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and Annamária Kovács have been so kind to help me with handling the Bulgarian and
Hungarian sources in Chapter 2. Marco Kuhlmann delighted me with a modification of
Olaf Kummer’s Doublestroke font for improved appearance on high-resolution printers.
Thank you all!

The work on this thesis has been supported partially by the Research Training Group
“Quality Guarantees for Computer Systems” of the German Research Foundation at Saar-
land University (DFG-Graduiertenkolleg 623), coordinated by Raimund Seidel.



Zusammenfassung

Collins und Akritas (1976) haben das Descartes-Verfahren zur Einschließung der reellen
Nullstellen eines ganzzahligen Polynoms in einer Veränderlichen angegeben. Das Verfahren
unterteilt rekursiv ein Ausgangsintervall, bis die Descartes’sche Vorzeichenregel anzeigt,
dass alle Nullstellen getrennt worden sind. Die partielle Umkehrung der Descartes’schen
Regel nach Obreschkoff (1952) in Verbindung mit der Schranke von Mahler (1964) und
Davenport (1985) führt uns auf eine asymptotisch fast scharfe Schranke für den sich er-
gebenden Unterteilungsbaum. Daraus folgen direkt die besten bekannten Komplexitäts-
schranken für die äquivalenten Formen des Descartes-Verfahrens in der Monom-Basis (Col-
lins/Akritas, 1976), der Bernstein-Basis (Lane/Riesenfeld, 1981) und der skalierten Bern-
stein-Basis (Johnson, 1991), die hier vereinheitlicht dargestellt werden.

Ohne dass die Korrektheit der Ausgabe verloren geht, modifizieren wir das Descartes-
Verfahren so, dass es mit

”
Bitstream“-Koeffizienten umgehen kann, die beliebig genau an-

genähert, aber nicht exakt bestimmt werden können. Wir analysieren die erforderliche Re-
chenzeit und Präzision. Das vom Verfasser mit Kerber/Wolpert (2007) und Kerber (2008)
an anderer Stelle beschriebene Verfahren zur Bestimmung des Arrangements (der Schnitt-
figur) ebener algebraischer Kurven fußt wesentlich auf Varianten des Bitstream-Descartes-
Verfahrens; wir analysieren einen zentralen Teil davon.

Diese Arbeit ist in englischer Sprache verfasst.

Abstract

Collins und Akritas (1976) have described the Descartes method for isolating the real roots
of an integer polynomial in one variable. This method recursively subdivides an initial
interval until Descartes’ Rule of Signs indicates that all roots have been isolated. The
partial converse of Descartes’ Rule by Obreshkoff (1952) in conjunction with the bound of
Mahler (1964) and Davenport (1985) leads us to an asymptotically almost tight bound for
the resulting subdivision tree. It implies directly the best known complexity bounds for the
equivalent forms of the Descartes method in the power basis (Collins/Akritas, 1976), the
Bernstein basis (Lane/Riesenfeld, 1981) and the scaled Bernstein basis (Johnson, 1991),
which are presented here in a unified fashion.

Without losing correctness of the output, we modify the Descartes method such that
it can handle bitstream coefficients, which can be approximated arbitrarily well but can-
not be determined exactly. We analyze the computing time and precision requirements.
The method described elsewhere by the author together with Kerber/Wolpert (2007) and
Kerber (2008) to determine the arrangement of plane algebraic curves rests in an essential
way on variants of the bitstream Descartes algorithm; we analyze a central part of it.

This thesis is written in English.
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Chapter 1

Introduction

Problem statement and motivation

This thesis is concerned with a family of algorithms that accept as input a sequence of
real numbers (a0, . . . , an), understood to be the coefficients of a polynomial

A(X) = anX
n + · · ·+ a2X

2 + a1X + a0, an 6= 0, n ≥ 2, (1.1)

and produce as output a sequence of pairwise disjoint intervals (I1, . . . , Ir) such that r is
the number of distinct real roots of A(X) and each interval Ii, 1 ≤ i ≤ r, contains exactly
one real root of A(X). This is commonly called real root isolation, and the intervals
I1, . . . , Ir are called isolating intervals for the real roots of A(X).

All algorithms we consider follow the same method: A bounded initial interval I0 is re-
cursively subdivided, typically at interval midpoints, until Descartes’ Rule of Signs (Theo-
rem 2.2 below) indicates that each subinterval contains at most one root. The study of real
root isolation by this method on digital computers starts with Collins and Akritas [CA76].
Following the contemporary research literature, we call it the Descartes method for real
root isolation; references are given in §3.1.2, where we discuss this designation in more
detail. Since Descartes’ Rule counts real roots according to their multiplicities, it is a
prerequisite for the Descartes method that the roots to be isolated are simple.

The Descartes method enjoys an excellent reputation regarding its practical perfor-
mance [Joh91] [Joh98], especially when approximate arithmetic is used to accelerate the
computations with the polynomial’s coefficients [JK97] [CJK02] [RZ04]. However, all
previous approaches to the use of approximate arithmetic needed exact arithmetic as a
back-up for certain problematic inputs, see §3.3.1. This limitation is overcome by the bit-
stream Descartes algorithm, which has been developed by the author of this thesis in joint
work with Mehlhorn et al. [EKK+05], and which is presented here in a revised version. The
bitstream Descartes algorithm is the first form of the Descartes method that can handle
all inputs exclusively with approximate arithmetic, and thus the first that is applicable
to inputs whose coefficients are “bitstreams”, i.e., numbers only known through approxi-
mations with an arbitrarily small but positive absolute error. (The formal definition of a
bitstream appears on page 76.)

The bitstream Descartes algorithm, in several variations, has been an important source
of efficiency for the recent developments [EKW07] [EK08] [BK08] [BKS08] in Exacus,1 a
set of software libraries for exact yet efficient non-linear computational geometry [BEH+05].
The use of approximate arithmetic to compute exact isolating intervals matches the Exact
Geometric Computation (EGC) paradigm [Yap04b] followed by Exacus.

1http://exacus.mpi-inf.mpg.de/
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Outline of this thesis

This thesis investigates the mathematical foundations and the computational complexity
of the Descartes method in general, and the bitstream Descartes algorithm in particular.
The Descartes method is sufficiently popular and successful in practice to justify this
investigation, and to make a study of its extension to bitstream coefficients worthwhile.

Chapter 2 reviews Descartes’ Rule of Signs and its generalization from (0,∞) to arbi-
trary open intervals. The systematic use of polar forms leads to a unified treatment of
Descartes’ Rule in the power and Bernstein basis. With the Bernstein basis comes de Cas-
teljau’s algorithm, whose variation-diminishing property is a powerful tool in reasoning
about the Descartes method. In Appendix A.1, we use it to derive the Budan-Fourier
Theorem as a corollary to Descartes’ Rule, refining an argument of Schoenberg [Sch34].

The analysis of the Descartes method depends critically on partial converses of Des-
cartes’ Rule. We derive the partial converse of Obreshkoff [Obr52a] [Obr52b] in slightly
generalized form. We also give an improved account of the partial converse by differen-
tiation from [Eig07]. En route to its comparison with Obreshkoff’s partial converse, we
generalize a result of Dimitrov [Dim98] on the proximity of roots to roots of derivatives.

The chapter closes with a discussion of a family of bounds in terms of |ai/an|n−i on the
magnitudes of roots in the style of van der Sluis [vdS70]. Such bounds are needed for the
choice of an initial interval for root isolation.

In Chapter 3, we introduce the general form of the Descartes method. The well-known
algorithms of Collins/Akritas [CA76], Lane/Riesenfeld [LR81] and Johnson [Joh91, §4.2.2]
are obtained as specializations of this general form by choosing specific bases for the
representation of polynomials.

We give a new and almost tight bound on the size of the subdivision tree constructed
by the Descartes method, based on the Davenport-Mahler bound. Our tree bound entails
almost immediately the best known bit complexity statements for the aforementioned algo-
rithms on polynomials of degree n with τ -bit integer coefficients, namely O(n5(τ +log n)2)
with classical and O∼(n4τ2) with asymptotically fast subdivision. These bounds on tree
size and bit complexity originate from ideas by Vikram Sharma and Chee Yap that were
worked out and published jointly with the author of this thesis in [ESY06], cf. [Sha07a,
§2]. Here, we present a revised derivation of the tree bound.

The bitstream Descartes algorithm uses a randomized choice of subdivision points to
escape from the numerically hard boundary cases that can arise for any fixed choice of sub-
division points. When we allow one more level of subdivision than for exact coefficients, the
magnitude of the polynomial’s value, compared to the approximation precision, becomes
an effective criterion for the feasibility of a subdivision point. The algorithm determines
by exponential guessing a precision that suffices to make a large fraction of subdivision
points feasible. We present a revised form of the algorithm that determines this precision
directly, without the detour through an estimate of root separation and without the close
coupling between precision and subdivision depth that existed in [EKK+05].

The two key ingredients to the analysis of the bitstream Descartes algorithm are a
bound on its subdivision tree, inherited from our treatment of the Descartes method for
exact coefficients, and an estimate of the precision required. For the latter, we borrow a
technique from Neumaier [Neu03] to remove the squarefreeness condition imposed by the
original estimate in [EKK+05]. The results of our analysis are stated in §3.3.8 and §3.3.9.

10



The last part of the thesis treats an application of the bitstream Descartes algorithm
in the geometric analysis of a square-free algebraic curve F ∈ Z[X,Y ] by the method
of [EKW07]. A central task in this method is real root isolation on F (α, Y ), where α is a
real root of R(X) := Res(F,DY F, Y ), for the case that F (α, Y ) has a unique multiple real
root and that the number m of distinct real roots is known in advance. These conditions
allow to adapt the Descartes method such that it can isolate the multiple real root, too.
The bitstream Descartes algorithm so modified needs O(n9 log n · (τ + log n)2) bit opera-
tions in total for root isolation on F (α, Y ) at all real roots α of R(X), if F has degree n
and τ -bit integer coefficients. (This bound excludes the cost of coefficient approximation.)
Our derivation of this result exemplifies the techniques necessary to analyze the bitstream
Descartes algorithm for input polynomials with algebraic coefficients. It relies on a gen-
eralization of the Davenport-Mahler bound to non-square-free polynomials (see page 54),
in which the discriminant is replaced by a suitable subdiscriminant.

Other methods for real root isolation

Solving polynomial equations is a fundamental task in symbolic computation as well as
numerical analysis, and there are many different algorithms that compute their solutions,
for various notions of what constitutes a solution. We mention selected examples.

The Descartes method belongs to a family of methods that compute solutions in the
form of isolating intervals by recursive subdivision of an initial interval. Historically,
the Descartes method has close links to the Continued Fractions method, whose study
on digital computers also starts with Collins and Akritas [CA76], but whose origin is
the work of Vincent [Vin36] from the 19th century. The Continued Fractions method
combines Descartes’ Rule with a different subdivision scheme, the modern forms of which
are controlled by lower bounds on the positive real roots. We touch upon the Continued
Fractions method again in §3.1.2, where further references are given.

Another relative of the Descartes method retains its subdivision scheme – recursive
bisection of bounded intervals –, but employs a different termination criterion, namely
Sturm’s Theorem. The best known complexity bound for the resulting algorithm on
polynomials of degree n with τ -bit integer coefficients is O∼(n4τ2), see [DSY07], the same
as for the Descartes method. However, the simpler evaluation of Descartes’ Rule makes
the Descartes method more efficient in practice on a wide range of inputs [Joh91] [Joh98],
even if the initial computation of the Sturm sequence is not taken into account.

The asymptotically efficient splitting-circle method2 of Schönhage [Sch82] for numeri-
cal factorization in C[X] and the subsequent work by Pan [Pan02], as well as the high-
performance complex rootfinder package MPSolve3 of Bini and Fiorentino [BF00] exem-
plify a different notion of solution: Those methods accept as input a complex polynomial of
degree n and produce an output that provides numerical approximations to the n complex
roots, together with error bounds that can be made arbitrarily small. In more geometric
terms, those algorithms deliver the solutions of a polynomial equation as circles in the
complex plane, which are not necessarily disjoint. However, if the polynomial’s coeffi-
cients are real and if all real roots are simple, then isolating intervals can be obtained from
such an output, provided that the circles have radii small enough to satisfy the following

2http://www.cs.uni-bonn.de/~schoe/tp/TPpage.html
3http://www.dm.unipi.it/cluster-pages/mpsolve/
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condition: All circles that intersect the real line are pairwise disjoint (to achieve isolation)
and have images under complex conjugation that are disjoint to any other circle (to certify
that they belong to a real root). In that case, the non-empty intersections of the circles
with the real line are isolating intervals for the real roots.

An advantage of those methods is their ability to zoom in quickly on a cluster of several
complex roots. By contrast, the interval boundaries in recursive bisection converge only
linearly towards a cluster of roots before eventually separating them.

It is possible to generalize the concept of a “real root” beyond the field of real numbers
through the theory of real closed fields [vdW93, Kap. 11] [BPR06, §2], which goes back
to Artin and Schreier. A real closed field is an ordered field such that adjunction of

√
−1

yields an algebraically closed field, analogous to the relation between the real numbers
and the complex numbers. Archimedean real closed fields are isomorphic to subfields of
the real numbers and are, in that sense, covered by the setting discussed in this thesis.

On the other hand, a non-archimedean real closed field contains, by definition, infinites-
imal elements. If a polynomial has two real roots that differ by an infinitesimal, recursive
bisection of an interval with non-infinitesimal width cannot separate them. Hence the
field of real numbers is the most general coefficient domain that makes sense for root iso-
lation with rational intervals as in the Descartes method. In the non-archimedean setting,
a Thom encoding [BPR06, §2.1, §10.4] can be used instead to represent real roots.

Notation

We write N := {1, 2, 3, . . .} and N0 := {0, 1, 2, 3, . . .}. The letters Z, Q, R and C denote
the integer, rational, real and complex numbers, as usual. A complex number z is either
real, z ∈ R, or imaginary, z ∈ C \ R. A superscript asterisk denotes a ring’s group of
units; in particular, R∗ = R \ {0} and C∗ = C \ {0}.

For intervals, inclusion of boundary points is denoted by square brackets, as for the
closed interval [c, d], whereas parentheses denote exclusion of boundary points, as for the
open interval (c, d).

We use the following forms of Gauss brackets: Given x ∈ R, the floor function is written
bxc := max

(
Z ∩ (−∞, x]

)
, and dxe := min

(
Z ∩ [x,+∞)

)
stands for the ceiling function.

In pseudocode, bxe denotes rounding to the nearest integer, with .5 rounded arbitrarily,
whereas [x] will be assigned a special meaning in Definition 3.35 on page 76.

The reader is alerted to the visual similarity between binomial coefficients
(n
k

)
, which

are scalars, and column vectors
( x

y

)
with two components; unfortunately this cannot be

avoided without deviating from standard notation, but the meaning is always clear from
the context.

We write lnx for the natural logarithm of a real number x > 0. Its base is Euler’s
number e = exp(1) = 2.71828... . The symbol logb x = (lnx)/(ln b) denotes the logarithm
of x with base b > 0. In case of the dyadic logarithm, we omit the subscript b = 2 for
brevity and write log x.

To compare the order of growth of non-negative functions f(x) and g(x) for x→ +∞,
up to constant factors, we employ the notations f(x) = O(g(x)), f(x) = Θ(g(x)) and
f(x) = Ω(g(x)) advocated by Knuth [Knu76] [Knu97, §1.2.11.1], which have gained al-
most universal acceptance in computer science, despite justified concerns about “one-way
equalities”.

12



Chapter 2

Descartes’ Rule of Signs, Some Extensions,
and Other Foundations

This chapter reviews mathematical background material for the Descartes method. With
a few, explicitly indicated exceptions, none of the results are new. However, some items
have not previously been presented in relation to the Descartes method.

2.1 Descartes’ Rule and Obreshkoff’s extension

2.1.1 Descartes’ Rule

Definition 2.1. Let (a0, . . . , an) be a sequence of real numbers. We write var(a0, . . . , an)
for the number of sign variations in the sequence, or formally

var(a0, . . . , an) := #{(i, k) ∈ {0, . . . , n}2 | i < k, aiak < 0, ∀i < j < k : aj = 0}. (2.1)

Theorem 2.2 (Descartes’ Rule of Signs). Let A(X) =
∑n

i=0 aiX
i be a polynomial of

degree n with real coefficients that has exactly p positive real roots, counted with mul-
tiplicities. Let v = var(a0, . . . , an) be the number of sign variations in its coefficient
sequence. Then v ≥ p and v ≡ p (mod 2). If all roots of A(X) are real, then v = p.

Proof. We first show v ≡ p (mod 2). The multiplicity of a real root ϑ is odd if and only if
A(X) changes sign at ϑ. The number p is the sum of the multiplicities of the positive real
roots, hence p is odd if and only if the signs of A(x) for x→ +∞ and for x→ 0+ disagree.
As these are the signs of the leading coefficient and the lowest non-zero coefficient, resp.,
they differ if and only if v is odd.

Let us now show v ≥ p by induction on the degree n. The base case n = 1 is trivial. For
the inductive step, we consider the derivative A′ of degree n − 1 with its p′ positive real
roots and v′ sign variations, and we assume v′ ≥ p′. By Rolle’s Theorem, there is a real
root of A′ between any two adjacent real roots of A. If A has a k-fold real root ϑ, this is
a (k − 1)-fold root of A′; we think of this as k − 1 roots of A′ at ϑ “between” the k roots
of A at ϑ. Altogether, there are at least p− 1 positive roots of A′ between the p positive
roots of A, hence p′ ≥ p− 1. In summary, we obtain v ≥ v′ ≥ p′ ≥ p− 1, where v = p− 1
is excluded by congruence modulo 2, hence v ≥ p, as desired.

It remains to show v ≤ p in case all roots of A are real. We argue by induction as above.
According to our preceding considerations, there are n− 1 real roots of A′ between the n
real roots of A. In particular, all n− 1 roots of A′ are real, so we may assume inductively
that v′ ≤ p′. Of the n− 1 roots of A′, n− p− 1 are between the n− p non-positive roots
of A, hence at most p roots of A′ are positive. Thus we obtain v − 1 ≤ v′ ≤ p′ ≤ p, where
again equality is excluded, so v ≤ p as desired.

13



Proofs of Descartes’ Rule that employ Rolle’s Theorem in such an inductive argument
have been discovered repeatedly, for example by Jaccottet [Jac09] and Wang [Wan04].

2.1.2 Obreshkoff’s extension

Descartes’ Rule only gives an upper bound on the number of roots in a certain range.
Under which conditions does it give an exact count? We shall present a particularly general
answer due to Obreshkoff1 that has previously been used by Alesina and Galuzzi [AG98]
in connection with the Continued Fractions method, but appears to have been overlooked
in previous work (including our own) on the Descartes method, the algorithm that we
will present in Chapter 3. Obreshkoff’s starting point is the following result from [Obr25,
§1.III], concerning the inclusion of imaginary roots in the count of Descartes’ Rule.

Lemma 2.3 (Obreshkoff (1925)). Let A(X) =
∑n

i=0 aiX
i be a real polynomial of de-

gree n. Let B(X) =
∑n+2

i=0 biX
i = A(X) · (X2 − 2ρ cos(ϕ)X + ρ2) with ρ > 0. Let

v = var(a0, . . . , an) and v′ = var(b0, . . . , bn+2). If 0 ≤ ϕ < π
n+2−v , then v′ ≥ v + 2 and

v′ ≡ v (mod 2).

Obreshkoff’s proof of the lemma also appears in [Obr03, §II.8] and [Obr63, §17]; a more
recent textbook reference is [RS02, Lem. 10.3.2(ii)]. Once this lemma is established, the
further argumentation is straightforward. Nevertheless, we carry it out to achieve a slight
but helpful generalization.

Theorem 2.4 (Obreshkoff (1952)). Consider the real polynomial A(X) =
∑n

i=0 aiX
i of

degree n and its complex roots, counted with multiplicities. Let v = var(a0, . . . , an). If
A(X) has at least p roots with arguments in the range − π

n+2−p < ϕ < π
n+2−p , then v ≥ p.

Proof. Let us call the roots in question ϑ1, . . . , ϑp. We may assume w.l.o.g. that imaginary
roots among them occur in pairs of complex conjugates. (If not, we can add conjugates
and increase p, this only widens the range of permissible arguments.) We choose indices
such that the first 2c roots ϑ1 = ϑ2, . . . , ϑ2c−1 = ϑ2c are pairs of complex conjugates and
the remaining r = p−2c roots are real. Let ρi denote the magnitude and ±ϕi, 0 < ϕi < π,
denote the arguments of ϑ2i−1 and ϑ2i for any 1 ≤ i ≤ c.

To each pair of complex-conjugate roots corresponds a quadratic factor

Qi(X) = (X − ϑ2i−1)(X − ϑ2i) = X2 − 2ρi cos(ϕi)X + ρ2
i

of A(X). Let Gc(X) = A(X) and Gi−1(X) = Gi(X)/Qi(X) for i = c, . . . , 1. Clearly,
deg(Gi) = n − 2c + 2i. We write vi for the number of sign variations in the coefficient
sequence of Gi. Let us prove the theorem inductively by showing that vi ≥ r + 2i.

For the base case i = 0, we observe that G0(X) has at least r positive real roots and
apply Descartes’ Rule.

For the inductive step from i to i+ 1, we recall p = r + 2c and observe

0 < ϕi+1 <
π

n+ 2− (r + 2c)
=

π

(n− 2c+ 2i) + 2− (r + 2i)
≤ π

deg(Gi) + 2− vi
.

1Nikola Obreshkoff / Никола Обрешков (1896–1963), prominent Bulgarian mathematician, professor at
the University of Sofia and member of the Bulgarian Academy of Sciences. His last name also occurs
in the transcriptions “Obrechkoff” (French), “Obreschkoff” (German), “Obreshkov” and “Obreškov”.
Serdica Mathematical Journal 22 (1996), issue 4, commemorates his 100th birthday and contains a
short biography (pp. ii–vi) by P. Russev.
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Figure 2.1: The argument ranges of Theorem 2.7 for n = 8 and p = q = 2.

Hence Lemma 2.3 applied to Gi(X) and Qi+1(X) implies vi+1 ≥ vi + 2 ≥ r + 2(i+ 1), as
desired.

Corollary 2.5. If A(X) has exactly p roots with arguments in the range − π
n+2−p < ϕ <

π
n+2−p , then v ≥ p and v ≡ p (mod 2).

Obreshkoff demonstrates that the argument range has to exclude its boundaries by means
of the example A(X) = Xn +1, which has a pair of conjugate roots with arguments ±π/n
but no sign variations.

Lemma 2.6. Let (a0, . . . , an) be a sequence of n real numbers. Then var(a0, . . . , an) +
var(a0, . . . , (−1)iai, . . . , (−1)nan) ≤ n.

Proof. By induction on n. Let vn := var(a0, . . . , an)+(a0, . . . , (−1)iai, . . . , (−1)nan). The
base case n = 0 is clear. Let us proceed from n to n+ 1. We distinguish two cases.

If an 6= 0, then at most one of (an, an+1) and ((−1)nan, (−1)n+1an+1) exhibits a sign
variation, hence vn+1 ≤ vn + 1 ≤ n+ 1.

If an = 0, then vn = vn−1 ≤ n− 1 and vn+1 ≤ vn + 2 ≤ n+ 1.

Theorem 2.7 (Obreshkoff (1952)). Consider the real polynomial A(X) =
∑n

i=0 aiX
i of

degree n and its complex roots, counted with multiplicities. Let v denote var(a0, . . . , an).
If A(X) has at least p roots with arguments in the range − π

n+2−p < ϕ < π
n+2−p , and at

least n− q roots with arguments in the range π− π
q+2 ≤ ψ ≤ π + π

q+2 , then q ≥ v ≥ p. If,
in particular, q = p, then A(X) has exactly p roots with arguments ϕ in the range given
above and v = p.

Notice that Theorem 2.4 is contained in this theorem as special case q = n.

Proof. By Theorem 2.4, v ≥ p. It remains to show v ≤ q. In a first step, we prove
this under the stronger condition that n − q roots have an argument in the open range
π − π

q+2 < ψ < π + π
q+2 . This allows us to apply Theorem 2.4 to the number v′ of sign

variations in the coefficient sequence of A(−X) and thus to obtain v′ ≥ n − q. Since
v + v′ ≤ n by the preceding lemma, we find v ≤ n− v′ ≤ q.

Let us now extend the theorem to the case that A(X) has n−q roots with arguments in
the closed range π− π

q+2 ≤ ϕ ≤ π+ π
q+2 . As the coefficients of A(X) depend continuously on
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the roots, A(X) is the coefficient-wise limit of a sequence (A0, A1, A2, . . .) of polynomials
Ak(X) =

∑n
i=0 akiX

i that satisfy the stronger condition above and thus have at most q
sign variations. Each Ak presents a certain sign pattern (sgn(ak0), sgn(ak1), . . . , sgn(akn)),
of which there are only finitely many. Thus there exists a pattern (σ0, . . . , σn) that is
assumed by all elements of an infinite subsequence and has at most q sign variations.
In the limit, each coefficient ai retains the sign σi or vanishes. Hence var(a0, . . . , an) ≤
var(σ0, . . . , σn) ≤ q.
Obreshkoff originally published the two preceding theorems 1952 both in Russian [Obr52a]
and in Bulgarian with French summary [Obr52b]. More accessible sources are the respec-
tive sections in Obreshkoff’s textbooks: §II.8 of the English book [Obr03] on (complex)
Zeros of Polynomials, which originally appeared 1963 in Bulgarian language; and §17 of
the German book [Obr63] from 1963 on Distribution and Computation of the Zeros of
Real Polynomials. Obreshkoff’s literal formulation of the first theorem is what we called
Corollary 2.5. Obreshkoff’s wording of Theorem 2.7 treats the particular case p = q and
excludes the boundaries in the condition on ψ. We have come to consider the case p 6= q
in response to a question posed by R. Seidel (personal communication, February 2007).
While our formulation of the theorems are more general, we did not have to add anything
new to Obreshkoff’s proof technique to obtain them.

These two theorems were no isolated results at that time. Already in the 1920s,
Obreshkoff found other extensions of the rules of Descartes and Budan-Fourier, which are
also presented in his books. The recent book by Rahman and Schmeisser [RS02, §10] con-
tains a wealth of such results; a further reference is Marden’s classic monograph [Mar66].

2.1.3 Simpler proofs for special cases

We need only the special cases p = q = 0 and p = q = 1 of Theorem 2.7 in our analysis of
the Descartes method (§3.1.5). For them, we can give short, complete proofs.

Proposition 2.8 (case p = q = 0). If all n complex roots of A(X) =
∑n

i=0 aiX
i have a

non-positive real part, then var(a0, . . . , an) = 0.

Proof. Each real root x of A(X) corresponds to a linear factor X − x, x ≤ 0. Each
complex-conjugate pair of imaginary roots z, z of A(X) corresponds to a quadratic factor
X2 − (z + z)X + |z|2, z + z ≤ 0. Their product A(X)/an has no negative coefficients.

This argument is so simple that it seems hopeless to pinpoint its first occurrence. La-
grange argued in this fashion already in the late 18th century [AG98]. The “one-circle
theorem” arising from Proposition 2.8 through any Möbius transformation (0,∞)→ (a, b)
(Proposition 2.33 below) was already used by Vincent [Vin36, p. 345].

Proposition 2.9 (case p = q = 1). If A(X) =
∑n

i=0 aiX
i has one simple positive real

root, and all other complex roots have an argument ϕ in the range 2
3π ≤ ϕ ≤ 4

3π, then
var(a0, . . . , an) = 1.

Notice that this is equivalent to Theorem 2.7 for p = q = 1, because a unique complex
root with positive real part lacks a complex conjugate and thus is necessarily real.

Proof. Let us write A(X) as A(X) = A0(X)
∏k

j=1(X
2 − 2ξjX + ξ2j + η2

j ) where all roots
of A0(X) are real and ξj ± iηj , j = 1, . . . , k, are the pairs of complex-conjugate roots of
A(X). The condition on their arguments is equivalent to

ξj < 0 and η2
j ≤ 3ξ2j , (2.2)
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because tan(π/3) =
√

3. As A0(X) has only real roots, Descartes’ Rule counts exactly, so
A0(X) exhibits just one sign variation. For a proof by induction, it suffices to demonstrate:

(*) If the real polynomial F (X) has exactly one sign variation, and if X2−2ξjX+ξ2j +η2
j

satisfies the condition (2.2), then also their product has exactly one sign variation.

To show (*), we change coordinates by replacing X with −2ξjX. Since −2ξj > 0, this does
not affect the numbers of sign variations, and it puts the quadratic factor into the simpler
form 4ξ2j (X2 + X + λ) where λ = (ξ2j + η2

j )/(4ξj). Clearly, λ ≥ 1
4 . The condition (2.2)

implies λ ≤ 1. Let f0, . . . , fm denote the coefficients of F (X), and set f−2 = f−1 = 0 =
fm+1 = fm+2. We may assume without loss of generality that fm > 0. The existence
of a unique sign variation of F (X) means that there exists an index j, 0 ≤ j < m,
such that f0, . . . , fj ≤ 0 and fj+1, . . . , fm ≥ 0. The coefficients of the product G(X) =
(X2 +X + λ)F (X) are

gi = fi−2 + fi−1 + λfi, i = 0, . . . ,m+ 2.

Clearly, g0, . . . , gj ≤ 0 and gj+3, . . . , gm+2 ≥ 0. It remains to show gj+1 ≤ gj+2; this
guarantees a unique sign variation of G(X) irrespective of the actual signs of gj+1 and
gj+2. Indeed, we have

gj+1 = fj−1 + fj + λfj+1 ≤ fj + λfj+1 ≤ fj + fj+1 ≤ fj + fj+1 + λfj+2 = gj+2.

The condition (2.2) enters the proof at the middle inequality in the form λ ≤ 1.

This proposition and a proof similar to the one above have been published 1941 by
Stephan Lipka (Hungarian: Lipka István) both in German [Lip41b] and in Hungarian with
German summary [Lip41a]. (Lipka is also known for other results in this area, e.g., [Lip42],
see [RS02, §10.2].) Lipka’s proof differs from the one above in that he invokes the famous
general theorem of Schoenberg2 [Sch30] on variation-diminishing linear transformations to
treat the subsequence (gj , . . . , gj+3). This saves our arguments regarding gj+1 ≤ gj+2 but
necessitates a discussion of signs of minors of the transformation matrix and some extra
arguments in case of vanishing coefficients. A direct proof with some similarity to the one
above, but with more case distinctions, appears in [AG98, Cor. 8.2]. Ostrowski [Ost50]
gave a different proof of this proposition based on his earlier results on normal power
series, see also [KM06].

How should we refer to the results of this section? Theorem 2.7 subsumes all the other
results. It deserves to be reported and remembered in full generality to avoid needless
gaps in the presentation of the mathematical background of Descartes’ Rule. The name
that has to be attached to it is Obreshkoff, for two reasons:

• Obreshkoff [Obr52a] [Obr52b] was the first to prove this theorem in essentially full
generality in 1952 (our additions are minor); even though Lipka [Lip41a] [Lip41b] had
previously treated special cases, Proposition 2.9 and beyond. (The crucial argument
(*) in Lipka’s and our proof of Proposition 2.9, however, is in turn a special case of
an older lemma by Obreshkoff [Obr25, §1.IV].)

• The core of the proof of Theorem 2.7 is Lemma 2.3, which appears in an article by
Obreshkoff [Obr25, §1.III] received August 20th, 1923, clearly predating the contri-
butions of Lipka and Ostrowski.

2Isaac Jacob Schoenberg; see footnote 2 on page 124.
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Hence we refer to Theorem 2.7 as “Obreshkoff’s extension of Descartes’ Rule of Signs” in
the sequel. We refer to the “q ≥ v” part of the Theorem as “Obreshkoff’s partial converse
to Descartes’ Rule of Signs”, because it gives an upper bound on v in terms of roots,
whereas Descartes’ Rule gives a lower bound.

2.2 Descartes’ Rule for arbitrary open intervals

Descartes’ Rule, in its form discussed above, is concerned with the number of roots in
the open interval (0,∞). From §2.2.3 onwards, we will generalize it to arbitrary open
intervals. This requires some preparations.

2.2.1 The projective line

Let K stand for any of R and C.

To get a handle on the right endpoint of the interval (0,∞), we wish to extend the
affine line K by a unique point at infinity denoted ∞. To achieve this in terms of sets,
we can simply define K̂ := K ∪ {∞}. We can even turn this into a topological space by
distinguishing a subset U ⊆ K̂ as open if ∀x ∈ U : ∃ε > 0: Uε(x) ⊆ U , where we define the
ε-neighbourhood Uε(x) as usual for x ∈ K and as Uε(∞) = {x ∈ K | |x| > 1/ε} ∪ {∞} for
the point at infinity. For the obvious reasons, K̂ is called one-point compactification of K.
Clearly, the subspace topology of K in K̂ is the usual topology of K. Convergence to ∞
as defined by the topology of K̂ is equivalent to the usual definition of proper divergence
in K.

We want a model of K̂ that comes with a uniform coordinate system: the 1-dimensional
projective space P1(K), also called the projective line. Recall that P1(K) is defined as
the set of equivalence classes of K2 \ {(0, 0)} under collinearity, which is the relation
(x, y) ∼ (x′, y′) :⇔ ∃λ ∈ K∗ : λ(x, y) = (x′, y′). Let us write η : (K2 \ {(0, 0)}) → P1(K)
for the canonical projection of representatives onto equivalence classes. The equivalence
class η((x, y)) of (x, y) ∈ K2 is also written [x : y]. If y = 0, then we have [x : y] = [1 : 0].
If y 6= 0, then [x : y] = [x/y : 1]. Hence P1(K) is indeed the disjoint union of the point at
infinity [1 : 0] and a copy of K injected by K → P1(K), x 7→ [x : 1].

Consider the group GL2(K) of invertible 2 × 2 matrices. The matrices
(

a 0
0 a

)
, a ∈ K∗,

form a normal subgroup N . In the quotient PGL2(K) := GL2(K)/N , two matrices are
equivalent iff they differ only by multiplication with a ∈ K∗. We write

[
a b
c d

]
for the equiv-

alence class of
(

a b
c d

)
. PGL2(K) acts on P1(K) by matrix multiplication of representatives,

i.e.,
[

a b
c d

][ x
y

]
=
[ ax+by

cx+dy

]
. This is independent of the choice of representatives and thus

well-defined.

Let us re-examine this group action in more familiar terms. We write x for [x : 1] and
∞ for [1 : 0]. Let us first assume that c 6= 0. Then

[
a b
c d

]
acts as follows:

x 7→ ax+ b

cx+ d
if x 6= −d/c,

−d
c
7→ lim

x→− d
c

ax+ b

cx+ d
=∞,

∞ 7→ lim
x→∞

ax+ b

cx+ d
=
a

c
.
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In the special case c = 0, we have d 6= 0 by invertibility, so we can choose d = 1. The
action of

[
a b
0 1

]
is an affine map: x 7→ ax+ b, ∞ 7→ ∞.

Suppose that
[

a b
c d

]
and

[
a′ b′

c′ d′

]
act equally on PGL2(K). Then

[
a′ b′

c′ d′

]−1[ a b
c d

]
acts as

the identity. This is only true for
[

1 0
0 1

]
, so we actually have

[
a b
c d

]
=
[

a′ b′

c′ d′

]
. (In other

words: The action we consider is faithful.) We can thus identify the elements of PGL2(K)
with the maps K̂ → K̂ of the form x 7→ ax+b

cx+d , ad − bc 6= 0. These maps are called

Möbius transformations of K̂. From the matrix representation, it is clear that they form
a group and thus are bijective. From the fractional representation, it follows that they are
continuous and hence even homeomorphisms.

Much of the material above is developed in greater detail in the initial chapters of
Anderson’s book [And99].

Let us restrict now to the case K = R and discuss affine and projective intervals. For
the purposes of this thesis, neither the empty set nor the entire line shall be considered
intervals; in other words, our intervals are always a non-empty proper subsets. The points
on the boundary of an interval are its endpoints.

An affine open interval is a connected open subset of R. It can be identified unam-
biguously by specifying its two endpoints, one of which may be the point at infinity.
A projective open interval I is a connected open subset of R̂ = P1(R). As in the affine
case, every projective open interval has two distinct endpoints, but the correspondence of
intervals to endpoints is not bijective.

Proposition 2.10. Let
(

c1
c2

)
,
(

d1
d2

)
be two linearly independent elements of R2.

(i) There are exactly two projective open intervals that have endpoints [c1 : c2] and
[d1 : d2]; these are the two connected components of P1(R) \ {[c1 : c2], [d1 : d2]}.
One of them, call it I+, contains [c1 + d1 : c2 + d2] but not [c1 − d1 : c2 − d2]; the
other one, call it I−, contains [c1 − d1 : c2 − d2] but not [c1 + d1 : c2 + d2].

(ii) There is a uniquely determined projective open interval I that has endpoints [c1 : c2]
and [d1 : d2], and contains [c1 + d1 : c2 + d2].

(iii) Any projective open interval I arises in this way. The representatives
(

c1
c2

)
,
(

d1
d2

)
of

its endpoints are determined up to order and multiplication by positive constants
and a common sign ±1.

Intervals as in the pair (I+, I−) are called complementary to each other.

Proof. Ad (i). As {
(

c1
c2

)
,
(

d1
d2

)
} is a basis of R2, every point of R2 has a unique expression

of the form λ
(

c1
c2

)
+ µ

(
d1
d2

)
. This induces a partition of R2 as follows: The points with

λµ = 0 lie on one of the lines through the origin spanned by
(

c1
c2

)
and

(
d1
d2

)
. The remaining

points form two open double cones: X+ in which λµ > 0, and X− in which λµ < 0. Their
projections I+ := η(X+) and I− := η(X−) to P1(R) are the desired intervals.

Ad (ii). Immediate from (i).

Ad (iii). Obvious.

We remark that the point [c1 +d1 : c2 +d2] is not special. Any point of I can be written
in this way by choosing suitable representatives for the endpoints.

A projective open interval I is an affine open interval if and only if ∞ /∈ I. The
image of an (affine or projective) open interval under a Möbius transformation M is a
projective open interval, because M is a homeomorphism and thus preserves openness
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and connectedness. However, the image of an affine open interval I is not necessarily an
affine open interval, since M may take an element of I to ∞.

Proposition 2.11. Let
(

c1
c2

)
,
(

d1
d2

)
be two linearly independent elements of R2. Let I

be the projective open interval that has endpoints [c1 : c2] and [d1 : d2] and contains
[c1 + d1 : c2 + d2]. The matrices M ∈ GL2(R) that represent Möbius transformations
mapping (0,∞) to I are precisely those of the forms M =

( λc1 µd1

λc2 µd2

)
and M =

( µd1 λc1
µd2 λc2

)

with λ, µ ∈ R∗, λµ > 0.

Proof. As Möbius transformations are homeomorphisms, endpoints are mapped to end-
points. Therefore, the matrices of said form with unconstrained signs of λ and µ are
precisely those that map (0,∞) to I or the projective open interval J that is complemen-
tary to I. The point [1 : 1] ∈ (0,∞) is mapped to [λc1 +µd1 : λc2 +µd2] = [c1 + µ/λ · d1 :
c2 + µ/λ · d2]. By Proposition 2.10(ii), this shows that (0,∞) is mapped to I for λµ > 0
and to J otherwise.

2.2.2 Polar forms

Let K stand for any of R and C.

Definition 2.12. Let n ∈ N. A homogeneous polar form of degree n is an n-ary map
K2 × · · · ×K2 → K which is multilinear (i.e., linear in each argument) and symmetric.

We write the evaluation of a polar form F on an n-tuple of vectors (
( x1

y1

)
,
( x2

y2

)
, . . . ,

( xn
yn

)
)

as F
[( x1

y1

)( x2
y2

)
· · ·
( xn

yn

)]
and denote a repetition of arguments by superscripts, as in

F
[(

c1
c2

)2( d1
d2

)3]
= F

[(
c1
c2

)(
c1
c2

)(
d1
d2

)(
d1
d2

)(
d1
d2

)]
.

Polar forms are classical objects. They were rediscovered and popularized under the
name “blossoms” by Ramshaw [Ram87] [Ram89] for the study of parametric curves, see
also [PBP02] [Far97]. Ramshaw explains how to turn our notational convention of jux-
taposition of arguments and superscripts for repetitions into a proper mathematical con-
struction (a tensor product).

We proceed to determine a closed-form expression for the value F
[(

X1
Y1

)
· · ·
(

Xn
Yn

)]
at

indeterminate arguments. Using multilinearity, let us “multiply out” the arguments(
Xi
Yi

)
= Xi

(
1
0

)
+ Yi

(
0
1

)
to obtain a polynomial in the Xi, Yi whose coefficients are values

of F at n-tuples of basis vectors
(

1
0

)
,
(

0
1

)
. By symmetry, we can reorder these n-tuples

and find

F
[(

X1
Y1

)
· · ·
(

Xn
Yn

)]
=

n∑

i=0

F
[(

1
0

)i( 0
1

)n−i]
( ∑

#J=i

∏

j∈J

Xj

∏

j /∈J

Yj

)
. (2.3)

The summation in the parentheses is over all subsets J of {1, . . . , n} with cardinality i. It
follows that all polar forms of degree n have a unique expression of the form

F
[(

X1
Y1

)
· · ·
(

Xn
Yn

)]
=

n∑

i=0

fi ·
( ∑

#J=i

∏

j∈J

Xj

∏

j /∈J

Yj

)
, f0, . . . , fn ∈ K. (2.4)

Conversely, any choice of the fi in (2.4) yields a polar form F .
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Let us now consider the diagonal of the polar form (2.4), that is the map K2 → K ob-
tained by substituting the same vector for all arguments. It is a homogeneous polynomial

F
[(

X
Y

)n]
=

n∑

i=0

fi

(
n

i

)
XiY n−i, fi = F

[(
1
0

)i( 0
1

)n−i]
. (2.5)

Vice versa, we see that any homogeneous polynomial is the diagonal of a uniquely deter-
mined polar form. Justified by this bijective correspondence, we will often use the same
symbol, such as F , to refer interchangeably to a homogeneous polynomial F (X,Y ) and
its polar form F

[(
X1
Y1

)
· · ·
(

Xn
Yn

)]
.

The ability to obtain a polynomial’s coefficients as values of the polar form immediately
yields the following explicit expression for coefficients arising from a parameter transfor-
mation.

Lemma 2.13. Consider a polar form F of degree n and M ∈ GL2(K). The coefficient of(n
i

)
XiY n−i in G(X,Y ) := F (M(X,Y )) is G

[(
1
0

)i( 0
1

)n−i]
= F

[
(M
(

1
0

)
)i(M

(
0
1

)
)n−i

]
.

Also, we can express a polynomial’s derivative by evaluating its polar form suitably.

Lemma 2.14. The derivative of F
[(

X
Y

)n]
w.r.t. X is n · F

[(
X
Y

)n−1( 1
0

)]
.

Proof. Apply the product rule and differentiate the multilinear map in each argument,
noting that the derivative of

(
X
Y

)
is
(

1
0

)
, then use symmetry to reorder the arguments

and attain n identical summands.

This gives a different interpretation to the coefficients fi in (2.5): Taylor expansion at the
point [0 : 1]. We remark that fixing one argument of F at an arbitrary vector

( x0
y0

)
in

place of
(

1
0

)
elegantly implements the differential operator x0

∂
∂X + y0

∂
∂Y , which yields the

polar derivative with pole [x0 : y0]; cf. [Far97, §4.7] [Mar66, §10] [RS02, §3.1].
With Lemma 2.14, we can generalize the well-known relation between the multiplicity

of roots of polynomials and the vanishing of derivatives as follows.

Proposition 2.15. Let S be a subset of K2 that contains two linearly independent vectors.
Let k ∈ N. The point [x : y] is a root of the homogeneous polynomial F (X,Y ) with

multiplicity at least k if and only if F
[( x1

y1

)
· · ·
( xk−1

yk−1

)( x
y

)n−k+1]
= 0 for any choice of( x1

y1

)
, . . . ,

( xk−1
yk−1

)
∈ S.

Proof. By a suitable change of coordinates in K2, we attain
( x

y

)
=
(

0
1

)
. The symmetric

multilinear map
( x1

y1

)
· · ·
( xk−1

yk−1

)
7→ F

[( x1
y1

)
· · ·
( xk−1

yk−1

)(
0
1

)n−k+1]
yields 0 for all arguments

taken from S iff it yields 0 for all arguments of the form
(

1
0

)i( 0
1

)k−i−1
. This is in turn

equivalent to F (0, 1) = d
dXF (0, 1) = · · · = dk−1

dXk−1F (0, 1) = 0 by the preceding lemma.

When we consider the polar form F
[(

X1
Y1

)
· · ·
(

Xn
Yn

)]
only at arguments of the kind(

Xi
1

)
, the canonical representatives of the finite elements of P1(K), we can substitute

Y1 = · · · = Yn = 1 throughout, analogous to the dehomogenization of a polynomial. Since
λ
(

a
1

)
+µ
(

b
1

)
=
(

λa+µb
1

)
iff λ+µ = 1, the resulting map (X1, . . . ,Xn) 7→ F

[(
X1
1

)
· · ·
(

Xn
1

)]

is affine (not linear) in each argument.

Definition 2.16. Let n ∈ N. An affine polar form of formal degree n is an n-ary map
K × · · · ×K → K which is multiaffine (i.e., affine in each argument) and symmetric.

21



Homogeneous polar forms of degree n and affine polar forms of formal degree n corre-
spond bijectively to each other by dehomogenization (as above) and homogenization

F
[(

X1
Y1

)
· · ·
(

Xn
Yn

)]
:= Y1 · · ·Yn · F [X1/Y1, . . . ,Xn/Yn]. (2.6)

Given an affine polar form F [X1, . . . ,Xn] of formal degree n, its diagonal F [X, . . . ,X]
is a polynomial F (X) of degree at most n. Vice versa, a polynomial A(X) of degree at
most n corresponds to a homogeneous polynomial and thus to a homogeneous polar form
of degree n and further to an affine polar form F [X1, . . . ,Xn] of formal degree n such that
F [X, . . . ,X] = A(X). As in the homogeneous case, we often identify affine polar forms
and polynomials.

2.2.3 Generalization to arbitrary open intervals

We are now ready to generalize Descartes’ Rule to arbitrary projective open intervals.

Theorem 2.17. Let the real homogeneous polynomial F (X,Y ) have exactly p roots in
the projective open interval I, counted with multiplicities. Let M ∈ GL2(R) represent a
Möbius transformation that maps (0,∞) to I. Let

v = var(g0, . . . , gn) where G(X,Y ) =

n∑

i=0

giX
iY n−i = (F ◦M)(X,Y ). (2.7)

Then v ≥ p and v ≡ p (mod 2). If all roots of F are real, then v = p.

Proof. Apply Descartes’ Rule (Theorem 2.2) to G(X, 1).

For the case of an affine interval I = (c, d) and the specific transformation M defined by
M−1(X) = (d−X)/(X−c), this “little observation” was enunciated by Jacobi [Jac35, IV.]
and has therefore been called “Jacobi’s rule of signs” in the literature [RS02, Cor. 10.1.13].
Jacobi’s contemporary Vincent [Vin36], building on earlier work of Lagrange, has used
such a combination of Descartes’ Rule and Möbius transformations for root isolation at
about the same time; see [AG98] for a modern account and for references to earlier versions
of Vincent’s work. We refrain from discussing these historical aspects further and instead
proceed to translate this result into the language of polar forms.

