that

Pr[x(T) = M◦] ≥ 1
2m3

. (5.5.1)

This is sufficient as the statement then follows from the law of total expectation and
from

E[T ∗ | x(T) = M◦] = E[T | x(T) = M◦] + E[T ∗ | x(0) = M◦] .

Let t ∈ N with x(t) 6= M∗. Then, |x(t)| ≤ k − 1 and y(t+1) is accepted by the
(1+1) EAMM if y(t+1) = M◦. Since x(t)4M◦ and x(t)4M∗ differ exactly by the three
edges d1, e

1
1, d2, it holds that

Pr[x(t+1) = M◦] ≥ 1
m3

Pr[x(t+1) = M∗]

and inequality (5.5.1) follows from Pr[x(T) = M◦] + Pr[x(T) = M∗] = 1.

Justified by this result, from now on we condition on the event that x(0) = M◦.
Since M◦ is an almost perfect matching, for t < T ∗ all matchings x(t) are also almost
perfect.

Every almost perfect matching M defines a unique augmenting sub-path S of P .
More precisely, there exists two indices a, b ∈ {1, . . . , k} with a ≤ b such that the

5.5. A Hard Problem for the (1+1) Evolutionary Algorithm 77

path S := (ua, da, wa, ea, . . . , eb−1, ub, db, wb) consist of all odd edges da, . . . , db that
are unmatched and all even edges ea, . . . , eb−1 that are matched. Let `(S) := b− a be
the number of even edges in S. Thus, S is of odd length 2 `(s)+1, since S always starts
and ends with an odd edge (where ea = eb is possible). For example, the alternating
path in M◦ is S+ := (u1, d1, w1, e

1
1, u2, d2, w2) with `(S+) = 1.

With slight abuse of notation, we associate with the matching M∗ the empty
augmenting path S∗ := (v0) such that `(S∗) = 0. Note that in general an augmenting
path S with `(S) = 0 can also correspond to an almost perfect matching and contain
a single unmatched odd edge. We are not interested in this distinction. Instead, we
let T0 be the random variable that denotes the first point in time t such that `(S(t)) = 0
and use it as a suitable lower bound of T ∗.

Proposition 5.21.

E[T ∗ | x(0) = M◦] ≥ E[T0 | `(S(0)) = 1] .

The remainder of this section is devoted to proving a lower bound on E[T0]. On the
one hand, we start with `(S(0)) = 1 and it is quite likely that `(S(t)) reaches zero for
early points in time. On the other hand, we will see that the drift of `(S(t)) is positive
and thus `(S(t) has the tendency to increase up to k − 1. The following proposition
shows that the latter event happens with a probability that is bounded away from zero
by a constant.

Proposition 5.22. There exists a constant δ > 0 such that

E[T0 | `(S(0)) = 1] ≥ δ E[T0 | `(S(0)) = k − 1] .

Proof. Let `(S(0)) = 1 and let T be the random variable that denotes the first point
in time t ∈ N for which `(S(t)) is either 0 or k − 1. Similar to Proposition 5.20, we
show that there exists a constant δ > 0 such that

Pr[`(S(T)) = k] ≥ δ .

Let t < T and let S(t) = (va(t), . . . , wb(t)) be the augmenting path corresponding
to the almost perfect matching x(t).

Since t < T , we have a(t) > 1 or b(t) < k, say b(t) < k without loss of generality.
Then, adding any of the edges e1

b(t), . . . , e
9
b(t) to x

(t) and removing db(t)+1 increases the
length of S(t) by two (and thus `(S(t)) by one). Independent of S(t), . . . , S(0), this
increase happens with probability at least 9 (1− 1/m)m−2m−2. Thus,

Pr
[
`(S(t+1))− `(S(t)) = 1

∣∣S(t), . . . , S(0)
]
≥ 3
m2

. (5.5.2)

On the other hand, shortening S(t) by two is not equally likely. We either have to
add da(t) to x(t) and remove ea(t) in return or have to add db(t) to x(t) and remove eb(t)−1.
Thus, again independent of S(t), . . . , S(0),

Pr
[
`(S(t+1))− `(S(t)) = −1

∣∣S(t), . . . , S(0)
]
≤ 2
m2

. (5.5.3)

78 Evolutionary Computation in Combinatorial Optimization

More generally, to shorten S(t) by at least 2j edges, we have to change x(t) by
a total of j edge pairs split up between the two ends of the augmenting path given
by x(t). We may change x(t) further but the above change is necessary to reduce `(S(t))
by 2j edges. There are j + 1 ways to split up the j edge pairs between the two ends
of the augmenting path given by x(t). Hence, independent of S(t), . . . , S(0),

Pr
[
`(S(t+1))− `(S(t)) ≤ −j

∣∣S(t), . . . , S(0)
]
≤ j + 1

m2j
. (5.5.4)

Consider the sequence {X(s)}s∈N with X(s) ∈ Z ∪ {−∞} which is a pessimistic
view on the sequence {`(S(t))}t∈N in the sense that {X(s)}s∈N is at most as likely
as {`(S(t))}t∈N to reach k before 0.

Informally speaking, we construct {X(s)}s∈N from {`(S(t))}t∈N by (i) ignoring time
steps where `(S(t)) does not change at all; (ii) increasing X(s) by one whenever `(S(t))
increases by at least one; (iii) decreasing X(s) by one whenever `(S(t)) decreases by
exactly one; and (iv) setting X(s) to −∞ whenever `(S(t)) decreases by at least two.

Formally, we define X(s) recursively. Let t(0) := 0 and x(0) := 1. For s ≥ 1, let t(s)
be the s-th point in time such that `(St(s)) 6= `(St(s)−1) and sT the point in time such
that t(sT) = T . Then, for s ∈ N with s < sT let

X(s+1) :=

X(s) + 1 if `(St(s)) ≥ `(St(s)−1) + 1 ,
X(s) − 1 if `(St(s)) = `(St(s)−1)− 1 ,
−∞ if `(St(s)) ≤ `(St(s)−1)− 2 .

We can infer from (5.5.2), (5.5.3), and (5.5.4) by increasing the bound in (5.5.4)
to 5/m4 that for all s < sT ,

X(s+1) :=

X(s) + 1 with probability at least 3

5(1− 1
m2+1

) ,
X(s) − 1 with probability at most 2

5(1− 1
m2+1

) ,
−∞ with probability at most 1

m2+1
.

For s ≥ sT , we let the random variables {X(s)}s≥sT+1 be mutually independent
such that

X(s+1) :=

X(s) + 1 with probability 3

5(1− 1
m2+1

) ,
X(s) − 1 with probability 2

5(1− 1
m2+1

) ,
−∞ with probability 1

m2+1
.

Let R be the random variable that denotes the first point in time s ∈ N such
that X(s) ≤ 0 or X(s) = k. By definition of X(s), it holds that `(St(s)) ≥ X(s) for
all s ≤ sT . Thus,

Pr
[
`(S(T)) = k

]
≥ Pr

[
X(R) = k

]
.

In the remainder of this proof we show that Pr
[
X(R) = k

]
≥ δ for some constant δ > 0.

By Markov’s inequality (Theorem 4.1), it holds that X(s) > −∞ for all s ≤ m2+1
2

with probability at least 1/2. Suppose that indeed X(s) > −∞ for all s ≤ m2+1
2 . Then,

5.5. A Hard Problem for the (1+1) Evolutionary Algorithm 79

until time m2+1
2 , the X(s)’s perform a random walk on Z such that X(s) increases with

probability at least 3/5 and decreases with probability at most 2/5.
For i ∈ {1, . . . , k − 1}, let bi :=

(
i
2

)
and let Ai be the event that X(bi) ≥ i

and X(s) > 0 for all s ≤ bi.
Let i ∈ {1, . . . , k − 1}. We bound the probability of Ai+1 conditioned on Ai.

Since bi+1 − bi =
(
i+1

2

)
−
(
i
2

)
= i, the event X(bi+1) ≥ i+ 1 conditioned on Ai implies

that X(bi+1), . . . , X(bi+1) are all positive.
Let µ := E[X(bi+1) | Ai] be the expected value of X(bi+1) conditioned on X(bi) ≥ i

and X(s) > 0 for all s ≤ bi. By the linearity of expectation,

µ ≥ i− 2
5 i+ 3

5 i = 6
5 i .

By Theorem 4.13, we can apply the Chernoff bounds (Theorem 4.2) to probability
that X(bi+1) ≤ i. Therefore,

Pr
[
X(bi+1) ≤ i

∣∣Ai] = Pr
[
X(bi+1) ≤

(
1− 1

6

)
µ
∣∣Ai] ≤ e−i/60 .

Thus, Pr[Ai+1 | Ai] ≥ 1− e−i/60 and

Pr[Ak] = Pr[A0] ·
k−1∏
i=1

Pr[Ai+1 | Ai] ≥
k−1∏
i=1

(
1− e−i/60

)
.

Let L ∈ N be minimal such that e−L/60 ≤ 1/2. Then, since 1 − a ≥ e−2a holds for
all a < 1/2,

Pr[Ak] ≥
(
1− e−1/60

)L ·∏
i∈N

e−2e−
i/60

=
(
1− e−1/60

)L · e−2
P
i∈N e−

i/60

=
(
1− e−1/60

)L · e− 2

1−e−1/60 .

Thus, Pr[Ak] > 2δ where δ > 0 is a constant. Since bk =
(
k
2

)
≤ m2+1

2 , this implies
that Pr[X(R) = k] > δ which concludes the proof.

Using the previous two propositions, we finally show Theorem 5.19.

Proof of Theorem 5.19. We want to give a lower bound on E[T ∗], the expected
optimization time of the (1+1) EAMM. By Proposition 5.20, Proposition 5.21, and
Proposition 5.22, we know that there exists a constant δ > 0 such that

E[T ∗ | x(0) 6= M∗] ≥ 1
2m3

E[T ∗ | x(0) = M◦]

≥ 1
2m3

E[T0 | `(S(0)) = 1]

≥ δ

2m3
E[T0 | `(S(0)) = k − 1] .

80 Evolutionary Computation in Combinatorial Optimization

We have seen in the proof of Proposition 5.22, that for all 1 ≤ i ≤ k − 2,

E
[
`(S(t+1))− `(S(t)) | `(S(t)) = i

]
≥ 3
m2
− 2
m2
− k − 1

m4
≥ 1

2m2
,

Furthermore, by (5.5.4) we have for all 1 ≤ i ≤ k − 1 and j ≥ 1,

Pr
[
`(S(t+1))− `(S(t)) = −j | `(S(t)) = i

]
≤ j + 1

m2j
≤ 1

3j
.

