
SEARCHING AND RANKING IN

ENTITY-RELATIONSHIP GRAPHS

Thesis for obtaining the title of Doctor of Engineering
of the Faculties of Natural Sciences and Technology

of the Saarland University

Gjergji Kasneci

Max-Planck Institute for Informatics

Saarbrücken, Germany, 2009-23-12

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Acronym

https://core.ac.uk/display/196651424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Dean: Prof. Dr. Joachim Weickert
Faculty of Mathematics and Computer Science
Saarland University
Saarbruecken, Germany

Colloquium: 2009-21-12
Max-Planck Institute for Informatics
Saarbruecken, Germany

Examination Board
Supervisor and Prof. Dr.-Ing. Gerhard Weikum
First Reviewer: Department for Databases and Information Systems

Max-Planck Institute for Informatics
Saarbruecken, Germany

Second Reviewer: Prof. Dr. Jens Dittrich
Department for Computer Science
Saarland University
Saarbruecken, Germany

Third Reviewer: Prof. Dr. Steffen Staab
Faculty of Computer Science
University of Koblenz-Landau
Koblenz, Germany

Chairman: Prof. Dr. Dr. Reinhard Wilhelm
Department for Computer Science
Saarland University
Saarbruecken, Germany

Research Assistant: Dr. Ralf Schenkel
Department for Databases and Information Systems
Max-Planck Institute for Informatics
Saarbruecken, Germany

3

Abstract

The Web bears the potential to become the world’s most comprehensive knowledge
base. Organizing information from the Web into entity-relationship graph structures
could be a first step towards unleashing this potential. In a second step, the
inherent semantics of such structures would have to be exploited by expressive search
techniques that go beyond today’s keyword search paradigm. In this realm, as a first
contribution of this thesis, we present NAGA (Not Another Google Answer), a new
semantic search engine. NAGA provides an expressive, graph-based query language
that enables queries with entities and relationships. The results are retrieved based on
subgraph matching techniques and ranked by means of a statistical ranking model.

As a second contribution, we present STAR (Steiner Tree Approximation in
Relationship Graphs), an efficient technique for finding “close” relations (i.e., compact
connections) between k(≥ 2) entities of interest in large entity-relationship graphs.

Our third contribution is MING (Mining Informative Graphs). MING is an
efficient method for retrieving “informative” subgraphs for k(≥ 2) entities of interest
from an entity-relationship graph. Intuitively, these would be subgraphs that can
explain the relations between the k entities of interest. The knowledge discovery tasks
supported by MING have a stronger semantic flavor than the ones supported by STAR.

STAR and MING are integrated into the query answering component of the NAGA
engine. NAGA itself is a fully implemented prototype system and is part of the YAGO-
NAGA project.

4

5

Kurzfassung

Das Web birgt in sich das Potential zur umfangreichsten Wissensbasis der Welt zu
werden. Das Organisieren der Information aus dem Web in Entity-Relationship-
Graphstrukturen könnte ein erster Schritt sein, um dieses Potential zu entfalten. In
einem zweiten Schritt müssten ausdrucksstarke Suchtechniken entwickelt werden, die
über das heutige Keyword-basierte Suchparadigma hinausgehen und die inhärente
Semantik solcher Strukturen ausnutzen. In diesem Rahmen stellen wir als ersten
Beitrag dieser Arbeit NAGA (Not Another Google Answer) vor, eine neue semantische
Suchmaschine. NAGA bietet eine ausdrucksstarke, graphbasierte Anfragesprache, die
Anfragen mit Entitäten und Relationen ermöglicht. Die Ergebnisse werden durch
Subgraph-Matching-Techniken gefunden und mithilfe eines statistischen Modells in
eine Rangliste gebracht.

Als zweiten Beitrag stellen wir STAR (Steiner Tree Approximation in Relationship
Graphs) vor, eine effiziente Technik, um “nahe” Relationen (d.h. kompakte
Verbindungen) zwischen k(≥ 2) Entitäten in großen Entity-Relationship-Graphen zu
finden.

Unser dritter Beitrag ist MING (Mining Informative Graphs). MING ist eine
effiziente Methode, die das Finden von “informativen” Subgraphen für k(≥ 2)
Entitäten aus einem Entity-Relationship-Graphen ermöglicht. Dies sind Subgraphen,
die die Beziehungen zwischen den k Entitäten erklären können. Im Vergleich zu STAR
unterstützt MING Aufgaben der Wissensexploration, die einen stärkeren semantischen
Charakter haben.

Sowohl STAR als auch MING sind in die Query-Answering-Komponente der
NAGA-Suchmaschine integriert. NAGA selbst ist ein vollständig implementiertes
Prototypsystem und Teil des YAGO-NAGA-Projekts.

6

7

Summary

The World Wide Web bears the potential to become the world’s most comprehensive
knowledge base, but current keyword-based search technology is far from exploiting
this potential. For example, suppose that we are interested in a comprehensive list
of politicians who are also scientists. First, it is close to impossible to formulate our
search need in terms of keywords. Second, the answer is possibly distributed across
multiple pages, so that no state-of-the-art search engine will be able to find it. In fact,
posing this query to Google (by using the keywords “scientist” and “politician”) yields
mostly news articles about science and politics. This example highlights the need for
new, more expressive search techniques, as well as for explicit, unifying structures for
the information on the Web.

There are various efforts that are aiming to add semantics to the Web by organizing
information from the Web into entity-relationship-aware structures (e.g., YAGO [137,
138, 136], DBpedia [24], the Linking Open Data Project [30], Freebase [4], OpenCyc
[56], etc.). The results of these efforts are large knowledge bases, organized as entity-
relationship graphs, with explicit facts about entities (such as persons, organizations,
locations, dates, etc.) and relationships (such as isA, bornOnDate, locatedIn, etc.).
Motivated by these efforts, we address the problem of advanced knowledge search
with entities and relationships. More specifically, we address the following problems:

1. Expressing and answering advanced knowledge queries about entities and
relationships, e.g.: “Which physicists had Max Planck as academic advisor and
what prizes have they won?”

2. Ranking the retrieved answers; an insightful ranking must prioritize answers
about important entities.

3. Efficient discovery of “close” or “insightful” relations between k(≥ 2) entities
of interest. These kinds of knowledge discovery tasks aim at capturing the
connections that can explain the relations between the k entities of interest.

In consideration of these problems, we propose NAGA [98, 97, 99] (Not Another
Google Answer) as a first contribution of this thesis. NAGA is a new semantic
search engine that is geared for large knowledge bases, which are organized as
entity-relationship graphs. A graph-based query language enables the formulation of
expressive queries with entities and relationships. The retrieved results are subgraphs
from the knowledge base that match the query structure. They are ranked by a
statistical ranking mechanism based on the principles of generative language models.
For the returned answers, our ranking framework formalizes several intuitive desiderata
such as confidence, informativeness, and compactness. The confidence reflects the
correctness of results. The informativeness captures the importance of answers, and the
compactness favors tightly connected entities in the answers. NAGA’s superior result
quality is demonstrated in comparison to state-of-the-art search engines and question
answering systems.

Finding “close” relations between two, three, or more entities of interest is an
important building block for many search, ranking, and analysis tasks. In large
entity-relationship graphs with millions of nodes and edges, these kinds of tasks are

8

computationally very challenging. In fact, from a graph-theoretic point of view, the
underlying problem translates into the Steiner tree problem, which is known to be NP-
hard. Intuitively, a Steiner tree that interconnects the given entities of interest represents
the “closest” relations between them.

For this problem, we propose a new approximation algorithm coined STAR [95]
(Steiner Tree Approximation in Relationship Graphs). For n query entities, STAR
yields an O(log(n)) approximation of the optimal Steiner tree in pseudopolynomial
runtime. Furthermore, for practical cases, the results returned by STAR are
qualitatively comparable to, or even better than, the results returned by a classical
2-approximation algorithm. STAR is extended to retrieve the approximate top-k
Steiner trees for n given query entities. We have evaluated STAR over both main-
memory as well as completely disk-resident graphs containing millions of nodes and
tens of millions of edges. Our experiments show that in terms of efficiency STAR
outperforms the best state-of-the-art database methods by a large margin, and also
returns qualitatively better results.

A semantically more challenging knowledge discovery scenario is the one of
finding a subgraph that can explain the relations between two or more entities of interest
from a large entity-relationship graph. We refer to such subgraphs as informative
subgraphs. This problem of finding informative subgraphs is more general than the
one addressed by STAR, in that it considers whole subgraphs and not only trees. It is
semantically more challenging than the problem addressed by STAR, in that we have
to think of an adequate measure that favors insightful and salient relations between the
query entities.

For this problem we propose MING [94, 93] (Mining Informative Graphs), an
efficient method for finding and extracting an informative subgraph for k(≥ 2) query
entities. MING builds on a framework for computing a new notion of informativeness
of nodes in entity-relationship graphs. This is used for computing the informativeness
of entire subgraphs. The viability of our approach is demonstrated through experiments
on real-life datasets, with comparisons to prior work.

STAR and MING are both integrated into the query answering component of the
NAGA search engine. NAGA itself is a fully implemented prototype system and is part
of the YAGO-NAGA project [17].

9

Zusammenfassung

Das World Wide Web birgt in sich das Potential zur umfangreichsten Wissensbank
der Welt zu werden, aber die heutigen, Keyword-basierten Suchtechniken sind weit
davon entfernt, dieses Potential zu verwirklichen. Man stelle sich vor, wir seien an
einer umfangreichen Liste von Politikern interessiert, die auch Wissenschaftler sind.
Erstens ist es unklar, wie eine entsprechende Anfrage als Keyword-Anfrage ausgerückt
werden könnte. Zweitens ist die Antwort über mehrere Seiten verstreut, so dass keine
der heutigen Suchmaschinen sie finden könnte. Dieses Beispiel macht den Bedarf nach
ausdruckstärkeren Anfragetechniken und einer expliziten, einheitlichen Strukturierung
der Information im Web deutlich.

Es gibt etliche Bemühungen, die darauf abzielen, das Web semantischer zu machen,
indem sie Information aus dem Web in Entity-Relationship-basierten Strukturen
organisieren (z.B.: YAGO [137, 138, 136], DBpedia [24], the Linking Open Data
Project [30], Freebase [4], OpenCyc [56], etc.). Die Ergebnisse solcher Bemühungen
sind große Wissensbanken, die als Entity-Relationship-Graphen organisiert sind, mit
expliziten Fakten über Entitäten (wie Personen, Organisationen, Orts- und Zeitangaben
etc.) und Relationen (wie istEin, geborenAm, befindetSichIn, etc.). Motiviert durch
diese Bemühungen widmen wir uns dem Problem der Wissenssuche mit Entitäten und
Relationen. Wir widmen uns speziell den folgenden Problemen:

1. Das Ausdrücken und Beantworten von Wissensfragen über Entitäten und
Relationen, zum Beispiel: “Welche Physiker hatten Max Planck als Doktorvater
und welche Preise haben sie gewonnen?”

2. Das Ranking der gefundenen Antworten. Ein aufschlussreiches Ranking muss
Antworten über wichtige Entitäten bevorzugen.

3. Effizientes Finden von kompakten oder aufschlussreichen Beziehungen zwi-
schen zwei oder mehr Anfrageentitäten. Diese Wissensexplorationsaufgaben
zielen auf das Finden von Verbindungen, die die Beziehungen zwischen den
Anfrageentitäten erklären können.

In Anbetracht dieser Probleme stellen wir NAGA [98, 97, 99] (Not Another
Google Answer) als ersten Beitrag dieser Dissertation vor. NAGA ist eine
neue semantische Suchmaschine, die für große, als Entity-Relationship-Graphen
organisierte Wissensbasen entwickelt wurde. Eine graphbasierte Anfragesprache
erlaubt die Formulierung von Wissensfragen mit Entitäten und Relationen. Die
gefundenen Ergebnisse sind Subgraphen aus der Wissensbank, die zur Struktur der
Anfrage passen. Sie werden anhand eines statistischen Modells, welches auf den
Prinzipien von generativen Sprachmodellen basiert, in eine Rangliste gebracht. Unser
Ranking-Modell formalisiert intuitive Desiderata, die informativen und kompakten
Ergebnissen hoher Konfidenz den Vorzug geben. Die Konfidenz spiegelt die
Korrektheit der Antworten wider. Eine informative Antwort enthält Informationen
über wichtige Entitäten, und eine kompakte Antwort verbindet die Entitäten des
Antwortgraphen in möglichst “kurzer” Weise. Die überlegene Qualität der NAGA-
Antworten wird im Vergleich zu heutigen Suchmaschinen und Frage-Antwort-
Systemen demonstriert.

10

Das Finden von kompakten Beziehungen zwischen zwei, drei oder mehr
Entitäten ist ein wichtiger Baustein für viele Such- und Analyseaufgaben. In
großen Entity-Relationship-Graphen mit Millionen von Knoten und Kanten stellen
solche Berechnungen eine große Herausforderung dar. Vom graphtheoretischen
Gesichtspunkt entspricht das zugrundeliegende Problem dem Steiner-Baum-Problem,
welches NP-hart ist. Ein Steiner-Baum, der die Anfrageentitäten verbindet, stellt die
kompakteste Beziehung zwischen ihnen dar.

Zu diesem Problem stellen wir den neuen Approximationsalgorithmus STAR [95]
(Steiner Tree Approximation in Relationship Graphs) vor. Für n Anfrageentitäten
erreicht STAR eine O(log(n))-Approximation des optimalen Steiner-Baums in
pseudeopolynomieller Zeit. In der Praxis ist die Qualität der Ergebnisse von STAR
besser als die eines klassischen 2-Approximationsalgorithmus. Wir erweitern STAR
zu einem Top-k-Algorithmus, der die besten k approximierten Steiner-Bäume zu
gegebenen Anfrageentitäten findet. Wir haben STAR auf Graphen getestet, die
im Hauptspeicher oder ausschließlich im externen Speicher residieren und mehrere
Millionen von Knoten und Kanten haben. Unsere Experimente zeigen, dass STAR
effizienter als bisherige Datenbankmethoden ist und qualitativ bessere Ergebnisse
liefert.

Eine größere Herausforderung in semantischer Hinsicht stellt das Finden eines
Subgraphen dar, der die Beziehungen zwischen k ≥ 2 Anfrageentitäten aus
einem großen Entity-Relationship-Graphen erklären kann. Wir bezeichnen solche
Subgraphen als informative Subgraphen. Diese Wissensexplorationsaufgabe ist
allgemeiner als die, die STAR zugrundeliegt, da sie allgemeine Subgraphen als
Resultate betrachtet und nicht nur auf Bäume beschränkt ist. Sie stellt in semantischer
Hinsicht eine größere Herausforderung dar, da ein angemessenes Berechnungsmaß für
Beziehungen zwischen Anfrageentitäten benötigt wird.

Zur Lösung dieses Problems stellen wir MING [94, 93] (Mining Informative
Graphs) vor, eine effiziente Methode zum Finden und Extrahieren von informativen
Subgraphen für k(≥ 2) gegebene Anfrageentitäten. MING basiert auf einem Modell
zur Berechnung von informativen Knoten in Entity-Relationship-Graphen. Dieses
Modell wird erweitert, um informative Subgraphen zu berechnen. Wir demonstrieren
die Qualität von MING in Experimenten auf praxisbezogenen Datensätzen und im
Vergleich zu bisherigen Arbeiten.

Sowohl STAR als auch MING sind in die Anfragebeantwortungskomponente der
NAGA-Suchmaschine integriert. NAGA selbst ist ein vollständig implementiertes
Prototypsystem und ist Teil des YAGO-NAGA-Projekts [17].

Contents 11

Acknowledgements

First and foremost, I would like to thank my family for their love, persistent support,
motivation, guidance and inspiration throughout all my endeavors.

This work would not have been possible without the scientific advice and consistent
motivation of my supervisor and mentor Prof. Dr.-Ing. Gerhard Weikum. I would like
to thank him for the opportunities and the scientific guidance he gave me. Furthermore,
I would like to thank my colleagues Georgiana Ifrim and Fabian Suchanek with whom
I had many inspiring and fruitful scientific and philosophical discussions. Many
other people with whom I have collaborated deserve my thanks, among them, Maya
Ramanath, Mauro Sozio, and Shady Elbassuoni.

I owe many thanks to the International Max-Planck Research School (IMPRS) for
my financial support, which allowed me to concentrate on my research.

Last, but certainly not least, I would like to thank the authors of [82] and the authors
of [28, 92] for providing us with the Java code of their methods, BLINKS and BANKS,
and the authors of [61] for providing us with the original C++ code of their method,
DPBF.

12 Contents

Contents 13

Contents

1 Introduction 17
1.1 Motivation . 17

1.1.1 Limits of Current Search Technology 17
1.1.2 Opportunities . 18

1.2 Expressive Search with Entities and Relationships 19
1.3 Challenges . 20
1.4 Contributions . 21
1.5 Outline . 22

2 From Web Pages to Knowledge 23
2.1 Harvesting Knowledge from the Web 23

2.1.1 The Statistical Web . 25
2.1.2 The Semantic Web . 25
2.1.3 The Social Web . 25

2.2 Unifying The Social and the Semantic Web 26
2.2.1 YAGO . 26

2.3 Summary . 29

3 Entity-Relationship Graphs for Knowledge Representation 31
3.1 Basics . 31
3.2 RDF/RDFS and OWL . 32
3.3 Storing and Querying Entity-Relationship Graphs 33

3.3.1 Relational, Object-Oriented, and XML Databases 33
3.3.2 Storing RDF data . 35
3.3.3 SPARQL . 36

3.4 Summary . 36

4 NAGA 39
4.1 Overview . 39

4.1.1 Motivation and Problem Statement 39
4.1.2 Related Work . 42
4.1.3 Contributions and Outline 46

4.2 A Framework for Querying with Entities and Relationships 46
4.2.1 Query Model . 46
4.2.2 Answer Model . 47
4.2.3 Simple-Relationship Queries 48
4.2.4 Regular-Expression Queries 48

4.3 A Framework for Ranking with Entities and Relationships 49

14 Contents

4.3.1 Ranking Desiderata . 49
4.3.2 Statistical Language Models for Document Retrieval 50
4.3.3 The NAGA Ranking . 52
4.3.4 Related Ranking Models . 55

4.4 The NAGA Engine . 56
4.4.1 Architecture . 56
4.4.2 Implementation . 57
4.4.3 Efficiency Aspects . 59

4.5 Experimental Evaluation . 59
4.5.1 Setup . 60
4.5.2 Measurements . 62
4.5.3 Results and Discussion . 63

4.6 Conclusion . 65

5 STAR 67
5.1 Overview . 67

5.1.1 Motivation and Problem Statement 67
5.1.2 Related Work . 69
5.1.3 Contributions and Outline 73

5.2 The STAR Algorithm . 74
5.2.1 The STAR Metaheuristics 74
5.2.2 First Phase: Quick Construction of an Initial Tree 75
5.2.3 Second Phase: Searching for Better Trees 75
5.2.4 Discussion . 81

5.3 Approximation Guarantee . 82
5.4 Time Complexity . 84
5.5 Approximate Top-k Interconnections 85
5.6 Experimental Evaluation . 87

5.6.1 Top-1 Comparison of STAR, DNH, DPBF, and BANKS . . . 87
5.6.2 Top-k comparison of STAR, BANKS, and BLINKS 89
5.6.3 Comparison of STAR and BANKS 90
5.6.4 Summary of Results . 92

5.7 Conclusion . 92

6 MING 93
6.1 Overview . 93

6.1.1 Motivation and Problem Statement 93
6.1.2 Related Work . 95
6.1.3 Contributions and Outline 97

6.2 ER-based Informativeness . 98
6.2.1 Statistics-based Edge Weights 99
6.2.2 IRank for Node-based Informativeness 100
6.2.3 Most Informative Subgraphs 102

6.3 The MING Algorithm . 104
6.3.1 First Phase: Candidate Subgraph Generation 104
6.3.2 Second Phase: Mining the Most Informative ER Subgraph . . 105

6.4 Experimental Evaluation . 108
6.4.1 Efficiency . 110
6.4.2 Quality . 111

6.5 Conclusion . 113

Contents 15

7 Conclusion 115

8 Appendix 117
8.1 Queries for the User Evaluation of NAGA 117
8.2 MING Queries for the User Evaluation 119

16 Contents

1.1. Introduction: Motivation 17

Chapter 1

Introduction

We are often faced with great opportunities brilliantly disguised as impossible
situations.

CHARLES R. SWINDOLL

1.1 Motivation

1.1.1 Limits of Current Search Technology

Simple Boolean queries over title and abstract catalogs in libraries gave rise to a whole
new field of Computer Science. This field is known today by the name of Information
Retrieval. Since then, search technology has gone a long way. Today’s search systems
index billions of Web pages. They exploit information retrieval techniques on rich page
features to satisfy the daily needs of hundreds of millions of users all around the globe.

The advances in search technology, however, concern mainly the retrieval of
information in unstructured textual data, where the search paradigm is merely based on
keywords. This search paradigm works well for keywords that need not be interpreted;
but sometimes we are interested in explicit knowledge about entities and relationships
holding between them. For example, consider the query that asks for prizes won by
physicists who had Max Planck as academic advisor. No matter which keywords we
use to express this query, current keyword search engines are not able to understand
its intended meaning. For example, searching for the keywords “prize physicist
Max Planck academic advisor” with Google yields mainly pages about Max-Planck
Institutes or the Max Planck Society in the top-10 results. None of the top-10 results
matches our query.

These kinds of queries pose several problems to keyword search engines. First,
keywords cannot express advanced user needs that build on entities and relationships.
Second, keyword search engines will do their best in trying to find Web pages that
contain the query keywords. In our example, however, the result may be distributed
across multiple pages, so that no state-of-the-art search engine will be able to find it.
Third, not only the search but also the ranking strategies of current search engines
are page-oriented. Searching with entities and relationships calls for new, more fine-
grained ranking strategies that combine measures about the quality of pages with
measures about the importance of entities and relationships in those pages.

18 1.1. Introduction: Motivation

1.1.2 Opportunities
The above example highlights the need for more semantics and context awareness for
the information organization and the search on the Web.

The quest for more semantics in the Web has attracted the attention of several
research avenues of Computer Science such as Information Retrieval, Natural
Language Processing, Information Extraction, Semantic and Social Web, Databases,
etc. This research has ignited numerous projects with ambitious goals such as
semantic annotation and editing of information [105, 3, 4], entity-centric information
extraction and search [25, 35, 41, 120, 153], automatic construction and interlinking of
general purpose knowledge bases [138, 24, 30, 56], community-based generation and
combination of type-specific facts [59, 134, 148, 149], etc.

The semantic annotation of information and its organization in entity-relationship-
aware structures opens up great opportunities for new entity-oriented search strategies.
Some of these strategies are already being exploited in terms of faceted search,
vertical-domain search, entity search, Deep-Web search, etc. All major search engines
recognize a large fraction of product or company names, have built-in knowledge about
geographic locations, and can return high-precision results for popular queries about
consumer interests, traveling, and entertainment. Google, for example, understands
entities based on the search context. When searching for “GM” Google returns
pages about “General Motors”, the query “GM food”, on the other hand, yields pages
about genetically modified food. Information-extraction and entity-search methods are
clearly at work here. But these efforts seem to be focusing on specific domains only
and do not exploit the notion of relationships.

Projects such as True Knowledge [12], Yahoo! Answers [150], Wolfram Alpha
[15], Powerset [9] or START [10, 79] see in this realm a greater opportunity. They
exploit Natural Language Processing in combination with background knowledge to
answer natural language questions. However, the techniques behind these projects
are not yet mature. All mentioned question answering engines have often problems
understanding or dealing with questions for which the answer has to be composed
from different pieces of information distributed across multiple pages. For example,
none of these question answering systems can answer the question about prizes won
by physicists who had Max Planck as academic advisor.

The opportunities that have guided this work and especially the YAGO-NAGA
project [96, 17] are the following:

• We see the possibility of casting valuable parts of the Web information (i.e.,
information about science, culture, geography, etc.) into a consistent knowledge
base that is organized as an entity-relationship graph. The nodes of such a graph
would represent entities and the edges would stand for relationships holding
between entities.

• Such an organization of information enables expressive and precise querying
about entities and relationships. This can be exploited to make search more
semantic, more knowledge-oriented, and less dependent on keywords or Web
pages.

• We can take advantage of the redundancy of information in the Web to learn
more about the importance of entities and relationships. This can be exploited
to design new, more fine-grained ranking models that combine measures about
the quality of Web pages with measures about the importance of entities and
relationships in those pages.

1.2. Introduction: Expressive Search with Entities and Relationships 19

• An entity-relationship-based organization of information from the Web together
with a better understanding of importance at entity and relationship level paves
the way for new, powerful analysis and knowledge discovery techniques.

1.2 Expressive Search with Entities and Relationships
The imprecise nature of queries in Information Retrieval makes us often feel
uncomfortable, especially when our information needs are too intricate to be expressed
through keywords. The gap between the user’s information need and the query
expressed through keywords is well-known. In contrast to the “uninterpreted” keyword
search, the database community has given preference to precise query semantics.
Query languages like SQL, for relational data, XQuery [49], for XML data, or
SPARQL [54], for RDF graphs, have been proposed to deal with rigorous semantics.
On the other hand, these query languages have little appeal for the end user. Hence,
we believe that the next wave of search technology has to aim at understanding and
answering natural language questions.

This thesis has mainly been driven by the vision of a search system that allows users
to express their needs through queries that are formal counterparts of natural language
questions. The basic elements of such queries are entities and relationships. The query
language we have in mind is tailored for knowledge bases that are organized as entity-
relationship graphs. It is akin to SPARQL, but it goes beyond SPARQL by supporting
connectivity queries that ask for broad connections between entities or queries that
capture the transitivity of relations such as isA, partOf, locatedIn, etc.

For example, consider the query that asks for philosophers from Germany who have
been influenced by the English philosopher William of Ockham. We envision a query
syntax that would allow us to formulate this query with entities and regular expressions
over relationships. We give an example in the following.

William of Ockham influences* $x
$x (bornIn|livesIn|isCitizenOf)locatedIn* Germany
$x isa philosopher

Without going into details, the term $x in the above query represents a variable that
has to be bound with appropriate entities (i.e., philosophers from Germany who have
been influenced by William of Ockham). The query, uses the regular expressions over
relationships to express our search need without overspecifying it. For example, one
can be generous when specifying that someone is from Germany by using the regular
expression (bornIn|livesIn|isCitizenOf); the expression locatedIn* helps capturing
geographical hierarchies, e.g., with cities, counties, states, and countries. Similarly,
the expression influences* reflects that a philosopher may be directly or indirectly
influenced by the philosophy of William of Ockham.

Such a query language would support the formulation of advanced search needs
such as the ones reflected in the following examples.

• Find a German Nobel Prize winner who survived both world wars and outlived
all of his four children.

The answer is Max Planck. This search task illustrates the need for combining
knowledge that may be distributed across multiple pages. The bits and pieces for
the answer are not that difficult to locate: lists of Nobel prize winners, birth

20 1.3. Introduction: Challenges

and death dates of these people, facts about family members extracted from
biographies, etc. Gathering and connecting these facts is straightforward for
a human, but it may take days of manually inspecting Web pages.

• Find a comprehensive list of politicians who are also accomplished scientists.

Today’s search engines fail on this kind of tasks, because they build on
keyword matching techniques and cannot deal with entities, entity properties
or relationships between entities. Additionally, the question entails a difficult
ranking problem. Wikipedia alone contains hundreds of persons that are listed in
the categories Politicians as well as Scientists. An insightful answer must rank
important people first, for example, the German chancellor Angela Merkel who
has a doctoral degree in physical chemistry, or Benjamin Franklin, and the like.

• Find close relations between Renée Zellweger, Albert Einstein and Steve Ballmer.

An interesting and somewhat close relation is that all three of them are
Swiss citizens. Albert Einstein studied in Switzerland and acquired the Swiss
citizenship in the same year he gained his diploma, Renée Zellweger is of Swiss
origin, and Steve Ballmer received an honorary Swiss citizenship a few years
ago. This case again illustrates the need for combining facts from different Web
sources. It also entails a ranking problem since long or trivial connections (e.g.,
that all three query entities are persons) may be rather non-satisfactory from a
user’s viewpoint.

The answers to these search tasks are not pages; rather, they are composed of
explicit knowledge fragments, eventually extracted from different Web pages. We
refer to corresponding queries as “knowledge queries”. A search system for knowledge
queries has to reward the additional semantic information (given by the entities and the
relationships) of the query by returning precise and salient answers. Whenever a query
yields multiple answers, the system has to rank the most important answers first.

1.3 Challenges
The above search tasks highlight the need for more explicit, unifying structures for the
information on the Web. Knowledge bases that organize information extracted from the
Web as entity-relationship graphs are an important building block; but they are useless
without a query language that exploits their inherent semantics.

The main challenges that have been addressed in this work are:

Expressive Querying: Designing an expressive query language that is tailored
to information organized in entity-relationship graphs and allows the formulation
of knowledge queries with entities and relationships. A prominent approach that
addresses this challenge is SPARQL [54]. However, SPARQL does allow us to capture
the transitivity of relations or broad connections between entities.

Ranking: Knowledge queries may often yield plenty of results. Hence the results need
to be ranked. For example, the query that asks for a comprehensive list of German
physicists may return hundreds of results. An insightful ranking has to give preference
to important German physicists such as Albert Einstein, Max Planck, and the like.
Ranking models for knowledge queries are much more difficult than traditional ranking

1.5. Introduction: Outline 21

models known from Information Retrieval, as one needs to reason about importance
at entity and relationship level, and consider the semantics and the structure of both
queries and results.

Efficient Search: Evaluating knowledge queries over graphs is computationally hard.
Moreover, the need for ranking calls for smart evaluation strategies.

Efficient Knowledge Discovery: Especially challenging, from an efficiency and a
semantics point of view, are queries that ask for commonalities or broad connections
between two or more entities of interest. An example is the query that asks for the
relations between Renée Zellweger, Albert Einstein and Steve Ballmer. These queries
aim at knowledge discovery. From a semantics standpoint, one has to reason about
measures that favor important connections between the entities of interest. From an
efficiency standpoint, one has to think about algorithms that can efficiently discover
these connections.

1.4 Contributions
This thesis contributes to advanced forms of search on entity-relationship graphs. We
investigate a spectrum of issues ranging from expressive means for querying with
entities and relationships to efficient knowledge discovery in entity-relationship graphs.
Our main contributions are the following:

1. NAGA (Not Another Google Answer).
NAGA is a new semantic search engine. It provides an expressive, graph-based
query language that supports queries about entities and relationships. The results
are retrieved based on subgraph matching techniques and ranked by means of a
statistical ranking model.

2. STAR (Steiner Tree Approximation in Relationship Graphs).
STAR is an efficient technique for finding “close” relations (i.e., compact
connections) between k(≥ 2) entities of interest in entity-relationship graph
structures.

3. MING (Mining Informative Graphs).
MING is an efficient method for retrieving “informative” subgraphs for k(≥ 2)
given entities of interest. Intuitively, these would be subgraphs that can explain
the relations between the entities of interest. In comparison to STAR, the
knowledge discovery tasks supported by MING have a stronger semantic flavor.
An adequate measure for informativeness should favor insightful and salient
relations between the entities of interest (not necessarily compact ones).

The contributions presented in this thesis have been published or accepted
for publication in various international conference proceedings and journals. The
following paragraph gives an overview of the main publications.

Our work on NAGA has been published in the proceedings of WWW 2007 [99] and
ICDE 2008 [98] and has been presented as a demo at SIGMOD 2008 [97]. An overview
of the YAGO-NAGA project has been given in the December edition of SIGMOD
Record 2008 [96]. The STAR algorithm has been published in the proceedings of ICDE
2009 [95], and the work on MING has been accepted for publication in the proceedings
of CIKM 2009 [93].

22 1.5. Introduction: Outline

1.5 Outline
The remainder of this thesis is organized as follows. In Chapter 2, we give a
brief overview on research efforts towards extracting information from the Web and
organizing it in high-quality knowledge bases. Along these lines, we present our
own project YAGO (Yet Another Great Ontology). YAGO is a successful example
for building high-quality knowledge bases that organize information from the Web in
entity-relationship graphs. Chapter 3 is dedicated to entity-relationship graphs and
gives an overview of approaches for storing and querying them. In Chapter 4, we
present NAGA, our semantic search system. Chapters 5 and 6 are about efficient
knowledge discovery methods in large entity-relationship graphs. Chapter 5 introduces
STAR, our algorithm for finding compact connections between k(≥ 2) entities of
interest, and Chapter 6 presents MING, our method for finding subgraphs that can
explain the connections between k(≥ 2) entities of interest. We conclude in Chapter 7.

2.1. From Web Pages to Knowledge: Harvesting Knowledge from the Web 23

Chapter 2

From Web Pages to Knowledge

“We are drowning in information but starved for knowledge.”

JOHN NAISBITT

2.1 Harvesting Knowledge from the Web
As the Web evolves, there are more and more Web sources in the spirit of Web 2.0,
which allow users to semantically annotate information in a collaborative way. The
annotations range from simple keywords or tags to detailed descriptions or articles.
As these kinds of social tagging/editing communities are flourishing, the (slightly
older) Semantic Web research avenue is aiming to give more structure to the Web
information. For more than a decade, this research avenue has been pursuing various
projects with the goal to build comprehensive Semantic-Web-style knowledge sources
which structure information in terms of entities and relationships. Together with other
Computer Science avenues such as Information Extraction and Databases, the Web 2.0
and the Semantic Web research avenue are contributing to the endeavor of adding more
structure, more semantics, and more context-awareness to the information on the Web.

In this Chapter, we will explain why the efforts of these Web research avenues
open up the great opportunity of “casting the Web into knowledge”. The concrete idea
is to extract high-quality information (in terms of data records) form the Web and store
it into a consistent knowledge base. Such a knowledge base would contain explicit
facts1 about entities such as persons, locations, movies, dates, etc. The facts could be
represented as relational tuples, RDF triples, or maybe XML fragments. Imagine a
“Structured Web” that has the same scale and richness as the current Web but offers a
precise and concise representation of knowledge stored in a knowledge base. This kind
of Web would enable expressive and highly precise querying. Figure 1 illustrates a
possible sample from such a knowledge base. While the nodes in the graph of Figure 1
represent entities the edges between them represent facts. Each fact may have a weight,
intuitively representing the strength of the corresponding relationship between the two
entities.

A knowledge base that contains the valuable information from the Web in a well
structured form as above would support difficult queries that go beyond the capabilities
of today’s keyword-based search engines. Consider the HIV-relevant query that asks

1One can think of a fact as a structured data record.

24 2.1. From Web Pages to Knowledge: Harvesting Knowledge from the Web

for a comprehensive list of drugs that inhibit proteases. Finding relevant answers to
this query is extremely laborious and time-consuming, since one would have to browse
through plenty of promising but eventually useless result pages. In order to increase
the chance of retrieving better results, one could pursue the strategy of rephrasing the
query; but this requires deep scholarly knowledge about the subject.

Figure 1: Sample knowledge graph (source [145])

Going one step further, such a knowledge base would also enable queries that ask
for broad relations between entities. Consider the query that asks for commonalities
or other connections between David Bohm, Niels Bohr, Enrico Fermi, and Richard
Feynman. Close and interesting connections are that all four of them are quantum
physicists, and that all four of them were members of the Manhattan Project.
Discovering interesting relations between multiple entities on the Web is virtually
impossible. An online answer generation would involve various difficult tasks such
as analyzing huge amounts of Web pages, disambiguating entities, extracting and
interconnecting facts, etc. Although the original task becomes simpler in a well
structured knowledge base, it still remains difficult from an algorithmic point of view
(see Chapter 5).

Other search tasks similar to the ones above were presented in Section 1.2.
There are three major Web research avenues which can contribute to the goal of

casting the Web into explicit and clean knowledge: the Statistical Web, the Semantic
Web, and the Social Web.

2.1. From Web Pages to Knowledge: Harvesting Knowledge from the Web 25

2.1.1 The Statistical Web
As of now, the greatest part of Web information still is in natural language text
sources. The valuable scientific and cultural content of such sources is usually mixed
up with ambiguous and noisy, low-quality information. Hence, the main challenge
is to automatically extract clean, accurate and important facts from these kinds of
sources. For such a large-scale information extraction task, one has to combine
different natural language processing techniques (e.g., parsing, pattern matching, etc.)
with statistical learning techniques (e.g., entity labeling, relational pattern learning,
etc.) All these techniques have recently become more scalable and less dependent
on human supervision [18, 55, 130]. However, extraction scalability and extraction
accuracy are still two issues which seem to oppose each other. For example, the
recent paradigm of Machine Reading [67], where the goal is to aggressively extract all
possible binary relation instances from Web pages, helps to operate at a considerably
larger scale, but often leads to inaccurate extraction. On the other hand, the Life-long
Learning [25] paradigm, where the goal is to learn from already extracted information,
helps to increase extraction accuracy but punishes the extraction efficiency. Hence,
despite the continuous improvement, most of the extraction techniques still need to deal
with efficiency and accuracy issues. Consequently, automatic information extraction
techniques are not yet appropriate for the goal of extracting clean and accurate facts at
Web scale.

