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Abstract

This work comprises new approaches that are developed to support structure-based drug
design in cases where side-chain conformations are uncertain, be it through �exibility or
the devised modeling procedure. A knowledge-based scoring function ROTA is derived
that can successfully identify correct rotamers and near-native ligand placements. ROTA
is also able to reliably estimate the binding a�nity of a protein-ligand complex, even if the
conformations of one or both binding partners contain small errors. The side-chain predic-
tion algorithm IRECS is developed for generating protein models that contain ensembles of
rotamers for �exible side chains. IRECS is guided by ROTA and can accurately predict sin-
gle and multiple side-chain conformations that represent the �exibility and conformational
space of the respective side chains. IRECS is also able to include knowledge of side-chain
conformations from a homologous protein used as a template directly in its optimization pro-
cedure. A modeling and docking pipeline is constructed that comprises IRECS, ROTA and
the docking program FlexE. This pipeline is tested on 40 targets of the screening database
DUD, where it is shown that the application of ROTA and IRECS can signi�cantly increase
the performance of screening experiments in cases in which side chains are �exible or were
modeled.

Zusammenfassung

Diese Arbeit stellt neue Methoden vor, die die strukturbasierte Suche nach Wirksto�en
in solchen Fällen unterstützen soll, in denen Seitenkettenkonformationen durch Flexibilität
der Seitenketten oder durch die verwendete Modellierungstechnik nicht sicher bestimmt
werden können. Die Bewertungsfunktion ROTA wurde abgeleitet um richtige Rotamere
und Ligandplazierungen zu erkennen. ROTA ist auÿerdem in der Lage die Bindungsa�nität
eines Protein-Ligand-Komplexes zuverlässig zu bestimmen, auch wenn die Konformationen
der Bindungspartner geringe Fehler aufweisen. Das Programm IRECS wurde entwickelt
um Proteinmodelle zu erzeugen, die Ensembles von Rotameren für �exible Seitenketten
enthalten. IRECS verwendet ROTA zur Bewertung von Proteinkonformationen und kann
zuverlässig Ensembles von Rotameren bestimmen, die die Flexibilität und den konformellen
Raum der jeweiligen Seitenketten repräsentieren. IRECS ist auch in der Lage zusätzliche
Informationen über Seitenketten eines homologen Proteins, das der Modellierung als Vorlage
diente, während seiner Optimierungsprozedur zu nutzen. IRECS, ROTA und das Docking-
programm FlexE wurden zu einer Modellierungs- und Dockingpipeline vereinigt und auf
den 40 Proteinen der Screening-Datenbank DUD getestet. Es konnte gezeigt werden, dass
in Fällen mit �exiblen oder modellierten Seitenketten die Anwendung von ROTA und IRECS
die Leistung von Screening-Experimenten deutlich steigern kann.

iii



Danksagung

Ich möchte an dieser Stelle all denen herzlich danken, die mich bei der Anfertigung dieser
Arbeit in der einen oder anderen Weise unterstützt haben. Mein Dank gilt zuerst Professor
Thomas Lengauer, der mich Anfang 2005 in seine Arbeitsgruppe Computational Biology and
Applied Algorithms aufgenommen hat und meine Promotion betreut hat. Gleichfalls möchte
ich Professor Hans-Peter Lenhof für seine Bereitschaft danken diese Arbeit zu begutachten.
Ich möchte allen Mitgliedern unserer Arbeitsgruppe danken für viele interessante Diskussio-
nen und viele kleine und gröÿere Hilfestellungen, die ich erfahren konnte. Im Besonderen
möchte ich Iris Antes dafür danken, daÿ sie mich während meiner Promotion wissenschaftlich
begleitet und beraten hat. Auch Andreas Ste�en und Andreas Kämper danke ich, da sie
mir mit vielen Nachhilfestunden in organischer Chemie geholfen und nicht mit konstruktiver
Kritik und motivierenden Kommentaren gespart haben.

Ich möchte Christian Lemmen, Holger Clauÿen und Marcus Gastreich von der Firma
BioSolveIT danken, denn sie haben mich mit der Chemieinformatik vertraut gemacht und
waren bei der Suche nach einem geeigneten Thema für meine Promotion sehr hilfreich.
Ich möchte mich und im Namen meiner Ehefrau Julia und unseres Sohnes Dominik bei
Brian Shoichet und seiner Arbeitsgruppe für die erfahrene Gastfreundschaft während meines
Forschungsaufenthalts an der University of California, San Francisco danken. Ebenso möchte
ich John Irvin und seiner Familie sowie Modesto und Caren Tamez für die alltägliche Hilfe
und Gesellschaft fernab der Heimat danken. Diese Forschungsreise wäre nicht möglich gewe-
sen ohne die �nanzielle Unterstützung des Deutschen Akademischen Austausch Dienstes,
dem ich dafür danken möchte. Auch für die Unterstützung von Ruth Schneppen-Christmann
in Verwaltungsangelegenheiten und Joachim Büch bei IT-Problemen möchte ich mich her-
zlich bedanken. Auch möchte ich André Altmann, Iris Antes, Matthias Dietzen, Andreas
Kämper und Ingolf Sommer danken, die diese Arbeit vorab gelesen haben und mir wertvolle
Ratschläge zur Korrektur geben konnten.

Abschlieÿend möchte ich mich herzlich bei meiner ganzen Familie bedanken. An erster
Stelle meiner Frau, die mich immer bedingungslos unterstützt hat. Unserem Sohn Dominik
verdanke ich viele heitere Stunden, aus denen ich viel Kraft für meine Arbeit schöpfen
konnte. Zuletzt danke ich meinen Eltern und Schwiegereltern, die mir mit Rat und Tat zur
Seite standen.

iv



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Basic Techniques and Related Work 5

2.1 Relevant Topics in Structural Biology . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Molecular Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Protein-Ligand Complexes . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Protein Structures and Models . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Scoring Functions for Molecular Modeling and Docking . . . . . . . . . . . . . 10
2.2.1 Potentials of Mean Force . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Existing Scoring Functions . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Homology Modeling of Protein Structures . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Generation of Complete Protein Models . . . . . . . . . . . . . . . . . 16
2.3.2 Side-Chain Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Protein-Ligand Docking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Docking Approaches Ignoring Protein Flexibility . . . . . . . . . . . . 21
2.4.2 Docking Approaches Incooperating Protein Flexibility . . . . . . . . . 24
2.4.3 Docking into Homology Models . . . . . . . . . . . . . . . . . . . . . . 25

3 The ROTA Scoring Function 29

3.1 The ROTA Structure Libraries for Side-Chain Prediction . . . . . . . . . . . . 30
3.2 The ROTA Structure Libraries for Docking . . . . . . . . . . . . . . . . . . . 31

3.2.1 Extraction of Relevant Complexes . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Extraction of Representative Complexes . . . . . . . . . . . . . . . . . 33
3.2.3 Generation of Complexes for NLIB . . . . . . . . . . . . . . . . . . . . 34
3.2.4 Generation of Complexes for DLIB . . . . . . . . . . . . . . . . . . . . 35

3.3 ROTA Atom Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Ligand Atom Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Protein Atom Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Derivation of the ROTA Potentials . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Properties of the ROTA Scoring Function . . . . . . . . . . . . . . . . . . . . 39
3.6 Identi�cation of Native Side-Chain Conformations . . . . . . . . . . . . . . . 41
3.7 Evaluation of ROTA: Guiding a docking tool . . . . . . . . . . . . . . . . . . 43

v



3.7.1 Ranking of Ligand Poses . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7.2 Prediction of Binding A�nities . . . . . . . . . . . . . . . . . . . . . . 44

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Flexible Side-Chain Prediction with IRECS 49

4.1 Probabilistic Modeling of Side-Chain Flexibility . . . . . . . . . . . . . . . . . 49
4.2 The Optimization Algorithm IRECS . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Sampling the Full Rotamer Space . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Side-Chain Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.3 The E�ective Energy Approach . . . . . . . . . . . . . . . . . . . . . . 53
4.2.4 Minimizing the E�ective Energy . . . . . . . . . . . . . . . . . . . . . 54
4.2.5 Output of the Final Model . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Measures for Comparison and Evaluation . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Root Mean Square Deviation . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 Chi-Match Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.3 Relative Solvent Accessibility . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Prediction of Rigid Side Chains . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.1 Matching Dihedral Angles of X-Ray Structures . . . . . . . . . . . . . 58
4.5.2 Comparison with Other Tools for Side-Chain Prediction . . . . . . . . 60

4.6 Prediction of Flexible Side Chains . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6.1 Distribution of IRECS Rotamers . . . . . . . . . . . . . . . . . . . . . 64
4.6.2 Accuracy of Predicted Rotamer Ensembles . . . . . . . . . . . . . . . . 64

4.7 Application: Analyzing HCV Drug Resistance . . . . . . . . . . . . . . . . . . 67
4.7.1 Docking VX-950 to HCV protease NS3-4A . . . . . . . . . . . . . . . . 67
4.7.2 Rotamer Analysis of Val36 Mutants . . . . . . . . . . . . . . . . . . . 69

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Side-Chain Prediction with Template Knowledge 71

5.1 The Conservation Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 The Rotamer-Lock Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3 Data Set Assembly: Selection of Homologous Protein Pairs . . . . . . . . . . 74
5.4 Generation of Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4.1 Selection of Features for Classi�cation . . . . . . . . . . . . . . . . . . 76
5.4.2 Benchmarking Single Feature Performance . . . . . . . . . . . . . . . . 78

5.5 Performance of Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6 Accuracy of IRECS with the Rotamer-Lock Algorithm . . . . . . . . . . . . . 80
5.7 Potential and Limitations of the Approach . . . . . . . . . . . . . . . . . . . . 82

6 Docking with Flexible Side Chains 83

6.1 The Modeling and Docking Pipeline . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.1 Step 1: Extraction of Experimental Data . . . . . . . . . . . . . . . . 85
6.1.2 Step 2: Building Protein Models with IRECS . . . . . . . . . . . . . . 85
6.1.3 Step 3: Docking of Ligands with FlexE and FlexX . . . . . . . . . . . 87

vi



6.1.4 Step 4: Evaluation of Docking Performance . . . . . . . . . . . . . . . 90
6.2 Evaluation: Docking into Protein Models Generated with IRECS . . . . . . . 91

6.2.1 Redocking using X-ray Structures and IRECS Models . . . . . . . . . 91
6.2.2 Screening of the Target-Speci�c Databases for Active Compounds . . . 98
6.2.3 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Discussion 107

8 Conclusion 113

Bibliography 115

A Docking and Screening Results of the DUD Targets 131

A.1 Enrichment Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B Mapping between PDB Atom Names and ROTA Atom Types 146

C Protein Structures for Training and Testing 149

C.1 IRECS training set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
C.2 IRECS test set A: Single side-chain conformations . . . . . . . . . . . . . . . 149
C.3 IRECS test set B: Multiple side-chain conformations . . . . . . . . . . . . . . 149
C.4 Rotamer lock test and training set . . . . . . . . . . . . . . . . . . . . . . . . 150

C.4.1 Sequence identity 80-90 . . . . . . . . . . . . . . . . . . . . . . . . . . 150
C.4.2 Sequence identity 70-79 . . . . . . . . . . . . . . . . . . . . . . . . . . 150
C.4.3 Sequence identity 60-69 . . . . . . . . . . . . . . . . . . . . . . . . . . 150
C.4.4 Sequence identity 50-59 . . . . . . . . . . . . . . . . . . . . . . . . . . 150
C.4.5 Sequence identity 40-49 . . . . . . . . . . . . . . . . . . . . . . . . . . 151
C.4.6 Sequence identity 30-39 . . . . . . . . . . . . . . . . . . . . . . . . . . 151

C.5 ROTA training set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

vii



List of Tables

2.1 Enrichment factors achieved on eight drug targets by ten docking programs . 24

3.1 Properties of the ROTA decoy sets for side-chain prediction . . . . . . . . . . 30
3.2 ROTA atom types for ligand atoms . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Number of native structures at rank one among di�erent decoy sets . . . . . 41
3.4 Average Z-score of native structures among di�erent decoy sets . . . . . . . . 41
3.5 Correlation coe�cients between computed score and native-decoy RMSD in

di�erent decoy sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Percentages of native ligand poses ranked on top with di�erent RMSD thresh-

olds using docked ligand poses from the test set of Wang et al. . . . . . . . . 44
3.7 Performance of ROTA and 15 other scoring functions . . . . . . . . . . . . . . 45

4.1 Comparison of side-chain prediction performance on the target backbone . . . 61
4.2 Accuracy of IRECS using di�erent ROTA potentials and simpli�cations . . . 62
4.3 Total numbers of compared rotamer ensembles of di�erent sizes . . . . . . . . 64
4.4 χ1+2 accuracy of rotamer ensembles predicted with IRECS . . . . . . . . . . . 65

5.1 Total numbers and percentages for all side chains in the data set . . . . . . . 75
5.2 AUC for ten di�erent classi�cation algorithms . . . . . . . . . . . . . . . . . 76
5.3 Overview of all features used in the classi�cation . . . . . . . . . . . . . . . . 77
5.4 Features ranked by their information gain ratio . . . . . . . . . . . . . . . . . 78
5.5 Performance of decision trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6 Prediction accuracy of IRECS for di�erent amino acids . . . . . . . . . . . . 81

6.1 Properties of the protein targets of the DUD . . . . . . . . . . . . . . . . . . . 86
6.2 Accuracy of the modeled side chains in the active sites of the DUD targets . 87
6.3 Percentage of side chains with correct χ1,2 dihedral angles in IRECS models. . 88
6.4 Redocking results for DUD targets considering the top-ranked placement . . . 92
6.5 Redocking results for DUD targets considering all placements . . . . . . . . . 93
6.6 Redocking results of FlexX and FlexE on IRECS models considering rank one 94
6.7 Enrichment factors for the DUD targets of the top 1% ranked databases . . . 99
6.8 Levels of enrichment factors for multiple screening setups . . . . . . . . . . . 105
6.9 Runtimes of screening experiments . . . . . . . . . . . . . . . . . . . . . . . . 105

viii



List of Figures

2.1 Building blocks of a protein . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Di�erent visualizations of HIV protease . . . . . . . . . . . . . . . . . . . . . 7
2.3 Complex of HIV protease with the inhibitor KNI-272 (kynostatin) . . . . . . 8
2.4 Common rotamer states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Internal representation of protein-ligand interactions in FlexX and FlexE for

aldose reductase and the inhibitor tolrestat . . . . . . . . . . . . . . . . . . . 22

3.1 ROTA derivation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Distortion of a complex conformation . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Distance-dependent pair potentials of DrugScore for N.pl3 and O.co2 Sybyl

atom types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Distance distributions and ROTA potentials . . . . . . . . . . . . . . . . . . . 40
3.5 Binding a�nity vs. ROTA scores . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Flowchart of the IRECS algorithm . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Side chain with multiple rotamers colored by Boltzmann probabilities . . . . . 55
4.3 Excerpt from a PDB �le for a residue modeled with IRECS . . . . . . . . . . 56
4.4 Prediction accuracy for side chains of di�erent amino acids. . . . . . . . . . . 59
4.5 Average prediction accuracy of IRECS for di�erent rotamer densities and

scoring functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Average number of rotamers assigned to di�erent amino acid types . . . . . . 63
4.7 IRECS model of human UDP-galactose 4-epimerase . . . . . . . . . . . . . . . 66
4.8 Visualizations of the active site of HCV protease NS3-4A. . . . . . . . . . . . 68
4.9 Mutants of Val36 in HCV Protease a�ecting the conformation of Phe43 . . . 69

5.1 Flowchart of the rotamer-lock algorithm . . . . . . . . . . . . . . . . . . . . . 73
5.2 Example for an application of the rotamer-lock algorithm . . . . . . . . . . . 74
5.3 Accuracy of IRECS using the rotamer-lock algorithm The accuracy of IRECS

is shown for di�erent target/template pairs grouped by their sequence identity
when (i) using no additional knowledge from a template structure, (ii) using
the conservation rule and (iii) the rotamer-lock algorithm to protect rotamers
that are similar to the correpsonding template side chain from IRECS removal. 80

6.1 Data �ow of the modeling and docking pipeline . . . . . . . . . . . . . . . . . 84
6.2 Side chains in the active site of COMT . . . . . . . . . . . . . . . . . . . . . 97

ix



6.3 Side chains in the active site of the glutocorticoid receptor . . . . . . . . . . 101
6.4 Ranking of the top 20 compounds after screening of HMGR . . . . . . . . . . 102
6.5 Ligands in the active site of FGFr1 interacting with the �exible side chain

Lys-514 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.1 Enrichment plots for ACE, AChE and ADA . . . . . . . . . . . . . . . . . . . 132
A.2 Enrichment plots for ARL2, AmpC and AR . . . . . . . . . . . . . . . . . . . 133
A.3 Enrichment plots for CDK2, COMT and COX-1 . . . . . . . . . . . . . . . . 134
A.4 Enrichment plots for COX-2, DHFR and EGFr . . . . . . . . . . . . . . . . . 135
A.5 Enrichment plots for ERagonist, ERantagonist and FGFr1 . . . . . . . . . . . . . 136
A.6 Enrichment plots for FXa, GART and GPB . . . . . . . . . . . . . . . . . . . 137
A.7 Enrichment plots for GR, HIVPR and HIVRT . . . . . . . . . . . . . . . . . . 138
A.8 Enrichment plots for HMGR, HSP90 and InhA . . . . . . . . . . . . . . . . . 139
A.9 Enrichment plots for MR, NA and P38 MAP . . . . . . . . . . . . . . . . . . 140
A.10 Enrichment plots for PARP, PDE5 and PDGFrB . . . . . . . . . . . . . . . . 141
A.11 Enrichment plots for PNP, PPARg and PR . . . . . . . . . . . . . . . . . . . 142
A.12 Enrichment plots for RXRa, SAHH and SRC . . . . . . . . . . . . . . . . . . 143
A.13 Enrichment plots for thrombin, TK and trypsin . . . . . . . . . . . . . . . . . 144
A.14 Enrichment plots for VEGFr2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

x



Chapter 1

Introduction

Molecules can recognize each other by having complementary shapes and chemical interac-
tion patterns. Nature devices this ability to associate special chemical functions to pairwise
interactions of molecules in a cell: like a key �ts only in its own lock, two molecules can only
bind to each other if they have complementary chemical and geometrical properties. Us-
ing these mechanism molecules can perform metabolic tasks and participate in higher-level
cellular processes. In 1894 Emil Fischer was the �rst to connect the key-lock principle to
targeted molecular interaction [52]:

"Um ein Bild zu gebrauchen, will ich sagen, dass Enzym und Glucosid wie Schloss
und Schlüssel zueinander passen müssen, um die chemische Wirkung aufeinander
ausüben zu können."

This principle is the foundation of structure-based drug design: if the geometrical and
chemical structure of a protein is known, one can construct a chemical compound, a drug,
which has complementary chemical and geometrical properties to the protein binding site
like the natural substrate does [16]. When a drug binds to its target protein, it imitates
the natural substrate like a pick lock imitates a key and can block the binding site of the
protein for further interactions.

A prominent technique known as protein-ligand docking, short docking in the context of
this work, can support the drug design process by modeling the conformation of a protein-
ligand complex and predicting the binding a�nity between both binding partners. Any
small molecule that binds to a protein is considered as a ligand here. The two major compu-
tational issues of docking are sampling of the relevant conformations of the protein-ligand-
complex and scoring the molecular interactions between ligand and protein for each putative
conformation of the complex. The most relevant application of docking programs in pharma-
ceutical industry is to run structure-based virtual screening experiments. Such experiments
are used to �lter whole chemical libraries with thousands of compounds for a small set of
putative protein (non-covalent) binders. Those compounds with highest predicted a�nity
to the target are used as lead structures in further steps of the drug design process. Current
docking programs can dock single ligands within minutes to seconds, which enables running
screening experiments within a few days on small computer clusters. This speed is achieved
using fast geometric algorithms like geometric hashing or pose clustering that create a set of
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2 CHAPTER 1. INTRODUCTION

putative placements of the ligand into the active site of the protein. However, most of these
fast algorithms can only be applied e�ciently under the rigid-protein-assumption. This as-
sumption requires the protein to provide a �xed geometric sca�old for the �nal complex
conformation. The protein therefore must not change upon ligand binding, just as it was
expressed through the key-lock principle. However, the key-lock principle was extended by
Daniel Koshland in 1958 [115]. His induced-�t theory entails three postulates:

'... (a) a precise orientation of catalytic groups is required for enzyme action;
(b) the substrate may cause an appreciable change in the three dimensional
relationship of the amino acids at the active site; and (c) the changes in protein
structure caused by a substrate will bring the catalytic groups into the proper
orientation for reaction, whereas a non-substrate will not.'

Such changes can be easily observed by comparing experimentally derived 3D models
of protein-ligand complexes such that the same protein binds di�erent ligands [16]. For
many protein-ligand complexes it has been observed that they can only be constructed
successfully, if the docking program takes the protein �exibility into account. However, the
induced-�t theory is in clear con�ict with the rigid-protein assumption, and this has two main
consequences for docking programs that simulate induced-�t e�ects: the �rst consequence
is reduced speed, since the conformational space of the protein must also be sampled. The
other concern is that as few irrelevant conformations of the protein should be sampled as
possible, since this would enable a docking program to easily adapt the protein conformation
to any screened compound. This would interfere with postulate (c) of Koshland and result in
many wrong false-positive predicted binders that hamper the identi�cation of true binders.

1.1 Motivation

This thesis addresses the problems of (i) �nding relevant protein conformations for modeling
induced-�t e�ects and (ii) appropriately scoring the interactions of proteins and ligands
during binding. This thesis also places a special focus on the side chains of a protein
interacting with the ligand. Side chains are much more �exible than the protein backbone
and � as postulated by Koshland � the side chains of the active site are usually able to rotate
and arrange themselves toward the ligand, like the pins of a modern cylinder lock can move
to recognize a key. Docking methods can often ignore this issue if a protein model is provided
such that the conformation of a binding ligand is already imprinted in the conformations
of the side chains. However, such docking methods are especially prone to conformational
errors in protein models. An analysis of the protein models submitted to a recent Critical
Assessment of Structure Prediction (CASP) contest [149] revealed that a high ratio of side
chains in the active site was assigned wrong conformations. This leads to the prediction
of false-positive protein-ligand contact interfaces [38], which in turn renders such models
almost useless for docking approaches that do not take side-chain �exibility into account.
This thesis therefore aims to answer the following questions:
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1. How can side-chain �exibility be predicted and modeled?

2. How can correct and wrong conformations of a side chain be distinguished?

3. How can side-chain �exibility be included during docking so that a high number of
protein binders can be identi�ed with virtual screening?

The limitation to side-chain �exibility was chosen right from the start to simplify com-
putational issues. There exists a number of proteins for which such a limitation during
modeling and docking is admissible, but many proteins also require the inclusion of back-
bone �exibility. This issue is therefore discussed in the context of the methods presented in
this work and � if reasonable � extensions are proposed that allow for taking both side-chain
and backbone �exibility into account.

1.2 Overview

Chapter 2 gives a short introduction to the relevant topics of structural and computational
biology and lists evaluation measures that are used throughout this work. An overview is
then given on scoring of protein-ligand interactions, modeling of protein conformations and
docking. Chapter 3 presents the ROTA scoring function together with the applied derivation
technique and the results of a comparative evaluation. Chapter 4 addresses the �rst two
questions of the previous section and describes the side-chain prediction program IRECS
that can also handle �exible side chains. Chapter 5 comprises an extension of IRECS that is
meant to increase the accuracy of IRECS to cases in which the protein backbone was modeled
using a similar protein as structural template. In Chapter 6 IRECS and ROTA are combined
with FlexE to a complete modeling and docking pipeline that addresses the third question of
the previous section. This pipeline is then tested and optimized using a large set of screening
experiments. The sequence of these chapters follows the chronology of di�erent steps taken
during the project with the exception that the ROTA potentials for docking presented
in Chapter 3 were derived previously of the screening experiments that are described in
Chapter 6. The �nal discussion in Chapter 7 aims to identify application scenarios for
which the presented methods appear to be most useful and discusses inconsistencies in data
preparation and possible future extensions. Chapter 8 summarizes the achievements in
methodology and results obtained in this work.
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Chapter 2

Basic Techniques and Related Work

This chapter summarizes the tasks, materials and basic computational techniques that are
relevant for structure-based drug design in general and for this work in particular. Most
tasks have been known for long and so there are plenty of methods that try to give solutions.
Thus, a selection of these approaches is presented here which is based on the impact of the
selected approaches on the �eld, but also on the ability to provide a reference for comparison
with methods developed in this work.

2.1 Relevant Topics in Structural Biology

A short review is given here that covers topics in structural biology that are most relevant
for this work. A more detailed overview is given by Brandon and Tooze [22]. The following
section describes the molecular entities of this work and their most important properties.

2.1.1 Molecular Entities

Proteins

Proteins are vitally important for cells � they participate in nearly every cellular process.
From the chemist's point of view proteins are polypeptides, which consist of a sequence of
amino acids that are assembled into long chains according to the genetic code of a given
RNA sequence. The genetic code allows assembling proteins from 20 di�erent standard
amino acid types (although exceptions allow for more). Amino acids consist of a constant
backbone part and a variable side-chain part, which can have di�erent chemical properties,
e.g. polar or apolar. By these properties the sequence of amino acids in the chain determines
the structure, dynamics and functions of the overall protein (see Figure 2.1(a) for an example
of a small peptide). Proteins can assume multiple spatial conformations, in which the side
chains are usually much more �exible than the protein backbone. With the exception of
proline, side chains are connected only through a single covalent bond between the Cβ
and Cα (see Figure 2.1(b)) to the remaining protein and are thus free to rotate. The
�exibility of most side chains is therefore mainly limited by non-covalent interactions with
their environment. The di�erent conformations that a side chain is likely to adopt are called
rotamers, the short form of 'rotameric isomers'. Rotamers are formed by internal rotations

5
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(a) (b)

Figure 2.1: Building blocks of a protein. (a) Glycine-phenylalanine-glycine peptide,
the grey area highlights the backbone part. (b) Side chain of arginine.

represented by certain values of the dihedral angles (χ1-χ4, see Figure 2.1(b)) of a side chain.
Proteins adopt various shapes to ful�ll their manifold functions, e.g. as channels in the cell
membrane, molecular motors, scissors, vises or transporters. They usually consist of many
thousand atoms, which complicates the computation of pairwise interactions between those
atoms. As a working assumption for docking programs, the relevant proportion of a protein
for binding a ligand can be reduced to the so-called binding pocket or active site.

Ligands

All small molecules that bind to proteins � small natural substrates and drug candidates
� are considered as ligands here. A molecule is small if it contains only about ten to
twenty heavy atoms (all non-hydrogen atoms are usually considered as heavy atoms). Drug
candidates are small molecules that bind to a target protein and ful�ll certain requirements
that concern their toxicity, absorption, metabolism, distribution in the body and excretion.
Lipinski and coworkers [132] introduced a rule � the so-called rule of �ve � which sets
constraints on the number of hydrogen-bond donors and acceptors, the molecular weight
and the lipophilicity of a compound to be drug-like. This de�nition also includes small
peptides (less than ten amino acids). Ligands can be highly �exible, and then sampling
their many conformations requires much computational e�ort. Compared to proteins that
are made up of twenty well-understood building blocks, the chemical space of ligands is
more diverse [131]. This complicates the de�nition of a comprehensive scheme for scoring
the non-covalent interactions which ligands can establish.

Cofactors are a special class of ligands and are often present in the active site where they



2.1. RELEVANT TOPICS IN STRUCTURAL BIOLOGY 7

(a) (b)

Figure 2.2: Di�erent visualization of HIV protease (PDB ID: 1hpx). (a) All atoms
displayed with spheres that represent their van der Waals radius (white=hydrogen,
grey=carbon, blue=nitrogen, red=oxygen, yellow=sulfur). Hydrogen atoms are only
shown for the ligand. (b) Secondary structure elements (helices, sheets and loops) of
HIV protease are displayed. HIV protease is a dimer (green and blue chains), the �aps
on top of the ligand are �exible and ment to 'cut' a peptide strand like scissors.

catalyze chemical reactions. Cofactors can also be single metal ions, which carry charges that
enable them to exert strong attractive forces upon polar parts of ligands. These properties
designate cofactors as being frequent key players in forming special protein-ligand complexes.

Solvent

All the previously introduced molecules are surrounded by water molecules in a cell. Water
molecules can solvate other polar molecules by creating dipole interactions with them, the
strongest being a hydrogen bond. The polarity of molecular groups and their ability to form
hydrogen bonds determines whether they are hydrophilic (attract water) or hydrophobic
(repel water). Two important processes that are involved in forming protein-ligand com-
plexes are (i) establishing one or more hydrogen bonds between ligand and protein (which
results in a partial desolvation of the ligand and the active site) and (ii) orienting hydropho-
bic parts of the ligand towards hydrophobic surface patches of the protein to keep water
away from these areas, usually enabling the removed water molecules to create additional
hydrogen bonds in their new environment. Many issues hinder the explicit handling of water
molecules in time-critical modeling approaches. Such issues include their number, their mo-
bility and their ability to reorientate easily. For that reason, water molecules are not treated
as explicit entities in many modeling studies [124] as well as in this work, but solvent e�ects
are included implicitly into the model of protein-ligand interactions.

2.1.2 Protein-Ligand Complexes

A protein o�ers binding pockets to its ligands that are complementary to the respective
ligands in both their shapes and chemical properties. With respect to the complementarity
of shape, the repulsive forces between atoms are most important, as they determine the
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(a) (b)

Figure 2.3: Complex of HIV protease with the inhibitor KNI-272 (kynostatin). (a) The
surface of the protein is colored by preferences for electrostatics interactions. Charges
are computed with the Amber 99 [221] force �eld and projected on the protein surface,
whereas colored patches (red=positive, blue=negative) denote polar regions and white
patches apolar protein regions. (b) The active site is displayed with ligand, water
molecules (only oxygen atoms) and protein residues that interact with the ligand.
Strong polar interactions are marked with dotted lines.

space taken by each atom and which space remains available for the ligand atoms. Among
the electrostatic interactions that hold protein and ligand together, dipole interactions or
interactions between complementary charged parts of the molecules [53] are all short-ranged
interactions. Also, non-polar surfaces of proteins and ligands can attract each other in
solution: since water molecules located at these hydrophobic surfaces are limited in their
ability to establish hydrogen bonds, the strength of the binding can increase as the water
molecules are pushed away by the ligand from these areas (this process is called desolvation),
allowing them to build more hydrogen bonds with the surrounding solvent.

Usually, its �exibility enables the ligand to take on a conformation that complements the
shape of the binding pocket and realize the interactions with the protein such as to minimize
the free energy of binding. The protein itself is less �exible but, as stated in the introduction,
the so-called induced-�t e�ects facilitate rearranging terminal hydrogen atoms, side chains or
�exible loops to maximize complementarity of shape and interaction patterns, at the cost of
spending energy to implement these conformational changes. Additionally, entropic e�ects
play a role as the ligand looses degrees of freedom for translation, rotation and internal
rotations upon binding (as does the protein), whereas the released water molecules gain
degrees of freedom.

The total strength of binding or binding a�nity is measured by the binding free energy
∆Gbind which is the di�erence between the free energy of the molecular system before binding
and the free energy of it after binding:

∆Gbind = Gbound −Gunbound (2.1)
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∆Gbind can be determined experimentally by measuring of the inhibition constant ki
which is the ratio of the on-rate kon and the o�-rate ko� of the binding process [24] (R is
the gas constant and T the temperature):

∆Gbind = −RT ln
(
kon
ko�

)
= −RT ln ki (2.2)

2.1.3 Protein Structures and Models

The central prerequisite for a successful docking run is a 3D model of the target protein
that has su�cient quality. Such models can either be derived from experimental data or can
be generated with computational methods. However, the accuracy of atom coordinates is a
crucial issue for a docking run to succeed. If the model is not accurate enough, especially with
respect to the position of atoms in the active site, the docking problem becomes a much
harder task and special methods must be applied to increase the chance for a successful
docking. Interestingly, these methods are closely related to those which are used for taking
protein �exibility into account, which are discussed in Section 2.4.2. In the literature, it
is common to use the term structure for a 3D model of a protein that is derived directly
from experimental data. In most cases these are data from X-ray crystallography. Usually
these models are the best source of information that one can get for the respective proteins,
and therefore it is common sense to identify this model with the native conformation of
the protein if the experimental method is known to produce highly accurate models. In
contrast to this, the term model is usually applied to a protein structure generated by
computer methods without experimental structure data on that protein. Although both
terms actually denote a 3D model of the protein atom coordinates, this work sticks to this
formalism for reasons of consistency.

X-Ray Structures from the Protein Data Bank

To date, X-ray crystallography provides 3D models of protein structures suited best for
docking. The Protein Data Bank (PDB) [10, 11] is the largest source for publicly avail-
able protein structures solved by X-ray crystallography. Starting in 1972 with only a few
deposited structures, the PDB contained more than 40,000 structures of proteins in June
2007. Most of the structures were resolved using X-ray crystallography (34,835 structures in
June, 86.1%). The remaining structures were either resolved by nuclear magnetic resonance
spectroscopy (NMR) (5,424 total, 13.4%), cryo-electron microscopy (EM) (101 total, 0.2%)
or other methods (81 total, 0.2%). Although X-ray structures provide high-accuracy data
of protein atom coordinates, these data do not provide perfect models [2]. The accuracy of
coordinates of di�erent atoms of a protein in a 3D structure depends on many factors like
the type of protein or the re�nement method. Given average Debye-Waller factors (also:
temperature or B factors, a de�nition is given by Rhodes [176]) usually ranging from 5 Å2

to 60 Å2 (taken from the WHAT CHECK [82] server documentation1) for buried atoms,
displacement of individual atoms through vibration in crystallized proteins is assumed to

1http://swift.cmbi.ru.nl/gv/pdbreport/checkhelp/explain.html#bfac

http://swift.cmbi.ru.nl/gv/pdbreport/checkhelp/explain.html#bfac
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be within 0.25 Å and 1.0 Å (RMS displacement of di�erent B-factors [175]: B factor of 5 ≡
0.25 Å, 20 ≡ 0.5 Å , 79 ≡ 1.0 Å).

There are also a number of errors in X-ray structures that result from insu�cient ex-
perimental data (electron density maps) or unresolved discrepancies between the gener-
ated model and the experimental data [34, 108]. Such errors concern the conformations
of side chains (especially histidine, asparagine, glutamine [226, 231] and surface residues),
the identity of non-protein atoms, the position of solvent molecules, tautomeric states of
ligands (since hydrogen atoms are usually not resolved), falsely connected secondary struc-
ture elements, and others. Moreover, crystal packing e�ects in�uence the conformations of
protein-protein contact surfaces and side-chain conformations [29, 92].

Theoretical Models

Whenever a protein model is based on data di�erent from �rst-hand experimental data it
is classi�ed as a so-called theoretical model, which implies that this model still needs to be
con�rmed by experiments. There exist many reasons that hamper scientists in generating
the required experimental data, e.g. unavailability of proper experimental methods for a
given target protein, wet lab capacity or �rm time constraints. In such cases a number of
techniques are available that can help in obtaining a protein model, e.g. homology modeling,
which is described later in more detail (see Section 2.3). Usually, theoretical models are less
complete, accurate and reliable than those models that are based on experimental data, but
depending on the applied techniques, the skill of the modeler and the secondary knowledge
on the modeling target, it is sometimes possible to generate protein models with su�cient
quality for successful structural analysis [7].

2.2 Scoring Functions for Molecular Modeling and Docking

Scoring functions facilitate e�cient computation of an estimate of the free energy of a molec-
ular system. The exact calculation of the energy of a molecular system would require solving
the Schrödinger wave equation for that system. Since this is computationally infeasible for
large systems, a number of assumptions is made to enable the e�cient computation of an
approximate value (adapted from Schlick [188]).

• Molecular representation: the molecular system is regarded as a mechanical system.
Atoms are represented as single bodies with a single center of mass. Molecules are
considered as point masses such that atoms are connected by strong covalent bonds.
Electrons are not represented explicitly but their interactions are represented by po-
tential functions that apply to atoms and bonds. This assumption allows for using
classical mechanics instead of quantum mechanics.

• Thermodynamic hypothesis: molecules assume con�gurations that minimize the free
energy of the system. If the molecules in a system collectively reach such a con�gu-
ration the system is said to be in thermodynamic equilibrium. This especially means
that the observed (also: native) conformation of a protein is that of minimum energy.
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This assumption is required to guide molecular modeling by evaluating the energy of
a given con�guration of the molecular system. This assumption requires the minimum
energy state of the system to be unique and also stable (which is not generally true),
meaning that small changes to the system (away from the thermodynamic equilibrium)
do not cause large changes in the con�gurations of the molecules.

• Additivity: the energy of the system can be approximated by summing over the sep-
arate energetic contributions of interactions that are determined by simple structural
features (like distances between atoms or dihedral angles). This assumption ignores
more complex multiparticle terms in the energy function.

• Transferability: interaction potentials can be derived based on a representative set of
structures of molecules and can be applied for predicting the structures of molecules
for which they are representative.

Although there exist many approaches for computing the free energy with high accuracy
[62], such approaches are rarely used in molecular modeling of large systems such as protein-
ligand complexes due to prohibitive demands on computing time. In developing scoring
functions one therefore usually aims at �nding a compromise between accuracy and time-
e�ciency.

2.2.1 Potentials of Mean Force

This section reproduces the theory and formalism of so-called potentials of mean force

(PMFs) that are the basis for the design and derivation of the ROTA scoring function
which is introduced in Chapter 3. There are quite a number of scoring functions that apply
PMFs to calculating the strength of pairwise interactions of atoms in a molecular system
in dependency on their distance. The main advantages of PMFs are (i) that they can be
derived based on structural data only, without the need for associated activity data, (ii)
that no a priori knowledge about molecular interactions in the respective molecular system
is required and (iii) that interactions with solvent are treated implicitly. The concept of
PMF was founded by Kirkwood in 1935 [105] and later also formulated by Sippl [196]. The
equations and declarations presented in this section mainly reproduce the work of Sippl,
but variable names are changed such as to be consistent with the derivation of ROTA in
Chapter 3.

Given a molecular system with a discrete set of states G. The Boltzmann law permits
calculating for each state S of G the probability that the system will adopt this state, given
that the energies of all states are known (k is the Boltzmann constant and T is the average
system temperature).

P (S) =
1
Z
e
−E(S)

kT (2.3)

Z is called the partition function.

Z =
∑
Ŝ∈G

e
−E(Ŝ)

kT (2.4)
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The central idea is that this law is invertible: if it is possible to determine the probabilities
of the states, then the energy of these states can be calculated from the probabilities of the
states by using this formula:

E(S) = −kT [lnP (S))]− kT [lnZ] (2.5)

The rightmost term is constant , i.e. independent of the state of the molecular system.
Given a molecular state of such a system in Cartesian space, one can calculate all pairwise
Euclidean distances of atoms and store them in a matrix M . The conformation of all
molecules in the system is determined by these distances. Using the assumption of additivity
the energy of the system can be calculated by a sum of separable contributions from basic
structural features. Sippl uses only pairwise atom distances between atoms a and b and
ignores contributions by other structural features, i. e. bond angles or dihedral angles. The
energy of the system can be calculated as a sum over all distances d in M between pairs of
atoms that are part of particular chemical groups (also: atom types) a and b:

E(S) =
∑
d∈M

Eab(d) (2.6)

The inverse Boltzmann law is now applied to the individual pairwise atom distances d
and the probability Pab(d) of observing atoms of type and a and b at such a distance:

Eab(d) = −kT [lnPab(d)]− kT [lnZab] (2.7)

As formulated by Sippl [197] Pab(d) can be approximated over a continuous sequence of
distance intervals by counting the frequency of atoms of types a and b observed at a distance
interval of size x in a representative dataset (x is usually set to values between 0.1 and 1.0
Å and named the bin size).

lim
n→∞

Fab

([
d− x

2
, d+

x

2

[)
≡ Pab(d) (2.8)

However, the partition function Z cannot be determined with the same technique and
therefore the energy can only be computed up to the constant terms −kT [lnZ] in Equation
2.5 and −kT [lnZab] in Equation 2.7, respectively.

The computation of E(S) comprises summing over all energy contributions of all pairwise
atom distances of the system. This implies that many pairs of atom types contribute to the
system energy that do not interact signi�cantly with each other. To obtain potentials of
mean force ∆Eab(d) of speci�c interactions of atom types a and b, the average energy E(d)
of all potentials of all atom type combinations at a given distance d is used for calibrating
the speci�c energy potential of a and b. Let n be the number of atom types.

E(d) =
2

n(n− 1)

∑
i=1,...,n−1

∑
j=i+1,...,n

Eij(d) (2.9)

∆Eab(d) = Eab(d)− E(d) (2.10)

Insertion of Equation 2.7 and its analog for E(d) in Equation 2.10 yields
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∆Eab(d) = −kT [lnPab(d)]− kT [lnZab] + kT [lnP (d)] + kT [lnZ] (2.11)

= −kT ln
Pab(d)
P (d)

− kT ln
Zab
Z

(2.12)

P (d) is the probability of observing two atoms of arbitrary atom types at distance d. For
simplicity, Sippl assumes that the partition functions for all atom pairs are approximatively
Zab ≈ Z, which causes the second term in Equation 2.12 to disappear. Considering the
successes achieved using potentials of mean forces that were reported in recent years, one
can conclude that neither this nor the other assumptions made stand in the way of the
success of this method. The speci�c energy of an interacting atom pair a and b can now be
formulated as:

∆Eab(d) = −kT ln
Pab(d)
P (d)

(2.13)

If both distance probabilities are given over a continuous sequence of distance intervals
this equation de�nes a potential of mean force for the atoms a and b. The distance probability
Pab can be estimated with frequency counts of atoms a and b in certain distance intervals
in known near-native conformations of molecular systems. For e�ciency reasons, a cuto�
for maximum distances is also often de�ned beyond which no further energy contributions
are calculated. By using also the transferability assumption such potentials derived on
a representative set of structures can be used to estimate the energy of other molecular
systems. The accuracy of a scoring function based on PMFs in a molecular modeling scenario
depends on (i) the ability of the structure data set to represent all molecular systems of
question, (ii) the chosen separation of energy contributions with a suitable de�nition of
atom types and (iii) the granularity of the potentials, which is given by the bin size x.

