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Short Abstract

Applications that process XML documents as files or streams are naturally
main-memory based. This makes main memory the bottleneck for scalability.
This doctoral thesis addresses this problem and presents a toolkit for effective
buffer management in main memory-based XML stream processors.

XML document projection is an established technique for reducing the buffer
requirements of main memory-based XML processors, where only data relevant
to query evaluation is loaded into main memory buffers. We present a novel
implementation of this task, where we use string matching algorithms designed
for efficient keyword search in flat strings to navigate in tree-structured data.

We then introduce an extension of the XQuery language, called FluX, that
supports event-based query processing. Purely event-based queries of this lan-
guage can be executed on streaming XML data in a very direct way. We develop
an algorithm to efficiently rewrite XQueries into FluX. This algorithm is capable
of exploiting order constraints derived from schemata to reduce the amount of
buffering in query evaluation.

During streaming query evaluation, we continuously purge buffers from data
that is no longer relevant. By combining static query analysis with a dynamic
analysis of the buffer contents, we effectively reduce the size of memory buffers.

We have confirmed the efficacy of these techniques by extensive experiments
and by publication at international venues.

To compare our contributions to related work in a systematic manner, we
contribute an abstract framework for XML stream processing. This framework
allows us to gain a greater-picture view over the factors influencing the main
memory consumption.
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Kurzzusammenfassung

Anwendungen, die XML-Dokumente als Dateien oder Ströme verarbeiten, sind
natürlicherweise hauptspeicherbasiert. Für die Skalierbarkeit wird der Haupt-
speicher damit zu einem Engpass. Diese Doktorarbeit widmet sich diesem Pro-
blem, zu dessen Lösung sie Werkzeuge für eine effektive Pufferverwaltung in
hauptspeicherbasierten Prozessoren für XML-Datenströme vorstellt.

Die Projektion von XML-Dokumenten ist eine etablierte Methode, um den
Pufferverbrauch von hauptspeicherbasierten XML-Prozessoren zu reduzieren.
Dabei werden nur jene Daten in den Hauptspeicherpuffer geladen, die für die
Anfrageauswertung auch relevant sind. Wir präsentieren eine neue Implemen-
tierung dieser Aufgabe, wobei wir Algorithmen zur effizienten Suche in flachen
Zeichenketten einsetzen, um in baumartig strukturierten Daten zu navigieren.

Danach stellen wir eine Erweiterung der XQuery-Sprache vor, genannt FluX,
welche eine ereignisbasierte Anfragebearbeitung erlaubt. Anfragen, die nur er-
eignisbasierte Konstrukte benutzen, können direkt über XML-Datenströmen
ausgewertet werden. Dazu entwickeln wir einen Algorithmus, mit dessen Hil-
fe sich XQuery-Anfragen effizient in FluX übersetzen lassen. Dieser benutzt
Ordnungsinformationen aus Datenschemata, womit das Puffern in der Anfrage-
bearbeitung reduziert werden kann.

Während der Verarbeitung des Datenstroms bereinigen wir laufend den
Hauptspeicherpuffer von solchen Daten, die nicht länger relevant sind. Eine
nachhaltige Reduzierung der Größe von Hauptspeicherpuffern gelingt durch die
Kombination der statischen Anfrageanalyse mit einer dynamischen Analyse der
Pufferinhalte.

Die Effektivität dieser Puffermanagement-Techniken erfährt ihre Bestätigung
in umfangreichen Experimenten und internationalen Publikationen.

Für einen systematischen Vergleich unserer Beiträge mit der aktuellen Lite-
ratur entwickeln wir ein abstraktes System zur Modellierung von Prozessoren
zur XML-Stromverarbeitung. So können wir die spezifischen Faktoren heraus-
greifen, die den Hauptspeicherverbrauch beeinflussen.
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Zusammenfassung

Während des letzten Jahrzehnts hat sich in Wirtschaft und Industrie die Exten-
ded Markup Language (XML) als das Datenformat erster Wahl etabliert. Die
Kommunikation auf Basis von XML-Technologien wird vor allem durch offene
Standards und die Verfügbarkeit von Schemata begünstigt. Im Zuge der Verbrei-
tung des XML-Formates hat insbesondere die Entwicklung von Anfragesprachen
für XML-Daten erhöhte Aufmerksamkeit erhalten.

Zu den etablierten XML-Anfragesprachen zählen heute die W3C-Standards
XPath und XQuery. Während mit XPath nur Boolsche Anfragen oder die Se-
lektion von Knoten möglich sind, ist XQuery eine turingvollständige Program-
miersprache, die auf XPath aufbaut. Mit der fortlaufenden Verbreitung dieser
Sprachen ist es von zunehmender Wichtigkeit, effiziente Techniken für Ihre Aus-
wertung zu entwickeln.

Dabei verdienen Szenarien, in denen XML-Dokumente als Dateien oder
Ströme verarbeitet werden, besonderes Augenmerk. Diese Szenarien zeichnen
sich dadurch aus, dass die Daten kontinuierlich eingehen, mit einer hohen Da-
tenübertragungsrate und über lange Zeiträume hinweg.

Prozessoren für die Verarbeitung von XML-Datenströmen sind üblicherweise
hauptspeicherbasiert. Für die Skalierbarkeit wird der Hauptspeicher dadurch zu
einem Engpass. Zwar brauchen gängige Prozessoren für die Evaluierung von
XPath-Ausdrücken auf XML-Datenströmen nur wenig Speicher; was aber Da-
tentransformationen mit XQuery-Anfragen angeht, ist ein erheblicher Speicher-
verbrauch generell nicht vermeidbar. Es ist daher dringlich, Algorithmen für
die Auswertung von XQuery zu entwickeln, die sparsam mit den verfügbaren
Ressourcen umgehen und die Puffergrößen minimieren.

Im Idealfall wird die Pufferverwaltung in einem XQuery-Prozessor folgen-
de Kriterien erfüllen: (1) Es werden nur solche Daten in den Puffer geladen,
die für die Anfrageauswertung auch relevant sind. (2) Darüber hinaus sollte die
Pufferverwaltung Daten nicht länger als nötig puffern, und (3) redundante Puf-
ferinhalte vermeiden. Doch allein um das erste Kriterium zu erfüllen, müsste ein
solches System in der Lage sein, XQuery-Anfragen auf Erfüllbarkeit zu testen.
Dies ist jedoch ein unentscheidbares Problem.

Diese Doktorarbeit widmet sich der Entwicklung von Werkzeugen für eine
effektive Pufferverwaltung in der Verarbeitung von XML-Datenströmen. Dabei
streben wir es an, die Kriterien (1) bis (3) nach Möglichkeit zu erfüllen.

Das erste Kriterium erfordert es, möglichst nur relevante Daten in den Puf-
fer zu laden. Dazu projezieren wir XML-Datenströme, bevor Anfragen auf den
Daten ausgeführt werden. Die Projektion von XML-Dokumenten ist eine eta-
blierte Methode, und bereits in diversen XQuery-Prozessoren integriert. Der ge-
nerelle Ansatz beruht auf einer statischer Anfrageanalyse wonach Daten schon
beim Parsen aus dem Eingabestrom entfernt werden, wenn sie für die Anfra-
gebearbeitung zweifelsfrei irrelevant sind. Wir präsentieren eine neue Imple-
mentierung dieser Technik wobei wir Algorithmen zur effizienten Suche nach
Schlüsselwörtern in flachen Zeichenketten einsetzen, um in baumartig struk-
turierten Daten zu navigieren. Anders als existierende Implementierungen be-
trachtet unser Algorithmus nur Bruchteile der Eingabe und weist einen sehr
ökonomischen Verbrauch von Hauptspeicher und Rechenzeit auf. Bereits für
Probleme niedriger Komplexität, wie das Filtern von Dokumenten nach XPath-
Anfragen, erreichen wir in unseren Experimenten Beschleunigungen von zwei
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Größenordnungen. Selbst im Vergleich zu leistungsfähigen SAX-Parsern, wie sie
in praktisch allen Konkurrenz-Systemen eingesetzt werden, ist unser Ansatz bis
zu zehnmal schneller.

Um die Menge der Daten, die in den Hauptspeicher-Puffer geladen wer-
den, noch weiter zu reduzieren, analysieren wir Anfragen im Hinblick dar-
auf, welche Teile direkt auf dem XML-Strom ausgewertet werden können (oh-
ne dafür Daten zu puffern). Dazu führen wir eine Erweiterung der XQuery-
Sprache ein, genannt FluX, welche eine ereignisbasierte Anfragebearbeitung er-
laubt. Anfragen, die nur ereignisbasierte Konstrukte benutzen, können direkt
auf XML-Datenströmen ausgewertet werden. Wir entwickeln einen Algorithmus
um XQuery-Anfragen effizient nach FluX zu übersetzen. Dieser ist in der Lage,
Schema-Informationen einzubeziehen, um das Puffern noch weiter zu reduzie-
ren. Wir zeigen in unseren Experimenten, dass der FluX Ansatz den Speicher-
verbrauch deutlich reduziert. Es werden auch jene Fälle erkannt, in denen kom-
plette Anfragen aus dem XMark-Benchmark direkt auf dem XML-Datenstrom
ausgewertet werden können.

In dem zweiten Kriterium für effektives Puffermanagement wird gefordert,
Daten nicht länger als nötig zu puffern. Während der Stromverarbeitung berei-
nigen wir daher Hauptspeicherpuffer fortwährend von Daten, die nicht länger
relevant sind. Indem wir statische Anfrageanalyse mit einer dynamischen Ana-
lyse der Pufferinhalte kombinieren, reduzieren wir die Größe von Hauptspeicher-
puffern nachhaltig. Unser Ansatz ähnelt der automatischen Speicherbereinigung
in Programmiersprachen, denn jeder gepufferte Knoten prüft, ob er für die An-
frageauswertung noch relevant ist. Dies geschieht durch einen Relevanz-Zähler,
der während der Anfrageauswertung kontinuierlich herabgesetzt wird. Das Her-
absetzen geschieht zu Zeitpunkten, die in statischer Analyse bestimmt werden.
Dadurch werden Knoten bereits dann zur Laufzeit aus dem Puffer gelöscht, so-
bald sie für die Anfragebearbeitung nicht mehr relevant sind, selbst wenn sie in
internen Datenstrukturen noch referenziert werden.

Wie unsere Experimente belegen, erreichen wir so einen erheblich geringe-
ren Speicherverbrauch als Systeme, deren Pufferverwaltung allein auf statischer
Analyse beruht. Sofern Anfragen frei von Komposition sind, können wir sogar
sicherstellen, dass Knoten aus dem XML-Eingabedokument nicht redundant ge-
puffert werden. Damit erfüllen wir auch das dritte Kriterium für dieses XQuery-
Fragment.

Die Effektivität und Skalierbarkeit unserer Techniken wurden in umfangrei-
chen Experimenten mit realistischen Daten und offiziellen Benchmarks bestätigt.
Weiterhin wurden unsere Lösungen auf anerkannten Fachtagungen vorgestellt.

Um unsere Beiträge systematisch mit der bestehenden Literatur zu verglei-
chen, präsentieren wir in dieser Arbeit des Weiteren ein abstraktes System zur
Modellierung von Prozessoren zur XML-Stromverarbeitung. Dieses System be-
ruht auf Termersetzung, mit Termen als den zentralen syntaktischen Objek-
ten. Unser System bietet eine umfassende Sicht auf Prozessoren zur XML-
Stromverarbeitung, die sowohl die Struktur des Stroms als Sequenz von öff-
nenden und schließenden XML-Klammern erfasst als auch die abstrakte Sicht
von Pufferinhalten als Bäume ermöglicht. Mit diesem Formalismus modellieren
wir mehrere XML-Prozessoren. Dabei spannen wir den Bogen von einfachen
Stromübersetzern bis hin zu XQuery-Prozessoren. So können wir speziell jene
Faktoren eingehend betrachten, die den Hauptspeicherverbrauch in der XML-
Stromverarbeitung beeinflussen.
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640K should be enough for anyone.

Attributed to Bill Gates.
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1 Motivation and Outline

Challenges in XML Stream Processing

Within the last decade, industry has converged to XML as the data exchange
format of choice. Communication based on XML technology is fostered by open
standards and the ready availability of schemas. Along with the proliferation of
the XML data format, the development of query languages dedicated to XML
processing has received much attention for several reasons.

• XML query languages avoid the impedance mismatch that occurs when
XML data is processed with XML-unrelated programming languages.

• Declarative query languages lend themselves to automatic optimization,
whereas procedural programs require manual tuning.

• Composable and statically typed XML query languages are a good basis
for building robust protocols for data exchange.

Among the most established XML query languages are the W3C standards
XPath [113] and XQuery [114]. While XPath only allows for Boolean or node-
selecting queries, XQuery is a Turing-complete language that comprises XPath.
As more developers use these languages, it becomes increasingly important to
devise well-principled machineries for their execution.

In recent years, research and industry have delivered various systems for
XQuery processing, both disk-backed and main memory-based. Typically, these
systems operate in two phases, as they load the complete input before querying
it. This happens in XML databases where XML data is stored persistently, but
also in main memory-based query engines such as the IPSI, Saxon, and QizX
XQuery processors [40, 90, 93]. These systems load the entire input into main
memory buffers. Consequently, they are severely self-limited as to the amount
of input they can handle.

Yet in most cases of XML data exchange we face streaming scenarios, where
this two-phase approach is impractical. In streaming scenarios, the data arrives
continuously, at a high rate, and over long periods of time. A priori, we take
a general point of view and make no assumptions about the structure of the
stream. In doing so, we differ from works where the stream is assumed to
consist of a sequence of XML documents. Frequently, each single document is
deemed small enough to fit into main memory (c.f. [6, 17, 53]). Also, we do not

3
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presume the existence of punctuations [104]. Rather, we regard an XML stream
as a single coherent XML document of (theoretically) infinite size.

In this setting, it is impractical to load the entire input before querying. Even
if the input can be stored, users most likely cannot afford the time required for
loading, as streams arrive over long periods of times. Also, users may not even
care for persistent storage of the data, e.g. in an XML database, if its relevance
expires within moments of its arrival. Out of this reason, main memory-based
query processors are frequently used in streaming scenarios. Today, there exists
a variety of main memory-based query engines for XML stream processing,
which we can broadly classify as either automata- or algebra-based.

For restricted fragments of XPath, engines that use automata for stream
processing have been shown to scale up to large inputs [85,87], and even to high
workloads of queries [35,87]. Automata encodings have also been developed for
larger XQuery fragments [63, 76]. In the XSM machine [76], a fragment with
nested for-loops and where-conditions is evaluated using a network of transduc-
ers. While automata-based approaches are elegant and efficient, it is doubtful
whether they can generalize to full XQuery. Automata operate on a low level
of abstraction, and may not lend themselves naturally for integration with al-
gebraic approaches to query optimization.

Most query processors that evaluate full XQuery, or comprehensive frag-
ments thereof, are based on some form of query algebra. Some of these algebras
also provide streaming operators [43,44,70,92], which may even be implemented
using automata (e.g. [101]). The main limitation of systems that evaluate larger
XQuery fragments is their high memory footprint. In fact, for XML data trans-
formations, as opposed to just XPath filtering, the need for substantial main
memory buffers cannot be avoided in general [12]. While there are satisfactory
solutions for the evaluation of XPath fragments over XML streams, the evalua-
tion of XQuery over XML streams is still a largely unresolved issue. In existing
XQuery processors, main memory remains the major bottleneck.

Ideally, the buffer manager of a streaming XQuery engine will (1) only load
data that is relevant for query evaluation into the buffer, (2) not keep data
buffered longer than necessary, and (3) not keep multiple copies of the data in
buffers. Yet already a system optimal for (1) would have to be able to check
satisfiability of XQuery expressions, an undecidable problem (c.f. [14]).

When devising XQuery engines that treat buffering as an optimization tar-
get, we must thus resort to a best-effort approach. In assessing buffer manage-
ment algorithms, our optimization target is the high watermark of main memory
consumption, yet the overall query evaluation time must not be neglected.

Finally, we desire that our techniques can be blended naturally with existing,
possibly algebra-based approaches to XML query evaluation and optimization.

Contributions

This dissertation is dedicated to the efficient processing of XML streams by
means of main memory-based query engines. Our main focus is on XQuery
evaluation. Current XQuery processors are severely limited by their high mem-
ory footprint, and hence cannot scale to XML streams.

The objective of this dissertation is twofold: First, we present a general
framework for XML stream processing. The emphasis in developing such a
framework is on providing a comprehensive view on query evaluation over XML
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streams, rather than concrete algorithms. Second, we deliver practical buffer
management techniques for XQuery engines. We have verified these techniques
by extensive experiments and by publications at international conferences and
workshops. We outline our principal contributions in the following.

An Abstract Framework for XML Stream Processing

In relational databases, we assume that the database state is too large to be
stored in main memory. The state is thus stored on disk, and disk I/O is gener-
ally regarded as the dominating matter of expense. In XML stream processing,
we deal with a different setup.

From a data-centric point of view, the basic infrastructure consists of a read-
only input tape (or input stream) of XML tokens, and a write-only output tape
(or output stream) of XML tokens. On both tapes, a cursor – which can only
move forward – marks the current read or write position. A physical query
plan, the contents of the input tape, and the buffer contents specify a sequence
of operations that compute the query result. Finally, a main memory buffer
stores data for future reference.

Then data that is not buffered when it is first read in the input, or data
that is purged from the buffer, is irretrievably lost. Hence, buffer management
must take care that all relevant data is buffered, and that it is not discarded
prematurely. At the same time, an effective buffer manager will attempt to keep
the memory footprint small.

In a high-level discussion of concepts for buffer minimization, a specific query
algebra may bias us against certain optimizations. Out of this consideration, we
have developed a formal framework for XML stream processing. Our framework
is based on term rewriting [33, 50], and uses terms as syntactic objects. The
processing of the input, the management of the buffer contents. and the writing
of tokens to the output are specified using term rewriting rules, which is the
mapping defined for manipulating terms.

Our framework provides a novel and integrating view on typical XML stream
processing tasks. We use it to model two systems for XML stream process-
ing. First, we model XML stream pushdown transducers (termed XML-DPDTs
in [69]). These transducers are representatives of a class of important stream
processing tasks, comprising basic operations such as checking well-formedness
and the validation of XML streams against DTDs. Yet these transducers can
also execute XPath filtering tasks [6, 36, 84] or perform XML document projec-
tion (c.f. [15, 77]). They are even able to execute highly scalable XML stream
transformations, as specified by attribute grammar formalisms (c.f. [69]). Sec-
ond, we model XQuery engines in our framework, and illustrate techniques for
streaming query evaluation and efficient buffer management.

We will thus consult our framework in exploring the design space of XML
stream processors with a low memory footprint, and for gaining an understand-
ing of the factors influencing memory consumption.

Buffer Management Algorithms

The following buffer management algorithms are proposed in this dissertation.
These techniques can be implemented in isolation, but they are also composable,
and thus form a comprehensive toolkit of buffer management techniques.
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XML prefiltering. One of the earliest works to reduce the memory footprint
is XML document projection, a prefiltering technique first realized in the Galax
XQuery engine [77]. Based on a static analysis of the query, all data that is
certainly irrelevant to query evaluation is immediately discarded without further
processing. This approach can greatly reduce the main memory requirements
of query processors.

In this dissertation, we take on a new approach to implementing XML
prefiltering. Our technique takes string matching algorithms designed for ef-
ficient keyword search in flat strings into the second dimension, to navigate
in tree structured data. Different from existing schemes, we usually process
only fractions of the input and get by with very economical consumption of
main memory and processing time. Our experiments reveal that, already on
low-complexity problems such as XPath filtering, in-memory query engines can
experience speedups by two orders of magnitude. Even in comparison to bare
input tokenization by industrial-strength SAX parsers, which parse the input
data in virtually all competing applications, our system is up to ten times faster.

Event-based XQuery processing. We introduce an extension of the XQuery
language, called FluX, that supports event-based query processing and the con-
scious handling of main memory buffers. Purely event-based queries of this
language can be executed on streaming XML data in a very direct way. We
then develop an algorithm that statically rewrites XQueries into the FluX lan-
guage. This algorithm uses DTD order constraints to schedule event handlers
and to thus minimize the amount of buffering required for evaluating a query.

Effective buffer purging. We further propose a novel buffer purging al-
gorithm which combines static and dynamic analysis to keep main memory
consumption low. This is achieved by a technique that we call active garbage
collection, which timely purges buffers at runtime. Our approach is strongly
related to garbage collection via reference counting, as each node in the buffer
keeps track whether it is still relevant to the remaining query evaluation. While
a traditional garbage collector frees memory based on reference counts, i.e. based
on dynamic analysis alone, our approach additionally exploits data access pat-
terns that are derived in static query analysis. That is, we purge nodes from
buffers once they are no longer relevant for query evaluation, even if they are
still referenced in internal data structures.

For the techniques outlined above, we have built prototype systems for a prac-
tical fragment of XQuery. The experimental results demonstrate the signifi-
cant impact of our algorithms on main memory consumption. While improving
the memory footprint is our main objective, this typically also results in more
time-efficient algorithms. Indeed, in our experiments we generally also observe
improvements in running time.

Structure

This dissertation is divided into four parts. In the first part, we have so far mo-
tivated XML stream processing, and have outlined our contributions. Related
work is discussed in Chapter 2. In Chapter 3, we present technical background
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and define a practical XQuery fragment. We further introduce our own approach
to XML document projection.

We define an abstract framework for XML stream processing in the second
part. This framework is defined in the manner of term rewriting systems in
Chapter 4. In Chapter 5, we model two query engines. The first is a strictly
scalable XML transducer which can execute stream processing tasks such as
XML document projection, validation against DTDs, and even a restricted class
of stream transformations. The second query engine is an in-memory XQuery
processor implementing a powerful XQuery fragment. In Chapter 6, we discuss
various approaches to building buffer-conscious XML stream processors. At this
point, our goal is to provide intuition and motivation, rather than algorithms.
These will be delivered in the third part.

The third part presents concrete buffer management algorithms. We present
our implementation of XML prefiltering as a string matching problem in Chap-
ter 7. In Chapter 8, the static scheduling of streaming query operators is ex-
plored, both in the absence and presence of a schema. In combining static and
dynamic buffer management, we develop a garbage collector for XQuery pro-
cessors in Chapter 9. For each of these techniques, we have conducted extensive
experiments, as described in the corresponding chapters.

In the fourth part, we first summarize our contributions. We then point
out opportunities for future research, and discuss how the techniques developed
here may foster further research.

The Appendices contains details on queries and data used in our experiments,
and a list of publications that were written in context of this dissertation.
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2 Related Work

Over the past years, there has been growing interest in XML stream processing.
In this chapter, we discuss our contributions to this field in the context of related
work. We begin by describing the state-of-the-art. There currently co-exist
two notions of XML streams, namely that of a continuous stream of multiple
XML documents, called packets or messages , and that of a stream encoding
a single coherent XML document. We refer to streams of the first kind as
packet streams or multi-document streams, and to streams of the second kind
as single-document streams. For multi-document streams, we assume that a
stream consists of self-contained units that each fit into main memory, while we
do not make this assumption for single-document streams.

In Sections 2.1 and 2.2, we discuss systems and query languages for pro-
cessing these two kinds of XML streams. Section 2.3 is dedicated to the query
language XQuery. We discuss the growing interest in this language and compare
two processing models. The first is a two-phase approach, where the complete
input is loaded prior to query evaluation. The second is a streaming approach,
where the query is evaluated incrementally on the input stream. We then dis-
cuss techniques for XQuery optimization. In particular, we focus on reducing
the memory footprint of main memory-based XQuery engines.

2.1 Multi-Document Streams

In traditional publish-subscribe scenarios, streams are “flat” and consist of
attribute-value pairs or tuples. A variety of data stream management sys-
tems (DSMSs) have been introduced, such as the STREAM system [8, 82], the
AURORA project [10], TelegraphCQ [72], NiagaraST [83], the StreamGlobe
project [73], and SASE [118]. Yet when the data format is XML, richer mes-
sages and queries increase the complexity of stream processing accordingly.

In XML publish-subscribe scenarios [6, 17, 53], it is generally assumed that
the input consists of a sequence of self-contained XML documents or packets,
where each individual packet is small enough to fit into main memory. The
packets can then be processed one at-a-time, where several queries are evaluated
concurrently on a packet. Depending on the application, queries of different
expressiveness are evaluated. We distinguish between applications that evaluate
queries against single packets from those that evaluate queries specified over
several packets. In both cases, the optimization target is to share work when

9
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queries are evaluated concurrently. In the context of XML, this also concerns
the evaluation of structural joins (regarding the relationships of nodes in the
XML document tree), which must be evaluated in addition to value-based joins.
We also touch on this topic in the subsequent section, when we discuss XML
database techniques.

Queries against single packets. In packet routing, a router forwards in-
coming packets depending on client subscriptions [6, 98]. Subscriptions can be
specified using the XPath language for navigation inside XML documents. A
packet is forwarded to a subscriber if one of his or her XPath subscriptions
is matched by the packet. Commonly, these XPath queries are evaluated as
Boolean queries. For restricted fragments of XPath, typically using the child-
and descendant axis, value-based predicates, and the wildcard “*”, high work-
loads of queries can be compiled into a single pushdown transducer. This trans-
ducer can be implemented as a main memory-based application, which requires
little memory and yet scales up to high workloads of queries [6,27,36,53,54,87].

For the purpose of building efficient routing infrastructures, queries may
be clustered based on selectivity estimates, e.g. as in [26]. So we search for
similarities between queries for the purpose of sharing work in query evaluation.
This also holds for the BEA XQuery engine [49], where XQuery is evaluated
against single XML packets. The BEA engine is capable of caching intermediate
results for the evaluation of future queries [37].

Queries spanning several packets. As in traditional data stream manage-
ment systems, in XML DSMSs we can formulate continuous queries by means
of time constraints, such as queries with window-based joins. As queries are
posted over several packets, we talk of inter-document querying. CayugaX [59]
is such a system. Like the majority of its competitors, CayugaX has a relational
backend to accelerate join processing for high workloads of queries.

2.2 Single-Document Streams

In an alternative view, an XML stream is seen as a single coherent XML docu-
ment. We refer to this notion as single-document streams. A priori, no assump-
tions are made about whether parts of the input fit into main memory. This is
also the view taken in this dissertation. For the remainder of this dissertation,
by XML streams we will always refer to single-document XML streams.

Apart from data that occurs naturally in this form, such as in end-to-end
data exchange of large XML files, there is also the case of ad-hoc processing
of large XML files that reside on disk. It is adequate to process this data in
streaming form as well, as a single sequential scan over the input is preferable
to non-sequential data access on disk.

The majority of systems processing single-document streams are completely
main memory-based, and evaluate single queries [44,76,85]. It seems that multi-
query evaluation for single-document streams is a largely unexplored topic. We
next categorize existing systems depending on whether they only evaluate node-
selecting queries, or whether they can actually encode data transformations.
We also distinguish between query languages designed for XML streams, and
languages that have been proposed independently.
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Node selecting queries. In packet routing, XPath expressions are evaluated
as Boolean queries. In processing single-document streams, XPath expressions
are evaluated as node-selecting queries. Before output can be produced, parts
of the input may have to be buffered until conditions can be checked. Conse-
quently, these XPath processors require buffering capabilities. For instance, the
SPEX XPath processor [85] evaluates a practical XPath fragment over XML
streams. Its backend is a network of pushdown transducers, with one Turing
machine dedicated to the task of buffering. Related projects that also evaluate
node selecting queries include [13, 27, 76, 87].

XML stream transformation queries. Several query languages have been
proposed for the purpose of specifying XML stream transformations. For such
transformations to be scalable in the strictest sense, there is a need for query
languages which can be evaluated in linear time in the size of the input, by one
linear forward scan over the data. Also, at any time during query evaluation,
memory consumption must be bounded w.r.t. the length of the input stream,
but not the depth of the XML tree. This is motivated by the fact that we need
a stack, and hence at least the expressiveness of a pushdown automaton, for
even the most basic XML parsing tasks.

In earlier work, we have contributed to this class of queries a novel formal-
ism, the XML stream attribute grammars (XSAGs) [69, 94]. XSAG queries are
specified in the style of attribute grammars, e.g. based on DTDs as a grammar
formalism. XSAGs can be evaluated by deterministic pushdown transducers,
and adhere to the requirements for strict scalability outlined above. The XSAG
formalism provides a strong intuition for which transformations can be evaluated
scalably. Naturally, XSAGs can only specify queries of limited expressiveness.

In practice, it is desirable and often justified to allow for memory buffers in
query evaluation, at the cost of sacrificing strict scalability. The query languages
named in the following have been designed for stream processing, but are indeed
Turing-complete. We characterize selected XML stream processing languages
by their underlying design paradigms.

• Schema-based languages. As an extension to XSAGs, we have devel-
oped a full-fledged attribute grammar formalism with unrestricted Java
code in the attribution functions [96]. In the tradition of tools such as
Yacc [74], a parser generator translates TransformX attribute grammars
to Java source code, which may then be compiled and executed.

• Scripting languages. The language design of STX [29] leans on the
scripting language XSLT [115], but its execution model is targeted at
stream processing. While STX seems to be supported by an active user
community, it has so far received little attention in database research.

• Functional languages. XStream [50] is a functional programming lan-
guage that is based on term rewriting. Unlike XQuery, which is also func-
tional, XStream does not incorporate XPath expressions. In XStream
evaluation, all query terms are rewritten eagerly. Consequently, the re-
sults produced by rewriting terms may have to be temporarily buffered to
put the output of all terms in the correct order. Depending on the query
at hand, this can lead to a considerable memory overhead. In Section 6.1
we will discuss this issue in further detail.
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In the query languages above, queries are specified on a high level of ab-
straction, usually as tree manipulations. Authors of queries are oblivious to the
single XML events of which XML streams are composed. It is then the job of the
query compiler to translate queries over trees into an event-based processing of
the input. This also holds when XPath expressions are compiled into pushdown
automata that operate on the level of XML events, as done in XML packet
routing or filtering. In Chapter 7, we present an approach that compiles path
expressions to an even lower level of abstraction. Instead of processing SAX
events, our projection algorithm operates on the unparsed encoding of XML
streams. It largely disregards the token-structure of the input, by leveraging
established string matching algorithms. The effect is a highly scalable approach
to XML stream processing.

The low-level counterpart to tree-manipulating query languages are user-
written applications, e.g. based on SAX parsers [79], which are frequently te-
dious to maintain and error-prone. Nevertheless, there have been recent ad-
vances regarding XML type-checking even for such programs [88].

To specify backends for streaming query engines, we need formal frameworks
that allow for a unified view, as they support both the specification of high-level
tree manipulations and the low-level handling of single events from the XML
input stream. Both our formal framework for XML stream processing (which we
introduce in Chapter 4) and the FluX query language (presented in Chapter 8)
syntactically distinguish between both levels of abstraction.

General-purpose XML query languages. While originally not intended
for XML stream processing, there has been a large effort towards the streaming
evaluation of general-purpose XML query languages such as XSLT or XQuery,
e.g. see [42, 44, 70, 75, 76, 97, 101, 106]. Our work focuses on streaming XQuery
evaluation, and we dedicate the next section to this language.

2.3 XQuery Evaluation Techniques

We next discuss the XQuery language [114] and its areas of applications. We
classify different kinds of XQuery engines by their processing model. We distin-
guish systems that operate in a two-phase approach of loading the data before
evaluating queries, from systems that have a single-pass streaming execution
model. We conclude with an overview over XQuery optimization techniques.

XQuery is a functional query language where the most prominent feature
is the FWR-expression, a looping primitive. In a for-loop “for $x in α return
β”, the query-variable $x is bound to a sequence of nodes as computed by
expression α. In a for-loop “for $x in α where χ return β”, the condition χ
must be additionally satisfied for a binding to occur. Then for each binding of
the query-variable, the body β of the for-loop is evaluated.

This looping primitive is evidence of the functional nature of XQuery, as
expression β can be evaluated in parallel for all bindings of $x. XML databases
commonly exploit this property in the compilation of query plans. Yet as we
discuss in Chapter 6, in the context of main memory-based XQuery processors,
it is sometimes preferable to evaluate queries such that each query-variable binds
to only one node from the input document at-a-time.
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XQuery language extensions. While XQuery has been approved as a W3C
standard, there is ongoing interest in the design of this language. Recently,
various language extensions have been proposed.

• XQuery in application development. XQuery is increasingly being
used as a programming language, to avoid the impedance mismatch fre-
quently observed when applications for XML processing are implemented
with with XML-unrelated programming languages. For this purpose, di-
alects such as XQueryP [24] and XQuery! [52] have emerged.

• XQuery with full-text support. To support versatile text search in
XML documents and to compute ranked results, the XQuery full-text
extensions have been proposed [7,31]. This makes XQuery a candidate for
XML processing tasks in information-retrieval as well (c.f. [57, 103]).

• XQuery with window-based aggregations. While XQuery was not
intended for stream processing, it has been studied intensively in this
context [41–43, 70, 73, 75, 76, 97, 101]. Recently, stream-specific language
extensions such as window-based aggregations have been explored [23,99].

We regard these efforts to further extend the XQuery language as a strong
indicator that the adoption of the language is gaining momentum.

XQuery processing models. As the XQuery language claims new territo-
ries, building efficient XQuery processors is an ever so important task. In the
past, a variety of processors has evolved. We discuss them regarding their suit-
ability for stream processing.

Two-phase query evaluation. In systems implementing a two-phase ap-
proach, the data is first loaded, either into main memory [40, 51, 90, 93] or an
XML database [47, 62, 81], before query evaluation sets in. This has the ad-
vantage that the compilation of query plans does not have to assume a single
sequential scan over the data. Hence, the full armamentarium of classic query
optimization techniques, as well as join algorithms or indexes specifically tar-
geted at XML query evaluation, can be applied.

Yet processors that load the entire input into main memory are severely
self-limited as to the amount of data they can handle, as main memory is fixed
on a given machine. By extending memory-based query processors with the
capability to spill data to disk, their scalability can be increased [39, 107]. Like
full-fledged XML databases, these query processors can handle large inputs.
Nevertheless, the two-phase approach is intrinsically ill-suited for processing
XML streams, as already discussed in the Introduction.

Streaming query evaluation. To scale up to large inputs and guaran-
tee low response times at the same time, a streaming evaluation paradigm is
required. That is, queries are processed as the input is read, and before an
integrated representation of the complete input is available. In essence, this is
an instance of the classic database principle of pipelining, or can even be seen
as an instance of the problem of processing text files as is [102].

Several main memory-based systems with streaming capabilities have been
shown to scale to XML streams for many practical queries (e.g. [6, 36, 49, 69,
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70, 75, 76, 85, 97, 100]). Interestingly, in some efforts towards developing main
memory-based XQuery engines whose original emphasis was not on stream pro-
cessing, such as BEA’s XQRL [49], it has been observed that it is nevertheless
worthwhile to employ stream processing operators. Yet naturally, there are also
queries with blocking operators, or descendant axes and wildcards, where little
can be evaluated on-the-fly [11, 42, 70, 75].

XQuery optimization. XQuery optimization is an active research area. For
instance, XQueries may be optimized using type (or schema) information [28,
64]. Additionally, there are logical optimizations [28] on the level of the query
language, such as the elimination of let-expression to obtain composition-free
queries [68], and various algebras [43, 45, 78, 92, 101,116].

XQuery differs from other query languages in its sensitivity regarding order
and duplicates. Sorting and duplicate elimination are inherently blocking oper-
ations, and there is work on avoiding sorts [46,56,58]. Also, the efficient evalua-
tion of structural joins (as opposed to value-based joins) in XML databases has
received a lot of attention, which lead to novel algorithms for join evaluation and
join reordering, e.g. [4,20,119]. In XML databases, the computation of structural
joins is often accompanied by XML-specific indexing schemes, e.g. [86, 91, 108].

In main memory-based XQuery processors, a primary optimization target is
the main memory consumption. Below, we consider solutions targeted at the
internal representations of XML data as well as algorithms for prefiltering the
input. We contrast event-based query evaluation, which operates directly on
the input stream, with query evaluation over buffered data. We also address
the purging of buffers during query evaluation.

Representations of the data model. Main memory-based XML query
engines represent their input using DOM-like tree datastructures [40, 77, 93, 97,
111, 121], array-based encodings [90], or they store sequences of SAX-events
in buffers [49, 70]. The input stored in main memory commonly requires sig-
nificantly more space than the same document residing on disk, so that main
memory becomes a crucial bottleneck [15,22,70,77]. In consequence, the internal
representation of XML documents has attracted attention both from academic
research and renowned projects in the open-source community, ranging from
query-able compressions [21, 22] to on-demand loading of subtrees from disk,
while the tree is traversed in main memory [121].

XML document projection. Among the early work on XQuery buffer
management is XML document projection. The idea is to employ static query
analysis to load only data relevant to query evaluation into main memory buffers.
The work of [77] covers full XQuery with XPath downward axes. The benefits
of this approach were quickly noted, and prefiltering has since been integrated
both in open-source [77, 97] and commercial XQuery engines [32]. Successor
systems additionally exploit schema information and filter for predicates [15].

In Section 3.5, we introduce our own approach to XML document projection.
This approach can be implemented very efficiently, as it requires only a single
pass over the input. In particular, the decision whether to discard a node is
already made when its opening tag is read. Without the capability to buffer
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data or to exploit schema knowledge, there are cases where we can actually
project out more nodes than competitor systems.

Scheduling of event-based query operators. In streaming query eval-
uation, parts of the query may be evaluated directly on the stream, while other
parts must be evaluated over buffered data. For this purpose, some query alge-
bras have dedicated streaming operators, e.g. [44, 70, 101]. Typically, operator
scheduling takes place at query compile time [44,70], yet [101] also discusses the
potential of cost-based operator scheduling at runtime. In the Galax XQuery
engine [44], a physical algebra for full XQuery with streaming operators is used.
The approach of the FluXQuery engine from Chapter 8 was the first to mix op-
erators for query-processing over streams and buffers. It can further be seen as
more general than the Galax approach, as it does not specify the physical query
plans in detail. Rather, the FluXQuery algorithm specifies which parts of the
query are evaluated directly on the stream and which are evaluated over buffered
data. Moreover, in doing so FluXQuery can factor in schema information.

The system from [75] also performs data dependency analysis on queries for
the compilation of query execution plans. However, the focus is on computing
XQuery aggregations on-the-fly, while the streaming evaluation of the other
language primitives is disregarded.

Purging buffers of irrelevant data. In evaluating XQueries in a buffer-
conscious manner, data that is no longer relevant for query evaluation needs
to be purged from buffers. In static buffer management, as in the case of
our FluXQuery engine (see Chapter 8) and similarly in [75], the lifetime of a
buffer is associated with the scope of an XQuery variable. While buffers can
be conveniently deleted once the scope of the associated variable ends, avoiding
that data is buffered redundantly becomes a challenge. Such situations arise if
the same XML node is bound by different variables during query evaluation,
e.g. as the node is required for checking a condition as well as for producing
output. As we discuss in Section 6.3.1, it can be infeasible to avoid duplicate
buffering based on static analysis alone.

Here, a dynamic approach is required. In the GCX XQuery engine (see
Chapter 9), we implement a novel buffer purging algorithm. Our approach is
related to garbage collection. Yet while garbage collection mechanisms have also
been implemented in other main memory-based XML processors, e.g. see [50],
they rely exclusively on reference counting to determine which buffer contents
are no longer reachable. There is earlier work where garbage collection is em-
ployed by the database community, namely in object-oriented databases [9].
However, these earlier approaches all rely on the analysis of references between
objects. In contrast, we statically analyze queries to derive data access patterns,
which center around the notion of the relevance of data to query evaluation. This
makes it possible to delete data from buffers once we know from the state of
query evaluation that it is no longer required, even if it is still referenced inside
datastructures internal to the query engine.
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3 Technical Background

This chapter gives an overview over the main theoretical tools that are used
in this dissertation. Throughout, we assume that all XML documents are well-
formed, where we also consider empty documents to be well-formed. We abstract
from attributes in the XML document model, as these can always be modeled as
children of an element node. We assume that all tagnames in XML documents
stem from a set Tag, and that all textual data in XML documents stems from a
set Char of characters. We further assume familiarity with the basics of regular
expressions, finite-state automata, and grammars (c.f. [60]).

We begin this chapter by introducing formalisms from automata theory for
XML processing. In Section 3.1, we present known results on one-unambiguous
regular expressions. In Section 3.2, we define a class of pushdown transducers
which is expressly suited for XML processing. This formalism captures a large
class of XML filtering tasks, and even certain XML stream transformations. We
review DTDs as a grammar formalism for XML documents in Section 3.3.

In Section 3.4, we define a syntactic XQuery fragment along with some
terminology and rules for query normalization. In Section 3.5, we define our
notion of XML document projection based on static query analysis. Finally, we
introduce the concept counting the number of ways in which a path is matched
by a node in an XML document (see Section 3.6).

3.1 One-Unambiguous Regular Expressions

We assume the usual notion of regular expressions. By L(ρ), we denote the
language defined by the regular expression ρ, and by symb(ρ) the set of atomic
symbols that occur in ρ. By a marking of a regular expression ρ over an alpha-
bet Σ, we denote a regular expression ρ′ where each occurrence of an atomic
symbol in ρ is replaced by the symbol with its position among the atomic sym-
bols of ρ added as subscript. For instance, the marking of (a ∪ b)∗.a.a∗ is
(a1 ∪ b2)∗.a3.a

∗
4. The reverse of a marking, indicated by #, is obtained by

dropping the subscripts.

Ambiguity in regular languages. A regular expression ρ is called ambigu-
ous [16] if there are two words w1, w2 ∈ L(ρ′) such that w1 6= w2 but w#

1 = w#
2 .

A regular expression is called unambiguous if it is not ambiguous.

17
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Example 3.1 The language defined by the regular expression ρ = (a∪ b)∗.a.a∗

is ambiguous because the language defined by its marking ρ′ = (a1 ∪ b2)∗.a3.a
∗
4

contains the words a1.a3 and a3.a4, which correspond to the word aa in L(ρ).�

Definition 3.1 ( [19]) Let ρ be a regular expression, ρ′ its marking, and Σ′ =
symb(ρ′) the marked alphabet used by ρ′. Then ρ is called one-ambiguous iff
there are words u, v, w over Σ′ and symbols x 6= y ∈ Σ′ with x# = y# such that
uxv, uyw ∈ L(ρ′). A regular expression is called one-unambiguous if it is not
one-ambiguous. �

Intuitively, a one-unambiguous regular expression ρ allows us to determine
which atomic symbol in ρmatches the next symbol from an input word w ∈ L(ρ)
while we parse w from left to right with a lookahead of one token.

Example 3.2 Consider the regular expression ρ = a∗.a and its marking ρ′ =
a∗1.a2. Let u = a1, x = a2, v = ǫ, y = a1, and w = a2. Clearly, uxv = a1a2 and
uyw = a1a1a2 are both words of L(ρ′), so ρ is one-ambiguous. The equivalent
regular expression a.a∗ is one-unambiguous. �

We next introduce Glushkov automata, which are finite-state automata that
lend themselves nicely for checking one-unambiguity of regular expressions.

Glushkov automata. For a given regular language L over alphabet Σ, the
set first(L) consists of precisely those symbols x such that there is a word w
with xw ∈ L. For each x ∈ Σ, the set follow(L, x) consists of those symbols y
such that there are words v, w with vxyw ∈ L. Finally, last(L) consists of those
symbols x such that there is a word w with wx ∈ L.

Definition 3.2 ( [19]) Let ρ be a regular expression and let ρ′ be its marking.
The Glushkov automaton of ρ is the nondeterministic finite-state automaton
G(ρ) = (Q, symb(ρ), δ, q0, F ) with

• Q = symb(ρ′) ∪ {q0}, i.e. the states of G(ρ) contain the marked symbols
in ρ′ and a new initial state q0.

• For each a ∈ symb(ρ), δ(q0, a) = {x | x ∈ first(ρ′) ∧ x# = a}.

• For x ∈ symb(ρ′), a ∈ symb(ρ), δ(x, a) = {y | y ∈ follow(ρ′, x) ∧ y# = a}.

• and F = last(ρ′) ∪ {q0 | ǫ ∈ L(ρ)}. �

The Glushkov automaton for a regular expression has no transitions that
lead into the initial state. Any two transitions that lead into the same state
have identical labels [19], a property called homogeneity [25]. A state in a
homogeneous automaton is a-labeled if its incoming transitions carry label a.