We apply Theorem 4.9 with n = k − 1, ε := 1/(2m2), δ := 2 and r := 0. Then,
there exists two constants α, β > 0 such that

Pr[T0 ≤ eα(k−1) | `(S(0)) = k − 1] ≤ e−β(k−1)

and Theorem 5.19 follows by the law of total expectation. 2

5.6. Shortest Path Problems

Another type of problems for which evolutionary algorithms have been extensively
studied are shortest path problems. In particular, much attention has been paid to
the single-source shortest path (SSSP) problem (Scharnow, Tinnefeld, and Wegener
(2004); Doerr, Happ, and Klein (2007a); Baswana, Biswas, Doerr, Friedrich, Kurur,
and Neumann (2009)) and the all-pair shortest path (APSP) problem, (Doerr, Happ,
and Klein (2008a); Doerr and Theile (2009); Horoba and Sudholt (2009)).

Problem 5.23 (The Single-Source Shortest Path Problem).
Let G = (V,E) be a strongly connected directed graph, let s be a distinguished source
vertex in V , and let w : E → R+ be a weight function. For v ∈ V , an optimal s-v-path
in G is a directed path P ⊆ E from s to v that minimizes w(P) :=

∑
e∈P w(e). The

single-source shortest path problem asks for an optimal s-v-path in G for every v ∈ V .

A directed spanning tree F ⊆ E with root s is a tree in G spanning all vertices
of G such that the edges are directed away from s. It is well-known that there exist a
set of optimal s-v-paths that forms a directed spanning tree with root s. Such a tree
is called a shortest path tree of s (see, e. g., Mehlhorn and Sanders (2009); Cormen
et al. (2001)).

From now on, we interpret the SSSP problem as the problem of finding a shortest
path tree. That is, the search space F of the basic combinatorial (1+1) EA for the
SSSP problem is the space of all directed spanning trees F ⊆ E of G with root s.

We study two ways to define the order relation on F required by the basic combi-
natorial (1+1) EA. In this section, we analyze the single-criterion objective function
that sums the weights of all paths. In Section 5.7, we analyze the multi-criteria opti-
mization problem that optimizes the different path weights independently.

Let F ∈ F . For all vertices v ∈ V , let Pv be the directed s-v-path in F and
let w(v, F) := w(Pv) be its weight (with Ps := (s) and w(s, F) := 0). Then, the
single-criterion objective function f : 2E → R+

0 for the SSSP problem on G is defined
by f(F) :=

∑
v∈V w(v, F) for all directed spanning trees F ⊆ E with root s.

5.6. Shortest Path Problems 81

Algorithm 5.24 ((1+1) EASC-SSSP). The basic combinatorial (1+1) EA for the single-
criterion single-source shortest path problem, the (1+1) EASC-SSSP, is an instance of
Algorithm 5.2. Let G = (V,E) be a strongly connected directed graph, s a source
vertex of G, and w : E → R+ a weight function on E. Then, the space of feasible
search points F consists of all directed spanning trees of G with root s and F � H
holds for F,H ∈ F if f(F) ≤ f(H) holds.

Note that f(F) is not the same weight function as for the MST problem. In
particular, f(F) strongly depends on the choice of s. Thus, the analysis of the
(1+1) EASC-SSSP is not covered by that of the (1+1) EAMWB in Section 5.3. Again, we
determine the drift in the objective function in each iteration of the algorithm (confer
Baswana et al. (2009)).

Proposition 5.25. Let G = (V,E) be a strongly connected directed graph, s be a dis-
tinguished source vertex in V , and w : E → R+ a weight function on E. Furthermore,
let fopt be the single-criterion objective value of a shortest path tree and let {x(t)}t∈N
be the sequence of search points generated by the (1+1) EASC-SSSP on (G, s, w). Then,
regardless of x(0),

E[f(x(t))− f(x(t+1)) | f(x(t))] ≥ f(x(t))− fopt

e |E|2 |V |
.

Proof. Let p := (1 − 1/|E|)|E|−2 |E|−2 and let S be a shortest path tree, that is,
f(S) = fopt. Furthermore, let F := x(t) with t ∈ N. If f(F) = fopt the statement
follows trivially. Thus, suppose f(F) > f(S). Then,

f(F)− f(S) =
∑
v∈V

(
w(v, F)− w(v, S)

)
.

Thus, there exists a v ∈ V such that

w(v, F)− w(v, S) ≥ f(F)− f(S)
|V |

.

Let P := (u0, e1, u1, . . . , uk−1, ek, uk) with k ∈ N be the s-v-path in S with s = u0

and v = uk. To each edge ej of P , we assign a contribution c(ej) to w(v, F)−w(v, S)
by defining

c(ej) :=
(
w(uj , F)− w(uj , S)

)
−
(
w(uj−1, F)− w(uj−1, S)

)
for all j ∈ {1, . . . , k}. This implies

k∑
j=1

c(ej) = w(v, F)− w(v, S) .

Note that since ej ∈ P , it holds for all j ∈ {1, . . . , k} that

c(ej) = w(uj , F)− w(uj−1, F)− w(ej) . (5.6.1)

82 Evolutionary Computation in Combinatorial Optimization

Among the edges of P , we are particularly interested in those with strictly positive
contribution. We call their index set J , that is,

J := {j ∈ {1, . . . , k} | c(ej) > 0} .

Let j ∈ J . Then it follows from Equation 5.6.1 that ej /∈ F and uj−1 is not in
the directed subtree of F which has uj as its root. Let ẽj := (ũj−1, uj) be the last
edge of the s-uj-path in F . Let Fj = F ∪ {ej} \ {ẽj} be the directed spanning tree
with root s that is obtained by detaching the subtree of F rooted at uj from ũj−1 and
re-attaching it at uj−1.

Then, w(uj , Fj) = w(uj−1, F) + w(ej) and thus again by Equation 5.6.1,

c(ej) = w(uj , F)− w(uj , Fj) .

Since w(u, F) is at least w(u, Fj) for all u ∈ V , we obtain

f(F)− f(Fj) ≥ c(e) .

Now the remainder of the proof is analogue to that of Proposition 5.9. For j ∈ J
let

Ij :=

{
1 if x(t+1) = Fj ,

0 otherwise.

Then Pr[Ij = 1] = p,

f(x(t+1))− f(x(t)) ≥
∑
j∈J

c(ej) Ij ,

and

E[f(x(t+1))− f(x(t)) | f(x(t))] ≥
∑
j∈J

c(ej) p ≥
f(F)− f(S)

e |E|2 |V |
.

This result indicates that g : F → R+
0 defined by g(F) = f(F)−fopt for all f ∈ F is

a suitable potential function. Using Theorem 4.5, we bound the expected optimization
time of the (1+1) EASC-SSSP.

Theorem 5.26 (confer Baswana et al. (2009)). Let G = (V,E) be a strongly con-
nected directed graph, s be a distinguished source vertex in V , and let w : E → R+ be
a weight function on E. Let fopt be the single-criterion objective value of a shortest
path tree and f2nd-opt be the minimal single-criterion objective value over all directed
spanning trees with root s that do not have objective value fopt.

Furthermore, let T be the optimization time of the (1+1) EASC-SSSP on (G, s, w).
Then,

E[T | x(0)] ≤ e |E|2 |V |

(
1 + ln

f(x(0))− fopt

f2nd-opt − fopt

)
.

5.7. Multi-Criteria Optimization 83

For integer weights polynomially bounded in |E|, the previous theorem shows that
the expected optimization time of the (1+1) EASC-SSSP is O(|E|2 |V | ln |V |). Note
that for general weights we cannot apply Theorem 5.11 to give a weight-independent
upper bound.

We will see in Section 5.9 that by using a more sophisticated problem representation
this bound can be decreased to O(|E| |V | ln |V |). In comparison, the runtime of the
problem-specific algorithm by Dijkstra (1959) is O(|E|+ |V | ln |V |).

As for the minimum spanning tree and maximum weight basis problems, it is an
open question whether the asymptotic optimization time depends on the choice of
the weights and of the graph for non-trivial instances. In this context, it would be
interesting to see whether it is possible to adapt Theorem 5.11 to the case of the SSSP
problem.

5.7. Multi-Criteria Optimization

In Section 5.7, we analyzed the how basic combinatorial (1+1) EA optimizes the SSSP
problem using a single-criterion objective function. Let us briefly recall the setting in
Section 5.6. Given a graph G = (V,E) and a source s ∈ V , the search space F consists
of all directed spanning trees of G with root s. For a tree F ∈ F and a vertex v ∈ V ,
we denote by w(v, F) the sum of the weights of the edges of the unique s-v-path in F .

In Section 5.7, we considered the single-criterion objective function f : F → R+
0

with f(F) :=
∑

v∈V w(v, F). Now, we study the multi-criterion approach that opti-
mizes each w(v, ·) independently.

Algorithm 5.27 ((1+1) EAMC-SSSP). The basic combinatorial (1+1) EA for the multi-
criteria single-source shortest path problem, the (1+1) EAMC-SSSP, is an instance of
Algorithm 5.2. Let G = (V,E) be a strongly connected directed graph, s a source
vertex of G, and w : E → R+ a weight function on E. Then, the space of feasible
search points F consists of all directed spanning trees of G with root s and F � H
holds for F,H ∈ F if w(v, F) ≤ w(v,H) for all v ∈ V holds.

The multi-criteria setting strongly simplifies the analysis. Once the (1+1) EA
finds an optimal s-v-path, the objective functions ensures that it is never replaced by
a sub-optimal path (which in general is not true in the single-criterion setting).

In the following theorem, the optimization time depends on the unweighted edge
radius `G(s). This is the minimal value ` ∈ N such that for every vertex v ∈ V there
exists an optimal s-v-path on at most ` edges. That is,

`G(s) := max
v∈V

(
min

P : P is optimal s-v-path

(
|E(P)|

))
.

Theorem 5.28 (confer Doerr et al. (2007a)). Let G = (V,E) be a strongly connected
directed graph, s be a distinguished source vertex in V , and let w : E → R+ be a weight
function on E.

Furthermore, let T be the optimization time of the (1+1) EAMC-SSSP (Algo-
rithm 5.27) on (G, s, w). Then for all ε > 0,

Pr
[
T ≤ (1 + ε)(2 +

√
3) e |E|2 max{`G(s) , ln |V |}

∣∣x(0)
]
≥ 1− |V |−ε .

84 Evolutionary Computation in Combinatorial Optimization

Proof. Let ε > 0 and x(0) be fixed. Let p := (1− 1/|E|)|E|−2 |E|−2, let n := |V |, and
let `∗ := max{`G(s) , lnn}. For all v ∈ V , let wopt(v) be the weight of an optimal
s-v-path and let Tv be the random variable that denotes the first point in time t ∈ N
for which the s-v-path in x(t) is optimal. We first show that

Pr[Tv > (1 + ε) (2 +
√

3) p−1 `∗] ≤ n−(1+ε)

holds for all v ∈ V . Let v ∈ V and let P := (u0, e1, u1, . . . , uk−1, ek, uk) be an optimal
s-v-path on k ≤ `G(s) edges with s = u0 and v = uk.