Many approaches, like the one proposed by Sippl, implement the calibration of speci�c
interaction energies by averaging over all energy potentials over all pairs of atom types.
However, this technique is also criticized, e.g. by Thomas and Dill [207], who argue that
such a simpli�cation leads to false and complex distance dependencies between di�erent
potentials.

2.2.2 Existing Scoring Functions

This section comprises a description of selected scoring functions that are important for
modeling and docking in general but also were involved in the design and evaluation of
ROTA. A comparative evaluation of these scoring functions and ROTA is shown in Chapter
3. A comprehensive review on scoring functions was recently given by Rarey et al. [169].

DrugScore

DrugScore is a knowledge-based scoring function for ranking ligand poses in protein-ligand
docking. A �rst version, DrugScorePDB [63], was derived based on structural data of 6,026
protein-ligand complexes of the PDB and gathered with the ReLiBase system [75, 76] in 2000.
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A second version, DrugScoreCSD [214], was published �ve years later with similar parameters
and derivation procedure, but this version was derived on the small molecule crystal packing
data (28,642 instances) of the Cambridge Structural Database [3]. DrugScore de�nes 17
atom types which are quite similar to the atom types of the Sybyl atom-type notation [203]
and combine atomic information of element and orbital hybridization. Potentials of mean
force are de�ned for all pairs of atom types and pairwise distances between 1.0 Å and 6.0
Å and single-body potentials of solvent accessible surface (SAS). DrugScore is one of the
most important scoring functions to compare ROTA to, since it is one of the �rst two
scoring functions that are based on the PMF formalism and that are applied to the protein-
ligand docking problem [199] (the other scoring function is PMF score [151]). DrugScore
was evaluated in many comparative evaluations and was successfully applied during virtual
screening [48, 67, 116].

ITScore

ITScore [86, 87] is quite similar to DrugScore (based on PMF formalism, application to
protein-ligand docking) but uses an iterative derivation scheme similar to that used pre-
viously for deriving the ENERGI score [206]: based on 786 structures of protein-ligand
complexes from the PDB an initial PMF similar to that of DrugScore (but without a term
for energetic contributions of solvent accessible surfaces) is constructed. This PMF is then
used to guide the sampling routine of the docking program DOCK [49], which generates
alternative protein-ligand complexes. These decoy complexes are then used to derive a new
version of the PMF, which is then combined with the old version. This procedure is iterated
until the generated complexes are quite similar to the known native structures. The whole
procedure therefore has the e�ect of training the scoring function to support the special
sampling routine of DOCK, especially to �lter out false ligand poses.

RAPDF

The RAPDF2 (residue-speci�c all-atom probability discriminatory function) was developed
for discriminating between near-native protein conformations and large sets of decoy protein
conformations [184]. As the name indicates, the atom types of heavy protein atoms are de-
�ned as amino acid type of the respective atom plus its role in the topology of the respective
amino acid. RAPDF was derived based on the conditional probability formalism, which
generates potentials that are equal to that generated by the PMF formalism in all respects,
except that they are yielding ratios of log probabilities instead of estimates of the free energy.
When deriving di�erent version of the RAPDF, the authors showed that a large set of atom
types leads to a higher performance of the RAPDF than a simpler and smaller atom type
scheme, which also in�uenced the decision for the ROTA atom type scheme shown later.
The RAPDF was successfully applied to quality assessment of generated protein structures
on its own but reached even higher discriminatory performance when combined with po-
tentials for backbone torsion angles, atom buriedness and hydrogen bonds [209]. However,

2downloaded from the Decoys 'R' Us website at http://dd.compbio.washington.edu/ [183]

http://dd.compbio.washington.edu/
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when applied to side-chain prediction, it turned out to be inferior to other scoring functions
[185].

LUDI and F-Score

The scoring function of FlexX [172], abbreviated F-Score, is based on the empirical scoring
function LUDI [12, 13] developed by Böhm. LUDI sums over di�erent terms that esti-
mate the contributions of di�erent electrostatic interactions (∆Ghb for hydrogen bonds and
∆Gionic for ionic interactions) and entropic (∆Grot) and hydrophobic e�ects (∆Glipo). f is a
linear function that penalized deviations from optimum interaction geometries, ∆R denotes
distance deviations and ∆α denotes angular deviations. NROT is the number of rotatable
bonds of molecule to be docked:

∆Gbinding = ∆G0 +

∆Ghb

∑
h-bonds

f(∆R,∆α) +

∆Gionic

∑
ionic int.

f(∆R,∆α) +

∆Glipo

∑
lipo

|A|+

∆GrotNROT (2.14)

LUDI was �t to the structures of 45 protein-ligand complexes (more structures were
later used for training F-Score) and �rst used in the de-novo ligand design program LUDI.
Both scoring functions are especially for scoring protein-ligand complexes that feature many
hydrogen bonds, but are less suitable for scoring complexes which are dominated by large
hydrophobic interfaces.

2.3 Homology Modeling of Protein Structures

Homology modeling (also known as comparative modeling) of proteins creates protein models
of certain target proteins by reverting to structural data of proteins that are (ideally) closely
related to the target protein. A comprehensive overview on homology modeling was recently
given by Dunbrack [42]. Earlier reviews are by Hillisch et al. [77] and Jackobson and
Sali [91]. Homology modeling relies on the common observation that the more closely
related two proteins are, the more similar are their structures and, to a smaller degree, their
sequences. Depending on the availability of one or multiple related proteins and associated
structural data as template protein structures, homology modeling can sometimes provide
protein models whose quality can match the quality of models that are created using X-ray
crystallography. In general, the backbone conformations of related proteins are more similar
to each other than this is the case for side-chain conformations [38]. It is therefore a common
technique to concentrate on the correct prediction of the protein backbone in a preliminary
model and to predict or optimize the conformations of side chains in a second step.
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2.3.1 Generation of Complete Protein Models

This section presents the homology modeling programs MODELLER [181] and Prime [193],
as these methods are widely used in protein modeling and structure-based drug design and
can be potentially extended by methods presented in this work. There exists also a number of
Internet-based modeling servers like I-TASSER3 [232, 241, 242], SWISS-MODEL4 [158, 191]
or Robetta5 [102] that allow for submitting arbitrary protein sequences to automated or
semi-automated protein modeling pipelines. Meta servers like Pcons.net6 [217] or Genesilico
Metaserver7 [120] allow for distributing a modeling task over a set of such modeling servers
and rank the returning protein models. The performance of modeling methods is regularly
benchmarked during the Critical Assessment of Methods of Protein Structure Prediction
(CASP)8 [149, 148].

MODELLER

MODELLER9 generates protein models by iteratively modifying a set of starting models so
that they satisfy certain spatial restraints [181]. Starting models are assembled from parts
of a template structure or multiple superimposed template structures based on a pairwise or
multiple sequence to structure alignment with alternative connective chain elements. Spatial
restraints are provided �rst by the relative positions of protein fragments in the alignment
and second by basic structural features of proteins, e.g. Cα-Cα distances or main-chain and
side-chain dihedral angles, that are represented as empirically determined potentials [182].
Multiple conjugate gradient optimizations [163] are carried out by iteratively applying small
rotations about main-chain or side-chain dihedral angles that generate an ensemble of target
models that satisfy as many restraints as possible. To avoid getting caught in local minima
and for e�ciency reasons the optimization procedure starts with optimizing local restraints
and includes more and more non-local restraints as the optimization continues. The resulting
structure ensembles usually represent the conformational space of the protein in those regions
modeled without using template coordinates, whereas protein fragments taken from template
proteins mainly reproduce the known conformations of main chain fragments and side chains.
A comparative evaluation of ten di�erent modeling programs and techniques showed that
MODELLER achieves average backbone quality (about 1.0 Å Cα RMSD for models based
on templates with 90% sequence identity to the target protein), whereas the accuracy of
predicted side chains is below average [216] (below 50% of modeled side chains have both
correct χ1 and χ2 dihedral angles if modeled on a template backbone with 90% sequence
identity to the target protein). Protein models generated with MODELLER can usually
be improved by redirecting side-chain conformations with other programs as it was shown
in the same study. Recent versions of MODELLER include di�erent alignment algorithms,

3http://zhang.bioinformatics.ku.edu/I-TASSER/
4http://swissmodel.expasy.org/
5http://robetta.bakerlab.org/
6http://pcons.net/index.php
7https://genesilico.pl/meta2/
8http://predictioncenter.org/
9http://www.salilab.org/modeller/

http://zhang.bioinformatics.ku.edu/I-TASSER/
http://swissmodel.expasy.org/
http://robetta.bakerlab.org/
http://pcons.net/index.php
https://genesilico.pl/meta2/
http://predictioncenter.org/
http://www.salilab.org/modeller/


2.3. HOMOLOGY MODELING OF PROTEIN STRUCTURES 17

re�nement techniques and an interface to Python10, which renders it as the most extensive
public-available toolbox for creation and optimization of protein models.

MODELLER was used for generating multiple homology models of target proteins for
�exible docking at the start of this project. However, the observed low accuracy of MOD-
ELLER in predicting side-chain conformations impeded docking attempts and so motivated
the development of a method for side-chain prediction that can also take side-chain �exibility
into account.

Prime

Prime [193] is a protein-structure prediction program (Schrödinger, Inc) that is mainly based
on the algorithms of the loop prediction program PLOP [94] and the side-chain prediction
program SCAP [92, 93, 233]) (which is described in Section 2.3.2 below). Starting with
the (putatively) conserved conformations of α-helices and β-sheets of a template protein,
the missing loops are constructed from both ends (except at the chain ends) and joined.
The conformational space of the loops is explored exhaustively with a main-chain rotamer
library comprising short backbone fragments. Loop conformations ful�lling certain spatial
constraints are selected and clustered. Side-chain conformations are then predicted using a
slightly modi�ed version of the SCAP algorithm. The resulting all-atom models of the loops
are then scored with OPLS force �eld [98, 100] and the Surface Generalized Born model
of solvation [58, 61]. Although these techniques facilitate using Prime for general protein
modeling tasks, their main application is modeling the conformational changes of the protein
upon ligand binding in the Induced Fit Docking (IFD) procedure of Sherman et al. [193]
(see Section 2.4.3).

2.3.2 Side-Chain Prediction

Although all methods presented above provide full protein models with coordinates for all
heavy side-chain atoms, there exist a number of reasons that justify the isolated prediction
of side-chain conformations using a rigid backbone conformation:

• The general trend of side chains being more �exible than the backbone renders back-
bone prediction unnecessary if there is already a good model of the protein backbone
available, e.g. through a closely related protein in mutation-based protein studies.

• The conformational space of side chains can be represented by rotamers (see Section
2.1.1). This allows for prede�ning a (comparably) small set of possible conformations
before the optimization. This low number of conformations enables pre-computing
all rotamer pair interactions, which in turn allows for the early elimination of highly
unfavorable rotamers through the Dead-End Elimination (DEE) theorem [36, 64, 65,
122, 133].

• Side-chain prediction is already a hard problem, even if the backbone is held �xed:

10see http://www.python.org/ for the Python language homepage

http://www.python.org/
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Figure 2.4: Common rotamer states

the NP-complete problem satis�ability (SAT) can be reduced to the side-chain pre-
diction problem (assuming rotameric side-chain conformations and respecting interac-
tions among side chains) [160]. Since the energy score of a protein conformation can be
evaluated in polynomial time, the side-chain prediction problem is also NP-complete.
One consequence of this is that side-chain prediction can be formulated as a classical
combinatorial optimization problem that allows for applying standard algorithms like
linear and integer programming [4, 45, 103] or branch and bound techniques [6, 125].

However, through some simpli�cations (using small numbers of rotamers per side chain,
exclusive modeling of short-range side-chain interactions) it becomes computational feasible
to calculate the global minimum energy conformation (GMEC), considering only those dis-
crete conformations that can be built with the rigid backbone and a �xed set of rotamers per
side chain. Today's side-chain prediction programs can predict the χ1 dihedral angle of side
chains in about 85% correctly, considering two dihedral angles as equal if they are within
40◦ and modeling on the native backbone. Considering an active site with about twenty
relevant side chains that should be modeled for later docking, this results in about three side
chains on average pointing in the wrong direction. One possible e�ect of this is that polar
groups that should be oriented towards the ligand are rotated towards the protein, making
it impossible for the ligand to establish hydrogen bonds to these side chains. In addition,
other side chains that contribute to the protein surface can point into the active site and
block the binding of a ligand. Both such e�ects can render a docking experiment infeasible,
which motivates further improvement of current methods.

Rotamer Libraries

This section describes the concepts of rotamer libraries on which the majority of side-chain
prediction programs rely. Rotamer libraries are commonly used in side-chain prediction
programs to collect all relevant conformations of protein side chains [41], usually for the
twenty standard amino acids. Rotamer libraries are derived from protein structure data like
that deposited in the PDB and that are preferably of high quality. A rotamer library tries
to represent the whole observed population of rotamers (or a major part of them) of the
underlying protein data set with a smaller set of rotamers. A common clustering technique is
to divide the torsional space of the dihedral angles in three regions, also called slots: gauge+

(χ ∼ +60◦), gauge− (χ ∼ −60◦) and trans (χ ∼ 180◦) as shown in Figure 2.4.
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This coarse cluster scheme groups side-chain conformations that have similar dihedral
angles (with angular di�erences within ±60◦). There exist also �ner clustering schemes that
group side-chain conformations together if their dihedral angles are same within ±40◦, 20◦

and 10◦ [194, 233].
Usually, the relative frequency of the representative rotamers is also given. The con-

formation of side chains highly depends on the local backbone conformation and the sec-
ondary structure of the local backbone. The SPINFAST approach [161] demonstrates that
side-chain conformations can be predicted e�ciently using only the target sequence, the
template backbone, the secondary structure of the template backbone and the conforma-
tions of the corresponding side-chain inside the template protein. Other rotamer libraries
contain multiple sets of rotamer representatives that are derived from di�erent structural
regions and environments of proteins, e.g. side chains of residues that belong to certain sec-
ondary structure elements or side chains of residues which populate a certain region of the
Ramachandran Map [167]. One prominent example is the Backbone-Dependent Rotamer
Library (BBDep)11 created by Dunbrack [43]. This rotamer library contains a small set
of rotamers for each amino acid (e.g. 3 for serine and 81 for arginine) but has individual
rotamer sets for each 10◦ × 10◦ sector of the Ramachandran Map. Although the dihedral
angles of side chains mostly stay stable between sets of di�erent sectors, the relative frequen-
cies often change drastically. For instance, the relative frequency of the serine side chains
having a χ1 dihedral angle of 66.6◦ increases from 3% to 87% between the nearby sectors
Ψ =] − 160,−150] × Φ = [170, 180[ and Ψ =] − 160,−150] × Φ = [120, 130[. The relative
frequencies of this rotamer library are often used as an additional term to empirical scoring
functions to model the interaction between side chains and the local backbone segment, for
example in SCWRL [26], Rosetta for protein-protein docking [66], the scoring function of
Liang and Grishin for side chain prediction [129] and also in this work (see Section 4.6).

The main limitation of a rotamer library is that it just contains the most probable con-
formations of side chains. Experimental data show that a substantial number of side chains
in a protein have an 'non-rotameric' state as their conformations di�er signi�cantly from all
rotamers in common libraries [190]. This fact puts a natural limitation on the accuracy of
all modeling programs that use a certain rotamer library for sampling of the side-chain con-
formations, which is also the case for the program IRECS [72], that is described in Chapter
4). A side-chain conformation modeled with a rotamer library should therefore be taken as
a �rst guess and should be analyzed for small steric clashes. Eventually, it is meaningful
to apply further re�nement techniques to such conformations like energy minimization in
continuous coordinate space [179, 218] or a combination of di�erent re�nement techniques
[37].

SCWRL

SCWRL12 [21, 26] is a side-chain prediction program that guarantees to �nd an optimal
solution � with respect to a simple scoring function � to the side-chain prediction problem and
usually can do this within a few seconds (only one out of 160 proteins took over 16 hours, see

11http://dunbrack.fccc.edu/bbdep/
12http://dunbrack.fccc.edu/SCWRL3.php

http://dunbrack.fccc.edu/bbdep/
http://dunbrack.fccc.edu/SCWRL3.php
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Table 4.1). SCWRL uses the BBDep for assigning rotamers to the protein residues. At �rst,
the Goldstein version of the DEE algorithm [64] is used to remove rotamers incompatible
with the global minimum energy conformation (GMEC). The interactions of the remaining
rotamers are projected onto a graph, on which a biconnectivity analysis is used to divide
the graph into components that are then targets for further separate optimization runs.
Rotamers are scored by their interaction with the backbone, using a probabilistic score based
on the rotamer probabilities of the BBDep, and their interactions with other rotamers, which
are scored by a short-ranged steric clash potential (distance cuto�: 3.4 Å). SCWRL (version
3) is popular due to its usability, accessibility, speed and accuracy, and it is probably the
most frequently applied stand-alone program for rigid side-chain prediction of proteins in
computational biology.

SCAP

SCAP13 [233] utilizes a set of medium to highly detailed rotamer libraries to sample the
conformational space of side chains of a target protein. Side chains are predicted sequentially
from the N-terminus of the protein sequence to its C-terminus with repeated runs until no
further changes in conformation are reported during a single prediction run. Those rotamers
are selected which achieve the best CHARMM score by interacting with the �xed side chains
and backbone of the remaining protein. SCAP achieves a similar accuracy as SCWRL does,
but requires much more time for optimization.

Side-Chain Prediction with the Self-Consistent Mean Field Approach

The Self-Consistent Mean Field (SCMF) is a fast, heuristic and iterative optimization tech-
nique and was �rst applied by Koehl and Delarue to the side-chain prediction problem
[110, 111]. First, all rotamers are assigned to all side chains of a protein on a �xed back-
bone, using the rotamer library of Tu�ery et al. [211]. Then all rotamers are assigned a
probability that is used as a measure for preference of each side chain to adopt this rotamer.
This probability is distributed uniformly among all rotamers of each side chain before the
start of the optimization. Van der Waals (VdW) interactions among rotamers and between
rotamers and the protein backbone are scored using a truncated (max. 10 kcal/mol) 12-6
Lennard-Jones potential [127]. The energy of the system is approximated by an e�ective
energy approach, that multiplies each contribution of an interaction by the probabilities of
the rotameric states of the interaction partners. During the SCMF optimization the ro-
tamer probabilities are coupled to the e�ective energy by a modi�ed Boltzmann equation
(see Equation 2.3), that determines rotamer probabilities using the contributions of indi-
vidual rotamers to the e�ective energy [112]. Both probabilities and e�ective energies of
rotamers are updated self-consistently until the rotamer probabilities converge (typically
after about 20 steps). This procedure usually raises a probability of a single rotamer per
side chain close to one and reduces the probabilities of the remaining rotamers close to zero,
thereby de�ning a rotamer selection for all side chains. The SCMF approach could achieve
an accuracy of 72% for χ1 and 62% for χ1,2 (both within 40◦) on a test set of 30 high-quality

13http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:Scap

http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Software:Scap
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X-ray structures of proteins, which is below the accuracy reported for tools like SCWRL
and SCAP.

The SCMF algorithm has been used in place of the Bron-Kerbosch algorithm [23] in
FlexE for �nding optimal matching sets of side-chain or backbone fragment conformations
during ligand docking [71]. The e�ective energy approach is also used in this work as part
of the IRECS algorithm (see Section 4.2.3).

2.4 Protein-Ligand Docking

Protein-Ligand docking is one of the core techniques for structure-based drug design. A
docking program can try to dock one or more ligands (within minutes to seconds) into a
protein, given that an accurate conformation of the active site is given. Docking ligands
usually involves two main tasks. First, the conformational space of the ligand in the active
site is explored. This is also the most expensive step in docking as this space is usually
extremely large due to the high �exibility of ligands. Second, the binding free energy of each
generated complex is estimated by a scoring function. These two tasks are often interwoven
since scoring can guide the conformational search of the ligand, and thus reduce the required
runtime of the docking program drastically. The high number of putative complexes that
must be scored in turn requires that the scoring function can be evaluated quickly. The most
important application of docking is the screening of large libraries of chemical compounds
for potential drug candidates. This task requires that docking programs are fast and able
to test a single ligand within a few seconds.

The following section presents di�erent approaches that either assume that the confor-
mation of the protein does not change upon binding or take protein �exibility into account
during docking. Comprehensive reviews on docking were given by Halperin et al. [70],
Mohan et al. [146] and Rarey et al. [169].

2.4.1 Docking Approaches Ignoring Protein Flexibility

Current docking approaches ignore the �exibility of the protein if not explicitly stated,
whereas ligand �exibility is usually taken into account. This assumption is a strong sim-
pli�cation, since it greatly reduces the conformational space of the protein-ligand complex
that must be searched for an optimal solution candidate. The runtime saved can be spent
on more sophisticated scoring, taking explicit water molecules during docking into account
or for screening larger compound libraries.

The rigid-protein assumption is acceptable if a high-quality protein model is available
and it is known that the conformation of this protein does not undergo major changes upon
ligand binding. However, even when the protein can change its conformation upon ligand
binding, a docking attempt can succeed if the protein conformation is already adapted to
the ligand in question or adapted to a whole class of ligands with similar topology and
binding mode. Thus, ligands that have di�erent binding modes and topologies compared
to the group of known binders � these are of highest interest in pharmaceutical industry �
require the adaptation of the protein to these modes for complex formation. These ligands



22 CHAPTER 2. BASIC TECHNIQUES AND RELATED WORK

(a) (b)

Figure 2.5: Internal representation of protein-ligand interactions in FlexX and FlexE
for aldose reductase and the inhibitor tolrestat. (a) The ligand (tolrestat) with interac-
tion geometries for phenyl rings (green), hydrogen bond donors (white) and acceptors
(red), extracted from the active site of aldose reductase (PDB ID: 1ah3). (b) The
active site (white atoms) of aldose reductase together with tolrestat (blue atoms). In-
teraction points (protein only) and geometries (ligand only) are drawn for hydrogen
bond donors (red) and acceptors (white).

are therefore likely to be docked in a wrong conformation, preventing the prediction of the
correct binding mode and a�nity.

FlexX

The docking program FlexX14 [172] and its extension FlexE [33] are used for performing
virtual screening experiments in this work, and therefore their algorithms are summarized
here (and in Section 2.4.2). FlexX generally follows the incremental construction paradigm:
it �rst cuts the ligand into small fragments. Then, it places a so-called base fragment in the
active site of the protein, which is extended by subsequent placements of ligand fragments
until the ligand is completely built up in the active site. A modi�ed version of the scoring
function LUDI is used for scoring the protein-ligand interactions (see Section 2.2.2).

Many techniques are applied to increase the speed and accuracy of this strategy. After
the initial de�nition of the active site (manual or by a reference ligand position), all atoms
of the protein active site are assigned interaction geometries as de�ned for the LUDI scoring
function. Each interaction geometry is approximated by a cloud of interaction points (see

14http://www.biosolveit.de/FlexX/

http://www.biosolveit.de/FlexX/
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Figure 2.5(b)). Triangles of protein interaction points are stored as line segments in a hash
table and are used in the later placement step. These preparation steps are computationally
expensive (usually 1-10 minutes), but need to be executed only once per protein and thus
only marginally in�uence the computational cost of a screening experiment (that is: one
protein vs. a large number of compounds). The following preparation steps for ligands must
be repeated for every ligand that should be docked and therefore contribute primarily to
the relevant runtime costs of FlexX during virtual screening. After a query ligand is loaded
it is fragmented at rotatable bonds. Interaction geometries are assigned to ligand atoms
as previously done for protein atoms. Conformation of molecular rings are computed with
CORINA15 [59, 180].

The �rst step of complex construction is to place a base fragment into the active site
from which the whole ligand is then built up iteratively fragment by fragment according to
the order de�ned through the fragmentation. Base fragments are selected using a number of
criteria, e.g. size and number of directional interactions [171]. Triangles are drawn between
interaction points of the ligand base fragment and matched to triangles drawn between
interaction points of the protein using the hash table. If a match is found a conformation
of the respective base fragment is generated. FlexX follows a k-greedy incremental buildup
strategy: after step i a set of partial ligand conformations has been generated that are built
up to their ith fragment. These partial ligand conformations are then extended in step i+ 1
by adding fragment i + 1 in various structural alternatives using the MIMUMBA torsion
angle database [107]. The resulting set of ligand conformations is then scored using F-Score,
and only the k best-scoring placements are retained for subsequent buildup steps. The result
is a sorted list of ligand placements with estimated binding a�nity to the protein. FlexX is
able to generate a native-like ligand conformation (RMSD below 2.0 Å) in about 70% of all
proteins in a set of 200 high-quality structures of protein-ligand complexes and can identify
such a conformation on top of the sorted list in about 46.5% of these test runs [117].

Other Approaches

Table 2.1 shows the results of a comparative evaluation of the docking programs MVP
[121], FlexX [172], Glide [55], Flo+ [140], LigFit [215], Fred [139], DOCK4 [49, 119, 195],
GOLD [96, 97], DOCKIt [18] and MOEDock [32] performed by Warren et al. [224]. All
programs were used for screening eight di�erent compound libraries with active and inactive
compounds for eight di�erent drug targets. FlexX achieved an overall high enrichment
factor that was only exceeded by MVP. However, the docking procedure of MVP was built
on knowledge of homologous protein-ligand complexes, which was not used for the other
docking programs. The results show that there is at least one protein for each docking
program at which this docking program performs at best or is among the best programs. This
suggests that the choice of the best docking program (and therefore also scoring function)
for a virtual screening experiment dependents on the particular target protein. Actually,
many virtual screening experiments are performed by running several docking programs.

15http://www.molecular-networks.com/software/corina/corina_f.html

http://www.molecular-networks.com/software/corina/corina_f.html


24 CHAPTER 2. BASIC TECHNIQUES AND RELATED WORK

Table 2.1: Enrichment factors achieved on eight drug targets by ten docking programs

Docking E. coli Strep PPAR
program average Chk1 FXa GB HCVP MRS PDF PDF δ

ideal 9.2 10.0 9.8 10.0 9.5 10.0 7.6 8.3 8.6
MVP 5.7 7.2 5.8 5.3 3.6 6.4 6.7 6.9 3.9
FlexX 3.3 7.0 2.2 5.8 0.9 3.9 0.8 0.8 5.2
Glide 2.9 6.3 3.4 1.0 1.0 5.3 0.6 0.4 4.8
Flo+ 2.7 5.6 2.7 2.3 3.4 1.7 1.5 0.8 3.6
LigFit 2.3 3.3 1.9 2.8 1.8 2.9 2.9 1.7 1.2
Fred 2.1 2.9 4.1 1.9 2.0 0.6 3.2 1.2 1.1
DOCK4 2.1 1.4 4.1 1.7 1.8 4.2 0.9 0.8 1.7
GOLD 2.0 0.1 4.1 4.0 0.0 0.8 1.0 0.1 5.5
DOCKIt 1.7 4.2 2.0 2.0 1.0 1.0 0.2 0.0 3.2
MOEDock 1.0 3.9 0.6 0.0 0.0 1.0 2.1 0.6 0.0

Comparative evaluation of ten docking programs by virtual screening performed by
Warren et al. [224]. Each docking program was used to dock active and inactive com-
pounds. The enrichment factor was computed by measuring the relative enrichment
of active compounds at the top 10% of the sorted (by docking scores) compound lists.
Abbreviations: Chk1: checkpoint kinase 1; FXa: factor Xa; GB: gyrase B; HCV:
hepatitis C virus protease; MRS: methionyl-tRNA synthetase; PDF: polypeptide de-
formylase; E. coli: escherichia coli; Strep: streptococcus pneumococcus; PPARδ :
peroxisome proliferator-activated receptor δ. Adapted from Warren et al. [224].

2.4.2 Docking Approaches Incooperating Protein Flexibility

Among the many challenging aspects of protein-ligand docking, this work concentrates on
dealing with protein �exibility and with inaccurate positions of side chains during docking.
An increasing number of papers also dealing with these issues (see below) published recently
show that these topics are of major interest and that no universal solution has been found
yet. Among the approaches that try to incorporate protein �exibility many are extensions
to already existing docking programs (e.g. FlexE to FlexX, IFREDA [30] to ICM [1]), but
there exist also programs that were designed speci�cally to account for protein �exibility
(FLIPDOCK [243], SLIDE [189, 237]).

This section highlights such approaches that are either used in this work or that are likely
to bene�t from methods which are developed in this work. More comprehensive overviews
on state-of-the-art approaches in this �eld are also available in the literature [27, 28, 204].

Serial Docking

The most self-evident strategy to account for protein �exibility during docking is to repeat
the traditional docking procedure (rigid protein � �exible ligand) with a set of di�erent
protein conformations. This technique depends on an external source of protein conforma-
tions � these can originate either from multiple X-ray structures, from molecular dynamics
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simulations or from special sampling techniques. The docking experiments performed by
Frimurer et al. into tyrosine phosphatase 1B [56] can illustrate this technique: they started
with a crystal complex of the protein and a small peptide. They already knew from struc-
tural analysis that only 3 side chains are �exible in the active site and they could cut down
the number of relevant rotameric states of them to 3, 4 and 8, respectively. This yielded a
number of 96 di�erent protein conformations in which all possible combinations of rotamers
are present. They collected three known inhibitors for which a complex structure with ty-
rosine phosphatase was available and docked them into each of the 96 protein models and
the protein conformation of the peptide complex. They found that the crystallized ligand
conformation could be predicted at best by docking them sequentially into the 96 protein
models and preserving the lowest energy conformation of each ligand.

FlexE

FlexE uses ensembles of superimposed X-ray structures of a single protein to capture the
boundaries of the conformational space of the protein. FlexE cuts these structures at the
peptide bonds and the connecting bonds of side chains and backbone into segments. All
conformational variants � called instances � of the protein segments are then combined in
a so-called united protein description [33]. This data structure is prepared for docking just
as proteins are prepared in FlexX (see Section 2.4.1). Ligand fragments are also placed and
extended like in FlexX with the exception that for each generated ligand conformation an
adapted conformation of the protein is generated by selecting from the segment instances
with the SCMF algorithm (see Section 2.3.2) [71]. FlexE is able to improve the docking
accuracy on protein targets that undergo conformational changes upon binding by the cost
of extended runtime.

2.4.3 Docking into Homology Models

Inaccurate positions of protein atoms are among the most frequent reasons for a docking
experiment to fail. Such inaccuracy causes deformations of the internal representation of the
protein surface and distortions of interaction geometries that can spoil the docking process
[39, 50, 99, 153]. Since such misplaced atoms are also frequent in X-ray structures, docking
tools are usually able to cope with a limited amount of atom position inaccuracy. FlexX
for example has many parameters that allow for manually adjusting the tolerance cuto�s
for overlaps between ligand and protein and also angular tolerances for building hydrogen
bonds. Setting tolerance parameters too generously however also incurs the risk of creating
irrelvant complex conformations. If this happens during a screening experiment, many false
protein-ligand complexes are created and it is much harder for the scoring function to identify
the true positive binders from the mass of false positive binders.

One example is the series of experiments performed by Thorsteinsdottir and coworkers in
which they compared docking into X-ray structures and inaccurate models of HIV protease
[208]. They calculated binding free energies from molecular dynamics simulations, using
�rst X-ray structures of the complexes and second protein models built from the backbone
of these X-ray structures and side-chain conformations built with SCWRL. They found that
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the distortion which resulted from the inaccurate remodeling with SCWRL decreased the
correlation coe�cient between experimental and calculated binding free energy from 0.9 to
0.75.

Soft Docking

Soft docking is an approach that enables a docking program to tolerate small geometric
errors by reducing the usually high penalties for such errors and therefore 'softening' the po-
tential walls that surround the minimum energy conformation of the protein-ligand complex
[51]. Bindewald et al. used an automated optimization procedure for developing a scoring
functions based on force �elds that is composed of weighted terms for van der Waals interac-
tions, hydrogen bonds, electrostatic interactions and internal ligand energy [17]. They show
that the parameters of the function optimized for docking into structures of low resolution
produce much smoother potentials with much lower potential walls at close atom distance
than those parameters that are optimized for docking into structures of high resolution.

MOBILE

The MOBILE [46] approach of Evers et al. interweaves the homology modeling process with
the docking of known ligands. At �rst, a rough model of the target protein is generated with
MODELLER by using only the structure of the template protein(s). A docking of all known
ligands (preferably ligands of the target protein, but ligands of the template protein can
also be used sometimes) into these protein models is carried out with the docking program
AutoDock [154, 147]. These preliminary models of protein-ligand complexes are then further
optimized with MODELLER. Modi�ed DrugScore potentials are incorporated in the force
�eld of MODELLER to enable MODELLER to account for the interactions of the protein
with the (�xed) ligand conformation during the generation of optimized protein models. The
DrugScore scoring function is then used to rank the resulting model and guide the �nal per-
residue optimization that leads to a single resulting model. The approach was successfully
tested on modeling and docking to G-protein-coupled receptors (GCPRs), which represent
an extraordinarily hard task for both homology modeling and docking [47, 48]. A similar
approach developed in this group, DRAGHOME has been successfully tested on Thrombin
[187].

IFD

The Induced Fit Docking (IFD) procedure of Sherman et al. uses the protein-structure
prediction program Prime [193] (see Chapter 2.3.1) and the docking program Glide [55, 69]
(both Schrödinger, Inc.) to �t the active site of a protein to a given ligand. In a �rst step
the ligand is docked with Glide into the unadapted active site. To minimize the risk of
steric clashes with the unadapted side chains during docking the potentials of the scoring
functions are made 'soft', that is, the penalty score for short-range electrostatic repulsion is
lowered. For the same reason the side chains of the initial model are checked for �exibility by
comparison with respective residues in superimposed X-ray structures of the same protein
in holo form (bound to di�erent ligands). If a side chain is �exible, its atom representations
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are temporarily deleted, except the Cβ atom, to minimize the chance of clashes between the
ligand and the �exible part of the side chain. Twenty di�erent alternatives of the resulting
complexes are then further optimized by Prime, now using also the full conformations of
�exible side chains as predicted with SCAP algorithm [92, 93, 233]). The ligand is then
docked a second time with the standard Glide algorithm (no softening of potentials) into
the active sites of those optimized protein models that achieved a Prime score below a certain
threshold. The resulting complexes are then assigned a �nal consensus score made up from
the Glide and Prime scoring functions. Finally, the best performing complex is returned as
the �nal structure or � if no complex achieves a score below a second threshold � the whole
procedure is executed a second time with less softened potentials in the initial docking step.
Compared to MOBILE, the IFD approach expands multiple placement options for the ligand
in its optimization procedure, which renders it more tolerant to errors in the initial ligand
placement and complex scoring. IFD showed promising results in a redocking experiment
on a small data set [193].
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Chapter 3

The ROTA Scoring Function: Soft

Potentials of Mean Force for

Intra-Protein and Protein-Ligand

Interactions

This chapter describes the derivation procedure of the ROTA scoring function and presents
the results of two comparative evaluations. The derivation procedure of ROTA follows
the Potential of Mean Force (PMF) approach described in the introduction (see Section
2.2.1) that requires the following steps: (i) creation of structure libraries, (ii) calculation
of distance distributions, (iii) generation of discrete probability distance functions and (iv)
derivation of discriminatory potentials of mean force. The ROTA scoring function was
derived for guiding the side-chain prediction of IRECS and also the protein-ligand docking
of FlexE. One structure library NLIB that is used for deriving ROTA therefore comprises
native structures of proteins and protein-ligand complexes. A second structure library DLIB
contains decoys that are generated using the BBDep rotamer library and FlexX � similar to
the derivation procedure of ITScore [86, 87] � to catch the sampling errors that are likely to
occur using these methods. In a later evaluation it is shown that ROTA potentials are able
to successfully discriminate between erroneous (di�erent from conformations observed in X-
ray structures) and near-native conformations of side chains and ligand poses. Although no
data about binding a�nity were used in the derivation procedure, ROTA can also estimate
the binding free energy of a protein-ligand complex with high accuracy by summing over the
contributions of all interactions between a ligand and a protein (see Section 2.1.2). The latter
application is tested on a set of protein-ligand complexes with experimentally determined
binding a�nities which allows for comparing ROTA with fourteen other scoring functions.

The following sections introduce the structure libraries that were constructed for deriving
ROTA. ROTA can also be derived using the conditional probability formalism introduced
by Samudrala and Moult [184] as it was shown previously [72]. This formalism is rarely
chosen in the �eld and does not provide a direct relationship between log probabilities and
contributions to the system energy as the PMF formalism does. Therefore in this work it

29
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Table 3.1: Properties of the ROTA decoy sets for side-chain prediction

Test decoy sets # Proteins # Decoys Side-chain RMSD range [Å]

4state 7 4656 2.55 - 13.25
All-BBDep 10 5000 0.76 - 3.68
All-Rot 10 5000 1.81 - 4.34
Triple-BBDep 10 1842 0.01 - 3.06
Triple-Rot 10 1842 0.06 - 3.15

was decided to use the alternative PMF derivation procedure. However, Samudrala and
Moult pointed out that both formalisms are equivalent for practical uses.

3.1 Generation of the ROTA Structure Libraries for Side-

Chain Prediction

The structure libraries for side-chain prediction are based on a precon�gured set of protein
structures, the top 500 database [135], downloaded from the Richardson Lab web page1.
This set of protein structures was assembled by Lovell et al. [135] for building a high-
quality representation of the structural variety of the PDB. The set contains only X-ray
structures that have a resolution of 1.8 Å or better, low B-factors, and passing multiple
geometry checks (e.g. for clashing atoms or unfavorable backbone torsions). All chains have
lower sequence identity than 30%. All hydrogen atoms and atoms of hetero compounds
are omitted so that the protein structures of the two structure libraries contain only heavy
atoms of standard amino acids. From this set ten structures were randomly (structure
probabilities were distributed uniformly) set apart for later testing purposes. This set is
named the MQAP test set (PDB IDs: 1edg, 1jet, 1mb4, 1pen, 1qb7, 1qq4, 1vfy, 1wab, 3ebx,
3ezm).

For each of the 500 proteins a number of decoys structures were generated. However, only
decoys from the 490 remaining proteins were used for training the other decoys were added
to the MQAP test set. Four di�erent decoy sets for the structure library DLIB were created,
since we wanted to try di�erent methods of generating decoys for the DLIB: All-BBDep,
All-Rot, Triple-BBDep and Triple-Rot. Each decoy set was generated using a di�erent
procedure to capture di�erent aspects of fallacious side-chain prediction. For the All-BBDep
and All-Rot sets all side chains were randomly rotated simultaneously. This procedure was
performed ten times for each protein structure, yielding ten di�erent decoy structures for a
single native structure. The decoys of the sets Triple-BBDep and Triple-Rot were created by
rotating the side chains of only three neighboring residues simultaneously. This procedure
generated decoys that were more similar to the native structures and therefore harder to
detect.

The side-chain dihedral angles of the decoys in the All-Rot and Triple-Rot sets are simply

1http://kinemage.biochem.duke.edu/

http://kinemage.biochem.duke.edu/
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distributed uniformly over the whole range of dihedral angles between −180◦ to 180◦. For the
sets All-BBDep and Triple-BBDep rotamers were drawn from the BBDep, with a selection
probability among all available rotamers as de�ned in the library (see Section 2.3.2). This
causes the decoys to contain mostly the rotamers favored by the BBDep, but ignores any
interactions among rotamer pairs. Since these decoys will be later included in the derivation
of ROTA, ROTA favors rotamers that are less probable in the BBDep. This setup was
chosen to adjust the ROTA scores to the BBDep frequency scores, as both scores should
be later combined for the scoring of rotamers in the side-chain prediction tool IRECS (see
Section 4.2.2).

Steric clashes were not removed from the generated conformations, since close distances
should also be contained in the ROTA potentials so that ROTA can penalize clashes without
the help of other scoring schemes. As a result, most of the decoys are clearly identi�able as
decoys by quite simple methods. Only in the case of small perturbations, which are frequent
in the Triple-BBDep and Triple-Rot sets, decoys are sometimes hard to distinguish from
the starting crystal structures. Table 3.1 lists the number of proteins, decoys and side-chain
RMSD ranges between decoys and proteins. The decoy set 4-state [155] is used during
the evaluation and is described in Section 3.6. The results of this evaluation determined
the decision to exclusively use the All-BBDep version of the DLIB for further scoring of
rotamer-rotamer and rotamer-backbone interactions.

3.2 Generation of the ROTA Structure Libraries for Docking

The structure libraries used for deriving the ROTA potentials for side-chain prediction can-
not be used for the derivation of potentials for docking, since these structure libraries contain
too few protein-ligand complexes and the ligand positions do not di�er between structures
in NLIB and DLIB. Therefore, two additional structure libraries had to be derived on a
di�erent structural basis.

This structural basis was drawn from the PDB [10] using a �ltering and clustering
procedure. This procedure is summarized in the upper part of Figure 3.1: at �rst, a set of
relevant structures is extracted from the PDB. Then, these structures are clustered, so that a
smaller set of representative structures is retained for all relevant structures (4778 structures
in total). Finally, all structures of the representative library are modi�ed in two ways to
generate NLIB and DLIB. ROTA is supposed to empower FlexE to dock into structures with
modeled side chains. This requires structure libraries that are representative �rst (NLIB)
for protein-ligand complexes and second (DLIB) for failures in (i) modeling of �exible side
chains and (ii) docking into �exible proteins with FlexE. ROTA should therefore be able to
tolerate small to medium positional errors of side-chain atoms.

