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Abstract

Software development results in a huge amount of data: changes to source code are recorded in
version archives, bugs are reported to issue tracking systems, and communications are archived
in e-mails and newsgroups. In this thesis, we present techniques for mining version archives
and bug databases to understand and support software development.

First, we present techniques which mine version archives for fine-grained changes. We intro-
duce the concept of co-addition of method calls, which we use to identify patterns that describe
how methods should be called. We use dynamic analysis to validate these patterns and identify
violations. The co-addition of method calls can also detect cross-cutting changes, which are an
indicator for concerns that could have been realized as aspects in aspect-oriented programming.

Second, we present techniques to build models that can successfully predict the most defect-
prone parts of large-scale industrial software, in our experiments Windows Server 2003. This
helps managers to allocate resources for quality assurance to those parts of a system that are
expected to have most defects. The proposed measures on dependency graphs outperformed
traditional complexity metrics. In addition, we found empirical evidence for a domino effect:
depending on defect-prone binaries increases the chances of having defects.
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Zusammenfassung

Software-Entwicklung führt zu einer großen Menge an Daten: Änderungen des Quellcodes wer-
den in Versionsarchiven, Fehler in Problemdatenbanken und Kommunikation in E-Mails und
Newsgroups archiviert. In dieser Arbeit präsentieren wir Verfahren, die solche Datenbanken
analysieren, um Software-Entwicklung zu verstehen und unterstützen.

Zuerst präsentieren wir Techniken, die feinkörnige Änderungen in Versionsarchiven untersu-
chen. Wir konzentrieren uns dabei auf das gleichzeitige Hinzufügen von Methodenaufrufen
und identifizieren Muster, die beschreiben wie Methoden aufgerufen werden sollen. Außerdem
validieren wir diese Muster zur Laufzeit und erkennen Verletzungen.

Das gleichzeitige Hinzufügen von Methodenaufrufen kann außerdem querschneidende Än-
derungen erkennen. Solche Änderungen sind typischerweise ein Indikator für querschneidende
Funktionalitäten, die besser mit Aspekten und Aspektorientierter Programmierung realisiert
werden können.

Zum Abschluss der Arbeit bauen wir Fehlervorhersagemodelle, die erfolgreich die Teile von
Windows Server 2003 mit den meisten Fehlern vorhersagen können. Fehlervorhersagen helfen
Managern, die Ressourcen für die Qualitätssicherung gezielt auf fehlerhafte Teile einer Soft-
ware zu lenken. Die auf Abhängigkeitsgraphen basierenden Modelle erzielen dabei bessere
Ergebnisse als Modelle, die auf traditionellen Komplexitätsmetriken basieren. Darüber hinaus
haben wir einen Domino-Effekt beobachtet: Dateien, die von fehlerhaften Dateien abhängen,
besitzen eine erhöhte Fehlerwahrscheinlichkeit.
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Chapter 1

Introduction

The amount of data generated during software development is continuously increasing. Accord-
ing to the web-site CIA.vc every 26 seconds a change is reported for an open-source project.
As of February 2008, the software development community SourceForge.net hosted 169,383
projects. Besides change, another constant in software development is to err. The bug databases
of ECLIPSE and MOZILLA combined contain more 600,000 issue reports.

The availability of all this data recently led to a new research area called mining software repos-
itories (MSR). Both software practitioners and researchers alike use such data to understand
and support software development and empirically validate novel ideas and techniques. A de-
tailed survey on mining software repositories techniques was conducted by Kagdi et al. (2007).
As they show, research on MSR is very inter-disciplinary. Commonly used techniques come
from applied statistics, information retrieval, artificial intelligence, social sciences, and soft-
ware engineering. Their purpose is very diversified, ranging from empirical studies and change
prediction to the development of tools in order to support programmers. Two examples for MSR
tools are project memories and recommender systems.

Project memories. The HIPIKAT tool recommends relevant software development artifacts,
such as source code, documentation, bug reports, e-mails, changes, and articles based on
the context in which a developer requests help. The project memory is built automatically
and useful in particular for newcomers (Cubranic et al., 2005). The BRIDGE project at
Microsoft is a comparable project within an industrial setting (Venolia, 2006a,b).

Recommender systems. Just like Amazon.com suggests related products after a purchase, the
EROSE plug-in for Eclipse guides programmers based on the change history of a project.
Suppose a developer changed an array fKeys[]. EROSE then suggests to change the
initDefaults() function—because in the past, both items always have been changed
together. If the programmer misses to commit a related change, EROSE issues a warn-
ing (Zimmermann et al., 2005). While EROSE operates on change history as recorded in
CVS, more recent tools relied on navigation data (DeLine et al., 2005; Singer et al., 2005).

This thesis makes two contributions to the body of MSR research. First, it mines fine-grained
change for usage patterns and cross-cutting concerns (Part I). Second, it shows how to predict
defects from dependency data, which help managers to allocate resources for quality assurance
to the parts of a software that need it most (Part II).
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B) ROSE suggests 
locations for further 
changes, e.g., the 
function initDefaults().

A) The user 
inserts a new 
preference into 
the field fKeys[].

Figure 1.1: After the programmer has made some changes to the source (above), EROSE sug-
gests locations (below) where, in the past further changes were made. If the pro-
grammer misses to commit a related change, EROSE issues a warning

1.1 Thesis Organization

This thesis is structured in two parts. The first part leverages version archives and mines for
fine-grained changes, more precisely for co-addition of method calls, which is when two or
more invocations to methods are introduced in the same CVS transaction.

Mining usage patterns. A great deal of attention has always been given to addressing software
bugs such as errors in operating system drivers or security bugs. However, there are many
other lesser known errors specific to individual applications or APIs and these violations
of application-specific coding rules are responsible for a multitude of errors.

We propose DYNAMINE, a tool that analyzes version archives to find highly correlated
method calls (usage pattern). Potential patterns are passed to a dynamic analysis tool for
validation. The combination of mining software repositories and dynamic analysis tech-
niques proves effective for discovering new application-specific patterns and for finding
violations in very large applications with many person-years of development. (Chapter 2)
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Mining cross-cutting concerns. Aspect mining identifies cross-cutting concerns in a program
to help migrating it to an aspect-oriented design. Such concerns may not exist from the
beginning, but emerge over time. By analyzing where developers add code to a program,
our history-based aspect mining (HAM) identifies and ranks cross-cutting concerns. HAM
scales up to industrial-sized projects: for example, we were able to identify a locking
concern that cross-cuts 1,284 methods in ECLIPSE. Additionally, the precision of HAM is
high; for ECLIPSE, it reaches 90% for the top-10 candidates. (Chapter 3)

The second part additionally takes information from bug databases into account and moves to
an industrial setting.

In software development, resources for quality assurance are limited by time and by cost. In
order to allocate resources effectively, managers need to rely on their experience backed by
code complexity metrics (Chapter 4). But often dependencies exist between various pieces of
code over which managers may have little knowledge. These dependencies can be construed as
a low level graph of the entire system.

Predicting defects for binaries. We propose to use network analysis on dependency graphs to
predict the number of defects for binaries. In our evaluation on Windows Server 2003,
we found the recall for models built from network measures is by 10% points higher than
for models built from complexity metrics. In addition, network measures could identify
60% of the binaries that the Windows developers considered as critical—twice as many
as identified by complexity metrics. (Chapter 5)

Predicting defects for subsystems. We investigated the architecture and dependencies of Win-
dows Server 2003 to show how to use the complexity of a subsystem’s dependency graph
to predict the number of failures at statistically significant levels. (Chapter 6)

Our techniques allows managers to identify central program units that are more likely to face
defects. Such predictions can help to allocate software quality resources to the parts of a prod-
uct that need it most, and as early as possible. The thesis concludes with a summary of its
contributions and an outlook into future work (Chapter 7).
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Part I

Mining Changes
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Chapter 2

Mining Usage Patterns

Many errors are specific to individual applications or platforms. Violations of these application-
specific coding rules, referred to as error patterns, are responsible for a multitude of errors.
Error patterns tend to be re-introduced into the code over and over by multiple developers
working on a project and are a common source of software defects. While each pattern may
be only responsible for a few bugs in a given project snapshot, when taken together over the
project’s lifetime, the detrimental effect of these error patterns can be quite serious and they can
hardly be ignored in the long term if software quality is to be expected.

A great deal of attention has always been given to addressing application-specific software bugs
such as errors in operating system drivers (Ball et al., 2004; Engler et al., 2000), security er-
rors (Huang et al., 2004; Wagner et al., 2000), or errors in reliability-critical embedded software
in domains like avionics (Blanchet et al., 2003; Brat and Venet, 2005). These represent critical
errors in widely used software and tend to get fixed relatively quickly when found. A variety of
static and dynamic analysis tools have been developed to address these high-profile bugs.

Finding the error patterns to look for with a particular static or dynamic analysis tool is often
difficult, especially when it comes to legacy code, where error patterns either are documented
as comments in the code or not documented at all (Engler et al., 2001). Moreover, while well-
aware of certain types of behavior that causes the application to crash or well-publicized types of
bugs such as buffer overruns, programmers often have difficulty formalizing or even expressing
API invariants.

In this chapter we propose an automatic way to extract likely error patterns by mining software
revision histories. Looking at incremental changes between revisions as opposed to complete
snapshots of the source allows us to better focus our mining strategy and obtain more precise
results. Our approach uses revision history information to infer likely error patterns. We then
experimentally evaluate the patterns we extracted by checking for them dynamically.

We have performed experiments on ECLIPSE and JEDIT, two large, widely-used open-source
Java applications. Both ECLIPSE and JEDIT have many man-years of software development
behind them and, as a collaborative effort of hundreds of people across different locations, are
good targets for revision history mining. By mining CVS, we have identified 56 high-probability
patterns in the APIs of ECLIPSE and JEDIT, all of which were previously unknown to us. Out of
these, 21 were dynamically confirmed as valid patterns and 263 pattern violations were found.
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The rest of this chapter is organized as follows. Section 2.1 provides an informal description
of DYNAMINE, our pattern mining and error detection tool. Section 2.2 describes our revision
history mining approach. Section 2.3 describes our dynamic analysis approach. Section 2.4
summarizes our experimental results for (a) revision history mining and (b) dynamic checking
of the patterns. Sections 2.5 and 2.6 present related work and summarize this chapter.

2.1 Overview of DYNAMINE

A great deal of research has been done in the area of checking and enforcing specific coding
rules, the violation of which leads to well-known types of errors. However, these rules are not
very easy to come by: much time and effort has been spent by researchers looking for worth-
while rules to check (Reimer et al., 2004) and some of the best efforts in error detection come
from people intimately familiar with the application domain (Engler et al., 2000; Shankar et al.,
2001). As a result, lesser known types of bugs and applications remain virtually unexplored in
error detection research. A better approach is needed if we want to attack “unfamiliar” appli-
cations with error detection tools. This chapter proposes a set of techniques that automate the
step of application-specific pattern discovery through revision history mining.

2.1.1 Motivation for Revision History Mining

Our approach to mining revision histories hinges on the following observation:

Observation 2.1 (Common Errors)
Given multiple software components that use the same API, there are usually common errors
specific to that API.

In fact, much of research done on bug detection so far can be thought of as focusing on specific
classes of bugs pertaining to particular APIs: studies of operating-system bugs provide synthe-
sized lists of API violations specific to operating system drivers resulting in rules such as “do
not call the interrupt disabling function cli() twice in a row” (Engler et al., 2000).

In order to locate common errors, we mine for frequent usage patterns in revision histories, as
justified by the following observation.

Observation 2.2 (Usage Patterns)
Method calls that are frequently added to the source code simultaneously often represent a
pattern.

Looking at incremental changes between revisions as opposed to full snapshots of the sources
allows us to better focus our mining strategy. However, it is important to notice that not ev-
ery pattern mined by considering revision histories is an actual usage pattern. Figure 2.1
lists sample method calls that were added to revisions of files Foo.java, Bar.java, Baz.java,
and Qux.java. All these files contain a usage pattern that says that methods {addListener,



2.1 Overview of DYNAMINE 9

File Revision Added method calls

Foo.java 1.12 o1.addListener
o1.removeListener

Bar.java 1.47 o2.addListener
o2.removeListener
System.out.println

Baz.java 1.23 o3.addListener
o3.removeListener
list.iterator
iter.hasNext
iter.next

Qux.java 1.41 o4.addListener

1.42 o4.removeListener

Figure 2.1: Method calls added across different revisions.

removeListener} must be precisely matched. However, mining these revisions yields addi-
tional patterns like {addListener, println} and {addListener, iterator} that are defi-
nitely not usage patterns.

Furthermore, we have to take into account the fact that in reality some patterns may be in-
serted incompletely, e.g., by mistake or to fix a previous error. In Figure 2.1 this occurs in file
Qux.java, where addListener and removeListener were inserted independently in revisions
1.41 and 1.42. The observation that follows gives rise to an effective ranking strategy used in
DYNAMINE.

Observation 2.3 (One-line Fixes)
Small changes to the repository such as one-line additions often represent bug fixes.

This observation is supported in part by anecdotal evidence and also by recent research into
the nature of software changes (Purushothaman and Perry, 2005) and is further discussed in
Section 2.2.3.

To make the discussion in the rest of this section concrete, we present the categories of patterns
discovered with our mining approach.

• Matching method pairs represent two method calls that must be precisely matched on
all paths through the program.

• State machines are patterns that involve calling more than two methods on the same
object and can be captured with a finite automaton.

• More complex patterns are all other patterns that fall outside the categories above and
involve multiple related objects.
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The categories of patterns above are listed in the order of frequency of high-likelihood pattern
in our experiments. The rest of this section describes each of these error pattern categories in
detail.

2.1.2 Motivation for Dynamic Analysis

Our technique for mining patterns from software repositories can be used independently with
a variety of bug-finding tools. Our approach is to look for pattern violations at runtime, as
opposed to using a static analysis technique. This is justified by several considerations outlined
below.

• Scalability. Our original motivation was to be able to analyze ECLIPSE, which is one of
the largest Java applications ever created. The code base of ECLIPSE is comprised of more
than 2,900,000 lines of code and 31,500 classes. Most of the patterns we are interested
in are spread across multiple methods and need an interprocedural approach to analyze.
Given the substantial size of the application under analysis, precise whole-program flow-
sensitive static analysis is expensive. Moreover, static call graph construction presents a
challenge for applications that use dynamic class loading. In contrast, dynamic analysis
does not require static call graph information.

• Validating discovered patterns. A benefit of using dynamic analysis is that we are able
to “validate” the patterns we discover through CVS history mining as real usage patterns
by observing how many times they occur at runtime. Patterns that are matched a large
number of times with only a few violations represent likely patterns with a few errors.
The advantage of validated patterns is that they increase the degree of assurance in the
quality of mined results.

• False positives. Runtime analysis does not suffer from false positives because all pattern
violations detected with our system actually do happen, which significantly simplifies the
process of error reporting.

• Automatic repair. Finally, only dynamic analysis provides the opportunity to fix the
problem on the fly without any user intervention. This is especially appropriate in the
case of a matching method pair when the second method call is missing. While we have
not implemented automatic “pattern repair” in DYNAMINE, we believe it to be a fruitful
future research direction.

While we believe that dynamic analysis is more appropriate than static analysis for the problem
at hand, a serious shortcoming of dynamic analysis is its lack of coverage. In fact, in our
dynamic experiments, we have managed to find runtime use cases for some, but not all of our
mined patterns. Another concern is that a workload selection may significantly influence how
patterns are classified by DYNAMINE. In our experiments with ECLIPSE and JEDIT we were
careful to exercise common functions of both applications that represent hot paths through the
code and thus contain errors that may frequently manifest at runtime. However, we may have
missed patterns that occur on exception paths that were not hit at runtime.
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Figure 2.2: Architecture of DYNAMINE. The first row represents revision history mining. The
second row represents dynamic analysis.

In addition to the inherent lack of coverage, another factor that reduced the number of patterns
available for checking at runtime was that ECLIPSE contains much platform-specific code. This
code is irrelevant unless the pattern is located in the portion of the code specific to the execution
platform.

2.1.3 DYNAMINE System Overview

We conclude this section by summarizing how the various stages of DYNAMINE processing
work when applied to a new application. All of the steps involved in mining and dynamic
program testing are accessible to the user from within custom ECLIPSE views. A diagram
representing the architecture of DYNAMINE is shown in Figure 2.2.

1. Pre-process revision history, compute methods calls that have been inserted, and store
this information in a database.

2. Mine the revision database for likely usage patterns.

3. Present mining results to the user in an ECLIPSE plugin for assessment.

4. Generate instrumentation for patterns deemed relevant and selected by the user through
DYNAMINE’s ECLIPSE plugin.

5. Run the instrumented program and dynamic data is collected and post-processed by dy-
namic checkers.

6. Dynamic pattern violation statistics are collected and patterns are classified as validated
usage patterns or error patterns. The results are presented to the user in ECLIPSE.

Steps 4–6 above can be performed in a loop: once dynamic information about patterns is ob-
tained, the user may decide to augment the patterns and re-instrument the application.

2.2 Mining Usage Patterns

In this section we describe our mining approach for finding usage patterns. We start by pro-
viding the terms we use in our discussion of mining. Next we lay out our general algorithmic
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approach that is based on the Apriori algorithm (Agrawal and Srikant, 1994; Mannila et al.,
1994) that is commonly used in data mining for applications such as market basket analysis.
The algorithm uses a set of transactions such as store item purchases as its input and produces
as its output (a) frequent patterns (“items X , Y , and Z are purchased together”) and (b) strong
association rules (“a person who bought item X is likely to buy item Y ”).

However, the classical Apriori algorithm has a serious drawback. The algorithm runtime can
be exponential in the number of items. Our “items” are names of individual methods in the
program. For ECLIPSE, which contains 59,929 different methods, calls to which are inserted,
scalability is a real concern. To improve the scalability of our approach and to reduce the
amount of noise, we employ a number of filtering strategies described in Section 2.2.2 to reduce
the number of viable patterns Apriori has to consider. Furthermore, Apriori does not rank the
patterns it returns. Since even with filtering, the number of patterns returned is quite high, we
apply several ranking strategies described in Section 2.2.3 to the patterns we mine. We start
our discussion of the mining approach by defining some terminology used in our algorithm
description.

Definition 2.1 (Usage Pattern)
A usage pattern U = 〈M,S〉 is defined as a set of methods M and a specification S that defines
how the methods should be invoked. A static usage pattern is present in the source if calls to
all methods in M are located in the source and are invoked in a manner consistent with S. A
dynamic usage pattern is present in a program execution if a sequence of calls to methods M is
made in accordance with the specification S.

The term “specification” is intentionally open-ended because we want to allow for a variety
of pattern types to be defined. Revision histories record method calls that have been inserted
together and we shall use this data to mine for method setsM . The fact that several methods are
correlated does not define the nature of the correlation. Therefore, even though the exact pattern
may be obvious given the method names involved, it is generally quite difficult to automatically
determine the specification S by considering revision history data only and human input is
required.

Definition 2.2 (Transaction)
For a given source file revision, a transaction is a set of methods, calls to which have been
inserted.

Definition 2.3 (Support Count)
The support count of a usage pattern U = 〈M,S〉 is the number of transactions that contains all
methods in M .

In the example in Figure 2.1 the support count for {addListener, removeListener} is 3. The
changes to Qux.java do not contribute to the support count because the pattern is distributed
across two revisions.

Definition 2.4 (Association Rule)
An association rule A⇒ B for a pattern U = 〈M,S〉 consists of two non-empty sets A and B
such that M = A ∪B.
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For a pattern U = 〈M,S〉 there exist 2|M | − 2 possible association rules. An association rule
A⇒ B is interpreted as follows: whenever a programmer inserts calls to all methods in A, she
also insert the calls of all methods in B. Obviously, such rules are not always true. They have a
probabilistic meaning.

Definition 2.5 (Confidence)
The confidence of an association rule A ⇒ B is defined as the the conditional probability
P (B|A) that a programmer inserts the calls in B, given the condition she has already inserted
the calls in A.

The confidence indicates the strength of a rule. However, we are more interested in the patterns
than in association rules. Thus, we rank patterns by the confidence values of their association
rules (see Section 2.2.3).

2.2.1 Basic Mining Algorithm

A classical approach to compute frequent patterns and association rules is the Apriori algo-
rithm (Agrawal and Srikant, 1994; Mannila et al., 1994). The algorithm takes a minimum sup-
port count and a minimum confidence as parameters. We call a pattern frequent if its support is
above the minimum support count value. We call an association rule strong if its confidence is
above the minimum confidence value. Apriori computes (a) the set P of all frequent patterns
and (b) the set R of all strong association rules in two phases:

1. The algorithm iterates over the set of transactions and forms patterns from the method
calls that occur in the same transaction. A pattern can only be frequent when its subsets
are frequent and patterns are expanded in each iteration. Iteration continues until a fixed
point is reached and the final set of frequent patterns P is produced.

2. The algorithm computes association rules from the patterns in P . From each pattern
p ∈ P and every method set q ⊆ p such that p, q 6= ∅, the algorithm creates an association
rule of the form p − q ⇒ q. All rules for a pattern have the same support count, but
different confidence values. Strong association rules p− q⇒ q are added to the final set
of rules R.1

In Sections 2.2.2 and 2.2.3 below we describe how we adapt the classic Apriori approach to
improve its scalability and provide a ranking of the results.

2.2.2 Pattern Filtering

The running time of Apriori is greatly influenced by the number of patterns is has to consider.
While the algorithm uses thresholds to limit the number of patterns that it outputs in P , we
employ some filtering strategies that are specific to the problem of revision history mining.

1The rest of the thesis uses − to denote set difference.
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Method name Number of additions

equals 9,054
add 6,986
getString 5,295
size 5,118
get 4,709
toString 4,197
getName 3,576
append 3,524
iterator 3,340
length 3,339

Figure 2.3: The most frequently inserted method calls.

Another problem is that these thresholds are not always adequate for keeping the amount of
noise down. The filtering strategies described below greatly reduce the running time of the
mining algorithm and significantly reduce the amount of noise it produces.

Considering a Subset of Method Calls Only

Our strategy to deal with the complexity of frequent pattern mining is to ignore method calls
that either lead to no usage patterns or only lead to obvious ones such as {hasNext, next}.

• Ignoring initial revisions. We do not treat initial revisions of files as additions. Although
they contain many usage patterns, taking initial check-ins into account introduces more
incidental patterns, i.e. noise, than patterns that are actually useful.

• Last call of a sequence. Given a call sequence c1().c2() . . . cn() included as part of a
repository change, we only take the final call cn() into consideration. This is due to the
fact that in Java code, a sequence of “accessor” methods is common and typically only
the last call mutates the program environment. Calls like

ResourcesPlugin.getPlugin().getLog().log()

in ECLIPSE are quite common and taking intermediate portions of the call into account
will contribute to noise in the form of associating the intermediate getter calls. Such
patterns are not relevant for our purposes, however, they are well-studied and are best
mined from a snapshot of a repository rather than from its history (Michail, 2000, 1999;
Rysselberghe and Demeyer, 2004).

• Ignoring common calls. To further reduce the amount of noise, we ignore some very
common method calls, such as the ones listed in Figure 2.3. In practice, we ignore method
calls that were added more than 100 times. These methods tend to get intermingled with
real usage patterns, essentially causing noisy, “overgrown” ones to be formed.
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Considering Small Patterns Only

Generally, patterns that consist of a large number of methods are created due to noise. Another
way to reduce the complexity and the amount of noise is to reduce the scope of mining to small
patterns only. We employ a combination of the following two strategies.

• Fine-grained transactions. As mentioned in Section 2.2.1, Apriori relies on transactions
that group related items together. We generally have a choice between using coarse-
grained or fine-grained transactions. Coarse-grained transactions consist of all method
calls added in a single revision. Fine-grained transactions additionally group calls by
the access path. In Figure 2.1, the coarse-grained transaction corresponding to revision
1.23 of Baz.java is further subdivided into three fine-grained transactions for objects
o3, list, and iter. An advantage of fine-grained transactions is that they are smaller,
and thus make mining more efficient. The reason for this is that the runtime heavily
depends on the size and number of frequent patterns, which are restricted by the size
of transactions. Fine-grained transactions also tend to reduce noise because processing
is restricted to a common prefix. However, we may miss patterns containing calls with
different prefixes, such as pattern {iterator, hasNext, next} in Figure 2.1.

• Mining method pairs. We can reduce the the complexity even further if we mine the
revision repository only for method pairs instead of patterns of arbitrary size. This tech-
nique has frequently been applied to software evolution analysis and proved successful
for finding evolutionary coupling (Gall et al., 1998, 2003; Zimmermann et al., 2003).
While very common, method pairs can only express relatively simple usage patterns.

2.2.3 Pattern Ranking

Even when filtering is applied, the Apriori algorithm yields many frequent patterns. However,
not all of them turn out to be good usage patterns in practice. Therefore, we use several ranking
schemes when presenting the patterns we discovered to the user for review.

Standard Ranking Approaches

Mining literature provides a number of standard techniques we use for pattern ranking. Among
them are the pattern’s (1) support count, (2) confidence, and (3) strength, where the strength of
a pattern is defined as following.

Definition 2.6 (Strength)
The strength of pattern p is the number of strong association rules in R of the form p − q ⇒ q
where q ⊂ p, both p and q are frequent patterns, and q 6= ∅.

For our experiments, we rank patterns lexicographically by their strength and support count.
However, for matching method pairs 〈a, b〉 we use the product of confidence values conf (a ⇒
b) × conf (b ⇒ a) instead of the strength because the continuous nature of the product gives a
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more fine-grained ranking than the strength; the strength would only take the values of 0, 1, and
2 for pairs. The advantage of products over sums is that pairs where both confidence values are
high are favored. In the rest of the chapter we refer to the ranking that follows classical data
mining techniques as regular ranking.

Corrective Ranking

While the ranking schemes above can generally be applied to any data mining problem, we have
come up with a measure of a pattern’s importance that is specific to mining revision histories.
Observation 2.3 is the basis of the metric we are about to describe. A check-in may only add
parts of a usage pattern to the repository. Generally, this is a problem for the classic Apriori
algorithm, which prefers patterns, where all parts of which are “seen together”. However, we
can leverage incomplete patterns when we realize that they often represent bug fixes.

A recent study of the dynamic of small repository changes in large software systems performed
by Purushothaman et al. sheds a new light on this subject (Purushothaman and Perry, 2005).
Their paper points out that almost 50% of all repository changes were small, involving less than
10 lines of code. Moreover, among one-line changes, less than 4% were likely to cause a later
error. Furthermore, only less than 2.5% of all one-line changes were perfective changes that
add functionality, rather than corrective changes that correct previous errors. These numbers
imply a very strong correlation between one-line changes and bug corrections or fixes.

We use this observation to develop a corrective ranking that extends the ranking that is used
in classical data mining. For this, we identify one-line fixes and mark method calls that were
added at least once in such a fix as fixed. In addition to the measures used by regular ranking,
we then additionally rank by the number of fixed methods calls which is used as the first lexi-
cographic category. As discussed in Section 2.4, patterns with a high corrective rank result in
more dynamic violations than patterns with a high regular rank.

2.2.4 Locating Added Method Calls

In order to speed-up the mining process, we pre-process the revision history extracted from CVS
and store this information in a general-purpose database; our techniques are further described by
Zimmermann and Weißgerber (2004). The database stores method calls that have been inserted
for each revision. To determine the calls inserted between two revisions r1 and r2, we build
abstract syntax trees (ASTs) for both r1 and r2 and compute the set of all calls C1 and C2,
respectively, by traversing the ASTs. C2 − C1 is the set of inserted calls between r1 and r2.

Unlike Williams and Hollingsworth (2005a,b) our approach does not build snapshots of a sys-
tem. As they point out such interactions with the build environment (compilers, makefiles) are
extremely difficult to handle and result in high computational costs. Instead we analyze only the
differences between single revisions. As a result our preprocessing is cheap and platform- and
compiler-independent; the drawback is that types cannot be resolved because only one file is
investigated. In order to avoid noise that is caused by this, we additionally identify methods by
the count of arguments. However, if resolved types names are needed they could be generated
with a simple search within one program snapshot.
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2.3 Checking Patterns at Runtime

In this section we describe our dynamic approach for checking the patterns discovered through
revision history mining.

2.3.1 Pattern Selection and Instrumentation

To aid with the task of choosing the relevant patterns, the user is presented with a list of mined
patterns in an ECLIPSE view. The list of patterns may be sorted and filtered based on various
ranking criteria described in Section 2.2.3 to better target user efforts. Human involvement
at this stage, however, is optional, because the user may decide to dynamically check all the
patterns discovered through revision history mining.

After the user selects the patterns of interest, the list of relevant methods for each of the patterns
is generated and passed to the instrumenter. We use JBoss AOP (Burke and Brock, 2003), an
aspect-oriented framework to insert additional “bookkeeping” code at the method calls relevant
for the patterns. However, the task of pointcut selection is simplified for the user by using a
graphical interface. In addition to the method being called and the place in the code where the
call occurs, values of all actual parameters are also recorded.

2.3.2 Post-processing Dynamic Traces

The trace produced in the course of a dynamic run are post-processed to produce the final statis-
tics about the number of times each pattern is followed and the number of times it is violated.
We decided in favor of off-line post-processing because some patterns are rather difficult and
sometimes impossible to match with a fully online approach. In order to facilitate the task of
post-processing in practice, DYNAMINE is equipped with checkers to look for matching method
pairs and state machines. Users who wish to create checkers for more complex patterns can do
so through a Java API exposed by DYNAMINE that allows easy access to runtime events.

Dynamically obtained results for matching pairs and state machines are exported back into
ECLIPSE for review. The user can browse through the results and ascertain which of the patterns
she thought must hold do actually hold at runtime. Often, examining the dynamic output of
DYNAMINE allows the user to correct the initial pattern and re-instrument.

Dynamic Interpretation of Patterns

While it may be intuitively obvious what a given coding pattern means, what kind of dynamic
behavior is valid may be open to interpretation, as illustrated by the following example. Con-
sider a matching method pair 〈beginOp, endOp〉 and a dynamic call sequence

seq = o.beginOp() . . . o.beginOp() . . . o.endOp().