Consider a point in time t ≤ Tv and let j(t) ∈ {1, . . . , k} be minimal such
that w(uj(t), x(t−1)) 6= wopt(uj(t)). Like in the single-criterion case, we know that
the edge ej(t) := (uj(t)−1, uj(t)) is not in x(t−1). Moreover, there has to exist another
edge ẽj(t) = (ũj(t)−1, uj(t)) with x(t−1) ∪ {ej(t)} \ {ẽj(t)} ∈ F (see proof of Proposi-
tion 5.25). We say x(t) is a pessimistic improvement if x(t) = x(t−1) ∪ {ej(t)} \ {ẽj(t)}.

If x(t) is a pessimistic improvement, then w(ui, x(t)) = wopt(ui) for all i < j(t).
Let j ∈ {1, . . . , k}. Then there exists at most one point in time t ∈ N for which j(t) = j
and x(t+1) is a pessimistic improvement.

Thus, if k pessimistic improvements occur then w(v, x(t)) = wopt(v) holds with
certainty. Note that in general the converse is not true. At no time t ∈ N, the
s-ui-sub-path of P can be guaranteed to be a subgraph of x(t) for i > 1.

Now we make use of the fact that for t ≤ Tv, the events that the x(t)’s are pes-
simistic improvements are mutually independent (although the positions j(t) of these
improvements may be highly dependent). More precisely, the probability that x(t)

and x(t−1) differ only in the edges ej(t) and ẽj(t) is exactly p and this holds for all
outcomes of x(0), . . . , x(t−1), x(t+1), . . . , x(Tv).

For t ≤ Tv, let I(t) ∈ {0, 1} be the indicator variable that is one if x(t) is a
pessimistic improvement. Then Pr[I(t) = 1] = p and the I(t) are mutually independent
for t ≤ Tv. Now, for t > Tv, we let I(t) be auxiliary random variables in {0, 1} which
are mutually independent and also assume the value one with probability p.

Recall the observation that if there have been k pessimistic improvements at
time r := (1 + ε) (2 +

√
3) p−1 `∗ then w(v, x(r)) = wopt(v). Let Z :=

∑r
t=1 I

(t).
Then, the event “Z ≥ k” implies the event “Tv ≤ r”. In terms of probabilities,

Pr[Z ≥ k] ≤ Pr[Tv ≤ r] .

Thus, since k ≤ `G(s) ≤ `∗,

Pr[Tv > r] ≤ Pr[Z < k] ≤ Pr[Z < `∗] .

Now, E[Z] = r p = (1 + ε) (2 +
√

3) `∗. Hence,

Pr[Tv > r] ≤ Pr
[
Z < (1 + ε)−1 (2 +

√
3)−1 E[Z]

]
.

We can now apply the Chernoff bounds (Theorem 4.2) to the right hand-side of
the previous inequality. Since `∗ ≥ lnn, we obtain

Pr[Tv > r] ≤ e−(1+ε) `∗ ≤ n−(1+ε) .

5.8. Permutation Based Search Spaces 85

Finally, since the previous inequality holds for all v ∈ V , the statement follows by
the union bound argument

Pr[T > r] = Pr
[⋃
v∈V

(Tv > r)
]
≤ n−ε .

5.8. Permutation Based Search Spaces

All search spaces we investigated so far were composed of subsets of a given base
set E, mostly the edge set of a graph. Because of this, we were able to apply the basic
combinatorial (1+1) EA. However, sometimes other representations of the search space
are more natural and, as we will see, can prove to be more efficient.

In this section, we introduce a generic (1+1) EA for general search spaces. On
the example of the classical Euler tour problem, we discuss different ways of how this
algorithm can be applied to the search space of permutations.

Problem 5.29 (The Euler Tour Problem).
Let G = (V,E) be an Eulerian graph (G is connected and every vertex of G has even
degree). The Euler tour problem asks for a closed walk in G that uses each edge
exactly once.

We represent walks in G by permutations of the edge set E (confer Scharnow
et al. (2004)). Let E = {e1, . . . , em} with m = |E| and let Sm be the space of all
permutations of the numbers 1, . . . ,m. Furthermore, let W := (u0, f1, . . . , fk, uk) be
a walk in G of length k ∈ N.

We identify W with all permutations σ ∈ Sm such that uk /∈ eσ(k+1) and such
that fj = eσ(j) holds for all j ∈ {1, . . . , k} (permutations with uk ∈ eσ(k+1) correspond
to longer walks). For a permutation σ, let k = k(σ) be the maximal integer such
that Wσ := (u0, eσ(1), . . . , eσ(k), uk) is a proper walk. Then Wσ is the walk that
corresponds to σ.

Euler’s Theorem (Euler (1741)) guarantees that in an Eulerian graph a walk of
length m exists and moreover that all such walks are closed. Thus, we may rephrase
the Euler tour problem as the problem to optimize the objective function k : Sm → N
as defined above over the search space Sm (where k depends on the structure of G).

We now formulate the generic (1+1) EA which works on arbitrary search spaces.
For this, we define how to randomly generate the candidate search point y(t+1) from
the current search point x(t). We call the process variation.

Definition 5.30 (variation operator φ). Let S be a finite search space. A variation
operator is a sampling procedure that generates a random search point in S according
to a distribution that is based on a given search point in S.

The generic (1+1) EA mimics the two defining features of the basic combinatorial
(1+1) EA. These are that (i) the candidate search point y(t+1) is likely to be chosen
in a local neighborhood of x(t) and (ii) each point in the search space can be chosen
as y(t+1) with positive probability. The first properties ensures that most of the time

86 Evolutionary Computation in Combinatorial Optimization

the algorithm explores the search space locally. The second property guarantees that
the algorithm eventually finds a global optimum.

Let us recall how variation is performed by the basic combinatorial (1+1) EA. Each
element e ∈ E indicates a location for a potential variation by adding or removing e
from x(t). The candidate solution y(t+1) is generated by performing a variation of x(t)

at location e with probability 1/|E| independently for all edges e ∈ E.
For the search space of permutations Sm, several notions of locality are possible.

The canonical local variation operator is the exchange variation operator φexchange.
Let σ ∈ Sm be a permutation. Then φexchange(σ) is generated by choosing two posi-
tions a, b uniformly at random from {1, . . . ,m} and transposing them in σ.

A second local variation operator is the jump variation operator φjump. Again,
let σ ∈ Sm be a permutation. This time, φjump is generated by choosing two posi-
tions a, b uniformly at random from {1, . . . ,m}, removing the element at position a
from σ, and reinserting it so that it becomes position b.

In both cases, the respective variation operator is local in the informal sense of
property (i). However, unlike the case of the basic combinatorial (1+1) EA, two
different exchanges might change the same position of the permutation. Thus, we
cannot perform several local variations simultaneously.

To obtain property (ii), we first choose a random number k according to Pois(1),
the Poisson distribution with parameter 1. Then, we perform k sequential random
local variations. By this, we transform a local variation operator into a variation op-
erators that also satisfies property (ii). We specifically choose the Poisson distribution
to simulate the basic combinatorial (1+1) EA. There, the number of local variations
(changed elements) is governed by the Binomial distribution which is known to con-
verge to the Poisson distribution3.

Algorithm 5.31 (The Generic (1+1) EA).
Let S be a finite search space. Furthermore, let φ be a local variation operator on S,
let � be a partial order relation on S, and let x(0) ∈ S be an initial search point.
Given (S, φ,�, x(0)), the generic (1+1) EA iteratively generates a sequence of search
points {x(t)}t∈N in S by the following procedure.

For all t ∈ N with t ≥ 1, the generic (1+1) EA generates a random number k
according to Pois(1). Next, the generic (1+1) EA generates the candidate search
point y(t) := φk(x(t−1)) by k successive applications of φ to x(t−1). Afterwards,

x(t) :=

{
y(t) if y(t) � x(t−1) ,

x(t−1) otherwise.

The optimization time T of the generic (1+1) EA for (S, φ,�, x(0)) is the random
variable that describes the first point in time t ∈ N for which x(t) is optimal.

Neumann (2008) showed that the generic (1+1) EA for the Euler tour problem

3In the results referenced in this chapter, the number of successive variation operators applied in
each single variation step is often distributed according to 1 + Pois(1) instead of Pois(1). From the
analytic point of view, this choice is artificial as it deviates from the original purpose of simulating
the basic combinatorial (1+1) EA. Furthermore, this difference does not have an effect on the order
of magnitude of the expected runtimes considered in this chapter.

5.9. Asymmetric and Adjacency-Based Variation Operators 87

using the exchange variation operator φexchange has at least exponential expected op-
timization time.

Theorem 5.32 (Neumann (2008)). Let n ≥ 3. Then, there exists an Eulerian
graph G = (V,E) of size n such that the expected optimization time of the generic
(1+1) EA for the Euler tour problem on G using the local exchange variation opera-
tor φexchange with x(0) chosen uniformly at random is 2Ω(|V |).

However, the jump variation operator φjump results in a polynomially bounded
expected optimization time of the generic (1+1) EA for the Euler tour problem.

Theorem 5.33 (Neumann (2008)). Let G = (V,E) be an Eulerian graph. Then
the expected optimization time of the generic (1+1) EA for the Euler tour problem
on G using the local exchange variation operator φjump is O(|E|5) independent of x(0).
For all n ≥ 3, there exists an Eulerian graph G = (V,E) on n vertices such that
the expected optimization time of the generic (1+1) EA for the Euler tour problem
on G using the local exchange variation operator φjump with x(0) chosen uniformly at
random is Ω(|E|5).

In Doerr, Hebbinghaus, and Neumann (2007b) it is shown that if a = 1 is fixed
in φjump, then the expected optimization time of the generic (1+1) EA for the Euler
tour problem drops to Θ(|E|3).

From these three examples, we conclude that for non-Boolean search spaces (like
the space of permutations) the choice of locality can severely influence the optimization
time.

However, an expected optimization time of Θ(|E|3) for the Euler tour problem is
still far off from the linear runtime of the problem-specific algorithm by Hierholzer
(1873). In the following Section, we will see how it is possible to further reduce the
expected optimization time of the generic (1+1) EA to O(|E| ln |E|).

5.9. Asymmetric and Adjacency-Based Variation Operators

In Section 5.8, we have seen that the choice of the local variation operator can have
significant influence on the optimization time of the generic (1+1) EA. In this section
we revisit the problems of finding a maximum weight basis, a single-source shortest
path tree, an Euler tour, or an all-pair shortest path set. We study how alternative
representations and variation operators for these problems influence the optimization
time.

Consider the basic (1+1) EA for the maximum weight basis problem and recall
the proof of Proposition 5.9. There, the bound on the drift is dominated by the
probability pf = (1−m−1)m−2m−2 (where m = |E|) to exchange a particular element
in a basis of E by a particular element that is not in E. However, we know that all
bases are of the same size, namely the rank r = r(M) of the matroid (which is |V | − 1
in the case of spanning trees).