3.2.1 Extraction of Relevant Complexes

Only a fraction of the structures deposited in the PDB are usable for deriving potentials of
mean force. The following constraints and cuto�s are commonly used in the �eld [63, 151,
184] to �lter relevant and representative subsets of the PDB and were not subject to any
optimization attempts. A protein-ligand complex was only selected from the PDB if
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Figure 3.1: ROTA derivation procedure



3.2. THE ROTA STRUCTURE LIBRARIES FOR DOCKING 33

1. the structure has been resolved by X-ray crystallography with a resolution better than
2.5 Å,

2. the structure contains a ligand which has between 6 and 36 atoms,

3. this ligand is not covalently bound to the protein and

4. the protein consists of more than 20 residues.

The �rst restriction guarantees a certain quality level of the structural data. The thresh-
old is intentionally set high, since ROTA should also be able to cope with small-scale errors
made during modeling of X-ray structures. The second restriction �lters out protein-ligand
complexes that do not contain a drug-like ligand. The chosen threshold however allows
for peptides or peptidomimetic ligands with about �ve residues. The reason for the third
restriction is that distance counts from covalently bonded atoms must not be mixed with
distance counts from non-covalently bonded atoms. This is necessary since a mixture of
both kinds of interaction would result in nonspeci�c potentials. The �nal restriction ensures
that only such proteins are selected that have a chance of becoming drugable targets, be-
cause proteins require a minimum size for building drugable structures like surface clefts or
binding pockets with su�cient stability.

3.2.2 Extraction of Representative Complexes

A prerequisite of applying the Boltzmann law for the derivation of potentials of mean force
for distances between atom groups is that the frequencies with which such distances occur
within the structure library are representative for the energetic states of conformations of the
particular protein-ligand substructures (see Section 2.7). This requirement is not ful�lled
by the protein structures deposited in the PDB since the PDB contains di�erent protein
families in wildly di�erent densities. The structural features of hemoglobin for example
are quite frequent in the PDB just because hemoglobin is such an important protein for
medicinal chemistry, and not because these features have an exceptionally low energy state.

Two �ltering procedures were applied for removing redundancy of protein structures
among the relevant complexes. The �rst �lter is designed to prevent certain frequent ligands
from dominating the data set. For this purpose, groups were formed out of all complexes
that bind the same ligand (identi�ed by its name as found in the PDB �le). Each group was
checked if it contains protein pairs with a higher sequence identity than 50% (checks were
performed in the alphabetic order of PDB IDs). If this was the case, an arbitrary protein
of the two con�icting ones was removed from the group. This procedure was repeated until
there were no such protein pairs remaining in the groups. Sequence identity was checked with
precompiled clusters that were derived with the program CD-HIT [128] using a sequence
identity cuto� of 50%. These clusters are available for di�erent sequence identity cuto�s in
the `derived data' section of the PDB2. The resulting data set contains 4,778 X-ray structures
of protein-ligand complexes. See the appendix C.5 for a list of the selected PDB structures.

2ftp://ftp.rcsb.org/pub/pdb/derived_data/NR

ftp://ftp.rcsb.org/pub/pdb/derived_data/NR
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Figure 3.2: Distortion of a complex conformation. On the left hand side (a) the
complex structure of the protein lipocalin (green, original x-ray structure [114]) with
its ligand digoxigenin (blue) is shown together with the decoy conformation (red) of
the ligand. On the right hand side the modeling procedure for structures in the NLIB
and DLIB structure libraries are visualized. In (b) the native conformations of the
protein side chains (green) are exchanged with the closest available rotamers in the
rotamer library (yellow) for the NLIB. In (c) the native conformations of the protein
side chains are exchanged with random rotamers from the rotamer library (violet) for
the DLIB.

3.2.3 Generation of Complexes for NLIB

The set of structures in NLIB is not just a representative set of X-ray structures, as described
for the structure libraries for side-chain prediction (see Section 3.1), but a perturbation tech-
nique is applied to the representative crystal structures to soften the later derived potentials
of mean force: all side chains of the protein structures are replaced by the best matching
(considering dihedral angles) rotamer from the BBDep rotamer library, whereas the ligand
conformations and positions are conserved. This modi�cation of X-ray data is supposed
to generate models that are most similar to those complexes which will later be scored by
ROTA and have their side-chain conformations taken from the BBDep. The ligand positions
are perturbated by redocking the ligands into the X-ray structures with FlexX. This tasks is
eased by adding the value x ∗min(dist(n, c), 4.0) to the score of each intermediate docking
solution of FlexX, whereas x = 10 and dist(n, c) is the RMSD between the native ligand
conformation (n) and the respective conformation of the intermediate docking solution (c).
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However, the default work�ow (including determination of the active site, surface compu-
tation, protonation, template assignment and docking algorithms) of FlexX was taken in
its generic fashion and was not adapted to the individual proteins. Using this procedure a
ligand conformation with an RMSD of 2.0 Å or better could be reproduced in 3,070 cases
(of 4,778 complexes). In all other cases the ligand conformation from the original X-ray
structure is retained instead of a docking solution.

3.2.4 Generation of Complexes for DLIB

The set of decoy structures is also created from the set of representative protein structures.
The ligands are extracted from the binding pockets and redocked with FlexX, but to con-
found the docking process the FlexX score is modi�ed with the procedure as described above
in Section 3.2.3, but this time with x set to -10. This e�ectively forces FlexX to misplace the
ligands on the protein surface or the boundary of the binding sites, which gives a represen-
tative set of worst-case results that FlexX can generate. Afterwards, the conformations of
protein side chains are randomized with the same procedure described in Section 3.1 for the
decoy set All-BBDep. Finally, the protein complex with maximal RMS deviation from the
crystal structure concerning the ligand conformation is added to the DLIB structure library.
In the 133 (of 3,070) cases where FlexX still manages to dock the ligand with an RMSD
below 3 Å, the native conformation of the ligand is used instead of any decoy conformation.
These are rare cases and do not require special treatment since the disturbed side-chain
conformations of the proteins also assure that no accurate geometrical data can enter the
DLIB structure library. Figure 3.2 shows an example protein-ligand complex with the two
types of generated complexes for the NLIB (upper right) and DLIB (lower right) structural
libraries.

3.3 ROTA Atom Types

As described in Section 2.2.1 one of the most important properties of a knowledge-based
scoring function that uses potentials of mean force for atom distances is the applied atom
type scheme. One fundamental design decision for ROTA was to de�ne di�erent sets of atom
types for proteins and ligands, as it was done previously for the DFIRE scoring function
[238, 239, 240]. In an early version of ROTA there were also atom types de�ned for hydrogen
atoms. However, later evaluations of ROTA showed that these additional atom types did
not signi�cantly improve prediction accuracy, but drastically increased the computational
e�ort to calculate interaction scores for heavy atoms and hydrogen atoms. Therefore, the
scoring of hydrogen atoms was omitted in the current version of ROTA.

3.3.1 Ligand Atom Types

In order to derive potentials of mean force with su�cient quality, there must exists a su�cient
number of pairs among all atom types that establish speci�c interactions (and are therefore
close to each other). Thus, the atom types for ligands must be chosen coarsely, so that they
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Table 3.2: ROTA atom types for ligand atoms

Atom type Description

C.AR aromatic carbon
C.O2 carbon in carboxylate group
C.O1 carbon with one oxygen bound
C.N1 carbon with one nitrogen bound
C.N2 carbon with two nitrogen atoms bound
C.H0 carbon with no hydrogen atoms bound
C.H1 carbon with one hydrogen atom bound
C.H2 carbon with two hydrogen atoms bound
C.HX carbon with more than two hydrogen atoms bound
N.AR aromatic nitrogen
N.AM amide nitrogen
N.H0 nitrogen with no hydrogen atoms bound
N.H1 nitrogen with one hydrogen atom bound
N.HX nitrogen with more than one hydrogen atom bound
O.CO2 oxygen in a carboxylate group
O.H1 oxygen with one hydrogen atom bound
O.C oxygen bound to a carbon
O.X oxygen bound to something else
S sulfur
HAL halogen atoms
X everything else

These atom types are used for grouping ligand atoms by their putative non-covalent
interactions with proteins. These atom types are also used as a second, coarser set of
atom types for protein atoms.

fragment the diverse space of ligand atoms into large clusters. The mapping of protein-
ligand interactions to atom types must therefore remain quite simple. Like many other
scoring functions, ROTA is based upon the atom types of the SYBYL Mol2 format3. These
atom types are mainly a composition of element, charge and hybridization state of atoms.
Some additional atom types are introduced to capture frequent substructures in organic
chemistry (amide, aromatic and carboxyl groups). The hybridization state of an atom is
primarily important for building the 3D geometry of a molecule, whereas the interactions
with other atoms are mainly determined by element, partial charge and bound hydrogen
atoms. Therefore ROTA omits the hybridization state of an atom, but adds the number of
bound hydrogen atoms to the element or substructure information, as it is also done for the
atom types of ITScore [86, 87]. The resulting atom types are shown in Table 3.2.

3http://www.tripos.com/data/support/mol2.pdf

http://www.tripos.com/data/support/mol2.pdf
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3.3.2 Protein Atom Types

ROTA de�nes two di�erent sets of atom types for protein atoms. The names of the atom
types of the larger set A (167 types), are the same as de�ned for the ROTA potentials for
side-chains prediction, that is, the three-letter-code of the amino acid type plus atom name,
as found in the respective PDB �le. This choice was made due to the good results that
were reported by Samudrala and Moult [184] for the RAPDF scoring function (see Section
2.2.2). This atom type set captures the �ne di�erences in interaction pro�les of protein
atoms that are hard to determine using chemical pro�ling. For example, the Cα atoms of
alanine are more frequent in the core of the protein than the Cα atoms of serine due to the
di�erent chemical nature of their side chains. Therefore their preferences for nearby atoms
di�er signi�cantly although these atoms are chemically similar.

The atom types of the second set B are the same as for ligand atom types, see the Section
B in the appendix for a mapping of PDB atom names to ROTA atom types. This second
atom type set for protein atoms is used for deriving alternative interaction potentials for
protein-ligand interactions. This became necessary since there were often too few small atom
distances between ligand and protein atoms to enable the derivation of certain interactions
potentials between rare protein and ligand atoms. Therefore, the second set of atom types
allowed for creating a much smaller number of protein-ligand interactions potentials (21 ×
21 for atom type set B compared to 167 × 21 possible potentials for atom type set A), for
which more distance counts of protein and ligand atoms were available. If there are multiple
potentials de�ned for certain pairs of protein and ligand atoms, the potentials based on the
atom type scheme A are always preferred, since these sets allow for a much more detailed
modeling of protein-ligand interactions.

3.4 Derivation of the ROTA Potentials

The �nal steps of the derivation procedure of the ROTA potentials are shown in the lower
part of Figure 3.1. Two distance distributions with bin size x of 0.25 Å and a maximum
distance of 10.0 Å are derived from the structure libraries NLIB and DLIB for all pairs of
atom types (ligand and protein sets A and B). As known from the literature [63, 86, 143,
151, 184, 196], distance distributions with too few counts are not suitable for derivation
of potentials of mean force, and therefore a distance distribution is only used for potential
derivation if it contains more than 500 counts. Otherwise, no ROTA potential for a particular
pair of atom types is derived. This happens especially for certain combinations of protein
atom types from type set A and rare ligand atom types, e.g. ligand halogen atoms and
tryptophane atoms. The de�nition of two atom type sets A and B for protein atoms in the
previous section allows to yield meaningful interactions scores for some of these low count
cases.

From these distance distributions the relative frequencies Fab are derived for all atom
types a and b. This is done by dividing each count number Nab of atom types a and b from
a distance interval of size x by the total number of counts N of the respective distribution:
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It is assumed now that 500 counts are su�cient to convert the relative frequencies directly
into distance probabilities by applying Equation 2.8. The distance probabilities of the NLIB
structure library are denoted with P+(d), the distance probabilities of the DLIB structure
library with P−(d) and a mean distance probability, which is averaged over all probabilities
of all atom types for a certain distance d, with P (d). With these distance probabilities it
becomes possible to derive two di�erent potentials of mean force using Equation 2.13.

∆E+
ab(d) = −kT ln

P+
ab(d)
P (d)

(3.2)

∆E−ab(d) = −kT ln
P−ab(d)
P (d)

(3.3)

(3.4)

The potentials ∆E+
ab are able to identify native structures whereas the potentials ∆E−ab

are able to identify decoy structures. The ROTA potentials are now derived as discriminatory
potentials from these potentials:

SROTAab (d) = ∆∆Eab(d) = ∆E+
ab(d)−∆E−ab(d) = −kT ln

P+
ab(d)
P−ab(d)

(3.5)

The ROTA potentials are therefore only derived from the distance probabilities P+(d)
and P−(d), the mean distance probability P (d) cancels out. From now on the ROTA scores
are given in units of kT .

Equation 3.5 can only generate ROTA scores for distance bins for which both distance
probabilities are larger than zero. However, for small distances there are often no samples
for one or both distance distributions, since clashing atoms are rare in both sets (although
structures of DLIB generally contain more clashes than structures of NLIB). Other scoring
functions based on potentials of mean force deliberately ignore these distances and are only
de�ned for atom distances above certain thresholds (DrugScore: 1.0 Å [63], BLEEP: 2.5 Å
[143, 144]). As the availability of counts at close distances depends on the particular pair of
atom types, it was decided to assign a constant penalty to all distance bins for which either
P+(d) or P−(d) could be computed. For these distances the ROTA potential is just set to
the worst (highest) ROTA score among all potentials, which is 4 kT (rounded up).

Atom distances that should be scored with ROTA usually deviate from the midpoints of
count bins that were used to derive the distance distributions. The ROTA score for a distance
d between the midpoints dl and dr of two distance bins is therefore linearly interpolated
between the scores S(dl) and S(dr) of these distance bins (adapted from Samudrala and
Moult [184]):

S(d) = S(dl) +
[
(S(dr)− S(dl))

d− dl
dr − dl

]
(3.6)

If a (small) distance has no left midpoint, its score is set to the right midpoint, and if a
(large) distance has no right midpoint, its score is set to the left midpoint, as long as this
distance does not exceed 10 Å.
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3.5 Properties of the ROTA Scoring Function

The ROTA potentials have special properties that cannot be found in a similar combination
among other scoring functions. The most important feature of ROTA is that the potentials
are soft, so they have low penalties for clashing atoms and wide potential wells for favorable
interactions. Figure 3.3 shows the PMFs of DrugScorePDB and DrugScoreCSD for N.pl3 and
O.co2 Sybyl atom types that can be compared with the ROTA PMFs for the atom type
pairs (HET-O.CO2, LYS-NZ) in Figure 3.4(b) since both are atom types for hydrogen-bond
donors and acceptors. The largest di�erence between the PMFs of ROTA and DrugScoreCSD
is that ROTA penalizes clashes in the distance interval of 0.0-1.3 Å, in which DrugScoreCSD
assigns no penalty scores. DrugScoreCSD strongly penalizes the distance interval of 1.5-2.5 Å
and then rapidly changes to bene�cial scores for the optimal hydrogen bond distance of about
2.8 Å for these atom types. The same minimum scores can be found in the ROTA potential
of (HET-O.CO2, LYS-NZ). However, this potential is much softer, as the transition between
clash scores and scores for the optimal bond distances is spread over the whole distance range
between 1.3 Å and 2.8 Å. One implication of this di�erence is that ROTA is better suited
for scoring complex conformations in which rotamers of lysine are not adapted to a certain
ligand conformation, because there is a high chance that the distance between a ligand
hydrogen acceptor and the Nζ of lysine is smaller (or larger) than the optimal distance.
DrugScoreCSD does not tolerate such a case and will penalize this distance, although the
general conditions for a hydrogen bond may be met. The remaining parts between 3.0 and
6.0 Å of the ROTA and DrugScore potentials are quite similar.

The ROTA potential for (HET-O.CO2, LYS-NZ) has a small artifact at 2.1 Å, which
is a result of the very low count number as shown in the respective distance distribution
in Figure 3.4(a). The ROTA potential for the atom types (GLU-OE1, LYS-NZ) shown in
Figure 3.4(d) has been derived on a larger number of distance counts (167,029) then the
potential for (HET-O.CO2, LYS-NZ), for which only 2,824 counts were available. Therefore
the resulting potential for (GLU-OE1, LYS-NZ) is smoother than the potential for (HET-
O.CO2, LYS-NZ).

There are generally no large di�erences between the potentials derived for docking into
�exible proteins and those for side-chain prediction except that (i) the potentials for side-
chain prediction are smoother due to the higher quality of the data set and (ii) these poten-
tials have ten times more decoys in DLIB than in NLIB compared to potentials for docking
which have an equal number of structures in NLIB and DLIB and that (iii) there were no
potentials for interactions with ligand atoms derived for side-chain prediction. A compar-
ative evaluation of the two versions of potentials for intra-protein interactions (see Figure
4.2 in Section 4.5.2) showed that the potentials derived for side-chain prediction are better
suited for side-chain prediction than the potentials derived for docking. Therefore the cur-
rent version of ROTA uses the potentials derived for docking for scoring of protein-ligand
interactions and the potentials derived for side-chain prediction for scoring of intra-protein
interactions.
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Figure 3.3: Distance-dependent pair potentials of DrugScoreCSD (solid lines, boxes)
and DrugScorePDB (dotted lines, crosses) for N.pl3 and O.co2 Sybyl atom types. From
Velec et al. [214].

(a) Distance distribution of HET-O.CO2 and LYS-NZ (b) ROTA potential of HET-O.CO2 and LYS-NZ

(c) Distance distribution of GLU-OE1 and LYS-NZ (d) ROTA potential of GLU-OE1 and LYS-NZ

Figure 3.4: Distance distributions in the NLIB (blue) and DLIB (red) structure li-
braries (left side) and the respective ROTA potentials (right side). The x-axes rep-
resents distances in Angstroms, the y-axes probabilities (left, without unit) or ROTA
scores (right, in kT units).



3.6. IDENTIFICATION OF NATIVE SIDE-CHAIN CONFORMATIONS 41

Table 3.3: Number of native structures at rank one among di�erent decoy sets

Scoring function 4state All-BBDep All-Rot Triple-BBDep Triple-Rot

RAPDF 7/7 9/10 10/10 1/10 4/10
BBDep-Score 2/7 6/10 9/10 0/10 0/10
ROTA, All-BBDep 5/7 10/10 10/10 9/10 8/10
ROTA, All-Rot 6/7 10/10 10/10 7/10 9/10
ROTA, Triple-BBDep 3/7 10/10 10/10 6/10 7/10
ROTA, Triple-Rot 3/7 10/10 10/10 7/10 7/10

Table 3.4: Average Z-score of native structures among di�erent decoy sets

Scoring function 4state All-BBDep All-Rot Triple-BBDep Triple-Rot

RAPDF -3.189 -6.744 -9.160 -1.516 -1.385
BBDep-Score -2.569 -3.190 -9.391 -0.298 -0.953
ROTA, All-BBDep -3.196 -7.850 -9.026 -1.531 -1.413
ROTA, All-Rot -3.547 -7.773 -9.391 -1.524 -1.453
ROTA, Triple-BBDep -1.439 -6.965 -8.243 -1.328 -1.266
ROTA, Triple-Rot -1.445 -6.975 -8.254 -1.333 -1.272

The small deviation between the Z-score found here for the RAPDF on the 4-state
decoy set and that computed by Tosatto [209] is due to the fact that our scores do
not include terms for intra-side-chain interactions.

3.6 Evaluation of ROTA: Identi�cation of Native Side-Chain

Conformations

All versions of the ROTA scoring function for side-chain prediction that were derived with
the four di�erent versions of the DLIB were tested for their ability to discriminate a native
structure from a set of decoy structures.

This scenario is also known as a task for Model Quality Assessment Programs (MQAP),
which are commonly applied for selecting the best model (or a subset of models) from a large
pool of protein models that are generated with homology or ab-initio modeling methods (see
Section 2.3). The purpose of this evaluation was to motivate the selection of a special version
of the DLIB for generating ROTA potentials for side-chain prediction. Additionally, all
structures were also scored with the scoring function RAPDF [184] and scores calculated by
using the probabilities of the BBDep [43] like in SCWRL [26] with Equation 4.6 in Chapter
4.

The test set used in this evaluation is the MQAP test set together with the side-chain
decoy sets generated for these structures (see Section 3.1) and the 4-state reduced [155]
decoy set4. The 4-state reduced decoy set contains models with a variety of backbone

4downloaded from the Decoys 'R' Us website at http://dd.compbio.washington.edu

http://dd.compbio.washington.edu
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Table 3.5: Correlation coe�cients between computed score and native-decoy RMSD in dif-
ferent decoy sets

Scoring function 4state All-BBDep All-Rot Triple-BBDep Triple-Rot

RAPDF 0.666 0.556 0.621 0.579 0.684
BBDep-Score 0.224 0.197 0.468 -0.042 0.271
ROTA, All-BBDep 0.572 0.571 0.582 0.639 0.714
ROTA, All-Rot 0.552 0.569 0.594 0.625 0.721
ROTA, Triple-BBDep 0.525 0.536 0.555 0.602 0.710
ROTA, Triple-Rot 0.528 0.536 0.556 0.601 0.711

conformations which is also re�ected by the high RMSD values in Figure 3.1. All scores
(also RAPDF scores) were calculated using a simple Python script that iterates over all
protein atom pairs of a query model.

The results of this evaluation are summarized in Tables 3.3, 3.4 and 3.5. Table 3.3
shows the number of identi�ed native structures in the decoy sets and Table 3.4 presents the
Z-scores that were assigned to the native structures among the scores assigned to all other
models of the decoy sets. Z-scores (also: standard scores) are obtained with Z = x−µ

σ , where
x denotes the raw scores, µ the mean of all scores and σ the standard deviation of all scores
(considering all scores computed by a single scoring function on a single decoy set). The
resulting Z-scores of the native structures show that the concept of using side-chain decoys
for deriving the ROTA scoring function increases the ability of discriminating between native
structures and decoy structures with disturbed side chains but also decreases the ability of
discriminating between backbone decoys and the native structure: RAPDF can identify all
native structures in the 4-state set (putting it to rank one), whereas all versions of the ROTA
show a markedly decreased performance on this set.

The decoy sets Triple-BBDep and Triple-Rot are more challenging for all scoring func-
tions, since they contain a larger fraction of decoys that are quite similar to the respective
native structures (see Table 3.1). These sets are also handled quite well by all ROTA ver-
sions, since the rank of the native structure is one in more than 70% of all test sets. The
RAPDF has a very low discriminatory power on these sets, identifying the native struc-
ture from the decoys in only 25% of all test cases. Also, the observed Z-scores show that
the ROTA versions have a higher discriminatory power on the side-chain decoy sets than
RAPDF, whereas the Z-scores are often quite similar. On the All-Rot test set, the Z-score
achieved by the RAPDF is greater than that of three out of four ROTA versions. Never-
theless, the ROTA function derived from the All-Rot decoy set achieves greater or equal
Z-score results than any of the non-ROTA scoring functions. The BBDEP scores show a
low performance in the MQAP scenario in general, with a better performance on the decoys
sets All-BBDep and All-Rot.

The correlation coe�cients between the RMSD and score of the inspected structures
generally support the above analysis, with two exceptions: �rst, RAPDF performs better
than all other functions on the All-Rot decoy set. Second, in contrast to the prior analysis,
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the di�erent versions of ROTA show nearly equal results. Based on this analysis, the ROTA
version derived from the All-BBDep decoy set was chosen for later side-chain prediction with
IRECS: it is likely that IRECS generates protein models whose failures are expected to be
most similar to decoys from the set All-BBDep, since rotamers are selected from BBDep
and their interaction with the local backbone are scored with the BBDep scores.

3.7 Evaluation of ROTA: Guiding a docking tool

The main purpose of ROTA is to guide the conformational sampling during side-chain
prediction and ligand placement in the binding pocket. The ability of ROTA to support
these applications is evaluated in Chapters 4 and 6. Here, the performance of ROTA is
tested on a set of models of protein-ligand complexes and associated binding a�nity data
that was previously assembled by Wang et al. [223]. This data set consists of 100 protein-
ligand complexes with experimentally determined binding a�nity and a set of 100 alternative
ligand poses for each of the 100 original complexes generated with AutoDock. This data
set is one of the most widely used test sets for scoring functions for predicting ∆Gbind,
and it therefore allows for comparing the performance of ROTA with that of other scoring
functions. Wang et al. tested eleven scoring functions on this data set: LigScore [118],
PLP [60], PMF [151, 150], LUDI-Score [12, 13, 14, 15], FlexX-Score [172], GOLD-Score
[96, 97], DOCK-Score [49], ChemScore [44], AutoDock [147, 227, 228], DrugScorePDB [63]
and X-Score [222]. The scoring functions ITScore [86, 87], DOCK/FF [49, 142], DFIRE
[238, 239, 240] and DrugScoreCSD [214] were later evaluated by their respective authors on
the same data set. It should be mentioned that none of the previous authors discussed
potential overlaps between this test set and protein structures that were used in training of
one of their scoring functions. However, it must be assumed that for each of the complexes
one or more identical or homologous proteins are contained in the ROTA structure libraries.
A discussion of this topic can be found in Chapter 7.

3.7.1 Ranking of Ligand Poses

The ranking of ligand poses is the typical task of a scoring function that is part of a docking
program. The goal is to identify a ligand pose with minimum RMSD from the native
conformation of the ligand in the complex among a set of putative candidate conformations.
The ligand poses that are used to test the scoring functions are usually generated by the
docking program. Wang et al. generated the ligand poses with AutoDock, which uses a
scoring function based on a force �eld [223]. Table 3.6 shows that the performance of ROTA
is quite average compared to the other scoring functions. It is remarkable that ROTA and
the other knowledge-based scoring functions DrugScore, DrugScoreCSD, ITScore and PLP
have a much better performance than the genuine scoring functions of the docking tools
GOLD and DOCK which were designed especially for this task. Even the scoring function
of AutoDock that was used to generate the ligand poses performs worse than ROTA. Among
the scoring functions of docking programs the FlexX scoring function (F-Score) performs
best. If the �rst two ranks are considered instead of only the �rst, the results of ROTA
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Table 3.6: Percentages of native ligand poses ranked on top with di�erent RMSD thresholds
using docked ligand poses from the test set of Wang et al.

Success rate [%]
RMSD RMSD RMSD RMSD RMSD

Scoring function Source ≤ 1.0 Å ≤ 1.5 Å ≤ 2.0 Å ≤ 2.5 Å ≤ 3.0 Å

DrugScoreCSD b 83 85 87 - -
ITScore c 72 79 82 85 88
Cerius2/PLP a 63 69 76 79 80
SYBYL/F-Score a 56 66 74 77 77
Cerius2/LigScore a 64 68 74 75 76
DrugScorePDB a 63 68 72 74 74
Lennard Jones 12-6 b 65 66 68 - -
Cerius2/LUDI a 43 55 67 67 67
ROTA e 52 59 66 67 69
X-Score a 37 54 66 72 74
AutoDock a 34 52 62 68 72
DFIRE d 37 52 58 61 64
Cerius2/PMF a 40 46 52 54 57
SYBYL/G-Score a 24 32 42 49 56
SYBYL/ChemScore a 12 26 35 37 40
SYBYL/D-Score a 8 16 26 30 41

This table lists the percentages of protein targets for which the respective scoring
functions could identify a near-native ligand pose using di�erent RMSD cuto�s for
ligand similarity. The sources of these values are: a) Wang et al. [223], b) Huang et
al. [87], c) Zhang et al.[240], d) Velec et. al [214], e) this work.

increase signi�cantly to 51 hits for 1.0 Å, 65 for 1.5 Å, 71 for 2.0 Å, 72 for 2.5 Å and 80 hits
for 3.0 Å.

3.7.2 Prediction of Binding A�nities

An important task of docking programs is to estimate the binding free energy of a protein-
ligand complex. The ability to predict the conformation of such a complex is a prerequisite of
this task, but a scoring function is still required to estimate ∆Gbind from this conformation.
It is a common technique to use one scoring function for prediction of the complex conforma-
tion and another scoring function for post-scoring of the �nal conformation [136]. In general,
a scoring function for docking requires strong repulsive terms to prohibit the generation of
ligand conformations with clashes, whereas post-scoring functions usually have much softer
repulsive terms [200]. In this evaluation, ROTA was used to predict the contributions of the
protein-ligand interactions to the binding free energy on the 100 X-ray structures of the test
set of Wang et al. Although ROTA was derived to guide the ligand placement in FlexE, it
is also quite suitable for predicting ∆Gbind.
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Table 3.7: Spearman correlation coe�cients between of binding scores and experimentally
determined binding a�nities of for ROTA and 15 other scoring functions on in Wang et al.'s
test set.

Scoring function Correlation coe�cient Source

ROTA 0.667 e
X-score 0.660 a
ITScore* 0.65 b
DFIRE 0.63 c
DrugScoreCSD 0.624 d
Cerius2/PLP 0.592 a
DrugScorePDB 0.589 d
SYBYL/G-Score (GOLD) 0.569 a
SYBYL/D-Score (DOCK) 0.475 a
SYBYL/ChemScore 0.431 a
Cerius2/LUDI 0.430 a
DOCK/FF 0.40 b
Cerius2/PMF 0.369 a
Cerius2/LigScore 0.363 a
SYBYL/F-Score (FlexX) 0.283 a
AutoDock 0.141 a

The sources of these values are: a) Wang et al. [223], b) Huang et al. [87], c) Zhang
et al. [240], d) Velec et al. [214], e) this work. *All authors present the Spearman
correlation coe�cient except Huang et al. who use the Pearson correlation coe�cient.
For ROTA the Pearson correlation coe�cient to the measured binding a�nity is 0.682.

This evaluation uses a correlation coe�cient for determining the linear relationship be-
tween predicted and measured value pairs. In order to remain consistent with previous
evaluations of other scoring functions, the Spearman correlation coe�cient [78] is used here.
It is de�ned as

Rs = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
(3.7)

di denotes the di�erence in rank position of each pair member after creation of two
di�erent rankings based on the two pair member values. The two rankings are obtained
by �rst sorting complexes by their binding a�nity and second by sorting the complexes
by the calculated scores. The Spearman correlation coe�cient [78] is used for measuring
the correlation between scores and binding a�nities by Wang et al. and the respective
authors for all scoring functions shown in Table 3.7, except ITScore, for which Huang et al.
calculated the Pearson correlation coe�cient. The correlation coe�cient of ROTA is higher
than reported previously for any other scoring function that was tested on this data set.
The high performance of ROTA in predicting binding a�nity is especially surprising as it
was derived only from structure data without any training data for ∆Gbind. It can also be
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Figure 3.5: Binding a�nity vs. ROTA scores

seen that most of the knowledge-based scoring functions also perform quite well on this task
(ITScore, DFIRE, DrugScoreCSD, DrugScorePDB), whereas most of the scoring functions
based on force �elds and empirical scoring functions perform worse. Since ROTA was not
designed to score high quality structures, it was previously expected that the softness of the
ROTA potentials would lead to a loss in sensitivity on this data set. Its good performance
may be due to the large diversity of the structural data, which were derived by di�erent
crystallographers with di�erent techniques using di�erent chemical parameters and tolerance
values for de�ning a protein structures as being correctly modeled. That ROTA can more
easily tolerate these di�erences than any other scoring function may be the reason for it
being more stable and reliable in its estimations.

Figure 3.5 shows a scatter plot of the calculated ROTA scores and the measured binding
a�nity. Since other authors plotted the prediction of their scoring functions in kcal

mol , this
unit was also used in here instead of kJ

mol . Equation 2.2 was used with a temperature of
298K for conversion of the ROTA scores.

3.8 Discussion

In contrast to other scoring functions, two versions of ROTA have been derived for two
di�erent purposes. Each version required two di�erent structure libraries, whereas other
scoring functions usually require only one such library for derivation. The need for these
four structure libraries arose from the main goal of ROTA: this is detecting those structural
features that are highly discriminatory between correct and false protein structures. This
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aim distinguishes ROTA from many scoring functions for docking and molecular modeling,
as these scoring functions usually aim at approximating contributions to the free energy of
a molecular system. In order to �nd discriminative structural features, the range of correct
and false protein structures must be e�ciently and comprehensively sampled. These ranges
depend on the particular modeling technique, and therefore it has been necessary to de�ne
structure libraries for the docking problem on the one hand and for the side-chain prediction
problem on the other hand.

Although ROTA already achieves a remarkable scoring accuracy, it can be improved and
extended through a number of approaches. First, the structure libraries can be extended.
Since the size of the PDB grows exponentially with time and the quality of the deposited
protein structures tends to increase, a regular update of the structural basis of ROTA is
possible. This would allow for obtaining a more comprehensive description of the confor-
mational space of protein-ligand complexes and the involved interactions, which in turn
would allow for including more detail in the atom type schemes of ROTA. For example, the
atom type scheme of ligands could be extended by charge information, which would improve
the scoring of polar interactions. Also, special atom types for metal ions or the rare but
important halogen atoms could be added. A second approach to extending the structure
libraries would be to enhance the presented simulation procedure for the structure libraries
with procedures that make use of other docking programs and rotamer libraries in order to
generate additional conformations for the NLIB and DLIB structure libraries. This would
potentially increase the performance when ROTA is used in concert with other docking and
side-chain prediction programs, since this would allow for including modeling failures in the
structure libraries that are characteristic of a variety of current modeling approaches, not
just the failures that are characteristic of FlexX and side-chain prediction programs that use
the BBDep. The most drastic change of ROTA and also the most promising one would be to
de�ne potentials not only for pairwise atom distances but also for more complex geometric
features like special topologies of certain ligand subgroups. Summa et al. [202] already
presented a knowledge-based scoring function that characterizes and scores the atomic en-
vironment of query atoms based on the occurrence of certain structural motifs composed of
a small set of atoms. Their approach turned out to have higher performance than scoring
functions like AMBER, CHARMM, DFIRE when discriminating protein decoy conforma-
tions from native conformations. These results indicate that scoring functions in general,
and also ROTA, can pro�t from using more complex features like pairwise atom distances,
if the underlying structural basis makes it possible to gather enough data for such larger
features spaces.
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Chapter 4

Flexible Side-Chain Prediction with

IRECS

In this chapter the side-chain prediction program IRECS is presented. The name 'IRECS'
stands for Iterated REstriction of Conformational Space which roughly summarizes the ap-
plied optimization procedure. Like other side-chain prediction programs (see Section 2.3.2)
IRECS is able to predict single conformations for all side chains of a protein. Addition-
ally, IRECS can also predict multiple conformations per side chain, where the number of
conformations assigned to individual side chains depends on their respective �exibility. A
�rst prototype version of IRECS was implemented in Python and later rewritten in C++
as a standalone program, with some I/O functions implemented in C for speed reasons.
IRECS was published recently [72] and is accessible on the Internet1. The following sec-
tion describes the probabilistic model that is used to characterize the problem of �nding a
meaningful representation of a protein model with user-de�ned �exibility of the side chains.
Section 4.2 describes the IRECS algorithm which can compute heuristic solutions to this
problem. Sections 4.3 to 4.6 evaluate and discuss the runtime and the performance of IRECS
with respect to existing approaches and experimental results. A �rst application of IRECS
is shown in Section 4.7 where IRECS is applied to an analysis of rotameric states of a single
point mutant of the HCV protease NS3-4A. The last section discusses the general usefulness
of IRECS and possible improvements.

4.1 Probabilistic Modeling of Side-Chain Flexibility

In this section, a probabilistic model for dealing with side-chain �exibility is introduced
that is able to capture the most relevant aspects of side-chain �exibility by using discrete
side-chain conformations. For docking, the most important characteristics of �exible side
chains are �rst the possible conformations of a side chain and second the probabilities with
which these conformations occur. For an e�cient description of side-chain �exibility it is
thus desirable to determine a set of discrete conformations that are suited best to represent
the conformational space of a side chain, but the set should be limited in size. The aim of the

1http://irecs.bioinf.mpi-inf.mpg.de/
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probabilistic model presented here is to provide an abstract formulation of the underlying
optimization problem of this task.

The �rst de�nitions introduced here are required to formally describe the input and
output of the IRECS algorithm. The �rst step in the side-chain prediction process is to
generate initial coordinates of all side chains of the target protein. Next all assumed relevant
conformations of all side chains of a protein are sampled by discrete rotations of all dihedral
angles, e.g. from a rotamer library, of each side chain. Each side chain i of the protein has a
set of rotamers Li. At this step it is assumed that the sampling process is able to generate
all relevant rotamers of side chain i and that all of them are contained in the set Li. Let Xi

be the name of an arbitrary subset of Li. The list L = L1, ..., Li, ...Ln is called the rotamer
space of the protein. The list X = X1, ..., Xi, ...Xn is analogously called a reduced rotamer
space of the protein. Each solution candidate of the IRECS algorithm consists of the protein
backbone and a certain reduced rotamer space. The next de�nitions are used to characterize
such a solution candidate. From the two rotamer spaces Li and Xi di�erent conformations
of the protein can be generated by selecting one conformation from Li or Xi, respectively,
for side chain i. G(L) is the set of conformations that can be constructed in this way by
taking side-chain conformations from L and analogously for G(X).

A good rotamer reduction contains not only a large number of possible protein conforma-
tions, but also the most probable protein conformations: given a scoring function that can
approximate the energy of a conformation E(C), each conformation C in G(X) is assigned
a Boltzmann probability P (C) that depends on this energy E(C) and the energetic states
of all other conformations Ĉ in G(L):

P (C) =
e
−E(C)

kT∑
Ĉ∈G(L)

e
−E(Ĉ)

kT

(4.1)

k is the Boltzmann constant and T is the temperature of the molecular system. For a
given reduction X of L, the probability PG(X) denotes the sum of all Boltzmann probabil-
ities of all conformations in X:

PG(X) =
∑
C∈X

P (C) =

∑
C∈G(X)

e
−E(C)

kT

∑
Ĉ∈G(L)

e
−E(Ĉ)

kT

(4.2)

An optimal rotamer reduction X maximizes PG(X). Such a reduction is the optimal
choice of rotamers for describing the conformational space accessible to the side chains of a
protein. Of course, this can be done trivially by removing no conformation, so that X = L.
To make the problem formulation more useful, the sizes of the rotamer sets are limited by
some �exible measure. Such a constraint can pose an upper bound of the average number
of rotamers per side chain (called the rotamer density ρrot(X) of a reduction X:
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ρrot(X) =
1
n

∑
i=1,...,n

|Xi| (4.3)

Now one can formulate the �exible side-chain prediction problem by using reduced ro-
tamer spaces X with bounded rotamer density. The optimal rotamer reduction has a maxi-
mum cumulative Boltzmann probability and a rotamer density that is bounded from above
by a number b. The �exible side-chain prediction problem is therefore to �nd a rotamer
reduction X among all possible rotamer reductions Y that ful�ll the following criteria:

∀ Y : ρrot(Y ) ≤ b ⇒ PG(X) ≥ PG(Y ) (4.4)

A reduction X that meets this constraint enables the generation of a set of protein
conformations G(X), which altogether have a maximal sum of Boltzmann probabilities
compared to other candidate reductions Y with rotamer density below b.

The rigid side-chain problem is a special case of the �exible side-chain prediction problem
formulated above if b = 1. In the rigid case, the global minimum energy conformation
(GMEC) of a protein is searched for using a �xed backbone conformation and multiple side-
chain conformations. As Pierce and Winfree showed [160], the rigid side-chain problem is
NP-hard if pairwise potentials are used for scoring energy (see Section 2.3.2). A proof for
NP-completeness of the �exible side-chain prediction problem was not attempted here, but
the conversion made above should illustrate the hardness of this problem and the need for
approximate solutions.

4.2 The Optimization Algorithm IRECS

The aim of the IRECS algorithm is to �nd an approximate solution for the �exible side-chain
prediction problem. IRECS must work heuristically because the space G(X) is too large for
explicit enumeration. IRECS follows a simulated annealing strategy [31, 104] that allows
transition from high energy states to low energy states and vice versa while ensuring that
'downhill' moves to low energy states are more frequent. The energy of a state is evaluated by
using the e�ective energy approach that is carried over from mean �eld theory as described
by Koehl and Delarue [110, 112]. The overall strategy of IRECS is to remove rotamers
one-by-one until each side chain is assigned a single rotamer or until the user decides to
interrupt the optimization process. In each step of the optimization process all rotamers are
scored and a single rotamer is chosen for removal that is supposed to contribute least to the
conformational space of the protein.

4.2.1 Sampling the Full Rotamer Space

Given a protein model with a rigid backbone conformation, IRECS ignores all previous
side-chain conformations and builds initial side-chain conformations using the de�nitions
for bond lengths and angles in the topology �le of the CHARMM [25, 137] force �eld2. By
default, IRECS uses the residue sequence of this backbone as the target sequence of the

2http://www.charmm.org/

http://www.charmm.org/
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Figure 4.1: Flowchart of the IRECS algorithm

�nal model. Optionally, IRECS can read in a target sequence from a �le in FASTA format.
IRECS then uses the provided protein model as a template and aligns the target sequence
to the sequence of the template backbone. Side chains of the template protein are then
changed to the side chains of the respective aligned target residues.

The conformational space of each side chain is then represented by an ensemble of ro-
tamers: all rotamers that are de�ned for the respective amino acid in the BBDep are sampled
with repeated rotations of the initial side-chain conformation. Each rotamer of the ensem-
ble is also assigned a probability that measures its in�uence on the other rotamers: if the
probability is larger than zero the rotamer is called active and its interactions are used to
calculate the energy state of the system. If this probability is set to zero, the rotamer is ef-
fectively removed from the ensemble and its interactions are neglected during all subsequent
computations. At the beginning the probabilities of an ensemble are distributed uniformly
among all its rotamers.
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4.2.2 Side-Chain Interactions

IRECS knows three di�erent interaction partners: the �xed protein backbone, a set of ligands
with �xed conformation and rotamers of other side chains. Since the conformational space
of the side chains is known beforehand, it is possible to compute all relevant interactions
before the optimization procedure starts and to store them in a matrix for fast lookup during
the optimization. All relevant interactions are scored with ROTA potentials (see Equation
3.5). Here, the term Uinter is applied to all interaction partners y of a certain side-chain
conformation x and is calculated by iteration over all n × m atom pairs of the respective
interaction partners.