Example 3.3 The automata from Figure 3.1 are all homogeneous. All states a1

and a2 are a-labeled, while state b2 is b-labeled. �

Proposition 3.1 ( [19]) Let ρ be a regular expression. Then ρ is one-unam-
biguous iff its Glushkov automaton G(ρ) is deterministic.
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Figure 3.1: Glushkov automata.

It follows from this proposition and the definition of Glushkov automata
that deterministic finite-state automata (DFAs) can be constructed from one-
unambiguous regular expressions in just quadratic time [19].

Example 3.4 We consider the regular expressions (a∗)∗, a.a∗, and a∗ ∪ b∗.
They each are one-unambiguous as the corresponding Glushkov automata in
Figures 3.1(a), (b), and (d) are deterministic. However, the Glushkov automa-
ton of the regular expression a∗.a in Figure 3.1(c) has several distinct transitions
leading from states q0 and a1 under input symbol a, so it is not deterministic.
It follows from the above Proposition that a∗.a is not one-unambiguous. �

Order constraints. We next define a set of order constraints to be checked
on regular expressions. In [71], we have shown how these constraints can be
computed efficiently for one-unambiguous regular expressions.

In the following let ρ be a regular expression over alphabet Σ. Given a
word w, let wi denote its i-th symbol.

Definition 3.3 We define a binary relation Ordρ ⊆ Σ×Σ such that for a, b ∈ Σ,
Ordρ(a, b) :⇔ ∄w ∈ L(ρ) : wi = b ∧wj = a ∧ i < j. �

Intuitively, order constraint Ordρ(a, b) holds if there is no word in L(ρ) in
which a symbol a is preceded by a symbol b. In other words, all a-symbols occur
before all b-symbols.

Example 3.5 Let ρ = (a∗.b.c∗.(d|e∗).a∗). Then we have Ordρ(b, c), Ordρ(c, d),
and Ordρ(c, e), but ¬Ordρ(a, c). Relation Ordρ is transitive, so Ordρ(b, d). �

Definition 3.4 Let ρ be a regular expression and let S be a set of symbols.
Then for each word u = u1 . . . un ∈ Σ∗, we define

Pastρ,S(u) :⇔ ∀w ∈ Σ∗ : uw ∈ L(ρ)→ ∄ i : wi ∈ S

first-pastρ,S(u) :⇔ Pastρ,S(u) ∧
(

n > 0→ ¬Pastρ,S(u1 . . . un−1)
)

. �

Intuitively, when processing a word uw in L(ρ) from left to right, if condition
first-pastρ,S(u) holds, then the moment when we read the last symbol of u is
the earliest possible time at which we know that none of the symbols in S can
be seen anymore until the end of the word uw.
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3.2 XML Stream Pushdown Transducers

We next define XML-DPDTs, as introduced in our earlier work [69]. These are
deterministic pushdown transducers with a restricted stack discipline that is
natural in the context of XML stream processing. With XML-DPDTs, the size
of the stack is bounded by the maximum depth of the incoming document tree.
Items are pushed on the stack for reading opening tags, and are popped from
the stack for matching closing tags.

We first introduce deterministic pushdown transducers (DPDTs) as deter-
ministic pushdown automata with output and which accept by empty stack. As
with pushdown automata [3], the DPDTs accepting by empty stack are equiv-
alent to the DPDTs accepting by final state.

Definition 3.5 A deterministic pushdown transducer is a tuple

T = (Q,Σ,Γ,∆, δ, q0, Z0)

where Q is a finite set of states, Σ, Γ, and ∆ are the finite alphabets for input
tape, stack, and output tape respectively, δ is the partial transition function

δ : Q× (Σ ∪ {ǫ})× Γ→ Q× Γ∗ ×∆∗,

q0 denotes the initial state, and Z0 the initial stack symbol. For each q ∈ Q and
X ∈ Γ such that δ(q, ǫ,X) is defined, δ(q, a,X) is undefined for all a ∈ Σ. A
transition δ(q, ǫ,X) is an ǫ-transition. A DPDT without ǫ-transitions is ǫ-free.

We define a run of T by means of instantaneous descriptions (IDs), which
describe the configurations of a DPDT at a given instant. An ID is a quadruple

(q, w, α, o) ∈ Q× Σ∗ × Γ∗ ×∆∗

where q is a state, w is the remaining input, α a string of stack symbols denoting
the current stack, and o the output generated so far. We make a transition

(q, aw,Xα, o) ⊢ (q′, w, γα, oσ)

if δ(q, a,X) = (q′, γ, σ), where a ∈ Σ∪ {ǫ}, X ∈ Γ, α ∈ Γ∗, q′ ∈ Q, and σ ∈ ∆∗.
Here, γ ∈ Γ∗ is the string of stack symbols which replace X on top of the stack.
For γ = ǫ, the stack is popped, whereas for γ = X , the stack remains unchanged.
If γ = Y X , then Y is pushed on top of X .

Let ⊢∗ be the reflexive and transitive closure of ⊢. T accepts an input word
w ∈ Σ∗ by empty stack if (q0, w, Z0, ǫ) ⊢∗ (q, ǫ, ǫ, o) for q ∈ Q and o ∈ ∆∗. We
say o is the output for input w. The language accepted by a DPDT T , denoted
L(T ), is the set of strings accepted by T . �

For a set S, we use S≤2 as a shortcut for {ǫ} ∪ S ∪ (S × S).

Definition 3.6 Let the input alphabet

Σ = {〈t〉 | t ∈ Tag} ∪ {〈/t〉 | t ∈ Tag} ∪ Char

consist of matching XML opening and closing tags, as well as character symbols.
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An XML-DPDT is a DPDT T = (Q,Σ,Γ,∆, δ, q0, Z0) where Γ = {Z0} ∪
(Tag×Γ′), so the stack alphabet consists of stack start symbol Z0, and pairs of
tags and symbols from some set Γ′. The transition function

δ : Q× (Σ ∪ {ǫ})× Γ→ Q× Γ≤2 ×∆∗

is restricted as follows:

1. In the very first transition, the initial stack symbol is replaced; we require

δ
(

q0, 〈t〉, Z0

)

=
(

p, (t, Y ), σ
)

for 〈t〉 ∈ Σ, p ∈ Q, (t, Y ) ∈ Γ, and σ ∈ ∆∗.

2. For all other configurations of q ∈ Q and X ∈ Γ, a symbol is pushed on
the stack when an opening tag is read from the input stream. We require

δ
(

q, 〈t〉, X
)

=
(

p, (t, Y )X,σ
)

for 〈t〉 ∈ Σ, p ∈ Q, (t, Y ) ∈ Γ, and σ ∈ ∆∗.

3. A symbol is popped from the stack when a matching closing is encountered
in the input stream, so

δ
(

q, 〈/t〉, (t, Y )
)

=
(

p, ǫ, σ
)

for p, q ∈ Q, 〈/t〉 ∈ Σ, (t, Y ) ∈ Γ, and σ ∈ ∆∗. �

Example 3.6 The following XML-DPDT accepts only XML documents where
all nodes are labeled differently from their parents. To communicate that a doc-
ument has been accepted, the transducer outputs “〈accept〉〈/accept〉”, otherwise
it outputs “〈reject〉〈/reject〉”.

We define this XML-DPDT for the set of states {q0, q1, q2}. The idea in
defining the transition function is the following. The XML-DPDT will start in
state q0, and enter state q1 for the first opening tag in the input. It remains in
state q1 unless a node is encountered that carries the same label as its parent.
Then the designated error state q2 is entered. We will define no outgoing tran-
sitions for this state. In order to compare the labels of nodes with those of their
parents, we push labels on the stack. To this end, we define the stack alphabet
Γ = {Z0} ∪ (Tag × {q0, q1, q2}) for the initial stack symbol Z0. Then we can
store both the label of the parent node and the state entered when processing
its opening tag on the stack.

We now define the transducer transitions accordingly. For each tagname t,
we define an initial transition

δ(q0, 〈t〉, Z0) = (q1, (t, q0), ǫ)

that processes the first opening tag in the input, and replaces the initial stack
symbol by the tagname and the initial state.

For all opening tags encountered in state q1, we check whether the tagname
differs from the tagname of the parent node, which is stored on the stack. We
next consider all states q that are either q0 or q1.
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• Let us first consider the case where the current node has the same label
as its parent. For all tagnames t, we define a transition

δ(q1, 〈t〉, (t, q)) = (q2, (t, q2)(t, q), 〈reject〉〈/reject〉).

The XML-DPDT outputs “〈reject〉〈/reject〉” and enters the error state q2.
No outgoing transitions are defined for q2, so the stack cannot be emptied
anymore. As XML-DPDTs accept by empty stack, the input is rejected.

• For all distinct tagnames a and b, we define a transition

δ(q1, 〈a〉, (b, q)) = (q1, (a, q1)(b, q), ǫ)

where the current tagname and state are pushed onto the stack.

Transitions reading character data leave the current stack and state un-
changed. So for all characters c and all states q, we define δ(q, c,X) = (q,X, ǫ).

It remains to specify the transitions for reading closing tags. This is also
done for all tagnames t:

• When opening and closing tags do not match, the transducer rejects the
input. For state q either q0 or q1 and distinct tagnames a and b, we define
the transition δ(q1, 〈/a〉, (b, q)) = (q2, ǫ, 〈reject〉〈//reject〉).

• We distinguish the case when the last token from the input stream is read,
which is the case when state q0 is on top of the stack. With executing
transition δ(q1, 〈/t〉, (t, q0)) = (q1, ǫ, 〈accept〉〈/accept〉) the stack becomes
empty and the transducer accepts the input.

• For all other closing tags, we define δ(q1, 〈/t〉, (t, q1)) = (q1, ǫ, ǫ).

Given the input “〈a〉〈b〉〈/b〉〈/a〉”, we show a run of this transducer below.

(q0, 〈a〉〈b〉〈/b〉〈/a〉, Z0, ǫ)
⊢ (q1, 〈b〉〈/b〉〈/a〉, (a, q0), ǫ)
⊢ (q1, 〈/b〉〈/a〉, (b, q1)(a, q0), ǫ)
⊢ (q1, 〈/a〉, (a, q0), ǫ)
⊢ (q1, ǫ, ǫ, 〈accept〉〈/accept〉)

Note that the depth of the XML-DPDT stack is bounded by the depth of
the input document tree. �

3.3 Document Type Definitions

Document type definitions (DTDs) [117] are deterministic context-free gram-
mars for defining XML documents. We assume familiarity with common gram-
mar formalisms [60], and merely introduce DTDs on a syntactic level. Note that
in DTDs, we do not distinguish between nonterminals and terminals.
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Syntax. DTDs are grammars of the form

<!DOCTYPE root element [ element definitions ] >

where the root element specifies the grammar start symbol. The element defi-
nitions are specified as a list. Each single element definition in this list is of the
form “<!ELEMENT tagname (ρ)>” with a tagname and a one-unambiguous regu-
lar expression ρ over tagnames and the token #PCDATA. Token #PCDATA denotes
character content. The designated term EMPTY indicates that ρ is the empty
regular expression. The operators allowed in specifying ρ are parentheses, the
union “|”, comma for concatenation, the Kleene star “*” for any number of
occurrences, and “+” denoting at least one occurrence. The intuition for an
element definition is that the tagname specifies the label of a given node, while
the regular expression defines the possible labels and order of its children.

<!DOCTYPE site [

<!ELEMENT site (regions)>

<!ELEMENT regions (africa, asia, australia)>

<!ELEMENT africa (item*)>

<!ELEMENT asia (item*)>

<!ELEMENT australia (item*)>

<!ELEMENT item (location,name,payment,description,

shipping,incategory+)>

<!ELEMENT location (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT payment (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT shipping (#PCDATA)>

<!ELEMENT incategory EMPTY> ... ]>

Figure 3.2: Excerpt from a DTD defining auction data.

Example 3.7 Figure 3.2 shows an excerpt of a non-recursive DTD that defines
transactions in an online auction, in the style of the XMark benchmark [122].
Note that any XML document adhering to this DTD contains a site-node as
top-level node. �

Validation. We denote the language defined by a DTD D by L(D). We say
an XML document is valid w.r.t. a DTD D if it is in L(D). As L(D) is a
deterministic context-free language, validation can be realized by deterministic
pushdown automata, or the XML-DPDTs previously introduced. Of course, for
validation against non-recursive DTDs, finite-state automata are sufficient.

3.4 A Composition-free Fragment of XQuery

We study fragments of composition-free XQuery [67]. This implies that during
query evaluation, query-variables only bind to nodes from the input document
tree. The first query fragment, called XQ, comprises queries with the XPath
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XQ ::= 〈a〉q〈/a〉

q ::= () | 〈a〉q〈/a〉 | var | var/axis :: ν | (q, ... , q)

| for var in var/axis :: ν [where cond ] return q

| if cond then q else q | string

cond ::= true() | false() | exists var/axis :: ν | (cond)

| cond and cond | cond or cond | not cond

| operand RelOp operand

| some var in var/axis :: ν satisfies cond

operand ::= var | var/axis :: ν | string

axis ::= child | descendant

ν ::= a | ∗ | text() | node()

RelOp ::= ≤ | < | = | ≥ | >

Figure 3.3: The XQuery fragment XQ.

axes child and descendant and the node tests for tagnames, the wildcard “∗”,
and further “text()” and “node()”. The second fragment, which we call XQ−,
is a subset of XQ. It is restricted to the XPath axis child and node tests for
tagnames only.

With nested for-loops, conditionals, and joins, these fragments nevertheless
cover many practical queries: While we only allow single-step XPath expres-
sions, e.g. of the form $x/a but not $x/a/b, many cases of multi-step XPath
expressions can be rewritten into equivalent nested for-loops with single-step
expressions. Further, we argue that many practical queries can be specified
without composition. Only a handful of the queries from the XQuery Use
Cases actually employ composition [123], and in the majority of the XMark
queries [122], composition can be removed using the algorithm from [68].

Syntax. Figure 3.3 shows the abstract syntax of our XQuery fragment XQ
where var ranges over the set of XQuery variables and a over the set of tagnames.
In the following, we frequently refer to variables in XQuery expressions as query-
variables, or merely variables when the context is clear. By string we denote
string constants that are enclosed in quotation marks.

The fragment XQ− is obtained by restricting axis to the XPath axis child,
and the node test ν to tests for tagnames only. In the following, we assume the
XQuery fragment XQ unless we state otherwise.

For syntactic convenience, we make use of the XPath abbreviations “/”
and “//” for the child- and descendant axis when specifying XQueries.

Normalization. To simplify static query analysis, we consider only a reduced
number of syntactic constructs. We normalize queries in two steps.

(1) By renaming query-variables, we ensure that each for-loop or some-
expression binds a variable of a different name. In particular, we rename query-
variables such that no variable uses the reserved name “$root”. (2) We then
apply the rewriting rules from Figure 3.4 until no further change is possible.
The rewriting rules are specified in the tradition of inference rules, and read
as follows. If a query expression matches the premise of a rule, it is rewritten
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(n1)
for $x in σ where χ return β

for $x in σ return (if χ then β else ( ))

(n2)
$y/axis :: ν

for $x0 in $y/axis :: ν return $x0

(x0 new)

(n3)
exists $y/axis :: ν

some $x0 in $y/axis :: ν satisfies true()
(x0 new)

(n4)
$y/axis :: ν RelOp α

some $x0 in $y/axis :: ν satisfies ($x0 RelOp α)
(x0 new)

(n5)
α RelOp $y/axis :: ν

some $x0 in $y/axis :: ν satisfies (α RelOp $x0)
(x0 new)

(n6)
/axis :: ν

$root/axis :: ν

Figure 3.4: XQuery normalization rules.

Q′ ::= 〈a〉 q′〈/a〉

q′ ::= () | 〈a〉q′〈/a〉 | var | (q′, ... , q′)

| for var in var/axis :: ν return q′

| if cond ′a then q′ else q′ | string

cond ′ ::= true() | false() | operand ′ RelOp operand ′

| some var in var/axis :: ν satisfies cond ′

| cond ′ and cond ′ | cond ′ or cond ′ | not cond ′

operand ′ ::= var | string

Figure 3.5: The normalized XQuery fragment XQ.

as specified in the conclusion of this rule. In doing so, it may be necessary to
introduce fresh query-variables.

Rule n1 translates where-conditions into if-then-else statements with an
empty else-part. Rule n2 introduces for-loops for XPath expressions that pro-
duce output. Note that a fresh query-variable is introduced. Likewise, we
rewrite XPath expressions inside conditionals using some-expressions and intro-
ducing new variables, as done by rules n3 through n5.

In rule n6, we translate absolute path expression into references to an implicit
query-variable named “$root”. As a syntactical convention, we will hide the
effect of applying this step when showing example queries. The intention behind
this convention is that example queries can then be directly evaluated by any
XQuery processor implementing the XQuery standard.

Note that the result of normalization is not necessarily unique, but that
normalized queries are always equivalent to the original query.

The abstract syntax of normalized queries is shown in Figure 3.5. The
productions for axis, RelOp, and node test ν are defined as in Figure 3.3.
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<results>

{ for $bib in /bib return

(for $b in $bib/book

where ( exists($b/price) )

return $b,

for $a in $bib/article

where (some $x1 in $bib/book

satisfies

($a/author=$x1/editor))

return $a ) }

</results>

1 <results>

2 { for $bib in $root/bib return

3 ( for $b in $bib/book return

4 if (some $x2 in $b/price

5 satisfies true())

6 then $b else ( ),

7 for $a in $bib/article return

8 if (some $x1 in $bib/book

9 satisfies

10 (some $x3 in $x1/editor

11 satisfies

12 (some $x4 in $a/author

13 satisfies ($x3=$x4))))

14 then $a else ( ) ) }

15 </results>

(a) (b)

Figure 3.6: Translation of query (a) into normal form (b).

Example 3.8 In normalizing the query from Figure 3.6(a), we can obtain the
query from Figure 3.6(b). �

Query-variables. We next introduce some terminology for query-variables.
We assume that all queries are normalized.

Free and bound variables. We introduce the common notions of bound
and free query-variables in analogy to the free variables of a formula in first-
order logic. In the table in Figure 3.7, we inductively define free and bound
query-variables in normalized XQuery expressions. The first column describes
the XQuery expression. In the second and third columns, we state how the
free and bound variables are determined for the given expression. The last row
concerns all XQuery expressions that have not been explicitly listed.

expression α freeVar(α) boundVar(α)

〈a〉q〈/a〉 freeVar(q) boundVar(q)

$x {$x} ∅

for $x in $y/π return q {$y} ∪ freeVar(q) \ {$x} {$x} ∪ boundVar(q)

if χ then q1 else q2

S

e∈{χ,q1,q2}
freeVar(e)

S

e∈{χ,q1,q2}
boundVar(e)

some $x in $y/π satisfies χ {$y} ∪ freeVar(χ) \ {$x} {$x} ∪ boundVar(χ)

o1 RelOp o2

S

e∈{o1,o2}
freeVar(e)

S

e∈{o1,o2}
boundVar(e)

χ1 and χ2

S

e∈{χ1,χ2}
freeVar(e)

S

e∈{χ1,χ2}
boundVar(e)

χ1 or χ2

S

e∈{χ1,χ2}
freeVar(e)

S

e∈{χ1,χ2}
boundVar(e)

not χ freeVar(χ) boundVar(χ)

. . . all others. . . ∅ ∅

Figure 3.7: Free and bound query-variables.

Example 3.9 Given query Q from Figure 3.6(b), freeVar(Q) = {$root} and
boundVar(Q) comprises all other query-variables occurring in Q. Let us now
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consider the subexpression which spans lines 3 through 6. Here, $bib is the only
free variable, and the variables $b and $x2 are bound. �

Parent variables. We assume an XQuery with a subexpression β. Then
the parent variable of β is determined by the least ancestor expression in the
query parse tree which is either a for-loop or a some-expression binding a vari-
able $x. Then $x is the parent variable of expression β, which we denote by
parentVar(β) = $x. If an expression has no for-loops or some-expressions among
its ancestor expressions, then variable $root is its parent variable.

Example 3.10 Consider the XQuery in Figure 3.6(b). For the query expression
spanning lines 1 through 15, the parent variable is $root. The same holds for
the expression spanning lines 2 trough 14. The parent variable of the expression
from lines 3 through 6 is $bib, and the parent variable for the expression from
lines 4 and 5 is $b. The subexpressions “$b” and “( )” in line 6 both have $b
as parent variable. �

Variable lineage. Given a query from our fragment, we define the concept
of lineage paths between two distinct variables $x and $y. Variable lineage is
derived from normalized queries in a closure computation:

1. For each for-loop “for $x in $y/π return α” or a some-expression “some
$x in $y/π satisfies α”, we define lineage($y, $x) = $y/π.

2. Next, we repeatedly consider each pair of variables $x and $y such that
lineage($y, $x) is defined, If there exists a for-loop “for $z in $x/π re-
turn α” or some-expression “some $z in $x/π satisfies α”, then we define
lineage($y, $z) = lineage($y, $x)/π.

Example 3.11 Given the query from Figure 3.6(a), we derive lineage paths for
selected variables as summarized in the table below. Columns separate different
variable names for $y, and rows distinguish different variable names $x.

$x lineage($root,$x) lineage($bib,$x) lineage($b,$x) lineage($a,$x)

$bib $root/bib
$b $root/bib/book $bib/book
$x2 $root/bib/book/price $bib/book/price $b/price
$a $root/bib/article $bib/article
$x1 $root/bib/book $bib/book
$x3 $root/bib/book/editor $bib/book/editor
$x4 $root/bib/article/author $bib/article/author $a/author

For instance, the table encodes that lineage($bib, $b) =$bib/book and fur-
ther that lineage($bib, $x2) = $bib/book/price. The entries for the empty cells
in the table are not defined. �

Semantics. XQ queries are evaluated according to the usual XQuery seman-
tics [116]. We further assume the designated query-variable $root, which will
bind to the root of the XML input document.

Definition 3.7 An XQuery is an XQ expression in which all free variables
except for the special variable $root corresponding to the root of the document
are bound. �
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3.5 XML Document Projection

XML document projection is an established technique to reduce the memory
consumption of main memory-based XML processors. It was first implemented
for the Galax XQuery processor [77]. The idea is to load only data relevant to
query evaluation into main memory buffers. This prefiltering of XML documents
is based on projection paths. The projection paths are extracted in static query
analysis, and capture a superset of the data that is actually relevant for query
evaluation. In reverse, this means that all input data that is not captured by
projection paths is irrelevant and can be filtered out.

We next define our own notion of projection paths and their semantics.
As our XQuery fragment is more restricted than the one covered in [77], our
path extraction algorithm is easier to define. Our projection semantics can be
implemented such that prefiltering occurs in a single scan over the input, even
for queries with the descendant axis, as possible in [15] but not in [77]. At the
same time, our approach often allows us also to discard nodes in the document
tree which cannot be discarded by other projection algorithms [15, 77].

3.5.1 Projection Paths

In introducing projection paths, we lean on the concept from [77] and the stan-
dard XPath notation. The syntax of projection paths is defined by the grammar
below, with XPath axes axis and node tests ν as defined in Figure 3.3. We use
the flag “#” to indicate that the descendants of selected nodes are also relevant
to query evaluation. The semantics of this flag is equivalent to the relative
XPath step expression ./descendant-or-self::node().

ProjectionPath ::= /SimplePath | /SimplePath#

SimplePath ::= axis :: ν | SimplePath/SimplePath

We next define the extraction of projection paths from XQueries in static
analysis. Note that projection paths may also be extracted from other XML
transformation languages, such as XSLT [115]. For our XQuery fragment, we
associate projection paths with query-variables. The mapping from query-
variables to projection paths is denoted by the function pp. The following
definition uses the notion of variable lineage, as introduced in Section 3.4.

Definition 3.8 Let Q be a normalized XQuery and let $x be a query-variable
such that lineage($root, $x) is defined. Let lineage($root, $x) be $root/π for
some path expression π. Then the projection path associated with $x, denoted
pp($x), is /π# if $x occurs in an output expression or a value comparison inside
a condition, and /π otherwise. �

By convention, we simplify all projection paths of the form “/π/axis:: text()#”
to “/π/axis:: text()”.

Example 3.12 We extract projection paths from the query from Figure 3.6(b).
Figure 3.8 shows the function pp in tabular notation, where we list the query-
variables in order of their specification. �
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$x pp($x)

$bib /bib
$b /bib/book#
$x2 /bib/book/price
$a /bib/article#
$x1 /bib/book
$x3 /bib/book/editor#
$x4 /bib/book/article#

Figure 3.8: Projection path mapping of Example 3.12.

3.5.2 Automata-based Path Matching

In streaming scenarios, we commonly use pushdown automata to match paths
against the XML stream [6,36,54]. These automata operate on a low level of ab-
straction which makes it difficult to track the progress in path matching. Apart
from which paths have been matched, it may be necessary to know which paths
can still be matched by the descendants of a given node. Out of this motivation,
we introduce path matching automata that make the information represented
by each state is explicit. This allows us to provide a concise definition of our
projection semantics. The formal basis is an extension of the established parsing
technique of Earley-style dotted items [38, 55] to path matching.

Definition 3.9 Let P be a projection path. A dotted path is an expression of
the form P → α • β, with α and β expressions such that P = αβ. �

Intuitively, the dot separates the matched part of the input from the un-
matched part. When processing the XML document tree top-down, we shift
the dot in the dotted path whenever we move from a parent-node to a child-
node. This process is specified by the path matching rules introduced next.

Path matching rules. In matching a path, the dot is initially placed in front
of the projection path. So we begin with an initial path of the form P → •αβ.
Figure 3.9 contains the exemplary rules for shifting the dot. A rule A

a
⇒ B

shows how the dotted path A is changed to the dotted path B when we descend
to a child node with label a. We say that the rule applies for node a. Rules of
the form A

#PCDATA

⇒ B apply to text nodes. Rules r1 through r8 concern element
nodes, while rules r9 through r14 are dedicated to text nodes. Rule r15 applies
to both kinds of nodes.

In matching the descendant-axis, we may need to consider two possibilities.
Suppose the current dotted path is P → α • /descendant ::a β and we see an
a-labeled node in the input. Then this can be the desired match, and we shift
the dot to P → α/descendant ::a • β, or the match is still to come and the dot
remains at its position. This is expressed by rule r4.

Recognizing rules. We refer to the rules r1 – r4, r6, r8, r9, r10, r13 – r15 as
recognizing rules. Intuitively, these are the rules where we recognize nodes in
the input that the dotted path expects to match next. In Figure 3.9, we have
highlighted these rules by bold rule identifiers.
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r1: P → α • /child :: a β
a
⇒ P → α/child :: a • β

r2: P → α • /child :: ∗ β
a
⇒ P → α/child :: ∗ • β

r3: P → α • /child :: node() β
a
⇒ P → α/child :: node() • β

r4: P → α • /descendant :: a β
a
⇒ P → α/descendant ::a • β,

P → α • /descendant :: a β

r5: P → α • /descendant :: b β
a
⇒ P → α • /descendant :: b β

r6: P → α • /descendant :: ∗ β
a
⇒ P → α/descendant :: ∗ • β,

P → α • /descendant :: ∗ β

r7: P → α • /descendant :: text() β
a
⇒ P → α • /descendant :: text() β

r8: P → α • /descendant :: node() β
a
⇒ P → α/descendant :: node() • β,

P → α • /descendant :: node() β

r9: P → α • /child :: text() β
#PCDATA

⇒ P → α/child :: text() • β

r10: P → α • /child :: node() β
#PCDATA

⇒ P → α/child :: node() • β

r11: P → α • /descendant :: a β
#PCDATA

⇒ P → α • /descendant :: a β,

r12: P → α • /descendant :: ∗ β
#PCDATA

⇒ P → α • /descendant :: ∗ β

r13: P → α • /descendant :: text() β
#PCDATA

⇒ P → α/descendant :: text() • β,
P → α • /descendant :: text() β

r14: P → α • /descendant :: node() β
#PCDATA

⇒ P → α/descendant :: node() • β,
P → α • /descendant :: node() β

r15: P → α • #
a,#PCDATA
⇒ P → α • #

Figure 3.9: Earley-style path matching rules for distinct tagnames a and b.

Path sets. Starting with a set of initial paths at the root of the input, and
applying the rules for matching moves, we obtain sets of dotted paths which
we refer to as path sets. We illustrate this with a simple example where we
abbreviate XPath axes child and descendant with “/” and “//”.

Example 3.13 Consider the projection path /a//b and a path of nodes labeled
a, b, c, and b from the root of an XML document to a b-labeled descendant. We
then observe the following succession of path sets.

{P → •/a//b}
a
 {P → /a • //b}

b
 {P → /a//b•, P → /a • //b}

c
 {P → /a • //b}

b
 {P → /a//b•, P → /a • //b}

The initial path set is {P → •/a//b}. For reading an a-labeled node (de-

noted
a
 ), we shift the dot by one position and obtain the path set {P →

/a • //b}. We read a b-labeled node, and the path set develops into {P →
/a//b•, P → /a • //b}. For reading a c-labeled node, we obtain the path set
{P → /a • //b}. There is no rule for dotted path P → /a//b• and input sym-
bol c, so this path cannot be developed any further. In matching the second
b-labeled node, we expand the path set to {P → /a//b•, P → /a • //b}. �

Path-matching automata. Given a finite set of projection paths, we stati-
cally compute a deterministic finite-state automaton (DFA), the path-matching
automaton. In this DFA, the states are path sets. The initial state is the path
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q0:



U → •/a/b#
R→ •//b#

ff

q1:



U → /a • /b#
R→ •//b#

ff

q3: {R→ •//b#}q3

q2:

8

<

:

U → /a/b •#
R→ //b •#
R→ •//b#

9

=

;

q4:



R→ //b •#
R→ •//b#

ff

a other

b b

a, other

b

a, b, other,
#PCDATA

a, other,
#PCDATA

a, b, other,
#PCDATA

#PCDATA

#PCDATA

Figure 3.10: Path-matching automaton.

set where all projection paths occur as initial paths. We successively derive
all possible states and transitions in a closure algorithm [55], where we de-
fine transitions for all tagnames that explicitly occur in the projection paths.
With the special label “other” we capture all other tagnames, and we use the
label “#PCDATA” for textual data. The empty path set is a sink state.

Example 3.14 Figure 3.10 shows the path-matching automaton for the pro-
jection paths U = /a/b# and R = //b#. The initial state is q0. �

Size of projection automata. For a finite set of projection paths, there
are exponentially many path sets (and thus DFA states) in principle. Yet we
may expect the automata to be small in practice. First of all, the number of
projection paths extracted from XQueries is usually small. This certainly holds
for the queries from the XMark or XBench benchmarks [120,122], or the XQuery
Use Cases [123]. Moreover, paths that are defined w.r.t. the same variable in the
query also share a common prefix. Consequently, certain dotted paths coexist
in path sets, while paths sets such as {/a • //b, /c • //b} are not possible, as a
parent node is either labeled a or c. Likewise, a set {/a/text()•, /a/b•} can be
outruled. If we indeed should observe a large number of possible states, we can
always construct the states lazily at runtime, which keeps the amount of states
manageable for realistic XML documents [54].

3.5.3 Projection Semantics

We define XML document projection as a mapping between XML documents.
Unless the projection preserves all data relevant for query evaluation, query
evaluation on the original and the projected document may produce different
results. This invalid behavior must be averted. We shortly formulate this re-
quirement as projection-safety.

We can view projection paths as XPath expressions if we interpret the flag #

as the XPath step expression /descendant-or-self::node(). Now given an
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XML document T , we assume the usual XPath semantics [113] to evaluate a
projection path p on T , by which we compute a list of XML documents and
strings. We denote this evaluation according to the XPath semantics by JpK(T ),
and the resulting lists by [i1, . . . , in], where the ij are the entries. To compare
the evaluation of XPath expressions over XML documents and their projections,
we define an equality relation over such lists. This relation captures the idea
that from the viewpoint of XPath evaluation, the original and the projected
document cannot be distinguished. We additionally factor in the possibility
that in query evaluation, a node may be required without its descendants, e.g.
as we only perform an existence check. This leads us to the following definition
of top-level equality in comparing the results of XPath evaluation.

Definition 3.10 Let L1 and L2 be two lists of XML documents and strings.
We say L1 and L2 are top-level equal iff

• L1 and L2 have the same length, and

• the ith elements of L1 and L2 are either two equal strings or two XML
documents trees where the root nodes have the same label. �

Example 3.15 Let s be a fixed string. Then the lists [〈a〉b〈/a〉, s], [〈a〉c〈/a〉, s],
and [〈a〉〈/a〉, s] are pairwise top-level equal. �

Definition 3.11 Let P be a set of projection paths, and let T1 and T2 be XML
documents. Then T1 and T2 are top-level indistinguishable w.r.t. P if for all
projection paths p in P , JpK(T1) and JpK(T2) are top-level equal. �

Definition 3.12 Let P be a set of projection paths. Let f be a mapping
between XML documents. Then function f is projection-safe w.r.t. P if for all
XML documents T , T and f(T ) are top-level indistinguishable w.r.t. P . �

We now define the notion of relevant nodes based on projection paths. These
are the nodes that are preserved in XML document projection.

Definition 3.13 Let P be a set of projection paths. Let A(P) be the path-
matching automaton computed from P , and let c be a node in an XML docu-
ment. Then the path of ancestor nodes from the root of the document to the
parent of c defines a path from the initial state of A(P) to some state S.

1. If c is an element node, then c is relevant according to P if state S meets
one of the following conditions:

(a) S contains a dotted path P → α•β, where a recognizing rule applies
for the label of node c,

(b) S contains two dotted paths of the form P → α • /child ::b β and
P ′ → α′ • /descendant ::b β′,

(c) S contains a dotted path P → α • /child :: text() β or a dotted path
P → α • /descendant :: text() β.

2. If c is a text node, then c is relevant according to P if state S contains a
dotted path P → α • β where a recognizing rule applies for #PCDATA. �
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We briefly discuss this definition. Intuitively, condition (1a) tags all element
nodes as relevant for which there is a progress in path matching. Conditions (1b)
and (1c) cover special cases where ancestor-descendant relationships must be
preserved, and which we illustrate with Examples 3.16 and 3.17 below. In turn,
condition (2) concerning text nodes is straightforward.

In defining a projection function below, we preserve all nodes from the input
that are relevant according to the definition above. By default, we also preserve
the top-level element node to ensure that the output of projection is well-formed.

Definition 3.14 Let P be a set of projection paths and let T be an XML
document. Then the projection fP(T ) is the XML document which contains
only the nodes from T that are relevant according to P∪{/∗}, with the ancestor-
descendant and following-relationships as in T . �

Example 3.16 We are given the set of projection paths P = {/a/b#, //b#}.
We then consider the XML document 〈a〉〈c〉〈b/〉〈/c〉〈/a〉. Then projection fP
again yields the input document, as all nodes are relevant according to P∪{/∗}.

If we discard the c-labeled node, we obtain the document 〈a〉〈b/〉〈/a〉. Then
projection safety is violated for the following reason. Let us consider the pro-
jection path /a/b#. In evaluating this path on the input 〈a〉〈c〉〈b/〉〈/c〉〈/a〉
according to the XPath semantics, we obtain the empty list. Yet for evalu-
ation on the XML document 〈a〉〈b/〉〈/a〉, we obtain a non-empty list. These
lists are not top-level equal, so the input and the projection are not top-level
indistinguishable w.r.t. P , as required by Definition 3.12. �

Example 3.17 In projecting nodes with mixed content, special care must be
taken. The XQuery below checks whether the input document contains molecules
with the textual content “H” for hydrogen.

<results>

{ for $x in //molecule return

if ( some $y in $x/text() satisfies ($y = "H") )

then "hydrogen" else () }

</results>

We extract the projection paths //molecule and //molecule/text() for
the query-variables $x and $y respectively. Given the input

T1 = 〈molecule〉H〈sub〉2〈/sub〉O〈/molecule〉,

then fP(T1) computes the projection “〈molecule〉H〈sub〉〈/sub〉O〈/molecule〉”
where the sub-labeled node is not discarded. If we discard this node, we obtain
the document T2 = 〈molecule〉HO〈/molecule〉. Now, projection safety is vio-
lated. Evaluating path //molecule/text() according to the XPath semantics
on the original input yields [“H”, “O”], i.e. a list of two strings. Yet the evalua-
tion over document T2 yields a list with the single string “HO”. These lists are
not top-level equal, so projection-safety is violated.

Correspondingly, the evaluation of the XQuery on T1 produces a different
result from the evaluation on T2. �

The lemma below states the correctness of this approach.

Lemma 3.1 Function fP is projection-safe w.r.t. P.
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In the following, we show how XML document projection can be imple-
mented in accordance with the lemma above, such that only a single pass over
the input document is required.

3.5.4 A Single-Pass Implementation

We implement XML projection by compiling our projection semantics into an
XML-DPDT. This guarantees an execution that is scalable in the strictest
sense. The projection automata defined in the following are an intermediary
datastructure in our compilation to XML-DPDTs.

Projection automata. Given a path-matching automaton and the definition
of node-relevance from above, it is straightforward to assign automaton tran-
sitions with labels, where label “R” denotes that a node is relevant to query
evaluation, while label “I” classifies a node as irrelevant.

q0

q1 q3

q2 q4

a/R

a,other/R

other/I

b/R b/R

b/R

a,other/I
#PCDATA/I

a,other/R
#PCDATA/R

a,b,other/R
#PCDATA/R

b/R

#PCDATA/I

#PCDATA/I

Figure 3.11: Projection automaton.

Example 3.18 The projection automaton for the path-matching automaton
from Figure 3.10 is shown in Figure 3.11. All transitions for reading text nodes
are summarized by the label #PCDATA. The states q0 through q4 denote the same
states as in Figure 3.10. �

Compilation to XML-DPDTs. By extending projection-automata with a
stack, we obtain the necessary expressive power to process XML documents. In
particular, we resort to the XML-DPDT formalism introduced earlier.

The following compilation of an XML-DPDT TP = (Q,Σ,Γ,∆, δ, q0, Z0)
from a projection automaton assumes that the first token read in an XML
document is an opening tag. We consider the transitions of the projection
automaton one-by-one, and define corresponding XML-DPDT transitions. For
simplicity, we assume that the set of possible tagnames is known in advance, so
we can rewrite all transitions under label “other” by corresponding tagnames.
In a practical implementation, we would of course retain transitions under the
label “other”, and match tagnames read in the input correspondingly.

Further, we assume that textual passages are read one character at-a-time.
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• For each transition q0
a/R
→ q from the initial state of the projection automa-

ton with some tagname a and state q, we define an XML-DPDT-transition
which copies the input token to the output, namely

δ(q0, 〈a〉, Z0) = (q, (a, q0), 〈a〉).

For each transition of the form q0
a/I
→ q, no output is produced.

δ(q0, 〈a〉, Z0) = (q, (a, q0), ǫ).

• Next, we consider all transitions q
a/R
→ p for some states q, p and tagname a.

For all stack symbols X 6= Z0, we define transitions

δ(q, 〈a〉, X) = (p, (a, q)X, 〈a〉) and δ(p, 〈/a〉, (a, q)X) = (q,X, 〈/a〉).

We proceed analogously for transitions q
a/I
→ q, but produce no output.

• Finally, we consider character data. Note that all #PCDATA-transitions in

projection automata are self-loops. For each transition q
#PCDATA/R
→ p and a

character symbol c, we define δ(q, c,X) = (q,X, c) where this character
is output and the stack remains unchanged. For transitions of the form

q
#PCDATA/I
→ p we define analogous transitions, with the difference that no

output is produced.

The pushdown-automaton such constructed is deterministic and coherent with
the definition of XML-DPDTs.

Correctness properties. Let P be a set of projection paths. By TP we de-
note the XML-DPDT constructed from the projection automaton for the pro-
jection paths P ∪ {/*}. Then TP implements function fP from Definition 3.14:
Due to the projection path “/*”, the opening- and closing tags of the top-
most element node are preserved. If an element node is relevant, then both
its opening- and closing tags are preserved, while both tags are ignored other-
wise. Also, the ancestor-descendant relationships between relevant nodes are
preserved, so that the output tags are properly nested.

Hence, for all well-formed XML documents, P preserves all nodes relevant ac-
cording to P ∪{/∗}, along with ancestor-descendant and following-relationships
between these nodes.

3.6 Cardinality of Path Matches

In path matching, we may not only be interested in which paths are matched
by a node by the XPath semantics [113], but also in how many different ways
a path is matched. For instance, consider the XPath expression //a//b and
the input 〈a〉〈a〉〈b/〉〈/a〉〈/a〉. Then the b-labeled node matches the path in two
ways, once for each a-labeled ancestor. By extending the path sets from the
previous section to multisets, we keep track of the cardinality of matches.
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Example 3.19 We match the path //a//b using Earley-style dotted paths
with a bag semantics. The initial path set is S0 = {•//a//b}. Processing an
a-labeled node, we obtain the multiset

A = {•//a//b, //a•//b}.

Given a further a-labeled node, multiset A develops into the multiset

B = {•//a//b, //a•//b, //a•//b},

with two occurrences of the dotted path instance //a•//b. For reading a b-
labeled node next, we obtain the multiset

C = {•//a//b, //a•//b, //a•//b, //a//b•, //a//b•},

where the path //a//b is matched by this node in two ways. �

Counting paths. We abbreviate path multisets using numeric counters where
dots can be placed in paths. A projection path /s1/.../sn is then encoded
as a counting path [i0]/s1 [i1]/.../sn [in] where i0, i1, . . . , in are the numeric
counters. Projection paths with the flag # at the tail are encoded accordingly, so
/s1/.../sn# is encoded as [i0]/s1 [i1]/.../sn [in]#. We refer to counter in as the
tail counter. For instance, the counting path representation of multiset A from
the previous example is {[1]//a[0]//b[0]}, while C is encoded as {[1]//a[2]//b[2]}.

Given a set of dotted paths with set-semantics, we mentioned in the previous
section that we can statically compute a DFA in a closure algorithm [55]. With
counting paths, the closure would not reach a fixpoint if paths contain the
descendant axis. Instead, we compute the automata lazily at runtime. We begin
with the initial path set. For each initial dotted path P → •/s1/.../sn, we
define an initial counting path P → [1]/s1 [0]/.../sn [0]. In matching counting
paths, the tail counter is treated differently. This distinction is evident in the
counter update rules in Figure 3.12. These read as follows. Let S be the current
set of counting paths. Then reading a node labeled a, we update each counting
path P in S by resetting the counters from right to left by rewriting JP Ka

tail.
The update rules first reset the tail counter, and then proceed to the remaining
counters in the “body” of the counting path.

Example 3.20 We recompute the path sets from Example 3.19 using the up-
date rules for counting paths. We instantiate the initial set

{ J J J [1]//a[0]//b[0]
Ka
tail Ka

tail Kb
tail }

for the sequence of nodes a, a, and b. We first update the innermost counting
path from right to left for reading an a-labeled node, and obtain the paths from
multi-set A from the previous example.

J[1]//a[0]//b[0]
Ka
tail = J[1]//a[0]K

a
body//b[0] = J[1]K

a
body//a[1]//b[0] = [1]//a[1]

//b[0]

Next, we update the counting path for the second a-labeled node which yields
the paths from multiset B.

J[1]//a[1]
//b[0]K

a
tail = J[1]//a[1]

Ka
body//b[0] = J[1]K

a
body//a[2]//b[0] = [1]//a[2]

//b[0]
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For distinct tagnames a and b, and counter variables x and y:

Jα[x]#K
a
tail = Jα[x]K

a
body#

Jα[x]/child::ν[y]K
a
tail =



Jα[0]K
a
body

/child::ν[x] ν ∈ {a, *, node()}

Jα[0]K
a
body

/child::ν[0] otherwise

Jα[x]/descendant::ν[y]K
a
tail =



Jα[x]K
a
body

/descendant::ν[x] ν ∈ {a, *, node()}

Jα[x]K
a
body

/descendant::ν[0] otherwise

Jǫ[x]K
a
body = [x]

Jα[x]/child::ν[y]K
a
body =



Jα[0]K
a
body

/child::ν[x+y] ν ∈ {a, *, node()}

Jα[0]K
a
body

/child::ν[y] otherwise

Jα[x]/descendant::ν[y]K
a
body =



Jα[x]K
a
body

/descendant::ν[x+y] ν ∈ {a, *, node()}

Jα[x]K
a
body

/descendant::ν[y] otherwise

Jα[x]#K
#PCDATA

tail = Jα[x]K
#PCDATA

body #

Jα[x]/child::ν[y]K
#PCDATA

tail =



Jα[0]K
#PCDATA

body
/child::ν[x] ν ∈ {text(), node()}

Jα[0]K
#PCDATA

body
/child::ν[0] otherwise

Jα[x]/descendant::ν[y]K
#PCDATA

tail =



Jα[x]K
#PCDATA

body
/descendant::ν[x] ν ∈ {text(), node()}

Jα[x]K
#PCDATA

body
/descendant::ν[0] otherwise

Jǫ[x]K
#PCDATA

body = [x]

Jα[x]/child::ν[y]K
#PCDATA

body =



Jα[0]K
#PCDATA

body
/child::ν[x+y] ν ∈ {text(), node()}

Jα[0]K
#PCDATA

body
/child::ν[y] otherwise

Jα[x]/descendant::ν[y]K
#PCDATA

body =



Jα[x]K
#PCDATA

body
/descendant::ν[x+y] ν ∈ {text(), node()}

Jα[x]K
#PCDATA

body
/descendant::ν[y] otherwise

Figure 3.12: Updating counting paths.