We modify the distribution of the variation operator in the basic combinatorial
(1+1) EA (confer Jansen and Sudholt (2010); Reichel and Skutella (2007)). The
asymmetric variation operator is defined as follows. Instead of choosing each element e

88 Evolutionary Computation in Combinatorial Optimization

in x(t−1)4y(t) independently with probability 1/m, we independently choose e with
probability 1/r if e ∈ x(t−1) with probability 1/(m − r) if e /∈ x(t−1). This way, in
expectation x(t−1)4y(t) contains exactly two elements, one in x(t) and in E \ x(t).
Consequently, for a particular pair of such elements

pf =
(

1− 1
r

)r−1(
1− 1

m− r

)m−r−1 1
r(m− r)

≥ 1
e2 rm

.

Thus, following the proof of Proposition 5.9 the bound of expected optimization time
in Theorem 5.10 drops by a factor of m/r.

Theorem 5.34 (confer Reichel and Skutella (2007)). Let M = (E,F) be a matroid
and let w : E → R+ be a weight function on E. Let wopt be the weight of a maximum
weight basis and w2nd-opt be the maximum weight over all bases that do not have
weight wopt. Furthermore, let T be the optimization time of the (1+1) EA for the
maximum weight basis problem on (M,w) using the asymmetric variation operator
defined above. Then,

E[T | x(0)] ≤ e2 r(M) |E|

(
1 + ln

wopt − w(x(0))
wopt − w2nd-opt

)

Let us now turn to the SSSP problem. Recall the problem of finding a single-source
shortest path tree according to a source vertex s in a strongly connected directed
graph G = (V,E) (Section 5.6). As search space, we considered all directed spanning
trees with root s. We represented them as subsets of E, rejecting all subsets that do
not from such a tree.

Let us take a closer look at the proof of Theorem 5.26. Consider the factor e |E|2
in the upper bound on the expected optimization time of the basic combinatorial
(1+1) EA. We observe that it results from the probability p to change the position of
a subtree in the current search point (see proof of Proposition 5.26).

In the representation by edge sets, this is done by removing the edge that attaches
the subtree and inserting a new edge that re-attaches the subtree while leaving the
other edges unchanged. Thus,

p =
(

1− 1
|E|

)|E|−2 1
|E|2

≥ 1
e |E|2

.

Hence, the expected time for a particular subtree relocation is at most e |E|2.
To reduce the upper bound on the expected time to relocate a subtree, we choose

a more suited representation of the search points. For this, we regard a data-structure
commonly used to represent graphs — adjacency lists. The adjacency list L of a
directed graph G = (V,E) stores for every vertex v ∈ V the sub-list L(v) ⊆ E of all
incoming directed edges (w, v) ∈ E.

A natural way to represent directed rooted spanning trees is to assign to each
vertex the edge by which it is attached to its predecessor in the tree. Thus, in such a
representation, we distinguish for each vertex v ∈ V one edge (w, v) in its sub-list L(v).

Let L be the space that consists of all sets of edges F such that there exists exactly
one edge from L(v) in F for every vertex v ∈ V \ {s}. Note that not every set in L

5.9. Asymmetric and Adjacency-Based Variation Operators 89

corresponds to a directed spanning tree. In particular, a set in L might define a graph
which contains directed cycles.

The search space SSSSP consists of all sets in L that correspond to directed spanning
trees rooted at s.

The local variation operator φSSSP on a set F ∈ SSSSP generates the random
set F ′ ∈ SSSSP as follows. First, an edge e is chosen uniformly at random from E\L(s).
Then, there exists a unique vertex v ∈ V \ {s} such that e ∈ L(v) and a unique
edge e′ ∈ F ∩ L(v). If F ∪ {e} \ {e′} represents a directed spanning tree rooted at s,
then F ′ = F ∪ {e} \ {e′}. Otherwise, F ′ = F .

We can now analyze the generic (1+1) EA for the SSSP problem on the search
space SSSSP and the local variation operator φSSSP. Let �s and �m be the partial
orders on SSSSP defined by the single-criterion objective function f in Section 5.6 and
the multi-criteria partial order � in Section 5.7, respectively. Then the (1+1) EA
using adjacency lists to optimize the single-criterion or multi-criteria SSSP problem is
the generic (1+1) EA on the search space SSSSP with variation operator φSSSP and an
objective defined by the order relation �s or �m, x(0), respectively.

It turns out that the proofs in Section 5.6 and Section 5.7 are still correct if we
change the probability p to relocate a fixed subtree to a specific position. Using the
local variation operator φSSSP, the lower bound on this probability increases by a
factor of |E| to

p′ =
1

e |E|
.

Thus, we get the following results which are the equivalents of Theorem 5.26 and
Theorem 5.28 for the generic (1+1) EA using the local mutation operator φSSSP.

Theorem 5.35 (Doerr and Johannsen (2010)). Let G = (V,E) be a strongly con-
nected directed graph, s be a distinguished source vertex in V , and let w : E → R+ be
a weight function on E. Let fopt be the single-criterion objective value of a shortest
path tree and f2nd-opt be the minimal single-criterion objective value over all directed
spanning trees with root s that do not have objective value fopt.

Let x(0) ∈ SSSSP and let Ts and Tm be the optimization times of the (1+1) EA on
the single-criterion (multi-criteria, respectively) SSSP problem using adjacency lists.
Then, for all ε > 0,

E[Ts | x(0)] ≤ e |E| |V |

(
1 + ln

f(x(0))− fopt

f2nd-opt − fopt

)

and

Pr
[
Tm ≤ (1 + ε)(2 +

√
3) e |E| max{`G(s) , ln |V |}

∣∣x(0)
]
≥ 1− |V |−ε .

Next, we consider the Euler tour problem. Also for this problem there exist a
superior representation based on adjacency lists (Doerr, Klein, and Storch (2007c);
Doerr and Johannsen (2007b)). As described in Section 5.8, this problem is defined
on an undirected Eulerian graph G = (V,E). The corresponding adjacency list L
stores for every vertex v ∈ V the sub-list L(v) of edges incident with v. This way, the

90 Evolutionary Computation in Combinatorial Optimization

edge {v, w} occurs twice, in L(v) and in L(w). Note, since G is Eulerian, all sub-lists
are of even size.

Consider a walk W = (u0, f1, . . . , fk, uk) in G. Then W can be represented by all
pairs of successive edges {f1, f2}, {f2, f3}, . . . , {fk−1, fk}. For each pair {fi, fi+1},
there exists exactly one sub-list of L which contains the two edges fi and fi+1,
namely L(ui). Thus, we identify the walk W with pairings of edges in the sub-lists
of L.

The search space SEuler consist of all complete pairings of edges in L. A complete
pairing is a set of edge pairs such that (i) the edges of a pair are in the same sub-list
of L and (ii) each edge in a sub-list of L belongs to exactly one pair. Such a pairing
always exists since all sub-lists are of even lengths. Moreover, a random pairing is
easy to generate: for each sub-list, we successively pair two random vertices and then
remove them from the list.

Since each edge belongs to exactly two pairs, the pairs partition the edge sets into
disjoint and cyclically ordered sets. We call these cyclically ordered sets tours. Note
that if we distinguish some vertex of a tour as start-/end-vertex, then the tour becomes
a closed walk.

We have just seen that a complete pairing corresponds to a disjoint partition of
the edge set into tours. Let k : SEuler → N be the function that counts the number
of tours k(x) in the partition corresponding to a search point x ∈ SEuler. When-
ever k(x) = 1, the partition corresponding to x contains only one tour which has to
be an Euler tour. Consequently, we reformulate the Euler tour problem over SEuler as
the problem of minimizing k over SEuler.

The local variation operator φEuler that generates a random search point y ∈ SEuler
based on the search point x ∈ SEuler is defined as follows. We choose the two edges e
and e′ uniformly at random from all pairs of edges that are in the same sub-list of L.
In x, each of these two edges is paired with a second edge, say {e, f} and {e′, f ′}
are paired. Then y is generated by removing the pairs {e, f} and {e′, f ′} from x and
adding the pairs {e, e′} and {f, f ′} in return.

The local variation operator φEuler that generates a random search point y ∈ SEuler
based on the search point x ∈ SEuler is defined as follows. We choose an edge e
uniformly at random from E. Then, we choose with probability 1/2 one of its end-
vertices v and w (say v). Finally, we choose a second edge e′ uniformly at random
from L(v). In x, each of these two edges is paired with a second edge, say {e, f}
and {e′, f ′}. Then y is generated by removing the pairs {e, f} and {e′, f ′} from x and
adding the pairs {e, e′} and {f, f ′} in return.

The (1+1) EA using adjacency lists to solve the Euler tour problem is defined
to be the generic (1+1) EA on the search space SEuler with the variation opera-
tor φEuler and an objective defined by the partial order relation �Euler given by the
function k : SEuler → N above.

Theorem 5.36 (Doerr and Johannsen (2007b)). Let G = (V,E) be an Eulerian
graph. Furthermore, let x(0) ∈ SEuler and T be the optimization time of the (1+1) EA
using adjacency lists to solve the Euler tour problem. Then,

E[T | x(0)] ≤ e |E| ln |E| .

5.10. Population and Recombination 91

Proof. Let t < T and x(t) be the t-th search point of the (1+1) EA using adjacency lists
to solve the Euler tour problem. Then x(t) corresponds to a partition of E into g(x(t))
tours and g(x(t)) is at least two.

Let τ be one of these tours. Since t < T and G is connected, τ shares at least one
vertex v with another tour in the partition. Suppose that ` is the size of the sub-list
and k of edges in L(v) belong to τ . Since there exist at least one pairing in L(v) for
each tour visiting v, we have that ` ≥ 4 and 2 ≤ k ≤ `− 2.

The probability, that the (1+1) EA operator performs exactly one local variation
and merges τ at v with a second tour by is

p =
1
e
k

|E|
· `− k

`
≥ 1

e |E|
.

For each of the g(x(t)) tours there exists at least one vertex v at which such a
merging may occur. Thus, the probability to merge two tours is at least g(x(t))

e |E| . Note
that we do not over-count since we choose ordered pairs of edges (e, e′) for variation.
Hence, in expectation the number of tours decreases by at least g(x(t))

e |E| . The statement
follows by Theorem 4.5.

5.10. Population and Recombination

In this section we study the all-pair shortest path problem (APSP). In the context of
evolutionary algorithms, this problem has been studied by Doerr et al. (2008a) and
Doerr and Theile (2009). The main insight of these works is that these algorithms
perform better if they also apply recombination of two search points instead of variation
of single search points only. Further theoretical work on the influence of recombination
on the runtimes of evolutionary algorithms can be found in Fischer and Wegener (2004)
and Watson and Jansen (2007).