Uinter(x, y) =
n∑
i

m∑
j

∆∆SROTAij (d) (4.5)

In this and the following chapter, the potentials derived for side-chain prediction are
used if not otherwise stated. The interactions of rotamers with the backbone are split
into interactions with the local backbone part and far interactions with backbone atoms
that do not belong to the residue of the particular side chain. The interactions with the
local backbone part are denoted by Uself. Their contributions are weighted with the rotamer
probabilities de�ned in the BBDep and therefore depend on the local backbone conformation
that is characterized by Φ and Ψ (see Section 2.3.2). The functional form of this term is the
same as for the side-chain prediction tool SCWRL [26]:

Uself(xi) = −2.5 · log p(xi|Φi,Ψi)
max
yi∈Ci

p(yi|Φi,Ψi)
(4.6)

The scaling factor -2.5 is required for adding Uself to Uinter. It was found empirical on
a training set of 34 X-ray structures (see Appendix C.1) and by minimizing the side-chain
RMS deviation between predicted models (single side chains on a �xed backbone) and the
respective X-ray structures.

4.2.3 The E�ective Energy Approach

IRECS requires an energy score for each active rotamer for assessing its value for the confor-
mational space of the protein. As proposed by Koehl and Delarue the energy contribution
of a side-chain conformation can be approximated with the e�ective energy approach (see
Section 2.3.2). If there are multiple side-chain conformations in a system, each single confor-
mation contributes to the system energy by all energy contributions from interactions with
all conformations of other side chains, weighted by the probabilities of these conformations.

Ee�(xi) = Uself(xi) + Uinter(xi, b) +
s∑
j=1
j 6=i

Cj∑
yi

p(yj)Uinter(xi, yj) (4.7)

At the start of the optimization this approximation is quite bad since the initial size
of the ensembles depends on the unadjusted number of rotamers that are de�ned in the
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BBDep for the respective amino acids. The energy contributions of interacting side chains
are therefore dominated by many clashing rotamers. With decreasing rotamer density, the
conformational spaces of the side chains are adjusted to their environment and clashes are
removed, so that the energy approximation becomes more accurate.

4.2.4 Minimizing the E�ective Energy

IRECS now carries out an optimization procedure that reduces the number of rotamers
of the proteins (and therefore its �exibility) and also lowers the system energy. IRECS
removes a single unfavorable rotamer in each step and thus moves slowly but continuously
to a minimum energy conformation. This procedure either stops if each side chain has
only one rotamer left or if the user interrupts the optimization. IRECS allows to de�ne a
threshold for the minimum rotamer density of the protein model and if this is reached the
optimization ends.

Reducing the Conformational Ensembles

In this step IRECS searches all side chains for a rotamer that has the lowest chance to
contribute to the conformational space of its side chain. This is a rotamer has the highest
e�ective energy among all rotamers of the same side chain. As in the SCMF approach
[110] the Boltzmann probability of a rotamer in its ensemble can be calculated based on the
e�ective energy of the rotamers in the ensemble:

p(xi) =
e
−Ee�(xi)

kT

Ci∑
yi

e
−Ee�(yi)

kT

(4.8)

A test that searched for rotamers with minimum Boltzmann probabilities according to
Equation 4.8 and iteratively deleted them led to improper optimization behavior. As previ-
ously noted, the e�ective energies of many rotamers of the protein are quite unrealistic at the
start and therefore these side chains possess unrealistic Boltzmann probabilities which can
describe the observed behavior. Therefore, a more robust selection criterion was developed
to �nd the side chain which should lose one rotamer. The Boltzmann sum of Equation 4.8 is
dominated by the few rotamers which have a very low e�ective energy, and thus, a rotamer
with a low Boltzmann probability can be found at a side chain s which has a large energy
range ∆Ee� between the best and worst rotamer xi and yi:

∆Ee�(s) = max
yi∈Ci

Ee�(yi)− min
xi∈Ci

Ee�(xi) (4.9)

The side chain with the largest ∆Ee� is the one which loses one rotamer. The rotamer
with greatest e�ective energy of this side chain is removed by setting its probability to zero.
The probabilities of the remaining rotamers are distributed uniformly among the rotamer
ensemble so that they again sum up to one. It is notable that the �exibility of a side
chain depends on the ability to easily change its rotameric state which in turn requires the
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Figure 4.2: Side chain with multiple rotamers colored by Boltzmann probabilities
(blue = X-ray structure, red = low probability, yellow = high probability)

rotamers to have similar energetic states. Equation 4.9 therefore tends to select in�exible
side chains and their energy range decreases through the removal of the worst rotamer.

Adjusting the E�ective Energy

After the probabilities of the rotamers of the selected side chain have been changed, the
e�ective energies of the interacting side chains must be recomputed. Speci�cally the inter-
actions to the removed rotamer are deleted and the interactions to the remaining rotamers
become stronger, since the probabilities of these rotamers increased by a small amount. This
step is the most resource-intensive step of the IRECS optimization procedure because of the
many pair interactions between rotamers.

4.2.5 Output of the Final Model

After IRECS has �nished the optimization process, the remaining rotamers represent the
selected conformational space of the protein side chains. This reduced space is now compared
to the full rotamer space. All rotamers of the full rotamer space are assigned e�ective
energies using the post-optimization rotamer probabilities. The Boltzmann law for rotamers
in Equation 4.8 is then applied to all rotamers of the full rotamer space of each side chain.
The rotamer probabilities of rotamers from the full rotamer space now sum up to one. The
sum of probabilities from all selected rotamers of a side chain can therefore be used for
evaluating the ability of IRECS to �nd a representative subset of rotamers for each side
chain. Also, the rotamer probabilities quantify the preference of the side chain to adopt a
conformation using only the selected rotamers. An example is shown in Figure 4.2. The
�gure depicts the rotamers of a single side chain, which are colored according to their
Boltzmann probabilities from yellow (high probability) to red (low probability). The native
conformation of the side chain is drawn in blue.

The protein model is then written to a PDB �le (see Figure 4.3 for a short example).
The alternative side-chain conformations are written as multiple atom insertions for the



56 CHAPTER 4. FLEXIBLE SIDE-CHAIN PREDICTION WITH IRECS

Figure 4.3: Excerpt from a PDB �le for a residue modeled with IRECS. Three rotamers
were assigned by IRECS to this residue. The nearly equal distribution of rotamer
probabilities suggests that the rotamer states can be easily exchanged, which results
in a highly �exible model of this side chain.

respective side chains. The Boltzmann probabilities are given in the �eld for atom occupancy,
and the temperature �eld contains the e�ective energy of the rotamer to which the respective
atom coordinate belongs.

4.3 Runtime

The runtime of the IRECS algorithm primarily depends on the number of residues of the
target protein and the average number of rotamers per side chain at the beginning. Let n
be the average starting number of rotamers per side chain and let p be the number of side
chains to be predicted, then a single IRECS iteration requires time O(n2p): after removal of
a rotamer from side chain s, O(np) other rotamers can interact with the O(n) rotamers of
s and need their e�ective rotamer energies updated. If the minimization is continued until
rotamer density one, O(np) IRECS iterations must be performed. The time complexity of
a complete IRECS optimization is therefore O(n3p2). This is close to the complexity of the
initial (and inevitable) computation of all pairwise (atomic) rotamer-rotamer interactions
(O(n2p2a2), where a is the average number of heavy atoms per rotamer). Actually, both
tasks usually require about the same amount of runtime (seconds to a minute) in real-life
scenarios.

4.4 Measures for Comparison of Conformations and Evalua-

tion of Prediction Accuracy

The following measures are common in the �eld for comparing conformations of proteins,
protein fragments (e.g. side chains) and ligand positions, for characterizing protein proper-
ties and for estimating prediction accuracy. A de�nition is given here since these measures
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are applied in the following evaluations and details of these measures are usually di�erent
between authors, e.g. if hydrogen atoms are considered or which speci�c cuto�s are chosen.

4.4.1 Root Mean Square Deviation

The root mean square deviation (RMSD) is a measure for structural similarity if applied to
two equal sized sets A and B of Cartesian atom coordinates. d is the Euclidean distance of
two atoms.

RMSD(A,B) =

√√√√ 1
n

n∑
i=1

d(Ai, Bi)2 (4.10)

It is common to compare only the positions of heavy atoms since the positions of hydrogen
atoms are rarely resolved by X-ray crystallography. They are always bound to a single
heavy atom and in many cases their position is determined by the position of this atom.
All RMSD values presented in this work follow this convention. The RMSD is used here for
benchmarking the performance of docking tools and side-chain prediction tools. Whenever
an RMSD value is given for a computed ligand conformation or a set of such conformations,
this value was computed between atoms of this conformation and the corresponding atoms
in a reference conformation. If the RMSD of side chains is computed, only the heavy atoms
of the side chains are considered, usually excluding the Cβ atom, as its position is mainly
determined by the backbone, which is held �xed during side-chain prediction. The side
chains of arginine, aspartic acid, glutamic acid, phenylalanine, and tyrosine have symmetric
conformations. Therefore the RMSD of two symmetric side chains is always calculated for all
symmetric alternatives of atom matches between the chains and the minimum RMSD over
all alternative matches is used. If multiple rotamers from a side-chain ensemble are compared
to a single reference rotamer then the RMSD to the best matching rotamer (yielding the
minimum RMSD) in the ensemble is used.

4.4.2 Chi-Match Criterion

Two side chain conformations are compared with each other by comparing all dihedral angles
of the side chains with each other � or � just those dihedral angles noted as indices i of χi.
Two dihedral angles are regarded as matched if their di�erence falls below a given cuto�.
Since this work builds on the coarse-grained BBDep, the cuto� value used here is 40◦. Lower
cuto� values are usually applied if �ner rotamer libraries are used for side-chain sampling
[141, 233]. Two side-chain conformations can partially match up to a certain dihedral angle.
Such a partial match is denoted with χ1 for a match of the �rst dihedral angle, χ1,2 for the
�rst two dihedral angles, χ1,2,3 for the �rst three dihedral angles and χ1,2,3,4 for a match
of all four dihedral angles. The advantage of this measure over the RMSD is that the
backbone conformations of two side chains need not be superimposed with each other before
calculation.
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4.4.3 Relative Solvent Accessibility

Usually the position of a side chain is much harder to predict if the side chain is at the
surface of the protein, since it can interact with the solvent, which just slightly restricts its
�exibility. In contrast, the side chains in the protein core are much less �exible because they
are packed very tightly. Figure 2.3(a) shows the solvent-excluded surface of a protein that
was calculated with the 'rolling ball algorithm' [177]. A common approach to distinguishing
surface residues from core residues is to calculate the accessible surface area of each residue
[126]. This is done here with the program Naccess3 (version 2.1.1) [89], which calculates the
relative solvent accessibility (RSA) for each side chain. Any side chain with an RSA below
20% is considered as belonging to the protein core in this work.

4.5 Accuracy of IRECS when Predicting Rigid Side-Chain

Conformations

Since the rigid side-chain problem is a special case of the �exible side-chain prediction
problem an evaluation is performed that measures the accuracy of IRECS o predict protein
models with single side-chain conformations. A test set of proteins with high-quality X-
ray structures was therefore assembled from the PDB. The PISCES server4 [219, 220] was
used to �lter the PDB for structures that had a resolution better than 1.5 Å, R and Rfree

below 0.3, a pairwise sequence identity below 25% and only single conformations for all side
chains. From the resulting 194 protein structures 34 were chosen randomly for the training
(see Appendix C.1) of the weighting factor for the scoring functions (see Eq. 4.6), and 160
for the test set (see Appendix C.2).

4.5.1 Matching Dihedral Angles of X-Ray Structures

IRECS was used to build protein models with a single conformation per side chain. Figure
4.4 shows the average prediction accuracy of IRECS for up to four dihedral angles for each
amino acid with a �exible side chain. The achieved prediction accuracy is not much di�erent
(>10% increase or decrease) from the average prediction accuracy reported for other methods
[129, 159]. The low accuracy of predicting the χ4 dihedral angle of arginine and lysine is
due to the high �exibility of these side chains and the large number of rotamers that are
required to represent their conformational space. Amino acids with large ring systems like
histidine, phenylalanine and tryptophane have an exceptional high prediction accuracy also
for their χ2 dihedral angle which can be explained by the hydrophobic nature of these side
chains and their relative accumulation in the protein core, where side chains are much easier
to predict.

In a second test the loss of native-like conformations during the IRECS optimization was
analyzed. In the test the rotamer ensembles during the IRECS optimization were compared
with the rigid conformations of the respective X-ray structures from the test set to inspect
when these optimal rotamers get lost. A rotamer was de�ned as near-native if the χ1 angle

3http://wolf.bi.umist.ac.uk/naccess/
4http://dunbrack.fccc.edu/PISCES.php

http://wolf.bi.umist.ac.uk/naccess/
http://dunbrack.fccc.edu/PISCES.php
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Figure 4.4: Prediction accuracy for side chains of di�erent amino acids. The bars
represent the percentages of successful χ-match tests for all dihedral angles (blue: χ1,
green: χ1,2, red: χ1,2,3, yellow: χ1,2,3,4) of the side chains.

matched that of the respective side chain in an X-ray structure. Figure 4.5 shows the average
percentage of rotamer ensembles ful�lling this criterion for di�erent stages of the rotamer
removal process, measured by the current overall density of rotamers ρrot. Each of these
curves describe this average percentage, once using the IRECS scoring function (ROTA
+ BBDep), using both components of the scoring function, or using randomized rotamer
interaction scores.

IRECS performs quite well using ROTA and BBDep independently on this test. In the
range of 3 ≥ ρrot ≥ 1, the performance of IRECS using BBDep drops signi�cantly, whereas
IRECS using ROTA has a rather stable performance also in this region. When IRECS
uses both the ROTA and BBDep components of its scoring function, the performance is
highest for all levels of rotamer density. However, the average percentage of side chains
without a rotamer having a correct χ1 angle in the ensemble more than doubles in the last
steps of the algorithm, increasing from 6% to 15% for 2 ≥ ρrot ≥ 1. This high risk of
removing the correct rotamer in the last steps of the algorithm has three reasons. First,
at the start of the optimization the rotamer ensembles contain many rotamers that can be
clearly identi�ed as useless because of their high e�ective rotamer energy. In later iteration
steps, the removal criterion of equation 4.9 causes all rotamers of an ensemble to have
almost the same e�ective energy (and also rotamer probabilities) and this makes it quite
hard to identify the correct rotamer. Second, the inaccuracy of the scoring function leads
to incorrect removals of rotamers. Speci�cally, towards the end of the IRECS algorithm,
di�erences in the e�ective energies may drop below the noise level that is presented by
the inherent inaccuracy of the scoring function. Last, this behavior can be caused by the
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Figure 4.5: Average prediction accuracy of IRECS for di�erent rotamer densities and
scoring functions

�exibility of some side chains that require a large ensemble of rotamers for an adequate
representation of their conformational space. Since the performance of IRECS is evaluated
with only single conformations for all side chains here, the chance of selecting the same
conformation as observed in the X-ray structure is quite low for these side chains. This also
shows that reducing the rotamer density beyond the natural conformational limit of certain
side chains helps little in raising the accuracy of the generated protein conformation but
worsens it by neglecting any conformational side-chain �exibility.

4.5.2 Comparison with Other Tools for Side-Chain Prediction

IRECS can directly be compared to other side-chain prediction tools if IRECS is con�g-
ured to generate models with single side-chain conformations. The tools SCWRL [26] and
SCAP [233] were selected for comparison because of their popularity, availability, and high
accuracy. They are also of interest for a comparison since they use fundamentally di�erent
optimization algorithms and scoring functions. For this test all three tools use only the
backbone conformation of the protein structures as input and are given no conformational
information of the side chains. However, such information is used indirectly, since some
of the proteins are part of the training sets of the BBDep (used by SCWRL and IRECS),
ROTA and most likely also the CHARMM [25] and AMBER force �elds [157], which are
used by SCAP. The performance of all three tools is measured by the similarity of the gen-
erated models to the original X-ray structures. For comparison of side-chain conformations
the side chain RMSD (see Section 4.4.1) and the χ-match criterion (see Section 4.4.2) is
used. All tools are tested sequentially on the same machine (AMD Opteron V20z).

Table 4.1 shows the averaged results for the whole test set, once for all side chains and
once for all side chains belonging to the core. In general, all programs perform better for core
residues whereas the residues at the surface are much harder to predict, as it was previously
observed [123]. This can be explained by three main e�ects, (i) higher side-chain �exibility at
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Table 4.1: Comparison of side-chain prediction performance on the target backbone

All side chains

Overall Average Runtime
RMSD [Å] RMSD [Å] χ1 [%] χ1,2 [%] (sec)

SCWRL 1.677 0.849 82.3 68.0 4.7
SCAP 1.605 0.823 84.0 70.6 161.0
IRECS 1.551 0.775 84.7 71.6 23.1

Only core side chains

Overall Average
RMSD [Å] RMSD [Å] χ1 [%] χ1,2 [%]

SCWRL 1.191 0.572 90.2 80.1
SCAP 1.120 0.529 91.6 83.9
IRECS 1.046 0.502 92.0 82.2

The measures overall RMSD and χ-match test are �rst measured for each individual
protein of the 160 proteins in the test set and then averaged among all these proteins.
The average RMSD is measured as an average over all side chains in the test set,
regardless to which protein structure they belong. The runtime is averaged without
the runtime on PDB code 1gd0, since SCWRL required more than 16 hours for it.

the surface, (ii) (not modeled) interactions with the solvent and (iii) crystal packing e�ects
(see 2.1.3). Although IRECS has small advantages in most of the similarity measures, the
accuracy of all three tools is quite similar. This is especially interesting considering the large
di�erences of the applied scoring functions (SCWRL: steric clash plus rotamer probabilities,
SCAP: force �eld, IRECS: ROTA plus rotamer probabilities). These di�erences however
become apparent when looking at the runtime: although SCWRL determines an optimal
rotamer selection according to its model of con�guration space, it is the fastest, whereas
IRECS and SCAP use heuristic algorithms and are much slower in all but one case. This
shows that the runtime of the programs is largely determined by the size of the rotamer
libraries (IRECS and SCWRL use BBDep, SCAP a �ne coordinate rotamer library) and the
distance cuto�s of the scoring functions (SCWRL: 3.4 Å, IRECS: 10 Å, SCAP: unknown,
but 12 Å - 14 Å are typical cuto�s for CHARMM), which determine the number of atom
pairs that must be scored.

Since it is hard to assess the respective in�uence of the optimization algorithm or the
scoring function on the prediction accuracy, four di�erent experimental implementations of
IRECS with di�erent versions of the scoring function and simpli�cations for scoring were
tested on the same data set. Table 4.2 shows the di�erent results for these implementations.
The IRECS implementation ROTASCP uses the potentials derived for side-chain prediction,
which is the default setting for IRECS. ROTADFP uses the potentials derived for docking
into �exible proteins, which were derived on a di�erent set of X-ray structures and uses a
di�erent set of atom types (see Sections 3.2 and 3.3.2). As expected the performance of
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Table 4.2: Accuracy of IRECS using di�erent ROTA potentials and simpli�cations

All side chains

Overall Average
RMSD [Å] RMSD [Å] χ1 [%] χ1,2 [%]

ROTASCP 1.551 0.775 84.7 71.6
ROTADFP 1.812 1.053 83.8 69.3
OPTIMAcrystal 1.500 0.753 85.4 72.9
OPTIMArotamer 1.707 0.957 85.8 72.1

Only core side chains

Overall Average
RMSD [Å] RMSD [Å] χ1 [%] χ1,2 [%]

ROTASCP 1.046 0.502 92.0 82.2
ROTADFP 1.099 0.680 91.4 80.7
OPTIMAcrystal 0.999 0.483 91.9 82.8
OPTIMArotamer 1.019 0.581 93.3 83.0

The IRECS implementation ROTASCP uses the potentials derived for side-chain pre-
diction (default, same values as in Table 4.1), ROTADFP uses the potentials derived
for docking into �exible proteins. OPTIMAcrystal predicts each side chain with ro-
tamer interactions from the X-ray structure. OPTIMArotamer predicts each side chain
with rotamer interactions with best matching rotamers from BBDep to the respective
side chain in the X-ray structure.

ROTADFP is worse than the performance of ROTASCP on this test. All further tests of
IRECS were therefore performed using ROTASCP.

In order to clarify if the scoring function or the IRECS algorithm is to blame for the
suboptimal accuracy of IRECS (84.7% χ1 accuracy means that one out of six side-chain
conformations is completely wrong) a simulation was performed that aimed at eliminating
the in�uence of the IRECS algorithm and at measuring the performance of the scoring func-
tion. In this simulation the prediction of a side chain is simpli�ed by choosing the native
conformation for all other side chains of the protein during scoring instead of a rotamer
ensemble. Two setups of this simulation were chosen: once, the native conformation of
the surrounding side chains was taken directly from the crystal structure (OPTIMAcrystal),
and once, the best matching rotamer from the BBDep to the side-chain conformation of
the X-ray structure was chosen (OPTIMArotamer). These di�erent setups can help to mea-
sure the performance decrease that results from using the BBDep instead of a much �ner
rotamer library. When comparing ROTASCP with OPTIMArotamer one can see that using
the optimal reference environment for rotamer scoring is just slightly better than using the
e�ective energy approach of IRECS. This witnesses that the IRECS algorithm has a good
approximation ability and that there is only a small loss in performance that results from
using a heuristic approach.
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Figure 4.6: Average number of rotamers assigned to di�erent amino acid types

The performances of the two simulation setups OPTIMAcrystal and OPTIMArotamer are
generally quite similar. The RMSD measures of OPTIMAcrystal are better than those of
OPTIMArotamer, whereas the situation is reversed for the χ1 and χ1,2-match tests. Such
contradictory results can be seen occasionally (also in Table 4.1 for IRECS and SCAP core
residues) and can be explained by the fact that RMSD values for di�erent amino acids pro�t
from correct dihedral angles to di�erent amounts. A false χ1 of tryptophan results in a very
bad RMSD of the model, whereas a false χ1 of serine just worsens the RMSD only slightly.
The results show that the �xed rotamer approach of the BBDep does not lower the accuracy
of IRECS signi�cantly and therefore the BBDep is an appropriate choice for initial de�nition
of the full rotamer ensembles. These observations imply that either the scoring function, the
modeling of the protein environment (no modeling of explicit solvent, cofactors or binding
partners) or the natural side-chain �exibility circumvent the correct prediction of side-chain
conformations in X-ray structures.

4.6 Accuracy of IRECS when Predicting Flexible Side-Chain

Conformations

The main ability of IRECS is to predict rotamer ensembles that represent the conforma-
tional space of all side chains. This ability of IRECS is much harder to evaluate than just
comparing single predicted conformations to those found in X-ray structures. In this section
an evaluation is attempted that displays the distribution of rotamers among all side chains
of the protein and shows that the numbers of rotamers assigned to each side chain corre-
spond to the assumed degree of �exibility of the respective side chains. A second evaluation
compares the rotamers from rotamer ensembles generated with IRECS with conformational
ensembles occasionally found in X-ray structures that are often but not always caused by
the �exibility of side chains.
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Table 4.3: Total numbers of compared rotamer ensembles of di�erent sizes

Number of rotamers Number of rotamers in crystal structure
in IRECS model 1 2 ≥ 3

1 79,790 1,947 13
2 30,761 2,051 37
≥ 3 10,113 825 22

4.6.1 Distribution of IRECS Rotamers

IRECS assigns di�erent numbers of rotamers to each side chain and thus can weight their
conformational �exibility. In Figure 4.6 the average number of rotamers per side chain is
shown, resulting from 160 protein models built with IRECS on the native backbone and
with ρrot = 2. Residues at the protein surface are assigned more rotamers than residues
in the protein core. Amino acids that are known to be highly �exible like arginine, lysine,
or glutamic acid are assigned a much higher conformational variability than amino acids
known to be more rigid like tryptophan, tyrosine, cysteine, or histidine.

4.6.2 Accuracy of Predicted Rotamer Ensembles

The �exibility of side chains is hard to determine experimentally. With nuclear magnetic
resonance (NMR) the conformational space of side chains can be detected, but this approach
is limited to small proteins or peptide fragments of molecular weight below 40 kDa so far
[20]. Fortunately, in a few cases crystallographers have attempted to �t multiple side-chain
conformations to a measured electron density that does not allow for assigning a reasonable
single conformation. These spread-out electron densities are assumed represent �exible side
chains, but they can also arise from experimental artifacts like crystal packing or nearby
disordered regions. Only if the multiple conformations of a side chain di�ered by at least 40◦

in either their χ1 or their χ2 dihedral angles, they were de�ned as multiple conformations
for the purpose of this evaluation. The exclusion of NMR ensembles for this analysis makes
sense, since these ensembles also contain multiple conformations of the backbone, which
IRECS cannot handle. A representative subset of the PDB was constructed as a test set
using the Protein Sequence Culling Server5 (PISCES) [219, 220] of the Dunbrack Lab (see
Appendix C.3). To ensure that multiple side-chain conformations do not originate from
badly resolved crystallographic regions, only protein structures with a resolution better
than 1.5 Å, an R and Rfree below 0.3, and a pairwise sequence identity lower than 25%
were chosen, as it was the case for the test set for single side-chain conformations (see
Section 4.5). All structures without multiple side-chain conformations were discarded and
447 protein structures were kept. For each of these protein structures an IRECS model was
built with a rotamer density of two.

In Table 4.3 the numbers of rotamers that are assigned by IRECS are shown together

5http://dunbrack.fccc.edu/PISCES.php

http://dunbrack.fccc.edu/PISCES.php
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Table 4.4: χ1+2 accuracy of rotamer ensembles predicted with IRECS

Number of rotamers Number of matches between both ensembles
in ensemble computed /
with IRECS Number of rotamers in ensemble derived from crystal structure

1/1 1/2 2/2 ≥ 1/2 1/3 2/3 3/3 ≥ 1/3

1 88.7 81.2 3.9 85.1 92.3 0.0 0.0 92.3
2 87.1 38.7 54.7 93.4 21.6 75.7 0.0 97.3
≥ 3 85.0 28.7 64.5 93.2 4.5 9.1 81.8 95.4

This table lists the percentages of ensemble pairs that have certain sizes and a certain
number of rotamers with similar χ1,2 dihedral angles (with a 40◦ cuto�).

with the number of rotamers that were found at this side chain in the original protein
structure. It can be seen that IRECS generally assigns more rotamers to side chains that
have multiple rotamers in their X-ray structures. The sizes of the ensembles assigned by
IRECS do not match the sizes of the ensembles found in the protein structures perfectly,
but this was expected as only a small fraction of �exible side chains actually is assigned
multiple conformations in the crystal structures.

The structural agreement of multiple rotamers in the IRECS and crystal ensembles is
used here to evaluate the ability of of IRECS to represent the conformational space of side
chains. All rotamers in the IRECS ensembles were compared pairwise with the rotamers
in the X-ray ensembles by the χ1,2 match criterion (see Section 4.4.2) and matches were
counted as shown in Table 4.4. The table combines the sizes of the compared ensembles
with the number of matching rotamers that could be found. A ratio (given in percentage) of
ensemble pairs is shown that achieve the given number of matches among all ensemble pairs
with the same size. For example, among all ensemble pairs for which the X-ray ensemble has
two rotamers and the IRECS ensemble has two rotamers, 38.7% have one match and 54.7%
have two matches. Whenever the X-ray ensembles hold two or three rotamers and IRECS
decides to assign several rotamers to these side chains it manages to match one rotamer in
93.2% and 95.4% of these cases, respectively. This shows that IRECS is not only able to
identify �exible side chains but also to construct rotamer ensembles that fairly well represent
the conformational space of side chains. Whenever IRECS decides to assign only a single
conformation to a side chain, it does so with high accuracy, since it hits the unique X-ray
conformation in 88.8% of all cases, which is much higher than the accuracy of IRECS if it is
restricted to using a single rotamer per side chain (71.6%, from Table 4.1). IRECS usually
chooses to assign more rotamers to side chains that are harder to predict and can therefore
maintain an overall good accuracy.

An example is shown in Figure 4.7. This �gure shows a model with a rotamer density
of two on the backbone of the human UDP-galactose 4-epimerase of crystal structure 1EK6
[205]. This crystal structure was chosen as an example because of its high quality (1.5 Å
resolution, R-value 0.169, and Rfree 0.198) and the presence of 16 side chains with alternative
conformations. Figure 4.7 (a) shows a correctly predicted arginine; it points directly toward
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(a) (b)

(c)

Figure 4.7: IRECS model of human UDP-galactose 4-epimerase. The IRECS model
(red) has rotamer ensembles with rotamer density two. The model was predicted on
the backbone of the crystal structure of the human UDP-galactose 4-epimerase (blue,
PDB code 1ek6, B chain) [205]. (a) Correct and unambiguous prediction of Arg61.
This side chain points toward the core of the protein. (b) Prediction of Glu63 at the
end of a beta-strand. Both ambiguous conformations of the crystal structure were
predicted. (c) Helix on chain B. The helix has been cut out, and only the surface of
the remaining crystal structure is drawn.
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the protein core and therefore is highly restricted in its conformational space. Since IRECS
assigns only one rotamer to this residue, Figure 4.7 (b) displays a glutamic acid at the
protein surface with two alternative conformations in the crystal structure, which both were
predicted by the IRECS algorithm. Figure 4.7 (b) shows the helix between residues 69 and
80 of the B chain. The conformational space of the residues on the helix surface ranges
between four and nine rotamers, whereas all buried side chains have only one rotamer left.
This �gure is also intended to visualize some obstacles of side-chain prediction. For example,
Gln74 has a χ1 dihedral angle that is not represented by the rotamer library at all. IRECS
selects the closest possible rotamers here, but all of the χ1 di�er by 60◦. Arg75 has three
rotamers assigned, with two of them being far from the native conformation and only one
rotamer with a similar χ1. Lys78 has two alternative conformations in the crystal structure,
with occupancy of 0.5 each. IRECS assigns eight rotamers to this residue, matching one
of the alternative conformations quite well and missing the second alternative conformation
completely. All buried residues are predicted optimally, considering the granularity of the
BBDep.

4.7 Application: Analyzing HCV Drug Resistance

An early application of IRECS was an analysis of possible rotamer states of a mutated
protein: in a recent clinical trial mutations at 4 positions in the sequence of the hepatitis
C virus (HCV) protease NS3-4A could be connected to drug resistance of HCV against
the protease inhibitor VX-950 (Telepravir) [130, 174]. One of these mutations is Val36 to
alanine, glycine, leucine or methionine [186]. A superposition of X-ray structures of HCV
protease NS3-4A with STruster6 [40] and structural comparison of the ligands with VX-
950 (performed by Francisco Domingues) revealed close similarity between VX-950 and the
ligand in the X-ray structure 1rtl [198], including a terminal cyclopropyl group. This group
is buried in a subpocket of the protease binding site that is close to Val36. This gave rise
to the starting hypothesis that mutations of Val36 a�ect this subpocket and triggers drug
resistance. The following modeling procedure and analysis was carried out to validate this
hypothesis [229].

4.7.1 Docking VX-950 to HCV protease NS3-4A

To date no X-ray structure of the complex between VX-950 and HCV protease NS3-4A
is publicly available, and so it was necessary to model this complex with protein-ligand
docking. The structural similarity between VX-950 and the ligand in the X-ray structure
1rtl rendered this X-ray structure an optimal candidate for modeling the complex of VX-
950 and the HCV protease NS3-4A. VX-950 was �rst drawn with MDL ISIS/Draw7 and
converted to 3D using energy minimization with the MMFF94 force �eld [68] as implemented
in MOE8. VX-950 was docked with FlexX to the active site of the protease, using the
ScreenScore [200] parameterization of FlexX. The cyclopropyl group of VX-950 was selected

6http://struster.bioinf.mpi-inf.mpg.de
7http://www.mdl.com/products/framework/isis_draw/
8http://www.chemcomp.com

http://struster.bioinf.mpi-inf.mpg.de
http://www.mdl.com/products/framework/isis_draw/
http://www.chemcomp.com
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(a) The ligand (yellow) of 1rtl in the active site of
HCV protease NS3-4A.

(b) VX-950 docked to 1rtl

Figure 4.8: Visualizations of the active site of HCV protease NS3-4A. The surface
of the protein was colored with the vacuum electrostatics function of PyMOL [35].
Charges are computed with the Amber99 force �eld [221] and projected on the protein
surface, whereas colored patches (red=positive, blue=negative) denote polar regions
and white patches apolar protein regions.

as the base fragment of FlexX to achieve a high sampling rate on this group. VX-950
was �rst docked into the active site without specifying a covalent bond. FlexX generates
9 di�erent placements of VX-950, whereas the top ranking placement (see Figure 4.8(b))
shows a binding mode which is quite similar to that of the 1rtl ligand. The cyclopropyl
group is placed towards the hydrophobic region in the protease ligand binding site, buried
in the surface cavity and faces towards the aromatic ring of Phe43. The ketone oxygen of
VX-950 is nearby the Ser139 side chain. Next, the covalent bond between this serine and the
ketone oxygen was �xed and the structure of VX-950 was relaxed using a 100-step energy
minimization with the MMFF94 force �eld. This two-step setup was chosen to ensure that
the docking is not biased by any geometrical constraints that could occur when using a
manually de�ned covalent bond during ligand placement.
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4.7.2 Rotamer Analysis of Val36 Mutants

Rotamers of the mutated side chain of Val36 (mutations to alanine, glycine, leucine and
methionine) were predicted with IRECS. Figure 4.9 illustrates possible side-chain conforma-
tions for the mutants of Val36. The conformational analysis of the mutants revealed that (i)
there is only one atom in the gamma positions of the mutated side chains, (ii) all rotamers
of the mutants are oriented uniformly towards the protein center and away from the ligand
binding site and (iii) no carbon in the gamma position (Cγ) points towards the aromatic
ring of Phe43, as it was the case in the wildtype structure. This carbon atom missing in
the mutants interacts with Phe43 and restricts its �exibility [73]. Upon mutation, Phe43
can more easily change its conformation, which in turn a�ects the shape of the subpocket
of the protease, to which the cyclopropyl group of VX-950 binds. This change can reduce
the ability of VX-950 to bind to the protease, which can be an explanation for the lowered
sensitivity of the respective viral variant to the drug observed during the clinical trial. This
molecular explanation of drug resistance is supported by the observation that only such
mutations were reported in the clinical trial that enable a single atom at the γ-position, and
no mutations were reported that have two atoms at this position (e.g. the apolar isoleucine).
However, the validity of the analysis undertaken here rests upon the accuracy of the modeled
ligand conformation and the predicted conformations of Val36.

Figure 4.9: Mutants of Val36 in HCV Protease a�ecting the conformation of Phe43.
This picture shows the main portion of the ligand of 1rtl (left, yellow), the amino acid
Phe43 (middle, pink) and the amino acid Val36 (right, blue) and its mutants (right,
white) alanine, glycine, leucine and methionine. The patch between the ligand and
Phe43 illustrates that part of the solvent-accessible surface which depends on Phe43.

4.8 Discussion

The results presented here show that the accuracy of IRECS in predicting single side-chain
conformations is in the same range as for well known, established methods, and therefore
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there is not much need for IRECS in this application area. However, the main bene�ts of
IRECS are �rst its ability to detect side-chain �exibility and second to realistically sample
the most important side-chain conformations. The ability of IRECS to predict the �exibility
of side chains was shown in the previous section, but no direct comparison to other methods
that also predict protein �exibility were performed. The main reason for this is that such
methods are hard to compare since they concentrate either on predicting the vibrational
displacement of atoms in X-ray structures [156, 235, 236] or conformational variability in
multiple experimental structures [5, 40] or they predict protein �exibility through molecular
dynamics simulations [188]. This usually includes estimating the �exibility of the backbone,
which interferes with the computation of side-chain �exibility. However, the �exibility of
the conformational ensembles that IRECS generates can be quanti�ed in many ways, e.g.
the number of generated rotamers, the variance of atom locations, or the average number of
rotational degrees of freedom per side chain.

The heuristic nature of the IRECS algorithm renders it incapable of predicting rotamer
ensembles that represent the full conformational space of side chains: in the case of two
rotamers clashing with each other, one of the rotamers will be removed by IRECS in an
early stage of the optimization. However, it is generally possible that both clashing rotamers
are realistic representatives of the conformational space of their side chains, speci�cally if
the one of the side chains adapts a non-clashing conformation. It is therefore not possible
to generate certain alternative protein conformations from the IRECS ensembles that could
also have quite low energy states.

An interesting property of the conformational ensembles generated with IRECS is that
after the optimization is �nished (e.g. with ρrot = 2), the range of e�ective energies in the
rotamer ensembles is low, which means that the contributions of the remaining rotamers
to the e�ective energy is nearly the same. Another observation is that in most cases the
interactions between the generated rotamers of two side chains and the interactions with
the backbone have similar energetic contributions. As a consequence any selection of single
rotamers from the rotamer ensembles generates rigid protein conformations with similar
energy. The rotamer ensembles of IRECS can therefore serve as a pre-optimized protein
con�guration, from which rigid protein conformations can be generated. The computation of
interactions between side chains can be neglected by the cost of a small amount of additional
inaccuracy during energy computation. This property is later devised for docking into
�exible proteins, see Chapter 6.



Chapter 5

Supporting Side-Chain Prediction

with Structural Knowledge from

Related Proteins

The basic concept of homology modeling is to use structural information from a homologous
protein (the template) to model the structure of a target protein. After modeling of the
backbone, it is common to model the conformations of all side chains or just the side chains of
residues with changed amino acids. This is usually done with specialized tools like SCWRL
[26], SCAP [233] or IRECS [72]. However, it is known that the accuracy of side-chain
prediction tools strongly decreases if a modeled or a template backbone is used for the
prediction instead of the backbone of the target protein [83, 210]. In this chapter, an
algorithm called rotamer-lock algorithm is presented that allows for taking conformational
knowledge from a template structure into account within the IRECS optimization procedure.
In each optimization step of IRECS in which a rotamer should be removed (see Section 4.2.4)
that is similar to that of the corresponding side chain in a template structure, it is decided
whether IRECS should trust its own scoring function or take this similarity as a hint for
rather protecting this rotamer from removal. The rotamer-lock algorithm uses two sets of
classi�ers that calculate for each dihedral angle (i) the probability that the part of rotamer
de�ned by this dihedral angle is structurally similar to the respective part in the template
protein and (ii) the probability that IRECS is able to predict the structure of this part
correctly.

The �rst section of this chapter describes the rotamer-lock algorithm and its interaction
with IRECS. The rotamer-lock algorithm requires the calculation of probabilities as noted
above for which a set of decision trees is computed. A comprehensive data set for training
and testing purposes is introduced thereafter, and a set of descriptive features that are
required for the derivation of these decision trees is collected. Finally the performance of
IRECS using the rotamer-lock algorithm is evaluated by 10-fold cross validation. The results
are compared with the output of IRECS using a related algorithm, the conservation rule.
Finally the advantages and disadvantages of the rotamer-lock algorithm and further methods
for performance improvement of IRECS are discussed.

71
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5.1 The Conservation Rule

The conservation rule is the most common method of incorporating side-chain information
from a template. This rule directly transfers the conformation of a side chain from a template
structure to a target model if the respective residue is conserved in the applied sequence
alignment. The remaining side chains of mutated amino acids are then further optimized
using some interaction-based scoring function, while the conserved side chains are being
treated as having rigid conformations. This rule can be combined with nearly all side-
chain optimization techniques that were developed so far. It �rst greatly simpli�es the
combinatorial problem of �nding the optimal or near-optimal set of side-chain conformations,
and second it usually enhances the performance of the overall side-chain prediction: in an
evaluation of methods for model prediction, it was shown that applying the conservation
rule clearly increases the accuracy of the predicted models with respect to other approaches
that optimize all side chains [216]. The rule, however, has the drawback that it can only be
applied to conserved residues, which decreases its usefulness if target and template protein
exhibit little sequence similarity. It is also only of limited use for IRECS since it assigns
just a single conformation to each conserved side chain and is not able to create ensembles
of rotamers. The rotamer-lock algorithm was mainly developed to enable the inclusion of
template information also in the generation of �exible protein models.

5.2 The Rotamer-Lock Algorithm

The idea of the rotamer-lock algorithm is to intervene in the IRECS optimization whenever
a rotamer would be removed that is most similar to a template side chain within its rotamer
ensemble. The rotamer-lock algorithm then checks if it is better to trust the decision of
IRECS or rather to keep the side chain as it is in the template protein. These checks
depend on the degree of similarity between the available rotamers in the ensemble and
the template side chain: since the conformation of a side chain is determined by more
than one dihedral angle for the majority of the standard amino acids, it is meaningful to
determine structural similarity of side chains via the sequence of similar dihedral angles.
This relation is hierarchical since the similarity of dihedral angles χ1 − χi−1 is prerequisite
for also concluding structural similarity of side chains by matching the dihedral angle χi.
The rotamer-lock algorithm utilizes this hierarchy and tries to protect rotamers that are
structurally similar with the template side chain at multiple levels.

The rotamer-lock algorithm is depicted in the �owchart of Figure 5.1. The reference
dihedral angle χi of each protein side chain is determined �rst by the rotamer most similar
to the respective template side chain and second by the presence of other similar rotamers in
the current rotamer ensemble. Therefore the rotamer-lock algorithm protects not only one
most similar rotamer from IRECS removal attempts (as the conservation rule would do) but
larger rotamer sets of di�erent size and similarity level. For example, arginine starts with 81
rotamers in IRECS from which only one has all dihedral angles χ1,2,3,4 matching with any
given template side chain, but it has three rotamers with matching χ1,2,3 dihedral angles,
nine rotamers with matching χ1,2 dihedral angles, and 27 rotamers with matching χ1 dihedral
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Figure 5.1: Flowchart of the rotamer-lock algorithm

angle. The rotamer-lock algorithm attempts to protect these rotamers (i) whenever IRECS
tries to remove one of them, (ii) if there is no active rotamer which is more similar, and (iii)
if the probability of conservation of the side chain up to this dihedral angle is higher than
the accuracy of IRECS for predicting all these dihedral angles correctly. The rotamer-lock
algorithm then locks this rotamer. This has the e�ect that the search for a side-chain which
should loose a rotamer (see Section 4.2.4) is repeated, this time ignoring the side chain with
the locked rotamer (and all other side chains with locked rotamers) during the calculation of
e�ective energy ranges (see Equation 4.9). The lock is maintained until either the evaluated
probabilities or the reference dihedral angle χi changes. The probabilities can change during
the IRECS optimization since they depend on features which assess the agreement between
the current stage of the IRECS optimization algorithm and the respective side chain in the
template protein. The reference dihedral angle changes when other rotamers are removed
from the ensemble so that the current reference dihedral angle is not longer the lowest in
sequence by which the current most similar rotamer di�ers from the other rotamers in its
rotamer ensemble.