Finally, we perform the updates for the b-labeled node.

J[1]//a[2]//b[0]K
b
tail = J[1]//a[2]K

b
body//b[2] = J[1]K

b
body//a[2]//b[2] = [1]//a[2]//b[2]

The result is the encoding of multiset C using counting paths. �

Let c1, c2, . . . , cn be a sequence of tagnames, then we introduce JP Kc1c2...cn

tail

as syntactic sugar for J. . . JJP Kc1

tailK
c2

tail . . .K
cn

tail.

Definition 3.15 Let P be a projection path and let P0 its initial counting
path. Let c1, . . . , cn be a sequence of labels that describe a path of descendants,
starting from the root of an XML document to a node labeled cn. We say P is
matched by cn exactly k-times if the tail counter of JP0K

c1...cn

tail has value k. �
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Part II

Abstract Framework
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4 Framework Definition

In application development, decisions made early on in the design process, such
as the choice of datastructures or methods for manipulating them, can have far-
reaching implications for the subsequent states of program development, and
even the runtime-behavior. Out of this motivation, we propose an abstract
framework for modeling main memory-based XML stream processors. Our in-
tention is that developers may model different system setups, for the purpose
of learning about their characteristics early on in the design stage.

In Section 4.1, we explain the motivation in designing this framework, and
give an overview over the framework components. The formal definitions are
provided in Section 4.2. While ease-of-use and transparency cannot be justified
by our claims alone, we do believe that our framework lends itself nicely to
model and discuss various design decisions in building applications for XML
stream processing. To affirm this claim, we model several example applications
in Section 4.3 and in the following chapters.

4.1 Outline

The formal part of our framework is motivated by the following considerations.
Any formalism for XML processing must be capable of representing various tree
datastructures. For one, XML documents are generally viewed as trees, yet
queries can also be parsed into query parse trees. These are commonly the basis
for static query analysis. Further, the operators in query algebras are typically
assembled into tree-shaped query plans. Hence, we require a tree manipulation
language. While other systems for XML processing are well capable of expressing
tree manipulations (e.g. [50, 61]), in XML stream processing, we need to also
capture low-level tasks such as reading single XML events from the input stream
and also writing them to the output.

In this thesis, we develop a novel framework that is capable of managing this
tightrope walk between low-level event handling and high-level tree manipula-
tions. Our formalism is designed in the tradition of term rewriting systems (e.g.
see [33]). Rewriting systems consist of directed equations, and computations are
performed by repeatedly replacing subtrees in terms. Our framework provides
means for modeling the basic infrastructure of XML stream processing systems,
as sketched in Figure 4.1.

The framework consists of a read-only input tape (or input stream) of XML

41
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Figure 4.1: Infrastructure for XML stream processing.
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(a) Unranked tree. (b) Binary tree encoding. (c) Inlined term notation.

Figure 4.2: Equivalent tree representations.

tokens, and a write-only output tape (or output stream) of XML tokens. On
both tapes, a cursor which can only move forward marks the current read or
write position. A main memory buffer stores data for future reference. Finally,
a physical query plan, the contents of the input tape, and the buffer contents
specify a sequence of operations that compute the query result.

In our framework, the syntactic objects for events from the input- or output-
tape, for buffer contents, and the query plan are terms. The processing of the
input, the management of buffer contents, and the writing of tokens to the
output are specified by term rewriting rules, the means for manipulating terms.

We proceed with an exemplary overview of our framework, and provide the
formal definitions in the next section.

Binary tree encoding. XML documents encode node-labeled, ordered trees.
For simplicity, we disregard text values, attributes, and comments, features
which can be modeled as parts of the tree. We assume that all node labels stem
from the set of tagnames Tag. We model XML documents as binary trees, using
an established first-child next-sibling encoding (e.g. [50, 66]). In Figures 4.2(a)
and (b), we show two views of the same XML document, as an unranked and as
a binary tree. Independent of this encoding, the title, author, and year nodes
are siblings according to the XML document model.

The terms for the binary tree encoding are constructed from the simple
grammar “τ ::= ( ) | t[τ ]τ” where “( )” is the empty node (also called empty
term) and t is a tagname. Then t[e1]e2 is an element node with label t and
content e1, which is followed by e2. In specifying terms, we will frequently



4.1. OUTLINE 43

switch between the view of terms as trees (as in Figure 4.2(b)) and the inlined
term notation (as in Figure 4.2(c)).

Term rewriting. A stream processing system is specified by an initial term,
called the start-term, and a set of term rewriting rules for manipulating this
term. We introduce rewriting rules informally at this point, and provide concise
definitions in the next section. Term rewriting rules are expressions of the form

replacement ← template { action }.

At runtime, the system has a single query-term (obtained by rewriting the start-
term). If the query-term is matched by the template of a rewriting rule, then the
action is executed and the query-term is modified according to the replacement.
We specify the details of matching later on.

Modeling I/O. We next specify a rule to read a token from the input
tape. Here, we presume an XML stream processing infrastructure as sketched
in Figure 4.1. We assume that the current query-term is matched by template τ ,
and that there is a term rewriting rule

x ← τ { newVar x; x := read() }. (4.1)

Then the query-term is replaced by the next token from the input stream. This
is done in several steps. As the query-term is matched by the template τ , the
action is executed, and a new variable x is defined. We refer to these variables
as buffer-variables. When this variable is assigned with the value of “read()”,
the next token is read from the input tape, and the input cursor advances by
one input token. The left-hand side of the rewriting rule specifies that the
query-term is now replaced by the value of variable x.

The following rules match the query-terms “〈t〉” or “〈/t〉” for a given tag-
name. In templates, we underline all terms except variables, to emphasize which
parts must be matched by query-terms. In applying these rules, we write the
matched XML tag to the output and reduce the query-term to “$”.

$ ← 〈t〉 { write( 〈t〉 ) } (4.2)

$ ← 〈/t〉 { write( 〈/t〉 ) } (4.3)

Example 4.1 We assume a system defined by the start-term “$” and the term
rewriting rule r4.1 for τ = $. We further assume that rules r4.2 and r4.3 are
instantiated for all tagnames t. This system simply copies the input to the
output, one token at-a-time.

We visualize some steps in Figure 4.3, where we lean on the graphical repre-
sentation from Figure 4.1 to point out the correspondences. In particular, the
query-term corresponds to the physical query plan, and a memory buffer is not
required in this example. Step (a) shows the start-term and the input cursor
which is positioned on the first input token. In applying rule 4.1, the query-term
is substituted by the first input token, and the cursor advances in the transition
to step (b). In applying rule 4.2, the query-term is replaced by the term “$”,
and the token “〈t〉” is written to the output-tape in step (c). Now, rule 4.1 can
again be applied to copy the next input token. �
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(a) (b) (c)

Figure 4.3: Snapshots of Example 4.1.

(a) (b)

Figure 4.4: Snapshots of Example 4.2.

Modeling buffering. We next consider the issue of buffering. We have
already shown that inside actions, variables can be assigned with input tokens.
In fact, we can assign variables with arbitrary terms, such as binary-tree encod-
ings of XML documents. Our framework provides a global buffer-variable root.
By assigning terms to this variable, we can conveniently store terms for future
use. We refer to the term stored by root as the buffer-term. When building
XML stream processors, we commonly use the query-term and the buffer-term
in analogy to the physical query plan and the main memory buffer from Fig-
ure 4.1. This is indicated by the layout of Figure 4.4, where the input tape is
shown on top, and the output tape on the bottom.

Let us consider an example. We assume that the query-term is matched by
template τ . To assign the buffer-term the tree “a[( )]( )”, we specify a rule

τ ′ ← τ { root := a[( )]( ) } (4.4)

in which the buffer-term is assigned within the action, and where τ ′ defines
some replacement.

Example 4.2 In Figure 4.4, we show two snapshots in applying rule 4.4 for
τ = $ and τ ′ = ( ). Initially, the buffer-term is the empty term, and the start-
term is “$”. In applying the rewriting rule, the query-term is replaced by the
empty term, and the buffer-term is replaced by the binary tree encoding of a
single node labeled a. �

The buffer-term can be accessed and modified at later stages during term
rewriting. For instance, to apply a function f to the buffer-term, we reassign
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the root-variable inside an action as sketched below.

τ ′ ← τ { root := f(root) }

To check conditions on the buffer-term, the root-variable is made part of
the query-term. Assume that function “even” rewrites a term to “true” if a
binary tree has an even number of nodes, and to “false” otherwise. Then we
instantiate the start-term “even(root)” to compute the result. Conceptually,
the buffer-term is copied (in terms of call-by-value) into the query-term, so the
buffer-term remains unchanged.

Remark 4.1 This call-by-value approach of copying the buffer-term into the
query-term would be prohibitively expensive regarding the main memory con-
sumption in practice. Already in the example above, instantiating “even(root)”
doubles the main memory requirements of the query- and the buffer-term. How-
ever, we take care to only apply functions to root within query-terms that
rewrite this term to single unary term (e.g. “true” or “false”), and which pro-
ceed in a single pass. This has the advantage that subtrees can be shared
between the query-term and the buffer-term, as done in [50] and as discussed
later in Example 4.10.

4.2 Syntax and Semantics

We next define the syntax and semantics for modeling stream processing systems
in our framework.

Definition 4.1 The syntax of a term τ is defined in by the grammar

τ ::= ( ) | a[τ ]τ | x | fn(τ1, . . . , τn) | 〈a〉 | 〈/a〉 | 〈/〉.

The constructs “( )” and “a[τ ]τ” define binary trees, where a is a tagname
in Tag. Meta-variable x ranges over an infinite set of variables. The meta-
variable fn ranges over a set of symbols of arity n (with n ≥ 0). Among XML
events, we define opening tags, closing tags, and the implicit token “〈/〉” to
represent the end of the input stream.

A term rewriting rule is a statement of the form

replacement ← template
[

{ action }
]

where template and replacement are terms. The action is an optional expression
defined according to the grammar

action ::= newVar x | x:=τ | x:= read() | write(event) | action; action

where meta-variable x ranges over variable names and τ is a term. �

Within a rule, we require that the variable names occurring in the template
are disjoint from those declared in actions. Moreover, the replacement term can
only contain variables that occur in either the template or the action of a rule.
The same variable name cannot occur multiple times in a template, and the
global variable root is not allowed to occur in templates. Finally, we make it a
convention to underline all terms except variables in templates.

We are now in the position to define the syntax of XML stream processors
in our framework.
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a

b

y ( )

( )

a

b

x1 x2

x3

a

b

( ) x2

x3

(a) τ1 (b) τ2 (c) τ3

Figure 4.5: Terms with buffer-variables y, x1, x2, and x3.

Definition 4.2 An XML stream processor F = (s,R) is a tuple of an initial
term s, called the start-term, and a set R of term rewriting rules. �

The term rewriting process starts with the start-term as the query-term.
When a template of a rewriting rule is matched by a subterm of the query- or
the buffer-term, we proceed as follows. First, the action is executed, and then
the query-term is rewritten according to the replacement. The rewriting process
stops when no more rules can be applied. We formalize this mechanism below.

A substitution σ is a mapping from variables to terms or the special sym-
bol “⊥”, and written out as {x1 7→ τ1, . . . , xn 7→ τn}. To access τi, we
write σ(xi). At times, we interpret substitutions as variable bindings. Then
a substitution σ(x) = ⊥ denotes that the variable x is defined, but not yet
bound to any term.

Substitutions play a role when applying term rewriting rules. If there exists
a substitution σ embedding a template into a term, we say that the term is
matched by the template with substitution σ. The matched part of the term
is called a reducible expression, or redex for short. When the redex is replaced
as defined by the replacement-term, then this again involves applying a substi-
tution. Below, we define the process of updating terms, and then illustrate the
idea using an example.

Definition 4.3 Let τ be a term and let σ be a substitution. In updating term τ
for substitution σ, each variable x occurring in τ for which σ(x) is a term is
replaced by σ(x). We denote the updated term by τ

[

σ
]

. �

Example 4.3 We consider the terms from Figure 4.5 and assume a rewriting
rule with template τ2. Then term τ1 is matched by the template τ2 with the
substitution σ = {x1 7→ y, x2 7→ ( ), x3 7→ ( )}, so τ2

[

σ
]

= τ1. If τ2 occurs as
a replacement-term, then updating term τ2 for substitution σ again yields the
term τ1. Moreover, updating τ2 for σ′ = {x1 7→ ( ), x2 7→ ⊥} yields term τ3.
Note that variable x2 is not replaced, as σ′(x2) does not map to a term, but to
the designated symbol ⊥. �

We introduce the notion of configurations to describe an XML stream pro-
cessor at any given instant. In the initial configuration, the start-term is the
query-term and only the global variable root is defined (but not initialized). At
this point, no input has been consumed, and no output has been produced yet.

Definition 4.4 A configuration of an XML stream processor F = (s,R) is a
quadruple (q, ω, σ, o) where q is the current query-term, ω is the sequence of
XML tokens still to be read from the input tape, σ is a substitution, and o
is the output generated so far. The initial configuration given an XML input
document w is (s, w〈/〉, {root 7→ ⊥}, ǫ). �
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Semantics of actions. We consider the effect of executing actions on a config-
uration. We write (q, ω, σ, o) ⊢c (q′, ω′, σ′, o′) to denote that executing the single
command c transfers the configuration (q, ω, σ, o) to (q′, ω′, σ′, o′). In particu-
lar, we define the following transitions where we assume that σ is defined as
{x1 7→ τ1, . . . , xn 7→ τn} and that for all substitutions σ̂, ⊥

[

σ̂
]

= ⊥.

(q, ω, σ, o)
newVar x

⊢ (q, ω, σ ∪ {x 7→ ⊥}}, o) (4.5)

(q, ω, σ, o)
xi:=τ

⊢ (q, ω, σ′, o) where (4.6)

σ′ = {xi 7→ τ
[

σ
]

} ∪ {xj 7→ τj
[

{xi 7→ τ
[

σ
]

}
]

| j 6= i}

(q, tω, σ, o)
xi:=read()

⊢ (q, ω, σ′, o) where (4.7)

t ∈ {〈a〉, 〈/a〉 | a ∈ Tag} ∪ {〈/〉} and

σ′ = {xi 7→ t} ∪ {xj 7→ τj
[

{xi 7→ t}
]

| j 6= i}

(q, ω, σ, o)
write(t)

⊢ (q, ω, σ, ot) where (4.8)

t ∈ {〈a〉, 〈/a〉 | a ∈ Tag} ∪ {〈/〉}

In transition 4.5, a new variable x is defined. If the variable name x should al-
ready be in use, we rename variables to resolve name conflicts. In transition 4.6,
the value of a variable xi is assigned. This affects not only this variable, but
possibly also the terms assigned to the other variables, which need to be up-
dated for the new value of xi. Reading a token from the input and assigning it
as the value of a variable is captured by transition 4.7. Finally, writing an XML
event to the output is described by transition 4.8.

Example 4.4 We assume a configuration (q, ω, {root 7→ ( )}, o) for some query-
term q, input ω, and output o, and execute the command “root:=f(root)”.

(q, ω, {root 7→ ( )}, o)
root:=f(root)

⊢ (q, ω, {root 7→ f(root)
[

{root 7→ ( )}
]

})

= (q, ω, {root 7→ f( ( ) )})

Thus, the buffer-term is changed from “( )” to “f( ( ) )”. �

Example 4.5 We assume a configuration (q, ω, {root 7→ a[x1]( ), x1 7→ ⊥}, o),
and execute the command “x1:=( )”.

(q, ω, {root 7→ a[x1]( ), x1 7→ ⊥}, o)
x1:=( )

⊢ (q, ω, {root 7→ a[x1]( )
[

{x1 7→ ( )}
]

,

x1 7→ ( )
[

{root 7→ a[x1]( ), x1 7→ ⊥}
]

}, o)

= (q, ω, {root 7→ a[( )]( ), x1 7→ ( )}, o)

In assigning a term to x1, the value of the root-variable changes as well. �

Let α = s1; . . . ; sn be a sequence of statements, then by c1 ⊢α cn+1 we
summarize the execution of these statements on configuration c1 by c1 ⊢s1

c2 ⊢s2 . . . cn ⊢sn cn+1.
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Semantics of term rewriting rules. We denote the application of a term
rewriting rule r to a configuration c as c ⊢r d where d is the new system
configuration. In the application of rules, we identify three cases. The first two
cases concern rewriting rules that are free of side-effects, as they have no action.
We apply them to the query-term or the buffer-term. The third case involves
rules with actions, which we apply to query-terms only.

Let r be a term rewriting rule and let (q, ω, σ, o) be a configuration. Then
we distinguish the following cases.

1. Rule r is of the form ρ ← τ and template τ is matched by a subtree t of
query-term q with substitution στ , so the inlined term notation of q is of
the form utv for some strings u and v. Then

(q, ω, σ, o) ⊢r (u(ρ
[

σ ∪ στ

]

)v , ω, σ, o).

2. Rule r is of the form ρ ← τ and template τ is matched by a subtree t of
buffer-term σ(root) with substitution στ , so the inlined term notation of
σ(root) is of the form utv. Then

(q, ω, σ, o) ⊢r (q, ω, {root 7→ u(ρ
[

σ ∪ στ

]

)v}, o).

3. Rule r is of the form ρ← τ {α} and template τ is matched by a subtree t
of query-term q with substitution στ , so the inlined term notation of q is
of the form utv.

Substitution στ may map variables to variables. As variables can be reas-
signed in actions, we need to address the issue of variable aliasing.

(a) We define a new substitution σ̂ that contains all mappings of variables
to terms from στ . It further ignores all mappings of variables to
the root-variable, and for all other mappings “σ(x) = y” between
variables introduces a mapping “σ̂(y) = ⊥”. This defines variable y in
the environment, but leaves it unassigned. We formalize this below,
where we assume that στ = {z1 7→ ψ1, . . . , zn 7→ ψn}.

σ̂ = {zi 7→ ψi | ψi is not a variable}

∪{ψi 7→ ⊥ | ex. zj s.t. στ (zj) = ψi, ψi is a variable, ψi 6= root}

(b) For each mapping στ (zi) = ψi such that ψi is a variable, we replace
all occurrences of zi in action α and replacement-term ρ by ψi. This
yields action α′ and replacement-term ρ′.

Then we execute the action by (q, ω, σ ∪ σ̂, o) ⊢α′

(q, ω′, σ′, o′), and
define the transition

(q, ω, σ, o) ⊢r (u(ρ′[σ′])v, ω′, {root 7→ σ′(root)}, o′).

In the first case, only the query-term is updated, but the input- and out-
put tapes, as well as the buffer-term, remain unaffected. In the second case we
only modify the buffer-term. The third case can affect all components of the
system configuration. Note that we restrict all I/O-related side-effects to ac-
tions. Commands within actions are executed in the order of their specification,
which guarantees a deterministic order for reading tokens from the input and
for generating output.
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Example 4.6 We formally define the XML stream processor from Example 4.1
that copies the input to the output as F = ($, R) where R consists of the rewrit-
ing rules 4.1 through 4.3 instantiated for all tagnames. The initial configuration
for the input “〈a〉〈/a〉” is ($, 〈a〉〈/a〉〈/〉, {root 7→ ⊥}, ǫ).

Then the template of rule r4.1 is matched by the query-term for the empty
substitution, as the template consists of a single constant term. We execute the
action of rule r4.1,

($, 〈a〉〈/a〉〈/〉, {root 7→ ⊥}, ǫ)
newVar x

⊢ ($, 〈a〉〈/a〉〈/〉, {root 7→ ⊥, x 7→ ⊥}, ǫ)
x :=read()

⊢ ($, 〈/a〉〈/〉, {root 7→ ⊥, x 7→ 〈a〉}, ǫ)

and update the query-term to “x
[

{root 7→ ⊥, x 7→ 〈a〉}
]

= 〈a〉”. In summary,

($, 〈a〉〈/a〉〈/〉, {root 7→ ⊥}, ǫ) ⊢r4.1 (〈a〉, 〈/a〉〈/〉, {root 7→ ⊥}, ǫ).

Now the template of rule r4.2 is matched by the query-term, again with an
empty substitution. Below, we execute the action

(〈a〉, 〈/a〉〈/〉, {root 7→ ⊥}, ǫ)
write(〈a〉)

⊢ (〈a〉, 〈/a〉〈/〉, {root 7→ ⊥}, 〈a〉)

and update the query-term to “$”. We summarize this step below.

(〈a〉, 〈/a〉〈/〉, {root 7→ ⊥}, ǫ) ⊢r4.2 ($, 〈/a〉〈/〉, {root 7→ ⊥}, 〈a〉)

We fast-forward to the configuration (〈/〉, ǫ, {root 7→ ⊥}, 〈a〉〈/a〉). As no
further rewriting rule applies, the rewriting process terminates. �

4.3 Modeling Basic Applications

We model several applications in our framework that cover basic functionalities
such as I/O, buffering the input, and serializing binary trees into XML events.
Parts of these encodings will be re-used in the succeeding chapters, where we
model more complex XML stream processors.

In modeling, we make use of the following constructs for syntactic sugaring.
These constructs can all be expressed within our framework.

Lists. We define lists of terms according to the grammar “list ::= [ ] | τ :: list ”.
Here, “[ ]” denotes the empty list, the function symbol “::” is the operator
for list concatenation, and τ is a term. We commonly abbreviate lists such
as a :: b :: c :: d by [a, b, c, d], where [x] is equivalent to x :: [ ].

Tree concatenation. We concatenate binary tree representations of XML
documents as shown below and in [50]. The rules are defined for all tagnames a.

a[e1] concat(e2, e3) ← concat( a[e1]e2, e3 )

e ← concat( ( ), e)

e ← concat( e, ( ))
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4.3.1 Checking Well-Formedness

We specify an application that checks whether the input is well-formed. While
this is a very basic task, it lends itself nicely to illustrate the workings of our
framework. To match opening- and closing tags, the application maintains a
stack of tagnames. This stack is modeled as a list within the query-term, where
the leftmost item in the list represents the top of the stack. The application will
output “〈wf 〉〈/wf 〉” if the input is well-formed, and “〈mf 〉〈/mf 〉” otherwise.

For all distinct tagnames a and b:

check(�, [ ]) ← $ (4.9)

check(x, S) ← check( �, S) { newVar x; x := read() } (4.10)

check(�, a :: S) ← check(〈a〉, S) (4.11)

check(�, S) ← check(〈/a〉, a::S) (4.12)

( ) ← check(〈/〉, [ ]) { write(〈wf 〉); write(〈/wf 〉) } (4.13)

( ) ← check(〈/〉, a::S) { write(〈mf 〉); write(〈/mf 〉) }(4.14)

( ) ← check(〈/b〉, a::S) { write(〈mf 〉); write(〈/mf 〉) }(4.15)

Figure 4.6: Term rewriting rules for checking well-formedness.

The system is defined for the start-term “$” and the rewriting rules from
Figure 4.6, which we instantiate for all distinct tagnames a and b. Rule r4.9

specifies that the start-term “$” is replaced by a binary function “check” that
takes as arguments the current input token (or placeholder symbol “�”) and
the current stack. We define the placeholder symbol as a nullary function, and
use it to signal that the current input token has been consumed. Accordingly,
rule r4.10 specifies that if the check-function carries the placeholder “�” as its
first argument, then the next input symbol is read.

Rules r4.11 and r4.12 push the tagname on the stack for reading an opening
tag and pop a tagname from the stack for reading a matching closing tag. The
input is well-formed if all opening- and closing tags match by the time that we
reach the end of the input stream. This is captured by rule r4.13. Otherwise,
the input is malformed. This case is handled by rules r4.14 and r4.15.

Example 4.7 We show a run of the XML stream processor F = ($, R) where R
captures the rules from Figure 4.6 instantiated for all tagnames. We consider
the input “〈c〉〈/d〉” and show the rewriting steps in Figure 4.7.

The initial configuration is ($, 〈c〉〈/d〉〈/〉, {root 7→ ⊥}, ǫ). The processor
consumes the first input token 〈c〉 and pushes tagname c onto the stack. When it
reads the next token 〈/d〉, it realizes that the tagnames for the opening- and the
closing-tag do not match. Consequently, the output “〈mf 〉〈/mf 〉” is generated,
as specified by the last configuration (( ), 〈/〉, {root 7→ ⊥}, 〈mf 〉〈/mf 〉). �

4.3.2 Loading the Buffer

We specify a function that loads the complete input into main memory. Our
formalization draws on ideas from XStream [50]. While the general approach is
the same, the XStream formalism cannot express the handling of single XML to-
kens from the input stream. XStream queries only specify tree manipulations. In
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($, 〈c〉〈/d〉〈/〉, {root 7→ ⊥}, ǫ) match r4.9 with empty substitution

⊢r4.9 (check(�, [ ]), 〈c〉〈/d〉〈/〉, {root 7→ ⊥}, ǫ) match r4.10 with {S 7→ [ ]}

execute action of rule r4.10:

(check(�, [ ]), 〈c〉〈/d〉〈/〉, {root 7→ ⊥, S 7→ [ ]}, ǫ)
newVar x

⊢ (check(�, [ ]), 〈c〉〈/d〉〈/〉, {root 7→ ⊥, S 7→ [ ], x 7→ ⊥}, ǫ)

x:= read()

⊢ (check(�, [ ]), 〈/d〉〈/〉, {root 7→ ⊥, S 7→ [ ], x 7→ 〈c〉}, ǫ)

update for σ4.10 = {root 7→ ⊥, S 7→ [ ], x 7→ 〈c〉}:

⊢r4.10(check(x, S)
ˆ

σr4.10

˜

, 〈/d〉〈/〉, {root 7→ ⊥}, ǫ)

= (check(〈c〉, [ ]), 〈/d〉〈/〉, {root 7→ ⊥}, ǫ) match r4.11 with {S 7→ [ ]}

⊢r4.11(check(�, c::S)
ˆ

{root 7→ ⊥, S 7→ [ ]}
˜

, 〈/d〉〈/〉, {root 7→ ⊥}, ǫ)

= (check(�, c::[ ]), 〈/d〉〈/〉, {root 7→ ⊥}, ǫ) match r4.10 with {S 7→ c::[ ]}

execute action of rule r4.10:

(check(�, c::[ ]), 〈/d〉〈/〉, {root 7→ ⊥, S 7→ c::[ ]}, ǫ)

newVar x

⊢ (check(�, c::[ ]), 〈/d〉〈/〉, {root 7→ ⊥, S 7→ c::[ ], x 7→ ⊥}, ǫ)

x:= read()

⊢ (check(�, c::[ ]), 〈/〉, {root 7→ ⊥, S 7→ c::[ ], x 7→ 〈/d〉}, ǫ)

update for σ4.10(b) = {root 7→ ⊥, S 7→ c::[ ], x 7→ 〈/d〉}:

⊢r4.10(check(x, S)
ˆ

σr4.10(b)

˜

, 〈/〉, {root 7→ ⊥}, ǫ)

= (check(〈/d〉, c::[ ]), 〈/〉, {root 7→ ⊥}, ǫ) match r4.15 for {S 7→ [ ]}

execute action of rule r4.15:

(check(〈/d〉, c::[ ]), 〈/〉, {root 7→ ⊥, S 7→ [ ]}, ǫ)

write(〈mf 〉)

⊢ (check(〈/d〉, c::[ ]), 〈/〉, {root 7→ ⊥, S 7→ [ ]}, 〈mf 〉)
write(〈/mf 〉)

⊢ (check(〈/d〉, c::[ ]), 〈/〉, {root 7→ ⊥, S 7→ [ ]}, 〈mf 〉〈/mf 〉)

update for σ4.15 = {root 7→ ⊥, S 7→ [ ]}:

⊢r4.15(( )
ˆ

σ4.15

˜

, 〈/〉, {root 7→ ⊥}, 〈mf 〉〈/mf 〉)

= (( ), 〈/〉, {root 7→ ⊥}, 〈mf 〉〈/mf 〉)

Figure 4.7: Steps in checking well-formedness (Example 4.7).

contrast, our framework allows us to specify both low-level event-handling and
higher-level tree manipulations. The intuition is the following. We incremen-
tally construct a binary tree in the main memory buffer, where buffer-variables
are placeholders for parts that have not yet been loaded. To assemble this tree,
the loader uses a stack of variables. As in the previous application, the stack is
modeled as a list and is maintained inside the query-term.

We design the loader so that it processes a list of XML tokens, with the
intention of re-using the loader within larger systems, where it will process the
output of other functions. The loader assumes that the input is well-formed
and takes two lists as arguments. The first is the input-list of XML tokens,
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For all tagnames a:

load([x], S) ← load([ ], S) { newVar x; x := read() } (4.16)

load(E, x1 :: x2 :: S) ← load(〈a〉:: E, x0 :: S) { newVar x1; (4.17)

newVar x2;

x0 := a[x1]x2 }

load(E, S) ← load(〈/a〉:: E, x0 :: S) { x0 := ( ) } (4.18)

( ) ← load([〈/〉], [x0]) { x0 := ( ) } (4.19)

Figure 4.8: Term rewriting rules for loading the input.

and the second is a variable-list modeling a stack. The system is specified in
our framework as F = (load([ ],[root]), R) with the rewriting rules R from
Figure 4.8 instantiated for all tagnames.

Whenever the input-list is empty, rule r4.16 fetches the next XML token
from the input. For each tagname a, we specify the rules r4.17 and r4.18. For
the opening tag 〈a〉, we create a new node in the binary tree, by replacing the
variable x0. Details on the first child and next sibling of the new node are
unknown, so we insert fresh buffer-variables x1 and x2 into the binary tree,
which we also store on the stack. For reading the closing tag 〈/a〉, the variable-
stack is popped and a leaf node is inserted in the binary tree. Rule r4.19 handles
the end of the input and finishes the rewriting process.

Example 4.8 Figure 4.9 shows snapshots in loading an input document. The
output tape is not affected, and hence not shown. In step (a), we are about to
process the token 〈b〉, which is contained in the input-list of the loader. The
buffer term already contains the a-labeled parent node (in binary tree notation),
and variables x1 and x2 mark the unknown parts of the tree. Step (b) shows the
effect of processing token 〈b〉 to the buffer-term and the variable-stack. Steps (c)
and (d) show the processing of the matching closing tag, which still has to be
fetched from the input tape.

In Figure 4.10, we specify the formal steps for processing the XML snip-
pet “〈a〉〈b〉〈/b〉”, where ǫ denotes the empty input. We do not show the details
of executing the action for rule r4.16, as this is very similar to the previous
examples. Mind that the notations x::[ ] and [x] both describe a list with the
single element x, and are treated equally. This example further illustrates the
aliasing of buffer-variables, as specified in the previous section. We have marked
the configurations that correspond to snapshots (a) through (d). �

4.3.3 Serializing Binary Trees

We define a set of rules in Figure 4.11 that translate a binary tree encoding of
an XML document into XML events on the output tape. We call this function
a serializer. The serializer traverses the binary tree in depth-first left-to-right
order. In this traversal, each node is visited twice. In the first visit, the cor-
responding opening tag is written to the output, and in the second visit, the
closing tag. Accordingly, we define two functions, “output↓” and “output↑”,
and begin with the downward traversal, as stated in rule r4.20 . A binary tree
encoding τ is then serialized by instantiating “output(τ)”.
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(a) (b)

(c) (d)

Figure 4.9: Snapshots in loading an XML document (Example 4.8).

Note that the output-functions consume the binary tree, and rewrite it to
the term “output↑”. As discussed in Remark 4.1, such functions lend themselves
nicely for subtree sharing between the query-term and the buffer-term.

Example 4.9 In Figure 4.12, we serialize the binary tree encoding “a[( )]( )”
to the output tape. For the sake of clarity, we do not make the execution
of actions explicit. Note that in the first application of rule r4.23, only the
subterm “output↓( ( ) )” of the query-term is matched by the template. Corre-
spondingly, only this subterm is modified. �

Example 4.10 We assume that the buffer-term is the binary tree from Fig-
ure 4.2(b) and instantiate the start-term “output(root)”. In a call-by-value
implementation, the contents of the root-variable are copied and inserted into
the query-tree. This practically doubles the main memory requirements. How-
ever, we can effectively share subtrees when implementing such a system. This
reduces the main memory consumption, and also avoids redundant computa-
tions when shared subtrees are modified.

Figure 4.13 depicts a sequence of steps in applying the serializer rewriting
rules with subtree sharing. Different from our convention so far, we draw the
query-term on top of the buffer-term, to better visualize the sharing of subtrees.

We begin with step (a), where the output-function is instantiated with the
buffer-variable root as its argument. Using pointers (indicated by arrows), the
query-term and the buffer-term share a subtree, namely the complete buffer-
term. We then apply the rewriting rules and output the token 〈book〉. The result-
ing query-term is depicted in step (b), where we now can share two smaller sub-
trees with the buffer-term. In the transition to step (c), the opening tag 〈title〉
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(load([ ], [root]), 〈a〉〈b〉〈/b〉, {root 7→ ⊥}, ǫ) match r4.16 with {S 7→ [root]}

⊢r4.16 (load([〈a〉], [root]), 〈b〉〈/b〉, {root 7→ ⊥}, ǫ)

match r4.17 with {E 7→ [ ], x0 7→ root, S 7→ [ ]},
execute action for q4.17 = load([〈a〉], [root]), with variable x0 as an alias for root:

(q4.17, 〈b〉〈/b〉, {root 7→ ⊥, E 7→ [ ], S 7→ [ ]}, ǫ)
newVar x1

⊢ (q4.17, 〈b〉〈/b〉, {root 7→ ⊥, E 7→ [ ], S 7→ [ ], x1 7→ ⊥}, ǫ)
newVar x2

⊢ (q4.17, 〈b〉〈/b〉, {root 7→ ⊥, E 7→ [ ], S 7→ [ ], x1 7→ ⊥, x2 7→ ⊥}, ǫ)

root:=a[x1]x2

⊢ (q4.17, 〈b〉〈/b〉, {root 7→ a[x1]x2, E 7→ [ ], S 7→ [ ], x1 7→ ⊥, x2 7→ ⊥}, ǫ)

update for σ4.17 = {root 7→ a[x1]x2, E 7→ [ ], S 7→ [ ], x1 7→ ⊥, x2 7→ ⊥}

⊢r4.17 (load(E, x1::x2::S)
ˆ

σ4.17

˜

, 〈b〉〈/b〉, {root 7→ a[x1]x2}, ǫ)

= (load([ ], [x1, x2]), 〈b〉〈/b〉, {root 7→ a[x1]x2}, ǫ) match r4.16 with {S 7→ [x1, x2]}

⊢r4.16 (load([〈b〉], [x1, x2]), 〈/b〉, {root 7→ a[x1]x2}, ǫ), d – step (a) in Figure 4.9

match r4.17 for substitution {E 7→ [ ], x0 7→ x1, S 7→ [x2]},
execute action for q4.17(b) = load([〈b〉], [x1, x2]), with variable x0 as an alias for x1,
resolve name conflict by renaming variables x1, x2 in term rewriting rule to x3, x4:

(q4.17(b), 〈/b〉, {root ⊢ a[x1]x2, E 7→ [ ], S 7→ [x2], x1 7→ ⊥}, ǫ)
newVar x3

⊢ (q4.17(b), 〈/b〉, {root ⊢ a[x1]x2, E 7→ [ ], S 7→ [x2], x1 7→ ⊥, x3 7→ ⊥}, ǫ)
newVar x4

⊢ (q4.17(b), 〈/b〉, {root ⊢ a[x1]x2, E 7→ [ ],

S 7→ [x2], x1 7→ ⊥, x3 7→ ⊥, x4 7→ ⊥}, ǫ)

x1:=b[x3]x4

⊢ (q4.17(b), 〈/b〉, {root ⊢ a[x1]x2,
ˆ

{x1 7→ b[x3]x4}
˜

,

E 7→ [ ], S 7→ [x2], x1 7→ b[x3]x4, x3 7→ ⊥, x4 7→ ⊥}, ǫ)

= (q4.17(b), 〈/b〉, {root ⊢ a[ b[x3]x4 ]x2, E 7→ [ ], S 7→ [x2],

x1 7→ b[x3]x4, x3 7→ ⊥, x4 7→ ⊥}, ǫ)

update for σ4.17(b) ={root ⊢ a[ b[x3]x4 ]x2, E 7→ [ ], S 7→ [x2],

x1 7→ b[x3]x4, x3 7→ ⊥, x4 7→ ⊥}

⊢r4.17 (load(E, x3::x4::S)
ˆ

σ4.17(b)

˜

, 〈/b〉, {root 7→ a[ b[x3]x4 ]x2}, ǫ)

= (load([ ], [x3, x4, x2]), 〈/b〉, {root 7→ a[ b[x3]x4 ]x2}, ǫ), – step (b) in Figure 4.9

⊢r4.16 (load([〈/b〉], [x3, x4, x2]), ǫ, {root 7→ a[ b[x3]x4 ]x2}, ǫ), – step (c) in Figure 4.9

match r4.18 for {E 7→ [ ], x0 7→ x3, S 7→ [x4, x2]},
execute action with variable x0 as an alias for x3 and q4.18 = load([〈/b〉], [x3, x4, x2]):

(q4.18, ǫ, {root 7→ a[ b[x3]x4 ]x2, E 7→ [ ], S 7→ [x4, x2], x3 7→ ⊥}, ǫ)

x3:=( )

⊢ (q4.18, ǫ, {root 7→ a[ b[x3]x4 ]x2

ˆ

{x3 7→ ( )}
˜

,

E 7→ [ ], S 7→ [x4, x2], x3 7→ ( )}, ǫ)

= (q4.18, ǫ, {root 7→ a[ b[( )]x4 ]x2 E 7→ [ ], S 7→ [x4, x2], x3 7→ ( )}, ǫ)

update for σ4.18 = {root 7→ a[ b[( )]x4 ]x2 E 7→ [ ], S 7→ [x4, x2], x3 7→ ( )}

⊢r4.18 (load(E, S)
ˆ

σ4.18

˜

, ǫ, {root 7→ a[ b[( )]x4 ]x2}, ǫ)

= (load([ ], [x4, x2]), ǫ, {root 7→ a[ b[( )]x4 ]x2}, ǫ) – step (d) in Figure 4.9

Figure 4.10: Steps in loading an XML document (Example 4.8).
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For all tagnames a:

output↓(e) ← output(e) (4.20)

a[ output↓(e1) ]e2 ← output↓( a[e1]e2 ) { write(〈a〉) } (4.21)

output↓(e) ← a[ output↑ ]e { write(〈/a〉) } (4.22)

output↑ ← output↓( ( ) ) (4.23)

Figure 4.11: Term rewriting rules for serializing a binary tree.

(output( a[( )]( ) ), ǫ, {root 7→ ⊥}, ǫ) match r4.20 with {e 7→ a[( )]( )}

⊢r4.20 (output↓(e)
ˆ

{root 7→ ⊥, e 7→ a[( )]( )}
˜

, ǫ, {root 7→ ⊥}, ǫ)

= (output↓( a[( )]( ) ), ǫ, {root 7→ ⊥}, ǫ) match r4.21 for {e1 7→ ( ), e2 7→ ( )}

⊢r4.21 (a[ output↓(e1) ]e2

ˆ

{root 7→ ⊥, e1 7→ ( ), e2 7→ ( )}
˜

, ǫ, {root 7→ ⊥}, 〈a〉)

= (a[ output↓( ( ) ) ]( ), ǫ, {root 7→ ⊥}, 〈a〉) match r4.23 for empty substitution

⊢r4.23 (a[ output↑ ]( ), ǫ, {root 7→ ⊥}, 〈a〉) match r4.22 for {e 7→ ( )}

⊢r4.22 (output↓( e )
ˆ

{root 7→ ⊥, e 7→ ( )}
˜

, ǫ, {root 7→ ⊥}, 〈a〉〈/a〉)

= (output↓( ( ) ), ǫ, {root 7→ ⊥}, 〈a〉〈/a〉) match r4.23 for empty substitution

⊢r4.23 (output↑, ǫ, {root 7→ ⊥}, 〈a〉〈/a〉)

Figure 4.12: Steps in serializing a binary tree (Example 4.9).

is output, and we now share three subtrees. Next, we consider step (d). The
output-function moves up one level in the binary tree, and proceeds to process
the author-node. In the transition to step (e), the closing tag 〈/title〉 is output.

We observe that the size of the query-term is bounded by the depth of the
buffer-term. Subtree-sharing is straightforward to realize in this case. For more
details on this technique, we refer to the XStream system [50]. �
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query-term: output↓ book

output↓

book

title

output↓

buffer-term: book

title

( ) author

firstname

( ) lastname

( ) ( )

year

( ) ( )

( )

book

title

( ) author

firstname

( ) lastname

( ) ( )

year

( ) ( )

( )

book

title

( ) author

firstname

( ) lastname

( ) ( )

year

( ) ( )

( )

(a) (b) (c)

book

title

output↑

book

output↓

book

title

( ) author

firstname

( ) lastname

( ) ( )

year

( ) ( )

( )

book

title

( ) author

firstname

( ) lastname

( ) ( )

year

( ) ( )

( )

(d) (e)

Figure 4.13: Subtree sharing (Example 4.10).



5 Modeling XML Query Engines

In this chapter, we model two XML processors in our abstract framework. The
first, discussed in Section 5.1, is an encoding of XML pushdown transducers.
This allows for the memory-efficient implementation of a range of important
XML stream processing tasks. In Section 5.2, we further model a main memory-
based XQuery engine that evaluates our XQuery fragment XQ. We construct
this engine according to the two-phase approach of first loading the complete
input into a buffer before executing the query. In the next chapter, we will
discuss strategies to improve on this processing model with respect to XML
stream processing.

5.1 XML Pushdown Transducers

In Section 3.2, we have introduced XML-DPDTs as deterministic pushdown
transducers for XML stream processing. The XML-DPDT formalism is capable
of encoding a range of important XML stream processing tasks. As sketched
in Chapter 3, we may use XML-DPDTs for the purpose of validation against a
DTD, or to execute the projection algorithm from Section 3.5. Yet XML-DPDTs
can also encode certain XML stream transformations. While pushdown trans-
ducers can be evaluated very efficiently over XML streams, their manual spec-
ification is cumbersome and error-prone. Consequently, users may be little in-
clined to actually encode XML stream transformations in this formalism. Out of
this consideration, we have developed a higher-level querying-formalism based
on attribute grammars. These XML Stream Attribute Grammars (XSAGs) have
precisely the same expressiveness as XML-DPDTs, so they can be compiled into
pushdown transducers. Thus, XSAGS can easily be executed in our framework
as well. We regard it as their strong point that they provide an intuition for
which queries can, and cannot, be evaluated scalably on streams. We refer
to [69] for our earlier work on the XSAG formalism.

We next show how XML-DPDTs can be modeled in our framework.

Modeling XML-DPDTs. Given an XML-DPDT, we encode its transition
function using a term-manipulating function “delta”. Further below, we will
also introduce a function “xdpdt” that is responsible for I/O. The motivation
for separating these two functionalities is that we want to re-use the definition
of function “delta” in the next chapter.

57
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σ1::. . . ::σn::delta(p, �, [(t,Y )]) ← delta(q0, 〈t〉, [ ]) (5.1)

σ1::. . . ::σn::delta(p, �, (t,Y )::(a, B)::S) ← delta(q, 〈t〉, (a,B)::S) (5.2)

σ1::. . . ::σn::delta(p, �, S) ← delta(q, 〈/t〉, (t, Y )::S) (5.3)

〈/〉 ← delta(q, 〈/〉, [ ]). (5.4)

xdpdt( delta(q, x, S) ) ← xdpdt( [delta(q, �, S)] ) (5.5)

{ newVar x; x := read() }

xdpdt(L) ← xdpdt( 〈t〉:: L) { write(〈t〉) } (5.6)

xdpdt(L) ← xdpdt(〈/t〉:: L) { write(〈/t〉) } (5.7)

( ) ← xdpdt( [〈/〉] ) { write(〈/〉) } (5.8)

Figure 5.1: Term rewriting rules for modeling a XML-DPDT.