Obviously, a dynamic execution consisting of a sequence of calls o.beginOp() . . . o.endOp()
follows the pattern. However, execution sequence seq probably represents a pattern violation.
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While declaring seq a violation may appear quite reasonable on the surface, consider now an
implementation of method beginOp that starts by calling super.beginOp(). Now seq is the
dynamic call sequence that results from a static call to o.beginOp followed by o.endOp; the
first call to beginOp comes from the static call to beginOp and the second comes from the
call to super. However, in this case seq may be a completely reasonable interpretation of this
coding pattern.

As this example shows, there is generally no obvious mapping from a coding pattern to a dy-
namic sequence of events. As a result, the number of dynamic pattern matches and mismatches
is interpretation-dependent. Errors found by DYNAMINE at runtime can only be considered
such with respect to a particular dynamic interpretation of patterns. Moreover, while violations
of application-specific patterns found with our approach represent likely bugs, they cannot be
claimed as definite bugs without carefully studying the effect of each violation on the system.

In the implementation of DYNAMINE, to calculate the number of times each pattern is val-
idated and violated we match the unqualified names of methods applied to a given dynamic
object. Fortunately, complete information about the object involved is available at runtime, thus
making this sort of matching possible. For patterns that involve only one object, we do not con-
sider method arguments when performing a match: our goal is to have a dynamic matcher that
is as automatic as possible for a given type of pattern, and it is not always possible to automati-
cally determine which arguments have to match for a given method pair. For complex patterns
that involve more than one object and require user-defined checkers, the trace data saved by
DYNAMINE contains information allows the relevant call arguments to be matched.

Dynamic vs Static Counts

A single pattern violation at runtime involves one or more objects. We obtain a dynamic count
by counting how many object combinations participated in a particular pattern violation during
program execution. Dynamic counts are highly dependent on how we use the program at run-
time and can be easily influenced by, for example, recompiling a project in ECLIPSE multiple
times.

Moreover, dynamic error counts are not representative of the work a developer has to do to fix
an error, as many dynamic violations can be caused by the same error in the code. To provide
a better metric on the number of errors found in the application code, we also compute a static
count. This is done by mapping each method participating in a pattern to a static call site and
counting the number of unique call site combinations that are seen at runtime. Static counts are
computed for validated and violated patterns.

Pattern Classification

We use runtime information on how many times each pattern is validated and how many times
it is violated to classify the patterns. Let v be the number of validated instances of a pattern and
e be the number of its violations. The constants used in the classification strategy below were
obtained empirically to match our intuition about how patterns should be categorized. However,
clearly, ours is but one of many potential classification approaches.
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We define an error threshold α = min(v/10, 100). Based on the value of α, patterns can be
classified into the following categories:

• Likely usage patterns: patterns with a sufficiently high support that are mostly validated
with relatively few errors
(e < α ∧ v > 5).

• Likely error patterns: patterns that have a significant number of validated cases as well
as a large number of violations
(α ≤ e ≤ 2v ∧ v > 5).

• Unlikely patterns: patterns that do not have many validated cases or cause too many
errors to be usage patterns
(e > 2v ∨ v ≤ 5).

2.4 Experimental Results

In this section we discuss our practical experience of applying DYNAMINE to real software
systems. Section 2.4.1 describes our experimental setup; Section 2.4.2 evaluates the results of
both our patterns mining and dynamic analysis approaches.

2.4.1 Experimental Setup

We have chosen to perform our experiments on ECLIPSE (Carlson, 2005) and JEDIT (Pestov,
2007), two very large open-source Java applications; in fact, ECLIPSE is one of the largest Java
projects ever created. A summary of information about the benchmarks is given in Figure 2.4.
For each application, the number of lines of code, source files, and classes is shown in Row 2–4.
Both applications are known for being highly extensible and having a large number of plugins
available; in fact, much of ECLIPSE itself is implemented as a set of plugins.

In addition to these standard metrics that reflect the size of the benchmarks, we show the number
of revisions in each CVS repository in Row 5, the number of inserted calls in Row 6, and the
number of distinct methods that were called in Row 7. Both projects have a significant number
of individual developers working on them, as evidenced by the numbers in Row 8. The date of
the first revision is presented in Row 9.

Mining Setup

When we performed the pre-processing on ECLIPSE and JEDIT, it took about four days to fetch
all revisions over the Internet because the complete revision data is about 6GB in size and the
CVS protocol is not well-suited for retrieving large volumes of history data. Computing inserted
methods by analyzing the ASTs and storing this information in a database takes about a day on
a Powermac G5 2.3 Ghz dual-processor machine with 1 GB of memory.
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ECLIPSE JEDIT

Lines of code 2,924,124 714,715
Source files 19,115 3,163
Java classes 19,439 6,602

CVS revisions 2,837,854 144,495
Method calls inserted 465,915 56,794
Unique methods called in inserts 59,929 10,760
Developers checking into CVS 122 92
CVS history since 2001-05-02 2000-01-15

Figure 2.4: Summary statistics about the evaluation subjects.

Once the pre-processing step was complete, we performed the actual data mining. Without
any of the optimizations described in Sections 2.2.2 and 2.2.3, the mining step does not com-
plete even in the case JEDIT, not to mention ECLIPSE. Among the optimizations we apply, the
biggest time improvement and noise reduction is achieved by disregarding common method
calls, such as equals, length, etc. With all the optimizations applied, mining becomes orders
of magnitude faster, usually only taking several minutes.

Dynamic Setup

Because the incremental cost of checking for additional patterns at runtime is generally low,
when reviewing the patterns in ECLIPSE for inclusion in our dynamic experiments, we were
fairly liberal in our selection. We would usually either just look at the method names involved
in the pattern or briefly examine a few usage cases. We believe that this strategy is realistic, as
we cannot expect the user to spend hours pouring over the patterns. To obtain dynamic results,
we ran each application for several minutes on a Pentium 4 machine running Linux, which
typically resulted in several thousand dynamic events being generated.

2.4.2 Discussion of the Results

Overall, 32 out of 56 (or 57%) patterns that we selected as interesting were hit at runtime.
Furthermore, 21 out of 32 (or 66%) of these patterns turned out to be either usage or error
patterns. The fact that two thirds of all dynamically encountered patterns were likely usage or
error patterns demonstrates the power of our mining approach. In this section we discuss the
categories of patterns briefly introduced in Section 2.1 in more detail.

Matching Method Pairs

The simplest and most common kind of a pattern detected with our mining approach is one
where two different methods of the same class are supposed to match precisely in execution.
Many of known error patterns in the literature such as 〈fopen, fclose〉 or 〈lock, unlock〉
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fall into the category of function calls that require exact matching: failing to call the second
function in the pair or calling one of the functions twice in a row is an error.

Figure 2.5 and 2.6 list matching pairs of methods discovered with our mining technique. The
methods of a pair 〈a, b〉 are listed in the order they are supposed to be executed, e.g., a should
be executed before b. For brevity, we only list the names of the method; full method names
that include package names should be easy to obtain. A quick glance at the table reveals that
many pairs follow a specific naming strategy such as pre–post, add–remove, begin–end,
and enter–exit. These pairs could have been discovered by simply pattern matching on the
method names. Moreover, looking at method pairs that use the same prefixes or suffixes is an
obvious extension of our technique.

However, a significant number of pairs have less than obvious names to look for, including
〈HLock, HUnlock〉, 〈progressStart, progressEnd〉, and 〈blockSignal, unblockSignal〉.
Finally, some pairs are very difficult to recognize as matching method pairs and require a
detailed study of the API to confirm, such as 〈stopMeasuring, commitMeasurements〉 or
〈suspend, resume〉.
Figure 2.5 and 2.6 summarize dynamic results for matching pairs. The tables provides dynamic
and static counts of validated and violated patterns as well as a classification into usage, error,
and unlikely patterns. Below we summarize some observations about the data. About a half
of all method pair patterns that we selected from the filtered mined results were confirmed
as likely patterns, out of those 5 were usage patterns and 9 were error patterns. Many more
potentially interesting matching pairs become available if we consider lower support counts;
for the experiments we have only considered patterns with a support of four or more.

Several characteristic pairs are described below. Both locking pairs in JEDIT 〈writeLock,
writeUnlock〉 and 〈readLock, readUnlock〉 are excellent usage patterns with no violations.
〈contentInserted, contentRemoved〉 is not a good pattern despite the method names: the
first method is triggered when text is added in an editor window; the second when text is
removed. Clearly, there is no reason why these two methods have to match. Method pair
〈addNotify, removeNotify〉 is perfectly matched, however, its support is not sufficient to
declare it a usage pattern. A somewhat unusual kind of matching methods that at first we
thought was caused by noise in the data consists of a constructor call followed by a method
call, such as the pair 〈OpenEvent, fireOpen〉. This sort of pattern indicates that all objects
of type OpenEvent should be “consumed” by passing them into method fireOpen. Violations
of this pattern may lead to resource and memory leaks, a serious problem in long-running Java
programs such as ECLIPSE, which may be open at a developer’s desktop for days.

Overall, corrective ranking was significantly more effective than regular ranking schemes that
are based on the product of confidence values. The top half of the table that addresses patterns
obtained with corrective ranking contains 24 matching method pairs; the second half that deals
with the patterns obtained with regular ranking contains 28 pairs. Looking at the subtotals for
each ranking scheme reveals 241 static validating instances vs only 104 for regular ranking;
222 static error instances are found vs only 32 for regular ranking. Finally, 11 pairs found with
corrective ranking were dynamically confirmed as either error or usage patterns vs 7 for regular
ranking. This confirms our belief that corrective ranking is more effective.
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State Machines

In many of cases, the order in which methods are supposed to be called on a given object can
easily be captured with a finite state machine. Typically, such state machines must be followed
precisely: omitting or repeating a method call is a sign of error. The fact that state machines are
encountered often is not surprising: state machines are the simplest formalism for describing the
object life-cycle (Schach, 2004). Matching method pairs are a specific case of state machines,
but there are other prominent cases that involve more that two methods, which are the focus of
this section.

An example of state machine usage comes from the class Scribe in ECLIPSE, which is respon-
sible for pretty-printing Java source code (package org.eclipse.jdt.internal.formatter).
Method exitAlignment is supposed to match an earlier enterAlignment call to preserve
consistency. Typically, method redoAlignment that tries to resolve an exception caused by the
current enterAlignment would be placed in a catch block and executed optionally, only if an
exception is raised. The regular expression

o.enterAlignment o.redoAlignment? o.exitAlignment

summarizes how methods of this class are supposed to be called on an object o of type Scribe.
In our dynamic experiments, the pattern matched 885 times with only 17 dynamic violations
that correspond to 9 static violations, which makes this an excellent usage pattern.

Another interesting state machine below is found based on mining JEDIT. The two methods
beginCompoundEdit and endCompoundEdit are used to group editing operations on a text
buffer together so that undo or redo actions can be later applied to them at once.

o.beginCompoundEdit()
(o.insert(...) | o.remove(...))+

o.endCompoundEdit()

A dynamic study of this pattern reveals that (1) the two methods beginCompoundEdit and
endCompoundEdit are perfectly matched in all cases; (2) 86% of calls to insert/remove are
within a compound edit; (3) there are three cases of several 〈begin−, endCompoundEdit〉 pairs
that have no insert or remove operations between them. Since a compound edit is established
for a reason, this shows that our regular expression most likely does not fully describe the life-
cycle of a Buffer object. Indeed, a detailed study of the code reveals some other methods that
may be used within a compound edit. Subsequently adding these methods to the pattern and
re-instrumenting the JEDIT led to a pattern that fully describes the Buffer object’s life-cycle.

Precisely following the order in which methods must be called is common for C interfaces (En-
gler et al., 2000), as represented by functions that manipulate files and sockets. While such
dependency on call order is less common in Java, it still occurs in programs that have low-
level access to OS data structures. For instance, methods PmMemCreateMC, PmMemFlush, and
PmMemStop, PmMemReleaseMC declared in org.eclipse.swt.OS in ECLIPSE expose low-level
memory context management routines in Java through the use of JNI wrappers. These methods
are supposed to be called in order described by the regular expression below:

OS.PmMemCreateMC
(OS.PmMemStart OS.PmMemFlush OS.PmMemStop)?

OS.PmMemReleaseMC
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The first and last lines are mandatory when using this pattern, while the middle line is optional.
Unfortunately, this pattern only exhibits itself at runtime on certain platforms, so we were unable
to confirm it dynamically.

Another similar JNI wrapper found in ECLIPSE that can be expressed as a state machine is
responsible for region-based memory allocation and can be described with the following regular
expression:

(OS.NewPtr | OS.NewPtrClear) OS.DisposePtr
Either one of functions NewPtr and NewPtrClear can be used to create a new pointer; the latter
function zeroes-out the memory region before returning.

The hierarchical allocation of resources is another common usage pattern that can be captured
with a state machine. Objects request and release system resources in a way that is perfectly
nested. For instance, one of the patterns we found in ECLIPSE suggests the following resource
management scheme on objects of type component:

o.createHandle() o.register()
o.deregister() o.releaseHandle()

The call to createHandle requests an operating system resource for a GUI widget, such as
a window or a button; releaseHandle frees this OS resource for subsequent use. register

associates the current GUI object with a display data structure, which is responsible for for-
warding GUI events to components as they arrive; deregister breaks this link.

More Complex Patterns

More complicated patterns, that are concerned with the behavior of more than one object or
patterns for which a finite state machine is not expressive enough, are quite widespread in the
code base we have considered as well. Notice that approaches that use a restrictive model of
a pattern such as matching function calls (Engler et al., 2001), would not be able to find these
complex patterns.

We only describe one complex pattern in detail here, which is motivated by the the code snippet
in Figure 2.7. The lines relevant to the pattern are highlighted in bold. Object workspace is a
runtime representation of an ECLIPSE workspace, a large complex object that has a specialized
transaction scheme for when it needs to be modified. In particular, one is supposed to start the
transaction that requires workspace access with a call to beginOperation and finish it with
endOperation.

Calls to beginUnprotected() and endUnprotected() on a WorkManager object obtained
from the workspace indicate “unlocked” operations on the workspace: the first one releases the
workspace lock that is held by default and the second one re-acquires it; the WorkManager is ob-
tained for a workspace by calling workspace.getWorkManager. Unlocking operations should
be precisely matched if no error occurs; in case an exception is raised, the operationCanceled
method is called on the WorkManager of the current workspace. As can be seen from the code
in Figure 2.7, this pattern involves error handling and may be quite tricky to get right. We
have come across this pattern by observing that pairs 〈beginOperation, endOperation〉 and
〈beginUnprotected, endUnprotected〉 are both highly correlated in the code.
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try {
monitor.beginTask(null, Policy.totalWork);
int depth = -1;
try {

workspace.prepareOperation(null, monitor);
workspace.beginOperation(true);
depth = workspace.getWorkManager().beginUnprotected();
return runInWorkspace(Policy.subMonitorFor(monitor,

Policy.opWork,
SubProgressMonitor.PREPEND_MAIN_LABEL_TO_SUBTASK));

} catch (OperationCanceledException e) {
workspace.getWorkManager().operationCanceled();
return Status.CANCEL_STATUS;

} finally {
if (depth >= 0)

workspace.getWorkManager().endUnprotected(depth);
workspace.endOperation(null, false,
Policy.subMonitorFor(monitor, Policy.endOpWork));

}
} catch (CoreException e) {

return e.getStatus();
} finally {

monitor.done();
}

Figure 2.7: Example of workspace operations and locking discipline usage in the ECLIPSE
class InternalWorkspaceJob. Lines pertaining to the pattern are shown in bold.

This pattern is easily described as a context-free language that allows nested matching brackets,
whose grammar is shown below.2

S → O?

O → w.prepareOperation()
w.beginOperation()
U?

w.endOperation()

U → w.getWorkManager().beginUnprotected()
S
w.getWorkManager().operationCanceled() ?
w.getWorkManager().beginUnprotected()

This is a very strong usage patterns in ECLIPSE, with 100% of the cases we have seen obeying
the grammar above. The nesting of Workspace and WorkManager operations was usually 3–4
levels deep in practice.

2S is the grammar start symbol and ? is used to represent 0 or more copies of the preceding non-terminal; ?
indicates that the preceding non-terminal is optional.
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2.5 Related Work

A vast amount of work has been done in bug detection. C and C++ code in particular is prone
to buffer overrun and memory management errors; tools such as PREfix (Bush et al., 2000)
and Clouseau (Heine and Lam, 2003) are representative examples of systems designed to find
specific classes of bugs (pointer errors and object ownership violations respectively). Dynamic
systems include Purify (Hastings and Joyce, 1992), which traps heap errors, and Eraser (Savage
et al., 1997), which detects race conditions. Both of these analyses have been implemented as
standard uses of the Valgrind system (Nethercote and Seward, 2003).

Much attention has been given to detecting high-profile software defects in important do-
mains such as operating system bugs (Hallem et al., 2002; Heine and Lam, 2003), security
bugs (Shankar et al., 2001; Wagner et al., 2000), bugs in firmware (Kumar and Li, 2002) and
errors in reliability-critical embedded systems (Blanchet et al., 2003; Brat and Venet, 2005).

Engler et al. (2001) are among the first to point out the need for extracting rules to be used
in bug-finding tools. They employ a static analysis approach and statistical techniques to find
likely instantiations of pattern templates such as matching function calls. Our mining technique
is not a-priori limited to a particular set of pattern templates, however, it is powerless when it
comes to patterns that are never added to the repository after the first revision.

Several projects focus on application-specific error patterns, including SABER (Reimer et al.,
2004) that deals with J2EE patterns and Metal (Hallem et al., 2002), which addresses bugs in OS
code. Certain categories of patterns can be gleaned from AntiPattern literature (Dudney et al.,
2003; Tate et al., 2003), although many AntiPatterns tend to deal with high-level architectural
concerns than with low-level coding issues.

In the rest of this section, we review literature pertinent to revision history mining and software
model extraction.

2.5.1 Revision History Mining

Previous research in the area of mining software repositories investigated the location of a
change—such as files (Bevan and Whitehead, Jr., 2003), classes (Bieman et al., 2003; Gall et al.,
2003), or methods (Zimmermann et al., 2003)—and properties of changes—such as number of
lines changed, developers, or whether a change is a fix (Mockus and Weiss, 2000).

Recently, the focus shifted from locations to changes themselves: Kim et al. (2005) identified
signature change patterns in version histories. Fluri and Gall (2006) classified fine-grained
changes and Fluri et al. (2007) presented a tool to compare abstract syntax trees to extract fine-
grained change informaton. Several other approaches used abstract syntax tree matching to
understand software evolution (Neamtiu et al., 2005; Sager et al., 2006). Finding out what was
changed is an instance of the program element matching problem that has been surveyed by
Kim and Notkin (2006).

Most work on preprocessing version archives covers problems specific to CVS such as mir-
roring CVS archives, reconstructing transactions, reducing noise and finding out the locations
(methods) that changed (Fischer et al., 2003a; Fluri et al., 2005; German, 2004; Zimmermann
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and Weißgerber, 2004). The Kenyon tool combines these techniques in one framework; it is
frequently used for software evolution research (Bevan et al., 2005). For the data processing in
this thesis, we used the APFEL tool, which is based on tokens (Zimmermann, 2006).

One of the most frequently used techniques for revision history mining is co-change. The basic
idea is that two items that are changed together, are related to one another. These items can be
of any granularity; in the past co-change has been applied to changes in modules (Gall et al.,
1998), files (Bevan and Whitehead, Jr., 2003), classes (Bieman et al., 2003; Gall et al., 2003),
and functions (Zimmermann et al., 2003).

Recent research improves on co-change by applying data mining techniques to revision histo-
ries (Ying et al., 2004; Zimmermann et al., 2005). Michail (2000, 1999) used data mining on
the source code of programming libraries to detect reuse patterns, but not for revision histo-
ries only for single snapshots. Our work is the first to apply co-change and data mining based
on method calls. While Fischer et al. (2003b) were the first to combine bug databases with dy-
namic analysis, our work is the first that combines the mining of revision histories with dynamic
analysis.

The work most closely related to ours is that by Williams and Hollingsworth (2005b). They
were the first to combine program analysis and revision history mining. Their paper proposes
error ranking improvements for a static return value checker with information about fixes ob-
tained from revision histories. Our work differs from theirs in several important ways: they
focus on prioritizing or improving existing error patterns and checkers, whereas we concentrate
on discovering new ones. Furthermore, we use dynamic analysis and thus do not face high false
positive rates their tool suffers from. Recently, Williams and Hollingsworth (2005a) also turned
towards mining function usage patterns from revision histories. In contrast to our work, they
focus only on pairs and do not use their patterns to detect violations.

2.5.2 Model Extraction

Most work on automatically inferring state models on components of software systems has been
done using dynamic analysis techniques.

The Strauss system (Ammons et al., 2002) uses machine learning techniques to infer a state ma-
chine representing the proper sequence of function calls in an interface. Dallmeier et al. (2005)
trace call sequences and correlate sequence patterns with test failures. Whaley et al. (2002)
hardcode a restricted model paradigm so that probable models of object-oriented interfaces can
be easily automatically extracted. Alur et al. (2005) generalize this to automatically produce
small, expressive finite state machines with respect to certain predicates over an object.

Lam and Rinard (2003) use a type system-based approach to statically extract interfaces. Their
work is more concerned with high-level system structure rather than low-level life-cycle con-
straints (Schach, 2004). Daikon is able to validate correlations between values at runtime and is
therefore able to validate patterns (Ernst et al., 2001). Weimer and Necula (2005) use exception
control flow paths to guide the discovery of temporal error patterns with considerable success;
they also provide a comparison with other existing specification mining work.
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2.6 Summary

In this chapter, we presented DYNAMINE, a tool for learning common usage patterns from the
revision histories of large software systems. Our method can learn both simple and compli-
cated patterns, scales to millions of lines of code, and has been used to find more than 250
pattern violations. Our mining approach is effective at finding coding patterns: two thirds of all
dynamically encountered patterns turned out to be likely patterns.

DYNAMINE is the first tool that combines revision history information with dynamic analysis
for the purpose of finding software errors. Our tool largely automates the mining and dynamic
execution steps and makes the results of both steps more accessible by presenting the discovered
patterns as well as the results of dynamic checking to the user in custom ECLIPSE views.

Optimization and filtering strategies that we developed allowed us to reduce the mining time
by orders of magnitude and to find high-quality patterns in millions lines of code in a matter of
minutes. Our ranking strategy that favored patterns with previous bug fixes proved to be very
effective at finding error patterns. In contrast, classical ranking schemes from data mining could
only locate usage patterns. Dynamic analysis proved invaluable in establishing trust in patterns
and finding their violations.
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Chapter 3

Mining Aspects from Version History

As object-oriented programs evolve over time, they may suffer from “the tyranny of domi-
nant decomposition” (Tarr et al., 1999): They can be modularized in only one way at a time.
Concerns that are added later may no longer align with that modularization, and thus, end up
scattered across many modules and tangled with one another. Aspect-oriented programming
(AOP) remedies this by factoring out aspects and weaving them back in a separate process-
ing step (Kiczales et al., 1997). For existing projects to benefit from AOP, these cross-cutting
concerns must be identified first. This task is called aspect mining.

We solve this problem by taking a historical perspective: we mine the history of a project
and identify code changes that are likely to be cross-cutting concerns; we call them aspect
candidates. Our analysis is based on the hypothesis that cross-cutting concerns evolve within a
project over time. A code change is likely to introduce such a concern if the modification gets
introduced at various locations within a single code change.

Our hypothesis is supported by the following example. On November 10, 2004, Silenio Quarti
committed code changes “76595 (new lock)” to the ECLIPSE CVS repository. They fixed bug
#76595 “Hang in gfk_pixbuf_new” that reported a deadlock and required the implementation of
a new locking mechanism for several platforms. The extent of the modification was enormous:
He modified 2,573 methods and inserted in 1,284 methods a call to lock, as well as a call to
unlock. As it turns out, AOP could have been used to add these.

Our approach searches such cross-cutting changes in the history of a program in order to iden-
tify aspect candidates. For Silenio Quarti’s changes, we find two simple aspect candidates
({lock}, L1) and ({unlock}, L2) where L1 and L2 are sets that contain the 1,284 methods
where lock and unlock have been inserted, respectively. It turns out that L1 = L2, hence, we
combine the two aspect candidates into one complex aspect candidate ({lock, unlock}, L1).

Technically, we mine version archives for aspect candidates (see Figure 3.1). Our implemen-
tation HAM first identifies simple aspect candidates in transactions (Section 3.1). Next, we
combine simple aspect candidates into complex ones that consider more than one method call
(Section 3.3). We may get several aspect candidates for the same cross-cutting concern when
it was added in several transactions. Reinforcement combines such candidates by exploiting
localities between transactions (Section 3.2).
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Figure 3.1: Mining cross-cutting concerns with HAM.

We evaluated HAM with three open-source JAVA projects: JHotDraw (57,360 LOC), Colum-
ba (103,094 LOC), and ECLIPSE (1,675,025 LOC). For each project we ranked candidates and
validated the top-50 candidates manually. Our results are promising: the average precision is
around 50% with the best values for ECLIPSE; for the top-10 candidates in ECLIPSE, HAM’s
precision is better than 90% (Section 3.5).

3.1 Simple Aspect Candidates

Previous approaches to aspect mining considered only a single version of a program using static
and dynamic program analysis techniques. Our approach introduces an additional dimension:
the history of a project.

We model the history of a program as a sequence of transactions. A transaction collects all
code changes between two versions, called snapshots, made by a programmer to complete a
single development task. Technically a transaction is defined by the version archive we analyze,
which is CVS in our case. However, our approach extends to arbitrary version archives.

Motivated by dynamic approaches for aspect mining that investigate execution traces of pro-
grams, we build our analysis on changes that insert or delete method calls. Typically, these
changes have direct impact on execution traces. But since we are looking for the introduction
of cross-cutting concerns, we concentrate solely on additions and omit deletions of method
calls. This means that for our purpose a transaction consists of the set of method calls that were
inserted by a developer.

Definition 3.1 (Transaction)
A transaction T is a set of pairs (m, l). Each pair (m, l) represents an insertion of a call to
method m in the body of the method l.

We name the method l into which a call is inserted method location and identify it by its full
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Algorithm 3.1 Simple aspect candidates

1: function CANDIDATES(T)
2: Cresult = ∅
3: for all m ∈ calls(T ) do
4: L = {l | l ∈ locations(T ), (m, l) ∈ T}
5: Cresult = Cresult ∪ {(m,L)}
6: end for
7: return Cresult

8: end function
9:

10: function SIMPLE_CANDIDATES(T )
11: return

⋃
T∈T

CANDIDATES(T )

12: end function

signature. In contrast, to reduce the cost of preprocessing, we identify the called methodm only
by its name and number of arguments (see Section 3.4). We associate the following meta-data
with a transaction T :

1. developer(T ) is the name of developer who committed transaction T .

2. timestamp(T ) is when a transaction T was committed.

3. locations(T ) = {l | (m, l) ∈ T} is the set of methods that were changed in transaction T .

4. calls(T ) = {m | (m, l) ∈ T} is the set of method calls that were added in transaction T .

Within the set T of transactions we are searching for aspect candidates. An aspect candidate
represents a cross-cutting concern in the sense that it consists of one or more calls to methods
M that are spread across several method locations L.

Definition 3.2 (Aspect Candidate)
An aspect candidate c = (M,L) consists of a non-empty set M of methods and a non-empty
set L of locations where each location l ∈ L calls each method m ∈ M . If |M | = 1, the aspect
candidate c is called simple; if |M | > 1, it is called complex.

Basically every method call m added in transaction T leads to a potential aspect candidate.
Algorithm 3.1 reflects this idea in function SIMPLE_CANDIDATES(T ) which returns for every
transaction T ∈ T and every method call m ∈ calls(T ) one aspect candidate. The result would
be huge for projects like ECLIPSE that have many method calls and a long history. Thus, we
use filtering and ranking to find actual aspect candidates.

In order to identify aspect candidates that actually cross-cut a considerable part of a program,
we ignore all candidates c = (M,L) where less than eight locations are cross-cut, i.e., |L| < 8.
Thus, we get large, homogeneous cross-cutting concerns. We focus on them as maintenance
will benefit most from their modularization in aspects. We chose the cut-off value of eight
based on our previous experience (Livshits and Zimmermann, 2005); for some projects lower
cut-off values may be required. In addition to filtering, we use the following ranking techniques:
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Rank by Size. Obviously, candidates that cross-cut many locations could be more interesting.
Thus, we sort aspect candidates c = (M,L) by their size |L| (from large to small). However,
we may get noise in form of method calls that are frequent in JAVA but are not cross-cutting,
e.g., iter(), hasNext(), or next().

Rank by Fragmentation. This ranking penalizes common JAVA method calls when they ap-
pear in many transactions. If a cross-cutting concern is added to a system and not changed later
on, it appears in only one transaction. To capture such aspects, we sort aspect candidates by the
number of transactions in which we find a candidate (fewer is better). We term this count the
fragmentation of an aspect candidate c = (M,L):

fragmentation(c) = |{T ∈ T |M ⊆ calls(T )}|

In case aspect candidates have the same fragmentation because they occur in the same number
of transactions, we rank additionally by size |L|.

Rank by Compactness. Similar to the ranking by fragmentation, this ranking has the advan-
tage that common JAVA method calls are ranked low. Cross-cutting concerns may be introduced
in one transaction and extended to additional locations in later transactions. Since such concerns
will be ranked low with the previous rankings, we use compactness as a third ranking technique
(from high to low). The compactness of an aspect candidate c = (M,L) is the ratio between
the size |L| and the total number of locations where calls to M occurred in the history:

compactness(c) =
|L|

|{l |∃T ∈ T ,∀m ∈M : (m, l) ∈ T}|

In the case that two or more aspect candidates have the same compactness, we rank additionally
by size |L|.

3.2 Locality and Reinforcement

In our experiments, we observed that several cross-cutting concerns were introduced within one
transaction and later extended to other locations. This can happen because a developer intro-
duces changes per package and submits each modified package right away before proceeding
to the next, or because he forgot to modify a few places and fixes it in a later transaction to the
CVS. This happens frequently when a developer recognizes he must complete a task that he had
left unfinished with his last commit. Although such concerns are recognized by our technique
as multiple aspect candidates, these candidates may be ranked low and missed.

