
OS Verification Extended
On the Formal Verification of Device Drivers and

the Correctness of Client/Server Software

Dissertation

zur Erlangung des Grades
des Doktors der Ingenieurswissenschaften (Dr.-Ing.)
der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Eyad Alkassar
eyad@wjpserver.cs.uni-sb.de

Saarbrücken, Juli 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Acronym

https://core.ac.uk/display/196651403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tag des Kolloqiums: 17.07.2009
Dekan: Prof. Dr. Joachim Weickert

Vorsitzender des Prüfungsausschusses: Prof. Dr. Kurt Mehlhorn
1. Berichterstatter: Prof. Dr. Wolfgang J. Paul
2. Berichterstatter: Prof. Dr. Gert Smolka
3. Berichterstatter: Prof. Dr. Andreas Podelski

akademischer Mitarbeiter: Dr. Mark A. Hillebrand

Mama wa Baba — Schukran.

Danksagung

An dieser Stelle möchte ich all jenen danken, die zum Gelingen der vorliegen-
den Arbeit beigetragen haben.

Zunächst gilt mein Dank meiner Familie; meiner Mutter und meinem
Vater, denen ich fast alles zu Verdanken habe, und meinen Geschwistern Am-
mar, Muhannad und Manar, auf die immer Verlass ist.

Meinem Mentor Herrn Prof. Paul danke ich ganz besonders für die Möglich-
keit, meine Promotion im Rahmen eines so spannenden Projektes wie Verisoft
durchführen zu können und für die wissenschaftliche Betreuung der Arbeit.

Mein Dank gilt auch meinen (ehemaligen und derzeitigen) Arbeitskollegen
am Lehrstuhl von Herrn Paul. Mark (der lokales-lernen erbende-wen-wurst),
Dirk (der allzeit Hilfsbereite), Norbert (der ehrenwerte Denker) und Tom (der
trickreiche Menschenkenner) waren eine unschätzbare Bereicherung. Meinem
Freund Steffen möchte ich ganz besonders danken für die gemeinsamen Jahre
im Raum 318. Ausdrücklich danken für die gemeinsame Zeit möchte ich auch
Hristo, Sebastian, Sergey, Andrey und Peter.

Schließlich bleibt mir meinem Freund Aref zu danken, dessen weiser Rat
in manch schwerer Stunde unendlich wertvoll war.

This thesis work was funded by DFG Graduiertenkolleg ‘Leistungsgarantien
für Rechnersysteme’ and by the German Federal Ministry of Education and
Research (BMBF) in the framework of the Verisoft project under grant 01 IS
C38.

Abstract

This thesis tackles two important challenges in OS verification: The formal
verification of device drivers and the correctness of client/server software.

Device drivers are an integral part of system software. Not only high-level func-
tionality such as file I/O depends on devices. Even basic OS features, such as demand
paging, need correctly implemented drivers. In this thesis, we show how to perva-
sively integrate devices and their drivers into a language stack reaching from the level
of assembly up to high-level languages. This stack is leveraged for the formal verifi-
cation of a simple hard disk driver, which is subsequently embedded into Verisoft’s
micro kernel. To the best of our knowledge, this marks the first formal functional
verification of a device driver against a realistic device and system model.

Remote procedure calls (RPCs) lie at the heart of any client/server software.
In the second part of this thesis, we present a specification of an RPC mechanism
and we outline how to verify an implementation of this mechanism at the code level.
The formalization is based on a model of user processes running concurrently under
a simple OS, which provides inter-process communication and portmapper system
calls. A simple theory of non interference permits us to use conventional sequential
program analysis between system calls. To the best of our knowledge this is the first
treatment of the correctness of an entire RPC mechanism at the code level.

Zusammenfassung

Diese Arbeit behandelt zwei wichtige Probleme in der Verifikation von Betriebssys-
temen (BS): Die formale Verifikation von Gerätetreibern und die Korrektheit von
Client/Server Software.

Grundlegende Funktionen eines BS, wie z.B. Demand Paging, setzen korrekt im-
plementierte Treiber voraus. In dieser Arbeit zeigen wir auf, wie Geräte nahtlos in
allen Semantikschichten integriert werden können — von Assembler bis hin zu einer
C ähnlichen Hochsprache. Diese durchgängige Theorie wird anschließend verwendet,
um einen einfachen Festplattentreiber (Teil des Verisoft Mikrokerns) formal zu veri-
fizieren. So weit uns bekannt, stellt dies die erste formale Verifikation eines Treibers
im Kontext eines realistischen Geräte- und Systemmodells dar.

Implementierungen von Client/Server Software basieren oftmals auf Remote Pro-
cedure Calls (RPCs). Im zweiten Teil dieser Arbeit, spezifizieren wir einen solchen
RPC Mechanismus und skizzieren dessen Verifikation auf Codeebene. Die Formal-
isierung basiert auf einem Modell von Benutzerprozessen die nebenläufig in einem
einfachen BS ausgeführt werden. Dieses BS stellt Interprozess-Kommunikation und
Portmapper Funktionalität über spezielle Systemaufrufe zur Verfügung. Um sequen-
tiell über einzelne Prozesse argumentieren zu können, führen wir eine kleine Theorie
zur Bestimmung der Abhängigkeit von Systemaufrufen ein. So weit uns bekannt, be-
handelt diese Arbeit erstmals die Korrektheit eines vollständigen RPC Mechanismus
auf Codeebene.

Contents

1 Introduction 3
1.1 Structure of the Document . 7
1.2 Related Work . 7
1.3 The Setting . 10
1.4 Notation . 13

2 Road Map 17
2.1 Formal Verification of Device Drivers 17
2.2 Verification of Client/Server Software 19

I Formal Function Verification of Device Drivers 21

3 Extending the Language Stack 23
3.1 VAMP and Devices . 23
3.2 VAMP Reordered . 45
3.3 C0 and Devices . 52
3.4 C0 With Inline Assembly . 77
3.5 C0 With XCalls . 83

4 Case Study: Hard Disk Driver 97
4.1 Hard Disk Model . 98
4.2 Assembly Driver . 107
4.3 C0 Driver . 119

II Proving the Correctness of Client / Server Software 133

5 Specifying an Operating System 135
5.1 Background . 135
5.2 Specification of the SOS . 137
5.3 Reasoning About Applications in SOS ? 152

6 Proving Correctness of Client/Server software 159

1

2 CONTENTS

6.1 The Programming Language C0 160
6.2 Signatures of Services . 161
6.3 Portmapper Correctness . 162
6.4 Sending and Receiving Data Structures 163
6.5 RPC Client Protocol . 168
6.6 Building a Server and Proving its Correctness 172

7 Conclusion and Future Work 177
7.1 Formal Work . 178
7.2 Future Work . 179

A Dependency Graphs 181

B Mapping to Formal Names 185

Bibliography 187

Chapter 1

Introduction

The heart beat of our society If technology is labeled the new religion
of our modern society, software developers should be called its high priests.
In almost all niches of our daily life we are at their mercy, believing in the
infallibility of their products: When we drive to work with the car, dozens
of programs — from the entertainment system to the airbag control — assist
us and ensure that we reach our destination safely. When we travel around
the world with the airplane, most of the time a program is flying. Future
presidents and rulers are elected at black boxes, in which a program counts
the vote. And finally, when we get old, even the beat of our heart is controlled
by a piece of software running in the pacemaker.

Even though a single error in a single code line may destroy hundreds of
lives, society responds surprisingly calm. From where comes this unbounded
trust? There are four ways to deal with the threat of software errors.

Followers of the first way — lets call them traditionalists — claim that it
worked out in the past, so why shall we bother about the future? This ar-
gument has three major flaws. Firstly, it is impudent to plead on the record
of a technology which did not exist two generations ago. Since then, the
tremendous increase of the application domain of computer systems has been
probably singular in the history of technology. Secondly, it did not work out
so far; there is already an alarming record of catastrophes caused by bugs in
programs. Here, only one example for illustration: The death of at least five
people could be directly ascribed to a bug in the code controlling the Therac-
25 radiation therapy machine when it administered excessive quantities of X-
rays [Lev93]. In 2002 a study of the US National Institute of Standards and
Technology came to the result that ‘software bugs, or errors, are so prevalent
and so detrimental that they cost the U.S. economy an estimated $59.5 billion
annually, or about 0.6 percent of the gross domestic product ’. And, thirdly,
even if we ignore these facts, a single worst-case scenario, say an error in the
cooling system of a nuclear power plant, may be too expensive for us to afford.

Much more rational is the physicist approach. Physicists, first build mod-

3

4 CHAPTER 1. INTRODUCTION

els, called theories, of the world. They measure the plausibility of these theo-
ries by the degree of falsifiability, i.e. by exposing them to experiments, testing
them for flaws against the real world. This is quite similar to the state of the
art in industrial software quality management, which is extensive testing. The
real world corresponds to the implementation of the running computer sys-
tem, the theories are called formal specifications, and test-vectors are merely
more than experiments. Even though this approach is much more justified
to be trusted than the traditionalist one, on the long run it is futile. With a
complexity of programs increasing in an exponential way, it is almost impos-
sible to ensure that no bugs are left undetected. Take for example operating
systems: within twenty years the program size increased by several orders of
magnitude, from a few hundred kilobytes (MS DOS) to over a Gigabyte (Win-
dows 7). As physicists never claim the correctness of their theories, testing
cannot prove the absence of errors, either.

Proofs, yet, lie in the domain of mathematicians. They not only claim
correctness of theorems. But they have developed precise rules, called axioms,
to formalize and to derive the validity of such claims. Correspondingly, one
could axiomatize software systems and deduce correctness properties. Still,
the mathematicians’ approach suffers from a serious problem: Who ensures
that the proof has been correctly deduced? What is the worth of a ‘proof’
written down on hundred of pages, whose formalism is only understood by a
handful experts? The answer is probably: not much, as the following example
illustrates. An important result in topology, the jordan curve theorem, was
found by Camille Jordan. He stated in his publications in 1887 ‘that this
theorem is clearly true’ and provided a proof which later on was dismissed over
decades as insufficient or simply as wrong. In 1905 Oswald Veblen claimed
a new proof, which however used a series of ‘intuitive’ arguments making it
hard do determine its truth value. The solution was reached in 2005 when a
computer checked proof was conducted by Hales [Hal07] (he also found out
that Jordan’s original proof did not contain any serious flaw).

This, finally, may be also the silver bullet for trusting computer sys-
tems: formal verification. Formal verification, the computer scientists’ ap-
proach, comprises components of all three mentioned ways: implementations
of computer systems are axiomatized and verified against formal specifica-
tions. These proofs are then computer checked, giving us the ultimate amount
of confidence. Nevertheless, the specification still has either to be tested or
simply to be trusted.

Pervasive System Verification as a Scientific Task This approach was
pioneered by, among others, Dijkstra, Flyod, Lamport, and Hoare. Up to now
most approaches in formal verification only model some limited parts or high-
level layers of an overall system. Underlying layers are either modeled in some
semi-formal way or some perfect (i.e. correct) and simplified model is even

5

postulated, claiming an accurate model would be too complex to build. For
example when a concrete application, as a fingerprint authentication software,
running on top of a real operating system, as Linux, should be verified, it is
not enough only to prove the correctness of the abstract fingerprint matching
algorithm. This is because the specification of this algorithm may use some
model of the services provided by the operating system, assuming both cor-
rectness of modeling and of functionality of the services. Moreover, only very
few approaches carry out the verification at the level of concrete code.

Now, would the goal to pervasively formalize and verify the correctness
of a computer system, from transistors to software not be a major scientific
task? Having in mind that proving comes closest to understanding, would it
not be worthwhile to entirely understand one of the probably most complex
creations of men? In [Moo03] J. S. Moore, principal researcher of the CLI
stack project [BHMY89], gives a strongly affirmative answer to this question
and declares the formal verification of a ‘practical computing system’ as a
grand challenge problem.

A main goal of the Verisoft project [The09] is to tackle this challenge. In
the academic system, a subproject of the Verisoft project, a general-purpose
computer system, covering all layers from the gate-level hardware description
to communicating concurrent programs should be designed, implemented and
verified. The verification is supposed to be pervasive throughout all layers of
abstraction and all models and proofs should be formalized and checked in a
single mechanized language, Isabelle/HOL [NPW02].

Motivation for the thesis Almost a decade prior to the Verisoft project
the well-perceived CLI stack project [BHMY89] tackled the challenge of perva-
sive system verification — but left many issues open. Even though, impressive
progress had been accomplished, several crucial issues have not been treated.
Among those, most prominently, the integration and verification of device
drivers and of high level applications, as client/server software, were omitted.
This thesis tackles these two open challenges within Verisoft:

• Formal device driver verification. Device drivers are an integral
part of system software. Not only high-level functionality such as file I/O
or networking depend on devices. Even basic operating system features,
such as demand paging, need correctly implemented drivers. Hence, any
verification approach of computer system stacks should deal with driver
correctness. Nevertheless, when proving functional driver correctness
it does not suffice to reason only about code running on a processor.
Devices themselves and their interaction with the processor also have to
be formalized. On the lower-level this results in a computational model,
in which the devices and the processor take turns in execution. Even in
this concurrent context, the verification can be kept largely sequential
and modular with respect to the other devices. This is made possible

6 CHAPTER 1. INTRODUCTION

by sound reordering of computation traces, given that devices do not
interfere with each other and the driver monopolizes a single device.

In this thesis, we show how to pervasively and formally integrate devices
and their drivers into a language stack reaching from the level of assem-
bly up to the level of high-level languages. This stack is leveraged for the
formal verification of a simple hard disk driver, which is subsequently
embedded into the correctness of the micro kernel used in Verisoft. To
the best of our knowledge, this marks the first formal functional veri-
fication of a device driver against a realistic device and system model.
The extension of the language stack, the verification of the hard disk
driver (write function) and its embedding into kernel correctness have
been accomplished formally in the computer-aided verification system
Isabelle/HOL.

The results reported in this context are based on the following pub-
lications. The overall verification approach in the Verisoft project is
described in [AHL+08]. The extension of the language stack to reason
about devices can be found in [AHL+09, AHL+08]. The assembly ver-
ification of the hard disk driver and a small reordering theory for the
concurrent system was published in [AH08]. In [ASS08] we report on its
integration in the kernel. The specification of other device models, as
the serial interface can be found in [AHK+07].

• Proving the Correctness of Client Server Software. For a long
time programmers struggled with the time consuming implementation
of communication protocols for distributed systems. In 1984 Birell and
Nelson [BN84] responded to this problem and proposed the first Remote
Procedure Call (RPC) mechanism. They suggested to allow programs to
call procedures located on other machines. When a process on machine
A (client) calls a procedure on machine B (server), the calling process
on A is suspended, and execution of the called procedure takes place on
B. The caller eventually regains control, extracts the results of the pro-
cedure, and continues execution. Information can be transported from
the caller to the callee in the parameters and return in the procedure
result. Neither message passing nor I/O is visible to the programmer.
RPC became a widely-used technique that underlies many distributed
operating systems [TR85].

Thus, lying at the heart of any client server software, the formal spec-
ification and verification of RPC mechanisms is a prerequisite for the
verification of any such software. In this thesis, we present a mathemat-
ical specification of an RPC mechanism based on the formalization of
the Simple Operating System (SOS) [Bog08]. Furthermore, we outline
how to prove the correctness of an implementation of this mechanism at

1.1. STRUCTURE OF THE DOCUMENT 7

the code level. To the best of our knowledge this is the first treatment
of the correctness of an entire RPC mechanism at the code level.

The results on client/server correctness have been published in [ABP09].

The most challenging aspect of this work is to pervasively integrate a
wide range of models, theories, and proofs — work of many researchers at
different locations — to finally obtain correctness theorems which target the
whole computer stack. This has been accomplished formally in Isabelle/HOL
for the device driver part and on paper for client/server correctness. Major
parts of the formal theories of Verisoft have been published or are in the
process of publication [HP08].

1.1 Structure of the Document

The thesis is structured as follows. In the remainder of this chapter we first
give an overview on the related work; then we sketch the system and language
stack developed in Verisoft and point out our contribution therein; and finally
we summarize the mathematical notation used in this work. Chapter 2 is
designed as an road map for the theories and theorems given in the thesis.
Part I of the thesis deals with functional formal driver verification:

• In Chapter 3, we develop methodology and extend the current Verisoft
stack to embed reasoning about device drivers.

• In Chapter 4, this stack is leveraged to verify a simple hard disk driver
and integrate it into overall kernel verification.

Part II of the thesis shows how correctness of client/server software is proven.

• In Chapter 5, the underlying formal model of the simple operation sys-
tem is introduced.

• In Chapter 6, upon this model we specify an RPC mechanism and prove
the correctness of a simple math server.

Finally, in Chapter 7 we outline possible future work and conclude.

1.2 Related Work

In the following, we discuss related work within each of the four areas, which
are: system software verification, reordering theory, device modeling and
driver verification, as well as RPC.

8 CHAPTER 1. INTRODUCTION

System stack verification First attempts to use theorem provers to specify
and even prove correct operating systems were made as early as the seventies
in PSOS [NF03] and UCLA Secure Unix [WKP80]. However a missing or to
a large extend underdeveloped tool environment made mechanized verifica-
tion futile. With the CLI stack [BHMY89], a new pioneering approach for
pervasive system verification was undertaken. Most notably the simple kernel
KIT was developed and its machine code implementation was proven correct.
Compared to modern kernels KIT was very limited, in particular it lacked the
interaction with devices. The project L4.verified [HEK+07a] focuses on the
verification of an efficient microkernel, rather than on formal pervasiveness, as
no compiler correctness or an accurate device interaction is considered. The
microkernel is implemented in a substantial subset of C, including pointer
arithmetic and an explicit low-level memory model [TKN07]. However with
inline assembly code we gain in Verisoft an even more expressive semantics as
machine registers become visible if necessary. So far only exemplary portions
of kernel code were reported to be verified, the virtual memory subsystem uses
no demand paging [TK04]. For code verification the L4.verified project relies
on Verisoft’s Hoare logic environment [Sch06].

In the FLINT project, an assembly code verification framework is devel-
oped and code for context switching on a x86 architecture is formally proven
correct [NYS07]. Although a verification logic for assembler code is presented,
no integration of results into high-level programming languages has been re-
ported yet. The VFiasco project [HTS02] aims at the verification of the
microkernel Fiasco implemented in a subset of C++. Code verification is per-
formed in an embedding of C++ in PVS and there is no attempt to map the
results down to the machine level.

Moreover, we refer the interested reader to [Kle09], in which Klein provides
an excellent and comprehensive overview of the history and current state of
the art in operating systems verification.

Reordering theory Reordering is used in this thesis in two different flavors:
for reasoning about the concurrent execution of a processor and devices, and
for determining non-interference properties on operating system calls.

The reordering of execution sequences to obtain atomic specifications was
studied in literature under the topic of reduction theorems. Lipton proved
safety properties of pre-/ post-condition style sequentially and propagated
these to the implementation [Lip75]. Cohen and Lamport extended this to
liveness and a more fine-grained analysis of the reordered parts of the sequence
[CL98, Coh00]. Most reduction theorems assume that the implementation
fulfills some non interference theorems. In contrast we prove this assumption
on the atomic specification by exploiting a similar insight as reported in [SC06].
Justified by the memory mapped I/O architecture and the SOS semantics
respectively, the theories presented here are a specialization, enabling us to

1.2. RELATED WORK 9

formulate even stronger reduction theorems than reported in the literature.

Drivers So far most device related verifications have either targeted the
correctness of gate-level implementations or safety properties of drivers. In
approaches of the former kind, simulation and test based techniques are used
to check for errors in the hardware designs. In particular, [BKS03, RPS01]
deal with serial interfaces in that manner. In approaches of the latter kind
the driver code is usually shown to guarantee certain API constraints of the
operating system and hence cannot cause system crashes. For example, the
SLAM project [BR01] provides tools for the validation of safety properties
of drivers written in C. SLAM’s success led to the deployment of the Static
Driver Verifier (SDV) as part of the Windows Driver Foundation [Mic04]. SDV
automatically checks 65 safety rules concerning the Windows Driver API for
device drivers. Hallgren et al. [HJLT05] modeled device interfaces for a simple
operating system written in Haskell. Three memory-mapped I/O calls were
specified: read, write, and test for valid region. However, the only correctness
property being stated is the disjointness of the device address spaces.

In contrast to all mentioned approaches, we aim at the formalization and
functional verification of drivers interacting with a device. Thus, it is not
sufficient to argue about the device or programming model alone. Even in
other ongoing systems verification projects, the L4.verified project [HEK+07b]
and the FLINT project [FLI], device behavior and driver correctness are not
considered. To our knowledge, the only work similar in scope is the challenge
proposed by Holzmann [Hol06] dealing with the formal verification of a file
system for a Flash device. In response to the challenge, Woodcock reports on
the partial specification of the file system (the ‘file store’) and a refinement
proof mapping the store to a Java program [FFW07]. Simultaneously, the
Flash hardware is being formalized [BW07]. Verifying a low-level Flash driver
and integrating it into the filesystem proofs are future work. Concurrency is
not an issue since only a single device is considered.

Two earlier Verisoft publications are relevant for our work. In [HIP05]
paper-and-pencil models and proofs related to a simple disk driver are re-
ported. We extend this work in three important ways: models and proofs
are formalized in Isabelle/HOL, and the models are now concurrent instead
of lock-step. Thus, they are not restricted to disks, which are ‘simple’ for lack
of external communication. Moreover, in this thesis we formally integrate
the proofs into the higher language stack. In [AHK+07] we have reported on
formal models of a serial interface and an architecture with devices, but not
treated drivers.

Client/Server A well-known implementation of RPC was provided by Sun
Microsystems [Sri95]. The best example for an application using RPC is
probably the network file system (NFS) [SCR+03].

10 CHAPTER 1. INTRODUCTION

in
st

a
n
ti
a
ti
o
n

abstraction

CVM*

VAMOS*

SOS*

VAMP

CVM*+VAMOS

VAMOS*+SOS

SOS*+RPC

Apps (SMTP)devices

VAMP+CVM

external environment
other systems

Figure 1.1: Verification stairs of the academic system (Verisoft) — Abstract
models with star, implementation models without

The challenge of verifying a simple RPC memory system proposed 1994 by
Broy and Lamport triggered a widespread response. The result was impres-
sive: as many as 15 different solutions were published [BMS96]. Their goal,
however, was to compare different formalization techniques and proof methods
on an abstract case-study for distributed computing — rather than providing
programmers with a verified RPC mechanism. In contrast, we are aiming at
demonstrating that verification of RPC in a real setting, running under a real
operating system is feasible. Our specifications have been used to specify and
partially prove properties of user applications [LNRS07,BBBW07].

1.3 The Setting

System Stack. Our system stack comprises many layers. A model of one
layer is derived from the model of the (next) lower layer by means of instan-
tiation and abstraction (cf. Figure 1.1). The hardware architecture is called
VAMP [Tve09], a DLX like processor that supports address translation and
memory-mapped I/O devices. With the next level of communicating virtual
machines (CVM) a hardware-independent programming interface for a mi-
crokernel is provided [IT08, Tsy09]. This establishes the notion of separate
concurrent user processes with virtual memories. Memory virtualization is
implemented by means of demand paging [Sta09], which in turn relies for
page swapping on the invocation of a hard disk driver. Parts of the CVM (as
the hard disk driver) are implemented in assembly, because C0, our main im-

1.3. THE SETTING 11

VAMP gate-level

VAMP ISA devices

devices

VAMP assembly

C0 small-step semantics XCalls

devices

C0 big-step semantics XCalls

C0 Hoare Logic XCalls

compiler correctness

XCall implementation

simulation

C0 small-step semantics

C
0

w

it
h

in
li
n
e

a
ss

e
m

b
ly

simulation

simulation

simulation

simulation

Figure 1.2: Semantics stack

plementation language and a subset of C, lacks some low-level programming
constructs. On the basis of the CVM our microkernel VAMOS [DDB08] is
programmed in pure C0 (with external functions provided by the CVM). The
simple operating system (SOS) is implemented as a (privileged) user process of
VAMOS [Bog08]. It offers file I/O, network access and inter-process commu-
nication. On top of it user applications are provided with a client/server ar-
chitecture based on remote procedure calls [ABP09]. Finally these user appli-
cations implement the functionality of the academic system: signing software,
SMTP client and server [LNRS07], and a simple email user agent [BHW06].
The implementation stack is also depicted in Figure 1.1.

The contribution of this thesis to the system stack is twofold. First, we
formally verify and embed the correctness of a hard disk driver into the overall
verification of the CVM. Moreover, in the course of the formal integration, we
met a series of unforeseen difficulties, as for example the necessity to reason
about memory consumptions of compiled code. We solve this problems, by
developing and verifying general methodology. Second, on top of the SOS we
deliver a new model, which supports RPC primitives and allows to implement
and verify client/server applications.

Next, we introduce the semantics stack which is orthogonal to the system
stack described before. With the semantics stack a convenient Hoare logic to
reason about the sequential parts of C0 programs (without inline assembly
code) is established. We extend this stack to provide means to deal in Hoare
logic with assembly code and to integrate devices.

12 CHAPTER 1. INTRODUCTION

Semantics Stack. The C0 semantics stack comprises a Hoare logic, a big-
step semantics, and a small-step semantics, and can be continued to the VAMP
machine level, which is divided further into assembly layer, instruction set
architecture, and gate-level hardware. An overview is depicted in Figure 1.2.
By a higher level of abstraction in the Hoare logic compared to the small-step
semantics, efficiency for the verification of individual C0 programs is gained.
However, since the semantics stack is merely a proof tool for C0 programs,
the results obtained in the Hoare logic have to integrate into our systems
stack. The stack supplies soundness and simulation theorems that permit the
transfer of program properties from the Hoare logic down to the small-step
semantics. Those properties can be mapped to assembly machines by applying
compiler correctness. We can get further down to the ISA layer by employing
a simulation theorem and finally to the hardware by employing a processor
correctness result.

The Hoare logic provides sufficient means to reason about pre and post-
conditions of sequential, type-safe, and assembly-free C0 programs. Compiler
correctness, though, is formulated at the small-step semantics level. This al-
lows the integration with inline assembly code or concurrent computations,
e.g. introduced by devices. The big-step semantics is a bridging layer, which
is convenient to express the results of the Hoare logic operationally. The dif-
ferences reflect the purpose of the layers. The Hoare logic is tuned to support
verification of individual programs, whereas the small-step semantics is nearer
to the architecture level.

Up to now we have argued how to bring the results down to the lower
levels such that we can conduct reasoning at a comfortable abstraction level.
However, this comes at the cost of expressiveness, as the lower levels not only
introduce ‘unnecessary clutter’. Most prominently, the levels below C0 allow
the integration of devices, which are a concurrent source of computation. As
soon as we attempt to reason about C0 programs that use these devices we
either have to be able to express device operations at the Hoare logic level
or we are doomed to carry out the whole verification at the assembly level.
Our approach is to abstract the effect of those low-level computations into
atomic XCalls (extended calls) in all our semantic layers. The state space
of C0 is augmented with an additional component that represents the state
of the external component, e.g. the device. An XCall is a procedure call
that makes a transition on this external state and communicates with C0 via
parameter passing and return values. With this model it is straightforward
to integrate XCalls into the semantics and into Hoare logic reasoning. The
XCall is typically implemented in assembly. An implementation proof of this
piece of assembly justifies the abstraction to an atomic XCall.

Somewhat similar to the XCalls in the C0 semantics layers [Sch06], devices
are added to all the semantic layers of the VAMP. Their state and transition
functions are shared between all layers. These transition functions as well as
the VAMP semantics describe small-step computations, which are interleaved

1.4. NOTATION 13

to obtain the concurrent computation of the combined system. One central
prerequisite to employ our individual transfer and correctness results to ob-
tain a global property for the combined system is to disentangle the different
computations by means of reordering.

This thesis contributes to the semantics stack by integrating devices at
the assembly level and by introducing the concept of XCalls to reason about
low-level entities in higher level languages. By this we develop a pervasive
methodology to formally verify functional correctness of device drivers and
reason about them in Hoare logic. This is in particular challenging, since it
integrates the concurrent computations of the processor and devices at the
architecture level into the sequential view provided by the C0 (and assembly)
language.

1.4 Notation

Basic types, terms and operations The basic sets used in this document
are N (naturals including zero), Z (integers), bool = {true, false} (booleans), B
(binary digits) and string (strings). The sets typen , funn , varn , fieldn denote
names and are all assumed to be subsets of string . The power set of A is
denoted by pow(A).

For the numeric types we take the operations: − (subtraction), + (addi-
tion), ÷ (integer division), · (multiplication), mod (modulo), and

∑
(sum)

for granted. With a dvd b we express that b is dividable by a. For an operation
op ∈ {+,−, ·} we additionally define corresponding operations modulo 32 as
follows: a op32 b = (a op b) mod 232.

For boolean expressions we assume that the basic logical operations: ∧
(conjunction), ∨ (disjunction), and ¬ (negation) are defined. We write ∃
for the existential quantifier and ∀ for the universal quantifier. The type of
a quantified variable is omitted, if it can be inferred otherwise. Moreover,
we may write p(. . .) instead of ∀x . p(x), and p(?) instead of ∃x . p(x). An
implication is denoted by =⇒ and equivalence by ≡. Moreover, we use

inference rules of the form
a b

c
to denote implications a ∧ b =⇒ c.

For terms, besides the ordinary if − then−else expression we use abbre-
viations. We write let x0 = y0; ...;xn = yn in e(x0, .., xn) as an abbreviation
for e(y0, .., yn). Note that an assignment in a let expression may be non-
trivial. This is because pattern matching can be used. We write, for example,
let (x0, x1) = (y0, y1) in x0 +x1 to simultaneously assign abbreviations for x0

and x1, which are later used separately.

Binary Operations The set of bitstrings of length n is denoted by Bn.
Given a bitstring a = a0 . . . an, we denote with ai the ith bit of the string.
The common bitwise logic operations ∧n (bitwise and), ∨n (bitwise or), ⊗n

14 CHAPTER 1. INTRODUCTION

(bitwise exclusive or) and shift operations<<ln (logical left shift), >>ln (logical
right shift) and >>an (arithmetic left shift) are taken for granted.

We interpret bitstrings either as (unsigned) binary or (signed) two’s com-
plement numbers. The bitstring a denotes the binary number 〈a〉n =

∑n−1
i=0 ai ·

2i and the two’s complement number [a]n = −2n−1 · an−1 +
∑n−2

i=0 ai · 2i.
With bitstrings of length n one could encode binary numbers in the set
{0, . . . , 2n−1} and two’s complement numbers in the set {−2n−1, . . . , 2n−1−1}.
On the counterpart the functions to-bin and to-two denote the translations
from numbers to bitstrings.

We expand operations on bitstrings to integers as follows. Given the two
integers a and b, then the operations opt with op ∈ {∨n,⊗n, <<ln, >>ln, >>an
,+n,−n} are defined by a opt b ≡ [(to-two(a) op to-two(b))]n mod 2n.

Functions and sequences We use common lambda notation to define func-
tions, for example for addition we may write λx y . x+y. Functions are always
assumed to be total. Any function may, however, return with the special value
undef , denoting that the function is undefined at this position. We denote
with the range of a function f all possible outputs, i.e range(f) ≡ {y|y 6=
undef ∧ (∃x.f(x) = y)}. Analogously, the domain of a function is defined by
dom(f) ≡ {x|f(x) 6= undef }. Updates to a function f at position y to value
v are abbreviated by f(y := v) ≡ λx . if x = y then v else f(x).

Functions with domain N are called sequences. We say a predicate Q is
live in some sequence seq if Q is infinitely often true: live(seq , Q) = ∀i .∃j >
i .Q(seq(j)). Next, we introduce filters on sequences. A filter is a function
which takes a sequence and a predicate as input. It returns a new sequence in
which all elements are filtered out for which the predicate does not hold. We
first define the function next which returns for a given sequence seq , predicate
Q and position number k, the smallest position number l > k in the sequence
seq at which Q holds.

next(seq , Q, k) =

{
l if l > k ∧Q(seq(l)) ∧ (∀i < l.i > k =⇒ ¬Q(seq(i)))
undef otherwise

We define the filter now, by the following helper function filterh:

filterh (seq , Q, 0) = if Q(seq(0)) then 0 else next(seq , Q, 0)
(filterh, Q, n+ 1) = next(seq , Q,filterh(seq , Q, n))

filter(seq , Q) = λn.seq(filterh(seq , Q, n))

Obviously, applications of the filter function are not always well-defined.
This holds for example if the given predicate is never fulfilled. The following
lemma shows that liveness is a criteria for well-defined filters:

1.4. NOTATION 15

Lemma 1 (Well-defined filters)

live(seq , Q) =⇒ ∀i.next(seq , Q, i) 6= undef

Tuples Let T1, .., Tn be types. Then the tuple type T1 × .. × Tn yields the
set of all elements (v1, .., vn) with v1 ∈ T1, .., vn ∈ Tn. Tuples of size two (i.e.
for n = 2) are called pairs. Given a pair (a,b), then we define the two access
operators first and second as follows: fst((a, b)) = a and snd((a, b)) = b.

Records Let T1, .., Tn be types, fn1, .., fnn be strings. Then the record type
(fn1 : T1, .., fnn : Tn) yields the set of all elements (fn1 = v1, .., fnn = vn) with
v1 ∈ T1, .., vn ∈ Tn. Let r be a record of type R = (fn1 : T1, .., fnn : Tn). We
denote the access to the record field fni with r.fni. An Update to the field
fni by a value v is abbreviated by r[fni := v]. It yields the new record (fn1 =
r.fn1, .., fni = v, .., fnn = r.fnn) if i ∈ {0, .., n} and is undefined otherwise.

Abstract data types Let T1.1, .., T1.m1 , .., Tn.1, .., Tn.mn be types and C1, ..,Cn
be constructor names. We declare an abstract datatype T as:

T ::= C1 of T1.1, .., T1.m1 |
. . . |
Cn of Tn.1, .., Tn.mn

If, for example (x1.1, . . . , x1.m1) ∈ T1.1 × .. × T1.m1 then C1(x1.1, . . . , x1.m1)
is an element of the above defined abstract data type. Note, that abstract
data types may be defined recursively. Pattern matching may be used on the
abstract data type either in function definitions, or by the case-of construct.

Sometimes we use parametrized types, which are functions taking a type
and constructing a new one. Usually we denote such type functions by α T ,
where α is the type parameter.

An example of a parametrized abstract data type is the option type. It
has two constructors, NONE and SOME:

α option ::= NONE |
SOME of α

For convenience we abbreviate NONE with ⊥ and SOME(x) with bxc. We
define the selection operator the by the(bxc) = x and the(⊥) = undef . Option
types are often used to specify the output of computations. Then, ⊥ stands
for a computation that is stuck.

Lists We define a list type over elements of type α as a recursive data type,
with two constructors, one for the empty list and one for concatenation of a
single element:

α list ::= NIL |
CON of α× α list

16 CHAPTER 1. INTRODUCTION

For convenience we introduce the abbreviations [] for the empty list NIL and
x#xs for the concatenation CON(x, xs). The functions hd and tl return the
head and the tail of a list, respectively, i.e. it holds hd(x#xs) = x and
tl(x#xs) = xs. Moreover, we abbreviate concatenation of many elements,
as for example of a#(b#(c#[])) by writing [a, b, c]. We denote the the size of
a list xs by length(xs). Access to list element i is denoted by xs!i, where the
head element is xs!0 = hd(xs). Updates of the ith list element to some value
v is denoted by xs[i := v].

Given a list of pairs, we may interpret the first element of each pair as a
key and the second one as the data. We define a lookup for a given key id by
xs?id ≡ snd(xs!(min{i | fst(xs!i) = id ∧ i < length(xs)})). Concatenation of
two lists of the same type is denoted by xs@ys. Finally, we define an operator
which returns for a given list a set containing all its elements. It is defined by
set(xs) ≡ {x | ∃i < length(xs). xs!i = x}.

Chapter 2

Road Map

This thesis is composed of two parts: in the first part we report on the formal
functional verification of device drivers, while in the second part we elaborate
on the correctness of client/server software. The remainder of this chapter
may be read as a manual to the thesis or as its summary, alternatively.

2.1 Formal Verification of Device Drivers

Part I is divided into two portions: First, we develop the extension of the
language stack, which covers device semantics and enables the verification
of drivers in the setting of traditional program logic (Chapter 3). Then, we
leverage this stack to verify a hard disk driver and integrate the results into
the overall kernel correctness (Chapter 4).

Our journey starts in Section 3.1 with the aim of defining and justifying
a low-level programming model for device drivers running on the VAMP pro-
cessor. Therefore, we first elaborate on the three levels of VAMP abstraction:
VAMP gate-level, VAMP ISA and VAMP assembly. Subsequently, we intro-
duce a general device model, and show how devices are embedded at each of
the VAMP levels. At gate-level we encounter a lock-step model, in which all
devices and the processor execute in parallel, whereas in the upper models
granularity on time is lost. This loss is modeled by a non-deterministic ora-
cle and interleaved semantics. Adjacent models of the VAMP are linked to
each other via simulation theorems, which are used to propagate properties
proven on abstract levels to lower levels. Most importantly, in this thesis, we
are concerned with simulation between VAMP ISA with devices and VAMP
assembly with devices and in the resulting software restrictions (Theorem 1).

Although we are arguing about a concurrent system, we want to use con-
ventional verification technology — say verification condition generators for
Hoare logic — to argue about (as large as possible) sequential portions of the
interleaved computation. Therefore, in Section 3.2 we introduce a small re-
ordering theory, which (i) provides us with theorems to embed reasoning about

17

18 CHAPTER 2. ROAD MAP

the interleaved model into sequential programs and (ii) which simplifies to ver-
ify low-level drivers. We state several lemmas and theorems used to separate
verification of processor and device computations (Theorems 2 and 3).

In Section 3.3 we describe the C0 small step semantics and outline the
compiler correctness theorem (Theorem 4), which links C0 computations to
the computations of the compiled code running on VAMP assembly. We
proceed with extending compiler correctness to a target machine with device
computations (Theorem 5). Basically, correctness follows from the fact that
the compiled code never accesses devices and from the application of the
reordering theory. Complier correctness imposes a set of conditions on the
memory consumption of the target machine. Such conditions are of dynamic
nature, i.e. they have to be discharged at each step of the computation. Hence,
we verify a method to statically estimate the memory consumption of C0 code
(Theorem 6).

In Section 3.4 we show how inline assembly (with no device access) can
be embedded into C0 code, define an appropriate new semantics and state
its soundness against VAMP assembly (Theorem 7). Subsequently, we extend
C0 with inline assembly to allow device access. The new transition system
enables us to reason completely sequentially on C0 code and separate the
verification of assembly drivers for different devices. The soundness of this
model against VAMP assembly is based on the reordering theory developed
before (Theorem 8).

To capture the semantical effects of drivers and embed them into Hoare-
style reasoning, we introduce the concept of XCalls. XCalls are basically
atomic state updates on the C0 machine and an arbitrary state extension,
which is used to abstract from low-level entities (as e.g. devices). In Sec-
tion 3.5 we formulate an adequate semantics of C0 with XCalls, define the
notion of implementation correctness of an abstract call, and prove an ex-
tended compiler correctness theorem (Theorem 9). The proof is conducted by
relying on the semantics for C0 with inline assembly accessing devices.

In Chapter 4 the obtained new and extended language stack is applied to
verify a hard disk driver and embed the result into the verification process of
the CVM kernel. We start in Section 4.1 by defining a formal model of the hard
disk. Then, in Section 4.2 the assembly driver for writing memory pages is
described and its correctness stated (Theorem 10). Verification is carried out
by applying the reorder theory presented beforehand. Next, in Section 4.3 we
embed the assembly driver into C0, specify it in terms of the XCall semantics
and prove its correctness (Theorem 11). The verification is carried out by
applying the XCall theory developed previously. Finally, we outline how this
theorem is used in the context of the page-fault handler verification.

2.2. VERIFICATION OF CLIENT/SERVER SOFTWARE 19

2.2 Verification of Client/Server Software

Part II is divided into two portions: First, we describe the formal model upon
which the client/server software is implemented and introduce a verification
methodology to deal with non-interfering system calls (Chapter 5). Then,
we leverage this model and technique to specify the correctness of an RPC
implementation and verify a simple math server (Chapter 6).

We start in Section 5.1 with a brief overview of the functionality of the
simple operating system and by outlining its position in the Verisoft system
stack. In Section 5.2, we specify a subset of Bogan’s SOS ?, a distributed
model of computation, describing the interactions of the simple operating
system SOS with its user processes. Thereby, user processes are modeled
in a quite abstract way such that they can be instantiated to model user
programs in different programming languages. To be realistic, the model
necessarily has to include inter process communication (IPC) and basic port
mapper functionality. Furthermore, to be able to derive any useful termination
properties, fairness of the scheduler has to be postulated on the model. In the
SOS ? model, timeouts are restricted to finite and infinite timeouts.

Similar to the concurrent model of processor and devices, we deal with
a distributed system. Desirably, here again, conventional programming logic
should be used to argue about sequential portions of the distributed compu-
tation. For that purpose, in Section 5.3, we develop (similar to the reordering
theory) a simple theory of non interfering system calls (Theorem 12).

In Section 6.1, we instantiate the user process model to C0 applications.
However, pure C0 small step semantics is not sufficient to describe these ap-
plications: semantics of system call invocations have also to be formalized.
We outline how to extend such small steps semantics for system calls like the
portmapper- and IPC calls. This permits us to show that a service can in-
deed be looked up after it has been registered at the portmapper (Lemma 39).
It seems very attractive to apply the concept of XCalls developed previously
also to specify system calls. However, in contrast to the device model, our
goal here, is not to hide all the interleaving in a single atomic step. This is
not possible, since the concurrent interaction of the operating system and the
processes should remain visible.

In Section 6.2, we show how to specify signatures of services in terms of
C0 types.

Interface compilers generate from such signatures a library of external
C0 functions implementing the remote procedure call primitives RPCsend and
RPCrecv. The implementation of these functions uses the (previously defined)
IPC primitives. One has to be able to show termination, if timeouts are
finite (Lemma 40). Furthermore, one has to show that matching RPCsend and
RPCrecv calls either lead to a timeout or to a rendezvous situation and that,
in the latter case, the data is correctly communicated (Lemma 41).

The RPC primitives RPCsend and RPCrecv as well as the portmapper calls

20 CHAPTER 2. ROAD MAP

suffice to implement a wide variety of protocols. We demonstrate this in
Section 6.5 for a simple example of an RPC client protocol.

A library, providing functions implementing the complete client protocol
for calling remote procedures, can be generated by a compilation process for
interfaces. For the functions generated by this library, one has to be able to
show that they look up services and, in the case of success, eventually send
calls to the server and receive answers (Theorem 13). Theorem 13, just like
Lemma 41, is carefully phrased to reflect the fact that protocols may get stuck
if some clients do not obey the required protocol.

Finally, in Section 6.6, we implement, with the given primitives, a simple
Math Server. This server registers its services at the portmapper and then
services remote procedure calls. If all clients adhere to the protocol, then one
can show that the protocol never gets stuck and that remote procedure calls
with infinite timeouts eventually get answers (Theorem 14).

Part I

Formal Function Verification
of Device Drivers

21

Chapter 3

Extending the Language
Stack

3.1 VAMP and Devices

The goal of this section is to develop a justified, low-level programming model
for drivers.

The processor of choice in Verisoft is called Verified Architecture Micro
Processor (VAMP). It has a non trivial design, supporting fix-point arith-
metic, out-of-order execution, internal and external interrupts and two differ-
ent execution modes: system and user mode. In the latter, memory access is
subject to address translation. Devices are integrated to the VAMP by means
of memory-mapped I/O.

We model the VAMP at three different levels of abstraction: (i) VAMP
gate-level, which describes the gate-level implementation, (ii) VAMP ISA
which is the corresponding instruction set architecture, and hence the specifi-
cation model to VAMP gate-level, (iii) and VAMP assembly, which is intended
to be a convenient layer for implementation and verification of low-level appli-
cations. It abstracts from certain aspects of lower layers which are irrelevant
for most applications.

At each level, devices are modeled as finite state automata communicating
with the processor and a not modeled external environment. However, the
interaction model between the VAMP and the devices differs from level to
level. At gate-level the processor and the devices are executed in lock-step, i.e.
in each clock cycle each device and the processor take a transition. At VAMP
assembly and VAMP ISA, devices and the processor are executed interleaved.

We start by elaborating on the computational models of the VAMP with-
out devices. Subsequently, we introduce the general device model and show
how devices are embedded. By establishing two simulation theorems between
the adjacent models, properties shown for VAMP assembly with devices can be
transfered to VAMP ISA with devices and finally to the gate-level implemen-

23

24 CHAPTER 3. EXTENDING THE LANGUAGE STACK

tation of the hardware. We conclude this section by outlining and discussing
both simulations.

Note, that the models are introduced bottom-up, from a coarse overview
of the gate-level implementation to a fine-grained assembly description, which
will serve as the target language for driver verification.

The VAMP architecture is based on the DLX architecture [HP96] and
was initially presented in [MP00]. An implementation of the VAMP has been
formally verified in 2003 [BJK+03,BJK+06]. Since then, the VAMP has been
extended with address translation and support for I/O devices [AHK+07,
DHP05,TS08]. Details on the gate-level implementation of the VAMP and its
verification can be found elsewhere [Tve09,TA08].

3.1.1 Gate-level Model

A configuration h ∈ Ch of the VAMP gate-level model consists of

• 32 bit registers, which are visible for the programmer. These are the
program counters, the general purpose registers and the special purpose
registers,

• additional 32 bit implementation specific registers, which are invisible
for the programmer,

• a random access memory (RAM).

The VAMP is a pipelined machine with many stages supporting forwarding
and out-of-order execution. For the embedding of devices two stages are of
special interest (see Section 3.1.4): (i) the memory stage, in which store and
write operations access the memory and (ii) the write-back stage, in which
instructions are written back and interrupts become visible.

The transition function of the hardware takes as input the current config-
uration of the hardware and an external event vector representing interrupt
signals of the connected devices. It returns the updated hardware configura-
tion after one cycle.

3.1.2 Instruction Set Architecture

The instruction set architecture VAMP ISA fulfills two aims: (i) downwards it
represents the specification for the gate-level hardware design, (ii) upwards it
provides the system programmer with the model describing all visible compo-
nents and behavior, including address translation and interrupt handling. In
this section we only give an overview over the transition system. A full-blown
description of VAMP ISA can be found in [MP00].

3.1. VAMP AND DEVICES 25

State Space

Processor configurations are of the record type Cisa , which consists of the
following fields:

pc ∈ B32 The program counter.
dpc ∈ B32 The delayed program counter (used to spec-

ify the delayed branch mechanism detailed in
[MP00]).

gpr :: B5 → B32 The general purpose register file.
spr :: B5 → B32 The special purpose register file.
mm :: B32 → B8 The byte addressable memory.

The VAMP can be run in two different modes: system and user mode. The
current mode is encoded in the register MODE of the spr. In system mode,
programs can directly access the memory and fully control the architecture
via a number of privileged instructions. In user mode, memory accesses are
subject to address translation and attempts to execute a privileged instruction
will result in an exception.

Transitions

The next state transition function of VAMP ISA is given by the function
δisa , which takes a configuration and an external event vector and returns the
successor configuration. The external event vector is a 19 bit-string, indicating
for each connected device whether it is currently raising an interrupt signal or
not:

δisa :: Cisa × B19 → Cisa

A transition can be sketched as follows: First, it is checked whether the current
configuration (together with the external event vector) is causing an interrupt
(see below). If not, the transition function is defined by a case-split on the in-
struction to which the delayed program counter is pointing (or more precisely:
to the word in the memory pointed at by the dpc and which is interpreted as
instruction).

Except for instructions related to interrupt handling and address transla-
tion the semantics of the VAMP ISA instruction set is equivalent to the one
of VAMP assembly, and therefore omitted here.

Interrupt Handling

We distinguish two classes of interrupts: external and internal. External inter-
rupts are caused by devices, and may be masked, i.e. disabled, by the processor
by setting the special purpose register SR. This is used, for example, to ensure
that an operating system kernel is never interrupted while running. Internal

26 CHAPTER 3. EXTENDING THE LANGUAGE STACK

interrupts may be caused due to the execution of an illegal instruction or a
privileged instructions in user mode, overflows during arithmetic operations,
page-faults (see address translation) and by a special trap-instruction Itrap
(used e.g. to invoke kernel calls).

The VAMP reacts to non-masked interrupts by entering into system mode
and continuing execution at address 0, the start of the interrupt service rou-
tine (ISR). Normally, user mode is re-entered, continuing execution at the
interrupted location, by issuing the privileged instruction Irfe, which marks
the end of the ISR.

Address Translation

The VAMP provides a single-level address translation mechanism. The mem-
ory of the VAMP is partitioned into so called pages, small consecutive chunks
of data. Each page has size 4K , i.e. 4096 bytes. A memory address can be
interpreted as follows: some bits denote the page index and the remaining
bits the byte index in that page. In user mode, virtual memory addresses
are translated via a page table to physical addresses. A page table is simply
a mapping from virtual to physical page indices. It consists of word-sized
page table entries, each entry contains (i) a physical page index, (ii) a write-
protection bit, denoting whether the page is allowed to be written, and (iii) a
valid bit, denoting whether the page is currently available in main memory or
not. This bit may be used by a paging algorithm (cf. Chapter 4) to indicate
that the requested page is currently swapped to the hard disk. The page ta-
ble used by the hardware for translation is identified by the special purpose
registers (i) page table origin, PTO, denoting its base address in memory, and
(ii) the page table length, PTL.

A virtual address lookup may trigger a so called page-fault interrupt. This
happens, for example, if the virtual page index lies outside the page table or
the requested page is marked to be not valid.