Corollary 2.18. With notation as in Theorem 2.17, let I have endpoints [c1 : c2], [d1 : d2]
and contain the point [c1 + d1 : c2 + d2]. The number v of sign variations satisfies

v = var(F
[(

c1
c2

)n]
, . . . , F

[(
c1
c2

)n−i( d1
d2

)i]
, . . . , F

[(
d1
d2

)n]
) (2.8)

and is determined uniquely by F and I.

Proof. Proposition 2.11 describes the form of M in terms of
(

c1
c2

)
and

(
d1
d2

)
. By symmetry,

we can restrict to the caseM =
( µd1 λc1

µd2 λc2

)
with λµ > 0. We have v = var(g0, . . . , gn), where,

by Lemma 2.13,

gi =

(
n

i

)
F
[
(M
(

0
1

)
)n−i(M

(
1
0

)
)i
]

=

(
n

i

)
λn−iµiF

[(
c1
c2

)n−i( d1
d2

)i]
.

Thus, the sequence (g0, . . . , gn) defining v equals the sequence in (2.8) up to multiplication
by factors

(
n
0

)
λn,

(
n
1

)
λn−1µ, . . . ,

(
n
i

)
λn−iµi, . . . ,

(
n
n

)
µn. Since µ/λ > 0, we see that all

these factors have the same sign and therefore do not change the number of sign variations.
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The various possible choices of
(

c1
c2

)
,
(

d1
d2

)
and M lead to different factors λ and µ, but

do not – by Propositions 2.10(iii) and 2.11 – change the sign of λµ.

Replacing
(

d1
d2

)
by
(
−d1
−d2

)
(or equivalently,

(
c1
c2

)
by
(
−c1
−c2

)
) switches from I to its com-

plementary projective open interval and flips every other sign in (2.8). This is the gener-
alization of using Descartes’ Rule on A(−X) to count negative roots of A(X).

Let us summarize: We have seen an extension of Descartes’ Rule to projective open
intervals, with two equivalent ways of obtaining the sequence in which to count sign
variations. Jacobi’s approach (2.7) is more natural if you think of a polynomial as a
coefficient sequence w.r.t. the fixed basis 1,X,X2, . . . ,Xn. In §3.2.4, we will encounter
the original form of the Descartes method, which takes this point of view. The seemingly
more complicated approach of (2.8), however, turns out to be more natural for the form
of the Descartes method using the Bernstein basis, which we will meet in §3.2.5 and on
which our extension to bitstream coefficients rests. We introduce this basis now.

2.2.4 The Bernstein basis

Consider a real polynomial F (X) of degree n and its real roots, counted with multiplicities.
Let (c, d) be a bounded open interval that contains exactly p of these roots. We can
dehomogenize Theorem 2.17 and Corollary 2.18 to the following statement: If

v = var(F [(c)n], . . . , F [(c)n−i(d)i], . . . , F [(d)n]), (2.9)

then v ≥ p and v ≡ p (mod 2), and if all roots of F are real, then v = p. The condition
(c+ d)/2 ∈ (c, d) of Corollary 2.18 becomes vacuous in the affine setting, of course.

In order to make this form of Descartes’ Rule easy to apply, we will now determine a
basis for the vector space of polynomials with degree at most n such that the coefficient
sequence of a polynomial F w.r.t. that basis is the sequence in (2.9). To do so, we
“multiply out” the diagonal F (X) = F [(X)n] of the affine polar form after expressing the
indeterminate point X on the affine line as affine combination of c and d:

F (X) = F [(d−X
d−c c+ X−c

d−c d)
n] =

n∑

i=0

F [(c)n−i(d)i]

(
n

i

)
(X − c)i(d−X)n−i

(d− c)n . (2.10)

Definition 2.19. Let c, d ∈ R, c 6= d, n ∈ N0 and 0 ≤ i ≤ n. The polynomial

Bn
i [c, d](X) :=

(
n

i

)
(X − c)i(d−X)n−i

(d− c)n (2.11)

is the ith Bernstein polynomial of degree n w.r.t. the interval [c, d]. (Bn
0 [c, d], . . . , Bn

n [c, d])
is the Bernstein basis of degree n w.r.t. [c, d]. We also write Bn

i (X) for Bn
i [0, 1](X).

We remark that (Bn
0 [c, d], . . . , Bn

n [c, d]) is indeed a basis of the vector space of polyno-
mials of degree at most n, since it is a generating set of this vector space by (2.10), and it
has the minimum cardinality n+ 1.

Almost always, we will use Bernstein bases for c < d; in this case, [c, d] is indeed an
interval. If c > d, speaking of “the interval [c, d]” is an abuse of terminology; however, we
wish to define Bn

i [c, d](X) nevertheless to avoid case distinctions in situations where the
boundaries c and d are given by expressions without a fixed order.
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Proposition 2.20. Let F be an affine polar form of degree n whose diagonal is the poly-
nomial F (X) =

∑n
i=0 biB

n
i [c, d](X).

(i) The coefficient of Bn
i [c, d](X) in F (X) is bi = F [(c)n−i(d)i]; we call bi the ith Bern-

stein coefficient of F w.r.t. [c, d].
(ii) In particular, the first and last Bernstein coefficients are values of the polynomial F :

b0 = F (c) and bn = F (d).
(iii) The derivative of F (X) is

F ′(X) =
n

d− c

n−1∑

i=0

∆biB
n−1
i [c, d](X), where ∆bi = bi+1 − bi. (2.12)

Proof. Ad (i) & (ii). Immediate from (2.10).
Ad (iii). Passing to the homogeneous polar form F , we can apply Lemma 2.14 to obtain

F ′(X) = n ·F
[(

X
1

)n−1( 1
0

)]
= n/(d− c) ·

(
F
[(

X
1

)n−1( d
1

)]
− F

[(
X
1

)n−1( c
1

)])
, from which

the claim follows using (i).

As immediate consequence of Proposition 2.20(i), we get the following equivalence be-
tween an affine transformation of the indeterminate and a change of Bernstein basis in-
terval.

Lemma 2.21. Let c 6= d. Consider an affine polar form F of degree n and an affine
transformation M . We write M(c) = p and M(d) = q. Let G(X) = F (M(X)). The
coefficient of Bn

i [c, d](X) in G(X) is

G[(c)n−i(d)i] = F [(M(c))n−i(M(d))i] = F [(p)n−i(q)i] (2.13)

and thus equal to the coefficient of Bn
i [p, q](X) in F (X).

By construction of the Bernstein basis, we attain the following form of Descartes’ Rule.

Theorem 2.22 (Descartes’ Rule, Bernstein form). Consider a real polynomial F (X) =∑n
i=0 biB

n
i [c, d](X) and its real roots, counted with multiplicities. Let exactly p of them

lie in the open interval (c, d). Let v = var(b0, . . . , bn). Then v ≥ p and v ≡ p (mod 2). If
all roots of A(X) are real, then v = p.

This relation between Descartes’ Rule and the Bernstein basis is not at all new. Pólya
and Schoenberg [PS58, §7] (equivalently, [Sch59, §1]) used it in 1958 to show that Bern-
stein approximation of functions (not explained here, the original motivation of Bern-
stein3 [Ber12] to consider the polynomials Bn

i (X)) is variation-diminishing.

The notion of a Bézier curve [Far97] [PBP02] provides a geometric interpretation for the
Bernstein coefficients of a real polynomial F (X) =

∑n
i=0 biB

n
i [c, d](X). We mention this

here for completeness but will not rely on it; the reader will find more explanations and
pictures in any of the textbooks [BPR06, §10.2] [Far97, §5.5] [PBP02, §2.8]. A Bézier curve
with parameter interval [c, d] is a parametric planar curve b(t) =

∑n
i=0 biB

n
i [c, d](t) with

b0, . . . ,bn ∈ R2. The graph [c, d] → R2, t 7→
( t

F (t)

)
of F (X) over [c, b] can be expressed

3Sergei Natanovich Bernstein / Сергей Натанович Бернштейн (1880–1968), prominent Ukrainian math-
ematician, member of the Soviet Academy of Sciences, major contributor to approximation theory.
His discoveries are so well-known under the name Bernstein that we refrain from using a systematic
transliteration like Bernshtĕın. An English translation of the obituary by Aleksandrov et al. appeared
in Russian Mathematical Surveys 24 (1969), pp. 169-176 (cited after Zbl 0197.26904).
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as a Bézier curve by setting the second coordinate of each bi to bi and the first coordinate
to the ith Bernstein coefficient of the identity map, which is ((n− i)d+ ic)/n. The control
polygon of b(t) is the polyline b0b1 ∪b1b2 ∪ · · · ∪bn−1bn. The curve b(t) loosely follows
the control polygon. Theorem 2.22 states that the number p of intersections of b(t) and
the X-axis, counted with multiplicities, does not exceed the number v of crossings of the
control polygon over the X-axis.

In the sequel, we will refer uniformly to all the equivalent generalizations of Descartes’
Rule to affine open intervals in the following way.

Definition 2.23. Given a real polynomial F (X) and two real numbers c < d, the Descartes
test for roots in the interval (c, d) is the number v ∈ N0 of sign variations counted for
(c, d) in the equivalent formulations of Theorem 2.17, Corollary 2.18, and Theorem 2.22.
We write v = DescartesTest(F, (c, d)).

We conclude our introduction of the Bernstein basis by expressing Bernstein coefficients
in terms of roots.

Proposition 2.24. Consider a polynomial F (X) = an
∏n

j=1(X−ϑj) =
∑n

i=0 biB
n
i [c, d](X)

with roots ϑ1, . . . , ϑn ∈ C. Its Bernstein basis coefficients satisfy

bi = (−1)n−ian

∑

#J=n−i

∏

j∈J

(ϑj − c)
∏

j /∈J

(d− ϑj)
/(n

i

)
for 0 ≤ i ≤ n,

where the sum is taken over all subsets J of {1, . . . , n} with cardinality n− i.

Proof. We have bi = F [(c)n−i(d)i] = G
[(

0
1

)n−i( 1
0

)i]
with the polar form G = F ◦M and

the matrix M =
(

d c
1 1

)
representing M(X) = (dX + c)/(X + 1). Thus, bi is the coefficient

of
(n

i

)
Xi in the diagonal of G, which is

G(X) = (X + 1)nF (
dX + c

X + 1
) = an

n∏

j=1

((dX + c)− ϑj(X + 1))

= an

n∏

j=1

((d − ϑj)X − (ϑj − c)).

Multiplying out, one finds that the coefficient of Xi is the claimed value of bi times
(n

i

)
.

2.2.5 De Casteljau’s algorithm

In our algorithms, we will need a subroutine for the following task: Given a polyno-
mial’s coefficients (F [(c)n−i(d)i])i w.r.t. (Bn

i [c, d])i and a number c < m < d, compute
the coefficients (F [(c)n−i(m)i])i and (F [(m)n−i(d)i])i w.r.t. (Bn

i [c,m])i and (Bn
i [m,d])i,

respectively. This is called subdivision at m. The number m is specified by a parameter
0 < α < 1 such that m = (1 − α)c + αd. De Casteljau’s algorithm [BM99] [Far97, §3]
[PBP02, §2.3] carries out this task by filling in a triangular array of numbers, labelled as
follows:
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b0,0 b0,1 b0,2 . . . b0,n−2 b0,n−1 b0,n

b1,0 b1,1 . . . b1,n−2 b1,n−1

b2,0 b2,1 . . . b2,n−3 b2,n−2

b3,0 . . . b3,n−3

. . . . . .
...

bn,0

1: procedure DeCasteljau((b0, . . . , bn), α)
2: (b0,0, b0,1, . . . , b0,n)← (b0, . . . , bn); // input goes to top side
3: for j from 1 to n do

4: for i from 0 to n− j do

5: bj,i ← (1− α)bj−1,i + αbj−1,i+1;
6: od;
7: od;
8: (b′0, b

′
1, . . . , b

′
n)← (b0,0, b1,0, . . . , bn,0); // left side

9: (b′′0, b
′′
1 , . . . , b

′′
n)← (bn,0, bn−1,1, . . . , b0,n); // right side

10: return ((b′j)
n
j=0, (b′′i )

n
i=0);

11: end procedure;

An actual implementation will, of course, not store all (n+ 2)(n+ 1)/2 numbers simul-
taneously; storage space for 2n+ 2 numbers (i.e., output size) suffices.

Proposition 2.25. Let c 6= d and 0 < α < 1 and m = (1 − α)c + αd. Let F be an affine
polar form of formal degree n. Consider the execution of de Casteljau’s algorithm invoked
as ((b′j)j, (b′′i )i)← DeCasteljau((bi)i, α) for bi = F [(c)n−i(d)i], 0 ≤ i ≤ n.

(i) We have bj,i = F [(c)n−(i+j)(m)j(d)i] for 0 ≤ j ≤ n and 0 ≤ i ≤ n− j.
(ii) We have F (X) =

∑n
i=0 b

′
iB

n
i [c,m](X) =

∑n
i=0 b

′′
iB

n
i [m,d](X).

(iii) F (αX+(1−α)c) =
∑n

i=0 b
′
iB

n
i [c, d](X) and F ((1−α)X+αd) =

∑n
i=0 b

′′
iB

n
i [c, d](X).

Proof. Ad (i). Follows by induction, using the multiaffinity of F .
Ad (ii). Immediate from (i) in conjunction with Proposition 2.20(i).
Ad (iii). Follows from (ii) using Lemma 2.21: The transformation X 7→ αX + (1− α)c

takes c 7→ c and d 7→ m. Likewise, X 7→ (1− α)X + αd takes c 7→ m and d 7→ d.

We use de Casteljau’s algorithm to derive the following result that relates the bound v
from Theorem 2.22 for the interval (c, d) to bounds for its parts (c,m), {m}, and (m,d).

Proposition 2.26 (Subdivision is variation-diminishing). Consider a real affine polar
form F of formal degree n. Let c < m < d. Let k ≥ 0 denote the multiplicity of m
as root of the polynomial F (X). Then

var((F [(c)n−i(d)i])ni=0) ≥ var((F [(c)n−i(m)i])ni=0)+k+var((F [(m)n−i(d)i])ni=0). (2.14)

The difference between both sides is an even number.

We recall from Definition 2.23 that var((F [(a)n−i(b)i])ni=0) = DescartesTest(F, (a, b)). The
usual wording of this result, e.g., [BPR06, Prop. 10.41], does not contain the term k on
the right-hand side.
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Proof. Let us first treat the case k = 0, i.e., F (m) 6= 0. We follow the execution of
de Casteljau’s algorithm. Consider the rth partial de Casteljau triangle (“the rth de Cas-
teljau trapezoid”?) consisting of rows j = 0, . . . , r for some 0 ≤ r ≤ n and the sequence
sr = (b0,0, . . . , br,0, . . . , br,n−r, . . . , b0,n) comprising its left, lower, and right side. Notice
that s0 is the sequence on the left and that sn is the concatenation of the sequences on
the right in (2.14).

Let us show var(sr) ≥ var(sr+1) and var(sr) ≡ var(sr+1) (mod 2) for all 0 ≤ r < n.
Think of the transformation sr → sr+1 as happening in two stages: First insert between
any two br,i, br,i+1 their linear combination br+1,i = (1− α)br,i + αbr,i+1. Since 1− α and
α are positive, this does not change the number of sign variations. Then delete all entries
br,i with 0 < i < n− r. This leaves the number of sign variations unchanged or decreases
it by an even number.

In summary, we obtain var(s0) ≥ var(sn) and var(s0) ≡ var(sn) (mod 2). Duplicating
the entry bn,0 and breaking up sn between its two copies leaves the sum of the sign
variations unchanged, as bn,0 = F (m) 6= 0.

Let us now turn to the case k > 0. By Proposition 2.25(i) in conjunction with
Proposition 2.15 applied to S = {

(
c
1

)
,
(

d
1

)
}, the last k rows of the de Casteljau trian-

gle (indices j = n − k + 1, . . . , n) consist entirely of zeros, whereas the preceding row
(bn−k,0, bn−k,1, . . . , bn−k,k) does not. It is easily seen that (bn−k,0, bn−k,1, . . . , bn−k,k) con-
sists of non-zero elements with alternating signs, so var(bn−k,0, bn−k,1, . . . , bn−k,k) = k.
The inductive argument from above shows var(s0) ≥ var(sn−k) = var(b0,0, . . . , bn−k,0) +
k + var(bn−k,k, . . . , b0,n) with an even difference, and the claim follows.

When thinking about the graph of F (X) as a Bézier curve, the preceding proposition
corresponds to the fact that subdivision pulls the control polygon closer to the curve; in
particular, pairs of crossings of the control polygon forth and back over the X-axis that do
not correspond to intersections of the graph with the X-axis may disappear in the process.

For later reference, we record the following consequence.

Corollary 2.27. Let F (X) be a real polynomial. If the pairwise disjoint open intervals
J1, . . . , J` are subsets of the open interval I, then

DescartesTest(F, I) ≥
∑̀

j=1

DescartesTest(F, Jj). (2.15)

Proof. Let us write I = (a, b) and Jj = (cj , dj) for 1 ≤ j ≤ `. By a suitable permutation
of indices, we attain a ≤ c1 < d1 ≤ c2 < d2 ≤ · · · ≤ c` < d` ≤ b. We argue by induction
on `, using Proposition 2.26. For the base case ` = 1, we subdivide (a, b) at c1 and (c1, b)
at d1 to get DescartesTest(F, (a, b)) ≥ DescartesTest(F, (c1, d1)). In the inductive step,
DescartesTest(F, (c`, d`+1)) ≥ DescartesTest(F, (c`, d`))+DescartesTest(F, (c`+1, d`+1)) al-
lows us to proceed from (c1, d1), . . . , (c`, d`+1) to (c1, d1), . . . , (c`, d`), (c`+1, d`+1)

The essence of Proposition 2.26 can be traced back to work of Schoenberg [Sch34] on
real root counting that clearly predates de Casteljau’s algorithm and the notion of a Bézier
curve. We come back to this in Appendix A.1.

2.2.6 Relation between Bernstein and power basis

For constructing the Bernstein basis w.r.t. interval (c, d), our starting point has been
Theorem 2.17 in its reformulation (2.9) into the language of polar forms. Let us now return
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to the original viewpoint of Theorem 2.17 and describe how the Bernstein coefficients of
a polynomial F (T ) arise from a Möbius transformation T = M(X) of the indeterminate.

The [c, d]-Bernstein coefficients of F (T ) are bi = F
[(

c
1

)n−i( d
1

)i]
for 0 ≤ i ≤ n. Letting

M =
(

c d
1 1

)
, we can rewrite this as bn−i = F

[(
c
1

)i( d
1

)n−i]
= F

[
(M
(

1
0

)
)i(M

(
0
1

)
)n−i

]
. The

Möbius transformation represented by M is T = (cX + d)/(X + 1). Thus, Lemma 2.13
states that bn−i is the coefficient of

(n
i

)
Xi in G(X) := (X + 1)nF ((cX + d)/(X + 1)). The

subsequent proposition records this correspondence and extends it to a correspondence
between the polynomials created by subdivision of F (T ) at T = m = (c + d)/2 and
matching transformations of G(X).

Proposition 2.28. Let c 6= d and m = (c + d)/2. Considering subdivision at m, we let
F (T ) =

∑n
i=0 biB

n
i [c, d](T ) =

∑n
i=0 b

′
iB

n
i [c,m](T ) =

∑n
i=0 b

′′
iB

n
i [m,d](T ). It holds that

(i) G(X) := (X + 1)nF ((cX + d)/(X + 1)) =
∑n

i=0 bn−i

(n
i

)
Xi,

(ii) C(G(X)) := 2−nG(2X + 1) =
∑n

i=0 b
′
n−i

(
n
i

)
Xi,

(iii) RCR(G(X)) =
∑n

i=0 b
′′
n−i

(n
i

)
Xi where R(A(X)) := XnA(1/X).

Proof. Recall from our discussion above that the homogeneous polar forms F andG satisfy
G = F ◦M with M =

(
c d
1 1

)
, and that this implies (i) by Lemma 2.13.

Regarding (ii), we observe that
(

m
1

)
= 1

2(
(

c
1

)
+
(

d
1

)
) = M

( 1/2
1/2

)
, so that we have b′n−i =

F
[(

c
1

)i(m
1

)n−i]
= G

[(
1
0

)i( 1/2
1/2

)n−i]
= G

[
(M ′

(
1
0

)
)i(M ′

(
0
1

)
)n−i

]
for M ′ =

( 1 1/2
0 1/2

)
. Using

Lemma 2.13, we see that b′n−i is the coefficient of
(n

i

)
Xi in (1/2)nG((X + 1/2)/(1/2)) =

2−nG(2X + 1), as desired.

Finally, b′′n−i = F
[(

m
1

)i( d
1

)n−i]
= G

[( 1/2
1/2

)i( 0
1

)n−i]
= G

[
(M ′′

(
1
0

)
)i(M ′′

(
0
1

)
)n−i

]
with

M ′′ =
( 1/2 0

1/2 1

)
=
(

0 1
1 0

)
M ′
(

0 1
1 0

)
. Now claim (iii) follows because the polynomial transfor-

mation R is effected by transforming the parameter range with
(

0 1
1 0

)
.

2.3 Partial converses for arbitrary open intervals

2.3.1 Circular regions in the complex plane

So far, we have used Möbius transformations of P1(R) to generalize Descartes’ Rule be-
yond the open interval (0,∞). To generalize Obreshkoff’s extension of Descartes’ Rule
(Theorem 2.7) in the same fashion, we need to investigate in §2.3.2 what Möbius trans-
formations of P1(C) do to the argument ranges in Obreshkoff’s result, and in particular
to their boundary rays. In a preparatory step, we briefly review circular regions in the
complex plane, cf. [And99].

Definition 2.29. A projective circle C is the set of points [z : w] ∈ P1(C) that satisfies

αzz + czw + czw + βww = 0 for some α, β ∈ R, c ∈ C such that cc > αβ. (2.16)

An open (closed) circular region R is a set of points [z : w] ∈ P1(C) for which the expression
in (2.16) is positive (non-negative).

These definitions are independent of the choice of representatives; replacing [z : w] by
[az : aw], a ∈ C∗, multiplies (2.16) by the constant factor aa > 0. Clearly, projective
circles and closed circular regions are closed subsets, whereas open circular regions are
open subsets of Ĉ.
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The notion of a projective circle C in Ĉ generalizes the usual notion of a Euclidean
circle in C. Let us consider the finite points [x + iy : 1] of Ĉ as elements (x, y) of R2.
Equation (2.16) takes the form

α(x2 + y2) + 2(c1x− c2y) + β = 0 with α, β ∈ R, c = c1 + ic2 ∈ C, cc > αβ.

If α 6= 0, then C is a Euclidean circle with center (−c1, c2)/α and radius
√
cc− αβ / |α|.

Any Euclidean circle occurs in this way. The condition cc > αβ is equivalent to C not
being empty or a single point. If, however, α = 0, then C is an affine line plus the point
at infinity [1 : 0]. Any line occurs in this way. The condition cc > αβ = 0 is equivalent
to c 6= 0, so that C is neither the entire plane (c = 0, β = 0) nor empty (c = 0, β 6= 0).
Thus, projective circles are precisely the Euclidean circles together with affine lines, the
latter being the “circles through infinity”.

The circular region R, regarded in the affine plane C, consists of the points inside the
circle C (in case α < 0), outside the circle C (in case α > 0), or on one side of the line C
(in case α = 0), respectively. If R is open (closed), then its boundary C is excluded from
(included in) R.

The crucial property of projective circles, which is not shared by lines or Euclidean
circles considered separately, is expressed by the following classical result.

Proposition 2.30. The image of a projective circle C under a Möbius transformation M
of P1(C) is a projective circle.

Proof. The equation of M(C) is obtained by substitutingM−1([z : w]) for [z : w] in (2.16).
Multiplying out, one sees that the resulting expression is again of the form (2.16); the
condition cc > αβ holds because M(C), just like C, is neither empty, nor a single point,
nor the entire plane.

While the natural habitat of Möbius transformations and projective circles is Ĉ =
C∪{∞}, we will encounter them mostly in C. In other words, we simply ignore the point
at infinity. This creates a minor problem when we subject C to a Möbius transformation
M that takes ∞ to a finite point: the image M(C) may lack the point M(∞). To fix this,
we regard M as taking C to the closure of its pointwise image M(C).

The Möbius transformation M(X) = (aX + b)/(cX + d), c 6= 0, is a map C \ {−d/c} →
C \ {a/c} which is holomorphic (complex differentiable in a neighbourhood of any point
in its domain). Therefore, M preserves oriented angles between tangent vectors to curves.
(This is almost a tautology: Multiplication with a complex number (complex derivative)
can express a linear map R2 → R2 (real derivative) if and only if that map preserves
oriented angles.) This property will help us to describe images of projective circles under
Möbius transformations geometrically.

2.3.2 Obreshkoff’s partial converse transformed

We are now ready to transfer Obreshkoff’s extension of Descartes’ Rule (Theorem 2.7) to
arbitrary bounded open intervals (c, d). In fact, obvious modifications of the subsequent
development allow a generalization to arbitrary projective open intervals, but we intend
to keep the exposition as concrete as possible. An example of the following definitions is
depicted in Figure 2.2.
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OA+
≤

OL+
∆

OL−
∆

OA−
≤

dc
OL≥

OA+
≥

OA−
≥

π
4 = π

q+2

π
8 = π

n+2−p

∞

C \OL≤

Figure 2.2: The (p, q, n)-Obreshkoff arcs and loci for n = 8 and p = q = 2.

Definition 2.31. Let p, q, n ∈ N0, p ≤ q ≤ n. Let c, d ∈ R, c < d. We define the four
(p, q, n)-Obreshkoff arcs w.r.t. interval (c, d) as follows: (OA−

≥,OA+
≥) and (OA−

≤,OA+
≤) are

pairs of circular arcs in the complex plane. Within each pair, the arcs are symmetric to
each other about the real axis. The arcs with superscript + (−) run above (below) the
real line.

(i) Each of the arcs OA−
≥ and OA+

≥ joins the points c and d and makes an angle of
π/(n + 2− p) with the line segment [c, d] at d.

(ii) Each of the arcs OA−
≤ and OA+

≤ joins the points c and d and makes an angle of
π/(q + 2) with the ray [d,∞) at d.

For each Obreshkoff arc OA±
./, we denote by OC±

./ its supporting circle and by OD±
./ the

open disc within that circle. We proceed to define several (p, q, n)-Obreshkoff loci (OL) in
terms of these discs.

(iii) The (p, q, n)-Obreshkoff lens is OL≥ = OD−
≥∩OD+

≥; or equivalently, the open region

that contains (c, d) and has the boundary OA−
≥ ∪OA+

≥.

(iv) The (p, q, n)-Obreshkoff range is OL≤ = OD−
≤ ∪ OD+

≤; or equivalently, the open

region that contains (c, d) and has the boundary OA−
≤ ∪OA+

≤.
(v) The set difference OL∆ := OL≤\OL≥ consists of two connected components: the up-

per (p, q, n)-Obreshkoff lune OL+
∆ with boundary OA+

≥∪OA+
≤, including the relative

interior of OA+
≥ but excluding OA+

≤ and the points c, d; and the lower (p, q, n)-

Obreshkoff lune OL−
∆ defined symmetrically in terms of OA−

≥ and OA−
≤.

With any of these symbols, we specify the parameters (p, q, n) and (c, d) in parentheses as
in OA±

./(p, q, n; (c, d)) where the necessity arises.
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c d

(a) One circle OC±
≤(0, 0, n).

π
3

c d

(b) Two circles OC±
≤(1, 1, n).

Figure 2.3: The circles from Propositions 2.33 and 2.34.

By elementary geometry, a circular arc makes the same angle with its chord at both
endpoints, hence the conditions above on angles at d apply mutatis mutandis at c, and we
see that each of the four Obreshkoff arcs is symmetric about the perpendicular bisector of
the chord [c, d].

Theorem 2.32 (Obreshkoff). Consider the real polynomial F (X) of degree n and its roots
in the complex plane, counted with multiplicities. Let v = DescartesTest(F, I), where I is
a bounded open interval. If F (X) has at least p roots in the Obreshkoff lens OL≥(p, q, n; I)
and at most q roots in the Obreshkoff range OL≤(p, q, n; I), then v ≥ p and v ≤ q.

If, in particular, q = p, meaning that A(X) has exactly p roots in the Obreshkoff lens
OL≥(p, q, n; I) and none in the Obreshkoff lunes OL∆(p, q, n; I), then v = p.

In more vivid terms, we claim that the Descartes test does see everything in the lens, does
not see anything beyond its range, and may see some complex-conjugate couples lingering
in lunar twilight. Let us now demonstrate this nyctalopic myopia.

Proof. We take a viewpoint akin to Theorem 2.17 and consider an arbitrary real Möbius
transformation M with M((0,∞)) = (c, d) and, w.l.o.g., M(0) = d. Let us inspect how
M maps the argument ranges from Theorem 2.7. (See Figure 2.2, compare to Figure 2.1
on page 15.) The range for arguments ϕ is the intersection of two open half-spaces, both
of which contain (0,∞), and its boundary rays make an angle of π/(n+2− p) with [0,∞)
at apex 0. Since M preserves angles, their images, which are arcs of projective circles that
join c and d, make an angle of π/(n + 2− p) with (c, d] at apex d, and we see that these
are in fact the Obreshkoff arcs OA±

≥. Arguing in the same way, we see that the boundary

rays of the range for arguments ψ are mapped to OA±
≤. Now the theorem follows at once

from Theorem 2.7.

The special cases p = q = 0 and p = q = 1 (cf. Propositions 2.8 and 2.9) will be of
particular importance later on, so we formulate them separately. Figure 2.3 depicts the
circles referred to.
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αα
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∞

Figure 2.4: Proofs of Propositions 2.34 and 2.35.

Proposition 2.33 (case p = q = 0: “one-circle theorem”). Let (c, d) be a bounded open
interval, and let D ⊆ C be the open disc within the circumcircle C of the line segment [c, d].
For any n ∈ N, it holds that OL≤(0, 0, n; (c, d)) = D. In particular, if D does not contain
any root of the real polynomial F (X), then DescartesTest(F, (c, d)) = 0.

Proof. The two (0, 0, n)-Obreshkoff arcs OA−
≤, OA+

≤ form an angle of π/2 with the real

axis, so that C = OA−
≤ ∪OA+

≤ and D = OL≤(0, 0, n).

Proposition 2.34 (case p = q = 1: “two-circle theorem”). Let (c, d) be a bounded open
interval. Let ∆+ and ∆− be the equilateral triangles in the upper and lower half, resp.,
of the complex plane that have [c, d] as one edge. Let C± be the circumcircle of ∆±, and
let D± be the open disc within C±. For any n ∈ N, it holds that OL≤(1, 1, n; (c, d)) =
D+∪D−. In particular, if D+∪D− contains exactly one simple root of the real polynomial
F (X), then DescartesTest(F, (c, d)) = 1.

The root in question is necessarily real, as it lacks a complex conjugate.

Proof. The boundary of D+∪D− consists of an arc A+ of C+ and an arc A− of C−, each
of which joins the points c and d. Let us inspect the angle α (see Figure 2.4) formed by
A+ with the ray [d,∞) at apex d. The line segment s between d and the center c+ of C+

bisects the π/3 angle at d of the equilateral triangle ∆+, so s forms an angle β = π/6 with
the line segment [c, d]. On the other hand, the radius s is perpendicular to the tangent
of C+ at d, so α + β = π/2, and we obtain α = π/3. The symmetric argument holds
for A−. It follows that A+ and A− are the two (1, 1, n)-Obreshkoff arcs OA+

≤ and OA−
≤,

so D+ ∪D− = OL≤(1, 1, n).

Historically, the main challenge in obtaining these results was to come up with par-
tial converses of Descartes’ Rule for the untransformed interval (0,∞); we refer to §2.1.2
and §2.1.3 for a discussion. The statement of Proposition 2.33 was already used by Vin-
cent [Vin36, p. 345]. Obreshkoff also transformed his extension of Descartes’ Rule to
arbitrary affine open intervals [Obr63, Satz 17.5]. In the context of analyzing the Des-
cartes method, Proposition 2.34 has first been formulated and used by Krandick and
Mehlhorn [KM06], who have obtained it from Proposition 2.9 (which they attribute to
Ostrowski [Ost50]) by arguments similar to ours in the proof of Theorem 2.32. This po-
tential use of Ostrowski’s result is also mentioned but not carried out in the thesis of
Batra [Bat99, p. 18].

Later on, we will need the following geometric facts to relate Obreshkoff’s partial con-
verse to the distances of roots.
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Proposition 2.35. Consider the (p, q, n)-Obreshkoff arcs for a bounded open interval I.

(i) The diameter of the circles OC±
≤(p, q, n; I) is D(q) = |I| / sin(π/(q + 2)).

(ii) Every point of I has distance less than D(q) to any point in OL≤(p, q, n; I).
(iii) D(0) = |I| and D(1) = |I| · 2/

√
3.

(iv) Asymptotically, D(q) = |I| ·Θ(q) for q →∞.

Proof. Let I = (c, d) and m = (c + d)/2. Let α = π/(q + 2). Let c+ be the center
of OC+

≤ (see Figure 2.4). The part of the tangent to OC+
≤ at d that extends upwards

makes an angle α with the ray [d,∞) and an angle π/2 with the radius s between d
and c+. Hence the line segments from c+ to m and d, resp., also make an angle α, so
that sin(α) = |d−m| / |d − c+| = |I| /D(q), from which (i) follows for OC+

≤. The claim

for OC−
≤ follows by symmetry.

Claim (ii) is immediate, noting that I is inside the circles OC±
≤, which have diame-

ter D(q). Claim (iii) follows from sin(π/2) = 1 and sin(π/3) =
√

3/2, claim (iv) from
limx→0 sin(x)/x = 1.

In the analysis of root isolation algorithms, we are able to use the results of this section
in the following form. For the standard Descartes method, of course only the case k = 1
is relevant, but we will also meet the general case k ≥ 1 again, namely in §3.4.4.
Proposition 2.36. Let the real polynomial F of degree n have a k-fold root α in the
bounded open interval I, and let s be the minimum distance from α to any other root
β 6= α of F . If s ≥ |I| / sin(π/(k + 2)), then DescartesTest(F, I) = k.

Proof. By Proposition 2.35(ii), no complex root β 6= α of F is contained in the (k, k, n)-
Obreshkoff range of I, and the claim follows from Theorem 2.32.

2.3.3 A partial converse by differentiation

For reasons to be discussed in §2.3.5, we will not make use of the following results in
later chapters, so the impatient reader with an exclusive interest in algorithms may
skip ahead to §2.4 on page 40; the mathematically inclined reader is encouraged to
keep reading, not least because of the result in §2.3.4, which is of independent interest
and uses a nice proof technique.

Before becoming aware of Obreshkoff’s result, the author discovered another partial con-
verse of Descartes’ Rule. It is presented here in a slightly more general way than in the
original publication [Eig07], taking advantage of polar forms.

Lemma 2.37. Let F be a real homogeneous polar form of degree n. Let
(

c1
c2

)
,
(

d1
d2

)
,
( x1

y1

)
∈

R2 such that
(

c1
c2

)
,
(

d1
d2

)
are linearly independent and

( x1
y1

)
= λ

(
c1
c2

)
+ µ

(
d1
d2

)
6= 0 with

λµ ≤ 0. Then var((F
[(

c1
c2

)n−i( d1
d2

)i]
)ni=0) ≤ var((F

[( x1
y1

)(
c1
c2

)n−1−i( d1
d2

)i]
)n−1
i=0 ) + 1.

Proof. It is no restriction to assume λ > 0, µ ≤ 0, because we can exchange the roles
of
(

c1
c2

)
and

(
d1
d2

)
, and we can replace

( x1
y1

)
by
(−x1
−y1

)
without changing the statement.

For brevity, we set pi = F
[(

c1
c2

)n−i( d1
d2

)i]
and qi = F

[( x1
y1

)(
c1
c2

)n−1−i( d1
d2

)i]
. We have

qi = λpi + µpi+1. It may be helpful to visualize these two sequences arranged like this:

p0 p1 p2 · · · pn−1 pn

q0 = λp0 + µp1 q1 = λp1 + µp2 · · · qn−1 = λpn−1 + µpn
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Each sign variation in (p0, . . . , pn) is an index pair 0 ≤ i < j ≤ n such that pipj < 0
and pi+1 = · · · = pj−1 = 0. Let there be exactly v such pairs (i1, j1), . . . , (iv , jv) with
indices i1 < j1 ≤ i2 < j2 ≤ · · · ≤ iv < jv. Sign variations are either “positive to
negative” (pi` > 0) or “negative to positive” (pi` < 0). Obviously, these types alternate.
If pi` > 0, then pi`+1 ≤ 0 and thus qi` = λpi` + µpi`+1 > 0. Similarly, if pi` < 0
then qi` < 0. Hence the sequence (q0, . . . , qn−1) contains an alternating subsequence
sgn(qi1) 6= sgn(qi2) 6= · · · 6= sgn(qiv), so (q0, . . . , qn−1) has at least v−1 sign variations.

Theorem 2.38. Let
(

c1
c2

)
,
(

d1
d2

)
∈ R2 be linearly independent. Let I be the projective

open interval that has endpoints [c1 : c2], [d1 : d2] and contains [c1 + d1 : c2 + d2]. Let( x1
y1

)
, . . . ,

( xr
yr

)
∈ R2 be non-zero vectors such that [x1 : y1], . . . , [xr : yr] /∈ I. Consider a

real homogeneous polar form F of degree n and the polar form G of degree n−r defined as
G
[(Xr+1

Yr+1

)
· · ·
(

Xn
Yn

)]
:= F

[( x1
y1

)
· · ·
( xr

yr

)(Xr+1

Yr+1

)
· · ·
(

Xn
Yn

)]
. Write vF and vG for the number

of sign variations counted by Corollary 2.18 for of F and G, respectively. Then vF ≤ vG+r.

Proof. We saw in the proof of Proposition 2.10(i) that every representative of [xi : yi] /∈ I
has the form λ

(
c1
c2

)
+µ
(

d1
d2

)
with λµ ≤ 0, so the theorem follows from the preceding lemma

by induction.

We will use only a special case of this result in the sequel. If I is an affine open interval,
then, by definition, it does not contain the point [1 : 0] at infinity. Hence we can set all( xi

yi

)
=
(

1
0

)
and, by Lemma 2.14, G is the rth derivative of F with respect to X.

Corollary 2.39. Consider the polynomial F of degree n, its rth derivative F (r), r ≤ n, and
an affine open interval I. We have DescartesTest(F, I) ≤ r + DescartesTest(F (r), I).

How does Corollary 2.39 compare with Obreshkoff’s partial converse, Theorem 2.32?
Consider a real polynomial F (X) and a bounded open interval I that contains exactly p
roots, counted with multiplicities.

If all roots of F are real, then Theorem 2.32 reduces immediately to the optimal state-
ment DescartesTest(F, I) = p, whereas the result above imposes significant additional
conditions on roots of some derivative. Thus, Obreshkoff’s partial converse is not implied
by ours.

On the other hand, we can demonstrate by means of an explicit example that Corol-
lary 2.39 is not implied by Obreshkoff’s result. We aim for a minimal example, in the
sense that we fix r at the lowest non-trivial value r = 1 and intend to choose the degree n
as small as possible. Figure 2.5 shows an example for n = 3: The polynomial F has a
real root in I = (0, 1) and two further imaginary roots in OL≤(1, 1, 3; I). The roots of F ′

are outside OL≤(0, 0, 3; I), so DescartesTest(F ′, I) = 0 by Proposition 2.33, and Corol-
lary 2.39 with r = 1 implies DescartesTest(F, I) ≤ 1 (the optimal upper bound). On the
other hand, Obreshkoff’s result for q = 1 (Proposition 2.34) is not applicable: the two
imaginary roots of F are in the way.

We cannot give an example of smaller degree: By the preceding deliberations, we need
imaginary roots. This rules out n = 1 right away. What about n = 2? Can we define
F by a pair of complex-conjugate roots x ± iy that are inside the circumcircle of I (its
(0, 0, n)-Obreshkoff range) while the root of F ′ is not? No, because the root of F ′ is the
real part x. (More generally, the roots of F ′ are contained in the convex hull of the roots
of F by the Gauss-Lucas theorem [RS02, Thm. 2.1.1].) So the example above is indeed of
minimal degree.
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0 1

OA+
≤(1, 1, n)

OA−
≤(1, 1, n)

OA+
≤(0, 0, n)

OA−
≤(0, 0, n)

Figure 2.5: F (X) = 2048X3 + 128X2 + 192X − 13 has roots 1/16, (−1 + 5i)/16, (−1 − 5i)/16

(shown as dots). Its derivative F ′(X) has roots (−1±
√
−71)/48 ≈ −0.0208± 0.1755 i (crosses).

The statement of Corollary 2.39 is somewhat indirect: It bounds one Descartes test in
terms of another one. By choosing r and imposing conditions that restrict the value of
DescartesTest(F (r), I), one can easily deduce various more concrete partial converses. We
formulate some for later discussion.

Proposition 2.40. Let the polynomial F (X) have at least p roots, counted with multiplic-
ities, in the bounded open interval I. If the open disc within the circumcircle of I does
not contain any roots of F (p), then DescartesTest(F, I) = p.

Of course, p is then the exact number of roots in I.

Proof. By Proposition 2.33, the condition on F (p) guarantees DescartesTest(F (p), I) = 0.
The claim follows at once.

If p is known a priori to be the exact number of roots in I, one can take advantage of
the fact that the error in Descartes’ Rule is an even number: DescartesTest(F, I) ≤ p+ 1
suffices to deduce DescartesTest(F, I) = p.

Proposition 2.41. Let the polynomial F (X) have exactly p roots, counted with multi-
plicities, in the bounded open interval I. If one of the following conditions holds, then
DescartesTest(F, I) = p.

(i) Proposition 2.33 applied to F (p+1) yields DescartesTest(F (p+1), I) = 0.
(ii) Proposition 2.33 or 2.34 applied to F (p) yields DescartesTest(F (p), I) ≤ 1.

With a view towards the analysis of root isolation algorithms, we want to turn these
results into a partial converse in terms of roots of F (X) alone, and not its derivatives,
analogous to Proposition 2.36. The next section paves the way for this.

2.3.4 Distance of roots to roots of derivatives

Throughout this section, we consider a real polynomial F of degree n and its k-fold root α,
and we discuss the question: If the minimum distance of α to any other root of F is s,
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and if the minimum distance of α to any root ξ 6= α of F (r) is σ for some fixed r < n, how
can we bound the ratio σ/s from below?

We begin with a simple, negative result: There is no such lower bound for r > k in
general. A counterexample is provided by the polynomials

Aε(X) = (X + 1 + ε)`(X − 1)`Xk (2.17)

of degree n = k + 2`. For any ε ≥ 0, the root x = 0 of Aε(X) has multiplicity k, and
its distance to the nearest other root, namely x = 1, is 1. Let us first set ε = 0. Since
((X + 1)(X − 1))` = (X2 − 1)`, the coefficient of Xk+i in Aε(X) is zero for odd i. So if

r = k + 2j + 1 < n, j ∈ N0, then A
(r)
0 (0) = 0. Let us now take an arbitrarily small ε > 0.

As complex roots depend continuously on the coefficients [RS02, §1.3], the polynomial

A
(r)
ε (X) has a root arbitrarily close to x = 0, but the coefficient of Xr in Aε(X) and thus

the value A
(r)
ε (0) is non-zero for sufficiently small ε > 0. In particular, the k-fold root

α = 0 of F (X) can be arbitrarily close (measured in multiples of s) to the nearest root
ξ 6= α of F (k+1)(X). This means that Proposition 2.41(i) cannot be turned into a partial
converse in terms of s.

The main result of this section is a lower bound on σ/s for the case r ≤ k. The relative
position of roots of F and F (r) is invariant under translations, so it is no disadvantage
for the generality of our considerations to assume α = 0. In this situation, we define
polynomials G and H that have exactly those roots of F and F (r), resp., different from α:

F (X) =

n∑

i=k

fiX
i = XkG(X) with G(X) =

n−k∑

i=0

giX
i,

F (r)(X) =
n−r∑

i=k−r

(i+ r)!

i!
fi+rX

i = Xk−rH(X) with H(X) =
n−k∑

i=0

hiX
i.

(2.18)

The coefficients of G and H are related by

hi =
(i+ k)!

(i+ k − r)! fi+k =
(i+ k)!

(i+ k − r)! gi. (2.19)

Generalizing an approach of Dimitrov [Dim98] from the special case r = 1 to the general
case 1 ≤ r ≤ k, we use the following theorem to track how multiplying the coefficients
in (2.19) changes the roots of G into those of H.

Theorem 2.42 (Schur-Szegő composition theorem). Consider A(X) =
∑n

i=0 ai

(n
i

)
Xi,

B(X) =
∑n

i=0 bi
(n

i

)
Xi, and C(X) =

∑n
i=0 aibi

(n
i

)
Xi. Let K be a closed circular region in

the complex plane containing all roots of A. If ξ is a root of C, there is an element w ∈ K
and a root β of B such that ξ = −wβ.

Szegő formulates and proves this theorem as “Satz 2” in the single-authored paper [Sze22]
as consequence of a “Faltungssatz” (convolution theorem) but remarks on p. 35: “This
formulation of the convolution theorem was pointed out to me by Mr. I. Schur.” We
follow Rahman/Schmeisser [RS02, Thm. 3.4.1d] and use both names; other authors, such
as Obreshkoff [Obr63, §7] [Obr03, §VII.7] and Marden [Mar66, Thm. 16,1], drop Schur’s
name. A proof of the theorem can be found in any of these references. We remark that
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the occurrence of binomial coefficients, reminiscent of our Equation (2.5), is no coinci-
dence: Szegő’s Faltungssatz is a theorem on the zeros of a polar form, which he calls
“Faltungsgleichung” [Sze22, p. 30].

The polynomial C(X) in Theorem 2.42 is called the composition of A(X) and B(X).
According to (2.19), H(X) is the composition of G(X) and

T (X) =
n−k∑

i=0

(i+ k)!

(i+ k − r)!

(
n− k
i

)
Xi. (2.20)

This polynomial is closely related to the rth derivative of the kth Bernstein polynomial:

Bn
k (−X) =

(
n

k

)
(−X)k(1 +X)n−k

= (−1)k
(
n

k

) n−k∑

i=0

(
n− k
i

)
Xi+k

dr

dXr
Bn

k (−X) = (−1)k
(
n

k

) n−k∑

i=0

(i+ k)!

(i+ k − r)!

(
n− k
i

)
Xi+k−r

= (−1)k
(
n

k

)
Xk−r T (X). (2.21)

Lemma 2.43. The roots of T (X) are those of dr

dXrB
n
k (−X), with the same multiplicities;

except x = 0, which is not a root of T (X). In particular, they are all real and contained
in the interval [−1, 0).

Proof. The roots of Bn
k (−X) are 0, with multiplicity k, and −1, with multiplicity n − k;

in particular, they are all real and contained in the interval [−1, 0]. When we differentiate
Bn

k (−X) for r times, a simple inductive argument using Rolle’s Theorem (similar to our
proof of Theorem 2.2) shows that the roots remain real and contained in the interval
[−1, 0]. The multiplicity of the root 0 drops from k to k − r. The claim now follows
from (2.21).