2.1.2 The Semantic Web
Semantic-Web-style knowledge repositories like ontologies and taxonomies suggest a
promising direction towards a machine processable Web. General-purpose ontologies
and thesauri such as SUMO [121], OpenCyc [56], or WordNet [16, 72], provide
comprehensive hierarchies of general concepts or classes such as computer scientist,
physicist, musician, actor, etc. These hierarchies are usually built based on taxonomic
relationships between entities, such as hyponymy and hypernymy (to describe relations
between classes and subclasses), meronymy and holonymy (to describe relations
between parts and a whole). Furthermore, these ontologies provide simple reasoning
rules; for example they may know that humans are either male or female, cannot fly
(without appropriate gadgets) but can compose and play music, and so on. Other
domain-specifc ontologies and terminological taxonomies such as GeneOntology [5]
or UMLS [14], in the biomedical domain, know specific domain entities (e.g., proteins,
genes, etc.) and relations (e.g., specific biochemical interactions).

These kinds of knowledge sources have the advantage of satisfying the highest
quality expectations, because they are manually assembled and curated. However, they
are costly to build and continuous human effort is needed to keep them up to date. This
negatively affects the coverage of such ontologies. For example WordNet is extremely
rich in terms of classes but knows only few named entities (i.e., individuals) for each
class. Furthermore, no hand-crafted ontology knows the most recent Windows version
or the latest soccer star.

2.1.3 The Social Web
Social tagging and Web 2.0 communities, such as Wikipedia, flickr [3], Freebase [4],
etc., which allow users to collaboratively annotate and edit information, constitute the
Social Web. Human contributions are abundant in the form of semantically annotated

26 2.2. From Web Pages to Knowledge: Unifying The Social and the Semantic Web

Web pages, phrases in pages, images, or videos, together providing the “wisdom of the
crowds”. Recent endeavors along these lines are Freebase and Semantic Wikipedia.
Inspired by Wikipedia, the Freebase project aims to construct an ontology by inviting
volunteers to contribute by providing structured data records about entities or events.
The Semantic Wikipedia project [105] is a comparable initiative. It invites Wikipedia
authors to add semantic tags to their articles in order to turn the page link structure of
Wikipedia into a large semantic network.

Apart from the large number of collaboratively added named entities (i.e.,
individuals) and annotations about them, Social Web sources can also provide high-
quality information. In 2007, a study initiated on behalf of the German magazine
“Stern”, showed that due to more detailed and up-to-date information Wikipedia’s
quality was higher than the quality of the well-known German, universal lexicon
“Brockhaus” [135]. Furthermore, a considerable part of this high-quality information is
provided in semi-structured formats (e.g., Wikipadia infoboxes, lists, categories, etc.),
which can be leveraged to extract high-quality facts about individuals.

Hence, both, the Semantic Web and the Social Web offer high-quality knowledge,
and while the former has a large coverage on concepts (or classes), the latter has a
large coverage on named entities (or individuals). For our goal of a clean and accurate
knowledge base derived from the Web, the unification of these two sources seems to
be very compelling.

In the next section, we give an example of how the knowledge provided by the
Semantic and the Social Web can be combined into a large knowledge base.

2.2 Unifying The Social and the Semantic Web

There are various research projects which aim to combine elements from the three
Web avenues mentioned above. The goals of these projects range from entity-centric
fact extraction and search [25, 35, 41, 120, 153] to community-based generation and
combination of type specific facts [59, 134, 148, 149]. Despite the great visions pursued
by all these projects, in this section, we will shift our focus towards a more moderate
endeavor. Is it possible to turn relevant parts of the Social and the Semantic Web into
a large knowledge base?

In this section, we will present YAGO (Yet Another Great Ontology) [137, 138,
136] as a successful example of combining knowledge extracted from the Social Web
with knowledge from the Semantic Web. YAGO is the first approach that successfully
combines the goal of large-scale knowledge harvesting with the goal of maintaining a
high accuracy and consistency.

2.2.1 YAGO

YAGO primarily gathers its knowledge by integrating information from Wikipedia and
WordNet. Wikipedia provides various assets that can be seen as almost structured data:
the infoboxes, the lists and the category system are such examples.

As depicted in Figure 2, infoboxes contain attribute names along with their values.
The left hand side of the figure depicts the infobox as it appears on the Wikipedia page
about Max-Planck. The editing format of the same infobox is depicted on the right
hand side.

2.2. From Web Pages to Knowledge: Unifying The Social and the Semantic Web 27

Figure 2: The Wikipedia infobox of Max Planck

The editing format for infoboxes is based on templates which can be reused for
important types of entities such as countries, companies, scientists, music bands, sports
teams, etc. For example, the infobox of Max Planck gives us well-structured data about
Max Planck’s birth date, birth place, death date, nationality, alma mater, prizes, etc. It
is almost straightforward to turn such an infobox into explicit facts. Consequently,
we can extract clean facts about Max Planck, such as (Max Planck, bornOn, 1858-04-
23) or (Max Planck, hasWon, Nobel Prize). YAGO provides automatic techniques for
turning all Wikipedia infoboxes into clean facts.

Another Wikipedia asset for extracting clean facts is the category system. The
Wikipedia article about Max Planck is manually placed into categories such as:
“German Nobel laureates”, “Nobel laureates in Physics”, “Quantum physics”, or
“University of Munich alumni”. These categories give YAGO clues about instanceOf
relations, and we can infer that the entity Max Planck is an instance of the classes
GermanNobelLaureates, NobelLaureatesInPhysics, and UniversityOfMunichAlumni.
But when extracting the corresponding facts we have to be careful, as the placement of
Max Planck in the category “Quantum physics” does not mean that Max Planck is an
instance of the class QuantumPhysics. All Wikipedia categories extracted along with
these facts become YAGO classes. The YAGO extractors employ linguistic processing
(noun phrase parsing) and mapping rules, to achieve high accuracy in harvesting the
information from categories.

The above examples indicate that solely relying on the infoboxes and categories of
Wikipedia may result in a large but incoherent collection of facts. For example, we
may know that Max Planck is an instance of GermanNobelLaureates, but we may not

28 2.2. From Web Pages to Knowledge: Unifying The Social and the Semantic Web

be able to automatically infer that he is also an instance of Germans and an instance
of NobelLaureates. Likewise, the fact that he is a physicist does not automatically tell
us that he is a scientist. To address these shortcomings, YAGO makes intensive use of
the WordNet thesaurus and integrates the facts that are harvested from Wikipedia with
the taxonomic backbone provided by WordNet. As discussed earlier in this chapter,
WordNet knows many abstract classes as well as the subclass and partOf relations
among them, but it has only sparse information about individual entities that would
populate its classes. The wealth of entities in Wikipedia nicely complements WordNet;
conversely, the rigor and high coverage of WordNet’s taxonomy can make up for
the gaps and noise in the Wikipedia category system. Hence, all WordNet concepts
become YAGO classes. More precisely, the whole class-subclass hierarchy of WordNet
concepts is adopted into YAGO. Furthermore, all Wikipedia categories that become
YAGO classes are mapped to the corresponding YAGO classes that were derived from
WordNet. For example, the class GermanNobelLaureates is mapped to superclasses
such as NobelLaureates or Germans.

YAGO also exploits Wikipedia’s redirect system to infer words that refer to named
entities. A Wikipedia redirect is a virtual Wikipedia page, which links to a real
Wikipedia page. These links serve to redirect users to the correct Wikipedia article. For
example, when the user types “Planck” or “Karl Ernst Ludwig Marx Planck” instead
of “Max Planck”, a virtual redirect page redirects the user to the Wikipedia page about
Max Planck. From Wikipedia’s redirect system YAGO extracts facts such as (“Karl
Ernst Ludwig Marx Planck”, means, Max Planck). In fact, Figure 1 (Section 2.1)
depicts an excerpt from YAGO. The edges between nodes highlighted in red or orange
stand for facts about individuals; they were extracted from Wikipedia. The nodes
highlighted in green correspond to YAGO classes. The edges between these nodes
represent the class-subclass hierarchy. Edges between red and green nodes represent
the instanceOf relation between individuals and YAGO classes.

QUALITY CONTROL YAGO pays particular attention to the consistency of the
knowledge base.

When different extraction algorithms deliver the same fact, YAGO’s consistency
checking mechanism makes sure that only one of them is maintained. In case that one
fact is more precise than another, then only the more precise fact is kept. For example,
if the category harvesting has determined the birth year 1858 for Max Planck, and the
infobox harvesting has determined 1858-04-23 as the date of birth, then only the more
detailed fact with the date 1858-04-23 is kept. Furthermore, the consistency checking
mechanism guarantees that the subclass relation remains acyclic.

YAGO relations are typed. For example the relationship fatherOf has the domain
Person and the range Person. Hence, the fact fatherOf (Max Planck, Quantum Theory)
would be discarded by YAGO’s type-checking mechanism, since Quantum Theory is
not a person. Furthermore, when a candidate fact contains an entity for which the
extraction algorithm could not determine its class, it is discarded. Note that for all
remaining facts, YAGO knows the class(es) and all superclasses for each entity.

Type checking can also be used to generate facts. For example, whenever a fact
contains an unknown entity and the range or domain of the relation predicts that the
entity should be a person, the algorithm makes the entity an instance of the class Person.
In this case, a regular expression check is used to make sure that the entity name follows
the basic pattern of given name and family name. The fact is kept only if the check was
successful.

These and other procedures ensure that duplicate facts and dangling entities are

2.3. From Web Pages to Knowledge: Summary 29

removed, and the knowledge base remains consistent. YAGO is one of the largest
knowledge bases available today; it contains around 2 million entities and about 20
million facts about them, where facts are instances of binary relations. Furthermore, its
quality is unprecedented in the field of automatically generated ontologies. Extensive
sampling showed that the accuracy is at least 95 percent, and many of the remaining
errors (false positives) are due to incorrect entries in Wikipedia itself. Since its public
release, YAGO has been adopted into several projects. For example, DBpedia [24],
another project that aims to extract ontological data from Wikipedia, uses YAGO
as a taxonomic backbone. YAGO has also been included into Freebase and is an
integral part of the Linking Open Data Project [30], which aims to interconnect existing
ontologies as Web services.

YAGO is publicly available at: http://www.mpi-inf.mpg.de/yago-naga/

yago/.

2.3 Summary
In this chapter, we gave an overview of the evolutionary shift towards a Web with more
structure, semantic flavor, and context-awareness. In this vision, we skimmed through
various research domains that are taking the opportunities given by the Statistical,
the Semantic and the Social Web, aiming to turn the Web into explicit knowledge.
We saw that considerable progress in these research domains is often accompanied
by limitations which mainly concern the quality and the scalability of information
extraction, especially in the domain of the Statistical Web. Finally, by means of the
YAGO project we demonstrated the viability of the idea of reconciling the Semantic
and the Social Web into a high-quality knowledge base.

YAGO-style knowledge bases give rise to more expressive and precise querying,
releasing the user from the restricted paradigm of keyword search, and paving the
way towards question answering. The queries we have in mind would be formal
counterparts of natural language questions. They would be entity-relation-based and
would go beyond Datalog [37] or SPARQL-based [54] queries. But before diving
into this topic, we will take a closer look at entity relationship graphs for knowledge
representation.

http://www.mpi-inf.mpg.de/yago-naga/yago/
http://www.mpi-inf.mpg.de/yago-naga/yago/

30 2.3. From Web Pages to Knowledge: Summary

3.1. Entity-Relationship Graphs for Knowledge Representation: Basics 31

Chapter 3

Entity-Relationship Graphs for
Knowledge Representation

“Perfection is reached, not when there is no longer anything to add, but when there is
no longer anything to take away.”

ANTOINE DE SAINT-EXUPÉRY

3.1 Basics
An important step towards representing knowledge from a domain of discourse is
that of structuring the available information. For machine processable knowledge
representation, the aim is to determine the resources associated with the explicit
elements of the domain, such as entities and relationships. While a type-level
representation aims at modeling classes of entities and their relationships, an instance-
level representation aims at modeling the named entities (i.e., individuals) and their
relationships. Often, the type-level and the instance-level modeling are combined.
For example, in the previous chapter, we saw how YAGO combines the type-level
representation of WordNet classes with the instance-level representation of Wikipedia
entities.

Once the elements of discourse are determined, an entity-relationship graph can be
built.

DEFINITION 1: [Entity-Relationship Graph]
Let Ent and Rel be finite sets of entity and relationship labels respectively. An entity-
relationship graph over Ent and Rel is a multigraph G = (V, lEnt, ERel) where
V is a finite set of nodes, lEnt : V → Ent is an injective function, and ERel ⊆
lEnt(V)×Rel × lEnt(V) is a set of labeled edges.

While the labeled nodes of an entity-relationship graph (ER graph for short)
correspond to entities, the lebeled edges represent relationships between entities. A
sample ER graph is depicted in Figure 1 (Chapter 2).

A specific variant of type-level ER graphs for representing the conceptual schema
of relational databases was introduced 1976 by Peter Chen [40]. This kind of graphs
have been the undisputed light-weight model for semantic data representation and

32 3.2. Entity-Relationship Graphs for Knowledge Representation: RDF/RDFS and OWL

have significantly influenced various fields of computer science, such as software
engineering, database modeling, artificial intelligence, and many more.

There are three main reasons for the ubiquity of ER graphs:

1. They are explicit (by means of node and edge labels),

2. They are simple, i.e., they structure information similarly to the way we do it in
our minds; unnecessary information is omitted,

3. They are flexible, i.e., when representing schema-free information, edges can be
easily added or removed.

Modern applications use ER graphs to represent knowledge from large domains
such as Web-based social networks, biochemical networks, networks of products and
customers, etc. Often these graphs are too large to fit in main memory. Hence, they
need to be stored and manipulated on disk. Before discussing possibilities for storing
and managing large ER graphs, we will present two prominent languages for ER-based
knowledge representation.

3.2 RDF/RDFS and OWL
The vision of Semantic Web, with common formats for automatic data integration
and manipulation, gave rise to two prominent ER-based languages for knowledge
representation: RDFS and OWL.

RDF/RDFS The Resource Description Framework Schema (RDFS) is an extensible
knowledge representation language recommended by the World Wide Web Consortium
(W3C) [47] for the description of a domain of discourse (such as the Web). Its syntax
is based on XML [46], and similarly to XML, RDFS allows the specification of a
common syntax for data exchange. It enables the definition of domain resources, such
as individuals, classes and properties. The basis of RDFS is RDF which comes with
three basic symbols: URIs (Uniform Resource Identifiers) for uniquely addressing
resources, literals for representing values such as string, numbers, etc., and blank
nodes for representing unknown or unimportant resources. Another important RDF
construct for expressing that two entities stand in a binary relationship is a statement. A
statement is a triple of URIs and has the form (Subject, Predicate, Object), for example
(MaxPlanck, hasWonPrize, NobelPrize). An RDF statement can be thought of as a
an edge of an ER graph, where the Subject and the Object represent entity nodes
and the Predicate represents the relationship label of the corresponding edge. In fact,
the set of RDF statements about a domain can be directly viewed as an ER graph.
RDFS extends the RDF symbols by new URIs for predefined class and relation types
such as rdfs:Resource (the class of all resources), rdfs:subClassOf (for representing the
subclass relationship), etc. RDFS is integrated into the more expressive Web Ontology
Language.

OWL Going one step further, one can also associate assertions to each entity. These
assertions are used to express claims about entities (e.g., humans cannot fly, humans
are mortal, etc.). For this purpose, W3C recommends the Web Ontology Language
(OWL) [53]. OWL allows the definition of domain resources and axioms about
them. The axioms place constraints on entity classes and the types of relationships
permitted between them. For example, axioms about persons might state that the

3.3. Entity-Relationship Graphs for Knowledge Representation: Storing and Querying
Entity-Relationship Graphs 33

relation hasParent can only be present between two persons when either hasFather
or hasMother is also present, or that if person A is older than B, then A cannot stand in
a hasMother or hasFather relationship with B. In full generality, such axioms can
be used to assert special characteristics of relationships, to define the complement
of classes, to express that two or more classes are disjoint, or to define boolean
combinations of classes. In addition, they can be used to restrict the cardinality of
classes. Hence, these axioms allow systems to infer additional information about the
represented entities. For example, a person of blood type 0 cannot be the child of
persons of blood type AB.

On the other hand, since these axioms are constraints, they entail a high complexity
for reasoning tasks. The satisfiability problem for OWL classes, namely the problem
whether there exists an instance of a given OWL class, is undecidable. For this reason
OWL comes with three ascending levels of expressiveness: OWL Lite, OWL DL, and
OWL Full. The semantics of OWL Lite and OWL DL can be described through a
special Description Logic. The satisfiability problem is decidable in both cases (in
EXPTIME for OWL Lite and in NEXPTIME for OWL DL [84]). The reasoning for
the more expressive language OWL Full is undecidable; but OWL Full is the only OWL
variant that is fully compatible with RDFS.

3.3 Storing and Querying Entity-Relationship Graphs

A common way for managing large ER graphs is by storing them in database systems.
Such systems allow the management of the stored information by using system-
dependent manipulation and query languages.

3.3.1 Relational, Object-Oriented, and XML Databases

RDBMS In order to overcome the drawbacks concerning the structural inflexibility
of hierarchical and network databases, relational database systems were introduced. In
a relational database, data is organized in relational tables, in which each record forms
a row with predefined attributes in it. Relational Database Systems have been widely
used in business applications. Their major task has been to perform customer-oriented
on-line transaction and query processing. They usually adopt application-oriented ER
models for the database design and support structured querying and management of the
stored data through the Structured Query Language (SQL).

In a relational database, the edges of an ER graph can be stored as rows in one or
multiple tables which can be queried through SQL. The following sample query asks
for nodes a and b that have a common predecessor; the assumption is that the edges
of the ER graph are stored in a single table with the schema graph(sourceID,
relation, destinationID).

SELECT destinationID AS a, destinationID AS b
FROM graph INNER JOIN graph USING (sourceID)
WHERE a != b

SQL builds on Relational Algebra [43]. It is important to note that reachability
queries (i.e., whether two nodes in the graph are connected) cannot be expressed

34
3.3. Entity-Relationship Graphs for Knowledge Representation: Storing and Querying

Entity-Relationship Graphs

in SQL. The paradigm behind SQL is precise querying and efficient processing that
respects the data consistency.

Despite several benefits concerning simple storage with ad-hoc and descriptive
querying possibilities, this flat representation of data leaves the graph semantics to
the user. On the other hand, given the simplistic semantics of ER graphs, relational
databases are a favored option for their management.

ORDBMS/OODBMS Object-relational database systems rely on the capabilities of
SQL, and extend the relational data model by including object orientation to deal with
added data types (e.g., user defined types, row types, reference types, collection types,
etc.). Special SQL-based query constructs are included to deal with these data types.
This extension comes with an increased complexity when processing the added data
types.

Object-oriented database systems are based on the object-oriented programming
paradigm, where each entity is considered as an object. Data and code relating to an
object are encapsulated into a single unit. Each object is assigned a set of variables (for
its description), a set of messages (for communication purposes), and a set of methods
(holding the code for messages). Objects with common properties can be grouped
into an object class, and classes can be organized into class-subclass hierarchies. Such
systems support several features of object-oriented programming such as inheritance,
overriding and late-binding, extensibility, polymorphism, etc. Further features, such as
computational completeness, persistence, concurrency, recovery and ad-hoc querying
are directly adopted from relational database systems. In this setting, the entity nodes
of an ER graph could be modeled as objects and the relations could be modeled as
properties of these objects. The objects stored in an object-oriented database can
be queried and manipulated through the object-oriented query language, OQL. In
difference to SQL, OQL supports object referencing within tables and can perform
mathematical computations within OQL statements. However, all this comes with
an increased complexity. Ad-hoc querying (as in SQL) is in some cases impossible,
because it compromises the encapsulation paradigm of object-orientation. A sample
OQL query that asks for German physicists who had the same academic advisor is
given in the following.

SELECT DISTINCT STRUCT (P1 : phys1.name, P2 :
(SELECT phys2.name FROM phys2 IN GermanPhysicist
WHERE !phys1.name.equals(phys2.name)
AND phys1.getAdvisor().equals(phys2.getAdvisor())))

FROM phys1 IN GermanPhysicist

By using the late-binding mechanism of object orientation, OQL can dynamically
determine the class of an object. This is similar to computing the transitive closure of
the subclass relationship in an ER graph. However, general transitive closure queries
(i.e., queries that ask for the transitive closure of a relationship) cannot be expressed in
OQL.

XML In the world of semi-structured data, the Extensible Markup Language (XML)
[46] is the main option for allowing information systems to encode, serialize, and share
structured data, especially via the Internet. The interpretation of XML encoded data
is completely left to the application that reads it. The tree-based data model of XML
makes it easy to hierarchically organize information by delimiting pieces of data and

3.3. Entity-Relationship Graphs for Knowledge Representation: Storing and Querying
Entity-Relationship Graphs 35

representing them as nodes of a tree structure. Hence, the XML data model is a straight-
forward generalization of the relational model. More precisely, a relational table can
be viewed as the root node of an XML document, the tuples of the table can be viewed
as the children of the root node, and their children are given by the attributes in the
tuples.

In order to query and manipulate collections of XML data, W3C has developed
XQuery [49] which uses XPath [48] expressions to address certain parts of XML
documents. Consider an XML document that contains information about physicists.
Assume that each physicist is represented by a node tagged PHYSICIST and that
each PHYSICIST node has children nodes tagged with NAME, NATIONALITY,
ADVISOR, etc. A high-level overview of a so-called FLWR XQuery expression asking
for German physicists who had the same academic advisor is depicted in the following.

FOR $phys1 IN doc(‘‘physicists.xml’’)//PHYSICIST,
$phys2 IN doc(‘‘physicists.xml’’)//PHYSICIST

WHERE $phys1/ADVISOR = $phys2/ADVISOR
AND ends-with($phys1/NATIONALITY, ‘German’)
AND ends-with($phys2/NATIONALITY, ‘German’)
AND $phys1/NAME != $phys2/NAME

RETURN $phys1/NAME, $phys2/NAME

Notations of the form A//B are shorthand XPath notations that ask for any descendant
node tagged B when descending from A in the XML tree structure. Similarly, notations
of the form A/B ask for direct children of A that are tagged with B.

The above query example illustrates that XML and XQuery are geared for tree
structures. With added modules such as ID/IDREF [46] (for establishing key/foreign
key references between XML elements), XLink [50] (for adding hyperlinks between
XML elements or XML documents) and XPointer [51] (for adding pointers to parts of
an XML document), XML documents can be viewed as graphs. However, the current
recommendations of XPath 2.0 and XQuery 1.0 do not support the navigation along
XLinks [27].

3.3.2 Storing RDF data
Usually RDF triples are directly mapped onto relational tables. In general, there are
two main strategies for doing that:

1. All triples are stored in a single table with generic attributes representing the
Subject, the Predicate, and the Object.

2. Triples are grouped by their predicate name, and all triples with the same
predicate name are stored in the same property table

The storage strategies are crucial for querying the RDF data. Different storage
strategies favor different query types. While the second storage strategy is efficient on
simple predicate-based triple lookup queries (i.e., for triples with the same predicate),
the first strategy favors entity-based triple lookup (i.e., for triples with the same entity).
Furthermore, by means of self-joins, the first storage strategy allows complex join
queries between entities in a straight-forward way. However, the efficiency for this
kind of tasks degrades in the presence of tens of millions of triples. Therefore, hybrid
strategies such as the one used by Jena [147, 7] or Sesame [34, 122] cluster triples

36 3.4. Entity-Relationship Graphs for Knowledge Representation: Summary

by predicate names, but based on predicates for the same entity class or for the same
workload. A recent approach, coined RDF-3X [119], eliminates the need for physical
fragmentation of the RDF graph into multiple tables. It shows that by creating smart
and exhaustive indexes over a single, large table of RDF triples, join-style querying can
be done very efficiently.

3.3.3 SPARQL
The standard query language for RDF data is SPARQL [54] (recursive acronym that
stands for SPARQL Protocol and RDF Query Language). In January 2008, it became a
W3C Recommendation. SPARQL queries are pattern matching queries on triples from
an RDF data graph. A high-level representation of a SPARQL query has the form

SELECT ?variable1 ?variable2 ...
WHERE { pattern1. pattern2. ... }

where each pattern consists of a subject, a predicate, and an object, and each of these
is either a variable, a URI or a literal. The query model is query-by-example style: the
query specifies the known literals and leaves the unknowns as variables. Furthermore,
all patterns represent conjunctive conditions (denoted by the dot between two patterns).
Hence, variables that occur in multiple patterns imply joins. A SPARQL query
processor needs to find all possible variable bindings that satisfy the given patterns
and return the bindings from the projection clause to the application. The following
sample query asks for German physicists that have the same academic advisor.

SELECT ?phys1 ?phys2
WHERE { ?phys1 type GermanPhysicist.

?phys2 type GermanPhysicist.
?phys1 hasAdvisor ?advisor.
?phys2 hasAdvisor ?advisor.

}

More abstractly, a SPARQL query defines a subgraph matching task. In the above
example, the query aims to find all entity nodes ?phys1 and ?phys2 that are
connected to a node ?advisor through an edge labeled hasAdvisor. The pattern
matching semantics requires that all bindings of ?phys1, ?phys2, and ?advisor
be computed. Although for this kind of subgraph matching tasks, the SPARQL syntax
is more intuitive than the SQL, OQL, or the XQuery syntax, as SQL, OQL, and
XQuery, it lacks the power of expressing reachability or transitive closure queries over
relationship labels. In fact, [22] shows that (for a given schema) the expressive power
of SPARQL (as recommended by W3C) is equivalent to that of Relational Algebra.

3.4 Summary
In this chapter, we formally introduced the notion of ER graphs. We presented RDFS
and OWL as two prominent ER-based schema languages for representing the resources
of a domain of interest and reasoning about them. While OWL supports the definition
of axioms about resources, and is more expressive than RDFS, it suffers from high
complexity or even undecidability for reasoning problems.

3.4. Entity-Relationship Graphs for Knowledge Representation: Summary 37

We gave an overview of state-of-the-art techniques for storing and querying ER
graphs. In relational database systems, the edges of an ER graph can be conveniently
mapped onto flat relational tables with generic attributes representing the source entity,
the relation label, and the destination entity of an edge. SQL can be used to query
the stored graphs, but the user has to be aware of the graph semantics encoded in
the flat tables. Object-oriented and object-relational database systems offer a richer
semantics for representing and querying ER graphs by borrowing concepts from
object orientation, but this richness comes with increased complexity for querying
and processing the stored data. XML with XLink and XPointer can represent ER
graphs, but current XML query languages, such as XPath and XQuery are geared for
tree structures and cannot deal with general, possibly dense graphs. SPARQL offers
an intuitive semantics for subgraph matching tasks in RDF data, but like the previous
query languages, it lacks the power to express reachability queries or queries asking
for the transitive closure of (transitive) relations.

In general, the database research community has mainly emphasized the aspects
of data consistency, precise query processing, and efficiency. We, on the other
hand, envision knowledge bases with expressive search and ranking capabilities,
and embedded knowledge discovery techniques, specifically geared for ER graph
structures.

38 3.4. Entity-Relationship Graphs for Knowledge Representation: Summary

4.1. NAGA: Overview 39

Chapter 4

NAGA

“If music had been invented ten years ago along with the Web, we would all be playing
one-string instruments and not making great music.”

UDI MANBER

4.1 Overview
Our vision is the world’s most comprehensive knowledge base derived from the Web.
An important step towards this vision is the extraction and organization of information
into explicit and unifying structures. Another important step is the design of search
techniques that leverage these structures.

Consider a knowledge base that organizes information from the Web in a
huge graph with entities (e.g., persons, locations, organizations, dates, etc.) as
nodes and relationship instances or facts (e.g., (Max Planck, hasWon, Nobel Prize),
(Max Planck, bornIn, Kiel), etc.) as edges. Such a knowledge base would pave the
way for new querying techniques that are simple and yet more expressive than those
provided by standard keyword-based search engines. It would give us the opportunity
to search for explicit knowledge rather than Web pages.

In this chapter, we propose NAGA (Not Another Google Answer), a new semantic
search engine. NAGA builds on a knowledge base, which organizes information
as a graph with typed nodes and edges, and consists of millions of entities and
relationships extracted from Web-based corpora. A graph-based query language
enables the formulation of queries with advanced semantic information. We introduce
a novel scoring model, based on the principles of generative language models. Our
model formalizes the notions of confidence, informativeness, and compactness and
uses them to rank query results. We demonstrate NAGA’s superior result quality over
state-of-the-art search engines and question answering systems.

4.1.1 Motivation and Problem Statement

MOTIVATION The Web has become the prime source of information. Today’s search
engines index rich textual features of billions of Web pages and exploit the link
structure between Web documents for the retrieval process. On top of that, they can
return answers to user queries within milliseconds.

40 4.1. NAGA: Overview

However, all major search engines are still keyword-based, which means that
they are restricted to finding keywords in Web pages. This is fully sufficient for
simple information needs, but highly inconvenient for more advanced queries where
the keywords need to be interpreted as entities or relationships.

As a concrete example, suppose we want to learn about physicists who were born
in the same year as Max Planck. Posing this query to Google (by using the keywords
“physicist born in the same year as Max Planck”) yields only pages about Max Planck
himself, along with pages about the Max-Planck Society. We also posed this query to
state-of-the-art question answering systems such as Yahoo! Answers [150], START
[10, 79], True Knowledge [12], Wolfram Alpha [15], and Powerset [9]. None of these
systems could answer it. In Chapter 1, Section 1.1, we already mentioned the main
problems that current keyword search engines and question answering systems have
with answering this kind of queries. In summary, for the keyword search engines, one
can say that the keyword-based and page-oriented search paradigm is not powerful
enough for such search tasks. State-of-the-art question answering systems are rather
focused on understanding and answering simple question patterns, and are obviously
overstrained with the above search task.

This example highlights the need for more explicit, unifying structures for the
information on the Web. A knowledge base which could understand binary predicates,
such as isA (Max Planck, Physicist) or bornInYear(Max Planck, 1858) would go a
long way in addressing information needs such as the above. For example, the above
query could be expressed as a conjunctive query akin to Datalog. Figure 3 depicts its
graph-based representation.

Figure 3: Example query

The nodes labeled with $x and $y represent variables that have to be bound by
entities that satisfy the conjunctive conditions represented by the labeled edges of the
query. The answer to such a query would be highly precise (by returning entities that
satisfy the conditions).

Similar queries may often return hundreds, if not thousands, of results including
uninteresting ones. Therefore, we need to think about ranking strategies that favor
important results.

PROBLEM STATEMENT Consider a knowledge base that organizes information from
the Web in an ER graph. The main problem that we address in this chapter is the design
of a graph-based search framework that is intuitive and at the same time expressive
enough to formulate queries with entities and relationships.

This problem comes with two main challenges:

1. Designing an expressive query language that allows formulating graph-based
queries with entities and relationships in a convenient way.

2. Designing an answer and ranking model that prioritizes important and salient
answers from the knowledge base.

4.1. NAGA: Overview 41

PROBLEMS WITH PREVIOUS APPROACHES There are several research avenues
that aim at this direction in a broader sense.

Graph-based querying of XML and RDF data or data mining on biological
networks is a direction that is gaining momentum [80, 49, 31, 52, 54, 23], but does
not consider the potential uncertainty of the data and disregards the need for a ranking
model.

XML query languages such as XPath and XQuery [48, 49] have been extended
to XQuery Full-Text [31, 52] with the purpose of ranked retrieval on semistructured
data. Although this research direction considers ranking models, most of the proposed
methods are geared for trees and do not carry over to richer knowledge graphs.

SPARQL [54], the query language for RDF data, is most similar to our query
model, but it does not consider ranking and cannot express (transitive) connectivity
queries or queries with regular expressions over predicate labels (e.g., to capture certain
paths between entities).

Finally, entity-oriented (Web) search and other forms of “semantic” information
retrieval [38, 41, 120] provide ranking but have rather simple query models for
supporting keyword and record-level search.

Our work positions itself at the confluence of these research avenues and creates
added value by combining techniques from all of them and further extending these
synergetic approaches by various novel building blocks.

OUR APPROACH AT A GLANCE The data model of our semantic search engine,
NAGA, builds on the ER-graph model. As introduced in Chapter 3, an ER graph is
a labeled multi-graph. We call the labeled nodes of the graph entities and its labeled
edges facts. Figure 1 (Chapter 2) depicts a sample from an ER graph. In that sample,
the edge (Max Planck, fatherOf, Erwin Planck) represents a fact about the entities
Max Planck and Erwin Planck.

In our data model, we assume that for each fact f we have all URLs of Web pages
from which f was derived (i.e., pages from which f was extracted or in which f
was recognized), and refer to these pages as the witnesses of f . We denote the set
of witnesses of f by W (f). Note that although there may be many witnesses for f ,
there is only one edge in the ER graph that represents f . From the witnesses, we
compute for each fact f a confidence weight: confidence(f). This weight depends on
the estimated accuracy with which the fact f was derived from a witness p (denoted
by accuracy(f, p)), and the trust we have in p (denoted by trust(p)). The value
accuracy(f, p) is usually provided by the mechanism that is responsible for deriving f
from p. The trust trust(p) in p can be computed by any algorithm similar to PageRank.
With these ingredients, the confidence of f can be computed as:

confidence(f) = max{accuracy(f, p)× trust(p)|p ∈ W (f)} (4.1)

This is only one way (among various options) of combining the above aspects to a
confidence value. The assumption behind Equation (4.1) is that pages with high trust
(i.e., high authority) are used as primary sources for information extraction, as they
are likely to contain accurate and clean information. In such a setting, where there
are many pages that have a similarly high trust, the extraction accuracy should be the
critical factor. These confidence weights are used in NAGA’s ranking model.

In order to query the knowledge-graph, NAGA provides a graph-based query
language that supports queries about entities and relationships. This queries can be

42 4.1. NAGA: Overview

simple conjunctive queries similar to the one depicted in Figure 3, but they can also
be more complex by exploiting regular expressions over relationships as edge labels.
Figure 4 depicts a sample query that asks for philosophers from Germany who have
been influenced by the English philosopher William of Ockham.

Figure 4: Example for a complex query

Without going into details, answers to NAGA queries are given by subgraphs
(of the underlying ER graph) that match the structure, the entity names as well as
the relationship expressions of the query graph. Whenever a query yields multiple
answers, NAGA ranks them by means of a novel scoring mechanism that is based on
the principles of generative language models for document-level information retrieval
[115, 152]. We apply these principles to the specific and unexplored setting of
weighted, labeled graphs. Our scoring model is extensible and tunable and considers
several intuitive notions like compactness, informativeness, and confidence of results.

As of now, NAGA operates on the YAGO knowledge base [137, 138, 136]. YAGO
contains more than 20 million facts about approximately 2 million entities. It combines
facts extracted from semi-structured Wikipedia sources with facts from the WordNet
thesaurus [16, 72] (see Chapter 2, Section 2.2). NAGA operates on more than 100
predefined relationship labels provided by YAGO such as isA, means, bornOnDate,
hasChild, isMarriedTo, establishedOnDate, hasWonPrize, locatedIn, politicianOf,
graduatedFrom, actedIn, discovered, isCitizenOf, etc.

4.1.2 Related Work

INFORMATION EXTRACTION AND ONTOLOGY BUILDING Approaches that aim
at information extraction, e.g., [19, 67, 25, 55, 68, 91, 130, 137, 146], and ontology
building, e.g., [56, 4, 24, 127, 136], are in a broader sense related to our work, as they
are driven by the vision of semantic information processing on the Web. However, they
do not primarily address querying and ranking models for the acquired knowledge.
TextRunner [67], for example, provides a query interface for simple record-oriented
search [11]. More elaborated are the query interfaces of DBpedia [24] and freebase [4].
DBpedia offers a SPARQL query endpoint, and also supports queries asking for broad
connections between two given entities [109]. For the casual user, freebase provides an
interface for keyword queries, and for the experienced users it also supports structured
queries. Neither DBpedia nor freebase consider the potential uncertainty of the data,
and they both disregard the need for ranking. Finally, YAGO [136] uses NAGA for
query purposes.

ENTITY AND RECORD SEARCH Prominent approaches addressing the problem of
entity-centric search are Libra [120], Cimple [59, 134], ExDBMS [35], and EntityRank

4.1. NAGA: Overview 43

[41, 42]. All these approaches operate on entity-centric records extracted from Web
data.

Libra is part of a comprehensive technology for information extraction and entity-
oriented search. Pattern-matching algorithms that are tailored to typical Web-page
layouts are trained (by means of advanced models like Hierarchical Conditional
Random Fields [153]) to learn patterns for extracting entities and their attributes
from product-related pages with HTML tables and lists. The goal is to build and
maintain several vertical-domain portals, including product search and the Libra portal
for scholarly search on the extracted records about authors, papers, conferences, and
communities. Once the facts are gathered and organized into a searchable form,
they can be queried with Libra. In order to rank results, Libra uses an advanced
statistical language model, extended from the level of document-oriented bags-of-
words to structured records. However, Libra does not consider general relations
between different entities, and its query model is keyword-based.