An example of this situation is depicted in Figure 5.2. This �gure shows an ensemble of
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Figure 5.2: Example for an application of the rotamer-lock algorithm. The sketch
shows a side chain with two dihedral angles and three rotamers remaining in the
IRECS ensemble. Rotamer 1 has the same conformation as the respective side chain
(T) in a template structure.

three rotamers, with rotamer 1 being similar to the template rotamer T for dihedral angles
χ1 and χ2 and rotamer 2 having a similar χ1 dihedral angle. At �rst, the reference dihedral
angle is χ2, since rotamers 1 and 2 di�er in this dihedral angle. If after some time IRECS
removes rotamer 2, the reference dihedral angle becomes χ1 since this is now the lowest (in
sequence) dihedral angle in which rotamer 1 di�ers from rotamer 3.

5.3 Data Set Assembly: Selection of Homologous Protein Pairs

The protein chains for deriving the required decision trees and performing the �nal evalua-
tion were selected using a multi-step �ltering procedure. The aim of the following �ltering
procedure is to get a representative set of pairs of homologous protein chains with a large
number of aligned side chain pairs. Structures of low quality or peptide fragments should be
excluded. The data set will be later used to train classi�ers that predict the chance of two
side chains being structurally similar and the chance of a IRECS prediction being correct.

First, the pairwise sequence identity of protein chains was calculated using the structural
alignments of the DALI Fold database [79, 80]. The protein chains of the PDB were then
clustered by their pairwise sequence identity, so that each chain has a pairwise sequence
identity of less than 30% with all protein chains from other clusters. Each protein chain in
the clusters must then have a resolution better than or equal to 2.0 Å, a length of at least 80
residues and must be resolved by X-ray crystallography or it will be deleted from the clusters.
From each of the resulting clusters a pair of similar protein chains was extracted. Six groups
of protein chain pairs were de�ned according by the respective pairwise sequence identity,
30%-39%, 40%-49%, 50%-59%, 60%-69%, 70%-79% and 80%-90% (percentages rounded to
integers, see Appendix C.4.1-C.4.6 for a list of PDB ids for each group). Exactly one pair of
protein chains was added to one of the groups from each protein clusters, if it ful�lled the
following conditions:

1. there is an alignment for the chains in the DALI Fold database,
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2. the backbones of both structures have an RMSD < 2.5 Å after superposition,

3. the sequence identity is at most 90%,

4. less than 20% of all residues in each chain are aligned against gaps and

5. both proteins have the same number of chains.

If there are candidate pairs for more than one group in a cluster, pairs were chosen so
that the sizes of the six groups are balanced in size as possible. This procedure generated a
total of 584 protein chain pairs. For each protein chain an IRECS model was created with
single side chains, taking the backbone conformation from each respective partner chain as
template. This procedure allowed each of the proteins to take on the role of the template
and the role of the target protein, respectively. A number of 228,925 side-chain triplets
were obtained with this procedure, which consists of a pair of corresponding side chains
from related proteins with one marked as template and the other as target and a third side
chain that is part of an IRECS model of the target protein. Table 5.1 summarizes the most
important features of the data set.

5.4 Generation of Decision Trees

Two features of each side chain in the target protein must be predicted: (i) if the side chain
has the same conformation in template and target (or short: template conservation), and
(ii) if the conformation of a side chain is predicted correctly by IRECS (or short: IRECS

correct). This results in two binary classi�cation problems. Each of problem must be solved
for each of the four levels of structural similarity of side chains (χ1, χ1,2, χ1,2,3, χ1,2,3,4)
which results in eight di�erent classi�cation tasks.

The software package WEKA1 (Waikato Environment for Knowledge Analysis) [230]
o�ers a large variety of classi�cation and regression methods. Among these, 10 di�erent
classi�cation algorithms that are either tree- or rule-based were evaluated with respect to
their ability to predict if the χ1 angle is conserved between corresponding side chains in

1http://www.cs.waikato.ac.nz/ml/weka/

Table 5.1: Total numbers and percentages for all side chains in the data set

Percentage Total number

Residues in dataset 100.0 228,925
Residues conserved 53.9 123,320
χ1 conserved∗ 65.1 149,023
IRECS χ1 correct∗ 71.6 163,954

∗ the respective residues of both the template structure and the query structure have
the same χ1 -angle slot (gauge+, gauge− or trans) as de�ned for the BBDep (see
Section 2.3.2).

http://www.cs.waikato.ac.nz/ml/weka/


76 CHAPTER 5. SIDE-CHAIN PREDICTION WITH TEMPLATE KNOWLEDGE

Table 5.2: AUC for ten di�erent classi�cation algorithms

Algorithm Nodes/Rules AUC

J48 [164] 2,263 0.823
Naive Bayes Tree 615 0.812
Alternating Tree [54] 31 0.800
Decision Table [113] 15,431 0.768
Conjunctive Rule 2 0.703
Decision Stump 3 0.702
RIpple-DOwn Rule Learner [57] 93 0.600
OneR [81] 2,012 0.538
REPTree 443 0.500
ZeroR 1 0.500

Classi�ers without a reference are explained with appropriate detail in the WEKA
documentation [230].

a pair of homologous protein structures, as it is shown in Table 5.2. The J4.8 algorithm
(successor of C4.5 [164] and ID3 [165], implemented in Java) was chosen due to its superior
performance on this test. Also, an algorithm based on decision trees was preferred, because
it enables easy interpretation of the predictions and is known to have a good performance if
both categorical and numerical features are provided [166]. The optimal settings for learning
trees for both problems were found by manual search through the parameter space of the
algorithm:

1. tree nodes may have more than two child nodes,

2. no pruning of the tree and

3. a node may only be split further if more than 100 instances of the training set is
assigned to it.

Given a query instance, the probability that this instance is a member in a certain class
is computed by following a path through the decision tree that is determined by the feature
values of the query instance. The leaf of this path holds a subset of the training data set,
and the ration of the training instances belonging to the class to be predicted divided by all
instances assigned to this leaf yields the estimate of the probability for the query instance
to belong to the respective class.

5.4.1 Selection of Features for Classi�cation

Seventeen features were selected, based �rst on the sequence and structure of both the
template and target structure and second on the models generated with IRECS. All selected
features and their possible values are listed in Table 5.3. The features are grouped by
the source of information that is required to determine the value of the respective feature.
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Table 5.3: Overview of all features used in the classi�cation

Origin/Type Feature Range

template backbone local number of Cβ atoms 0- 20
template backbone local sequence identity 0%-100%
template backbone global sequence identity 0%-100%
template backbone backbone Φ and Ψ -180◦-180◦

template backbone local secondary structure loop, helix,strand
template sequence amino acid name Ala-Val
template sequence amino acid type al, uc, ch, ar, su
template sequence number of dihedrals 0,1,2,3-4
target sequence amino acid name Ala-Val
target sequence amino acid type al, uc, ch, ar, su
target sequence number of dihedrals 1,2,3,4
template side chains χ slots 0,1,2,3
IRECS side chains χ slots of most probable rotamer 0,1,2,3
indicator mutation occurred 0,1
indicator size changed 0,1
indicator chemical type changed 0,1
indicator IRECS and template vote for same χ 0,1

al = aliphatic, uc = uncharged, ch = charged, ar = aromatic, su = sulfur containing

These are the template and target sequence, the template backbone and side chains, the
side chains of the IRECS model and some additional indicators. These features are used
to characterize (i) the kind of mutation (if any) that occurs at a certain residue, (ii) the
structural environment of this residue and its potential di�erence in the template and the
target and (iii) the speci�c conformation of the target side chain both assigned by IRECS
and observed in the template protein. χ-slots were used to fragment the torsional space of all
dihedral angles of the side chains into discrete parts: the slot is set to 1 for χ in the interval
[0◦,+120◦[, 2 for [+120◦,−120◦[, 3 for [−120◦, 0◦] and 0 if the side chain does not have such a
dihedral angle. The local sequence identity and the local number of Cβ atoms were computed
in each spatial neighborhood of a residue. This neighborhood comprises all residues that
have their Cβ atoms located within 10.0 Å of the relevant Cβ atom of the residue (Cα is
taken instead for Glycine residues). As Jones [95] states, the relative solvent accessibility (see
Section 4.4.3) of a residue in a folded protein correlates highly (correlation coe�cient 0.85)
with the number of Cβ atoms in such a sphere. As it was shown in the evaluation of IRECS,
this property is quite determining for the accuracy of side-chain prediction, although it was
also observed that this feature is quite uncorrelated with accuracy if a template backbone is
used [192]. The local secondary structure was determined using the Φ and Ψ dihedral angles
of the particular residue and localizing the corresponding secondary structure element on
the Ramachandran map [167, 178, 22]. A number of additional features were introduced as
indicators of certain events and are derived from other features (e.g. some feature exceeding
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Table 5.4: Features ranked by their information gain ratio

IRECS χ1,2 correct Template χ1,2 conserved
Feature Rank Gain ratio Rank Gain ratio

local number of Cβ atoms 11 0.0088 13 0.0100
local sequence identity 13 0.0038 12 0.0135
global sequence identity 17 0.0010 14 0.0054
template backbone Φ 14 0.0034 15 0.0026
template backbone Ψ 16 0.0012 17 0.0008
local secondary structure 18 0.0005 18 0.0002
template amino acid name 5 0.0227 8 0.0523
template amino acid type 7 0.0154 9 0.0307
template number of dihedrals 12 0.0069 6 0.0777
target amino acid name 3 0.0349 10 0.0285
target amino acid type 6 0.0163 11 0.0212
target number of dihedrals 15 0.0029 16 0.0023
template χ1,2 4 0.0238 4 0.0982
IRECS χ1,2 2 0.0666 7 0.0565
mutation occurred 9 0.0134 2 0.1234
size changed 8 0.0139 3 0.1082
chemical type changed 10 0.0118 5 0.0904
template χ1,2 = IRECS χ1,2 1 0.1432 1 0.2270

a threshold) and thus have a high correlation with them. These indicators can prevent
the J4.8 algorithm from fragmenting the data set too early. One example: the indicator
'mutation occurred' splits the data set into halves, whereas the same information can also
be derived from the features 'amino acid name' of target and template. However, using the
features 'amino acid names' of target and template in combination splits the data set into
20 times 18 = 360 fragments (alanine and glycine are not considered as target amino acid
types during this analysis).

5.4.2 Benchmarking Single Feature Performance

The usefulness of these features was measured by the information gain ratio of each feature.
This ratio measures the ability of a certain feature to fragment the training set into groups
that contain clear majorities of instances that are member in one of the target classes (gain
of information), but favors features that fragment the training set into a small set of groups.
The gain ratio serves as the split criterion for the J4.8 decision tree algorithm [164, 165]. A
precise formulation is given in an early publication of Quinlan [164]. The gain ratio takes
into account (i) the gain of information if a certain feature is used to partition a given
set of data instances and (ii) the (undesirable) fragmentation of the data set through the
application of this feature for partitioning. Table 5.4 lists the features with their gain ratios
and their rank when the features are be sorted by decreasing gain ratio. The ranking was
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Table 5.5: Performance of decision trees

Training Set X-validation
Decision Tree AUC AUC

IRECS χ1 correct 0.7955 0.7854
IRECS χ1,2 correct 0.8288 0.8205
IRECS χ1,2,3 correct 0.7290 0.7189
IRECS χ1,2,3,4 correct 0.7357 0.7267
conserved template χ1 0.8305 0.8243
conserved template χ1,2 0.8926 0.8878
conserved template χ1,2,3 0.8426 0.8365
conserved template χ1,2,3,4 0.8570 0.8499

Performance of various decision trees for prediction of congruency between side-chain
dihedrals in protein structures. The trees with the pre�x 'IRECS' predict the corre-
spondence between the side chains of crystal structures and models generated with
IRECS for the respective dihedral angles. Those trees with the pre�x 'Template'
predict the correspondence between the side chains of crystal structures with their
template structures for the respective dihedral angles.

performed for the classi�cation tasks 'IRECS correct, χ1,2' and 'template conserved, χ1,2'.
The ranking shows that the importance of the features is quite similar for both classi�cation
tasks, both rankings have a rank correlation coe�cient of 0.718 (see Equation 3.7). Global
attributes that are meant to describe the overall environment (global and local sequence
identity, local number of Cβ atoms, conformation of the backbone) are less important than
those features that characterize the conformation of the template side chain and the current
state of the IRECS optimization (template χ1,2 = IRECS χ1,2, indicator that the most
probable rotamer of IRECS has the same χ1,2 dihedral angles than the template side chain).
This similar ranking points to the later di�culty of discriminating both classes from each
other.

5.5 Performance of Decision Trees

The predictive power of the eight decision trees was measured by their performance on the
full training set and by 10-fold cross-validation on the training set. The comparison of both
evaluations allows for estimating the training error. Each decision made by a tree results
in a probability for one of the classes. By sorting the probabilities for all queries and using
multiple probability cuto�s for class assignment, Receiver-Operator Characteristics (ROC)
curves [74] for all trees were created. Table 5.5 summarizes the properties of the trees and
their performance, measured by the area under the curve (AUC) for evaluation on the full
training set and the partial training set as de�ned by the cross-validation. The AUC ranges
from 0.719 to 0.889 in the cross validation and is highest for the trees predicting the template
χ1,2 angle. The trees that were derived for predicting the performance of IRECS have lower
performance than the trees that were derived for the prediction of side-chain conservation.
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(a) χ1 match criterion (b) χ1,2 match criterion

Figure 5.3: Accuracy of IRECS using the rotamer-lock algorithm The accuracy of
IRECS is shown for di�erent target/template pairs grouped by their sequence identity
when (i) using no additional knowledge from a template structure, (ii) using the con-
servation rule and (iii) the rotamer-lock algorithm to protect rotamers that are similar
to the correpsonding template side chain from IRECS removal.

In general, the results of the cross validation are just slightly worse than the results of
the validation on the full training data set, which suggests that the setup of features and
decision trees successfully prevented overtraining. This can also result from the low impact
that an instance of the data set has on the �nal structure of the trees, since the split criterion
prevents splitting a node further into subtrees if it represents fewer than 100 instances. The
decreasing accuracy for the χ1,2,3 and χ1,2,3,4 dihedral angles may primarily result from the
natural �exibility of such long side chains.

5.6 Accuracy of IRECS with the Rotamer-Lock Algorithm

The performance of two alternative methods for incorporating side-chain information from
the template into the IRECS modeling procedure, the conservation rule and the rotamer-
lock algorithm, has been evaluated on the data set. This data set is also used in training
the decision trees, and therefore the test is performed using 10-fold cross validation like
in Section 5.5. To estimate the e�ect that both methods have on the prediction accuracy,
these results are compared to the performance of the original IRECS algorithm without
template information (called reference in the following). The results are depicted in Figure
5.3, which shows the percentage of matching χ1 and χ1,2 dihedral angles of predicted rigid
side chains with side-chain conformations of rigid X-ray structures. Since the side-chain
information from the template becomes more important with increasing structural similarity
between template and target protein, the performance is evaluated for the six di�erent groups
of homology. As expected the accuracy of all three IRECS implementations increases as
the sequence similarity between template and target increases. Although higher similarity
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Table 5.6: Prediction accuracy of IRECS for di�erent amino acids

Applied algorithm and target rotamer density
Reference Conservation RL

Amino algorithm rule algorithm
acid ρrot = 1 ρrot = 2 ρrot = 1 ρrot = 1 ρrot = 2

Arg 46.1 59.8 50.3 52.1 61.0

Asn 53.3 71.2 59.7 58.2 71.9

Asp 59.1 73.7 63.4 64.1 74.9

Cys 72.8 85.7 80.3 80.7 88.8

Gln 44.1 62.4 48.7 49.2 63.7

Glu 40.8 58.0 44.0 45.3 60.0

His 63.5 76.9 71.6 70.0 80.4

Ile 62.7 71.1 64.4 65.5 72.7

Leu 74.5 81.3 73.4 75.8 81.7

Lys 44.0 60.5 44.4 46.5 60.8

Met 50.6 68.4 55.5 56.0 69.9

Phe 76.0 81.7 80.4 80.4 84.3

Pro 64.5 81.5 66.9 67.4 83.3

Ser 53.3 80.3 58.3 60.0 82.2

Thr 71.0 78.7 72.0 72.7 79.6

Trp 58.2 64.8 79.1 76.4 78.8
Tyr 78.9 83.4 83.1 83.0 86.0

Val 97.2 97.4 96.2 97.2 97.4

All 62.9 75.1 65.9 66.8 76.7

The χ1,2 accuracy is given for each amino acid and all applied algorithms for building
rigid and �exible protein models. Cells with highest accuracy compared to other
prediction runs with same rotamer density are highlighted.

between target and template structure generally eases side-chain prediction, the accuracy of
all three IRECS version drops in the group of highest homology (80-90%). Such a drop was
also reported in a similar evaluation made by Wallner and Elofsson [216]. This phenomenon
can be partially explained by the fact that in some cases sequence identity is an insu�cient
measure for the di�culty of a prediction. Also this part of the data set has the fewest
protein structures compared to the other parts, which promotes outliers. Apart from this
e�ect, the �gures support the general usefulness of the conservation rule and the rotamer-
lock algorithm. The rotamer-lock algorithm always outperforms the conservation rule and
allows IRECS to improve its average prediction accuracy from 72.7% to 75.9% for the χ1

dihedral angle and from 62.9% to 66.8% for the χ1,2 dihedral angles on this data set.

The accuracy of di�erent IRECS implementations (with and without the rotamer-lock
algorithm) has also been evaluated with respect to their ability to generate accurate protein
models with multiple side-chain conformations. Since the number of resolved side chains
with multiple conformations in crystal structures is much lower in this data set than in the
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previously presented test set (see Section 4.6.2), the IRECS ensembles are compared to sin-
gle conformations of side chains in crystal structures. Instead of a one-by-one matching of
side chains in the model and the reference structure respectively, a side-chain conformation
is considered matched if one of the rotamers in the ensemble matches it, as introduced in
Section 4.4.2. This is a drastic simpli�cation of the prediction problem for single conforma-
tions, therefore only predictions with the same rotamer density can be compared with each
other. The average accuracy for each amino acid type is shown in Table 5.6. For models
with a rotamer density of one, the conservation rule leads to a better average accuracy than
the rotamer-lock algorithm in six cases, nearly equal accuracy for three amino acid types
and worse accuracy for nine amino acid types. The average accuracy among all amino acid
type is also highest for the rotamer-lock algorithm. For models with a rotamer density of
two, the rotamer-lock algorithm always increased the accuracy of IRECS except for valine,
by a maximal value of 14% for tryptophan.

5.7 Potential and Limitations of the Approach

The rotamer-lock algorithm presented here just slightly increased the accuracy of IRECS.
Two issues appear to be responsible for this low performance of the rotamer-lock algorithm.
First, the applied data set was not designed �rst-hand for this kind of analysis. Another
training set could potentially improve the derived decision trees. Such a data set could
contain more recent X-ray structures (the data set of Holm et al. [80] is already ten years
old), pair alignments would be based on more recent approaches and side chains would be
excluded if the temperature factor of its atoms indicate that no reliable rotamer assignment
could be performed during �tting the electron density. A second issue is that the original
problem � deciding whether to trust the scoring function or assume conformational con-
servation between template and target side chain � was arti�cially split into two separate
prediction problems. As both problems are determined by quite similar sets of features (see
Figure 5.4), this setup prevented the most discriminatory features from being identi�ed by
the J4.8 algorithm.

Nevertheless, we could show the general usefulness of the idea of repeatedly predicting the
accuracy of an optimization algorithm while it is running and of improving the optimization
procedure with the use of additional knowledge. This idea can also be bene�cial in other
applications. As we do not compute conformations but only protect certain rotamers from
early removal, one can combine this approach with other side-chain prediction tools that
utilize rotamer-reduction like the R3 algorithm [234]. It can be expected that the overall
performance of the rotamer-lock algorithm can be increased further (i) with an updated
data set, (ii) a suitable feature representing residue-speci�c structural deviations between
target and template backbone, (iii) the extension to multiple aligned template structures
and template rotamers, (iv) by derivation of a single classi�er that directly decides which
of the two classes has higher probability and/or (v) the training and optimization of other
types of classi�ers like support-vector machines or neural networks.



Chapter 6

Docking with Flexible Side Chains

This chapter addresses the �nal question asked in the introduction (see Section 1.1): 'how can
side-chain �exibility be included during docking so that a high amount of protein binders can
be identi�ed during virtual screening?' A modeling and docking pipeline is described in this
chapter that is able to deal either with proteins that exhibit induced-�t e�ects upon ligand
binding or with proteins for which only models with inaccurate side-chain conformations are
available. With the help of this pipeline multiple redocking and screening experiments are
performed. An evaluation is made that shows that the side-chain conformations generated
with IRECS are su�ciently accurate for docking to succeed. The results allow also for
comparing di�erent parameterizations of IRECS and FlexE to handle protein �exibility.
These are three primary aspects of our study:

1. which rotamer density to choose for the models,

2. whether or not IRECS should use ligand information to pre-optimize side-chain en-
sembles for FlexE and

3. which scoring function, ROTA or F-Score, is better suited for docking into �exible
protein models.

A special focus lies on the �rst aspect, since the value of rotamer density of the IRECS
models has the largest in�uence on the later handling of protein �exibility by FlexE. This
pipeline is shown in Figure 6.1. Starting from an X-ray structure, IRECS is used to repre-
dict the side-chain conformations. Depending on the protein �exibility or the di�culty of
assigning the correct side-chain conformations, IRECS builds protein models with varying
side-chain �exibility. The docking is carried out with the docking program FlexE in case of
�exible protein models and with FlexX in case of rigid protein models. FlexX and FlexE
then use either the usual scoring function of FlexX (F-Score) [172] or ROTA for guiding the
docking process and predict the �nal binding a�nity of the ligand to the protein.

An analysis is carried out which should give an answer to the �nal question asked in
the introduction. It is shown that the proposed docking pipeline is able to handle side-
chain �exibility e�ciently. The screening experiments facilitate determining the appropriate
amount of side-chain �exibility for obtaining high enrichment factors in general and also for
speci�c proteins.

83
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Figure 6.1: Data �ow of the modeling and docking pipeline

The �rst section of this chapter gives a detailed description of the modeling and docking
pipeline. The second section then describes the setup and results of the redocking and
screening experiments. A comparison of the method proposed here with other methods
is presented in the last section. A discussion of the docking pipeline is given in the �nal
discussion in the next chapter, since the pipeline comprises the material and methods from
the previous chapters and should be discussed in that global context.

6.1 The Modeling and Docking Pipeline

Figure 6.1 shows the modeling and docking pipeline and how experimental data are used for
running both redocking and virtual screening experiments. Since ROTA, IRECS and FlexE
were previously benchmarked as stand-alone programs, the evaluation here focuses on how
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well both programs can perform in combination.

6.1.1 Step 1: Extraction of Experimental Data

The Database of Useful Decoys (DUD) [85] comprises forty proteins that are well-known
drug targets. For each of these proteins Huang and coworkers stored an X-ray structure, a
set of active compounds (called ligands) and a set of putative inactive compounds (called
decoys) in DUD. Table 6.1 lists all proteins of the DUD together with the abbreviations
that are used from now on, the PDB code and the resolution of an X-ray structure and the
numbers of ligands and decoys that are contained for the respective protein in the DUD.
For VEGFR2 the X-ray structure 1y6a was used instead of 1vr2 since in 1y6a the protein
was crystallized in complex with a ligand, whereas the protein in 1vr2 is in the apo form.
Huang and coworkers extracted decoys from the drug-like subset of the ZINC database [90]
such that for each ligand there are about 35 decoys which are similar in physical properties
(e.g. molecular weight, number of hydrogen bond acceptors or logP) but are topologically
di�erent. This setup ensures that this is hard to identify active compounds just by such
simple physical properties.

6.1.2 Step 2: Building Protein Models with IRECS

IRECS is used to build multiple models of all proteins that are used in the later evaluations.
For each protein six models were built with IRECS: a �rst subset of three models was built
with rotamer densities of one, two and three, respectively, based only on the backbone
conformation of the respective protein. IRECS models with higher rotamer densities (�ve
and seven) were also build in preliminary tests. Since their docking results did not show
signi�cant di�erences from those docking results achieved when using IRECS models with
a rotamer density of three, these models were not used in further evaluations. A second
subset of three models was created again with these three rotamer densities and using the
backbone conformation, but now the conformation of the native ligand in the pocket was
kept rigid and was regarded as part of the protein during the optimization: IRECS computes
interactions between each rotamer xi and the ligand and adds this interaction value as a new
term Uinter(xi, ligand) to the e�ective rotamer energy (see Equation 4.7) of the respective
rotamer.

Table 6.2 lists the average accuracy of the protein models from the six di�erent IRECS
runs in the active site. All side chains of the X-ray structures in the active sites were
compared to their counterparts in the IRECS models by χ-matching (see Section 4.5.1) and
RMSD, respectively. The active sites were de�ned with the help of the ligand conformations
of the X-ray structures so that any residue of the protein that has an atom within 6.5 Å
distance to a ligand atom is considered as belonging to the active site. The average χ-match
and RMSD values of the individual proteins were averaged over all generated models of a
single IRECS parameterization. It can be seen that the average side-chain RMSDs of the
IRECS models decrease and the χ-match values increase if ligand information is used during
the optimization. The side-chain accuracy also trivially increases with increasing rotamer
density, since more rotamers become available for matching in these models. The IRECS
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Table 6.1: Properties of the protein targets of the DUD [85]

Abbrev- PDB Reso- No. of No. of
Protein iation code lution [Å] ligands decoys

Angiotensin-converting enzyme ACE 1o86 2.0 49 1728
Acetylcholine esterase AChE 1eve 2.5 105 3732
Adenosine deaminase ADA 1ndw 2.0 23 822
Aldose reductase ALR2 1ah3 2.3 26 920
AmpC β-lactamase AmpC 1xgj 2.0 21 734
Androgen receptor AR 1xq2 1.9 74 2630
Cyclin dependent kinase 2 CDK2 1ckp 2.1 50 1780
Catechol O-methyltransferase COMT 1h1d 2.0 12 430
Cyclooxygenase 1 COX-1 1p4g 2.1 25 850
Cyclooxygenase 2 COX-2 1cx2 3.0 349 12491
Dihydrofolate reductase DHFR 3dfr 1.7 201 7150
Epidermal growth factor receptor kinase EGFr 1m17 2.6 416 14914
Estrogen receptor agonist ERagonist 1l2i 1.9 67 2361
Estrogen receptor antagonist ERantagonist 3ert 1.9 39 1399
Fibroblast growth factor receptor kinase FGFr1 1agw 2.4 118 4216
Factor Xa FXa 1f0r 2.7 142 5102
Glycinamide ribonucleotide transformylase GART 1c2t 2.1 21 753
Glycogen phosphorylase β GPB 1a8i 1.8 52 850
Glutocorticoid receptor GR 1m2z 2.5 78 2804
HIV protease HIVPR 1hpx 2.0 53 1888
HIV reverse transcriptase HIVRT 1rt1 2.6 40 1439
Hydroxymethylglutaryl-CoA reductase HMGR 1hw8 2.1 35 1242
Human heat shock protein 90 kinase HSP90 1uy6 1.9 24 861
Enoyl ACP reductase InhA 1p44 2.7 85 3043
Mineralcorticoid receptor MR 2aa2 1.9 15 535
Neuraminidase NA 1a4g 2.2 49 1745
P38 mitogen activated protein kinase P38 MAP 1kv2 2.8 234 8399
Poly(ADP-ribose) polymerase PARP 1efy 2.2 33 1178
Phosphodiesterase V PDE5 1xp0 1.8 51 1810
Platelet derived growth factor receptor β PDGFrb model n.a. 157 5625
Purine nucleoside phosphorylase PNP 1b80 1.5 25 884
Peroxisome proliferator activated receptor γ PPARg 1fm9 2.1 81 2910
Progesterone receptor PR 1sr7 1.9 27 967
Retinoic X receptor α RXRa 1mvc 1.9 20 708
S-adenosyl-homocysteine hydrolase SAHH 1a7a 2.8 33 1159
Tyrosine kinase C-SRC SRC 2src 1.5 162 5801
Thrombin thrombin 1ba8 1.8 65 2294
Thymidine kinase TK 1kim 2.1 22 785
Trypsin trypsin 1bju 1.8 43 1545
Vascular endothelial growth factor receptor VEGFr2 1y6a 2.4 74 2647
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Table 6.2: Accuracy of the modeled side chains in the active sites of the DUD targets

Rotamer Ligand Side-chain Standard Accuracy of dihedral angles
density info RMSD [Å] deviation [Å] χ1[%] χ1+2[%]

1 no 1.15 0.29 83.2 79.8
1 yes 1.04 0.25 85.3 82.3
2 no 0.88 0.27 89.8 81.2
2 yes 0.85 0.23 91.0 81.0
3 no 0.77 0.25 92.4 86.4
3 yes 0.75 0.21 93.5 86.2

RMSD values and χ-match percentages were measured in the active site of the respec-
tive models. The active sites covered about 25 residues on average (with a standard
deviation of 5.5 residues) within all six sets of IRECS models.

models still have an average atom displacement below the commonly accepted upper limit
of 1.5 Å that a docking program can handle [7]. However, the small but inherent inaccuracy
of the template X-ray structures must also be considered. A single side chain that points
wrongly into the active site instead of pointing away can ruin a complete docking trial.
Therefore it is often preferable to have multiple conformations for such side chains that
allow for selecting a non-clashing variant. Table 6.3 lists the percentages of side chains for
each individual IRECS model that have correct χ1,2 dihedral angles.

6.1.3 Step 3: Docking of Ligands with FlexE and FlexX

For all models the required receptor and ensemble de�nition �les were build with default
values (see FlexX manual [168]). In the case of the proteins ACE, ADA, COX-1, GR and
HIVPR (see Table 6.1 for abbreviations) the surface computation required to manual de�ne a
single point that was located in the active site and outside the protein. Hydrogen positions
were de�ned with the default FlexX torsion angles. The protonation of amino acids was
also assigned with the default FlexX templates for the respective amino acids. Zink, mag-
nesium, calcium and iron atoms are assigned precon�gured F-Score interaction templates,
as well as the cofactors nicotinamide-adenine-dinucleotide phosphate (NAP) and dihydro-
nicotinamide-adenine-dinucleotide phosphate (NDP). All other atoms of non-standard amino
acids were removed from the active site, including the ligand and water molecules.

FlexX was used to dock into all rigid models, whereas FlexE was used to dock into
models with rotamer density two and three. This section lists and describes all changes that
were applied to the implementation and parameterization of FlexX and FlexE when docking
ligands into proteins from the DUD.

1. According to the rotamer density (chosen as integer values), FlexE reads in that many
multiple copies of the protein models, each time selecting a di�erent set of rotamers for
the side chains according to the alternative allocation identi�ers in the respective PDB
�les. If for a side chain fewer rotamers are de�ned by IRECS than the total number
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Table 6.3: Percentage of side chains with correct χ1,2 dihedral angles in IRECS models.
Field are shaded according to their value (dark - low values, light - high values).
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of copies, an empty rotamer is assigned to that side chain. This allows for ignoring
the interactions with this side chain (except Cβ atoms) completely when docking with
FlexE, which is a tribute to the low accuracy of side-chain prediction.

2. No superposition was required for building the united protein description of FlexE
since all IRECS models of a protein use the backbone of this protein as template as
de�ned in the respective X-ray structure.

3. Clustering was only performed for backbone and Cβ atoms since the rotamers of the
BBDep already represent clustered side-chain conformations. The united protein de-
scription of FlexE therefore contains only single conformations of the protein backbone.
LUDI interaction points were also not clustered.

4. Logical and structural incompatibilities were computed, but no geometric incompati-
bility between rotamers or between rotamers and backbone were determined, since the
rotamers can have slight clashes with the backbone or with each other. It is assumed
here that such small clashes can be relaxed with an energy minimization procedure
after complex construction if required and therefore usually do not lead to unrealistic
protein conformations.

5. The number of solutions that are kept during each buildup step of the ligand was in-
creased from 200 to 300. This is required since the conformational space resulting from
the conformational degrees of freedom of protein and ligand is much larger for FlexE
than for FlexX (only ligand �exibility) and therefore also requires more intermediate
solutions to �nd a near-native complex conformation.

6. The internal factor for ligand atom clash checks 'CLASH_FACTOR' is reduced from
0.6 to 0.4. This change contributes to the fact that a ligand which tries to adapt
to a disturbed protein conformation will sometimes also have to adopt a distorted
conformation, which is facilitated by this more tolerant parameter setting.

7. FlexE uses the clique enumeration algorithm of Bron and Kerbosch [23] for instance
selection. This algorithm is replaced by the Self-Consistent Mean Field (SCMF) algo-
rithm [110] that was implemented into FlexE previously [71].

8. If ROTA is used for ligand scoring it completely replaces all F-Scores that usually guide
the ligand build-up inside the active site and compute an estimate of the binding
free energy. The ROTA version for docking is used here exclusively. Nevertheless,
the LUDI interaction geometries still mainly determine the conformation sampling
of the ligands, as the base fragments are still placed between surface points of these
interaction geometries.

9. FlexE and FlexX score the placement solutions of partial ligands by (i) the currently
achieved interaction score of the partial buildup ligand with the protein plus (ii) an
estimate for the maximum score that the remaining fragments can achieve if they can
establish optimal interactions with the protein [171]. This is required since FlexX
uses di�erent fragmentations and build-up orders simultaneously. If a certain partial
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solution contains a high scoring fragment, it would easily supersede all other partial
solutions that do not contain this fragment, yet. ROTA does not have this problem
since there are no such score dominating features like hydrogen bonds. The score of
a fragment is mainly dependent on the number of its atoms and thus the score of a
partial ligand is divided by its atoms for estimating its maximum score.

6.1.4 Step 4: Evaluation of Docking Performance

The performance of FlexX and FlexE in redocking experiments is determined by comparing
the generated conformations with the native ligand conformation found in the respective
X-ray structure and calculating their pairwise RMSD. It is common to apply an RMSD
cuto� of 2.0 Å to determine if a ligand conformation was predicted correctly or not. It
is meaningful to increase this cuto� for docking into �exible proteins since the reference
interaction geometry for the ligand also changes and thus a native-like binding mode can
be assumed at larger RMSD cuto�s if both ligand and protein undertake medium scale (0.5
Å - 1.5 Å) conformational adaptations that result in a reconstruction of the experimental
determined binding mode. Therefore, RMSD values were considered up to 3.0 Å. Often a
docking program is able to generate near-native ligand conformations but fails to appropriate
rank them . In these cases the application of another scoring function or a post-optimization
of the complex conformation can improve the ranking and lift the near-native conformations
to the top. Therefore it is also meaningful to benchmark a docking program with respect to
its ability to generate a near-native ligand conformation at any rank.

The enrichment factor of a virtual screening experiment is computed as given in Huang
et al. [85]: the enrichment factor EFsubset of a subset of the total ranked target-speci�c
compound database is calculated by comparing the fraction of ligands among all compounds
in this selected subset by the same fraction among all compounds of the whole target-speci�c
database:

EFsubset =
|ligands ∩ subset|/|subset|
|ligands|/|compounds|

(6.1)

The ratio |ligands|/|compounds| is always around 36, since the number of decoys is
usually about the number of ligands times 35.

The enrichment factor is calculated for subsets comprising 1% (EF1) and 20% (EF20) of
all compounds. These cuto� values are arbitrary selections but they are used commonly in
realistic screening applications. The enrichment factor EFmax refers to the highest possible
enrichment factor that can be achieved when selecting a subset of the database. Two aspects
have to be considered when comparing enrichment factors of screening setups of di�erent
proteins. First, the compounds that are marked as decoys are putative non-binders and in
general no tests were performed that actually showed that these compounds do not bind to
the respective proteins [84]. Since the number of unidenti�ed binders in the decoy sets is
unknown and can vary between targets, the comparison of enrichment factors of screening
setups for di�erent targets may be biased towards proteins that have exceptional low numbers
of unidenti�ed ligands in their decoy sets. The second aspect to be considered is that the
decoy compounds share di�erent degrees of molecular similarity (topological, interaction



6.2. EVALUATION: DOCKING INTO PROTEIN MODELS GENERATED WITH IRECS 91

pro�les) with each other and with the ligands. This phenomenon can lead to di�erent levels
of di�culty in distinguishing ligands from decoys for the docking programs and must also
be considered when enrichment factors of screening runs on di�erent proteins are compared.

6.2 Evaluation: Docking into Protein Models Generated with

IRECS

The evaluation of the proposed modeling and docking pipeline has the aim of showing (i)
the advantages and disadvantages of using ROTA as a scoring function for generation of
complex conformations and estimation of binding a�nity, (ii) the in�uence of the inclusion
of the native ligand conformation in the IRECS modeling procedure on the modeling and
docking quality and (iii) the e�ects of handling the side-chain �exibility during docking. The
evaluation consists of redocking and screening experiments on the forty protein targets of
the DUD. These two kinds of experiments were chosen since they are standard comparison
methods for docking programs and represent di�erent challenges for the modeling and dock-
ing pipeline that are relevant for determining its usability in pharmaceutical research: the
redocking experiments contain the task of comparing homogeneous complex conformations,
where all ranked complexes consist of the same ligand and protein, whereas the screening
experiments compare heterogeneous complex conformations, in which the protein remains
the same but di�erent ligands are bound.

6.2.1 Redocking using X-ray Structures and IRECS Models

Tables 6.4 and 6.5 show the RMSD values between generated complex conformations and the
native conformations of the respective complexes. Table 6.4 shows the RMSD values of the
top-ranked complex conformations and Table 6.5 shows the RMSD values of the generated
complex conformations that are structurally closest to their respective experimental reference
conformations among all generated conformations. Both tables show results for all reported
setups for modeling (inclusion of ligand information, side-chain �exibility), scoring (ROTA
or F-Score) and docking (FlexX or FlexE). Table 6.6 summarizes these results and allows for
quickly comparing the performance of the di�erent setups by counting for each experiment
the amount of proteins for which a particular experimental setup was able to generate near-
native complex conformations using multiple RMSD cuto�s.

E�ects of Ligand-Based Side-Chain Prediction

The inclusion of ligand information during IRECS optimization enables the ligand to im-
print the conformational information of its bound conformation into the IRECS selection
of rotamer ensembles, within the limitations of the BBDep rotamer library. This technique
therefore �rst enables the side chains to adapt to the ligand bound mode and second to shape
a binding pocket for bound compounds. Without this technique it is often observed that
protein side chains modeled with IRECS �ll empty cavities and contribute to intra-protein
hydrogen bond networks. This modeling technique basically reproduces the apo-form of the
protein structure and this form is rarely usable for accurately docking ligands. Table 6.2
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Table 6.4: RMSD values of the top-ranked complex conformations as compared to the
native conformations. Program: X = FlexX, E = FlexE; model source: X = X-ray, I
= IRECS; scoring function: F = F-Score, R = ROTA. Field are shaded according to
their value (dark - high values, light - low values).
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Table 6.5: Minimum RMSD values among all generated complex conformations as
compared to the native conformations. Program: X = FlexX, E = FlexE; model
source: X = X-ray, I = IRECS; scoring function: F = F-Score, R = ROTA. Field are
shaded according to their value (dark - high values, light - low values).



94 CHAPTER 6. DOCKING WITH FLEXIBLE SIDE CHAINS

Table 6.6: Redocking results of FlexX and FlexE on IRECS models considering rank one

(a) Considering the �rst rank

Model Rotamer Scoring Ligand RMSD ≤
Tool source density function info 1.0 1.5 2.0 2.5 3.0 inf

FlexX X-ray 1 F-Score yes 7 11 15 20 23 40
FlexX X-ray 1 ROTA yes 4 8 17 20 23 40
FlexX IRECS 1 F-Score no 0 3 5 6 7 40
FlexX IRECS 1 F-Score yes 2 4 6 7 11 40
FlexX IRECS 1 ROTA no 0 0 5 5 5 40
FlexX IRECS 1 ROTA yes 3 4 10 13 16 40
FlexE IRECS 2 F-Score no 0 4 6 6 8 40
FlexE IRECS 2 F-Score yes 0 4 6 6 9 40
FlexE IRECS 2 ROTA no 1 2 6 9 10 40
FlexE IRECS 2 ROTA yes 2 6 9 14 14 40
FlexE IRECS 3 F-Score no 0 2 4 6 7 40
FlexE IRECS 3 F-Score yes 3 7 8 10 12 40
FlexE IRECS 3 ROTA no 1 1 9 9 9 40
FlexE IRECS 3 ROTA yes 3 6 7 11 14 40

(b) Considering all ranks

Model Rotamer Scoring Ligand RMSD ≤
Tool source density function info 1.0 1.5 2.0 2.5 3.0 inf

FlexX X-ray 1 F-Score yes 15 24 27 31 32 40
FlexX X-ray 1 ROTA yes 15 27 31 33 35 40
FlexX IRECS 1 F-Score no 2 9 11 15 15 40
FlexX IRECS 1 F-Score yes 7 13 15 18 22 40
FlexX IRECS 1 ROTA no 2 9 12 15 18 40
FlexX IRECS 1 ROTA yes 10 17 24 26 30 40
FlexE IRECS 2 F-Score no 4 8 13 20 22 40
FlexE IRECS 2 F-Score yes 6 8 13 20 21 40
FlexE IRECS 2 ROTA no 4 7 20 23 31 40
FlexE IRECS 2 ROTA yes 10 20 27 30 34 40
FlexE IRECS 3 F-Score no 3 14 19 22 27 40
FlexE IRECS 3 F-Score yes 8 15 18 25 29 40
FlexE IRECS 3 ROTA no 3 14 21 24 27 40
FlexE IRECS 3 ROTA yes 8 17 24 30 33 40
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shows the RMSDs of predicted side chains inside the active sites, which generally decrease
if ligand information is used during the IRECS optimization. The same accuracy gain can
be observed when comparing the χ1 accuracy of modeled side chains, which increases when
a ligand is used during optimization. However, the χ1,2 accuracies slightly decrease. This
seemingly contradictory result can be explained with the same arguments that were used to
explain similar observations in Section 4.5.2. The inclusion of a ligand conformation dur-
ing side-chain optimization leads to a much denser packing of atoms inside the active site,
which makes it much harder to �nd the correct packing of side chains which are large but
also have only few rotamers in their ensembles, like tryptophane and phenylalanine. The
di�erent accuracies for modeling side chains of di�erent amino acids (see Figure 4.4) lead to
the observed inconsistency.