Problem 5.37 (The All-Pair Shortest Path (APSP) Problem).
Let G = (V,E) be a strongly connected directed graph and let w : E → R+ be a weight
function on E. For all v, w ∈ V , an optimal v-w-path in G is a directed path P ⊆ E
from v to w minimizing w(P) :=

∑
e∈P w(e). The all-pair shortest path problem asks

for an optimal v-w-path in G for every ordered pair (v, w) of distinct vertices v, w ∈ V .

A solution to the APSP problem is a set of optimal paths. Consequently, we apply
an evolutionary algorithm that maintains in each iteration a set or multi-set of search
points rather than a single search point. Moreover, for the APSP problem we observe
that the concatenation of an optimal v-u-path with an optimal u-w-path often results
in an optimal v-w-path.

In the context of evolutionary algorithms, we call the multi-set of current search
points the population and the generation of a (random) search point from two others
recombination. In our case, we perform recombination by the concatenation of two
paths.

The concatenation P ◦ Q of two paths P = (v, . . . , w) and Q = (w, . . . , u) is the
walk (v, . . . , w, . . . , u). Note, that P ◦ Q may visit vertices more than once and thus
need not be a path.

92 Evolutionary Computation in Combinatorial Optimization

The following evolutionary algorithm generates a single candidate search point in
each iteration. This is done by using either variation or recombination. In this, the
chosen method depends on the recombination probability pr ∈ [0, 1]. More precisely,
the algorithm samples from the Bernoulli distribution with parameter pr and performs
recombination if the generated bit evaluates to one.

Let G = (V,E) be a strongly connected directed graph let w : E → R+ be a weight
function on E. The EAAPSP is the population-based evolutionary algorithm for the
APSP problem on (G,w) with recombination probability pr.

Algorithm 5.38 (EAAPSP). Let the recombination probability pr be given. Let W
be the set of all pairs of distinct vertices in V 2. The search space S of the EAAPSP
consists of all directed v-w-paths in G with (v, w) ∈W . The multi-set of initial search
points x(0) contains for each edge (v, w) ∈ E the path (v, (v, w), w) on this single
edge. For two paths P and Q in S, let P � Q if and only if P and Q have the same
start-vertex and end-vertex and if w(P) ≤ w(Q).

The EAAPSP iteratively generates a sequence of multi-sets {x(t)}t∈N of search points
in S by the following procedure.

For all t ∈ N with t ≥ 1, the population-based evolutionary algorithm generates a
random candidate search point y(t). With probability pr, the point y(t) is generated
by recombination and with probability 1− pr by variation. Afterwards, we set

x(t) :=

{
{x ∈ x(t−1) : y(t) 6� x} ∪ {y(t)} if ∀x ∈ x(t−1) : x 6� y(t),

x(t−1) otherwise.

Recombination

1. Choose two paths P and Q uniformly at random from x(t−1).

2. If P ◦Q ∈ S then return P ◦Q.

3. Otherwise, return either P or Q, each with equal probability.

Variation

1. Choose an path P = (v, . . . , w) uniformly at random from x(t−1).

2. Repeat the following steps k times, where k is chosen according to Pois(1):

(a) Choose u ∈ {v, w} uniformly at random.

(b) Choose an edge e ∈ E incident to u uniformly at random.

(c) If e connects u to P then return P without u and e.

(d) If u = v, and e = (x, v) is an incoming edge of v, and (x, (x, v), v) ◦ P ∈ S,
then return (x, (x, v), v) ◦ P .

(e) If u = w, and e = (w, y) is an outgoing edge of w, and P ◦(w, (w, y), y) ∈ S,
then return P ◦ (w, (w, y), y).

(f) Otherwise, return P

5.10. Population and Recombination 93

The optimization time T of the EAAPSP is the first point in time t ∈ N for which x(t)

contains an optimal path for every (v, w) ∈ W . With probability tending to one, the
optimization time of the EAAPSP is O(|V |3+1/4 ln1/4 |V |).

Theorem 5.39 (Doerr and Theile (2009)). Let pr ∈ (0, 1) be constant. Let the
graph G = (V,E) be directed and strongly connected and let w : E → R+ be a weight
function on E. Furthermore, let T be the optimization time of the EAAPSP with
recombination probability pr ∈ (0, 1). Then for all λ > 0 there exist a constant Cλ
such that

Pr
[
T ≤ Cλ |V |3+1/4 ln1/4 |V |

]
≥ 1− |V |−λ .

To prove this theorem, we give some preliminary definitions and two propositions.
In the following, let n := |V |.

Let (v, w) ∈ W . Then T(v,w) is the random variable that describes the first point
in time t ∈ N for which there is an optimal v-w-path in x(t).

For g ∈ R+
0 , we call the pair (x, y) ∈ W a g-approximation of (u,w) if there exist

an optimal v-w-path containing an x-y-subpath that is at most g edges shorter that
the v-w-path. Furthermore, let Tg,(v,w) be the random variable that denotes the first
point in time t ∈ N for which x(t) contains an optimal x-y-path such that (x, y) ∈ W
is a g-approximation of (v, w). Thus, T(v,w) = T0,(v,w)

Proposition 5.40. Let (v, w) ∈ W , and g ∈ R+
0 with g ≥ 4 lnn. Then, for all λ ≥ 2

and n sufficiently large,

Pr
[
T(v,w) ≤ Tg,(v,w) + 6λ g n3

1−pr

]
≥ 1− n1−λ .

Proof. We may condition on the event that T(v,w) > Tg,(v,w) holds since otherwise
the event that T(v,w) ≤ Tg,(v,w) + 6λ g n3

1−pr holds with certainty. Thus, without loss of
generality, suppose that T(v,w) > Tg,(v,w).

For t ≥ Tg,(v,w), let h(t) be the minimal integer such that x(t) contains an optimal
x-y-path for which (x, y) is a h(t)-approximation of (v, w). Then, h(Tv,w) = 0 and
also 1 ≤ h(Tg,(v,w)) ≤ g.

Next, we define the indicator variables It ∈ {0, 1} for all t ∈ N. For all t ≤ T(v,w),
we let It = 1 if and only if h(t) < h(t − 1). For all t > T(v,w), we let It be drawn
independently according to the Bernoulli distribution with parameter 1

2 e n3 , that is,
Pr[It = 1] = 1−pr

2 e n3 .
Let Tg,(v,w) ≤ t < T(v,w). We show that

Pr
[
It+1

∣∣ ITg,(v,w)+1, . . . , It
]
≥ 1− pr

2 e n3
. (5.10.1)

By the definition of h(t), there is an optimal v-w-path (v = u0, . . . , uk = w) with k ∈ N
and two indices a(t), b(t) ∈ {0, . . . , k} with a(t) < b(t) such that a(t)+(k−b(t)) = h(t)
and x(t) contains an optimal ua(t)-ub(t)-path.

Since t < T(v,w), it holds that a(t) ≥ 1 or k − b(t) ≥ 1. Without loss of generality,
suppose a(t) ≥ 1. Then the variation that chooses the optimal ua(t)-ub(t)-path from x(t)

and adds the edge (ua(t)−1, ua(t)) decreases h(t).

94 Evolutionary Computation in Combinatorial Optimization

The probability that this variation happens depends on |x(t)| and the degree
of ua(t). However, independently of x(t) (and all X(s) with s < t), this probability
is at least 1−pr

2 en3 . Thus, (5.10.1) holds.
Now, consider the time interval

J :=
{
Tg,(v,w) + 1, . . . , Tg,(v,w) +

⌊6λ g n3

1−pr
⌋}

.

If
∑

t∈J It ≥ g, then the event T(v,w) ≤ Tg,(v,w) + 6λ g n3

1−pr holds with certainty. Thus,

Pr
[
T(v,w) ≤ Tg,(v,w) + 6λ g n3

1−pr

]
≥ Pr

[∑
t∈J

It ≥ g
]
.

By Theorem 4.13, we can now derive the proposition from the Chernoff bound
(Theorem 4.2). Let µ = E

[∑
t∈J It

]
. Then, for sufficiently large n,

µ =
⌊

6λ
1−pr g n

3
⌋
· 1−pr

2 e n3 > λg .

Hence, using the Chernoff bounds we get

Pr
[∑
t∈J

It < g
]
< Pr

[∑
t∈J

It <
1
λ µ
]
≤ e−

(λ−1)2 g
2λ ≤ n1−λ ,

which concludes the proof.

Next, we let Wr be the set of all pairs (v, w) ∈ W such that there exists an
optimal v-w-path on at most r edges. Note that Wn = W , since there exists an
optimal v-w-path on at most n edges for all (v, w) ∈ W . Furthermore, for all r ∈ R+

0

let Tr := max(v,w)∈Wr
T(v,w) be the random variable that describes the first point

in time t ∈ N for which there is an optimal v-w-path for all (v, w) ∈ Wr in x(t).
Clearly, T1 = 0.

Finally, for r, g ∈ N with g ≤ r let Tg,r := max(v,w)∈Wr
Tg,(v,w) be the random

variable that describes the first point in time t ∈ N such that for all (v, w) ∈Wr there is
an optimal x-y-path in x(t) where (x, y) is a g-approximation of (v, w). Thus, Tr,r = 0.

Proposition 5.41. Let r, g ∈ R+
0 with g ≤ r/2 and (v, w) ∈W3r/2\Wr. Then, for λ > 0

and n sufficiently large,

Pr
[
Tg,(v,w) ≤ Tr + 4λn4 lnn

pr r g2

]
≥ 1− n−λ .

Proof. We may condition on the event that Tg,(v,w) > Tr holds, otherwise the event
Tg,(v,w) ≤ Tr+ 4λn4 lnn

pr r g2
holds with certainty. Thus, without loss of generality, suppose

that the event Tg,(v,w) > Tr holds.
Let t > Tr. By the definitions of Wr and W3r/2, there exists an optimal v-w-path

P := (v = u0, (u0, u1), . . . , uk = w) on k ∈ N edges such that

r < k ≤ 3r/2 .

Let a, b, j ∈ N with a+k− b ≤ g, j ≤ a+ r, and j ≥ b− r. Since P is optimal, the two
paths (v = ua, . . . , uj) and (uj , . . . , ub = w) are optimal, too. Moreover, by definition

5.10. Population and Recombination 95

of j both paths are of length at most r. Thus, since t > Tr, at time t the EAAPSP has
found an optimal ua-uj-path and an optimal uj-ub-path. The concatenation of these
two optimal paths results in an optimal ua-ub-path. Hence, the vertex pair (ua, ub) is
a g-approximation of (v, w).

Let a, b, and j be given. Then, the probability that EAAPSP performs a recom-
bination step using this particular concatenation at time t is at least pr/n4. There
are at least g2/2 ways to choose the pair (a, b) and at least 2r − k + 1 ≥ r/2 ways to
choose j. Note that these bounds hold independently of the variations and recombi-
nations performed by the EAAPSP at times Tr + 1, . . . , t− 1. Thus, for all t > Tr,

Pr
[
Tg,(v,w) = t

∣∣Tg,(v,w) ≥ t
]
≥ pr r g

2

4n4
.