To strengthen aspect candidates that were inserted in several transactions, we use the concept of
locality. Two transactions are locally related if they were created by the same developer or were
committed around the same time. If there exists locality between transactions, we reinforce
their aspect candidates mutually.
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Figure 3.2: Possessional and temporal locality for transaction 4.

• Temporal Locality refers to the fact that aspect candidates may appear in several trans-
actions that are close in time. In Figure 3.2 there exists temporal locality between trans-
action 4 and transactions 3 and 5.

• Possessional Locality refers to the fact that aspect candidates may have been created
by one developer but committed in different transactions; thus they are owned by her.
Gîrba et al. (2005) define ownership by the last change to a line; in contrast, we look
for the addition of method calls, which is more fine-grained. In Figure 3.2 there exists
possessional locality between transaction 4 and transactions 1, 2, and 7, all of them were
committed by Mary.

Definition 3.3 (Locality)
Let T1, T1 ∈ T be arbitrary transactions, c = (M,L) be an aspect candidate, and t be a fixed
time interval. We say T1 and T2 have

1. temporal locality, written as T1
time
! T2 iff

|timestamp(T1)− timestamp(T2)| ≤ t

2. possessional locality, written as T1
dev
! T2 iff

developer(T1) = developer(T2)

Presume that we found two aspect candidates c1 = (M1, L1) and c2 = (M2, L2) in two different
transactions where the called methods are the same, i.e., M1 = M2. If there exists locality of
either form between these two transactions, we can combine both aspect candidates. As a result
we get a new aspect candidate c′ = (M1, L1 ∪ L2). We call this process reinforcement.

Definition 3.4 (Reinforcement)
Let c1 = (M1, L1) and c2 = (M2, L2) be aspect candidates. If M1 = M2, the construction of a
new aspect candidate (M,L1 ∪ L2) with M = M1 = M2 is called reinforcement.
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Algorithm 3.2 Reinforcement algorithms

1: function REINFORCE(T , x ∈ {time, dev})
2: Creinf = ∅
3: for all T ∈ T do
4: Tloc =

{
T ′ | T ′ ∈ T , T ′ x

! T
}

5: Cloc =
⋃

T ′∈Tloc
CANDIDATES(T ′)

6: for all c = (M,L) ∈ CANDIDATES(T ) do
7: Lreinf = {L′ | c′ = (M ′, L′) ∈ Cloc,M

′ = M}
8: Creinf = Creinf ∪ {(M,Lreinf )}
9: end for

10: end for
11: return Creinf

12: end function
13:
14: function TEMPORAL(T )
15: return REINFORCE(T , time)
16: end function
17:
18: function POSSESSIONAL(T )
19: return REINFORCE(T , dev)
20: end function
21:
22: function ALL(T )
23: return TEMPORAL(T ) ∪ POSSESSIONAL(T )
24: end function

We implemented three reinforcement algorithms, which are listed in Algorithm 3.2. The func-
tions for temporal (TEMPORAL) and for possessional (POSSESSIONAL) reinforcement both call
function REINFORCE which

1. takes a set T of transactions as input,

2. identifies for each transaction T other transactions Tloc that are related to T with respect
to the given locality x,

3. computes for each of these transactions the simple aspect candidates, and

4. builds new combined, or reinforced candidates.

Additionally, we implemented an algorithm ALL that combines the results of temporal and
possessional reinforcement. However, it does not use the localities at the same time as this
could reinforce all transactions and would thereby lose the historic perspective of our approach,
but applies them independently.
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Algorithm 3.3 Complex aspect candidates

1: function COMPLEX_CANDIDATES(Csimple)
2: Cresult = ∅
3: for all (M,L) ∈ Csimple do
4: M = {M ′ | (M ′, L′) ∈ Csimple, L = L′}
5: Mcomplex =

⋃
M ′∈MM ′

6: Cresult = Cresult ∪ {(Mcomplex, L)}
7: end for
8: return Cresult

9: end function

3.3 Complex Aspect Candidates

Many cross-cutting concerns consist of more than one method call, like the lock/unlock con-
cern presented at the beginning of Chapter 3. To locate such concerns we combine two aspect
candidates c1 = (M1, L1) and c2 = (M2, L2) to a complex aspect candidate c′ = (M ′, L′) with
M ′ = M1 ∪M2 and L′ = L1, if c1 and c2 cross-cut exactly the same locations, i.e., L1 = L2.
This condition is very selective, however, method calls inserted in the same locations are very
likely to be related.

Algorithm 3.3 constructs complex aspect candidates. Function COMPLEX_CANDIDATES takes
all simple aspect candidates as input and combines candidates with matching method locations
into a new complex aspect candidate. Note that it also combines simple aspect candidates that
were inserted in different transactions.

3.4 Data Collection

Our mining approach can be applied to any version control system; however, we based our
implementation on CVS since most open-source projects use it. One of the major drawbacks of
CVS is that commits are split into individual check-ins and have to be reconstructed. For this we
use a sliding time window approach (Zimmermann and Weißgerber, 2004) with a 200 seconds
window. A reconstructed commit consists of a set of revisions R where each revision r ∈ R is
the result of a single check-in.

Additionally, we need to compute method calls that have been inserted within a commit op-
eration R. For this, we build abstract syntax trees (ASTs) for every revision r ∈ R and its
predecessor and compute the set of all calls C1 in r and C0 for the preprocessor by traversing
the ASTs. Then Cr = C1−C0 is the set of inserted calls within r; the union of all Cr for r ∈ R
forms a transaction T =

⋃
r∈R Cr which serves as input for our aspect mining and are stored in

a database.

Since we analyze only differences between single revisions, we cannot resolve types because
only one file is investigated at a time. In particular, we miss the signature of called methods; to
limit noise that is caused by this, we use the number of arguments in addition to method names
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to identify methods calls. This heuristic is frequently used when analyzing single files (Livshits
and Zimmermann, 2005; Xie and Pei, 2006). We would get full method signatures when build-
ing snapshots of a system. However, as Williams and Hollingsworth (2005b) point out, such
interactions with the build environment (compilers, make files) are extremely difficult to handle,
require manual interaction, and result in high computational costs. In contrast, our preprocess-
ing is cheap, as well as platform- and compiler-independent.

Renaming of a method is represented as deleting and introducing several method calls. We thus
may incidentally consider renamed calls as aspect candidates. Recognizing such changes is
known as origin analysis (Godfrey and Zou, 2005) and will be implemented in a future version
of HAM. It will eliminate some false positives and improve precision.

3.5 Evaluation

In the introduction we told an anecdote how we identified cross-cutting concerns in the history
of ECLIPSE. Another example for a cross-cutting concern is the call to method dumpPcNumber

which was inserted to 205 methods in the class DefaultBytecodeVisitor. This class im-
plements a visitor for bytecode, in particular one method for each bytecode instruction; the
following code shows the method for instruction aload_0.

/**
* @see IBytecodeVisitor#_aload_0(int)

*/
public void _aload_0(int pc) {

dumpPcNumber(pc);
buffer.append

(OpcodeStringValues.BYTECODE_NAMES[IOpcodeMnemonics.ALOAD_0]);
writeNewLine();

}

The call to dumpPcNumber can obviously be realized as an aspect. However, in this case aspect-
oriented programming can even generate all 205 methods (including comment) since the meth-
ods differ only in the name of the bytecode instruction.

3.5.1 Evaluation Setup

For a more thorough evaluation we chose three JAVA open-source projects and mined them for
cross-cutting concerns. We refer to Table 3.1 for some statistics.

• JHotDraw 6.0b1 is a GUI framework to build graphical drawing editors. We chose it for
its frequent use as aspect mining benchmark.

• Columba 1.0 is an email client that comes with wizards and internationalization support.
We chose it because of its well-documented project history.
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• ECLIPSE 3.2M3 is an integrated development environment that is based on a plug-in
architecture. We chose it because it is a huge project with many developers and a large
history.

For each project, we collected the CVS data as described in Section 3.4, mined for simple
aspect candidates as defined in Section 3.1, reinforced them using the localities established
in Section 3.2, and also built complex aspect candidates as introduced in Section 3.3. We
investigated the following questions:

1. Simple Aspect Candidates. How precise is our mining approach? That is, how many
simple aspect candidates are real cross-cutting concerns?

2. Reinforcement. It leads to larger aspect candidates, but does it actually rank true simple
aspect candidates high, thus, improving precision?

3. Ranking. Can we rank aspect candidates such that more cross-cutting concerns are ranked
first?

4. Complex Aspect Candidates. How many complex aspect candidates can we find by the
combination of simple ones?

To measure precision, we computed for each project, ranking, and reinforcement algorithm the
top 50 simple aspect candidates. In order to eliminate multiple evaluation effort due to possible
duplicates, we combined these rankings into one set per project. For Columba we got 134, for
ECLIPSE 159, and for JHotDraw 102 unique simple aspect candidates. Next, we sorted these
sets alphabetically by the name of the called method in order to prevent bias in the subsequent
evaluation. We used this order to classify simple aspect candidates manually into true and false
cross-cutting concerns. The precision is then defined as the ratio of the number of true cross-
cutting concerns to the number of aspect candidates that were uncovered by HAM. Precision is
basically the accuracy of our technique’s results and in general a common measure for search
performance.

We considered an aspect candidate (M,L) as a true cross-cutting concern if it referred to the
same functionality and the methods M were called in a similar way, i.e., at the same position
within a method and with the same parameters. An additional requirement for a true cross-
cutting concern was that it can be implemented using AspectJ. However, we did not take into
account whether aspect-orientation is the best way to realize the given functionality. In cases of
doubt, we classified a candidate as a false cross-cutting concern.

It would also be interesting to measure recall: the ratio of correctly identified aspect candidates
and all candidates. Recall measures how well a search algorithm finds what is is supposed to
find. However, determining recall values requires the knowledge of all aspect candidates—
which is impossible for real-world software. We therefore cannot report recall numbers.

3.5.2 Simple Aspect Candidates

To evaluate our notion of simple aspect candidates we checked whether the top-50 candidates
per ranking and project were cross-cutting or not. The precision as the ratio of true cross-cutting
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Table 3.1: Summary statistics about the evaluation subjects.
Columba ECLIPSE JHotDraw

Presence
Lines of code 103,094 1,675,025 57,360
JAVA files 1,633 12,935 974
JAVA methods 4,191 74,612 2,043
History
Developer 19 137 9
Transactions 4,105 97,900 269
– that changed JAVA files 3,186 77,250 241
– that added method calls 1,820 43,270 132
Method calls added 24,623 430,848 7,517
First transaction 2001-04-08 2001-05-02 2000-10-12
Last transaction 2005-11-02 2005-11-23 2005-04-25

functionality and all (50) aspect candidates are listed in Table 3.2 for each project (columns)
and each ranking (rows).

We observe that precision increases with subject size: It is highest for ECLIPSE and lowest for
JHotDraw, the smallest subject. The ranking has a minor impact and no ranking is generally
superior; the deviation among the precision values is at most 10 percentage points. Neverthe-
less, the ranking by size, which simply ranks by the number of locations where a method was
added, seems to work well across all projects. It reaches a precision between 36 and 52 percent.
Roughly speaking, every second (for JHotDraw every third) mined aspect candidate is a real
cross-cutting concern.

Unlike ranking by size, ranking by fragmentation and by compactness take transactions or the
number of overall modified locations into account. We believe that the poor performance of
these rankings for our smaller subjects JHotDraw and Columba is caused by the much smaller
number (hundreds/few thousands versus tens of thousands) of transactions and added method
calls available for mining (see Table 3.1). In other words, we expect these rankings to benefit
from long project histories. These generally correspond to many transactions, as they are present
in ECLIPSE.

3.5.3 Reinforcement

After mining simple aspect candidates we evaluated the effect of reinforcement on them. Rein-
forcement takes a simple aspect candidate (M,L) from a single transaction and looks at locally
related transactions in order to arrive at a candidate (M,L′) with an enlarged set L′ ⊃ L of
locations. For the evaluation we reinforced the simple aspects of our subjects using temporal,
possessional, and contextual locality, and also using all localities applied at once. As before,
we checked the top-50 aspect candidates and computed the precision.

Table 3.3 lists the change in precision for each subject (columns), each locality (rows), and
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Table 3.2: Precision of HAM (in %) for simple aspect candidates.
Columba ECLIPSE JHotDraw

Size 52 52 36
Fragmentation 46 54 30
Compactness 42 52 28

Table 3.3: Effect of reinforcement on the precision of HAM (in % points).
Columba ECLIPSE JHotDraw

Temporal locality
Size + 2 – 4 ± 0
Compactness + 2 – 2 + 4

Possessional locality
Size – 8 –20 + 2
Compactness +12 + 8 + 2

All localities
Size – 8 –20 + 2
Compactness +10 + 6 + 2

each ranking by size or compactness (sub-rows). Changes are relative to the precision before
reinforcement (Table 3.2). Hence, these changes express the effect of reinforcement on the
precision of our mining.1

Temporal locality produces slight improvements but seems to be unsatisfying for large projects.
We presume that this is because we chose the same fixed time window of 2 days for all three
subjects; we plan to investigate whether a window size proportional to a project’s size would
yield better results. The ECLIPSE project has far more developers as well as CVS transactions
per day than JHotDraw and Columba. Thus, we have too much noise that diminishes the positive
impact of temporal locality for ECLIPSE.

Possessional locality shows the most significant improvement. Albeit ranking by size decreases
precision up to 20 percentage points, possessional locality in combination with ranking by com-
pactness improves precision up to 12 percentage points for all three subjects. In large projects,
get and set methods are inserted in many locations and thus alleviate the positive effects of
possessional locality for ECLIPSE when aspect candidates are ranked by size.

All localities considers the application of both localities. The effect on the precision is the
same as with reinforcement based on possessional locality only: ranking by size annihilates the
positive impact, ranking by compactness facilitates it. Thus, possessional locality is dominant
and affects precision prominently.

The good results for possessional locality suggest that aspects belong to a developer, and are

1Note that for reinforcement we did not rank by fragmentation. This ranking punishes reinforced aspect
candidates that are spread across many transactions.
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mostly not distributed over many transactions. This is backed up by the notably improved preci-
sion of our approach after reinforcement based on possessional locality combined with ranking
by compactness. Besides, all our results, without and with reinforcements, suggest that small
projects have small histories and thus we achieve a significantly lower precision. In addition,
precision can only be improved marginally with reinforcements. This seems consequential as
reinforcements leverage a large amount of transactions and developers.

3.5.4 Precision Revisited

So far we have evaluated our mining by computing the precision of the top-50 aspect candidates
in a ranking. However, it is unlikely that a developer is really interested in 50 aspect candidates.
Instead, she will probably look only at ten or twenty candidates at most. We therefore have bro-
ken down the precision for the top ten, twenty, and so on candidates for each project. The results
for all three subjects are similar. For the detailed discussion here, we have chosen ECLIPSE for
two reasons—it is an industrial-sized project and the results are most meaningful; they are plot-
ted in Figure 3.3. The results for Columba and JHotDraw can be found in Figure 3.4 and 3.5
respectively.

The graph on the left shows the precision when ranked by size before and after applying different
reinforcements. The precision stays mostly flat when moving from the top-50 to the top-10
candidates. However, the overall precision remains between 30 and 60 percent. Reinforcement
seems to make matters only worse, as ranking by size before reinforcement performs best.

In contrast, the graph on the right shows a dramatically different picture for the precision when
ranked by compactness. The precision is highest for the top-10 candidates and decreases when
additional candidates are taken into account; it is lowest for the top-50 candidates. However,
the first ten candidates have a precision of at least 90%. This means, nine out of ten are true
cross-cutting concerns. Thus, ranking by compactness is very valuable for developers.

In summary, size is not the most prominent attribute of cross-cutting concerns, but compactness
is. This is also supported by the observation that temporal and possessional locality enhance
ranking by compactness.

3.5.5 Complex Aspect Candidates

For our evaluation subjects, we combined simple aspect candidates into a complex candidate
if they cross-cut exactly the same locations. This condition was very selective: for Columba
we got 21, for ECLIPSE 178, and for JHotDraw 11 complex aspect candidates. Note that all
candidates cross-cut at least 8 locations. Below, we discuss the results from ECLIPSE in more
detail.

Table 3.4 shows the top 20 complex aspect candidates ranked by size for the ECLIPSE project.
Each row represents one complex aspect candidate (M,L). The second column contains the
methods M called by an aspect candidate, where the number in brackets denotes the number of
arguments for each method. The third column gives the number |M | of methods and the fourth
column shows the number |L| of method locations where calls to M were inserted. In the first
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Figure 3.3: Precision of HAM for subject ECLIPSE.
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Figure 3.4: Precision of HAM for subject Columba.
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Figure 3.5: Precision of HAM for subject JHotDraw.
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Table 3.4: Complex aspect candidates (M,L) found for ECLIPSE.
M |M | |L|

3 {lock(0), unlock(0)} 2 1284
3 {postReplaceChild(3), preReplaceChild(3)} 2 104
3 {postLazyInit(2), preLazyInit(0)} 2 78
7 {blockSignal(2), unblockSignal(2)} 2 63
3 {getLength(0), getStartPosition(0)} 2 62
3 {hasChildrenChanges(1), visitChildrenNeeded(1)} 2 62
7 {modificationCount(0), setModificationCount(1)} 2 60
7 {noMoreAvailableSpaceInConstantPool(1), referenceType(0)} 2 57
7 {g_signal_handlers_block_matched(7),

g_signal_handlers_unblock_matched(7)} 2 54
7 {getLocalVariableName(1), getLocalVariableName(2)} 2 51
7 {isExisting(1), preserve(1)} 2 48
7 {isDisposed(0), isTrue(1)} 2 37
7 {gtk_signal_handler_block_by_data(2),

gtk_signal_handler_unblock_by_data(2)} 2 34
7 {error(1), isDisposed(0)} 2 31
7 {getWarnings(0), setWarnings(1)} 2 31
7 {getCodeGenerationSettings(1), getJavaProject(0)} 2 31
7 {SimpleName(1), internalSetIdentifier(1)} 2 29
7 {iterator(0), next(0)} 2 27
3 {postValueChange(1), preValueChange(1)} 2 26
7 {SimpleName(1), internalSetIdentifier(1)} 2 25

column we provide the result of our manual inspection of this aspect candidate: 3 for an actual
cross-cutting concern and 7 for a false positive.

HAM indeed finds cross-cutting concerns consisting of several method calls. In addition, they
are ranked on top of the list. However, the performance of our approach decreases when it
comes to lower-ranked aspect candidates. We believe that one reason for poor performance are
get and set methods that are inserted in many locations at the same time and thus out-rank actual
cross-cutting concerns in the number of occurrences. Although these getters and setters are not
cross-cutting, they still describe perfect usage patterns.

Furthermore, we find only few complex cross-cutting concerns. This is mainly a consequence of
the condition that the locations sets have to be the same (L1 = L2). We could relax this criterion
to the requirement that one location set has to be a subset of the other (L1 ⊆ L2), however, this
adds exponential complexity to the determination of aspect candidates. We will improve on this
in our future work. For now, let us look at three cross-cutting concerns in ECLIPSE.

Locking Mechanism. This cross-cutting concern was already mentioned in the introduction
to this chapter. Calls to both methods lock and unlock were inserted in 1,284 method locations.
Here is such a location:

public static final native void _XFree(int address);
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public static final void XFree(int /*long*/ address) {
lock.lock();
try {

_XFree(address);
} finally {

lock.unlock();
}

}

The other 1,283 method locations look similar. First lock is called, then a corresponding native
method, and finally unlock. It is a typical example of a cross-cutting concern which can be
easily realized using AOP. Note that this lock/unlock concern cross-cuts different platforms.
It appears in both the GTK and Motif version of ECLIPSE. Typically such cross-platform con-
cerns are recognized incompletely by static and dynamic aspect mining approaches unless the
platforms are analyzed separately and results combined.

Abstract Syntax Trees. ECLIPSE represents nodes of abstract syntax trees (ASTs) by the ab-
stract class ASTNode and several subclasses. These subclasses fall into the following simplified
categories: expressions (Expression), statements (Statement), and types (Type). Addition-
ally, each subclass of ASTNode has properties that cross-cut the class hierarchy. An example
for a property is the name of a node: There are named (QualifiedType) and unnamed types
(PrimitiveType), as well as named expressions (FieldAccess). Additional properties of a
node include the type, expression, operator, or body.

This is a typical example of a role super-imposition concern (Marin et al., 2005). As a result,
every named subclass of ASTNode implements method setName which results in duplicated
code. With AOP the concern could be realised via the method-introduction mechanism.

public void setName(SimpleName name) {
if (name == null) {

throw new IllegalArgumentException();
}
ASTNode oldChild = this.methodName;
preReplaceChild(oldChild, name, NAME_PROPERTY);
this.methodName = name;
postReplaceChild(oldChild, name, NAME_PROPERTY);

}

Our mining approach revealed this cross-cutting concern with several aspect candidates. The
methods preReplaceChild and postReplaceChild are called in the setName method; the
methods preLazyInit and postLazyInit guarantee the safe initialization of properties; and
the methods preValueChange and postValueChange are called when a new operator is set for
a node.

Cloning. Another cross-cutting concern was surprising because it involved two getter meth-
ods getStartPosition and getLength. These are always called in clone0 of subclasses of
ASTNode and were also identified by our approach.
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ASTNode clone0(AST target) {
BooleanLiteral result = new BooleanLiteral(target);
result.setSourceRange(this.getStartPosition(),

this.getLength());
result.setBooleanValue(booleanValue());
return result;

}

3.6 Related Work

Related work falls into two categories: aspect mining and mining software repositories.

3.6.1 Aspect Mining

Previous approaches to aspect mining considered a program only at a particular time, using
traditional static and dynamic program analysis techniques. One fundamental problem is their
scalability. While dynamic analysis strongly depends on a compilable, executable program ver-
sion and on the coverage of the used program test cases, static analyses often produce too many
details and false positives as they cannot weed out non-executable code. To overcome these
limitations, each approach would need additional methods which in turn make them then far
less practical. Besides, many approaches require user interaction or even previous knowledge
about the program.

Griswold et al. (1999) present the Aspect Browser which identifies cross-cutting concerns with
textual-pattern matching (much like “grep”) and highlights them. The Aspect Mining Tool
(AMT) by Hannemann and Kiczales (2001) combines text- and type-based analysis of source
code. Ophir uses a control-based comparison, applying code clone detection on program depen-
dence graphs (Shepherd and Pollock, 2003). Tourwé and Mens (2004) introduce an identifier
analysis based on formal concept analysis for mining aspectual views such as structurally re-
lated classes and methods. Krinke and Breu (2004) propose an automatic static aspect mining
based on control flow. The control flow graph of a program is mined for recurring execution pat-
terns of methods. The fan-in analysis by Marin et al. (2004, 2007) determines methods that are
called from many different places—thus having a high fan-in. Our approach is similar since we
analyse how fan-in changed over time. In future work, we will investigate how this additional
information increases precision.

The Dynamic Aspect Mining Tool (DynAMiT) by (Breu, 2004; Breu and Krinke, 2004) analyzes
program traces reflecting the run-time behavior of a system in search for recurring execution
patterns of method relations. Tonella and Ceccato (2004) suggest a technique that applies con-
cept analysis to the relationship between execution traces and executed computational units.

Loughran and Rashid (2002) investigate possible representations of aspects found in a legacy
system in order to provide best tool support for aspect mining. Breu (2005) also reports on a
hybrid approach where the dynamic information of the previous DynAMiT approach is comple-
mented with static type information such as static object types.
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3.6.2 Mining Software Repositories

One of the most frequently used techniques for mining version archives is co-change. The basic
idea is simple: Two items that are changed together in the same transaction, are related to each
other. Our approach is also based on co-change. However, we use a different, more specific
notion of co-change. Methods are part of a (simple) aspect candidate when they are changed
together in the same transaction and additionally the changes are the same, i.e., a call to the
same method is inserted.

Recently, research extended the idea of co-change to additions and applied this concept to
method calls: Two method calls that are inserted together in the same transaction, are related to
each other. Williams and Hollingsworth (2005a) use this observation to mine pairs of functions
that form usage patterns from version archives. In Chapter 2, we used data mining to locate
patterns of arbitrary size and applied dynamic analysis to validate their patterns and identify
violations. The work in this chapter also investigates the addition of method calls. However,
HAM does not focus on calls that are inserted together, but on locations where the same call is
inserted. This allows us to identify cross-cutting concerns rather than usage patterns.

3.7 Summary

This chapter introduced the first approach to use version history to mine aspect candidates.
The underlying hypothesis is that cross-cutting concerns emerge over time. By introducing the
dimension of time, our aspect mining approach has the following advantages:

1. HAM scales to industrial-sized projects like ECLIPSE. In particular, HAM reaches higher
precision (above 90%) for big projects with a long history. Additionally, HAM focuses on
concerns that cross-cut huge parts of a system. For small projects, HAM suffers from the
much fewer data available, resulting in lower precision (about 60%).

2. HAM discovers cross-cutting concerns across platform-specific code (see lock/unlock
in Section 3.5.5). Static and dynamic approaches recognize such concerns only when the
code base is mined multiple times.

3. HAM yields a high precision. The average precision is around 50%, however, precision
increases up to 90% with the project size and history.
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Part II

Predicting Defects
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Chapter 4

Defects and Dependencies

Software errors cost the U.S. industry 60 billion dollars a year according to a study conducted
by the National Institute of Standards and Technology (Tassey, 2002). One contributing factor
to the high number of errors is the limitation of resources for quality assurance (QA). Such
resources are always limited by time, e.g., the deadlines that development teams face, and by
cost, e.g., not enough people are available for QA. When managers want to spend resources
most effectively, they would typically allocate them on the parts where they expect most defects
or at least the most severe ones. Put in other words: based on their experience, managers predict
the quality of the product to make further decisions on testing, inspections, etc.

In order to support managers with this task, research identified several quality indicators and
developed prediction models to predict the quality of software parts. The complexity of source
code is one of the most prominent indicators for such models. However, even though several
studies showed McCabe’s cyclomatic complexity to correlate with the number of defects (Basili
et al., 1996; Nagappan et al., 2006b; Subramanyam and Krishnan, 2003), there is no universal
metric or prediction model that applies to all projects (Nagappan et al., 2006b). One draw-
back of most complexity metrics is that they only focus on single elements, but rarely take the
interactions between elements into account. However, with the advent of static and dynamic
bug localization techniques, the nature of defects has changed and today most defects in bug
databases are of semantic nature (Li et al., 2006).

In this part we will pay special attention to interactions between elements. More precisely, we
will investigate how dependencies correlate with and predict defects in Windows Server 2003.
While this is not the first work on defects and dependencies, we will cover a different angle: In
order to identify the binaries that are most central in Windows Server 2003, we apply network
analysis on dependency graphs. Network analysis is very popular in social sciences where
networks between humans (actors) and their interactions (ties) are studied. In our context the
binaries are the “actors” and the dependencies are the “ties” (Chapter 5). We will also apply
complexity measures from graph theory to identify the subsystems of Windows Server 2003
that are most defect-prone (Chapter 6).

Before we discuss related work, we will briefly motivate the use of dependencies for defect
prediction with several observations that we made for Windows Server 2003.
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4.1 Motivation

When we analyzed defect data and dependency graphs for Windows Server 2003, we made the
following observations.

Cycles had on average twice as many defects.

We investigated whether the presence of dependency cycles has an impact on defects. A simple
example for a dependency cycle is a mutual dependency, i.e., binaries X and Y depend on each
other; for this experiment, we considered cycles of any size, but ignored self-cycles such as
X depends on X. Based on whether binaries are part of a cycle, we divided them into groups.
Binaries that were part of cycles had on average twice as many defects as the other binaries, at
a significance level of 99%.

Central binaries tend to be defect-prone.

We identified several network motifs in the dependency graph of Windows Server 2003. Net-
work motifs are patterns that describe similar, but not necessarily isomorphic subgraphs; origi-
nally they were introduced in biological research (Milo et al., 2002). One of the motifs for Win-
dows Server 2003 looks like a star (see Figure 4.1): it consists of a binary B that is connected
to the main component of the dependency graph. Several other “satellite” binaries surround
B and exclusively depend on binary B. In most occurrences of the pattern, the binary B was
defect-prone, while the satellite binaries were defect-free. Social network analysis identifies bi-
nary B as central (a so-called ‘Broker”) in the dependency graph because it controls its satellite
binaries.

We conjecture that binaries that are identified as central by network analysis are more defect-
prone than others (Chapter 5).

Central binaries tend to be defect-prone. We identified several 
network motifs in the dependency graph of Windows Server 2003. 
Network motifs are patterns that describe similar, but not neces-
sarily isomorphic subgraphs; originally they were introduced in 
biological research [26]. One of the motifs for Windows Server 
2003 looks like a star (see Figure 1): it consists of a binary B that 
is connected to the main component of the dependency graph. 
Several other “satellite” binaries surround B and exclusively de-
pend on binary B. In most occurrences of the pattern, the binary B 
was defect-prone, while the satellite binaries were defect-free. 
Social network analysis identifies binary B as central (a so-called 
‘Broker”) in the dependency graph because it controls its satellite 
binaries. We conjecture that binaries that are identified as central 
by social network analysis are more defect-prone than others.  

The larger a clique, the more defect-prone are its binaries. A 
clique is a set of binaries for which between every pair of binaries 
(X, Y) a dependency exists—we neglect the direction, i.e., it does 
not matter whether X depends on Y, Y on X, or both. Figure 2 
shows an example for an undirected clique; a clique is maximal if 
no other binary can be added without losing the clique property. 
We enumerated all maximal undirected cliques in the dependency 
graph of Windows Server 2003 with the Bron-Kerbosch algorithm 
[8]. The enumeration of cliques is a core component in many bio-
logical applications. Next we grouped the cliques by size and 
computed the average number of defects per binary. Figure 3 
shows the results, including a 95% confidence interval of the av-
erage. We can observe that the average number of defects in-
creases with the size of the clique a binary resides in. Put in 
another way, binaries that are part of more complex areas (cli-
ques) have more defects.  