The comparison of the results for the di�erent experimental setups in Tables 6.4 and
6.5 and in Table 6.6 show that docking into protein models that were built using ligand
information is more successful than docking into those models that were built without using
ligand information. One can also see that this e�ect becomes weaker as the rotamer density
increases. The reason for the latter observation is that the multiple rotamers of these
IRECS models compensate for the above mentioned modeling problems. The advantage of
including the ligand information in the modeling procedure is stronger than when considering
all generated conformations when only the top-ranked conformation is considered.

Performance of F-Score and ROTA in Ranking Homogeneous Complex Confor-

mations

All redocking experiments were performed both with ROTA and F-Score to respectively
score ligand poses during the FlexX complex construction and �nal scoring. As one can see
in Table 6.6 (a) F-Score is able to rank more native complex conformations at the top rank
than ROTA when using X-ray structures. ROTA has a somewhat higher performance than
F-Score if IRECS models are used. Both results were expected as ROTA is specially designed
for scoring IRECS models and F-Score was designed to score X-ray structures. Table 6.6
(b) depicts the general ability of both scoring functions in guiding FlexX and FlexE towards
near-native complex conformations. Here ROTA and F-Score perform similarly on the X-
ray structures, but ROTA outperforms F-Score by a large margin if IRECS models are
used for docking. The advantage of ROTA over F-Score more than doubles when docking
into IRECS models with a rotamer density of two: FlexE can generate near-native complex
conformations with a 2.0 Å cuto� for 27 proteins when ROTA is used for scoring, whereas
FlexE can only generate such conformations for 13 proteins when using F-Score.

In�uence of Side-Chain Flexibility on Redocking Accuracy

As stated in Section 6.2.1 X-ray structures of protein-ligand conformations are the best
available protein models for redocking experiments. The usage of �exible protein models
for redocking generally make docking harder since now the docking programs must both
generate a near-native ligand conformation and a near-native protein conformation, and
both depend on each other. The redocking accuracy is highest if FlexX is applied to X-ray
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structures. The accuracy of FlexE comes closest to this accuracy when scoring with ROTA
and docking into IRECS models that were build with ligand information and two rotamers
per side chain on average.

Among those redocking experiments that were run with IRECS models, the �exible
models clearly outperform the rigid models. Here, the �exible models enable the docking
program to select from a larger set of rotamers and allow for a much more accurate modeling
of the protein during docking than it is the case for those models created with single rotamers
per side chain. A drastic example that justi�es the usage of protein �exibility is the protein
GR, for which FlexX cannot create a near-native conformation but FlexE can do so by using
�exible IRECS models. ALR2, COMT, DHFR, PARP and PDE5 are examples for proteins
where the docking is only successful when using X-ray structures or �exible IRECS models,
but using rigid IRECS models let to insu�cient redocking accuracy. In contrast, for the
protein MR IRECS is not able to generate a useful �exible model. FGFr1 is the only protein
for which IRECS created a rigid model that is signi�cantly better suited for docking than
any �exible IRECS model (see Figure 6.5 and Section 6.2.2 for a structural explanation).

Redocking into Protein Models of the Catechol O-Methyltransferase

COMT methylates and inactivates L-DOPA which is used for treatment of Parkinson dis-
ease, and therefore COMT itself is a target for inhibition by pharmaceutical compounds [19].
This target is of special interest since the redocking experiments performed with ROTA have
a much better performance than F-Score. Also, the rigid IRECS model has insu�cience ac-
curacy, wheras FlexE can �nd a ligand conformation with an RMSD below 2.0 Å. Figure
6.2(a) shows the catechol O-methyltransferase (COMT) from rat in complex with the in-
hibitor BIA 3-335 (PDB ID: 1h1d). The head group of BIA 3-335 binds tightly to the buried
magnesium ion of COMT and to the polar side chains of Glu199, Asp141 and Asn170 via
hydrogen bonds, the hydrophobic tail of the ligand just orients itself towards a hydrophobic
patch of the protein surface. One general reason for the better performance of ROTA on
this target is that F-Score is more dependent on hydrogen bonds than ROTA, which are
only established between the protein and this head group.

Although FlexE is able to generate near-native complex conformations when using �ex-
ible IRECS models (ρrot = 2 and ρrot = 3) and ROTA for scoring (see Figure 6.6), the �rst
ligand conformations with an RMSD below 2.0 Å to the conformation of the crystallized
ligand are found on rank 59 (ρrot = 2) and on rank 39 (ρrot = 3). The higher ranked
solutions have either the ligand tail shifted across the protein surface with the head bound
to the Magnesium ion or the hydrophobic tail is docked inside the cavity, with the polar
head pointing outward in the solvent. Figures 6.2(b), 6.2(c) and 6.2(d) show the three most
important side chains of the IRECS models of COMT with one, two and three rotamers
on average per side chain, respectively. The X-ray structure and its side chains are colored
green and all models were generated without native ligand information. It can be seen that
in the IRECS model with ρrot = 1 the tip of Met40 (upper right) occupies the same space
as the ligand head. Therefore FlexX is unable to dock the ligand back to the binding pocket
in a native-like conformation with the IRECS model. IRECS also wrongly predicts the χ2

dihedral angle of Asn170 (upper left) which swaps hydrogen acceptor and donor function
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(a) X-ray structure

(b) IRECS model, ρrot = 1 (c) IRECS model, ρrot = 2 (d) IRECS model, ρrot = 3

Figure 6.2: Side chains in the active site of COMT
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and prevents the formation of a hydrogen bond between this side chain and the ligand head.
Both �exible IRECS models have alternative conformations for these two side chains that
enable the accurate docking of the ligand. Met40 is assigned three alternative conformations
that are di�erent to the conformations found in the X-ray structure, but they all do not clash
with the native ligand conformation. Asn170 is assigned many rotamers with alternative χ2

dihedral angles from which FlexE can select the appropriate one for hydrogen bonding. The
IRECS model with three rotamers per side chain on average has an additional rotamer at
Trp38 (lower right) that does not have in�uence on the docking run (as other side chains
that were not drawn).

The results show that for this special target the combination of ROTA and �exible
IRECS models was successful. This target makes a good example for the observation that
for docking with FlexE it is more important that the rotamers complementary to the bound
ligand are available than to exclude unadapted rotamers. This will become even clearer
in the virtual screening experiments, where for each ligand there can be di�erent adapted
rotamers.

6.2.2 Screening of the Target-Speci�c Databases for Active Compounds

This section describes the results of the screening experiments that were performed using
FlexX and FlexE, X-ray structures and IRECS models, di�erent degrees of side-chain �ex-
ibility and the scoring functions F-Score and ROTA. Since in this test scenario the ligands
binding to the proteins are known beforehand it is possible to draw an enrichment curve
for each screening experiment. In an enrichment curve the percentage of retrieved ligands
among any subset of a ranked database of compounds is measured. In a real screening
scenario a certain percentage of the ranked database would be selected for further testing.
The size of this subset usually depends on the size of the database, the expected number of
ligands in the database, the expected quality of the ranking and the available resources for
performing further tests. The curves that were derived with the experiments performed here
can be found in appendix (see �gures A.1 to A.14). Table 6.7 shows the achieved enrichment
factors (see Equation 6.1) of the di�erent screening experiments for all DUD targets that
were achieved for the top-ranked 1% of the target-speci�c compound databases. From the
table it can be seen that there is no single docking strategy that consistently displays a high
screening performance: there are proteins for which all screening setups perform equally
well (ACE, PDG) or badly (AChE, GPB, HIVRT, HSP90), whereas docking with side-chain
�exibility is advantageous (ALR2, AR, COX-1, GR) or disadvantageous (GART, RXRa) for
the screening of other proteins. There are also proteins for which the use of ROTA turned
out to be advantageous (COMT, EGFr, PR) or disadvantageous (Thrombin). Furthermore,
for some proteins (NA, SAHH, TK) FlexX cannot tolerate errors of the atom coordinates
at all and therefore ligands for such proteins can only be retrieved successfully by using
the respective X-ray structure. For a subset of the proteins similar screening results were
previously published. For example, the observed low capacity of FlexX and FlexE using
ROTA in achieving an enrichment of ligands in the compound database used for screening
the neuraminidase seems to be a general �aw of knowledge-based scoring functions, since
Stahl et al. [200] also reported that a screening with FlexX using the scoring function PLP
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Table 6.7: Enrichment factors for the DUD targets of the top 1% ranked databases.
Program: X = FlexX, E = FlexE; model source: X = X-ray, I = IRECS; scoring
function: F = F-Score, R = ROTA. Only the top 1% of the ranked databases were
considered. Field are shaded according to their value (dark - low values, light - high
values).



100 CHAPTER 6. DOCKING WITH FLEXIBLE SIDE CHAINS

[60] yielded a much smaller enrichment factor compared to the factor that was achieved
when using F-Score. The enrichment factors achieved here are generally somewhat lower
than those of other screening studies with FlexX [200], FlexE [162] and other docking pro-
grams [101, 69, 145, 224]. The primary reason for this is the special compilation of the DUD
target-speci�c databases, which intentionally poses much harder challenges for scoring than
common compilations of screening databases [85].

Performance of F-Score and ROTA in Ranking Heterogeneous Complexes

The enrichment factors shown in Figure 6.7 were derived from two screening setups that used
F-Score and four screening setups that used ROTA for binding a�nity prediction. All rigid
protein models (X-ray structures and rigid IRECS models) were used for screening using
F-Score and ROTA, which renders these setups suitable for comparing the performance of
these two scoring functions. The setups performed with �exible models were performed
to estimate the in�uence of side-chain �exibility on the overall screening performance, and
thus no di�erent scoring functions were tried out on these models. Additionally, from the
redocking experiments it was known beforehand that all IRECS models independent from
their �exibility perform best with the ROTA scoring function. Table 6.8 summarizes the
enrichment factors for di�erent subsets of the ranked compound databases (1%, 20%, best
top selection) and the di�erent screening setups. It can be seen that F-Score performs better
than ROTA when an X-ray structure is used for docking and ROTA performs better than
F-Score when an IRECS model is used for docking. This was expected as these functions
were trained for their speci�c application purpose.

In�uence of Side-Chain Flexibility on the Performance of Virtual Screening

The �exibility of the IRECS models enables FlexE to adapt the side-chain conformations to
any partial or complete ligand conformation within narrow conformational limits. Compared
to the traditional sampling and scoring scheme of FlexX (X-ray structures and F-Score) this
strategy generally gives all compounds a higher chance of being docked by FlexE in an
energetically favorable conformation. Since this is true for all docked compounds, active
and inactive, this strategy does not automatically increase the performance of screening
experiments.

When comparing the enrichment factors from Table 6.8, one can see that the performance
of screening is nearly equal for those screening setups using IRECS models with ρrot = 2
and ρrot = 3. The only enrichment plots which exhibit di�erent results for these setups are
the enrichment plot for the ERagonist in Figure A.5 (better performance for ρrot = 2) and
the enrichment plot for GR in Figure A.7 (better performance for ρrot = 3). This e�ect
can be interpreted with the help of Figure 6.3, which depicts di�erent structural models
of the active site of GR: �gure 6.3(a) shows a superposition of ligands and side chains of
residues that are located inside the active site of the X-ray structures 1m2z, 1nhz, 1p93.
Figures 6.3(b), 6.3(c) and 6.3(d) show the same side chains in three di�erent IRECS models
with di�erent rotamer densities. The reason for the bad docking performance of the IRECS
model with ρrot = 1 is that the side chain of Arg611 does not point towards the ligands
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(a) X-ray structures: 1m2z (grey blue), 1nhz (cyan),
1p93 (green)

(b) IRECS model, ρrot = 1

(c) IRECS model, ρrot = 2 (d) IRECS model, ρrot = 3

Figure 6.3: Side chains in the active site of the glutocorticoid receptor



102 CHAPTER 6. DOCKING WITH FLEXIBLE SIDE CHAINS

(a) rotamer density=2 (b) rotamer density=3

Figure 6.4: Ranking of the top 20 compounds after screening of HMGR The ranking
on the left hand side was done using an IRECS model with ρrot = 2, the ranking on
the right hand side used an IRECS model with ρrot = 3. The two active compounds
in this subset are colored red and violet, respectively.

as it does in the X-ray structures. Thus the screened compounds cannot form a hydrogen
bond to this side chain which results in a decreased binding a�nity of active compounds.
The required rotamer is o�ered for Arg611 in the IRECS model with ρrot = 2 (Figure
6.3(c)) which results in better performance of the screening setup using this model. Also
Gln642 receives an alternative rotamer which is appropriate for binding di�erent ligands as
known from superposition of X-ray structures. The screening performance even increases
when using the IRECS model with ρrot = 3 (Figure 6.3(d)) since it contains an alternative
rotamer for Met646 which turns away from the center of the active site. This enlarges the
volume of the active site and allows the docking of larger ligands.

The screening performance may decrease if too much protein �exibility is allowed during
docking. The screening experiments on the protein HMGR are good examples for a decrease
in screening performance through docking errors arising from the protein being too �exible
during docking. Figure 6.4 shows the scores of the top 1% compounds of the databases
that were ranked by docking all compounds into IRECS models with ρrot = 2 and ρrot = 3.
The scores of true binders are highlighted in red and violet, respectively. Here, one can see
two e�ects that lead to a lower enrichment for higher �exibility: �rst, the decoy compounds
receive higher scores overall. This is caused by the described higher acceptance rate of
all screened compounds and the resulting lowered ability in identifying the true binders.
The second e�ect is a reduced score of the true binders. This e�ect can be explained by
the increasing di�culty for FlexE to �nd the true binding mode of a ligand with increasing
conformational space of the protein. This example illustrates that if all important side-chain
conformations are already available in a IRECS model, it is not useful for docking to extend
the rotamer ensembles to higher density.

The bene�ts of side-chain �exibility for screening become apparent if the performances of
the screening experiments using rigid and �exible IRECS models are compared. When using
rigid IRECS models the enrichment factors reached are clearly lower than those enrichment
factors achieved with using �exible IRECS models. This indicates that the softness of the
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Figure 6.5: Ligands in the active site of FGFr1 interacting with the �exible side chain
Lys-514. The ligand of 1agw (SU4984) is colored green, the ligand of 2fgi (PD173074)
is colored blue.

ROTA potentials alone is insu�cient for handling all required adaptive motions of protein
atoms upon ligand binding. In such cases where an inaccurate protein model is used the
additional inclusion of side-chain �exibility is necessary for successful screening.

The enrichment factors listed in Table 6.8 show that the performances of the screening
setups using �exible IRECS models are quite similar to those of screening setups that use
X-ray structures. The lower performance of screening setups that use rigid IRECS indicates
that the �exible handling of side chains is essential for this achievement. As the accuracy
of IRECS is comparable to that of other side-chain prediction programs (see Table 4.1) it
can be assumed that also other side-chain prediction programs using the BBDep (or similar
rotamer libraries) are not able to generate rigid protein models that would be suited better
for screening with FlexE than the �exible IRECS models are.

On average �exible IRECS models are better suited for screening than rigid IRECS
models and ROTA is better suited for scoring complexes with IRECS models, the screening
results of the protein FGFr1 shown in Figure A.5 prove that both of these statement need
not hold for any individual screening problem. On this protein, the screening setup using
F-Score and the rigid IRECS model performs best, although this model has an average χ1,2

accuracy of only 73.3%. In general, this setup performs worst on average both in redocking
and virtual screening experiments. On this target, F-Score has a much better performance
than ROTA, as the comparison of the enrichment curves (red and cyan curves in Figure
A.5) for the X-ray structures and rigid IRECS models using these two scoring functions
shows. The advantage of the rigid IRECS model over the X-ray structure in screening can
be presumed to occur from a certain conformation of a single side chain that was chosen
by IRECS in the rigid case and that deviates from the conformation found in the X-ray
structure. Figure 6.5 depicts the active site of FGFr1 as de�ned in the X-ray structures
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1agw (green, from DUD), 2fgi (blue, superposed on 1agw) and the rigid IRECS model
(yellow). The �gure visualizes the surface of the active site of FGFr1 together with the side
chain of Lys514 (left bottom) and the inhibitors SU4984 (from 1agw) and PD173074 (from
2fgi). PD173074 is positioned more deeply inside the active site than SU4984 which causes
Lys514 to rotate its side chain and enlarge the cavity for PD173074. This conformation
is also present in the IRECS model of FGFr1, although this conformation was optimized
using the conformation of SU4984. Although the prediction of IRECS for Lys514 must
be considered as wrong in the context of SU4984, the chosen conformation proved to be
advantageous for the screening experiments since it models the induced-�t e�ect observed
at Lys514 upon binding compounds like PD173074 that extend deeper into the active site
than SU4984.

6.2.3 Runtime

The runtime of a screening experiment is a crucial issue because it is usually desirable to
screen as many compounds as possible. The previous sections showed the advantages of
inclusion of the protein �exibility in the modeling and docking procedure for redocking and
screening performance. However, this increased performance has the price of an extended
runtime of each docking attempt for all docked compounds. Table 6.9 shows the setups
(program, model and scoring function), the accumulated runtime on a single CPU (Opteron
V20z) and the per-ligand runtime of all performed screening runs. Altogether, the DUD
target-speci�c databases contained 117,189 compounds. The 'per-ligand' runtime was cal-
culated by dividing the accumulated runtime of each screening run through this number.
The comparison of the runtimes of the di�erent screening setups �rst reveals that using
ROTA instead of F-Score for scoring roughly doubles the required runtime. The extra time
originates from the fact that all atoms within a sphere of 10 Å radius around a ligand atom
contribute to the score of this atom, so the computational costs of ROTA are higher than
those of F-Score.

The second result of the comparison is that FlexE requires much more time for docking
than FlexX does. The reason for this is the extra computational time required to sample
the conformational space of side chains and ligands simultaneously. This time is mainly
consumed by the placement algorithm of FlexX for base fragments of ligands [173] (see
Section 2.4.1), which requires a time of O(n2), with n being the number of interaction
points de�ned in the active site. As each additional conformation of a hydrogen bond donor
or acceptor also adds a new interaction geometry to the active site, the number of interaction
points into the active site grows linearly with the average number of rotamers that are used
for docking.
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Table 6.8: Number of targets reaching di�erent enrichment factors for multiple screening
setups

(a) considering the top 20% of the ranked libraries

Model Rotamer Scoring EF20 >
Program source density function 1 2 4 8 16 32

FlexX X-ray 1 F-Score 31 18 5 0 0 0
FlexX X-ray 1 ROTA 27 12 2 0 0 0
FlexX IRECS 1 F-Score 24 12 1 0 0 0
FlexX IRECS 1 ROTA 26 14 1 0 0 0
FlexE IRECS 2 ROTA 33 17 0 0 0 0
FlexE IRECS 3 ROTA 31 19 1 0 0 0

(b) considering the top 1% of the ranked libraries

Model Rotamer Scoring EF1 >
Program source density function 1 2 4 8 16 32

FlexX X-ray 1 F-Score 27 26 18 10 5 0
FlexX X-ray 1 ROTA 28 25 19 13 3 0
FlexX IRECS 1 F-Score 18 16 13 6 1 0
FlexX IRECS 1 ROTA 24 23 15 8 1 0
FlexE IRECS 2 ROTA 29 26 23 11 2 0
FlexE IRECS 3 ROTA 29 27 20 11 2 0

(c) considering any subset with highest enrichment factor

Model Rotamer Scoring EFmax >
Program source density function 1 2 4 8 16 32

FlexX X-ray 1 F-Score 38 31 30 20 17 13
FlexX X-ray 1 ROTA 40 32 26 22 16 12
FlexX IRECS 1 F-Score 38 26 16 15 12 9
FlexX IRECS 1 ROTA 40 31 24 15 10 9
FlexE IRECS 2 ROTA 40 34 28 24 20 13
FlexE IRECS 3 ROTA 40 35 26 21 18 15

Table 6.9: Runtimes of screening experiments

Runtime (single processor)
Screening setup Accumulated Per ligand

FlexX, X-ray, F-Score 21.2 days 15.6 s
FlexX, X-ray, ROTA 47.8 days 35.2 s
FlexX, IRECS-1, F-Score 20.5 days 15.1 s
FlexX, IRECS-1, ROTA 46.1 days 34.0 s
FlexE, IRECS-2, ROTA 228.8 days 168.7 s
FlexE, IRECS-3, ROTA 253.5 days 187.0 s
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Chapter 7

Discussion

This chapter �rst discusses the relevance and applicability of the modeling and docking
pipeline (short pipeline here) as well as the associated methods in di�erent application sce-
narios that are likely to occur in structure-based drug design. This discussion also comprises
a comparison of the pipeline with existing methods that are applied for same purpose. The
validity of some of the key assumptions made throughout this work is checked in the con-
text of these application scenarios. Finally, possible extensions of the pipeline are described
with an estimate of their implementation e�ort and their impact on speed and accuracy of
the pipeline. This discussion concentrates on general aspects of the previously presented
methods and results, as those topics that are closely related to implementations of the base
techniques of the pipeline were already discussed in the respective previous chapters.

Application Scenarios

A researcher planning a screening experiment is usually interested in �nding the optimal
screening setup given a particular target protein, an initial model of the protein, a screening
library and limited resources (manpower, computers and time). This work suggests scanning
the proteins of the DUD for a protein most similar to the protein of interest, considering
�exibility, hydrophobicity, buriedness of the ligand and overall size. The performance of the
pipeline can then be quickly estimated with the enrichment plot for the respective protein,
where the quality of the protein model must also be taken into consideration. If such an
analysis is not feasible (e.g. because of bad model quality), a more general analysis of
the concrete application scenario that takes only protein �exibility and model quality into
account can yield valuable insights to the applicability of the modeling and docking pipeline.

There are two primary application scenarios in which the use of the pipeline or its
components are likely to perform better than existing methods, as far as suggested by the
results that were obtained in this work. Both scenarios have in common that upon scoring
of a certain conformation of the protein-ligand complex the position of some of the relevant
atoms is � to varying degree � uncertain. The results from the previous chapter also imply
that there exists a scenario in which the pipeline is likely to perform worse than other
methods. This is the case when (i) a high-quality model of the active site of a protein is
available and (ii) the protein is known to be rigid and (iii) a dense sampling mechanism for

107



108 CHAPTER 7. DISCUSSION

ligand conformations is applied, as in these cases any modi�cations by IRECS to the protein
side chains can just worsen the structure quality and the softness of ROTA is not of value.

A �rst scenario that can be characterized with the term 'low quality protein model'
comprises many of those studies in which a protein model is derived by either homol-
ogy modeling, averaging of NMR models or low resolution X-ray crystallography. This
scenario requires a good quality of the backbone conformation, whereas some of the side
chains are tolerated to have wrong conformations. This is a quite frequent scenario for
screening setups that cannot be executed using a high resolution X-ray structure, e.g.
[39, 50, 99, 106, 138, 152, 213, 212, 229]. Some of these studies apply docking algorithms that
simulate protein �exibility or apply softer scoring functions, but many of these studies just
ignore the inaccuracy of the protein model during docking. This renders their docking setup
quite similar to the setup proposed in this work which uses just FlexX, F-Score and rigid
protein models. This setup performed worst in most redocking and screening experiments
undertaken here which displays the inferiority of this setup compared to the other setups
proposed in this work. It can also be assumed that a number of docking studies that failed
because of wrongly chosen docking setups were not published in the past. The pipeline now
o�ers a combined procedure for dealing with this issue: a remodeling of the side chains with
IRECS and predicting two conformations per side chain on average has a good chance of
providing correct conformations for side chains, from which FlexE can select the best match-
ing ones upon docking. The softness of ROTA can account for the small errors occurring
from the slightly inaccurate backbone conformation and the discrete rotamer assumption
by using rotamers from the BBDep. Another option would be to apply the MOBILE (see
Section 2.4.3) or IFD (see Section 2.4.3) approaches and improve the protein conformation
with the help of a known ligand. Although these techniques have the drawback of imprinting
the binding mode and topology of this ligand onto the active site they have the potential of
improving the later docking performance signi�cantly. Both methods have the caveat that
if the initial docking of the known inhibitor results in a wrong conformation, the subsequent
modeling procedure is misdirected and will surely create a wrong protein model. The prob-
ability of this is substantial since MOBILE uses ensembles of homology models generated
with MODELLER that often provide wrong side-chain conformations [216] and usually lack
alternative conformations. IFD is simply disregarding the part of all side chains beyond
their Cβ atom for the initial placement (e�ectively mutating all residues to alanines except
glycines). The pipeline can support both MOBILE and IFD in that it allows for docking the
known inhibitor with higher accuracy than it would be possible using the techniques that
were initially proposed. Finally, the determining factor of the applicability of the pipeline
remains the expected amount of coordinate uncertainty of atoms: if only small positional
deviations of protein atoms are expected ROTA can handle them. The application of the
complete pipeline is therefore advised if wrong rotamers are expected and a near-native
backbone conformation is available.

A second scenario can be characterized with the term 'induced �t'. In this scenario the
protein conformation is not adapted to the conformation of the ligand. A ligand docking is
likely to fail if the protein is either in the apo conformation or a holo conformation that is
adapted to another ligand. This is a well-known scenario for which docking programs were
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developed that can account for protein �exibility during docking (see Section 2.4.2). Ensem-
bles of preset protein conformations for sampling the protein conformational space are both
used by docking programs e.g. FlexE or di�erent approaches using DOCK [88, 109, 134, 225])
and approaches that implement the wide-spread serial docking strategy (see Section 2.4.2).
IRECS can support these approaches for the frequent cases where there are no multiple
X-ray structures available in generating ensembles of protein conformations with alternative
side-chain conformations. As previously stated (see Section 4.1) IRECS is optimized for
achieving a good trade o� between coverage of the conformational space and the number
of required samples, a feature that is most important for time-critical applications. Alter-
native computational methods that are applied for sampling the conformational space of
the protein (Monte Carlo sampling, snapshots from molecular dynamics simulations) often
require too many samples to cover the conformational space therefore are less suitable for
directly providing input for ensemble docking approaches. Whereas the rotamers of IRECS
can be adapted to a ligand conformation in terms of selecting the best �tting rotamers
from BBDep, the individual rotamers in BBDep are not adapted to a certain environment
and therefore the IRECS ensembles are usually less well adapted to a ligand than a similar
ensemble drawn from X-ray structures. This issue can be handled by running energy min-
imizations on the IRECS models or by applying a soft scoring function like ROTA during
docking as it was previously shown by Ferrari and Shoichet [51]. Sometimes it can also
be helpful to use a protein conformation for docking that is not adapted towards a certain
class of ligands. Actually, molecular similarity method like Feature Trees [170] or MolPrint
[8, 9] are often better suited for screening for active compounds that are similar to a known
ligand than docking techniques (Andreas Ste�en, personal communication). Using the un-
adapted rotamers of the IRECS models prevent the screening experiment from becoming
biased towards compounds that are too similar to the co-crystallized ligand and therefore
increases the chance of �nding new classes of compound sca�olds, which recently has become
increasingly important in pharmaceutical research. Again, the application of IRECS and
ROTA to a single backbone is only advised if major conformational changes of the backbone
are not expected. Otherwise, one could sample multiple backbone conformations (e.g. with
MODELLER) and then let IRECS sample the relevant side-chain conformations.

Consequences of Ignoring Backbone Flexibility

The restriction of ROTA and IRECS to side-chain �exibility ignoring backbone �exibility
is also their strongest limitation. If the induced-�t e�ects also require that the backbone
changes its conformation before the ligand can bind, then this pipeline is quite likely to
fail. The benchmarking results of Wallner and Elofsson [216] justify the separate treatment
of side-chain and backbone �exibility during homology modeling. It has been shown that
programs specializing in side-chain prediction can improve protein models that are generated
by programs that treating the whole protein as �exible (like those presented in Section 2.3.1).
The decision for this limitation was made quite in the early stages of the project, as this
limitation was a requirement that was both important for (i) the comprehensive sampling
of modeling failures that were necessary for the derivation of ROTA and (ii) for e�cient
optimization with IRECS. Furthermore, it was previously reported that FlexE achieves
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better accuracy if protein �exibility is limited to rotations of side chains and small loop
changes [162, 201].

A quite straightforward extension of the derivation procedure of ROTA would use MOD-
ELLER for generating decoy conformations of the protein backbone before decoy conforma-
tions for side chains are generated. Then ROTA would also be able to score backbone-
backbone interactions. An extension of IRECS would allow for multiple precon�gured back-
bone conformations as input and de�ne additional ensembles of conformations for back-
bone segments, as it was done by the FlexE docking program. Such an extension however
would slow down IRECS and largely increase the number of atom positions of the generated
model, which in turn would require either exchanging the placement algorithm implemented
in FlexE or the application of another docking program.

Consequences of Overlapping Training and Test Sets of Protein X-ray Structures

The signi�cance of evaluation studies is always and rightfully questioned if the same or highly
correlated data are used for both training and testing purpose [74]. Since the number of
high-quality protein structures is quite limited on one side and the number of such structures
required for training the di�erent scoring functions and algorithms of this work is high on
the other hand, not all such overlaps could be prevented. Although this issue is usually
ignored in the �eld whenever both training and tests sets were not derived in the context of
the same study (see previous evaluations of scoring functions presented in Section 3.7), an
attempt is made here to name the most critical overlaps and estimate the e�ects of these
overlaps on the evaluation results.

Throughout this work, eight di�erent sets of X-ray protein structures were used for either
training (see Sections 3.1, 3.2, 4.2.2, 5.3) or testing (see Sections 3.7, 4.5, 4.6, 6.1.1) purposes.
Further sets of structures were used by Dunbrack and Cohen to derive the BBDep [43], and
other sets of protein structures were used to parameterize FlexX and train F-Score. All
of these sets were created with the goal of capturing a representative subset of the whole
known structural space of proteins. As usually, structures with highest accuracy were chosen
for the sets. There exists a number of direct overlaps between training and test sets, e.g.
the Top-500 set has 31 overlaps with the test set in Section 4.5 and the training set of
the BBDep has 83 overlaps with the same test set (with 160 structures) and 146 overlaps
with the test set used in Section 4.6 (with 447 structures). Related protein structures from
di�erent sets are often not exactly the same (same PDB ID), but are structurally similar
(e.g. through homology relationship) which results in a much higher number of indirect
(and unidenti�ed) overlaps. Although some attempts were performed to circumvent direct
overlaps � the 10-fold cross validation in Section 5.5, the splitting of test and training sets
in Section 4.5 � no attempts were undertaken to prevent indirect overlaps.

There exist two critical overlaps: (i) the overlaps of training and test sets of ROTA (DUD
[85] and test set of Wang et al. [223]) and (ii) the overlaps between the training set of the
BBDep and the test set for IRECS. The in�uence of a single overlap depends both on the
size of training set and its particular in�uence on the prediction of a single evaluated feature.
In the case of ROTA, the energy score is a combination of many (usually more than 100)
individual predictions based on the ROTA potentials. The e�ect that a single structure has
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on the shape of these potentials is strongest on potentials for rare atom type combinations
(e.g. ligand halogen with an atom of Tryptophan) at close distances. These signals are so
rare that a signal from overlapping structures has a strong in�uence on the contribution of
this potential to the ROTA score. However, the contribution of individual potentials to the
overall ROTA score remains low and it can be estimated that this holds also true for overlap
e�ects, as the percentage of near-atom contacts is quite low considering the 10.0 Å distance
cuto� of ROTA. The situation is quite di�erent for the overlaps observed for the training set
of the BBDep and the IRECS test set. Here, the intense fragmentation of the feature space
(see Section 2.3.2) enables a single side chain to exert a strong in�uence on the rotamer
population that is predicted for a sparsely populated area of the Ramachandran plot. Since
these areas mostly correspond to protein substructures that are much harder to predict
than helices or sheets, IRECS and SCWRL can greatly bene�t from any overlap that occurs
between side chains in such areas. This implies that the results that were presented in Figure
4.1 are somewhat biased towards IRECS and SCWRL and disfavor SCAP. Considering the
small di�erences in performance shown in this �gure, no well-founded suggestion for a single
side-chain prediction program can be given for predicting rigid protein structures. As the
CHARMM force �eld used by SCAP was developed over years by a whole community of
researches that also were able to �t parameters empirically to various structural observations,
it appears to be infeasible to setup a fair comparison using any structural data that were
previously published.

Future Extensions

As ROTA has shown superior performance in estimating binding a�nity of protein-ligand
complexes that were not optimized for scoring (see Section 3.7.2), ROTA is especially help-
ful in situations in which no elaborate optimization of the complex conformation can be
a�orded. One such application would be the screening for peptides binding to the ma-
jor histocompatibility complex (MHC). Side chains of each query peptide sequence can be
mutated and optimized with IRECS in concert with the side chains of the MHC. A fast
IRECS optimization can generate a preliminary complex structure that then can be scored
using ROTA without requiring further optimization. Since peptides bound to MHCs usually
exhibit only few variation of their backbone conformation, such a system can be realized
by implementing an extension of IRECS that would allow for considering a small set of
backbone conformations serially.

IRECS is able to determine the individual �exibility of side chains, a feature that was
exploited in this work to appropriately size rotamer ensembles for docking. This ability
can also be used for general �exibility analysis that concentrates on side-chain �exibility.
Such information could be used in various applications: if the �exibility of side chains is
computed before and after docking, the loss of entropy on the protein side upon complex
building can be estimated. This can be used as an additional component to scoring functions
and thereby increasing prediction accuracy of these functions. Also, any measure of side-
chain �exibility can be used as con�dence measure for structural properties (atom positions,
surface descriptors, interaction scores) that were calculated using a single, rigid protein
structure.
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Chapter 8

Conclusion

A number of techniques were presented in this work that can support docking into homology
models and into �exible proteins. These techniques can be combined as shown in Chapter 6
to a complete modeling and docking pipeline or be applied as stand-alone applications. The
scoring function ROTA (see Chapter 3) plays a central role in this concept. A special
derivation technique was developed for ROTA so that ROTA is able to tolerate minor
failures of atom positions and is especially sensitive to false rotamer states and false ligand
placements. ROTA can maintain a high accuracy in predicting binding a�nity of protein-
ligand complexes in cases in which the protein and ligand conformation are not adapted
to each other. This ability is especially useful for modeling induced-�t e�ects, which was
con�rmed by using ROTA as a guiding scoring function for docking with FlexE in Chapter
6.

One central prerequisite for �exible docking with FlexE is a prede�ned ensemble of
rotamers for �exible side chains. However, the runtime of FlexE and the false-positive rate
in a screening experiment would increase if such ensembles contained more rotamers than
the �exibility of their respective side chain can justify. Therefore a probabilistic model
of side-chain �exibility was developed and the problem of modeling side-chain �exibility
with a limited set of rotamers was formulated in Chapter 4. The side-chain prediction
algorithm IRECS was developed, which is able to generate approximate solutions for this
problem. IRECS can accurately predict side-chain conformations for both rigid and �exible
protein models and reduce rotamer ensembles so that the resulting ensembles represent the
conformational space of side chains. This renders IRECS a suitable preprocessing tool for
FlexE for such protein targets that do not exhibit strong backbone �exibility in the active
site but have �exible side chains or for proteins for which no protein models with highly
accurate side-chain conformations could be generated.