Similarly to Libra, the Cimple project [59, 134] aims to generate and maintain
searchable, community-specific portals with structured information gathered from Web
sources. Cimple’s flagship application is the DBLife portal [2]. DBLife features
automatically compiled “super-homepages” of researchers with bibliographic data as
well as facts about community services (PC work, etc.), colloquium lectures, and
more. A suite of extractors (that build on pattern matching and dictionary lookups) are
periodically combined into execution plans to extract facts from a carefully selected set
of relevant Web sources (e.g., DBLP, Dbworld, university pages, etc.). To query the
gathered data about entities, a Datalog-based query-language can be used. Database
rewriting techniques are exploited for query optimization (see [89]). However, the
problem of ranking for the returned answers is not addressed.

EntityRank [41, 42] facilitates search that can combine keywords and structured
attributes in a convenient manner. The authors view the Web as a repository of entities
and address the problem of answering user queries that are composed of keywords and
entities. The answers contain explicit entity instances corresponding to the entities in
the query. For example, when a user query contains the entity ‘email’ the answer should
contain email addresses. In order to rank the entity instances, the authors introduce a
probabilistic ranking model. The model aims to formalize the impression a user (who
has no resource or time constraints) would have when he repeatedly visits all Web pages
that contain instances of the query entities. Despite its elaborated ranking framework,
EntityRank does not address typed relations between entities and its query language
builds on the keyword search paradigm.

ExDBMS [35] exploits a suite of powerful extractors (e.g., TextRunner [11],
KnowItAll [68], Dirt [114], etc.) to build a database with facts extracted from Web
pages. To capture the uncertainty of the extrated data, the facts are assigned probability
values. In order to query the extracted data, ExDBMS supports a probabilistic
form of Datalog [58]. The returned facts are ranked by their probability values.
In contrast, our engine, NAGA, uses a graph-based search paradigm that is more
expressive by supporting regular expressions over relationships and broad connectivity
queries. Furthermore, NAGA extends all above approaches by adding to the data
uncertainty aspect of ranking further important aspects that capture the importance
and the succinctness of results.

There are certainly many other approaches which address the problem of entity and
record search, especially in the areas of Deep-Web search, vertical search, and semantic
desktop search (e.g., [38, 62, 63, 116]). Usually, they aim at enhancing keyword-based
querying by typed attributes, but none of these approaches is sufficiently complete for

44 4.1. NAGA: Overview

effectively searching a richly structured knowledge base.

QUESTION ANSWERING SYSTEMS The ambitious goal of automatically answering
questions posed in natural language has been addressed by various systems. Prominent
ones are Wolfram Alpha [15], Answers [1], Powerset [9], Hakia [6], True Knowledge
[12] Yahoo! Answers [150], and START [10, 79]. Most of them employ Natural
Language Processing techniques to parse and understand the posed questions. Wolfram
Alpha, Answers, Powerset, Hakia, and True Knowledge are commercial, and very little
is known about the technology used in the background. However their results hint at
structured and well-annotated data used in the background for answering questions.

Yahoo! Answers is a commercial system as well. But in contrast to the other
approaches, it builds on the “wisdom-of-the-crowds” paradigm. It has its own corpus
of questions posed by users and corresponding answers given by users. For every posed
question, the system first tries to match it to a question from the corpus. When a match
is found the corresponding answer is returned. Otherwise the question is presented as
an unanswered question to the user community. After the question has been answered,
both, the question and the answer are added to the corpus.

START is an established Web-based question answering system. It has been
developed by the InfoLab Group at the MIT Computer Science and Artificial
Intelligence Laboratory. START exploits information extracted from various Web
sources as a background corpus. Its main knowledge source is Wikipedia. In contrast
to NAGA’s fact-based knowledge base, START uses whole text chunks as well as
information extracted from Wikipedia lists. In a natural-language-processing phase,
the query is analyzed and its focus is identified by determining the main concepts
in the query. WordNet is exploited to identify hyponyms of the main concepts from
the query. Finally, the most promising text snippets that contain these hyponyms are
identified in the background corpus and returned as answers. The snippets are ranked
based on structural analysis and tf ∗ idf -based scores with respect to the main terms
from the question.

True Knowledge seems to follow a strategy similar to that of START. It attempts
to comprehend posed questions by first identifying their most likely meaning. A
knowledge base with explicit facts about entities is used to answer user questions.
As reported on [13], the system can reason about the facts in its knowledge base.
However, there is no information about how this reasoning is exploited to retrieve or
rank answers.

Wolfram Alpha was released to the public on May 15, 2009. The answers to
user queries are computed from structured data and supported with comprehensive
visualizations. Wolfram Alpha performs surprisingly well on mathematical questions.
The answer usually presents a human-readable solution. This distinguishes Wolfram
Alpha from many semantic search engines.

All question answering engines presented above have often problems understand-
ing or dealing with questions for which the answer has to be composed from different
pieces of information distributed across multiple Web pages. For example, none of the
engines could answer the question about physicists who were born in the same year as
Max Planck.

GRAPH-BASED SEARCH AND INFORMATION RETRIEVAL The need for querying
semistructured and RDF data has led to query languages such as XPath or XQuery
[48, 49] (for XML data), SPARQL [54] and extensions [23] (for RDF data). However,
the proposed query languages disregard the issue of uncertainty and ranking, and

4.1. NAGA: Overview 45

are often not expressive enough to capture transitive relations or broad connections
between entities.

Another research area, related to our work, addresses the problem of ranked
retrieval in semi-structured data (see [21] and the references given there). Researchers
from this area have proposed query languages that combine variations of XQuery
constructs with full-text search. We give some examples in the following.

XXL [132] deals with querying hyperlinked XML documents (i.e., graph
structures). Its query language supports path expressions combined with similarity
search for terms. Based on an inductively defined relevance score (i.e., tf ∗ idf -
term scores and ontology-based similarity scores for XML elements are combined to
relevance scores for sub-graphs), the answer to a query is defined as a ranked list of
XML sub-graphs which match the graph structure of the query. The latter is similar to
the query answering approach of our work. Nevertheless, our query language is more
powerful by allowing search for regular expressions over general relationships and for
connectivity between entities. This makes a big difference in the match and ranking
semantics.

SphereSearch [78, 77] casts Web pages and the links between them into an XML
graph. Its query language supports similarity-aware search by combining keywords
with entity classes (i.e., concepts) and attributes. The query answering model builds on
the idea that closely interlinked Web pages may contain logically related information
(i.e., the idea of information unit [112]). The results are compact subgraphs of the
XML graph which capture the context of the query (as given by the keywords and
concepts). In contrast to the framework of SphereSearch, our framework is general
enough to capture logically related information from pages that are not interlinked.

XSEarch [45] proposes a novel tree-based interconnection semantics for XML
elements. Its query language is keyword-based. For a given query, XSEarch exploits
the above semantics to retrieve XML subtrees the nodes of which contain the query
keywords. In order to rank results, XSEarch applies the notions of tf ∗ idf and “cosine
similarity” to the setting of XML trees. The approach of XSEarch is improved in [44]
in two ways: (1) the underlying structure is generalized to a graph structure by taking
ID references into account, (2) a document schema is exploited for computing answers.

Finally, there is prior work on keyword proximity search in schema-oblivious
database graphs. The graphs are usually obtained by viewing the tuples of database
tables (or the tables themselves) as nodes and the foreign-key relationships between
tuples (or relations) as edges. These kinds of data graphs can be generalized into
networks of entities and relationships, and similar graph structures also arise when
considering XML data with XLinks and other cross-references within and across
document boundaries [44, 78]. In this setting, a query consists of keywords, and a
node of the graph contains a keyword if the corresponding tuple (or relation) contains
it. For a given query, the goal is to determine the smallest subgraph that interconnects
the nodes containing the keywords. By taking node or edge weights into account,
the problem becomes NP-hard. Hence, prominent systems such as BANKS [28, 92],
BLINKS [82], DBXplorer [20], and DISCOVER [86] solve this problem heuristically.
Remarkable are also the approximation guarantees as well as the efficiency results of
[61, 101, 131]. We will take a detailed look at these approaches in Chapter 5.

All approaches presented above cover important issues with respect to graph search
and ranked retrieval on graphs. However, none of them provides a holistic search and
ranking model that exploits the inherent semantics of entities and explicit relationships
in ER graphs. NAGA instead, makes the explicit nature of ER graphs a key ingredient
of its search framework.

46 4.2. NAGA: A Framework for Querying with Entities and Relationships

4.1.3 Contributions and Outline
Our search engine, NAGA, provides a novel and holistic framework for graph-based
search with entities and relationships.

Our major contributions in this chapter are:

1. An expressive and concise query language for searching a Web-derived
knowledge base.

2. A novel ranking model based on a generative language model for queries on
weighted and labeled graphs.

3. An extensive evaluation of the search-result quality provided by NAGA, based
on user assessments and in comparison to state-of-the-art search engines and
question answering systems like Google, Yahoo! Answers, and START [79].
Furthermore, we demonstrate the superiority of NAGA’s ranking mechanism
over comparable mechanisms as used in [28, 92].

The rest of this chapter is organized as follows. In Section 4.2, we present NAGA’s
query and answer model. In Section 4.3, we describe NAGA’s ranking model. The
architecture and the implementation details of the NAGA engine are presented in
Section 4.4. Section 4.5 is devoted to the experimental evaluation of the NAGA system.
We conclude in Section 4.6.

4.2 A Framework for Querying with Entities and
Relationships

4.2.1 Query Model
NAGA’s query model is derived from the definition of ER graphs. As in Chapter 3,
let Ent and Rel be finite sets of entity and relationship labels, respectively, and let
G = (V, lEnt, ERel) be the ER graph representing the underlying knowledge base. We
denote by RegEx(Rel) the set of regular expressions over Rel, and by L(r) (⊆ Rel∗)
the language of a regular expression r ∈ RegEx(Rel).

DEFINITION 2: [NAGA Query]
Let V ar be a set of variables, such that V ar∩Ent = ∅ and V ar∩Rel = ∅. A NAGA
query over Ent, Rel and V ar is a connected directed graph Q = (VQ, lQEnt, E

Q
Rel),

where VQ is a finite set of nodes with VQ ∩ V = ∅, lQEnt : VQ → Ent ∪ V ar is
a function that maps query nodes to entity labels or variables, and EQ

Rel ⊆ (Ent ∪
V ar)× (RegEx(Rel) ∪ V ar)× (Ent ∪ V ar) is a finite set of labeled edges.

We call a node or an edge labeled with a variable unbound. Variables are
placeholders for entity or relationship labels.

As in the definition of ER graphs, the labeled nodes stand for entities and the labeled
edges stand for relationship instances or facts.

Given a NAGA query Q = (VQ, lQEnt, E
Q
Rel), we call a triple f = (x, r, y) ∈

EQ
Rel (i.e., a query edge) a fact template. For example, (Albert Einstein, instanceOf

subclass*, $x) is a fact template. Here, $x denotes a variable, and instanceOf subclass*
is a regular expression over relationship labels. The template asks for all classes Albert
Einstein belongs to (e.g., physicist, philosopher, scientist, person, entity, etc.). The
exact query semantics is described in our answer model.

4.2. NAGA: A Framework for Querying with Entities and Relationships 47

4.2.2 Answer Model
NAGA’s answer model is based on subgraph matching. As before, let G =
(V, lEnt, ERel) denote the ER graph of our knowledge base. For a given query, NAGA
aims to find subgraphs of G that match the query graph.

We say that a node v ∈ V matches a query node with label λ, if lEnt(v) = λ or if
λ is a variable. Furthermore, we say that a query node v′ ∈ VQ is bound to a node v of
G if v matches v′.

In the following, for a labeled edge (i.e., a fact) f =(α, β, γ) of G, we refer to its
relationship label β by rel(f). Note that α, γ ∈ Ent and β ∈ Rel. Before defining
matches to NAGA queries, we define matches to fact templates.

DEFINITION 3: [Matching Path]
Let the wildcard “.*” denote the regular expression over Rel that stands for any
sequence of relationship labels. A matching path for a fact template (x, r, y) is a
sequence of labeled edges m1, . . . ,mn from G, such that the following conditions
hold:

• If r is a variable, then n = 1 and the start node of m1 matches x and the end
node of m1 matches y.

• If r is a regular expression different from the wildcard “.*”, then m1, . . . ,mn

forms a directed path and rel(m1) . . . rel(mn) ∈ L(r). Furthermore, the start
node of m1 matches x and the end node of mn matches y.

• If r = .* , then m1, . . . ,mn forms an undirected path, such that its start node
matches x and its end node matches y.

The direction of a relationship label on an edge is associated with the direction of
the edge (i.e., the direction of the edge reflects the subject-predicate-object order). In
our definition, when the regular expression of a fact template is different from “.*”, we
assume the same subject-predicate-object order for each relationship label occurring in
the regular expression and require that the matching path be directed.

When a query edge is labeled with “.*”, we are interested in a broad connection
between the two nodes of the edge. Hence, we drop the requirement of directed paths.

In the following, we generalize the match definition to queries.

DEFINITION 4: [Answer Graph]
An answer graph to a query q is a subgraph S of G, for which the following conditions
hold:

1. For each fact template in q there is exactly one matching path in S.

2. Each fact in S is part of a matching path.

3. Each node of q is bound to exactly one node of S.

For a query q with query templates q1, . . . , qn and an answer graph g, we denote
the matching path of a query template qi from q by match(qi, g).

We will use the label isA as a shorthand for the regular expression instanceOf
subclass*. The expression isA connects an individual via one instanceOf -labeled
edge to its immediate class and by several subclass-labeled edges to more general
superclasses.

48 4.2. NAGA: A Framework for Querying with Entities and Relationships

NAGA provides two query types associated with different levels of expressiveness:
(1) simple-relationship queries and (2) regular-expression queries.

4.2.3 Simple-Relationship Queries

Simple-relationship queries are in the spirit of SPARQL or conjunctive Datalog queries.
Formally, a simple-relationship query is a NAGA query Q = (VQ, lQEnt, E

Q
Rel) in

which for every fact template (x, r, y) ∈ EQ
Rel, we have that r ∈ Rel ∪ V ar.

The query from Subsection 4.1.1 that asks for physicists who were born in the same
year as Max Planck (see Figure 3) is an example for such a query. Further examples
are depicted below.

Figure 5: Examples of simple-relationship queries

The query on the left asks for philosophers who are also physicists. The query on
the right asks for prizes won by physicists related to Max Planck.

In order to compute answers to these queries, NAGA attempts to bind the variables
by finding a subgraph from the knowledge base that matches the query. Figure 6
depicts two results to the above queries as returned by NAGA. Note that for each of the
above queries there are multiple answers, and NAGA returns a ranked list of answers.
The depicted results are both the top-ranked answers. The answer graph on the left
contains Aristotle, one of the most influential philosophers who was also a physicist.
Further influential physicists and philosophers like Albert Einstein, David Bohm, and
Anaxagoras can be found in the top-10 results returned by NAGA. The answer on the
right contains Max von Laue who was a student of Max Planck and won the Nobel Prize
for the discovery of X-ray diffraction by crystals, an important method for analyzing
atomic structures. How NAGA ranks the results will be explained in detail in Section
4.3. Next, we give an overview of regular-expression queries.

Figure 6: Answers to example queries of Figure 5

4.2.4 Regular-Expression Queries

Regular-expression queries give users the flexibility to express and capture vague or
transitive relations between entities.

4.3. NAGA: A Framework for Ranking with Entities and Relationships 49

Formally, a regular-expression query is a NAGA query Q = (VQ, lQEnt, E
Q
Rel) in

which there is at least one fact template (x, r, y) ∈ EQ
Rel with r ∈ RegEx(Rel)∪V ar.

Note that every simple-relationship query is a regular-expression query, but not vice
versa.

The query from Subsection 4.1.1 that asks for philosophers from Germany who
have been influenced by the English philosopher William of Ockham (see Figure 4) is
an example for a regular-expression query. In that query, we used the fact template
($x, (bornIn|livesIn|isCitizenOf) locatedIn*, Germany) to express that we are asking
for a philosopher from Germany. NAGA returns Albert Einstein (who was U.S.-Swiss
citizen of German origin) and Goethe as top results.

Further examples are depicted below.

Figure 7: Regular-expression query examples

Suppose that you heard about a scientist named “Abraham” in connection with Max
Planck. The query on the left (Figure 7) asks for a scientist by the name of “Abraham”
and his connection to Max Planck. NAGA says that Max Planck was the academic
advisor of the physicist Max Abraham. Note that in this query, the relationship label
isA is a short-hand notation for the regular expression isntanceOf subclass*.

The query on the right asks for a broad relation between Tim Berners-Lee,
Benjamin Franklin, and Bertrand Russel. NAGA tells us that all three of them are
fellows of the Royal Society. It turns out that from an efficiency viewpoint, these
queries are very hard to answer. In Chapter 5, we will present our algorithmic solution
for retrieving answers to these kinds of queries.

4.3 A Framework for Ranking with Entities and
Relationships

Designing ranking models for ER subgraphs is a challenging task. The ranking criteria
should comply with the human intuition about important results.

4.3.1 Ranking Desiderata
We think that a good ranking model for answer graphs should satisfy the following
desiderata:

1. Confident answers (i.e., answers containing facts with high extraction confidence
from authoritative pages) should be ranked higher.

2. Informative answers should be ranked higher. For example, when asking the
query (Albert Einstein, isA, $z) the answer (Albert Einstein, isA, Physicist)
should rank higher than the answers (Albert Einstein, isA, Philosopher) or
(Albert Einstein, isA, Person), because Einstein is rather known as a physicist
than as a philosopher, and the fact that Einstein is a person is rather trivial.

50 4.3. NAGA: A Framework for Ranking with Entities and Relationships

Similarly, for a query such as ($y, isA, Physicist), the answers about world-class
physicists should rank higher than those about hobby physicists.

3. Compact answers should be favored, i.e., direct connections should be preferred
to loose connections between entities. For example, for the query “How are
Einstein and Bohr related?” the answer about both having won the Nobel Prize
should rank higher than the answer that Tom Cruise connects Einstein and Bohr
by being a vegetarian like Einstein, and by being born in the year in which Bohr
died.

We propose a novel ranking model that integrates all the above desiderata in a
unified framework. Our approach is inspired by existing work on language models
(LM) for information retrieval (IR) on document collections [152, 83], but it is adapted
and extended to the new domain of knowledge graphs. In this setting, the basic units
are not words, but facts or fact templates. Our graphs and queries can be seen as sets of
facts or fact templates respectively. A candidate result graph in our setting corresponds
to a document in the standard IR setting.

The language model we envision is much more challenging than the traditional
language models for two reasons:

1. By considering facts and fact templates as IR units, rather than words in
documents, our queries include both bound and unbound arguments – a
situation that is very different from what we encounter in multi-term queries
on documents.

2. Our corpus, the knowledge graph, is virtually free of redundancy (each fact
occurs only once), unlike a document-level corpus. This makes reasoning about
background models and idf-style aspects [152] more subtle and difficult.

4.3.2 Statistical Language Models for Document Retrieval
A critical issue for keyword search engines is the design of an effective retrieval model
that can rank documents with respect to a given query. This has been a central research
problem in information retrieval for several decades. An important group of ranking
models are the statistical language models [117, 126, 115, 152, 108, 83] which have
been successfully applied to many document-centric retrieval problems.

Figure 8: Idea of Language Models for Document Retrieval (source: [144])

As depicted in Figure 8, the basic idea is that each document d has its own language
model (LM): a probability distribution over words with parameters Θd. Querying is
viewed as a generative process. More precisely, for a given a keyword query q =

4.3. NAGA: A Framework for Ranking with Entities and Relationships 51

q1 . . . qm and a document d, the query q is viewed as a sample from d. The task is to
estimate the likelihood that the keywords of q were generated by the LM of d (i.e., that
q is a sample of the LM of d). The documents are then ranked based on the probability
of their language model having generated the given query.

The score of d with respect to q is computed as:

score(d, q) = P (q|d) = P (q|Θd) = P (q1 . . . qm|Θd) ≈
m∏
i

P (qi|Θd) (4.2)

The last approximation in Equation (4.2) is based on the conditional independence
assumption between the query terms given the parameters Θd. The independence
assumption is widely used in information retrieval to avoid high computational
complexity and sparseness problems in high-dimensional data settings (“the curse of
dimensionality”). More specifically, P (q1 . . . qm|Θd) could only be estimated if there
were enough examples for all possible word sequences of length m in the documents.
In reality, the data is very sparse in terms of such examples. Hence, for the maximum
likelihood estimation of P (q|Θd) the conditional independence assumption between
the query terms is made.

More advanced models, such as [83, 152], postulate conditional independence
between the query terms and compute the score of a document d with respect to a
query q as:

score(d, q) = P (q1 . . . qm|Θd) =
m∏

i=1

(λiP (qi|Θd) + (1− λi)P (qi)) (4.3)

where P (qi) is the probability of drawing the term qi randomly from the underlying
corpus (collection of all documents), P (qi|Θd) is the probability of drawing a term
randomly from the document d, and λi is a relevance weight for the term qi. In this
probabilistic mixture model, the term P (qi) corresponds to a background model which
is responsible for the smoothing (i.e., for encountering the noise in the data). For
example, if a term qi from a query q is not contained in a document d, the estimation
of Equation (4.2) will return score(d, q) = 0. The smoothing component of Equation
(4.3), given by (1− λi)P (qi), avoids this by taking the occurrences of qi in the whole
corpus into account.

The above background model is similar to the idf component in the tf ∗ idf
measure. In fact, the whole estimation in Equation (4.3) can be cast into a tf ∗ idf -
style measure. This can be best seen in the following transformations. We start with
Equation (4.3), i.e.,

P (q1 . . . qm|Θd) =
m∏

i=1

(λiP (qi|Θd) + (1− λi)P (qi))

Dividing the above formula by
∏m

i=1(1−λi)P (qi) will not affect the ranking, because
λi and P (qi) depend only on the query and have the same value for each document.
Then, we have the rank equivalence:

P (q1 . . . qm|Θd) ∝
m∏

i=1

(
1 +

λiP (qi|Θd)
(1− λi)P (qi)

)
(4.4)

Now, the term P (qi|Θd) corresponds to the frequency of qi in d and the term P (qi)
corresponds to the document frequency of qi. Hence, we have here an analogy to the
tf ∗ idf -style measures.

52 4.3. NAGA: A Framework for Ranking with Entities and Relationships

In the next subsection, we will see how these models can be applied to the
previously unexplored setting of facts and fact templates from ER graphs.

4.3.3 The NAGA Ranking
In line with the models presented in [83, 152], we assume that a NAGA query q with
fact templates q1 . . . qm is generated by a probabilistic model based on a candidate
result graph g consisting of the facts g1 . . . gn, n >= m. Our goal is to estimate the
conditional probability P (q|g), i.e., the probability that g generated the observed query
q [152].

Assuming conditional independence between the query’s fact templates given the
candidate result graph g results in:

P (q|g) = P (qi . . . qm|g) =
m∏

i=1

P (qi|g) (4.5)

Our intuition behind the independence assumption is based on the independent
extraction of facts in the construction phase of NAGA’s knowledge base (see
[138]). Furthermore, as discussed above, the independence assumption helps avoiding
sparseness and intractability problems.

Next, we design a tf ∗ idf -style probabilistic mixture model for fact templates.
We follow classical IR literature [83] but develop a new scoring model suited for our
setting.

We define the likelihood of a query template, given an answer graph, as a mixture
of two distributions, P̃ (qi|g) and P̃ (qi) as follows:

P (qi|g) = α · P̃ (qi|g) + (1− α) · P̃ (qi), 0 ≤ α ≤ 1 (4.6)

P̃ (qi|g) is the probability of drawing qi randomly from an answer graph, P̃ (qi) is
the probability of drawing qi randomly from the total ER graph and α is either
automatically learned (via EM iterations [83]) or set to an empirically calibrated global
value. Note that the value P̃ (qi) is the same for all answers. As discussed in the
previous subsection, there is a connection between this style of probabilistic models
and the popular tf ∗ idf measure.

Our goal is to capture the three desiderata presented in Subsection 4.3.1:
confidence, informativeness, and compactness.

We first describe the confidence and informativeness components and then explain
how our model automatically deals with compactness. We describe P̃ (qi|g) by a
mixture model which puts different weights on confidence and informativeness. This
is close in spirit to linear interpolation models used for smoothing [152]. The weight β
is empirically calibrated as analyzed in our evaluation section.

P̃ (qi|g) = β · Pconf (qi|g) + (1− β) · Pinfo(qi|g), 0 ≤ β ≤ 1 (4.7)

Note that the confidence and the informativeness are indeed independent criteria.
For example, we can be very confident that Albert Einstein was both a physicist and a
politician, but the former fact is more informative than the latter, because Einstein was
a physicist to a larger extent than he was a politician.

ESTIMATING CONFIDENCE The maximum likelihood estimator for Pconf (qi|g) is:

Pconf (qi|g) =
∏

f∈match(qi,g)

P (f holds) (4.8)

4.3. NAGA: A Framework for Ranking with Entities and Relationships 53

where P (f holds) is estimated as in Equation (4.1) by the confidence of f :

confidence(f) = max{accuracy(f, p)× trust(p)|p ∈ W (f)}

W (f) denotes the witnesses (i.e., Web pages) from which f was derived,
accuracy(f, p) represents an accuracy with which f was derived from p, and trust(p)
captures the trust we have in p.

In case qi is labeled with a label from Rel ∪ V ar, then match(qi, g) contains
just one fact and Pconf (qi|g) is the confidence of that fact. If qi is labeled with a
regular expression over relations, then match(qi, g) contains the sequence of facts that
together match qi. The combined confidence then is the product of the confidences of
the single facts in the sequence – assuming that the facts are independent.

ESTIMATING INFORMATIVENESS In the following (for simpler notation and ease of
explanation), for a given query q and an answer g with facts g1 . . . gn, we assume that
q consists as well of n fact templates q1 . . . qn and that each template qi is matched by
the fact gi in g.

The informativeness of a query template qi given the answer graph g depends on
the informativeness of the fact that matches qi in g. As in our assumption, let gi be the
match of qi in g. We approximate Pinfo(qi|g) as:

Pinfo(qi|g) ≈ |W (gi)|
|W (qi)|

(4.9)

where |W (gi)| and |W (qi)| denote the number of witness pages for the fact gi and
the template qi, respectively. We compute the number of witnesses for a given fact
template by summing up over the number of witnesses for the facts that match the
template. For example, consider the fact template qi=($x, instanceOf, Physicist). We
compute the number of witnesses for the template qi as:

|W (qi)| =
∑

x

|W (x, instanceOf, Physicist)| (4.10)

where x stands for any entity that occurs in an instanceOf relationship with the entity
Physicist.

In full generality, the witnesses could also be weighted by their authority (e.g.,
PageRank).

To see why the above formulation captures the intuitive understanding of infor-
mativeness, consider the following examples. Let q be the query q = (Albert Einstein,
instanceOf, $x), which consists of one fact template. Let f = (Albert Einstein,
instanceOf, Physicist) be a possible answer. Here, the informativeness measures how
often Einstein is mentioned as a physicist as compared to how often he is mentioned
with other instanceOf facts. Thus, f = (Albert Einstein, instanceOf, Physicist)
will rank higher than f ′ = (Albert Einstein, instanceOf, Politician). In this case,
informativeness measures the degree to which Einstein was a physicist.

Now consider the query q = ($x, instanceOf, Physicist) and consider again the
answer f = (Albert Einstein, instanceOf, Physicist). In this case, the informativeness
will compute how often Einstein is mentioned as a physicist as compared to how often
other people are mentioned as physicists. Since Einstein is an important individual
among the physicists, (Albert Einstein, instanceOf, Physicist) will rank higher than
(Bob Unknown, instanceOf, Physicist). In this case, informativeness measures the
importance of Einstein in the world of physicists.

54 4.3. NAGA: A Framework for Ranking with Entities and Relationships

More examples could be: when asking for prizes that Einstein won, our
informativeness will favor the prizes he is most known for; when asking for people born
in some year, informativeness favors famous people; when asking for the relationship
between two individuals, informativeness favors the most prominent relation between
them, etc.

For the currently compiled YAGO knowledge base, the number of witnesses for
each fact is not statistically significant, because our facts are extracted only from a
limited number of Web-based corpora, and many facts appear only on one page. For
this reason we approximated the numbers of witnesses by the following heuristics.
We transform the facts into keyword queries and use a search engine to retrieve the
number of pages in the Web that contain the corresponding keywords. For example, to
estimate |W (Albert Einstein, instanceOf, Physicist)|, we formulate the query “Albert
Einstein” + “physicist” and retrieve the number of hits for this query. Analogously, to
estimate

∑
x |W (x, instanceOf, Physicist)|, we retrieve the number of hits for the query

“physicist”. The reason for omitting the relationship label is that relationships are often
expressed in non-trivial ways, which makes it impossible to capture them by means of
keywords. To conclude the example, for the query (x, instanceOf, Physicist) and the
answer (Albert Einstein, instanceOf, Physicist), we estimate the informativeness as:

|W (Albert Einstein, instanceOf, Physicist)|∑
x |W (x, instanceOf, Physicist)|

∼ #hits(Albert Einstein physicist)
#hits(physicist)

(4.11)

In the evaluation section, we will see that in practice this approximation leads to a nice
ranking behavior.

An alternative idea for computing the informativeness of facts is to exploit the
structure of the underlying ER graph. More precisely, based on the endorsement
hypothesis, one could estimate informativeness by taking the in-degree of nodes into
account. The higher the in-degree of a node, the higher should be the authority of the
corresponding entity. However, there are several problems with this approach. First,
the direction of an edge in an ER graph does not necessarily reflect an endorsement. For
example, the fact (Albert Einstein, instanceOf, Physicist) could also be represented as
(Physicist, hasInstance, Albert Einstein). Furthermore, the structure of the knowledge
base is dependent on the domains from which the facts were extracted. For example, a
movie-oriented knowledge base might have a lot of facts about actors but very few facts
about politicians. An in-degree-based measure of informativeness on such a knowledge
base would say that Ronald Reagan is more famous for being an actor than for being a
politician (assuming that the knowledge base contains facts about Reagan). In Section
4.5, we compare our scoring with the scoring of BANKS [28], which exploits the in-
degree of nodes to capture their importance.

In summary, confidence and informativeness are two complementary components
of our model. The confidence expresses how certain we are about a specific fact –
independent of the query and independent of how popular the fact is on the Web. The
informativeness captures how useful the fact is for a given query. This depends also
on how visible the fact is on the Web. In this spirit, our definition of informativeness
differs from the information-theoretic one, which would consider less frequent facts
as more informative. The latter is captured by our background model, which will be
discussed at the end of this subsection.

Our definition of informativeness depends on the query formulation. For example,

4.3. NAGA: A Framework for Ranking with Entities and Relationships 55

the fact (Bob Unknown, instanceOf, Physicist) would be less informative if the query
asked for (famous) physicists (i.e., q = ($x, instanceOf, Physicist)), but could be
very informative if the query asked for the occupation of Bob Unknown (i.e., q =
(Bob Unknown, instanceOf, $x)). Hence, our informativeness measure is asymmetric
and depends on the position of the variables in the query. Therefore, symmetric
information-theoretic measures, such as PMI (point-wise mutual information), would
not be an adequate choice for the estimation of informativeness.

ESTIMATING COMPACTNESS The compactness of answers is implicitly captured by
their likelihood given the query. This is because the likelihood of an answer graph is
the product over the probabilities of its component facts. Therefore, the more facts in
an answer graph the lower its likelihood and thus its compactness.

For example, for the query that asks for a broad connection between Margaret
Thatcher and Indira Gandhi, the answer graph stating that they are both prime-
ministers, is more compact than the answer that they are both prime-ministers of
English-speaking countries.

THE BACKGROUND MODEL We turn to estimating P̃ (qi), which plays the role of
giving different weights to different fact templates in the query. This is similar in spirit
to the idf -style weights for weighting different query terms in traditional statistical
LMs. For a single-term query the idf part would just be a constant shift or scaling,
which does not influence the ranking. But for multi-term queries, the idf weights give
more relevance to those query terms that are less frequent in the corpus.

In our model, we view a fact template from the query as a pattern from the
knowledge base. Consider the fact template (Albert Einstein, instanceOf, $x). As a
pattern this template fits several facts from the knowledge base, i.e., (Albert Einstein,
instanceOf, Physicist), (Albert Einstein, instanceOf, Cosmologist) (Albert Einstein,
instanceOf, Philosopher), etc. Intuitively, the more variables a fact template has, the
more matches can be found in the underlying ER graph, and the more frequent the
corresponding pattern is in the knowledge base. Hence, in analogy to traditional tf∗idf
models, the value P̃ (qi) gives more relevance to fact templates with fewer variables, or
in other words, to less frequent patterns from the knowledge base.

4.3.4 Related Ranking Models
Probabilistic, LM-based ranking models have been recently used in the context of entity
ranking [70, 124, 133, 142, 143]. The general idea is to view the LM of an entity e as
the probability distribution of words seen in the context of e. Given a keyword query q
the score of e with respect to q is determined as the probability of the LM of e having
generated q.

The extension to a general method for ranking facts is not straightforward and is
not addressed by the above approaches.

Libra [120] uses a statistical LM to rank structured records about authors,
publications, conferences, journals, and communities. The records are ranked with
respect to keyword queries. The idea is to view each record as a bag of words and
compute the probability that a record generates the keywords of the query. This is very
different from NAGA’s graph-based querying and ranking framework.

NAGA’s ranking model is a novel and promising application of statistical LMs
to the setting of facts and fact templates. It opens up new perspectives for advanced
ranking strategies over ER graphs. For example, [66] very recently extended NAGA’s

56 4.4. NAGA: The NAGA Engine

query and ranking model to support graph-based queries augmented with keywords.
The assumption is that each fact f of the knowledge base is associated with a set of
textual terms derived from the witness pages of f . For instance, when we are looking
for a certain movie associated with the words “needle park”, starring Al Pacino, we
can simply pose the query (Al Pacino, actedIn, $x){needle park}. In this case, the
proposed ranking model would give a higher relevance to facts that match the query
template and are related to the keywords “needle park”, resulting to higher rank for the
fact (Al Pacino, actedIn, The panic in needle park). The ranking algorithm derives
an LM for the query and an LM for the answer graph. Both LMs are derived from
Web-based co-occurrence statistics for facts. The LM of the query graph is in addition
dependent on the co-occurrence of facts with the query keywords. Finally, the answer
graphs are ranked in increasing order of the Kullback-Leibler divergence (measure for
the difference between two probability distributions) between their LMs and the LM of
the query.

4.4 The NAGA Engine

4.4.1 Architecture

We have implemented a complete prototype system of the NAGA engine in Java. The
system architecture of NAGA is depicted in Figure 9.

BACK-END The backend consists of the knowledge base, YAGO, which is organized
as an ER graph of facts, stored in a database. For each fact, YAGO knows the URLs
of its witnesses. The query processing component combines different algorithms, e.g.,
Algorithm 1, STAR (see Chapter 5), MING (see Chapter 6), to handle user queries. The
subgraphs from the knowledge base that match the user query are ranked by the ranking
component. The latter derives co-occurrence statistics for entity pairs (as described in
Section 4.3.3) by posing queries to a keyword search engine.

Figure 9: System Architecture

USER INTERFACE The user interface contains facilities for both the casual as well as
the expert user. The expert user can use a textual input box to enter the query templates.
The casual user can use the input box to enter simple queries, and can then switch to

4.4. NAGA: The NAGA Engine 57

the browser. The browser renders a hyperbolic visualization of the knowledge graph.
A use case for the browser could be the following. The user could start with a simple
query, e.g., (Albert Einstein, isA, $x). NAGA will return a ranked list of answers to
this query. If the user clicks on one of the answers, an applet-based hyperbolic browser
will be presented. In the beginning, the browser will contain a visualized subgraph
from the knowledge base, containing the answer clicked by the user together with other
facts about Einstein. The user can then successively browse the neighborhoods of the
visualized entities. Additionally, by double-clicking a visualized entity the user will be
shown the Wikipedia page of that entity.

4.4.2 Implementation

The facts of the knowledge base are stored in a database table with the schema Facts(ID,
RELATION, ENTITY1, ENTITY2, CONFIDENCE). A high-level overview of NAGA’s query
processing algorithm is shown in Algorithm 1

ALGORITHM 1: queryResults(Q)

Input: Query Q = (VQ, lQEnt, E
Q
Rel)

Output: A set of answer graphs
1 normalize Q into Q′ = (VQ′ , lQ

′

Ent, E
Q′

Rel)
2 RETURN templateResults(Q′, EQ′

Rel)

templateResults(Q,E)

Input: A query graph Q = (VQ, lQEnt, E
Q
Rel),

a set of fact templates E
Output: A set of answer graphs
1 IF E = ∅ THEN
2 RETURN {Q}
3 END IF
4 Results = ∅
5 FOR EACH match e′ of a template e ∈ E

6 re′ = templateResults((VQ, lQEnt, E
Q
Rel − e + e′), E − e)

7 IF re′ 6= ∅ THEN
8 Result = Result ∪ re′

9 END IF
10 END FOR
11 RETURN Results

We first pre-process the given query into a normalized form (line 2, Function
queryResults) by applying the following rewritings: first, because we allow users
to use words for referring to entities, we add an additional edge labeled with means for
each bound vertex, e.g., the query (Einstein, hasWonPrize, $x) becomes (“Einstein”,
means, $Einstein); ($Einstein, hasWonPrize, $x).