Again, this observation motivates social network analysis: bina-
ries that are part of cliques are close to each other, which is meas-
ured by the network measure closeness. We hypothesize that 
closeness, as well as other network measures, correlates with the 
number of defects.  

In this paper, we will compute measures from social network 
analysis on dependency graphs. More formally, the hypotheses 
that we will investigate are the following: 

H1 Social network measures on dependency graphs can 
indicate critical binaries that are missed by complexity 
metrics. 

H2 Social network measures on dependency graphs corre-
late positively with the number of post-release de-
fects—an increase in a measure is accompanied by an 
increase in defects. 

H3 Social network measures on dependency graphs, can 
predict the number of post-release defects. 

3. RELATED WORK 
In this section we discuss related work; it falls into three catego-
ries: social network analysis in software engineering, software 
dependencies, and complexity metrics.  

3.1 SOCIAL NETWORK ANALYSIS IN SE 
The use of social network analysis is not new to software engi-
neering. Several researchers used social network analysis to study 
the dynamics of open source development. Ghosh showed that 
many SourceForge.net projects are organized as self-organizing 
social networks [15]. Madley et al. conducted a similar study 

where they focused on collaboration aspects by looking at the 
joint-membership of developers in projects [25]. In addition to 
committer networks, Lopez et al. investigated module networks 
that show how several modules relate to each other [24]. Ohira et 
al. used social networks and collaborative filtering to support the 
identification of experts across projects [34]. Huang et al. used 
historical data to identify core and peripheral development teams 
in software projects [19]. 

Social network analysis was also used on research networks. Has-
san and Holt analyzed the reverse engineering community using 
co-authorship relations. They also identified emerging research 
trends and directions over time and compared reverse engineering 
to the entire software engineering community [17]. 

In contrast to these approaches, we do not analyze the relations 
between developers or projects, but rather between binaries of a 
single project. Also the objective of our study is different. While 
most of the existing work considered organizational aspects, our 
aim is to predict defects. 

3.2 SOFTWARE DEPENDENCIES 
Pogdurski and Clarke [38] presented a formal model of program 
dependencies as the relationship between two pieces of code in-
ferred from the program text. Program dependencies have also 
been analyzed in terms of testing [22], code optimization and 
parallelization [14], and debugging [36]. Empirical studies have 
also investigated dependencies and program predicates [5] and 
inter-procedural control dependencies [40] in programming lan-
guage research.  

 
Figure 3. Defect-proneness of binaries in cliques. 
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Figure 2. Undirected cliques. 
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Figure 4.1: Star pattern in dependency graphs.

The larger a clique, the more defect-prone are its binaries.

A clique is a set of binaries for which between every pair of binaries (X, Y) a dependency
exists—we neglect the direction, i.e., it does not matter whether X depends on Y, Y on X, or
both. Figure 4.2 shows an example for an undirected clique; a clique is maximal if no other
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binary can be added without losing the clique property. We enumerated all maximal undirected
cliques in the dependency graph of Windows Server 2003 with the Bron-Kerbosch algorithm
(Bron and Kerbosch, 1973). The enumeration of cliques is a core component in many biological
applications. Next we grouped the cliques by size and computed the average number of defects
per binary. Figure 4.3 shows the results, including a 95% confidence interval of the average.
We can observe that the average number of defects increases with the size of the clique a binary
resides in. Put in another way, binaries that are part of more complex areas (cliques) have more
defects.

Again, this observation motivates network analysis: binaries that are part of cliques are close to
each other, which is measured by the network measure closeness. We hypothesize that close-
ness, as well as other network measures, correlates with the number of defects (Chapter 5). It
also motivates complexity measures on subgraphs: the more dense the dependencies of a sub-
system, the more defects it is likely to have (Chapter 6).

Central binaries tend to be defect-prone. We identified several 
network motifs in the dependency graph of Windows Server 2003. 
Network motifs are patterns that describe similar, but not neces-
sarily isomorphic subgraphs; originally they were introduced in 
biological research [26]. One of the motifs for Windows Server 
2003 looks like a star (see Figure 1): it consists of a binary B that 
is connected to the main component of the dependency graph. 
Several other “satellite” binaries surround B and exclusively de-
pend on binary B. In most occurrences of the pattern, the binary B 
was defect-prone, while the satellite binaries were defect-free. 
Social network analysis identifies binary B as central (a so-called 
‘Broker”) in the dependency graph because it controls its satellite 
binaries. We conjecture that binaries that are identified as central 
by social network analysis are more defect-prone than others.  

The larger a clique, the more defect-prone are its binaries. A 
clique is a set of binaries for which between every pair of binaries 
(X, Y) a dependency exists—we neglect the direction, i.e., it does 
not matter whether X depends on Y, Y on X, or both. Figure 2 
shows an example for an undirected clique; a clique is maximal if 
no other binary can be added without losing the clique property. 
We enumerated all maximal undirected cliques in the dependency 
graph of Windows Server 2003 with the Bron-Kerbosch algorithm 
[8]. The enumeration of cliques is a core component in many bio-
logical applications. Next we grouped the cliques by size and 
computed the average number of defects per binary. Figure 3 
shows the results, including a 95% confidence interval of the av-
erage. We can observe that the average number of defects in-
creases with the size of the clique a binary resides in. Put in 
another way, binaries that are part of more complex areas (cli-
ques) have more defects.  

Again, this observation motivates social network analysis: bina-
ries that are part of cliques are close to each other, which is meas-
ured by the network measure closeness. We hypothesize that 
closeness, as well as other network measures, correlates with the 
number of defects.  

In this paper, we will compute measures from social network 
analysis on dependency graphs. More formally, the hypotheses 
that we will investigate are the following: 

H1 Social network measures on dependency graphs can 
indicate critical binaries that are missed by complexity 
metrics. 

H2 Social network measures on dependency graphs corre-
late positively with the number of post-release de-
fects—an increase in a measure is accompanied by an 
increase in defects. 

H3 Social network measures on dependency graphs, can 
predict the number of post-release defects. 

3. RELATED WORK 
In this section we discuss related work; it falls into three catego-
ries: social network analysis in software engineering, software 
dependencies, and complexity metrics.  

3.1 SOCIAL NETWORK ANALYSIS IN SE 
The use of social network analysis is not new to software engi-
neering. Several researchers used social network analysis to study 
the dynamics of open source development. Ghosh showed that 
many SourceForge.net projects are organized as self-organizing 
social networks [15]. Madley et al. conducted a similar study 

where they focused on collaboration aspects by looking at the 
joint-membership of developers in projects [25]. In addition to 
committer networks, Lopez et al. investigated module networks 
that show how several modules relate to each other [24]. Ohira et 
al. used social networks and collaborative filtering to support the 
identification of experts across projects [34]. Huang et al. used 
historical data to identify core and peripheral development teams 
in software projects [19]. 

Social network analysis was also used on research networks. Has-
san and Holt analyzed the reverse engineering community using 
co-authorship relations. They also identified emerging research 
trends and directions over time and compared reverse engineering 
to the entire software engineering community [17]. 

In contrast to these approaches, we do not analyze the relations 
between developers or projects, but rather between binaries of a 
single project. Also the objective of our study is different. While 
most of the existing work considered organizational aspects, our 
aim is to predict defects. 

3.2 SOFTWARE DEPENDENCIES 
Pogdurski and Clarke [38] presented a formal model of program 
dependencies as the relationship between two pieces of code in-
ferred from the program text. Program dependencies have also 
been analyzed in terms of testing [22], code optimization and 
parallelization [14], and debugging [36]. Empirical studies have 
also investigated dependencies and program predicates [5] and 
inter-procedural control dependencies [40] in programming lan-
guage research.  

 
Figure 3. Defect-proneness of binaries in cliques. 
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Figure 4.2: An example for undirected cliques.
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Figure 4.3: Average number of defects for binaries in small vs. large cliques.

4.2 Related Work

In this section we discuss related work; it falls into four categories: social network analysis
in software engineering, software dependencies, complexity metrics, and analysis of historical
data.
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4.2.1 Social Network Analysis in Software Engineering

The use of social network analysis is not new to software engineering. Several researchers used
social network analysis to study the dynamics of open source development. Ghosh showed
that many SourceForge.net projects are organized as self-organizing social networks (Ghosh,
2003). Madey et al. (2002) conducted a similar study where they focused on collaboration
aspects by looking at the joint-membership of developers in projects. In addition to committer
networks, Lopez-Fernandez et al. (2004) investigated module networks that show how several
modules relate to each other. Ohira et al. (2005) used social networks and collaborative filtering
to support the identification of experts across projects. Huang and Liu (2005) used historical
data to identify core and peripheral development teams in software projects.

Social network analysis was also used on research networks. Hassan and Holt (2004) analyzed
the reverse engineering community using co-authorship relations. They also identified emerging
research trends and directions over time and compared reverse engineering to the entire software
engineering community.

In contrast to these approaches, we do not analyze the relations between developers or projects,
but rather between binaries of a single project. Also the objective of our study is different. While
most of the existing work considered organizational aspects, our aim is to predict defects.

4.2.2 Software Dependencies

Pogdurski and Clarke (1990) presented a formal model of program dependencies as the rela-
tionship between two pieces of code inferred from the program text. Program dependencies
have also been analyzed in terms of testing (Korel, 1987), code optimization and parallelization
(Ferrante et al., 1987), and debugging (Orso et al., 2004). Empirical studies have also investi-
gated dependencies and program predicates (Binkley and Harman, 2003) and inter-procedural
control dependencies (Sinha et al., 2001) in programming language research.

The information-flow metric defined by Henry and Kafura. (1981), uses fan-in (a count of the
number of modules that call a given module) and fan-out (a count of the number of modules
that are called by a given module) to calculate a complexity metric. Components with a large
fan-in and large fan-out may indicate poor design. In contrast, our work uses not only calls, but
also data dependencies. Furthermore, we distinguish between different types of dependencies
such as intra-dependencies and outgoing dependencies.

Schröter et al. (2006) showed that the actual import dependencies (not just the count) can pre-
dict defects, e.g., importing compiler packages is riskier than importing UI packages. Earlier
work on dependencies at Microsoft (Nagappan and Ball, 2007) showed that code churn and
dependencies can be used as efficient indicators of post-release defects. The basic idea being,
for example suppose that component A has many dependencies on component B. If the code of
component B changes (churns) a lot between versions, we may expect that component A will
need to undergo a certain amount of churn in order to keep in sync with component B. That is,
churn often will propagate across dependencies. Together, a high degree of dependence plus
churn can cause errors that will propagate through a system, reducing its reliability.
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4.2.3 Complexity Metrics

Typically, research on defect-proneness captures software complexity with metrics and builds
models that relate these metrics to defect-proneness (Denaro et al., 2002). Basili et al. (1996)
were among the first to validate that OO metrics predict defect density. Subramanyam and
Krishnan (2003) presented a survey on eight more empirical studies, all showing that OO met-
rics are significantly associated with defects. Briand et al. (1997) identified several coupling
measures for C++ that could serve as early quality indicators for the design of a project.

Our experiments focus on post-release defects since they matter most for the end-users of a pro-
gram. Only few studies addressed post-release defects: Binkley and Schach (1998) developed
a coupling metric and showed that it outperforms several other metrics; Ohlsson and Alberg
(1996) used metrics to predict modules that fail during operation. Additionally, within five Mi-
crosoft projects, Nagappan et al. (2006b) identified metrics that predict post-release defects and
reported how to systematically build predictors for post-release defects from history. In contrast
to their work, we develop new metrics on dependency data from a graph theoretic point of view.

4.2.4 Historical Data

Several researchers used historical data for predicting defect density: Khoshgoftaar et al. (1996)
classified modules as defect-prone when the number of lines added or deleted exceeded a given
threshold. Graves et al. (2000) used the sum of contributions to a module to predict defect den-
sity. Ostrand et al. (2005) used historical data from up to 17 releases to predict the files with the
highest defect density of the next release. Further, Mockus et al. (2005) predicted the customer
perceived quality using logistic regression for a commercial telecommunications system (of size
seven million lines of code) by utilizing external factors like hardware configurations, software
platforms, amount of usage and deployment issues. They observed an increase in probability of
failure by twenty times by accounting for such measures in their prediction equations.
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Chapter 5

Predicting Defects for Binaries

In this chapter, we will compute measures from network analysis on dependency graphs. More
formally, the hypotheses that we will investigate are the following:

H1 Network measures on dependency graphs can indicate critical binaries that are missed by
complexity metrics.

H2 Network measures on dependency graphs correlate positively with the number of post-
release defects—an increase in a measure is accompanied by an increase in defects.

H3 Network measures on dependency graphs, can predict the number of post-release defects.

H4 Depending on certain binaries increases the likelihood of a failure of a binary (domino
effect).

The outline of this chapter is as follows. First, we will present the data collection for our study:
for Windows Server 2003 we computed dependencies, complexity metrics, and measures from
network analysis (Section 5.1). In our experiments, we evaluated network measures against
complexity metrics. Additionally, we show that network analysis succeeds in identifying bina-
ries that are considered as most harmful by developers and present empirical evidence for the
domino effect (Section 5.2). We close with a discussion of threats to validity (Section 5.3).

5.1 Data Collection

For our experiments we build a dependency graph of Windows Server 2003 (Section 5.1.1)
and compute network measures on it (Section 5.1.2). Additionally, we collect complexity met-
rics (Section 5.1.3) which we use to quantify the contribution of network analysis. The data
collection is illustrated in Figure 5.1.
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Figure 5.1: Data collection in Windows Server 2003.

5.1.1 Dependency Graph

A software dependency is a directed relation between two pieces of code (such as expressions
or methods). There exist different kinds of dependencies: data dependencies between the def-
inition and use of values and call dependencies between the declaration of functions and the
sites where they are called. Microsoft has an automated tool called MaX (Srivastava et al.,
2005) that tracks dependency information at the function level, including calls, imports, ex-
ports, RPC, COM, and Registry access. MaX generates a system-wide dependency graph from
both native x86 and .NET managed binaries. Within Microsoft, MaX is used for change impact
analysis and for integration testing (Srivastava et al., 2005).

For our analysis, we use MaX to generate a system-wide dependency graph at the function
level. Since we collect defect data for binaries, we lift this graph up to binary level in a separate
post-processing step. Consider for example the dependency graph in Figure 5.2. Circles denote
functions and boxes are binaries. Each thin edge corresponds to a dependency at function
level. Lifting them up to binary level, there are two dependencies within A and four within B
(represented by self-edges), as well as three dependencies where A depends on B. We refer to
these numbers as multiplicity of a dependency/edge.

As a result of this lifting operation there may be several dependencies between a pair of binaries
(like in Figure 5.2 between A and B), which results in several edges in the dependency graph.
Formally a dependency graph is a therefore directed multigraph GM = (V,A) where

• V is a set of nodes (binaries) and

• A = (E,m) a multiset of edges (dependencies) for which E ⊆ V ×V contains the actual
edges and the function m : E → N returns the multiplicity (count) of an edge.

The corresponding regular graph (without multiedges) isG = (V,E). We allow self-edges (i.e.,
a binary can depend on itself) for both regular graphs and multigraphs.

For the experiments in this chapter, we use only the regular graph G. When predicting defects
for subsystems, we will take multiplicities into account (Chapter 6).
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Figure 5.2: Lifting up dependencies to binary level. The edges are labeled by the multiplicity
of a dependency.

5.1.2 Network Measures

On the dependency graph we computed for each node (binary) a number of network measures
by using the Ucinet 6 tool (Borgatti et al., 2002). In this section, we will describe these measures
more in detail, however, for or a more comprehensive overview, we refer to textbooks on social
network analysis (Hanneman and Riddle, 2005; Wasserman and Faust, 1984).

Ego Networks vs. Global Networks

One important distinction made in social network analysis is between ego networks and global
networks.

Every node in a network has a corresponding ego network that describes how the node is con-
nected to its neighbors. (Nodes are often referred to as “ego” in network analysis.) Figure 5.3
explains how ego networks are constructed. In our case, they contain the ego binary itself,
binaries that depend on the ego (IN), binaries on which the ego depends (OUT), and the de-
pendencies between these binaries. The ego network would thus be the subgraph within the
INOUT box of Figure 5.3.

INOUT ' OUTIN

EGO

Figure 5.3: Different neighborhoods in an ego-network.

In contrast, the global network corresponds always to the entire dependency graph. While ego
networks allow us to measure the local importance of a binary with respect to its neighbors,
global networks reveal the importance of a binary within the entire software system. Since we
expected local and global importance to complement each other, we used both in our study.
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Table 5.1: Network measures for ego networks.

In contrast, the global network corresponds always to the entire 
dependency graph. While ego networks allow us to measure the 
local importance of a binary with respect to its neighbors, global 
networks reveal the importance of a binary within the entire soft-
ware system. Since we expected local and global importance to 
complement each other, we used both in our study. 

EGO NETWORKS 
An ego network for a binary consists of its neighborhood in the 
dependency graph. We distinguish between three kinds of neigh-
borhoods (see also Figure 5):  

• In-neighborhood (IN) contains the binaries that depend on the 
ego binary. 

• Out-neighborhood (OUT) contains the binaries on which the 
ego binary depends. 

• InOut-neighborhood (INOUT) is the combination of the In- 
and Out-neighborhood. 

For every binary, we induce its three ego networks (one for each 
kind of neighborhood) and compute fairly basic measures that are 
listed in Table 1. Additionally, we compute measures for structur-
al holes that are described below. 

GLOBAL NETWORK 
Within the global network (=dependency graph) we can measure 
the importance of binaries for the whole software system and not 
only their local neighborhood. For most network measures we use 
directed edges; however, some measures can be applied to sym-
metric, undirected networks (Sym) or ingoing (In) and outgoing 
(Out) edges respectively. On the global network, we compute 
measures for structural holes and centrality. Both concepts are 
summarized below. 

STRUCTURAL HOLES 
The term of structural holes was coined by Ronald Burt [9]. Ideal-
ly, the influence of actors is balanced in social networks. The 
Figure below shows two networks for three actors A, B, and C.  

 

In the left network all actors are tied to each other and therefore 
have the same influence. In the network on the right hand side, the 
tie between B and C is missing (“structural hole”), giving A an 
advanced position over B and C. 

We used the following measures related to structural holes in our 
study of dependency graphs: 

• Effective size of network (EffSize) is the number of binaries 
that are connected to a binary X minus the average number of 
ties between these binaries. Suppose X has three neighbors 
that are not connected to each other, then the effective size of 
X’s ego network is 3–0=3. If each of the three neighbors 
would be connected to the other ones, the average number of 
ties would be two, and the effective size of X’s ego network 
reduces to 3–2=1. 

• Efficiency norms the effective size of a network to the total 
size of the network. 

• Constraint measures how strongly a binary is constrained by 
its neighbors. The idea is that neighbors that are connected to 
other neighbors can constrain a binary. For more details we 
refer to Burt [9]. 

• Hierarchy measures how the constraint measure is distributed 
across neighbors. When most of the constraint comes from a 
single neighbor, the value for hierarchy is higher. For more 
details we refer to Burt [9]. 

The values for the above measures are higher for binaries with 
neighbors that are closely connected to each other and other bina-
ries. One might expect that such complex dependency structures 
result in a higher number of defects. 

CENTRALITY MEASURES 
One of the most frequently used concepts in social network analy-
sis is centrality. It is used to identify actors that are in “favored 
positions”. Applied on dependency graphs, centrality identifies the 
binaries that are specially exposed to dependencies, e.g., by being 
the target of many dependents. There are different approaches to 
measure centrality: 

• Degree centrality. The degree measures the number of depen-
dencies for a binary. The idea for dependency graphs is that 
binaries with many dependencies are more defect-prone than 
others. No structural hole 
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between B and C 
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Table 1. Network measures for ego networks 

Measure Description 
Size The size of the ego network is the number of nodes. 
Ties The number of directed ties corresponds to the number of edges. 
Pairs The number of ordered pairs is the maximal number of directed ties, i.e., Size×(Size–1). 
Density The percentage of possible ties that are actually present, i.e., Ties/Pairs. 
WeakComp The number of weak components (=sets of connected binaries) in neighborhood. 
nWeakComp The number of weak components normalized by size, i.e., WeakComp/Size. 
TwoStepReach The percentage of nodes that are two steps away. 
ReachEfficency The reach efficiency normalizes TwoStepReach by size, i.e., TwoStepReach/Size. 

High reach efficiency indicates that ego’s primary contacts are influential in the network. 
Brokerage The number of pairs not directly connected.  

The higher this number, the more paths go through ego, i.e., ego acts as a “broker” in its network. 
nBrokerage The Brokerage normalized by the number of pairs, i.e., Brokerage/Pairs. 
EgoBetween The percentage of shortest paths between neighbors that pass through ego. 
nEgoBetween The Betweenness normalized by the size of the ego network. 

Ego Networks

An ego network for a binary consists of its neighborhood in the dependency graph. We distin-
guish between three kinds of neighborhoods (see also Figure 5.3):

• In-neighborhood (IN) contains the binaries that depend on the ego binary.

• Out-neighborhood (OUT) contains the binaries on which the ego binary depends.

• InOut-neighborhood (INOUT) is the combination of the In- and Out-neighborhood.

For every binary, we induce its three ego networks (one for each kind of neighborhood) and
compute fairly basic measures that are listed in Table 5.1. Additionally, we compute measures
for structural holes that are described below.

Global Network

Within the global network (=dependency graph) we can measure the importance of binaries for
the whole software system and not only their local neighborhood. For most network measures
we use directed edges; however, some measures can be applied to symmetric, undirected net-
works (Sym) or ingoing (In) and outgoing (Out) edges respectively. On the global network, we
compute measures for structural holes and centrality. Both concepts are summarized below.

Structural Holes

The term of structural holes was coined by Burt (1995). Ideally, the influence of actors is
balanced in social networks. The Figure below shows two networks for three actors A, B, and
C.
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In contrast, the global network corresponds always to the entire 
dependency graph. While ego networks allow us to measure the 
local importance of a binary with respect to its neighbors, global 
networks reveal the importance of a binary within the entire soft-
ware system. Since we expected local and global importance to 
complement each other, we used both in our study. 

EGO NETWORKS 
An ego network for a binary consists of its neighborhood in the 
dependency graph. We distinguish between three kinds of neigh-
borhoods (see also Figure 5):  

• In-neighborhood (IN) contains the binaries that depend on the 
ego binary. 

• Out-neighborhood (OUT) contains the binaries on which the 
ego binary depends. 

• InOut-neighborhood (INOUT) is the combination of the In- 
and Out-neighborhood. 

For every binary, we induce its three ego networks (one for each 
kind of neighborhood) and compute fairly basic measures that are 
listed in Table 1. Additionally, we compute measures for structur-
al holes that are described below. 

GLOBAL NETWORK 
Within the global network (=dependency graph) we can measure 
the importance of binaries for the whole software system and not 
only their local neighborhood. For most network measures we use 
directed edges; however, some measures can be applied to sym-
metric, undirected networks (Sym) or ingoing (In) and outgoing 
(Out) edges respectively. On the global network, we compute 
measures for structural holes and centrality. Both concepts are 
summarized below. 

STRUCTURAL HOLES 
The term of structural holes was coined by Ronald Burt [9]. Ideal-
ly, the influence of actors is balanced in social networks. The 
Figure below shows two networks for three actors A, B, and C.  

 

In the left network all actors are tied to each other and therefore 
have the same influence. In the network on the right hand side, the 
tie between B and C is missing (“structural hole”), giving A an 
advanced position over B and C. 

We used the following measures related to structural holes in our 
study of dependency graphs: 

• Effective size of network (EffSize) is the number of binaries 
that are connected to a binary X minus the average number of 
ties between these binaries. Suppose X has three neighbors 
that are not connected to each other, then the effective size of 
X’s ego network is 3–0=3. If each of the three neighbors 
would be connected to the other ones, the average number of 
ties would be two, and the effective size of X’s ego network 
reduces to 3–2=1. 

• Efficiency norms the effective size of a network to the total 
size of the network. 

• Constraint measures how strongly a binary is constrained by 
its neighbors. The idea is that neighbors that are connected to 
other neighbors can constrain a binary. For more details we 
refer to Burt [9]. 

• Hierarchy measures how the constraint measure is distributed 
across neighbors. When most of the constraint comes from a 
single neighbor, the value for hierarchy is higher. For more 
details we refer to Burt [9]. 

The values for the above measures are higher for binaries with 
neighbors that are closely connected to each other and other bina-
ries. One might expect that such complex dependency structures 
result in a higher number of defects. 

CENTRALITY MEASURES 
One of the most frequently used concepts in social network analy-
sis is centrality. It is used to identify actors that are in “favored 
positions”. Applied on dependency graphs, centrality identifies the 
binaries that are specially exposed to dependencies, e.g., by being 
the target of many dependents. There are different approaches to 
measure centrality: 

• Degree centrality. The degree measures the number of depen-
dencies for a binary. The idea for dependency graphs is that 
binaries with many dependencies are more defect-prone than 
others. No structural hole 
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Table 1. Network measures for ego networks 

Measure Description 
Size The size of the ego network is the number of nodes. 
Ties The number of directed ties corresponds to the number of edges. 
Pairs The number of ordered pairs is the maximal number of directed ties, i.e., Size×(Size–1). 
Density The percentage of possible ties that are actually present, i.e., Ties/Pairs. 
WeakComp The number of weak components (=sets of connected binaries) in neighborhood. 
nWeakComp The number of weak components normalized by size, i.e., WeakComp/Size. 
TwoStepReach The percentage of nodes that are two steps away. 
ReachEfficency The reach efficiency normalizes TwoStepReach by size, i.e., TwoStepReach/Size. 

High reach efficiency indicates that ego’s primary contacts are influential in the network. 
Brokerage The number of pairs not directly connected.  

The higher this number, the more paths go through ego, i.e., ego acts as a “broker” in its network. 
nBrokerage The Brokerage normalized by the number of pairs, i.e., Brokerage/Pairs. 
EgoBetween The percentage of shortest paths between neighbors that pass through ego. 
nEgoBetween The Betweenness normalized by the size of the ego network. 

In the left network all actors are tied to each other and therefore have the same influence. In the
network on the right hand side, the tie between B and C is missing (“structural hole”), giving A
an advanced position over B and C.

We used the following measures related to structural holes in our study of dependency graphs:

• Effective size of network (EffSize) is the number of binaries that are connected to a binary
X minus the average number of ties between these binaries. Suppose X has three neigh-
bors that are not connected to each other, then the effective size of X’s ego network is
3–0=3. If each of the three neighbors would be connected to the other ones, the average
number of ties would be two, and the effective size of X’s ego network reduces to 3–2=1.

• Efficiency norms the effective size of a network to the total size of the network.

• Constraint measures how strongly a binary is constrained by its neighbors. The idea is
that neighbors that are connected to other neighbors can constrain a binary. For more
details we refer to Burt (1995).

• Hierarchy measures how the constraint measure is distributed across neighbors. When
most of the constraint comes from a single neighbor, the value for hierarchy is higher.
For more details we refer to Burt (1995).

The values for the above measures are higher for binaries with neighbors that are closely con-
nected to each other and other binaries. One might expect that such complex dependency struc-
tures result in a higher number of defects.

Centrality Measures

One of the most frequently used concepts in social network analysis (Hanneman and Riddle,
2005; Wasserman and Faust, 1984) is centrality. It is used to identify actors that are in “favored
positions”. Applied on dependency graphs, centrality identifies the binaries that are specially
exposed to dependencies, e.g., by being the target of many dependents. There are different
approaches to measure centrality:

• Degree centrality. The degree measures the number of dependencies for a binary. The
idea for dependency graphs is that binaries with many dependencies are more defect-
prone than others.

• Closeness centrality. While degree centrality measures only the immediate dependencies
of a binary, closeness centrality additionally takes the distance to all other binaries into
account. There are different variants to compute closeness:
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– Closeness is the sum of the lengths of the shortest (geodesic) paths from a binary
(or to a binary) from all other binaries. There exist different variations of closeness
in social network analysis. Our definition corresponds to the one used by Freeman
(see (Hanneman and Riddle, 2005; Wasserman and Faust, 1984)).

– dwReach is the number of binaries that can be reached from a binary (or which can
reach a binary). The distance is weighted by the number of steps with factors 1/1,
1/2, 1/3, etc.

– Eigenvector centrality is similar to Google’s PageRank value (Cho et al., 1998); it
assigns relative scores to all binaries in the dependency graphs. Dependencies to
binaries having a high score contribute more to the score of the binary in question.

– Information centrality is the harmonic mean of the length of paths ending at a binary.
The value is smaller for binaries that are connected to other binaries through many
short paths.

Again, the hypothesis is that the more central a binary is, the more defects it will have.

• Betweenness centrality measures for a binary on how many shortest paths between other
binaries it occurs. The hypothesis is that binaries that are part of many shortest paths are
more likely to contain defects because defects propagate.

5.1.3 Complexity Metrics

In order to quantify the contribution of network analysis on dependency graphs, we use code
metrics as a control set for providing a comparison point. For each binary, we computed several
code metrics, described in Table 5.2. These metrics apply to a binary B and to a function or
method f(), respectively. In order to have all metrics apply to binaries, we summarized the
function metrics across each binary. For each function metric X , we computed the total and
the maximum value per binary (denoted as TotalX and MaxX, respectively). As an example,
consider the Lines metric, counting the number of executable lines per function. The MaxLines
metric indicates the length of the largest function in a binary, while TotalLines, the sum of all
Lines, represents the total number of executable lines in a binary.

5.2 Experimental Analysis

In this section, we will support our hypotheses that network analysis of dependency graphs
helps to predict the number of defects for binaries.

We carried out several experiments for Windows Server 2003: First we show that network
analysis can identify critical “escrow” binaries (Section 5.2.1). We continue with a correlation
analysis of network measures, metrics, and number of defects (Section 5.2.2) and regression
models for defect prediction (Section 5.2.3). Finally, we present evidence for a domino effect
in Windows Server 2003: binaries that depend on defect-prone binaries are more likely to have
defects (Section 5.2.4).
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Table 5.2: Metrics used in the Windows Server 2003 study.