Encoding the transition function. We assume that XML-DPDTs are
without epsilon-transitions, as these can always be removed [69]. Given the
specification T = (Q,Σ,Γ,∆, δ, q0, Z0) of an XML-DPDT, we now define the
function “delta”. This function (just like the XML-DPDT transition function)
takes the current state, the input symbol, and the stack contents as parameters.
The stack is realized using a list. We define nullary functions to model the states
and stack symbols of T .

For each initial transition of the form δ(q0, 〈t〉, Z0) = (p, (t, Y ), σ1 . . . σn)
(where the σi are output tokens), we define a term rewriting rule according to
rule r5.1 in Figure 5.1. When the input token 〈t〉 is consumed, we replace it with
the placeholder term “�”. Any output produced by the XML-DPDT is encoded
as a list of XML tokens, where the last element is the rewritten delta-function.
If the transition produces no output, we produce no prefix.

All remaining transitions of the form δ(q, 〈t〉, X) = (p, (t, Y )X,σ1 . . . σn)
are encoded analogously, with the difference that we push a tuple onto the
stack (see rule r5.2). Note that the template-term requires that the stack is
not empty. As we do not consider character data in our framework, we need
not specify rewriting rules for handling them. For reading closing tags, the
stack is popped if the closing tag matches the corresponding opening tag, as
XML-DPDTs check the well-formedness of their input. So for each transition
δ(q, 〈/t〉, (t, Y )) = (p, ǫ, σ1 . . . σn), we devise a rule according to r5.3.

Finally, we model the acceptance of XML-DPDTs by empty stack. For each
state q, we thus instantiate rule r5.4.

Encoding I/O. Function “xdpdt” reads the input one token at-a-time and
feeds this token into the delta-function. It also takes care that output computed
by delta is immediately written to the output tape. We again refer to Figure 5.1
for the rewriting rules. Rule r5.5 reads a new token once “delta” has consumed
its input, indicated by the placeholder “�”. Rules r5.6 and r5.7 ensure that the
token stream produced by the XML-DPDT is written to the output tape. The
rewriting terminates when the XML-DPDT has accepted its input, see rule r5.8.

Putting it all together. We model an XML-DPDT in our framework as
an application F = (xdpdt( [delta(q0, �, [ ])] ), R), where the term rewriting



5.1. XML PUSHDOWN TRANSDUCERS 59

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.2: Snapshots of executing an XML-DPDT (Example 5.1).

rules R are obtained as described above.

Example 5.1 We model the XML-DPDT from Example 3.6 and execute it for
the input “〈a〉〈b〉〈/b〉〈/a〉”. In Figure 5.2, we show snapshots of the system at
runtime. Snapshot (a) shows the start-term, yet not the buffer contents, as the
buffer-term is not accessed. The xdpdt-function reads the first input token and
feeds it to the delta-function. The delta-function pushes the current tagname
and state on the stack, and we arrive in snapshot (b). The stack grows and
shrinks as the tags for the b-labeled node are processed (steps (c) through (f)).
Upon reading the opening tag of the second a-labeled node in document order
(see step h), the input is rejected, as this node has the same label as its parent
node. We terminate with step (i) and the term “( )” as the query-term. �
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<results>

{ for $bib in $root/bib return

for $b in $bib/book return

<result>

{ for $t in $b/title

return $t }

{ for $a in $b/author

return $a }

</result> }

</results>

bib

book

title

( ) author

( ) author

( ) ( )

( )

( )

bind $root

bind $bib

bib

bind $b

book

title

( ) author

( ) author

( ) ( )

( )

( )

(a) XQuery expression. (b) Buffer-term. (c) Variable bindings.

Figure 5.3: XQuery and buffer-terms.

5.2 XQuery Evaluation

We next model an XQuery processor which uses unbounded buffers, so different
from XML-DPDTs, scalability cannot be guaranteed. Our query processor eval-
uates the XQuery fragment XQ from Section 3.4 and operates in a two-phase
approach. In the first phase, the input is loaded into a main memory buffer,
and in the second, the query is evaluated on the buffered data. For instance,
the IPSI, QizX, and Saxon XQuery engines operate in this mode [40, 90, 93].

Query fragment. As we only consider XML documents with element nodes
in our framework, we restrict ourselves to queries with the node test “*” and the
test for tagnames. In the absence of text nodes, the XPath node tests “node()”
and “*” can be considered equivalent. Additionally, we restrict comparisons to
equality checks (rather than less-than or greater-than comparisons).

Components. Our query engine will consist of several components, among
them a loader and a serializer as introduced in the previous chapter. Further, it
requires a variable environment relating query-variables to nodes in the buffer-
term, and a mechanism for checking conditions on the buffer-term. We address
these issues next, with the exception of the loader and serializer, which we have
already introduced. This is followed by a systematic compilation of XQueries
into term rewriting rules, so that they may be evaluated in our framework.

5.2.1 Variable Environment

We model variable environments, i.e. bindings of query-variables to XML docu-
ment nodes, by introducing function symbols into the buffer-term, which mark
the bound node. To avoid confusion when referring to variables, we will make
it clear whether we refer to buffer-variables (from our framework) or query-
variables (occurring in XQueries).

Example 5.2 Consider the query from Figure 5.3(a), and the buffer-term from
Figure 5.3(b). In evaluating the for-loops for query-variables $bib and $b, these
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variables are bound to nodes in the buffered tree. This is modeled by intro-
ducing function symbols “bind $bib” and “bind $b” into the buffer-term, above
the node to which they are bound. This is visualized in Figure 5.3(c). The
designated query-variable $root binds the root of the buffered tree. �

Approach. We assume a set of functions for the manipulation of variable
bindings. Consider the evaluation of a for-loop of the form “for $x in $y/π
return α”, where query-variable $y has already been bound to a node in the
buffer-term. To evaluate this expression, we first check whether a binding for $x
is possible. If this is the case, then we bind the variable $x to the first such node
in document order, then we check whether another binding is possible. If this is
the case, the variable is bound anew and the body of the for-loop is evaluated
for this binding as well. This is repeated while new bindings can be found.

We only describe the functions for manipulating the variable environment
informally, as their specification is quite straightforward yet technically involved.
For modeling the variable environment, we construct buffer-terms according to
the grammar

β ::= ( ) | a[β]β | x | bind $y(β)

where a is a tagname, x ranges over buffer-variable names, $y ranges over query-
variable names, and “bind $y” is a unary function.

We define two types of functions over buffer-terms. Functions of the first
type copy the buffer-term into the query-term, and then perform a single pass
over this tree. These functions lend themselves nicely for subtree sharing (see
Remark 4.1). We use this approach for checking conditions on the buffer-term,
or for selecting nodes bound to a given query-variable.

The functions of the second type modify the buffer-term. For this purpose,
we define rules of the form

τ ′ ← τ { . . . root := f(root); . . . }

where buffer-variable root is reassigned with the result of rewriting f(root).
Along this line, we will shortly introduce a function “remove binding($x,root)”.
This function removes the binding for query-variable $x from the buffer-term.
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Figure 5.4: Buffer-terms with variable bindings.
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Selecting bound nodes. We assume a function “select” that prunes a
copy of the buffer-term in the query-term down to the first node in document
order to which a given variable is bound. Function “select($x, τ)” assumes that
variable $x is already bound in term τ .

Example 5.3 Let the term from Figure 5.4(a) be the buffer-term. Below, we
apply the select-function for two different query-variables.

select($b,root) = book[ title[( )] bind $a
`

author[( )] author[( )]( )
´

]( )

select($a,root) = author[( )]( )

Note that the following-siblings of the selected node are not returned, as is
evident for select($a,root). At the same time, the variable bindings within the
selected tree are preserved, such as in select($b,root). �

Removing variable bindings. Given a buffer-term τ , we remove the
bindings of a query-variable $x with function “remove binding($x, τ)”. To
remove all variable-bindings from τ , we use function “remove all bindings(τ)”.

Example 5.4 Given the buffer-term from Figure 5.4(a), rewriting the term
“remove binding($a, root)” yields the term shown in Figure 5.3(c), while “re-
move all bindings(root)” yields the buffer-tree from Figure 5.3(b). �

Example 5.5 In evaluating queries, we will frequently output nodes to which
query-variables are bound. Let us assume that the query-variable $y is bound
in a term τ . To serialize the node to which $x is bound to the output tape, we
instantiate the term “output(remove all bindings(select($y, τ)))”. �

Existence checks. We define two existence checks which both return the
Boolean values “true” or “false” as constant terms. Function “exists($x/π, τ)”
returns true, if there is a match in term τ for the relative XPath expression π
with the node bound by $x as its context node.

Example 5.6 We consider the query from Figure 5.3(a) and the buffer-term
from Figure 5.3(c). The term “exists($b/author,root)” checks whether there
is a binding for variable $a within the given book. This is the case, so term
rewriting yields the term “true”. If we instantiate “exists($b/year, root)”, we
obtain the term “false”, as no such node exists in the buffer-tree. �

Function “has next($x/π, $y, τ)” assumes that query-variables $x and $y are
both bound in term τ . The function returns “true” if a further binding for $y
is possible, to a node that is matched by $x/π, but occurs after the node to
which $y is currently bound (in document order).

Example 5.7 We continue with Example 5.6. Then “has next($b/author, $a,
root)” yields “true”, while “has next($bib/book, $b, root)” yields “false”. �

Binding nodes. Function “bind first($x/π, $y, τ)” assumes that the term
“exists($x/π, τ)” can be rewritten to “true”. That is, there is at least one node
in the buffer-term that is matched by path expression $x/π. Then the func-
tion “bind first($x/π, $y, τ)” modifies the term τ such that query-variable $y
binds the first such node in document order.
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Example 5.8 We again consider the query from Figure 5.3(a), and the buffer-
term from Figure 5.3(c). In Example 5.6, we have already checked that a binding
for query-variable $a from the for-loop over authors is possible. Then the state-
ment “root := bind first($b/author, $a, root)” computes the buffer-term from
Figure 5.4(a), where $a is bound to the first author-node in document order. �

The function “bind next($x/π, $y, τ)” assumes that “has next($x/π, $y, τ)”
yields “true”. Then “bind next” locates the closest node in document order
that matches $x/π and that is a follower of the node that is currently bound
by $y. The old binding of $y is released, and the query-variable now binds the
newly located node.

Example 5.9 We resume the previous example, where we have already checked
that “has next($b/author, $a, root)” evaluates to true for the buffer-term from
Figure 5.4(a). Reassigning the root-variable with “bind next($b/author, $a,
root)” yields the buffer-term from Figure 5.4(b). �

Comparing nodes. Let $x and $x′ be two query-variables that are bound
in term τ . Then “compare($x, $x′, τ)” returns true if the nodes bound by these
variables in term τ are structurally equal (according to the XML document
model). In comparing nodes in the buffer-term, we ignore variable bindings.

Example 5.10 We once more assume the buffer-term from Figure 5.4(c). where
“compare($x, $y, root)” yields false, and “compare($y, $z, root)” yields true. �

Conditionals. For evaluating conditionals, we introduce the general term
rewriting rules from Figure 5.5.

e1 ← if then else(true, e1, e2)

e2 ← if then else(false, e1, e2)

true ← or(true, e)

true ← or(e, true)

false ← or(false, false)

true ← not(false)

false ← not(true)

false ← and(false, e)

false ← and(e, false)

true ← and(true, true)

Figure 5.5: Term rewriting rules for evaluating conditionals.

5.2.2 Query Compilation

We next compile XQueries from our fragment XQ into a term rewriting system.

Query compilation. Given a normalized XQuery Q, the compilation pro-
ceeds top-down in a single pass over the query parse tree, compiling query
expressions into terms and term rewriting rules. Each query subexpression q
with k free query-variables has access to a binary tree encoding of the current
environment (denoted env), where the k free query-variables are bound. In our
compilation, this is denoted by JqKk(env). We begin with JQK1(root), where
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J〈a〉q〈/a〉Kk(e)
/

〈a[ JqKk(e) ]( ), ∅〉

J( )Kk(e)
/

〈( ), ∅〉

J$xKk(e)
/

〈remove all bindings(select($x, e)), ∅〉

J(q1, . . . , qn)Kk(e)
/

〈concat
(

Jq1Kk(e), concat(Jq2Kk(e), . . . concat(Jqn−1Kk(e), JqnKk(e)))
)

, ∅〉

Jfor $x in $y/π return αKk(e)
/

〈for$x(e),
{

check first binding$x(exists($y/π, z), z) ← for$x(z),

concat(JqKk+1(z
′), check next binding$x(has next($y/π, $x, z′), z′))

← check first binding$x(true, z) {newVar z′; z′:=bind first($y/π, $x, z)},

concat(JqKk+1(z
′), check next binding$x(has next($y/π, $x, z′), z′))

← check next binding$x(true, z) {newVar z′; z′:=bind next($y/π, $x, z)},

( ) ← check first binding$x(false, z),

( ) ← check next binding$x(false, z)
}

〉

Jif χ then α else βKk(e)
/

〈if then else(JχKk(e), JαKk(e), JβKk(e)), ∅〉

Jsome $x in $y/π satisfies χKk(e)
/

〈some$x(e),
{

check first binding$x(exists($y/π, z), z) ← some$x(z),

or(JqKk+1(z
′), check next binding$x(has next($y/π, $x, z′), z′))

← check first binding$x(true, z) {newVar z′; z′:=bind first($y/π, $x, z)},

or(JqKk+1(z
′), check next binding$x(has next($y/π, $x, z′), z′))

← check next binding$x(true, z) {newVar z′; z′:=bind next($y/π, $x, z)},

false ← check first binding$x(false, z),

false ← check next binding$x(false, z)
}

〉

J$x = $yKk(e)
/

〈compare($x, $y, e), ∅〉

Jtrue()Kk(e)
/

〈true, ∅〉

Jfalse()Kk(e)
/

〈false, ∅〉

Figure 5.6: XQuery compilation rules JqKk(e)
/

〈τ, R〉 for eager evaluation.

query-variable $root as the single free query-variable is bound to the buffer-
term, which is accessible via buffer-variable root.

In Figure 5.6, we specify rules of the form “JqKk(env)
/

〈τ, R〉”, where a query
expression with k free variables that is of the form q is replaced by the term τ ,
and a set of term rewriting rules is generated according to pattern R. The
compilation proceeds until no more terms or rules can be generated.

Putting it all together. Phase one of query evaluation, the loading of the
input, is initiated by the start-term “load([ ],[root])”. Loading proceeds as
specified in the previous chapter. By the time that the input has been loaded,
the start-term has been reduced to the empty term. We then proceed with
phase two and start the query evaluation by the rule

output(JQK1(root)) ← ( ) { root := bind $root(root) }.
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That is, the implicit query-variable $root is bound to the root of the buffer-
term in executing the action. The replacement term specifies that any results
produced in XQuery evaluation are to be immediately serialized to the output.
The following example illustrates the compilation of a simple query.

Example 5.11 Given the XQuery

<x>{ for $b in //book return <y>{$b}</y> }</x>

we begin with the start-term “load([ ],[root])”, and compile the rules below.

output(x[for$b(root)]( )) ← ( )

check first binding$b(exists($root//book, z), z) ← for$b(z),

concat(y[remove all bindings(select($b, z′))]( ),
check next binding$b(has next($root//book, $b, z′), z′))

← check first binding$b(true, z) {newVar z′; z′:=bind first($root//book, $b, z)},

concat(y[remove all bindings(select($b, z′))]( ),
check next binding$b(has next($root//book, $b, z′), z′))

← check next binding$b(true, z) {newVar z′; z′:=bind next($root//book, $b, z)},

( ) ← check first binding$b(false, z),

( ) ← check next binding$b(false, z). �

Discussion. Due to the functional nature of XQuery, all bindings of a query-
variable can be evaluated in parallel. We refer to this mode as eager. Eager
evaluation has been realized in various XML processors, even processors de-
signed for XML stream processing [42, 50]. The queries compiled according to
the rules from Figure 5.6 evaluate query expressions eagerly, and use concate-
nation to ensure that output is produced in the correct order.

The problem with this approach is that the main memory footprint can be
unnecessarily high, as intermediate results must be stored until it is their turn
for output. The following example illustrates this point.

Example 5.12 Let us consider the query from Example 5.11 and a buffered
XML document with three books, as sketched in Figure 5.7(a). We abbreviate
the subtrees of books by triangles. Once the input has been loaded, query
evaluation begins with the term from Figure 5.7(b). We mark up terms that
form binary tree encodings in bold font.

Subfigures (b) through (f) show a sequence of possible snapshots of the
query-term in term rewriting. All possible bindings for query-variable $b are
located and evaluated in parallel. In snapshot (b), we begin with the evaluation
of the for-loop over books. That is, we check whether a binding for variable $b is
possible (step (c)), using the exists-function. As this existence check evaluates
to true (step (d)), the first matching book-node in document order is bound
by query-variable $b. We begin to evaluate the body of the for-loop for this
binding, but also search for further bindings (see step (e)). Altogether, three
bindings of variable $b are possible, and can be evaluated in parallel.

In snapshot (f), the tags “〈x〉〈y〉” have already been output, and the first
book is about to be output. Snapshot (g) shows an even further advanced
situation. Yet as long as the first book has not yet been serialized, the second
and third book must be stored in the query-term until it is their turn to be
serialized to the output. �
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Figure 5.7: (a) A buffer-term and (b)-(g) query-terms (Example 5.12).
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Figure 5.8: Snapshots of query-terms (Example 5.13).

As pointed out in the previous example, query evaluation requires sufficient
memory to buffer intermediate results. Frequently, this memory overhead can
be diminished by subtree sharing. But as Example 5.13 illustrates, there are
queries where subtree sharing between intermediate results is of no effect.

Example 5.13 The following query makes the query output dependent on a
condition. If the condition is satisfied, then element nodes are relabeled in
German, otherwise in Italian.

<x>

{ if ( some $x in //german_language satisfies true() )

then <ergebnisse>

{ for $b1 in //book return

<buch>

{( for $t in $b1/title return <titel></titel>,

for $a in $b1/year return <jahr></jahr> )}

</buch> }

</ergebnisse>

else <risultati>

{ for $b2 in //book return

<libro>

{( for $t in $b2/title return <titolo></titolo>,

for $a in $b2/year return <anno></anno> )}

</libro> }

</risultati> }

</x>

If this query is evaluated in our framework, then query evaluation (after
the input has been loaded) begins with the query-term from Figure 5.8(a). We
assume the buffer-term from Figure 5.7(a). Further, we assume that this tree
contains no node satisfying the condition and that the subtrees labeled one
through tree are structurally different (and hence cannot be shared).
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In our framework, there is no predefined order in which term rewriting rules
are applied. We may obtain the intermediate query-term from Figure 5.8(b)
where the condition has not yet been evaluated, but the results of the alternative
execution paths have already been computed. Note that the indexes a through g
in the figure denote structurally different subtrees. In this query-term, subtree
sharing between the trees produced by the then- and else-path is only possible
for leaf nodes in the binary tree representation. Thus, the savings are marginal
and even with subtree sharing, the eager evaluation of this query requires at
least enough memory to buffer the intermediate results.

Moreover, we point out that if we deviate from the two-phase model and
evaluate the query while the input is being read, the problem remains. The
reason is that the condition cannot be evaluated to false until the last token
from the input stream has been read. �

Our solution to this problem is a sequential (or lazy) approach to query eval-
uation, as opposed to the eager approach introduced above. In sequential query
evaluation, each query-variable binds to one node in the buffered XML doc-
ument at-a-time. Throughout query evaluation, only one for-loop is currently
responsible for producing output, so no intermediate results accumulate. We in-
troduce this alternative mode of query evaluation, along with further techniques
for reducing main memory consumption, in the next chapter.



6 Buffer-Conscious XML Stream
Processing

In main memory-based XQuery engines like those modeled in the previous chap-
ter, queries are evaluated on the buffered input tree. Buffer management in this
setup is rather simple. It consists of loading the complete input prior to query
evaluation, and discarding the buffer contents when query evaluation has fin-
ished. Yet this thwarts any chances at scalability, as the complete input has
to fit into main memory. Moreover, we have shown how an eager approach to
query evaluation, where several bindings of a query-variable are evaluated in
parallel, can cause additional memory overhead.

In this chapter, we isolate key tasks in reducing the main memory footprint.
Our solutions are fully composable, and selected methods will be implemented
as prototype systems in the succeeding chapters. We introduce a sequential ap-
proach to query evaluation in Section 6.1 and discuss its suitability for streaming
scenarios. We then evaluate queries on-the-fly, while the input is read. In par-
ticular, we discuss the evaluation of parts of the query directly on the input
stream, instead of on buffered data. This results in a scheduling of event-based
query operators, and is covered in Section 6.2. In this context, we point out how
the preemptive purging of buffers during query evaluation can effectively reduce
the main memory requirements. Preemptive buffer management is discussed in
Section 6.3. We finally summarize our observations in Section 6.4.

6.1 Sequential XQuery Evaluation

In a buffer-conscious XQuery evaluation in our framework, we want to influence
the order in which terms are rewritten. We motivate this idea below, and
specify a systematic compilation of XQueries such that queries are evaluated
sequentially. This stands in contrast to the eager evaluation from the previous
chapter. We conclude this section with a discussion of the benefits of this
approach in the context of XML stream processing.

Motivation. Let us consider the query from Figure 5.3(a) and the buffer-term
from Figure 5.3(b). Regarding the current state of query evaluation, we assume
that the query-variables $root, $bib, and $b have already been bound, as shown
in Figure 5.3(c). Next, the for-loops over titles and authors are evaluated.
Let q$t and q$a be the terms for evaluating these for-loops. Rewriting these

69
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terms will produce binary trees that encode the result of evaluating the for-
loops. These trees are then serialized to the output. For instance, in eager
evaluation we instantiate the query-term

output( concat(q$t, q$a) ),

where we evaluate both for-loops, and concatenate the results.
Note that our framework does not provide means for imposing an order in

which term rewriting rules are applied. Yet the size of the query-term, and
thus the total memory consumption, depend on this order. If we are “lucky”,
term q$t is rewritten before term q$a, but term rewriting can also proceed the
other way round. Consequently, we may obtain the query-terms

“output( title[( )]q$a )” or “output( concat(q$t, a[( )]a[( )]( )) )”

as intermediary results. In the first case, the opening- and closing-tag for the
title-node can be output before the term q$a is rewritten. This occurs at little
memory overhead. In the second case, the author-nodes must remain buffered
until it is their turn for output, which is after the title has been output. While
subtree sharing can diminish this overhead, we have already shown that there
are queries where subtree sharing is of virtually no effect.

We solve this problem by enforcing a sequential evaluation of the for-loops.
We apply a common approach from functional programming for enforcing lazy
query evaluation in eager programming languages. We instantiate the query-
term q$a only after the term q$t has been rewritten. In the context of XQuery
evaluation, this will be the case when the complete binary tree produced by q$t

has been serialized to the output. To detect this moment, we introduce a
function “delay$t(τ)” that yields the nullary term “finished$t” once term τ
has been serialized. We rewrite the query-term “output(delay$t(q$t))” to the
term “output↓(finished$t)”, and then apply the term rewriting rule “q$a ←
finished$t” to instantiate term q$a for the for-loop over authors.

Auxiliary functions. We introduce several auxiliary functions for enforcing
sequential query evaluation. In resuming the previous example, we begin with
the query-term “output(delay$t(q$t))”. Rewriting the term q$t yields a binary
tree. We place a marker “end$t” to the rightmost leaf-node of this tree, us-
ing the function “findend$t” to determine this position. Independently, the
output-function traverses this tree in document order. Once it reaches the
marker “end$t”, we know for sure that the result of the for-loop over titles has
been output. The marker is now replaced by the constant term “finished$t”,
upon which we instantiate q$a.

In Figure 6.1, we show snapshots of how the query-term changes over time,
and point out when output is produced. The “findend$t”-function moves to the
rightmost child of the title-tree, where it positions the marker “end$t”. This
marker stays put until it is met by the “output”-function. Then the query-term
is replaced by the term for evaluating the for-loops over authors.

6.1.1 Enforcing Evaluation Order

We next formalize the rules for enforcing sequential evaluation. We use iden-
tifiers (or indexes) as subscripts in function names to allow for the sequential
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output( delay$t(q$t) )

 output↓( findend$t(q$t) ) – evaluate q$t to title[( )]( )

 output↓( findend$t( title[( )]( ) ) )

 output↓( title[( )] findend$t( ( ) ) ) – position end-marker end$t

 output↓( title[( )] end$t )

 title[ output↓( ( ) ) ] end$t – output token “〈t〉”

 title[ output↑ ] end$t – output token “〈/t〉”

 output↓( end$t )

 output↓( finished$t ) – instantiate term q$t

 output↓( q$a )

Figure 6.1: Snapshots of the query-term in scheduling output.

scheduling of several terms. As the input queries are known in advance, we can
assume a finite set of indexes for each XQuery. Given two terms τi and τj with
indexes i and j that produce binary trees, we want to instantiate term τj only
after all results of term τi have been written to the output. We further assume
that the query-term has a subtree of the form “output↓( delayi(τi) )”. To posi-
tion marker “finishedi” as the rightmost leaf of the binary tree computed by τi,
we define the rules below for all tagnames a.

findendi(e) ← delayi(e)

a[e1] findendi(e2) ← findendi( a[e1]e2 )

endi ← findendi( ( ) )

As the set of indexes is finite, for each permutation π of a subset {i1, . . . , in}
of indexes and some term τ , we can precompute all nestings of findend-functions
around term τ of the form

findendπ(i1)(findendπ(i2)(. . . findendπ(in)(τ) . . . )).

For all such nestings, we define a rule that instantiates the term τj once the
results of term τi have been output. This is done in two steps. First, the
end-marker is replaced by the token “finished”.

output↓
(

findendπ(i1)(. . . findendπ(in)(finishedi) . . . )
)

← output↓
(

findendπ(i1)(. . . findendπ(in)(endi) . . . )
)

.

Then, term τj is instantiated by the rule

τj ← finishedi.

Example 6.1 The rewriting steps of the query-term “output( delay$t(q$t) )”
in Figure 6.1 are in accordance with the rules specified above. �

6.1.2 Query Compilation

We next compile queries for sequential query evaluation. In doing so, we re-use
the auxiliary functions for maintaining variable environments (see Section 5.2.1).
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In the upcoming compilation, instead of maintaining several environments
simultaneously, we manage a single variable environment as the current variable
environment. This environment is stored in the buffer-term, hence the environ-
ment is no longer a parameter in query compilation. As motivated before, we
assign identifiers to query subexpressions. These identifiers also function as
parameters in the compilation.

Let Q be a normalized XQuery. We again implement a two-phase evaluation
approach, and begin with start term “load([ ],[root])”. We also define the rule

output(JQK1) ← ( )

where Q is the given query, and index 1 denotes the identifier of this query
expression. The compilation proceeds according to Figure 6.2, which contains
mappings of the form JqKi/〈τ, R〉. If the current query subexpression with iden-
tifier i is of the form q, then it is replaced by the term τ , and a set of term
rewriting rules is defined according to R. Again, the compilation proceeds until
no more subexpressions can be rewritten.

Example 6.2 We again consider the query

<x>{ for $b in //book return <y>{$b}</y> }</x>

from Example 5.11, where this query was compiled for eager evaluation. Now,
we obtain the same start term “load([ ],[root])” as in eager compilation, yet
different rewriting rules, as shown below.

output(x[for$b]( )) ← ( ),

check first binding$b( exists($root//b, root) ) ← for$b,

delay$b( y[remove all bindings(select($b, root))]( ) )
← check first binding$b(true) {root:=bind first($root//b, $b, root)},

( ) ← check first binding$b(false),

check next binding$b( has next($root//b, $b, root) ) ← finished$b,

delay$b( y[remove all bindings(select($b, root))]( ) )
← check next binding$b(true) {root:=bind next($root//b, $b, root)},

( ) ← check next binding$b(false) {root:=remove binding($b, root)}.

Figure 6.3 shows snapshots in evaluating this query on the buffer-term from
Figure 5.7(a). In snapshots (a) and (b), query-variable $b has already been
bound to the first book-node in document order. This node is serialized to the
output. Then the variable is bound to the second book, which is also output
(snapshots (c) and (d)). Finally, the variable is bound to the third book (snap-
shot (e)). After this book as been output, query evaluation terminates with
writing the closing tag 〈/x〉 to the output. �

6.1.3 Discussion

There are several systems for XML stream processing that evaluate queries
eagerly [41, 42, 50]. This is possible due to the functional nature of XQuery,
which allows that all bindings for a for-loop can be evaluated in parallel.
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J〈a〉q〈a〉Ki

‹

〈a[JqKj ]( ), ∅〉 with new identifier j,
J( )Ki

‹

〈( ), ∅〉
J$xKi

‹

〈remove all bindings(select($x, root)), ∅〉

J(q1, . . . , qn)Ki

‹

〈delayin−1
(delayin−2

( . . . delayi1( Jq1Kin ) . . . )),
˘

Jq2Kin+1
← finishedi1 .

Jq3Kin+2
← finishedi2 ,

. . .
Jqj+1Kin+j

← finishedij
,

. . .
JqnKi2n−i

← finishedin−1

¯

〉

with new identifiers i1, . . . , in, in+1, . . . , i2n−1,

Jfor $x in $y/π return qKi

‹

〈for$x,
˘

check first binding$x(exists($y/π, root))← for$x,

delayi(JqKj) ← check first binding$x(true)

{ root:=bind first($y/π, $x, root) },
( ) ← check first binding$x(false),

check next binding$x(has next($y/π, $x, root))← finishedi,
delayi(JqKj) ← check next binding$x(true)

{ root:=bind next($y/π, $x, root) },
( ) ← check next binding$x(false)

{ root:=remove binding($x, root) }
¯

〉
with new identifier j

Jif χ then α else βKi

‹

〈check conditioni(JχKjχ),
˘

JαKjα ← check conditioni(true), JβKjβ
← check conditioni(false)

¯

〉
with new identifiers jχ, jα, and jβ

Jsome $x in $y/π satisfies χKi

‹

〈some$x,
˘

check first binding$x(exists($y/π, root))← some$x,

check condition$x(JχKj) ← check first binding$x(true)

{ root:=bind first($y/π, $x, root) },
true ← check condition$x(true),

check next binding$x(has next($y/π, $x, root)) ← check condition$x(false),

check condition$x(JχKj) ← check next binding$x(true)

{ root:=bind next($y/π, $x, root) },
false ← check next binding$x(false)

{ root:=remove binding($x, root) }
¯

〉
with new identifier j

J$x = $yKi

‹

〈compare($x, $y, root), ∅〉
Jtrue()Ki

‹

〈true, ∅〉
Jfalse()Ki

‹

〈false, ∅〉

Figure 6.2: XQuery compilation rules JqKi/〈τ, R〉 for sequential evaluation.
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output

x

delay$b

y

remove all bindings

select

$b bind $root

bib

bind $b

book

1 book

2 book

3 ( )

( )

( )

( )

x

output↓

y

book

1 end$b

( )

( )

x

output↓

delay$b

y

remove all bindings

select

$b bind $root

bib

book

1 bind $b

book

2 book

3 ( )

( )

( )

( )

x

output↓

y

book

2 end$b

( )

( )

(a) (b) (c) (d)

x

output↓

y

delay$b

remove all bindings

select

$b bind $root

bib

book

1 book

2 bind $b

book

3 ( )

( )

( )

( )

x

output↓

y

book

3 end$b

( )

( )

x

output↑ ( )

(e) (f) (g)

Figure 6.3: Snapshots of query- and buffer-terms (Example 6.2).
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The trade-off between lazy and eager evaluation is a fully discussed sub-
ject in the field of programming languages [55]. Regarding runtime, the same
arguments apply here, namely that lazy (or sequential) evaluation avoids the
computation of intermediate results that may not be required after all. In the
context of XML stream processing, our main concern is the memory required
for storing the intermediate results produced by eager evaluation.

With sequential query evaluation, we can actually guarantee for our query
fragment XQ that no intermediate query results need to be buffered for pro-
ducing output in the correct order. Thus, there is the same worst-case high
watermark for all queries over a given input document, and data is not buffered
redundantly. In contrast, we cannot give such guarantees in eager evaluation,
where we may have to buffer intermediate results as well. In the eager XML
stream processing system of [50], garbage collection is combined with subtree
sharing to reduce the main memory overhead, and to avoid redundant buffering.
However, there are queries where little can be gained by these techniques, as
shown in Example 5.13.

In summary, when main memory consumption is our prime optimization
target, as is the case in XML stream processing, a sequential query evaluation
is to be preferred. Note that in our discussions of runtime aspects, in particular
the computation of joins in Part IV, we will relativize this point to some extent.

6.2 Streaming XQuery Evaluation

For the sake of scalability, we deviate from the two-phase evaluation model
presented so far, where query evaluation only sets in after the complete input
has been read. In this section, we discuss the sequential evaluation of XQueries,
or parts thereof, on-the-fly, while the input stream is being read.

In the following, we present two approaches. In the first, we statically sched-
ule dedicated streaming query operators. In the second, we do not have dedi-
cated operators available, but query evaluation is interleaved with reading the
input and the purging of buffers. The overall effect is also an on-the-fly query
evaluation. We introduce these two approaches in Sections 6.2.1 and 6.2.2 re-
spectively. In Section 6.2.3, we discuss the tradeoffs involved. We emphasize the
necessity of purging buffers preemptively, which is the topic of the next section.

Motivation. There are several main memory-based XQuery processors with
streaming operators in their query algebras (e.g. [44, 70, 101]). These operators
are event-based, and are evaluated directly over the events in the input stream,
rather than over buffer datastructures. The FluXQuery engine, which we will
also present in Chapter 8, is a forerunner in this field. Below, we outline the
basic idea using an example query. Then we sketch how the FluXQuery engine
proceeds for this query, using our abstract framework as a modeling language.

Example 6.3 Consider the XQuery below

<results>{

for $bib in /bib return

for $b in $bib/book

return <book>{ ($b/title, $b/author, $b/year) }</book> }

</results>
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which outputs the title, author, and year children of each book node, in this or-
der. In two-phase XQuery evaluation, the for-loop over book nodes is evaluated
over buffered data. When streaming operators are available, we can design an
alternative query execution plan that processes one book at-a-time, while the
input is read. Then each opening tag 〈book〉 that is part of a node reachable via
the path /bib/book is directly written to the output. All tokens that are part of
book titles are output the instance that they appear in the input stream. In the
meantime, the author nodes and year nodes of books are buffered. When the
tag 〈/book〉 is encountered, the query expressions “$b/author” and “$b/year”
are evaluated over the buffered data. The buffer contents can now be purged,
as they are no longer relevant for the remaining query evaluation. At this point,
the closing tag for the book-node is written to the output.

Thus, the titles need not be buffered at all. At each moment during query
evaluation, at most the author and year children of a single book are stored in
buffers. In contrast, in evaluating the complete query in a two-phase approach,
the titles, author, and year children of all book nodes are buffered. �

6.2.1 Static Scheduling of Streaming Operators

To the best of our knowledge, in all existing XQuery engines with stream-
ing operators, operator scheduling takes place at query compile time [44, 70]
(though [101] discusses the potential of operator scheduling at runtime). We
refer to the operators that process buffered data as buffer operators.

For static operator scheduling, we need a formalism that makes the distinc-
tion between streaming and buffer operators explicit. In the Galax XQuery
engine [44], a physical query algebra for full XQuery with streaming operators
is used. Our FluX approach is more general as it does not specify how query
evaluation over buffers is realized. Rather, it identifies which parts of the query
can be directly evaluated over the input stream, and which must be evaluated
over buffers. In the following, we present ideas from the FluX approach.

The FluX approach. The FluX language extends our XQuery fragmentXQ−

with the process-stream construct, which specifies the parts of the query that
are evaluated directly on the input stream. We introduce the FluX language on
an intuitive level with the following example.

Example. The query from Example 6.3 is phrased as a FluX query in Fig-
ure 6.4. A “process-stream $x” expression in FluX consists of a number of
handlers which process the children of the XML node bound by variable $x
from left to right. In sequential query evaluation, query variable $x binds to
one node at-a-time, which we refer to as the context node. Let us consider
the list of handlers defined in Figure 6.4 for the context node represented by
variable $root. The handler “on-first-past()” fires when the context of the root
variable is first entered. So in the example above, the opening tag 〈results〉 is
output before any input data has been read. Equivalently, the handler “on-first-
past(*)” fires when the context of the variable is left, so the closing tag 〈results〉
is output at the end of the stream.

An “on a”-handler fires for each child of the context node that is labeled a.
When the handler fires, its associated query expression is executed. Here, the
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{ process-stream $root:

on-first-past() return <results>,

on bib as $bib return

{ process-stream $bib:

on book as $b return

{ process-streams $b:

on-first-past() return <book>,

on title as $title return $title,

on-first-past(*) return $b/author,

on-first-past(*) return $b/year,

on-first-past(*) return </book> } }

on-first-past(*) return </results> }

Figure 6.4: A FluX expression.

“on bib”-handler fires when the opening tag for a bib-node is read. Then this
node becomes the context node for variable $bib. Next, we check which of the
the handlers defined for the “process-stream $bib”-expression fire.

All children of the context node that are not labeled “book” are simply
ignored. When the opening tag for a book-node is read, the “on book”-handler
fires. The book-node becomes the context node of variable $b. The interplay of
event-handlers for the $b-variable can be summarized as follows. Up front, the
opening tag 〈book〉 is output. Each title is output directly when read in the input.
Once the context of the variable $b is left, i.e. the closing tag 〈/book〉 is read in
the input stream, the “on-first-past(*)” event handlers fire. The handlers fire in
order of their specification, and their subexpressions are evaluated over buffered
data. So first the author children are retrieved from the buffer and output, then
the year children. It is the task of the buffer manager to gather this data while
the book-node is being parsed. The FluX language does not make these details
of buffer management explicit, as they are really an orthogonal issue. However,
the compilation of queries into FluX does ensure that the buffer manager has
enough time to fill buffers before their contents are accessed in query evaluation.
In Chapter 8, where we present the details on FluX, we formulate this as a safety
requirement. Finally, when the third “on-first-past(*)”-handler is executed, the
closing tag 〈/book〉 is output.

FluX expressions in the abstract framework. The formal syntax and
semantics of the full FluX language are specified in Chapter 8. For now, we
argue on the level of intuition, and show how a subset of FluX expressions
can be modeled in our framework. Note that we disregard all issues of buffer
management for now, such as loading data into buffers or purging data from
buffers. The following section will fill in these gaps.

The idea is to represent a FluX expression as a query-term, and to pass the
XML events from the input stream from one query subexpression to the next.
In particular, the stream is passed from event-handler to event-handler, where
each handler can fire in turn. We first introduce two auxiliary functions for
processing single XML events, before we encode process-stream statements.
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Auxiliary macros. The auxiliary functions specified in Figure 6.5 process
single XML events. When the input is read, the single events from the input
will be fed to these functions. Macro “skipnode” skips a subtree, while macro
“outputnode” copies a subtree to the output. Both functions use a stack to
determine the scopes of subtrees. Again, we implement stacks as lists and use
the term “�” to signal that an input token has been consumed (see Section 4.3).

For all tagnames a and b:

skip(�, [a]) ← skipnode(〈a〉)

skip(�, a :: S) ← skip(〈a〉, S)

skip(�, x :: S) ← skip(〈/a〉, a :: b :: S)

� ← skip(〈/a〉, a :: [ ])

out(�, [a]) ← outputnode(〈a〉) {write 〈a〉}

out(�, a :: S) ← out(〈a〉, S) {write 〈a〉}

out(�, x :: S) ← out(〈/a〉, a :: b :: S) {write 〈/a〉}

� ← out(〈/a〉, a :: [ ]) {write 〈/a〉}

Figure 6.5: Stream processing macros.

Rewriting rules. For the sake of simplicity, we assume that the input stream
encodes a non-recursive XML document. This saves us some technical overhead.
In the compilation of a FluX expression f into our framework, we use the
notation JfKflux. Then a FluX expression of the form

J on a as $y return { process-stream $y: handler1, . . . , handlern } Kflux

is compiled into a query-term as shown below,

on a as $y return

process-stream $y

Jhandler1K
flux . . . JhandlernKflux

where the event handlers handler1, . . . , handlern are compiled as follows.

• An event handler of the form Jon-first-past() return αKflux is translated
into a term “on-first-past()(JαKflux)”.

• An event handler of the form Jon-first-past(*) return αKflux is translated
into a term “on-first-past(*)(JαKflux)”.

• An event handler of the form “on b as $z return $z”, is translated into a
term “on b as $z return(return $z)”.

• An event handler of the form “on b as $z return {process-stream $z: h}”
is rewritten recursively.

Each event handler subexpressions α is also rewritten. If α is a sequence of open-
ing and closing tags, then we substitute it with the term “emit α”. Otherwise,
if α is an XQuery expression, we replace it by a term “expr α”.
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on bib as $bib return

process-stream $bib

on-first-past()

emit 〈bib〉

on book as $book return

return $book

on-first-past(*)

expr $bib/article

on-first-past(*)

emit 〈/bib〉

Figure 6.6: A query-term encoding a FluX expression (Example 6.4).

Example 6.4 We now resort to a smaller example query, for which we discuss
the compilation in detail. The XQuery sub-expression

for $bib in /bib return <bib>{ ($bib/book, $bib/article) }</bib>

first retrieves books, then articles. Its FluX version

on bib as $bib return

{ process-stream $bib:

on-first-past() return <bib>,

on book as $book return $book,

on-first-past(*) return $bib/article,

on-first-past(*) return </bib> }

specifies that books are output the instance they are read in the input stream.
Once the complete input has been read, articles are retrieved from the buffer.
We represent this FluX expression as the query-term from Figure 6.6. �

Processing the input stream. We next encode the eval-function. The eval-
function reads events from the input stream and passes them along to the event
handlers. It takes two arguments, an input token and the currently active query
expression. The eval-function traverses the encoded FluX query in depth-first
order, using functions “eval↑” and “eval↓”.

Tokens are read from the input by the rules from Figure 6.7. The eval-
function takes care of evaluating the event handlers in sequence of their speci-
fication (see Figure 6.8). For each child of the context node, the event handlers
are checked one by one. The rules for evaluating handlers are shown in Fig-
ures 6.9 and 6.10, and are discussed further below. The “on-first”-handlers
fire only once for each context node. After they have fired, they are rewrit-
ten to the empty term “( )”. If no event handler fires, then the current child
node is skipped entirely, using the auxiliary function “skipnode”. Finally, when
the closing tag of the context node is read, the handlers are checked one more
time, so that “on-first-past(*)”-handlers can fire. Then, the stream is passed
“upwards” to the context of the parent variable. At this point, all handlers
(which may have changed when they fired) are restored. This is done by the
last rule in Figure 6.8, and ensures that the set of event handlers is complete
when query-variable $x is bound anew.

We now look closer at the handler subexpression when an event handler
actually fires. In the rule for query-term “eval↓(e, emit t1 . . . tn)” in Figure 6.9,
the expression t1 . . . tn represents a sequence of opening and closing tags. When
the attached event handler fires, these tokens are written to the output tape.

If the query-term for an event handler is of the form “eval↓(e, expr q)”, then
XQuery expression q is evaluated when the event hander fires. In particular, this
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process stream $y

eval↓

x h1

h2 . . . hn

← process stream $y

eval↓

� h1

h2 . . . hn

{newVar x;
x:=read()}

eval↓(out(x,S), e) ← eval↓(out(�, S), e) { newVar x; x:=read() }

eval↓(skip(x,S), e) ← eval↓(skip(�, S), e) { newVar x; x:=read() }

Figure 6.7: Term rewriting rules for reading the input in FluX evaluation.

expression is evaluated over the buffered data. This is modeled by compiling the
XQuery expression into our framework. Here, we can choose between the com-
pilation for eager or sequential query evaluation. This decision is orthogonal to
the choice of which parts of the query are evaluated over buffered data. To keep
memory consumption low, we pursue the sequential mode of query evaluation in
the following. The “eval” function stalls until the XQuery expression has been
evaluated, i.e. it has been reduced to the term “output↑”. This is captured by
the last two rules in Figure 6.9.

In Figure 6.9, we further show the treatment of “on-a”-event handlers. If
these handlers require that the current context node is output (encoded by term
“return $y”), then this is done on-the-fly using the function “outputnode”. This
function, defined in Figure 6.5, directly copies the XML events encoding the cur-
rent context node from the input to the output. The eval-function won’t pro-
ceed unless the complete node has been serialized. This ensures that output is
generated in a deterministic fashion. Moreover, the closing tag of the node is re-
inserted into the input stream, so that superordinate query expressions receive
the information that the current node has already been consumed. In case an
“on-a”-event handler carries a “process-stream”-statement as a subexpression,
it is rewritten recursively.