Theorem 2.44. Let α be a k-fold root of the polynomial F , and let s > 0 be the minimum
distance of α to any other root β 6= α of F . Let 1 ≤ r ≤ k. Write ϑn

k,r for the smallest

positive root of dr

dXrBn
k (X). If ξ 6= α is a root of F (r), then |ξ − α| ≥ s · ϑn

k,r.

We will also write ϑn
k for ϑn

k,k.

Proof. As before, we assume α = 0, and we define G and H as in (2.18). By the preceding
lemma, all roots of T are contained in the interval [−1,−ϑn

k,r]. Let K be the closed disc
whose boundary is the circumcircle of [−1,−ϑn

k,r]. This disc K is a closed circular region
containing all roots of T . Theorem 2.42 implies for the composition H of T and G that its
root ξ has the form ξ = −wβ with w ∈ K and G(β) = 0. One has |w| ≥ ϑn

k,r and |β| ≥ s,
so that |ξ| ≥ s · ϑn

k,r.

The tightness of this bound is seen immediately from the example Bn
k (X), which has a

k-fold root at 0 and its only other root at 1.

For r = 1, it is well-known and trivial to verify that ϑn
k,1 = k/n; this is also mentioned

by Dimitrov [Dim98]. For r > 1, we are not aware of any result in the literature, but have
discovered the following ad-hoc estimate.
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Proposition 2.45. In Theorem 2.44, we have ϑn
k,r ≥ (1 + k − r)/((k + 1)(n − k)).

Proof. Deleting constant factors in (2.21), we see that ϑn
k,r is the smallest positive root of

S(X) =

n−k∑

i=0

(i+k)!
i! (i+k−r)! (n−k−i)! (−X)i

We group the terms of S into pairs; if the degree is even (and thus the number of terms
is odd), the leading term is not paired:

n!
(n−k)! (n−r)!X

n−k

︸ ︷︷ ︸
if n−k is even

+

bn−k−1
2

c∑

j=0

(
− (k+2j+1)!

(2j+1)! (k−r+2j+1)! (n−k−2j−1)! X + (k+2j)!
(2j)! (k−r+2j)! (n−k−2j)!

)

︸ ︷︷ ︸
=:Pj

X2j

We seek a bound B > 0 such that every underbraced subexpression above is positive when
substituting x ∈ (0, B) for X. If a separate leading term is present at all, it is positive
anyway. We turn to the pairs Pj. Each Pj is a polynomial in X of degree 1. Setting
Pj(xj) = 0, cancelling the common factors of the factorials and solving for xj, we see that
the unique root of Pj is

xj =
2j + 1 + k − r
k + 2j + 1

· 2j + 1

n− k + 1− (2j + 1)
.

The pair Pj(x) is positive for x < xj . To make all pairs positive, we choose B = minj xj .
To determine this minimum, let us minimize both factors of xj , seen as functions of
u := 2j + 1. The first factor is of the form (u + (k − r))/(u + k); its derivative is
r/(u + k)2 ≥ 0, so it is nondecreasing in u. The second factor is of the form u/(a − u)
where 0 < u < a = n − k + 1; its derivative is a/(a − u)2 > 0, so it is increasing in u.
Thus, B = x0 = (1 + k − r)/((k + 1)(n − k)). Since S(x) > 0 for x ∈ (0, B), and ϑn

k,r is a
positive root of S, the claim follows.

The author has previously published his generalization (essentially, Theorem 2.44) of
Dimitrov’s result [Dim98] in the notice [Eig07]. However, the relation (2.21) between
T (X) and dr

dXrB
n
k (−X) is new in this thesis and simplifies the argumentation; furthermore,

Proposition 2.45 improves considerably on the naive bound in [Eig07].

We draw the following conclusion from the combined results of §2.3.3 and §2.3.4.
Proposition 2.46. Let the real polynomial F of degree n have a k-fold root α in the
bounded open interval I, and let s be the minimum distance from α to any other root
β 6= α of F .

(i) If s ≥ |I| /ϑn
k , then DescartesTest(F, I) = k.

(ii) If s ≥ |I| · (k + 1)(n − k), then the condition in (i) is satisfied.

Proof. Ad (ii). We have (k + 1)(n − k) ≥ 1/ϑn
k by Proposition 2.45.

Ad (i). Consider any root ξ of F (k). Theorem 2.44 implies |ξ − α| ≥ s · ϑn
k ≥ |I|. Hence

no such ξ is inside the circumcircle of I, and Proposition 2.40 yields the claim.

Let us discuss the role of Proposition 2.40 in this proof. It allows us to deduce
DescartesTest(F, I) = k from |ξ − α| ≥ |I|. Can we attain a larger, i.e., less restrictive, up-
per bound on |I| by replacing Proposition 2.40 with condition (i) or (ii) of Proposition 2.41?
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Figure 2.6: Empirical comparison of the value ϑn

k
and its lower bound from Proposition 2.45 (on

the vertical axis) as functions of k = 1, . . . , n− 1 (on the horizontal axis) for various choices of n.
The graphs shown are interpolated linearly between successive values of k.

For condition (i), we demonstrated the impossibility with the counterexample (2.17) above.
Condition (ii) would give us the liberty to ignore the root ξ1 of F (k) nearest to α and in-
stead argue that the distance to the second-nearest root ξ2 is larger than the diameter
|I| · 2/

√
3 of OC±

≤(1, 1, n; I). However, the resulting upper bound |ξ2 − α| ·
√

3/2 on |I|
need not be larger than |ξ1 − α| in general; it may even be smaller. Hence we regard
Proposition 2.46(i) as the “right” consequence of Theorem 2.38.

Since we have no explicit expression for ϑn
k , we have to use part (ii) in applications

of Proposition 2.46. Of course, that prompts the question: How good is the estimate
ϑn

k ≥ 1/((k + 1)(n − k))? We do not have a formal proof for its tightness, but a few
computational experiments displayed in Figure 2.6 indicate that it reflects ϑn

k well (up
to a small constant factor), including the bitonic behaviour that makes it smallest for
k ≈ n/2 and largest for the extreme values k = 1 and k = n− 1.

2.3.5 Comparison of the partial converses

Which of the two partial converses, as summarized in Propositions 2.36 and 2.46, should
we use for the analysis of the Descartes method? While the two results are logically
independent (as shown in §2.3.3), Obreshkoff’s result is quantitatively superior.

Let us first consider the case that F has a simple root α in the bounded open interval I.
Again, we write s for the minimum distance of α to any other root of F . Which upper
bound on |I| is sufficient for DescartesTest(F, I) = 1? Obreshkoff’s approach gives the
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bound |I| ≤ s ·
√

3/2 ≈ 0.886 s, see Proposition 2.36, whereas the approach of §2.3.3 yields
the condition |I| ≤ s/n, because ϑn

1 = 1/n in Proposition 2.44. Clearly, Obreshkoff’s
approach works better.

Let us now consider the case that α is a k-fold root of F , for any 1 ≤ k ≤ n. Obreshkoff’s
approach yields a condition |I| ≤ s/Θ(k), whereas Proposition 2.46(ii) leads to |I| ≤
s/Θ(k(n − k)). Again, Obreshkoff’s approach gives the better result, except for highly
degenerate situations where k is close to n.

Consequently, we will use Obreshkoff’s partial converse to Descartes’ Rule in the sequel.
However, we point out that the inferior asymptotics of our partial converse would not
damage the final complexity results, because they are dominated by other quantities, as
we will see in §3.4.4. Lipka [Lip42] [RS02, Cor. 10.2.5] gave another partial converse leading
to |I| ≤ s/Θ(

√
n) irrespective of k; this would not change our final results either.

2.4 Bounds on the magnitude of roots

Bounds for the magnitude of roots of polynomials A(X) =
∑n

i=0 aiX
i are a classical

mathematical topic; we refer to the book of Rahman and Schmeisser [RS02, §8] for a
multitude of results and sources. We will not attempt a comparative study of root bounds
here and point to van der Sluis4 [vdS70] and Batra [Bat04] (also [Bat99, §1]) for that.
The purpose of this section is to present one family of closely related bounds expressed
in terms of n−i

√
|ai/an| for 0 ≤ i < n that is commonly used in conjunction with the

Descartes method and is favoured by the above-mentioned comparisons. We include basic
results from these sources regarding the quality of these bounds.

2.4.1 Bounds on all complex roots

In what follows, A(X) =
∑n

i=0 aiX
i denotes an arbitrary polynomial of degree n > 0. The

statements of this section apply to the class of all non-constant polynomials A, no matter
whether the coefficients a0, . . . , an are taken to range over the real or complex numbers.

Definition 2.47. A root bound functional is a map R that takes a non-constant polyno-
mial A to a real number R(A) ≥ 0 such that A(α) = 0 ⇒ |α| ≤ R(A) for all α ∈ C.

The optimal root bound functional is obviously the complex root radius

RR(A) := max{|α| | α ∈ C, A(α) = 0} ∈ R≥0. (2.22)

Let c denote an arbitrary positive real number. The following statements on a polyno-
mial A(X) and a complex number α are equivalent: (i) α is a root of A(X); (ii) α is a
root of A(X)/`(A); (iii) cα is a root of A(X/c). Hence RR has the following properties.

Definition 2.48. Consider a root bound functional R.
(i) If R(A(X)) = R(A(X)/`(A)) for all A, then R is invariant under multiples.
(ii) If R(A(X/c)) = cR(A(X)) for all A and all c > 0, then R is homogeneous.

Since RR has these properties, it is natural to demand that any root bound functional
shall have them as well. If not, there are degrees of freedom left for optimization.

4Abraham van der Sluis (1928–2004), Dutch mathematician and numerical computing pioneer, professor
at the University of Utrecht. An obituary by H. van der Vorst (in Dutch) appeared in Nieuw Archief
voor Wiskunde, 5th Ser. 6 (2005), pp. 17–19, available from http://www.math.leidenuniv.nl/~naw/
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The standard approach to root bounds is to consider polynomials in the power basis
(1,X,X2, . . .) and to use only the absolute values of their coefficients (but see [RS02, §8.2]
for refined approaches). This is formalized as follows.

Definition 2.49. A root bound functional R is absolute if R(A) for an indeterminate
polynomial A(X) =

∑n
i=0 aiX

i is a function of |a0| , . . . , |an|.
The following fundamental result is due to Cauchy and appeared 1821 in his Cours

d’Analyse [Cau21]5; another source is [Cau29, §5].
Theorem 2.50 (Cauchy (1821)). Consider the map RBCp that assigns to any polynomial
A(X) =

∑n
i=0 aiX

i of degree n > 0 the unique positive real root of the Cauchy polynomial
AC(X) := |an|Xn −∑n−1

i=0 |ai|Xi, or 0, if all coefficients other than |an| are zero. RBCp

is a homogeneous absolute root bound functional that is invariant under multiples.

Proof. We only need to discuss the non-trivial case {a0, . . . , an−1} 6= {0}. The existence
of a unique positive real root ρ of AC(X) follows from Descartes’ Rule (Theorem 2.2). If
|x| > ρ, then AC(|x|) > 0 and thus

|A(x)| ≥ |anx
n| − |

n−1∑

i=0

aix
i| ≥ |an| |x|n −

n−1∑

i=0

|ai| |x|i = AC(|x|) > 0,

so RBCp is indeed a root bound functional. By construction, it is absolute, homogeneous,
and invariant under multiples.

RBCp is the optimal absolute root bound functional: The set of all polynomials of de-
gree n with the given absolute values |ai| of coefficients contains AC(X), so the positive
number RBCp(A) is itself one of the roots to be bounded, namely one that maximizes mag-
nitude. Consequently, it is equivalent to think of an absolute root bound functional R(A)
as bounding the roots of a polynomial with the given absolute values of coefficients, or as
bounding RBCp(A).

Let us investigate how much we have lost by restricting attention to the absolute values
of coefficients.

Proposition 2.51. For any non-constant polynomial A(X), whose degree we denote by n,
it holds that RBCp(A) ≤ 1/( n

√
2− 1) ·RR(A) < n/ ln(2) ·RR(A), where n/ ln(2) ≈ 1.44n.

The first inequality is sharp: If A(X) = (X + 1)n, then RBCp(A) = 1/( n
√

2− 1).

Proof. On the first inequality, see [RS02, Thm. 8.1.4] or [vdS70, Thm. 3.8(e)]. For the
second, truncate the series n

√
2− 1 = exp(ln(2)/n)− 1 = ln(2)/n+ 1

2(ln(2)/n)2 + · · · after
the first term.

As RBCp(A) is hard to compute exactly, let us now address the problem of obtaining
simple upper bounds for it. Fujiwara6 [Fuj16] gave a general form of such a bound, which
is universal in a certain sense [vdS70, Thm. 2.2].

5The result appears in Note III: Sur la résolution numérique des équations. In the pagination of the
Œuvres, the exact location is 392–393.

6Matsusaburô Fujiwara (1881–1946), professor of mathematics at Tohoku Imperial University, Sendai,
Japan. (Tohoku is the north-east part of Honshu island.) An obituary note by T. Kubota appeared in
Tohoku Math. J. (2nd Ser.) 1 (1949), pp. 1–2.
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Proposition 2.52 (Fujiwara (1916)). Consider a polynomial A(X) =
∑n

i=0 aiX
i of degree

n > 0. Let λ1, . . . , λn be positive real numbers such that
∑n

i=1 1/λi ≤ 1. Then

RR(A) ≤ max
{(

λn−i

∣∣∣∣
ai

an

∣∣∣∣
) 1

n−i ∣∣ 0 ≤ i < n
}
. (2.23)

Proof. Write R for the right-hand side of (2.23). Consider an arbitrary x > R. We have
xn−i > λn−i |ai/an| and so λ−1

n−i > xi−n |ai/an| for all i. From 1 ≥∑n−1
i=0 λ

−1
n−i we obtain

|an| xn ≥
n−1∑

i=0

λ−1
n−i |an| xn >

n−1∑

i=0

|ai| xi,

hence AC(x) > 0 and x > RBCp(A). It follows that R ≥ RBCp(A) ≥ RR(A).

For any permissible choice of constants λi, the right-hand side of (2.23) is an absolute
root bound functional. It is homogeneous and invariant under multiples, because already
the subexpressions n−i

√
|ai/an| have these properties. (In fact, these properties make it

natural to seek a bound in terms of n−i
√
|ai/an|.)

Fujiwara discusses various choices of λi, including λi = 2i for i = 1, . . . , n, which makes∑n
i=1 1/λi =

∑n
i=1 1/2i = 1− 2−n < 1. This yields the folklore complex root bound7

RR(A) ≤ RBfolk(A) := 2max
{ ∣∣∣∣
an−1

an

∣∣∣∣ ,
∣∣∣∣
an−2

an

∣∣∣∣

1
2

, . . . ,

∣∣∣∣
a1

an

∣∣∣∣

1
n−1

,

∣∣∣∣
a0

an

∣∣∣∣

1
n }

. (2.24)

But there is room for improvement, since the constraint
∑n

i=1 1/λi ≤ 1 is not tight. We
mention three possibilities.

The first (see, e.g., [RS02, Cor. 8.1.8]) consists in retaining the ansatz λi = σi
n; the

optimal choice of σn is the unique positive root of Xn −∑n−1
i=0 X

i. It is not hard to see
that the sequence (σn)n is increasing and contained in the interval (3/2, 2) for n ≥ 2; from
σn

n = (1−σn
n)/(1−σn) we get 2−σn = σ−n

n and see that (σn)n converges rather fast to 2.
The resulting bound

RR(A) ≤ σn max
{ ∣∣∣∣
ai

an

∣∣∣∣
1

n−i ∣∣ 0 ≤ i < n
}
, with 1 ≤ σn < 2, σn

n =
n−1∑

i=0

σi
n, (2.25)

is interesting in so far as it explicitly shows the gap between RR(A) and the right-hand
side in (2.24); we see that (2.24) is not sharp for any fixed degree n. Algorithmically,
however, the non-constant, irrational quantity σn is inconvenient to handle.

The second improvement, favoured by van der Sluis [vdS70], keeps things simple for
computers with binary numbers and redefines λn = 2n−1 while retaining λi = 2i for
i < n to make the constraint

∑n
i=1 1/λi ≤ 1 satisfied with equality. Van der Sluis [vdS70,

p. 252] refers to Marden [Mar66, §30 ex. 5] as a textbook source for this particular choice
of parameters, but does not attach a name to the resulting bound. Fujiwara [Fuj16] has
not spelled out this improvement, but it is so close to his presentation that it can hardly
be counted as a discovery in its own right. Therefore, we follow Batra [Bat99, §1.1] and

7Knuth states (2.24) as Exercise 20 in [Knu69, §4.6.2] without an attribution (consistent with other
authors). The exercise has been replaced in later editions of [Knu69].
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name this bound after Fujiwara. However, to indicate the specific “base 2” choice of the
parameters λi, we call it the dyadic Fujiwara complex root bound:

RR(A) ≤ RBdF(A) := 2max
{ ∣∣∣∣
an−1

an

∣∣∣∣ ,
∣∣∣∣
an−2

an

∣∣∣∣

1
2

, . . . ,

∣∣∣∣
a1

an

∣∣∣∣

1
n−1

,

∣∣∣∣
a0

2an

∣∣∣∣

1
n }

. (2.26)

We summarize the findings of [vdS70] on RBdF as follows.

Proposition 2.53 (van der Sluis (1970)). For A(X) =
∑n

i=0 aiX
i as above, it holds that

(i) RBdF is sharp: A(X) = Xn −Xn−1 − · · · −X − 2 ⇒ RR(A) = 2 = RBdF(A);
(ii) RBdF(A) ≤ 2 · RBCp(A), with equality for A(X) = Xn −Xn−1;
(iii) RBdF(A) ≤ 2n ·RR(A), with equality for A(X) = (X + 1)n.

The reader is invited to observe that the statements (ii) and (iii) together with their proofs
apply as well to the folklore bound (2.24), and – with σn in place of the factor 2 – also to
the bound (2.25).

Proof. Ad (i). A(X) = (X − 2)(Xn − 1)/(X − 1), so RR(A) = 2 = RBdF(A).
Ad (ii). If RBCp(A) = 0, then RBdF(A) = 0. Otherwise, we can use homogeneity to scale

the indeterminate without changing the ratio RBdF(A)/RBCp(A) to attain RBCp(A) = 1.
From AC(1) = 0 it follows that 1 =

∑n−1
i=0 |ai/an|, hence |ai/an| ≤ 1 for all i < n, and thus

RBdF(A) ≤ 2.
Ad (iii). Again, we can restrict to the case RR(A) = 1 by homogeneity. By invariance

under multiples, it is not a restriction either to assume an = 1. Consider the set of all
polynomials P (X) =

∏n
j=1(X − ϑj) =

∑n
i=0 piX

i with roots |ϑj | ≤ 1. The coefficients

satisfy |pn−i| = |∑j1<···<ji
ϑj1 · · ·ϑji | ≤

(n
i

)
, and the upper bound is attained for ϑ1 =

· · · = ϑn = −1. As RBdF(P ) is a non-decreasing function of each pi, this choice P (X) =
(X + 1)n also maximizes RBdF(P ). The value of the maximum is RBdF(P ) = 2n, since(n

i

)1/i ≤ n, with equality for i = 1. It follows that RBdF(A) ≤ 2n, as desired.

Independently of Fujiwara, Westerfield [Wes31] has described his own parametric ap-
proach to bounds on RBCp and derives the following result [op. cit., Eq. (e)]. Instead of
taking twice the largest number in (2.24), it suffices to take the sum of the largest and the
second-largest, or formally:

RR(A) ≤ RBLgr(A) := max
{ ∣∣∣∣
ai

an

∣∣∣∣

1
n−i

+

∣∣∣∣
aj

an

∣∣∣∣

1
n−j ∣∣ 0 ≤ i < j < n

}
. (2.27)

We comment on the history of this bound in §2.4.2 near Equation (2.31). At this point,
let us discuss the quality of this bound in the style of van der Sluis.

Proposition 2.54. For A(X) =
∑n

i=0 aiX
i as above, it holds that

(i) RBLgr is sharp: A(X) = Xn − 1 ⇒ RR(A) = 1 = RBLgr(A);
(ii) RBLgr(A) < 2 ·RBCp(A), and no constant factor smaller than 2 is possible;
(iii) RBLgr(A) ≤ (n+

√
n(n− 1)/2) · RR(A) with equality for A(X) = (X + 1)n,

where n+
√
n(n− 1)/2 < (1 + 1/

√
2) · n ≈ 1.71n.

Proof. Ad (i). This is obvious.
Ad (ii). As in the proof of Proposition 2.53(ii), we may assume RBCp(A) = 1. From

AC(1) = 0 it follows that 1 =
∑n−1

i=0 |ai/an|. If only one summand is non-zero, then
RBLgr(A) = 1 < 2. If at least two summands are non-zero, then |ai/an| < 1 for all i < n,
and thus RBLgr(A) < 2.
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For asymptotic tightness, consider the polynomials An(X) = Xn − X − 1 for n ≥ 2.
Clearly, RBLgr(An) = 2. On the other hand, An(1 + 2

n) > (1 + n 2
n)− (1 + 2

n)− 1 ≥ 0, so
RBCp(An) < 1 + 2

n . Hence 2 > RBLgr(An)/RBCp(An) > 2n/(n+ 2)→ 2 for n→∞.

Ad (iii). By the same arguments as in the proof of Proposition 2.53(iii), we can restrict
to the case RR(A) = 1 and obtain that RBLgr(A) is maximized for A(X) = (X + 1)n. Its

coefficients are an−i =
(
n
i

)
, 0 ≤ i ≤ n, and the two largest elements of (

(
n
i

)1/i
)ni=1 are those

with indices i = 1 and i = 2. The claim follows.

2.4.2 Bounds on positive real roots

Let us now restrict to real polynomials A(X) and seek bounds for the positive root radius

RR+(A) := max ({α | α ∈ R>0, A(α) = 0} ∪ {0}) ∈ R≥0. (2.28)

We take the same approach as Kioustelidis [Kio86]. We begin by constructing an analogue
to the Cauchy polynomial from Theorem 2.50.

Theorem 2.55. Let A(X) =
∑n

i=0 aiX
i be a polynomial of degree n > 0 with real coeffi-

cients. Let I = {i ∈ {0, . . . , n− 1} | ai/an < 0}. Let RB+
Cp(A) denote the unique positive

real root of AC+(X) := |an|Xn −∑i∈I |ai|Xi, or 0, if all coefficients other than |an| are
zero. It holds that RR+(A) ≤ RB+

Cp(A).

Proof. We assume w.l.o.g. that an > 0. The polynomial AC+(X) consists of the leading
term and the negative terms of A(X). For all x > 0, it holds that A(x)−AC+(x) ≥ 0, as
all remaining terms are positive. For all x > RB+

Cp(A), it holds that AC+(x) > 0. Taken

together, this implies A(x) > 0 for all x > RB+
Cp(A), as desired.

We note that Rahman and Schmeisser [RS02, Thm. 8.2.4] found an elegant generaliza-
tion to roots on arbitrary rays reiϕ (r > 0 varying, ϕ ∈ R fixed) in the complex plane.

What can we say about the quality of this bound? As in the case of Theorem 2.50,
the bound RB+

Cp(A) applies to its own defining polynomial, so it is sharp by construction.

Also, it is easy to see that RB+
Cp(A) ≤ RBCp(A), so the maximum overestimation factor

from Proposition 2.51 in relation to all complex roots carries over immediately. However,
no continuous functional R that bounds RR+ has a maximum overestimation factor in
relation to the positive real roots alone: Think of a real polynomial A(X) with one double
positive real root α that is much larger in magnitude than the next largest positive real
root β; i.e., α/β � 1. Obviously, there exist examples for arbitrarily large values of α/β.
Of course, we have R(A) ≥ α, so q := R(A)/β can be made arbitrarily large as well. Now
let us study small perturbations of A. Every neighbourhood of A in the space of fixed-
degree real polynomials contains elements Ã for which α splits into a pair of imaginary
roots while the other roots remain fixed. The coefficients of Ã and thus R(Ã) have changed
only by an arbitrarily small amount, so the new overestimation factor R(Ã)/β is close to q,
that is, arbitrarily large.

In the preceding section, we studied simple bounds on RBCp. Let us now transfer
these results to RB+

Cp, cf. [Kio86]. The key observation is this: The polynomial AC+(X)

from Theorem 2.55 applied to A(X) is the Cauchy polynomial AC
∗ (X) from Theorem 2.50

applied to a modified polynomial A∗(X). The polynomial A∗(X) is obtained from A(X)
by setting those coefficients ai, i < n, to zero that agree with an in sign. Thus, we
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can transfer the simpler bounds from §2.4.1 by propagating this annihilation of certain
coefficients into their defining expressions. This is conveniently done with the symbol
|x|− := |min{0, x}| denoting the magnitude of a negative number x and zero otherwise.
We observe that the resulting bounds are equal to or less than their counterparts for all
complex roots, because we effectively form the maximum of a subset.

We obtain the folklore positive root bound

RR+(A) ≤ RB+
folk(A) := 2max

{ ∣∣∣∣
an−1

an

∣∣∣∣
−

,

∣∣∣∣
an−2

an

∣∣∣∣
1
2

−

, . . . ,

∣∣∣∣
a1

an

∣∣∣∣
1

n−1

−

,

∣∣∣∣
a0

an

∣∣∣∣
1
n

−

}
, (2.29)

the dyadic Fujiwara positive root bound

RR+(A) ≤ RB+
dF(A) := 2max

{ ∣∣∣∣
an−1

an

∣∣∣∣
−

,

∣∣∣∣
an−2

an

∣∣∣∣
1
2

−

, . . . ,

∣∣∣∣
a1

an

∣∣∣∣
1

n−1

−

,

∣∣∣∣
a0

2an

∣∣∣∣
1
n

−

}
, (2.30)

and Lagrange’s positive root bound

RR+(A) ≤ RB+
Lgr(A) := max

{ ∣∣∣∣
ai

an

∣∣∣∣
1

n−i

−

+

∣∣∣∣
aj

an

∣∣∣∣
1

n−j

−

∣∣ 0 ≤ i < j < n
}
. (2.31)

Lagrange stated the bound (2.31) in [Lag69, 12.] (also in [Lag08, p. 32]); this source from
1769 is older than any other literature reference we know for the bounds presented here.
Lagrange specifically restricted his considerations to positive real roots; however, using
Theorem 2.50 and the Cauchy polynomial, it immediately entails the bound (2.27) on
all complex roots. Therefore, we have to regard (2.27) as already known at the time
when Westerfield [Wes31] derived it, and we use the symbol RBLgr for it. The folklore
bounds (2.24) and (2.29) follow from Lagrange’s result (2.31) but are strictly weaker.
Therefore, we refrain from attaching Lagrange’s name to them.

With exactly the same arguments as for Propositions 2.53 and 2.54, we attain the
following quality guarantees.

Proposition 2.56. Let A(X) =
∑n

i=0 aiX
i be an arbitrary real polynomial of degree n > 0.

It holds that
(i) RB+

dF is sharp: A(X) = Xn −Xn−1 − · · · −X − 2 ⇒ RR(A) = 2 = RBdF(A);
(ii) RB+

dF(A) ≤ 2 · RB+
Cp(A), with equality for A(X) = Xn −Xn−1.

Item (ii) also holds for RB+
folk.

Proposition 2.57. For A(X) =
∑n

i=0 aiX
i as above, it holds that

(i) RB+
Lgr is sharp: A(X) = Xn − 1 ⇒ RR(A) = 1 = RB+

Lgr(A);

(ii) RB+
Lgr(A) < 2 ·RB+

Cp(A), and no constant factor smaller than 2 is possible.

As discussed above, there no longer is a maximum overestimation factor.
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Chapter 3

The Descartes Method
for Real Root Isolation

We present the general form of the Descartes method and give a new and almost tight
bound on its subdivision tree (§3.1). We review the Descartes method for exact integer
coefficients (§3.2); the tree bound lets us derive the best known bit complexity statements
quickly. These bounds on tree size and bit complexity originate from ideas by Vikram
Sharma and Chee Yap that were worked out and published jointly with the author of this
thesis in [ESY06], cf. [Sha07a, §2]. We present a revised derivation of the tree bound.

The main contribution of this chapter is an extension of the Descartes method to
polynomials with bitstream coefficients (§3.3) based on joint work with Kurt Mehlhorn
et al. [EKK+05]. We give an improved version of the algorithm and a refined complexity
analysis based on our tree bound. We discuss a geometric application of the bitstream Des-
cartes algorithm (§3.4) from joint work with Michael Kerber and Nicola Wolpert [EKW07].

3.1 The Descartes method and its subdivision tree

3.1.1 General form of the Descartes method

Throughout this chapter, we consider the following task: Given a non-constant real poly-
nomial Ain(X) and two real numbers c0 < d0, compute isolating intervals I1, . . . , Ir for
those real roots of Ain(X) that lie within the initial interval I0 = (c0, d0). We say that the
intervals I1, . . . , Ir are isolating for some subset S of the real roots of Ain if (i) the intervals
are pairwise disjoint, (ii) their union contains the roots S, and (iii) each interval contains
one root from S and no other root of Ain. Root isolation differs from root approximation in
that isolating intervals need not be small, and – depending on the application – sometimes
should not be small but rather have endpoints with short representations.

The Descartes method solves the real root isolation problem under the condition that
all roots to be isolated are simple. Its approach is recursive subdivision: A sequence
P0,P1, . . . of partitions of I0 is constructed, starting from the trivial partition P0 = {I0}.
To construct Pt+1 from Pt, one checks whether Pt contains an interval I = (c, d) with
DescartesTest(Ain, I) ≥ 2. If such an interval I exists, a point m ∈ (c, d) is chosen and the
refined partition Pt+1 = (Pt \ {I}) ∪ {(c,m), {m}, (m,d)} is constructed by subdividing I
at m.1 If no such I exists, the sequence P0,P1, . . . terminates at tmax := t. If the sequence
terminates, the final partition Ptmax consists of singleton intervals [m,m] and open intervals

1Virtually all previous work on the Descartes method uses bisection, i.e., subdivision at the interval
midpoint m = (c+d)/2. However, the randomization technique to be introduced in §3.3 will need some
freedom in choosing the subdivision point m.
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(c, d) containing at most one root each. Those elements of Ptmax that contain a root (as
evident from Ain(m) = 0 or DescartesTest(Ain, (c, d)) = 1, resp.) are reported as isolating
intervals.

We regard recursive subdivision as constructing an ordered binary tree, the subdivision
tree T . Its node set is the set of all open intervals in

⋃
t Pt, which is finite iff the sequence

(Pt)t terminates. To each open interval (c, d) that has been subdivided, we associate its
subintervals (c,m) as left child and (m,d) as right child. The root of T is the initial
interval I0. The leaves of T are the intervals I that have DescartesTest(Ain, I) ≤ 1. The
singleton sets {m} in

⋃
t Pt correspond bijectively to the internal nodes of T : each such m

was chosen as subdivision point for one subdivided interval. If a final partition Ptmax is
reached, we thus have a bijective correspondence between its elements and the nodes of T .

Let us now cast this approach into pseudocode. Our procedure Descartes below main-
tains a sequence P and a set Q. Just before the main loop begins for the (t+ 1)st time,
the contents of P and Q reflect the current partition Pt in the following fashion: The
sequence P consists of the singletons of Pt that contain a root and the open intervals of Pt

that have a positive Descartes test. The elements of P are sorted in their natural order on
the real line. The set Q records the open intervals of Pt that have a Descartes test larger
than one and thus require further subdivision.

For the purposes of this piece of pseudocode, assignment of polynomials is understood
up to multiplication by non-zero constants; what these constants are is not specified at
this point. We write A ∼ B for two polynomials that are equal up to multiplication by a
non-zero constant and recall that the Descartes test is invariant under multiplication by
non-zero constants.

1: procedure Descartes(Ain, (c0, d0))
2: P ← (); Q← {};
3: A0(X)← Ain((d0 − c0)X + c0);
4: v0 ← DescartesTest(A0, (1, 0)); // i.e., v0 = DescartesTest(Ain, (c0, d0));
5: if v0 ≥ 1 then P ← ((c0, d0)); fi;
6: if v0 ≥ 2 then Q← {((c0, d0), A0)}; fi;
7: while Q 6= {} do

8: // Invariant: Q = {((c, d), A) |
9: // (c, d) ∈ P, DescartesTest(Ain, (c, d)) ≥ 2, A(X) ∼ Ain((d− c)X + c))};

10: choose an element ((c, d), A) ∈ Q;
11: choose α ∈ [14 ,

3
4 ]; m← (1− α)c+ αd;

12: IL ← (c,m); IM ← [m,m]; IR ← (m,d);
13: AL(X)← A(αX); AR(X)← A((1− α)X + α);
14: vL ← DescartesTest(AL, (1, 0)); // i.e., vL = DescartesTest(Ain, IL)
15: vM ← max{k | Xk divides AR}; // ≥ 1 iff Ain(m) = 0
16: vR ← DescartesTest(AR, (1, 0)); // i.e., vR = DescartesTest(Ain, IR)
17: in P , replace entry (c, d) by subsequence (Ii | i ∈ (L,M,R), vi ≥ 1);
18: in Q, replace element ((c, d), A) by elements {(Ii, Ai) | i ∈ {L,R}, vi ≥ 2};
19: od;
20: report sequence P of isolating intervals;
21: end procedure;
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For each subinterval with Descartes test larger than one, the set Q contains a pair
((c, d), A), in which A(X) ∼ Ain((d−c)X+c) is a transformed version of the input polyno-
mial Ain. It is easy to check by substitution that AL(X) ∼ Ain((m−c)X+c) and AR(X) ∼
Ain((d−m)X+m). This, together with the derivation of the Descartes test in §2.2, makes
clear that vL = DescartesTest(Ain, (c,m)) and vR = DescartesTest(Ain, (m,d)). Thus, the
invariant claimed in line 8 does indeed hold.

What about termination? We observe that subdivision of an interval I creates subin-
tervals with lengths at most 3/4 · |I|. Due to the condition that all roots of Ain(X) in I0
have multiplicity k = 1, Proposition 2.36 (on page 33) or Proposition 2.46 (on page 38)
guarantee that subdivision stops as soon as the interval length is sufficiently small. We
will see a more thorough version of this argument in §3.1.5, where we derive a bound on
the size of the subdivision tree (Theorem 3.19).

3.1.2 Remark on sources and names

The Descartes method goes back to an algorithm of Collins and Akritas [CA76], which
we will discuss in §3.2.4. They called it the “Modified Uspensky Algorithm”; the ref-
erence to Uspensky rather than Vincent was later criticized heavily by Akritas [Akr86].
Johnson [Joh91] [Joh98] has used the name “coefficient sign variation method”. Current
work of Collins, Johnson and Krandick speaks of “the Descartes method” (e.g., [CJK02]
[KM06] [JKL+06]), carefully avoiding the possessive “Descartes’ method” – after all, Des-
cartes himself did not envision this algorithm.2 We follow their terminology, as it is widely
(although not universally) established in the field.

The Descartes method has to be distinguished from the Continued Fractions method
for real root isolation, which is also based on Descartes’ Rule. Its basic form, Vincent’s
method [Vin36] [AG98], is the unmodified “Uspensky’s algorithm” of [CA76]. Akritas has
pursued this approach (not the “modified” one); we refer to [AS05] [ASV07] for the latest
results of Akritas et al. and references to older work. A complexity analysis that copes
with the the lack of a maximum overestimation factor for positive root bounds (see §2.4.2)
has been undertaken by Sharma [Sha07a, §3] [Sha07b].

Both the Descartes method and the Continued Fractions method can be seen as methods
for root isolation by recursive subdivision with the Descartes test as termination criterion.
In this respect, they share a lot of the underlying mathematics and auxiliary algorithms.
However, when we abstract from the use of this specific test for roots and consider the
overall search strategy, efficient forms of the Continued Fractions method are markedly
different from the Descartes method, because they critically depend on a further ingredient
(positive root bound) to control subdivision, whereas the Descartes method follows the
same search strategy as, say, Sturm’s method, namely unguided subdivision starting from
a bounded interval. Therefore, the relation of the Descartes method and the Continued
Fractions method should not be overplayed.

2The author conjectures that René Descartes (1596–1650) would indeed assert that he has developed a
method that should bear his name – not for the humble problem of isolating roots, but for seeking the
truth through scientific reasoning. This is the subject of his influential Discours de la méthode pour
bien conduire sa raison et chercher la vérité dans les sciences (1637). Ironically, the Discours de la
méthode is indeed the link between René Descartes and “the Descartes method”, as its appendix La
Géométrie contains the remark that gave rise to Descartes’ Rule of Signs, see [Kra95, §3.3] [KM06].
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3.1.3 Details on the sets of subintervals

Various aspects of the sequence P and the set Q in procedure Descartes call for further
explanations.

I. Let us begin by elucidating the basic roles of P and Q. In a straightforward im-
plementation of procedure Descartes, both P and Q can be represented by linked lists,
where the elements of Q are augmented with pointers to their counterparts in P , such
that locating them in line 17 is easy.

All significant operations of procedure Descartes are controlled by the contents of Q
and the manner of choosing elements from it in line 10. The sequence P , by contrast, is
merely a repository for the resulting isolating intervals; the intervals in P that are not yet
isolating serve as placeholders for isolating intervals arising from them in later iterations.
The point here is that reporting the isolating intervals in sorted order is easy, even if
the procedure may not discover them in that order. Also, a sorted sequence of isolating
intervals often is the convenient form for the result of a root isolation procedure.

If sorted order of isolating intervals is not an issue, or if it is achieved by other means,
an implementation can replace line 17 by

if vL = 1 then report IL; fi;
if vM ≥ 1 then report IM ; fi;
if vR = 1 then report IR; fi;

and thus effectively eliminate P .

II. Let us now discuss our way of recording intervals in Q. Following [CA76], we insist
that Q shall not simply store intervals (c, d) but also transformed polynomials A(X) ∼
Ain((d− c)X+ c). This, together with the transformations in line 13, allows us to perform
Descartes tests only with respect to the fixed interval (0, 1). The necessary transformation
of Ain for testing w.r.t. (c, d) is performed incrementally in relatively cheap steps. When
we discuss concrete implementations, it will become clear that this is more efficient than
transforming Ain afresh for each Descartes test.

Depending on the application, it may be important to deliver the result of root isolation
in a way that retains the internal state of the Descartes method and allows further sub-
division. In such a situation, it may be useful to implement Descartes with a “fat” form
of P that stores pairs ((c, d), A) and a “thin” form of Q that stores only pointers into P .

III. At the beginning of procedure Descartes, we have v0 ≤ n := deg(Ain). Suppose
v0 ≥ 2, so that the main loop is executed. Consider the subdivision of an interval (c, d)
with v = DescartesTest(Ain, (c, d)). The variation-diminishing property (Proposition 2.26
on page 26) implies v ≥ vL + vM + vR. In other words, we can think of each element in P
as carrying a positive, integral charge (its v value). Subdivision distributes charge onto
subintervals; some charge may be lost. This has two important consequences.

At any time, the sum of all charges is at most n. Consequently, there are at most n
entries in P (as they all have charge at least 1) and at most n/2 entries in Q (as they all
have charge at least 2) at any stage of the algorithm.

Let us call the total charge of Q minus the cardinality of Q the excess charge of Q. This
is a non-negative integer, which is at most n − 1 initially, can never grow, and reaches
zero when and only when the algorithm terminates. If subdivision leads to vL, vR ≥ 1,
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the excess charge of Q drops by at least 1. If subdivision at m hits a root of Ain(X), the
excess charge drops by at least vM ≥ 1. If subdivision verifies v > vL + vM + vR, the
excess charge drops at least by the difference, which is no less than 1. Thus, with at most
n−1 exceptions, the outcome of subdivision is (vL, vM , vR) ∈ {(v, 0, 0), (0, 0, v)}. The total
number of subdivisions can be much larger than n− 1, as we will see in §3.1.5 and §3.2.2.
Thus we expect the most frequent result of subdividing an interval recorded in Q to be
simply one smaller interval in P and Q, with no change in the number of intervals or the
Descartes test values. The implementation of the main loop should therefore be optimized
to handle this easy case fast (e.g., avoid freeing and allocating list nodes when replacing
(c, d) by a single subinterval in P ).

IV. An important reason for describing the set Q as separate from the sequence P
is the resulting freedom for choosing an entry from Q in line 10. Different policies for
choosing from Q induce different traversal orders of the subdivision tree T .

• Suppose Q is maintained as a sorted sequence, the first element of Q is chosen in
line 10, and it is replaced in line 18 by new elements (if any) inserted at the beginning
of Q in their natural order on the real line. Then Q is essentially a stack, and T
is traversed depth first from left to right. Consequently, isolating open intervals are
discovered in their natural order on the real line. (This does not hold for singleton
intervals; they are discovered before further subdivision of the left subinterval.)

This is the same order as for a recursive formulation of the Descartes method that
first examines the subdivision point m and then makes recursive calls for the left
and right subinterval, provided they have a Descartes test of at least 2. However, a
straightforward implementation of this recursive formulation would use a number of
stack frames proportional to the height of T , which can be much larger than n/2, the
maximum size of Q. Instead, an implementation of this recursive formulation should
eliminate tail recursion as much as possible and perform a recursive call only if there
are two subintervals that warrant further subdivision. In a recursive implementation
so optimized, the machine stack plays the role of Q.

• A seemingly minor variation of the preceding policy can reduce the size of Q dra-
matically: order two new elements in line 18 such that the one with smaller v value
comes first in Q, with arbitrary order in case of equality. This also leads to a depth-
first traversal, but it is, in general, not from left to right any more. We show now
that Q has at most log n elements at all times.

Let I be the interval recorded in the first element ofQ. Consider the path in T from
the root down to I; we regard this path as a sequence of nodes. Let us now restrict
to the subsequence of those nodes whose sibling is recorded in Q; we call these nodes
(N1, . . . , Nk) and their siblings (S1, . . . , Sk). We observe that Q = (I, Sk, . . . , S1).
Let Fi denote the father of Ni and Si. Let N0 denote the root. Writing v( · )
for the v value (Descartes test) of a node, our policy together with the variation-
diminishing property entails 2v(Ni) ≤ v(Ni) + v(Si) ≤ v(Fi) ≤ v(Ni−1) and thus
v(Ni) ≤ v(Ni−1)/2 for all 1 ≤ i ≤ k. It follows that v(Nk) ≤ v(N0)/2

k ≤ n/2k.
Since v(Nk) ≥ 2, this implies k ≤ log n− 1, so Q has at most log n elements.

This trick is mentioned by Akritas/Strzeboński [AS05, §1.1]. In terms of a recur-
sive implementation, it is akin to eliminating tail recursion for the smaller of two
subproblems, which was already described by Hoare [Hoa62, p. 11].
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• Suppose Q is maintained as a sorted sequence, the first element of Q is chosen in
line 10, and it is replaced in line 18 by new elements (if any) that are appended
in sorted order at the end of Q. In other words, Q is used as a queue. Then T is
traversed breadth first from left to right.

For breadth-first traversal, a bound of n (as opposed to n/2) on the size of Q was
already known to Krandick [Kra95, Satz 21] [KM06, Thm. 28(1)] independently of
Proposition 2.26. We will meet breadth-first traversal again in §3.4.

Before us, Rouillier and Zimmermann [RZ04] have presented a “generic Descartes algo-
rithm” for a unifying treatment of various techniques to navigate the subdivision tree T .
They consider subdivision only at α = 1/2, but they do not restrict tree traversal to
following edges and backtracking (as we have done) and thus attain a variant of the Des-
cartes method that stores only one polynomial at any time. However, in consideration of
our algorithm for approximate coefficients in §3.3, we prefer the more restrictive setting
in which polynomials are only transformed downwards along tree edges and thus content
ourselves with limiting memory usage to log n polynomials as described above, if memory
usage should turn out to be a concern.

3.1.4 A generalized Davenport-Mahler bound

With the goal of a complexity analysis in mind, we devote this section to a lower bound on
the distances between certain pairs of roots in terms of degree and coefficients, i.e., natural
parameters of input size. The next section will then make the link from distances between
suitably chosen pairs of roots to the number of subdivisions performed by Descartes. But
first we need to introduce some scalar quantities associated with a polynomial.

Definition 3.1. Let F (X) = fn
∏n

j=1(X − ϑj) be a complex polynomial of degree n ≥ 1.
The Mahler measure of F is Mea(F ) := |fn|

∏n
j=1 max{1, |ϑj |} > 0.

We point out two basic properties that we will need later on.

Lemma 3.2. If |fn| ≥ 1, in particular if F ∈ Z[X], then Mea(F ) ≥ 1.

Lemma 3.3. If F,G ∈ C[X] \ C, then Mea(FG) = Mea(F ) ·Mea(G).

To make a link between the Mahler measure and the polynomial’s coefficients, we recall
the usual definition of a polynomial’s p-norm: ‖∑i fiX

i‖p := p
√∑

i |fi|p for 1 ≤ p < ∞
and ‖∑i fiX

i‖∞ = maxi |fi|.

Proposition 3.4. Let F ∈ C[X]. Then Mea(F ) ≤ ‖F‖2 ≤
√

deg(F ) + 1 ‖F‖∞.

The second inequality is trivial. The first is known as Landau’s inequality (Landau, 1905);
it is contained in the stronger inequality of Vicente Gonçalves (1950). Elementary proofs
appear in the textbooks [Yap00, Lem. 4.14] [BPR06, Prop. 10.9]. We refer to [RS02, §9.1,
§9.6] for citations of the original sources and a more detailed treatment that includes the
viewpoint of complex analysis.

The form of the Davenport-Mahler bound usually found in the literature (e.g., [BPR06,
Prop. 10.23] [Yap00, Thm. 6.28]) relates the Mahler measure to the discriminant of a
square-free polynomial. We state a generalization beyond the square-free case in which
the discriminant is replaced by a suitable subdiscriminant.
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Definition 3.5. Let F (X) =
∑n

i=0 fiX
i be a polynomial of degree n ≥ 1 with coefficients fi

in an integral domain R, and let 1 ≤ r ≤ n.

(i) The (n− r)th subdiscriminant of F is the element sDiscn−r(F ) ∈ R given by

sDiscn−r(F ) :=
1

fn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fn fn−1 · · · fi · · · · · · · · · · · ·
. . .

. . .
. . .

fn fn−1 · · · fi · · · · · ·
nfn · · · · · · ifi · · ·

...
...

...
...

nfn · · · · · · ifi · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.1)

In the (2r − 1) × (2r − 1) determinant on the right, the first r − 1 rows hold the
coefficients of F arranged in echelon form and padded with zeros or cut off at the
right as necessary to fill 2r − 1 columns. The remaining r rows hold the coefficients
of F ′, arranged in echelon form upwards from the bottom row and likewise padded
or cut off at the right.

As evident from the first column, the division by fn is indeed possible within R.

(ii) The discriminant of F is Discr(F ) = sDisc0(F ), the 0th subdiscriminant (r = n).

The fundamental property of subdiscriminants is their relation to root differences, which
was already known to Sylvester [Syl39]; see also [BPR06, §4.1, §4.2.2].
Theorem 3.6. If F (X) = fn

∏n
j=1(X − ϑj), fn 6= 0, then

sDiscn−r(F ) = f2r−2
n

∑

#I=r

∏

(i,j)∈I2

i>j

(ϑi − ϑj)
2, (3.2)

with summation over all r-element subsets I of {1, . . . , n}.
Clearly, sDiscn−r(F ) = 0 if F has less than r distinct complex roots.