3.1.3 Assembly

The VAMP assembly model provides a handy programming model by ab-
stracting some features of the machine model VAMP ISA. In short, these
abstractions are:

• Data is represented as integers, while addresses are represented as nat-
urals instead of bit-vectors in VAMP ISA.

• VAMP assembly has a uniform, linear memory with no address trans-
lation visible. Hence, the model can be used to capture, either the
execution of system mode computations or the execution of virtualized
memory machines (i.e., for which memory virtualization is already im-
plemented).

3.1. VAMP AND DEVICES 27

• Neither external nor internal interrupts are visible in VAMP assembly.
This requires that all maskable interrupts are masked (i.e. the status
register SR is set to zero) and that the execution of the VAMP assembly
will not lead to any non-maskable interrupts.

• Instructions are no longer encoded as bit-vectors. Rather, an abstract
data type encoding valid instructions is introduced. Correctness of in-
struction decoding has then to be shown once and for all.

VAMP Assembly Configuration

The VAMP assembly configuration is of record type Casm with five fields:

pc :: N The program counter.
dpc :: N The delayed program counter, modeling the

delayed branch mechanism.
gpr :: Z list The general purpose register file, which is mod-

eled as a list of integers.
spr :: Z list The special purpose register file.
mm :: N→ Z The main memory, which is a mapping from

memory addresses (naturals) to memory cells
(of type integer). This memory is to be inter-
preted as word-addressable memory of words.

Interpretation of Bit-Strings

In the underlying architecture data and addresses are represented as 32-bit
strings. There are two ways to interpret these bit-strings, either as two’s
complement or as binary numbers.

In VAMP assembly we interpret data fields (memory and registers) as
two’s complement numbers and addresses as binary numbers. Thus, we type
them as integers and naturals, respectively. We can switch between both
interpretations by the two functions i2n and n2i :

i2n :: Z→ N

i2n(i) =

{
i+ 232 if i < 0
i otherwise

n2i :: N→ Z

n2i(n) =

{
n− 232 if n > 231

n otherwise

Since, the program is encoded in the main memory, instructions are also rep-
resented as integers. However, we translate these integers to the abstract data
type instrT . This translation is done by the function to-instr :

to-instr :: Z→ instrT

28 CHAPTER 3. EXTENDING THE LANGUAGE STACK

Not all integers (or corresponding bit-strings on the ISA) decode to meaningful
instructions. Thus, for some instructions, the translation may be undefined,
i.e. return with undef .

Similarly, we can interpret a memory region starting at address st with
length l as a list of instructions by the following function:

to-instr -list :: (N→ Z)× N× N→ instrT list

to-instr -list (m, st, 0) = []
(m, st, l) = (to-instr(m(st)))#(to-instr -list(m, st+ 1, l − 1))

By defining the transition system via a case distinction on the abstract
data type instrT , we no longer have to reason about instruction decoding,
when proving correctness of assembly programs.

Validity of States

Not all VAMP assembly configurations encode meaningful states. For exam-
ple, a register content with a number larger than 231 − 1 has no counterpart
in hardware.

Therefore, we define the following two predicates to restrict the naturals
and integers in the model to the domains of 32-bit binary numbers and 32-bit
two’s complement numbers.

The domain of 32-bit binary numbers and 32-bit two’s complement num-
bers is defined by (cf. Notations):

asm-nat :: N→ bool

asm-nat(n) = n ∈ {0, . . . , 232 − 1}

asm-int :: N→ bool

asm-int(i) = i ∈ {−231, . . . , 231 − 1}

We call a VAMP assembly configuration valid, denoted by the predicate
valid -asm, if the contents of the program counters, the register files and the
memory obey the domain restrictions. Furthermore, the lists representing the
register files must have 32 elements:

valid -asm :: Casm → bool

valid -asm(asm) ≡
asm-nat(asm.pc)

∧ asm-nat(asm.dpc)
∧ (∀ind < 32 . asm-int(asm.gpr!ind))
∧ (∀ind < 32 . asm-int(asm.spr!ind))
∧ (∀ad . asm-int(asm.mm(ad)))
∧ length(asm.gpr) = 32
∧ length(asm.spr) = 32

3.1. VAMP AND DEVICES 29

VAMP Assembly Transitions

The transition system of VAMP assembly is given by the next-step function:

δasm :: Casm → Casm

Given a configuration d it defines the successor state d′ by a case distinction
on the current instruction, that is the instruction to which the current delayed
pc is pointing at:

current-instr :: Casm → instrT

current-instr(asm) ≡ to-instr(asm.mm(asm.dpc÷ 4))

We distinguish five kinds of instructions, whose semantics are described in
the next paragraphs: (i) Arithmetical, logical and shift operations, (ii) mem-
ory operations, (iii) control operations, (iv) access to special purpose registers
and, (v) interrupt related operations.

All instructions, except for control and interrupt, increment the delayed
program counter by four (i.e. pointing to the next instruction) and set the
new value of pc to the old one of the dpc:

inc-pc :: Casm → Casm

inc-pc(asm) ≡ asm[pc := asm.dpc +32 4,
dpc := asm.pc]

In the following, we abbreviate states in which the program counters are in-
cremented by asm inc = inc-pc(asm).

Arithmetic / Logical / Shift Operations The VAMP supports five types
of arithmetic operations: addition and subtraction modulo 32, and the bitwise
operations ∧32, ∨32 and ⊗32. For each operation two instructions are provided:
either the second operand is a register content or it is the immediate constant
of the instruction. Six shift operations are implemented: four logical and
two arithmetic shifts. Moreover, the logical operators =,6=,<,>,≥ and ≤ are
supported.

The table in Figure 3.1 gives the semantics of arithmetic and and shift
instructions (note that we abbreviate asm.gpr!RS2 by RS2). The table in
Figure 3.2 gives the semantics of logical instructions.

Memory Operations The VAMP supports eight different memory access
instructions: five for reading data from memory into the gpr, and three for
storing data from the gpr to the memory. The effect of the instructions differ
in size (words, half-words and bytes) and offset of the data to read/store.

Memory operations have three parameters:

30 CHAPTER 3. EXTENDING THE LANGUAGE STACK

Arithmetic Operations
Instruction ◦ OP2

Iaddi RD RS i +t
32 i

Isubi RD RS i −t32 i
Iandi RD RS i ∧t32 i
Iori RD RS i ∨t32 i
Ixori RD RS i ⊗t32 i
Iadd RD RS RS2 +t

32 RS2
Isub RD RS RS2 −t32 RS2
Iand RD RS RS2 ∧t32 RS2
Ior RD RS RS2 ∨t32 RS2
Ixor RD RS RS2 ⊗t32 RS2

Shift Operations
Instruction ◦ OP2

Isll RD RS1 RS2 <<t,l32 RS2
Isrl RD RS1 RS2 >>t,l32 RS2
Isra RD RS1 RS2 >>t,a32 RS2
Islli RD rs sa <<t,l32 sa

Isrli RD rs sa >>t,l32 sa

Israi RD rs sa >>t,a32 sa

Figure 3.1: Semantics of Arithmetic and Shift Operations: asm ′ =
asm inc [gpr := (asm.gpr [RD := RS ◦OP2])]

Logic Operations I
OP2 = asm.gpr!RS2
Instruction ◦
Iclr RD RS1 RS2 λab.0
Isgr RD RS1 RS2 <
Iseq RD RS1 RS2 =
Isge RD RS1 RS2 ≤
Isls RD RS1 RS2 >
Isne RD RS1 RS2 λab.a 6= b
Isle RD RS1 RS2 ≥
Iset RD RS1 RS2 λab.1

Logic Operations II
OP2 = i

Instruction ◦
Iclri RD RS i λab.0
Isgri RD RS i <
Iseqi RD RS i =
Isgei RD RS i ≤
Islsi RD RS i >
Isnei RD RS i λab.a 6= b
Islei RD RS i ≥
Iseti RD RS i λab.true

Figure 3.2: Semantics of Logical Operations: asm ′ =
asm inc [gpr := (asm.gpr [RD := RS ◦OP2])]

RS1 ∈ N The register from / to which the memory data is stored /
loaded.

RS2 ∈ N The register containing the memory source or destination
address in memory.

i ∈ N Offset of the memory address.

The set of all memory operations are identified by the following two pred-
icates is-store and is-load :

is-store :: Casm × N× N× N→ bool

3.1. VAMP AND DEVICES 31

is-store(asm,RS1 ,RS2 , i) ≡
(∃RS1, RS2, i .

current-instr(asm) ∈ { Ilw RS1 RS2 i, Ilb RS1 RS2 i, Ilh RS1 RS2 i,
Ilbu RS1 RS2 i, Ilhu RS1 RS2 i})

is-load :: Casm × N× N× N→ bool

is-load(asm, RS1, RS2, i) ≡
(∃RS1, RS2, i .

current-instr(asm) ∈ {Isb RS1 RS2 i, Ish RS1 RS2 i, Isw RS1 RS2 i})

The effective address of store / load operations is computed as follows:

ea :: Casm → N

ea(asm) ≡
i2n(asm.gpr!RS2) +32 i2n(i) if is-store(asm, RS2, ?, i)∨

is-load(asm, RS2, ?, i)
undef otherwise

In the remainder of this article, only instructions for reading and writing
complete words will be used. The semantics of these instructions is only
defined if the memory address is well formed, i.e. it has to be in range and
word aligned:

valid -ad :: N→ bool

valid -ad(ad) = ad + 4 < 232 ∧ 4 dvd ad

We get for reading and writing words the following semantics:

current-instr(asm) = Ilw RS1 RS2 i valid -ad(ea(asm))
asm ′ = asm inc [gpr := (asm.gpr[RS1 := asm.mm(ea(asm)÷ 4)])]

current-instr(asm) = Isw RS1 RS2 i valid -ad(ea(asm))
asm ′ = asminc[mm := asm.mm((ea(asm)÷ 4) := asm.gpr!RS1)]

In the following we use the predicates lw(asm) ≡ current-instr(asm) =
Ilw ? ? ? and sw(asm) ≡ current-instr(asm) = Isw ? ? ? to indicate a load
or store word instruction.

Control The VAMP supports six control instructions: two branch opera-
tions and four unconditional jumps. All of them have the same effect on the
delayed program counter: asm ′.dpc = asm.pc. Jumps are either relative or
absolute, and may either save the incremented current pc to a predefined reg-
ister L or not. The effects of the control instructions on the pc and possibly on

32 CHAPTER 3. EXTENDING THE LANGUAGE STACK

Control Operations
Instruction New Program Counter pcn Save Register datan

Ibeqz R i

{
asm.pc +32 i asm.R = 0
asm.pc +32 4 otherwise

asm.gpr!L

Ibnez R i

{
asm.pc +32 i asm.R 6= 0
asm.pc +32 4 otherwise

”

Ij i asm.pc +32 i ”
Ijr R i2n(asm.R) ”
Ijalr R i2n(asm.R) n2i(asm.pc +32 4)
Ijal i asm.pc +32 i ”

Table 3.1: Control instructions

the gpr are summarized by the following formula, where the variables pcn and
datan are defined in Table 3.1 (note that we abbreviate asm.gpr!R by asm.R):

asm ′ = asm[dpc := asm.pc,

pc := pcn,

gpr := asm.gpr[L := datan]]

Move to/from spr The two instructions Imovs2i RD SA and Imovi2s SA RS
copy data between a general purpose register and a special purpose register.
Both instructions can only be executed in system mode. Otherwise no effect
is visible in the assembly model:

current-instr(asm) = Imovs2i RD SA asm.spr!MODE = 1
asm ′ = asm inc [gpr := asm.gpr[RD := asm.spr!(SA)]]

current-instr(asm) = Imovs2i RD SA asm.spr!MODE = 1
asm ′ = asm inc [spr := asm.spr[SA := asm.gpr!(RD)]]

Interrupts The VAMP supports two instructions dealing with interrupt
handling. The first is Itrap, which triggers a trap interrupt, and the second is
Irfe, which is invoked when returning from an interrupt handler. Since neither
interrupt triggering, nor interrupt handling is modeled in VAMP assembly,
also the corresponding instructions should not have any visible effects. Still,
they have to be modeled and they may be part of a valid VAMP assembly
program.

current-instr(asm) = Irfe
asm ′ = asm

current-instr(asm) = Itrap ?
asm ′ = asm

3.1. VAMP AND DEVICES 33

Device

eifi

eifo

mifi

mifo

Proc Ex.Env

Figure 3.3: Interaction of device with processor and external Environment

VAMP Assembly Computations

The function ∆asm denotes a t-step VAMP assembly computation. We have
∆asm(asm, t+ 1) = ∆asm(δasm(asm), t) if t > 0 and asm otherwise.

3.1.4 Integrating Devices

In this section we first introduce our general device model, then we sketch
the device integration into the VAMP gate-level and VAMP ISA model, and
finally present the desired programming model VAMP assembly with devices
in detail.

Modeling a Device

Devices are modeled as finite state transition systems interacting with the
processor and with an external environment. The latter may be used, for
example, to model user interaction or a network.

Communication with the processor is modeled via so called memory inter-
face input, mifi , and output, mifo. The naming is relative to the viewpoint of
the device, i.e. a mifi encodes a request of the processor to the device, and a
mifo the corresponding answer of the device to the processor (see Figure 3.3).

A mifi is of record type MifiT , which has the following four fields:

rd ∈ bool The read flag signals a read request of the processor.
wr ∈ bool The write flag signals a read request of the processor.
ad ∈ N The address encodes the device port from / to which the

processor wants to read / write.
din ∈ N In case of a write request, this field encodes the data (one

word) to be written from the processor to the device. Note,
that (in contrast to assembly) data is interpreted as a bi-
nary number.

We call the element (rd = false,wr = false, ad = 0, din = 0) the idle mifi
and denote it with mifiε. A memory output mifo ∈ MifoT of a device contains
the result of a requested read input from the processor. This output encodes
a word as natural, i.e. MifoT = N. The interface to the external environment
depends on the type of each device.

34 CHAPTER 3. EXTENDING THE LANGUAGE STACK

In the following let X denote a name of a specific kind / type of device
(e.g. X is later on instantiated by a hard disk or a serial interface). Given
the device type X, a device transition system is defined by the following three
components:

SX The state space of the device.
δX :: SX × EifiX ×MifiT →

SX ×MifoT × EifoX
The transition function takes a de-
vice state, an input from the ex-
ternal environment of type EifiX ,
and an input from the processor.
It returns the next state, an out-
put to the processor and an output
to the external environment of type
EifoX .

irX :: SX → bool The interrupt function denotes,
whether the device is currently sig-
naling an interrupt.

In the models considered here a device either consumes an external or a
processor input, never both simultaneously. Hence, in a step either eifi or mifi
is empty, denoted with eifi ε and mifi ε.

Assuming that the state space of different device types is disjoint, we can
define a mapping from device states to the corresponding type.1 For such a
mapping dsty we have:

dsty(s) = X ⇔ s ∈ SX

The set of identifiers of devices connected to the processor is denoted by
D = [0, . . . , 7]. That means, we support up to eight devices. We relate device
identifiers to device type names by the function dty . Let, moreover, the set SD

denote the union on all possible device states, and the sets EifiD and EifoD

denote the union of all possible external input and output types.
So far three devices have been formalized in Isabelle/HOL: the hard disk

[AH08], the serial interface [AHK+07], and an automotive bus controller [Kna08,
Böh07]. The latter has been even formalized at the level of gates, such that a
precise scheduling correctness theorem could be proven [ABK08].

VAMP Gate-level with devices

Devices are mapped into the memory address space, i.e. they can be accessed
by regular load and store word operations (see Figure 3.4). Addresses re-
served to devices can be identified by leading ones at the positions 31 to 15.
Furthermore, each device has its own address domain. Address domains of
different devices are mutually exclusive and are identified by the bits 14, 13

1In Isabelle device types are implemented via an abstract data type, with one constructor
for each type.

3.1. VAMP AND DEVICES 35

Processor

Device

mifo
mifi

ir

Memory

Device

eifi

eifo

eifi

eifo

Figure 3.4: The VAMP, the memory and devices

and 12 of the memory address (for formal definitions, see VAMP assembly
with devices).

At the level of gates the processor and all connected devices are executed in
parallel. Hence, in each cycle, all devices may take a step and consume input
from the external environment. Then, a computation can be defined by the
initial global configuration and an input sequence of the external environment,
which maps cycle numbers to device inputs:

inputT = N→ D→ EifiD

A formal definition of the transition system is omitted and can be found
in [Tve09]. Here, we only sketch two design decisions of the VAMP, which are
crucial for device integration:

• If an instruction is interrupted, the effects of all instructions which are
in the pipeline and are older than the interrupted instruction have to
be rolled back. This, however, is not always possible: Interrupts are
sampled in the write-back stage, whereas a device access becomes al-
ready visible (i.e. modifies the device) in the memory stage and can not
be roll backed. The solution is to stall, i.e. defer the execution of any
device access (as any other memory access) until it becomes the oldest
instruction in the pipe.

• An instruction may interfere with a device twice: once in the memory
stage, in case of a load or store word instruction to or from the device’s

36 CHAPTER 3. EXTENDING THE LANGUAGE STACK

address domain, and once in the write-back stage, if the device triggers
an interrupt which is not masked. Thus, during one instruction travels
the pipe, it may ‘see’ two different device states. Such a construction
could lead to undesired artifacts: An instruction may deactivate an in-
terrupt signal of a device in the memory stage, where a new interrupt
is triggered by the device before the instruction reaches the write-back
stage. The solution is to sample device interrupts already in the memory
stage and to make them visible for the processor in the write-back stage.

VAMP ISA with devices

The instruction set architecture abstracts from cycles to execution of complete
instructions. Unfortunately, there is no fixed mapping from instructions to
the number of cycles needed to execute this instruction on the hardware. For
example, the duration of memory accesses of the same instruction may vary in
order of magnitudes due to different cache content, which is no longer visible in
ISA. Hence, moving to ISA means also a loss of timing information. This lack
of granularity makes it impossible to determine how many steps the device
has taken during the execution of one instruction. We compensate for this
loss by introducing a concurrent model, in which devices and the processor
are executed in an interleaved way.

Configurations of the model VAMP ISA with devices are of record type
Cisad with the following two fields:

proc ∈ Cisa The VAMP ISA configuration of the processor.
devs ∈ D→ SD The configuration of all connected devices.

In the following we refer to such configurations as global ISA configurations.
The transition function of VAMP ISA with devices, denoted by δisad , has

to distinguish whether the processor or a device executes next. Therefore, it
takes the current global configuration and an oracle, called event. The event
equals P in case of a processor step or is a pair (idD , eifi) of device identifier
and environment input in case of a device step. Thus, an event is of type
eventT = {P} ∪ (D× EifiD). The transition function returns the next global
state and an external output:

δisad :: Cisad × eventT → Cisad × EifoD

Devices and the processor are executed in an interleaved way. A model run
is defined by the start configuration and an execution sequence. The latter
returns for a given step number the oracle event input, i.e., it resolves the
non-determinism. It is of type:

SeqT = N→ eventT

3.1. VAMP AND DEVICES 37

Note, that we only consider execution sequences which are well typed, i.e.
where the device type and the input from the environment match:

well -typed(seq) ≡ (∀i.seq(i) 6= P =⇒ snd(seq(i)) ∈ Eifidty(fst(seq(i))))

The function ∆isad is used to model a computation of the overall system.
It takes a global start configuration, an execution sequence and a step number
n as inputs. It returns a pair consisting of the global configuration reached
after applying the transition function δisad for n times and the sequence of
external output generated during this process:

∆isad :: Cisad × SeqT × N→ Cisad × (EifoD list)

A detailed description of the transition functions δisad and ∆isad is omitted
and can be found in [AHK+07]. Instead, we elaborate in the next paragraph
on the counterparts of these functions in the model VAMP assembly with
devices.

VAMP assembly with devices

Configurations of the model VAMP assembly with devices are of record type
Casmd, with the following two fields:

proc ∈ Casm The VAMP assembly configuration of the processor.
devs ∈ D→ SD The configuration of all connected devices.

In the following we refer to such configurations as global assembly configura-
tions.

Each device with identifier idD ∈ D is mapped into the processor’s memory
at address ranges DAidD

⊂ N. Different device address ranges are mutually
exclusive. We denote with DA the union of all device addresses, i.e. DA =⋃

idD∈DDAidD
.

On the bit-level representation, addresses reserved to devices can be iden-
tified by leading ones at the positions 31 to 15. Thus, we have:

device-border =
i≤31∑
i=15

2i = 4294934528

a ∈ DA⇔ a ≥ device-border

Furthermore, on bit-level, the address domains DAidD
of devices are iden-

tified by the bits 14, 13 and 12 of the memory address. The following function
returns for a global assembly configuration either P in case the current instruc-
tion is not a device access, or the index of the device to which the accessed
address belongs:

38 CHAPTER 3. EXTENDING THE LANGUAGE STACK

da :: Casm → {P} ∪D

da(asm) =

(ea(asm) mod 215)÷ 212 if ea(asm) 6= undef

∧ ea(asm) ∈ DA
P otherwise

Similarly, the accessed port is encoded in the bits 2 to 11 of the memory
address. We define the function port as follows:

port :: N→ N

port(a) = (a mod 212)÷ 4

Moreover, we denote the address of the first port of a device idD by the
following function:

D0 :: D→ N

D0(idD) ≡ device-border + 212 · idD

Next, we define the output mifi generated by the processor in some con-
figuration asm as follows:

mifi :: Casm → MifiT

mifi(asm) =
if da(asm) = P then mifiε else
(case current-instr(asm) of

(Ilw RS1 RS2 i) =⇒ (true, false, port(ea(asm)), 0)
(Isw RS1 RS2 i) =⇒ (false, true, port(ea(asm)), i2n(asm.gpr!RS1))

=⇒ mifiε)

Like in the ISA case, the transition system of VAMP assembly with devices,
takes as input the current global configuration asmd = (proc = asm, devs =
ds) and the event ev , which distinguished between a processor / device step
and provides external input for the latter case. It returns the next global
configuration asmd ′ and the output eifo:

δasmd :: Casmd × eventT → Casmd × EifoD

The transition function is defined via the following case distinction:

• A processor-device transition is taken if it is the processor’s turn and
the current instruction accesses a device with index idD . We express
this case formally by:

ev = P ∧ da(asm) = idD

The device takes a step with the transition function corresponding to
its type, and consumes the mifi request generated by the processor and

3.1. VAMP AND DEVICES 39

an empty external input. In case of a read request (i.e. of a load word
operation), the device returns a mifo to the processor, and the processor
configuration is updated by writing this output back to the effective ad-
dress of the current instruction and by incrementing the program coun-
ters. In case of a write request (i.e. a store word operation), only the
program counters are incremented. Formally, the output (asmd ′, eifo)
of the transition is given by:

let
X = dty(idD)
mifi = mifi(asm)
(dx′,mifo, eifo) = δX(ds(idD), eifiε,mifi)
asm ′ = inc-pc(asm)

asm ′′ =

{
asm ′[mm := mm((ea(asm)÷ 4) := mifo)] if mifi .wr

asm ′ otherwise
in

((proc = asm ′′, devs = ds(idD := dx′)), eifo)

• A local processor transition is taken if it is the processor’s turn, and
the current instruction does not access a device. We express this case
formally by:

ev = P ∧ da(asm) = P

The processor configuration is updated by applying the VAMP assembly
transition function to the current processor configuration. The output
to the external environment is empty. Formally, the output (asmd ′, eifo)
of the transition is given by:

((proc = δasm(asm), devs = ds), eifoε)

• An external device transition is taken if the event schedules some device
execution:

ev = (idD , eifi)

Only the configuration of device idD is updated by applying the transi-
tion function corresponding to type of device idD . The input from the
processor is set to be the empty input. Formally, the output (asmd ′, eifo)
of the transition is given by:

let
X = dty(idD)
(dx′,mifo, eifo) = δX(ds(idD), eifi ,mifiε)

in
((proc = asm, devs = ds(idD := dx′)), eifo)

40 CHAPTER 3. EXTENDING THE LANGUAGE STACK

Gate-level run
P

idX

P
idX

idZ

idY

P
idX

Specification run P idX idX idZ P idY P idX

Figure 3.5: Example for the scheduling function sI PD

Note, that regular memory access is now restricted to addresses which are
smaller than the address domain, i.e. we redefine the predicate valid -ad to:

valid -ad(ad) = ad + 4 < device-border ∧ 4 dvd ad

As in VAMP ISA with devices, the processor and devices are executed in an
interleaved way. The function ∆asmd is used to model a computation or run of
the overall system. It takes a global start configuration, an execution sequence
and a step number n as inputs. It returns a pair, the global configuration
reached after applying the transition function for n times and the sequence of
external output generated during this process:

∆asmd :: Casmd × SeqT × N→ Casmd × (EifoD list)

∆asmd (asmd , seq , 0) = (asmd , [])
(asmd , seq , n+ 1) =

let
(asmd ′, eifol) = ∆asmd(asmd , seq , n)
(asmd ′′, eifo) = δasmd(asmd ′, seq(n+ 1))

in
(asmd ′′, eifo#eifol)

3.1.5 Simulation Theorems

From ISA to gate-level

By using a simulation theorem, properties proven in VAMP ISA with devices
can be transfered to VAMP gate-level with devices. Note, that the first model
is non-deterministic, whereas the hardware is not (once the input sequence is
known).

The abstraction relation consists of two parts: processor and device ab-
straction. The first relation maps all programmer visible registers and the
memory to their counterparts in the instruction set architecture. The devices
abstraction is provided as parameter to the theorem (in the simplest case it
is the identity).

3.1. VAMP AND DEVICES 41

The concrete formulation of the theorem and the corresponding proof can
be found in [Tve09]. In short, the theorem claims that for each computation
on gate-level, a VAMP ISA with devices computation exists, which simulates
the first. To resolve the non-determinism in VAMP ISA with devices, we have
to construct for each hardware run a corresponding execution sequence. This
construction is provided by the device scheduling function, which is denoted
by sI PD (cf. Figure 3.1.5). It takes a configuration of the hardware, an input
sequence, and returns an execution sequence:2

sI PD :: Ch × inputT → SeqT

The scheduling function is of great importance, since it encodes all timing
information lost when moving from gate-level to ISA. By that, it also restricts
the domain of execution sequences which we have to consider when proving
correctness of some property over the concurrent model: For translating a
property from VAMP ISA with devices down to the hardware, it suffices to
verify the property only for those execution sequences that may be generated
by the scheduling function. Execution sequences which lay outside the domain
of the scheduling function do also not correspond to any hardware run, and
hence are irrelevant for the correctness of any hardware property.

Surely, reasoning about the scheduling function each time when verifying
a program at ISA would make the whole processor abstraction obsolete. In-
stead, we identify a set of general properties over the range of the scheduling
function, which also serve as restrictions for execution sequences. For exam-
ple, termination of drivers can typically only be shown if processor and devices
are scheduled infinitely often:

proc-live(seq) ≡ live(seq , λev. ev = P)
dev -live(seq) ≡ ∀idD ∈ D. live(seq , λev. ev = (idD , ?))

The set of valid sequences contains all well-typed sequences (cf. Sec-
tion 3.1.4) which comply to both liveness conditions defined above:

SeqV = {seq ∈ SeqT | well -typed(seq) ∧ proc-live(seq) ∧ dev -live(seq)}

Lemma 2 (Liveness of Sequences)

range(sI PD) ⊆ SeqV

The proof is conducted at gate-level hardware. So far, the formal liveness proof
for the VAMP has still to be mechanized in Isabelle/HOL. Liveness of device
steps is assumed as precondition in the hardware correctness theorem [Tsy09]
and has to be discharged for the concrete device implementation.

2The formal definition in [Tve09] differs a bit in the signature, as it takes an additional
cycle number and returns also a corresponding step number.

42 CHAPTER 3. EXTENDING THE LANGUAGE STACK

Correctness of drivers could depend on further device-specific restrictions
of the environment. For example, for the hard disk the environment eventually
signals termination of a read or write operation. Such assumptions are also
formulated in terms of SeqV and proven for the scheduling function.

From Assembly to ISA

By using a simulation theorem, results proven in VAMP assembly with devices
can be transfered to VAMP ISA with devices and subsequently to the gate-
level implementation of the hardware. VAMP assembly with devices may be
used to model the execution of the hardware either in system mode, or in user
mode in case virtualization has been implemented. Each application requires
a different simulation theorem. In the remainder we will only use and therefore
state the theorem in case of system mode.

To establish simulation we first define an abstraction relation between the
global configurations of both models, and then prove a step-by-step simulation
theorem. Note, however, that not all ISA computations can be expressed in
assembly, as some abstractions reduce the expressiveness of the computational
model. Moreover, not all assembly configurations encode valid ISA states.
Thus, we need also to define the set of preconditions under which simulation
is valid. A detailed proof of the transfer theorem is reported in [Tsy09].

Abstraction relation. Global ISA configurations are related to global as-
sembly configurations by the following predicate:

∼isa-asm :: Cisad × Casmd → bool

In short, it is defined as follows:

• Both processor configurations (ISA and assembly) consist of the same
components, but as their types are different we relate them by a type
conversion. The abstraction relation, requires that (i) the program coun-
ters in ISA interpreted as binary numbers must be equal to the assembly
program counters, and, (ii) the memory and register contents in ISA
interpreted as two’s complement numbers are equal to the content of
memory and registers in assembly.3

• Devices are related by equality, since in both models the same device
abstraction is used.

Preconditions for simulation. Not all ISA computations can be simulated
in assembly, and not every assembly state does encode a valid ISA state.

3Some of the special purpose registers are ignored by the abstraction relation, since they
have no visible effect in VAMP assembly.

3.1. VAMP AND DEVICES 43

These two type of restrictions, dynamic properties on a computation and static
conditions on the initial states are both expressed on the level of assembly.

For the initial state we require that its integers and naturals representing
data and addresses are well-typed, i.e. in range, and that the code region does
not overlap with the device domain. While the code is not explicitly marked
in the assembly configuration, we can identify the corresponding region by
the two parameters start-ad , for the start address (in words) of the code in
the memory and prog-len, for the length (in words) of the program. We give
meaning to the parameters, by assuming that during a computation, only
instructions from the corresponding memory region are read. In the following
we abbreviate a code-range by the following function:

code-range(start-ad , prog-len) = [4 · start-ad , . . . , 4 · (start-ad + prog-len)]

We define the initial condition for simulation by:

isa-asm-precond init :: Casm × N× N→ bool

isa-asm-precond init(asm, start-ad , prog-len) =
valid -asm(asm)

∧ 4 · (start-ad + prog-len − 1) < device-border

For the dynamic conditions, we require that during an assembly computa-
tion i) the mode is always set to system mode, ii) the status register remains
zero, i.e. all interrupts stay masked, iii) neither of the instructions Irfe and
Itrap is executed, since neither mode switches nor the interrupt mechanism
is modeled in assembly, iv) instructions are only fetched from the predefined
program range, v) the code range in memory is never written, i.e. no self-
modifying code is permitted, vi) the addresses from which instructions are
fetched are always word aligned, and, vii) word access of devices is ensured.

step-properties :: Casm × N× N→ bool

step-properties(asm, start-ad , prog-len) ==
asm.spr!MODE = 0

∧ asm.spr!SR = 0
∧ current-instr(asm) 6∈ {Itrap ?, Irfe}
∧ asm.dpc ∈ code-range(start-ad , prog-len − 1)
∧ is-store(asm, ?, ?, ?) =⇒ ea(asm) 6∈ code-range(start-ad , prog-len)
∧ 4 dvd asm.dpc
∧ (is-store(asm, ?, ?, ?) ∧ ea(asm) ∈ DA) =⇒ lw(asm) ∨ sw(asm)

We require for VAMP assembly computations that step-properties holds
in each step:

isa-asm-precondpdyn :: Casm × N× N× N→ bool

44 CHAPTER 3. EXTENDING THE LANGUAGE STACK

isa-asm-precondpdyn(asm0, start-ad , prog-len, N) =
(∀n ≤ N . step-properties(∆asm(asm0, n), start-ad , prog-len))

Similarly, we can extend the definition of dynamic preconditions on com-
putations for VAMP assembly with devices:

isa-asm-preconddyn :: Casmd × N× N× SeqT × N→ bool

isa-asm-preconddyn(asmd0, start-ad , prog-len, seq , N) =
∀n ≤ N . step-properties(fst(∆(asmd0, seq , n)).proc, start-ad , prog-len)

Stating the Theorem. An ordinary step-by-step simulation holds between
VAMP ISA and VAMP assembly, where it suffices to prove the theorem only
for valid sequences as defined in the simulation theorem between VAMP ISA
with devices and VAMP gate-level with devices:

Theorem 1 (VAMP assembly to VAMP ISA)

∀seq ∈ SeqV .
isa-asm-precond init(asmd .proc, start-ad , prog-len)

∧ isa-asm-preconddyn(asmd , start-ad , prog-len, seq , N)
∧ isad ∼isa-asm asmd
=⇒ ∆isad (isad , seq , N) ∼isa-asm ∆asmd(asmd , seq , N)

This theorem has benn formally proven by Tsyban [Tsy09]. Thus, again,
for proving properties on VAMP assembly with devices only valid executions
sequences have to be considered.

3.2. VAMP REORDERED 45

3.2 VAMP Reordered

Obviously, when proving correctness of a concrete driver for a specific device,
an interleaved semantics of all devices is cumbersome. Preferably, for the proof
we would like to use a simpler programming model first, e.g., a sequential
model or a model with just a single device, and then generalize the result. In
this section we develop theory for that purpose, on top of the model VAMP
assembly with devices. In the following we refer to this model by calling it
the combined model.

We assume that we have driver code that exclusively controls a certain
device idD ∈ D and only that device. By choosing the combined model as the
programming model, we implicitly assume that all interrupts are masked in
hardware via the special-purpose status register while the driver is running.
In our scenario this restriction is not severe. On the one hand, interrupts of
device idD are assumed to be already delivered to our driver. On the other
hand, interrupts for other devices should be handled by different drivers in
a manner transparent to the driver under verification. Thus, this problem is
orthogonal to the one that we focus on here. Techniques for the verification
of concurrent (assembly) programs apply in this case (cf. [YS04]).

A key observation in our scenario is that some steps in the computation
of the combined model can be swapped without changing the outcome. This
reordering is sound if devices do not influence each other. By swapping steps
repeatedly, an execution of the driver in the combined model can be separated
into steps involving only the driver and the controlled device followed by steps
involving only other devices. Thus, correctness of the driver can be shown in
a model with only the processor and the controlled device. Still, this model
is concurrent. Two further simplifications may be applicable for parts of the
driver execution. First, for phases not involving device access at all properties
can be proven relative to the isolated processor model, only. Second, for
phases in which the device is in a stable state (by which we mean it does not
react to external input) properties can be proven relative to a model without
(external) device steps.

A similar technique can be applied for higher-level models with devices.
For example, in Verisoft the bulk of all software is implemented in C0 (cf.
Section 3.3). Most of this code is verified in a Hoare logic verification envi-
ronment for C0. Integration of concurrent correctness results into traditional
Hoare logic proofs is hardly manageable (concurrent logics have been used for
example in Microsoft’s Verifying C Compiler [CMST09]). It is much more
convenient to show the correctness of high-level code against a sequential
specification in which the driver calls are executed atomically. Because we
use type-safe C0 we cannot allow direct access to device ports, which do not
behave like regular memory. Hence, reordering techniques can be used for a
concurrent C0 semantics with devices, separating C0 steps from device and
driver execution steps. The theory developed here is applied to C0 verification

46 CHAPTER 3. EXTENDING THE LANGUAGE STACK

asmd

asmd1

asmd2

asmd ′δasmd

ev1

ev2

ev2

ev1

Figure 3.6: Swapping Two
Non-Interfering Steps

P idX P idY P P

P idX P P P idY

Pspec idY

Figure 3.7: Reordering and Abstrac-
tion
of an Execution Sequence

in the subsequent section.

3.2.1 A Basic Observation

A basic observation of our overall model is that device and processor steps
not interfering with each other can be swapped. We say that two steps do
not interfere if at least one is not a processor step and if they do not involve
the same device; we call a device involved in a step if it is accessed by the
processor or makes a step itself.

Recall that for a processor configuration asm the function da indicates
whether the processor makes a local step, da(asm) = P , or accesses a specific
device, da(asm) ∈ D. For an event ev , we let the function Da denote the set
of components involved in a step:

Da :: asm × eventT → pow({P} ∪D)

We have P ∈ Da(asm, ev) iff ev = P and idD ∈ Da(asm, ev) iff ev = (idD , ?)
or da(asm) = idD .

Lemma 3 (Non-Interference Observation) For a global VAMP assem-
bly configuration asmd, two events ev1 and ev2 with Da(asmd .proc, ev1) ∩
Da(asmd .proc, ev2) = ∅ can be executed in arbitrary order, as depicted in
Fig. 3.6:

fst(δasmd(fst(δasmd(asmd , ev1), ev2))) = fst(δasmd(fst(δasmd(asmd , ev2), ev1)))

The lemma is proven by a simple expanding of definitions.

Validity of Observation

Lifting this observation to execution sequences is simple: we only have to
ensure that a valid sequence remains valid after swapping. This is true since
we restricted validity only to liveness. However, more complex assumptions
over the environment could link input and output behavior of different devices

3.2. VAMP REORDERED 47

or their relative speed. As mentioned before, these assumptions would be
encoded as properties over the scheduling function sIPD of the simulation
theorem between VAMP ISA with devices and VAMP gate-level with devices.
In this case the invariance of validity has to be proven before applying the
reordering theorem that we present in the next section.

We call the non-interference observation valid over a set of sequences Seq ,
if swapping two non-interfering events at an arbitrary position of a sequence
will again result in a sequence of the same set. Non-interfering events are
defined in accordance with the observation:

�S(ev1, ev2) ≡ (ev1 = (idD1, . . .) ∧ ev2 = (idD2, . . .) =⇒ idD1 6= idD2)

We define the swap operator on sequences as follows:

swap :: SeqT × N→ SeqT

swap(seq , i) = λx. if x = i then seq(i+ 1)
else (if x = i+ 1 then seq(i)

else seq(x))

Next, we define non-interfering permutation equivalence of two sequences,
denoted with ∼S� . It states that two sequences are equal up to swapping at a
single, non-interfering position:

seq ∼S� seq ′ ≡ ∃i.seq(i) �S seq(i+ 1) ∧ swap(seq , i) = seq ′

Now, we can state the notion of observation validity, formulated above, as
follows: We call the non-interference observation valid over a set of execution
sequences, if this set is closed under non-interfering permutations:

valid -ob(Seq) ≡ ∀seq ∈ Seq , seq ′ . seq ∼S� seq ′ =⇒ seq ′ ∈ Seq

Separability

We define the following simple criterion to determine whether the basic ob-
servation is valid over a set of execution sequences. Let π(seq , idD) denote
the projection of a sequence seq to a given device idD , i.e., it returns the
subsequence of external steps of device idD :

π :: SeqT ×D→ SeqT

π(seq , idD) ≡ filter(seq , λev . (∃eifi . ev = (idD , eifi)))

According to Lemma 1 the filter π is well-defined, since we assume liveness of
all devices.

A predicate over execution sequences is called separable if it can be ex-
pressed as a conjunction of predicates over projected execution sequences:

separable(Q) ≡ ∃p0 . . . p7 . ∀seq . Q(seq) = p0(π(seq , 0)) ∧ · · · ∧ p7(π(seq , 7))

48 CHAPTER 3. EXTENDING THE LANGUAGE STACK

Lemma 4 (Separable Valid Sequences) If the set of valid sequences is
separable, then the non-interference observation holds over this set:

separable(λseq . seq ∈ SeqV) =⇒ valid -ob(SeqV)

Proof. We prove the lemma by contradiction. Given a sequence seq ∈
SeqV we claim that a permuted sequence seq ′ ∼S� seq is not in SeqV . From
separability we conclude, that predicates p0 to p7 exist for which we have:
p0(π(seq , 0))∧· · ·∧p7(π(seq , 7)) and ¬(p0(π(seq , 0))∧· · ·∧p7(π(seq , 7))). How-
ever, projections are invariant under the swapping of non-interfering events,
i.e. we have π(seq , i) ≡ π(seq ′, i) and hence a contradiction. q.e.d.

In the following we use the terms set and characteristic function of a set,
interchangeably. It is easy to see that the originally defined set SeqV is sep-
arable. Note that in the formal work we did not apply the general notion
of separability. Rather we proved that the valid observation holds on the
considered set SeqV manually.

3.2.2 Reordering

We study when sequential proofs over a given assembly code can be generalized
to arbitrary computations. In the remainder of this thesis, we abbreviate the
configurations of a processor-local computation by asmt = ∆asm(asm, t) and
the configurations of a computation of the combined system by asmd seq,t =
fst(∆asmd(asmd , seq , t)).

In the simplest case the processor does not access any devices. Since inter-
rupts are masked, processor computations yield the same result in the com-
bined model regardless of device steps. This is expressed by the next lemma,
which also ensures that correctness of a processor invariant Q is independent
of device steps.

Lemma 5 (No Device Access)

(∀t ≤ T . da(asmt) = P ∧Q(asmt)) =⇒
∀seq . (asm0 = asmd seq,0.proc =⇒ ∃T ′ . asmd seq,T ′

.proc = asmT∧
(∀t′ ≤ T ′ . Q(asmd seq,t′ .proc)))

The proof is conducted by induction on t and is based on processor liveness
guaranteed by the set of valid execution sequences.

The stated lemma is useful in two situations. First, it allows to reason
locally about local steps in the execution of a device driver. Second, it is
applicable when reasoning about code of a high-level programming language
without direct device access. In this case, code correctness proofs of the code
in the high-level language can be performed purely sequentially (see Section
3.3.7).

In a more general case the processor accesses only a certain device idD . We
call such parts of the computation pure. This is our assumption for drivers;

3.2. VAMP REORDERED 49

it can usually be shown statically or for local processor computations. Fur-
thermore, we define device configurations to be stable if they do not change
under external transitions. These predicates are defined formally as follows:

pure :: Casmd × SeqT × N×D→ bool

pure(asmd0, seq , T, idD) ≡ ∀t < T . da(asmd seq,t.proc) ∈ {P, idD}

stable :: SD → bool

stable(cX) ≡ ∀eifi . δdsty(cX)(cX , eifi ,mifi ε) = cX

The empty sequence is the schedule where only the processor takes steps.
It is defined as emp(t) = P for all t. In pure computations where the accessed
device is stable, sequential properties proven over the empty sequence can be
generalized to properties over arbitrary sequences.

Lemma 6 (Pure Sequences and Stable Devices)

pure(asmd0, emp, T, idD) ∧ (∀t < T . stable(asmdemp,t.devs(idD)))∧
(∀t′ ≤ T .Q(asmdemp,t′ .proc)) =⇒
(∀seq .∃T ′ . asmdemp,T .proc = asmd seq,T ′

.proc∧
asmdemp,T .devs(idD) = asmd seq,T ′

.devs(idD)∧
(∀t′ ≤ T ′ . Q(asmd seq,t′ .proc)))

The proof is conducted by induction on T and is based on processor and device
liveness guaranteed by the set of valid execution sequences.

Note, that stability of a device is a relatively strong assumption, but suffi-
cient for handling a hard disk driver. For other devices, the notion of stability
should be refined, requiring stability only for those parts of the device that are
accessed by the processor (e.g. the head of a input queue in a serial interface).

In general, of course, driver correctness can not be shown solely using
Lemmas 5 and 6. In the situations not covered by these lemmas, we may still
assume that only the processor or the device idD are being scheduled. We call
such fragments of an execution sequence reduced. Formally, we define

reduced :: SeqT × N× N×D→ bool

reduced(seq , T1, T2, idD) ≡ ∀T1 ≤ t < T2 . seq(t) = P ∨ seq(t) = (idD , ?)

Complementary, a fragment can be free of steps of a device idD or the pro-
cessor:

free :: SeqT × N× N×D→ bool

free(seq , T1, T2, idD) = ∀T1 ≤ t < T2 . seq(t) 6= P ∧ seq(t) 6= (idD , . . .)

If we have a separable valid sequence, the theorem below states that a pure
computation can always be reordered into a reduced part and followed by a
free part. The resulting overall state of both computations are equal.

50 CHAPTER 3. EXTENDING THE LANGUAGE STACK

Theorem 2 (Reordering of Sequences)

pure(asmd0, seq , T, idX) =⇒
(∃seq ′ ∈ SeqV , Tm . reduced(seq ′, 0, Tm, idX)∧

free(seq ′, Tm, T, idX)∧
asmd seq,T = asmd seq ′,T)

Proof. The theorem is proven by induction on T . The induction base is
trivially true. In the induction step (variables of the induction hypothesis are
marked by a superscript h), T = T h+ 1, we have to consider two cases: either
the last step of the computation involves some device with idY 6= idX (i.e. pro-
cessor access to idY or external step of idY), or not. In the first case, we can
infer from the assumption purity that fst(seq(T)) = idY . We instantiate Tm
with the corresponding variable of the induction hypothesis T hm. seq ′ is instan-
tiated with a sequence which is equal up to position T to the one obtained from
the induction hypothesis: λx . if x < T then seqh(x) else seq(x). Using these
instantiations, correctness follows straightforward: from the induction hypoth-
esis we know that asmd seq,T−1 = asmd seq ′,T−1 and since seq(T) = seq ′(T) also
the final configurations are equal.

For the second case, we can infer that only device idX or the proces-
sor may be involved in the last step, i.e. we have Da(asmd seq,T−1, seq(T)) ∈
{{idX }, {P, idX }, {P}}. By applying the induction hypothesis we conclude
that for the execution of T − 1 steps, reordering is correct. Our goal is
to show that the event seq(T) can be shifted to the position T hm + 1 with-
out changing the outcome of the computation. That means, we instanti-
ate Tm with T hm + 1 and seq ′ with λx . if x ≤ T hm then seq ′h(x) else (if x =
T hm + 1 then seq(T) else seq ′h(x− 1)). Since SeqV is separable we can infer by
Lemma 4 that seq ′ ∈ SeqV . The conclusion can now be shown by repeatedly
applying the basic observation. q.e.d.

By generalizing this result, the execution of drivers controlling different
devices can also be separated, enabling modular verification of device drivers.

In Fig. 3.7 on page 46 we show an example of a complete execution of a
driver for some device idX . By applying Theorem 2 we soundly reorder the
execution of any device idY after the termination of the driver (top line to
middle line). The interaction between the driver and the corresponding device
can now be specified by a single atomic state update (middle line to bottom
line).

Similarly, one can state a theorem which describes non-interference in a
pure computation from the viewpoint of a not accessed device. Its computa-
tion can be considered as completely independent.

The function step-nr returns the count of events in which a given device
is involved:

step-nr :: SeqT ×D× N→ N

3.2. VAMP REORDERED 51

step-nr(seq , idX , T) = if T ≤ 1 then 0 else
(if seq(x) = (idX , . . .) then

step-nr(seq , idX , T − 1) + 1
else

step-nr(seq , idX , T − 1))

Using this function, we can state a non-interfering theorem from the not-
involved devices’ point of view as follows:

Theorem 3 (Non-interference of devices)

pure(asmd0, seq , T, idX) =⇒
(∀idY 6= idX .

asmd seq,T .devs(idY) = asmdπ(seq,idY),step-nr(seq,idY ,T).devs(idY))

The proof of this theorem follows the lines of the proof of Theorem 2. Note,
that the conclusion of the theorem is an assumption formalized first for the
page-fault handler correctness theorem [Sta09].

52 CHAPTER 3. EXTENDING THE LANGUAGE STACK

3.3 C0 and Devices

The language C0 was designed as a subset of C which is expressive enough to
allow implementations of all encountered system code in the Verisoft project,
while remaining handy enough for verification. Therefore, we restricted our-
selves to a type-safe fragment of C, without pointer arithmetic. However in
the context of system-code verification we have to deal with portions of inline
assembly code that break the abstraction of structured C0 programs: low-level
hardware intrinsics as processor registers, explicit memory model and devices
become visible.

The language stack of the Verisoft project comprises three flavors of C0
reasoning: Hoare logic, small-step semantics and an intermediate big-step
semantics. Having in mind that devices are executed in parallel with the pro-
cessor, and that computations of the processor may be interrupted, only a
small-step semantics is adequate for verifying drivers and interleaved appli-
cations. However, ultimately, the right level to express overall correctness of
system software, say the kernel, is VAMP ISA with devices; only there all
relevant components, as for example the mode register, become visible.

Still, conducting all the code verification at the level of small step semantics
or even below is not intended. Otherwise, one would abdicate the whole
power of Hoare logic and the corresponding verification condition generator.
The solution is to abstract low-level components by an extended state and to
encapsulate the effects of inline assembly code by so called XCalls, which are
atomic specifications manipulating both the extended state and the original C0
machine. First, by enriching the semantics stack with XCalls, we lift assembly
code and driver semantics into Hoare logic. Then, by proving implementation
correctness of XCalls we transfer results proven in Hoare logic down to VAMP
assembly with devices.

In this section we detail the syntax and semantics of C0 small-step seman-
tics, summarize C0 compiler correctness [Lei08], extend it to be applicable on
VAMP assembly with devices and show how to deal with dynamic restrictions
on the memory consumption. In the subsequent section, we describe how in-
line assembly portions are embedded into C0 code and how this embedding is
extended to device computations. Finally, in the last section of this chapter,
the concept of XCalls is introduced by defining an extended C0 small step
semantics and a corresponding correctness theorem.

3.3.1 Types

Types are either elementary, composed or pointer types. The set of elementary
types is given by Boolean, Int, Unsigned, Char and Null. Composed types are
arrays and structs. An array type is defined by its size and its element type,
e.g. Array(10, Int) denotes the type of integer arrays of length 10. Struct types
are similar to the record types of Isabelle. They are defined by a set of fields,

3.3. C0 AND DEVICES 53

each field consists of a name and a type. Pointer types in C0 are similar
to references in ML, i.e. they are always parametrized over some type. For
example Ptr(Int) denotes the type of pointers to elements of type integer. The
null pointer has the elementary type Null.