• Closeness centrality. While degree centrality measures only 
the immediate dependencies of a binary, closeness centrality 
additionally takes the distance to all other binaries into ac-
count. There are different variants to compute closeness:  

o Closeness is the sum of the lengths of the shortest (geo-
desic) paths from a binary (or to a binary) from all other 
binaries. There exist different variations of closeness in 
social network analysis. Our definition corresponds to the 
one used by Freeman (see [16, 45]). 

o dwReach is the number of binaries that can be reached 
from a binary (or which can reach a binary). The distance 
is weighted by the number of steps with factors 1/1, 1/2, 
1/3, etc. 

o Eigenvector centrality is similar to Google’s PageRank 
value [10]; it assigns relative scores to all binaries in the 
dependency graphs. Dependencies to binaries having a 
high score contribute more to the score of the binary in 
question. 

o Information centrality is the harmonic mean of the length 
of paths ending at a binary. The value is smaller for bina-
ries that are connected to other binaries through many 
short paths. 

Again, the hypothesis is that the more central a binary is, the 
more defects it will have, 

• Betweenness centrality measures for a binary on how many 
shortest paths between other binaries it occurs. The hypothesis 
is that binaries that are part of many shortest paths are more 
likely to contain defects because defects propagate. 

4.3 COMPLEXITY METRICS 
In order to quantify the contribution of social network analysis on 
dependency graphs, we use code metrics as a control set for pro-
viding a comparison point. For each binary, we computed several 
code metrics, described in Table 2. These metrics apply to a bi-
nary B and to a function or method f(), respectively. In order to 
have all metrics apply to binaries, we summarized the function 
metrics across each binary. For each function metric X, we com-
puted the total and the maximum value per binary (denoted as 
TotalX and MaxX, respectively). As an example, consider the 

Lines metric, counting the number of executable lines per func-
tion. The MaxLines metric indicates the length of the largest func-
tion in B, while TotalLines, the sum of all Lines, represents the 
total number of executable lines in B. 

5. EXPERIMENTAL ANALYSIS 
In this section, we will support our hypotheses that social network 
analysis of dependency graphs helps to predict the number of 
defects for binaries.  

We carried out several experiments for Windows Server 2003: 
First we show that social network analysis can identify critical 
“escrow” binaries (Section 5.1). We continue with a correlation 
analysis of network measures, metrics, and number of defects 
(Section 5.2) and regression models for defects prediction (Sec-
tion 5.3). Finally, we present threats to validity (Section 5.4). 

5.1 ESCROW ANALYSIS 
The development teams of Windows Server 2003 maintain a list 
of critical binaries that are called escrow binaries. Whenever pro-
grammers change an escrow binary, they must adhere to a special 
protocol to ensure the stability of Windows Server. This protocol 
involves more extensive testing, fault-inject, code reviews etc. on 
the binary and its related dependencies. In other words these es-
crow binaries are the “most important” binaries in Windows. An 
example escrow binary is the Windows kernel binary. The devel-
opers manually select the binaries in the escrow based on past 
experience with previous builds, changes, and defects. 

We used the network measures and complexity metrics (from 
Sections 4.2 and 4.3) to predict the list of escrow binaries. For 
each measure/metric, we ranked the binaries according to its value 
and took the top N binaries as the prediction, with N being the size 
of the escrow list. In order to evaluate the predictions, we com-
puted the recall that is the percentage of escrow binaries that we 
successfully could retrieve. In order to protect proprietary infor-
mation, i.e., the size of the escrow list, we report only percentages 
that are truncated to the next multiple of 5%. For instance, the 
percentage of 23% would be reported as 20%. 

The results in Table 3 show that complexity metrics fail to predict 
escrow binaries. They can retrieve only 30%, while the network 
measures for closeness centrality can retrieve twice as much. This 

Table 3. Recall for Escrow binaries 

Network measures Recall 
GlobalInClosenessFreeman 0.60 
GlobalIndwReach 0.60 
EgoInSize 0.55 
EgoInPairs 0.55 
EgoInBroker 0.55 
EgoInTies 0.50 
GlobalInDegree 0.50 
GlobalBetweenness 0.50 
… … 
Complexity metric Recall 
TotalParameters 0.30 
TotalComplexity 0.30 
TotalLines 0.30 
TotalFanIn 0.30 
TotalFanOut 0.30 
… …. 

 

Table 2. Metrics used in our Windows study 

Metric Description 

Module metrics for a binary B: 
Function # functions in B 
GlobalVariables # global variables in B 

Per-function metrics for a function f(): 
Lines # executable lines in f() 
Parameters # parameters in f() 
FanIn # functions calling f() 
FanOut # functions called by f() 
Complexity McCabe’s cyclomatic complexity of f() 

OO metrics for a class C 
ClassMethods # methods in C 
SubClasses # subclasses of C 
InheritanceDepth Depth of C in the inheritance tree 
ClassCoupling Coupling between classes 
CyclicClassCoupling Cyclic coupling between classes 

 

5.2.1 Escrow Analysis

The development teams of Windows Server 2003 maintain a list of critical binaries that are
called escrow binaries. Whenever programmers change an escrow binary, they must adhere to a
special protocol to ensure the stability of Windows Server. Among others, this protocol involves
more extensive testing and code reviews on the binary and its related dependencies. In other
words these escrow binaries are the “most important” binaries in Windows. An example escrow
binary would be the Windows kernel binary. The developers manually select the binaries in the
escrow based on past experience with previous builds, changes, and defects.

We used the network measures and complexity metrics (from Sections 5.1.2 and 5.1.3) to predict
the list of escrow binaries. For each measure/metric, we ranked the binaries according to its
value and took the top N binaries as the prediction, with N being the size of the escrow list.
In order to evaluate the predictions, we computed the recall that is the percentage of escrow
binaries that we successfully could retrieve. In order to protect proprietary information, i.e., the
size of the escrow list, we report only percentages that are truncated to the next multiple of 5%.
For instance, the percentage of 23% would be reported as 20%.

The results in Table 5.3 show that complexity metrics fail to predict escrow binaries. They
can retrieve only 30%, while the network measures for closeness centrality can retrieve twice
as much. This observation supports our first hypothesis that network measures on dependency
graphs can indicate critical binaries that are missed by complexity metrics (H1). Being complex
does not make a binary critical in software development—it is more likely the combination of
being complex and central to the system.

5.2.2 Correlation Analysis

In order to investigate our hypothesis H2, we determined the Pearson and Spearman rank corre-
lation between the number of defects and each network measure (Section 5.1.2) as well as each
complexity metric (Section 5.1.3). The Pearson bivariate correlation requires data to be dis-
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Table 5.3: Recall for Escrow binaries.

• Closeness centrality. While degree centrality measures only 
the immediate dependencies of a binary, closeness centrality 
additionally takes the distance to all other binaries into ac-
count. There are different variants to compute closeness:  

o Closeness is the sum of the lengths of the shortest (geo-
desic) paths from a binary (or to a binary) from all other 
binaries. There exist different variations of closeness in 
social network analysis. Our definition corresponds to the 
one used by Freeman (see [16, 45]). 

o dwReach is the number of binaries that can be reached 
from a binary (or which can reach a binary). The distance 
is weighted by the number of steps with factors 1/1, 1/2, 
1/3, etc. 

o Eigenvector centrality is similar to Google’s PageRank 
value [10]; it assigns relative scores to all binaries in the 
dependency graphs. Dependencies to binaries having a 
high score contribute more to the score of the binary in 
question. 

o Information centrality is the harmonic mean of the length 
of paths ending at a binary. The value is smaller for bina-
ries that are connected to other binaries through many 
short paths. 

Again, the hypothesis is that the more central a binary is, the 
more defects it will have, 

• Betweenness centrality measures for a binary on how many 
shortest paths between other binaries it occurs. The hypothesis 
is that binaries that are part of many shortest paths are more 
likely to contain defects because defects propagate. 

4.3 COMPLEXITY METRICS 
In order to quantify the contribution of social network analysis on 
dependency graphs, we use code metrics as a control set for pro-
viding a comparison point. For each binary, we computed several 
code metrics, described in Table 2. These metrics apply to a bi-
nary B and to a function or method f(), respectively. In order to 
have all metrics apply to binaries, we summarized the function 
metrics across each binary. For each function metric X, we com-
puted the total and the maximum value per binary (denoted as 
TotalX and MaxX, respectively). As an example, consider the 

Lines metric, counting the number of executable lines per func-
tion. The MaxLines metric indicates the length of the largest func-
tion in B, while TotalLines, the sum of all Lines, represents the 
total number of executable lines in B. 

5. EXPERIMENTAL ANALYSIS 
In this section, we will support our hypotheses that social network 
analysis of dependency graphs helps to predict the number of 
defects for binaries.  

We carried out several experiments for Windows Server 2003: 
First we show that social network analysis can identify critical 
“escrow” binaries (Section 5.1). We continue with a correlation 
analysis of network measures, metrics, and number of defects 
(Section 5.2) and regression models for defects prediction (Sec-
tion 5.3). Finally, we present threats to validity (Section 5.4). 

5.1 ESCROW ANALYSIS 
The development teams of Windows Server 2003 maintain a list 
of critical binaries that are called escrow binaries. Whenever pro-
grammers change an escrow binary, they must adhere to a special 
protocol to ensure the stability of Windows Server. This protocol 
involves more extensive testing, fault-inject, code reviews etc. on 
the binary and its related dependencies. In other words these es-
crow binaries are the “most important” binaries in Windows. An 
example escrow binary is the Windows kernel binary. The devel-
opers manually select the binaries in the escrow based on past 
experience with previous builds, changes, and defects. 

We used the network measures and complexity metrics (from 
Sections 4.2 and 4.3) to predict the list of escrow binaries. For 
each measure/metric, we ranked the binaries according to its value 
and took the top N binaries as the prediction, with N being the size 
of the escrow list. In order to evaluate the predictions, we com-
puted the recall that is the percentage of escrow binaries that we 
successfully could retrieve. In order to protect proprietary infor-
mation, i.e., the size of the escrow list, we report only percentages 
that are truncated to the next multiple of 5%. For instance, the 
percentage of 23% would be reported as 20%. 

The results in Table 3 show that complexity metrics fail to predict 
escrow binaries. They can retrieve only 30%, while the network 
measures for closeness centrality can retrieve twice as much. This 

Table 3. Recall for Escrow binaries 

Network measures Recall 
GlobalInClosenessFreeman 0.60 
GlobalIndwReach 0.60 
EgoInSize 0.55 
EgoInPairs 0.55 
EgoInBroker 0.55 
EgoInTies 0.50 
GlobalInDegree 0.50 
GlobalBetweenness 0.50 
… … 
Complexity metric Recall 
TotalParameters 0.30 
TotalComplexity 0.30 
TotalLines 0.30 
TotalFanIn 0.30 
TotalFanOut 0.30 
… …. 

 

Table 2. Metrics used in our Windows study 

Metric Description 

Module metrics for a binary B: 
Function # functions in B 
GlobalVariables # global variables in B 

Per-function metrics for a function f(): 
Lines # executable lines in f() 
Parameters # parameters in f() 
FanIn # functions calling f() 
FanOut # functions called by f() 
Complexity McCabe’s cyclomatic complexity of f() 

OO metrics for a class C 
ClassMethods # methods in C 
SubClasses # subclasses of C 
InheritanceDepth Depth of C in the inheritance tree 
ClassCoupling Coupling between classes 
CyclicClassCoupling Cyclic coupling between classes 

 

tributed normally and the association between elements to be linear. In contrast, the Spearman
rank correlation is a robust technique that can be applied even when the association between
values is non-linear (Fenton and Pfleeger, 1998). For completeness we compute both correla-
tions coefficients. The closer the value of correlation is to –1 or +1, the higher two measures are
correlated—positively for +1 and negatively for –1. A value of 0 indicates that two measures
are independent.

The Spearman correlation values for Windows Server 2003 are shown in Table 5.4. The ta-
ble consists of three parts: ego network measures, global network measures, and complexity
metrics. The columns distinguish between different neighborhoods (IN, OUT, INOUT) and
directions of edges (ingoing, outgoing, symmetric). Correlations that are significant at 0.99
are indicated with (*). The values for Pearson correlation are listed in the similarly structured
Table 5.5.

We can make the following observations.

1. Some network measures do not correlate with the number of defects. The correlations for
the number of weak components in a neighborhood (WeakComp), the Hierarchy and the
Efficiency are all close to zero, which means that their values and the number of defects
are independent.

2. Some network measures have negative correlation coefficients. The normalized number
of weak components in a neighborhood (nWeakComp) as well as the Reach Efficiency
and the Constraint show a negative correlation between –0.424 and –0.463. This means
that an increase in centrality comes with a decrease in number of defects. Since the values
for the aforementioned measures are higher for binaries with neighbors that are closely
connected to each other and other binaries, this suggests that being in a closely connected
neighborhood does not necessarily result in a high number of defects. This explanation is
also supported by the negative correlation of –0.320 for Density.

3. Network measures have higher correlations for OUT and INOUT than for IN neighbor-
hoods. In other words, outgoing dependencies are more related to defects than ingoing
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Table 5.4: Spearman correlation values between the number of defects and network measures
as well as complexity metrics. Correlations significant at 99% are marked by (**).
Correlations above 0.40 are printed in boldface.

observation supports our first hypothesis that network measures 
on dependency graphs can indicate critical binaries that are 
missed by complexity metrics (H1). Being complex does not make 
a binary critical in software development—it is more likely the 
combination of being complex and central to the system. 

5.2 CORRELATION ANALYSIS 
In order to investigate our hypothesis H2, we determined the Pear-
son and Spearman rank correlation between the number of defects 
and each network measure (Section 4.2) as well as each complexi-
ty metric (Section 4.3). The Pearson bivariate correlation requires 
data to be distributed normally and the association between ele-
ments to be linear. In contrast, the Spearman rank correlation is a 
robust technique that can be applied even when the association 
between values is non-linear [13]. For completeness we compute 
both correlations coefficients. The closer the value of correlation 
is to –1 or +1, the higher two measures are correlated—positively 
for +1 and negatively for –1. A value of 0 indicates that two 
measures are independent. 

The Spearman correlation values for Windows Server 2003 are 
shown in Table 4. The table consists of three parts: ego network 
measures, global network measures, and complexity metrics. The 
columns distinguish between different neighborhoods (IN, OUT, 
INOUT) and directions of edges (ingoing, outgoing, symmetric). 
Correlations that are significant at 0.99 are indicated with (*). The 
values for Pearson correlation are listed in a similar table in the 
appendix (Table 5). We can make the following observations. 

(1) Some network measures do not correlate with the number of 
defects. The correlations for the number of weak components in a 
neighborhood (WeakComp), the Hierarchy and the Efficiency are 
all close to zero, which means that their values and the number of 
defects are independent. 

(2) Some network measures have negative correlation coefficients. 
The normalized number of weak components in a neighborhood 
(nWeakComp) as well as the Reach Efficiency and the Constraint 
show a negative correlation between –0.424 and –0.463. This 
means that an increase in centrality comes with a decrease in 
number of defects. Since the values for the aforementioned meas-
ures are higher for binaries with neighbors that are closely con-
nected to each other and other binaries, this suggests that being in 
a closely connected neighborhood does not necessarily result in a 
high number of defects. This explanation is also supported by the 
negative correlation of –0.320 for Density. 

(3) Network measures have higher correlations for OUT and IN-
OUT than for IN neighborhoods. In other words, outgoing depen-
dencies are more related to defects than ingoing dependencies. 
Schröter et al. found similar evidence and used the targets of out-
going dependencies to predict defects [39]. The measures with the 
highest observed correlations were related to the size of the neigh-
borhoods (Size, Pairs, Broker, EffSize, and Degree) and to cen-
trality (Eigenvector and Information), all of them had correlations 
of 0.400 or higher. 

(4) Most complexity metrics have slightly higher correlations than 
network measures. For non-OO metrics the correlations are above 
0.500. In contrast, for OO metrics the correlations are lower 
(around 0.300) because not all parts of Windows Server 2003 are 
developed with object-oriented programming languages. This 
shows that OO metrics are only of limited use for predicting de-
fects in heterogeneous systems. 

Table 4. Spearman correlation between the number 
of defects and network measures as well as com-
plexity metrics. Correlations significant at 99% are 
marked by (**). Correlations above 0.40 are printed 
in boldface. 

 Spearman Correlation 
Ego Network In Out InOut 
Size .283(**) .440(**) .462(**) 
Ties .245(**) .434(**) .455(**) 
Pairs .276(**) .440(**) .462(**) 
Density .253(**) -.273(**) -.320(**) 
WeakComp .274(**) .035 .082(**) 
nWeakComp .227(**) -.438(**) -.453(**) 
TwoStepReach .287(**) .326(**) .333(**) 
ReachEfficency .230(**) -.402(**) -.424(**) 
Brokerage .271(**) .438(**) .461(**) 
nBrokerage .283(**) .275(**) .321(**) 
EgoBetween .263(**) .292(**) .320(**) 
nEgoBetween .279(**) .294(**) .285(**) 
EffSize   .466(**) 
Efficiency   .262(**) 
Constraint   -.463(**) 
Hierarchy   .064(**) 
    
Global Network    
Eigenvector   .428(**) 
Fragmentation   .276(**) 
Betweenness   .319(**) 
Information   .446(**) 
Power   .397(**) 
EffSize   .455(**) 
Efficiency   .021 
Constraint   -.454(**) 
Hierarchy   .176(**) 
    
 Ingoing Outgoing Symmetric 
Closeness -.057(**) .284(**) .372(**) 
Degree .283(**) .440(**) .462(**) 
dwReach .285(**) .394(**) .379(**) 
    

Complexity Metrics  Max Total 
Functions   .507(**) 
GlobalVariables   .436(**) 
Lines  .317(**) .516(**) 
Parameters  .386(**) .521(**) 
FanIn  .452(**) .502(**) 
FanOut  .360(**) .493(**) 
Complexity  .310(**) .509(**) 
    
OO Metrics  Max Total 
ClassMethods  .315(**) .336(**) 
SubClasses  .296(**) .295(**) 
InheritanceDepth  .286(**) .308(**) 
ClassCoupling  .318(**) .327(**) 
CyclicClassCoupling   .331(**) 
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Table 5.5: Pearson correlation values between the number of defects and centrality measures
as well as complexity metrics. Correlations significant at 99% are marked by (**)
and correlations significant at 95% are marked by (*). Correlations above 0.40 are
printed in boldface.
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APPENDIX 
 

Table 5. Pearson correlation values between the num-
ber of defects and centrality measures as well as com-
plexity metrics. Correlations significant at 99% are 
marked by (**) and correlations significant at 95% are 
marked by (*). Correlations above 0.40 are printed in 
boldface. 

 Pearson Correlation 
Ego Network In Out InOut 
Size .208(**) .419(**) .234(**) 
Ties .190(**) .421(**) .242(**) 
Pairs .152(**) .424(**) .154(**) 
Density .110(**) -.266(**) -.336(**) 
WeakComp .187(**) .051(*) .178(**) 
nWeakComp .130(**) -.201(**) -.215(**) 
TwoStepReach .288(**) .041 .051(*) 
ReachEfficency .155(**) -.200(**) -.226(**) 
Brokerage .152(**) .413(**) .153(**) 
nBrokerge .270(**) .269(**) .338(**) 
EgoBetween .156(**) .265(**) .164(**) 
nEgoBetween .198(**) .329(**) .290(**) 
EffSize   .221(**) 
Efficiency   .308(**) 
Constraint   -.346(**) 
Hierarchy   .208(**) 
    
Global Network    
Eigenvector   .311(**) 
Fragmentation   .261(**) 
Betweenness   .265(**) 
Information   .286(**) 
Power   .367(**) 
EffSize   .223(**) 
Efficiency   .070(**) 
Constraint   -.232(**) 
Hierarchy   -.041 
    
 Ingoing Outgoing Symmetric 
Closeness .005 .285(**) .133(**) 
Degree .208(**) .419(**) .234(**) 
dwReach .302(**) .252(**) .133(**) 
    
Complexity metrics  Max Total 
Functions   .416(**) 
GlobalVariables   .466(**) 
Lines  .243(**) .557(**) 
Parameters  .391(**) .533(**) 
FanIn  .345(**) .461(**) 
FanOut  .166(**) .480(**) 
Complexity  .049(*) .523(**) 
    
OO metrics  Max Total 
ClassMethods  .231(**) .288(**) 
SubClasses  .157(**) .189(**) 
InheritanceDepth  .218(**) .185(**) 
ClassCoupling  .224(**) .210(**) 
CyclicClassCoupling   .223(**) 
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dependencies. Schröter et al. (2006) found similar evidence and used the targets of outgo-
ing dependencies to predict defects. The measures with the highest observed correlations
were related to the size of the neighborhoods (Size, Pairs, Broker, EffSize, and Degree)
and to centrality (Eigenvector and Information), all of them had correlations of 0.400 or
higher.

4. Most complexity metrics have slightly higher correlations than network measures. For
non-OO metrics the correlations are above 0.500. In contrast, for OO metrics the cor-
relations are lower (around 0.300) because not all parts of Windows Server 2003 are
developed with object-oriented programming languages. This shows that OO metrics are
only of limited use for predicting defects in heterogeneous systems.

To summarize, we could observe significant correlations for most network measures, and most
of them were positive and moderate. However, since we observed several negative correlations,
we need to remove the “positively” from our initial hypothesis (H2). The revised hypothesis
that network measures on dependency graphs correlate with the number of post-release defects
(H2*) is confirmed by our observations. At a first glance complexity metrics might outper-
form network measures, but we show in Section 5.2.3 that network measures actually improve
prediction models for defects.

5.2.3 Regression Analysis

Since network measures on dependency graphs correlate with post-release defects, can we use
them to predict defects? To answer this question, we build multiple linear regression (MLR)
models where the number of post-release defects forms the dependent variable. We build sepa-
rate models for three different sets of input variables:

SNA. This set of variables consists of the network measures that were introduced in Sec-
tion 5.1.2.

METRICS. This set consists of all non-OO complexity metrics listed in Table 5.2. We decided
to ignore OO-metrics for the regression analysis because they were only applicable to a
part of Windows Server 2003 because most of Windows is comprised of non-OO code.

SNA+METRICS. This set is the combination of the two previous sets (SNA, METRICS) and
allows us to quantify the value added by network measures.

We carried out six experiments: one for each combination out of two kinds of regression models
(linear, logistic) and three sets of input variables (SNA, METRICS, SNA+METRICS).

Principal Component Analysis

One difficulty associated with MLR is multicollinearity among the independent variables. Mul-
ticollinearity comes from inter-correlations amongst metrics such as between the aforemen-
tioned Multi_Edges and Multi_Complexity. Inter-correlations can lead to an inflated variance in
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the estimation of the dependent variable. To overcome this problem, we use a standard statistical
approach called Principal Component Analysis (PCA) (Jackson, 2003).

With PCA, a small number of uncorrelated linear combinations of variables are selected for use
in regression (linear or logistic). These combinations are independent and thus do not suffer
from multicollinearity, while at the same time they account for as much sample variance as
possible—for our experiments we selected principal components that account for a cumulative
sample variance greater than 95%.

We ended up with 15 principal components for SNA, 6 for METRICS, and 20 for the combined
set of measures SNA+METRICS. The principal components were then used as the independent
variables in the linear and logistic regression models.

Training Regression Models

To evaluate the predictive power of graph complexities we use a standard evaluation technique:
data splitting (Munson and Khoshgoftaar, 1992). That is, we randomly pick two-thirds of all
binaries to build a prediction model and use the remaining one-third to measure the efficacy
of the built model (see Figure 5.4). For every experiment, we performed 50 random splits to
ensure the stability and repeatability of our results—in total we trained 300 models. Whenever
possible, we reused the random splits to facilitate comparison of results.

Random 2/3 
of binaries

Remaining 
1/3 of binaries

Training
(build a model)

Testing
(assess the model)

50x

Figure 5.4: Random split experiments.

We measured the quality of trained models with:

• The R2 value is the ratio of the regression sum of squares to the total sum of squares.
It takes values between 0 and 1, with larger values indicating more variability explained
by the model and less unexplained variation—a high R2 value indicates good explanative
power, but not predictive power. For logistic regression models, a specialized R2 value
introduced by Nagelkerke (1991) is typically used.

• The adjusted R2 measure also can be used to evaluate how well a model fits a given data
set (Abreu and Melo, 1996). It explains for any bias in the R2 measure by taking into
account the degrees of freedom of the independent variables and the sample population.
The adjusted R2 tends to remain constant as the R2 measure for large population samples.
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Additionally, we performed F-tests on the regression models. Such tests measure the statistical
significance of a model based on the null hypothesis that its regression coefficients are zero. In
our case, every model was significant at 99%.

Linear Regression

In order to test how well linear regression models predict defects, we computed the Pearson and
Spearman correlation coefficients (see Section 5.2.2) between the predicted number of defects
and the actual number of defects. As before, the closer a value to –1 or +1, the higher two
measures are correlated—in our case values close to 1 are desirable. In Figures 5.5 and 5.6, we
report only correlations that were significant at 99%.

Figure 5.5 shows the results of the three experiments (SNA, METRICS, and SNA+METRICS)
for linear regression modeling, each of them consisting of 50 random splits. For all three ex-
periments, we observe consistent R2 and adjusted R2 values. This indicates the efficacy of the
models built using the random split technique. The values for Pearson are less consistent; still
we can observe high correlations (above 0.60).

The values for Spearman correlation values indicate the sensitivity of the predictions to estimate
defects—i.e., an increase/decrease in the estimated values is accompanied by a corresponding
increase/decrease in the actual number of defects. In all three experiments (SNA, METRICS,
SNA+METRICS), the values for Spearman correlation are consistent across the 50 random
splits. For SNA and METRICS separately the correlations are close to 0.50. This means that
models built from network measures can predict defects as well as models built from complexity
metrics. Building combined models increases the quality of the predictions, which is expressed
by the correlations close to 0.60 in the SNA+METRICS experiment.

Binary Logistic Regression

We repeated our experiments using binary logistic regression model. In contrast to linear re-
gression, logistic regression predicts likelihoods between 0 and 1. In our case, they can be
interpreted as defect-proneness, i.e., the likelihood that a binary contains at least one defect.
For training, we used the sign(number of defects) as dependent variable.

sign(number of defects) =

{
1, if number of defects > 0
0, if number of defects = 0

For prediction, we used a threshold of 0.50, i.e., all binaries with a defect-proneness of less than
0.50 were predicted as defect-free, while binaries with a defect-proneness of at least 0.50 were
predicted as defect-prone.

In order to test the logistic regression models, we computed precision and recall. To explain
these two measures, we use the following contingency table.
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Figure 5.5: Results for linear regression.

Observed
Defect-prone Defect-free

Predicted Defect-prone (≥0.5) A B
Defect-free (<0.5) C D

The recall A/(A + C) measures the percentage of binaries observed as defect-prone that were
classified correctly. The fewer false negatives (missed binaries), the closer the recall is to 1.

The precision A/(A+B) measures the percentage of binaries percentage of binaries predicted
as defect-prone that were classified correctly. The fewer false positives (incorrectly predicted
as defect-prone), the closer the precision is to 1.

Both precision and recall should be as close to the value 1 as possible (=no false negatives
and no false positives). However, such values are difficult to realize since precision and recall
counteract each other.

Figure 5.6 shows the precision and recall values of the three experiments (SNA, METRICS,
and SNA+METRICS) for logistic regression modeling. For each experiment, the values were
consistent across the 50 random splits. The precision was around 0.70 in all three experiments.
The recall was close to 0.60 for complexity metrics (METRICS), and close to 0.70 for the model
built from network measures (SNA) and the combined model that used both complexity metrics
and network measures (SNA+METRICS). These numbers show that network measures increase
the recall of defect prediction by 0.10.

The results for both linear and logistic regression support our hypothesis, that network measures
on dependency graphs, can predict the number of post-release defects (H3).
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Figure 5.6: Results for logistic regression.

5.2.4 The Domino Effect

In 1975, Randell defined the domino effect principle (Randell, 1975):

“Given an arbitrary set of interacting processes, each with its own private recovery
structure, a single error on the part of just one process could cause all the processes
to use up many or even all of their recovery points, through a sort of uncontrolled
domino effect.”

Restating Randell on dependency relationships, we hypothesize that defects in one component
can significantly increase the likelihood of defects (in other words the probability of defects) in
dependent components. This is a significant issue in understanding the cause-effect relationship
of defects and the potential risk of propagating a defect through the entire system.

In order to identify critical binaries in Windows Server 2003, we investigated the distribution
of the conditional likelihood p(DEFECT | Binary depends on B) that a binary that directly de-
pends on B has an associated defect.

p(DEFECT | Binary depends on B) =
number of binaries that depend on B and have a defect

number of binaries that depend on B
(5.1)

Figure 5.7 shows an example (these numbers do not reflect actual values; they are just for
illustrative purposes). There are three binaries that depend directly on B. Out of these three,
two have defects; thus the above likelihood of defects is

p(DEFECT | Binary depends on B) = 2/3 = 0.66.
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d=1

d=2

d=3

p=2/3=0.66

p=2/4=0.50

p=2/5=0.40

Binary B
(with defects)

= Binary with defects

= Binary without defects

Figure 5.7: Computing likelihood of defects for binaries that depend on binary B (distance
d=1,2,3).

We also computed the likelihood of defects for additional distances, taking binaries into account
that do not directly depend on B, but are two or more steps away. In Figure 5.7, four binaries
indirectly depend on B over one intermediate step (distance d = 2), two of them have observed
defects, thus the likelihood decreases to 0.50. In the same way, five binaries depend on B
over two intermediate steps (distance d = 3), two of them have defects, thus the likelihood
further decreases to 0.40. Our hypothesis is that binaries (closer to and) having dependencies
on binaries with defects have a higher likelihood to contain defects.

We divided the 2252 binaries of Windows Server 2003 into two categories, (i) binaries that
contain defects and (ii) binaries that do not contain defects. For each of these categories we
computed the probability that the neighboring binaries (d = 1,2,3) contain defects or not using
Equation 5.1. We show the distribution of the likelihood of defects when depending on binaries
without defects in Figure 5.8 and when depending on binaries with defects in Figure 5.9. To
protect proprietary information, we anonymized the y-axis which reports the frequencies. Hav-
ing the highest bar on the left (at 0.00), means that for most binaries the dependent binaries had
no defects; the highest bar on the right (at 1.00X), shows that for most binaries all dependent
binaries had defects.