Let ∆ := 4n4

pr r g2
. Then, by the union bound,

Pr
[
Tg,(v,w) ≥ Tr + λ∆ lnn

]
≤
(
1− 1

∆

)λ∆ lnn ≤ e−λ lnn = n−λ ,

which concludes the proof.

Using the previous two propositions, we prove Theorem 5.39.

Proof of Theorem 5.39. Let λ > 3 and let n be sufficiently large. Let L := dlog3/2 ne
and

r(i) :=
(

3
2

)i
n

1/4 ln1/4 n and g(i) :=
(

3
2

)−i/3
n

1/4 ln1/4 n

for all i ∈ {0, . . . , L}. Then, g(0) = r(0) = n1/4 ln1/4 n and g(n) ≤ r(n)/2 for all n ≥ 1.
Furthermore, we have

0 = Tg(0),r(0) ≤ Tr(0) ≤ Tg(1),r(1) ≤ Tr(1) ≤ · · · ≤ Tg(L),r(L) ≤ Tk(L) = T .

For all (v, w) ∈Wr(0) let

A(v,w) : T(v,w) ≤ Tg(0),(v,w) +
6λ g(0)n3

1− pr
and

B(v,w) : Tg(0),(v,w) = 0 (this event occurs with certainty) .

For all i ∈ {1, . . . , L} and all (v, w) ∈Wr(i) \Wr(i−1) let

A(v,w) : T(v,w) ≤ Tg(i),(v,w) +
6λ g(i)n3

1− pr
and

B(v,w) : Tg(i),(v,w) ≤ Tr(i−1) +
4λ n4 lnn

pr r(i− 1) g(i)2
.

Suppose the events A(v,w) and B(v,w) hold for all (v, w) ∈ W . Then, it holds for
all i ∈ {0, . . . , L}, that

Tr(i) − Tg(i),r(i) ≤
6λ g(i)n3

1− pr
=
(

2
3

)i/3 · 6λ pr n3+1/4 ln1/4 n

pr (1− pr)
,

96 Evolutionary Computation in Combinatorial Optimization

and, for all i ∈ {1, . . . , L}, that

Tg(i),r(i) − Tr(i−1) ≤
4λ n4 lnn

pr r(i− 1) g(i)2
=
(

2
3

)i/3 · 6λ (1− pr)n3+1/4 lnn1/4

pr (1− pr)
.

Thus, by the geometric series we have

T ≤ 48
pr (1−pr) λn

3+1/4 lnn1/4 .

Applying the union bound together with Proposition 5.40 and Proposition 5.41 we
derive that A(v,w) and B(v,w) hold for all (v, w) ∈W with probability at least 1−2n3−λ

which concludes the proof. 2

In Theorem 5.39, the recombination probability is restricted to the open inter-
val (0, 1). For pr = 0, the EAAPSP performs variation only. It was shown in Doerr
et al. (2008a), that in this case the expected optimization time increases to Ω(n4) for
the Kn where each edge has weight n except for a Hamilton path with edge-weights 1.

For pr = 1, the EAAPSP performs recombination only. For this case, it is possible
to show an upper bound of O(|V |4 ln |V |) on the expected runtime of the EAAPSP.
This is done by setting pr = 1, g = 0 and r = (3

2)i in Proposition 5.41 and the
summing over all i in 1, . . . , dlog3/2 |V |e like in the proof of the previous theorem.

If we take a closer look at Proposition 5.41, it becomes clear that the |V |4 factor
in this expected optimization time results from the lower bound on the probability
to concatenate two specific paths in the population x(t) at time t. This bound drops
to |V |3, if we restrict the selection operator for recombination to pairs of paths such
that the end vertex of the first path is the start vertex of the second. In this case the
bound on the expected optimization time drops to O(|V |3 ln |V |).

The classical problem-specific algorithm for the APSP is the Floyd-Warshall al-
gorithm (Floyd (1962); Warshall (1962)). This algorithm solves the APSP problem
in time Θ(|V |3). It uses dynamic programming techniques based on concatenation.
Basically, the EAAPSP using recombination mimics the Floyd–Warshall algorithms.
Further studies of this capability of the recombination based evolutionary algorithms
to simulate dynamic programming is studied in a general context by Doerr, Eremeev,
Horoba, Neumann, and Theile (2009).

5.11. Conclusion

We have analyzed the optimization time of the (1+1) EA for several of the most
common polynomial time solvable problems in combinatorial optimization. For some
of these problems, we found that the (1+1) EA simulates known problem-specific
algorithms. For others, the (1+1) EA does not find an optimal solution in polynomial
time with probability tending to one.

The collection of problems we examined is by no means exhaustive. For example,
another combinatorial problem that is solvable in polynomial time is the sorting prob-
lem. The (1+1) EA solves this problem in polynomial time (Scharnow et al. (2004);
Doerr and Happ (2008)).

5.11. Conclusion 97

On the other hand, the min-cut problem is a second example of a polynomial
time solvable problem for which the (1+1) EA has exponential expected optimization
time (Neumann, Reichel, and Skutella (2008)).

There also exist a number of runtime result for the (1+1) EA on NP-hard prob-
lems. He and Yao (2001) studied the the subset-sum problem, Storch (2006, 2007) the
maximum clique problem, Neumann (2007) the multi-objective minimum spanning
tree problem, and Horoba (2009) the multi-objective shortest path problem.

Again, not all NP-hard problems are equally accessible to the (1+1) EA. For the
special case of the partition problem, Witt (2005) showed that the (1+1) EA can
find a 4/3-approximation in quadratic time. He also showed that multiple runs of the
(1+1) EA will result in a PRAS.

In contrast to this, Friedrich, Hebbinghaus, Neumann, He, and Witt (2007) showed
that with probability tending to one, the (1+1) EA for the vertex-cover and set-cover
problems does not find a constant factor approximation in polynomial time.

However, under certain conditions this inapproximability can be dealt with by
approaches based on multi-objective optimization (Friedrich et al. (2007)), multiple
runs (Oliveto, He, and Yao (2007)), the use of diversity mechanisms (Oliveto et al.
(2008)), or hybridization (Friedrich, He, Hebbinghaus, Neumann, and Witt (2009)).

For a multi-objective approach, Kratsch and Neumann (2009) conducted a bidi-
mensional analysis using the optimal value as fixed parameter.

Indication of source. The content of this chapter will appear in the book Theory
of Randomized Search Heuristics (Auger and Doerr (2010)). The chapter contains
results that have been previously published in the Proceedings of GECCO ’07 (Doerr
and Johannsen (2007b)) and in the Proceedings of GECCO ’10 (Doerr and Johannsen
(2010)).

98 Evolutionary Computation in Combinatorial Optimization

99

A
Further Contributions

The following contributions to the field of theoretical computer science have not been
included in this thesis but are part of my PhD research. Here, I give the abstracts and
the references of the respective publications.

Quantum Search Heuristics

Can Quantum Search Accelerate Evolutionary Algorithms?
In this article, we formulate for the first time the notion of a quantum evolutionary
algorithm. In fact we define a quantum analogue for any elitist (1+1) randomized
search heuristic. The quantum evolutionary algorithm, which we call (1+1) quantum
evolutionary algorithm (QEA), is the quantum version of the classical (1+1) evolu-
tionary algorithm (EA), and runs only on a quantum computer. It uses Grover search
(Grover (1996)) to accelerate the search for improved offsprings.

To understand the speedup of the (1+1) QEA over the (1+1) EA, we study the
three well known pseudo-Boolean optimization problems OneMax, LeadingOnes,
and Discrepancy. We show that although there is a speedup in the case of OneMax
and LeadingOnes in the quantum setting, the speedup is less than quadratic. For
Discrepancy, we show that the speedup is at best constant.

The reason for this inconsistency is due to the difference in the probability of mak-
ing a successful mutation. On the one hand, if the probability of making a successful
mutation is large then quantum acceleration does not help much. On the other hand, if
the probabilities of making a successful mutation is small then quantum enhancement
indeed helps.

In: Proceedings of GECCO ’10 (Johannsen, Kurur, and Lengler (2010)).

100 Further Contributions

SAT for Restricted CNF Formulas

Solving SAT for CNF formulas with a one-sided restriction on variable occurrences
In this paper we consider the class of boolean formulas in Conjunctive Normal Form
(CNF) where for each variable all but at most d occurrences are either positive or
negative. This class is a generalization of the class of CNF formulas with at most d
occurrences (positive and negative) of each variable which was studied in Wahlström
(2005).

Applying complement search (Purdom (1984)), we show that for every d there
exists a constant γd < 2− 1

2d+1 such that satisfiability of a CNF formula on n variables
can be checked in runtime O(γnd) if all but at most d occurrences of each variable are
either positive or negative. We thoroughly analyze the proposed branching strategy
and determine the asymptotic growth constant γd more precisely. Finally, we show
that the trivial O(2n) barrier of satisfiability checking can be broken even for a more
general class of formulas, namely formulas where the positive or negative literals of
every variable have what we will call a d–covering.

To the best of our knowledge, for the considered classes of formulas there are no
previous non-trivial upper bounds on the complexity of satisfiability checking.

In: Proceedings of SAT ’09 (Johannsen, Razgon, and Wahlström (2009)).

Ant Colony Optimization

How Single Ant ACO Systems Optimize Pseudo-Boolean Functions
We undertake a rigorous experimental analysis of the optimization behavior of the

two most studied single ant ACO systems on several pseudo-boolean functions. By
tracking the behavior of the underlying random processes rather than just regarding
the resulting optimization time, we gain additional insight into these systems. A
main finding is that in those cases where the single ant ACO system performs well, it
basically simulates the much simpler (1+1) Evolutionary Algorithm.

In: Proceedings of PPSN ’08 (Doerr, Johannsen, and Tang (2008b)).

Refined Runtime Analysis of a Basic Ant Colony Optimization Algorithm
Neumann and Witt (2006) analyzed the runtime of the basic ant colony optimization
(ACO) algorithm 1-Ant on pseudo-boolean optimization problems. For the problem
OneMax they showed how the runtime depends on the evaporation factor. In par-
ticular, they proved a phase transition from exponential to polynomial runtime. In
this work, we simplify the view on this problem by an appropriate translation of the
pheromone model. This results in a profound simplification of the pheromone update
rule and, by that, a refinement of the results of Neumann and Witt. In particular, we
show how the exponential runtime bound gradually changes to a polynomial bound
inside the phase of transition.

In: Proceedings of CEC ’07 (Doerr and Johannsen (2007a)).

101

Bibliography

Niels H. Abel. Beweis eines Ausdrucks von welchem die Binomial-Formel ein einzelner Fall
ist. Journal für die reine und angewandte Mathematik, 1:159–160, 1826.

Luca C. Aleardi, Olivier Devillers, and Gilles Schaeffer. Optimal succinct representations of
planar maps. In SCG ’06: Proceedings of the 22nd Annual Symposium on Computational
Geometry, pages 309–318. ACM, 2006.