Second, we translate the pseudo-relation isA into its explicit form instanceOf
subclass*, e.g., the query (Albert Einstein, isA, $y) becomes (Albert Einstein,
instanceOf subclass*, $y). This allows the user to ask for all classes Einstein belongs
to, without the need to know about regular expressions.

58 4.4. NAGA: The NAGA Engine

The main function of the query processing algorithm is templateResults. It
is given a preprocessed query graph and a list of templates to be processed. Initially,
the templates are edges of the query graph. We pick a template (line 6) and identify
all possible matches in the knowledge base. For each possible match, we construct a
refined query graph by replacing the fact template by the match (represented by the
expression EQ

Rel − e + e′). Note that the match e′ can be a sequence of facts (see
Definition 3). Then, the function is called recursively with the refined query graph.
Once no more query templates need to be processed, the refined query graph constitutes
a result.

We identify matches for templates as follows. In case the fact template is a simple-
relation template, we translate it directly into an SQL statement. This applies to
templates like (Einstein, means, $z), (Albert Einstein, $r, Ulm), or ($x, discovered,
$z), which can be translated into simple SELECT statements over the Facts table.
In case the template is a regular-expression template, we first expand it into allowed
sequences of simple-relation templates, which are then translated into simple SELECT
statements.

REGULAR EXPRESSIONS When the edge of a template is labeled with a regular
expression over relations, we construct a non-deterministic finite-state automaton
(NFSA) for the regular expression. To remain efficient in the query evaluation, we
require that at least one of the end nodes of the regular-expression template be bound
(at evaluation time). We identify the bound node v0 of the template. Then we try to
find matches for the regular-expression template starting from v0 (i.e., the search space
of matches is explored starting from v0). Hence, in case v0 is not the source node of the
template, but the target node, we reverse the transitions of the automaton. Consider the
regular-expression template ($x, (bornIn|livesIn|isCitizenOf) locatedIn*, Germany).
Figure 10 depicts the representation of the corresponding NFSA and its inversion.

Figure 10: NFSA construction

The directions of the transitions in the NFSA should not be confused with the
directions of the relationships in the knowledge base. In Figure 10, the direction of
the relationships is depicted by the dashed arrow on top of the relationship labels. We
can exploit the NFSA to expand our initial regular-expression template as follows.

Starting from state v0 in the NFSA, we expand the tree of allowed template
sequences that can be derived from the original template. Every state that can be
reached via one transition from v0 becomes a child node of v0. Those nodes that
correspond to final states in the NFSA become leaves in the tree. Then we continue the
procedure successively for the children of v0 that are no leaves. An example of such a
tree is depicted in Figure 11.

4.5. NAGA: Experimental Evaluation 59

Each edge in the tree is a fact template, and a path in the tree (from a leaf node
to the root) represents an allowed expansion of the original template. The matches to
the new template sequences are retrieved recursively as shown in Algorithm 1, starting
from the upper-most templates in the tree. Typically, the regular expressions are rather
simple, and we also put a limit on the expansion depth of the tree. This helps us remain
efficient.

Figure 11: Expansion of allowed sequences of templates

4.4.3 Efficiency Aspects

Although the focus of the work presented in this chapter is not on efficiency, we have
incorporated some query optimizations. First, fact templates in which the edge as well
as both nodes are not labeled by a variable are processed separately, so that they do not
need to be computed in each recursive call. Second, certain trivial relations (such as
smallerThan for numbers or before and after for dates) are not stored in the database,
but are computed at query time.

Queries that ask for broad connections between entities (see left-most query in
Figure 7) are very challenging in terms of efficiency. As we will see in the next
chapter, the underlying problem is NP hard. For this kind of queries we have developed
an efficient algorithm, coined STAR, that exploits taxonomic relationships such as
instanceOf and subclass in combination with local-search heuristics to retrieve the
matches.

For the following evaluation, we have estimated the informativeness scores of
facts in the result graphs by posing queries to a search engine (see Section 4.3.3,
Equation (4.11)). Although the scores derived this way nicely capture our intuition
of informativeness, it is very inefficient to do this computation for every possible
answer at query time. Hence, for our online demo of NAGA [8], we have precomputed
informativeness scores for facts (i.e., the needed co-occurrence statistics) from inverted
indexes on the Wikipedia articles. The implementation of these scores will be explained
in detail in Chapter 6, Subsection 6.2.1.

4.5 Experimental Evaluation

To evaluate NAGA’s search and ranking behavior, we conducted an extensive user study
that compares NAGA’s performance with the performance of Google, Yahoo! Answers,
and START [10, 79]. We also compared NAGA’s statistics-based scoring mechanism

60 4.5. NAGA: Experimental Evaluation

with the one of BANKS [28], which relies on the structure of the underlying graph to
derive the score of an answer graph.

4.5.1 Setup

SCORING PARAMETERS AND RANKING DESIDERATA As explained in Section
4.3 the parameters of the ranking model allow emphasizing the confidence or the
informativeness of results, while at the same time, the compactness of answers is
implicitly promoted. By means of the background model P̃ (qi), the parameter α
can be used to give different weights to different fact templates of a query. In a
search scenario where the user is solely interested in informative matches with facts
that have high confidence, α can be set to 1. For our study, we focused on the user-
perceived contribution of the above desiderata to NAGA’s ranking behavior. To this
end, the parameter β can be used to formulate a more flexible scoring, in which either
confidence or informativeness is given a higher emphasis.

For example, if we were looking for a drug that heals malaria, we would want
to emphasize confidence more than informativeness, i.e., we would not be interested
in famous drugs for malaria, but in drugs that have high associated confidence for
healing the disease. If we wanted to find out new meanings associated with a word, we
would emphasize the informativeness rather than the confidence. This would promote
information that appears in possibly low-confidence sources, e.g., revealing that the
word Kleenex (which is a trademark) is used by many people with the meaning of
tissues.

Empirical examples for the influence of the parameter β on NAGA’s ranking
behavior are the following.

Consider the query ($x, isA, Physicist). For this query, we expect answers about
famous physicists at the top of the ranked list. If we choose to rank by confidence
alone, i.e., by setting β = 1, we get less known physicists as the top results, while the
famous ones, e.g., Albert Einstein, Niels Bohr, etc., are ranked lower in the list. This
happens because we can be equally confident that less known physicists are physicists,
as we are for famous ones.

If we enable the informativeness component, by setting β = 0.5, (which gives equal
weight to confidence and informativeness), the top three results are about the famous
physicists Albert Einstein, Niels Bohr and Max Planck, followed by Marie Curie and
Blaise Pascal. Thus our informativeness aspect plays a very important role in satisfying
the information demand latent in the query.

We can observe the same effect for the query (Albert Einstein, isA, $x). If we set
β = 1, the top result is about Albert Einstein being a vegetarian. Setting β = 0.5, the
top results are about Albert Einstein being a physicist, cosmologist, philosopher, etc.

For our experiments, we set β to the balanced value 0.5 giving equal weight to
informativeness and confidence.

BENCHMARKS We evaluated NAGA on three sets of queries. Sample queries from
each of these sets are shown in Table 1. The complete query benchmarks are given in
the appendix.

• TREC 2005 and TREC 2006 provide standard benchmarks for question
answering systems. Out of this set, we determined questions that can be
expressed by the current set of NAGA relations. We obtained a set of 55
questions. We will denote this query set by TREC. Note that although NAGA

4.5. NAGA: Experimental Evaluation 61

knows the relations used in the questions, the knowledge graph does not
necessarily have the data instances to answer them.

• The work on SphereSearch [77] provides a set of 50 natural language questions
for the evaluation of a semantic search engine. Again, we determined 12
questions that can be expressed in NAGA relations. We will refer to this query
set as SSearch.

• Since, to the best of our knowledge, we are the first to utilize regular expressions
over general relations in a graph-based query language, we had to provide
corresponding queries ourselves. We constructed 18 corresponding natural
language questions. This query set will be denoted by OWN.

Benchmark Question with NAGA translation
TREC When was Shakespeare born?

(Shakespeare, bornOnDate, $x)
In what country is Luxor?
(Luxor, locatedIn*, $x)
($x, isA, country)

SSearch In which movies did a governor act?
($y, isA, governor)
($y, actedIn, $z)
($z, isA, movie)
List movies directed by Madonna’s husband?
($x, isMarriedTo, Madonna)
($x, directed, $y)

OWN List some lakes located in Africa.
($x, isa, lake)
($x, locatedIn*, Africa)
What do Albert Einstein and Niels Bohr
have in common?
connect(Albert Einstein, Niels Bohr)

Table 1: Sample queries

COMPETITORS Considering the fact that established search and question answering
(QA) systems use different corpora, data models, query languages and rankings, the
evaluation becomes very difficult. Nevertheless, in our study we try to cover a broad
spectrum of retrieval systems and techniques, by comparing ourselves to state-of-the-
art systems. As competitors, we chose Google (search engine), Yahoo! Answers and
START (QA systems). Furthermore, in order to have a homogeneous evaluation of
NAGA’s scoring mechanism, we compare it to the one used by BANKS [28] – an
established engine for searching over relational database graphs.

It is clear that these systems are considerably different. Google is designed to find
Web pages, not to answer questions. Nevertheless, it is a robust competitor, because
of its large amount of indexed Web pages. It is also tuned to answer specific types of
questions (e.g., When was Einstein born?) directly by its built-in QA system.

Yahoo! Answers has its own corpus of questions and corresponding answers
(provided by humans). Usually, the answers are also rated by users. For a given

62 4.5. NAGA: Experimental Evaluation

question, Yahoo! Answers first checks whether it is in the corpus of already-answered
questions. If so, the answers are ranked by their ratings and returned to the user. In
case the question is not present in the corpus, it is given free as an open question that
can be answered by the community of users.

START is an established QA system, which employs natural-language-processing
techniques to analyze and understand the meaning of natural language questions. The
answers are retrieved from a background corpus containing information gathered from
the Web.

BANKS performs keyword search over the graph-oriented representation of a
database. The nodes of the graph represent tuples from database tables and the edges
represent foreign-key relationships between tuples. The answers to a query are graphs
containing the query keywords. BANKS computes the score of a result graph R
as an interpolation of its overall node score Nscore(R) and its overall edge score
Escore(R). Both values are directly inferred from the underlying graph. The value
Nscore(R) is computed as the average of the node scores in R, where the score
of each node is proportional to its in-degree. The value Escore(R) is computed as
1/(1 +

∑
e d(e)), where d(e) represents a distance weight between the two end nodes

of the edge e in R. This way, the value Escore prioritizes smaller answer graphs; this
is similar in spirit to our compactness criterion.

To evaluate NAGA’s scoring function explicitly, we compare NAGA’s scoring
mechanism with the one proposed for BANKS. For this purpose, we integrated the
BANKS scoring function into the NAGA engine and compared it to NAGA’s own
scoring mechanism. To this end, we converted the confidence values of facts in the
answer graphs to distance weights (i.e., the higher the confidence the smaller the
distance, and vice-versa), as they are needed as edge scores for the BANKS measure.

All the questions were posed to Google, Yahoo! Answers, START and NAGA
(with its own scoring and the BANKS scoring, respectively). While for Google, Yahoo!
Answers, and START the queries were posed in their original natural language form,
for NAGA the queries were posed in their graph form (see Table 1). This type of
comparison is influenced by several aspects. First, the results returned by a system
depend on how precisely the questions can be formulated. Second, it depends on the
size of the knowledge base that the system uses. Third, the comparison measures the
quality of the ranking of a system. Clearly, NAGA has an advantage over Google,
Yahoo! Answers, and START, because of its graph-based query language. At the same
time, Google and Yahoo! Answers have a massive advantage over NAGA, because
they are commercially operated systems that can search the whole Web (Google) or
have a huge corpus of several millions of answered questions (Yahoo! Answers), or
are explicitly designed to answer questions (START).

4.5.2 Measurements
For each question, the top-ten results of all systems were shown to human judges.
On average, every result was assessed by 20 human judges – students who were not
involved in this project. For each result of each system, the judges had to decide on a
scale from 2 to 0, whether the result is highly relevant (2), correct but less relevant (1),
or irrelevant (0).

NAGA answers queries by finding matches in the knowledge graph. For example,
for a query such as (Albert Einstein, bornOnDate, $x), NAGA returns only the result
(Albert Einstein, bornOnDate, 1879-03-14). Hence the direct comparison to the
other systems in terms of the well known precision-at-10 (P@10) measure would be

4.5. NAGA: Experimental Evaluation 63

misleading. Therefore we chose a measure that is not dependent on the number of
results returned by the system for a given query, and which can additionally exploit the
rank and the weight of relevant results in the result list. This measure is the Normalized
Discounted Cumulative Gain (NDCG)

NDCG The NDCG measure was introduced by [90] and is intensively used in IR
benchmarking (e.g., TREC). It computes the cumulative gain the user obtains by
examining the retrieved results up to a fixed rank position. The NDCG rewards result
lists in which highly relevant results are ranked higher than marginally relevant ones.
The intuition is that the lower a relevant result is ranked, the less valuable it is for the
user, because the less likely it is that the user will examine the result. Thus this measure
not only estimates the number of relevant results in the ranked list, but also penalizes
relevant results that are ranked low in the list.

Given a query and a ranked list of results r = r1, . . . , rn, the gain Gi of the result
at rank i is the judgment of the user (on the scale from irrelevant (0) to highly relevant
(2)). From G1, . . . , Gn, one derives the Discounted-Cumulative-Gain vector

−−−−→
DCGr,

which is defined recursively as follows:

−−−−→
DCGr[i] =

{
G[1] if i =1;
−−−−→
DCGr[i− 1] + G[i]

log i otherwise.

The value DCGr =
−−−−→
DCGr[n] is the Discounted Cumulative Gain of the ranking r.

Now, one constructs the ideal ranking r′ = r′1, . . . , r
′
n, in which a more relevant result

always precedes a less relevant one. The Discounted Cumulative Gain DCGr is then
normalized by this maximum value DCGr′ , yielding the NDCG for r:

NDCGr =
DCGr

DCGr′

We average the NDGC for one query over all user evaluations for that query and
average these values over all queries.

PRECISION@1 We also considered the precision at one (P@1) to measure how
satisfied the user was on average with the first answer of the search engine. P@1 is
the number of times that a search engine provided a relevant result in the first position
of the ranking, weighted by the relevance score (0 to 2), and normalized by the total
number of evaluations multiplied with 2 (i.e., the maximum relevance score).

To be sure that our findings are statistically significant, we compute the Wilson
confidence interval for the estimates of NDCG and P@1. We report confidence
intervals for a confidence level of α = 95%.

4.5.3 Results and Discussion
Table 2 shows the results of our evaluation. For the TREC query set, Google performs
relatively well. It has a high NDCG and in the majority of cases, the first hit in
its result ranking was already a satisfactory answer. The reason for this is that the
TREC questions are mostly of basic nature, i.e., factoid or list questions (see Table
1) and Google can answer a major part of them directly by its highly precise built-in
question answering system. In contrast, Yahoo! Answers performs less well. Very

64 4.5. NAGA: Experimental Evaluation

often, it retrieves answers to questions that have only the stop-words in common with
the question posed. In many cases, it does not deliver an answer at all. START
performs much better than Yahoo! Answers. Whenever it has the appropriate data
in its knowledge base, its answers are highly satisfactory. NAGA, in contrast, is very
strong on the TREC questions and outperforms all its competitors. Although most of
the TREC questions translate into simple NAGA queries, NAGA does not always have
the answer to a question in its knowledge graph.

Set #Q #A Measure Google Yahoo! START BANKS NAGA
Answers scoring

TREC 55 1098 NDCG 75.88% 26.15% 75.38% 87.93% 92.75%
± 6.28% ± 6.46% ± 5.31% ± 3.95% ± 3.11%

P@1 67.81% 17.20% 73.23% 69.54% 84.40%
± 6.87% ± 5.52% ± 5.46% ± 5.63% ± 4.42%

SSearch 12 343 NDCG 38.22% 17.20% 2.87% 88.82% 91.01%
± 11.22% ± 8.54% ± 2.87% ± 6.80% ± 6.07%

P@1 19.38% 6.15% 2.87% 84.28% 84.94%
± 8.98% ± 5.01% ± 2.87% ± 8.00% ± 7.84%

OWN 18 418 NDCG 54.09% 17.98% 13.35% 85.59% 91.33%
± 11.29% ± 8.54% ± 6.92% ± 6.75% ± 5.28%

P@1 27.95% 6.57% 13.57% 76.54% 86.56%
± 10.10% ± 5.13% ± 6.97% ± 8.25% ± 6.54%

#Q – number of questions
#A – total number of assessments for all questions

Table 2: Results

The questions from the query set SSearch are of a more sophisticated nature. They
ask for non-trivial combinations of different pieces of information. Consequently, both
Google and Yahoo! Answers perform on these questions worse than on the TREC
questions. START performs poorly here, often because it does not understand the
question (it tries to parse proper names as English words) and often because it does not
know the answer. NAGA, in contrast, excels on these questions, because it makes full
use of its graph-based query language.

On the queries from the set OWN, Google again performs relatively well. This
is because the questions mostly ask for a broad relationship between two individuals.
Google can answer these questions by retrieving Web documents that contain the two
corresponding keywords. In many cases, these answers were satisfactory. Yahoo!
Answers had again difficulties. START could not answer questions that ask for the
broad relationship between two entities (no matter how we phrased the question) and
therefore often failed. NAGA delivers good results for the majority of questions and
clearly outperforms the competitors.

As shown in Table 2 (columns 8, 9) NAGA’s scoring mechanism outperforms the
scoring mechanism of BANKS. As already discussed, the BANKS scoring relies solely
on the graph structure, which is not enough to capture informativeness. When asked
for (famous) politicians, the BANKS scoring returns Albert Einstein as the first
result. For the query (Albert Einstein, isA, $x) the BANKS scoring returns person
as the first result. This is because of the high in-degree of the nodes representing the
entities Albert Einstein and person in the knowledge graph. NAGA, instead,
captures the notion of informativeness in the overwhelming majority of the cases. It

4.6. NAGA: Conclusion 65

returns Barack Obama as the first result, when asked for famous politicians, and for
the query (Albert Einstein, isA, $x), the first answer is physicist.

Although Google and Yahoo! Answers could not capture the intended meaning
of many questions from our benchmarks, they were very efficient and returned results
within milliseconds. NAGA answered the majority of the queries from our benchmark
in less than a second. Its runtime is comparable to that of START (although slower for
regular-expression queries); but note that for each query, NAGA had to compute the
scores of the answers at query time. The evaluation of query predicates with regular
expressions over large ER graphs is a difficult task, especially when ranking is needed.
Future research in this direction should investigate the integration of advanced indexing
and top-k-processing techniques (e.g., [119, 88]) into graph-based search systems.

4.6 Conclusion
In this chapter, we presented the NAGA search engine, which shifts the retrieval
focus from Web pages to knowledge. It does so by building on an expressive graph-
based search framework that supports queries with entities and regular expressions
over relationships. Its powerful ranking model integrates the notions of confidence,
informativeness, and compactness in a principled manner. The results of the user
study demonstrate that NAGA retrieves answers which are superior in quality to those
returned by state-of-the-art search and question answering systems.

NAGA’s LM-based ranking model could be further extended to capture a user-
or context-dependent notion of informativeness. An extended model would have to
consider and combine various search aspects, most importantly, the short-term history
and the general search interests of the user.

In general, more advanced search and ranking models should integrate the user and
the search context into their framework. Such models would have to deal with more
complex ER structures resulting from n-ary relationships: e.g., user A was interested
in Einstein two days ago. In terms of efficiency, they should avoid materializing large
numbers of results and should exploit top-k processing whenever possible. Our work
on NAGA constitutes an important step towards these challenging and exciting research
directions.

66 4.6. NAGA: Conclusion

5.1. STAR: Overview 67

Chapter 5

STAR

“A hidden connection is stronger than an obvious one.”

HERACLITUS OF EPHESUS

5.1 Overview
Organizing information in large ER graphs and other types of networks is abundant
in modern information systems. These graphs can be used to organize relational data,
Web-extracted entities, biological networks, social online communities, etc. Often,
the underlying data allows the expressive annotation of nodes and edges with labels,
which in turn allow the semantic interpretation of nodes as entities and edges as
relations. Furthermore, edge weights can be used to reflect the strengths of semantic
relations between entities. Finding close relations between two, three, or more entities
is an important building block for many search, ranking, and analysis tasks. From an
algorithmic point of view, this translates into computing the Steiner tree between the
given nodes, a classical NP-hard problem.

In this chapter, we present a new approximation algorithm, coined STAR (Steiner
Tree Approximation in Relationship Graphs), for relatedness queries over large ER
graphs. We prove that for n query entities, STAR yields an O(log(n))-approximation
of the optimal Steiner tree in pseudopolynomial runtime, and show that in practical
cases the results returned by STAR are qualitatively comparable to, or even better than,
those returned by a classical 2-approximation algorithm. We then describe an extension
to our algorithm to return the top-k Steiner trees. Finally, we evaluate our algorithm
over both main-memory as well as completely disk-resident graphs containing millions
of nodes and tens of millions of edges. Our experiments show that in terms of efficiency
STAR outperforms the best state-of-the-art database methods by a large margin, and
also returns qualitatively better results.

5.1.1 Motivation and Problem Statement

MOTIVATION Many modern applications need to deal with graph-based knowledge
representations. Such applications include business and customer networks managed
in relational databases, networks over products, people, organizations, events that are
automatically extracted from Web pages, metabolic and regulatory networks in biology,

68 5.1. STAR: Overview

social networks and social-tagging communities, knowledge bases and ontologies in
RDF or ER-flavored models, and many more. Such graphs exhibit semantics-bearing
labels for nodes and edges and can thus be seen as semantic graphs, with nodes
and edges corresponding to entities and relationships, respectively, and edge weights
capturing the strengths of semantic relationships between entities. Often, these graphs
are too large to fit into main memory, such that the task of querying and analyzing
them in an efficient way becomes non-trivial. An example of such a graph is the
YAGO knowledge base [137, 138, 136], which has been constructed by systematically
harvesting semi-structured elements (e.g., infoboxes, categories, lists) from Wikipedia.
The resulting entities and relation instances have been integrated with the WordNet
thesaurus [72] (see Section 2.2.1). Figure 12 shows an excerpt. Another well-known
graph-based platform with a simpler structure is the IMDB movie database with
movies, actors, producers, and other entities as nodes and the movie cast (information
about directors, producers, composers, etc.) as edges.

Figure 12: Example of an entity-relationship graph

Such graphs can be represented in relational or ER models, XML with XLinks,
or in the form of RDF triples. Accordingly, they can be queried using languages like
SQL, XQuery, or SPARQL. An important class of queries is relatedness search: given
a set of two, three, or more entities (i.e., nodes), find their closest relations, i.e., edges
or paths that connect the entities in the strongest possible way. For example, when
asking “How are Germany’s chancellor Angela Merkel, the mathematician Richard
Courant, Turing-Award winner Jim Gray, and the Dalai Lama related?”, a compact
(and somewhat interesting) answer is that all four have a doctoral degree from a
German university (honorary doctorates in the last two cases). On movie/actor graphs,
the game “six degrees of Kevin Bacon”1 entails similar search patterns. On biological
networks such as the KEGG pathway repository2, the closest relations between the two
specific enzymes and a particular gene would be of interest [110, 125, 141]. Similar
queries are needed to analyze business networks between companies, their executive
VPs, board members, and customers, or to discover connections in intelligence and
criminalistic applications.

All the above scenarios aim at information discovery (as opposed to mere lookup),
so queries should return multiple answers ranked by a meaningful criterion. Each

1http://en.wikipedia.org/wiki/Six Degrees of Kevin Bacon
2http://www.genome.ad.jp/kegg/pathway.html

5.1. STAR: Overview 69

answer can be naturally defined as a tree that is embedded in the underlying graph and
connects all given input nodes. A reasonable scoring model then is some aggregation
of node and edge weights over this tree. This query and ranking model has originally
been proposed for schema-agnostic keyword queries over relational databases [28, 92,
20, 86]; a number of variations have appeared in the literature (see Section 5.1.2).

PROBLEM STATEMENT The formal problem that underlies these models is to
compute the k lowest-cost Steiner trees: Given a graph G(V,E), with a set of nodes
V and a set of edges E, let w : E → R+ denote a non-negative weight function. For
a given node set V ′ ⊆ V , the task is to find the top-k minimum-cost subtrees of G
that contain all query nodes of V ′, where the cost of a subtree T with nodes V (T) and
edges E(T) is defined as

∑
e∈E(T) w(e).

PROBLEMS WITH PREVIOUS APPROACHES Given the NP-hardness of the problem
and notwithstanding the results on fixed-parameter tractability [61], as well as the
tractability results on the approximate enumeration of the top-k approximate results
[101], most prior works have resorted to heuristics, and, in fact, have typically modified
the ranking model for the sake of efficiency (e.g., [82, 76, 111]). This is unsatisfying as
it mixes arguments about query and ranking semantics with arguments about efficiency.

Furthermore, many of the leading database methods lack approximation or runtime
guarantees (e.g., [113, 92, 28, 82]). A theoretical study conducted by the authors of [61]
shows that the methods presented in [113, 92, 28, 87] turn out to have an approximation
ratio of O(n) where n is the number of query terms.

This work overcomes these problems by staying with the original, most natural
semantics while computing near-optimal Steiner trees with practically viable runtimes.
In fact, the approximation algorithm presented in this chapter even outperforms those
prior methods that have worked with relaxed semantics.

5.1.2 Related Work
The problem of answering relatedness queries – queries which ask for the relations
between two or more entities – has been investigated in many different applications.
Some examples are keyword proximity search over relational databases [20, 85, 86, 28,
92, 61, 82], graph search over ER, RDF and other types of knowledge bases [23, 36, 98,
139, 69], entity-relationship queries on the Web [112, 77], etc. Such applications have
to deal with large graphs (sometimes with millions of nodes and edges) in general,
and require not only qualitatively good solutions, but also implementations that are
efficient. Our focus is on a particular kind of relatedness queries which require the
system to find top-k connections between two or more entities. Formally, the problem
of determining the closest interconnections between two, three, or more nodes in a
graph is the Steiner tree problem.

The Steiner tree problem can be stated as follows. Given an edge-weighted graph
G = (V,E) and a set of nodes V ′ ⊆ V , called terminals, find a minimum-weight
tree embedded in G that contains all the terminals. It has been shown that the Steiner
tree problem is NP-hard. Consequently, there has been a lot of research on finding
approximate solutions to this problem. The quality of an approximation algorithm is
measured by the approximation ratio. That is, the ratio between the weight of the
tree output by the algorithm and the optimal Steiner tree. The Steiner tree problem
can be generalized to the Group Steiner tree problem (GST): given an edge-weighted
graph G = (V,E) and a set of groups V1, . . . , Vk, where each Vi contains nodes from

70 5.1. STAR: Overview

V , find a tree in G of minimal weight such that it contains at least one node from
each group. Obviously, an algorithm that solves the GST problem can also solve the
Steiner tree problem. The GST problem can be used to model the keyword-proximity-
search problem in graph structures. The assumption is that a query keyword ki can be
contained in several nodes from the underlying graph, which can be grouped to the set
Vi ⊆ V . STAR is explicitly designed for the Steiner tree problem, as each node in a
relationship graph has a unique ID (i.e., a URI) it can be addressed with.

As related work, we consider approaches to the Steiner tree and GST problem, as
there exist prominent and efficient methods in both realms. In the following, we give a
brief overview of related literature and compare it with our work. We do this from the
perspective of the Steiner tree problem.

ALGORITHMS FOR STEINER TREE COMPUTATION Existing approaches can be
categorized according to their strategies: i) distance network heuristics (DNH), ii) span
and cleanup, iii) dynamic programming, iv) partition and index, and v) local search.
DNH: This heuristics [104, 118] builds a complete graph on the terminals, a so-called
distance network. The edge weights in the distance network reflect the shortest distance
between two terminals in the underlying graph. By a minimum spanning tree (MST)
heuristics the distance network can be leveraged to construct a 2(1− 1

n)-approximation
to the optimal Steiner tree. This heuristics is applicable to graphs of moderate size,
which can fit into main memory. It has been emulated by other approaches for the top-
k Group Steiner tree computation [28, 92]. The latter two approaches, however, turn
out to have an approximation ratio of O(n), where n is the number of query terms (see
[61]).
Span and cleanup: This heuristics [87, 129] aims at constructing the MST on the
terminals by starting from an arbitrary terminal and spanning the tree stepwise until it
covers all terminals. Redundant nodes are deleted in a cleanup phase. [113] exploited
this heuristics by means of two different spanning strategies. In contrast to the original
heuristics, each terminal is a starting point for a tree yielding a possible MST. While
the first spanning strategy chooses the edge with a minimum weight to span a tree
(minimum edge-based spanning), the second strategy chooses the tree the spanning of
which results in a minimum cost tree (balanced MST spanning). While the method of
[129] is unbound, the methods of [87, 113] turn out to have an approximation ratio of
O(n) (see [61]).
Dynamic programming and DPBF: The first dynamic programming approach to
the Steiner tree problem was introduced by Dreyfus and Wagner [65]. It proceeds
by computing optimal results for all subsets of terminals. Then the optimal result is
computed for all the terminals. In [61], this heuristics is modified to a faster method,
coined DPBF, for the optimal solution in the GST case. While the former work proved
the fixed parameter tractability of the Steiner tree problem, the latter proved it for the
GST variant. However, both methods are applicable to graphs of moderate size.
Partition and index: In this strategy, the main computation effort goes into a
precomputation phase. The goal of this phase is to encounter the large size of the
underlying graph by partitioning it into subgraphs (or blocks) and precomputing inter-
block and intra-block shortest-path indexes. These indexes are used at query time to
speed-up the query processing. Although this strategy has become quite popular in
recent years [82, 111], it lacks approximation and runtime guarantees.
Local search: This heuristics has been used in the realm of the Euclidean Steiner
tree problem and the parallel Steiner tree computation [29, 71]. In the first phase
an interconnecting tree is built based on the distance network heuristics introduced

5.1. STAR: Overview 71

by [104]. In the second phase the current tree is iteratively improved by considering
different nodes in the underlying graph that may improve the cost of the current tree.

Our approach, STAR, cannot be fully assigned to any of the above categories. It
rather combines different heuristics for efficient search-space exploration with effective
local search and local pruning strategies. The main challenge here has been to
provide practically viable and provable approximation and runtime guarantees. Table
3 lists the approximation ratios and runtime complexity bounds for some of the
mentioned approaches with respect to the Steiner tree problem. STAR has a better
approximation ratio than most of the leading database methods. In our experiments,
the results produced by STAR are weight-wise comparable to the results returned by a
2-approximation or even an optimal algorithm [104, 61].

The pseudo-polynomial runtime complexity of STAR depends on the ratio between
the maximum and the minimum edge weight in the underlying graph. This theoretical
upper-bound boils down to a polynomial complexity bound under the realistic
assumption that the above ratio is polynomial in the size of the graph. In fact, we
show in our experiments on real-life datasets that STAR outperforms some of the most
efficient database methods by a large margin.

Method Approximation ratio Runtime complexity
BLINKS [82] ? ?

Reich & Widmayer [129] unbounded O(l · (m + n log n))

Ihler [87] O(l) O(l · n · (m + n log n))

BANKS I [28] O(l) O(n2 log n + n ·m)

BANKS II [92] O(l) O(n2 log n + n ·m)

RIU [113] O(l) O(l · n · (m + n log n))

Bateman et al. [26] O((l + ln(n/2)) ·
√

l) O(n2 · l2 log l)

Charikar et al. [39] O(i · (i− 1) · l1/i) O(ni · l2i)

STAR O(log(l)) O(wmax
ε·wmin

·m · l · (m + n log n))

DNH [104] O(2(l − 1
l
)) O(n2 · l)

DPBF [61] optimal O(3ln + 2l((l + log n) · n + m))

n – number of nodes; m – number of edges; l – number of terminals; i – depth of tree
wmin – minimum edge weight in G; wmax – maximum edge weight in G

Table 3: Approximation ratios and runtime complexity bounds

ALGORITHMS FOR TOP-K STEINER TREE COMPUTATION Top-k Steiner tree
computation has been previously studied in the context of keyword search over
relational databases (see BANKS [28, 92] and BLINKS [82]).

The first BANKS paper [28] (referred to as BANKS I), addresses the GST problem
on directed graphs. It emulates the DNH by running single source shortest paths
iterators from each node in each group Vi, where Vi is the set of nodes which contain
the keyword ki. The iterators are expanded in a best-first strategy and follow the edges
backwards. As soon as the iterators meet, a result is produced. This technique is
improved in BANKS II [92] by (1) reducing the number of iterators, (2) allowing
forward expansion on edges in addition to backward expansion, (3) using a spreading-
activation heuristics which prioritizes nodes with low degrees, and edges with low
weights during the expansion of iterators. However, the performance of both BANKS
I and BANKS II can significantly degrade in the presence of high-degree nodes during
the expansion process.

72 5.1. STAR: Overview

[76] makes use of the approaches of BANKS I and BANKS II to generate a first
minimal-height tree that contains the query keywords. The authors show that with
respect to the tree heights the top-k answers can be efficiently generated with provable
guarantees.

DPBF [61] can be extended to a top-k algorithm by using the intermediate subtrees
generated during the dynamic programming process to compute approximate top-k
results.

In order to deal with graphs that may be significantly larger than main memory,
the authors of [57] propose a multigranular graph representation that combines a
condensed, memory-resident graph representation with detailed graph information that
may be cashed or stored in external memory. The goal is to minimize the IO costs
during search. The authors propose different metaheuristics for retrieving the top-k
minimum-cost Steiner trees in the multigranular graph representation. Consequently,
the runtime complexity and the approximation ratio of the approach is highly dependent
on the search algorithm that is plugged in the proposed metaheuristics.

Based on the notion of r-radius Steiner graphs, the approach of [111], EASE,
exploits graph partitioning and subgraph indexing along similar lines as [82] for
keyword proximity search over heterogeneous (i.e., structured, semi-structured, and
unstructured) data organized as graphs. The results can be general graphs (not only
trees) that contain the query keywords. The presence of a modified ranking model and
subgraph indexes make theoretical implications on the runtime or approximation ratio
of the approach impossible.

The recently proposed BLINKS [82] makes use of the backward search strategy of
BANKS, but exploits a cost-based expansion. The authors prove that this expansion
strategy, which picks the cluster with the smallest cardinality to expand next, is near-
to-optimal (i.e., the number of nodes accessed by this strategy is in practice within a
constant factor of the number of nodes accessed by an optimal expansion strategy). In
a precomputation phase, two kinds of indexes are built to speed up the search. First, a
keyword-node index is built which stores, for each keyword w, a list of nodes that can
reach w along with the distance of each node from w. Second, a node-keyword index is
built which stores, for each node, the set of keywords reachable from it and its distance
to each keyword. However, since the proposed indexes can be too large to store and too
expensive to compute, the graph is partitioned into blocks. The blocks are formed by
partitioning the graph using node separators, also called portals. A high level keyword-
block index is built, and more detailed indexes are built at the block level. Multiple
cursors are used to perform the backward search within blocks. Whenever a portal of a
block is reached, new cursors are created to explore the remaining blocks connected to
this portal node.

Instead of trees, BLINKS returns (r, {ni}) pairs, where r is the root of the result
tree and ni is a set of nodes containing the query keywords. Its scoring function differs
from the usual Steiner tree scoring. It is based on the match-distributive semantics
where the overall score of a result tree is given by the sum of the root-to-terminal paths
in the tree. In general, such paths can overlap. Also in the underlying graph, there
can be multiple overlapping root-to-the-terminal paths, which can be considered as
candidate paths for the result tree. Figure 13 depicts such a situation. With respect to
the match-distributive semantics – assuming that each edge has weight 1 – the score
of the tree (represented by the bold edges) would be 9, because each root-to-terminal
path contributes independently to the final score (even if paths have common edges).
Given the root and the terminals, there can be different ways to construct a result tree
of a certain score. But note that two different trees of the same score with respect to the

5.1. STAR: Overview 73

match-distributive semantics can have different Steiner tree scores and vice versa. This
makes the reconstruction of BLINKS trees for means of comparison with the Steiner
tree semantics difficult.

Figure 13: Example of overlapping root-to-terminal paths

Moreover, BLINKS needs to have the graph in memory to partition it and to
construct the indexes, while in our approach the graph can be stored in a database
and only database indexes need to be used. Finally, the performance of BLINKS is
dependent on the number of portals (i.e. nodes that belong to more than one block) and
the strategy for choosing them. This is because BLINKS needs to use separate cursors
not just for each keyword cluster, but also for each block that it has to traverse, resulting
in a high number of cursors. Hence, for a high number of portals, the performance of
BLINKS suffers because of the large number of blocks that have portals in common.
Although BLINKS lacks approximation and runtime guarantees, experiments show
that it performs up to an order of magnitude faster than BANKS II.