In Figure 5.8, we show the distribution of the likelihood p(DEFECT | Binary depends on B)
when depending on binaries without defects. For d = 1, we can observe that binaries can
depend safely on every second binary without defects. In most cases when depending was
not safe, there was only one depended binary and that binary had defects, thus resulting in a
likelihood of 1.00 (as shown on the right side of the frequency bar chart for d = 1).

We can also observe that when increasing the distance d, the median of the likelihood increases
as well (trend towards the right). This means that being far away from binaries without defects
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Figure 5.8: Distribution of the likelihood
of defects when depending on
defect-free binaries.
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Figure 5.9: Distribution of the likelihood
of defects when depending on
defect-prone binaries.

increases the chances to fail. This could also be a due to the fact that as we move further away
from a binary without defects we could become closer to other binaries with defects.

In contrast, Figure 5.9 shows the distribution of the likelihood when depending on binaries
with defects. We see that directly depending on binaries with defects causes most binaries to
have defects, too (d = 1). This effect decreases when the distance d increases (trend towards
the left). In other words, we can observe a domino effect; however with every step it takes, its
power (or likelihood) decreases. This trend is demonstrated by the shifting of the median from
right to left with respect to the likelihood on depending on binaries with defects.

To summarize, the outliers in the opposite directions of Figure 5.8 and 5.9 clearly supports
our hypothesis that, depending on certain binaries correlates with the increase/decrease in the
likelihood of observing a defect in a binary (H4). This information can be very useful when
making new design decisions to choose whether dependencies should be created on existing
binaries with/without defects and located how far away from them.

The results also provide an empirical quantification of the domino effect on defects. As with
all empirical studies there is always a degree of unknown variability, for example this could be
an effect of the organizational structure of Windows, the working level and experience (or lack
thereof) of the developers, the complexity of the code base, or the extent of churn in the code
base.
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5.3 Threats to Validity

In this section we discuss the threats to validity of our work. We assumed that fixes occur in the
same location as the corresponding defect. Although this is not always true, this assumption is
frequently used in research (Fenton and Ohlsson, 2000; Möller and Paulish, 1993; Nagappan
et al., 2006b; Ostrand et al., 2005). As stated by Basili et al., drawing general conclusions
from empirical studies in software engineering is difficult because any process depends on a
potentially large number of relevant context variables (Basili et al., 1999). For this reason, we
cannot assume a priori that the results of a study generalize beyond the specific environment in
which it was conducted.

Since this study was performed on the Windows operating system and the size of the code base
and development organization is at a much larger scale than many commercial products, it is
likely that the specific models built for Windows would not apply to other products, even those
built by Microsoft.

This previous threat in particular is frequently misunderstood as a criticism on empirical stud-
ies. Another common misinterpretation is that nothing new learned from the result of empirical
studies or more commonly “I already knew this result”. Unfortunately, some readers miss the
fact that this wisdom has rarely been shown to be true and is often quoted without scientific
evidence. Further, data on defects is rare and replication is a common empirical research prac-
tice. We are confident that dependency data has predictive power for other projects—we will
repeat our experiments for other Microsoft products and invite everyone to do the same for other
software projects.

5.4 Summary

We showed that network measures on dependency graphs predict defects for binaries of Win-
dows Server 2003. This supports managers in the task of allocating resources such as time and
cost for quality assurance. Ideally, the parts with most defects would be tested most.

The results of this empirical study are as follows.

• Complexity metrics fail to predict binaries that developers consider as critical (only 30%
are predicted; Section 5.2.1).

• Network measures can predict 60% of these critical binaries (Section 5.2.1).

• Network measures on dependency graphs can indicate and predict the number of defects
(Sections 5.2.2 and 5.2.3).

• When used for classification, network measures have a recall that is 0.10 higher than for
complexity metrics with a comparable precision (Section 5.2.3).

• We observed a domino effect in Windows Server 2003: depending on defect-prone bina-
ries increases the chances of having defects (Section 5.2.4).
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Chapter 6

Predicting Defects for Subsystems

In this chapter, we will investigate whether dependency data predicts defects. Rather than using
code complexity metrics for individual binaries, we will compute complexity measures for the
dependency graphs of whole subsystems. By using graph theoretic properties we can take the
interaction between binaries into account. Formally, our research hypotheses are the following.

H1 For subsystems, the complexity of dependency graphs positively correlates with the num-
ber of post-release defects—an increase in complexity is accompanied by an increase in
defects.

H2 The complexity of dependency graphs can predict the number of post-release defects.

H3 The quality of the predictions improves when they are made for subsystems that are higher
in the system’s architecture.

The outline of this chapter is as follows. First, we will present the data collection for our study
(Section 6.1). In our experiments, we evaluated how well the complexity of a subsystem’s
dependency graph predict the number of defects (Section 6.2). We close with a discussion of
threats to validity (Section 6.3).

6.1 Data Collection

In this section, we explain how we collected hierarchy information and software dependencies
and how we measured the complexity of subsystems. For our experiments we used the Win-
dows Server 2003 operating system which is decomposed into a hierarchy of subsystems as
shown in Figure 6.1. On the highest level are areas such as “Multimedia” or “Networking”.
Areas are further decomposed into components such as “Multimedia: DirectX” (DirectX is a
Windows technology that enables higher performance in graphics and sound when users are
playing games or watching video on their PC) and subcomponents such as “Multimedia: Di-
rectX: Sound”. On the lowest level are the binaries to which we can accurately map defects;
we considered post-release defects because they matter most for end-users. Since defects are
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3.2. Complexity metrics 

Typically, research on failure-proneness captures 
software complexity with metrics and builds models 
that relate these metrics to failure-proneness [9]. Basili 
et al. [3] were among the first to validate that OO me-
trics predict defect density. Subramanyam and Krish-
nan [31] presented a survey on eight more empirical 
studies, all showing that OO metrics are significantly 
associated with defects.  

Our experiments focus on post-release failures since 
they matter for the end-users of a program. Only few 
studies addressed post-release failures: Binkley and 
Schach [5] developed a coupling metric and showed 
that it outperforms several other metrics; Ohlsson and 
Alberg [24] used metrics to predict modules that fail 
during operation. Additionally, within five Microsoft 
projects, Nagappan et al. [23] identified metrics that 
predict post-release failures and reported how to sys-
tematically build predictors for post-release failures 
from history. In contrast to their work, we develop new 
metrics on dependency data from a graph theoretic 
point of view. 

3.3. Historical data 

Several researchers used historical data for predict-
ing defect density: Khoshgoftaar et al. [15] classified 
modules as defect-prone when the number of lines 
added or deleted exceeded a threshold. Graves et al. 
[12] used the sum of contributions to a module to pre-
dict defect density. Ostrand et al. [25] used historical 
data from up to 17 releases to predict the files with the 
highest defect density of the next release. Further, 
Mockus et al. [18] predicted the customer perceived 
quality using logistic regression for a commercial tele-
communications system  (of size seven million lines of 
code) by utilizing external factors like hardware confi-
gurations, software platforms, amount of usage and 
deployment issues. They observed an increase in prob-
ability of failure by twenty times by accounting for 
such measures in their prediction equations. 

4. Data collection 

In this section we explain how we collect hierarchy 
information and software dependencies and how we 
measure the complexity of subsystems. For our expe-
riments we used the Windows Server 2003 operating 
system which is decomposed into a hierarchy of sub-
systems as shown in Figure 3. On the highest level are 
areas
are further decomposed into components such as 

DirectX is a Windows tech-

nology that enables higher performance in graphics and 
sound when users are playing games or watching video 
on their PC) and subcomponents such as e-
dia: DirectX: bi-
naries to which we can accurately map failures; we 
considered post-release failures because they matter 
most for end-users. Since failures are mapped to the 
level of binaries, we can aggregate the failure counts 
of the binaries of a subsystem (areas, components, 
subcomponents) to get its total subsystem failure 
count.  
We first generate a dependency graph for Windows 
Server 2003 at the binary level (Section 4.1). Then we 
divide this graph into different kinds of subgraphs us-
ing the area/component/subcomponent hierarchy (Sec-
tion 4.2). For the subgraphs, we compute complexity 
measures (Section 4.3) which we finally use to predict 
failures for subsystems. We placed our analysis on the 
level of binaries for two reasons: (1) Binaries are easier 
to analyze since one is independent from the build 
process and other specialties such as preprocessors. (2) 
Defects were collected on binary level; mapping them 
back to source code is challenging and might distort 
our study. 

4.1. Software dependencies 

A software dependency is a directed relation be-
tween two pieces of code (such as expressions or me-
thods). There exist different kinds of dependencies: 
data dependencies between the definition and use of 
values and call dependencies between the declaration 
of functions and the sites where they are called.  

Microsoft has an automated tool called MaX [30] 
that tracks dependency information at the function lev-
el, including calls, imports, exports, RPC, COM, and 
Registry accesses. MaX generates a system-wide de-
pendency graph from both native x86 and .NET ma-
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Figure 3. Example architecture of Windows 
Server 2003
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Figure 6.1: Example architecture of Windows Server 2003.

mapped to the level of binaries, we can aggregate the defect counts of the binaries of a subsys-
tem (areas, components, subcomponents) to get its total subsystem defect count.

We first generate a dependency graph for Windows Server 2003 at the level of binaries (Sec-
tion 6.1.1). Then we divide this graph into different kinds of subgraphs using the area/com-
ponent/subcomponent hierarchy (Section 6.1.2). For the subgraphs, we compute complexity
measures (Section 6.1.3) which we finally use to predict defects for subsystems. We placed our
analysis on the level of binaries for two reasons: (i) Binaries are easier to analyze since one
is independent from the build process and other specialties such as preprocessors. (ii) Defects
were collected on binary level; mapping them back to source code is challenging and might
distort our study.

6.1.1 Software Dependencies

For the computation of software dependencies, we refer to Section 5.1.1. To recall, a depen-
dency graph is a directed multigraph GM = (V,A) where

• V is a set of nodes (binaries) and

• A = (E,m) a multiset of edges (dependencies) for which E ⊆ V ×V contains the actual
edges and the function m : E → N returns the multiplicity (count) of an edge.

The corresponding regular graph (without multiedges) is G = (V,E). We allow self-edges for
both regular graphs and multigraphs.

For the experiments in this Section, we will consider both regular graphs (where only one edge
between two binaries is counted) and multigraphs (where every edge between two binaries is
counted).
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naged binaries. This graph can be viewed as the low-
level architecture of Windows Server 2003. Within 
Microsoft, MaX is used for change impact analysis and 
for integration testing [30]. There are freely available 
tools like Dependency Finder or JDepend (for Java) 
and MakeDep (for C++) which can be used to repeat 
our study for other projects. 

For our analysis, we use MaX to generate a system-
wide dependency graph at the function level. Since we 
collect failure data for binaries, we lift this graph up to 
binary level in a separate post-processing step. Consid-
er for example the dependency graph in Figure 5. Cir-
cles denote functions and boxes are binaries. Each thin 
edge corresponds to a dependency at function level. 
Lifting them up to binary level, there are two depen-
dencies within A and four within B (represented by 
self-edges), as well as three dependencies where A 
depends on B. We refer to these numbers as multiplici-
ty of a dependency/edge.  

As a result of this lifting operation there may be 
several dependencies between a pair of binaries (like in 
Figure 5 between A and B), which results in several 
edges in the dependency graph. For our predictions, we 
will consider both regular graphs (where only one edge 
between two binaries is counted) and multigraphs 
(where every edge between two binaries is counted). 

Formally (for our experiments), a dependency graph 
is a directed multigraph G = (V, A) where  

V is a set of nodes (binaries) and  
A = (E, m) a multiset of edges (dependencies) for 
which E  V×V contains the actual edges and the 

function m: E N returns the multiplicity (count) 
of an edge. 

The corresponding regular graph (without multiedges) 
is . We allow self-edges for both regular 
graphs and multigraphs. 

4.2. Dependency subgraphs 

We use hierarchy data from Windows Server 2003 to 
split the dependency graph G=(V,A) into several sub-
graphs; for a subsystem that consists of binaries B, we 
compute the following subgraphs (see also Figure 4):

Intra-dependencies (INTRA). The subgraph (Vintra,
Eintra) contains all intra-dependencies, i.e., dependen-
cies (u,v) that exist between two binaries u,v B within 
the subsystem. This subgraph is induced by the set of 
binaries B that are part of the subsystem.  

intra =

intra = , , , ,

intra = ( intra , )

Outgoing dependencies (OUT). The subgraph (Vout,
Eout) contains all outgoing inter-dependencies (u,v) that 
connect the subsystem with other subsystems, i.e., 
u B, v B. This subgraph is induced by the set of 
edges that represent outgoing dependencies. We focus 
on outgoing dependencies because they are the ones 
that can make code fail. 

out = , , , ,

out = ( out, )

out = , out , out

Subsystem dependency graph (DEP). The subgraph 
(Vdep, Edep) combines the intra-dependencies and the 
outgoing dependencies subgraphs. Note that we addi-
tionally take edges between the neighbors of the sub-
system into account. 

dep = intra out

out = , , , dep, dep

out = ( out, )

Sample graph INTRA OUT DEP

Figure 4. Different subgraphs for a subsystem that consists of binaries A, B, C, D, and E:
intra-dependency (INTRA), outgoing dependency (OUT), and combined dependency graph (DEP).

Figure 5. Lifting up dependencies. The edges 
are labeled by the multiplicity of a dependency
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Figure 6.2: Different subgraphs for a subsystem that consists of binaries A, B, C, D, and E:
intra-dependency (INTRA), outgoing dependency (OUT), and combined depen-
dency graph (DEP).

6.1.2 Dependency Subgraphs

We use hierarchy data from Windows Server 2003 to split the dependency graph GM = (V,A)
into several subgraphs; for a subsystem that consists of binaries B, we compute the following
subgraphs (see also Figure 6.2):

Intra-dependencies (INTRA). The subgraph (Vintra, Eintra) contains all intra-dependencies,
i.e., dependencies (u, v)that exist between two binaries u, v ∈ B within the subsystem.
This subgraph is induced by the set of binaries B that are part of the subsystem.

Vintra = B

Eintra = {(u, v) | (u, v) ∈ E, u ∈ B, v ∈ B}
Aintra = (Eintra,m)

Outgoing dependencies (OUT). The subgraph (Vout, Eout) contains all outgoing inter-depen-
dencies (u, v) that connect the subsystem with other subsystems, i.e., u∈B, v/∈B. This
subgraph is induced by the set of edges that represent outgoing dependencies. We focus
on outgoing dependencies because they are the ones that can make code fail.

Eout = {(u, v) | (u, v) ∈ E, u ∈ B, v /∈ B}
Vout = {u | (u, v) ∈ Eout} ∪ {v | (u, v) ∈ Eout}
Aout = (Eout,m)

Subsystem dependency graph (DEP). The subgraph (Vdep, Edep) combines the intra-depen-
dencies and the outgoing dependencies subgraphs. Note that we additionally take edges
between the neighbors of the subsystem into account.

Vdep = Vintra ∪ Vout

Edep = {(u, v) | (u, v) ∈ E, u ∈ Vdep, v ∈ Vdep}
Adep = (Eintra,m)

Considering different subgraphs allows us to investigate the influence of internal vs. external
dependencies on post-release defects. We compute the dependencies across all the three sub-
system levels (area, component, and subcomponent).
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Table 6.1: Complexity measures for a multigraph GM = (V, (E,m)) and its underlying graph
G = (V,E). The set of weakly connected components is P ; in(v) returns the ingo-
ing and out(v) the outgoing edges of a node v.

Considering different subgraphs allows us to investi-
gate the influence of internal vs. external dependencies 
on post-release defects. We compute the dependencies 
across all the three subsystem levels (area, component, 
and subcomponent). 

4.3. Graph-Theoretic Complexity Measures 

On the subgraphs defined in the previous section, we 
compute complexity measures which we will later use 
to predict post-release failures. The complexity meas-
ures are computed for both regular graph and multi-
graphs with the main difference being the number of 
edges  and  respectively. Some of the 
measures are aggregated from values for nodes and 
edges by using minimum, maximum and average. The 
formulas are summarized in Table 1 and discussed 
below. 
Graph complexity. Besides simple complexity meas-
ures such as the number of nodes or number of edges,
we compute the graph complexity and the density of a 
graph [32]. Although the graph complexity was devel-
oped for graphs in general, it is well known in the 
software engineering community for its use on control 

Degree-based complexity. We measure the number of 
ingoing and outgoing edges (degree) of nodes and ag-
gregate them by using minimum, maximum, and aver-
age. These values allow us to investigate whether the 
aggregated number of dependencies has an impact on 
failures. 

Distance-based complexity. By using the Floyd-
Warshall algorithm [8], we compute the shortest dis-
tance between all pairs of nodes. For regular graphs, 
the initial distance between two connected nodes is 1. 
For multigraphs, we assume that the higher the multip-
licity of an edge e, the closer the incident nodes are to 
each other; thus we set the initial distance to 1/m(e).
From the distances we compute the eccentricity of a 
node v which is the greatest distance between v and 
any other node. We aggregate all eccentricities with 
minimum (=radius), maximum (=diameter), and aver-
age. With distance-based complexities we can investi-
gate if the propagation of dependencies has an impact 
on failures. 
Multiplicity-based complexity. For multigraphs, we 
measure the minimum, maximum and average multip-
licity of edges. This also allows us to investigate the 
relation between number of dependencies and failures. 

5. Experimental analysis 

In this section, we will support our hypotheses that 
complexity of dependency graphs predicts the number 
of failures for a subsystem, with several experiments. 
We carried out the experiments on three different ar-
chitecture levels of Windows Server 2003: subcom-
ponents, components, and areas. Most of this paper 
will focus on the subcomponent level: we start with a 
correlation analysis of complexity measures and num-
ber of failures (Section 5.1) and continue with building 
regression models for failure prediction (Section 5.2). 
Next, we summarize the results for the component and 

Table 1 The set of 
weakly connected components is P; in(v) returns the ingoing and out(v) the outgoing edges of a node v.

Regular graph Multigraph Aggregation

Number of NODES Not necessary

Number of EDGES Not necessary

COMPLEXITY + + Not necessary

DENSITY
E

V V V V
Not necessary

DEGREE of node v in out in out
Over nodes using 

min, max, avg.

ECCENTRICITY of node v max dist v, w w V max multidist v, w w V
Over nodes using 

min, max, avg.

MULTIPLICITY of edge e 1 ( )
Over edges using 

min, max, avg.
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6.1.3 Graph-Theoretic Complexity Measures

On the subgraphs defined in the previous section, we compute complexity measures which
we will later use to predict post-release defects. The complexity measures are computed for
both regular graph and multigraphs with the main difference being the number of edges E
and

∑
e∈E m(e) respectively. Some of the measures are aggregated from values for nodes and

edges by using minimum, maximum and average. The formulas are summarized in Table 6.1
and discussed below.

Graph complexity. Besides simple complexity measures such as the number of nodes or
number of edges, we compute the graph complexity and the density of a graph (West, 2001).
Although the graph complexity was developed for graphs in general, it is well known in software
engineering for its use on control flow graphs (McCabe’s cyclomatic complexity).

Degree-based complexity. We measure the number of ingoing and outgoing edges (degree)
of nodes and aggregate them by using minimum, maximum, and average. These values allow
us to investigate whether the aggregated number of dependencies has an impact on defects.

Distance-based complexity. By using the Floyd-Warshall algorithm (Cormen et al., 2001),
we compute the shortest distance between all pairs of nodes. For regular graphs, the initial
distance between two connected nodes is 1. For multigraphs, we assume that the higher the
multiplicity of an edge e, the closer the incident nodes are to each other; thus we set the ini-
tial distance to 1/m(e). From the distances we compute the eccentricity of a node v which is
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the greatest distance between v and any other node. We aggregate all eccentricities with mini-
mum (=radius), maximum (=diameter), and average. With distance-based complexities we can
investigate if the propagation of dependencies has an impact on defects.

Multiplicity-based complexity. For multigraphs, we measure the minimum, maximum and
average multiplicity of edges. This also allows us to investigate the relation between number of
dependencies and defects.

6.2 Experimental Analysis

In this section, we will support our hypotheses that complexity of dependency graphs predicts
the number of defects for a subsystem, with several experiments. We carried out the exper-
iments on three different architecture levels of Windows Server 2003: subcomponents, com-
ponents, and areas. Most of this paper will focus on the subcomponent level: we start with a
correlation analysis of complexity measures and number of defects (Section 6.2.1) and continue
with building regression models for defect prediction (Section 6.2.2). Next, we summarize the
results for the component and area level and discuss the influence of granularity (Section 6.2.3).
Finally, we present threats to validity.

6.2.1 Correlation Analysis

In order to investigate our initial hypothesis H1, we determined the Pearson and Spearman
rank correlation between the dependency graph complexities measures for each subcomponent
(Sections 6.1.2 and 6.1.3) and its number of defects. For Pearson correlation to be applied the
data requires a linear distribution, Spearman rank correlation can even be applied for non-linear
associations between values (Fenton and Pfleeger, 1998). The closer the value of correlation is
to –1 or +1, the higher two measures are correlated—positively for +1 and negatively for –1.

The results for subcomponent level of Windows Server 2003 are shown in Table 6.2. The
table shows the complexity measures in the rows (Section 6.1.3) and the different kinds of
dependency graphs in the columns (Section 6.1.2). Correlations that are significant at 0.99 are
indicated with (*); note that the Multi_Edges and Multi_Complexity measures were strongly
inter-correlated, which resulted in almost the same correlations with the number of defects.
For space reasons we omit we the inter-correlations between the complexity measures. The
correlation for the area and component level can be found in Table 6.3 and 6.4.

In Table 6.2 we can make the following observations.

(O1) For most measures the correlations are significant (indicated by *) and positive. This
means that with an increase of such measures there an increase in the number of defects,
though at different levels of strength.

(O2) The only notable negative correlation is for Density, which means that with an increase
in the density of dependencies there is a decrease in the number of defects. This effect



80 Chapter 6. Predicting Defects for Subsystems

is strongest for DEP graphs. When taking multiedges into account (Multi_Density) the
effect vanishes.

(O3) When we neglect multiplicity and consider only presence of dependencies, we obtain
the highest correlations for subgraphs that additionally contain the neighborhood of a
subsystem (DEP).

(O4) When we take multiplicity of dependencies into account the correlations are highest for
subgraphs that contain only dependencies within the subsystem (INTRA).

(O5) The correlations are highest for Multi_Edges, and the inter-correlated Multi_Complexity,
and for Multi_Degree_Max and Multi_Multiplicity_Max (highlighted in bold). All of
these measures consider multiedges, suggesting that the number of dependencies matters
and not just the presence.

To summarize we could observe significant correlations for most complexity measures, and
most of them were positive and high (O1, O5). This confirms our initial hypothesis that the
complexity of dependency graphs positively correlates with the number of post-release defects
(H1). The only exception we observed was the density of a dependency graph (O2). This is
surprising, especially since cliques tend to have a high defect-proneness (see Section 2) and
a high density at the same time. One possible explanation for the poor correlation of density
might be that normalizing the number of dependencies |E| by the squared number of binaries
|V | · |V | is too strong. This is supported by the Degree_Avg measure which normalizes |E| only
by |V | and has a rather high positive correlation (up to 0.527 for Spearman).

The different results for complexity measures with and without multiplicity (O3 and O4), might
suggest that one should consider both, the multiplicity of dependencies and the neighborhood of
a subsystem—however, dependencies across subsystems should be weighted less. In our future
work, we will investigate whether this actually holds true.

6.2.2 Regression Analysis

So since complexity of dependency graphs correlates with post-release defects, can we use com-
plexity to predict defects? To answer this question, we build multiple linear regression (MLR)
models where the number of post-release defects forms the dependent variable and our com-
plexity measures form the independent variables. We build separate models for every type of
subgraph (INTRA, OUT, and DEP) and a combined model that uses all measures from Table 6.2
as independent variables (COMBINED). We carried out 24 experiments: one for each combi-
nation out of two kinds of regression (linear, logistic), three granularities (areas, components,
subcomponents,) and four different sets of complexities (INTRA, OUT, DEP, COMBINED).

However, one difficulty associated with MLR is multicollinearity among the independent vari-
ables. Multicollinearity comes from inter-correlations such as between the aforementioned
Multi_Edges and Multi_Complexity. Inter-correlations can lead to an inflated variance in the
estimation of the dependent variable. To overcome this problem, we use a standard statisti-
cal approach called Principal Component Analysis (PCA) (Jackson, 2003). With PCA, a small
number of uncorrelated linear combinations of variables are selected for use in regression (linear
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Table 6.2: Correlation values between number of defects and complexity measures (on sub-
component level).

area level and discuss the influence of granularity 
(Section 5.3). Finally, we present threats to validity. 

5.1. Correlation analysis 

In order to investigate our initial hypothesis H1, we 
determined the Pearson and Spearman rank correlation 
between the dependency graph complexities measures 
for each subcomponent (Sections 4.2 and 4.3) and its 
number of failures. For Pearson correlation to be ap-
plied the data requires a linear distribution, Spearman 
rank correlation can be applied even when the associa-
tion between values is non-linear [11]. The closer the 
value of correlation is to 1 or +1, the higher two 
measures are correlated positively for +1 and nega-
tively for 1.  

The results for subcomponent level of Windows 
Server 2003 are shown in Table 2. The table shows the 
complexity measures in the rows (Section 4.3) and the 
different kinds of dependency graphs in the columns 
(Section 4.2). Correlations that are significant at 0.99 
are indicated with (*); note that the Multi_Edges and 
Multi_Complexity measures were strongly inter-
correlated, which resulted in almost the same correla-
tions with the number of failures. For space reasons we 
omit we the inter-correlations between the complexity 
measures; the correlation for the area and component 
level can be found in our technical report [33]. 

In Table 2 we can make the following observations. 
O1 For most measures the correlations are significant 

(indicated by *) and positive. This means that with 
an increase of such measures there an increase in 
the number of failures, though at different levels 
of strength. 

O2 The only notable negative correlation is for Densi-
ty, which means that with an increase in the densi-
ty of dependencies there is a decrease in the num-
ber of failures. This effect is strongest for DEP 
graphs, but vanishes when taking multiedges into 
account (Multi_Density).

O3 When we neglect multiplicity and consider only 
presence of dependencies, we obtain the highest 
correlations for subgraphs that additionally contain 
the neighborhood of a subsystem (DEP).  

O4 When we take multiplicity of dependencies into 
account the correlations are highest for subgraphs 
that contain only dependencies within the subsys-
tem (INTRA). 

O5 The correlations were highest for Multi_Edges,
and the inter-correlated Multi_Complexity, and for 
Multi_Degree_Max and Multi_Multiplicity_Max
(highlighted in bold). All of these measures con-
sider multiedges, suggesting that the number of 
dependencies matters and not just the presence. 

To summarize we could observe significant correla-
tions for most complexity measures, and most of them 

Table 2. Correlation between failures and complexity measures (on subcomponent level)
Pearson Spearman

INTRA OUT DEP INTRA OUT DEP
NODES .325(*) .497(*) .501(*) O3 .338(*) .579(*) .580(*) O3
EDGES .321(*) .454(*) .485(*) .353(*) .586(*) .567(*)
COMPLEXITY .319(*) .322(*) .481(*) .346(*) .387(*) .564(*)
DENSITY O2 -.312(*) -.292(*) -.418(*) -.294(*) -.506(*) -.519(*)
DEGREE_MIN .168(*) .054(*) .014(*) .182(*) .030(*) .145(*)
DEGREE_MAX .332(*) .409(*) .496(*) .347(*) .533(*) .569(*)
DEGREE_AVG .386(*) .377(*) .366(*) .332(*) .516(*) .526(*)
ECCENTRICITY_MIN .293(*) .164(*) .009(*) .314(*) .305(*) .079(*)
ECCENTRICITY_MAX .307(*) .201(*) .094(*) .323(*) .337(*) .370(*)
ECCENTRICITY_AVG .303(*) .193(*) .099(*) .317(*) .471(*) .527(*)
MULTI_EDGES O4 .728(*) .432(*) .393(*) O4 .667(*) .671(*) .524(*)
MULTI_COMPLEXITY .728(*) .432(*) .393(*) .667(*) .671(*) .524(*)
MULTI_DENSITY .290(*) .116(*) -.108(*) .455(*) .282(*) -.138(*)
MULTI_DEGREE_MIN .376(*) .006(*) .177(*) .296(*) -.298(*) .045(*)
MULTI_DEGREE_MAX .637(*) .395(*) .356(*) .643(*) .654(*) .511(*)
MULTI_DEGREE_AVG .538(*) .247(*) .148(*) .597(*) .597(*) .364(*)
MULTI_MULTIPLICITY_MIN .300(*) .005(*) -.020(*) .201(*) -.355(*) -.328(*)
MULTI_MULTIPLICITY_MAX .640(*) .389(*) .249(*) .640(*) .634(*) .418(*)
MULTI_MULTIPLICITY_AVG .454(*) .178(*) .013(*) .571(*) .505(*) .102(*)
MULTI_ECCENTRICITY_MIN .267(*) .136(*) -.010(*) .311(*) .313(*) .015(*)
MULTI_ECCENTRICITY_MAX .267(*) .141(*) -.010(*) .312(*) .346(*) .060(*)
MULTI_ECCENTRICITY_AVG .267(*) .137(*) -.010(*) .311(*) .302(*) .016(*)
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Table 6.3: Correlation values between number of defects and complexity measures (on compo-
nent level).

Appendix A: Correlations for component and area level 
 
Correlations significant at 0.99 are indicated with (*). 
 