Proposition 3.7. Let F (X) = fn
∏r

j=1(X−ηj)
mj be a complex polynomial of degree n ≥ 2

with exactly r distinct complex roots η1, . . . , ηr. Then

sDiscn−r(F ) = f2r−2
n ·

r∏

j=1

mj ·
∏

1≤i<j≤r

(ηi − ηj)
2 6= 0. (3.3)

Proof. We consider an arbitrary summand in (3.2) for an index set I of size r. If there are
distinct indices i, j ∈ I such that ϑi = ϑj , then this summand vanishes. Conversely, if the
ϑi, i ∈ I, are pairwise distinct, then these r numbers are exactly the r distinct complex
roots η1, . . . , ηr, so that this summand is equal to

∏
i<j (ηi − ηj)

2. This is the case for
exactly

∏r
j=1mj distinct subsets I of {1, . . . , n}.

Lemma 3.8. If m1, . . . ,mr ∈ N and
∑r

i=1mi = n, then
∏r

i=1mi ≤ 3min{n,2n−2r}/3.

Proof. We begin by considering the function f(x) = 3x/3 − x for x ∈ (0,∞) and showing
that f(m) ≥ 0 for all m ∈ N, which is equivalent to m ≤ 3m/3.

The derivative of f(x) = exp((ln 3)/3 · x) − x is f ′(x) = (ln 3)/3 · exp((ln 3)/3 · x) − 1.
Its unique zero is x = 3− 3(ln ln 3)/ ln 3 < 3, so that f(x) is strictly increasing for x ≥ 3.
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From f(3) = 0 we can thus conclude f(x) > 0 for x > 3. For the remaining cases m = 1
and m = 2, it is easy to check that m3 ≤ 3m.

We now turn to the product
∏r

i=1mi. How many factors mi ≥ 2 occur in this product?
Their number is at most

∑r
i=1(mi − 1) = n− r.

In case n ≥ 2r, this bound is vacuous, as there are only r factors at all. We conclude

∏r
i=1mi ≤

∏r
i=1 3mi/3 = 3

Pr
i=1 mi/3 = 3n/3 ≤ 3(2n−2r)/3.

In case n < 2r, at most n− r < r factors are different from 1, and we may assume that
these are m1, . . . ,mn−r. We obtain

∏r
i=1mi =

∏n−r
i=1 mi ≤ 3

Pn−r
i=1 mi/3 = 3(

Pr
i=1 mi−(r−(n−r)))/3 = 3(2n−2r)/3 < 3n/3.

We are now ready for the main result of this section.

Theorem 3.9 (Generalized Davenport-Mahler bound). Let F (X) be a complex polyno-
mial of degree n ≥ 2 that has exactly r ≤ n distinct complex roots V = {η1, . . . , ηr}. Let
G = (V,E) be a directed graph on the roots such that

(i) every edge (α, β) ∈ E satisfies |α| ≤ |β|,
(ii) G is acyclic, and
(iii) the in-degree of any node is at most 1.

Then

∏

(α,β)∈E

|α− β| ≥
√
|sDiscn−r(F )|
Mea(F )r−1

·
(√3

r

)#E
·
(1

r

)r/2
·
( 1√

3

)min{n,2n−2r}/3
. (3.4)

We note that both sides of (3.4) are invariant under replacing F (X) by λF (X), λ ∈ C∗.

Proof. In the light of the preceding remark, we may assume that F is monic. According
to Proposition 3.7,

√
|sDiscn−r(F )| =

( r∏

j=1

mj

)1/2 · |
∏

i<j

(ηj − ηi)| . (3.5)

The product of differences on the right is the determinant of an r×r Vandermonde matrix
[BPR06, Lem. 4.11] [Yap00, Lem. 6.26]:

∏

i<j

(ηj − ηi) = detW where W =




1 η1 η2
1 · · · ηr−1

1

1 η2 η2
2 · · · ηr−1

2
...

...
1 ηr η2

r · · · ηr−1
r


 . (3.6)

Let us now consider an arbitrary edge (α, β) ∈ E. The vertices α and β are roots of F ,
each of them gives rise to one row of W . Without changing detW , we can subtract the
row of α from the row of β, which then takes the form

(
0 β − α β2 − α2 · · · βj − αj · · · βr−1 − αr−1

)
, 0 ≤ j < r.

Using the equality βj − αj = (β − α)
∑j−1

ν=0 α
νβj−1−ν , we extract a factor of β − α and

obtain a modified row
(
0 1 β + α · · · ∑j−1

ν=0 α
νβj−1−ν · · · ∑r−2

ν=0 α
νβr−2−ν

)
, 0 ≤ j < r.
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Let W ′ denote the matrix so modified. It satisfies detW = (β − α) detW ′. The theorem
is proved by performing a chain W  W ′

 W ′′
 · · ·  W (#E) =: W ∗ of such

transformations, one for each edge, to obtain

detW =
∏

E

(β − α) · detW ∗, (3.7)

where the product is over all edges (α, β) ∈ E. We can thus interpret the existence of an
edge (α, β) ∈ E as saying “row α modifies row β”. The conditions (ii) and (iii) guarantee
that there is an order of edges in which all these modifications are possible:

Condition (iii) guarantees that every row is modified at most once.
Condition (ii) guarantees that there exists a topological ordering of G, according to

which a row is modified itself only after all modifications of other rows by this row have
taken place.

Thus, there is a chain of transformations producing the matrix W ∗ as in (3.7). We
proceed to bound |detW ∗|. Let wi be the ith row of W ∗. Its Euclidean norm is denoted
by ‖wi‖2. Hadamard’s inequality states |detW ∗| ≤ ∏r

i=1 ‖wi‖2. (In geometrical terms:
The volume of a parallelepiped with edge lengths ‖wi‖2 is maximized by orthogonal edges.)
It remains to estimate these norms. The untransformed rows of W ∗ have the form

wi =
(
1 ηi η2

i · · · ηj
i · · · ηr−1

i

)
, 0 ≤ j < r,

so that

‖wi‖22 =

r−1∑

j=0

|ηi|2j ≤ rmax{1, |ηi|}2(r−1).

The transformed rows of W ∗ have the form

wi =
(
0 1 ηi + α · · · ∑j−1

ν=0 α
νηj−1−ν

i · · · ∑r−2
ν=0 α

νηr−2−ν
i

)
, 0 ≤ j < r,

with another root α. Condition (i) states |α| ≤ |ηi|, so we can bound the jth entry by

|
j−1∑

ν=0

ανηj−1−ν
i | ≤

j−1∑

ν=0

|α|ν |ηi|j−1−ν ≤ j |ηi|j−1 .

Using
∑m

j=0 j
2 = (2m3 + 3m2 +m)/6 < (m+ 1)3/3, which is easily verified by induction,

it follows that

‖wi‖22 ≤
r−1∑

j=0

j2 |ηi|2(j−1) ≤ r3/3 ·max{1, |ηi|}2(r−2).

Thus, Hadamard’s inequality yields

|detW ∗| ≤
r∏

i=1

‖wi‖2 ≤
( r√

3

)#E
· rr/2 ·

r∏

i=1

max{1, |ηi|}r−1. (3.8)

For the last product, we observe

r∏

i=1

max{1, |ηi|} ≤
r∏

i=1

max{1, |ηi|}mi = Mea(F ). (3.9)
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In combination, Equations (3.5), (3.6), (3.7), (3.8), (3.9) and Lemma 3.8 show

√
|sDiscn−r(F )| =

( r∏

j=1

mj

)1/2
·
(∏

E

|α− β|
)
· |detW ∗|

≤
√

3
min{n,2n−2r}/3 ·

(∏

E

|α− β|
)
·
( r√

3

)#E
· rr/2 ·Mea(F )r−1.

The claim follows by rearranging terms.

This theorem has come about by a series of generalizations. Its proof technique origi-
nates with Mahler3 [Mah64, Thm. 2], who treated the special case of a square-free poly-
nomial (r = n) and a single pair of roots (#E = 1). Davenport [Dav85, Prop. I.5.8] took
advantage of the fact that Mahler’s proof technique extends to products of several root dis-
tances. He gave the bound (3.4) for r = n, with the last factor reducing to 1. Davenport’s
crucial achievement is that the dominant factor on the right-hand side, namely the first,
is independent of k = #E; if we form k ≥ 2 permissible pairs of roots, the resulting lower
bound on the product of their distances is much better (i.e., larger) than the kth power
of Mahler’s bound on the distance of an arbitrary pair of roots. The resulting advantage
for the analysis of root isolation will become apparent in §3.2.2.

Davenport [Dav85] applied his bound to the number of subdivisions in root isolation with
Sturm’s theorem, similar to our subsequent considerations, but with an exclusive interest
in real roots, he restricted the formulation of his bound to all pairs of adjacent real roots.
Johnson [Joh91, Thm. 11] [Joh98, Thm. 10], working on the Descartes method, lifted this
restriction and formulated the broadest condition on the pairing of roots supported by
the proof technique. Du, Sharma and Yap (2005) replaced Johnson’s somewhat technical
indexing condition by the equivalent but more intuitive formulation in terms of the graph G
that we have seen above. The final version of their work appeared as [DSY07]. Their
formulation is also used in [BPR06, Prop. 10.23].

All these previous forms of the theorem treat the case r = n of a square-free polynomial,
using its discriminant. The formulation above, using the (n − r)th subdiscriminant for
the general case r ≤ n, appears to be new. For polynomials F (X) ∈ Z[X] with an
unconstrained value of r anywhere between 2 and n, this generalization is not particularly
useful, because other techniques apply for the reduction to the square-free case, as we
shall see in the proof of Corollary 3.11. On the other hand, our study of polynomials with
algebraic coefficients in §3.4.3 will benefit considerably from this generalization.

A bound similar to the traditional case r = n of Theorem 3.9 appears in [Mig95, Thm. 1].
Instead of Mea(F )n−1, it uses a product of root magnitudes with varying exponents of
n− 1 or less.

Let us now focus on the case of integral coefficients.

Corollary 3.10. If F ∈ Z[X] in Theorem 3.9, then |sDiscn−r(F )| ≥ 1.

Proof. The choice of r in Theorem 3.9 satisfies the conditions of Proposition 3.7, so
sDiscn−r(F ) 6= 0. On the other hand, sDiscn−r(F ) is an integer by (3.1).

3Kurt Mahler (1903–1988), prominent number theorist of German-Jewish origin, emigrated to escape
the national socialists. According to the obituaries by Cassels (Acta Arith. 58 (1991), pp. 215–228;
also Bull. LMS 24 (1992), pp. 381–397) and van der Poorten (J. Autral. Math. Soc. Ser. A 51 (1991),
pp. 343–380), the measure |fn|

Q

j max{1, |ϑj |} occurs before Mahler (cf. Proposition 3.4), but he was
the first to study it systematically.
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Corollary 3.11. Let F (X) =
∑n

i=0 fiX
i be a polynomial of degree n ≥ 2 with integer

coefficients such that |fi| ≤ 2τ for 0 ≤ i ≤ n. Let V be the set of distinct complex roots
of F . If a directed graph G = (V,E) satisfies conditions (i–iii) in Theorem 3.9, then

∏

(α,β)∈E

|α− β| ≥ 1

((n + 1)1/2 2τ )n−1
·
(√3

n

)#E
·
( 1

n

)n/2
. (3.10)

Notice that the corollary applies to any number r ≤ n of distinct roots. The proof
below follows the standard approach to reduce this claim to the traditional case r = n of
Theorem 3.9, even if F has multiple roots. We intentionally ignore our generalization to
r ≤ n for a moment and follow that approach. This highlights which special properties
of Z it requires.

Proof. The ring Z of integers is a unique factorization domain. Standard arguments based
on Gauss’ Lemma (primitive polynomials have a primitive product) show that whenever
F ∈ Z[X] has a factorization F = F1F2 with factors F1, F2 ∈ Q[X], there exist constant
multiples F 1, F 2 ∈ Z[X] of F1 and F2 such that F = F 1F 2, see, e.g., [BPR06, Lem. 10.17]
[vdW93, §30]. Therefore, when we factor F = F1 · gcd(F,F ′) in Q[X] to produce the
square-free part F1 of F , we can take F1 to be a divisor of F in Z[X]. In particular, the
leading coefficient of F1 divides the leading coefficient of F , and since a|b implies |a| ≤ |b|
for integers a and b 6= 0, we obtain Mea(F1) ≤ Mea(F ) ≤ (n + 1)1/2 2τ . Now we apply
Theorem 3.9 to F1. Denoting its degree by n1, we obtain a lower bound of

√
|Discr(F1)|

Mea(F1)n1−1
·
(√3

n1

)#E
·
( 1

n1

)n1/2
≥ 1

((n+ 1)1/2 2τ )n1−1
·
(√3

n1

)#E
·
( 1

n1

)n1/2

The right-hand side is a decreasing function of n1, so we may substitute the estimate
n1 ≤ n to establish the claim.

3.1.5 Size of the subdivision tree

Consider the subdivision tree T generated by executing Descartes(Ain, I0) on a real poly-
nomial Ain of degree n. The purpose of this section is to derive an upper bound on the
number of internal nodes of T . This is the number of subdivisions performed by Descartes
and thus a natural object of study in a complexity analysis; in particular, it is finite iff
Descartes terminates. If the binary tree T has a finite number T of internal nodes, it has
T + 1 leaves and 2T + 1 nodes in total.

We begin with a notion that quantifies the effect of subdivision on the width of intervals.

Definition 3.12. We say that the real number ρ > 1 is a subdivision ratio bound for the
subdivision tree T if for any non-root node I and its parent J in T we have |J | / |I| ≥ ρ.
By choice of α in line 11 of procedure Descartes, ρ = 4/3 is always a subdivision ratio
bound for T . As every internal node J has two children I1, I2 and |J | = |I1| + |I2|, the
best (i.e., largest) possible subdivision ratio bound is ρ = 2. This is attained if the choice
of α is fixed to α = 1/2, meaning that intervals are bisected evenly.

The internal nodes of T satisfy the following tetrachotomy:
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Proposition 3.13. If an interval I = (c, d) satisfies v = DescartesTest(Ain, I) ≥ 2, then
one and only one of the following conditions holds:

(i) I contains no real root of Ain, and OL≤(0, 0, n; I) contains a complex-conjugate pair
of imaginary roots ξ ± iη, η > 0, with distance 0 < |(ξ + iη) − (ξ − iη)| < |I|.

(ii) I contains exactly one real root ϑ of Ain, which is simple, and OL≤(1, 1, n; I) contains
a complex-conjugate pair of imaginary roots ξ ± iη, η > 0; for both of them, the
distance to ϑ is 0 < |ϑ− (ξ ± iη)| < 2/

√
3 · |I|.

(iii) I contains two distinct real roots ϑ, ϑ′ of Ain, and their distance is 0 < |ϑ − ϑ′| < |I|.
(iv) I contains exactly one real root ϑ of Ain, and its multiplicity is at least 2.

Proof. Let p be the number of real roots of Ain in I, counted with multiplicities.
Case p = 0. Clearly, (ii–iv) do not hold. To prove (i) by contradiction, suppose

OL≤(0, 0, n; I) contains no roots of Ain. Then Theorem 2.32 for p = q = 0 (a.k.a. “one-
circle theorem”, Proposition 2.33) implies v = 0 in contradiction to the hypothesis v ≥ 2.
Thus, ξ ± iη exist, and Proposition 2.35 (on page 33) yields the bound on their distance.

Case p = 1. Clearly, (i), (iii), and (iv) do not hold. To prove (ii) by contradiction,
suppose OL≤(1, 1, n; I) contains no further roots of Ain. Theorem 2.32 for p = q = 1 (a.k.a.
“two-circle theorem”, Proposition 2.34) implies v = 1 in contradiction to the hypothesis
v ≥ 2. Thus, ξ ± iη exist, and Proposition 2.35 yields the bound on their distance to ϑ.

Case p ≥ 2. Clearly, either (iii) or (iv) holds, and all other items are false.

This proposition justifies the subsequent definition, in which we declare one pair (α, β)
of roots to be responsible for the subdivision occurring at each internal node of T . In case
(α, β) is not determined uniquely, an arbitrary choice is made.

Definition 3.14. To each internal node I = (c, d) of the subdivision tree T , we assign one
ordered pair (α, β) of complex roots of Ain as responsible for subdivision of I. According to
the cases (i–iv) distinguished in Proposition 3.13 and the respective existence statements,
(α, β) is chosen as follows:

(i) If ξ > (c+ d)/2, let (α, β) = (ξ − iη, ξ + iη), else let (α, β) = (ξ + iη, ξ − iη).
(Either way, we have |α| = |β|.)

(ii) If ξ > (c+ d)/2, let {α, β} = {ϑ, ξ + iη}, else let {α, β} = {ϑ, ξ − iη};
then choose an order such that the pair (α, β) satisfies |α| ≤ |β|.

(iii) Let {α, β} = {ϑ, ϑ′} and choose an order such that the pair (α, β) satisfies |α| ≤ |β|.
(iv) Let (α, β) = (ϑ, ϑ). (Clearly, |α| = |β|.)

In cases (i–iii), we say the internal node I is regular; in case (iv), it is singular.

Proposition 3.15. Let I1, . . . , Ik be regular internal nodes of the subdivision tree T such
that any two of these intervals are disjoint. For 1 ≤ i ≤ k, let (αi, βi) be the pair of roots
responsible for subdivision of Ii. Then (αi, βi) 6= (αj , βj) for i 6= j, and a graph G with
edge set E = {(αi, βi) | 1 ≤ i ≤ k} satisfies conditions (i–iii) of Theorem 3.9.

Recall that Ii ⊆ OL≤(0, 0, n; Ii) ⊆ OL≤(1, 1, n; Ii) and so αi, βi ∈ OL≤(1, 1, n; Ii). As the
first step of a proof, we investigate how much the sets OL≤(1, 1, n; Ii), 1 ≤ i ≤ k, overlap.

Lemma 3.16. Let (p, q) and (r, s) be two nodes of T such that q ≤ r.
(i) If q = r, then OL≤(1, 1, n; (p, q)) ∩OL≤(1, 1, n; (r, s)) ⊆ ((p+ q)/2, (r+ s)/2) + iR.
(ii) If q < r, then OL≤(1, 1, n; (p, q)) ∩OL≤(1, 1, n; (r, s)) = ∅.

Proof of Lemma 3.16. Let (c, d) be the deepest common ancestor of (p, q) and (r, s) in T .
Suppose the children of (c, d) are (c,m) and (m,d). By choice of (c, d), (p, q) is a descendant
of, or equal to, (c,m), and (r, s) is a descendant of, or equal to, (m,d), so q ≤ m ≤ r.
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Figure 3.1: Proof of Lemma 3.16.

The open cone C = {λeiϕ +m | λ > 0, π/3 < ϕ < 5π/3} in the complex plane contains
OL≤(1, 1, n; (c,m)), because its bounding rays are the tangents to OA±

≤(1, 1, n; (c,m))
at m. Since (p, q) ⊆ (c,m), also OL≤(1, 1, n; (p, q)) ⊆ C. See Figure 3.1 for what follows.

Ad (i). Since q = r, we have q = m = r. By Proposition 2.34, OC+
≤(1, 1, n; (r, s)) is the

circumcircle of the equilateral triangle ∆ with base [r, s] in the closed upper half-plane. The
left edge of ∆ lies on the upper boundary ray B of C, hence B leaves OC+

≤(1, 1, n; (r, s))

at the tip t of ∆, whose real part, by symmetry, is (r + s)/2. Thus, OD+
≤(1, 1, n; (p, q)) ∩

OD+
≤(1, 1, n; (r, s)) ⊆ C ∩ OD+

≤(1, 1, n; (r, s)) ⊆ (−∞, (r + s)/2) + iR. By horizontal and

vertical symmetry, OD±
≤(1, 1, n; (p, q)) ∩OD±

≤(1, 1, n; (r, s)) ⊆ ((p + q)/2, (r + s)/2) + iR.

Ad (ii). We discuss the case q ≤ m < r; the excluded case q < m = r is symmetric.
Let (m,u) be the deepest ancestor of (r, s) that has m as its left endpoint. Suppose (m,u)
is subdivided into (m, t) and (t, u). Since m < r, the interval (r, s) is a descendant
of (t, u), that is, (r, s) ⊆ (t, u). From t = (1 − α)m + αu with 1/4 ≤ α ≤ 3/4 it follows
that u − t ≤ 3(t −m). Hence s − r ≤ u − t ≤ 3(t −m) ≤ 3(r −m). Geometrically, this
says that the width of (r, s) is at most three times its distance to the apex m of C.

We will now deduce that C ∩OL≤(1, 1, n; (r, s)) = ∅. Since OL≤(1, 1, n; · ) is inclusion-
monotonic, if suffices to treat the interval (r, s′) ⊇ (r, s) with s′ = r+3(r−m) that realizes
the maximal interval width s′ − r = 3(r − m). We will show that the upper boundary
ray B of C is tangent to OC+

≤(1, 1, n; (r, s′)). Together with the symmetric statement for
the lower half-plane, this implies C ∩OL≤(1, 1, n; (r, s′)) = ∅ and establishes (ii).

Consider the ray R in the upper half-plane that makes an angle π/6 with (−∞, s′) at
its origin s′. The ray R intersects B at a point a. The triangle with vertices m, s′, a has
angles π/3, π/6, π/2, so by elementary trigonometry, the perpendicular from a onto the hy-
potenuse [m, s′] divides the latter with ratio 1 : 3, that is, at point r. As OC+

≤(1, 1, n; (r, s′))
is the circumcircle of the equilateral triangle with base [r, s′] by Proposition 2.34, its cen-
ter b lies on R covertical to the midpoint of the segment [r, s′]. Thus, b is the midpoint of
the segment [a, s′]. It follows that [a, s′] is a diameter of OC+

≤(1, 1, n; (r, s′)). As [a, s′] is

perpendicular to B at a, it follows that B is tangent to OC+
≤(1, 1, n; (r, s′)) at a.
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Proof of Proposition 3.15. As I1, . . . , Ik are disjoint, they have a well-defined order on the
real line, and we can choose indices such that I1 < I2 < · · · < Ik. Let us now verify that
conditions (i–iii) of Theorem 3.9 are satisfied.

Condition (i) is immediate: |αi| ≤ |βi| holds by construction in Definition 3.14.
Let us show that βi 6= βj for i < j to establish condition (iii) and to obtain (αi, βi) 6=

(αj , βj). If βi or βj is real, βi 6= βj is immediate from Ii ∩ Ij = ∅; it remains to consider
the case that both are imaginary. For a contradiction, suppose β := βi = βj . Since
β ∈ OL≤(1, 1, n; Ii) ∩ OL≤(1, 1, n; Ij), Lemma 3.16 yields Ii = (a,m), Ij = (m, b) and
(a+m)/2 < Re β < (m+ b)/2. But the construction in cases (i) and (ii) of Definition 3.14
implies Imβ > 0 for β = βi and Imβ < 0 for β = βj – a contradiction to equality.

Finally, let us demonstrate acyclicity, which is condition (ii). As singular nodes are
excluded, there are no cycles αi = βi of length 1. Let `i be the perpendicular bisector of
Ii for 1 ≤ i ≤ k. The vertical lines `1, . . . , `k cut the complex plane into k + 1 vertical
open stripes. By Lemma 3.16, the endpoints of the edge (αi, βi) lie in the union of `i and
the two stripes adjacent to it. When we embed the edges of G as straight-line segments,
this implies that every line `i is intersected by at most one edge. Consequently, a cycle
in G, if any, lies entirely within one stripe. As each stripe contains endpoints of at most
two edges, cycles of length 3 or more are impossible. What about a cycle of length 2,
i.e., (αi, βi = αi+1, βi+1 = αi)? Since a real root in the pair (αi, βi) is an element of Ii,
which is disjoint from Ii+1, both nodes must be imaginary roots, i.e., both Ii and Ii+1

realize case (i) of Proposition 3.13 and Definition 3.14. This, however, is absurd, since
OL≤(0, 0, n; Ii) ∩OL≤(0, 0, n; Ii+1) = ∅.

We are now ready to bound subdivision depth in terms of root distances.

Lemma 3.17. Let ρ be a subdivision ratio bound for the subdivision tree T . Consider an
internal node I of T at depth k ≥ 0.

(i) If (α, β) is responsible for subdivision of I, then |α− β| < 2/
√

3 · |I| ≤ 2/
√

3 · |I0| /ρk.
(ii) If I is regular, then |α− β| > 0 and k < logρ(2/

√
3 · |I0| / |α− β|).

Proof. Immediate from Definition 3.12 and Proposition 3.13.

Definition 3.18. An internal node of T is called terminal if its children are leaves. A path
in T from the root to a regular terminal node is called an rt-path. We denote by G(T ) the
directed graph whose vertices are the distinct roots of Ain and whose edge set E consists
of all pairs (α, β) that are responsible for subdivision of a regular terminal node of T .

Theorem 3.19. Consider the subdivision tree T generated by executing Descartes(Ain, I0)
on a real polynomial Ain of degree n. Let ρ be a subdivision ratio bound for T .

(i) The graph G(T ) satisfies conditions (i–iii) of Theorem 3.9 and has at most n/2 edges.

(ii) If all roots of Ain in I0 are simple, then T is finite, and all its internal nodes lie on
an rt-path.

(iii) The sum P of the lengths of all rt-paths of T satisfies

P ≤ logρ

(∏

(α,β)

|I0|
|α− β|

)
+
n

2
logρ

( 2√
3

)
, (3.11)

with (α, β) ranging over the edges of G(T ).

(iv) The number of all internal nodes of T that lie on an rt-path is at most P + 1.
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Proof. Ad (i). No terminal node is a descendant of another, so any two terminal nodes are
disjoint intervals, and the first claim reduces to Proposition 3.15. Concerning the second,
Corollary 2.27 yields n ≥ DescartesTest(Ain, I0) ≥

∑
I DescartesTest(Ain, I), where I

ranges over all terminal nodes. Each terminal node I has DescartesTest(Ain, I) ≥ 2, so
there are at most n/2 of them.

Ad (ii). If all roots of Ain in I0 are simple, then all internal nodes of T are regular,
and the distance of any pair of roots responsible for a subdivision is positive. Since there
are only finitely many pairs of roots, there is a minimum distance s > 0 between any
two roots responsible for a subdivision and thus, by Lemma 3.17(ii), a maximum depth
blogρ(2/

√
3 · |I0| /s)c of internal nodes in the binary tree T , hence T is finite. It follows

that all internal nodes lie on a path from the root to a terminal node, which is also regular.
This proves claim (ii).

Ad (iii). Consider any path (I0, . . . , Ik) from the root node I0 to a regular terminal
node Ik. Its length k is the depth of Ik, which is bounded by Lemma 3.17(ii) in terms of
the pair (α, β) responsible for subdivision of Ik as k < logρ(|I0| / |α− β|) + logρ(2/

√
3).

Summing over all regular terminal nodes, of which there are at most n/2, we attain the
claimed bound.

Ad (iv). To each non-root node I on an rt-path, we associate the edge to the parent of I;
this map is injective, and each edge in its image is counted at least once in P . Adding 1
to account for the root node, we obtain the claimed bound.

With this theorem in our hands, we can now bound the size of T with the Davenport-
Mahler bound. We will do that in a moment in §3.2.2 for the case of integer coefficients
and ρ = 2. We will do it again several times in §3.3 and §3.4 for bitstream coefficients,
but with details depending on the origin of Ain. An alternative pairing of roots for the
Davenport-Mahler bound is presented in §3.4.4

3.2 The Descartes method for exact integer coefficients

3.2.1 Generalities

Let us now discuss a more specific form of Descartes method: The input polynomial Ain(X)
and all polynomials obtained from it are represented with exact integer coefficients. Fur-
thermore, intervals (c, d) are subdivided by bisection, i.e., at the midpoint m = (c+ d)/2.
In terms of our generic procedure Descartes, this means that the subdivision parameter α
in line 11 is fixed as α = 1/2. This is the setting considered originally by Collins and
Akritas [CA76]. We will first study general aspects of this integer Descartes method and
then discuss several concrete algorithms implementing it.

3.2.2 Size of the subdivision tree

Theorem 3.20. Consider a polynomial Ain ∈ Z[X] and an open interval I0 such that all
roots of Ain(X) in I0 are simple. Let T be the subdivision tree produced by the integer
Descartes method invoked for Ain and I0. If Ain has degree n ≥ 2 and each coefficient is
an integer of magnitude at most 2τ , then the number T of internal nodes in T satisfies

T < (n− 1)τ + n/2 ·max{0, log |I0|}+ 3n/2 · log n+ 1. (3.12)

The proof will use the following technical lemma.
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Lemma 3.21. If n ∈ N, n ≥ 2, then n/2 · log n > (n− 1)/2 · log(n+ 1) + (n/2)(1− log 3).

Proof of Lemma 3.21. Since 1− log 3 < 0, it suffices to show n log n > (n− 1) log(n+ 1).
W.l.o.g., n ≥ 3. Consider the function f : [0, 1] → R, x 7→ (n − x) ln(n + x). It has the
derivatives f ′(x) = − ln(n + x) + (n − x)/(n + x) and f ′′(x) = −(3n + x)/(n + x)2. As
f ′(0) = 1 − lnn < 0 and f ′′(x) < 0 for all x ∈ [0, 1], the function f is strictly decreasing.
It follows that n log n = f(0)/ ln 2 > f(1)/ ln 2 = (n− 1) log(n+ 1), as desired.

Proof of Theorem 3.20. Theorem 3.19(iii/iv) yields

T ≤ k log |I0|+ log
∏

(1/ |α − β|) + n/2 · log(2/
√

3) + 1,

where k is the number of factors in the product over the root pairs. Since 0 ≤ k ≤ n/2,
the first term is bounded by n/2 ·max{0, log |I0|}. For the rest, we obtain the following
estimate from Corollary 3.11 to the Davenport-Mahler bound:

. . . ≤
(
(n− 1)(1/2 · log(n+ 1) + τ) + n log n− n/4 · log 3

)
+ n/2− n/4 · log 3 + 1

= (n− 1)τ + n log n+ (n− 1)/2 · log(n+ 1) + (n/2)(1 − log 3) + 1

< (n− 1)τ + 3n/2 · log n+ 1,

where the last inequality comes from Lemma 3.21.

Corollary 3.22 (Eigenwillig-Sharma-Yap (2006)). If in Theorem 3.20, the initial inter-
val I0 is such that |I0| ≤ 2O(τ), then T = O(n · (τ + log n)). This holds in particular for
I0 = [−R, +R], where R is any of the bounds from §2.4 on the magnitudes of roots of Ain.

This bound was first established by V. Sharma and C. Yap in joint work [ESY06,
Cor. 3.5] with the author of this thesis. Krandick [Kra95, Sätze 21&47], also in revised
form with Mehlhorn [KM06, Thm. 29], has previously given bounds on the subdivision
tree T that lead to the strictly weaker estimate T = O(n log n · (τ + log n)) (Krandick and
Mehlhorn, personal communication).

To demonstrate the quality of this bound, we will now construct a family of example
input polynomials that force the Descartes method (or any other root isolation method
that uses recursive subdivision) to subdivide deeply.

Theorem 3.23 (Generalized Mignotte polynomials). Take any integers a ≥ 2, n ≥ 3,
and p ≥ 1. Consider the polynomial Ap(X) = Xn − p(aX − 1)2.

(i) If p is prime, then Ap(X) is irreducible and square-free.
(ii) It holds that Ap(0) < 0 and Ap(1) ≤ 0. If n is even, then Ap(x)→ +∞ for x→ ±∞.
(iii) Let h = a−n/2−1. It holds that Ap(a

−1) > 0 and Ap(a
−1 − h) < 0.

It also holds that Ap(a
−1 + h) < 0 if p = 2 and a ≥ 3, or if p ≥ 3 and a ≥ 2.

The proof of the last estimate requires the following technicality.

Lemma 3.24. Let p > 1. The function f : (0,∞) → (0,∞), x 7→ (x/ ln p)1/x attains its
global maximum at x = e ln p, its value is f(e ln p) = e1/(e ln p).

Proof. As the natural logarithm is strictly increasing, it suffices to seek the maximum of
g(x) = ln(f(x)). We have

g(x) = x−1(lnx− ln ln p),

g′(x) = −x−2(lnx− ln ln p− 1),

g′′(x) = x−3(2 ln x− 2 ln ln p− 3).
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We observe g′(x) = 0 ⇔ lnx = ln ln p + 1 ⇔ x = e ln p. At this unique zero of g′, we
have g′′(e ln p) = −(e ln p)−3 < 0, since ln p > 0. Hence g is increasing for x < e ln p and
decreasing for x > e ln p, so that indeed at x = e ln p the global maximum is attained.

Proof of Theorem 3.23. Ad (i). Ap(X) is irreducible by Eisenstein’s criterion [vdW93,
§31] with prime number p. In particular, Ap(X) is coprime to its derivative and thus
square-free.

Ad (ii). We have Ap(0) = −p < 0 and Ap(1) = 1 − p(a − 1)2 ≤ 0. If n is even, the
positivity of the leading coefficient implies Ap(x)→ +∞ for x→ ±∞.

Ad (iii). It is clear that Ap(a
−1) = a−n > 0 and Ap(a

−1 − h) = (a−1 − h)n − pa−n <
(a−1)n − pa−n ≤ 0. Let us now consider Ap(a

−1 + h) = (a−1 + h)n − pa−n with p ≥ 2.

We have Ap(a
−1+h) < 0 ⇔ (a−1+h)n < pa−n ⇔ (1+ah)n < p ⇔ n ln(1+ah) < ln p.

As lnx is a concave function, we can bound it from above by its tangent at x = 1, which
is y = x− 1. It follows that ln(1+ah) < ah = a−n/2, so it is sufficient for Ap(a

−1 +h) < 0
to have na−n/2 < ln p, which is equivalent to a > (n/ ln p)2/n. Now, in turn, it is sufficient
for a to be larger than the maximum of the right-hand side over all n ∈ (0,∞), and by
the preceding lemma, that means a > e2/(e ln p). This lower bound on a is a decreasing
function of p. Thus, it suffices for p ≥ 3 to have a > e2/(e ln 3) = 1.95..., and for p = 2, to
have a > e2/(e ln 2) = 2.89... .

Our proof of (iii) extends an argument given by Krandick [Kra95, Satz 37]4 from p = 2
to the simpler cases p ≥ 3. Mignotte [Mig81] discovered the polynomials A2 as examples
that exhibit a very small root separation (less than 2h) for the given coefficient sizes and
degree. For p > 2, the coefficients get longer while the bound 2h on root separation remains
the same. In this regard, the generalization from p = 2 to p ≥ 2 is not so interesting.
However, here is a useful application.

We construct adverse input polynomials for the Descartes method that have a cluster
of three close roots, enforcing a very small isolating interval for the middle one, even if
subdivision is not restricted to α = 1/2. (By contrast, two close roots could be separated
in one subdivision with a lucky choice of a subdivision point.)

Theorem 3.25. Take an integer a ≥ 2 and an even integer n ≥ 4. Consider the product
Q(X) = A2(X) ·A3(X) of polynomials from Theorem 3.23.

(i) Q(X) is a square-free integer polynomial of degree 2n. Its longest coefficient has
length τ := blog ‖Q‖∞c+ 1 = Θ(log a).

(ii) An interval containing all real roots of Q(X) is a superset of (0, 1).
(iii) Q(X) has three distinct roots in the interval (a−1 − h, a−1 + h) with h = a−n/2−1.
(iv) The Descartes method executed for Q(X) and an initial interval I0 ⊇ (0, 1) con-

structs a subdivision tree T containing a path from the root down to a leaf of length
Ω(nτ).

Proof. The statements (i–iii) follow from the corresponding statements of Theorem 3.23:

Ad (i). The square-free polynomials A2 and A3 are coprime, hence their product is also
square-free. The rest is obvious.

Ad (ii). Each of A2 and A3 has a root x < 0 and a root x ≥ 1.

Ad (iii). Each of A2 and A3 has a root in (a−1 − h, a−1), and the two are distinct,
since A2 and A3 are coprime. Furthermore, A3 has a root in (a−1, a−1 + h). (If a 6= 2,
the same holds for A2.)

4Krandick [loc. cit.] shows (iii) also for the case p = 2, a = 2, n ≥ 7, which we have omitted for brevity.
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Ad (iv). By (iii), the interval I0 contains three roots α < β < γ of Q with γ − α < 2h.
Let I denote the isolating interval computed for β. Clearly, |I| < 2h. Let (I0, . . . , Ik) be
the path in T from the root I0 down to I = Ik. By choice of the subdivision parameter
in line 11 of procedure Descartes, we have |Ii| / |Ii+1| ≤ 4 for all 0 ≤ i < k, so that
22k ≥ |I0| / |Ik| ≥ 1/(2h) and k ≥ (− log h− 1)/2 = ((n/2 + 1) log a− 1)/2 = Ω(nτ).

Corollary 3.22 and Theorem 3.25 give upper and lower bounds O(nτ + n log n) and
Ω(nτ), resp., for the size of T . The upper bound exceeds the lower bound only by a
logarithmic factor, so our upper bound is “almost tight” in the sense of orders of growth
and the O-notation. The bounds coincide if we impose the side condition log n = O(τ),
which says that “the length of the degree shall be no more than a constant multiple of the
maximal coefficient length”. For many applications, log n is indeed much smaller than τ .

While the polynomials from Theorems 3.23 and 3.25 have sufficiently small minimum
root distance to provide this asymptotic lower bound, they are not particularly strong
examples of minimum root separation when one abandons the rather coarse viewpoint of
examining its logarithm up to constant factors. Stronger examples have been constructed
by Bugeaud/Mignotte [BM04] and Schönhage [Sch06].

It is worthwhile to remember that Theorem 3.25(iv) exhibits a subdivision tree whose
size bound O(nτ + n log n) is almost reached by the length Ω(nτ) of a single rt-path.
This means that no upper bound on the length of one path in a subdivision tree for a
polynomial of degree n with τ -bit coefficients can be less than O(nτ). We can now see
that it is essential for the quality of our upper bound on tree size (and of the complexity
bounds to be derived from it) that we have followed Davenport’s approach to bound the
sum of all rt-path lengths at once: If we had considered separate bounds on the maximal
length of one rt-path, O(nτ) or more, and on the maximal number of rt-paths, O(n), then
we would have arrived at a tree size bound O(n2τ) or worse, one power of n too big.

Intuitively, Davenport’s bound takes advantage of a balancing within the discriminant.
In his own words, his result can be seen “as saying that there is only a certain amount
of ‘closeness’, which can either be concentrated on one pair of roots, or spread between
several pairs” [Dav85, p. 13]. In terms of rt-paths, this means that there can be one very
long path, or several moderately long paths, but it is not possible that many rt-paths
simultaneously realize the worst-case length possible for a single rt-path.

3.2.3 On interval boundaries and the initial interval

We will now discuss the representation of interval boundaries and the choice of an initial
interval. Regarding these matters, it is instructive to review the application of the Des-
cartes method considered by Collins and Akritas [CA76], namely isolation of all positive
real roots of Ain. Using a bound on the positive real roots in terms of coefficients, they
start from an initial interval (0, 2k), k ∈ Z, that contains all positive real roots. All inter-
vals constructed are standard intervals, that is to say, have the form (a2k−b, (a+ 1)2k−b)
with a ∈ Z and b ∈ N0, where b is the number of bisections that created this interval,
cf. [Joh91, Def. 31]. In our case, a ≥ 0. Such an interval can be represented compactly as
a string of b bits: Its length gives b, its value as a b-bit integer gives a (and thus implicitly
a+ 1), and the succession of 0 and 1 bits encodes the left/right branches along a path in
the subdivision tree T from the root down to the interval. Thus, we can view the integer
Descartes method as a simultaneous computation of prefixes of the binary expansions of
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real roots up to the point where they become distinct. This observation illustrates the
difference between the Descartes method and the algorithms of Vincent and Akritas (see
§3.1.2), which isolate real roots by computing prefixes of continued fraction expansions. It
also shows that binary fractions are the natural form of interval boundaries in the integer
Descartes method, and why it is desirable to use an upper bound on the roots that is a
power of two.

Using the results of §2.4, let us now discuss how to determine from the coefficients
of a polynomial A(X) =

∑n
i=0 aiX

i an exponent k ∈ Z such that the interval (0, 2k)
contains all positive real roots of A(X) (with the possible exception of the boundary point
x = 2k). We will first present a solution as cheap as possible, which uses only the bit
lengths blog |ai|c+1, 0 ≤ i ≤ n, of the coefficients, which are typically available from their
machine representation in constant time5, as opposed to dlog |ai|e, which requires a loop
over all bits to check for 1’s other than the leading. Then we discuss how much this bound
could be improved.

The basis of our discussion is the polynomial AC+(X) from Theorem 2.55 (page 44).
We leave aside the trivial case that AC+(X) is reduced to a monomial and may thus
take for granted that AC+(X) has a unique positive real root RB+

Cp(A), which is the
best bound on the positive roots of A(X) among all bounds discussed in §2.4. Let j be
the exponent of the lowest-order term of AC+(X) with non-zero coefficient, or formally,
j = min{ i | 0 ≤ i < n, sgn(ai) = − sgn(an)}. We can replace AC+(X) by AC+(X)/Xj

without changing its positive root RB+
Cp(A). We obtain an upper bound for RB+

Cp(A) by

applying the dyadic Fujiwara root bound (2.26) to AC+(X)/Xj . Taking logarithms, we
attain

log(RBdF(AC+(X)/Xj)) = 1 + max{ li − ln
n− i | j ≤ i < n, sgn(ai) = − sgn(an)}

where li = log |ai| for j < i ≤ n, and lj = log |aj | − 1. Consideration of AC+(X)/Xj

has allowed us to decrease lj by 1 even if j > 0. We approximate this bound in terms of
blog |ai|c as

k := 1 + max{
⌈blic+ 1− blnc

n− i

⌉
| j ≤ i < n, sgn(ai) = − sgn(an)} (3.13)

where blic = blog |ai|c for j < i ≤ n, and bljc = blog |aj |c−1. Iterating over the coefficients
a0, . . . , an−1, it is easy to determine j and then from aj onwards compute the maximum.
Under very reasonable assumptions on the relation of coefficient lengths to the maximum
value of a machine word, each number encountered in (3.13) fits into one machine word,
so (3.13) requires O(n) operations on machine words. But how good is the resulting
bound?

Lemma 3.26. For k as above, 0 < k − log(RBdF(AC+(X)/Xj)) < 2.

Proof. We show that

0 <

⌈blic+ 1− blnc
n− i

⌉
− li − ln

n− i < 2

5We regard the machine word size as constant, so this can include a logarithmic search for the leading 1
in the highest-order word.
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for all i. For the lower bound, we observe

⌈blic+ 1− blnc
n− i

⌉
− li − ln

n− i ≥
(blic − li + 1) + (ln − blnc)

n− i >
(−1 + 1) + 0

n− i = 0.

For the upper bound, distinguish two cases. If n−i = 1, then there are no fractions and the
outer Gauss bracket is redundant, so the expression reduces to (blic−li+1)+(ln−blnc) < 2.
On the other hand, if n− i ≥ 2, then

⌈blic+ 1− blnc
n− i

⌉
− li − ln

n− i < 1 +
(blic − li + 1) + (ln − blnc)

n− i < 1 +
2

n− i ≤ 2.

Lemma 3.27. For k as above, 0 < k− log(RB+
Cp(A)) < 3 and 0 ≤ k−dlog(RB+

Cp(A))e ≤ 2.

Proof. In §2.4.1, we saw RBCp ≤ RBdF ≤ 2 · RBCp (see Proposition 2.53(ii)). From
above, we recall RBCp(AC+(X)/Xj) = RB+

Cp(A). Thus, the first claim is immediate from
the preceding lemma. For the second claim, we use the integrality of k to conclude that
k − dlog(RB+

Cp(A))e = bk − log(RB+
Cp(A))c. Now the second claim follows at once.

Let us summarize these findings. We have determined k ∈ Z such that all positive real
roots of A(X) are less than 2k. Equality is not possible, since we overestimated log |ai|
as blog |ai|c + 1 for other reasons; but as a side effect, we can now indeed take the open
interval (0, 2k) to enclose all real roots of A. Of all the bounds we saw for positive real roots,

RB+
Cp(A) is the best. We have overestimated the bound 2dlog(RB+

Cp(A))e resulting from it by

a factor of at most 22 = 4, which is not much compared to the maximum overestimation
factors inherent in our whole approach to root bounds (cf. §2.4, esp. Theorem 2.51).

If it should nevertheless be desired to determine dlog(RB+
Cp(A))e exactly, then we can

take advantage of the preceding lemma, which tells us that there are only two other
candidates besides k, namely k − 1 and k − 2. One can simply evaluate AC+ to compare
the resulting bounds with the unique positive root RB+

Cp(A): If AC+(2k−1) > 0, one can
replace k by k−1, same for k−2. We point out that Horner’s scheme for these one or two
evaluations can be implemented with bit shifts instead of multiplication of long integers.

Why have we used the dyadic Fujiwara root bound? Compared to the folklore root
bound, it reduces k by 1 in some boundary cases, which is not much, but the resulting
implementation is just as simple. Lagrange’s bound (2.31) does not translate easily to the
logarithmic domain; improving k using AC+(X) as above would be simpler, and the result
is always at least as good.

Typical applications of the Descartes method require isolation of all real roots, not just
the positive roots. Obviously, we can first run the integer Descartes method on (0, +2k)
with k as in (3.13) for A(X) = Ain(X), and then again on (−2k′

, 0) with k′ as in (3.13)
for A(X) = Ain(−X), and additionally test whether A(0) = 0; this is done in [CA76].

There is also a second option: choosing r ∈ Z such that (−2r, +2r) contains all real
roots of Ain, for example, r = max{k, k′}. We insist that both boundaries have the same
exponent, so that after the first bisection, all intervals are standard intervals. Executing
the integer Descartes method with this initial interval will certainly do the job. Let us
call the resulting subdivision tree T . Suppose (−2k′

, 0) and (0,+2k) are subintervals of
(−2r, +2r). If DescartesTest(Ain, (0,+2k)) ≥ 2, then (0,+2k) appears as an internal node
of T , and the subtree of T rooted at (0,+2k) is the subdivision tree created by the integer
Descartes method run on (0,+2k). The analogous statement holds for (−2k′

, 0).
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To keep the presentation simple and consistent with §3.3, we will follow the second
option subsequently and consider one execution of the Descartes method starting from an
initial interval (−2r, +2r). However, we recommend to choose the first options for actual
implementations. According to our argument above on corresponding subtrees of T , we
can regard this as an optimization of tree traversal that is completely orthogonal to the
other implementation choices discussed below.

For later reference, we summarize the results of this section as follows.

Proposition 3.28. Consider a polynomial Ain(X) =
∑n

i=0 aiX
i with integer coefficients

of magnitude less than 2τ . We can compute r ∈ Z with |r| = O(τ) such that the open
interval I0 = (−2r, +2r) encloses all real roots of Ain(X), with the quality guarantee
r − dlog(max{RB+

Cp(A(X), RB+
Cp(A(−X))})e ≤ 2. Assuming that coefficient lengths are

known and fit into a machine word, this computation needs O(n) operations on machine
words.