5.1.3 Contributions and Outline

CONTRIBUTIONS The main contributions that will be presented in this chapter are
the following.

• We present STAR, a new, efficient algorithm to the Steiner tree problem,
which exploits taxonomic schema information when available to quickly produce
results for l given query entities (or terminals).

• We prove that STAR has a worst-case approximation ratio of O(log(l)). This
improves the previously best-known approximation guarantees of O(

√
l) or even

O(l) for practically leading database methods (see [61]). In our experiments on
real-life datasets, STAR achieves better results (i.e. trees of lower weight) than
the ones returned by the 2(1− 1

l)-approximation algorithm presented in [104].

• We analyze the time complexity of the algorithm and prove that it has a pseudo-
polynomial runtime (i.e., polynomial under the realistic assumption that the ratio
of the maximum edge weight to the minimum edge weight is polynomial in the
size of the graph.)

• We generalize STAR to an algorithm that is capable of computing approximate
top-k relation trees for a given set of query entities.

• We compare STAR with the best state-of-the-art database methods in
comprehensive main memory and on-disc experiments. STAR outperforms all
opponents, often by an order of magnitude and sometimes even more.

74 5.2. STAR: The STAR Algorithm

OUTLINE The remainder of the chapter is organized as follows. In Section 5.2, we
give a detailed overview of the STAR algorithm and the heuristics it uses. In Sections
5.3 and 5.4, the focus will be on the analysis of the approximation ratio and the runtime
complexity of STAR. A generalization of STAR to a top-k approximation algorithm
will be presented in Section 5.5. Finally, in Section 5.6, we present an extensive
evaluation of our method. We conclude in Section 5.7.

5.2 The STAR Algorithm
As described in the introduction, we are given an undirected graph G(V,E) with a
set of nodes V and a set of edges E, and a non-negative weight function w : E →
R+, intuitively representing a distance function that is inversely proportional to the
connection strength between the two end nodes of an edge. For any subgraph G′ of
G we denote the set of nodes of G′ by V (G′), and the set of edges of G′ by E(G′).
Furthermore, we extend the weight function w on G′ by w(G′) =

∑
e∈E(G′) w(e).

Given a set V ′ ⊆ V , we are interested in finding a subgraph T of G that contains
all nodes from V ′, such that the weight of T is minimal among all possible subgraphs
of G that contain all nodes from V ′. Note that inevitably, such a subgraph T has to
be a tree. Furthermore, we are interested in finding the top-k such trees in the order of
increasing weights.

Many real-world graphs come with semantic annotations such as node labels,
representing entities, and edge labels, representing relations. Furthermore, these
graphs may have taxonomic substructures (e.g., representing class-subclass or part-
of hierarchies) indicated by the labels of the corresponding edges. The local search
strategy of STAR can exploit such taxonomic backbones, when available, to efficiently
find approximate solutions to the above problem. It runs in two phases. In the first
phase, it tries to quickly build a first tree that interconnects all nodes from V ′. In the
second phase it aims to iteratively improve the current tree by scanning and pruning its
neighborhood.

5.2.1 The STAR Metaheuristics
The main idea behind the STAR algorithm can be best described by a two-phase
metaheuristics. In the first phase the goal is to construct an initial tree that interconnects
all terminals as quickly as possible. This can be done by:

1. Exploiting meta information about the underlying graph. In ER graphs, such
meta information can be given by any subgraph that represents a conceptual
hierarchy (e.g., isA hierarchy) on the entity nodes. In general, any kind of
explicit structure information about the underlying graph can be used.

2. Exploiting various heuristics for fast search space traversal.

3. Carefully precomputing and indexing interconnecting paths between some of the
graph nodes.

As we will see in the next section, in its first phase, the STAR algorithm makes use of
the first two strategies, to efficiently build an initial tree.

In the second phase the goal is to efficiently improve the current tree by replacing
it with better solutions from its local neighborhood. This can be done by:

5.2. STAR: The STAR Algorithm 75

1. Effectively pruning the local neighborhood.

2. Exploiting heuristics for fast search space traversal.

The STAR algorithm makes use of both these strategies.
Note that ideally, one should not care about the cost of the initial tree. This would

give us the freedom to use any kind of efficient heuristics for constructing the initial
tree. Hence, the improvement strategy in the second phase should give us a practically
viable approximation guarantee independent of the size of the initial tree. In the
following we present both phases of the STAR algorithm in detail.

5.2.2 First Phase: Quick Construction of an Initial Tree

In order to build a first interconnecting tree, STAR relies on a similar strategy as
BANKS I [28]. But, instead of running single-source-shortest-path iterators from each
node of V ′ (as BANKS I does), STAR runs simple breadth-first-search iterators from
each terminal. The iterators are called in a round-robin manner. As soon as the iterators
meet, a result is constructed. This strategy can be applied to any kind of networks, no
matter whether they provide taxonomic information or not.

Unlike BANKS I, in this phase, STAR may exploit taxonomic information (when
available) to quickly build a first tree, by allowing the iterators to follow only taxonomic
edges, i.e., edges labeled with taxonomic relations such as type or subClassOf (see
Figure 14). This way, STAR can quickly find a taxonomic ancestor of all nodes
from V ′. Consider the sample graph of Figure 12. Suppose that V ′={Max Planck,
Arnold Schwarzenegger, Germany}. In the first phase, STAR would construct the
tree depicted in Figure 14.

Figure 14: Taxonomic interconnection

Note that in this phase, our algorithm does not aim at minimizing the tree cost. In
fact, the tree cost does not play any role in this phase.

In the following, we describe how we gradually improve the tree returned by the
first phase of our algorithm.

5.2.3 Second Phase: Searching for Better Trees

In the second phase, STAR aims at improving the current tree iteratively by replacing
certain paths in the tree by new paths of lower weight from the underlying graph. In
the following we define which paths can be replaced.

76 5.2. STAR: The STAR Algorithm

FIXED NODES AND LOOSE PATHS Let T be a tree interconnecting all nodes of V ′.
We denote the degree of a node v in T by deg(v). A node v ∈ V ′ is called a terminal
node, all other nodes of T are called Steiner nodes.

DEFINITION 5: [Fixed node]
A node in T is a fixed node if it is either a terminal node or a Steiner node that has
degree deg(v) ≥ 3.

Intuitively, a fixed node is a node that should not be removed from T during the
improvement process.

DEFINITION 6: [Loose path]
A path p in T is a loose path if it has minimal length with respect to the following
property: its end nodes are fixed nodes.

From the definition above, it follows immediately that every intermediate node in
a loose path must be a Steiner node with degree two. Intuitively, a loose path is a path
that can be replaced in T during the improvement process.

It follows immediately that a minimal Steiner tree with respect to V ′ is a tree in
which all loose paths represent shortest paths between fixed nodes.

OBSERVATIONS In the following, for a tree T , we denote the set of its loose paths by
LP (T).

Removing a loose path lp from T splits T into two subtrees T1 and T2. In Figure
15, the removal of the loose path that connects the nodes a and b from T0 would return
two subtrees interconnecting the terminals u, w and x, y, z, respectively. Replacing a
loose path lp by a new, shorter path, means computing the shortest path between any
node of T1 to any node of T2. Note that since the end nodes of the loose path lp are
fixed nodes, they are not removed when lp is removed. This means that removing a
loose path that ends into a fixed node v of degree three turns v into an unfixed node,
and the two remaining loose paths that had v as an end node are merged into one single
loose path. In Figure 15, the removal of the loose path that connects a and b turns a and
b into unfixed nodes. The loose paths that were connected to b (or to a, respectively) are
merged into a single loose path. On the other hand, inserting a loose path that ends into
an unfixed node v turns v into a fixed node, and the loose path that passes through v is
split into two loose paths. In Figure 15, connecting a and d by a new path turns a and
d into fixed nodes. The loose path that went through d (or through a, respectively) is
split into two loose paths. Hence, the number |LP (T ′)| of loose paths in an improved
tree T ′ is |LP (T)| − 2 ≤ |LP (T ′)| ≤ |LP (T)|+ 2.

LEMMA 1: [Number of loose paths in a given tree T]
A tree T with terminal set V ′, |V ′| ≥ 2, has at least |V ′| − 1 and at most 2|V ′| − 3
loose paths.

PROOF The proof is by induction on the number of terminals. Obviously, for a
tree T with two terminals |V ′| − 1 ≤ |LP (T)| ≤ 2|V ′| − 3 holds. Let T be a tree with
|V ′| > 2. Let lp be a loose path in T . Removing lp from T splits T into two subtrees
T1 with a terminal set V ′

1 and T2 with a terminal set V ′
2 . By induction, our claim holds

for T1 and T2. With the above discussion, connecting T1 and T2 again through lp may
lead in each of the trees T1 and T2 to one more loose path. Hence, the overall number
of loose paths in T is upperbounded by |LP (T)| ≤ |LP (T1)| + |LP (T2)| + 2 + 1.

5.2. STAR: The STAR Algorithm 77

On the other hand, the connection through lp may leave the number of loose paths in
T1 and T2 unchanged, resulting in |LP (T)| ≥ |LP (T1)| + LP |(T2)| + 1. Assuming
that |LP (T1)| = 2|V ′

1 | − 3 and |LP (T2)| = 2|V ′
2 | − 3 leads to |LP (T)| ≤ (2|V ′

1 | −
3) + (2|V ′

2 | − 3) + 2 + 1 = 2|V ′| − 3. Assuming that |LP (T1)| = |V ′
1 | − 1 and

|LP (T2)| = |V ′
2 | − 1 leads to |LP (T)| ≥ (|V ′

1 | − 1) + (|V ′
2 | − 1) + 1 = |V ′| − 1. �

Figure 15: After first iteration

Figure 16: After third iteration

78 5.2. STAR: The STAR Algorithm

Figure 17: After fourth iteration

FINDING AN APPROXIMATE STEINER TREE In the second phase, STAR keeps on
iteratively improving the current tree T . In each iteration our algorithm removes a
loose path lp from the current tree T . Consequently, in each iteration T is decomposed
into two components T1 and T2. The new tree T is obtained by connecting T1 and
T2 through a path that is shorter than lp (see Figures 15, 16, and 17). Hence, the
inherently difficult Steiner tree problem is reduced to the problem of finding shortest
paths between subsets of nodes. Heuristically, in each iteration we remove the loose
path with the maximum weight in T . The reason for doing so is that we aim to
effectively prune the local neighborhood of T . A high-level overview is given in
Algorithm 2.

ALGORITHM 2: improveTree(T, V ′)
Input: Tree T produced by the first phase of STAR,

set V ′ of terminals
Output: Locally optimal tree
1 PriorityQueue Q = LP (T) //ordered by decreasing weight

2 WHILE Q.notEmpty() DO
3 lp = Q.dequeue()
4 T ′ =replace(lp, T)
5 IF w(T ′) < w(T) THEN
6 T = T ′

7 Q = LP (T) //ordered by decreasing weight

8 END IF
9 END WHILE
10 RETURN T

5.2. STAR: The STAR Algorithm 79

Speaking abstractly, the above algorithm greedily scans and prunes the
neighborhood of T for better trees. Paths that exceed the weight of the loose path
upon which the current tree is being improved are pruned. Note that this method leads
only to a local optimum. However, we show in Theorem 1 that this local optimum is
relatively close to the global optimum.

As an example, we show how STAR would improve the taxonomic tree returned
by the first phase of the algorithm (see Figure 14). In the first iteration the algorithm
would remove the loose path that connects the fixed node labeled with Germany to
the fixed node labeled with person. The improved tree is depicted in Figure 18. Note
that since STAR aims to find closest relations between entities, it views the edges in
Figures 18 and 19 as undirected.

Figure 18: Result of the first iteration

In the second iteration the path connecting the fixed node labeled with Arnold
Schwarzenegger to the fixed node labeled with physicist is removed. The improved
tree (depicted in Figure 19) is at the same time the final tree, since no loose path can
be improved. Another example is depicted in Figures 15-17.

Figure 19: Result of the second iteration

The method replace(lp, T) (line 4 of Algorithm 2) removes the loose path lp from
T . This removal splits T into two subtrees T1 and T2. Then the shortest path in G
that connects any node of T1 to any node of T2 is determined and combined with
T1 and T2 into a new tree T ′ of lower weight. For this purpose, replace(lp, T) calls
another method, called findShortestPath(V (T1), V (T2), lp), which runs one single
source shortest path iterator from each of the node sets V (T1) and V (T2). This method
is presented in Algorithm 3. In the beginning, each of the iterators Q1, Q2 contains all
the nodes from V (T1) and V (T2), respectively (lines 5, 6). The variables current and
other (lines 7 and 8) represent the subscript indices of Q1 and Q2. As presented in

80 5.2. STAR: The STAR Algorithm

lines 10 to 12, Qcurrent points to the iterator that has minimal number of fringe nodes.

ALGORITHM 3: findShortestPath(V (T1), V (T2), lp)
Input: Loosepath lp,

subtrees T1 and T2 resulting from the removal of lp
Output: Shortest path from G that interconnects T1 and T2

1 FOR EACH v ∈ V (G)
2 IF v ∈ V (T1) THEN d1(v) = 0 ELSE d1(v) = ∞
3 IF v ∈ V (T2) THEN d2(v) = 0 ELSE d2(v) = ∞
4 END FOR
5 PriorityQueue Q1 = V (T1) //ordered by incr.distance d1

6 PriorityQueue Q2 = V (T2) //ordered by incr.distance d2

7 current = 1
8 other = 2
9 REPEAT
10 IF fringe(Qother)<fringe(Qcurrent) THEN
11 swap(current, other)
12 END IF
13 v = Qcurrent.dequeue()
14 IF dcurrent(v) ≥ w(lp) THEN
15 BREAK
16 END IF
17 FOR EACH (v, v′) ∈ E(G)
18 IF v′ has been dequeued from Qcurrent THEN
19 CONTINUE
20 END IF
21 IF dcurrent(v′) > dcurrent(v) + w(v, v′)
22 dcurrent(v′) = dcurrent(v) + w(v, v′)
23 v′.predecessorcurrent = v
24 END IF
25 Qcurrent.enqueue(v′)
22 END FOR
27 UNTIL Q1 = ∅ ∨Q2 = ∅ ∨ v ∈ V (Tother)
28 RETURN path connecting T1 and T2

Intuitively, Qcurrent represents the iterator that is currently expanded. This
expansion heuristics is similar to the cost-balanced expansion used by BLINKS [82],
which attempts to balance the number of accessed nodes (i.e., the search cost) for each
iterator. It is also similar to the expansion heuristics used by BANKS II [92], which
prioritizes nodes with low degrees during the expansion. However, the difference is
that we consider the whole node collection in an iterator as a single node. Each iterator
aims at reaching a node from the starting set (source) of the other iterator, represented
by V (Tother) in line 27. Hence, in case that Qcurrent points to the iterator that started
from V (T1), the set V (Tother) points to V (T2) and vice versa. During the expansion,
for each node v′ visited by the current iterator, we maintain its current predecessor,
that is, the node v from which the iterator reached v′ (line 23). Again the predecessor
is dependent on the current iterator. The current predecessor of v′ is chosen such that

5.2. STAR: The STAR Algorithm 81

the distance dcurrent of v′ to the source of the current iterator is minimized (lines
21-23). We maintain this distance for each visited node v′ (line 22). Maintaining
the predecessor of a visited node v′, helps us rebuild the path from v′ to the source.
However, as soon as the iterator Qcurrent encounters a node v that has a distance
greater than or equal to the weight of the loose path lp upon which we are aiming to
improve the current tree, the expansion stops (lines 14, 15). The reason for this is that
all other nodes in Qcurrent have a greater distance to the source than v, since the nodes
in the iterators are ordered by increasing distance from the sources.

5.2.4 Discussion

A legitimate question that may arise at this point concerns the somewhat intricate
framework of the STAR approach. We have presented a two-phase algorithm which
exploits quite complex search strategies guided by different heuristics. Would it not be
more efficient to use a much simpler search strategy that searches for an approximate
Steiner tree right away?

One of the simplest search strategies in the literature is used by the BANKS I
algorithm [28], which expands single-source-shortest-path iterators starting from each
terminal in a best-first strategy and returns a result as soon as the iterators meet.
However, this search strategy significantly degrades in the presence of high-degree
nodes in the graph. As a consequence, BANKS II [92] was proposed which uses a
more intricate search strategy. This time, the authors exploit a spreading-activation
and a bidirectional search heuristics to avoid the explosion of the search space at high-
degree nodes. In summary, it can be said that an efficient algorithm for Steiner tree
search should be guided by a careful search space exploration. This, again, comes with
various heuristics which need to be combined in the appropriate way. In the presence of
different heuristics, the main challenge is to provide a search algorithm with practically
viable approximation and runtime guarantees.

At this point, we highlight once again the main strategies of STAR, which are
responsible for the efficient generation of results.

• Fast construction of an initial tree. We presented two strategies for the efficient
generation of an initial tree in the first phase (see Section 5.2.2). The only goal
of this phase is to build an initial tree as quickly as possible; the cost of the tree
is irrelevant.

• Effective pruning of the local neighborhood. In Algorithm 2, we choose
always the loose path with the highest weight in the current tree to remove.

• Low cost for managing data structures. STAR uses only two single-source-
shortest-path iterators for each improvement step (see Algorithm 3); these are
the only data structures used during search.

• Smart expansion strategy for iterators. In Algorithm 3, we use a balanced
expansion strategy across iterators which prioritizes sparser regions in the search
space. The balanced expansion strategy was shown to be near-to-optimal and to
have a good bound on the worst-case performance [82]. Avoiding the explosion
of search space at high-degree nodes was used by BANKS II [92] as an efficient
search heuristics.

82 5.3. STAR: Approximation Guarantee

Despite the many heuristics it uses, STAR comes with a practically viable
approximation guarantee. The next section is dedicated to STAR’s approximation
guarantee.

5.3 Approximation Guarantee
In this section, we prove that STAR is an O(log(N))-approximation algorithm, where
N is the number of terminals.

Our proof has a very important implication. It entails that the approximation ratio
for the cost of the final tree returned by STAR is independent of the tree constructed in
the first phase.

The proof proceeds as follows. We define a mapping between each loose path in
the tree returned by the algorithm, and a more expensive path in the optimal solution.
Such a mapping has the property that at most 2dlog Ne + 2 loose paths are mapped
onto a same path. Moreover, each edge in the optimal solution occurs in the range of
the mapping at most twice. Hence, summing over all paths in the range of the mapping
gives an upper bound (of 4dlog Ne+4) on the cost of the tree yielded by the algorithm.

The process of finding such a mapping consists of two phases. First, we identify a
collection of paths in the optimal tree that do not overlap too much. Then, we go back
to the tree returned by the algorithm, trying not to assign too many loose paths to the
same path in the optimal tree. Lemma 2 deals with this non-trivial task.

Before diving into the proof, we need some auxiliary notations. We shall denote an
ordered pair by (i, j) (this means that (i, j) 6= (j, i)), while an unordered pair will be
denoted by {i, j}. For any graph G, dG(u, v) denotes the shortest distance between u
and v in G. In a tree, we denote by uv the (unique) path between u and v.

Our input is an undirected graph G = (V,E) and a set of terminals V ′ ⊆ V that
are to be connected. Let N = |V ′| (in what follows we assume N > 2). Let TO be an
optimal Steiner tree with respect to the set V ′ of terminals in the input. Let TA be the
Steiner tree returned by the STAR algorithm.

LEMMA 2: [Mapping Loose Paths to Pairs of Terminals]
Let L(TA) be the set of loose paths in TA. For any circular ordering v1, . . . , vN of the
terminals in TA, there is a mapping µ : L(TA) → V ′ × V ′ such that:

1. µ is defined for all loose paths in TA;

2. for each loose path P with end points u and v, let T1 and T2 be the two trees
obtained by removing from TA all nodes in P (and their edges), except u and v;
then, µ(P) = {vi, vi+1} for some i = 1, . . . , N and one of the nodes vi, vi+1

belongs to T1, while the other one belongs to T2;

3. for each pair of terminals {vi, vi+1} there are at most 2dlog Ne+ 2 loose paths
mapped to {vi, vi+1}.

PROOF For ease of presentation, we assume TA is rooted at any arbitrary terminal
node and its edges are directed from the root towards the leaves. Then, we denote by
u → v a path where u is closer to the root than v. Furthermore, for any subtree T of TA

we shall denote by τ(T) the set of terminals belonging to T . The first step in defining
the mapping is to find a labeling with good properties, as follows.

5.3. STAR: Approximation Guarantee 83

For each loose path P = u → v let Tu and Tv be the subtrees of TA rooted at u
and v, respectively. Let vi and vj be the two terminals having the minimum absolute
difference |i − j| among all pairs vi, vj , satisfying the constraints vi ∈ τ(Tv) and
vj ∈ τ(Tu) \ τ(Tv). Label P with the ordered pair (i, j). Iterate this procedure for all
loose paths.

We now study some properties of this labeling. Let vi be any terminal and let Pi

be the path connecting the root to vi. Consider the set of labels occurring in Pi of the
kind (i, j), where j > i; let (i, i + j1), . . . , (i, i + jk) be the sequence of such pairs,
ordered by non-decreasing jh’s. We prove that jh+1 ≥ 2jh, h = 1, . . . , k − 1, which
together with the fact that jh’s are not larger than N implies k ≤ dlog Ne+ 1.

Suppose by contradiction that there is h such that jh+1 < 2jh. Consider the two
loose paths labeled with (i, i + jh) and (i, i + jh+1). Let P = u → v be the one of the
two that is closest to the root.

By the definition of the labeling, {vi, vi+jh
, vi+jh+1} ⊆ τ(Tu). There are two

cases, either P is labeled with (i, i + jh) or P is labeled with (i, i + jh+1). In the
former case, vi+jh

/∈ τ(Tv) and jh+1 − jh < jh. Hence, P would have been labeled
with (i + jh+1, i + jh). In the latter case, vi+jh+1 /∈ τ(Tv) and jh+1− jh < jh, which
implies that P would have been labeled with (i + jh, i + jh+1). Therefore, in both
cases we obtain a contradiction.

In other words, we just proved that in the path between the root and any terminal
vi, the number of labels of the kind (i, j), where j > i, is at most dlog Ne + 1. From
the way the labeling has been defined, as well as from the fact that there is exactly one
path between the root and any terminal, it follows that in the whole tree TA such labels
can occur at most dlog Ne+ 1 times. Symmetrically, we can show that the number of
labels of the kind (i, j) where j < i, is bounded by the same quantity.

In order to obtain the desired mapping the labeling is refined in the following way.
Replace each label (i, j) with (i, i + 1) if j > i and with (i, i − 1) otherwise. Now,
drop the ordering of the pairs, that is, turn each label (i, i + 1) into {i, i + 1}. This
implies that each label can occur at most 2dlog Ne + 2 times. Finally, for each loose
path P , define µ(P) = {vi, vj} where {i, j} is the label of P . It is straightforward to
see that the claimed three properties are satisfied. �

THEOREM 1: [Approximation Guarantee]
The STAR algorithm is a (4dlog Ne+ 4)-approximation algorithm for the Steiner tree
problem.

PROOF Consider a walk on TO that uses each edge exactly twice and that visits
all nodes in TO. Such a walk gives a circular ordering v1, . . . , vN of the terminals,
ordered according to their first occurrence in such a walk. We have that:

N∑
k=1

dTO
(vk, vk+1) = 2w(TO). (5.1)

Using Lemma 2, we define a mapping µ with respect to the circular ordering
v1, . . . , vN . From property 2 of the mapping µ and from the termination condition
of the STAR algorithm, it follows that for any loose path P = uv in TA

dTA
(u, v) ≤ dTO

(µ(uv)), (5.2)

where dTO
(µ(uv)) is the distance, in the optimal solution, between the two entries of

84 5.4. STAR: Time Complexity

µ(uv). Finally, we can write:

w(TA) =
∑

uv∈LP (TA)

dTA
(u, v) (5.3)

≤
∑

uv∈LP (TA)

dTO
(µ(uv)) (5.4)

≤
N∑

k=1

(2dlog N + 2e) dTO
(vk, vk+1) (5.5)

≤ (4dlog Ne+ 4) w(TO). (5.6)

where inequality (5.4) follows from Equation (5.2), inequality (5.5) follows from
property 3 of the mapping µ, and inequality (5.6) follows from Equation (5.1). �

5.4 Time Complexity
The algorithm as it has been presented might have exponential running time. In fact,
the cost of the tree might decrease at each step by an infinitesimally small amount.
Fortunately, this can be solved by using a relatively simple “trick”, which guarantees
that at each step a significant improvement on the cost of the current tree is made.

Given ε > 0, we introduce the improvement-guarantee rule, which is defined as
follows. Let P be a loose path, and let P ′ be the path selected by the algorithm to
replace P ; replace P if and only if w(P ′) ≤ w(P)

1+ε . The algorithm is then iterated until
no loose path can be improved.

Let wmax and wmin be the maximum and minimum cost of the edges in the input
graph. The following theorem shows that the STAR algorithm with the improvement-
guarantee rule is a pseudopolynomial algorithm, namely its running time is polynomial
if the ratio wmax

wmin
is polynomial in the size of the input. Let n, m,N denote the number

of vertices, edges, and terminals of the input graph, respectively.

LEMMA 3: [Runtime with the Improvement Guarantee Rule]
Given ε > 0, the STAR algorithm with the improvement-guarantee rule is guaranteed
to terminate in O

(
1
ε

wmax
wmin

m
)

steps.

PROOF Let T̄ be the initial tree, as returned by the first phase of STAR. We have
that w(T̄) ≤ mwmax. At any step of our algorithm, let P be a loose path and let P ′ be
the path selected by the algorithm to replace P . By the improvement-guarantee rule, it
follows that:

w(P)− w(P ′) ≥ (1 + ε)w(P ′)− w(P ′) ≥ εwmin. (5.7)

Hence, the cost of the tree decreases at each step by at least εwmin. This gives a bound
on the number of steps k, as follows:

mwmax − kεwmin ≥ 0 ⇔ k ≤ 1
ε

wmax

wmin
m. (5.8)

�
The next theorem shows a trade-off between the approximation guarantee of the

STAR algorithm and its running time.

5.5. STAR: Approximate Top-k Interconnections 85

THEOREM 2: [Approximation Bound with the Improvement Guarantee Rule]
For a given ε > 0, the STAR algorithm with the above improvement-guarantee rule
is a (1 + ε)(4dlog Ne+ 4)-approximation algorithm for the Steiner tree problem. Its
running time is O(1

ε
wmax
wmin

mN(n log n + m)).

PROOF The time-complexity bound follows from Lemma 3 and from the fact that
at each step the STAR algorithm might invoke Dijkstra’s algorithm at most (2N − 3)
times (one for each loose path, see Lemma 1). To prove the approximation ratio, it
suffices to replace Equation (5.2) in Theorem 1 with:

dTA
(u, v) ≤ (1 + ε)dTO

(µ(uv)), (5.9)

and change the remaining equations accordingly. We include all steps for
completeness. We have that:

w(TA) =
∑

uv∈L(TA)

dTA
(u, v) (5.10)

≤
∑

uv∈L(TA)

(1 + ε)dTO
(µ(uv)) (5.11)

≤
N∑

k=1

(1 + ε) (2dlog Ne+ 2) dTO
(vk, vk+1) (5.12)

≤ (1 + ε) (4dlog Ne+ 4) w(TO). (5.13)

�

5.5 Approximate Top-k Interconnections

As demonstrated in Algorithm 3, the weight of the loose path lp upon which the
current tree T is being improved serves as an upper bound for the weights of new
interconnecting paths between the subtrees of T that result from the removal of lp
from T . The final result of the STAR algorithm, as given by Algorithm 2, is a tree T in
which there is no loose path upon which T can be improved.

In order to generalize STAR to an algorithm that can compute approximate top-
k interconnections, we start from the final tree T returned by the original STAR
algorithm, which is stored in a priority queue Q (see lines 1-3 of Algorithm 4). All
the trees that were constructed during the improvement process of STAR are also
stored in Q. They serve as possible top-k candidates. We then artificially relax the
weight of T (line 6 of Algorithm 4) by adding a small value ε to its loose path weights.
Such a relaxed tree can now be locally improved. Every improved tree along with all
intermediate trees that led to it are inserted in the appropriate position in Q. In case
the improved tree that was generated from the artificial relaxation has a greater weight
than the k’th element of Q, the algorithm stops. The fact that every improvement step
leads to a possible top-k candidate is the main efficiency ingredient in STAR’s top-k
generation strategy. We give an overview of the main steps in Algorithm 4.

86 5.6. STAR: Experimental Evaluation

ALGORITHM 4: getTopK(T, V ′, k)
Input: Tree T returned by the second phase of STAR,

set of terminals V ′,
parameter k representing the number of desired results

Output: Top-k approximate interconnecting trees
1 PriorityQueue Q //priority queue of trees

2 T =improveTree(T, V ′)
3 Q.enqueue(T) //intermediate trees are already in Q

4 WHILE TRUE DO
5 T ′ =relax(T, ε)
6 T ′ =improveTree’(T ′, V ′)
7 T =reweight(T ′)
8 IF Q.size>= k AND w(T) > Q.get(k) THEN
9 BREAK
10 END IF
11 Q.enqueue(T)
12 END WHILE

As shown in Algorithm 5, we artificially relax the weights of each loose path lp in
the current T by adding a tunable value ε > 0. We denote the tree with the relaxed
loose path weights by T ′. We use these artificial loose path weights as upper bounds
for the weights of new interconnecting paths between subtrees of the current tree T ′

that result from the removal of the corresponding loose path from T ′. Then, in line 6
of Algorithm 4, we call a modification of the method improveTree (see Algorithm 2)
on the input (T ′, V ′). This modification takes care that during the improvement of T ′

upon one of its loose paths lp the new interconnecting path is not the same as lp. Note
that this would always happen since the weight of lp was artificially increased, and in
the underlying graph G the path lp would still be the shortest path connecting the two
corresponding subtrees of T ′. For this purpose, we consider only interconnecting paths
that contain at least one node that is not contained in lp.

The method reweight (line 7) reweights the result of improveTree′. That is, the
weight of loose paths of T ′ which were also loose paths in the previous tree T is set
back to its original value.

ALGORITHM 5: relax(T, ε)
Input: Tree T ,

relaxation parameter ε > 0
Output: Tree T with relaxed weight
1 T ′ = T.copy()
2 FOR EACH lp ∈ LP (T ′)
3 w′(lp) = w(lp) + ε
4 END FOR
5 RETURN T ′

The next section gives experimental evidence of STAR’s quality and efficiency.

5.6. STAR: Experimental Evaluation 87

5.6 Experimental Evaluation
We compare the STAR algorithm with the most well-known algorithms for Steiner tree
approximation. The algorithm [104] was the first to achieve a 2-approximation of the
optimal Steiner tree. We refer to it as DNH (for “distance network heuristics”). The
second algorithm is DPBF [61], a dynamic programming approach which can compute
an optimal Steiner tree and performs best on a small number of terminals. The third
algorithm is BLINKS [82], which is the newest and experimentally best algorithm in
this field. The fourth algorithm is BANKS I [28] and its improved version BANKS II
[92], which are state-of-the-art algorithms for keyword proximity search over relational
data. We compared the algorithms both in terms of the quality of the returned results
and in terms of their performance.

All experiments were performed on a 1.8 GHz Pentium machine with 1 GB of main
memory and an Oracle Database (version 9.1) as the underlying persistent storage for
all on-disk experiments. All implementations are in Java.

In this study we focus on efficiency and the goodness of Steiner trees (i.e., their
weights). We do not consider the “semantic quality” or user perceived relevance of
results. This aspect is orthogonal to the algorithmic focus of this work.

5.6.1 Top-1 Comparison of STAR, DNH, DPBF, and BANKS
The goal of the DNH algorithm is to compute a good approximation to the optimal
Steiner tree for a given graph and given terminal nodes. The algorithm has an
approximation ratio of 2(1 − 1

n), where n is the number of terminal nodes. STAR,
by contrast, has an approximation ratio of 4 log(n)+ 4. BANKS I and BANKS II have
an approximation ratio of O(n). These bounds, however, are theoretical bounds for the
worst case. Therefore, we studied how the above algorithms perform in practice. To
compare to optimal tree weights, we also ran DPBF. To have comparable runtimes we
reimplemented DPBF in Java3.

DATASETS We use subsets of DBLP4 and IMDB5 for our experiments. DBLP
and IMDB can be viewed as graphs in which nodes represent entities (like author,
publication, conference, actor, movie, year, etc.), and edges represent relations (like
cited by, author of, acted in, etc.). Since the DNH and the DPBF algorithms are
designed to deal with graphs that can be completely loaded into main memory, we
extracted from DBLP a subgraph with 15,000 nodes and 150,000 edges (dataset
DBLP).

As the qualitative performance of the algorithms can be influenced by different
graph topologies, a second graph consisting of 30,000 nodes and 80,000 edges was
extracted from IMDB (dataset IMDB). Since the original DBLP and IMDB do not
provide any edge weights, we used random weights between 0 and 1 for both graphs.
Note that since these datasets do not have any kind of taxonomic backbone, STAR uses
its breadth-first heuristics for the initialization phase.

QUERIES We constructed three query sets with 3, 5 and 7 terminals, respectively. Each
query set consists of 60 queries with the same number of terminals. The terminals were
chosen randomly from the graph.

3The original C++ code was kindly provided to us by the authors of [61].
4Data downloadable from http://dblp.uni-trier.de/xml
5http://www.imdb.com/

88 5.6. STAR: Experimental Evaluation

METRICS We compare the weight of the top-1 tree returned by STAR (without
taxonomic information) with the weight of the tree returned by DNH, BANKS I, and
BANKS II on the basis of optimal scores returned by DPBF. We also measured the
running times of all algorithms.

Method # terminals avg. weight avg. runtime (ms)
STAR 3 0.61 604.2
DNH 0.7 5402.9
DPBF 0.58 33096.7

BANKS I 1.22 2096.3
BANKS II 1.81 3214.1

STAR 5 0.86 960.2
DNH 0.98 9166.7
DPBF 0.81 432361.5

BANKS I 1.87 3617.3
BANKS II 2.46 5797.5

STAR 7 1.12 1579.6
DNH 1.22 17430.9
DPBF ? ?

BANKS I 2.37 5945.5
BANKS II 3.42 9435.5

Table 4: Top-1 tree comparison on DBLP

Method # terminals avg. weight avg. runtime (ms)
STAR 3 3.42 1044.5
DNH 3.37 9110.1
DPBF 2.93 18014.7

BANKS I 3.85 7153.4
BANKS II 5.31 4153.2

STAR 5 4.35 1353.5
DNH 4.33 12912.7
DPBF 4.14 121863.3

BANKS I 5.52 9671.4
BANKS II 7.17 5429.1

STAR 7 5.31 1732.9
DNH 5.31 18317.3
DPBF ? ?

BANKS I 7.47 11681.8
BANKS II 9.12 6953.7

Table 5: Top-1 tree comparison on IMDB

RESULTS Table 4 shows the results of our experiments on DBLP. The best values
across the competitors are in boldface. Column 3 shows the average weight of
the result over the 60 queries in the query sets returned by each algorithm. The
average weight of the tree returned by the STAR algorithm is consistently below the
average weight of the tree returned by DNH (for the same number of terminals) and

5.6. STAR: Experimental Evaluation 89

also better than the scores returned by BANKS I and BANKS II. We validated the
statistical significance of the superiority of STAR using a t-test at level α = 0.05. In
particular, STAR returns better results than DNH for this practical case, even though
DNH has a better approximation ratio. Column 4 shows the average runtime of the
algorithms in milliseconds. STAR determines the top-1 tree much faster than all
its competitors. The dynamic programming approach of DPBF and the spreading
activation heuristics of BANKS II seem to be less adequate for the topology of the
DBLP subgraph. The question marks in row 13 of the table reflect the fact that
DPBF did not return a single result within 30 minutes. Table 5 shows that BANKS
II significantly improves its performance relatively to its competitors on the IMDB
subgraph, but is still outperformed by STAR.

Table 5 shows that for the IMDB subgraph, the scores of STAR and DNH lie very
close to each other. We hypothesize that the higher edge-to-node ratio of the DBLP
subgraph allows STAR to return clearly better scores than DNH on the DBLP subgraph.
In a denser graph STAR has more possibilities to improve the current tree.

5.6.2 Top-k comparison of STAR, BANKS, and BLINKS
Unlike the DNH algorithm, BANKS I, BANKS II and BLINKS can compute the top-
k results for a query – like the STAR algorithm. In this comparison we analyze the
top-k performance of BANKS I, BANKS II, BLINKS, and STAR. We used a Java
implementation of BLINKS that was kindly provided to us by the authors. BLINKS
uses indexes in order to speed up the query processing time. However, in order to build
these indexes and to subsequently use them during runtime, BLINKS requires the entire
graph in main memory. For this reason, we used again the DBLP and IMDB dataset
for the comparison. As for the partitioning strategy of BLINKS, we experimented with
different block sizes and chose a block size of 100 nodes for DBLP and a block size of
5 nodes for IMDB, since these block sizes gave the best results.