Given the set fieldn of field names and a set typen of type names, C0 types
are defined by the following abstract data type:

ty ::= Boolean |
Int |
Unsigned |
Char |
Null |
Ptr of typen |
Array of N× ty |
Struct of (fieldn × ty) list

The set of all used types of a C0 program is given by its type environment,
which is a list containing mappings between type names and types:

tenvT = (typen × ty) list

For each type we define a typesize. Elementary types and pointer types
have size one, whereas the size of arrays and structs are computed recursively:

type-size :: ty → N

type-size (Array(s, T)) = type-size(T) · s
(Struct(fs)) =

∑length(fs)−1
i=0 type-size(snd(fs!i))

(else) = 1

3.3.2 Expressions and Statements

Expressions can be made of literals, i.e. simple values (defined below), vari-
ables, array or structure accesses, expressions with common binary or unary
operators, pointer dereferencing and the address-of operator.

Let the set varn denot possible variable names. Moreover, let sets BOP
and UOP denote the names of binary and unary C0 operators. Then C0
expressions are defined by the following abstract datatype:

expr ::= Lit of sval |
VarAcc of varn |
ArrAcc of expr × expr |
StructAcc of expr × N |
BinOp of BOP× expr × expr |
UnOp of UOP× expr |
AddrOf of expr |
Deref of expr

54 CHAPTER 3. EXTENDING THE LANGUAGE STACK

C0 defines all common imperative statements: Skip, statement composi-
tion, assignments to variables, memory allocation for pointers of a given type,
static function calls and returns from functions, if-then-else statements and
loops. Function calls take as parameters, the name of the variable to which
the result is written, the function name and a list of parameter expressions.

Given a set of function names funn and a set of variable names varn . Then
the set of C0 statements is defined by:

stmt ::= Skip |
Comp of stmt × stmt |
Ass of expr × expr |
PAlloc of expr × typen |
SCall of varn × funn × expr list |
Return of expr |
Ifte of expr × stmt × stmt |
Loop of expr × stmt

For convenience we will abbreviate in the following Comp(s1, s2) by s1; ; s2.
Moreover, sometimes, we abbreviate function calls SCall(x , fn, exps) by x =
fn(exps!0, . . . , exps!n) for n = length(exps)− 1.

3.3.3 Values and Configuration

Value Representation

The C0 small-step semantics has a very explicit memory model with no struc-
tured values. Simple values correspond to the elementary types Boolean, Int,
Unsigned, Char and to pointer values. Since C0 does not allow any pointer
arithmetic, values of pointers are simply identifiers of variables. Variable iden-
tifiers are defined in the next section. In the following we will map elementary
C0 types to corresponding types in Isabelle, i.e. the set of simple values is
given by the abstract data type:

sval ::= BoolV of bool |
IntV of Z |
UnsignedV of N |
CharV of charT |
PtrV of var -id

Values of composed types are flattened and represented by so called content
functions of type contentT = N → sval . For example, an array of integers
containing the two elements 1 and 2 is represented by the content function:

λx . if x = 0 then 1 else
(if x = 1 then 2 else undef)

3.3. C0 AND DEVICES 55

Memory frame

Memory frames are records storing values of variables. They have type mem-frameT
with the following record fields:

vars ∈ (varn × typen) list List of descriptors of variables
stored in the memory frame.

content ∈ contentT Values of all variables flattened and
stored into a single content func-
tion.

The offset of the ith variable denotes the position in the content in which
the first simple value of the variable is stored. Formally we have:

off :: tenvT ×mem-frameT × N→ N

off (tenv ,mf , i) =
i−1∑
k=0

type-size(tenv?tn),

where tn denotes the type name of the kth variable, i.e. tn = snd(mf .vars!k).
We illustrates how values are stored in a memory frame by the following

example. Let x be the variable name of the simple integer array defined above,
and let i be the list index of x in mf .vars. We compute the offset of the variable
x in the memory frame, by:

off x = off (tenv ,mf , i)

Both values of the array are stored as follows in the memory frame mf :

mf .content(off x) = IntV(1)
mf .content(off x + 1) = IntV(2)

Next, we define the size of a memory frame mf as the number of simple
values stored in it:

frame-size :: tenvT ×mem-frameT → N

frame-size(tenv ,mf) = off (tenv ,mf , length(mf .vars))

Parameters

Each C0 machine is parametrized over a type environment and a set of func-
tion declarations, called procedure table. A function declaration is of type
fun-declT and has the following record fields:

56 CHAPTER 3. EXTENDING THE LANGUAGE STACK

params ∈ (varn × typen) list The list of function parameters. A
parameter is given by its name and
type.

locals ∈ (varn × typen) list The list of local variable descrip-
tors. A variable descriptor consists
of a variable name and type.

ret-type ∈ typen The return type of the function.
body ∈ stmt The function body.

A procedure table is a mapping from function names to function declara-
tions, i.e. it is of type proctableT = funn → fun-declT .

We define the size of a function declaration as the sum of the type size of
the parameters and local variables:

fun-size :: tenvT × fun-declT → N

fun-size(tenv , fnd) ≡∑length(fnd .params)−1
i=0 type-size(tenv?(snd(fnd .params! i)))+∑length(fnd .locals)−1
i=0 type-size(tenv?(snd(fnd .locals! i)))

Note, that the frame size is equal to the size of the corresponding function
declaration.

Configuration

The memory configuration of a C0 machine has record type memC0T and
consists of three components:

gm ∈ mem-frameT The global memory.
lms ∈ (mem-frameT × var -id) list The local memory stack. For each

not yet returned function call, it
contains a memory frame and a
variable identifier to which the re-
sult is written.

hm ∈ mem-frameT The heap memory. Note that vari-
ables in the heap are nameless, i.e.
we ignore the name component.

Now, we can define Configurations of C0 machines as records of type Cco

with the following fields:

prog ∈ stmt The current statement to execute.
mf ∈ memC0T The memory configuration.

We call the number of local memory frames in the current memory configu-
ration of a C0 machine recursion depth. The recursion depth is denoted by

3.3. C0 AND DEVICES 57

the function rd(mf) ≡ length(mf .lms). The frame of the currently executed
function call is the top most one, i.e. mf !(rd(mf)− 1).

Sometimes, it is helpful to have the description of the C0 machine as a
whole, i.e. consisting of configuration and parameters. We call such a descrip-
tion monolithic C0 configuration. It has the following record type:

Ccom = (tenv : tenvT , pt : proctableT , conf : Cco)

3.3.4 Variables and Evaluation

Variable Identifiers

A global variable is a variable allocated in the global memory frame. It is
identified solely by a name. A local variable is a variable residing in one of
the local memory frames. It is identified by a name and the number of the
stack frame, in which it is stored. Identifiers of heap variables consists only of
their number in the heap frame.

For variables of structured type, we introduce the notion of subvariables.
A subvariable is either an array element or a structure field. It is identified
by its root variable and either an index or a field name:

var -id ::= GV of varn |
LV of N× varn |
HV of N |
ArrV of var -id × N |
StrV of var -id × fieldn

Examples: GV(vn) is a variable with name vn residing in the global memory,
LV(rd−1, vn) is a local variable with the same name allocated in the top most
frame (if rd denotes the current recursion depth), and the ith variable on the
heap is identified by HV(i).

The predicate is-elementary indicates for a given configuration and a vari-
able identifier whether the latter is defined as subvariable or not. Given a con-
figuration c we denote the set of all valid variable identifiers by valid -vars(c).
For a formal definition of valid -vars we refer to [Lei08].

Evaluation

Variables and expressions evaluate to records of type datasliceT , consisting of
two fields:

type :: typen The type of the value.
content :: N→ sval The content storing the flattened

value.

Note, that the content of a given data slice ds contains relevant information
only for the size of its type, i.e. from position 0 to position type-size(tenv?(ds.type)).

58 CHAPTER 3. EXTENDING THE LANGUAGE STACK

The function vlookup :: Cco × var -id → datasliceT returns for a given C0
state and a variable identifier the corresponding value in form of a data slice.
We outline its definition with the following example: Let x = GV(vn) be a
global variable of type ty , defined in the C0 configuration c. Moreover let
gmc abbreviate access to global memory, i.e. gmc = c.mf.gm. A value lookup
would return a data slice with the following content:

vlookup(c, x).content(i) ={
gmc.content(off (tenv , gm, vn) + i) : i < type-size(ty)
arbitrary otherwise

The function eval :: Cco × expr → datasliceT evaluates C0 expressions to
data slices or to the value undef . Pointers (expressions of type AddrOf)
evaluate to variable identifiers. For variable accesses, it is first determined
whether there is a matching variable definition either in the global, or top
most memory frame. In this case the result is determined by the function
vlookup, otherwise undef is returned. Moreover, we use an update function
updmem :: Cco × varn × datasliceT which updates the value of a variable in
the given memory. The following relation between evaluation and updates
should hold: eval(updmem(c, vn, ds),VarAcc(vn)) = ds. Formal definitions of
expression evaluation and variable update can be found in [Lei08].

Note, that equality of the values of two expressions is not given by equality
on the result of evaluation, since not each position in the content of a data
slice contains relevant data (the relevant positions are determined by the size
of the value type).

3.3.5 Small Step Semantics

The small-step semantics of C0 is defined by the transition function:

δc0 :: Cco × tenvT × proctableT → (Cco option)

As input it takes a description of the C0 machine, consisting of the configu-
ration, the type environment and the procedure table. It returns either ⊥, in
case the computation got stuck due to an error, or in the successful case it
returns a new C0 configuration. Computations can for example get stuck due
to the evaluation of illegal expressions.4

The execution of i many consecutive C0 transitions is defined by the func-
tion:

∆c0 :: Cco × tenvT × proctableT × N→ (Cco option)
4Indeed the transition function also requires an additional predicate over the heap mem-

ory, which indicates whether all available heap space is consumed so far, or not. Due to
garbage collection, this predicate is not fixed at compile time. For simplicity, in the follow-
ing, we ignore garbage collection and hence omit the new parameter.

3.3. C0 AND DEVICES 59

∆c0 (c, tenv , pt , 0) = bcc

(c, tenv , pt , i+ 1) =

{
∆c0 (c′, tenv , pt , i) : δc0 (c, tenv , pt) = bc′c
⊥ otherwise

In the following we abbreviate ∆c0 (c, tenv , pt , n) by δc0 n(c, tenv , pt).
The transition function δc0 is recursively defined on the structure of the

program. In the remainder of this work our main interest focuses on the
execution of function calls, since they are later on used to encapsulate the
assembly driver. Therefore, in the next paragraphs, we describe the semantics
of composed statements, function calls and function returns.

Statement Composition

Let the program rest be a statement composition, i.e. c.prog = s1; ; s2. If the
first statement is Skip, it is simply deleted and the memory configuration stays
unchanged. Thus, in case of s1 = Skip, we have c′ = (prog = s2,mf = c.mf).

Otherwise, the first statement is recursively executed. If this execution is
stuck, we return ⊥. If not, we take the result of the recursive call and delete
the first statement:

c′ = the(δ(c[prog := s1], tenv , pt))[prog := s2]

Function Call

The semantics of a function is in a nutshell as follows: a new stack frame
is created, the parameters are evaluated and copied to this frame and the
function call is substituted in the program rest by the body of the called
function. It follows a detailed description.

Let the program rest be a function call, i.e. c.prog = SCall(vn, fn, exps).
Furthermore, let fd fn denote the procedure table entry corresponding to the
given function name, x the identifier of the variable corresponding to vn, and
ds!i the result of the evaluation of the ith parameter:

fd fn = pt(fn)

x =

LV(rd(c.mf)− 1, vn) : LV(rd(c.mf)− 1, vn) ∈ valid -vars(c)
GV(vn) : GV(vn) ∈ valid -vars(c)
undef otherwise

ds!i = eval(c, exps!i)

The transition is non stuck if and only if: (i) A corresponding procedure table
entry exists, (ii) the return variable is valid, i.e. it is either a global variable
or a variable of the top most local memory frame, (iii) all parameters evaluate
to some defined value. Formally, these assumptions are given by:

fd fn 6= undef ∧ x 6= undef ∧ ds!i 6= undef

60 CHAPTER 3. EXTENDING THE LANGUAGE STACK

If one of the assumption is violated, the transition returns with ⊥. Otherwise,
a new frame is created according to the declaration of the function in the
procedure table:

• The list of variables is defined as concatenation of parameters and local
variables defined in the corresponding function declaration:

frm fn.vars = fd fn.params@fd fn.locals

• The content of the new frame is defined as concatenation of the contents
of all parameters:

∀i < length(fd fn.params).
(∀k < off (tenv , frm fn, i+ 1).

off (tenv , frm fn, i) ≤ k
=⇒ frm fn.content(k) = (ds!i).content(k − off (tenv , frm fn, i)))

Finally, the new configuration c′ results in:

c′ = (prog = fd fn.body,
mf = c.mf[lms := (frm fn, x)#c.mf.lms])

Function Return

In a nutshell, the return statement is executed as follows: (i) The new program
rest is set to Skip, (ii) the top most frame is deleted, and (iii) the result
variable is updated with the evaluated return expression. It follows a detailed
description.

Let the program rest denote a return from a function call, i.e. c.prog =
Return(exp). Furthermore, let var ret denote the identifier of the variable stored
in the top most local stack frame and dsret be the result of the evaluation of
the given expression to return:

var ret = snd(c.mf.lms!(rd(c.mf)− 1))
dsret = eval(c, exp)

The transition is non stuck if and only if: (i) The given expression evaluates
to a valid value, (ii) the top most frame stores a valid identifier of the variable
for storing the return value, i.e. it is either globally defined or in the top most
frame. Formally these assumptions are given by:

dsret 6= undef
∧ var ret ∈ valid -vars(c)
∧ (∃vn . var ret = LV(rd(c.mf)− 1, vn) ∨ var ret = GV(vn))

If one of the assumption is violated, the transition returns with ⊥. Otherwise,
the next configuration is computed as follows:

c′ = updmem((prog = Skip,
mf = c.mf[lms := tl(c.mf.lms)]), var ret, dsret)

3.3. C0 AND DEVICES 61

3.3.6 Useful Properties

In this section we introduce a series of useful properties over C0 programs.

Flattening the Program Rest

The recursive definition of statement composition leads to a tree structure of
the code. This becomes extremely cumbersome when arguing about statement
equivalence. Consider for example the two statements (Skip; ; Skip); ; Skip and
Skip; ; (Skip; ; Skip). Intuitively, both are equivalent, even though they are
syntactically different.

We define the function s2l which flattens the code by simply generating a
list of statements:

s2l :: stmt → stmt list

s2l (s1; ; s2) = s2l(s1)@s2l(s2)
(s) = [s]

Note that s2l does not define semantical equivalence of statements (i.e. equiv-
alence under execution). Such a definition would require to analyze not only
the top-level composition structure of the code, but even to flatten the code
within all sub statements.

Using the flattening function, we can define the head of a statement s
simply by hd(s2l(s)). The following lemma ensures equivalence of execution
under the same head of the program rest:

Lemma 7 (Program Header Equivalence) Let c1 and c2 be two C0 con-
figurations with the same memory configuration and the same head of the
program rest. Transitions of both configurations will lead again to the same
memory configuration.

hd(s2l(c1.prog)) = hd(s2l(c2.prog))
∧ c1.mf = c2.mf
∧ δc0 (c1, tenv, pt) = bc′1 c
=⇒ (∃c′2 . δc0 (c2, tenv, pt) = bc′2 c
∧ c′2.mf = c′1.mf)

This lemma is proven by structural induction on the program rest.

Dynamic Properties of the Code

Often, we need assumptions which have to hold for the head of the program
rest in each step of the execution. Such assumptions may for example require
a program never to allocate memory or not to contain nested function calls.
Fortunately, we do not need to discharge such conditions dynamically, i.e. at
each step of a computation. Rather, a statical analysis of the procedure table
and the initial program rest suffices.

62 CHAPTER 3. EXTENDING THE LANGUAGE STACK

For that, we first recursively define the notion of validity of a predicate
over a statement as follows:

valid -prop :: stmt × (stmt → bool)→ bool

valid -prop (Skip, Q) = Q(Skip)
(s1; ; s2, Q) = valid -prop(s1, Q) ∧ valid -prop(s2, Q)
(Ifte(e, s1, s2), Q) = Q(Ifte(e, s1, s2)) ∧ valid -prop(s1, Q) ∧

valid -prop(s2, Q)
(Loop(e, s), Q) = Q(Loop(e, s)) ∧ valid -prop(s,Q)
(else, Q) = Q(else)

Once we have proven a property to hold for a statement, we can also infer
this property for the head of the statement by the following lemma:

Lemma 8 (Valid Property on Program Head) Properties which are valid
for a statement, are also valid for the head of the statement.

valid -prop(s,Q) =⇒ Q(hd(s2l(s)))

Next, we extend the valid property predicate to range over all bodies of
functions declared in a given procedure table:

valid -prop-pt :: proctableT × (stmt → bool)→ bool

valid -prop-pt(pt , Q) = ∀fd ∈ range(pt). valid -prop(fd .body, Q)

Now, the next lemma ensures that a property Q is valid over the program
rest during the whole execution, if Q was valid over the initial program rest
and over the procedure table:

Lemma 9 (Valid Property Invariant) Given a non stuck computation
δiC0 (c, tenv , pt) = bc′c, then the following holds:

valid -prop-pt(pt , Q) ∧ valid -prop(c.prog, Q) =⇒ valid -prop(c′.prog, Q)

This lemma is proven by structural induction on the program rest.

Dynamic Properties on parts of the code

Lemma 9 is too restrictive: It requires all function bodies to fulfill the de-
manded property. However, it would suffice only to consider the bodies of
those functions which are (possibly) called in the given statement. This ap-
plies, for example, if we want to prove that during the execution of a given
function call no new memory is allocated, whereas other functions of the pro-
gram may allocate new memory.

For stating such a stronger lemma, we need to collect all functions that are
possibly called during the execution of a given statement. First we define the

3.3. C0 AND DEVICES 63

function top-scalls, which returns for a given statement the set of the function
names, which appear on the top-level structure of the program rest. Thus,
nested calls are ignored.

top-scalls :: stmt → (funn set)

top-scalls (s1; ; s2) = top-scalls(s1) ∪ top-scalls(s2)
(Ifte(e, s1, s2)) = top-scalls(s1) ∪ top-scalls(s2)
(Loop(e, s)) = top-scalls(s)
(SCall(vn, fn, exps)) = {fn}
(else) = {}

Using top-scalls we can inductively define the set SCalls. Parametrized
over a procedure table and a set of names of root functions, it contains the
names of all functions appearing — either at the top-level or nested some-
where deeper — in the body of one of the root functions:

SCalls :: proctableT × (funn set)→ (funn set)

fn ∈ root
fn ∈ SCalls(pt , root)

fn ′ ∈ SCalls(pt , root) pt(fn ′) 6= undef fn ∈ top-scalls(pt(fn ′).body)
fn ∈ SCalls(pt , root)

Our first goal is to prove that the set of function names appearing in the
program rest is monotonically decreasing in each transition. We start with a
simple observation: SCalls is monotone on its second argument.

Lemma 10 (SCalls Monotonicity)

X ⊆ Y =⇒ SCalls(pt , X) ⊆ SCalls(pt , Y)

Moreover the application of SCalls always returns a fixpoint:

Lemma 11 (SCalls Fixpoint)

SCalls(pt ,SCalls(pt , X)) ⊆ SCalls(pt , X)

Next we show that the set of top-level functions of a program rest gets
smaller in each transition.

Lemma 12 (Monotonicity of top-scalls on transitions) Given a non stuck
computation δc0 (c, tenv , pt) = bc′c, then the following holds:

top-scalls(c′.prog) ⊆ SCalls(pt , top-scalls(c.prog))

This lemma is proven by structural induction on the program rest.
Now we can prove our goal from above: the set of the function called in

the program rest decreases each step.

64 CHAPTER 3. EXTENDING THE LANGUAGE STACK

Lemma 13 (Monotonicity of SCalls on Transitions) Given a non stuck
computation δc0 (c, tenv , pt) = bc′c, then the following holds:

SCalls(pt , top-scalls(c′.prog)) ⊆ SCalls(pt , top-scalls(c.prog))

This lemma is proven by a simple application of Lemma 12, Lemma 11 and
Lemma 10.

Using the last lemma we can prove invariants of the code as follows: we
show that the invariant holds on the program rest and on the bodies of all
functions appearing in the program rest.

We abbreviate these assumption by the following predicate:

valid -propcode(prog , pt , Q) ≡
(∀fn ∈ SCalls(pt , top-scalls(prog)).

pt(fn) 6= undef =⇒ valid -prop((pt(fn)).body,Q))
∧ valid -prop(prog , Q)

The lemma now reads as follows:

Lemma 14 (Valid Property Invariant 2) Given a non stuck computation
δiC0 (c, tenv , pt) = bc′c, then the following holds:

valid -propcode(c.prog, pt , Q) =⇒ valid -prop(c′.prog, Q)

This lemma is proven by induction on i. We prove the induction step by
structural induction on the program rest c.prog. Then we discharge the first
assumption of the induction hypothesis by applying Lemma 13.

Note, that the definitions SCalls and top-scalls have been originally intro-
duced by N. Schirmer, where the stated properties have been proven by the
author of this thesis.

3.3.7 Compiler Correctness

The compiler correctness theorem relates C0 computations to VAMP assembly
computations of the compiled code. In this section we state the theorem and
extend it to VAMP assembly with devices computations.

First, we outline the memory layout of the compiled code on the target
machine, i.e. we show how the code, the stack and the heap are allocated. In
the C0 small-step semantics, no space requirements for storing the stack are
considered. Naturally, things are different on the target machine, which is
restricted on free space. Hence, compiler correctness can only be shown under
certain memory constraints, which are detailed subsequently. Fortunately,
these restrictions may be stated (almost) completely on the level of C0 without
resorting to the compilation. Next, we sketch a simulation relation which
relates the C0 program, variable values, current statement and pointers to a
corresponding assembly state. Then compiler correctness is stated. For the

3.3. C0 AND DEVICES 65

Memory - Asm

code

free heap
max-address

gm

lms(0)

lms(rd-1)...

prog

heap top
asm.gpr[toph] used heap

free stack area

...

code-base

local-sz

fram
e-size

heap-base

top frame
asm.gpr[toplm]

stack-start
asm.gpr[sbase]

stack frame rd - 1

global variables

stack frame 0

to-target(...)

frame header

h
ea

p-size

frame header

hm

fun-size

sta
ck-size

cod
e-size

Memory - C0

Figure 3.8: C0 memory model and Memory layout on target machine

extension to devices, we prove that the compiled code never accesses devices
and that devices do not interfere with compiler correctness. Essentially, the
extended compiler correctness theorem enables us to generalize any property
proven in the ordinary C0 semantics to arbitrary execution sequences on the
target machine with devices.

Memory Layout of Compilation

We first outline the memory layout of compiled programs (cf. Figure 3.8). In
short there are three memory regions allocated: (i) A code region, consisting
of the compiled code, (ii) the stack, in which each local memory frame is stored
and (iii) the heap. For each local memory frame the stack stores the content of
its C0 counterpart and additionally a frame header with the address to which
the result is written back and the return address of the call in the code.

Parameters of the compiler correctness theorem related to memory allo-
cation are the start address of the code, denoted by code-base and the start
address of the heap, denoted by heap-base. The addresses of the stack start,
of the current top element of the heap and of the top most frame are stored
at registers with the addresses sbase, toph and toplm.

On Memory Consumption

The goal is to specify the restrictions on memory consumption for the target
machine, i.e. VAMP assembly, at the level of C0.

The start address of the stack in the memory is calculated by the code-base
and the code size. The code size depends on the procedure table, the type

66 CHAPTER 3. EXTENDING THE LANGUAGE STACK

environment and the types of the global variables defined by the global mem-
ory frame. Where the necessity of the first two parameters is obvious, the
latter has a more complicated reason: the code generated for comparing un-
signed and signed integer values differ (the first is done by a single hardware
instruction whereas for the second a small assembly program is generated). A
detailed description of code-size can be found in [Lei08].

stack -start(tenv , pt , gms) = code-base + code-size(tenv , pt , gm)

To define the size of the stack, we first have to define the memory consump-
tion of a single function frame on the stack. We already introduced the notion
of function size and frame size in the context of C0 function declarations (cf.
Section 3.3.3). These definitions differ from their counterpart on the target
machine only by the size of a constant frame header FHD. We define the func-
tion to-target to convert between the size in C0 and the corresponding memory
consumption in words on the target machine by to-target(s) = s+ FHD Note,
that this definition is correct, since the C0 compiler uses a complete word to
store a single boolean value or character.

The stack size computes as the sum of the size of the local memory frames
and the global memory frame.

The size of all local memory frames is computed by:

local -sz :: (mem-frameT × var -id) list → N

local -sz (lms) ≡∑length(lms)−1
i=0 to-target(frame-size(tenv , lms!i))

The size of the stack is computed by:

stack -size :: tenvT → Cco → N

stack -size(tenv , c) ≡
to-target(frame-size(tenv , c.mf.gm))
+local -sz (c.mf.lms)

Note, that after a function call, the stack grows by the size of the declara-
tion of the invoked function:

Lemma 15 (Increase of stack size) Given a non stuck computation
δc0 (c, tenv , pt) = bc′c, then the following holds:

hd(s2l(c.prog)) = SCall(vn, fn, pl)
=⇒ stack -size(tenv , c′) =

stack -size(tenv , c) + to-target(fun-size(tenv , pt(fn)))

The space in which the stack is permitted to grow is restricted by the
compiler parameter heap-base, denoting the start address of the heap. The

3.3. C0 AND DEVICES 67

predicate frames-in-memory indicates for a current configuration whether the
stack reached this barrier or not:

frames-in-memory(c, tenv , pt) =
stack -start(tenv , c.mf.gm) + stack -size(tenv , c) ≤ heap-base

Similarly, the heap is restricted in size by the maximum address max -address
which can be allocated for the C0 machine. Note, that max -address is a pa-
rameter of the compiler correctness theorem stated above. Given this maxi-
mum address and the current size of the heap, heap-size(c, tenv), the predicate
sufficient-heap indicates whether the heap reached that barrier or not:

sufficient-heap(c, tenv ,max -address) =
heap-base + heap-size(c, tenv) < max -address

Now we can specify for a given C0 configuration whether its compilation
fits the space requirements imposed by the target machine:

sufficient-memory(tenv , pt , c,max -address) ≡
frames-in-memory(c, tenv , pt)

∧ sufficient-heap(c, tenv ,max -address)

Simulation Relation

Consistency between C0 and assembly configurations is defined by means of
a simulation relation, which is parametrized over an allocation function. The
allocation function maps variable identifiers to their allocated base addresses
on the VAMP assembly memory: allocT = var -id → N.

During execution the allocation function may change due to

• the execution of an PAlloc statement,

• function calls and returns changing the frame stack,

• garbage collection changing the allocated base address of variables on
the heap.

Note that in case no garbage collection is running, the allocation function can
be computed from the code-base and the current configuration.

The simulation relation consis relates the description of a C0 machine —
consisting of the type environment, the procedure table and the current con-
figuration — via an allocation function to a VAMP assembly configuration:

consis :: allocT × tenvT × proctableT × Cco × Casm → bool

In the following we only sketch its definition (for a formal description see
[Lei08]). The predicate consis(alloc, tenv , pt , c, asm) holds, if the following
five conditions are satisfied:

68 CHAPTER 3. EXTENDING THE LANGUAGE STACK

• Value consistency. Value consistency is fulfilled if each elementary
variable x in c has the same value as the one stored in the physical
memory of the assembly state.

• Pointer Consistency. Pointer consistency establishes a subgraph iso-
morphism between the reachable portions of the heap of the C0 and
the assembly machine. Let variable x evaluate to some pointer, i.e. the
following holds vlookup(c.mf, x).content(0) = PtrV(y). We require that
the value stored at the allocated base address of x is the allocated base
address of y.

• Control Consistency. Control consistency relates the program coun-
ters to the current program rest. It requires the dpc to point to the
compiled code of the head statement of the program rest.

• Code Consistency. For code consistency we require that the compiled
C0 program always stays unchanged in the memory of the VAMP assem-
bly machine. The start address of the code is denoted by the compiler
parameter code-base.

• Stack Consistency. This property requires that the stack frame being
pointed to in register toplm is consistent with the top most frame in the
local memory of the C0 machine. Similar assumptions are made also on
the address stored in toph.

Compiler Correctness Theorem

Before stating the simulation theorem, we describe the important conditions:

• Validity of assembly configuration. Compiler correctness is only ap-
plicable for valid assembly start configurations. Validity of assembly
configurations is subsumed by the predicate isa-asm-precond init.

• Validity of C0 configuration. Compiler correctness is only applicable for
valid configurations, denoted by the following predicate over C0 machine
descriptions:

valid -C0 :: tenvT × proctableT × Cco → bool

For validity we require among others, that: (i) the code is well-formed,
e.g. only declared functions are invoked; the last statement of a function
body is a return statement, etc., (ii) the memory is well-typed, e.g. the
values of all elementary values in the memory contents are in range;
for integers and naturals in range is defined by the already introduced
predicates asm-int and asm-nat .

3.3. C0 AND DEVICES 69

• Restrictions on Memory Consumption. Another important condition
concerns space: compiler correctness only holds in case enough memory
is available on the target machine. The notion of enough memory has
been defined in the previous section by the predicate sufficient-memory
which has to hold in each step of the C0 computation.

• Preconditions of ISA-asm transfer. The assembly model is only an ab-
straction (and simplification) of an underlying VAMP ISA. For trans-
lating computations from VAMP assembly with devices to VAMP ISA
with devices via Theorem 1, we need to discharge a series of assump-
tions on the initial state and assumptions on each step of the execution.
These are given by the already defined predicates isa-asm-precond init

and isa-asm-precondpdyn (cf. Section 3.1.5).

The correctness theorem is formulated as an N step to T step simulation
between C0 and the corresponding VAMP assembly machine:

Theorem 4 (Compiler Correctness)

consis(alloc, tenv , pt , c, asm)
∧ valid -c0 (tenv , pt , c)
∧ isa-asm-precond init(asm, code-base, code-size(tenv , pt , c.mf.gm))
∧ (∀i < N. sufficient-memory(tenv , pt , the(δiC0 (c, tenv , pt)),max -address))
∧ δNC0 (c, tenv , pt) = bc′c
=⇒ (∃T, alloc′.

consis(alloc′, tenv , pt , c′, asmT) ∧
valid -c0 (tenv , pt , c′) ∧
isa-asm-precond init(asmT , code-base, code-size(tenv , pt , c.mf.gm)) ∧
isa-asm-precondpdyn(asm, code-base, code-size(tenv , pt , c.mf.gm), N) ∧
asmT .spr = asm.spr)

This theorem has been formally proven by Leinenbach [Lei08].

Extension to Devices

First, we show that all variables are stored on the consistent target machine
within the range specified by the sufficient-memory predicate:

Lemma 16 (Variable Allocation in Range)

consis(alloc, tenv , pt , c, d) ∧
sufficient-memory(tenv , pt , c,max -address) =⇒
∀x ∈ valid -vars(c). alloc(x) < max -address

Assuming that the heap memory does not overlap with the memory region
which is mapped to device ports, the next Lemma claims that the compiled
code never accesses devices.

70 CHAPTER 3. EXTENDING THE LANGUAGE STACK

Lemma 17 (Compiled Code does not Access Devices)

consis(alloc, tenv , pt , c, asm)
∧ max -address < device-border
∧ valid -c0 (tenv , pt , c)
∧ isa-asm-precond init(asm, code-base, code-size(tenv , pt , c.mf.gm))
∧ (∀i < N. sufficient-memory(tenv , pt , the(δiC0 (c, tenv , pt)),max -address))
∧ δNC0 (c, tenv , pt) = bc′c
=⇒ (∃T, alloc′.

consis(alloc′, tenv , pt , c′, asmT) ∧
(∀t < T.da(asmt) = P))

The lemma is proven by induction on the program rest of c. The only relevant
cases are accesses to variables which map to memory accesses on the target
machine. By the definition of sufficient-memory we conclude that all mem-
ory frames are allocated within max -address and Lemma 16 ensures that all
variable accesses do not overlap with device memory.

Now, we can extend compiler correctness to the VAMP assembly with
devices. In short we want to ensure that for all possible execution sequences,
devices do not interfere with the compiled code. Additionally to the conditions
of the compiler correctness we only require that the space needed for executing
the compiled machine does not overlap with the memory domain of devices.
Note, that we also claim that the compiled code does not interfere with the
computations of devices.

Theorem 5 (Extended Compiler Correctness)

consis(alloc, tenv , pt , c, asmd .proc)
∧ max -address < device-border
∧ valid -c0 (tenv , pt , c)
∧ isa-asm-precond init(asmd .proc, code-base, code-size(tenv , pt , c.mf.gm))
∧ (∀i < N. sufficient-memory(tenv , pt , the(δiC0 (c, tenv , pt)),max -address))
∧ δNC0 (c, tenv , pt) = bc′c
=⇒ (∀ seq ∈ SeqV .∃T, alloc′.

consis(alloc′, tenv , pt , c′, fst(asmd seq,T).proc) ∧
valid -c0 (tenv , pt , c′) ∧
isa-asm-precond init(fst(asmd seq,T).proc, code-base,

code-size(tenv , pt , c.mf.gm)) ∧
isa-asm-preconddyn(asmd , code-base,

code-size(tenv , pt , c.mf.gm), N) ∧
fst(asmd seq,T).proc.spr = asmd .proc.spr ∧
(∀idX ∈ D .

asmd seq,T .devs(idX) = asmdπ(seq,idX),step-nr(seq,idX ,T).devs(idX)))

By Lemma 17 we can deduce processor locality of the compiled code. Then we
apply Lemma 5 of the reordering theory to lift correctness from processor local

3.3. C0 AND DEVICES 71

computations to arbitrary ones. The last conjunct, claiming non-interference
to device computations, is discharged by an application of Theorem 3.

3.3.8 Estimating Memory Consumption

Any code verification effort claiming the label pervasive has to deal with the
concrete memory consumption of the given program and with memory re-
strictions of the target machine. C0 compiler correctness, for example, is only
applicable if in each step sufficient heap and stack memory is granted for the
assembly machine.

However, almost always, such assumptions are silently ignored because
they are not visible in the semantics of the given high-level language. As
in the C0 small-step semantics, those models assume some infinite memory.
Memory restrictions emerge not until results are propagated down to lower-
levels (as for example to assembly or the instruction set architecture).

Even though not required at the level of programming language semantics,
reasoning about memory restrictions should utilize abstractions provided by
the high-level C0 semantics, as done in Section 3.3.7.

In this section we develop a small theory on how to discharge assumptions
on memory restrictions. We start with the simplest and most coarse estima-
tion of the heap consumption, assuming the absence of garbage collection.
Next, dealing with the stack memory, we propose two different strategies for
estimating an upper bound of the consumption:

• Dynamically. By having an upper bound of the recursion depth, we
can estimate the overall stack consumption of the machine. This upper
bound can be determined by a simple extension of traditional program-
ming logic. In the following we do not elaborate on this approach any
further.

• Statically. An upper bound of the stack size of functions with no recur-
sive calls can be determined by a statical analysis of the function body
(as defined by A. Tsyban). In this section we present this approach and
the corresponding soundness arguments.

Estimating Heap Consumption

If no garbage collection is running the heap consumption of a C0 program will
steadily increase. The reason is simple: C0 offers only a construct to allocate
new memory on the heap, but not to set memory free again.

Lemma 18 (Monotonicity of Heap Consumption in C0) Given a non
stuck computation δiC0 (c, tenv , pt) = bc′c, then the following holds:

heap-size(c, tenv) ≤ heap-size(c′, tenv)

72 CHAPTER 3. EXTENDING THE LANGUAGE STACK

f1 f2 f3

f3

f3

f1

Figure 3.9: Invocation tree of a statement – lines: statements; circles: func-
tion calls

This lemma is proven by natural induction on i. The induction step follows
by structural induction on the program rest.

Thus, in the compiler correctness theorem (without garbage collection) it
suffices to claim the sufficient-heap predicate only for the final configuration.

Estimating stack consumption statically

In short, this approach determines the deepest (and most stack consuming)
path in the invocation tree of a given function. In an invocation tree nodes
are annotated with function names and the children of a node are given by the
names of the top-level functions invoked in the parent’s body (see Figure 3.9).
This tree is finite, if none of the invoked functions is recursive (this includes
also indirect recursion). The cost of a path in that tree is the sum of frame
sizes of all functions appearing on that path.

Our goal is to prove that the cost of the most costly path is an upper
bound for the stack consumption during the execution of the root function.
Even though this claim seems to be reasonably intuitive, its proof turns out
to be quite tricky.

Given a procedure table pt and a function name fn we inductively define
the set of valid upper bounds for all costs of paths rooted in fn by:

ub-costs :: tenvT × proctableT × funn → (N set)

(∀fn ′ ∈ top-scalls(pt(fn).body).
(∃sz′. sz ′ ∈ ub-costs(tenv , pt , fn ′) ∧

sz′ + to-target(fun-size(tenv , pt(fn))) ≤ sz))
pt(fn) 6= undef

sz ∈ ub-costs(tenv , pt , fn)

Note, that this definition was originally introduced by A. Tsyban and subse-
quently adapted by the author. Example: Consider Figure 3.9. Let fs1, fs2

and fs3 denote the frame size of the respective functions. Then we can infer

3.3. C0 AND DEVICES 73

(fs1 + fs3 + fs2) ∈ ub-costs(tenv , pt , f2) as follows:

top-scalls(pt , f3) = {}
fs3 ∈ ub-costs(tenv , pt , f3)

top-scalls(pt , f1) = {f3}

(fs1 + fs3) ∈ ub-costs(tenv , pt , f1)
top-scalls(pt , f2) = {f1, f3}

(fs2 + fs1 + fs3) ∈ ub-costs(tenv , pt , f2)

Note that the definition is sensitive to recursion, i.e. if either fn or one
of the nested functions appearing in the code of fn is recursive, then the
corresponding set of upper bounds is empty: ub-stack(tenv , pt , fn) = {}.

The predicate valid -ub-costs yields whether a given upper bound holds for
a set of functions:

valid -ub-costs :: tenvT × proctableT × stmt × N→ bool

valid -ub-costs(tenv , pt ,F , ub) ≡ ∀fn ∈ F. ub ∈ ub-costs(tenv , pt , fn)

Upper bounds on costs can also be defined directly on some statement p by:

valid -ub-costs(tenv , pt , top-scalls(p), ub)

Now we want to relate upper bounds of costs to the stack memory con-
sumption during the execution:

Theorem 6 (Upper bound for stack memory consumption) Given a non
stuck computation δiC0 (c, tenv , pt) = bc′c, then the following holds:

c.prog = SCall(vn, fn, pl)
∧ (MAX − local -sz (c.mf.lms)) ∈ ub-costs(tenv , pt , fn)
=⇒ local -sz (c′.mf.lms) ≤ MAX

At a first glance, the prove of this theorem seems to be straightforward: we
only have to find a suitable inductive invariant, i.e. a predicate which implies
the conclusion and is invariant under C0 transitions. As a first guess, we
choose as invariant:

valid -ub-costs(tenv , pt , top-scalls(c.prog), (MAX − local -sz (c.mf.lms)))

Unfortunately, this predicate is not inductive. Consider again the example in
Figure 3.9, where the first line should be the function body of fn: Suppose
that the next statement to execute in the program rest is the first invocation
of f1. Furthermore, suppose the predicate valid -ub-costs holds for the config-
uration directly after the invocation of f1 the function call is substituted by
the function body and a new frame is allocated in the stack. To maintain the
invariant, the upper bound for the costs must decrease because the stack size
increased. This, however, is not true, because valid -ub-costs is determined by

74 CHAPTER 3. EXTENDING THE LANGUAGE STACK

the invocation of the function with the highest cost, i.e. by f2, which is still
present in the new program rest.

Thus, the predicate is too weak: For those functions invoked within f1 we
need a different invariant than for those invoked after it returns. For functions
called after the return statement there will be more memory available and
therefore the upper bound may increase again. The solution is to define a
sequence of invariants – one for each not yet returned function body in the
current program rest.

The boundaries of these invariants are return statements: function names
appearing between two consecutive return statements are grouped together.
This is done by the function return-fn, which returns for a given statement
a list of sets of function names. The first set of this list contains all function
names appearing in the statement before the first return is encountered, the
second set all those function names appearing between the first and the second
return, and so on.

To define return-fn, we need a helper function, with an accumulator argu-
ment:

return-fns :: stmt list × (funn set)→ (funn set) list × (funn set)

return-fns([], s) = ([], s)
return-fns((h#t), s) =

case h of
(Return(e)) =⇒ (let

(l′, s′) = return-fns(t, {})
in

(s#l′, s′))
(SCall(vn, fn, pl)) =⇒ (return-fns(t, (s ∪ {fn})))
(else) =⇒ return-fns(t, (s ∪ top-scalls(h)))

Now return-fn is defined as follows:

return-fn :: stmt → (funn set) list

return-fn(p) = let
(l′, s′) = return-fns(s2l(p), {})

in
l′@[s′]

The sequence of invariants described above is now easy to state: given a
local memory frame lms, a list of sets of function names, and an upper bound
MAX for local memory consumption we require that costs of the functions
of the ith set never exceed the memory currently available. In each recursion
step the currently available memory increases, by dropping the head stack
frame of lms.

stack -inv :: tenvT ×proctableT ×N×mem-frameT list× (funn set) list → bool

3.3. C0 AND DEVICES 75

stack -inv(tenv , pt ,MAX , lms, []) = MAX ≥ local -sz (lms)
stack -inv(tenv , pt ,MAX , lms, h#t) =

stack -inv(tenv , pt ,MAX − to-target(frame-size(tenv , hd(lms))), tl(lms), t)
∧ valid -ub-costs(tenv , pt , h,MAX − local -sz (lms))

The predicate stack -inv is invariant under C0 transitions:

Lemma 19 (Invariance of Stack-inv) Given a non stuck computation
δc0 (c, tenv , pt) = bc′c, then the following holds:

stack -inv(tenv , pt ,MAX , lms, return-fn(c.prog))
=⇒ stack -inv(tenv , pt ,MAX , lms, return-fn(c′.prog))

This lemma is proven by structural induction on the program rest of c. The
correctness arguments for the different statements are:

• SCall(vn,fn,pl): The first element in the invariant sequence requires the
costs of fn to be bounded by: (MAX−local -sz (lms)) ∈ ub-costs(tenv , pt , fn).
After the transition a new element lm is added to the stack and thus
the new invariant for the function body must hold:

valid -ub-costs(tenv , pt , top-scalls(pt(fn).body),MAX−local -sz (lm@lms))

By the definition of ub-costs the upper bound for functions in the func-
tion body decreases by the size of the function declaration. This size
coincides, by Lemma 15, with the size of the newly allocated stack frame
lm.

• Return(exp): The top most stack frame is deleted and new stack memory
is available. At the same time, the top most invariant is dropped. Hence,
we have to show:

stack -inv(tenv , pt ,MAX , tl(lms), tl(return-fn(c.prog)))

This follows by unpacking the recursive assumption stack -inv once.

• Comp(s1, s2): Proved by applying the induction hypothesis on s1. The
proof is highly technical and not detailed here.

• Others: Neither the stack size nor the list of sets return-fn(c′.prog)
changed.

From this lemma and the following two Lemmas 20 and 21, Theorem 6
can be easily deduced.

The invariant can be established by the assumption of the theorem:

Lemma 20 (Establishing the stack invariant)

c.prog = SCall(vn, fn, pl)
∧ (MAX − stack -size(tenv , c)) ∈ ub-costs(tenv , pt , fn)
=⇒ stack -inv(pt ,MAX , lms, return-fn(c.prog))

76 CHAPTER 3. EXTENDING THE LANGUAGE STACK

This lemma is proven by unpacking the definition of stack -inv .
The conclusion of the theorem follows from the invariant:

Lemma 21 (Relation of stack -inv and local -sz)

stack -inv(pt ,MAX , lms, return-fn(c.prog))
=⇒ local -sz (lms) ≤ MAX

This lemma is proven by induction on the size of the list return-fn(c.prog).
Note, that the author of this thesis thanks Dirk Leinenbach, who con-

tributed substantially to formalize the proof of Theorem 6 in Isabelle/HOL.

3.3.9 Some Remarks

The value representation in C0 is not very close to what you would expect from
the semantics of a high-level programming language. Indeed, talking of values
at all in the context of C0 small-step semantics is misleading: variables are
stored in (word-addressable) memories. Hence, even a simple equality check
between two evaluated expressions becomes an unnecessarily complicated task
(one needs the type of the value to deduce the number of relevant memory
cells in the provided content function).

For compiler verification this may be a reasonable decision, since data
representation is kept quite close to the one given on the target machine.
However, verifying programs directly on the semantics turns out to be hardly
manageable.

The proponents of the semantics will plead, that it was never designed for
code verification, as for this purpose a Hoare logic on a more abstract repre-
sentation of C0 is provided. And would not a translation of properties to the
concrete small-step semantics be possible by a meta theorem which is proven
sound once and for all? Unfortunately, the answer is no. One reason is that
the abstract representation is shallow embedded into Isabelle, i.e. expressions
of the programming languages are simply Isabelle expressions, where the con-
crete C0 small-step semantics is deep embedded, i.e. expressions are defined
by some abstract data type. Hence, any automatic property transfer would
result in automatic generation of lemmas.

Yet, there is another, more subtle reason, why the proposed scheme —
an explicit small-step model for compiler verification, and an abstract logic
for program verification — turned out to be cumbersome in practice. When
proving the correctness of system code, especially if the code covers inline
assembly portions (as described in the next section), we often have to switch
between different semantical layers — even during one function call. Thus,
code verification of all C0 parts can not be carried out in one step, rather
many (tedious) property transfers are necessary.

3.4. C0 WITH INLINE ASSEMBLY 77

3.4 C0 With Inline Assembly

3.4.1 Syntax

We embed inline assembly by the new statement, denoted with Asm. This
statement takes a list of assembly instructions.

stmt ::= . . . | Asm of instrT list

3.4.2 Configuration

Of course, the subject of C0 with inline assembly semantics can not be solely
C0. Rather, we define a combined configuration of type:

Cc+a = Cco × Casm

3.4.3 Semantics

Reasoning about the execution of a C0 with inline assembly computation
starting at configuration (c, asm) is straightforward: Ordinary C0 statements
are executed according to the small-step semantics defined in 3.3.5. When an
assembly statement Asm(il) is met we switch to a consistent assembly state
asm with the dpc pointing to the program il . This switching is justified by
compiler correctness and Lemma 22. Next we process program il according
to the VAMP assembly semantics. The newly obtained assembly state asm ′

is finally matched again to a consistent C0 configuration c′. Note, that this
is not always possible: e.g. the assembly program must not change certain
registers (e.g. the stack pointer). In Lemma 23 we show how to construct a
consistent C0 configuration out of the new and the old assembly and the old
C0 configurations.

The following lemma states the correspondence between the instruction
list of an assembly statement in the C0 program and in the code, pointed to
by the program counter of a consistent assembly machine:

Lemma 22 (Control Consistency for Inline Assembly)

consis(alloc, tenv , pt , c, asm)
∧ hd(s2l(c.prog)) = Asm(il)
=⇒ to-instr -list(asm.mm, asm.dpc, length(il)) = il

If we restrict the assembly code only to alter variables of elementary type,
and neither to modify the code nor certain control registers, then the function
c0 -asm-update describes the effect of that code in terms of a C0 state update.

c0 -asm-update ::
tenvT × Cco × Casm × Casm × (var -id) list → Cco option

78 CHAPTER 3. EXTENDING THE LANGUAGE STACK

The function takes as input the type environment of the C0 machine, the
original C0 and a consistent assembly configuration, the new assembly con-
figuration and a list gl of identifiers of variables that has changed. If one
of the following conditions is not fulfilled then the function returns with
c0 -asm-update(tenv , c, asm, asm ′, gl) = ⊥.

• The new assembly machine finished the execution of the instruction list,
i.e. asm ′.dpc = asm.dpc + length(il) ∧ asm ′.pc = asm ′.dpc + 4.

• Code region of the C0 program has not been modified:

to-instr -list(asm ′.mm, code-base, cs)
= to-instr -list(asm.mm, code-base, cs)

Where cs denotes the code size in bytes, i.e. cs = code-size(tenv , pt , c.gm).

• The registers pointing to the stack start, to the top most stack frame
and the next heap element to allocate have not changed:

asm.gpr[sbase] = asm ′.gpr[sbase]
asm.gpr[toplm] = asm ′.gpr[toplm]
asm.gpr[toph] = asm ′.gpr[toph]

• All variables in gl are valid and elementary:

∀x ∈ set(gl) . x ∈ valid -vars(c) ∧ is-elementary(x)

• Out of the stack and heap memory of the C0 machine, the assembly
code only manipulated addresses mapping to variables in gl :

∀ad ≤ heap-base + heap-size(tenv , c).
stack -start(tenv) ≤ ad =⇒

(asm.mm(ad) 6= asm ′.mm(ad)
=⇒ ∃x ∈ set(gl).alloc(x) = ad)

Note that during an assembly computation these conditions do not have to
hold, e.g. all registers may be written. The programmer only has to ensure
that with the execution of the last instruction, the conditions for construction
are fulfilled.