A.1. Correlation between failures and complexity measures (on component level) 
 

 Pearson  Spearman 
 INTRA OUT DEP  INTRA OUT DEP 

NODES .679(*) .729(*) .735(*) .653(*) .730(*) .743(*)
EDGES .717(*) .765(*) .674(*) .672(*) .748(*) .695(*)
COMPLEXITY .718(*) .723(*) .664(*) .668(*) .660(*) .681(*)
DENSITY -.487(*) -.350(*) -.572(*) -.584(*) -.557(*) -.740(*)
DEGREE_MIN -.055 .001 -.302(*) .023 .050 -.297(*)
DEGREE_MAX .640(*) .415(*) .642(*) .623(*) .572(*) .706(*)
DEGREE_AVG .582(*) .562(*) .340(*) .573(*) .642(*) .496(*)
ECCENTRICITY_MIN .654(*) .627(*) .037 .603(*) .516(*) .346(*)
ECCENTRICITY_MAX .660(*) .639(*) .106 .622(*) .566(*) .436(*)
ECCENTRICITY_AVG .658(*) .637(*) .090 .612(*) .628(*) .692(*)
MULTI_EDGES .691(*) .327(*) .428(*) .724(*) .635(*) .545(*)
MULTI_COMPLEXITY .691(*) .327(*) .428(*) .724(*) .635(*) .545(*)
MULTI_DENSITY -.034 -.108(*) -.354(*) -.045 .074 -.604(*)
MULTI_DEGREE_MIN -.067 -.043 -.140(*) -.213(*) -.266(*) -.367(*)
MULTI_DEGREE_MAX .443(*) .225(*) .360(*) .597(*) .586(*) .502(*)
MULTI_DEGREE_AVG .147(*) .054 -.227(*) .400(*) .496(*) -.111(*)
MULTI_MULTIPLICITY_MIN -.072 -.041 -.043 -.356(*) -.440(*) -.449(*)
MULTI_MULTIPLICITY_MAX .426(*) .189(*) .193(*) .580(*) .535(*) .324(*)
MULTI_MULTIPLICITY_AVG .049 -.037 -.318(*) .295(*) .323(*) -.395(*)
MULTI_ECCENTRICITY_MIN .645(*) .616(*) -.026 .587(*) .424(*) .375(*)
MULTI_ECCENTRICITY_MAX .645(*) .618(*) -.024 .588(*) .467(*) .418(*)
MULTI_ECCENTRICITY_AVG .645(*) .616(*) -.026 .588(*) .389(*) .381(*)

 
A.2. Correlation between failures and complexity measures (on area level) 
 

 Pearson  Spearman 
 INTRA OUT DEP  INTRA OUT DEP 

NODES .906(*) .942(*) .935(*) .916(*) .911(*) .921(*)
EDGES .954(*) .940(*) .926(*) .925(*) .891(*) .905(*)
COMPLEXITY .949(*) .921(*) .916(*) .924(*) .862(*) .904(*)
DENSITY -.416(*) -.552(*) -.558(*) -.850(*) -.873(*) -.905(*)
DEGREE_MIN -.243(*) .(a) -.411(*) -.285(*) . -.548(*)
DEGREE_MAX .916(*) .938(*) .945(*) .899(*) .890(*) .919(*)
DEGREE_AVG .580(*) .446(*) .297(*) .765(*) .733(*) .582(*)
ECCENTRICITY_MIN .897(*) .819(*) .757(*) .844(*) .642(*) .518(*)
ECCENTRICITY_MAX .898(*) .822(*) .760(*) .863(*) .683(*) .567(*)
ECCENTRICITY_AVG .898(*) .821(*) .759(*) .856(*) .685(*) .741(*)
MULTI_EDGES .836(*) .711(*) .694(*) .913(*) .843(*) .835(*)
MULTI_COMPLEXITY .836(*) .711(*) .694(*) .913(*) .843(*) .835(*)
MULTI_DENSITY -.127 -.164 -.455(*) -.396(*) -.224 -.849(*)
MULTI_DEGREE_MIN -.109 -.117 -.103 -.612(*) -.476(*) -.601(*)
MULTI_DEGREE_MAX .395(*) .680(*) .661(*) .795(*) .822(*) .802(*)
MULTI_DEGREE_AVG .118 .077 -.441(*) .530(*) .548(*) -.435(*)
MULTI_MULTIPLICITY_MIN -.097 -.175 -.428(*) -.737(*) -.711(*) -.669(*)
MULTI_MULTIPLICITY_MAX .328(*) .194 .336(*) .788(*) .670(*) .624(*)
MULTI_MULTIPLICITY_AVG -.027 -.044 -.511(*) .281(*) .421(*) -.653(*)
MULTI_ECCENTRICITY_MIN .896(*) .816(*) .752(*) .828(*) .637(*) .541(*)
MULTI_ECCENTRICITY_MAX .896(*) .817(*) .753(*) .828(*) .688(*) .547(*)
MULTI_ECCENTRICITY_AVG .896(*) .817(*) .752(*) .828(*) .605(*) .535(*)
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Table 6.4: Correlation values between number of defects and complexity measures (on area
level).

Appendix A: Correlations for component and area level 
 
Correlations significant at 0.99 are indicated with (*). 
 
A.1. Correlation between failures and complexity measures (on component level) 
 

 Pearson  Spearman 
 INTRA OUT DEP  INTRA OUT DEP 

NODES .679(*) .729(*) .735(*) .653(*) .730(*) .743(*)
EDGES .717(*) .765(*) .674(*) .672(*) .748(*) .695(*)
COMPLEXITY .718(*) .723(*) .664(*) .668(*) .660(*) .681(*)
DENSITY -.487(*) -.350(*) -.572(*) -.584(*) -.557(*) -.740(*)
DEGREE_MIN -.055 .001 -.302(*) .023 .050 -.297(*)
DEGREE_MAX .640(*) .415(*) .642(*) .623(*) .572(*) .706(*)
DEGREE_AVG .582(*) .562(*) .340(*) .573(*) .642(*) .496(*)
ECCENTRICITY_MIN .654(*) .627(*) .037 .603(*) .516(*) .346(*)
ECCENTRICITY_MAX .660(*) .639(*) .106 .622(*) .566(*) .436(*)
ECCENTRICITY_AVG .658(*) .637(*) .090 .612(*) .628(*) .692(*)
MULTI_EDGES .691(*) .327(*) .428(*) .724(*) .635(*) .545(*)
MULTI_COMPLEXITY .691(*) .327(*) .428(*) .724(*) .635(*) .545(*)
MULTI_DENSITY -.034 -.108(*) -.354(*) -.045 .074 -.604(*)
MULTI_DEGREE_MIN -.067 -.043 -.140(*) -.213(*) -.266(*) -.367(*)
MULTI_DEGREE_MAX .443(*) .225(*) .360(*) .597(*) .586(*) .502(*)
MULTI_DEGREE_AVG .147(*) .054 -.227(*) .400(*) .496(*) -.111(*)
MULTI_MULTIPLICITY_MIN -.072 -.041 -.043 -.356(*) -.440(*) -.449(*)
MULTI_MULTIPLICITY_MAX .426(*) .189(*) .193(*) .580(*) .535(*) .324(*)
MULTI_MULTIPLICITY_AVG .049 -.037 -.318(*) .295(*) .323(*) -.395(*)
MULTI_ECCENTRICITY_MIN .645(*) .616(*) -.026 .587(*) .424(*) .375(*)
MULTI_ECCENTRICITY_MAX .645(*) .618(*) -.024 .588(*) .467(*) .418(*)
MULTI_ECCENTRICITY_AVG .645(*) .616(*) -.026 .588(*) .389(*) .381(*)

 
A.2. Correlation between failures and complexity measures (on area level) 
 

 Pearson  Spearman 
 INTRA OUT DEP  INTRA OUT DEP 

NODES .906(*) .942(*) .935(*) .916(*) .911(*) .921(*)
EDGES .954(*) .940(*) .926(*) .925(*) .891(*) .905(*)
COMPLEXITY .949(*) .921(*) .916(*) .924(*) .862(*) .904(*)
DENSITY -.416(*) -.552(*) -.558(*) -.850(*) -.873(*) -.905(*)
DEGREE_MIN -.243(*) .(a) -.411(*) -.285(*) . -.548(*)
DEGREE_MAX .916(*) .938(*) .945(*) .899(*) .890(*) .919(*)
DEGREE_AVG .580(*) .446(*) .297(*) .765(*) .733(*) .582(*)
ECCENTRICITY_MIN .897(*) .819(*) .757(*) .844(*) .642(*) .518(*)
ECCENTRICITY_MAX .898(*) .822(*) .760(*) .863(*) .683(*) .567(*)
ECCENTRICITY_AVG .898(*) .821(*) .759(*) .856(*) .685(*) .741(*)
MULTI_EDGES .836(*) .711(*) .694(*) .913(*) .843(*) .835(*)
MULTI_COMPLEXITY .836(*) .711(*) .694(*) .913(*) .843(*) .835(*)
MULTI_DENSITY -.127 -.164 -.455(*) -.396(*) -.224 -.849(*)
MULTI_DEGREE_MIN -.109 -.117 -.103 -.612(*) -.476(*) -.601(*)
MULTI_DEGREE_MAX .395(*) .680(*) .661(*) .795(*) .822(*) .802(*)
MULTI_DEGREE_AVG .118 .077 -.441(*) .530(*) .548(*) -.435(*)
MULTI_MULTIPLICITY_MIN -.097 -.175 -.428(*) -.737(*) -.711(*) -.669(*)
MULTI_MULTIPLICITY_MAX .328(*) .194 .336(*) .788(*) .670(*) .624(*)
MULTI_MULTIPLICITY_AVG -.027 -.044 -.511(*) .281(*) .421(*) -.653(*)
MULTI_ECCENTRICITY_MIN .896(*) .816(*) .752(*) .828(*) .637(*) .541(*)
MULTI_ECCENTRICITY_MAX .896(*) .817(*) .753(*) .828(*) .688(*) .547(*)
MULTI_ECCENTRICITY_AVG .896(*) .817(*) .752(*) .828(*) .605(*) .535(*)

  

or logistic). These combinations are independent and thus do not suffer from multicollinearity,
while at the same time they account for as much sample variance as possible—for our experi-
ments we selected principal components that account for a cumulative sample variance greater
than 95%. We ended up with 5 principal components for INTRA, 7 for OUT, 6 for DEP, and 14
for the COMBINED set of measures. The principal components are then used as the indepen-
dent variables.

To evaluate the predictive power of graph complexities we use a standard evaluation tech-
nique: data splitting (Munson and Khoshgoftaar, 1992). That is, we randomly pick two-thirds
of all binaries to build a prediction model and use the remaining one-third to measure the ef-
ficacy of the built model. For every experiment, we performed 50 random splits to ensure the
stability and repeatability of our results—in total we trained 1200 models. Whenever possible,
we reused the random splits to facilitate comparison of results.

We measured the quality of trained models with:

• The R2 value is the ratio of the regression sum of squares to the total sum of squares.
It takes values between 0 and 1, with larger values indicating more variability explained
by the model and less unexplained variation—a high R2 value indicates good explanative
power, but not predictive power.

• The adjusted R2 measure also can be used to evaluate how well a model fits a given data
set (Abreu and Melo, 1996). It explains for any bias in the R2 measure by taking into
account the degrees of freedom of the independent variables and the sample population.
The adjusted R2 tends to remain constant as the R2 measure for large population samples.
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Figure 6.3: Results for linear regression.

Figure 6.4: Results for logistic regression.

Additionally, we performed F-tests on the regression models. Such tests measure the statistical
significance of a model based on the null hypothesis that its regression coefficients are zero. In
our case, every model was significant at 99%.

For testing, we measured the predictive power with the Pearson and Spearman correlation coef-
ficients. The Spearman rank correlation is a commonly-used robust correlation technique (Fen-
ton and Pfleeger, 1998) because it can be applied even when the association between elements
is non-linear; the Pearson bivariate correlation requires the data to be distributed normally and
the association between elements to be linear. For completeness we compute the Pearson cor-
relations also. As before, the closer the value of a correlation is to –1 or +1, the higher two
measures are correlated—in our case we are correlating the predicted number of defects with
the actual number of defects (for MLR); and defect-proneness probabilities with actual number
of defects (logistic regression), thus values close to 1 are desirable. In Figures 6 to 8, we report
only correlations that were significant at 99%.



84 Chapter 6. Predicting Defects for Subsystems

Linear regression

Figure 6.3 shows the results of four experiments on subcomponent level for linear regression
modeling, each of them consisting of 50 random splits. Except for OUT graphs, we can ob-
serve the consistent R2 and adjusted R2 values. This indicates the efficacy of the models built
using the random split technique. The values for Pearson are less consistent, still we can ob-
serve high correlations, especially for INTRA and COMBINED (around 0.70). The values for
Spearman correlation (0.60) are very consistent and highest for OUT and COMBINED sub-
graphs. These values indicate the sensitivity of the predictions to estimate defects—that is an
increase/decrease in the estimated values is accompanied by a corresponding increase/decrease
in the actual number of defects.

Binary logistic regression

We repeated our experiments with the same 50 random splits using a binary logistic regression
model. In contrast to linear regression, logistic regression predicts a value between 0 and 1. This
value can be interpreted as defect-proneness, i.e., the likelihood to contain at least one defect.
Figure 6.4 shows the results of our random split experiments. All results are consistent, except
the Pearson values. Compared to linear regression, the Pearson correlations are lower because
the relation between predicted defect-proneness and actual number of defects is obviously not
linear. Thus, using logistic regression did not make much difference in our case. Still, the results
for both linear and logistic regression support our hypothesis, that the complexity of dependency
graphs can predict the number of post-release defects (H2).

6.2.3 Granularity

The previous results were for the subcomponent level. Figure 6.5 shows how the results for lin-
ear regression change when we make predictions for component and area level. We can observe
that for both the maxima of correlation increases: for Pearson up to 0.927 (components) and
0.992 (areas); for Spearman up to 0.877 (components) and 0.961 (areas). While for component
level the results are stable, we can observe many fluctuations for area level.

To summarize, the results for component level show that the quality of the predictions improves
when they are made for subsystems that are higher in the system’s architecture (H3)—the results
for area level also support this hypothesis, however, they additionally demonstrate that the gain
in predictive power can come with a decreased stability. Thus it is important to find a good
balance between the granularity of reliable predictions and stability.

6.3 Threats to Validity

In this section we discuss the threats to validity of our work. We assumed that fixes occur in the
same location as the corresponding defect. Although this is not always true, this assumption is
frequently used in research (Fenton and Ohlsson, 2000; Möller and Paulish, 1993; Nagappan
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Figure 6.5: Correlations for different levels of granularity (subcomponent/component/area)
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et al., 2006b; Ostrand et al., 2005). As stated by Basili et al., drawing general conclusions
from empirical studies in software engineering is difficult because any process depends on a
potentially large number of relevant context variables (Basili et al., 1999). For this reason, we
cannot assume a priori that the results of a study generalize beyond the specific environment in
which it was conducted.

Since this study was performed on the Windows operating system and the size of the code
base and development organization is at a much larger scale than many commercial products,
it is likely that the specific models built for Windows would not apply to other products, even
those built by Microsoft. This threat in particular is frequently misunderstood as a criticism on
empirical studies. However, data on defects is rare and a common empirical research practice
is to carry out studies for one project and replicate them on others. However, we are confident
that dependency data has predictive power for other projects—we will repeat our experiments
for other Microsoft products and invite everyone to do the same for other software.

6.4 Summary

We showed that for subsystems, one can use the complexity of dependency graphs for predicting
defects. This helps for resource allocation and decision making. With respect to this, our lessons
learned are as follows.

• Most dependency graph complexities can predict the number of defects (Sections 6.2.1
and 6.2.2).

• Validate any complexity measure before using it for decisions (Section 6.2.1).

• Find a balance between the granularity, reliability, and stability of predictions (Sec-
tion 6.2.3).

6.5 Discussion

We do not claim that dependency data is the sole predictor of post-release defects—however, our
results are another piece in the puzzle of why software fails. Other effective predictors include
code complexity metrics (Nagappan et al., 2006b) and process metrics like code churn (Na-
gappan and Ball, 2005). In our future work, we will identify more predictors and work on
assembling the pieces of the puzzle. Also we plan to look at more non-linear regression and
other machine learning techniques. More specifically, we will focus on the following topics.

Evolution of dependencies. We will combine code churn and dependencies. More precisely,
we will compare the dependencies of different Windows releases to identify churned
dependencies and investigate their relation to defects.

Development process. How can we include the development process in our predictions? There
are many different characteristics to describe the process, ranging from size of personnel
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to criticality, dynamism, and culture (Boehm and Turner, 2003). How much difference
do agile and plan-driven development processes make with respect to defects? And how
much impact has global development?

The human factor. Last but not least, humans are the ones who introduce defects. How can
we include the human factor (Ko and Myers, 2005) into predictions about future defects?
This will be a challenge for both software engineering and human computer interaction—
and ultimately it will reveal why programmers fail and show ways how to avoid it.
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Part III

Synopsis
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Chapter 7

Conclusion

Software development results in a huge amount of data: changes to source code are recorded in
version archives, bugs are reported to issue tracking systems, and communications are archived
in e-mails and newsgroups. Mining software repositories makes use all of this data to under-
stand and support software development. This thesis make the following contributions to this
area.

Fine-grained analysis of version archives. The work on DYNAMINE was the first to analyze
particular code changes and not only the changed location. DYNAMINE learned project-
specific usage pattern of methods from version archives and validated the patterns with
dynamic program analysis, which is another novelty. (Chapter 2)

The aspect-mining tool HAM reveals cross-cutting changes: “A developer invoked lock()
and unlock() in 1,284 different locations.” In aspect-oriented programming, such changes
can be encapsulated as aspects. By breaking down large code-bases into their evolution
steps, HAM scales to large systems such as Eclipse. (Chapter 3)

Mining bug databases to predict defects. In software development, the resources for quality
assurance (QA) are typically limited. A common practice among managers is resource
allocation that is to direct the QA effort to those parts of a system that are expected to
have most defects.

This thesis presented techniques to build models that can successfully predict the most
defect-prone parts of large-scale industrial software, in our experiments Windows Server
2003. The proposed measures on dependency graphs outperformed traditional complexity
metrics. In addition, we found empirical evidence for a domino effect: depending on
defect-prone binaries increases the chances of having defects. (Chapters 5 and 6)

Dependencies between subsystems are typically define early in the design phase; thus,
designers can easily explore and assess design alternatives in terms of expected quality.

Mining software repositories works best on large projects with a long and rich development his-
tory; smaller and new projects, however, rarely have enough data for the above techniques. Our
future work, will therefore focus on mining software repositories across projects. We hypoth-
esize that projects which do not have enough history can learn from the repositories shared by
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other similar projects. For instance, open-source communities (such as SourceForge.net) host
several thousand projects, which are all available for mining. Similarly, within an industrial
setting, companies can learn from all their ongoing and completed projects.

Having access to the history of other projects supports developers and managers to make well-
informed decisions, for instance with respect to design (“Which library should we use?”), per-
sonnel (“Who is qualified for this task?”), and resource allocation (“What parts should we test
most?). They can identify similar situations in the past, and see how these situations impacted
the evolution of a project. Overall, the goal is to automate most of this process and provide
appropriate tool support for both open- and closed-source software development.

On the one hand, we expect that existing mining techniques will benefit from a larger popula-
tion of projects. For instance, change classification frequently finds insufficient evidence within
a single project to blame bad changes, which results in a large number of false negatives (Kim
et al., 2006). By extending the search space to many projects, we are more likely to find enough
evidence. We can also transfer knowledge from one project to another similar project. Nagap-
pan et al. (2006a) observed that defect prediction models trained on one project can reliably
predict defects for projects with comparable development processes.

On the other hand, having access to many projects poses new research questions, one of them
being: “What can we mine from such data in an automatic, large-scale (many projects), and
tool-oriented fashion to support software development?” We will discuss some ideas below.

Risk assessment of libraries. By comparing the bug histories and evolution of projects, we
can identify libraries that are risky to use (with respect to defects and complexity).

“The library openssl.jar adds about 42% more risk (defects) to your project than library
cryptlib.jar, which provides similar functionality.”

Risk information helps developers to avoid “poisonous” libraries that increase defect
count or complexity of a project. In past research, we empirically showed that the defect-
proneness of a component can be defined by the classes that are imported (Schröter et al.,
2006). We will identify defect-prone imports, aggregate the information to libraries, and
identify libraries with similar functionality—all of this automatically for many projects.

In addition, we will annotate the risk assessment of libraries with problematic usages
mined from software repositories. This information makes developers aware of potential
pitfalls and helps them to avoid repeating mistakes made by other developers (in other
projects).

Recommending similar artifacts. By searching similar artifacts, we can help developers to
retrieve information useful for modification tasks.

“The bug report at hand is similar to bug report #42233 in the Eclipse project.”

“The method parseFile() in your project is similar to parseXML() in the Ant project.”

The Hipikat (Cubranic et al., 2005) and CodeBroker (Ye and Fischer, 2002) tools provide
such recommendations for single projects. In our research, we will extend these tech-
niques to scale to a large number projects. We will focus especially on similarity between
different kinds of artifacts. For instance, in order to correct a bug, a developer might want
to search for source code or newsgroup discussions that are similar to the bug report.
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Identification of experts – worldwide! By mining across projects, we can locate experts not
only within a single project but also within thousands of projects.

“Erich is the best candidate to design and implement IDEs.”

Past research identified experts for source code artifacts (such as classes or methods) as
the developers who changed the artifact most frequently or most recently (McDonald and
Ackerman, 2000; Mockus and Herbsleb, 2002).

We plan to provide information about expertise on a social networking site for developers.
The site will help managers to recruit new team members (“Who has experience with the
Eclipse AST parser?”) and developers to identify colleagues with similar interests (“Who
has similar expertise and what are they working on?”).

Recommending emerging changes. By monitoring the evolution of thousands of projects, we
can identify trends and recommend changes to developers.

“This unit test uses assert(); consider changing it to assertTrue()”

Assume that there are several fragments in which the calls to assert() have been changed
to assertTrue(). If the code at hand still contains assert(), the programmer may make her
code future-proof by applying the same renaming. This project generalizes the detection
of refactorings (Weißgerber and Diehl, 2006) and change classification (Kim et al., 2006)
to arbitrary changes. The identification of emerging changes (trends) is an additional
challenge.

Timeline views of project evolution. By mining version archives and bug databases, we can
extracts key dates in the evolution of projects.

“February 24: The change ‘new file format’ increased the project’s complexity by 42%.
April 9: Major refactorings of the server component.”

In past research, we annotated charts depicting the evolution of documentation quality
by connecting jumps with commit messages (Schreck et al., 2007). We want to extend
this research by building a tool that automatically creates a timeline of key events of one
or more projects. This timeline can include events known by developers, such as ma-
jor refactorings (Weißgerber and Diehl, 2006) and architecture changes (Pinzger et al.,
2005); however, we will focus on unnoticeable changes that still have a substantial im-
pact on a project (as quantified by metrics such as complexity or documentation quality).
Timelines of several projects can be combined to a news-feed and integrated in IDEs such
as Jazz.Net.

At the beginning of the last century, the philosopher George Santayana remarked that those
who could not remember the past would be condemned to repeat it. In other words, to achieve
progress, we must learn from history. With our future research, everyone will get enough history
from which to learn.
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Appendix A

Publications

A.1 Publications related to the Thesis

This thesis builds on the following papers (listed in chronological order).

• V. Benjamin Livshits and Thomas Zimmermann. Dynamine: Finding common error
patterns by mining software revision histories. In Proceedings of the 10th European Soft-
ware Engineering Conference held jointly with 13th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (ESEC/FSE), pages 296–305. ACM Press,
September 2005. Acceptance rate: 16%. Nominated for ACM SIGSOFT Distinguished
Paper Award. Invited to ACM Transactions on Software Engineering and Methodology.

• Silvia Breu and Thomas Zimmermann. Mining aspects from version history. In Pro-
ceedings of the 21st IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pages 221–230. IEEE Computer Society, September 2006. Acceptance
rate: 18%.

• Thomas Zimmermann and Nachiappan Nagappan. Predicting subsystem defects using
dependency graph complexities. In Proceedings of the 18th IEEE International Sym-
posium on Software Reliability Engineering (ISSRE), pages 227–236. IEEE Computer
Society, November 2007. Acceptance rate: 33%.

• Thomas Zimmermann and Nachiappan Nagappan. Predicting defects using social net-
work analysis on dependency graphs. In Proceedings of the 30th International Confer-
ence on Software Engineering (ICSE). ACM Press, May 2008. 10 pages. To appear.
Acceptance rate: 15%.

A.2 Publications that did not make it into the Thesis

Several publications did not make it into the final version of the thesis. Here is a list of the most
significant “leftovers” grouped by topic.
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A.2.1 Defect Prediction in Open Source

• Adrian Schröter, Thomas Zimmermann, and Andreas Zeller. Predicting component
failures at design time. In Proceedings of the 5th ACM-IEEE International Symposium
on Empirical Software Engineering (ISESE), pages 18–27. ACM Press, September 2006.
Acceptance rate: 46%.

• Sunghun Kim, Thomas Zimmermann, E. James Whitehead Jr., and Andreas Zeller. Pre-
dicting faults from cached history. In Proceedings of the 29th International Conference
on Software Engineering (ICSE), pages 489–498. IEEE Computer Society, May 2007.
Acceptance rate: 15%. Won an ACM SIGSOFT Distinguished Paper Award.

• Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting defects for
Eclipse. In Proceedings of the 3rd International Workshop on Predictor Models in Soft-
ware Engineering (PROMISE). IEEE Computer Society, May 2007. 7 pages.

• Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller. Pre-
dicting vulnerable software components. In Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS), pages 529–540. IEEE Computer Soci-
ety, October 2007. Acceptance rate: 18%.

A.2.2 Bug-Introducing Changes

• Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes in-
duce fixes? In Proceedings of the Second International Workshop on Mining Software
Repositories (MSR), pages 24–28. ACM Press, May 2005.

• Sunghun Kim, Thomas Zimmermann, Kai Pan, and E. James Whitehead Jr. Automatic
identification of bug-introducing changes. In Proceedings of the 21st IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE), pages 81–90. IEEE
Computer Society, September 2006. Acceptance rate: 18%.

A.2.3 Effort Estimation

• Cathrin Weiß, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller. How long
will it take to fix this bug? In Proceedings of the Fourth Workshop on Mining Software
Repositories (MSR). IEEE Computer Society, May 2007. 7 pages.

• Rahul Premraj and Thomas Zimmermann. Building software cost estimation models
using homogenous data. In Proceedings of the 1st International Symposium on Empir-
ical Software Engineering and Measurement (ESEM), pages 393–400. IEEE Computer
Society, September 2007. Acceptance rate: 41%.
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A.2.4 Processing of CVS Archives

• Thomas Zimmermann, Sunghun Kim, E. James Whitehead Jr., and Andreas Zeller.
Mining version archives for co-changed lines. In Proceedings of the Third International
Workshop on Mining Software Repositories (MSR), pages 72–75. ACM Press, May 2006.

• Sunghun Kim, Thomas Zimmermann, Miryung Kim, Ahmed E. Hassan, Audris Mockus,
Tudor Girba, Martin Pinzger, E. James Whitehead Jr., and Andreas Zeller. TA-RE: An
exchange language for mining software repositories. In Proceedings of the Third Inter-
national Workshop on Mining Software Repositories (MSR), pages 22–25. ACM Press,
May 2006.

• Thomas Zimmermann. Fine-grained processing of CVS archives with APFEL. In
Proceedings of the 2006 OOPSLA Workshop on Eclipse Technology eXchange (ETX),
pages 16–20. ACM Press, October 2006. Won the Best Student Paper Award at the ETX
workshop.

• Thomas Zimmermann. Mining workspace updates in CVS. In Proceedings of the
Fourth Workshop on Mining Software Repositories (MSR). IEEE Computer Society, May
2007. 4 pages.

A.3 Other Publications

I was fortunate to work on many exciting projects not directly related to my PhD thesis.

• Daniel Schreck, Valentin Dallmeier, and Thomas Zimmermann. How documentation
evolves over time. In Proceedings of the 9th International Workshop on Principles of
Software Evolution (IWPSE), pages 4–10. ACM Press, September 2007.

• Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiß, Rahul Premraj, and
Thomas Zimmermann. Quality of bug reports in Eclipse. In Proceedings of the 2007
OOPSLA Workshop on Eclipse Technology eXchange (ETX), pages 21–25. ACM Press,
October 2007.

• Valentin Dallmeier and Thomas Zimmermann. Extraction of bug localization bench-
marks from history. In Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 433–436. ACM Press, November 2007.
Acceptance rate: 25%.

• Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav Garg, Gail C. Mur-
phy, Nachiappan Nagappan, and Alfred V. Aho. Do crosscutting concerns cause defects?
2008. 19 pages. To appear in the IEEE Transactions on Software Engineering (TSE).
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Rajeev Alur, Pavol Černý, P. Madhusudan, and Wonhong Nam. Synthesis of interface speci-
fications for java classes. In POPL’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 98–109, 2005. ISBN 1-58113-
830-X. See page 28.

Glenn Ammons, Rastislav Bodík, and James R. Larus. Mining specifications. In POPL’02:
Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 4–16, 2002. ISBN 1-58113-450-9. See page 28.

Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. SLAM and static driver
verifier: Technology transfer of formal methods inside Microsoft. In IFM’04: Proceedings
of the 4th International Conference on Integrated Formal Methods, pages 1–20, 2004. See
page 7.

Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. A validation of object orient design
metrics as quality indicators. IEEE Transactions on Software Engineering, 22(10):751–761,
1996. See pages 51 and 55.

Victor R. Basili, Forrest Shull, and Filippo Lanubile. Building knowledge through families
of experiments. IEEE Transactions on Software Engineering, 25(4):456–473, 1999. See
pages 74 and 86.

Jennifer Bevan and E. James Whitehead, Jr. Identification of software instabilities. In
WCRE’03: Proceedings of the 10th Working Conference on Reverse Engineering, pages 134–
143, 2003. See pages 27 and 28.

Jennifer Bevan, Jr. E. James Whitehead, Sunghun Kim, and Michael Godfrey. Facilitating
software evolution research with kenyon. In ESEC/FSE-13: Proceedings of the 10th Euro-
pean Software Engineering Conference held jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 177–186, 2005. ISBN 1-59593-
014-0. See page 28.



100 Bibliography

James M. Bieman, Anneliese A. Andrews, and Helen J. Yang. Understanding change-proneness
in oo software through visualization. In IWPC’03: Proceedings of the 11th IEEE Interna-
tional Workshop on Program Comprehension, 2003. See pages 27 and 28.