METRICS Since BLINKS uses a different weight metric (the match-distributive
semantics) and returns only the root nodes of the output trees, we could not compare
STAR and BLINKS by the weight of the output trees. Hence, our comparison with
BLINKS is only with respect to the runtime. For BANKS I, BANKS II and STAR we
also report the average scores of the output trees.

QUERIES We compared the algorithms for k = 10, k = 50 and k = 100 on the same
Steiner tree problem instances. For the comparison, we constructed for each dataset
(DBLP and IMDB) 60 random queries with five terminals each.

RESULTS We computed the average runtime and the average score for the retrieved
top-10, top-50 and top-100 results. Table 6 and Table 7 present the runtime
performance of STAR, BANKS I, BANKS II and BLINKS on the DBLP and IMDB
datasets, respectively. Note that in this comparison we have discounted the times
needed by BLINKS to construct the indexes. The results show that STAR outperforms
its competitors in all cases. It is interesting to see that BANKS II and BLINKS perform
better on the sparser IMDB graph. During search, BLINKS has to cope with a large
number of cursors resulting from a large number of partitions. Whenever BLINKS
reaches a portal p which belongs to multiple partitions, it has to construct a new cursor
for each partition in which p is a portal. In dense datasets, it is likely that a large number
of cursors are required to complete the query processing. The overhead of maintaining

90 5.6. STAR: Experimental Evaluation

these cursors adversely affects the overall performance. An indication for this is given
by the worse runtime performance of BLINKS on the DBLP dataset.

In contrast, STAR has to maintain only two iterators per improvement step.
Furthermore, these iterators do not visit nodes that have a distance from the source that
is higher than the upper bound given by the loose path to be replaced. The combination
of tight upper bounds to prune the exploration with low overhead in iterators allows
STAR to outperform BLINKS by a large margin.

Method top-k avg. weight avg. runtime (ms)
STAR top 10 1.57 1206.3

BANKS I 2.43 5851.8
BANKS II 3.78 7895.9
BLINKS n/a 19051.4

STAR top 50 2.23 3118.3
BANKS I 3.12 7335.1
BANKS II 5.31 8928.3
BLINKS n/a 21837.9

STAR top 100 3.01 4705.1
BANKS I 4.15 9640.8
BANKS II 6.81 11071.3
BLINKS n/a 24632.3

Table 6: Top-k tree comparison on DBLP

Method top-k avg. weight avg. runtime (ms)
STAR top 10 5.21 1587.2

BANKS I 6.13 10611.3
BANKS II 8.25 6619.4
BLINKS n/a 2848.97

STAR top 50 6.32 1936.8
BANKS I 7.21 12049.3
BANKS II 10.04 7892.2
BLINKS n/a 3708.6

STAR top 100 8.07 2503.2
BANKS I 9.92 13694.1
BANKS II 14.98 8873.3
BLINKS n/a 4917.7

Table 7: Top-k tree comparison on IMDB

5.6.3 Comparison of STAR and BANKS

Unlike DNH and BLINKS, BANKS and STAR can be directly applied to graphs that
do not fit into main memory. Since these kinds of scenarios are realistic for the Steiner
tree problem, we decided to simulate such a scenario by using a disk-resident dataset
for the comparison of BANKS and STAR.

5.6. STAR: Experimental Evaluation 91

3 terminals 6 terminals
top-1 STAR BANKS I BANKS II STAR BANKS I BANKS II

avg. score 0.22 0.260 0.234 0.337 0.385 0.368
avg. # acc. edges 6981 84171 81462 9559 372634 365004

avg. run time (ms) 12440.6 131313.6 104148.5 15733.1 391601.0 385401.5
top-3 STAR BANKS I BANKS II STAR BANKS I BANKS II

avg. score 0.428 0.488 0.454 1.085 1.193 1.255
avg. #acc. edges 18027 153078 132141 27085 460521 409414

Avg. run time (ms) 34814.7 190547.7 156535.3 41187.3 483328.4 427276.3
top-6 STAR BANKS I BANKS II STAR BANKS I BANKS II

avg. score 2.102 2.453 2.441 3.315 4.148 4.031
avg. # acc. edges 43474 159130 175045 76259 503054 491786

avg. run time (ms) 71058.2 197543.7 205359.6 91157.2 511811.0 491785.5

Table 8: YAGO: Quality of results and efficiency of STAR and BANKS

DATASET We chose the graph of the YAGO knowledge base [138]. It contains 1.7
million nodes and 14 million edges. Each edge corresponds to a fact in YAGO, and has
a confidence score between 0 and 1 associated with it. We converted these confidence
scores into distance measures. We store the graph in a relational database with the
simple schema

EDGE(source, target, weight).

YAGO contains a DAG-shaped taxonomy of type and subClassOf edges (see Figure
12), which is exploited by STAR in its first phase to construct the initial tree.

We implemented both BANKS I [28] and its improved version BANKS II [92]
in Java following their descriptions for main-memory procedures. Whenever the
algorithms explore a new edge, we loaded the edge from the database. This way,
BANKS and STAR were treated uniformly as far as the overhead for database calls is
concerned.

QUERIES We generated 2 sets of queries with 3 and 6 terminals each. Each query
set consisted of 30 queries with randomly chosen terminal nodes. We measured the
performance of the algorithms for the top-1, top-3 and top-6 results.

METRICS We measured both the quality of the output trees and the efficiency of the
algorithms. As for the quality of the trees, we report the average weight of the top-k
results. As for efficiency, we report the running times and also the number of edges
accessed during the query executions. There were several cases for which BANKS I
and BANKS II did not return a result within 30 minutes and we had to stop the process.
To be fair, we excluded these cases from our evaluation.

RESULTS Table 8 shows the results for the performance of STAR, BANKS I, and
BANKS II. Concerning the quality of the output trees, STAR returns better results
across all values for k and all sets of queries.

As for the efficiency of the algorithms, we note that STAR is an order of magnitude
faster than BANKS. This is also reflected directly in the number of edges accessed by
each algorithm: STAR accesses an order of magnitude fewer edges than its competitors.

92 5.7. STAR: Conclusion

This clearly shows the enormous gains that can be made by exploiting the taxonomic
structure of the tree to construct the initial result.

5.6.4 Summary of Results
We compared STAR to different state-of-the-art algorithms. Some of these algorithms
come with specific constraints: The DNH algorithm, for example can only handle
graphs that fit into main memory and can produce only top-1 results. BLINKS uses
indexes and a different metric and hence cannot give an approximation guarantee. To
be fair, it should be emphasized that some of these methods were designed with broader
goals beyond Steiner-tree-like relationship queries. Our comparison focuses on Steiner
tree computation and is fair by giving all methods the same inputs, operating conditions
and resources. In all experiments, STAR outperforms its competitors.

The reason for the efficient performance of STAR is three-fold: i) STAR uses the
taxonomic structure of the graph when possible to quickly return an initial result which
is then improved, ii) since STAR requires only two iterators per improvement step
(independent of the number of terminals), the cost for managing data structures remains
low throughout the search and generation process, and iii) STAR builds on efficient
search space exploration strategies and effective search space pruning heuristics.

5.7 Conclusion
This work has addressed the problem of efficiently answering relatedness queries over
entity-relation-style data graphs. The STAR algorithm can exploit taxonomic structures
that are inherent in many knowledge-base graphs (e.g., the isA hierarchy) for fast
computation of an initial seed solution. However, it does not depend on this option,
and can use other initializations as well. Its main power for efficiency and result
quality comes from a careful design that combines various search space exploration
and pruning heuristics with elaborate graph-theoretical analysis.

We proved that STAR achieves an O(log(n)) approximation for the optimal Steiner
tree, which is significantly better than the worst-case approximation quality given by
prior database methods [28, 92]. While the DNH method for in-memory graphs has
a much better worst-case approximation guarantee than STAR, our experiments give
evidence that STAR achieves at least the same result quality (Steiner tree weight) as
DNH and other database methods or better on practically relevant datasets.

The motivation for this database-algorithmic work has been to support graph-based
information retrieval and knowledge queries over large datasets in the spirit of NAGA
[98], where STAR closes a big efficiency-oriented gap. STAR has been implemented
as a query answering component of the NAGA system.

An interesting research direction would be the extension of STAR with partition-
and-indexing strategies in the realm of BLINKS. The extension of STAR to a GST
version for complex search patterns over richly annotated relationship-graphs is an
equally interesting research direction.

6.1. MING: Overview 93

Chapter 6

MING

“All men by nature desire knowledge.”

ARISTOTLE

6.1 Overview
Many modern applications are faced with the task of knowledge discovery in large ER
graphs, such as domain-specific knowledge bases or social networks. An important
building block of many knowledge discovery tasks is that of finding “close” relations
between k ≥ 2 given entities. We investigated this kind of knowledge discovery task
in the previous chapter. A more general knowledge discovery scenario on ER graphs
is that of mining an “informative” subgraph for k(≥ 2) given entities of interest (i.e.,
query entities). Intuitively, this would be a subgraph that can explain the relations
between the k given query entities. This knowledge discovery scenario is more general
than the one of the previous chapter in that its focus is on whole subgraphs (and not
only on trees). We are interested in measures that capture the human intuition of an
informative ER subgraph. An adequate measure should favor insightful and salient
relationships between the query entities.

In this chapter, we addresses this problem of mining informative ER subgraphs.
We define a framework for computing a new notion of informativeness of nodes.
This is used for defining the informativeness of entire ER subgraphs. We present
MING (Mining Informative Graphs), a principled and efficient method for extracting
an informative subgraph for k(≥ 2) given query entities. The viability of our approach
is demonstrated through experiments on real-life datasets, with comparisons to prior
work.

6.1.1 Motivation and Problem Statement

MOTIVATION ER graphs are abundant in the field of knowledge representation. They
come in different flavors and formats (i.e. represented through relational models, XML
with XLinks, or RDF triples) and cover various knowledge domains. Examples of
ER graphs are GeneOntology [5] or UMLS [14] (in the biomedical domain), SUMO
[121], OpenCyc [56], WordNet [16, 72], YAGO [137, 138, 136] (in the domain of

94 6.1. MING: Overview

general purpose knowledge bases), the ER graphs represented by IMDB (in the domain
of movies and actors), DBLP (in the domain of Computer Science publications), and
LOD [30] (for publishing interlinked Web data sets as RDF graphs), and many more.

Applications exploiting ER graphs are often faced with knowledge discovery
tasks. Frequent scenarios here are those that aim to find meaningful relations between
k(≥ 2) entities of interest. From a graph-theoretic point of view, the goal in such
scenarios would be to determine a subgraph that can explain the relations between
the k entities of interest. We will interchangeably refer to these entities as query
nodes or query entities. A related knowledge discovery task, namely that of finding
“close” connections between k(≥ 2) query entities, was investigated in the previous
chapter. In contrast to the previous chapter, where the focus was on subtrees that closely
interconnect the given query entities, the task considered in this chapter aims at finding
whole subgraphs that capture insightful relations between k(≥ 2) query entities.
Corresponding queries could ask for the relations between k given biomedical entities,
the connections between k criminals, the most relevant data shared by k Web 2.0 users,
etc. For large ER graphs, these queries become challenging from an algorithmic as
well as from a semantics viewpoint. The answer graphs should be computed efficiently,
and they should be insightful by exhibiting salient facts. This challenge calls on one
hand for adequate measures for capturing the semantic relatedness between the query
entities, and for robust and efficient solutions on the other hand.

PROBLEM STATEMENT Formally, the general problem that motivates this chapter
can be stated as follows: given a set Q = {q1, ..., qk}, k ≥ 2, of nodes of interest (i.e.,
query nodes) from an ER graph G and an integer b > k (representing a node budget),
find a connected subgraph S of G with at most b nodes that contains all query nodes
and maximizes an “informativeness” function ginfo(S, Q). Intuitively, for the given
node budget b, this would be the subgraph that best explains the relations between
the entities represented by the query nodes, in other words, this would be the most
informative subgraph. The above problem comes with two subproblems:

1. What is a good measure for capturing the informativeness of relations between
entities in ER graphs?

2. How to determine the most informative subgraph for the given query nodes
efficiently?

Consider an ER graph about prominent persons with rich information about their
careers, nationalities, interests, their birth and death dates, their prizes, etc. Note that
the YAGO knowledge base is an example of an ER graph with such information about
prominent persons. Figure 1 (in Chapter 2) depicts an excerpt from the YAGO graph.
Consider the query that asks for the relation between Max Planck, Albert Einstein,
and Niels Bohr. An informative subgraph that captures their relatedness should reveal
that all three of them are physicists, scientists, Nobel Prize winners, etc., and should
discourage long or obscure connections (e.g. connections through persons with same
nationalities or same birth or death places as some of the query entities). Figure 20
depicts a possible answer.

6.1. MING: Overview 95

Figure 20: Answer graph returned by MING on YAGO

PROBLEMS WITH PREVIOUS APPROCAHES In previous approaches [38, 69, 73,
106, 123, 139], the notion of subgraph importance is mainly based on structural
properties of the underlying graph (e.g. indegree or outdegree of a node, density or edge
connectivity1 of a subgraph, etc.). More related to our approach are techniques based
on influence propagation like [69] or [139]. The approach of [69] exploits a current-
flow-based algorithm and comes with an efficient two-phase solution for dealing with
disk-resident graphs, but it is restricted to two query nodes. The approach of [139],
CEPS, can handle more than two query nodes, and gives a random-walk-based solution
for retrieving the most “central” nodes, so called centerpieces2, with respect to the
query nodes, but cannot be applied to disk-resident graphs in a straight-forward manner.
In addition, all mentioned approaches leave aside the problem of deriving measures for
capturing the semantic importance of nodes and edges in ER graphs.

Other, Steiner-tree-based, approaches [20, 28, 61, 82, 85, 86, 92, 95] have
addressed the problem of retrieving the top-k minimum-cost subtrees that closely
interconnect the given query nodes. Their result paradigm is tree-based. Hence,
these approaches are not directly applicable to our problem of retrieving informative
subgraphs. The top-k result trees can be combined into a single subgraph that
interconnects the query nodes, but again, the underlying cost models are rather driven
by structural properties than by the semantic importance of nodes and edges. In fact,
the cost models are often modified for the sake of efficiency (see for example [82]).

In contrast, our approach gives an efficient solution for large, disk-resident ER
graphs, while making the semantic aspect of entities and relationships in ER graphs a
key ingredient for the measure of informativeness.

6.1.2 Related Work

There are various approaches which aim at identifying important subgraphs by
applying structural analysis, e.g., by identifying strongly connected, dense or frequent
subgraphs [73, 74, 75, 106, 107, 123], by emulating random walks, electrical circuits or
other influence propagation techniques [38, 69, 100, 139], by applying graph clustering
and partitioning [32, 60, 64, 151], by computing Steiner trees [20, 28, 61, 82, 85, 86, 92,
95], etc. To our surprise, the goodness measures for subgraphs in all these approaches
are guided by two main aspects: frequency of subgraph patterns, or structural properties
of subgraphs. However, for ER graphs, this is not sufficient, since (1) these graphs

1Size of the minimum cut in a graph.
2Term introduced in [139] to describe intermediate nodes that are closely connected to most of the query

nodes.

96 6.1. MING: Overview

are usually free of redundancy, which attenuates the frequency aspect, and (2) they
represent only a “biased” subset of the real world, which attenuates the structural
aspect. For example, an RDF database may contain a lot of facts about a special entity
X just because these facts were easy to extract. This does not mean that X is in general
more important than entities for which there are fewer facts in the database. This has
also been observed by Ramakrishnan et. al [128] who introduce a goodness measure
that goes beyond the mere structure- or frequency-based importance. However, they
too, infer this new measure directly from the ER graph. We strongly believe that a
goodness measure for ER subgraphs should exploit the information redundancy of the
domain from which the ER graph was derived. In the following, we discuss some
related approaches by focusing on the main characteristics of their goodness measures.

STEINER TREE DETECTION In contrast to the general graph-based result paradigm
of the work presented in this chapter, the result paradigm in this area is tree-based. The
goal is to find subtrees of the underlying graph that closely interconnect the given query
nodes. BANKS I [28] and BANKS II [92] use single-source-shortest-path iterators
which start from the query nodes and follow the directed edges of the graph backwards
(BANKS I), or backwards and forwards (BANKS II). A result tree is produced as
soon as the iterators meet. The goodness measures for their result trees are based on
indegrees and outdegrees of nodes as well as on edge weights. BLINKS [82] retrieves
result trees efficiently by means of subgraph partitioning and indexing. It builds on the
BANKS heuristics and uses a cost model that allows the combination of subresults that
were computed on different partitions. Finally, the goodness measures of STAR [95]
and DPBF [61] merely build on edge weights. While STAR uses a local search strategy
in combination with different search space exploration heuristics, DPBF exploits a
dynamic programming strategy.

COMMUNITY DETECTION In most of the community detection approaches, the
goodness measures for subgraphs build on structural properties. Gibson et al. [73]
address the emergence of communities in the Web graph. They exploit the HITS
algorithm [103, 102] to determine the top-k hubs and authorities for a given topic.
Usually, these hubs and authorities form a structurally dense and topic-specific core.
Kumar et al. [106] exploit the hypothesized correspondence between communities
and dense bipartite subgraphs to detect communities. Their algorithm is a two-step
process – a careful enumeration and removal of small-sized bipartite cliques, followed
by an apriori-style enumeration algorithm on the residual, hopefully smaller, graph.
[74] presents a recursive shingle-based algorithm3 which seeks clusters of similar Web
pages that tend to link to the same destinations. Apart from detecting patterns of
dense subgraphs, the algorithm can also recursively detect similarities between such
subgraphs.

GRAPH CLUSTERING AND PARTITIONING [151] exploits edge connectivity to
mine closed subgraphs4 in a set of ER graphs. Efficient methods for identifying
corresponding patterns are presented. SkyGraph [123] addresses the problem of
discovering the most important ER subgraphs, where the importance of a graph is
determined by its order (i.e., the number of nodes) and its edge connectivity. SkyGraph
uses successive applications of the Min-Cut algorithm [81] starting with the original

3Text mining method for estimating the similarity between Web pages by examining their feature overlap.
4A graph is closed if and only if there is no supergraph that has the same support (i.e., frequency).

6.1. MING: Overview 97

graph and proceeding with all produced subgraphs. Finally, a notion of subgraph
domination, introduced by the authors, leads to the most important ER subgraphs.

INFLUENCE PROPAGATION More related to our approach are techniques that build
on influence propagation. For a given ER graph, HubRank [38] precomputes and
indexes random walk fingerprints for a small fraction of nodes, carefully chosen using
query log statistics. At query time, the nodes with indexed fingerprints are exploited
to compute approximate personalized PageRank vectors for a query relevant subgraph.
In [69], Faloutsos et al. present an approach that emulates electrical circuits to retrieve
a subgraph that captures important relations between two given entity nodes. The
approach proceeds by determining a connected candidate subgraph C that contains
many important connections between the two query nodes. By applying +1 voltage
on one query node, the method determines (based on a current-flow measure) the
subgraph S of C that contains the most important interconnections between the two
query nodes. The approach is generalized in [139] by a method coined CEPS, which
can be applied to any number of query nodes. The problem addressed there is that of
finding centerpieces, i.e., intermediate nodes that are closely connected to most of the
nodes from a node set Q of query nodes. Based on random walks with restarts from
each of the query nodes, the k most central nodes with respect to Q are retrieved. The
method is extended to extract a connected subgraph, which, as reported, captures the
intuition about important relations between the nodes of Q. However, CEPS is not
applicable to disk-resident graphs in a straight-forward way.

In [128] the authors address the same problem as [69]. A current-flow-
based algorithm for subgraph generation is combined with different heuristics for
capturing the specificity and the selectivity of relations and entities (e.g., the entity
Theoretical Physicist is more specific than Physicist, accordingly a fact of the form
(Person, livesIn, City) is less selective than a fact of the form (Person, isMayorOf,
City)). However, all measures behind these heuristics are directly inferred from the
graph at hand. We argue that in practice, this is not sufficient, since ER graphs represent
only a limited fraction (usually restricted to certain domains) of the real world.

6.1.3 Contributions and Outline

This chapter addresses the problem of finding a subgraph that can explain the relations
between k(≥ 2) query nodes from an ER graph. We compute the most informative
subgraph in a two-phase approach, coined MING (Mining Informative Graphs), that
can efficiently deal with disk-resident ER graphs. In its first phase MING extracts
a connected candidate subgraph that contains many important connections between
the query nodes. In the second phase MING uses a random-walk-based learning
method to determine the most informative answer graph. Our main contributions are
the following:

• We give a clean notion of informativeness for nodes in ER graphs. Our
informativeness measure builds on a natural extension of the random surfer
model that underlies PageRank [33]. This measure is exploited to capture the
informativeness of entire ER subgraphs.

• We present MING, a robust and efficient method for mining and extracting most
informative subgraphs that best capture the relations between k(≥ 2) query
entities.

98 6.2. MING: ER-based Informativeness

• We demonstrate the viability of our approach in an extensive evaluation on real-
life datasets, based on user assessments and in comparison with state-of-the-art
extraction techniques for ER graphs.

The remainder of the chapter is organized as follows. Section 6.2 introduces the notion
of informativeness for ER graphs. Section 6.3 is dedicated to our subgraph mining
and extraction algorithms. We present the experimental evaluation of our approach in
Section 6.4, and conclude in Section 6.5.

6.2 ER-based Informativeness

OVERVIEW In this section, we will first introduce weights for the edges of the
underlying ER graph. These weights will be based on co-occurrence statistics for
entities and relationships; they will be derived from the domain represented by the ER
graph. Then, we will exploit the edge weights to compute IRank, a random-walk-based
measure for capturing the informativeness of nodes in ER graphs. Finally, we will show
how IRank can be extended to capture the informativeness of whole subgraphs.

BASICS Let G = (V, lEnt, ERel) be an ER graph. In Chapter 3 (Definition 1), we
introduced ER graphs as labeled multigraphs over finite sets of entity and relationship
labels, which we denoted by Ent and Rel respectively. According to that definition,
the labeled edges of G are ERel ⊆ lEnt(V)×Rel× lEnt(V), where lEnt : V → Ent
is an injective function. We refer by facts to the labeled edges of G. For example,
the edge (Max Planck, citizenOf, Germany) in Figure 20 represents a fact about the
entities Max Planck and Germany.

Since the direction of a relationship between two entities can always be interpreted
in the converse direction, we view the edges of an ER graph as bidirectional. That is,
we assume that for each edge (u, r, v) ∈ ERel there is an edge (v, r−, u) ∈ ERel,
where r− represents the inverse relation label of r.

DISCUSSION We believe that in order to compute the informativeness of a node in
an ER graph, the link structure has to be taken into account. On the other hand,
we are aware of the fact that the edges of an ER graph do not always entail a
“clear” endorsement. Consequently, measures that build on the link-based endorsement
hypotheses such as PageRank [33] or HITS [103, 102] are not always applicable to
ER graphs in a straight forward manner. For example, Consider an RDF database
about scientists that contains for each scientist only the name, the date of birth, and
the profession. Suppose that the facts (Albert Einstein, instanceOf, Physicist) and
(Bob Unknown, instanceOf, Physicist) are contained in this database. Now, consider
the respective edges in the corresponding ER graph. Since the link structure of scientist
nodes in this ER graph is determined by their schema, both Albert Einstein and
Bob Unknown will have the same link structure. Consequently, in this example, they
will be endorsed equally by the link structure. Furthermore, the direction of an edge
in an ER graph merely corresponds to the relationship label of that edge. Analogously,
the fact (Albert Einstein, instanceOf, Physicist) could be represented as (Physicist,
hasInstance, Albert Einstein). Hence, edge directions in an ER graph do not always
reflect a “clear” endorsement.

Our informativeness measure for nodes overcomes these problems by building on
edge weights that are based on co-occurrence statistics for entities and relationships.

6.2. MING: ER-based Informativeness 99

These statistics will guide a random walk process on the adjacency matrix of the ER
graph. We show in the next subsection how to compute them from the domain from
which the ER graph was derived.

6.2.1 Statistics-based Edge Weights
For each fact represented by an edge, we compute two weights; one for each direction
of the edge (note that we view edges as bidirectional). Each of these weights will
represent a special kind of endorsement, obtained from domain-based co-occurrence
statistics for entities and relationships.

DEFINITION 7: [Fact Pattern, Match, Binding]
Let X be a set of entity variables (placeholders for entities). A fact pattern from an
ER graph G = (V, lEnt, ERel) is a triple (α, β, γ) ∈ (Ent∪X)×Rel× (Ent∪X),
in which either α ∈ X or γ ∈ X , such that if α ∈ X then there is an edge (α′, β, γ)
in ERel, and if γ ∈ X then there is an edge (α, β, γ′) in ERel.

Without loss of generality, let α ∈ X . The edge (α′, β, γ) from G is called a match
to the fact pattern (α, β, γ), and the entity α′ is called a binding to the variable α.

Consider the fact pattern (x, instanceOf, Physicist), x ∈ X . The fact (Max Planck,
instanceOf, Physicist) is a match to this pattern. In general, there may be multiple
matches to a fact pattern. For example, the facts (Albert Einstein, instanceOf,
Physicist) and (Bob Unknown, instanceOf, Physicist) could be further matches to
the above fact pattern. However, as in the ranking framework of NAGA, not all
matches are equally informative. In our example, the fact (Albert Einstein, instanceOf,
Physicist) should have a higher informativeness than (Bob Unknown, instanceOf,
Physicist). More precisely, the binding Albert Einstein should be more informative
than Bob Unknown. To capture this notion of informativeness, we introduce a
probabilistic model.

Let (α, β, γ) be a fact pattern, where α ∈ X . Let α′ be a binding of α. We estimate
the informativeness of α′ given the relationship β and the entity γ as:

Pinfo(α′|β, γ) =
P (α′, β, γ)

P (β, γ)
≈ W (α′, β, γ)

W (β, γ)
(6.1)

where W (α′, β, γ) denotes the number of domain witnesses for the fact (α′, β, γ),
i.e., the number of occurrences of the fact (α′, β, γ) in the underlying domain of the
ER graph. Analogously, W (β, γ) stands for the number of witnesses for the pattern
(∗, β, γ), where the wild card ‘∗’ can be any entity. The value Pinfo(α′|β, γ) is

assigned as a weight to the edge γ
β→ α′.

We will discuss, at the end of this subsection, how W (α′, β, γ) and W (β, γ) can
be estimated in practice.

To see why this formulation captures the intuitive understanding of informativeness
for facts, consider the following examples. Let p =(Albert Einstein, instanceOf, x)
be a fact pattern, where x ∈ X . Let (Albert Einstein, instanceOf, Physicist) and
(Albert Einstein, instanceOf, Philosopher) be two respective matches (i.e., Physicist
and Philosopher are two bindings for x). Here, the statistics-based Pinfo value
measures how often Einstein is mentioned as a physicist as compared to how often
he is mentioned as a philosopher. Assuming that the underlying ER graph represents
a large subset of the Web knowledge (i.e., the domain is given by the Web content),

100 6.2. MING: ER-based Informativeness

(Albert Einstein, instanceOf, Physicist) is more informative than (Albert Einstein,
instanceOf, Philosopher), since there are more Web pages about Einstein as physicist.
In this case, the statistics-based Pinfo value measures the degree to which Einstein is a
physicist (or a philosopher, respectively).

Now consider the fact pattern p =(x, instanceOf, Physicist) and the matches
(Albert Einstein, instanceOf, Physicist) and (Bob Unknown, instanceOf, Physicist).
That is, Albert Einstein and Bob Unknown are two bindings for x. In this case, the
statistics-based Pinfo value will capture how often Einstein is mentioned as a physicist
as compared to how often Bob Unknown is mentioned as a physicist. Since Einstein is
an important individual among the physicists, (Albert Einstein, instanceOf, Physicist)
will have a higher informativeness than (Bob Unknown, instanceOf, Physicist).
Hence, in this case, Pinfo measures the importance of Einstein in the world of
physicists.

IMPLEMENTATION OF Pinfo WEIGHTS Consider the fact pattern (α, β, γ) with
α ∈ X . Let α′ be a binding of α. In order to estimate Pinfo(α′|β, γ) we need to
compute the numbers of witnesses W (α′, β, γ) and W (β, γ). In practice, for their
estimation one can use a “background corpus”, either a large Web sample, reflecting the
domain of the ER graph, or the entirety of Wikipedia texts. Note that implementation-
wise it is very difficult to identify all occurrences of (α′, β, γ) or the occurrences of
(β, γ), especially because the relationship label β can be expressed in non-trivial ways.
Hence, we need to estimate the number W (α′, β, γ) of witnesses for the fact (α′, β, γ)
in a more relaxed way. W (α′, β, γ) can be estimated as the number of documents
(or paragraphs, or sentences) in the background corpus in which α′ and γ co-occur.
W (β, γ) can be estimated analogously as the number of documents containing γ. With
these ingredients, we estimate Pinfo(α′|β, γ) as:

Pinfo(α′|β, γ) ≈ #docs(α′, γ)
#docs(γ)

(6.2)

where #docs(α′, γ) stands for the number of documents in the background corpus that
contain α′ and γ.

Although our estimation is oblivious to relationships, it captures the intuition
described above in the overwhelming majority of the cases. In our current
implementation, we have precomputed the co-occurrence statistics based on inverted
indexes on the Wikipedia corpus.

A seemingly simpler strategy would be to compute the co-occurrence statistics for
pairs of entity names based on the hits of a Web search engine. We tried this strategy
as well. It turns out that the major search engines have restrictions on the number of
sequential queries posed within a certain timeframe. One can increase the number of
allowed queries substantially by randomly waiting for 1 to 5 seconds before posing
the next query. This way, however, it would take several months to compute the co-
occurrence statistics for millions of facts.

6.2.2 IRank for Node-based Informativeness
Our aim is an informativeness measure for nodes based on random walks on the – now
weighted – ER graph. Our measure, coined IRank (Informativeness Rank), is related
to PageRank.

PageRank [33] computes the authority of Web pages based on the link structure of
the Web. In the PageRank model a random surfer walks through a directed Web graph

6.2. MING: ER-based Informativeness 101

G(V,E), where V is a finite set of nodes and E ⊆ V ×V is a finite set of edges. At any
node v ∈ V , the surfer may continue the walk by following an outgoing edge of v with
a probability inversely proportional to the out-degree of v. Alternatively, the surfer may
decide to restart the walk by jumping to any random node with a probability inversely
proportional to the number of nodes in G. Finally, the probability that the random
surfer is at a node v is given by:

PR(v) =
(1− q)
|V |

+ q
∑

v′→v

PR(v′)
O(v′)

(6.3)

where O(v′) stands for the number of the outgoing edges of v′, and q is a damping
factor, usually set to 0.85.

The PageRank model is based on the hypothesis that every ingoing link of a Web
page represents an endorsement of that Web page. However, as we have already
discussed, in ER graphs the link-based endorsement hypothesis does not always hold,
and consequently, methods like PageRank are not directly applicable.

Let G = (V, lEnt, ERel) be an ER graph. Let u ∈ lEnt(V) be an entity and let
P (u) be the probability of encountering the entity u in the domain from which G was
derived. This value can be estimated as:

P (u) ≈ W (u)∑
v∈Ent W (v)

(6.4)

where again W (u) denotes the number of occurrences of the entity u in the underlying
domain. P (u) can be viewed as an importance prior for u.

In IRank, the random surfer may decide to restart his walk from an entity u ∈
lEnt(V) with probability proportional to P (u). Alternatively, the surfer may reach u
from any neighboring entity v that occurs in an edge of the form (v, r, u) ∈ ERel (given
that the surfer is at one of these neighboring entities of u).

Let N(u) denote the set of neighboring entities of u in G. The probability of
reaching u via one of its neighbors would be proportional to:∑

v∈N(u)

∑
r

(v,r,u)∈ERel

Pinfo(u|r, v) · IR(v) (6.5)

where IR(v) denotes the probability that the surfer is at node v, and Pinfo(u|r, v) is
defined as in Equation (6.1).

Finally, the accumulated informativeness at a node u ∈ lEnt(V) is given by:

IR(u) = (1− q)P (u) + q
∑

v∈N(u)

∑
r

(v,r,u)∈ERel

Pinfo(u|r, v) · IR(v) (6.6)

For practical reasons, the outgoing edge weights (i.e., the Pinfo weights) for each
entity v are normalized by the sum of all outgoing edge weights of v. With this
normalization step, Equation (6.6) represents an aperiodic and irreducible finite-state
(i.e., an ergodic) Markov Chain. This guarantees the convergence and the stability of
IRank. Although IRank is related to PageRank, the Pinfo values are crucial and make
a big difference in the random walk process. In the next section, we will see that the
definition of informativeness, as given by IRank (i.e., Equation (6.6)), can be modified
to capture the informativeness of subgraphs that contain k(≥ 2) nodes of interest from
an ER graph G.

102 6.2. MING: ER-based Informativeness

6.2.3 Most Informative Subgraphs
In this section we give an overview of our approach for estimating the informativeness
of connected ER subgraphs that contain k(≥ 2) entities of interest.

DEFINITION 8: [ER Subgraph]
Let G = (V, lEnt, ERel) be an ER graph. A subgraph S of G is a multigraph S =
(V ′, lEnt, E

′
Rel), where V ′ ⊆ V , E′

Rel ⊆ ERel, and for every edge (α, β, γ) ∈ E′
Rel

there are nodes u, v ∈ V ′ with lEnt(u) = α and lEnt(v) = γ.
The subgraph S is connected if for every node u ∈ V ′ there is a node v ∈ V ′,

such that, for a relationship label r ∈ Rel,
(
lEnt(u), r, lEnt(v)

)
∈ E′

Rel or(
lEnt(v), r, lEnt(u)

)
∈ E′

Rel

In the following, for any subgraph S of an ER graph G, we will denote by Ent(S)
the set of its labeled nodes (i.e., entities), and by F (S) the set of its labeled edges
(i.e., facts). Note that F (S) contains edges of the form (α, β, γ), and that both α, γ ∈
Ent(S). We say a subgraph S contains an entity q if there is a labeled node q ∈
Ent(S).

Formally, the general problem that motivates the work presented in this chapter is
the following.

DEFINITION 9: [General Problem Definition]
Given: an ER graph G, a set Q = {q1, ..., qk}, k ≥ 2 of query entities, and an integer
node budget b > k.
Task: find a connected subgraph S of G with at most b nodes that contains all entities
from Q and maximizes an informativeness function ginfo(S, Q).

Intuitively, ginfo(S, Q) represents a local goodness function that increases in
regions of G which contain facts that nicely capture the relations between the query
entities, and decreases in regions whose facts do not contribute to the relatedness
between the query entities. Given this purely intuitive nature of ginfo, it is inherently
hard to define corresponding functions. In fact, as we will see later, our approach aims
to approximate an implicit ginfo by exploiting Equation (6.6), in order to mine the
most informative subgraph.

RECAPITULATION OF PREVIOUS APPROACHES A simpler version of the problem,
namely for two query entities, was first introduced in [69]. The authors present an
approach that emulates electrical circuits to retrieve the subgraph that best captures
the relations between two given entities. The approach proceeds by determining a
connected candidate subgraph C of G that contains many important interconnections
between the query nodes. Then, a current-flow-based method determines the subgraph
S of C that “best” connects the query nodes, i.e., the most important subgraph (with
respect to the underlying current-flow-based measure).

CEPS [139] allows any number of query nodes, and addresses the problem of
finding centerpieces, i.e., intermediate nodes that are closely connected to most of the
query nodes. Random surfers exercising random walks with restarts from each query
node help determining a subgraph S of G that captures the main relations between the
query nodes. While [69] can efficiently deal with disk-resident graphs, CEPS is not
directly applicable to them.

OUR APPROACH AT A GLANCE Following the strategy of [69], our approach, too,

6.2. MING: ER-based Informativeness 103

proceeds by generating a connected candidate subgraph C that contains all entities
from Q and many important interconnections between them. The focus in this
generation phase is on recall rather than on precision; that is, during this generation
phase, most of the spurious regions of the graph G are removed.

The next phase aims at mining the most informative subgraph S in the generated
candidate graph C that interconnects all entities from Q. Based on random walks
with restarts that build on Equation (6.6), we learn for each node v in Ent(C) two
scores: P+(v), representing an informativeness score for v with respect to the query
nodes, and P−(v), representing how uninformative v is. The label lab(v) ∈ {−,+}
of v is computed as lab(v) = arg maxl∈{−,+} Pl(v) (i.e., as the label indicated by the
maximum of the above two scores). That is, v is labeled + if P+(v) ≥ P−(v), and
− if P+(v) < P−(v). Finally, we determine a connected subgraph S of C with at
most b nodes, which are all labeled ‘+’. Our method is designed in such a way that it
guarantees the interconnection of the query nodes in the final result graph S.

Furthermore, our method has two main advantages: (1) it avoids the explicit
definition of an informativeness function ginfo, and (2) it avoids crude and non-
transparent thresholding on edge and node scores in the extraction phase. Note that
both methods described above (i.e., [69] and [139]) use thresholds on edge and node
scores for their mining process.