If the conditions are all satisfied the function returns a new C0 config-
uration bc′c = c0 -asm-update(tenv , c, asm, asm ′, gl), which differs from the
original one by

• the program rest: The assembly statement is substituted by a Skip, i.e.

s2l(c′.prog) = [Skip]@tl(s2l(c.prog))

3.4. C0 WITH INLINE ASSEMBLY 79

• the memory configuration: all variables in the list gl are updated by the
values read out of the new assembly configuration.

the(lookup(c′.mf, gl[i])).content(0) = asm ′.mm(alloc(gl [i]))

The next lemma links the result of the assembly computation and the
constructed C0 configuration. Note, that compiler consistency can not always
be established directly after the instruction list is executed. For example if the
assembly statement was the last statement in a loop, the program counters
have first to be reset. Therefore, we introduce a weaker form of the predicate
consis, denoting that two states are almost compiler consistent:

consis ′(alloc, tenv , pt , c, asm) ≡
(∃t. consis(alloc, tenv , pt , c, asmt) ∧

asm.gpr = asmt.gpr∧
asm.spr = asmt.spr∧
asm.mm = asmt.mm)

Then, the described lemma reads as follows:

Lemma 23 (Consistent Update)

consis(alloc, tenv , pt , c, asm)
∧ valid -c0 (tenv , pt , c)
∧ c0 -asm-update(tenv , c, d, d′, gl) = bc′c
=⇒ consis ′(alloc, tenv , pt , c′, asm ′)∧

valid -c0 (tenv , pt , c′)

The formal proof of this lemma was conducted by Tsyban in [Tsy09].
Utilizing the lemma above, we can define a transition →c+a relation for

C0 with inline assembly code (cf. Figure 3.4.3). Two rules are required, one
for ordinary C0 statements and one for inline assembly portions.

The next lemma, states that the transition relation is sound, i.e. it complies
with plain assembly semantics. With →∗c+a we denote the reflexive, transitive
closure of →c+a.

Theorem 7 (Soundness of inline assembly transitions)

consis(alloc, tenv , pt , c, asm)
∧ valid -c0 (tenv , pt , c)
∧ isa-asm-precond init(asm, code-base, code-size(tenv , pt , c.mf.gm))
∧ (c, asm)→∗c+a (c′, asm ′)
=⇒ (∃T . consis ′(alloc, tenv , pt , c′, asmT)∧

valid -c0 (tenv , pt , c′) ∧
isa-asm-precond init(asmT , code-base, code-size(tenv , pt , c.mf.gm)) ∧
isa-asm-precondpdyn(asm, code-base, code-size(tenv , pt , c.mf.gm), T))

80 CHAPTER 3. EXTENDING THE LANGUAGE STACK

hd(s2l(c.prog)) 6= Asm(. . .)
sufficient-memory(tenv , pt , c,max -address)

consis(alloc, tenv , pt , c′, asm ′)
δc0 (c, tenv , pt) =

⌊
c′
⌋

(c, asm)→c+a (c′, asm ′)

hd(s2l(c.prog)) = Asm(il)
∃gl .

⌊
c′
⌋

= c0 -asm-update(tenv , c, asm, asm ′, gl)
∃t . asm ′ = asmt

(c, asm)→c+a (c′, asm ′)

Figure 3.10: Transition Relation →c+a for C0 with inline assembly computa-
tions

The theorem is proven by applying the verification scheme for inline assembly
code introduced at the beginning of this section, i.e. by using Lemma 23 and
Lemma 22.

Note, that completeness is not shown, i.e. not all assembly computations
can be expressed in our semantics. For example, inline code which manipulates
the stack pointer is not covered.

3.4.4 Extension to Devices

In this section, we introduce a semantics to ease the verification of C0 pro-
grams with inline assembly drivers, where each assembly portion is controlling
at most one device. We prove soundness of the semantics by applying the re-
ordering theorem proven in Section 3.2.2.

The transition system →c+ad is defined in Figure 3.4.4. We distinguish
three cases: (i) the next C0 statement is ordinary, i.e. not an inline assembly
portion; then the device states are not altered, (ii) the next statement is an
inline assembly portion, which does not access devices; then again device states
stay unchanged, (iii) the next statement is an inline assembly portion, which
only accesses a certain device idX , i.e. which is pure; then it suffices to verify
the assembly portion for execution sequences, that are reduced to processor
steps and steps of device idX . We denote such sequences by SeqV (idX) ≡
{seq | seq ′ ∈ SeqV ∧ seq = filter(seq , (λev . ev = P ∨ ev = idX))}. Note, that
then all devices except for idX are not modified.

The big advantage of this semantics is that it enables us to separate veri-
fication of C0 and inline assembly parts, and of assembly drivers for different
devices. It implicitly states, that compiled C0 code does not interfere with
devices and that a driver for one device does not interfere with steps of other
devices, since device steps are always reordered to the corresponding driver.

For propagating properties proven in the above defined transition system
down to the level of VAMP assembly with devices, we again need to prove

3.4. C0 WITH INLINE ASSEMBLY 81

hd(s2l(c.prog)) 6= Asm(. . .)
sufficient-memory(tenv , pt , c,max -address)

consis(alloc, tenv , pt , c′, asmd ′.proc)

δc0 (c, tenv , pt) =
⌊
c′
⌋

asmd ′.devs =
asmd .devs

(c, asmd)→c+ad (c′, asmd ′)

hd(s2l(c.prog)) = Asm(il)
∃gl .

⌊
c′
⌋

= c0 -asm-update(tenv , c, asmd .proc, asmd ′.proc, gl)
∃T . asmd ′.proc = (asmd .proc)T ∧ ∀t < T . da((asmd .proc)t) = P

asmd ′.devs = asmd .devs

(c, asmd)→c+ad (c′, asmd ′)

hd(s2l(c.prog)) = Asm(il)
∃gl .

⌊
c′
⌋

= c0 -asm-update(tenv , c, asmd .proc, asmd ′.proc, gl)
∀seq ∈ SeqV (idX) .∃T . pure(asmd , seq , T, idX) ∧ asmd ′ = asmd seq,T

(c, asmd)→c+ad (c′, asmd ′)

Figure 3.11: Transition Relation →c+ad for C0 with inline assembly drivers

a soundness theorem. We show that a computation in the transition system
→∗c+ad has for any valid execution sequence a counter part in the VAMP assem-
bly with devices model. Note, however, that the latter computation will not
necessary lead to the same device states as the former one. That is, because
in →c+ad devices only make transitions during assembly portions. However,
assuming that the final device state is stable, we can establish equality:

Theorem 8 (Soundness of transition system for inline assembly driver)

consis(alloc, tenv , pt , c, asmd .proc)
∧ valid -c0 (tenv , pt , c)
∧ isa-asm-precond init(asmd .proc, code-base, code-size(tenv , pt , c.mf.gm))
∧ (c, asmd)→∗c+ad (c′, asmd ′)
=⇒ (∀seq ∈ SeqV . ∃T .

asmd ′.proc = asmd seq,T .proc∧
consis(alloc, tenv , pt , c′, asmd ′.proc)∧
valid -c0 (tenv , pt , c′) ∧
isa-asm-precond init(asmd seq,T , code-base,

code-size(tenv , pt , c.mf.gm))∧
isa-asm-preconddyn(asmd , code-base,

code-size(tenv , pt , c.mf.gm), seq , T))∧
(∀idX ∈ D .

stable(asmd ′.devs(idX)) =⇒
asmd ′.devs(idX) = asmd seq,T .devs(idX))

82 CHAPTER 3. EXTENDING THE LANGUAGE STACK

The theorem is proven by induction on the step numbers of the computation
→∗c+ad. The induction base is trivially true. For the induction step, we have
a case-split on the three transition rules:

• For ordinary C0 statements, correctness follows from applying extended
compiler correctness, i.e. Theorem 5.

• For assembly statements with no access devices, correctness follows from
the application of Lemma 5. It ensures, that device states are not mod-
ified and that pure sequential assembly semantics can be applied.

• For assembly statements with device access, we apply the reordering
theorem. Given a VAMP assembly computation in which the assembly
statement is executed, then we reorder all device steps, which are not
accessed, to the end of the computation.

Theorem 8 is only valid for devices which are finally in a stable state.
This is a rather tough restriction. We can relax this condition by stating that
not only stable states are preserved by both computations but also certain
invariants on the final state.

We call a property = over device states external invariant if the property
is preserved under arbitrary external input:

Inv ext = {= | ∀eifi .=(c) ∧ (c′, . . .) = δdsty(c)(c,mifi ε, eifi) =⇒ =(c′)}

Thus, we can strengthen the soundness theorem by substituting the last
conclusion in the theorem with:

· · · ∧ (∀idX ∈ D , = ∈ Inv ext .

=(asmd ′.devs(idX)) =⇒ =(asmd seq,T .devs(idX)))

The presented semantics is helpful when reasoning about C0 program cor-
rectness at the level of small-step semantics. However, combining these results
with Hoare logic proofs is not straightforward. One obvious solution is to en-
rich the C0 Hoare logic with new rules dealing with inline assembly code and
devices. These rules would look similar to the semantics presented here, and
the corresponding soundness proof would follow the lines of the proof of The-
orem 8. However, adding new rules to our logic involves non-trivial proof
effort, since each new rule has to be justified on all different layers of the C0
language stack: Hoare logic, big step and small step.

We proceed in a different way: we encode the effects of assembly drivers
as atomic state updates, called XCalls. These XCalls are introduced to all the
models in the C0 language stack, up to the Hoare logic. There, an already
defined general assignment rule is used to encode these atomic XCalls. Note,
that the last two theorems haven’t been formalized in Isabelle/HOL. Rather,
in the formal work we applied the correctness arguments of the theorems
manually.

3.5. C0 WITH XCALLS 83

3.4.5 Some Remarks

In a first approach, inline assembly was semantically embedded by defining
a transition system on the combined state. The result of the execution of
each inline assembly instruction had to be mapped back to a consistent C0
computation: most importantly store word instructions were mapped to cor-
responding C0 variable updates.

On the positive side, that approach provides a well defined small-step
transition system, which always maintains full information on both machines.
Yet, in most cases the state of a C0 machine during executing inline assembly
is not of any advantage. Furthermore the additional information is bought by
a loss of expressiveness: much rigor conditions on the execution of the inline
assembly are required, e.g. storing half words is not allowed. In contrast, the
new approach does not require any conditions on the execution of inline code
at all. Only the result of the computation is of interest.

3.5 C0 With XCalls

The concept of XCalls is introduced to capture the semantical effects of func-
tion calls by atomic specifications. Particularly, when specifying functions
with inline assembly portions, as for example drivers, the use of XCalls is ap-
pealing. First, we extend the C0 configuration by additional meta variables,
representing those parts of the processor which are accessed by the assembly
code. More general, these ghost variables — in the following called extended
state — may abstract from arbitrary low-level entities which lie outside the
scope of C0, e.g. memory, registers or even device states. An XCall describes
the effect of a function call on the C0 configuration and on the extended state
by one atomic state update. Compiler correctness remains applicable only in
case implementation correctness proofs are provided for each of the XCalls.

The main charm of XCalls is that they enable us to argue on effects of
inline assembly portions without caring about assembly semantics. Thus,
by enriching the language stack with XCalls, we can lift assembly code and
driver semantics up to the Hoare logic level. Then, by proving implementation
correctness of XCalls we transfer results proven in Hoare logic down to VAMP
assembly with devices. Note, that for drivers, XCalls abstract interleaved
executions to sequential (and atomic) specifications. This is justified by the
reordering theory developed previously.

In the following we first show how to extend configurations, statements,
and the small-step semantics to integrate XCalls and then prove an extended
compiler correctness theorem under the assumption that all XCalls are verified
against their implementation. Finally, we sketch how traditional Hoare logic
is extended to deal with XCalls.

84 CHAPTER 3. EXTENDING THE LANGUAGE STACK

3.5.1 Syntax

Syntactically XCalls are treated similar to function calls, with the main differ-
ence that they are not restricted to a single return value. The corresponding
statement consists of (i) the XCall name, (ii) a list of names of variables to
which the return values of the call are written, and (iii) a list of expressions
denoting the parameters to be passed to the XCall:

stmt ::= . . . | XCall of funn × varn list × expr list

3.5.2 Configuration

The new configuration is parametrized over the type α of the extended com-
ponent. Note, that with choosing α as an arbitrary Isabelle type, we do not
restrict ourselves to C0 types. The record type α Ccx consists of the two fields:

c ∈ Cco The C0 configuration.
xstate ∈ α The extended state.

In the following we refer to elements of type Ccx as extended configurations.

3.5.3 Semantics

The semantics of each XCall is described by a function of type

α xsemT = contentT list × α→ (contentT list × α) option

As input it takes a list of C0 contents and an extended state x and returns
an updated extended state and a list of C0 contents to be assigned to the left
expressions of the call. Note, that we allow the semantics to get stuck, i.e. to
return with ⊥.

Similar to a function declaration we define a XCall declaration as a triple
of type

α xdeclT = ty list × ty list × α xsemT

The first two components denote the type of the parameters and of the return
values respectively, where the last one stands for the call semantics. Analo-
gous to a procedure table, we call a mapping from function names to XCall
declarations a XCall table. It has type

α xtableT = funn → α xdeclT

The transition function, takes as input the description of the extended
machine, consisting of an extended configuration, a type environment, an
ordinary procedure table and an XCall table. It returns either ⊥ denoting a
stuck computation, or the successor state of the extended C0 machine.

δcx :: α Ccx × tenv × proctable × α xtableT → (α Ccx) option

We define the transition function via the following case split:

3.5. C0 WITH XCALLS 85

• The statement to be executed is not an XCall. We apply the C0 transi-
tion function on the C0 state. If it returns with ⊥ the whole transition
gets stuck, otherwise the extended state remains unchanged und we get:

δcx (cX , tenv , pt, xpt) = (the(δc0 (cX .c, tenv, pt)), cX .xstate)

• The statement is an XCall, i.e. cX .c.prog = XCall(fn, lvars, expsp). First,
we compute the following values:

vasp[i] = eval(cX .c, expsp !i) The evaluation of each param-
eter expression for 0 ≤ i <
length(expsp).

(typ, tyr, xsem) = xpt(fn) The XCall table contains a decla-
ration for the invoked XCall, i.e. it
does not return undef .

(vals′, cX
′) = the(xsem(vasp , cX .xstate)) We apply the specification of the

XCall to the evaluated parameters
and the extended configuration. As
output we get a list of return values
and the successor state.

mf ′ = (updsmem(cX .c.mf, lvars, vals′)).mf Finally, we assign the result values
to the corresponding variables
of the XCall. The function
updsmem(c, xs, vs) is defined recur-
sively: it returns c if xs = [] and
updsmem(updmem(c, x, v), xs′, vs′)
for xs = x#xs′ and vs = v#vs′.

If any of the above expression evaluation, declaration mapping or appli-
cation of semantics yields ⊥ or is undefined, then the whole transition
gets stuck. Otherwise, the result of the computation is:

δcx (cX , tenv , pt, xpt) =
⌊
((prog = Skip,mf = mf ′), cX

′)
⌋

We define the execution of n steps of the extended machine by:

δcx
n(cX , tenv , pt, xpt) =
bcX c if n = 0
δcx

n−1(cX
′, tenv , pt, xpt) if n 6= 0 ∧ δcx (cX , tenv , pt, xpt) = bcX

′c
⊥ otherwise

86 CHAPTER 3. EXTENDING THE LANGUAGE STACK

3.5.4 Correctness

In contrast to ordinary C0 programs, programs with XCalls cannot be com-
piled straight to assembly. Accordingly, properties proven for an extended
machine are not linked solely by compiler correctness to corresponding prop-
erties on assembly. Rather we have to provide for each XCall (i) an imple-
mentation in C0 with inline assembly, (ii) a simulation relation, which maps
the extended configuration to the implementation, and (iii) the corresponding
correctness proof of the implementation.

Then, corresponding to the compiler correctness theorem, we can prove
a simulation theorem. Basically, this theorem relates the execution of the
extended C0 machine with the execution of the concurrent VAMP assembly
with devices model. Furthermore, we maintain on the implementation side an
intermediate C0 configuration which has to be consistent with the assembly
state. We use an intermediate C0 machine because the extended C0 machine
does not cover the whole C0 implementation and hence can not be related
directly to the underlying assembly state (e.g. the C0 functions implementing
the XCalls are not contained in the procedure table of the extended machine).
Basically, the intermediate machine links the extended machine with the im-
plementation of the XCalls.

Simulation Relation

Before stating the theorem, we define the corresponding abstraction relation.
In short, it relates code and configurations of the extended C0 machine with
the intermediate C0 machine and VAMP assembly with devices.

Code The code portions of the intermediate C0 machine are basically ob-
tained by implementing the extended procedures by ordinary procedures and
replacing every XCall by an ordinary procedure call.

• Program rests. If we replace in the program rest px of the extended
machine each occurrence of a driver XCall by an invocation of the cor-
responding implementation function we get the program rest pi of the
intermediate machine.

This replacement is defined by the following translation trans. Given
a mapping fns :: funn → funn option from XCall names to function
names, we define a translation of statements by:

trans :: (funn → funn option)× stmt → stmt

3.5. C0 WITH XCALLS 87

trans (fns, s1; ; s2) =
trans(fns, s1); ; trans(fns, s2)

(fns,XCall(fnx, lvars, exps)) =
XCall(fnx, lvars, exps) : fns(fnx) = ⊥
SCall(lvars[0],

the(fns(fnx)), exps) : otherwise
(fns, s) = s

Note, that the translation only uses the first return value of an XCall
and ignores all others. Thus, this restricts the set of XCalls that possibly
can be translated.

Next, the relation between the program rests of the extended and the
intermediate machine is defined by:

xconsisprog(fns, pi, px) ≡ (trans(fns, px) = pi)

• Procedure tables. All functions defined in the procedure table ptx of
the extended machine must also be defined in the procedure table pti
of the implementation machine. Additionally, the functions have to be
equal except for their bodies for which the program rest relation from
above has to hold.

Formally we define the abstraction relation for procedure tables as fol-
lows:

xconsispt(fns, pti, ptx) ≡
∀ fnx ∈ dom(ptx) .
pti(the(fns(fnx))) = (ptx(fnx))[body := trans(fns, fd .body)]

• Relating XCalls and C0 implementations. This property ensures
that the intermediate C0 machine implements the XCalls by correspond-
ing C0 functions. The mapping between XCalls and their implementa-
tion is given by a so called specification map. A specification map maps
the names of XCalls to simulate to (i) the signatures of the C0 functions
implementing them, and (ii) the semantics of the XCalls. Formally, it
has type specMapT = funn → (fun-declT × xdeclT) option

xconsisxpt(fns, specMap, pti) ≡

∀ fnx ∈ dom(fns). specMap(fnx) = b(xdecl , fd i)c ∧
xpt(fnx) = xdecl ∧
pti(the(fns(fnx))) = fd i

88 CHAPTER 3. EXTENDING THE LANGUAGE STACK

The overall abstraction relation for the code can now be defined by:

xconsiscode(fns, specMap, pti, ptx, pi, px) ≡
xconsisxpt(fns, specMap, pti)

∧ xconsisprog(fns, pi, px)
∧ xconsispt(fns, pti, ptx)

Configurations The abstraction relation xconsis can now be defined. It
takes as parameters the description of the intermediate C0 machine (consisting
of type-environment, procedure table, and current state), the allocation func-
tion from the compiler, the current state of the VAMP assembly with devices
model, the description of the extended C0 machine (consisting of procedure
table, current state, and the extended procedure table) and two mappings,
one for function names and one relating the XCall specifications to their im-
plementation in the intermediate C0 machine. Moreover it is parametrized
over the identifier of the device to abstract. It is made up of the following
relations:

• Extended C0 / VAMP assembly. An extended machine can be used
to abstract at most a single device idX at a time. Note, that idX is a
parameter of the XCall correctness theorem (Theorem 9 stated below).

The user (i.e. the one instantiating the XCall semantics) has to provide
with an abstraction relation between the extended component on the
one side, and the assembly memory and state of device idX on the other
side.

xconsisex :: α× ((N→ Z)× SD)→ bool

However, not all abstractions are allowed. Memory portions which are
covered by the intermediate C0 machine shall not be mapped to the
extended component. Moreover, the abstracted device should be stable
whenever consistency holds. Thus, given the last accessed memory ad-
dress max -address of the C0 machine, we say the abstraction is valid
if the following predicate holds (all free variables are assumed to be all
quantified):

validex(xconsisex,max -address) ≡
∀ad ≤ max -address, v ∈ Z .

(xconsisex(x, (mm, dev))
=⇒ xconsisex(x, (mm(ad := v), dev)) ∧ stable(dev)).

• Extended C0 / Intermediate C0. The memory of the intermediate
C0 machine and the extended machine are equal. Additionally, the
code and the procedure tables of the extended C0 machine and of the
C0 implementation machine are related by the already defined relation
xconsiscode.

3.5. C0 WITH XCALLS 89

• Intermediate C0 / VAMP assembly. Compiler consistency holds
between the intermediate C0 machine and the assembly machine.

Formally, we get for the overall abstraction relation:

xconsis(tenv , pt i, c, alloc, asmd , ptx, cX , xpt , fns, specMap, idX) ≡
xconsisex(cX .x, (asmd .proc.mm, asmd .devs(idX)))

∧ c.mf = cX .c.mf
∧ xconsiscode(fns, specMap, pti, ptx, c.prog, cX .prog)
∧ consis(alloc, tenv , pt i, c, asmd .proc)

Correctness criteria of XCall

In this section we formalize the notion of implementation correctness of an
XCall that is not controlling any device at all or only some device idX . Ba-
sically, we require that the execution of a single XCall can be simulated by
arbitrary many steps on VAMP assembly with devices and the intermediate
C0 machine.

In the following we explain the required pre- and postconditions of the
criteria:

• Validity Predicates. We have to assume validity of the C0 configura-
tion, the extended C0 configuration, the assembly state and the execu-
tion sequences of the VAMP assembly with devices model.

To apply C0 compiler correctness, validity of the initial C0 machine has
to be assumed (see Section 3.3.7), i.e. the predicate valid -C0 has to hold.

Validity of the consistent assembly machine is provided by the predicate
isa-asm-precond init.

Since we assume that the underlying implementation of the XCall is
controlling at most one device, correctness is proven only for those exe-
cution sequences which are restricted to steps of the processor and that
device. Moreover these sequences should guarantee liveness of the pro-
cessor and the devices. This is ensured by the restricted set of valid
sequences SeqV (idX). Note, that in case no device is accessed by the
XCall, sequential assembly reasoning can be applied.

• Translation from VAMP assembly to VAMP ISA. The assem-
bly model is only an abstraction (and simplification) of an underlying
VAMP ISA. For translating computations from VAMP assembly with
devices to VAMP ISA with devices via Theorem 1, we need to discharge
a series of assumptions on the initial state and assumptions on each
step of the execution. These are given by the already defined predicates
isa-asm-precond init and isa-asm-preconddyn (cf. Section 3.1.5).

90 CHAPTER 3. EXTENDING THE LANGUAGE STACK

• Memory restrictions. The compiler correctness theorem is only ap-
plicable if in each step sufficient heap and stack memory is available in
the assembly machine (see Section 3.3.7). For estimating memory con-
sumption we apply the theory developed in Section 3.3.8. Note, that
only claiming memory restrictions on the extended configuration does
not work, since:

– The procedure table of the implementation has more entries than
the one of the extended machine: one more for each XCall. Hence,
also the translated code size is larger.

– On the extended machine, XCalls are executed for free, i.e. no stack
or heap memory allocation is visible. However for its counterpart
in the implementation, there is a real function call, with concrete
memory requirements.

For the heap memory, we can deduce that the intermediate machine will
not consume more than the extended one. That follows, from the fact
that C0 does not support any statements to free memory, and because
both machines will finally have the same memory configuration again.
Hence, by using Lemma 18 we only need to claim that enough heap
is available for the extended configuration after executing the XCall.
The heap size is bounded by the parameter max -address. By assuming
max -address not to be in the device domain, we ensure that the memory
of the intermediate C0 machine is not intersecting the device domain.

An upper bound of the stack consumption of functions with no recursive
calls can be computed by a static analysis of the function bodies, as
shown in Section 3.3.8. Remember, that this approach determines the
deepest (and most stack consuming) path in the invocation tree of the
given code. This deepest path is computed by the recursively defined set
ub-costs(tenv , pt , fn). An element of this set is an upper bound of the
stack consumption required by the function fn in the procedure table
pt.

For the function to be simulated we get the size estimation sz by instan-
tiating ub-costs with the procedure table of the implementation machine
and the name of the function implementing the XCall. We require that
the sum of this upper bound and the current stack consumption (made
up of the code size and the current stack size) of the intermediate C0
machine to be smaller than the heap-base.

• Devices. We assume that during executing the implementation no de-
vice at all is accessed or at most one, i.e that the computation is pure.
This condition is necessary, to apply the C0 with inline assembly seman-
tics developed in Section 3.4.

3.5. C0 WITH XCALLS 91

Let the function specMap define a specification and implementation of an
XCall with name fnx and abstraction relation xconsisex. Moreover, we assume
that the XCall implementation only controls the device idX . We say the
implementation is correct against the specification if the following predicate
holds (note that all free variables in the definition are assumed to be all-
quantified):

correctxcall(specMap, fnx, xconsisex, idX) ≡

validex(xconsisex,max -address)
∧ valid -C0 (tenv , pt i, c)
∧ isa-asm-precond init(asmd .proc, code-base, code-size(tenv , pt i, c.mf.gm))
∧ heap-base + heap-size(cX

′.c, pt i) < max -address
∧ max -address < device-border
∧ sz ∈ ub-costs(tenv , pt i, fns(fnx))
∧ sz + stack -start(tenv , pt i, c.mf.gm) + stack -size(tenv , c) ≤ heap-base
∧ xconsis(tenv , pt i, c, alloc, asmd , ptx, cX , xpt , fns, specMap, idX)
∧ cX .c.prog = XCall(fnx, lvars, expsp)
∧ δcx (cX , tenv , pt i, xpt) = bcX

′c
=⇒ (∀seq ∈ SeqV (idX) . ∃c′, alloc′, T.

xconsis(tenv , pt i, c′, alloc′, asmd seq,T , ptx, cX
′, xpt ,

fns, specMap, idX) ∧
isa-asm-preconddyn(asmd , code-base,

code-size(tenv , pt i, c.mf.gm), seq , T) ∧
isa-asm-precond init(asmd seq,T .proc, code-base,

code-size(tenv , pt i, c.mf.gm))∧
valid -C0 (tenv , pt i, c′) ∧
pure(asmd , seq , T, idX))

Now, we can extend compiler correctness to XCalls. The next theorem —
under the assumption of correct implementation of all XCalls — establishes a
simulation between an arbitrary execution of the extended machine on the
one side (i.e. not only the execution of one XCall), and an intermediate C0
machine and the VAMP assembly with devices model on the other side. For
the latter computation, all possible execution sequences are considered, (not
only those restricted to some device). Note, that we propagate correctness at
the level of function calls.

To formalize the theorem, we still have to describe two more properties:

• Compositionality conditions. The XCall correctness theorem serves
as a translation of correctness results from the level of C0 with XCalls
down to the VAMP assembly with devices model, in which the assem-
bly state and devices are explicitly visible. Applied to the stack in
the Acedemic System of Verisoft, the theorem is used to propagate the
correctness of the page-fault handler (in which the hard disk driver is

92 CHAPTER 3. EXTENDING THE LANGUAGE STACK

specified as XCall) to the level of VAMP assembly with devices. This
result is then embedded into the verification of the kernel. However, the
defined abstraction relation xconsis does not allow such an embedding
of a smaller computation (page-fault handler) into a larger computation
(kernel).

For such a transfer, the assumption on the program rest is too restric-
tive. It requires the code of the extended C0 machine and that of the
implementation machine to be equal (up to XCalls substitution). This
is a major restriction, as for example the page-fault handler is verified
relative to an extended machine only containing the functions needed
for its invocation not aware of the rest of the kernel code.

We generalize the abstraction relation, to obtain a modular verification
chain:

– Since the extended machine is embedded into the implementation
machine, the procedure table of the former must be included in
the one of the latter. This is already granted by the xconsiscode

relation.

– The program rest of the extended machine is only a prefix of the
implementation machine (after XCall substitution). We define a
prefix of a statement as follows:

prefix (p, ppre, rest) ≡ s2l(p) = s2l(ppre)@s2l(rest)

Thus, we obtain the new abstraction relation xconsis by refining
the code relation in the old abstraction relation as follows:

xconsis(tenv , pt i, c, alloc, asm, ptx, cX , xpt , fns, specMap, rest , idX) =
. . .

∧ (∃ppre . prefix (c.prog, ppre, rest)∧
xconsiscode(fns, specMap, pti, ptx, ppre, cX .prog))

Note, that the rest of the code, i.e. the part of the intermediate
machine which is not simulated, stays unchanged during execution.
At the end of the simulation the XCall machine will have processed
its complete program, where the program rest of the intermediate
machine still consists of the rest statement. This rest statement
may now be verified without resorting to the XCall semantics (or
by using some different XCall abstraction).

• Validity of extended code. Inline assembly code in the extended
machine may break the abstraction provided by XCalls. For example,
a code portion writing the abstracted memory region would have no
semantical effects on the abstract memory component and hence lead

3.5. C0 WITH XCALLS 93

to an unsound state. Therefore, we require the program rest of the ex-
tended machine and of the bodies of all functions possibly called during
its execution to be free of any inline assembly code. Moreover, we re-
quire that only XCalls defined in the specification map may be invoked.
To formulate these dynamic properties on the program rest we use the
predicate valid -propcode and the formalism developed in Section 3.3.6.

Now, the simulation theorem reads in its full beauty as follows:

Theorem 9 (C0 with XCalls compiler correctness)

(∀fnx ∈ dom(specMap) . correctxcall(specMap, fnx, xconsisex, idX))
∧ valid -C0 (tenv , pt i, c)
∧ isa-asm-precond init(asmd .proc, code-base, code-size(tenv , pt i, c.mf.gm))
∧ heap-base + heap-size(cX

′.c, pt i) < max -address
∧ max -address < device-border
∧ sz ∈ ub-costs(tenv , pt i, fn i)
∧ sz + stack -start(tenv , pt i, c.mf.gm) + stack -size(tenv , c) ≤ heap-base
∧ valid -propcode(cX .c.prog, ptx, (λs.s 6= Asm(. . .)))
∧ valid -propcode(cX .c.prog, ptx,

(λs.s = XCall(fnx, . . .) =⇒ fnx ∈ dom(specMap)))
∧ xconsis(tenv , pt i, c, alloc, asmd , ptx, cX , xpt , fns, specMap, rest , idX)
∧ cX .c.prog = SCall(. . . , fn i, . . .)
∧ δcx

k(cX , tenv , pt i, xpt) = bcX
′c

=⇒ (∀seq ∈ SeqV . ∃c′, alloc′, T.
xconsis(tenv , pt i, c′, alloc′, asmd seq,T , ptx, cX

′, xpt ,
fns, specMap, rest , idX) ∧

isa-asm-preconddyn(asmd , code-base,
code-size(tenv , pt i, c.mf.gm), seq , T) ∧

isa-asm-precond init(asmd seq,T .proc, code-base,
code-size(tenv , pt i, c.mf.gm))∧

valid -C0 (tenv , pt i, c′) ∧
pure(asmd , seq , T, idX))

Proof. The theorem is proven by induction on k. The induction base is
trivially true by choosing c′ = c, alloc′ = alloc and T = 0.

Next, we consider the induction step for k + 1 (variables of the induction
hypothesis are marked by a superscript h). We instantiate the induction
hypothesis with kh = k. Out of the obtained premises all but the condition on
enough heap follow straight from the premises of the theorem. Enough heap
is ensured since the heap memory consumption is monotonically increasing
(Lemma 18). Thus, we can assume that all postconditions of the theorem
hold after k steps. We proceed with a case distinction on the head of the
program rest of the extended machine after k steps (denoted with cX

k). For

94 CHAPTER 3. EXTENDING THE LANGUAGE STACK

hd(s2l(cX
k.c.prog)) we have two cases, either the next statement is not an

XCall invocation — or it is:

• Ordinary C0 statement We can conclude that in the first case the
head of the program rest is not an inline assembly statement. This
follows from the first condition on the program rest of the extended ma-
chine and from code consistency. We execute an ordinary C0 step of the
intermediate machine. Extended consistency is established as follows:
By applying extended compiler correctness (Theorem 5, or alternatively
by applying the first rule of the →c+ad semantics) we obtain a consis-
tent new assembly machine. All assumptions of compiler consistency are
trivially ensured, except for the assumption on stack memory consump-
tion. This one is deduced by our static estimation of stack consumption
and by Theorem 6.

Consistency on the extended component is established by proving that
neither the device state nor the memory region being abstracted have
been changed in the meanwhile. The first follows from an application
of Lemma 6. The latter is verified using the validity of the extended
mapping and by Lemma 16 ensuring no access beyond max -address.

• Invocation to an XCall First, we show that the invoked XCall is
indeed defined in the specMap. This follows from the second condition
on the code of the extended machine and by Lemma 14. We conclude
from the first premise of the theorem that the XCall is implemented
correctly. Overall correctness of the theorem follows almost straight
from implementation correctness. It remains to generalize the reduced
sequences to arbitrary ones. Lemma 6 together with the consistency
assumption of stable device state proves this.

q.e.d.
Note, that one could easily prove a stronger version of the theorem which

neither requires stability of the device to abstract nor is restricted to the
abstraction of a single device. Such a theorem would be proven using the
semantics introduced in Section 3.4.

Embedding XCalls into Hoare logic

In this thesis we omit the description of XCall embedding into higher levels of
the C0 language stack. A detailed description of an extended big-step seman-
tics and Hoare logic can be found in [AHL+09] (conducted by N. Schirmer).
In the following we briefly sketch the extension to Hoare logic.

We apply an instance of Schirmer’s Hoare logic environment [Sch06] im-
plemented in Isabelle/HOL. He defines a set of Hoare rules, for a generic
programming language Simpl, and formally proves the soundness of this logic.
Hoare rules describe a triple {P}S{Q}, where precondition P defines the set

3.5. C0 WITH XCALLS 95

of valid initial states of the C0 variables, S is the statement to execute and
postcondition Q is guaranteed to hold for the states after execution of S.
Schirmer’s formalization in Isabelle/HOL guarantees even total correctness
and hence termination.

Additionally to the embedding of C0 into Simpl, some special treatment for
XCalls is introduced. We refer to the resulting system as extended Hoare logic.
In Simpl the extended state is treated analogous to ordinary C0 variables, with
the only difference that they are not restricted to C0 types. It is not necessary
to introduce a new Hoare rule into Simpl to handle XCalls. Instead we can
use the Basic construct of Simpl, a general assignment which can deal with
an arbitrary state update function f : {f(s) ∈ Q} Basic f {Q}. On the level
of Simpl every XCall is modelled as such a state update, representing the
abstract semantics of the XCall.

Next, we apply the developed language stack to verify the correctness of
a hard disk driver in the context of a page-fault handler of a micro kernel.

Chapter 4

Case Study: Verifying a Hard
Disk Driver in the Context of
Memory Virtualization

One of the most challenging parts of verifying the generic Verisoft microkernel
CVM is memory virtualization, i.e. to ensure that each user process controls
its own, large, and isolated memory. User processes access memory by vir-
tual addresses, which are subsequently translated to physical ones. Modern
computer systems implement virtual memory by demand paging: small con-
secutive chunks of data, called pages, are either stored in a fast but small
physical memory or in a large but slower swap memory, which is usually im-
plemented by a hard disk. The page table, a data structure both accessed by
the processor and by software, maintains whether a page is in the swap or the
physical memory. A process attempting to access a page currently in swap
memory causes the processor to signal a page-fault interrupt. On the hard-
ware side, the memory management unit (MMU) triggers the interrupt and
translates from virtual to physical page addresses. On the software side, the
page-fault handler reacts to page-faults by loading the requested page to the
physical memory. If the physical memory is full, some other page is swapped
out.

The swap component is a hard disk and the corresponding swap operations
are driver write and read calls to that disk. Each of these calls is written in
assembly and encapsulated into a C0 function. The page-fault handler is
implemented almost completely in C0, except for the invoked hard disk driver
which accesses the devices and portions of the memory not covered by the
kernel C0 machine. The page-fault handler itself is a C0 function invoked by
the kernel machine.

The correctness of the page-fault handler is ultimately expressed at the
level of VAMP ISA with devices and embedded into the larger computation
of the kernel code [ASS08]. To avoid verifying the whole page-fault handler

97

98 CHAPTER 4. CASE STUDY: HARD DISK DRIVER

at the level of VAMP ISA with devices we leverage the extended language
stack developed before. First the driver semantics is expressed in terms of
XCalls. These XCalls are used to verify the code of the page-fault handler in
the C0 Hoare logic which is extended by a general assignment rule covering
XCall semantics. The obtained results are then transferred to the extended
C0 small step semantics, and subsequently lifted via a correctness proof of the
implementation to the level of VAMP ISA with devices.

We start this section with a definition of an accurate hard disk model.
Next, we introduce the assembly portion of the driver (write case) and prove
its correctness [AH08]. This driver is embedded into a C0 function call and
specified in terms of XCall semantics. Finally, we prove the implementation
correctness of the driver write XCall and the theorem which is used to transfer
the page-fault handler from the level of C0 with XCalls down to the level
VAMP ISA with devices [AHL+09].

Note, that our final theorem has been successfully applied in Isabelle/HOL
to verify the the page-fault handler [Sta09] and the kernel [Tsy09].

4.1 Hard Disk Model

Our formal hard disk controller model is based on a subset of the ATAPI stan-
dard [Ame00]. We restrict ourselves to a subset of the commands and assume
that only a single disk is hooked up to the controller. Note that while such
controllers usually allow to access two hard disks called the master and the
slave disk, we will in the following assume that only the master disk is accessed
and connected. Hence, we use the terms disk and controller interchangeably.

4.1.1 Overview

Hard disks are parameterized over the number of sectors 0 < S ≤ 228 they
store. Each sector stores 128 words, making up for a content of up to S · 29 ≤
128 GB. The disk is accessed by issuing commands to it; we only model three
of them. The reset command takes the disk into a well-defined initial state at
any time. The read and write commands load and store a range of sectors.
This range is processed sector by sector, with each sector first being transferred
into an internal (volatile) buffer of the disk and then to the processor resp.
the disk. The processor may access the internal buffer in a sequential fashion
by performing 128 word operations (reads or writes) on the data port of the
disk. In polling mode, the processor must query the disk for the completion
of a sector transfer; in interrupt mode, the disk causes an interrupt for each
sector transferred from resp. to the disk.

4.1. HARD DISK MODEL 99

4.1.2 Addressing Sectors

In an ATA/ATAPI compatible hard disk sectors are addressed via 28-bit (logi-
cal) block addresses, which are composed of four parts, from low to high order:
an 8-bit sector number, an 8-bit cylinder-low, an 8-bit cylinder-high, and a
4-bit head. In the formal model we represent an lba as element of the record
type lbaT with the following four fields:

snumb : N The sector number.
cyll : N The cylinder low.
cylh : N The cylinder high.
drivehead : N The drive head.

This representation is chosen, since sector addresses are past component by
component through corresponding ports to the hard disk.1

The translation from logical block addresses to sector numbers is straight-
forward:

lba-to-nat :: lbaT → N

lba-to-nat(ba) ≡
ba.snumb + (ba.cyll + (ba.cylh + ba.drivehead · 256) · 256) · 256

Next, we define an increment operator on logical block addresses. Obvi-
ously, this operator should be consistent with ordinary incrementation (mod-
ulo 228) of the lba interpreted as natural. Formally, incrementation is defined
by the following two functions:

inc-ba-block :: N× N→ N

inc-ba-block(cin, a) ≡ ((cin+ a)÷ 256, (cin+ a) mod 256)

inc-lba :: lbaT → lbaT

inc-lba(lba) ≡
let

(c0, snumb′) = inc-lba-block(1, lba.snumb)
(c1, cyll ′) = inc-lba-block(c0, lba.cyll)
(c2, cylh ′) = inc-lba-block(c1, lba.cylh)
drivehead ′ = inc-lba-block(c2, lba.drivehead)

in
(snumb = snumb′, cyll = cyll ′, cylh = cylh ′, drivehead = drivehead ′)

1For lba addresses, the components do no longer have any geometric meaning on the
physical hardware.

100 CHAPTER 4. CASE STUDY: HARD DISK DRIVER

4.1.3 Configuration

Now, we can define the configuration of a hard disk. It is of record type Chd

with the following fields:

sm : N→ N The sector memory is a word addressable memory of words
(32-bit binary number interpretation of entries). It stores the
disk content.

buf : N→ N The sector buffer, which is a word buffer (32-bit binary number
interpretation of entries) and is accessed sequentially.

bp : N The (word) buffer pointer.
lba : lbaT The current sector address.
scnt : N The number of sectors to process.
ien : bool The interrupt enable flag, which is 0 for polling mode.
int : N The pending interrupt flag.
cs ∈ Hdcs The control state, where the set of states is defined as Hdcs =

{idle, brd, bwr, prd, pwr, err}. In idle state, the disk is ready to
take new commands. Read commands will repeatedly visit the
states brd and prd . In the former the disk fills its buffer, which
is then read out by the processor. Likewise, write commands
visit the states pwr and bwr. In the former the processor fills
the disk’s buffer, which is then written to the disk. The state
err is entered when invalid commands are issued to the disk.

Not all configuration encode valid abstractions of real hard disk states. As
for assembly configurations, we have to restrict the set of disk states, to valid
ones. These restrictions are: (i) The logical base address is in range, (ii) the
buffer pointer is pointing to a valid buffer position, i.e. it is smaller than 128,
(iii) the sector memory is well-typed, i.e., each entry of sm is in the range of
32-bit binary numbers, and (iv) the buffer is well-typed, i.e., each entry of buf
is in the range of 32-bit binary numbers. Formally we get:

valid -disk :: Chd × bool

valid -disk(chd) ≡
chd .bp < 128

∧ lba-to-nat(chd .lba) < S
∧ ∀i < S · 128 . asm-nat(chd .sm(i))
∧ ∀i < 128 . asm-nat(chd .buf(i))

Note, that for the parameter S we have implicitly the two restrictions: S > 0
and S < 228.

4.1. HARD DISK MODEL 101

Initial disk configurations, are configurations which are valid, in idle state
and in which the buffer pointer is zero.

initial -disk :: Chd × bool

initial -disk(chd) ≡
valid -disk(chd)

∧ chd .cs = idle
∧ chd .bp = 0

The interrupt function is equal to the corresponding component in the
configuration, i.e. irhd(chd) ≡ chd .int.

4.1.4 Transitions

Disk computation is modeled by a transition function δhd. It takes an input
eifi from an external environment, an input mifi from the processor, and the
disk’s current state chd . It returns an updated state chd

′ and an output mifo
to the processor. The external output is always empty, i.e. eifo = eifoε.

The time it takes the disk to copy data from the buffer to the sector mem-
ory and vice versa is modeled by non-deterministic input from the external
environment. The external input is a trigger, indicating the end of the current
buffer transfer if set to true. We have:

Eifihd = bool

In the following we first describe the ports of the hard disk, identify which
port accesses are considered illegal, define the control state transitions and the
semantics of legal port accesses, and finally formalize the semantics of external
steps of the hard disk.

Ports The hard disk provides access to six ports (cf. Table 4.1): (i) Com-
mands are written to the port cmdp, (ii) the ports snumbp, cyllp, cylhp, and
driveheadp are used to pass sector addresses, (iii) the count of sectors still
to process is accessed through the port scntp, (iv) the disk buffer is accessed
through the port datap, and (v) the current status of a pending operation can
be read from the port statusp (if polling it provides value 1 other 0).

For defining the transition function, we first introduce the following ab-
breviations on port accesses: we write rd(mifi , port) for mifi .ad = port ∧
mifi .rd ≡ true and wr(mifi , port) for mifi .ad ≡ port ∧ mifi .wr = true. More-
over, commands issued to the hard disk are abbreviated by cmd(mifi , c) ≡
wr(mifi , cmdp) ∧mifi .din = c.

In the formal model we confine ourselves to only three commands: (i) re-
set, denoted by cmd(mifi ,RSTc), (ii) write, denoted by cmd(mifi ,WRc), and
(iii) read, denoted by cmd(mifi ,RDc),

102 CHAPTER 4. CASE STUDY: HARD DISK DRIVER

Port Access Abbreviation Name x86 Port

0 R/W datap Data 0x1f0

2 R/W scntp Sector count 0x1f2

3 R/W snumbp Sector number 0x1f3

4 R/W cyllp Cylinder low 0x1f4

5 R/W cylhp Cylinder high 0x1f5

6 R/W driveheadp Drive / head 0x1f6

7 W cmdp Command 0x1f7

7 R statp Status 0x1f7

8 W devicecontrolp Device control 0x3f6

Table 4.1: Ports of the Hard Disk (the last column lists the corresponding
default port numbers for the x86 architecture; this information is not used for
the formal specification and verification.)

Issuing the reset command, cmd(mifi ,RSTc), has top priority: the disk
enters the idle state, chd

′.cs = idle, and the buffer pointer, the interrupt enable
flag, and the pending interrupt flag are set to zero. The other components do
not change; the value of mifo is irrelevant (for any write).

If no reset command is issued, the hard disk either makes an error tran-
sition, setting chd

′.cs = err and mifo = 0, or a regular transition. Ignoring
hardware errors, we have two conditions that trigger error transitions: ille-
gal port accesses or absence of enabled regular transitions. Absence of error
transitions should guarantee that the processor handles the device correctly.

Illegal port accesses The function illegal -access denotes for a given mifi
illegal accesses.

illegal -access :: MifiT → bool

illegal -access(mifi) ≡

req(mifi , a) An access to a non-modeled or unused
port a ∈ {1, 9, 10, . . . , 1023}.

rd(mifi , devicecontrolp) A device control port read (usually in-
terpreted as read to alternate status
port, which we do not model here.)

rd(mifi , statp) ∧ chd .ien
∧chd .cs ∈ {brd, bwr}

A status port read if interrupts are en-
abled and the disk is in buffer read or
write state.

rd(mifi , datap) ∧ chd .cs 6= prd A data port read in a state other than
processor read.

4.1. HARD DISK MODEL 103

idle

brd prd

bwrpwr

c0

c1

¬eifi eifi
¬c3

c3∧c5

c3∧¬c5

c2

¬c4
c4 ¬eifi

eifi

eifi∧¬c6

c0=¬wr(mifi , cmdp)
ĉ= chd .scnt 6=0∧ (S ≥

chd .lba + chd .scnt)
c1= cmd(mifi , rdc)∧ ĉ
c2= cmd(mifi ,wr c)∧ ĉ
c̃= (chd .bp = 127)
c3= rd(mifi , datap)∧ c̃
c4= wr(mifi , datap)∧ c̃
c5= chd .scnt > 0
c6= chd .scnt > 1

Figure 4.1: Regular state transitions

wr(mifi , datap) ∧ chd .cs 6= pwr A data port write in a state other than
processor write.

wr(mifi , x) ∧ (x 6= datap)
∧mifi .din > 255

A write to a port other than the data
port with a value greater than 255.

cmd(mifi , c) ∧ c /∈ {rstc, rdc,wrc} A write of an non-modeled or unknown
command to the command port.

wr(mifi , driveheadp)
∧mifi .din÷ 16 6= 14

Drive/head port reads must have bits
[7:0] equal to 0b1110 = to-bin(14),
which select logical block addressing
and the master disk. The slave disk
is currently not modeled.

wr(mifi , devicecontrolp)
∧mifi .din /∈ {0, 2}

An access to ports for command pa-
rameters while the state is not idle. A
write different from 0 or 2 to the device
control port.

req(mifi , a) ∧ chd .cs 6= idle An access to ports for com-
mand parameters while the
state is not idle, i.e. for a ∈
{scntp, snumbp, cyllp, cylhp, driveheadp,
devicecontrolp}.

Regular State transitions We denote the regular (control) state transi-
tions by the function

δcs :: Chd ×MifiT × Eifihd → Hdcs

104 CHAPTER 4. CASE STUDY: HARD DISK DRIVER

The function is defined by the automaton in Figure 4.1. Edges are labeled with
transition constraints. All transitions not depicted in the figure, are assumed
to lead to the error state, err.

Thus, for all transitions (except in case of a reset) of the hard disk the
next control state is computed as follows:

chd .cs = if illegal -access(mifi)then
err

else
δcs(chd ,mifi , eifi)

Next, we describe the effects of regular transitions for legal port accesses.
Components which are not mentioned are assumed to stay unchanged. A com-
mand port write is fully described by the transition of the control automaton.
Accesses to other ports are defined as follows:

• Accesses to ports xp for x ∈ {snumb, cyll, cylh, drivehead} operate on one
of the four components of the (current) sector address chd .lba.

For reads, i.e., rd(mifi , xp), we set chd
′ = chd . The data returned to the

processor is defined as follows:

mifo =

chd .lba.snumb if x = snumb

chd .lba.cyll if x = cyll

chd .lba.cylh if x = cylh

224 + chd .lba.drivehead if x = drivehead

For writes, i.e., wr(mifi , xp) we update the chd .lba component. If x =
snumb, we set chd

′.lba.snumb = mifi .din. If x = cyll, we set chd
′.lba.cyll =

mifi .din. If x = cylh, we set chd
′.lba.cylh = mifi .din. If x = drivehead, we

set chd
′.lba.drivehead = mifi .din.

• An access to port scntp operates on the component chd .scnt.

For reads, i.e., rd(mifi , scntp), we set chd
′ = chd and return mifo =

chd .scnt.

For writes, i.e., wr(mifi , scntp), we set chd
′.scnt to mifi .din if mifi .din 6= 0

and to 256 otherwise. Thus, an input value of 0 encodes a sector count
of 256 and sector count writes yield a non-zero sector count component
by definition.

• Access to the device control port devicecontrolp allow to read and update
the interrupt enable flag chd .ien. Note that regularly the device control
port also allows to issue software reset to the hard disk [Ame00]. We do
not model these resets.

Reads to the ports are modeled as illegal operations.

4.1. HARD DISK MODEL 105

For writes, i.e., wr(mifi , devicecontrolp), we set chd
′.ien = (((mifi .din

mod 4)÷ 2) = 0).