Noga Alon and Joel H. Spencer. The probabilistic method. Interscience Series in Discrete
Mathematics and Optimization. Wiley, third edition, 2008.

Anne Auger and Benjamin Doerr, editors. Theory of Randomized Search Heuristics. World
Scientific, 2010. To appear.

Cyril Banderier, Philippe Flajolet, Gilles Schaeffer, and Michèle Soria. Random maps, coalesc-
ing saddles, singularity analysis, and Airy phenomena. Random Structures and Algorithms,
19(3-4):194–246, 2001.

Surender Baswana, Somenath Biswas, Benjamin Doerr, Tobias Friedrich, Piyush P. Kurur, and
Frank Neumann. Computing single source shortest paths using single-objective fitness. In
FOGA ’09: Proceedings of the 10th ACMWorkshop on Foundations of Genetic Algorithms,
pages 59–66. ACM, 2009.

Nicla Bernasconi, Konstantinos Panagiotou, and Angelika Steger. On properties of random
dissections and triangulations. In SODA ’08: Proceedings of the 19th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 132–141. SIAM, 2008.

Hans-Georg Beyer, Hans-Paul Schwefel, and Ingo Wegener. How to analyse evolutionary
algorithms. Theoretical Computer Science, 287(1):101–130, 2002.

Manuel Bodirsky, Clemens Gröpl, Daniel Johannsen, and Mihyun Kang. A direct decompo-
sition of 3-connected planar graphs. Séminaire Lotharingien de Combinatoire, B54Ak:15,
2007.

Peter Cameron, Daniel Johannsen, Thomas Prellberg, and Pascal Schweitzer. Counting de-
fective parking functions. Electronic Journal of Combinatorics, 15(1):R92, 2008.

Philippe Chassaing and Guy Louchard. Phase transition for parking blocks, Brownian excur-
sion and coalescence. Random Structures and Algorithms, 21(1):76–119, 2002.

Robert M. Corless, Gaston H. Gonnet, D. E. G. Hare, David J. Jeffrey, and Donald E. Knuth.
On the LambertW function. Advances in Computational Mathematics, 5(1):329–359, 1996.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cliff Stein. Introduction to
Algorithms. MIT Press, second edition, 2001.

Deepak Dhar. Self organized critical state of sandpile automaton models. Physical Review
Letters, 64(14):1613–1616, 1990.

102 Bibliography

Reinhard Diestel. Graph Theory. Springer, third edition, 2005.

Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-
matik, 1(1):11–12, 1959.

Benjamin Doerr and Edda Happ. Directed trees: A powerful representation for sorting and
ordering problems. In CEC ’08: Proceedings of the 2008 IEEE Congress on Evolutionary
Computation, pages 3606–3613. IEEE, 2008.

Benjamin Doerr and Daniel Johannsen. Refined runtime analysis of a basic ant colony opti-
mization algorithm. In CEC ’07: Proceedings of the 2007 IEEE Congress on Evolutionary
Computation, pages 501–507. IEEE, 2007a.

Benjamin Doerr and Daniel Johannsen. Adjacency list matchings — an ideal genotype for
cycle covers. In GECCO ’07: Proceedings of the 9th Annual Genetic and Evolutionary
Computation Conference, pages 1203–1210. ACM, 2007b.

Benjamin Doerr and Daniel Johannsen. Edge-based representation beats vertex-based rep-
resentation in shortest path problems. In GECCO ’10: Proceedings of the 12th Annual
Genetic and Evolutionary Computation Conference, pages 759–766. ACM, 2010.

Benjamin Doerr and Madeleine Theile. Improved analysis methods for crossover-based algo-
rithms. In GECCO ’09: Proceedings of the 11th Annual Genetic and Evolutionary Com-
putation Conference, pages 247–254. ACM, 2009.

Benjamin Doerr, Edda Happ, and Christian Klein. A tight analysis of the (1+1)-EA for the
single source shortest path problem. In CEC ’07: Proceedings of the 2007 IEEE Congress
on Evolutionary Computation, pages 1890–1895. IEEE, 2007a.

Benjamin Doerr, Nils Hebbinghaus, and Frank Neumann. Speeding up evolutionary algorithms
through asymmetric mutation operators. Evolutionary Computation, 15(4):401–410, 2007b.

Benjamin Doerr, Christian Klein, and Tobias Storch. Faster evolutionary algorithms by su-
perior graph representation. In FOCI ’07: Proceedings of the IEEE Symposium on Foun-
dations of Computational Intelligence, pages 245–250. IEEE, 2007c.

Benjamin Doerr, Edda Happ, and Christian Klein. Crossover can provably be useful in evo-
lutionary computation. In GECCO ’08: Proceedings of the 10th Annual Genetic and Evo-
lutionary Computation Conference, pages 539–546. ACM, 2008a.

Benjamin Doerr, Daniel Johannsen, and Ching Hoo Tang. How single ant ACO systems
optimize pseudo-Boolean functions. In PPSN ’08: Proceedings of the 10th International
Conference on Parallel Problem Solving from Nature, volume 5199 of Lecture Notes in
Computer Science, pages 378–388. Springer, 2008b.

Benjamin Doerr, Anton Eremeev, Christian Horoba, Frank Neumann, and Madeleine Theile.
Evolutionary algorithms and dynamic programming. In GECCO ’09: Proceedings of the
11th Annual Genetic and Evolutionary Computation Conference, pages 771–778. ACM,
2009.

Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Drift analysis and linear functions re-
visited. In CEC ’10: Proceedings of the 2010 IEEE Congress on Evolutionary Computation.
IEEE, 2010a. To appear.

Bibliography 103

Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis. In
GECCO ’10: Proceedings of the 12th Annual Genetic and Evolutionary Computation Con-
ference, pages 1449–1456. ACM, 2010b.

Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science, 276(1–2):51–81, 2002.

Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer. Boltzmann samplers
for the random generation of combinatorial structures. Combinatorics, Probability and
Computing, 13(4–5):577–625, 2004.

Ioana Dumitriu, Joel H. Spencer, and Catherine H. Yan. Branching processes with negative
offspring distributions. Annals of Combinatorics, 7(1):35–47, 2003.

Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii academiae
scientiarum Petropolitanae, 8(1):30–32, 1741.

Pasquale J. Federico. The number of polyhedra. Philips Research Reports, 30(1):220–231,
1975.

William Feller. An Introduction to Probability Theory and Its Applications, volume 1. Wiley,
third edition, 1968.

Simon Fischer and Ingo Wegener. The Ising model on the ring: mutation versus recombination.
In GECCO ’04: Proceedings of the 6th Annual Genetic and Evolutionary Computation
Conference, Part I, volume 3102 of Lecture Notes in Computer Science, pages 1113–1124.
Springer, 2004.

Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University
Press, first edition, 2009.

Robert W. Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):1–13,
1962.

Dominique Foata and John Riordan. Mappings of acyclic and parking functions. Aequationes
Mathematicae, 10(1):10–22, 1974.

Philippe Di Francesco. Private communication, 2008.

Tobias Friedrich, Nils Hebbinghaus, Frank Neumann, Jun He, and Carsten Witt. Approx-
imating covering problems by randomized search heuristics using multi-objective models.
In GECCO ’07: Proceedings of the 9th Annual Genetic and Evolutionary Computation
Conference, pages 797–804. ACM, 2007.

Tobias Friedrich, Jun He, Nils Hebbinghaus, Frank Neumann, and Carsten Witt. Analyses of
simple hybrid algorithms for the vertex cover problem. Evolutionary Computation, 17(1):
1006–1029, 2009.

Éric Fusy. Quadratic exact-size and linear approximate-size random generation of planar
graphs. In AofA ’05: Proceedings of the 2005 International Conference on Analysis of
Algorithms, pages 125–138. DMTCS, 2005.

Éric Fusy, Dominique Poulalhon, and Gilles Schaeffer. Dissections and trees, with applications
to optimal mesh encoding and to random sampling. In SODA ’05: Proceedings of the 16th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 690–699. SIAM, 2005.

104 Bibliography

Zhicheng Gao and Nicholas C. Wormald. Sharp concentration of the number of submaps in
random planar triangulations. Combinatorica, 23(3):467–486, 2003.

Zhicheng Gao and Nicholas C. Wormald. The size of the largest components in random planar
maps. SIAM Journal on Discrete Mathematics, 12(2):217–228, 1999.

Oliver Giel and Per Kristian Lehre. On the effect of populations in evolutionary multi-objective
optimization. In GECCO ’06: Proceedings of the 8th Annual Genetic and Evolutionary
Computation Conference, pages 651–658. ACM, 2006.

Oliver Giel and Ingo Wegener. Evolutionary algorithms and the maximum matching prob-
lem. In STACS ’03: Proceedings of the 20th Annual Symposium on Theoretical Aspects
of Computer Science, volume 2607 of Lecture Notes in Computer Science, pages 415–426.
Springer, 2003.

Oliver Giel and Ingo Wegener. Maximum cardinality matchings on trees by randomized
local search. In GECCO ’06: Proceedings of the 8th Annual Genetic and Evolutionary
Computation Conference, pages 539–546. ACM, 2006.

Julian D. Gilbey and Louis H. Kalikow. Parking functions, valet functions and priority queues.
Discrete Mathematics, 197–198(1):351–373, 1999.

Lov K. Grover. A fast quantum mechanical algorithm for database search. In STOC ’96:
Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pages 212–
219. ACM, 1996.

Mark D. Haiman. Conjectures on the quotient ring by diagonal invariants. Journal of Algebraic
Combinatorics, 3(1):17–76, 1994.

Bruce Hajek. Hitting-time and occupation-time bounds implied by drift analysis with appli-
cations. Advances in Applied Probability, 14(3):387–403, 1982.

Edda Happ, Daniel Johannsen, Christian Klein, and Frank Neumann. Rigorous analyses of
fitness-proportional selection for optimizing linear functions. In GECCO ’08: Proceedings
of the 10th Annual Genetic and Evolutionary Computation Conference, pages 953–960.
ACM, 2008.

Jun He and Xin Yao. Drift analysis and average time complexity of evolutionary algorithms.
Acta Informatica, 127(1):51–81, 2001.

Jun He and Xin Yao. From an individual to a population: an analysis of the first hitting
time of population-based evolutionary algorithms. IEEE Transactions on Evolutionary
Computation, 6(5):495–511, 2002.

Jun He and Xin Yao. A study of drift analysis for estimating computation time of evolutionary
algorithms. Natural Computing, 3(1):21–35, 2004.

Carl Hierholzer. Über die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unter-
brechung zu umfahren. Mathematische Annalen, 6(1):57–63, 1873.

Christian Horoba. Analysis of a simple evolutionary algorithm for the multiobjective shortest
path problem. In FOGA ’09: Proceedings of the 10th ACM Workshop on Foundations of
Genetic Algorithms, pages 113–120. ACM, 2009.