The main steps of our mining approach are the following:

1. As a first step, we apply the STAR algorithm from [95] to find a minimum-cost
tree T in the generated candidate graph C that interconnects all entities from
Q. In this step, the cost function for any subtree T of C that contains all query
entities is given by

∑
e∈F (T) d(e), where d(e) can be any distance function that

is inversely proportional to the connection strength between the two end nodes
of e. Apart from being very efficient, STAR comes with a nice approximation
guarantee, and experiments on real-life data sets have shown that the trees it
returns are minimal in the majority of the cases. Note that the tree T determined
in this step already represents a “close” relation between the entities in Q. This
tree also guarantees the interconnection of all query nodes in the final graph S.

2. In a second step, each node v ∈ Ent(T) is considered informative and is
assigned the label ‘+’. All the nodes on the “rim” of the candidate graph C, i.e.,
the nodes that do not contribute to any path that interconnects query entities, are
viewed as uninformative; they are assigned the label −. The main assumption in
this step is that T already captures some relatedness between the query entities.

3. Then, for each unlabeled node v ∈ Ent(C) and for each label l ∈ {−,+} we
estimate the probability Pl(v) that v is visited by a random walker who starts
at any node labeled l and ends up at any node labeled l. Again, we envision a
random walker who is guided by the Pinfo values (see Equation (6.1)). For each
node v ∈ Ent(C) we determine its label lab(v) = arg maxl∈{−,+} Pl(v).

4. Finally, we extract a connected subgraph S of C that contains T and has the
following properties:

• Every node in S is labeled ‘+’,

• S has at most b nodes,

• S maximizes
∑

v∈Ent(S) P+(v).

104 6.3. MING: The MING Algorithm

Note that since the initial tree T is part of the final subgraph S, it is guaranteed
that all query entities are interconnected in the final result.

In the following, we discuss the details of our approach.

6.3 The MING Algorithm
Our approach, MING, consists of two main phases. Given an ER graph G and k query
entities, in the first phase, MING generates a connected candidate subgraph C that
contains all entities from Q and many important interconnections between them. The
second phase consists in determining and extracting the most informative connected
subgraph S of C that interconnects the query entities.

6.3.1 First Phase: Candidate Subgraph Generation
Our generation algorithm for the candidate subgraph C is related to the one presented in
[69]. A high-level overview of our candidate generation method is given by Algorithm
6. The algorithm proceeds by applying a series of expansions starting from each node
representing a query entity qi ∈ Q. More precisely, with each query entity qi, we
associate a set of nodes Ex(qi), representing the set of already expanded nodes, and
a set Pe(qi) of pending nodes, representing seen but not yet expanded nodes (lines
1, 2). In the beginning, each set Ex(qi) contains only qi (line 1). Each set Pe(qi)
contains all neighboring entity nodes of qi in C. We denote this set by N(qi) (line 2).
In each step, one of the Ex(qi) is chosen to be expanded by the node v ∈ Pe(qi) that
is “best” connected (i.e., with respect to the Pinfo edge weights) to the nodes that are
already in Ex(qi) (lines 5,8). In contrast to the extraction algorithms from [69] and
[139], which use a best-first expansion strategy (i.e., in each expansion step, the most
promising node is expanded), we exploit a balanced expansion heuristics. That is, in
each step we choose the set Ex(qi) that has the lowest cardinality among the expanded
sets and expand it by the node v ∈ Pe(qi) that is “best” connected to the nodes from
Ex(qi) (lines 4,5). As shown in [82], this heuristics performs very well in practice and
has satisfactory bounds on the worst case performance.

ALGORITHM 6: candidateGeneration(Q,G)
Input: ER graph G,

set Q of query entities
Output: well-connected subgraph C that contains all entities from Q
1 Set Ex(qi) = {qi} //for all qi ∈ Q

2 Set Pe(qi) = N(qi) //for all qi ∈ Q

3 WHILE not stoppingCondition DO
4 q = arg minqj∈Q |Ex(qj)|
5 v = arg maxv∈Pe(q)

∑
u∈Ex(q) Pinfo(u|v) + Pinfo(v|u)

6 expand(v)
7 Pe(q) = Pe(q)\{v}
8 Ex(q) = Ex(q) ∪ {v}
9 Pe(q) = Pe(q) ∪ {u|u ∈ N(v), u /∈ Ex(q) ∪ Pe(q)}
10 END WHILE
11 RETURN connected subgraph C from

⋃
i(Ex(qi) ∪ Pe(qi))

6.3. MING: The MING Algorithm 105

The expansion strategy is guided by the Pinfo values, where Pinfo(u|v) is defined
as:

Pinfo(u|v) :=
∑

r
(u,r,v)∈F (G)

Pinfo(u|r, v) (6.7)

and Pinfo(u|r, v) is defined as in Equation (6.1). Pinfo(v|u) is defined analogously.
A newly expanded node v is moved from Pe(q) to Ex(q), and Pe(q) is updated

with the neighbors of v that have not yet been seen (lines 7-9).
In analogy to the algorithm in [69], the stopping condition puts limits on the number

of nodes in the intersection
⋂

i Ex(qi) of the expanded sets. Algorithm 6 generates a
candidate subgraph in O(|Q||Ent(G)|2) steps. Note that the subgraph extracted in this
phase typically contains only a few thousands of nodes and edges and can be easily
processed in main memory.

6.3.2 Second Phase: Mining the Most Informative ER Subgraph
Given the candidate subgraph C, we run the STAR algorithm [95] to determine a
subtree T of C that closely interconnects all entities from Q. Assuming that T already
captures some relatedness between the query entities, each node v ∈ Ent(T) is viewed
as informative, hence these nodes are assigned the label ‘+’. Nodes on the “rim”
of C that do not contribute to any connection between query entities are viewed as
uninformative. Consequently, they are assigned the labeled ‘−’.

DEFINITION 10: [Rim Nodes]
Let C be a connected subgraph of G that contains all entities from Q. A rim node of
C is a node that has degree one and does not represent any entity from Q.

Figure 21: Sample candidate subgraph C with query nodes q1, q2, q3.

Figure 21 depicts a sample candidate subgraph C. The black-colored nodes are
exactly the rim nodes of C. They are labeled ‘−’. The bold edges in C represent
the edges of the tree T returned by the STAR algorithm. The nodes of T (i.e., the
white-colored nodes) are labeled ‘+’. The remaining nodes of C (i.e., the gray-colored
nodes) remain without labels.

For each unlabeled node v ∈ Ent(C), we compute a score P−(v), representing
how uninformative v is, and a score P+(v), representing how informative v is with
respect to the query entities. We will see that in our approach these two scores are not
complementary. More precisely, a high P+(v) score for a node v does not necessarily
imply a low P−(v) score, and vice versa. In fact, we will be merely interested in the
maximum of these two scores.

In this setting, the informative subgraph mining problem can be stated as follows.

DEFINITION 11: [Informative Subgraph Mining]
Given: the connected candidate subgraph C that contains all query nodes
q1, ..., qk ∈ Q, k ≥ 2, and an integer node budget b ≥ |Ent(T)|.

106 6.3. MING: The MING Algorithm

Tasks:

1. Determine for each node v ∈ Ent(C) a label lab(v) ∈ {−,+} as lab(v) =
arg maxl∈{−,+} Pl(v).

2. Extract a connected subgraph S of C that contains T and has the following
properties: (1) every node v ∈ Ent(S) is labeled ‘+’, (2) S contains at most b
nodes, (3) S maximizes

∑
v∈Ent(S) P+(v).

Since we require that the tree T be a subgraph of S, we guarantee that all query
nodes are interconnected in the result graph. In addition, we will see in Section 6.4
that T also helps constructing result graphs in which all query nodes are similarly well
interconnected.

In the following, we present a classification algorithm for learning a label l ∈
{−,+} for each unlabeled node of C.

CLASSIFICATION ALGORITHM The intuition behind our classification method is
the following. Let l ∈ {−,+}. Consider all paths in C that connect any two nodes
labeled l and cross an unlabeled node v. The higher the number of such paths, the
higher the probability is that v is also labeled l. On the other hand, the longer these
paths are, the smaller the probability is that v is labeled l. In order to estimate Pl(v),
we need methods that capture and reward robust structural connectivity and discourage
long and loose connections.

Consider a random walker that starts at a node labeled l in C and finishes his
walk again at a node labeled l. For an unlabeled node v ∈ Ent(C), let Pl(v)
denote the probability that v is visited during this random walk. As depicted in
Figure 22, we estimate this probability as the composition of two probabilities P 1

l (v)
and P 2

l (v). P 1
l (v) represents the probability that the random walker starts at any l-

labeled node and reaches v. P 2
l (v) represents the probability that any l-labeled node is

reached when the random walker starts his walk at v. It is straightforward to see that
Pl(v) = P 1

l (v) · P 2
l (v).

Figure 22: Probability Pl composed of the probabilities P 1
l and P 2

l .

In order to estimate P 1
l (v), we extend IRank into a Random Walk with Restarts

(RWR) process. The reason for this is the following. In a random walk process
such as the one represented by PageRank or IRank (see Equation (6.6)), the steady-
state probabilities of nodes are independent of the initial probability distribution on the
nodes. Furthermore, long paths are not punished. In fact, long paths between nodes
do not play any role in the random walk process (or the steady-state probabilities).
This is different in an RWR process. There, nodes that are far away from the starting
nodes will be visited less frequently, because of the restart probability. Hence, long
connectivity paths are discouraged in a natural way. Furthermore, as reported in [140]
and [139], RWRs have very nice properties when it comes to capturing the structural
connectivity between nodes. They overcome several limitations of traditional graph
distance measures such as maximum flow, shortest paths, etc.

6.3. MING: The MING Algorithm 107

The idea behind our RWR process is the following. The walk starts at any l-labeled
node v and follows the outgoing edges of v with a probability that is proportional to
the edge weights (as edge weights on C we consider the Pinfo values from Equation
(6.1)). The probability that our walk follows the outgoing edges of nodes is dampened
by a factor q (damping factor). With probability (1 − q) the random walk restarts at
any node that is labeled l.

For each node v ∈ Ent(C), let

prl(v) =

{
1

#{v∈Ent(C);lab(v)=l} , lab(v) = l

0, otherwise

and let Rl := [prl(v)]v∈Ent(C) be the vector representing the restart probabilities. Note
that for each unlabeled node in C the restart probability is 0. Let P := [P 1

l (v)]v∈Ent(C)

denote the steady-state probability vector of an RWR starting at nodes labeled l. The
RWR is formally described by:

P = qÃW P + (1− q)Rl (6.8)

where ÃW is the column-normalized, weighted adjacency matrix of the ER graph.
Note that ÃW contains the normalized Pinfo values derived from the underlying
domain. More precisely, the position representing the adjacent entity nodes (u, v)
in ÃW is assigned the value Pinfo(v|u) normalized by the sum of all outgoing edge
weights of u, where Pinfo(v|u) is defined analogously to Equation (6.7).

Finally, the vector P can be computed by iterating the following equation until
convergence.

Ri+1 = qÃW Ri + (1− q)Rl (6.9)

where R0 is set to Rl. By applying this method once for each l ∈ {−,+}, we can
estimate for each unlabeled node v the probability P 1

l (v).

In order to compute P 2
l for an unlabeled node v, we could use the same RWR

technique. More precisely, we could run an RWR for every unlabeled node v and
compute P 2

l (v) as P 2
l (v) =

∑
u:lab(u)=l Pv(u), where Pv(u) would denote the

stationary probability of u as determined by the RWR starting at v. However, there
might be several hundreds of unlabeled nodes in C, and running an RWR for each of
the unlabeled nodes is highly inefficient in practice. Hence, we estimate the P 2

l in a
more relaxed but more efficient way.

Let u be an unlabeled node in C. The probability of having been at node u one step
before reaching any node v labeled l is given by:

P (u, 1) =
∑

v:lab(v)=l
v∈N(u)

Pinfo(v|u) (6.10)

where N(u) denotes the set of neighboring nodes of u in C.
Let L ⊆ Ent(C) denote the set of nodes labeled l in C. Now, one can recursively

define the probability that u is reached s > 1 steps before any node labeled l as:

P (u, s) =
∑

v∈Ent(C)\L

Pinfo(v|u) · P (v, s− 1) (6.11)

Intuitively, s represents the depth of the recursion.

108 6.4. MING: Experimental Evaluation

As shown in Algorithm 7, the above recursion can be computed in an iterative
manner in time O(|F (C)|).

ALGORITHM 7: p2lEstimation(C)
Input: ER subgraph C,
Output: estimated value of P 2

l (v) for all v ∈ Ent(C),
1 X := {v|lab(v) = l}
2 FOR EACH v ∈ X
3 P 2

l (v) = 1
|X|

4 END FOR
5 Y := ∅;U := Ent(C) \X
6 WHILE U is not empty DO
7 FOR EACH pair of adjacent nodes u, v with u ∈ U, v ∈ X
8 compute P 2

l (u) =
∑

v:v∈X Pinfo(v|u)P 2
l (v)

9 insert u into Y
10 END FOR
11 U := U \ Y
12 X := Y ;Y := ∅
13 END WHILE

In lines 1 - 4 of Algorithm 7, all nodes in X (which are exactly the nodes labeled
l) are assigned the same P 2

l value 1
|X| . The set U (line 5) contains in each iteration

(lines 6 - 13) all unlabeled nodes that have no P 2
l value. In each iteration, we exclude

from U (line 11) all nodes for which a P 2
l value was determined during the iteration

(represented by the set Y , line 5). At the end of each iteration, the set X is set to Y . In
lines 7 - 10, for each pair of adjacent nodes u, v with u ∈ U and v ∈ X we compute
P 2

l (u) (line 8). The algorithm terminates when the set U is empty.
At this point, each node v of C has for each l ∈ {−,+} a probability Pl(v) =

P 1
l (v) · P 2

l (v). The label of each node in v ∈ Ent(C) can now be easily determined
by lab(v) = arg maxl∈{−,+} Pl(v). Finally, the most informative subgraph of C is the
one that consists of all nodes v for which lab(v) = +. In case this subgraph has more
than b nodes, we successively remove from it the node v that does not belong to T and
has minimal P+(v). By the construction of our mining method, it is easy to see that S
fulfills the desired properties of Definition 11.

Although the special problem addressed in this section comes with two classes
of nodes (i.e., informative and uninformative nodes), our classification approach can
easily be generalized to more than two classes. One would have to compute the Pl(v)
probabilities as described above for each class label l. This way the subgraph that best
represents a certain class of nodes could be retrieved.

6.4 Experimental Evaluation

For the evaluation of MING we focused on two aspects: (1) extraction efficiency, and
(2) quality of the mined subgraphs. In this section, we will present performance results
of MING in comparison with the state-of-the-art approaches FSD (for Fast Subgraph
Discovery) [69] and CEPS [139].

6.4. MING: Experimental Evaluation 109

COMPETITORS In its first phase, FSD efficiently extracts a connected candidate
subgraph C that contains many important connections between the query nodes. The
candidate generation algorithm applies a series of expansions starting from the query
nodes. The expansions follow a best-first strategy and stop when a stopping condition
is fulfilled. In a second phase, a final answer graph S is mined from C. This is done by
means of a current-flow-based algorithm. In contrast, the more recent approach, CEPS,
extracts the most important subgraph S (that captures the main relations between the
query nodes) directly from G by determining the most central nodes of G with respect
to the query nodes. This is done by applying an RWR from each query node. For each
node, the stationary probabilities from each RWR are multiplied to a final node score.
The top-k nodes with highest scores constitute the central nodes (i.e., the centerpieces).
To extract the final subgraph S from G, the authors propose an extraction algorithm that
generalizes the candidate generation algorithm of FSD for more than two query nodes.
While the first phase of MING pursues the same goal as the first phase of FSD, the
second phase of MING is rather related to CEPS. All methods are implemented in
Java.

EVALUATION ASPECTS As for the efficiency aspect, we have evaluated the
performance of MING on the task of extracting the candidate subgraph C. Therefor,
we have compared the running times of our candidate subgraph generation method
(represented by Algorithm 6) with the running times of a generalized FSD that works
for more than two query nodes. In a second set of experiments, we have evaluated
the running time of MING on the task of determining the most informative subgraph
S from C. Here, we have compared the mining efficiency of MING with the mining
efficiency of CEPS (for same candidate subgraphs C). All efficiency experiments were
performed on a 2 GHz Pentium machine with 2 GB of main memory and an Oracle
Database (version 9.1) as the underlying persistent storage.

As for the quality aspect, we have conducted an extensive user evaluation to asses
the informativeness (i.e., the intuitive understanding of relatedness between given
query entities) of result graphs returned by MING and CEPS.

DATA SETS As data sets we have used YAGO [137, 138, 136] and DBLP. The
ER graph given by the latest version of YAGO contains more than 2 million
nodes (i.e., entities) and 20 million edges (i.e., facts). YAGO combines facts
extracted from Wikipedia with facts from WordNet [72]. It supports more than 100
interesting relationship labels (e.g., hasChild, hasWonPrize, hasAcademicAdvisor,
graduatedFrom, bornIn, bornOnDate, marriedTo, actedIn, etc.), and knows the majority
of the entities known to Wikipedia.

From the latest XML version of DBLP we extracted an ER graph consisting of
2 million nodes (representing authors, publications, publication types, conferences,
and journals) and 9 million edges with relationship labels that describe important
information about publications and authors (such as, hasAuthor, appearedIn,
publishedInYear, coAuthorOf, and hasPublicationType). Apart from being sparser
than the YAGO graph, the DBLP graph is also in terms of entities and relationship
labels much less diverse.

Both ER graphs (i.e., the YAGO graph and the DBLP graph) are stored in a
relational database with the simple schema

EDGE(E1, relation, E2, P infoE1E2, P infoE2E1),

110 6.4. MING: Experimental Evaluation

where E1, E2 are entity names and PinfoEiEj is a score approximating the value
Pinfo(Ej |relation,Ei) given by Equation (6.1). For YAGO these scores were
estimated by means of co-occurrence statistics for entities. These statistics were
directly derived from the Wikipedia corpus as described in Subsection 6.2.1.

For DBLP on the other hand, it is very difficult to find an adequate domain from
which co-occurrence statistics can be derived. Hence, for the DBLP facts we assume
uniform Pinfo values.

6.4.1 Efficiency

The runtime of FSD and MING is clearly dominated by the candidate subgraph
extraction task. For our comparison we used two query sets, one for DBLP and one for
YAGO. Each set contained 30 randomly generated queries, where each query consisted
of 3 entities. For both query sets, the average runtime of FSD was compared with the
average runtime of our candidate extraction method. Both methods were evaluated for
each query, based on the same stopping condition (see Algorithm 6). Additionally,
both methods were treated uniformly as far as the overhead for database calls is
concerned. The results are presented in Figure 23. The candidate generation method
of MING clearly outperforms FSD’s generation method. On average, MING generates
a candidate subgraph in less than 10 seconds and is at least 5 times faster than FSD
on both datasets. It is important to note that this runtime difference has considerable
consequences for the user-perceived response time. While the perceived response time
of MING is acceptable, the perceived response time of FSD is unsatisfactory.

The better runtimes of the methods on the YAGO graph can be explained through
the denser structure of YAGO.

Figure 23: Avg. extraction runtimes for FSD and MING.

In a second experiment, we evaluated the performance of CEPS and MING on the
task of mining the final answer graph from a given candidate subgraph. For each of the
graphs (YAGO and DBLP), we randomly generated query sets of queries with 3,4,5,
and 6 query nodes. Each set contained 15 queries, resulting in 60 queries per graph.
For each candidate subgraph C generated by MING for each query, we measured the
average time needed by MING and CEPS to mine the final subgraph S. The results
are presented in Figures 24 and 25. The good runtime of CEPS for three query nodes
reflects the fact that MING uses a more intricate mining technique. MING applies
the STAR algorithm and two RWRs on the candidate subgraph (one from the nodes
of the tree T that interconnects the query nodes in C, and one from the rim nodes of
C). Although CEPS runs one RWR per query node, in the case of three query nodes
the running times are comparable. However, as the number of query nodes increases,
MING clearly outperforms CEPS. Note that the runtime of MING in this phase is
negligible when compared to the runtime for the extraction of the candidate subgraph.

6.4. MING: Experimental Evaluation 111

Nevertheless, Figures 24 and 25 indicate the superiority of our mining method over
CEPS in this phase. The worse runtimes of both methods on the DBLP graph can be
explained by the fact that the subgraphs extracted from DBLP are of a higher order
than the subgraphs extracted from YAGO. This leads to higher runtimes for the RWR
computations.

Figure 24: Avg. mining times for CEPS and MING on subgraphs from DBLP.

Figure 25: Avg. mining times for CEPS and MING on subgraphs from YAGO.

6.4.2 Quality

In order to evaluate the quality of returned subgraphs, we conducted a user evaluation.
The result graphs of MING and CEPS were shown to human judges who had to decide
which of the subgraphs better captured the intuition of relatedness for given query
entities.

QUERIES In general, it is quite difficult for users to decide whether an ER graph
that interconnects a given set of query entities is informative. The reason for this is
threefold: (1) informativeness is an intuitive and also subjective notion, (2) a user’s
intuition has to be supported by the data in the underlying ER graph, and (3) a user
needs to have very broad knowledge to assess the informativeness of a result graph for
any set of given query nodes (especially when the query nodes represent rather obscure
entities). Therefore, for this evaluation, we generated queries in which the query nodes
represented famous individuals. Thanks to Wikipedia, YAGO is very rich in terms of
famous individuals and contains plenty of interesting facts about them. In order to
generate our queries, we extracted from the Wikipedia lists, a list of famous physicists,
a list of famous philosophers, and a list of famous actors. From each of these lists
we randomly generated 20 queries, each of them consisting of 2 to 3 query entities,

112 6.4. MING: Experimental Evaluation

resulting in a set of 60 queries in total. The queries are presented in the appendix.

COMPARISON As ER graph for the user evaluation we chose the YAGO graph. The
diversity of YAGO makes it simpler for users to assess whether a result graph captures
the intuitive notion of informativeness or not. For each of the 60 queries above, we
presented the results produced by CEPS and MING to human judges on a graph-
visualization Web interface, without telling them which method produced which graph.
Note that none of the judges was familiar with the project. In the visualization interface,
we used the same visualization features for both methods. For visualization purposes,
the result graphs of CEPS and MING were pruned, whenever they had more than 15
nodes. By restricting the result graphs to such a small number of nodes, both methods
were challenged to maintain only the most important nodes in the result graphs. CEPS
comes with its own pruning parameter (i.e., visualization parameter). For each query,
the users were given the possibility to decide which of the presented subgraphs they
perceived as more informative. That is, one of the results could be marked informative.
We also allowed users to mark both result graphs as informative, if they perceived
them both as equally informative. Additionally, the results of both methods could be
left unmarked, meaning that they both did not suit the user’s intuition. The results are
presented in Table 9.

MING CEPS

times preferred over competitor 182 4
times marked informative 185 7
times both marked informative 3
times both left unmarked 21

Table 9: Results of the user evaluation

RESULTS There were 210 assessments in total, corresponding to more than 3
assessments per query. The result graphs produced by MING were marked 185 times
as informative, and out of these, 182 times, they were perceived more informative than
the results produced by CEPS. On the other hand, the MING results were left 25 times
unmarked, and out of these, only 4 times they were perceived to be less informative
than the results produced by CEPS. The results of both methods were perceived in 3
cases as equally informative, and in 21 cases equally uninformative.

The fundamental factor for the qualitative superiority of MING is its subgraph
learning method. It learns informative and structurally robust paths between the
nodes of an initial tree T that closely interconnects the query nodes. For this, it
exploits random walks with restarts guided by co-occurrence statistics derived from
the underlying domain. To illustrate the main difference between CEPS and MING,
we depict in Figure 26 the answers produced by MING and CEPS for the query that
asks for the relations between the Jessica Lange, Robert Redford, and Sally Field. In
this example, the result graphs were both restricted to 8 nodes. Note that restricting the
result graphs to such a small number of nodes, forces both methods to maintain only
the most important nodes in their results (i.e., the nodes with the highest scores). The
result graph of MING (the uppermost graph in Figure 26) has identified the path that
connects Sally Field and Jessica Lange through the Academy Award as informative.
Furthermore, it has also identified the path that connects Sally Field and Robert

6.5. MING: Conclusion 113

Redford through the node labeled “Californian actor” as informative. These are both
findings that are missed by CEPS.

As observed in our experiments, one of the shortcomings of CEPS is that the quality
of its result graphs degrades if some of the query nodes occur in dense regions of
the underlying ER graph. In this case, the result graphs become skewed towards the
denser regions, especially when the number of result nodes is restricted to a small
number. The node representing Robert Redford occurs in a dense region of the YAGO
graph, reflecting the fact that Robert Redford has acted in several movies that were
produced or directed by him. Consequently, a considerable amount of the RWR starting
from this node is absorbed by this region. This leads to a skewed result graph that
overemphasizes facts on individual query entities and misses salient relations between
the entities. MING, on the other hand, avoids skewed result graphs by running an
RWR from the nodes of the tree returned by the STAR algorithm. In our example, the
node labeled “American film actor” is part of this tree, and contributes equally to the
informativeness of nodes in the neighborhood as the query nodes. This way, MING
manages to capture the informative relations that Robert Redford and Sally Field are
from California, that Jessica Lange and Sally Field are both Academy Award winners,
and that all three actors are alive.

These results fortify our assumption that MING indeed captures the intuitive notion
of informativeness, as described in this paper, in most of the cases.

Figure 26: Answer graphs produced by MING (above) and CEPS (below).

6.5 Conclusion
The motivation for this work has been to provide new techniques for exploring and
discovering knowledge in large entity-relationship graphs. The presented method,

114 6.5. MING: Conclusion

MING, is a significant step forward in this realm. It contributes to new semantic
measures for the relatedness between entities. MING exploits such measures for
extracting informative subgraphs that connect two or more given entities. Our
experimental studies have shown that MING is not only more efficient than prior
approaches to this problem, but also produces outputs that are considered more
informative by end-users.

A promising research direction is the integration of user interests and background
knowledge into the knowledge discovery process. Social network applications dealing
with user-oriented recommendation could widely profit from this challenging but
exciting direction.

7. Conclusion 115

Chapter 7

Conclusion

This thesis has presented techniques for querying, exploring and discovering
knowledge in large knowledge bases that organize information as ER graphs. With
NAGA we have provided a new framework for systems aiming at expressive search
and ranking capabilities with entities and relationships. The two presented techniques
STAR and MING contribute to more advanced forms of knowledge discovery on graph-
structured data.

We are witnessing a strong momentum in knowledge-sharing communities,
knowledge-base development, social networks and interoperability across different
networks, integration of different kinds of biological networks, and other exciting
trends towards a richer knowledge society. Thus, we believe that our work fills an
important need.

There are various ways to extend the work presented in this thesis. The NAGA
system could be extended into a full-fledged question answering system. For this, a
natural-language-processing and pattern-matching component would have to be added
on top of NAGA’s query answering component. The translation of natural language
questions into formal, graph-based queries is certainly challenging, but with NAGA’s
rich query model we already have a cornerstone for accomplishing this goal.

NAGA’s framework and its techniques could be extended to better capture the
context of the user and the data. User context requires personalized and task-specific
search, ranking, and knowledge discovery techniques. These techniques should
consider the user’s interests and background knowledge, as well as the current location,
time, short-term history, and intentions in the user’s digital traces. Data context calls
for search and ranking models that can deal with complex entity-relationship patterns
beyond simple facts (edges between entities)1.

Evaluating complex query predicates over large ER graphs is computationally hard,
especially when ranking is needed. One should aim at efficient top-k techniques that
avoid materializing overly large numbers of results.

The envisioned path towards Web-scale knowledge bases with efficient and
expressive search, ranking, and knowledge discovery capabilities may take a long
time to mature. In any case, it is an exciting challenge that should appeal to and
benefit from several research communities such as Databases, Information Retrieval,
Information Extraction, Natural Language Processing, Social and Semantic Web,
Artificial Intelligence, and many more.

1More complex patters are for example facts holding between facts (e.g., fact A is older than fact B)

116 7. Conclusion

8.1. Appendix: Queries for the User Evaluation of NAGA 117

Chapter 8

Appendix
8.1 Queries for the User Evaluation of NAGA
For the user evaluation of NAGA, we determined 55 questions from the question
answering datasets of TREC 2005 and TREC 2006 that could be expressed by NAGA
relations. The questions are shown below.

1. When was George Foreman born? (George Foreman, bornOnDate, $z)
2. When was Kurosawa born? (Kurosawa, bornOnDate, $z)
3. What was Kurosawa’s profession? (Kurosawa, type subClassOf, $z)
4. What was the profession Kurosawa’s wife? (Kurosawa, isMarriedTo, $y) ($y, type subClassOf, $z)
5. What were some of Kurosawa’s Japanese (Kurosawa, directed|produced|created, $z)

film titles?
6. What was Kurosawa’s English nickname? ($z, means, Kurosawa)
7. Name some movies that starred Paul Newman? (Paul Newman, actedIn, $x)
8. Provide a list of names or identifications ($y, isa, meteorite)

given to meteorites?
9. When was the American Legion founded? (American Legion, establishedOnDate, $z)
10. When was Enrico Fermi born? (Enrico Fermi, bornOnDate, $z)
11. When did Enrico Fermi die? (Enrico Fermi, diedOnDate, $z)
12. What was the vocation of Rachel Carson? (Rachel Carson, type subClassOf, $z)
13. What books did Rachel Carson write? (Rachel Carson, wrote|created, $z)
14. When did Rachel Carson die? (Rachel Carson, diedOnDate, $z)
15. Of what country is Vicente Fox president? (Vicente Fox, politicianOf, $z)
16. When was Vicente Fox born? (Vicente Fox, bornOnDate, $z)
17. What is OPEC? (OPEC, type subClassOf, $z)
18. What is NATO? (NATO, type subClassOf, $z)
19. When was Rocky Marciano born? (Rocky Marciano, bornOnDate, $z)
20. List the record titles by Counting Crows. (Counting Crows, created, $z)
21. When was Woody Guthrie born? (Woody Guthrie, bornOnDate, $z)
22. What year did Woody Guthrie die? (Woody Guthrie, diedOnDate, $z)
23. What was the profession of Bing Crosby? (Bing Crosby, type subClassOf, $z)
24. What movies did Bing Crosby act in? (Bing Crosby, actedIn, $z)
25. What were some of Paul Revere’s occupations? (Paul Revere, type subClassOf, $z)
26. When was Paul Revere born? (Paul Revere, bornOnDate, $z)
27. When did Paul Revere die? (Paul Revere, diedOnDate, $z)
28. List various occupations of Jesse Ventura. (Jesse Ventura, type subClassOf, $z)

Table 10: Questions from TREC 2005

118 8.1. Appendix: Queries for the User Evaluation of NAGA

1. What is LPGA? (LPGA, type subClassOf, $z)
2. In what year was Warren Moon born? (Warren Moon, bornOnDate, $z)
3. In what country is Luxor? (Luxor, locatedIn*, $z) ($z, type, country)
4. When was NASCAR founded? (NASCAR, establishedOnDate, $z)
5. When was Mozart born? (Mozart, bornOnDate, $z)
6. What is IMF? (IMF, type subClassOf, $z)
7. What movies did Judi Dench play in? (Judi Dench, actedIn, $z)
8. In what county was Stonehenge built? (Stonehenge, locatedIn*, $z)
9. Which movies did Hedy Lamarr appear in? (Hedy Lamarr, actedIn, $z)
10. What did Hedy Lamarr invent? (Hedy Lamarr, discovered, $z)
11. What is ETA? (ETA, type subClassOf, $x)
12. In what state is Johnstown? (Johnstown, locatedIn, $z)
13. Where was Shakespeare born? (Shakespeare, bornIn, $z) ($z, locatedIn*, $y)
14. When was Shakespeare born? (Shakespeare, bornOnDate, $z)
15. When was Hitchcock born? (Hitchcock, bornOnDate, $z)
16. What movies did Meg Ryan star in? (Meg Ryan, actedIn, $z)
17. Who was Meg Ryan married to? (Meg Ryan, marriedTo, $z)
18. What government position did Janet Reno have (Janet Reno, type subClassOf, $z)
19. In which movies did Frank Sinatra appear? (Frank Sinatra, actedIn, $z)
20. What year was Wal-Mart founded? (Wal-Mart, establishedOnDate, $z)
21. What are the titles of songs written by John Prine? (John Prine, created|wrote, $z)
22. Who was Carolyn Bessette-Kennedy married to? (Carolyn Bessette-Kennedy, isMarriedTo, $z)
23. What songs did Patsy Cline record? (Patsy Cline, created, $z)
24. Where was Cole Porter born? (Cole Porter, bornIn, $z) ($z, locatedIn*, $y)
25. Name supporting actors who performed in Cheers. ($z, actedIn, Cheers)
26. What year was Heinz Ketchup introduced? (”Heinz Ketchup”, establishedOnDate, $x)
27. What abbreviation is the International Rowing ($x, means, International Rowing Federation)

Federation also known by?

Table 11: Questions from TREC 2006

12 questions were obtained from the work on SphereSearch [77], where a set of 50
natural language questions is provided. Again, we determined those questions that can
be expressed with NAGA relations.

1. What is the given name of the politician Rice? (Rice, familyNameOf, $y) ($y, isa, politician)
($z, givenNameOf, $y)

2. List movies directed by Madonna’s husband. ($x, isMarriedTo, Madonna) ($x, directed, $y)
3. List French mathematicians of the 18th century. ($x, type, french mathematician) ($x, bornOnDate, $y)

($y, before, ’1800-00-00’) ($y, after, ’1700-00-00’)
4. Which composers have been composing in the ($y, isa, composer) ($y, bornOnDate, $x)

first half of the 18th Century? ($x, after, ’1700-00-00’) ($x, before, ’1750-00-00’)
5. List Russian composers. ($x, type, russian composer)
6. Which governor acted in a science fiction movie? ($x, type, science fiction film) ($y, actedIn, $x)

($y, isa, governor)
7. In which movies did a governor act? ($y, isa, governor) ($y, actedIn, $z)
8. Which Australian singer acted in “Moulin Rouge”? ($x, actedIn, “Moulin Rouge”) ($x, isa, singer)

($x, (isCitizenOf|livesIn|bornIn)locatedIn*, Australia)

Table 12: SSearch Questions

8.2. Appendix: MING Queries for the User Evaluation 119

9. List German physicists of the 20th century who ($x, type, german physicist)
immigrated to U.S. ($x, livesIn|isCitizenOf, United States)

($x, bornOnDate, $y)
($y, after, ’1870-00-00’) ($y, before, ’1970-00-00’)

10. List physicists of the 20th century who won the ($x, type, physicist) ($x, bornOnDate, $y)
Nobel Prize. ($y, after, ’1870-00-00’)

($y, before, ’1970-00-00’)
($x, hasWonPrize, Nobel Prize in Physics)

11. List organizations were involved in the ($x, type, organization)
Watergate scandal. ($x, context, Watergate scandal)

12. Which movies starred a James-Bond actor? ($x, type, James Bond film) ($y, actedIn, $x)
($x, actedIn, $z)

Table 13: SSearch Questions

We also constructed 18 natural language questions that can be translated into regular-
expression queries.

1. Which person by the name of Curie has won a prize? (“Curie”, familyNameOf hasWonPrize, $x)
2. Who was Pulitzer and what was his profession? (“Pulitzer”, familyNameOf type subClassOf*, $x)
3. List actors, directors or producers of James-Bond films. ($x, type, James Bond film)

($x, actedIn|produced|directed, $y)
4. List movies starring an actress called Julia? (Julia, givenNameOf actedIn, $x)
5. Who produced or directed “Around the world in 80 days”? ($x, produced|directed, “Around the world in 80 days”)
6. List movies directed by or starring an actor named Douglas. (“Douglas”, (givenNameOf|familyNameOf)

(actedIn|directed), $x)

7. List movies in which Willis was involved. (“Willis”, familyNameOf (actedIn|directed|produced), $x)
8. Where is the Rebmann Glacier located? (Rebmann Glacier, locatedIn*, $x)
9. List some lakes located in Africa. ($x, isa, lake) ($x, locatedIn*, Africa)
10. What connects Max Planck and Richard Feynman? (Max Planck, connect, Richard Feynman)
11. What do Niels Bohr and Albert Einstein have in common? (Niels Bohr, connect, Albert Einstein)
12. What connects John Gotti and Al Capone? (John Gotti, connect, Al Capone)
13. What connects Indira Gandhi and Margaret Thatcher? (Indira Gandhi, connect, Margaret Thatcher)
14 What connects the musicians Michael Jackson and Prince? (Michael Jackson, connect, Prince (musician))
15. What connects the Hudson River and Black River? (“Hudson River”, connect, “Black River”)
16. What do Albania and Greece have in common? (Albania, connect, Greece)
17. What connects Paris and Athens? (Paris, connect, Athens)
18. What connect Saint Helena and the Cayman Islands? (Saint Helena, connect, Cayman Islands)

Table 14: OWN Questions

8.2 MING Queries for the User Evaluation
In order to generate queries for the user evaluation, we extracted from the Wikipedia
lists, a list of famous physicists, a list of famous philosophers, and a list of famous
actors. From each of these lists we randomly generated 20 queries, each of them
consisting of 2 to 3 query entities, resulting in a set of 60 queries in total. The queries
are presented in the following.