The rules in Figure 6.10 concern the treatment of “on-first-past()” and “on-
first-past(*)”-event handlers. The former fire for the opening-tag of the context
node, the latter for the closing tag. As these event handlers fire only once for
each context node, their query-terms are rewritten to the empty term.

Example 6.5 We consider the evaluation of the FluX expression from Exam-
ple 6.4 for the input stream “〈bib〉〈book〉〈/book〉〈article〉〈/article〉〈/bib〉”. We
begin with the start-term “$” and define the term rewriting rule which initiates
evaluation of the term from Figure 6.6.

eval↓

x on bib as $bib return

process-stream $bib

on-first-past()

emit 〈bib〉

on book as $book return

return $book

on-first-past(*)

expr $bib/article

on-first-past(*)

emit 〈/bib〉

← $ { newVar x;
x:=read() }

In Figures 6.11 and 6.12, we show snapshots in evaluating the XML docu-
ment from above. Snapshot (a) depicts the situation just after the start-term “$”
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For a given FluX expression “on a as $y return {process-stream $y: h$y
1 , . . . , h$y

n }”,

and distinct tagnames a and b:

on a as $y return

process-stream $y

eval↓

〈a〉 h1

h2 . . . hn

← on a as $y return

eval↓

〈a〉 process-stream $y

h1 h2 . . . hn

process stream $y

h1 . . . hi eval↓

e hi+1

. . . hn

← process stream $y

h1 . . . eval↑

e hi

hi+1 . . . hn

on a as $y return

process-stream $y

eval↓

� h1

h2 . . . hn−1 hn

← on a as $y return

process-stream $y

h1 h2 . . . hn−1 eval↑

〈a〉 hn

on a as $y return

process-stream $y

eval↓

skipnode

〈b〉

h1

h2 . . . hn−1 hn

← on a as $y return

process-stream $y

h1 h2 . . . hn−1 eval↑

〈b〉 hn

on a as $y return

process-stream $y

eval↓

� h1

h2 . . . hn−1 hn

← on a as $y return

process-stream $y

h1 h2 . . . hn−1 eval↑

〈/b〉 hn

eval↑

〈/a〉 on a as $y return

process-stream $y

h$y
1 . . . h$y

n−1 h$y
n

← on a as $y return

process-stream $y

h1 . . . hn−1 eval↑

〈/a〉 hn

Figure 6.8: Evaluating FluX “process-stream”-statements.
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For distinct tagnames a and b, query-variables $y, XML events t1, . . . , tn, XQuery
expression q and a new identifier j:

on a as $y return( eval↓( 〈a〉, e) ) ← eval↓( 〈a〉, on a as $y return(e) )

on a as $y return( eval↓(〈/a〉, e) ) ← eval↓( 〈/a〉, on a as $y return(e) )

eval↑( 〈b〉, on a as $y return(e) ) ← eval↓( 〈b〉, on a as $y return(e) )

eval↑( 〈/b〉, on a as $y return(e) ) ← eval↓( 〈/b〉, on a as $y return(e) )

on a as $y return(

eval↓(outputnode(e), return $y) ) ← on a as $y return( eval↓( e, return $y) )

eval↑( 〈/a〉,

on a as $y return(return $y) ) ← on a as $y return( eval↓(�, return $y) )

eval↑(E, emit t1 . . . tn) ← eval↓( e, emit t1 . . . tn )

{write t1; . . . write tn}

eval↓( e, output(JqKj) ) ← eval↓( e, expr q )

eval↑( e, ( ) ) ← eval↓( e, output↑ )

Figure 6.9: FluX evaluation rules.

has been replaced according to the rewriting rule above. In the same step, the
first token is read from the input stream.

In snapshot (b), we start evaluating the handlers for the FluX statement
“process-stream $bib”. Here, the “on-first-past()”-statement can be evaluated.
The terms for these statements are rewritten to the empty term, so that they
won’t fire within the same context node anymore. Also, the token 〈bib〉 is
output. Only the first handler fires for this input token, and so the eval-function
transports the input token 〈bib〉 to the last handler (snapshots (c) and (d)).

Next, the input token 〈book〉 is passed along the event handlers. The second
handler fires (see snapshots (e) through (g)), and the entire book-node is directly
output as read in the input stream.

The next input token is the opening tag for the article-node. No event han-
dler fires, and we reach the final event handler, as depicted in snapshot (h).
This node must be discarded, so that the next child of the bib-node can be pro-
cessed. This job is done by the function “skipnode”, as depicted in snapshot (i).
The bib-node has no more children, and so the next input token is the closing
tag of the bib-node itself (snapshot (j)). This token is passed to the handlers,
so that the “on-first-past(*)”-handlers may fire. In snapshots (k) and (l), the
article-nodes are output. When the last handler in this list fires, the closing
tag 〈/bib〉 is written to the output.

In snapshots (m) and (n), we finish the evaluation of the current context
node. Note that in the final snapshot, the handlers are restored so that they
can fire properly should there be a further context node. �
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For a given FluX expression “on a as $y return {process-stream $y: h$y
1 , . . . , h$y

n }”,

and distinct tagnames a and b:

on a as $y return

process-stream $y

h1 . . . hi−1 on-first-past()

eval↓

〈a〉 e

hi+1 . . . hn

← on a as $y return

process-stream $y

h1 . . . hi−1 eval↓

〈a〉 on-first-past()

e

hi+1 . . . hn

eval↑

t ( )

← on-first-past()

eval↑

t e

on a as $y return

process-stream $y

h1 . . . hi−1 on-first-past(*)

eval↓

〈/a〉 e

hi+1 . . . hn

← on a as $y return

process-stream $y

h1 . . . hi−1 eval↓

〈/a〉 on-first-past(*)

e

hi+1 . . . hn

eval↑

t ( )

← on-first-past(*)

eval↑

t e

on a as $y return

process-stream $y

h1 . . . hi−1 eval↑

〈b〉 on-first-past(*)

e

hi+1 . . . hn

← on a as $y return

process-stream $y

h1 . . . hi−1 eval↓

〈b〉 on-first-past(*)

e

hi+1 . . . hn

on a as $y return

process-stream $y

h1 . . . hi−1 eval↑

〈/b〉 on-first-past(*)

e

hi+1 . . . hn

← on a as $y return

process-stream $y

h1 . . . hi−1 eval↓

〈/b〉 on-first-past(*)

e

hi+1 . . . hn

Figure 6.10: Evaluating FluX “on-first-past”-statements.
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(a) eval↓

〈bib〉 on bib as $bib return

process-stream $bib

on-first-past()

emit 〈bib〉

on book as $book return

return $book

on-first-past(*)

expr $bib/article

on-first-past(*)

emit 〈/bib〉

(b) on bib as $bib return

process-stream $bib

eval↓

〈bib〉 on-first-past()

emit 〈bib〉

on book as $book return

return $book

on-first-past(*)

expr $bib/article

on-first-past(*)

emit 〈/bib〉

(c) on bib as $bib return

process-stream $bib

( ) eval↓

〈bib〉 on book as $book return

return $book

on-first-past(*)

expr $bib/article

on-first-past(*)

emit 〈/bib〉

(d) on bib as $bib return

process-stream $bib

( ) on book as $book return

return $book

on-first-past(*)

expr $bib/article

eval↑

〈bib〉 on-first-past(*)

emit 〈/bib〉

(e) on bib as $bib return

process-stream $bib

( ) eval↓

〈book〉 on book as $book return

return $book

on-first-past(*)

expr $bib/article

on-first-past(*)

emit 〈/bib〉

(f) on bib as $bib return

process-stream $bib

( ) on book as $book return

eval↓

outputnode

〈book〉

return $book

on-first-past(*)

expr $bib/article

on-first-past(*)

emit 〈/bib〉

(g) on bib as $bib return

process-stream $bib

( ) eval↑

〈/book〉 on book as $book return

return $book

on-first-past(*)

expr $bib/article

on-first-past(*)

emit 〈/bib〉

Figure 6.11: Snapshots of query-terms from Example 6.5.
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(h) on bib as $bib return

process-stream $bib

( ) on book as $book return

return $book

on-first-past(*)

expr $bib/article

eval↑

〈article〉 on-first-past(*)

emit 〈/bib〉

(i) on bib as $bib return

process-stream $bib

eval↓

skipnode

〈article〉

( )

on book as $book return

return $book

on-first-past(*)

expr $bib/article

on-first-past(*)

emit 〈/bib〉

(j) on bib as $bib return

process-stream $bib

eval↓

〈/bib〉 ( )

on book as $book return

return $book

on-first-past(*)

expr $bib/article

on-first-past(*)

emit 〈/bib〉

(k) on bib as $bib return

process-stream $bib

( ) on book as $book return

return $book

on-first-past(*)

eval↓

〈/bib〉 expr $bib/article

on-first-past(*)

emit 〈/bib〉

(l) on bib as $bib return

process-stream $bib

( ) on book as $book return

return $book

on-first-past(*)

eval↓

〈/bib〉 output

J$bib/articleK1

on-first-past(*)

emit 〈/bib〉

(m) on bib as $bib return

process-stream $bib

( ) on book as $book return

return $book

( ) eval↑

〈/bib〉 ( )

(n) eval↑

〈/bib〉 on bib as $bib return

process-stream $bib

on-first-past()

emit 〈bib〉

on book as $book return

return $book

on-first-past(*)

expr $bib/article

on-first-past(*)

emit 〈/bib〉

Figure 6.12: Snapshots of query-terms from Example 6.5 (continued).
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{ process-stream $root:

on-first-past() return <results>,

on bib as $bib return

{ process-stream $bib:

on book as $book return

process-stream $book:

on-first-past(*) return

if exists($book/price)

then <book>{ $b/title, $b/price }</book>

else () }

on-first-past(*) return </results> }

Figure 6.13: A FluX query.

6.2.2 Incremental Query Evaluation over Buffered Data

Given a sequential XQuery processor as specified in Section 6.1, we can achieve a
streaming query evaluation without introducing dedicated streaming operators.
To this end, we evaluate the query on the partially buffered input tree. One
input token after the other is loaded, and query evaluation proceeds as far as
possible in each step. A preemptive buffer manager purges nodes from the
buffer that are no longer required. The effect is an interleaving of loading and
query evaluation; while the query is completely evaluated over buffered data,
the buffered tree is continuously loaded and pruned.

For the query from Example 6.3, we achieve that all book titles are only
buffered one node at-a-time. That is, a title is buffered, output, and purged
from the buffer. Then the next title, if it exists, is processed in this manner.
At most, one book title, the author, and the year children of the current book
are buffered during query evaluation. The memory footprint of this approach is
sightly higher than in static operator scheduling for this query (see Example 6.3),
where the title nodes can be output without first buffering them.

There are also queries where this approach requires less buffering than sys-
tems that rely on static operator scheduling, as we show next.

Example 6.6 Consider the XQuery below which outputs the title and price
information of all books that have prices. The static compilation into FluX
yields the expression from Figure 6.13.1

<results>

{ for $bib in /bib return

for $b in $bib/book

where exists($b/price)

return <book>{ ($b/title, $b/price) }</book> }

</results>

In evaluating this query, we wait for an opening-tag of a book to appear in
the input stream. Afterwards, we delay processing the children of the book-node
until closing tag 〈/book〉 has been read. This leaves enough time to buffer all title

1We have simplified the syntax of the FluX language for better legibility. This FluX query
differs in minor details from the result of the compilation algorithm from Chapter 8.
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and price nodes. In fact, a book may have a single price node as its last child,
or no price at all. From the viewpoint of main memory consumption, this is the
worst-case scenario, as all title nodes must be buffered until the complete book
has been read. However, in the best-case scenario, the first child of a book node
is a price node. In principle, the title children can be output directly, and only
the price nodes need to be buffered. The incremental query evaluation over the
buffered data can exploit the best-case scenario. Yet static operator scheduling
cannot react to this scenario without any additional knowledge about the input,
e.g. in form of schema information. �

6.2.3 Discussion

In the previous chapter, we have built XQuery engines that operate in a two-
phase approach of loading the input prior to query evaluation. In this section, we
have introduced two streaming variants that lower main memory consumption
by abandoning the two-phase principle when possible.

The first approach statically schedules dedicated streaming query operators.
That is, parts of the query are evaluated directly on the input stream, without
intermediate buffering. The remaining parts of the query are evaluated over
buffered data, and the choice of how to implement this is not restricted any
further. For instance, both eager and sequential evaluation are possible. As
an example of static scheduling, we have introduced the FluX approach, and
modeled the evaluation of FluX queries in our framework. We will present FluX
in greater detail in Chapter 8, where we also show how schema knowledge can
be exploited in the compilation of FluX queries.

The second approach does not require dedicated streaming operators. The
queries are evaluated over the buffered data, which is incrementally loaded and
pruned. Again, both the eager and the sequential query evaluation modes are an
option, and systems adhering to either have been implemented for XML stream
processing (e.g. [97] and [41, 42, 50] respectively).

In both cases, the success in reducing the main memory consumption de-
pends on the effectiveness of an algorithm that purges data from buffers once it
is no longer relevant. The following section is dedicated to this topic.

6.3 Purging Main Memory Buffers

The decision when to purge data from buffers can be made statically or dy-
namically. The way in which this is realized has an effect on whether data is
buffered redundantly, i.e. the same node is buffered multiple times. We intro-
duce a technique for static buffer purging in Section 6.3.1, and an approach
where buffers are purged based on static and dynamic analysis in Section 6.3.2.
In Section 6.3.3, we discuss both approaches regarding their effectiveness in
reducing main memory consumption and the effort for implementing them.

6.3.1 Static Buffer Purging

In a very basic form of buffer management, the buffer contents are not cleared be-
fore query evaluation has finished. Yet XQuery engines cannot scale to streams
unless buffers are purged preemptively, i.e. during query evaluation.
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Static buffer purging in the FluX approach. We now consider static
preemptive buffer purging, and base our discussion on the FluX approach, as
introduced in the previous section. We refer to the variables defined in “on a as
$x”-expressions as FluX-variables, and all other variables as XQuery-variables.
During query evaluation, each FluX-variable binds to one node from the input
at-a-time, its context node. With each FluX-variable, we associate a separate
buffer. The lifetime of this buffer is aligned with the scope of this variable.

In Chapter 8, we will introduce an algorithm that compiles XQueries into
equivalent FluX queries. This algorithm assumes that all XQuery subexpres-
sions are normalized. For each FluX-variable $x and each XQuery-variable $y
such that the lineage between $x and $y is defined, we then define the projection
path pp($y) as pp($y) := lineage($x, $y) (see Sections 3.4 and 3.5.1).

At runtime, we simultaneously perform XML document projection for all
FluX-variables. That is, the data relevant according to the projection paths
associated with a FluX-variable $x is copied into the buffer associated with $x.
If a node is relevant according to the projection paths of several FluX-variables,
it is copied into each of their buffers.

We start filling a buffer each time the scope of its associated FluX-variable $x
is entered during query evaluation. This is the case when the opening tag of an
context node of $x is read in the input. When the matching closing tag is read,
and after the process-stream statement for variable $x has been executed, the
contents of this buffer are discarded.

Example 6.7 We consider the FluX expression from Figure 6.4 with the FluX-
variables $root, $bib, and $b. We associate a buffer and projection paths with
each FluX-variable. After query normalization, we extract the projection paths
$b/author# and $b/year# for FluX-variable $b. These paths identify the data
relevant for query evaluation within the process-stream statement of variable $b.
For the other variables, no projection paths can be extracted from the query, so
the associated buffers remain empty. Let us now consider the input stream

〈bib〉〈book〉〈title/〉〈author/〉〈/price〉〈/book〉〈/bib〉

from the viewpoint of buffer management. When the opening tag of the book-
node is read, prefiltering for the projection paths $b/author# and $b/year# sets
in. The tags for the author-node are copied into the buffer associated with $b.
Meanwhile, the streaming query operators are evaluated. When the closing tag
for the book-node is read, the buffer contents for variable $b have been collected,
and the query evaluation over this buffered data can set in. When the scope of
this variable is left, the buffered data associated with $b is no longer relevant
for the remaining query evaluation. Hence, its contents are discarded. �

Redundant buffers contents. We now model static buffer purging in our
framework. Basically, we synchronize the lifetime of buffer contents with the
scopes of the associated FluX-variables, so little runtime overhead is inflicted
for buffer purging. Moreover, the buffer preemption points are safe insofar as
only data no longer relevant to query evaluation is purged. On the downside,
we risk buffering data redundantly, as we discuss in the following example.

Example 6.8 The XQuery in Figure 6.14(a) outputs all books that have price-
information, followed by all articles where an author has also edited a book.
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<results>

{ for $bib in /bib return

( for $b in $bib/book

where ( exists($b/price) )

return $b,

for $a in $bib/article

where

( some $b2 in $bib/book

satisfies

($b2/editor = $a/author) )

return $a ) }

</results>

{ process-streams $root:

on-first past() return <results>,

on bib as $bib return

{ process-stream $bib:

on book as $b return

{ process-stream $b:

on-first past(*) return

if ( $b/price )

then $b else () },

on-first past(*) return

for $a in $bib/article

where

(some $b2 in $bib/book

satisfies

($b2/editor = $a/author))

return $a },

on-first past(*) return </results> }

(a) XQuery. (b) FluX query.

Figure 6.14: An XQuery expression and its FluX equivalent.

The FluX expression for this query is shown in subfigure (b). It specifies the
evaluation of one book at-a-time, while all articles are processed as buffered
data, once the complete input has been read.

In static analysis, we normalize all XQuery subexpressions of the FluX query,
and extract projection paths for the FluX-variables. For FluX-variable $bib, we
extract $bib/book, $bib/book/editor#, further $bib/article/author# and
$bib/article#. For FluX-variable $b, we extract $b/price and $b#.

Let us now assume that we read an input stream starting with the sequence
of events “〈bib〉〈book〉〈editor〉”. Then the book-node and its editor-child are
stored in the buffer associated with variable $b, as this data has to be buffered
as part of the current book node. However, this data is also stored in the buffer
associated with variable $bib, as it is relevant for evaluating the for-loop over
articles. Hence, the editor nodes are buffered redundantly. �

Modeling static buffer purging. In Section 6.2.1, we have modeled a query
engine based on the FluX language in our framework, where we assume that
XQuery expressions are evaluated sequentially. We model the buffer manage-
ment part next. We show how buffers are filled, and how they are purged.

Filling buffers. In static analysis of FluX queries, we proceed as described
above. For each FluX-variable, we extract projection paths. These are compiled
into XML-DPDTs that implement XML document projection, and can be mod-
eled in our framework (see Sections 3.5.4 and 5.1).

Let $y1, . . . , $yn be the FluX-variables in a FluX query F , and let the
states q$y1

0 , . . . , q$yn

0 be the initial states of the XML-DPDTs projecting for these
variables. Then the start-term “$” is replaced according to the term rewriting
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For a given FluX expression “on a as $y return {process-stream $y: h$y
1 , . . . , h$y

n }”:

process stream $y

eval↓

x buffer loader

load

[delta $y1]

q1 x S1

L1

. . . load

[delta $yn]

qn x Sn

Ln

h1

h2 hn

← process stream $y

eval↓

� buffer loader

load

[delta $y1]

q1 � S1

L1

. . . load

[delta $yn]

qn � Sn

Ln

h1

h2 hn

{newVar x;
x:=read()}

process stream $y

eval↓

skip

x S

buffer loader

load

[delta $y1]

q1 x S1

L1

. . . load

[delta $yn]

qn x Sn

Ln

h1

h2 hn

← process stream $y

eval↓

skip

� S

buffer loader

load

[delta $y1]

q1 � S1

L1

. . . load

[delta $yn]

qn � Sn

Ln

h1

h2 hn

{newVar x;
x:=read()}

process stream $y

eval↓

out

x S

buffer loader

load

[delta $y1]

q1 x S1

L1

. . . load

[delta $yn]

qn x Sn

Ln

h1

h2 hn

← process stream $y

eval↓

out

� S

buffer loader

load

[delta $y1]

q1 � S1

L1

. . . load

[delta $yn]

qn � Sn

Ln

h1

h2 hn

{newVar x;
x:=read()}

Figure 6.15: Prefiltering the input in static buffer management.

rule below, where “JF Kflux” denotes the term representation of FluX query F .

eval↓

� buffer loader

load

[delta $y1]

q$y1

0 � [ ]

[x1]

. . . load

[delta $yn]

q$yn

0 � [ ]

[xn]

JF Kflux

← $

{ newVar x1; . . . ; newVar xn;
root:=

buffer partition(bind $y1(x1),
. . . , bind $yn(xn)) }

This rule reads as follows. In the action, we define buffer-variables to allo-
cate a buffer partition inside the buffer-term for each FluX-variable. An n-ary
function symbol “buffer partition” separates these buffer partitions. The func-
tion “buffer loader” dispatches the loading of data into buffers. Each input
token is fed to the XML-DPDTs, denoted by the delta-functions, which pre-
filter the input. If an XML-DPDT preserves a token, the attached loader stores
it in the designated buffer. Loaders were defined back in Section 4.3.2.

Each loader carries its own variable stack, which addresses a specific buffer
partition. The input token is also processed by the eval-function. The next
token is read from the input stream only when loading and query evaluation for
this token are finished.

We redefine the eval-function from the previous section by adding a function
“buffer loader” as an additional parameter. In particular, we redefine all terms
of the form “eval↑(e1, e2)”or “eval↓(e1, e2)” in rewriting rules by introducing a
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For a given FluX expression “on a as $y return {process-stream $y: h$y
1 , . . . , h$y

n }”:

eval↑

〈/a〉 buffer loader

e1 . . . ei−1 load

delta $y

f1 f2 f3

[z]

ei+1 . . . em

on a as $y return

process-stream $y

h$y
1 . . . h$y

n−1 h$y
1

← on a as $y return

process-stream $y

h1 . . . hn−1 eval↑

〈/a〉 buffer loader

e1 . . . ei−1 load

delta $y

f1 f2 f3

[x]

ei . . . em

hn

{ newVar z;
root:=

purge buffer $y(z,root) }

buffer partition

bind $y1

b1

. . . bind $yi

v

. . . bind $yn

bn

← purge buffer $yi

v buffer partition

bind $y1

b1

. . . bind $yi

bi

. . . bind $yn

bn

Figure 6.16: Purging buffers at the end of variable scopes.

fresh variable name x, and obtain terms “eval↑(e1, x, e2)” or “eval↓(e1, x, e2)”.
Further, we substitute the rules for reading input tokens from Figure 6.7 with
the rules in Figure 6.15. Again, we use the designated symbol “�” to signal
that the input token has been processed. This stalls all actions until the next
input token has been read.

Purging buffers. To purge the buffer associated with a FluX-variable $y,
we redefine the bottom-most rule from Figure 6.8 as shown in Figure 6.16.
When the scope of a variable is left, we define a a fresh buffer-variable z, by
which we override the buffer partition for query-variable $y. This discards all
data previously buffered for $y, while the buffer partitions of the other variables
remain unchanged. The purging function is specified in the same figure.

Example 6.9 We now model the buffer management aspects of evaluating the
FluX query from Example 6.8 on the input stream prefix

〈bib〉〈book〉〈title〉〈/title〉〈price〉〈/price〉〈/book〉.

eval↓

� buffer loader

loader

[delta $root]

q0 � [ ]

[x1]

loader

[delta $bib]

p0 � [ ]

[x2]

loader

[delta $b]

r0 � [ ]

[x3]

F

buffer partition

bind $root

x1

bind $b

x2

bind $bib

x3

(a) (b)

Figure 6.17: Query-term (a) and buffer-term (b) from Example 6.9.
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Initially, the start-term “$” is replaced and we obtain the buffer- and query-
terms shown in Figure 6.17. The buffer-term has separate partitions for the
FluX-variables $root, $bib, and $b. So far, the buffer partitions only contain
variable bindings to buffer-variables.

In the query-term, the XML-DPDTs encoded by functions “delta $root”,
“delta $bib”, and “delta $b” project the input into the buffer partitions of FluX-
variables. Terms q0, p0, and r0 denote the initial transducer states.

By F , we abbreviate the term representation of the FluX query, which is
shown below. The abbreviations E1 and E2 represent XQuery expressions,
with E1 in place of “if ($b/price) then $b else ( )”, and E2 for the expression
“for $a in $bib/article”.

process stream $root

on-first-past()

emit 〈results〉

on bib as $bib

process-stream $bib

on book as $b

process-stream $b

on-first-past(*)

expr E1

on-first-past(*)

expr E2

on-first-past(*)

emit 〈/results〉

Term encoding of a FluX query.

By the rules from Figure 6.15, the first input token 〈bib〉 is read, and used
to substitute the placeholder term “�”. The input token is then processed by
the XML-DPDTs and also by the event handlers.

In Figure 6.18(a), we show the query-term in an advanced state, where the
event-handler “on bib as $bib” is about to fire. The XML-DPDTs are still
in their initial states and have not yet processed the first input token. We
fast-forward to the moment when the token 〈book〉 has been read in the input
stream, as illustrated by the snapshot in Figure 6.18(b). The “on book”-handler
is about to fire, and the XML-DPDTs have already changed their state and stack
for processing the opening tag of the bib-node. We zoom in on the XML-DPDTs
in Figure 6.19(a). The delta-functions have processed their input token. The
XML-DPDTs for variables $bib and $b preserve this token in XML document
projection, and in the next step, the attached loaders create book-nodes in their
buffer partitions. The resulting XML-DPDT configurations and the buffer-term
are shown in Figures 6.19(b) and (c) respectively.

When token 〈/book〉 is read, the buffers for FluX-variables $bib and $b are
updated and the “on-first past(*)”-handler for variable $b fires. Consequently,
the XQuery expression “if ($b/price) then $b else()” is evaluated over the buffer-
partition for variable $b. Upon completion, the scope of variable $b is left. The
buffer partition for this variable is purged, and replaced with a fresh buffer-
variable y. This variable is also inserted in the stack of the loader for vari-
able $b, in accordance with Figure 6.16. This leaves us with the query-term
from Figure 6.18(c) and the buffer-term shown in Figure 6.19(d).

The evaluation proceeds with checking the event handlers of variable $bib
for the input token 〈/book〉. �
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(a) process stream $root

on-first-past()

emit 〈results〉

eval↓

〈bib〉 buffer loader

loader

[delta $root]

q0 〈bib〉 [ ]

[x1]

loader

[delta $bib]

p0 〈bib〉 [ ]

[x2]

loader

[delta $b]

r0 〈bib〉 [ ]

[x3]

on bib as $bib

process-stream $bib

on book as $b

process-stream $b

on-first-past(*)

expr E1

on-first-past(*)

expr E2

on-first-past(*)

emit 〈/results〉

(b) process stream $root

on-first-past()

emit 〈results〉

on bib as $bib

process-stream $bib

eval↓

〈book〉 buffer loader

loader

[delta $root]

q1 〈book〉 [(bib, q0)]

[x1]

loader

[delta $bib]

p1 〈book〉 [(bib, p0)]

[x2]

loader

[delta $b]

r1 〈book〉 [(bib, r0)]

[x3]

on book as $b

process-stream $b

on-first-past(*)

expr E1

on-first-past(*)

expr E2

on-first-past(*)

emit 〈/results〉

(c) process stream $root

on-first-past()

emit 〈results〉

on bib as $bib

process-stream $bib

eval↑

〈/book〉 buffer loader

loader

[delta $root]

q1 � [(bib, q0)]

[x1]

loader

[delta $bib]

p1 � [(bib, p0)]

[y]

loader

[delta $b]

r1 � [(bib, r0)]

[x7]

on book as $b

process-stream $b

on-first-past(*)

expr E1

on-first-past(*)

expr E2

on-first-past(*)

emit 〈/results〉

Figure 6.18: Snapshots of query-terms (Example 6.9).

6.3.2 Dynamic Buffer Purging

We next introduce a buffer purging algorithm that relies both on static and
on dynamic analysis. For the XQuery fragment XQ considered in this thesis,
we can actually guarantee that no redundant buffering occurs. The approach
centers around the the notion of the relevance of data to query evaluation,
and we can draw on the concepts developed for XML document projection in
Section 3.5. When loading nodes into the buffer, we compute the number of
query subexpressions for which each node is relevant. These so-called relevance
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(a) buffer loader

loader

[delta $root]

q2 � [(book, q1), (bib, q0)]

[x1]

loader

[〈book〉,delta $bib]

p2 � [(book, p1), (bib, p0)]

[x2]

loader

[〈book〉,delta $b]

r2 � [(book, r1), (bib, r0)]

[x3]

(b) buffer loader

loader

[delta $root]

q2 � [(book, q1), (bib, q0)]

[x1]

loader

[delta $bib]

p2 � [(book, p1), (bib, p0)]

[x4, x5]

loader

[〈book〉,delta $b]

r2 � [(book, r1), (bib, r0)]

[x6, x7]

(c) buffer partition

bind $root

x1

bind $b

book

x4 x5

bind $bib

book

x6 x7

(d) buffer partition

bind $root

x1

bind $b

y

bind $bib

book

( ) x7

Figure 6.19: Snapshots of buffer-terms (Example 6.9).

counts are assigned to each buffered node, a process that we refer to as tagging.
All relevant nodes are stored in a single buffer. Hence, we no longer buffer
data separately (and possibly redundantly) for different variables. During query
evaluation, this relevance count of nodes is decreased. Once a node is no longer
relevant to query evaluation, it is purged from the buffer.

This strategy is reminiscent of garbage collection [110], a well-understood
technique for automatic memory management in programming languages. The
basic principle of any garbage collector is to determine which data objects in
a program will not be accessed in the future, and consequently, to reclaim the
storage used by these objects.

A simple yet effective garbage collection strategy is reference counting, where
every object counts the number of references to it. When a reference is created
to an object, its reference count is incremented. Likewise, the reference count
is decremented when a reference is removed. Once the count reaches zero, the
object is deleted and its memory is reclaimed. The approach introduced here
is related, yet as we will see, relevance counts are assigned to nodes only once
during loading, and are decremented continuously during query evaluation. In
the original reference counting, increments and decrements may be interleaved.

Moreover, in decrementing reference counts we exploit knowledge about data
access patterns that are derived in static query analysis. In contrast, classic
garbage collection is only based on dynamically computed reference counts.

Criteria for buffer purging. The conditions for removing a node from the
buffer are that (1) the node itself is not tagged, (2) none of its descendants are
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bind $root

bib[•]

book[•,•]

title[•]

( ) editor[•,•]

( ) z
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x

bind $root

bib[ ]

book[ ]

title[ ]

( ) editor[•]

( ) ( )

( )

x

bind $root

bib[ ]

book[ ]

editor[•]

( ) ( )

( )

x

(a) (b) (c)

Figure 6.20: Buffer snapshots of Example 6.10.

tagged, and (3) the node is “finished”, i.e. we have already read its closing tag
in the input stream.

Overview. In this section, we present the general ideas, and model them in
our framework. We assume a streaming XQuery engine in the style of Sec-
tion 6.2.2, where queries are evaluated incrementally over the buffered input.
This setup, in combination with dynamic buffer purging, has been successfully
implemented in the GCX XQuery engine, and is discussed in Chapter 9. We
point out that the techniques described here could also be made to work with
streaming query engines that employ static operator scheduling, as described in
Section 6.2.1. Then all steps described here only apply to the query expressions
that are evaluated over buffered data.

The following example motivates the idea that each buffered node keeps
track of its future relevance to query evaluation via its relevance count.

Example 6.10 We consider the XQuery from Figure 6.14(a) and the input
stream prefix “〈bib〉〈book〉〈title/〉〈editor/〉 . . . ”. In sequential XQuery evalua-
tion, books are processed one at-a-time. Then each book-node must be in-
evitably buffered at least until it is clear whether it contains a price node or
not. The buffer-term is shown in binary tree notation in Figure 6.20(a), where
the buffer-variables x, y, and z mark parts of the input that have not been
processed yet. For now, we ignore the annotations to nodes in this figure.

For the given query, we extract a set of projection paths (after query nor-
malization), among them /bib, /bib/book for binding the variable in the for-
loop over books, /bib/book# for copying books to the output, and further the
path /bib/book/editor# to compare book editors in the for-loop over articles.

Then all buffered nodes are tagged with a dot, which represents a single
relevance count unit, for each time that they match a projection path. This is
depicted in Figure 6.20(a). As some nodes match several projection paths, they
are tagged with several dots, such as the book- and the editor-node. The total
number of dots assigned to a node defines its relevance count.

We assume that the closing-tag for the book node is the next token read from
the input stream. Now, one iteration of the for-loop over books can be evaluated,
and all dots that were assigned for this loop-iteration are removed. In particular,
the book-node loses two relevance counts, for the projection paths /bib/book

and /bib/book# that originate from this for-loop. Also, the title- and editor-
nodes lose one count each. As a result, we obtain the buffer contents from
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Figure 6.20(b). Note that the buffer variables y and z have been replaced by
empty terms, as we have meanwhile read further tokens from the input stream.

As the relevance counts have changed, we search the buffer-term for nodes to
purge. In this example, the title-node can be eliminated from the buffer, as this
node and none of its descendants are tagged. (Note that despite the binary tree
notation, the title- and editor-node are actually siblings in the XML document).

A snapshot of the buffer after garbage collection is shown in Figure 6.20(c).
The buffer contains all data that has been read so far, and that is still relevant
for evaluating the for-loop over article-nodes. These are the nodes relevant
according to the projection path /bib/book/editor#. �

Modeling relevance counts. We design our XQuery processor such that the
tokenized input stream is prefiltered and loaded into the buffer. At the same
time, we tag the buffered nodes with relevance counts. The means for modeling
this in our framework are introduced below.

Counting paths. We model counting paths and their updates, as intro-
duced in Section 3.6. We encode a counting path with n step expressions of
the form “[x0]/s1[x1]/s2[x2]/ . . . /sn[xn]” as a term where Li is a list containing
exactly xi dots. Dots and step expressions are modeled by nullary functions.
Using a function symbol “pathn” of arity 2n+ 1, we define the counting path
from above as “pathn(L0, s1, L1, s2, L2, . . . , sn, Ln)”.

Example 6.11 We encode the counting path “[1]//a[2]//b[0]” in our framework
as the term “path2([•], //a, [•, •], //b, [ ])”. �

We can also integrate the update rules for counting paths, as introduced in
Figure 3.12, in our framework. To this end, we define an update-function that
takes two parameters, a tagname a of the node that is matched, and a counting
path p that is to be updated. An update is then initiated by the term “update(a,
p)”. Note that in Figure 3.12, we actually introduce two update functions to
handle tail-counters differently. In specifying term rewriting rules, we can easily
distinguish the tails of counting paths from their bodies. Hence, we introduce
only a single update function in our framework.

We show the rules for matching the XPath step //a in Figure 6.21, with the
operator “::” for list concatenation. By concatenating lists of dots, we sum up
relevance counts. The remaining update rules can be modeled accordingly.

Modeling tagged nodes. Each node in the buffer-term is annotated with
its relevance count, which we represent as a list of dots. For the purpose of
tagging nodes, we define a binary function “node”, which associates nodes and
their relevance counts. A binary tree node “a[e1]e2” is encoded as “node(a[e′1]e

′
2,

L)”, where L is the list of dots encoding the reference count for this node, and e′1
and e′2 encode the children e1 and the following siblings e2 accordingly.

For instance, the tagged buffer contents shown in Figure 6.22(a) are encoded
as shown in Figure 6.22(b). It is straightforward to adapt the term rewriting
rules for query evaluation to this new format.
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For distinct tagnames a and b, and a counting path with n step expressions:

pathn(L0, s1, . . . , sn, update(a, Ln)) ← update(a, pathn(L0, s1, . . . , sn, Ln))

update(�, pathn(L0, s1, . . . , sn, Ln)) ← pathn(update(a, L0), s1, . . . , sn, Ln)

pathn(L0, s1, . . . , sn−1, update(a,Ln−1), //a, Ln−1)
← pathn(L0, s1, . . . , sn−1, Ln−1, //a, update(a, Ln))

pathn(L0, s1, . . . , sn−1, update(a,Ln−1), //b, [ ])
← pathn(L0, s1, . . . , sn−1, Ln−1, //b, update(a, Ln))

pathn(L0, s1, . . . , si−1, update(a, Li−1), //a, Li−1 :: Li, si+1, . . . , sn, Ln)
← pathn(L0, s1, . . . , si−1, Li−1, //a, update(a, Li), si+1, . . . , sn, Ln)

pathn(L0, s1, . . . , si−1, update(a, Li−1), //a, Li, si+1, . . . , sn, Ln)
← pathn(L0, s1, . . . , si−1, Li−1, //b, update(a, Li), si+1, . . . , sn, Ln)

Figure 6.21: Updating counting paths.
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book
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( ) z

[•, •]
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y

[•, •]
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[•]

(a) Abstract view of tagged nodes. (b) Encoding of tagged nodes.

Figure 6.22: Modeling buffer contents.

Tagging nodes with relevance counts. Tagging buffered nodes with
relevance counts is realized by function “relevance countern(x, JP1K, . . . , JPnK)”,
for n projection paths P1, . . . , Pn. This function operates over the buffer-
term. By JPiK, we denote the encoding of a projection path as a counting
path, whereas x denotes a tree node. The buffered tree is processed top-down,
while it is loaded. In this traversal, each element node a is replaced by the
term “node(a,L)” where L encodes the relevance count for this node.

Example 6.12 We assume the projection paths //a and //a//b, and the input
stream “〈a〉〈c〉〈a〉〈b〉〈/b〉〈/a〉〈/c〉〈/a〉”. This encodes an XML document with a
single path from the root to a leaf node, via nodes labeled a, c, a, and b.

We prefilter the input for these projection paths using an XML-DPDT, en-
coded by the transition function “delta” (see Section 5.1). Then prefiltering will
discard the c-labeled node as irrelevant.

We set up a system where the start-term “$” is rewritten according to the
following rule. There, q0 is the initial state of the XML-DPDT, and the term “�”
signals that an input token must be read.
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For all tagnames a and n projection paths:

relevance countern

a

e1 relevance countern

e2 p1 . . . pn

update
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. . . update
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← relevance countern
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a
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e1 path
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� path

x1
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1 . . . xn
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( ) ← relevance countern

( ) p1 . . . pn

Figure 6.23: Tagging nodes with relevance counts.

load

[delta]

q0 � [ ]

[x]

← $ { newVar x;
root:= bind $root(

relevance counter2(x, path1([•], //a, [ ]),
path2([•], //a, [ ], //b, [ ])) ) }

The new query-term initiates filtering and loading of the input. At the same
time, relevance counts are assigned to the nodes in the buffered tree. �

In Figure 6.23, we define the tagging of nodes in the buffered tree. The
first rule replicates the relevance counter to the following sibling of the current
node, and starts the computation of relevances for the node itself. When all
counting paths have been updated, the sum of relevance counts is assigned to
the current node by the second rule. The children of the node are processed
next. According to the third rule, leaf nodes “( )” are not considered.

Example 6.13 We continue with Example 6.12 and assign relevance counts to
the nodes in the buffered tree. For ease of illustration, we assume that the input
is already loaded, but loading and tagging can be interleaved.

Our starting point is the buffer-term from Figure 6.24(a). In Figure 6.24(b),
we propagate relevance counting to the sibling of the topmost a-labeled node,
and start updating the counting paths for this node.

The term applied to the sibling of the topmost a-labeled node can be directly
reduced to a leaf node. We zoom in on updating one of the projection paths for
the a-labeled node, and show several steps below. These read from left to right.

update

a path1

[•] //a [ ]

path1

[•] //a update

a [ ]

path1

update

a [•]

//a [•]

update

� path1

[•] //a [•]

The second counting path is also rewritten, and we obtain the term from
Figure 6.24(c). Now that the counting paths are up-to-date, we assign the
relevance count “one” to the topmost a-labeled node.

In step (d), we depict the moment when we have updated the counting paths
for the second a-labeled node. The second a-labeled node is also matched by
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Figure 6.24: Snapshots in tagging buffered nodes (Example 6.24).

one projection path, and receives relevance count “one”. Next, the counting
paths for the b-labeled node are updated to two. This is shown in subfigure (d).
In subfigure (e), we show the final tagged tree. �
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<results>{

for $b in //book return

<book>{

for $t in $b/title

return $t,

for $a in $b/author

return $a,

for $y in $b/year

return $y }

</book> }

</results>

<results>{

for $b in //book return

( <book>{

for $t in $b/title return

( $t, signOff($t#) ),

for $a in $b/author return

( $a, signOff($a#) ),

for $y in $b/year return

( $y, signOff($y#) )

}</book>,

signOff($b) ) }

</results>

(a) XQuery. (b) XQuery with signOff-statements.

Figure 6.25: Marking buffer preemption points in XQueries.

Decrementing relevance counts. The moments during query evaluation
when relevance counts are decremented are determined at compile time. We
refer to these moments as buffer preemption points.

Under the assumption that XQueries are evaluated sequentially, we insert
signOff-statements into queries, which we position at the buffer preemption
points. Intuitively, executing an statement “signOff($x/π)” has the effect that
the relevance counts of nodes in the buffer tree are decremented, provided that
these nodes are reachable from the context-node of variable $x via the path π.

Example 6.14 We consider the XQuery from Figure 6.25(a), which outputs
the title, author, and year information of each book. We extract the projection
paths //book, //book/title#, //book/author#, and //book/year#.

Let us further assume the input stream prefix “〈book〉〈title〉〈main title〉 . . . ”.
In processing these tokens, the book-node, the title-node, and its descendants
are each loaded into the buffer and are tagged with a relevance count of one.

We statically insert signOff-statements into the query to denote when certain
nodes are no longer relevant. The resulting query is shown in Figure 6.25(b).
Let us focus on the for-loop over title nodes. Once a title has been output,
its relevance count is decremented. Now, the subtree rooted at this title may
be deleted from the buffer (provided it does not contain book-nodes with non-
zero relevance counts). The relevance counts of author- and year-nodes remain
unchanged, these nodes stay in the buffer for the remaining query evaluation.

We proceed similarly for the author- and year-nodes. At the end of the scope
of variable $b, the relevance count of its context node is also decremented. �

Example 6.15 We consider the XQuery with signOff-statements below, from
which we extract the projection paths //a and //a//b.

<results>{

for $a in //a return

( if ( some $b in $a//b satisfies true() )

then <a></a> else (),

signOff($a//b), signOff($a) ) }

</results>
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Back in Example 6.13 we have shown the buffer contents with relevance
counts for a concrete input document. Below, we show some snapshots of this
buffer. In snapshot (a), variable $a is bound to the topmost a-labeled node.
When query evaluation reaches the end of the scope of variable $a, the signOff-
statements are executed and the relevance counts are updated. As each buffered
node has either a nonzero relevance count, or descendants with this property,
no nodes can be purged yet by our purging criteria.2

Next, variable $a is bound to the second a-labeled node. This is portrayed
in the snapshot (b). At the end of scope of $a, the relevance counts are again
updated. The result is depicted in snapshot (c).
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node
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b

( ) ( )

[ ]

( )

[ ]

( )

[ ]

(a) (b) (c)

Given the final buffer contents, garbage collection can purge all nodes. �

Compilation of signOff-statements. We now model signOff-statements
in our framework. We assume a binary function “decrement count” that takes
a buffered tree and a projection path (relative to a query-variable) as argu-
ments. The semantics is that for all nodes addressed by the projection path,
the relevance count is decremented. Each node is decremented as many times
as it matches the projection path. We do not specify the rewriting rules for this
function, and instead focus on the general picture.

We compile a statement JsignOff($x/α)K into a term “signOff($x/α)”, for
which we define a rewriting rule as shown below.

( ) ← signOff($x/α) { root: = decrement count(root, $x/α) }

It remains to specify how nodes are purged from buffers.

Purging nodes from buffers. There are several options as when to in-
voke the garbage collection mechanism, which inflict different memory footprints
and runtime behaviors. For instance, garbage collection could be invoked when-
ever memory consumption reaches a predefined limit. In our model, this could
be a certain number of buffered nodes. Garbage collection could also sweep
the buffer periodically, each time that a fixed number of input tokens has been
consumed. Another alternative is to wait for the end of a variable scope, once
all signOff-statements have been executed.

2In this particular example, the a-labeled node could actually be removed. Yet in general,
this node may still be required for navigational purposes for other parts of the query. In order
not to corrupt the buffer contents, we preserve this node.
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We make in our goal to purge nodes from buffers as soon as possible. Out
of this consideration, we scan the buffer for nodes that can be purged whenever
a signOff-statement is executed, or a node has been entirely loaded into the
buffer. In doing so, we react on every chance that the buffer contents have
changed such that nodes may be purged (see Chapter 9).