• A legal access to the data port datap has memory semantics and operates
on the current word chd .buf(chd .bp) of the buffer. Hence, in case of a read
operation, wr(mifi , datap), the current word chd .buf(chd .bp) is returned.
In case of a write operation, rd(mifi , datap), the received word is stored
in the buffer, chd

′.buf(chd .bp := mifi .din).

As a side effect, a buffer access (even a read) increments the buffer
pointer: chd

′.bp = chd .bp + 1 mod 128.

• A status port read, rd(mifi , statp), returns 128 if the disk is still trans-
fering data between buffer and sector memory, i.e. if chd .cs ∈ {brd, bwr}
and 0 otherwise. As a side effect, such a read also clears the pending
interrupt flag, chd

′.int = 0.

External transitions The effect of the external input on the control state
is described by Figure 4.1.

Moreover, in case the hard disk receives an external trigger while it is
currently in a buffer read or write state, the start sector is incremented and
the sector count is decremented. For buffer write, the buffer contents are
copied to the disk contents. For buffer read, the requested sector is copied
from the sector memory to the buffer. The pending interrupt flag is turned
on in interrupt mode.

Before presenting the formal definition of an external transition, we intro-
duce the following function, which denotes a copy operation of l words starting
at address s in memory m to memory m′ starting at address s′.

mcopy (m,m′, s, s′, 0) = m
(m,m′, s, s′, (l + 1)) = mcopy(m(s+ l := m′(s′ + l)),m′, s, s′, l)

We abbreviate the application of mcopy by writing ml(s) := m′(s′) instead of
memcopy(m,m′, s, s′, l).

An external transition δhd(chd ,mifiε, eifi) returns the triple (chd
′,mifoε, eifoε),

106 CHAPTER 4. CASE STUDY: HARD DISK DRIVER

where the next state chd
′ is defined as follows:

chd [
lba := inc-lba(chd .lba),
scnt := chd .scnt− 1,
int := chd .ien,
sm := if chd .cs = bwr then

chd .sm128(lba-to-nat(chd .lba) · 128) := chd .buf(0),
else

chd .sm
buf := if chd .cs = brd then

chd .buf128(0) := chd .sm(lba-to-nat(chd .lba) · 128),
else

chd .buf]

Note, that for liveness reasons, the trigger must be active infinitely often.
That means, we have to restrict the set SeqV of valid execution sequences by
the following additional condition:

hd -trigger -live :: SeqT → bool

hd -trigger -live(seq) ≡ live(seq , λev.ev = (idhd, true))

This restriction is justified by the hardware implementation of the hard
disk. Formally, one has to prove that the the property holds for the scheduling
function sIPD of the simulation theorem between ISA and gate-level, i.e. that
range(sI PD) ⊆ SeqV holds.

Moreover, hd -trigger -live is a separable environment restriction (cf. Sect. 3.2.1).

Lemma 24 (Observation Valid on Sequence Set)

valid -ob(SeqV)

4.2. ASSEMBLY DRIVER 107

Ilw 15 topl saoff (0.1)
Ilw 2 topl maoff (0.2)
Iandi 16 15 255 (0.3)
Isli 17 15 8 (0.4)
Iandi 17 17 255 (0.5)
Isli 18 15 16 (0.6)
Iandi 18 18 255 (0.7)
Isli 19 15 24 (0.8)
Iandi 19 19 15 (0.9)
Iaddi 19 19 224 (0.10)
Iaddi 3 0 wrc (0.11)
Iaddi 4 0 2 (0.12)
Iaddi 12 0 8 (0.13)

Ixori 1 0 D0(idhd) (1.1)
Isw 4 1 devicecontrolp (1.2)
Isw 12 1 scntp (1.3)
Isw 16 1 snumbp (1.4)
Isw 17 1 cyllp (1.5)
Isw 18 1 cylhp (1.6)
Isw 19 driveheadp (1.7)
Isw 3 1 cmdp (1.8)

Iaddi 10 0 128 (2.1)
Ilw 3 2 0 (3.1)
Isw 3 1 datap (3.2)
Isubi 10 10 1 (3.3)
Ibnez 10 -16 (3.4)
Iaddi 2 2 4 (3.5)
Ilw 3 1 statp (4.1)
Isgei 14 3 128 (4.2)
Ibnez 14 -12 (4.3)
nop (4.4)
Isubi 12 12 1 (5.1)
Ibnez 12 -48 (5.2)
nop (5.3)

Figure 4.2: Device Driver — d -code(idhd, saoff,maoff)

4.2 Assembly Driver

We present a assembly driver for the hard disk for which we have formally
proven correctness in Isabelle/HOL [NPW02]. The correctness is based on the
model VAMP assembly with devices from Section 3.1.4 and the reordering
theory developed in Section 3.2. The driver writes a 4K page (8 sectors)
from the processor’s memory, starting at address ma, to the disk, starting
at sector sa. Its code is shown in Fig. 4.2. Arrows indicate jump targets.
Note, that according to the delayed PC, instructions in delay slots are always
executed.

The code is parametrized over: (i) The index idhd of the hard disk, and
(ii) the memory location of the two call parameters ma and sa. The code
is later on embedded into a C0 function call. Thus, the call parameters are
expected to be stored either as function arguments or local variables. The
two code parameters saoff and maoff denote the offsets in bytes of the two call
parameters in the top function frame. Remember, that the address of the
latter is stored in register topl.

Formally, we denote the code by the function d -code which takes the code
parameters and return the implementation of the driver depicted in Figure 4.2:

d -code :: N× N× N→ instrT list

We denote with d-length the length of the driver code in words:

d-length = length(d -code(idhd, saoff,maoff))

The code can be structured into five main parts. In part 0, we first load the two
parameters, ma and sa of the driver call to the registers 2 and 16 respectively.
After loading the parameters, the start sector index sa is decomposed into the
sector number in step (0.3), cylinder low in steps (0.4) and (0.5), cylinder high
in steps (0.6) and (0.7), and drive index in steps (0.8) to (0.10). Finally, the
values for the write command, the interrupt disable flag and the sector count
are written into registers in steps (0.11) to (0.13).

108 CHAPTER 4. CASE STUDY: HARD DISK DRIVER

In part 1, first, the disk address is saved to register 1. Then the command
parameters are written to the disk’s configuration ports. The interrupt mode is
disabled in step (1.2), the count of sectors to process is stored in step (1.3), the
sector address is stored in steps (1.4) to (1.7) and, finally, the write command
is issued in step (1.8).

Each iteration of the outer loop in steps (2.1) to (5.3) copies one sector
from the main memory of the processor to the sector memory of the disk. One
sector consists of 128 words. The first inner loop copies word after word first
from the processor’s memory to register 3 and subsequently to the internal
disk buffer. When the buffer is full (i.e., after one complete sector) the driver
enters the second inner loop, which polls on the status register until the hard
disk has written its buffer.

4.2.1 Correctness Theorem

The correctness of the driver is proven for all valid execution sequences. In a
nutshell, it states that the driver execution finally terminates, and that then
the page located in the processor memory is copied to the sector memory of
the disk.

Preconditions of the theorem Note, that in the following, the code pa-
rameters saoff and maoff are not passed explicitly to all predicates as param-
eters.

• Assumptions on the environment. We (can) prove the driver correctness
only for those execution sequences, which are well-typed and in which the
processor and the trigger of the hard disk are live, i.e. given a sequence
seq , we require:

well -typed(seq)
∧ hd -trigger -live(seq)
∧ proc-live(seq)

These conditions are subsumed in the set of valid sequences SeqV defined
in Section 4.1.

• Assumptions on the hard disk. We assume that the index of the hard
disk is in range, and that the hard disk connected to the processor is
in initial configuration (i.e. the control state is idle, the buffer pointer is
zero and the configuration is valid):

driver -precondhd :: (D→ SD)→ D→ bool

driver -precondhd(devs, idhd) ≡
idhd ∈ D

∧ initial -disk(devs(idhd))

4.2. ASSEMBLY DRIVER 109

• Assumptions on the assembly machine. We assume that the assembly
configuration is in a valid state, in which the system mode is set and all
interrupts are disabled. These conditions are subsumed by the precon-
dition of the ISA-assembly transfer theorem.

Moreover, we require that the driver code is correctly stored in the as-
sembly machine, i.e. it is within regular memory and it is pointed to by
the current delayed program counter.

Thus, we get for the assembly machine the following precondition:

driver -precondproc :: Casm → bool

driver -precondproc(asm) ≡
valid -asm(asm)

∧ asm.spr!MODE = 0
∧ asm.spr!SR = 0
∧ asm.dpc + d-length < device-border
∧ to-instr -list(asm.mm, asm.dpc, d-length) = d -code(idhd, saoff,maoff)

• Assumptions on call parameters For a correct reading of the call param-
eters, we have to ensure that the corresponding memory locations are in
range, aligned and do not intersect with the device domain.

Moreover, we require that all memory addresses from which the driver
reads are word aligned and do not overlap with device domains, i.e.
the start address ma from which the driver reads and the last address
ma+ 128 · 8 are valid.

For the sector addresses to which the driver writes, we assume that they
are within the maximum sector count of the hard disk.

driver -precondargs :: Casm × N× N→ bool

driver -precondargs(asm, sa,ma) =
valid -ad(i2n(asm.gpr!toplm) + maoff)

∧ valid -ad(i2n(asm.gpr!toplm) + saoff)
∧ ma = i2n(asm.mm((i2n(asm.gpr!toplm) + maoff)÷ 4))
∧ sa = i2n(asm.mm((i2n(asm.gpr!toplm) + saoff)÷ 4))
∧ valid -ad(ma)
∧ valid -ad(ma+ 128 · 8 · 4)
∧ sa+ 8 < S

Postconditions of the theorem

• Hard disk. The main result of the theorem is that finally the data is
copied from the processor’s memory to the sector memory of the hard
disk. Moreover, we have to show that the hard disk is again in initial

110 CHAPTER 4. CASE STUDY: HARD DISK DRIVER

configuration (i.e. it is valid, the control state is idle and the buffer
pointer is zero).

driver -posthd(asmd ′, asmd , idhd, sa,ma) ≡
initial -disk(asmd ′.devs(idhd))

∧ asmd ′.devs(idhd).sm =
(asmd .devs(idhd)).sm8·128(128 · sa) := asmd .mm(ma÷ 4)

Note, that this predicate also ensures that sectors other than the ones
specified by the call parameter have not been changed by the driver.

• Processor. For the processor we show that neither the main memory
nor the special purpose registers were altered. For a correct embedding
of inline assembly code (cf. Section 3.4), we also have to ensure that
registers used by the compiler have not been changed.

Moreover, we show that the program counters point at the first instruc-
tion after the driver code. For the driver code we also claim, that it has
not been manipulated.

driver -postproc(asm, asm ′) ≡
asm ′.mm = asm.mm

∧ asm ′.spr = asm.spr
∧ asm ′.gpr!sbase = asm.gpr!sbase
∧ asm ′.gpr!toph = asm.gpr!toph
∧ asm ′.gpr!toplm = asm.gpr!toplm
∧ asm ′.dpc = asm.dpc + d-length
∧ to-instr -list(asm.mm, asm.dpc, d-length) = d -code(idhd, saoff,maoff)

• ISA-assembly translation. The pervasive approach in Verisoft requires
that all results can be finally transferred down to the gate-level im-
plementation of the hardware. Since assembly is only an intermedi-
ate model, we have to ensure that driver correctness can also be ex-
pressed at the level of ISA. Thus, the precondition isa-asm-preconddyn

of the simulation Theorem 1 has to be guaranteed (requires the predicate
step-properties to hold in each step).

• Reordering. Remember that the reordering theory described in Sec-
tion 3.2 was mainly developed for pure computations, i.e. computations
during which the processor controls at most one device. Thus, to apply
the reordering results on the hard disk driver, we have to prove that
during execution only the hard disk is accessed:

only-hd -access :: Casmd × SeqT × N→ bool

only-hd -access(asmd , seq , N) ≡ pure(asmd , seq , N, idhd)

4.2. ASSEMBLY DRIVER 111

Stating the Theorem The assembly driver correctness theorem claims for
each valid execution sequence the existence of a step number N after which the
driver has finished execution and has written a 4K page from the processor’s
memory, starting at address ma, to the disk, starting at sector sa.

Theorem 10 (Assembly driver correctness)

∀asmd0, idhd, sa,ma. (
driver -precondhd(asmd0.devs, idhd)

∧ driver -precondproc(asmd0.proc)
∧ driver -precondargs(asmd0.proc, sa,ma)
=⇒
∀seq ∈ SeqV . (
∃asmd ′, N.

asmd ′ = ∆asmd(asmd0, seq , N)
∧ driver -posthd(asmd0, asmd ′, idhd, sa,ma)
∧ driver -postproc(asmd0.proc, asmd ′.proc)
∧ isa-asm-preconddyn(asmd0, asmd0.proc.dpc, d-length, seq , N)
∧ only-hd -access(asmd0, seq , N)))

4.2.2 Proving the theorem

Proof Methodology. We apply the reordering theory developed in Sec-
tion 3.2 to sequentialize reasoning about the concurrent system as far as pos-
sible. The device under control is the hard disk, with index idhd ∈ D; other
devices are not accessed. Stability holds for the hard disk in all states, except
for those in which a sector is transfered between the buffer and the sector
memory.

Lemma 25 (Stability of hard disk)

(chd .cs 6= bwr ∧ chd .cs 6= brd) =⇒ stable(chd)

For parts of the code in which either no device at all or only a stable hard
disk is accessed, correctness can be proven by reasoning solely on steps of the
assembly machine and by ignoring external device steps.

We prove properties on the assembly code by forward-style reasoning. No
logic or automatic inference system is applied. Rather, we annotate each line
i of the code with a predicate Qi :: Casmd → bool over the combined system.
We require Qi to hold whenever the assembly machine is at instruction i of the
hard disk driver. The latter condition is denoted by the following predicate:

@i :: Casm → bool

@i(asm) ≡ asm.dpc = asmd0.proc.dpc +32 4 · i
∧ asm.pc = asmd0.proc.dpc

112 CHAPTER 4. CASE STUDY: HARD DISK DRIVER

Formally, we prove for each line i of the device driver:

@i(asm) =⇒ Qi(asm)

Note, that a program logic would enable us to generate these line properties
automatically (except for loop invariants).

Moreover, we use a technique introduced by Leinenbach [Lei08] to simplify
reasoning about general invariants which have to hold in each step of the
assembly computation (see blow).

Basic safety property. Some properties have to hold in each step of the
driver execution, we call those basic invariants. Basic invariants split in:

• General proof obligations, i.e. properties which are not driver-specific.
These are (i) validity of the assembly state, and (ii) dynamic precondi-
tions of the ISA-assembly translation (given by step-properties defined
in Secton 3.1.5).

• Driver-specific conditions. During execution we have to ensure that
the code, certain registers and the memory of the assembly machine
have not been manipulated. We group these conditions by a predicate
driver -post ′hd, which is equal to its unprimed counterpart, except that
the second last conjunct (on the delayed program counter) is omitted.

Suppose the initial configuration asmd0 is given as parameter, then the
basic invariant of the driver code is defined by:

basic-inv :: Casm → bool

basic-inv(asm) ≡
valid -asm(asm)

∧ step-properties(asm, asmd0.proc.dpc, d-length)
∧ driver -post ′(asmd0.proc, asm)

Discharging the general proof obligations validity and step-properties in
each step by hand, can be extremely cumbersome. Even though most instruc-
tions, do not interfere with them, still, in the mechanic proof system, they
have to be carried to each assumption and conclusion, unpacked and handled.
This could lead to a significant proof overhead, a much higher complexity, and
slow down the prover considerably.

The solution is to use an extended assembly semantics, which by definition
ensures the maintenance of these invariants. This semantics is defined via a set
of lemmas, one for each instruction type. For example, for addition, instead
of using the plain assembly semantics, we resort to the following lemma:

4.2. ASSEMBLY DRIVER 113

Lemma 26 (Addition)

step-properties(asm, start-adr , prog-len)
∧ valid -asm(asm)
∧ current-instr(asm) = Iaddi dr sr i
=⇒

δasm(asm) = asm[dpc := asm.dpc +32 4,
pc := asm.pc +32 4,
gpr := asm.gpr[dr := asm.gpr!(sr) +32 i]]

∧ step-properties(δasm(asm), start-adr , prog-len)
∧ valid -asm(δasm(asm))

Initialization. The initialization consists of two main chunks: in part 0, ad-
dresses, commands and configuration values are computed and written to the
processor’s registers. Most importantly, the start sector address sa is decom-
posed into the different lba blocks. For part 0, we prove that any computation
starting at step (0.1) and with Q0.1 as the preconditions of the theorem, finally
will lead to step (1.1) where the line predicate Q1.1 is fulfilled and the basic
invariant holds in each step in between. During its execution, the processor
does not access the hard disk at all. Thus, it suffices to prove correctness (and
termination) in the assembly model without devices. We apply Lemma 5 to
generalize this result to an arbitrary execution of the interleaved system, where
the free variable Q of the lemma is instantiated to the basic invariant. Note,
that the precondition of the lemma — namely that no device is accessed — is
also discharged on the level of pure assembly.

Then, in part 1, the configuration ports of the hard disk are set. We prove
that any computation starting at step (1.1) and with Q1.1 fulfilled, finally will
lead to step (1.8) where the the first instantiation of the outer loop invariant,
defined in the next paragraph, holds: outer -loop-inv(asmd , 0). During its
execution, the processor only accesses the hard disk. Moreover, the hard
disk remains in the control state idle which is according to Lemma 25 stable.
Thus, it suffices to prove correctness (and termination) for the sequential
assembly model with devices, in which only the processor takes steps (i.e. for
the empty execution sequence defined in Section 3.2.2). We apply Lemma 6 to
generalize this result to an arbitrary execution of the interleaved system. The
free variable Q of the lemma is again instantiated to the basic invariant. Note,
that the precondition of the lemma — only hard disk access and the stability
of the hard disk — are also discharged on the level of sequential assembly.

The initialization part, decomposes the sector start address and writes
each component to the corresponding component of the hard disk:

asmd .devs(idhd).lba.snumb = sa ∧32 256,
∧ asmd .devs(idhd).lba.cyll = (sa >>l32 8) ∧32 256,
∧ asmd .devs(idhd).lba.cylh = (sa >>l32 16) ∧32 256,
∧ asmd .devs(idhd).lba.drivehead = (((sa >>l32 24)∧32) +32 224) mod 16

114 CHAPTER 4. CASE STUDY: HARD DISK DRIVER

We have to prove correctness of this decomposition, i.e. the following con-
dition of the outer loop invariant has to hold:

lba-to-nat(asmd .devs(idhd).lba) = sa

First, we show that bit-level shift can be interpreted as division, and bit-
level AND with sequences of ones as modulo on naturals:

Lemma 27 (Shift as modulo/ And as division)

i > 0 ∧ z > 0 ∧ sa ≥ 0
∧ (sa >>l32 i) ∧32 (2z − 1) = (sa÷ 2i) mod 2z

After applying this lemma on our goal, we only have to prove the following
transformation to be correct:

Lemma 28 (Correctness of lba computation)

sa < 228

=⇒ lba-to-nat (snumb = sa mod 256,
cyll = (sa÷ 256) mod 256,
cylh = (sa÷ 2562) mod 256,
drivehead = ((sa÷ 2563) mod 16) + 224 mod 16)

= sa

This lemma is proven by straightforward arithmetic.

Loop invariants The outer loop, parts (2) to (5), is traversed 8 times,
writing a sector to the disk in each iteration. Let i denote the number of
sectors so far processed. For the hard disk the outer loop invariant maintains
that: (i) interrupts are disabled, (ii) the sector address has been correctly
decomposed and stored in the lba component of the disk, (iii) the component
scnt hold the number of sectors still to process, i.e. 8−i, (iv) the buffer pointer
is zero, (v) i sectors have already been copied correctly from the processor’s
memory to the sector memory, (vi) if not all sectors have been already copied,
the hard disk is in state pwr otherwise in state idle.

For the processor the outer loop invariant maintains that: (i) the disk
address is correctly stored in register 1, (ii) the memory address of the next
sector to copy is stored in register 2, (iii) the number of sectors still to process
is stored in register 12, (iv) the program control is either at the beginning of
the loop (i < 8), or at the first instruction after loop (i = 8).

4.2. ASSEMBLY DRIVER 115

Formally, the invariant on the complete system reads as follows:

outer -loop-inv(asmd , sa,ma, i) =
asmd .devs(idhd).bp = 0

∧ asmd .devs(idhd).ien = false
∧ asmd .devs(idhd).scnt = 8− i
∧ asmd .devs(idhd).cs = if i < 8 then pwr else idle
∧ lba-to-nat(asmd .devs(idhd).lba) = sa+ i
∧ asmd .devs(idhd).sm =

(asmd0.devs(idhd).sm128·i(sa) := asmd0.proc.mm(ma÷ 4))
∧ asmd .proc.gpr!(1) = D0(idhd)
∧ asmd .proc.gpr!(2) = ma+ 4 · 128 · i
∧ asmd .proc.gpr!(12) = 8− i
∧ (if i < 8 then @2.1 else @(5.3+1))(asmd .proc)

The correctness of the driver follows from proving that the invariant is
indeed maintained by the outer loop:

Lemma 29 (Correctness of outer loop)

∀seq ∈ SeqV .
i < 8 ∧ outer -loop-inv(asmd , sa,ma, i)

=⇒ (∃T . outer -loop-inv(asmd seq,T , sa,ma, i+ 1))

For the proof of this lemma for j > 0 we have to reason about the data copy
and the polling loop, parts (3) and (4).

The data copy loop writes a single sector from the memory to the disk
buffer. We define the invariant inner -loop-inv(asmd , sa,ma, i, k) in which the
inner loop has been traversed k times as part of traversal i of the outer loop.
Again, invariants on control, counters, and device state are maintained. Most
importantly the invariant maintains that (i) the buffer pointer is set to k,
(ii) the hard disk is in state pwr if there are still words to be copied, otherwise
it is in state bwr, (iii) k words have been copied from the memory to the
buffer, (iv) the memory address of the next word to copy is stored in register
2, (v) the number of words still to process is stored in register 10, (vi) the
program control is either at the beginning of the loop (k < 128), or at the
first instruction after loop (k = 128).

116 CHAPTER 4. CASE STUDY: HARD DISK DRIVER

Formally, we have:

inner -loop-inv(asmd , sa,ma, i, k) =
asmd .devs(idhd).ien = false

∧ lba-in-range(asmd .devs(idhd).lba)
∧ asmd .devs(idhd).scnt = 8− i
∧ lba-to-nat(asmd .devs(idhd).lba) = sa+ i
∧ asmd .devs(idhd).sm =

(asmd0.devs(idhd).sm128·i(sa) := asmd0.proc.mm(ma÷ 4))
∧ asmd .proc.gpr!(1) = D0(idhd)
∧ asmd .proc.gpr!(12) = 8− i
∧ asmd .devs(idhd).cs = if k < 128 then pwr else bwr
∧ asmd .devs(idhd).bp = k mod 128
∧ asmd .proc.gpr!(2) = ma+ 4 · 128 · i+ k
∧ asmd .proc.gpr!(10) = 128− k
∧ asmd .devs(idhd).buf =

(asmd0.devs(idhd).bufk(0) := asmd0.proc.mm((ma÷ 4) + 128 · i))
∧ (if k < 128 then @3.1 else @4.1)(asmd .proc)

We prove, that the inner loop maintains the invariant defined above:

Lemma 30 (Correctness of first inner loop)

∀seq ∈ SeqV .
k < 128 ∧ i < 8

∧ inner -loop-inv(asmd , sa,ma, i, k)
=⇒ (∃T . inner -loop-inv(asmd seq,T , sa,ma, i, k + 1))

During the inner loop, the processor only accesses the hard disk. Moreover,
the hard disk remains in the control state pwr which is according to Lemma 25
stable. Thus, it suffices to prove correctness (and termination) for the sequen-
tial assembly model with devices, in which only the processor takes steps (i.e.
for the empty execution sequence). We apply Lemma 6 to generalize this
result to an arbitrary execution of the interleaved system.

Polling So far, code correctness could be proven by applying sequential
assembly and hard disk semantics. This was possible, since the processor
either accessed no device at all, or the accessed hard disk was stable. That
does not hold anymore at the end of the first inner loop, where the disk may
be in the the non-stable state bwr (cf. Figure 4.3).

First, we split the inner loop invariant into the two parts inner -loop-invhd,
grouping all assumptions on the hard disk, and inner -loop-invproc, grouping
all assumptions on the processor, except for the last conjunct on the program
control. Moreover, the predicate polling indicates that the processor is within
the polling loop:

polling(asm) = @4.1(asm) ∨@4.2(asm) ∨@4.3(asm) ∨@4.4(asm)

4.2. ASSEMBLY DRIVER 117

hd

(id
,tru

e)
h
d

4.1
@

hd

bwr

idle
pwr

4.2
@

4.3
@

5.1
@

4.4
@

Ilw 3 2 0

Figure 4.3: During the polling loop

Since, valid sequences ensure liveness of the hard disk trigger, we deduce
that finally a step is reached after which the trigger is scheduled for the first
time:

Lemma 31 (Smallest element)

∀seq ∈ SeqV , T .
(∃T ′.

seq(T ′) = (idhd, true)
∧ (∀T < T ′′ < T ′.seq(T ′′) 6= (idhd, true)))

Within this time, the processor will neither leave the polling loop nor invalidate
the invariants:

Lemma 32 (During Polling)

inner -loop-inv(asmd , sa,ma, i, 128)
∧ @4.1(asmd .proc)
∧ (∀t ≤ T . seq(t) 6= (idDhd, true))
=⇒ (∀t ≤ T . polling(asmd seq,T .proc)
∧ inner -loop-invhd(asmd seq,T .proc, sa,ma, i, 128)
∧ inner -loop-invproc(asmd seq,T .proc, sa,ma, i, 128))

For the proof, all device steps except for the hard disk can be ignored (they
are not accessed by the processor). Moreover the hard disk will not change
its state, because no trigger is scheduled and reading the status register does
not alter the disk.

Finally, the trigger is true, and in the following step the disk has transferred
the buffer to the sector memory and switches to a stable state again, i.e.
inner -loop-invhd(asmd seq,T .proc, sa,ma, i+ 1, 0) holds.

We prove, that once the hard disk was triggered, the polling loop will
finally again reach step (4.1) where the status register is read:

118 CHAPTER 4. CASE STUDY: HARD DISK DRIVER

Lemma 33 (End of Polling)

inner -loop-invproc(asmd , sa,ma, i, 128)
∧ polling(asmd .proc)
∧ inner -loop-invhd(asmd , sa,ma, i+ 1, 0)
=⇒ (∃T .@4.1(asmd .proc)
∧ inner -loop-invhd(asmd , sa,ma, i+ 1, 0)
∧ inner -loop-invproc(asmd , sa,ma, i, 128))

Once the processor is at step (4.1) and the disk is stable, the polling loop
will be finally left and the next outer loop invariant will be established:

Lemma 34 (End of Polling 2)

inner -loop-invproc(asmd , sa,ma, i, 128)
∧ @4.1(asmd .proc)
∧ inner -loop-invhd(asmd , sa,ma, i+ 1, 0)
=⇒ (∃T . outer -loop-inv(asmd seq,T , sa,ma, i+ 1, 0))

The last two lemmas are proven sequentially for empty execution sequences.
Since the disk is stable we can generalize these results to arbitrary interleaved
executions by applying Lemma 25.

4.3. C0 DRIVER 119

Memory - Asm

CVM
C0-machine

maxaddress

codebase

ZFP

K
E

R
N

E
L

p
g

zero-filled page

1

virtual user
space

V
U

S
P

A
C

E
p
g

DEVICE-
BORDER

boot region

swap region

B
O

O
T

p
g

Memory - HD

S
W

A
P

S
IZ

E
p
g

S

Figure 4.4: Memory layout of SWAP/CVM on hard disk/target machine

4.3 C0 Driver

In this section we embed the assembly hard disk driver (cf. Section 4.2) into
a C0 call, specify its effects in terms of XCall semantics (cf. Section 3.5) and
prove its correctness.

With this final theorem, we discharge the implementation correctness proof
obligation of the XCalls used in the context of the page-fault handler verifica-
tion. Moreover, page-fault handler correctness itself gets transferred by this
theorem from C0 with XCalls down to VAMP assembly with devices.

4.3.1 Notation and constants

The memory of the target machine is organized in pages. A size of a page in
words is denoted by PAGE-SIZE = 1024. We denote the page index of some
memory address ad by px(ad) ≡ ad÷ 212.

The driver is called as part of the page-fault handler, which in turn is
invoked by the kernel. Hence, the C0 machine of the kernel is the top-most
reference model for the following verification of the driver. In Figure 4.4 the
memory layout of the machine is depicted. Basically, the memory of the target
machine splits into two parts: the kernel memory, and the virtual memory
space of the user machines. The former allocates KERNELpg many pages. It
consists not only of the C0 machine implementing the kernel, but also of a
special page, called zero-filled paged with page index ZFP = KERNELpg − 1
(i.e. last page of the kernel memory; used for lazy allocation of new pages).
The size in pages of the virtual user space space is denoted by the constant

120 CHAPTER 4. CASE STUDY: HARD DISK DRIVER

VUSPACEpg.
The sector memory of the hard disk is logically divided into two parts: a

boot region and the rest, which is used by the page-fault handler to swap out
pages. The boot region is never accessed by the page-fault handler. Its size
is denoted by the constant BOOTpg. The constant SWAPSIZEpg denotes the
size of the hard disk memory in pages without the pages used for booting, i.e.
SWAPSIZEpg = S ÷ 8− BOOTpg.

4.3.2 Embedding the driver in C0

The driver presented here is used in the generic Verisoft kernel CVM to per-
form page swap-out. This is achieved by embedding the assembly code into
the two C0 functions with names writePagei and readPagei.

We describe the implementation of the C0 driver for writing pages by the
following function declaration:

writePageidecl :: fun-declT

It is made up of the following four fields:

• Parameters. Like the assembly driver, it gets two parameters: 1. The
start address ma ∈ varn of the page to write, and 2. the destination
sector address sa ∈ varn .

• Local variables No local variables are required.

• Return type A call to the hard disk driver returns always with the
boolean value true. The implementation does not treat incorrect calls.
Conceivable failures may be due to lacking of swap memory or invalid
addresses. Not-treating these sources of possible failures both in speci-
fication and even in the implementation follows a simple rule: For non
top-level functionalities we only specify correct behavior. Non top-level
includes all functions which are only called in verified code, i.e. which is
not delivered to some end user.

Though in case of our hard disk driver it gets the obligation of the calling
program, i.e. the page fault handler to ensure that parameters are always
valid and the memory size is not exceeded.

• Program body The program body consists of the inline assembly
code and a return statement. Remember, that the assembly driver is
parametrized over the offsets of the call parameters in the current stack
frame and the device id. The corresponding paramter offsets saoff and
maoff of the C0 function call are 16 and 20 (the first four words are used
to store the function header, cf. Section 3.3). We assume that the hard
disk is connected as device with id zero.

4.3. C0 DRIVER 121

Formally, we describe the function declaration by:

writePage idexl ≡
(params = [(ma, Int) , (sa, Int)] ,
locals = [] ,
ret-type = Boolean,
body = Asm(d -code(0, 16, 20); ; Return(Lit(BoolV(true))))

The read case of the driver is implemented analogously by the function
declaration readPageidecl ∈ fun-declT .

4.3.3 Specifying the driver

We specify the driver by defining (i) the extended state, (ii) the corresponding
abstraction relation, and (iii) the semantics of the XCalls for reading and
writing pages.

Extended State The extended state is an abstraction of the non-system
memory of the machine running the driver (i.e. the page fault handler which is
ran by the kernel) and the hard disk connected to that machine. The state is
used to specify the effects of read and write operations to and from the hard
disk. It has record type pfhX T with the following two components, which
are both modeled as mappings from page indices to page contents, where the
latter consist of word-addressable memories:

mem :: N→ (N→ N) User part of the physical memory, which is not
reachable by C0.

swap :: N→ N Content of the hard disk’s sector memory exclud-
ing the boot region.

Abstraction relation According to the XCall theory developed in Sec-
tion 3.5, we have to provide the abstraction relation xconsisex. It consists of
the following two parts:

• The abstraction relation xconsisswap maps the extended swap component
to the sector memory of the hard disk, except for the boot sectors.
Moreover, we require that the hard disk is in initial state. Formally, we
get:

xconsisswap(chd , xswap) ≡
initial -disk(chd)

∧ (∀k < SWAPSIZEpg , i < PAGE-SIZE .
chd .sm(PAGE-SIZE · (BOOTpg + k) + i) = xswap(k)(i))

122 CHAPTER 4. CASE STUDY: HARD DISK DRIVER

• The abstraction relation xconsisswap maps the extended memory com-
ponent to the parts of the processor’s main memory representing the
user virtual memory space.

Only pages which lay outside the range of the C0 machine, which im-
plements the kernel are covered by the abstraction. The kernel memory
contains not only the C0 machine implementing it, but also the zero-
filled page. Thus, all pages, starting at the zero-filled page and ending
at the last page belonging to the virtual user space are contained in the
extended memory component

xconsismem(mm, xmem) ≡
∀k < (ZFP + VUSPACEpg) , i < PAGE-SIZE .
k ≥ ZFP =⇒
i2n(mm(PAGE-SIZE · k + i)) = xmem(k − ZFP)(i)

We get for the overall abstraction relation on the extended state:

xconsisdriver(pfhX , (mm, chd)) = xconsismem(mm, pfhX .mem)
∧ xconsisswap(chd , pfhX .swap)

XCall semantics Before introducing the XCall semantics, we define two
functions, which map page indices of the main memory and the sector memory
in the implementation to their counterparts in the extended state.

For memory addresses we skip the kernel pages, except for the zero-filled
page: adjustmem(ad) ≡ px(ad− 4 ·ZFP ·PAGE-SIZE). For sector addresses we
skip the boot pages: adjustswap(ad) ≡ (ad÷ 8)− BOOTpg.

As mentioned before it suffices only to verify behavior of the driver for the
non-failure case. Therefore, we identify a set of conditions over the parameters
of the extended semantics, for which the XCall semantics will never get stuck.
The parameters are the start memory address and the start sector address:
(i) The start memory address is page aligned, (ii) the page to be copied does
neither overlap with device domains, (iii) nor with the memory of the C0
kernel machine, and (iv) it lies within the virtual address space, (v) the start
sector address is page aligned, i.e. dividable by 8, and (vi) lies outside the
boot region of the hard disk.

Formally, we get the following predicate denoting the precondition of both
driver functions — reading and writing pages:

driver -precond(ma, sa) ≡
PAGE-SIZE dvd ma

∧ (ma + 212 − 4) < device-border
∧ ZFP · PAGE-SIZE ≤ ma
∧ px(ma) < ZFP + VUSPACEpg

∧ 8 dvd sa
∧ BOOTpg ≤ sa ÷ 8
∧ sa ÷ 8 < BOOTpg + SWAP-SIZEpg

4.3. C0 DRIVER 123

The semantics of the XCalls for the driver is simple: the write function
copies data from the extended memory to the extended swap, and the read
function has the reversed effect.

According to Section 3.5 an XCall declaration consists of a triple, defining
the types for the input and output parameters, and the semantics of the XCall.
For the write case we get:

• Input parameter types. The input parameters are equal to the cor-
responding C0 call, i.e. we have two parameters of type Int.

• Output parameter types. The XCall does not alter any global vari-
ables, and returns with a value of type Boolean.

• The XCall semantics function takes as arguments the evaluated list of
parameters of the XCall and the current extended state (remember that
expressions evaluate to values of type contents, which are small memories
of basic values). If the parameters fulfill the driver preconditions the C0
constant True and an updated extended state is returned. Otherwise,
the computation gets stuck.

xsemwdriver(args, xpfh) ≡
let
sa = (args!0)(0)
ma = (args!0)(1)
pfhX ′ = pfhX [swap := pfhX .swap(
adjustswap(sa) := pfhX .mem(adjustmem(ma)))]

in
if driver -precond(ma, sa) then

⌊
([True], pfhX ′)

⌋
else ⊥

We denote the XCall names of the read and write functions with writePagex

and readPagex.

Formally, the declaration for the write XCall is given by:

writePagexdecl ≡ ([Int, Int], [Boolean], xsemwdriver)

For the read case, the input and output parameters are identical to the
write case. The semantics xsemrdriver only differ by the definition of the suc-
cessor state pfhX ′. Now, the data is copied from the extended swap to the
extended memory component: pfhX [mem := pfhX .mem(adjustmem(ma) :=
pfhX .swap(adjustswap(sa)))]. Formally, the declaration for the read XCall is
given by:

readPagexdecl ≡ ([Int, Int], [Boolean], xsemrdriver)

124 CHAPTER 4. CASE STUDY: HARD DISK DRIVER

4.3.4 Embedding the page-fault handler

In this section we first state the correctness theorem of the C0 driver and
then prove its correctness by instantiating the XCall theory developed in Sec-
tion 3.5. In short, we have to prove implementation correctness against the
XCall specification. Finally, we show how the theorem is instantiated to be
applied for the kernel verification.

Instantiating the theory We formulate and prove the correctness of the
driver implementation against the XCall specification by applying the theory
developed in Section 3.5. We first have to define the mapping of function
names and the specification map:

fnsdriver ≡
{writePagex 7→ bwritePageic,

readPagex 7→ breadPageic}

specMapdriver ≡
{writePagex 7→ bwritePageidecl,writePagexdeclc,

readPagex 7→ breadPageidecl, readPagexdeclc}

Now, we instantiate the theory as follows (left column: parameter name,
middle column instantiation):

α pfhX T The type of the extended state.
xconsisex xconsisdriver The abstraction of the extended state. Ac-

cording to the XCall theory we have to dis-
charge its validity validex(xconsisex,ZFP) (cf.
Section 3.5). Thus, we have to show that the
abstracted memory does not intersect with the
memory of the C0 kernel machine and that the
hard disk is stable whenever consistency holds.
The latter condition follows simply from the
predicate initial -disk which is part of swap con-
sistency. The first condition holds under the
assumption that the heap memory is always
bounded by ZFP, since ZFP is the first page of
the abstraction. This assumption is therefore
included to the correctness theorem described
below.

idX 0 The identifier of the controlled device; in our
case the hard disk.

fns fnsdriver Mapping of XCall names to names of functions
implementing them.

specMap specMapdriver Mapping containing implementation seman-
tics.

Stating the Simulation The theorem follows the form of the XCall com-
piler correctness theorem (Theorem 9). The preconditions can be summarized

4.3. C0 DRIVER 125

as follows: (i) The intermediate C0 machine and the assembly machine are in
a valid state (enabling application of compiler correctness, cf. Section 3.3.7),
(ii) the heap consumption of the final state of the extended computation is
bounded by max -address (i.e. also the heap consumption in each step, cf. Sec-
tion 3.3.8), (iii) max -address itself is bounded by the address of the zero-filled
page, (iv) the static estimated stack-size consumption is within the available
memory space (cf. Section 3.3.8), (v) the code of the extended machine does
neither contain inline assembly code, nor (vi) any XCall invocation except
of writePagex and readPagex, (vii) XCall consistency holds, (viii) the pro-
gram rest of the extended machine consists of a single function call (that is
the granularity at which properties are transfered), and (ix) a valid extended
computation of k steps exists.

Once the preconditions are granted, we show that for all valid sequences
a VAMP assembly with devices computation exists, such that the following
postconditions hold: (i) It exists a new intermediate C0 machine, such that
consistency again holds, (ii) the VAMP assembly with devices computations
fulfills the requirements of the ISA-assembly translation (cf. Section 3.1.5),
(iii) the assembly and C0 configurations are valid again, and (iv) the VAMP
assembly with devices computations is pure, i.e. only the hard disk is accessed
(cf. Section 3.2).

Moreover, we have an additional postcondition, which concerns are all
other devices than the hard disk. Because, the code only accesses the hard
disk, the computation of other devices is not influenced by the simulated com-
putation of the processor. Still, due to input from the external environment,
the configuration of the devices may have changed. Thus, the final state of
any device can be computed by ignoring all steps of the processor and of the
hard disk. Note, that this final postcondition follows directly from purity by
applying Theorem 3.

Formally, we get the following theorem:

126 CHAPTER 4. CASE STUDY: HARD DISK DRIVER

Theorem 11 (Driver XCalls Compiler Correctness)

max -address ≤ ZFP
∧ valid -C0 (tenv , pt i, c)
∧ isa-asm-precond init(asmd .proc, code-base, code-size(tenv , pt i, c.mf.gm))
∧ heap-base + heap-size(cX

′.c, pt i) < max -address
∧ max -address < device-border
∧ sz ∈ ub-costs(tenv , pt i, fn i)
∧ sz + stack -start(tenv , pt i, c.mf.gm) + stack -size(tenv , c) ≤ heap-base
∧ valid -propcode(cX .c.prog, ptx, (λs.s 6= Asm(. . .)))
∧ valid -propcode(cX .c.prog, ptx,

(λs.s = XCall(fnx, . . .) =⇒ fnx ∈ dom(specMapdriver)))
∧ xconsis(tenv , pt i, c, alloc, asmd , ptx, cX , xpt , fnsdriver, specMapdriver, rest , idX)
∧ cX .c.prog = SCall(. . . , fn i, . . .)
∧ δcx

k(cX , tenv , pt i, xpt) = bcX
′c

=⇒ (∀seq ∈ SeqV . ∃c′, alloc′, T.
xconsis(tenv , pt i, c′, alloc′, asmd seq,T ,

ptx, cX
′, xpt , fnsdriver, specMapdriver, rest , idX) ∧

isa-asm-preconddyn(asmd , code-base,
code-size(tenv , pt i, c.mf.gm), seq , T) ∧

isa-asm-precond init(asmd seq,T .proc, code-base,
code-size(tenv , pt i, c.mf.gm))∧

valid -C0 (tenv , pt i, c′) ∧
pure(asmd , seq , T, idX) ∧
(∀idY 6= 0 . asmd seq,T .devs(idY) =

asmdπ(seq,idX),step-nr(seq,0,T).devs(idY)))

Proving implementation correctness The correctness of the theorem
follows almost immediately by instantiating Theorem 9 as described above
and discharging its first assumption. This assumption states that the XCalls
writePage and readPage are implemented correctly.

Formally, we have to prove that the predicates correctxcall(specMap,writePagex, 0)
and correctxcall(specMap, readPagex, 0) hold (cf Section 3.5). For the write case
this unpacks to the following Lemma:

4.3. C0 DRIVER 127

Lemma 35 (Correctness of writePage implementation)

valid -C0 (tenv , pt i, c)
∧ isa-asm-precond init(asmd .proc, code-base, code-size(tenv , pt i, c.mf.gm))
∧ heap-base + heap-size(cX

′.c, pt i) < max -address
∧ max -address < device-border
∧ sz ∈ ub-costs(tenv , pt i, the(fnsdriver(fnx)))
∧ sz + stack -start(tenv , pt i, c.mf.gm) + stack -size(tenv , c) ≤ heap-base
∧ xconsis(tenv , pt i, c, alloc, asmd , ptx, cX , xpt , fnsdriver, specMapdriver, rest , idX)
∧ cX .c.prog = XCall(writePagex, lvars, expsp)
∧ δcx (cX , tenv , pt i, xpt) = bcX

′c
=⇒ (∀seq ∈ SeqV (idX) . ∃c′, alloc′, T.

xconsis(tenv , pt i, c′, alloc′, asmd seq,T ,
ptx, cX

′, xpt , fnsdriver, specMapdriver, rest , idX) ∧
isa-asm-preconddyn(asmd , code-base,

code-size(tenv , pt i, c.mf.gm), seq , T) ∧
isa-asm-precond init(asmd seq,T .proc, code-base,

code-size(tenv , pt i, c.mf.gm)) ∧
valid -C0 (tenv , pt i, c′) ∧
pure(asmd , seq , T, idX))

The proof can be conducted at the level of the C0 with inline assembly seman-
tics →c+ad introduced in Section 3.4 (or alternatively by manually applying
the reordering theory, as conducted formally). Using Theorem 8 results are
propagated down to VAMP assembly with devices. Thus, we can easily switch
between reasoning about the execution of C0 code and inline assembly without
interference.

The first statement to execute is the C0 invocation of the C0 function
writePagei. It establishes a new function frame and copies the parameters to
it. The execution of a function call only gets stuck if either the function is
not declared in the given procedure table or if the parameter evaluation gets
stuck. Both can not occur here: specMapdriver ensures that the procedure
table implements the function, and since the XCall invocation leads to a valid
state, also the parameter evaluation must be valid. We denote the new C0
state with c1.

The next statement is the inline assembly code of the driver. Therefore,
we switch to assembly semantics (by applying the corresponding rule in the
semantics) and instantiate Theorem 10, stating correctness of the assembly
driver. The assembly state obtained after switching is denoted by asm1 and
is guaranteed to be consistent to the C0 configuration after the call. The
preconditions of the theorem are discharged as follows:

• The precondition driver -precondhd on the hard disk follows directly
from the definition of the extended consistency predicate defined above.
Moreover, according to the first rule of the transition system, we can

128 CHAPTER 4. CASE STUDY: HARD DISK DRIVER

assume that the hard disk did not change during the execution of the
SCall statement.

• For the assembly machine we have the following assumptions:

valid -asm(asm1) Validity of the assembly machine
is guaranteed by compiler correct-
ness.

asm1.spr!MODE = 0 System mode is ensured at the
beginning by the precondition
isa-asm-precond init and preserved
by the compiler, since compiler cor-
rectness ensures that no special
purpose registers are altered.

asm1.spr!SR = 0 Interrupts stay disabled for the
same reason as the status register.

asm1.dpc + d-length <
device-border

Compiler correctness ensures that
the program counter is still within
the overall C0 code. From the
memory layout we easily deduce
that the code is smaller than the
heap-base. For the latter we know
max -address < device-border.

to-instr -list(asm1.mm,
asm1.dpc, d-length) =
d -code(idDhd, saoff,maoff)

We have to show, that the code
pointed to in the new configuration
is the one stated in the correspond-
ing statement. This follows from
an application of Lemma 22.

Finally, we have to discharge the assumptions on the call parameters:

valid -ad(i2n(asm1.gpr!toplm)+
maoff)

Validity of the parameter ad-
dresses is ensured by the predicate
valid -c0 .

valid -ad(i2n(asm1.gpr!toplm)+
saoff)

Same as above.

4.3. C0 DRIVER 129

ma = i2n(asm1.mm(i2n(
asm1.gpr!toplm)+

maoff))

The semantics of the SCall en-
sures, that parameters passed in
the function call are correctly eval-
uated and stored in the function
frame. Compiler correctness en-
sures that the function frame is cor-
rectly stored at the top-most stack
frame, whose address is in turn
stored in register toplm.

sa = i2n(asm1.mm(i2n(
asm1.gpr!toplm) + saoff))

Same as above.

valid -ad(ma) Validity of the memory addresses
follow from the precondition
driverpre of the XCall on the
parameters. These parameters are
the same evaluated expressions
passed to the SCall and stored
in the stack of the consistent
assembly machine.

sa+ 8 < S Same as above.

After the application of Theorem 10 we obtain a new VAMP assembly
with devices state asmd2, in which the post conditions of the theorem hold.
Next, we want to switch again back to the C0 semantics to obtain a new and
consistent intermediate C0 configuration. For that, we apply the third rule of
the transition relation →c+ad. The first condition requires the program rest
of the original C0 machine to point to an assembly statement. This follows
from the implementation of the driver. The last condition, requires that the
assembly computation is pure, which is a postcondition of Theorem 10. We
still have to discharge the second condition, i.e. to prove that the function
co-asm-update(tenv , c1, asm1, asm2, []) returns with some updated C0 state
c2. Note, that the set of altered variables is chosen to be empty, since the
inline assembly driver does not change any global variables during execution.
The preconditions of the function require that neither the code, nor memory
or any registers used by the compiler were manipulated during the execu-
tion of assembly. All three conditions are guaranteed by the postcondition
driver -postproc of Theorem 10.

At this stage, consistency on the extended component can already be es-
tablished. The proof of this claim is straightforward, since the XCall semantics
mimics exactly the copy of a sector to the hard disk.

130 CHAPTER 4. CASE STUDY: HARD DISK DRIVER

driver XCall

IS
A

-a
sm

si
m

C
0

se
m

an
ti

cs
st

ac
k

dr
iv

er
co

rr
ec

tn
es

s

abstraction mapping

compiler
correctness

reorder

abstract PFH

Hoare Logic

C0 extended

C0 small-step

VAMP Assembly
with devices

VAMP ISA
with devices

abstract kernel step

Figure 4.5: Putting It All Together – Correctness of the Page-Fault Handler

Finally, the last C0 statement — the return from the function call — is
executed. This establishes again XCall consistency on the code (the proof is
tricky, since it involves reasoning about prefix equivalence of statements). By
applying the first rule of the transition system (or, equivalently, by applying
the extended compiler correctness theorem) we deduce that the disk state
did not change. Moreover by compiler correctness, we can also infer that the
memory region, which is abstracted to the extended component, also stayed
unchanged. Thus, also the extended consistency still holds. Still, we have to
show that the memory of the intermediate C0 machine c2 and of the extended
machine cX

′ are equal. This holds, since the only write access of the driver to
the memory is when the return value is written back. But this operation is also
mimicked by the corresponding XCall semantics. This establishes consistency
again.

Instantiating the theorem for the page-fault handler Page-fault han-
dler correctness is ultimately expressed as a simulation between VAMP ISA
with devices and an abstract transition system, where neither page-faults nor
swap memory are visible (cf. Figure 4.5, below the dashed line). In the former
model, one of the devices is instantiated to the hard disk. Page-fault handler
verification, however, is conducted on many different semantical layers. On
the one hand, switches between user and system mode forces us to toggle also
between VAMP ISA and VAMP assembly. On the other hand, there are code
switches between assembly and C0. The C0 language stack with its extension

4.3. C0 DRIVER 131

to XCalls and devices is used to separate verification goals and apply on each
level the adequate technique. Finally, everything is pushed down to VAMP
ISA with devices.