3.2.4 The algorithm of Collins and Akritas (1976)

The original form of the Descartes method described by Collins and Akritas [CA76] rep-
resents all polynomials A(X) =

∑n
i=0 aiX

i, where n = deg(Ain), by coefficient vectors
(a0, . . . , an) ∈ Zn+1 with respect to the power basis 1,X, . . . ,Xn. Its operations on poly-
nomials are usually described in terms of the following three linear transformations of
coefficient vectors induced by transformations of the indeterminate:

1. The Taylor shift is induced by a translation of the indeterminate by c ∈ Z. We will
only need it for c = ±1. In the frequent case c = 1, we omit the subscript 1.

Tc(A(X)) := A(X + c) =

n∑

j=0

( n∑

i=j

(
i

j

)
ci−jai

)
Xj . (3.14)

2. Coefficient reversal is induced by exchanging the roles of X and its homogenizing
variable (called Y before).

R(A(X)) := XnA(1/X) =
n∑

i=0

an−iX
i. (3.15)

3. The homothetic transformation multiplies the indeterminate with a scaling factor.
We only need it for factors of the form σ2±k with σ ∈ {−1,+1} and k ∈ N0, and we
define it in a way that preserves integrality of coefficients.

Hσ2+k(A(X)) := A(σ2+kX) =

n∑

i=0

σi2ik aiX
i,

Hσ2−k(A(X)) := 2nkA(σ2−kX) =

n∑

i=0

σi2(n−i)k aiX
i.

(3.16)

With these transformations, we can now formulate the power basis variant of the Des-
cartes method as specialization of procedure Descartes from page 48. We call the procedure
DescartesCA76, because it captures the essence of the algorithm proposed by Collins and
Akritas (1976). In the following pseudocode, the name of a polynomial stands for its
coefficient vector w.r.t. the power basis.
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1: procedure DescartesCA76(Ain , (−2r, +2r)) // Ain ∈ Z[X], r ∈ Z

2: P ← (); Q← {};
3: A0 ← H2T−1H2r(Ain); // i.e., A0(X) ∼ Ain(2

r(2X − 1)) = Ain(2
r+1X − 2r)

4: v0 ← var(TR(A0)); // i.e., v0 = DescartesTest(Ain, (−2r, +2r))
5: if v0 ≥ 1 then P ← ((−2r, +2r)); fi;
6: if v0 ≥ 2 then Q← {((−2r, +2r), A0)}; fi;
7: while Q 6= {} do

8: // Invariant: Q = {((c, d), A) |
9: // (c, d) ∈ P, DescartesTest(Ain, (c, d)) ≥ 2, A(X) ∼ Ain((d− c)X + c))};

10: choose an element ((c, d), A) ∈ Q;
11: m← (c+ d)/2; // implicitly, α = 1/2
12: IL ← (c,m); IM ← [m,m]; IR ← (m,d);
13: AL ← H1/2(A); AR ← T (AL); // i.e., AR = TH1/2(A)
14: vL ← var(TR(AL)); // i.e., vL = DescartesTest(Ain, IL)
15: vM ← number of trailing zero coefficients in AR; // i.e., vanishing order at m
16: vR ← var(TR(AR)); // i.e., vR = DescartesTest(Ain, IR)
17: in P , replace entry (c, d) by subsequence (Ii | i ∈ (L,M,R), vi ≥ 1);
18: in Q, replace element ((c, d), A) by elements {(Ii, Ai) | i ∈ {L,R}, vi ≥ 2};
19: od;
20: report sequence P of isolating intervals;
21: end procedure;

The composite transformation TR( · ) of a polynomial effects the Möbius transformation
X 7→ 1/(X + 1) of its indeterminate, mapping (0,∞) to (0, 1). Thus, var(TR( · )) imple-
ments the Descartes test w.r.t. interval (0, 1) with the method of Theorem 2.17 (page 22).

The transformations H1/2 and R are easy to implement with a linear number of bit
operations. (As R is only applied right before T , one can eliminate it completely by using
a version of T that reads its input backwards.)

The Taylor shift T is the crucial operation in this algorithm. Since T−1 = H−1T1H−1,
it suffices to discuss T = T1. It is treated extensively by Krandick [Kra95, §3.7]. Johnson,
Krandick and Ruslanov [JKR05] have investigated efficient implementations that exploit
characteristics of modern CPU architectures. From any of these sources or Johnson [Joh91,
§2.4, §3.2], we get the following well-known result:

Theorem 3.29 (Classical Taylor shift). Let A(X) =
∑n

i=0 aiX
i have integer coefficients of

magnitude less than 2τ . Let T (A(X)) =
∑n

i=0 a
′
iX

i. One can compute (a′i)
n
i=0 from (ai)

n
i=0

using n(n + 1)/2 additions, and all intermediate results, including the a′i, are integers of
magnitude less than 2n+τ . This computation requires O(n2(n+ τ)) bit operations.

Combined with our results on the size of the subdivision tree and the choice of an initial
interval, this leads to the following complexity statement.

Theorem 3.30. Consider a polynomial Ain(X) =
∑n

i=0 aiX
i with integer coefficients of

magnitude less than 2τ , all of whose real roots are simple. An interval I0 = (−2r, +2r),
r ∈ Z, as in Proposition 3.28 encloses all real roots of Ain and satisfies |r| = O(τ).
Execution of DescartesCA76(Ain, I0) using the classical Taylor shift from Theorem 3.29
isolates the real roots of Ain(X) with O(n5(τ + log n)2) bit operations.
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Proof. The polynomial A0 = H2T−1H2r(Ain) has coefficients of length O(τn) each, be-
cause H2r(A) has coefficients of length O(τ + |r|n) = O(τn), and the transformations
H2T−1 add only O(n) further bits to each coefficient.

Subdivision replaces a polynomial A by H(A) and TH(A); this increases the coefficient
lengths by O(n) bits. By Corollary 3.22, the size and thus the height of the subdivision tree
is bounded by O(n(τ + log n)). It follows that at any internal node I of the subdivision
tree, the coefficients of the polynomial A constructed for it have lengths bounded by
O(n2(τ + log n)). The computational cost spent for node I is dominated by the three
Taylor shifts for that node, whose cost is bounded by Theorem 3.29 as O(n4(τ +log n)) bit
operations. As there are O(n(τ +log n)) internal nodes, the total cost is O(n5(τ +log n)2)
bit operations.

The complexity bound originally asserted by Collins and Akritas [CA76, Thm. 2] trans-
lates to O(n6(τ+log n)2) in our notation. The present improvement by a factor n is due to
our use of the Davenport-Mahler bound. Davenport [Dav85, p. 18] mentioned this relation
of his bound (originally used for Sturm’s method, cf. [DSY07]) to the Descartes method but
did not work it out. This was undertaken by Johnson [Joh91, Thm. 53] [Joh98, Thm. 13].
A gap in Johnson’s proof was filled by Krandick [Kra95, §3.10]; this revised argument was
improved further by Krandick and Mehlhorn [KM06]. However, their arguments consider
the subdivision tree level by level in a somewhat involved manner. Our proof above is
conceptually simpler: it just multiplies tree size with cost per node.

This simplicity of our proof makes it obvious how to replace the complexity bound for
the classical Taylor shift by 1 from Theorem 3.29 with that of an asymptotically fast
algorithm. Gerhard [Ger04, §4.1] (also in [vzGG97, §2]) discusses and compares three
such techniques and proposes a fourth. As usual, we write f(n) = O∼(g(n)) for positive
functions f and g if there exists k ∈ N0 such that f(n) = O(g(n) logk(3+g(n))). (Adding 3
makes sure the logarithm is larger than 1.)

Theorem 3.31 (Asymptotically fast Taylor shift). Let A(X) =
∑n

i=0 aiX
i have integer

coefficients of magnitude less than 2τ . Let T (A(X)) =
∑n

i=0 a
′
iX

i. One can compute
(a′i)

n
i=0 from (ai)

n
i=0 with O∼(n · (n+ τ)) bit operations.

This bound holds for the divide&conquer method of von zur Gathen [vzG90, Fact 2.1(iv)]
(for a proof, see there or case E in [Ger04, Thm. 4.5]), for the convolution method go-
ing back to Aho et al. [ASU75] (for a proof, see case F in [Ger04, Thm. 4.5] [vzGG97,
Thm. 2.4]), and for the modular method of Gerhard [Ger04, Thm. 4.8].

Up to the logarithmic factors suppressed by the O∼-notation, this complexity matches
the output size bound from Theorem 3.29 (n+ 1 coefficients of up to n+ τ bits).

Theorem 3.32. Consider a polynomial Ain(X) =
∑n

i=0 aiX
i with integer coefficients of

magnitude less than 2τ , all of whose real roots are simple. An interval I0 = (−2r, +2r),
r ∈ Z, as in Proposition 3.28 encloses all real roots of Ain and satisfies |r| = O(τ).
Execution of DescartesCA76(Ain, I0) using an asymptotically fast Taylor shift such as in
Theorem 3.31 isolates the real roots of Ain(X) with O∼(n4τ2) bit operations.

Proof. Take the proof of Theorem 3.30 and replace the complexity bound from Theo-
rem 3.29 with that from Theorem 3.31.

This complexity bound O∼(n4τ2) is the same as the best known bound for asymptoti-
cally efficient forms of Sturm’s method on square-free polynomials [DSY07, Cor. 8]. How-
ever, the practical use of this theoretical improvement appears to be limited, see §3.2.7.
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The roles of the three Taylor shifts in DescartesCA76 are different: the result of the
Taylor shift in line 13 is essential, as it implements subdivision; the results of the two
Taylor shifts in lines 14 and 16 are only needed temporarily to compute the numbers vL

and vR of sign variations. Krandick [Kra95, §3.7.1] pointed out how the algorithm can be
accelerated in practice by performing these Taylor shifts only as far as necessary to decide
whether there are zero, one, or at least two sign variations. Also, if all coefficients of AR

have the same sign, it is clear that var(TR(AL)) = 0, so we need not carry out this trans-
formation [Kra95, §3.7.4]. Johnson et al. [JKL+06, §2.4] describe further optimizations
of this kind found in the implementation of the Descartes method for QI6 by G. Hanrot,
F. Rouillier, P. Zimmermann, and S. Petitjean.

Using the variation-diminishing property of subdivision, we arrive at two further short-
cuts of this kind.

1. Without costly transformations, we can determine w := var(AL) − var(AR), the
Budan-Fourier bound on the number of roots of AL in (0, 1], see Appendix A.1.
Corollary A.4 tells us that w−vM ≥ vL, with an even difference between both sides.
Thus, if w − vM is 0 or 1, it is equal to vL, and we do not have to compute the
transformation TR(AL).

2. Suppose we have knowledge of v = DescartesTest(Ain, (c, d)); for example, because
we store it as an additional component in the entry for (c, d) in Q. Proposition 2.26
tells us that v− vM ≥ vL + vR, with an even difference between both sides. Suppose
further we just compute one of vL, vR. If it is equal to the upper bound v− vM , we
know the other summand is zero. If it is equal to v− vM − 1, the other summand is
one. According to our deliberations in §3.1.3.III, subdivision almost always results
in (vL, vM , vR) ∈ {(v, 0, 0), (0, 0, v)}, with at most n−1 exceptions. This justifies the
following heuristic: Compute one of vL, vR chosen at random. With a probability of
almost 1/2, it is equal to the upper bound v− vM , and we can save the third Taylor
shift. In the rare case that we miss the upper bound by just 1, we may conclude
that the other number of sign variations is exactly 1 and also save the third Taylor
shift.

3.2.5 The algorithm of Lane and Riesenfeld (1981)

The algorithm DescartesCA76 described above requires costly transformations of AL

and AR to obtain coefficient sequences in which sign variations can be counted to imple-
ment the Descartes test for roots in (0, 1). As discussed in §2.2.4, this can be avoided by
replacing the power basis 1,X, . . . ,Xn with the [0, 1]-Bernstein basis Bn

0 (X), . . . , Bn
n(X):

the Descartes test is then simply the number of sign variations in the Bernstein coefficient
sequence.

The input polynomial Ain(X) is given by coefficients w.r.t. the power basis. In the
pseudocode below, Ain denotes this coefficient vector. As in DescartesCA76, we transform
the initial interval (−2r, +2r) to (0, 1) by computing Apow0(X)← H2T−1H2r(Ain(X)); we
let Apow0 denote this polynomial’s coefficient vector w.r.t. the power basis. We then have to
convert Apow0(X) =

∑
i aiX

i to the Bernstein basis representation A0(X) =
∑

i biB
n
i (X).

In fact, Apow0 and A0 are equal as polynomials. but in pseudocode, we let the different
symbol A0 denote the vector of Bernstein coefficients. Proposition 2.28(i) shows us that we

6QI: Quadric Intersection. http://www.loria.fr/equipes/vegas/qi/
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can obtain (
(
n
i

)
bi)i in reversed order as power basis coefficients of TR(A0). This reduces

the conversion into Bernstein basis to transformations that we already know, except that
we still need to scale the coefficients by inverses of the binomial coefficients. To achieve that
without producing fractions, we introduce one more linear transformation of a polynomial
A(X) =

∑n
i=0 aiX

i; this one is not induced by a transformation of the indeterminate.

β(A(X)) := n!

n∑

i=0

(n
i

)−1
aiX

i =

n∑

i=0

i! (n − i)! aiX
i. (3.17)

We thus arrive at the Bernstein basis variant of the Descartes method described in the
following pseudocode. Except Ain and Apow0, all polynomials are represented in the [0, 1]-
Bernstein basis, and their names denote the respective vectors of Bernstein coefficients.
Correspondingly, var( · ) denotes the number of sign variations in the Bernstein coefficients;
by Theorem 2.22 (page 24), this is the Descartes test for interval (0, 1).

1: procedure DescartesLR81(Ain , (−2r, +2r)) // Ain ∈ Z[X], r ∈ Z

2: P ← (); Q← {};
3: Apow0 ← H2T−1H2r(Ain); A0 ← βRTR(Apow0); // Bernstein conversion
4: v0 ← var(A0); // i.e., v0 = DescartesTest(Ain, (−2r, +2r))
5: if v0 ≥ 1 then P ← ((−2r, +2r)); fi;
6: if v0 ≥ 2 then Q← {((−2r, +2r), A0)}; fi;
7: while Q 6= {} do

8: // Invariant: Q = {((c, d), A) |
9: // (c, d) ∈ P, DescartesTest(Ain, (c, d)) ≥ 2, A(X) ∼ Ain((d− c)X + c))};

10: choose an element ((c, d), A) ∈ Q;
11: m← (c+ d)/2; // implicitly, α = 1/2
12: IL ← (c,m); IM ← [m,m]; IR ← (m,d);
13: (AL, AR)← deCasteljau(2deg AinA, 1/2);
14: vL ← var(AL); // i.e., vL = DescartesTest(Ain, IL)
15: vM ← number of leading zero coefficients in AR; // i.e., vanishing order at m
16: vR ← var(AR); // i.e., vR = DescartesTest(Ain, IR)
17: in P , replace entry (c, d) by subsequence (Ii | i ∈ (L,M,R), vi ≥ 1);
18: in Q, replace element ((c, d), A) by elements {(Ii, Ai) | i ∈ {L,R}, vi ≥ 2};
19: od;
20: report sequence P of isolating intervals;
21: end procedure;

In line 13, we apply de Casteljau’s algorithm to 2nA so that all intermediate results, in-
cluding the coefficients of AL and AR, remain integral. (Of course, an implementation will
simply compute bj,i = bj−1,i + bj−1,i+1 and perform bit shifts to post-multiply the output
by the missing powers of 2, that is, b′j := 2n−jbj,0 and b′′i := 2ibn−i,i.) Proposition 2.25(iii)
(page 26) shows that this does indeed implement the polynomial transformations pre-
scribed in line 13 of the generic form of the Descartes method (page 48).

Looking at de Casteljau’s algorithm in this way – the input is transformed into two new
polynomials, all in the same basis – matches the interpretation of the transformations in
DescartesCA76 and highlights the equivalence of the power and Bernstein basis variants.
Alternatively, one can think of DescartesLR81 as keeping the input polynomial fixed
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(up to repeated multiplication by 2n), but transforming it into many different Bernstein
bases, one for each interval. This is the viewpoint of Proposition 2.25(ii); it matches the
intuition of the polynomial’s graph as a Bézier curve that is approximated increasingly
well by repeated subdivision of its control polygon.

The original source of DescartesLR81 is an article by Lane and Riesenfeld [LR81], which
describes an algorithm for isolating the real roots (and the maxima and minima) of a poly-
nomial by recursive bisection, using the sign variations in the Bernstein coefficients to test
for roots and de Casteljau’s algorithm for subdivision. The authors explain how “Des-
cartes’ Rule of Signs ‘carries over’ to the Bernstein form of the polynomial” [op. cit., p. 113]
and point out the similarity of their algorithm to that of Collins and Akritas [CA76]. The
fact that Lane and Riesenfeld implemented their algorithm with floating-point arithmetic
instead of exact integer arithmetic does not matter at this level of abstraction.

It appears that the contribution of Lane and Riesenfeld and the link between the
Descartes method and the Bernstein basis went unnoticed for a long time in the sym-
bolic computation community. The article [MVY02, §2.1], the first edition (2003) of the
book [BPR06, §10.2] and the survey [MRR05] describe essentially DescartesLR81 and have
drawn attention to the Descartes method implemented in the Bernstein basis, but they do
not point out clearly the original contributions of Collins/Akritas and Lane/Riesenfeld.

Let us now analyze the bit complexity of DescartesLR81.

Theorem 3.33. Consider a polynomial Ain(X) =
∑n

i=0 aiX
i with integer coefficients of

magnitude less than 2τ , all of whose real roots are simple. An interval I0 = (−2r, +2r),
r ∈ Z, as in Proposition 3.28 encloses all real roots of Ain and satisfies |r| = O(τ).
Execution of DescartesLR81(Ain, I0) isolates the real roots of Ain(X) withO(n5(τ+log n)2)
bit operations.

Proof. The polynomial Apow0 has power basis coefficients of length O(nτ). During the
composite transformation βRTR, the coefficient length grows by O(n) due to T and by
O(n log n) due to β. Thus, A0 has Bernstein coefficients of length O(n · (τ + log n)).

De Casteljau’s algorithm, invoked in line 13, increases the length of coefficients by at
most n bits. By Corollary 3.22, the size and thus the height of the subdivision tree is
bounded by O(n · (τ + log n)). It follows that at any internal node I of the subdivision
tree, the Bernstein coefficients of the polynomial A constructed for it have lengths bounded
by O(n2(τ + log n)). The computational effort for node I is dominated by de Casteljau’s
algorithm. It performs O(n2) integer additions and bit shifts; together, this requires
O(n4(τ +log n)) bit operations. As there are O(n(τ +log n)) internal nodes, the total cost
is O(n5(τ + log n)2) bit operations.

This theorem improves upon the bound stated in [MRR05] and the first edition (2003)
of [BPR06] by removing a factor of n through the use of the Davenport-Mahler bound.

Can we improve the bound further by replacing de Casteljau’s algorithm and its O(n2)
arithmetic operations with an asymptotically faster method of subdivision? Proposi-
tion 2.28(ii/iii) shows how one execution of de Casteljau’s algorithm that maps (bi)i to
((b′i)i, (b′′i )i) can be exchanged for two asymptotically fast Taylor shifts (see Theorem 3.31)
plus several linear-time scaling and reversal transformations. In particular, the first step
is to multiply Bernstein coefficients with binomial coefficients to obtain (

(
n
i

)
bi)i, and the

last step is to divide binomial coefficients out of the result ((
(
n
i

)
b′i)i, (

(
n
i

)
b′′i )i). Emiris

et al. [EMT06] have given an improved bound of O∼(n4τ2) for DescartesLR81 analo-
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gously to the improvement for DescartesCA76 leading to Theorem 3.32. However, the
necessity to put in and take out binomial coefficients shows that fast subdivision using
Proposition 2.28 and Theorem 3.31 and thus this O∼(n4τ2) complexity bound are more
naturally associated to a different basis. That is the subject of the next section.

3.2.6 The “dual” algorithm of Johnson (1991)

Johnson [Joh91, §4.2.2] formulated a variant of DescartesCA76 that saves one third of all
Taylor shifts by replacing the polynomial A(X) ∼ Ain((d− c)X + c) with TR(A(X)) and
computing TR(AL(X)) and TR(AR(X)) directly from TR(A(X)). To distinguish it from
the “primal” power basis Descartes method that performs subdivision in the initial affine
chart of R̂, he called it the dual algorithm or, in SACLIB parlance, IPRICSD.

The original description of Johnson’s dual algorithm does not fit our general form of the
Descartes method from §3.1.1, which normalizes the interval of interest to (0, 1) but leaves
the basis chosen for representing polynomials unspecified. Using Proposition 2.28, we can
translate Johnson’s dual algorithm to our setting. The resulting coefficient vectors and op-
erations on them are exactly the same, we just describe them with respect to a transformed
indeterminate T = 1/(X +1); this replaces the power basis (Xi)ni=0 used by Johnson with
the basis (T n−i(1− T )i)ni=0. Since

(n
i

)
T n−i(1− T )i = Bn

n−i(T ), this is the [0, 1]-Bernstein
basis up to reversed order and multiplication by binomial coefficients. This method has
therefore been called the scaled Bernstein basis variant of the Descartes method. For this
basis, de Casteljau’s algorithm is replaced by the method from Proposition 2.28(ii/iii).

We represent Ain and Apow0 in the power basis and all other polynomials in the ba-
sis (T n−i(1 − T )i)ni=0. In pseudocode, the names of polynomials denote their respective
coefficient vectors.

1: procedure DescartesJ91d(Ain, (−2r, +2r)) // Ain ∈ Z[T ], r ∈ Z

2: P ← (); Q← {};
3: Apow0 ← H2T−1H2r(Ain); A0 ← TR(Apow0); // basis conversion
4: v0 ← var(A0); // i.e., v0 = DescartesTest(Ain, (−2r, +2r))
5: if v0 ≥ 1 then P ← ((−2r, +2r)); fi;
6: if v0 ≥ 2 then Q← {((−2r, +2r), A0)}; fi;
7: while Q 6= {} do

8: // Invariant: Q = {((c, d), A) |
9: // (c, d) ∈ P, DescartesTest(Ain, (c, d)) ≥ 2, A(X) ∼ Ain((d− c)X + c))};

10: choose an element ((c, d), A) ∈ Q;
11: m← (c+ d)/2; // implicitly, α = 1/2
12: IL ← (c,m); IM ← [m,m]; IR ← (m,d);
13: AL ← H2T (A); AR ← RH2TR(A);
14: vL ← var(AL); // i.e., vL = DescartesTest(Ain, IL)
15: vM ← number of leading zero coefficients in AR; // i.e., vanishing order at m
16: vR ← var(AR); // i.e., vR = DescartesTest(Ain, IR)
17: in P , replace entry (c, d) by subsequence (Ii | i ∈ (L,M,R), vi ≥ 1);
18: in Q, replace element ((c, d), A) by elements {(Ii, Ai) | i ∈ {L,R}, vi ≥ 2};
19: od;
20: report sequence P of isolating intervals;
21: end procedure;
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Theorem 3.34. Consider a polynomial Ain(X) =
∑n

i=0 aiX
i with integer coefficients of

magnitude less than 2τ , all of whose real roots are simple. An interval I0 = (−2r, +2r),
r ∈ Z, as in Proposition 3.28 encloses all real roots of Ain and satisfies |r| = O(τ).
Execution of DescartesJ91d(Ain, I0) isolates the real roots of Ain(X) with a number of bit
operations bounded by O(n5(τ + log n)2), if the classical Taylor shift from Theorem 3.29
is used, or bounded by O∼(n4τ2), if a Taylor shift as in Theorem 3.31 is used.

Proof. Similar to the proofs for in the preceding sections, we find that all transformed
polynomials A have coefficient lengths bounded by O(n2(τ + log n)). Substituting this
into Theorem 3.29 or 3.31, resp., yields the cost per subdivision, and multiplying with the
size O(n · (τ + log n)) of the subdivision tree yields the claimed complexity bounds.

3.2.7 Comparison of the exact integer algorithms

We have now seen three algorithms implementing the Descartes method for polynomi-
als with integer coefficients. They were obtained from the general procedure Descartes
(§3.1.1) by choosing a basis for representing the polynomials and supplying the match-
ing sub-algorithms for subdivision and evaluating the Descartes test. The power basis
(Xi)ni=0 chosen for DescartesCA76 has the advantage that inputs are typically provided
in it, so that no conversion is necessary. The basis (Xn−i(1 − X)i)ni=0 implicitly used
by Johnson allows to perform a Descartes test w.r.t. (0, 1) immediately. For both of
these bases, the Taylor shift is the fundamental operation. By contrast, for the Bern-
stein basis (

(n
i

)
Xi(1 −X)n−i)ni=0, the fundamental operation is de Casteljau’s algorithm.

Like one classical Taylor shift, it needs (n + 1)n/2 additions, but it provides two useful
results at once. As discussed in Appendix A.1, there is an analogue of de Casteljau’s al-
gorithm that implements subdivision of (0,∞) at m ∈ (0,∞), and it belongs to the basis
(
(
n
i

)
Xi)ni=0. However, this particular pattern of subdivision fits the Continued Fractions

method (see §3.1.2) better than the Descartes method.
We are now faced with a choice between three bases and, for two of them, between a

classical and an asymptotically fast Taylor shift. In terms of practical performance, these
choices have been studied by Johnson [Joh91, §4.5] and Johnson et al. [JKL+06].

Comparing the best implementation of the classical Taylor shift and the best implemen-
tation of an asymptotically fast Taylor shift at the authors’ avail, [JKL+06, Fig. 3] reports
that the classical Taylor shift is clearly superior up to degree 1000 (speed-up around 5 or
more; much more for small degrees) and remains competitive at least up to degree 10 000.
These degrees are far beyond our geometric applications, so the asymptotically fast vari-
ants are of no interest to us, and we only discuss the classical implementations of Taylor
shift and de Casteljau subdivision.

Johnson [Joh91, §4.5] compares DescartesCA76 (called IPRICS in SACLIB parlance)
and DescartesJ91d (called IPRICSD) on polynomials of degree up to 100 with coefficients
chosen at random [loc. cit., Tbl. 13] and on polynomials of degree 20 with real and complex
roots chosen at random [loc. cit., Tbl. 19]. DescartesCA76 is consistently faster, albeit only
by small factors (less than 1.5), presumably because the increased length of coefficients
outweighs the elision of the third Taylor shift.

Johnson et al. [JKL+06] compare, inter alia, the implementations of DescartesCA76
and DescartesLR81 from SACLIB for four classes of polynomials with degrees of several
hundreds and on several modern CPU architectures. DescartesLR81 is consistently faster;
typical speed-up factors are in the range of 2 to 4. In particular, the reduction of three
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Taylor shifts to one de Casteljau subdivision apparently more than compensates the in-
crease in coefficient length caused by the fraction-free conversion to Bernstein basis. Since
both implementations share the same infrastructure, i.e., SACLIB, we take this – with all
due caution – as an indication of the inherent strength of the Bernstein basis variant. We
conclude that DescartesLR81 is a good way to implement the Descartes method.

Johnson et al. [JKL+06] proceed to compare the SACLIB methods further to several
advanced implementations of the Descartes method. Under the influence of different CPU
architectures and different implementations of integer addition, the picture becomes less
clear, but that is beyond the scope of this thesis.

3.3 The Descartes method for bitstream coefficients

3.3.1 Introduction

The preceding discussion of the Descartes method has taken for granted that the coeffi-
cients of the input polynomial Ain(X) come from a subring R of R whose elements can be
represented in a way that allows us to carry out arithmetic operations and to determine the
sign of any element (or equivalently, to decide equality and inequality relations between
elements). We will speak of the exact Descartes method in the sequel to highlight this
assumption where necessary. Such exact arithmetic is possible and well-understood for
algebraic numbers (e.g., [Loo83] [Coh93, §4.2] [Yap04a]), but it becomes a major problem
even for elementary classes of transcendental numbers (e.g., [Ric97] [Yap04a]). More-
over, where possible at all, exact arithmetic tends to be expensive. Previous work [JK97]
[CJK02] [RZ04] reports significant practical accelerations of the Descartes method achieved
by using approximate arithmetic instead of exact arithmetic with long integers or espe-
cially with algebraic numbers. However, these previous approaches have to fall back to
exact arithmetic for certain problematic inputs;7 Collins et al. [CJK02, p. 152] give an
explicit example. As we shall see, the boundary cases that necessitate exact arithmetic for
such problematic inputs are artifacts of the discrete grid imposed by recursive bisection,
they are not inherent in the problem to be solved: Since we have made a restriction to
polynomials Ain with simple real roots, a set of isolating open intervals for the real roots
of Ain is a set of isolating intervals for all polynomials in any sufficiently small neighbour-
hood of Ain in R[X], because complex roots vary continuously with the coefficients [RS02,
§1.3] and imaginary roots occur only in complex-conjugate pairs.

A particularly general interface to the coefficients a0, . . . , an of Ain(X) =
∑n

i=0 aiX
i that

implements this notion of “sufficiently small neighbourhood”, with “sufficiently small” to
be quantified by the algorithm itself, is the following. It matches the common practice,
which we follow, of approximating real numbers by (finite) binary fractions m2−p with a
significand m ∈ Z and an exponent p ∈ Z.

7Rouillier and Zimmermann [RZ04] consider the setting with integer coefficients approximated by intervals
whose boundaries are binary numbers of a certain precision. They remark that “when the precision
grows, at some point [any transformed polynomial] will be represented in an exact way” [op. cit., p. 45],
namely when intervals collapse to single points. This also constitutes a fall-back to exact arithmetic,
because the two identical interval boundaries are exact representations of the numbers in question. This
implicit way of falling back to exact arithmetic is a side effect of the restriction to integer coefficients;
it cannot occur for coefficients that do not possess a representation as binary fractions of finite length.
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Definition 3.35. A bitstream representing a real number r is a procedure that accepts
an integral precision parameter p and returns an integer m such that |m− r2p| ≤ 1. In
pseudocode, we write [r2p] for m (Gauss brackets with unspecified rounding direction).

We can regard a bitstream as providing approximations r̃ = m2−p subject to the error
bound |r̃ − r| ≤ 2−p. For any real number r, there exist sequences (mp)

∞
p=0 of integers such

that ∀p : |mp2
−p − r| ≤ 2−p, so this interface per se can accommodate all real numbers,

even though only countably many of them possess a procedure to compute such a sequence.
We refer to [Yap04a] for general investigations and more background on this and related
models for computing with real numbers.

We have chosen the name “bitstream”, because it concisely captures the basic intuition
that we can let more and more bits flow into the significand of r̃. However, a bitstream
does not necessarily behave like a fixed sequence of bits that is read incrementally: by its
definition, it is perfectly valid for a bitstream representing the number 1 to provide the
binary approximations 1.02, 1.002, 0.112, 1.012, 0.1112, resp., in successive invocations for
p = 1, 2, 2, 2, 3.

We have not required a strict inequality in the approximation guarantee of a bitstream,
because error bounds obtained from interval arithmetic naturally come with boundaries
included.8 Within the error bound |m− r2p| ≤ 1, there are always two possible values
of m approximating r2p (three in the special case that r2p is itself an integer). It might
seem tempting to insist on the tighter error bound |m− r2p| ≤ 1/2, on the grounds that
rounding r2p to the nearest integer could achieve that; however, the ensuing discontinuity
at the midpoint between two successive integers would preclude approximate computation
within the procedure providing the bitstream.

Let us now start to discuss how we can apply the Descartes method to a polynomial Ain

with bitstream coefficients. Our goal is an algorithm that operates essentially like the
exact Descartes method, even though it only knows approximate values for the coefficients
of Ain and its transformations. In §3.2, we have met three choices of bases to represent
polynomials and the sub-algorithms arising from them for the necessary transformations
of Ain. If we choose the Bernstein basis, the only transformation needed in the main
loop of the Descartes method is de Casteljau’s algorithm. It is particularly well-suited
for approximate computation, because it consists entirely of convex combinations, which
are numerically very stable. For this reason, and because the Bernstein basis has already
demonstrated a good practical performance for exact integer coefficients (see §3.2.7), we
will use the Bernstein basis representation for all polynomials, except the input. We discuss
in §3.3.2 how to convert the input polynomial from the power basis to an approximate
Bernstein basis representation w.r.t. a suitable initial interval, and in §3.3.3 how to execute
de Casteljau’s algorithm for approximate coefficients. We use approximate Bernstein
representations of the form (b02

−q, . . . , bn2−q) with significands bi ∈ Z and a common
exponent q ∈ Z, and we perform fixed-point arithmetic on them. Our algorithm maintains
a global precision parameter p ∈ Z and chooses q large enough such that all Bernstein
coefficients that occur have an absolute error bounded by ε = 2−p. One can think of p as
the “payload precision” that indicates how good the available coefficient approximations
are, and of q > p as the “working precision” necessary to achieve that in the presence of
accumulating arithmetical error.

8The image of a compact interval under a continuous function is a compact interval; the image of a
bounded open interval may be neither open nor bounded.
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While the good numerical properties of the Bernstein basis will allow us to keep q close
to p, a fundamental problem persists. The Descartes method needs to make decisions
based on the signs of coefficients, namely to check whether the subdivision point is itself
a root and to count the number of sign variations in the coefficient sequences arising
from subdivision (cf. lines 14–16 of procedure DescartesLR81 on page 71). However, an
approximation ã of a real number a satisfying |ã− a| ≤ ε for some error bound ε > 0
does not uniquely determine sgn(a) unless |ã| > ε. Using ã, we can merely determine the
ε-approximate sign of a:

sgnε(ã) =





+ if ã > +ε,

− if ã < −ε,
? if |ã| ≤ ε.

(3.18)

If |ã| > ε, it holds that sgnε(ã) = sgn(a), and we say that ã is (sign-)determinate; other-
wise, we say that ã is (sign-)indeterminate.

If a is very close to zero, determining its sign from an approximation requires a very
good (and thus computationally expensive) approximation. If a is in fact equal to 0, it
is impossible to determine its sign from an ε-approximation alone, no matter how small
the positive number ε is. Therefore, the crucial issue in adapting the Descartes method
to polynomials with bitstream coefficients is to avoid the necessity of sign determination
for coefficients that are “too small” in magnitude.

It is relatively obvious how to do this for the leftmost Bernstein coefficient AR(0) of AR,
inspected to determine whether the subdivision point is a root of Ain: the subdivision
pointm has to be chosen sufficiently far away from any complex root of Ain, then |AR(0)| =
|Ain(m)| is large, because a polynomial can only be small in magnitude close to one of its
roots. (A precise form of this statement is given as Theorem 3.53 on page 94.)

It is less obvious how to make sure that the ε-approximate signs of the Bernstein co-
efficients inspected in a Descartes test allow to distinguish between 0, 1, or more than 1
sign variation. In §3.3.4, we will meet two crucial lemmas that give a sufficient condition
in terms of |Ain(m)| for the choice of subdivision points m to guarantee that we can even-
tually make this distinction, but possibly at the price of an additional subdivision step in
case of uncertainty.

Our algorithm, which we will outline in §3.3.5, is designed around these lemmas. The
algorithm (as opposed to its analysis) is straightforward and uses exponential guessing to
determine a sufficient precision such that good subdivision points can be found quickly
by randomization. With good subdivision points, the algorithm can then mimic the exact
Descartes method and produce a set of isolating open intervals for the real roots of Ain.

After resolving in §3.3.6 a technicality concerning the accumulation of arithmetical error,
we are ready to fully specify our algorithm in §3.3.7. In §3.3.8, we estimate which value of
the precision parameter p is sufficient for a given input Ain, and based on this, we analyze
the algorithm’s bit complexity in §3.3.9. We conclude with a description of some possible
variants of the algorithm in §3.3.10 and a discussion of our results in §3.3.11.
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3.3.2 On the initial interval and conversion to Bernstein basis

The bitstream Descartes algorithm receives as input a real polynomial

Ain(X) =

n∑

i=0

aiX
i, n = deg(Ain) ≥ 2, (3.19)

given by bitstreams representing the coefficients a0, . . . , an. The input is subject to the
condition that all real roots of Ain shall be simple. This has two immediate consequences:
Ain has more than one complex root (because a unique complex root would be both real
and multiple), and Ain has a non-zero coefficient besides an (since a0 = a1 = 0 would
make x = 0 a double real root).

The bitstream Descartes algorithm needs an initial interval

I0 := (c0, d0) := (−2r+1, +2r+1), r ∈ Z, (3.20)

such that

Ain(ζ) = 0 =⇒ |ζ| ≤ 2r for any ζ ∈ C. (3.21)

Notice that the circumcircle of I0 includes the imaginary roots as well and has a radius
overestimating the complex root magnitudes by a factor of two; the motivation for this
will become apparent in the sequel.

A straightforward way to determine r is to evaluate the dyadic Fujiwara complex root
bound (2.26) from page 43 for approximations of log |ai|. The trick from §3.2.3 about
locating the lowest non-zero coefficient is, of course, inapplicable in the bitstream setting.
In addition, the quantities blog |ai|c or dlog |ai|e are no longer accessible: to avoid disconti-
nuities near integral logarithms, we need to allow an error margin. Specifically, we require
for the leading coefficient an of Ain a lower bound

l−n ∈ Z such that l−n ≤ log |an| < l−n + 2. (3.22)

For the moment, let us assume that we have also have upper bounds

l+0 , . . . , l
+
n−1 ∈ Z ∪ {−∞} such that l+i ≥ log |ai| > l+i − 2 for 0 ≤ i < n. (3.23)

We set

r := 1 + max
{ ⌈ l+n−1 − l−n

1

⌉
,

⌈
l+n−2 − l−n

2

⌉
, . . . ,

⌈
l+1 − l−n
n− 1

⌉
,

⌈
l+0 − l−n − 1

n

⌉}
. (3.24)

The approximation error we make here is bounded as follows.

Lemma 3.36. For r as in (3.24), it holds that 0 ≤ r − dlog RBdF(Ain)e ≤ 3.

Proof. Let us write li = log |ai|. Analogous to the proof of Lemma 3.26, we find that

0 ≤
⌈
l+i − l−n
n− i

⌉
− li − ln

n− i < 4, 0 ≤
⌈
l+0 − l−n − 1

n

⌉
− l0 − ln − 1

n
< 4,

so that 0 ≤ r − log RBdF(Ain) < 4 and 0 ≤ br − log RBdF(Ain)c ≤ 3.
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However, there is a problem: One should not – and in some cases, cannot – evalu-
ate (3.24) by first computing all upper bounds l+i and the values resulting from them and
then picking the maximum. The reason is that the magnitudes |ai|, 0 ≤ i < n, may vary
a lot, and approximating their logarithms in accordance to (3.23) may be quite expensive
for those which are small. In the extreme case ai = 0, meaning log |ai| = −∞, this is
not even possible in the bitstream setting, since no approximation of ai is good enough to
determine log |ai| = −∞.

To overcome this, we postulate a mechanism in addition to the bitstream interface from
Definition 3.35 that provides successively improving upper bounds l+i ≥ log |ai| together
with an indication whether they can still be improved (i.e., decreased); if not, they must
satisfy log |ai| > l+i −2. We can thus maintain tentative values for the expressions in (3.24)
in a priority queue and repeatedly improve the tentative maximum until the true value
of (3.24) is found.

To keep our subsequent presentation of the bitstream Descartes algorithm separate from
these matters, which have more to do with the representation of the coefficients behind
the bitstream interface than with the algorithm itself, we describe the algorithm in terms
of additional input parameters r, chosen to satisfy (3.21), and l−n , chosen to satisfy (3.22).

Let us now discuss the conversion from power to Bernstein basis. We are interested in
the [0, 1]-Bernstein coefficients of Ain((d0−c0)X+c0) = Ain(2

r+2X−2r+1), or equivalently
(see Lemma 2.21), the [−1, 1]-Bernstein coefficients of Ain(2

r+1X) =
∑n

j=0 aj2
j(r+1)Xj .

Proposition 3.37. If F (X) =
∑n

j=0 ajX
j =

∑n
i=0 biB

n
i [−1, 1](X), then

bi =

n∑

j=0

((
n

i

)−1∑

ν

(−1)j−ν

(
j

ν

)(
n− j
i− ν

))
aj (3.25)

with summation over all ν such that max{0, i + j − n} ≤ ν ≤ min{i, j}. The coefficients
of a0, . . . , an have magnitudes at most 1.

Proof. Recall that bi = F
[(

−1
1

)n−i( 1
1

)i]
(Proposition 2.20(i)). With M =

(
1 −1
1 1

)
we find

bi = (F ◦M)
[(

0
1

)n−i( 1
0

)i]
, cf. Lemma 2.13, so bi is the coefficient of

(n
i

)
Xi in

(X + 1)nF (
X − 1

X + 1
) =

n∑

j=0

aj(X − 1)j(X + 1)n−j

=

n∑

j=0

aj

∑

µ,ν

(−1)j−ν

(
j

ν

)(
n− j
µ

)
Xµ+ν

=
n∑

i=0

n∑

j=0

aj

∑

ν

(−1)j−ν

(
j

ν

)(
n− j
i− ν

)(
n

i

)−1(n
i

)
Xi where i = µ+ ν.

The summation range for ν is limited to 0 ≤ ν ≤ j by the first binomial coefficient and to
0 ≤ i− ν ≤ n− j ⇔ −i ≤ −ν ≤ n− i− j by the second.

The claim on magnitudes is an immediate consequence of Vandermonde’s convolution
formula

(n
i

)
=
∑

ν

(j
ν

)(n−j
i−ν

)
, see, e.g., [Knu97, §1.2.6].

In general, the coefficients in (3.25) are fractional, due to the division by
(
n
i

)
. To avoid

fractions, we multiply by n!; of course, n!
(n

i

)−1
= i!(n − i)!.
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Corollary 3.38. If A(X) =
∑n

j=0 ajX
j , then n!A(2r+2X − 2r+1) =

∑n
i=0 biB

n
i [0, 1](X)

with

bi =
n∑

j=0

m
(n)
ij 2j(r+1)aj , m

(n)
ij = i!(n − i)!

∑

ν

(−1)j−ν

(
j

ν

)(
n− j
i− ν

)
. (3.26)

The coefficients m
(n)
ij are integers of magnitude up to n!.

Lemma 3.39. Given n ∈ N, the numbers m
(n)
ij , 0 ≤ i, j ≤ n, can be computed with

O(n4 log n) bit operations.

Proof. The columns of the matrix (m
(n)
ij )i,j are the images of the basis polynomials

1,X,X2, . . . ,Xn under the conversion to the Bernstein basis w.r.t. [−1, 1], followed by
multiplication with n!. As discussed in §3.2.5 for the Bernstein basis variant of the
integer Descartes method, this transformation can be implemented as the composition
βRTRH2T−1 of two Taylor shifts, a homothetic transformation, two coefficient reversals,
and the final multiplication by i!(n − i)!. The coefficients of Xj have length 1. The
chain of transformations RTRH2T−1(X

j) produces intermediate results with coefficients
of length O(n) and requires O(n3) bit operations. The final multiplications with factors
i!(n − i)! of lengths bounded by log n! = O(n log n) requires O(n3 log n) bit operations.
Thus, transforming all n+1 basis polynomials needs O(n4 log n) bit operations in total.

This O(n4 log n) bound seems surprisingly large compared to other steps of our algo-

rithm. As we need to compute the m
(n)
ij only once, at the very beginning of the algorithm,

this straightforward computation does not form a bottleneck, though (neither practically
nor theoretically), and we contend ourselves with it for the purposes of this thesis.9

Let us now determine which multiple of Ain(2
r+2X−2r+1) we will actually compute. As

a point of reference for precision management, we wish to choose a multiple such that the
leading coefficient (i.e., coefficient ofXn) has a magnitude of at least 1, but not much more.
Already above, we have postulated the availability of a lower bound l−n ≤ log |an| < l−n +2
for the leading coefficient an of Ain. Based on this, we choose the multiple

A0(X) := 2−ln!Ain(2
r+2X − 2r+1) with l := l−n + blog n!c+ n(r + 2), (3.27)

which has a leading coefficient |a(0)
n | = |2−ln!2n(r+2)an| = n!/2blog n!c · |an| /2l−n ∈ [1, 8),

meeting our needs. Hence we let our algorithm compute approximations to the following
Bernstein coefficients:

A0(X) =
n∑

i=0

β
(0)
i Bn

i [0, 1](X), β
(0)
i =

n∑

j=0

m
(n)
ij 2j(r+1)−laj . (3.28)

Proposition 3.40. The Bernstein coefficients of A0(X) satisfy

|β(0)
0 | , |β

(0)
n | ≥ (1/4)n, |β(0)

i | < 8 · (3/4)n for 0 ≤ i ≤ n. (3.29)

9Nevertheless, the matrices (m
(n)
ij )i,j exhibit an interesting structure, and one might speculate that more

sophisticated algorithms could take advantage of it.
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Proof. The roots ϑ1, . . . , ϑn of A0 satisfy |ϑj − 1/2| ≤ 1/4, so 1/4 ≤ |ϑj | ≤ 3/4 and 1/4 ≤
|1− ϑj | ≤ 3/4 for all j. The leading coefficient a

(0)
n of A0 has magnitude 1 ≤ |a(0)

n | < 8.
The claims now follow with Proposition 2.24 (page 25):

|β(0)
0 /a(0)

n | =
n∏

j=1

|ϑj| ≥ (1/4)n, |β(0)
n /a(0)

n | =
n∏

j=1

|1− ϑj| ≥ (1/4)n,

|β(0)
i /a(0)

n | ≤
(n

i

)−1
∑

#J=n−i

∏

j∈J

|ϑj |
∏

j /∈J

|1− ϑj| ≤ (3/4)n for 0 ≤ i ≤ n.

Whenever the bitstream Descartes algorithm chooses a precision parameter p, we have

to compute approximations of β
(0)
i with absolute errors bounded by 2−p−1. (The use of

−p− 1 instead of −p is explained in the next section.) To do so, we compute at precision
q := p+ dlog n!e+ dlog(n+1)e+2. We extract significands cj ← [2j(r+1)−l+qaj ] out of the
bitstreams aj . They satisfy

|cj − 2j(r+1)−l+qaj| ≤ 1, or equivalently |cj2−q − 2j(r+1)−laj| ≤ 2−q. (3.30)

Then we set

bi =


( n∑

j=0

m
(n)
ij cj

)/
2q−p−1




for 0 ≤ i ≤ n, (3.31)

where b · e denotes rounding to the nearest integer (arbitrarily for .5) and introduces an
error of at most 1/2.

Proposition 3.41. The computation (3.31) yields approximations |bi2−p−1 − β(0)
i | ≤ 2−p−1

to the [0, 1]-Bernstein coefficients of A0(X) with integers b0, . . . , bn. Each non-zero bi has
a bit length bounded by log |bi| < p+4. This computation requires O(n3 log n · (p+logn))

bit operations, assuming the factors m
(n)
ij have already been constructed.

Proof. Regarding the error bound, we deduce from (3.31), (3.28) and (3.30) that

|bi2−p−1 − β(0)
i | ≤ 2−p−2 + |

n∑

j=0

m
(n)
ij (cj2

−q − 2j(r+1)−laj)| ≤ 2−p−2 + (n+ 1)n!2−q,

using that |m(n)
ij | ≤ n! for all 0 ≤ i, j ≤ n. By choice of q, this error is at most 2−p−1.