6.3.3 Discussion

In this section, we have introduced two buffer purging mechanisms. The first
relies on static analysis, and is intended for systems that statically schedule
streaming query operators, such as the FluX approach. While this requires
comparatively little building effort, it may lead to redundant buffering.

The second approach is technically more involved. It combines static and
dynamic analysis, and achieves redundant-free buffering for our query frag-
ment XQ. At compile-time, we determine the buffer preemption points when
buffers are searched for nodes to purge. As we will see in Chapter 9, deriving the
necessary data access patterns is a non-trivial task. At runtime, nodes that are
copied into the buffer are assigned relevance counts. Nodes lose their relevance
counts during query evaluation incrementally, until they can be purged. The
challenge is to ensure that they are not deleted prematurely from buffers, while
at the same time, we aim at timely freeing main memory resources.

We have implemented both approaches in the FluXQuery and the GCX
XQuery engines, which we discuss in Chapters 8 and 9. Our experiments confirm
that our buffer management techniques perform well both with regard to main
memory consumption and execution time.

6.4 Summary

In this chapter, we have discussed ways to reduce the memory footprint of main
memory-based XQuery processors. We make a case for sequential query evalu-
ation to avoid buffering intermediate results. We further propose an evaluation
of queries on-the-fly. We have stressed the importance of preemptive buffer
management to free memory resources early on.

When XML data is processed with query engines that are disk-backed, dif-
ferent arguments apply. Then data access is not restricted to a single pass, and
data purged from main memory buffers is not irretrievably lost. However, it
turns out that our streaming execution model brings about certain problems of
its own. This concerns the evaluation of joins and conditionals in particular.
Here, we frequently encounter runtime problems. These problems can be over-
come by borrowing from XML databases techniques. We discuss this issue in
Chapter 10, among our ideas for future work.



Part III

Buffer Management Core

Techniques

103





7 XML Prefiltering as a String
Matching Problem

We present a novel approach to the problem of XML document projection,
which we have defined in Section 3.5. We view XML document projection as
a string matching problem. The idea is to decompose the prefiltering task into
a series of string matching problems. We motivate this approach in the first
section in this chapter. The runtime algorithm, which schedules the execution
of individual string searches, is presented in Section 7.2. In Section 7.3, we
discuss the compilation of the runtime datastructures. We further show how
XML-specific jump offsets can be computed from DTDs. In Section 7.4, we
present our prototype implementation, and Section 7.5 contains our extensive
experiments. We discuss possible optimizations as future work in Section 7.6.
We then conclude with a brief summary of our main results.

7.1 Motivation

In XML data management, we frequently face similar problems as in string
matching, as we often need to detect patterns (such as a specific tagname)
within XML input streams. However, to date the state-of-the-art in string
matching has found little application in the acceleration of XML processing.

String matching algorithms have been subject to extensive study for more
than thirty years [1, 2, 18, 30, 65, 109]. In today’s algorithms, the input is
not processed one character at-a-time. Rather, the Boyer-Moore [18] and the
Commentz-Walter [30] algorithm rely on the insight that matching keywords
from right to left lets us skip parts of the input. For instance, the keyword
“ICDE” has four characters. Suppose the fourth character in the input is the
letter “A”. Then the keyword cannot be matched by the first four characters,
and we can directly inspect the 8th character. If this character is the letter “C”,
then the pattern could be matched. Hence, we shift to the right by an offset the
size of the string “DE”, and again try to match the keyword from right to left.

In this chapter, we make a case for leveraging ideas from string matching
for XML stream processing. We take the leap from processing flat strings to
structured documents, and present a new technique for the efficient search and
navigation in XML streams. What makes our approach very attractive is that
it shares the advantages of established string matching algorithms: Using stat-
ically precompiled tables of fixed size, our runtime algorithm comes at little
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expense for the CPU and main memory resources. Moreover, it can be imple-
mented as a streaming algorithm, where we scan the input with a fixed-size
window in a single pass. Within the window held in main memory, we can
locally jump back and forth, all the while trying to inspect as few characters as
possible. As we confirm in our experiments, this results in significant speedups
for searching in flat strings and XML data alike.

While the runtime algorithm is simple, lean, and efficient, the static analysis
for computing the runtime datastructures is not trivial. In moving from flat
strings to structured data, new challenges arise. When the complete XML input
document has been tokenized into opening- and closing tags, e.g. using a SAX
parser, it is straightforward to track ancestor-descendant relationships between
nodes in the document tree. However, when we skip data, we also disregard parts
of the document structure. For instance, assume we search for an occurrence
of the keyword 〈a〉, and once we have found it, we search for keyword 〈b〉. Ad
hoc, the relationship between the corresponding nodes is unclear. All we know
for sure is that the a-labeled node is not a descendant of the b-labeled node.

To deal with this problem, we make use of schema information. DTDs pro-
vide us with the set of possible tagnames, parent-child relationships, as well as
order and cardinality constraints. We can even take required attributes into
account to compute XML-specific offsets, which let us skip parts of the input
in addition to the skips performed by string matching algorithms. Based on a
holistic static analysis, we decompose the task of navigating inside XML doc-
uments into multiple string matching problems, which are solved individually
using established algorithms. This decomposition is robust, and computes a
number of very basic lookup-tables to be used at runtime.

By only inspecting a fraction of the characters in the input, we are able
to build highly scalable applications for XML stream processing. These ap-
plications exhibit a high throughput and an economical use of resources. As
a proof-of-concept, we apply our technique to XML document projection. We
have already introduced the concept of XML document projection in Section 3.5,
and we have also discussed aspects of this technique in the previous chapter.

In the following, we sketch how string matching algorithms can be leveraged
to accelerate XML prefiltering.

Example 7.1 We discuss XML document projection for the XQuery

<q>{ //australia//description }</q>.

As discussed in Section 3.5, we extract the projection paths //australia

and //australia//description#. Additionally, we include the path /* to
ensure that the projected document is well-formed (c.f. Definition 3.14).

We project XML documents that are valid w.r.t. the simplified XMark
DTD [122] from Figure 3.2. We assume that the unspecified productions have
#PCDATA-content, and that element nodes labeled “incategory” have a required
attribute “category”. As we have excluded attributes in the definition of DTDs
in Section 3.3, we refer to the official W3C specifications [117].
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<site><regions><africa><item><location>United States</location><name>T V
↓↓↓↓↑↑

1
↑
2

↑ ↑ ↑

</name><payment>Creditcard</payment><description>15’’LCD-FlatPanel</desc
↑ ↑ ↑ ↑ ↑ ↑

3
↑ ↑ ↑

ription><shipping>Within country</shipping><incategory category="3"/></i
↑ ↑ ↑ ↑ ↑ ↑ ↑

tem></africa><asia/><australia><item ><location>Egypt</location><name>PD
↑ ↑ ↓↓l↓↓↓↓↓↓↑↑

4
↑ ↑ ↓l↓↓↑

5

A</name><payment>Check</payment><description>Palm Zire 71</description><
↑ ↑ ↑ l↓↓↓↓↓↓↓↓↓ll↑

6
l↓↓↓↓↓↓↓↓↓↓↓l↑

7

shipping/><incategory category="3"/></item></australia></regions></site>
↓↓↓↓↓↓↓↓↓l↑↑

8
↑ ↑ ↓↓↓l↓↑↑

9

Figure 7.1: XML document.

The XML input document from Figure 7.1 adheres to this DTD. In XML
document projection, we compute the projected document shown below.

<site><australia><description>Palm Zire 71</description>

</australia></site>

We now perform XML document projection using string matching algo-
rithms. In localizing opening or closing tags in the unparsed input, we must
keep in mind that tags may contain whitespaces or attributes. All tags for an
element node with label t share the prefix “〈t” or “〈/t”. The tag “〈t /〉”, which
contains whitespace, is valid syntax. Thus, we search for the keyword “〈t” using
string matching algorithms, and then locally seek the trailing “〉” or “/〉”.

In Figure 7.1, we use symbol ↑ to mark characters that are checked when
searching the input from left to right, and ↓ for characters that are checked from
right to left. Symbol l represents both ↑ and ↓.

We begin by searching for the opening tag of the site-node, which we know
must exist according to the DTD. At position 1, we check for the keyword “〈site”
using the Boyer-Moore algorithm. The 5th character (“e”) is investigated, and
the match is verified from right to left. Character “>” on the right asserts
that an opening tag has been found. We then output the token 〈site〉 in the
course of XML document projection. Next, we are interested in tag 〈australia〉.
According to the DTD, the string “〈regions〉〈africa/〉〈asia/〉” with length 25 is
the minimum string preceding this tag. Consequently, we can skip 25 characters,
and trigger Boyer-Moore search for the keyword “〈australia” with length 10.
The search thus is resumed 25+10 characters to the right, at position 2. Up to
position 3, we check every 10th character and observe that it is not contained in
the keyword. This changes when we sample the character “l”. This character is
contained in the keyword, and we shift |〈australia|−|〈austral| = 2 characters to
the right. Reading character “t”, we rule out a match and the search continues.
At position 4, we finally match and output the tag 〈australia〉.
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We continue with a simultaneous search for the keywords “〈description” and
“〈/australia” using the Commentz-Walter algorithm. Scanning for the closing
tag “〈/australia” is necessary because the DTD does not assert the existence
of a description-node as a descendant of australia. Position 5 shows a sus-
pect match for keyword “〈description”, which is aborted. We next match the
tag 〈description〉 at position 6. We record the start position of this token
and search for “〈/description”. We jump the size of |〈/description| charac-
ters to the right, match character “〈”, and verify a match for 〈/description〉
at position 7. The chunk of data beginning at the recorded start position of
〈description〉, and up to (and including) the closing tag 〈description〉 is copied
verbatim to the output. We resume the search for the keywords “〈/australia”
and “〈description”. In locating these keywords, we can perform an initial jump
for the string “〈shipping/〉〈incategory category=""〉〈/item〉”. As the minimum
distance to the next occurrence of tag 〈description〉 is greater, this jump off-
set is safe. Finally, we match and output the tags 〈/australia〉 and 〈/site〉 (see
positions 8 and 9).

Even in this toy example, only about 22% of all characters need to be in-
spected to perform XML document projection. When processing XMark doc-
uments in the Gigabyte range (see our experiments in Section 7.5), we observe
similar ratios. �

7.2 Runtime Algorithm

In this section, we further motivate the decomposition of an XML prefiltering
task into multiple string matching problems. We assume that a non-recursive
schema is available in form of a DTD, but we emphasize that all techniques can
be extended to also handle the recursive case. We then introduce the runtime
algorithm that schedules the execution of the single string matching problems,
and all required runtime lookup-tables. The subsequent sections are dedicated
to the static compilation of these lookup-tables.

Example. As a basic example, we project XML documents for the projection
paths /a/b# and /*. Then only the top-level nodes with label a, and their
b-labeled children (with their subtrees for producing output) are preserved.

We decompose the prefiltering task into multiple string matching problems,
where the frontier vocabulary is the set of keywords that defines the current
string matching problem.

We assume that the input is valid w.r.t. the DTD from Figure 7.2(a). Then
the root nodes of all input documents carry the label a. We thus start XML
prefiltering with tag 〈a〉 in the frontier vocabulary. We use the Boyer-Moore al-
gorithm for single keyword search to match token 〈a〉 in the input. Once we have
located this keyword, we consider the frontier vocabulary with the tokens 〈b〉,
〈c〉, and 〈/a〉. This defines a multi-keyword search, so we use the Commentz-
Walter algorithm to detect the closest match for any of these keywords. The
intuition is that if the closest match is token 〈b〉, then we have found a relevant
node. If we instead find token 〈c〉, we can ignore the subtree underneath, as
this data is not relevant to query evaluation. Finally, if we match 〈/a〉, then we
have reached the end of the parent node. This way, we recognize just enough
of the document structure without parsing the complete input into tokens. It
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<!DOCTYPE a [

<!ELEMENT a (b|c)*>

<!ELEMENT b (#PCDATA)>

<!ELEMENT c (b,b?)>

]>

q0

q2 q̂2 q1 q̂3 q3

q̂1

〈a〉

〈/a〉

〈b〉

〈/b〉 〈/c〉

〈c〉

〈/a〉 〈/a〉

〈b〉 〈c〉

〈c〉 〈b〉

(a) DTD. (b) Runtime-automaton.

Figure 7.2: A DTD and a runtime automaton.

q t A[q]

q0 〈a〉 q1

q1 〈b〉 q2

q1 〈/a〉 q̂1

q1 〈c〉 q3

q2 〈/b〉 q̂2

q̂2 〈b〉 q2

q̂2 〈c〉 q3

q̂2 〈/a〉 q̂1

q3 〈/c〉 q̂3

q̂3 〈c〉 q3

q̂3 〈b〉 q2

q̂3 〈/a〉 q̂1

q V [q]

q0 { “〈a” }
q1 { “〈/a”, “〈b”, “〈c” }
q̂1 { }
q2 { “〈/b” }
q̂2 { “〈/a”, “〈b”, “〈c” }
q3 { “〈/c” }
q̂3 { “〈/a”, “〈b”, “〈c” }

q J [q]

q0 0
q1 0
q̂1 0
q2 0
q̂2 0
q3 4
q̂3 0

q T [q]

q0 nop

q1 copy tag

q̂1 copy tag

q2 copy on

q̂2 copy off

q3 nop

q̂3 nop

(a) Table A. (b) Table V . (c) Table J . (d) Table T .

Figure 7.3: Runtime lookup-tables.

is crucial that we also consider the keyword 〈c〉. If we only scan for tags 〈b〉
and 〈/a〉, we cannot distinguish XML documents with prefix “〈a〉〈b〉 . . . ” from
documents with prefix “〈a〉〈c〉〈b〉 . . . ”. Thus, we could mistake a b-labeled child
of a c-labeled node for a child of an a-labeled node.

A so-called runtime-automaton captures the change between frontier vocab-
ularies. The runtime-automaton in Figure 7.2(b) has the initial state q0 and
the final state q̂1. We use dual states q and q̂ for reading the opening- and the
closing tag of a node. Given the current automaton state and reading position
in the input, string matching algorithms locate the closest token for which an
automaton transition is defined.

Four statically compiled tables provide the runtime information. We show
the runtime lookup-tables for the current example in Figure 7.3. Table A holds
the automaton transition function, mapping a state and an input token from the
frontier vocabulary to the next state. Table V provides the frontier vocabulary
in each state. Tags can contain attributes or whitespace, so the string search
does not consider the trailing bracket of the tag, as seen in the lookup-table.

Table J stores the initial jump offsets , i.e. the number of positions that can
be skipped when entering a new state. This is motivated in the upcoming exam-
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q := q0; // current state
c := 0; // cursor position
while cursor c has not yet reached end-of-file and q is not final do

c := c + J [q]; // shift cursor for initial jump offset

if |V [q]| = 1
then perform single-keyword search for token in V [q] // (BM)
else perform multi-keyword search for tokens in V [q] // (CW)
end if

t := the matched token from V [q];
a := tagname in token t;

shift cursor c to the right until reading “〉” or “/〉” // (⋆)
to determine matched tag;

if tag is an opening tag then
assign q := A[q, 〈a〉];
perform action T [q]

else if tag is a closing tag then
assign q := A[q, 〈/a〉];
perform action T [q]

else if tag is a bachelor tag then
assign q := A[q, 〈a〉];
perform action T [q];
assign q := A[q, 〈/a〉];
perform action T [q]

end if
end while

Figure 7.4: The runtime algorithm.

ple. The actions executed in each state are stored in table T . We can perform no
operation (“nop”) or copy the current tag without or with its attributes (“copy
tag” or “copy tag + atts”)1. To output a node with its subtree, we copy the
input from the start position of its opening tag up to the last position of the
matching closing tag (actions “copy on” and “copy off”).

Example 7.2 We consider the runtime lookup-tables in Figure 7.3. We assume
that we have just located token 〈c〉 in the input, upon which we have entered
state q3. The current frontier vocabulary is specified in lookup-table V as entry
V [q3] = {“〈/c”}. So we next search for token 〈/c〉 in the input. We know from
the DTD that the c-labeled node has at least one child. The shortest string
representation of this child is as “〈b/〉”. When we enter state q3, we can thus
skip four characters, as recorded in J [q3]. �

The runtime algorithm. Figure 7.4 shows the runtime algorithm, which
performs the context switches between different string matching problems. The
current automaton state is denoted by q, and the current reading position in
the input, the “cursor”, by c. We iterate the following steps. We begin with an
initial jump by shifting the cursor J [q] positions to the right. Then we search

1The extraction of projection paths in Section 3.5 does not cover attributes. As the neces-
sary extensions are straightforward, we also handle attributes in this chapter.
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for the closest token from the frontier vocabulary V [q]. If the frontier vocabu-
laries has only one entry, then we employ the Boyer-Moore algorithm, otherwise
the Commentz-Walter algorithm. The corresponding lines in the algorithm are
marked (BM) and (CW). Once a match for a keyword “〈t” or “〈/t” has been
found, we scan to the right for the trailing strings “〉” or “/〉”. If we have found
an opening or a closing tag, we enter the next state and perform the associated
action. In case we have found a bachelor tag 〈a/〉, we evaluate the steps for the
opening tag 〈a〉 and the closing tag 〈/a〉 in immediate sequence.2 The cursor
now points to the last position with character “〉” of the matched XML token,
and the iteration proceeds. For input valid w.r.t. the DTD, there is always a
match when searching for the tokens from the frontier vocabulary.

There is a special case that we have omitted from the runtime algorithm for
didactic simplicity. DTDs may allow tagnames that are prefixes of each other,
such as “Abstract” and “AbstractText” in the Medline DTD [105]. If a string
matching algorithm reports a match for token “〈Abstract” in the input, then
the runtime-algorithm must additionally ensure that it has not matched the tag
〈AbstractText〉 by mistake. This can be incorporated in the scan for the end of
the tag, as marked by (⋆) in the algorithm.3

7.3 Static Compilations

In this section, we statically compute the runtime lookup-tables from projec-
tion paths and a non-recursive DTD. The static computation has the following
properties. Let D be a non-recursive DTD, and let P be a set of projection
paths. By RD,P we denote the runtime algorithm from Figure 7.4, initialized
with the lookup-tables computed for D and P ∪ {/*}, as shown below. Then
for all XML documents valid w.r.t. the DTD, RD,P executes the projection
function fP defined in Section 3.5. Thus, the projection implemented is safe.

7.3.1 Runtime-Automata

We compile a given nonrecursive DTD into a finite-state-automaton (FSA).
The resulting DTD-automata recognize all XML documents valid w.r.t. a DTD.
Ultimately, we want to associate actions with automaton states, as in lookup-
table T in Figure 7.3. To this end, we use Glushkov automata, as introduced in
Section 3.1. State q0 always denotes the initial state, and we use dual states q
and q̂ to distinguish the opening- and closing tags of a node.

Example 7.3 Figure 7.5 shows the DTD-automaton for the DTD specified in
Figure 7.2(a). �

We compute the runtime-automaton from a subgraph of the graph defined
by the DTD-automaton. Our goal is to select a small subgraph, as we do not
want to tokenize the complete input, but rather parse as few nodes as possible
into tokens. At the same time, we need to ensure that we visit all tags that are
part of relevant data, as this data needs to be preserved in XML prefiltering.

2At this point, we could only check for bachelor tags when permitted in the DTD.
3We could additionally exploit schema information and only check for ambiguous prefixes

in tagnames if this is possible by the DTD.
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q0 q4

q2 q̂2 q1 q̂3 q3 q̂4

q̂1 q5

q̂5

〈a〉

〈/a〉

〈b〉

〈/b〉 〈/c〉

〈c〉

〈/a〉 〈/a〉

〈b〉 〈c〉

〈c〉 〈b〉

〈b〉
〈/b〉

〈/c〉
〈b〉

〈/b〉
〈/c〉

Figure 7.5: DTD-automaton.

As outlined in Section 7.2, we may also have to stop over at additional nodes
in order to maintain a minimum amount of orientation.

Definition 7.1 Given a homogeneous FSA D and a subset of its states S, then
the subgraph-automaton D|S is the FSA with states S, and with the transitions
defined as follows. For each sequence of transitions of the form q → q1 → q2 →
· · · → qn → p of D where n ≥ 0, where only states q and p are in S and state p
is a-labeled, we define a transition for D|S from q to p with label a. A state is
final in D|S if it is final in D. �

By construction, the subgraph-automaton D|S is also homogeneous.

We next introduce some basic terminology. The layout of the DTD-automaton
reflects the parent-child relationships between nodes in the accepted XML doc-
uments. A state p is a parent state of a state q if there is a well-formed XML
document where a node matched by p is a parent of a node matched by q.

Example 7.4 For the DTD-automaton in Figure 7.5, state q0 has no parent
states, but it is the parent state of the states q1 and q̂1. In return, q1 and q̂1 are
the parent states of q2, q̂2 and q3, q̂3. �

For each state in a DTD-automaton (derived from a non-recursive DTD), we
can determine its ancestor path. This is the sequence of tagnames that describe
a path from the root of the document via ancestor nodes into this state.

Example 7.5 For the DTD-automaton in Figure 7.5, state q0 has the empty
ancestor path, states q1 and q̂1 have the ancestor path “a”, and states q2 and
q̂2 have the ancestor path with the tokens “a” and “b”. �

We next evaluate path-matching automata on DTDs, instead of the XML
documents that they define. Let P be a set of projection paths. We say that
a state in the DTD-automaton describes nodes relevant according to P if the
following holds. Let a1, . . . , an be the ancestor path of this state, then a node in
an XML document with label an and the path of ancestors labeled a1, . . . , an−1

is relevant according to P by Definition 3.13.

Example 7.6 We consider the DTD-automaton from Figure 7.5, and the pro-
jection paths P1 = {/a/b#, //b#, /*}. Then all states in the DTD-automaton
with the exception of q0 describe nodes relevant according to P1. In comparison,
if we consider the projection paths in P2 = {/a/b#,/*}, then only the states
q1, q̂1 and q2, q̂2 describe nodes relevant according to P2. �
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Given DTD-automaton D and a set of projection paths P ,
(1) choose a subset S of states as follows:

(a) S := {q0};

(b) for each state q in the DTD-automaton do
if q describes nodes relevant according to P
then add q to S end if

end for

(c) for each pair of dual states q and q̂ in S do
let R contain all states p of D s.t.
there is a path from q to q̂ via p in D;

if R ⊆ S then remove states in R from S end if
end for

(d) while there are changes to S do
if D has transitions q → q1 → · · · → qn → p

and q → p1 → · · · → pm → p′ for n, m ≥ 0,
where only q and p are in S
and p and p′ have the same label

then add the parent states of p′ to S end if
end while

(2) compute the subgraph automaton D|S;

(3) determinize D|S to obtain the runtime-automaton;

Figure 7.6: Compilation of the runtime-automaton.

Figure 7.6 shows the algorithm for the static compilation of the runtime-
automaton, which we illustrate in the following examples.

Example 7.7 We consider the DTD-automaton from Figure 7.5 and the pro-
jection paths P = {/a/b#, /*}. In step (1) of the algorithm, we select a set of
states S for computing a subgraph-automaton. In step (a) we initialize S with
the initial state of the DTD-automaton. In step (b), S is extended by the states
q1, q̂1, q2, and q̂2. This ensures that we visit all nodes that must be preserved
for query evaluation. Step (c) does not apply here. In step (d), we again ex-
tend the state set. The reason is that we observe the transitions q1 → q2 and
q1 → q3 → q4 where both q2 and q4 are 〈b〉-labeled, but only q1 and q2 are con-
tained in set S. Consequently, the state set is extended by states q3 and q̂3. This
ensures that the runtime-algorithm is not thrown off-track when it skips parts
of the input, as we exemplified in Section 7.2. Next, the subgraph-automaton
is computed (see step 3). This yields the FSA from Figure 7.3. As this FSA is
already deterministic, it is also the runtime-automaton. �

7.3.2 Frontier Vocabulary and Action Table

The runtime lookup-table containing the frontier vocabulary can be directly
constructed from the transitions of the runtime-automaton. The definition of the
action table is more interesting. We unambiguously map an action to each state,
exploiting the fact that the runtime-automaton is homogeneous, as homogeneity
is preserved by determinization via subset construction [25]. The entries for the
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action table T are derived from the path-matching automaton. States that do
not describe nodes relevant to the projection paths are assigned action “nop”.
For all other states, we consider pairs of dual states q and q̂, for reading the
opening- and closing-tag of a node. If the ancestor path of these states defines
a path in the path-matching automaton into a state with a projection path
of the form P → α • #, then we assign T [q] =“copy on” and T [q̂]= “copy
off”. Otherwise, we assign the action “copy tag” for both states, possibly
also copying the attributes for the opening tag (action “copy tag + atts”),
depending on the matched projection paths.

7.3.3 Initial Jump Offsets

We discuss the computation of the jump tables, given a runtime-automaton A
and its DTD-automaton AD, based on the notion of safe jump distances. We
assume that the input is valid w.r.t. DTD D.

Safe jumps. Let AD be a DTD automaton with states p and q such that
a transition A[p, y] = q is defined. A jump distance jd[p, q] from state p to
state q is safe if the following holds. Let p be the current state in validating the
input document against the DTD. Then we have reached state p by a transition
A[u, x] = p. Let j be the current reading position, which is one position past
token x. Let j′ be the position just before reading y, then j + jd[p, q] ≤ j′.

The intuition is that if we now skip the next jd[p, q] positions, then we must
guarantee that we do not jump past position j′, lest we jump too far and miss
token y when scanning for it from position j + jd[p, d] in the input.

If function jd maps all pairs of states to distance zero, then this solution is
safe (as we never jump too far) but not effective. Below, we adapt Dijkstra’s
shortest-paths algorithm for the purpose of computing jump distances that are
as long as possible, but that are nevertheless still safe.

ij-Dijkstra. As weight function we regard the size of the shortest XML string
defining a path from p to q. We must take into account that a sequence 〈x〉〈/x〉
may be encoded as a bachelor tag 〈x/〉. For the sake of simplicity, we describe the
algorithm based on the length of tagnames alone. As outlined in our examples,
required attributes may be factored in when computing initial jump offsets.
This extension is merely technical, and hence not covered here.

We assign a jump distance estimate d[q] to each state q, which is initialized
to the special symbol “∞”. During the execution of the algorithm, the jump
distance estimate decreases until the final jump distance has been determined.
Additionally, we assign a backtrack entry b[q] to each state q (initialized to zero),
which contains the size of the label of state q. Recall that DTD-automata are
homogeneous, so all incoming edges carry the same label.

A key operation in the Dijkstra algorithm is the relaxation applied to an
edge from p to q. In relaxation, we test whether we need to consider shorter
jump distance estimates from p to q, and consequently, update d[q]. The code
in Figure 7.7 relaxes an edge AD[p, t] = q. The figure also shows an adap-
tion of Dijkstra’s algorithm, where we compute the initial jump ij[p, q] for all
destinations q. We shall assume that for a positive integer k, “∞”−k =“∞”.
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ij-Relax(DTD-automaton AD, state p, state q):

find token t such that AD[p, t] = q is defined;

if t = 〈/x〉 and there is an edge AD[r, 〈x〉] = p
then d[q] := min(d[q], d[p] + 1); b[q] := |〈/x〉|

else d[q] := min(d[q], d[p] + |t|); b[q] := |t|
end if

ij-Dijkstra(DTD-automaton AD, state p):

for each state q in AD

do d[q] := “∞”; b[q] := 0 end for

d[p] := 0;

Q is a priority queue holding all states in AD

keyed by their initial jump estimate d;

while Q not empty
do remove q from Q s.t. d[q] is minimal;

for each edge AD[q, t] = u do ij-Relax(AD,q,u) end for

end while

for each state q in AD do ij[p, q] := d[q] - b[q] end for

Figure 7.7: Computation of initial jump offsets.

q2 q̂2

q0 q1 q̂1

q3 q̂3

〈a〉
〈bb〉

〈/bb〉
〈/a〉

〈ccc〉
〈/ccc〉

〈/a〉

state q q0 q1 q̂1 q2 q̂2 q3 q̂3

d[q] 0 3 12 7 8 8 9
b[q] 0 3 4 4 5 5 6

ij[q0, q] 0 0 8 3 3 3 3

(a) DTD-automaton. (b) Computing initial jumps.

Figure 7.8: Illustrations for Example 7.8.

Example 7.8 We assume the DTD D shown below, and its DTD-automaton
AD from Figure 7.8(a).

<!DOCTYPE a [

<!ELEMENT a (bb|ccc)> <!ELEMENT bb EMPTY> <!ELEMENT ccc EMPTY> ] >

By calling ij-Dijkstra(AD, q0), we compute the values shown in Figure 7.8(b).
The rationale behind this table is the following. The initial jump between q0
and q1 is zero, as any larger jump could lead past the opening tag 〈a〉. When
jumping from state q0 towards state q2, we must not skip more than three
positions, which corresponds to the size of tag 〈a〉. Otherwise, we could miss
the tag 〈b〉. To jump towards state q̂2, the jump is bounded by three positions as
well, as the input could start with “〈a〉〈b/〉” and a jump beyond three positions
could lead past the start position of the opening tag for the b-labeled node.
Finally, to approach q̂1 without reading past the token 〈/a〉, the smallest XML
snippet allowed by the DTD is “〈a〉〈b/〉”, with a length of eight characters. �
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Computing initial jump offsets. We compute the initial jumps given a
runtime-automaton A and the DTD-automaton AD for its DTD. First, we an-
notate each state in A with the set of possible matching states of AD, denoted
by α[q]. This is done as follows. Let q0 be the initial state of A and let p0 be the
initial state of AD. We define α(q0) = {p0}. Then for each state q of A where α
has already been defined, and for each transition A[q, t] = u for some t and u,
we assign α(u) as states v from AD such that there is a state p ∈ α(q), and u is
reachable from p in AD via a word wt, where w contains no symbol from V [q].

Then, for each state p in A, let P be the set of states to which there is a transi-
tion from p. That is, for each q ∈ P , there is some token t such that A[p, t] = q is
defined. We compute the entry for J [q] as minq∈P ({ij(a, b) | a ∈ α(p), b ∈ α(q)}),
where ij(a, b) is computed using ij-Dijkstra.

7.4 Prototype Implementation

We have implemented a prototype in C++, called SMP. As a technical simplifi-
cation, we assume that no tags occur inside comments or CDATA-sections. Our
prototype takes the projection paths and a non-recursive DTD as input. The
datastructures for Boyer-Moore and Commentz-Walter string search are com-
puted lazily at runtime, when a state of the runtime-automaton is first entered.

SMP is implemented as a streaming algorithm, where we scan the input with
a fixed-size window in a single pass. We set the size of this window to eight
times the systems page size. Within the window held in main memory, we can
locally jump back and forth, all the while trying to quickly process the input
by skipping characters. As our experiments confirm, this results in significant
speedups for searching flat strings and XML data alike. In particular, both the
runtime costs and the number of character comparisons of SMP are comparable
with Boyer-Moore style string matching algorithms.

7.5 Experiments

Our testbed is a Core2 Duo IBM ThinkPad Z61p with a T2500 2.00GHz CPU,
1GB RAM, running Ubuntu Linux 6.06 LTS. We run Java query engines with
J2RE 1.5.0 09. By Usr, we denote the total number of seconds used by the
process used directly, and Sys denotes the CPU seconds used by the system on
behalf of the process. We compute CPU workload as Usr+Sys divided by the
total running time. To avoid warm caches, we alternately run experiments and
load large dummy files into main memory.

The experiments are organized as follows. We first examine the performance
characteristics of SMP on different datasets and query workloads. To this end,
we run SMP as a stand-alone application. Later, we study how SMP performs in
combination with in-memory XPath and XQuery engines. Finally, we contrast
the throughput of SMP with that of an industrial-strength SAX parser, to
demonstrate the overhead caused by input tokenization alone. We conclude
with a comparison of SMP with an existing prefiltering tool that also exploits
schema information, but relies on input tokenization.
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7.5.1 SMP Performance Characteristics

We study the behavior of SMP for different queries, documents, and document
sizes. In particular, we run experiments with the XMark [122], MEDLINE [105],
and Protein Sequence [89] datasets, and their DTDs.

XMARK data. We test SMP with data from the XMark benchmark [122].
Note that the XMark DTD allows recursive lists within item descriptions. We
have modified the DTD accordingly, and restrict our experiments to the XMark
queries which do not address recursive lists (queries XM1–14 and XM17–20).
Table 7.1 shows our results for a 5GB XMark document. To provide an idea of
how SMP performs on smaller documents, we list the maximum deviation “±”
(in positive or negative direction) on the 10MB, 100MB, and 1GB documents for
selected values. We state the size of the projected document, and the maximum
memory consumption (Mem). The total runtime (Time), the sum of Usr and
Sys time, and the average CPU load are also listed. Time measurements include
static analysis, which varies between 0.03s and 0.2s.

States is the number of states of the runtime-DFA. The value of CW + BM
denotes the number of states for which Commentz-Walter (CW ) or Boyer-
Moore (BM) lookup-tables are constructed. For instance, for query XM1, the
runtime-DFA has 9 states, two of which require CW lookup-tables, and six of
which need BM lookup-tables.

When we scan the input, we distinguish the forward shifts performed in
string pattern matching from the initial jump offsets computed by static anal-
ysis. ∅Shift Size denotes the average size of forward shifts, which depends on
the lengths of keywords in the frontier vocabularies. When we verify a poten-
tial match for a keyword, forward shifts are followed by a scan from right to
left. Hence, ∅Shift Size cannot be used to compute Char Comp, the percentage
of character comparisons relative to the document size. Initial Jumps denotes
the percentage of characters skipped by initial jump offsets alone. The small
deviations (±) for different input sizes suggest that the XMark data generator
creates documents that are very similar in their structure.

We observe that larger outputs go hand in hand with higher total processing
times. For instance, prefiltering for query XM14 produces the largest output,
and requires the longest running time. The Usr+Sys time is mainly driven by
the number of character comparisons. The CPU load depends on the output size
and the number of characters comparisons, and ranges between 11% and 21%.
Thus, the system spends most of the time holding out for new data from the
disk. The average size of forward shifts depends on the input and the size of
the tags used in the projection paths. In evaluating query XM5, we observe
comparatively large average forward shifts. Consequently, the Usr+Sys time is
low, and SMP inspects only about 10% of the input (Char Comp). Overall,
SMP inspects at most 23% of the input. Comparatively little can be gained by
initial jump offsets in this set of experiments.

Note that queries XM2 and XM3 have identical projection paths, which is
reflected in similar experimental results.

MEDLINE. We further consider the evaluation of the XPath expressions
M1–5 from Figure 7.9 on 656MB of MEDLINE data [105]. In contrast to XMark,
the MEDLINE data is not synthetic. To exclude trivial cases, all queries only
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XM1 XM2 XM3 XM4 XM5 XM6 XM7 XM8 XM9

Proj. Size 67.64MB 123.26MB 123.26MB 151.14MB 22.10MB 12.03MB 105.74MB 93.78MB 121.01MB
Mem 1.64MB 1.72MB 1.72MB 1.75MB 1.68MB 1.64MB 1.77MB 1.72MB 1.78MB

Time 252.48s 283.33s 281.8s 290.42s 252.35s 241.70s 256.94s 252.95s 258.93s
Usr+Sys 31.00s 41.65s 41.59s 42.40s 19.91s 29.36s 50.47s 35.91s 30.41s
CPU [%] 12.52±2.51 14.99±0.75 15.04±2.53 14.90±4.90 8.05±1.52 12.39±4.89 20.02±7.52 14.48±5.73 11.98±4.68

States (CW+BM) 9 (2 + 6) 11 (4 + 6) 11 (4 + 6) 13 (5 + 7) 9 (2 + 6) 7 (2 + 4) 11 (4 + 6) 15 (4 + 10) 25 (6 + 18)
∅ Shift Size [char] 5.72±0.02 7.62±0.01 7.62±0.01 7.65±0.01 10.83±0.04 5.17±0.00 6.55±0.04 7.42±0.00 7.50±0.05
Initial Jumps [%] 0.32±0.00 1.42±0.01 1.42±0.01 1.37±0.00 0.43±0.00 1.98±0.01 2.61±0.01 0.75±0.01 1.18±0.01
Char Comp. [%] 18.86±0.05 15.8±0.04 15.8±0.04 16.37±0.12 9.87±0.02 19.91±0.03 18.40±0.16 15.10±0.04 15.29±0.15

XM10 XM11 XM12 XM13 XM14 XM17 XM18 XM19 XM20

Proj. Size 307.63MB 95.37MB 65.73MB 137.63MB 1357.28MB 75.44MB 21.08MB 71.22MB 38.52MB
Mem 1.96MB 1.74MB 1.74MB 1.66MB 1.64MB 1.67MB 1.69MB 1.66MB 1.67MB

Time 295.92s 256.54s 256.85s 250.35s 321.03s 255.94s 249.29s 243.67s 249.88s
Usr+Sys 54.94s 34.85s 32.40s 26.39s 53.71s 34.95s 23.54s 32.16s 31.67s
CPU [%] 18.93±2.73 13.85±4.47 12.86±2.14 10.75±3.25 17.07±2.93 13.92±1.89 9.63±0.83 13.45±1.78 12.92±4.59

States (CW+BM) 33 (10 + 22) 17 (5 + 11) 15 (5 + 9) 13 (2 + 10) 9 (2 + 6) 11 (3 + 7) 9 (3 + 5) 11 (2 + 8) 9 (3 + 5)
∅ Shift Size [char] 5.68±0.01 6.58±0.01 6.60±0.02 6.06±0.00 5.16±0.01 5.72±0.01 8.29±0.04 5.17±0.00 5.75±0.00
Initial Jumps [%] 0.16±0.01 1.85±0.01 2.00±0.00 0.13±0.00 1.35±0.01 0.32±0.00 0.80±0.01 1.64±0.01 0.59±0.01
Char Comp. [%] 22.38±0.01 17.15±0.11 16.81±0.11 17.17±0.03 21.24±0.08 18.99±0.03 12.95±0.03 20.57±0.03 18.67±0.03

Table 7.1: SMP benchmarks on XMark 5,000MB data.
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M1 /MedlineCitationSet//CollectionTitle
M2 /MedlineCitationSet//DataBank[DataBankName/text()=“PDB”]/AccessionNumberList
M3 /MedlineCitationSet//PersonalNameSubjectList/PersonalNameSubject[

LastName/text()=“Hippocrates” or DatesAssociatedWithName=“Oct2006”]
/TitleAssociatedWithName

M4 /MedlineCitationSet//CopyrightInformation[contains(text(),“NASA”)]
M5 /MedlineCitationSet/MedlineCitation[

contains(MedlineJournalInfo//text(),“Sterilization”)]/DateCompleted

Figure 7.9: XPath queries over MEDLINE data.

M1 M2 M3 M4 M5

Proj. Size 0MB 0.42MB 0.34MB 0.19MB 47.4MB
Mem 1.94MB 2.01MB 2.11MB 1.99MB 2.00MB

Time 33.72s 33.62s 33.69s 33.47s 35.51s
User + Sys 2.96s 4.46s 3.02s 3.24s 4.35s
CPU [%] 9.02 13.76 9.26 9.99 12.43

States (CW + MB) 5 (1 + 1) 9 (3 + 5) 13 (4 + 4) 5 (2 + 2) 9 (3 + 5)
∅ Shift Size [char] 12.24 6.86 12.49 12.69 13.43
Initial Jumps [%] 0.00 0.00 0.00 0.01 7.61
Char Comp. [%] 8.37 14.63 8.4 8.52 9.81

Table 7.2: SMP benchmarks on 656MB MEDLINE data.

use paths that are satisfiable by DTD. Table 7.2 summarizes the results. Query
M1 searches for nodes which are defined by the DTD, but do not occur in the
input. Scanning with an average forward shift of about 12 characters, only
8.37% of all characters in the input are inspected.

In comparison to the XMark results in Table 7.1, XML prefiltering on MED-
LINE data features larger average forward shifts (∅Shift Size), due to longer
tagnames in the queries. For queries M1–M4, no significant initial jumps are
possible. Upon closer inspection, it turns out that the MEDLINE DTD specifies
many nodes as optional, and only required nodes can be considered for initial
jumps. Yet we can observe initial jumps for query M5. In total, about 50MB
of the input documents are skipped by initial jumps alone.

7.5.2 Prefiltering for XQuery and XPath Processors

We next examine how main-memory XML query engines perform when they
are run in combination with SMP. We will see that the low CPU workload of
SMP facilitates efficient pipelining of SMP with XPath and XQuery processors.

XQuery evaluation. We evaluate the XMark queries from before with the
main memory-based XQuery processors QizX [90] and Saxon [93]. For the
input tested, QizX was superior to Saxon regarding execution time and memory
consumption, and so we only report on the results for QizX.

The runtime and main memory consumption are limited to one hour and 1GB.
We study a sequential setup, where the prefiltered input is written back to disk.
Then the total runtime includes the additional write and read.

Figure 7.10 shows the results. The graphs use log scale for the x-axis (docu-
ment size) and the y-axis (time). We first discuss the runtimes for stand-alone
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Figure 7.10: SMP+QizX XQuery evaluation on XMark data.

query evaluation, which are shown to the left. Without projection, QizX can
successfully load the input and evaluate all queries within the memory and
runtime limitations for documents up to 200MB, but fails for 1GB and 5GB
documents. To the right, we plot the runtimes for evaluating SMP and QizX in
sequence. On documents up to 200MB, the runtimes differ only marginally, due
to the overhead of one extra write and read. When coupled with prefiltering,
QizX can evaluate all queries for the 1GB document, and still 15 queries on the
5GB document. We can discern two outlier queries (XM11 and XM15) which
close in on the timeout for 1GB, and fail for the 5GB document.

On the right, we further depict the average real time of SMP prefiltering,
and the minimum and maximum values for all queries with error bars. The
average user and system time is well below the real time, indicating that SMP
predominantly waits for new input from the disk.

In summary, in-memory XQuery engines such as QizX can be made to scale
to inputs in the Gigabyte range when coupled with SMP.

XPath in pipelining with SMP. The SPEX XPath evaluator [85] is a rep-
resentative of a class of query engines such as XFilter, YFilter [35], and the
XPush Machine [53], which were developed for XML stream processing. While
the latter systems evaluate high workloads of queries, SPEX and SMP evaluate
single queries. We expect similar results as for SPEX as when combining XFil-
ter, YFilter, and the XPush machine with our prefiltering tool, and intend to
set up additional experiments in future work.

In Figure 7.11(a), we show the runtimes for the XPath queries from Table 7.2
on MEDLINE data. We compare two scenarios. First, SPEX is run on the
unprojected document, and next on the document projected by SMP, which is
piped directly into SPEX (denoted “ppl. SPEX”).

It is remarkable that in the pipelined scenario, evaluation real time differs
only marginally from the real time for prefiltering alone (see Table 7.2). In the
plot, this is indicated by the 35 seconds line. In all cases, the computational
effort needed for query evaluation mostly manifests in the SPEX Usr+Sys time
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Figure 7.11: SMP+SPEX XPath evaluation on 656MB Medline data.

(see “ppl. SPEX/usr+sys”), rather than the real time. The projected output for
query M5 is still of considerable size (47.4MB), which causes a comparatively
high Usr+Sys time. For the other queries, SMP filters out large parts of the
input, so SPEX Usr+Sys time is lower. We conclude that the low CPU load of
SMP enables an effective interleaving of prefiltering and query evaluation.

In Figure 7.11(b), we compare the throughput achieved by SPEX as a stand-
alone tool with the pipelining of SMP and SPEX. In particular, we state the
program throughput, which we derive based on the assumption that the disk
is fast enough to warrant a CPU utilization of 100%. The differences in the
throughput are significant, and we can reach up to 190 MB/sec for query M1.
The achievable throughput for M5 is smaller, because the projected document
is still large. Nevertheless, the pipelined setup is still superior.

7.5.3 XML Parsing and XML Document Projection

We show that on the queries and datasets studied here, SMP achieves a signif-
icantly higher throughput than industrial-strength SAX parsers. SAX parsers
are used by virtually all competing approaches to tokenize the input, which sug-
gests that these systems are inevitably inferior to SMP in terms of scalability.

Xerces. The existing approaches to XML prefiltering all process XML docu-
ments that are tokenized, e.g. by a SAX parser. We next compare the through-
put of SMP and Xerces C++ [121], an efficient SAX parser. We have built a
minimal application on top of the Xerces API that just parses the input into
tokens. Xerces further checks the input for well-formedness by default.