The overall proof structure is depicted in Figure 4.5. First the page-fault
handler code — which is enriched with XCalls — is verified against an abstract
page-fault handler specification2 in the extended C0 Hoare logic. Subse-
quently, this result is lifted via the C0 language stack down to the extended
C0 small-step semantics. Using Theorem 11 page-fault handler correctness
is transferred to VAMP assembly with devices and finally expressed at the
level of VAMP ISA with devices by a simple straightforward application of
Theorem 1 (all preconditions are guaranteed by the simulation proven above).

For the transfer from extended C0 semantics down to VAMP assembly
with devices, Theorem 11 is instantiated as follows:

• The intermediate C0 machine is instantiated to the kernel C0 machine
containing the page-fault handler, i.e. the page table pti, the type envi-
ronment tenv and the max -address are set accordingly.

• The SCall is set to the page-fault handler.

2Concrete doubly-linked lists are for example abstracted to Isabelle lists, etc.

Part II

Proving the Correctness of
Client / Server Software

133

Chapter 5

Specifying an Operating
System

In this chapter we introduce a formal specification of the operating system
SOS developed in Verisoft. The obtained model SOS ? [Bog08] is a system
of distributed user applications which can communicate with each other and
the operating system. The latter, provides user applications with a set of
so called system calls, i.e. services which for example ensure access to inter
process communication or to the portmapper. In a nutshell SOS ? serves:

• Downwards as specification for the underlying operating system imple-
mentation, and

• upwards as programming model for user applications running on top of
the SOS.

For this thesis, we are only interested in the second goal, since we want to
apply SOS ? to verify client/server applications running in SOS.

We start in the next section with an overview on the SOS. We proceed
in Section 5.2 with a formal definition of a subset of SOS ?. Finally, in Sec-
tion 5.3, to ease reasoning about the distributed system, we introduce a theory
of non-interfering system calls. This theory enables us to verify parts of the
distributed computation sequentially.

5.1 Background

As in many other recent projects, we have split our operating system into
a part running in system mode, i. e. the VAMOS micro kernel, and a part
running in user mode, i. e. the SOS. In this subsection, we summarize the
properties of the VAMOS micro kernel and briefly describe the SOS imple-
mentation.

135

136 CHAPTER 5. SPECIFYING AN OPERATING SYSTEM

5.1.1 VAMOS

The VAMOS micro kernel provides isolation of processes by means of virtual
memory. Processes can be dynamically created and killed. They may commu-
nicate via synchronous inter-process communication (IPC). This communica-
tion can be controlled via permissions assigned to each pair of communication
partners. IPC messages may have arbitrary size. VAMOS is equipped with a
priority-based scheduler. Processes may register as user level device drivers.
Processes that are registered as user level device drivers (for a certain device),
receive interrupt notifications by means of IPC messages. Finally, the kernel
maintains different privilege levels and thereby facilitates the implementation
of user mode operating systems.

5.1.2 SOS

The operating system SOS is implemented on top of the VAMOS micro kernel.
It is a process running in user mode. The kernel initially starts the SOS as the
only process. It assigns the highest scheduling priority to the SOS and marks
it as privileged. Therefore the SOS is enabled to register device drivers, to
start and stop user processes, or to assign memory. In fact, most of the kernel
calls provided by VAMOS require the calling process to be a privileged process.
Unprivileged processes, which we will call user applications, are restricted to
IPC and a small number of IPC related kernel calls. However, by means of SOS
calls, user applications are provided with more versatile and more powerful
calls. For example, the kernel call that allows to create a new process is
substituted by an SOS call that allows to start a new application from an
executable file. These SOS calls are transmitted to and answered by the SOS
via kernel IPC calls.

The SOS itself is implemented in C0 (with special calls to kernel services
which also can be abstracted via the concept of XCalls). Similarly, also the
user processes are instantiated to C0 machines.

In order to support user applications calling the SOS, a C0 library is pro-
vided that wraps the necessary IPC calls and hides the difference between ker-
nel calls and SOS calls. Figure 5.1 shows the user applications’ limited access
to the kernel. Furthermore, it shows how the SOS serves as intermediate layer
between user applications and kernel. Note that, for performance reasons, a
number of kernel calls remain accessible to user applications. For example,
routing IPC-messages through the SOS would dramatically slow down IPC,
double the number of context switches, and increase the SOS’s latency and
memory consumption.

The SOS provides 31 calls, allowing user applications to: 1. manage dif-
ferent users, 2. interact with a file system, 3. communicate with the outside
world, 4. handle applications, 5. locate and register remote procedure services,
and 6. interact with virtual terminals.

5.2. SPECIFICATION OF THE SOS 137

VAMOS

user mode

VAMOS calls

system mode

proc0 proc1 procn

SOS calls

VAMOS

user mode

VAMOS calls

system mode

SOS

app1

appn

VAMOS

user mode

system calls

system mode

SOS

app1 appn

Figure 5.1: SOS Calls. 1. User pro-
cesses solely rely on VAMOS calls.
2. In the presence of the SOS, user
applications are restricted to a few
VAMOS calls but (via IPC) they
may use SOS calls. 3. User ap-
plications cannot see the difference
between VAMOS calls and SOS
calls. Thus, from the application
point of view, the SOS process and
the VAMOS micro kernel melt to-
gether. The resulting (single) op-
erating system provides services in
terms of system calls.

5.2 Specification of the SOS

In this section we describe SOS ?, a model of a whole computer system. We
start out with an overview of the main SOS ? components and then present
an exact definition of each of these components.

Note that the specification we present here is only an extract of Bogan’s
comprehensive work [Bog08] and was first published in [ABP09]. Many aspects
(of the complete specification) are either left out or simplified. For example,
within this document, we are not formalizing any of the SOS calls related to
network communication, file access, or terminal I / O. Furthermore, for IPC
calls, we do not consider the combined send-receive operation and neglect the
IPC rights.

5.2.1 Notation

The goal of this section is to describe a formal model on top of which RPC is
implemented, specified and verified. Since RPC correctness is not formalized
in Isabelle/HOL, we should stay as close as possible to the original SOS ? for-
malization in [Bog08]. Therefore, the notation used in the remainder of this
chapter differs slightly from the one used previously in the thesis. In the
following we summarize these differences.

138 CHAPTER 5. SPECIFYING AN OPERATING SYSTEM

Abstract Data types. Elements of abstract data types are written without
brackets. For example, we write for the list constructor CON x xs instead of
CON(x, xs).

Sequences. Sequences are not modeled any more as functions. Rather, for
any type T and natural number n, we denote by Tn the sequence consisting
of n elements of type T . Furthermore, we denote the type of arbitrary (finite
and infinite) sequences of elements of type T by T ∗. We assume that elements
of a sequence can be enumerated (starting from 0). Access to the i-th element
of a sequence x is denoted by xi.

Functions. The undefined return value undef is made explicitly visible in
sets and denoted by ε. So, we use, for example, g ∈ Z → N ∪ {ε} to declare
a function that would otherwise only be defined for a subset of Z. As we use
this ‘type extension’frequently, we write Tε as a shorthand for T ∪ {ε}.

Sets. We introduce restricted sets of naturals and integers denoted by N32 =
{0, . . . , 232−1}, N+

32 = N32 \{0}, and Z32 = {−231, . . . , 231−1}. In rare cases
we use the Hilbert Choice Operator to select an arbitrary element from a given
non-empty set. We denote the Hilbert Choice Operator by s-el.

5.2.2 Overview on the Formal Model

Formally, SOS ? is defined as a transition system:

SOS ? = (S,∆, R, . . .).

Where each component has the following meaning:

S The set of possible configurations (the
SOS ? state space).

∆ ⊂ S × S The transition relation.
R Characterizes the set of valid SOS ? runs.

SOS ? is intended to be used as a programming model for communicating
user applications. In SOS ?, we choose not to restrict the types of user appli-
cations that may be verified to a particular programming language. Instead,
we incorporate user applications in the form of I / O automata [Lyn96]:

APP ? = (Sp ,Σp ,Ωp , δp , ωp , . . .).

Where each component has the following meaning:

5.2. SPECIFICATION OF THE SOS 139

Sp The set of possible configurations (the ap-
plication state space).

Σp The input alphabet (system call results).
Ωp The output alphabet (system calls).
δp ∈ (Sp × Σp ∪ {ε})→ Sp The transition function.
ωp ∈ (Sp)→ (Ωp ∪ {ε}) Computes the application output for a

given state.

Describing user applications as automata has the advantage that the ab-
straction can be easily instantiated by different machine types (e. g. assembly-
or C0 programs). A different machine type does not change the global tran-
sition system, as long as the new machine type complies with the (interface)
alphabets Σp and Ωp . For SOS ? that means that the alphabets Σp and Ωp

must be well defined. The remaining types and functions of APP ?, however,
may be SOS ? parameters. Hence, we get the following (updated) definition of
SOS ?:

SOS ?(Sp , δp , ωp , . . .) = (S,∆, R,Σp ,Ωp , . . .).

Note, although different machine types are supported, Sp , δp , and ωp have
to be fixed throughout a model run. That means all user applications share
the same Sp , δp , and ωp (which still might cover assembly- and C0 programs).
Hence, the subscript “p” (as in ωp) is not an index but belongs to the function
name.

After introducing the overall concept of SOS ?, we will now elaborate on
each of its components.

5.2.3 State Space

User applications perceive their environment, i. e. the underlying hardware
and system software as well as other user applications, by means of system
calls. In order to correctly formalize the behavior of these calls, the SOS ? state
space contains data structures that represent the user visible part of the en-
vironment. In this subsection we describe selected components of S. The
complete SOS ? model has many more components. Here, we describe only
those parts that are relevant for RPC.

Users

SOS is a multi-user operating system. It allows different registered users to
log in. A user is thereby referred to by his user id. In SOS, all registered users
are stored in the user data base.

In SOS ?, we represent user ids by numbers. User ids have the type uid t ⊂
N32 . The state-space component udb contains all registered users:

udb : pow(uid t).

140 CHAPTER 5. SPECIFYING AN OPERATING SYSTEM

User Applications

The SOS supports communicating user applications. Previously, we already
explained how user applications can be modeled as I / O automata. Now we
describe how their representation is integrated into the SOS ? state space.

User applications are manifested in the SOS ? state space in three ways.
They are represented by:

• a local state, i. e. the application’s internal configuration (e. g. the
assembly- or C0 configuration),

• a number of process-related data structures, i. e. bookkeeping data struc-
tures about the user process maintained by the kernel, and

• a number of application-related data structures, i. e. bookkeeping data
structures maintained by the SOS.

Local State. From the kernel’s point of view, the SOS and the user appli-
cations are user processes. The maximum number of simultaneously running
user processes is denoted by MAXPROC ∈ N+

32 . The kernel uses process iden-
tifiers (PIDs) to refer to specific processes. In SOS ?, the set of all PIDs is
represented by pid t = {1, . . . ,MAXPROC}. Here, the constant OSPID ∈ pid t
denotes the PID of the SOS process. The local states of all user applications
are stored in the process data base pdb. This state-space component is a
function that maps PIDs to process states. Currently unassigned PIDs are
mapped to ε. Thus:

pdb : pdb t .

Where:
pdb t = pid t \ {OSPID} → Sp ∪ {ε}.

Note that although the SOS is a user process, it is not a user application and,
therefore, invisible in SOS ?. Hence, OSPID is excluded from the domain of
pdb.

Kernel Data Structures about User Processes. In SOS ?, there are a
number of data structures that are, in the implementation, maintained by the
kernel. In the complete model, these kernel data structures are combined in
the (SOS ?) state space component kds. Here, we discuss only one of these
kernel data structures, i. e. the handle data base.

User processes exclusively identify each other using so-called handles. Han-
dles are local names for PIDs. On a per-process basis, the kernel maintains
the mapping between handles and PIDs . This mapping is called the handle
data base. As we will explain later, unless a process has a handle for another
process, there is no way for the earlier to approach the latter. Thus, the in-
direction through handles provides for better control of information flow. In
SOS ?, the handle data base is represented by the kds component hdb:

5.2. SPECIFICATION OF THE SOS 141

hdb : pid t × hn t → pid t⊥.

Here, hn t , with hn t ⊂ N32 , represents the set of possible handles. Cur-
rently unassigned handles are mapped to ε. There are a number of special
handles. For the work at hand, only the pseudo handle identifying no process
is relevant. In SOS ? this handle is denoted by HN-NONE ∈ hn t .

As mentioned earlier, the complete SOS ? model contains more kernel data
structures. There, handles are, for example, accompanied by communication
rights. These rights provide additional means to fine tune the inter-process
communication. For the work at hand, however, the handle data base is the
only relevant kernel data structure. Thus, here, the state space component
kds has only one record field:

kds : kds t .

Where:
kds t = (hdb : pid t × hn t → pid t⊥, . . .).

SOS Data Structures about User Applications. The SOS keeps track
of all user processes and adds rights management and access control based on
users. It thereby establishes the concept of user applications. For each user
application, the SOS maintains a certain amount of information. It stores, for
example, which user started a particular application and whether a certain
application has access to the screen. In SOS ?, the information about a single
user application is represented by an instance of type app t . Among other
things, this type contains the field owner representing the user owning the
application:

app t = (owner : uid t , . . .).

Again, in the complete SOS ? model, app t contains more fields. The informa-
tion about all user applications is assembled in the application data base. In
SOS ?, this data base is represented by the function adb, which maps handles
to the associated information. Currently unassigned application handles are
mapped to ε:

adb : hn t → app t⊥.

Portmapper

The SOS provides infrastructure for so-called RPCs. RPCs allow one ap-
plication, the client, to take advantage of some service provided by another
application, the server. Here, a service is specified by an interface name and
a procedure name. At compile time, clients know the names of the services
they intend to call. However, the location of this service, i. e. the handle of

142 CHAPTER 5. SPECIFYING AN OPERATING SYSTEM

the providing application, is unknown at that time. Hence, we need a run-
time mapping of service names to service providers. This mapping is called
portmapper data base.1

In SOS ?, a service name is represented by the type service t . Here, a
service name is the combination of the interface id iid t ⊂ N32 and a procedure
id prcid t ⊂ N32 , i. e. service t = iid t × prcid t .

Based on service names, the portmapper data base comprises:

• serv a mapping between interface ids and the handles of the providing
servers,

• reg a set of registered services, and

• known, the set of known services.

In SOS ?, the portmapper data base is represented by the state-space compo-
nent pmdb of the following record type:

pmdb : pmdb t .

Where:

pmdb t =
(

serv : iid t → hn t⊥, reg : pow(service t), known : pow(service t)
)
.

Note that we need the component known because a portmapper usually only
supports a set of well-known services. In addition, note that (supported)
interfaces that are not served, are mapped to ε. Finally, servers can only
register for one interface. Such an interface, however, may contain several
procedures serving different purposes.

Summing Up

Now, collecting all pieces of the (reduced) SOS ? state space, S is defined as
follows:

S = (udb : pow(uid t),
pdb : pdb t , kds : kds t , adb : hn t → app t⊥,
pmdb : pmdb t ,
. . .

).

1 Currently, our portmapper implementation only supports local inquiries and instead
of mapping services to IP addresses and port numbers, it maps services to handles. This
could be easily changed but for now this simplified version suffices to serve our needs.

5.2. SPECIFICATION OF THE SOS 143

5.2.4 Alphabets

In SOS ?, we choose to represent system calls and system-call results in a
machine independent form, i. e. the alphabet Ωp and Σp . In this section, we
describe all those elements of Ωp and Σp that are relevant in the context of
this paper.

The alphabet Ωp contains the abstract representations of the available
system calls. In the work at hand, Ωp only contains:

• representations for the portmapper calls to register, look up, and unreg-
ister services (REG, LUP, and UNREG),

• representations for sending and receiving IPC messages (SND and RCV),
and

• representations for undefined SOS- and kernel calls (UNDEF-SC and UNDEF-KC).

These calls are represented by the following abstract data type:

Ωp = REG of iid t⊥ × prcid t⊥ |
LUP of iid t⊥ × prcid t⊥ |
UNREG of iid t⊥ × prcid t⊥ |
UNDEF-SC |
UNDEF-KC |
SND of hn t⊥ × byte t∗ ∪ {ε} × {FINITE, INFINITE} |
RCV of hn t⊥ × N32 × {FINITE, INFINITE} |
. . .

Note that we denote all finite timeouts by FINITE and infinite timeouts by
INFINITE.2 An example for a send ipc call would be SND h m t and for
receive RCV h b t. Note, that in this example, we use m ∈ byte t∗ ∪ {ε} and
b ∈ N32 as abstract representations for messages and buffers, respectively. We
choose this representation to be universal enough to support arbitrary process
abstraction and at the same time describe the essence of messages and buffers,
i. e. a sequence of bytes and a container of a certain size. Finally, note that
it may be that a process calls the system but passes along parameter values
that do not match the required type (e. g. id i /∈ iid t). In SOS ?, we represent
all of these values through the symbol ε. Hence, most of the parameter types
are unions of the required type and ε.

The counterpart to Ωp is Σp . The alphabet Σp contains the abstract
representations of the available system-call results. In the work at hand, Σp

only contains:
2For a number of reasons that are detailed in [Dau08], the scheduler is no longer visible

in SOS ?. Along with that, there is no precise notion of time. Therefore, we are not able
to model timeout situation more precisely than “a certain system call might timeout” or “a
certain system call cannot timeout”.

144 CHAPTER 5. SPECIFYING AN OPERATING SYSTEM

• the result messages for a successful portmapper look-up and a successful
IPC-receive operation (SUCC-LUP and SUCC-RCV) and

• some general purpose success and error messages (SUCC, ERR, and TIMEOUT).

Again, each of these results is represented by a constructor indicating the type
of system-call result and (possibly) an additional parameter:

Σp = ERR |
TIMEOUT |
SUCC |
SUCC-LUP of hn t |
SUCC-RCV of hn t × byte t∗ |
. . .

Now, no matter which process abstraction was chosen, one can define a
function ωp ∈ Sp → Ωp ∪ {ε} that maps a process’s state to:

• x ∈ Ωp , if a particular process wants to call the system, or

• ε, if the processes wants to perform a local computation, i. e. a compu-
tation that does not involve calling the system.

If an SOS call was received and treated by the SOS, then the results must
be returned to the appropriate application. For returning these results, we
simply assume that the local transition function δp is defined to take Σp ∪{ε}
as (process-external) inputs, i. e. δp ∈ Sp × Σp ∪ {ε} → Sp . Using δp , we
can define how the (global) SOS ? state is changed when a system-call result
is returned. As this is a quite common task, we define the function res as
follows:

res ∈ S × pid t × Σp → S

res(s, p, r) = s[pdb(p) := δp(s.pdb(p), r)].

5.2.5 Transition Relation

In this section we define the (reduced) SOS ? transition relation. Again, we
only define those transitions that are relevant in order to argue about RPC.

Auxiliaries

Resolving handles to PIDs and vice versa will be done quite often. Thus, as
a short hand, we define the functions ph2p and pp2h.

The call ph2p(s, p, hn) inspects the handle data base of p and returns the
PID, hn is pointing to. If, for p, the handle hn is not assigned, then ε is
returned:

ph2p ∈ S × pid t × hn t → pid t⊥

ph2p(s, p, hn) = s.kds.hdb(p)(hn).

5.2. SPECIFICATION OF THE SOS 145

The call pp2h(s, p1 , p2) returns the handle the process p1 may use to refer to
p2 . If p2 is unknown to p1 , then ε is returned:

pp2h ∈ S × pid t × pid t → hn t⊥

pp2h(s, p1 , p2) ={
s-el{x | s.kds.hdb(p1)(x)} if ∃x ∈ pid t . s.kds.hdb(p1)(x) = p2 ,
ε otherwise.

Note, for pp2h(s, p1 , p2) to be deterministic, s.hdb needs to be an injective
function. Thus, we require that (for each process) there are no two (different)
handles pointing to the same process.

For resolving handles and PIDs from the perspective of the SOS, we ad-
ditionally provide the following short hands h2p(s, hn) = ph2p(s,OSPID, hn)
and p2h(s, p) = pp2h(s,OSPID, p).

Transitions

After the preparatory work, we can know specify the individual transitions.

Register a service. The SOS implementation provides a system call that
allows user applications to register as server providing a certain service. In
SOS ?, this call is represented by REG id i idp , where id i and idp are the
interface- and procedure id, respectively.

In order to successfully register a service, a number of preconditions must
be met. The predicate vrega? is satisfied, if these preconditions are met.
For vrega?(s, p, id i , idp) to hold, (id i , idp) must be a service known to the
portmapper, the calling process p is not yet registered to serve a different
interface, and the interface id i has not been registered by a different process,
i. e. s.pmdb.serv(id i) ∈ {p2h(s, p), ε}. That is:

vrega? ∈ S × pid t × iid t⊥ × prcid t⊥ → bool

vrega?(s, p, id i , idp) ≡ (id i , idp) ∈ s.pmdb.known
∧ ∀x 6= id i . s.pmdb.serv(x) 6= p2h(s, p)
∧ s.pmdb.serv(id i) ∈ {p2h(s, p), ε}.

Now, if there exists a process p that wants to register a service, i. e.
ωp(s.pdb(p)) = REG id i idp , but one or more of the preconditions are not met,
then an error message is returned to the caller. That is, the next SOS ? state
is computed by applying ERR to p’s local state:

∆ ⊃ { (s, res(s, p,ERR)) |
∃id i , idp . ωp(s.pdb(p)) = REG id i idp ∧ ¬vrega?(s, p, id i , idp)}.

If there exists a process p that wants to register a service and all pre-
conditions are met, then it is ensured that p is registered for this services,

146 CHAPTER 5. SPECIFYING AN OPERATING SYSTEM

i. e. s′.pmdb.serv(id i) = p2h(s, p) and s′.pmdb.reg = s.pmdb.reg∪{(id i , idp)}.
Furthermore, a success message is returned to the calling process.

∆ ⊃ { (s, res(s′, p, SUCC)) |
∃id i , idp . ωp(s.pdb(p)) = REG id i idp ∧ vrega?(s, p, id i , idp)

∧ s′ = s

[
pmdb.serv(id i) := p2h(s, p),
pmdb.reg := s.pmdb.reg ∪ {(id i , idp)}

]
}.

Lookup a Service. The SOS implementation provides a system call that
allows user applications to lookup the handle of the server providing a certain
service. In SOS ?, this call is represented by LUP id i idp , where id i and idp

are the interface- and procedure id, respectively.
If there exists a process p that wants to lookup a service, i. e. ωp(s.pdb(p)) =

LUP id i idp , but the service (id i , idp) is not registered (either because the ser-
vice does not exist at all or because the service is not yet registered), then an
error message is returned:

∆ ⊃ { (s, res(s, p,ERR)) |
∃id i , idp . ωp(s.pdb(p)) = LUP id i idp ∧ (id i , idp) /∈ s.pmdb.reg}.

If there exists a process p that wants to lookup a service and there exists
a process ps that previously registered for this service, then a success mes-
sage, including the handle to the providing server, is returned. That is, the
handle data base is updated to reflect p’s right to communicate with ps , i. e.
s′.kds.hdb(p)(hns) = ps . Furthermore, SUCC-LUP hns is applied to p’s local
state:

∆ ⊃ { (s, res(s′, p, SUCC-LUP hns)) |
∃id i , idp , ps . ωp(s.pdb(p)) = LUP id i idp ∧ (id i , idp) ∈ s.pmdb.reg

∧ ps = h2p(s, s.pmdb.serv(id i))

∧ hns =
{

min{x | ph2p(s, p, x) = ε} if pp2h(s, p, ps) = ε
pp2h(s, p, ps) otherwise

∧ s′ = s[s.kds.hdb(p)(hns) := ps]
}.

Note, because we require |pid t | ≤ |hn t |, assigning handles for, so far, un-
known processes never fails. Because of this, we can be sure that either there
exists already a mapping that points to the PID of the service provider, i. e.
pp2h(s, p, ps), or there exists a (so far) unused handle, i. e. ∃x. ph2p(s, p, x) =
ε, that may be used to establish a new mapping.

Unregister a Service. The SOS implementation provides a system call
that allows a user applications to unregister a service it provides. In SOS ?,

5.2. SPECIFICATION OF THE SOS 147

this call is represented by UNREG id i idp , where id i and idp are the interface-
and procedure id, respectively.

In order to successfully unregister a service, two preconditions must be
met. The predicate vunrega? is satisfied, if these preconditions are met. For
vunrega?(s, p, id i , idp) to hold, p must be the process that serves the interface
id i and (id i , idp) must be registered. That is:

vunrega? ∈ S × pid t × iid t⊥ × prcid t⊥ → bool

vunrega?(s, p, id i , idp) ≡ s.pmdb.serv(id i) = p2h(s, p) ∧ (id i , idp) ∈ s.pmdb.reg.

If there exists a process p that wants to unregister a service, i. e. ωp(s.pdb(p)) =
UNREG id i idp , but one or more of the preconditions are not met, then an
error message is returned to the caller:

∆ ⊃ { (s, res(s, p,ERR)) |
∃id i , idp . ωp(s.pdb(p)) = UNREG id i idp ∧ ¬vunrega?(s, p, id i , idp)}.

If there exists a process p (serving the interface id s) that wants to unreg-
ister one of the services it is registered for, then this service is removed from
the set of registered services, i. e. s′.pmdb.reg = s.pmdb.reg \ {(id i , idp)}, and
a success message returned:

∆ ⊃ { (s, res(s′, p, SUCC)) |
∃id i , idp . ωp(s.pdb(p)) = UNREG id i idp ∧ vunrega?(s, p, id i , idp)

∧ ∃x 6= idp . (id i , x) ∈ s.pmdb.reg
∧ s′ = s[pmdb.reg := s.pmdb.reg \ {(id i , idp)}]

}.

If there exists a process p (serving the interface id s) that wants to unregis-
ter the last service it is registered for, then this service is removed from the set
of registered services. Furthermore, unlike in the previous case, p is removed
from the mapping indicating it as server providing services from the interface
id i , i. e. s′.pmdb.serv(id i) = ε. Finally a success message is returned:

∆ ⊃ { (s, res(s′, p, SUCC)) |
∃id i , idp . ωp(s.pdb(p)) = UNREG id i idp ∧ vunrega?(s, p, id i , idp)

∧ @x 6= idp . (id i , x) ∈ s.pmdb.reg

∧ s′ = s

[
pmdb.reg := s.pmdb.reg \ {(id i , idp)},
pmdb.serv(id i) := ε

]
}.

Undefined SOS Calls. It may be, that a user application calls the SOS
but the call is unknown to the SOS. In such a case the SOS does not reply to
the caller. In SOS ? such calls are represented by UNDEF-SC. If there exists a

148 CHAPTER 5. SPECIFYING AN OPERATING SYSTEM

process p, whose output is UNDEF-SC, then handling this call does not change
the (visible) state:

∆ ⊃ {(s, s) | ∃p. ωp(s.pdb(p)) = UNDEF-SC}.

Undefined Kernel Calls. Similarly to an undefined SOS call, it could also
happen that a user application calls the kernel but the call is unknown to the
kernel. In such a case the kernel returns an error message. In SOS ? such calls
are represented by UNDEF-KC. If there exists a process p, whose output is
UNDEF-KC, then handling this call results in an error message:

∆ ⊃ {(s, res(s, p,ERR)) | ∃p. ωp(s.pdb(p)) = UNDEF-KC}.

IPC- Send and Receive. The kernel implementation provides system calls
that allow user applications to communicate between each other. That is,
user applications may send and receive messages. In SOS ?, the send call is
represented by SND hr m ts , where hr is the handle of the receiving application,
m is the message to send, and ts is the send timeout. Analogously, the receive
call is represented by RCV hs b tr , where hs is the handle of the sending
application, b is the buffer where to place the message, and tr is the receive
timeout. It may be that an application wants to receive a message from any
application (other than a particular one). Such an open-receive call differs
from a regular receive call in the specified handle. If hs = HN-NONE, then the
calling application wants to do an open receive. The opposite operation, i. e.
sending a broadcast, is currently not supported in SOS.

In order to successfully send or receive messages, the arguments supplied
with the calls must match the required types. That means, for a (potentially)
successful send operation the receiver handle hr must point to a process known
to the caller, i. e. hr /∈ {ε,HN-NONE} ∧ ph2p(s, p, hr) 6= ε, and the message
must be well formed, i. e. m 6= ε:3

vsnda? ∈ S × pid t × hn t⊥ × byte t∗ ∪ {ε} → bool

vsnda?(s, ps , hr ,m) ≡ hr /∈ {ε,HN-NONE} ∧ ph2p(s, ps , hr) 6= ε ∧m 6= ε.

Similarly, for a (potentially) successful receive operation the sender handle
hs must be HN-NONE or it must point to a process known to the caller, i. e.
hs 6= ε ∧ ph2p(s, p, hs) 6= ε, and the buffer must be well formed, i. e. b 6= ε:4

vrcva? ∈ S × pid t × hn t⊥ × N32 → bool

vrcva?(s, pr , hs , b) ≡ (hs = HN-NONE ∨ (hs 6= ε ∧ ph2p(s, p, hs) 6= ε)) ∧ b 6= ε.
3The well-formedness of a messages also includes things like memory safety. That means,

if, for example, a message is not entirely in the memory region of the calling process, then,
in SOS ?, this message is represented by ε.

4Just like for well-formedness of messages, the well-formedness of buffers also include
things like memory safety. Again, if, for example, a buffer is not entirely in the memory
region of the calling process, then, in SOS ?, this buffer is represented by ε.

5.2. SPECIFICATION OF THE SOS 149

Now, if there exists a process ps that wants to send a message, i. e. ωp(s.pdb(ps)) =
SND hr m ts , but one or more of the preconditions are not met, then an error
message is returned to the caller:

∆ ⊃ { (s, res(s, ps ,ERR)) |∃hr ,m, ts . ωp(s.pdb(ps)) = SND hr m ts ∧ ¬vsnda?(s, ps , hr ,m)}.

If there exists a process pr that wants to receive a message, i. e. ωp(s.pdb(pr)) =
RCV hs b tr , but one or more of the preconditions are not met, then an error
message is returned to the caller:

∆ ⊃ { (s, res(s, pr ,ERR)) | ∃hs , b, tr . ωp(s.pdb(pr)) = RCV hs b tr ∧ ¬vrcva?(s, pr , hs , b)}.

In our implementation, messages are synchronously exchanged. That is,
a pending send operation is completed by a matching receive operation and
vice versa. Whether there exists a rendezvous situations is inspected by the
predicate rv?. rv?(s, ps , hr , pr , hs) is satisfied, if both parties want to commu-
nicate with each other. That is, each of the specified handles matches the PID
of the opposite site or the handle specified by the sender matches the PID of
the receiver and the receiver uses an open receive call (hs = HN-NONE):

rv? ∈ S × pid t × hn t × pid t × hn t → bool

rv?(s, ps , hr , pr , hs) ≡ pr = ph2p(s, ps , hr) ∧ (ps = ph2p(s, pr , hs) ∨ hs = HN-NONE).

If there exists a process pr that wants to receive a message with a finite
timeout, then it may be that this operation fails because of a timeout. That
is, if the caller satisfied the preconditions vrcva? but, up to now, the call
could not be answered and currently there is no rendezvous situation, then
the receive operation fails, returning a timeout error. This does not mean that
any receive call with a finite timeout fails, but, unless an infinite timeout was
specified, it could always be that such a call returns because of a timeout:

∆ ⊃ { (s, res(s, pr ,TIMEOUT)) |
∃hs , b. ωp(s.pdb(pr)) = RCV hs b FINITE

∧ vrcva?(s, pr , hs , b)
∧ (∀ps , hr ,m, ts . ωp(s.pdb(ps)) = SND hr m ts ∧ ¬rv?(s, ps , hr , pr , hs))}.

Similarly, if there exists a process ps that wants to send a message with a
finite timeout, then it may be that this operation fails because of a timeout:

∆ ⊃ { (s, res(s, ps ,TIMEOUT)) |
∃hr ,m. ωp(s.pdb(ps)) = SND hr m FINITE

∧ vsnda?(s, ps , hr ,m)
∧ (∀pr , hs , b, tr . ωp(s.pdb(pr)) = RCV hs b tr ∧ ¬rv?(s, ps , hr , pr , hs))}.

If all goes well and there is a rendezvous situation, it may still be that the
buffer b, provided by the receiver, is too small to fit the message m. In this

150 CHAPTER 5. SPECIFYING AN OPERATING SYSTEM

case, the senders call fails with an error message. The receivers call, however,
remains pending — waiting for a timeout or another matching send operation:

∆ ⊃ { (s, res(s, ps ,ERR)) |
∃pr , hs , hr , b,m, ts , tr .

ωp(s.pdb(ps)) = SND hr m ts ∧ ωp(s.pdb(pr)) = RCV hs b tr
∧ vsnda?(s, ps , hr ,m) ∧ vrcva?(s, pr , hs , b)
∧ rv?(s, ps , hr , pr , hs)
∧ len(m) > b}.

Finally, if all goes well, there is a rendezvous situation, and the message
fits into the receive buffer, then both parties receive a success message. That
is, SUCC is applied to the senders (local) state and SUCC-RCV hn m is applied
to the receivers (local) state. The latter includes the actual message m and
the (possibly new) handle hn for the sender.

∆ ⊃ { (s, res(res(s′, pr , SUCC-RCV hn m), ps , SUCC)) |
∃hs , hr , b, ts , tr .

ωp(s.pdb(ps)) = SND hr m ts ∧ ωp(s.pdb(pr)) = RCV hs b tr
∧ vsnda?(s, ps , hr ,m) ∧ vrcva?(s, pr , hs , b)
∧ rv?(s, ps , hr , pr , hs)
∧ len(m) ≤ b

∧ hnn =
{

min{x | ph2p(s, pr , x) = ε} if pp2h(s, pr , ps) = ε
pp2h(s, pr , ps) otherwise

∧ s′ = s[s.kds.hdb(pr)(hnn) := ps]}.
Note, this definition does not explicitly model the actual copy operation. This
is because such a definition would very much depend on the particular process
abstraction. However, just like ωp computes the (generic) process output, we
assume that δp updates the state according to the (generic) input. That
means, for example, we assume res(s′, pr , SUCC-RCV hn m) updates the state
of process pr in such a way that the message m is copied to the place specified
within the receive call (also see 5.2.4).

Local Computation. Last but not least, there are SOS ? transitions that
represent local computations of user applications. If there exists an application
p, such that its output is equal to ε, then this application may do a local step:

∆ ⊃ {(s, s′) | ∃p. ωp(s.pdb(p)) = ε ∧ s′ = s[pdb(p) := δp(s.pdb(p), ε)]}.

5.2.6 Runs

The model SOS ? exhibits properties that can not be expressed solely by means
of transition relation and state space. These properties are formalized by
describing valid sequences of transitions, so-called runs.

5.2. SPECIFICATION OF THE SOS 151

We define a run to be an infinite sequence r ∈ S∗ such that ∀n ∈ N. (rn, rn+1) ∈
∆. We define a (valid) SOS ? run to be a run r such that R(r), i. e. a sequence
of states that is ‘covered’ by the transition relation, and that satisfies the
predicate R (to be defined below).

Fairness between user applications is an important property. However,
in our abstraction, the concrete scheduler is invisible. Thus, fairness can
no longer be inferred by studying the scheduler and the interrupt handling
mechanism. Here, we use runs to explicitly state this property.

Intuitively, fairness may be expressed by claiming that all applications
eventually get to do something, and thereby change their state. In SOS ? this is
unfortunately not true as an application might wait infinitely long for another
application to match its IPC operation. Thus, an application p might not
progress, if it uses an infinite IPC call (in state s):

possibly-no-progress ∈ Sp × pid t → bool
possibly-no-progress(s, p) ≡

(∃h,m. ωp(s.pdb(p)) = SND h m INFINITE ∧ vsnda?(s, p, h,m))
∨ (∃h, b. ωp(s.pdb(p)) = RCV h b INFINITE ∧ vrcva?(s, p, h, b)).

In order to formalize fairness between user applications, we also need to
characterize progress. In SOS ?, we can simply assume that a process p has
progressed, between s and s′, if s′ could be the result of applying δp , with
some input i, to p in s:

progress ∈ Sp × pid t × Sp → bool
progress(s, p, s′) ≡ ∃i. s′ = s[pdb.(p) := δp(s.pdb(p), i)].

Being able to identify processes that might not progress and processes that
have progressed, we can state fairness between user applications as predicates
that must be satisfied by all valid SOS ? runs.

The predicate app-fairness-finite(r) is satisfied, if each finite operation (of
each process) is finally served.

app-fairness-finite ∈ S∗ → bool
app-fairness-finite(r) ≡

∀p, i. ri.pdb(p) 6= ε ∧ ¬possibly-no-progress(ri, p)
=⇒

∃j ≥ i. progress(rj , p, rj+1).

The predicate app-fairness-infinite(r) is satisfied, if each process that in-
finitely often could make progress infinitely often does make progresses.

app-fairness-infinite ∈ S∗ → bool
app-fairness-infinite(r) ≡

(∀p. (∀i. ∃j ≥ i, s′. rj .pdb(p) 6= ε ∧ progress(rj , p, s′))
=⇒

(∀k. ∃l ≥ k. progress(rl, p, rl+1))).

152 CHAPTER 5. SPECIFYING AN OPERATING SYSTEM

Now, R is simply the conjunction of all predicates defined over SOS ? runs.
For now, this is only app-fairness-finite and app-fairness-infinite. Thus:

R ∈ (S × Σ)∗ → bool
R(r) ≡ app-fairness-finite(r) ∧ app-fairness-infinite(r).

5.3 Reasoning About Applications in SOS ?

Non-determinism in a model is often a source of difficulty when it comes
to verification. This is simply because it implies a larger search space than
in a purely sequential model. In many cases non-deterministic models are
still desirable as they allow to easily hide unnecessary details. In SOS ?, for
example, there are two such hidden details:

• The concrete scheduler is no longer visible. Instead, we chose non-
deterministically which process to schedule next. This is commonly
known as concurrency.

• There is no notion of time in SOS ?. However, the implementation might
cancel an IPC operation because of a timeout. Thus, in order to repre-
sent such situations, we terminate IPC operations non-deterministically
and return an appropriate timeout error.

Now, when verifying a property of SOS ?, we have to argue on all (fair) runs
of the system. As this is a challenging task, we aim at reducing the search
space. Similar to the reordering theory developed for reasoning about the
concurrent execution of the processor and devices in Section 3.2, in this section
we present a set of general theorems which reduce non-determinism caused by
concurrency in SOS ? and hence reduce the number of runs to analyze for
correctness proofs.

5.3.1 Basic Observation

The basic observation for concurrency is that certain application steps may be
reordered. For example, if a certain file remains unchanged, then the order of
two concurrent read operations (on this file) is irrelevant in terms of the overall
execution. Thus, we may arrange these non-interfering operations in any order
we like. In general, such reordering is sound, if the steps do not interfere with
each other. Applying reordering repeatedly, we can separate parts of execution
traces of two applications, in which both are communicating only with each
other. This may be useful, when verifying a communication protocol. During
the RPC data transfer protocol, for example, neither the server nor the client
communicates with other processes. Another argument for reordering is that
complex operations may be grouped together to atomic steps. For example,
a server may be considered to respond to requests immediately, while, in the
implementation, there are many steps necessary to compute the response.

5.3. REASONING ABOUT APPLICATIONS IN SOS ? 153

s

s1

s2

s′∆

ev1

ev2

ev2

ev1

Figure 5.2: Swapping Two Non-Interfering System Call Events

5.3.2 Non-Interference

For simplicity, in the remainder of this section, we assume that the mapping
from handles to process ids is the identity. That means, we assume that the
sets pid t and hn t are equal and that for all handles h and process ids p it
holds:

ph2p(s, p, h) 6= ε =⇒ ph2p(s, p, h) = h

On the one hand, this simplification does not affect the concept of rights asso-
ciated with handles. Furthermore, the kernel still maintains the information
on which process knows which other processes. On the other hand, an imple-
mentation that uses such a simple mapping function may expose some system
properties. For example, the number of currently running processes or the up-
time of the system could be inferred. One could extend the theory presented
here to a general mapping from handles to PIDs; formulae just get slightly
larger.

Before we can express non-interference, we need to introduce some nota-
tions.

In the following we write s
pid,o−→ s′, if there is a valid SOS ? transition from

s to s′ in which a system call o ∈ Ωp of user process pid ∈ pid t is processed.

s
pid,o−→ s′ ≡ ∆(s, s′)

∧ ωp(s.pdb(pid)) = o
∧ ∃i. δp(s.pdb(pid), i) = s′.pdb(pid).

In case of an IPC-rendezvous situation, it may be that two (different)
processes, i. e. the sender and the receiver, progress simultaneously. This is
because, in the successful case, both of them receive a result message within a
single SOS ? step. This case cannot be expressed in the form s

pid ,o−→ s′. Thus,
we introduce the more general idea of system call events. A system call event
ev ∈ pow(pid t × Ω′p) is a set of at most two system calls:

s
ev−→ s′ ≡ ∆(s, s′) ∧ ∀(pid , o) ∈ ev . s

pid ,o−→ s′.

Now, we call two system call events ev1 , ev2 non-interfering, denoted by ev1 �
ev2 , if their execution can be swapped without modifying the result state (see

154 CHAPTER 5. SPECIFYING AN OPERATING SYSTEM

Fig. 5.2):

ev1 � ev2 ≡ (∀s, s′. (∃s1 . s
ev1−→ s1 ∧ s1

ev2−→ s′)
⇔

(∃s2 . s
ev2−→ s2 ∧ s2

ev1−→ s′)).

We extend the non-interference relation to sets of system call events:

Ev1 � Ev2 ≡ ∀ev1 ∈ Ev1 , ev2 ∈ Ev2 . ev1 � ev2 ,

and define the set of processes involved in an event by:

ap(ev) = {p | ∃o. (p, o) ∈ ev}.

Now, the following lemma defines the set of non-interfering system calls.

Lemma 36 (Non-Interfering System Calls) Non-interfering system call
events should not share involved processes: ap(ev1) ∩ ap(ev2) = ∅. In the
following we omit repeating this condition for each pair of system call events.

Local transitions do neither interfere with local transitions nor with system
calls of other processes:

ev � {(p, ε)}.
Portmapper lookup requests do not interfere with each other, but with

portmapper register calls for the same procedure. Only portmapper register
calls to different interfaces are non-interfering:

{(p1 , LUP id i idp)} � {(p2 , LUP id ′i id ′p)}

(id i = id ′i =⇒ idp 6= id ′p) =⇒ {(p1 , LUP id i idp)} � {(p2 ,REG id ′i id ′p)}
id i 6= id ′i =⇒ {(p1 ,REG id i idp)} � {(p2 ,REG id ′i id ′p)}.

IPC system call events are non-interfering, if they do not match with each
other, i. e. they do not lead to a rendezvous situation:

(ps , SND hr m ts) ∈ ev1

∧ (pr ,RCV hs b tr) ∈ ev2
∧ hr 6= pr ∧ hs 6= ps

=⇒
ev1 � ev2 .

The lemma above only defines the subset of the �-relation relevant for the
verification of RPC. Moreover, the �-relation works solely on system call events
and process identifiers, ignoring the current state. By extending the relation
to states, one would, on the one hand, generate more complex non-interference
assumptions, but, on the other hand, possibly identify more non-interfering
actions. For example, in a file-system, a read operation and a write operation
may be non-interfering due to missing rights of the writing process. These
rights are not visible from the event but are encoded in the current state of
the system.

5.3. REASONING ABOUT APPLICATIONS IN SOS ? 155

5.3.3 Local Reasoning

Applications which do not invoke system calls at all during a computation —
i. e. a finite run — can also be verified in isolation. That means we can, for
instance, prove the correctness of such code, which neither involves communi-
cation with other processes nor with the SOS, sequentially in traditional Hoare
logic. Note that the considered properties over the code can be either state-
or termination properties, i. e. the lemmas can not be applied to simplify the
verification of arbitrary temporal claims over the system.

For stating the lemma corresponding to the idea formulated above, we
need some more notation. We denote the execution of i consecutive and local
transitions of an application by δl :

δil (x) =

{
x if i = 0
δi−1
l (δp(x, ε)) otherwise.

Furthermore, we call an execution of an application isolated until step i,
if no system call is invoked:

isolated?(x, i) ≡ ∀k < i. ωp(δkl (x)) = ε.

Now, we can generalize each isolated computation to an arbitrary one.

Lemma 37 (Isolated Computations) The result of an isolated computa-
tion is neither influenced by the SOS nor by other processes:

isolated?(x, i) =⇒ ∀r ∈ R, k ≥ 0. rk.pdb(p) = x =⇒ ∃l ≥ k. rl.pdb(p) = δil (x)

The proof is based on the fairness of execution and on the fact that the SOS
accesses an application only in response to a system call invoked by that
application.

The following Lemma 38 gives us a tool to separate the verification of
properties over two non-interfering sets of applications. In short, two sets of
applications are non-interfering, if the system calls invoked by applications of
the first set do not interfere with those invoked by applications of the second
set.

First, we define, for a given run r and step number i, the set of system-call
events, invoked between r0 and ri:

out(r, i) = {{(pid , o)} | ∃j < i, pid . ωp(rj .pdb(pid)) = o}.

We define properties in a pre/post condition form. We formulate these
properties over a restricted set of processes, i. e. we assume that the initial
configuration only contains processes that are in a given set. Now, given some
set X of process identifiers, a set Ev of system call events, and predicates
P,Q, we call P,Q valid over X and Ev , if for all valid runs, with initial states

156 CHAPTER 5. SPECIFYING AN OPERATING SYSTEM

satisfying P , we will finally reach a state satisfying Q. Furthermore, processes
may only invoke system call events in Ev :

X,Ev ` P,Q ≡
∀r ∈ R. P (r0) ∧ ∀q /∈ X. r0.pdb(q) = ε =⇒ ∃i. Q(ri) ∧ out(r, i) ⊆ Ev .

After the (above) preparatory work, we can now formulate a lemma which
states that the correctness of computations, that do not interfere with each
other, can be proven separately.

Lemma 38 (Separability of Non-Interfering Computations)

X,Evx ` Px , Qx

∧ Y,Evy ` Py , Qy

∧ Evx � Evy

=⇒
(X ∪ Y), (Evx ∪ Evy) ` Px , Qx

∧ (X ∪ Y), (Evx ∪ Evy) ` Py , Qy

The lemma above is extremely helpful for proving correctness of a commu-
nication protocol between two processes. Suppose the processes p and q only
communicate with each other, i. e. they only invoke IPC send and IPC receive
operations in which the sender and receiver handles are either p or q. Then we
can generalize any correctness proof of this communication to arbitrary valid
runs with arbitrary other processes. This is expressed in the following corol-
lary, where the set Evp,q denotes the above mentioned restriction to system
call events:

Corollary 1 (Communication Protocols)

∀X ⊆ pid t . {p, q},Evp,q ` P,Q =⇒ {p, q} ∪X,Ωp ` P,Q.

5.3.4 Reordering

In the ideal case, reasoning about programs should be kept sequential and local
as much as possible. Using Lemma 36, local steps of a process can always be
grouped together. Furthermore, we can pretend that control is only switched
in case of system calls.

This idea is expressed in the Reordering Theorem, claiming for each com-
putation the existence of an equivalent and pure computation, in which local
steps of different processes are (almost) never interleaved. Before stating the
lemma, we first formalize the notion of pure computations. We say a compu-
tation is p-pure if control between processes is only switched due to a system
call invocation or in case the currently executed process performs no more
steps in the considered computation.

5.3. REASONING ABOUT APPLICATIONS IN SOS ? 157

The latter case is expressed by the predicate idle?, formally defined over
a range [s, e] of step numbers in a given run r:

idle?(r, s, e, p) ≡ ∀s ≤ i < e. ri
q,o−→ ri+1 =⇒ p 6= q.

Now, purity of a computation ranging from step s to step e can be formally
defined by:

p-pure?(r, s, e) ≡
∀s ≤ i < e. ri

p1 ,o−→ ri+1 p2 ,o′−→ ri+2 ∧ p1 6= p2

=⇒
ωp(ri+1.pdb(p1)) 6= ε ∨ idle?(r, i, e, p1).

Using the definition above our reordering theorem reads as follows:

Theorem 12 (Reordering) For a given run r and step numbers s and e we
can always find a corresponding pure computation on a run rp evaluating to
the same state:

∀r ∈ R, s, e. ∃rp . p-pure?(rp , s, e) ∧ re = rep .

Proof Sketch The proof is done by induction on i. In the induction
step we shift the local transition i + 1 to its appropriate block of isolated
computations. This is done by a repeated application of swapping, which is
possible for local transitions due to their non-interleaving nature.

The application of the reordering theorem leads to a significant reduction
of the number of runs to analyze for proving a property over the whole sys-
tem to be correct. Note that our reordering maintains liveness- and fairness
properties, as always only a finite sequence is considered.

There is an intuitive way to think of pure computations: Consider sys-
tem calls as function calls, where the functions are the processes from whose
computation the result of the system call depends. For example, if process p
invokes a receive from process q then we switch to the execution of process q
until this one returns control again with a send call to p.

5.3.5 Summing Up

The presented theorems can be combined to the following proof strategy for
communicating applications: By Lemma 38 we can restrict our analysis to runs
where only applications of interest take steps. Using the Reordering Theorem
we can assume that those runs are all p-pure, i.e. isolated computations
of applications are grouped together. Finally, properties over those isolated
chunks are verified according to Lemma 37 in traditional Hoare logic.

Chapter 6

Proving Correctness of
Client/Server software

So far we have considered a model with concurrently executed processes run-
ning in the environment of the Simple Operating System. These processes
communicate via IPC with each other and with the SOS.