Side-chain prediction becomes especially hard in cases in which the original backbone
conformation is not present in the model but instead a conformation from a homologous
protein is used as a template for modeling. The rotamer-lock algorithm was designed for
supporting IRECS in such cases and is described in Chapter 5. This algorithm allows for
incorporating the structural information available for the template side chains in the IRECS
optimization procedure for the target side chains. However, the overall contribution of the
rotamer-lock algorithm to the prediction accuracy of IRECS is low.
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Like for other current side-chain prediction tools, the accuracy of IRECS in modeling
rigid protein structures is not high enough for docking purposes, since about one out of
six predicted side-chain conformation has a wrong orientation in a rigid model. Since such
errors can greatly spoil a docking attempt, a number of additional rotamers is predicted
so that the overall chance is increased that each ensemble of rotamers contains at least one
rotamer with a correct orientation. ROTA, IRECS and FlexE are supposed to act in concert
in a single docking pipeline, and thus an extensive evaluation was carried out that allowed
for inspecting the in�uence of ensemble sizes on docking accuracy. The docking program
FlexE was extended in Chapter 6 so that it is able to use IRECS models for simulating
protein �exibility and quickly scoring protein-ligand interactions with ROTA. An extract
of the screening database DUD was prepared so that IRECS models and FlexE docking
runs could be executed automatically, allowing to test a substantial number of modeling
and screening setups. The major outcome of this evaluation was that two rotamers per
side-chain on average are su�cient to guarantee a high performance of FlexE. Also, the
advantages of using ROTA and IRECS models could be shown for cases in which �exible
side chains are part of the active site or in which side chains in rigid protein models lack
accurate conformations. The results also enabled the identi�cation of application scenarios
in which the pipeline is most likely to achieve a higher accuracy than traditional modeling
and docking approaches or where it can at least support other established approaches.
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Appendix A

Docking and Screening Results of the

DUD Targets

A.1 Enrichment Plots

Axes

• x - percentage of ligands that were identi�ed by selecting a subset of the ranked
compound list

• y - percentage of compounds that were selected from the ranked compound list

Color Key

• black - Enrichment curves for random (lower curve) and optimal (upper curve) selection
strategies

• red - FlexX using F-Score and X-ray structures

• cyan - FlexX using ROTA and X-ray structures

• grey - FlexX using F-Score and IRECS models with ρrot = 1

• violet - FlexX using ROTA and IRECS models with ρrot = 1

• blue - FlexE using F-Score and IRECS models with ρrot = 2

• green - FlexE using ROTA and IRECS models with ρrot = 3
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Figure A.1: Enrichment plots for ACE, AChE and ADA
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Figure A.2: Enrichment plots for ARL2, AmpC and AR
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Figure A.3: Enrichment plots for CDK2, COMT and COX-1



A.1. ENRICHMENT PLOTS 135

Figure A.4: Enrichment plots for COX-2, DHFR and EGFr
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Figure A.5: Enrichment plots for ERagonist, ERantagonist and FGFr1
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Figure A.6: Enrichment plots for FXa, GART and GPB
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Figure A.7: Enrichment plots for GR, HIVPR and HIVRT
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Figure A.8: Enrichment plots for HMGR, HSP90 and InhA
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Figure A.9: Enrichment plots for MR, NA and P38 MAP
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Figure A.10: Enrichment plots for PARP, PDE5 and PDGFrB
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Figure A.11: Enrichment plots for PNP, PPARg and PR
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Figure A.12: Enrichment plots for RXRa, SAHH and SRC
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Figure A.13: Enrichment plots for thrombin, TK and trypsin
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Figure A.14: Enrichment plots for VEGFr2



Appendix B

Mapping between PDB Atom Names

and ROTA Atom Types

(a) Alanine

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1
CB C.HX

(b) Arginine

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1
CB C.H2
CG C.H2
CD C.H2
NE N.H1
CZ C.H0
NH1 N.HX
NH2 N.HX

(c) Asparagine

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1
CB C.H2
CG C.H0
OD1 O
ND2 N.HX

(d) Aspartatic Acid

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1
CB C.H2
CG C.O2
OD1 O.CO2
OD2 O.CO2

(e) Cysteine

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1
CB C.H2
SG S

(f) Glutamine

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1
CB C.H2
CG C.H2
CD C.O
OE1 O
NE2 N.HX
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(g) Glutamic Acid

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1
CB C.H2
CG C.H2
CD C.O2
OE1 O.CO2
OE2 O.CO2

(h) Glycine

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1

(i) Histidine

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1
CB C.H2
CG C.ar
ND1 N.ar
CD2 C.ar
CE1 C.ar
NE2 C.ar

(j) Isoleucine

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1
CB C.H2
CG1 C.H2
CG2 C.HX
CD1 C.HX

(k) Leucine

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1
CB C.H2
CG C.H1
CD1 C.HX
CD2 C.HX

(l) Lysine

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1
CB C.H2
CG C.H2
CD C.H2
CE C.H2
NZ N.H3

(m) Methionine

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1
CB C.H2
CG C.H2
SD S

(n) Phenylalanine

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1
CB C.H2
CG C.ar
CD1 C.ar
CD2 C.ar
CE1 C.ar
CE2 C.ar
CZ C.ar

(o) Proline

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1
CB C.H2
CG C.H2
CD C.H2
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(p) Serine

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1
CB C.H2
OG O.H1

(q) Threonine

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1
CB C.H2
OG1 O.H1
CG2 C.HX

(r) Tryptophan

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1
CB C.H2
CG C.ar
CD1 C.ar
CD2 C.ar
NE1 N.ar
CE2 C.ar
CE3 C.ar
CZ2 C.ar
CZ3 C.ar
CH2 C.ar

(s) Tyrosine

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1
CB C.H2
CG C.ar
CD1 C.ar
CD2 C.ar
CE1 C.ar
CE2 C.ar
CZ C.ar

(t) Valine

PDB name ROTA type

N N.am
O O
C C.O
CA C.H1
CB C.H1
CG1 C.HX
CG2 C.HX



Appendix C

Protein Structures for Training and

Testing

C.1 IRECS training set

1gv9, 1kpf, 1lmi, 1sh8, 1m55, 1mxr, 1ntv, 1ijy, 1vfy, 1r0m, 1s2o, 1jr8, 1lc5, 1ve1, 1inl, 1brt, 1g2y, 1io0, 1j2r, 1qu9,

1m4i, 1o3y, 1sx5, 1hnj, 1ie9, 1fk5, 1pa7, 1nlq, 1nf9, 1my7, 1cru, 1elk, 1i4u, 1m2d

C.2 IRECS test set A: Single side-chain conformations

1f9v, 1bte, 1jcd, 1kko, 1pin, 1jf4, 1q92, 1oaq, 1k4i, 1jy2, 1w6s, 1m7g, 1wdd, 2b82, 1v4p, 1vef, 1ifr, 1bgf, 1of8, 1ltz,

1uz3, 1gpi, 1f7l, 1f46, 1qwy, 1omr, 1r7j, 1n0q, 1oi0, 1cc8, 1ui0, 1p4o, 1vzi, 1qwo, 1gbs, 1ve4, 1jl1, 1dp7, 1nzj, 1c1k,

1qft, 1idp, 1ds1, 1ql0, 1g6u, 1r6x, 1tp6, 2ew0, 1uq5, 1kr4, 1szh, 1jf8, 1ucd, 2cxv, 1oh0, 1pkh, 1ks8, 1v2x, 1ug6, 2tnf,

1uoy, 1k7j, 1tua, 1sg0, 1n7s, 1uas, 1fd3, 1l7a, 1p1m, 1ezg, 1wfb, 256b, 1rhs, 1gmu, 1sqe, 1h2w, 1kt6, 1t61, 1rtt, 1sqs,

1oyg, 1ijq, 1dfm, 1opd, 1kuf, 1c7k, 1v6s, 1urs, 1es5, 1kyf, 1dj0, 1m22, 1svf, 1�m, 1u4g, 1rya, 1g61, 1wcw, 1roc, 1v30,

1mtp, 1ej0, 1qh5, 1hyo, 1arb, 1w5r, 1ekq, 1qw2, 1pz7, 1utg, 1jg1, 1jyk, 1gd0, 1i52, 8abp, 1jnd, 1mla, 1ew4, 1e5k,

1g2q, 1j0p, 1isu, 1o8b, 1v9y, 1pvm, 1jek, 1ukf, 4eug, 1pp0, 1aap, 1rcq, 1l7l, 1i2t, 1whi, 1fye, 2asb, 1i71, 1jx6, 1kll,

1qs1, 1fp2, 3seb, 1qw9, 1gp0, 1ng6, 1o9g, 1gkp, 1dqz, 1lc0, 1fj2, 1t5b, 1o8x, 1r26, 1ra0, 2a35, 1lr7, 1obo, 1m1f, 1df4,

1cs1

C.3 IRECS test set B: Multiple side-chain conformations

2bw4, 2a13, 1c4o, 1e85, 1w66, 1edm, 1tu9, 1itx, 1h4x, 1ah7, 1g66, 1i1w, 1i0d, 1b8o, 1qxy, 1nyc, 1iua, 1vly, 2f01, 1hd2,

1t7r, 1i24, 1eaq, 2pth, 1nuy, 1s0p, 1mkk, 1lzl, 1t2d, 1jfb, 1k3y, 2bu3, 2bog, 2igd, 2bwq, 1aba, 1tqg, 1tzp, 1u9c, 1o98,

1n8k, 1hx0, 1nqj, 2brf, 1dcs, 1ju2, 1obd, 1d5t, 1nnf, 1qqf, 1lq9, 1w5q, 1atg, 1m1q, 1p4c, 1oaa, 1ijv, 1q6z, 2cov, 1qnr,

1gmx, 2cws, 1o9r, 1lni, 1jni, 7a3h, 1m4l, 1o7j, 1qg8, 1kmv, 1a4i, 1q6o, 1si6, 1isp, 2c5a, 1rk6, 1vh5, 1nof, 2pvb, 1kjl,

1c1d, 1p3c, 1gqi, 2f8a, 2f62, 1iqz, 1tt8, 1jet, 2bk9, 1iom, 1vk1, 1v0w, 1l3k, 1s3c, 1r2q, 1upq, 1rqw, 1psr, 1cip, 1w23,

1kqp, 1lo7, 1unq, 2f22, 1k0m, 1r5y, 1wck, 1irq, 1fx2, 1gyx, 1m9z, 1o2d, 1d4o, 2bzv, 1gs5, 1k5c, 1g2b, 1jl0, 1vyi, 1pbj,

1qtw, 1n55, 3sdh, 1n62, 1o6v, 1ok0, 2akf, 1qlw, 1pko, 1nyt, 1cxq, 1gk9, 1rdq, 1dg6, 2czs, 2mhr, 1mg4, 1q7l, 1ikp,

1h97, 2c4b, 1k3i, 1ssx, 1kv7, 1h1n, 2erb, 1u07, 1vzm, 1knm, 1et1, 1rgz, 1thf, 1pjx, 1mj4, 1fsg, 1q5y, 1gvf, 1mj5, 1rut,

1a6m, 1ufy, 1uwc, 1v5v, 1us0, 1vyr, 1o08, 1mfm, 2a26, 1od6, 1nwa,1bkr, 1gci, 1gpp, 1sjy, 1e7l, 1vr7, 1k55, 1u2h, 2eng,

1k3x, 2bry, 1tuk, 2axw, 1ls1, 1e6u, 7fd1, 1e58, 1tjy, 1me4, 1v05, 1ujp, 1mnn, 1j98, 1hqj, 1ox0, 1i1j, 1mso, 1w0n, 1t6f,

1lyq, 1i27, 1rg8, 1aho, 1pqh, 1sn9, 1usm, 1v8h, 2tps, 1gxm, 1mn8, 1r6j, 1j77, 1nwz, 1n8v, 1f94, 1rku, 1hw1, 1ouw,

1v6p, 1e29, 1�0, 1gut, 1q35, 2bhu, 1pb7, 1c52, 1wbe, 1kng, 2aeb, 2bcm, 1k5n, 1jbe, 1ojr, 1ucr, 1jz8, 1gnl, 1kmt, 1ryo,

1pmh, 1odz, 1sfs, 1h4g, 1o4y, 1r29, 1gxu, 1vyk, 1mun, 1lqt, 1t3y, 1r5l, 1h05, 1hzt, 1tke, 1wb4, 3sil, 1od3, 1koe, 1qwn,

1kjq, 1uyl, 2bsy, 1odm, 1euw, 1oi7, 1nkd, 1g2r, 1hdh, 1n13, 1n3l, 1i40, 1vqs, 1tjx, 1kgd, 1pz4, 1nxm, 1nls, 1t8k, 1sen,

1vmg, 1mc2, 1m15, 1g5a, 1k7c, 1jub, 1en2, 1rw1, 1u7g, 1nki, 1lu4, 1sg4, 1o7q, 1cy5, 1nh0, 1vhu, 1usc, 1rwh, 1jhg,

1hbn, 1muw, 1uww, 1gu2, 1e19, 1o7i, 1q1f, 1tg0, 2nlr, 1fo8, 1c75, 1czp, 1i88, 1us5, 2a3n, 2c60, 1rl0, 1i0r, 1egw, 2lis,

1c9o, 1qre, 1n40, 1f86, 1i0v, 1vim, 1eb6, 1wdp, 1f9y, 1nz0, 2boq, 1vm9, 1hdo, 1lyv, 1ryq, 2bt9, 1bqc, 1h4a, 1tzv,

3ezm, 1i12, 1o82, 1vju,2arc, 2bmo, 2ab0, 1gkm, 1mwq, 1fm0, 3chb, 1sby, 1gwe, 1sjw, 1hz4, 1nww, 1su8, 1jm1, 1oew,

1ht6, 1kq6, 1luc, 1s9u, 1ka1, 1uuy, 2c3n, 1eaj, 1r6d, 1mf7, 1lwb, 1j3w, 1ga6, 1dzk, 1pq7, 6rlx, 1l9l, 1ucs, 1p1x, 1gwu,

1l6r, 1d7p, 1m1n, 1fg7, 1lb3, 1llm, 1q0r, 1llf, 1uv4, 1lv7, 1v70, 1ifc, 1oxx, 3lzt, 1ix9, 1rtq, 1kr7, 1qtn, 1ooh, 1es9,
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1ixh, 2b3n, 1vmh, 1gwm, 1o9i, 1jo0, 1vd6, 1m40, 1kw3, 1w1h, 2b0a, 2bji, 1byi, 1f1e, 1m0k, 2bln, 1c5e, 2mcm, 1rkq,

1qj4, 1g3p, 1u7i, 2bkx, 3vub, 1mqo, 1f8e, 1eu1, 1is3, 1vbw, 1tbf, 1kwf, 1lkk, 1os6, 2aml, 1lug, 1d4t, 1ji7, 1ocy, 1n4w,

1t6u, 1g6s, 2cyg, 1vl7, 2c3v, 1vkk, 2etx, 1sau, 1uwk, 1dy5, 2fe5, 1qdd, 1oqv

C.4 Rotamer lock test and training set

C.4.1 Sequence identity 80-90

(1lfy:B, 1iwh:B), (1eap:A, 1mam:L), (1k20:B, 1i74:A), (1bx2:A, 1iea:C), (2rmp:A, 1mpp), (2dhb:B, 1hco:B), (1ncd:L,

1acy:L), (1gaw:B, 1qfy:A), (1a4k:A, 1i7z:A), (1a45, 1h4a:X), (1om3:M, 1qlr:A), (1vhw:A, 1ecp:A), (1mlc:A, 1fbi:L),

(1g3q:A, 1ion:A), (1npl:A, 1jpc), (1k6p:A, 1bdq:A), (1qqp:3, 1fmd:3), (1a9q, 1ula), (1nz4:A, 1a6m), (4rub:A, 1gk8:A),

(1i0a:D, 1auw:A), (1mlc:B, 1afv:K), (1b43:A, 1mc8:A), (1qh4:A, 1i0e:A), (1g3k:C, 1ned:A), (1a8m:A, 2tnf:A), (1vba:1,

2plv:1), (1llr:F, 1ltr:F), (1uam:A, 1p9p:A), (1bd2:A, 1hsa:A), (1b8d:B, 1lia:B), (1a5d:A, 1elp:A), (1dq0:A, 1mvq:A),

(5gpb, 1fa9:A), (1rhi:2, 1k5m:B), (1fne:A, 1j8h:A), (1qna:B, 1ytb:A), (1f1u:A, 1q0o:A), (1g9n:G, 1g9m:G), (1rk9:A,

1s3p:A), (1k8q:B, 1hlg:A), (1agc:A, 1hhh:A), (3gtu:A, 1gtu:B), (4cln, 1osa), (2mpr:A, 1af6:B), (1lp9:L, 1nfd:A),

(1mci:B, 1bjm:A), (1q0k:A, 1t6u:A), (1b15:A, 1mg5:A), (1xtc:A, 1lts:A), (1frs:A, 1zdi:A), (1lw6:E, 1mee:A), (1lt5:D,

1chp:D), (1et7:A, 1nif), (1l8f:A, 3eng), (1orq:A, 1sy6:L), (1kho:B, 1gyg:B)

C.4.2 Sequence identity 70-79

(1lpd:A, 1qi7:A), (3nul, 1cqa), (1igc:H, 1acy:H), (1qqp:1, 1fmd:1), (1h0p:A, 1cyn:A), (1aqy:A, 1hy3:B), (1l1e:B,

1kp9:B), (1ezr:C, 2mas:A), (1b0l:A, 1b7u:A), (1iwp:L, 1dio:A), (1ohz:A, 1aoh:A), (1glh, 1gbg), (1dsf:H, 1mqk:H),

(1amk, 1tpe), (2bls:A, 1bls:A), (1esp, 1hyt), (1a4f:A, 2dhb:A), (1q13:A, 1ry8:A), (1mc2:A, 1ppa), (1j5o:L, 2hrp:M),

(1hil:D, 1mf2:N), (1bcp:B, 1prt:C), (1gpl, 1bu8:A), (1fj1:A, 1otu:F), (1kjv:A, 1k8d:A), (1jhl:H, 1nmb:H), (1pkq:B,

1uwe:V), (1kew:B, 1bxk:A), (1jw1:A, 1b7z:A), (1cfn:A, 1rur:L), (1jqb:A, 1ykf:A), (1jk8:A, 1iak:A), (1jeb:D, 1dxt:B),

(1emy, 1bvc), (1mi5:E, 1qse:E), (1f1m:B, 1ggq:A), (1qbm:L, 1ae6:L), (1h4i:A, 1lrw:A), (1fr6:A, 1kvl:A), (1m06:F,

2bpa:1), (1j96:A, 1q5m:A), (1tgk, 1tfg), (2iad:B, 1jk8:B), (1kel:H, 1cbv:H), (1hfq, 1dr3), (1cwp:C, 1js9:B), (12e8:L,

1ggi:L), (1f3d:H, 12e8:P), (1fr1:A, 1pi5:A), (1f58:L, 1fdl:L), (1tfh:A, 1a21:A), (1a0c:A, 1a0d:B), (1mpu:A, 1hq8:A),

(1kt2:B, 1bx2:B), (1sy6:H, 1k4d:A), (4rub:T, 8ruc:I), (1ydf:A, 1ys9:A), (1e03:L, 1att:A), (1hbo:E, 1e6v:E), (1b3z:A,

1i1w:A), (3cbs:A, 2cbr:A), (6gst:A, 1hnb:A)

C.4.3 Sequence identity 60-69

(1ksw:A, 1qcf:A), (1vm1:A, 1nym:A), (1zib, 1pzc), (1ge2:A, 3lzt), (1nq7:A, 1s0x:A), (1p48:A, 1te6:A), (1f6t:B,

1nsq:A), (1agd:B, 1bz9:B), (1ib4:B, 1czf:A), (1dgj:A, 1vlb:A), (1nwo:A, 1cc3:A), (1lkz:A, 1m0s:A), (1tk4:A, 1s8i:A),

(1mwv:A, 1itk:B), (1gil, 1tag), (1sei:A, 1an7:B), (1fbi:H, 1fj1:B), (1mlc:D, 1fj1:D), (1a9b:B, 1cd1:B), (1cob:B, 1xso:A),

(1fut, 9rnt), (1j0d:A, 1rqx:C), (1ew3:A, 1gm6:A), (4ubp:C, 1ef2:A), (1prc:M, 1eys:M), (1n7g:B, 1t2a:A), (1pca, 1aye),

(1gjq:B, 1gq1:B), (1h43:A, 1a8f), (1vcq:B, 1svp:A), (1dy2:A, 1dy1:A), (1kp0:B, 1chm:A), (1ubh:L, 1frf:L), (1rlg:B,

1pxw:A), (1cvz:A, 1gec:E), (1te1:B, 1h1a:A), (1h5y:B, 1ka9:F), (1bfo:B, 1uz6:W), (1okr:B, 1sd4:A), (2ae2:A, 1ae1:B),

(1bfo:A, 1uz6:V), (1l2l:A, 1ua4:A), (1ppn, 1meg), (1de0:B, 1cp2:A), (1q72:H, 1f8t:H), (1m08:B, 1bxi:B), (1t45:A,

1rjb:A), (1p3j:A, 1s3g:A), (1kx5:C, 1f66:G), (1e3a:B, 1cp9:B), (1a3q:A, 1nfk:A), (2ckb:B, 1nfd:B), (1dz0:A, 1joi),

(1hcb, 1hca), (1f28:A, 1hvy:A), (1d2m:A, 1d9z:A), (1kmy:A, 1eir:A), (7taa, 2aaa), (1h1h:A, 1k2a:A), (1n63:B, 1�u:E),

(1ji6:A, 1dlc), (1aom:B, 1bl9:B), (1nse:A, 1df1:B), (1bjf:A, 1g8i:B), (1edy:B, 1ayo:A), (1bd2:E, 1jck:A), (1bre:F,

1nmc:C), (1m6w:B, 1mgo:B), (1ahw:E, 1kno:F), (1fvc:C, 1ap2:A), (1a8u:A, 1hkh:A), (1vls, 2asr), (1pah, 1toh),

(1j7d:B, 1jat:A), (1om4:B, 1dwv:A), (1ygh:A, 1cm0:A), (1a70, 1awd), (1k94:A, 1juo:A), (1kip:A, 1jhl:L), (1hms,

1adl), (1isn:A, 1j19:A), (1e0s:A, 1mr3:F), (1jzi:B, 1nwp:A), (1ud6:A, 1bli), (1fa2:A, 1byb), (1i3r:F, 1lnu:F), (1tyt:A,

1bzl:A), (1fvc:D, 1ar1:C), (1fsk:I, 1v7n:K), (1jnh:D, 1bfo:H), (1frf:S, 1ubh:S), (1nio:A, 1mrj), (1f6l:L, 5lve:A), (3seb,

1ste), (1onr:A, 1f05:A), (1a2s, 1cyj),

C.4.4 Sequence identity 50-59

(4tf4:A, 1g87:B), (1sac:A, 1b09:C), (1msd:A, 1mng:A), (1dsz:B, 1dsz:A), (1gow:A, 1qvb:A), (1fob:A, 1hjq:A), (1pk6:B,

1pk6:C), (1b2p:A, 1niv:A), (2atj:A, 1qgj:A), (1buv:M, 1jiz:A), (1w1z:A, 1w5m:A), (1c3a:A, 1bj3:A), (1e5m:A, 1b3n:A),

(1l2j:A, 1l2i:A), (1uds:A, 1r6m:A), (1iax:B, 1b8g:A), (1kkr:B, 1kcz:A), (1ihx:C, 1k3t:B), (2rhe, 2imn), (1o73:A,

1ezk:A), (1nf3:A, 1s1c:A), (1krn, 1pkr), (1bxv:A, 1b3i:A), (1nd1:A, 1wni:A), (1jug, 1lmc), (1fx5:A, 1qos:A), (1iru:H,

1ryp:V), (1u98:A, 1xp8:A), (1ixx:A, 1v4l:A), (1ea9:D, 1gvi:A), (1rhi:3, 1nd3:C), (1i1n:A, 1r18:A), (1b3b:A, 1euz:F),

(1ojo:A, 1i8q:A), (1f5v:B, 1bkj:A), (1kkl:I, 1kkm:I), (1coy, 1b8s:A), (2fus:A, 1vdk:A), (1qqw:B, 1a4e:A), (1uvq:A,

1jws:A), (1rd8:D, 5hmg:B), (1ejb:A, 1kyv:E), (1kyn:B, 3rp2:A), (1ck4:B, 1aox:A), (1hkj:A, 1syt:A), (1axn, 1ann),

(1sm3:H, 1t3f:B), (1mec:1, 1tmf:1), (1mi5:D, 1qse:D), (1jsd:B, 2viu:B), (1h8l:A, 1uwy:A), (1fwb:B, 1ubp:B), (1n61:C,

1�v:F), (1cnu:A, 1f7s:A), (1omj:A, 1sat), (1cqw:A, 1iz8:A), (1gyc:A, 1a65:A), (1a6e:A, 1a6d:B), (3tim:B, 1tph:2),

(1mfm:A, 1jcv), (2er7:E, 1apt:E), (1ref:A, 1hix:B), (1dxr:H, 1eys:H), (1xr5:A, 1xr6:A), (1h6f:B, 1xbr:A), (1hl4:A,
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1to5:A), (1goc, 1ril), (1lvg:A, 1ex7:A), (1e2y:G, 1qmv:A), (1n0x:M, 1ob1:A), (4eug:A, 4skn:E), (1lmh:A, 1lqy:A),

(1llq:B, 1qr6:A), (1www:W, 1hcf:A), (2gd1:Q, 1gyp:A), (1p0m:A, 2dfp:A), (1bjj:A, 1kvo:A), (1uj3:B, 1qkz:H), (1wad,

2cym), (1aq0:A, 1ghs:A), (1h4l:A, 1�n:A), (1hdg:O, 1obf:O), (1ihy:A, 1ml3:A), (1msa:A, 1xd5:A), (1n4x:M, 1j05:A),

(1mvm:A, 1k3v:A), (1bk1, 1xyn), (1dpf:A, 1mh1), (2not:A, 1s6b:A), (1gmm:A, 1uy3:A), (1a05:A, 1dr0:A), (1pva:A,

1a75:B), (1lbq:B, 1hrk:A), (1iof:B, 1a2z:A), (1ntz:D, 1p84:D), (1aks:B, 1gg6:C), (1ceb:A, 5hpg:A), (1iq4:A, 1mji:A),

(1gnx:A, 1np2:A), (1bxb:A, 3xin:A), (1etz:L, 8fab:A), (1jb9:A, 1fnc), (1n3y:A, 1ido), (1poa, 1kvw), (1dsf:L, 1jv5:A),

(1gpi:A, 1egn:A), (1e3e:A, 1hdx:A), (1pkl:A, 1aqf:B), (1ggp:B, 1abr:B), (1gjo:A, 1vr2:A), (1iwa:A, 1rsc:A)

C.4.5 Sequence identity 40-49

(1jq5:A, 1kq3:A), (1bsg, 1bue:A), (3mdd:A, 1buc:A), (1epz:A, 1rtv:A), (1upm:P, 1rbl:M), (1i8f:F, 1jbm:A), (1kr4:A,

1j2v:A), (1os8:A, 1pq8:A), (1nhk:R, 1ehw:A), (1ie0:A, 1vh2:A), (1btm:A, 1mo0:A), (2ucz, 2aak), (1hlc:A, 1qmj:A),

(1i6i:A, 1goj:A), (1d8u:A, 1bin:A), (1tmo, 1eu1:A), (1pbk, 1yat), (1a6v:L, 1qfw:M), (1oau:H, 43c9:F), (1cne, 1i7p:A),

(1ypr:A, 1f2k:A), (5pal, 1b8r:A), (2cel:A, 1eg1:A), (1jxn:A, 1wbl:A), (1c40:A, 1i3d:A), (1bxn:L, 1bwv:W), (1ho3:B,

4pga:A), (1ayy:C, 1apy:A), (1td5:D, 1tf1:A), (1m6d:A, 1o0e:A), (1fue:A, 1czu:A), (1kbb:A, 1l0p:A), (1psq:A, 1qxh:A),

(1m1m:B, 1mzj:B), (2prd, 1faj), (1pby:A, 1jmx:A), (1o0y:A, 1mzh:A), (2qwc, 2bat), (1srd:A, 1do5:A), (1asm:B,

7aat:A), (1fvu:D, 1umr:D), (1bzy:A, 1cjb:C), (1a4s:B, 1a4z:A), (1em1:B, 1avm:A), (1eg5:B, 1p3w:A), (1l6s:B, 1gzg:B),

(1j6x:B, 1inn:A), (1g0h:A, 1vdw:A), (1avu, 1tie), (1m7p:B, 1m6j:B), (1onf:A, 3grs), (1llt:A, 1icx:A), (1d0i:H, 1uqr:K),

(1k44:C, 1jxv:B), (2hhe:D, 4hhb:A), (1b4p:A, 1bg5), (1eb9:A, 1y7i:B), (1e51:B, 1b4k:A), (1pvv:A, 1oth:A), (1g6i:A,

1fo2:A), (1chr:B, 1muc:A), (1mfe:L, 2rcs:L), (1s5v:A, 1o5k:A), (1nov:C, 2bbv:C), (1kmm:C, 1ady:A), (1p7c:B, 1p6x:A),

(1t3q:A, 1n60:A), (1f3o:A, 1b0u:A), (1kqy:A, 1cnv), (1dxv:C, 1dxv:B), (1n4o:B, 1hzo:A), (1aj0, 1eye:A), (1naq:A,

1osc:F), (1m1t:A, 1wdk:C), (1jez:B, 1j96:B), (1aks:A, 1kdq:A), (1qhp:A, 1ciu), (1gs0:A, 1uk0:A), (1obo:A, 1ag9:A),

(1pno:B, 1pt9:A), (1pee:A, 1ikj:A), (1d9q:B, 1fta:A), (1o6e:B, 1�1:B), (1civ:A, 1b8p:A), (1arv, 1mn2), (1sc0:A,

1vh9:A), (1jd0:A, 1rj5:A), (1nh2:D, 1nvp:D), (1g0c:A, 1qi0:A), (1bwl:A, 1h62:A), (1k62:B, 1tj7:A), (2eif:A, 1bkb),

(1kgz:B, 1v8g:A), (1c9w:A, 1mrq:A), (1oij:B, 1os7:A), (1j35:B, 1j35:A), (1p15:B, 1rpm:A), (1tfu:A, 1o6b:A), (1zin,

1aky), (1kcd:A, 1ia5:A), (1en6:A, 1ues:A), (2ecp:A, 1ygp:B), (43c9:H, 1bzq:K), (1j4b:A, 1cg3:A), (1qrd:A, 2qr2:B),

(3erk, 1a9u), (1pwo:A, 1c1j:A), (1jeh:A, 1lpf:A), (1epx:A, 1fdj:A), (1kxt:B, 1rvf:H), (1is3:A, 1c1f:A), (1qtf:A, 1due:A),

(1h2b:B, 1r37:A), (1a2d:A, 1ftp:A), (1hg0:A, 4eca:A), (1gxd:D, 1uea:B), (1m85:A, 1gwh:A), (1bla, 1qql:A), (1hm6:A,

1anw:A), (1dfo:C, 1ls3:A), (2min:A, 1mio:A),

C.4.6 Sequence identity 30-39

(1o17:D, 1khd:B), (1e6c:A, 1kag:A), (1eun:A, 1vlw:B), (1auy:A, 1qjz:A), (8dfr, 1dyr), (1f77:A, 1sxt:A), (1cgo, 1cpq),

(1m06:G, 2bpa:2), (1j2y:A, 2dhq:A), (1kex:A, 1d7p:M), (1cpc:A, 1lia:A), (1bi9:D, 1euh:A), (2ans:A, 1ggl:A), (1paf:B,

2aai:A), (1lld:A, 1guy:C), (1oa4:A, 1ks4:A), (1poy:1, 1a99:A), (1ipf:A, 1pr9:A), (1eve, 1akn), (1obr, 1arl), (1ta3:B,

1n82:A), (1nol, 1hcy), (1qnn:A, 1gn4:A), (1fgi:A, 1k2p:A), (1jt3:A, 1qqk:A), (1ez4:D, 1guz:A), (1hwn:A, 1ce7:A),

(1fjm:B, 1s95:B), (1aij:L, 1aij:S), (1ryp:F, 1ryp:D), (1ayy:D, 1apy:D), (1l0l:F, 1p84:G), (1p33:B, 1nfr:A), (1geq:B,

1k3u:A), (1pty, 1jln:A), (1vfs:A, 1niu:A), (1ouz:B, 1ouz:A), (1tc2:B, 1d6n:A), (1eaw:A, 1pyt:D), (1�8:B, 1sgf:G),

(1mfd:H, 1ghf:H), (1p7w:A, 1tk2:A), (1mio:D, 1qgu:B), (1kg8:A, 1e12:A), (1hrd:A, 1gtm:B), (1pd2:2, 1oe8:B), (1okt:A,

1gse:A), (1umb:D, 1ni4:D), (1yc0:A, 1kli:H), (1f4q:B, 1alv:A), (1jlr:A, 1o5o:A), (1lkl:A, 1qad:A), (1isg:A, 1lbe:A),

(3sdp:B, 3mds:A), (1c8o:A, 1as4:A), (1a7v:A, 1gqa:A), (1ore:A, 1l1q:A), (1n8p:A, 1gc2:C), (1ia8:A, 1jks:A), (1j33:A,

1jh8:A), (1ng1, 1fts), (1rxk:B, 1rav:A), (1q0u:B, 1t6n:A), (1nam:A, 1h5b:A), (1e6k:A, 1nxp:A), (1g65:A, 1iru:E),

(1ewc:A, 1eu4:A), (1g0o:C, 1rwb:A), (1dg5:A, 3dfr), (1f75:B, 1v7u:A), (1hp7:A, 1jrr:A), (1brt, 1a8s), (1rv9:A, 1t8h:A),

(1ds7:B, 1vfr:A), (1ouw:C, 1j4u:A), (1uh7:A, 1fq6:A), (1all:A, 1on7:B), (1q7c:A, 1vl8:B), (1ey3:C, 1hzd:A), (1ls5:A,

1bim:A), (1jne:A, 1lg1:A), (1ic6:A, 1thm), (1n9w:B, 1b8a:A), (1o4s:B, 1v2f:A), (1ig8:A, 2yhx), (1c2r:A, 1lfm:A),

(2hlc:A, 1trn:B), (1xqm:A, 1xa9:A), (1dys:A, 1qk0:A), (1mq7:A, 1eu5:A), (1lmw:B, 1bml:A), (1p3u:A, 1sk7:A),

(1gka:B, 1gka:A), (1qbv:H, 1cvw:H), (1qxy:A, 1c24:A), (3ljr:A, 1pn9:A), (1a6z:A, 1qo3:A), (4pbg:A, 1gon:A), (2nap:A,

1aa6), (1ja9:A, 1edo:A), (1uir:B, 1mjf:A), (1e5f:B, 1ibj:A), (1pdk:A, 1l4i:A), (1fot:A, 1h1w:A), (1lqk:A, 1r9c:A),

(1fj2:B, 1auo:A), (1jta:A, 1bn8:A), (1ktc:A, 1szn:A), (1iqr:A, 1qnf), (1akr, 3nll), (1npd:B, 1nvt:A), (1elg, 1dst),

(1f4d:B, 1bkp:A), (1qym:A, 1ixv:A), (1rwg:A, 1j0m:A), (1g57:B, 1snn:A), (1gbl:A, 2sga), (1kfw:A, 1itx:A), (1geg:E,

1i01:E), (1qgh:A, 1ji4:A), (1k3p:B, 1aj8:A), (1i2a:A, 1mzp:A), (1cyf, 1oaf:A), (1luc:A, 1bsl:B), (1f73:D, 1fdy:A),

(1j93:A, 1jph:A), (1ljt:B, 1dpt:A), (1ie9:A, 1osh:A), (1m4v:B, 1v1o:A), (1pzx:B, 1vpv:A), (2ay7:A, 1ajs:A), (1iqq:A,

1bk7:A), (3rap:S, 1zbd:A), (1dux:F, 1pue:F), (1eof:A, 3kvt), (1lme:A, 1ix1:A), (2plc, 1gym)

C.5 Representative structures used for deriving the ROTA

scoring function

1x7b, 1r55, 1qs4, 1ii7, 1cul, 1fvt, 1g3d, 1g3c, 1kph, 1g49, 1r8e, 1ik3, 1ghy, 1if2, 2f67, 1m6w, 2f62, 2j0p, 1tt0, 2f64,

1lbl, 1jcm, 2b1g, 1fdj, 1nf0, 2fjk, 1ok4, 1zoa, 2eve, 2ai1, 2b3n, 1v8f, 1yad, 1jvl, 1jyv, 1jyw, 2f07, 1jz3, 1jz5, 1t4v, 1foi,

1l4f, 1ndf, 1xl8, 1fcz, 1nme, 1zd3, 1tmg, 1u0m, 1dck, 1r6w, 1qj1, 1qj6, 1ou6, 1kpg, 1wog, 2dkc, 1frz, 2o28, 1i1d, 1t5d,
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2amb, 2b1z, 1u1d, 1u1e, 1u1f, 1fcx, 1xkw, 1y1z, 1yye, 1z95, 2ojg, 1tz2, 1y20, 2oem, 1z2l, 1lgw, 2afx, 2i19, 2f6t, 2abi,

2as6, 2hoc, 1t9b, 1add, 2cfu, 1pzi, 2cfz, 3gal, 2f6x, 1bky, 1t9d, 1aet, 2h7r, 1zpl, 1w8l, 1oj9, 2pcp, 2f35, 1tm3, 1scf,

2bi1, 1x2t, 1p7k, 2g8y, 2fxa, 1u2o, 2ci8, 1d7b, 1up3, 1i4f, 2hte, 1e0b, 2arv, 1ne8, 1pin, 1n5s, 2baj, 2ga4, 1gii, 1bw9,

1l5k, 2hnc, 1t9c, 2ohk, 2b0m, 2d6b, 2f8i, 1h0w, 1rs2, 2hmp, 2foe, 2g5v, 1owh, 2dvx, 2f57, 2izt, 2g5n, 2hhw, 1x78,

1aeh, 1o4q, 1aen, 2a9z, 2f7i, 2anz, 3tdt, 2fpz, 1qa0, 1u3q, 1xoi, 1vyw, 2ajc, 2oua, 1l4m, 1l4n, 2fxl, 7rnt, 1txc, 1eyn,

1ow4, 1aeo, 1n23, 2a9w, 2e4v, 1wbo, 2is7, 1ovh, 2byh, 2byi, 1jz4, 2aog, 1nn0, 2cct, 1aeq, 1pk9, 1z34, 1jz2, 1pfv, 1zai,

1umg, 3bu4, 1gmp, 2dtw, 1v5z, 1zg3, 2as2, 1i9z, 1tzk, 1rr2, 1ov5, 1aed, 1w3r, 1l5o, 1aeu, 1zp5, 1f06, 2o7n, 1ofe, 1nx4,

1gp4, 2fta, 1o57, 1w6t, 1un7, 1yc2, 1icp, 2c4b, 1bs4, 1pe1, 4tim, 1o5x, 1eqj, 7enl, 1aj2, 1c9y, 6enl, 1te2, 2aot, 2haw,

1gij, 2oh0, 2f7p, 2gj4, 2nuv, 2otf, 2c3u, 2h02, 1wnz, 2hxm, 1u3r, 2ok1, 1lc8, 1kbo, 1l4k, 2bx7, 1bhn, 2ouu, 1zrk, 2duv,

2hu6, 1exa, 1u9e, 1pu7, 1n20, 1aef, 1qw4, 1xve, 1d1y, 2cgw, 2h6b, 2b77, 1li3, 1s2g, 2cgx, 1y2c, 2�m, 1e3b, 2as4, 2bxv,

6gsp, 1goy, 1w3t, 1u1w, 2dkh, 3pcb, 2cw6, 3pce, 2ay6, 1oyo, 2g1r, 2a7p, 1xes, 1w7h, 3mag, 3pax, 3mct, 1kkr, 1i9c,

1xyc, 2hos, 1aeb, 1z3n, 2hmo, 1gt1, 2h4x, 1m7o, 1hdi, 1ejj, 1iih, 1vpe, 2cun, 1aa1, 1qhf, 2jdd, 1siw, 1cul, 1o5x, 2fme,

1vr0, 2noa, 2gm9, 2hha, 1zz3, 1zml, 1zmn, 1yc4, 1pq9, 2b1v, 2fai, 1vjy, 2h7p, 1x1j, 1x1i, 1jil, 1owd, 1f8e, 2hdr, 1yfx,

1dwv, 2qwd, 2pax, 1aeg, 1xql, 1pb9, 1yc1, 2ag6, 2ccs, 1d1x, 1s6h, 1tx7, 2bvr, 1y2d, 2aov, 2f7x, 1owz, 2f3p, 1s83, 1v5y,

2g1m, 3pcg, 1nq2, 1w1d, 1bwn, 1w2d, 1fgy, 2hds, 2cog, 1umc, 1i1m, 2fnn, 1no3, 2a8h, 1d1q, 1xkb, 2ojf, 1xn0, 2iw9,

1xn0, 2ay8, 1ps6, 1xq0, 1xpz, 1zgv, 2h4k, 2hb1, 2bpm, 1fcy, 2iiv, 2h7i, 1pl6, 1pme, 1rw8, 2cc2, 2fb3, 4req, 1lgx, 1rwq,

1rzy, 2ih9, 1xvc, 2c2w, 2i1m, 1y2e, 2eu2, 1iyb, 1c9k, 1j1g, 2ble, 1g7c, 1znx, 1jxm, 1ex7, 1qk3, 1t9s, 1mrs, 2i6a, 2c47,

2f2t, 1jhm, 1f8y, 1li6, 1m9q, 1jhp, 1v3v, 1j0d, 1d7r, 1xm6, 1xbv, 1tku, 1ohs, 1qyw, 1rxc, 1nqw, 2jav, 1oxf, 1qb6, 1z89,

2h7m, 2h7l, 1ttm, 1owe, 1tx2, 1zky, 1x76, 1c0i, 1h1r, 1y2h, 2f3q, 2iq0, 2�b, 1m9m, 2iyo, 1ko8, 1qy4, 2cxr, 2h3e, 1zsj,

1x70, 2o2u, 2h7n, 1u6q, 1c84, 1o4h, 1s63, 2bok, 1o4r, 1zaf, 1o4f, 1o4p, 1no6, 1n22, 2g6j, 1y2k, 2f3s, 1i14, 1pvs, 1foj,

2g24, 1h2u, 2�r, 1m9k, 2dbp, 2oo1, 2ovj, 2etm, 1l5m, 1l5l, 1x8b, 1i30, 2iit, 1ecv, 2gc8, 2fvc, 5rhn, 1ro9, 2h8z, 2f3u,

1xqp, 2a5b, 1c3x, 1db4, 1z11, 1yqy, 1kbq, 2b1i, 1onz, 1rsi, 2azr, 1f8d, 1egy, 1fv0, 2de7, 1l1q, 1fsg, 1a9p, 1i80, 1rrw,

2oyk, 1ik3, 1lv8, 1mr2, 1hpu, 2ga2, 1tv5, 1d3h, 2ccv, 1h1h, 2gz2, 1o0o, 1tzj, 2d06, 1x8l, 1aqu, 1q1z, 1efh, 1ka1, 1hi4,

1zrh, 1t8u, 1o0f, 1tky, 2hl1, 1yw7, 1rri, 1uj6, 1fy6, 2cxp, 1ut6, 1e3w, 1qco, 2g63, 1dry, 1jha, 1ajn, 1vru, 2i7c, 1jq3,

1wma, 2aeb, 2esl, 2d7f, 2j60, 1o8b, 1d3v, 1c2k, 1naa, 2axr, 1dku, 2eus, 2bza, 2hxc, 1m18, 2okk, 1xoe, 1pl1, 1zk1,

2ki5, 1y1m, 2gq8, 2a01, 1cea, 3kiv, 1qiq, 1vyg, 1adl, 1cvu, 2g5t, 1ukq, 2ivd, 2ivs, 1g7b, 2i7n, 1mxd, 1qjf, 2oxj, 1tjx,

2bw4, 1lqu, 2rth, 2f97, 2j46, 2o1q, 2cio, 2fnt, 2bjs, 2avs, 1r4f, 1zn7, 1wei, 1cb0, 1z8d, 1qci, 1jh8, 1m2t, 2ga4, 1s2d,

1aha, 2g5p, 1jx4, 1n5s, 4cpp, 1ho5, 2doj, 1jdv, 1n3z, 1jg3, 1pg2, 2jc9, 1yi4, 1v8b, 1lii, 1dad, 2oxc, 1xnj, 1b62, 1gzf,

2c9o, 1z59, 1oxu, 1sdm, 2iyz, 1eq2, 1mqw, 1xnj, 1v47, 1o9u, 1yb1, 1x8j, 1nfq, 2c2n, 2c2n, 2b4r, 1re0, 1uum, 2bgr,

1iuc, 1mt1, 1y5i, 1ejn, 2a0z, 2nzt, 1v2b, 2f2e, 1s5m, 1hor, 1mos, 2og7, 2ay1, 2f92, 1fpl, 2g7q, 2afw, 1wd4, 1ki6, 1fd7,

2hj9, 2o3z, 1h8s, 1nx9, 2g5j, 1oxr, 1tgm, 1k4g, 2fwj, 1zr8, 2fdi, 2cjh, 2j9e, 1e5i, 2gp5, 2fcu, 1yba, 1cw4, 1mzf, 1oij,

2air, 1ung, 1w1v, 1rpj, 1r6n, 1az1, 1afe, 1m5e, 1tx8, 1ama, 1dlg, 1tng, 1sja, 1jac, 1ceb, 1jir, 1fa9, 2hbl, 2j91, 1eyk,

1o97, 2gm3, 1wxi, 1zn9, 1ua4, 2j9d, 1my2, 1f5l, 1aev, 2cnq, 1m9n, 1zq8, 1lo3, 2hmn, 1h62, 1gt1, 1coy, 1ifs, 1j1r, 2bjm,

1lwv, 1ppa, 1hj9, 1aee, 1sv3, 2b96, 1qpc, 1jpa, 2dxd, 1zl2, 2bfg, 1r5g, 1r5h, 1r58, 1wyv, 2f7q, 1lho, 1lhn, 1zq6, 2i57,

1dku, 5�t, 1av5, 1dmj, 1dmk, 1tpp, 2dap, 1gg6, 1k4h, 1vhz, 1v8y, 1e2i, 1enu, 1s39, 1p5z, 1mmz, 1abe, 2arc, 1abe,

1h69, 1nq7, 1e2i, 1vag, 1dcn, 1j20, 1pqp, 2gz3, 2aa7, 1f9g, 1oaf, 1e71, 1eup, 1qyx, 1xf0, 1nas, 1n4f, 1oc1, 1n0t, 2ha5,

2tmk, 1w2h, 1e9d, 1tc0, 1n48, 1u5v, 1obg, 1d1w, 1wxi, 1q3w, 1x2e, 1dzt, 5prc, 2i03, 1dil, 1lxc, 1tuf, 1i7g, 2icq, 1j2g,

1vay, 1kti, 1lwx, 1fen, 2j7h, 1jd0, 1yda, 1oar, 2bxk, 2foq, 2fos, 2h15, 1p06, 1rej, 1tou, 1p02, 2ccr, 1p03, 2foy, 2b4b,

2hfe, 1t67, 2bzg, 1tb7, 1d6f, 2c1x, 1rv6, 2je8, 2ooq, 2awh, 1g9a, 1elf, 1wda, 1n2o, 1tio, 1xx4, 1zvw, 2anw, 1f5k, 1c5o,