The results for the XMARK (5GB) and MEDLINE datasets are visualized
in Figure 7.12. The program throughput of tokenizing the input with Xerces
(either using the SAX1 or the SAX2 reader) is well below the average throughput
that SMP achieves in prefiltering the same data for the queries of Table 7.1
(XMark) and Table 7.2 (MEDLINE). Even pipelining SMP prefiltering and
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Figure 7.12: Xerces vs. SMP: Program throughput in MB/sec.

XPath evaluation with SPEX has a higher average throughput on MEDLINE
data than just tokenizing the input with Xerces (c.f. Figure 7.11).

Overall, SMP is by a factor of three to nine faster than Xerces, while it
performs a more complex data management task. The results confirm that the
throughput achieved by our approach substantially surpasses that of projection
systems that rely on a tokenization of their input.

Type-based projection. The type-based projection tool (TBP) [15] is a nat-
ural choice for comparison with SMP, as it also exploits schema knowledge, but
tokenizes its complete input. To the best of our knowledge, TBP is the only
operational publicly available projection tool. (We were not able to obtain a
version of Galax with the projection feature mentioned in [77]). TBP performs
a powerful static analysis to prefilter for additional XPath axes and even for
predicates. Yet for the query workload considered here, the sizes of the pro-
jected outputs are comparable with SMP. The differences are mainly due to
whitespace formatting by TBP, and the fact that SMP can sometimes discard
more nodes (namely irrelevant ancestor nodes).

Type-based Projection (OCaml) SMP (C++)
Usr+Sys Mem Proj. Size Mem Proj. Size

M3 756.77s 3.36MB 26.52MB 1.72MB 24.62MB
M6 812.56s 3.36MB 2.59MB 1.64MB 2.40MB
M7 1170.03s 3.36MB 34.50MB 1.76MB 21.14MB

M19 1027.13s 3.36MB 17.92MB 1.65MB 14.23MB

Table 7.3: Projection of 1,000MB XMark data.

As TBP is written in OCaml, it is difficult to compare runtime results. We
have tested both the byte code and the native code compilation of TBP. In the
following, we only provide the results for the native code compilation, which
turned out to be significantly faster. We consider the subset of XMark queries
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benchmarked both by SMP in this paper and by and TBP in [15], namely XM3,
XM6, XM7 and XM19. Table 7.3 contains the results. Both XML filtering
systems get by with an economical main memory consumption, yet the Usr+Sys
times differ. To put our results into perspective, we point out that in computer
language shootouts, OCaml programs rarely perform more than a factor of 20
worse than C++ programs compiled with g++ (see [5]). Typically, we may
expect a gap of a factor five to ten. On the 1GB XMark document, SMP
requires less than ten seconds Usr+Sys time (and 2MB main memory) for all
queries. This is at least a factor of 90 better than the Usr+Sys time consumed
by TBP. The program throughput of SMP is in the order of two magnitudes
higher than that of TBP. This exceeds the difference one might expect by the
choice of programming language. For the 10MB and 100MB documents we
observe similar results, where our implementation is faster by at least a factor
of 84. On the 5GB document, TBP even exceeds the time limit of one hour.

In summary, SMP is able to project the 5GB document faster than type-
based projection can process 1GB. Also, SMP requires fewer CPU seconds
(Usr+Sys) on the 5GB document than TBP needs for projecting 1GB.

7.6 Future Work

We next discuss ideas how runtime-automata may further be optimized. We
show that a normalization of DTDs brings forward insights into the schema def-
inition that generally make for leaner runtime-automata. We construct DTD-
automata as Glushkov automata. As introduced in Section 3.1, Glushkov au-
tomata derived from regular expressions dedicate a state to each atomic symbol.

We propose to normalize the regular expressions in DTD-productions. We
can rewrite all subexpressions A, B, and C by applying the rewriting rules
below. A rule α ⇒ β describes that a subexpression matching pattern α is
modified as specified by pattern β.

(A|B),C ⇒ (A,C) | (B,C), A?⇒ A|ǫ, and A+⇒ A,A*

Normalization may introduce ambiguities that are not allowed in DTDs [117].
As static analysis includes a determinization step, our analysis is oblivious to
this detail. If we now perform static analysis given a normalized DTD, we may
obtain an improved runtime-automaton, as motivated next.

Example 7.9 We compute the DTD-automaton D for the DTD with the pro-
ductions <!ELEMENT a(b?,c)> <!ELEMENT b(#PCDATA)>, and <!ELEMENT c(b?)>, where
a is the grammar start symbol.

Given the projection paths /a/b and /*, we compute the runtime-DFA A(D)
shown below. Due to determinization of the subgraph-automaton by subset-
construction, the states of automaton A(D) are defined as sets of states of the
DTD-automaton D.

D : q0 q1 q2 q̂2 q3 q4 q̂4 q̂3 q̂1

〈a〉 〈b〉 〈/b〉 〈c〉 〈b〉 〈/b〉 〈/c〉 〈/a〉

〈/c〉〈c〉

A(D) : {q0} {q1} {q2} {q̂2} {q3} {q̂3} {q̂1}
〈a〉 〈b〉 〈/b〉 〈c〉 〈/c〉 〈/a〉

〈c〉
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If we apply the DTD-normalization rules, the first DTD-production changes
to <!ELEMENT a((b,c)|c)). Static analysis now produces the DTD-automatonD′

and the runtime-automaton A(D′), as shown below.

D′ :

q0 q1 q2 q̂2 q3 q4 q̂4 q̂3 q̂1

q5 q6 q̂6 q̂5

〈a〉 〈b〉 〈/b〉 〈c〉 〈b〉 〈/b〉 〈/c〉 〈/a〉

〈c〉 〈b〉 〈/b〉 〈/c〉
〈/a〉

A(D′) : {q0} {q1} {q2} {q̂2} {q̂1} {q̂5} {q5}
〈a〉 〈b〉 〈/b〉 〈/a〉 〈/c〉〈/a〉

〈c〉

The optimized runtime-DFA A(D′) distinguishes two cases. Assume we are
in state q1. If the opening tag of a b-labeled node is encountered before an
opening tag for a c-labeled node, then we can locate the data for this node and
output it. Afterwards, we need not locate the tokens for the c-labeled node, as
is enforced by the unoptimized runtime-automaton A(D). We thus make fewer
“stopovers” when processing the input at runtime. �

In general, we may assume that reducing the number of stopovers in the run-
time algorithm also improves the runtime performance. Yet without statistics
on the distribution of characters in the input, it is not generally clear that the
optimized automaton is indeed superior. We must therefore resort to heuristics,
which we could base on experiences gained with established string matching
algorithms. First, we may presume that the search for longer tagnames is more
efficient. Second, we may presume that performance in string matching de-
generates if keyword sets contain at least one short keyword. Based on such
heuristics, we can decide whether to modify the runtime-automaton or not.

We regard the optimization of runtime-automata based on heuristics an in-
teresting starting point for future work.

7.7 Conclusion

We have shown that established string matching techniques can be employed
to efficiently implement XML document projection. This significantly increases
the throughput of XPath and XQuery engines when compared to existing pre-
filtering approaches. The benefit of our technique becomes even more striking
in pipelined scenarios, where the low CPU load of our projection tool makes an
interleaving of XML prefiltering and query evaluation possible.



8
Static Operator Scheduling in
Event-based Query Processing

In this chapter, we introduce an extension of the XQuery language, called
FluX. As motivated in Section 6.2, FluX supports event-based query process-
ing. Purely event-based queries of this language can be executed on streaming
XML data in a very direct way, without buffering data first. We motivate the
FluX language in Section 8.1, and provide a formal definition in Section 8.2.
In Section 8.3, we develop an algorithm that efficiently rewrites XQueries into
the event-based FluX language. This algorithm uses order constraints from a
DTD to schedule event handlers and to thus minimize the amount of buffering
required for evaluating a query. If a DTD is not available, we assume that no
no order constraints hold. We discuss the various technical aspects of building
an XQuery engine that is based on the FluX language in Section 8.4. This is
complemented with an experimental evaluation of our approach in Section 8.5.
In Section 8.6, we touch on ideas for extending FluX, and conclude this chapter.

8.1 Motivation

We present principled work on query optimization in the framework of XQuery
which honors the special features of XML stream processing. This is the first
framework for algebra-based optimization of queries on XML streams hat uses
dedicated query operators that capture the spirit of stream processing, and
which allows for query optimization using schema information. However, there
are XQuery algebras meant for conventional query processing [45,116], and there
is work on applying them in the streaming context [43]. In systems developed
in succession to our work [70], parts of XQueries are evaluated directly on XML
streams, also based on static query analysis [44,75,101]. Moreover, the problem
of optimizing XQueries using a set of constraints holding in the XML data
model, rather than a schema, was addressed in [34, 75].

To our knowledge, this is the first work on optimizing XQuery using schema
constraints derived from DTDs. A main strength of our approach is its exten-
sibility. Even though space limitations require us to restrict our discussion to
the XQuery fragment XQ− (see Section 3.4), our results can be generalized to
even larger fragments.

We next propose the FluX query language, which extends XQuery by a
new construct for event-based query processing called “process-stream”. FluX

125
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motivates a very direct mode of query evaluation on data streams (similar to
query evaluation in XQRL [49]), and provides a strong intuition for which main
memory buffers are needed in which queries. This allows for a strongly buffer-
conscious mode of query optimization. The main focus of this chapter is on
automatically rewriting XQueries into event-based FluX queries, and at the
same time optimizing (reducing) the use of buffers using schema information.

XQuery and FluX. We have already sketched core ideas of FluX queries in
Chapter 6.2. In the following discussion, we additionally make use of schema
information, which leads to a larger set of constructs in the FluX language.
Consider the following XQuery in a bibliography domain, taken from the XML
Query Use Cases (see XMP Q3 in [123]) with minor adaption:

<results>

{ for $bib in /bib return

for $b in $bib/book return

<result> { $b/title } { $b/author } </result> }

</results>

For each book in the bibliography, this query lists its titles and authors, grouped
inside an element labeled “result”. Note that the XQuery language requires that
within each result node, all titles are output before all authors.

When we evaluate this query on XML streams without schema knowledge,
we cannot assume a particular order between nodes in the input. Yet even then,
we can evaluate parts of the query directly on the stream. We can output the
title-children inside a book-node as soon as they arrive on the stream. However,
we must delay the output of the authors using a memory buffer until we reach
the closing tag of the book-node. At that time, no further title-nodes can be
encountered. Then we may retrieve and purge author-nodes from the buffer,
and later refill the buffer with the author-nodes from the next book. We thus
only need to buffer the authors of one book-node at a time, but not the titles.

Prior to this work, main memory-based XQuery engines did not exploit this
fact, and rather buffered either the entire book nodes or used XML document
projection to only buffer the data relevant to query evaluation. In particular,
previous frameworks did not provide any means of making this seeming subtlety
explicit, and for reasoning about it.

The “process-stream”-construct of FluX can express precisely the mode of
query execution just described. The XQuery from before is then phrased as a
FluX query1 as shown in Figure 8.1.

A “process-stream $x”-expression consists of a number of handlers which
process the children of the context node of variable $x from left to right. An
“on a”-handler fires on each child labeled a that is visited during such a traver-
sal, executing the associated query expression. In the “process-stream $book”
expression from Figure 8.1, the “on-first past(title,author)”-handler fires exactly
once, as soon as the DTD implies for the first time that no further author- or
title-node can be encountered among the children of a book. In the subexpres-
sion of the “on-first past(title,author)”-handler, we may freely use paths of the
form $book/author or $book/title, because the nodes matching these paths can-
not be encountered in the input stream anymore. Rather, we may assume that

1At this point, we slightly generalize the FluX syntax and allow expressions of the form
〈t〉α〈/t〉, where α is a “process-stream”-expression to improve the readability.
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<results>

{ process-stream $root: on bib as $bib return

{ process-stream $bib: on book as $book return

<result>

{ process-stream $book:

on title as $t return $t,

on-first past(title,author) return

for $a in $book/author return $a }

</result> } }

</results>

Figure 8.1: FluX query compiled without schema information.

the query engine has already buffered these matches for us. (For the rationale
of buffer management in FluX query evaluation, we refer back to Chapter 6.)

Safe FluX queries. Informally, we call a query safe if it is guaranteed that
XQuery subexpressions do not refer to paths that may still be encountered in
the stream. The FluX query from before is safe. The for-loop employs the
$book/author path, but is part of an on-first handler that cannot fire before all
author-nodes relative to variable $book have been seen.

Let us now assume that the input stream adheres to the following DTD.

<!DOCTYPE bib [

<!ELEMENT bib (book*)>

<!ELEMENT book ((title|author)*,price)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT price (#PCDATA)> ]>

We again consider the FluX query from Figure 8.1, but we assume that
the for-loop over authors is modified such that it iterates over book-children
labeled “price”. Then this FluX query is not safe. On the firing of “on-first
past(title,author)”, the price-nodes have not yet been encountered in the input
stream. Consequently, no price nodes can be buffered. When the for-loop over
price-nodes is evaluated, an incorrect query result is produced.

We return to the XQuery stated the beginning of this section. This query
can be processed more efficiently with a schema as used in the XMP XML Query
Use Cases [123], with the book-production shown below.

<!ELEMENT book (title,(author+|editor+),publisher,price)>

Then no buffering is required at all, because the DTD asserts that for each
book, the title occurs before any authors. We denote this as an order constraint
Ordbook(title, author), as introduced in Definition 3.3. In Figure 8.2, we phrase
our query in FluX such that titles and authors are directly copied to the output
as they arrive on the stream.

We introduce the FluX query language in the next section. We formally
define the safe FluX queries (under a given DTD), which are those FluX queries
in which XQuery subexpressions have the usual semantics. Moreover, XQuery
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<results>

{ process-stream $root: on bib as $bib return

{ process-stream $bib: on book as $book return

<result>

{ process-stream $book:

on title as $t return $t,

on author as $a return $a }

</result> } }

</results>

Figure 8.2: FluX query compiled with schema information.

subexpressions are never executed before the data items referred to have been
fully read from the stream, and may be assumed available in main memory
buffers. We present an algorithm that statically schedules XQueries on streams
using DTDs and that transforms them into optimized FluX queries. Further,
we discuss the realization of query engines for FluX and their runtime buffer
management, topics that have also been addressed in Chapter 6. We have built
a prototype FluX query engine which we introduce as the FluXQuery engine,
and which we evaluate by means of a number of experiments.

8.2 The FluX Query Language

In defining the FluX query language, we limit ourselves to queries from the
XQuery fragment XQ−. In evaluating queries over streams, we further as-
sume a new semantics for treating strings inside queries. For example, the
string “〈hello〉” is considered valid here, but not in standard XQuery. The query
“<result>{/bib/book}</result>” is understood in standard XQuery as a result-
node with an embedded query to produce its children. In the context of XML
streams, the same query is read as a sequence of three queries which output the
string “〈result〉”, the /bib/book subtrees, and finally the string “〈/result〉”.

This subtlety is convenient in XML stream processing, where we output the
tokens for matching tags independently. This alternative semantics is only used
internally by the query engine, while users are oblivious to this fact. Users
simply formulate queries in standard XQuery and assume the usual semantics.

8.2.1 Simple XQueries

We introduce a syntactic property of XQuery expressions that we call simplicity.
The intuition is that output for simple XQuery subexpressions can be produced
without buffering additional data. Let us motivate the notion of simple queries.
Given an XQuery for-loop “for $x in $y/a return α”, the question is whether
the translation into a FluX expression “ps $y: on a as $x return α” yields
an equivalent query. FluX “on”-handlers are evaluated directly on the input
stream. So at runtime, we have just read the opening tag “〈a〉” in the input
stream, and have bound the query-variable $x to this node. The question is
now whether subexpression α can be evaluated immediately, without buffering
any data in addition to what has already been read in the input stream so
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far. In particular, we want to answer this question without consulting schema
information or performing non-local query analysis.

For instance, the XQuery subexpression “〈b〉5〈/b〉” in place of α is simple,
as it merely outputs a fixed string and does not require any buffering. Also, if
α = $x then this expression can be evaluated by directly copying the subtree of
the node bound by $x from the input to the output. This requires no buffering,
hence α = $x is simple.

An expression α = “if χ then 〈b/〉” is simple provided that condition χ can
be checked while the input is read. In contrast, an expression α = ($x, $x) is
never simple. For a node to be output twice, it must be buffered.

We formulate a syntactic definition of simplicity of XQuery expressions. Note
that this definition is not sufficient to determine whether a query subexpression
can be evaluated directly on the input stream. For this purpose, we introduce
the notion of query safety further below.

Definition 8.1 An XQuery expression is simple if it is the form “α β γ” where

• α and γ are possibly empty sequences of strings and of expressions of the
form “ {if χ then s}”, where χ is a condition and s is a string,

• β is either empty, “{$u}”, or “{if χ then $u }”, for some variable $u and
some condition χ, and

• if β is of the form “{$u}”, or “{if χ then $u }”, then no atomic condition
that occurs in αβ contains the variable $u. �

8.2.2 FluX Syntax and Semantics

We next define the syntax and semantics of the FluX language. We will use
DTDs to extract order constraints. Order constraints for regular expressions
were introduced in Section 3.1. In the following, we overload the meaning of
a query-variable $x bound to an element node labeled a, by writing $x when
we actually mean the DTD production identified by the element a. For ex-
ample, if the DTD contains a production <!ELEMENT a ρ> for a regular expres-
sion ρ, we write Ord$x(c, d) instead of Ordρ(c, d), and we write symb($x) instead
of symb(ρ). This static mapping from query-variables to DTD productions is
straightforward for our XQuery fragment XQ−, as we restrict ourselves to node
tests for tagnames only, and as we do not allow the XPath descendant axis.

If no DTD is available, we simply assume that no order constraints hold.

Definition 8.2 The class of FluX expressions is the smallest set of expressions
that are either simple or of the form

s { process-stream $y: ζ } s′

where s and s′ are possibly empty strings, $y is a variable, and ζ is a comma-
separated list of one or more event handlers. Each event handler is of one of
the following two types,

1. a so-called “on-first”-handler of the form “on-first past(S) return α” where
S ⊆ symb($y) and α is an XQuery expression, or

2. a so-called “on”-handler of the form “on a as $x return Q” where $x is a
variable, a is a tagname, and Q is a FluX expression. �
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We will use “ps” as a shortcut for “process-stream”, “on-first past(*)” as
an abbreviation for “on-first past(symb($y))”, and “on-first past()” in place of
“on-first past(∅)”.

Semantics of FluX. We evaluate a FluX expression “process-stream $y: ζ”
as follows. An event-handling statement considers the children of the node
currently bound by variable $y as a list (or stream) of nodes and processes
this list one node at-a-time. On processing a node v with children t1, . . . , tn,
where the labels of ti are denoted as label(ti), we proceed as follows. For each i
from 0 to n+ 1, we scan the list of event handlers ζ = ζ1, . . . , ζm once from the
beginning to the end. In doing so, we test for each event handler ζj whether
its event condition is satisfied, in which case the event handler ζj fires and the
corresponding query expression is executed:

• A handler “on a as $x return Q” fires if 1 ≤ i ≤ n and label(ti) = a.

• A handler “ on-first past(S) return α” fires if 0 ≤ i ≤ n and further
first-past$y,S(label(t1) . . . label(ti)) is true. That is, for the first time while
processing the children of $y, no symbol of S can be encountered anymore
in the input stream, or if i = n+ 1 and this event handler has not fired in
any of the previous scans.

In summary, it is well possible that several events fire for a single node, in which
case they are processed in the order in which the handlers occur in ζ. During
the run on t1, . . . , tn, each “on”-handler may fire zero up to several times, while
each “on-first”-handler is executed exactly once.

FluX queries. In Section 3.4, we have introduced the notion of bound and
free variables in XQueries. We extend this concept to FluX queries, where
freeVar({process-stream $y: ζ}) consists of the variable $y, for each event han-
dler in ζ of the form “on-first past(S) return α” also of the variables in freeVar(α),
and likewise for each event handler in ζ of the form “on a as $x return Q” of
the variables in freeVar(Q)\{$x}.

Note that expressions of the form “for $x in $y/a return α” and event han-
dlers of the form “on a as $x return Q” bind the variable $x, and hence remove
it from the free variables of the super-expressions.

Definition 8.3 A FluX query is a FluX expression in which all free variables
except for the special variable $root corresponding to (the root of) the document
are bound. �

8.2.3 Safe FluX Queries

We next define the notion of safety for FluX queries. Informally, a query is
called safe for a given DTD if it is guaranteed that XQuery subexpressions do
not refer to paths that might still be encountered in an input stream compliant
with the given DTD. Let us introduce some terminology first.

In analogy to XQuery, we introduce the notion of parent variables of FluX
expressions. By the parent variable of a FluX expression α within a FluX



8.2. THE FLUX QUERY LANGUAGE 131

query, denoted parentVar(α), we refer to the variable bound by the closest
super-expression of α, or $root if no such variable exists.

For FluX or XQuery expressions α and β, we write α � β (resp., α ≺ β) to
denote that α is a subexpression (resp., proper subexpression) of β. An XQuery
subexpression α of a FluX expression Q is called maximal if there is no XQuery
expression β with α ≺ β � Q. Note that a FluX query may contain several
such maximal expressions.

We refer to normalized conditions of the form “operand RelOp operand” as
atomic conditions. Given a variable $x and a FluX expression α, we identify a
set of tagnames as the dependencies of $x in α.

dependencies($x, α) = {a ∈ Tag | there exists $y ∈ boundVar(α) :

(lineage($x, $y) = $x/a/π or lineage($x, $y) = $x/a)}

∪ {a ∈ symb($x) | $x occurs in an atomic condition in α}

Definition 8.4 A FluX query Q is called safe w.r.t. a given DTD iff for each
subexpression “{ps $y: ζ }” of Q, the following two conditions are satisfied:

1. For each handler “on-first past(S) return α” in the list ζ of handlers, the
following is true:

• ∀ b ∈ dependencies($y, α) we have: b ∈ S or ex. a ∈ S s.t. Ord$y(b, a),

• ∀ $z ∈ freeVar(α) s.t. {$z} � α or {$z/π} � α (for some π) we have:
$z = $y and ∀ b ∈ symb($y): b ∈ S or ex. a ∈ S s.t. Ord$y(b, a).

2. For each handler “on a as $x return β ” in the list ζ, and for each maximal
XQuery subexpression α of β, the following is true:

• ∀ b ∈ dependencies($y, α) we have: Ord$y(b, a), and

• if α = β , then for all $u s.t. {$u} � α we have2: $u = $x:

�

It can be shown that this notion of safety is sufficient to ensure that main
memory buffers are fully populated when they are accessed in query evaluation.
Hence, a FluX query can be evaluated in a straightforward way on input streams
compliant with the DTD.

Examples of safe FluX queries can be found in Chapter 6 and earlier in this
chapter. The following example shows a query that is not safe.

Example 8.1 The FluX query in Figure 8.3 is not safe for a DTD with the pro-
duction <!ELEMENT book(title,author*,year)>. This query resembles the first
FluX query from Section 8.1, but the “on-first past”-handler only considers
title-nodes, not author-nodes.

Now if a book-node is read in the input, the “on-first past(title)”-constraint
is satisfied once its title is encountered. Yet at this time, the author-nodes for
this book have not even been read yet. Consequently, evaluating the for-loop
over authors yields an empty result. �

2Note that according to Definition 8.2, expression α must be simple in this case.
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<results>

{ process-stream $root: on bib as $bib return

{ process-stream $bib: on book as $book return

<result>

{ process-stream $book:

on title as $t return $t;

on-first past(title) return

for $a in $book/author return $a }

</result> } }

</results>

Figure 8.3: A FluX query that is not safe for Ordbook(title, author).

8.3 Translating XQuery into FluX

In this section we address the problem of rewriting a query of our XQuery
fragmentXQ− into an equivalent safe FluX query. The FluX extensions manage
the event based, streaming execution of the query. In contrast, all XQuery
expressions denote parts of the query that are evaluated over buffered data.

As the following example shows, every XQuery query can be transformed
into a FluX query in a straightforward way.

Example 8.2 Every XQuery query α is equivalent to the FluX query

{ ps $root: on-first past(*) return α }

Then the complete query is evaluated over buffered data. In particular, query
evaluation sets in after the complete input has been read. This obviously gives
the buffer-manager enough time to buffer all relevant data. Essentially, this cor-
responds to the two-phase XQuery evaluation of loading and query evaluation,
as sketched in Section 5.2. �

Depending on our assumptions about the input, an XQuery can be trans-
formed into an equivalent FluX query that can be evaluated more efficiently. To
this end, we proceed in two steps. First, we transform the given XQuery query
into an equivalent query in FluX normal form. Based on schema knowledge,
this normalized query is then rewritten into an equivalent and safe FluX query.

8.3.1 FluX Normal Form

We transform XQueries into FluX normal form by applying the XQuery nor-
malization rules from Figure 3.4 and further the rules from Figure 8.4 to push
if-conditions inside for-loops and sequences.

An XQuery in FluX normal form does not contain any conditional for-loops,
as normalization pushes conditionals inside the innermost for-loops. Moreover,
for each subexpression of the form “if χ then α else β”, α is either a fixed string
or of the form “$x”, and β is always the expression “( )”.



8.3. TRANSLATING XQUERY INTO FLUX 133

if χ then α else β

( if χ then α else ( ), if not(χ) then β else ( ) )
where β 6=( )

if χ then (α,β) else ( )

( if χ then α else ( ), if χ then β else ( ) )

if χ then ( for $x in $y/π return α ) else ( )

for $x in $y/π return ( if χ then α else ( ) )

if χ then 〈a〉α〈/a〉 else ( )

( if χ then 〈a〉 else ( ), if χ then α else ( ), if χ then 〈/a〉 else ( ) )

if χ then (if χ′ then α else β) else ( )

( if (χ and χ′) then α else ( ), if (χ and not(χ′)) then β else ( ) )

Figure 8.4: FluX normalization rules

<bib>

{ for $bib in /bib return

for $b in $bib/book

where ( $b/publisher

= "Addison-Wesley"

and $b/year = "1991" )

return <book>

{ $b/year }

{ $b/title }

</book> }

</bib>

<bib>

{ for $bib in /bib return

for $b in $bib/book return

( if χ then <book> else ( ),

for $year in $b/year return

if χ then $year else ( ),

for $title in $b/title return

if χ then $title else ( ),

if χ then </book> else ( )) }

</bib>

(a) XQuery Q1. (b) XQuery Q1 in FluX normal form.

Figure 8.5: Queries in FluX normal form.

Example 8.3 Consider XQuery Q1 from Figure 8.5(a), which is based on the
XQuery Use Cases [123]. This queries returns books published by Addison-
Wesley in 1991, including their year and title. We abbreviate the where-
condition of this query as χ. Then the query Q′

1 in Figure 8.5(b) is a FluX
normal form of query Q1. �

8.3.2 The FluX Compilation Algorithm

To formulate the algorithm for the static compilation of XQueries into FluX, we
need some further notation. Let Σ be the set of tag names occurring in a given
DTD. Let ⊥ denote an empty list of event handlers. Given a list ζ of event
handlers, we inductively define the set hsymb(ζ) of handler symbols for which
an “on”-handler or an “on-first”-handler exists in ζ, see Figure 8.7.

The compilation algorithm is shown in Figure 8.6. This algorithm uses order
constraints, as can be extracted from a DTD. If no DTD is available, we simply
assume that no order constraints hold. Given an XQ− XQuery Q in FluX
normal form, we obtain a FluX query by evaluating “rewrite($root, ∅, Q)”.
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rewrite(Variable parentVar, Set〈Σ〉 H , XQuery β)
1 let $x = parentVar;
2 if {$x} � β then
3 if β is simple and dependencies($x, β) = ∅ then
4 return β
5 else
6 return { ps $x: on-first past(∗) return β }
7 end if
8 else /* {$x} 6� β */
9 if β = β1 β2 then
10 β′

1 := rewrite(parentVar, H , β1);
11 match ζ1 such that β′

1 = { ps $x: ζ1 };
12 β′

2 := rewrite(parentVar, H ∪ hsymb(ζ1), β2);
13 match ζ2 such that β′

2 = { ps $x: ζ2 };
14 return { ps $x: ζ1, ζ2 }
15 else if β is simple then
16 /* e.g. β is of the form s or { if χ then s } */
17 return { ps $x: on-first past(dependencies($x, β) ∪H) return β }
18 else if β is of the form { for $y in $z/a return α } then
19 if $z 6= $x then
20 return { ps $x: on-first past(dependencies($x, α) ∪H) return β }
21 else
22 X := {b ∈ dependencies($x, α) ∪H | ¬Ord$x(b, a)};
23 if X 6= ∅ then
24 return { ps $x: on-first past(X ∪ {a}) return β };
25 else
26 α′ := rewrite($y, ∅, α);
27 return { ps $x: on a as $y return α′ }
28 end if
29 end if
30 end if /* if β is for-expression */
31 end if /* else {$x} 6� β */

Figure 8.6: Algorithm: Compiling XQuery into FluX.

hsymb(⊥) := ∅

hsymb(ζ; on a as $x return α) := hsymb(ζ) ∪ {a}

hsymb(ζ; on-first past(S) return α) := hsymb(ζ) ∪ S

Figure 8.7: Definition of handler symbols.
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This algorithm is designed to produce a FluX query which (1) is safe w.r.t.
the given DTD, (2) which is is equivalent to the input XQuery on all XML
documents compliant with the DTD, and (3) which minimizes the amount of
buffering needed for evaluating the query.

To meet goals (1) and (2), the particular order of the if-statements in the
algorithm is crucial. Also, a set H of handler symbols must be passed on in
recursive calls of the algorithm. One important construct for meeting goal (3)
is the case distinction starting in line 19, where an “on”-handler is created
provided that this is safe, and an “on-first”-handler is created otherwise.

8.3.3 Examples

We discuss the effect of our rewrite algorithm on sample queries. Queries bor-
rowed from the XQuery Use Cases [123] are modified to work without attributes.

Example 8.4 ( [123], XMP, Q2) Let us consider the XQuery Q2, which cre-
ates a flat list of all the title–author pairs, with each pair enclosed in a result-
element. We directly state the normalization Q′

2 of this query.

1 <results>

2 { for $bib in /bib return

3 for $b in $bib/book return

4 for $t in $b/title return

5 for $a in $b/author return

6 <result> {$t} {$a} </result> }

7 </results>

When given a DTD that does not impose any order on book titles and au-
thors, “rewrite($root,∅,Q′

2)” proceeds as follows: First, query Q′
2 is decomposed

into two subexpressions β1, consisting of line 1, and β2, consisting of lines 2–7
in the query. Then, the rewrite algorithm is recursively called for β1 and for β2.
As β1 is simple, the call for β1 produces the result shown below.

{ ps root: on-first past() return <results> }

The call for β2 decomposes β2 into two subexpressions. Subexpression β21

consists of lines 2–6, and subexpression β22 consists of line 7 of Q′
2. The re-

cursive call “rewrite($root,∅,β21)” executes lines 26 and 27 of the algorithm in
Figure 8.6, because β21 is a for-loop with parent variable $root and associated
set X = Xβ21

= ∅. Then the result

{ ps $root: on bib as $bib return α′
1 }

is produced, where α′
1 is computed by function call “rewrite($bib,∅,α1)”, for

the subquery α1 of Q′
2 in lines 3–6. This recursive call again executes lines 26

and 27 of the algorithm, and yields the expression α′
1 =

{ ps $bib: on book as $b return α′
2 }

where α′
2 is the result of “rewrite($b,∅,α2)” for the subquery α2 of Q′

2 in
lines 4–6. As α2 is a for-loop with parent variable $b and associated set
X = Xα2

= {author}, line 23 of the algorithm is executed, which produces
expression α′

2 =
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{ ps $b: on-first past(author,title) return α2 }.

All in all, “rewrite($root,∅,Q′
2)” returns the following FluX query F2:

1 { ps $root:

2 on-first past() return <results>,

3 on bib as $bib return

4 { ps $bib: on book as $b return

5 { ps $b: on-first past(author,title) return

6 for $t in $b/title return

7 for $a in $b/author return

8 <result> {$t} {$a} </result> } },

9 on-first past(bib) return </results> }

We again will refer to the “{ps $b· · · }”-expression in lines 5–8 of F2 as α′
2.

When evaluating the query F2, the XQuery inside α′
2 will be evaluated once

all author- and all title-nodes have been encountered. This gives the buffer
manager enough time to buffer all relevant data.

Let us now consider the case where we are given a DTD with the production
<!ELEMENT book (author*,title*)> where the constraint Ordbook(author, title)
holds. While running “rewrite($root,∅,Q′

2)”, we encounter the situation where
X = Xα2

= ∅ (rather than X = {author}, as we had before). Therefore, when
processing the recursive call “rewrite($b,∅,α2)”, lines 26–27 of the algorithm are
executed, producing the result α′′

2 =

{ ps $b: on title as $t return

{ ps $t: on-first past(*) return

for $a in $b/author return

<result> {$t} {$a} </result> } }

Now, “rewrite($root,∅,Q′
2)” yields query F ′

2, which differs from F2 in the
lines 5–8, which must be replaced by the above expression α′′

2 .
When evaluating F ′

2 on an XML document compliant with the second DTD,
all author-nodes arrive before title-nodes, and can meanwhile be buffered. En-
countering a title-node in the input stream invokes the following actions. The
statement “on-first past(*)” delays the execution until the complete title-node
has been seen. We may assume that the value of this particular node has been
buffered. We can iterate over the buffer containing all collected author-nodes,
each time writing the buffered titles and the current author to the output.

In contrast to the worst-case scenario above, we only buffer one title at-a-
time in addition to the list of all authors. If there is more than one title, this
strategy is clearly preferable. �

Example 8.5 ( [123], XMP, Q1) Let us consider the query Q1 and its nor-
malization Q′

1 from Example 8.3. Given a DTD that does not impose any order
constraints, such as a DTD with productions

<!ELEMENT bib (book)*> and <!ELEMENT book (title|publisher|year)*>

and the grammar start symbol “bib”, the function call “rewrite($root, ∅, Q′
1)”

rewrites Q′
1 into the following FluX query F1:
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1 { ps $root:

2 on-first past() return <bib>,

3 on bib as $bib return

4 { ps $bib: on book as $b return

5 { ps $b:

6 on-first past(publisher,year) return

7 if χ then <book> else ( ),

8 on-first past(publisher,year) return

9 for $year in $b/year return

10 if χ then $year else ( ),

11 on-first past(publisher,year,title) return

12 for $title in $b/title return

13 if χ then $title then ( ),

14 on-first past(publisher,year,title) return

15 if χ then </book> else ( ) } }

16 on-first past(bib) return </bib> }

The “on-first” handler in lines 11–13 delays query execution until all title-
nodes have been buffered and all publisher- and year-nodes have been seen.

When given a different DTD that guarantees that both Ordbook(year, title)
and Ordbook(publisher, title) hold, the title-nodes can be processed in streaming
fashion. The query F ′

1 produced by “rewrite($root,∅,Q′
1)” with this new DTD

differs from the above query F1 in the subexpression in lines 11–13 which must
be replaced by the expression below.

on title as $title return ( if χ then $title else ( ) )

Consequently, titles will not be buffered at all. �

Our rewrite algorithm is well capable of optimizing joins over two or more
join predicates, as is demonstrated in the following example.

Example 8.6 We remain in the bibliography domain and consider the DTD
with start symbol “bib” and the productions as shown below.

<!ELEMENT bib (book|article)*>

<!ELEMENT book (title,(author+|editor+),publisher)>

<!ELEMENT article (title,author+,journal)>

The following XQuery Q3 retrieves those authors of articles which are co-
authored by people who have also edited books:

<results>

{ for $bib in /bib return

for $article in $bib/article return

for $book in $bib/book

where $article/author = $book/editor return

<result> {$article/author} </result> }

</results>

For the remainder of this example, we abbreviate the (normalized) join-
condition comparing the authors of articles with the editors of books by χ.
Normalization into FluX normal form yields the following query Q′

3:
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1 <results>

2 { for $bib in /bib return

3 for $article in $bib/article return

4 for $book in $bib/book return

5 ( if χ then <result> else ( ),

6 for $author in $article/author return

7 if χ then $author else ( ),

8 if χ then </result> else ( ) ) }

9 </results>

When executing “rewrite($root,∅,Q′
3)” with the DTD above, a recursive

call “rewrite($bib,∅,β)” is eventually invoked for the subexpression β of Q′
3

in lines 3–8. As β is a for-loop with parent variable $bib and associated set
X = Xβ = {book} 6= ∅, line 24 of the algorithm is executed, returning an ex-
pression of the form “ {ps $bib: on-first past(book,article) · · · }”. As no order
constraint between article- and book-nodes holds, an “on-first”-handler ensures
that all articles and books can buffered.

Altogether, “rewrite($root,∅,Q′
3)” produces the following FluX query F3,

where α is used as abbreviation for the for-loop over books in lines 4–8 of Q′
3:

1 { ps $root:

2 on-first past() return <results>,

3 on bib as $bib return

4 { ps $bib: on-first past(book,article) return

5 for $article in $bib/article return α },

6 on-first past(bib) return </results> }

When given a DTD which imposes an order on books and articles, e.g. by the
production <!ELEMENT bib (book*,article*)>, we can evaluate Q′

3 by buffering
only books, but processing articles in a streaming fashion.

Indeed, when executing “rewrite($root,∅,Q′
3)” with this new DTD, we even-

tually encounter the situation where set X = Xβ = ∅, and therefore, lines 26–27
(rather than line 24, as with the previous DTD) are executed. Altogether, the
new FluX query F ′

3 differs from the above query F3 in the subexpression in lines
4–5, which must be replaced by

4 { ps $bib: on article as $article return

5 { ps $article: on-first past(author) return α } }

As all book-nodes will have arrived before an article-node can be encoun-
tered, data from books is available in buffers once the first article-node is read.
When processing the children of an article-node, we first buffer all author-nodes
before the query can be evaluated for the current article.

During the evaluation of F ′
3, we therefore only buffer the authors of a single

article in addition to the data already stored on books, whereas the evaluation
of F3 requires the authors of all articles to be buffered. �

8.4 Prototype Implementation

We discuss the system architecture of FluXQuery, an XQuery engine built on
the concept of the translation of XQueries into FluX. This query engine consists
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Figure 8.8: System architecture of the FluXQuery engine.

of the static XQuery compiler and the FluX runtime engine, as depicted in
Figure 8.8. The XQuery compiler translates user queries written in XQuery into
FluX queries. First, XQueries are rewritten into FluX normal form (abbreviated
FluX NF) that reduces the number of syntactical constructs we need to handle
subsequently. Next, the XQuery is translated into a FluX query by the algorithm
from Figure 8.6. The second part of the FluXQuery system architecture is the
runtime engine. It evaluates FluX queries as obtained by the XQuery compiler.
We briefly recapitulate the degrees of freedom in evaluating FluX queries.

Design decisions. The FluX language specifies which parts of a query are
evaluated in an event-based fashion. The compilation of XQuery into FluX
further ensures that buffer management has enough time to fill main memory
buffers with data, before this data is accessed in query evaluation. Yet the FluX
language does not specify (1) which data is buffered, where it is buffered, and
for how long. (2) Moreover, no assumptions are made how the query evaluation
over buffered data (inside “on-first”-handlers) is realized.

In Chapter 6, we discussed several options. Regarding (1), we contrasted a
purely static approach to buffer management with an approach also based on
dynamic data analysis. In answer to (2), we considered eager and sequential
XQuery evaluation. In our prototype, we evaluate queries sequentially and
realize the static buffer management described in Section 6.3, which is coupled
with XML document projection. Hence, the buffer manager only buffers data
relevant to query evaluation, yet possibly redundantly.

The runtime engine is organized as follows. The FluX query compiler trans-
forms a given FluX query into a physical query plan. It first extracts projection
paths from the parts of the query that are evaluated on buffered data. These
capture the data that needs to be buffered. Based on the projection paths,
the FluX query compiler schedules query operators, such as the execution of
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Query FluX Galax AnonX

5MB 2.1s / 0MB 13.4s / 37MB 3.4s
XMark 10MB 2.8s / 0MB 29.8s / 83MB 6.7s
XM1 50MB 7.8s / 0MB - / >500MB 38.3s

100MB 14.0s / 0MB - / >500MB -

5MB 6.8s / 1.54MB 296.9s / 50MB 143.8s
XMark 10MB 17.2s / 3.16MB 1498.3s / 100MB 534.8s
XM8 50MB 357.8s / 16.00MB - / >500MB -

100MB 11566.9s / 32.25MB - / >500MB -

5MB 5.6s / 374kB 277.0s / 50MB n/a
XMark 10MB 11.4s / 741kB 1663.7s / 100MB n/a
XM11 50MB 170.8s / 3.64MB - / >500MB n/a

100MB 626.8s / 7.27MB - / >500MB n/a

5MB 2.2s / 0MB 12.8s / 38MB 3.0s
XMark 10MB 3.1s / 0MB 27.2s / 73MB 5.2s
XM13 50MB 7.9s / 0MB 230.1s / 344MB 88.0s

100MB 13.9s / 0MB - / >500MB -

5MB 2.8s / 4.66kB 13.2s / 36MB 2.5s
XMark 10MB 3.4s / 5.18kB 29.7s / 80MB 6.2s
XM20 50MB 8.7s / 7.01kB - / >500MB 151.9s

100MB 15.4s / 7.02kB - / >500MB -

Figure 8.9: FluXQuery runtime and memory consumption.

“process-stream”-expressions, of conditionals, and the buffer population.

The streamed query evaluator uses our validating SAX parser XSAX , which
is an extension of a standard SAX parser. XSAX produces “on-first”-events
in addition to customary SAX-events. Basically, the XSAX parser works as
follows. We register the DTD and all “on-first”-event handlers of the FluX query
with the XSAX parser. Based on this information, the XSAX parser builds an
XML-DPDT (see Section 3.2) for validating the input against the DTD, and
for dynamically generating on-first events. As regular expressions in DTDs are
one-unambiguous, these events can be computed efficiently [71]. While reading
the input XML stream, the “on-first”-events are properly inserted among the
generated stream of SAX events. The streamed query evaluator processes these
events and delivers its output as an XML stream.

8.5 Experiments

In order to assess the merits of the FluX approach, we have experimentally
evaluated our prototype query engine. The engine is implemented in JAVA,
and we consider queries and data from the XMark benchmark [122]. Details on
queries and data are provided in Appendix A.

We generated XMark data of the sizes 5MB, 10MB, 50MB, and 100MB. All
tests were performed with the SUN JDK 1.4.2 03 and the built-in SAX parser
on an AMD Athlon XP 2000+ (1.67GHz) with 512MB RAM running Linux
(gentoo linux using kernel 2.6). Our query engine was implemented as described
in Section 8.4. As a reference implementation, we employ the Galax query
engine (V. 0.3.1). Unfortunately, we could not make the projection-feature from
Galax to work (see [77]). The performance of query evaluation was studied by
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measuring the execution time3 (in seconds) and maximum memory consumption
(in bytes) of each engine. The memory and CPU usage of both query engines
were measured by internal monitoring functions, and exclude the fixed memory
consumption of the Java Virtual Machine for the FluXQuery engine.

To give a broader overview over the performance of our approach we ad-
ditionally evaluate our queries with a commercial XQuery system of a major
company that has to remain anonymous and will be called AnonX below. Un-
fortunately, we can not determine the exact memory consumption for this sys-
tem, and can only state its execution time. As AnonX was not able to parse
Query 11, we are not able to list the execution time.

Figure 8.9 shows the results. To evaluate most queries with inputs greater
than 10MB, Galax needed more than 500MB of main memory after running for
a few minutes (which caused the system to start swapping). These runs were
aborted. Our prototype engine clearly outperforms Galax with respect to both
execution time and memory consumption. Queries 1 and 13 are evaluated with-
out buffering because of the order constraints imposed by the DTD. Query 20
has to buffer only a single element node at-a-time, which leads to a low memory
consumption. Queries 8 and 11 perform a join on two subtrees, and therefore
inevitably have to buffer elements. Nevertheless, due to our effective projection
scheme, only a small fraction of the original data is buffered. The rapid increase
in execution time is due to the fact that we compute joins by naive nested loops
at the moment. We discuss this orthogonal but vital issue in Section 10.

The comparison of the execution times to AnonX again shows the compet-
itiveness of our query engine. AnonX ran out of memory processing queries
marked by “-” (the maximum heap size of the Java VM was set to 512MB in
both cases) and hence did not give any results in this case.

Altogether, our approach seems to perform very well with respect to exe-
cution time, maximum memory consumption, and the maximum size of XML
documents that can be processed.