Bibliography 105

Christian Horoba and Dirk Sudholt. Running time analysis of ACO systems for shortest
path problems. In SLS ’09: Proceedings of the 2nd International Workshop on Engineering
Stochastic Local Search Algorithms, volume 5752 of Lecture Notes in Computer Science,
pages 76–91. Springer, 2009.

Thomas Jansen and Dirk Sudholt. Analysis of an asymmetric mutation operator. Evolutionary
Computation, 18(1):1–26, 2010.

Jarník. O jistém problému minimálním. Práca Moravské Pr̆írodovĕdecké Spolec̆nosti, 6(1):
48–50, 1930.

Daniel Johannsen and Konstantinos Panagiotou. Vertices of degree k in random maps. In
SODA ’10: Proceedings of the 21th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1436–1447. SIAM, 2010.

Daniel Johannsen, Igor Razgon, and Magnus Wahlström. Solving SAT for CNF formulas
with a one-sided variable occurrence restriction. In SAT ’09: Proceedings of the 12th Inter-
national Conference on Theory and Applications of Satisfiability Testing, volume 5584 of
Lecture Notes in Computer Science, pages 80–85, 2009.

Daniel Johannsen, Piyush P. Kurur, and Johannes Lengler. Can quantum search accelerate
evolutionary algorithms? In GECCO ’10: Proceedings of the 12th Annual Genetic and
Evolutionary Computation Conference, pages 1433–1440. ACM, 2010.

Alan G. Konheim and Benjamin Weiss. An occupancy discipline and applications. SIAM
Journal on Applied Mathematics, 14(6):1266–1274, 1966.

Stefan Kratsch and Frank Neumann. Fixed-parameter evolutionary algorithms and the vertex
cover problem. In GECCO ’09: Proceedings of the 11th Annual Genetic and Evolutionary
Computation Conference, pages 293–300. ACM, 2009.

Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1):1389–1401, 1956.

Joseph P. S. Kung and Catherine H. Yan. Exact formula for moments of sums of classical
parking functions. Advances in Applied Mathematics, 31(1):215–241, 2003a.

Joseph P. S. Kung and Catherine H. Yan. Gončarov polynomials and parking functions.
Journal of Combinatorial Theory, Series A, 102(1):16–37, 2003b.

Valery A. Liskovets. A pattern of asymptotic vertex valency distributions in planar maps.
Journal of Combinatorial Theory, Series B, 75(1):116–133, 1999.

Satya N Majumdar and David S. Dean. Exact solution of a drop-push model for percolation.
Physical Review Letters, 89(11):115701.1–115701.4, 2002.

Colin McDiarmid. On method of bounded differences. Surveys in Combinatorics, 141(1):
148––188, 1989.

Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic Toolbox.
Springer, first edition, 2009.

Silvio Micali and Vijay V. Vazirani. An O(
√
|V | |E|) algorithm for finding maximum match-

ing in general graphs. In FOCS ’80: Proceedings of the 21st Annual IEEE Syposium on
Foundations of Computer Science, pages 17–27. IEEE, 1980.

106 Bibliography

Frank Neumann. Expected runtimes of a simple evolutionary algorithm for the multi-objective
minimum spanning tree problem. European Journal of Operational Research, 181(3):114–
131, 2007.

Frank Neumann. Expected runtimes of evolutionary algorithms for the Eulerian cycle problem.
Computers and Operation Research, 35(9):3–19, 2008.

Frank Neumann and Ingo Wegener. Minimum spanning trees made easier via multi-objective
optimization. In GECCO ’05: Proceedings of the 7th Annual Genetic and Evolutionary
Computation Conference, pages 763–769. ACM, 2005.

Frank Neumann and Ingo Wegener. Randomized local search, evolutionary algorithms, and
the minimum spanning tree problem. Theoretical Computer Science, 378(1):32–40, 2007.

Frank Neumann and Carsten Witt. Runtime analysis of a simple ant colony optimization
algorithm. In ISAAC ’06: Proceedings of the 17th International Symposium on Algorithms
and Computation, volume 4288 of Lecture Notes in Computer Science, pages 618–627.
Springer, 2006.

Frank Neumann, Joachim Reichel, and Martin Skutella. Computing minimum cuts by ran-
domized search heuristics. In GECCO ’08: Proceedings of the 10th Annual Genetic and
Evolutionary Computation Conference, pages 779–786. ACM, 2008.

Pietro S. Oliveto and Carsten Witt. Simplified drift analysis for proving lower bounds in
evolutionary computation. Algorithmica, 2010. In press.

Pietro S. Oliveto, Jun He, and Xin Yao. Analysis of population-based evolutionary algorithms
for the vertex cover problem. In CEC ’08: Proceedings of the 2008 IEEE Congress on
Evolutionary Computation, pages 1563–1570. IEEE, 2008.

Pietro Simone Oliveto, Jun He, and Xin Yao. Evolutionary algorithms and the vertex cover
problem. In CEC ’07: Proceedings of the 2007 IEEE Congress on Evolutionary Computa-
tion, pages 1870–1877. IEEE, 2007.

Alois Panholzer. Private communication, 2008.

Christos H. Papadimitriou, Alejandro A. Schäffer, and Mihalis Yannakakis. On the complexity
of local search. In STOC ’90: Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, pages 438–445. ACM, 1990.

Jim Pitman and Richard P. Stanley. A polytope related to empirical distributions, plane trees,
parking functions and the associahedron. Discrete and Computational Geometry, 27(4):
603–634, 2002.

Alexander Postnikov and Boris Shapiro. Trees, parking functions, syzygies, and deformations
of monomial ideals. Transactions of the American Mathematical Society, 356(8):3109–3142,
2004.

Robert C. Prim. Shortest connection networks and some generalizations. Bell System Tech-
nology Journal, 36(1):269–271, 1957.

Helmut Prodinger. The kernel method: a collection of examples. Séminaire Lotharingien de
Combinatoire, B50f:19, 2004.

Paul W. Purdom. Solving satisfiability with less searching. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 6(4):510–513, 1984.

Bibliography 107

Joachim Reichel and Martin Skutella. Evolutionary algorithms and matroid optimization
problems. In GECCO ’07: Proceedings of the 9th Annual Genetic and Evolutionary Com-
putation Conference, pages 947–954. ACM, 2007.

Joachim Reichel and Martin Skutella. On the size of weights in randomized search heuris-
tics. In FOGA ’09: Proceedings of the 10th ACM Workshop on Foundations of Genetic
Algorithms, pages 21–28. ACM, 2009.

L. Bruce Richmond and Nicholas C. Wormald. Almost all maps are asymmetric. Journal of
Combinatorial Theory, Series B, 63(1):1–7, 1995.

Galen H. Sasaki and Bruce Hajek. The time complexity of maximum matching by simulated
annealing. Journal of the ACM, 35(2):57–85, 1988.

Jens Scharnow, Karsten Tinnefeld, and Ingo Wegener. The analysis of evolutionary algorithms
on sorting and shortest paths problems. Journal of Modelling and Algorithms, 3(4):281–293,
2004.

Joel H. Spencer and Catherine H. Yan. An enumeration problem and branching processes.
Preprint, 2001.

Richard P. Stanley. Parking functions and noncrossing partitions. Electronic Journal of
Combinatorics, 4(2):R20, 1997.

Ernst Steinitz. Polyeder und Raumeinteilungen. Enzyklopedie der mathematischen Wis-
senschaften, 3(9):1–139, 1922.

Tobias Storch. How randomized search heuristics find maximum cliques in planar graphs.
In GECCO ’06: Proceedings of the 8th Annual Genetic and Evolutionary Computation
Conference, pages 567–574. ACM, 2006.

Tobias Storch. Finding large cliques in sparse semi-random graphs by simple randomized
search heuristics. Theoretical Computer Science, 386(1–2):32–40, 2007.

William T. Tutte. A census of planar maps. Canadian Journal of Mathematics, 15(1):249–271,
1963.

Magnus Wahlström. Faster exact solving of SAT formulae with a low number of occurrences
per variable. In SAT ’05: Proceedings of the 8th International Conference on Theory and
Applications of Satisfiability Testing, volume 3569, pages 309–323. Lecture Notes in Com-
puter Science, 2005.

Stephen Warshall. A theorem on Boolean matrices. Journal of the ACM, 9(1):11–12, 1962.

Richard A. Watson and Thomas Jansen. A building-block royal road where crossover is
provably essential. In GECCO ’07: Proceedings of the 9th Annual Genetic and Evolutionary
Computation Conference, pages 1452–1459. ACM, 2007.

Hassler Whitney. Congruent graphs and the connectivity of graphs. American Journal of
Mathematics, 54(1):150–168, 1932.

Carsten Witt. Worst-case and average-case approximations by simple randomized search
heuristics. In STACS ’05: Proceedings of the 22nd Annual Symposium on Theoretical
Aspects of Computer Science, volume 3404 of Lecture Notes in Computer Science, pages
44–56. Springer, 2005.

Catherine H. Yan. Generalized parking functions, tree inversions, and multicolored graphs.
Advances in Applied Mathematics, 27(2–3):641–670, 2001.

108 Bibliography

109

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus
anderen Quellen oder indirekt übernommenen Daten und Konzepte sind unter Angabe
der Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In- noch im Ausland
in gleicher oder ähnlicher Form in einem Verfahren zur Erlangung eines akademischen
Grades vorgelegt.

Saarbrücken, 7 April 2010

Daniel Johannsen

	Introduction
	Random Combinatorial Structures
	Planar Maps
	Parking Functions

	Randomized Search Heuristics
	Probabilistic Methods for Randomized Search Heuristics
	Evolutionary Computation in Combinatorial Optimization

	Further Contributions

	I Random Combinatorial Structures
	Vertex Degrees in Random Planar Maps
	Map Compositions and the Cores of Random Maps
	Random Maps in the Boltzmann Model
	Degree Inheritance for Large Cores
	Biconnected Maps
	c-Nets
	Loopless and Bridgeless Maps

	Counting Defective Parking Functions
	A Functional Equation
	An Explicit Formula
	Abel's Binomial Identity
	Asymptotics
	Conclusion

	II Randomized Search Heuristics
	Probabilistic Methods
	Preliminaries
	Drift Analysis
	The Gambler's Ruin
	Dominance of Stochastic Processes

	Evolutionary Computation in Combinatorial Optimization
	The BasicCombinatorial(1+1)EvolutionaryAlgorithm
	Matroids --- The Realm of the Greedy Algorithm
	Multiplicative Drift Analysis
	Lower Bounds and Typical Runs
	A Hard Problem for the (1+1) Evolutionary Algorithm
	Shortest Path Problems
	Multi-Criteria Optimization
	Permutation Based Search Spaces
	Asymmetric and Adjacency-Based Variation Operators
	Population and Recombination
	Conclusion

	Further Contributions
	Bibliography