Next, we extend the programming language C0 to system calls, instantiate
them as applications in the SOS ? and provide them with a more powerful
communication mechanism than IPC: Remote Procedure Calls. RPC enables
a process — the client — to invoke some service (i. e. a function) on a remote
process — the server. From the client’s point of view the invocation of the
service should look similar to a local function call.

At compile time clients must know the names and the signatures of the
services they intend to call. However, the location of the service (i. e. the
name of the providing server) is then not necessarily known: During runtime
the location of the service might change. Thus, we need a runtime mapping
of service names to their locations. This mapping is provided by the SOS as
described in Section 5.2: Servers register and clients look up services through
invoking special SOS system calls.

After looking up the server handle, the client has to send the parameters
of the call and, later on, receive the result. For each parameter and argument
type we need to implement a pair of communication functions sending and
receiving the data. For most types those functions can be implemented by
single IPC calls. The only exception are pointer types, such as lists. Since
IPC only supports copying data, which lies consecutively in the memory, for
data structures that have to be traced over a chain of pointers, we need a
more sophisticated mechanism.

Having these new communication functions, we define the protocol that
the client must obey when requesting a service.

Next, we construct a simple example server in C0, identify the correctness
criteria, and prove that it holds for our simple server. In short the correctness

159

160
CHAPTER 6. PROVING CORRECTNESS OF CLIENT/SERVER

SOFTWARE

criteria states that if the client strictly obeys the protocol it will eventually
receive the result of the invoked call. The correctness statement and proof for
the example server can be easily transfered and generalized to other server
implementations.

6.1 The Programming Language C0

In this section we instantiate the generic applications in the SOS ? model to
C0 applications. Since applications are interleaved, only small step seman-
tics is appropriate. Thus, we have to extend the small step semantics of
C0 to interactions with SOS system calls. Note, that in the following, we
use monolithic C0 configurations, referring to them simply as C0 configura-
tions. Moreover, we abbreviate access to the content of a variable evaluation
eval(c.conf,VarAcc(x)).content by va(c, x).

Our RPC mechanism is implemented as a set of libraries for C0. A library
consists of a collection of function descriptors and a type environment, i.e. it
has type lib t = proctableT × tenvT . Given a library and a C0 configuration
we can define, a predicate isLinked? ∈ Ccom × lib t → B which indicates if
the program was linked to the given library. A simplified definition of the
predicate is given by: isLinked?(c, lib) ≡ fst(lib) ⊆ c.pst ∧ snd(lib) ⊆ c.tenv.1

6.1.1 Semantics

The state space is instantiated to Ccom ⊂ Sp . Furthermore, we define the
transition function δSc0 ⊂ δp and the output function ωc0 ⊂ ωp .

Transition function

The type of the transition function δSc0 is:

δSc0 ∈ Ccom × Σp → Ccom.

The local part of this transition function is equivalent to ordinary C0 small step
semantics, i. e. δSc0 (c, ε) = δc0 (c.conf, c.tenv , c.pt). The non-local parts involve
invocations of system calls. In the program rest system call invocations appear
as ordinary function calls. However, they are not part of the procedure table.
Rather, the semantical effects of system calls on a C0 application is specified
as a single atomic step in δSc0 , consuming the response of the system. For
example, a portmapper lookup call has the following effect on a C0 application:

c.conf.prog = x = sc_pm_lkp(iid , prcid)
∧ δSc0 (c, SUCC-LUP hs) = c′

=⇒ va(c′, x)(0) = hs .

1Indeed linking is a much more complicated process, as types and global variables have
to be defined unambiguously. For more informations refer to [IdR09].

6.2. SIGNATURES OF SERVICES 161

IPC send and IPC receive system calls are slightly more complicated. Since
C0 forbids type casts, we have to implement a pair of IPC functions for each
type of data that should be sent or received. For simple types, IPC functions
can be easily implemented and they can be assumed by the C0 programmer.
Simple types cover all C0 types, in which no nested pointer types occur. The
type restriction results from the fact that the basic IPC mechanism provided
by the kernel only supports copying consecutive data chunks. Hence, types
requiring pointer chasing can not be interpreted at this level.

Output function

If the head statement of the program rest is not a system call, the output func-
tion ωc0 returns ε. Otherwise, a corresponding output message is constructed.
For example, a configuration c with the following head:

hd(s2l(c.conf.prog)) = x = sc_ipc_send_int(hexp ,mexp , toexp)

generates the output:

ωc0 (c) = SND t-hn(va(c, hexp)) t-m(va(c,mexp)) t-to(va(c, toexp)).

The functions t-hn, t-m and t-to map C0 values (i. e. content functions)
to their corresponding interpretation in the SOS ? abstraction. For exam-
ple t-to(va(c, texp)) maps any timeout value which is not equal to the integer
constant INFINITE to the constant FINITE. In the following, for simplicity,
we will omit mentioning these translations, i. e. we write va(. . .) instead of
t-x (va(. . .)).

6.1.2 Doubly-Linked Lists in C0

Lists are provided to the C0 programmer by means of a generic library. For
a given type T this library includes a type defining a doubly-linked list over
elements of T . Furthermore, operations on lists are provided, such as creation,
and element insertion and deletion. These operations have been formally
verified against abstract lists [Sta06] (which are basically sequences on T).

6.2 Signatures of Services

The portmapper, maintained in the SOS, is not aware of the services’ signa-
tures. However, at compile time, the client must know the signatures and
names of the services it intends to call. The signature of a service is given by
the type of the input parameter and the type of the result:2

service sig t = (arg : tyrpc, res : tyrpc).
2In the context of RPC, the formalism describing the service signatures is called Interface

Definition Language (IDL).

162
CHAPTER 6. PROVING CORRECTNESS OF CLIENT/SERVER

SOFTWARE

Here, tyrpc denotes a subset of all possible C0 type descriptors. The formal
definition of this subset is given in [Sha06]. In short, tyrpc contains all simple
and structured types. Pointer types are only allowed as part of the pre-defined
doubly-linked lists.

Services are organized in so-called interfaces. The signature of an inter-
face consists of a name and a mapping from procedure ids to corresponding
signatures:

itfc t = (iid : iid t , procs : prcid t → service sig t ε).

In the remainder of this paper we use the terms interface signatures and
interfaces interchangeably.

6.3 Portmapper Correctness

The next lemma is a property of the interaction of different portmapper calls.
This lemma states that, after a server has registered a service, any client
that is looking up this service will finally receive the correct handle. Thus, it
expresses the programmer’s point of view of interacting portmapper calls.

Lemma 39 (Interacting Portmapper Register- and Lookup Calls)

Suppose there exists a step l at which a server with PID ps wants to register
the service (id i , idp). Further suppose that the server will not try to unreg-
ister the service, nor any other process will try to register the same service
at any step during the run:

∀r ∈ R, id i , idp , ps , l.
ωc0 (rl.pdb(ps)) = REG id i idp

∧ (∀k, p′s .
ωc0 (rl.pdb(p′s)) = REG id i idp =⇒ p′s = ps
∧ ¬ωc0 (rl.pdb(ps)) = UNREG id i idp)

=⇒

Then, finally, a step in the run r is reached, after which the following holds:
whenever some process with pid pc looks up the service, it will receive a
success message with the handle to the server ps .

(∃k > l. ∀j1 > k.
ωc0 (rj1 .pdb(pc)) = LUP id i idp

=⇒ (∃j2 > j1 . δ
S
c0 (rj2 .pdb(pc), SUCC-LUP pp2h(pc , ps)) = rj2+1.pdb(pc)))

Proof Sketch. By applying Lemma 38, we can pretend that the lookup
call is executed immediately after the execution of the register call. We only
have to ensure that no system calls interfering with any of both portmapper
calls is executed meanwhile. This follows from the assumptions of Lemma 39.

6.4. SENDING AND RECEIVING DATA STRUCTURES 163

6.4 Sending and Receiving Data Structures

As described before, the IPC mechanism, provided in VAMOS does not fulfill
the requirements for RPC. Therefore, C0 applications are supported with a li-
brary containing the implementation of RPC send and RPC receive functions.
In the following we call these functions, RPC primitives.

These RPC primitives depend on the types of the data structure to be
transmitted. Hence, we need a library generator, that produces, for a given
interface signature itfc, the C0 implementation of functions for sending and
receiving RPC messages.

The implementation is simple. For the sending side, non-list data struc-
tures are sent via a single IPC operation. List data structures are chased
and sent element by element (recursively) via RPC. The receiver reconstructs
the list, by chaining these elements together. Termination of both, the send-
ing part and the receiving part, follows from the well-formedness of the list
implementation.

This mechanism of packing and unpacking is an implementation detail
and should not be visible to programmers of RPC servers and especially not
to programmers of clients. Therefore, later on, we provide the programmers
with a set of properties over the execution of those primitives, abstracting
from their concrete implementation.

6.4.1 The Interface Compiler

The interface compiler takes as input an interface signature and generates a C0
library that contains the implementation of the corresponding RPC functions.

The function genRPCprim abstracts the implementation of the SOS inter-
face compiler, i. e. it represents the semantics of the interface compiler. Since
we are only interested in properties over the primitives, both the concrete
code implementing genRPCprim and the specification defining the output of
genRPCprim, is omitted:

genRPCprim ∈ itfc t → lib t

genRPCprim(itfc) ≡ librpcitfc ,

where librpcitfc contains for each type T ∈ {p.arg, p.res|p ∈ range(itfc.procs)}
occurring in the signature of one of the procedures of itfc, two functions:

1. RPCsend_T(hr , arg , to) This primitive sends the argument arg ∈ T to the
application with handle hr . The value to specifies some timeout value.3

The function returns a value of type rpcerr t , which indicates if the send
3Note that in the implementation, in contrast to SOS ?, arbitrary integer values (except

the constant INFINITE) can be specified for a finite timeout.

164
CHAPTER 6. PROVING CORRECTNESS OF CLIENT/SERVER

SOFTWARE

operation was successful, a timeout occurred, or the specified handle is
not valid:

rpcerr t = {SUCC,TIMEOUT, INVALID}.

Thus, formally we have the following requirement to the library:

fst(librpcitfc)(RPCsend_T) =
(params = [(hr , Int), (arg , T), (to, Int)], ret-type = Int, . . .)

2. RPCrecv_T(hs , to) This primitive is called to receive an argument of type
T from the application with the handle hs . This call returns a value,
which is a structure of type rpcrcv T t containing two components. The
first component indicates if the operation was successful, and the second
one holds the received data:

rpcrcv T t = (status : rpcerr t , data : T).

Thus, formally we have the following requirement to the library:

fst(librpcitfc)(RPCrecv_T) =
(params = [(hs , Int), (to, Int)], ret-type = Int, . . .)

These RPC primitives hide the details of sending and receiving parame-
ters and results. This, for example, allows us to extend RPC to invocation
of procedures via the Internet, without changing the signature of the RPC
primitives. Even the specification would remain the same.

In the following we write for a function which in the domain of the proce-
dure table of a library RPCsend_T ∈ dom(lib) simply RPCsend_T ∈ librpcitfc .

6.4.2 Predicates Signaling RPC Primitives

In order to specify the behavior of RPC primitives, we need to introduce a
number of auxiliary predicates and functions that are used to describe the
current state in the execution of the RPC primitives.

The predicate beforeS?(c, T, resv , hr , arg , to) evaluates to true if:

• The head of the program rest of c is an RPC send primitive, where T is
the type of the parameter arg to be transferred, hr is the handle of the
receiver, and to is some timeout value.

• The C0 machine c was linked with an RPC library of an interface con-
taining the argument type T .

• The result of the primitive is assigned to the C0 variable resv .

6.4. SENDING AND RECEIVING DATA STRUCTURES 165

Formally we get:

beforeS? ∈ Ccom × tyrpc × varn × hn t × expr × N→ bool

beforeS?(c, T, resv , hr , arg, to) ≡

∃ itfc ∈ itfc t , hexpr , toexpr ∈ expr .
RPCsend_T ∈ librpcitfc ∧ isLinked?(c, librpcitfc) ∧
hd(s2l(c.conf.prog)) = resv = RPCsend_T(hexpr , arg, toexpr) ∧
va(c, hexpr) = hr ∧
va(c, toexpr) = to.

The predicate beforeR?(c, T, resv , hs , to) evaluates to true, if:

• The head of the program rest of c is a receive RPC primitive, where
T is the type of the parameter to be received, hs is the handle of the
sender and to is the timeout.

• The result of the primitive is assigned to the C0 variable resv .

Formally we get:

beforeR? ∈ Ccom × tyrpc × varn × hn t × N→ bool

beforeR?(c, T, resv , hs , to) ≡

∃ itfc ∈ itfc t , hexpr , toexpr ∈ expr .
RPCrecv_T ∈ librpcitfc ∧ isLinked?(c, librpcitfc) ∧
hd(s2l(c.conf.prog)) = resv = RPCrecv_T(hexpr , toexpr) ∧
va(c, hexpr) = hs ∧
va(c, toexpr) = to.

For a given C0 machine c and a function name fn, the predicate duringFC ?
indicates that c is currently executing a call of the function fn:

duringFC ? ∈ Ccom × funn → bool .

A formal description of duringFC ? is omitted.
The function finishedFC indicates the time when the execution of a func-

tion is finished. For a given run r, step i , process id pid and a function name
fn, it returns the first step, after i , in which the execution of function fn has
finished:

finishedFC ∈ R× N× pid t × funn → N

finishedFC (r, i, p, fn) =
min{j | j ≥ i. duringFC ?(rj−1.pdb(p), fn) ∧ ¬duringFC ?(rj .pdb(p), fn)}

Finally, we need one predicate that compares two states of a single C0
machine. The predicate changed? (c,c’,v) evaluates to true, if in state c a

166
CHAPTER 6. PROVING CORRECTNESS OF CLIENT/SERVER

SOFTWARE

function was called and in c′ the same function returned. Furthermore, the
result of the function call evaluates to the value v :4

changed?(c, c′, v) ≡ ∃x, fn.
(hd(s2l(c.conf.prog)) = x = fn(. . .)

∧ c′.prog = tl(s2l((c.conf.prog)))
∧ va(c′, x) = v)

6.4.3 Properties of RPC Primitives

Instead of defining a new model, the semantics of the RPC primitives is given
through a small set of theorems, describing relevant parts of their behavior.
Relevant parts includes all properties which are needed for proving correctness
of programs that use the RPC libraries. Similar to the correctness statement
of the portmapper calls, the following lemmas should provide the program-
mer’s point of view of the primitives. Thus, they are to be understood as
specifications of the interface compiler’s output. Given the concrete definition
of genRPCprim, they can be discharged. Lemma 40 states that RPC primi-
tives always terminate if a finite timeout was specified. Lemma 41 states that
if two applications try to communicate via RPC send or RPC receive, then,
finally, either the message will be transferred correctly or a timeout occurs.
The lemmas are not proved for a concrete interface compiler. Rather the proof
methodology is outlined.

Lemma 40 (Termination of RPC Function Calls)

This lemma states that every invocation of either the RPC send or RPC re-
ceive function terminates (possibly unsuccessfully, for example with a time-
out error), in case the timeout value is finite:

1 . ∀r ∈ R, i ∈ N, sn ∈ pid t , to ∈ N.
beforeS?(ri.pdb(sn), T, . . . , to) ∧ to 6= INFINITE =⇒
∃j > i. j = finishedFC (r, i, sn, RPCsend_T)

2 . ∀r ∈ R, i ∈ N, receiver ∈ pid t , to ∈ N.
beforeR?(ri.pdb(rc), T, . . . , to) ∧ to 6= INFINITE =⇒
∃j > i. j = finishedFC (r, i, rc, RPCrecv_T).

Proof Method. The C0 statements appearing in the implementation of
the send- and receive primitives are either ordinary or IPC communication
statements with finite timeout. By the fairness property of runs, we can
deduce that each statement is finally executed (since at each configuration
the C0 machine can make progress). The only remaining (general) source
of non-termination is a type T defining an infinite data structure to process.
However, such a type can only be defined by using pointers — and the only
pointer structures allowed are well-formed and finite lists.

4Only functions with no side-effects are considered.

6.4. SENDING AND RECEIVING DATA STRUCTURES 167

Lemma 41 (Correctness of RPC Communication Primitives)

Suppose, there is a sender sn and a receiver rc which want to communicate
with each other using RPC primitives. The applications with ids sn and rc
invoke the RPC send and RPC receive functions at steps i and j , respectively.
Furthermore, suppose, the type of the transferred parameter arg is T .

∀r ∈ R, i, j ∈ N, sn, rc ∈ pid t , T ∈ tyrpc,

resvs , resvr ∈ varn , args ∈ expr , tos , tor ∈ N.

beforeS?(ri.pdb(sn), T, ress , pp2h(ri, sn, rc), args , tos) ∧
beforeR?(rj .pdb(rc), T, resr , pp2h(rj , rc, sn), tor) ∧
=⇒

Then there exist steps i ′ and j ′ in the run, at which the send and receive
function calls have returned.

(∃i′, j′ ∈ N.
i′ = finishedFC (r, i, sn, RPCsend_T) ∧
j′ = finishedFC (r, j, rc, RPCrecv_T) ∧

and if furthermore the following two conditions hold:

• If the sender is waiting for the receiver, then the receiver will not try to
receive messages (via IPC) from the sender until it invokes RPC receive.:

(i < j ⇒ ∀k ∈ N. i ≤ k ≤ j ⇒
ωc0 (rk.pdb(rc)) 6= RCV pp2h(rk, rc, sn) · · · ∧
ωc0 (rk.pdb(rc)) 6= RCV HN NONE . . .) ∧

• If the receiver is waiting for the sender, the sender will not try to send
messages (via IPC) to the receiver until it invokes RPC send:

(j < i⇒ ∀k ∈ N. j ≤ k ≤ i⇒
ωc0 (rk.pdb(sn)) 6= SND pp2h(rk, s, r) . . .) =⇒

Then either the receiver will have received the correct data (sent by the
sender) and a success message is reported to sender and receiver, or, in case
the timeout was not set to infinite, a timeout could have occurred:

(changed?(ri.pdb(sn), ri
′
.pdb(sn), SUCC) ∧

changed?(rj .pdb(rc), rj
′
.pdb(rc),

(status = SUCC, data = va(ri.pdb(sn), args)))) ∨

(tos 6= INFINITE ⇒ changed?(ri.pdb(sn), ri
′
.pdb(s),TIMEOUT) ∧

tor 6= INFINITE ⇒ changed?(ri.pdb(rc), ri
′
.pdb(r),

[status = TIMEOUT, data =?])))

168
CHAPTER 6. PROVING CORRECTNESS OF CLIENT/SERVER

SOFTWARE

SOS

Client

Server
REG

L
U

P

SOS

Client

Server

Slave

R
eq

ue
st

ACK
sla

ve
ha

nd
le

spaw
n

new
child

RPCsend arguments

RPCrecv results

Figure 6.1: A sample execution of the RPC protocol — left : service register
and lookup, right : server spawns child to handle client request

Proof Method. By using Lemma 38 we can prove the correctness of
Lemma 41 ignoring all applications except the sender and the receiver. Ap-
plying the Reorder Theorem we can assume that control between sender and
receiver is only switched at IPC-call borders. So, we can verify code segments
between the invocation of two consecutive IPC operations purely sequentially
in Hoare logic.

6.5 RPC Client Protocol

Having the new primitives of communication, we can define the protocol that
the client must obey when requesting a service. Under a protocol we under-
stand the sequence of messages that are sent and received by the client. This
protocol should not depend on the concrete server architecture, but only on
the service name. Figure 6.1 depicts the interaction of a client and a server.

The RPC client protocol is fairly simple. It consists of the following five
steps:

• Request the location of the service via a portmapper call.

• Send the request to the server via IPC. This request contains the id of
the desired (remote) procedure.

• Wait for an answer of the server. The answer contains a constant denot-
ing whether the request was successful or not and the handle of the ap-
plication processing the call (either the server itself or a newly spawned
slave application dedicated for the request).

• Send, via RPC, the parameter of the service to the application referenced
by the received handle.

• Wait, via RPC, for the result of the call.

6.5. RPC CLIENT PROTOCOL 169

6.5.1 CallService Library for C0 Applications

In order to release the programmer from manually implementing each step of
the protocol, we provide him with a library compiler:

genCSprim ∈ itfc t → lib t

genCSprim(itfc) = libService itfc .

This compiler takes as input an interface signature and returns a C0 library
containing the definition of the function callService_iid_prcid, for each ser-
vice (iid , prcid) in the given interface. Now, this function joins the individual
steps of the above described client protocol into a single function call. The
function callService_iid_prcid takes as parameters the argument of the ser-
vice and a timeout value. Given the return type T of the service (iid , prcid),
callService_iid_prcid returns a value of type csrcv T t :

csrcv T t = (res : cserr t , data : T) , where

cserr t = {SUCC,NOTREG,DENIED}.

6.5.2 Formal Description of the Client Protocol

For defining the RPC client protocol formally, we need three more predicates.
The predicates beforeCS?, request? and recvAnsw? are used to characterize
different aspects of the first three steps of the client protocol.

The predicate beforeCS?(c, iid, prcid, arg, to, resv) evaluates to true if:

• The head of the program rest of c is the function call callService_iid_prcid,
where (iid , prcid) denotes the name of the service to invoke, arg denotes
the argument to be passed to the server, and to is the timeout value
used during communication with the server.

• The result of the function call is assigned to the C0 variable resv .

Thus, we get the definition:

beforeCS? ∈ Ccom × iid t × prcid t × expr × N× varn → B

beforeCS?(c, iid, prcid, arg, to, resv) ≡
∃itfc ∈ itfc t . itfc.iid = iid ∧ prcid ∈ dom(itfc.procs) ∧
isLinked?(c, librpcitfc) ∧ isLinked?(c, libservice itfc)
hd(s2l(c.conf.prog)) = resv = callService iid prcid(arg, to)

The predicate request?(c, hs , prcid) evaluates to true if:

• The C0 application c is sending (via IPC) a request to invoke procedure
prcid on the server with handle hs .

170
CHAPTER 6. PROVING CORRECTNESS OF CLIENT/SERVER

SOFTWARE

• Directly after sending the request, the application will be waiting (via
IPC) for an answer. The corresponding receiving buffer b must be large
enough to store the answer of type integer (four bytes).

Thus, we get the definition:

request? ∈ Ccom × hn t × prcid t → bool

request?(c, hs , prcid) ≡ ∃ msg ∈ byte t∗, b ≥ 4.
ωc0 (c) = SND hs msg INFINITE ∧
byte2prcid(msg) = prcid ∧
ωc0 (δp(c, SUCC)) = RCV hs b INFINITE

Here, the function byte2prcid ∈ byte t∗ → prcid t translates a byte sequence
to a procedure id.

The predicate requestAnsw?(c, c′, res, hs) evaluates to true if:

• The C0 application in state c′ has successfully returned from an IPC
receive call in state c.

• The message res and the handle hs were received. In case the IPC
message was an RPC request, res should encode whether the request
was acknowledged or not, i. e. its value is either ACK and NACK.ACK

and NACK are constants of type Z32 . If an ACK message was received,
hs denotes the handle of the application that will serve the request.

Thus, we get the definition:

requestAnsw? ∈ Ccom × Ccom × Z32 × hn t → bool

requestAnsw?(c, c′, res, hs) ≡
∃msg ∈ byte t∗. δp(c, SUCC-RCV hs msg) = c′ ∧
byte2ack(msg) = res.

Here, the function byte2ack ∈ byte t∗ → {ACK,NACK} translates a byte se-
quence to a server response.

After defining these auxiliary predicates we can now specify the intended
behavior of the callService library. The code of any C0 library claiming to
implement the client protocol, must fulfill Theorem 13.

In the following theorem we use the abbreviations: Targ = itfc.procs(prcid).arg
and Tres = itfc.procs(prcid).res.

Theorem 13 (Behavior of CallService)

∀r ∈ R, i0 ∈ N, iid ∈ iid t , prcid ∈ prcid t , c ∈ pid t , to ∈ N, arg ∈ expr .

6.5. RPC CLIENT PROTOCOL 171

1 . Assume that the next statement to execute of the client process c is
an invocation of a service (iid , prcid). Then, finally, the client will be
requesting the location of the service from the SOS.

beforeCS?(ri0 .pdb(c), iid, prcid, arg, INFINITE, rescs)
=⇒ (∃i1 > i0 . ωc0 (ri1 .pdb(c)) = LUP iid prcid ∧

2 . If the portmapping request was successful and the service location hs

was returned, the client will send an RPC request to the server:

(∀ i2 . i2 = min{j > i1 | progress(rj−1, c, rj)} ∧
δSc0 (ri2−1.pdb(c), SUCC-LUP hs) = ri2 .pdb(c)

=⇒ (∃i3 > i2 . request?(ri3 .pdb(c), hs , prcid) ∧

3 . If the answer to the request was positive, the handle hs of the process
that will serve the call is received. The client will next try to send the
arguments of the call via RPC to the process hs :

(∀i4 > i3 . i4 = min{j| requestAnsw?(ri3 .pdb(c), rj .pdb(c), b, hs)} ∧ b = ACK

=⇒ (∃i5 > i4 , ressend . beforeS?(ri5 .pdb(c), Targ, ressend , hs , INFINITE) ∧

4 . If the RPC sending of the argument was successful, the client will wait
(via RPC) for the result of the call.

(∀i6 > i5 . i6 = finishedFC (r, i6 , c, RPCsend_Targ) ∧
va(ri5 .pdb(c), ressend) = SUCC

=⇒ (∃i7 > i6 , resrcv . beforeR?(ri7 .pdb(c), Tres, resrcv , hs , INFINITE) ∧

5 . If the client successfully receives the result, then callService_iid_prcid

will terminate and return the success message as well as the received
data.

(∀i8 > i7 . i8 = finishedFC (r, i7 , c, RPCrecv_Tres)
∧va(ri8 .pdb(c), resrcv .res) = SUCC

=⇒ (∃i9 > i8 . i9 = finishedFC (r, i8 , c, callService_iid_prcid) ∧
changed?(ri0 .pdb(c), ri9 .pdb(c),

[res = SUCC, data = va(resrcv .data)]))))))))))

Proof Method. The lemma has not been proven for a concrete li-
brary generator. We rather outline the proof methodology, here. By applying
Lemma 37 we can generalize properties proved locally to properties that also
hold in the interleaved setting of SOS ?. That means, the correctness of a given
callService library can be proven almost completely sequentially (except when
waiting for results from the SOS or other applications) and in traditional Hoare
logic.

For example, for step 1 of Theorem 13, it suffices to prove the following, lo-
cal property over the library code: beforeCS?(c, iid, prcid, arg, INFINITE, rescs) =⇒
∃i. ωc0 (δil (c)) = LUP iid prcid.

172
CHAPTER 6. PROVING CORRECTNESS OF CLIENT/SERVER

SOFTWARE

6.6 Building a Server and Proving its Correctness

Now we have everything we need for building arbitrary servers and specify
their correctness: We can register services, send and receive messages of dy-
namic length and we know how a correct client should behave. In the next
section, we give the implementation of a simple server and prove its correct-
ness. Under correctness we understand, that whenever the client obeys the
above described protocol, it will eventually receive the result of the invoked
call.

Even so, one could implement the same interface of the Math Server
through many different architectures — for instance, a simple architecture
might handle one request after the other, whereas a more advanced archi-
tecture might spawn a new slave process for each request — all architectures
have to fulfill the same correctness criteria. This criteria represents the client’s
view on the server.

6.6.1 An Example: Math Server

The MathServer implements the interface mathitfc with only one procedure.
This procedure takes two integers and returns their product. Hence, the
parameter type of the service is given through:

rpcmul t = (x : Z32 , y : Z32)

The interface id is MATH and the procedure id is MUL. mathitfc is formally
described through:

mathitfc = [iid = MATH, procs = (λx. if x = MUL then (arg = rpcmul t , res = Z32))]

If we program a server, we first have to link it with the three libraries
Libvamos, Libsos and librpc. The library Libvamos provides us with the func-
tions for sending requests and receiving answers via IPC: sc_ipc_send_int and
sc_ipc_rcv_rpcreq_t.5 The library Libsos provides us with the portmapping
call sc_pm_reg, and librpcmathitfc contains the RPC send and RPC receive
functions needed to transmit arguments and results of the MUL procedure:
RPCrecv_rpcmul_t and RPCsend_int.

The implementation of MathServer is pretty simple. Listing 6.6.1 gives
the code of the main function of MathServer . First the service is registered
in the SOS. Then the main loop is entered. There, the server first waits for
incoming requests via IPC. If a request to execute service MUL is received, the
server sends an acknowledgment and waits for an RPC message containing the
argument of the call. If, finally, the argument arrives, the result is calculated
and sent to the client via RPC.

5Libvamos contains C0 macros, for generating IPC functions of the desired type.

6.6. BUILDING A SERVER AND PROVING ITS CORRECTNESS 173

(0) dummy = sc pm reg (MATH, MUL);
(1) while (true) {
(2) // open receive for service requests
(3) dummy = sc ipc rcv rpcreq t (HN NONE, request, client, INFINITE);
(4) // dispatching
(5) if (*request.prcd == MUL) {
(6) // sending acknowledgement message
(7) dummy = sc ipc send int (*client, ACK, INFINITE);
(8) // receiving arguments of the client with infinite timeout
(9) clientmsg = RPCrecv rpcmul t (*client, INFINITE);
(10) // computing the result of the requested service
(11) res = clientmsg.data.x * clientmsg.data.y;
(10) // sending the result to the client
(13) dummy = RPCsend int (*client, res, INFINITE);
(14) }
(15) // in case of a call to a procedure other than MUL send denial
(16) else {
(17) dummy = sc ipc send int (*client, NACK, 10);
(18) }
(19) }

Figure 6.2: Implementation of Math Server — variables client and request are
pointers to integers and * denotes the dereferencing operator.

6.6.2 Correctness of Math Server

The correctness theorem assumes that all applications requesting the MUL

service obey the RPC client protocol. This condition seems to be too strict.
The reason for that condition, is that, meanwhile the server waits for the
arguments of a remote call, it will block — possibly infinitely long. Thus, it
must trust that the client eventually will send or receive the data.

Alternatively, the server could specify a finite timeout when waiting for
the client. This solution is cumbersome when it comes to verification: It
could happen that the client, although obeying the protocol, is simply tooslow
for sending the data. In practice one could easily try to estimate a robust
timeout value for the server. However, proving that this value will never lead
to a timeout is much harder, since it depends on the implementation of the
hardware, the kernel, etc (for a detailed worst-case execution time analysis,
covering a complete system stack, refer to [KP06]).

Yet, if we know that all clients during a run will obey the protocol, then we
can set the timeout values of the server to infinite and hereby prove correctness
and termination for all calls.

The above mentioned condition is formulated in the predicate goodclients.
It is satisfied if, during the whole run, every client will only communicate
with servers, in the context of a callService function call. With other words,
it is true, if all clients communicating with the server obey the RPC client
protocol.

goodClients? ∈ R× iid t × prcid t → bool

goodClients?(r, iid, prcid) ≡

174
CHAPTER 6. PROVING CORRECTNESS OF CLIENT/SERVER

SOFTWARE

∀i ∈ N, s, c ∈ pid t .
ri.pmdb.serv(iid) = pp2h(ri,OSPID , s) ∧ (iid, prcid) ∈ ri.pmdb.reg ∧
ωc0 (ri.pdb(c)) = SND pp2h(ri, c, s) . . .

=⇒ duringFC ?(ri.pdb(c), callService_iid_prcid)

Now, we can express the correctness of the our Math Server. It states, that
if all clients obey the client protocol, finally the MUL service will be registered
and any client requesting it will finally receive the correct answer:

Theorem 14 (Correctness of Math Server)

If, during a run, the MathServer application is started, all possible clients are
good and no other application tries to register the interface mathitfc:

∀r ∈ R, s, c ∈ pid t , i ∈ N.
ri.pdb(s) = MathServer ∧ goodClients?(r,MATH,MUL) ∧
(∀k ∈ N, s′ ∈ pid t . ωc0 (rk.pdb(s′)) = REG MATH ? =⇒ s′ = s)

=⇒,

then a step k in the run is reached, after which the following holds: if some
application calls the service (MATH, MUL) with integers x and y as parameters,
then, finally, this call will return with the correct result, i. e. the product of x
and y :

(∃k > i. ∀j > k, arg ∈ expr .
beforeCS?(rj .pdb(c),MATH,MUL, arg, INFINITE, . . .) =⇒
(∃j′ > j. j′ = finishedFC (r, j, c, callService MATH MUL)∧
changed?(rj .pdb(c), rj

′
.pdb(c),

[res = SUCC, data = va(rj .pdb(c), arg.x) ∗ va(rj .pdb(c), arg.y)])))

Proof. Since in SOS ? a fair scheduling is assumed, eventually the first line
in Listing 6.6.1 is executed. At that point all assumptions of Lemma 39 are
satisfied and we conclude that finally (at step k) the service is registered in
the portmapping component of the SOS. On the client side, it follows from
Theorem 13 part 1 that the client will request the SOS for the address of the
service:

. . . beforeCS?(rj .pdb(c),MATH,MUL, arg, INFINITE, . . .)
=⇒ ∃j1 > j. ωc0 (rj1 .pdb(c)) = LUP MATH MUL

From Lemma 39 follows that the service look up of the client will be
successful, and from Theorem 13 part 2 follows that the client is finally sending
a request to the server via IPC:

. . . beforeCS?(rj .pdb(c),MATH,MUL, arg, INFINITE, . . .)
=⇒ ∃j2 > j. request(rj2 .pdb(c), s,MUL)

6.6. BUILDING A SERVER AND PROVING ITS CORRECTNESS 175

Now, (at step j2) the server can be in two different states. Either it is waiting
in an open receive for requests (line 3), or the server is already processing some
request (lines 5 - 18). In the second case we have to show, that the server will
finally finish the processing and return to the beginning of the main loop. For
that we only have to prove the termination of each statement of the loop.

Since the timeout values of the RPC send and receive statements are set
to infinite, termination does not follow directly.6 By using Lemma 41 and
because we know that the client is obeying the client protocol, we prove that
each RPC send primitive on server side is matched by an RPC receive primitive
on client side (where the timeout is set to infinite) and conclude rendezvous
and termination. Similarly we prove termination of the RPC receive primitive.

Hence, the server will always be finally waiting for requests. By the fairness
property app-fairness-infinite over the run r we conclude that the server finally
will also receive the request of client c. Since the requested procedure is MUL,
the server will send an acknowledgment (line 7). From Theorem 13 part 3 it
follows that finally the client will send the service parameters to the server:

. . . beforeCS?(rj .pdb(c),MATH,MUL, arg, INFINITE, . . .)
=⇒ ∃j3 > j. beforeS?(rj3 .pdb(c), arg, ?, pp2h(rj3 , c, s), INFINITE)

Next, the server will try to receive the parameters via RPC (line 9). Using
Lemma 41 one can easily prove that the parameters of the client are correctly
transmitted to the server. Hence, from Theorem 13 part 4 it follows that, the
client will wait, via RPC, for the result:

. . . beforeCS?(rj .pdb(c),MATH,MUL, arg, INFINITE, . . .)
=⇒ ∃j4 > j. beforeR?(rj4 .pdb(c),Z32 , ?, pp2h(rj4 , c, s), INFINITE)

On server side, next, the service (line 11), i. e. the computation of the product
of the received integers, is executed. Since we assume the correctness of the C0
multiplication algorithm, it follows that the server will finally send via RPC
the correctly computed product to the client (line 13). Using again Lemma
41 and Theorem 13 part 5 we conclude that the client will finally receive the
result and return from the call with a success message:

. . . beforeCS?(rj .pdb(c),MATH,MUL, arg, INFINITE, . . .)
=⇒ ∃j′ > j. j′ = finishedFC (r, j4 , c, callService MATH MUL) ∧

changed?(rj .pdb(c), rj
′
.pdb(c′),

[res = SUCC, data = va(rj .pdb(c), arg).x ∗ va(rj .pdb(c), arg).y])

q.e.d
The proof technique presented here, obviously applies also to server im-

plementations other than the simple Math Server discussed in this Section.

6In case timeouts were set to a finite value, termination would follow from Lemma 40.

Chapter 7

Conclusion and Future Work

The thesis contains to the best of our knowledge the first formal functional
verification of a device driver (the hard disk driver) and for the first time the
outline of a paper and pencil proof of a realistic client server mechanisms at
the code level. It splits into these two main parts:

• Drivers Verification. First we extended a language stack — reaching from
the gate-level implementation of a processor up to the high-level seman-
tics of C0 — to deal with device drivers. This comprised, a reordering
theory to sequentialize the interleaved computation of the processor and
devices. The result is a methodology for driver verification in the context
of pervasive system verification which is general enough to be applicable
to other drivers in other settings, and concrete enough to expose ‘real’
verification problems and hurdles.

Subsequently, the language stack has been leveraged to verify an impor-
tant piece of kernel correctness: the hard disk driver used for swapping-
out pages. During the verification process, we had to join theories,
models and proofs of many people (cf. Section 7.1) and on many dif-
ferent semantical layers to finally obtain a single theorem covering the
whole system. This theorem has been successfully used to verify the
kernel. During driver verification we were forced to reason about many
aspects and conditions of the system which are usually under the veil of
‘technically but simple’. They don’t show up until pervasive and formal
verification is conducted. These conditions may be crucial for system
correctness, as we illustrated for memory consumption (for which we
verified a small theory to estimate it).

• Client/Server Verification. We used arguments and abstractions known
in one formalism or another from previous work. As explained in the
introduction, the contribution of this work is, however, to put all these
concepts into a single mathematical theory which:

177

178 CHAPTER 7. CONCLUSION AND FUTURE WORK

– specifies the correctness of systems as they are without simplifica-
tions, i. e. at the code level, and

– justifies all abstractions (used on the way) by proving that they are
implemented correctly by lower system layers.

First of all, we presented a subset of the specification of Bogan’s sim-
ple operating system that supports communicating user applications.
Then, we showed how the correctness of code, running in this concur-
rent setting, can be proven (almost) sequentially in traditional Hoare
logic. For this we identified classes of non interfering system calls. Fi-
nally, we presented the specification and outlined the verification of an
RPC mechanism. We skipped over the not so simple theory of linking,
required to show that functions linked to a C0 program behave — under
certain conditions — in the desired way. Such a theory will be presented
in [IdR09].

On top of our work, using the presented RPC mechanism, an email sys-
tem, covering an SMTP server and an email client, has been constructed
and partially verified. Thus, the work at hand is not only an abstract
case-study, but has parially been applied to a concrete software system.

7.1 Formal Work

Integrating the huge amount of specifications, models and proofs emerged as
a highly non-trivial and time-consuming engineering task. This covers, among
other things, a social process, in which the work of many researchers, located at
different places, has to be combined to one uniform and formal Isabelle/HOL
theory. More than 250 Isabelle theories developed by more than 10 researchers
were either directly or indircetly imported in our work (cf. Appendix A).

On the model side, we mechanized the VAMP assembly with devices model
and the C0 with XCAll semantics. On the proof side, we mechanized among
others the reordering theory, the theory on estimating memory consumption,
theory for integrating devices into the C0 language stack (adapted for the use
in the CVM verification) and the whole hard disk driver for swapping out
pages (i.e. Theorem 11 was formally verified, where in the pervasive proof
chain only correctness of the read case had been assumed without proof). We
adapted this driver to be applicable in the context of formal page-fault handler
verification. Theorem 11 has been successfully used in Isabelle/HOL to verify
the CVM kernel.

All together, we have carried out almost 13.000 proof steps in 411 Lemmas
(cf. Appendix B).

In the process of formal driver verification, we developed a series of verification-
engineering tools to facilitate the proof development. Among others, these
are:

7.2. FUTURE WORK 179

• Clone-Detection. We applied ConQAT, a clone detection tool1, to the
Verisoft theory corpus and to the driver verification sources. For Verisoft,
an analysis showed that up to 28% of the proof scripts (larger than 10
lines) are duplicated. For the driver verification, we had about 23%
duplicates. Sometimes, these duplicates are justified, however in many
cases they are not. In general, there are two classes of unnecessary du-
plicates: First, two lemmas with different statements could still have
the same proof script. The identical proof may be an indication of a
more general lemma subsuming the other two as sub cases. Second,
some proof scripts are repeated within larger proofs of many different
lemmas. These scripts may, for example prove some simple arithmetic
equality which is used at different locations. In such cases, one should
refactor these proof lines into a separate lemma.

• Subgoal-Detection. Similarly, we have implemented a tool to detect
recurring conclusions of subgoals (across many proofs). In an online
analysis, the prover can warn you if you are about to establish a conclu-
sion that you have already proven earlier (not implemented yet). In an
offline analysis, recurring conclusions of subgoals can just be reported
by number of recurrences; the higher the number of repetitions, the
higher the potential merit in factoring out the conclusion into a sepa-
rate lemma. In this case, the prover can also suggest potential assump-
tions for the lemma, e. g. the intersection of the sets of assumptions
that have appeared for that particular conclusion. An initial analysis
for the C0 small-steps semantics (which contains many lemmas, e. g. on
type safety) has shown that ca. eight percent of the subgoal conclusions
appear repeatedly. This number should be treated with care, however,
because if a certain chain of conclusions appears multiple times (because
the same proof is conducted multiple times), than all conclusions in all
instances of the chain are counted multiple times.

7.2 Future Work

There are several directions of possible future work:

• Driver verification. The driver for page swap-in remains to be verified.
Also, the driver given is only a polling one. For the file system im-
plementation in Verisoft’s simple operating system interrupts are also
used.

For the verification of code for devices other than a hard disk, it might
be interesting to refine the concept of stability, which was introduced
in Sect. 3.2. Typically, a communicating device (e.g., network interface

1http://conqat.in.tum.de

http://conqat.in.tum.de

180 CHAPTER 7. CONCLUSION AND FUTURE WORK

card) is never stable on the complete configuration because it always
asynchronously transfers data. However, by defining stability only for
parts of the state, it can still usually be preserved. For example, commu-
nication is often channeled through buffers for transmission and recep-
tion with processor and environment accessing these buffers at different
ends. Concurrency can be reduced in such a scenario.

• Client/Server verification. The formal verification in Isabelle/HOL of
the reported RPC results is still an open task. The problems and chal-
lenges related to this process, are not specific to the verification of RPC,
but has been experienced and to a large extend solved in the formal
verification of the driver framework.

• Proof Engineering. Larger efforts should be undertaken to simplify and
better organize the formal verification in a computer aided proof system
as Isabelle/HOL. On the one hand side it would be desirable to have
more such analysis tools as the one described above. We think, that in
projects with such a large theory corpus, ‘proof-by-search’ technology
(as Subgoal-Detection) may be highly promising.

On the other hand, the use of automatic tools in Verisoft often failed due
to a huge overhead caused by the integration of external tools. Linking
results obtained by e.g. automatic first-order theorem provers or SAT
solvers is often much harder than proving the requested goal by hand
(things are much better in the new Isabelle/HOL version).

Appendix A

Dependency Graphs

To verify the disk driver, we had to integrate a wide range of theories written
and developed by many people. Below, we present the dependcy graphs of
the driver verification. Bubbles denote theories and an arrow A→ B denotes
that theory A imports theory B. To give an idea of the complexity of the
integrated proof corpus, we sketch in Figure A.2 the transitive closure of the
imported theories (the large circle marks the driver theories). Figure A.1
shows those theories, which were imported directly by the driver verification
theories (large rectangle at the bottom). Most importantly these are:

• VAMP ISA semantics and theories for bit-level operations, written a.o.
by S. Tverdyshev and M. Daum.

• VAMP assembly semantics, theories to verify assembly code and the
simulation theory between VAMP assembly and VAMP ISA written by
T. In der Rieden, D. Leinenbach and A. Tsyban.

• C0 small step semantics, compiler correctness and a theory to deal with
inline assembly code, written by D. Leinenbach and A. Tsyban.

• Constants and definitions imported from the page-fault handler correct-
ness theories (written by A. Starostin) to ensure a correct embedding of
driver correctness.

181

182 APPENDIX A. DEPENDENCY GRAPHS

.

t

../
cv

m
/c

od
e

../
cv

m
/li

nk
er

../
pf

h

../
../

ve
ri

fi
ca

tio
n/

lib
is

a

../
../

ve
ri

fi
ca

tio
n/

pr
oo

f/
C

0A
co

m
pi

le
rs

im
ul

at
io

n
../

../
ve

ri
fi

ca
tio

n/
pr

oo
f/

C
0S

S2
V

A
M

Pi
sa

Sy
st

em

../
../

ve
ri

fi
ca

tio
n/

pr
oo

f/
V

A
M

Pa
sm

2i
sa

Sy
st

em

../
../

ve
ri

fi
ca

tio
n/

sp
ec

/C
0S

S
../

../
ve

ri
fi

ca
tio

n/
sp

ec
/C

0s
yn

ta
x

../
../

ve
ri

fi
ca

tio
n/

sp
ec

/V
A

M
Pa

sm

../
../

ve
ri

fi
ca

tio
n/

sp
ec

/V
A

M
Pa

sm
D

ev
ic

es

B
itV

ec
to

r_
he

lp
er

O
pe

ra
ti

on
s

as
m

_e
xe

c_
pr

op
_d

d

dr
iv

er
_w

oi

c0
_p

ro
gr

am
_p

ro
pe

rt
ie

s

xd
el

ta
Sy

nt
ax

In
st

r

co
rr

ec
tn

es
s_

X
R

ea
d

dc
_c

om
pl

et
e

on
_s

uf
fi

ci
en

t_
m

em
or

y
pr

og
_s

im
lin

ke
r

co
rr

ec
tn

es
s_

X
Z

fp

dr
iv

er
co

rr
ec

tn
es

s_
he

lp
er

dr
iv

er
_f

or
_p

fh
_u

se

m
or

e_
dr

iv
er

_s
im

ul
at

io
n

dr
iv

er
_s

im
ul

at
io

n

ex
te

nd
ed

_c
om

pi
le

r_
co

rr
ec

tn
es

s

xd
el

ta
_l

em
m

as

dr
iv

er
_s

pe
c

dr
iv

er
ba

si
c

w
ri

te
T

oD
is

kI
m

pl
pf

hX
as

m
_s

tm
t_

st
ep

_c
on

si
st

en
cy

C
0S

S2
V

A
M

Pa
sm

co
rr

ec
tn

es
s_

de
v

w
ri

te
_t

o_
di

sk
m

ax
_m

in

as
m

_e
xe

cu
tio

n

re
or

de
r

lin
e_

co
nd

_i
ni

t

in
it_

co
de

_v
er

if
ic

at
io

n

lin
e_

co
nd

_a
ll lin

e_
co

nd

lin
e_

co
nd

_l
2

lin
e_

co
nd

_l
1

si
m

ul
at

io
n_

al
l

pr
oc

ta
bl

e

cv
m

_c
od

e

c0
_c

om
pu

ta
ti

on

si
m

ul
at

io
n_

al
l_

m
em

_d
yn

de
lta

xC
on

si
s_

co
de

_e
q

Figure A.1: Dependency graph for driver verification

183

~~
/sr

c/H
OL

/
~~

/sr
c/H

OL
/

~~
/sr

c/H
OL

/L
ibr

ary
/

~~
/sr

c/H
OL

/L
ibr

ary
/

../.
./im

ple
me

nta
tio

n/h
ard

wa
re/

ab
c

../.
./im

ple
me

nta
tio

n/h
ard

wa
re/

ab
c

../.
./im

ple
me

nta
tio

n/h
ard

wa
re/

ab
c/b

as
ics

../.
./im

ple
me

nta
tio

n/h
ard

wa
re/

ab
c/b

as
ics

..

tt

../c
vm

/co
de

../c
vm

/co
de

../c
vm

/lin
ke

r
../c

vm
/lin

ke
r

../l
ibH

oa
re

../l
ibH

oa
re

../p
fh

../p
fh

../.
./t

oo
ls/

Ho
are

../.
./t

oo
ls/

Ho
are

../.
./v

eri
fic

ati
on

/lib
isa

../.
./v

eri
fic

ati
on

/lib
isa

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0A

co
mp

ile
rsi

mu
lat

ion
../.

./v
eri

fic
ati

on
/pr

oo
f/C

0A
co

mp
ile

rsi
mu

lat
ion

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0S

S2
VA

M
Pi

sa
Sy

ste
m

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0S

S2
VA

M
Pi

sa
Sy

ste
m

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n
../.

./v
eri

fic
ati

on
/pr

oo
f/C

0c
om

pil
ers

im
ula

tio
n

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n/e
xp

r_
co

rre
ct

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n/e
xp

r_
co

rre
ct

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n/e
xp

r_
co

rre
ct/

ad
dr

of
../.

./v
eri

fic
ati

on
/pr

oo
f/C

0c
om

pil
ers

im
ula

tio
n/e

xp
r_

co
rre

ct/
ad

dr
of

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n/e
xp

r_
co

rre
ct/

arr
ac

c
../.

./v
eri

fic
ati

on
/pr

oo
f/C

0c
om

pil
ers

im
ula

tio
n/e

xp
r_

co
rre

ct/
arr

ac
c

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n/e
xp

r_
co

rre
ct/

bin
op

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n/e
xp

r_
co

rre
ct/

bin
op

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n/e
xp

r_
co

rre
ct/

de
ref

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n/e
xp

r_
co

rre
ct/

de
ref

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n/e
xp

r_
co

rre
ct/

div
isi

on
../.

./v
eri

fic
ati

on
/pr

oo
f/C

0c
om

pil
ers

im
ula

tio
n/e

xp
r_

co
rre

ct/
div

isi
on

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n/e
xp

r_
co

rre
ct/

laz
yb

ino
p

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n/e
xp

r_
co

rre
ct/

laz
yb

ino
p

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n/e
xp

r_
co

rre
ct/

lite
ral

s
../.