2cht, 1u1c, 1g27, 1ix1, 1ws1, 1lqy, 1t48, 1v2n, 1u1g, 1d8m, 1s9j, 1lo0, 1qyg, 1p0p, 1ki0, 1v0j, 2jc5, 1ltm, 1m66, 2htu,

1l7g, 1n8v, 2glp, 1ovp, 2fa1, 1ybq, 1n2v, 2bpq, 2bmv, 1v16, 1lpu, 2ayw, 2ast, 2aiq, 1w80, 1wri, 2gnn, 1gql, 1jjt, 1f8s,

2gvq, 2jb3, 1zfk, 1oon, 1v2u, 1jbu, 1cc8, 1eax, 1lo6, 1zhr, 2glp, 1nkz, 2pka, 1rtf, 1lfo, 1dtl, 1ybk, 1xry, 2hpt, 1sw2,

1rcg, 1wwj, 2b4l, 1r9l, 1gyx, 1w9e, 1s8f, 1ukb, 1rum, 1ree, 1urm, 2f7a, 1kqb, 1i7q, 1pwl, 2f48, 4std, 1e7y, 2nzt, 2cir,

1o�, 2ipn, 2j0y, 2cn3, 2b3b, 2cdb, 1l1y, 1sz2, 2bwc, 1taq, 1l9n, 1eys, 1nwg, 2afu, 4nos, 1mmt, 2dtt, 1lcz, 1sxk, 1q65,

2hi4, 2h88, 1ppj, 1m00, 1xvb, 2ax9, 1hsr, 2atj, 2boy, 2agv, 1dmi, 1uu9, 1zyj, 1u4s, 2amv, 2bd0, 2a0s, 1sep, 1dr4,

1b66, 1r1h, 1yv3, 2a4x, 1tqw, 1mzn, 2bgr, 2j0y, 1w1x, 1h1m, 1nb5, 2gh0, 1w7c, 2dtx, 1qkq, 2gud, 1qo0, 1g55, 1zsw,

1qtz, 1x8i, 1xu3, 1t0s, 1dqx, 1lor, 2rma, 1m5b, 1wuy, 1wv0, 1wv1, 1u3u, 2ic8, 1ehk, 1j4n, 1ymg, 1rxk, 2fhn, 8kme,

1p05, 1pq9, 223l, 2a31, 1p01, 1tcb, 1u7g, 2jaf, 2fsm, 1xez, 1d2m, 2cmc, 1yc9, 1nf9, 1fx8, 1dqe, 2hd6, 1op3, 1s2i, 1n24,

1lgt, 1lkd, 1qhi, 1aax, 1yeg, 1d4p, 2de4, 1kwc, 1kqu, 1bso, 1mq0, 1d3g, 1uuo, 1lww, 1m5c, 2izr, 1zgy, 2izs, 1rl4, 1gxz,

1o27, 2af6, 2bhe, 1k3t, 1yqs, 1g4o, 2gwc, 1i76, 2bsm, 2c1s, 19gs, 1tw6, 2ob3, 2i3a, 2c5a, 1xa3, 2bib, 1vcl, 1rj4, 1r64,

2hvr, 1ki4, 1wnb, 2c4i, 1swr, 1hxd, 2dxt, 1xny, 1vqn, 2f01, 1sux, 1vlf, 1tzp, 1vio, 1bk9, 2hw8, 2bab, 1lol, 1z2u, 2h90,

1xh5, 2f9p, 2cl5, 1uk7, 1ugp, 2cz0, 1cp6, 1d7j, 1rcv, 1rd9, 1rdp, 1rf2, 2euq, 1ki8, 2eut, 2euu, 1mqh, 1h08, 1h08, 1jje,

1k06, 182l, 1ryc, 1l5f, 1dzm, 1okk, 1dzp, 1gt5, 1wht, 2a3i, 2bhi, 1w6j, 1xji, 1h02, 2bxa, 2c90, 2hdq, 2h92, 1oik, 2c8z,

2aov, 1tzm, 1jvu, 2gqs, 2c8y, 1rpf, 2c93, 2e4w, 1iv4, 1xrj, 2ix0, 1lp6, 2ukd, 1h47, 2ex1, 1w77, 1h7f, 1prn, 1hxx, 2gr7,

1qj8, 1ump, 1nqe, 2o4v, 1qjp, 2hcg, 2bt4, 2oz7, 1noo, 1t87, 6cpp, 2can, 1ir2, 2buy, 1xep, 1kdr, 2shp, 1szo, 2bzs, 1idt,

1ztz, 1ivr, 2abj, 20gs, 2fbw, 1p4j, 1lt8, 1z3t, 1tvp, 2b1r, 1qi0, 3eng, 1g0c, 2dwi, 2o7i, 2ovw, 21gs, 1cxv, 1t1s, 1c7t,

1zu0, 1tw5, 2bs7, 1pzo, 2cbx, 1u3t, 2d3u, 2f7a, 1h48, 2gnu, 1�u, 2az3, 2cmk, 2oyn, 1h7h, 1orr, 1xjn, 1uf5, 1uf7, 1qye,

2b7o, 1nnk, 6prc, 1j0n, 2cix, 1oq5, 1fj8, 2gh6, 1a3l, 1l5q, 2a3b, 1g20, 2afh, 1jdj, 2cbv, 1p4g, 1rca, 2ag2, 3pch, 2hrc,

1v55, 1tw4, 1s9q, 1ee2, 2azy, 7kme, 2ha0, 1ahi, 1w1t, 1h8g, 2ha3, 2fy3, 1tio, 1xoz, 1wcc, 1itu, 3gch, 1t6j, 1xlx, 2nz2,

1h70, 2c6z, 1kp3, 1gi7, 1z1e, 1mk0, 1gcz, 2c7p, 1cxu, 1tm3, 1re0, 2bs3, 2fqg, 1vj5, 1pxi, 1pxj, 2c5p, 1pxp, 2a0c, 2dcn,

1y2g, 1qz0, 1g20, 1lev, 1cla, 1usq, 1cet, 1lri, 1n83, 1zhy, 1kvl, 2ay7, 2hgy, 1m9j, 1m78, 1jgt, 1e1v, 1e3z, 1i6x, 1q5o,

2ouy, 1cx4, 1ykd, 1lpc, 1z5u, 1vp6, 1chm, 1uou, 2of0, 1r1n, 1a26, 1r1n, 1r1n, 1e8d, 1t2b, 4sli, 1u9n, 1n7x, 1pd9, 2jfk,
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2c27, 1jkj, 2deb, 1q72, 1ly3, 1dxy, 1umd, 2hdk, 1gfy, 1hbo, 2c3c, 1ly4, 1z10, 2h90, 2aw1, 1j3j, 2blc, 1utt, 1c8k, 1rnc,

2a3y, 1i7g, 1gr3, 1puc, 1xu7, 1xji, 1syh, 1suo, 2aou, 2c1b, 2g6x, 1z1p, 1fu7, 1myw, 2dd7, 1fu8, 1b4d, 1xag, 1nr5, 1fk0,

1kzl, 1v7z, 1huy, 2std, 1uz9, 1yjf, 1yj2, 1g55, 2ae7, 1ktb, 1m7g, 1k2e, 1kbn, 2a5i, 2ev6, 1ir2, 1kae, 1tow, 1pa9, 1elu,

2ah8, 2evo, 2bt0, 2brc, 2c68, 1y8y, 2c69, 1aln, 2ar8, 2an3, 2fr6, 2oh7, 1tug, 1i52, 1ueu, 2im0, 1coz, 2a3h, 2cbu, 1eqc,

1n62, 8kme, 2g16, 2erv, 2ay2, 1n0x, 1y1j, 2a26, 2ix9, 2�k, 2dd7, 1rzl, 2bj0, 1gvq, 1b2l, 2d0q, 1lbc, 2evd, 2boz, 1xji,

2h4t, 1gzq, 2j1n, 1xji, 1ian, 2hei, 1w19, 2fdu, 2jaj, 2b53, 2fdv, 2bfn, 2gz7, 2fdw, 1w7r, 1w7r, 1w7r, 1w7r, 1w7r, 1w7r,

1w7r, 1w7r, 1tkd, 2ihm, 1xsn, 1f3f, 2fdy, 1z4q, 1w7r, 1w7r, 1w7r, 1w7r, 1w7r, 1w7r, 1w7r, 1w7r, 1w7r, 1w7r, 1f3f,

2ioc, 2pri, 1rm0, 1rs9, 1yrx, 2aqd, 7nse, 3dap, 1bs1, 1skr, 2imw, 1qsy, 1d1a, 1p4n, 1czq, 1iki, 1c0p, 2cex, 1ms1, 1wcq,

1z4v, 2qwc, 2f25, 1v3d, 1w0o, 2sim, 1sli, 2b5s, 1tjj, 2bz3, 1hzp, 1e7f, 1d1b, 1czq, 1bg0, 1zea, 7jdw, 1ov6, 1z57, 1u4d,

2c3j, 1gqg, 1g5f, 1rnd, 1b5e, 1nje, 1jw7, 2dpi, 2hhu, 2jaq, 1pkk, 2aq4, 1s10, 1d7s, 1tk0, 3ktq, 1s97, 2hvh, 2fmp, 1f57,

1rmy, 1p61, 1fm8, 1dyj, 1hxk, 1vq2, 1jsl, 2f6m, 1d3g, 1aob, 1s9f, 1znl, 1z8q, 1nfs, 1y2b, 1tr7, 1ga8, 1ek8, 183l, 1lk7,

2cxo, 1tz8, 1s9p, 3erd, 1lgh, 2bet, 2bro, 1mg0, 1jep, 1fm7, 2brh, 1uhv, 2brg, 2brm, 2h4z, 1jki, 1r3j, 2gvj, 1w7r, 1w7r,

1w7r, 1w7r, 1w7r, 1w7r, 1w7r, 1w7r, 2o08, 1czq, 1qur, 1zuw, 2asv, 1b74, 1zea, 2fc0, 1del, 1z4p, 1tlc, 2iry, 2gcg, 2bo6,

2fzh, 1gp6, 2fzj, 2fzi, 1ykl, 1n8q, 1b4u, 1phh, 2bsl, 2o7d, 1cs1, 1mxh, 1rf7, 5p2p, 1t5f, 1czq, 2ez7, 1zea, 2hzy, 1we2,

1gtz, 1e00, 1gt3, 1fm4, 1al8, 1pax, 1t63, 1kdm, 1dht, 3pcn, 1q0c, 1ctt, 2gvv, 1h83, 1m18, 2b6d, 1nr6, 1n3i, 1rsz, 1ez2,

1zb6, 2ahj, 1kkh, 1tgj, 2jen, 1h0a, 2j59, 2jc5, 1bfu, 1kxg, 1wyk, 1t4t, 1pbq, 1wbe, 1gxs, 1f91, 2chl, 2j51, 2�r, 1czq,

1rcq, 2ats, 2ick, 1yhl, 1sri, 4gch, 1d0s, 1vrq, 1el5, 1cmp, 1fo2, 1g6i, 1kre, 2tod, 1c1e, 1c2g, 1jmb, 2avq, 2rmb, 2gsm,

1qmg, 1tp7, 2b14, 1gvo, 1a82, 1ftl, 1wz1, 1h87, 1doe, 1kdt, 1lke, 1byd, 2osu, 1xge, 1zt5, 1tw1, 1g29, 2g56, 2gnv, 1v19,

1t56, 2c0n, 2fwv, 1kmq, 1p6k, 1rs6, 1p6m, 1nd0, 1p6j, 1q91, 1a4q, 1qiw, 2fmz, 1tkh, 2dns, 1wxi, 1n5l, 2o1s, 1pvf, 2f7f,

1rqi, 1zpd, 1f3e, 1zly, 2c29, 1gp5, 1qrd, 1q4w, 2asc, 1zjp, 2a8u, 2asc, 1p4f, 1q92, 2g5o, 1daf, 1zea, 1pb8, 1hg1, 1d7i,

1rqi, 2c6i, 2c6k, 2c6l, 2c6m, 1dam, 1ooq, 2izx, 1w80, 2c2z, 2aaw, 1h16, 1mvs, 1ft6, 1qmh, 1di8, 1czq, 1tkf, 2olw, 1nyt,

2am9, 1e42, 1ywm, 2g8x, 2cko, 1o9j, 1n1c, 1dq8, 1w19, 2h00, 2bgc, 1w4r, 1w19, 1lnm, 1of6, 1zea, 2fvk, 1q5h, 1duc,

1dud, 1sjn, 2fms, 1rnj, 1oe5, 1tdu, 2c53, 1f7q, 1xs1, 1smc, 1syl, 2nom, 1pkj, 1zea, 2�i, 2bjf, 1os6, 1e3v, 1pjx, 2c2n,

1ecq, 1m5w, 1q0q, 1on3, 2f13, 2h55, 2d2g, 1zq5, 1w8m, 2j7y, 2hfk, 1jdb, 1iri, 1fwt, 1rzm, 1ngs, 1y5x, 1pu8, 2hp1,

2gss, 1j12, 1p6c, 2ajz, 2fkk, 1kcz, 1z5y, 1gm7, 2atb, 1vqz, 2cjt, 2onf, 2�3, 2ftz, 2ack, 1zlq, 2axn, 1nnf, 1p6b, 1jp3,

2f32, 1s84, 2a5i, 2bem, 1m33, 1hx0, 1jgm, 1jnq, 2hxt, 1zs0, 1ppw, 1hmr, 1zot, 1qd9, 1o9l, 1kdg, 1w1s, 1c1e, 2f6y,

2fzg, 2dio, 1jxy, 1alz, 1alz, 1alz, 1alz, 1alz, 1alz, 1alz, 1alz, 1alz, 2fzc, 1m0q, 2faf, 1oe5, 2hhf, 1gyx, 2c7p, 1s2e, 2j3u,

1qst, 1z6g, 1vse, 1j11, 1zo9, 1qxo, 1dim, 1cqs, 1qjg, 2aib, 1zhz, 2h0y, 1o5b, 1c5q, 1c5n, 1x8v, 1lhw, 1ohp, 2d06, 1aqu,

1gwr, 1lhu, 1e6w, 1iol, 1jgl, 1c5s, 1byz, 1byz, 3al1, 3al1, 2g50, 1mxg, 2d1g, 2hcy, 1sby, 1rjw, 1p2s, 2fog, 1yl1, 2ha5,

1erb, 2hx5, 2d1g, 2gno, 2fd6, 1qlu, 1r3j, 1znk, 1yce, 2hdu, 2cm8, 2clx, 2df8, 2g72, 1g52, 1w8r, 2gz8, 1ofe, 2bs3, 1l5j,

1siw, 2h88, 2ivf, 1gao, 1g53, 1eyk, 2owz, 1uxr, 1t10, 4pfk, 1lby, 2axn, 2bpl, 2bkx, 2g8n, 1h0r, 1gu1, 1v1j, 1h0s, 5yas,

1y9d, 1n5w, 1x0p, 2hmb, 1tnh, 2b9a, 1lbz, 1a5z, 1w8s, 1pfk, 2giu, 1if4, 1if5, 1if6, 2evm, 2evc, 1ury, 1vzh, 7abp, 1h82,

7abp, 2aac, 1xnz, 1lqp, 1yrq, 1e8g, 1hfe, 1nmx, 2fyu, 1frp, 2avk, 1fel, 1gw2, 1uwc, 1jt2, 1kyz, 1gkl, 2eu3, 1g54, 2hs3,

3pcf, 1gyy, 1m�, 1y1d, 2ax7, 1hxc, 2agt, 2d3z, 1tn6, 1xlz, 1zvx, 1fuy, 1x97, 1x98, 1kgj, 1thc, 1c0l, 1s69, 2d4v, 2bp1,

2h4v, 2bhb, 2ev6, 1yta, 1c5y, 2o66, 1zb7, 1s2c, 1ocb, 1ovj, 1r9o, 1x9q, 1n0s, 1t66, 2d09, 1zdw, 1k9s, 1k9s, 1tc1, 1jdz,

1a69, 1sd1, 1ifu, 1nc3, 1r78, 1tg6, 1j1s, 1ahb, 1uxh, 1qlb, 2aa9, 2izb, 1r4p, 1l0l, 1e3d, 2c1p, 2gah, 2gf3, 2bk3, 1ab8,

1vif, 1dyi, 1q0h, 1x9h, 1fqo, 2gc2, 1oz1, 1xvd, 1kzo, 1v7u, 1t0a, 1x08, 1rak, 1ndv, 1ndy, 2hk1, 1af6, 2dd4, 2�t, 1zx5,

1y9g, 2ieg, 1�2, 1yrq, 1g8j, 1g20, 1�2, 1c97, 1b25, 1ti4, 1h7w, 1kek, 2fjd, 1qlb, 1r27, 1g45, 2fhr, 1e3d, 2nw9, 1pzp,

1g4t, 2g71, 2iwg, 2ha2, 1k12, 2hox, 1u8e, 1m2t, 3kmb, 1dwh, 1iub, 1fe8, 2c4f, 2j1s, 1ofz, 1ksu, 1gz3, 1qco, 1z9y, 1mqi,

1u3w, 1v97, 2fkm, 1o03, 2i80, 1l5v, 1uxt, 3gpb, 1nt4, 1h5r, 1p5d, 2qwi, 1bji, 2ouq, 2g9r, 2qwj, 1e70, 2igo, 2qwk, 2ht8,

2okg, 1nqo, 1uxu, 6tim, 1fdj, 1of8, 1wbj, 1ixo, 1m7p, 1y38, 1z82, 1ofc, 1y0b, 1e3z, 1mmy, 1gpy, 1gz5, 1u8x, 1p5g,

2acq, 1cza, 1mor, 1up7, 1u0f, 2j6h, 1x9i, 1u0f, 1ki2, 1lt6, 1t25, 2c4w, 1g8z, 1uas, 1rvz, 1axz, 1ns0, 1gca, 1isz, 1tlg,

2cn3, 1ugw, 1men, 1ez1, 1c3e, 2cgr, 1e�, 2dxi, 2f18, 2f1a, 2f1b, 1gbn, 1t26, 2gsq, 2cbi, 2coi, 1rtk, 1bgg, 2eud, 1mqq,

2fuq, 1k9e, 1h41, 1l8n, 1o7a, 1hna, 2fe4, 1s8f, 1t2a, 1zny, 1mky, 1mre, 1re0, 1q21, 1tpz, 1z22, 1r82, 1fr8, 2j47, 1x7r,

1p62, 25c8, 2bcg, 1vg0, 4gpb, 6nse, 1tqu, 2j7d, 2j7e, 2j7f, 2j7g, 2ceq, 2ces, 1w1p, 8est, 1z4o, 1ftq, 1hlf, 1ftw, 1xc7,

1fty, 1fu4, 1oh4, 8abp, 2j3u, 1axz, 2aj4, 1w2t, 8abp, 1gx0, 1ukq, 1pum, 2j5z, 1t0o, 2by0, 1fa9, 2i5p, 1j0z, 1kme, 1af6,

2aep, 1ua4, 4tf4, 1woq, 1ukq, 1gg8, 2rth, 1xym, 1moq, 2nz4, 1un7, 1ec8, 1ggn, 1n5m, 1ih7, 1je1, 2sar, 2an9, 1odj,

2fqx, 2qwe, 2a8g, 2dxf, 1s17, 1dx6, 1u98, 1jqx, 1t1v, 1w9b, 2bjf, 1gdq, 1wbe, 1yli, 1oh4, 2j47, 1e72, 1u30, 1uwu, 2j78,

1s1d, 1bjv, 2aay, 2ggd, 1rf6, 5gpb, 1zcw, 1w55, 2amt, 2dvu, 1zly, 2j1p, 1o1r, 1k5s, 4kmb, 1fro, 1yzx, 1xw6, 1jlv, 1tdi,

1px6, 1u3i, 2cz2, 2�s, 1v40, 1y1a, 2hgs, 2c4j, 1zb6, 2caq, 2j62, 1uwt, 2j79, 1kcd, 1m99, 1v2a, 1n2a, 1ev4, 1glp, 6gsy,

5gss, 2gdr, 1gsa, 1ss4, 1k0d, 1qh5, 1tu7, 1oyj, 1pd2, 1gsu, 2aaw, 2glr, 2c3q, 1k3y, 1bh5, 2c80, 1m9a, 1tu8, 1pn9, 1jz6,

1fxu, 1iyd, 1xey, 1b4n, 1xt4, 1it7, 1sql, 1d6a, 2i9u, 1vmk, 1xe7, 1a95, 2izk, 2uv2, 1aoe, 1ws4, 1hkd, 1h82, 2fqt, 2fbz,

1tg2, 1dww, 1n2n, 1pcw, 2fhj, 1q8u, 2fet, 1zw9, 2fwz, 2h7j, 1v48, 1ai4, 1sre, 1y93, 1naw, 2h52, 1d5x, 5nse, 1m7z,

2gq9, 1oyb, 1eb9, 1z42, 1jgu, 1ben, 2toh, 2g6i, 2fc1, 1e92, 1dcp, 1ltz, 1mlw, 2bf7, 1e4n, 1p28, 1p28, 1hyo, 1zhw, 1zhx,

2o7b, 2h3w, 1g20, 1w03, 1bxg, 1v2f, 1toj, 1ay8, 1m0n, 1zht, 1q8a, 1jqw, 2ci5, 1xdj, 1lon, 1cib, 1p9b, 1zmj, 1qnf, 1ljt,

1cru, 1lic, 1oit, 1oiq, 1c8v, 1zne, 1ozh, 1zng, 2a4t, 1pkz, 1pw1, 1a0q, 2j58, 1gmd, 2gsk, 1cwq, 2evs, 1ci1, 2tio, 1v7c,

2ny0, 1x1v, 1in4, 1nhz, 1p2v, 1qud, 2hy6, 1iby, 1m8t, 2ior, 1c9d, 1o7t, 1o7t, 1qbq, 2erz, 2ax6, 1so2, 1xfg, 1bv3, 2dzb,

1rb0, 1u1x, 1y9t, 1q0n, 2dhn, 1nbu, 1ru2, 2gyu, 1yve, 1e7b, 1xz1, 2g6p, 2nq6, 2nq7, 1mfv, 1dm2, 1to9, 2f2g, 1zga,

1f73, 1fp2, 2g70, 1d6v, 2hoz, 2b5s, 1a9q, 1tjp, 1u3v, 1nww, 1yns, 1o4o, 1e2m, 2dsa, 1k70, 1p6o, 2cvd, 2ddq, 1dm7,

1uu1, 1h72, 2br6, 1jqd, 1u18, 1qft, 1kar, 1avn, 1kae, 2fpu, 1cw2, 2bgi, 1u19, 2c3y, 1v5g, 2ezu, 2f12, 1yf6, 2bf3, 2hi2,

1rp0, 1u19, 1kmo, 1lgh, 1axr, 1gpn, 1gpk, 1e66, 1mqj, 1mv9, 1fdq, 2g7z, 2byo, 2ddh, 2fjv, 1xan, 1d6y, 2fqo, 1zlt,

1wzb, 1ym8, 1xnn, 2ou3, 2p0d, 1btn, 1mai, 1h0a, 1oqn, 1n4k, 1u29, 1w2c, 1z2p, 2p0h, 184l, 1z2o, 1r35, 2c1a, 2jdo,



154 APPENDIX C. PROTEIN STRUCTURES FOR TRAINING AND TESTING

1eko, 1el3, 1z62, 2oyf, 1k3u, 1k8z, 1k7f, 1vcj, 1zkl, 2hd1, 1zkn, 1rkp, 1i7e, 1xz3, 1c97, 1itw, 1cw1, 1xkd, 1yb7, 1g67,

2fwp, 1lwd, 1w7f, 1w8g, 1xg4, 1ki7, 1t40, 1oxl, 8a3h, 2oyl, 1z3w, 1x38, 1x39, 2j7c, 1gth, 1aek, 1mfp, 1mrd, 2c3l, 1jak,

1now, 1uz1, 1uz4, 2g9v, 1oif, 2nsx, 1g6c, 1a5b, 1a53, 1zxc, 3pci, 1lzz, 1lr8, 2ati, 1oxo, 1s�, 1dae, 1i7q, 1ed6, 1kt8,

1t1r, 1aky, 1oau, 1aes, 1w7c, 1jzf, 1jzg, 1dqp, 1b8n, 2�1, 1rt9, 1nw4, 1g2o, 1nc9, 1xkx, 2dv8, 2bxk, 2alt, 2dm6, 1s2a,

1p9b, 2bzn, 1meh, 2prj, 1zfj, 1qk4, 1cib, 1yfz, 1p19, 1ce8, 1z6d, 1i80, 1m18, 1dqn, 1uma, 1az8, 1ftx, 1b8y, 1o7n, 185l,

1l4h, 1om5, 1uf8, 1kyy, 2f59, 1rvv, 1ejb, 1i90, 1bkc, 3pcl, 1i91, 1v0o, 1g0i, 1i9l, 1i9m, 7std, 1i9n, 1i9o, 1hc0, 1i9p,

1i9q, 1rw1, 1rl9, 1vrp, 1ahf, 2oli, 2ay5, 2bxh, 1xbu, 1qje, 2oht, 1e06, 1yvx, 1g0h, 1lbx, 1x07, 1lph, 1foh, 1jhx, 1xu5,

1li2, 2as3, 1fjw, 2b32, 1beu, 1wxj, 1rqj, 1zw5, 1jyx, 1na3, 1ed4, 1qy2, 1ydt, 1ydr, 1yds, 1s1j, 1cjb, 1nx3, 1iup, 1nf8,

2bk5, 9nse, 2bvd, 1w6f, 1joc, 1unq, 1upr, 1b55, 1fao, 1nse, 1mjt, 1gte, 1uk9, 2d5y, 1nlu, 1mqg, 1unh, 1q41, 1opm,

1wq3, 1sdw, 2c3i, 2j90, 2b7a, 2g3f, 2jap, 1pzk, 2jam, 2c97, 1ngx, 2hzi, 1yvz, 1zoe, 1zog, 1zoh, 1ftk, 1dj9, 2f5v, 1v1a,

1q9v, 1map, 1jdf, 1qw8, 1qw9, 1fo3, 1krf, 1ps3, 1o68, 1sr9, 1kta, 2bre, 2c1z, 1h1m, 1gqh, 1vb3, 1mo9, 2cfc, 1m3u,

1ycl, 2j5s, 1way, 1wbg, 1zg9, 1wbn, 1w84, 2g21, 2hvk, 2d5x, 1rdt, 1zg8, 1tj1, 1c0k, 2fn7, 2imp, 1l3l, 1jz8, 2dyx, 1j8v,

1mid, 1rdw, 1dll, 1o7o, 1zj0, 1is3, 1it0, 1ms9, 1w6o, 1v00, 1z3v, 1puu, 1s8g, 1ma0, 1w8o, 1zyx, 1d7u, 1yf6, 2fkw,

2irv, 1xkw, 2iwv, 2gsk, 2gvm, 1yiv, 1f7s, 1thq, 1okc, 1jsr, 2i17, 1z4a, 2hxu, 2ccc, 2cgl, 2eun, 2eup, 2euo, 1q6o, 2ihq,

1e6x, 2e40, 2bl2, 1m0k, 1wbv, 1wbw, 1yxv, 1yxx, 2gtm, 2gtn, 1kms, 1kmv, 1r33, 1r34, 1c1x, 2ch1, 1nqv, 1fk6, 2byo,

1wax, 2bys, 1vqn, 2iqd, 1dp2, 2c8m, 7gch, 1ke5, 1ke6, 1ke7, 1ke8, 1ke9, 1i05, 1wap, 2no9, 1s4m, 2cc7, 1he5, 1xbz,

1gw9, 1q6q, 1e7v, 1ov7, 2ewg, 1b42, 1qxw, 2fue, 1pcj, 2iwx, 1qxy, 1qye, 1zaj, 1qxz, 2h23, 1syo, 1m6p, 1pcm, 2gc3,

2f2u, 1q8w, 1ej4, 1x92, 1tdg, 2c27, 1qnr, 1yaa, 2cst, 1b4x, 1k7h, 1aog, 4kmb, 1dq8, 5mdh, 2bex, 1ua3, 1obb, 1cxi,

1qhp, 3csc, 2gjp, 1nl5, 1wdr, 2f5t, 1k1y, 1x1v, 1kuj, 2gn3, 1s4p, 2e22, 2gnd, 1orv, 2j3u, 2aep, 1kza, 2hox, 1y9m, 1dwh,

1xoe, 1s38, 2bgm, 1jyq, 2dn1, 1dr7, 1gz8, 1hy7, 2b6o, 1on9, 1dd6, 1jt1, 1m2x, 2fu8, 1l4g, 1b5q, 2vp3, 1pr2, 1w3v,

1pjx, 1y9q, 1kq0, 1tkj, 1nv8, 2g8e, 1wrm, 2dfp, 22gs, 1tw1, 2hv8, 1ma3, 2o3b, 1zs0, 1nww, 1r31, 1y0p, 1c22, 1pfw,

1kww, 1rdj, 1rrx, 2bt9, 1jxn, 1rdi, 4dcg, 1q8u, 1afa, 1i7c, 2ao3, 1n3o, 1gic, 1loa, 1n4q, 1f4x, 2f47, 1ix1, 1srg, 1oyf,

2iuf, 2g8t, 1ami, 1tlm, 1tom, 1y6o, 1o9p, 2fah, 1o4m, 1nu4, 2apw, 1s1f, 1q44, 2fw0, 1ys4, 1s7f, 2esl, 2hg8, 2j0p, 1sc3,

2bw4, 1tug, 2b4u, 2c95, 1ufy, 2h89, 1t9f, 2ftw, 1o9o, 2img, 1xuu, 1pj4, 1amz, 2dfd, 1fup, 2gq3, 1wwj, 2fgq, 2g76,

2g9n, 2etd, 2h2j, 1yik, 1yil, 1kwu, 2d7f, 1lob, 1msa, 2g93, 1xuz, 2gvc, 1kqr, 2oym, 2alw, 1yb6, 1ai5, 1d0x, 1m2q,

1m2r, 1yrq, 2hk6, 1qgu, 2g2s, 1qu2, 1lng, 1ng1, 1xg0, 2hk6, 1nwl, 2bj3, 1r03, 1qgu, 2bhb, 1i9s, 1dci, 1meh, 1srh,

1q0y, 2fu9, 1rtw, 3mth, 1p3e, 1swu, 2esp, 2ewb, 1mkp, 2c7w, 2bja, 1hx6, 1tdg, 1kwg, 1e12, 2guf, 1p7p, 1c23, 1aem,

1pfu, 1c24, 1m0o, 1kji, 2f2h, 2eve, 1l9l, 1vkp, 2axi, 1f07, 2ay3, 1zh9, 3std, 1m79, 1m7a, 2bja, 2bhb, 2c21, 2j46, 2bfe,

1oad, 1v4s, 1t7l, 6std, 2o3l, 1vje, 1we5, 2gah, 2otm, 1yis, 2nr5, 1f8g, 2ftr, 1p2f, 1el8, 2j8r, 2f7o, 2ca3, 1dxr, 1eg2,

2o05, 1cg6, 2hte, 1jdt, 2a8y, 1z5o, 2ipx, 1srf, 1el7, 1fo4, 2a9a, 1xdy, 1el9, 1nc1, 1sd2, 1q1g, 1zzq, 1m2w, 1k27, 1y6r,

1zos, 2aa0, 1pr4, 2bii, 2c5y, 2uue, 1r4s, 1lod, 2rma, 1dlr, 2cb8, 2o63, 1gym, 2ato, 2fo0, 1p42, 1hk4, 1fk2, 2ag2, 1ted,

1pzl, 1cdk, 1icm, 1hbk, 1jdj, 2o64, 1pvn, 1tkb, 1oi9, 1nhb, 1hkn, 1h3m, 2fky, 2g8r, 2ot1, 1oiy, 186l, 1vyz, 1w8c, 1oiu,

1nx8, 1tv5, 1srj, 1nzx, 1kyq, 1v59, 1bw9, 1nm5, 1iso, 1ju9, 1wze, 1mjt, 1w9b, 2hha, 1twx, 1o7a, 2j3u, 1dx6, 2i5y,

2nt1, 1o9w, 1ksi, 2bja, 1tzm, 1zh0, 1qyw, 1usf, 1eyq, 1cgk, 2brt, 1x88, 1f74, 2j4g, 1h84, 1r5r, 1em6, 1s61, 2c0u, 2bmq,

1zd3, 2h4j, 2od9, 1r15, 2otv, 2a15, 1isi, 2c8a, 1yc2, 1xge, 1r0c, 1w8y, 1dl7, 7cpp, 1l4l, 1yum, 2g6f, 1qxo, 1ya6, 1i3a,

1sj1, 1uw6, 1u4o, 1o7s, 2ch5, 1w1a, 2goo, 1usr, 1o7p, 1jsz, 1gra, 1e7y, 1sqn, 1tcv, 1u3d, 2np5, 2g9k, 2gab, 1g38, 1u2o,

1qy5, 1g86, 1elv, 1ynl, 1c3o, 1vrt, 2g5u, 1y5w, 2efx, 1h2r, 1e4i, 1yki, 2dkd, 2a2c, 1bcj, 1ktc, 1d0h, 1wmz, 1fnz, 2a2d,

2ays, 2fyd, 1ax0, 1q3a, 1dqo, 1e6z, 2chn, 1hp5, 2f98, 2cuk, 2dsy, 1zhh, 1m5j, 1r6l, 1p7j, 1oks, 2ich, 2ite, 1h9x, 1cx9,

2ate, 1doh, 1zwp, 1jhq, 1icr, 2f7f, 1a6w, 1gzf, 2gjn, 6upj, 1lrh, 1zj1, 1mmt, 1eol, 1gs5, 2gu5, 1xpy, 1xcj, 1p1r, 1nus,

1hyb, 1ta8, 2gvg, 2hct, 1isj, 1d1c, 3pck, 1l9p, 2fbb, 1li4, 1lhv, 1dog, 1i75, 2j77, 1n5v, 1qqs, 1kic, 2fqw, 1a9s, 1pr0,

2bsx, 35c8, 2j75, 1ngp, 1a6v, 1sjd, 1kgq, 1asc, 1ls6, 2i10, 43ca, 1vah, 1z44, 2d20, 1yek, 1u68, 1o7g, 1zfk, 8nse, 2a5x,

1t9b, 1xgi, 1nis, 1ww3, 1qpq, 2b7n, 1i83, 1e6q, 1v08, 1noj, 2j7b, 1jdx, 2afz, 1aej, 1e1x, 1o8a, 2g5r, 1oxe, 1ovk, 1nmz,

5cts, 1oaa, 2h12, 1sgj, 1z6k, 2byo, 1c83, 1n5t, 2cbj, 1riv, 2gyw, 2de3, 1byf, 1byf, 1g8k, 1znh, 1v2g, 2bui, 1xl8, 1z03,

1y5m, 2gfc, 2j58, 2evd, 2gsk, 1cwq, 2bab, 2dm5, 1fh0, 2bac, 2oq7, 1s32, 2od6, 2uv0, 2inz, 2bj4, 2gpu, 2arm, 1mrf,

1r1j, 1j78, 1gni, 2ag4, 2ev1, 1gt6, 1lfo, 1hms, 2ftb, 1yh1, 1w0x, 4erk, 2cmw, 2d1r, 1ajp, 1km6, 1ofe, 1d0y, 1c86, 1q7a,

1icq, 1b7a, 1c3o, 3jdw, 1hqg, 1x7d, 1jqx, 2fqi, 1opr, 1j79, 1tv5, 1ep2, 1njj, 1fhv, 1sjb, 1c88, 2f1c, 2por, 2yhx, 2an4,

1lo2, 1xl0, 1r4u, 1ytm, 1o4n, 188l, 1hu0, 2ogf, 2dua, 1gz3, 1a49, 1pt8, 1nvm, 1pym, 1pzf, 1ayl, 1o4t, 1t2d, 1ldg, 9ldb,

1a5z, 1h17, 2d4q, 1ueh, 1ikt, 1t24, 1x8l, 1w3j, 2izu, 2gms, 2h7j, 2g2h, 1uog, 2ai2, 2ai1, 2hox, 2bxp, 1zg7, 1t9c, 1t9c,

1t9d, 2roy, 1u21, 2ai3, 2cgf, 1jhr, 1va6, 1zzm, 2aoa, 1oxn, 1y4l, 2iz1, 2aaw, 2hr7, 2ajs, 1wma, 2i02, 1xk9, 2bvc, 2j3u,

2f08, 8cho, 2b2n, 2gyu, 2ha2, 1w99, 2fxa, 2hzc, 1o57, 2fgb, 2inc, 2g81, 1g8i, 1n5q, 1x7n, 1tzc, 1g98, 2nr9, 1u0y, 2dza,

1iuu, 2ine, 1k5q, 1n2e, 2ofp, 2al1, 1l8p, 1g7v, 1jcx, 1ml4, 1fk3, 1uvb, 1izo, 2gc0, 1koj, 1oth, 2f9w, 1sq5, 1tjy, 1xuc,

1xur, 6cha, 1r9q, 1sw1, 1utp, 1e4h, 1�w, 2a2q, 2bdg, 1okc, 1p6e, 1ym0, 1q3e, 1be4, 2gwh, 1y4z, 1mvn, 1p4a, 1g3m,

1jhv, 1xqx, 1tug, 1drt, 1gvg, 1mc1, 1elu, 3daa, 1c3v, 1l6g, 2bmk, 1kn4, 1x2a, 2gmu, 1l6f, 1h61, 2aax, 1zv9, 1iz8, 1ki3,

2fhj, 2g80, 1zb9, 2c12, 2cmz, 2gou, 1q74, 2hbo, 2fhj, 1z5p, 1y89, 1u3a, 1wma, 2oa5, 1jjb, 2bka, 1zej, 1znd, 1tnj, 1d6y,

1xio, 1ppj, 1yq3, 2c77, 2cfz, 2bi1, 2j0p, 2i5e, 1zgq, 1yq2, 1p7k, 2fbd, 2iz1, 1uk8, 1eyw, 1iwh, 2al1, 1zha, 1of8, 1vs1,

2fag, 1xuz, 2ox3, 1vbh, 2b7o, 2hml, 1pck, 1n46, 1mgo, 1you, 2hai, 1e7a, 2oat, 2br1, 2brb, 2cu9, 1ry0, 2caq, 1oe2,

1dx6, 1nzv, 1u0y, 1tc0, 2hkd, 1w2u, 2bly, 1o57, 1iwn, 1d1j, 1d1j, 1s8a, 2btm, 1tti, 1gg1, 1sw0, 1amk, 1pdz, 2bkv,

1lyx, 2fqg, 1rf2, 2i10, 2fxa, 1lrl, 2ccr, 1pjs, 2gq2, 2dry, 2g81, 1yei, 2isw, 1tph, 1ik4, 1ttj, 2cet, 2cer, 1tuk, 1ds1, 1icj,

1iye, 1x28, 1maq, 2irv, 1aj0, 1dm6, 2bve, 1d7l, 1q4s, 1fw9, 3pcc, 1o7t, 1g0n, 1tf9, 1nlu, 1lih, 1qpr, 1ehi, 1ocu, 1bzj,

2j7u, 2c13, 2bie, 2cek, 1uda, 1ozh, 2j0r, 1ur4, 2c41, 1uo5, 1xm4, 1phe, 1s1f, 1e9x, 2d0t, 1ecg, 2g09, 1v5d, 1cml, 1hfa,

2mas, 2nva, 1ajs, 1dfo, 1szr, 1lw5, 2jaf, 1o6u, 1o8v, 2ifb, 1mgp, 1b56, 1pz4, 1mzm, 2iu8, 1m66, 1q20, 1e5f, 1szs, 1l5v,

1yaa, 1em6, 1tzk, 2aq6, 1m32, 1wrv, 2dgm, 2ieg, 1pmo, 1beu, 1ft7, 1u19, 2okj, 1pye, 2gv2, 1fup, 1xzc, 1yp2, 1klk,
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1x29, 1xql, 2o7e, 1kgt, 1eye, 2bmb, 1jhq, 1szs, 1aia, 1zc9, 1mdo, 2f8j, 2cjg, 1xql, 9aat, 1a0g, 2hoz, 1sh7, 1yec, 1yef,

1kn2, 1yej, 1gm7, 1zed, 1d0z, 1h1t, 1vlh, 1od6, 2a3c, 2c70, 1bpi, 3sil, 1yn9, 2fgv, 1pc3, 1lqk, 1okh, 1ex2, 2bwl, 2fhd,

1m32, 1sww, 1o72, 1h8p, 2ckq, 3lkf, 1woz, 1wkg, 1al4, 1al4, 1al4, 1al4, 1al4, 1al4, 1al4, 1al4, 1jse, 2au6, 1g29, 2oa6,

1uvk, 1g67, 2d4q, 1c9k, 1n22, 2bqy, 1vha, 2ivv, 1qcf, 1qpe, 1c9c, 1wc7, 1qpr, 1akb, 1arg, 1gey, 1akc, 1wkh, 1ei6, 1nki,

1m7y, 2hjp, 1kc7, 2ay4, 1vqp, 2bcu, 1qbv, 1p0b, 2bal, 2gfs, 2d0v, 1kb0, 1otw, 1yiq, 1cq1, 1f0s, 1tnk, 1ptr, 1fpu, 1boz,

1com, 1ozq, 1a4m, 2j3m, 1bcu, 1i14, 1kgz, 1opr, 1fsg, 1zvw, 1zyk, 1l1r, 7kme, 1pg3, 1owy, 1hqp, 1gt1, 1qy1, 1ykj,

1duv, 1br6, 1tx0, 1wm1, 1hqw, 1f8q, 1i2a, 1ykz, 2ae2, 1stb, 1jyq, 2cjz, 1pty, 1d1v, 2agv, 1uyh, 1uyg, 1uym, 1uy7,

1uy8, 1uy9, 1uyc, 1uyd, 1uye, 1uip, 1msv, 1a99, 1f3t, 2o06, 1uyk, 1uyi, 1w3y, 1b9i, 1td2, 1ho4, 1szr, 187l, 1py5, 1cq7,
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