120 8.2. Appendix: MING Queries for the User Evaluation

1. Paul Dirac — Enrico Fermi — Max Born

2. Max Planck — James Clerk Maxwell — Niels Bohr

3. Richard Feynman — Michael Faraday — Ernest Rutherford

4. Louis de Broglie — Max Born — Michael Faraday

5. Niels Bohr — Ernest Rutherford — Max Born

6. Isaac Newton — James Clerk Maxwell — Werner Heisenberg

7. James Clerk Maxwell — Niels Bohr — Stephen Hawking

8. Werner Heisenberg — Enrico Fermi — Paul Dirac

9. Max Planck — Werner Heisenberg — Enrico Fermi

10. Niels Bohr — Michael Faraday — Max Born

11. Edwin Hubble — Albert Einstein

12. Stephen Hawking — Johannes Kepler

13. Werner Heisenberg — Nicolaus Copernicus

14. Ernest Rutherford — Blaise Pascal

15. Hideki Yukawa — Max Planck

16. James Clerk Maxwell — Hideki Yukawa

17. Albert Einstein — Wolfgang Pauli

18. Ernest Rutherford — Johannes Kepler

19. Ludwig Boltzmann — Richard Feynman

20. Isaac Newton — Edmond Halley

21. Val Kilmer — Kristin Davis — Josh Hartnett

22. Pam Grier — Matt Damon — Sharon Stone

23. Tom Sizemore — Al Pacino — Jennifer Garner

24. Harrison Ford — Robert Redford — Sally Field

25. Sandra Bullock — Jennifer Aniston — Kevin Spacey

26. Michael Douglas — Billy Bob Thornton — Kim Delaney

27. Sigourney Weaver — Winona Ryder — Michael Keaton

28. Sarah Michelle Gellar — Salma Hayek — Viggo Mortensen

29. Gina Gershon — Michael Douglas — Brittany Murphy

30. Jessica Lange — Sally Field — Robert Redford

8.2. Appendix: MING Queries for the User Evaluation 121

31. Jeanne Tripplehorn — Jennifer Aniston — Diane Lane

32. Clint Eastwood — Helen Hunt — Edie Falco

33. Liv Tyler — Dennis Quaid — Teri Hatcher

34. Demi Moore — Ashton Kutcher — Bruce Willis

35. Jessica Alba — Leonardo DiCaprio — Billy Crystal

36. Maria Bello — Michael Douglas — Uma Thurman

37. George Clooney — Liam Neeson — Jake Gyllenhaal

38. Uma Thurman — Jake Gyllenhaal — Jennifer Garner

39. Kevin Spacey — Halle Berry — Julia Roberts

40. Jodie Foster — Teri Hatcher — Christina Ricci

41. Max Weber — Georg Wilhelm Friedrich Hegel — Ernst Mach

42. Rudolf Carnap — Thomas Abbt — Max Horkheimer

43. Johann Gottfried Herder — Plato — Gottfried Leibniz

44. Arthur Schopenhauer — Moritz Schlick — Ludwig Wittgenstein

45. Plato — Friedrich Nietzsche — Bertrand Russell

46. Ernst Mach — Edmund Husserl — Adam Smith

47. Plato — Blaise Pascal — Gottlob Frege

48. Max Horkheimer — Arthur Schopenhauer — Heinrich Hertz

49. Adam Smith — Johann Gottlieb Fichte — Karl Wilhelm Friedrich Schlegel

50. Max Horkheimer — Blaise Pascal — Bernard Bolzano

51. Karl Marx — Jean-Paul Sartre — Ludwig Wittgenstein

52. Bertrand Russell — Albert Einstein

53. Georg Wilhelm Friedrich Hegel — Heinrich Hertz

54. Arthur Schopenhauer — Karl Marx

55. Adam Smith — Georg Wilhelm Friedrich Hegel

56. Albert Einstein — Edmund Husserl

57. Johann Augustus Eberhard — Friedrich Nietzsche

58. Gottlob Frege — Bernard Bolzano

59. Karl Wilhelm Friedrich Schlegel — Karl Marx

60. Albert Einstein — Friedrich Nietzsche

122 Bibliography

Bibliography 123

Bibliography

[1] Answers.com. http://www.answers.com/. Accessed 01-June-2009.

[2] DBLife. http://dblife.cs.wisc.edu/. Accessed 01-June-2009.

[3] flickr. http://www.flickr.com/. Accessed 01-June-2009.

[4] Freebase: a social database about things you know and love. http://www.
freebase.com/. Accessed 01-June-2009.

[5] The gene ontology. http://www.geneontology.org/. Accessed 01-
June-2009.

[6] Hakia: semantic search. http://www.hakia.com/. Accessed 01-June-
2009.

[7] Jena a semantic web framework for java. http://jena.sourceforge.
net/. Accessed 01-June-2009.

[8] NAGA: searching and ranking knowledge. http://www.mpi-inf.mpg.
de/yago-naga/naga/demo.html. Accessed 01-June-2009.

[9] Powerset. http://www.powerset.com/. Accessed 01-June-2009.

[10] START: natural language question answering system. http://start.
csail.mit.edu/. Accessed 01-June-2009.

[11] TextRunner search. http://www.cs.washington.edu/research/
textrunner/. Accessed 01-June-2009.

[12] True Knowledge: the internet answer engine. http://www.
trueknowledge.com/. Accessed 01-June-2009.

[13] True Knowledge: the internet answer engine, technology. http://www.
trueknowledge.com/technology. Accessed 01-June-2009.

[14] Unified medical language system. http://www.nlm.nih.gov/
research/umls/. Accessed 01-June-2009.

[15] Wolfram alpha: computational and knowledge engine. http://www.
wolframalpha.com/. Accessed 01-June-2009.

[16] WordNet: a lexical database for the english language. http://wordnet.
princeton.edu/. Accessed 01-June-2009.

http://www.answers.com/
http://dblife.cs.wisc.edu/
http://www.flickr.com/
http://www.freebase.com/
http://www.freebase.com/
http://www.geneontology.org/
http://www.hakia.com/
http://jena.sourceforge.net/
http://jena.sourceforge.net/
http://www.mpi-inf.mpg.de/yago-naga/naga/demo.html
http://www.mpi-inf.mpg.de/yago-naga/naga/demo.html
http://www.powerset.com/
http://start.csail.mit.edu/
http://start.csail.mit.edu/
http://www.cs.washington.edu/research/textrunner/
http://www.cs.washington.edu/research/textrunner/
http://www.trueknowledge.com/
http://www.trueknowledge.com/
http://www.trueknowledge.com/technology
http://www.trueknowledge.com/technology
http://www.nlm.nih.gov/research/umls/
http://www.nlm.nih.gov/research/umls/
http://www.wolframalpha.com/
http://www.wolframalpha.com/
http://wordnet.princeton.edu/
http://wordnet.princeton.edu/

124 Bibliography

[17] The YAGO-NAGA project: harvesting, searching, and ranking knowledge from
the web. http://www.mpi-inf.mpg.de/yago-naga/. Accessed 01-
June-2009.

[18] E. Agichtein. Scaling information extraction to large document collections.
IEEE Data Engineering Bulletin, 28(4):3–10, 2005.

[19] E. Agichtein and S. Sarawagi. Scalable information extraction and integration,
Tutorial. In the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), New York, NY, USA, 2006. ACM.

[20] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for keyword-based
search over relational databases. In the Proceedings of the 18th International
Conference on Data Engineering (ICDE), pages 5–16, Washington, DC, USA,
2002. IEEE Computer Society.

[21] S. Amer-Yahia and J. Shanmugasundaram. XML full-text search: challenges
and opportunities, Tutorial. In the 31st International Conference on Very Large
Data Bases (VLDB). VLDB Endowment, 2005.

[22] R. Angles and C. Gutierrez. The expressive power of SPARQL. In the
Proceedings of the International Semantic Web Conference (ISWC), Lecture
Notes in Computer Science, pages 114–129, Berlin / Heidelberg, 2008. Springer.

[23] K. Anyanwu, A. Maduko, and A. Sheth. SPARQ2L: towards support for
subgraph extraction queries in RDF databases. In the Proceedings of the 16th
international conference on World Wide Web (WWW), pages 797–806, New
York, NY, USA, 2007. ACM.

[24] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, and Z. Ives. DBpedia: A nucleus
for a web of open data. In The Semantic Web, Lecture Notes in Computer
Science, pages 722–735, Berlin / Heidelberg, 2007. Springer.

[25] M. Banko and O. Etzioni. Strategies for lifelong knowledge extraction from
the web. In the Proceedings of the 4th international conference on Knowledge
capture (K-CAP), pages 95–102, New York, NY, USA, 2007. ACM.

[26] C. D. Bateman, C. S. Helvig, G. Robins, and A. Zelikovsky. Provably good
routing tree construction with multi-port terminals. In the Proceedings of the
1997 international symposium on Physical design (ISPD), pages 96–102, New
York, NY, USA, 1997. ACM.

[27] E. Behrends, O. Fritzen, and W. May. Querying along XLinks in XPath/XQuery:
situation, applications, perspectives. In the Proceedings of Query Languages
and Query Processing, Munich, Germany (30th–31st March 2006), Lecture
Notes in Computer Science, Berlin / Heidelberg, 2006. Springer.

[28] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword
searching and browsing in databases using banks. pages 431–440, Los Alamitos,
CA, USA, 2002. IEEE Computer Society.

[29] R. Bin Muhammad. A parallel local search algorithm for euclidean
steiner tree problem. In the Proceedings of the Seventh ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking, and

http://www.mpi-inf.mpg.de/yago-naga/

Bibliography 125

Parallel/Distributed Computing (SNPD-SAWN), pages 157–164, Washington,
DC, USA, 2006. IEEE Computer Society.

[30] C. Bizer, T. Heath, K. Idehen, and T. Berners-Lee. Linked data on the web (ldow
2008). In Workshop at the 17th International World Wide Web Conference, New
York, NY, USA, 2008. ACM.

[31] C. Botev, S. Amer-Yahia, and J. Shanmugasundaram. A TeXQuery-based
XML full-text search engine. In the Proceedings of the 24th ACM SIGMOD
international conference on Management of data, pages 943–944, New York,
NY, USA, 2004. ACM.

[32] U. Brandes, M. Gaertler, and D. Wagner. Experiments on graph clustering
algorithms. In Algorithms–ESA 2003, Lecture Notes in Computer Science,
pages 568–579, Berlin / Heidelberg, 2003. Springer.

[33] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search
engine. Computer Networks and ISDN Systems, 30(1-7):107–117, 1998.

[34] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic
architecture for storing and querying RDF and RDF schema. In the Proceedings
of the 1st International Semantic Web Conference on The Semantic Web (ISWC),
pages 54–68, London, UK, 2002. Springer.

[35] M. J. Cafarella, C. Re, D. Suciu, and O. Etzioni. Structured querying of web text
data: a technical challenge. In the Proceedings of the 3rd Biennial Conference
on Innovative Data Systems Research (CIDR), pages 225–234. www.crdrdb.org,
2007.

[36] P. Castro, S. Melnik, and A. Adya. ADO.NET entity framework: raising the
level of abstraction in data programming. In the Proceedings of the 27th ACM
SIGMOD international conference on Management of data, pages 1070–1072,
New York, NY, USA, 2007. ACM.

[37] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about
datalog (and never dared to ask). IEEE Trans. on Knowl. and Data Eng.,
1(1):146–166, 1989.

[38] S. Chakrabarti. Dynamic personalized pagerank in entity-relation graphs. In the
Proceedings of the 16th international conference on World Wide Web (WWW),
pages 571–580, New York, NY, USA, 2007. ACM.

[39] M. Charikar and C. Chekuri. Approximation algorithms for directed steiner
problems. J. Algorithms, 33(1):73–91, 1999.

[40] P. P.-S. Chen. The entity-relationship model–toward a unified view of data. ACM
Transactions on Database Systems, 1(1):9–36, 1976.

[41] T. Cheng and K. C.-C. Chang. Entity search engine: Towards agile best-
effort information integration over the web. In the Proceedings of the 3rd
Biennial Conference on Innovative Data Systems Research (CIDR), pages 108–
113. www.crdrdb.org, 2007.

126 Bibliography

[42] T. Cheng, X. Yan, and K. C.-C. Chang. Entityrank: searching entities directly
and holistically. In the Proceedings of the 33rd international conference on Very
large data bases (VLDB), pages 387–398. VLDB Endowment, 2007.

[43] E. F. Codd. A relational model of data for large shared data banks.
Communications of the ACM (CACM), 26(1), 1983.

[44] S. Cohen, Y. Kanza, B. Kimelfeld, and Y. Sagiv. Interconnection semantics for
keyword search in XML. In the Proceedings of the 14th ACM international
conference on Information and knowledge management (CIKM), pages 389–
396, New York, NY, USA, 2005. ACM.

[45] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv. XSEarch: a semantic search engine
for XML. In the Proceedings of the 29th international conference on Very large
data bases (VLDB), pages 45–56. VLDB Endowment, 2003.

[46] W. W. W. Consortium. The extensible markup language (XML). http://
www.w3.org/TR/REC-xml/. Accessed 01-June-2009.

[47] W. W. W. Consortium. W3c: World wide web consortium. http://www.w3.
org/. Accessed 01-June-2009.

[48] W. W. W. Consortium. The W3C XML path language (XPath). http://www.
w3.org/TR/xpath20/. Accessed 01-June-2009.

[49] W. W. W. Consortium. The W3C XML query (XQuery). http://www.w3.
org/TR/xquery/. Accessed 01-June-2009.

[50] W. W. W. Consortium. The XML linking language (XLink). http://www.
w3.org/TR/xlink/. Accessed 01-June-2009.

[51] W. W. W. Consortium. The XML pointer language (XPointer). http://www.
w3.org/TR/WD-xptr. Accessed 01-June-2009.

[52] W. W. W. Consortium. XQuery and XPath full text. http://www.w3.org/
TR/2009/CR-xpath-full-text-10-20090709/. Accessed 01-June-
2009.

[53] W. W. W. Consortium. OWL. http://www.w3.org/2004/OWL/, 2004.
Accessed 01-June-2009.

[54] W. W. W. Consortium. The SPARQL language. http://www.w3.org/TR/
rdf-sparql-query/, 2005. Accessed 01-June-2009.

[55] H. Cunningham. Information extraction, automatic. Encyclopedia of Language
and Linguistics, 2nd Edition, 5:665–677, November 2006.

[56] Cycorp. Overview of OpenCyc. http://www.cyc.com/cyc/opencyc.
Accessed 01-June-2009.

[57] B. B. Dalvi, M. Kshirsagar, and S. Sudarshan. Keyword search on external
memory data graphs. the Proceedings of the VLDB Endowment, 1(1):1189–
1204, 2008.

[58] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases.
The VLDB Journal, 16(4):523–544, 2007.

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/WD-xptr
http://www.w3.org/TR/WD-xptr
http://www.w3.org/TR/2009/CR-xpath-full-text-10-20090709/
http://www.w3.org/TR/2009/CR-xpath-full-text-10-20090709/
http://www.w3.org/2004/OWL/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.cyc.com/cyc/opencyc

Bibliography 127

[59] P. DeRose, W. Shen, F. Chen, A. Doan, and R. Ramakrishnan. Building
structured web community portals: a top-down, compositional, and incremental
approach. In the Proceedings of the 33rd international conference on Very large
data bases (VLDB), pages 399–410. VLDB Endowment, 2007.

[60] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering.
In the Proceedings of the 9th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD), pages 89–98, New York, NY,
USA, 2003. ACM.

[61] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding top-k min-
cost connected trees in databases. In the Proceedings of the 23rd International
Conference on Data Engineering (ICDE), pages 836–845, Los Alamitos, USA,
2007. IEEE Computer Society.

[62] J.-P. Dittrich and M. A. V. Salles. iDM: a unified and versatile data
model for personal dataspace management. In the Proceedings of the 32nd
international conference on Very large data bases (VLDB), pages 367–378.
VLDB Endowment, 2006.

[63] X. Dong and A. Y. Halevy. A platform for personal information management
and integration. In the Proceedings of 2nd of the International Conference on
Innovative Data Systems Research (CIDR), pages 119–130. www.cidrdb.org,
2005.

[64] S. M. v. Dongen. Graph Clustering by Flow Simulation. PhD thesis, University
of Utrecht, 2000.

[65] S. Dreyfus and R. Wagner. The steiner problem in graphs. Journal of Networks,
1:195–207, 1972.

[66] S. Elbassuoni, M. Ramanath, M. Sydow, and G. Weikum. Language-model-
based ranking for queries on RDF-graphs. In the Proceedings of the 18th ACM
Conference on Information and Knowledge Management (CIKM), New York,
NY, USA, 2009. ACM.

[67] O. Etzioni, M. Banko, S. Soderland, and D. S. Weld. Open information
extraction from the web. Communications of the ACM (CACM), 51(12):68–74,
2008.

[68] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M. Popescu, T. Shaked,
S. Soderland, D. S. Weld, and A. Yates. Web-scale information extraction in
knowitall: (preliminary results). In the Proceedings of the 13th international
conference on World Wide Web (WWW), pages 100–110, New York, NY, USA,
2004. ACM.

[69] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discovery of connection
subgraphs. In the Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD), pages 118–127,
New York, NY, USA, 2004. ACM.

[70] H. Fang and C. Zhai. Probabilistic models for expert finding. In Advances
in Information Retrieval, 29th European Conferenceon IR Research (ECIR),
Lecture Notes in Computer Science, pages 418–430, Berlin / Heidelberg, 2007.
Springer.

128 Bibliography

[71] O. Faroe, D. Pisinger, and M. Zachariasen. Local search for final placement
in VLSI design. In the Proceedings of the 2001 IEEE/ACM international
conference on Computer-aided design (ICCAD), pages 565–572, Piscataway,
NJ, USA, 2001. IEEE Press.

[72] C. Fellbaum. WordNet: an Electronic Lexical Database. MIT Press, 1998.

[73] D. Gibson, J. Kleinberg, and P. Raghavan. Inferring web communities from
link topology. In the Proceedings of the 9th ACM conference on Hypertext and
hypermedia : links, objects, time and space—structure in hypermedia systems
(HYPERTEXT), pages 225–234, New York, NY, USA, 1998. ACM.

[74] D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense subgraphs in
massive graphs. In the Proceedings of the 31st international conference on Very
large data bases (VLDB), pages 721–732. VLDB Endowment, 2005.

[75] M. Girvan and M. E. Newman. Community structure in social and biological
networks. the Proceedings of the National Academy of Sciences of the United
States of America, 99(12):7821–7826, June 2002.

[76] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword proximity search
in complex data graphs. In the Proceedings of the 28th ACM SIGMOD
international conference on Management of data, pages 927–940, New York,
NY, USA, 2008. ACM.

[77] J. Graupmann. The SphereSearch Engine for Graph-based Search on
heterogeneous semi-structured data. PhD thesis, Saarland University, 2006.

[78] J. Graupmann, R. Schenkel, and G. Weikum. The SphereSearch engine for
unified ranked retrieval of heterogeneous XML and web documents. In the
Proceedings of the 31st international conference on Very large data bases
(VLDB), pages 529–540. VLDB Endowment, 2005.

[79] B. K. Gregory, G. Marton, G. Borchardt, A. Brownell, S. Felshin, D. Loreto,
J. Louis-rosenberg, B. Lu, F. Mora, S. Stiller, Ö. Uzuner, and A. Wilcox.
External knowledge sources for question answering. In the Proceedings of the
14th Annual Text Retrieval Conference (TREC). NIST, 2005.

[80] J. Han, X. Yan, and P. Yu. Mining and searching graphs and structures, Tutorial.
In 12th ACM Conference on Knowledge Discovery and Data Mining (KDD),
New York, NY, USA, 2006. ACM.

[81] E. Hartuv and R. Shamir. A clustering algorithm based on graph connectivity.
Information Processing Letters, 76(4-6):175–181, 2000.

[82] H. He, H. Wang, J. Yang, and P. S. Yu. BLINKS: ranked keyword searches on
graphs. In the Proceedings of the 2007 ACM SIGMOD international conference
on Management of data, pages 305–316, New York, NY, USA, 2007. ACM.

[83] D. Hiemstra and A. P. de Vries. Relating the new language models of
information retrieval to the traditional retrieval models. Technical report, Centre
for Telematics and Information Technology, University of Twente, Enschede,
Netherlands, 2000.

Bibliography 129

[84] I. Horrocks and P. F. Patel-Schneider. Reducing owl entailment to description
logic satisfiability. Journal of Web Semantics, 1(4):17–29, 2003.

[85] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient ir-style
keyword search over relational databases. In the Proceedings of the 29th
international conference on Very large data bases (VLDB), pages 850–861.
VLDB Endowment, 2003.

[86] V. Hristidis and Y. Papakonstantinou. Discover: keyword search in relational
databases. In the Proceedings of the 28th international conference on Very Large
Data Bases (VLDB), pages 670–681. VLDB Endowment, 2002.

[87] E. Ihler. Bounds on the quality of approximate solutions to the group steiner
problem. In the Proceedings of the 16th international workshop on Graph-
theoretic concepts in computer science (WG), pages 109–118, New York, NY,
USA, 1991. Springer-Verlag New York, Inc.

[88] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing
techniques in relational database systems. ACM Computing Surveys, 40(4):1–
58, 2008.

[89] P. G. Ipeirotis, E. Agichtein, P. Jain, and L. Gravano. Towards a query optimizer
for text-centric tasks. ACM Transaction Database Systems, 32(4):21, 2007.

[90] K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving highly
relevant documents. In the Proceedings of the 23rd annual international
ACM SIGIR conference on Research and development in information retrieval
(SIGIR), pages 41–48, New York, NY, USA, 2000. ACM.

[91] T. S. Jayram, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. Zhu.
AVATAR information extraction system. IEEE Data Engineering Bulletin,
29(1):40–48, 2006.

[92] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and
H. Karambelkar. Bidirectional expansion for keyword search on graph
databases. In the Proceedings of the 31st international conference on Very large
data bases (VLDB), pages 505–516. VLDB Endowment, 2005.

[93] G. Kasneci, S. Elabssuoni, and G. Weikum. MING: mining informative entity-
relationship subgraphs. In the Proceedings of the 18th ACM Conference on
Information and Knowledge Management (CIKM), New York, NY, USA, 2009.
ACM.

[94] G. Kasneci, S. Elbassuoni, and G. Weikum. MING: mining informative entity-
relationship subgraphs. Technical report, Max-Planck Institute for Informatics,
Saarbruecken, Germany, 2009.

[95] G. Kasneci, M. Ramanath, M. Sozio, F. M. Suchanek, and G. Weikum. STAR:
Steiner-tree approximation in relationship graphs. In the Proceedings of the
2009 IEEE International Conference on Data Engineering (ICDE), pages 868–
879, Washington, DC, USA, 2009. IEEE Computer Society.

[96] G. Kasneci, M. Ramanath, F. Suchanek, and G. Weikum. The yago-naga
approach to knowledge discovery. SIGMOD Record, 37(4):41–47, 2008.

130 Bibliography

[97] G. Kasneci, F. M. Suchanek, G. Ifrim, S. Elbassuoni, M. Ramanath, and
G. Weikum. NAGA: harvesting, searching and ranking knowledge. In
the Proceedings of the 28th ACM SIGMOD international conference on
Management of data, pages 1285–1288, New York, NY, USA, 2008. ACM.

[98] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, and G. Weikum. Naga:
Searching and ranking knowledge. In the Proceedings of the 24th International
Conference on Data Engineering (ICDE), pages 953–962, Cancun, Mexico,
2008. IEEE Computer Society.

[99] G. Kasneci, F. M. Suchanek, M. Ramanath, and G. Weikum. How NAGA
uncoils: searching with entities and relations. In the Proceedings of the 16th
international conference on World Wide Web (WWW), pages 1167–1168, New
York, NY, USA, 2007. ACM.

[100] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence
through a social network. In the Proceedings of the 9th ACM SIGKDD
international conference on Knowledge discovery and data mining (KDD),
pages 137–146, New York, NY, USA, 2003. ACM.

[101] B. Kimelfeld and Y. Sagiv. Finding and approximating top-k answers in keyword
proximity search. In the Proceedings of the 25th ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems (PODS), pages 173–182,
New York, NY, USA, 2006. ACM.

[102] J. M. Kleinberg. Hubs, authorities, and communities. ACM Computing Surveys,
31(4):5–8.

[103] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal
of the ACM, 46(5):604–632, 1999.

[104] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for steiner trees. Acta
Informatica (Historical Archive), 15 (2), June 1981.

[105] M. Krötzsch, D. Vrandecic, M. Völkel, H. Haller, and R. Studer. Semantic
wikipedia. Journal of Web Semantics, 5(4):251–261, 2007.

[106] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the web
for emerging cyber-communities. Computer Networks, 31(11-16):1481–1493,
1999.

[107] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In the Proceedings
of the 2001 IEEE International Conference on Data Mining (ICDM), pages 313–
320, Washington, DC, USA, 2001. IEEE Computer Society.

[108] J. Lafferty and C. Zhai. Document language models, query models, and
risk minimization for information retrieval. In the Proceedings of the 24th
annual international ACM SIGIR conference on Research and development
in information retrieval (SIGIR), pages 111–119, New York, NY, USA, 2001.
ACM.

[109] J. Lehmann, J. Schüppel, and S. Auer. Discovering unknown connections – the
DBpedia relationship finder. In the Proceedings of 1st Conference on Social
Semantic Web (CSSW), LNI, pages 99–110. GI, 2007.

Bibliography 131

[110] U. Leser. A query language for biological networks. Bioinformatics, 21(2):33–
39, 2005.

[111] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. EASE: an effective 3-
in-1 keyword search method for unstructured, semi-structured and structured
data. In the Proceedings of the 28th ACM SIGMOD international conference on
Management of data, pages 903–914, New York, NY, USA, 2008. ACM.

[112] W.-S. Li, K. S. Candan, Q. Vu, and D. Agrawal. Retrieving and organizing
web pages by “information unit”. In the Proceedings of the 10th international
conference on World Wide Web (WWW), pages 230–244, New York, NY, USA,
2001. ACM.

[113] W.-S. Li, K. S. Candan, Q. Vu, and D. Agrawal. Query relaxation by structure
and semantics for retrieval of logical web documents. IEEE Transactions on
Knowledge and Data Engineering, 14(4):768–791, 2002.

[114] D. Lin and P. Pantel. DIRT: discovery of inference rules from text. In the
Proceedings of the 7th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD), pages 323–328, New York, NY, USA, 2001.
ACM.

[115] X. Liu and B. W. Croft. Statistical language modeling for information retrieval.
Annual Review of Information Science and Technology, 39(1):1–31, 2005.

[116] J. Madhavan, S. Cohen, X. Dong, A. Halevy, S. Jeffery, D. Ko, and
C. Yu. Navigating the seas of structured web data. In the Proceedings of
the 3rd Biennial Conference on Innovative Data Systems Research (CIDR).
www.crdrdb.org, 2007.

[117] M. E. Maron and J. L. Kuhns. On relevance, probabilistic indexing and
information retrieval. Journal of the ACM, 7(3):216–244, 1960.

[118] K. Mehlhorn. A faster approximation algorithm for the steiner problem in
graphs. Information Processing Letters, 27(3), 1988.

[119] T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for RDF. the
Proceedings of the VLDB Endowment, 1(1), 2008.

[120] Z. Nie, Y. Ma, S. Shi, J.-R. Wen, and W.-Y. Ma. Web object retrieval. In the
Proceedings of the 16th international conference on World Wide Web (WWW),
pages 81–90, New York, NY, USA, 2007. ACM.

[121] I. Niles and A. Pease. Towards a standard upper ontology. In the Proceedings
of the international conference on Formal Ontology in Information Systems
(FOIS), pages 2–9, New York, NY, USA, 2001. ACM.

[122] openRDF.org. Home of sesame. http://www.openrdf.org/index.
jsp. Accessed 01-June-2009.

[123] A. N. Papadopoulos, A. Lyritsis, and Y. Manolopoulos. Skygraph: an algorithm
for important subgraph discovery in relational graphs. Data Mining and
Knowledge Discovery, 17(1):57–76, 2008.

http://www.openrdf.org/index.jsp
http://www.openrdf.org/index.jsp

132 Bibliography

[124] D. Petkova and W. B. Croft. Hierarchical language models for expert finding
in enterprise corpora. In the Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI), pages 599–608,
Washington, DC, USA, 2006. IEEE Computer Society.

[125] C. Plake, T. Schiemann, M. Pankalla, J. Hakenberg, and U. Leser. Ali baba:
PubMed as a graph. Bioinformatics, 22(19), 2006.

[126] J. M. Ponte and W. B. Croft. A language modeling approach to information
retrieval. In the Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval (SIGIR),
pages 275–281, New York, NY, USA, 1998. ACM.

[127] S. P. Ponzetto and M. Strube. Deriving a large-scale taxonomy from wikipedia.
In the Proceedings of 22nd International Conference on Artificial Intelligence
(AAAI), pages 1440–1445, Vancouver, British Columbia, Canada, 2007. AAAI
Press.

[128] C. Ramakrishnan, W. H. Milnor, M. Perry, and A. P. Sheth. Discovering
informative connection subgraphs in multi-relational graphs. SIGKDD
Explorations Newsletter, 7(2):56–63, 2005.

[129] G. Reich and P. Widmayer. Beyond steiner’s problem: a vlsi oriented
generalization. In the Proceedings of the 15th international workshop on Graph-
theoretic concepts in computer science (WG), pages 196–210, New York, NY,
USA, 1990. Springer-Verlag New York, Inc.

[130] S. Sarawagi. Information extraction. Foundations and Trends in Databases,
1(3):261–377, 2008.

[131] M. Sayyadian, H. LeKhac, A. Doan, and L. Gravano. Efficient keyword search
across heterogeneous relational databases. In the Proceedings of the 23rd
International Conference on Data Engineering (ICDE), pages 346–355, Los
Alamitos, USA, 2007. IEEE Computer Society.

[132] R. Schenkel, A. Theobald, and G. Weikum. Semantic similarity search on
semistructured data with the XXL search engine. Information Retrieval,
8(4):521–545, 2005.

[133] P. Serdyukov and D. Hiemstra. Modeling documents as mixtures of persons
for expert finding. In the Proceedings of the 30th European Conference on IR
Research (ECIR), Lecture Notes in Computer Science, pages 309–320. Springer
Verlag, 2008.

[134] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan. Declarative
information extraction using datalog with embedded extraction predicates. In
the Proceedings of the 33rd international conference on Very large data bases
(VLDB), pages 1033–1044. VLDB Endowment, 2007.

[135] Stern.de. Test: wikipedia schlaegt brockhaus. http://www.stern.de/

computer-technik/internet/:stern-Test-Wikipedia-Brockhaus/

604423.html. Accessed 01-June-2009.

http://www.stern.de/computer-technik/internet/:stern-Test-Wikipedia-Brockhaus/604423.html
http://www.stern.de/computer-technik/internet/:stern-Test-Wikipedia-Brockhaus/604423.html
http://www.stern.de/computer-technik/internet/:stern-Test-Wikipedia-Brockhaus/604423.html

Bibliography 133

[136] F. Suchanek, G. Kasneci, and G. Weikum. YAGO - a large ontology from
wikipedia and wordnet. Journal of Web Semantics, 6(3):203–217, 2008.

[137] F. M. Suchanek. Automated Construction and Growth of a Large Ontology. PhD
thesis, Saarland University, 2008.

[138] F. M. Suchanek, G. Kasneci, and G. Weikum. YAGO: a core of semantic
knowledge. In the Proceedings of the 16th international conference on World
Wide Web (WWW), pages 697–706, New York, NY, USA, 2007. ACM.

[139] H. Tong and C. Faloutsos. Center-piece subgraphs: problem definition and
fast solutions. In the Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD), pages 404–413,
New York, NY, USA, 2006. ACM.

[140] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with restart and its
applications. In the Proceedings of the 6th International Conference on Data
Mining (ICDM), pages 613–622, Washington, DC, USA, 2006. IEEE Computer
Society.

[141] S. Trißl and U. Leser. Fast and practical indexing and querying of very large
graphs. In the Proceedings of the 27th ACM SIGMOD international conference
on Management of data, pages 845–856, New York, NY, USA, 2007. ACM.

[142] D. Vallet and H. Zaragoza. Inferring the most important types of a query:
a semantic approach. In the Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in information retrieval
(SIGIR), pages 857–858, New York, NY, USA, 2008. ACM.

[143] W. Weerkamp, K. Balog, and E. J. Meij. A generative language modeling
approach for ranking entities. In Advances in Focused Retrieval, Lecture Notes
in Computer Science, Berlin / Heidelberg, 2009. Springer.

[144] G. Weikum. Information retrieval and data mining. Computer Science Lecture
at University of Saarland, Winter Term, 2007-2008.

[145] G. Weikum, G. Kasneci, M. Ramanath, and F. Suchanek. Database and
information-retrieval methods for knowledge discovery. Communications of the
ACM (CACM), 52(4):56–64, 2009.

[146] D. S. Weld, R. Hoffmann, and F. Wu. Using wikipedia to bootstrap open
information extraction. SIGMOD Record, 37(4), 2008.

[147] K. Wilkinson, C. Sayers, H. A. Kuno, and D. Reynolds. Efficient RDF storage
and retrieval in Jena2. In the Proceedings of the 1st International Workshop on
Semantic Web and Databases (SWDB), pages 35–43, 2003.

[148] F. Wu and D. S. Weld. Autonomously semantifying wikipedia. In the
Proceedings of the sixteenth ACM conference on Conference on information
and knowledge management (CIKM), pages 41–50, New York, NY, USA, 2007.
ACM.

[149] F. Wu and D. S. Weld. Automatically refining the wikipedia infobox ontology.
In Proceeding of the 17th international conference on World Wide Web (WWW),
pages 635–644, New York, NY, USA, 2008. ACM.

134 Bibliography

[150] Yahoo. Yahoo! answers. http://answers.yahoo.com/, 2005. Accessed
01-June-2009.

[151] X. Yan, X. J. Zhou, and J. Han. Mining closed relational graphs with
connectivity constraints. In the Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining (KDD), pages
324–333, New York, NY, USA, 2005. ACM.

[152] C. Zhai and J. Lafferty. A risk minimization framework for information retrieval.
Information Processing and Management, 42(1):31–55, 2006.

[153] J. Zhu, Z. Nie, J.-R. Wen, B. Zhang, and W.-Y. Ma. Simultaneous record
detection and attribute labeling in web data extraction. In the Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining (KDD), pages 494–503, New York, NY, USA, 2006. ACM.

http://answers.yahoo.com/

	Introduction
	Motivation
	Limits of Current Search Technology
	Opportunities

	Expressive Search with Entities and Relationships
	Challenges
	Contributions
	Outline

	From Web Pages to Knowledge
	Harvesting Knowledge from the Web
	The Statistical Web
	The Semantic Web
	The Social Web

	Unifying The Social and the Semantic Web
	YAGO

	Summary

	Entity-Relationship Graphs for Knowledge Representation
	Basics
	RDF/RDFS and OWL
	Storing and Querying Entity-Relationship Graphs
	Relational, Object-Oriented, and XML Databases
	Storing RDF data
	SPARQL

	Summary

	NAGA
	Overview
	Motivation and Problem Statement
	Related Work
	Contributions and Outline

	A Framework for Querying with Entities and Relationships
	Query Model
	Answer Model
	Simple-Relationship Queries
	Regular-Expression Queries

	A Framework for Ranking with Entities and Relationships
	Ranking Desiderata
	Statistical Language Models for Document Retrieval
	The NAGA Ranking
	Related Ranking Models

	The NAGA Engine
	Architecture
	Implementation
	Efficiency Aspects

	Experimental Evaluation
	Setup
	Measurements
	Results and Discussion

	Conclusion

	STAR
	Overview
	Motivation and Problem Statement
	Related Work
	Contributions and Outline

	The STAR Algorithm
	The STAR Metaheuristics
	First Phase: Quick Construction of an Initial Tree
	Second Phase: Searching for Better Trees
	Discussion

	Approximation Guarantee
	Time Complexity
	Approximate Top-k Interconnections
	Experimental Evaluation
	Top-1 Comparison of STAR, DNH, DPBF, and BANKS
	Top-k comparison of STAR, BANKS, and BLINKS
	Comparison of STAR and BANKS
	Summary of Results

	Conclusion

	MING
	Overview
	Motivation and Problem Statement
	Related Work
	Contributions and Outline

	ER-based Informativeness
	Statistics-based Edge Weights
	IRank for Node-based Informativeness
	Most Informative Subgraphs

	The MING Algorithm
	First Phase: Candidate Subgraph Generation
	Second Phase: Mining the Most Informative ER Subgraph

	Experimental Evaluation
	Efficiency
	Quality

	Conclusion

	Conclusion
	Appendix
	Queries for the User Evaluation of NAGA
	MING Queries for the User Evaluation