./v
eri

fic
ati

on
/pr

oo
f/C

0c
om

pil
ers

im
ula

tio
n/e

xp
r_

co
rre

ct/
lite

ral
s

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n/e
xp

r_c
orr

ec
t/m

ult
ipl

ica
tio

n
../.

./v
eri

fic
ati

on
/pr

oo
f/C

0c
om

pil
ers

im
ula

tio
n/e

xp
r_c

orr
ec

t/m
ult

ipl
ica

tio
n

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n/e
xp

r_
co

rre
ct/

str
uc

tac
c

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n/e
xp

r_
co

rre
ct/

str
uc

tac
c

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n/e
xp

r_
co

rre
ct/

un
op

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n/e
xp

r_
co

rre
ct/

un
op

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n/s
tm

t_c
or

rec
t

../.
./v

eri
fic

ati
on

/pr
oo

f/C
0c

om
pil

ers
im

ula
tio

n/s
tm

t_c
or

rec
t

../.
./v

eri
fic

ati
on

/pr
oo

f/V
AM

Pa
sm

2is
aS

ys
tem

../.
./v

eri
fic

ati
on

/pr
oo

f/V
AM

Pa
sm

2is
aS

ys
tem

../.
./v

eri
fic

ati
on

/sp
ec

/C
0A

SS
../.

./v
eri

fic
ati

on
/sp

ec
/C

0A
SS

../.
./v

eri
fic

ati
on

/sp
ec

/C
0S

S
../.

./v
eri

fic
ati

on
/sp

ec
/C

0S
S

../.
./v

eri
fic

ati
on

/sp
ec

/C
0c

om
pil

erc
od

eg
en

../.
./v

eri
fic

ati
on

/sp
ec

/C
0c

om
pil

erc
od

eg
en

../.
./v

eri
fic

ati
on

/sp
ec

/C
0s

yn
tax

../.
./v

eri
fic

ati
on

/sp
ec

/C
0s

yn
tax

../.
./v

eri
fic

ati
on

/sp
ec

/D
ev

ice
s

../.
./v

eri
fic

ati
on

/sp
ec

/D
ev

ice
s

../.
./v

eri
fic

ati
on

/sp
ec

/V
AM

Pa
sm

../.
./v

eri
fic

ati
on

/sp
ec

/V
AM

Pa
sm

../.
./v

eri
fic

ati
on

/sp
ec

/V
AM

Pa
sm

De
vic

es
../.

./v
eri

fic
ati

on
/sp

ec
/V

AM
Pa

sm
De

vic
es

../.
./v

eri
fic

ati
on

/sp
ec

/V
AM

Pis
a

../.
./v

eri
fic

ati
on

/sp
ec

/V
AM

Pis
a

../.
./v

eri
fic

ati
on

/sp
ec

/V
AM

Pis
aD

ev
ice

s
../.

./v
eri

fic
ati

on
/sp

ec
/V

AM
Pis

aD
ev

ice
s

../.
./v

eri
fic

ati
on

/sp
ec

/cv
m

../.
./v

eri
fic

ati
on

/sp
ec

/cv
m

M
ain

M
ain

W
or

d
W

or
d

FH
_ty

pe
s

FH
_ty

pe
s

bC
R_

ty
pe

s
bC

R_
ty

pe
s

bH
OS

TI
F_

typ
es

bH
OS

TI
F_

typ
es

cT
IM

ER
_ty

pe
s

cT
IM

ER
_ty

pe
s

rR
B_

typ
es

rR
B_

typ
es

rR
EC

V_
typ

es
rR

EC
V_

typ
es

sS
B_

typ
es

sS
B_

typ
es

sS
EN

D_
typ

es
sS

EN
D_

typ
es

me
m_

int
erf

ac
e_

typ
es

me
m_

int
erf

ac
e_

typ
es

reg
ist

er
reg

ist
er

cC
ON

TR
_ty

pe
s

cC
ON

TR
_ty

pe
s

cC
YC

LE
_ty

pe
s

cC
YC

LE
_ty

pe
s

cS
LO

T_
typ

es
cS

LO
T_

typ
es

gA
C_

typ
es

gA
C_

typ
es

gB
IT

CO
N_

typ
es

gB
IT

CO
N_

typ
es

gC
ON

TR
_ty

pe
s

gC
ON

TR
_ty

pe
s

rA
C_

typ
es

rA
C_

typ
es

rB
IT

CO
N_

typ
es

rB
IT

CO
N_

typ
es

rB
US

CO
N_

typ
es

rB
US

CO
N_

typ
es

sh
ift

reg
4

sh
ift

reg
4

rC
ON

TR
_ty

pe
s

rC
ON

TR
_ty

pe
s

rR
BW

E_
typ

es
rR

BW
E_

typ
es

ab
c_

ram
ab

c_
ram

rV
_ty

pe
s

rV
_ty

pe
s

sA
C_

typ
es

sA
C_

typ
es

sB
IT

CO
N_

typ
es

sB
IT

CO
N_

typ
es

sB
US

CO
N_

typ
es

sB
US

CO
N_

typ
es

sB
US

OE
_ty

pe
s

sB
US

OE
_ty

pe
s

sC
ON

TR
_ty

pe
s

sC
ON

TR
_ty

pe
s

M
or

eW
or

d
M

or
eW

or
d

Bi
tV

ec
tor

_h
elp

er
Bi

tV
ec

tor
_h

elp
er

Op
era

tio
ns

Op
era

tio
ns

as
m_

ex
ec

_p
ro

p_
dd

as
m_

ex
ec

_p
ro

p_
dd

dri
ve

r_w
oi

dri
ve

r_w
oi

c0
_p

ro
gr

am
_p

ro
pe

rti
es

c0
_p

ro
gr

am
_p

ro
pe

rti
es

xd
elt

a
xd

elt
a

Sy
nta

x
Sy

nta
x

In
str

In
str

co
rre

ctn
es

s_
XR

ea
d

co
rre

ctn
es

s_
XR

ea
d

dc
_c

om
ple

te
dc

_c
om

ple
te

on
_s

uff
ici

en
t_m

em
or

y
on

_s
uff

ici
en

t_m
em

or
y

pr
og

_s
im

pr
og

_s
im

lin
ke

r
lin

ke
r

co
rre

ctn
es

s_
XZ

fp
co

rre
ctn

es
s_

XZ
fp

dr
ive

rco
rre

ctn
es

s_
he

lpe
r

dr
ive

rco
rre

ctn
es

s_
he

lpe
r

dr
ive

r_
fo

r_
pf

h_
us

e
dr

ive
r_

fo
r_

pf
h_

us
e

mo
re_

dri
ve

r_s
im

ula
tio

n
mo

re_
dri

ve
r_s

im
ula

tio
n

dri
ve

r_s
im

ula
tio

n
dri

ve
r_s

im
ula

tio
n

ex
ten

de
d_

co
mp

ile
r_

co
rre

ctn
es

s
ex

ten
de

d_
co

mp
ile

r_
co

rre
ctn

es
s

xd
elt

a_
lem

ma
s

xd
elt

a_
lem

ma
s

dr
ive

r_
sp

ec
dr

ive
r_

sp
ec

dr
ive

rb
as

ic
dr

ive
rb

as
ic

wr
ite

To
Di

sk
Im

pl
wr

ite
To

Di
sk

Im
pl

pf
hX

pf
hX

as
m_

stm
t_s

tep
_c

on
sis

ten
cy

as
m_

stm
t_s

tep
_c

on
sis

ten
cy

C0
SS

2V
AM

Pa
sm

C0
SS

2V
AM

Pa
sm

co
rre

ctn
es

s_
de

v
co

rre
ctn

es
s_

de
v

wr
ite

_to
_d

isk
wr

ite
_to

_d
isk

ma
x_

mi
n

ma
x_

mi
n

as
m_

ex
ec

uti
on

as
m_

ex
ec

uti
on

reo
rd

er
reo

rd
er

lin
e_

co
nd

_in
it

lin
e_

co
nd

_in
it

ini
t_c

od
e_

ve
rif

ica
tio

n
ini

t_c
od

e_
ve

rif
ica

tio
n

lin
e_

co
nd

_a
ll

lin
e_

co
nd

_a
ll

lin
e_

co
nd

lin
e_

co
nd

lin
e_

co
nd

_l2
lin

e_
co

nd
_l2

lin
e_

co
nd

_l1
lin

e_
co

nd
_l1

sim
ula

tio
n_

all
sim

ula
tio

n_
all

pr
oc

tab
le

pr
oc

tab
le

cv
m_

co
de

cv
m_

co
de

c0
_c

om
pu

tat
ion

c0
_c

om
pu

tat
ion

sim
ula

tio
n_

all
_m

em
_d

yn
sim

ula
tio

n_
all

_m
em

_d
yn

de
lta

de
lta

xC
on

sis
_c

od
e_

eq
xC

on
sis

_c
od

e_
eq

as
m_

of
fse

t_s
ize

of
as

m_
of

fse
t_s

ize
of

co
nf

co
nf

va
lid

_c
on

f
va

lid
_c

on
f

ho
are

Ty
pe

Ca
sti

ng
ho

are
Ty

pe
Ca

sti
ng

c0
_a

rit
hm

eti
c

c0
_a

rit
hm

eti
c

Ab
str

ac
tio

n
Ab

str
ac

tio
n

Re
f

Re
f

Ut
ilit

ies
Ut

ilit
ies

cv
mC

on
sta

nts
cv

mC
on

sta
nts

Bi
tO

pe
rat

ion
s

Bi
tO

pe
rat

ion
s

cv
m_

typ
es

cv
m_

typ
es

M
ore

Di
vid

es
M

ore
Di

vid
es

M
or

eN
at

M
or

eN
at

M
ore

Int
De

f
M

ore
Int

De
f

M
ore

Int
Di

v
M

ore
Int

Di
v

M
or

eP
ow

er
M

or
eP

ow
er

M
ore

Li
st

M
ore

Li
st

M
or

eM
ap

M
or

eM
ap

M
or

eS
et

M
or

eS
et

Ra
ng

e
Ra

ng
e

ari
th_

ran
ge

ari
th_

ran
ge

ce
ilin

g
ce

ilin
g

lis
t_i

dx
lis

t_i
dx

ab
as

e_
lem

ma
ta

ab
as

e_
lem

ma
ta

as
m_

stm
t_s

tep
as

m_
stm

t_s
tep

ab
as

e_
lem

ma
s

ab
as

e_
lem

ma
s

dis
pl_

lem
ma

s
dis

pl_
lem

ma
s

co
ntr

ol_
co

ns
ist

en
cy

_p
ro

of
co

ntr
ol_

co
ns

ist
en

cy
_p

ro
of

ind
uc

tio
n_

ste
p

ind
uc

tio
n_

ste
p

all
oc

all
oc

ab
as

e
ab

as
e

all
oc

_le
mm

as
all

oc
_le

mm
as

co
ns

ist
en

cy
_le

mm
as

co
ns

ist
en

cy
_le

mm
as

all
oc

ate
d_

in_
me

mo
ry

all
oc

ate
d_

in_
me

mo
ry

su
ffi

cie
nt_

me
mo

ry
su

ffi
cie

nt_
me

mo
ry

as
m_

ex
ec

uti
on

_le
mm

as
as

m_
ex

ec
uti

on
_le

mm
as

is_
ins

tr_
lem

ma
s

is_
ins

tr_
lem

ma
s

de
fin

itio
ns

de
fin

itio
ns

as
m_

va
lue

as
m_

va
lue

me
m_

typ
e

me
m_

typ
e

asi
ze

asi
ze

Nu
mb

er
Nu

mb
er

ba
sic

_a
sm

ba
sic

_a
sm

Ex
ec

_p
ro

pe
rti

es
Ex

ec
_p

ro
pe

rti
es

co
de

_a
dd

r_
lem

ma
s

co
de

_a
dd

r_
lem

ma
s

co
ns

ist
en

cy
co

ns
ist

en
cy

co
de

siz
e_

stm
t_l

em
ma

s
co

de
siz

e_
stm

t_l
em

ma
s

co
mp

ile
r_

au
x

co
mp

ile
r_

au
x

Ty
pe

s
Ty

pe
s

co
de

ge
n_

ma
in

co
de

ge
n_

ma
in

d_
co

ns
ist

en
cy

_le
mm

as
d_

co
ns

ist
en

cy
_le

mm
as

co
nte

nt_
co

ns
ist

en
t

co
nte

nt_
co

ns
ist

en
t

me
m_

un
ch

an
ge

d_
co

ns
ist

en
cy

_le
mm

as
me

m_
un

ch
an

ge
d_

co
ns

ist
en

cy
_le

mm
as

g_
va

r_l
em

ma
s

g_
va

r_l
em

ma
s

ptr
_r

ea
ch

ab
le

ptr
_r

ea
ch

ab
le

de
lta

_v
ali

d_
co

nf
_le

mm
as

de
lta

_v
ali

d_
co

nf
_le

mm
as

ift
e_

co
rre

ct
ift

e_
co

rre
ct

loo
p_

co
rre

ct
loo

p_
co

rre
ct

pa
llo

c_
co

rre
ct

pa
llo

c_
co

rre
ct

ret
ur

n_
co

rre
ct

ret
ur

n_
co

rre
ct

sc
all

_c
or

rec
t

sc
all

_c
or

rec
t

sk
ip_

co
rre

ct
sk

ip_
co

rre
ct

tra
ns

lat
ab

le_
pr

og
ram

_le
mm

as
tra

ns
lat

ab
le_

pr
og

ram
_le

mm
as

me
m_

up
da

te_
co

ns
ist

en
cy

_le
mm

as
me

m_
up

da
te_

co
ns

ist
en

cy
_le

mm
as

g_
va

r
g_

va
r

tra
ns

lat
ab

le_
pr

og
ram

tra
ns

lat
ab

le_
pr

og
ram

In
str

_e
xe

c
In

str
_e

xe
c

ex
pr

_b
as

ics
ex

pr
_b

as
ics

bv
_le

mm
ata

bv
_le

mm
ata

as
m_

ex
ec

uti
on

_w
ith

ou
t_i

nte
rru

pt
as

m_
ex

ec
uti

on
_w

ith
ou

t_i
nte

rru
pt

ex
pr

_A
SM

_b
as

ics
ex

pr
_A

SM
_b

as
ics

ex
pr

_m
em

_b
as

ics
ex

pr
_m

em
_b

as
ics

ex
pr

_c
or

rec
t

ex
pr

_c
or

rec
t

ad
dr

of
ad

dr
of

arr
ac

c_
co

rre
ct

arr
ac

c_
co

rre
ct

bin
op

_c
or

rec
t

bin
op

_c
or

rec
t

laz
y_

co
rre

ct
laz

y_
co

rre
ct

str
uc

tac
c

str
uc

tac
c

un
op

un
op

va
rac

c
va

rac
c

ex
pr

_li
st_

ba
sic

s
ex

pr
_li

st_
ba

sic
s

de
ref

de
ref

arr
ac

cri
gh

t
arr

ac
cri

gh
t

arr
ac

cle
ft

arr
ac

cle
ft

arr
ac

cle
ft_

ex
ec

arr
ac

cle
ft_

ex
ec

bin
op

_c
om

mo
n_

pa
rt_

arr
ac

c
bin

op
_c

om
mo

n_
pa

rt_
arr

ac
c

mu
lt_

co
rre

ct
mu

lt_
co

rre
ct

arr
ac

cri
gh

t_e
xe

c
arr

ac
cri

gh
t_e

xe
c

bin
op

_c
om

mo
n_

pa
rt

bin
op

_c
om

mo
n_

pa
rt

C0
SS

_b
ino

p_
eq

ua
l

C0
SS

_b
ino

p_
eq

ua
l

ad
dit

ion
ad

dit
ion

bit
wi

se
_a

nd
bit

wi
se

_a
nd

bit
wi

se
_o

r
bit

wi
se

_o
r

bit
wi

se
_x

or
bit

wi
se

_x
or

co
mp

ari
so

n
co

mp
ari

so
n

no
teq

ua
l

no
teq

ua
l

sh
ift

_le
ft

sh
ift

_le
ft

sh
ift

_ri
gh

t
sh

ift
_ri

gh
t

su
btr

ac
tio

n
su

btr
ac

tio
n

div
isi

on
_c

or
rec

t
div

isi
on

_c
or

rec
t

bit
wi

se
_a

nd
_r

es
ult

bit
wi

se
_a

nd
_r

es
ult

bit
wi

se
_o

r_
res

ult
bit

wi
se

_o
r_

res
ult

bit
wi

se
_x

or
_r

es
ult

bit
wi

se
_x

or
_r

es
ult

un
sig

ne
d_

co
mp

un
sig

ne
d_

co
mp

sig
ne

d_
co

mp
sig

ne
d_

co
mp

de
ref

_lv
al

de
ref

_lv
al

div
isi

on
_e

xe
cu

tio
n

div
isi

on
_e

xe
cu

tio
n

sh
ift

_lo
op

_in
du

cti
on

sh
ift

_lo
op

_in
du

cti
on

su
btr

ac
t_l

oo
p_

ind
uc

tio
n

su
btr

ac
t_l

oo
p_

ind
uc

tio
n

div
isi

on
_s

hif
t_l

oo
p_

dis
tan

ce
_d

efi
nit

ion
div

isi
on

_s
hif

t_l
oo

p_
dis

tan
ce

_d
efi

nit
ion

lem
ma

_tr
un

k
lem

ma
_tr

un
k

div
isi

on
_s

hif
t_l

oo
p_

ex
ec

uti
on

div
isi

on
_s

hif
t_l

oo
p_

ex
ec

uti
on

div
isi

on
_s

hif
t_l

oo
p_

lem
ma

s_
ne

g_
lre

g
div

isi
on

_s
hif

t_l
oo

p_
lem

ma
s_

ne
g_

lre
g

div
isi

on
_s

hif
t_l

oo
p_

lem
ma

s_
po

s_
lre

g
div

isi
on

_s
hif

t_l
oo

p_
lem

ma
s_

po
s_

lre
g

div
isi

on
_s

ub
tra

ct_
loo

p_
ex

ec
uti

on
div

isi
on

_s
ub

tra
ct_

loo
p_

ex
ec

uti
on

mu
lt_

h
mu

lt_
h

log
ica

l_a
nd

log
ica

l_a
nd

log
ica

l_o
r

log
ica

l_o
r

lit
_b

as
ics

lit
_b

as
ics

lit_
res

ult
lit_

res
ult

lite
ral

lite
ral

mu
lt_

ba
sic

s
mu

lt_
ba

sic
s

mu
lt_

en
d

mu
lt_

en
d mu

lt_
cy

cle
s

mu
lt_

cy
cle

s

mu
lt_

h_
on

e
mu

lt_
h_

on
e

bit
wi

se
_n

eg
_r

es
ult

bit
wi

se
_n

eg
_r

es
ult

un
op

_le
mm

as
un

op
_le

mm
as

log
ica

l_n
ot_

res
ult

log
ica

l_n
ot_

res
ult

to_
ch

ar_
res

ult
to_

ch
ar_

res
ult

to_
int

_r
es

ult
to_

int
_r

es
ult

to_
un

sig
ne

d_
int

_r
es

ult
to_

un
sig

ne
d_

int
_r

es
ult

un
ary

_m
inu

s_
res

ult
un

ary
_m

inu
s_

res
ult

un
op

_a
sm

_e
xe

cu
tes

_in
t

ste
ps

un
op

_a
sm

_e
xe

cu
tes

_in
t

ste
ps

un
op

_r
es

ult
un

op
_r

es
ult

as
sig

n_
co

rre
ct

as
sig

n_
co

rre
ct

big
_a

ssi
gn

me
nt_

co
de

_c
or

rec
t

big
_a

ssi
gn

me
nt_

co
de

_c
or

rec
t

co
mp

lex
_li

ter
al_

as
sig

n_
co

rre
ct

co
mp

lex
_li

ter
al_

as
sig

n_
co

rre
ct

co
de

_s
nip

let
s_

lem
ma

s
co

de
_s

nip
let

s_
lem

ma
s

a2
i_c

or
rec

tne
ss

a2
i_c

or
rec

tne
ss

ind
_s

tep
_c

or
rec

tne
ss

ind
_s

tep
_c

or
rec

tne
ss

alu
_c

or
rec

tne
ss

alu
_c

or
rec

tne
ss int

err
up

t
int

err
up

t

as
m_

co
nv

ert
as

m_
co

nv
ert

as
m_

pr
ed

ica
tes

as
m_

pr
ed

ica
tes

as
su

mp
tio

ns
as

su
mp

tio
ns

eq
uiv

ale
nc

e
eq

uiv
ale

nc
e

va
mp

_p
red

ica
tes

va
mp

_p
red

ica
tes

as
su

mp
tio

ns
_d

ev
as

su
mp

tio
ns

_d
ev

VA
M

Pa
sm

De
vic

es
VA

M
Pa

sm
De

vic
es

br
an

ch
_c

or
rec

tne
ss

br
an

ch
_c

or
rec

tne
ss

bv
_a

rit
hm

eti
c

bv
_a

rit
hm

eti
c

co
rre

ctn
es

s_
isa

_d
ev

co
rre

ctn
es

s_
isa

_d
ev

eq
uiv

ale
nc

e_
de

v
eq

uiv
ale

nc
e_

de
v

dlx
ifs

pe
c_

de
v_

hd
dlx

ifs
pe

c_
de

v_
hd

co
rre

sp
on

de
nc

e
co

rre
sp

on
de

nc
e

Co
nfi

g
Co

nfi
g

dlx
if_

co
nf

t
dlx

if_
co

nf
t

dlx
ifs

pe
c_

de
v

dlx
ifs

pe
c_

de
v

loa
d_

co
rre

ctn
es

s
loa

d_
co

rre
ctn

es
s

mo
v_

co
rre

ctn
es

s
mo

v_
co

rre
ctn

es
s

sto
re_

co
rre

ctn
es

s
sto

re_
co

rre
ctn

es
s

dlx
ifs

pe
c

dlx
ifs

pe
c

C0
SS

_a
ux

C0
SS

_a
ux

ad
dr

ad
dr

g_
va

r_
ba

sic
s

g_
va

r_
ba

sic
s

siz
eo

f
siz

eo
f

ad
dr

of
_g

va
r

ad
dr

of
_g

va
r

ad
dr

of
_g

va
r_

lem
ma

s
ad

dr
of

_g
va

r_
lem

ma
s

g_
va

r_
ba

sic
s_

lem
ma

s
g_

va
r_

ba
sic

s_
lem

ma
s

me
mc

on
f_

lem
ma

s
me

mc
on

f_
lem

ma
s

sy
mb

olt
ab

le_
lem

ma
s

sy
mb

olt
ab

le_
lem

ma
s

ap
ply

_o
pe

rat
or

s
ap

ply
_o

pe
rat

or
s

da
ta_

sli
ce

da
ta_

sli
ce

Ex
pr

Ex
pr

bin
d

bin
d

me
mc

on
f

me
mc

on
f

bin
d_

lem
ma

s
bin

d_
lem

ma
s

ini
tia

l_c
0_

co
nf_

lem
ma

s
ini

tia
l_c

0_
co

nf_
lem

ma
s

me
mo

ry
me

mo
ry

ev
al

ev
al

ini
tia

liz
ing

ini
tia

liz
ing

me
mo

ry
_u

pd
ate

me
mo

ry
_u

pd
ate

de
lta

_le
mm

as
de

lta
_le

mm
as

ini
tia

liz
ing

_le
mm

as
ini

tia
liz

ing
_le

mm
as

me
mo

ry
_u

pd
ate

_le
mm

as
me

mo
ry

_u
pd

ate
_le

mm
as

ge
t_d

ata
sli

ce
ge

t_d
ata

sli
ce

typ
eo

f_
ex

pr
typ

eo
f_

ex
pr

typ
eo

f_
ex

pr
_g

en
typ

eo
f_

ex
pr

_g
en

ev
al_

lem
ma

s
ev

al_
lem

ma
s

ev
al_

lem
ma

s_
ge

n
ev

al_
lem

ma
s_

ge
n

va
lid

_e
xp

r_l
em

ma
s_

ge
n

va
lid

_e
xp

r_l
em

ma
s_

ge
n

Na
me

s
Na

me
s

ge
t_d

ata
sli

ce
_le

mm
as

ge
t_d

ata
sli

ce
_le

mm
as

ini
tia

l_c
0_

co
nf

ini
tia

l_c
0_

co
nf

va
lid

_c
on

f_
lem

ma
s

va
lid

_c
on

f_
lem

ma
s

sy
mb

olt
ab

le
sy

mb
olt

ab
le

Stm
t

Stm
t

pr
og

ram
_s

tru
ctu

re
pr

og
ram

_s
tru

ctu
re

stm
t_s

tru
ctu

re
stm

t_s
tru

ctu
re

ptr
_v

ali
d

ptr
_v

ali
d

ptr
_v

ali
d_

lem
ma

s
ptr

_v
ali

d_
lem

ma
s

ptr
_v

ali
d_

lem
ma

s_
ge

n
ptr

_v
ali

d_
lem

ma
s_

ge
n

typ
eta

ble
typ

eta
ble

su
cc

es
so

r
su

cc
es

so
r

t_
sp

ec
t_

sp
ec

Ty
pe

Ty
pe

typ
e_

co
rre

ct
typ

e_
co

rre
ct

typ
e_

co
rre

ct_
lem

ma
s

typ
e_

co
rre

ct_
lem

ma
s

typ
e_

co
rre

ct_
lem

ma
s_

ge
n

typ
e_

co
rre

ct_
lem

ma
s_

ge
n

va
lid

_e
xp

r_l
em

ma
s

va
lid

_e
xp

r_l
em

ma
s

va
lid

_s
tm

t
va

lid
_s

tm
t

va
lid

_e
xp

r
va

lid
_e

xp
r

va
lid

_e
xp

r_
ge

n
va

lid
_e

xp
r_

ge
n

xc
all

_ty
pe

s
xc

all
_ty

pe
s

co
de

siz
e_

stm
t

co
de

siz
e_

stm
t

dis
pl

dis
pl

asi
ze

_le
mm

as
asi

ze
_le

mm
as

co
de

_a
dd

r
co

de
_a

dd
r

co
de

ge
n_

ex
pr

co
de

ge
n_

ex
pr

co
de

siz
e_

ex
pr

co
de

siz
e_

ex
pr

reg
ist

ers
reg

ist
ers

us
er_

mo
de

_in
it_

co
de

us
er_

mo
de

_in
it_

co
de

co
de

ge
n_

stm
t

co
de

ge
n_

stm
t

co
de

ge
n_

stm
t_a

sm
co

de
ge

n_
stm

t_a
sm

co
de

siz
e_

ex
pr

_le
mm

as
co

de
siz

e_
ex

pr
_le

mm
as

St
ep

St
ep

co
de

siz
e_

stm
t_a

sm
co

de
siz

e_
stm

t_a
sm

Au
xD

ef
Au

xD
ef

Va
lue

Va
lue

Ini
tia

l_A
BC

Ini
tia

l_A
BC

Va
lid

_A
BC

Va
lid

_A
BC

ab
c

ab
c

ab
c_

ba
sic

s
ab

c_
ba

sic
s

de
vic

es
de

vic
es

hdhd

nicnic
tim

er
tim

er

ua
rt

ua
rt

de
vic

es
_le

mm
as

de
vic

es
_le

mm
as

me
m_

int
erf

ac
e_

typ
es

_le
mm

as
me

m_
int

erf
ac

e_
typ

es
_le

mm
as

de
vic

es
_tp

2
de

vic
es

_tp
2

hd
_le

mm
as

hd
_le

mm
as

AS
M

co
re_

co
ns

is
AS

M
co

re_
co

ns
is

M
em

ory
M

em
ory

Ex
ec

Ex
ec

In
str

_c
on

ve
rt

In
str

_c
on

ve
rt

as
m_

ex
ec

uti
on

_c
om

mo
n

as
m_

ex
ec

uti
on

_c
om

mo
n

pr
og

_s
tep

_c
om

pu
tat

ion
pr

og
_s

tep
_c

om
pu

tat
ion

Ex
ec

De
v

Ex
ec

De
v

Ste
pD

ev
Ste

pD
ev

alu
_s

hif
ter

_s
pe

c
alu

_s
hif

ter
_s

pe
c

dlx
_ty

pe
s

dlx
_ty

pe
s

bv
_s

tuf
f

bv
_s

tuf
f

dlx
alu

_c
on

st
dlx

alu
_c

on
st

dlx
alu

_s
pe

c
dlx

alu
_s

pe
c

isaisa

dlx
ifin

it
dlx

ifin
it

fp
u_

sp
ec

fp
u_

sp
ec

ne
xtp

c_
sp

ec
ne

xtp
c_

sp
ec

me
m_

sp
ec

me
m_

sp
ec

dlx
sp

rd
ef

dlx
sp

rd
ef

fp
u_

typ
es

fp
u_

typ
es

isa
co

de
isa

co
de

mm
u_

sp
ec

mm
u_

sp
ec

mm
u_

au
x_

de
fs

mm
u_

au
x_

de
fs

D
ri

v
e

r

Figure A.2: Dependency graph for driver verification (transitive closure)

Appendix B

Mapping to Formal Names

This section gives a mapping from lemmas and theorems to the corresponding
formal proofs in the Isabelle theories.

Name in document Formal name
Lemma 1 (Well-defined filters) prop filter
Theorem 1 (VAMP assembly to VAMP
ISA)

asm simulates isa dev (A. Tsyban)

Lemma 3 (Non-Interference Observa-
tion)

commute devices and
commute processor device

Lemma 5 (No Device Access) no device access prop
Lemma 6 (Pure Sequences and Stable
Devices)

reorder empty seq (instantiation for
hard disk)

Theorem 2 (Reordering of Sequences) reorder seq
Theorem 3 (Non-interference of De-
vices)

devices no interference

Lemma 7 (Program Header Equiva-
lence)

delta first statement executes invariant
(D. Leinenbach)

Lemma 8 (Valid Property on Program
Head)

valid prop hd prop

Lemma 9 (Valid Property Invariant) valid prop deltax nth invariant
Lemma 10 (SCalls Monotonicity) Part of deltax SCalls invariant
Lemma 11 (SCalls Fixpoint) SCalls fix point
Lemma 12 (Monotonicity of top-scalls
on Transitions)

deltax scalls SCalls invariant

Lemma 13 (Monotonicity of SCalls on
Transitions)

deltax SCalls invariant

Lemma 14 (Valid Property Invariant 2) deltax valid prop SCalls invariant
Lemma 15 (Increase of Stack Size) Part of delta stack max increase
Theorem 4 (Compiler Correctness) compiler correct (D. Leinenbach)
Theorem 5 (Extended Compiler Cor-
rectness)

compiler correctness device extension

185

186 APPENDIX B. MAPPING TO FORMAL NAMES

Lemma 18 (Monotonicity of Heap Con-
sumption in C0)

delta enough heap upper bound

Theorem 6 (Upper bound for stack
memory consumption)

sufficient stack size frames in mem

Lemma 19 (Invariance of Stack-inv) sufficient stack asize memlist
Lemma 20 (Establishing the stack in-
variant)

Part of sufficient stack size
frames in mem

Lemma 21 (Relation of stack-inv and
local-sz)

Part of sufficient stack asize memlist

Lemma 22 (Control Consistency for In-
line Assembly)

Part of parameter passing correct

Lemma 23 (Consistent Update) consistent C0 conf asm update (A.
Tsyban)

Lemma 24 (Observation Valid on Se-
quence Set)

valid ob SeqV

Theorem 9 (C0 with XCalls compiler
correctness)

simulation XCalls CVM (less general,
instantiation to XCalls used in CVM)

Theorem 10 (Assembly driver correct-
ness)

correctness of write to disk

Lemma 25 (Stability of hard disk) device idle
Lemma 26 (Addition) addi execution woi (D. Leinenbach)
Lemma 27 (Shift as modulo/ And as
division)

Part of construct lba from reg correct

Lemma 28 (Correctness of lba compu-
tation)

compose lba correct

Lemma 29 (Correctness of outer loop) outer loop
Lemma 30 (Correctness of first inner
loop)

inv loop1 complete

Lemma 31 (Smallest element) hd fair
Lemma 32 (During Polling) l loop2 inv
Lemma 33 (End of Polling) l loop2 rdy
Lemma 34 (End of Polling 2) l loop2 finish
Theorem 11 (Driver XCalls Com-
piler Correctness)

simulation driver zfp pfh use

Lemma 35 (Correctness of writePage
implementation)

simulation XCall write

Bibliography

[ABK08] Eyad Alkassar, Peter Böhm, and Steffen Knapp. Correctness of
a fault-tolerant real-time scheduler algorithm and its hardware
implementation. In Formal Methods and Models for Codesign
(MEMOCODE’2008), pages 175–186. IEEE Computer Society
Press, 2008.

[ABP09] Eyad Alkassar, Sebastian Bogan, and Wolfang Paul. Proving the
correctness of client/server software. Sādhanā Journal: Academy
Proceedings in Engineering Sciences, 34, 2009. To appear.

[AH08] Eyad Alkassar and Mark A. Hillebrand. Formal functional ver-
ification of device drivers. In Jim Woodcock and Natarajan
Shankar, editors, Verified Software: Theories, Tools, Experi-
ments Second International Conference, VSTTE 2008, Toronto,
Canada, October 6–9, 2008. Proceedings, volume 5295 of Lecture
Notes in Computer Science, pages 225–239, Toronto, Canada,
October 2008. Springer.

[AHK+07] Eyad Alkassar, Mark Hillebrand, Steffen Knapp, Rostislav Rusev,
and Sergey Tverdyshev. Formal device and programming model
for a serial interface. In Bernhard Beckert, editor, Proceedings, 4th
International Verification Workshop (VERIFY), Bremen, Ger-
many, pages 4–20. CEUR-WS.org, 2007.

[AHL+08] Eyad Alkassar, Mark A. Hillebrand, Dirk Leinenbach, Norbert W.
Schirmer, and Artem Starostin. The Verisoft approach to systems
verification. In Natarajan Shankar and Jim Woodcock, editors,
Verified Software: Theories, Tools, Experiments Second Interna-
tional Conference, VSTTE 2008, Toronto, Canada, October 6–9,
2008. Proceedings, volume 5295 of Lecture Notes in Computer Sci-
ence, pages 209–224, Toronto, Canada, October 2008. Springer.

[AHL+09] Eyad Alkassar, Mark A. Hillebrand, Dirk C. Leinenbach, Nor-
bert W. Schirmer, Artem Starostin, and Alexandra Tsyban. Bal-
ancing the load - leveraging a semantics stack for systems veri-

187

188 BIBLIOGRAPHY

fication. JAR: Special Issue on Operating Systems Verification,
2009. To appear.

[Ame00] American National Standards Institute. ANSI NCITS 340-2000:
AT Attachment - 5 with Packet Interface. American National
Standards Institute, 1430 Broadway, New York, NY 10018, USA,
2000.

[ASS08] Eyad Alkassar, Norbert Schirmer, and Artem Starostin. Formal
pervasive verification of a paging mechanism. In C. R. Ramakr-
ishnan and Jakob Rehof, editors, 14th International Conference
on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS08), volume 4963 of Lecture Notes in Computer
Science, pages 109–123. Springer, 2008.

[BBBW07] Gerd Beuster, Thorsten Bormer, Pia Breuer, and Markus
Wagner. Code-level verification of an email client. http:
//www.verisoft.de/.rsrc/VerisoftRepository/
vemail-trunk-r15868.tar.gz, 2007.

[BHMY89] William R. Bevier, Warren A. Hunt, Jr., J S. Moore, and
William D. Young. An approach to systems verification. Journal
of Automated Reasoning, 5(4):411–428, December 1989.

[BHW06] Gerd Beuster, Niklas Henrich, and Markus Wagner. Real world
verification – Experiences from the Verisoft email client. In Geoff
Sutcliffe, Renate Schmidt, and Stephan Schulz, editors, Proceed-
ings of the FLoC’06 Workshop on Empirically Successful Comput-
erized Reasoning (ESCoR 2006), volume 192 of CEUR Workshop
Proceedings, pages 112–125. CEUR-WS.org, August 2006.

[BJK+03] Sven Beyer, Christian Jacobi, Daniel Kroening, Dirk Leinenbach,
and Wolfgang Paul. Instantiating uninterpreted functional units
and memory system: Functional verification of the VAMP. In
Daniel Geist and Enrico Tronci, editors, Proceedings of the 12th
Advanced Research Working Conference on Correct Hardware De-
sign and Verification Methods (CHARME), volume 2860 of Lec-
ture Notes in Computer Science, pages 51–65. Springer, 2003.

[BJK+06] Sven Beyer, Christian Jacobi, Daniel Kroening, Dirk Leinenbach,
and Wolfgang Paul. Putting it all together: Formal verification
of the VAMP. International Journal on Software Tools for Tech-
nology Transfer, 8(4–5):411–430, August 2006.

[BKS03] Gérard Berry, Michael Kishinevsky, and Satnam Singh. System
level design and verification using a synchronous language. In
ICCAD, pages 433–440, 2003.

http://www.verisoft.de/.rsrc/VerisoftRepository/vemail-trunk-r15868.tar.gz
http://www.verisoft.de/.rsrc/VerisoftRepository/vemail-trunk-r15868.tar.gz
http://www.verisoft.de/.rsrc/VerisoftRepository/vemail-trunk-r15868.tar.gz

BIBLIOGRAPHY 189

[BMS96] Manfred Broy, Stephan Merz, and Katharina Spies. The rpc-
memory case study: A synopsis. In Formal Systems Specification,
The RPC-Memory Specification Case Study (the book grow out of
a Dagstuhl Seminar, September 1994), pages 5–20, London, UK,
1996. Springer-Verlag.

[BN84] Andrew D Birrell and Bruce Jay Nelson. Implementing remote
procedure calls. ACM Trans. Comput. Syst., 2(1):39–59, 1984.

[Bog08] Sebastian Bogan. Formal Specification of a Simple Operating Sys-
tem. PhD thesis, Saarland University, Computer Science Depart-
ment, August 2008.

[Böh07] Peter Böhm. Formal verification of a clock synchronization
method in a distributed automotive system. Master’s thesis,
Dept. of Computer Science, Saarland University, 2007.

[BR01] Thomas Ball and Sriram K. Rajamani. Automatically validating
temporal safety properties of interfaces. In SPIN ’01, pages 103–
122, 2001.

[BW07] Andrew Butterfield and Jim Woodcock. Formalising Flash mem-
ory: First steps. In ICECCS, pages 251–260. IEEE Computer
Society, 2007.

[CL98] Ernie Cohen and Leslie Lamport. Reduction in TLA. In CON-
CUR ’98, pages 317–331, London, UK, 1998. Springer.

[CMST09] Ernie Cohen, Michal Moska l, Wolfram Schulte, and Stephan To-
bies. A practical verification methodology for concurrent pro-
grams. Technical Report MSR-TR-2009-15, Microsoft Research,
February 2009.

[Coh00] Ernie Cohen. Separation and reduction. In MPC’00, pages 45–59.
Springer, 2000.

[Dau08] Matthias Daum. Modelling user programs on top of a microker-
nel. In Elena Troubitsyna, editor, Proceedings of Doctoral Sym-
posium held in conjunction with Formal Methods 2008, volume 48
of General Publications. Turku centre for computer science, 2008.

[DDB08] Matthias Daum, Jan Dörrenbächer, and Sebastian Bogan. Model
stack for the pervasive verification of a microkernel-based oper-
ating system. In Bernhard Beckert and Gerwin Klein, editors,
Proceedings, 5th International Verification Workshop (VERIFY),
Sydney, Australia, volume 372 of CEUR Workshop Proceedings,
pages 56–70. CEUR-WS.org, August 2008.

190 BIBLIOGRAPHY

[DHP05] Iakov Dalinger, Mark Hillebrand, and Wolfgang Paul. On the
verification of memory management mechanisms. In Dominique
Borrione and Wolfgang Paul, editors, Proceedings of the 13th Ad-
vanced Research Working Conference on Correct Hardware De-
sign and Verification Methods (CHARME 2005), volume 3725
of Lecture Notes in Computer Science, pages 301–316. Springer,
2005.

[FFW07] Leo Freitas, Zheng Fu, and Jim Woodcock. POSIX file store in
Z/Eves: An experiment in the verified software repository. In
ICECCS, pages 3–14. IEEE Computer Society, 2007.

[FLI] The flint project. http://flint.cs.yale.edu/flint/.

[Hal07] Thomas C Hales. Jordan’s proof of the jordan curve theorem,
2007.

[HEK+07a] Gernot Heiser, Kevin Elphinstone, Ihor Kuz, Gerwin Klein, and
Stefan M. Petters. Towards trustworthy computing systems: Tak-
ing microkernels to the next level. SIGOPS Oper. Syst. Rev.,
41(4):3–11, 2007.

[HEK+07b] Gernot Heiser, Kevin Elphinstone, Ihor Kuz, Gerwin Klein, and
Stefan M. Petters. Towards trustworthy computing systems: Tak-
ing microkernels to the next level. SIGOPS Oper. Syst. Rev.,
41(4):3–11, 2007.

[HIP05] Mark Hillebrand, Thomas In der Rieden, and Wolfgang Paul.
Dealing with I/O devices in the context of pervasive system ver-
ification. In ICCD ’05, pages 309–316. IEEE Computer Society,
2005.

[HJLT05] Thomas Hallgren, Mark P. Jones, Rebekah Leslie, and Andrew P.
Tolmach. A principled approach to operating system construction
in Haskell. In ICFP, 2005.

[Hol06] Gerard J. Holzmann. New challenges in model checking. In Sym-
posium on 25 years of Model Checking, Seattle, USA, number
4925 in Lecture Notes in Computer Science. Springer, August
2006.

[HP96] John L. Hennessy and David A. Patterson. Computer Architec-
ture: A Quantitative Approach. Morgan Kaufmann, San Mateo,
CA, second edition, 1996.

[HP08] Mark A. Hillebrand and Wolfgang Paul. On the architecture of
system verification environments. In Karen Yorav, editor, Hard-
ware and Software, Verification and Testing, Third International

http://flint.cs.yale.edu/flint/

BIBLIOGRAPHY 191

Haifa Verification Conference, HVC 2007, Haifa, Israel, October
23–25, 2007, volume 4899 of Lecture Notes in Computer Science,
pages 153–168. Springer, 2008.

[HTS02] Michael Hohmuth, Hendrik Tews, and Shane G. Stephens. Ap-
plying source-code verification to a microkernel: The VFiasco
project. In EW10: Proceedings of the 10th workshop on ACM
SIGOPS European workshop: beyond the PC, pages 165–169, New
York, NY, USA, 2002. ACM Press.

[IdR09] Thomas In der Rieden. Verifying CVM - The Kernel Parts. PhD
thesis, Saarland University, Computer Science Department, 2009.
To appear.

[IT08] Tom In der Rieden and Alexandra Tsyban. CVM – A verified
framework for microkernel programmers. In 3rd intl Workshop
on Systems Software Verification (SSV 2008), volume 217C of
Electronic Notes in Theoretical Computer Science, pages 151–
168. Elsevier Science B.V., 2008.

[Kle09] Gerwin Klein. Operating system verification – An overview.
Sādhanā: Academy Proceedings in Engineering Sciences, 34,
2009. To appear.

[Kna08] Steffen Knapp. The Correctness of a Distributed Real-Time Sys-
tem. PhD thesis, Universität des Saarlandes, 2008.

[KP06] Steffen Knapp and Wolfgang Paul. Realistic worst case execution
time analysis in the context of pervasive system verification. In
Program Analysis and Compilation, Theory and Practice: Essays
Dedicated to Reinhard Wilhelm, volume 4444, pages 53–81, 2006.

[Lei08] Dirk Carsten Leinenbach. Compiler Verification in the Context of
Pervasive System Verification. PhD thesis, Saarland University,
Computer Science Department, July 2008.

[Lev93] Nancy G. Leveson. An investigation of the therac-25 accidents.
IEEE Computer, 26:18–41, 1993.

[Lip75] Richard J. Lipton. Reduction: A method of proving properties
of parallel programs. Commun. ACM, 18(12):717–721, 1975.

[LNRS07] Bruno Langenstein, Andreas Nonnengart, Georg Rock, and
Werner Stephan. Verification of distributed applications. In
Francesca Saglietti and Norbert Oster, editors, Computer Safety,

192 BIBLIOGRAPHY

Reliability, and Security, 26th International Conference, SAFE-
COMP 2007, Nuremberg, Germany, September 18–21, 2007, vol-
ume 4680 of Lecture Notes in Computer Science, pages 315–328.
Springer, 2007.

[Lyn96] Nancy A Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

[Mic04] Microsoft Corporation. SDV: Static driver verifier. http://
www.microsoft.com/whdc/devtools/tools/sdv.mspx,
2004.

[Moo03] J Strother Moore. A grand challenge proposal for formal methods:
A verified stack. In Bernhard K. Aichernig and T. S. E. Maibaum,
editors, 10th Anniversary Colloquium of UNU/IIST, volume 2757
of Lecture Notes in Computer Science, pages 161–172. Springer,
2003.

[MP00] Silvia M. Mueller and Wolfgang J. Paul. Computer Architecture:
Complexity and Correctness. Springer, 2000.

[NF03] Peter G. Neumann and Richard J. Feiertag. PSOS revisited. In
ACSAC ’03, pages 208–216, 2003.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL: A Proof Assistant for Higher-Order Logic, volume
2283 of Lecture Notes in Computer Science. Springer, 2002.

[NYS07] Zhaozong Ni, Dachuan Yu, and Zhong Shao. Using XCAP to
certify realistic systems code: Machine context management. In
TPHOLs ’07, pages 189–206. Lecture Notes in Computer Science,
2007.

[RPS01] Prakash Rashinkar, Peter Paterson, and Leena Singh. System-on-
a-Chip Verification: Methodology and Techniques. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 2001.

[SC06] Scott D. Stoller and Ernie Cohen. Optimistic synchronization-
based state-space reduction. Form. Methods Syst. Des.,
28(3):263–289, 2006.

[Sch06] Norbert Schirmer. Verification of Sequential Imperative Programs
in Isabelle/HOL. PhD thesis, Technical University of Munich,
April 2006.

[SCR+03] S Shepler, B Callaghan, D Robinson, R Thurlow, C Beame,
M Eisler, and D Noveck. RFC 3530: Network file system (nfs)
version 4 protocol, 2003.

http://www.microsoft.com/whdc/devtools/tools/sdv.mspx
http://www.microsoft.com/whdc/devtools/tools/sdv.mspx

BIBLIOGRAPHY 193

[Sha06] Andrey Shadrin. Design and implementation of the portmapper
and RPC primitives in the context of the SOS. Master’s thesis,
Saarland University, Saarbrücken, 2006.

[Sri95] R Srinivasan. RFC 1831: RPC: Remote procedure call protocol
specification version 2, 1995.

[Sta06] Artem Starostin. Formal verification of a c-library for strings.
Master’s thesis, Saarland University, 2006.

[Sta09] Artem Starostin. Formal Verification of Demand Paging. PhD
thesis, Saarland University, Computer Science Department, 2009.
To appear.

[TA08] Sergey Tverdyshev and Eyad Alkassar. Efficient bit-level model
reductions for automated hardware verification. In 15th Inter-
national Symposium on Temporal Representation and Reasoning
(TIME 2008), pages 164–172. IEEE Computer Society Press,
2008.

[The09] The Verisoft Consortium. The Verisoft Project. http://www.
verisoft.de/, 2009.

[TK04] Harvey Tuch and Gerwin Klein. Verifying the L4 virtual memory
subsystem. In Gerwin Klein, editor, Proceedings of the NICTA
Formal Methods Workshop on Operating Systems Verification,
pages 73–97. National ICT Australia, 2004.

[TKN07] Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes,
and separation logic. In POPL ’07, pages 97–108. ACM Press,
2007.

[TR85] Andrew S Tanenbaum and Robbert Van Renesse. Distributed
operating systems. ACM Comput. Surv., 17(4):419–470, 1985.

[TS08] Sergey Tverdyshev and Andrey Shadrin. Formal verification of
gate-level computer systems. In Kristin Yvonne Rozier, editor,
LFM 2008: Sixth NASA Langley Formal Methods Workshop,
NASA Scientific and Technical Information (STI), pages 56–58.
NASA, 2008.

[Tsy09] Alexandra Tsyban. Formal Verification of a Framework for Mi-
crokernel Programmers. PhD thesis, Saarland University, Com-
puter Science Department, 2009. To appear.

[Tve09] Sergey Tverdyshev. Formal Verification of Gate-Level Computer
Systems. PhD thesis, Saarland University, Computer Science De-
partment, 2009. To appear.

http://www.verisoft.de/
http://www.verisoft.de/

194 BIBLIOGRAPHY

[WKP80] Bruce J. Walker, Richard A. Kemmerer, and Gerald J. Popek.
Specification and verification of the UCLA Unix security kernel.
Communications of the ACM, 23(2):118–131, 1980.

[YS04] Dachuan Yu and Zhong Shao. Verification of safety properties for
concurrent assembly code. In ICFP ’04, September 2004.

	Introduction
	Structure of the Document
	Related Work
	The Setting
	Notation

	Road Map
	Formal Verification of Device Drivers
	Verification of Client/Server Software

	Formal Function Verification of Device Drivers
	Extending the Language Stack
	VAMP and Devices
	VAMP Reordered
	C0 and Devices
	C0 With Inline Assembly
	C0 With XCalls

	Case Study: Hard Disk Driver
	Hard Disk Model
	Assembly Driver
	C0 Driver

	Proving the Correctness of Client/Server Software
	Specifying an Operating System
	Background
	Specification of the SOS
	Reasoning About Applications in SOS

	Proving Correctness of Client/Server software
	The Programming Language C0
	Signatures of Services
	Portmapper Correctness
	Sending and Receiving Data Structures
	RPC Client Protocol
	Building a Server and Proving its Correctness

	Conclusion and Future Work
	Formal Work
	Future Work

	Dependency Graphs
	Mapping to Formal Names
	Bibliography