8.6 Conclusion

In this chapter, we have presented the FluX language together with an algorithm
for translating a significant fragment of XQuery into equivalent FluX queries.
The primary intention of FluX is as an internal representation format for queries,
rather than a language for end-users. Nevertheless, it provides a strong intuition
for buffer-conscious query processing on XML streams. We provide an algorithm
that uses schema information to statically schedule event-based query constructs
in FluX queries, to reduce the usage of buffers.

As evidenced by our experiments, our approach dramatically increases the
scalability of main memory XQuery engines, even though we think we are not
yet close to exhausting this approach, neither with respect to run-time buffer
management and query processing, nor query optimization.

For future work, want to extend the covered XQuery fragment. If a nonre-
cursive DTD is available, XQueries with descendant axes can easily be rewritten
into the smaller XQuery fragment covered here. For more expressive queries, the
FluX language and the compilation algorithm need to be extended accordingly.

3The times for query rewriting are negligible, and are hence not reported.
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Another important starting point for future work is to push if-expressions,
which we have moved down the query tree to obtain our normal form, back
“up” the expression tree as soon as the other simplifications have been realized.
First ideas in this direction are described in [71] and [99].



9 Buffer Purging based on Static and
Dynamic Analysis

In this chapter, we present an effective buffer purging algorithm that is inspired
by the notion of relevance counts. We have motivated this approach in Sec-
tion 6.3.2, and will recapitulate the main ideas in Section 9.1. In Section 9.2,
we provide an overview over the components of the runtime system. Section 9.3
is dedicated to the static and dynamic analysis required for assigning relevance
counts to buffered nodes, and for also decrementing relevance counts. Our proto-
type implementation and our extensive experiments are discussed in Section 9.4.
We provide a summary in Section 9.5.

9.1 Motivation

In keeping the main memory consumption low during streaming XQuery evalua-
tion, it is essential that memory buffers are purged continuously. In other words,
a garbage collection mechanism is required that removes data from buffers when
it is no longer relevant to query evaluation.

In existing systems, buffers are purged based on either static or dynamic
analysis. The query engines of [15, 43, 70, 75, 85] employ static analysis. In
Section 6.3.1, we have discussed the implications of static buffer management
in case of the FluXQuery engine, namely that nodes may be buffered redun-
dantly. In contrast, the XStream engine [50] implements a dynamic approach.
In XStream, buffers are purged based on garbage collection via reference count-
ing. When a subtree is no longer referenced, it can be purged from memory.

In this chapter, we introduce a novel buffer purging algorithm that combines
static and dynamic analysis, and that pro-actively purges buffers, as we explain
next. Based on static query analysis, we incrementally compute a projection of
the input, thus we only buffer data relevant to query evaluation. In addition, we
statically infer the moments during query evaluation when buffered nodes have
become irrelevant. In identifying such buffer preemption points, we assume a
sequential query evaluation. To timely delete nodes from the buffer, a dynamic
analysis takes into account the current buffer contents, the state of query evalua-
tion, and the progress made in reading the input. Obviously, we may expect the
impact of combined static and dynamic analysis on main memory consumption
to be greater than what can be achieved by static or dynamic analysis alone.

In concept, our approach is related to garbage collection via reference count-
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ing, as each node in the buffer keeps track whether it is still relevant to the
remaining XQuery evaluation. Yet instead of counting references, we rely on
relevance counts. Intuitively, a relevance count serves as a metaphor for the
future relevance of a buffered node.

While a traditional garbage collector is passive in the sense that it is invoked
whenever there is no more space for allocating new objects, our approach is
active. That is, we purge buffers from irrelevant nodes early on, so that both
the high watermark and the average main memory consumption remain low
throughout query evaluation.

The basic idea behind active garbage collection is clean and simple: We
statically extract projection paths from the query. While reading the input,
the input is prefiltered, and relevance counts are assigned to all nodes that are
copied into the buffer. A node can be matched by multiple projection paths,
and even multiple times, if it is used in the query by different subexpressions.
The relevance count of a node captures such multiple matches. At compile-time,
we determine the moments during query evaluation when relevance counts are
decremented. Once the relevance count for a node has reached zero at runtime,
the node becomes a candidate for removal from the buffer.

9.2 System Overview

We begin with an overview of the runtime system. We allocate a single buffer
which contains the currently relevant projected document tree. Each node in
this tree has an integer-value to keep track of its current relevance count, and
a Boolean flag to mark it as finished or unfinished. Simply put, text nodes are
finished the moment they are loaded into the buffer. An element node remains
unfinished until we have processed its closing tag in the input stream. Only
then is the node considered finished. This information is required in garbage
collection, where unfinished nodes won’t be purged from buffers, so as not to
corrupt the tree datastructure while query-variables are still bound to this node
or its descendants.

The relevance counts for each node are assigned when a node is first inserted
into the buffer. To decrement relevance counts at runtime, we need a mechanism
to notify the buffer manager. This is achieved by statically compiling signOff-
statements into queries, which mark the preemption points where the relevance
counts in the buffer are updated.

The runtime system. The runtime architecture comprises three compo-
nents, the query evaluator , the stream preprojector , and the buffer manager .
The interaction between these components is pull-based :

• The query evaluator executes the query sequentially until it has to block
either because a new node is required (e.g. when a variable is bound to the
next node in a for-loop) or a signOff-statement is encountered. In both
cases, a request is issued to the buffer manager, and query evaluation
remains blocked until the buffer manager has responded.

• The buffer manager answers to the requests of the query evaluator. If data
is required that is not resident in the buffer, the buffer manager requests
new data from the stream preprojector until the data is available, or it
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has become evident that the data does not exist (e.g. as the input is ex-
hausted). The reception of signOff-statements triggers garbage collection.

• Once it has been activated by the buffer manager, the stream projector
processes the input stream until a token relevant to query evaluation is
matched. A corresponding node is inserted in the in-memory tree, and
the relevance count of this node is initialized.

Via this chain of commands, the query evaluator incrementally processes the
input and evaluates the query on-the-fly, over the buffered data.

Garbage collection. Active garbage collection relies on the correct assign-
ment of relevance counts, the timely reduction of these values, and ultimately,
the purging of nodes from the buffer. A buffered node can be purged if it is
marked finished and if the node and its descendants have relevance count zero.
In the following, we assume that the buffer contains the projected input docu-
ment (as read so far) and that buffered nodes are marked unfinished or finished.

Traditional garbage collectors start searching for memory that can be freed
whenever there is no more space for allocating new objects. Our approach differs
in that garbage collection is active. That is, we purge buffers from irrelevant
nodes every time a signOff–statement is issued by the query evaluator or a node
is marked finished. Back in Section 6.3.2, we have also discussed alternative
strategies. As the garbage collector is invoked quite often, it is desirable to
restrict the search space for nodes to purge within the buffer. The garbage
collector is invoked the moment that a node is marked finished, or a signOff-
statement is executed. This already narrows down the set of nodes that are
candidates for removal. In the former case, we only consider the node now fin-
ished, in the latter, all nodes which have been affected by a signOff-statement.
If the relevance count of any of these nodes has reached zero, the garbage col-
lector checks whether it can be deleted from the buffer. If this is possible, the
garbage collection proceeds bottom-up in the buffered tree. Thus, the deletion
of nodes can propagate up to the root node of the buffered tree.

The treatment of unfinished nodes in the buffer requires extra care. An
unfinished node is not deleted to avoid buffer corruption. Instead, it is marked
deleted and ultimately purged from the buffer once its closing tag is read.

9.3 Static and Dynamic Analysis

The correctness of active garbage collection relies on the interplay of (1) XML
projection to load all relevant data into buffers, (2) the assignment of relevance
counts to buffered nodes, and (3) decrementing these values at runtime.

Regarding (1), we implement the projection semantics introduced earlier in
this thesis, for which we have already ascertained that it is correct and can be
realized with little runtime overhead. As far as (2) and (3) are concerned, we
can guarantee that the number of signOff-statements evaluated on each buffered
node equals the relevance count initially assigned. Thus, only nonzero relevance
counts are ever decremented, and no memory leaks can occur, as all nodes
eventually reach a relevance count of zero and are purged from the buffer.

In the following, we provide the particulars of static and dynamic analysis
by which we ensure these properties.
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9.3.1 Assigning Relevance Counts

Given a query from our XQuery fragmentXQ, we perform normalization and ex-
tract projection paths as outlined in Chapter 3. At runtime, we couple XML pre-
filtering and the assignment of relevance counts when loading data into buffers.
XML document projection can be realized by an XML-DPDT, as discussed in
Section 3.5.4. The result is an XML stream which encodes the projected docu-
ment tree. This is the input for the tree builder, the module responsible for the
incremental construction of the internal tree representation and the assignment
of relevance counts to buffered nodes.

We compute relevance counts based on counting paths, as introduced in
Section 3.6. Initially, all projection paths are represented as initial counting
paths, and are pushed on a stack. For each opening tag or text event in the input
stream, a node is inserted in the in-memory tree representation. At this point,
all irrelevant input has already been filtered out. Then the set of counting paths
on top of the stack is copied, updated, and pushed on top of the stack. The total
number of times a projection path is matched by this node is assigned as the
relevance count of this node. For closing tags, the stack is popped accordingly.

Example 9.1 We consider the normalized query from Figure 3.6(b). In Ex-
ample 3.12, we have shown the mapping pp between query-variables and the
associated projection paths. We discuss how the tree builder proceeds for the
input stream prefix “〈bib〉〈book〉〈price〉〈/price〉”.

In Figure 9.1, we show the current contents of the stack and the buffer. In
step (a), the stack holds the initial counting paths and the buffer only contains
an unnamed root node. In step (b), we process the first input token 〈bib〉. We
update each counting path P on top of the stack by computing JP Kbibtail according
to the rules from Figure 3.12. Then we push the updated counting paths on the
stack, and insert a new node in the main memory buffer. In our example, this
node is assigned relevance count 1 (denoted rc), as the projection path /bib is
matched once for the bib-node. The node is marked unfinished, as its closing
tag has not yet been read.

The next input token is 〈book〉, with the stack and buffer as shown in step (c).
The buffered node obtains relevance count two, as two projection paths are
matched. The effect for the opening tag of the price-node is similar, and por-
trayed in step (d). When we read the closing tag 〈/price〉, we mark the buffered
price-node as finished and pop the stack. �

9.3.2 Decrementing Relevance Counts

In static analysis, we further compute the buffer preemption points for garbage
collection. We first introduce some terminology.

Given a query, we compute the data scope of query-variables. Intuitively, this
is a variable whose scope defines how long the data captured by pp($x) remains
relevant for query evaluation. In the previous example, the data associated
with variable $b is captured by the projection path pp($b). Once the scope of
variable $b ends, this data is no longer accessed by query expressions within
the scope of $b. Hence, variable $b defines its own data scope. On the other
hand, the data associated with variables $x1 and $x3 is captured by pp($x1)
and pp($x3). This data must remain buffered at least as long as there are



9
.3

.
S
T
A

T
IC

A
N

D
D

Y
N

A
M

IC
A

N
A

L
Y

S
IS

1
4
7

Stack:

[1]/bib[0]

[1]/bib[0]/book[0]#

[1]/bib[0]/book[0]/price[0]

[1]/bib[0]/article[0]#

[1]/bib[0]/book[0]

[1]/bib[0]/book[0]/editor[0]#

[1]/bib[0]/article[0]/author[0]#

[0]/bib[1]

[0]/bib[1]/book[0]#

[0]/bib[1]/book[0]/price[0]

[0]/bib[1]/article[0]#

[0]/bib[1]/book[0]

[0]/bib[1]/book[0]/editor[0]#

[0]/bib[1]/article[0]/author[0]#

[1]/bib[0]

[1]/bib[0]/book[0]#

[1]/bib[0]/book[0]/price[0]

[1]/bib[0]/article[0]#

[1]/bib[0]/book[0]

[1]/bib[0]/book[0]/editor[0]#

[1]/bib[0]/article[0]/author[0]#

[0]/bib[0]

[0]/bib[0]/book[1]#

[0]/bib[0]/book[1]/price[0]

[0]/bib[0]/article[0]#

[0]/bib[0]/book[1]

[0]/bib[0]/book[1]/editor[0]#

[0]/bib[0]/article[0]/author[0]#

[0]/bib[1]

[0]/bib[1]/book[0]#

[0]/bib[1]/book[0]/price[0]

[0]/bib[1]/article[0]#

[0]/bib[1]/book[0]

[0]/bib[1]/book[0]/editor[0]#

[0]/bib[1]/article[0]/author[0]#

[1]/bib[0]

[1]/bib[0]/book[0]#

[1]/bib[0]/book[0]/price[0]

[1]/bib[0]/article[0]#

[1]/bib[0]/book[0]

[1]/bib[0]/book[0]/editor[0]#

[1]/bib[0]/article[0]/author[0]#

[0]/bib[0]

[0]/bib[0]/book[1]#

[0]/bib[0]/book[0]/price[1]

[0]/bib[0]/article[0]#

[0]/bib[0]/book[0]

[0]/bib[0]/book[0]/editor[0]#

[0]/bib[0]/article[0]/author[0]#

[0]/bib[0]

[0]/bib[0]/book[1]#

[0]/bib[0]/book[1]/price[0]

[0]/bib[0]/article[0]#

[0]/bib[0]/book[1]

[0]/bib[0]/book[1]/editor[0]#

[0]/bib[0]/article[0]/author[0]#

[0]/bib[1]

[0]/bib[1]/book[0]#

[0]/bib[1]/book[0]/price[0]

[0]/bib[1]/article[0]#

[0]/bib[1]/book[0]

[0]/bib[1]/book[0]/editor[0]#

[0]/bib[1]/article[0]/author[0]#

[1]/bib[0]

[1]/bib[0]/book[0]#

[1]/bib[0]/book[0]/price[0]

[1]/bib[0]/article[0]#

[1]/bib[0]/book[0]

[1]/bib[0]/book[0]/editor[0]#

[1]/bib[0]/article[0]/author[0]#

[0]/bib[0]

[0]/bib[0]/book[1]#

[0]/bib[0]/book[1]/price[0]

[0]/bib[0]/article[0]#

[0]/bib[0]/book[1]

[0]/bib[0]/book[1]/editor[0]#

[0]/bib[0]/article[0]/author[0]#

[0]/bib[1]

[0]/bib[1]/book[0]#

[0]/bib[1]/book[0]/price[0]

[0]/bib[1]/article[0]#

[0]/bib[1]/book[0]

[0]/bib[1]/book[0]/editor[0]#

[0]/bib[1]/article[0]/author[0]#

[1]/bib[0]

[1]/bib[0]/book[0]#

[1]/bib[0]/book[0]/price[0]

[1]/bib[0]/article[0]#

[1]/bib[0]/book[0]

[1]/bib[0]/book[0]/editor[0]#

[1]/bib[0]/article[0]/author[0]#

Buffer:

• •

bibrc=1
finished=F

•

bibrc=1
finished=F

bookrc=2
finished=F

•

bibrc=1
finished=F

bookrc=2
finished=F

pricerc=2
finished=F

•

bibrc=1
finished=F

bookrc=2
finished=F

pricerc=2
finished=T

(a) Initial state. (b) Reading 〈bib〉. (c) Reading 〈book〉. (d) Reading 〈price〉. (e) Reading 〈/price〉.

Figure 9.1: Computing reference counts in Example 9.1.



148
CHAPTER 9. BUFFER PURGING BASED ON STATIC AND DYNAMIC

ANALYSIS

article-nodes to process, as we access this data within the for-loop over articles.
Hence, the data scope of these variables is defined by the scope of variable $bib.

Variable trees. Given a normalized query, its variable tree is extracted as
follows. For each variable $x in the query (including the implicit variable $root),
we define a node v$x in the variable tree. The parent-child relationships between
nodes in the variable tree mirror the nesting of for- and some-expressions in the
query. Variable trees are unordered.

$root

$bib

$b

$x2

$a

$x1

$x3

$x4

$x data scope($x)

$root $root
$bib $bib
$b $b
$x2 $b
$a $a
$x1 $bib
$x3 $bib
$x4 $a

(a) Variable tree. (b) Data scopes.

Figure 9.2: Data scope of variables.

Example 9.2 For the query from Figure 3.6(b) we extract the variable tree
shown in Figure 9.2(a). The variable tree reflects that variables $bib and $b are
defined in nested for-loops, and that variable $x2 is defined in a some-expression
that is nested within the for-loop for variable $b.

Variables $a and $x3 are not in a parent-child relationship in the variable
tree, as a some-expression is nested between their declarations. �

Data scopes. The variable tree of a query is the basis for defining the data
scope function. The data scope function is a mapping between the query-
variables, which we denote by data scope. Intuitively, let $x be a query-variable,
then the data buffered for all variables in data scope−1($x) must not be purged
from buffers while $x is still bound.

We now discuss the computation of data scopes. Given a variable tree, we
first compute a subset of nodes Vds. These are the variables that define their
own data scope. By default, $root ∈ Vds. Moreover, let $x be a query-variable.
Then $x is in Vds if two conditions are met. The parent node $y of $x in the
variable tree is also in Vds and there is an expression of the form “for $x in $y/α
return β” in the query. Then the data-scope of a query-variable is defined as

data scope($x) =

{

$x if $x ∈ Vds

ds(parentVar($x)) otherwise.

Example 9.3 We continue with our query from Example 9.1 with the variable
tree in Figure 9.2(a). The data-scope mapping is listed in Figure 9.2(b). �

Semantics of signOff-statements. A signOff-statement is an expression of
the form signOff(α) where expression α is either a query-variable $x or $x/π
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Given a normalized query Q, we insert signOff-statements:

(1) rewrite expression α in query Q = 〈a〉α〈/a〉:
for each variable $z in data scope−1($root) \ {$root} do

if pp($z) carries the flag “#”
then α is replaced by (α, signOff(lineage($root, $z)#))
else α is replaced by (α, signOff(lineage($root, $z))) end if end for

(2) rewrite expression α in all for-loops “for $x in $y/σ return α”:
for each variable $z in data scope−1($x) do

if pp($z) carries the flag “#”
then α is replaced by (α, signOff(lineage($x, $z)#))
else α is replaced by (α, signOff(lineage($x, $z))) end if end for

(3) rewrite expressions α and β in all if-statements “if χ then α else β”:
for each variable $x in boundVar(β) do

if for all $y in freeVar(β): $x /∈ data scope−1($y)
then

$y := parentVar(β);
if pp($z) carries the flag “#”
then α is replaced by (α, signOff(lineage($y, $z)#))
else α is replaced by (α, signOff(lineage($y, $z))) end if

end if end for

(4) repeat step (3) with the roles of α and β reversed;

Figure 9.3: Algorithm: Compiling queries with signOff-statements.

with a projection path π. The semantics is the following. At runtime, let $x
be a variable bound in the current environment, and let n$x denote the node in
the buffer to which this variable binds. Then we proceed as follows.

• Executing “signOff($x)” decrements the relevance count of n$x by one.

• In executing a statement “signOff($x/π)”, we consider each node in the
buffer that is matched by $x/π. If path expression $x/π is matched k-
times by this node (c.f. Definition 3.15), then we decrease the relevance
count of this node by k.

Note that in the second case, query evaluation blocks until node n$x is
marked finished. The rationale behind this step is that by then, all nodes
matched by the path $x/π are available in the buffer, so these nodes cannot
“escape” garbage collection.

Compilation of queries with signOff-statements. Given a normalized
query, the algorithm in Figure 9.3 statically inserts signOff-statements. In
steps (1) and (2) of the algorithm, we consider variable $root, as well as all
variables bound in for-loops. At the end of the scope of a variable $x, we emit
signOff-statements for all variables with $x as their data scope. At this point,
we distinguish whether relevance counts are also decremented for descendants
of nodes, as indicated by flag “#”. In step (3), we handle if-statements. Once
we enter an alternative execution path at runtime, e.g. as the condition is true,
then the relevance counts assigned for nodes in the other execution path are
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<results>

{ for $bib in /bib return

( for $b in $bib/book return

( if ( some $x2 in $b/price satisfies true() )

then $b else (),

signOff($b#), (: introduced for $b :)

signOff($b/price) ), (: introduced for $x2 :)

for $a in $bib/article return

( if ( some $x1 in $bib/book satisfies

( some $x3 in $x1/editor satisfies

( some $x4 in $a/author satisfies ( $x3 = $x4 ) ) ) )

then $a else (),

signOff($a#), (: introduced for $a :)

signOff($a/author#) ), (: introduced for $x4 :)

signOff($bib), (: introduced for $bib :)

signOff($bib/book), (: introduced for $x1 :)

signOff($bib/book/editor#) ) } (: introduced for $x3 :)

</results>

Figure 9.4: XQuery with signOff-statements.

also decremented. Otherwise, we could create memory leaks, i.e. nodes whose
relevance count is never decremented.

The first example below only requires the first two steps, while the second
example illustrates the third step of the algorithm.

Example 9.4 We again consider the query from Figure 3.6. The rewritten
query is shown in Figure 9.4. We have omitted redundant parenthesis, and
have annotated each signOff-statement with the variable for which it has been
introduced using XQuery comments (encapsulated in “(:” and “:)”). �

In the following, we consider yet another query, where the treatment of if-
statements comes into play.

Example 9.5 The following query outputs the titles of books if these books
have no editors.

<results>

{ for $b in //book return

if ( not( some $x1 in $b/editor satisfies true() ) )

then for $x2 in $b/title return $x2

else () }

</results>

We extract the projection paths, the variable tree, and the data scopes.

$x pp($x) data scope($x)

$root $root
$b //book $b
$x1 //book/editor $b
$x2 //book/title# $x2

$root

$b

$x1 $x2

Variable relationships. Variable tree.
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Based on this information, we compile signOff-statements into the query.

<results>

{ for $b in //book return

( if ( not( some $x1 in $b/editor satisfies true() ) )

then for $x2 in $b/title return ($x2, signOff($x2#) ) (: see $x2 :)

else signOff($b/title#), (: introduced for $x2 :)

signOff($b), (: introduced for $b :)

signOff($b/editor) ) } (: introduced for $x1 :)

</results>

Assume we are processing a book-node. Then the book titles are buffered
because they may have to be output. Yet once an editor is encountered, the
condition evaluates to false. Hence, we enter the else-path. While no output
is produced in the else-path, the relevance counts assigned to title-nodes must
nevertheless be decremented. Otherwise, we would create memory leaks in form
of nodes that are not purged from buffers, even though they won’t be accessed
in query evaluation any more. The evaluation of signOff-statements stalls until
the book-node to which variable $b is bound is finished. By ensuring that the
relevance counts of all titles are decremented, memory leaks cannot occur. �

In the example above, once the else-part is entered, title-nodes of the current
book need not be loaded into the buffer anymore. However, our system uses
a static approach to XML projection, and cannot “unsubscribe” or change its
subscription of query-relevant nodes. We discuss this problem among our ideas
for future work in Chapter 10.

9.4 Experiments

We have implemented active garbage collection for a prototype XQuery engine,
the GCX system. GCX is implemented in C++ which, unlike garbage collected
languages, gives direct control over memory allocation and deallocation. This is
crucial when designing a query engine with low memory consumption. Below,
we discuss our prototype implementation and our experiments.

9.4.1 Prototype Implementation

Our buffer datastructure is a tree, with parent-child and next-sibling pointers
between nodes. We have merged the components for XML document projection
and the tree builder into one module, exploiting synergy effects arising from
a single stack. The states of the projection automaton now contain counting
paths, which are computed lazily [53]. Note that instead of assigning relevance
counts, our prototype assigns roles (see [97]), which are simply relevance counts
that are named by the query-variables for which they are introduced.

Whenever nodes are matched by the “#”-flag in projection paths, we assign
aggregate roles to avoid the overhead for assigning and decrementing each single
node in a subtree. The garbage collection mechanism has been adapted accord-
ingly. While the original path extraction mechanism in [97] treats existential
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checks differently, this is of no consequence for the experiments conducted here.1

The earlier approach uses static query rewriting to ensure that if-statements
do not occur outside for-loops, which simplifies static analysis. This tends to
increase the size of queries, and can cause a runtime overhead due to additional
relevance counts that are assigned and decremented. We manage to avoid this
in the approach featured here. Yet this is not reflected in the experiments, as
the XMark benchmark queries do not employ nested if-then-else expressions.

To further reduce the runtime overhead for garbage collection, projection
paths can sometimes be pruned, so that redundant paths are eliminated. That
way, nodes receive smaller relevance counts (or are assigned fewer roles), which
also leads to fewer decrements (or role updates) at runtime.

9.4.2 Experimental Results

We consider XMark documents between 10MB and 200MB in size. Details on
the data and queries are provided in Appendix A. The benchmarks are carried
out on a 3GHz CPU Intel Pentium IV with 2GB RAM, running SuSe Linux 10.0.
We use J2RE v1.4.2 for running Java-based programs.

GCX is an in-memory XQuery engine geared towards streaming query eval-
uation. We choose the following reference systems.

• The FluXQuery engine (implemented in Java, see Chapter 8) is the most
natural choice for a reference implementation. FluXQuery is also a main-
memory XQuery engine geared towards XML stream processing, and it
implements a similar XQuery fragment. FluXQuery can exploit schema
information, and was provided the XMark DTD in our experiments.

• The in-memory query engines Galax [51] (OCaml), QizX/open v1.1 [90]
(Java), and Saxon v8.7.1 [93] (Java) implement full XQuery. While Galax
version 0.6.8 has not been designed with XML stream processing in mind,
it is often consulted in XQuery benchmarks. For this reasons, comparative
experiments are also included here

Unfortunately, there are only few implementations of streaming XQuery en-
gines publicly available. This makes it difficult to set up extensive compara-
tive experiments. Acting from this necessity, we further consider experiments
with MonetDB v4.12.0 with XQuery v0.12.0 [81], a mature XML database sys-
tem. As a secondary-storage implementation, MonetDB uses index structures
to speed up query evaluation, which is not done by the GCX engine. Also,
MonetDB XQuery stores the entire data physically before query evaluation. To
account for the fact that GCX and the other main memory engines read the
complete input document for each query evaluation, we force the MonetDB
server to reload the complete document in each run.

The focus of our experiments is primarily on main memory consumption,
but we also consider the query execution time. Main memory consumption is
measured with the Linux top command. For each system and query we set
a timeout of one hour. Figure 9.5 shows the results of our experiments. For
each system and size of the input document, we measure the high watermark of

1In [97] we also consider projection paths of the form /bib/book/price[1] for existence
checks in XQuery conditionals. As we only check for the existence of a certain path, it is
sufficient to consider only the first witness for such a path as relevant to query evaluation.
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Query GCX FluXQuery Galax MonetDB Saxon QizX

10MB 0.18s / 1.2MB 1.59s / 50MB 5.45s / 186MB 0.86s / 30MB 1.48s / 80MB 1.20s / 38MB
XMark 50MB 0.92s / 1.2MB 3.96s / 111MB 42.33s / 880MB 3.69s / 98MB 4.29s / 292MB 3.74s / 195MB

Q1 100MB 1.87s / 1.2MB 6.94s / 111MB 02:07 / 1,8GB 7.19s / 225MB 7.96s / 547MB 6.56s / 285MB
200MB 3.53s / 1.2MB 12.27s / 111MB timeout 13.60s / 244MB 14.30s / 973MB 11.82s / 480MB

10MB 0.34s / 1.2MB n/a 7.66s / 240MB 0.98s / 29MB 1.73s / 82MB 1.56s / 33MB
XMark 50MB 1.68s / 1.2MB n/a 57.98s / 1.2GB 5.06s / 111MB 5.78s / 292MB 6.13s / 169MB

Q6 100MB 3.33s / 1.2MB n/a 5:08 / 2GB 9.94s / 253MB 10.85s / 622MB 11.74s / 484MB
200MB 6.42s / 1.2MB n/a timeout 19.95s / 337MB 20.14s / 1.2GB 20.33s / 805MB

10MB 13.15s / 9.8MB 18.04s / 128MB 01:04 / 377MB 02:56 / 407MB 6.61s / 145MB 9.89s / 148MB
XMark 50MB 05:13 / 43MB 06:51 / 169MB 33:08 / 1.8GB 03:26 / 1.35GB 02:02 / 352MB 03:38 / 265MB

Q8 100MB 22:07 / 86MB 27:01 / 216MB timeout - 08:39 / 650MB 14:27 / 397MB
200MB timeout timeout timeout - 32:43 / 1.15GB 52:05 / 636MB

10MB 0.17s / 1.2MB 1.60s / 52MB 5.92s / 182MB 0.80s / 31MB 1.53s / 48MB 1.26s / 28MB
XMark 50MB 0.85s / 1.2MB 3.98s / 111MB 43.91s / 899MB 3.64s / 98MB 4.45s / 292MB 3.85s / 195MB
Q13 100MB 1.69s / 1.2MB 7.00s / 111MB 02:04 / 1.8GB 7.34s / 224MB 8.35s / 547MB 6.81s / 285MB

200MB 3.24s / 1.2MB 12.33s / 111MB timeout 13.52s / 271MB 15.02s / 1.05GB 12.30s / 480MB

10MB 0.25s / 1.2MB 1.65s / 48MB 6.95s / 215MB 0.85s / 34MB 1.65s / 62MB 1.43s / 39MB
XMark 50MB 1.24s / 1.2MB 4.19s / 111MB 53.08s / 1,5GB 4.17s / 120MB 4.90s / 292MB 4.18s / 195MB
Q20 100MB 2.48s / 1.2MB 7.37s / 111B 03:14 / 2GB 8.47s / 247MB 9.13s / 622MB 8.71s / 350MB

200MB 4.74s / 1.2MB 13.14s / 111MB timeout 16.40s / 296MB 16.58s / 1.15GB 15.80s / 628MB

Figure 9.5: GCX benchmark results over XMark data.
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non-swapped memory consumption, and the total query evaluation time. The
value “n/a” indicates that the query cannot be expressed in the language sup-
ported by the specific engine, while “-” denotes failure, as caused by segmenta-
tion faults. With the Java-based engines, we observe that due to effects caused
by automatic memory management and the Java Virtual Machine, memory con-
sumption often increases with the document size, even though the amount of
data buffered is bounded by a small constant (e.g. for FluXQuery).

The experimental results confirm the significant impact of combined static
and dynamic buffer minimization. Regarding memory usage, even for small
stream sizes, GCX outperforms most competitors by a factor of ten or more.
Notably, FluXQuery can evaluate queries Q1 and Q13 with very little buffering,
yet GCX shows an overall good performance for small and large documents.

For queriesQ1, Q6, Q13 andQ20, the memory consumption of our prototype
is independent of the input stream size. Little has to be buffered, and we
observe that low main memory consumption coincides with low evaluation time,
also for the FluXQuery system. Note that Q6, which contains descendant axis
XPath expressions, is not supported by FluXQuery. Q8 involves an XQuery
join and more nodes have to be buffered. However, our system still manages to
evaluate this query with low main memory consumption. As in FluXQuery, joins
are implemented as naive nested loop joins, so runtime deteriorates for larger
input documents on Q8. While runtime is vital for practical systems, this is
an orthogonal issue which can be improved with standard database techniques.
We resume this discussion in Section 10.

In summary, the experiments confirm that buffer management via active
garbage collection performs well both w.r.t. main memory consumption and
execution time. For a large class of queries, our prototype can even outperform
the FluXQuery engine, which exploits schema information.

9.5 Conclusion

In this chapter, we have discussed the first buffer manager for streaming XQuery
engines which employs static and dynamic analysis to reduce main memory
consumption. The approach is based on the notion of relevance counts that are
assigned to buffered nodes. These counts serve as a metaphor for the relevance
of a node to query evaluation. We have shown how counts are initialized, how
they are decremented, and when nodes can be ultimately purged from buffers.

In summary, active garbage collection has proved to be an effective buffer
purging technique. Our prototype implementation shows the significant impact
of active garbage collection on main memory consumption and query evaluation
time. As we have argued in Chapter 6, we can achieve redundant-free buffering
for our query fragment. As confirmed by our experiments with XMark data
and queries, combined static and dynamic analysis can achieve a lower memory
consumption than systems which exclusively rely on static buffer management.
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10 Conclusion and Summary

This dissertation is dedicated to XML stream processing in main memory-based
query engines. The memory consumption of these systems constitutes a major
bottleneck. This particularly holds for systems that allow for data transforma-
tions via powerful declarative query languages such as XQuery, rather than mere
XPath filtering. In Part II of this dissertation, we have presented an abstract
framework for specifying XML stream processors. By modeling various system
setups, we are able to gain a greater-picture view on the factors influencing
the memory footprint during query evaluation. In Part III, we have presented
buffer management algorithms that employ static and dynamic analysis. We
next review the targets of our analysis techniques.

Static analysis techniques. We have studied main memory-based XQuery
processors that load the input for the evaluation of single queries. As the query
is known in advance to loading the data, this allows for static query analy-
sis regarding the relevance of data to query evaluation, order constraints, and
possible buffer preemption points.

Data relevance. An established technique for reducing the main memory
consumption in the context of this work is XML document projection. Given
a query, we statically extract the information which data is relevant for query
evaluation. At runtime, we then filter out irrelevant data. In this dissertation,
we contribute a new approach to implementing XML prefiltering, where we
combine ideas from string pattern matching with schema knowledge. This leads
to significant runtime speedups at low memory costs (see Chapter 7).

Order constraints. We further derive order constraints from queries.
This concerns the order in which data from the input is required for producing
output in query evaluation. Schema knowledge, if available, describes the order
of data in the input. If this order coincides, we can evaluate parts of the query
directly on the input stream. The remaining parts of the query are then eval-
uated on buffered data. Even if no schema is available, many practical queries
can be partly evaluated on the stream, which can significantly reduce the main
memory consumption (see Chapter 8).

157
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Buffer preemption points. If we assume a particular mode of query
execution, we can derive data access patterns from queries. In particular, we
can determine the moments when certain parts of the input may no longer be
relevant to query evaluation. We refer to these moments as buffer preemption
points. In combination with runtime analysis, we have built a garbage collection
algorithm that efficiently purges buffers during query evaluation (see Chapter 9).

Dynamic analysis techniques. The XQuery engines developed in this thesis
also rely on dynamic analysis. At runtime, we can analyze the state of both the
input and of the buffered data.

Analysis of input data. When streaming query operators are scheduled
statically, they must be synchronized with the arrival of tokens at runtime.
In Chapter 8, we make use of automata to efficiently analyze the input, and to
generate events which communicate that certain XML tokens won’t be witnessed
anymore. These automata validate the input against DTDs in order to issue
these events as early as possible.

As a prerequisite to active garbage collection (see Chapter 9), nodes are
tagged with a relevance count when they are loaded into main memory buffers.
This relevance count denotes the number of XQuery subexpressions for which a
node is considered relevant. If XQueries contain wildcards or transitive XPath
expressions, relevance counts must be computed dynamically, which we also
realize using automata-based techniques.

Analysis of buffered data. In active garbage collection, we search the
buffer at runtime for nodes that can be purged. If buffers are to contain no
redundant data, then the decision when to purge nodes from buffers cannot be
based on static analysis alone (see Section 6.3.1). Out of this motivation, we
have developed a dynamic approach based on garbage collection.

It is commonly regarded as one of the advantages of reference counting that
this garbage collection mechanism works locally and incrementally. This also
holds for our garbage collector based on relevance counting, and our experiments
confirm the scalability of our approach.

The buffer management techniques presented in this dissertation effectively
combine static and dynamic analysis. Moreover, they are composable, not just
with each other but also with other approaches for XQuery evaluation. For
instance, the static scheduling of streaming query operators in the FluXQuery
engine makes no assumptions about the implementation of query evaluation
over buffered data. For the buffered data, we can again employ active garbage
collection. The garbage collection mechanism presented here can be extended
to any query evaluation plan as long as we can identify the moments when the
evaluation of certain subexpressions has finished. The assumption that query
evaluation proceeds in phases is justified in XML stream processing.

The extension of our techniques is the topic of the next section, where we
discuss future work.
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<results>

{ if ( ... some German seller offers item x ...)

then <German_sellers>

{ ...names of German sellers offering item x... }

</German_sellers>

else <international_sellers>

{ ...names and addresses of all sellers offering item x... }

</international_sellers> }

</results>

Figure 10.1: Sketch of an XQuery expression (Example 10.1).

Future Work

A natural step for future work is to extend the supported XQuery fragment,
to cover composition as well as aggregation. In part, XQuery aggregation in
the context of XML streams has been featured elsewhere [23,75,99]. Of course,
the interplay with our techniques, such as active garbage collection, is still
an issue worth inspecting. Along this line, it is interesting to explore how
our techniques can be applied to other XML query languages, for instance,
stylesheet-based languages that use XPath such as XSLT [115] or STX [29], or
functional languages such as XDuce [61] or XStream [50] that do not provide
path expressions as syntactic constructs.

Moreover, we believe that we have not yet tapped the full potential of the
analysis techniques employed in this thesis. Below, we sketch two starting points
for further research. The first concerns the evaluation of conditionals in XQuery,
and the second the representation of XML data inside main memory buffers.

Conditionals in XQuery. XQuery has two constructs for evaluating condi-
tionals, namely where-clauses and if-statements. Surprisingly, in typical XQuery
benchmarks [80,120,122] and the XQuery Use Cases [123], few if-statements oc-
cur. If they do occur, then the else-part is usually empty, or the alternative
branches compute fixed output.

We may suspect that the lack of if-statements in benchmarks is partly re-
sponsible for the fact that query optimization for such queries has been neglected
so far. However, we may reasonably assume that developers make use of the if-
construct, even more so as XQuery is increasingly employed as a programming
language. The example below illustrates that if-statements are not trivial from
the perspective of buffer management.

Example 10.1 We process an XML stream of auction data with information
on items, auctions, buyers, and sellers. We want to buy a specific item, and
want to save on the shipping costs. We can save costs by buying the item from
sellers close by. So if people with an address in Germany offer this item, we
want to list these sellers. If no German sellers offer this item, we want the list
of all sellers of this item and their addresses. In Figure 10.1, we show a rough
sketch of such a query.

In XML document projection, we preserve the data required for evaluating
the condition, the then- and the else-part. All other input data is discarded.
We require the addresses of sellers for the else-part, but not for the then-part.
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All existing systems for XML document projection rely on purely static
query analysis to extract the projection paths describing query-relevant data.
Yet in streaming query evaluation, we may realize early on that a condition is
satisfied. At this point, it is desirable to focus on processing the then-part only.
In particular, we want to purge all data in buffers that is exclusively required
for evaluating the else-part (such as the addresses of sellers). More so, we want
to immediately stop buffering this data. Yet the GCX query engine introduced
in Chapter 9 is not capable of changing is objectives in XML document pro-
jection. The projection paths are computed once in static analysis, and remain
unchanged during query evaluation.

What is required is a dynamic approach to XML document projection, where
the query engine can notify XML stream prefiltering that certain data is no
longer considered relevant for query evaluation. While there is work on dynamic
publish-subscribe systems for XPath filtering and routing, to the best of our
knowledge, there is no work on dynamic XML document projection. In fact,
correctly solving this problem is by no means trivial for XQuery, and requires
a careful analysis of the current state of query evaluation. �

Bulk bypassing. In XML document projection, we operate on the insight
that in the evaluation of many queries, large parts of the input are actually
irrelevant. However, there are also queries where little can be gained by projec-
tion. We have observed in [95] that this concerns queries that require large parts
of the input only for generating output. Often, large chunks of data are written
to the output as read in the input, without traversing their tree-structure. Such
“bulk” data may be stored and treated differently from data that is actually
traversed in query evaluation. In [95], we present preliminary work on bulk by-
passing in XQuery engines. This comprises a technique to recognize bulk data,
which can be coupled with XML document projection. We show that bulk data
arises in practice, and discuss ideas along the line of bulk-bypassing in main
memory-based XQuery engines.

Outlook

This dissertation partly leverages ideas from other fields of computer science,
such as string matching and garbage collection, and applies them successfully
to XML stream processing. With respect to the larger field of research in data
management, we hope that our techniques may be adopted in other areas as
well. Below, we elaborate on how this could come about.

Data-specific garbage collectors. In developing our active garbage collec-
tor, we have applied the idea of garbage collection via reference counting in a
new domain. There is earlier work where garbage collection strategies have been
employed by the database community, namely in object-oriented databases [9].
However, these earlier approaches rely on the purely dynamic analysis of refer-
ences between objects. In contrast, we also statically analyze queries to derive
data access patterns.

This raises the question whether other main memory-based query engines
may also benefit from garbage collection schemes that are specifically tailored
to the datastructure and queries at hand, for instance when evaluating queries
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on RDF data [112]. The additional challenge, apart from analyzing a different
query language, lies in the fact that graphs rather than trees must be handled.

XML stream processing versus XML databases. Throughout this thesis,
we have made a clear distinction between query evaluation over XML streams
and in XML databases. However, much can be gained on both sides by tearing
down these fences.

Leveraging XML database techniques for XML stream processing.
In our discussions, we have argued strongly in favor of lazy (or sequential)
XQuery evaluation, in the interest of keeping the main memory consumption
low. In our prototype implementations, value-based joins are thus realized as
simple nested-loops joins. Evaluating these joins comes at no extra main mem-
ory overhead, but as can be expected, the runtime performance suffers consid-
erably for larger inputs.

By investing buffer space for building indexes, we can accelerate join process-
ing, and thus the overall runtime performance of our systems. This is the classic
tradeoff between main memory and runtime. To some part, we can use stan-
dard database techniques for join processing, yet with the constraint that the
construction of indexes must proceed with little runtime and memory overhead.

Leveraging XML stream processing techniques for XML databases.
In compiling query plans in XML databases, we are not technically limited to
scanning the data in document order, as we are in stream processing. However,
it is not uncommon that nodes are nevertheless physically stored in this order,
due to clustering and indexing schemes (e.g. [48]). Then performing a full table
scan bears close resemblance to accessing nodes in XML stream processing: Par-
ent nodes are encountered before their children, and all nodes are encountered
before their following siblings.

This suggests the idea of employing streaming techniques in accessing rela-
tional XML data that is clustered in document order. In particular, we can apply
the FluX compilation algorithm in generating query execution plans. Then the
streaming part of FluX queries can be evaluated in pipelining fashion, and the
remaining parts are compiled as usual. For queries that are nonblocking, or only
contain locally confined joins, this approach can lead to cheaper query plans, as
we avoid the computation of structural joins for those parts that are evaluated
in streaming fashion.
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A Benchmark Data and Queries

In experiments with the GCX and FluXQuery prototypes, we made the following
modifications to the XMark benchmark data and queries [122].

• We consider XML without attributes, and rewrite all attributes to subele-
ments. For instance, token <book id="1"> is encoded by the sequence
<book><book_id>1</book_id>. The XMark DTD is adapted accordingly.

• Our query fragment does not support aggregation. Hence, we modified
selected XMark queries, as listed below.

Queries. In the following we list the queries. Note that query Q11 uses arith-
metic operators, which are not defined in the XQuery fragment XQ defined in
Section 3.4, but which are nevertheless implemented in the FluXQuery engine
(see Chapter 8).

Q1 <query1> {

for $site in /site return

for $people in $site/people return

for $person in $people/person

where($person/person_id="person0")

return <result> { $person/name } </result> }

</query1>

Q6 <query6> {

for $site in //site return

for $regions in $site/regions return $regions//item }

</query6>

Q8 <query8> {

for $site in /site return

for $people in $site/people return

for $person in $people/person return

<item> {

<person>{ $person/name }</person>,

<items_bought> {

for $site2 in /site return

for $cas in $site2/closed_auctions return

for $ca in $cas/closed_auction return
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for $buyer in $ca/buyer

where($buyer/buyer_person=$person/person_id)

return <result> { $ca } </result> }

</items_bought> }

</item> }

</query8>

Q11 <query11> {

for $s in /site return

for $people in $site/people return

for $p in $people/person return

<items>

{ $p/name }

{ for $s2 in /site return

for $oas in $s2/open_auctions return

for $o in $oas/open_auction

where ( some $prf in $p/profile satisfies

( $prf/income > (5000 * $o/initial) ) )

return $o/open_auction_id }

</items> }

</query11>

Q13 <query13> {

for $site in /site return

for $regions in $site/regions return

for $australia in $regions/australia return

for $item in $australia/item return

<item>

<name> { $item/name } </name>

<desc> { $item/description } </desc>

</item> }

</query13>

Q20 <query20> {

for $site in /site return

for $people in $site/people return

for $person in $people/person

where (fn:not(fn:exists($person/person_income)))

return $person }

</query20>

Note: The path $person/person income is unsatisfiable by the DTD,
hence all persons qualify for output in this query.
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