Concerning bit length, we observe that (|bi| − 1)2−p−1 ≤ |β(0)
i | < 8 · (3/4)n by Proposi-

tion 3.40, so |bi| < 1 + 2p+4−n log(4/3) < 2p+4.
Let us now examine the computational effort. Since all roots of Ain have magnitude 2r

or less, we have |aj | ≤
(n

j

)
2r(n−j) |an| ≤ 2r(n−j)+n−1 |an|. Also, |cj | ≤ 1 + 2j(r+1)−l+q |aj|.

We have −l + q < − log |an| − n(r + 2) + dlog(n + 1)e + p + 5. For |cj | ≥ 2, this entails
log(|cj |−1) ≤ (j(r+1)− l+q)+(r(n−j)+n−1)+log |an| < p−(n−j)+dlog(n+1)e+4.

Thus, all cj are integers of p+O(log n) bits. We multiply them with weights 0 ≤ m(n)
ij ≤ n!,

where log n! = O(n log n). These (n + 1)2 multiplications and the subsequent additions
require O(n2 · n log n · (p+ log n)) bit operations.10

10If r is chosen according to the dyadic Fujiwara complex root bound as in (3.24), then one even has

2r−1 ≥ |aj/an|
1/(n−j) ⇔ |aj | ≤ 2(r−1)(n−j) |an|, and can replace p + O(log n) by p + O(1). However,

we do not want to tie our analysis to this specific choice of r.
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3.3.3 De Casteljau’s algorithm in fixed precision

Let us consider a sequence of real numbers (βi)
n
i=0 that are Bernstein coefficients of some

polynomial, and a subdivision parameter α ∈ (0, 1) of the form α = u/2k for integers k
and 0 < u < 2k. Suppose we have an approximation (bi2

−q)ni=0 of the coefficients with
integers b0, . . . , bn and q such that ∀i : |bi2−q − βi| ≤ ε for some ε > 0 moderately larger
than 2−q. Our goal is to approximate the exact result of de Casteljau’s algorithm (see
§2.2.5) when invoked conceptually as ((β′i)i, (β′′i )i)← DeCasteljau((βi)i, α).

Let us begin with a thought experiment: We run de Casteljau’s algorithm in exact arith-
metic on the approximations (bi2

−q)i by letting b0,i = bi and bj,i = (2k−u)bj−1,i+ubj−1,i+1

for j > 0. The number bj,i2
−q−jk approximates its counterpart βj,i in the idealized com-

putation. It holds that |bj,i2−q−jk − βj,i| ≤ ε, because inductively |bj,i2−q−jk − βj,i| =
|(1− u/2k)(bj−1,i2

−q−(j−1)k − βj−1,i) + (u/2k)(bj−1,i+12
−q−(j−1)k − βj−1,i+1)| ≤ (1−α)ε+

αε = ε. Have we now reached our goal? Yes, but in a very costly way: The inputs have
binary representations with exponent −q. Each convex combination adds k additional
bits, so the entries in row j of the de Casteljau triangle have exponents −(q+ jk), whereas
the error bound still is ε, so all these extra bits are useless for approximating βj,i. There-
fore, it is preferable to run de Casteljau’s algorithm in approximate arithmetic: We set
bj,i =

⌊
((2k − u)bj−1,i + ubj−1,i+1)/2

k
⌉
, where b · e denotes rounding to the nearest integer

(arbitrarily for .5). In this way, all significands bj,i are understood w.r.t. the same expo-
nent, namely −q. We can leave out the factor 2−q entirely and arrive at the following
algorithm (cf. §2.2.5).

1: procedure DeCasteljauApprox((b0, . . . , bn), u, k)
2: (b0,0, b0,1, . . . , b0,n)← (b0, . . . , bn);
3: for j from 1 to n do

4: for i from 0 to n− j do

5: bj,i ←
⌊
((2k − u)bj−1,i + ubj−1,i+1)/2

k
⌉
;

6: od;
7: od;
8: (b′0, b

′
1, . . . , b

′
n)← (b0,0, b1,0, . . . , bn,0);

9: (b′′0, b
′′
1 , . . . , b

′′
n)← (bn,0, bn−1,1, . . . , b0,n);

10: return ((b′j)
n
j=0, (b′′i )

n
i=0);

11: end procedure;

Proposition 3.42. Consider a sequence of Bernstein coefficients (β0, . . . , βn) and an ap-
proximation in terms of integers b0, . . . , bn and q such that |bi2−q − βi| ≤ ε and |bi| < 2τ

for all 0 ≤ i ≤ n. Let u, k ∈ N such that 0 < u < 2k. Consider exact and approximate
subdivision at α = u/2k via

((β′i)i, (β′′i )i)← DeCasteljau((βi)i, u/2
k),

((b′i)i, (b′′i )i)← DeCasteljauApprox((bi)i, u, k).

It holds that |b′i2−q − β′i| ≤ ε+n2−q−1 and |b′i| < 2τ for all 0 ≤ i ≤ n; the analogous bounds
hold for b′′i . Executing DeCasteljauApprox((bi)i, u, k) takes O(n2kτ) bit operations.

Proof. We show by induction on j that |bj,i2−q − β′j,i| ≤ j2−q−1 + ε and |bj,i| ≤ 2τ − 1 for
all 0 ≤ j ≤ n and 0 ≤ i ≤ n− j. The base case j = 0 is immediate from the condition on
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the inputs. For the inductive step from j − 1 to j concerning the first claim, we observe

|bj,i2−q − βj,i| =
∣∣⌊((2k − u)bj−1,i + ubj−1,i+1)/2

k
⌉
2−q − ((1− α)βj−1,i + αβj−1,i+1)

∣∣

≤ 2−q−1 +
∣∣((1− α)bj−1,i2

−q + αbj−1,i+12
−q)− ((1− α)βj−1,i + αβj−1,i+1)

∣∣

≤ 2−q−1 + (1− α)
∣∣bj−1,i2

−q − βj−1,i

∣∣+ α
∣∣bj−1,i+12

−q − βj−1,i+1

∣∣

≤ j2−q−1 + ε.

Concerning the second claim, we observe that 2τ − 1 is an integer upper bound for the
convex combination (1−α)bj−1,i +αbj−1,i+1, and rounding does not go beyond this upper
bound, so bj,i = b(1− α)bj−1,i + αbj−1,i+1e ≤ 2τ − 1. Symmetrically, bj,i ≥ −(2τ − 1).

The algorithm performs n(n+ 1)/2 convex combinations. In each convex combination,
the multiplication of a k-bit weight with a τ -bit coefficient needs O(kτ) bit operations.
The results have lengths k + τ and can be added with O(k + τ) operations. Since the
weights add up to 2k, the sum has again length k + τ . Its rounded division by a power of
two can also be performed with O(k + τ) operations.

We will also have occasion to perform approximate subdivision at α = u/v ∈ (0, 1)
where u, v ∈ N but v is not necessarily a power of two. The following approximate
de Casteljau algorithm is similar to the preceding one. In fact, it obeys the same bounds
on bit complexity and approximation error.

1: procedure DeCasteljauRatApprox((b0 , . . . , bn), u, v)
2: (b0,0, b0,1, . . . , b0,n)← (b0, . . . , bn);
3: for j from 1 to n do

4: for i from 0 to n− j do

5: bj,i ← b((v − u)bj−1,i + ubj−1,i+1)/ve;
6: od;
7: od;
8: (b′0, b

′
1, . . . , b

′
n)← (b0,0, b1,0, . . . , bn,0);

9: (b′′0, b
′′
1 , . . . , b

′′
n)← (bn,0, bn−1,1, . . . , b0,n);

10: return ((b′j)
n
j=0, (b′′i )

n
i=0);

11: end procedure;

Proposition 3.43. Consider a sequence of Bernstein coefficients (β0, . . . , βn) and an ap-
proximation in terms of integers b0, . . . , bn and q such that |bi2−q − βi| ≤ ε and |bi| < 2τ for
all 0 ≤ i ≤ n. Let u, v, k ∈ N such that 0 < u < v < 2k. Consider exact and approximate
subdivision at α = u/v via

((β′i)i, (β′′i )i)← DeCasteljau((βi)i, u/v),

((b′i)i, (b′′i )i)← DeCasteljauRatApprox((bi)i, u, v).

It holds that |b′i2−q − β′i| ≤ ε+n2−q−1 and |b′i| < 2τ for all 0 ≤ i ≤ n; the analogous bounds
hold for b′′i . Executing DeCasteljauRatApprox((bi)i, u, v) takes O(n2kτ) bit operations.

Proof. The proof is mostly identical to Proposition 3.42. It just remains to show that
each convex combination bj,i ← b((v − u)bj−1,i + ubj−1,i+1)/ve can be performed with
O(kτ) bit operations. The two multiplications of a k-bit weight and a τ -bit coefficient are
certainly covered by this bound, as is the subsequent addition of two (k+ τ)-bit numbers.
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The final integer division of a (k + τ)-bit dividend by a k-bit divisor produces a τ -bit
quotient, so ordinary long division needs O(kτ) bit operations as well [Knu69, §4.3.1].

Now we consider the chains of de Casteljau subdivisions by which the Descartes method
produces its transformed polynomials. It is our goal to provide the Bernstein coefficients
of all transformed polynomials with an absolute error bounded by ε = 2−p, where the
precision parameter p is chosen by the algorithm; this needs to cover both the approxima-
tion error in the coefficients we start from and the arithmetical error accumulating during

subdivision. We start from an approximation (b
(0)
i 2−q)i of initial Bernstein coefficients

(β
(0)
i )i with errors |b(0)i 2−q − β(0)

i | ≤ 2−p−1 and perform a sequence of subdivisions with
subdivision parameters (αj)j≥1 in (0, 1), such that after the jth subdivision, either the
left or right part of the result is taken as input for the (j+1)st subdivision. Conceptually,
these subdivisions are carried out exactly by procedure DeCasteljau, inducing a sequence

((β
(j)
i )i)j≥1 of exact transformations of (β

(0)
i )i. What we actually compute, though, is a

sequence of approximations ((b
(j)
i 2−q)i)j produced by invocations of DeCasteljauApprox

and DeCasteljauRatApprox. Inductive application of the preceding propositions shows

|b(j)i 2−q − β(j)
i | ≤ 2−p−1 + jn2−q−1. How do we choose q in order to restrict this to 2−p or

less?

Let us assume for the time being that we know an a priori bound dbd (a power of two)
on the length of any chain, that is, the maximal subdivision depth. Then it suffices to
have dbdn2−q−1 ≤ 2−p−1, which is equivalent to q ≥ p+ log(dbdn) and easily achieved by
setting q := p + dlog ne + log dbd. Until we return to the issue in §3.3.6, we stick to this
choice of q.

3.3.4 Sign variations from approximate coefficients

This section presents two lemmas demonstrating that uncertainty in the distinction be-
tween 0, 1, and more than 1 sign variation in a sequence of approximate Bernstein co-
efficients disappears after one further subdivision step, provided that the first and last
Bernstein coefficient have a magnitude exceeding the error bound ε = 2−p by a certain
factor C. For concreteness, we formulate the lemmas with particular signs of the relevant
coefficients, but by the linearity and symmetry of de Casteljau’s algorithm, the extension
to the remaining cases is sufficiently obvious not to formulate it explicitly. We begin by
formalizing the ambiguity in the number of sign variations of approximate numbers.

Definition 3.44. Let ε > 0. For a sequence (ã0, . . . , ãn) of real numbers, its set of ε-
approximate numbers of sign variations is

varε(ã0, . . . , ãn) :=
{

var(a0, . . . , an)
∣∣ |ãi − ai| ≤ ε for all 0 ≤ i ≤ n

}
. (3.32)

Given ε-approximations ã0, . . . , ãn of a0, . . . , an, clearly var(a0, . . . , an) ∈ varε(ã0, . . . , ãn).

Lemma 3.45. Let ε = 2−p and q ≥ p + log n and C ≥ 4n+1. Let (bi2
−q)ni=0 be a vector

of approximate Bernstein coefficients such that b02
−q, bn2−q > Cε. Consider the execu-

tion of ((b′i)i, (b′′i )i) ← DeCasteljauApprox((bi)i, u, k) for some α = u/2k ∈ [1/4, 3/4].
If 0 ∈ varε((bi2

−q)i), then varε((b
′
i2

−q)i) = varε((b
′′
i 2

−q)i) = {0}.
Proof. We argue using an idealized de Casteljau triangle cj,i, which is computed exactly
from inputs ci modified as follows: If |bi2−q| ≤ ε, we set ci = 0; otherwise, we set ci = bi2

−q.
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By Proposition 3.42, corresponding entries in the idealized triangle cj,i and the actually
computed triangle bj,i2

−q differ by at most ε+n2−q−1 ≤ 2−p +2−p−1 = 3/2 · ε. Whenever
we can show |cj,i| > 5/2 · ε, we may conclude sgn(cj,i) = sgnε(bj,i2

−q) 6= ?.

Let us now inspect the idealized de Casteljau triangle. All modified inputs ci are non-
negative. Due to the contribution of c0 or cn, resp., any element in the idealized outputs
(c′i)i and (c′′i )i is at least 4−nCε ≥ 4ε. Thus any element of the actual outputs (b′i2

−q)i
and (b′′i 2

−q)i is sign-determinate and positive.

Lemma 3.46. Let ε = 2−p and q ≥ p + log n and C ≥ 16n. Let (bi2
−q)ni=0 be a vector

of approximate Bernstein coefficients such that b02
−q > Cε and bn2−q < −Cε. Consider

the execution of ((b′i)i, (b′′i )i)← DeCasteljauApprox((bi)i, u, k) for α = u/2k ∈ [1/4, 3/4].
If 1 ∈ varε((bi2

−q)i) and if, at the tip of the de Casteljau triangle, b′n2−q = b′′02
−q < −Cε,

then varε((b
′
i2

−q)i) = {1} and varε((b
′′
i 2

−q)i) = {0}.
Proof. We argue using a modified de Casteljau triangle cj,i as in the proof of Lemma 3.45.
By its construction (see above), the modified input sequence (ci)i consists of non-negative
followed by non-positive numbers. It is easy to see inductively that all rows of the modified
de Casteljau triangle consist of zero or more non-negative elements followed by one or more
non-positive elements. Once some row consists entirely of non-positive elements, the same
holds for all further rows.

We first prove the claim about b′′. The element cn,0 at the tip of the modified triangle
is less than −(C − 3/2)ε. An element cj,i in row j ≥ 1 cannot be less than the minimum
of its parents cj−1,i and cj−1,i+1, so there is a path P of elements less than −(C − 3/2)ε
from row 0 to row n. The elements right of P are non-positive.

Now consider the rightmost element c′′n−i in row i of the triangle, for arbitrary 0 ≤ i < n.
Go up 0 ≤ k ≤ i times to the left parent until you reach an element of P in row i− k or
end up in row 0 right of the path (with k = i). In either case, the last k + 1 elements of
row i− k are non-positive, one of them, say c∗, is less than −(C − 3/2)ε (namely the path
element or cn), and c′′n−i is a convex combination of them. Due to the contribution of c∗,
we have c′′n−i < −4−k(C − 3/2)ε � −3ε, and thus all b′′n−i2

−q are sign-determinate and
negative. Consequently, varε((b

′′
i 2

−q)i) = {0}.
We turn to b′. Its modified counterpart begins with c′0 > Cε and ends at the tip of

the triangle with c′n < −(C − 3/2)ε. We will demonstrate the existence of a unique
ε-approximate sign variation in the sequence (b′i2

−q)i near index

i = min
{
i ∈ {1, . . . , n}

∣∣ c′i ≤ 0 or |c′i| ≤ |c′i−1| /16
}
.

Since c′n is negative, i exists. By minimality of i, we have for all 0 < j < i that c′j > 0 and

c′j > c′j−1/16 > c′0/16
j > (C/16n−1)ε > 16ε. Thus c′0, c

′
1, . . . , c

′
i−1 > 16ε.

Now we consider the remaining elements. We have chosen i such that there is a sharp
decrease from c′i−1 to c′i; so sharp in fact that ci−1,1 must be much less than zero, and that
forces c′i+1, . . . , c

′
n to negativity as well. More precisely, we will show c′i+1, . . . , c

′
n < −3ε.

For c′n, this is already known, so we may assume i ≤ n−2. By choice of i, we have c′i−1 > 0
and c′i ≤ c′i−1/16. From c′i = (1− α)c′i−1 + αci−1,1 follows then

ci−1,1 = (c′i − (1− α)c′i−1)/α ≤ (1/16 − (1− α))/α · c′i−1 = (16α − 15)/(16α) · c′i−1.
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This upper bound is negative for any α ∈ [1/4, 3/4], so ci−1,1 < 0 and all successive entries
in same row are not positive either; in particular, ci−1,2 ≤ 0. Now we observe

c′i+1 = (1− α)2c′i−1 + 2(1− α)αci−1,1 + α2ci−1,2

≤ (1− α)2c′i−1 + 2(1− α)αci−1,1

≤ (1− α)2c′i−1 + (1− α)(16α − 15)/8 · c′i−1

= (−α2 + 15α/8 − 7/8)︸ ︷︷ ︸
≤−1/32 for 1/4≤α≤3/4

c′i−1

< (−1/32)(c′0/16
i−1)

< −1/24i+1 · Cε.

All entries in rows i + 1 to n are non-positive, and the entries c′j for j > i + 1 receive a

fraction (1 − α)j−(i+1) of c′i+1. Thus, c′j ≤ c′i+1/4
j−(i+1) < −C/22i+2j−1 · ε < −3ε for all

i+ 1 ≤ j ≤ n− 1.
In summary, we see that b′02

−q, . . . , b′i−12
−q are sign-determinate and positive, whereas

b′i+12
−q, . . . , b′n2−q are sign-determinate and negative, and so varε((b

′
i2

−q)i) = {1}.
The two preceding lemmas were discovered by K. Mehlhorn (personal communication,

December 2004) for the case of exact arithmetic and bisection at the midpoint (α = 1/2).

3.3.5 The bitstream Descartes algorithm: outline

We are now ready to outline our variant of the Descartes method designed for polynomials
with bitstream coefficients, which we call the bitstream Descartes algorithm for short. For
simplicity, we still uphold the assumption made in §3.3.3, namely that we know an a priori
bound dbd on the maximal subdivision depth and can thus determine a global exponent
−q for our fixed-point arithmetic. The actual bitstream Descartes algorithm presented
in §3.3.7 is slightly more complicated, owing to the removal of this assumption. Further
variants of the algorithm are discussed in §3.3.10.

With reference to the preprocessing steps described in §3.3.2, we formulate our algorithm
in terms of the initial interval I0 from (3.20) and the polynomial A0(X) from (3.27). We
recall that all real roots of A0 (or equivalently, of Ain) must be simple. With reference to
Lemmas 3.45 and 3.46, we define

C := 24n, (3.33)

satisfying the premises of both.

The algorithm maintains a state comprising the following items.

• A precision parameter p, initialized to p← p0 := 6n+1, as well as counters Ntry, Nfail,
initially set to 0. The parameter p determines the global error bound

ε := 2−p (3.34)

to be observed by all approximate Bernstein coefficients. Furthermore, p determines
the exponent q0 > p to be used in the representation of approximate Bernstein
coefficients, see §3.3.3.

When the algorithm decides to increase the precision, it sets p ← 2p; thus, the
value of p after µ increments is pµ = 2µp0.

86



• An approximation of A0(X) represented by integers b
(0)
0 , . . . , b

(0)
n such that

|b(0)i 2−q0 − β(0)
i | ≤ 2−p−1 = ε/2 for 0 ≤ i ≤ n. (3.35)

To obtain b
(0)
0 , . . . , b

(0)
n , we perform the computation described by Equation (3.31)

and Proposition 3.41, and then change the exponent from −p− 1 to −q0 by setting

b
(0)
i = bi2

q0−p−1.

• A sequence P recording the current partition of the initial interval as in the general
form of the Descartes method (§3.1.1).

• A set Q with entries ((c, d), (b0, . . . , bn), V ) to record intervals (c, d) for further sub-
division. The numbers (bi2

−q)i are approximations of the [0, 1]-Bernstein coefficients
of A(X) = A0((d − c)X + c) with absolute error at most ε. For the moment, we
assume the exponent q is equal to the global value q0 derived from p. The entry
V = varε((bi2

−q)i) is the set of ε-approximate numbers of sign variations in the
coefficient sequence; it may be represented compactly by the two integers minV
and maxV .

The algorithm maintains the following invariant:

((c, d), (b0, . . . , bn), . . .) ∈ Q =⇒ |b02−q| , |bn2−q| > Cε. (3.36)

In other words, the first and last coefficient of each transformed polynomial stored in Q
have sufficient magnitude to satisfy the respective conditions of Lemmas 3.45 and 3.46.
For the initial interval, the invariant is satisfied by construction of A0 and choice of p0:

The true leftmost Bernstein coefficient of A0 satisfies |β(0)
0 | > 2−2n by Proposition 3.40, so

we have for its approximation that |b(0)0 2−q| ≥ 2−2n − 2−6n−1 > 2−2n−1 = C2−p0; likewise

|b(0)n 2−q| > C2−p0 for the rightmost Bernstein coefficient.

The main loop of the bitstream Descartes algorithm operates as follows. While Q is
non-empty, an entry ((c, d), (bi)i, V ) is extracted for subdivision. (Our complexity analysis
will impose a mild condition on how to choose from Q in Proposition 3.60.) The algorithm
guesses a subdivision parameter α = u/K by choosing u uniformly at random from

u ∈ {K/4, K/4 + 1, . . . , 3K/4}, K := 2k, k := 4 + dlog ne. (3.37)

This corresponds to choosing the subdivision pointm = (1−α)c+αd. The subdivision atm
is performed tentatively by executing ((bLj )j , (bRj )j)← DeCasteljauApprox((bj)j , u, k), and

the counter Ntry is incremented. The algorithm inspects the magnitude of bR0 2−q = bLn2−q

to check whether the invariant (3.36) is violated by m (case a) or satisfied by m (case b).

(a) Let us first suppose that a tentative subdivision at m cannot be used because
|bR0 2−q| ≤ Cε. We say that such a subdivision has failed. Whenever a subdivision has
failed, the algorithm increments Nfail. If the error bound ε is small enough, subdivisions
should fail rarely.

If Nfail < 2 or Nfail < Ntry/2, we conclude that failing subdivisions are indeed rare, and
so we go back to making a new random choice of α and continue as above.

If Nfail ≥ 2 and Nfail ≥ Ntry/2, however, failing subdivisions appear to be relatively
frequent, so we are led to believe that ε is not yet small enough. Thus, we increase the
precision by setting p ← 2p, and we reinitialize A0 according to this increased precision.
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From A0, we recompute the coefficients in each entry of Q by performing two subdivision
steps [c0, d0]  [c, d0]  [c, d]. It is straightforward to verify that this reinitialization
preserves the invariant (3.36): The decrease in the reduced bound Cε on the magnitude is
much larger than the potential decrease of magnitude in the improved approximation. For
the new coefficients, the set V of ε-approximate sign variations is recomputed. The new
set V may be a proper subset of the previous set V ; if max V < 2, the entry is removed
from Q.

In the analysis (§3.3.8), we will show that for any input Ain there is a sufficient precision
such that the probability of each further precision increment beyond this threshold is no
more than 1/10. Thus, with probability 1, the algorithm settles at some maximal precision
and explores its entire subdivision tree T ′.

(b) Let us now discuss the case that a tentative subdivision atm yields |bR0 2−q| > Cε and
thus satisfies the invariant (3.36). In this case, we say that subdivision at m has succeeded,
and the algorithm commits to this subdivision. For both subintervals (c,m) and (m,d),
the algorithm checks the set of ε-approximate numbers of sign variations: Let V denote
varε((b

L
j )j) or varε((b

R
j )j), resp., and let v denote the true value of DescartesTest(Ain, · )

for the interval considered. Of course, V ⊇ {v}. The elements of V are all even or all odd,
because the first and last coefficient are sign-determinate. The following five possibilities
remain:

(D0) V = {0} — definitely v = 0,

(D1) V = {1} — definitely v = 1,

(D2) V ∩ {0, 1} = ∅ — definitely v ≥ 2,

(M0) V ) {0} — maybe v = 0, maybe v ≥ 2,

(M1) V ) {1} — maybe v = 1, maybe v ≥ 2.

The algorithm behaves as follows.

If a newly constructed interval I falls into case (D0) or (M0), it is discarded, as in case
v = 0 in the exact Descartes method. As a consequence, intervals with a true Descartes
test value v = 0 are never recorded in Q. But why is this the right action, even in
case (M0)? Lemma 3.45 shows that any further subdivision of I with 1/4 ≤ α ≤ 3/4
would produce two subintervals of type (D0), so we may conclude right away that I does
not contain any root.

In case (D1), the newly constructed interval I is processed as in case v = 1 in the exact
Descartes method: it is retained as isolating interval in the sequence P but not recorded
for further subdivision in the set Q.

In cases (D2) and (M1), the newly constructed interval I is recorded in P and put back
into Q as if v ≥ 2, with the transformed coefficients as computed in subdivision. If indeed
v ≥ 2, this is certainly the right action. But what happens to an interval I with true
Descartes test v = 1 if we put it back into Q? The algorithm will attempt to subdivide it
further. Potentially, this may trigger precision increments. Ultimately, one of two alter-
natives occurs: One is that a precision increment removes the sign-indeterminacy of some
coefficients and promotes I into case (D1); then I remains un-subdivided. The other alter-
native is that the algorithm succeeds in subdividing I; if so, Lemma 3.46 combined with
the invariant (3.36) guarantees that the subintervals of I fall into the definite cases (D0)
and (D1), and thus no further subdivision takes place.
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Either way, the bitstream Descartes algorithm subdivides at most one level deeper than
the exact Descartes method. We record this for later reference.

Lemma 3.47. Consider the subdivision tree T ′ constructed by the bitstream Descartes
algorithm and the subdivision tree T constructed by the exact Descartes method when
executed with the same inputs and choices of subdivision points. If an interval occurs as
a non-root node in T ′, then its parent in T ′ occurs as a node in T .

Since we have required all real roots of Ain to be simple, T and therefore also T ′ is finite
(see Theorem 3.19(ii) on page 60). With probability 1, the algorithm settles at a maximal
precision p, explores the finite tree T ′ entirely, and terminates.

There is a sharp asymmetry between the cases (M0) and (M1): For (M0), Lemma 3.45
allows us to draw a conclusion from a hypothetical subdivision that we do not actually
carry out. For (M1), however, we need to perform this subdivision, because we need to
check that there actually is a subdivision point satisfying the additional hypothesis of
Lemma 3.46 on the coefficient at the tip of the de Casteljau triangle.11

The sequence P and the set Q can be represented efficiently by linked lists as dis-
cussed for the exact Descartes method in §3.1.3; the explanations there on the relation of
ordering Q and the induced traversal order of the subdivision tree carry over.

3.3.6 Adaptive choice of working precision

As we have chosen to carry out the transformations of A0 in fixed-point arithmetic with
least significant digit 2−q, a succession of d subdivisions leads to accumulated arithmetical
error up to dn2−q−1 on top of the initial approximation error bound 2−p−1 (see §3.3.3).
Up to this point, we have made the assumption that we know an a priori bound on d and
can thus choose q large enough to make 2−p−1 + dn2−q−1 ≤ 2−p. We will now remove this
assumption.

We make an initial estimate d0 of subdivision depth (a power of two) and choose an
initial precision q0 = p+dlog ne+log d0+1. Subdivision up to depth d0 incurs a cumulative
arithmetical error of at most 2−p−2, half of the available error margin. Having reached
subdivision depth dν (where ν ≥ 0), with an error margin of 2−p−ν−2 remaining, we
extend the significand lengths of the approximations from qν to qν+1 = qν + 2 = p +
dlog ne+log d0 +2(ν+1)+1 and allow dν+1 = 2dν = 2ν+1d0 further levels of subdivision.
They introduce an additional error of 2ν+1d0n2−qν+1−1 ≤ 2−p−ν−3, so an error margin of
2−p−ν−2 − 2−p−ν−3 = 2−p−(ν+1)−2 remains, and the process can repeat. The margin left
for later arithmetical errors keeps shrinking to 2−p−3, 2−p−4, 2−p−5, . . . , but never reaches
zero. With reference to a certain dispute in theoretical mechanics, we call this adaptive
strategy after Zeno of Elea (5th century BC) the Zeno trap for arithmetical error.

How many extra bits does this adaptive strategy require, compared to the previously
discussed static choice of q, assuming that we had a priori knowledge on the true subdivi-
sion depth? If the true subdivision depth is small, this depends in the obvious way on the
choice of the initial estimate d0. But suppose the true subdivision depth d is large, say
d = dν + 1 = d02

ν + 1, one more than the νth estimate. Had we known this bound in ad-
vance, we would have used precision qopt = p+dlog(dν+1)ne ≈ p+log n+log d0+ν through-

11In §3.3.8, we will prove the existence of suitable subdivision points, provided that the precision is
sufficiently high. But that is only a tool in the analysis, it is not guaranteed that the algorithm ever
reaches this sufficient precision; therefore, we cannot invoke this result here.
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out. With our strategy, we have used precisions up to qν+1 ≈ p + log n + log d0 + 2ν + 2,
so qν+1 − qopt ≈ ν + 2. However, ν is essentially the logarithm of subdivision depth d
and thus bounded doubly logarithmically in the root separation of Ain. In the analysis
of the bitstream Descartes algorithm, we will learn that p grows up to a value which, in
expectancy, obeys a bound singly logarithmic in root separation. Therefore, we can hope
that neither the log(nd) significand bits exceeding the “payload precision” p for the opti-
mal choice of approximate precision nor the additional ν+2 bits incurred by our adaptive
strategy have a substantial impact on significand lengths.

To incorporate the Zeno trap into our algorithm, we make the following changes to
the algorithm as outlined in §3.3.5. We retain the global quantity q0, but now define it
as q0 = p + dlog ne + log d0 + 1 (see above); this is the exponent for the approximate

coefficients b
(0)
i 2−q0 of A0. The entries of Q become sixtuples ((c, d), (bi)i, q, d, dbd, V ):

The polynomial transformed for the interval (c, d) is given by the approximate coefficients
(bi2

−q)i, whose exponent q (initially set to q0) is now stored locally in each entry of Q. As
before, V is the set of ε-approximate numbers of sign variations in the coefficients. The
number d records the current subdivision depth; the number dbd is the current bound on
subdivision depth. If d meets dbd, we make the necessary adjustments to q and (bi)i, then
we continue with dbd doubled and d reset to 0. The constant d0 leaves some freedom for
fine-tuning the Zeno trap. In our implementation, we have fixed it arbitrarily at 26 = 64.

Let us summarize what we have achieved. Given a precision parameter p and approx-
imations of Bernstein coefficients with absolute error bounded by 2−p−1, we can provide
approximations of all Bernstein coefficients arising from subdivision up to depth d with
absolute error bounded by 2−p by executing de Casteljau’s algorithm in fixed-point arith-
metic with precisions q somewhere between p+ dlog ne+ 1 and p+ dlog ne+ 2dlog de+ 1,
where d does not have to be specified in advance.

3.3.7 The bitstream Descartes algorithm: pseudocode

In this section, we describe the bitstream Descartes algorithm in pseudocode. The follow-
ing procedure combines the initialization steps from §3.3.2 with the algorithm as outlined
in §3.3.5 and refined in §3.3.6. It accepts as input the real polynomial Ain(X) =

∑n
j=0 ajX

j

of degree n ≥ 2, whose coefficients are bitstreams and whose real roots must all be simple,
and the integers r and l−n chosen to satisfy (3.21) and (3.22), respectively. The procedure
reports isolating intervals for the real roots of Ain(X) when it reaches line 46.

While the procedure is correct for any order of choosing fromQ in line 18, the complexity
analysis in §3.3.9 will only apply under some mild conditions, see Proposition 3.60.

1: procedure DescartesE08basic((a0 , . . . , an), r, l−n )
2: C ← 24n; d0 ← 64; k ← 4 + dlog ne; K ← 2k; // global constants

3: initialize (m
(n)
ij )ni,j=0; // basis conversion matrix computed per Lemma 3.39

4: (c0, d0)← (−2r+1, +2r+1); // initial interval, (3.20)
5: l← l−n + blog n!c+ n(r + 2); // offset to normalize leading coefficient, (3.27)
6: p← 6n+ 1; ε← 2−p; // precision parameter
7: q′ ← p+ dlog n!e+ dlog(n+ 1)e + 2; // working precision for initialization
8: q0 ← p+ dlog ne+ log d0 + 1; // initial working precision for subdivision
9: Ntry ← 0; Nfail ← 0;
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10: for j from 0 to n do cj ← [2j(r+1)−l+q′aj]; od; // (3.30)

11: for i from 0 to n do b
(0)
i ←

⌊(∑n
j=0m

(n)
ij cj

)/
2q′−p−1

⌉
· 2q0−p−1; od; // (3.31)

12: V0 ← varε(b
(0)
0 2−q0, . . . , b

(0)
n 2−q0); // set of ε-approx. numbers of sign variations

13: P ← (); Q← {};
14: if minV0 ≥ 1 then P ← ((c0, d0)); fi;

15: if minV0 ≥ 1 ∧maxV0 ≥ 2 then Q← {((c0, d0), (b
(0)
i )i, q0, 0, d0, V0)}; fi;

16: while Q 6= {} do

17: // Invariant: (i) Q consists of sixtuples ((c, d), (bi)i, q, d, dbd, V ) such that∑n
i=0 bi2

−qBn
i (X) approximates 2−ln!Ain((d− c)X + c) with absolute error

up to 2−p−1(2 − 2− log(dbd/d0)) + dn2−q−1 < ε in each coefficient; such that
V = varε((bi2

−q)i); and such that |b02−q| , |bn2−q| > Cε.
(ii) Let (c, d) ∈ P and v = DescartesTest(Ain, (c, d)). It holds that v ≥ 1.
The number of entries ((c, d), . . .) ∈ Q is at most one, exactly one if v ≥ 2.

18: choose ((c, d), (bi)i, q, d, dbd, V ) ∈ Q; // cf. Proposition 3.60 on page 98
19: if d = dbd then // Zeno trap, §3.3.6
20: for i from 0 to n do bi ← 4bi; od;
21: q ← q + 2; d← 0; dbd ← 2dbd;
22: fi;
23: done ← false;
24: while ¬done do // repeatedly attempt subdivision
25: choose u ∈ {K/4, K/4 + 1, . . . , 3K/4} uniformly at random; // (3.37)
26: ((bLi )i, (bRi )i)← DeCasteljauApprox((bi)i, u, k); // α = u/K
27: Ntry ← Ntry + 1;
28: if |bR0 2−q| > Cε then // subdivision has succeeded
29: m← ((K − u)c+ ud)/K; IL ← (c,m); IR ← (m,d);
30: VL ← varε((b

L
i 2−q)i); VR ← varε((b

R
i 2−q)i);

31: in P , replace entry (c, d) by subsequence (Is | s ∈ (L,R), minVs ≥ 1);
32: in Q, replace element ((c, d), . . .) by elements

{(Is, (bsi )i, q, d+ 1, dbd, Vs) | s ∈ {L,R}, minVs ≥ 1, max Vs ≥ 2};
33: done ← true;
34: else // subdivision has failed
35: Nfail ← Nfail + 1;
36: if Nfail ≥ 2 ∧Nfail ≥ Ntry/2 then // switch to higher precision
37: p← 2p;
38: 〈reinitialize Q from new p〉
39: if ¬done then

40: re-fetch current entry ((c, d), (bi)i, q, d, dbd, V ) from Q;
41: fi;
42: fi;
43: fi;
44: od;
45: od;
46: report sequence P of isolating intervals;
47: end procedure;
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After a higher precision p has been chosen, the elements of Q are reinitialized as follows.

〈reinitialize Q from new p〉 ≡
1: ε← 2−p;
2: q′ ← p+ dlog n!e+ dlog(n+ 1)e+ 2; // as above
3: q0 ← p+ dlog ne+ log d0 + 1; // as above
4: Ntry ← 0; Nfail ← 0;
5: for j from 0 to n do cj ← [2j(r+1)−l+q′aj ]; od; // as above

6: for i from 0 to n do b
(0)
i ←

⌊(∑n
j=0m

(n)
ij cj

)/
2q′−p−1

⌉
· 2q0−p−1; od; // as above

7: for each ((c, d), (bi)i, q, d, dbd, V ) in Q do

8: let c = c′2−h, d = d′2−h with c′, d′, h ∈ Z; // significands and common exponent

9: (∗, (b
(1)
i )i)← DeCasteljauApprox((b

(0)
i )i, c

′ + 2h+r+1, h+ r + 2); // α = c−c0
d0−c0

10: ((bi)i, ∗)← DeCasteljauRatApprox((b
(1)
i )i, d

′ − c′, 2h+r+1 − c′); // α = d−c
d0−c

11: q ← q0; d← 2; dbd ← d0; // reset Zeno trap
12: V ← varε((bi2

−q)i);
13: if maxV ≥ 2 then

14: write modified entry ((c, d), (bi)i, q, d, dbd, V ) back to Q;
15: else // V = {1}
16: discard entry ((c, d), . . .) in Q; // (c, d) is retained in P as isolating interval
17: done ← true;
18: fi;
19: od;

3.3.8 On sufficient precision

This entire section is devoted to the proof of the following theorem.

Theorem 3.48. Let the polynomial Ain of degree n and the initial interval I0 be as above.
Let m denote the maximum multiplicity of any complex root of Ain. Let 0 < s < |I0| be a
lower bound on the distance between any two distinct complex roots of Ain. Let 0 < w ≤ s
be a lower bound on the length of any interval subdivided by the bitstream Descartes
algorithm. If the precision parameter p satisfies

p ≥ pok := log
|I0|n

wmsn−m
+ 2m log n+ 4n+ 6m+ 1 = O(n · (log |I0|

w
+ log n)), (3.38)

then the probability of the algorithm choosing a higher precision is no more than 1/10.

Before embarking on the proof, we record a simple bound in terms of pok for later
reference.

Lemma 3.49. Consider the subdivision tree T ′ constructed by an execution of the bit-
stream Descartes algorithm, and let h denote its height. It holds that nh = O(pok).

Proof. T ′ contains an internal node I at depth h − 1 whose two children are leaves. We
have w ≤ |I| ≤ (3/4)h−1 |I0|, so h ≤ log(|I0| /w)/ log(4/3) + 1 = O(log(|I0| /w)).

As a first step towards the proof of Theorem 3.48, we formulate a general theorem on
the distance of roots of two polynomials and a consequence concerning the proximity of
roots to values of small magnitude.
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Theorem 3.50. Let F (X) =
∑n

i=0 fiX
i be a complex polynomial of degree n > 0. Let

G(X) = gn
∏k

i=1(X − zi)
mi be another complex polynomial of degree n with pairwise

distinct roots z1, . . . , zk. Let H(X) = F (X)/G(X) = fn/gn +
∑k

i=1

∑mi
j=1 pij(X − zi)−j .

If F (ζ) = 0, then there exists a pair (i, j) with 1 ≤ i ≤ k, 1 ≤ j ≤ mi such that

|ζ − zi| ≤ j

√∣∣∣∣
ngnpij

fn

∣∣∣∣. (3.39)

In case j = 1, it even holds that

|ζ − (zi −
ngnpi1

2fn
)| ≤

∣∣∣∣
ngnpi1

2fn

∣∣∣∣ . (3.40)

The proof of the theorem uses the following lemma.

Lemma 3.51. For α > 0 and u, v ∈ C, v 6= 0, it holds that

Re
(
α+

u

v

)
≤ 0 ⇐⇒ |v +

u

2α
| ≤

∣∣∣
u

2α

∣∣∣ . (3.41)

Proof. We have vvRe(α + u/v) = vv · (α + u/(2v) + u/(2v)) = αvv + vu/2 + uv/2 =
α · (|v + u/(2α)|2 − |u/(2α)|2), so Re(α+ u/v) ≤ 0 ⇔ |v + u/(2α)| ≤ |u/(2α)|.
Proof of Theorem 3.50. If ζ = zi for some 1 ≤ i ≤ k, there is nothing to be shown.
Otherwise, we have H(ζ) = 0 and can conclude

0 = Re
(ngn

fn
H(ζ)

)
=

k∑

i=1

mi∑

j=1

Re
(
1 +

ngnpij

fn(ζ − zi)j
)
.

There is an index pair (i, j) for which the summand on the right-hand side is non-positive.
By Lemma 3.51, it follows that |(ζ − zi)j + ngnpij/(2fn)| ≤ |ngnpij/(2fn)|. This yields
the claim for j = 1. For the general case j ≥ 1, we observe |ζ − zi|j ≤ |ngnpij/fn|.

This proof technique and the statement for j = 1 are due to Neumaier [Neu03, Thm. 3.2],
who used it as a first step in computing an a posteriori bound on the error made in
approximating the complex roots of F (X) by the distinct numbers z1, . . . , zn. Neumaier
also makes the usual homotopy argument to show that the number of discs forming a
connected component is the number of roots in that component.

We proceed to give a more explicit form of the coefficients pij in the partial fraction
decomposition of H(X). This is well-known; a proof appears, e.g., in [Hen74, p. 555].

Proposition 3.52. With F and G as in Theorem 3.50, let Qi(X) = gn
∏

` 6=i(X−z`)m` and

pij =
1

(mi − j)!

[
F (X)

Qi(X)

](mi−j)

X=zi

for 1 ≤ i ≤ k, 1 ≤ j ≤ mi. (3.42)

Then F (X)/G(X) = fn/gn +
∑k

i=1

∑mi
j=1 pij(X − zi)−j .

The symbol [ · ](i)X=x0
denotes the ith derivative evaluated at X = x0.

If mi = 1, then (3.42) reduces to pi1 = F (zi)/G
′(zi), and (3.39) turns into a well-known

bound that is usually derived from Gershgorin’s theorem, we refer to [Neu03] for discussion
and references.
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We only need a particular consequence of Theorem 3.50, namely a quantitative version
of the notion that a polynomial’s values are “small” in magnitude only at points “close”
to a root.

Theorem 3.53. Let G(X) = gn
∏k

i=1(X−zi)mi be a complex polynomial of degree n with
pairwise distinct roots z1, . . . , zk. For every ζ ∈ C there exists a pair (i, j) with 1 ≤ i ≤ k,
1 ≤ j ≤ mi such that

|ζ − zi| ≤ j

√
n

(
n− 1− j
n− 1−mi

) |G(ζ)|
|gn| sn−j

i

where si = min
` 6=i
|zi − z`| . (3.43)

Proof. Theorem 3.50 and Proposition 3.52 applied to F (X) := G(X) − G(ζ) yield a
pair (i, j) such that

|ζ − zi| ≤ j

√√√√ n

(mi − j)!

∣∣∣∣∣

[
F (X)

Qi(X)

](mi−j)

X=zi

∣∣∣∣∣. (3.44)

With the Leibniz rule, we find

[
F (X) · 1

Qi(X)

](mi−j)

X=zi

=

mi−j∑

ν=0

(
mi − j
ν

)
[F (X)]

(ν)
X=zi

[
1

Qi(X)

](mi−j−ν)

X=zi

= F (zi)

[
1

Qi(X)

](mi−j)

X=zi

= −G(ζ)

[
1

Qi(X)

](mi−j)

X=zi

, (3.45)

where the second equality holds because the mi-fold root zi of G is also a root of F ′ = G′,
F ′′ = G′′, . . . , F (mi−1) = G(mi−1).

The function 1/Qi(X) is of the form 1/(gn
∏

ν(X − z`ν )) with an index sequence (`ν)ν
of length n−mi such that `ν 6= i for any ν. The derivative of 1/Qi(X) is

[
1

gn
∏

ν(X − z`ν )

]′
=
−gn

∑
µ

∏
ν 6=µ(X − z`ν )

g2
n

∏
ν(X − z`ν )2

= −
∑

µ

1

gn(X − z`µ)
∏

ν(X − z`ν )
,

that is, the derivative is (up to a minus sign) the sum of n−mi functions of the same form
as 1/Qi(X), with index sequences of length n−mi +1. Continuing up to the derivative of
ordermi−j, we obtain a sum of (n−mi)(n−mi+1) · · · (n−j−1) = (n−1−j)!/(n−1−mi)!
fractions, each of which has n− j factors X − z`, ` 6= i, in the denominator. The value at
X = zi is therefore bounded in terms of the minimum distance to the other z` as follows:

∣∣∣∣∣

[
1

Qi(X)

](mi−j)

X=zi

∣∣∣∣∣ ≤
(n− 1− j)!

(n− 1−mi)!
· 1

|gn| sn−j
i

.

Equation (3.44) combined with (3.45) and this estimate yields the claim.

The second step in our proof of Theorem 3.48 employs Theorem 3.53 to bound the
probability that a subdivision parameter α = u/K chosen at random as in (3.37) fails.

Proposition 3.54. Under the conditions of Theorem 3.48, subdivision of an interval I at
the point m fails only if there is complex root of Ain within the open disc around m of
diameter w/K.
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Proof. We recall from §3.3.2 that DescartesE08basic does not operate directly on Ain,
but on the polynomial A0, which has been constructed from Ain by transforming the

initial interval I0 to (0, 1) and approximately normalizing the leading coefficient a
(0)
n ; in

particular, |a(0)
n | ≥ 1. Suppose z1, . . . , zk are the distinct complex roots of A0(X). Let us

write m̂ for the point m transformed to the argument space of A0. Subdivision at m fails
only if the approximate value of A0 at m̂, known as an ε-approximate Bernstein coefficient,
is Cε or less, which in turn is possible only if the exact value A0(m̂) is (C + 1)ε or less in
magnitude. To prove the proposition, we will show for any ζ ∈ C that |A0(ζ)| ≤ (C + 1)ε
implies |ζ − zi| < ŵ/(2K) for some root zi, where ŵ := w/ |I0|.

We write ŝi for the minimum distance from the ith complex root of A0(X) to any
other. The minimum distance ŝ between any two distinct complex roots of A0(X) is
ŝ = mini ŝi = s/ |I0|. By Theorem 3.53 applied to G(X) = A0(X), all points ζ for which
|G(ζ)| ≤ (C + 1)ε lie in closed discs around the roots zi of A0 with radii

Rij ≤ j

√
n

(
n− 1− j
n− 1−mi

)
(C + 1)ε

ŝn−j
i

for 1 ≤ j ≤ mi

≤ j

√
n

(
n− 2

mi − 1

)
(C + 1)ε

ŝn−j
i

where n− 2 ≥ n− 1− j
and mi − 1 = (n− 2)− (n− 1−mi).

We will now choose p sufficiently large in order for any such radius to be less than ŵ/(2K).
We observe

j

√
n

(
n− 2

mi − 1

)
(C + 1)ε

ŝn−j
i

<
ŵ

2K

⇐⇒ n

(
n− 2

mi − 1

)
(24n + 1)2−p

ŝn−j
i

<

(
ŵ

2K

)j

⇐⇒ 2−p <
ŵj ŝn−j

i

(24n + 1) · 2j(5+dlog ne) · n
( n−2
mi−1

)

⇐⇒ p > log
1

ŵj ŝn−j
i

+ log(24n + 1) + j(5 + dlog ne) + log(n
(

n−2
mi−1

)
)

⇐= p ≥ log
1

ŵj ŝn−j
i

+ 2mi log n+ 4n + 6mi + 1

⇐= p ≥ log
1

ŵmŝn−m
+ 2m log n+ 4n + 6m+ 1,

where the last line uses ŵ ≤ ŝ ≤ ŝi and m ≥ mi. Since ŵ = w/ |I0| and ŝ = s/ |I0|, we
have arrived precisely at the condition (3.38) imposed on p in Theorem 3.48. Thus, under
the conditions of Theorem 3.48, the claimed proximity statement holds.