Aaron B. Binkley and Stephen R. Schach. Validation of the coupling dependency metric as a
predictor of run-time failures and maintenance measures. In ICSE’98: Proceedings of the
20th international conference on Software engineering, pages 452–455, 1998. See page 55.

David Binkley and Mark Harman. An empirical study of predicate dependence levels and
trends. In ICSE’03: Proceedings of the 25th International Conference on Software Engineer-
ing, pages 330–339, 2003. ISBN 0-7695-1877-X. See page 54.

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine
Miné, David Monniaux, and Xavier Rival. A static analyzer for large safety-critical soft-
ware. In PLDI’03: Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, pages 196–207, June 2003. ISBN 1-58113-662-5.
See pages 7 and 27.

Barry Boehm and Richard Turner. Balancing Agility and Discipline: A Guide for the Perplexed.
Addison-Wesley Professional, 2003. See page 87.

Stephen P. Borgatti, Martin G. Everett, and Linton C. Freeman. Ucinet 6 for windows: Software
for social network analysis. Technical report, Analytic Technologies, Harvard, 2002. See
page 59.

Guillaume Brat and Arnaud Venet. Precise and scalable static program analysis of NASA flight
software. In Proceedings of the 2005 IEEE Aerospace Conference, 2005. See pages 7 and 27.

Silvia Breu. Aspect mining using event traces. Master’s thesis, University of Passau, Germany,
March 2004. See page 46.

Silvia Breu. Extending dynamic aspect mining with static information. In SCAM’05: Proceed-
ings of the Fifth IEEE International Workshop on Source Code Analysis and Manipulation,
pages 57–65, 2005. See page 46.

Silvia Breu and Jens Krinke. Aspect mining using event traces. In ASE’04: Proceedings of
the 19th IEEE international conference on Automated software engineering, pages 310–315,
September 2004. ISBN 0-7695-2131-2. See page 46.

Lionel C. Briand, Prem Devanbu, and Walcelio Melo. An investigation into coupling mea-
sures for C++. In ICSE’97: Proceedings of the 19th International Conference on Software
Engineering, pages 412–421, 1997. See page 55.

Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected graph.
Communications of the ACM, 16(9):575–577, 1973. See page 53.

Bill Burke and Adrian Brock. Aspect-oriented programming and JBoss. http://www.onjava.
com/pub/a/onjava/2003/05/28/aop_jboss.html, 2003. See page 17.

http://www.onjava.com/pub/a/onjava/2003/05/28/aop_jboss.html
http://www.onjava.com/pub/a/onjava/2003/05/28/aop_jboss.html


Bibliography 101

Ronald Burt. Structural Holes: The Social Structure of Competition. Harvard University Press,
1995. See pages 60 and 61.

William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A static analyzer for finding dynamic
programming errors. Software – Practice and Experience (SPE), 30(7):775–802, 2000. See
page 27.

David Carlson. Eclipse Distilled. Addison-Wesley Professional, 2005. See page 19.

Junghoo Cho, Hector Garcia-Molina, and Lawrence Page. Efficient crawling through URL
ordering. Computer Networks, 30(1-7):161–172, 1998. See page 62.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 2nd edition, 2001. See page 78.

Davor Cubranic, Gail C. Murphy, Janice Singer, and Kellogg S. Booth. Hipikat: A project
memory for software development. IEEE Transactions on Software Engineering, 31(6):446–
465, 2005. See pages 1 and 92.

Valentin Dallmeier, Christian Lindig, and Andreas Zeller. Lightweight defect localization for
java. In ECOOP’05: Proceedings of the 19th European Conference on Object-Oriented
Programming, pages 528–550, July 2005. See page 28.

Robert DeLine, Mary Czerwinski, and George Robertson. Easing program comprehension by
sharing navigation data. In VLHCC’05: Proceedings of the 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing, pages 241–248, 2005. See page 1.

Giovanni Denaro, Sandro Morasca, and Mauro Pezzè. Deriving models of software fault-
proneness. In SEKE’02: Proceedings of the 14th International Conference on Software En-
gineering and Knowledge Engineering, pages 361–368, 2002. ISBN 1-58113-556-4. See
page 55.

Bill Dudney, Stephen Asbury, Joseph Krozak, and Kevin Wittkopf. J2EE AntiPatterns. Wiley,
2003. See page 27.

Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking system rules using
system-specific, programmer-written compiler extensions. In OSDI’00: Proceedings of the
4th Conference on Symposium on Operating System Design & Implementation, pages 1–16,
2000. See pages 7, 8, and 24.

Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. Bugs as
deviant behavior: a general approach to inferring errors in systems code. In SOSP’01: Pro-
ceedings of the Eighteenth Acm Symposium on Operating Systems Principles, pages 57–72,
2001. ISBN 1-58113-389-8. See pages 7, 25, and 27.

Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically discov-
ering likely program invariants to support program evolution. IEEE Transactions on Software
Engineering, 27(2):99–123, 2001. See page 28.



102 Bibliography

Norman E. Fenton and Niclas Ohlsson. Quantitative analysis of faults and failures in a complex
software system. IEEE Transactions on Software Engineering, 26(8):797–814, 2000. See
pages 74 and 84.

Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics: A Rigorous and Practical
Approach. PWS Publishing Co., 1998. See pages 64, 79, and 83.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph and
its use in optimization. ACM Transactions on Programming Languages and Systems, 9(3):
319–349, 1987. See page 54.

Michael Fischer, Martin Pinzger, and Harald Gall. Populating a release history database from
version control and bug tracking systems. In ICSM’03: Proceedings of the International Con-
ference on Software Maintenance, pages 23–32, 2003a. ISBN 0-7695-1905-9. See page 27.

Michael Fischer, Martin Pinzger, and Harald Gall. Analyzing and relating bug report data for
feature tracking. In WCRE’03: Proceedings of the 10th Working Conference on Reverse
Engineering, pages 90–101, November 2003b. See page 28.

Beat Fluri and Harald C. Gall. Classifying change types for qualifying change couplings. In
ICPC’06: Proceedings of the 14th IEEE International Conference on Program Comprehen-
sion, pages 35–45, 2006. ISBN 0-7695-2601-2. See page 27.

Beat Fluri, Harald C. Gall, and Martin Pinzger. Fine-grained analysis of change couplings. In
SCAM’05: Proceedings of the Fifth IEEE International Workshop on Source Code Analysis
and Manipulation, pages 66–74, 2005. ISBN 0-7695-2292-0. See page 27.

Beat Fluri, Michael Wuersch, Martin Pinzger, and Harald Gall. Change distilling:tree dif-
ferencing for fine-grained source code change extraction. IEEE Transactions on Software
Engineering, 33(11):725–743, 2007. ISSN 0098-5589. See page 27.

Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical coupling based on prod-
uct release history. In ICSM’98: Proceedings of the International Conference on Software
Maintenance, pages 190–198, November 1998. See pages 15 and 28.

Harald Gall, Mehdi Jazayeri, and Jacek Krajewski. CVS release history data for detecting log-
ical couplings. In IWPSE’03: Proceedings of the 6th International Workshop on Principles
of Software Evolution, pages 13–23, September 2003. See pages 15, 27, and 28.

Daniel German. Mining CVS repositories, the softChange experience. In MSR’04: Proceedings
of the First International Workshop on Mining Software Repositories, pages 17–21, 2004. See
page 27.

Rishab Aiyer Ghosh. Clustering and dependencies in free/open source software development:
Methodology and tools. First Monday, 8(4), 2003. See page 54.

Tudor Gîrba, Adrian Kuhn, Mauricio Seeberger, and Stéphane Ducasse. How developers drive
software evolution. In IWPSE’05: Proceedings of the Eighth International Workshop on
Principles of Software Evolution, pages 113–122, 2005. ISBN 0-7695-2349-8. See page 35.



Bibliography 103

Michael W. Godfrey and Lijie Zou. Using origin analysis to detect merging and splitting of
source code entities. IEEE Transactions on Software Engineering, 31(2):166–181, 2005. See
page 38.

Todd L. Graves, Alan F. Karr, J. S. Marron, and Harvey Siy. Predicting fault incidence using
software change history. IEEE Transactions on Software Engineering, 26(7):653–661, 2000.
See page 55.

William G. Griswold, Yoshikiyo Kato, and Jimmy J. Yuan. Aspect browser: Tool support for
managing dispersed aspects. Technical Report CS1999-0640, University of California, San
Diego, 1999. See page 46.

Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. A system and language for
building system-specific, static analyses. In PLDI’02: Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design and Implementation, pages 69–82,
2002. ISBN 1-58113-463-0. See page 27.

Robert A. Hanneman and Mark Riddle. Introduction to social network methods. University of
California, Riverside, Riverside, CA, 2005. See pages 59, 61, and 62.

Jan Hannemann and Gregor Kiczales. Overcoming the prevalent decomposition of legacy
code. In Workshop on Advanced Separation of Concerns in Software Engineering, 2001.
See page 46.

Ahmed E. Hassan and Richard C. Holt. The small world of software reverse engineer-
ing. In WCRE’04: Proceedings of the 11th Working Conference on Reverse Engineering
(WCRE’04), pages 278–283, 2004. ISBN 0-7695-2243-2. See page 54.

Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks and access errors.
In Proceedings of the Winter USENIX Conference, pages 125–138, December 1992. See
page 27.

David L. Heine and Monica S. Lam. A practical flow-sensitive and context-sensitive C and C++
memory leak detector. In PLDI’03: Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation, pages 168–181, June 2003. See page 27.

Sallie M. Henry and Dennis G. Kafura. Software structure metrics based on information flow.
IEEE Transactions on Software Engineering, 7(5):510–518, 1981. See page 54.

Shih-Kun Huang and Kang-Min Liu. Mining version histories to verify the learning process
of legitimate peripheral participants. In MSR’05: Proceedings of the 2005 International
Workshop on Mining Software Repositories, 2005. See page 54.

Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, and Sy-Yen Kuo.
Securing web application code by static analysis and runtime protection. In WWW’04: Pro-
ceedings of the 13th Conference on World Wide Web, pages 40–52, May 2004. See page 7.

E.J. Jackson. A Users Guide to Principal Components. John Wiley & Sons Inc., Hoboken, NJ,
2003. See pages 68 and 80.



104 Bibliography

Huzefa H. Kagdi, Michael L. Collard, and Jonathan I. Maletic. A survey and taxonomy of
approaches for mining software repositories in the context of software evolution. Journal of
Software Maintenance, 19(2):77–131, 2007. See page 1.

Taghi M. Khoshgoftaar, Edward B. Allen, Nishith Goel, Amit Nandi, and John McMullan.
Detection of software modules with high debug code churn in a very large legacy system.
In ISSRE’96: Proceedings of the Seventh International Symposium on Software Reliability
Engineering, pages 364–371, 1996. See page 55.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In ECOOP’97: Pro-
ceedings of the 11th European Conference on Object-Oriented Programming, pages 220–
242, 1997. See page 31.

Miryung Kim and David Notkin. Program element matching for multi-version program analy-
ses. In MSR’06: Proceedings of the 2006 international workshop on Mining software repos-
itories, pages 58–64, 2006. ISBN 1-59593-397-2. See page 27.

Sunghun Kim, E. James Whitehead, and Jennifer Bevan. Analysis of signature change patterns.
In MSR’05: Proceedings of the 2005 International Workshop on Mining Software Reposito-
ries, 2005. See page 27.

Sunghun Kim, Kai Pan, and E. James Whitehead, Jr. Memories of bug fixes. In
SIGSOFT’06/FSE-14: Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 35–45, 2006. See pages 92 and 93.

Andrew J. Ko and Brad A. Myers. A framework and methodology for studying the causes of
software errors in programming systems. Journal of Visual Languages and Computing, 16
(1-2):41–84, 2005. See page 87.

Bogdan Korel. The program dependence graph in static program testing. Information Process-
ing Letters, 24(2):103–108, 1987. See page 54.

Jens Krinke and Silvia Breu. Control-flow-graph-based aspect mining. In WARE’04: Workshop
on Aspect Reverse Engineering, November 2004. See page 46.

Sanjeev Kumar and Kai Li. Using model checking to debug device firmware. In OSDI’02:
Proceedings of the 5th symposium on Operating systems design and implementation, pages
61–74, 2002. See page 27.

Patrick Lam and Martin Rinard. A type system and analysis for the automatic extraction and
enforcement of design information. In ECOOP’03: Proceedings of the 17th European Con-
ference on Object-Oriented Programming, pages 275–302, July 2003. See page 28.

Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang Zhai. Have
things changed now? An empirical study of bug characteristics in modern open source soft-
ware. In ASID’06: Proceedings of the 1st workshop on Architectural and system support for
improving software dependability, pages 25–33, 2006. ISBN 1-59593-576-2. See page 51.



Bibliography 105

Benjamin Livshits and Thomas Zimmermann. DynaMine: finding common error patterns by
mining software revision histories. In ESEC/FSE-13: Proceedings of the 10th European soft-
ware engineering conference held jointly with 13th ACM SIGSOFT international symposium
on Foundations of software engineering, pages 296–305, 2005. ISBN 1-59593-014-0. See
pages 33 and 38.

Luis Lopez-Fernandez, Gregorio Robles, and Jesus M. Gonzalez-Barahona. Applying social
network analysis to the information in CVS repositories. In MSR’04: Proceedings of the
First International Workshop on Mining Software Repositories, pages 101–105, 2004. See
page 54.

Neil Loughran and Awais Rashid. Mining aspects. In Workshop on Early Aspects: Aspect-
Oriented Requirements Engineering and Architecture Design, 2002. See page 46.

Greg Madey, Vincent Freeh, and Renee Tynan. The open source software development phe-
nomenon: An analysis based on social network theory. AMCIS’02: Americas Conference on
Information Systems, pages 1806–1813, 2002. See page 54.

Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Efficient algorithms for discovering
association rules. In KDD’ 94: Proceedings of the AAAI Workshop on Knowledge Discovery
in Databases, pages 181–192, July 1994. See pages 12 and 13.

Marius Marin, Arie van Deursen, and Leon Moonen. Identifying aspects using fan-in analysis.
In WCRE’04: Proceedings of the 11th Working Conference on Reverse Engineering, pages
132–141, 2004. ISBN 0-7695-2243-2. See page 46.

Marius Marin, Leon Moonen, and Arie van Deursen. A classification of crosscutting concerns.
In ICSM’05: Proceedings of the 21st IEEE International Conference on Software Mainte-
nance, pages 673–676, 2005. ISBN 0-7695-2368-4. See page 45.

Marius Marin, Arie van Deursen, and Leon Moonen. Identifying crosscutting concerns using
fan-in analysis. ACM Transactions on Software Engineering and Methodology, 17(1), 2007.
See page 46.

David W. McDonald and Mark S. Ackerman. Expertise recommender: a flexible recommen-
dation system and architecture. In CSCW’00: Proceedings of the 2000 ACM Conference on
Computer Supported Cooperative Work, pages 231–240, 2000. See page 93.

Amir Michail. Data mining library reuse patterns using generalized association rules. In
ICSE’00: Proceedings of the 22nd international conference on Software engineering, pages
167–176, June 2000. ISBN 1-58113-206-9. See pages 14 and 28.

Amir Michail. Data mining library reuse patterns in user-selected applications. In ASE’99:
Proceedings of the 14th IEEE international conference on Automated software engineering,
pages 24–33, October 1999. See pages 14 and 28.

R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network mo-
tifs: Simple building blocks of complex networks. Science, 298(5594):824–827, 2002. See
page 52.



106 Bibliography

Audris Mockus and James D. Herbsleb. Expertise browser: a quantitative approach to identi-
fying expertise. In ICSE’02: Proceedings of the 24th International Conference on Software
Engineering, pages 503–512, 2002. See page 93.

Audris Mockus and David M. Weiss. Predicting risk of software changes. Bell Labs Technical
Journal, 5(2):169–180, 2000. See page 27.

Audris Mockus, Ping Zhang, and Paul Li. Predictors of customer perceived software quality. In
ICSE’05: Proceedings of the 27th International Conference on Software Engineering, pages
225–233, 2005. See page 55.

John C. Munson and Taghi M. Khoshgoftaar. The detection of fault-prone programs. IEEE
Transactions on Software Engineering, 18(5):423–433, 1992. See pages 68 and 82.

Karl-Heinrich Möller and Daniel J. Paulish. An empirical investigation of software fault distri-
bution. In METRICS’93: Proceedings of the First International Software Metrics Symposium,
pages 82–90, 1993. See pages 74 and 84.

Nachiappan Nagappan and Thomas Ball. Use of relative code churn measures to predict system
defect density. In ICSE’05: Proceedings of the 27th International Conference on Software
Engineering, pages 284–292, 2005. See page 86.

Nachiappan Nagappan and Thomas Ball. Using software dependencies and churn metrics to
predict field failures: An empirical case study. In ESEM’07: Proceedings of the First Inter-
national Symposium on Empirical Software Engineering and Measurement, pages 364–373,
2007. ISBN 0-7695-2886-4. See page 54.

Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to predict component
failures. In ICSE’06: Proceeding of the 28th international conference on Software engineer-
ing, pages 452–461, 2006a. See page 92.

Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to predict compo-
nent failures. In ICSE’06: Proceedings of the 28th International Conference on Software
Engineering, pages 452–461, 2006b. See pages 51, 55, 74, 84, and 86.

N.J.D. Nagelkerke. A note on a general definition of the coefficient of determination.
Biometrika, 78:691–692, 1991. See page 68.

Iulian Neamtiu, Jeffrey S. Foster, and Michael Hicks. Understanding source code evolution
using abstract syntax tree matching. In MSR’05: Proceedings of the 2005 international
workshop on Mining software repositories, pages 1–5, 2005. ISBN 1-59593-123-6. See
page 27.

Nicholas Nethercote and Julian Seward. Valgrind: A program supervision framework. Elec-
tronic Notes in Theoretical Computer Science, 89, 2003. See page 27.

Masao Ohira, Naoki Ohsugi, Tetsuya Ohoka, and Ken ichi Matsumoto. Accelerating cross-
project knowledge collaboration using collaborative filtering and social networks. In
MSR’05: Proceedings of the 2005 International Workshop on Mining Software Repositories,
2005. See page 54.



Bibliography 107

Niclas Ohlsson and Hans Alberg. Predicting fault-prone software modules in telephone
switches. IEEE Transactions on Software Engineering, 22(12):886–894, 1996. See page 55.

Ales Orso, Saurabh Sinha, and Mary Jean Harrold. Classifying data dependences in the pres-
ence of pointers for program comprehension, testing, and debugging. ACM Transactions on
Software Engineering and Methodology, 13(2):199–239, 2004. See page 54.

Thomas J Ostrand, Elaine J. Weyuker, and Robert M. Bell. Predicting the location and number
of faults in large software systems. IEEE Transactions on Software Engineering, 31(4):340–
355, 2005. See pages 55, 74, and 86.

Slava Pestov. jEdit user guide. http://www.jedit.org/, 2007. See page 19.

Martin Pinzger, Michael Fischer, and Harald C. Gall. Towards an integrated view on architec-
ture and its evolution. Electronic Notes in Theoretical Computer Science, 127(3):183–196,
April 2005. See page 93.

Andy Pogdurski and Lori A. Clarke. A formal model of program dependences and its impli-
cations for software testing, debugging, and maintenance. IEEE Transactions on Software
Engineering, 16(9):965–979, 1990. See page 54.

Ranjith Purushothaman and Dewayne E. Perry. Toward understanding the rhetoric of small
source code changes. IEEE Transactions on Software Engineering, 31(6):511–526, 2005.
See pages 9 and 16.

Brian Randell. System structure for software fault tolerance. IEEE Transactions on Software
Engineering, 1(2):221–232, 1975. See page 71.

Darrell Reimer, Edith Schonberg, Kavitha Srinivas, Harini Srinivasan, Bowen Alpern,
Robert D. Johnson, Aaron Kershenbaum, and Larry Koved. SABER: Smart analysis based
error reduction. In ISSTA’04: Proceedings of the 2004 ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, pages 243–251, July 2004. See pages 8 and 27.

Filip Van Rysselberghe and Serge Demeyer. Mining version control systems for FACs (fre-
quently applied changes). In MSR’04: Proceedings of the First International Workshop on
Mining Software Repositories, pages 48–52, May 2004. See page 14.

Tobias Sager, Abraham Bernstein, Martin Pinzger, and Christoph Kiefer. Detecting similar java
classes using tree algorithms. In MSR’06: Proceedings of the 2006 international workshop
on Mining software repositories, pages 65–71, 2006. ISBN 1-59593-397-2. See page 27.

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson.
Eraser: a dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems (TOCS), 15(4):391–411, 1997. ISSN 0734-2071. See page 27.

Stephen R. Schach. Object-Oriented and Classical Software Engineering. McGraw-Hill Sci-
ence/Engineering/Math, 6th edition, 2004. See pages 24 and 28.

http://www.jedit.org/


108 Bibliography

Daniel Schreck, Valentin Dallmeier, and Thomas Zimmermann. How documentation evolves
over time. In IWPSE’07: Proceedings of the 9th International Workshop on Principles of
Software Evolution, pages 4–10, September 2007. See page 93.

Adrian Schröter, Thomas Zimmermann, and Andreas Zeller. Predicting component failures at
design time. In ISESE’06: Proceedings of the 2006 ACM/IEEE International Symposium
on International Symposium on Empirical Software Engineering, pages 18–27, 2006. ISBN
1-59593-218-6. See pages 54 and 67.

Adrian Schröter, Thomas Zimmermann, and Andreas Zeller. Predicting component failures at
design time. In ISESE’06: Proceedings of the 5th ACM-IEEE International Symposium on
Empirical Software Engineering, pages 18–27, September 2006. See page 92.

Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting format string
vulnerabilities with type qualifiers. In Proceedings of the 2001 Usenix Security Conference,
pages 201–220, 2001. See pages 8 and 27.

David Shepherd and Lori Pollock. Ophir: A framework for automatic mining and refactoring
of aspects. Technical Report 2004-03, University of Delaware, 2003. See page 46.

Janice Singer, Robert Elves, and Margaret-Anne Storey. NavTracks: Supporting navigation in
software maintenance. In ICSM’05: Proceedings of the 21st IEEE International Conference
on Software Maintenance, pages 325–334, 2005. See page 1.

Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel. Interprocedural control dependence.
ACM Transactions on Software Engineering and Methodology, 10(2):209–254, 2001. See
page 54.

Amitabh Srivastava, Jay Thiagarajan, and Craig Schertz. Efficient integration testing using
dependency analysis. Technical Report MSR-TR-2005-94, Microsoft Research, 2005. See
page 58.

Ramanath Subramanyam and Mayuram S. Krishnan. Empirical analysis of ck metrics for
object-oriented design complexity: Implications for software defects. IEEE Transactions
on Software Engineering, 29(4):297–310, 2003. See pages 51 and 55.

Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. N degrees of separation:
Multi-dimensional separation of concerns. In ICSE’99: Proceedings of the 21st interna-
tional conference on Software engineering, pages 107–119, 1999. ISBN 1-58113-074-0. See
page 31.

Gregory Tassey. The economic impacts of inadequate infrastructure for software testing. Tech-
nical report, National Institute of Standards and Technology, 2002. See page 51.

Bruce Tate, Mike Clark, Bob Lee, and Patrick Linskey. Bitter EJB. Manning Publications,
2003. See page 27.

Paolo Tonella and Mariano Ceccato. Aspect mining through the formal concept analysis of
execution traces. In WCRE’04: Proceedings of the 11th Working Conference on Reverse
Engineering, pages 112–121, 2004. ISBN 0-7695-2243-2. See page 46.



Bibliography 109

Tom Tourwé and Kim Mens. Mining aspectual views using formal concept analysis. In
SCAM’04: Proceedings of the Source Code Analysis and Manipulation, Fourth IEEE In-
ternational Workshop on, pages 97–106, 2004. See page 46.

Gina Venolia. Textual alusions to artifacts in software-related repositories. In MSR’06: Pro-
ceedings of the 2006 International Workshop on Mining Software Repositories, pages 151–
154, May 2006a. See page 1.

Gina Venolia. Bridges between silos: A microsoft research project. Technical report, Microsoft
Research, January 2006b. White paper. See page 1.

David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken. A first step towards
automated detection of buffer overrun vulnerabilities. In NDSS’00: Proceedings of the Net-
work and Distributed System Security Symposium, pages 3–17, February 2000. See pages 7
and 27.

Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods and Applications.
Cambridge University Press, Cambridge, 1984. See pages 59, 61, and 62.

Westley Weimer and George Necula. Mining temporal specifications for error detection. In
TACAS’05: Proceedings of the 11th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 461–476, April 2005. See page 28.

Peter Weißgerber and Stephan Diehl. Identifying refactorings from source-code changes. In
ASE’06: Proceedings of the 21st IEEE International Conference on Automated Software
Engineering, pages 231–240, 2006. See page 93.

Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2nd edition, 2001. See page 78.

John Whaley, Michael C. Martin, and Monica S. Lam. Automatic extraction of object-oriented
component interfaces. In ISSTA’02: Proceedings of the 2002 ACM SIGSOFT international
symposium on Software testing and analysis, pages 218–228, July 2002. See page 28.

Chadd C. Williams and Jeffrey K. Hollingsworth. Recovering system specific rules from soft-
ware repositories. In MSR’05: Proceedings of the 2005 International Workshop on Mining
Software Repositories, pages 7–11, May 2005a. See pages 16, 28, and 47.

Chadd C. Williams and Jeffrey K. Hollingsworth. Automatic mining of source code repositories
to improve bug finding techniques. IEEE Transactions on Software Engineering, 31(6):466–
480, June 2005b. See pages 16, 28, and 38.

Tao Xie and Jian Pei. MAPO: Mining API usages from open source repositories. In MSR’06:
Proceedings of the 2006 International Workshop on Mining Software Repositories, pages
54–57, May 2006. See page 38.

Yunwen Ye and Gerhard Fischer. Supporting reuse by delivering task-relevant and personalized
information. In ICSE’02: Proceedings of the 24th International Conference on Software
Engineering, pages 513–523, 2002. See page 92.



110 Bibliography

Annie T.T. Ying, Gail C. Murphy, Raymond Ng, and Mark C. Chu-Carroll. Predicting source
code changes by mining change history. IEEE Transactions on Software Engineering, 30(9):
574–586, September 2004. See page 28.

Thomas Zimmermann. Fine-grained processing of CVS archives with APFEL. In eclipse’06:
Proceedings of the 2006 OOPSLA workshop on eclipse technology eXchange, pages 16–20,
2006. ISBN 1-59593-621-1. See page 28.

Thomas Zimmermann and Peter Weißgerber. Preprocessing CVS data for fine-grained analysis.
In MSR’04: Proceedings of the First International Workshop on Mining Software Reposito-
ries, pages 2–6, May 2004. See pages 16, 27, and 37.

Thomas Zimmermann, Stephan Diehl, and Andreas Zeller. How history justifies system archi-
tecture (or not). In IWPSE’03: Proceedings of the 6th International Workshop on Principles
of Software Evolution, pages 73–83, Helsinki, Finland, September 2003. See pages 15, 27,
and 28.

Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, and Andreas Zeller. Mining version
histories to guide software changes. IEEE Transactions on Software Engineering, 31(6):
429–445, June 2005. See pages 1 and 28.


	1 Introduction
	1.1 Thesis Organization

	I Mining Changes
	2 Mining Usage Patterns
	2.1 Overview of DYNAMINE
	2.1.1 Motivation for Revision History Mining
	2.1.2 Motivation for Dynamic Analysis
	2.1.3 DYNAMINE System Overview

	2.2 Mining Usage Patterns
	2.2.1 Basic Mining Algorithm
	2.2.2 Pattern Filtering
	2.2.3 Pattern Ranking
	2.2.4 Locating Added Method Calls

	2.3 Checking Patterns at Runtime
	2.3.1 Pattern Selection and Instrumentation
	2.3.2 Post-processing Dynamic Traces

	2.4 Experimental Results
	2.4.1 Experimental Setup
	2.4.2 Discussion of the Results

	2.5 Related Work
	2.5.1 Revision History Mining
	2.5.2 Model Extraction

	2.6 Summary

	3 Mining Aspects from Version History
	3.1 Simple Aspect Candidates
	3.2 Locality and Reinforcement
	3.3 Complex Aspect Candidates
	3.4 Data Collection
	3.5 Evaluation
	3.5.1 Evaluation Setup
	3.5.2 Simple Aspect Candidates
	3.5.3 Reinforcement
	3.5.4 Precision Revisited
	3.5.5 Complex Aspect Candidates

	3.6 Related Work
	3.6.1 Aspect Mining
	3.6.2 Mining Software Repositories

	3.7 Summary


	II Predicting Defects
	4 Defects and Dependencies
	4.1 Motivation
	4.2 Related Work
	4.2.1 Social Network Analysis in Software Engineering
	4.2.2 Software Dependencies
	4.2.3 Complexity Metrics
	4.2.4 Historical Data


	5 Predicting Defects for Binaries
	5.1 Data Collection
	5.1.1 Dependency Graph
	5.1.2 Network Measures
	5.1.3 Complexity Metrics

	5.2 Experimental Analysis
	5.2.1 Escrow Analysis
	5.2.2 Correlation Analysis
	5.2.3 Regression Analysis
	5.2.4 The Domino Effect 

	5.3 Threats to Validity
	5.4 Summary

	6 Predicting Defects for Subsystems
	6.1 Data Collection
	6.1.1 Software Dependencies
	6.1.2 Dependency Subgraphs
	6.1.3 Graph-Theoretic Complexity Measures

	6.2 Experimental Analysis
	6.2.1 Correlation Analysis
	6.2.2 Regression Analysis
	6.2.3 Granularity

	6.3 Threats to Validity
	6.4 Summary
	6.5 Discussion


	III Synopsis
	7 Conclusion
	A Publications
	A.1 Publications related to the Thesis
	A.2 Publications that did not make it into the Thesis
	A.2.1 Defect Prediction in Open Source
	A.2.2 Bug-Introducing Changes
	A.2.3 Effort Estimation
	A.2.4 Processing of CVS Archives

	A.3 Other Publications

	Bibliography