Corollary 3.55. Under the conditions of Theorem 3.48, the probability of any one at-
tempted subdivision to fail is less than 1/8.

Proof. When the procedure DescartesE08basic attempts to subdivide an interval I, it
chooses a subdivision point m uniformly at random from K/2 + 1 > 8n candidates on
an evenly spaced grid of width |I| /K. The open discs with diameter w/K ≤ |I| /K
around the candidate points are pairwise disjoint, so each complex root of Ain can fulfill
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the condition of the preceding proposition for at most one candidate. Thus, at most n of
more than 8n possible choices lead to a failure.

We have now bounded the failure probability of a single subdivision attempt at precision
p ≥ pok. For the third and last step towards Theorem 3.48, it remains to bound the
probability that despite p ≥ pok, subdivision attempts fail so often that we increase the
precision further. This step is entirely stochastic and has nothing to do with the primary
subject matter of our thesis; an impatient reader might skip over it.

As a stochastic model of precision management in the bitstream Descartes algorithm, we
consider an infinite sequence of independent coin tosses, each of which produces a “failure”
or a “success”; the failure probability of each coin is bounded by a constant ρ < 1/2. (Later
on, we will of course set ρ = 1/8 with reference to Corollary 3.55.)

For any n ∈ N, let kn denote the number of failures among the first n coin tosses. We
say that the sequence dies at position n if n = min{m ∈ N | km ≥ 2 and 2km ≥ m},
see line 36 in procedure DescartesE08basic. We say that the sequence dies if it dies at
position n for some n.

Proposition 3.56. The probability of dying is bounded by

8ρ3(1− ρ)3
(1− 2ρ)2

+ 6ρ2 − 8ρ3 + 3ρ4.

The proof of this proposition rests on the following two lemmas.

Lemma 3.57. Let n ≥ 5. If a sequence dies at position n, then n is even and kn = n/2
and the coin tosses n and n− 1 were both failures.

Proof. Suppose the sequence dies at position n ≥ 5.

We begin by showing that 2kn = n to establish the first two claims. Clearly, we have
2kn ≥ n, so that kn ≥ dn/2e ≥ 3. By minimality of n, the coin toss n was a failure. Hence
we have kn−1 = kn − 1 ≥ 2. This and the minimality of n imply 2kn − 2 = 2kn−1 < n− 1
and thus 2kn ≤ n, as desired.

It remains to show that not only coin toss n but also toss n− 1 failed. If toss n− 1 was
a success, then kn−2 = kn − 1 ≥ 2 and 2kn−2 = 2kn − 2 ≥ n− 2, which is a contradiction
to the minimality of n.

Lemma 3.58. If a sequence dies, then it satisfies at least one of the following conditions:

(a) There are at least two failures among the first four coin tosses.
(b) There exists ` ∈ N, ` ≥ 3, such that there are exactly `− 2 failures and ` successes

among the first 2`− 2 coin tosses, and the tosses 2`− 1 and 2` are both failures.

Proof. Let the sequence in question die at position n. Clearly, n ≥ 2. We distinguish two
cases. If n ≤ 4, then condition (a) holds. If n ≥ 5, then, by Lemma 3.57, n is even and
thus at least 6, and condition (b) holds with ` = n/2.

We can now prove the proposition by bounding the probability of the sequences that
satisfy (a) or (b).

Proof of Proposition 3.56. Distinguishing the cases of exactly two, three or four failures
among the first four coin tosses, we find that the probability of (a) is bounded by

(
4

2

)
ρ2(1− ρ)2 +

(
4

3

)
ρ3(1− ρ) +

(
4

4

)
ρ4 = 6ρ2 − 8ρ3 + 3ρ4.
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The probability of (b) for a fixed ` ≥ 3 is at most
(

2`− 2

`− 2

)
ρ`−2(1− ρ)` · ρ2 ≤ 22`−3ρ`(1− ρ)` =

1

8

(
4ρ(1− ρ)

)`
,

where the inequality uses the estimate
(n
k

)
=
(n−1
k−1

)
+
(n−1

k

)
≤ 2n−1. Hence the probability

of (b) being satisfied for any ` ≥ 3 is bounded by

∞∑

`=3

1

8

(
4ρ(1 − ρ)

)`
=

1

8

(
4ρ(1 − ρ)

)3 ∞∑

`=0

(
4ρ(1 − ρ)

)`
=

8ρ3(1− ρ)3
1− 4ρ(1 − ρ) .

The geometric series converges indeed as claimed, because 4ρ(1 − ρ) > 0 and

ρ 6= 1/2 =⇒ 0 < (1− 2ρ)2 = 1− 4ρ(1− ρ) =⇒ 4ρ(1− ρ) < 1.

The claim follows by adding the bounds for (a) and (b) and simplifying the denominator
according to the preceding equality.

We can now combine the results of the three steps and prove the result announced at
the beginning of this section.

Proof of Theorem 3.48. We suppose that the precision parameter p satisfies (3.38). By
Corollary 3.55, the failure probability of each subdivision attempt is less than ρ := 1/8.
The bitstream Descartes algorithm chooses a higher precision precisely if Nfail ≥ 2 and
Nfail ≥ Ntry/2. Substituting ρ into Proposition 3.56, we find that the probability of this
condition is no more than 3593/36864 = 0.097466... < 1/10.

3.3.9 Complexity analysis

In this section, we analyze the computing time and coefficient precision needed by the
bitstream Descartes algorithm.

What does the algorithm do? It extracts approximations of the input coefficients out of
the bitstreams representing them, converts them to the Bernstein basis, and transforms
the Bernstein coefficients by repeated de Casteljau subdivision. The essential data pro-
cessed by the algorithm are the approximate transformed coefficients. By contrast, the
parameters r and l−n of procedure DescartesE08basic only play a role at the interface of
the algorithm to the outside world: they determine offsets for the precision parameters
passed to the coefficient bitstreams, and r also determines relative to which exponent the
endpoints of constructed subintervals are to be understood. We could have elided these
parameters and formulated the algorithm for the special case l−n = r = 0, requiring the
caller to normalize the input such that |an| ∈ [1, 4) and I0 = (−2,+2). This, however,
would be inconvenient for users of an implementation, so we have refrained from such
a normalization requirement. In the complexity analysis, however, we need to make a
weak form of this requirement: We assume that the bit length of r and l−n is sufficiently
short such that the cost of handling them is dominated by the operations on coefficients.
This is certainly true for actual implementations, where r and l−n can be represented by
machine-word integers for all realistic inputs. Without this condition, an adversary could
enforce an arbitrarily high running time for any input, simply by scaling the coefficients,
Ain(X) λAin(X), or by scaling the indeterminate, Ain(X) λnAin(X/λ), with a factor
λ = 2k, k ∈ Z, such that the integer l−n or r becomes sufficiently long.
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In a similar spirit, we make the usual assumption that we can indeed, at insignificant
cost, make independent random choices of numbers u of length O(log n) whenever we
determine a random subdivision point in line 25 of procedure DescartesE08basic.

For our complexity analysis, we need again a size measure of the subdivision tree. The
following definition captures the properties that we rely upon in the subsequent analysis.
If we were discussing the exact Descartes method, then the sum P of the length of all
rt-paths from Theorem 3.19(iii) on page 60 would do, but here we will need to look a bit
closer.

Definition 3.59. The number P ′ is a tsqd-bound for the bitstream Descartes algorithm
on a polynomial Ain of degree n and an initial interval I0 with a specific policy of choosing
from Q, if it holds for any possible choice of subdivision points that:

(i) The subdivision tree T ′ constructed has at most P ′ + 1 internal nodes.
(ii) If I1, . . . , Iq are the intervals recorded in Q at any stage of the algorithm, then the

sum of the depths of I1, . . . , Iq in T ′ is at most P ′.
(iii) P ′ ≥ n/2.

Condition (iii) is imposed for technical reasons and is no substantial restriction: If Ain has
n real roots, then the binary tree T ′ has at least n leaves and n− 1 internal nodes.

In order to get a tsqd-bound P ′ that satisfies P ′ = O(P ), we need a traversal order of
the subdivision tree that avoids larger accumulations of (M1)-intervals in Q. The following
proposition gives two sufficient conditions on traversal orders to achieve this, but it is not
particularly ambitious about the constant factors involved.

Proposition 3.60. Let Ain be a real polynomial with degree n ≥ 2, all of whose real roots
are simple, and let I0 be an initial interval for the bitstream Descartes algorithm on Ain.
Let P ≥ n/4 be an upper bound on the sum of the lengths of all rt-paths in a subdivision
tree constructed by the exact Descartes method on Ain and I0 with any possible choice
of subdivision points. P gives rise to tsqd-bounds for the bitstream Descartes algorithm
on Ain and I0 as follows.

(i) If entries are chosen from Q with priority given to those of type (M1), but otherwise
in arbitrary order, then P ′ = 3P + 2 = O(P ) is a tsqd-bound.

(ii) If entries are chosen from Q in first-in–first-out order (i.e., Q is a queue), then
P ′ = 4P + 4n = O(P ) is a tsqd-bound.

Proof. Consider any of the possible subdivision trees T ′ constructed by the bitstream
Descartes algorithm. Let T denote the subdivision tree of the exact Descartes algorithm
when making the same choices of subdivision points.

The binary tree T has no more than P + 1 internal nodes, cf. Theorem 3.19(ii/iv), and
thus no more than 2P + 3 nodes in total. Every internal node I of T ′ is another node’s
parent and thus occurs as a node in T by Lemma 3.47 from page 89. Therefore, the
numbers P ′ in both claims satisfy condition (i) from Definition 3.59. It is immediate that
they satisfy condition (iii) as well. It remains to establish condition (ii). Here, we need to
argue separately for claim (i) and claim (ii).

Ad (i). If priority is given to subdivision of intervals of type (M1), then Q has at most
two (M1)-entries at any time: To see this inductively, we note that subdivision of an (M1)-
entry produces at most one new (M1)-entry, because two subintervals with odd Descartes
test can only arise from an interval with even Descartes test by the variation-diminishing
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property, Proposition 2.26 on page 26. On the other hand, subdivision of a (D2)-entry
may produce two (M1)-entries, but occurs only if no (M1)-entries are present yet.

We are now ready to bound the sum of depths in Q. Let us first discuss those entries
of Q that have type (D2). They occur as internal nodes in T , because their true Descartes
test value is at least 2. As any two of them are disjoint, each of them sits on a separate
rt-path, and the sum of their depths is bounded by P . Now we turn to an entry I of
type (M1), if any. By Lemma 3.46, its parent J occurs as an internal node in T and thus
has a depth of at most P . Therefore, the depth of I is at most P + 1. Since there are
at most two entries I of type (M1), the sum of all depths is bounded by 3P + 2 = P ′, as
needed to be shown.

Ad (ii). Maintaining Q as a queue leads to breadth-first traversal of the subdivision tree.
Let us inspect Q at a point of time when all its entries have the same depth d. The parents
of all entries occur as internal nodes in T on level d − 1, hence they are at most n/2 in
number by the variation-diminishing property, and the sum of their depths is at most P .
Thus, Q has at most n entries, and the sum of their depths is no more than 2P +n. When
subdividing entries in Q to explore the next level of the subdivision tree, we replace each
entry with at most two new entries, each of depth one larger. It follows that during the
exploration of level d+1 in the subdivision tree, the sum of depths of all entries in Q is at
most 4P + 4n = O(P ). (This estimate is, of course, overly pessimistic, since it allows for
two additional levels of subdivision, but that is still good enough to attain P ′ = O(P ).)

If the conditions imposed on Q in this proposition are met, then the bound on P
provided by Equation (3.11) in Theorem 3.19 on page 60 for the exact Descartes method
immediately translates to a tsqd-bound P ′ for the bitstream Descartes algorithm with the
same order of growth. Since we invoke Theorem 3.19 with the subdivision ratio bound
ρ = 4/3, the condition P ≥ n/4 is satisfied automatically.

With a tsqd-bound in our hands, we can now proceed to the main result.

Theorem 3.61. Consider a real polynomial Ain of degree n ≥ 2, all of whose real roots
are simple, and an initial interval I0 as in (3.20) and (3.21). Let 0 < s < |I0| be a lower
bound for the distance between any two distinct complex roots of Ain. Let P ′ > 0 be a
tsqd-bound for the bitstream Descartes algorithm on Ain and I0. The expected value of
the number of bit operations performed by the randomized algorithm DescartesE08basic
invoked for Ain and I0 is

O(n3 log n · P ′ · (log |I0|
s

+ log n)). (3.46)

In preparation of the proof, we derive two lemmas.

Lemma 3.62. There exists a lower bound 0 < w ≤ s on the length of any interval
subdivided by DescartesE08basic such that log(|I0| /w) = O(log(|I0| /s)).
Proof. We show that any interval I subdivided has a length |I| > w :=

√
3/8 · s. For

I = I0, this is immediate, so we may assume that I has a parent J in the subdivision
tree T ′ of the bitstream Descartes algorithm. Clearly, |I| ≥ |J | /4. Lemma 3.47 tells us
that the exact Descartes method would subdivide J . By Proposition 3.13 on page 58, this
entails |J | >

√
3/2 · s, and the claim follows.

Lemma 3.63. For a given value of the precision parameter p, consider an approximate
Bernstein coefficient sequence (bi2

−q)i that has been produced by a succession of d de Cas-
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teljau subdivisions since the last initialization at a new precision. The significands bi 6= 0
have bit lengths bounded as log |bi| ≤ p+ 2 log d+O(1).

Proof. By Proposition 3.40, the exact coefficients of A0 satisfy |β(0)
i | < 8·(3/4)n. The exact

coefficients βi that are approximated by bi2
−q arise from (β

(0)
i )i by a succession of convex

combinations, so |βi| < 8 · (3/4)n as well. Consider an approximate coefficient bi2
−q with

|bi| ≥ 3. It satisfies (|bi|−1)2−q ≤ |βi| < 2−n log(4/3)+3 and log(|bi|−1) < q−n log(4/3)+3.
According to the discussion at the end of §3.3.6, we have q < p + log n + 2 log d + 4.
Combining these two bounds and dropping the terms log n−n log(4/3) yields the claim.

Proof of Theorem 3.61. We consider one possible execution of DescartesE08basic for Ain

and I0, resulting in a subdivision tree T ′.
The precision parameter p of the algorithm takes successive values pµ = 2µp0, µ ∈ N0.

Theorem 3.48 combined with Lemma 3.62 gives a threshold pok = O(n·(log(|I0| /s)+log n))
beyond which precision increments are unlikely. More specifically, let µ0 ∈ N0 be the
smallest index such that pµ0 ≥ pok. The probability of p having reached a value pµ with
µ > µ0 is less than (1/10)µ−µ0 , so with probability 1, the precision p has reached a maximal
value pµ1 and the algorithm has terminated. We define pmax = max{pµ0 , pµ1}. Clearly, it
holds that pmax ≥ pok.

Let us show now that the algorithm has performed no more than

O(n2 log n · P ′ · pmax) (3.47)

bit operations. For this purpose, we divide the work it has done into three parts:

• Initialization. This covers the initializations in lines 2 to 5 and lines 13 to 15
of procedure DescartesE08basic, in particular computing the basis conversion ma-

trix (m
(n)
ij )ij , but it excludes the computation of the b

(0)
i .

• New precision. This accounts for the effort of introducing the initial precision in
lines 6 to 12 of procedure DescartesE08basic, and for switching to a higher precision
in the body of the if -statement at line 36, including the whole block 〈reinitialize Q
from new p〉.

• Subdivision. This comprises the entire main loop (starting in line 16), in particular,
the invocations of de Casteljau’s algorithm in line 26, but excludes switching to a
higher precision.

We assume that the sequence P and the set Q are implemented in a straightforward way,
such as discussed in §3.1.3 and §3.3.5, so that access to them has negligible cost.

We begin with the initialization. Lemma 3.39 specifies the cost of computing the m
(n)
ij

as O(n4 log n); since P ′ = Ω(n) and pmax = Ω(n), this is covered by (3.47), as are the
other quantities whose bit lengths depend on n. (Regarding l−n and r, we refer to our
discussion at the beginning of this section.)

Let us now consider the introduction of a new precision pµ = 2µp0 ≤ pmax for µ ∈ N0.
This has two parts: updating A0 and, if µ ≥ 1, updating the entries of Q. We will show
that both have used no more than

O(n2 log n · P ′ · (pµ + log(nh))) (3.48)

bit operations, where h denotes height of the subdivision tree T ′. (The occurrence of h
may appear spurious, but it gives us some leeway for a charging argument later on.)
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Since P ′ = Ω(n), the bound O(n3 log n · (pµ + log n)) from Proposition 3.41 for com-
puting A0 at precision pµ is covered by (3.48). What about the cost of updating Q?
Consider the intervals I1, . . . , Iq recorded in Q, and let δi, 1 ≤ i ≤ q, denote their respec-
tive depths in the subdivision tree T ′. By condition (ii) in Definition 3.59,

∑
i δi ≤ P ′.

For each interval Ii recorded in Q, we perform one call of DeCasteljauApprox and one
call of DeCasteljauRatApprox to update it. By Lemma 3.63, the length of the coeffi-
cient significands is O(pµ), but how long is the subdivision parameter? In each of the δi
subdivision steps that have created Ii, the interval boundaries had their significands en-
larged by k bits and their exponents correspondingly decreased by k, where k = O(log n),
see (3.37). Thus, the subdivision parameters have lengths O(δi log n), and the cost of
these two subdivisions is O(n2 · δi log n · pµ) according to Propositions 3.42 and 3.43.
Summing over all elements of Q, we arrive at a cost of updating Q to precision pµ of∑

i δi ·O(n2 log n · pµ) = O(n2 log n · P ′ · pµ), which is covered by (3.48), as claimed.
The algorithm performs no more than log(pmax/p0) increments of precision. Summing

up the bound (3.48) for all precisions pµ = 2µp0, 0 ≤ µ ≤ log(pmax/p0), we obtain the
following bound on the total cost of introducing p0 and all higher precisions:

∑log(pmax/p0)
µ=0 O(n2 log n · P ′ · (pµ + log(nh)))

=
∑log(pmax/p0)

µ=0

(
2µ ·O(n2 log n · P ′ · p0) +O(n2 log n · P ′ · log(nh))

)

= O(n2 log n · P ′ · (pmax + log(pmax/p0) log(nh))),

(3.49)

using
∑M

µ=0 2µ = O(2M ). This cost reduces to the claimed bound (3.47), since Lemma 3.49

implies log(pmax/p0) log(nh) = O(log2 pmax), so that the last factor is O(pmax).

Now we turn to the cost of subdivision. It is dominated by the invocations of de Cas-
teljau’s algorithm in line 26; auxiliary operations on coefficient sequences such as reading
off their signs or adjusting them in the Zeno trap at lines 19ff. can be charged to the cost
of producing the coefficients in the first place.

At precision pµ, each call to de Casteljau’s algorithm needsO(n2 log n·(pµ+log h)) bit op-
erations, because the subdivision parameter has length k = O(log n) and, by Lemma 3.63,
the coefficients have length O(pµ + log h). We distinguish three kinds of subdivisions.

First, there are successful subdivisions, and since they give rise to new nodes in the
subdivision tree, their number is at most P ′ + 1 by condition (i) in Definition 3.59. Since
pµ ≤ pmax and log h = O(pmax), see Lemma 3.49, their total cost is O(n2 log n · P ′ · pmax),
so they are covered by (3.47). The cost of computing the subdivision point m by a
single convex combination in line 29 is insignificant: The interval boundaries have lengths
O(h log n) = O(pmax) and the weights have lengths O(log n).

Second, there are failed subdivisions at values of p for which a successful subdivision
has occurred previously. Whenever there is at least one successful subdivision at preci-
sion p, the ratio of failed over successful subdivisions at that precision is at most 2 : 1.
Consequently, we can charge them to the successful subdivisions at the same precision.

Third, for any value pµ of p, there may be up to two subdivisions that fail before any
subdivision at p = pµ has succeeded. We can subsume their cost O(n2 log n · (pµ + log h))
into the cost of introducing pµ, because it is covered by the bound (3.48).

In summary, we have shown that the bound (3.47) also covers the cost of all subdivisions.
Thus, it is indeed a bound on the number of bit operations that the whole algorithm has
performed, but it depends on pmax, which is an a posteriori parameter.
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Let us now make the transition to an a priori bound on the expected number of bit
operations. The bound (3.47) is linear in pmax. By linearity of expectation, we can
compute its expected value by substituting the expected value of pmax. According to
Theorem 3.48 and the discussion at the beginning of the proof, we have

E[pmax] ≤
9

10
pµ0 +

1

10

( 9

10
· 2pµ0 +

1

10

( 9

10
· 22pµ0 +

1

10
(. . .)

))

=
9

10
pµ0

∞∑

i=0

( 2

10

)i
=

9

8
pµ0 <

9

4
pok

= O(n · (log |I0|
s

+ log n)).

(3.50)

Thus, we arrive at the bound (3.46) and the theorem is established.

We will now derive more specific complexity statements from Theorem 3.61 by supplying
tsqd-bounds P ′, or equivalently, as justified by Proposition 3.60, bounds P on the sum of all
rt-path lengths in the exact Descartes method. We recall the notion of a subdivision ratio
bound from Definition 3.12 on page 57 and the fact that subdivision with a parameter α ∈
[1/4, 3/4] leads to a subdivision ratio bound of ρ = 4/3. Now Theorem 3.19(iii) provides
a bound on P in terms of certain pairs of roots, suitable for a subsequent application
of the Davenport-Mahler bound (Theorem 3.9). An essential factor in the Davenport-
Mahler bound is a discriminant, or, in our generalization, a subdiscriminant. This is nice
for integer coefficients, because a non-zero integral (sub)discriminant has magnitude at
least 1. One can also cope with this (sub)discriminant in case of algebraic coefficients for
which some parameters are known; we will see an example in §3.4.3.

But how should we bound this (sub)discriminant for a polynomial with arbitrary real
coefficients? Conversely, if we cannot bound it, should we accept it as a first-class pa-
rameter for the analysis of our root searching problem? Admittedly, log |Discr(F )| does
have a meaning in terms of the relative position of the roots in the complex plane, as
it is essentially their average logarithmic distance. But the Davenport-Mahler bound as
a whole eludes such a geometric interpretation, because it is incompatible with coordi-
nate changes X 7→ λX, λ ∈ R∗, to which our algorithm is insensitive (at least if λ = 2k,
k ∈ Z). The author therefore likes to think of the Davenport-Mahler bound as, ultimately,
a non-geometric result pertaining to algebraic number theory, which is not natural for poly-
nomials with real coefficients in full generality. Therefore, we retain the root separation s
as parameter of our analysis.

Corollary 3.64. Consider the situation of Theorem 3.61. If I0 = (−2r+1, +2r+1) has
been chosen using the approximate dyadic Fujiwara complex root bound (3.24), then
log |I0| ≤ log RR(Ain) + log n + O(1), and if furthermore the order of choosing from Q
satisfies one of the conditions from Proposition 3.60, then the expected number of bit
operations is

O(n4 log n · (log RR(Ain)

s
+ log n)2). (3.51)

The complex root radius RR has been defined in Equation (2.22) on page 40. The ratio
RR(Ain)/s has an immediate geometric interpretation in terms of the relative position of
the roots and the origin in the complex plane.
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Proof. Proposition 2.53(iii) on page 43 implies log RBdF(Ain) ≤ log RR(Ain) + log n + 1.
According to Lemma 3.36, the radius 2r+1 of |I0| exceeds RBdF(Ain) by no more than a
factor of 16. This establishes log |I0| ≤ log RR(Ain) + log n+O(1).

Theorem 3.19(iii) yields the bound P ≤ logρ(
∏ |I0| / |α − β|) +O(n) for the sum of all

rt-path lengths, where the product is over at most n/2 pairs (α, β) of roots, each of which
satisfies |α− β| ≥ s. Thus, P = O(n · (log(|I0| /s)+1)), and Theorem 3.61 in combination
with Proposition 3.60 yields a bound of O(n4 log n · (log(|I0| /s)+1) · (log(|I0| /s)+ log n)).
Substituting the preceding estimate of log |I0|, the claim follows.

We now turn to the case of integer coefficients, for which we can profitably invoke the
Davenport-Mahler bound.

Corollary 3.65. Consider a polynomial Ain(X) =
∑n

i=0 aiX
i of degree n ≥ 2 with in-

teger coefficients of magnitude less than 2τ , all of whose real roots are simple. If I0 =
(−2r+1, +2r+1) has been chosen using the approximate dyadic Fujiwara complex root
bound (3.24), then log |I0| ≤ τ + O(1), and if furthermore the order of choosing from Q
satisfies one of the conditions from Proposition 3.60, then the expected value of the num-
ber of bit operations performed by the randomized algorithm DescartesE08basic invoked
for Ain and I0 is

O(n5 log n · (τ + log n)2). (3.52)

Proof. The claim on I0 follows from (3.24) using the estimates l+i < τ + 2 and l−n > −2.

Theorem 3.19 in conjunction with Corollary 3.11 to the Davenport-Mahler bound shows
that the sum of all rt-path lengths for the exact Descartes method is P = O(n ·(τ+log n)),
and by Proposition 3.60, there is a tsqd-bound P ′ for the bitstream Descartes algorithm
with the same asymptotics. Corollary 3.11 applied to a closest pair of distinct complex
roots yields log(|I0| /s) = O(n · (τ + log n)) again. Substituting these estimates into the
bound from Theorem 3.61 proves the claim.

Compared to the exact integer algorithms (see Theorems 3.30, 3.33, and 3.34), this
bound contains an additional factor of logn, partly due to the occurrence of subdivision
parameters α with lengths O(log n), as opposed to the fixed value α = 1/2.

The bitstream Descartes algorithm has the advantage that coefficient lengths do not
grow during subdivision; however, the worst-case bound on expected maximal precision,
see (3.38) and (3.50), is essentially n times the bound on subdivision depth, which matches
the coefficient growth of the exact integer algorithms. An attempt to improve the com-
plexity bound for the bitstream Descartes algorithm would presumably have to improve
upon our analysis of sufficient precision, since the other limiting factors, namely tree size
and de Casteljau’s algorithm are essentially tight. (We do not discuss asymptotically fast
subdivision in the bitstream setting.) It appears that this would necessitate an analysis
in parameters other than s, as we will see below.

Having analyzed time consumption, we turn to the precision consumption of our bit-
stream Descartes algorithm. This is an independent resource consumed by the algorithm;
the computing time analysis above does not include the effort on the user’s side to produce
the necessary coefficient approximations. So the question is: How can we analyze the max-
imum precision extracted out of each coefficient aj of Ain? By construction, the algorithm
does not choose this precision absolutely, but relative to the leading coefficient and the
initial interval, so we bound the precision relative to these quantities. It is easy to check
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s ≈ 2πR/m

Figure 3.2: The roots of Aδ(X) = (Xm − δ)(X − 1) for m = 6.

that the following bound, like the algorithm itself, is invariant under scaling of the coeffi-
cients, Ain(X) λAin(X), and scaling of the indeterminate, Ain(X) λnAin(X/λ), with
factors λ = 2k, k ∈ Z, assuming that the radius 2r+1 of the initial interval is transformed
accordingly (cf. Definition 2.48 on page 40).

Proposition 3.66. The randomized procedure DescartesE08basic((a0, . . . , an), r, l−n ) ac-

cesses the coefficients aj through calls of the form [2p′−(n−j)(r+1)−l−n aj], where p′ is inde-
pendent of j. The expected maximal value of p′ is bounded by O(n · (log(|I0| /s)+ log n)),
with notation as in Theorem 3.61.

Proof. Depending on the current precision parameter p, the coefficients of Ain are ex-
tracted out of their representing bitstreams in line 10 of procedure DescartesE08basic and
in line 5 of the block 〈reinitialize Q from new p〉 as [2j(r+1)−l+q′aj ] with a precision

j(r + 1)− l + q′

= j(r + 1)− (l−n + blog n!c+ n(r + 2)) + (p+ dlog n!e+ dlog(n + 1)e + 2)

≤ (j − n)(r + 1)− l−n + p− n+ dlog(n+ 1)e + 3

≤ (j − n)(r + 1)− l−n + p+ 3.

The claim follows from the bound (3.50) on the expected maximal value of p.

How good is this bound? By scaling the indeterminate X suitably, we may restrict our
subsequent considerations to the case r = 0 without a disadvantage to their generality.
The preceding proposition, with logarithmic factors suppressed, quantifies the precision
consumption as essentially O∼(n log(1/s)). It is natural that the required precision de-
pends on log(1/s). We intend to justify the coefficient n.

Infinitesimal perturbations of a polynomial’s coefficients with magnitude ε introduce an
error in an m-fold root on the order of m

√
ε, see [Wil63, §2.7]. Conversely, if a polynomial

has a cluster of m close roots with minimum distance 0 < s � 1, it may be necessary to
approximate its coefficients to within an error on the order of sm in order to distinguish
a cluster of roots from one multiple root. Figure 3.2 shows a concrete example: The
polynomial Aδ(X) = (Xm− δ)(X −1) = Xm+1−Xm− δX+ δ with m ≥ 2 and 0 < δ � 1
has roots 1 and m

√
δ · ζi

m, 1 ≤ i ≤ m, where ζm is a primitive mth root of unity. The root
X = 1 makes sure that r = 0 is a valid choice for the initial interval. The m other roots
are evenly spread on a circle with radius R = m

√
δ and have minimum distance s slightly

less than 2πR/m. This implies δ = Rm ≈ (ms/2π)m.
Suppose that m is even. Then Aδ(X) has two real roots ± m

√
δ that coalesce for δ = 0

and become imaginary for δ < 0. To isolate the real roots of Aδ(X) from approximate
coefficients, their approximation error ε has to be less than δ; otherwise the number of
real roots is not well-defined. Using the estimate of δ from above, this asks for a precision
of log(1/ε) > m · (log(1/s)+log(2π)− logm). The degree of Aδ(X) is n = m+1, so we see
that the coefficient of log(1/s) in the precision necessary for hard inputs is indeed Ω(n).
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3.3.10 Variants of the algorithm

In this section, we discuss potential improvements of the bitstream Descartes algorithm.
The first improvement is one that we definitely recommend, even though this does not
make a difference in terms of the complexity analysis:

We should limit the adverse effects of subdivision with α 6= 1/2. This is more costly than
bisection, because it requires the multiplication with non-trivial weights in de Casteljau’s
algorithm. Furthermore, the algorithm’s output deteriorates: The low-order bits in the
boundaries of isolating intervals have a value much less than the width of the interval
(the opposite of the good situation discussed in §3.2.3). To counteract this, we propose
to attempt subdivision at α = 1/2 before using the prescribed denominator. Of course, if
these attempts fail, they must not be counted as a failures of the current precision.

We call the form of the bitstream Descartes algorithm resulting from this improvement
DescartesE08.

We have intentionally chosen the radius of the initial interval I0 in §3.3.2 as an overap-
proximation of the magnitudes of all complex roots; this has provided an important point
of reference for precision management, cf. Proposition 3.40 and Lemma 3.63. However,
if a smaller interval I1 is known that contains all real roots and that satisfies the invari-
ant (3.36) at some suitable initial precision, one can directly “zoom in” from I0 on I1 with
two subdivision steps, analogously to the reinitialization of Q at a higher precision.

As described, the bitstream Descartes algorithm maintains a global precision parame-
ter p together with the counters Ntry and Nfail for subdivision attempts. A large number of
failures to subdivide a single interval can trigger a global increase of precision. A possible
alternative would be to keep these decisions local to each interval (with subdivision pass-
ing the relevant state on to the subintervals), matching the intuition that in some areas,
the root separation and thus the acceptable approximation error in the coefficients may
be much smaller than in others.12 On the other hand, the precision extracted out of the
bitstream coefficients is determined by the hardest subproblem anyway, and maintaining
one global precision parameter and counters makes the algorithm behave more conserva-
tively in its precision consumption. This is preferable in a setting where handling long
coefficient approximations inside the bitstream Descartes algorithm is cheap compared to
producing them on the other side of the bitstream interface; as M. Kerber reports (per-
sonal communication, December 2007), this is the case for our geometric application to
be discussed in §3.4.

The initial precision parameter p0 = 6n+1 is barely large enough to make sure that the
invariant (3.36) is satisfied by the initial interval. This is likely to necessitate a precision
increment, and thus a reinitialization of Q, rather soon. It may therefore be preferable in
practice to start at a moderately larger initial precision, such as 6n + 20.

Further variations of the algorithm are possible.

Our original publication [EKK+05] proposed to restart from scratch each time a higher
precision is needed. The obvious disadvantage is the loss of all partial information gained
up to that point; however, by the usual argument that the last term dominates a geometric
sum, cf. (3.49), this does not affect the asymptotic computing time. (Actually, the analysis

12An analysis of this scheme requires a sub-constant failure probability for a subdivision attempted in
sufficient precision.
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becomes simpler, because this eliminates the reinitialization of Q and thus the need for
a bound on the sum of depths of its entries.) The preference of bisections over uneven
subdivisions may become more effective in combination with this approach, because the
algorithm gets a chance to retry previously failed bisections at higher precisions.

We have not explored the idea to use denominators other than powers of two for sub-
division parameters. When the interval width is much larger than the positional value
of the lowest-order bit in the endpoints, this would allow to choose subdivision points on
the grid defined by the positional value of the lowest-order bit, thereby avoiding a further
increase the bit length of the endpoints. On the other hand, this necessitates divisions of
long integers.

For the exponential growth of the precision parameter p, we have chosen the customary
base 2. It is possible to tune the performance of the algorithm by varying this base,
although the asymptotics remain the same. Schönhage [Sch03] discusses this exponential
raising and more advanced strategies with regard to worst-case and average-case bounds on
the competitive factor of their cost compared to the unknown optimal choice. These results
apply directly to algorithms that incur the full cost for each attempted parameter value;
our situation with partial information potentially being gained cheaper at small parameter
values is less clear. Also, any choice of a base would have to take into account the order
of growth of the computing time as a function of the precision parameter p. The time for
the bitstream Descartes algorithm itself is linear in this parameter, implying that base 2
is actually not a bad choice in terms of the worst-case competitive factor [Sch03, p. 611],
but the time spent on the other side of the bitstream interface to produce coefficient
approximations may have higher orders of growth, precluding a universal choice of an
optimal base.

The bitstream Descartes algorithm uses randomization for a single purpose, namely the
choice of a subdivision point among K/2+1 ≈ 8n candidates, of which at most n are bad,
once the coefficient precision is sufficiently high. Thus, the algorithm can be derandomized
in the trivial way – trying all possible choices – at the expense of an additional factor n
in the complexity bound. This does not seem to be particularly useful from a practical
point of view.

3.3.11 Discussion

The goal stated in §3.3.1 has been reached: We have formulated and analyzed a form
of the Descartes method that produces correct isolating intervals for a polynomial Ain

whose coefficients are only known through approximations. The necessity of an (explicit
or implicit) fall-back to exact arithmetic present in earlier work has been overcome by the
randomized choice of subdivision points. In particular, our bitstream Descartes algorithm
works for all real polynomials with simple real roots; there is no need to insist on coefficients
to be algebraic or otherwise amenable to exact arithmetic.

The development and analysis of the bitstream Descartes algorithm in this thesis im-
proves upon the original publication [EKK+05] in several ways. The treatment of case (M0)
identical to (D0) is new. The computing time analysis can now take full advantage of
the Davenport-Mahler bound (Theorem 3.9) and the resulting bound on the subdivision
tree (Theorem 3.19), if applicable. The estimate of sufficient precision given here (Theo-
rem 3.48) is a substantial generalization that works in the presence of multiple complex
roots, which will be crucial for the application in §3.4.
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Most importantly, though, the role of this bound on sufficient precision has changed.
Originally, the algorithm was formulated to guess an estimate s of separation (minimum
root distance) and to derive from it the necessary precision and a bound on subdivision
depth. When this bound on subdivision depth was reached, a new estimate of separation
and thus a higher precision were introduced. Consequently, there was little chance for the
algorithm to work with a precision lower than the one prescribed by the analysis. Here, we
have formulated the algorithm to choose the precision directly and to work with it as long
as possible. (The Zeno trap from §3.3.6 has obviated the need for a bound on subdivision
depth.) Thus, our estimate of sufficient precision no longer occurs as an artifact within
the algorithm; it only appears in the analysis, and the algorithm’s actual performance is
not tied to it.

3.4 An application to algebraic curves

3.4.1 Overview

A real plane algebraic curve is the vanishing set of a non-constant polynomial F ∈ R[X,Y ]
in R2. For brevity, we will often refer to this vanishing set simply as the algebraic curve F .
There are numerous books on the geometry of algebraic curves; we mention Walker’s
classic [Wal50] and Gibson’s excellently readable introduction [Gib98].

We are interested in analyzing the geometry of an algebraic curve F ∈ Z[X,Y ] in the
following fashion: Consider a vertical line `x : X − x = 0 that moves continuously and
monotonically over the plane from left to right. At each position x ∈ R, the vertical line
intersects F in the points (x, y) whose Y -coordinates are the real roots of F (x, Y ). For
brevity, we assume here that the partial degree in Y remains constant: deg(F (x, Y )) =
deg(F (X,Y )) > 0 for all x ∈ R. (This rules out vertical asymptotes and vertical line
components.) How do the points of F on `x vary with x? We can take F to be square-free
without changing its vanishing set; then F and its partial derivative DY F with respect to Y
are coprime, so that by Bézout’s theorem (see [Gib98, Thm. 14.7] [Wal50, Thm. III.3.1], cf.
Lemma 3.70(i) below), the curves F and DY F have only finitely many points in common,
which we call the critical points of F . Except where `x hits a critical point, the points of F
on `x retain their relative position and vary smoothly according to the implicit function
theorem, tracing out the X-monotone arcs of F . It is at critical points only that an arc can
begin, end, or intersect, or that isolated points of F can occur. Our task is to determine
the critical points, the arcs, and their adjacency relation.

In algorithmic terms, such an analysis is done by computing a cylindrical algebraic
decomposition (c.a.d.) of the plane adapted to F , augmented with adjacencies: First, in
the projection phase, one computes (a finite superset of) the set of critical X-coordinates,
i.e., the X-coordinates of critical points. This partitions the X-axis into 0-cells (said
coordinates) and 1-cells (the open intervals forming their complement). Second, in the
lifting phase, one determines the shape of F over each cell by choosing a sample point α
and computing the real roots of F (α, Y ). Finally, one computes the adjacency relation
between arcs over 1-cells and the points over neighbouring 0-cells.

The notion of a cylindrical algebraic decomposition was introduced by Collins [Col75]
for his decision procedure for first-order formulae over real closed fields, see also [ACM84a]
[ACM84b]; a textbook reference is [BPR06]. Our interest in this kind of curve analysis
comes from research on a fundamental task in computational geometry: computing the
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arrangement [AS00] [Hal04] induced by a finite set of algebraic curves. The basic geometric
operations needed for arrangement computation can be reduced to analyzing the geometry
of single curves and pairs of curves as sketched above [EKSW06, §5] [BK07].

Where does the bitstream Descartes algorithm enter the picture? In computing a c.a.d.,
real root isolation is needed for various polynomials. The polynomials F (α, Y ) for critical
X-coordinates α are arguably the hardest: α and thus the coefficients of F (α, Y ) are,
in general, irrational algebraic numbers; so as discussed in §3.3.1 and the previous work
cited there, real root isolation with approximate coefficients is highly desirable. However,
by choice of α, the polynomial F (α, Y ) has a multiple root, and in the interesting cases
actually a multiple real root, so that the bitstream Descartes algorithm as presented in §3.3
would not terminate – additional techniques are required.

Michael Kerber,13 in joint work with Nicola Wolpert and the author of this thesis, has
developed an algorithm for curve analysis that works for an arbitrary input curve F and
performs lifting over critical X-coordinates α by isolating the real roots of F (α, Y ) with
variants of the bitstream Descartes algorithm, using additional information to terminate
on intervals containing a multiple real root. The outstanding feature of this algorithm
is the complete avoidance of factoring F (α, Y ) or falling back to exact arithmetic. We
refer to [EKW07] for a description of the algorithm and a comparison to related work.
Subsequent joint work [EK08] describes the analysis of curve pairs in the same style and
the resulting algorithm for arrangement computation.

A complete account of these algorithms, which comprise a number of case distinctions,
can literally fill a thesis of its own, namely [Ker0X]. In the present thesis, we ignore all
parts of these algorithms other than the use of the bitstream Descartes algorithm, and
regarding that, we focus on the “backbone case” of the algorithm for a single curve, to
be analyzed in §3.4.3. Its analysis is paradigmatic for the other uses of the bitstream
Descartes algorithm in [EKW07] and [EK08].

3.4.2 Reminder on resultants

We briefly recall the notion of a resultant and some basic properties needed in the sequel.

Definition 3.67. Let F (X) =
∑n

i=0 fiX
i and G(X) =

∑m
i=0 giX

i be polynomials with
coefficients in an integral domain R. The resultant of F and G with respect to formal
degrees n and m is

Res(F,G) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fn · · · · · · f0

. . .
. . .

fn · · · · · · f0

gm · · · · · · g0
. . .

. . .

gm · · · · · · g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∈ R. (3.53)

On the right is the determinant of the Sylvester matrix, which has size (m+n)× (m+n)
and consists of m rows holding the coefficients of F and n rows holding the coefficients
of G in echelon form; all other entries are zero.

13This Michael Kerber is a computer scientist from U Saarland and MPI-I in Saarbrücken, Germany; not
to be confused with the mathematician from TU Kaiserslautern or the physicist from TU Vienna of
the same name.
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A few remarks are in order.
If gm = · · · = gm−k+1 = 0, the first k columns have upper triangular form, and the

resultant w.r.t. formal degree m is the resultant w.r.t. formal degree m − k times fk
n .

Analogous observations apply to the case fn = 0, since Res(F,G) = (−1)mn Res(G,F ).
Unless specifically indicated otherwise, we let the symbol Res(F,G) denote the resultant

of F and G with respect to their actual degrees.
A comparison of Definition 3.67 above with Definition 3.5 on page 53 shows that

Res(F,F ′) = (−1)n(n−1)/2fn Discr(F ). This correspondence is extended to jth subdis-
criminants for j > 0 by the notion of subresultants, see [BPR06, §4.2.2].

The coefficient domain R may contain indeterminates; if it is necessary to specify the in-
determinate eliminated by the resultant, we give it as a third argument as in Res(F,G,X).
Likewise, we write sDiscj(F,X) for a subdiscriminant of F with respect to the indetermi-
nate X.

The fundamental property of resultants is the following relation to root differences and
the equivalent relation of Res(F,G) to the values of one polynomial at the roots of the
other.

Proposition 3.68. If F (X) = fn
∏n

i=1(X − αi) and G(X) = gm
∏m

j=1(X − βj), then

Res(F,G) = fm
n g

n
m

n∏

i=1

m∏

j=1

(αi − βj) = fm
n

n∏

i=1

G(αi) = (−1)mngn
m

m∏

j=1

F (βi). (3.54)

For proofs see, e.g., [BPR06, Thm. 4.16] [vdW93, §35].
Corollary 3.69. If F,G,H ∈ C[X], then Res(F,GH) = Res(F,G) · Res(F,H).

We now turn to quantitative aspects of the resultant and similar determinants. We
consider two polynomials

F (U, V,X) =

n∑

i=0

fi(U, V )Xi, fi(U, V ) =

n−i∑

j=0

aijU
jV n−i−j,

G(U, V,X) =

m∑

i=0

gi(U, V )Xi, gi(U, V ) =

m−i∑

j=0

bijU
jV m−i−j ,

(3.55)

and an (m+ n− 2j)× (m+ n− 2j) subdeterminant

Sj(U, V ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fn fn−1 fn−2 · · · · · ·
fn fn−1 fn−2 · · ·

. . .
. . .

. . .

gm gm−1 gm−2 · · · · · ·
gm gm−1 gm−2 · · ·

. . .
. . .

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.56)

of the Sylvester matrix, constructed by taking the first m + n − 2j columns of the first
m− j rows holding the coefficients fi and the first n− j rows holding the coefficients gi.
For j = 0, this is the Sylvester determinant defining Res(F,G,X). For G = F ′, this is the
determinant defining sDiscj(F,X) up to sign (see page 53).
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Lemma 3.70. Consider the polynomials F , G and the determinant Sj as above.

(i) Sj(U, V ) =
∑d

i=0 siU
iV d−i is homogeneous of degree d = (m− j)(n − j).

(ii) If Sj(U, 1) 6= 0, then degU (Sj(U, 1)) ≤ (m− j)(n − j).
(iii) If all coefficients aij, bij are complex numbers such that log |aij | ≤ τ and log |bij | ≤ σ,

then log
∑d

i=0 |si| ≤ (m− j)τ + (n− j)σ +O((m+ n− 2j) log(m+ n)).

In (iii), we use the convention log 0 = −∞ < x for any x ∈ R.

Proof. We abbreviate the numbers of rows to n′ = n− j and m′ = m− j.
Ad (i). We have to show Sj(λU, λV ) = λm′n′

Sj(U, V ) for an indeterminate λ. We can
express Sj(λU, λV ) as a determinant of the form (3.56) with fn−i replaced by λifn−i and
gm−i replaced by λigm−i. We modify this determinant further by multiplying the first
F -row and G-row by λ, the second F -row and G-row by λ2, and so on, which multiplies
the determinant by λ raised to the power of m′(m′+1)/2+n′(n′+1)/2. This has produced
the determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1+0fn λ1+1fn−1 λ1+2fn−2 · · ·
λ2+0fn λ2+1fn−1 · · ·

. . .
. . .

λ1+0gm λ1+1gm−1 λ1+2gm−2 · · ·
λ2+0gm λ2+1gm−1 · · ·

. . .
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.57)

in which we can extract a factor of λ from the first column, a factor of λ2 from the second
column, and so on, altogether we extract λ raised to the power of (m′ +n′)(m′ +n′ +1)/2
The claimed degree now results from (m′+n′)(m′+n′+1)−(m′(m′+1)+n′(n′+1)) = 2m′n′.
(This trick is common in elementary proofs of Bézout’s theorem for algebraic curves, see,
e.g., [Gib98, Lem. 14.3] [Wal50, §III.3.1].)

Ad (ii). Immediate from (i).
Ad (iii). The (m′ + n′)× (m′ + n′) determinant Sj is a sum of no more than (m′ + n′)!

terms, each of which has the form
∏m′

µ=1 fiµ(U, V ) ·∏n′

ν=1 gjν (U, V ). Multiplying out one

term yields
∏m′

µ=1(n − iµ + 1) ·∏n′

ν=1(m − jν + 1) ≤ (n + 1)m
′
(m + 1)n

′
monomials with

coefficients of magnitudes at most 2m′τ+n′σ. Altogether, at most (m′+n′)! (n+1)m
′
(m+1)n

′

monomials are produced; the logarithm of this number is O((m′ + n′) log(m+ n)).

3.4.3 Lifting with the bitstream (m,k)-Descartes algorithm

Let F ∈ Z[X,Y ] be polynomial of total degree n ≥ 2 that is Y -regular, i.e., its partial
degree in Y is also n. Hence F has the form

F (X,Y ) =
n∑

i=0

fi(X)Y i, fi(X) =
n−i∑

j=0

aijX
j, fn = an0 6= 0. (3.58)

We assume that F is square-free and thus coprime to its partial derivative DY F , hence
we have a non-zero resultant

R(X) := Res(F, DY F, Y ) =
M∏

µ=1

R
eµ
µ (X), (3.59)
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which is essentially Discr(F, Y ), and which decomposes into Q-irreducible and pairwise
coprime integer polynomials

Rµ(X) =

hµ∑

i=0

rµiX
i = `µ

hµ∏

ν=1

(X − ξµν) ∈ Z[X] with `µ = rµhµ , ξµν ∈ C. (3.60)

The existence of a Q-irreducible factorization over Z is a consequence of Gauss’ Lemma
(primitive polynomials have a primitive product), see [BPR06, Lem. 10.17] [vdW93, §30],
and depends on unique factorization in Z.

We set

Fµν(Y ) := F (ξµν , Y ) ∈ Z[ξµν ][Y ] ⊆ C[Y ]. (3.61)

By the Y -regularity of F , we have degFµν = degF = n. The degree of gcd(Fµν , F
′
µν) is

the smallest index j such that sDiscj(Fµν) 6= 0 and thus, by the irreducibility of Rµ, the
same for all 1 ≤ ν ≤ hµ. So we can define

kµ := deg(gcd(Fµν , F
′
µν)) ≤ n− 1. (3.62)

Each polynomial Fµν(Y ) has exactly n− kµ distinct complex roots.

We are now ready to state our objective. To analyze the curve F , it is necessary to isolate
the real roots of F (α, Y ) for all α ∈ {ξµν}µ,ν ∩R. To do that with the Descartes method,
we need to modify it such that it can terminate in the presence of a multiple real root.
M. Kerber’s (m,k)-Descartes algorithm [EKW07, §5] is a partial solution to this problem,
using the following additional information provided by the signs of the subdiscriminants
of Fµν(Y ): the number m of distinct real roots of Fµν(Y ), see [BPR06, Thm. 4.33], and
the gcd-degree k = kµ from (3.62). For m ≤ 1, nothing needs to be done. For m ≥ 2,
the (m,k)-Descartes algorithm consists in traversing the subdivision tree of the Descartes
method in breadth-first order until one of two termination conditions is verified:

(S) If the current partition of the initial interval comprises exactly m− 1 intervals with
Descartes test equal to 1 and a single interval I that presents a Descartes test greater
than 1, then the algorithm terminates with an indication of success and reports these
m intervals as isolating intervals for the m distinct real roots, with I distinguished
as isolating interval for the unique multiple real root.

(F) If the Descartes test for every interval in the current partition is k or less, this certifies
that there is more than one multiple complex root, and the algorithm terminates
with an indication of failure.

If Fµν(Y ) has only one multiple complex root (as is the case in a generic coordinate system),
the (m,k)-Descartes algorithm necessarily succeeds; if Fµν(Y ) has more than one multiple
real root, the (m,k)-Descartes algorithm necessarily fails.14 We refer to [EKW07, §5] for
details, but not without emphasizing that a failure of the (m,k)-Descartes algorithm does
not entail a failure or error of the curve analysis, it merely triggers a change of coordinates.

Of course, we do not propose to actually carry out the (m,k)-Descartes algorithm with
exact coefficients. Instead, the techniques from §3.3 for approximate coefficients are ap-
plied: The bitstream (m,k)-Descartes algorithm consists in a breadth-first traversal of

14The indeterminism in the gap between these two conditions helps to avoid the costly computations to
decide exactly whether there is a unique multiple complex root.
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the subdivision tree constructed by the bitstream Descartes algorithm until the sets of
ε-approximate sign variations approximating the Descartes test for each interval indicate
with certainty that termination condition (S) or (F) is verified. In §3.3.4, we have seen two
lemmas guaranteeing that we eventually gain certainty about the Descartes test being zero
or one. Analyzing the failure case in the bitstream (m,k)-Descartes algorithm requires an
analogous lemma for Descartes tests larger than 1; we return to this issue in §3.4.4. In the
present section, we restrict ourselves to the analysis of the success case in the bitstream
(m,k)-Descartes algorithm. More precisely, the rest of this section is devoted to the proof
of the following result.

Theorem 3.71. Let the polynomial F (X,Y ) as in (3.58) have integer coefficients with mag-
nitudes |aij | ≤ 2τ . Consider the executions of the bitstream (m,k)-Descartes algorithm
on F (α, Y ) for all real roots α of R(X) = Res(F,DY F, Y ), starting from initial intervals
I0(α) of the form (−2r+1,+2r+1) chosen with the approximate dyadic Fujiwara complex
root bound (3.24). Suppose that all these executions have terminated via condition (S).
Excluding the work done inside the procedures providing the coefficient bitstreams, all
these executions together have performed no more than

O(n9 log n · (τ + log n)2)

bit operations in expectancy, with respect to the randomized choices of subdivision points.

The proof of this theorem will be by reduction to the primary complexity result for
the bitstream Descartes algorithm, Theorem 3.61 on page 99. This result depends on
four explicit parameters, namely the degree n, the width |I0| of the initial interval, the
minimum distance s between any two distinct complex roots, and a tsqd-bound P ′, cf.
Definition 3.59; implicitly, it relies on the existence of a lower bound w as in Lemma 3.62
on the width of any subdivided interval. Therefore, our task for the remainder of this
section is to derive bounds on these parameters for the polynomials F (α, Y ), ignoring
those with m ≤ 1 distinct real roots. We will tackle the parameters in increasing order of
difficulty. The first one is trivial and has already been dealt with: deg(Fµν) = n, owing to
the Y -regularity of F .

There is a common theme to the way we treat most of the remaining parameters: For
attaining good estimates, it is helpful not to regard one polynomial Fµν(Y ) ∈ Z[ξµν ][Y ]
at a time, but all of them at once, because a single one may realize a worst case that is
not possible for all of them simultaneously.

We begin with the initial intervals that are chosen for the polynomials F (α, Y ) through
the use of a complex root bound. The hypotheses of the following proposition cover, inter
alia, the dyadic Fujiwara complex root bound functional from §2.4.1 and its approximate
evaluation described in Equation (3.24) on page 78.

Proposition 3.72. Consider a functional Φ: R[Y ] \ R → R>0 that obeys the bound
max{0, log Φ(G)} = O(log ‖G‖∞ + log deg(G)) for all polynomials G with ‖G‖∞ ≥ 1.
Let F (X,Y ) as in (3.58) have integer coefficients |aij | ≤ 2τ . Consider the polynomial
R(X) = Res(F,DY F, Y ) as in (3.59). Summing over all distinct real roots α of R(X), it
holds that

∑
α max{0, log Φ(F (α, Y ))} = O(n2(τ + log n)).

Proof. Lemma 3.70 implies deg(R) ≤ n(n − 1) and log ‖R‖∞ = O(n · (τ + log n)). Let
us consider a real root α of R(X). The leading coefficient of F (α, Y ) is an0 ∈ Z \ {0},
so that ‖F (α, Y )‖∞ ≥ 1. Thus, max{0, log Φ(F (α, Y ))} = O(log ‖F (α, Y )‖∞ + log n).
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The coefficients of F (α, Y ) satisfy |fi(α)| ≤ ∑
j |aij | |α|j ≤ (n + 1) 2τ max{1, |α|}n, so

log ‖F (α, Y )‖∞ ≤ O(τ + log n) + n log max{1, |α|}.
Summing over all distinct real roots α of R, which are at most n(n − 1) in number,

we obtain
∑

α log ‖F (α, Y )‖∞ = O(n2(τ + log n)) + n log
∏

α max{1, |α|}. The Mahler
measure of R, see Definition 3.1 on page 52, provides an upper bound for

∏
α max{1, |α|}

and is itself bounded in terms of a norm by Proposition 3.4. Taking logarithms, we
obtain log

∏
α max{1, |α|} ≤ log Mea(R) ≤ log ‖R‖∞ + O(log n) = O(n · (τ + log n)).

Altogether, we arrive at
∑

α max{0, log Φ(F (α, Y ))} =
∑

αO(log ‖F (α, Y )‖∞ + log n) =
O(n2(τ + log n)), as was to be shown.

Next on our agenda is the minimum distance between distinct complex roots.

Proposition 3.73. Let the polynomial F (X,Y ) in (3.58) have integer coefficients |aij | ≤ 2τ ,
and consider its specializations Fµν(Y ) from (3.61). Let S be an arbitrary subset of the
indices {(µ, ν) | 1 ≤ µ ≤M, 1 ≤ ν ≤ hµ} such that each Fµν(Y ) with (µ, ν) ∈ S has more
than one distinct complex root and minimum distance sµν > 0 between any two of them.
It holds that

∑
S log(1/sµν) = O(n3(τ + log n)).

We prove the proposition in this general form, but we will use it specifically on the set
of those real roots α = ξµν of R(X) for which F (α, Y ) has m ≥ 2 distinct real roots.

Proof. For each polynomial Fµν with (µ, ν) ∈ S, we invoke our generalized Davenport-
Mahler bound, Theorem 3.9 from page 54, on a single edge (α, β) that realizes the minimum
distance sµν = |α− β| and obtain the inequality

log(1/sµν) ≤ − log
|sDisckµ(Fµν)|1/2

Mea(Fµν)n−kµ−1
+O(n log n).

For each polynomial Fµν with (µ, ν) /∈ S, we invoke Theorem 3.9 on the empty edge set,
resulting in the product 1, and obtain the inequality

0 ≤ − log
|sDisckµ(Fµν)|1/2

Mea(Fµν)n−kµ−1
+O(n log n). (3.63)

Summing up over all complex roots ξµν , of which there are O(n2) many, we obtain

∑

(µ,ν)∈S

log(1/sµν) ≤
M∑

µ=1

hµ∑

ν=1

(
− log

|sDisckµ(Fµν)|1/2

Mea(Fµν)n−kµ−1

)
+O(n3 log n).

The claim reduces directly to the next proposition.

Proposition 3.74. Let the polynomial F (X,Y ) as in (3.58) have integer coefficients with
magnitudes |aij | ≤ 2τ . For Fµν(Y ) and kµ as in (3.61) and (3.62), resp., it holds that

M∑

µ=1

hµ∑

ν=1

(
− log

|sDisckµ(Fµν)|1/2

Mea(Fµν)n−kµ−1

)
= O(n3(τ + log n)). (3.64)

Proof. Let Dµ(X) := sDisckµ(F, Y ) ∈ Z[X], so that Dµ(ξµν) = sDisckµ(Fµν) ∈ C \ {0}.

113



We fix an arbitrary 1 ≤ µ ≤M . By multiplicativity of the Mahler measure, we obtain

hµ∏

ν=1

(
|sDisckµ(Fµν)|1/2 /Mea(Fµν)n−kµ−1

)

= |
hµ∏

ν=1

Dµ(ξµν)|1/2

/
Mea(

hµ∏

ν=1

F (ξµν , Y ))n−kµ−1

= |Res(Dµ, Rµ,X)/`
(n−kµ)(n−kµ−1)
µ |

1/2 /
Mea(Res(F,Rµ,X)/`nµ)n−kµ−1.

In the last equality, we have used Proposition 3.68 to express a product over all roots of
Rµ(X) as resultant with Rµ. We have degX(Dµ) ≤ (n−kµ)(n−kµ−1) by Lemma 3.70(ii)
and degX(F ) ≤ n. To avoid case distinctions, we have taken the resultants with respect to
these formal degrees. The total exponent of `µ is n·(n−kµ−1)−(1/2)(n−kµ)(n−kµ−1) =
(1/2)(n + kµ)(n− kµ − 1) ≥ 0, so we obtain

. . . = |`µ|(1/2)(n+kµ)(n−kµ−1) · |Res(Dµ, Rµ,X)|1/2 /Mea(Res(F,Rµ,X))n−kµ−1

≥ 1
/

Mea(Res(F,Rµ,X))n−2,

where we have estimated the exponents in the numerator from below by 0 and the exponent
in the denominator from above by n − 2. This is possible, because the integers |`µ| and
|Res(Dµ, Rµ,X)| and the measure of the polynomial Res(F,Rµ,X) ∈ Z[Y ] are all larger
than or equal to 1.

Let us now take the product over all factors Rµ. Combining the preceding estimate
with the multiplicativity of the resultant (Corollary 3.69 on page 109) and the fact that
Mea(A) ≤ Mea(AB) for A,B ∈ Z[Y ], we arrive at

M∏

µ=1

hµ∏

ν=1

|sDisckµ(Fµν)|1/2

Mea(Fµν)n−kµ−1
≥

M∏

µ=1

1

Mea(Res(F,Rµ,X))n−2

= 1
/

Mea(Res(F,

M∏

µ=1

Rµ,X))n−2

≥ 1
/

Mea(Res(F,R,X))n−2 ≥ 1
/
‖Res(F,R,X)‖n−2

2

(3.65)

The last inequality holds by Proposition 3.4 from page 52.
Let us now study the logarithmic 2-norm of S(Y ) := Res(F,R,X). We begin with

a bound on the coefficient magnitudes of R(X). By definition, R is the determinant
of the Sylvester matrix of F and DY F . The derivative DY F has degree n − 1 in Y
and coefficients of magnitudes |iaij | ≤ n2τ . Thus, Lemma 3.70(iii) yields log ‖R‖∞ ≤
log ‖R‖1 = O(n · (τ + log n)). We invoke Lemma 3.70(iii) again, now for F and R. We
recall degR ≤ n(n− 1) and obtain log ‖S‖2 ≤ log ‖S‖1 = O(n2(τ + log n)). After taking
logarithms in (3.65), this estimate implies the proposition.

For this proposition, our initial remark about the virtues of considering all Fµν simul-
taneously is particularly fitting: In contrast to Z, there is no immediate lower bound on
the magnitude of a non-zero subdiscriminant in Z[ξµν ], but by multiplying up all alge-
braic conjugates, necessarily including the imaginary ones, we got back to a situation with
integer coefficients.
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We observe at this point how the generalization of the Davenport-Mahler bound in §3.1.4
has helped to keep the preceding proof straightforward. Without it, we would have had to
argue about the square-free part of Fµν(Y ). Its coefficients have closed-form expressions
as Sylvester subdeterminants [BPR06, Cor. 10.15] in fi(X) evaluated at X = ξµν , but
the resulting growth of the leading coefficient poses problems in bounding the product of
Mahler measures in the denominator. The simple arguments for the integer case in the
proof of Corollary 3.11 on page 57 are inapplicable, as they require a factorial ring.

Now we turn to the fourth parameter, namely the tsqd-bound P ′ for the bitstream
(m,k)-Descartes algorithm, that is to say, a bound fulfilling conditions (i–iii) in Defi-
nition 3.59 for the bitstream (m,k)-Descartes algorithm and the respective subtree it
traverses in any potential subdivision tree of the bitstream Descartes algorithm. We recall
that the bitstream (m,k)-Descartes algorithm invariably performs breadth-first traversal.

Let T ′ be any of the subdivision trees possible for the bitstream Descartes method on
a polynomial Ain with a unique multiple real root β and some initial interval I0 that
contains β and at least one other real root γ of Ain. Clearly, these root do not occur as
subdivision points. Let T be the subdivision tree of the exact Descartes method executed
with the same choice of subdivision points. Because of the unique multiple real root β,
both of these trees have a unique path from the root downwards that has infinite length.
This unique infinite path, seen as a sequence of intervals, is the same in T and T ′.

In the finite subdivision trees considered previously, any internal node was either ter-
minal itself (i.e., a parent of two leaves, see Definition 3.18) or the ancestor of a terminal
node. This has led to the distinguished role of rt-paths in the analysis of the Descartes
method for polynomials with simple real roots. Now the existence of an infinite path has
changed the situation. To see this, consider the extreme example of a unique infinite path
that comprises all internal nodes, with the isolating intervals of simple real roots hanging
off this path as leaves; in this case, not a single terminal node or rt-path exists. Thus, we
first need to take a closer look at T before we can proceed to T ′.

Every node I on the unique infinite path in T has two children; one of them is again an
element of the infinite path, we are interested in the other one and call it the terminating
child of I. By the variation-diminishing property of subdivision (see Corollary 2.27 on
page 27), there are only finitely many terminating children whose Descartes test is positive.
Let I be the node of maximal depth on the infinite path with the property that its
terminating child J has a positive Descartes test. Since Ain has more than one real
root in I0, such I exists; we call it the final fork of T and distinguish two cases. If the
terminating child J of I is a leaf of T (meaning that its Descartes test is 1), then we call I
a final leaf fork; otherwise a final internal fork.

In the case of a final internal fork, the terminating child J or one of its successors is
a terminal node J ′, in fact a regular terminal node (because the unique multiple real
root β is not contained in J ′), and the rt-path from I0 to J ′ includes the prefix of the
unique infinite path down to the final fork, so that the length of this rt-path accounts for
the number of nodes on the unique infinite path up to the fork, similar to the situation
without a multiple real root.

In case of a final leaf fork, no such rt-path exists. (This is the crux in the “extreme
example” that we regarded above.) To overcome this, we define an rtfl-path to be a path
in T from the root down to a node I that is either a regular terminal node or the final
leaf fork on the unique infinite path (if it exists).
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Based on this notion of an rtfl-path, we call an internal node of T accounted if it sits
on an rtfl-path; the other internal nodes of T are unaccounted. By construction, all
unaccounted internal nodes sit on the unique infinite path.

We can now extend our primary bound on tree size, Theorem 3.19 from page 60, to the
present situation. We remind ourselves that the constant ρ = 4/3 is a subdivision ratio
bound for T in the sense of Definition 3.12. We denote by Gmk(T ) the directed graph
on the distinct complex roots of Ain whose edge set consists of all pairs (α, β) that are
responsible, in the sense of Definition 3.14, for subdivision of a regular terminal node or of
the final leaf fork (if there is one). We emphasize that the final leaf fork I in T , if existing,
is a regular internal node, because it contains both the unique multiple real root β and
the simple real root isolated by its terminating child J , and thus falls into case (iii) of
Proposition 3.13 and Definition 3.14.

Theorem 3.75. Let Ain be a real polynomial of degree n ≥ 2 with a unique multiple real
root β and another real root γ. Let I0 be an open interval containing β and γ. Consider
the infinite subdivision tree T generated by an execution of the exact Descartes method
on Ain and I0 in which β is not chosen as subdivision point. Let ρ be a subdivision ratio
bound for T .

(i) The graph Gmk(T ) satisfies conditions (i–iii) of Theorem 3.9 and has at most n/2
edges.

(ii) The sum P of the lengths of all rtfl-paths of T satisfies

P ≤ logρ

(∏

(α,β)

|I0|
|α− β|

)
+
n

2
logρ

( 2√
3

)
, (3.66)

with (α, β) ranging over the edges of Gmk(T ).

(iii) The number of all internal nodes of T that lie on an rtfl-path is at most P + 1.

Proof. The following arguments closely resemble the proofs of the corresponding items (i),
(iii) and (iv) in Theorem 3.19.

Ad (i). No terminal node is a descendant of another, and no terminal node is a descen-
dant or ancestor of the final leaf fork in T , if existing. Therefore, the intervals from the
definition of Gmk(T ) are pairwise disjoint, and the first claim reduces to Proposition 3.15.
Each of these disjoint intervals has a Descartes test of at least 2, but according to Corol-
lary 2.27, their sum is at most DescartesTest(Ain, I0) ≤ n, which shows the second claim.

Ad (ii). Consider any rtfl-path (I0, . . . , Ik). Its length k is the depth of Ik, which is
bounded by Lemma 3.17(ii) in terms of the pair (α, β) responsible for subdivision of Ik as
k < logρ(|I0| / |α− β|) + logρ(2/

√
3). Summing over all rtfl-paths, of which there are at

most n/2, we attain the claimed bound.

Ad (iii). To each non-root node I on an rtfl-path, we associate the edge to the parent
of I; this map is injective, and each edge in its image is counted at least once in P .
Adding 1 to account for the root node, we obtain the claimed bound.

Proposition 3.76. In the situation of Theorem 3.71, consider all real roots α of R(X) for
which F (α, Y ) has m ≥ 2 distinct real roots. There exist numbers P (α) ≥ 0 such that∑

α P (α) = O(n3(τ +log n)) and P (α) is an upper bound on the sum of the lengths of the
rtfl-paths in any possible subdivision tree T constructed by the exact Descartes method
on F (α, Y ) and I0(α).
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Proof. Consider the statement of Theorem 3.75 for Ain(Y ) = F (α, Y ). We invoke Theo-
rem 3.9 for the first term in (3.66). Using the estimate #E ≤ n/2, we arrive at an upper
bound P (α) for the sum of all rtfl-path lengths that is valid for all possible subdivision
trees and satisfies

P (α) ≤ − logρ

|sDisckµ(Fµν)|1/2

Mea(Fµν)n−kµ−1
+O(n log n) +

n

2
max{0, log |I0(α)|}.

It remains to demonstrate the bound on
∑

α P (α). For the first and second term together,
we use the same trick as in the proof of Proposition 3.73 and add the trivial inequali-
ties (3.63) for all missing complex roots ξµν of R(X) to arrive at the upper bound

M∑

µ=1

hµ∑

ν=1

(
− log

|sDisckµ(Fµν)|1/2

Mea(Fµν)n−kµ−1

)
+O(n3 log n),

which reduces to O(n3(τ + log n)) by Proposition 3.74. According to Proposition 3.72,
this bound also covers the remaining term n/2 ·∑α max{0, log |I0(α)|}.
We now make the transition from P (α) to a tsqd-bound, in analogy to Proposition 3.60.

Lemma 3.77. Let Ain be a real polynomial of degree n ≥ 2 that possesses a unique
multiple real root β and another real root γ. Let I0 ⊇ {β, γ} be an initial interval for the
bitstream Descartes algorithm on Ain. If P ≥ n/4 is an upper bound on the sum of the
lengths of all rtfl-paths in any subdivision tree constructed by the exact Descartes method
on Ain and I0 with subdivision points different from β, then P ′ := 5P + 4n+ 2 = O(P ) is
a tsqd-bound for the bitstream (m,k)-Descartes algorithm on Ain and I0.

The condition P ≥ n/4 is satisfied automatically by bounds P obtained from Theo-
rem 3.75(ii) when using the subdivision ratio bound ρ = 4/3.

Proof. Let T ′ be any of the subdivision trees possible for the bitstream Descartes method
on Ain and I0; clearly, the root β does not occur as a subdivision point. Let T be the
subdivision tree of the exact Descartes method when making the same choice of subdivision
points. The bitstream (m,k)-Descartes algorithm traverses some subtree T ′

mk of T ′ in
breadth-first order. There are three kinds of internal nodes in T ′

mk: those that occur as
internal nodes in T and are accounted, those that occur as internal nodes in T and are
unaccounted, and those that do not occur in T , we call them extraneous. All unaccounted
internal nodes lie on the unique infinite path.

We prove the lemma through a sequence of observations on T ′
mk.

1. The parent of an extraneous internal node is accounted.

An extraneous internal node I is an interval that has been subdivided because it had
type (M1), even though its true Descartes test is 1. I is not the root node, so it has a
parent J . By Lemma 3.47, J is an internal node of T . Due to our consideration of the
final fork on the infinite path, J is accounted, even if it sits on the infinite path.

2. An unaccounted node has depth at most P + 2.
Suppose the subdivision of an interval I at depth d − 1 in T ′ produces an unaccounted
interval I ′ at depth d. At the time when I is chosen from Q for subdivision, Q also
records another interval J ; otherwise termination condition (S) would hold. The fact that
subdivision of I gets priority over subdivision of J in breadth-first traversal means that
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the depth of J is no less than d−1. Being disjoint from I, the interval J does not contain β
and thus is either accounted or extraneous. If J is accounted, then its depth is at most P ,
so the depth of I ′ is at most P + 1. If J is extraneous, then its parent is accounted, the
depth of J is at most P + 2, and so the depth of I ′ is at most P + 2.

3. The total number of accounted, unaccounted and extraneous node is at most 3P +5.

The number of unaccounted nodes is at most P + 2, because there is at most one unac-
counted node on levels 1, . . . , P + 2. The number of accounted nodes is at most P + 1 by
Theorem 3.75(iii). They form a subtree of T with size at most P + 1, so they can carry
up to P + 2 children. Each extraneous node is one such child, so there are at most P + 2
extraneous nodes. Adding up, we arrive at 3P + 5 ≤ 5P + 4n + 2 + 1 nodes in total and
have thus established property (i) for the claimed tsqd-bound.

4. At any stage of the algorithm, the sum of the depths of the intervals recorded in Q
is at most 5P + 4n + 2.

Q may contain at most one unaccounted interval I of depth at most P + 2. For Q
without I, the corresponding argument from the proof of Proposition 3.60(ii) from page 98
carries over and yields a bound of 4P+4n on the sum of depths. Adding P+2, property (ii)
for the claimed tsqd-bound is established and the lemma is proved.

Finally, we show that a lower bound on subdivided intervals as in Lemma 3.62 still holds.

Lemma 3.78. In the situation of Theorem 3.71, consider one of the polynomials F (α, Y )
with m ≥ 2 distinct real roots and the corresponding initial interval I0 = I0(α). If s > 0
is a lower bound on the distance between any two distinct complex roots of F (α, Y ), then
there exists a number 0 < w ≤ s with log(|I0| /w) = O(log(|I0| /s)) such that w is a lower
bound on the length of any interval subdivided in any possible execution of the bitstream
(m,k)-Descartes algorithm on F (α, y) and I0.

Proof. We recall the general observation that an interval I at depth d in any possible
subdivision tree satisfies (1/4)d |I0| ≤ |I| ≤ (3/4)d |I0|.

Let us first consider the case of an arbitrary interval I that does not lie on the unique
infinite path and is subdivided. For this case, the arguments from the proof of Lemma 3.62
apply and yield (

√
3/8) · s < |I| ≤ (3/4)d |I0| when combined with our initial observation.

Thus, the depth of I is d < d1 := (log(|I0| /s) + log(8/
√

3))
/

log(4/3).

As a consequence of breadth-first traversal, any subdivided interval I, even if on the
infinite path, has depth less than d1 + 1, so that the other part of our initial observation
implies |I| > w := (1/4)d1+1 |I0|, where log(|I0| /w) = 2(d1 + 1) = O(log(|I0| /s)).
We are now ready to prove the main result announced on page 112.

Proof of Theorem 3.71. Let α = ξµν be an arbitrary real root of R(X), and let m denote
the number of distinct real roots of the corresponding polynomial Fµν(Y ) = F (α, Y ).

If m ≤ 1, no work is done; we ignore these roots completely in the rest of this proof.

If m ≥ 2, we consider the execution of the bitstream (m,k)-Descartes algorithm on the
polynomial F (α, Y ) and the corresponding initial interval I0(α). Lemma 3.77 provides a
tsqd-bound P ′(α) = O(P (α)), where P (α) is the bound from Proposition 3.76. We write
s(α) for the minimum distance between any two distinct complex roots of Fµν .

Lemma 3.78 shows that the statement of Lemma 3.62 also holds in the present situation
(albeit with a different constant hidden in the O-notation), so that Theorem 3.61 extends
to the present situation. It shows that the bitstream (m,k)-Descartes algorithm needs
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O(n3 log n · P ′(α) · (log(|I0(α)| /s(α)) + log n)) bit operations in expectancy. Summing
over all α that make m ≥ 2, we obtain

∑

α

O
(
n3 log n · P ′(α) · (log(|I0(α)| /s(α)) + log n)

)

≤ O(n3 log n) ·
(∑

α

P ′(α)
)
·
(∑

α

log(|I0(α)| /s(α)) + log n
)
,

where the inequality follows from
∑

i aibi ≤ (
∑

i ai)(
∑

i bi) for ai, bi ∈ R≥0. The sec-
ond factor is O(

∑
α P (α)) = O(n3(τ + log n)) by Proposition 3.76. The third factor is

O(n3(τ+log n)) by Propositions 3.72 and 3.73. Altogether, this entails the claimed bound
O(n9 log n · (τ + log n)2).

3.4.4 Outlook: subdivision tree size with several multiple roots

In this section, we study the following theoretical variant of the exact Descartes method
for a real polynomial Ain of degree n ≥ 2 that may possess several multiple real roots. An
open initial interval I0 is subdivided recursively until each subinterval I satisfies one of
the following conditions:

(i) I does not contain a root of Ain and it holds that DescartesTest(Ain, I) = 0;
(ii) I contains a unique root of Ain, whose multiplicity we denote by k, and it holds that

DescartesTest(Ain, I) = k.
Throughout this section, we let T denote the recursion tree constructed by this method
for Ain and I0 with some arbitrary choice of subdivision parameters 1/4 ≤ α ≤ 3/4, and it
is our goal to give bounds on T in the style of our previous treatment of polynomials with
simple real roots (§3.1.5). The task of analyzing T is a natural generalization of analyzing
the recursion tree in the failure case of the (m,k)-Descartes algorithm.

It is instructive to compare this task to the topic of the previous section: analysis of
the success case in the bitstream (m,k)-Descartes algorithm. For that case, we did not
need to know much about the effects of multiple real roots, except that a unique multiple
real root produces a unique infinite path in the subdivision tree. Beyond that, it was
sufficient to analyze how quickly the m − 1 intervals for the simple real roots have been
found and all intervals free of roots have disappeared, similar to the case of simple real
roots. We did not even need a partial converse to Descartes’ rule for the case of more
than one sign variation. Moreover, to cope with approximate coefficients, it was good
enough that the lemmas from §3.3.4 guaranteed eventual certainty about zero or one
sign variations; a sufficient condition for max varε(. . .) ≤ k with k > 1 was not needed.
By contrast, such a lemma is required for an analysis of the failure case in the bitstream
(m,k)-Descartes algorithm. In the present thesis, this problem it not addressed; hence our
restriction to a setting with exact arithmetic for this section. Instead, we treat the other
problem pertinent to this analysis: How can we bound the size of T in the style of §3.1.5 by
distances between pairs of roots such that Theorem 3.9, the generalized Davenport-Mahler
bound from §3.1.4, remains applicable?

In our previous treatment of simple real roots, an interval I containing a single real
root was subdivided only if DescartesTest(Ain, I) was driven beyond the value 1 by a pair
of complex-conjugate roots in the Obreshkoff range OL≤(1, 1, n; I), see Theorem 2.32 on
page 31. Using the particular geometry of OL≤(1, 1, n; I), we showed that no two non-
adjacent subintervals of I0 are affected by the same complex-conjugate pair in this way
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(Lemma 3.16); this allowed us to justify our choice of pairs for use in the Davenport-
Mahler bound (Proposition 3.15). However, in the present setting, this distinguished role
of OL≤(1, 1, n; I) is lost; we would have to consider the larger ranges OL≤(k, k, n; I) in
its place. We avoid this; instead, we use this occasion to show what one can do with
the Davenport-Mahler bound when considering the nearest neighbour of each real root
irrespective of specific regions of influence.

To each real root ϑ of Ain, we associate the nearest other root N(ϑ) 6= ϑ of Ain (ar-
bitrarily in case that several other roots realize the minimum distance). If an imaginary
root ζ is to be chosen as N(ϑ), we make the additional requirement that ImN(ϑ) > 0 if
ϑ ≤ ReN(ϑ) and ImN(ϑ) < 0 otherwise. This is no restriction, since imaginary roots
of Ain occur in complex-conjugate pairs with equal distance to any real root ϑ.

Proposition 3.79. If I is an internal node of T , then exactly one of the following two
conditions holds:

(i) I contains a real root ϑ of Ain such that |N(ϑ)− ϑ| < |I| ·O(n2).
(ii) I does not contain a real root of Ain, and there is a complex-conjugate pair of

imaginary roots ξ ± iη of Ain such that ξ ∈ I and 0 < |(ξ + iη)− (ξ − iη)| < |I|.
Proof. Ad (i). This is obtained immediately as the contrapositive of either Proposition 2.36
from page 33 (using the estimate from Proposition 2.35(iv) and Θ(n) = O(n2)), or Propo-
sition 2.46(ii) from page 38.

Ad (ii). This is obtained immediately as the contrapositive of the “one-circle theorem”,
Proposition 2.33 on page 32.

With reference to this case distinction, we declare one pair of roots to be responsible
for subdivision of an internal node I: either (ϑ,N(ϑ)) as in (i) or (ξ− iη, ξ+ iη) as in (ii).
If two nodes of T are disjoint intervals, then they are assigned different pairs; but it may
happen that this difference lies only in the order of the pairs’ components, namely if two
real roots are their mutual nearest neighbours.

We can now formulate an analogue to Lemma 3.17.

Lemma 3.80. Consider an internal node I of T at depth d ≥ 0. If (α, β) is responsible for
subdivision of I, then d < logρ(|I0| / |α − β|) + O(log n), where ρ ≥ 4/3 is a subdivision
ratio bound for T .

Proof. By choice of (α, β), it holds that |α− β| < |I| ·O(n2) ≤ |I0| /ρd ·O(n2). The claim
is proved by solving for d.

As before, we call an internal node of T terminal if both of its children are leaves, and
a path from the root down to a terminal node we call a terminal path. The terminal
nodes of T are pairwise disjoint intervals, and each of them has a Descartes test of at
least 2. Thus, by the variation-diminishing property of subdivision (see Corollary 2.27
on page 27), their number is at most n/2. Summing over all terminal nodes and the
pairs (α, β) responsible for their subdivision, we obtain that the sum of the lengths of
all terminal paths is less than logρ

∏
(|I0| / |α− β|) + O(n log n), similar to our previous

approach.

However, we form a product over a set of edges which does, in general, not satisfy the
conditions of Theorem 3.9. We need to partition this edge set suitably; one possibility is
given by the following classification of pairs of roots responsible for subdivision:
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• a pair (ξ − iη, ξ + iη) is called imaginary,
• a pair (ϑ,N(ϑ)) with N(ϑ) /∈ R is called complex,
• a pair (ϑ,N(ϑ)) with N(ϑ) ∈ R is called outward if |ϑ| < |N(ϑ)| and inward

if |N(ϑ)| < |ϑ|; in the special case ϑ = −N(ϑ), we call the pair inward if ϑ > 0
and outward if ϑ < 0.

This classification, in particular the last case, makes sure that no two distinct terminal
nodes give rise to the same pair of roots within one class, not even in reversed order.

For each of the four classes separately, we define a directed graph on the distinct complex
roots of Ain whose edges are those pairs responsible for subdivision of a terminal node that
have the respective class; we denote these graphs by Gim, Gc, Gro, and Gri. Each of these
four graphs taken on its own satisfies the conditions of Theorem 3.9, perhaps after some
edge reversals. For the first three, this is obvious.

Lemma 3.81. The graph Gim, the graph Gro, as well as the graph Gri with all edges
reversed, satisfy conditions (i–iii) in Theorem 3.9.

For the last graph Gco, this is not entirely trivial.

Lemma 3.82. The graph Gco with edges (α, β) reoriented such that |α| ≤ |β| satisfies
conditions (i–iii) in Theorem 3.9.

Proof. Any edge in Gco connects a real root ϑ and an imaginary root ζ; in particular,
there are no cycles of length 1. By construction, every real root has at most one incident
edge. To prove the claim, it suffices to show that every imaginary root has at most one
incident edge as well. Suppose the real roots ϑ < ϑ′ are both adjacent to the imaginary
root ζ. We may assume w.l.o.g. that Im ζ > 0. Then, by construction, ϑ < ϑ′ ≤ Re ζ and
so |ϑ− ϑ′| < |ϑ− ζ|, a contradiction to N(ϑ) = ζ.

Our preceding deliberations have proved the following analogue to Theorem 3.19.

Theorem 3.83. Consider the subdivision tree T defined at the beginning of the section.

(i) T is finite and all its nodes lie on a terminal path.

(ii) There are four sets E1, . . . , E4 of pairs of roots of Ain with total cardinality not
exceeding n/2 such that the graph on the distinct complex roots of Ain with edge
set Ei satisfies conditions (i–iii) of Theorem 3.9 for any 1 ≤ i ≤ 4.

(iii) The sum P of the lengths of all terminal paths of T satisfies

P ≤
4∑

i=1

logρ

(∏

Ei

|I0|
|α− β|

)
+O(n log n), (3.67)

with each product ranging over the edges (α, β) ∈ Ei.

(iv) The number of all internal nodes that lie on a terminal path is at most P + 1.

The usual Descartes method for isolating simple real roots is a special case of its the-
oretical variant considered here. In particular, Theorem 3.83 can be used as a substitute
for Theorem 3.19 in the analysis of the Descartes method. Our new theorem is worse only
by a constant factor: When we estimate (3.67) with the generalized Davenport-Mahler
bound, its dominant factor, that is − log(sDiscn−r(Ain)

1/2/Mea(Ain)n−r−1), now comes
in multiplied by four. But of course, this is irrelevant for the asymptotic bounds in a
complexity analysis.
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We point out that the factor O(n2) from Proposition 3.79(i) turned into O(log n) in
Lemma 3.80, and ended up as the O(n log n) term in (3.67), which is codominant with
the O(n log n) term that comes in anyway when estimating (3.67) with the Davenport-
Mahler bound. Any power of n in Proposition 3.79(i) would lead to the same bound
on P in O-notation. In particular, the partial converse from §2.3.3, which gave rise to this
factor O(n2), works just as well as Obreshkoff’s partial converse from §2.3.2 that seemed
superior during the comparison in §2.3.5.
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Appendix A

Additions

A.1 Subdivision of (0,∞) and the Budan-Fourier Theorem

We recall our discussion of polar forms from §2.2.2 and take a homogeneous polar form F
of degree n. Evaluating it as F

[(
0
1

)n−i( 1
0

)i]
, see (2.5), gives the coefficient of

(n
i

)
Xi in

the dehomogenized polynomial F (X, 1). This resembles Proposition 2.20(i), and in this
regard, the basis (

(
n
i

)
Xi)ni=0 parallels a “Bernstein basis” for the interval (0,∞). The

purpose of this section is to explore the analogue of de Casteljau’s algorithm arising from
this parallelism. In particular, its variation-diminishing property will turn out to be the
classical Budan-Fourier Theorem.

1: procedure HomogDeCasteljau((f0 , . . . , fn),m)
2: (f0,0, f0,1, . . . , f0,n)← (f0, . . . , fn); // input goes to top side
3: for j from 1 to n do

4: for i from 0 to n− j do

5: fj,i ← fj−1,i +mfj−1,i+1;
6: od;
7: od;
8: (f ′0, f

′
1, . . . , f

′
n)← (f0,0, f1,0, . . . , fn,0); // left side

9: (f ′′0 , f
′′
1 , . . . , f

′′
n)← (fn,0, fn−1,1, . . . , f0,n); // right side

10: return ((f ′j)
n
j=0, (f ′′i )ni=0);

11: end procedure;

Proposition A.1. Let m 6= 0. Let F be a homogeneous polar form of degree n with
dehomogenized diagonal F (X) =

∑n
i=0 fi

(n
i

)
Xi. Consider the execution of the procedure

above invoked as ((f ′j)j , (f ′′i )i)← HomogDeCasteljau((fi)
n
i=0, m).

(i) We have fj,i = F
[(

0
1

)n−(i+j)(m
1

)j( 1
0

)i]
for 0 ≤ j ≤ n and 0 ≤ i ≤ n− j.

(ii) (X + 1)nF (m/(X + 1)) =
∑n

i=0 f
′
n−i

(n
i

)
Xi and F (X +m) =

∑n
i=0 f

′′
i

(n
i

)
Xi.

Proof. Claim (i) follows by induction, using the multiaffinity of F . Both equations in (ii)
follow from Lemma 2.13, using

f ′n−i = F
[(

0
1

)i(m
1

)n−i]
= F

[
(M ′

(
1
0

)
)i(M ′

(
0
1

)
)n−i

]
with M ′ =

(
0 m
1 1

)
,

f ′′i = F
[(

1
0

)i(m
1

)n−i]
= F

[
(M ′′

(
1
0

)
)i(M ′′

(
0
1

)
)n−i

]
with M ′′ =

(
1 m
0 1

)
.

For m = 1, we can thus compute (X + 1)nF (1/(X + 1)) and F (X + 1) simultaneously
with (n+1)n/2 additions and no multiplications, provided that F is represented in the ba-
sis (

(
n
i

)
Xi)ni=0. This may be useful for implementing the subdivision step in the Continued

Fractions method (see §3.1.2).
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The recurrence in HomogDeCasteljau( · , 1), namely fj,i ← fj−1,i + fj−1,i+1, resembles
that of DeCasteljau( · , 1/2), which is bj,i ← (bj−1,i+bj−1,i+1)/2. Thus, if f0,i = b0,n−i, then
fj,i = 2jbj,n−i. This is reflected by the different statements of Proposition A.1(ii) above
and Proposition 2.28(ii) on page 28: HomogDeCasteljau( · , 1) performs just a translation
X ← X + 1; DeCasteljau( · , 1/2) additionally scales the coefficients and thus performs a
subsequent homothetic transformation X ← 2X.

Proposition A.2. Let m > 0. Let F be a homogeneous polar form of degree n. Let k ≥ 0
denote the multiplicity of [m : 1] as a root of the homogeneous polynomial F (X,Y ). Then

var((F
[(

0
1

)n−i( 1
0

)i]
)ni=0) ≥ var((F

[(
0
1

)n−i(m
1

)i]
)ni=0)+k+var((F

[(
m
1

)n−i( 1
0

)i]
)ni=0).

The difference between both sides is an even number.

Proof by reference. The proof is completely analogous to that of Proposition 2.26 (page 26),
with the following changes: Instead of de Casteljau’s algorithm and the array bj,i, we
take its homogeneous counterpart and the array fj,i from above, whose elements satisfy
fj,i = 1 · fj−1,i +m · fj−1,i+1 with positive factors 1 and m. The invocation of Proposi-
tion 2.15 uses S = {

(
0
1

)
,
(

1
0

)
}.

Before Jacobi [Jac35, IV.] published the generalization of Descartes’ Rule to an arbitrary
affine open interval (see §2.2.3) that we used throughout Chapters 2 and 3, already Budan
and Fourier had extended Descartes’ Rule in that direction. Their bound is different,
we discuss it now. (For history and citations of the original sources see [RS02, §10.7].)
Originally, Budan and Fourier considered an open interval (c,m), but we give their result
in the refined form due to Hurwitz [Hur12]1 that is precise about the asymmetric roles of
the interval endpoints.

Theorem A.3 (Budan-Fourier). Let F (X) be a polynomial of degree n with real coeffi-
cients that has exactly p roots in the open interval (c,m), counted with multiplicities, and
a k-fold root at m. Let w = var(F (c), F ′(c), . . . , F (n)(c))−var(F (m), F ′(m), . . . , F (n)(m)).
Then w ≥ p+ k and w ≡ p+ k (mod 2). If all roots of F are real, then w = p+ k.

Descartes’ Rule of Signs is often presented as a corollary to this theorem for c = 0 and
m→∞; see, e.g., [RS02, §10.1] [BPR06, §2.2.1]. Following Schoenberg2 [Sch34], we take
the opposite point of view and use the variation-diminishing property of subdivision to
reduce the Budan-Fourier Theorem to Descartes’ Rule.

Proof of Theorem A.3. Observe that (c,m] = (c,∞) \ (m,∞). In the special case that all
roots of F are real, this theorem is an immediate consequence of Descartes’ Rule, which
gives the exact numbers of roots in (c,∞) and (m,∞), so we can just subtract them. In
the presence of imaginary roots, however, Descartes’ Rule only gives upper bounds, and
an argument is needed why the difference of two upper bounds gives an upper bound for
the difference.

By a suitable translation of the indeterminateX, we can reduce to the special case c = 0.
We can express w using Lemma 2.14 as follows:

w = var((F
[(

0
1

)n−i( 1
0

)i]
)ni=0)− var((F

[(
m
1

)n−i( 1
0

)i]
)ni=0).

1The main achievement of [Hur12] is to generalize the Budan-Fourier theorem to holomorphic functions.
2Isaac Jacob Schoenberg (1903–1990), Romanian-American mathematician widely celebrated as “father

of splines”. Interest in Descartes’ Rule led to his pioneering work [Sch30] on variation-diminishing trans-
formations. The Journal of Approximation Theory reports on his life and achievements in volumes 8

(1973), issue 1, pp. vi–ix, and 63 (1990), issue 1, pp. 1–2.
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Thus, Proposition A.2 implies that

w ≥ var((F
[(

0
1

)n−i(m
1

)i]
)ni=0) + k

with an even difference. On the other hand, Corollary 2.18 yields that

v := var((F
[(

0
1

)n−i(m
1

)i]
)ni=0) ≥ p.

with an even difference. Combining these two statements, the claim follows.

Corollary A.4. Let v, w and k be as above. Then w − k ≥ v and w − k ≡ v (mod 2).

For general degree n, this proof of the Budan-Fourier Theorem and its pivotal inequality
w ≥ v were first given by Schoenberg [Sch34]. He also uses the variation-diminishing
property of subdivision, but lacking de Casteljau’s algorithm, he has to prove it first in a
rather technical fashion, drawing on his famous result about variation-diminishing linear
transformations [Sch30]. Also, Schoenberg’s argument, just like the formulation of the
variation-diminishing property common today (see, e.g., [BPR06, Prop. 10.41]), does not
account precisely for the contribution of the multiplicity k. We have achieved this through
the respective improvement in our twin Propositions 2.26 and A.2.

We conclude with a concrete example for which the Budan-Fourier theorem counts
too much: F (X) = X3 + X. The sequence (F (x), . . . , F ′′′(x)) exhibits the sign pattern
(−,+,−,+) for x < 0 and (+,+,+,+) for x > 0. Hence w = 3 for any interval (c,m]
containing the simple root 0 in its interior. By contrast, v = 1 = p if the interval (c,m)
around zero is small enough, as we saw in §2.3.
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complètes d’Augustin Cauchy, IIe Série, vol. 3. Gauthier-Villars, Paris, 1897.

[Cau29] Augustin-Louis Cauchy. Exercices de Mathématiques, vol. 4, chap. 7: Sur la
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Frères, Paris, 1829. Reprinted in: Œuvres complètes d’Augustin Cauchy,
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[Fuj16] Matsusaburô Fujiwara. Über die obere Schranke des absoluten Betrages der
Wurzeln einer algebraischen Gleichung. Tôhoku Mathematical Journal (1st
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Szegő, Gábor, 36

Taylor shift, 67
classical, 68

fast, 69

Thom encoding, 12

tortoise, 89
tsqd-bound, 98, 115
two-circle theorem, 32

for preimage (0,∞), 16

Uspensky algorithm, 49

Vandermonde matrix, 54
Vandermonde’s convolution formula, 79
variation-diminishing property, 26, 124

algorithmic consequences, 50, 70
Vincent’s method, 49
Vincent, A. J. H., 16, 22, 32, 49

Wang, Xiaoshen, 14
Westerfield, E. C., 43, 45
Wolpert, Nicola, 47, 108

Y -regular, 110
Yap, Chee, 10, 47, 56, 62

Zeno of Elea, 89
Zeno trap, 89
Zimmermann, Paul, 52, 75

137


